xref: /f-stack/dpdk/drivers/net/e1000/base/e1000_vf.c (revision 2d9fd380)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2001-2020 Intel Corporation
3  */
4 
5 
6 #include "e1000_api.h"
7 
8 
9 STATIC s32 e1000_init_phy_params_vf(struct e1000_hw *hw);
10 STATIC s32 e1000_init_nvm_params_vf(struct e1000_hw *hw);
11 STATIC void e1000_release_vf(struct e1000_hw *hw);
12 STATIC s32 e1000_acquire_vf(struct e1000_hw *hw);
13 STATIC s32 e1000_setup_link_vf(struct e1000_hw *hw);
14 STATIC s32 e1000_get_bus_info_pcie_vf(struct e1000_hw *hw);
15 STATIC s32 e1000_init_mac_params_vf(struct e1000_hw *hw);
16 STATIC s32 e1000_check_for_link_vf(struct e1000_hw *hw);
17 STATIC s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
18 				     u16 *duplex);
19 STATIC s32 e1000_init_hw_vf(struct e1000_hw *hw);
20 STATIC s32 e1000_reset_hw_vf(struct e1000_hw *hw);
21 STATIC void e1000_update_mc_addr_list_vf(struct e1000_hw *hw, u8 *, u32);
22 STATIC int  e1000_rar_set_vf(struct e1000_hw *, u8 *, u32);
23 STATIC s32 e1000_read_mac_addr_vf(struct e1000_hw *);
24 
25 /**
26  *  e1000_init_phy_params_vf - Inits PHY params
27  *  @hw: pointer to the HW structure
28  *
29  *  Doesn't do much - there's no PHY available to the VF.
30  **/
e1000_init_phy_params_vf(struct e1000_hw * hw)31 STATIC s32 e1000_init_phy_params_vf(struct e1000_hw *hw)
32 {
33 	DEBUGFUNC("e1000_init_phy_params_vf");
34 	hw->phy.type = e1000_phy_vf;
35 	hw->phy.ops.acquire = e1000_acquire_vf;
36 	hw->phy.ops.release = e1000_release_vf;
37 
38 	return E1000_SUCCESS;
39 }
40 
41 /**
42  *  e1000_init_nvm_params_vf - Inits NVM params
43  *  @hw: pointer to the HW structure
44  *
45  *  Doesn't do much - there's no NVM available to the VF.
46  **/
e1000_init_nvm_params_vf(struct e1000_hw * hw)47 STATIC s32 e1000_init_nvm_params_vf(struct e1000_hw *hw)
48 {
49 	DEBUGFUNC("e1000_init_nvm_params_vf");
50 	hw->nvm.type = e1000_nvm_none;
51 	hw->nvm.ops.acquire = e1000_acquire_vf;
52 	hw->nvm.ops.release = e1000_release_vf;
53 
54 	return E1000_SUCCESS;
55 }
56 
57 /**
58  *  e1000_init_mac_params_vf - Inits MAC params
59  *  @hw: pointer to the HW structure
60  **/
e1000_init_mac_params_vf(struct e1000_hw * hw)61 STATIC s32 e1000_init_mac_params_vf(struct e1000_hw *hw)
62 {
63 	struct e1000_mac_info *mac = &hw->mac;
64 
65 	DEBUGFUNC("e1000_init_mac_params_vf");
66 
67 	/* Set media type */
68 	/*
69 	 * Virtual functions don't care what they're media type is as they
70 	 * have no direct access to the PHY, or the media.  That is handled
71 	 * by the physical function driver.
