1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Bitcode writer implementation.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/Bitcode/BitcodeWriter.h"
14 #include "ValueEnumerator.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallString.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringMap.h"
27 #include "llvm/ADT/StringRef.h"
28 #include "llvm/ADT/Triple.h"
29 #include "llvm/Bitcode/BitcodeCommon.h"
30 #include "llvm/Bitcode/BitcodeReader.h"
31 #include "llvm/Bitcode/LLVMBitCodes.h"
32 #include "llvm/Bitstream/BitCodes.h"
33 #include "llvm/Bitstream/BitstreamWriter.h"
34 #include "llvm/Config/llvm-config.h"
35 #include "llvm/IR/Attributes.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/Comdat.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/DebugInfoMetadata.h"
41 #include "llvm/IR/DebugLoc.h"
42 #include "llvm/IR/DerivedTypes.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/GlobalAlias.h"
45 #include "llvm/IR/GlobalIFunc.h"
46 #include "llvm/IR/GlobalObject.h"
47 #include "llvm/IR/GlobalValue.h"
48 #include "llvm/IR/GlobalVariable.h"
49 #include "llvm/IR/InlineAsm.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/Metadata.h"
55 #include "llvm/IR/Module.h"
56 #include "llvm/IR/ModuleSummaryIndex.h"
57 #include "llvm/IR/Operator.h"
58 #include "llvm/IR/Type.h"
59 #include "llvm/IR/UseListOrder.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/ValueSymbolTable.h"
62 #include "llvm/MC/StringTableBuilder.h"
63 #include "llvm/MC/TargetRegistry.h"
64 #include "llvm/Object/IRSymtab.h"
65 #include "llvm/Support/AtomicOrdering.h"
66 #include "llvm/Support/Casting.h"
67 #include "llvm/Support/CommandLine.h"
68 #include "llvm/Support/Endian.h"
69 #include "llvm/Support/Error.h"
70 #include "llvm/Support/ErrorHandling.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/SHA1.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <iterator>
79 #include <map>
80 #include <memory>
81 #include <string>
82 #include <utility>
83 #include <vector>
84
85 using namespace llvm;
86
87 static cl::opt<unsigned>
88 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25),
89 cl::desc("Number of metadatas above which we emit an index "
90 "to enable lazy-loading"));
91 static cl::opt<uint32_t> FlushThreshold(
92 "bitcode-flush-threshold", cl::Hidden, cl::init(512),
93 cl::desc("The threshold (unit M) for flushing LLVM bitcode."));
94
95 static cl::opt<bool> WriteRelBFToSummary(
96 "write-relbf-to-summary", cl::Hidden, cl::init(false),
97 cl::desc("Write relative block frequency to function summary "));
98
99 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold;
100
101 namespace {
102
103 /// These are manifest constants used by the bitcode writer. They do not need to
104 /// be kept in sync with the reader, but need to be consistent within this file.
105 enum {
106 // VALUE_SYMTAB_BLOCK abbrev id's.
107 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
108 VST_ENTRY_7_ABBREV,
109 VST_ENTRY_6_ABBREV,
110 VST_BBENTRY_6_ABBREV,
111
112 // CONSTANTS_BLOCK abbrev id's.
113 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
114 CONSTANTS_INTEGER_ABBREV,
115 CONSTANTS_CE_CAST_Abbrev,
116 CONSTANTS_NULL_Abbrev,
117
118 // FUNCTION_BLOCK abbrev id's.
119 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
120 FUNCTION_INST_UNOP_ABBREV,
121 FUNCTION_INST_UNOP_FLAGS_ABBREV,
122 FUNCTION_INST_BINOP_ABBREV,
123 FUNCTION_INST_BINOP_FLAGS_ABBREV,
124 FUNCTION_INST_CAST_ABBREV,
125 FUNCTION_INST_RET_VOID_ABBREV,
126 FUNCTION_INST_RET_VAL_ABBREV,
127 FUNCTION_INST_UNREACHABLE_ABBREV,
128 FUNCTION_INST_GEP_ABBREV,
129 };
130
131 /// Abstract class to manage the bitcode writing, subclassed for each bitcode
132 /// file type.
133 class BitcodeWriterBase {
134 protected:
135 /// The stream created and owned by the client.
136 BitstreamWriter &Stream;
137
138 StringTableBuilder &StrtabBuilder;
139
140 public:
141 /// Constructs a BitcodeWriterBase object that writes to the provided
142 /// \p Stream.
BitcodeWriterBase(BitstreamWriter & Stream,StringTableBuilder & StrtabBuilder)143 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder)
144 : Stream(Stream), StrtabBuilder(StrtabBuilder) {}
145
146 protected:
147 void writeModuleVersion();
148 };
149
writeModuleVersion()150 void BitcodeWriterBase::writeModuleVersion() {
151 // VERSION: [version#]
152 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2});
153 }
154
155 /// Base class to manage the module bitcode writing, currently subclassed for
156 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter.
157 class ModuleBitcodeWriterBase : public BitcodeWriterBase {
158 protected:
159 /// The Module to write to bitcode.
160 const Module &M;
161
162 /// Enumerates ids for all values in the module.
163 ValueEnumerator VE;
164
165 /// Optional per-module index to write for ThinLTO.
166 const ModuleSummaryIndex *Index;
167
168 /// Map that holds the correspondence between GUIDs in the summary index,
169 /// that came from indirect call profiles, and a value id generated by this
170 /// class to use in the VST and summary block records.
171 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
172
173 /// Tracks the last value id recorded in the GUIDToValueMap.
174 unsigned GlobalValueId;
175
176 /// Saves the offset of the VSTOffset record that must eventually be
177 /// backpatched with the offset of the actual VST.
178 uint64_t VSTOffsetPlaceholder = 0;
179
180 public:
181 /// Constructs a ModuleBitcodeWriterBase object for the given Module,
182 /// writing to the provided \p Buffer.
ModuleBitcodeWriterBase(const Module & M,StringTableBuilder & StrtabBuilder,BitstreamWriter & Stream,bool ShouldPreserveUseListOrder,const ModuleSummaryIndex * Index)183 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder,
184 BitstreamWriter &Stream,
185 bool ShouldPreserveUseListOrder,
186 const ModuleSummaryIndex *Index)
187 : BitcodeWriterBase(Stream, StrtabBuilder), M(M),
188 VE(M, ShouldPreserveUseListOrder), Index(Index) {
189 // Assign ValueIds to any callee values in the index that came from
190 // indirect call profiles and were recorded as a GUID not a Value*
191 // (which would have been assigned an ID by the ValueEnumerator).
192 // The starting ValueId is just after the number of values in the
193 // ValueEnumerator, so that they can be emitted in the VST.
194 GlobalValueId = VE.getValues().size();
195 if (!Index)
196 return;
197 for (const auto &GUIDSummaryLists : *Index)
198 // Examine all summaries for this GUID.
199 for (auto &Summary : GUIDSummaryLists.second.SummaryList)
200 if (auto FS = dyn_cast<FunctionSummary>(Summary.get()))
201 // For each call in the function summary, see if the call
202 // is to a GUID (which means it is for an indirect call,
203 // otherwise we would have a Value for it). If so, synthesize
204 // a value id.
205 for (auto &CallEdge : FS->calls())
206 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue())
207 assignValueId(CallEdge.first.getGUID());
208 }
209
210 protected:
211 void writePerModuleGlobalValueSummary();
212
213 private:
214 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
215 GlobalValueSummary *Summary,
216 unsigned ValueID,
217 unsigned FSCallsAbbrev,
218 unsigned FSCallsProfileAbbrev,
219 const Function &F);
220 void writeModuleLevelReferences(const GlobalVariable &V,
221 SmallVector<uint64_t, 64> &NameVals,
222 unsigned FSModRefsAbbrev,
223 unsigned FSModVTableRefsAbbrev);
224
assignValueId(GlobalValue::GUID ValGUID)225 void assignValueId(GlobalValue::GUID ValGUID) {
226 GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
227 }
228
getValueId(GlobalValue::GUID ValGUID)229 unsigned getValueId(GlobalValue::GUID ValGUID) {
230 const auto &VMI = GUIDToValueIdMap.find(ValGUID);
231 // Expect that any GUID value had a value Id assigned by an
232 // earlier call to assignValueId.
233 assert(VMI != GUIDToValueIdMap.end() &&
234 "GUID does not have assigned value Id");
235 return VMI->second;
236 }
237
238 // Helper to get the valueId for the type of value recorded in VI.
getValueId(ValueInfo VI)239 unsigned getValueId(ValueInfo VI) {
240 if (!VI.haveGVs() || !VI.getValue())
241 return getValueId(VI.getGUID());
242 return VE.getValueID(VI.getValue());
243 }
244
valueIds()245 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
246 };
247
248 /// Class to manage the bitcode writing for a module.
249 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase {
250 /// Pointer to the buffer allocated by caller for bitcode writing.
251 const SmallVectorImpl<char> &Buffer;
252
253 /// True if a module hash record should be written.
254 bool GenerateHash;
255
256 /// If non-null, when GenerateHash is true, the resulting hash is written
257 /// into ModHash.
258 ModuleHash *ModHash;
259
260 SHA1 Hasher;
261
262 /// The start bit of the identification block.
263 uint64_t BitcodeStartBit;
264
265 public:
266 /// Constructs a ModuleBitcodeWriter object for the given Module,
267 /// writing to the provided \p Buffer.
ModuleBitcodeWriter(const Module & M,SmallVectorImpl<char> & Buffer,StringTableBuilder & StrtabBuilder,BitstreamWriter & Stream,bool ShouldPreserveUseListOrder,const ModuleSummaryIndex * Index,bool GenerateHash,ModuleHash * ModHash=nullptr)268 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer,
269 StringTableBuilder &StrtabBuilder,
270 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder,
271 const ModuleSummaryIndex *Index, bool GenerateHash,
272 ModuleHash *ModHash = nullptr)
273 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
274 ShouldPreserveUseListOrder, Index),
275 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash),
276 BitcodeStartBit(Stream.GetCurrentBitNo()) {}
277
278 /// Emit the current module to the bitstream.
279 void write();
280
281 private:
bitcodeStartBit()282 uint64_t bitcodeStartBit() { return BitcodeStartBit; }
283
284 size_t addToStrtab(StringRef Str);
285
286 void writeAttributeGroupTable();
287 void writeAttributeTable();
288 void writeTypeTable();
289 void writeComdats();
290 void writeValueSymbolTableForwardDecl();
291 void writeModuleInfo();
292 void writeValueAsMetadata(const ValueAsMetadata *MD,
293 SmallVectorImpl<uint64_t> &Record);
294 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record,
295 unsigned Abbrev);
296 unsigned createDILocationAbbrev();
297 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record,
298 unsigned &Abbrev);
299 unsigned createGenericDINodeAbbrev();
300 void writeGenericDINode(const GenericDINode *N,
301 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev);
302 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record,
303 unsigned Abbrev);
304 void writeDIGenericSubrange(const DIGenericSubrange *N,
305 SmallVectorImpl<uint64_t> &Record,
306 unsigned Abbrev);
307 void writeDIEnumerator(const DIEnumerator *N,
308 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
309 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record,
310 unsigned Abbrev);
311 void writeDIStringType(const DIStringType *N,
312 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
313 void writeDIDerivedType(const DIDerivedType *N,
314 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
315 void writeDICompositeType(const DICompositeType *N,
316 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
317 void writeDISubroutineType(const DISubroutineType *N,
318 SmallVectorImpl<uint64_t> &Record,
319 unsigned Abbrev);
320 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record,
321 unsigned Abbrev);
322 void writeDICompileUnit(const DICompileUnit *N,
323 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
324 void writeDISubprogram(const DISubprogram *N,
325 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
326 void writeDILexicalBlock(const DILexicalBlock *N,
327 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
328 void writeDILexicalBlockFile(const DILexicalBlockFile *N,
329 SmallVectorImpl<uint64_t> &Record,
330 unsigned Abbrev);
331 void writeDICommonBlock(const DICommonBlock *N,
332 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
333 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record,
334 unsigned Abbrev);
335 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record,
336 unsigned Abbrev);
337 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record,
338 unsigned Abbrev);
339 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record,
340 unsigned Abbrev);
341 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record,
342 unsigned Abbrev);
343 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N,
344 SmallVectorImpl<uint64_t> &Record,
345 unsigned Abbrev);
346 void writeDITemplateValueParameter(const DITemplateValueParameter *N,
347 SmallVectorImpl<uint64_t> &Record,
348 unsigned Abbrev);
349 void writeDIGlobalVariable(const DIGlobalVariable *N,
350 SmallVectorImpl<uint64_t> &Record,
351 unsigned Abbrev);
352 void writeDILocalVariable(const DILocalVariable *N,
353 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
354 void writeDILabel(const DILabel *N,
355 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
356 void writeDIExpression(const DIExpression *N,
357 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
358 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N,
359 SmallVectorImpl<uint64_t> &Record,
360 unsigned Abbrev);
361 void writeDIObjCProperty(const DIObjCProperty *N,
362 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
363 void writeDIImportedEntity(const DIImportedEntity *N,
364 SmallVectorImpl<uint64_t> &Record,
365 unsigned Abbrev);
366 unsigned createNamedMetadataAbbrev();
367 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record);
368 unsigned createMetadataStringsAbbrev();
369 void writeMetadataStrings(ArrayRef<const Metadata *> Strings,
370 SmallVectorImpl<uint64_t> &Record);
371 void writeMetadataRecords(ArrayRef<const Metadata *> MDs,
372 SmallVectorImpl<uint64_t> &Record,
373 std::vector<unsigned> *MDAbbrevs = nullptr,
374 std::vector<uint64_t> *IndexPos = nullptr);
375 void writeModuleMetadata();
376 void writeFunctionMetadata(const Function &F);
377 void writeFunctionMetadataAttachment(const Function &F);
378 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record,
379 const GlobalObject &GO);
380 void writeModuleMetadataKinds();
381 void writeOperandBundleTags();
382 void writeSyncScopeNames();
383 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal);
384 void writeModuleConstants();
385 bool pushValueAndType(const Value *V, unsigned InstID,
386 SmallVectorImpl<unsigned> &Vals);
387 void writeOperandBundles(const CallBase &CB, unsigned InstID);
388 void pushValue(const Value *V, unsigned InstID,
389 SmallVectorImpl<unsigned> &Vals);
390 void pushValueSigned(const Value *V, unsigned InstID,
391 SmallVectorImpl<uint64_t> &Vals);
392 void writeInstruction(const Instruction &I, unsigned InstID,
393 SmallVectorImpl<unsigned> &Vals);
394 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST);
395 void writeGlobalValueSymbolTable(
396 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
397 void writeUseList(UseListOrder &&Order);
398 void writeUseListBlock(const Function *F);
399 void
400 writeFunction(const Function &F,
401 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
402 void writeBlockInfo();
403 void writeModuleHash(size_t BlockStartPos);
404
getEncodedSyncScopeID(SyncScope::ID SSID)405 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) {
406 return unsigned(SSID);
407 }
408
getEncodedAlign(MaybeAlign Alignment)409 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); }
410 };
411
412 /// Class to manage the bitcode writing for a combined index.
413 class IndexBitcodeWriter : public BitcodeWriterBase {
414 /// The combined index to write to bitcode.
415 const ModuleSummaryIndex &Index;
416
417 /// When writing a subset of the index for distributed backends, client
418 /// provides a map of modules to the corresponding GUIDs/summaries to write.
419 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex;
420
421 /// Map that holds the correspondence between the GUID used in the combined
422 /// index and a value id generated by this class to use in references.
423 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
424
425 /// Tracks the last value id recorded in the GUIDToValueMap.
426 unsigned GlobalValueId = 0;
427
428 public:
429 /// Constructs a IndexBitcodeWriter object for the given combined index,
430 /// writing to the provided \p Buffer. When writing a subset of the index
431 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map.
IndexBitcodeWriter(BitstreamWriter & Stream,StringTableBuilder & StrtabBuilder,const ModuleSummaryIndex & Index,const std::map<std::string,GVSummaryMapTy> * ModuleToSummariesForIndex=nullptr)432 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder,
433 const ModuleSummaryIndex &Index,
434 const std::map<std::string, GVSummaryMapTy>
435 *ModuleToSummariesForIndex = nullptr)
436 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index),
437 ModuleToSummariesForIndex(ModuleToSummariesForIndex) {
438 // Assign unique value ids to all summaries to be written, for use
439 // in writing out the call graph edges. Save the mapping from GUID
440 // to the new global value id to use when writing those edges, which
441 // are currently saved in the index in terms of GUID.
442 forEachSummary([&](GVInfo I, bool) {
443 GUIDToValueIdMap[I.first] = ++GlobalValueId;
444 });
445 }
446
447 /// The below iterator returns the GUID and associated summary.
448 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>;
449
450 /// Calls the callback for each value GUID and summary to be written to
451 /// bitcode. This hides the details of whether they are being pulled from the
452 /// entire index or just those in a provided ModuleToSummariesForIndex map.
453 template<typename Functor>
forEachSummary(Functor Callback)454 void forEachSummary(Functor Callback) {
455 if (ModuleToSummariesForIndex) {
456 for (auto &M : *ModuleToSummariesForIndex)
457 for (auto &Summary : M.second) {
458 Callback(Summary, false);
459 // Ensure aliasee is handled, e.g. for assigning a valueId,
460 // even if we are not importing the aliasee directly (the
461 // imported alias will contain a copy of aliasee).
462 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond()))
463 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true);
464 }
465 } else {
466 for (auto &Summaries : Index)
467 for (auto &Summary : Summaries.second.SummaryList)
468 Callback({Summaries.first, Summary.get()}, false);
469 }
470 }
471
472 /// Calls the callback for each entry in the modulePaths StringMap that
473 /// should be written to the module path string table. This hides the details
474 /// of whether they are being pulled from the entire index or just those in a
475 /// provided ModuleToSummariesForIndex map.
forEachModule(Functor Callback)476 template <typename Functor> void forEachModule(Functor Callback) {
477 if (ModuleToSummariesForIndex) {
478 for (const auto &M : *ModuleToSummariesForIndex) {
479 const auto &MPI = Index.modulePaths().find(M.first);
480 if (MPI == Index.modulePaths().end()) {
481 // This should only happen if the bitcode file was empty, in which
482 // case we shouldn't be importing (the ModuleToSummariesForIndex
483 // would only include the module we are writing and index for).
484 assert(ModuleToSummariesForIndex->size() == 1);
485 continue;
486 }
487 Callback(*MPI);
488 }
489 } else {
490 for (const auto &MPSE : Index.modulePaths())
491 Callback(MPSE);
492 }
493 }
494
495 /// Main entry point for writing a combined index to bitcode.
496 void write();
497
498 private:
499 void writeModStrings();
500 void writeCombinedGlobalValueSummary();
501
getValueId(GlobalValue::GUID ValGUID)502 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) {
503 auto VMI = GUIDToValueIdMap.find(ValGUID);
504 if (VMI == GUIDToValueIdMap.end())
505 return None;
506 return VMI->second;
507 }
508
valueIds()509 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
510 };
511
512 } // end anonymous namespace
513
getEncodedCastOpcode(unsigned Opcode)514 static unsigned getEncodedCastOpcode(unsigned Opcode) {
515 switch (Opcode) {
516 default: llvm_unreachable("Unknown cast instruction!");
517 case Instruction::Trunc : return bitc::CAST_TRUNC;
518 case Instruction::ZExt : return bitc::CAST_ZEXT;
519 case Instruction::SExt : return bitc::CAST_SEXT;
520 case Instruction::FPToUI : return bitc::CAST_FPTOUI;
521 case Instruction::FPToSI : return bitc::CAST_FPTOSI;
522 case Instruction::UIToFP : return bitc::CAST_UITOFP;
523 case Instruction::SIToFP : return bitc::CAST_SITOFP;
524 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
525 case Instruction::FPExt : return bitc::CAST_FPEXT;
526 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
527 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
528 case Instruction::BitCast : return bitc::CAST_BITCAST;
529 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
530 }
531 }
532
getEncodedUnaryOpcode(unsigned Opcode)533 static unsigned getEncodedUnaryOpcode(unsigned Opcode) {
534 switch (Opcode) {
535 default: llvm_unreachable("Unknown binary instruction!");
536 case Instruction::FNeg: return bitc::UNOP_FNEG;
537 }
538 }
539
getEncodedBinaryOpcode(unsigned Opcode)540 static unsigned getEncodedBinaryOpcode(unsigned Opcode) {
541 switch (Opcode) {
542 default: llvm_unreachable("Unknown binary instruction!");
543 case Instruction::Add:
544 case Instruction::FAdd: return bitc::BINOP_ADD;
545 case Instruction::Sub:
546 case Instruction::FSub: return bitc::BINOP_SUB;
547 case Instruction::Mul:
548 case Instruction::FMul: return bitc::BINOP_MUL;
549 case Instruction::UDiv: return bitc::BINOP_UDIV;
550 case Instruction::FDiv:
551 case Instruction::SDiv: return bitc::BINOP_SDIV;
552 case Instruction::URem: return bitc::BINOP_UREM;
553 case Instruction::FRem:
554 case Instruction::SRem: return bitc::BINOP_SREM;
555 case Instruction::Shl: return bitc::BINOP_SHL;
556 case Instruction::LShr: return bitc::BINOP_LSHR;
557 case Instruction::AShr: return bitc::BINOP_ASHR;
558 case Instruction::And: return bitc::BINOP_AND;
559 case Instruction::Or: return bitc::BINOP_OR;
560 case Instruction::Xor: return bitc::BINOP_XOR;
561 }
562 }
563
getEncodedRMWOperation(AtomicRMWInst::BinOp Op)564 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
565 switch (Op) {
566 default: llvm_unreachable("Unknown RMW operation!");
567 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
568 case AtomicRMWInst::Add: return bitc::RMW_ADD;
569 case AtomicRMWInst::Sub: return bitc::RMW_SUB;
570 case AtomicRMWInst::And: return bitc::RMW_AND;
571 case AtomicRMWInst::Nand: return bitc::RMW_NAND;
572 case AtomicRMWInst::Or: return bitc::RMW_OR;
573 case AtomicRMWInst::Xor: return bitc::RMW_XOR;
574 case AtomicRMWInst::Max: return bitc::RMW_MAX;
575 case AtomicRMWInst::Min: return bitc::RMW_MIN;
576 case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
577 case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
578 case AtomicRMWInst::FAdd: return bitc::RMW_FADD;
579 case AtomicRMWInst::FSub: return bitc::RMW_FSUB;
580 case AtomicRMWInst::FMax: return bitc::RMW_FMAX;
581 case AtomicRMWInst::FMin: return bitc::RMW_FMIN;
582 }
583 }
584
getEncodedOrdering(AtomicOrdering Ordering)585 static unsigned getEncodedOrdering(AtomicOrdering Ordering) {
586 switch (Ordering) {
587 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC;
588 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED;
589 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC;
590 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE;
591 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE;
592 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL;
593 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST;
594 }
595 llvm_unreachable("Invalid ordering");
596 }
597
writeStringRecord(BitstreamWriter & Stream,unsigned Code,StringRef Str,unsigned AbbrevToUse)598 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code,
599 StringRef Str, unsigned AbbrevToUse) {
600 SmallVector<unsigned, 64> Vals;
601
602 // Code: [strchar x N]
603 for (char C : Str) {
604 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C))
605 AbbrevToUse = 0;
606 Vals.push_back(C);
607 }
608
609 // Emit the finished record.
