xref: /dpdk/drivers/net/e1000/em_rxtx.c (revision 7be78d02)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation
3  */
4 
5 #include <sys/queue.h>
6 
7 #include <stdio.h>
8 #include <stdlib.h>
9 #include <string.h>
10 #include <errno.h>
11 #include <stdint.h>
12 #include <stdarg.h>
13 #include <inttypes.h>
14 
15 #include <rte_interrupts.h>
16 #include <rte_byteorder.h>
17 #include <rte_common.h>
18 #include <rte_log.h>
19 #include <rte_debug.h>
20 #include <rte_pci.h>
21 #include <rte_bus_pci.h>
22 #include <rte_memory.h>
23 #include <rte_memcpy.h>
24 #include <rte_memzone.h>
25 #include <rte_launch.h>
26 #include <rte_eal.h>
27 #include <rte_per_lcore.h>
28 #include <rte_lcore.h>
29 #include <rte_atomic.h>
30 #include <rte_branch_prediction.h>
31 #include <rte_mempool.h>
32 #include <rte_malloc.h>
33 #include <rte_mbuf.h>
34 #include <rte_ether.h>
35 #include <ethdev_driver.h>
36 #include <rte_prefetch.h>
37 #include <rte_ip.h>
38 #include <rte_udp.h>
39 #include <rte_tcp.h>
40 #include <rte_sctp.h>
41 #include <rte_net.h>
42 #include <rte_string_fns.h>
43 
44 #include "e1000_logs.h"
45 #include "base/e1000_api.h"
46 #include "e1000_ethdev.h"
47 #include "base/e1000_osdep.h"
48 
49 #define	E1000_TXD_VLAN_SHIFT	16
50 
51 #define E1000_RXDCTL_GRAN	0x01000000 /* RXDCTL Granularity */
52 
53 #define E1000_TX_OFFLOAD_MASK (RTE_MBUF_F_TX_IPV6 |           \
54 		RTE_MBUF_F_TX_IPV4 |           \
55 		RTE_MBUF_F_TX_IP_CKSUM |       \
56 		RTE_MBUF_F_TX_L4_MASK |        \
57 		RTE_MBUF_F_TX_VLAN)
58 
59 #define E1000_TX_OFFLOAD_NOTSUP_MASK \
60 		(RTE_MBUF_F_TX_OFFLOAD_MASK ^ E1000_TX_OFFLOAD_MASK)
61 
62 /* PCI offset for querying configuration status register */
63 #define PCI_CFG_STATUS_REG                 0x06
64 #define FLUSH_DESC_REQUIRED               0x100
65 
66 
67 /**
68  * Structure associated with each descriptor of the RX ring of a RX queue.
69  */
70 struct em_rx_entry {
71 	struct rte_mbuf *mbuf; /**< mbuf associated with RX descriptor. */
72 };
73 
74 /**
75  * Structure associated with each descriptor of the TX ring of a TX queue.
76  */
77 struct em_tx_entry {
78 	struct rte_mbuf *mbuf; /**< mbuf associated with TX desc, if any. */
79 	uint16_t next_id; /**< Index of next descriptor in ring. */
80 	uint16_t last_id; /**< Index of last scattered descriptor. */
81 };
82 
83 /**
84  * Structure associated with each RX queue.
85  */
86 struct em_rx_queue {
87 	struct rte_mempool  *mb_pool;   /**< mbuf pool to populate RX ring. */
88 	volatile struct e1000_rx_desc *rx_ring; /**< RX ring virtual address. */
89 	uint64_t            rx_ring_phys_addr; /**< RX ring DMA address. */
90 	volatile uint32_t   *rdt_reg_addr; /**< RDT register address. */
91 	volatile uint32_t   *rdh_reg_addr; /**< RDH register address. */
92 	struct em_rx_entry *sw_ring;   /**< address of RX software ring. */
93 	struct rte_mbuf *pkt_first_seg; /**< First segment of current packet. */
94 	struct rte_mbuf *pkt_last_seg;  /**< Last segment of current packet. */
95 	uint64_t	    offloads;   /**< Offloads of RTE_ETH_RX_OFFLOAD_* */
96 	uint16_t            nb_rx_desc; /**< number of RX descriptors. */
97 	uint16_t            rx_tail;    /**< current value of RDT register. */
98 	uint16_t            nb_rx_hold; /**< number of held free RX desc. */
99 	uint16_t            rx_free_thresh; /**< max free RX desc to hold. */
100 	uint16_t            queue_id;   /**< RX queue index. */
101 	uint16_t            port_id;    /**< Device port identifier. */
102 	uint8_t             pthresh;    /**< Prefetch threshold register. */
103 	uint8_t             hthresh;    /**< Host threshold register. */
104 	uint8_t             wthresh;    /**< Write-back threshold register. */
105 	uint8_t             crc_len;    /**< 0 if CRC stripped, 4 otherwise. */
106 	const struct rte_memzone *mz;
107 };
108 
109 /**
110  * Hardware context number
111  */
112 enum {
113 	EM_CTX_0    = 0, /**< CTX0 */
114 	EM_CTX_NUM  = 1, /**< CTX NUM */
115 };
116 
117 /** Offload features */
118 union em_vlan_macip {
119 	uint32_t data;
120 	struct {
121 		uint16_t l3_len:9; /**< L3 (IP) Header Length. */
122 		uint16_t l2_len:7; /**< L2 (MAC) Header Length. */
123 		uint16_t vlan_tci;
124 		/**< VLAN Tag Control Identifier (CPU order). */
125 	} f;
126 };
127 
128 /*
129  * Compare mask for vlan_macip_len.data,
130  * should be in sync with em_vlan_macip.f layout.
131  * */
132 #define TX_VLAN_CMP_MASK        0xFFFF0000  /**< VLAN length - 16-bits. */
133 #define TX_MAC_LEN_CMP_MASK     0x0000FE00  /**< MAC length - 7-bits. */
134 #define TX_IP_LEN_CMP_MASK      0x000001FF  /**< IP  length - 9-bits. */
135 /** MAC+IP  length. */
136 #define TX_MACIP_LEN_CMP_MASK   (TX_MAC_LEN_CMP_MASK | TX_IP_LEN_CMP_MASK)
137 
138 /**
139  * Structure to check if new context need be built
140  */
141 struct em_ctx_info {
142 	uint64_t flags;              /**< ol_flags related to context build. */
143 	uint32_t cmp_mask;           /**< compare mask */
144 	union em_vlan_macip hdrlen;  /**< L2 and L3 header lengths */
145 };
146 
147 /**
148  * Structure associated with each TX queue.
149  */
150 struct em_tx_queue {
151 	volatile struct e1000_data_desc *tx_ring; /**< TX ring address */
152 	uint64_t               tx_ring_phys_addr; /**< TX ring DMA address. */
153 	struct em_tx_entry    *sw_ring; /**< virtual address of SW ring. */
154 	volatile uint32_t      *tdt_reg_addr; /**< Address of TDT register. */
155 	uint16_t               nb_tx_desc;    /**< number of TX descriptors. */
156 	uint16_t               tx_tail;  /**< Current value of TDT register. */
157 	/**< Start freeing TX buffers if there are less free descriptors than
158 	     this value. */
159 	uint16_t               tx_free_thresh;
160 	/**< Number of TX descriptors to use before RS bit is set. */
161 	uint16_t               tx_rs_thresh;
162 	/** Number of TX descriptors used since RS bit was set. */
163 	uint16_t               nb_tx_used;
164 	/** Index to last TX descriptor to have been cleaned. */
165 	uint16_t	       last_desc_cleaned;
166 	/** Total number of TX descriptors ready to be allocated. */
167 	uint16_t               nb_tx_free;
168 	uint16_t               queue_id; /**< TX queue index. */
169 	uint16_t               port_id;  /**< Device port identifier. */
170 	uint8_t                pthresh;  /**< Prefetch threshold register. */
171 	uint8_t                hthresh;  /**< Host threshold register. */
172 	uint8_t                wthresh;  /**< Write-back threshold register. */
173 	struct em_ctx_info ctx_cache;
174 	/**< Hardware context history.*/
175 	uint64_t	       offloads; /**< offloads of RTE_ETH_TX_OFFLOAD_* */
176 	const struct rte_memzone *mz;
177 };
178 
179 #if 1
180 #define RTE_PMD_USE_PREFETCH
181 #endif
182 
183 #ifdef RTE_PMD_USE_PREFETCH
184 #define rte_em_prefetch(p)	rte_prefetch0(p)
185 #else
186 #define rte_em_prefetch(p)	do {} while(0)
187 #endif
188 
189 #ifdef RTE_PMD_PACKET_PREFETCH
190 #define rte_packet_prefetch(p) rte_prefetch1(p)
191 #else
192 #define rte_packet_prefetch(p)	do {} while(0)
193 #endif
194 
195 #ifndef DEFAULT_TX_FREE_THRESH
196 #define DEFAULT_TX_FREE_THRESH  32
197 #endif /* DEFAULT_TX_FREE_THRESH */
198 
199 #ifndef DEFAULT_TX_RS_THRESH
200 #define DEFAULT_TX_RS_THRESH  32
201 #endif /* DEFAULT_TX_RS_THRESH */
202 
203 
204 /*********************************************************************
205  *
206  *  TX function
207  *
208  **********************************************************************/
209 
210 /*
211  * Populates TX context descriptor.
212  */
213 static inline void
em_set_xmit_ctx(struct em_tx_queue * txq,volatile struct e1000_context_desc * ctx_txd,uint64_t flags,union em_vlan_macip hdrlen)214 em_set_xmit_ctx(struct em_tx_queue* txq,
215 		volatile struct e1000_context_desc *ctx_txd,
216 		uint64_t flags,
217 		union em_vlan_macip hdrlen)
218 {
219 	uint32_t cmp_mask, cmd_len;
220 	uint16_t ipcse, l2len;
221 	struct e1000_context_desc ctx;
222 
223 	cmp_mask = 0;
224 	cmd_len = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_C;
225 
226 	l2len = hdrlen.f.l2_len;
227 	ipcse = (uint16_t)(l2len + hdrlen.f.l3_len);
228 
229 	/* setup IPCS* fields */
230 	ctx.lower_setup.ip_fields.ipcss = (uint8_t)l2len;
231 	ctx.lower_setup.ip_fields.ipcso = (uint8_t)(l2len +
232 			offsetof(struct rte_ipv4_hdr, hdr_checksum));
233 
234 	/*
235 	 * When doing checksum or TCP segmentation with IPv6 headers,
236 	 * IPCSE field should be set t0 0.