72 	 */
73 	hw->phy.media_type = e1000_media_type_unknown;
74 
75 	/* No ASF features for the VF driver */
76 	mac->asf_firmware_present = false;
77 	/* ARC subsystem not supported */
78 	mac->arc_subsystem_valid = false;
79 	/* Disable adaptive IFS mode so the generic funcs don't do anything */
80 	mac->adaptive_ifs = false;
81 	/* VF's have no MTA Registers - PF feature only */
82 	mac->mta_reg_count = 128;
83 	/* VF's have no access to RAR entries  */
84 	mac->rar_entry_count = 1;
85 
86 	/* Function pointers */
87 	/* link setup */
88 	mac->ops.setup_link = e1000_setup_link_vf;
89 	/* bus type/speed/width */
90 	mac->ops.get_bus_info = e1000_get_bus_info_pcie_vf;
91 	/* reset */
92 	mac->ops.reset_hw = e1000_reset_hw_vf;
93 	/* hw initialization */
94 	mac->ops.init_hw = e1000_init_hw_vf;
95 	/* check for link */
96 	mac->ops.check_for_link = e1000_check_for_link_vf;
97 	/* link info */
98 	mac->ops.get_link_up_info = e1000_get_link_up_info_vf;
99 	/* multicast address update */
100 	mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_vf;
101 	/* set mac address */
102 	mac->ops.rar_set = e1000_rar_set_vf;
103 	/* read mac address */
104 	mac->ops.read_mac_addr = e1000_read_mac_addr_vf;
105 
106 
107 	return E1000_SUCCESS;
108 }
109 
110 /**
111  *  e1000_init_function_pointers_vf - Inits function pointers
112  *  @hw: pointer to the HW structure
113  **/
e1000_init_function_pointers_vf(struct e1000_hw * hw)114 void e1000_init_function_pointers_vf(struct e1000_hw *hw)
115 {
116 	DEBUGFUNC("e1000_init_function_pointers_vf");
117 
118 	hw->mac.ops.init_params = e1000_init_mac_params_vf;
119 	hw->nvm.ops.init_params = e1000_init_nvm_params_vf;
120 	hw->phy.ops.init_params = e1000_init_phy_params_vf;
121 	hw->mbx.ops.init_params = e1000_init_mbx_params_vf;
122 }
123 
124 /**
125  *  e1000_acquire_vf - Acquire rights to access PHY or NVM.
126  *  @hw: pointer to the HW structure
127  *
128  *  There is no PHY or NVM so we want all attempts to acquire these to fail.
129  *  In addition, the MAC registers to access PHY/NVM don't exist so we don't
130  *  even want any SW to attempt to use them.
131  **/
e1000_acquire_vf(struct e1000_hw E1000_UNUSEDARG * hw)132 STATIC s32 e1000_acquire_vf(struct e1000_hw E1000_UNUSEDARG *hw)
133 {
134 	UNREFERENCED_1PARAMETER(hw);
135 	return -E1000_ERR_PHY;
136 }
137 
138 /**
139  *  e1000_release_vf - Release PHY or NVM
140  *  @hw: pointer to the HW structure
141  *
142  *  There is no PHY or NVM so we want all attempts to acquire these to fail.
143  *  In addition, the MAC registers to access PHY/NVM don't exist so we don't
144  *  even want any SW to attempt to use them.
145  **/
e1000_release_vf(struct e1000_hw E1000_UNUSEDARG * hw)146 STATIC void e1000_release_vf(struct e1000_hw E1000_UNUSEDARG *hw)
147 {
148 	UNREFERENCED_1PARAMETER(hw);
149 	return;
150 }
151 
152 /**
153  *  e1000_setup_link_vf - Sets up link.
154  *  @hw: pointer to the HW structure
155  *
156  *  Virtual functions cannot change link.
157  **/
e1000_setup_link_vf(struct e1000_hw E1000_UNUSEDARG * hw)158 STATIC s32 e1000_setup_link_vf(struct e1000_hw E1000_UNUSEDARG *hw)
159 {
160 	DEBUGFUNC("e1000_setup_link_vf");
161 	UNREFERENCED_1PARAMETER(hw);
162 
163 	return E1000_SUCCESS;
164 }
165 
166 /**
167  *  e1000_get_bus_info_pcie_vf - Gets the bus info.
168  *  @hw: pointer to the HW structure
169  *
170  *  Virtual functions are not really on their own bus.
171  **/
e1000_get_bus_info_pcie_vf(struct e1000_hw * hw)172 STATIC s32 e1000_get_bus_info_pcie_vf(struct e1000_hw *hw)
173 {
174 	struct e1000_bus_info *bus = &hw->bus;
175 
176 	DEBUGFUNC("e1000_get_bus_info_pcie_vf");
177 
178 	/* Do not set type PCI-E because we don't want disable master to run */
179 	bus->type = e1000_bus_type_reserved;
180 	bus->speed = e1000_bus_speed_2500;
181 
182 	return 0;
183 }
184 
185 /**
186  *  e1000_get_link_up_info_vf - Gets link info.