610 Stream.EmitRecord(Code, Vals, AbbrevToUse);
611 }
612
getAttrKindEncoding(Attribute::AttrKind Kind)613 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
614 switch (Kind) {
615 case Attribute::Alignment:
616 return bitc::ATTR_KIND_ALIGNMENT;
617 case Attribute::AllocAlign:
618 return bitc::ATTR_KIND_ALLOC_ALIGN;
619 case Attribute::AllocSize:
620 return bitc::ATTR_KIND_ALLOC_SIZE;
621 case Attribute::AlwaysInline:
622 return bitc::ATTR_KIND_ALWAYS_INLINE;
623 case Attribute::ArgMemOnly:
624 return bitc::ATTR_KIND_ARGMEMONLY;
625 case Attribute::Builtin:
626 return bitc::ATTR_KIND_BUILTIN;
627 case Attribute::ByVal:
628 return bitc::ATTR_KIND_BY_VAL;
629 case Attribute::Convergent:
630 return bitc::ATTR_KIND_CONVERGENT;
631 case Attribute::InAlloca:
632 return bitc::ATTR_KIND_IN_ALLOCA;
633 case Attribute::Cold:
634 return bitc::ATTR_KIND_COLD;
635 case Attribute::DisableSanitizerInstrumentation:
636 return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION;
637 case Attribute::FnRetThunkExtern:
638 return bitc::ATTR_KIND_FNRETTHUNK_EXTERN;
639 case Attribute::Hot:
640 return bitc::ATTR_KIND_HOT;
641 case Attribute::ElementType:
642 return bitc::ATTR_KIND_ELEMENTTYPE;
643 case Attribute::InaccessibleMemOnly:
644 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY;
645 case Attribute::InaccessibleMemOrArgMemOnly:
646 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY;
647 case Attribute::InlineHint:
648 return bitc::ATTR_KIND_INLINE_HINT;
649 case Attribute::InReg:
650 return bitc::ATTR_KIND_IN_REG;
651 case Attribute::JumpTable:
652 return bitc::ATTR_KIND_JUMP_TABLE;
653 case Attribute::MinSize:
654 return bitc::ATTR_KIND_MIN_SIZE;
655 case Attribute::AllocatedPointer:
656 return bitc::ATTR_KIND_ALLOCATED_POINTER;
657 case Attribute::AllocKind:
658 return bitc::ATTR_KIND_ALLOC_KIND;
659 case Attribute::Naked:
660 return bitc::ATTR_KIND_NAKED;
661 case Attribute::Nest:
662 return bitc::ATTR_KIND_NEST;
663 case Attribute::NoAlias:
664 return bitc::ATTR_KIND_NO_ALIAS;
665 case Attribute::NoBuiltin:
666 return bitc::ATTR_KIND_NO_BUILTIN;
667 case Attribute::NoCallback:
668 return bitc::ATTR_KIND_NO_CALLBACK;
669 case Attribute::NoCapture:
670 return bitc::ATTR_KIND_NO_CAPTURE;
671 case Attribute::NoDuplicate:
672 return bitc::ATTR_KIND_NO_DUPLICATE;
673 case Attribute::NoFree:
674 return bitc::ATTR_KIND_NOFREE;
675 case Attribute::NoImplicitFloat:
676 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
677 case Attribute::NoInline:
678 return bitc::ATTR_KIND_NO_INLINE;
679 case Attribute::NoRecurse:
680 return bitc::ATTR_KIND_NO_RECURSE;
681 case Attribute::NoMerge:
682 return bitc::ATTR_KIND_NO_MERGE;
683 case Attribute::NonLazyBind:
684 return bitc::ATTR_KIND_NON_LAZY_BIND;
685 case Attribute::NonNull:
686 return bitc::ATTR_KIND_NON_NULL;
687 case Attribute::Dereferenceable:
688 return bitc::ATTR_KIND_DEREFERENCEABLE;
689 case Attribute::DereferenceableOrNull:
690 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
691 case Attribute::NoRedZone:
692 return bitc::ATTR_KIND_NO_RED_ZONE;
693 case Attribute::NoReturn:
694 return bitc::ATTR_KIND_NO_RETURN;
695 case Attribute::NoSync:
696 return bitc::ATTR_KIND_NOSYNC;
697 case Attribute::NoCfCheck:
698 return bitc::ATTR_KIND_NOCF_CHECK;
699 case Attribute::NoProfile:
700 return bitc::ATTR_KIND_NO_PROFILE;
701 case Attribute::NoUnwind:
702 return bitc::ATTR_KIND_NO_UNWIND;
703 case Attribute::NoSanitizeBounds:
704 return bitc::ATTR_KIND_NO_SANITIZE_BOUNDS;
705 case Attribute::NoSanitizeCoverage:
706 return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE;
707 case Attribute::NullPointerIsValid:
708 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID;
709 case Attribute::OptForFuzzing:
710 return bitc::ATTR_KIND_OPT_FOR_FUZZING;
711 case Attribute::OptimizeForSize:
712 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
713 case Attribute::OptimizeNone:
714 return bitc::ATTR_KIND_OPTIMIZE_NONE;
715 case Attribute::ReadNone:
716 return bitc::ATTR_KIND_READ_NONE;
717 case Attribute::ReadOnly:
718 return bitc::ATTR_KIND_READ_ONLY;
719 case Attribute::Returned:
720 return bitc::ATTR_KIND_RETURNED;
721 case Attribute::ReturnsTwice:
722 return bitc::ATTR_KIND_RETURNS_TWICE;
723 case Attribute::SExt:
724 return bitc::ATTR_KIND_S_EXT;
725 case Attribute::Speculatable:
726 return bitc::ATTR_KIND_SPECULATABLE;
727 case Attribute::StackAlignment:
728 return bitc::ATTR_KIND_STACK_ALIGNMENT;
729 case Attribute::StackProtect:
730 return bitc::ATTR_KIND_STACK_PROTECT;
731 case Attribute::StackProtectReq:
732 return bitc::ATTR_KIND_STACK_PROTECT_REQ;
733 case Attribute::StackProtectStrong:
734 return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
735 case Attribute::SafeStack:
736 return bitc::ATTR_KIND_SAFESTACK;
737 case Attribute::ShadowCallStack:
738 return bitc::ATTR_KIND_SHADOWCALLSTACK;
739 case Attribute::StrictFP:
740 return bitc::ATTR_KIND_STRICT_FP;
741 case Attribute::StructRet:
742 return bitc::ATTR_KIND_STRUCT_RET;
743 case Attribute::SanitizeAddress:
744 return bitc::ATTR_KIND_SANITIZE_ADDRESS;
745 case Attribute::SanitizeHWAddress:
746 return bitc::ATTR_KIND_SANITIZE_HWADDRESS;
747 case Attribute::SanitizeThread:
748 return bitc::ATTR_KIND_SANITIZE_THREAD;
749 case Attribute::SanitizeMemory:
750 return bitc::ATTR_KIND_SANITIZE_MEMORY;
751 case Attribute::SpeculativeLoadHardening:
752 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING;
753 case Attribute::SwiftError:
754 return bitc::ATTR_KIND_SWIFT_ERROR;
755 case Attribute::SwiftSelf:
756 return bitc::ATTR_KIND_SWIFT_SELF;
757 case Attribute::SwiftAsync:
758 return bitc::ATTR_KIND_SWIFT_ASYNC;
759 case Attribute::UWTable:
760 return bitc::ATTR_KIND_UW_TABLE;
761 case Attribute::VScaleRange:
762 return bitc::ATTR_KIND_VSCALE_RANGE;
763 case Attribute::WillReturn:
764 return bitc::ATTR_KIND_WILLRETURN;
765 case Attribute::WriteOnly:
766 return bitc::ATTR_KIND_WRITEONLY;
767 case Attribute::ZExt:
768 return bitc::ATTR_KIND_Z_EXT;
769 case Attribute::ImmArg:
770 return bitc::ATTR_KIND_IMMARG;
771 case Attribute::SanitizeMemTag:
772 return bitc::ATTR_KIND_SANITIZE_MEMTAG;
773 case Attribute::Preallocated:
774 return bitc::ATTR_KIND_PREALLOCATED;
775 case Attribute::NoUndef:
776 return bitc::ATTR_KIND_NOUNDEF;
777 case Attribute::ByRef:
778 return bitc::ATTR_KIND_BYREF;
779 case Attribute::MustProgress:
780 return bitc::ATTR_KIND_MUSTPROGRESS;
781 case Attribute::PresplitCoroutine:
782 return bitc::ATTR_KIND_PRESPLIT_COROUTINE;
783 case Attribute::EndAttrKinds:
784 llvm_unreachable("Can not encode end-attribute kinds marker.");
785 case Attribute::None:
786 llvm_unreachable("Can not encode none-attribute.");
787 case Attribute::EmptyKey:
788 case Attribute::TombstoneKey:
789 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey");
790 }
791
792 llvm_unreachable("Trying to encode unknown attribute");
793 }
794
writeAttributeGroupTable()795 void ModuleBitcodeWriter::writeAttributeGroupTable() {
796 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps =
797 VE.getAttributeGroups();
798 if (AttrGrps.empty()) return;
799
800 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
801
802 SmallVector<uint64_t, 64> Record;
803 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) {
804 unsigned AttrListIndex = Pair.first;
805 AttributeSet AS = Pair.second;
806 Record.push_back(VE.getAttributeGroupID(Pair));
807 Record.push_back(AttrListIndex);
808
809 for (Attribute Attr : AS) {
810 if (Attr.isEnumAttribute()) {
811 Record.push_back(0);
812 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
813 } else if (Attr.isIntAttribute()) {
814 Record.push_back(1);
815 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
816 Record.push_back(Attr.getValueAsInt());
817 } else if (Attr.isStringAttribute()) {
818 StringRef Kind = Attr.getKindAsString();
819 StringRef Val = Attr.getValueAsString();
820
821 Record.push_back(Val.empty() ? 3 : 4);
822 Record.append(Kind.begin(), Kind.end());
823 Record.push_back(0);
824 if (!Val.empty()) {
825 Record.append(Val.begin(), Val.end());
826 Record.push_back(0);
827 }
828 } else {
829 assert(Attr.isTypeAttribute());
830 Type *Ty = Attr.getValueAsType();
831 Record.push_back(Ty ? 6 : 5);
832 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
833 if (Ty)
834 Record.push_back(VE.getTypeID(Attr.getValueAsType()));
835 }
836 }
837
838 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
839 Record.clear();
840 }
841
842 Stream.ExitBlock();
843 }
844
writeAttributeTable()845 void ModuleBitcodeWriter::writeAttributeTable() {
846 const std::vector<AttributeList> &Attrs = VE.getAttributeLists();
847 if (Attrs.empty()) return;
848
849 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
850
851 SmallVector<uint64_t, 64> Record;
852 for (const AttributeList &AL : Attrs) {
853 for (unsigned i : AL.indexes()) {
854 AttributeSet AS = AL.getAttributes(i);
855 if (AS.hasAttributes())
856 Record.push_back(VE.getAttributeGroupID({i, AS}));
857 }
858
859 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
860 Record.clear();
861 }
862
863 Stream.ExitBlock();
864 }
865
866 /// WriteTypeTable - Write out the type table for a module.
writeTypeTable()867 void ModuleBitcodeWriter::writeTypeTable() {
868 const ValueEnumerator::TypeList &TypeList = VE.getTypes();
869
870 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
871 SmallVector<uint64_t, 64> TypeVals;
872
873 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies();
874
875 // Abbrev for TYPE_CODE_POINTER.
876 auto Abbv = std::make_shared<BitCodeAbbrev>();
877 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
878 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
879 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
880 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv));
881
882 // Abbrev for TYPE_CODE_OPAQUE_POINTER.
883 Abbv = std::make_shared<BitCodeAbbrev>();
884 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER));
885 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
886 unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv));
887
888 // Abbrev for TYPE_CODE_FUNCTION.
889 Abbv = std::make_shared<BitCodeAbbrev>();
890 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
891 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg
892 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
893 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
894 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv));
895
896 // Abbrev for TYPE_CODE_STRUCT_ANON.
897 Abbv = std::make_shared<BitCodeAbbrev>();
898 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
899 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
900 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
901 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
902 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv));
903
904 // Abbrev for TYPE_CODE_STRUCT_NAME.
905 Abbv = std::make_shared<BitCodeAbbrev>();
906 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
907 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
908 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
909 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
910
911 // Abbrev for TYPE_CODE_STRUCT_NAMED.
912 Abbv = std::make_shared<BitCodeAbbrev>();
913 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
914 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
915 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
916 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
917 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv));
918
919 // Abbrev for TYPE_CODE_ARRAY.
920 Abbv = std::make_shared<BitCodeAbbrev>();
921 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
922 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size
923 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
924 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv));
925
926 // Emit an entry count so the reader can reserve space.
927 TypeVals.push_back(TypeList.size());
928 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
929 TypeVals.clear();
930
931 // Loop over all of the types, emitting each in turn.
932 for (Type *T : TypeList) {
933 int AbbrevToUse = 0;
934 unsigned Code = 0;
935
936 switch (T->getTypeID()) {
937 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break;
938 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break;
939 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break;
940 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break;
941 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
942 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
943 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
944 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
945 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break;
946 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break;
947 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break;
948 case Type::X86_AMXTyID: Code = bitc::TYPE_CODE_X86_AMX; break;
949 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break;
950 case Type::IntegerTyID:
951 // INTEGER: [width]
952 Code = bitc::TYPE_CODE_INTEGER;
953 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
954 break;
955 case Type::PointerTyID: {
956 PointerType *PTy = cast<PointerType>(T);
957 unsigned AddressSpace = PTy->getAddressSpace();
958 if (PTy->isOpaque()) {
959 // OPAQUE_POINTER: [address space]
960 Code = bitc::TYPE_CODE_OPAQUE_POINTER;
961 TypeVals.push_back(AddressSpace);
962 if (AddressSpace == 0)
963 AbbrevToUse = OpaquePtrAbbrev;
964 } else {
965 // POINTER: [pointee type, address space]
966 Code = bitc::TYPE_CODE_POINTER;
967 TypeVals.push_back(VE.getTypeID(PTy->getNonOpaquePointerElementType()));
968 TypeVals.push_back(AddressSpace);
969 if (AddressSpace == 0)
970 AbbrevToUse = PtrAbbrev;
971 }
972 break;
973 }
974 case Type::FunctionTyID: {
975 FunctionType *FT = cast<FunctionType>(T);
976 // FUNCTION: [isvararg, retty, paramty x N]
977 Code = bitc::TYPE_CODE_FUNCTION;
978 TypeVals.push_back(FT->isVarArg());
979 TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
980 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
981 TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
982 AbbrevToUse = FunctionAbbrev;
983 break;
984 }
985 case Type::StructTyID: {
986 StructType *ST = cast<StructType>(T);
987 // STRUCT: [ispacked, eltty x N]
988 TypeVals.push_back(ST->isPacked());
989 // Output all of the element types.
990 for (Type *ET : ST->elements())
991 TypeVals.push_back(VE.getTypeID(ET));
992
993 if (ST->isLiteral()) {
994 Code = bitc::TYPE_CODE_STRUCT_ANON;
995 AbbrevToUse = StructAnonAbbrev;
996 } else {
997 if (ST->isOpaque()) {
998 Code = bitc::TYPE_CODE_OPAQUE;
999 } else {
1000 Code = bitc::TYPE_CODE_STRUCT_NAMED;
1001 AbbrevToUse = StructNamedAbbrev;
1002 }
1003
1004 // Emit the name if it is present.
1005 if (!ST->getName().empty())
1006 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
1007 StructNameAbbrev);
1008 }
1009 break;
1010 }
1011 case Type::ArrayTyID: {
1012 ArrayType *AT = cast<ArrayType>(T);
1013 // ARRAY: [numelts, eltty]
1014 Code = bitc::TYPE_CODE_ARRAY;
1015 TypeVals.push_back(AT->getNumElements());
1016 TypeVals.push_back(VE.getTypeID(AT->getElementType()));
1017 AbbrevToUse = ArrayAbbrev;
1018 break;
1019 }
1020 case Type::FixedVectorTyID:
1021 case Type::ScalableVectorTyID: {
1022 VectorType *VT = cast<VectorType>(T);
1023 // VECTOR [numelts, eltty] or
1024 // [numelts, eltty, scalable]
1025 Code = bitc::TYPE_CODE_VECTOR;
1026 TypeVals.push_back(VT->getElementCount().getKnownMinValue());
1027 TypeVals.push_back(VE.getTypeID(VT->getElementType()));
1028 if (isa<ScalableVectorType>(VT))
1029 TypeVals.push_back(true);
1030 break;
1031 }
1032 case Type::DXILPointerTyID:
1033 llvm_unreachable("DXIL pointers cannot be added to IR modules");
1034 }
1035
1036 // Emit the finished record.
1037 Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
1038 TypeVals.clear();
1039 }
1040
1041 Stream.ExitBlock();
1042 }
1043
getEncodedLinkage(const GlobalValue::LinkageTypes Linkage)1044 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) {
1045 switch (Linkage) {
1046 case GlobalValue::ExternalLinkage:
1047 return 0;
1048 case GlobalValue::WeakAnyLinkage:
1049 return 16;
1050 case GlobalValue::AppendingLinkage:
1051 return 2;
1052 case GlobalValue::InternalLinkage:
1053 return 3;
1054 case GlobalValue::LinkOnceAnyLinkage:
1055 return 18;
1056 case GlobalValue::ExternalWeakLinkage:
1057 return 7;
1058 case GlobalValue::CommonLinkage:
1059 return 8;
1060 case GlobalValue::PrivateLinkage:
1061 return 9;
1062 case GlobalValue::WeakODRLinkage:
1063 return 17;
1064 case GlobalValue::LinkOnceODRLinkage:
1065 return 19;
1066 case GlobalValue::AvailableExternallyLinkage:
1067 return 12;
1068 }
1069 llvm_unreachable("Invalid linkage");
1070 }
1071
getEncodedLinkage(const GlobalValue & GV)1072 static unsigned getEncodedLinkage(const GlobalValue &GV) {
1073 return getEncodedLinkage(GV.getLinkage());
1074 }
1075
getEncodedFFlags(FunctionSummary::FFlags Flags)1076 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) {
1077 uint64_t RawFlags = 0;
1078 RawFlags |= Flags.ReadNone;
1079 RawFlags |= (Flags.ReadOnly << 1);
1080 RawFlags |= (Flags.NoRecurse << 2);
1081 RawFlags |= (Flags.ReturnDoesNotAlias << 3);
1082 RawFlags |= (Flags.NoInline << 4);
1083 RawFlags |= (Flags.AlwaysInline << 5);
1084 RawFlags |= (Flags.NoUnwind << 6);
1085 RawFlags |= (Flags.MayThrow << 7);
1086 RawFlags |= (Flags.HasUnknownCall << 8);
1087 RawFlags |= (Flags.MustBeUnreachable << 9);
1088 return RawFlags;
1089 }
1090
1091 // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags
1092 // in BitcodeReader.cpp.
getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags)1093 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) {
1094 uint64_t RawFlags = 0;
1095
1096 RawFlags |= Flags.NotEligibleToImport; // bool
1097 RawFlags |= (Flags.Live << 1);
1098 RawFlags |= (Flags.DSOLocal << 2);
1099 RawFlags |= (Flags.CanAutoHide << 3);
1100
1101 // Linkage don't need to be remapped at that time for the summary. Any future
1102 // change to the getEncodedLinkage() function will need to be taken into
1103 // account here as well.
1104 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits
1105
1106 RawFlags |= (Flags.Visibility << 8); // 2 bits
1107
1108 return RawFlags;
1109 }
1110
getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags)1111 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) {
1112 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) |
1113 (Flags.Constant << 2) | Flags.VCallVisibility << 3;
1114 return RawFlags;
1115 }
1116
getEncodedVisibility(const GlobalValue & GV)1117 static unsigned getEncodedVisibility(const GlobalValue &GV) {
1118 switch (GV.getVisibility()) {
1119 case GlobalValue::DefaultVisibility: return 0;
1120 case GlobalValue::HiddenVisibility: return 1;
1121 case GlobalValue::ProtectedVisibility: return 2;
1122 }
1123 llvm_unreachable("Invalid visibility");
1124 }
1125
getEncodedDLLStorageClass(const GlobalValue & GV)1126 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
1127 switch (GV.getDLLStorageClass()) {
1128 case GlobalValue::DefaultStorageClass: return 0;
1129 case GlobalValue::DLLImportStorageClass: return 1;
1130 case GlobalValue::DLLExportStorageClass: return 2;
1131 }
1132 llvm_unreachable("Invalid DLL storage class");
1133 }
1134
getEncodedThreadLocalMode(const GlobalValue & GV)1135 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
1136 switch (GV.getThreadLocalMode()) {
1137 case GlobalVariable::NotThreadLocal: return 0;
1138 case GlobalVariable::GeneralDynamicTLSModel: return 1;
1139 case GlobalVariable::LocalDynamicTLSModel: return 2;
1140 case GlobalVariable::InitialExecTLSModel: return 3;
1141 case GlobalVariable::LocalExecTLSModel: return 4;
1142 }
1143 llvm_unreachable("Invalid TLS model");
1144 }
1145
getEncodedComdatSelectionKind(const Comdat & C)1146 static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
1147 switch (C.getSelectionKind()) {
1148 case Comdat::Any:
1149 return bitc::COMDAT_SELECTION_KIND_ANY;
1150 case Comdat::ExactMatch:
1151 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
1152 case Comdat::Largest:
1153 return bitc::COMDAT_SELECTION_KIND_LARGEST;
1154 case Comdat::NoDeduplicate:
1155 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
1156 case Comdat::SameSize:
1157 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
1158 }
1159 llvm_unreachable("Invalid selection kind");
1160 }
1161
getEncodedUnnamedAddr(const GlobalValue & GV)1162 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) {
1163 switch (GV.getUnnamedAddr()) {
1164 case GlobalValue::UnnamedAddr::None: return 0;
1165 case GlobalValue::UnnamedAddr::Local: return 2;
1166 case GlobalValue::UnnamedAddr::Global: return 1;
1167 }
1168 llvm_unreachable("Invalid unnamed_addr");
1169 }
1170
addToStrtab(StringRef Str)1171 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) {
1172 if (GenerateHash)
1173 Hasher.update(Str);
1174 return StrtabBuilder.add(Str);
1175 }
1176
writeComdats()1177 void ModuleBitcodeWriter::writeComdats() {
1178 SmallVector<unsigned, 64> Vals;
1179 for (const Comdat *C : VE.getComdats()) {
1180 // COMDAT: [strtab offset, strtab size, selection_kind]
1181 Vals.push_back(addToStrtab(C->getName()));
1182 Vals.push_back(C->getName().size());
1183 Vals.push_back(getEncodedComdatSelectionKind(*C));
1184 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
1185 Vals.clear();
1186 }
1187 }
1188
1189 /// Write a record that will eventually hold the word offset of the
1190 /// module-level VST. For now the offset is 0, which will be backpatched
1191 /// after the real VST is written. Saves the bit offset to backpatch.
writeValueSymbolTableForwardDecl()1192 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() {
1193 // Write a placeholder value in for the offset of the real VST,
1194 // which is written after the function blocks so that it can include
1195 // the offset of each function. The placeholder offset will be
1196 // updated when the real VST is written.
1197 auto Abbv = std::make_shared<BitCodeAbbrev>();
1198 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET));
1199 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to
1200 // hold the real VST offset. Must use fixed instead of VBR as we don't
1201 // know how many VBR chunks to reserve ahead of time.
