xref: /f-stack/dpdk/drivers/net/e1000/em_ethdev.c (revision 2d9fd380)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation
3  */
4 
5 #include <sys/queue.h>
6 #include <stdio.h>
7 #include <errno.h>
8 #include <stdint.h>
9 #include <stdarg.h>
10 
11 #include <rte_common.h>
12 #include <rte_interrupts.h>
13 #include <rte_byteorder.h>
14 #include <rte_debug.h>
15 #include <rte_pci.h>
16 #include <rte_bus_pci.h>
17 #include <rte_ether.h>
18 #include <rte_ethdev_driver.h>
19 #include <rte_ethdev_pci.h>
20 #include <rte_memory.h>
21 #include <rte_eal.h>
22 #include <rte_malloc.h>
23 #include <rte_dev.h>
24 
25 #include "e1000_logs.h"
26 #include "base/e1000_api.h"
27 #include "e1000_ethdev.h"
28 
29 #define EM_EIAC			0x000DC
30 
31 #define PMD_ROUNDUP(x,y)	(((x) + (y) - 1)/(y) * (y))
32 
33 
34 static int eth_em_configure(struct rte_eth_dev *dev);
35 static int eth_em_start(struct rte_eth_dev *dev);
36 static int eth_em_stop(struct rte_eth_dev *dev);
37 static int eth_em_close(struct rte_eth_dev *dev);
38 static int eth_em_promiscuous_enable(struct rte_eth_dev *dev);
39 static int eth_em_promiscuous_disable(struct rte_eth_dev *dev);
40 static int eth_em_allmulticast_enable(struct rte_eth_dev *dev);
41 static int eth_em_allmulticast_disable(struct rte_eth_dev *dev);
42 static int eth_em_link_update(struct rte_eth_dev *dev,
43 				int wait_to_complete);
44 static int eth_em_stats_get(struct rte_eth_dev *dev,
45 				struct rte_eth_stats *rte_stats);
46 static int eth_em_stats_reset(struct rte_eth_dev *dev);
47 static int eth_em_infos_get(struct rte_eth_dev *dev,
48 				struct rte_eth_dev_info *dev_info);
49 static int eth_em_flow_ctrl_get(struct rte_eth_dev *dev,
50 				struct rte_eth_fc_conf *fc_conf);
51 static int eth_em_flow_ctrl_set(struct rte_eth_dev *dev,
52 				struct rte_eth_fc_conf *fc_conf);
53 static int eth_em_interrupt_setup(struct rte_eth_dev *dev);
54 static int eth_em_rxq_interrupt_setup(struct rte_eth_dev *dev);
55 static int eth_em_interrupt_get_status(struct rte_eth_dev *dev);
56 static int eth_em_interrupt_action(struct rte_eth_dev *dev,
57 				   struct rte_intr_handle *handle);
58 static void eth_em_interrupt_handler(void *param);
59 
60 static int em_hw_init(struct e1000_hw *hw);
61 static int em_hardware_init(struct e1000_hw *hw);
62 static void em_hw_control_acquire(struct e1000_hw *hw);
63 static void em_hw_control_release(struct e1000_hw *hw);
64 static void em_init_manageability(struct e1000_hw *hw);
65 static void em_release_manageability(struct e1000_hw *hw);
66 
67 static int eth_em_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
68 
69 static int eth_em_vlan_filter_set(struct rte_eth_dev *dev,
70 		uint16_t vlan_id, int on);
71 static int eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask);
72 static void em_vlan_hw_filter_enable(struct rte_eth_dev *dev);
73 static void em_vlan_hw_filter_disable(struct rte_eth_dev *dev);
74 static void em_vlan_hw_strip_enable(struct rte_eth_dev *dev);
75 static void em_vlan_hw_strip_disable(struct rte_eth_dev *dev);
76 
77 /*
78 static void eth_em_vlan_filter_set(struct rte_eth_dev *dev,
79 					uint16_t vlan_id, int on);
80 */
81 
82 static int eth_em_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id);
83 static int eth_em_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id);
84 static void em_lsc_intr_disable(struct e1000_hw *hw);
85 static void em_rxq_intr_enable(struct e1000_hw *hw);
86 static void em_rxq_intr_disable(struct e1000_hw *hw);
87 
88 static int eth_em_led_on(struct rte_eth_dev *dev);
89 static int eth_em_led_off(struct rte_eth_dev *dev);
90 
91 static int em_get_rx_buffer_size(struct e1000_hw *hw);
92 static int eth_em_rar_set(struct rte_eth_dev *dev,
93 			struct rte_ether_addr *mac_addr,
94 			uint32_t index, uint32_t pool);
95 static void eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index);
96 static int eth_em_default_mac_addr_set(struct rte_eth_dev *dev,
97 					 struct rte_ether_addr *addr);
98 
99 static int eth_em_set_mc_addr_list(struct rte_eth_dev *dev,
100 				   struct rte_ether_addr *mc_addr_set,
101 				   uint32_t nb_mc_addr);
102 
103 #define EM_FC_PAUSE_TIME 0x0680
104 #define EM_LINK_UPDATE_CHECK_TIMEOUT  90  /* 9s */
105 #define EM_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */
106 
107 static enum e1000_fc_mode em_fc_setting = e1000_fc_full;
108 
109 /*
110  * The set of PCI devices this driver supports
111  */
112 static const struct rte_pci_id pci_id_em_map[] = {
113 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82540EM) },
114 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82545EM_COPPER) },
115 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82545EM_FIBER) },
116 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82546EB_COPPER) },
117 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82546EB_FIBER) },
118 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82546EB_QUAD_COPPER) },
119 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_COPPER) },
120 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_FIBER) },
121 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_SERDES) },
122 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_SERDES_DUAL) },
123 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_SERDES_QUAD) },
124 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_QUAD_COPPER) },
125 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571PT_QUAD_COPPER) },
126 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_QUAD_FIBER) },
127 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_QUAD_COPPER_LP) },
128 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI_COPPER) },
129 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI_FIBER) },
130 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI_SERDES) },
131 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI) },
132 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82573L) },
133 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82574L) },
134 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82574LA) },
135 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82583V) },
136 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH2_LV_LM) },
137 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPT_I217_LM) },
138 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPT_I217_V) },
139 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPTLP_I218_LM) },
140 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPTLP_I218_V) },
141 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_LM2) },
142 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_V2) },
143 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_LM3) },
144 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_V3) },
145 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_LM) },
146 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_V) },
147 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_LM2) },
148 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_V2) },
149 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LBG_I219_LM3) },
150 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_LM4) },
151 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_V4) },
152 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_LM5) },
153 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_V5) },
154 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_CNP_I219_LM6) },
155 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_CNP_I219_V6) },
156 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_CNP_I219_LM7) },
157 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_CNP_I219_V7) },
158 	{ .vendor_id = 0, /* sentinel */ },
159 };
160 
161 static const struct eth_dev_ops eth_em_ops = {
162 	.dev_configure        = eth_em_configure,
163 	.dev_start            = eth_em_start,
164 	.dev_stop             = eth_em_stop,
165 	.dev_close            = eth_em_close,
166 	.promiscuous_enable   = eth_em_promiscuous_enable,
167 	.promiscuous_disable  = eth_em_promiscuous_disable,