187  *  @hw: pointer to the HW structure
188  *  @speed: pointer to 16 bit value to store link speed.
189  *  @duplex: pointer to 16 bit value to store duplex.
190  *
191  *  Since we cannot read the PHY and get accurate link info, we must rely upon
192  *  the status register's data which is often stale and inaccurate.
193  **/
e1000_get_link_up_info_vf(struct e1000_hw * hw,u16 * speed,u16 * duplex)194 STATIC s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
195 				     u16 *duplex)
196 {
197 	s32 status;
198 
199 	DEBUGFUNC("e1000_get_link_up_info_vf");
200 
201 	status = E1000_READ_REG(hw, E1000_STATUS);
202 	if (status & E1000_STATUS_SPEED_1000) {
203 		*speed = SPEED_1000;
204 		DEBUGOUT("1000 Mbs, ");
205 	} else if (status & E1000_STATUS_SPEED_100) {
206 		*speed = SPEED_100;
207 		DEBUGOUT("100 Mbs, ");
208 	} else {
209 		*speed = SPEED_10;
210 		DEBUGOUT("10 Mbs, ");
211 	}
212 
213 	if (status & E1000_STATUS_FD) {
214 		*duplex = FULL_DUPLEX;
215 		DEBUGOUT("Full Duplex\n");
216 	} else {
217 		*duplex = HALF_DUPLEX;
218 		DEBUGOUT("Half Duplex\n");
219 	}
220 
221 	return E1000_SUCCESS;
222 }
223 
224 /**
225  *  e1000_reset_hw_vf - Resets the HW
226  *  @hw: pointer to the HW structure
227  *
228  *  VF's provide a function level reset. This is done using bit 26 of ctrl_reg.
229  *  This is all the reset we can perform on a VF.
230  **/
e1000_reset_hw_vf(struct e1000_hw * hw)231 STATIC s32 e1000_reset_hw_vf(struct e1000_hw *hw)
232 {
233 	struct e1000_mbx_info *mbx = &hw->mbx;
234 	u32 timeout = E1000_VF_INIT_TIMEOUT;
235 	s32 ret_val = -E1000_ERR_MAC_INIT;
236 	u32 ctrl, msgbuf[3];
237 	u8 *addr = (u8 *)(&msgbuf[1]);
238 
239 	DEBUGFUNC("e1000_reset_hw_vf");
240 
241 	DEBUGOUT("Issuing a function level reset to MAC\n");
242 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
243 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
244 
245 	/* we cannot reset while the RSTI / RSTD bits are asserted */
246 	while (!mbx->ops.check_for_rst(hw, 0) && timeout) {
247 		timeout--;
248 		usec_delay(5);
249 	}
250 
251 	if (timeout) {
252 		/* mailbox timeout can now become active */
253 		mbx->timeout = E1000_VF_MBX_INIT_TIMEOUT;
254 
255 		msgbuf[0] = E1000_VF_RESET;
256 		mbx->ops.write_posted(hw, msgbuf, 1, 0);
257 
258 		msec_delay(10);
259 
260 		/* set our "perm_addr" based on info provided by PF */
261 		ret_val = mbx->ops.read_posted(hw, msgbuf, 3, 0);
262 		if (!ret_val) {
263 			if (msgbuf[0] == (E1000_VF_RESET |
264 			    E1000_VT_MSGTYPE_ACK))
265 				memcpy(hw->mac.perm_addr, addr, 6);
266 			else
267 				ret_val = -E1000_ERR_MAC_INIT;
268 		}
269 	}
270 
271 	return ret_val;
272 }
273 
274 /**
275  *  e1000_init_hw_vf - Inits the HW
276  *  @hw: pointer to the HW structure
277  *
278  *  Not much to do here except clear the PF Reset indication if there is one.