1202 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
1203 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1204
1205 // Emit the placeholder
1206 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0};
1207 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals);
1208
1209 // Compute and save the bit offset to the placeholder, which will be
1210 // patched when the real VST is written. We can simply subtract the 32-bit
1211 // fixed size from the current bit number to get the location to backpatch.
1212 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32;
1213 }
1214
1215 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 };
1216
1217 /// Determine the encoding to use for the given string name and length.
getStringEncoding(StringRef Str)1218 static StringEncoding getStringEncoding(StringRef Str) {
1219 bool isChar6 = true;
1220 for (char C : Str) {
1221 if (isChar6)
1222 isChar6 = BitCodeAbbrevOp::isChar6(C);
1223 if ((unsigned char)C & 128)
1224 // don't bother scanning the rest.
1225 return SE_Fixed8;
1226 }
1227 if (isChar6)
1228 return SE_Char6;
1229 return SE_Fixed7;
1230 }
1231
1232 static_assert(sizeof(GlobalValue::SanitizerMetadata) <= sizeof(unsigned),
1233 "Sanitizer Metadata is too large for naive serialization.");
1234 static unsigned
serializeSanitizerMetadata(const GlobalValue::SanitizerMetadata & Meta)1235 serializeSanitizerMetadata(const GlobalValue::SanitizerMetadata &Meta) {
1236 return Meta.NoAddress | (Meta.NoHWAddress << 1) |
1237 (Meta.Memtag << 2) | (Meta.IsDynInit << 3);
1238 }
1239
1240 /// Emit top-level description of module, including target triple, inline asm,
1241 /// descriptors for global variables, and function prototype info.
1242 /// Returns the bit offset to backpatch with the location of the real VST.
writeModuleInfo()1243 void ModuleBitcodeWriter::writeModuleInfo() {
1244 // Emit various pieces of data attached to a module.
1245 if (!M.getTargetTriple().empty())
1246 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(),
1247 0 /*TODO*/);
1248 const std::string &DL = M.getDataLayoutStr();
1249 if (!DL.empty())
1250 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/);
1251 if (!M.getModuleInlineAsm().empty())
1252 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(),
1253 0 /*TODO*/);
1254
1255 // Emit information about sections and GC, computing how many there are. Also
1256 // compute the maximum alignment value.
1257 std::map<std::string, unsigned> SectionMap;
1258 std::map<std::string, unsigned> GCMap;
1259 MaybeAlign MaxAlignment;
1260 unsigned MaxGlobalType = 0;
1261 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) {
1262 if (A)
1263 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A);
1264 };
1265 for (const GlobalVariable &GV : M.globals()) {
1266 UpdateMaxAlignment(GV.getAlign());
1267 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType()));
1268 if (GV.hasSection()) {
1269 // Give section names unique ID's.
1270 unsigned &Entry = SectionMap[std::string(GV.getSection())];
1271 if (!Entry) {
1272 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
1273 0 /*TODO*/);
1274 Entry = SectionMap.size();
1275 }
1276 }
1277 }
1278 for (const Function &F : M) {
1279 UpdateMaxAlignment(F.getAlign());
1280 if (F.hasSection()) {
1281 // Give section names unique ID's.
1282 unsigned &Entry = SectionMap[std::string(F.getSection())];
1283 if (!Entry) {
1284 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
1285 0 /*TODO*/);
1286 Entry = SectionMap.size();
1287 }
1288 }
1289 if (F.hasGC()) {
1290 // Same for GC names.
1291 unsigned &Entry = GCMap[F.getGC()];
1292 if (!Entry) {
1293 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(),
1294 0 /*TODO*/);
1295 Entry = GCMap.size();
1296 }
1297 }
1298 }
1299
1300 // Emit abbrev for globals, now that we know # sections and max alignment.
1301 unsigned SimpleGVarAbbrev = 0;
1302 if (!M.global_empty()) {
1303 // Add an abbrev for common globals with no visibility or thread localness.
1304 auto Abbv = std::make_shared<BitCodeAbbrev>();
1305 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
1306 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1307 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1308 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1309 Log2_32_Ceil(MaxGlobalType+1)));
1310 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2
1311 //| explicitType << 1
1312 //| constant
1313 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer.
1314 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
1315 if (!MaxAlignment) // Alignment.
1316 Abbv->Add(BitCodeAbbrevOp(0));
1317 else {
1318 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment);
1319 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1320 Log2_32_Ceil(MaxEncAlignment+1)));
1321 }
1322 if (SectionMap.empty()) // Section.
1323 Abbv->Add(BitCodeAbbrevOp(0));
1324 else
1325 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1326 Log2_32_Ceil(SectionMap.size()+1)));
1327 // Don't bother emitting vis + thread local.
1328 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1329 }
1330
1331 SmallVector<unsigned, 64> Vals;
1332 // Emit the module's source file name.
1333 {
1334 StringEncoding Bits = getStringEncoding(M.getSourceFileName());
1335 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
1336 if (Bits == SE_Char6)
1337 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
1338 else if (Bits == SE_Fixed7)
1339 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
1340
1341 // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
1342 auto Abbv = std::make_shared<BitCodeAbbrev>();
1343 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
1344 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1345 Abbv->Add(AbbrevOpToUse);
1346 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1347
1348 for (const auto P : M.getSourceFileName())
1349 Vals.push_back((unsigned char)P);
1350
1351 // Emit the finished record.
1352 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
1353 Vals.clear();
1354 }
1355
1356 // Emit the global variable information.
1357 for (const GlobalVariable &GV : M.globals()) {
1358 unsigned AbbrevToUse = 0;
1359
1360 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid,
1361 // linkage, alignment, section, visibility, threadlocal,
1362 // unnamed_addr, externally_initialized, dllstorageclass,
1363 // comdat, attributes, DSO_Local, GlobalSanitizer]
1364 Vals.push_back(addToStrtab(GV.getName()));
1365 Vals.push_back(GV.getName().size());
1366 Vals.push_back(VE.getTypeID(GV.getValueType()));
1367 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant());
1368 Vals.push_back(GV.isDeclaration() ? 0 :
1369 (VE.getValueID(GV.getInitializer()) + 1));
1370 Vals.push_back(getEncodedLinkage(GV));
1371 Vals.push_back(getEncodedAlign(GV.getAlign()));
1372 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())]
1373 : 0);
1374 if (GV.isThreadLocal() ||
1375 GV.getVisibility() != GlobalValue::DefaultVisibility ||
1376 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None ||
1377 GV.isExternallyInitialized() ||
1378 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
1379 GV.hasComdat() || GV.hasAttributes() || GV.isDSOLocal() ||
1380 GV.hasPartition() || GV.hasSanitizerMetadata()) {
1381 Vals.push_back(getEncodedVisibility(GV));
1382 Vals.push_back(getEncodedThreadLocalMode(GV));
1383 Vals.push_back(getEncodedUnnamedAddr(GV));
1384 Vals.push_back(GV.isExternallyInitialized());
1385 Vals.push_back(getEncodedDLLStorageClass(GV));
1386 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
1387
1388 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex);
1389 Vals.push_back(VE.getAttributeListID(AL));
1390
1391 Vals.push_back(GV.isDSOLocal());
1392 Vals.push_back(addToStrtab(GV.getPartition()));
1393 Vals.push_back(GV.getPartition().size());
1394
1395 Vals.push_back((GV.hasSanitizerMetadata() ? serializeSanitizerMetadata(
1396 GV.getSanitizerMetadata())
1397 : 0));
1398 } else {
1399 AbbrevToUse = SimpleGVarAbbrev;
1400 }
1401
1402 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
1403 Vals.clear();
1404 }
1405
1406 // Emit the function proto information.
1407 for (const Function &F : M) {
1408 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto,
1409 // linkage, paramattrs, alignment, section, visibility, gc,
1410 // unnamed_addr, prologuedata, dllstorageclass, comdat,
1411 // prefixdata, personalityfn, DSO_Local, addrspace]
1412 Vals.push_back(addToStrtab(F.getName()));
1413 Vals.push_back(F.getName().size());
1414 Vals.push_back(VE.getTypeID(F.getFunctionType()));
1415 Vals.push_back(F.getCallingConv());
1416 Vals.push_back(F.isDeclaration());
1417 Vals.push_back(getEncodedLinkage(F));
1418 Vals.push_back(VE.getAttributeListID(F.getAttributes()));
1419 Vals.push_back(getEncodedAlign(F.getAlign()));
1420 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())]
1421 : 0);
1422 Vals.push_back(getEncodedVisibility(F));
1423 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
1424 Vals.push_back(getEncodedUnnamedAddr(F));
1425 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
1426 : 0);
1427 Vals.push_back(getEncodedDLLStorageClass(F));
1428 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
1429 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
1430 : 0);
1431 Vals.push_back(
1432 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
1433
1434 Vals.push_back(F.isDSOLocal());
1435 Vals.push_back(F.getAddressSpace());
1436 Vals.push_back(addToStrtab(F.getPartition()));
1437 Vals.push_back(F.getPartition().size());
1438
1439 unsigned AbbrevToUse = 0;
1440 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
1441 Vals.clear();
1442 }
1443
1444 // Emit the alias information.
1445 for (const GlobalAlias &A : M.aliases()) {
1446 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage,
1447 // visibility, dllstorageclass, threadlocal, unnamed_addr,
1448 // DSO_Local]
1449 Vals.push_back(addToStrtab(A.getName()));
1450 Vals.push_back(A.getName().size());
1451 Vals.push_back(VE.getTypeID(A.getValueType()));
1452 Vals.push_back(A.getType()->getAddressSpace());
1453 Vals.push_back(VE.getValueID(A.getAliasee()));
1454 Vals.push_back(getEncodedLinkage(A));
1455 Vals.push_back(getEncodedVisibility(A));
1456 Vals.push_back(getEncodedDLLStorageClass(A));
1457 Vals.push_back(getEncodedThreadLocalMode(A));
1458 Vals.push_back(getEncodedUnnamedAddr(A));
1459 Vals.push_back(A.isDSOLocal());
1460 Vals.push_back(addToStrtab(A.getPartition()));
1461 Vals.push_back(A.getPartition().size());
1462
1463 unsigned AbbrevToUse = 0;
1464 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
1465 Vals.clear();
1466 }
1467
1468 // Emit the ifunc information.
1469 for (const GlobalIFunc &I : M.ifuncs()) {
1470 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver
1471 // val#, linkage, visibility, DSO_Local]
1472 Vals.push_back(addToStrtab(I.getName()));
1473 Vals.push_back(I.getName().size());
1474 Vals.push_back(VE.getTypeID(I.getValueType()));
1475 Vals.push_back(I.getType()->getAddressSpace());
1476 Vals.push_back(VE.getValueID(I.getResolver()));
1477 Vals.push_back(getEncodedLinkage(I));
1478 Vals.push_back(getEncodedVisibility(I));
1479 Vals.push_back(I.isDSOLocal());
1480 Vals.push_back(addToStrtab(I.getPartition()));
1481 Vals.push_back(I.getPartition().size());
1482 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
1483 Vals.clear();
1484 }
1485
1486 writeValueSymbolTableForwardDecl();
1487 }
1488
getOptimizationFlags(const Value * V)1489 static uint64_t getOptimizationFlags(const Value *V) {
1490 uint64_t Flags = 0;
1491
1492 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
1493 if (OBO->hasNoSignedWrap())
1494 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
1495 if (OBO->hasNoUnsignedWrap())
1496 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
1497 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
1498 if (PEO->isExact())
1499 Flags |= 1 << bitc::PEO_EXACT;
1500 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
1501 if (FPMO->hasAllowReassoc())
1502 Flags |= bitc::AllowReassoc;
1503 if (FPMO->hasNoNaNs())
1504 Flags |= bitc::NoNaNs;
1505 if (FPMO->hasNoInfs())
1506 Flags |= bitc::NoInfs;
1507 if (FPMO->hasNoSignedZeros())
1508 Flags |= bitc::NoSignedZeros;
1509 if (FPMO->hasAllowReciprocal())
1510 Flags |= bitc::AllowReciprocal;
1511 if (FPMO->hasAllowContract())
1512 Flags |= bitc::AllowContract;
1513 if (FPMO->hasApproxFunc())
1514 Flags |= bitc::ApproxFunc;
1515 }
1516
1517 return Flags;
1518 }
1519
writeValueAsMetadata(const ValueAsMetadata * MD,SmallVectorImpl<uint64_t> & Record)1520 void ModuleBitcodeWriter::writeValueAsMetadata(
1521 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) {
1522 // Mimic an MDNode with a value as one operand.
1523 Value *V = MD->getValue();
1524 Record.push_back(VE.getTypeID(V->getType()));
1525 Record.push_back(VE.getValueID(V));
1526 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
1527 Record.clear();
1528 }
1529
writeMDTuple(const MDTuple * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1530 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N,
1531 SmallVectorImpl<uint64_t> &Record,
1532 unsigned Abbrev) {
1533 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1534 Metadata *MD = N->getOperand(i);
1535 assert(!(MD && isa<LocalAsMetadata>(MD)) &&
1536 "Unexpected function-local metadata");
1537 Record.push_back(VE.getMetadataOrNullID(MD));
1538 }
1539 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
1540 : bitc::METADATA_NODE,
1541 Record, Abbrev);
1542 Record.clear();
1543 }
1544
createDILocationAbbrev()1545 unsigned ModuleBitcodeWriter::createDILocationAbbrev() {
1546 // Assume the column is usually under 128, and always output the inlined-at
1547 // location (it's never more expensive than building an array size 1).
1548 auto Abbv = std::make_shared<BitCodeAbbrev>();
1549 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
1550 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1551 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1552 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1553 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1554 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1555 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1556 return Stream.EmitAbbrev(std::move(Abbv));
1557 }
1558
writeDILocation(const DILocation * N,SmallVectorImpl<uint64_t> & Record,unsigned & Abbrev)1559 void ModuleBitcodeWriter::writeDILocation(const DILocation *N,
1560 SmallVectorImpl<uint64_t> &Record,
1561 unsigned &Abbrev) {
1562 if (!Abbrev)
1563 Abbrev = createDILocationAbbrev();
1564
1565 Record.push_back(N->isDistinct());
1566 Record.push_back(N->getLine());
1567 Record.push_back(N->getColumn());
1568 Record.push_back(VE.getMetadataID(N->getScope()));
1569 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
1570 Record.push_back(N->isImplicitCode());
1571
1572 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
1573 Record.clear();
1574 }
1575
createGenericDINodeAbbrev()1576 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() {
1577 // Assume the column is usually under 128, and always output the inlined-at
1578 // location (it's never more expensive than building an array size 1).
1579 auto Abbv = std::make_shared<BitCodeAbbrev>();
1580 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
1581 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1582 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1583 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1584 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1585 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1586 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1587 return Stream.EmitAbbrev(std::move(Abbv));
1588 }
1589
writeGenericDINode(const GenericDINode * N,SmallVectorImpl<uint64_t> & Record,unsigned & Abbrev)1590 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N,
1591 SmallVectorImpl<uint64_t> &Record,
1592 unsigned &Abbrev) {
1593 if (!Abbrev)
1594 Abbrev = createGenericDINodeAbbrev();
1595
1596 Record.push_back(N->isDistinct());
1597 Record.push_back(N->getTag());
1598 Record.push_back(0); // Per-tag version field; unused for now.
1599
1600 for (auto &I : N->operands())
1601 Record.push_back(VE.getMetadataOrNullID(I));
1602
1603 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev);
1604 Record.clear();
1605 }
1606
writeDISubrange(const DISubrange * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1607 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N,
1608 SmallVectorImpl<uint64_t> &Record,
1609 unsigned Abbrev) {
1610 const uint64_t Version = 2 << 1;
1611 Record.push_back((uint64_t)N->isDistinct() | Version);
1612 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode()));
1613 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound()));
1614 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound()));
1615 Record.push_back(VE.getMetadataOrNullID(N->getRawStride()));
1616
1617 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
1618 Record.clear();
1619 }
1620
writeDIGenericSubrange(const DIGenericSubrange * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1621 void ModuleBitcodeWriter::writeDIGenericSubrange(
1622 const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record,
1623 unsigned Abbrev) {
1624 Record.push_back((uint64_t)N->isDistinct());
1625 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode()));
1626 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound()));
1627 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound()));
1628 Record.push_back(VE.getMetadataOrNullID(N->getRawStride()));
1629
1630 Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev);
1631 Record.clear();
1632 }
1633
emitSignedInt64(SmallVectorImpl<uint64_t> & Vals,uint64_t V)1634 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
1635 if ((int64_t)V >= 0)
1636 Vals.push_back(V << 1);
1637 else
1638 Vals.push_back((-V << 1) | 1);
1639 }
1640
emitWideAPInt(SmallVectorImpl<uint64_t> & Vals,const APInt & A)1641 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) {
1642 // We have an arbitrary precision integer value to write whose
1643 // bit width is > 64. However, in canonical unsigned integer
1644 // format it is likely that the high bits are going to be zero.
1645 // So, we only write the number of active words.
1646 unsigned NumWords = A.getActiveWords();
1647 const uint64_t *RawData = A.getRawData();
1648 for (unsigned i = 0; i < NumWords; i++)
1649 emitSignedInt64(Vals, RawData[i]);
1650 }
1651
writeDIEnumerator(const DIEnumerator * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1652 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N,
1653 SmallVectorImpl<uint64_t> &Record,
1654 unsigned Abbrev) {
1655 const uint64_t IsBigInt = 1 << 2;
1656 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct());
1657 Record.push_back(N->getValue().getBitWidth());
1658 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1659 emitWideAPInt(Record, N->getValue());
1660
1661 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
1662 Record.clear();
1663 }
1664
writeDIBasicType(const DIBasicType * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1665 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N,
1666 SmallVectorImpl<uint64_t> &Record,
1667 unsigned Abbrev) {
1668 Record.push_back(N->isDistinct());
1669 Record.push_back(N->getTag());
1670 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1671 Record.push_back(N->getSizeInBits());
1672 Record.push_back(N->getAlignInBits());
1673 Record.push_back(N->getEncoding());
1674 Record.push_back(N->getFlags());
1675
1676 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
1677 Record.clear();
1678 }
1679
writeDIStringType(const DIStringType * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1680 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N,
1681 SmallVectorImpl<uint64_t> &Record,
1682 unsigned Abbrev) {
1683 Record.push_back(N->isDistinct());
1684 Record.push_back(N->getTag());
1685 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1686 Record.push_back(VE.getMetadataOrNullID(N->getStringLength()));
1687 Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp()));
1688 Record.push_back(VE.getMetadataOrNullID(N->getStringLocationExp()));
1689 Record.push_back(N->getSizeInBits());
1690 Record.push_back(N->getAlignInBits());
1691 Record.push_back(N->getEncoding());
1692
1693 Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev);
1694 Record.clear();
1695 }
1696
writeDIDerivedType(const DIDerivedType * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1697 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N,
1698 SmallVectorImpl<uint64_t> &Record,
1699 unsigned Abbrev) {
1700 Record.push_back(N->isDistinct());
1701 Record.push_back(N->getTag());
1702 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1703 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1704 Record.push_back(N->getLine());
1705 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1706 Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1707 Record.push_back(N->getSizeInBits());
1708 Record.push_back(N->getAlignInBits());
1709 Record.push_back(N->getOffsetInBits());
1710 Record.push_back(N->getFlags());
1711 Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
1712
1713 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means
1714 // that there is no DWARF address space associated with DIDerivedType.
1715 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
1716 Record.push_back(*DWARFAddressSpace + 1);
1717 else
1718 Record.push_back(0);
1719
1720 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get()));
1721
1722 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
1723 Record.clear();
1724 }
1725
writeDICompositeType(const DICompositeType * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1726 void ModuleBitcodeWriter::writeDICompositeType(
1727 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record,
1728 unsigned Abbrev) {
1729 const unsigned IsNotUsedInOldTypeRef = 0x2;
1730 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct());
1731 Record.push_back(N->getTag());
1732 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1733 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1734 Record.push_back(N->getLine());
1735 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1736 Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1737 Record.push_back(N->getSizeInBits());
1738 Record.push_back(N->getAlignInBits());
1739 Record.push_back(N->getOffsetInBits());
1740 Record.push_back(N->getFlags());
1741 Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1742 Record.push_back(N->getRuntimeLang());
1743 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
1744 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1745 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
1746 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator()));
1747 Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation()));
1748 Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated()));
1749 Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated()));
1750 Record.push_back(VE.getMetadataOrNullID(N->getRawRank()));
1751 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get()));
1752
1753 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
1754 Record.clear();
1755 }
1756
writeDISubroutineType(const DISubroutineType * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1757 void ModuleBitcodeWriter::writeDISubroutineType(
1758 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record,
1759 unsigned Abbrev) {
1760 const unsigned HasNoOldTypeRefs = 0x2;
1761 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct());
1762 Record.push_back(N->getFlags());
1763 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
1764 Record.push_back(N->getCC());
1765
1766 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
1767 Record.clear();
1768 }
1769
writeDIFile(const DIFile * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1770 void ModuleBitcodeWriter::writeDIFile(const DIFile *N,
1771 SmallVectorImpl<uint64_t> &Record,
1772 unsigned Abbrev) {
1773 Record.push_back(N->isDistinct());
1774 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
1775 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
1776 if (N->getRawChecksum()) {
1777 Record.push_back(N->getRawChecksum()->Kind);
1778 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value));
1779 } else {
1780 // Maintain backwards compatibility with the old internal representation of
1781 // CSK_None in ChecksumKind by writing nulls here when Checksum is None.
