xref: /dpdk/examples/l3fwd/l3fwd_em.c (revision 55b22fb3)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation
3  */
4 
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <stdint.h>
8 #include <inttypes.h>
9 #include <sys/types.h>
10 #include <string.h>
11 #include <sys/queue.h>
12 #include <stdarg.h>
13 #include <errno.h>
14 #include <getopt.h>
15 #include <stdbool.h>
16 #include <netinet/in.h>
17 
18 #include <rte_debug.h>
19 #include <rte_ether.h>
20 #include <rte_ethdev.h>
21 #include <rte_cycles.h>
22 #include <rte_mbuf.h>
23 #include <rte_ip.h>
24 #include <rte_tcp.h>
25 #include <rte_udp.h>
26 #include <rte_hash.h>
27 
28 #include "l3fwd.h"
29 #include "l3fwd_event.h"
30 #include "em_route_parse.c"
31 
32 #if defined(RTE_ARCH_X86) || defined(__ARM_FEATURE_CRC32)
33 #define EM_HASH_CRC 1
34 #endif
35 
36 #ifdef EM_HASH_CRC
37 #include <rte_hash_crc.h>
38 #define DEFAULT_HASH_FUNC       rte_hash_crc
39 #else
40 #include <rte_jhash.h>
41 #define DEFAULT_HASH_FUNC       rte_jhash
42 #endif
43 
44 #define IPV6_ADDR_LEN 16
45 
46 union ipv4_5tuple_host {
47 	struct {
48 		uint8_t  pad0;
49 		uint8_t  proto;
50 		uint16_t pad1;
51 		uint32_t ip_src;
52 		uint32_t ip_dst;
53 		uint16_t port_src;
54 		uint16_t port_dst;
55 	};
56 	xmm_t xmm;
57 };
58 
59 #define XMM_NUM_IN_IPV6_5TUPLE 3
60 
61 union ipv6_5tuple_host {
62 	struct {
63 		uint16_t pad0;
64 		uint8_t  proto;
65 		uint8_t  pad1;
66 		uint8_t  ip_src[IPV6_ADDR_LEN];
67 		uint8_t  ip_dst[IPV6_ADDR_LEN];
68 		uint16_t port_src;
69 		uint16_t port_dst;
70 		uint64_t reserve;
71 	};
72 	xmm_t xmm[XMM_NUM_IN_IPV6_5TUPLE];
73 };
74 
75 /* 198.18.0.0/16 are set aside for RFC2544 benchmarking (RFC5735).
76  * Use RFC863 Discard Protocol.
77  */
78 const struct ipv4_l3fwd_em_route ipv4_l3fwd_em_route_array[] = {
79 	{{RTE_IPV4(198, 18, 0, 0), RTE_IPV4(198, 18, 0, 1),  9, 9, IPPROTO_UDP}, 0},
80 	{{RTE_IPV4(198, 18, 1, 0), RTE_IPV4(198, 18, 1, 1),  9, 9, IPPROTO_UDP}, 1},
81 	{{RTE_IPV4(198, 18, 2, 0), RTE_IPV4(198, 18, 2, 1),  9, 9, IPPROTO_UDP}, 2},
82 	{{RTE_IPV4(198, 18, 3, 0), RTE_IPV4(198, 18, 3, 1),  9, 9, IPPROTO_UDP}, 3},
83 	{{RTE_IPV4(198, 18, 4, 0), RTE_IPV4(198, 18, 4, 1),  9, 9, IPPROTO_UDP}, 4},
84 	{{RTE_IPV4(198, 18, 5, 0), RTE_IPV4(198, 18, 5, 1),  9, 9, IPPROTO_UDP}, 5},
85 	{{RTE_IPV4(198, 18, 6, 0), RTE_IPV4(198, 18, 6, 1),  9, 9, IPPROTO_UDP}, 6},
86 	{{RTE_IPV4(198, 18, 7, 0), RTE_IPV4(198, 18, 7, 1),  9, 9, IPPROTO_UDP}, 7},
87 	{{RTE_IPV4(198, 18, 8, 0), RTE_IPV4(198, 18, 8, 1),  9, 9, IPPROTO_UDP}, 8},
88 	{{RTE_IPV4(198, 18, 9, 0), RTE_IPV4(198, 18, 9, 1),  9, 9, IPPROTO_UDP}, 9},
89 	{{RTE_IPV4(198, 18, 10, 0), RTE_IPV4(198, 18, 10, 1),  9, 9, IPPROTO_UDP}, 10},
90 	{{RTE_IPV4(198, 18, 11, 0), RTE_IPV4(198, 18, 11, 1),  9, 9, IPPROTO_UDP}, 11},
91 	{{RTE_IPV4(198, 18, 12, 0), RTE_IPV4(198, 18, 12, 1),  9, 9, IPPROTO_UDP}, 12},
92 	{{RTE_IPV4(198, 18, 13, 0), RTE_IPV4(198, 18, 13, 1),  9, 9, IPPROTO_UDP}, 13},
93 	{{RTE_IPV4(198, 18, 14, 0), RTE_IPV4(198, 18, 14, 1),  9, 9, IPPROTO_UDP}, 14},
94 	{{RTE_IPV4(198, 18, 15, 0), RTE_IPV4(198, 18, 15, 1),  9, 9, IPPROTO_UDP}, 15},
95 };
96 
97 /* 2001:0200::/48 is IANA reserved range for IPv6 benchmarking (RFC5180).
98  * Use RFC863 Discard Protocol.
