1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2001-2020 Intel Corporation
3  */
4 
5 /*
6  * 82575EB Gigabit Network Connection
7  * 82575EB Gigabit Backplane Connection
8  * 82575GB Gigabit Network Connection
9  * 82576 Gigabit Network Connection
10  * 82576 Quad Port Gigabit Mezzanine Adapter
11  * 82580 Gigabit Network Connection
12  * I350 Gigabit Network Connection
13  */
14 
15 #include "e1000_api.h"
16 #include "e1000_i210.h"
17 
18 STATIC s32  e1000_init_phy_params_82575(struct e1000_hw *hw);
19 STATIC s32  e1000_init_mac_params_82575(struct e1000_hw *hw);
20 STATIC s32  e1000_acquire_nvm_82575(struct e1000_hw *hw);
21 STATIC void e1000_release_nvm_82575(struct e1000_hw *hw);
22 STATIC s32  e1000_check_for_link_82575(struct e1000_hw *hw);
23 STATIC s32  e1000_check_for_link_media_swap(struct e1000_hw *hw);
24 STATIC s32  e1000_get_cfg_done_82575(struct e1000_hw *hw);
25 STATIC s32  e1000_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
26 					 u16 *duplex);
27 STATIC s32  e1000_phy_hw_reset_sgmii_82575(struct e1000_hw *hw);
28 STATIC s32  e1000_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
29 					   u16 *data);
30 STATIC s32  e1000_reset_hw_82575(struct e1000_hw *hw);
31 STATIC s32 e1000_init_hw_82575(struct e1000_hw *hw);
32 STATIC s32  e1000_reset_hw_82580(struct e1000_hw *hw);
33 STATIC s32  e1000_read_phy_reg_82580(struct e1000_hw *hw,
34 				     u32 offset, u16 *data);
35 STATIC s32  e1000_write_phy_reg_82580(struct e1000_hw *hw,
36 				      u32 offset, u16 data);
37 STATIC s32  e1000_set_d0_lplu_state_82580(struct e1000_hw *hw,
38 					  bool active);
39 STATIC s32  e1000_set_d3_lplu_state_82580(struct e1000_hw *hw,
40 					  bool active);
41 STATIC s32  e1000_set_d0_lplu_state_82575(struct e1000_hw *hw,
42 					  bool active);
43 STATIC s32  e1000_setup_copper_link_82575(struct e1000_hw *hw);
44 STATIC s32  e1000_setup_serdes_link_82575(struct e1000_hw *hw);
45 STATIC s32  e1000_get_media_type_82575(struct e1000_hw *hw);
46 STATIC s32  e1000_set_sfp_media_type_82575(struct e1000_hw *hw);
47 STATIC s32  e1000_valid_led_default_82575(struct e1000_hw *hw, u16 *data);
48 STATIC s32  e1000_write_phy_reg_sgmii_82575(struct e1000_hw *hw,
49 					    u32 offset, u16 data);
50 STATIC void e1000_clear_hw_cntrs_82575(struct e1000_hw *hw);
51 STATIC s32  e1000_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask);
52 STATIC s32  e1000_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw,
53 						 u16 *speed, u16 *duplex);
54 STATIC s32  e1000_get_phy_id_82575(struct e1000_hw *hw);
55 STATIC void e1000_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask);
56 STATIC bool e1000_sgmii_active_82575(struct e1000_hw *hw);
57 STATIC s32  e1000_read_mac_addr_82575(struct e1000_hw *hw);
58 STATIC void e1000_config_collision_dist_82575(struct e1000_hw *hw);
59 STATIC void e1000_shutdown_serdes_link_82575(struct e1000_hw *hw);
60 STATIC void e1000_power_up_serdes_link_82575(struct e1000_hw *hw);
61 STATIC s32 e1000_set_pcie_completion_timeout(struct e1000_hw *hw);
62 STATIC s32 e1000_reset_mdicnfg_82580(struct e1000_hw *hw);
63 STATIC s32 e1000_validate_nvm_checksum_82580(struct e1000_hw *hw);
64 STATIC s32 e1000_update_nvm_checksum_82580(struct e1000_hw *hw);
65 STATIC s32 e1000_update_nvm_checksum_with_offset(struct e1000_hw *hw,
66 						 u16 offset);
67 STATIC s32 e1000_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
68 						   u16 offset);
69 STATIC s32 e1000_validate_nvm_checksum_i350(struct e1000_hw *hw);
70 STATIC s32 e1000_update_nvm_checksum_i350(struct e1000_hw *hw);
71 STATIC void e1000_clear_vfta_i350(struct e1000_hw *hw);
72 
73 STATIC void e1000_i2c_start(struct e1000_hw *hw);
74 STATIC void e1000_i2c_stop(struct e1000_hw *hw);
75 STATIC void e1000_clock_in_i2c_byte(struct e1000_hw *hw, u8 *data);
76 STATIC s32 e1000_clock_out_i2c_byte(struct e1000_hw *hw, u8 data);
77 STATIC s32 e1000_get_i2c_ack(struct e1000_hw *hw);
78 STATIC void e1000_clock_in_i2c_bit(struct e1000_hw *hw, bool *data);
79 STATIC s32 e1000_clock_out_i2c_bit(struct e1000_hw *hw, bool data);
80 STATIC void e1000_raise_i2c_clk(struct e1000_hw *hw, u32 *i2cctl);
81 STATIC void e1000_lower_i2c_clk(struct e1000_hw *hw, u32 *i2cctl);
82 STATIC s32 e1000_set_i2c_data(struct e1000_hw *hw, u32 *i2cctl, bool data);
83 STATIC bool e1000_get_i2c_data(u32 *i2cctl);
84 
85 STATIC const u16 e1000_82580_rxpbs_table[] = {
86 	36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 };
87 #define E1000_82580_RXPBS_TABLE_SIZE \
88 	(sizeof(e1000_82580_rxpbs_table) / \
89 	 sizeof(e1000_82580_rxpbs_table[0]))
90 
91 
92 /**
93  *  e1000_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
94  *  @hw: pointer to the HW structure
95  *
96  *  Called to determine if the I2C pins are being used for I2C or as an
97  *  external MDIO interface since the two options are mutually exclusive.
98  **/
e1000_sgmii_uses_mdio_82575(struct e1000_hw * hw)99 STATIC bool e1000_sgmii_uses_mdio_82575(struct e1000_hw *hw)
100 {
101 	u32 reg = 0;
102 	bool ext_mdio = false;
103 
104 	DEBUGFUNC("e1000_sgmii_uses_mdio_82575");
105 
106 	switch (hw->mac.type) {
107 	case e1000_82575:
108 	case e1000_82576:
109 		reg = E1000_READ_REG(hw, E1000_MDIC);
110 		ext_mdio = !!(reg & E1000_MDIC_DEST);
111 		break;
112 	case e1000_82580:
113 	case e1000_i350:
114 	case e1000_i354:
115 	case e1000_i210:
116 	case e1000_i211:
117 		reg = E1000_READ_REG(hw, E1000_MDICNFG);
118 		ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
119 		break;
120 	default:
121 		break;
122 	}
123 	return ext_mdio;
124 }
125 
126 /**
127  * e1000_init_phy_params_82575 - Initialize PHY function ptrs
128  * @hw: pointer to the HW structure
129  **/
e1000_init_phy_params_82575(struct e1000_hw * hw)130 STATIC s32 e1000_init_phy_params_82575(struct e1000_hw *hw)
131 {
132 	struct e1000_phy_info *phy = &hw->phy;
133 	s32 ret_val = E1000_SUCCESS;
134 	u32 ctrl_ext;
135 
136 	DEBUGFUNC("e1000_init_phy_params_82575");
137 
138 	phy->ops.read_i2c_byte = e1000_read_i2c_byte_generic;
139 	phy->ops.write_i2c_byte = e1000_write_i2c_byte_generic;
140 
141 	if (hw->phy.media_type != e1000_media_type_copper) {
142 		phy->type = e1000_phy_none;
143 		goto out;
144 	}
145 
146 	phy->ops.power_up	= e1000_power_up_phy_copper;
147 	phy->ops.power_down	= e1000_power_down_phy_copper_base;
148 
149 	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
150 	phy->reset_delay_us	= 100;
151 
152 	phy->ops.acquire	= e1000_acquire_phy_base;
153 	phy->ops.check_reset_block = e1000_check_reset_block_generic;
154 	phy->ops.commit		= e1000_phy_sw_reset_generic;
155 	phy->ops.get_cfg_done	= e1000_get_cfg_done_82575;
156 	phy->ops.release	= e1000_release_phy_base;
157 
158 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
159 
160 	if (e1000_sgmii_active_82575(hw)) {
161 		phy->ops.reset = e1000_phy_hw_reset_sgmii_82575;
162 		ctrl_ext |= E1000_CTRL_I2C_ENA;
163 	} else {
164 		phy->ops.reset = e1000_phy_hw_reset_generic;
165 		ctrl_ext &= ~E1000_CTRL_I2C_ENA;
166 	}
167 
168 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
169 	e1000_reset_mdicnfg_82580(hw);
170 
171 	if (e1000_sgmii_active_82575(hw) && !e1000_sgmii_uses_mdio_82575(hw)) {
172 		phy->ops.read_reg = e1000_read_phy_reg_sgmii_82575;
173 		phy->ops.write_reg = e1000_write_phy_reg_sgmii_82575;
174 	} else {
175 		switch (hw->mac.type) {
176 		case e1000_82580:
177 		case e1000_i350:
178 		case e1000_i354:
179 			phy->ops.read_reg = e1000_read_phy_reg_82580;
180 			phy->ops.write_reg = e1000_write_phy_reg_82580;
181 			break;
182 		case e1000_i210:
183 		case e1000_i211:
184 			phy->ops.read_reg = e1000_read_phy_reg_gs40g;
185 			phy->ops.write_reg = e1000_write_phy_reg_gs40g;
186 			break;
187 		default:
188 			phy->ops.read_reg = e1000_read_phy_reg_igp;
189 			phy->ops.write_reg = e1000_write_phy_reg_igp;
190 		}
191 	}
192 
193 	/* Set phy->phy_addr and phy->id. */
194 	ret_val = e1000_get_phy_id_82575(hw);
195 
196 	/* Verify phy id and set remaining function pointers */
197 	switch (phy->id) {
198 	case M88E1543_E_PHY_ID:
199 	case M88E1512_E_PHY_ID:
200 	case I347AT4_E_PHY_ID:
201 	case M88E1112_E_PHY_ID:
202 	case M88E1340M_E_PHY_ID:
203 		phy->type		= e1000_phy_m88;
204 		phy->ops.check_polarity	= e1000_check_polarity_m88;
205 		phy->ops.get_info	= e1000_get_phy_info_m88;
206 		phy->ops.get_cable_length = e1000_get_cable_length_m88_gen2;
207 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
208 		break;
209 	case M88E1111_I_PHY_ID:
210 		phy->type		= e1000_phy_m88;
211 		phy->ops.check_polarity	= e1000_check_polarity_m88;
212 		phy->ops.get_info	= e1000_get_phy_info_m88;
213 		phy->ops.get_cable_length = e1000_get_cable_length_m88;
214 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
215 		break;
216 	case IGP03E1000_E_PHY_ID:
217 	case IGP04E1000_E_PHY_ID:
218 		phy->type		= e1000_phy_igp_3;
219 		phy->ops.check_polarity	= e1000_check_polarity_igp;
220 		phy->ops.get_info	= e1000_get_phy_info_igp;
221 		phy->ops.get_cable_length = e1000_get_cable_length_igp_2;
222 		phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82575;
223 		phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_generic;
224 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp;
225 		break;
226 	case I82580_I_PHY_ID:
227 	case I350_I_PHY_ID:
228 		phy->type		= e1000_phy_82580;
229 		phy->ops.check_polarity	= e1000_check_polarity_82577;
230 		phy->ops.get_info	= e1000_get_phy_info_82577;
231 		phy->ops.get_cable_length = e1000_get_cable_length_82577;
232 		phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82580;
233 		phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82580;
234 		phy->ops.force_speed_duplex =
235 				e1000_phy_force_speed_duplex_82577;
236 		break;
237 	case I210_I_PHY_ID:
238 		phy->type		= e1000_phy_i210;
239 		phy->ops.check_polarity	= e1000_check_polarity_m88;
240 		phy->ops.get_info	= e1000_get_phy_info_m88;
241 		phy->ops.get_cable_length = e1000_get_cable_length_m88_gen2;
242 		phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82580;
243 		phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82580;
244 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
245 		break;
246 	case BCM54616_E_PHY_ID:
247 		phy->type		= e1000_phy_none;
248 		break;
249 	default:
250 		ret_val = -E1000_ERR_PHY;
251 		goto out;
252 	}
253 
254 	/* Check if this PHY is configured for media swap. */
255 	switch (phy->id) {
256 	case M88E1112_E_PHY_ID:
257 	{
258 		u16 data;
259 
260 		ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 2);
261 		if (ret_val)
262 			goto out;
263 		ret_val = phy->ops.read_reg(hw, E1000_M88E1112_MAC_CTRL_1,
264 					    &data);
265 		if (ret_val)
266 			goto out;
267 
268 		data = (data & E1000_M88E1112_MAC_CTRL_1_MODE_MASK) >>
269 			E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT;
270 		if (data == E1000_M88E1112_AUTO_COPPER_SGMII ||
271 		    data == E1000_M88E1112_AUTO_COPPER_BASEX)
272 			hw->mac.ops.check_for_link =
273 						e1000_check_for_link_media_swap;
274 		break;
275 	}
276 	case M88E1512_E_PHY_ID:
277 	{
278 		ret_val = e1000_initialize_M88E1512_phy(hw);
279 		break;
280 	}
281 	case M88E1543_E_PHY_ID:
282 	{
283 		ret_val = e1000_initialize_M88E1543_phy(hw);
284 		break;
285 	}
286 	default:
287 		goto out;
288 	}
289 
290 out:
291 	return ret_val;
292 }
293 
294 /**
295  * e1000_init_mac_params_82575 - Initialize MAC function ptrs
296  * @hw: pointer to the HW structure
297  **/
e1000_init_mac_params_82575(struct e1000_hw * hw)298 STATIC s32 e1000_init_mac_params_82575(struct e1000_hw *hw)
299 {
300 	struct e1000_mac_info *mac = &hw->mac;
301 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
302 
303 	DEBUGFUNC("e1000_init_mac_params_82575");
304 
305 	/* Initialize function pointer */
306 	e1000_init_mac_ops_generic(hw);
307 
308 	/* Derives media type */
309 	e1000_get_media_type_82575(hw);
310 	/* Set MTA register count */