1782 Record.push_back(0);
1783 Record.push_back(VE.getMetadataOrNullID(nullptr));
1784 }
1785 auto Source = N->getRawSource();
1786 if (Source)
1787 Record.push_back(VE.getMetadataOrNullID(*Source));
1788
1789 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
1790 Record.clear();
1791 }
1792
writeDICompileUnit(const DICompileUnit * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1793 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N,
1794 SmallVectorImpl<uint64_t> &Record,
1795 unsigned Abbrev) {
1796 assert(N->isDistinct() && "Expected distinct compile units");
1797 Record.push_back(/* IsDistinct */ true);
1798 Record.push_back(N->getSourceLanguage());
1799 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1800 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
1801 Record.push_back(N->isOptimized());
1802 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
1803 Record.push_back(N->getRuntimeVersion());
1804 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
1805 Record.push_back(N->getEmissionKind());
1806 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
1807 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
1808 Record.push_back(/* subprograms */ 0);
1809 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
1810 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
1811 Record.push_back(N->getDWOId());
1812 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get()));
1813 Record.push_back(N->getSplitDebugInlining());
1814 Record.push_back(N->getDebugInfoForProfiling());
1815 Record.push_back((unsigned)N->getNameTableKind());
1816 Record.push_back(N->getRangesBaseAddress());
1817 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot()));
1818 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK()));
1819
1820 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
1821 Record.clear();
1822 }
1823
writeDISubprogram(const DISubprogram * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1824 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N,
1825 SmallVectorImpl<uint64_t> &Record,
1826 unsigned Abbrev) {
1827 const uint64_t HasUnitFlag = 1 << 1;
1828 const uint64_t HasSPFlagsFlag = 1 << 2;
1829 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag);
1830 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1831 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1832 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1833 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1834 Record.push_back(N->getLine());
1835 Record.push_back(VE.getMetadataOrNullID(N->getType()));
1836 Record.push_back(N->getScopeLine());
1837 Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
1838 Record.push_back(N->getSPFlags());
1839 Record.push_back(N->getVirtualIndex());
1840 Record.push_back(N->getFlags());
1841 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit()));
1842 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1843 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
1844 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get()));
1845 Record.push_back(N->getThisAdjustment());
1846 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get()));
1847 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get()));
1848 Record.push_back(VE.getMetadataOrNullID(N->getRawTargetFuncName()));
1849
1850 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
1851 Record.clear();
1852 }
1853
writeDILexicalBlock(const DILexicalBlock * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1854 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N,
1855 SmallVectorImpl<uint64_t> &Record,
1856 unsigned Abbrev) {
1857 Record.push_back(N->isDistinct());
1858 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1859 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1860 Record.push_back(N->getLine());
1861 Record.push_back(N->getColumn());
1862
1863 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
1864 Record.clear();
1865 }
1866
writeDILexicalBlockFile(const DILexicalBlockFile * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1867 void ModuleBitcodeWriter::writeDILexicalBlockFile(
1868 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record,
1869 unsigned Abbrev) {
1870 Record.push_back(N->isDistinct());
1871 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1872 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1873 Record.push_back(N->getDiscriminator());
1874
1875 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
1876 Record.clear();
1877 }
1878
writeDICommonBlock(const DICommonBlock * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1879 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N,
1880 SmallVectorImpl<uint64_t> &Record,
1881 unsigned Abbrev) {
1882 Record.push_back(N->isDistinct());
1883 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1884 Record.push_back(VE.getMetadataOrNullID(N->getDecl()));
1885 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1886 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1887 Record.push_back(N->getLineNo());
1888
1889 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev);
1890 Record.clear();
1891 }
1892
writeDINamespace(const DINamespace * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1893 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N,
1894 SmallVectorImpl<uint64_t> &Record,
1895 unsigned Abbrev) {
1896 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1);
1897 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1898 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1899
1900 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
1901 Record.clear();
1902 }
1903
writeDIMacro(const DIMacro * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1904 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N,
1905 SmallVectorImpl<uint64_t> &Record,
1906 unsigned Abbrev) {
1907 Record.push_back(N->isDistinct());
1908 Record.push_back(N->getMacinfoType());
1909 Record.push_back(N->getLine());
1910 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1911 Record.push_back(VE.getMetadataOrNullID(N->getRawValue()));
1912
1913 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev);
1914 Record.clear();
1915 }
1916
writeDIMacroFile(const DIMacroFile * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1917 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N,
1918 SmallVectorImpl<uint64_t> &Record,
1919 unsigned Abbrev) {
1920 Record.push_back(N->isDistinct());
1921 Record.push_back(N->getMacinfoType());
1922 Record.push_back(N->getLine());
1923 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1924 Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1925
1926 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev);
1927 Record.clear();
1928 }
1929
writeDIArgList(const DIArgList * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1930 void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N,
1931 SmallVectorImpl<uint64_t> &Record,
1932 unsigned Abbrev) {
1933 Record.reserve(N->getArgs().size());
1934 for (ValueAsMetadata *MD : N->getArgs())
1935 Record.push_back(VE.getMetadataID(MD));
1936
1937 Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record, Abbrev);
1938 Record.clear();
1939 }
1940
writeDIModule(const DIModule * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1941 void ModuleBitcodeWriter::writeDIModule(const DIModule *N,
1942 SmallVectorImpl<uint64_t> &Record,
1943 unsigned Abbrev) {
1944 Record.push_back(N->isDistinct());
1945 for (auto &I : N->operands())
1946 Record.push_back(VE.getMetadataOrNullID(I));
1947 Record.push_back(N->getLineNo());
1948 Record.push_back(N->getIsDecl());
1949
1950 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
1951 Record.clear();
1952 }
1953
writeDITemplateTypeParameter(const DITemplateTypeParameter * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1954 void ModuleBitcodeWriter::writeDITemplateTypeParameter(
1955 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record,
1956 unsigned Abbrev) {
1957 Record.push_back(N->isDistinct());
1958 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1959 Record.push_back(VE.getMetadataOrNullID(N->getType()));
1960 Record.push_back(N->isDefault());
1961
1962 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
1963 Record.clear();
1964 }
1965
writeDITemplateValueParameter(const DITemplateValueParameter * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1966 void ModuleBitcodeWriter::writeDITemplateValueParameter(
1967 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record,
1968 unsigned Abbrev) {
1969 Record.push_back(N->isDistinct());
1970 Record.push_back(N->getTag());
1971 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1972 Record.push_back(VE.getMetadataOrNullID(N->getType()));
1973 Record.push_back(N->isDefault());
1974 Record.push_back(VE.getMetadataOrNullID(N->getValue()));
1975
1976 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
1977 Record.clear();
1978 }
1979
writeDIGlobalVariable(const DIGlobalVariable * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1980 void ModuleBitcodeWriter::writeDIGlobalVariable(
1981 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record,
1982 unsigned Abbrev) {
1983 const uint64_t Version = 2 << 1;
1984 Record.push_back((uint64_t)N->isDistinct() | Version);
1985 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1986 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1987 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1988 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1989 Record.push_back(N->getLine());
1990 Record.push_back(VE.getMetadataOrNullID(N->getType()));
1991 Record.push_back(N->isLocalToUnit());
1992 Record.push_back(N->isDefinition());
1993 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
1994 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams()));
1995 Record.push_back(N->getAlignInBits());
1996 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get()));
1997
1998 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
1999 Record.clear();
2000 }
2001
writeDILocalVariable(const DILocalVariable * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)2002 void ModuleBitcodeWriter::writeDILocalVariable(
2003 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record,
2004 unsigned Abbrev) {
2005 // In order to support all possible bitcode formats in BitcodeReader we need
2006 // to distinguish the following cases:
2007 // 1) Record has no artificial tag (Record[1]),
2008 // has no obsolete inlinedAt field (Record[9]).
2009 // In this case Record size will be 8, HasAlignment flag is false.
2010 // 2) Record has artificial tag (Record[1]),
2011 // has no obsolete inlignedAt field (Record[9]).
2012 // In this case Record size will be 9, HasAlignment flag is false.
2013 // 3) Record has both artificial tag (Record[1]) and
2014 // obsolete inlignedAt field (Record[9]).
2015 // In this case Record size will be 10, HasAlignment flag is false.
2016 // 4) Record has neither artificial tag, nor inlignedAt field, but
2017 // HasAlignment flag is true and Record[8] contains alignment value.
2018 const uint64_t HasAlignmentFlag = 1 << 1;
2019 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag);
2020 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2021 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2022 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2023 Record.push_back(N->getLine());
2024 Record.push_back(VE.getMetadataOrNullID(N->getType()));
2025 Record.push_back(N->getArg());
2026 Record.push_back(N->getFlags());
2027 Record.push_back(N->getAlignInBits());
2028 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get()));
2029
2030 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
2031 Record.clear();
2032 }
2033
writeDILabel(const DILabel * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)2034 void ModuleBitcodeWriter::writeDILabel(
2035 const DILabel *N, SmallVectorImpl<uint64_t> &Record,
2036 unsigned Abbrev) {
2037 Record.push_back((uint64_t)N->isDistinct());
2038 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2039 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2040 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2041 Record.push_back(N->getLine());
2042
2043 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev);
2044 Record.clear();
2045 }
2046
writeDIExpression(const DIExpression * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)2047 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N,
2048 SmallVectorImpl<uint64_t> &Record,
2049 unsigned Abbrev) {
2050 Record.reserve(N->getElements().size() + 1);
2051 const uint64_t Version = 3 << 1;
2052 Record.push_back((uint64_t)N->isDistinct() | Version);
2053 Record.append(N->elements_begin(), N->elements_end());
2054
2055 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
2056 Record.clear();
2057 }
2058
writeDIGlobalVariableExpression(const DIGlobalVariableExpression * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)2059 void ModuleBitcodeWriter::writeDIGlobalVariableExpression(
2060 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record,
2061 unsigned Abbrev) {
2062 Record.push_back(N->isDistinct());
2063 Record.push_back(VE.getMetadataOrNullID(N->getVariable()));
2064 Record.push_back(VE.getMetadataOrNullID(N->getExpression()));
2065
2066 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev);
2067 Record.clear();
2068 }
2069
writeDIObjCProperty(const DIObjCProperty * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)2070 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N,
2071 SmallVectorImpl<uint64_t> &Record,
2072 unsigned Abbrev) {
2073 Record.push_back(N->isDistinct());
2074 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2075 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2076 Record.push_back(N->getLine());
2077 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName()));
2078 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName()));
2079 Record.push_back(N->getAttributes());
2080 Record.push_back(VE.getMetadataOrNullID(N->getType()));
2081
2082 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev);
2083 Record.clear();
2084 }
2085
writeDIImportedEntity(const DIImportedEntity * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)2086 void ModuleBitcodeWriter::writeDIImportedEntity(
2087 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record,
2088 unsigned Abbrev) {
2089 Record.push_back(N->isDistinct());
2090 Record.push_back(N->getTag());
2091 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2092 Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
2093 Record.push_back(N->getLine());
2094 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2095 Record.push_back(VE.getMetadataOrNullID(N->getRawFile()));
2096 Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
2097
2098 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
2099 Record.clear();
2100 }
2101
createNamedMetadataAbbrev()2102 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() {
2103 auto Abbv = std::make_shared<BitCodeAbbrev>();
2104 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
2105 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2106 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2107 return Stream.EmitAbbrev(std::move(Abbv));
2108 }
2109
writeNamedMetadata(SmallVectorImpl<uint64_t> & Record)2110 void ModuleBitcodeWriter::writeNamedMetadata(
2111 SmallVectorImpl<uint64_t> &Record) {
2112 if (M.named_metadata_empty())
2113 return;
2114
2115 unsigned Abbrev = createNamedMetadataAbbrev();
2116 for (const NamedMDNode &NMD : M.named_metadata()) {
2117 // Write name.
2118 StringRef Str = NMD.getName();
2119 Record.append(Str.bytes_begin(), Str.bytes_end());
2120 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev);
2121 Record.clear();
2122
2123 // Write named metadata operands.
2124 for (const MDNode *N : NMD.operands())
2125 Record.push_back(VE.getMetadataID(N));
2126 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
2127 Record.clear();
2128 }
2129 }
2130
createMetadataStringsAbbrev()2131 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() {
2132 auto Abbv = std::make_shared<BitCodeAbbrev>();
2133 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS));
2134 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings
2135 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars
2136 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
2137 return Stream.EmitAbbrev(std::move(Abbv));
2138 }
2139
2140 /// Write out a record for MDString.
2141 ///
2142 /// All the metadata strings in a metadata block are emitted in a single
2143 /// record. The sizes and strings themselves are shoved into a blob.
writeMetadataStrings(ArrayRef<const Metadata * > Strings,SmallVectorImpl<uint64_t> & Record)2144 void ModuleBitcodeWriter::writeMetadataStrings(
2145 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) {
2146 if (Strings.empty())
2147 return;
2148
2149 // Start the record with the number of strings.
2150 Record.push_back(bitc::METADATA_STRINGS);
2151 Record.push_back(Strings.size());
2152
2153 // Emit the sizes of the strings in the blob.
2154 SmallString<256> Blob;
2155 {
2156 BitstreamWriter W(Blob);
2157 for (const Metadata *MD : Strings)
2158 W.EmitVBR(cast<MDString>(MD)->getLength(), 6);
2159 W.FlushToWord();
2160 }
2161
2162 // Add the offset to the strings to the record.
2163 Record.push_back(Blob.size());
2164
2165 // Add the strings to the blob.
2166 for (const Metadata *MD : Strings)
2167 Blob.append(cast<MDString>(MD)->getString());
2168
2169 // Emit the final record.
2170 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob);
2171 Record.clear();
2172 }
2173
2174 // Generates an enum to use as an index in the Abbrev array of Metadata record.
2175 enum MetadataAbbrev : unsigned {
2176 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID,
2177 #include "llvm/IR/Metadata.def"
2178 LastPlusOne
2179 };
2180
writeMetadataRecords(ArrayRef<const Metadata * > MDs,SmallVectorImpl<uint64_t> & Record,std::vector<unsigned> * MDAbbrevs,std::vector<uint64_t> * IndexPos)2181 void ModuleBitcodeWriter::writeMetadataRecords(
2182 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record,
2183 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) {
2184 if (MDs.empty())
2185 return;
2186
2187 // Initialize MDNode abbreviations.
2188 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
2189 #include "llvm/IR/Metadata.def"
2190
2191 for (const Metadata *MD : MDs) {
2192 if (IndexPos)
2193 IndexPos->push_back(Stream.GetCurrentBitNo());
2194 if (const MDNode *N = dyn_cast<MDNode>(MD)) {
2195 assert(N->isResolved() && "Expected forward references to be resolved");
2196
2197 switch (N->getMetadataID()) {
2198 default:
2199 llvm_unreachable("Invalid MDNode subclass");
2200 #define HANDLE_MDNODE_LEAF(CLASS) \
2201 case Metadata::CLASS##Kind: \
2202 if (MDAbbrevs) \
2203 write##CLASS(cast<CLASS>(N), Record, \
2204 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \
2205 else \
2206 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \
2207 continue;
2208 #include "llvm/IR/Metadata.def"
2209 }
2210 }
2211 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record);
2212 }
2213 }
2214
writeModuleMetadata()2215 void ModuleBitcodeWriter::writeModuleMetadata() {
2216 if (!VE.hasMDs() && M.named_metadata_empty())
2217 return;
2218
2219 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4);
2220 SmallVector<uint64_t, 64> Record;
2221
2222 // Emit all abbrevs upfront, so that the reader can jump in the middle of the
2223 // block and load any metadata.
2224 std::vector<unsigned> MDAbbrevs;
2225
2226 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne);
2227 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev();
2228 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] =
2229 createGenericDINodeAbbrev();
2230
2231 auto Abbv = std::make_shared<BitCodeAbbrev>();
2232 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET));
2233 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
2234 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
2235 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2236
2237 Abbv = std::make_shared<BitCodeAbbrev>();
2238 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX));
2239 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2240 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
2241 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2242
2243 // Emit MDStrings together upfront.
2244 writeMetadataStrings(VE.getMDStrings(), Record);
2245
2246 // We only emit an index for the metadata record if we have more than a given
2247 // (naive) threshold of metadatas, otherwise it is not worth it.
2248 if (VE.getNonMDStrings().size() > IndexThreshold) {
2249 // Write a placeholder value in for the offset of the metadata index,
2250 // which is written after the records, so that it can include
2251 // the offset of each entry. The placeholder offset will be
2252 // updated after all records are emitted.
2253 uint64_t Vals[] = {0, 0};
2254 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev);
2255 }
2256
2257 // Compute and save the bit offset to the current position, which will be
2258 // patched when we emit the index later. We can simply subtract the 64-bit
2259 // fixed size from the current bit number to get the location to backpatch.
2260 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo();
2261
2262 // This index will contain the bitpos for each individual record.
2263 std::vector<uint64_t> IndexPos;
2264 IndexPos.reserve(VE.getNonMDStrings().size());
2265
2266 // Write all the records
2267 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos);
2268
2269 if (VE.getNonMDStrings().size() > IndexThreshold) {
2270 // Now that we have emitted all the records we will emit the index. But
2271 // first
2272 // backpatch the forward reference so that the reader can skip the records
2273 // efficiently.
2274 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64,
2275 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos);
2276
2277 // Delta encode the index.
2278 uint64_t PreviousValue = IndexOffsetRecordBitPos;
2279 for (auto &Elt : IndexPos) {
2280 auto EltDelta = Elt - PreviousValue;
2281 PreviousValue = Elt;
2282 Elt = EltDelta;
2283 }
2284 // Emit the index record.
2285 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev);
2286 IndexPos.clear();
2287 }
2288
2289 // Write the named metadata now.
2290 writeNamedMetadata(Record);
2291
2292 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) {
2293 SmallVector<uint64_t, 4> Record;
2294 Record.push_back(VE.getValueID(&GO));
2295 pushGlobalMetadataAttachment(Record, GO);
2296 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record);
2297 };
2298 for (const Function &F : M)
2299 if (F.isDeclaration() && F.hasMetadata())
2300 AddDeclAttachedMetadata(F);
2301 // FIXME: Only store metadata for declarations here, and move data for global
2302 // variable definitions to a separate block (PR28134).
2303 for (const GlobalVariable &GV : M.globals())
2304 if (GV.hasMetadata())
2305 AddDeclAttachedMetadata(GV);
2306
2307 Stream.ExitBlock();
2308 }
2309
writeFunctionMetadata(const Function & F)2310 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) {
2311 if (!VE.hasMDs())
2312 return;
2313
2314 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
2315 SmallVector<uint64_t, 64> Record;
2316 writeMetadataStrings(VE.getMDStrings(), Record);
2317 writeMetadataRecords(VE.getNonMDStrings(), Record);
2318 Stream.ExitBlock();
2319 }
2320
pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> & Record,const GlobalObject & GO)2321 void ModuleBitcodeWriter::pushGlobalMetadataAttachment(
2322 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) {
2323 // [n x [id, mdnode]]
2324 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2325 GO.getAllMetadata(MDs);
2326 for (const auto &I : MDs) {
2327 Record.push_back(I.first);
2328 Record.push_back(VE.getMetadataID(I.second));
2329 }
2330 }
2331
writeFunctionMetadataAttachment(const Function & F)2332 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) {
2333 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
2334
2335 SmallVector<uint64_t, 64> Record;
2336
2337 if (F.hasMetadata()) {
2338 pushGlobalMetadataAttachment(Record, F);
2339 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2340 Record.clear();
2341 }
2342
2343 // Write metadata attachments
2344 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
2345 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2346 for (const BasicBlock &BB : F)
2347 for (const Instruction &I : BB) {
2348 MDs.clear();
2349 I.getAllMetadataOtherThanDebugLoc(MDs);
2350
2351 // If no metadata, ignore instruction.
2352 if (MDs.empty()) continue;
2353
2354 Record.push_back(VE.getInstructionID(&I));
2355
2356 for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
2357 Record.push_back(MDs[i].first);
2358 Record.push_back(VE.getMetadataID(MDs[i].second));
2359 }
2360 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2361 Record.clear();
2362 }
2363
2364 Stream.ExitBlock();
2365 }
2366
writeModuleMetadataKinds()2367 void ModuleBitcodeWriter::writeModuleMetadataKinds() {
2368 SmallVector<uint64_t, 64> Record;
2369
2370 // Write metadata kinds
2371 // METADATA_KIND - [n x [id, name]]
2372 SmallVector<StringRef, 8> Names;
2373 M.getMDKindNames(Names);
2374
2375 if (Names.empty()) return;
2376
2377 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3);
2378
2379 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
2380 Record.push_back(MDKindID);
2381 StringRef KName = Names[MDKindID];
2382 Record.append(KName.begin(), KName.end());
2383
2384 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
2385 Record.clear();
2386 }
2387
2388 Stream.ExitBlock();
2389 }
2390
writeOperandBundleTags()2391 void ModuleBitcodeWriter::writeOperandBundleTags() {
2392 // Write metadata kinds
2393 //
2394 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG
2395 //
2396 // OPERAND_BUNDLE_TAG - [strchr x N]
2397
2398 SmallVector<StringRef, 8> Tags;
2399 M.getOperandBundleTags(Tags);
2400
2401 if (Tags.empty())
2402 return;
2403
2404 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3);
2405
2406 SmallVector<uint64_t, 64> Record;
2407
2408 for (auto Tag : Tags) {
2409 Record.append(Tag.begin(), Tag.end());
2410
2411 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0);
2412 Record.clear();
2413 }
2414
2415 Stream.ExitBlock();
2416 }
2417
writeSyncScopeNames()2418 void ModuleBitcodeWriter::writeSyncScopeNames() {
2419 SmallVector<StringRef, 8> SSNs;
2420 M.getContext().getSyncScopeNames(SSNs);
2421 if (SSNs.empty())
2422 return;
2423
2424 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2);
2425
2426 SmallVector<uint64_t, 64> Record;
2427 for (auto SSN : SSNs) {
2428 Record.append(SSN.begin(), SSN.end());
2429 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0);
2430 Record.clear();
2431 }
2432
2433 Stream.ExitBlock();
2434 }
2435
writeConstants(unsigned FirstVal,unsigned LastVal,bool isGlobal)2436 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal,
2437 bool isGlobal) {
2438 if (FirstVal == LastVal) return;
2439
2440 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
2441
2442 unsigned AggregateAbbrev = 0;
2443 unsigned String8Abbrev = 0;
2444 unsigned CString7Abbrev = 0;
2445 unsigned CString6Abbrev = 0;
2446 // If this is a constant pool for the module, emit module-specific abbrevs.
2447 if (isGlobal) {
2448 // Abbrev for CST_CODE_AGGREGATE.
2449 auto Abbv = std::make_shared<BitCodeAbbrev>();
2450 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
2451 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2452 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
2453 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2454
2455 // Abbrev for CST_CODE_STRING.
2456 Abbv = std::make_shared<BitCodeAbbrev>();
2457 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
2458 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2459 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2460 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2461 // Abbrev for CST_CODE_CSTRING.
2462 Abbv = std::make_shared<BitCodeAbbrev>();
2463 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2464 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2465 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2466 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2467 // Abbrev for CST_CODE_CSTRING.
2468 Abbv = std::make_shared<BitCodeAbbrev>();
2469 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2470 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2471 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2472 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2473 }
2474
2475 SmallVector<uint64_t, 64> Record;
2476
2477 const ValueEnumerator::ValueList &Vals = VE.getValues();
2478 Type *LastTy = nullptr;
2479 for (unsigned i = FirstVal; i != LastVal; ++i) {
2480 const Value *V = Vals[i].first;
2481 // If we need to switch types, do so now.
2482 if (V->getType() != LastTy) {
2483 LastTy = V->getType();
2484 Record.push_back(VE.getTypeID(LastTy));
2485 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
2486 CONSTANTS_SETTYPE_ABBREV);
2487 Record.clear();
2488 }
2489
2490 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
2491 Record.push_back(VE.getTypeID(IA->getFunctionType()));
2492 Record.push_back(
2493 unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 |
2494 unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3);
2495
2496 // Add the asm string.
2497 const std::string &AsmStr = IA->getAsmString();
2498 Record.push_back(AsmStr.size());
2499 Record.append(AsmStr.begin(), AsmStr.end());
2500
2501 // Add the constraint string.
2502 const std::string &ConstraintStr = IA->getConstraintString();
2503 Record.push_back(ConstraintStr.size());
2504 Record.append(ConstraintStr.begin(), ConstraintStr.end());
2505 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
2506 Record.clear();
2507 continue;
2508 }
2509 const Constant *C = cast<Constant>(V);
2510 unsigned Code = -1U;
2511 unsigned AbbrevToUse = 0;
2512 if (C->isNullValue()) {
2513 Code = bitc::CST_CODE_NULL;
2514 } else if (isa<PoisonValue>(C)) {
2515 Code = bitc::CST_CODE_POISON;
2516 } else if (isa<UndefValue>(C)) {
2517 Code = bitc::CST_CODE_UNDEF;
2518 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
2519 if (IV->getBitWidth() <= 64) {
2520 uint64_t V = IV->getSExtValue();
2521 emitSignedInt64(Record, V);
2522 Code = bitc::CST_CODE_INTEGER;
2523 AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
2524 } else { // Wide integers, > 64 bits in size.