99  */
100 const struct ipv6_l3fwd_em_route ipv6_l3fwd_em_route_array[] = {
101 	{{{32, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
102 	  {32, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}, 9, 9, IPPROTO_UDP}, 0},
103 	{{{32, 1, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0},
104 	  {32, 1, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1}, 9, 9, IPPROTO_UDP}, 1},
105 	{{{32, 1, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0},
106 	  {32, 1, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1}, 9, 9, IPPROTO_UDP}, 2},
107 	{{{32, 1, 2, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0},
108 	  {32, 1, 2, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 1}, 9, 9, IPPROTO_UDP}, 3},
109 	{{{32, 1, 2, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0},
110 	  {32, 1, 2, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 1}, 9, 9, IPPROTO_UDP}, 4},
111 	{{{32, 1, 2, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0},
112 	  {32, 1, 2, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 1}, 9, 9, IPPROTO_UDP}, 5},
113 	{{{32, 1, 2, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0},
114 	  {32, 1, 2, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 1}, 9, 9, IPPROTO_UDP}, 6},
115 	{{{32, 1, 2, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0},
116 	  {32, 1, 2, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 1}, 9, 9, IPPROTO_UDP}, 7},
117 	{{{32, 1, 2, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0},
118 	  {32, 1, 2, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 1}, 9, 9, IPPROTO_UDP}, 8},
119 	{{{32, 1, 2, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0},
120 	  {32, 1, 2, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 1}, 9, 9, IPPROTO_UDP}, 9},
121 	{{{32, 1, 2, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0},
122 	  {32, 1, 2, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 1}, 9, 9, IPPROTO_UDP}, 10},
123 	{{{32, 1, 2, 0, 0, 0, 0, 11, 0, 0, 0, 0, 0, 0, 0, 0},
124 	  {32, 1, 2, 0, 0, 0, 0, 11, 0, 0, 0, 0, 0, 0, 0, 1}, 9, 9, IPPROTO_UDP}, 11},
125 	{{{32, 1, 2, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0},
126 	  {32, 1, 2, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 1}, 9, 9, IPPROTO_UDP}, 12},
127 	{{{32, 1, 2, 0, 0, 0, 0, 13, 0, 0, 0, 0, 0, 0, 0, 0},
128 	  {32, 1, 2, 0, 0, 0, 0, 13, 0, 0, 0, 0, 0, 0, 0, 1}, 9, 9, IPPROTO_UDP}, 13},
129 	{{{32, 1, 2, 0, 0, 0, 0, 14, 0, 0, 0, 0, 0, 0, 0, 0},
130 	  {32, 1, 2, 0, 0, 0, 0, 14, 0, 0, 0, 0, 0, 0, 0, 1}, 9, 9, IPPROTO_UDP}, 14},
131 	{{{32, 1, 2, 0, 0, 0, 0, 15, 0, 0, 0, 0, 0, 0, 0, 0},
132 	  {32, 1, 2, 0, 0, 0, 0, 15, 0, 0, 0, 0, 0, 0, 0, 1}, 9, 9, IPPROTO_UDP}, 15},
133 };
134 
135 struct rte_hash *ipv4_l3fwd_em_lookup_struct[NB_SOCKETS];
136 struct rte_hash *ipv6_l3fwd_em_lookup_struct[NB_SOCKETS];
137 
138 static inline uint32_t
ipv4_hash_crc(const void * data,__rte_unused uint32_t data_len,uint32_t init_val)139 ipv4_hash_crc(const void *data, __rte_unused uint32_t data_len,
140 		uint32_t init_val)
141 {
142 	const union ipv4_5tuple_host *k;
143 	uint32_t t;
144 	const uint32_t *p;
145 
146 	k = data;
147 	t = k->proto;
148 	p = (const uint32_t *)&k->port_src;
149 
150 #ifdef EM_HASH_CRC
151 	init_val = rte_hash_crc_4byte(t, init_val);
152 	init_val = rte_hash_crc_4byte(k->ip_src, init_val);
153 	init_val = rte_hash_crc_4byte(k->ip_dst, init_val);
154 	init_val = rte_hash_crc_4byte(*p, init_val);
155 #else
156 	init_val = rte_jhash_1word(t, init_val);
157 	init_val = rte_jhash_1word(k->ip_src, init_val);
158 	init_val = rte_jhash_1word(k->ip_dst, init_val);
159 	init_val = rte_jhash_1word(*p, init_val);
160 #endif
161 
162 	return init_val;
163 }
164 
165 static inline uint32_t
ipv6_hash_crc(const void * data,__rte_unused uint32_t data_len,uint32_t init_val)166 ipv6_hash_crc(const void *data, __rte_unused uint32_t data_len,
167 		uint32_t init_val)
168 {
169 	const union ipv6_5tuple_host *k;
170 	uint32_t t;
171 	const uint32_t *p;
172 #ifdef EM_HASH_CRC
173 	const uint32_t  *ip_src0, *ip_src1, *ip_src2, *ip_src3;
174 	const uint32_t  *ip_dst0, *ip_dst1, *ip_dst2, *ip_dst3;
175 #endif
176 
177 	k = data;
178 	t = k->proto;
179 	p = (const uint32_t *)&k->port_src;
180 