168 	.allmulticast_enable  = eth_em_allmulticast_enable,
169 	.allmulticast_disable = eth_em_allmulticast_disable,
170 	.link_update          = eth_em_link_update,
171 	.stats_get            = eth_em_stats_get,
172 	.stats_reset          = eth_em_stats_reset,
173 	.dev_infos_get        = eth_em_infos_get,
174 	.mtu_set              = eth_em_mtu_set,
175 	.vlan_filter_set      = eth_em_vlan_filter_set,
176 	.vlan_offload_set     = eth_em_vlan_offload_set,
177 	.rx_queue_setup       = eth_em_rx_queue_setup,
178 	.rx_queue_release     = eth_em_rx_queue_release,
179 	.tx_queue_setup       = eth_em_tx_queue_setup,
180 	.tx_queue_release     = eth_em_tx_queue_release,
181 	.rx_queue_intr_enable = eth_em_rx_queue_intr_enable,
182 	.rx_queue_intr_disable = eth_em_rx_queue_intr_disable,
183 	.dev_led_on           = eth_em_led_on,
184 	.dev_led_off          = eth_em_led_off,
185 	.flow_ctrl_get        = eth_em_flow_ctrl_get,
186 	.flow_ctrl_set        = eth_em_flow_ctrl_set,
187 	.mac_addr_set         = eth_em_default_mac_addr_set,
188 	.mac_addr_add         = eth_em_rar_set,
189 	.mac_addr_remove      = eth_em_rar_clear,
190 	.set_mc_addr_list     = eth_em_set_mc_addr_list,
191 	.rxq_info_get         = em_rxq_info_get,
192 	.txq_info_get         = em_txq_info_get,
193 };
194 
195 
196 /**
197  *  eth_em_dev_is_ich8 - Check for ICH8 device
198  *  @hw: pointer to the HW structure
199  *
200  *  return TRUE for ICH8, otherwise FALSE
201  **/
202 static bool
eth_em_dev_is_ich8(struct e1000_hw * hw)203 eth_em_dev_is_ich8(struct e1000_hw *hw)
204 {
205 	DEBUGFUNC("eth_em_dev_is_ich8");
206 
207 	switch (hw->device_id) {
208 	case E1000_DEV_ID_PCH2_LV_LM:
209 	case E1000_DEV_ID_PCH_LPT_I217_LM:
210 	case E1000_DEV_ID_PCH_LPT_I217_V:
211 	case E1000_DEV_ID_PCH_LPTLP_I218_LM:
212 	case E1000_DEV_ID_PCH_LPTLP_I218_V:
213 	case E1000_DEV_ID_PCH_I218_V2:
214 	case E1000_DEV_ID_PCH_I218_LM2:
215 	case E1000_DEV_ID_PCH_I218_V3:
216 	case E1000_DEV_ID_PCH_I218_LM3:
217 	case E1000_DEV_ID_PCH_SPT_I219_LM:
218 	case E1000_DEV_ID_PCH_SPT_I219_V:
219 	case E1000_DEV_ID_PCH_SPT_I219_LM2:
220 	case E1000_DEV_ID_PCH_SPT_I219_V2:
221 	case E1000_DEV_ID_PCH_LBG_I219_LM3:
222 	case E1000_DEV_ID_PCH_SPT_I219_LM4:
223 	case E1000_DEV_ID_PCH_SPT_I219_V4:
224 	case E1000_DEV_ID_PCH_SPT_I219_LM5:
225 	case E1000_DEV_ID_PCH_SPT_I219_V5:
226 	case E1000_DEV_ID_PCH_CNP_I219_LM6:
227 	case E1000_DEV_ID_PCH_CNP_I219_V6:
228 	case E1000_DEV_ID_PCH_CNP_I219_LM7:
229 	case E1000_DEV_ID_PCH_CNP_I219_V7:
230 		return 1;
231 	default:
232 		return 0;
233 	}
234 }
235 
236 static int
eth_em_dev_init(struct rte_eth_dev * eth_dev)237 eth_em_dev_init(struct rte_eth_dev *eth_dev)
238 {
239 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
240 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
241 	struct e1000_adapter *adapter =
242 		E1000_DEV_PRIVATE(eth_dev->data->dev_private);
243 	struct e1000_hw *hw =
244 		E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
245 	struct e1000_vfta * shadow_vfta =
246 		E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private);
247 
248 	eth_dev->dev_ops = &eth_em_ops;
249 	eth_dev->rx_queue_count = eth_em_rx_queue_count;
250 	eth_dev->rx_descriptor_done   = eth_em_rx_descriptor_done;
251 	eth_dev->rx_descriptor_status = eth_em_rx_descriptor_status;
252 	eth_dev->tx_descriptor_status = eth_em_tx_descriptor_status;
253 	eth_dev->rx_pkt_burst = (eth_rx_burst_t)&eth_em_recv_pkts;
254 	eth_dev->tx_pkt_burst = (eth_tx_burst_t)&eth_em_xmit_pkts;
255 	eth_dev->tx_pkt_prepare = (eth_tx_prep_t)&eth_em_prep_pkts;
256 
257 	/* for secondary processes, we don't initialise any further as primary
258 	 * has already done this work. Only check we don't need a different
259 	 * RX function */
260 	if (rte_eal_process_type() != RTE_PROC_PRIMARY){
261 		if (eth_dev->data->scattered_rx)
262 			eth_dev->rx_pkt_burst =
263 				(eth_rx_burst_t)&eth_em_recv_scattered_pkts;
264 		return 0;
265 	}
266 
267 	rte_eth_copy_pci_info(eth_dev, pci_dev);
268 	eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
269 
270 	hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
271 	hw->device_id = pci_dev->id.device_id;
272 	adapter->stopped = 0;
273 
274 	/* For ICH8 support we'll need to map the flash memory BAR */
275 	if (eth_em_dev_is_ich8(hw))
276 		hw->flash_address = (void *)pci_dev->mem_resource[1].addr;
277 
278 	if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS ||
279 			em_hw_init(hw) != 0) {
280 		PMD_INIT_LOG(ERR, "port_id %d vendorID=0x%x deviceID=0x%x: "
281 			"failed to init HW",
282 			eth_dev->data->port_id, pci_dev->id.vendor_id,
283 			pci_dev->id.device_id);
284 		return -ENODEV;
285 	}
286 
287 	/* Allocate memory for storing MAC addresses */
288 	eth_dev->data->mac_addrs = rte_zmalloc("e1000", RTE_ETHER_ADDR_LEN *
289 			hw->mac.rar_entry_count, 0);
290 	if (eth_dev->data->mac_addrs == NULL) {
291 		PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to "
292 			"store MAC addresses",
293 			RTE_ETHER_ADDR_LEN * hw->mac.rar_entry_count);
294 		return -ENOMEM;
295 	}
296 
297 	/* Copy the permanent MAC address */
298 	rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.addr,
299 		eth_dev->data->mac_addrs);
300 
301 	/* initialize the vfta */
302 	memset(shadow_vfta, 0, sizeof(*shadow_vfta));
303 
304 	PMD_INIT_LOG(DEBUG, "port_id %d vendorID=0x%x deviceID=0x%x",
305 		     eth_dev->data->port_id, pci_dev->id.vendor_id,
306 		     pci_dev->id.device_id);
307 
308 	rte_intr_callback_register(intr_handle,
309 				   eth_em_interrupt_handler, eth_dev);
310 
311 	return 0;
312 }
313 
314 static int
eth_em_dev_uninit(struct rte_eth_dev * eth_dev)315 eth_em_dev_uninit(struct rte_eth_dev *eth_dev)
316 {
317 	PMD_INIT_FUNC_TRACE();
318 
319 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
320 		return 0;
321 
322 	eth_em_close(eth_dev);
323 
324 	return 0;
325 }
326 
eth_em_pci_probe(struct rte_pci_driver * pci_drv __rte_unused,struct rte_pci_device * pci_dev)327 static int eth_em_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
328 	struct rte_pci_device *pci_dev)
329 {
330 	return rte_eth_dev_pci_generic_probe(pci_dev,
331 		sizeof(struct e1000_adapter), eth_em_dev_init);
332 }
333 
eth_em_pci_remove(struct rte_pci_device * pci_dev)334 static int eth_em_pci_remove(struct rte_pci_device *pci_dev)
335 {
336 	return rte_eth_dev_pci_generic_remove(pci_dev, eth_em_dev_uninit);
337 }
338 
339 static struct rte_pci_driver rte_em_pmd = {
340 	.id_table = pci_id_em_map,
341 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
342 	.probe = eth_em_pci_probe,
343 	.remove = eth_em_pci_remove,
344 };
345 
346 static int
em_hw_init(struct e1000_hw * hw)347 em_hw_init(struct e1000_hw *hw)
348 {
349 	int diag;
350 
351 	diag = hw->mac.ops.init_params(hw);
352 	if (diag != 0) {
353 		PMD_INIT_LOG(ERR, "MAC Initialization Error");
354 		return diag;
355 	}
356 	diag = hw->nvm.ops.init_params(hw);
357 	if (diag != 0) {
358 		PMD_INIT_LOG(ERR, "NVM Initialization Error");
359 		return diag;
360 	}
361 	diag = hw->phy.ops.init_params(hw);
362 	if (diag != 0) {
363 		PMD_INIT_LOG(ERR, "PHY Initialization Error");
364 		return diag;
365 	}
366 	(void) e1000_get_bus_info(hw);
367 
368 	hw->mac.autoneg = 1;
369 	hw->phy.autoneg_wait_to_complete = 0;
370 	hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
371 
372 	e1000_init_script_state_82541(hw, TRUE);
373 	e1000_set_tbi_compatibility_82543(hw, TRUE);
374 
375 	/* Copper options */
376 	if (hw->phy.media_type == e1000_media_type_copper) {
377 		hw->phy.mdix = 0; /* AUTO_ALL_MODES */
378 		hw->phy.disable_polarity_correction = 0;
379 		hw->phy.ms_type = e1000_ms_hw_default;
380 	}
381 
382 	/*
383 	 * Start from a known state, this is important in reading the nvm
384 	 * and mac from that.
385 	 */
386 	e1000_reset_hw(hw);
387 
388 	/* Make sure we have a good EEPROM before we read from it */
389 	if (e1000_validate_nvm_checksum(hw) < 0) {
390 		/*
391 		 * Some PCI-E parts fail the first check due to
392 		 * the link being in sleep state, call it again,
393 		 * if it fails a second time its a real issue.
