xref: /libev/ev.c (revision 93823e6c)
1 /*
2  * libev event processing core, watcher management
3  *
4  * Copyright (c) 2007,2008,2009,2010,2011,2012,2013 Marc Alexander Lehmann <[email protected]>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without modifica-
8  * tion, are permitted provided that the following conditions are met:
9  *
10  *   1.  Redistributions of source code must retain the above copyright notice,
11  *       this list of conditions and the following disclaimer.
12  *
13  *   2.  Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in the
15  *       documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19  * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO
20  * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21  * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25  * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26  * OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  * Alternatively, the contents of this file may be used under the terms of
29  * the GNU General Public License ("GPL") version 2 or any later version,
30  * in which case the provisions of the GPL are applicable instead of
31  * the above. If you wish to allow the use of your version of this file
32  * only under the terms of the GPL and not to allow others to use your
33  * version of this file under the BSD license, indicate your decision
34  * by deleting the provisions above and replace them with the notice
35  * and other provisions required by the GPL. If you do not delete the
36  * provisions above, a recipient may use your version of this file under
37  * either the BSD or the GPL.
38  */
39 
40 /* this big block deduces configuration from config.h */
41 #ifndef EV_STANDALONE
42 # ifdef EV_CONFIG_H
43 #  include EV_CONFIG_H
44 # else
45 #  include "config.h"
46 # endif
47 
48 # if HAVE_FLOOR
49 #  ifndef EV_USE_FLOOR
50 #   define EV_USE_FLOOR 1
51 #  endif
52 # endif
53 
54 # if HAVE_CLOCK_SYSCALL
55 #  ifndef EV_USE_CLOCK_SYSCALL
56 #   define EV_USE_CLOCK_SYSCALL 1
57 #   ifndef EV_USE_REALTIME
58 #    define EV_USE_REALTIME  0
59 #   endif
60 #   ifndef EV_USE_MONOTONIC
61 #    define EV_USE_MONOTONIC 1
62 #   endif
63 #  endif
64 # elif !defined EV_USE_CLOCK_SYSCALL
65 #  define EV_USE_CLOCK_SYSCALL 0
66 # endif
67 
68 # if HAVE_CLOCK_GETTIME
69 #  ifndef EV_USE_MONOTONIC
70 #   define EV_USE_MONOTONIC 1
71 #  endif
72 #  ifndef EV_USE_REALTIME
73 #   define EV_USE_REALTIME  0
74 #  endif
75 # else
76 #  ifndef EV_USE_MONOTONIC
77 #   define EV_USE_MONOTONIC 0
78 #  endif
79 #  ifndef EV_USE_REALTIME
80 #   define EV_USE_REALTIME  0
81 #  endif
82 # endif
83 
84 # if HAVE_NANOSLEEP
85 #  ifndef EV_USE_NANOSLEEP
86 #    define EV_USE_NANOSLEEP EV_FEATURE_OS
87 #  endif
88 # else
89 #   undef EV_USE_NANOSLEEP
90 #   define EV_USE_NANOSLEEP 0
91 # endif
92 
93 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94 #  ifndef EV_USE_SELECT
95 #   define EV_USE_SELECT EV_FEATURE_BACKENDS
96 #  endif
97 # else
98 #  undef EV_USE_SELECT
99 #  define EV_USE_SELECT 0
100 # endif
101 
102 # if HAVE_POLL && HAVE_POLL_H
103 #  ifndef EV_USE_POLL
104 #   define EV_USE_POLL EV_FEATURE_BACKENDS
105 #  endif
106 # else
107 #  undef EV_USE_POLL
108 #  define EV_USE_POLL 0
109 # endif
110 
111 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112 #  ifndef EV_USE_EPOLL
113 #   define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 #  endif
115 # else
116 #  undef EV_USE_EPOLL
117 #  define EV_USE_EPOLL 0
118 # endif
119 
120 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121 #  ifndef EV_USE_KQUEUE
122 #   define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123 #  endif
124 # else
125 #  undef EV_USE_KQUEUE
126 #  define EV_USE_KQUEUE 0
127 # endif
128 
129 # if HAVE_PORT_H && HAVE_PORT_CREATE
130 #  ifndef EV_USE_PORT
131 #   define EV_USE_PORT EV_FEATURE_BACKENDS
132 #  endif
133 # else
134 #  undef EV_USE_PORT
135 #  define EV_USE_PORT 0
136 # endif
137 
138 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139 #  ifndef EV_USE_INOTIFY
140 #   define EV_USE_INOTIFY EV_FEATURE_OS
141 #  endif
142 # else
143 #  undef EV_USE_INOTIFY
144 #  define EV_USE_INOTIFY 0
145 # endif
146 
147 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148 #  ifndef EV_USE_SIGNALFD
149 #   define EV_USE_SIGNALFD EV_FEATURE_OS
150 #  endif
151 # else
152 #  undef EV_USE_SIGNALFD
153 #  define EV_USE_SIGNALFD 0
154 # endif
155 
156 # if HAVE_EVENTFD
157 #  ifndef EV_USE_EVENTFD
158 #   define EV_USE_EVENTFD EV_FEATURE_OS
159 #  endif
160 # else
161 #  undef EV_USE_EVENTFD
162 #  define EV_USE_EVENTFD 0
163 # endif
164 
165 #endif
166 
167 #include <stdlib.h>
168 #include <string.h>
169 #include <fcntl.h>
170 #include <stddef.h>
171 
172 #include <stdio.h>
173 
174 #include <assert.h>
175 #include <errno.h>
176 #include <sys/types.h>
177 #include <time.h>
178 #include <limits.h>
179 
180 #include <signal.h>
181 
182 #ifdef EV_H
183 # include EV_H
184 #else
185 # include "ev.h"
186 #endif
187 
188 #if EV_NO_THREADS
189 # undef EV_NO_SMP
190 # define EV_NO_SMP 1
191 # undef ECB_NO_THREADS
192 # define ECB_NO_THREADS 1
193 #endif
194 #if EV_NO_SMP
195 # undef EV_NO_SMP
196 # define ECB_NO_SMP 1
197 #endif
198 
199 #ifndef _WIN32
200 # include <sys/time.h>
201 # include <sys/wait.h>
202 # include <unistd.h>
203 #else
204 # include <io.h>
205 # define WIN32_LEAN_AND_MEAN
206 # include <winsock2.h>
207 # include <windows.h>
208 # ifndef EV_SELECT_IS_WINSOCKET
209 #  define EV_SELECT_IS_WINSOCKET 1
210 # endif
211 # undef EV_AVOID_STDIO
212 #endif
213 
214 /* OS X, in its infinite idiocy, actually HARDCODES
215  * a limit of 1024 into their select. Where people have brains,
216  * OS X engineers apparently have a vacuum. Or maybe they were
217  * ordered to have a vacuum, or they do anything for money.
218  * This might help. Or not.
219  */
220 #define _DARWIN_UNLIMITED_SELECT 1
221 
222 /* this block tries to deduce configuration from header-defined symbols and defaults */
223 
224 /* try to deduce the maximum number of signals on this platform */
225 #if defined EV_NSIG
226 /* use what's provided */
227 #elif defined NSIG
228 # define EV_NSIG (NSIG)
229 #elif defined _NSIG
230 # define EV_NSIG (_NSIG)
231 #elif defined SIGMAX
232 # define EV_NSIG (SIGMAX+1)
233 #elif defined SIG_MAX
234 # define EV_NSIG (SIG_MAX+1)
235 #elif defined _SIG_MAX
236 # define EV_NSIG (_SIG_MAX+1)
237 #elif defined MAXSIG
238 # define EV_NSIG (MAXSIG+1)
239 #elif defined MAX_SIG
240 # define EV_NSIG (MAX_SIG+1)
241 #elif defined SIGARRAYSIZE
242 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243 #elif defined _sys_nsig
244 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245 #else
246 # define EV_NSIG (8 * sizeof (sigset_t) + 1)
247 #endif
248 
249 #ifndef EV_USE_FLOOR
250 # define EV_USE_FLOOR 0
251 #endif
252 
253 #ifndef EV_USE_CLOCK_SYSCALL
254 # if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
255 #  define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
256 # else
257 #  define EV_USE_CLOCK_SYSCALL 0
258 # endif
259 #endif
260 
261 #if !(_POSIX_TIMERS > 0)
262 # ifndef EV_USE_MONOTONIC
263 #  define EV_USE_MONOTONIC 0
264 # endif
265 # ifndef EV_USE_REALTIME
266 #  define EV_USE_REALTIME 0
267 # endif
268 #endif
269 
270 #ifndef EV_USE_MONOTONIC
271 # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
272 #  define EV_USE_MONOTONIC EV_FEATURE_OS
273 # else
274 #  define EV_USE_MONOTONIC 0
275 # endif
276 #endif
277 
278 #ifndef EV_USE_REALTIME
279 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
280 #endif
281 
282 #ifndef EV_USE_NANOSLEEP
283 # if _POSIX_C_SOURCE >= 199309L
284 #  define EV_USE_NANOSLEEP EV_FEATURE_OS
285 # else
286 #  define EV_USE_NANOSLEEP 0
287 # endif
288 #endif
289 
290 #ifndef EV_USE_SELECT
291 # define EV_USE_SELECT EV_FEATURE_BACKENDS
292 #endif
293 
294 #ifndef EV_USE_POLL
295 # ifdef _WIN32
296 #  define EV_USE_POLL 0
297 # else
298 #  define EV_USE_POLL EV_FEATURE_BACKENDS
299 # endif
300 #endif
301 
302 #ifndef EV_USE_EPOLL
303 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
304 #  define EV_USE_EPOLL EV_FEATURE_BACKENDS
305 # else
306 #  define EV_USE_EPOLL 0
307 # endif
308 #endif
309 
310 #ifndef EV_USE_KQUEUE
311 # define EV_USE_KQUEUE 0
312 #endif
313 
314 #ifndef EV_USE_PORT
315 # define EV_USE_PORT 0
316 #endif
317 
318 #ifndef EV_USE_INOTIFY
319 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
320 #  define EV_USE_INOTIFY EV_FEATURE_OS
321 # else
322 #  define EV_USE_INOTIFY 0
323 # endif
324 #endif
325 
326 #ifndef EV_PID_HASHSIZE
327 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
328 #endif
329 
330 #ifndef EV_INOTIFY_HASHSIZE
331 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
332 #endif
333 
334 #ifndef EV_USE_EVENTFD
335 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
336 #  define EV_USE_EVENTFD EV_FEATURE_OS
337 # else
338 #  define EV_USE_EVENTFD 0
339 # endif
340 #endif
341 
342 #ifndef EV_USE_SIGNALFD
343 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
344 #  define EV_USE_SIGNALFD EV_FEATURE_OS
345 # else
346 #  define EV_USE_SIGNALFD 0
347 # endif
348 #endif
349 
350 #if 0 /* debugging */
351 # define EV_VERIFY 3
352 # define EV_USE_4HEAP 1
353 # define EV_HEAP_CACHE_AT 1
354 #endif
355 
356 #ifndef EV_VERIFY
357 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
358 #endif
359 
360 #ifndef EV_USE_4HEAP
361 # define EV_USE_4HEAP EV_FEATURE_DATA
362 #endif
363 
364 #ifndef EV_HEAP_CACHE_AT
365 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
366 #endif
367 
368 #ifdef ANDROID
369 /* supposedly, android doesn't typedef fd_mask */
370 # undef EV_USE_SELECT
371 # define EV_USE_SELECT 0
372 /* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
373 # undef EV_USE_CLOCK_SYSCALL
374 # define EV_USE_CLOCK_SYSCALL 0
375 #endif
376 
377 /* aix's poll.h seems to cause lots of trouble */
378 #ifdef _AIX
379 /* AIX has a completely broken poll.h header */
380 # undef EV_USE_POLL
381 # define EV_USE_POLL 0
382 #endif
383 
384 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
385 /* which makes programs even slower. might work on other unices, too. */
386 #if EV_USE_CLOCK_SYSCALL
387 # include <sys/syscall.h>
388 # ifdef SYS_clock_gettime
389 #  define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
390 #  undef EV_USE_MONOTONIC
391 #  define EV_USE_MONOTONIC 1
392 # else
393 #  undef EV_USE_CLOCK_SYSCALL
394 #  define EV_USE_CLOCK_SYSCALL 0
395 # endif
396 #endif
397 
398 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
399 
400 #ifndef CLOCK_MONOTONIC
401 # undef EV_USE_MONOTONIC
402 # define EV_USE_MONOTONIC 0
403 #endif
404 
405 #ifndef CLOCK_REALTIME
406 # undef EV_USE_REALTIME
407 # define EV_USE_REALTIME 0
408 #endif
409 
410 #if !EV_STAT_ENABLE
411 # undef EV_USE_INOTIFY
412 # define EV_USE_INOTIFY 0
413 #endif
414 
415 #if !EV_USE_NANOSLEEP
416 /* hp-ux has it in sys/time.h, which we unconditionally include above */
417 # if !defined _WIN32 && !defined __hpux
418 #  include <sys/select.h>
419 # endif
420 #endif
421 
422 #if EV_USE_INOTIFY
423 # include <sys/statfs.h>
424 # include <sys/inotify.h>
425 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
426 # ifndef IN_DONT_FOLLOW
427 #  undef EV_USE_INOTIFY
428 #  define EV_USE_INOTIFY 0
429 # endif
430 #endif
431 
432 #if EV_USE_EVENTFD
433 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
434 # include <stdint.h>
435 # ifndef EFD_NONBLOCK
436 #  define EFD_NONBLOCK O_NONBLOCK
437 # endif
438 # ifndef EFD_CLOEXEC
439 #  ifdef O_CLOEXEC
440 #   define EFD_CLOEXEC O_CLOEXEC
441 #  else
442 #   define EFD_CLOEXEC 02000000
443 #  endif
444 # endif
445 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
446 #endif
447 
448 #if EV_USE_SIGNALFD
449 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
450 # include <stdint.h>
451 # ifndef SFD_NONBLOCK
452 #  define SFD_NONBLOCK O_NONBLOCK
453 # endif
454 # ifndef SFD_CLOEXEC
455 #  ifdef O_CLOEXEC
456 #   define SFD_CLOEXEC O_CLOEXEC
457 #  else
458 #   define SFD_CLOEXEC 02000000
459 #  endif
460 # endif
461 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
462 
463 struct signalfd_siginfo
464 {
465   uint32_t ssi_signo;
466   char pad[128 - sizeof (uint32_t)];
467 };
468 #endif
469 
470 /**/
471 
472 #if EV_VERIFY >= 3
473 # define EV_FREQUENT_CHECK ev_verify (EV_A)
474 #else
475 # define EV_FREQUENT_CHECK do { } while (0)
476 #endif
477 
478 /*
479  * This is used to work around floating point rounding problems.
480  * This value is good at least till the year 4000.
481  */
482 #define MIN_INTERVAL  0.0001220703125 /* 1/2**13, good till 4000 */
483 /*#define MIN_INTERVAL  0.00000095367431640625 /* 1/2**20, good till 2200 */
484 
485 #define MIN_TIMEJUMP  1. /* minimum timejump that gets detected (if monotonic clock available) */
486 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
487 
488 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
489 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
490 
491 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
492 /* ECB.H BEGIN */
493 /*
494  * libecb - http://software.schmorp.de/pkg/libecb
495  *
496  * Copyright (©) 2009-2015 Marc Alexander Lehmann <[email protected]>
497  * Copyright (©) 2011 Emanuele Giaquinta
498  * All rights reserved.
499  *
500  * Redistribution and use in source and binary forms, with or without modifica-
501  * tion, are permitted provided that the following conditions are met:
502  *
503  *   1.  Redistributions of source code must retain the above copyright notice,
504  *       this list of conditions and the following disclaimer.
505  *
506  *   2.  Redistributions in binary form must reproduce the above copyright
507  *       notice, this list of conditions and the following disclaimer in the
508  *       documentation and/or other materials provided with the distribution.
509  *
510  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
511  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
512  * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO
513  * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
514  * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
515  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
516  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
517  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
518  * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
519  * OF THE POSSIBILITY OF SUCH DAMAGE.
520  *
521  * Alternatively, the contents of this file may be used under the terms of
522  * the GNU General Public License ("GPL") version 2 or any later version,
523  * in which case the provisions of the GPL are applicable instead of
524  * the above. If you wish to allow the use of your version of this file
525  * only under the terms of the GPL and not to allow others to use your
526  * version of this file under the BSD license, indicate your decision
527  * by deleting the provisions above and replace them with the notice
528  * and other provisions required by the GPL. If you do not delete the
529  * provisions above, a recipient may use your version of this file under
530  * either the BSD or the GPL.
531  */
532 
533 #ifndef ECB_H
534 #define ECB_H
535 
536 /* 16 bits major, 16 bits minor */
537 #define ECB_VERSION 0x00010005
538 
539 #ifdef _WIN32
540   typedef   signed char   int8_t;
541   typedef unsigned char  uint8_t;
542   typedef   signed short  int16_t;
543   typedef unsigned short uint16_t;
544   typedef   signed int    int32_t;
545   typedef unsigned int   uint32_t;
546   #if __GNUC__
547     typedef   signed long long int64_t;
548     typedef unsigned long long uint64_t;
549   #else /* _MSC_VER || __BORLANDC__ */
550     typedef   signed __int64   int64_t;
551     typedef unsigned __int64   uint64_t;
552   #endif
553   #ifdef _WIN64
554     #define ECB_PTRSIZE 8
555     typedef uint64_t uintptr_t;
556     typedef  int64_t  intptr_t;
557   #else
558     #define ECB_PTRSIZE 4
559     typedef uint32_t uintptr_t;
560     typedef  int32_t  intptr_t;
561   #endif
562 #else
563   #include <inttypes.h>
564   #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
565     #define ECB_PTRSIZE 8
566   #else
567     #define ECB_PTRSIZE 4
568   #endif
569 #endif
570 
571 #define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
572 #define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
573 
574 /* work around x32 idiocy by defining proper macros */
575 #if ECB_GCC_AMD64 || ECB_MSVC_AMD64
576   #if _ILP32
577     #define ECB_AMD64_X32 1
578   #else
579     #define ECB_AMD64 1
580   #endif
581 #endif
582 
583 /* many compilers define _GNUC_ to some versions but then only implement
584  * what their idiot authors think are the "more important" extensions,
585  * causing enormous grief in return for some better fake benchmark numbers.
586  * or so.
587  * we try to detect these and simply assume they are not gcc - if they have
588  * an issue with that they should have done it right in the first place.