181 #ifdef EM_HASH_CRC
182 	ip_src0 = (const uint32_t *) k->ip_src;
183 	ip_src1 = (const uint32_t *)(k->ip_src+4);
184 	ip_src2 = (const uint32_t *)(k->ip_src+8);
185 	ip_src3 = (const uint32_t *)(k->ip_src+12);
186 	ip_dst0 = (const uint32_t *) k->ip_dst;
187 	ip_dst1 = (const uint32_t *)(k->ip_dst+4);
188 	ip_dst2 = (const uint32_t *)(k->ip_dst+8);
189 	ip_dst3 = (const uint32_t *)(k->ip_dst+12);
190 	init_val = rte_hash_crc_4byte(t, init_val);
191 	init_val = rte_hash_crc_4byte(*ip_src0, init_val);
192 	init_val = rte_hash_crc_4byte(*ip_src1, init_val);
193 	init_val = rte_hash_crc_4byte(*ip_src2, init_val);
194 	init_val = rte_hash_crc_4byte(*ip_src3, init_val);
195 	init_val = rte_hash_crc_4byte(*ip_dst0, init_val);
196 	init_val = rte_hash_crc_4byte(*ip_dst1, init_val);
197 	init_val = rte_hash_crc_4byte(*ip_dst2, init_val);
198 	init_val = rte_hash_crc_4byte(*ip_dst3, init_val);
199 	init_val = rte_hash_crc_4byte(*p, init_val);
200 #else
201 	init_val = rte_jhash_1word(t, init_val);
202 	init_val = rte_jhash(k->ip_src,
203 			sizeof(uint8_t) * IPV6_ADDR_LEN, init_val);
204 	init_val = rte_jhash(k->ip_dst,
205 			sizeof(uint8_t) * IPV6_ADDR_LEN, init_val);
206 	init_val = rte_jhash_1word(*p, init_val);
207 #endif
208 	return init_val;
209 }
210 
211 static uint8_t ipv4_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned;
212 static uint8_t ipv6_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned;
213 
214 static rte_xmm_t mask0;
215 static rte_xmm_t mask1;
216 static rte_xmm_t mask2;
217 
218 #if defined(__SSE2__)
219 static inline xmm_t
em_mask_key(void * key,xmm_t mask)220 em_mask_key(void *key, xmm_t mask)
221 {
222 	__m128i data = _mm_loadu_si128((__m128i *)(key));
223 
224 	return _mm_and_si128(data, mask);
225 }
226 #elif defined(__ARM_NEON)
227 static inline xmm_t
em_mask_key(void * key,xmm_t mask)228 em_mask_key(void *key, xmm_t mask)
229 {
230 	int32x4_t data = vld1q_s32((int32_t *)key);
231 
232 	return vandq_s32(data, mask);
233 }
234 #elif defined(__ALTIVEC__)
235 static inline xmm_t
em_mask_key(void * key,xmm_t mask)236 em_mask_key(void *key, xmm_t mask)
237 {
238 	xmm_t data = vec_ld(0, (xmm_t *)(key));
239 
240 	return vec_and(data, mask);
241 }
242 #else
243 #error No vector engine (SSE, NEON, ALTIVEC) available, check your toolchain
244 #endif
245 
246 /* Performing hash-based lookups. 8< */
247 static inline uint16_t
em_get_ipv4_dst_port(void * ipv4_hdr,uint16_t portid,void * lookup_struct)248 em_get_ipv4_dst_port(void *ipv4_hdr, uint16_t portid, void *lookup_struct)
249 {
250 	int ret = 0;
251 	union ipv4_5tuple_host key;
252 	struct rte_hash *ipv4_l3fwd_lookup_struct =
253 		(struct rte_hash *)lookup_struct;
254 
255 	ipv4_hdr = (uint8_t *)ipv4_hdr +
256 		offsetof(struct rte_ipv4_hdr, time_to_live);
257 
258 	/*
259 	 * Get 5 tuple: dst port, src port, dst IP address,
260 	 * src IP address and protocol.
261 	 */
262 	key.xmm = em_mask_key(ipv4_hdr, mask0.x);
263 
264 	/* Find destination port */
265 	ret = rte_hash_lookup(ipv4_l3fwd_lookup_struct, (const void *)&key);
266 	return (ret < 0) ? portid : ipv4_l3fwd_out_if[ret];
267 }
268 /* >8 End of performing hash-based lookups. */
269 
270 static inline uint16_t
em_get_ipv6_dst_port(void * ipv6_hdr,uint16_t portid,void * lookup_struct)271 em_get_ipv6_dst_port(void *ipv6_hdr, uint16_t portid, void *lookup_struct)
272 {
273 	int ret = 0;
274 	union ipv6_5tuple_host key;
275 	struct rte_hash *ipv6_l3fwd_lookup_struct =
276 		(struct rte_hash *)lookup_struct;
277 
278 	ipv6_hdr = (uint8_t *)ipv6_hdr +
279 		offsetof(struct rte_ipv6_hdr, payload_len);
280 	void *data0 = ipv6_hdr;
281 	void *data1 = ((uint8_t *)ipv6_hdr) + sizeof(xmm_t);
282 	void *data2 = ((uint8_t *)ipv6_hdr) + sizeof(xmm_t) + sizeof(xmm_t);
283 
284 	/* Get part of 5 tuple: src IP address lower 96 bits and protocol */
285 	key.xmm[0] = em_mask_key(data0, mask1.x);
286 
287 	/*
288 	 * Get part of 5 tuple: dst IP address lower 96 bits
289 	 * and src IP address higher 32 bits.
290 	 */
291 #if defined RTE_ARCH_X86
292 	key.xmm[1] = _mm_loadu_si128(data1);
293 #else
294 	key.xmm[1] = *(xmm_t *)data1;
295 #endif
296 
297 	/*
298 	 * Get part of 5 tuple: dst port and src port
299 	 * and dst IP address higher 32 bits.