311 	mac->mta_reg_count = 128;
312 	/* Set UTA register count */
313 	mac->uta_reg_count = (hw->mac.type == e1000_82575) ? 0 : 128;
314 	/* Set RAR entry count */
315 	mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
316 	if (mac->type == e1000_82576)
317 		mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
318 	if (mac->type == e1000_82580)
319 		mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
320 	if (mac->type == e1000_i350 || mac->type == e1000_i354)
321 		mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
322 
323 	/* Enable EEE default settings for EEE supported devices */
324 	if (mac->type >= e1000_i350)
325 		dev_spec->eee_disable = false;
326 
327 	/* Allow a single clear of the SW semaphore on I210 and newer */
328 	if (mac->type >= e1000_i210)
329 		dev_spec->clear_semaphore_once = true;
330 
331 	/* Set if part includes ASF firmware */
332 	mac->asf_firmware_present = true;
333 	/* FWSM register */
334 	mac->has_fwsm = true;
335 	/* ARC supported; valid only if manageability features are enabled. */
336 	mac->arc_subsystem_valid =
337 		!!(E1000_READ_REG(hw, E1000_FWSM) & E1000_FWSM_MODE_MASK);
338 
339 	/* Function pointers */
340 
341 	/* bus type/speed/width */
342 	mac->ops.get_bus_info = e1000_get_bus_info_pcie_generic;
343 	/* reset */
344 	if (mac->type >= e1000_82580)
345 		mac->ops.reset_hw = e1000_reset_hw_82580;
346 	else
347 		mac->ops.reset_hw = e1000_reset_hw_82575;
348 	/* HW initialization */
349 	if ((mac->type == e1000_i210) || (mac->type == e1000_i211))
350 		mac->ops.init_hw = e1000_init_hw_i210;
351 	else
352 		mac->ops.init_hw = e1000_init_hw_82575;
353 	/* link setup */
354 	mac->ops.setup_link = e1000_setup_link_generic;
355 	/* physical interface link setup */
356 	mac->ops.setup_physical_interface =
357 		(hw->phy.media_type == e1000_media_type_copper)
358 		? e1000_setup_copper_link_82575 : e1000_setup_serdes_link_82575;
359 	/* physical interface shutdown */
360 	mac->ops.shutdown_serdes = e1000_shutdown_serdes_link_82575;
361 	/* physical interface power up */
362 	mac->ops.power_up_serdes = e1000_power_up_serdes_link_82575;
363 	/* check for link */
364 	mac->ops.check_for_link = e1000_check_for_link_82575;
365 	/* read mac address */
366 	mac->ops.read_mac_addr = e1000_read_mac_addr_82575;
367 	/* configure collision distance */
368 	mac->ops.config_collision_dist = e1000_config_collision_dist_82575;
369 	/* multicast address update */
370 	mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
371 	if (hw->mac.type == e1000_i350 || mac->type == e1000_i354) {
372 		/* writing VFTA */
373 		mac->ops.write_vfta = e1000_write_vfta_i350;
374 		/* clearing VFTA */
375 		mac->ops.clear_vfta = e1000_clear_vfta_i350;
376 	} else {
377 		/* writing VFTA */
378 		mac->ops.write_vfta = e1000_write_vfta_generic;
379 		/* clearing VFTA */
380 		mac->ops.clear_vfta = e1000_clear_vfta_generic;
381 	}
382 	if (hw->mac.type >= e1000_82580)
383 		mac->ops.validate_mdi_setting =
384 			e1000_validate_mdi_setting_crossover_generic;
385 	/* ID LED init */
386 	mac->ops.id_led_init = e1000_id_led_init_generic;
387 	/* blink LED */
388 	mac->ops.blink_led = e1000_blink_led_generic;
389 	/* setup LED */
390 	mac->ops.setup_led = e1000_setup_led_generic;
391 	/* cleanup LED */
392 	mac->ops.cleanup_led = e1000_cleanup_led_generic;
393 	/* turn on/off LED */
394 	mac->ops.led_on = e1000_led_on_generic;
395 	mac->ops.led_off = e1000_led_off_generic;
396 	/* clear hardware counters */
397 	mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82575;
398 	/* link info */
399 	mac->ops.get_link_up_info = e1000_get_link_up_info_82575;
400 	/* acquire SW_FW sync */
401 	mac->ops.acquire_swfw_sync = e1000_acquire_swfw_sync_82575;
402 	/* release SW_FW sync */
403 	mac->ops.release_swfw_sync = e1000_release_swfw_sync_82575;
404 	if (mac->type == e1000_i210 || mac->type == e1000_i211) {
405 		mac->ops.acquire_swfw_sync = e1000_acquire_swfw_sync_i210;
406 		mac->ops.release_swfw_sync = e1000_release_swfw_sync_i210;
407 	}
408 
409 	/* set lan id for port to determine which phy lock to use */
410 	hw->mac.ops.set_lan_id(hw);
411 
412 	return E1000_SUCCESS;
413 }
414 
415 /**
416  * e1000_init_nvm_params_82575 - Initialize NVM function ptrs
417  * @hw: pointer to the HW structure
418  **/
e1000_init_nvm_params_82575(struct e1000_hw * hw)419 s32 e1000_init_nvm_params_82575(struct e1000_hw *hw)
420 {
421 	struct e1000_nvm_info *nvm = &hw->nvm;
422 	u32 eecd = E1000_READ_REG(hw, E1000_EECD);
423 	u16 size;
424 
425 	DEBUGFUNC("e1000_init_nvm_params_82575");
426 
427 	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
428 		     E1000_EECD_SIZE_EX_SHIFT);
429 	/* Added to a constant, "size" becomes the left-shift value
430 	 * for setting word_size.
431 	 */
432 	size += NVM_WORD_SIZE_BASE_SHIFT;
433 
434 	/* Just in case size is out of range, cap it to the largest
435 	 * EEPROM size supported
436 	 */
437 	if (size > 15)
438 		size = 15;
439 
440 	nvm->word_size = 1 << size;
441 	if (hw->mac.type < e1000_i210) {
442 		nvm->opcode_bits = 8;
443 		nvm->delay_usec = 1;
444 
445 		switch (nvm->override) {
446 		case e1000_nvm_override_spi_large:
447 			nvm->page_size = 32;
448 			nvm->address_bits = 16;
449 			break;
450 		case e1000_nvm_override_spi_small:
451 			nvm->page_size = 8;
452 			nvm->address_bits = 8;
453 			break;
454 		default:
455 			nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
456 			nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
457 					    16 : 8;
458 			break;
459 		}
460 		if (nvm->word_size == (1 << 15))
461 			nvm->page_size = 128;
462 
463 		nvm->type = e1000_nvm_eeprom_spi;
464 	} else {
465 		nvm->type = e1000_nvm_flash_hw;
466 	}
467 
468 	/* Function Pointers */
469 	nvm->ops.acquire = e1000_acquire_nvm_82575;
470 	nvm->ops.release = e1000_release_nvm_82575;
471 	if (nvm->word_size < (1 << 15))
472 		nvm->ops.read = e1000_read_nvm_eerd;
473 	else
474 		nvm->ops.read = e1000_read_nvm_spi;
475 
476 	nvm->ops.write = e1000_write_nvm_spi;
477 	nvm->ops.validate = e1000_validate_nvm_checksum_generic;
478 	nvm->ops.update = e1000_update_nvm_checksum_generic;
479 	nvm->ops.valid_led_default = e1000_valid_led_default_82575;
480 
481 	/* override generic family function pointers for specific descendants */
482 	switch (hw->mac.type) {
483 	case e1000_82580:
484 		nvm->ops.validate = e1000_validate_nvm_checksum_82580;
485 		nvm->ops.update = e1000_update_nvm_checksum_82580;
486 		break;
487 	case e1000_i350:
488 		nvm->ops.validate = e1000_validate_nvm_checksum_i350;
489 		nvm->ops.update = e1000_update_nvm_checksum_i350;
490 		break;
491 	default:
492 		break;
493 	}
494 
495 	return E1000_SUCCESS;
496 }
497 
498 /**
499  *  e1000_init_function_pointers_82575 - Init func ptrs.
500  *  @hw: pointer to the HW structure
501  *
502  *  Called to initialize all function pointers and parameters.
503  **/
e1000_init_function_pointers_82575(struct e1000_hw * hw)504 void e1000_init_function_pointers_82575(struct e1000_hw *hw)
505 {
506 	DEBUGFUNC("e1000_init_function_pointers_82575");
507 
508 	hw->mac.ops.init_params = e1000_init_mac_params_82575;
509 	hw->nvm.ops.init_params = e1000_init_nvm_params_82575;
510 	hw->phy.ops.init_params = e1000_init_phy_params_82575;
511 	hw->mbx.ops.init_params = e1000_init_mbx_params_pf;
512 }
513 
514 /**
515  *  e1000_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
516  *  @hw: pointer to the HW structure
517  *  @offset: register offset to be read
518  *  @data: pointer to the read data
519  *
520  *  Reads the PHY register at offset using the serial gigabit media independent
521  *  interface and stores the retrieved information in data.
522  **/
e1000_read_phy_reg_sgmii_82575(struct e1000_hw * hw,u32 offset,u16 * data)523 STATIC s32 e1000_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
524 					  u16 *data)
525 {
526 	s32 ret_val = -E1000_ERR_PARAM;
527 
528 	DEBUGFUNC("e1000_read_phy_reg_sgmii_82575");
529 
530 	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
531 		DEBUGOUT1("PHY Address %u is out of range\n", offset);
532 		goto out;
533 	}
534 
535 	ret_val = hw->phy.ops.acquire(hw);
536 	if (ret_val)
537 		goto out;
538 
539 	ret_val = e1000_read_phy_reg_i2c(hw, offset, data);
540 
541 	hw->phy.ops.release(hw);
542 
543 out:
544 	return ret_val;
545 }
546 
547 /**
548  *  e1000_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
549  *  @hw: pointer to the HW structure
550  *  @offset: register offset to write to
551  *  @data: data to write at register offset
552  *
553  *  Writes the data to PHY register at the offset using the serial gigabit
554  *  media independent interface.
555  **/
e1000_write_phy_reg_sgmii_82575(struct e1000_hw * hw,u32 offset,u16 data)556 STATIC s32 e1000_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
557 					   u16 data)
558 {
559 	s32 ret_val = -E1000_ERR_PARAM;
560 
561 	DEBUGFUNC("e1000_write_phy_reg_sgmii_82575");
562 
563 	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
564 		DEBUGOUT1("PHY Address %d is out of range\n", offset);
565 		goto out;
566 	}
567 
568 	ret_val = hw->phy.ops.acquire(hw);
569 	if (ret_val)
570 		goto out;
571 
572 	ret_val = e1000_write_phy_reg_i2c(hw, offset, data);
573 
574 	hw->phy.ops.release(hw);
575 
576 out:
577 	return ret_val;
578 }
579 
580 /**
581  *  e1000_get_phy_id_82575 - Retrieve PHY addr and id
582  *  @hw: pointer to the HW structure
583  *
584  *  Retrieves the PHY address and ID for both PHY's which do and do not use
585  *  sgmi interface.
586  **/
e1000_get_phy_id_82575(struct e1000_hw * hw)587 STATIC s32 e1000_get_phy_id_82575(struct e1000_hw *hw)
588 {
589 	struct e1000_phy_info *phy = &hw->phy;
590 	s32  ret_val = E1000_SUCCESS;
591 	u16 phy_id;
592 	u32 ctrl_ext;
593 	u32 mdic;
594 
595 	DEBUGFUNC("e1000_get_phy_id_82575");
596 
597 	/* some i354 devices need an extra read for phy id */
598 	if (hw->mac.type == e1000_i354)
599 		e1000_get_phy_id(hw);
600 
601 	/*
602 	 * For SGMII PHYs, we try the list of possible addresses until
603 	 * we find one that works.  For non-SGMII PHYs
604 	 * (e.g. integrated copper PHYs), an address of 1 should
605 	 * work.  The result of this function should mean phy->phy_addr
606 	 * and phy->id are set correctly.
607 	 */
608 	if (!e1000_sgmii_active_82575(hw)) {
609 		phy->addr = 1;
610 		ret_val = e1000_get_phy_id(hw);
611 		goto out;
612 	}
613 
614 	if (e1000_sgmii_uses_mdio_82575(hw)) {
615 		switch (hw->mac.type) {
616 		case e1000_82575:
617 		case e1000_82576:
618 			mdic = E1000_READ_REG(hw, E1000_MDIC);
619 			mdic &= E1000_MDIC_PHY_MASK;
620 			phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
621 			break;
622 		case e1000_82580:
623 		case e1000_i350:
624 		case e1000_i354:
625 		case e1000_i210:
626 		case e1000_i211:
627 			mdic = E1000_READ_REG(hw, E1000_MDICNFG);
628 			mdic &= E1000_MDICNFG_PHY_MASK;
629 			phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
630 			break;
631 		default:
632 			ret_val = -E1000_ERR_PHY;
633 			goto out;
634 			break;
635 		}
636 		ret_val = e1000_get_phy_id(hw);
637 		goto out;
638 	}
639 
640 	/* Power on sgmii phy if it is disabled */
641 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
642 	E1000_WRITE_REG(hw, E1000_CTRL_EXT,
643 			ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
644 	E1000_WRITE_FLUSH(hw);
645 	msec_delay(300);
646 
647 	/*
648 	 * The address field in the I2CCMD register is 3 bits and 0 is invalid.
649 	 * Therefore, we need to test 1-7
650 	 */
651 	for (phy->addr = 1; phy->addr < 8; phy->addr++) {
652 		ret_val = e1000_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
653 		if (ret_val == E1000_SUCCESS) {
654 			DEBUGOUT2("Vendor ID 0x%08X read at address %u\n",
655 				  phy_id, phy->addr);
656 			/*
657 			 * At the time of this writing, The M88 part is
658 			 * the only supported SGMII PHY product.
