1 //===-- ThreadPlan.h --------------------------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #ifndef liblldb_ThreadPlan_h_
11 #define liblldb_ThreadPlan_h_
12 
13 #include <mutex>
14 #include <string>
15 
16 #include "lldb/Target/Process.h"
17 #include "lldb/Target/StopInfo.h"
18 #include "lldb/Target/Target.h"
19 #include "lldb/Target/Thread.h"
20 #include "lldb/Target/ThreadPlanTracer.h"
21 #include "lldb/Utility/UserID.h"
22 #include "lldb/lldb-private.h"
23 
24 namespace lldb_private {
25 
26 //------------------------------------------------------------------
27 //  ThreadPlan:
28 //  This is the pure virtual base class for thread plans.
29 //
30 //  The thread plans provide the "atoms" of behavior that
31 //  all the logical process control, either directly from commands or through
32 //  more complex composite plans will rely on.
33 //
34 //  Plan Stack:
35 //
36 //  The thread maintaining a thread plan stack, and you program the actions of a
37 //  particular thread
38 //  by pushing plans onto the plan stack.
39 //  There is always a "Current" plan, which is the top of the plan stack,
40 //  though in some cases
41 //  a plan may defer to plans higher in the stack for some piece of information
42 //  (let us define that the plan stack grows downwards).
43 //
44 //  The plan stack is never empty, there is always a Base Plan which persists
45 //  through the life
46 //  of the running process.
47 //
48 //
49 //  Creating Plans:
50 //
51 //  The thread plan is generally created and added to the plan stack through the
52 //  QueueThreadPlanFor... API
53 //  in lldb::Thread.  Those API's will return the plan that performs the named
54 //  operation in a manner
55 //  appropriate for the current process.  The plans in lldb/source/Target are
56 //  generic
57 //  implementations, but a Process plugin can override them.
58 //
59 //  ValidatePlan is then called.  If it returns false, the plan is unshipped.
60 //  This is a little
61 //  convenience which keeps us from having to error out of the constructor.
62 //
63 //  Then the plan is added to the plan stack.  When the plan is added to the
64 //  plan stack its DidPush
65 //  will get called.  This is useful if a plan wants to push any additional
66 //  plans as it is constructed,
67 //  since you need to make sure you're already on the stack before you push
68 //  additional plans.
69 //
70 //  Completed Plans:
71 //
72 //  When the target process stops the plans are queried, among other things, for
73 //  whether their job is done.
74 //  If it is they are moved from the plan stack to the Completed Plan stack in
75 //  reverse order from their position
76 //  on the plan stack (since multiple plans may be done at a given stop.)  This
77 //  is used primarily so that
78 //  the lldb::Thread::StopInfo for the thread can be set properly.  If one plan
79 //  pushes another to achieve part of
80 //  its job, but it doesn't want that sub-plan to be the one that sets the
81 //  StopInfo, then call SetPrivate on the
82 //  sub-plan when you create it, and the Thread will pass over that plan in
83 //  reporting the reason for the stop.
84 //
85 //  Discarded plans:
86 //
87 //  Your plan may also get discarded, i.e. moved from the plan stack to the
88 //  "discarded plan stack".  This can
89 //  happen, for instance, if the plan is calling a function and the function
90 //  call crashes and you want
91 //  to unwind the attempt to call.  So don't assume that your plan will always
92 //  successfully stop.  Which leads to:
93 //
94 //  Cleaning up after your plans:
95 //
96 //  When the plan is moved from the plan stack its WillPop method is always
97 //  called, no matter why.  Once it is
98 //  moved off the plan stack it is done, and won't get a chance to run again.
99 //  So you should
100 //  undo anything that affects target state in this method.  But be sure to
101 //  leave the plan able to correctly
102 //  fill the StopInfo, however.
103 //  N.B. Don't wait to do clean up target state till the destructor, since that
104 //  will usually get called when
105 //  the target resumes, and you want to leave the target state correct for new
106 //  plans in the time between when
107 //  your plan gets unshipped and the next resume.