589  */
590 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
591   #define ECB_GCC_VERSION(major,minor) 0
592 #else
593   #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
594 #endif
595 
596 #define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
597 
598 #if __clang__ && defined __has_builtin
599   #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
600 #else
601   #define ECB_CLANG_BUILTIN(x) 0
602 #endif
603 
604 #if __clang__ && defined __has_extension
605   #define ECB_CLANG_EXTENSION(x) __has_extension (x)
606 #else
607   #define ECB_CLANG_EXTENSION(x) 0
608 #endif
609 
610 #define ECB_CPP   (__cplusplus+0)
611 #define ECB_CPP11 (__cplusplus >= 201103L)
612 
613 #if ECB_CPP
614   #define ECB_C            0
615   #define ECB_STDC_VERSION 0
616 #else
617   #define ECB_C            1
618   #define ECB_STDC_VERSION __STDC_VERSION__
619 #endif
620 
621 #define ECB_C99   (ECB_STDC_VERSION >= 199901L)
622 #define ECB_C11   (ECB_STDC_VERSION >= 201112L)
623 
624 #if ECB_CPP
625   #define ECB_EXTERN_C extern "C"
626   #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
627   #define ECB_EXTERN_C_END }
628 #else
629   #define ECB_EXTERN_C extern
630   #define ECB_EXTERN_C_BEG
631   #define ECB_EXTERN_C_END
632 #endif
633 
634 /*****************************************************************************/
635 
636 /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
637 /* ECB_NO_SMP     - ecb might be used in multiple threads, but only on a single cpu */
638 
639 #if ECB_NO_THREADS
640   #define ECB_NO_SMP 1
641 #endif
642 
643 #if ECB_NO_SMP
644   #define ECB_MEMORY_FENCE do { } while (0)
645 #endif
646 
647 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
648 #if __xlC__ && ECB_CPP
649   #include <builtins.h>
650 #endif
651 
652 #if 1400 <= _MSC_VER
653   #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
654 #endif
655 
656 #ifndef ECB_MEMORY_FENCE
657   #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
658     #if __i386 || __i386__
659       #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
660       #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ (""                        : : : "memory")
661       #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
662     #elif ECB_GCC_AMD64
663       #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("mfence"   : : : "memory")
664       #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ (""         : : : "memory")
665       #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
666     #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
667       #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("sync"     : : : "memory")
668     #elif defined __ARM_ARCH_2__ \
669       || defined __ARM_ARCH_3__  || defined __ARM_ARCH_3M__  \
670       || defined __ARM_ARCH_4__  || defined __ARM_ARCH_4T__  \
671       || defined __ARM_ARCH_5__  || defined __ARM_ARCH_5E__  \
672       || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
673       || defined __ARM_ARCH_5TEJ__
674       /* should not need any, unless running old code on newer cpu - arm doesn't support that */
675     #elif defined __ARM_ARCH_6__  || defined __ARM_ARCH_6J__  \
676        || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
677        || defined __ARM_ARCH_6T2__
678       #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
679     #elif defined __ARM_ARCH_7__  || defined __ARM_ARCH_7A__  \
680        || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
681       #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("dmb"      : : : "memory")
682     #elif __aarch64__
683       #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("dmb ish"  : : : "memory")
684     #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
685       #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
686       #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad"                            : : : "memory")
687       #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore             | #StoreStore")
688     #elif defined __s390__ || defined __s390x__
689       #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("bcr 15,0" : : : "memory")
690     #elif defined __mips__
691       /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
692       /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
693       #define ECB_MEMORY_FENCE         __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
694     #elif defined __alpha__
695       #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("mb"       : : : "memory")
696     #elif defined __hppa__
697       #define ECB_MEMORY_FENCE         __asm__ __volatile__ (""         : : : "memory")
698       #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
699     #elif defined __ia64__
700       #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("mf"       : : : "memory")
701     #elif defined __m68k__
702       #define ECB_MEMORY_FENCE         __asm__ __volatile__ (""         : : : "memory")
703     #elif defined __m88k__
704       #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
705     #elif defined __sh__
706       #define ECB_MEMORY_FENCE         __asm__ __volatile__ (""         : : : "memory")
707     #endif
708   #endif
709 #endif
710 
711 #ifndef ECB_MEMORY_FENCE
712   #if ECB_GCC_VERSION(4,7)
713     /* see comment below (stdatomic.h) about the C11 memory model. */
714     #define ECB_MEMORY_FENCE         __atomic_thread_fence (__ATOMIC_SEQ_CST)
715     #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
716     #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
717 
718   #elif ECB_CLANG_EXTENSION(c_atomic)
719     /* see comment below (stdatomic.h) about the C11 memory model. */
720     #define ECB_MEMORY_FENCE         __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
721     #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
722     #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
723 
724   #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
725     #define ECB_MEMORY_FENCE         __sync_synchronize ()
726   #elif _MSC_VER >= 1500 /* VC++ 2008 */
727     /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
728     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
729     #define ECB_MEMORY_FENCE         _ReadWriteBarrier (); MemoryBarrier()
730     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
731     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
732   #elif _MSC_VER >= 1400 /* VC++ 2005 */
733     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
734     #define ECB_MEMORY_FENCE         _ReadWriteBarrier ()
735     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
736     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
737   #elif defined _WIN32
738     #include <WinNT.h>
739     #define ECB_MEMORY_FENCE         MemoryBarrier () /* actually just xchg on x86... scary */
740   #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
741     #include <mbarrier.h>
742     #define ECB_MEMORY_FENCE         __machine_rw_barrier ()
743     #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier  ()
744     #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier  ()
745   #elif __xlC__
746     #define ECB_MEMORY_FENCE         __sync ()
747   #endif
748 #endif
749 
750 #ifndef ECB_MEMORY_FENCE
751   #if ECB_C11 && !defined __STDC_NO_ATOMICS__
752     /* we assume that these memory fences work on all variables/all memory accesses, */
753     /* not just C11 atomics and atomic accesses */
754     #include <stdatomic.h>
755     /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
756     /* any fence other than seq_cst, which isn't very efficient for us. */
757     /* Why that is, we don't know - either the C11 memory model is quite useless */
758     /* for most usages, or gcc and clang have a bug */
759     /* I *currently* lean towards the latter, and inefficiently implement */
760     /* all three of ecb's fences as a seq_cst fence */
761     /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
762     /* for all __atomic_thread_fence's except seq_cst */
763     #define ECB_MEMORY_FENCE         atomic_thread_fence (memory_order_seq_cst)
764   #endif
765 #endif
766 
767 #ifndef ECB_MEMORY_FENCE
768   #if !ECB_AVOID_PTHREADS
769     /*
770      * if you get undefined symbol references to pthread_mutex_lock,
771      * or failure to find pthread.h, then you should implement
772      * the ECB_MEMORY_FENCE operations for your cpu/compiler
773      * OR provide pthread.h and link against the posix thread library
774      * of your system.
775      */
776     #include <pthread.h>
777     #define ECB_NEEDS_PTHREADS 1
778     #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
779 
780     static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
781     #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
782   #endif
783 #endif
784 
785 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
786   #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
787 #endif
788 
789 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
790   #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
791 #endif
792 
793 /*****************************************************************************/
794 
795 #if ECB_CPP
796   #define ecb_inline static inline
797 #elif ECB_GCC_VERSION(2,5)
798   #define ecb_inline static __inline__
799 #elif ECB_C99
800   #define ecb_inline static inline
801 #else
802   #define ecb_inline static
803 #endif
804 
805 #if ECB_GCC_VERSION(3,3)
806   #define ecb_restrict __restrict__
807 #elif ECB_C99
808   #define ecb_restrict restrict
809 #else
810   #define ecb_restrict
811 #endif
812 
813 typedef int ecb_bool;
814 
815 #define ECB_CONCAT_(a, b) a ## b
816 #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
817 #define ECB_STRINGIFY_(a) # a
818 #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
819 #define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
820 
821 #define ecb_function_ ecb_inline
822 
823 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
824   #define ecb_attribute(attrlist)        __attribute__ (attrlist)
825 #else
826   #define ecb_attribute(attrlist)
827 #endif
828 
829 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
830   #define ecb_is_constant(expr)          __builtin_constant_p (expr)
831 #else
832   /* possible C11 impl for integral types
833   typedef struct ecb_is_constant_struct ecb_is_constant_struct;
834   #define ecb_is_constant(expr)          _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
835 
836   #define ecb_is_constant(expr)          0
837 #endif
838 
839 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
840   #define ecb_expect(expr,value)         __builtin_expect ((expr),(value))
841 #else
842   #define ecb_expect(expr,value)         (expr)
843 #endif
844 
845 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
846   #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
847 #else
848   #define ecb_prefetch(addr,rw,locality)
849 #endif
850 
851 /* no emulation for ecb_decltype */
852 #if ECB_CPP11
853   // older implementations might have problems with decltype(x)::type, work around it
854   template<class T> struct ecb_decltype_t { typedef T type; };
855   #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
856 #elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
857   #define ecb_decltype(x) __typeof__ (x)
858 #endif
859 
860 #if _MSC_VER >= 1300
861   #define ecb_deprecated __declspec (deprecated)
862 #else
863   #define ecb_deprecated ecb_attribute ((__deprecated__))
864 #endif
865 
866 #if _MSC_VER >= 1500
867   #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
868 #elif ECB_GCC_VERSION(4,5)
869   #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
870 #else
871   #define ecb_deprecated_message(msg) ecb_deprecated
872 #endif
873 
874 #if _MSC_VER >= 1400
875   #define ecb_noinline __declspec (noinline)
876 #else
877   #define ecb_noinline ecb_attribute ((__noinline__))
878 #endif
879 
880 #define ecb_unused     ecb_attribute ((__unused__))
881 #define ecb_const      ecb_attribute ((__const__))
882 #define ecb_pure       ecb_attribute ((__pure__))
883 
884 #if ECB_C11 || __IBMC_NORETURN
885   /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
886   #define ecb_noreturn   _Noreturn
887 #elif ECB_CPP11
888   #define ecb_noreturn   [[noreturn]]
889 #elif _MSC_VER >= 1200
890   /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
891   #define ecb_noreturn   __declspec (noreturn)
892 #else
893   #define ecb_noreturn   ecb_attribute ((__noreturn__))
894 #endif
895 
896 #if ECB_GCC_VERSION(4,3)
897   #define ecb_artificial ecb_attribute ((__artificial__))
898   #define ecb_hot        ecb_attribute ((__hot__))
899   #define ecb_cold       ecb_attribute ((__cold__))
900 #else
901   #define ecb_artificial
902   #define ecb_hot
903   #define ecb_cold
904 #endif
905 
906 /* put around conditional expressions if you are very sure that the  */
907 /* expression is mostly true or mostly false. note that these return */
908 /* booleans, not the expression.                                     */
909 #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
910 #define ecb_expect_true(expr)  ecb_expect (!!(expr), 1)
911 /* for compatibility to the rest of the world */
912 #define ecb_likely(expr)   ecb_expect_true  (expr)
913 #define ecb_unlikely(expr) ecb_expect_false (expr)
914 
915 /* count trailing zero bits and count # of one bits */
916 #if ECB_GCC_VERSION(3,4) \
917     || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
918         && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
919         && ECB_CLANG_BUILTIN(__builtin_popcount))
920   /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
921   #define ecb_ld32(x)      (__builtin_clz      (x) ^ 31)
922   #define ecb_ld64(x)      (__builtin_clzll    (x) ^ 63)
923   #define ecb_ctz32(x)      __builtin_ctz      (x)
924   #define ecb_ctz64(x)      __builtin_ctzll    (x)
925   #define ecb_popcount32(x) __builtin_popcount (x)
926   /* no popcountll */
927 #else
928   ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
929   ecb_function_ ecb_const int
ecb_ctz32(uint32_t x)930   ecb_ctz32 (uint32_t x)
931   {
932 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
933     unsigned long r;
934     _BitScanForward (&r, x);
935     return (int)r;
936 #else
937     int r = 0;
938 
939     x &= ~x + 1; /* this isolates the lowest bit */
940 
941 #if ECB_branchless_on_i386
942     r += !!(x & 0xaaaaaaaa) << 0;
943     r += !!(x & 0xcccccccc) << 1;
944     r += !!(x & 0xf0f0f0f0) << 2;
945     r += !!(x & 0xff00ff00) << 3;
946     r += !!(x & 0xffff0000) << 4;
947 #else
948     if (x & 0xaaaaaaaa) r +=  1;
949     if (x & 0xcccccccc) r +=  2;
950     if (x & 0xf0f0f0f0) r +=  4;
951     if (x & 0xff00ff00) r +=  8;
952     if (x & 0xffff0000) r += 16;
953 #endif
954 
955     return r;
956 #endif
957   }
958 
959   ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
960   ecb_function_ ecb_const int
ecb_ctz64(uint64_t x)961   ecb_ctz64 (uint64_t x)
962   {
963 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
964     unsigned long r;
965     _BitScanForward64 (&r, x);
966     return (int)r;
967 #else
968     int shift = x & 0xffffffff ? 0 : 32;
969     return ecb_ctz32 (x >> shift) + shift;
970 #endif
971   }
972 
973   ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
974   ecb_function_ ecb_const int
ecb_popcount32(uint32_t x)975   ecb_popcount32 (uint32_t x)
976   {
977     x -=  (x >> 1) & 0x55555555;
978     x  = ((x >> 2) & 0x33333333) + (x & 0x33333333);
979     x  = ((x >> 4) + x) & 0x0f0f0f0f;
980     x *= 0x01010101;
981 
982     return x >> 24;
983   }
984 
985   ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
ecb_ld32(uint32_t x)986   ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
987   {
988 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
989     unsigned long r;
990     _BitScanReverse (&r, x);
991     return (int)r;
992 #else
993     int r = 0;
994 
995     if (x >> 16) { x >>= 16; r += 16; }
996     if (x >>  8) { x >>=  8; r +=  8; }
997     if (x >>  4) { x >>=  4; r +=  4; }
998     if (x >>  2) { x >>=  2; r +=  2; }
999     if (x >>  1) {           r +=  1; }
1000 
1001     return r;
1002 #endif
1003   }
1004 
1005   ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
ecb_ld64(uint64_t x)1006   ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1007   {
1008 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1009     unsigned long r;
1010     _BitScanReverse64 (&r, x);
1011     return (int)r;
1012 #else
1013     int r = 0;
1014 
1015     if (x >> 32) { x >>= 32; r += 32; }
1016 
1017     return r + ecb_ld32 (x);
1018 #endif
1019   }
1020 #endif
1021 
1022 ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
ecb_is_pot32(uint32_t x)1023 ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1024 ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
ecb_is_pot64(uint64_t x)1025 ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1026 
1027 ecb_function_ ecb_const uint8_t  ecb_bitrev8  (uint8_t  x);
ecb_bitrev8(uint8_t x)1028 ecb_function_ ecb_const uint8_t  ecb_bitrev8  (uint8_t  x)
1029 {
1030   return (  (x * 0x0802U & 0x22110U)
1031           | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1032 }
1033 
1034 ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
ecb_bitrev16(uint16_t x)1035 ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1036 {
1037   x = ((x >>  1) &     0x5555) | ((x &     0x5555) <<  1);
1038   x = ((x >>  2) &     0x3333) | ((x &     0x3333) <<  2);
1039   x = ((x >>  4) &     0x0f0f) | ((x &     0x0f0f) <<  4);
1040   x = ( x >>  8              ) | ( x               <<  8);
1041 
1042   return x;
1043 }
1044 
1045 ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
ecb_bitrev32(uint32_t x)1046 ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1047 {
1048   x = ((x >>  1) & 0x55555555) | ((x & 0x55555555) <<  1);
1049   x = ((x >>  2) & 0x33333333) | ((x & 0x33333333) <<  2);
1050   x = ((x >>  4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) <<  4);
1051   x = ((x >>  8) & 0x00ff00ff) | ((x & 0x00ff00ff) <<  8);
1052   x = ( x >> 16              ) | ( x               << 16);
1053 
1054   return x;
1055 }
1056 
1057 /* popcount64 is only available on 64 bit cpus as gcc builtin */
1058 /* so for this version we are lazy */
1059 ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1060 ecb_function_ ecb_const int
ecb_popcount64(uint64_t x)1061 ecb_popcount64 (uint64_t x)
1062 {
1063   return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1064 }
1065 
1066 ecb_inline ecb_const uint8_t  ecb_rotl8  (uint8_t  x, unsigned int count);
1067 ecb_inline ecb_const uint8_t  ecb_rotr8  (uint8_t  x, unsigned int count);
1068 ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1069 ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1070 ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1071 ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1072 ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1073 ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1074 
ecb_rotl8(uint8_t x,unsigned int count)1075 ecb_inline ecb_const uint8_t  ecb_rotl8  (uint8_t  x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
ecb_rotr8(uint8_t x,unsigned int count)1076 ecb_inline ecb_const uint8_t  ecb_rotr8  (uint8_t  x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
ecb_rotl16(uint16_t x,unsigned int count)1077 ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
ecb_rotr16(uint16_t x,unsigned int count)1078 ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
ecb_rotl32(uint32_t x,unsigned int count)1079 ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
ecb_rotr32(uint32_t x,unsigned int count)1080 ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
ecb_rotl64(uint64_t x,unsigned int count)1081 ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
ecb_rotr64(uint64_t x,unsigned int count)1082 ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1083 
1084 #if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1085   #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1086   #define ecb_bswap16(x)  __builtin_bswap16 (x)
1087   #else
1088   #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1089   #endif
1090   #define ecb_bswap32(x)  __builtin_bswap32 (x)
1091   #define ecb_bswap64(x)  __builtin_bswap64 (x)
1092 #elif _MSC_VER
1093   #include <stdlib.h>
1094   #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1095   #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong  ((uint32_t)(x)))
1096   #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1097 #else
1098   ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1099   ecb_function_ ecb_const uint16_t
ecb_bswap16(uint16_t x)1100   ecb_bswap16 (uint16_t x)
1101   {
1102     return ecb_rotl16 (x, 8);
1103   }
1104 
1105   ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1106   ecb_function_ ecb_const uint32_t
ecb_bswap32(uint32_t x)1107   ecb_bswap32 (uint32_t x)
1108   {
1109     return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1110   }
1111 
1112   ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1113   ecb_function_ ecb_const uint64_t
ecb_bswap64(uint64_t x)1114   ecb_bswap64 (uint64_t x)
1115   {
1116     return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1117   }
1118 #endif
1119 
1120 #if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1121   #define ecb_unreachable() __builtin_unreachable ()
1122 #else
1123   /* this seems to work fine, but gcc always emits a warning for it :/ */
1124   ecb_inline ecb_noreturn void ecb_unreachable (void);
ecb_unreachable(void)1125   ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1126 #endif
1127 
1128 /* try to tell the compiler that some condition is definitely true */
1129 #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1130 
1131 ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1132 ecb_inline ecb_const uint32_t
ecb_byteorder_helper(void)1133 ecb_byteorder_helper (void)
1134 {
1135   /* the union code still generates code under pressure in gcc, */
1136   /* but less than using pointers, and always seems to */
1137   /* successfully return a constant. */
1138   /* the reason why we have this horrible preprocessor mess */
1139   /* is to avoid it in all cases, at least on common architectures */
1140   /* or when using a recent enough gcc version (>= 4.6) */