237 	 */
238 	if (flags & RTE_MBUF_F_TX_IP_CKSUM) {
239 		ctx.lower_setup.ip_fields.ipcse =
240 			(uint16_t)rte_cpu_to_le_16(ipcse - 1);
241 		cmd_len |= E1000_TXD_CMD_IP;
242 		cmp_mask |= TX_MACIP_LEN_CMP_MASK;
243 	} else {
244 		ctx.lower_setup.ip_fields.ipcse = 0;
245 	}
246 
247 	/* setup TUCS* fields */
248 	ctx.upper_setup.tcp_fields.tucss = (uint8_t)ipcse;
249 	ctx.upper_setup.tcp_fields.tucse = 0;
250 
251 	switch (flags & RTE_MBUF_F_TX_L4_MASK) {
252 	case RTE_MBUF_F_TX_UDP_CKSUM:
253 		ctx.upper_setup.tcp_fields.tucso = (uint8_t)(ipcse +
254 				offsetof(struct rte_udp_hdr, dgram_cksum));
255 		cmp_mask |= TX_MACIP_LEN_CMP_MASK;
256 		break;
257 	case RTE_MBUF_F_TX_TCP_CKSUM:
258 		ctx.upper_setup.tcp_fields.tucso = (uint8_t)(ipcse +
259 				offsetof(struct rte_tcp_hdr, cksum));
260 		cmd_len |= E1000_TXD_CMD_TCP;
261 		cmp_mask |= TX_MACIP_LEN_CMP_MASK;
262 		break;
263 	default:
264 		ctx.upper_setup.tcp_fields.tucso = 0;
265 	}
266 
267 	ctx.cmd_and_length = rte_cpu_to_le_32(cmd_len);
268 	ctx.tcp_seg_setup.data = 0;
269 
270 	*ctx_txd = ctx;
271 
272 	txq->ctx_cache.flags = flags;
273 	txq->ctx_cache.cmp_mask = cmp_mask;
274 	txq->ctx_cache.hdrlen = hdrlen;
275 }
276 
277 /*
278  * Check which hardware context can be used. Use the existing match
279  * or create a new context descriptor.
280  */
281 static inline uint32_t
what_ctx_update(struct em_tx_queue * txq,uint64_t flags,union em_vlan_macip hdrlen)282 what_ctx_update(struct em_tx_queue *txq, uint64_t flags,
283 		union em_vlan_macip hdrlen)
284 {
285 	/* If match with the current context */
286 	if (likely (txq->ctx_cache.flags == flags &&
287 			((txq->ctx_cache.hdrlen.data ^ hdrlen.data) &
288 			txq->ctx_cache.cmp_mask) == 0))
289 		return EM_CTX_0;
290 
291 	/* Mismatch */
292 	return EM_CTX_NUM;
293 }
294 
295 /* Reset transmit descriptors after they have been used */
296 static inline int
em_xmit_cleanup(struct em_tx_queue * txq)297 em_xmit_cleanup(struct em_tx_queue *txq)
298 {
299 	struct em_tx_entry *sw_ring = txq->sw_ring;
300 	volatile struct e1000_data_desc *txr = txq->tx_ring;
301 	uint16_t last_desc_cleaned = txq->last_desc_cleaned;
302 	uint16_t nb_tx_desc = txq->nb_tx_desc;
303 	uint16_t desc_to_clean_to;
304 	uint16_t nb_tx_to_clean;
305 
306 	/* Determine the last descriptor needing to be cleaned */
307 	desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->tx_rs_thresh);
308 	if (desc_to_clean_to >= nb_tx_desc)
309 		desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
310 
311 	/* Check to make sure the last descriptor to clean is done */
312 	desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
313 	if (! (txr[desc_to_clean_to].upper.fields.status & E1000_TXD_STAT_DD))
314 	{
315 		PMD_TX_LOG(DEBUG,
316 			   "TX descriptor %4u is not done"
317 			   "(port=%d queue=%d)", desc_to_clean_to,
318 			   txq->port_id, txq->queue_id);
319 		/* Failed to clean any descriptors, better luck next time */
320 		return -(1);
321 	}
322 
323 	/* Figure out how many descriptors will be cleaned */
324 	if (last_desc_cleaned > desc_to_clean_to)
325 		nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
326 							desc_to_clean_to);
327 	else
328 		nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
329 						last_desc_cleaned);
330 
331 	PMD_TX_LOG(DEBUG,
332 		   "Cleaning %4u TX descriptors: %4u to %4u "
333 		   "(port=%d queue=%d)", nb_tx_to_clean,
334 		   last_desc_cleaned, desc_to_clean_to, txq->port_id,
335 		   txq->queue_id);
336 
337 	/*
338 	 * The last descriptor to clean is done, so that means all the
339 	 * descriptors from the last descriptor that was cleaned
340 	 * up to the last descriptor with the RS bit set
341 	 * are done. Only reset the threshold descriptor.
342 	 */
343 	txr[desc_to_clean_to].upper.fields.status = 0;
344 
345 	/* Update the txq to reflect the last descriptor that was cleaned */
346 	txq->last_desc_cleaned = desc_to_clean_to;
347 	txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + nb_tx_to_clean);
348 
349 	/* No Error */
350 	return 0;
351 }
352 
353 static inline uint32_t
tx_desc_cksum_flags_to_upper(uint64_t ol_flags)354 tx_desc_cksum_flags_to_upper(uint64_t ol_flags)
355 {
356 	static const uint32_t l4_olinfo[2] = {0, E1000_TXD_POPTS_TXSM << 8};
357 	static const uint32_t l3_olinfo[2] = {0, E1000_TXD_POPTS_IXSM << 8};
358 	uint32_t tmp;
359 
360 	tmp = l4_olinfo[(ol_flags & RTE_MBUF_F_TX_L4_MASK) != RTE_MBUF_F_TX_L4_NO_CKSUM];
361 	tmp |= l3_olinfo[(ol_flags & RTE_MBUF_F_TX_IP_CKSUM) != 0];
362 	return tmp;
363 }
364 
365 uint16_t
eth_em_xmit_pkts(void * tx_queue,struct rte_mbuf ** tx_pkts,uint16_t nb_pkts)366 eth_em_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
367 		uint16_t nb_pkts)
368 {
369 	struct em_tx_queue *txq;
370 	struct em_tx_entry *sw_ring;
371 	struct em_tx_entry *txe, *txn;
372 	volatile struct e1000_data_desc *txr;
373 	volatile struct e1000_data_desc *txd;
374 	struct rte_mbuf     *tx_pkt;
375 	struct rte_mbuf     *m_seg;
376 	uint64_t buf_dma_addr;
377 	uint32_t popts_spec;
378 	uint32_t cmd_type_len;
379 	uint16_t slen;
380 	uint64_t ol_flags;
381 	uint16_t tx_id;
382 	uint16_t tx_last;
383 	uint16_t nb_tx;
384 	uint16_t nb_used;
385 	uint64_t tx_ol_req;
386 	uint32_t ctx;
387 	uint32_t new_ctx;
388 	union em_vlan_macip hdrlen;
389 
390 	txq = tx_queue;
391 	sw_ring = txq->sw_ring;
392 	txr     = txq->tx_ring;
393 	tx_id   = txq->tx_tail;
394 	txe = &sw_ring[tx_id];
395 
396 	/* Determine if the descriptor ring needs to be cleaned. */
397 	 if (txq->nb_tx_free < txq->tx_free_thresh)
398 		em_xmit_cleanup(txq);
399 
400 	/* TX loop */
401 	for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
402 		new_ctx = 0;
403 		tx_pkt = *tx_pkts++;
404 
405 		RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
406 
407 		/*
408 		 * Determine how many (if any) context descriptors
409 		 * are needed for offload functionality.
410 		 */
411 		ol_flags = tx_pkt->ol_flags;
412 
413 		/* If hardware offload required */
414 		tx_ol_req = (ol_flags & (RTE_MBUF_F_TX_IP_CKSUM | RTE_MBUF_F_TX_L4_MASK));
415 		if (tx_ol_req) {
416 			hdrlen.f.vlan_tci = tx_pkt->vlan_tci;
417 			hdrlen.f.l2_len = tx_pkt->l2_len;
418 			hdrlen.f.l3_len = tx_pkt->l3_len;
419 			/* If new context to be built or reuse the exist ctx. */
420 			ctx = what_ctx_update(txq, tx_ol_req, hdrlen);
421 
422 			/* Only allocate context descriptor if required*/
423 			new_ctx = (ctx == EM_CTX_NUM);
424 		}
425 
426 		/*
427 		 * Keep track of how many descriptors are used this loop
428 		 * This will always be the number of segments + the number of
429 		 * Context descriptors required to transmit the packet
430 		 */
431 		nb_used = (uint16_t)(tx_pkt->nb_segs + new_ctx);
432 
433 		/*
434 		 * The number of descriptors that must be allocated for a
435 		 * packet is the number of segments of that packet, plus 1
436 		 * Context Descriptor for the hardware offload, if any.
437 		 * Determine the last TX descriptor to allocate in the TX ring
438 		 * for the packet, starting from the current position (tx_id)
439 		 * in the ring.
440 		 */
441 		tx_last = (uint16_t) (tx_id + nb_used - 1);
442 
443 		/* Circular ring */
444 		if (tx_last >= txq->nb_tx_desc)
445 			tx_last = (uint16_t) (tx_last - txq->nb_tx_desc);
446 
447 		PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u pktlen=%u"
448 			   " tx_first=%u tx_last=%u",
449 			   (unsigned) txq->port_id,
450 			   (unsigned) txq->queue_id,
451 			   (unsigned) tx_pkt->pkt_len,
452 			   (unsigned) tx_id,
453 			   (unsigned) tx_last);
454 
455 		/*
456 		 * Make sure there are enough TX descriptors available to
457 		 * transmit the entire packet.
458 		 * nb_used better be less than or equal to txq->tx_rs_thresh
459 		 */
460 		while (unlikely (nb_used > txq->nb_tx_free)) {
461 			PMD_TX_LOG(DEBUG, "Not enough free TX descriptors "
462 				   "nb_used=%4u nb_free=%4u "
463 				   "(port=%d queue=%d)",
464 				   nb_used, txq->nb_tx_free,
465 				   txq->port_id, txq->queue_id);
466 
467 			if (em_xmit_cleanup(txq) != 0) {
468 				/* Could not clean any descriptors */
469 				if (nb_tx == 0)
470 					return 0;
471 				goto end_of_tx;
472 			}
473 		}
474 
475 		/*
476 		 * By now there are enough free TX descriptors to transmit
477 		 * the packet.
478 		 */
479 
480 		/*
481 		 * Set common flags of all TX Data Descriptors.
482 		 *
483 		 * The following bits must be set in all Data Descriptors:
484 		 *    - E1000_TXD_DTYP_DATA
485 		 *    - E1000_TXD_DTYP_DEXT
486 		 *
487 		 * The following bits must be set in the first Data Descriptor
488 		 * and are ignored in the other ones:
489 		 *    - E1000_TXD_POPTS_IXSM
490 		 *    - E1000_TXD_POPTS_TXSM
491 		 *
492 		 * The following bits must be set in the last Data Descriptor
493 		 * and are ignored in the other ones:
494 		 *    - E1000_TXD_CMD_VLE
495 		 *    - E1000_TXD_CMD_IFCS
496 		 *
497 		 * The following bits must only be set in the last Data
498 		 * Descriptor:
499 		 *   - E1000_TXD_CMD_EOP
500 		 *
501 		 * The following bits can be set in any Data Descriptor, but
502 		 * are only set in the last Data Descriptor:
503 		 *   - E1000_TXD_CMD_RS
504 		 */
505 		cmd_type_len = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
506 			E1000_TXD_CMD_IFCS;
507 		popts_spec = 0;
508 
509 		/* Set VLAN Tag offload fields. */
510 		if (ol_flags & RTE_MBUF_F_TX_VLAN) {
511 			cmd_type_len |= E1000_TXD_CMD_VLE;
512 			popts_spec = tx_pkt->vlan_tci << E1000_TXD_VLAN_SHIFT;
513 		}
514 
515 		if (tx_ol_req) {
516 			/*
517 			 * Setup the TX Context Descriptor if required
518 			 */
519 			if (new_ctx) {
520 				volatile struct e1000_context_desc *ctx_txd;
521 
522 				ctx_txd = (volatile struct e1000_context_desc *)
523 					&txr[tx_id];
524 
525 				txn = &sw_ring[txe->next_id];
526 				RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
527 
528 				if (txe->mbuf != NULL) {
529 					rte_pktmbuf_free_seg(txe->mbuf);
530 					txe->mbuf = NULL;
531 				}
532 
533 				em_set_xmit_ctx(txq, ctx_txd, tx_ol_req,
534 					hdrlen);
535 
536 				txe->last_id = tx_last;
537 				tx_id = txe->next_id;
538 				txe = txn;
539 			}
540 
541 			/*
542 			 * Setup the TX Data Descriptor,
543 			 * This path will go through
544 			 * whatever new/reuse the context descriptor
545 			 */
546 			popts_spec |= tx_desc_cksum_flags_to_upper(ol_flags);
547 		}
548 
549 		m_seg = tx_pkt;
550 		do {
551 			txd = &txr[tx_id];
552 			txn = &sw_ring[txe->next_id];
553 
554 			if (txe->mbuf != NULL)
555 				rte_pktmbuf_free_seg(txe->mbuf);
556 			txe->mbuf = m_seg;
557 
558 			/*
559 			 * Set up Transmit Data Descriptor.