279  **/
e1000_init_hw_vf(struct e1000_hw * hw)280 STATIC s32 e1000_init_hw_vf(struct e1000_hw *hw)
281 {
282 	DEBUGFUNC("e1000_init_hw_vf");
283 
284 	/* attempt to set and restore our mac address */
285 	e1000_rar_set_vf(hw, hw->mac.addr, 0);
286 
287 	return E1000_SUCCESS;
288 }
289 
290 /**
291  *  e1000_rar_set_vf - set device MAC address
292  *  @hw: pointer to the HW structure
293  *  @addr: pointer to the receive address
294  *  @index receive address array register
295  **/
e1000_rar_set_vf(struct e1000_hw * hw,u8 * addr,u32 E1000_UNUSEDARG index)296 STATIC int e1000_rar_set_vf(struct e1000_hw *hw, u8 *addr,
297 			     u32 E1000_UNUSEDARG index)
298 {
299 	struct e1000_mbx_info *mbx = &hw->mbx;
300 	u32 msgbuf[3];
301 	u8 *msg_addr = (u8 *)(&msgbuf[1]);
302 	s32 ret_val;
303 
304 	UNREFERENCED_1PARAMETER(index);
305 	memset(msgbuf, 0, 12);
306 	msgbuf[0] = E1000_VF_SET_MAC_ADDR;
307 	memcpy(msg_addr, addr, 6);
308 	ret_val = mbx->ops.write_posted(hw, msgbuf, 3, 0);
309 
310 	if (!ret_val)
311 		ret_val = mbx->ops.read_posted(hw, msgbuf, 3, 0);
312 
313 	msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
314 
315 	/* if nacked the address was rejected, use "perm_addr" */
316 	if (!ret_val &&
317 	    (msgbuf[0] == (E1000_VF_SET_MAC_ADDR | E1000_VT_MSGTYPE_NACK)))
318 		e1000_read_mac_addr_vf(hw);
319 
320 	return E1000_SUCCESS;
321 }
322 
323 /**
324  *  e1000_hash_mc_addr_vf - Generate a multicast hash value
325  *  @hw: pointer to the HW structure
326  *  @mc_addr: pointer to a multicast address
327  *
328  *  Generates a multicast address hash value which is used to determine
329  *  the multicast filter table array address and new table value.
330  **/
e1000_hash_mc_addr_vf(struct e1000_hw * hw,u8 * mc_addr)331 STATIC u32 e1000_hash_mc_addr_vf(struct e1000_hw *hw, u8 *mc_addr)
332 {
333 	u32 hash_value, hash_mask;
334 	u8 bit_shift = 0;
335 
336 	DEBUGFUNC("e1000_hash_mc_addr_generic");
337 
338 	/* Register count multiplied by bits per register */
339 	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
340 
341 	/*
342 	 * The bit_shift is the number of left-shifts
343 	 * where 0xFF would still fall within the hash mask.
344 	 */
345 	while (hash_mask >> bit_shift != 0xFF)
346 		bit_shift++;
347 
348 	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
349 				  (((u16) mc_addr[5]) << bit_shift)));
350 
351 	return hash_value;
352 }
353 
e1000_write_msg_read_ack(struct e1000_hw * hw,u32 * msg,u16 size)354 STATIC void e1000_write_msg_read_ack(struct e1000_hw *hw,
355 				     u32 *msg, u16 size)
356 {
357 	struct e1000_mbx_info *mbx = &hw->mbx;
358 	u32 retmsg[E1000_VFMAILBOX_SIZE];
359 	s32 retval = mbx->ops.write_posted(hw, msg, size, 0);
360 
361 	if (!retval)
362 		mbx->ops.read_posted(hw, retmsg, E1000_VFMAILBOX_SIZE, 0);
363 }
364 
365 /**
366  *  e1000_update_mc_addr_list_vf - Update Multicast addresses
367  *  @hw: pointer to the HW structure
368  *  @mc_addr_list: array of multicast addresses to program
369  *  @mc_addr_count: number of multicast addresses to program
370  *
371  *  Updates the Multicast Table Array.
372  *  The caller must have a packed mc_addr_list of multicast addresses.