108 //
109 //  Thread State Checkpoint:
110 //
111 //  Note that calling functions on target process (ThreadPlanCallFunction) changes
112 //  current thread state. The function can be called either by direct user demand or
113 //  internally, for example lldb allocates memory on device to calculate breakpoint
114 //  condition expression - on Linux it is performed by calling mmap on device.
115 //  ThreadStateCheckpoint saves Thread state (stop info and completed
116 //  plan stack) to restore it after completing function call.
117 //
118 //  Over the lifetime of the plan, various methods of the ThreadPlan are then
119 //  called in response to changes of state in
120 //  the process we are debugging as follows:
121 //
122 //  Resuming:
123 //
124 //  When the target process is about to be restarted, the plan's WillResume
125 //  method is called,
126 //  giving the plan a chance to prepare for the run.  If WillResume returns
127 //  false, then the
128 //  process is not restarted.  Be sure to set an appropriate error value in the
129 //  Process if
130 //  you have to do this.  Note, ThreadPlans actually implement DoWillResume,
131 //  WillResume wraps that call.
132 //
133 //  Next the "StopOthers" method of all the threads are polled, and if one
134 //  thread's Current plan
135 //  returns "true" then only that thread gets to run.  If more than one returns
136 //  "true" the threads that want to run solo
137 //  get run one by one round robin fashion.  Otherwise all are let to run.
138 //
139 //  Note, the way StopOthers is implemented, the base class implementation just
140 //  asks the previous plan.  So if your plan
141 //  has no opinion about whether it should run stopping others or not, just
142 //  don't implement StopOthers, and the parent
143 //  will be asked.
144 //
145 //  Finally, for each thread that is running, it run state is set to the return
146 //  of RunState from the
147 //  thread's Current plan.
148 //
149 //  Responding to a stop:
150 //
151 //  When the target process stops, the plan is called in the following stages:
152 //
153 //  First the thread asks the Current Plan if it can handle this stop by calling
154 //  PlanExplainsStop.
155 //  If the Current plan answers "true" then it is asked if the stop should
156 //  percolate all the way to the
157 //  user by calling the ShouldStop method.  If the current plan doesn't explain
158 //  the stop, then we query up
159 //  the plan stack for a plan that does explain the stop.  The plan that does
160 //  explain the stop then needs to
161 //  figure out what to do about the plans below it in the stack.  If the stop is
162 //  recoverable, then the plan that
163 //  understands it can just do what it needs to set up to restart, and then
164 //  continue.
165 //  Otherwise, the plan that understood the stop should call DiscardPlanStack to
166 //  clean up the stack below it.
167 //  Note, plans actually implement DoPlanExplainsStop, the result is cached in
168 //  PlanExplainsStop so the DoPlanExplainsStop
169 //  itself will only get called once per stop.
170 //
171 //  Master plans:
172 //
173 //  In the normal case, when we decide to stop, we will  collapse the plan stack
174 //  up to the point of the plan that understood
175 //  the stop reason.  However, if a plan wishes to stay on the stack after an
176 //  event it didn't directly handle
177 //  it can designate itself a "Master" plan by responding true to IsMasterPlan,
178 //  and then if it wants not to be
179 //  discarded, it can return false to OkayToDiscard, and it and all its dependent
180 //  plans will be preserved when
181 //  we resume execution.
182 //
183 //  The other effect of being a master plan is that when the Master plan is done
184 //  , if it has set "OkayToDiscard" to false,
185 //  then it will be popped & execution will stop and return to the user.
186 //  Remember that if OkayToDiscard is false, the
187 //  plan will be popped and control will be given to the next plan above it on
188 //  the stack  So setting OkayToDiscard to
189 //  false means the user will regain control when the MasterPlan is completed.
190 //
191 //  Between these two controls this allows things like: a MasterPlan/DontDiscard
192 //  Step Over to hit a breakpoint, stop and
193 //  return control to the user, but then when the user continues, the step out
194 //  succeeds.