560 			 */
561 			slen = m_seg->data_len;
562 			buf_dma_addr = rte_mbuf_data_iova(m_seg);
563 
564 			txd->buffer_addr = rte_cpu_to_le_64(buf_dma_addr);
565 			txd->lower.data = rte_cpu_to_le_32(cmd_type_len | slen);
566 			txd->upper.data = rte_cpu_to_le_32(popts_spec);
567 
568 			txe->last_id = tx_last;
569 			tx_id = txe->next_id;
570 			txe = txn;
571 			m_seg = m_seg->next;
572 		} while (m_seg != NULL);
573 
574 		/*
575 		 * The last packet data descriptor needs End Of Packet (EOP)
576 		 */
577 		cmd_type_len |= E1000_TXD_CMD_EOP;
578 		txq->nb_tx_used = (uint16_t)(txq->nb_tx_used + nb_used);
579 		txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_used);
580 
581 		/* Set RS bit only on threshold packets' last descriptor */
582 		if (txq->nb_tx_used >= txq->tx_rs_thresh) {
583 			PMD_TX_LOG(DEBUG,
584 				   "Setting RS bit on TXD id=%4u "
585 				   "(port=%d queue=%d)",
586 				   tx_last, txq->port_id, txq->queue_id);
587 
588 			cmd_type_len |= E1000_TXD_CMD_RS;
589 
590 			/* Update txq RS bit counters */
591 			txq->nb_tx_used = 0;
592 		}
593 		txd->lower.data |= rte_cpu_to_le_32(cmd_type_len);
594 	}
595 end_of_tx:
596 	rte_wmb();
597 
598 	/*
599 	 * Set the Transmit Descriptor Tail (TDT)
600 	 */
601 	PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
602 		(unsigned) txq->port_id, (unsigned) txq->queue_id,
603 		(unsigned) tx_id, (unsigned) nb_tx);
604 	E1000_PCI_REG_WRITE_RELAXED(txq->tdt_reg_addr, tx_id);
605 	txq->tx_tail = tx_id;
606 
607 	return nb_tx;
608 }
609 
610 /*********************************************************************
611  *
612  *  TX prep functions
613  *
614  **********************************************************************/
615 uint16_t
eth_em_prep_pkts(__rte_unused void * tx_queue,struct rte_mbuf ** tx_pkts,uint16_t nb_pkts)616 eth_em_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
617 		uint16_t nb_pkts)
618 {
619 	int i, ret;
620 	struct rte_mbuf *m;
621 
622 	for (i = 0; i < nb_pkts; i++) {
623 		m = tx_pkts[i];
624 
625 		if (m->ol_flags & E1000_TX_OFFLOAD_NOTSUP_MASK) {
626 			rte_errno = ENOTSUP;
627 			return i;
628 		}
629 
630 #ifdef RTE_ETHDEV_DEBUG_TX
631 		ret = rte_validate_tx_offload(m);
632 		if (ret != 0) {
633 			rte_errno = -ret;
634 			return i;
635 		}
636 #endif
637 		ret = rte_net_intel_cksum_prepare(m);
638 		if (ret != 0) {
639 			rte_errno = -ret;
640 			return i;
641 		}
642 	}
643 
644 	return i;
645 }
646 
647 /*********************************************************************
648  *
649  *  RX functions
650  *
651  **********************************************************************/
652 
653 static inline uint64_t
rx_desc_status_to_pkt_flags(uint32_t rx_status)654 rx_desc_status_to_pkt_flags(uint32_t rx_status)
655 {
656 	uint64_t pkt_flags;
657 
658 	/* Check if VLAN present */
659 	pkt_flags = ((rx_status & E1000_RXD_STAT_VP) ?
660 		RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED : 0);
661 
662 	return pkt_flags;
663 }
664 
665 static inline uint64_t
rx_desc_error_to_pkt_flags(uint32_t rx_error)666 rx_desc_error_to_pkt_flags(uint32_t rx_error)
667 {
668 	uint64_t pkt_flags = 0;
669 
670 	if (rx_error & E1000_RXD_ERR_IPE)
671 		pkt_flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
672 	if (rx_error & E1000_RXD_ERR_TCPE)
673 		pkt_flags |= RTE_MBUF_F_RX_L4_CKSUM_BAD;
674 	return pkt_flags;
675 }
676 
677 uint16_t
eth_em_recv_pkts(void * rx_queue,struct rte_mbuf ** rx_pkts,uint16_t nb_pkts)678 eth_em_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
679 		uint16_t nb_pkts)
680 {
681 	volatile struct e1000_rx_desc *rx_ring;
682 	volatile struct e1000_rx_desc *rxdp;
683 	struct em_rx_queue *rxq;
684 	struct em_rx_entry *sw_ring;
685 	struct em_rx_entry *rxe;
686 	struct rte_mbuf *rxm;
687 	struct rte_mbuf *nmb;
688 	struct e1000_rx_desc rxd;
689 	uint64_t dma_addr;
690 	uint16_t pkt_len;
691 	uint16_t rx_id;
692 	uint16_t nb_rx;
693 	uint16_t nb_hold;
694 	uint8_t status;
695 
696 	rxq = rx_queue;
697 
698 	nb_rx = 0;
699 	nb_hold = 0;
700 	rx_id = rxq->rx_tail;
701 	rx_ring = rxq->rx_ring;
702 	sw_ring = rxq->sw_ring;
703 	while (nb_rx < nb_pkts) {
704 		/*
705 		 * The order of operations here is important as the DD status
706 		 * bit must not be read after any other descriptor fields.
707 		 * rx_ring and rxdp are pointing to volatile data so the order
708 		 * of accesses cannot be reordered by the compiler. If they were
709 		 * not volatile, they could be reordered which could lead to
710 		 * using invalid descriptor fields when read from rxd.
711 		 */
712 		rxdp = &rx_ring[rx_id];
713 		status = rxdp->status;
714 		if (! (status & E1000_RXD_STAT_DD))
715 			break;
716 		rxd = *rxdp;
717 
718 		/*
719 		 * End of packet.
720 		 *
721 		 * If the E1000_RXD_STAT_EOP flag is not set, the RX packet is
722 		 * likely to be invalid and to be dropped by the various
723 		 * validation checks performed by the network stack.
724 		 *
725 		 * Allocate a new mbuf to replenish the RX ring descriptor.
726 		 * If the allocation fails:
727 		 *    - arrange for that RX descriptor to be the first one
728 		 *      being parsed the next time the receive function is
729 		 *      invoked [on the same queue].
730 		 *
731 		 *    - Stop parsing the RX ring and return immediately.
732 		 *
733 		 * This policy do not drop the packet received in the RX
734 		 * descriptor for which the allocation of a new mbuf failed.
735 		 * Thus, it allows that packet to be later retrieved if
736 		 * mbuf have been freed in the mean time.
737 		 * As a side effect, holding RX descriptors instead of
738 		 * systematically giving them back to the NIC may lead to
739 		 * RX ring exhaustion situations.
740 		 * However, the NIC can gracefully prevent such situations
741 		 * to happen by sending specific "back-pressure" flow control
742 		 * frames to its peer(s).
743 		 */
744 		PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
745 			   "status=0x%x pkt_len=%u",
746 			   (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
747 			   (unsigned) rx_id, (unsigned) status,
748 			   (unsigned) rte_le_to_cpu_16(rxd.length));
749 
750 		nmb = rte_mbuf_raw_alloc(rxq->mb_pool);
751 		if (nmb == NULL) {
752 			PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
753 				   "queue_id=%u",
754 				   (unsigned) rxq->port_id,
755 				   (unsigned) rxq->queue_id);
756 			rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
757 			break;
758 		}
759 
760 		nb_hold++;
761 		rxe = &sw_ring[rx_id];
762 		rx_id++;
763 		if (rx_id == rxq->nb_rx_desc)
764 			rx_id = 0;
765 
766 		/* Prefetch next mbuf while processing current one. */
767 		rte_em_prefetch(sw_ring[rx_id].mbuf);
768 
769 		/*
770 		 * When next RX descriptor is on a cache-line boundary,
771 		 * prefetch the next 4 RX descriptors and the next 8 pointers
772 		 * to mbufs.
773 		 */
774 		if ((rx_id & 0x3) == 0) {
775 			rte_em_prefetch(&rx_ring[rx_id]);
776 			rte_em_prefetch(&sw_ring[rx_id]);
777 		}
778 
779 		/* Rearm RXD: attach new mbuf and reset status to zero. */
780 
781 		rxm = rxe->mbuf;
782 		rxe->mbuf = nmb;
783 		dma_addr =
784 			rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
785 		rxdp->buffer_addr = dma_addr;
786 		rxdp->status = 0;
787 
788 		/*
789 		 * Initialize the returned mbuf.
790 		 * 1) setup generic mbuf fields:
791 		 *    - number of segments,
792 		 *    - next segment,
793 		 *    - packet length,
794 		 *    - RX port identifier.
795 		 * 2) integrate hardware offload data, if any:
796 		 *    - RSS flag & hash,
797 		 *    - IP checksum flag,
798 		 *    - VLAN TCI, if any,
799 		 *    - error flags.
800 		 */
801 		pkt_len = (uint16_t) (rte_le_to_cpu_16(rxd.length) -
802 				rxq->crc_len);
803 		rxm->data_off = RTE_PKTMBUF_HEADROOM;
804 		rte_packet_prefetch((char *)rxm->buf_addr + rxm->data_off);
805 		rxm->nb_segs = 1;
806 		rxm->next = NULL;
807 		rxm->pkt_len = pkt_len;
808 		rxm->data_len = pkt_len;
809 		rxm->port = rxq->port_id;
810 
811 		rxm->ol_flags = rx_desc_status_to_pkt_flags(status);
812 		rxm->ol_flags = rxm->ol_flags |
813 				rx_desc_error_to_pkt_flags(rxd.errors);
814 
815 		/* Only valid if RTE_MBUF_F_RX_VLAN set in pkt_flags */
816 		rxm->vlan_tci = rte_le_to_cpu_16(rxd.special);
817 
818 		/*
819 		 * Store the mbuf address into the next entry of the array
820 		 * of returned packets.
821 		 */
822 		rx_pkts[nb_rx++] = rxm;
823 	}
824 	rxq->rx_tail = rx_id;
825 
826 	/*
827 	 * If the number of free RX descriptors is greater than the RX free
828 	 * threshold of the queue, advance the Receive Descriptor Tail (RDT)
829 	 * register.