373  **/
e1000_update_mc_addr_list_vf(struct e1000_hw * hw,u8 * mc_addr_list,u32 mc_addr_count)374 void e1000_update_mc_addr_list_vf(struct e1000_hw *hw,
375 				  u8 *mc_addr_list, u32 mc_addr_count)
376 {
377 	u32 msgbuf[E1000_VFMAILBOX_SIZE];
378 	u16 *hash_list = (u16 *)&msgbuf[1];
379 	u32 hash_value;
380 	u32 i;
381 
382 	DEBUGFUNC("e1000_update_mc_addr_list_vf");
383 
384 	/* Each entry in the list uses 1 16 bit word.  We have 30
385 	 * 16 bit words available in our HW msg buffer (minus 1 for the
386 	 * msg type).  That's 30 hash values if we pack 'em right.  If
387 	 * there are more than 30 MC addresses to add then punt the
388 	 * extras for now and then add code to handle more than 30 later.
389 	 * It would be unusual for a server to request that many multi-cast
390 	 * addresses except for in large enterprise network environments.
391 	 */
392 
393 	DEBUGOUT1("MC Addr Count = %d\n", mc_addr_count);
394 
395 	msgbuf[0] = E1000_VF_SET_MULTICAST;
396 
397 	if (mc_addr_count > 30) {
398 		msgbuf[0] |= E1000_VF_SET_MULTICAST_OVERFLOW;
399 		mc_addr_count = 30;
400 	}
401 
402 	msgbuf[0] |= mc_addr_count << E1000_VT_MSGINFO_SHIFT;
403 
404 	for (i = 0; i < mc_addr_count; i++) {
405 		hash_value = e1000_hash_mc_addr_vf(hw, mc_addr_list);
406 		DEBUGOUT1("Hash value = 0x%03X\n", hash_value);
407 		hash_list[i] = hash_value & 0x0FFF;
408 		mc_addr_list += ETH_ADDR_LEN;
409 	}
410 
411 	e1000_write_msg_read_ack(hw, msgbuf, E1000_VFMAILBOX_SIZE);
412 }
413 
414 /**
415  *  e1000_vfta_set_vf - Set/Unset vlan filter table address
416  *  @hw: pointer to the HW structure
417  *  @vid: determines the vfta register and bit to set/unset
418  *  @set: if true then set bit, else clear bit
419  **/
e1000_vfta_set_vf(struct e1000_hw * hw,u16 vid,bool set)420 void e1000_vfta_set_vf(struct e1000_hw *hw, u16 vid, bool set)
421 {
422 	u32 msgbuf[2];
423 
424 	msgbuf[0] = E1000_VF_SET_VLAN;
425 	msgbuf[1] = vid;
426 	/* Setting the 8 bit field MSG INFO to TRUE indicates "add" */
427 	if (set)
428 		msgbuf[0] |= E1000_VF_SET_VLAN_ADD;
429 
430 	e1000_write_msg_read_ack(hw, msgbuf, 2);
431 }
432 
433 /** e1000_rlpml_set_vf - Set the maximum receive packet length
434  *  @hw: pointer to the HW structure
435  *  @max_size: value to assign to max frame size
436  **/
e1000_rlpml_set_vf(struct e1000_hw * hw,u16 max_size)437 void e1000_rlpml_set_vf(struct e1000_hw *hw, u16 max_size)
438 {
439 	u32 msgbuf[2];
440 
441 	msgbuf[0] = E1000_VF_SET_LPE;
442 	msgbuf[1] = max_size;
443 
444 	e1000_write_msg_read_ack(hw, msgbuf, 2);
445 }
446 
447 /**
448  *  e1000_promisc_set_vf - Set flags for Unicast or Multicast promisc
449  *  @hw: pointer to the HW structure
450  *  @uni: boolean indicating unicast promisc status
451  *  @multi: boolean indicating multicast promisc status
452  **/
e1000_promisc_set_vf(struct e1000_hw * hw,enum e1000_promisc_type type)453 s32 e1000_promisc_set_vf(struct e1000_hw *hw, enum e1000_promisc_type type)
454 {
455 	struct e1000_mbx_info *mbx = &hw->mbx;
456 	u32 msgbuf = E1000_VF_SET_PROMISC;
457 	s32 ret_val;
458 
459 	switch (type) {
460 	case e1000_promisc_multicast:
461 		msgbuf |= E1000_VF_SET_PROMISC_MULTICAST;
