1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2010-2016 Intel Corporation
3 */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <stdint.h>
8 #include <inttypes.h>
9 #include <sys/types.h>
10 #include <string.h>
11 #include <sys/queue.h>
12 #include <stdarg.h>
13 #include <errno.h>
14 #include <getopt.h>
15 #include <stdbool.h>
16 #include <netinet/in.h>
17
18 #include <rte_debug.h>
19 #include <rte_ether.h>
20 #include <rte_ethdev.h>
21 #include <rte_cycles.h>
22 #include <rte_mbuf.h>
23 #include <rte_ip.h>
24 #include <rte_tcp.h>
25 #include <rte_udp.h>
26 #include <rte_hash.h>
27
28 #include "l3fwd.h"
29 #include "l3fwd_event.h"
30
31 #if defined(RTE_ARCH_X86) || defined(__ARM_FEATURE_CRC32)
32 #define EM_HASH_CRC 1
33 #endif
34
35 #ifdef EM_HASH_CRC
36 #include <rte_hash_crc.h>
37 #define DEFAULT_HASH_FUNC rte_hash_crc
38 #else
39 #include <rte_jhash.h>
40 #define DEFAULT_HASH_FUNC rte_jhash
41 #endif
42
43 #define IPV6_ADDR_LEN 16
44
45 struct ipv4_5tuple {
46 uint32_t ip_dst;
47 uint32_t ip_src;
48 uint16_t port_dst;
49 uint16_t port_src;
50 uint8_t proto;
51 } __rte_packed;
52
53 union ipv4_5tuple_host {
54 struct {
55 uint8_t pad0;
56 uint8_t proto;
57 uint16_t pad1;
58 uint32_t ip_src;
59 uint32_t ip_dst;
60 uint16_t port_src;
61 uint16_t port_dst;
62 };
63 xmm_t xmm;
64 };
65
66 #define XMM_NUM_IN_IPV6_5TUPLE 3
67
68 struct ipv6_5tuple {
69 uint8_t ip_dst[IPV6_ADDR_LEN];
70 uint8_t ip_src[IPV6_ADDR_LEN];
71 uint16_t port_dst;
72 uint16_t port_src;
73 uint8_t proto;
74 } __rte_packed;
75
76 union ipv6_5tuple_host {
77 struct {
78 uint16_t pad0;
79 uint8_t proto;
80 uint8_t pad1;
81 uint8_t ip_src[IPV6_ADDR_LEN];
82 uint8_t ip_dst[IPV6_ADDR_LEN];
83 uint16_t port_src;
84 uint16_t port_dst;
85 uint64_t reserve;
86 };
87 xmm_t xmm[XMM_NUM_IN_IPV6_5TUPLE];
88 };
89
90
91
92 struct ipv4_l3fwd_em_route {
93 struct ipv4_5tuple key;
94 uint8_t if_out;
95 };
96
97 struct ipv6_l3fwd_em_route {
98 struct ipv6_5tuple key;
99 uint8_t if_out;
100 };
101
102 static struct ipv4_l3fwd_em_route ipv4_l3fwd_em_route_array[] = {
103 {{RTE_IPV4(101, 0, 0, 0), RTE_IPV4(100, 10, 0, 1), 101, 11, IPPROTO_TCP}, 0},
104 {{RTE_IPV4(201, 0, 0, 0), RTE_IPV4(200, 20, 0, 1), 102, 12, IPPROTO_TCP}, 1},
105 {{RTE_IPV4(111, 0, 0, 0), RTE_IPV4(100, 30, 0, 1), 101, 11, IPPROTO_TCP}, 2},
106 {{RTE_IPV4(211, 0, 0, 0), RTE_IPV4(200, 40, 0, 1), 102, 12, IPPROTO_TCP}, 3},
107 };
108
109 static struct ipv6_l3fwd_em_route ipv6_l3fwd_em_route_array[] = {
110 {{
111 {0xfe, 0x80, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},
112 {0xfe, 0x80, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
113 101, 11, IPPROTO_TCP}, 0},
114
115 {{
116 {0xfe, 0x90, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},
117 {0xfe, 0x90, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
118 102, 12, IPPROTO_TCP}, 1},
119
120 {{
121 {0xfe, 0xa0, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},
122 {0xfe, 0xa0, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
123 101, 11, IPPROTO_TCP}, 2},
124
125 {{
126 {0xfe, 0xb0, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},
127 {0xfe, 0xb0, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
128 102, 12, IPPROTO_TCP}, 3},
129 };
130
131 struct rte_hash *ipv4_l3fwd_em_lookup_struct[NB_SOCKETS];
132 struct rte_hash *ipv6_l3fwd_em_lookup_struct[NB_SOCKETS];
133
134 static inline uint32_t
ipv4_hash_crc(const void * data,__rte_unused uint32_t data_len,uint32_t init_val)135 ipv4_hash_crc(const void *data, __rte_unused uint32_t data_len,
136 uint32_t init_val)
137 {
138 const union ipv4_5tuple_host *k;
139 uint32_t t;
140 const uint32_t *p;
141
142 k = data;
143 t = k->proto;
144 p = (const uint32_t *)&k->port_src;
145
146 #ifdef EM_HASH_CRC
147 init_val = rte_hash_crc_4byte(t, init_val);
148 init_val = rte_hash_crc_4byte(k->ip_src, init_val);