830 	 * Update the RDT with the value of the last processed RX descriptor
831 	 * minus 1, to guarantee that the RDT register is never equal to the
832 	 * RDH register, which creates a "full" ring situation from the
833 	 * hardware point of view...
834 	 */
835 	nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
836 	if (nb_hold > rxq->rx_free_thresh) {
837 		PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
838 			   "nb_hold=%u nb_rx=%u",
839 			   (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
840 			   (unsigned) rx_id, (unsigned) nb_hold,
841 			   (unsigned) nb_rx);
842 		rx_id = (uint16_t) ((rx_id == 0) ?
843 			(rxq->nb_rx_desc - 1) : (rx_id - 1));
844 		E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
845 		nb_hold = 0;
846 	}
847 	rxq->nb_rx_hold = nb_hold;
848 	return nb_rx;
849 }
850 
851 uint16_t
eth_em_recv_scattered_pkts(void * rx_queue,struct rte_mbuf ** rx_pkts,uint16_t nb_pkts)852 eth_em_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
853 			 uint16_t nb_pkts)
854 {
855 	struct em_rx_queue *rxq;
856 	volatile struct e1000_rx_desc *rx_ring;
857 	volatile struct e1000_rx_desc *rxdp;
858 	struct em_rx_entry *sw_ring;
859 	struct em_rx_entry *rxe;
860 	struct rte_mbuf *first_seg;
861 	struct rte_mbuf *last_seg;
862 	struct rte_mbuf *rxm;
863 	struct rte_mbuf *nmb;
864 	struct e1000_rx_desc rxd;
865 	uint64_t dma; /* Physical address of mbuf data buffer */
866 	uint16_t rx_id;
867 	uint16_t nb_rx;
868 	uint16_t nb_hold;
869 	uint16_t data_len;
870 	uint8_t status;
871 
872 	rxq = rx_queue;
873 
874 	nb_rx = 0;
875 	nb_hold = 0;
876 	rx_id = rxq->rx_tail;
877 	rx_ring = rxq->rx_ring;
878 	sw_ring = rxq->sw_ring;
879 
880 	/*
881 	 * Retrieve RX context of current packet, if any.
882 	 */
883 	first_seg = rxq->pkt_first_seg;
884 	last_seg = rxq->pkt_last_seg;
885 
886 	while (nb_rx < nb_pkts) {
887 	next_desc:
888 		/*
889 		 * The order of operations here is important as the DD status
890 		 * bit must not be read after any other descriptor fields.
891 		 * rx_ring and rxdp are pointing to volatile data so the order
892 		 * of accesses cannot be reordered by the compiler. If they were
893 		 * not volatile, they could be reordered which could lead to
894 		 * using invalid descriptor fields when read from rxd.
895 		 */
896 		rxdp = &rx_ring[rx_id];
897 		status = rxdp->status;
898 		if (! (status & E1000_RXD_STAT_DD))
899 			break;
900 		rxd = *rxdp;
901 
902 		/*
903 		 * Descriptor done.
904 		 *
905 		 * Allocate a new mbuf to replenish the RX ring descriptor.
906 		 * If the allocation fails:
907 		 *    - arrange for that RX descriptor to be the first one
908 		 *      being parsed the next time the receive function is
909 		 *      invoked [on the same queue].
910 		 *
911 		 *    - Stop parsing the RX ring and return immediately.
912 		 *
913 		 * This policy does not drop the packet received in the RX
914 		 * descriptor for which the allocation of a new mbuf failed.
915 		 * Thus, it allows that packet to be later retrieved if
916 		 * mbuf have been freed in the mean time.
917 		 * As a side effect, holding RX descriptors instead of
918 		 * systematically giving them back to the NIC may lead to
919 		 * RX ring exhaustion situations.
920 		 * However, the NIC can gracefully prevent such situations
921 		 * to happen by sending specific "back-pressure" flow control
922 		 * frames to its peer(s).
923 		 */
924 		PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
925 			   "status=0x%x data_len=%u",
926 			   (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
927 			   (unsigned) rx_id, (unsigned) status,
928 			   (unsigned) rte_le_to_cpu_16(rxd.length));
929 
930 		nmb = rte_mbuf_raw_alloc(rxq->mb_pool);
931 		if (nmb == NULL) {
932 			PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
933 				   "queue_id=%u", (unsigned) rxq->port_id,
934 				   (unsigned) rxq->queue_id);
935 			rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
936 			break;
937 		}
938 
939 		nb_hold++;
940 		rxe = &sw_ring[rx_id];
941 		rx_id++;
942 		if (rx_id == rxq->nb_rx_desc)
943 			rx_id = 0;
944 
945 		/* Prefetch next mbuf while processing current one. */
946 		rte_em_prefetch(sw_ring[rx_id].mbuf);
947 
948 		/*
949 		 * When next RX descriptor is on a cache-line boundary,
950 		 * prefetch the next 4 RX descriptors and the next 8 pointers
951 		 * to mbufs.
952 		 */
953 		if ((rx_id & 0x3) == 0) {
954 			rte_em_prefetch(&rx_ring[rx_id]);
955 			rte_em_prefetch(&sw_ring[rx_id]);
956 		}
957 
958 		/*
959 		 * Update RX descriptor with the physical address of the new
960 		 * data buffer of the new allocated mbuf.
961 		 */
962 		rxm = rxe->mbuf;
963 		rxe->mbuf = nmb;
964 		dma = rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
965 		rxdp->buffer_addr = dma;
966 		rxdp->status = 0;
967 
968 		/*
969 		 * Set data length & data buffer address of mbuf.
970 		 */
971 		data_len = rte_le_to_cpu_16(rxd.length);
972 		rxm->data_len = data_len;
973 		rxm->data_off = RTE_PKTMBUF_HEADROOM;
974 
975 		/*
976 		 * If this is the first buffer of the received packet,
977 		 * set the pointer to the first mbuf of the packet and
978 		 * initialize its context.
979 		 * Otherwise, update the total length and the number of segments
980 		 * of the current scattered packet, and update the pointer to
981 		 * the last mbuf of the current packet.
982 		 */
983 		if (first_seg == NULL) {
984 			first_seg = rxm;
985 			first_seg->pkt_len = data_len;
986 			first_seg->nb_segs = 1;
987 		} else {
988 			first_seg->pkt_len += data_len;
989 			first_seg->nb_segs++;
990 			last_seg->next = rxm;
991 		}
992 
993 		/*
994 		 * If this is not the last buffer of the received packet,
995 		 * update the pointer to the last mbuf of the current scattered
996 		 * packet and continue to parse the RX ring.
997 		 */
998 		if (! (status & E1000_RXD_STAT_EOP)) {
999 			last_seg = rxm;
1000 			goto next_desc;
1001 		}
1002 
1003 		/*
1004 		 * This is the last buffer of the received packet.
1005 		 * If the CRC is not stripped by the hardware:
1006 		 *   - Subtract the CRC	length from the total packet length.
1007 		 *   - If the last buffer only contains the whole CRC or a part
1008 		 *     of it, free the mbuf associated to the last buffer.
1009 		 *     If part of the CRC is also contained in the previous
1010 		 *     mbuf, subtract the length of that CRC part from the
1011 		 *     data length of the previous mbuf.
1012 		 */
1013 		rxm->next = NULL;
1014 		if (unlikely(rxq->crc_len > 0)) {
1015 			first_seg->pkt_len -= RTE_ETHER_CRC_LEN;
1016 			if (data_len <= RTE_ETHER_CRC_LEN) {
1017 				rte_pktmbuf_free_seg(rxm);
1018 				first_seg->nb_segs--;
1019 				last_seg->data_len = (uint16_t)
1020 					(last_seg->data_len -
1021 					 (RTE_ETHER_CRC_LEN - data_len));
1022 				last_seg->next = NULL;
1023 			} else
1024 				rxm->data_len = (uint16_t)
1025 					(data_len - RTE_ETHER_CRC_LEN);
1026 		}
1027 
1028 		/*
1029 		 * Initialize the first mbuf of the returned packet:
1030 		 *    - RX port identifier,
1031 		 *    - hardware offload data, if any:
1032 		 *      - IP checksum flag,
1033 		 *      - error flags.
1034 		 */
1035 		first_seg->port = rxq->port_id;
1036 
1037 		first_seg->ol_flags = rx_desc_status_to_pkt_flags(status);
1038 		first_seg->ol_flags = first_seg->ol_flags |
1039 					rx_desc_error_to_pkt_flags(rxd.errors);
1040 
1041 		/* Only valid if RTE_MBUF_F_RX_VLAN set in pkt_flags */
1042 		rxm->vlan_tci = rte_le_to_cpu_16(rxd.special);
1043 
1044 		/* Prefetch data of first segment, if configured to do so. */
1045 		rte_packet_prefetch((char *)first_seg->buf_addr +
1046 			first_seg->data_off);
1047 
1048 		/*
1049 		 * Store the mbuf address into the next entry of the array
1050 		 * of returned packets.
1051 		 */
1052 		rx_pkts[nb_rx++] = first_seg;
1053 
1054 		/*
1055 		 * Setup receipt context for a new packet.
1056 		 */
1057 		first_seg = NULL;
1058 	}
1059 
1060 	/*
1061 	 * Record index of the next RX descriptor to probe.
1062 	 */
1063 	rxq->rx_tail = rx_id;
1064 
1065 	/*
1066 	 * Save receive context.
1067 	 */
1068 	rxq->pkt_first_seg = first_seg;
1069 	rxq->pkt_last_seg = last_seg;
1070 
1071 	/*
1072 	 * If the number of free RX descriptors is greater than the RX free
1073 	 * threshold of the queue, advance the Receive Descriptor Tail (RDT)
1074 	 * register.
1075 	 * Update the RDT with the value of the last processed RX descriptor
1076 	 * minus 1, to guarantee that the RDT register is never equal to the
1077 	 * RDH register, which creates a "full" ring situation from the
1078 	 * hardware point of view...
1079 	 */
1080 	nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
1081 	if (nb_hold > rxq->rx_free_thresh) {
1082 		PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
1083 			   "nb_hold=%u nb_rx=%u",
1084 			   (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
1085 			   (unsigned) rx_id, (unsigned) nb_hold,
1086 			   (unsigned) nb_rx);
1087 		rx_id = (uint16_t) ((rx_id == 0) ?