659 			 */
660 			if (phy_id == M88_VENDOR)
661 				break;
662 		} else {
663 			DEBUGOUT1("PHY address %u was unreadable\n",
664 				  phy->addr);
665 		}
666 	}
667 
668 	/* A valid PHY type couldn't be found. */
669 	if (phy->addr == 8) {
670 		phy->addr = 0;
671 		ret_val = -E1000_ERR_PHY;
672 	} else {
673 		ret_val = e1000_get_phy_id(hw);
674 	}
675 
676 	/* restore previous sfp cage power state */
677 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
678 
679 out:
680 	return ret_val;
681 }
682 
683 /**
684  *  e1000_phy_hw_reset_sgmii_82575 - Performs a PHY reset
685  *  @hw: pointer to the HW structure
686  *
687  *  Resets the PHY using the serial gigabit media independent interface.
688  **/
e1000_phy_hw_reset_sgmii_82575(struct e1000_hw * hw)689 STATIC s32 e1000_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
690 {
691 	s32 ret_val = E1000_SUCCESS;
692 	struct e1000_phy_info *phy = &hw->phy;
693 
694 	DEBUGFUNC("e1000_phy_hw_reset_sgmii_82575");
695 
696 	/*
697 	 * This isn't a true "hard" reset, but is the only reset
698 	 * available to us at this time.
699 	 */
700 
701 	DEBUGOUT("Soft resetting SGMII attached PHY...\n");
702 
703 	if (!(hw->phy.ops.write_reg))
704 		goto out;
705 
706 	/*
707 	 * SFP documentation requires the following to configure the SPF module
708 	 * to work on SGMII.  No further documentation is given.
709 	 */
710 	ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
711 	if (ret_val)
712 		goto out;
713 
714 	ret_val = hw->phy.ops.commit(hw);
715 	if (ret_val)
716 		goto out;
717 
718 	if (phy->id == M88E1512_E_PHY_ID)
719 		ret_val = e1000_initialize_M88E1512_phy(hw);
720 out:
721 	return ret_val;
722 }
723 
724 /**
725  *  e1000_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
726  *  @hw: pointer to the HW structure
727  *  @active: true to enable LPLU, false to disable
728  *
729  *  Sets the LPLU D0 state according to the active flag.  When
730  *  activating LPLU this function also disables smart speed
731  *  and vice versa.  LPLU will not be activated unless the
732  *  device autonegotiation advertisement meets standards of
733  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
734  *  This is a function pointer entry point only called by
735  *  PHY setup routines.
736  **/
e1000_set_d0_lplu_state_82575(struct e1000_hw * hw,bool active)737 STATIC s32 e1000_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
738 {
739 	struct e1000_phy_info *phy = &hw->phy;
740 	s32 ret_val = E1000_SUCCESS;
741 	u16 data;
742 
743 	DEBUGFUNC("e1000_set_d0_lplu_state_82575");
744 
745 	if (!(hw->phy.ops.read_reg))
746 		goto out;
747 
748 	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
749 	if (ret_val)
750 		goto out;
751 
752 	if (active) {
753 		data |= IGP02E1000_PM_D0_LPLU;
754 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
755 					     data);
756 		if (ret_val)
757 			goto out;
758 
759 		/* When LPLU is enabled, we should disable SmartSpeed */
760 		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
761 					    &data);
762 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
763 		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
764 					     data);
765 		if (ret_val)
766 			goto out;
767 	} else {
768 		data &= ~IGP02E1000_PM_D0_LPLU;
769 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
770 					     data);
771 		/*
772 		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
773 		 * during Dx states where the power conservation is most
774 		 * important.  During driver activity we should enable
775 		 * SmartSpeed, so performance is maintained.
776 		 */
777 		if (phy->smart_speed == e1000_smart_speed_on) {
778 			ret_val = phy->ops.read_reg(hw,
779 						    IGP01E1000_PHY_PORT_CONFIG,
780 						    &data);
781 			if (ret_val)
782 				goto out;
783 
784 			data |= IGP01E1000_PSCFR_SMART_SPEED;
785 			ret_val = phy->ops.write_reg(hw,
786 						     IGP01E1000_PHY_PORT_CONFIG,
787 						     data);
788 			if (ret_val)
789 				goto out;
790 		} else if (phy->smart_speed == e1000_smart_speed_off) {
791 			ret_val = phy->ops.read_reg(hw,
792 						    IGP01E1000_PHY_PORT_CONFIG,
793 						    &data);
794 			if (ret_val)
795 				goto out;
796 
797 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
798 			ret_val = phy->ops.write_reg(hw,
799 						     IGP01E1000_PHY_PORT_CONFIG,
800 						     data);
801 			if (ret_val)
802 				goto out;
803 		}
804 	}
805 
806 out:
807 	return ret_val;
808 }
809 
810 /**
811  *  e1000_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
812  *  @hw: pointer to the HW structure
813  *  @active: true to enable LPLU, false to disable
814  *
815  *  Sets the LPLU D0 state according to the active flag.  When
816  *  activating LPLU this function also disables smart speed
817  *  and vice versa.  LPLU will not be activated unless the
818  *  device autonegotiation advertisement meets standards of
819  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
820  *  This is a function pointer entry point only called by
821  *  PHY setup routines.
822  **/
e1000_set_d0_lplu_state_82580(struct e1000_hw * hw,bool active)823 STATIC s32 e1000_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
824 {
825 	struct e1000_phy_info *phy = &hw->phy;
826 	u32 data;
827 
828 	DEBUGFUNC("e1000_set_d0_lplu_state_82580");
829 
830 	data = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
831 
832 	if (active) {
833 		data |= E1000_82580_PM_D0_LPLU;
834 
835 		/* When LPLU is enabled, we should disable SmartSpeed */
836 		data &= ~E1000_82580_PM_SPD;
837 	} else {
838 		data &= ~E1000_82580_PM_D0_LPLU;
839 
840 		/*
841 		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
842 		 * during Dx states where the power conservation is most
843 		 * important.  During driver activity we should enable
844 		 * SmartSpeed, so performance is maintained.
845 		 */
846 		if (phy->smart_speed == e1000_smart_speed_on)
847 			data |= E1000_82580_PM_SPD;
848 		else if (phy->smart_speed == e1000_smart_speed_off)
849 			data &= ~E1000_82580_PM_SPD;
850 	}
851 
852 	E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, data);
853 	return E1000_SUCCESS;
854 }
855 
856 /**
857  *  e1000_set_d3_lplu_state_82580 - Sets low power link up state for D3
858  *  @hw: pointer to the HW structure
859  *  @active: boolean used to enable/disable lplu
860  *
861  *  Success returns 0, Failure returns 1
862  *
863  *  The low power link up (lplu) state is set to the power management level D3
864  *  and SmartSpeed is disabled when active is true, else clear lplu for D3
865  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
866  *  is used during Dx states where the power conservation is most important.
867  *  During driver activity, SmartSpeed should be enabled so performance is
868  *  maintained.
869  **/
e1000_set_d3_lplu_state_82580(struct e1000_hw * hw,bool active)870 s32 e1000_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
871 {
872 	struct e1000_phy_info *phy = &hw->phy;
873 	u32 data;
874 
875 	DEBUGFUNC("e1000_set_d3_lplu_state_82580");
876 
877 	data = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
878 
879 	if (!active) {
880 		data &= ~E1000_82580_PM_D3_LPLU;
881 		/*
882 		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
883 		 * during Dx states where the power conservation is most
884 		 * important.  During driver activity we should enable
885 		 * SmartSpeed, so performance is maintained.
886 		 */
887 		if (phy->smart_speed == e1000_smart_speed_on)
888 			data |= E1000_82580_PM_SPD;
889 		else if (phy->smart_speed == e1000_smart_speed_off)
890 			data &= ~E1000_82580_PM_SPD;
891 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
892 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
893 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
894 		data |= E1000_82580_PM_D3_LPLU;
895 		/* When LPLU is enabled, we should disable SmartSpeed */
896 		data &= ~E1000_82580_PM_SPD;
897 	}
898 
899 	E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, data);
900 	return E1000_SUCCESS;
901 }
902 
903 /**
904  *  e1000_acquire_nvm_82575 - Request for access to EEPROM
905  *  @hw: pointer to the HW structure
906  *
907  *  Acquire the necessary semaphores for exclusive access to the EEPROM.
908  *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
909  *  Return successful if access grant bit set, else clear the request for
910  *  EEPROM access and return -E1000_ERR_NVM (-1).
911  **/
e1000_acquire_nvm_82575(struct e1000_hw * hw)912 STATIC s32 e1000_acquire_nvm_82575(struct e1000_hw *hw)
913 {
914 	s32 ret_val = E1000_SUCCESS;
915 
916 	DEBUGFUNC("e1000_acquire_nvm_82575");
917 
918 	ret_val = e1000_acquire_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
919 	if (ret_val)
920 		goto out;
921 
922 	/*
923 	 * Check if there is some access
924 	 * error this access may hook on
925 	 */
926 	if (hw->mac.type == e1000_i350) {
927 		u32 eecd = E1000_READ_REG(hw, E1000_EECD);
928 		if (eecd & (E1000_EECD_BLOCKED | E1000_EECD_ABORT |
929 		    E1000_EECD_TIMEOUT)) {
930 			/* Clear all access error flags */
931 			E1000_WRITE_REG(hw, E1000_EECD, eecd |
932 					E1000_EECD_ERROR_CLR);
933 			DEBUGOUT("Nvm bit banging access error detected and cleared.\n");
934 		}
935 	}
936 
937 	if (hw->mac.type == e1000_82580) {
938 		u32 eecd = E1000_READ_REG(hw, E1000_EECD);
939 		if (eecd & E1000_EECD_BLOCKED) {
940 			/* Clear access error flag */
941 			E1000_WRITE_REG(hw, E1000_EECD, eecd |
942 					E1000_EECD_BLOCKED);
943 			DEBUGOUT("Nvm bit banging access error detected and cleared.\n");
944 		}
945 	}
946 
947 	ret_val = e1000_acquire_nvm_generic(hw);
948 	if (ret_val)
949 		e1000_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
950 
951 out:
952 	return ret_val;
953 }
954 
955 /**
956  *  e1000_release_nvm_82575 - Release exclusive access to EEPROM
957  *  @hw: pointer to the HW structure
958  *
959  *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
960  *  then release the semaphores acquired.
961  **/
e1000_release_nvm_82575(struct e1000_hw * hw)962 STATIC void e1000_release_nvm_82575(struct e1000_hw *hw)
963 {
964 	DEBUGFUNC("e1000_release_nvm_82575");
965 
966 	e1000_release_nvm_generic(hw);
967 
968 	e1000_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
969 }
970 
971 /**
972  *  e1000_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
973  *  @hw: pointer to the HW structure
974  *  @mask: specifies which semaphore to acquire
975  *
976  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
977  *  will also specify which port we're acquiring the lock for.
978  **/
e1000_acquire_swfw_sync_82575(struct e1000_hw * hw,u16 mask)979 STATIC s32 e1000_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
980 {
981 	u32 swfw_sync;
982 	u32 swmask = mask;
983 	u32 fwmask = mask << 16;
984 	s32 ret_val = E1000_SUCCESS;
985 	s32 i = 0, timeout = 200;
986 
987 	DEBUGFUNC("e1000_acquire_swfw_sync_82575");
988 
989 	while (i < timeout) {
990 		if (e1000_get_hw_semaphore_generic(hw)) {
991 			ret_val = -E1000_ERR_SWFW_SYNC;
992 			goto out;
993 		}
994 
995 		swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
996 		if (!(swfw_sync & (fwmask | swmask)))
997 			break;
998 
999 		/*
1000 		 * Firmware currently using resource (fwmask)
1001 		 * or other software thread using resource (swmask)
1002 		 */
1003 		e1000_put_hw_semaphore_generic(hw);
1004 		msec_delay_irq(5);
1005 		i++;
1006 	}
1007 
1008 	if (i == timeout) {
1009 		DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
1010 		ret_val = -E1000_ERR_SWFW_SYNC;
1011 		goto out;
1012 	}
1013 
1014 	swfw_sync |= swmask;
1015 	E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
1016 
1017 	e1000_put_hw_semaphore_generic(hw);
1018 
1019 out:
1020 	return ret_val;
1021 }
1022 
1023 /**
1024  *  e1000_release_swfw_sync_82575 - Release SW/FW semaphore
1025  *  @hw: pointer to the HW structure
1026  *  @mask: specifies which semaphore to acquire
1027  *
1028  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
1029  *  will also specify which port we're releasing the lock for.
1030  **/
e1000_release_swfw_sync_82575(struct e1000_hw * hw,u16 mask)1031 STATIC void e1000_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1032 {
1033 	u32 swfw_sync;
1034 
1035 	DEBUGFUNC("e1000_release_swfw_sync_82575");
1036 
1037 	while (e1000_get_hw_semaphore_generic(hw) != E1000_SUCCESS)
1038 		; /* Empty */
1039 
1040 	swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
1041 	swfw_sync &= (u32)~mask;
1042 	E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
1043 
1044 	e1000_put_hw_semaphore_generic(hw);
1045 }
1046 
1047 /**
1048  *  e1000_get_cfg_done_82575 - Read config done bit
1049  *  @hw: pointer to the HW structure
1050  *
1051  *  Read the management control register for the config done bit for
1052  *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
1053  *  to read the config done bit, so an error is *ONLY* logged and returns
1054  *  E1000_SUCCESS.  If we were to return with error, EEPROM-less silicon
1055  *  would not be able to be reset or change link.
1056  **/
e1000_get_cfg_done_82575(struct e1000_hw * hw)1057 STATIC s32 e1000_get_cfg_done_82575(struct e1000_hw *hw)
1058 {
1059 	s32 timeout = PHY_CFG_TIMEOUT;
1060 	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
1061 
1062 	DEBUGFUNC("e1000_get_cfg_done_82575");
1063 
1064 	if (hw->bus.func == E1000_FUNC_1)
1065 		mask = E1000_NVM_CFG_DONE_PORT_1;
1066 	else if (hw->bus.func == E1000_FUNC_2)
1067 		mask = E1000_NVM_CFG_DONE_PORT_2;
1068 	else if (hw->bus.func == E1000_FUNC_3)
1069 		mask = E1000_NVM_CFG_DONE_PORT_3;
1070 	while (timeout) {
1071 		if (E1000_READ_REG(hw, E1000_EEMNGCTL) & mask)
1072 			break;
1073 		msec_delay(1);
1074 		timeout--;
1075 	}
1076 	if (!timeout)
1077 		DEBUGOUT("MNG configuration cycle has not completed.\n");
1078 
1079 	/* If EEPROM is not marked present, init the PHY manually */
1080 	if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) &&
1081 	    (hw->phy.type == e1000_phy_igp_3))
1082 		e1000_phy_init_script_igp3(hw);
1083 
1084 	return E1000_SUCCESS;
1085 }
1086 
1087 /**
1088  *  e1000_get_link_up_info_82575 - Get link speed/duplex info
1089  *  @hw: pointer to the HW structure
1090  *  @speed: stores the current speed
1091  *  @duplex: stores the current duplex
1092  *
1093  *  This is a wrapper function, if using the serial gigabit media independent
1094  *  interface, use PCS to retrieve the link speed and duplex information.