149 init_val = rte_hash_crc_4byte(k->ip_dst, init_val);
150 init_val = rte_hash_crc_4byte(*p, init_val);
151 #else
152 init_val = rte_jhash_1word(t, init_val);
153 init_val = rte_jhash_1word(k->ip_src, init_val);
154 init_val = rte_jhash_1word(k->ip_dst, init_val);
155 init_val = rte_jhash_1word(*p, init_val);
156 #endif
157
158 return init_val;
159 }
160
161 static inline uint32_t
ipv6_hash_crc(const void * data,__rte_unused uint32_t data_len,uint32_t init_val)162 ipv6_hash_crc(const void *data, __rte_unused uint32_t data_len,
163 uint32_t init_val)
164 {
165 const union ipv6_5tuple_host *k;
166 uint32_t t;
167 const uint32_t *p;
168 #ifdef EM_HASH_CRC
169 const uint32_t *ip_src0, *ip_src1, *ip_src2, *ip_src3;
170 const uint32_t *ip_dst0, *ip_dst1, *ip_dst2, *ip_dst3;
171 #endif
172
173 k = data;
174 t = k->proto;
175 p = (const uint32_t *)&k->port_src;
176
177 #ifdef EM_HASH_CRC
178 ip_src0 = (const uint32_t *) k->ip_src;
179 ip_src1 = (const uint32_t *)(k->ip_src+4);
180 ip_src2 = (const uint32_t *)(k->ip_src+8);
181 ip_src3 = (const uint32_t *)(k->ip_src+12);
182 ip_dst0 = (const uint32_t *) k->ip_dst;
183 ip_dst1 = (const uint32_t *)(k->ip_dst+4);
184 ip_dst2 = (const uint32_t *)(k->ip_dst+8);
185 ip_dst3 = (const uint32_t *)(k->ip_dst+12);
186 init_val = rte_hash_crc_4byte(t, init_val);
187 init_val = rte_hash_crc_4byte(*ip_src0, init_val);
188 init_val = rte_hash_crc_4byte(*ip_src1, init_val);
189 init_val = rte_hash_crc_4byte(*ip_src2, init_val);
190 init_val = rte_hash_crc_4byte(*ip_src3, init_val);
191 init_val = rte_hash_crc_4byte(*ip_dst0, init_val);
192 init_val = rte_hash_crc_4byte(*ip_dst1, init_val);
193 init_val = rte_hash_crc_4byte(*ip_dst2, init_val);
194 init_val = rte_hash_crc_4byte(*ip_dst3, init_val);
195 init_val = rte_hash_crc_4byte(*p, init_val);
196 #else
197 init_val = rte_jhash_1word(t, init_val);
198 init_val = rte_jhash(k->ip_src,
199 sizeof(uint8_t) * IPV6_ADDR_LEN, init_val);
200 init_val = rte_jhash(k->ip_dst,
201 sizeof(uint8_t) * IPV6_ADDR_LEN, init_val);
202 init_val = rte_jhash_1word(*p, init_val);
203 #endif
204 return init_val;
205 }
206
207 #define IPV4_L3FWD_EM_NUM_ROUTES RTE_DIM(ipv4_l3fwd_em_route_array)
208
209 #define IPV6_L3FWD_EM_NUM_ROUTES RTE_DIM(ipv6_l3fwd_em_route_array)
210
211 static uint8_t ipv4_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned;
212 static uint8_t ipv6_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned;
213
214 static rte_xmm_t mask0;
215 static rte_xmm_t mask1;
216 static rte_xmm_t mask2;
217
218 #if defined(__SSE2__)
219 static inline xmm_t
em_mask_key(void * key,xmm_t mask)220 em_mask_key(void *key, xmm_t mask)
221 {
222 __m128i data = _mm_loadu_si128((__m128i *)(key));
223
224 return _mm_and_si128(data, mask);
225 }
226 #elif defined(__ARM_NEON)
227 static inline xmm_t
em_mask_key(void * key,xmm_t mask)228 em_mask_key(void *key, xmm_t mask)
229 {
230 int32x4_t data = vld1q_s32((int32_t *)key);
231
232 return vandq_s32(data, mask);
233 }
234 #elif defined(__ALTIVEC__)
235 static inline xmm_t
em_mask_key(void * key,xmm_t mask)236 em_mask_key(void *key, xmm_t mask)
237 {
238 xmm_t data = vec_ld(0, (xmm_t *)(key));
239
240 return vec_and(data, mask);
241 }
242 #else
243 #error No vector engine (SSE, NEON, ALTIVEC) available, check your toolchain
244 #endif
245
246 static inline uint16_t
em_get_ipv4_dst_port(void * ipv4_hdr,uint16_t portid,void * lookup_struct)247 em_get_ipv4_dst_port(void *ipv4_hdr, uint16_t portid, void *lookup_struct)
248 {
249 int ret = 0;
250 union ipv4_5tuple_host key;
251 struct rte_hash *ipv4_l3fwd_lookup_struct =
252 (struct rte_hash *)lookup_struct;
253
254 ipv4_hdr = (uint8_t *)ipv4_hdr +
255 offsetof(struct rte_ipv4_hdr, time_to_live);
256
257 /*
258 * Get 5 tuple: dst port, src port, dst IP address,
259 * src IP address and protocol.