2525 emitWideAPInt(Record, IV->getValue());
2526 Code = bitc::CST_CODE_WIDE_INTEGER;
2527 }
2528 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
2529 Code = bitc::CST_CODE_FLOAT;
2530 Type *Ty = CFP->getType();
2531 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() ||
2532 Ty->isDoubleTy()) {
2533 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
2534 } else if (Ty->isX86_FP80Ty()) {
2535 // api needed to prevent premature destruction
2536 // bits are not in the same order as a normal i80 APInt, compensate.
2537 APInt api = CFP->getValueAPF().bitcastToAPInt();
2538 const uint64_t *p = api.getRawData();
2539 Record.push_back((p[1] << 48) | (p[0] >> 16));
2540 Record.push_back(p[0] & 0xffffLL);
2541 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
2542 APInt api = CFP->getValueAPF().bitcastToAPInt();
2543 const uint64_t *p = api.getRawData();
2544 Record.push_back(p[0]);
2545 Record.push_back(p[1]);
2546 } else {
2547 assert(0 && "Unknown FP type!");
2548 }
2549 } else if (isa<ConstantDataSequential>(C) &&
2550 cast<ConstantDataSequential>(C)->isString()) {
2551 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
2552 // Emit constant strings specially.
2553 unsigned NumElts = Str->getNumElements();
2554 // If this is a null-terminated string, use the denser CSTRING encoding.
2555 if (Str->isCString()) {
2556 Code = bitc::CST_CODE_CSTRING;
2557 --NumElts; // Don't encode the null, which isn't allowed by char6.
2558 } else {
2559 Code = bitc::CST_CODE_STRING;
2560 AbbrevToUse = String8Abbrev;
2561 }
2562 bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
2563 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
2564 for (unsigned i = 0; i != NumElts; ++i) {
2565 unsigned char V = Str->getElementAsInteger(i);
2566 Record.push_back(V);
2567 isCStr7 &= (V & 128) == 0;
2568 if (isCStrChar6)
2569 isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
2570 }
2571
2572 if (isCStrChar6)
2573 AbbrevToUse = CString6Abbrev;
2574 else if (isCStr7)
2575 AbbrevToUse = CString7Abbrev;
2576 } else if (const ConstantDataSequential *CDS =
2577 dyn_cast<ConstantDataSequential>(C)) {
2578 Code = bitc::CST_CODE_DATA;
2579 Type *EltTy = CDS->getElementType();
2580 if (isa<IntegerType>(EltTy)) {
2581 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2582 Record.push_back(CDS->getElementAsInteger(i));
2583 } else {
2584 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2585 Record.push_back(
2586 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue());
2587 }
2588 } else if (isa<ConstantAggregate>(C)) {
2589 Code = bitc::CST_CODE_AGGREGATE;
2590 for (const Value *Op : C->operands())
2591 Record.push_back(VE.getValueID(Op));
2592 AbbrevToUse = AggregateAbbrev;
2593 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2594 switch (CE->getOpcode()) {
2595 default:
2596 if (Instruction::isCast(CE->getOpcode())) {
2597 Code = bitc::CST_CODE_CE_CAST;
2598 Record.push_back(getEncodedCastOpcode(CE->getOpcode()));
2599 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2600 Record.push_back(VE.getValueID(C->getOperand(0)));
2601 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
2602 } else {
2603 assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
2604 Code = bitc::CST_CODE_CE_BINOP;
2605 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode()));
2606 Record.push_back(VE.getValueID(C->getOperand(0)));
2607 Record.push_back(VE.getValueID(C->getOperand(1)));
2608 uint64_t Flags = getOptimizationFlags(CE);
2609 if (Flags != 0)
2610 Record.push_back(Flags);
2611 }
2612 break;
2613 case Instruction::FNeg: {
2614 assert(CE->getNumOperands() == 1 && "Unknown constant expr!");
2615 Code = bitc::CST_CODE_CE_UNOP;
2616 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode()));
2617 Record.push_back(VE.getValueID(C->getOperand(0)));
2618 uint64_t Flags = getOptimizationFlags(CE);
2619 if (Flags != 0)
2620 Record.push_back(Flags);
2621 break;
2622 }
2623 case Instruction::GetElementPtr: {
2624 Code = bitc::CST_CODE_CE_GEP;
2625 const auto *GO = cast<GEPOperator>(C);
2626 Record.push_back(VE.getTypeID(GO->getSourceElementType()));
2627 if (Optional<unsigned> Idx = GO->getInRangeIndex()) {
2628 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX;
2629 Record.push_back((*Idx << 1) | GO->isInBounds());
2630 } else if (GO->isInBounds())
2631 Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
2632 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
2633 Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
2634 Record.push_back(VE.getValueID(C->getOperand(i)));
2635 }
2636 break;
2637 }
2638 case Instruction::Select:
2639 Code = bitc::CST_CODE_CE_SELECT;
2640 Record.push_back(VE.getValueID(C->getOperand(0)));
2641 Record.push_back(VE.getValueID(C->getOperand(1)));
2642 Record.push_back(VE.getValueID(C->getOperand(2)));
2643 break;
2644 case Instruction::ExtractElement:
2645 Code = bitc::CST_CODE_CE_EXTRACTELT;
2646 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2647 Record.push_back(VE.getValueID(C->getOperand(0)));
2648 Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
2649 Record.push_back(VE.getValueID(C->getOperand(1)));
2650 break;
2651 case Instruction::InsertElement:
2652 Code = bitc::CST_CODE_CE_INSERTELT;
2653 Record.push_back(VE.getValueID(C->getOperand(0)));
2654 Record.push_back(VE.getValueID(C->getOperand(1)));
2655 Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
2656 Record.push_back(VE.getValueID(C->getOperand(2)));
2657 break;
2658 case Instruction::ShuffleVector:
2659 // If the return type and argument types are the same, this is a
2660 // standard shufflevector instruction. If the types are different,
2661 // then the shuffle is widening or truncating the input vectors, and
2662 // the argument type must also be encoded.
2663 if (C->getType() == C->getOperand(0)->getType()) {
2664 Code = bitc::CST_CODE_CE_SHUFFLEVEC;
2665 } else {
2666 Code = bitc::CST_CODE_CE_SHUFVEC_EX;
2667 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2668 }
2669 Record.push_back(VE.getValueID(C->getOperand(0)));
2670 Record.push_back(VE.getValueID(C->getOperand(1)));
2671 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode()));
2672 break;
2673 case Instruction::ICmp:
2674 case Instruction::FCmp:
2675 Code = bitc::CST_CODE_CE_CMP;
2676 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2677 Record.push_back(VE.getValueID(C->getOperand(0)));
2678 Record.push_back(VE.getValueID(C->getOperand(1)));
2679 Record.push_back(CE->getPredicate());
2680 break;
2681 }
2682 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
2683 Code = bitc::CST_CODE_BLOCKADDRESS;
2684 Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
2685 Record.push_back(VE.getValueID(BA->getFunction()));
2686 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
2687 } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) {
2688 Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT;
2689 Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType()));
2690 Record.push_back(VE.getValueID(Equiv->getGlobalValue()));
2691 } else if (const auto *NC = dyn_cast<NoCFIValue>(C)) {
2692 Code = bitc::CST_CODE_NO_CFI_VALUE;
2693 Record.push_back(VE.getTypeID(NC->getGlobalValue()->getType()));
2694 Record.push_back(VE.getValueID(NC->getGlobalValue()));
2695 } else {
2696 #ifndef NDEBUG
2697 C->dump();
2698 #endif
2699 llvm_unreachable("Unknown constant!");
2700 }
2701 Stream.EmitRecord(Code, Record, AbbrevToUse);
2702 Record.clear();
2703 }
2704
2705 Stream.ExitBlock();
2706 }
2707
writeModuleConstants()2708 void ModuleBitcodeWriter::writeModuleConstants() {
2709 const ValueEnumerator::ValueList &Vals = VE.getValues();
2710
2711 // Find the first constant to emit, which is the first non-globalvalue value.
2712 // We know globalvalues have been emitted by WriteModuleInfo.
2713 for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
2714 if (!isa<GlobalValue>(Vals[i].first)) {
2715 writeConstants(i, Vals.size(), true);
2716 return;
2717 }
2718 }
2719 }
2720
2721 /// pushValueAndType - The file has to encode both the value and type id for
2722 /// many values, because we need to know what type to create for forward
2723 /// references. However, most operands are not forward references, so this type
2724 /// field is not needed.
2725 ///
2726 /// This function adds V's value ID to Vals. If the value ID is higher than the
2727 /// instruction ID, then it is a forward reference, and it also includes the
2728 /// type ID. The value ID that is written is encoded relative to the InstID.
pushValueAndType(const Value * V,unsigned InstID,SmallVectorImpl<unsigned> & Vals)2729 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID,
2730 SmallVectorImpl<unsigned> &Vals) {
2731 unsigned ValID = VE.getValueID(V);
2732 // Make encoding relative to the InstID.
2733 Vals.push_back(InstID - ValID);
2734 if (ValID >= InstID) {
2735 Vals.push_back(VE.getTypeID(V->getType()));
2736 return true;
2737 }
2738 return false;
2739 }
2740
writeOperandBundles(const CallBase & CS,unsigned InstID)2741 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS,
2742 unsigned InstID) {
2743 SmallVector<unsigned, 64> Record;
2744 LLVMContext &C = CS.getContext();
2745
2746 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
2747 const auto &Bundle = CS.getOperandBundleAt(i);
2748 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName()));
2749
2750 for (auto &Input : Bundle.Inputs)
2751 pushValueAndType(Input, InstID, Record);
2752
2753 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record);
2754 Record.clear();
2755 }
2756 }
2757
2758 /// pushValue - Like pushValueAndType, but where the type of the value is
2759 /// omitted (perhaps it was already encoded in an earlier operand).
pushValue(const Value * V,unsigned InstID,SmallVectorImpl<unsigned> & Vals)2760 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID,
2761 SmallVectorImpl<unsigned> &Vals) {
2762 unsigned ValID = VE.getValueID(V);
2763 Vals.push_back(InstID - ValID);
2764 }
2765
pushValueSigned(const Value * V,unsigned InstID,SmallVectorImpl<uint64_t> & Vals)2766 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID,
2767 SmallVectorImpl<uint64_t> &Vals) {
2768 unsigned ValID = VE.getValueID(V);
2769 int64_t diff = ((int32_t)InstID - (int32_t)ValID);
2770 emitSignedInt64(Vals, diff);
2771 }
2772
2773 /// WriteInstruction - Emit an instruction to the specified stream.
writeInstruction(const Instruction & I,unsigned InstID,SmallVectorImpl<unsigned> & Vals)2774 void ModuleBitcodeWriter::writeInstruction(const Instruction &I,
2775 unsigned InstID,
2776 SmallVectorImpl<unsigned> &Vals) {
2777 unsigned Code = 0;
2778 unsigned AbbrevToUse = 0;
2779 VE.setInstructionID(&I);
2780 switch (I.getOpcode()) {
2781 default:
2782 if (Instruction::isCast(I.getOpcode())) {
2783 Code = bitc::FUNC_CODE_INST_CAST;
2784 if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2785 AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
2786 Vals.push_back(VE.getTypeID(I.getType()));
2787 Vals.push_back(getEncodedCastOpcode(I.getOpcode()));
2788 } else {
2789 assert(isa<BinaryOperator>(I) && "Unknown instruction!");
2790 Code = bitc::FUNC_CODE_INST_BINOP;
2791 if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2792 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
2793 pushValue(I.getOperand(1), InstID, Vals);
2794 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode()));
2795 uint64_t Flags = getOptimizationFlags(&I);
2796 if (Flags != 0) {
2797 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
2798 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
2799 Vals.push_back(Flags);
2800 }
2801 }
2802 break;
2803 case Instruction::FNeg: {
2804 Code = bitc::FUNC_CODE_INST_UNOP;
2805 if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2806 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV;
2807 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode()));
2808 uint64_t Flags = getOptimizationFlags(&I);
2809 if (Flags != 0) {
2810 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV)
2811 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV;
2812 Vals.push_back(Flags);
2813 }
2814 break;
2815 }
2816 case Instruction::GetElementPtr: {
2817 Code = bitc::FUNC_CODE_INST_GEP;
2818 AbbrevToUse = FUNCTION_INST_GEP_ABBREV;
2819 auto &GEPInst = cast<GetElementPtrInst>(I);
2820 Vals.push_back(GEPInst.isInBounds());
2821 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType()));
2822 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
2823 pushValueAndType(I.getOperand(i), InstID, Vals);
2824 break;
2825 }
2826 case Instruction::ExtractValue: {
2827 Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
2828 pushValueAndType(I.getOperand(0), InstID, Vals);
2829 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
2830 Vals.append(EVI->idx_begin(), EVI->idx_end());
2831 break;
2832 }
2833 case Instruction::InsertValue: {
2834 Code = bitc::FUNC_CODE_INST_INSERTVAL;
2835 pushValueAndType(I.getOperand(0), InstID, Vals);
2836 pushValueAndType(I.getOperand(1), InstID, Vals);
2837 const InsertValueInst *IVI = cast<InsertValueInst>(&I);
2838 Vals.append(IVI->idx_begin(), IVI->idx_end());
2839 break;
2840 }
2841 case Instruction::Select: {
2842 Code = bitc::FUNC_CODE_INST_VSELECT;
2843 pushValueAndType(I.getOperand(1), InstID, Vals);
2844 pushValue(I.getOperand(2), InstID, Vals);
2845 pushValueAndType(I.getOperand(0), InstID, Vals);
2846 uint64_t Flags = getOptimizationFlags(&I);
2847 if (Flags != 0)
2848 Vals.push_back(Flags);
2849 break;
2850 }
2851 case Instruction::ExtractElement:
2852 Code = bitc::FUNC_CODE_INST_EXTRACTELT;
2853 pushValueAndType(I.getOperand(0), InstID, Vals);
2854 pushValueAndType(I.getOperand(1), InstID, Vals);
2855 break;
2856 case Instruction::InsertElement:
2857 Code = bitc::FUNC_CODE_INST_INSERTELT;
2858 pushValueAndType(I.getOperand(0), InstID, Vals);
2859 pushValue(I.getOperand(1), InstID, Vals);
2860 pushValueAndType(I.getOperand(2), InstID, Vals);
2861 break;
2862 case Instruction::ShuffleVector:
2863 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
2864 pushValueAndType(I.getOperand(0), InstID, Vals);
2865 pushValue(I.getOperand(1), InstID, Vals);
2866 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID,
2867 Vals);
2868 break;
2869 case Instruction::ICmp:
2870 case Instruction::FCmp: {
2871 // compare returning Int1Ty or vector of Int1Ty
2872 Code = bitc::FUNC_CODE_INST_CMP2;
2873 pushValueAndType(I.getOperand(0), InstID, Vals);
2874 pushValue(I.getOperand(1), InstID, Vals);
2875 Vals.push_back(cast<CmpInst>(I).getPredicate());
2876 uint64_t Flags = getOptimizationFlags(&I);
2877 if (Flags != 0)
2878 Vals.push_back(Flags);
2879 break;
2880 }
2881
2882 case Instruction::Ret:
2883 {
2884 Code = bitc::FUNC_CODE_INST_RET;
2885 unsigned NumOperands = I.getNumOperands();
2886 if (NumOperands == 0)
2887 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
2888 else if (NumOperands == 1) {
2889 if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2890 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
2891 } else {
2892 for (unsigned i = 0, e = NumOperands; i != e; ++i)
2893 pushValueAndType(I.getOperand(i), InstID, Vals);
2894 }
2895 }
2896 break;
2897 case Instruction::Br:
2898 {
2899 Code = bitc::FUNC_CODE_INST_BR;
2900 const BranchInst &II = cast<BranchInst>(I);
2901 Vals.push_back(VE.getValueID(II.getSuccessor(0)));
2902 if (II.isConditional()) {
2903 Vals.push_back(VE.getValueID(II.getSuccessor(1)));
2904 pushValue(II.getCondition(), InstID, Vals);
2905 }
2906 }
2907 break;
2908 case Instruction::Switch:
2909 {
2910 Code = bitc::FUNC_CODE_INST_SWITCH;
2911 const SwitchInst &SI = cast<SwitchInst>(I);
2912 Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
2913 pushValue(SI.getCondition(), InstID, Vals);
2914 Vals.push_back(VE.getValueID(SI.getDefaultDest()));
2915 for (auto Case : SI.cases()) {
2916 Vals.push_back(VE.getValueID(Case.getCaseValue()));
2917 Vals.push_back(VE.getValueID(Case.getCaseSuccessor()));
2918 }
2919 }
2920 break;
2921 case Instruction::IndirectBr:
2922 Code = bitc::FUNC_CODE_INST_INDIRECTBR;
2923 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
2924 // Encode the address operand as relative, but not the basic blocks.
2925 pushValue(I.getOperand(0), InstID, Vals);
2926 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
2927 Vals.push_back(VE.getValueID(I.getOperand(i)));
2928 break;
2929
2930 case Instruction::Invoke: {
2931 const InvokeInst *II = cast<InvokeInst>(&I);
2932 const Value *Callee = II->getCalledOperand();
2933 FunctionType *FTy = II->getFunctionType();
2934
2935 if (II->hasOperandBundles())
2936 writeOperandBundles(*II, InstID);
2937
2938 Code = bitc::FUNC_CODE_INST_INVOKE;
2939
2940 Vals.push_back(VE.getAttributeListID(II->getAttributes()));
2941 Vals.push_back(II->getCallingConv() | 1 << 13);
2942 Vals.push_back(VE.getValueID(II->getNormalDest()));
2943 Vals.push_back(VE.getValueID(II->getUnwindDest()));
2944 Vals.push_back(VE.getTypeID(FTy));
2945 pushValueAndType(Callee, InstID, Vals);
2946
2947 // Emit value #'s for the fixed parameters.
2948 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2949 pushValue(I.getOperand(i), InstID, Vals); // fixed param.
2950
2951 // Emit type/value pairs for varargs params.
2952 if (FTy->isVarArg()) {
2953 for (unsigned i = FTy->getNumParams(), e = II->arg_size(); i != e; ++i)
2954 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
2955 }
2956 break;
2957 }
2958 case Instruction::Resume:
2959 Code = bitc::FUNC_CODE_INST_RESUME;
2960 pushValueAndType(I.getOperand(0), InstID, Vals);
2961 break;
2962 case Instruction::CleanupRet: {
2963 Code = bitc::FUNC_CODE_INST_CLEANUPRET;
2964 const auto &CRI = cast<CleanupReturnInst>(I);
2965 pushValue(CRI.getCleanupPad(), InstID, Vals);
2966 if (CRI.hasUnwindDest())
2967 Vals.push_back(VE.getValueID(CRI.getUnwindDest()));
2968 break;
2969 }
2970 case Instruction::CatchRet: {
2971 Code = bitc::FUNC_CODE_INST_CATCHRET;
2972 const auto &CRI = cast<CatchReturnInst>(I);
2973 pushValue(CRI.getCatchPad(), InstID, Vals);
2974 Vals.push_back(VE.getValueID(CRI.getSuccessor()));
2975 break;
2976 }
2977 case Instruction::CleanupPad:
2978 case Instruction::CatchPad: {
2979 const auto &FuncletPad = cast<FuncletPadInst>(I);
2980 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD
2981 : bitc::FUNC_CODE_INST_CLEANUPPAD;
2982 pushValue(FuncletPad.getParentPad(), InstID, Vals);
2983
2984 unsigned NumArgOperands = FuncletPad.getNumArgOperands();
2985 Vals.push_back(NumArgOperands);
2986 for (unsigned Op = 0; Op != NumArgOperands; ++Op)
2987 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals);
2988 break;
2989 }
2990 case Instruction::CatchSwitch: {
2991 Code = bitc::FUNC_CODE_INST_CATCHSWITCH;
2992 const auto &CatchSwitch = cast<CatchSwitchInst>(I);
2993
2994 pushValue(CatchSwitch.getParentPad(), InstID, Vals);
2995
2996 unsigned NumHandlers = CatchSwitch.getNumHandlers();
2997 Vals.push_back(NumHandlers);
2998 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers())
2999 Vals.push_back(VE.getValueID(CatchPadBB));
3000
3001 if (CatchSwitch.hasUnwindDest())
3002 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest()));
3003 break;
3004 }
3005 case Instruction::CallBr: {
3006 const CallBrInst *CBI = cast<CallBrInst>(&I);
3007 const Value *Callee = CBI->getCalledOperand();
3008 FunctionType *FTy = CBI->getFunctionType();
3009
3010 if (CBI->hasOperandBundles())
3011 writeOperandBundles(*CBI, InstID);
3012
3013 Code = bitc::FUNC_CODE_INST_CALLBR;
3014
3015 Vals.push_back(VE.getAttributeListID(CBI->getAttributes()));
3016
3017 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV |
3018 1 << bitc::CALL_EXPLICIT_TYPE);
3019
3020 Vals.push_back(VE.getValueID(CBI->getDefaultDest()));
3021 Vals.push_back(CBI->getNumIndirectDests());
3022 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i)
3023 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i)));
3024
3025 Vals.push_back(VE.getTypeID(FTy));
3026 pushValueAndType(Callee, InstID, Vals);
3027
3028 // Emit value #'s for the fixed parameters.
3029 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
3030 pushValue(I.getOperand(i), InstID, Vals); // fixed param.
3031
3032 // Emit type/value pairs for varargs params.
3033 if (FTy->isVarArg()) {
3034 for (unsigned i = FTy->getNumParams(), e = CBI->arg_size(); i != e; ++i)
3035 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
3036 }
3037 break;
3038 }
3039 case Instruction::Unreachable:
3040 Code = bitc::FUNC_CODE_INST_UNREACHABLE;
3041 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
3042 break;
3043
3044 case Instruction::PHI: {
3045 const PHINode &PN = cast<PHINode>(I);
3046 Code = bitc::FUNC_CODE_INST_PHI;
3047 // With the newer instruction encoding, forward references could give
3048 // negative valued IDs. This is most common for PHIs, so we use
3049 // signed VBRs.
3050 SmallVector<uint64_t, 128> Vals64;
3051 Vals64.push_back(VE.getTypeID(PN.getType()));
3052 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
3053 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64);
3054 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
3055 }
3056
3057 uint64_t Flags = getOptimizationFlags(&I);
3058 if (Flags != 0)
3059 Vals64.push_back(Flags);
3060
3061 // Emit a Vals64 vector and exit.