1095  *  Otherwise, use the generic function to get the link speed and duplex info.
1096  **/
e1000_get_link_up_info_82575(struct e1000_hw * hw,u16 * speed,u16 * duplex)1097 STATIC s32 e1000_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
1098 					u16 *duplex)
1099 {
1100 	s32 ret_val;
1101 
1102 	DEBUGFUNC("e1000_get_link_up_info_82575");
1103 
1104 	if (hw->phy.media_type != e1000_media_type_copper)
1105 		ret_val = e1000_get_pcs_speed_and_duplex_82575(hw, speed,
1106 							       duplex);
1107 	else
1108 		ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed,
1109 								    duplex);
1110 
1111 	return ret_val;
1112 }
1113 
1114 /**
1115  *  e1000_check_for_link_82575 - Check for link
1116  *  @hw: pointer to the HW structure
1117  *
1118  *  If sgmii is enabled, then use the pcs register to determine link, otherwise
1119  *  use the generic interface for determining link.
1120  **/
e1000_check_for_link_82575(struct e1000_hw * hw)1121 STATIC s32 e1000_check_for_link_82575(struct e1000_hw *hw)
1122 {
1123 	s32 ret_val;
1124 	u16 speed, duplex;
1125 
1126 	DEBUGFUNC("e1000_check_for_link_82575");
1127 
1128 	if (hw->phy.media_type != e1000_media_type_copper) {
1129 		ret_val = e1000_get_pcs_speed_and_duplex_82575(hw, &speed,
1130 							       &duplex);
1131 		/*
1132 		 * Use this flag to determine if link needs to be checked or
1133 		 * not.  If we have link clear the flag so that we do not
1134 		 * continue to check for link.
1135 		 */
1136 		hw->mac.get_link_status = !hw->mac.serdes_has_link;
1137 
1138 		/*
1139 		 * Configure Flow Control now that Auto-Neg has completed.
1140 		 * First, we need to restore the desired flow control
1141 		 * settings because we may have had to re-autoneg with a
1142 		 * different link partner.
1143 		 */
1144 		ret_val = e1000_config_fc_after_link_up_generic(hw);
1145 		if (ret_val)
1146 			DEBUGOUT("Error configuring flow control\n");
1147 	} else {
1148 		ret_val = e1000_check_for_copper_link_generic(hw);
1149 	}
1150 
1151 	return ret_val;
1152 }
1153 
1154 /**
1155  *  e1000_check_for_link_media_swap - Check which M88E1112 interface linked
1156  *  @hw: pointer to the HW structure
1157  *
1158  *  Poll the M88E1112 interfaces to see which interface achieved link.
1159  */
e1000_check_for_link_media_swap(struct e1000_hw * hw)1160 STATIC s32 e1000_check_for_link_media_swap(struct e1000_hw *hw)
1161 {
1162 	struct e1000_phy_info *phy = &hw->phy;
1163 	s32 ret_val;
1164 	u16 data;
1165 	u8 port = 0;
1166 
1167 	DEBUGFUNC("e1000_check_for_link_media_swap");
1168 
1169 	/* Check for copper. */
1170 	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
1171 	if (ret_val)
1172 		return ret_val;
1173 
1174 	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
1175 	if (ret_val)
1176 		return ret_val;
1177 
1178 	if (data & E1000_M88E1112_STATUS_LINK)
1179 		port = E1000_MEDIA_PORT_COPPER;
1180 
1181 	/* Check for other. */
1182 	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 1);
1183 	if (ret_val)
1184 		return ret_val;
1185 
1186 	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
1187 	if (ret_val)
1188 		return ret_val;
1189 
1190 	if (data & E1000_M88E1112_STATUS_LINK)
1191 		port = E1000_MEDIA_PORT_OTHER;
1192 
1193 	/* Determine if a swap needs to happen. */
1194 	if (port && (hw->dev_spec._82575.media_port != port)) {
1195 		hw->dev_spec._82575.media_port = port;
1196 		hw->dev_spec._82575.media_changed = true;
1197 	}
1198 
1199 	if (port == E1000_MEDIA_PORT_COPPER) {
1200 		/* reset page to 0 */
1201 		ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
1202 		if (ret_val)
1203 			return ret_val;
1204 		e1000_check_for_link_82575(hw);
1205 	} else {
1206 		e1000_check_for_link_82575(hw);
1207 		/* reset page to 0 */
1208 		ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
1209 		if (ret_val)
1210 			return ret_val;
1211 	}
1212 
1213 	return E1000_SUCCESS;
1214 }
1215 
1216 /**
1217  *  e1000_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1218  *  @hw: pointer to the HW structure
1219  **/
e1000_power_up_serdes_link_82575(struct e1000_hw * hw)1220 STATIC void e1000_power_up_serdes_link_82575(struct e1000_hw *hw)
1221 {
1222 	u32 reg;
1223 
1224 	DEBUGFUNC("e1000_power_up_serdes_link_82575");
1225 
1226 	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1227 	    !e1000_sgmii_active_82575(hw))
1228 		return;
1229 
1230 	/* Enable PCS to turn on link */
1231 	reg = E1000_READ_REG(hw, E1000_PCS_CFG0);
1232 	reg |= E1000_PCS_CFG_PCS_EN;
1233 	E1000_WRITE_REG(hw, E1000_PCS_CFG0, reg);
1234 
1235 	/* Power up the laser */
1236 	reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1237 	reg &= ~E1000_CTRL_EXT_SDP3_DATA;
1238 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
1239 
1240 	/* flush the write to verify completion */
1241 	E1000_WRITE_FLUSH(hw);
1242 	msec_delay(1);
1243 }
1244 
1245 /**
1246  *  e1000_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1247  *  @hw: pointer to the HW structure
1248  *  @speed: stores the current speed
1249  *  @duplex: stores the current duplex
1250  *
1251  *  Using the physical coding sub-layer (PCS), retrieve the current speed and
1252  *  duplex, then store the values in the pointers provided.
1253  **/
e1000_get_pcs_speed_and_duplex_82575(struct e1000_hw * hw,u16 * speed,u16 * duplex)1254 STATIC s32 e1000_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw,
1255 						u16 *speed, u16 *duplex)
1256 {
1257 	struct e1000_mac_info *mac = &hw->mac;
1258 	u32 pcs;
1259 	u32 status;
1260 
1261 	DEBUGFUNC("e1000_get_pcs_speed_and_duplex_82575");
1262 
1263 	/*
1264 	 * Read the PCS Status register for link state. For non-copper mode,
1265 	 * the status register is not accurate. The PCS status register is
1266 	 * used instead.
1267 	 */
1268 	pcs = E1000_READ_REG(hw, E1000_PCS_LSTAT);
1269 
1270 	/*
1271 	 * The link up bit determines when link is up on autoneg.
1272 	 */
1273 	if (pcs & E1000_PCS_LSTS_LINK_OK) {
1274 		mac->serdes_has_link = true;
1275 
1276 		/* Detect and store PCS speed */
1277 		if (pcs & E1000_PCS_LSTS_SPEED_1000)
1278 			*speed = SPEED_1000;
1279 		else if (pcs & E1000_PCS_LSTS_SPEED_100)
1280 			*speed = SPEED_100;
1281 		else
1282 			*speed = SPEED_10;
1283 
1284 		/* Detect and store PCS duplex */
1285 		if (pcs & E1000_PCS_LSTS_DUPLEX_FULL)
1286 			*duplex = FULL_DUPLEX;
1287 		else
1288 			*duplex = HALF_DUPLEX;
1289 
1290 		/* Check if it is an I354 2.5Gb backplane connection. */
1291 		if (mac->type == e1000_i354) {
1292 			status = E1000_READ_REG(hw, E1000_STATUS);
1293 			if ((status & E1000_STATUS_2P5_SKU) &&
1294 			    !(status & E1000_STATUS_2P5_SKU_OVER)) {
1295 				*speed = SPEED_2500;
1296 				*duplex = FULL_DUPLEX;
1297 				DEBUGOUT("2500 Mbs, ");
1298 				DEBUGOUT("Full Duplex\n");
1299 			}
1300 		}
1301 
1302 	} else {
1303 		mac->serdes_has_link = false;
1304 		*speed = 0;
1305 		*duplex = 0;
1306 	}
1307 
1308 	return E1000_SUCCESS;
1309 }
1310 
1311 /**
1312  *  e1000_shutdown_serdes_link_82575 - Remove link during power down
1313  *  @hw: pointer to the HW structure
1314  *
1315  *  In the case of serdes shut down sfp and PCS on driver unload
1316  *  when management pass thru is not enabled.
1317  **/
e1000_shutdown_serdes_link_82575(struct e1000_hw * hw)1318 void e1000_shutdown_serdes_link_82575(struct e1000_hw *hw)
1319 {
1320 	u32 reg;
1321 
1322 	DEBUGFUNC("e1000_shutdown_serdes_link_82575");
1323 
1324 	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1325 	    !e1000_sgmii_active_82575(hw))
1326 		return;
1327 
1328 	if (!e1000_enable_mng_pass_thru(hw)) {
1329 		/* Disable PCS to turn off link */
1330 		reg = E1000_READ_REG(hw, E1000_PCS_CFG0);
1331 		reg &= ~E1000_PCS_CFG_PCS_EN;
1332 		E1000_WRITE_REG(hw, E1000_PCS_CFG0, reg);
1333 
1334 		/* shutdown the laser */
1335 		reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1336 		reg |= E1000_CTRL_EXT_SDP3_DATA;
1337 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
1338 
1339 		/* flush the write to verify completion */
1340 		E1000_WRITE_FLUSH(hw);
1341 		msec_delay(1);
1342 	}
1343 
1344 	return;
1345 }
1346 
1347 /**
1348  *  e1000_reset_hw_82575 - Reset hardware
1349  *  @hw: pointer to the HW structure
1350  *
1351  *  This resets the hardware into a known state.
1352  **/
e1000_reset_hw_82575(struct e1000_hw * hw)1353 STATIC s32 e1000_reset_hw_82575(struct e1000_hw *hw)
1354 {
1355 	u32 ctrl;
1356 	s32 ret_val;
1357 
1358 	DEBUGFUNC("e1000_reset_hw_82575");
1359 
1360 	/*
1361 	 * Prevent the PCI-E bus from sticking if there is no TLP connection
1362 	 * on the last TLP read/write transaction when MAC is reset.
1363 	 */
1364 	ret_val = e1000_disable_pcie_master_generic(hw);
1365 	if (ret_val)
1366 		DEBUGOUT("PCI-E Master disable polling has failed.\n");
1367 
1368 	/* set the completion timeout for interface */
1369 	ret_val = e1000_set_pcie_completion_timeout(hw);
1370 	if (ret_val)
1371 		DEBUGOUT("PCI-E Set completion timeout has failed.\n");
1372 
1373 	DEBUGOUT("Masking off all interrupts\n");
1374 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
1375 
1376 	E1000_WRITE_REG(hw, E1000_RCTL, 0);
1377 	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
1378 	E1000_WRITE_FLUSH(hw);
1379 
1380 	msec_delay(10);
1381 
1382 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
1383 
1384 	DEBUGOUT("Issuing a global reset to MAC\n");
1385 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
1386 
1387 	ret_val = e1000_get_auto_rd_done_generic(hw);
1388 	if (ret_val) {
1389 		/*
1390 		 * When auto config read does not complete, do not
1391 		 * return with an error. This can happen in situations
1392 		 * where there is no eeprom and prevents getting link.
1393 		 */
1394 		DEBUGOUT("Auto Read Done did not complete\n");
1395 	}
1396 
1397 	/* If EEPROM is not present, run manual init scripts */
1398 	if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES))
1399 		e1000_reset_init_script_82575(hw);
1400 
1401 	/* Clear any pending interrupt events. */
1402 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
1403 	E1000_READ_REG(hw, E1000_ICR);
1404 
1405 	/* Install any alternate MAC address into RAR0 */
1406 	ret_val = e1000_check_alt_mac_addr_generic(hw);
1407 
1408 	return ret_val;
1409 }
1410 
1411 /**
1412  * e1000_init_hw_82575 - Initialize hardware
1413  * @hw: pointer to the HW structure
1414  *
1415  * This inits the hardware readying it for operation.
1416  **/
e1000_init_hw_82575(struct e1000_hw * hw)1417 STATIC s32 e1000_init_hw_82575(struct e1000_hw *hw)
1418 {
1419 	struct e1000_mac_info *mac = &hw->mac;
1420 	s32 ret_val;
1421 
1422 	DEBUGFUNC("e1000_init_hw_82575");
1423 
1424 	/* Initialize identification LED */
1425 	ret_val = mac->ops.id_led_init(hw);
1426 	if (ret_val) {
1427 		DEBUGOUT("Error initializing identification LED\n");
1428 		/* This is not fatal and we should not stop init due to this */
1429 	}
1430 
1431 	/* Disabling VLAN filtering */
1432 	DEBUGOUT("Initializing the IEEE VLAN\n");
1433 	mac->ops.clear_vfta(hw);
1434 
1435 	ret_val = e1000_init_hw_base(hw);
1436 
1437 	/* Set the default MTU size */
1438 	hw->dev_spec._82575.mtu = 1500;
1439 
1440 	/* Clear all of the statistics registers (clear on read).  It is
1441 	 * important that we do this after we have tried to establish link
1442 	 * because the symbol error count will increment wildly if there
1443 	 * is no link.
1444 	 */
1445 	e1000_clear_hw_cntrs_82575(hw);
1446 
1447 	return ret_val;
1448 }
1449 /**
1450  *  e1000_setup_copper_link_82575 - Configure copper link settings
1451  *  @hw: pointer to the HW structure
1452  *
1453  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1454  *  for link, once link is established calls to configure collision distance
1455  *  and flow control are called.