260 */
261 key.xmm = em_mask_key(ipv4_hdr, mask0.x);
262
263 /* Find destination port */
264 ret = rte_hash_lookup(ipv4_l3fwd_lookup_struct, (const void *)&key);
265 return (ret < 0) ? portid : ipv4_l3fwd_out_if[ret];
266 }
267
268 static inline uint16_t
em_get_ipv6_dst_port(void * ipv6_hdr,uint16_t portid,void * lookup_struct)269 em_get_ipv6_dst_port(void *ipv6_hdr, uint16_t portid, void *lookup_struct)
270 {
271 int ret = 0;
272 union ipv6_5tuple_host key;
273 struct rte_hash *ipv6_l3fwd_lookup_struct =
274 (struct rte_hash *)lookup_struct;
275
276 ipv6_hdr = (uint8_t *)ipv6_hdr +
277 offsetof(struct rte_ipv6_hdr, payload_len);
278 void *data0 = ipv6_hdr;
279 void *data1 = ((uint8_t *)ipv6_hdr) + sizeof(xmm_t);
280 void *data2 = ((uint8_t *)ipv6_hdr) + sizeof(xmm_t) + sizeof(xmm_t);
281
282 /* Get part of 5 tuple: src IP address lower 96 bits and protocol */
283 key.xmm[0] = em_mask_key(data0, mask1.x);
284
285 /*
286 * Get part of 5 tuple: dst IP address lower 96 bits
287 * and src IP address higher 32 bits.
288 */
289 #if defined RTE_ARCH_X86
290 key.xmm[1] = _mm_loadu_si128(data1);
291 #else
292 key.xmm[1] = *(xmm_t *)data1;
293 #endif
294
295 /*
296 * Get part of 5 tuple: dst port and src port
297 * and dst IP address higher 32 bits.
298 */
299 key.xmm[2] = em_mask_key(data2, mask2.x);
300
301 /* Find destination port */
302 ret = rte_hash_lookup(ipv6_l3fwd_lookup_struct, (const void *)&key);
303 return (ret < 0) ? portid : ipv6_l3fwd_out_if[ret];
304 }
305
306 #if defined RTE_ARCH_X86 || defined __ARM_NEON
307 #if defined(NO_HASH_MULTI_LOOKUP)
308 #include "l3fwd_em_sequential.h"
309 #else
310 #include "l3fwd_em_hlm.h"
311 #endif
312 #else
313 #include "l3fwd_em.h"
314 #endif
315
316 static void
convert_ipv4_5tuple(struct ipv4_5tuple * key1,union ipv4_5tuple_host * key2)317 convert_ipv4_5tuple(struct ipv4_5tuple *key1,
318 union ipv4_5tuple_host *key2)
319 {
320 key2->ip_dst = rte_cpu_to_be_32(key1->ip_dst);
321 key2->ip_src = rte_cpu_to_be_32(key1->ip_src);
322 key2->port_dst = rte_cpu_to_be_16(key1->port_dst);
323 key2->port_src = rte_cpu_to_be_16(key1->port_src);
324 key2->proto = key1->proto;
325 key2->pad0 = 0;
326 key2->pad1 = 0;
327 }
328
329 static void
convert_ipv6_5tuple(struct ipv6_5tuple * key1,union ipv6_5tuple_host * key2)330 convert_ipv6_5tuple(struct ipv6_5tuple *key1,
331 union ipv6_5tuple_host *key2)
332 {
333 uint32_t i;
334
335 for (i = 0; i < 16; i++) {
336 key2->ip_dst[i] = key1->ip_dst[i];
337 key2->ip_src[i] = key1->ip_src[i];
338 }
339 key2->port_dst = rte_cpu_to_be_16(key1->port_dst);
340 key2->port_src = rte_cpu_to_be_16(key1->port_src);
341 key2->proto = key1->proto;
342 key2->pad0 = 0;
343 key2->pad1 = 0;
344 key2->reserve = 0;
345 }
346
347 #define BYTE_VALUE_MAX 256
348 #define ALL_32_BITS 0xffffffff
349 #define BIT_8_TO_15 0x0000ff00
350
351 static inline void
populate_ipv4_few_flow_into_table(const struct rte_hash * h)352 populate_ipv4_few_flow_into_table(const struct rte_hash *h)
353 {
354 uint32_t i;
355 int32_t ret;
356
357 mask0 = (rte_xmm_t){.u32 = {BIT_8_TO_15, ALL_32_BITS,
358 ALL_32_BITS, ALL_32_BITS} };
359
360 for (i = 0; i < IPV4_L3FWD_EM_NUM_ROUTES; i++) {
361 struct ipv4_l3fwd_em_route entry;
362 union ipv4_5tuple_host newkey;
363
364 entry = ipv4_l3fwd_em_route_array[i];
365 convert_ipv4_5tuple(&entry.key, &newkey);
366 ret = rte_hash_add_key(h, (void *) &newkey);
367 if (ret < 0) {
368 rte_exit(EXIT_FAILURE, "Unable to add entry %" PRIu32
369 " to the l3fwd hash.\n", i);
370 }
371 ipv4_l3fwd_out_if[ret] = entry.if_out;
372 }
373 printf("Hash: Adding 0x%" PRIx64 " keys\n",
374 (uint64_t)IPV4_L3FWD_EM_NUM_ROUTES);
375 }
376
377 #define BIT_16_TO_23 0x00ff0000
378 static inline void