1141 #if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1142     || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1143   #define ECB_LITTLE_ENDIAN 1
1144   return 0x44332211;
1145 #elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1146       || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1147   #define ECB_BIG_ENDIAN 1
1148   return 0x11223344;
1149 #else
1150   union
1151   {
1152     uint8_t c[4];
1153     uint32_t u;
1154   } u = { 0x11, 0x22, 0x33, 0x44 };
1155   return u.u;
1156 #endif
1157 }
1158 
1159 ecb_inline ecb_const ecb_bool ecb_big_endian    (void);
ecb_big_endian(void)1160 ecb_inline ecb_const ecb_bool ecb_big_endian    (void) { return ecb_byteorder_helper () == 0x11223344; }
1161 ecb_inline ecb_const ecb_bool ecb_little_endian (void);
ecb_little_endian(void)1162 ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1163 
1164 #if ECB_GCC_VERSION(3,0) || ECB_C99
1165   #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1166 #else
1167   #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1168 #endif
1169 
1170 #if ECB_CPP
1171   template<typename T>
ecb_div_rd(T val,T div)1172   static inline T ecb_div_rd (T val, T div)
1173   {
1174     return val < 0 ? - ((-val + div - 1) / div) : (val          ) / div;
1175   }
1176   template<typename T>
ecb_div_ru(T val,T div)1177   static inline T ecb_div_ru (T val, T div)
1178   {
1179     return val < 0 ? - ((-val          ) / div) : (val + div - 1) / div;
1180   }
1181 #else
1182   #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val)            ) / (div))
1183   #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val)            ) / (div)) : ((val) + (div) - 1) / (div))
1184 #endif
1185 
1186 #if ecb_cplusplus_does_not_suck
1187   /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1188   template<typename T, int N>
ecb_array_length(const T (& arr)[N])1189   static inline int ecb_array_length (const T (&arr)[N])
1190   {
1191     return N;
1192   }
1193 #else
1194   #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1195 #endif
1196 
1197 ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1198 ecb_function_ ecb_const uint32_t
ecb_binary16_to_binary32(uint32_t x)1199 ecb_binary16_to_binary32 (uint32_t x)
1200 {
1201   unsigned int s = (x & 0x8000) << (31 - 15);
1202   int          e = (x >> 10) & 0x001f;
1203   unsigned int m =  x        & 0x03ff;
1204 
1205   if (ecb_expect_false (e == 31))
1206     /* infinity or NaN */
1207     e = 255 - (127 - 15);
1208   else if (ecb_expect_false (!e))
1209     {
1210       if (ecb_expect_true (!m))
1211         /* zero, handled by code below by forcing e to 0 */
1212         e = 0 - (127 - 15);
1213       else
1214         {
1215           /* subnormal, renormalise */
1216           unsigned int s = 10 - ecb_ld32 (m);
1217 
1218           m = (m << s) & 0x3ff; /* mask implicit bit */
1219           e -= s - 1;
1220         }
1221     }
1222 
1223   /* e and m now are normalised, or zero, (or inf or nan) */
1224   e += 127 - 15;
1225 
1226   return s | (e << 23) | (m << (23 - 10));
1227 }
1228 
1229 ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1230 ecb_function_ ecb_const uint16_t
ecb_binary32_to_binary16(uint32_t x)1231 ecb_binary32_to_binary16 (uint32_t x)
1232 {
1233   unsigned int s =  (x >> 16) & 0x00008000; /* sign bit, the easy part */
1234   unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1235   unsigned int m =   x        & 0x007fffff;
1236 
1237   x &= 0x7fffffff;
1238 
1239   /* if it's within range of binary16 normals, use fast path */
1240   if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1241     {
1242       /* mantissa round-to-even */
1243       m += 0x00000fff + ((m >> (23 - 10)) & 1);
1244 
1245       /* handle overflow */
1246       if (ecb_expect_false (m >= 0x00800000))
1247         {
1248           m >>= 1;
1249           e +=  1;
1250         }
1251 
1252       return s | (e << 10) | (m >> (23 - 10));
1253     }
1254 
1255   /* handle large numbers and infinity */
1256   if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1257     return s | 0x7c00;
1258 
1259   /* handle zero, subnormals and small numbers */
1260   if (ecb_expect_true (x < 0x38800000))
1261     {
1262       /* zero */
1263       if (ecb_expect_true (!x))
1264         return s;
1265 
1266       /* handle subnormals */
1267 
1268       /* too small, will be zero */
1269       if (e < (14 - 24)) /* might not be sharp, but is good enough */
1270         return s;
1271 
1272       m |= 0x00800000; /* make implicit bit explicit */
1273 
1274       /* very tricky - we need to round to the nearest e (+10) bit value */
1275       {
1276         unsigned int bits = 14 - e;
1277         unsigned int half = (1 << (bits - 1)) - 1;
1278         unsigned int even = (m >> bits) & 1;
1279 
1280         /* if this overflows, we will end up with a normalised number */
1281         m = (m + half + even) >> bits;
1282       }
1283 
1284       return s | m;
1285     }
1286 
1287   /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1288   m >>= 13;
1289 
1290   return s | 0x7c00 | m | !m;
1291 }
1292 
1293 /*******************************************************************************/
1294 /* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1295 
1296 /* basically, everything uses "ieee pure-endian" floating point numbers */
1297 /* the only noteworthy exception is ancient armle, which uses order 43218765 */
1298 #if 0 \
1299     || __i386 || __i386__ \
1300     || ECB_GCC_AMD64 \
1301     || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1302     || defined __s390__ || defined __s390x__ \
1303     || defined __mips__ \
1304     || defined __alpha__ \
1305     || defined __hppa__ \
1306     || defined __ia64__ \
1307     || defined __m68k__ \
1308     || defined __m88k__ \
1309     || defined __sh__ \
1310     || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1311     || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1312     || defined __aarch64__
1313   #define ECB_STDFP 1
1314   #include <string.h> /* for memcpy */
1315 #else
1316   #define ECB_STDFP 0
1317 #endif
1318 
1319 #ifndef ECB_NO_LIBM
1320 
1321   #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1322 
1323   /* only the oldest of old doesn't have this one. solaris. */
1324   #ifdef INFINITY
1325     #define ECB_INFINITY INFINITY
1326   #else
1327     #define ECB_INFINITY HUGE_VAL
1328   #endif
1329 
1330   #ifdef NAN
1331     #define ECB_NAN NAN
1332   #else
1333     #define ECB_NAN ECB_INFINITY
1334   #endif
1335 
1336   #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1337     #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1338     #define ecb_frexpf(x,e) frexpf ((x), (e))
1339   #else
1340     #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1341     #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1342   #endif
1343 
1344   /* convert a float to ieee single/binary32 */
1345   ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1346   ecb_function_ ecb_const uint32_t
ecb_float_to_binary32(float x)1347   ecb_float_to_binary32 (float x)
1348   {
1349     uint32_t r;
1350 
1351     #if ECB_STDFP
1352       memcpy (&r, &x, 4);
1353     #else
1354       /* slow emulation, works for anything but -0 */
1355       uint32_t m;
1356       int e;
1357 
1358       if (x == 0e0f                    ) return 0x00000000U;
1359       if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1360       if (x < -3.40282346638528860e+38f) return 0xff800000U;
1361       if (x != x                       ) return 0x7fbfffffU;
1362 
1363       m = ecb_frexpf (x, &e) * 0x1000000U;
1364 
1365       r = m & 0x80000000U;
1366 
1367       if (r)
1368         m = -m;
1369 
1370       if (e <= -126)
1371         {
1372           m &= 0xffffffU;
1373           m >>= (-125 - e);
1374           e = -126;
1375         }
1376 
1377       r |= (e + 126) << 23;
1378       r |= m & 0x7fffffU;
1379     #endif
1380 
1381     return r;
1382   }
1383 
1384   /* converts an ieee single/binary32 to a float */
1385   ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1386   ecb_function_ ecb_const float
ecb_binary32_to_float(uint32_t x)1387   ecb_binary32_to_float (uint32_t x)
1388   {
1389     float r;
1390 
1391     #if ECB_STDFP
1392       memcpy (&r, &x, 4);
1393     #else
1394       /* emulation, only works for normals and subnormals and +0 */
1395       int neg = x >> 31;
1396       int e = (x >> 23) & 0xffU;
1397 
1398       x &= 0x7fffffU;
1399 
1400       if (e)
1401         x |= 0x800000U;
1402       else
1403         e = 1;
1404 
1405       /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1406       r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1407 
1408       r = neg ? -r : r;
1409     #endif
1410 
1411     return r;
1412   }
1413 
1414   /* convert a double to ieee double/binary64 */
1415   ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1416   ecb_function_ ecb_const uint64_t
ecb_double_to_binary64(double x)1417   ecb_double_to_binary64 (double x)
1418   {
1419     uint64_t r;
1420 
1421     #if ECB_STDFP
1422       memcpy (&r, &x, 8);
1423     #else
1424       /* slow emulation, works for anything but -0 */
1425       uint64_t m;
1426       int e;
1427 
1428       if (x == 0e0                     ) return 0x0000000000000000U;
1429       if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1430       if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1431       if (x != x                       ) return 0X7ff7ffffffffffffU;
1432 
1433       m = frexp (x, &e) * 0x20000000000000U;
1434 
1435       r = m & 0x8000000000000000;;
1436 
1437       if (r)
1438         m = -m;
1439 
1440       if (e <= -1022)
1441         {
1442           m &= 0x1fffffffffffffU;
1443           m >>= (-1021 - e);
1444           e = -1022;
1445         }
1446 
1447       r |= ((uint64_t)(e + 1022)) << 52;
1448       r |= m & 0xfffffffffffffU;
1449     #endif
1450 
1451     return r;
1452   }
1453 
1454   /* converts an ieee double/binary64 to a double */
1455   ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1456   ecb_function_ ecb_const double
ecb_binary64_to_double(uint64_t x)1457   ecb_binary64_to_double (uint64_t x)
1458   {
1459     double r;
1460 
1461     #if ECB_STDFP
1462       memcpy (&r, &x, 8);
1463     #else
1464       /* emulation, only works for normals and subnormals and +0 */
1465       int neg = x >> 63;
1466       int e = (x >> 52) & 0x7ffU;
1467 
1468       x &= 0xfffffffffffffU;
1469 
1470       if (e)
1471         x |= 0x10000000000000U;
1472       else
1473         e = 1;
1474 
1475       /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1476       r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1477 
1478       r = neg ? -r : r;
1479     #endif
1480 
1481     return r;
1482   }
1483 
1484   /* convert a float to ieee half/binary16 */
1485   ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1486   ecb_function_ ecb_const uint16_t
ecb_float_to_binary16(float x)1487   ecb_float_to_binary16 (float x)
1488   {
1489     return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1490   }
1491 
1492   /* convert an ieee half/binary16 to float */
1493   ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1494   ecb_function_ ecb_const float
ecb_binary16_to_float(uint16_t x)1495   ecb_binary16_to_float (uint16_t x)
1496   {
1497     return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1498   }
1499 
1500 #endif
1501 
1502 #endif
1503 
1504 /* ECB.H END */
1505 
1506 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1507 /* if your architecture doesn't need memory fences, e.g. because it is
1508  * single-cpu/core, or if you use libev in a project that doesn't use libev
1509  * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1510  * libev, in which cases the memory fences become nops.
1511  * alternatively, you can remove this #error and link against libpthread,
1512  * which will then provide the memory fences.
1513  */
1514 # error "memory fences not defined for your architecture, please report"
1515 #endif
1516 
1517 #ifndef ECB_MEMORY_FENCE
1518 # define ECB_MEMORY_FENCE do { } while (0)
1519 # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1520 # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1521 #endif
1522 
1523 #define expect_false(cond) ecb_expect_false (cond)
1524 #define expect_true(cond)  ecb_expect_true  (cond)
1525 #define noinline           ecb_noinline
1526 
1527 #define inline_size        ecb_inline
1528 
1529 #if EV_FEATURE_CODE
1530 # define inline_speed      ecb_inline
1531 #else
1532 # define inline_speed      static noinline
1533 #endif
1534 
1535 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1536 
1537 #if EV_MINPRI == EV_MAXPRI
1538 # define ABSPRI(w) (((W)w), 0)
1539 #else
1540 # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1541 #endif
1542 
1543 #define EMPTY       /* required for microsofts broken pseudo-c compiler */
1544 #define EMPTY2(a,b) /* used to suppress some warnings */
1545 
1546 typedef ev_watcher *W;
1547 typedef ev_watcher_list *WL;
1548 typedef ev_watcher_time *WT;
1549 
1550 #define ev_active(w) ((W)(w))->active
1551 #define ev_at(w) ((WT)(w))->at
1552 
1553 #if EV_USE_REALTIME
1554 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
1555 /* giving it a reasonably high chance of working on typical architectures */
1556 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1557 #endif
1558 
1559 #if EV_USE_MONOTONIC
1560 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1561 #endif
1562 
1563 #ifndef EV_FD_TO_WIN32_HANDLE
1564 # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1565 #endif
1566 #ifndef EV_WIN32_HANDLE_TO_FD
1567 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1568 #endif
1569 #ifndef EV_WIN32_CLOSE_FD
1570 # define EV_WIN32_CLOSE_FD(fd) close (fd)
1571 #endif
1572 
1573 #ifdef _WIN32
1574 # include "ev_win32.c"
1575 #endif
1576 
1577 /*****************************************************************************/
1578 
1579 /* define a suitable floor function (only used by periodics atm) */
1580 
1581 #if EV_USE_FLOOR
1582 # include <math.h>
1583 # define ev_floor(v) floor (v)
1584 #else
1585 
1586 #include <float.h>
1587 
1588 /* a floor() replacement function, should be independent of ev_tstamp type */
1589 static ev_tstamp noinline
ev_floor(ev_tstamp v)1590 ev_floor (ev_tstamp v)
1591 {
1592   /* the choice of shift factor is not terribly important */
1593 #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1594   const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1595 #else
1596   const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1597 #endif
1598 
1599   /* argument too large for an unsigned long? */
1600   if (expect_false (v >= shift))
1601     {
1602       ev_tstamp f;
1603 
1604       if (v == v - 1.)
1605         return v; /* very large number */
1606 
1607       f = shift * ev_floor (v * (1. / shift));
1608       return f + ev_floor (v - f);
1609     }
1610 
1611   /* special treatment for negative args? */
1612   if (expect_false (v < 0.))
1613     {
1614       ev_tstamp f = -ev_floor (-v);
1615 
1616       return f - (f == v ? 0 : 1);
1617     }
1618 
1619   /* fits into an unsigned long */
1620   return (unsigned long)v;
1621 }
1622 
1623 #endif
1624 
1625 /*****************************************************************************/
1626 
1627 #ifdef __linux
1628 # include <sys/utsname.h>
1629 #endif
1630 
1631 static unsigned int noinline ecb_cold
ev_linux_version(void)1632 ev_linux_version (void)
1633 {
1634 #ifdef __linux
1635   unsigned int v = 0;
1636   struct utsname buf;
1637   int i;
1638   char *p = buf.release;
1639 
1640   if (uname (&buf))
1641     return 0;
1642 
1643   for (i = 3+1; --i; )
1644     {
1645       unsigned int c = 0;
1646 
1647       for (;;)
1648         {
1649           if (*p >= '0' && *p <= '9')
1650             c = c * 10 + *p++ - '0';
1651           else
1652             {
1653               p += *p == '.';
1654               break;
1655             }
1656         }
1657 
1658       v = (v << 8) | c;
1659     }
1660 
1661   return v;
1662 #else
1663   return 0;
1664 #endif
1665 }
1666 
1667 /*****************************************************************************/
1668 
1669 #if EV_AVOID_STDIO
1670 static void noinline ecb_cold
ev_printerr(const char * msg)1671 ev_printerr (const char *msg)
1672 {
1673   write (STDERR_FILENO, msg, strlen (msg));
1674 }
1675 #endif
1676 
1677 static void (*syserr_cb)(const char *msg) EV_THROW;
1678 
1679 void ecb_cold
ev_set_syserr_cb(void (* cb)(const char * msg)EV_THROW)1680 ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
1681 {
1682   syserr_cb = cb;
1683 }
1684 
1685 static void noinline ecb_cold
ev_syserr(const char * msg)1686 ev_syserr (const char *msg)
1687 {
1688   if (!msg)
1689     msg = "(libev) system error";
1690 
1691   if (syserr_cb)
1692     syserr_cb (msg);
1693   else
1694     {
1695 #if EV_AVOID_STDIO
1696       ev_printerr (msg);
1697       ev_printerr (": ");
1698       ev_printerr (strerror (errno));
1699       ev_printerr ("\n");
1700 #else
1701       perror (msg);
1702 #endif
1703       abort ();
1704     }
1705 }
1706 
1707 static void *
ev_realloc_emul(void * ptr,long size)1708 ev_realloc_emul (void *ptr, long size) EV_THROW
1709 {
1710   /* some systems, notably openbsd and darwin, fail to properly
1711    * implement realloc (x, 0) (as required by both ansi c-89 and
1712    * the single unix specification, so work around them here.
1713    * recently, also (at least) fedora and debian started breaking it,
1714    * despite documenting it otherwise.
1715    */
1716 
1717   if (size)
1718     return realloc (ptr, size);
1719 
1720   free (ptr);
1721   return 0;
1722 }
1723 
1724 static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
1725 
1726 void ecb_cold
ev_set_allocator(void * (* cb)(void * ptr,long size)EV_THROW)1727 ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
1728 {
1729   alloc = cb;
1730 }
1731 
1732 inline_speed void *
ev_realloc(void * ptr,long size)1733 ev_realloc (void *ptr, long size)
1734 {
1735   ptr = alloc (ptr, size);
1736 
1737   if (!ptr && size)
1738     {
1739 #if EV_AVOID_STDIO
1740       ev_printerr ("(libev) memory allocation failed, aborting.\n");
1741 #else
1742       fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1743 #endif
1744       abort ();
1745     }
1746 
1747   return ptr;
1748 }
1749 
1750 #define ev_malloc(size) ev_realloc (0, (size))
1751 #define ev_free(ptr)    ev_realloc ((ptr), 0)
1752 
1753 /*****************************************************************************/
1754 
1755 /* set in reify when reification needed */
1756 #define EV_ANFD_REIFY 1
1757 
1758 /* file descriptor info structure */
1759 typedef struct
1760 {
1761   WL head;
1762   unsigned char events; /* the events watched for */
1763   unsigned char reify;  /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1764   unsigned char emask;  /* the epoll backend stores the actual kernel mask in here */
1765   unsigned char unused;
1766 #if EV_USE_EPOLL
1767   unsigned int egen;    /* generation counter to counter epoll bugs */
1768 #endif
1769 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1770   SOCKET handle;
1771 #endif
1772 #if EV_USE_IOCP
1773   OVERLAPPED or, ow;
1774 #endif
1775 } ANFD;
1776 
1777 /* stores the pending event set for a given watcher */
1778 typedef struct
1779 {
1780   W w;
1781   int events; /* the pending event set for the given watcher */
1782 } ANPENDING;
1783 
1784 #if EV_USE_INOTIFY
1785 /* hash table entry per inotify-id */
1786 typedef struct
1787 {
1788   WL head;
1789 } ANFS;
1790 #endif
1791 
1792 /* Heap Entry */
1793 #if EV_HEAP_CACHE_AT
1794   /* a heap element */
1795   typedef struct {
1796     ev_tstamp at;
1797     WT w;
1798   } ANHE;
1799 
1800   #define ANHE_w(he)        (he).w     /* access watcher, read-write */
1801   #define ANHE_at(he)       (he).at    /* access cached at, read-only */
1802   #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1803 #else
1804   /* a heap element */
1805   typedef WT ANHE;
1806 
1807   #define ANHE_w(he)        (he)
1808   #define ANHE_at(he)       (he)->at
1809   #define ANHE_at_cache(he)
1810 #endif
1811 
1812 #if EV_MULTIPLICITY
1813 
1814   struct ev_loop
1815   {
1816     ev_tstamp ev_rt_now;
1817     #define ev_rt_now ((loop)->ev_rt_now)
1818     #define VAR(name,decl) decl;
1819       #include "ev_vars.h"
1820     #undef VAR
1821   };
1822   #include "ev_wrap.h"
1823 
1824   static struct ev_loop default_loop_struct;
1825   EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1826 
1827 #else
1828 
1829   EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1830   #define VAR(name,decl) static decl;
1831     #include "ev_vars.h"
1832   #undef VAR
1833 
1834   static int ev_default_loop_ptr;
1835 
1836 #endif
1837 
1838 #if EV_FEATURE_API
1839 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1840 # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1841 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1842 #else
1843 # define EV_RELEASE_CB (void)0
1844 # define EV_ACQUIRE_CB (void)0
1845 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1846 #endif
1847 
1848 #define EVBREAK_RECURSE 0x80
1849 
1850 /*****************************************************************************/
1851 
1852 #ifndef EV_HAVE_EV_TIME
1853 ev_tstamp
ev_time(void)1854 ev_time (void) EV_THROW
1855 {
1856 #if EV_USE_REALTIME
1857   if (expect_true (have_realtime))
1858     {
1859       struct timespec ts;
1860       clock_gettime (CLOCK_REALTIME, &ts);
1861       return ts.tv_sec + ts.tv_nsec * 1e-9;
1862     }
1863 #endif
1864 
1865   struct timeval tv;
1866   gettimeofday (&tv, 0);
1867   return tv.tv_sec + tv.tv_usec * 1e-6;
1868 }
1869 #endif
1870 
1871 inline_size ev_tstamp
get_clock(void)1872 get_clock (void)
1873 {
1874 #if EV_USE_MONOTONIC
1875   if (expect_true (have_monotonic))
1876     {
1877       struct timespec ts;
1878       clock_gettime (CLOCK_MONOTONIC, &ts);
1879       return ts.tv_sec + ts.tv_nsec * 1e-9;
1880     }
1881 #endif
1882 
1883   return ev_time ();
1884 }
1885 
1886 #if EV_MULTIPLICITY
1887 ev_tstamp
ev_now(EV_P)1888 ev_now (EV_P) EV_THROW
1889 {
1890   return ev_rt_now;
1891 }
1892 #endif
1893 
1894 void
ev_sleep(ev_tstamp delay)1895 ev_sleep (ev_tstamp delay) EV_THROW
1896 {
1897   if (delay > 0.)