394 		 */
395 		diag = e1000_validate_nvm_checksum(hw);
396 		if (diag < 0) {
397 			PMD_INIT_LOG(ERR, "EEPROM checksum invalid");
398 			goto error;
399 		}
400 	}
401 
402 	/* Read the permanent MAC address out of the EEPROM */
403 	diag = e1000_read_mac_addr(hw);
404 	if (diag != 0) {
405 		PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address");
406 		goto error;
407 	}
408 
409 	/* Now initialize the hardware */
410 	diag = em_hardware_init(hw);
411 	if (diag != 0) {
412 		PMD_INIT_LOG(ERR, "Hardware initialization failed");
413 		goto error;
414 	}
415 
416 	hw->mac.get_link_status = 1;
417 
418 	/* Indicate SOL/IDER usage */
419 	diag = e1000_check_reset_block(hw);
420 	if (diag < 0) {
421 		PMD_INIT_LOG(ERR, "PHY reset is blocked due to "
422 			"SOL/IDER session");
423 	}
424 	return 0;
425 
426 error:
427 	em_hw_control_release(hw);
428 	return diag;
429 }
430 
431 static int
eth_em_configure(struct rte_eth_dev * dev)432 eth_em_configure(struct rte_eth_dev *dev)
433 {
434 	struct e1000_interrupt *intr =
435 		E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
436 
437 	PMD_INIT_FUNC_TRACE();
438 	intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
439 
440 	PMD_INIT_FUNC_TRACE();
441 
442 	return 0;
443 }
444 
445 static void
em_set_pba(struct e1000_hw * hw)446 em_set_pba(struct e1000_hw *hw)
447 {
448 	uint32_t pba;
449 
450 	/*
451 	 * Packet Buffer Allocation (PBA)
452 	 * Writing PBA sets the receive portion of the buffer
453 	 * the remainder is used for the transmit buffer.
454 	 * Devices before the 82547 had a Packet Buffer of 64K.
455 	 * After the 82547 the buffer was reduced to 40K.
456 	 */
457 	switch (hw->mac.type) {
458 		case e1000_82547:
459 		case e1000_82547_rev_2:
460 		/* 82547: Total Packet Buffer is 40K */
461 			pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
462 			break;
463 		case e1000_82571:
464 		case e1000_82572:
465 		case e1000_80003es2lan:
466 			pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
467 			break;
468 		case e1000_82573: /* 82573: Total Packet Buffer is 32K */
469 			pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
470 			break;
471 		case e1000_82574:
472 		case e1000_82583:
473 			pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
474 			break;
475 		case e1000_ich8lan:
476 			pba = E1000_PBA_8K;
477 			break;
478 		case e1000_ich9lan:
479 		case e1000_ich10lan:
480 			pba = E1000_PBA_10K;
481 			break;
482 		case e1000_pchlan:
483 		case e1000_pch2lan:
484 		case e1000_pch_lpt:
485 		case e1000_pch_spt:
486 		case e1000_pch_cnp:
487 			pba = E1000_PBA_26K;
488 			break;
489 		default:
490 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
491 	}
492 
493 	E1000_WRITE_REG(hw, E1000_PBA, pba);
494 }
495 
496 static void
eth_em_rxtx_control(struct rte_eth_dev * dev,bool enable)497 eth_em_rxtx_control(struct rte_eth_dev *dev,
498 		    bool enable)
499 {
500 	struct e1000_hw *hw =
501 		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
502 	uint32_t tctl, rctl;
503 
504 	tctl = E1000_READ_REG(hw, E1000_TCTL);
505 	rctl = E1000_READ_REG(hw, E1000_RCTL);
506 	if (enable) {
507 		/* enable Tx/Rx */
508 		tctl |= E1000_TCTL_EN;
509 		rctl |= E1000_RCTL_EN;
510 	} else {
511 		/* disable Tx/Rx */
512 		tctl &= ~E1000_TCTL_EN;
513 		rctl &= ~E1000_RCTL_EN;
514 	}
515 	E1000_WRITE_REG(hw, E1000_TCTL, tctl);
516 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
517 	E1000_WRITE_FLUSH(hw);
518 }
519 
520 static int
eth_em_start(struct rte_eth_dev * dev)521 eth_em_start(struct rte_eth_dev *dev)
522 {
523 	struct e1000_adapter *adapter =
524 		E1000_DEV_PRIVATE(dev->data->dev_private);
525 	struct e1000_hw *hw =
526 		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
527 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
528 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
529 	int ret, mask;
530 	uint32_t intr_vector = 0;
531 	uint32_t *speeds;
532 	int num_speeds;
533 	bool autoneg;
534 
535 	PMD_INIT_FUNC_TRACE();
536 
537 	ret = eth_em_stop(dev);
538 	if (ret != 0)
539 		return ret;
540 
541 	e1000_power_up_phy(hw);
542 
543 	/* Set default PBA value */
544 	em_set_pba(hw);
545 
546 	/* Put the address into the Receive Address Array */
547 	e1000_rar_set(hw, hw->mac.addr, 0);
548 
549 	/*
550 	 * With the 82571 adapter, RAR[0] may be overwritten
551 	 * when the other port is reset, we make a duplicate
552 	 * in RAR[14] for that eventuality, this assures
553 	 * the interface continues to function.
554 	 */
555 	if (hw->mac.type == e1000_82571) {
556 		e1000_set_laa_state_82571(hw, TRUE);
557 		e1000_rar_set(hw, hw->mac.addr, E1000_RAR_ENTRIES - 1);
558 	}
559 
560 	/* Initialize the hardware */
561 	if (em_hardware_init(hw)) {
562 		PMD_INIT_LOG(ERR, "Unable to initialize the hardware");
563 		return -EIO;
564 	}
565 
566 	E1000_WRITE_REG(hw, E1000_VET, RTE_ETHER_TYPE_VLAN);
567 
568 	/* Configure for OS presence */
569 	em_init_manageability(hw);
570 
571 	if (dev->data->dev_conf.intr_conf.rxq != 0) {
572 		intr_vector = dev->data->nb_rx_queues;
573 		if (rte_intr_efd_enable(intr_handle, intr_vector))
574 			return -1;
575 	}
576 
577 	if (rte_intr_dp_is_en(intr_handle)) {
578 		intr_handle->intr_vec =
579 			rte_zmalloc("intr_vec",
580 					dev->data->nb_rx_queues * sizeof(int), 0);
581 		if (intr_handle->intr_vec == NULL) {
582 			PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues"
583 						" intr_vec", dev->data->nb_rx_queues);
584 			return -ENOMEM;
585 		}
586 
587 		/* enable rx interrupt */
588 		em_rxq_intr_enable(hw);
589 	}
590 
591 	eth_em_tx_init(dev);
592 
593 	ret = eth_em_rx_init(dev);
594 	if (ret) {
595 		PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
596 		em_dev_clear_queues(dev);
597 		return ret;
598 	}
599 
600 	e1000_clear_hw_cntrs_base_generic(hw);
601 
602 	mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | \
603 			ETH_VLAN_EXTEND_MASK;
604 	ret = eth_em_vlan_offload_set(dev, mask);
605 	if (ret) {
606 		PMD_INIT_LOG(ERR, "Unable to update vlan offload");
607 		em_dev_clear_queues(dev);
608 		return ret;
609 	}
610 
611 	/* Set Interrupt Throttling Rate to maximum allowed value. */
612 	E1000_WRITE_REG(hw, E1000_ITR, UINT16_MAX);
613 
614 	/* Setup link speed and duplex */
615 	speeds = &dev->data->dev_conf.link_speeds;
616 	if (*speeds == ETH_LINK_SPEED_AUTONEG) {
617 		hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
618 		hw->mac.autoneg = 1;
619 	} else {
620 		num_speeds = 0;
621 		autoneg = (*speeds & ETH_LINK_SPEED_FIXED) == 0;
622 
623 		/* Reset */
624 		hw->phy.autoneg_advertised = 0;
625 
626 		if (*speeds & ~(ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
627 				ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
628 				ETH_LINK_SPEED_1G | ETH_LINK_SPEED_FIXED)) {
629 			num_speeds = -1;
630 			goto error_invalid_config;
631 		}
632 		if (*speeds & ETH_LINK_SPEED_10M_HD) {
633 			hw->phy.autoneg_advertised |= ADVERTISE_10_HALF;
634 			num_speeds++;
635 		}
636 		if (*speeds & ETH_LINK_SPEED_10M) {
637 			hw->phy.autoneg_advertised |= ADVERTISE_10_FULL;
638 			num_speeds++;
639 		}
640 		if (*speeds & ETH_LINK_SPEED_100M_HD) {
641 			hw->phy.autoneg_advertised |= ADVERTISE_100_HALF;
642 			num_speeds++;
643 		}
644 		if (*speeds & ETH_LINK_SPEED_100M) {
645 			hw->phy.autoneg_advertised |= ADVERTISE_100_FULL;
646 			num_speeds++;
647 		}
648 		if (*speeds & ETH_LINK_SPEED_1G) {
649 			hw->phy.autoneg_advertised |= ADVERTISE_1000_FULL;
650 			num_speeds++;
651 		}
652 		if (num_speeds == 0 || (!autoneg && (num_speeds > 1)))
653 			goto error_invalid_config;
654 
655 		/* Set/reset the mac.autoneg based on the link speed,
656 		 * fixed or not
657 		 */
658 		if (!autoneg) {
659 			hw->mac.autoneg = 0;
660 			hw->mac.forced_speed_duplex =
661 					hw->phy.autoneg_advertised;
662 		} else {
663 			hw->mac.autoneg = 1;
664 		}
665 	}
666 
667 	e1000_setup_link(hw);
668 
669 	if (rte_intr_allow_others(intr_handle)) {
670 		/* check if lsc interrupt is enabled */
671 		if (dev->data->dev_conf.intr_conf.lsc != 0) {
672 			ret = eth_em_interrupt_setup(dev);
673 			if (ret) {
674 				PMD_INIT_LOG(ERR, "Unable to setup interrupts");
675 				em_dev_clear_queues(dev);
676 				return ret;
677 			}
678 		}
679 	} else {
680 		rte_intr_callback_unregister(intr_handle,
681 						eth_em_interrupt_handler,
682 						(void *)dev);
683 		if (dev->data->dev_conf.intr_conf.lsc != 0)
684 			PMD_INIT_LOG(INFO, "lsc won't enable because of"
685 				     " no intr multiplexn");
686 	}
687 	/* check if rxq interrupt is enabled */
688 	if (dev->data->dev_conf.intr_conf.rxq != 0)
689 		eth_em_rxq_interrupt_setup(dev);
690 
691 	rte_intr_enable(intr_handle);
692 
693 	adapter->stopped = 0;
694 
695 	eth_em_rxtx_control(dev, true);
696 	eth_em_link_update(dev, 0);
697 
698 	PMD_INIT_LOG(DEBUG, "<<");
699 
700 	return 0;
701 
702 error_invalid_config:
703 	PMD_INIT_LOG(ERR, "Invalid advertised speeds (%u) for port %u",
704 		     dev->data->dev_conf.link_speeds, dev->data->port_id);
705 	em_dev_clear_queues(dev);
706 	return -EINVAL;
707 }
708 
709 /*********************************************************************
710  *
711  *  This routine disables all traffic on the adapter by issuing a
712  *  global reset on the MAC.