populate_ipv6_few_flow_into_table(const struct rte_hash * h)379 populate_ipv6_few_flow_into_table(const struct rte_hash *h)
380 {
381 uint32_t i;
382 int32_t ret;
383
384 mask1 = (rte_xmm_t){.u32 = {BIT_16_TO_23, ALL_32_BITS,
385 ALL_32_BITS, ALL_32_BITS} };
386
387 mask2 = (rte_xmm_t){.u32 = {ALL_32_BITS, ALL_32_BITS, 0, 0} };
388
389 for (i = 0; i < IPV6_L3FWD_EM_NUM_ROUTES; i++) {
390 struct ipv6_l3fwd_em_route entry;
391 union ipv6_5tuple_host newkey;
392
393 entry = ipv6_l3fwd_em_route_array[i];
394 convert_ipv6_5tuple(&entry.key, &newkey);
395 ret = rte_hash_add_key(h, (void *) &newkey);
396 if (ret < 0) {
397 rte_exit(EXIT_FAILURE, "Unable to add entry %" PRIu32
398 " to the l3fwd hash.\n", i);
399 }
400 ipv6_l3fwd_out_if[ret] = entry.if_out;
401 }
402 printf("Hash: Adding 0x%" PRIx64 "keys\n",
403 (uint64_t)IPV6_L3FWD_EM_NUM_ROUTES);
404 }
405
406 #define NUMBER_PORT_USED 4
407 static inline void
populate_ipv4_many_flow_into_table(const struct rte_hash * h,unsigned int nr_flow)408 populate_ipv4_many_flow_into_table(const struct rte_hash *h,
409 unsigned int nr_flow)
410 {
411 unsigned i;
412
413 mask0 = (rte_xmm_t){.u32 = {BIT_8_TO_15, ALL_32_BITS,
414 ALL_32_BITS, ALL_32_BITS} };
415
416 for (i = 0; i < nr_flow; i++) {
417 struct ipv4_l3fwd_em_route entry;
418 union ipv4_5tuple_host newkey;
419
420 uint8_t a = (uint8_t)
421 ((i/NUMBER_PORT_USED)%BYTE_VALUE_MAX);
422 uint8_t b = (uint8_t)
423 (((i/NUMBER_PORT_USED)/BYTE_VALUE_MAX)%BYTE_VALUE_MAX);
424 uint8_t c = (uint8_t)
425 ((i/NUMBER_PORT_USED)/(BYTE_VALUE_MAX*BYTE_VALUE_MAX));
426
427 /* Create the ipv4 exact match flow */
428 memset(&entry, 0, sizeof(entry));
429 switch (i & (NUMBER_PORT_USED - 1)) {
430 case 0:
431 entry = ipv4_l3fwd_em_route_array[0];
432 entry.key.ip_dst = RTE_IPV4(101, c, b, a);
433 break;
434 case 1:
435 entry = ipv4_l3fwd_em_route_array[1];
436 entry.key.ip_dst = RTE_IPV4(201, c, b, a);
437 break;
438 case 2:
439 entry = ipv4_l3fwd_em_route_array[2];
440 entry.key.ip_dst = RTE_IPV4(111, c, b, a);
441 break;
442 case 3:
443 entry = ipv4_l3fwd_em_route_array[3];
444 entry.key.ip_dst = RTE_IPV4(211, c, b, a);
445 break;
446 };
447 convert_ipv4_5tuple(&entry.key, &newkey);
448 int32_t ret = rte_hash_add_key(h, (void *) &newkey);
449
450 if (ret < 0)
451 rte_exit(EXIT_FAILURE, "Unable to add entry %u\n", i);
452
453 ipv4_l3fwd_out_if[ret] = (uint8_t) entry.if_out;
454
455 }
456 printf("Hash: Adding 0x%x keys\n", nr_flow);
457 }
458
459 static inline void
populate_ipv6_many_flow_into_table(const struct rte_hash * h,unsigned int nr_flow)460 populate_ipv6_many_flow_into_table(const struct rte_hash *h,
461 unsigned int nr_flow)
462 {
463 unsigned i;
464
465 mask1 = (rte_xmm_t){.u32 = {BIT_16_TO_23, ALL_32_BITS,
466 ALL_32_BITS, ALL_32_BITS} };
467 mask2 = (rte_xmm_t){.u32 = {ALL_32_BITS, ALL_32_BITS, 0, 0} };
468
469 for (i = 0; i < nr_flow; i++) {
470 struct ipv6_l3fwd_em_route entry;
471 union ipv6_5tuple_host newkey;
472
473 uint8_t a = (uint8_t)
474 ((i/NUMBER_PORT_USED)%BYTE_VALUE_MAX);
475 uint8_t b = (uint8_t)
476 (((i/NUMBER_PORT_USED)/BYTE_VALUE_MAX)%BYTE_VALUE_MAX);
477 uint8_t c = (uint8_t)
478 ((i/NUMBER_PORT_USED)/(BYTE_VALUE_MAX*BYTE_VALUE_MAX));
479
480 /* Create the ipv6 exact match flow */
481 memset(&entry, 0, sizeof(entry));
482 switch (i & (NUMBER_PORT_USED - 1)) {
483 case 0:
484 entry = ipv6_l3fwd_em_route_array[0];
485 break;
486 case 1:
487 entry = ipv6_l3fwd_em_route_array[1];
488 break;
489 case 2:
490 entry = ipv6_l3fwd_em_route_array[2];
491 break;
492 case 3:
493 entry = ipv6_l3fwd_em_route_array[3];
494 break;
495 };
496 entry.key.ip_dst[13] = c;
497 entry.key.ip_dst[14] = b;
498 entry.key.ip_dst[15] = a;