1898     {
1899 #if EV_USE_NANOSLEEP
1900       struct timespec ts;
1901 
1902       EV_TS_SET (ts, delay);
1903       nanosleep (&ts, 0);
1904 #elif defined _WIN32
1905       Sleep ((unsigned long)(delay * 1e3));
1906 #else
1907       struct timeval tv;
1908 
1909       /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1910       /* something not guaranteed by newer posix versions, but guaranteed */
1911       /* by older ones */
1912       EV_TV_SET (tv, delay);
1913       select (0, 0, 0, 0, &tv);
1914 #endif
1915     }
1916 }
1917 
1918 /*****************************************************************************/
1919 
1920 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1921 
1922 /* find a suitable new size for the given array, */
1923 /* hopefully by rounding to a nice-to-malloc size */
1924 inline_size int
array_nextsize(int elem,int cur,int cnt)1925 array_nextsize (int elem, int cur, int cnt)
1926 {
1927   int ncur = cur + 1;
1928 
1929   do
1930     ncur <<= 1;
1931   while (cnt > ncur);
1932 
1933   /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1934   if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1935     {
1936       ncur *= elem;
1937       ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1938       ncur = ncur - sizeof (void *) * 4;
1939       ncur /= elem;
1940     }
1941 
1942   return ncur;
1943 }
1944 
1945 static void * noinline ecb_cold
array_realloc(int elem,void * base,int * cur,int cnt)1946 array_realloc (int elem, void *base, int *cur, int cnt)
1947 {
1948   *cur = array_nextsize (elem, *cur, cnt);
1949   return ev_realloc (base, elem * *cur);
1950 }
1951 
1952 #define array_init_zero(base,count)	\
1953   memset ((void *)(base), 0, sizeof (*(base)) * (count))
1954 
1955 #define array_needsize(type,base,cur,cnt,init)			\
1956   if (expect_false ((cnt) > (cur)))				\
1957     {								\
1958       int ecb_unused ocur_ = (cur);					\
1959       (base) = (type *)array_realloc				\
1960          (sizeof (type), (base), &(cur), (cnt));		\
1961       init ((base) + (ocur_), (cur) - ocur_);			\
1962     }
1963 
1964 #if 0
1965 #define array_slim(type,stem)					\
1966   if (stem ## max < array_roundsize (stem ## cnt >> 2))		\
1967     {								\
1968       stem ## max = array_roundsize (stem ## cnt >> 1);		\
1969       base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1970       fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1971     }
1972 #endif
1973 
1974 #define array_free(stem, idx) \
1975   ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1976 
1977 /*****************************************************************************/
1978 
1979 /* dummy callback for pending events */
1980 static void noinline
pendingcb(EV_P_ ev_prepare * w,int revents)1981 pendingcb (EV_P_ ev_prepare *w, int revents)
1982 {
1983 }
1984 
1985 void noinline
ev_feed_event(EV_P_ void * w,int revents)1986 ev_feed_event (EV_P_ void *w, int revents) EV_THROW
1987 {
1988   W w_ = (W)w;
1989   int pri = ABSPRI (w_);
1990 
1991   if (expect_false (w_->pending))
1992     pendings [pri][w_->pending - 1].events |= revents;
1993   else
1994     {
1995       w_->pending = ++pendingcnt [pri];
1996       array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1997       pendings [pri][w_->pending - 1].w      = w_;
1998       pendings [pri][w_->pending - 1].events = revents;
1999     }
2000 
2001   pendingpri = NUMPRI - 1;
2002 }
2003 
2004 inline_speed void
feed_reverse(EV_P_ W w)2005 feed_reverse (EV_P_ W w)
2006 {
2007   array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
2008   rfeeds [rfeedcnt++] = w;
2009 }
2010 
2011 inline_size void
feed_reverse_done(EV_P_ int revents)2012 feed_reverse_done (EV_P_ int revents)
2013 {
2014   do
2015     ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2016   while (rfeedcnt);
2017 }
2018 
2019 inline_speed void
queue_events(EV_P_ W * events,int eventcnt,int type)2020 queue_events (EV_P_ W *events, int eventcnt, int type)
2021 {
2022   int i;
2023 
2024   for (i = 0; i < eventcnt; ++i)
2025     ev_feed_event (EV_A_ events [i], type);
2026 }
2027 
2028 /*****************************************************************************/
2029 
2030 inline_speed void
fd_event_nocheck(EV_P_ int fd,int revents)2031 fd_event_nocheck (EV_P_ int fd, int revents)
2032 {
2033   ANFD *anfd = anfds + fd;
2034   ev_io *w;
2035 
2036   for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2037     {
2038       int ev = w->events & revents;
2039 
2040       if (ev)
2041         ev_feed_event (EV_A_ (W)w, ev);
2042     }
2043 }
2044 
2045 /* do not submit kernel events for fds that have reify set */
2046 /* because that means they changed while we were polling for new events */
2047 inline_speed void
fd_event(EV_P_ int fd,int revents)2048 fd_event (EV_P_ int fd, int revents)
2049 {
2050   ANFD *anfd = anfds + fd;
2051 
2052   if (expect_true (!anfd->reify))
2053     fd_event_nocheck (EV_A_ fd, revents);
2054 }
2055 
2056 void
ev_feed_fd_event(EV_P_ int fd,int revents)2057 ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
2058 {
2059   if (fd >= 0 && fd < anfdmax)
2060     fd_event_nocheck (EV_A_ fd, revents);
2061 }
2062 
2063 /* make sure the external fd watch events are in-sync */
2064 /* with the kernel/libev internal state */
2065 inline_size void
fd_reify(EV_P)2066 fd_reify (EV_P)
2067 {
2068   int i;
2069 
2070 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
2071   for (i = 0; i < fdchangecnt; ++i)
2072     {
2073       int fd = fdchanges [i];
2074       ANFD *anfd = anfds + fd;
2075 
2076       if (anfd->reify & EV__IOFDSET && anfd->head)
2077         {
2078           SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2079 
2080           if (handle != anfd->handle)
2081             {
2082               unsigned long arg;
2083 
2084               assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2085 
2086               /* handle changed, but fd didn't - we need to do it in two steps */
2087               backend_modify (EV_A_ fd, anfd->events, 0);
2088               anfd->events = 0;
2089               anfd->handle = handle;
2090             }
2091         }
2092     }
2093 #endif
2094 
2095   for (i = 0; i < fdchangecnt; ++i)
2096     {
2097       int fd = fdchanges [i];
2098       ANFD *anfd = anfds + fd;
2099       ev_io *w;
2100 
2101       unsigned char o_events = anfd->events;
2102       unsigned char o_reify  = anfd->reify;
2103 
2104       anfd->reify  = 0;
2105 
2106       /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
2107         {
2108           anfd->events = 0;
2109 
2110           for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2111             anfd->events |= (unsigned char)w->events;
2112 
2113           if (o_events != anfd->events)
2114             o_reify = EV__IOFDSET; /* actually |= */
2115         }
2116 
2117       if (o_reify & EV__IOFDSET)
2118         backend_modify (EV_A_ fd, o_events, anfd->events);
2119     }
2120 
2121   fdchangecnt = 0;
2122 }
2123 
2124 /* something about the given fd changed */
2125 inline_size void
fd_change(EV_P_ int fd,int flags)2126 fd_change (EV_P_ int fd, int flags)
2127 {
2128   unsigned char reify = anfds [fd].reify;
2129   anfds [fd].reify |= flags;
2130 
2131   if (expect_true (!reify))
2132     {
2133       ++fdchangecnt;
2134       array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
2135       fdchanges [fdchangecnt - 1] = fd;
2136     }
2137 }
2138 
2139 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2140 inline_speed void ecb_cold
fd_kill(EV_P_ int fd)2141 fd_kill (EV_P_ int fd)
2142 {
2143   ev_io *w;
2144 
2145   while ((w = (ev_io *)anfds [fd].head))
2146     {
2147       ev_io_stop (EV_A_ w);
2148       ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
2149     }
2150 }
2151 
2152 /* check whether the given fd is actually valid, for error recovery */
2153 inline_size int ecb_cold
fd_valid(int fd)2154 fd_valid (int fd)
2155 {
2156 #ifdef _WIN32
2157   return EV_FD_TO_WIN32_HANDLE (fd) != -1;
2158 #else
2159   return fcntl (fd, F_GETFD) != -1;
2160 #endif
2161 }
2162 
2163 /* called on EBADF to verify fds */
2164 static void noinline ecb_cold
fd_ebadf(EV_P)2165 fd_ebadf (EV_P)
2166 {
2167   int fd;
2168 
2169   for (fd = 0; fd < anfdmax; ++fd)
2170     if (anfds [fd].events)
2171       if (!fd_valid (fd) && errno == EBADF)
2172         fd_kill (EV_A_ fd);
2173 }
2174 
2175 /* called on ENOMEM in select/poll to kill some fds and retry */
2176 static void noinline ecb_cold
fd_enomem(EV_P)2177 fd_enomem (EV_P)
2178 {
2179   int fd;
2180 
2181   for (fd = anfdmax; fd--; )
2182     if (anfds [fd].events)
2183       {
2184         fd_kill (EV_A_ fd);
2185         break;
2186       }
2187 }
2188 
2189 /* usually called after fork if backend needs to re-arm all fds from scratch */
2190 static void noinline
fd_rearm_all(EV_P)2191 fd_rearm_all (EV_P)
2192 {
2193   int fd;
2194 
2195   for (fd = 0; fd < anfdmax; ++fd)
2196     if (anfds [fd].events)
2197       {
2198         anfds [fd].events = 0;
2199         anfds [fd].emask  = 0;
2200         fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
2201       }
2202 }
2203 
2204 /* used to prepare libev internal fd's */
2205 /* this is not fork-safe */
2206 inline_speed void
fd_intern(int fd)2207 fd_intern (int fd)
2208 {
2209 #ifdef _WIN32
2210   unsigned long arg = 1;
2211   ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2212 #else
2213   fcntl (fd, F_SETFD, FD_CLOEXEC);
2214   fcntl (fd, F_SETFL, O_NONBLOCK);
2215 #endif
2216 }
2217 
2218 /*****************************************************************************/
2219 
2220 /*
2221  * the heap functions want a real array index. array index 0 is guaranteed to not
2222  * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2223  * the branching factor of the d-tree.
2224  */
2225 
2226 /*
2227  * at the moment we allow libev the luxury of two heaps,
2228  * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2229  * which is more cache-efficient.
2230  * the difference is about 5% with 50000+ watchers.
2231  */
2232 #if EV_USE_4HEAP
2233 
2234 #define DHEAP 4
2235 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
2236 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2237 #define UPHEAP_DONE(p,k) ((p) == (k))
2238 
2239 /* away from the root */
2240 inline_speed void
downheap(ANHE * heap,int N,int k)2241 downheap (ANHE *heap, int N, int k)
2242 {
2243   ANHE he = heap [k];
2244   ANHE *E = heap + N + HEAP0;
2245 
2246   for (;;)
2247     {
2248       ev_tstamp minat;
2249       ANHE *minpos;
2250       ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2251 
2252       /* find minimum child */
2253       if (expect_true (pos + DHEAP - 1 < E))
2254         {
2255           /* fast path */                               (minpos = pos + 0), (minat = ANHE_at (*minpos));
2256           if (               ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2257           if (               ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2258           if (               ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2259         }
2260       else if (pos < E)
2261         {
2262           /* slow path */                               (minpos = pos + 0), (minat = ANHE_at (*minpos));
2263           if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2264           if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2265           if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2266         }
2267       else
2268         break;
2269 
2270       if (ANHE_at (he) <= minat)
2271         break;
2272 
2273       heap [k] = *minpos;
2274       ev_active (ANHE_w (*minpos)) = k;
2275 
2276       k = minpos - heap;
2277     }
2278 
2279   heap [k] = he;
2280   ev_active (ANHE_w (he)) = k;
2281 }
2282 
2283 #else /* 4HEAP */
2284 
2285 #define HEAP0 1
2286 #define HPARENT(k) ((k) >> 1)
2287 #define UPHEAP_DONE(p,k) (!(p))
2288 
2289 /* away from the root */
2290 inline_speed void
downheap(ANHE * heap,int N,int k)2291 downheap (ANHE *heap, int N, int k)
2292 {
2293   ANHE he = heap [k];
2294 
2295   for (;;)
2296     {
2297       int c = k << 1;
2298 
2299       if (c >= N + HEAP0)
2300         break;
2301 
2302       c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2303            ? 1 : 0;
2304 
2305       if (ANHE_at (he) <= ANHE_at (heap [c]))
2306         break;
2307 
2308       heap [k] = heap [c];
2309       ev_active (ANHE_w (heap [k])) = k;
2310 
2311       k = c;
2312     }
2313 
2314   heap [k] = he;
2315   ev_active (ANHE_w (he)) = k;
2316 }
2317 #endif
2318 
2319 /* towards the root */
2320 inline_speed void
upheap(ANHE * heap,int k)2321 upheap (ANHE *heap, int k)
2322 {
2323   ANHE he = heap [k];
2324 
2325   for (;;)
2326     {
2327       int p = HPARENT (k);
2328 
2329       if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2330         break;
2331 
2332       heap [k] = heap [p];
2333       ev_active (ANHE_w (heap [k])) = k;
2334       k = p;
2335     }
2336 
2337   heap [k] = he;
2338   ev_active (ANHE_w (he)) = k;
2339 }
2340 
2341 /* move an element suitably so it is in a correct place */
2342 inline_size void
adjustheap(ANHE * heap,int N,int k)2343 adjustheap (ANHE *heap, int N, int k)
2344 {
2345   if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2346     upheap (heap, k);
2347   else
2348     downheap (heap, N, k);
2349 }
2350 
2351 /* rebuild the heap: this function is used only once and executed rarely */
2352 inline_size void
reheap(ANHE * heap,int N)2353 reheap (ANHE *heap, int N)
2354 {
2355   int i;
2356 
2357   /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2358   /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2359   for (i = 0; i < N; ++i)
2360     upheap (heap, i + HEAP0);
2361 }
2362 
2363 /*****************************************************************************/
2364 
2365 /* associate signal watchers to a signal signal */
2366 typedef struct
2367 {
2368   EV_ATOMIC_T pending;
2369 #if EV_MULTIPLICITY
2370   EV_P;
2371 #endif
2372   WL head;
2373 } ANSIG;
2374 
2375 static ANSIG signals [EV_NSIG - 1];
2376 
2377 /*****************************************************************************/
2378 
2379 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2380 
2381 static void noinline ecb_cold
evpipe_init(EV_P)2382 evpipe_init (EV_P)
2383 {
2384   if (!ev_is_active (&pipe_w))
2385     {
2386       int fds [2];
2387 
2388 # if EV_USE_EVENTFD
2389       fds [0] = -1;
2390       fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2391       if (fds [1] < 0 && errno == EINVAL)
2392         fds [1] = eventfd (0, 0);
2393 
2394       if (fds [1] < 0)
2395 # endif
2396         {
2397           while (pipe (fds))
2398             ev_syserr ("(libev) error creating signal/async pipe");
2399 
2400           fd_intern (fds [0]);
2401         }
2402 
2403       evpipe [0] = fds [0];
2404 
2405       if (evpipe [1] < 0)
2406         evpipe [1] = fds [1]; /* first call, set write fd */
2407       else
2408         {
2409           /* on subsequent calls, do not change evpipe [1] */
2410           /* so that evpipe_write can always rely on its value. */
2411           /* this branch does not do anything sensible on windows, */
2412           /* so must not be executed on windows */
2413 
2414           dup2 (fds [1], evpipe [1]);
2415           close (fds [1]);
2416         }
2417 
2418       fd_intern (evpipe [1]);
2419 
2420       ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2421       ev_io_start (EV_A_ &pipe_w);
2422       ev_unref (EV_A); /* watcher should not keep loop alive */
2423     }
2424 }
2425 
2426 inline_speed void
evpipe_write(EV_P_ EV_ATOMIC_T * flag)2427 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2428 {
2429   ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2430 
2431   if (expect_true (*flag))
2432     return;
2433 
2434   *flag = 1;
2435   ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2436 
2437   pipe_write_skipped = 1;
2438 
2439   ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2440 
2441   if (pipe_write_wanted)
2442     {
2443       int old_errno;
2444 
2445       pipe_write_skipped = 0;
2446       ECB_MEMORY_FENCE_RELEASE;
2447 
2448       old_errno = errno; /* save errno because write will clobber it */
2449 
2450 #if EV_USE_EVENTFD
2451       if (evpipe [0] < 0)
2452         {
2453           uint64_t counter = 1;
2454           write (evpipe [1], &counter, sizeof (uint64_t));
2455         }
2456       else
2457 #endif
2458         {
2459 #ifdef _WIN32
2460           WSABUF buf;
2461           DWORD sent;
2462           buf.buf = &buf;
2463           buf.len = 1;
2464           WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2465 #else