713  *
714  **********************************************************************/
715 static int
eth_em_stop(struct rte_eth_dev * dev)716 eth_em_stop(struct rte_eth_dev *dev)
717 {
718 	struct rte_eth_link link;
719 	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
720 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
721 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
722 
723 	dev->data->dev_started = 0;
724 
725 	eth_em_rxtx_control(dev, false);
726 	em_rxq_intr_disable(hw);
727 	em_lsc_intr_disable(hw);
728 
729 	e1000_reset_hw(hw);
730 
731 	/* Flush desc rings for i219 */
732 	if (hw->mac.type == e1000_pch_spt || hw->mac.type == e1000_pch_cnp)
733 		em_flush_desc_rings(dev);
734 
735 	if (hw->mac.type >= e1000_82544)
736 		E1000_WRITE_REG(hw, E1000_WUC, 0);
737 
738 	/* Power down the phy. Needed to make the link go down */
739 	e1000_power_down_phy(hw);
740 
741 	em_dev_clear_queues(dev);
742 
743 	/* clear the recorded link status */
744 	memset(&link, 0, sizeof(link));
745 	rte_eth_linkstatus_set(dev, &link);
746 
747 	if (!rte_intr_allow_others(intr_handle))
748 		/* resume to the default handler */
749 		rte_intr_callback_register(intr_handle,
750 					   eth_em_interrupt_handler,
751 					   (void *)dev);
752 
753 	/* Clean datapath event and queue/vec mapping */
754 	rte_intr_efd_disable(intr_handle);
755 	if (intr_handle->intr_vec != NULL) {
756 		rte_free(intr_handle->intr_vec);
757 		intr_handle->intr_vec = NULL;
758 	}
759 
760 	return 0;
761 }
762 
763 static int
eth_em_close(struct rte_eth_dev * dev)764 eth_em_close(struct rte_eth_dev *dev)
765 {
766 	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
767 	struct e1000_adapter *adapter =
768 		E1000_DEV_PRIVATE(dev->data->dev_private);
769 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
770 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
771 	int ret;
772 
773 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
774 		return 0;
775 
776 	ret = eth_em_stop(dev);
777 	adapter->stopped = 1;
778 	em_dev_free_queues(dev);
779 	e1000_phy_hw_reset(hw);
780 	em_release_manageability(hw);
781 	em_hw_control_release(hw);
782 
783 	/* disable uio intr before callback unregister */
784 	rte_intr_disable(intr_handle);
785 	rte_intr_callback_unregister(intr_handle,
786 				     eth_em_interrupt_handler, dev);
787 
788 	return ret;
789 }
790 
791 static int
em_get_rx_buffer_size(struct e1000_hw * hw)792 em_get_rx_buffer_size(struct e1000_hw *hw)
793 {
794 	uint32_t rx_buf_size;
795 
796 	rx_buf_size = ((E1000_READ_REG(hw, E1000_PBA) & UINT16_MAX) << 10);
797 	return rx_buf_size;
798 }
799 
800 /*********************************************************************
801  *
802  *  Initialize the hardware
803  *
804  **********************************************************************/
805 static int
em_hardware_init(struct e1000_hw * hw)806 em_hardware_init(struct e1000_hw *hw)
807 {
808 	uint32_t rx_buf_size;
809 	int diag;
810 
811 	/* Issue a global reset */
812 	e1000_reset_hw(hw);
813 
814 	/* Let the firmware know the OS is in control */
815 	em_hw_control_acquire(hw);
816 
817 	/*
818 	 * These parameters control the automatic generation (Tx) and
819 	 * response (Rx) to Ethernet PAUSE frames.
820 	 * - High water mark should allow for at least two standard size (1518)
821 	 *   frames to be received after sending an XOFF.
822 	 * - Low water mark works best when it is very near the high water mark.
823 	 *   This allows the receiver to restart by sending XON when it has
824 	 *   drained a bit. Here we use an arbitrary value of 1500 which will
825 	 *   restart after one full frame is pulled from the buffer. There
826 	 *   could be several smaller frames in the buffer and if so they will
827 	 *   not trigger the XON until their total number reduces the buffer
828 	 *   by 1500.
829 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
830 	 */
831 	rx_buf_size = em_get_rx_buffer_size(hw);
832 
833 	hw->fc.high_water = rx_buf_size -
834 		PMD_ROUNDUP(RTE_ETHER_MAX_LEN * 2, 1024);
835 	hw->fc.low_water = hw->fc.high_water - 1500;
836 
837 	if (hw->mac.type == e1000_80003es2lan)
838 		hw->fc.pause_time = UINT16_MAX;
839 	else
840 		hw->fc.pause_time = EM_FC_PAUSE_TIME;
841 
842 	hw->fc.send_xon = 1;
843 
844 	/* Set Flow control, use the tunable location if sane */
845 	if (em_fc_setting <= e1000_fc_full)
846 		hw->fc.requested_mode = em_fc_setting;
847 	else
848 		hw->fc.requested_mode = e1000_fc_none;
849 
850 	/* Workaround: no TX flow ctrl for PCH */
851 	if (hw->mac.type == e1000_pchlan)
852 		hw->fc.requested_mode = e1000_fc_rx_pause;
853 
854 	/* Override - settings for PCH2LAN, ya its magic :) */
855 	if (hw->mac.type == e1000_pch2lan) {
856 		hw->fc.high_water = 0x5C20;
857 		hw->fc.low_water = 0x5048;
858 		hw->fc.pause_time = 0x0650;
859 		hw->fc.refresh_time = 0x0400;
860 	} else if (hw->mac.type == e1000_pch_lpt ||
861 		   hw->mac.type == e1000_pch_spt ||
862 		   hw->mac.type == e1000_pch_cnp) {
863 		hw->fc.requested_mode = e1000_fc_full;
864 	}
865 
866 	diag = e1000_init_hw(hw);
867 	if (diag < 0)
868 		return diag;
869 	e1000_check_for_link(hw);
870 	return 0;
871 }
872 
873 /* This function is based on em_update_stats_counters() in e1000/if_em.c */
874 static int
eth_em_stats_get(struct rte_eth_dev * dev,struct rte_eth_stats * rte_stats)875 eth_em_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
876 {
877 	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
878 	struct e1000_hw_stats *stats =
879 			E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
880 	int pause_frames;
881 
882 	if(hw->phy.media_type == e1000_media_type_copper ||
883 			(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
884 		stats->symerrs += E1000_READ_REG(hw,E1000_SYMERRS);
885 		stats->sec += E1000_READ_REG(hw, E1000_SEC);
886 	}
887 
888 	stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
889 	stats->mpc += E1000_READ_REG(hw, E1000_MPC);
890 	stats->scc += E1000_READ_REG(hw, E1000_SCC);
891 	stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
892 
893 	stats->mcc += E1000_READ_REG(hw, E1000_MCC);
894 	stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
895 	stats->colc += E1000_READ_REG(hw, E1000_COLC);
896 	stats->dc += E1000_READ_REG(hw, E1000_DC);
897 	stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
898 	stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
899 	stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
900 
901 	/*
902 	 * For watchdog management we need to know if we have been
903 	 * paused during the last interval, so capture that here.