1456  **/
e1000_setup_copper_link_82575(struct e1000_hw * hw)1457 STATIC s32 e1000_setup_copper_link_82575(struct e1000_hw *hw)
1458 {
1459 	u32 phpm_reg;
1460 	s32 ret_val;
1461 	u32 ctrl;
1462 
1463 	DEBUGFUNC("e1000_setup_copper_link_82575");
1464 
1465 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
1466 	ctrl |= E1000_CTRL_SLU;
1467 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1468 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1469 
1470 	/* Clear Go Link Disconnect bit on supported devices */
1471 	switch (hw->mac.type) {
1472 	case e1000_82580:
1473 	case e1000_i350:
1474 	case e1000_i210:
1475 	case e1000_i211:
1476 		phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
1477 		phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1478 		E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg);
1479 		break;
1480 	default:
1481 		break;
1482 	}
1483 
1484 	ret_val = e1000_setup_serdes_link_82575(hw);
1485 	if (ret_val)
1486 		goto out;
1487 
1488 	if (e1000_sgmii_active_82575(hw)) {
1489 		/* allow time for SFP cage time to power up phy */
1490 		msec_delay(300);
1491 
1492 		ret_val = hw->phy.ops.reset(hw);
1493 		if (ret_val) {
1494 			DEBUGOUT("Error resetting the PHY.\n");
1495 			goto out;
1496 		}
1497 	}
1498 	switch (hw->phy.type) {
1499 	case e1000_phy_i210:
1500 	/* Fall through */
1501 	case e1000_phy_m88:
1502 		switch (hw->phy.id) {
1503 		case I347AT4_E_PHY_ID:
1504 		/* Fall through */
1505 		case M88E1112_E_PHY_ID:
1506 		/* Fall through */
1507 		case M88E1340M_E_PHY_ID:
1508 		/* Fall through */
1509 		case M88E1543_E_PHY_ID:
1510 		/* Fall through */
1511 		case M88E1512_E_PHY_ID:
1512 		/* Fall through */
1513 		case I210_I_PHY_ID:
1514 		/* Fall through */
1515 			ret_val = e1000_copper_link_setup_m88_gen2(hw);
1516 			break;
1517 		default:
1518 			ret_val = e1000_copper_link_setup_m88(hw);
1519 			break;
1520 		}
1521 		break;
1522 	case e1000_phy_igp_3:
1523 		ret_val = e1000_copper_link_setup_igp(hw);
1524 		break;
1525 	case e1000_phy_82580:
1526 		ret_val = e1000_copper_link_setup_82577(hw);
1527 		break;
1528 	default:
1529 		ret_val = -E1000_ERR_PHY;
1530 		break;
1531 	}
1532 
1533 	if (ret_val)
1534 		goto out;
1535 
1536 	ret_val = e1000_setup_copper_link_generic(hw);
1537 out:
1538 	return ret_val;
1539 }
1540 
1541 /**
1542  *  e1000_setup_serdes_link_82575 - Setup link for serdes
1543  *  @hw: pointer to the HW structure
1544  *
1545  *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
1546  *  used on copper connections where the serialized gigabit media independent
1547  *  interface (sgmii), or serdes fiber is being used.  Configures the link
1548  *  for auto-negotiation or forces speed/duplex.
1549  **/
e1000_setup_serdes_link_82575(struct e1000_hw * hw)1550 STATIC s32 e1000_setup_serdes_link_82575(struct e1000_hw *hw)
1551 {
1552 	u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
1553 	bool pcs_autoneg;
1554 	s32 ret_val = E1000_SUCCESS;
1555 	u16 data;
1556 
1557 	DEBUGFUNC("e1000_setup_serdes_link_82575");
1558 
1559 	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1560 	    !e1000_sgmii_active_82575(hw))
1561 		return ret_val;
1562 
1563 	/*
1564 	 * On the 82575, SerDes loopback mode persists until it is
1565 	 * explicitly turned off or a power cycle is performed.  A read to
1566 	 * the register does not indicate its status.  Therefore, we ensure
1567 	 * loopback mode is disabled during initialization.
1568 	 */
1569 	E1000_WRITE_REG(hw, E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1570 
1571 	/* power on the sfp cage if present */
1572 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1573 	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1574 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
1575 
1576 	ctrl_reg = E1000_READ_REG(hw, E1000_CTRL);
1577 	ctrl_reg |= E1000_CTRL_SLU;
1578 
1579 	/* set both sw defined pins on 82575/82576*/
1580 	if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576)
1581 		ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1582 
1583 	reg = E1000_READ_REG(hw, E1000_PCS_LCTL);
1584 
1585 	/* default pcs_autoneg to the same setting as mac autoneg */
1586 	pcs_autoneg = hw->mac.autoneg;
1587 
1588 	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1589 	case E1000_CTRL_EXT_LINK_MODE_SGMII:
1590 		/* sgmii mode lets the phy handle forcing speed/duplex */
1591 		pcs_autoneg = true;
1592 		/* autoneg time out should be disabled for SGMII mode */
1593 		reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1594 		break;
1595 	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1596 		/* disable PCS autoneg and support parallel detect only */
1597 		pcs_autoneg = false;
1598 		/* Fall through */
1599 	default:
1600 		if (hw->mac.type == e1000_82575 ||
1601 		    hw->mac.type == e1000_82576) {
1602 			ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1603 			if (ret_val) {
1604 				DEBUGOUT("NVM Read Error\n");
1605 				return ret_val;
1606 			}
1607 
1608 			if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1609 				pcs_autoneg = false;
1610 		}
1611 
1612 		/*
1613 		 * non-SGMII modes only supports a speed of 1000/Full for the
1614 		 * link so it is best to just force the MAC and let the pcs
1615 		 * link either autoneg or be forced to 1000/Full
1616 		 */
1617 		ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1618 			    E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1619 
1620 		/* set speed of 1000/Full if speed/duplex is forced */
1621 		reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1622 		break;
1623 	}
1624 
1625 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl_reg);
1626 
1627 	/*
1628 	 * New SerDes mode allows for forcing speed or autonegotiating speed
1629 	 * at 1gb. Autoneg should be default set by most drivers. This is the
1630 	 * mode that will be compatible with older link partners and switches.
1631 	 * However, both are supported by the hardware and some drivers/tools.
1632 	 */
1633 	reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1634 		 E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1635 
1636 	if (pcs_autoneg) {
1637 		/* Set PCS register for autoneg */
1638 		reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1639 		       E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1640 
1641 		/* Disable force flow control for autoneg */
1642 		reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
1643 
1644 		/* Configure flow control advertisement for autoneg */
1645 		anadv_reg = E1000_READ_REG(hw, E1000_PCS_ANADV);
1646 		anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
1647 
1648 		switch (hw->fc.requested_mode) {
1649 		case e1000_fc_full:
1650 		case e1000_fc_rx_pause:
1651 			anadv_reg |= E1000_TXCW_ASM_DIR;
1652 			anadv_reg |= E1000_TXCW_PAUSE;
1653 			break;
1654 		case e1000_fc_tx_pause:
1655 			anadv_reg |= E1000_TXCW_ASM_DIR;
1656 			break;
1657 		default:
1658 			break;
1659 		}
1660 
1661 		E1000_WRITE_REG(hw, E1000_PCS_ANADV, anadv_reg);
1662 
1663 		DEBUGOUT1("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1664 	} else {
1665 		/* Set PCS register for forced link */
1666 		reg |= E1000_PCS_LCTL_FSD;	/* Force Speed */
1667 
1668 		/* Force flow control for forced link */
1669 		reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1670 
1671 		DEBUGOUT1("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1672 	}
1673 
1674 	E1000_WRITE_REG(hw, E1000_PCS_LCTL, reg);
1675 
1676 	if (!pcs_autoneg && !e1000_sgmii_active_82575(hw))
1677 		e1000_force_mac_fc_generic(hw);
1678 
1679 	return ret_val;
1680 }
1681 
1682 /**
1683  *  e1000_get_media_type_82575 - derives current media type.
1684  *  @hw: pointer to the HW structure
1685  *
1686  *  The media type is chosen reflecting few settings.
1687  *  The following are taken into account:
1688  *  - link mode set in the current port Init Control Word #3
1689  *  - current link mode settings in CSR register
1690  *  - MDIO vs. I2C PHY control interface chosen
1691  *  - SFP module media type
1692  **/
e1000_get_media_type_82575(struct e1000_hw * hw)1693 STATIC s32 e1000_get_media_type_82575(struct e1000_hw *hw)
1694 {
1695 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1696 	s32 ret_val = E1000_SUCCESS;
1697 	u32 ctrl_ext = 0;
1698 	u32 link_mode = 0;
1699 
1700 	/* Set internal phy as default */
1701 	dev_spec->sgmii_active = false;
1702 	dev_spec->module_plugged = false;
1703 
1704 	/* Get CSR setting */
1705 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1706 
1707 	/* extract link mode setting */
1708 	link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK;
1709 
1710 	switch (link_mode) {
1711 	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1712 		hw->phy.media_type = e1000_media_type_internal_serdes;
1713 		break;
1714 	case E1000_CTRL_EXT_LINK_MODE_GMII:
1715 		hw->phy.media_type = e1000_media_type_copper;
1716 		break;
1717 	case E1000_CTRL_EXT_LINK_MODE_SGMII:
1718 		/* Get phy control interface type set (MDIO vs. I2C)*/
1719 		if (e1000_sgmii_uses_mdio_82575(hw)) {
1720 			hw->phy.media_type = e1000_media_type_copper;
1721 			dev_spec->sgmii_active = true;
1722 			break;
1723 		}
1724 		/* Fall through for I2C based SGMII */
1725 	case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
1726 		/* read media type from SFP EEPROM */
1727 		ret_val = e1000_set_sfp_media_type_82575(hw);
1728 		if ((ret_val != E1000_SUCCESS) ||
1729 		    (hw->phy.media_type == e1000_media_type_unknown)) {
1730 			/*
1731 			 * If media type was not identified then return media
1732 			 * type defined by the CTRL_EXT settings.
1733 			 */
1734 			hw->phy.media_type = e1000_media_type_internal_serdes;
1735 
1736 			if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) {
1737 				hw->phy.media_type = e1000_media_type_copper;
1738 				dev_spec->sgmii_active = true;
1739 			}
1740 
1741 			break;
1742 		}
1743 
1744 		/* do not change link mode for 100BaseFX */
1745 		if (dev_spec->eth_flags.e100_base_fx)
1746 			break;
1747 
1748 		/* change current link mode setting */
1749 		ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
1750 
1751 		if (hw->phy.media_type == e1000_media_type_copper)
1752 			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII;
1753 		else
1754 			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1755 
1756 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
1757 
1758 		break;
1759 	}
1760 
1761 	return ret_val;
1762 }
1763 
1764 /**
1765  *  e1000_set_sfp_media_type_82575 - derives SFP module media type.
1766  *  @hw: pointer to the HW structure
1767  *
1768  *  The media type is chosen based on SFP module.
1769  *  compatibility flags retrieved from SFP ID EEPROM.
1770  **/
e1000_set_sfp_media_type_82575(struct e1000_hw * hw)1771 STATIC s32 e1000_set_sfp_media_type_82575(struct e1000_hw *hw)
1772 {
1773 	s32 ret_val = E1000_ERR_CONFIG;
1774 	u32 ctrl_ext = 0;
1775 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1776 	struct sfp_e1000_flags *eth_flags = &dev_spec->eth_flags;
1777 	u8 tranceiver_type = 0;
1778 	s32 timeout = 3;
1779 
1780 	/* Turn I2C interface ON and power on sfp cage */
1781 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1782 	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1783 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA);
1784 
1785 	E1000_WRITE_FLUSH(hw);
1786 
1787 	/* Read SFP module data */
1788 	while (timeout) {
1789 		ret_val = e1000_read_sfp_data_byte(hw,
1790 			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET),
1791 			&tranceiver_type);
1792 		if (ret_val == E1000_SUCCESS)
1793 			break;
1794 		msec_delay(100);
1795 		timeout--;
1796 	}
1797 	if (ret_val != E1000_SUCCESS)
1798 		goto out;
1799 
1800 	ret_val = e1000_read_sfp_data_byte(hw,
1801 			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET),
1802 			(u8 *)eth_flags);
1803 	if (ret_val != E1000_SUCCESS)
1804 		goto out;
1805 
1806 	/* Check if there is some SFP module plugged and powered */
1807 	if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) ||
1808 	    (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) {
1809 		dev_spec->module_plugged = true;
1810 		if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) {
1811 			hw->phy.media_type = e1000_media_type_internal_serdes;
1812 		} else if (eth_flags->e100_base_fx) {
1813 			dev_spec->sgmii_active = true;
1814 			hw->phy.media_type = e1000_media_type_internal_serdes;
1815 		} else if (eth_flags->e1000_base_t) {
1816 			dev_spec->sgmii_active = true;
1817 			hw->phy.media_type = e1000_media_type_copper;
1818 		} else {
1819 			hw->phy.media_type = e1000_media_type_unknown;
1820 			DEBUGOUT("PHY module has not been recognized\n");
1821 			goto out;
1822 		}
1823 	} else {
1824 		hw->phy.media_type = e1000_media_type_unknown;
1825 	}
1826 	ret_val = E1000_SUCCESS;
1827 out:
1828 	/* Restore I2C interface setting */
1829 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
1830 	return ret_val;
1831 }
1832 
1833 /**
1834  *  e1000_valid_led_default_82575 - Verify a valid default LED config
1835  *  @hw: pointer to the HW structure
1836  *  @data: pointer to the NVM (EEPROM)
1837  *
1838  *  Read the EEPROM for the current default LED configuration.  If the
1839  *  LED configuration is not valid, set to a valid LED configuration.
1840  **/
e1000_valid_led_default_82575(struct e1000_hw * hw,u16 * data)1841 STATIC s32 e1000_valid_led_default_82575(struct e1000_hw *hw, u16 *data)
1842 {
1843 	s32 ret_val;
1844 
1845 	DEBUGFUNC("e1000_valid_led_default_82575");
1846 
1847 	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
1848 	if (ret_val) {
1849 		DEBUGOUT("NVM Read Error\n");
1850 		goto out;
1851 	}
1852 
1853 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
1854 		switch (hw->phy.media_type) {
1855 		case e1000_media_type_internal_serdes:
1856 			*data = ID_LED_DEFAULT_82575_SERDES;
1857 			break;
1858 		case e1000_media_type_copper:
1859 		default:
1860 			*data = ID_LED_DEFAULT;
1861 			break;
1862 		}
1863 	}
1864 out:
1865 	return ret_val;
1866 }
1867 
1868 /**
1869  *  e1000_sgmii_active_82575 - Return sgmii state
1870  *  @hw: pointer to the HW structure
1871  *
1872  *  82575 silicon has a serialized gigabit media independent interface (sgmii)
1873  *  which can be enabled for use in the embedded applications.  Simply
1874  *  return the current state of the sgmii interface.