2466           write (evpipe [1], &(evpipe [1]), 1);
2467 #endif
2468         }
2469 
2470       errno = old_errno;
2471     }
2472 }
2473 
2474 /* called whenever the libev signal pipe */
2475 /* got some events (signal, async) */
2476 static void
pipecb(EV_P_ ev_io * iow,int revents)2477 pipecb (EV_P_ ev_io *iow, int revents)
2478 {
2479   int i;
2480 
2481   if (revents & EV_READ)
2482     {
2483 #if EV_USE_EVENTFD
2484       if (evpipe [0] < 0)
2485         {
2486           uint64_t counter;
2487           read (evpipe [1], &counter, sizeof (uint64_t));
2488         }
2489       else
2490 #endif
2491         {
2492           char dummy[4];
2493 #ifdef _WIN32
2494           WSABUF buf;
2495           DWORD recvd;
2496           DWORD flags = 0;
2497           buf.buf = dummy;
2498           buf.len = sizeof (dummy);
2499           WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2500 #else
2501           read (evpipe [0], &dummy, sizeof (dummy));
2502 #endif
2503         }
2504     }
2505 
2506   pipe_write_skipped = 0;
2507 
2508   ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2509 
2510 #if EV_SIGNAL_ENABLE
2511   if (sig_pending)
2512     {
2513       sig_pending = 0;
2514 
2515       ECB_MEMORY_FENCE;
2516 
2517       for (i = EV_NSIG - 1; i--; )
2518         if (expect_false (signals [i].pending))
2519           ev_feed_signal_event (EV_A_ i + 1);
2520     }
2521 #endif
2522 
2523 #if EV_ASYNC_ENABLE
2524   if (async_pending)
2525     {
2526       async_pending = 0;
2527 
2528       ECB_MEMORY_FENCE;
2529 
2530       for (i = asynccnt; i--; )
2531         if (asyncs [i]->sent)
2532           {
2533             asyncs [i]->sent = 0;
2534             ECB_MEMORY_FENCE_RELEASE;
2535             ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2536           }
2537     }
2538 #endif
2539 }
2540 
2541 /*****************************************************************************/
2542 
2543 void
ev_feed_signal(int signum)2544 ev_feed_signal (int signum) EV_THROW
2545 {
2546 #if EV_MULTIPLICITY
2547   EV_P;
2548   ECB_MEMORY_FENCE_ACQUIRE;
2549   EV_A = signals [signum - 1].loop;
2550 
2551   if (!EV_A)
2552     return;
2553 #endif
2554 
2555   signals [signum - 1].pending = 1;
2556   evpipe_write (EV_A_ &sig_pending);
2557 }
2558 
2559 static void
ev_sighandler(int signum)2560 ev_sighandler (int signum)
2561 {
2562 #ifdef _WIN32
2563   signal (signum, ev_sighandler);
2564 #endif
2565 
2566   ev_feed_signal (signum);
2567 }
2568 
2569 void noinline
ev_feed_signal_event(EV_P_ int signum)2570 ev_feed_signal_event (EV_P_ int signum) EV_THROW
2571 {
2572   WL w;
2573 
2574   if (expect_false (signum <= 0 || signum >= EV_NSIG))
2575     return;
2576 
2577   --signum;
2578 
2579 #if EV_MULTIPLICITY
2580   /* it is permissible to try to feed a signal to the wrong loop */
2581   /* or, likely more useful, feeding a signal nobody is waiting for */
2582 
2583   if (expect_false (signals [signum].loop != EV_A))
2584     return;
2585 #endif
2586 
2587   signals [signum].pending = 0;
2588   ECB_MEMORY_FENCE_RELEASE;
2589 
2590   for (w = signals [signum].head; w; w = w->next)
2591     ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2592 }
2593 
2594 #if EV_USE_SIGNALFD
2595 static void
sigfdcb(EV_P_ ev_io * iow,int revents)2596 sigfdcb (EV_P_ ev_io *iow, int revents)
2597 {
2598   struct signalfd_siginfo si[2], *sip; /* these structs are big */
2599 
2600   for (;;)
2601     {
2602       ssize_t res = read (sigfd, si, sizeof (si));
2603 
2604       /* not ISO-C, as res might be -1, but works with SuS */
2605       for (sip = si; (char *)sip < (char *)si + res; ++sip)
2606         ev_feed_signal_event (EV_A_ sip->ssi_signo);
2607 
2608       if (res < (ssize_t)sizeof (si))
2609         break;
2610     }
2611 }
2612 #endif
2613 
2614 #endif
2615 
2616 /*****************************************************************************/
2617 
2618 #if EV_CHILD_ENABLE
2619 static WL childs [EV_PID_HASHSIZE];
2620 
2621 static ev_signal childev;
2622 
2623 #ifndef WIFCONTINUED
2624 # define WIFCONTINUED(status) 0
2625 #endif
2626 
2627 /* handle a single child status event */
2628 inline_speed void
child_reap(EV_P_ int chain,int pid,int status)2629 child_reap (EV_P_ int chain, int pid, int status)
2630 {
2631   ev_child *w;
2632   int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2633 
2634   for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2635     {
2636       if ((w->pid == pid || !w->pid)
2637           && (!traced || (w->flags & 1)))
2638         {
2639           ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2640           w->rpid    = pid;
2641           w->rstatus = status;
2642           ev_feed_event (EV_A_ (W)w, EV_CHILD);
2643         }
2644     }
2645 }
2646 
2647 #ifndef WCONTINUED
2648 # define WCONTINUED 0
2649 #endif
2650 
2651 /* called on sigchld etc., calls waitpid */
2652 static void
childcb(EV_P_ ev_signal * sw,int revents)2653 childcb (EV_P_ ev_signal *sw, int revents)
2654 {
2655   int pid, status;
2656 
2657   /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2658   if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2659     if (!WCONTINUED
2660         || errno != EINVAL
2661         || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2662       return;
2663 
2664   /* make sure we are called again until all children have been reaped */
2665   /* we need to do it this way so that the callback gets called before we continue */
2666   ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2667 
2668   child_reap (EV_A_ pid, pid, status);
2669   if ((EV_PID_HASHSIZE) > 1)
2670     child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2671 }
2672 
2673 #endif
2674 
2675 /*****************************************************************************/
2676 
2677 #if EV_USE_IOCP
2678 # include "ev_iocp.c"
2679 #endif
2680 #if EV_USE_PORT
2681 # include "ev_port.c"
2682 #endif
2683 #if EV_USE_KQUEUE
2684 # include "ev_kqueue.c"
2685 #endif
2686 #if EV_USE_EPOLL
2687 # include "ev_epoll.c"
2688 #endif
2689 #if EV_USE_POLL
2690 # include "ev_poll.c"
2691 #endif
2692 #if EV_USE_SELECT
2693 # include "ev_select.c"
2694 #endif
2695 
2696 int ecb_cold
ev_version_major(void)2697 ev_version_major (void) EV_THROW
2698 {
2699   return EV_VERSION_MAJOR;
2700 }
2701 
2702 int ecb_cold
ev_version_minor(void)2703 ev_version_minor (void) EV_THROW
2704 {
2705   return EV_VERSION_MINOR;
2706 }
2707 
2708 /* return true if we are running with elevated privileges and should ignore env variables */
2709 int inline_size ecb_cold
enable_secure(void)2710 enable_secure (void)
2711 {
2712 #ifdef _WIN32
2713   return 0;
2714 #else
2715   return getuid () != geteuid ()
2716       || getgid () != getegid ();
2717 #endif
2718 }
2719 
2720 unsigned int ecb_cold
ev_supported_backends(void)2721 ev_supported_backends (void) EV_THROW
2722 {
2723   unsigned int flags = 0;
2724 
2725   if (EV_USE_PORT  ) flags |= EVBACKEND_PORT;
2726   if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2727   if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2728   if (EV_USE_POLL  ) flags |= EVBACKEND_POLL;
2729   if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2730 
2731   return flags;
2732 }
2733 
2734 unsigned int ecb_cold
ev_recommended_backends(void)2735 ev_recommended_backends (void) EV_THROW
2736 {
2737   unsigned int flags = ev_supported_backends ();
2738 
2739 #ifndef __NetBSD__
2740   /* kqueue is borked on everything but netbsd apparently */
2741   /* it usually doesn't work correctly on anything but sockets and pipes */
2742   flags &= ~EVBACKEND_KQUEUE;
2743 #endif
2744 #ifdef __APPLE__
2745   /* only select works correctly on that "unix-certified" platform */
2746   flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2747   flags &= ~EVBACKEND_POLL;   /* poll is based on kqueue from 10.5 onwards */
2748 #endif
2749 #ifdef __FreeBSD__
2750   flags &= ~EVBACKEND_POLL;   /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2751 #endif
2752 
2753   return flags;
2754 }
2755 
2756 unsigned int ecb_cold
ev_embeddable_backends(void)2757 ev_embeddable_backends (void) EV_THROW
2758 {
2759   int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2760 
2761   /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2762   if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2763     flags &= ~EVBACKEND_EPOLL;
2764 
2765   return flags;
2766 }
2767 
2768 unsigned int
ev_backend(EV_P)2769 ev_backend (EV_P) EV_THROW
2770 {
2771   return backend;
2772 }
2773 
2774 #if EV_FEATURE_API
2775 unsigned int
ev_iteration(EV_P)2776 ev_iteration (EV_P) EV_THROW
2777 {
2778   return loop_count;
2779 }
2780 
2781 unsigned int
ev_depth(EV_P)2782 ev_depth (EV_P) EV_THROW
2783 {
2784   return loop_depth;
2785 }
2786 
2787 void
ev_set_io_collect_interval(EV_P_ ev_tstamp interval)2788 ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2789 {
2790   io_blocktime = interval;
2791 }
2792 
2793 void
ev_set_timeout_collect_interval(EV_P_ ev_tstamp interval)2794 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2795 {
2796   timeout_blocktime = interval;
2797 }
2798 
2799 void
ev_set_userdata(EV_P_ void * data)2800 ev_set_userdata (EV_P_ void *data) EV_THROW
2801 {
2802   userdata = data;
2803 }
2804 
2805 void *
ev_userdata(EV_P)2806 ev_userdata (EV_P) EV_THROW
2807 {
2808   return userdata;
2809 }
2810 
2811 void
ev_set_invoke_pending_cb(EV_P_ ev_loop_callback invoke_pending_cb)2812 ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW
2813 {
2814   invoke_cb = invoke_pending_cb;
2815 }
2816 
2817 void
ev_set_loop_release_cb(EV_P_ void (* release)(EV_P)EV_THROW,void (* acquire)(EV_P)EV_THROW)2818 ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2819 {
2820   release_cb = release;
2821   acquire_cb = acquire;
2822 }
2823 #endif
2824 
2825 /* initialise a loop structure, must be zero-initialised */
2826 static void noinline ecb_cold
loop_init(EV_P_ unsigned int flags)2827 loop_init (EV_P_ unsigned int flags) EV_THROW
2828 {
2829   if (!backend)
2830     {
2831       origflags = flags;
2832 
2833 #if EV_USE_REALTIME
2834       if (!have_realtime)
2835         {
2836           struct timespec ts;
2837 
2838           if (!clock_gettime (CLOCK_REALTIME, &ts))
2839             have_realtime = 1;
2840         }
2841 #endif
2842 
2843 #if EV_USE_MONOTONIC
2844       if (!have_monotonic)
2845         {
2846           struct timespec ts;
2847 
2848           if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2849             have_monotonic = 1;
2850         }
2851 #endif
2852 
2853       /* pid check not overridable via env */
2854 #ifndef _WIN32
2855       if (flags & EVFLAG_FORKCHECK)
2856         curpid = getpid ();
2857 #endif
2858 
2859       if (!(flags & EVFLAG_NOENV)
2860           && !enable_secure ()
2861           && getenv ("LIBEV_FLAGS"))
2862         flags = atoi (getenv ("LIBEV_FLAGS"));
2863 
2864       ev_rt_now          = ev_time ();
2865       mn_now             = get_clock ();
2866       now_floor          = mn_now;
2867       rtmn_diff          = ev_rt_now - mn_now;
2868 #if EV_FEATURE_API
2869       invoke_cb          = ev_invoke_pending;
2870 #endif
2871 
2872       io_blocktime       = 0.;
2873       timeout_blocktime  = 0.;
2874       backend            = 0;
2875       backend_fd         = -1;
2876       sig_pending        = 0;
2877 #if EV_ASYNC_ENABLE
2878       async_pending      = 0;
2879 #endif
2880       pipe_write_skipped = 0;
2881       pipe_write_wanted  = 0;
2882       evpipe [0]         = -1;
2883       evpipe [1]         = -1;
2884 #if EV_USE_INOTIFY
2885       fs_fd              = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2886 #endif
2887 #if EV_USE_SIGNALFD
2888       sigfd              = flags & EVFLAG_SIGNALFD  ? -2 : -1;
2889 #endif
2890 
2891       if (!(flags & EVBACKEND_MASK))
2892         flags |= ev_recommended_backends ();
2893 
2894 #if EV_USE_IOCP
2895       if (!backend && (flags & EVBACKEND_IOCP  )) backend = iocp_init   (EV_A_ flags);
2896 #endif
2897 #if EV_USE_PORT
2898       if (!backend && (flags & EVBACKEND_PORT  )) backend = port_init   (EV_A_ flags);
2899 #endif
2900 #if EV_USE_KQUEUE
2901       if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2902 #endif
2903 #if EV_USE_EPOLL
2904       if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init  (EV_A_ flags);
2905 #endif
2906 #if EV_USE_POLL
2907       if (!backend && (flags & EVBACKEND_POLL  )) backend = poll_init   (EV_A_ flags);
2908 #endif
2909 #if EV_USE_SELECT
2910       if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2911 #endif
2912 
2913       ev_prepare_init (&pending_w, pendingcb);
2914 
2915 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2916       ev_init (&pipe_w, pipecb);
2917       ev_set_priority (&pipe_w, EV_MAXPRI);
2918 #endif
2919     }
2920 }
2921 
2922 /* free up a loop structure */
2923 void ecb_cold
ev_loop_destroy(EV_P)2924 ev_loop_destroy (EV_P)
2925 {
2926   int i;
2927 
2928 #if EV_MULTIPLICITY
2929   /* mimic free (0) */
2930   if (!EV_A)
2931     return;
2932 #endif
2933 
2934 #if EV_CLEANUP_ENABLE
2935   /* queue cleanup watchers (and execute them) */
2936   if (expect_false (cleanupcnt))
2937     {
2938       queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2939       EV_INVOKE_PENDING;
2940     }
2941 #endif
2942 
2943 #if EV_CHILD_ENABLE
2944   if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2945     {
2946       ev_ref (EV_A); /* child watcher */
2947       ev_signal_stop (EV_A_ &childev);
2948     }
2949 #endif
2950 
2951   if (ev_is_active (&pipe_w))
2952     {
2953       /*ev_ref (EV_A);*/
2954       /*ev_io_stop (EV_A_ &pipe_w);*/
2955 
2956       if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2957       if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2958     }
2959 
2960 #if EV_USE_SIGNALFD
2961   if (ev_is_active (&sigfd_w))
2962     close (sigfd);
2963 #endif
2964 
2965 #if EV_USE_INOTIFY
2966   if (fs_fd >= 0)
2967     close (fs_fd);
2968 #endif
2969 
2970   if (backend_fd >= 0)
2971     close (backend_fd);
2972 
2973 #if EV_USE_IOCP
2974   if (backend == EVBACKEND_IOCP  ) iocp_destroy   (EV_A);
2975 #endif
2976 #if EV_USE_PORT
2977   if (backend == EVBACKEND_PORT  ) port_destroy   (EV_A);
2978 #endif
2979 #if EV_USE_KQUEUE
2980   if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2981 #endif
2982 #if EV_USE_EPOLL
2983   if (backend == EVBACKEND_EPOLL ) epoll_destroy  (EV_A);
2984 #endif
2985 #if EV_USE_POLL
2986   if (backend == EVBACKEND_POLL  ) poll_destroy   (EV_A);
2987 #endif
2988 #if EV_USE_SELECT
2989   if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2990 #endif
2991 
2992   for (i = NUMPRI; i--; )
2993     {
2994       array_free (pending, [i]);
2995 #if EV_IDLE_ENABLE
2996       array_free (idle, [i]);
2997 #endif
2998     }
2999 
3000   ev_free (anfds); anfds = 0; anfdmax = 0;
3001 
3002   /* have to use the microsoft-never-gets-it-right macro */
3003   array_free (rfeed, EMPTY);
3004   array_free (fdchange, EMPTY);
3005   array_free (timer, EMPTY);
3006 #if EV_PERIODIC_ENABLE
3007   array_free (periodic, EMPTY);
3008 #endif
3009 #if EV_FORK_ENABLE
3010   array_free (fork, EMPTY);
3011 #endif
3012 #if EV_CLEANUP_ENABLE
3013   array_free (cleanup, EMPTY);
3014 #endif
3015   array_free (prepare, EMPTY);
3016   array_free (check, EMPTY);
3017 #if EV_ASYNC_ENABLE
3018   array_free (async, EMPTY);
3019 #endif
3020 
3021   backend = 0;
3022 
3023 #if EV_MULTIPLICITY
3024   if (ev_is_default_loop (EV_A))
3025 #endif
3026     ev_default_loop_ptr = 0;
3027 #if EV_MULTIPLICITY
3028   else
3029     ev_free (EV_A);
3030 #endif
3031 }
3032 
3033 #if EV_USE_INOTIFY
3034 inline_size void infy_fork (EV_P);
3035 #endif
3036 
3037 inline_size void
loop_fork(EV_P)3038 loop_fork (EV_P)
3039 {
3040 #if EV_USE_PORT
3041   if (backend == EVBACKEND_PORT  ) port_fork   (EV_A);
3042 #endif
3043 #if EV_USE_KQUEUE
3044   if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
3045 #endif
3046 #if EV_USE_EPOLL
3047   if (backend == EVBACKEND_EPOLL ) epoll_fork  (EV_A);
3048 #endif
3049 #if EV_USE_INOTIFY
3050   infy_fork (EV_A);
3051 #endif
3052 
3053 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3054   if (ev_is_active (&pipe_w) && postfork != 2)
3055     {
3056       /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
3057 
3058       ev_ref (EV_A);
3059       ev_io_stop (EV_A_ &pipe_w);
3060 
3061       if (evpipe [0] >= 0)
3062         EV_WIN32_CLOSE_FD (evpipe [0]);
3063 
3064       evpipe_init (EV_A);
3065       /* iterate over everything, in case we missed something before */
3066       ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3067     }
3068 #endif
3069 
3070   postfork = 0;
3071 }
3072 
3073 #if EV_MULTIPLICITY
3074 
3075 struct ev_loop * ecb_cold