904 	 */
905 	pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
906 	stats->xoffrxc += pause_frames;
907 	stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
908 	stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
909 	stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
910 	stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
911 	stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
912 	stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
913 	stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
914 	stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
915 	stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
916 	stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
917 	stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
918 	stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
919 
920 	/*
921 	 * For the 64-bit byte counters the low dword must be read first.
922 	 * Both registers clear on the read of the high dword.
923 	 */
924 
925 	stats->gorc += E1000_READ_REG(hw, E1000_GORCL);
926 	stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
927 	stats->gotc += E1000_READ_REG(hw, E1000_GOTCL);
928 	stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
929 
930 	stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
931 	stats->ruc += E1000_READ_REG(hw, E1000_RUC);
932 	stats->rfc += E1000_READ_REG(hw, E1000_RFC);
933 	stats->roc += E1000_READ_REG(hw, E1000_ROC);
934 	stats->rjc += E1000_READ_REG(hw, E1000_RJC);
935 
936 	stats->tor += E1000_READ_REG(hw, E1000_TORH);
937 	stats->tot += E1000_READ_REG(hw, E1000_TOTH);
938 
939 	stats->tpr += E1000_READ_REG(hw, E1000_TPR);
940 	stats->tpt += E1000_READ_REG(hw, E1000_TPT);
941 	stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
942 	stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
943 	stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
944 	stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
945 	stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
946 	stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
947 	stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
948 	stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
949 
950 	/* Interrupt Counts */
951 
952 	if (hw->mac.type >= e1000_82571) {
953 		stats->iac += E1000_READ_REG(hw, E1000_IAC);
954 		stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
955 		stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
956 		stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
957 		stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
958 		stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
959 		stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
960 		stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
961 		stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
962 	}
963 
964 	if (hw->mac.type >= e1000_82543) {
965 		stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
966 		stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
967 		stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
968 		stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
969 		stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
970 		stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
971 	}
972 
973 	if (rte_stats == NULL)
974 		return -EINVAL;
975 
976 	/* Rx Errors */
977 	rte_stats->imissed = stats->mpc;
978 	rte_stats->ierrors = stats->crcerrs +
979 	                     stats->rlec + stats->ruc + stats->roc +
980 	                     stats->rxerrc + stats->algnerrc + stats->cexterr;
981 
982 	/* Tx Errors */
983 	rte_stats->oerrors = stats->ecol + stats->latecol;
984 
985 	rte_stats->ipackets = stats->gprc;
986 	rte_stats->opackets = stats->gptc;
987 	rte_stats->ibytes   = stats->gorc;
988 	rte_stats->obytes   = stats->gotc;
989 	return 0;
990 }
991 
992 static int
eth_em_stats_reset(struct rte_eth_dev * dev)993 eth_em_stats_reset(struct rte_eth_dev *dev)
994 {
995 	struct e1000_hw_stats *hw_stats =
996 			E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
997 
998 	/* HW registers are cleared on read */
999 	eth_em_stats_get(dev, NULL);
1000 
1001 	/* Reset software totals */
1002 	memset(hw_stats, 0, sizeof(*hw_stats));
1003 
1004 	return 0;
1005 }
1006 
1007 static int
eth_em_rx_queue_intr_enable(struct rte_eth_dev * dev,__rte_unused uint16_t queue_id)1008 eth_em_rx_queue_intr_enable(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id)
1009 {
1010 	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1011 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1012 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1013 
1014 	em_rxq_intr_enable(hw);
1015 	rte_intr_ack(intr_handle);
1016 
1017 	return 0;
1018 }
1019 
1020 static int
eth_em_rx_queue_intr_disable(struct rte_eth_dev * dev,__rte_unused uint16_t queue_id)1021 eth_em_rx_queue_intr_disable(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id)
1022 {
1023 	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1024 
1025 	em_rxq_intr_disable(hw);
1026 
1027 	return 0;
1028 }
1029 
1030 uint32_t
em_get_max_pktlen(struct rte_eth_dev * dev)1031 em_get_max_pktlen(struct rte_eth_dev *dev)
1032 {
1033 	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1034 
1035 	switch (hw->mac.type) {
1036 	case e1000_82571:
1037 	case e1000_82572:
1038 	case e1000_ich9lan:
1039 	case e1000_ich10lan:
1040 	case e1000_pch2lan:
1041 	case e1000_pch_lpt:
1042 	case e1000_pch_spt:
1043 	case e1000_pch_cnp:
1044 	case e1000_82574:
1045 	case e1000_80003es2lan: /* 9K Jumbo Frame size */
1046 	case e1000_82583:
1047 		return 0x2412;
1048 	case e1000_pchlan:
1049 		return 0x1000;
1050 	/* Adapters that do not support jumbo frames */
1051 	case e1000_ich8lan:
1052 		return RTE_ETHER_MAX_LEN;
1053 	default:
1054 		return MAX_JUMBO_FRAME_SIZE;
1055 	}
1056 }
1057 
1058 static int
eth_em_infos_get(struct rte_eth_dev * dev,struct rte_eth_dev_info * dev_info)1059 eth_em_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
1060 {
1061 	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1062 
1063 	dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
1064 	dev_info->max_rx_pktlen = em_get_max_pktlen(dev);
1065 	dev_info->max_mac_addrs = hw->mac.rar_entry_count;
1066 
1067 	/*
1068 	 * Starting with 631xESB hw supports 2 TX/RX queues per port.
1069 	 * Unfortunatelly, all these nics have just one TX context.
1070 	 * So we have few choises for TX:
1071 	 * - Use just one TX queue.
1072 	 * - Allow cksum offload only for one TX queue.
1073 	 * - Don't allow TX cksum offload at all.
1074 	 * For now, option #1 was chosen.
1075 	 * To use second RX queue we have to use extended RX descriptor
1076 	 * (Multiple Receive Queues are mutually exclusive with UDP
1077 	 * fragmentation and are not supported when a legacy receive
1078 	 * descriptor format is used).
1079 	 * Which means separate RX routinies - as legacy nics (82540, 82545)
1080 	 * don't support extended RXD.
1081 	 * To avoid it we support just one RX queue for now (no RSS).
1082 	 */
1083 
1084 	dev_info->max_rx_queues = 1;
1085 	dev_info->max_tx_queues = 1;
1086 
1087 	dev_info->rx_queue_offload_capa = em_get_rx_queue_offloads_capa(dev);
1088 	dev_info->rx_offload_capa = em_get_rx_port_offloads_capa(dev) |
1089 				    dev_info->rx_queue_offload_capa;
1090 	dev_info->tx_queue_offload_capa = em_get_tx_queue_offloads_capa(dev);
1091 	dev_info->tx_offload_capa = em_get_tx_port_offloads_capa(dev) |
1092 				    dev_info->tx_queue_offload_capa;
1093 
1094 	dev_info->rx_desc_lim = (struct rte_eth_desc_lim) {
1095 		.nb_max = E1000_MAX_RING_DESC,
1096 		.nb_min = E1000_MIN_RING_DESC,
1097 		.nb_align = EM_RXD_ALIGN,
1098 	};
1099 
1100 	dev_info->tx_desc_lim = (struct rte_eth_desc_lim) {
1101 		.nb_max = E1000_MAX_RING_DESC,
1102 		.nb_min = E1000_MIN_RING_DESC,
1103 		.nb_align = EM_TXD_ALIGN,
1104 		.nb_seg_max = EM_TX_MAX_SEG,
1105 		.nb_mtu_seg_max = EM_TX_MAX_MTU_SEG,
1106 	};
1107 
1108 	dev_info->speed_capa = ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
1109 			ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
1110 			ETH_LINK_SPEED_1G;
1111 
1112 	/* Preferred queue parameters */
1113 	dev_info->default_rxportconf.nb_queues = 1;
1114 	dev_info->default_txportconf.nb_queues = 1;
1115 	dev_info->default_txportconf.ring_size = 256;
1116 	dev_info->default_rxportconf.ring_size = 256;
1117 
1118 	return 0;
1119 }
1120 
1121 /* return 0 means link status changed, -1 means not changed */
1122 static int
eth_em_link_update(struct rte_eth_dev * dev,int wait_to_complete)1123 eth_em_link_update(struct rte_eth_dev *dev, int wait_to_complete)
1124 {
1125 	struct e1000_hw *hw =
1126 		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1127 	struct rte_eth_link link;
1128 	int link_up, count;
1129 
1130 	link_up = 0;
1131 	hw->mac.get_link_status = 1;
1132 
1133 	/* possible wait-to-complete in up to 9 seconds */
1134 	for (count = 0; count < EM_LINK_UPDATE_CHECK_TIMEOUT; count ++) {
1135 		/* Read the real link status */
1136 		switch (hw->phy.media_type) {
1137 		case e1000_media_type_copper:
1138 			/* Do the work to read phy */
1139 			e1000_check_for_link(hw);
1140 			link_up = !hw->mac.get_link_status;
1141 			break;
1142 
1143 		case e1000_media_type_fiber:
1144 			e1000_check_for_link(hw);
1145 			link_up = (E1000_READ_REG(hw, E1000_STATUS) &
1146 					E1000_STATUS_LU);
1147 			break;
1148 
1149 		case e1000_media_type_internal_serdes:
1150 			e1000_check_for_link(hw);
1151 			link_up = hw->mac.serdes_has_link;
1152 			break;
1153 
1154 		default:
1155 			break;
1156 		}
1157 		if (link_up || wait_to_complete == 0)
1158 			break;
1159 		rte_delay_ms(EM_LINK_UPDATE_CHECK_INTERVAL);
1160 	}
1161 	memset(&link, 0, sizeof(link));
1162 
1163 	/* Now we check if a transition has happened */
1164 	if (link_up) {
1165 		uint16_t duplex, speed;
1166 		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1167 		link.link_duplex = (duplex == FULL_DUPLEX) ?