300 	 */
301 	key.xmm[2] = em_mask_key(data2, mask2.x);
302 
303 	/* Find destination port */
304 	ret = rte_hash_lookup(ipv6_l3fwd_lookup_struct, (const void *)&key);
305 	return (ret < 0) ? portid : ipv6_l3fwd_out_if[ret];
306 }
307 
308 #if defined RTE_ARCH_X86 || defined __ARM_NEON
309 #if defined(NO_HASH_MULTI_LOOKUP)
310 #include "l3fwd_em_sequential.h"
311 #else
312 #include "l3fwd_em_hlm.h"
313 #endif
314 #else
315 #include "l3fwd_em.h"
316 #endif
317 
318 static void
convert_ipv4_5tuple(struct ipv4_5tuple * key1,union ipv4_5tuple_host * key2)319 convert_ipv4_5tuple(struct ipv4_5tuple *key1,
320 		union ipv4_5tuple_host *key2)
321 {
322 	key2->ip_dst = rte_cpu_to_be_32(key1->ip_dst);
323 	key2->ip_src = rte_cpu_to_be_32(key1->ip_src);
324 	key2->port_dst = rte_cpu_to_be_16(key1->port_dst);
325 	key2->port_src = rte_cpu_to_be_16(key1->port_src);
326 	key2->proto = key1->proto;
327 	key2->pad0 = 0;
328 	key2->pad1 = 0;
329 }
330 
331 static void
convert_ipv6_5tuple(struct ipv6_5tuple * key1,union ipv6_5tuple_host * key2)332 convert_ipv6_5tuple(struct ipv6_5tuple *key1,
333 		union ipv6_5tuple_host *key2)
334 {
335 	uint32_t i;
336 
337 	for (i = 0; i < 16; i++) {
338 		key2->ip_dst[i] = key1->ip_dst[i];
339 		key2->ip_src[i] = key1->ip_src[i];
340 	}
341 	key2->port_dst = rte_cpu_to_be_16(key1->port_dst);
342 	key2->port_src = rte_cpu_to_be_16(key1->port_src);
343 	key2->proto = key1->proto;
344 	key2->pad0 = 0;
345 	key2->pad1 = 0;
346 	key2->reserve = 0;
347 }
348 
349 #define BYTE_VALUE_MAX 256
350 #define ALL_32_BITS 0xffffffff
351 #define BIT_8_TO_15 0x0000ff00
352 
353 static inline void
populate_ipv4_flow_into_table(const struct rte_hash * h)354 populate_ipv4_flow_into_table(const struct rte_hash *h)
355 {
356 	int i;
357 	int32_t ret;
358 	struct rte_eth_dev_info dev_info;
359 	char srcbuf[INET6_ADDRSTRLEN];
360 	char dstbuf[INET6_ADDRSTRLEN];
361 
362 	mask0 = (rte_xmm_t){.u32 = {BIT_8_TO_15, ALL_32_BITS,
363 				ALL_32_BITS, ALL_32_BITS} };
364 
365 	for (i = 0; i < route_num_v4; i++) {
366 		struct em_rule *entry;
367 		union ipv4_5tuple_host newkey;
368 		struct in_addr src;
369 		struct in_addr dst;
370 
371 		if ((1 << em_route_base_v4[i].if_out &
372 				enabled_port_mask) == 0)
373 			continue;
374 
375 		entry = &em_route_base_v4[i];
376 		convert_ipv4_5tuple(&(entry->v4_key), &newkey);
377 		ret = rte_hash_add_key(h, (void *) &newkey);
378 		if (ret < 0) {
379 			rte_exit(EXIT_FAILURE, "Unable to add entry %" PRIu32
380 				" to the l3fwd hash.\n", i);
381 		}
382 		ipv4_l3fwd_out_if[ret] = entry->if_out;
383 		ret = rte_eth_dev_info_get(em_route_base_v4[i].if_out,
384 				     &dev_info);
385 		if (ret != 0)
386 			rte_exit(EXIT_FAILURE,
387 				"Error during getting device (port %u) info: %s\n",
388 				em_route_base_v4[i].if_out, strerror(-ret));
389 
390 		src.s_addr = htonl(em_route_base_v4[i].v4_key.ip_src);
391 		dst.s_addr = htonl(em_route_base_v4[i].v4_key.ip_dst);
392 		printf("EM: Adding route %s, %s, %d, %d, %d (%d) [%s]\n",
393 			   inet_ntop(AF_INET, &dst, dstbuf, sizeof(dstbuf)),
394 		       inet_ntop(AF_INET, &src, srcbuf, sizeof(srcbuf)),
395 			   em_route_base_v4[i].v4_key.port_dst,
396 			   em_route_base_v4[i].v4_key.port_src,
397 			   em_route_base_v4[i].v4_key.proto,
398 		       em_route_base_v4[i].if_out, dev_info.device->name);
399 	}
400 	printf("Hash: Adding 0x%" PRIx64 " keys\n",
401 		(uint64_t)route_num_v4);
402 }
403 
404 #define BIT_16_TO_23 0x00ff0000
405 static inline void
populate_ipv6_flow_into_table(const struct rte_hash * h)406 populate_ipv6_flow_into_table(const struct rte_hash *h)
407 {
408 	int i;
409 	int32_t ret;
410 	struct rte_eth_dev_info dev_info;
411 	char srcbuf[INET6_ADDRSTRLEN];
412 	char dstbuf[INET6_ADDRSTRLEN];
413 
414 	mask1 = (rte_xmm_t){.u32 = {BIT_16_TO_23, ALL_32_BITS,
415 				ALL_32_BITS, ALL_32_BITS} };
416 
417 	mask2 = (rte_xmm_t){.u32 = {ALL_32_BITS, ALL_32_BITS, 0, 0} };
418 
419 	for (i = 0; i < route_num_v6; i++) {
420 		struct em_rule *entry;
421 		union ipv6_5tuple_host newkey;
422 
423 		if ((1 << em_route_base_v6[i].if_out &
424 				enabled_port_mask) == 0)
425 			continue;
426 
427 		entry = &em_route_base_v6[i];
428 		convert_ipv6_5tuple(&(entry->v6_key), &newkey);
429 		ret = rte_hash_add_key(h, (void *) &newkey);
430 		if (ret < 0) {
431 			rte_exit(EXIT_FAILURE, "Unable to add entry %" PRIu32
432 				" to the l3fwd hash.\n", i);
433 		}
434 		ipv6_l3fwd_out_if[ret] = entry->if_out;
435 		ret = rte_eth_dev_info_get(em_route_base_v6[i].if_out,
436 				     &dev_info);
437 		if (ret != 0)
438 			rte_exit(EXIT_FAILURE,
439 				"Error during getting device (port %u) info: %s\n",
440 				em_route_base_v6[i].if_out, strerror(-ret));
441 
442 		printf("EM: Adding route %s, %s, %d, %d, %d (%d) [%s]\n",
443 			   inet_ntop(AF_INET6, em_route_base_v6[i].v6_key.ip_dst,
444 			   dstbuf, sizeof(dstbuf)),
445 		       inet_ntop(AF_INET6, em_route_base_v6[i].v6_key.ip_src,
446 			   srcbuf, sizeof(srcbuf)),
447 			   em_route_base_v6[i].v6_key.port_dst,
448 			   em_route_base_v6[i].v6_key.port_src,
449 			   em_route_base_v6[i].v6_key.proto,
450 		       em_route_base_v6[i].if_out, dev_info.device->name);
451 	}
452 	printf("Hash: Adding 0x%" PRIx64 "keys\n",
453 		(uint64_t)route_num_v6);
454 }
455 
456 /* Requirements:
457  * 1. IP packets without extension;
458  * 2. L4 payload should be either TCP or UDP.