ev_loop_new(unsigned int flags)3076 ev_loop_new (unsigned int flags) EV_THROW
3077 {
3078   EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
3079 
3080   memset (EV_A, 0, sizeof (struct ev_loop));
3081   loop_init (EV_A_ flags);
3082 
3083   if (ev_backend (EV_A))
3084     return EV_A;
3085 
3086   ev_free (EV_A);
3087   return 0;
3088 }
3089 
3090 #endif /* multiplicity */
3091 
3092 #if EV_VERIFY
3093 static void noinline ecb_cold
verify_watcher(EV_P_ W w)3094 verify_watcher (EV_P_ W w)
3095 {
3096   assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
3097 
3098   if (w->pending)
3099     assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3100 }
3101 
3102 static void noinline ecb_cold
verify_heap(EV_P_ ANHE * heap,int N)3103 verify_heap (EV_P_ ANHE *heap, int N)
3104 {
3105   int i;
3106 
3107   for (i = HEAP0; i < N + HEAP0; ++i)
3108     {
3109       assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3110       assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3111       assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3112 
3113       verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3114     }
3115 }
3116 
3117 static void noinline ecb_cold
array_verify(EV_P_ W * ws,int cnt)3118 array_verify (EV_P_ W *ws, int cnt)
3119 {
3120   while (cnt--)
3121     {
3122       assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3123       verify_watcher (EV_A_ ws [cnt]);
3124     }
3125 }
3126 #endif
3127 
3128 #if EV_FEATURE_API
3129 void ecb_cold
ev_verify(EV_P)3130 ev_verify (EV_P) EV_THROW
3131 {
3132 #if EV_VERIFY
3133   int i;
3134   WL w, w2;
3135 
3136   assert (activecnt >= -1);
3137 
3138   assert (fdchangemax >= fdchangecnt);
3139   for (i = 0; i < fdchangecnt; ++i)
3140     assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3141 
3142   assert (anfdmax >= 0);
3143   for (i = 0; i < anfdmax; ++i)
3144     {
3145       int j = 0;
3146 
3147       for (w = w2 = anfds [i].head; w; w = w->next)
3148         {
3149           verify_watcher (EV_A_ (W)w);
3150 
3151           if (j++ & 1)
3152             {
3153               assert (("libev: io watcher list contains a loop", w != w2));
3154               w2 = w2->next;
3155             }
3156 
3157           assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3158           assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3159         }
3160     }
3161 
3162   assert (timermax >= timercnt);
3163   verify_heap (EV_A_ timers, timercnt);
3164 
3165 #if EV_PERIODIC_ENABLE
3166   assert (periodicmax >= periodiccnt);
3167   verify_heap (EV_A_ periodics, periodiccnt);
3168 #endif
3169 
3170   for (i = NUMPRI; i--; )
3171     {
3172       assert (pendingmax [i] >= pendingcnt [i]);
3173 #if EV_IDLE_ENABLE
3174       assert (idleall >= 0);
3175       assert (idlemax [i] >= idlecnt [i]);
3176       array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3177 #endif
3178     }
3179 
3180 #if EV_FORK_ENABLE
3181   assert (forkmax >= forkcnt);
3182   array_verify (EV_A_ (W *)forks, forkcnt);
3183 #endif
3184 
3185 #if EV_CLEANUP_ENABLE
3186   assert (cleanupmax >= cleanupcnt);
3187   array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3188 #endif
3189 
3190 #if EV_ASYNC_ENABLE
3191   assert (asyncmax >= asynccnt);
3192   array_verify (EV_A_ (W *)asyncs, asynccnt);
3193 #endif
3194 
3195 #if EV_PREPARE_ENABLE
3196   assert (preparemax >= preparecnt);
3197   array_verify (EV_A_ (W *)prepares, preparecnt);
3198 #endif
3199 
3200 #if EV_CHECK_ENABLE
3201   assert (checkmax >= checkcnt);
3202   array_verify (EV_A_ (W *)checks, checkcnt);
3203 #endif
3204 
3205 # if 0
3206 #if EV_CHILD_ENABLE
3207   for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3208   for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3209 #endif
3210 # endif
3211 #endif
3212 }
3213 #endif
3214 
3215 #if EV_MULTIPLICITY
3216 struct ev_loop * ecb_cold
3217 #else
3218 int
3219 #endif
ev_default_loop(unsigned int flags)3220 ev_default_loop (unsigned int flags) EV_THROW
3221 {
3222   if (!ev_default_loop_ptr)
3223     {
3224 #if EV_MULTIPLICITY
3225       EV_P = ev_default_loop_ptr = &default_loop_struct;
3226 #else
3227       ev_default_loop_ptr = 1;
3228 #endif
3229 
3230       loop_init (EV_A_ flags);
3231 
3232       if (ev_backend (EV_A))
3233         {
3234 #if EV_CHILD_ENABLE
3235           ev_signal_init (&childev, childcb, SIGCHLD);
3236           ev_set_priority (&childev, EV_MAXPRI);
3237           ev_signal_start (EV_A_ &childev);
3238           ev_unref (EV_A); /* child watcher should not keep loop alive */
3239 #endif
3240         }
3241       else
3242         ev_default_loop_ptr = 0;
3243     }
3244 
3245   return ev_default_loop_ptr;
3246 }
3247 
3248 void
ev_loop_fork(EV_P)3249 ev_loop_fork (EV_P) EV_THROW
3250 {
3251   postfork = 1;
3252 }
3253 
3254 /*****************************************************************************/
3255 
3256 void
ev_invoke(EV_P_ void * w,int revents)3257 ev_invoke (EV_P_ void *w, int revents)
3258 {
3259   EV_CB_INVOKE ((W)w, revents);
3260 }
3261 
3262 unsigned int
ev_pending_count(EV_P)3263 ev_pending_count (EV_P) EV_THROW
3264 {
3265   int pri;
3266   unsigned int count = 0;
3267 
3268   for (pri = NUMPRI; pri--; )
3269     count += pendingcnt [pri];
3270 
3271   return count;
3272 }
3273 
3274 void noinline
ev_invoke_pending(EV_P)3275 ev_invoke_pending (EV_P)
3276 {
3277   pendingpri = NUMPRI;
3278 
3279   while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3280     {
3281       --pendingpri;
3282 
3283       while (pendingcnt [pendingpri])
3284         {
3285           ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3286 
3287           p->w->pending = 0;
3288           EV_CB_INVOKE (p->w, p->events);
3289           EV_FREQUENT_CHECK;
3290         }
3291     }
3292 }
3293 
3294 #if EV_IDLE_ENABLE
3295 /* make idle watchers pending. this handles the "call-idle */
3296 /* only when higher priorities are idle" logic */
3297 inline_size void
idle_reify(EV_P)3298 idle_reify (EV_P)
3299 {
3300   if (expect_false (idleall))
3301     {
3302       int pri;
3303 
3304       for (pri = NUMPRI; pri--; )
3305         {
3306           if (pendingcnt [pri])
3307             break;
3308 
3309           if (idlecnt [pri])
3310             {
3311               queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3312               break;
3313             }
3314         }
3315     }
3316 }
3317 #endif
3318 
3319 /* make timers pending */
3320 inline_size void
timers_reify(EV_P)3321 timers_reify (EV_P)
3322 {
3323   EV_FREQUENT_CHECK;
3324 
3325   if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3326     {
3327       do
3328         {
3329           ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3330 
3331           /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3332 
3333           /* first reschedule or stop timer */
3334           if (w->repeat)
3335             {
3336               ev_at (w) += w->repeat;
3337               if (ev_at (w) < mn_now)
3338                 ev_at (w) = mn_now;
3339 
3340               assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3341 
3342               ANHE_at_cache (timers [HEAP0]);
3343               downheap (timers, timercnt, HEAP0);
3344             }
3345           else
3346             ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3347 
3348           EV_FREQUENT_CHECK;
3349           feed_reverse (EV_A_ (W)w);
3350         }
3351       while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3352 
3353       feed_reverse_done (EV_A_ EV_TIMER);
3354     }
3355 }
3356 
3357 #if EV_PERIODIC_ENABLE
3358 
3359 static void noinline
periodic_recalc(EV_P_ ev_periodic * w)3360 periodic_recalc (EV_P_ ev_periodic *w)
3361 {
3362   ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3363   ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3364 
3365   /* the above almost always errs on the low side */
3366   while (at <= ev_rt_now)
3367     {
3368       ev_tstamp nat = at + w->interval;
3369 
3370       /* when resolution fails us, we use ev_rt_now */
3371       if (expect_false (nat == at))
3372         {
3373           at = ev_rt_now;
3374           break;
3375         }
3376 
3377       at = nat;
3378     }
3379 
3380   ev_at (w) = at;
3381 }
3382 
3383 /* make periodics pending */
3384 inline_size void
periodics_reify(EV_P)3385 periodics_reify (EV_P)
3386 {
3387   EV_FREQUENT_CHECK;
3388 
3389   while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3390     {
3391       do
3392         {
3393           ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3394 
3395           /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3396 
3397           /* first reschedule or stop timer */
3398           if (w->reschedule_cb)
3399             {
3400               ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3401 
3402               assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3403 
3404               ANHE_at_cache (periodics [HEAP0]);
3405               downheap (periodics, periodiccnt, HEAP0);
3406             }
3407           else if (w->interval)
3408             {
3409               periodic_recalc (EV_A_ w);
3410               ANHE_at_cache (periodics [HEAP0]);
3411               downheap (periodics, periodiccnt, HEAP0);
3412             }
3413           else
3414             ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3415 
3416           EV_FREQUENT_CHECK;
3417           feed_reverse (EV_A_ (W)w);
3418         }
3419       while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3420 
3421       feed_reverse_done (EV_A_ EV_PERIODIC);
3422     }
3423 }
3424 
3425 /* simply recalculate all periodics */
3426 /* TODO: maybe ensure that at least one event happens when jumping forward? */
3427 static void noinline ecb_cold
periodics_reschedule(EV_P)3428 periodics_reschedule (EV_P)
3429 {
3430   int i;
3431 
3432   /* adjust periodics after time jump */
3433   for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3434     {
3435       ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3436 
3437       if (w->reschedule_cb)
3438         ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3439       else if (w->interval)
3440         periodic_recalc (EV_A_ w);
3441 
3442       ANHE_at_cache (periodics [i]);
3443     }
3444 
3445   reheap (periodics, periodiccnt);
3446 }
3447 #endif
3448 
3449 /* adjust all timers by a given offset */
3450 static void noinline ecb_cold
timers_reschedule(EV_P_ ev_tstamp adjust)3451 timers_reschedule (EV_P_ ev_tstamp adjust)
3452 {
3453   int i;
3454 
3455   for (i = 0; i < timercnt; ++i)
3456     {
3457       ANHE *he = timers + i + HEAP0;
3458       ANHE_w (*he)->at += adjust;
3459       ANHE_at_cache (*he);
3460     }
3461 }
3462 
3463 /* fetch new monotonic and realtime times from the kernel */
3464 /* also detect if there was a timejump, and act accordingly */
3465 inline_speed void
time_update(EV_P_ ev_tstamp max_block)3466 time_update (EV_P_ ev_tstamp max_block)
3467 {
3468 #if EV_USE_MONOTONIC
3469   if (expect_true (have_monotonic))
3470     {
3471       int i;
3472       ev_tstamp odiff = rtmn_diff;
3473 
3474       mn_now = get_clock ();
3475 
3476       /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3477       /* interpolate in the meantime */
3478       if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
3479         {
3480           ev_rt_now = rtmn_diff + mn_now;
3481           return;
3482         }
3483 
3484       now_floor = mn_now;
3485       ev_rt_now = ev_time ();
3486 
3487       /* loop a few times, before making important decisions.
3488        * on the choice of "4": one iteration isn't enough,
3489        * in case we get preempted during the calls to
3490        * ev_time and get_clock. a second call is almost guaranteed
3491        * to succeed in that case, though. and looping a few more times
3492        * doesn't hurt either as we only do this on time-jumps or
3493        * in the unlikely event of having been preempted here.
3494        */
3495       for (i = 4; --i; )
3496         {
3497           ev_tstamp diff;
3498           rtmn_diff = ev_rt_now - mn_now;
3499 
3500           diff = odiff - rtmn_diff;
3501 
3502           if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
3503             return; /* all is well */
3504 
3505           ev_rt_now = ev_time ();
3506           mn_now    = get_clock ();
3507           now_floor = mn_now;
3508         }
3509 
3510       /* no timer adjustment, as the monotonic clock doesn't jump */
3511       /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3512 # if EV_PERIODIC_ENABLE
3513       periodics_reschedule (EV_A);
3514 # endif
3515     }
3516   else
3517 #endif
3518     {
3519       ev_rt_now = ev_time ();
3520 
3521       if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3522         {
3523           /* adjust timers. this is easy, as the offset is the same for all of them */
3524           timers_reschedule (EV_A_ ev_rt_now - mn_now);
3525 #if EV_PERIODIC_ENABLE
3526           periodics_reschedule (EV_A);
3527 #endif
3528         }
3529 
3530       mn_now = ev_rt_now;
3531     }
3532 }
3533 
3534 int
ev_run(EV_P_ int flags)3535 ev_run (EV_P_ int flags)
3536 {
3537 #if EV_FEATURE_API
3538   ++loop_depth;
3539 #endif
3540 
3541   assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3542 
3543   loop_done = EVBREAK_CANCEL;
3544 
3545   EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3546 
3547   do
3548     {
3549 #if EV_VERIFY >= 2
3550       ev_verify (EV_A);
3551 #endif
3552 
3553 #ifndef _WIN32
3554       if (expect_false (curpid)) /* penalise the forking check even more */
3555         if (expect_false (getpid () != curpid))
3556           {
3557             curpid = getpid ();
3558             postfork = 1;
3559           }
3560 #endif
3561 
3562 #if EV_FORK_ENABLE
3563       /* we might have forked, so queue fork handlers */
3564       if (expect_false (postfork))
3565         if (forkcnt)
3566           {
3567             queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3568             EV_INVOKE_PENDING;
3569           }
3570 #endif
3571 
3572 #if EV_PREPARE_ENABLE
3573       /* queue prepare watchers (and execute them) */
3574       if (expect_false (preparecnt))
3575         {
3576           queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3577           EV_INVOKE_PENDING;
3578         }
3579 #endif
3580 
3581       if (expect_false (loop_done))
3582         break;
3583 
3584       /* we might have forked, so reify kernel state if necessary */
3585       if (expect_false (postfork))
3586         loop_fork (EV_A);
3587 
3588       /* update fd-related kernel structures */
3589       fd_reify (EV_A);
3590 
3591       /* calculate blocking time */
3592       {
3593         ev_tstamp waittime  = 0.;
3594         ev_tstamp sleeptime = 0.;
3595 
3596         /* remember old timestamp for io_blocktime calculation */
3597         ev_tstamp prev_mn_now = mn_now;
3598 
3599         /* update time to cancel out callback processing overhead */
3600         time_update (EV_A_ 1e100);
3601 
3602         /* from now on, we want a pipe-wake-up */
3603         pipe_write_wanted = 1;
3604 
3605         ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3606 
3607         if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3608           {
3609             waittime = MAX_BLOCKTIME;
3610 
3611             if (timercnt)
3612               {
3613                 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3614                 if (waittime > to) waittime = to;
3615               }
3616 
3617 #if EV_PERIODIC_ENABLE
3618             if (periodiccnt)
3619               {
3620                 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3621                 if (waittime > to) waittime = to;
3622               }
3623 #endif
3624 
3625             /* don't let timeouts decrease the waittime below timeout_blocktime */
3626             if (expect_false (waittime < timeout_blocktime))
3627               waittime = timeout_blocktime;
3628 
3629             /* at this point, we NEED to wait, so we have to ensure */
3630             /* to pass a minimum nonzero value to the backend */
3631             if (expect_false (waittime < backend_mintime))
3632               waittime = backend_mintime;
3633 
3634             /* extra check because io_blocktime is commonly 0 */
3635             if (expect_false (io_blocktime))
3636               {
3637                 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3638 
3639                 if (sleeptime > waittime - backend_mintime)
3640                   sleeptime = waittime - backend_mintime;
3641 
3642                 if (expect_true (sleeptime > 0.))