3062 Stream.EmitRecord(Code, Vals64, AbbrevToUse);
3063 Vals64.clear();
3064 return;
3065 }
3066
3067 case Instruction::LandingPad: {
3068 const LandingPadInst &LP = cast<LandingPadInst>(I);
3069 Code = bitc::FUNC_CODE_INST_LANDINGPAD;
3070 Vals.push_back(VE.getTypeID(LP.getType()));
3071 Vals.push_back(LP.isCleanup());
3072 Vals.push_back(LP.getNumClauses());
3073 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
3074 if (LP.isCatch(I))
3075 Vals.push_back(LandingPadInst::Catch);
3076 else
3077 Vals.push_back(LandingPadInst::Filter);
3078 pushValueAndType(LP.getClause(I), InstID, Vals);
3079 }
3080 break;
3081 }
3082
3083 case Instruction::Alloca: {
3084 Code = bitc::FUNC_CODE_INST_ALLOCA;
3085 const AllocaInst &AI = cast<AllocaInst>(I);
3086 Vals.push_back(VE.getTypeID(AI.getAllocatedType()));
3087 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
3088 Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
3089 using APV = AllocaPackedValues;
3090 unsigned Record = 0;
3091 unsigned EncodedAlign = getEncodedAlign(AI.getAlign());
3092 Bitfield::set<APV::AlignLower>(
3093 Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1));
3094 Bitfield::set<APV::AlignUpper>(Record,
3095 EncodedAlign >> APV::AlignLower::Bits);
3096 Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca());
3097 Bitfield::set<APV::ExplicitType>(Record, true);
3098 Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError());
3099 Vals.push_back(Record);
3100
3101 unsigned AS = AI.getAddressSpace();
3102 if (AS != M.getDataLayout().getAllocaAddrSpace())
3103 Vals.push_back(AS);
3104 break;
3105 }
3106
3107 case Instruction::Load:
3108 if (cast<LoadInst>(I).isAtomic()) {
3109 Code = bitc::FUNC_CODE_INST_LOADATOMIC;
3110 pushValueAndType(I.getOperand(0), InstID, Vals);
3111 } else {
3112 Code = bitc::FUNC_CODE_INST_LOAD;
3113 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr
3114 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
3115 }
3116 Vals.push_back(VE.getTypeID(I.getType()));
3117 Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign()));
3118 Vals.push_back(cast<LoadInst>(I).isVolatile());
3119 if (cast<LoadInst>(I).isAtomic()) {
3120 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering()));
3121 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID()));
3122 }
3123 break;
3124 case Instruction::Store:
3125 if (cast<StoreInst>(I).isAtomic())
3126 Code = bitc::FUNC_CODE_INST_STOREATOMIC;
3127 else
3128 Code = bitc::FUNC_CODE_INST_STORE;
3129 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr
3130 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val
3131 Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign()));
3132 Vals.push_back(cast<StoreInst>(I).isVolatile());
3133 if (cast<StoreInst>(I).isAtomic()) {
3134 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering()));
3135 Vals.push_back(
3136 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID()));
3137 }
3138 break;
3139 case Instruction::AtomicCmpXchg:
3140 Code = bitc::FUNC_CODE_INST_CMPXCHG;
3141 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
3142 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp.
3143 pushValue(I.getOperand(2), InstID, Vals); // newval.
3144 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
3145 Vals.push_back(
3146 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
3147 Vals.push_back(
3148 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID()));
3149 Vals.push_back(
3150 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
3151 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
3152 Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign()));
3153 break;
3154 case Instruction::AtomicRMW:
3155 Code = bitc::FUNC_CODE_INST_ATOMICRMW;
3156 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
3157 pushValueAndType(I.getOperand(1), InstID, Vals); // valty + val
3158 Vals.push_back(
3159 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation()));
3160 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
3161 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
3162 Vals.push_back(
3163 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID()));
3164 Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign()));
3165 break;
3166 case Instruction::Fence:
3167 Code = bitc::FUNC_CODE_INST_FENCE;
3168 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering()));
3169 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID()));
3170 break;
3171 case Instruction::Call: {
3172 const CallInst &CI = cast<CallInst>(I);
3173 FunctionType *FTy = CI.getFunctionType();
3174
3175 if (CI.hasOperandBundles())
3176 writeOperandBundles(CI, InstID);
3177
3178 Code = bitc::FUNC_CODE_INST_CALL;
3179
3180 Vals.push_back(VE.getAttributeListID(CI.getAttributes()));
3181
3182 unsigned Flags = getOptimizationFlags(&I);
3183 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV |
3184 unsigned(CI.isTailCall()) << bitc::CALL_TAIL |
3185 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL |
3186 1 << bitc::CALL_EXPLICIT_TYPE |
3187 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL |
3188 unsigned(Flags != 0) << bitc::CALL_FMF);
3189 if (Flags != 0)
3190 Vals.push_back(Flags);
3191
3192 Vals.push_back(VE.getTypeID(FTy));
3193 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee
3194
3195 // Emit value #'s for the fixed parameters.
3196 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
3197 // Check for labels (can happen with asm labels).
3198 if (FTy->getParamType(i)->isLabelTy())
3199 Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
3200 else
3201 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param.
3202 }
3203
3204 // Emit type/value pairs for varargs params.
3205 if (FTy->isVarArg()) {
3206 for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i)
3207 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs
3208 }
3209 break;
3210 }
3211 case Instruction::VAArg:
3212 Code = bitc::FUNC_CODE_INST_VAARG;
3213 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty
3214 pushValue(I.getOperand(0), InstID, Vals); // valist.
3215 Vals.push_back(VE.getTypeID(I.getType())); // restype.
3216 break;
3217 case Instruction::Freeze:
3218 Code = bitc::FUNC_CODE_INST_FREEZE;
3219 pushValueAndType(I.getOperand(0), InstID, Vals);
3220 break;
3221 }
3222
3223 Stream.EmitRecord(Code, Vals, AbbrevToUse);
3224 Vals.clear();
3225 }
3226
3227 /// Write a GlobalValue VST to the module. The purpose of this data structure is
3228 /// to allow clients to efficiently find the function body.
writeGlobalValueSymbolTable(DenseMap<const Function *,uint64_t> & FunctionToBitcodeIndex)3229 void ModuleBitcodeWriter::writeGlobalValueSymbolTable(
3230 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
3231 // Get the offset of the VST we are writing, and backpatch it into
3232 // the VST forward declaration record.
3233 uint64_t VSTOffset = Stream.GetCurrentBitNo();
3234 // The BitcodeStartBit was the stream offset of the identification block.
3235 VSTOffset -= bitcodeStartBit();
3236 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned");
3237 // Note that we add 1 here because the offset is relative to one word
3238 // before the start of the identification block, which was historically
3239 // always the start of the regular bitcode header.
3240 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1);
3241
3242 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
3243
3244 auto Abbv = std::make_shared<BitCodeAbbrev>();
3245 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
3246 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
3247 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
3248 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3249
3250 for (const Function &F : M) {
3251 uint64_t Record[2];
3252
3253 if (F.isDeclaration())
3254 continue;
3255
3256 Record[0] = VE.getValueID(&F);
3257
3258 // Save the word offset of the function (from the start of the
3259 // actual bitcode written to the stream).
3260 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit();
3261 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned");
3262 // Note that we add 1 here because the offset is relative to one word
3263 // before the start of the identification block, which was historically
3264 // always the start of the regular bitcode header.
3265 Record[1] = BitcodeIndex / 32 + 1;
3266
3267 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev);
3268 }
3269
3270 Stream.ExitBlock();
3271 }
3272
3273 /// Emit names for arguments, instructions and basic blocks in a function.
writeFunctionLevelValueSymbolTable(const ValueSymbolTable & VST)3274 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable(
3275 const ValueSymbolTable &VST) {
3276 if (VST.empty())
3277 return;
3278
3279 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
3280
3281 // FIXME: Set up the abbrev, we know how many values there are!
3282 // FIXME: We know if the type names can use 7-bit ascii.
3283 SmallVector<uint64_t, 64> NameVals;
3284
3285 for (const ValueName &Name : VST) {
3286 // Figure out the encoding to use for the name.
3287 StringEncoding Bits = getStringEncoding(Name.getKey());
3288
3289 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
3290 NameVals.push_back(VE.getValueID(Name.getValue()));
3291
3292 // VST_CODE_ENTRY: [valueid, namechar x N]
3293 // VST_CODE_BBENTRY: [bbid, namechar x N]
3294 unsigned Code;
3295 if (isa<BasicBlock>(Name.getValue())) {
3296 Code = bitc::VST_CODE_BBENTRY;
3297 if (Bits == SE_Char6)
3298 AbbrevToUse = VST_BBENTRY_6_ABBREV;
3299 } else {
3300 Code = bitc::VST_CODE_ENTRY;
3301 if (Bits == SE_Char6)
3302 AbbrevToUse = VST_ENTRY_6_ABBREV;
3303 else if (Bits == SE_Fixed7)
3304 AbbrevToUse = VST_ENTRY_7_ABBREV;
3305 }
3306
3307 for (const auto P : Name.getKey())
3308 NameVals.push_back((unsigned char)P);
3309
3310 // Emit the finished record.
3311 Stream.EmitRecord(Code, NameVals, AbbrevToUse);
3312 NameVals.clear();
3313 }
3314
3315 Stream.ExitBlock();
3316 }
3317
writeUseList(UseListOrder && Order)3318 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) {
3319 assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
3320 unsigned Code;
3321 if (isa<BasicBlock>(Order.V))
3322 Code = bitc::USELIST_CODE_BB;
3323 else
3324 Code = bitc::USELIST_CODE_DEFAULT;
3325
3326 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
3327 Record.push_back(VE.getValueID(Order.V));
3328 Stream.EmitRecord(Code, Record);
3329 }
3330
writeUseListBlock(const Function * F)3331 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) {
3332 assert(VE.shouldPreserveUseListOrder() &&
3333 "Expected to be preserving use-list order");
3334
3335 auto hasMore = [&]() {
3336 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
3337 };
3338 if (!hasMore())
3339 // Nothing to do.
3340 return;
3341
3342 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
3343 while (hasMore()) {
3344 writeUseList(std::move(VE.UseListOrders.back()));
3345 VE.UseListOrders.pop_back();
3346 }
3347 Stream.ExitBlock();
3348 }
3349
3350 /// Emit a function body to the module stream.
writeFunction(const Function & F,DenseMap<const Function *,uint64_t> & FunctionToBitcodeIndex)3351 void ModuleBitcodeWriter::writeFunction(
3352 const Function &F,
3353 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
3354 // Save the bitcode index of the start of this function block for recording
3355 // in the VST.
3356 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo();
3357
3358 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
3359 VE.incorporateFunction(F);
3360
3361 SmallVector<unsigned, 64> Vals;
3362
3363 // Emit the number of basic blocks, so the reader can create them ahead of
3364 // time.
3365 Vals.push_back(VE.getBasicBlocks().size());
3366 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
3367 Vals.clear();
3368
3369 // If there are function-local constants, emit them now.
3370 unsigned CstStart, CstEnd;
3371 VE.getFunctionConstantRange(CstStart, CstEnd);
3372 writeConstants(CstStart, CstEnd, false);
3373
3374 // If there is function-local metadata, emit it now.
3375 writeFunctionMetadata(F);
3376
3377 // Keep a running idea of what the instruction ID is.
3378 unsigned InstID = CstEnd;
3379
3380 bool NeedsMetadataAttachment = F.hasMetadata();
3381
3382 DILocation *LastDL = nullptr;
3383 SmallSetVector<Function *, 4> BlockAddressUsers;
3384
3385 // Finally, emit all the instructions, in order.
3386 for (const BasicBlock &BB : F) {
3387 for (const Instruction &I : BB) {
3388 writeInstruction(I, InstID, Vals);
3389
3390 if (!I.getType()->isVoidTy())
3391 ++InstID;
3392
3393 // If the instruction has metadata, write a metadata attachment later.
3394 NeedsMetadataAttachment |= I.hasMetadataOtherThanDebugLoc();
3395
3396 // If the instruction has a debug location, emit it.
3397 DILocation *DL = I.getDebugLoc();
3398 if (!DL)
3399 continue;
3400
3401 if (DL == LastDL) {
3402 // Just repeat the same debug loc as last time.
3403 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
3404 continue;
3405 }
3406
3407 Vals.push_back(DL->getLine());
3408 Vals.push_back(DL->getColumn());
3409 Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
3410 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
3411 Vals.push_back(DL->isImplicitCode());
3412 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
3413 Vals.clear();
3414
3415 LastDL = DL;
3416 }
3417
3418 if (BlockAddress *BA = BlockAddress::lookup(&BB)) {
3419 SmallVector<Value *> Worklist{BA};
3420 SmallPtrSet<Value *, 8> Visited{BA};
3421 while (!Worklist.empty()) {
3422 Value *V = Worklist.pop_back_val();
3423 for (User *U : V->users()) {
3424 if (auto *I = dyn_cast<Instruction>(U)) {
3425 Function *P = I->getFunction();
3426 if (P != &F)
3427 BlockAddressUsers.insert(P);
3428 } else if (isa<Constant>(U) && !isa<GlobalValue>(U) &&
3429 Visited.insert(U).second)
3430 Worklist.push_back(U);
3431 }
3432 }
3433 }
3434 }
3435
3436 if (!BlockAddressUsers.empty()) {
3437 Vals.resize(BlockAddressUsers.size());
3438 for (auto I : llvm::enumerate(BlockAddressUsers))
3439 Vals[I.index()] = VE.getValueID(I.value());
3440 Stream.EmitRecord(bitc::FUNC_CODE_BLOCKADDR_USERS, Vals);
3441 Vals.clear();
3442 }
3443
3444 // Emit names for all the instructions etc.
3445 if (auto *Symtab = F.getValueSymbolTable())
3446 writeFunctionLevelValueSymbolTable(*Symtab);
3447
3448 if (NeedsMetadataAttachment)
3449 writeFunctionMetadataAttachment(F);
3450 if (VE.shouldPreserveUseListOrder())
3451 writeUseListBlock(&F);
3452 VE.purgeFunction();
3453 Stream.ExitBlock();
3454 }
3455
3456 // Emit blockinfo, which defines the standard abbreviations etc.
writeBlockInfo()3457 void ModuleBitcodeWriter::writeBlockInfo() {
3458 // We only want to emit block info records for blocks that have multiple
3459 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
3460 // Other blocks can define their abbrevs inline.
3461 Stream.EnterBlockInfoBlock();
3462
3463 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings.
3464 auto Abbv = std::make_shared<BitCodeAbbrev>();
3465 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
3466 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3467 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3468 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3469 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3470 VST_ENTRY_8_ABBREV)
3471 llvm_unreachable("Unexpected abbrev ordering!");
3472 }
3473
3474 { // 7-bit fixed width VST_CODE_ENTRY strings.
3475 auto Abbv = std::make_shared<BitCodeAbbrev>();
3476 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3477 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3478 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3479 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3480 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3481 VST_ENTRY_7_ABBREV)
3482 llvm_unreachable("Unexpected abbrev ordering!");
3483 }
3484 { // 6-bit char6 VST_CODE_ENTRY strings.
3485 auto Abbv = std::make_shared<BitCodeAbbrev>();
3486 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3487 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3488 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3489 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3490 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3491 VST_ENTRY_6_ABBREV)
3492 llvm_unreachable("Unexpected abbrev ordering!");
3493 }
3494 { // 6-bit char6 VST_CODE_BBENTRY strings.
3495 auto Abbv = std::make_shared<BitCodeAbbrev>();
3496 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
3497 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3498 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3499 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3500 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3501 VST_BBENTRY_6_ABBREV)
3502 llvm_unreachable("Unexpected abbrev ordering!");
3503 }
3504
3505 { // SETTYPE abbrev for CONSTANTS_BLOCK.
3506 auto Abbv = std::make_shared<BitCodeAbbrev>();
3507 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
3508 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
3509 VE.computeBitsRequiredForTypeIndicies()));
3510 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3511 CONSTANTS_SETTYPE_ABBREV)
3512 llvm_unreachable("Unexpected abbrev ordering!");
3513 }
3514
3515 { // INTEGER abbrev for CONSTANTS_BLOCK.
3516 auto Abbv = std::make_shared<BitCodeAbbrev>();
3517 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
3518 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3519 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3520 CONSTANTS_INTEGER_ABBREV)
3521 llvm_unreachable("Unexpected abbrev ordering!");
3522 }
3523
3524 { // CE_CAST abbrev for CONSTANTS_BLOCK.
3525 auto Abbv = std::make_shared<BitCodeAbbrev>();
3526 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
3527 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc
3528 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid
3529 VE.computeBitsRequiredForTypeIndicies()));
3530 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
3531
3532 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3533 CONSTANTS_CE_CAST_Abbrev)
3534 llvm_unreachable("Unexpected abbrev ordering!");
3535 }
3536 { // NULL abbrev for CONSTANTS_BLOCK.
3537 auto Abbv = std::make_shared<BitCodeAbbrev>();
3538 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
3539 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3540 CONSTANTS_NULL_Abbrev)
3541 llvm_unreachable("Unexpected abbrev ordering!");
3542 }
3543
3544 // FIXME: This should only use space for first class types!
3545
3546 { // INST_LOAD abbrev for FUNCTION_BLOCK.
3547 auto Abbv = std::make_shared<BitCodeAbbrev>();
3548 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
3549 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
3550 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3551 VE.computeBitsRequiredForTypeIndicies()));
3552 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
3553 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
3554 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3555 FUNCTION_INST_LOAD_ABBREV)
3556 llvm_unreachable("Unexpected abbrev ordering!");
3557 }
3558 { // INST_UNOP abbrev for FUNCTION_BLOCK.
3559 auto Abbv = std::make_shared<BitCodeAbbrev>();
3560 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP));
3561 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3562 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3563 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3564 FUNCTION_INST_UNOP_ABBREV)
3565 llvm_unreachable("Unexpected abbrev ordering!");
3566 }
3567 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK.
3568 auto Abbv = std::make_shared<BitCodeAbbrev>();
3569 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP));
3570 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3571 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3572 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3573 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3574 FUNCTION_INST_UNOP_FLAGS_ABBREV)
3575 llvm_unreachable("Unexpected abbrev ordering!");
3576 }
3577 { // INST_BINOP abbrev for FUNCTION_BLOCK.
3578 auto Abbv = std::make_shared<BitCodeAbbrev>();
3579 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3580 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3581 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3582 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3583 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3584 FUNCTION_INST_BINOP_ABBREV)
3585 llvm_unreachable("Unexpected abbrev ordering!");
3586 }
3587 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
3588 auto Abbv = std::make_shared<BitCodeAbbrev>();
3589 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3590 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3591 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3592 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3593 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3594 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3595 FUNCTION_INST_BINOP_FLAGS_ABBREV)
3596 llvm_unreachable("Unexpected abbrev ordering!");
3597 }
3598 { // INST_CAST abbrev for FUNCTION_BLOCK.
3599 auto Abbv = std::make_shared<BitCodeAbbrev>();
3600 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
3601 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
3602 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3603 VE.computeBitsRequiredForTypeIndicies()));
3604 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3605 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3606 FUNCTION_INST_CAST_ABBREV)
3607 llvm_unreachable("Unexpected abbrev ordering!");
3608 }
3609
3610 { // INST_RET abbrev for FUNCTION_BLOCK.
3611 auto Abbv = std::make_shared<BitCodeAbbrev>();
3612 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3613 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3614 FUNCTION_INST_RET_VOID_ABBREV)
3615 llvm_unreachable("Unexpected abbrev ordering!");
3616 }
3617 { // INST_RET abbrev for FUNCTION_BLOCK.
3618 auto Abbv = std::make_shared<BitCodeAbbrev>();
3619 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3620 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
3621 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3622 FUNCTION_INST_RET_VAL_ABBREV)
3623 llvm_unreachable("Unexpected abbrev ordering!");
3624 }
3625 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
3626 auto Abbv = std::make_shared<BitCodeAbbrev>();
3627 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
3628 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3629 FUNCTION_INST_UNREACHABLE_ABBREV)
3630 llvm_unreachable("Unexpected abbrev ordering!");
3631 }
3632 {
3633 auto Abbv = std::make_shared<BitCodeAbbrev>();
3634 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
3635 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
3636 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3637 Log2_32_Ceil(VE.getTypes().size() + 1)));
3638 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3639 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
3640 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3641 FUNCTION_INST_GEP_ABBREV)
3642 llvm_unreachable("Unexpected abbrev ordering!");
3643 }
3644
3645 Stream.ExitBlock();
3646 }
3647
3648 /// Write the module path strings, currently only used when generating
3649 /// a combined index file.
writeModStrings()3650 void IndexBitcodeWriter::writeModStrings() {
3651 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3);
3652
3653 // TODO: See which abbrev sizes we actually need to emit
3654
3655 // 8-bit fixed-width MST_ENTRY strings.
3656 auto Abbv = std::make_shared<BitCodeAbbrev>();
3657 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3658 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3659 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3660 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3661 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv));
3662
3663 // 7-bit fixed width MST_ENTRY strings.
3664 Abbv = std::make_shared<BitCodeAbbrev>();
3665 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3666 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3667 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3668 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3669 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv));
3670
3671 // 6-bit char6 MST_ENTRY strings.
3672 Abbv = std::make_shared<BitCodeAbbrev>();
3673 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3674 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3675 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3676 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3677 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv));
3678
3679 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY.
3680 Abbv = std::make_shared<BitCodeAbbrev>();
3681 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH));
3682 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3683 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3684 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3685 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3686 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3687 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv));
3688
3689 SmallVector<unsigned, 64> Vals;
3690 forEachModule(
3691 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) {
3692 StringRef Key = MPSE.getKey();
3693 const auto &Value = MPSE.getValue();
3694 StringEncoding Bits = getStringEncoding(Key);
3695 unsigned AbbrevToUse = Abbrev8Bit;
3696 if (Bits == SE_Char6)
3697 AbbrevToUse = Abbrev6Bit;
3698 else if (Bits == SE_Fixed7)
3699 AbbrevToUse = Abbrev7Bit;
3700
3701 Vals.push_back(Value.first);
3702 Vals.append(Key.begin(), Key.end());
3703
3704 // Emit the finished record.
3705 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse);
3706
3707 // Emit an optional hash for the module now
3708 const auto &Hash = Value.second;
3709 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) {
3710 Vals.assign(Hash.begin(), Hash.end());
3711 // Emit the hash record.
3712 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash);
3713 }
3714
3715 Vals.clear();
3716 });
3717 Stream.ExitBlock();
3718 }
3719
3720 /// Write the function type metadata related records that need to appear before
3721 /// a function summary entry (whether per-module or combined).
3722 template <typename Fn>
writeFunctionTypeMetadataRecords(BitstreamWriter & Stream,FunctionSummary * FS,Fn GetValueID)3723 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream,
3724 FunctionSummary *FS,
3725 Fn GetValueID) {
3726 if (!FS->type_tests().empty())
3727 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests());
3728
3729 SmallVector<uint64_t, 64> Record;
3730
3731 auto WriteVFuncIdVec = [&](uint64_t Ty,
3732 ArrayRef<FunctionSummary::VFuncId> VFs) {
3733 if (VFs.empty())
3734 return;
3735 Record.clear();
3736 for (auto &VF : VFs) {
3737 Record.push_back(VF.GUID);
3738 Record.push_back(VF.Offset);
3739 }
3740 Stream.EmitRecord(Ty, Record);
3741 };
3742
3743 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS,
3744 FS->type_test_assume_vcalls());
3745 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS,
3746 FS->type_checked_load_vcalls());
3747
3748 auto WriteConstVCallVec = [&](uint64_t Ty,
3749 ArrayRef<FunctionSummary::ConstVCall> VCs) {
3750 for (auto &VC : VCs) {
3751 Record.clear();
3752 Record.push_back(VC.VFunc.GUID);
3753 Record.push_back(VC.VFunc.Offset);
3754 llvm::append_range(Record, VC.Args);
3755 Stream.EmitRecord(Ty, Record);
3756 }
3757 };
3758
3759 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL,
3760 FS->type_test_assume_const_vcalls());
3761 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL,
3762 FS->type_checked_load_const_vcalls());
3763
3764 auto WriteRange = [&](ConstantRange Range) {
3765 Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth);
3766 assert(Range.getLower().getNumWords() == 1);
3767 assert(Range.getUpper().getNumWords() == 1);
3768 emitSignedInt64(Record, *Range.getLower().getRawData());
3769 emitSignedInt64(Record, *Range.getUpper().getRawData());
3770 };
3771
3772 if (!FS->paramAccesses().empty()) {
3773 Record.clear();
3774 for (auto &Arg : FS->paramAccesses()) {
3775 size_t UndoSize = Record.size();
3776 Record.push_back(Arg.ParamNo);
3777 WriteRange(Arg.Use);
3778 Record.push_back(Arg.Calls.size());
3779 for (auto &Call : Arg.Calls) {
3780 Record.push_back(Call.ParamNo);
3781 Optional<unsigned> ValueID = GetValueID(Call.Callee);
3782 if (!ValueID) {
3783 // If ValueID is unknown we can't drop just this call, we must drop
3784 // entire parameter.