459  */
460 int
em_check_ptype(int portid)461 em_check_ptype(int portid)
462 {
463 	int i, ret;
464 	int ptype_l3_ipv4_ext = 0;
465 	int ptype_l3_ipv6_ext = 0;
466 	int ptype_l4_tcp = 0;
467 	int ptype_l4_udp = 0;
468 	uint32_t ptype_mask = RTE_PTYPE_L3_MASK | RTE_PTYPE_L4_MASK;
469 
470 	ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, NULL, 0);
471 	if (ret <= 0)
472 		return 0;
473 
474 	uint32_t ptypes[ret];
475 
476 	ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, ptypes, ret);
477 	for (i = 0; i < ret; ++i) {
478 		switch (ptypes[i]) {
479 		case RTE_PTYPE_L3_IPV4_EXT:
480 			ptype_l3_ipv4_ext = 1;
481 			break;
482 		case RTE_PTYPE_L3_IPV6_EXT:
483 			ptype_l3_ipv6_ext = 1;
484 			break;
485 		case RTE_PTYPE_L4_TCP:
486 			ptype_l4_tcp = 1;
487 			break;
488 		case RTE_PTYPE_L4_UDP:
489 			ptype_l4_udp = 1;
490 			break;
491 		}
492 	}
493 
494 	if (ptype_l3_ipv4_ext == 0)
495 		printf("port %d cannot parse RTE_PTYPE_L3_IPV4_EXT\n", portid);
496 	if (ptype_l3_ipv6_ext == 0)
497 		printf("port %d cannot parse RTE_PTYPE_L3_IPV6_EXT\n", portid);
498 	if (!ptype_l3_ipv4_ext || !ptype_l3_ipv6_ext)
499 		return 0;
500 
501 	if (ptype_l4_tcp == 0)
502 		printf("port %d cannot parse RTE_PTYPE_L4_TCP\n", portid);
503 	if (ptype_l4_udp == 0)
504 		printf("port %d cannot parse RTE_PTYPE_L4_UDP\n", portid);
505 	if (ptype_l4_tcp && ptype_l4_udp)
506 		return 1;
507 
508 	return 0;
509 }
510 
511 static inline void
em_parse_ptype(struct rte_mbuf * m)512 em_parse_ptype(struct rte_mbuf *m)
513 {
514 	struct rte_ether_hdr *eth_hdr;
515 	uint32_t packet_type = RTE_PTYPE_UNKNOWN;
516 	uint16_t ether_type;
517 	void *l3;
518 	int hdr_len;
519 	struct rte_ipv4_hdr *ipv4_hdr;
520 	struct rte_ipv6_hdr *ipv6_hdr;
521 
522 	eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
523 	ether_type = eth_hdr->ether_type;
524 	l3 = (uint8_t *)eth_hdr + sizeof(struct rte_ether_hdr);
525 	if (ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4)) {
526 		ipv4_hdr = (struct rte_ipv4_hdr *)l3;
527 		hdr_len = rte_ipv4_hdr_len(ipv4_hdr);
528 		if (hdr_len == sizeof(struct rte_ipv4_hdr)) {
529 			packet_type |= RTE_PTYPE_L3_IPV4;
530 			if (ipv4_hdr->next_proto_id == IPPROTO_TCP)
531 				packet_type |= RTE_PTYPE_L4_TCP;
532 			else if (ipv4_hdr->next_proto_id == IPPROTO_UDP)
533 				packet_type |= RTE_PTYPE_L4_UDP;
534 		} else
535 			packet_type |= RTE_PTYPE_L3_IPV4_EXT;
536 	} else if (ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6)) {
537 		ipv6_hdr = (struct rte_ipv6_hdr *)l3;
538 		if (ipv6_hdr->proto == IPPROTO_TCP)
539 			packet_type |= RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_TCP;
540 		else if (ipv6_hdr->proto == IPPROTO_UDP)
541 			packet_type |= RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_UDP;
542 		else
543 			packet_type |= RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
544 	}
545 
546 	m->packet_type = packet_type;
547 }
548 
549 uint16_t
em_cb_parse_ptype(uint16_t port __rte_unused,uint16_t queue __rte_unused,struct rte_mbuf * pkts[],uint16_t nb_pkts,uint16_t max_pkts __rte_unused,void * user_param __rte_unused)550 em_cb_parse_ptype(uint16_t port __rte_unused, uint16_t queue __rte_unused,
551 		  struct rte_mbuf *pkts[], uint16_t nb_pkts,
552 		  uint16_t max_pkts __rte_unused,
553 		  void *user_param __rte_unused)
554 {
555 	unsigned i;
556 
557 	for (i = 0; i < nb_pkts; ++i)
558 		em_parse_ptype(pkts[i]);
559 
560 	return nb_pkts;
561 }
562 
563 /* main processing loop */
564 int
em_main_loop(__rte_unused void * dummy)565 em_main_loop(__rte_unused void *dummy)
566 {
567 	struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
568 	unsigned lcore_id;
569 	uint64_t prev_tsc, diff_tsc, cur_tsc;
570 	int i, nb_rx;
571 	uint8_t queueid;
572 	uint16_t portid;
573 	struct lcore_conf *qconf;
574 	const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) /
575 		US_PER_S * BURST_TX_DRAIN_US;
576 
577 	lcore_id = rte_lcore_id();
578 	qconf = &lcore_conf[lcore_id];
579 
580 	const uint16_t n_rx_q = qconf->n_rx_queue;
581 	const uint16_t n_tx_p = qconf->n_tx_port;
582 	if (n_rx_q == 0) {
583 		RTE_LOG(INFO, L3FWD, "lcore %u has nothing to do\n", lcore_id);
584 		return 0;
585 	}
586 
587 	RTE_LOG(INFO, L3FWD, "entering main loop on lcore %u\n", lcore_id);
588 
589 	for (i = 0; i < n_rx_q; i++) {
590 
591 		portid = qconf->rx_queue_list[i].port_id;
592 		queueid = qconf->rx_queue_list[i].queue_id;