1088 			(rxq->nb_rx_desc - 1) : (rx_id - 1));
1089 		E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
1090 		nb_hold = 0;
1091 	}
1092 	rxq->nb_rx_hold = nb_hold;
1093 	return nb_rx;
1094 }
1095 
1096 #define	EM_MAX_BUF_SIZE     16384
1097 #define EM_RCTL_FLXBUF_STEP 1024
1098 
1099 static void
em_tx_queue_release_mbufs(struct em_tx_queue * txq)1100 em_tx_queue_release_mbufs(struct em_tx_queue *txq)
1101 {
1102 	unsigned i;
1103 
1104 	if (txq->sw_ring != NULL) {
1105 		for (i = 0; i != txq->nb_tx_desc; i++) {
1106 			if (txq->sw_ring[i].mbuf != NULL) {
1107 				rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
1108 				txq->sw_ring[i].mbuf = NULL;
1109 			}
1110 		}
1111 	}
1112 }
1113 
1114 static void
em_tx_queue_release(struct em_tx_queue * txq)1115 em_tx_queue_release(struct em_tx_queue *txq)
1116 {
1117 	if (txq != NULL) {
1118 		em_tx_queue_release_mbufs(txq);
1119 		rte_free(txq->sw_ring);
1120 		rte_memzone_free(txq->mz);
1121 		rte_free(txq);
1122 	}
1123 }
1124 
1125 void
eth_em_tx_queue_release(struct rte_eth_dev * dev,uint16_t qid)1126 eth_em_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
1127 {
1128 	em_tx_queue_release(dev->data->tx_queues[qid]);
1129 }
1130 
1131 /* (Re)set dynamic em_tx_queue fields to defaults */
1132 static void
em_reset_tx_queue(struct em_tx_queue * txq)1133 em_reset_tx_queue(struct em_tx_queue *txq)
1134 {
1135 	uint16_t i, nb_desc, prev;
1136 	static const struct e1000_data_desc txd_init = {
1137 		.upper.fields = {.status = E1000_TXD_STAT_DD},
1138 	};
1139 
1140 	nb_desc = txq->nb_tx_desc;
1141 
1142 	/* Initialize ring entries */
1143 
1144 	prev = (uint16_t) (nb_desc - 1);
1145 
1146 	for (i = 0; i < nb_desc; i++) {
1147 		txq->tx_ring[i] = txd_init;
1148 		txq->sw_ring[i].mbuf = NULL;
1149 		txq->sw_ring[i].last_id = i;
1150 		txq->sw_ring[prev].next_id = i;
1151 		prev = i;
1152 	}
1153 
1154 	/*
1155 	 * Always allow 1 descriptor to be un-allocated to avoid
1156 	 * a H/W race condition
1157 	 */
1158 	txq->nb_tx_free = (uint16_t)(nb_desc - 1);
1159 	txq->last_desc_cleaned = (uint16_t)(nb_desc - 1);
1160 	txq->nb_tx_used = 0;
1161 	txq->tx_tail = 0;
1162 
1163 	memset((void*)&txq->ctx_cache, 0, sizeof (txq->ctx_cache));
1164 }
1165 
1166 uint64_t
em_get_tx_port_offloads_capa(struct rte_eth_dev * dev)1167 em_get_tx_port_offloads_capa(struct rte_eth_dev *dev)
1168 {
1169 	uint64_t tx_offload_capa;
1170 
1171 	RTE_SET_USED(dev);
1172 	tx_offload_capa =
1173 		RTE_ETH_TX_OFFLOAD_MULTI_SEGS  |
1174 		RTE_ETH_TX_OFFLOAD_VLAN_INSERT |
1175 		RTE_ETH_TX_OFFLOAD_IPV4_CKSUM  |
1176 		RTE_ETH_TX_OFFLOAD_UDP_CKSUM   |
1177 		RTE_ETH_TX_OFFLOAD_TCP_CKSUM;
1178 
1179 	return tx_offload_capa;
1180 }
1181 
1182 uint64_t
em_get_tx_queue_offloads_capa(struct rte_eth_dev * dev)1183 em_get_tx_queue_offloads_capa(struct rte_eth_dev *dev)
1184 {
1185 	uint64_t tx_queue_offload_capa;
1186 
1187 	/*
1188 	 * As only one Tx queue can be used, let per queue offloading
1189 	 * capability be same to per port queue offloading capability
1190 	 * for better convenience.
1191 	 */
1192 	tx_queue_offload_capa = em_get_tx_port_offloads_capa(dev);
1193 
1194 	return tx_queue_offload_capa;
1195 }
1196 
1197 int
eth_em_tx_queue_setup(struct rte_eth_dev * dev,uint16_t queue_idx,uint16_t nb_desc,unsigned int socket_id,const struct rte_eth_txconf * tx_conf)1198 eth_em_tx_queue_setup(struct rte_eth_dev *dev,
1199 			 uint16_t queue_idx,
1200 			 uint16_t nb_desc,
1201 			 unsigned int socket_id,
1202 			 const struct rte_eth_txconf *tx_conf)
1203 {
1204 	const struct rte_memzone *tz;
1205 	struct em_tx_queue *txq;
1206 	struct e1000_hw     *hw;
1207 	uint32_t tsize;
1208 	uint16_t tx_rs_thresh, tx_free_thresh;
1209 	uint64_t offloads;
1210 
1211 	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1212 
1213 	offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1214 
1215 	/*
1216 	 * Validate number of transmit descriptors.
1217 	 * It must not exceed hardware maximum, and must be multiple
1218 	 * of E1000_ALIGN.
1219 	 */
1220 	if (nb_desc % EM_TXD_ALIGN != 0 ||
1221 			(nb_desc > E1000_MAX_RING_DESC) ||
1222 			(nb_desc < E1000_MIN_RING_DESC)) {
1223 		return -(EINVAL);
1224 	}
1225 
1226 	tx_free_thresh = tx_conf->tx_free_thresh;
1227 	if (tx_free_thresh == 0)
1228 		tx_free_thresh = (uint16_t)RTE_MIN(nb_desc / 4,
1229 					DEFAULT_TX_FREE_THRESH);
1230 
1231 	tx_rs_thresh = tx_conf->tx_rs_thresh;
1232 	if (tx_rs_thresh == 0)
1233 		tx_rs_thresh = (uint16_t)RTE_MIN(tx_free_thresh,
1234 					DEFAULT_TX_RS_THRESH);
1235 
1236 	if (tx_free_thresh >= (nb_desc - 3)) {
1237 		PMD_INIT_LOG(ERR, "tx_free_thresh must be less than the "
1238 			     "number of TX descriptors minus 3. "
1239 			     "(tx_free_thresh=%u port=%d queue=%d)",
1240 			     (unsigned int)tx_free_thresh,
1241 			     (int)dev->data->port_id, (int)queue_idx);
1242 		return -(EINVAL);
1243 	}
1244 	if (tx_rs_thresh > tx_free_thresh) {
1245 		PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than or equal to "
1246 			     "tx_free_thresh. (tx_free_thresh=%u "
1247 			     "tx_rs_thresh=%u port=%d queue=%d)",
1248 			     (unsigned int)tx_free_thresh,
1249 			     (unsigned int)tx_rs_thresh,
1250 			     (int)dev->data->port_id,
1251 			     (int)queue_idx);
1252 		return -(EINVAL);
1253 	}
1254 
1255 	/*
1256 	 * If rs_bit_thresh is greater than 1, then TX WTHRESH should be
1257 	 * set to 0. If WTHRESH is greater than zero, the RS bit is ignored
1258 	 * by the NIC and all descriptors are written back after the NIC
1259 	 * accumulates WTHRESH descriptors.
1260 	 */
1261 	if (tx_conf->tx_thresh.wthresh != 0 && tx_rs_thresh != 1) {
1262 		PMD_INIT_LOG(ERR, "TX WTHRESH must be set to 0 if "
1263 			     "tx_rs_thresh is greater than 1. (tx_rs_thresh=%u "
1264 			     "port=%d queue=%d)", (unsigned int)tx_rs_thresh,
1265 			     (int)dev->data->port_id, (int)queue_idx);
1266 		return -(EINVAL);
1267 	}
1268 
1269 	/* Free memory prior to re-allocation if needed... */
1270 	if (dev->data->tx_queues[queue_idx] != NULL) {
1271 		em_tx_queue_release(dev->data->tx_queues[queue_idx]);
1272 		dev->data->tx_queues[queue_idx] = NULL;
1273 	}
1274 
1275 	/*
1276 	 * Allocate TX ring hardware descriptors. A memzone large enough to
1277 	 * handle the maximum ring size is allocated in order to allow for
1278 	 * resizing in later calls to the queue setup function.
1279 	 */
1280 	tsize = sizeof(txq->tx_ring[0]) * E1000_MAX_RING_DESC;
1281 	tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx, tsize,
1282 				      RTE_CACHE_LINE_SIZE, socket_id);
1283 	if (tz == NULL)
1284 		return -ENOMEM;
1285 
1286 	/* Allocate the tx queue data structure. */
1287 	if ((txq = rte_zmalloc("ethdev TX queue", sizeof(*txq),
1288 			RTE_CACHE_LINE_SIZE)) == NULL)
1289 		return -ENOMEM;
1290 
1291 	txq->mz = tz;
1292 	/* Allocate software ring */
1293 	if ((txq->sw_ring = rte_zmalloc("txq->sw_ring",
1294 			sizeof(txq->sw_ring[0]) * nb_desc,
1295 			RTE_CACHE_LINE_SIZE)) == NULL) {
1296 		em_tx_queue_release(txq);
1297 		return -ENOMEM;
1298 	}
1299 
1300 	txq->nb_tx_desc = nb_desc;
1301 	txq->tx_free_thresh = tx_free_thresh;
1302 	txq->tx_rs_thresh = tx_rs_thresh;
1303 	txq->pthresh = tx_conf->tx_thresh.pthresh;
1304 	txq->hthresh = tx_conf->tx_thresh.hthresh;
1305 	txq->wthresh = tx_conf->tx_thresh.wthresh;
1306 	txq->queue_id = queue_idx;
1307 	txq->port_id = dev->data->port_id;
1308 
1309 	txq->tdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_TDT(queue_idx));
1310 	txq->tx_ring_phys_addr = tz->iova;
1311 	txq->tx_ring = (struct e1000_data_desc *) tz->addr;
1312 
1313 	PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64,
1314 		     txq->sw_ring, txq->tx_ring, txq->tx_ring_phys_addr);
1315 
1316 	em_reset_tx_queue(txq);
1317 
1318 	dev->data->tx_queues[queue_idx] = txq;
1319 	txq->offloads = offloads;
1320 	return 0;
1321 }
1322 
1323 static void
em_rx_queue_release_mbufs(struct em_rx_queue * rxq)1324 em_rx_queue_release_mbufs(struct em_rx_queue *rxq)
1325 {
1326 	unsigned i;
1327 
1328 	if (rxq->sw_ring != NULL) {
1329 		for (i = 0; i != rxq->nb_rx_desc; i++) {
1330 			if (rxq->sw_ring[i].mbuf != NULL) {
1331 				rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
1332 				rxq->sw_ring[i].mbuf = NULL;
1333 			}
1334 		}
1335 	}
1336 }
1337 
1338 static void
em_rx_queue_release(struct em_rx_queue * rxq)1339 em_rx_queue_release(struct em_rx_queue *rxq)
1340 {
1341 	if (rxq != NULL) {
1342 		em_rx_queue_release_mbufs(rxq);
1343 		rte_free(rxq->sw_ring);
1344 		rte_memzone_free(rxq->mz);
1345 		rte_free(rxq);
1346 	}
1347 }
1348 
1349 void
eth_em_rx_queue_release(struct rte_eth_dev * dev,uint16_t qid)1350 eth_em_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
1351 {
1352 	em_rx_queue_release(dev->data->rx_queues[qid]);
1353 }
1354 
1355 /* Reset dynamic em_rx_queue fields back to defaults */
1356 static void
em_reset_rx_queue(struct em_rx_queue * rxq)1357 em_reset_rx_queue(struct em_rx_queue *rxq)
1358 {
1359 	rxq->rx_tail = 0;
1360 	rxq->nb_rx_hold = 0;
1361 	rxq->pkt_first_seg = NULL;
1362 	rxq->pkt_last_seg = NULL;
1363 }
1364 
1365 uint64_t
em_get_rx_port_offloads_capa(void)1366 em_get_rx_port_offloads_capa(void)
1367 {
1368 	uint64_t rx_offload_capa;
1369 
1370 	rx_offload_capa =
1371 		RTE_ETH_RX_OFFLOAD_VLAN_STRIP  |
1372 		RTE_ETH_RX_OFFLOAD_VLAN_FILTER |
1373 		RTE_ETH_RX_OFFLOAD_IPV4_CKSUM  |
1374 		RTE_ETH_RX_OFFLOAD_UDP_CKSUM   |
1375 		RTE_ETH_RX_OFFLOAD_TCP_CKSUM   |
1376 		RTE_ETH_RX_OFFLOAD_KEEP_CRC    |
1377 		RTE_ETH_RX_OFFLOAD_SCATTER;
1378 
1379 	return rx_offload_capa;
1380 }
1381 
1382 uint64_t
em_get_rx_queue_offloads_capa(void)1383 em_get_rx_queue_offloads_capa(void)
1384 {
1385 	uint64_t rx_queue_offload_capa;
1386 
1387 	/*
1388 	 * As only one Rx queue can be used, let per queue offloading
1389 	 * capability be same to per port queue offloading capability
1390 	 * for better convenience.