3643                   {
3644                     ev_sleep (sleeptime);
3645                     waittime -= sleeptime;
3646                   }
3647               }
3648           }
3649 
3650 #if EV_FEATURE_API
3651         ++loop_count;
3652 #endif
3653         assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3654         backend_poll (EV_A_ waittime);
3655         assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3656 
3657         pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3658 
3659         ECB_MEMORY_FENCE_ACQUIRE;
3660         if (pipe_write_skipped)
3661           {
3662             assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3663             ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3664           }
3665 
3666 
3667         /* update ev_rt_now, do magic */
3668         time_update (EV_A_ waittime + sleeptime);
3669       }
3670 
3671       /* queue pending timers and reschedule them */
3672       timers_reify (EV_A); /* relative timers called last */
3673 #if EV_PERIODIC_ENABLE
3674       periodics_reify (EV_A); /* absolute timers called first */
3675 #endif
3676 
3677 #if EV_IDLE_ENABLE
3678       /* queue idle watchers unless other events are pending */
3679       idle_reify (EV_A);
3680 #endif
3681 
3682 #if EV_CHECK_ENABLE
3683       /* queue check watchers, to be executed first */
3684       if (expect_false (checkcnt))
3685         queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3686 #endif
3687 
3688       EV_INVOKE_PENDING;
3689     }
3690   while (expect_true (
3691     activecnt
3692     && !loop_done
3693     && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3694   ));
3695 
3696   if (loop_done == EVBREAK_ONE)
3697     loop_done = EVBREAK_CANCEL;
3698 
3699 #if EV_FEATURE_API
3700   --loop_depth;
3701 #endif
3702 
3703   return activecnt;
3704 }
3705 
3706 void
ev_break(EV_P_ int how)3707 ev_break (EV_P_ int how) EV_THROW
3708 {
3709   loop_done = how;
3710 }
3711 
3712 void
ev_ref(EV_P)3713 ev_ref (EV_P) EV_THROW
3714 {
3715   ++activecnt;
3716 }
3717 
3718 void
ev_unref(EV_P)3719 ev_unref (EV_P) EV_THROW
3720 {
3721   --activecnt;
3722 }
3723 
3724 void
ev_now_update(EV_P)3725 ev_now_update (EV_P) EV_THROW
3726 {
3727   time_update (EV_A_ 1e100);
3728 }
3729 
3730 void
ev_suspend(EV_P)3731 ev_suspend (EV_P) EV_THROW
3732 {
3733   ev_now_update (EV_A);
3734 }
3735 
3736 void
ev_resume(EV_P)3737 ev_resume (EV_P) EV_THROW
3738 {
3739   ev_tstamp mn_prev = mn_now;
3740 
3741   ev_now_update (EV_A);
3742   timers_reschedule (EV_A_ mn_now - mn_prev);
3743 #if EV_PERIODIC_ENABLE
3744   /* TODO: really do this? */
3745   periodics_reschedule (EV_A);
3746 #endif
3747 }
3748 
3749 /*****************************************************************************/
3750 /* singly-linked list management, used when the expected list length is short */
3751 
3752 inline_size void
wlist_add(WL * head,WL elem)3753 wlist_add (WL *head, WL elem)
3754 {
3755   elem->next = *head;
3756   *head = elem;
3757 }
3758 
3759 inline_size void
wlist_del(WL * head,WL elem)3760 wlist_del (WL *head, WL elem)
3761 {
3762   while (*head)
3763     {
3764       if (expect_true (*head == elem))
3765         {
3766           *head = elem->next;
3767           break;
3768         }
3769 
3770       head = &(*head)->next;
3771     }
3772 }
3773 
3774 /* internal, faster, version of ev_clear_pending */
3775 inline_speed void
clear_pending(EV_P_ W w)3776 clear_pending (EV_P_ W w)
3777 {
3778   if (w->pending)
3779     {
3780       pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3781       w->pending = 0;
3782     }
3783 }
3784 
3785 int
ev_clear_pending(EV_P_ void * w)3786 ev_clear_pending (EV_P_ void *w) EV_THROW
3787 {
3788   W w_ = (W)w;
3789   int pending = w_->pending;
3790 
3791   if (expect_true (pending))
3792     {
3793       ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3794       p->w = (W)&pending_w;
3795       w_->pending = 0;
3796       return p->events;
3797     }
3798   else
3799     return 0;
3800 }
3801 
3802 inline_size void
pri_adjust(EV_P_ W w)3803 pri_adjust (EV_P_ W w)
3804 {
3805   int pri = ev_priority (w);
3806   pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3807   pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3808   ev_set_priority (w, pri);
3809 }
3810 
3811 inline_speed void
ev_start(EV_P_ W w,int active)3812 ev_start (EV_P_ W w, int active)
3813 {
3814   pri_adjust (EV_A_ w);
3815   w->active = active;
3816   ev_ref (EV_A);
3817 }
3818 
3819 inline_size void
ev_stop(EV_P_ W w)3820 ev_stop (EV_P_ W w)
3821 {
3822   ev_unref (EV_A);
3823   w->active = 0;
3824 }
3825 
3826 /*****************************************************************************/
3827 
3828 void noinline
ev_io_start(EV_P_ ev_io * w)3829 ev_io_start (EV_P_ ev_io *w) EV_THROW
3830 {
3831   int fd = w->fd;
3832 
3833   if (expect_false (ev_is_active (w)))
3834     return;
3835 
3836   assert (("libev: ev_io_start called with negative fd", fd >= 0));
3837   assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3838 
3839   EV_FREQUENT_CHECK;
3840 
3841   ev_start (EV_A_ (W)w, 1);
3842   array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
3843   wlist_add (&anfds[fd].head, (WL)w);
3844 
3845   /* common bug, apparently */
3846   assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3847 
3848   fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3849   w->events &= ~EV__IOFDSET;
3850 
3851   EV_FREQUENT_CHECK;
3852 }
3853 
3854 void noinline
ev_io_stop(EV_P_ ev_io * w)3855 ev_io_stop (EV_P_ ev_io *w) EV_THROW
3856 {
3857   clear_pending (EV_A_ (W)w);
3858   if (expect_false (!ev_is_active (w)))
3859     return;
3860 
3861   assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3862 
3863   EV_FREQUENT_CHECK;
3864 
3865   wlist_del (&anfds[w->fd].head, (WL)w);
3866   ev_stop (EV_A_ (W)w);
3867 
3868   fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3869 
3870   EV_FREQUENT_CHECK;
3871 }
3872 
3873 void noinline
ev_timer_start(EV_P_ ev_timer * w)3874 ev_timer_start (EV_P_ ev_timer *w) EV_THROW
3875 {
3876   if (expect_false (ev_is_active (w)))
3877     return;
3878 
3879   ev_at (w) += mn_now;
3880 
3881   assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3882 
3883   EV_FREQUENT_CHECK;
3884 
3885   ++timercnt;
3886   ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3887   array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
3888   ANHE_w (timers [ev_active (w)]) = (WT)w;
3889   ANHE_at_cache (timers [ev_active (w)]);
3890   upheap (timers, ev_active (w));
3891 
3892   EV_FREQUENT_CHECK;
3893 
3894   /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3895 }
3896 
3897 void noinline
ev_timer_stop(EV_P_ ev_timer * w)3898 ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
3899 {
3900   clear_pending (EV_A_ (W)w);
3901   if (expect_false (!ev_is_active (w)))
3902     return;
3903 
3904   EV_FREQUENT_CHECK;
3905 
3906   {
3907     int active = ev_active (w);
3908 
3909     assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3910 
3911     --timercnt;
3912 
3913     if (expect_true (active < timercnt + HEAP0))
3914       {
3915         timers [active] = timers [timercnt + HEAP0];
3916         adjustheap (timers, timercnt, active);
3917       }
3918   }
3919 
3920   ev_at (w) -= mn_now;
3921 
3922   ev_stop (EV_A_ (W)w);
3923 
3924   EV_FREQUENT_CHECK;
3925 }
3926 
3927 void noinline
ev_timer_again(EV_P_ ev_timer * w)3928 ev_timer_again (EV_P_ ev_timer *w) EV_THROW
3929 {
3930   EV_FREQUENT_CHECK;
3931 
3932   clear_pending (EV_A_ (W)w);
3933 
3934   if (ev_is_active (w))
3935     {
3936       if (w->repeat)
3937         {
3938           ev_at (w) = mn_now + w->repeat;
3939           ANHE_at_cache (timers [ev_active (w)]);
3940           adjustheap (timers, timercnt, ev_active (w));
3941         }
3942       else
3943         ev_timer_stop (EV_A_ w);
3944     }
3945   else if (w->repeat)
3946     {
3947       ev_at (w) = w->repeat;
3948       ev_timer_start (EV_A_ w);
3949     }
3950 
3951   EV_FREQUENT_CHECK;
3952 }
3953 
3954 ev_tstamp
ev_timer_remaining(EV_P_ ev_timer * w)3955 ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3956 {
3957   return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3958 }
3959 
3960 #if EV_PERIODIC_ENABLE
3961 void noinline
ev_periodic_start(EV_P_ ev_periodic * w)3962 ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
3963 {
3964   if (expect_false (ev_is_active (w)))
3965     return;
3966 
3967   if (w->reschedule_cb)
3968     ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3969   else if (w->interval)
3970     {
3971       assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
3972       periodic_recalc (EV_A_ w);
3973     }
3974   else
3975     ev_at (w) = w->offset;
3976 
3977   EV_FREQUENT_CHECK;
3978 
3979   ++periodiccnt;
3980   ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
3981   array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
3982   ANHE_w (periodics [ev_active (w)]) = (WT)w;
3983   ANHE_at_cache (periodics [ev_active (w)]);
3984   upheap (periodics, ev_active (w));
3985 
3986   EV_FREQUENT_CHECK;
3987 
3988   /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
3989 }
3990 
3991 void noinline
ev_periodic_stop(EV_P_ ev_periodic * w)3992 ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
3993 {
3994   clear_pending (EV_A_ (W)w);
3995   if (expect_false (!ev_is_active (w)))
3996     return;
3997 
3998   EV_FREQUENT_CHECK;
3999 
4000   {
4001     int active = ev_active (w);
4002 
4003     assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
4004 
4005     --periodiccnt;
4006 
4007     if (expect_true (active < periodiccnt + HEAP0))
4008       {
4009         periodics [active] = periodics [periodiccnt + HEAP0];
4010         adjustheap (periodics, periodiccnt, active);
4011       }
4012   }
4013 
4014   ev_stop (EV_A_ (W)w);
4015 
4016   EV_FREQUENT_CHECK;
4017 }
4018 
4019 void noinline
ev_periodic_again(EV_P_ ev_periodic * w)4020 ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
4021 {
4022   /* TODO: use adjustheap and recalculation */
4023   ev_periodic_stop (EV_A_ w);
4024   ev_periodic_start (EV_A_ w);
4025 }
4026 #endif
4027 
4028 #ifndef SA_RESTART
4029 # define SA_RESTART 0
4030 #endif
4031 
4032 #if EV_SIGNAL_ENABLE
4033 
4034 void noinline
ev_signal_start(EV_P_ ev_signal * w)4035 ev_signal_start (EV_P_ ev_signal *w) EV_THROW
4036 {
4037   if (expect_false (ev_is_active (w)))
4038     return;
4039 
4040   assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4041 
4042 #if EV_MULTIPLICITY
4043   assert (("libev: a signal must not be attached to two different loops",
4044            !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
4045 
4046   signals [w->signum - 1].loop = EV_A;
4047   ECB_MEMORY_FENCE_RELEASE;
4048 #endif
4049 
4050   EV_FREQUENT_CHECK;
4051 
4052 #if EV_USE_SIGNALFD
4053   if (sigfd == -2)
4054     {
4055       sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
4056       if (sigfd < 0 && errno == EINVAL)
4057         sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
4058 
4059       if (sigfd >= 0)
4060         {
4061           fd_intern (sigfd); /* doing it twice will not hurt */
4062 
4063           sigemptyset (&sigfd_set);
4064 
4065           ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4066           ev_set_priority (&sigfd_w, EV_MAXPRI);
4067           ev_io_start (EV_A_ &sigfd_w);
4068           ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4069         }
4070     }
4071 
4072   if (sigfd >= 0)
4073     {
4074       /* TODO: check .head */
4075       sigaddset (&sigfd_set, w->signum);
4076       sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4077 
4078       signalfd (sigfd, &sigfd_set, 0);
4079     }
4080 #endif
4081 
4082   ev_start (EV_A_ (W)w, 1);
4083   wlist_add (&signals [w->signum - 1].head, (WL)w);
4084 
4085   if (!((WL)w)->next)
4086 # if EV_USE_SIGNALFD
4087     if (sigfd < 0) /*TODO*/
4088 # endif
4089       {
4090 # ifdef _WIN32
4091         evpipe_init (EV_A);
4092 
4093         signal (w->signum, ev_sighandler);
4094 # else
4095         struct sigaction sa;
4096 
4097         evpipe_init (EV_A);
4098 
4099         sa.sa_handler = ev_sighandler;
4100         sigfillset (&sa.sa_mask);
4101         sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
4102         sigaction (w->signum, &sa, 0);
4103 
4104         if (origflags & EVFLAG_NOSIGMASK)
4105           {
4106             sigemptyset (&sa.sa_mask);
4107             sigaddset (&sa.sa_mask, w->signum);
4108             sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4109           }
4110 #endif
4111       }
4112 
4113   EV_FREQUENT_CHECK;
4114 }
4115 
4116 void noinline
ev_signal_stop(EV_P_ ev_signal * w)4117 ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
4118 {
4119   clear_pending (EV_A_ (W)w);
4120   if (expect_false (!ev_is_active (w)))
4121     return;
4122 
4123   EV_FREQUENT_CHECK;
4124 
4125   wlist_del (&signals [w->signum - 1].head, (WL)w);
4126   ev_stop (EV_A_ (W)w);
4127 
4128   if (!signals [w->signum - 1].head)
4129     {
4130 #if EV_MULTIPLICITY
4131       signals [w->signum - 1].loop = 0; /* unattach from signal */
4132 #endif
4133 #if EV_USE_SIGNALFD
4134       if (sigfd >= 0)
4135         {
4136           sigset_t ss;
4137 
4138           sigemptyset (&ss);
4139           sigaddset (&ss, w->signum);
4140           sigdelset (&sigfd_set, w->signum);
4141 
4142           signalfd (sigfd, &sigfd_set, 0);
4143           sigprocmask (SIG_UNBLOCK, &ss, 0);
4144         }
4145       else
4146 #endif
4147         signal (w->signum, SIG_DFL);
4148     }
4149 
4150   EV_FREQUENT_CHECK;
4151 }
4152 
4153 #endif
4154 
4155 #if EV_CHILD_ENABLE
4156 
4157 void
ev_child_start(EV_P_ ev_child * w)4158 ev_child_start (EV_P_ ev_child *w) EV_THROW
4159 {
4160 #if EV_MULTIPLICITY
4161   assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
4162 #endif
4163   if (expect_false (ev_is_active (w)))
4164     return;
4165 
4166   EV_FREQUENT_CHECK;
4167 
4168   ev_start (EV_A_ (W)w, 1);
4169   wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4170 
4171   EV_FREQUENT_CHECK;
4172 }
4173 
4174 void
ev_child_stop(EV_P_ ev_child * w)4175 ev_child_stop (EV_P_ ev_child *w) EV_THROW
4176 {
4177   clear_pending (EV_A_ (W)w);
4178   if (expect_false (!ev_is_active (w)))
4179     return;
4180 
4181   EV_FREQUENT_CHECK;
4182 
4183   wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4184   ev_stop (EV_A_ (W)w);
4185 
4186   EV_FREQUENT_CHECK;
4187 }
4188 
4189 #endif
4190 
4191 #if EV_STAT_ENABLE
4192 
4193 # ifdef _WIN32
4194 #  undef lstat
4195 #  define lstat(a,b) _stati64 (a,b)
4196 # endif
4197 
4198 #define DEF_STAT_INTERVAL  5.0074891
4199 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
4200 #define MIN_STAT_INTERVAL  0.1074891
4201 
4202 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
4203 
4204 #if EV_USE_INOTIFY
4205 
4206 /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4207 # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4208 
4209 static void noinline
infy_add(EV_P_ ev_stat * w)4210 infy_add (EV_P_ ev_stat *w)
4211 {
4212   w->wd = inotify_add_watch (fs_fd, w->path,
4213                              IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4214                              | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4215                              | IN_DONT_FOLLOW | IN_MASK_ADD);
4216 
4217   if (w->wd >= 0)
4218     {
4219       struct statfs sfs;
4220 
4221       /* now local changes will be tracked by inotify, but remote changes won't */
4222       /* unless the filesystem is known to be local, we therefore still poll */
4223       /* also do poll on <2.6.25, but with normal frequency */
4224 
4225       if (!fs_2625)
4226         w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4227       else if (!statfs (w->path, &sfs)
4228                && (sfs.f_type == 0x1373 /* devfs */
4229                    || sfs.f_type == 0x4006 /* fat */
4230                    || sfs.f_type == 0x4d44 /* msdos */
4231                    || sfs.f_type == 0xEF53 /* ext2/3 */
4232                    || sfs.f_type == 0x72b6 /* jffs2 */
4233                    || sfs.f_type == 0x858458f6 /* ramfs */
4234                    || sfs.f_type == 0x5346544e /* ntfs */
4235                    || sfs.f_type == 0x3153464a /* jfs */
4236                    || sfs.f_type == 0x9123683e /* btrfs */
4237                    || sfs.f_type == 0x52654973 /* reiser3 */
4238                    || sfs.f_type == 0x01021994 /* tmpfs */
4239                    || sfs.f_type == 0x58465342 /* xfs */))
4240         w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4241       else
4242         w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
4243     }
4244   else
4245     {
4246       /* can't use inotify, continue to stat */
4247       w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4248 
4249       /* if path is not there, monitor some parent directory for speedup hints */
4250       /* note that exceeding the hardcoded path limit is not a correctness issue, */
4251       /* but an efficiency issue only */
4252       if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
4253         {
4254           char path [4096];
4255           strcpy (path, w->path);
4256 
4257           do
4258             {
4259               int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4260                        | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4261 
4262               char *pend = strrchr (path, '/');
4263 
4264               if (!pend || pend == path)
4265                 break;
4266 
4267               *pend = 0;
4268               w->wd = inotify_add_watch (fs_fd, path, mask);
4269             }
4270           while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4271         }
4272     }
4273 
4274   if (w->wd >= 0)
4275     wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4276 
4277   /* now re-arm timer, if required */
4278   if (ev_is_active (&w->timer)) ev_ref (EV_A);
4279   ev_timer_again (EV_A_ &w->timer);
4280   if (ev_is_active (&w->timer)) ev_unref (EV_A);
4281 }
4282 
4283 static void noinline
infy_del(EV_P_ ev_stat * w)4284 infy_del (EV_P_ ev_stat *w)
4285 {
4286   int slot;
4287   int wd = w->wd;
4288 
4289   if (wd < 0)
4290     return;
4291 
4292   w->wd = -2;
4293   slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4294   wlist_del (&fs_hash [slot].head, (WL)w);
4295 
4296   /* remove this watcher, if others are watching it, they will rearm */
4297   inotify_rm_watch (fs_fd, wd);
4298 }
4299 
4300 static void noinline
infy_wd(EV_P_ int slot,int wd,struct inotify_event * ev)4301 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4302 {
4303   if (slot < 0)
4304     /* overflow, need to check for all hash slots */
4305     for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4306       infy_wd (EV_A_ slot, wd, ev);
4307   else
4308     {
4309       WL w_;
4310 
4311       for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4312         {
4313           ev_stat *w = (ev_stat *)w_;
4314           w_ = w_->next; /* lets us remove this watcher and all before it */
4315 
4316           if (w->wd == wd || wd == -1)
4317             {
4318               if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4319                 {
4320                   wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4321                   w->wd = -1;
4322                   infy_add (EV_A_ w); /* re-add, no matter what */
4323                 }
4324 
4325               stat_timer_cb (EV_A_ &w->timer, 0);
4326             }
4327         }
4328     }
4329 }
4330 
4331 static void
infy_cb(EV_P_ ev_io * w,int revents)4332 infy_cb (EV_P_ ev_io *w, int revents)
4333 {
4334   char buf [EV_INOTIFY_BUFSIZE];
4335   int ofs;