593 		RTE_LOG(INFO, L3FWD,
594 			" -- lcoreid=%u portid=%u rxqueueid=%hhu\n",
595 			lcore_id, portid, queueid);
596 	}
597 
598 	cur_tsc = rte_rdtsc();
599 	prev_tsc = cur_tsc;
600 
601 	while (!force_quit) {
602 
603 		/*
604 		 * TX burst queue drain
605 		 */
606 		diff_tsc = cur_tsc - prev_tsc;
607 		if (unlikely(diff_tsc > drain_tsc)) {
608 
609 			for (i = 0; i < n_tx_p; ++i) {
610 				portid = qconf->tx_port_id[i];
611 				if (qconf->tx_mbufs[portid].len == 0)
612 					continue;
613 				send_burst(qconf,
614 					qconf->tx_mbufs[portid].len,
615 					portid);
616 				qconf->tx_mbufs[portid].len = 0;
617 			}
618 
619 			prev_tsc = cur_tsc;
620 		}
621 
622 		/*
623 		 * Read packet from RX queues
624 		 */
625 		for (i = 0; i < n_rx_q; ++i) {
626 			portid = qconf->rx_queue_list[i].port_id;
627 			queueid = qconf->rx_queue_list[i].queue_id;
628 			nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst,
629 				MAX_PKT_BURST);
630 			if (nb_rx == 0)
631 				continue;
632 
633 #if defined RTE_ARCH_X86 || defined __ARM_NEON
634 			l3fwd_em_send_packets(nb_rx, pkts_burst,
635 							portid, qconf);
636 #else
637 			l3fwd_em_no_opt_send_packets(nb_rx, pkts_burst,
638 							portid, qconf);
639 #endif
640 		}
641 
642 		cur_tsc = rte_rdtsc();
643 	}
644 
645 	return 0;
646 }
647 
648 static __rte_always_inline void
em_event_loop_single(struct l3fwd_event_resources * evt_rsrc,const uint8_t flags)649 em_event_loop_single(struct l3fwd_event_resources *evt_rsrc,
650 		const uint8_t flags)
651 {
652 	const int event_p_id = l3fwd_get_free_event_port(evt_rsrc);
653 	const uint8_t tx_q_id = evt_rsrc->evq.event_q_id[
654 		evt_rsrc->evq.nb_queues - 1];
655 	const uint8_t event_d_id = evt_rsrc->event_d_id;
656 	uint8_t deq = 0, enq = 0;
657 	struct lcore_conf *lconf;
658 	unsigned int lcore_id;
659 	struct rte_event ev;
660 
661 	if (event_p_id < 0)
662 		return;
663 
664 	lcore_id = rte_lcore_id();
665 	lconf = &lcore_conf[lcore_id];
666 
667 	RTE_LOG(INFO, L3FWD, "entering %s on lcore %u\n", __func__, lcore_id);
668 	while (!force_quit) {
669 		deq = rte_event_dequeue_burst(event_d_id, event_p_id, &ev, 1,
670 					      0);
671 		if (!deq)
672 			continue;
673 
674 		struct rte_mbuf *mbuf = ev.mbuf;
675 
676 #if defined RTE_ARCH_X86 || defined __ARM_NEON
677 		mbuf->port = em_get_dst_port(lconf, mbuf, mbuf->port);
678 		process_packet(mbuf, &mbuf->port);
679 #else
680 		l3fwd_em_simple_process(mbuf, lconf);
681 #endif
682 		if (mbuf->port == BAD_PORT) {
683 			rte_pktmbuf_free(mbuf);
684 			continue;
685 		}
686 
687 		if (flags & L3FWD_EVENT_TX_ENQ) {
688 			ev.queue_id = tx_q_id;
689 			ev.op = RTE_EVENT_OP_FORWARD;
690 			do {
691 				enq = rte_event_enqueue_burst(
692 					event_d_id, event_p_id, &ev, 1);
693 			} while (!enq && !force_quit);
694 		}
695 
696 		if (flags & L3FWD_EVENT_TX_DIRECT) {
697 			rte_event_eth_tx_adapter_txq_set(mbuf, 0);
698 			do {
699 				enq = rte_event_eth_tx_adapter_enqueue(
700 					event_d_id, event_p_id, &ev, 1, 0);
701 			} while (!enq && !force_quit);
702 		}
703 	}
704 
705 	l3fwd_event_worker_cleanup(event_d_id, event_p_id, &ev, enq, deq, 0);
706 }
707 
708 static __rte_always_inline void
em_event_loop_burst(struct l3fwd_event_resources * evt_rsrc,const uint8_t flags)709 em_event_loop_burst(struct l3fwd_event_resources *evt_rsrc,
710 		const uint8_t flags)
711 {
712 	const int event_p_id = l3fwd_get_free_event_port(evt_rsrc);
713 	const uint8_t tx_q_id = evt_rsrc->evq.event_q_id[
714 		evt_rsrc->evq.nb_queues - 1];
715 	const uint8_t event_d_id = evt_rsrc->event_d_id;
716 	const uint16_t deq_len = evt_rsrc->deq_depth;
717 	struct rte_event events[MAX_PKT_BURST];
718 	int i, nb_enq = 0, nb_deq = 0;
719 	struct lcore_conf *lconf;
720 	unsigned int lcore_id;
721 
722 	if (event_p_id < 0)
723 		return;
724 
725 	lcore_id = rte_lcore_id();
726 
727 	lconf = &lcore_conf[lcore_id];
728 
729 	RTE_LOG(INFO, L3FWD, "entering %s on lcore %u\n", __func__, lcore_id);
730 
731 	while (!force_quit) {
732 		/* Read events from RX queues */
733 		nb_deq = rte_event_dequeue_burst(event_d_id, event_p_id,
734 				events, deq_len, 0);
735 		if (nb_deq == 0) {
736 			rte_pause();
737 			continue;
738 		}
739 
740 #if defined RTE_ARCH_X86 || defined __ARM_NEON
741 		l3fwd_em_process_events(nb_deq, (struct rte_event **)&events,
742 					lconf);
743 #else
744 		l3fwd_em_no_opt_process_events(nb_deq,
745 					       (struct rte_event **)&events,