1875  **/
e1000_sgmii_active_82575(struct e1000_hw * hw)1876 STATIC bool e1000_sgmii_active_82575(struct e1000_hw *hw)
1877 {
1878 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1879 	return dev_spec->sgmii_active;
1880 }
1881 
1882 /**
1883  *  e1000_reset_init_script_82575 - Inits HW defaults after reset
1884  *  @hw: pointer to the HW structure
1885  *
1886  *  Inits recommended HW defaults after a reset when there is no EEPROM
1887  *  detected. This is only for the 82575.
1888  **/
e1000_reset_init_script_82575(struct e1000_hw * hw)1889 s32 e1000_reset_init_script_82575(struct e1000_hw *hw)
1890 {
1891 	DEBUGFUNC("e1000_reset_init_script_82575");
1892 
1893 	if (hw->mac.type == e1000_82575) {
1894 		DEBUGOUT("Running reset init script for 82575\n");
1895 		/* SerDes configuration via SERDESCTRL */
1896 		e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x00, 0x0C);
1897 		e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x01, 0x78);
1898 		e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x1B, 0x23);
1899 		e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x23, 0x15);
1900 
1901 		/* CCM configuration via CCMCTL register */
1902 		e1000_write_8bit_ctrl_reg_generic(hw, E1000_CCMCTL, 0x14, 0x00);
1903 		e1000_write_8bit_ctrl_reg_generic(hw, E1000_CCMCTL, 0x10, 0x00);
1904 
1905 		/* PCIe lanes configuration */
1906 		e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x00, 0xEC);
1907 		e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x61, 0xDF);
1908 		e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x34, 0x05);
1909 		e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x2F, 0x81);
1910 
1911 		/* PCIe PLL Configuration */
1912 		e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x02, 0x47);
1913 		e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x14, 0x00);
1914 		e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x10, 0x00);
1915 	}
1916 
1917 	return E1000_SUCCESS;
1918 }
1919 
1920 /**
1921  *  e1000_read_mac_addr_82575 - Read device MAC address
1922  *  @hw: pointer to the HW structure
1923  **/
e1000_read_mac_addr_82575(struct e1000_hw * hw)1924 STATIC s32 e1000_read_mac_addr_82575(struct e1000_hw *hw)
1925 {
1926 	s32 ret_val;
1927 
1928 	DEBUGFUNC("e1000_read_mac_addr_82575");
1929 
1930 	/*
1931 	 * If there's an alternate MAC address place it in RAR0
1932 	 * so that it will override the Si installed default perm
1933 	 * address.
1934 	 */
1935 	ret_val = e1000_check_alt_mac_addr_generic(hw);
1936 	if (ret_val)
1937 		goto out;
1938 
1939 	ret_val = e1000_read_mac_addr_generic(hw);
1940 
1941 out:
1942 	return ret_val;
1943 }
1944 
1945 /**
1946  *  e1000_config_collision_dist_82575 - Configure collision distance
1947  *  @hw: pointer to the HW structure
1948  *
1949  *  Configures the collision distance to the default value and is used
1950  *  during link setup.
1951  **/
e1000_config_collision_dist_82575(struct e1000_hw * hw)1952 STATIC void e1000_config_collision_dist_82575(struct e1000_hw *hw)
1953 {
1954 	u32 tctl_ext;
1955 
1956 	DEBUGFUNC("e1000_config_collision_dist_82575");
1957 
1958 	tctl_ext = E1000_READ_REG(hw, E1000_TCTL_EXT);
1959 
1960 	tctl_ext &= ~E1000_TCTL_EXT_COLD;
1961 	tctl_ext |= E1000_COLLISION_DISTANCE << E1000_TCTL_EXT_COLD_SHIFT;
1962 
1963 	E1000_WRITE_REG(hw, E1000_TCTL_EXT, tctl_ext);
1964 	E1000_WRITE_FLUSH(hw);
1965 }
1966 
1967 /**
1968  *  e1000_clear_hw_cntrs_82575 - Clear device specific hardware counters
1969  *  @hw: pointer to the HW structure
1970  *
1971  *  Clears the hardware counters by reading the counter registers.
1972  **/
e1000_clear_hw_cntrs_82575(struct e1000_hw * hw)1973 STATIC void e1000_clear_hw_cntrs_82575(struct e1000_hw *hw)
1974 {
1975 	DEBUGFUNC("e1000_clear_hw_cntrs_82575");
1976 
1977 	e1000_clear_hw_cntrs_base_generic(hw);
1978 
1979 	E1000_READ_REG(hw, E1000_PRC64);
1980 	E1000_READ_REG(hw, E1000_PRC127);
1981 	E1000_READ_REG(hw, E1000_PRC255);
1982 	E1000_READ_REG(hw, E1000_PRC511);
1983 	E1000_READ_REG(hw, E1000_PRC1023);
1984 	E1000_READ_REG(hw, E1000_PRC1522);
1985 	E1000_READ_REG(hw, E1000_PTC64);
1986 	E1000_READ_REG(hw, E1000_PTC127);
1987 	E1000_READ_REG(hw, E1000_PTC255);
1988 	E1000_READ_REG(hw, E1000_PTC511);
1989 	E1000_READ_REG(hw, E1000_PTC1023);
1990 	E1000_READ_REG(hw, E1000_PTC1522);
1991 
1992 	E1000_READ_REG(hw, E1000_ALGNERRC);
1993 	E1000_READ_REG(hw, E1000_RXERRC);
1994 	E1000_READ_REG(hw, E1000_TNCRS);
1995 	E1000_READ_REG(hw, E1000_CEXTERR);
1996 	E1000_READ_REG(hw, E1000_TSCTC);
1997 	E1000_READ_REG(hw, E1000_TSCTFC);
1998 
1999 	E1000_READ_REG(hw, E1000_MGTPRC);
2000 	E1000_READ_REG(hw, E1000_MGTPDC);
2001 	E1000_READ_REG(hw, E1000_MGTPTC);
2002 
2003 	E1000_READ_REG(hw, E1000_IAC);
2004 	E1000_READ_REG(hw, E1000_ICRXOC);
2005 
2006 	E1000_READ_REG(hw, E1000_ICRXPTC);
2007 	E1000_READ_REG(hw, E1000_ICRXATC);
2008 	E1000_READ_REG(hw, E1000_ICTXPTC);
2009 	E1000_READ_REG(hw, E1000_ICTXATC);
2010 	E1000_READ_REG(hw, E1000_ICTXQEC);
2011 	E1000_READ_REG(hw, E1000_ICTXQMTC);
2012 	E1000_READ_REG(hw, E1000_ICRXDMTC);
2013 
2014 	E1000_READ_REG(hw, E1000_CBTMPC);
2015 	E1000_READ_REG(hw, E1000_HTDPMC);
2016 	E1000_READ_REG(hw, E1000_CBRMPC);
2017 	E1000_READ_REG(hw, E1000_RPTHC);
2018 	E1000_READ_REG(hw, E1000_HGPTC);
2019 	E1000_READ_REG(hw, E1000_HTCBDPC);
2020 	E1000_READ_REG(hw, E1000_HGORCL);
2021 	E1000_READ_REG(hw, E1000_HGORCH);
2022 	E1000_READ_REG(hw, E1000_HGOTCL);
2023 	E1000_READ_REG(hw, E1000_HGOTCH);
2024 	E1000_READ_REG(hw, E1000_LENERRS);
2025 
2026 	/* This register should not be read in copper configurations */
2027 	if ((hw->phy.media_type == e1000_media_type_internal_serdes) ||
2028 	    e1000_sgmii_active_82575(hw))
2029 		E1000_READ_REG(hw, E1000_SCVPC);
2030 }
2031 
2032 /**
2033  *  e1000_set_pcie_completion_timeout - set pci-e completion timeout
2034  *  @hw: pointer to the HW structure
2035  *
2036  *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
2037  *  however the hardware default for these parts is 500us to 1ms which is less
2038  *  than the 10ms recommended by the pci-e spec.  To address this we need to
2039  *  increase the value to either 10ms to 200ms for capability version 1 config,
2040  *  or 16ms to 55ms for version 2.
2041  **/
e1000_set_pcie_completion_timeout(struct e1000_hw * hw)2042 STATIC s32 e1000_set_pcie_completion_timeout(struct e1000_hw *hw)
2043 {
2044 	u32 gcr = E1000_READ_REG(hw, E1000_GCR);
2045 	s32 ret_val = E1000_SUCCESS;
2046 	u16 pcie_devctl2;
2047 
2048 	/* only take action if timeout value is defaulted to 0 */
2049 	if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
2050 		goto out;
2051 
2052 	/*
2053 	 * if capababilities version is type 1 we can write the
2054 	 * timeout of 10ms to 200ms through the GCR register
2055 	 */
2056 	if (!(gcr & E1000_GCR_CAP_VER2)) {
2057 		gcr |= E1000_GCR_CMPL_TMOUT_10ms;
2058 		goto out;
2059 	}
2060 
2061 	/*
2062 	 * for version 2 capabilities we need to write the config space
2063 	 * directly in order to set the completion timeout value for
2064 	 * 16ms to 55ms
2065 	 */
2066 	ret_val = e1000_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2067 					  &pcie_devctl2);
2068 	if (ret_val)
2069 		goto out;
2070 
2071 	pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
2072 
2073 	ret_val = e1000_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2074 					   &pcie_devctl2);
2075 out:
2076 	/* disable completion timeout resend */
2077 	gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
2078 
2079 	E1000_WRITE_REG(hw, E1000_GCR, gcr);
2080 	return ret_val;
2081 }
2082 
2083 /**
2084  *  e1000_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
2085  *  @hw: pointer to the hardware struct
2086  *  @enable: state to enter, either enabled or disabled
2087  *  @pf: Physical Function pool - do not set anti-spoofing for the PF
2088  *
2089  *  enables/disables L2 switch anti-spoofing functionality.
2090  **/
e1000_vmdq_set_anti_spoofing_pf(struct e1000_hw * hw,bool enable,int pf)2091 void e1000_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
2092 {
2093 	u32 reg_val, reg_offset;
2094 
2095 	switch (hw->mac.type) {
2096 	case e1000_82576:
2097 		reg_offset = E1000_DTXSWC;
2098 		break;
2099 	case e1000_i350:
2100 	case e1000_i354:
2101 		reg_offset = E1000_TXSWC;
2102 		break;
2103 	default:
2104 		return;
2105 	}
2106 
2107 	reg_val = E1000_READ_REG(hw, reg_offset);
2108 	if (enable) {
2109 		reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
2110 			     E1000_DTXSWC_VLAN_SPOOF_MASK);
2111 		/* The PF can spoof - it has to in order to
2112 		 * support emulation mode NICs
2113 		 */
2114 		reg_val ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
2115 	} else {
2116 		reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
2117 			     E1000_DTXSWC_VLAN_SPOOF_MASK);
2118 	}
2119 	E1000_WRITE_REG(hw, reg_offset, reg_val);
2120 }
2121 
2122 /**
2123  *  e1000_vmdq_set_loopback_pf - enable or disable vmdq loopback
2124  *  @hw: pointer to the hardware struct
2125  *  @enable: state to enter, either enabled or disabled
2126  *
2127  *  enables/disables L2 switch loopback functionality.
2128  **/
e1000_vmdq_set_loopback_pf(struct e1000_hw * hw,bool enable)2129 void e1000_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
2130 {
2131 	u32 dtxswc;
2132 
2133 	switch (hw->mac.type) {
2134 	case e1000_82576:
2135 		dtxswc = E1000_READ_REG(hw, E1000_DTXSWC);
2136 		if (enable)
2137 			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2138 		else
2139 			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2140 		E1000_WRITE_REG(hw, E1000_DTXSWC, dtxswc);
2141 		break;
2142 	case e1000_i350:
2143 	case e1000_i354:
2144 		dtxswc = E1000_READ_REG(hw, E1000_TXSWC);
2145 		if (enable)
2146 			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2147 		else
2148 			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2149 		E1000_WRITE_REG(hw, E1000_TXSWC, dtxswc);
2150 		break;
2151 	default:
2152 		/* Currently no other hardware supports loopback */
2153 		break;
2154 	}
2155 
2156 
2157 }
2158 
2159 /**
2160  *  e1000_vmdq_set_replication_pf - enable or disable vmdq replication
2161  *  @hw: pointer to the hardware struct
2162  *  @enable: state to enter, either enabled or disabled
2163  *
2164  *  enables/disables replication of packets across multiple pools.
2165  **/
e1000_vmdq_set_replication_pf(struct e1000_hw * hw,bool enable)2166 void e1000_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
2167 {
2168 	u32 vt_ctl = E1000_READ_REG(hw, E1000_VT_CTL);
2169 
2170 	if (enable)
2171 		vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
2172 	else
2173 		vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
2174 
2175 	E1000_WRITE_REG(hw, E1000_VT_CTL, vt_ctl);
2176 }
2177 
2178 /**
2179  *  e1000_read_phy_reg_82580 - Read 82580 MDI control register
2180  *  @hw: pointer to the HW structure
2181  *  @offset: register offset to be read
2182  *  @data: pointer to the read data
2183  *
2184  *  Reads the MDI control register in the PHY at offset and stores the
2185  *  information read to data.
2186  **/
e1000_read_phy_reg_82580(struct e1000_hw * hw,u32 offset,u16 * data)2187 STATIC s32 e1000_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
2188 {
2189 	s32 ret_val;
2190 
2191 	DEBUGFUNC("e1000_read_phy_reg_82580");
2192 
2193 	ret_val = hw->phy.ops.acquire(hw);
2194 	if (ret_val)
2195 		goto out;
2196 
2197 	ret_val = e1000_read_phy_reg_mdic(hw, offset, data);
2198 
2199 	hw->phy.ops.release(hw);
2200 
2201 out:
2202 	return ret_val;
2203 }
2204 
2205 /**
2206  *  e1000_write_phy_reg_82580 - Write 82580 MDI control register
2207  *  @hw: pointer to the HW structure
2208  *  @offset: register offset to write to
2209  *  @data: data to write to register at offset
2210  *
2211  *  Writes data to MDI control register in the PHY at offset.