195 //  Even more tricky, when the breakpoint is hit, the user can continue to step
196 //  in/step over/etc, and finally when they
197 //  continue, they will finish up the Step Over.
198 //
199 //  FIXME: MasterPlan & OkayToDiscard aren't really orthogonal.  MasterPlan
200 //  designation means that this plan controls
201 //  it's fate and the fate of plans below it.  OkayToDiscard tells whether the
202 //  MasterPlan wants to stay on the stack.  I
203 //  originally thought "MasterPlan-ness" would need to be a fixed characteristic
204 //  of a ThreadPlan, in which case you needed
205 //  the extra control.  But that doesn't seem to be true.  So we should be able
206 //  to convert to only MasterPlan status to mean
207 //  the current "MasterPlan/DontDiscard".  Then no plans would be MasterPlans by
208 //  default, and you would set the ones you
209 //  wanted to be "user level" in this way.
210 //
211 //
212 //  Actually Stopping:
213 //
214 //  If a plan says responds "true" to ShouldStop, then it is asked if it's job
215 //  is complete by calling
216 //  MischiefManaged.  If that returns true, the plan is popped from the plan
217 //  stack and added to the
218 //  Completed Plan Stack.  Then the next plan in the stack is asked if it
219 //  ShouldStop, and  it returns "true",
220 //  it is asked if it is done, and if yes popped, and so on till we reach a plan
221 //  that is not done.
222 //
223 //  Since you often know in the ShouldStop method whether your plan is complete,
224 //  as a convenience you can call
225 //  SetPlanComplete and the ThreadPlan implementation of MischiefManaged will
226 //  return "true", without your having
227 //  to redo the calculation when your sub-classes MischiefManaged is called.  If
228 //  you call SetPlanComplete, you can
229 //  later use IsPlanComplete to determine whether the plan is complete.  This is
230 //  only a convenience for sub-classes,
231 //  the logic in lldb::Thread will only call MischiefManaged.
232 //
233 //  One slightly tricky point is you have to be careful using SetPlanComplete in
234 //  PlanExplainsStop because you
235 //  are not guaranteed that PlanExplainsStop for a plan will get called before
236 //  ShouldStop gets called.  If your sub-plan
237 //  explained the stop and then popped itself, only your ShouldStop will get
238 //  called.
239 //
240 //  If ShouldStop for any thread returns "true", then the WillStop method of the
241 //  Current plan of
242 //  all threads will be called, the stop event is placed on the Process's public
243 //  broadcaster, and
244 //  control returns to the upper layers of the debugger.
245 //
246 //  Reporting the stop:
247 //
248 //  When the process stops, the thread is given a StopReason, in the form of a
249 //  StopInfo object.  If there is a completed
250 //  plan corresponding to the stop, then the "actual" stop reason can be
251 //  suppressed, and instead a StopInfoThreadPlan
252 //  object will be cons'ed up from the top completed plan in the stack.
253 //  However, if the plan doesn't want to be
254 //  the stop reason, then it can call SetPlanComplete and pass in "false" for
255 //  the "success" parameter.  In that case,
256 //  the real stop reason will be used instead.  One exapmle of this is the
257 //  "StepRangeStepIn" thread plan.  If it stops
258 //  because of a crash or breakpoint hit, it wants to unship itself, because it
259 //  isn't so useful to have step in keep going
260 //  after a breakpoint hit.  But it can't be the reason for the stop or no-one
261 //  would see that they had hit a breakpoint.
262 //
263 //  Cleaning up the plan stack:
264 //
265 //  One of the complications of MasterPlans is that you may get past the limits
266 //  of a plan without triggering it to clean
267 //  itself up.  For instance, if you are doing a MasterPlan StepOver, and hit a
268 //  breakpoint in a called function, then
269 //  step over enough times to step out of the initial StepOver range, each of
270 //  the step overs will explain the stop &
271 //  take themselves off the stack, but control would never be returned to the
272 //  original StepOver.  Eventually, the user
273 //  will continue, and when that continue stops, the old stale StepOver plan
274 //  that was left on the stack will get woken
275 //  up and notice it is done. But that can leave junk on the stack for a while.