746 					       lconf);
747 #endif
748 		for (i = 0; i < nb_deq; i++) {
749 			if (flags & L3FWD_EVENT_TX_ENQ) {
750 				events[i].queue_id = tx_q_id;
751 				events[i].op = RTE_EVENT_OP_FORWARD;
752 			}
753 
754 			if (flags & L3FWD_EVENT_TX_DIRECT)
755 				rte_event_eth_tx_adapter_txq_set(events[i].mbuf,
756 								 0);
757 		}
758 
759 		if (flags & L3FWD_EVENT_TX_ENQ) {
760 			nb_enq = rte_event_enqueue_burst(event_d_id, event_p_id,
761 					events, nb_deq);
762 			while (nb_enq < nb_deq && !force_quit)
763 				nb_enq += rte_event_enqueue_burst(event_d_id,
764 						event_p_id, events + nb_enq,
765 						nb_deq - nb_enq);
766 		}
767 
768 		if (flags & L3FWD_EVENT_TX_DIRECT) {
769 			nb_enq = rte_event_eth_tx_adapter_enqueue(event_d_id,
770 					event_p_id, events, nb_deq, 0);
771 			while (nb_enq < nb_deq && !force_quit)
772 				nb_enq += rte_event_eth_tx_adapter_enqueue(
773 						event_d_id, event_p_id,
774 						events + nb_enq,
775 						nb_deq - nb_enq, 0);
776 		}
777 	}
778 
779 	l3fwd_event_worker_cleanup(event_d_id, event_p_id, events, nb_enq,
780 				   nb_deq, 0);
781 }
782 
783 static __rte_always_inline void
em_event_loop(struct l3fwd_event_resources * evt_rsrc,const uint8_t flags)784 em_event_loop(struct l3fwd_event_resources *evt_rsrc,
785 		 const uint8_t flags)
786 {
787 	if (flags & L3FWD_EVENT_SINGLE)
788 		em_event_loop_single(evt_rsrc, flags);
789 	if (flags & L3FWD_EVENT_BURST)
790 		em_event_loop_burst(evt_rsrc, flags);
791 }
792 
793 int __rte_noinline
em_event_main_loop_tx_d(__rte_unused void * dummy)794 em_event_main_loop_tx_d(__rte_unused void *dummy)
795 {
796 	struct l3fwd_event_resources *evt_rsrc =
797 					l3fwd_get_eventdev_rsrc();
798 
799 	em_event_loop(evt_rsrc, L3FWD_EVENT_TX_DIRECT | L3FWD_EVENT_SINGLE);
800 	return 0;
801 }
802 
803 int __rte_noinline
em_event_main_loop_tx_d_burst(__rte_unused void * dummy)804 em_event_main_loop_tx_d_burst(__rte_unused void *dummy)
805 {
806 	struct l3fwd_event_resources *evt_rsrc =
807 					l3fwd_get_eventdev_rsrc();
808 
809 	em_event_loop(evt_rsrc, L3FWD_EVENT_TX_DIRECT | L3FWD_EVENT_BURST);
810 	return 0;
811 }
812 
813 int __rte_noinline
em_event_main_loop_tx_q(__rte_unused void * dummy)814 em_event_main_loop_tx_q(__rte_unused void *dummy)
815 {
816 	struct l3fwd_event_resources *evt_rsrc =
817 					l3fwd_get_eventdev_rsrc();
818 
819 	em_event_loop(evt_rsrc, L3FWD_EVENT_TX_ENQ | L3FWD_EVENT_SINGLE);
820 	return 0;
821 }
822 
823 int __rte_noinline
em_event_main_loop_tx_q_burst(__rte_unused void * dummy)824 em_event_main_loop_tx_q_burst(__rte_unused void *dummy)
825 {
826 	struct l3fwd_event_resources *evt_rsrc =
827 					l3fwd_get_eventdev_rsrc();
828 
829 	em_event_loop(evt_rsrc, L3FWD_EVENT_TX_ENQ | L3FWD_EVENT_BURST);
830 	return 0;
831 }
832 
833 /* Same eventdev loop for single and burst of vector */
834 static __rte_always_inline void
em_event_loop_vector(struct l3fwd_event_resources * evt_rsrc,const uint8_t flags)835 em_event_loop_vector(struct l3fwd_event_resources *evt_rsrc,
836 		     const uint8_t flags)
837 {
838 	const int event_p_id = l3fwd_get_free_event_port(evt_rsrc);
839 	const uint8_t tx_q_id =
840 		evt_rsrc->evq.event_q_id[evt_rsrc->evq.nb_queues - 1];
841 	const uint8_t event_d_id = evt_rsrc->event_d_id;
842 	const uint16_t deq_len = evt_rsrc->deq_depth;
843 	struct rte_event events[MAX_PKT_BURST];
844 	int i, nb_enq = 0, nb_deq = 0;
845 	struct lcore_conf *lconf;
846 	unsigned int lcore_id;
847 
848 	if (event_p_id < 0)
849 		return;
850 
851 	lcore_id = rte_lcore_id();
852 	lconf = &lcore_conf[lcore_id];
853 
854 	RTE_LOG(INFO, L3FWD, "entering %s on lcore %u\n", __func__, lcore_id);
855 
856 	while (!force_quit) {
857 		/* Read events from RX queues */
858 		nb_deq = rte_event_dequeue_burst(event_d_id, event_p_id, events,
859 						 deq_len, 0);
860 		if (nb_deq == 0) {
861 			rte_pause();
862 			continue;
863 		}
864 
865 		for (i = 0; i < nb_deq; i++) {
866 			if (flags & L3FWD_EVENT_TX_ENQ) {
867 				events[i].queue_id = tx_q_id;
868 				events[i].op = RTE_EVENT_OP_FORWARD;
869 			}
870 
871 #if defined RTE_ARCH_X86 || defined __ARM_NEON
872 			l3fwd_em_process_event_vector(events[i].vec, lconf);
873 #else
874 			l3fwd_em_no_opt_process_event_vector(events[i].vec,
875 							     lconf);
876 #endif
877 			if (flags & L3FWD_EVENT_TX_DIRECT)
878 				event_vector_txq_set(events[i].vec, 0);
879 		}
880 