1391 	 */
1392 	rx_queue_offload_capa = em_get_rx_port_offloads_capa();
1393 
1394 	return rx_queue_offload_capa;
1395 }
1396 
1397 int
eth_em_rx_queue_setup(struct rte_eth_dev * dev,uint16_t queue_idx,uint16_t nb_desc,unsigned int socket_id,const struct rte_eth_rxconf * rx_conf,struct rte_mempool * mp)1398 eth_em_rx_queue_setup(struct rte_eth_dev *dev,
1399 		uint16_t queue_idx,
1400 		uint16_t nb_desc,
1401 		unsigned int socket_id,
1402 		const struct rte_eth_rxconf *rx_conf,
1403 		struct rte_mempool *mp)
1404 {
1405 	const struct rte_memzone *rz;
1406 	struct em_rx_queue *rxq;
1407 	struct e1000_hw     *hw;
1408 	uint32_t rsize;
1409 	uint64_t offloads;
1410 
1411 	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1412 
1413 	offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
1414 
1415 	/*
1416 	 * Validate number of receive descriptors.
1417 	 * It must not exceed hardware maximum, and must be multiple
1418 	 * of E1000_ALIGN.
1419 	 */
1420 	if (nb_desc % EM_RXD_ALIGN != 0 ||
1421 			(nb_desc > E1000_MAX_RING_DESC) ||
1422 			(nb_desc < E1000_MIN_RING_DESC)) {
1423 		return -EINVAL;
1424 	}
1425 
1426 	/*
1427 	 * EM devices don't support drop_en functionality.
1428 	 * It's an optimization that does nothing on single-queue devices,
1429 	 * so just log the issue and carry on.
1430 	 */
1431 	if (rx_conf->rx_drop_en) {
1432 		PMD_INIT_LOG(NOTICE, "drop_en functionality not supported by "
1433 			     "device");
1434 	}
1435 
1436 	/* Free memory prior to re-allocation if needed. */
1437 	if (dev->data->rx_queues[queue_idx] != NULL) {
1438 		em_rx_queue_release(dev->data->rx_queues[queue_idx]);
1439 		dev->data->rx_queues[queue_idx] = NULL;
1440 	}
1441 
1442 	/* Allocate RX ring for max possible mumber of hardware descriptors. */
1443 	rsize = sizeof(rxq->rx_ring[0]) * E1000_MAX_RING_DESC;
1444 	rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx, rsize,
1445 				      RTE_CACHE_LINE_SIZE, socket_id);
1446 	if (rz == NULL)
1447 		return -ENOMEM;
1448 
1449 	/* Allocate the RX queue data structure. */
1450 	if ((rxq = rte_zmalloc("ethdev RX queue", sizeof(*rxq),
1451 			RTE_CACHE_LINE_SIZE)) == NULL)
1452 		return -ENOMEM;
1453 
1454 	rxq->mz = rz;
1455 	/* Allocate software ring. */
1456 	if ((rxq->sw_ring = rte_zmalloc("rxq->sw_ring",
1457 			sizeof (rxq->sw_ring[0]) * nb_desc,
1458 			RTE_CACHE_LINE_SIZE)) == NULL) {
1459 		em_rx_queue_release(rxq);
1460 		return -ENOMEM;
1461 	}
1462 
1463 	rxq->mb_pool = mp;
1464 	rxq->nb_rx_desc = nb_desc;
1465 	rxq->pthresh = rx_conf->rx_thresh.pthresh;
1466 	rxq->hthresh = rx_conf->rx_thresh.hthresh;
1467 	rxq->wthresh = rx_conf->rx_thresh.wthresh;
1468 	rxq->rx_free_thresh = rx_conf->rx_free_thresh;
1469 	rxq->queue_id = queue_idx;
1470 	rxq->port_id = dev->data->port_id;
1471 	if (dev->data->dev_conf.rxmode.offloads & RTE_ETH_RX_OFFLOAD_KEEP_CRC)
1472 		rxq->crc_len = RTE_ETHER_CRC_LEN;
1473 	else
1474 		rxq->crc_len = 0;
1475 
1476 	rxq->rdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDT(queue_idx));
1477 	rxq->rdh_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDH(queue_idx));
1478 	rxq->rx_ring_phys_addr = rz->iova;
1479 	rxq->rx_ring = (struct e1000_rx_desc *) rz->addr;
1480 
1481 	PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64,
1482 		     rxq->sw_ring, rxq->rx_ring, rxq->rx_ring_phys_addr);
1483 
1484 	dev->data->rx_queues[queue_idx] = rxq;
1485 	em_reset_rx_queue(rxq);
1486 	rxq->offloads = offloads;
1487 
1488 	return 0;
1489 }
1490 
1491 uint32_t
eth_em_rx_queue_count(void * rx_queue)1492 eth_em_rx_queue_count(void *rx_queue)
1493 {
1494 #define EM_RXQ_SCAN_INTERVAL 4
1495 	volatile struct e1000_rx_desc *rxdp;
1496 	struct em_rx_queue *rxq;
1497 	uint32_t desc = 0;
1498 
1499 	rxq = rx_queue;
1500 	rxdp = &(rxq->rx_ring[rxq->rx_tail]);
1501 
1502 	while ((desc < rxq->nb_rx_desc) &&
1503 		(rxdp->status & E1000_RXD_STAT_DD)) {
1504 		desc += EM_RXQ_SCAN_INTERVAL;
1505 		rxdp += EM_RXQ_SCAN_INTERVAL;
1506 		if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
1507 			rxdp = &(rxq->rx_ring[rxq->rx_tail +
1508 				desc - rxq->nb_rx_desc]);
1509 	}
1510 
1511 	return desc;
1512 }
1513 
1514 int
eth_em_rx_descriptor_status(void * rx_queue,uint16_t offset)1515 eth_em_rx_descriptor_status(void *rx_queue, uint16_t offset)
1516 {
1517 	struct em_rx_queue *rxq = rx_queue;
1518 	volatile uint8_t *status;
1519 	uint32_t desc;
1520 
1521 	if (unlikely(offset >= rxq->nb_rx_desc))
1522 		return -EINVAL;
1523 
1524 	if (offset >= rxq->nb_rx_desc - rxq->nb_rx_hold)
1525 		return RTE_ETH_RX_DESC_UNAVAIL;
1526 
1527 	desc = rxq->rx_tail + offset;
1528 	if (desc >= rxq->nb_rx_desc)
1529 		desc -= rxq->nb_rx_desc;
1530 
1531 	status = &rxq->rx_ring[desc].status;
1532 	if (*status & E1000_RXD_STAT_DD)
1533 		return RTE_ETH_RX_DESC_DONE;
1534 
1535 	return RTE_ETH_RX_DESC_AVAIL;
1536 }
1537 
1538 int
eth_em_tx_descriptor_status(void * tx_queue,uint16_t offset)1539 eth_em_tx_descriptor_status(void *tx_queue, uint16_t offset)
1540 {
1541 	struct em_tx_queue *txq = tx_queue;
1542 	volatile uint8_t *status;
1543 	uint32_t desc;
1544 
1545 	if (unlikely(offset >= txq->nb_tx_desc))
1546 		return -EINVAL;
1547 
1548 	desc = txq->tx_tail + offset;
1549 	/* go to next desc that has the RS bit */
1550 	desc = ((desc + txq->tx_rs_thresh - 1) / txq->tx_rs_thresh) *
1551 		txq->tx_rs_thresh;
1552 	if (desc >= txq->nb_tx_desc) {
1553 		desc -= txq->nb_tx_desc;
1554 		if (desc >= txq->nb_tx_desc)
1555 			desc -= txq->nb_tx_desc;
1556 	}
1557 
1558 	status = &txq->tx_ring[desc].upper.fields.status;
1559 	if (*status & E1000_TXD_STAT_DD)
1560 		return RTE_ETH_TX_DESC_DONE;
1561 
1562 	return RTE_ETH_TX_DESC_FULL;
1563 }
1564 
1565 void
em_dev_clear_queues(struct rte_eth_dev * dev)1566 em_dev_clear_queues(struct rte_eth_dev *dev)
1567 {
1568 	uint16_t i;
1569 	struct em_tx_queue *txq;
1570 	struct em_rx_queue *rxq;
1571 
1572 	for (i = 0; i < dev->data->nb_tx_queues; i++) {
1573 		txq = dev->data->tx_queues[i];
1574 		if (txq != NULL) {
1575 			em_tx_queue_release_mbufs(txq);
1576 			em_reset_tx_queue(txq);
1577 		}
1578 	}
1579 
1580 	for (i = 0; i < dev->data->nb_rx_queues; i++) {
1581 		rxq = dev->data->rx_queues[i];
1582 		if (rxq != NULL) {
1583 			em_rx_queue_release_mbufs(rxq);
1584 			em_reset_rx_queue(rxq);
1585 		}
1586 	}
1587 }
1588 
1589 void
em_dev_free_queues(struct rte_eth_dev * dev)1590 em_dev_free_queues(struct rte_eth_dev *dev)
1591 {
1592 	uint16_t i;
1593 
1594 	for (i = 0; i < dev->data->nb_rx_queues; i++) {
1595 		eth_em_rx_queue_release(dev, i);
1596 		dev->data->rx_queues[i] = NULL;
1597 	}
1598 	dev->data->nb_rx_queues = 0;
1599 
1600 	for (i = 0; i < dev->data->nb_tx_queues; i++) {
1601 		eth_em_tx_queue_release(dev, i);
1602 		dev->data->tx_queues[i] = NULL;
1603 	}
1604 	dev->data->nb_tx_queues = 0;
1605 }
1606 
1607 /*
1608  * Takes as input/output parameter RX buffer size.
1609  * Returns (BSIZE | BSEX | FLXBUF) fields of RCTL register.