499 convert_ipv6_5tuple(&entry.key, &newkey);
500 int32_t ret = rte_hash_add_key(h, (void *) &newkey);
501
502 if (ret < 0)
503 rte_exit(EXIT_FAILURE, "Unable to add entry %u\n", i);
504
505 ipv6_l3fwd_out_if[ret] = (uint8_t) entry.if_out;
506
507 }
508 printf("Hash: Adding 0x%x keys\n", nr_flow);
509 }
510
511 /* Requirements:
512 * 1. IP packets without extension;
513 * 2. L4 payload should be either TCP or UDP.
514 */
515 int
em_check_ptype(int portid)516 em_check_ptype(int portid)
517 {
518 int i, ret;
519 int ptype_l3_ipv4_ext = 0;
520 int ptype_l3_ipv6_ext = 0;
521 int ptype_l4_tcp = 0;
522 int ptype_l4_udp = 0;
523 uint32_t ptype_mask = RTE_PTYPE_L3_MASK | RTE_PTYPE_L4_MASK;
524
525 ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, NULL, 0);
526 if (ret <= 0)
527 return 0;
528
529 uint32_t ptypes[ret];
530
531 ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, ptypes, ret);
532 for (i = 0; i < ret; ++i) {
533 switch (ptypes[i]) {
534 case RTE_PTYPE_L3_IPV4_EXT:
535 ptype_l3_ipv4_ext = 1;
536 break;
537 case RTE_PTYPE_L3_IPV6_EXT:
538 ptype_l3_ipv6_ext = 1;
539 break;
540 case RTE_PTYPE_L4_TCP:
541 ptype_l4_tcp = 1;
542 break;
543 case RTE_PTYPE_L4_UDP:
544 ptype_l4_udp = 1;
545 break;
546 }
547 }
548
549 if (ptype_l3_ipv4_ext == 0)
550 printf("port %d cannot parse RTE_PTYPE_L3_IPV4_EXT\n", portid);
551 if (ptype_l3_ipv6_ext == 0)
552 printf("port %d cannot parse RTE_PTYPE_L3_IPV6_EXT\n", portid);
553 if (!ptype_l3_ipv4_ext || !ptype_l3_ipv6_ext)
554 return 0;
555
556 if (ptype_l4_tcp == 0)
557 printf("port %d cannot parse RTE_PTYPE_L4_TCP\n", portid);
558 if (ptype_l4_udp == 0)
559 printf("port %d cannot parse RTE_PTYPE_L4_UDP\n", portid);
560 if (ptype_l4_tcp && ptype_l4_udp)
561 return 1;
562
563 return 0;
564 }
565
566 static inline void
em_parse_ptype(struct rte_mbuf * m)567 em_parse_ptype(struct rte_mbuf *m)
568 {
569 struct rte_ether_hdr *eth_hdr;
570 uint32_t packet_type = RTE_PTYPE_UNKNOWN;
571 uint16_t ether_type;
572 void *l3;
573 int hdr_len;
574 struct rte_ipv4_hdr *ipv4_hdr;
575 struct rte_ipv6_hdr *ipv6_hdr;
576
577 eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
578 ether_type = eth_hdr->ether_type;
579 l3 = (uint8_t *)eth_hdr + sizeof(struct rte_ether_hdr);
580 if (ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4)) {
581 ipv4_hdr = (struct rte_ipv4_hdr *)l3;
582 hdr_len = rte_ipv4_hdr_len(ipv4_hdr);
583 if (hdr_len == sizeof(struct rte_ipv4_hdr)) {
584 packet_type |= RTE_PTYPE_L3_IPV4;
585 if (ipv4_hdr->next_proto_id == IPPROTO_TCP)
586 packet_type |= RTE_PTYPE_L4_TCP;
587 else if (ipv4_hdr->next_proto_id == IPPROTO_UDP)
588 packet_type |= RTE_PTYPE_L4_UDP;
589 } else
590 packet_type |= RTE_PTYPE_L3_IPV4_EXT;
591 } else if (ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6)) {
592 ipv6_hdr = (struct rte_ipv6_hdr *)l3;
593 if (ipv6_hdr->proto == IPPROTO_TCP)
594 packet_type |= RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_TCP;
595 else if (ipv6_hdr->proto == IPPROTO_UDP)
596 packet_type |= RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_UDP;
597 else
598 packet_type |= RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
599 }
600
601 m->packet_type = packet_type;
602 }
603
604 uint16_t
em_cb_parse_ptype(uint16_t port __rte_unused,uint16_t queue __rte_unused,struct rte_mbuf * pkts[],uint16_t nb_pkts,uint16_t max_pkts __rte_unused,void * user_param __rte_unused)605 em_cb_parse_ptype(uint16_t port __rte_unused, uint16_t queue __rte_unused,
606 struct rte_mbuf *pkts[], uint16_t nb_pkts,
607 uint16_t max_pkts __rte_unused,
608 void *user_param __rte_unused)
609 {
610 unsigned i;
611
612 for (i = 0; i < nb_pkts; ++i)
613 em_parse_ptype(pkts[i]);
614
615 return nb_pkts;