881 		if (flags & L3FWD_EVENT_TX_ENQ) {
882 			nb_enq = rte_event_enqueue_burst(event_d_id, event_p_id,
883 							 events, nb_deq);
884 			while (nb_enq < nb_deq && !force_quit)
885 				nb_enq += rte_event_enqueue_burst(
886 					event_d_id, event_p_id, events + nb_enq,
887 					nb_deq - nb_enq);
888 		}
889 
890 		if (flags & L3FWD_EVENT_TX_DIRECT) {
891 			nb_enq = rte_event_eth_tx_adapter_enqueue(
892 				event_d_id, event_p_id, events, nb_deq, 0);
893 			while (nb_enq < nb_deq && !force_quit)
894 				nb_enq += rte_event_eth_tx_adapter_enqueue(
895 					event_d_id, event_p_id, events + nb_enq,
896 					nb_deq - nb_enq, 0);
897 		}
898 	}
899 
900 	l3fwd_event_worker_cleanup(event_d_id, event_p_id, events, nb_enq,
901 				   nb_deq, 1);
902 }
903 
904 int __rte_noinline
em_event_main_loop_tx_d_vector(__rte_unused void * dummy)905 em_event_main_loop_tx_d_vector(__rte_unused void *dummy)
906 {
907 	struct l3fwd_event_resources *evt_rsrc = l3fwd_get_eventdev_rsrc();
908 
909 	em_event_loop_vector(evt_rsrc, L3FWD_EVENT_TX_DIRECT);
910 	return 0;
911 }
912 
913 int __rte_noinline
em_event_main_loop_tx_d_burst_vector(__rte_unused void * dummy)914 em_event_main_loop_tx_d_burst_vector(__rte_unused void *dummy)
915 {
916 	struct l3fwd_event_resources *evt_rsrc = l3fwd_get_eventdev_rsrc();
917 
918 	em_event_loop_vector(evt_rsrc, L3FWD_EVENT_TX_DIRECT);
919 	return 0;
920 }
921 
922 int __rte_noinline
em_event_main_loop_tx_q_vector(__rte_unused void * dummy)923 em_event_main_loop_tx_q_vector(__rte_unused void *dummy)
924 {
925 	struct l3fwd_event_resources *evt_rsrc = l3fwd_get_eventdev_rsrc();
926 
927 	em_event_loop_vector(evt_rsrc, L3FWD_EVENT_TX_ENQ);
928 	return 0;
929 }
930 
931 int __rte_noinline
em_event_main_loop_tx_q_burst_vector(__rte_unused void * dummy)932 em_event_main_loop_tx_q_burst_vector(__rte_unused void *dummy)
933 {
934 	struct l3fwd_event_resources *evt_rsrc = l3fwd_get_eventdev_rsrc();
935 
936 	em_event_loop_vector(evt_rsrc, L3FWD_EVENT_TX_ENQ);
937 	return 0;
938 }
939 
940 /* Initialize exact match (hash) parameters. 8< */
941 void
setup_hash(const int socketid)942 setup_hash(const int socketid)
943 {
944 	struct rte_hash_parameters ipv4_l3fwd_hash_params = {
945 		.name = NULL,
946 		.entries = L3FWD_HASH_ENTRIES,
947 		.key_len = sizeof(union ipv4_5tuple_host),
948 		.hash_func = ipv4_hash_crc,
949 		.hash_func_init_val = 0,
950 	};
951 
952 	struct rte_hash_parameters ipv6_l3fwd_hash_params = {
953 		.name = NULL,
954 		.entries = L3FWD_HASH_ENTRIES,
955 		.key_len = sizeof(union ipv6_5tuple_host),
956 		.hash_func = ipv6_hash_crc,
957 		.hash_func_init_val = 0,
958 	};
959 
960 	char s[64];
961 
962 	/* create ipv4 hash */
963 	snprintf(s, sizeof(s), "ipv4_l3fwd_hash_%d", socketid);
964 	ipv4_l3fwd_hash_params.name = s;
965 	ipv4_l3fwd_hash_params.socket_id = socketid;
966 	ipv4_l3fwd_em_lookup_struct[socketid] =
967 		rte_hash_create(&ipv4_l3fwd_hash_params);
968 	if (ipv4_l3fwd_em_lookup_struct[socketid] == NULL)
969 		rte_exit(EXIT_FAILURE,
970 			"Unable to create the l3fwd hash on socket %d\n",
971 			socketid);
972 
973 	/* create ipv6 hash */
974 	snprintf(s, sizeof(s), "ipv6_l3fwd_hash_%d", socketid);
975 	ipv6_l3fwd_hash_params.name = s;
976 	ipv6_l3fwd_hash_params.socket_id = socketid;
977 	ipv6_l3fwd_em_lookup_struct[socketid] =
978 		rte_hash_create(&ipv6_l3fwd_hash_params);
979 	if (ipv6_l3fwd_em_lookup_struct[socketid] == NULL)
980 		rte_exit(EXIT_FAILURE,
981 			"Unable to create the l3fwd hash on socket %d\n",
982 			socketid);
983 
984 	/*
985 	 * Use data from ipv4/ipv6 l3fwd config file
986 	 * directly to initialize the hash table.
987 	 */
988 	if (ipv6 == 0) {
989 		/* populate the ipv4 hash */
990 		populate_ipv4_flow_into_table(
991 			ipv4_l3fwd_em_lookup_struct[socketid]);
992 	} else {
993 		/* populate the ipv6 hash */
994 		populate_ipv6_flow_into_table(
995 			ipv6_l3fwd_em_lookup_struct[socketid]);
996 	}
997 }
998 /* >8 End of initialization of hash parameters. */
999 
1000 /* Return ipv4/ipv6 em fwd lookup struct. */
1001 void *
em_get_ipv4_l3fwd_lookup_struct(const int socketid)1002 em_get_ipv4_l3fwd_lookup_struct(const int socketid)
1003 {
1004 	return ipv4_l3fwd_em_lookup_struct[socketid];
1005 }
1006 
1007 void *
em_get_ipv6_l3fwd_lookup_struct(const int socketid)1008 em_get_ipv6_l3fwd_lookup_struct(const int socketid)
1009 {
1010 	return ipv6_l3fwd_em_lookup_struct[socketid];
1011 }
1012