2212  **/
e1000_write_phy_reg_82580(struct e1000_hw * hw,u32 offset,u16 data)2213 STATIC s32 e1000_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
2214 {
2215 	s32 ret_val;
2216 
2217 	DEBUGFUNC("e1000_write_phy_reg_82580");
2218 
2219 	ret_val = hw->phy.ops.acquire(hw);
2220 	if (ret_val)
2221 		goto out;
2222 
2223 	ret_val = e1000_write_phy_reg_mdic(hw, offset, data);
2224 
2225 	hw->phy.ops.release(hw);
2226 
2227 out:
2228 	return ret_val;
2229 }
2230 
2231 /**
2232  *  e1000_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
2233  *  @hw: pointer to the HW structure
2234  *
2235  *  This resets the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
2236  *  the values found in the EEPROM.  This addresses an issue in which these
2237  *  bits are not restored from EEPROM after reset.
2238  **/
e1000_reset_mdicnfg_82580(struct e1000_hw * hw)2239 STATIC s32 e1000_reset_mdicnfg_82580(struct e1000_hw *hw)
2240 {
2241 	s32 ret_val = E1000_SUCCESS;
2242 	u32 mdicnfg;
2243 	u16 nvm_data = 0;
2244 
2245 	DEBUGFUNC("e1000_reset_mdicnfg_82580");
2246 
2247 	if (hw->mac.type != e1000_82580)
2248 		goto out;
2249 	if (!e1000_sgmii_active_82575(hw))
2250 		goto out;
2251 
2252 	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2253 				   NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2254 				   &nvm_data);
2255 	if (ret_val) {
2256 		DEBUGOUT("NVM Read Error\n");
2257 		goto out;
2258 	}
2259 
2260 	mdicnfg = E1000_READ_REG(hw, E1000_MDICNFG);
2261 	if (nvm_data & NVM_WORD24_EXT_MDIO)
2262 		mdicnfg |= E1000_MDICNFG_EXT_MDIO;
2263 	if (nvm_data & NVM_WORD24_COM_MDIO)
2264 		mdicnfg |= E1000_MDICNFG_COM_MDIO;
2265 	E1000_WRITE_REG(hw, E1000_MDICNFG, mdicnfg);
2266 out:
2267 	return ret_val;
2268 }
2269 
2270 /**
2271  *  e1000_reset_hw_82580 - Reset hardware
2272  *  @hw: pointer to the HW structure
2273  *
2274  *  This resets function or entire device (all ports, etc.)
2275  *  to a known state.
2276  **/
e1000_reset_hw_82580(struct e1000_hw * hw)2277 STATIC s32 e1000_reset_hw_82580(struct e1000_hw *hw)
2278 {
2279 	s32 ret_val = E1000_SUCCESS;
2280 	/* BH SW mailbox bit in SW_FW_SYNC */
2281 	u16 swmbsw_mask = E1000_SW_SYNCH_MB;
2282 	u32 ctrl;
2283 	bool global_device_reset = hw->dev_spec._82575.global_device_reset;
2284 
2285 	DEBUGFUNC("e1000_reset_hw_82580");
2286 
2287 	hw->dev_spec._82575.global_device_reset = false;
2288 
2289 	/* 82580 does not reliably do global_device_reset due to hw errata */
2290 	if (hw->mac.type == e1000_82580)
2291 		global_device_reset = false;
2292 
2293 	/* Get current control state. */
2294 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
2295 
2296 	/*
2297 	 * Prevent the PCI-E bus from sticking if there is no TLP connection
2298 	 * on the last TLP read/write transaction when MAC is reset.
2299 	 */
2300 	ret_val = e1000_disable_pcie_master_generic(hw);
2301 	if (ret_val)
2302 		DEBUGOUT("PCI-E Master disable polling has failed.\n");
2303 
2304 	DEBUGOUT("Masking off all interrupts\n");
2305 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
2306 	E1000_WRITE_REG(hw, E1000_RCTL, 0);
2307 	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
2308 	E1000_WRITE_FLUSH(hw);
2309 
2310 	msec_delay(10);
2311 
2312 	/* Determine whether or not a global dev reset is requested */
2313 	if (global_device_reset && hw->mac.ops.acquire_swfw_sync(hw,
2314 	    swmbsw_mask))
2315 			global_device_reset = false;
2316 
2317 	if (global_device_reset && !(E1000_READ_REG(hw, E1000_STATUS) &
2318 	    E1000_STAT_DEV_RST_SET))
2319 		ctrl |= E1000_CTRL_DEV_RST;
2320 	else
2321 		ctrl |= E1000_CTRL_RST;
2322 
2323 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
2324 
2325 	switch (hw->device_id) {
2326 	case E1000_DEV_ID_DH89XXCC_SGMII:
2327 		break;
2328 	default:
2329 		E1000_WRITE_FLUSH(hw);
2330 		break;
2331 	}
2332 
2333 	/* Add delay to insure DEV_RST or RST has time to complete */
2334 	msec_delay(5);
2335 
2336 	ret_val = e1000_get_auto_rd_done_generic(hw);
2337 	if (ret_val) {
2338 		/*
2339 		 * When auto config read does not complete, do not
2340 		 * return with an error. This can happen in situations
2341 		 * where there is no eeprom and prevents getting link.
2342 		 */
2343 		DEBUGOUT("Auto Read Done did not complete\n");
2344 	}
2345 
2346 	/* clear global device reset status bit */
2347 	E1000_WRITE_REG(hw, E1000_STATUS, E1000_STAT_DEV_RST_SET);
2348 
2349 	/* Clear any pending interrupt events. */
2350 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
2351 	E1000_READ_REG(hw, E1000_ICR);
2352 
2353 	ret_val = e1000_reset_mdicnfg_82580(hw);
2354 	if (ret_val)
2355 		DEBUGOUT("Could not reset MDICNFG based on EEPROM\n");
2356 
2357 	/* Install any alternate MAC address into RAR0 */
2358 	ret_val = e1000_check_alt_mac_addr_generic(hw);
2359 
2360 	/* Release semaphore */
2361 	if (global_device_reset)
2362 		hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
2363 
2364 	return ret_val;
2365 }
2366 
2367 /**
2368  *  e1000_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual Rx PBA size
2369  *  @data: data received by reading RXPBS register
2370  *
2371  *  The 82580 uses a table based approach for packet buffer allocation sizes.
2372  *  This function converts the retrieved value into the correct table value
2373  *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2374  *  0x0 36  72 144   1   2   4   8  16
2375  *  0x8 35  70 140 rsv rsv rsv rsv rsv
2376  */
e1000_rxpbs_adjust_82580(u32 data)2377 u16 e1000_rxpbs_adjust_82580(u32 data)
2378 {
2379 	u16 ret_val = 0;
2380 
2381 	if (data < E1000_82580_RXPBS_TABLE_SIZE)
2382 		ret_val = e1000_82580_rxpbs_table[data];
2383 
2384 	return ret_val;
2385 }
2386 
2387 /**
2388  *  e1000_validate_nvm_checksum_with_offset - Validate EEPROM
2389  *  checksum
2390  *  @hw: pointer to the HW structure
2391  *  @offset: offset in words of the checksum protected region
2392  *
2393  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2394  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
2395  **/
e1000_validate_nvm_checksum_with_offset(struct e1000_hw * hw,u16 offset)2396 s32 e1000_validate_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2397 {
2398 	s32 ret_val = E1000_SUCCESS;
2399 	u16 checksum = 0;
2400 	u16 i, nvm_data;
2401 
2402 	DEBUGFUNC("e1000_validate_nvm_checksum_with_offset");
2403 
2404 	for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
2405 		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2406 		if (ret_val) {
2407 			DEBUGOUT("NVM Read Error\n");
2408 			goto out;
2409 		}
2410 		checksum += nvm_data;
2411 	}
2412 
2413 	if (checksum != (u16) NVM_SUM) {
2414 		DEBUGOUT("NVM Checksum Invalid\n");
2415 		ret_val = -E1000_ERR_NVM;
2416 		goto out;
2417 	}
2418 
2419 out:
2420 	return ret_val;
2421 }
2422 
2423 /**
2424  *  e1000_update_nvm_checksum_with_offset - Update EEPROM
2425  *  checksum
2426  *  @hw: pointer to the HW structure
2427  *  @offset: offset in words of the checksum protected region
2428  *
2429  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
2430  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
2431  *  value to the EEPROM.
2432  **/
e1000_update_nvm_checksum_with_offset(struct e1000_hw * hw,u16 offset)2433 s32 e1000_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2434 {
2435 	s32 ret_val;
2436 	u16 checksum = 0;
2437 	u16 i, nvm_data;
2438 
2439 	DEBUGFUNC("e1000_update_nvm_checksum_with_offset");
2440 
2441 	for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
2442 		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2443 		if (ret_val) {
2444 			DEBUGOUT("NVM Read Error while updating checksum.\n");
2445 			goto out;
2446 		}
2447 		checksum += nvm_data;
2448 	}
2449 	checksum = (u16) NVM_SUM - checksum;
2450 	ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
2451 				    &checksum);
2452 	if (ret_val)
2453 		DEBUGOUT("NVM Write Error while updating checksum.\n");
2454 
2455 out:
2456 	return ret_val;
2457 }
2458 
2459 /**
2460  *  e1000_validate_nvm_checksum_82580 - Validate EEPROM checksum
2461  *  @hw: pointer to the HW structure
2462  *
2463  *  Calculates the EEPROM section checksum by reading/adding each word of
2464  *  the EEPROM and then verifies that the sum of the EEPROM is
2465  *  equal to 0xBABA.
2466  **/
e1000_validate_nvm_checksum_82580(struct e1000_hw * hw)2467 STATIC s32 e1000_validate_nvm_checksum_82580(struct e1000_hw *hw)
2468 {
2469 	s32 ret_val;
2470 	u16 eeprom_regions_count = 1;
2471 	u16 j, nvm_data;
2472 	u16 nvm_offset;
2473 
2474 	DEBUGFUNC("e1000_validate_nvm_checksum_82580");
2475 
2476 	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2477 	if (ret_val) {
2478 		DEBUGOUT("NVM Read Error\n");
2479 		goto out;
2480 	}
2481 
2482 	if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2483 		/* if chekcsums compatibility bit is set validate checksums
2484 		 * for all 4 ports. */
2485 		eeprom_regions_count = 4;
2486 	}
2487 
2488 	for (j = 0; j < eeprom_regions_count; j++) {
2489 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2490 		ret_val = e1000_validate_nvm_checksum_with_offset(hw,
2491 								  nvm_offset);
2492 		if (ret_val != E1000_SUCCESS)
2493 			goto out;
2494 	}
2495 
2496 out:
2497 	return ret_val;
2498 }
2499 
2500 /**
2501  *  e1000_update_nvm_checksum_82580 - Update EEPROM checksum
2502  *  @hw: pointer to the HW structure
2503  *
2504  *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2505  *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2506  *  checksum and writes the value to the EEPROM.
2507  **/
e1000_update_nvm_checksum_82580(struct e1000_hw * hw)2508 STATIC s32 e1000_update_nvm_checksum_82580(struct e1000_hw *hw)
2509 {
2510 	s32 ret_val;
2511 	u16 j, nvm_data;
2512 	u16 nvm_offset;
2513 
2514 	DEBUGFUNC("e1000_update_nvm_checksum_82580");
2515 
2516 	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2517 	if (ret_val) {
2518 		DEBUGOUT("NVM Read Error while updating checksum compatibility bit.\n");
2519 		goto out;
2520 	}
2521 
2522 	if (!(nvm_data & NVM_COMPATIBILITY_BIT_MASK)) {
2523 		/* set compatibility bit to validate checksums appropriately */
2524 		nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
2525 		ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
2526 					    &nvm_data);
2527 		if (ret_val) {
2528 			DEBUGOUT("NVM Write Error while updating checksum compatibility bit.\n");
2529 			goto out;
2530 		}
2531 	}
2532 
2533 	for (j = 0; j < 4; j++) {
2534 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2535 		ret_val = e1000_update_nvm_checksum_with_offset(hw, nvm_offset);
2536 		if (ret_val)
2537 			goto out;
2538 	}
2539 
2540 out:
2541 	return ret_val;
2542 }
2543 
2544 /**
2545  *  e1000_validate_nvm_checksum_i350 - Validate EEPROM checksum
2546  *  @hw: pointer to the HW structure
2547  *
2548  *  Calculates the EEPROM section checksum by reading/adding each word of
2549  *  the EEPROM and then verifies that the sum of the EEPROM is
2550  *  equal to 0xBABA.
2551  **/
e1000_validate_nvm_checksum_i350(struct e1000_hw * hw)2552 STATIC s32 e1000_validate_nvm_checksum_i350(struct e1000_hw *hw)
2553 {
2554 	s32 ret_val = E1000_SUCCESS;
2555 	u16 j;
2556 	u16 nvm_offset;
2557 
2558 	DEBUGFUNC("e1000_validate_nvm_checksum_i350");
2559 
2560 	for (j = 0; j < 4; j++) {
2561 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2562 		ret_val = e1000_validate_nvm_checksum_with_offset(hw,
2563 								  nvm_offset);
2564 		if (ret_val != E1000_SUCCESS)
2565 			goto out;
2566 	}
2567 
2568 out:
2569 	return ret_val;
2570 }
2571 
2572 /**
2573  *  e1000_update_nvm_checksum_i350 - Update EEPROM checksum
2574  *  @hw: pointer to the HW structure
2575  *
2576  *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2577  *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2578  *  checksum and writes the value to the EEPROM.