276 //  To avoid that, the plans implement a
277 //  "IsPlanStale" method, that can check whether it is relevant anymore.  On
278 //  stop, after the regular plan negotiation,
279 //  the remaining plan stack is consulted and if any plan says it is stale, it
280 //  and the plans below it are discarded from
281 //  the stack.
282 //
283 //  Automatically Resuming:
284 //
285 //  If ShouldStop for all threads returns "false", then the target process will
286 //  resume.  This then cycles back to
287 //  Resuming above.
288 //
289 //  Reporting eStateStopped events when the target is restarted:
290 //
291 //  If a plan decides to auto-continue the target by returning "false" from
292 //  ShouldStop, then it will be asked
293 //  whether the Stopped event should still be reported.  For instance, if you
294 //  hit a breakpoint that is a User set
295 //  breakpoint, but the breakpoint callback said to continue the target process,
296 //  you might still want to inform
297 //  the upper layers of lldb that the stop had happened.
298 //  The way this works is every thread gets to vote on whether to report the
299 //  stop.  If all votes are eVoteNoOpinion,
300 //  then the thread list will decide what to do (at present it will pretty much
301 //  always suppress these stopped events.)
302 //  If there is an eVoteYes, then the event will be reported regardless of the
303 //  other votes.  If there is an eVoteNo
304 //  and no eVoteYes's, then the event won't be reported.
305 //
306 //  One other little detail here, sometimes a plan will push another plan onto
307 //  the plan stack to do some part of
308 //  the first plan's job, and it would be convenient to tell that plan how it
309 //  should respond to ShouldReportStop.
310 //  You can do that by setting the stop_vote in the child plan when you create
311 //  it.
312 //
313 //  Suppressing the initial eStateRunning event:
314 //
315 //  The private process running thread will take care of ensuring that only one
316 //  "eStateRunning" event will be
317 //  delivered to the public Process broadcaster per public eStateStopped event.
318 //  However there are some cases
319 //  where the public state of this process is eStateStopped, but a thread plan
320 //  needs to restart the target, but
321 //  doesn't want the running event to be publicly broadcast.  The obvious
322 //  example of this is running functions
323 //  by hand as part of expression evaluation.  To suppress the running event
324 //  return eVoteNo from ShouldReportStop,
325 //  to force a running event to be reported return eVoteYes, in general though
326 //  you should return eVoteNoOpinion
327 //  which will allow the ThreadList to figure out the right thing to do.
328 //  The run_vote argument to the constructor works like stop_vote, and is a way
329 //  for a plan to instruct a sub-plan
330 //  on how to respond to ShouldReportStop.
331 //
332 //------------------------------------------------------------------
333 
334 class ThreadPlan : public std::enable_shared_from_this<ThreadPlan>,
335                    public UserID {
336 public:
337   typedef enum { eAllThreads, eSomeThreads, eThisThread } ThreadScope;
338 
339   // We use these enums so that we can cast a base thread plan to it's real
340   // type without having to resort to dynamic casting.
341   typedef enum {
342     eKindGeneric,
343     eKindNull,
344     eKindBase,
345     eKindCallFunction,
346     eKindPython,
347     eKindStepInstruction,
348     eKindStepOut,
349     eKindStepOverBreakpoint,
350     eKindStepOverRange,
351     eKindStepInRange,
352     eKindRunToAddress,
353     eKindStepThrough,
354     eKindStepUntil,
355     eKindTestCondition
356 
357   } ThreadPlanKind;
358 
359   //------------------------------------------------------------------
360   // Constructors and Destructors
361   //------------------------------------------------------------------
362   ThreadPlan(ThreadPlanKind kind, const char *name, Thread &thread,
363              Vote stop_vote, Vote run_vote);
364 
365   virtual ~ThreadPlan();
366 
367   //------------------------------------------------------------------
368   /// Returns the name of this thread plan.