1168 				ETH_LINK_FULL_DUPLEX :
1169 				ETH_LINK_HALF_DUPLEX;
1170 		link.link_speed = speed;
1171 		link.link_status = ETH_LINK_UP;
1172 		link.link_autoneg = !(dev->data->dev_conf.link_speeds &
1173 				ETH_LINK_SPEED_FIXED);
1174 	} else {
1175 		link.link_speed = ETH_SPEED_NUM_NONE;
1176 		link.link_duplex = ETH_LINK_HALF_DUPLEX;
1177 		link.link_status = ETH_LINK_DOWN;
1178 		link.link_autoneg = ETH_LINK_FIXED;
1179 	}
1180 
1181 	return rte_eth_linkstatus_set(dev, &link);
1182 }
1183 
1184 /*
1185  * em_hw_control_acquire sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
1186  * For ASF and Pass Through versions of f/w this means
1187  * that the driver is loaded. For AMT version type f/w
1188  * this means that the network i/f is open.
1189  */
1190 static void
em_hw_control_acquire(struct e1000_hw * hw)1191 em_hw_control_acquire(struct e1000_hw *hw)
1192 {
1193 	uint32_t ctrl_ext, swsm;
1194 
1195 	/* Let firmware know the driver has taken over */
1196 	if (hw->mac.type == e1000_82573) {
1197 		swsm = E1000_READ_REG(hw, E1000_SWSM);
1198 		E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_DRV_LOAD);
1199 
1200 	} else {
1201 		ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1202 		E1000_WRITE_REG(hw, E1000_CTRL_EXT,
1203 			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1204 	}
1205 }
1206 
1207 /*
1208  * em_hw_control_release resets {CTRL_EXTT|FWSM}:DRV_LOAD bit.
1209  * For ASF and Pass Through versions of f/w this means that the
1210  * driver is no longer loaded. For AMT versions of the
1211  * f/w this means that the network i/f is closed.
1212  */
1213 static void
em_hw_control_release(struct e1000_hw * hw)1214 em_hw_control_release(struct e1000_hw *hw)
1215 {
1216 	uint32_t ctrl_ext, swsm;
1217 
1218 	/* Let firmware taken over control of h/w */
1219 	if (hw->mac.type == e1000_82573) {
1220 		swsm = E1000_READ_REG(hw, E1000_SWSM);
1221 		E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
1222 	} else {
1223 		ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1224 		E1000_WRITE_REG(hw, E1000_CTRL_EXT,
1225 			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1226 	}
1227 }
1228 
1229 /*
1230  * Bit of a misnomer, what this really means is
1231  * to enable OS management of the system... aka
1232  * to disable special hardware management features.
1233  */
1234 static void
em_init_manageability(struct e1000_hw * hw)1235 em_init_manageability(struct e1000_hw *hw)
1236 {
1237 	if (e1000_enable_mng_pass_thru(hw)) {
1238 		uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H);
1239 		uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
1240 
1241 		/* disable hardware interception of ARP */
1242 		manc &= ~(E1000_MANC_ARP_EN);
1243 
1244 		/* enable receiving management packets to the host */
1245 		manc |= E1000_MANC_EN_MNG2HOST;
1246 		manc2h |= 1 << 5;  /* Mng Port 623 */
1247 		manc2h |= 1 << 6;  /* Mng Port 664 */
1248 		E1000_WRITE_REG(hw, E1000_MANC2H, manc2h);
1249 		E1000_WRITE_REG(hw, E1000_MANC, manc);
1250 	}
1251 }
1252 
1253 /*
1254  * Give control back to hardware management
1255  * controller if there is one.
1256  */
1257 static void
em_release_manageability(struct e1000_hw * hw)1258 em_release_manageability(struct e1000_hw *hw)
1259 {
1260 	uint32_t manc;
1261 
1262 	if (e1000_enable_mng_pass_thru(hw)) {
1263 		manc = E1000_READ_REG(hw, E1000_MANC);
1264 
1265 		/* re-enable hardware interception of ARP */
1266 		manc |= E1000_MANC_ARP_EN;
1267 		manc &= ~E1000_MANC_EN_MNG2HOST;
1268 
1269 		E1000_WRITE_REG(hw, E1000_MANC, manc);
1270 	}
1271 }
1272 
1273 static int
eth_em_promiscuous_enable(struct rte_eth_dev * dev)1274 eth_em_promiscuous_enable(struct rte_eth_dev *dev)
1275 {
1276 	struct e1000_hw *hw =
1277 		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1278 	uint32_t rctl;
1279 
1280 	rctl = E1000_READ_REG(hw, E1000_RCTL);
1281 	rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1282 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1283 
1284 	return 0;
1285 }
1286 
1287 static int
eth_em_promiscuous_disable(struct rte_eth_dev * dev)1288 eth_em_promiscuous_disable(struct rte_eth_dev *dev)
1289 {
1290 	struct e1000_hw *hw =
1291 		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1292 	uint32_t rctl;
1293 
1294 	rctl = E1000_READ_REG(hw, E1000_RCTL);
1295 	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_SBP);
1296 	if (dev->data->all_multicast == 1)
1297 		rctl |= E1000_RCTL_MPE;
1298 	else
1299 		rctl &= (~E1000_RCTL_MPE);
1300 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1301 
1302 	return 0;
1303 }
1304 
1305 static int
eth_em_allmulticast_enable(struct rte_eth_dev * dev)1306 eth_em_allmulticast_enable(struct rte_eth_dev *dev)
1307 {
1308 	struct e1000_hw *hw =
1309 		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1310 	uint32_t rctl;
1311 
1312 	rctl = E1000_READ_REG(hw, E1000_RCTL);
1313 	rctl |= E1000_RCTL_MPE;
1314 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1315 
1316 	return 0;
1317 }
1318 
1319 static int
eth_em_allmulticast_disable(struct rte_eth_dev * dev)1320 eth_em_allmulticast_disable(struct rte_eth_dev *dev)
1321 {
1322 	struct e1000_hw *hw =
1323 		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1324 	uint32_t rctl;
1325 
1326 	if (dev->data->promiscuous == 1)
1327 		return 0; /* must remain in all_multicast mode */
1328 	rctl = E1000_READ_REG(hw, E1000_RCTL);
1329 	rctl &= (~E1000_RCTL_MPE);
1330 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1331 
1332 	return 0;
1333 }
1334 
1335 static int
eth_em_vlan_filter_set(struct rte_eth_dev * dev,uint16_t vlan_id,int on)1336 eth_em_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1337 {
1338 	struct e1000_hw *hw =
1339 		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1340 	struct e1000_vfta * shadow_vfta =
1341 		E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
1342 	uint32_t vfta;
1343 	uint32_t vid_idx;
1344 	uint32_t vid_bit;
1345 
1346 	vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) &
1347 			      E1000_VFTA_ENTRY_MASK);
1348 	vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
1349 	vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
1350 	if (on)
1351 		vfta |= vid_bit;
1352 	else
1353 		vfta &= ~vid_bit;
1354 	E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
1355 
1356 	/* update local VFTA copy */
1357 	shadow_vfta->vfta[vid_idx] = vfta;
1358 
1359 	return 0;
1360 }
1361 
1362 static void
em_vlan_hw_filter_disable(struct rte_eth_dev * dev)1363 em_vlan_hw_filter_disable(struct rte_eth_dev *dev)
1364 {
1365 	struct e1000_hw *hw =
1366 		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1367 	uint32_t reg;
1368 
1369 	/* Filter Table Disable */
1370 	reg = E1000_READ_REG(hw, E1000_RCTL);
1371 	reg &= ~E1000_RCTL_CFIEN;
1372 	reg &= ~E1000_RCTL_VFE;
1373 	E1000_WRITE_REG(hw, E1000_RCTL, reg);
1374 }
1375 
1376 static void
em_vlan_hw_filter_enable(struct rte_eth_dev * dev)1377 em_vlan_hw_filter_enable(struct rte_eth_dev *dev)
1378 {
1379 	struct e1000_hw *hw =
1380 		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1381 	struct e1000_vfta * shadow_vfta =
1382 		E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
1383 	uint32_t reg;