3785 Record.resize(UndoSize);
3786 break;
3787 }
3788 Record.push_back(*ValueID);
3789 WriteRange(Call.Offsets);
3790 }
3791 }
3792 if (!Record.empty())
3793 Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record);
3794 }
3795 }
3796
3797 /// Collect type IDs from type tests used by function.
3798 static void
getReferencedTypeIds(FunctionSummary * FS,std::set<GlobalValue::GUID> & ReferencedTypeIds)3799 getReferencedTypeIds(FunctionSummary *FS,
3800 std::set<GlobalValue::GUID> &ReferencedTypeIds) {
3801 if (!FS->type_tests().empty())
3802 for (auto &TT : FS->type_tests())
3803 ReferencedTypeIds.insert(TT);
3804
3805 auto GetReferencedTypesFromVFuncIdVec =
3806 [&](ArrayRef<FunctionSummary::VFuncId> VFs) {
3807 for (auto &VF : VFs)
3808 ReferencedTypeIds.insert(VF.GUID);
3809 };
3810
3811 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls());
3812 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls());
3813
3814 auto GetReferencedTypesFromConstVCallVec =
3815 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) {
3816 for (auto &VC : VCs)
3817 ReferencedTypeIds.insert(VC.VFunc.GUID);
3818 };
3819
3820 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls());
3821 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls());
3822 }
3823
writeWholeProgramDevirtResolutionByArg(SmallVector<uint64_t,64> & NameVals,const std::vector<uint64_t> & args,const WholeProgramDevirtResolution::ByArg & ByArg)3824 static void writeWholeProgramDevirtResolutionByArg(
3825 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args,
3826 const WholeProgramDevirtResolution::ByArg &ByArg) {
3827 NameVals.push_back(args.size());
3828 llvm::append_range(NameVals, args);
3829
3830 NameVals.push_back(ByArg.TheKind);
3831 NameVals.push_back(ByArg.Info);
3832 NameVals.push_back(ByArg.Byte);
3833 NameVals.push_back(ByArg.Bit);
3834 }
3835
writeWholeProgramDevirtResolution(SmallVector<uint64_t,64> & NameVals,StringTableBuilder & StrtabBuilder,uint64_t Id,const WholeProgramDevirtResolution & Wpd)3836 static void writeWholeProgramDevirtResolution(
3837 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder,
3838 uint64_t Id, const WholeProgramDevirtResolution &Wpd) {
3839 NameVals.push_back(Id);
3840
3841 NameVals.push_back(Wpd.TheKind);
3842 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName));
3843 NameVals.push_back(Wpd.SingleImplName.size());
3844
3845 NameVals.push_back(Wpd.ResByArg.size());
3846 for (auto &A : Wpd.ResByArg)
3847 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second);
3848 }
3849
writeTypeIdSummaryRecord(SmallVector<uint64_t,64> & NameVals,StringTableBuilder & StrtabBuilder,const std::string & Id,const TypeIdSummary & Summary)3850 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
3851 StringTableBuilder &StrtabBuilder,
3852 const std::string &Id,
3853 const TypeIdSummary &Summary) {
3854 NameVals.push_back(StrtabBuilder.add(Id));
3855 NameVals.push_back(Id.size());
3856
3857 NameVals.push_back(Summary.TTRes.TheKind);
3858 NameVals.push_back(Summary.TTRes.SizeM1BitWidth);
3859 NameVals.push_back(Summary.TTRes.AlignLog2);
3860 NameVals.push_back(Summary.TTRes.SizeM1);
3861 NameVals.push_back(Summary.TTRes.BitMask);
3862 NameVals.push_back(Summary.TTRes.InlineBits);
3863
3864 for (auto &W : Summary.WPDRes)
3865 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first,
3866 W.second);
3867 }
3868
writeTypeIdCompatibleVtableSummaryRecord(SmallVector<uint64_t,64> & NameVals,StringTableBuilder & StrtabBuilder,const std::string & Id,const TypeIdCompatibleVtableInfo & Summary,ValueEnumerator & VE)3869 static void writeTypeIdCompatibleVtableSummaryRecord(
3870 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder,
3871 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary,
3872 ValueEnumerator &VE) {
3873 NameVals.push_back(StrtabBuilder.add(Id));
3874 NameVals.push_back(Id.size());
3875
3876 for (auto &P : Summary) {
3877 NameVals.push_back(P.AddressPointOffset);
3878 NameVals.push_back(VE.getValueID(P.VTableVI.getValue()));
3879 }
3880 }
3881
3882 // Helper to emit a single function summary record.
writePerModuleFunctionSummaryRecord(SmallVector<uint64_t,64> & NameVals,GlobalValueSummary * Summary,unsigned ValueID,unsigned FSCallsAbbrev,unsigned FSCallsProfileAbbrev,const Function & F)3883 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord(
3884 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary,
3885 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev,
3886 const Function &F) {
3887 NameVals.push_back(ValueID);
3888
3889 FunctionSummary *FS = cast<FunctionSummary>(Summary);
3890
3891 writeFunctionTypeMetadataRecords(
3892 Stream, FS, [&](const ValueInfo &VI) -> Optional<unsigned> {
3893 return {VE.getValueID(VI.getValue())};
3894 });
3895
3896 auto SpecialRefCnts = FS->specialRefCounts();
3897 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
3898 NameVals.push_back(FS->instCount());
3899 NameVals.push_back(getEncodedFFlags(FS->fflags()));
3900 NameVals.push_back(FS->refs().size());
3901 NameVals.push_back(SpecialRefCnts.first); // rorefcnt
3902 NameVals.push_back(SpecialRefCnts.second); // worefcnt
3903
3904 for (auto &RI : FS->refs())
3905 NameVals.push_back(VE.getValueID(RI.getValue()));
3906
3907 bool HasProfileData =
3908 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None;
3909 for (auto &ECI : FS->calls()) {
3910 NameVals.push_back(getValueId(ECI.first));
3911 if (HasProfileData)
3912 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness));
3913 else if (WriteRelBFToSummary)
3914 NameVals.push_back(ECI.second.RelBlockFreq);
3915 }
3916
3917 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
3918 unsigned Code =
3919 (HasProfileData ? bitc::FS_PERMODULE_PROFILE
3920 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF
3921 : bitc::FS_PERMODULE));
3922
3923 // Emit the finished record.
3924 Stream.EmitRecord(Code, NameVals, FSAbbrev);
3925 NameVals.clear();
3926 }
3927
3928 // Collect the global value references in the given variable's initializer,
3929 // and emit them in a summary record.
writeModuleLevelReferences(const GlobalVariable & V,SmallVector<uint64_t,64> & NameVals,unsigned FSModRefsAbbrev,unsigned FSModVTableRefsAbbrev)3930 void ModuleBitcodeWriterBase::writeModuleLevelReferences(
3931 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals,
3932 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) {
3933 auto VI = Index->getValueInfo(V.getGUID());
3934 if (!VI || VI.getSummaryList().empty()) {
3935 // Only declarations should not have a summary (a declaration might however
3936 // have a summary if the def was in module level asm).
3937 assert(V.isDeclaration());
3938 return;
3939 }
3940 auto *Summary = VI.getSummaryList()[0].get();
3941 NameVals.push_back(VE.getValueID(&V));
3942 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary);
3943 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
3944 NameVals.push_back(getEncodedGVarFlags(VS->varflags()));
3945
3946 auto VTableFuncs = VS->vTableFuncs();
3947 if (!VTableFuncs.empty())
3948 NameVals.push_back(VS->refs().size());
3949
3950 unsigned SizeBeforeRefs = NameVals.size();
3951 for (auto &RI : VS->refs())
3952 NameVals.push_back(VE.getValueID(RI.getValue()));
3953 // Sort the refs for determinism output, the vector returned by FS->refs() has
3954 // been initialized from a DenseSet.
3955 llvm::sort(drop_begin(NameVals, SizeBeforeRefs));
3956
3957 if (VTableFuncs.empty())
3958 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals,
3959 FSModRefsAbbrev);
3960 else {
3961 // VTableFuncs pairs should already be sorted by offset.
3962 for (auto &P : VTableFuncs) {
3963 NameVals.push_back(VE.getValueID(P.FuncVI.getValue()));
3964 NameVals.push_back(P.VTableOffset);
3965 }
3966
3967 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals,
3968 FSModVTableRefsAbbrev);
3969 }
3970 NameVals.clear();
3971 }
3972
3973 /// Emit the per-module summary section alongside the rest of
3974 /// the module's bitcode.
writePerModuleGlobalValueSummary()3975 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() {
3976 // By default we compile with ThinLTO if the module has a summary, but the
3977 // client can request full LTO with a module flag.
3978 bool IsThinLTO = true;
3979 if (auto *MD =
3980 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO")))
3981 IsThinLTO = MD->getZExtValue();
3982 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID
3983 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID,
3984 4);
3985
3986 Stream.EmitRecord(
3987 bitc::FS_VERSION,
3988 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion});
3989
3990 // Write the index flags.
3991 uint64_t Flags = 0;
3992 // Bits 1-3 are set only in the combined index, skip them.
3993 if (Index->enableSplitLTOUnit())
3994 Flags |= 0x8;
3995 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags});
3996
3997 if (Index->begin() == Index->end()) {
3998 Stream.ExitBlock();
3999 return;
4000 }
4001
4002 for (const auto &GVI : valueIds()) {
4003 Stream.EmitRecord(bitc::FS_VALUE_GUID,
4004 ArrayRef<uint64_t>{GVI.second, GVI.first});
4005 }
4006
4007 // Abbrev for FS_PERMODULE_PROFILE.
4008 auto Abbv = std::make_shared<BitCodeAbbrev>();
4009 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE));
4010 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4011 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
4012 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
4013 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags
4014 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
4015 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt
4016 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt
4017 // numrefs x valueid, n x (valueid, hotness)
4018 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4019 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4020 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4021
4022 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF.
4023 Abbv = std::make_shared<BitCodeAbbrev>();
4024 if (WriteRelBFToSummary)
4025 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF));
4026 else
4027 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE));
4028 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4029 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
4030 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
4031 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags
4032 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
4033 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt
4034 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt
4035 // numrefs x valueid, n x (valueid [, rel_block_freq])
4036 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4037 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4038 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4039
4040 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS.
4041 Abbv = std::make_shared<BitCodeAbbrev>();
4042 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS));
4043 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4044 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
4045 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids
4046 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4047 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4048
4049 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS.
4050 Abbv = std::make_shared<BitCodeAbbrev>();
4051 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS));
4052 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4053 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
4054 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
4055 // numrefs x valueid, n x (valueid , offset)
4056 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4057 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4058 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4059
4060 // Abbrev for FS_ALIAS.
4061 Abbv = std::make_shared<BitCodeAbbrev>();
4062 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS));
4063 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4064 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
4065 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4066 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4067
4068 // Abbrev for FS_TYPE_ID_METADATA
4069 Abbv = std::make_shared<BitCodeAbbrev>();
4070 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA));
4071 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index
4072 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length
4073 // n x (valueid , offset)
4074 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4075 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4076 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4077
4078 SmallVector<uint64_t, 64> NameVals;
4079 // Iterate over the list of functions instead of the Index to
4080 // ensure the ordering is stable.
4081 for (const Function &F : M) {
4082 // Summary emission does not support anonymous functions, they have to
4083 // renamed using the anonymous function renaming pass.
4084 if (!F.hasName())
4085 report_fatal_error("Unexpected anonymous function when writing summary");
4086
4087 ValueInfo VI = Index->getValueInfo(F.getGUID());
4088 if (!VI || VI.getSummaryList().empty()) {
4089 // Only declarations should not have a summary (a declaration might
4090 // however have a summary if the def was in module level asm).
4091 assert(F.isDeclaration());
4092 continue;
4093 }
4094 auto *Summary = VI.getSummaryList()[0].get();
4095 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F),
4096 FSCallsAbbrev, FSCallsProfileAbbrev, F);
4097 }
4098
4099 // Capture references from GlobalVariable initializers, which are outside
4100 // of a function scope.
4101 for (const GlobalVariable &G : M.globals())
4102 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev,
4103 FSModVTableRefsAbbrev);
4104
4105 for (const GlobalAlias &A : M.aliases()) {
4106 auto *Aliasee = A.getAliaseeObject();
4107 // Skip ifunc and nameless functions which don't have an entry in the
4108 // summary.
4109 if (!Aliasee->hasName() || isa<GlobalIFunc>(Aliasee))
4110 continue;
4111 auto AliasId = VE.getValueID(&A);
4112 auto AliaseeId = VE.getValueID(Aliasee);
4113 NameVals.push_back(AliasId);
4114 auto *Summary = Index->getGlobalValueSummary(A);
4115 AliasSummary *AS = cast<AliasSummary>(Summary);
4116 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
4117 NameVals.push_back(AliaseeId);
4118 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev);
4119 NameVals.clear();
4120 }
4121
4122 for (auto &S : Index->typeIdCompatibleVtableMap()) {
4123 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first,
4124 S.second, VE);
4125 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals,
4126 TypeIdCompatibleVtableAbbrev);
4127 NameVals.clear();
4128 }
4129
4130 Stream.EmitRecord(bitc::FS_BLOCK_COUNT,
4131 ArrayRef<uint64_t>{Index->getBlockCount()});
4132
4133 Stream.ExitBlock();
4134 }
4135
4136 /// Emit the combined summary section into the combined index file.
writeCombinedGlobalValueSummary()4137 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() {
4138 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3);
4139 Stream.EmitRecord(
4140 bitc::FS_VERSION,
4141 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion});
4142
4143 // Write the index flags.
4144 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()});
4145
4146 for (const auto &GVI : valueIds()) {
4147 Stream.EmitRecord(bitc::FS_VALUE_GUID,
4148 ArrayRef<uint64_t>{GVI.second, GVI.first});
4149 }
4150
4151 // Abbrev for FS_COMBINED.
4152 auto Abbv = std::make_shared<BitCodeAbbrev>();
4153 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED));
4154 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4155 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
4156 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
4157 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
4158 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags
4159 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount
4160 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
4161 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt
4162 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt
4163 // numrefs x valueid, n x (valueid)
4164 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4165 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4166 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4167
4168 // Abbrev for FS_COMBINED_PROFILE.
4169 Abbv = std::make_shared<BitCodeAbbrev>();
4170 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE));
4171 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4172 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
4173 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
4174 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
4175 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags
4176 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount
4177 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
4178 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt
4179 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt
4180 // numrefs x valueid, n x (valueid, hotness)
4181 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4182 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4183 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4184
4185 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS.
4186 Abbv = std::make_shared<BitCodeAbbrev>();
4187 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS));
4188 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4189 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
4190 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
4191 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids
4192 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4193 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4194
4195 // Abbrev for FS_COMBINED_ALIAS.
4196 Abbv = std::make_shared<BitCodeAbbrev>();
4197 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS));
4198 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4199 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
4200 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
4201 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4202 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4203
4204 // The aliases are emitted as a post-pass, and will point to the value
4205 // id of the aliasee. Save them in a vector for post-processing.
4206 SmallVector<AliasSummary *, 64> Aliases;
4207
4208 // Save the value id for each summary for alias emission.
4209 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap;
4210
4211 SmallVector<uint64_t, 64> NameVals;
4212
4213 // Set that will be populated during call to writeFunctionTypeMetadataRecords
4214 // with the type ids referenced by this index file.
4215 std::set<GlobalValue::GUID> ReferencedTypeIds;
4216
4217 // For local linkage, we also emit the original name separately
4218 // immediately after the record.
4219 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) {
4220 // We don't need to emit the original name if we are writing the index for
4221 // distributed backends (in which case ModuleToSummariesForIndex is
4222 // non-null). The original name is only needed during the thin link, since
4223 // for SamplePGO the indirect call targets for local functions have
4224 // have the original name annotated in profile.
4225 // Continue to emit it when writing out the entire combined index, which is
4226 // used in testing the thin link via llvm-lto.
4227 if (ModuleToSummariesForIndex || !GlobalValue::isLocalLinkage(S.linkage()))
4228 return;
4229 NameVals.push_back(S.getOriginalName());
4230 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals);
4231 NameVals.clear();
4232 };
4233
4234 std::set<GlobalValue::GUID> DefOrUseGUIDs;
4235 forEachSummary([&](GVInfo I, bool IsAliasee) {
4236 GlobalValueSummary *S = I.second;
4237 assert(S);
4238 DefOrUseGUIDs.insert(I.first);
4239 for (const ValueInfo &VI : S->refs())
4240 DefOrUseGUIDs.insert(VI.getGUID());
4241
4242 auto ValueId = getValueId(I.first);
4243 assert(ValueId);
4244 SummaryToValueIdMap[S] = *ValueId;
4245
4246 // If this is invoked for an aliasee, we want to record the above
4247 // mapping, but then not emit a summary entry (if the aliasee is
4248 // to be imported, we will invoke this separately with IsAliasee=false).
4249 if (IsAliasee)
4250 return;
4251
4252 if (auto *AS = dyn_cast<AliasSummary>(S)) {
4253 // Will process aliases as a post-pass because the reader wants all
4254 // global to be loaded first.
4255 Aliases.push_back(AS);
4256 return;
4257 }
4258
4259 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) {
4260 NameVals.push_back(*ValueId);
4261 NameVals.push_back(Index.getModuleId(VS->modulePath()));
4262 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
4263 NameVals.push_back(getEncodedGVarFlags(VS->varflags()));
4264 for (auto &RI : VS->refs()) {
4265 auto RefValueId = getValueId(RI.getGUID());
4266 if (!RefValueId)
4267 continue;
4268 NameVals.push_back(*RefValueId);
4269 }
4270
4271 // Emit the finished record.
4272 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals,
4273 FSModRefsAbbrev);
4274 NameVals.clear();
4275 MaybeEmitOriginalName(*S);
4276 return;
4277 }
4278
4279 auto GetValueId = [&](const ValueInfo &VI) -> Optional<unsigned> {
4280 return getValueId(VI.getGUID());
4281 };
4282
4283 auto *FS = cast<FunctionSummary>(S);
4284 writeFunctionTypeMetadataRecords(Stream, FS, GetValueId);
4285 getReferencedTypeIds(FS, ReferencedTypeIds);
4286
4287 NameVals.push_back(*ValueId);
4288 NameVals.push_back(Index.getModuleId(FS->modulePath()));
4289 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
4290 NameVals.push_back(FS->instCount());
4291 NameVals.push_back(getEncodedFFlags(FS->fflags()));
4292 NameVals.push_back(FS->entryCount());
4293
4294 // Fill in below
4295 NameVals.push_back(0); // numrefs
4296 NameVals.push_back(0); // rorefcnt
4297 NameVals.push_back(0); // worefcnt
4298
4299 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0;
4300 for (auto &RI : FS->refs()) {
4301 auto RefValueId = getValueId(RI.getGUID());
4302 if (!RefValueId)
4303 continue;
4304 NameVals.push_back(*RefValueId);
4305 if (RI.isReadOnly())
4306 RORefCnt++;
4307 else if (RI.isWriteOnly())
4308 WORefCnt++;
4309 Count++;
4310 }
4311 NameVals[6] = Count;
4312 NameVals[7] = RORefCnt;
4313 NameVals[8] = WORefCnt;
4314
4315 bool HasProfileData = false;
4316 for (auto &EI : FS->calls()) {
4317 HasProfileData |=
4318 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown;
4319 if (HasProfileData)
4320 break;
4321 }
4322
4323 for (auto &EI : FS->calls()) {
4324 // If this GUID doesn't have a value id, it doesn't have a function
4325 // summary and we don't need to record any calls to it.
4326 Optional<unsigned> CallValueId = GetValueId(EI.first);
4327 if (!CallValueId)
4328 continue;
4329 NameVals.push_back(*CallValueId);
4330 if (HasProfileData)
4331 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness));
4332 }
4333
4334 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
4335 unsigned Code =
4336 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED);
4337
4338 // Emit the finished record.
4339 Stream.EmitRecord(Code, NameVals, FSAbbrev);
4340 NameVals.clear();
4341 MaybeEmitOriginalName(*S);
4342 });
4343
4344 for (auto *AS : Aliases) {
4345 auto AliasValueId = SummaryToValueIdMap[AS];
4346 assert(AliasValueId);
4347 NameVals.push_back(AliasValueId);
4348 NameVals.push_back(Index.getModuleId(AS->modulePath()));
4349 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
4350 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()];
4351 assert(AliaseeValueId);
4352 NameVals.push_back(AliaseeValueId);
4353
4354 // Emit the finished record.
4355 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev);
4356 NameVals.clear();
4357 MaybeEmitOriginalName(*AS);
4358
4359 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee()))
4360 getReferencedTypeIds(FS, ReferencedTypeIds);
4361 }
4362
4363 if (!Index.cfiFunctionDefs().empty()) {
4364 for (auto &S : Index.cfiFunctionDefs()) {
4365 if (DefOrUseGUIDs.count(
4366 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) {
4367 NameVals.push_back(StrtabBuilder.add(S));
4368 NameVals.push_back(S.size());
4369 }
4370 }
4371 if (!NameVals.empty()) {
4372 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals);
4373 NameVals.clear();
4374 }
4375 }
4376
4377 if (!Index.cfiFunctionDecls().empty()) {
4378 for (auto &S : Index.cfiFunctionDecls()) {
4379 if (DefOrUseGUIDs.count(
4380 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) {
4381 NameVals.push_back(StrtabBuilder.add(S));
4382 NameVals.push_back(S.size());
4383 }
4384 }
4385 if (!NameVals.empty()) {
4386 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals);
4387 NameVals.clear();
4388 }
4389 }
4390
4391 // Walk the GUIDs that were referenced, and write the
4392 // corresponding type id records.
4393 for (auto &T : ReferencedTypeIds) {
4394 auto TidIter = Index.typeIds().equal_range(T);
4395 for (auto It = TidIter.first; It != TidIter.second; ++It) {
4396 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first,
4397 It->second.second);
4398 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals);
4399 NameVals.clear();
4400 }
4401 }
4402
4403 Stream.EmitRecord(bitc::FS_BLOCK_COUNT,
4404 ArrayRef<uint64_t>{Index.getBlockCount()});
4405
4406 Stream.ExitBlock();
4407 }
4408
4409 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the
4410 /// current llvm version, and a record for the epoch number.
writeIdentificationBlock(BitstreamWriter & Stream)4411 static void writeIdentificationBlock(BitstreamWriter &Stream) {
4412 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5);
4413
4414 // Write the "user readable" string identifying the bitcode producer
4415 auto Abbv = std::make_shared<BitCodeAbbrev>();
4416 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING));
4417 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4418 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
4419 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4420 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING,
4421 "LLVM" LLVM_VERSION_STRING, StringAbbrev);
4422
4423 // Write the epoch version
4424 Abbv = std::make_shared<BitCodeAbbrev>();
4425 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH));
4426 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
4427 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4428 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}};
4429 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev);
4430 Stream.ExitBlock();
4431 }
4432
writeModuleHash(size_t BlockStartPos)4433 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) {
4434 // Emit the module's hash.