369   ///
370   /// @return
371   ///   A const char * pointer to the thread plan's name.
372   //------------------------------------------------------------------
GetName()373   const char *GetName() const { return m_name.c_str(); }
374 
375   //------------------------------------------------------------------
376   /// Returns the Thread that is using this thread plan.
377   ///
378   /// @return
379   ///   A  pointer to the thread plan's owning thread.
380   //------------------------------------------------------------------
GetThread()381   Thread &GetThread() { return m_thread; }
382 
GetThread()383   const Thread &GetThread() const { return m_thread; }
384 
GetTarget()385   Target &GetTarget() { return m_thread.GetProcess()->GetTarget(); }
386 
GetTarget()387   const Target &GetTarget() const { return m_thread.GetProcess()->GetTarget(); }
388 
389   //------------------------------------------------------------------
390   /// Print a description of this thread to the stream \a s.
391   /// \a thread.
392   ///
393   /// @param[in] s
394   ///    The stream to which to print the description.
395   ///
396   /// @param[in] level
397   ///    The level of description desired.  Note that eDescriptionLevelBrief
398   ///    will be used in the stop message printed when the plan is complete.
399   //------------------------------------------------------------------
400   virtual void GetDescription(Stream *s, lldb::DescriptionLevel level) = 0;
401 
402   //------------------------------------------------------------------
403   /// Returns whether this plan could be successfully created.
404   ///
405   /// @param[in] error
406   ///    A stream to which to print some reason why the plan could not be
407   ///    created.
408   ///    Can be NULL.
409   ///
410   /// @return
411   ///   \b true if the plan should be queued, \b false otherwise.
412   //------------------------------------------------------------------
413   virtual bool ValidatePlan(Stream *error) = 0;
414 
TracerExplainsStop()415   bool TracerExplainsStop() {
416     if (!m_tracer_sp)
417       return false;
418     else
419       return m_tracer_sp->TracerExplainsStop();
420   }
421 
422   lldb::StateType RunState();
423 
424   bool PlanExplainsStop(Event *event_ptr);
425 
426   virtual bool ShouldStop(Event *event_ptr) = 0;
427 
ShouldAutoContinue(Event * event_ptr)428   virtual bool ShouldAutoContinue(Event *event_ptr) { return false; }
429 
430   // Whether a "stop class" event should be reported to the "outside world".
431   // In general if a thread plan is active, events should not be reported.
432 
433   virtual Vote ShouldReportStop(Event *event_ptr);
434 
435   virtual Vote ShouldReportRun(Event *event_ptr);
436 
437   virtual void SetStopOthers(bool new_value);
438 
439   virtual bool StopOthers();
440 
441   // This is the wrapper for DoWillResume that does generic ThreadPlan logic,
442   // then calls DoWillResume.
443   bool WillResume(lldb::StateType resume_state, bool current_plan);
444 
445   virtual bool WillStop() = 0;
446 
IsMasterPlan()447   bool IsMasterPlan() { return m_is_master_plan; }
448 
SetIsMasterPlan(bool value)449   bool SetIsMasterPlan(bool value) {
450     bool old_value = m_is_master_plan;
451     m_is_master_plan = value;
452     return old_value;
453   }
454 
455   virtual bool OkayToDiscard();
456 
SetOkayToDiscard(bool value)457   void SetOkayToDiscard(bool value) { m_okay_to_discard = value; }
458 
459   // The base class MischiefManaged does some cleanup - so you have to call it
460   // in your MischiefManaged derived class.
461   virtual bool MischiefManaged();
462 
ThreadDestroyed()463   virtual void ThreadDestroyed() {
464     // Any cleanup that a plan might want to do in case the thread goes away in
465     // the middle of the plan being queued on a thread can be done here.
466   }
467 
GetPrivate()468   bool GetPrivate() { return m_plan_private; }
469 
SetPrivate(bool input)470   void SetPrivate(bool input) { m_plan_private = input; }
471 
472   virtual void DidPush();
473 
474   virtual void WillPop();
475 
476   // This pushes a plan onto the plan stack of the current plan's thread.