1610  */
1611 static uint32_t
em_rctl_bsize(__rte_unused enum e1000_mac_type hwtyp,uint32_t * bufsz)1612 em_rctl_bsize(__rte_unused enum e1000_mac_type hwtyp, uint32_t *bufsz)
1613 {
1614 	/*
1615 	 * For BSIZE & BSEX all configurable sizes are:
1616 	 * 16384: rctl |= (E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX);
1617 	 *  8192: rctl |= (E1000_RCTL_SZ_8192  | E1000_RCTL_BSEX);
1618 	 *  4096: rctl |= (E1000_RCTL_SZ_4096  | E1000_RCTL_BSEX);
1619 	 *  2048: rctl |= E1000_RCTL_SZ_2048;
1620 	 *  1024: rctl |= E1000_RCTL_SZ_1024;
1621 	 *   512: rctl |= E1000_RCTL_SZ_512;
1622 	 *   256: rctl |= E1000_RCTL_SZ_256;
1623 	 */
1624 	static const struct {
1625 		uint32_t bufsz;
1626 		uint32_t rctl;
1627 	} bufsz_to_rctl[] = {
1628 		{16384, (E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX)},
1629 		{8192,  (E1000_RCTL_SZ_8192  | E1000_RCTL_BSEX)},
1630 		{4096,  (E1000_RCTL_SZ_4096  | E1000_RCTL_BSEX)},
1631 		{2048,  E1000_RCTL_SZ_2048},
1632 		{1024,  E1000_RCTL_SZ_1024},
1633 		{512,   E1000_RCTL_SZ_512},
1634 		{256,   E1000_RCTL_SZ_256},
1635 	};
1636 
1637 	int i;
1638 	uint32_t rctl_bsize;
1639 
1640 	rctl_bsize = *bufsz;
1641 
1642 	/*
1643 	 * Starting from 82571 it is possible to specify RX buffer size
1644 	 * by RCTL.FLXBUF. When this field is different from zero, the
1645 	 * RX buffer size = RCTL.FLXBUF * 1K
1646 	 * (e.g. t is possible to specify RX buffer size  1,2,...,15KB).
1647 	 * It is working ok on real HW, but by some reason doesn't work
1648 	 * on VMware emulated 82574L.
1649 	 * So for now, always use BSIZE/BSEX to setup RX buffer size.
1650 	 * If you don't plan to use it on VMware emulated 82574L and
1651 	 * would like to specify RX buffer size in 1K granularity,
1652 	 * uncomment the following lines:
1653 	 * ***************************************************************
1654 	 * if (hwtyp >= e1000_82571 && hwtyp <= e1000_82574 &&
1655 	 *		rctl_bsize >= EM_RCTL_FLXBUF_STEP) {
1656 	 *	rctl_bsize /= EM_RCTL_FLXBUF_STEP;
1657 	 *	*bufsz = rctl_bsize;
1658 	 *	return (rctl_bsize << E1000_RCTL_FLXBUF_SHIFT &
1659 	 *		E1000_RCTL_FLXBUF_MASK);
1660 	 * }
1661 	 * ***************************************************************
1662 	 */
1663 
1664 	for (i = 0; i != sizeof(bufsz_to_rctl) / sizeof(bufsz_to_rctl[0]);
1665 			i++) {
1666 		if (rctl_bsize >= bufsz_to_rctl[i].bufsz) {
1667 			*bufsz = bufsz_to_rctl[i].bufsz;
1668 			return bufsz_to_rctl[i].rctl;
1669 		}
1670 	}
1671 
1672 	/* Should never happen. */
1673 	return -EINVAL;
1674 }
1675 
1676 static int
em_alloc_rx_queue_mbufs(struct em_rx_queue * rxq)1677 em_alloc_rx_queue_mbufs(struct em_rx_queue *rxq)
1678 {
1679 	struct em_rx_entry *rxe = rxq->sw_ring;
1680 	uint64_t dma_addr;
1681 	unsigned i;
1682 	static const struct e1000_rx_desc rxd_init = {
1683 		.buffer_addr = 0,
1684 	};
1685 
1686 	/* Initialize software ring entries */
1687 	for (i = 0; i < rxq->nb_rx_desc; i++) {
1688 		volatile struct e1000_rx_desc *rxd;
1689 		struct rte_mbuf *mbuf = rte_mbuf_raw_alloc(rxq->mb_pool);
1690 
1691 		if (mbuf == NULL) {
1692 			PMD_INIT_LOG(ERR, "RX mbuf alloc failed "
1693 				     "queue_id=%hu", rxq->queue_id);
1694 			return -ENOMEM;
1695 		}
1696 
1697 		dma_addr =
1698 			rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
1699 
1700 		/* Clear HW ring memory */
1701 		rxq->rx_ring[i] = rxd_init;
1702 
1703 		rxd = &rxq->rx_ring[i];
1704 		rxd->buffer_addr = dma_addr;
1705 		rxe[i].mbuf = mbuf;
1706 	}
1707 
1708 	return 0;
1709 }
1710 
1711 /*********************************************************************
1712  *
1713  *  Enable receive unit.
1714  *
1715  **********************************************************************/
1716 int
eth_em_rx_init(struct rte_eth_dev * dev)1717 eth_em_rx_init(struct rte_eth_dev *dev)
1718 {
1719 	struct e1000_hw *hw;
1720 	struct em_rx_queue *rxq;
1721 	struct rte_eth_rxmode *rxmode;
1722 	uint32_t rctl;
1723 	uint32_t rfctl;
1724 	uint32_t rxcsum;
1725 	uint32_t rctl_bsize;
1726 	uint16_t i;
1727 	int ret;
1728 
1729 	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1730 	rxmode = &dev->data->dev_conf.rxmode;
1731 
1732 	/*
1733 	 * Make sure receives are disabled while setting
1734 	 * up the descriptor ring.
1735 	 */
1736 	rctl = E1000_READ_REG(hw, E1000_RCTL);
1737 	E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
1738 
1739 	rfctl = E1000_READ_REG(hw, E1000_RFCTL);
1740 
1741 	/* Disable extended descriptor type. */
1742 	rfctl &= ~E1000_RFCTL_EXTEN;
1743 	/* Disable accelerated acknowledge */
1744 	if (hw->mac.type == e1000_82574)
1745 		rfctl |= E1000_RFCTL_ACK_DIS;
1746 
1747 	E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
1748 
1749 	/*
1750 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
1751 	 * long latencies are observed, like Lenovo X60. This
1752 	 * change eliminates the problem, but since having positive
1753 	 * values in RDTR is a known source of problems on other
1754 	 * platforms another solution is being sought.
1755 	 */
1756 	if (hw->mac.type == e1000_82573)
1757 		E1000_WRITE_REG(hw, E1000_RDTR, 0x20);
1758 
1759 	dev->rx_pkt_burst = (eth_rx_burst_t)eth_em_recv_pkts;
1760 
1761 	/* Determine RX bufsize. */
1762 	rctl_bsize = EM_MAX_BUF_SIZE;
1763 	for (i = 0; i < dev->data->nb_rx_queues; i++) {
1764 		uint32_t buf_size;
1765 
1766 		rxq = dev->data->rx_queues[i];
1767 		buf_size = rte_pktmbuf_data_room_size(rxq->mb_pool) -
1768 			RTE_PKTMBUF_HEADROOM;
1769 		rctl_bsize = RTE_MIN(rctl_bsize, buf_size);
1770 	}
1771 
1772 	rctl |= em_rctl_bsize(hw->mac.type, &rctl_bsize);
1773 
1774 	/* Configure and enable each RX queue. */
1775 	for (i = 0; i < dev->data->nb_rx_queues; i++) {
1776 		uint64_t bus_addr;
1777 		uint32_t rxdctl;
1778 
1779 		rxq = dev->data->rx_queues[i];
1780 
1781 		/* Allocate buffers for descriptor rings and setup queue */
1782 		ret = em_alloc_rx_queue_mbufs(rxq);
1783 		if (ret)
1784 			return ret;
1785 
1786 		/*
1787 		 * Reset crc_len in case it was changed after queue setup by a
1788 		 *  call to configure
1789 		 */
1790 		if (dev->data->dev_conf.rxmode.offloads & RTE_ETH_RX_OFFLOAD_KEEP_CRC)
1791 			rxq->crc_len = RTE_ETHER_CRC_LEN;
1792 		else
1793 			rxq->crc_len = 0;
1794 
1795 		bus_addr = rxq->rx_ring_phys_addr;
1796 		E1000_WRITE_REG(hw, E1000_RDLEN(i),
1797 				rxq->nb_rx_desc *
1798 				sizeof(*rxq->rx_ring));
1799 		E1000_WRITE_REG(hw, E1000_RDBAH(i),
1800 				(uint32_t)(bus_addr >> 32));
1801 		E1000_WRITE_REG(hw, E1000_RDBAL(i), (uint32_t)bus_addr);
1802 
1803 		E1000_WRITE_REG(hw, E1000_RDH(i), 0);
1804 		E1000_WRITE_REG(hw, E1000_RDT(i), rxq->nb_rx_desc - 1);
1805 
1806 		rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
1807 		rxdctl &= 0xFE000000;
1808 		rxdctl |= rxq->pthresh & 0x3F;
1809 		rxdctl |= (rxq->hthresh & 0x3F) << 8;
1810 		rxdctl |= (rxq->wthresh & 0x3F) << 16;
1811 		rxdctl |= E1000_RXDCTL_GRAN;
1812 		E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
1813 
1814 		/*
1815 		 * Due to EM devices not having any sort of hardware
1816 		 * limit for packet length, jumbo frame of any size
1817 		 * can be accepted, thus we have to enable scattered
1818 		 * rx if jumbo frames are enabled (or if buffer size
1819 		 * is too small to accommodate non-jumbo packets)
1820 		 * to avoid splitting packets that don't fit into
1821 		 * one buffer.
1822 		 */
1823 		if (dev->data->mtu > RTE_ETHER_MTU ||
1824 				rctl_bsize < RTE_ETHER_MAX_LEN) {
1825 			if (!dev->data->scattered_rx)
1826 				PMD_INIT_LOG(DEBUG, "forcing scatter mode");
1827 			dev->rx_pkt_burst =
1828 				(eth_rx_burst_t)eth_em_recv_scattered_pkts;
1829 			dev->data->scattered_rx = 1;
1830 		}
1831 	}
1832 
1833 	if (dev->data->dev_conf.rxmode.offloads & RTE_ETH_RX_OFFLOAD_SCATTER) {
1834 		if (!dev->data->scattered_rx)
1835 			PMD_INIT_LOG(DEBUG, "forcing scatter mode");
1836 		dev->rx_pkt_burst = eth_em_recv_scattered_pkts;
1837 		dev->data->scattered_rx = 1;
1838 	}
1839 
1840 	/*
1841 	 * Setup the Checksum Register.
1842 	 * Receive Full-Packet Checksum Offload is mutually exclusive with RSS.
1843 	 */
1844 	rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
1845 
1846 	if (rxmode->offloads & RTE_ETH_RX_OFFLOAD_CHECKSUM)
1847 		rxcsum |= E1000_RXCSUM_IPOFL;
1848 	else
1849 		rxcsum &= ~E1000_RXCSUM_IPOFL;
1850 	E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
1851 
1852 	/* No MRQ or RSS support for now */
1853 
1854 	/* Set early receive threshold on appropriate hw */
1855 	if ((hw->mac.type == e1000_ich9lan ||
1856 			hw->mac.type == e1000_pch2lan ||
1857 			hw->mac.type == e1000_ich10lan) &&
1858 			dev->data->mtu > RTE_ETHER_MTU) {
1859 		u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
1860 		E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl | 3);
1861 		E1000_WRITE_REG(hw, E1000_ERT, 0x100 | (1 << 13));
1862 	}
1863 
1864 	if (hw->mac.type == e1000_pch2lan) {
1865 		if (dev->data->mtu > RTE_ETHER_MTU)
1866 			e1000_lv_jumbo_workaround_ich8lan(hw, TRUE);
1867 		else
1868 			e1000_lv_jumbo_workaround_ich8lan(hw, FALSE);
1869 	}
1870 
1871 	/* Setup the Receive Control Register. */
1872 	if (dev->data->dev_conf.rxmode.offloads & RTE_ETH_RX_OFFLOAD_KEEP_CRC)
1873 		rctl &= ~E1000_RCTL_SECRC; /* Do not Strip Ethernet CRC. */
1874 	else
1875 		rctl |= E1000_RCTL_SECRC; /* Strip Ethernet CRC. */
1876 
1877 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1878 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1879 		E1000_RCTL_RDMTS_HALF |
1880 		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1881 
1882 	/* Make sure VLAN Filters are off. */
1883 	rctl &= ~E1000_RCTL_VFE;
1884 	/* Don't store bad packets. */
1885 	rctl &= ~E1000_RCTL_SBP;
1886 	/* Legacy descriptor type. */
1887 	rctl &= ~E1000_RCTL_DTYP_MASK;
1888 
1889 	/*
1890 	 * Configure support of jumbo frames, if any.