616 }
617
618 /* main processing loop */
619 int
em_main_loop(__rte_unused void * dummy)620 em_main_loop(__rte_unused void *dummy)
621 {
622 struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
623 unsigned lcore_id;
624 uint64_t prev_tsc, diff_tsc, cur_tsc;
625 int i, nb_rx;
626 uint8_t queueid;
627 uint16_t portid;
628 struct lcore_conf *qconf;
629 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) /
630 US_PER_S * BURST_TX_DRAIN_US;
631
632 prev_tsc = 0;
633
634 lcore_id = rte_lcore_id();
635 qconf = &lcore_conf[lcore_id];
636
637 if (qconf->n_rx_queue == 0) {
638 RTE_LOG(INFO, L3FWD, "lcore %u has nothing to do\n", lcore_id);
639 return 0;
640 }
641
642 RTE_LOG(INFO, L3FWD, "entering main loop on lcore %u\n", lcore_id);
643
644 for (i = 0; i < qconf->n_rx_queue; i++) {
645
646 portid = qconf->rx_queue_list[i].port_id;
647 queueid = qconf->rx_queue_list[i].queue_id;
648 RTE_LOG(INFO, L3FWD,
649 " -- lcoreid=%u portid=%u rxqueueid=%hhu\n",
650 lcore_id, portid, queueid);
651 }
652
653 while (!force_quit) {
654
655 cur_tsc = rte_rdtsc();
656
657 /*
658 * TX burst queue drain
659 */
660 diff_tsc = cur_tsc - prev_tsc;
661 if (unlikely(diff_tsc > drain_tsc)) {
662
663 for (i = 0; i < qconf->n_tx_port; ++i) {
664 portid = qconf->tx_port_id[i];
665 if (qconf->tx_mbufs[portid].len == 0)
666 continue;
667 send_burst(qconf,
668 qconf->tx_mbufs[portid].len,
669 portid);
670 qconf->tx_mbufs[portid].len = 0;
671 }
672
673 prev_tsc = cur_tsc;
674 }
675
676 /*
677 * Read packet from RX queues
678 */
679 for (i = 0; i < qconf->n_rx_queue; ++i) {
680 portid = qconf->rx_queue_list[i].port_id;
681 queueid = qconf->rx_queue_list[i].queue_id;
682 nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst,
683 MAX_PKT_BURST);
684 if (nb_rx == 0)
685 continue;
686
687 #if defined RTE_ARCH_X86 || defined __ARM_NEON
688 l3fwd_em_send_packets(nb_rx, pkts_burst,
689 portid, qconf);
690 #else
691 l3fwd_em_no_opt_send_packets(nb_rx, pkts_burst,
692 portid, qconf);
693 #endif
694 }
695 }
696
697 return 0;
698 }
699
700 static __rte_always_inline void
em_event_loop_single(struct l3fwd_event_resources * evt_rsrc,const uint8_t flags)701 em_event_loop_single(struct l3fwd_event_resources *evt_rsrc,
702 const uint8_t flags)
703 {
704 const int event_p_id = l3fwd_get_free_event_port(evt_rsrc);
705 const uint8_t tx_q_id = evt_rsrc->evq.event_q_id[
706 evt_rsrc->evq.nb_queues - 1];
707 const uint8_t event_d_id = evt_rsrc->event_d_id;
708 struct lcore_conf *lconf;
709 unsigned int lcore_id;
710 struct rte_event ev;
711
712 if (event_p_id < 0)
713 return;
714
715 lcore_id = rte_lcore_id();
716 lconf = &lcore_conf[lcore_id];
717
718 RTE_LOG(INFO, L3FWD, "entering %s on lcore %u\n", __func__, lcore_id);
719 while (!force_quit) {
720 if (!rte_event_dequeue_burst(event_d_id, event_p_id, &ev, 1, 0))
721 continue;
722
723 struct rte_mbuf *mbuf = ev.mbuf;
724
725 #if defined RTE_ARCH_X86 || defined __ARM_NEON
726 mbuf->port = em_get_dst_port(lconf, mbuf, mbuf->port);
727 process_packet(mbuf, &mbuf->port);
728 #else
729 l3fwd_em_simple_process(mbuf, lconf);
730 #endif
731 if (mbuf->port == BAD_PORT) {
732 rte_pktmbuf_free(mbuf);
733 continue;
734 }
735
736 if (flags & L3FWD_EVENT_TX_ENQ) {
737 ev.queue_id = tx_q_id;
738 ev.op = RTE_EVENT_OP_FORWARD;
739 while (rte_event_enqueue_burst(event_d_id, event_p_id,
740 &ev, 1) && !force_quit)
741 ;
742 }
743
744 if (flags & L3FWD_EVENT_TX_DIRECT) {
745 rte_event_eth_tx_adapter_txq_set(mbuf, 0);
746 while (!rte_event_eth_tx_adapter_enqueue(event_d_id,
747 event_p_id, &ev, 1, 0) &&
748 !force_quit)
749 ;
750 }
751 }
752 }
753
754 static __rte_always_inline void