PushPlan(lldb::ThreadPlanSP & thread_plan_sp)477   void PushPlan(lldb::ThreadPlanSP &thread_plan_sp) {
478     m_thread.PushPlan(thread_plan_sp);
479   }
480 
GetKind()481   ThreadPlanKind GetKind() const { return m_kind; }
482 
483   bool IsPlanComplete();
484 
485   void SetPlanComplete(bool success = true);
486 
IsPlanStale()487   virtual bool IsPlanStale() { return false; }
488 
PlanSucceeded()489   bool PlanSucceeded() { return m_plan_succeeded; }
490 
IsBasePlan()491   virtual bool IsBasePlan() { return false; }
492 
GetThreadPlanTracer()493   lldb::ThreadPlanTracerSP &GetThreadPlanTracer() { return m_tracer_sp; }
494 
SetThreadPlanTracer(lldb::ThreadPlanTracerSP new_tracer_sp)495   void SetThreadPlanTracer(lldb::ThreadPlanTracerSP new_tracer_sp) {
496     m_tracer_sp = new_tracer_sp;
497   }
498 
DoTraceLog()499   void DoTraceLog() {
500     if (m_tracer_sp && m_tracer_sp->TracingEnabled())
501       m_tracer_sp->Log();
502   }
503 
504   // Some thread plans hide away the actual stop info which caused any
505   // particular stop.  For instance the ThreadPlanCallFunction restores the
506   // original stop reason so that stopping and calling a few functions won't
507   // lose the history of the run. This call can be implemented to get you back
508   // to the real stop info.
GetRealStopInfo()509   virtual lldb::StopInfoSP GetRealStopInfo() { return m_thread.GetStopInfo(); }
510 
511   // If the completion of the thread plan stepped out of a function, the return
512   // value of the function might have been captured by the thread plan
513   // (currently only ThreadPlanStepOut does this.) If so, the ReturnValueObject
514   // can be retrieved from here.
515 
GetReturnValueObject()516   virtual lldb::ValueObjectSP GetReturnValueObject() {
517     return lldb::ValueObjectSP();
518   }
519 
520   // If the thread plan managing the evaluation of a user expression lives
521   // longer than the command that instigated the expression (generally because
522   // the expression evaluation hit a breakpoint, and the user regained control
523   // at that point) a subsequent process control command step/continue/etc.
524   // might complete the expression evaluations.  If so, the result of the
525   // expression evaluation will show up here.
526 
GetExpressionVariable()527   virtual lldb::ExpressionVariableSP GetExpressionVariable() {
528     return lldb::ExpressionVariableSP();
529   }
530 
531   // If a thread plan stores the state before it was run, then you might want
532   // to restore the state when it is done.  This will do that job. This is
533   // mostly useful for artificial plans like CallFunction plans.
534 
RestoreThreadState()535   virtual bool RestoreThreadState() {
536     // Nothing to do in general.
537     return true;
538   }
539 
IsVirtualStep()540   virtual bool IsVirtualStep() { return false; }
541 
SetIterationCount(size_t count)542   virtual bool SetIterationCount(size_t count) {
543     if (m_takes_iteration_count) {
544       // Don't tell me to do something 0 times...
545       if (count == 0)
546         return false;
547       m_iteration_count = count;
548     }
549     return m_takes_iteration_count;
550   }
551 
GetIterationCount()552   virtual size_t GetIterationCount() {
553     if (!m_takes_iteration_count)
554       return 0;
555     else
556       return m_iteration_count;
557   }
558 
559 protected:
560   //------------------------------------------------------------------
561   // Classes that inherit from ThreadPlan can see and modify these
562   //------------------------------------------------------------------
563 
DoWillResume(lldb::StateType resume_state,bool current_plan)564   virtual bool DoWillResume(lldb::StateType resume_state, bool current_plan) {
565     return true;
566   }
567 
568   virtual bool DoPlanExplainsStop(Event *event_ptr) = 0;
569 
570   // This gets the previous plan to the current plan (for forwarding requests).