1891 	 */
1892 	if (dev->data->mtu > RTE_ETHER_MTU)
1893 		rctl |= E1000_RCTL_LPE;
1894 	else
1895 		rctl &= ~E1000_RCTL_LPE;
1896 
1897 	/* Enable Receives. */
1898 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1899 
1900 	return 0;
1901 }
1902 
1903 /*********************************************************************
1904  *
1905  *  Enable transmit unit.
1906  *
1907  **********************************************************************/
1908 void
eth_em_tx_init(struct rte_eth_dev * dev)1909 eth_em_tx_init(struct rte_eth_dev *dev)
1910 {
1911 	struct e1000_hw     *hw;
1912 	struct em_tx_queue *txq;
1913 	uint32_t tctl;
1914 	uint32_t txdctl;
1915 	uint16_t i;
1916 
1917 	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1918 
1919 	/* Setup the Base and Length of the Tx Descriptor Rings. */
1920 	for (i = 0; i < dev->data->nb_tx_queues; i++) {
1921 		uint64_t bus_addr;
1922 
1923 		txq = dev->data->tx_queues[i];
1924 		bus_addr = txq->tx_ring_phys_addr;
1925 		E1000_WRITE_REG(hw, E1000_TDLEN(i),
1926 				txq->nb_tx_desc *
1927 				sizeof(*txq->tx_ring));
1928 		E1000_WRITE_REG(hw, E1000_TDBAH(i),
1929 				(uint32_t)(bus_addr >> 32));
1930 		E1000_WRITE_REG(hw, E1000_TDBAL(i), (uint32_t)bus_addr);
1931 
1932 		/* Setup the HW Tx Head and Tail descriptor pointers. */
1933 		E1000_WRITE_REG(hw, E1000_TDT(i), 0);
1934 		E1000_WRITE_REG(hw, E1000_TDH(i), 0);
1935 
1936 		/* Setup Transmit threshold registers. */
1937 		txdctl = E1000_READ_REG(hw, E1000_TXDCTL(i));
1938 		/*
1939 		 * bit 22 is reserved, on some models should always be 0,
1940 		 * on others  - always 1.
1941 		 */
1942 		txdctl &= E1000_TXDCTL_COUNT_DESC;
1943 		txdctl |= txq->pthresh & 0x3F;
1944 		txdctl |= (txq->hthresh & 0x3F) << 8;
1945 		txdctl |= (txq->wthresh & 0x3F) << 16;
1946 		txdctl |= E1000_TXDCTL_GRAN;
1947 		E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
1948 	}
1949 
1950 	/* Program the Transmit Control Register. */
1951 	tctl = E1000_READ_REG(hw, E1000_TCTL);
1952 	tctl &= ~E1000_TCTL_CT;
1953 	tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
1954 		 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
1955 
1956 	/* SPT and CNP Si errata workaround to avoid data corruption */
1957 	if (hw->mac.type == e1000_pch_spt) {
1958 		uint32_t reg_val;
1959 		reg_val = E1000_READ_REG(hw, E1000_IOSFPC);
1960 		reg_val |= E1000_RCTL_RDMTS_HEX;
1961 		E1000_WRITE_REG(hw, E1000_IOSFPC, reg_val);
1962 
1963 		/* Dropping the number of outstanding requests from
1964 		 * 3 to 2 in order to avoid a buffer overrun.
1965 		 */
1966 		reg_val = E1000_READ_REG(hw, E1000_TARC(0));
1967 		reg_val &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
1968 		reg_val |= E1000_TARC0_CB_MULTIQ_2_REQ;
1969 		E1000_WRITE_REG(hw, E1000_TARC(0), reg_val);
1970 	}
1971 
1972 	/* This write will effectively turn on the transmit unit. */
1973 	E1000_WRITE_REG(hw, E1000_TCTL, tctl);
1974 }
1975 
1976 void
em_rxq_info_get(struct rte_eth_dev * dev,uint16_t queue_id,struct rte_eth_rxq_info * qinfo)1977 em_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
1978 	struct rte_eth_rxq_info *qinfo)
1979 {
1980 	struct em_rx_queue *rxq;
1981 
1982 	rxq = dev->data->rx_queues[queue_id];
1983 
1984 	qinfo->mp = rxq->mb_pool;
1985 	qinfo->scattered_rx = dev->data->scattered_rx;
1986 	qinfo->nb_desc = rxq->nb_rx_desc;
1987 	qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
1988 	qinfo->conf.offloads = rxq->offloads;
1989 }
1990 
1991 void
em_txq_info_get(struct rte_eth_dev * dev,uint16_t queue_id,struct rte_eth_txq_info * qinfo)1992 em_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
1993 	struct rte_eth_txq_info *qinfo)
1994 {
1995 	struct em_tx_queue *txq;
1996 
1997 	txq = dev->data->tx_queues[queue_id];
1998 
1999 	qinfo->nb_desc = txq->nb_tx_desc;
2000 
2001 	qinfo->conf.tx_thresh.pthresh = txq->pthresh;
2002 	qinfo->conf.tx_thresh.hthresh = txq->hthresh;
2003 	qinfo->conf.tx_thresh.wthresh = txq->wthresh;
2004 	qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
2005 	qinfo->conf.tx_rs_thresh = txq->tx_rs_thresh;
2006 	qinfo->conf.offloads = txq->offloads;
2007 }
2008 
2009 static void
e1000_flush_tx_ring(struct rte_eth_dev * dev)2010 e1000_flush_tx_ring(struct rte_eth_dev *dev)
2011 {
2012 	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2013 	volatile struct e1000_data_desc *tx_desc;
2014 	volatile uint32_t *tdt_reg_addr;
2015 	uint32_t tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS;
2016 	uint16_t size = 512;
2017 	struct em_tx_queue *txq;
2018 	int i;
2019 
2020 	if (dev->data->tx_queues == NULL)
2021 		return;
2022 	tctl = E1000_READ_REG(hw, E1000_TCTL);
2023 	E1000_WRITE_REG(hw, E1000_TCTL, tctl | E1000_TCTL_EN);
2024 	for (i = 0; i < dev->data->nb_tx_queues &&
2025 		i < E1000_I219_MAX_TX_QUEUE_NUM; i++) {
2026 		txq = dev->data->tx_queues[i];
2027 		tdt = E1000_READ_REG(hw, E1000_TDT(i));
2028 		if (tdt != txq->tx_tail)
2029 			return;
2030 		tx_desc = &txq->tx_ring[txq->tx_tail];
2031 		tx_desc->buffer_addr = rte_cpu_to_le_64(txq->tx_ring_phys_addr);
2032 		tx_desc->lower.data = rte_cpu_to_le_32(txd_lower | size);
2033 		tx_desc->upper.data = 0;
2034 
2035 		rte_io_wmb();
2036 		txq->tx_tail++;
2037 		if (txq->tx_tail == txq->nb_tx_desc)
2038 			txq->tx_tail = 0;
2039 		tdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_TDT(i));
2040 		E1000_PCI_REG_WRITE(tdt_reg_addr, txq->tx_tail);
2041 		usec_delay(250);
2042 	}
2043 }
2044 
2045 static void
e1000_flush_rx_ring(struct rte_eth_dev * dev)2046 e1000_flush_rx_ring(struct rte_eth_dev *dev)
2047 {
2048 	uint32_t rctl, rxdctl;
2049 	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2050 	int i;
2051 
2052 	rctl = E1000_READ_REG(hw, E1000_RCTL);
2053 	E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2054 	E1000_WRITE_FLUSH(hw);
2055 	usec_delay(150);
2056 
2057 	for (i = 0; i < dev->data->nb_rx_queues &&
2058 		i < E1000_I219_MAX_RX_QUEUE_NUM; i++) {
2059 		rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
2060 		/* zero the lower 14 bits (prefetch and host thresholds) */
2061 		rxdctl &= 0xffffc000;
2062 
2063 		/* update thresholds: prefetch threshold to 31,
2064 		 * host threshold to 1 and make sure the granularity
2065 		 * is "descriptors" and not "cache lines"
2066 		 */
2067 		rxdctl |= (0x1F | (1UL << 8) | E1000_RXDCTL_THRESH_UNIT_DESC);
2068 
2069 		E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
2070 	}
2071 	/* momentarily enable the RX ring for the changes to take effect */
2072 	E1000_WRITE_REG(hw, E1000_RCTL, rctl | E1000_RCTL_EN);
2073 	E1000_WRITE_FLUSH(hw);
2074 	usec_delay(150);
2075 	E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2076 }
2077 
2078 /**
2079  * em_flush_desc_rings - remove all descriptors from the descriptor rings
2080  *
2081  * In i219, the descriptor rings must be emptied before resetting/closing the
2082  * HW. Failure to do this will cause the HW to enter a unit hang state which
2083  * can only be released by PCI reset on the device
2084  *
2085  */
2086 
2087 void
em_flush_desc_rings(struct rte_eth_dev * dev)2088 em_flush_desc_rings(struct rte_eth_dev *dev)
2089 {
2090 	uint32_t fextnvm11, tdlen;
2091 	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2092 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2093 	uint16_t pci_cfg_status = 0;
2094 	int ret;
2095 
2096 	fextnvm11 = E1000_READ_REG(hw, E1000_FEXTNVM11);
2097 	E1000_WRITE_REG(hw, E1000_FEXTNVM11,
2098 			fextnvm11 | E1000_FEXTNVM11_DISABLE_MULR_FIX);
2099 	tdlen = E1000_READ_REG(hw, E1000_TDLEN(0));
2100 	ret = rte_pci_read_config(pci_dev, &pci_cfg_status,
2101 		   sizeof(pci_cfg_status), PCI_CFG_STATUS_REG);
2102 	if (ret < 0) {
2103 		PMD_DRV_LOG(ERR, "Failed to read PCI offset 0x%x",
2104 			    PCI_CFG_STATUS_REG);
2105 		return;
2106 	}
2107 
2108 	/* do nothing if we're not in faulty state, or if the queue is empty */
2109 	if ((pci_cfg_status & FLUSH_DESC_REQUIRED) && tdlen) {
2110 		/* flush desc ring */
2111 		e1000_flush_tx_ring(dev);
2112 		ret = rte_pci_read_config(pci_dev, &pci_cfg_status,
2113 				sizeof(pci_cfg_status), PCI_CFG_STATUS_REG);
2114 		if (ret < 0) {
2115 			PMD_DRV_LOG(ERR, "Failed to read PCI offset 0x%x",
2116 					PCI_CFG_STATUS_REG);
2117 			return;
2118 		}
2119 
2120 		if (pci_cfg_status & FLUSH_DESC_REQUIRED)
2121 			e1000_flush_rx_ring(dev);
2122 	}
2123 }
2124