em_event_loop_burst(struct l3fwd_event_resources * evt_rsrc,const uint8_t flags)755 em_event_loop_burst(struct l3fwd_event_resources *evt_rsrc,
756 const uint8_t flags)
757 {
758 const int event_p_id = l3fwd_get_free_event_port(evt_rsrc);
759 const uint8_t tx_q_id = evt_rsrc->evq.event_q_id[
760 evt_rsrc->evq.nb_queues - 1];
761 const uint8_t event_d_id = evt_rsrc->event_d_id;
762 const uint16_t deq_len = evt_rsrc->deq_depth;
763 struct rte_event events[MAX_PKT_BURST];
764 struct lcore_conf *lconf;
765 unsigned int lcore_id;
766 int i, nb_enq, nb_deq;
767
768 if (event_p_id < 0)
769 return;
770
771 lcore_id = rte_lcore_id();
772
773 lconf = &lcore_conf[lcore_id];
774
775 RTE_LOG(INFO, L3FWD, "entering %s on lcore %u\n", __func__, lcore_id);
776
777 while (!force_quit) {
778 /* Read events from RX queues */
779 nb_deq = rte_event_dequeue_burst(event_d_id, event_p_id,
780 events, deq_len, 0);
781 if (nb_deq == 0) {
782 rte_pause();
783 continue;
784 }
785
786 #if defined RTE_ARCH_X86 || defined __ARM_NEON
787 l3fwd_em_process_events(nb_deq, (struct rte_event **)&events,
788 lconf);
789 #else
790 l3fwd_em_no_opt_process_events(nb_deq,
791 (struct rte_event **)&events,
792 lconf);
793 #endif
794 for (i = 0; i < nb_deq; i++) {
795 if (flags & L3FWD_EVENT_TX_ENQ) {
796 events[i].queue_id = tx_q_id;
797 events[i].op = RTE_EVENT_OP_FORWARD;
798 }
799
800 if (flags & L3FWD_EVENT_TX_DIRECT)
801 rte_event_eth_tx_adapter_txq_set(events[i].mbuf,
802 0);
803 }
804
805 if (flags & L3FWD_EVENT_TX_ENQ) {
806 nb_enq = rte_event_enqueue_burst(event_d_id, event_p_id,
807 events, nb_deq);
808 while (nb_enq < nb_deq && !force_quit)
809 nb_enq += rte_event_enqueue_burst(event_d_id,
810 event_p_id, events + nb_enq,
811 nb_deq - nb_enq);
812 }
813
814 if (flags & L3FWD_EVENT_TX_DIRECT) {
815 nb_enq = rte_event_eth_tx_adapter_enqueue(event_d_id,
816 event_p_id, events, nb_deq, 0);
817 while (nb_enq < nb_deq && !force_quit)
818 nb_enq += rte_event_eth_tx_adapter_enqueue(
819 event_d_id, event_p_id,
820 events + nb_enq,
821 nb_deq - nb_enq, 0);
822 }
823 }
824 }
825
826 static __rte_always_inline void
em_event_loop(struct l3fwd_event_resources * evt_rsrc,const uint8_t flags)827 em_event_loop(struct l3fwd_event_resources *evt_rsrc,
828 const uint8_t flags)
829 {
830 if (flags & L3FWD_EVENT_SINGLE)
831 em_event_loop_single(evt_rsrc, flags);
832 if (flags & L3FWD_EVENT_BURST)
833 em_event_loop_burst(evt_rsrc, flags);
834 }
835
836 int __rte_noinline
em_event_main_loop_tx_d(__rte_unused void * dummy)837 em_event_main_loop_tx_d(__rte_unused void *dummy)
838 {
839 struct l3fwd_event_resources *evt_rsrc =
840 l3fwd_get_eventdev_rsrc();
841
842 em_event_loop(evt_rsrc, L3FWD_EVENT_TX_DIRECT | L3FWD_EVENT_SINGLE);
843 return 0;
844 }
845
846 int __rte_noinline
em_event_main_loop_tx_d_burst(__rte_unused void * dummy)847 em_event_main_loop_tx_d_burst(__rte_unused void *dummy)
848 {
849 struct l3fwd_event_resources *evt_rsrc =
850 l3fwd_get_eventdev_rsrc();
851
852 em_event_loop(evt_rsrc, L3FWD_EVENT_TX_DIRECT | L3FWD_EVENT_BURST);
853 return 0;
854 }
855
856 int __rte_noinline
em_event_main_loop_tx_q(__rte_unused void * dummy)857 em_event_main_loop_tx_q(__rte_unused void *dummy)
858 {
859 struct l3fwd_event_resources *evt_rsrc =
860 l3fwd_get_eventdev_rsrc();
861
862 em_event_loop(evt_rsrc, L3FWD_EVENT_TX_ENQ | L3FWD_EVENT_SINGLE);
863 return 0;
864 }
865
866 int __rte_noinline
em_event_main_loop_tx_q_burst(__rte_unused void * dummy)867 em_event_main_loop_tx_q_burst(__rte_unused void *dummy)
868 {
869 struct l3fwd_event_resources *evt_rsrc =
870 l3fwd_get_eventdev_rsrc();
871
872 em_event_loop(evt_rsrc, L3FWD_EVENT_TX_ENQ | L3FWD_EVENT_BURST);
873 return 0;
874 }
875
876 /*
877 * Initialize exact match (hash) parameters.