571   // This is mostly a formal requirement, it allows us to make the Thread's
572   // GetPreviousPlan protected, but only friend ThreadPlan to thread.
573 
GetPreviousPlan()574   ThreadPlan *GetPreviousPlan() { return m_thread.GetPreviousPlan(this); }
575 
576   // This forwards the private Thread::GetPrivateStopInfo which is generally
577   // what ThreadPlan's need to know.
578 
GetPrivateStopInfo()579   lldb::StopInfoSP GetPrivateStopInfo() {
580     return m_thread.GetPrivateStopInfo();
581   }
582 
SetStopInfo(lldb::StopInfoSP stop_reason_sp)583   void SetStopInfo(lldb::StopInfoSP stop_reason_sp) {
584     m_thread.SetStopInfo(stop_reason_sp);
585   }
586 
CachePlanExplainsStop(bool does_explain)587   void CachePlanExplainsStop(bool does_explain) {
588     m_cached_plan_explains_stop = does_explain ? eLazyBoolYes : eLazyBoolNo;
589   }
590 
GetCachedPlanExplainsStop()591   LazyBool GetCachedPlanExplainsStop() const {
592     return m_cached_plan_explains_stop;
593   }
594 
595   virtual lldb::StateType GetPlanRunState() = 0;
596 
597   bool IsUsuallyUnexplainedStopReason(lldb::StopReason);
598 
599   Status m_status;
600   Thread &m_thread;
601   Vote m_stop_vote;
602   Vote m_run_vote;
603   bool m_takes_iteration_count;
604   bool m_could_not_resolve_hw_bp;
605   int32_t m_iteration_count = 1;
606 
607 private:
608   //------------------------------------------------------------------
609   // For ThreadPlan only
610   //------------------------------------------------------------------
611   static lldb::user_id_t GetNextID();
612 
613   ThreadPlanKind m_kind;
614   std::string m_name;
615   std::recursive_mutex m_plan_complete_mutex;
616   LazyBool m_cached_plan_explains_stop;
617   bool m_plan_complete;
618   bool m_plan_private;
619   bool m_okay_to_discard;
620   bool m_is_master_plan;
621   bool m_plan_succeeded;
622 
623   lldb::ThreadPlanTracerSP m_tracer_sp;
624 
625 private:
626   DISALLOW_COPY_AND_ASSIGN(ThreadPlan);
627 };
628 
629 //----------------------------------------------------------------------
630 // ThreadPlanNull:
631 // Threads are assumed to always have at least one plan on the plan stack. This
632 // is put on the plan stack when a thread is destroyed so that if you
633 // accidentally access a thread after it is destroyed you won't crash. But
634 // asking questions of the ThreadPlanNull is definitely an error.
635 //----------------------------------------------------------------------
636 
637 class ThreadPlanNull : public ThreadPlan {
638 public:
639   ThreadPlanNull(Thread &thread);
640   ~ThreadPlanNull() override;
641 
642   void GetDescription(Stream *s, lldb::DescriptionLevel level) override;
643 
644   bool ValidatePlan(Stream *error) override;
645 
646   bool ShouldStop(Event *event_ptr) override;
647 
648   bool MischiefManaged() override;
649 
650   bool WillStop() override;
651 
IsBasePlan()652   bool IsBasePlan() override { return true; }
653 
OkayToDiscard()654   bool OkayToDiscard() override { return false; }
655 
GetStatus()656   const Status &GetStatus() { return m_status; }
657 
658 protected:
659   bool DoPlanExplainsStop(Event *event_ptr) override;
660 
661   lldb::StateType GetPlanRunState() override;
662 
663   DISALLOW_COPY_AND_ASSIGN(ThreadPlanNull);
664 };
665 
666 } // namespace lldb_private
667 
668 #endif // liblldb_ThreadPlan_h_
669