4336   int len = read (fs_fd, buf, sizeof (buf));
4337 
4338   for (ofs = 0; ofs < len; )
4339     {
4340       struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4341       infy_wd (EV_A_ ev->wd, ev->wd, ev);
4342       ofs += sizeof (struct inotify_event) + ev->len;
4343     }
4344 }
4345 
4346 inline_size void ecb_cold
ev_check_2625(EV_P)4347 ev_check_2625 (EV_P)
4348 {
4349   /* kernels < 2.6.25 are borked
4350    * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4351    */
4352   if (ev_linux_version () < 0x020619)
4353     return;
4354 
4355   fs_2625 = 1;
4356 }
4357 
4358 inline_size int
infy_newfd(void)4359 infy_newfd (void)
4360 {
4361 #if defined IN_CLOEXEC && defined IN_NONBLOCK
4362   int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4363   if (fd >= 0)
4364     return fd;
4365 #endif
4366   return inotify_init ();
4367 }
4368 
4369 inline_size void
infy_init(EV_P)4370 infy_init (EV_P)
4371 {
4372   if (fs_fd != -2)
4373     return;
4374 
4375   fs_fd = -1;
4376 
4377   ev_check_2625 (EV_A);
4378 
4379   fs_fd = infy_newfd ();
4380 
4381   if (fs_fd >= 0)
4382     {
4383       fd_intern (fs_fd);
4384       ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4385       ev_set_priority (&fs_w, EV_MAXPRI);
4386       ev_io_start (EV_A_ &fs_w);
4387       ev_unref (EV_A);
4388     }
4389 }
4390 
4391 inline_size void
infy_fork(EV_P)4392 infy_fork (EV_P)
4393 {
4394   int slot;
4395 
4396   if (fs_fd < 0)
4397     return;
4398 
4399   ev_ref (EV_A);
4400   ev_io_stop (EV_A_ &fs_w);
4401   close (fs_fd);
4402   fs_fd = infy_newfd ();
4403 
4404   if (fs_fd >= 0)
4405     {
4406       fd_intern (fs_fd);
4407       ev_io_set (&fs_w, fs_fd, EV_READ);
4408       ev_io_start (EV_A_ &fs_w);
4409       ev_unref (EV_A);
4410     }
4411 
4412   for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4413     {
4414       WL w_ = fs_hash [slot].head;
4415       fs_hash [slot].head = 0;
4416 
4417       while (w_)
4418         {
4419           ev_stat *w = (ev_stat *)w_;
4420           w_ = w_->next; /* lets us add this watcher */
4421 
4422           w->wd = -1;
4423 
4424           if (fs_fd >= 0)
4425             infy_add (EV_A_ w); /* re-add, no matter what */
4426           else
4427             {
4428               w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4429               if (ev_is_active (&w->timer)) ev_ref (EV_A);
4430               ev_timer_again (EV_A_ &w->timer);
4431               if (ev_is_active (&w->timer)) ev_unref (EV_A);
4432             }
4433         }
4434     }
4435 }
4436 
4437 #endif
4438 
4439 #ifdef _WIN32
4440 # define EV_LSTAT(p,b) _stati64 (p, b)
4441 #else
4442 # define EV_LSTAT(p,b) lstat (p, b)
4443 #endif
4444 
4445 void
ev_stat_stat(EV_P_ ev_stat * w)4446 ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
4447 {
4448   if (lstat (w->path, &w->attr) < 0)
4449     w->attr.st_nlink = 0;
4450   else if (!w->attr.st_nlink)
4451     w->attr.st_nlink = 1;
4452 }
4453 
4454 static void noinline
stat_timer_cb(EV_P_ ev_timer * w_,int revents)4455 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4456 {
4457   ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4458 
4459   ev_statdata prev = w->attr;
4460   ev_stat_stat (EV_A_ w);
4461 
4462   /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4463   if (
4464     prev.st_dev      != w->attr.st_dev
4465     || prev.st_ino   != w->attr.st_ino
4466     || prev.st_mode  != w->attr.st_mode
4467     || prev.st_nlink != w->attr.st_nlink
4468     || prev.st_uid   != w->attr.st_uid
4469     || prev.st_gid   != w->attr.st_gid
4470     || prev.st_rdev  != w->attr.st_rdev
4471     || prev.st_size  != w->attr.st_size
4472     || prev.st_atime != w->attr.st_atime
4473     || prev.st_mtime != w->attr.st_mtime
4474     || prev.st_ctime != w->attr.st_ctime
4475   ) {
4476       /* we only update w->prev on actual differences */
4477       /* in case we test more often than invoke the callback, */
4478       /* to ensure that prev is always different to attr */
4479       w->prev = prev;
4480 
4481       #if EV_USE_INOTIFY
4482         if (fs_fd >= 0)
4483           {
4484             infy_del (EV_A_ w);
4485             infy_add (EV_A_ w);
4486             ev_stat_stat (EV_A_ w); /* avoid race... */
4487           }
4488       #endif
4489 
4490       ev_feed_event (EV_A_ w, EV_STAT);
4491     }
4492 }
4493 
4494 void
ev_stat_start(EV_P_ ev_stat * w)4495 ev_stat_start (EV_P_ ev_stat *w) EV_THROW
4496 {
4497   if (expect_false (ev_is_active (w)))
4498     return;
4499 
4500   ev_stat_stat (EV_A_ w);
4501 
4502   if (w->interval < MIN_STAT_INTERVAL && w->interval)
4503     w->interval = MIN_STAT_INTERVAL;
4504 
4505   ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4506   ev_set_priority (&w->timer, ev_priority (w));
4507 
4508 #if EV_USE_INOTIFY
4509   infy_init (EV_A);
4510 
4511   if (fs_fd >= 0)
4512     infy_add (EV_A_ w);
4513   else
4514 #endif
4515     {
4516       ev_timer_again (EV_A_ &w->timer);
4517       ev_unref (EV_A);
4518     }
4519 
4520   ev_start (EV_A_ (W)w, 1);
4521 
4522   EV_FREQUENT_CHECK;
4523 }
4524 
4525 void
ev_stat_stop(EV_P_ ev_stat * w)4526 ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
4527 {
4528   clear_pending (EV_A_ (W)w);
4529   if (expect_false (!ev_is_active (w)))
4530     return;
4531 
4532   EV_FREQUENT_CHECK;
4533 
4534 #if EV_USE_INOTIFY
4535   infy_del (EV_A_ w);
4536 #endif
4537 
4538   if (ev_is_active (&w->timer))
4539     {
4540       ev_ref (EV_A);
4541       ev_timer_stop (EV_A_ &w->timer);
4542     }
4543 
4544   ev_stop (EV_A_ (W)w);
4545 
4546   EV_FREQUENT_CHECK;
4547 }
4548 #endif
4549 
4550 #if EV_IDLE_ENABLE
4551 void
ev_idle_start(EV_P_ ev_idle * w)4552 ev_idle_start (EV_P_ ev_idle *w) EV_THROW
4553 {
4554   if (expect_false (ev_is_active (w)))
4555     return;
4556 
4557   pri_adjust (EV_A_ (W)w);
4558 
4559   EV_FREQUENT_CHECK;
4560 
4561   {
4562     int active = ++idlecnt [ABSPRI (w)];
4563 
4564     ++idleall;
4565     ev_start (EV_A_ (W)w, active);
4566 
4567     array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
4568     idles [ABSPRI (w)][active - 1] = w;
4569   }
4570 
4571   EV_FREQUENT_CHECK;
4572 }
4573 
4574 void
ev_idle_stop(EV_P_ ev_idle * w)4575 ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
4576 {
4577   clear_pending (EV_A_ (W)w);
4578   if (expect_false (!ev_is_active (w)))
4579     return;
4580 
4581   EV_FREQUENT_CHECK;
4582 
4583   {
4584     int active = ev_active (w);
4585 
4586     idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4587     ev_active (idles [ABSPRI (w)][active - 1]) = active;
4588 
4589     ev_stop (EV_A_ (W)w);
4590     --idleall;
4591   }
4592 
4593   EV_FREQUENT_CHECK;
4594 }
4595 #endif
4596 
4597 #if EV_PREPARE_ENABLE
4598 void
ev_prepare_start(EV_P_ ev_prepare * w)4599 ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
4600 {
4601   if (expect_false (ev_is_active (w)))
4602     return;
4603 
4604   EV_FREQUENT_CHECK;
4605 
4606   ev_start (EV_A_ (W)w, ++preparecnt);
4607   array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4608   prepares [preparecnt - 1] = w;
4609 
4610   EV_FREQUENT_CHECK;
4611 }
4612 
4613 void
ev_prepare_stop(EV_P_ ev_prepare * w)4614 ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
4615 {
4616   clear_pending (EV_A_ (W)w);
4617   if (expect_false (!ev_is_active (w)))
4618     return;
4619 
4620   EV_FREQUENT_CHECK;
4621 
4622   {
4623     int active = ev_active (w);
4624 
4625     prepares [active - 1] = prepares [--preparecnt];
4626     ev_active (prepares [active - 1]) = active;
4627   }
4628 
4629   ev_stop (EV_A_ (W)w);
4630 
4631   EV_FREQUENT_CHECK;
4632 }
4633 #endif
4634 
4635 #if EV_CHECK_ENABLE
4636 void
ev_check_start(EV_P_ ev_check * w)4637 ev_check_start (EV_P_ ev_check *w) EV_THROW
4638 {
4639   if (expect_false (ev_is_active (w)))
4640     return;
4641 
4642   EV_FREQUENT_CHECK;
4643 
4644   ev_start (EV_A_ (W)w, ++checkcnt);
4645   array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4646   checks [checkcnt - 1] = w;
4647 
4648   EV_FREQUENT_CHECK;
4649 }
4650 
4651 void
ev_check_stop(EV_P_ ev_check * w)4652 ev_check_stop (EV_P_ ev_check *w) EV_THROW
4653 {
4654   clear_pending (EV_A_ (W)w);
4655   if (expect_false (!ev_is_active (w)))
4656     return;
4657 
4658   EV_FREQUENT_CHECK;
4659 
4660   {
4661     int active = ev_active (w);
4662 
4663     checks [active - 1] = checks [--checkcnt];
4664     ev_active (checks [active - 1]) = active;
4665   }
4666 
4667   ev_stop (EV_A_ (W)w);
4668 
4669   EV_FREQUENT_CHECK;
4670 }
4671 #endif
4672 
4673 #if EV_EMBED_ENABLE
4674 void noinline
ev_embed_sweep(EV_P_ ev_embed * w)4675 ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4676 {
4677   ev_run (w->other, EVRUN_NOWAIT);
4678 }
4679 
4680 static void
embed_io_cb(EV_P_ ev_io * io,int revents)4681 embed_io_cb (EV_P_ ev_io *io, int revents)
4682 {
4683   ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4684 
4685   if (ev_cb (w))
4686     ev_feed_event (EV_A_ (W)w, EV_EMBED);
4687   else
4688     ev_run (w->other, EVRUN_NOWAIT);
4689 }
4690 
4691 static void
embed_prepare_cb(EV_P_ ev_prepare * prepare,int revents)4692 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4693 {
4694   ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4695 
4696   {
4697     EV_P = w->other;
4698 
4699     while (fdchangecnt)
4700       {
4701         fd_reify (EV_A);
4702         ev_run (EV_A_ EVRUN_NOWAIT);
4703       }
4704   }
4705 }
4706 
4707 static void
embed_fork_cb(EV_P_ ev_fork * fork_w,int revents)4708 embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4709 {
4710   ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4711 
4712   ev_embed_stop (EV_A_ w);
4713 
4714   {
4715     EV_P = w->other;
4716 
4717     ev_loop_fork (EV_A);
4718     ev_run (EV_A_ EVRUN_NOWAIT);
4719   }
4720 
4721   ev_embed_start (EV_A_ w);
4722 }
4723 
4724 #if 0
4725 static void
4726 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4727 {
4728   ev_idle_stop (EV_A_ idle);
4729 }
4730 #endif
4731 
4732 void
ev_embed_start(EV_P_ ev_embed * w)4733 ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4734 {
4735   if (expect_false (ev_is_active (w)))
4736     return;
4737 
4738   {
4739     EV_P = w->other;
4740     assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4741     ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4742   }
4743 
4744   EV_FREQUENT_CHECK;
4745 
4746   ev_set_priority (&w->io, ev_priority (w));
4747   ev_io_start (EV_A_ &w->io);
4748 
4749   ev_prepare_init (&w->prepare, embed_prepare_cb);
4750   ev_set_priority (&w->prepare, EV_MINPRI);
4751   ev_prepare_start (EV_A_ &w->prepare);
4752 
4753   ev_fork_init (&w->fork, embed_fork_cb);
4754   ev_fork_start (EV_A_ &w->fork);
4755 
4756   /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4757 
4758   ev_start (EV_A_ (W)w, 1);
4759 
4760   EV_FREQUENT_CHECK;
4761 }
4762 
4763 void
ev_embed_stop(EV_P_ ev_embed * w)4764 ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
4765 {
4766   clear_pending (EV_A_ (W)w);
4767   if (expect_false (!ev_is_active (w)))
4768     return;
4769 
4770   EV_FREQUENT_CHECK;
4771 
4772   ev_io_stop      (EV_A_ &w->io);
4773   ev_prepare_stop (EV_A_ &w->prepare);
4774   ev_fork_stop    (EV_A_ &w->fork);
4775 
4776   ev_stop (EV_A_ (W)w);
4777 
4778   EV_FREQUENT_CHECK;
4779 }
4780 #endif
4781 
4782 #if EV_FORK_ENABLE
4783 void
ev_fork_start(EV_P_ ev_fork * w)4784 ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4785 {
4786   if (expect_false (ev_is_active (w)))
4787     return;
4788 
4789   EV_FREQUENT_CHECK;
4790 
4791   ev_start (EV_A_ (W)w, ++forkcnt);
4792   array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4793   forks [forkcnt - 1] = w;
4794 
4795   EV_FREQUENT_CHECK;
4796 }
4797 
4798 void
ev_fork_stop(EV_P_ ev_fork * w)4799 ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4800 {
4801   clear_pending (EV_A_ (W)w);
4802   if (expect_false (!ev_is_active (w)))
4803     return;
4804 
4805   EV_FREQUENT_CHECK;
4806 
4807   {
4808     int active = ev_active (w);
4809 
4810     forks [active - 1] = forks [--forkcnt];
4811     ev_active (forks [active - 1]) = active;
4812   }
4813 
4814   ev_stop (EV_A_ (W)w);
4815 
4816   EV_FREQUENT_CHECK;
4817 }
4818 #endif
4819 
4820 #if EV_CLEANUP_ENABLE
4821 void
ev_cleanup_start(EV_P_ ev_cleanup * w)4822 ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4823 {
4824   if (expect_false (ev_is_active (w)))
4825     return;
4826 
4827   EV_FREQUENT_CHECK;
4828 
4829   ev_start (EV_A_ (W)w, ++cleanupcnt);
4830   array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4831   cleanups [cleanupcnt - 1] = w;
4832 
4833   /* cleanup watchers should never keep a refcount on the loop */
4834   ev_unref (EV_A);
4835   EV_FREQUENT_CHECK;
4836 }
4837 
4838 void
ev_cleanup_stop(EV_P_ ev_cleanup * w)4839 ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4840 {
4841   clear_pending (EV_A_ (W)w);
4842   if (expect_false (!ev_is_active (w)))
4843     return;
4844 
4845   EV_FREQUENT_CHECK;
4846   ev_ref (EV_A);
4847 
4848   {
4849     int active = ev_active (w);
4850 
4851     cleanups [active - 1] = cleanups [--cleanupcnt];
4852     ev_active (cleanups [active - 1]) = active;
4853   }
4854 
4855   ev_stop (EV_A_ (W)w);
4856 
4857   EV_FREQUENT_CHECK;
4858 }
4859 #endif
4860 
4861 #if EV_ASYNC_ENABLE
4862 void
ev_async_start(EV_P_ ev_async * w)4863 ev_async_start (EV_P_ ev_async *w) EV_THROW
4864 {
4865   if (expect_false (ev_is_active (w)))
4866     return;
4867 
4868   w->sent = 0;
4869 
4870   evpipe_init (EV_A);
4871 
4872   EV_FREQUENT_CHECK;
4873 
4874   ev_start (EV_A_ (W)w, ++asynccnt);
4875   array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4876   asyncs [asynccnt - 1] = w;
4877 
4878   EV_FREQUENT_CHECK;
4879 }
4880 
4881 void
ev_async_stop(EV_P_ ev_async * w)4882 ev_async_stop (EV_P_ ev_async *w) EV_THROW
4883 {
4884   clear_pending (EV_A_ (W)w);
4885   if (expect_false (!ev_is_active (w)))
4886     return;
4887 
4888   EV_FREQUENT_CHECK;
4889 
4890   {
4891     int active = ev_active (w);
4892 
4893     asyncs [active - 1] = asyncs [--asynccnt];
4894     ev_active (asyncs [active - 1]) = active;
4895   }
4896 
4897   ev_stop (EV_A_ (W)w);
4898 
4899   EV_FREQUENT_CHECK;
4900 }
4901 
4902 void
ev_async_send(EV_P_ ev_async * w)4903 ev_async_send (EV_P_ ev_async *w) EV_THROW
4904 {
4905   w->sent = 1;
4906   evpipe_write (EV_A_ &async_pending);
4907 }
4908 #endif
4909 
4910 /*****************************************************************************/
4911 
4912 struct ev_once
4913 {
4914   ev_io io;
4915   ev_timer to;
4916   void (*cb)(int revents, void *arg);
4917   void *arg;
4918 };
4919 
4920 static void
once_cb(EV_P_ struct ev_once * once,int revents)4921 once_cb (EV_P_ struct ev_once *once, int revents)
4922 {
4923   void (*cb)(int revents, void *arg) = once->cb;
4924   void *arg = once->arg;
4925 
4926   ev_io_stop    (EV_A_ &once->io);
4927   ev_timer_stop (EV_A_ &once->to);
4928   ev_free (once);
4929 
4930   cb (revents, arg);
4931 }
4932 
4933 static void
once_cb_io(EV_P_ ev_io * w,int revents)4934 once_cb_io (EV_P_ ev_io *w, int revents)
4935 {
4936   struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4937 
4938   once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
4939 }
4940 
4941 static void
once_cb_to(EV_P_ ev_timer * w,int revents)4942 once_cb_to (EV_P_ ev_timer *w, int revents)
4943 {
4944   struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4945 
4946   once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
4947 }
4948 
4949 void
ev_once(EV_P_ int fd,int events,ev_tstamp timeout,void (* cb)(int revents,void * arg),void * arg)4950 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
4951 {
4952   struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
4953 
4954   if (expect_false (!once))
4955     {
4956       cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
4957       return;
4958     }
4959 
4960   once->cb  = cb;
4961   once->arg = arg;
4962 
4963   ev_init (&once->io, once_cb_io);
4964   if (fd >= 0)
4965     {
4966       ev_io_set (&once->io, fd, events);
4967       ev_io_start (EV_A_ &once->io);
4968     }
4969 
4970   ev_init (&once->to, once_cb_to);
4971   if (timeout >= 0.)
4972     {
4973       ev_timer_set (&once->to, timeout, 0.);
4974       ev_timer_start (EV_A_ &once->to);
4975     }
4976 }
4977 
4978 /*****************************************************************************/
4979 
4980 #if EV_WALK_ENABLE
4981 void ecb_cold
ev_walk(EV_P_ int types,void (* cb)(EV_P_ int type,void * w))4982 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4983 {
4984   int i, j;
4985   ev_watcher_list *wl, *wn;
4986 
4987   if (types & (EV_IO | EV_EMBED))
4988     for (i = 0; i < anfdmax; ++i)
4989       for (wl = anfds [i].head; wl; )
4990         {
4991           wn = wl->next;
4992 
4993 #if EV_EMBED_ENABLE
4994           if (ev_cb ((ev_io *)wl) == embed_io_cb)
4995             {
4996               if (types & EV_EMBED)
4997                 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4998             }
4999           else
5000 #endif
5001 #if EV_USE_INOTIFY
5002           if (ev_cb ((ev_io *)wl) == infy_cb)
5003             ;
5004           else
5005 #endif
5006           if ((ev_io *)wl != &pipe_w)
5007             if (types & EV_IO)
5008               cb (EV_A_ EV_IO, wl);
5009 
5010           wl = wn;
5011         }
5012 
5013   if (types & (EV_TIMER | EV_STAT))
5014     for (i = timercnt + HEAP0; i-- > HEAP0; )
5015 #if EV_STAT_ENABLE
5016       /*TODO: timer is not always active*/
5017       if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
5018         {
5019           if (types & EV_STAT)
5020             cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
5021         }
5022       else
5023 #endif
5024       if (types & EV_TIMER)
5025         cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5026 
5027 #if EV_PERIODIC_ENABLE
5028   if (types & EV_PERIODIC)
5029     for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5030       cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5031 #endif
5032 
5033 #if EV_IDLE_ENABLE
5034   if (types & EV_IDLE)
5035     for (j = NUMPRI; j--; )
5036       for (i = idlecnt [j]; i--; )
5037         cb (EV_A_ EV_IDLE, idles [j][i]);
5038 #endif
5039 
5040 #if EV_FORK_ENABLE
5041   if (types & EV_FORK)
5042     for (i = forkcnt; i--; )
5043       if (ev_cb (forks [i]) != embed_fork_cb)
5044         cb (EV_A_ EV_FORK, forks [i]);
5045 #endif
5046 
5047 #if EV_ASYNC_ENABLE
5048   if (types & EV_ASYNC)
5049     for (i = asynccnt; i--; )
5050       cb (EV_A_ EV_ASYNC, asyncs [i]);
5051 #endif
5052 
5053 #if EV_PREPARE_ENABLE
5054   if (types & EV_PREPARE)
5055     for (i = preparecnt; i--; )
5056 # if EV_EMBED_ENABLE
5057       if (ev_cb (prepares [i]) != embed_prepare_cb)
5058 # endif
5059         cb (EV_A_ EV_PREPARE, prepares [i]);
5060 #endif
5061 
5062 #if EV_CHECK_ENABLE
5063   if (types & EV_CHECK)
5064     for (i = checkcnt; i--; )
5065       cb (EV_A_ EV_CHECK, checks [i]);
5066 #endif
5067 
5068 #if EV_SIGNAL_ENABLE
5069   if (types & EV_SIGNAL)
5070     for (i = 0; i < EV_NSIG - 1; ++i)
5071       for (wl = signals [i].head; wl; )
5072         {
5073           wn = wl->next;
5074           cb (EV_A_ EV_SIGNAL, wl);
5075           wl = wn;
5076         }
5077 #endif
5078 
5079 #if EV_CHILD_ENABLE
5080   if (types & EV_CHILD)
5081     for (i = (EV_PID_HASHSIZE); i--; )
5082       for (wl = childs [i]; wl; )
5083         {
5084           wn = wl->next;
5085           cb (EV_A_ EV_CHILD, wl);
5086           wl = wn;
5087         }
5088 #endif
5089 /* EV_STAT     0x00001000 /* stat data changed */
5090 /* EV_EMBED    0x00010000 /* embedded event loop needs sweep */
5091 }
5092 #endif
5093 
5094 #if EV_MULTIPLICITY
5095   #include "ev_wrap.h"
5096 #endif
5097 
5098