878 */
879 void
setup_hash(const int socketid)880 setup_hash(const int socketid)
881 {
882 struct rte_hash_parameters ipv4_l3fwd_hash_params = {
883 .name = NULL,
884 .entries = L3FWD_HASH_ENTRIES,
885 .key_len = sizeof(union ipv4_5tuple_host),
886 .hash_func = ipv4_hash_crc,
887 .hash_func_init_val = 0,
888 };
889
890 struct rte_hash_parameters ipv6_l3fwd_hash_params = {
891 .name = NULL,
892 .entries = L3FWD_HASH_ENTRIES,
893 .key_len = sizeof(union ipv6_5tuple_host),
894 .hash_func = ipv6_hash_crc,
895 .hash_func_init_val = 0,
896 };
897
898 char s[64];
899
900 /* create ipv4 hash */
901 snprintf(s, sizeof(s), "ipv4_l3fwd_hash_%d", socketid);
902 ipv4_l3fwd_hash_params.name = s;
903 ipv4_l3fwd_hash_params.socket_id = socketid;
904 ipv4_l3fwd_em_lookup_struct[socketid] =
905 rte_hash_create(&ipv4_l3fwd_hash_params);
906 if (ipv4_l3fwd_em_lookup_struct[socketid] == NULL)
907 rte_exit(EXIT_FAILURE,
908 "Unable to create the l3fwd hash on socket %d\n",
909 socketid);
910
911 /* create ipv6 hash */
912 snprintf(s, sizeof(s), "ipv6_l3fwd_hash_%d", socketid);
913 ipv6_l3fwd_hash_params.name = s;
914 ipv6_l3fwd_hash_params.socket_id = socketid;
915 ipv6_l3fwd_em_lookup_struct[socketid] =
916 rte_hash_create(&ipv6_l3fwd_hash_params);
917 if (ipv6_l3fwd_em_lookup_struct[socketid] == NULL)
918 rte_exit(EXIT_FAILURE,
919 "Unable to create the l3fwd hash on socket %d\n",
920 socketid);
921
922 if (hash_entry_number != HASH_ENTRY_NUMBER_DEFAULT) {
923 /* For testing hash matching with a large number of flows we
924 * generate millions of IP 5-tuples with an incremented dst
925 * address to initialize the hash table. */
926 if (ipv6 == 0) {
927 /* populate the ipv4 hash */
928 populate_ipv4_many_flow_into_table(
929 ipv4_l3fwd_em_lookup_struct[socketid],
930 hash_entry_number);
931 } else {
932 /* populate the ipv6 hash */
933 populate_ipv6_many_flow_into_table(
934 ipv6_l3fwd_em_lookup_struct[socketid],
935 hash_entry_number);
936 }
937 } else {
938 /*
939 * Use data in ipv4/ipv6 l3fwd lookup table
940 * directly to initialize the hash table.
941 */
942 if (ipv6 == 0) {
943 /* populate the ipv4 hash */
944 populate_ipv4_few_flow_into_table(
945 ipv4_l3fwd_em_lookup_struct[socketid]);
946 } else {
947 /* populate the ipv6 hash */
948 populate_ipv6_few_flow_into_table(
949 ipv6_l3fwd_em_lookup_struct[socketid]);
950 }
951 }
952 }
953
954 /* Return ipv4/ipv6 em fwd lookup struct. */
955 void *
em_get_ipv4_l3fwd_lookup_struct(const int socketid)956 em_get_ipv4_l3fwd_lookup_struct(const int socketid)
957 {
958 return ipv4_l3fwd_em_lookup_struct[socketid];
959 }
960
961 void *
em_get_ipv6_l3fwd_lookup_struct(const int socketid)962 em_get_ipv6_l3fwd_lookup_struct(const int socketid)
963 {
964 return ipv6_l3fwd_em_lookup_struct[socketid];
965 }
966