462 		break;
463 	case e1000_promisc_enabled:
464 		msgbuf |= E1000_VF_SET_PROMISC_MULTICAST;
465 		/* fall-through */
466 	case e1000_promisc_unicast:
467 		msgbuf |= E1000_VF_SET_PROMISC_UNICAST;
468 		/* fall-through */
469 	case e1000_promisc_disabled:
470 		break;
471 	default:
472 		return -E1000_ERR_MAC_INIT;
473 	}
474 
475 	 ret_val = mbx->ops.write_posted(hw, &msgbuf, 1, 0);
476 
477 	if (!ret_val)
478 		ret_val = mbx->ops.read_posted(hw, &msgbuf, 1, 0);
479 
480 	if (!ret_val && !(msgbuf & E1000_VT_MSGTYPE_ACK))
481 		ret_val = -E1000_ERR_MAC_INIT;
482 
483 	return ret_val;
484 }
485 
486 /**
487  *  e1000_read_mac_addr_vf - Read device MAC address
488  *  @hw: pointer to the HW structure
489  **/
e1000_read_mac_addr_vf(struct e1000_hw * hw)490 STATIC s32 e1000_read_mac_addr_vf(struct e1000_hw *hw)
491 {
492 	int i;
493 
494 	for (i = 0; i < ETH_ADDR_LEN; i++)
495 		hw->mac.addr[i] = hw->mac.perm_addr[i];
496 
497 	return E1000_SUCCESS;
498 }
499 
500 /**
501  *  e1000_check_for_link_vf - Check for link for a virtual interface
502  *  @hw: pointer to the HW structure
503  *
504  *  Checks to see if the underlying PF is still talking to the VF and
505  *  if it is then it reports the link state to the hardware, otherwise
506  *  it reports link down and returns an error.
507  **/
e1000_check_for_link_vf(struct e1000_hw * hw)508 STATIC s32 e1000_check_for_link_vf(struct e1000_hw *hw)
509 {
510 	struct e1000_mbx_info *mbx = &hw->mbx;
511 	struct e1000_mac_info *mac = &hw->mac;
512 	s32 ret_val = E1000_SUCCESS;
513 	u32 in_msg = 0;
514 
515 	DEBUGFUNC("e1000_check_for_link_vf");
516 
517 	/*
518 	 * We only want to run this if there has been a rst asserted.
519 	 * in this case that could mean a link change, device reset,
520 	 * or a virtual function reset
521 	 */
522 
523 	/* If we were hit with a reset or timeout drop the link */
524 	if (!mbx->ops.check_for_rst(hw, 0) || !mbx->timeout)
525 		mac->get_link_status = true;
526 
527 	if (!mac->get_link_status)
528 		goto out;
529 
530 	/* if link status is down no point in checking to see if pf is up */
531 	if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU))
532 		goto out;
533 
534 	/* if the read failed it could just be a mailbox collision, best wait
535 	 * until we are called again and don't report an error */
536 	if (mbx->ops.read(hw, &in_msg, 1, 0))
537 		goto out;
538 
539 	/* if incoming message isn't clear to send we are waiting on response */
540 	if (!(in_msg & E1000_VT_MSGTYPE_CTS)) {
541 		/* message is not CTS and is NACK we have lost CTS status */
542 		if (in_msg & E1000_VT_MSGTYPE_NACK)
543 			ret_val = -E1000_ERR_MAC_INIT;
544 		goto out;
545 	}
546 
547 	/* at this point we know the PF is talking to us, check and see if
548 	 * we are still accepting timeout or if we had a timeout failure.
549 	 * if we failed then we will need to reinit */
550 	if (!mbx->timeout) {
551 		ret_val = -E1000_ERR_MAC_INIT;
552 		goto out;
553 	}
554 
555 	/* if we passed all the tests above then the link is up and we no
556 	 * longer need to check for link */
557 	mac->get_link_status = false;
558 
559 out:
560 	return ret_val;
561 }
562 
563