1384 	int i;
1385 
1386 	/* Filter Table Enable, CFI not used for packet acceptance */
1387 	reg = E1000_READ_REG(hw, E1000_RCTL);
1388 	reg &= ~E1000_RCTL_CFIEN;
1389 	reg |= E1000_RCTL_VFE;
1390 	E1000_WRITE_REG(hw, E1000_RCTL, reg);
1391 
1392 	/* restore vfta from local copy */
1393 	for (i = 0; i < IGB_VFTA_SIZE; i++)
1394 		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]);
1395 }
1396 
1397 static void
em_vlan_hw_strip_disable(struct rte_eth_dev * dev)1398 em_vlan_hw_strip_disable(struct rte_eth_dev *dev)
1399 {
1400 	struct e1000_hw *hw =
1401 		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1402 	uint32_t reg;
1403 
1404 	/* VLAN Mode Disable */
1405 	reg = E1000_READ_REG(hw, E1000_CTRL);
1406 	reg &= ~E1000_CTRL_VME;
1407 	E1000_WRITE_REG(hw, E1000_CTRL, reg);
1408 
1409 }
1410 
1411 static void
em_vlan_hw_strip_enable(struct rte_eth_dev * dev)1412 em_vlan_hw_strip_enable(struct rte_eth_dev *dev)
1413 {
1414 	struct e1000_hw *hw =
1415 		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1416 	uint32_t reg;
1417 
1418 	/* VLAN Mode Enable */
1419 	reg = E1000_READ_REG(hw, E1000_CTRL);
1420 	reg |= E1000_CTRL_VME;
1421 	E1000_WRITE_REG(hw, E1000_CTRL, reg);
1422 }
1423 
1424 static int
eth_em_vlan_offload_set(struct rte_eth_dev * dev,int mask)1425 eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1426 {
1427 	struct rte_eth_rxmode *rxmode;
1428 
1429 	rxmode = &dev->data->dev_conf.rxmode;
1430 	if(mask & ETH_VLAN_STRIP_MASK){
1431 		if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
1432 			em_vlan_hw_strip_enable(dev);
1433 		else
1434 			em_vlan_hw_strip_disable(dev);
1435 	}
1436 
1437 	if(mask & ETH_VLAN_FILTER_MASK){
1438 		if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_FILTER)
1439 			em_vlan_hw_filter_enable(dev);
1440 		else
1441 			em_vlan_hw_filter_disable(dev);
1442 	}
1443 
1444 	return 0;
1445 }
1446 
1447 /*
1448  * It enables the interrupt mask and then enable the interrupt.
1449  *
1450  * @param dev
1451  *  Pointer to struct rte_eth_dev.
1452  *
1453  * @return
1454  *  - On success, zero.
1455  *  - On failure, a negative value.
1456  */
1457 static int
eth_em_interrupt_setup(struct rte_eth_dev * dev)1458 eth_em_interrupt_setup(struct rte_eth_dev *dev)
1459 {
1460 	uint32_t regval;
1461 	struct e1000_hw *hw =
1462 		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1463 
1464 	/* clear interrupt */
1465 	E1000_READ_REG(hw, E1000_ICR);
1466 	regval = E1000_READ_REG(hw, E1000_IMS);
1467 	E1000_WRITE_REG(hw, E1000_IMS,
1468 			regval | E1000_ICR_LSC | E1000_ICR_OTHER);
1469 	return 0;
1470 }
1471 
1472 /*
1473  * It clears the interrupt causes and enables the interrupt.
1474  * It will be called once only during nic initialized.
1475  *
1476  * @param dev
1477  *  Pointer to struct rte_eth_dev.
1478  *
1479  * @return
1480  *  - On success, zero.
1481  *  - On failure, a negative value.
1482  */
1483 static int
eth_em_rxq_interrupt_setup(struct rte_eth_dev * dev)1484 eth_em_rxq_interrupt_setup(struct rte_eth_dev *dev)
1485 {
1486 	struct e1000_hw *hw =
1487 	E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1488 
1489 	E1000_READ_REG(hw, E1000_ICR);
1490 	em_rxq_intr_enable(hw);
1491 	return 0;
1492 }
1493 
1494 /*
1495  * It enable receive packet interrupt.
1496  * @param hw
1497  * Pointer to struct e1000_hw
1498  *
1499  * @return
1500  */
1501 static void
em_rxq_intr_enable(struct e1000_hw * hw)1502 em_rxq_intr_enable(struct e1000_hw *hw)
1503 {
1504 	E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_RXT0);
1505 	E1000_WRITE_FLUSH(hw);
1506 }
1507 
1508 /*
1509  * It disabled lsc interrupt.
1510  * @param hw
1511  * Pointer to struct e1000_hw
1512  *
1513  * @return
1514  */
1515 static void
em_lsc_intr_disable(struct e1000_hw * hw)1516 em_lsc_intr_disable(struct e1000_hw *hw)
1517 {
1518 	E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_LSC | E1000_IMS_OTHER);
1519 	E1000_WRITE_FLUSH(hw);
1520 }
1521 
1522 /*
1523  * It disabled receive packet interrupt.
1524  * @param hw
1525  * Pointer to struct e1000_hw
1526  *
1527  * @return
1528  */
1529 static void
em_rxq_intr_disable(struct e1000_hw * hw)1530 em_rxq_intr_disable(struct e1000_hw *hw)
1531 {
1532 	E1000_READ_REG(hw, E1000_ICR);
1533 	E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_RXT0);
1534 	E1000_WRITE_FLUSH(hw);
1535 }
1536 
1537 /*
1538  * It reads ICR and gets interrupt causes, check it and set a bit flag
1539  * to update link status.
1540  *
1541  * @param dev
1542  *  Pointer to struct rte_eth_dev.
1543  *
1544  * @return
1545  *  - On success, zero.
1546  *  - On failure, a negative value.
1547  */
1548 static int
eth_em_interrupt_get_status(struct rte_eth_dev * dev)1549 eth_em_interrupt_get_status(struct rte_eth_dev *dev)
1550 {
1551 	uint32_t icr;
1552 	struct e1000_hw *hw =
1553 		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1554 	struct e1000_interrupt *intr =
1555 		E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1556 
1557 	/* read-on-clear nic registers here */
1558 	icr = E1000_READ_REG(hw, E1000_ICR);
1559 	if (icr & E1000_ICR_LSC) {
1560 		intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
1561 	}
1562 
1563 	return 0;
1564 }
1565 
1566 /*
1567  * It executes link_update after knowing an interrupt is prsent.
1568  *
1569  * @param dev
1570  *  Pointer to struct rte_eth_dev.
1571  *
1572  * @return
1573  *  - On success, zero.
1574  *  - On failure, a negative value.
1575  */
1576 static int
eth_em_interrupt_action(struct rte_eth_dev * dev,struct rte_intr_handle * intr_handle)1577 eth_em_interrupt_action(struct rte_eth_dev *dev,
1578 			struct rte_intr_handle *intr_handle)
1579 {
1580 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1581 	struct e1000_hw *hw =
1582 		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1583 	struct e1000_interrupt *intr =
1584 		E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1585 	struct rte_eth_link link;
1586 	int ret;
1587 
1588 	if (!(intr->flags & E1000_FLAG_NEED_LINK_UPDATE))
1589 		return -1;
1590 
1591 	intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE;
1592 	rte_intr_ack(intr_handle);
1593 
1594 	/* set get_link_status to check register later */
1595 	hw->mac.get_link_status = 1;
1596 	ret = eth_em_link_update(dev, 0);
1597 
1598 	/* check if link has changed */
1599 	if (ret < 0)
1600 		return 0;
1601 
1602 	rte_eth_linkstatus_get(dev, &link);
1603 
1604 	if (link.link_status) {
1605 		PMD_INIT_LOG(INFO, " Port %d: Link Up - speed %u Mbps - %s",
1606 			     dev->data->port_id, link.link_speed,
1607 			     link.link_duplex == ETH_LINK_FULL_DUPLEX ?
1608 			     "full-duplex" : "half-duplex");
1609 	} else {
1610 		PMD_INIT_LOG(INFO, " Port %d: Link Down", dev->data->port_id);
1611 	}
1612 	PMD_INIT_LOG(DEBUG, "PCI Address: " PCI_PRI_FMT,
1613 		     pci_dev->addr.domain, pci_dev->addr.bus,
1614 		     pci_dev->addr.devid, pci_dev->addr.function);
1615 
1616 	return 0;
1617 }
1618 
1619 /**
1620  * Interrupt handler which shall be registered at first.
1621  *
1622  * @param handle
1623  *  Pointer to interrupt handle.
1624  * @param param
1625  *  The address of parameter (struct rte_eth_dev *) regsitered before.