4435 // MODULE_CODE_HASH: [5*i32]
4436 if (GenerateHash) {
4437 uint32_t Vals[5];
4438 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos],
4439 Buffer.size() - BlockStartPos));
4440 std::array<uint8_t, 20> Hash = Hasher.result();
4441 for (int Pos = 0; Pos < 20; Pos += 4) {
4442 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos);
4443 }
4444
4445 // Emit the finished record.
4446 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals);
4447
4448 if (ModHash)
4449 // Save the written hash value.
4450 llvm::copy(Vals, std::begin(*ModHash));
4451 }
4452 }
4453
write()4454 void ModuleBitcodeWriter::write() {
4455 writeIdentificationBlock(Stream);
4456
4457 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4458 size_t BlockStartPos = Buffer.size();
4459
4460 writeModuleVersion();
4461
4462 // Emit blockinfo, which defines the standard abbreviations etc.
4463 writeBlockInfo();
4464
4465 // Emit information describing all of the types in the module.
4466 writeTypeTable();
4467
4468 // Emit information about attribute groups.
4469 writeAttributeGroupTable();
4470
4471 // Emit information about parameter attributes.
4472 writeAttributeTable();
4473
4474 writeComdats();
4475
4476 // Emit top-level description of module, including target triple, inline asm,
4477 // descriptors for global variables, and function prototype info.
4478 writeModuleInfo();
4479
4480 // Emit constants.
4481 writeModuleConstants();
4482
4483 // Emit metadata kind names.
4484 writeModuleMetadataKinds();
4485
4486 // Emit metadata.
4487 writeModuleMetadata();
4488
4489 // Emit module-level use-lists.
4490 if (VE.shouldPreserveUseListOrder())
4491 writeUseListBlock(nullptr);
4492
4493 writeOperandBundleTags();
4494 writeSyncScopeNames();
4495
4496 // Emit function bodies.
4497 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex;
4498 for (const Function &F : M)
4499 if (!F.isDeclaration())
4500 writeFunction(F, FunctionToBitcodeIndex);
4501
4502 // Need to write after the above call to WriteFunction which populates
4503 // the summary information in the index.
4504 if (Index)
4505 writePerModuleGlobalValueSummary();
4506
4507 writeGlobalValueSymbolTable(FunctionToBitcodeIndex);
4508
4509 writeModuleHash(BlockStartPos);
4510
4511 Stream.ExitBlock();
4512 }
4513
writeInt32ToBuffer(uint32_t Value,SmallVectorImpl<char> & Buffer,uint32_t & Position)4514 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
4515 uint32_t &Position) {
4516 support::endian::write32le(&Buffer[Position], Value);
4517 Position += 4;
4518 }
4519
4520 /// If generating a bc file on darwin, we have to emit a
4521 /// header and trailer to make it compatible with the system archiver. To do
4522 /// this we emit the following header, and then emit a trailer that pads the
4523 /// file out to be a multiple of 16 bytes.
4524 ///
4525 /// struct bc_header {
4526 /// uint32_t Magic; // 0x0B17C0DE
4527 /// uint32_t Version; // Version, currently always 0.
4528 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file.
4529 /// uint32_t BitcodeSize; // Size of traditional bitcode file.
4530 /// uint32_t CPUType; // CPU specifier.
4531 /// ... potentially more later ...
4532 /// };
emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> & Buffer,const Triple & TT)4533 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
4534 const Triple &TT) {
4535 unsigned CPUType = ~0U;
4536
4537 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
4538 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
4539 // number from /usr/include/mach/machine.h. It is ok to reproduce the
4540 // specific constants here because they are implicitly part of the Darwin ABI.
4541 enum {
4542 DARWIN_CPU_ARCH_ABI64 = 0x01000000,
4543 DARWIN_CPU_TYPE_X86 = 7,
4544 DARWIN_CPU_TYPE_ARM = 12,
4545 DARWIN_CPU_TYPE_POWERPC = 18
4546 };
4547
4548 Triple::ArchType Arch = TT.getArch();
4549 if (Arch == Triple::x86_64)
4550 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
4551 else if (Arch == Triple::x86)
4552 CPUType = DARWIN_CPU_TYPE_X86;
4553 else if (Arch == Triple::ppc)
4554 CPUType = DARWIN_CPU_TYPE_POWERPC;
4555 else if (Arch == Triple::ppc64)
4556 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
4557 else if (Arch == Triple::arm || Arch == Triple::thumb)
4558 CPUType = DARWIN_CPU_TYPE_ARM;
4559
4560 // Traditional Bitcode starts after header.
4561 assert(Buffer.size() >= BWH_HeaderSize &&
4562 "Expected header size to be reserved");
4563 unsigned BCOffset = BWH_HeaderSize;
4564 unsigned BCSize = Buffer.size() - BWH_HeaderSize;
4565
4566 // Write the magic and version.
4567 unsigned Position = 0;
4568 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position);
4569 writeInt32ToBuffer(0, Buffer, Position); // Version.
4570 writeInt32ToBuffer(BCOffset, Buffer, Position);
4571 writeInt32ToBuffer(BCSize, Buffer, Position);
4572 writeInt32ToBuffer(CPUType, Buffer, Position);
4573
4574 // If the file is not a multiple of 16 bytes, insert dummy padding.
4575 while (Buffer.size() & 15)
4576 Buffer.push_back(0);
4577 }
4578
4579 /// Helper to write the header common to all bitcode files.
writeBitcodeHeader(BitstreamWriter & Stream)4580 static void writeBitcodeHeader(BitstreamWriter &Stream) {
4581 // Emit the file header.
4582 Stream.Emit((unsigned)'B', 8);
4583 Stream.Emit((unsigned)'C', 8);
4584 Stream.Emit(0x0, 4);
4585 Stream.Emit(0xC, 4);
4586 Stream.Emit(0xE, 4);
4587 Stream.Emit(0xD, 4);
4588 }
4589
BitcodeWriter(SmallVectorImpl<char> & Buffer,raw_fd_stream * FS)4590 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, raw_fd_stream *FS)
4591 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, FlushThreshold)) {
4592 writeBitcodeHeader(*Stream);
4593 }
4594
~BitcodeWriter()4595 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); }
4596
writeBlob(unsigned Block,unsigned Record,StringRef Blob)4597 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) {
4598 Stream->EnterSubblock(Block, 3);
4599
4600 auto Abbv = std::make_shared<BitCodeAbbrev>();
4601 Abbv->Add(BitCodeAbbrevOp(Record));
4602 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
4603 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv));
4604
4605 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob);
4606
4607 Stream->ExitBlock();
4608 }
4609
writeSymtab()4610 void BitcodeWriter::writeSymtab() {
4611 assert(!WroteStrtab && !WroteSymtab);
4612
4613 // If any module has module-level inline asm, we will require a registered asm
4614 // parser for the target so that we can create an accurate symbol table for
4615 // the module.
4616 for (Module *M : Mods) {
4617 if (M->getModuleInlineAsm().empty())
4618 continue;
4619
4620 std::string Err;
4621 const Triple TT(M->getTargetTriple());
4622 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err);
4623 if (!T || !T->hasMCAsmParser())
4624 return;
4625 }
4626
4627 WroteSymtab = true;
4628 SmallVector<char, 0> Symtab;
4629 // The irsymtab::build function may be unable to create a symbol table if the
4630 // module is malformed (e.g. it contains an invalid alias). Writing a symbol
4631 // table is not required for correctness, but we still want to be able to
4632 // write malformed modules to bitcode files, so swallow the error.
4633 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) {
4634 consumeError(std::move(E));
4635 return;
4636 }
4637
4638 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB,
4639 {Symtab.data(), Symtab.size()});
4640 }
4641
writeStrtab()4642 void BitcodeWriter::writeStrtab() {
4643 assert(!WroteStrtab);
4644
4645 std::vector<char> Strtab;
4646 StrtabBuilder.finalizeInOrder();
4647 Strtab.resize(StrtabBuilder.getSize());
4648 StrtabBuilder.write((uint8_t *)Strtab.data());
4649
4650 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB,
4651 {Strtab.data(), Strtab.size()});
4652
4653 WroteStrtab = true;
4654 }
4655
copyStrtab(StringRef Strtab)4656 void BitcodeWriter::copyStrtab(StringRef Strtab) {
4657 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab);
4658 WroteStrtab = true;
4659 }
4660
writeModule(const Module & M,bool ShouldPreserveUseListOrder,const ModuleSummaryIndex * Index,bool GenerateHash,ModuleHash * ModHash)4661 void BitcodeWriter::writeModule(const Module &M,
4662 bool ShouldPreserveUseListOrder,
4663 const ModuleSummaryIndex *Index,
4664 bool GenerateHash, ModuleHash *ModHash) {
4665 assert(!WroteStrtab);
4666
4667 // The Mods vector is used by irsymtab::build, which requires non-const
4668 // Modules in case it needs to materialize metadata. But the bitcode writer
4669 // requires that the module is materialized, so we can cast to non-const here,
4670 // after checking that it is in fact materialized.
4671 assert(M.isMaterialized());
4672 Mods.push_back(const_cast<Module *>(&M));
4673
4674 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream,
4675 ShouldPreserveUseListOrder, Index,
4676 GenerateHash, ModHash);
4677 ModuleWriter.write();
4678 }
4679
writeIndex(const ModuleSummaryIndex * Index,const std::map<std::string,GVSummaryMapTy> * ModuleToSummariesForIndex)4680 void BitcodeWriter::writeIndex(
4681 const ModuleSummaryIndex *Index,
4682 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
4683 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index,
4684 ModuleToSummariesForIndex);
4685 IndexWriter.write();
4686 }
4687
4688 /// Write the specified module to the specified output stream.
WriteBitcodeToFile(const Module & M,raw_ostream & Out,bool ShouldPreserveUseListOrder,const ModuleSummaryIndex * Index,bool GenerateHash,ModuleHash * ModHash)4689 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out,
4690 bool ShouldPreserveUseListOrder,
4691 const ModuleSummaryIndex *Index,
4692 bool GenerateHash, ModuleHash *ModHash) {
4693 SmallVector<char, 0> Buffer;
4694 Buffer.reserve(256*1024);
4695
4696 // If this is darwin or another generic macho target, reserve space for the
4697 // header.
4698 Triple TT(M.getTargetTriple());
4699 if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
4700 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0);
4701
4702 BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out));
4703 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash,
4704 ModHash);
4705 Writer.writeSymtab();
4706 Writer.writeStrtab();
4707
4708 if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
4709 emitDarwinBCHeaderAndTrailer(Buffer, TT);
4710
4711 // Write the generated bitstream to "Out".
4712 if (!Buffer.empty())
4713 Out.write((char *)&Buffer.front(), Buffer.size());
4714 }
4715
write()4716 void IndexBitcodeWriter::write() {
4717 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4718
4719 writeModuleVersion();
4720
4721 // Write the module paths in the combined index.
4722 writeModStrings();
4723
4724 // Write the summary combined index records.
4725 writeCombinedGlobalValueSummary();
4726
4727 Stream.ExitBlock();
4728 }
4729
4730 // Write the specified module summary index to the given raw output stream,
4731 // where it will be written in a new bitcode block. This is used when
4732 // writing the combined index file for ThinLTO. When writing a subset of the
4733 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map.
writeIndexToFile(const ModuleSummaryIndex & Index,raw_ostream & Out,const std::map<std::string,GVSummaryMapTy> * ModuleToSummariesForIndex)4734 void llvm::writeIndexToFile(
4735 const ModuleSummaryIndex &Index, raw_ostream &Out,
4736 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
4737 SmallVector<char, 0> Buffer;
4738 Buffer.reserve(256 * 1024);
4739
4740 BitcodeWriter Writer(Buffer);
4741 Writer.writeIndex(&Index, ModuleToSummariesForIndex);
4742 Writer.writeStrtab();
4743
4744 Out.write((char *)&Buffer.front(), Buffer.size());
4745 }
4746
4747 namespace {
4748
4749 /// Class to manage the bitcode writing for a thin link bitcode file.
4750 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase {
4751 /// ModHash is for use in ThinLTO incremental build, generated while writing
4752 /// the module bitcode file.
4753 const ModuleHash *ModHash;
4754
4755 public:
ThinLinkBitcodeWriter(const Module & M,StringTableBuilder & StrtabBuilder,BitstreamWriter & Stream,const ModuleSummaryIndex & Index,const ModuleHash & ModHash)4756 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder,
4757 BitstreamWriter &Stream,
4758 const ModuleSummaryIndex &Index,
4759 const ModuleHash &ModHash)
4760 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
4761 /*ShouldPreserveUseListOrder=*/false, &Index),
4762 ModHash(&ModHash) {}
4763
4764 void write();
4765
4766 private:
4767 void writeSimplifiedModuleInfo();
4768 };
4769
4770 } // end anonymous namespace
4771
4772 // This function writes a simpilified module info for thin link bitcode file.
4773 // It only contains the source file name along with the name(the offset and
4774 // size in strtab) and linkage for global values. For the global value info
4775 // entry, in order to keep linkage at offset 5, there are three zeros used
4776 // as padding.
writeSimplifiedModuleInfo()4777 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() {
4778 SmallVector<unsigned, 64> Vals;
4779 // Emit the module's source file name.
4780 {
4781 StringEncoding Bits = getStringEncoding(M.getSourceFileName());
4782 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
4783 if (Bits == SE_Char6)
4784 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
4785 else if (Bits == SE_Fixed7)
4786 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
4787
4788 // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4789 auto Abbv = std::make_shared<BitCodeAbbrev>();
4790 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
4791 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4792 Abbv->Add(AbbrevOpToUse);
4793 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4794
4795 for (const auto P : M.getSourceFileName())
4796 Vals.push_back((unsigned char)P);
4797
4798 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
4799 Vals.clear();
4800 }
4801
4802 // Emit the global variable information.
4803 for (const GlobalVariable &GV : M.globals()) {
4804 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage]
4805 Vals.push_back(StrtabBuilder.add(GV.getName()));
4806 Vals.push_back(GV.getName().size());
4807 Vals.push_back(0);
4808 Vals.push_back(0);
4809 Vals.push_back(0);
4810 Vals.push_back(getEncodedLinkage(GV));
4811
4812 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals);
4813 Vals.clear();
4814 }
4815
4816 // Emit the function proto information.
4817 for (const Function &F : M) {
4818 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage]
4819 Vals.push_back(StrtabBuilder.add(F.getName()));
4820 Vals.push_back(F.getName().size());
4821 Vals.push_back(0);
4822 Vals.push_back(0);
4823 Vals.push_back(0);
4824 Vals.push_back(getEncodedLinkage(F));
4825
4826 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals);
4827 Vals.clear();
4828 }
4829
4830 // Emit the alias information.
4831 for (const GlobalAlias &A : M.aliases()) {
4832 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage]
4833 Vals.push_back(StrtabBuilder.add(A.getName()));
4834 Vals.push_back(A.getName().size());
4835 Vals.push_back(0);
4836 Vals.push_back(0);
4837 Vals.push_back(0);
4838 Vals.push_back(getEncodedLinkage(A));
4839
4840 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals);
4841 Vals.clear();
4842 }
4843
4844 // Emit the ifunc information.
4845 for (const GlobalIFunc &I : M.ifuncs()) {
4846 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage]
4847 Vals.push_back(StrtabBuilder.add(I.getName()));
4848 Vals.push_back(I.getName().size());
4849 Vals.push_back(0);
4850 Vals.push_back(0);
4851 Vals.push_back(0);
4852 Vals.push_back(getEncodedLinkage(I));
4853
4854 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
4855 Vals.clear();
4856 }
4857 }
4858
write()4859 void ThinLinkBitcodeWriter::write() {
4860 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4861
4862 writeModuleVersion();
4863
4864 writeSimplifiedModuleInfo();
4865
4866 writePerModuleGlobalValueSummary();
4867
4868 // Write module hash.
4869 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash));
4870
4871 Stream.ExitBlock();
4872 }
4873
writeThinLinkBitcode(const Module & M,const ModuleSummaryIndex & Index,const ModuleHash & ModHash)4874 void BitcodeWriter::writeThinLinkBitcode(const Module &M,
4875 const ModuleSummaryIndex &Index,
4876 const ModuleHash &ModHash) {
4877 assert(!WroteStrtab);
4878
4879 // The Mods vector is used by irsymtab::build, which requires non-const
4880 // Modules in case it needs to materialize metadata. But the bitcode writer
4881 // requires that the module is materialized, so we can cast to non-const here,
4882 // after checking that it is in fact materialized.
4883 assert(M.isMaterialized());
4884 Mods.push_back(const_cast<Module *>(&M));
4885
4886 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index,
4887 ModHash);
4888 ThinLinkWriter.write();
4889 }
4890
4891 // Write the specified thin link bitcode file to the given raw output stream,
4892 // where it will be written in a new bitcode block. This is used when
4893 // writing the per-module index file for ThinLTO.
writeThinLinkBitcodeToFile(const Module & M,raw_ostream & Out,const ModuleSummaryIndex & Index,const ModuleHash & ModHash)4894 void llvm::writeThinLinkBitcodeToFile(const Module &M, raw_ostream &Out,
4895 const ModuleSummaryIndex &Index,
4896 const ModuleHash &ModHash) {
4897 SmallVector<char, 0> Buffer;
4898 Buffer.reserve(256 * 1024);
4899
4900 BitcodeWriter Writer(Buffer);
4901 Writer.writeThinLinkBitcode(M, Index, ModHash);
4902 Writer.writeSymtab();
4903 Writer.writeStrtab();
4904
4905 Out.write((char *)&Buffer.front(), Buffer.size());
4906 }
4907
getSectionNameForBitcode(const Triple & T)4908 static const char *getSectionNameForBitcode(const Triple &T) {
4909 switch (T.getObjectFormat()) {
4910 case Triple::MachO:
4911 return "__LLVM,__bitcode";
4912 case Triple::COFF:
4913 case Triple::ELF:
4914 case Triple::Wasm:
4915 case Triple::UnknownObjectFormat:
4916 return ".llvmbc";
4917 case Triple::GOFF:
4918 llvm_unreachable("GOFF is not yet implemented");
4919 break;
4920 case Triple::SPIRV:
4921 llvm_unreachable("SPIRV is not yet implemented");
4922 break;
4923 case Triple::XCOFF:
4924 llvm_unreachable("XCOFF is not yet implemented");
4925 break;
4926 case Triple::DXContainer:
4927 llvm_unreachable("DXContainer is not yet implemented");
4928 break;
4929 }
4930 llvm_unreachable("Unimplemented ObjectFormatType");
4931 }
4932
getSectionNameForCommandline(const Triple & T)4933 static const char *getSectionNameForCommandline(const Triple &T) {
4934 switch (T.getObjectFormat()) {
4935 case Triple::MachO:
4936 return "__LLVM,__cmdline";
4937 case Triple::COFF:
4938 case Triple::ELF:
4939 case Triple::Wasm:
4940 case Triple::UnknownObjectFormat:
4941 return ".llvmcmd";
4942 case Triple::GOFF:
4943 llvm_unreachable("GOFF is not yet implemented");
4944 break;
4945 case Triple::SPIRV:
4946 llvm_unreachable("SPIRV is not yet implemented");
4947 break;
4948 case Triple::XCOFF:
4949 llvm_unreachable("XCOFF is not yet implemented");
4950 break;
4951 case Triple::DXContainer:
4952 llvm_unreachable("DXC is not yet implemented");
4953 break;
4954 }
4955 llvm_unreachable("Unimplemented ObjectFormatType");
4956 }
4957
embedBitcodeInModule(llvm::Module & M,llvm::MemoryBufferRef Buf,bool EmbedBitcode,bool EmbedCmdline,const std::vector<uint8_t> & CmdArgs)4958 void llvm::embedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf,
4959 bool EmbedBitcode, bool EmbedCmdline,
4960 const std::vector<uint8_t> &CmdArgs) {
4961 // Save llvm.compiler.used and remove it.
4962 SmallVector<Constant *, 2> UsedArray;
4963 SmallVector<GlobalValue *, 4> UsedGlobals;
4964 Type *UsedElementType = Type::getInt8Ty(M.getContext())->getPointerTo(0);
4965 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true);
4966 for (auto *GV : UsedGlobals) {
4967 if (GV->getName() != "llvm.embedded.module" &&
4968 GV->getName() != "llvm.cmdline")
4969 UsedArray.push_back(
4970 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
4971 }
4972 if (Used)
4973 Used->eraseFromParent();
4974
4975 // Embed the bitcode for the llvm module.
4976 std::string Data;
4977 ArrayRef<uint8_t> ModuleData;
4978 Triple T(M.getTargetTriple());
4979
4980 if (EmbedBitcode) {
4981 if (Buf.getBufferSize() == 0 ||
4982 !isBitcode((const unsigned char *)Buf.getBufferStart(),
4983 (const unsigned char *)Buf.getBufferEnd())) {
4984 // If the input is LLVM Assembly, bitcode is produced by serializing
4985 // the module. Use-lists order need to be preserved in this case.
4986 llvm::raw_string_ostream OS(Data);
4987 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true);
4988 ModuleData =
4989 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size());
4990 } else
4991 // If the input is LLVM bitcode, write the input byte stream directly.
4992 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(),
4993 Buf.getBufferSize());
4994 }
4995 llvm::Constant *ModuleConstant =
4996 llvm::ConstantDataArray::get(M.getContext(), ModuleData);
4997 llvm::GlobalVariable *GV = new llvm::GlobalVariable(
4998 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage,
4999 ModuleConstant);
5000 GV->setSection(getSectionNameForBitcode(T));
5001 // Set alignment to 1 to prevent padding between two contributions from input
5002 // sections after linking.
5003 GV->setAlignment(Align(1));
5004 UsedArray.push_back(
5005 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
5006 if (llvm::GlobalVariable *Old =
5007 M.getGlobalVariable("llvm.embedded.module", true)) {
5008 assert(Old->hasZeroLiveUses() &&
5009 "llvm.embedded.module can only be used once in llvm.compiler.used");
5010 GV->takeName(Old);
5011 Old->eraseFromParent();
5012 } else {
5013 GV->setName("llvm.embedded.module");
5014 }
5015
5016 // Skip if only bitcode needs to be embedded.
5017 if (EmbedCmdline) {
5018 // Embed command-line options.
5019 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()),
5020 CmdArgs.size());
5021 llvm::Constant *CmdConstant =
5022 llvm::ConstantDataArray::get(M.getContext(), CmdData);
5023 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true,
5024 llvm::GlobalValue::PrivateLinkage,
5025 CmdConstant);
5026 GV->setSection(getSectionNameForCommandline(T));
5027 GV->setAlignment(Align(1));
5028 UsedArray.push_back(
5029 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
5030 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) {
5031 assert(Old->hasZeroLiveUses() &&
5032 "llvm.cmdline can only be used once in llvm.compiler.used");
5033 GV->takeName(Old);
5034 Old->eraseFromParent();
5035 } else {
5036 GV->setName("llvm.cmdline");
5037 }
5038 }
5039
5040 if (UsedArray.empty())
5041 return;
5042
5043 // Recreate llvm.compiler.used.
5044 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size());
5045 auto *NewUsed = new GlobalVariable(
5046 M, ATy, false, llvm::GlobalValue::AppendingLinkage,
5047 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used");
5048 NewUsed->setSection("llvm.metadata");
5049 }
5050