1626  *
1627  * @return
1628  *  void
1629  */
1630 static void
eth_em_interrupt_handler(void * param)1631 eth_em_interrupt_handler(void *param)
1632 {
1633 	struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1634 
1635 	eth_em_interrupt_get_status(dev);
1636 	eth_em_interrupt_action(dev, dev->intr_handle);
1637 	rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC, NULL);
1638 }
1639 
1640 static int
eth_em_led_on(struct rte_eth_dev * dev)1641 eth_em_led_on(struct rte_eth_dev *dev)
1642 {
1643 	struct e1000_hw *hw;
1644 
1645 	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1646 	return e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
1647 }
1648 
1649 static int
eth_em_led_off(struct rte_eth_dev * dev)1650 eth_em_led_off(struct rte_eth_dev *dev)
1651 {
1652 	struct e1000_hw *hw;
1653 
1654 	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1655 	return e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
1656 }
1657 
1658 static int
eth_em_flow_ctrl_get(struct rte_eth_dev * dev,struct rte_eth_fc_conf * fc_conf)1659 eth_em_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
1660 {
1661 	struct e1000_hw *hw;
1662 	uint32_t ctrl;
1663 	int tx_pause;
1664 	int rx_pause;
1665 
1666 	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1667 	fc_conf->pause_time = hw->fc.pause_time;
1668 	fc_conf->high_water = hw->fc.high_water;
1669 	fc_conf->low_water = hw->fc.low_water;
1670 	fc_conf->send_xon = hw->fc.send_xon;
1671 	fc_conf->autoneg = hw->mac.autoneg;
1672 
1673 	/*
1674 	 * Return rx_pause and tx_pause status according to actual setting of
1675 	 * the TFCE and RFCE bits in the CTRL register.
1676 	 */
1677 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
1678 	if (ctrl & E1000_CTRL_TFCE)
1679 		tx_pause = 1;
1680 	else
1681 		tx_pause = 0;
1682 
1683 	if (ctrl & E1000_CTRL_RFCE)
1684 		rx_pause = 1;
1685 	else
1686 		rx_pause = 0;
1687 
1688 	if (rx_pause && tx_pause)
1689 		fc_conf->mode = RTE_FC_FULL;
1690 	else if (rx_pause)
1691 		fc_conf->mode = RTE_FC_RX_PAUSE;
1692 	else if (tx_pause)
1693 		fc_conf->mode = RTE_FC_TX_PAUSE;
1694 	else
1695 		fc_conf->mode = RTE_FC_NONE;
1696 
1697 	return 0;
1698 }
1699 
1700 static int
eth_em_flow_ctrl_set(struct rte_eth_dev * dev,struct rte_eth_fc_conf * fc_conf)1701 eth_em_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
1702 {
1703 	struct e1000_hw *hw;
1704 	int err;
1705 	enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = {
1706 		e1000_fc_none,
1707 		e1000_fc_rx_pause,
1708 		e1000_fc_tx_pause,
1709 		e1000_fc_full
1710 	};
1711 	uint32_t rx_buf_size;
1712 	uint32_t max_high_water;
1713 	uint32_t rctl;
1714 
1715 	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1716 	if (fc_conf->autoneg != hw->mac.autoneg)
1717 		return -ENOTSUP;
1718 	rx_buf_size = em_get_rx_buffer_size(hw);
1719 	PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x", rx_buf_size);
1720 
1721 	/* At least reserve one Ethernet frame for watermark */
1722 	max_high_water = rx_buf_size - RTE_ETHER_MAX_LEN;
1723 	if ((fc_conf->high_water > max_high_water) ||
1724 	    (fc_conf->high_water < fc_conf->low_water)) {
1725 		PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value");
1726 		PMD_INIT_LOG(ERR, "high water must <= 0x%x", max_high_water);
1727 		return -EINVAL;
1728 	}
1729 
1730 	hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode];
1731 	hw->fc.pause_time     = fc_conf->pause_time;
1732 	hw->fc.high_water     = fc_conf->high_water;
1733 	hw->fc.low_water      = fc_conf->low_water;
1734 	hw->fc.send_xon	      = fc_conf->send_xon;
1735 
1736 	err = e1000_setup_link_generic(hw);
1737 	if (err == E1000_SUCCESS) {
1738 
1739 		/* check if we want to forward MAC frames - driver doesn't have native
1740 		 * capability to do that, so we'll write the registers ourselves */
1741 
1742 		rctl = E1000_READ_REG(hw, E1000_RCTL);
1743 
1744 		/* set or clear MFLCN.PMCF bit depending on configuration */
1745 		if (fc_conf->mac_ctrl_frame_fwd != 0)
1746 			rctl |= E1000_RCTL_PMCF;
1747 		else
1748 			rctl &= ~E1000_RCTL_PMCF;
1749 
1750 		E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1751 		E1000_WRITE_FLUSH(hw);
1752 
1753 		return 0;
1754 	}
1755 
1756 	PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x", err);
1757 	return -EIO;
1758 }
1759 
1760 static int
eth_em_rar_set(struct rte_eth_dev * dev,struct rte_ether_addr * mac_addr,uint32_t index,__rte_unused uint32_t pool)1761 eth_em_rar_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
1762 		uint32_t index, __rte_unused uint32_t pool)
1763 {
1764 	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1765 
1766 	return e1000_rar_set(hw, mac_addr->addr_bytes, index);
1767 }
1768 
1769 static void
eth_em_rar_clear(struct rte_eth_dev * dev,uint32_t index)1770 eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index)
1771 {
1772 	uint8_t addr[RTE_ETHER_ADDR_LEN];
1773 	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1774 
1775 	memset(addr, 0, sizeof(addr));
1776 
1777 	e1000_rar_set(hw, addr, index);
1778 }
1779 
1780 static int
eth_em_default_mac_addr_set(struct rte_eth_dev * dev,struct rte_ether_addr * addr)1781 eth_em_default_mac_addr_set(struct rte_eth_dev *dev,
1782 			    struct rte_ether_addr *addr)
1783 {
1784 	eth_em_rar_clear(dev, 0);
1785 
1786 	return eth_em_rar_set(dev, (void *)addr, 0, 0);
1787 }
1788 
1789 static int
eth_em_mtu_set(struct rte_eth_dev * dev,uint16_t mtu)1790 eth_em_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1791 {
1792 	struct rte_eth_dev_info dev_info;
1793 	struct e1000_hw *hw;
1794 	uint32_t frame_size;
1795 	uint32_t rctl;
1796 	int ret;
1797 
1798 	ret = eth_em_infos_get(dev, &dev_info);
1799 	if (ret != 0)
1800 		return ret;
1801 
1802 	frame_size = mtu + RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN +
1803 		VLAN_TAG_SIZE;
1804 
1805 	/* check that mtu is within the allowed range */
1806 	if (mtu < RTE_ETHER_MIN_MTU || frame_size > dev_info.max_rx_pktlen)
1807 		return -EINVAL;
1808 
1809 	/* refuse mtu that requires the support of scattered packets when this
1810 	 * feature has not been enabled before. */
1811 	if (!dev->data->scattered_rx &&
1812 	    frame_size > dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM)
1813 		return -EINVAL;
1814 
1815 	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1816 	rctl = E1000_READ_REG(hw, E1000_RCTL);
1817 
1818 	/* switch to jumbo mode if needed */
1819 	if (frame_size > RTE_ETHER_MAX_LEN) {
1820 		dev->data->dev_conf.rxmode.offloads |=
1821 			DEV_RX_OFFLOAD_JUMBO_FRAME;
1822 		rctl |= E1000_RCTL_LPE;
1823 	} else {
1824 		dev->data->dev_conf.rxmode.offloads &=
1825 			~DEV_RX_OFFLOAD_JUMBO_FRAME;
1826 		rctl &= ~E1000_RCTL_LPE;
1827 	}
1828 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1829 
1830 	/* update max frame size */
1831 	dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
1832 	return 0;
1833 }
1834 
1835 static int
eth_em_set_mc_addr_list(struct rte_eth_dev * dev,struct rte_ether_addr * mc_addr_set,uint32_t nb_mc_addr)1836 eth_em_set_mc_addr_list(struct rte_eth_dev *dev,
1837 			struct rte_ether_addr *mc_addr_set,
1838 			uint32_t nb_mc_addr)
1839 {
1840 	struct e1000_hw *hw;
1841 
1842 	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1843 	e1000_update_mc_addr_list(hw, (u8 *)mc_addr_set, nb_mc_addr);
1844 	return 0;
1845 }
1846 
1847 RTE_PMD_REGISTER_PCI(net_e1000_em, rte_em_pmd);
1848 RTE_PMD_REGISTER_PCI_TABLE(net_e1000_em, pci_id_em_map);
1849 RTE_PMD_REGISTER_KMOD_DEP(net_e1000_em, "* igb_uio | uio_pci_generic | vfio-pci");
1850 
1851 /* see e1000_logs.c */
RTE_INIT(igb_init_log)1852 RTE_INIT(igb_init_log)
1853 {
1854 	e1000_igb_init_log();
1855 }
1856