2579  **/
e1000_update_nvm_checksum_i350(struct e1000_hw * hw)2580 STATIC s32 e1000_update_nvm_checksum_i350(struct e1000_hw *hw)
2581 {
2582 	s32 ret_val = E1000_SUCCESS;
2583 	u16 j;
2584 	u16 nvm_offset;
2585 
2586 	DEBUGFUNC("e1000_update_nvm_checksum_i350");
2587 
2588 	for (j = 0; j < 4; j++) {
2589 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2590 		ret_val = e1000_update_nvm_checksum_with_offset(hw, nvm_offset);
2591 		if (ret_val != E1000_SUCCESS)
2592 			goto out;
2593 	}
2594 
2595 out:
2596 	return ret_val;
2597 }
2598 
2599 /**
2600  *  __e1000_access_emi_reg - Read/write EMI register
2601  *  @hw: pointer to the HW structure
2602  *  @address: EMI address to program
2603  *  @data: pointer to value to read/write from/to the EMI address
2604  *  @read: boolean flag to indicate read or write
2605  **/
__e1000_access_emi_reg(struct e1000_hw * hw,u16 address,u16 * data,bool read)2606 STATIC s32 __e1000_access_emi_reg(struct e1000_hw *hw, u16 address,
2607 				  u16 *data, bool read)
2608 {
2609 	s32 ret_val;
2610 
2611 	DEBUGFUNC("__e1000_access_emi_reg");
2612 
2613 	ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address);
2614 	if (ret_val)
2615 		return ret_val;
2616 
2617 	if (read)
2618 		ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data);
2619 	else
2620 		ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data);
2621 
2622 	return ret_val;
2623 }
2624 
2625 /**
2626  *  e1000_read_emi_reg - Read Extended Management Interface register
2627  *  @hw: pointer to the HW structure
2628  *  @addr: EMI address to program
2629  *  @data: value to be read from the EMI address
2630  **/
e1000_read_emi_reg(struct e1000_hw * hw,u16 addr,u16 * data)2631 s32 e1000_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data)
2632 {
2633 	DEBUGFUNC("e1000_read_emi_reg");
2634 
2635 	return __e1000_access_emi_reg(hw, addr, data, true);
2636 }
2637 
2638 /**
2639  *  e1000_initialize_M88E1512_phy - Initialize M88E1512 PHY
2640  *  @hw: pointer to the HW structure
2641  *
2642  *  Initialize Marvell 1512 to work correctly with Avoton.
2643  **/
e1000_initialize_M88E1512_phy(struct e1000_hw * hw)2644 s32 e1000_initialize_M88E1512_phy(struct e1000_hw *hw)
2645 {
2646 	struct e1000_phy_info *phy = &hw->phy;
2647 	s32 ret_val = E1000_SUCCESS;
2648 
2649 	DEBUGFUNC("e1000_initialize_M88E1512_phy");
2650 
2651 	/* Check if this is correct PHY. */
2652 	if (phy->id != M88E1512_E_PHY_ID)
2653 		goto out;
2654 
2655 	/* Switch to PHY page 0xFF. */
2656 	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FF);
2657 	if (ret_val)
2658 		goto out;
2659 
2660 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x214B);
2661 	if (ret_val)
2662 		goto out;
2663 
2664 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2144);
2665 	if (ret_val)
2666 		goto out;
2667 
2668 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x0C28);
2669 	if (ret_val)
2670 		goto out;
2671 
2672 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2146);
2673 	if (ret_val)
2674 		goto out;
2675 
2676 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xB233);
2677 	if (ret_val)
2678 		goto out;
2679 
2680 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x214D);
2681 	if (ret_val)
2682 		goto out;
2683 
2684 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xCC0C);
2685 	if (ret_val)
2686 		goto out;
2687 
2688 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2159);
2689 	if (ret_val)
2690 		goto out;
2691 
2692 	/* Switch to PHY page 0xFB. */
2693 	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FB);
2694 	if (ret_val)
2695 		goto out;
2696 
2697 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_3, 0x000D);
2698 	if (ret_val)
2699 		goto out;
2700 
2701 	/* Switch to PHY page 0x12. */
2702 	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x12);
2703 	if (ret_val)
2704 		goto out;
2705 
2706 	/* Change mode to SGMII-to-Copper */
2707 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_MODE, 0x8001);
2708 	if (ret_val)
2709 		goto out;
2710 
2711 	/* Return the PHY to page 0. */
2712 	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2713 	if (ret_val)
2714 		goto out;
2715 
2716 	ret_val = phy->ops.commit(hw);
2717 	if (ret_val) {
2718 		DEBUGOUT("Error committing the PHY changes\n");
2719 		return ret_val;
2720 	}
2721 
2722 	msec_delay(1000);
2723 out:
2724 	return ret_val;
2725 }
2726 
2727 /**
2728  *  e1000_initialize_M88E1543_phy - Initialize M88E1543 PHY
2729  *  @hw: pointer to the HW structure
2730  *
2731  *  Initialize Marvell 1543 to work correctly with Avoton.
2732  **/
e1000_initialize_M88E1543_phy(struct e1000_hw * hw)2733 s32 e1000_initialize_M88E1543_phy(struct e1000_hw *hw)
2734 {
2735 	struct e1000_phy_info *phy = &hw->phy;
2736 	s32 ret_val = E1000_SUCCESS;
2737 
2738 	DEBUGFUNC("e1000_initialize_M88E1543_phy");
2739 
2740 	/* Check if this is correct PHY. */
2741 	if (phy->id != M88E1543_E_PHY_ID)
2742 		goto out;
2743 
2744 	/* Switch to PHY page 0xFF. */
2745 	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FF);
2746 	if (ret_val)
2747 		goto out;
2748 
2749 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x214B);
2750 	if (ret_val)
2751 		goto out;
2752 
2753 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2144);
2754 	if (ret_val)
2755 		goto out;
2756 
2757 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x0C28);
2758 	if (ret_val)
2759 		goto out;
2760 
2761 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2146);
2762 	if (ret_val)
2763 		goto out;
2764 
2765 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xB233);
2766 	if (ret_val)
2767 		goto out;
2768 
2769 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x214D);
2770 	if (ret_val)
2771 		goto out;
2772 
2773 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xDC0C);
2774 	if (ret_val)
2775 		goto out;
2776 
2777 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2159);
2778 	if (ret_val)
2779 		goto out;
2780 
2781 	/* Switch to PHY page 0xFB. */
2782 	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FB);
2783 	if (ret_val)
2784 		goto out;
2785 
2786 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_3, 0xC00D);
2787 	if (ret_val)
2788 		goto out;
2789 
2790 	/* Switch to PHY page 0x12. */
2791 	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x12);
2792 	if (ret_val)
2793 		goto out;
2794 
2795 	/* Change mode to SGMII-to-Copper */
2796 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_MODE, 0x8001);
2797 	if (ret_val)
2798 		goto out;
2799 
2800 	/* Switch to PHY page 1. */
2801 	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x1);
2802 	if (ret_val)
2803 		goto out;
2804 
2805 	/* Change mode to 1000BASE-X/SGMII and autoneg enable; reset */
2806 	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_FIBER_CTRL, 0x9140);
2807 	if (ret_val)
2808 		goto out;
2809 
2810 	/* Return the PHY to page 0. */
2811 	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2812 	if (ret_val)
2813 		goto out;
2814 
2815 	ret_val = phy->ops.commit(hw);
2816 	if (ret_val) {
2817 		DEBUGOUT("Error committing the PHY changes\n");
2818 		return ret_val;
2819 	}
2820 
2821 	msec_delay(1000);
2822 out:
2823 	return ret_val;
2824 }
2825 
2826 /**
2827  *  e1000_set_eee_i350 - Enable/disable EEE support
2828  *  @hw: pointer to the HW structure
2829  *  @adv1G: boolean flag enabling 1G EEE advertisement
2830  *  @adv100M: boolean flag enabling 100M EEE advertisement
2831  *
2832  *  Enable/disable EEE based on setting in dev_spec structure.
2833  *
2834  **/
e1000_set_eee_i350(struct e1000_hw * hw,bool adv1G,bool adv100M)2835 s32 e1000_set_eee_i350(struct e1000_hw *hw, bool adv1G, bool adv100M)
2836 {
2837 	u32 ipcnfg, eeer;
2838 
2839 	DEBUGFUNC("e1000_set_eee_i350");
2840 
2841 	if ((hw->mac.type < e1000_i350) ||
2842 	    (hw->phy.media_type != e1000_media_type_copper))
2843 		goto out;
2844 	ipcnfg = E1000_READ_REG(hw, E1000_IPCNFG);
2845 	eeer = E1000_READ_REG(hw, E1000_EEER);
2846 
2847 	/* enable or disable per user setting */
2848 	if (!(hw->dev_spec._82575.eee_disable)) {
2849 		u32 eee_su = E1000_READ_REG(hw, E1000_EEE_SU);
2850 
2851 		if (adv100M)
2852 			ipcnfg |= E1000_IPCNFG_EEE_100M_AN;
2853 		else
2854 			ipcnfg &= ~E1000_IPCNFG_EEE_100M_AN;
2855 
2856 		if (adv1G)
2857 			ipcnfg |= E1000_IPCNFG_EEE_1G_AN;
2858 		else
2859 			ipcnfg &= ~E1000_IPCNFG_EEE_1G_AN;
2860 
2861 		eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
2862 			 E1000_EEER_LPI_FC);
2863 
2864 		/* This bit should not be set in normal operation. */
2865 		if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
2866 			DEBUGOUT("LPI Clock Stop Bit should not be set!\n");
2867 	} else {
2868 		ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN | E1000_IPCNFG_EEE_100M_AN);
2869 		eeer &= ~(E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
2870 			  E1000_EEER_LPI_FC);
2871 	}
2872 	E1000_WRITE_REG(hw, E1000_IPCNFG, ipcnfg);
2873 	E1000_WRITE_REG(hw, E1000_EEER, eeer);
2874 	E1000_READ_REG(hw, E1000_IPCNFG);
2875 	E1000_READ_REG(hw, E1000_EEER);
2876 out:
2877 
2878 	return E1000_SUCCESS;
2879 }
2880 
2881 /**
2882  *  e1000_set_eee_i354 - Enable/disable EEE support
2883  *  @hw: pointer to the HW structure
2884  *  @adv1G: boolean flag enabling 1G EEE advertisement
2885  *  @adv100M: boolean flag enabling 100M EEE advertisement
2886  *
2887  *  Enable/disable EEE legacy mode based on setting in dev_spec structure.
2888  *
2889  **/
e1000_set_eee_i354(struct e1000_hw * hw,bool adv1G,bool adv100M)2890 s32 e1000_set_eee_i354(struct e1000_hw *hw, bool adv1G, bool adv100M)
2891 {
2892 	struct e1000_phy_info *phy = &hw->phy;
2893 	s32 ret_val = E1000_SUCCESS;
2894 	u16 phy_data;
2895 
2896 	DEBUGFUNC("e1000_set_eee_i354");
2897 
2898 	if ((hw->phy.media_type != e1000_media_type_copper) ||
2899 	    ((phy->id != M88E1543_E_PHY_ID) &&
2900 	    (phy->id != M88E1512_E_PHY_ID)))
2901 		goto out;
2902 
2903 	if (!hw->dev_spec._82575.eee_disable) {
2904 		/* Switch to PHY page 18. */
2905 		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18);
2906 		if (ret_val)
2907 			goto out;
2908 
2909 		ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2910 					    &phy_data);
2911 		if (ret_val)
2912 			goto out;
2913 
2914 		phy_data |= E1000_M88E1543_EEE_CTRL_1_MS;
2915 		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2916 					     phy_data);
2917 		if (ret_val)
2918 			goto out;
2919 
2920 		/* Return the PHY to page 0. */
2921 		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2922 		if (ret_val)
2923 			goto out;
2924 
2925 		/* Turn on EEE advertisement. */
2926 		ret_val = e1000_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2927 					       E1000_EEE_ADV_DEV_I354,
2928 					       &phy_data);
2929 		if (ret_val)
2930 			goto out;
2931 
2932 		if (adv100M)
2933 			phy_data |= E1000_EEE_ADV_100_SUPPORTED;
2934 		else
2935 			phy_data &= ~E1000_EEE_ADV_100_SUPPORTED;
2936 
2937 		if (adv1G)
2938 			phy_data |= E1000_EEE_ADV_1000_SUPPORTED;
2939 		else
2940 			phy_data &= ~E1000_EEE_ADV_1000_SUPPORTED;
2941 
2942 		ret_val = e1000_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2943 						E1000_EEE_ADV_DEV_I354,
2944 						phy_data);
2945 	} else {
2946 		/* Turn off EEE advertisement. */
2947 		ret_val = e1000_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2948 					       E1000_EEE_ADV_DEV_I354,
2949 					       &phy_data);
2950 		if (ret_val)
2951 			goto out;
2952 
2953 		phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED |
2954 			      E1000_EEE_ADV_1000_SUPPORTED);
2955 		ret_val = e1000_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2956 						E1000_EEE_ADV_DEV_I354,
2957 						phy_data);
2958 	}
2959 
2960 out:
2961 	return ret_val;
2962 }
2963 
2964 /**
2965  *  e1000_get_eee_status_i354 - Get EEE status
2966  *  @hw: pointer to the HW structure
2967  *  @status: EEE status
2968  *
2969  *  Get EEE status by guessing based on whether Tx or Rx LPI indications have
2970  *  been received.
2971  **/
e1000_get_eee_status_i354(struct e1000_hw * hw,bool * status)2972 s32 e1000_get_eee_status_i354(struct e1000_hw *hw, bool *status)
2973 {
2974 	struct e1000_phy_info *phy = &hw->phy;
2975 	s32 ret_val = E1000_SUCCESS;
2976 	u16 phy_data;
2977 
2978 	DEBUGFUNC("e1000_get_eee_status_i354");
2979 
2980 	/* Check if EEE is supported on this device. */
2981 	if ((hw->phy.media_type != e1000_media_type_copper) ||
2982 	    ((phy->id != M88E1543_E_PHY_ID) &&
2983 	    (phy->id != M88E1512_E_PHY_ID)))
2984 		goto out;
2985 
2986 	ret_val = e1000_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354,
2987 				       E1000_PCS_STATUS_DEV_I354,
2988 				       &phy_data);
2989 	if (ret_val)
2990 		goto out;
2991 
2992 	*status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD |
2993 			      E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false;
2994 
2995 out:
2996 	return ret_val;
2997 }
2998 
2999 /* Due to a hw errata, if the host tries to  configure the VFTA register
3000  * while performing queries from the BMC or DMA, then the VFTA in some
3001  * cases won't be written.
3002  */
3003 
3004 /**
3005  *  e1000_clear_vfta_i350 - Clear VLAN filter table
3006  *  @hw: pointer to the HW structure
3007  *
3008  *  Clears the register array which contains the VLAN filter table by
3009  *  setting all the values to 0.
3010  **/
e1000_clear_vfta_i350(struct e1000_hw * hw)3011 void e1000_clear_vfta_i350(struct e1000_hw *hw)
3012 {
3013 	u32 offset;
3014 	int i;
3015 
3016 	DEBUGFUNC("e1000_clear_vfta_350");
3017 
3018 	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
3019 		for (i = 0; i < 10; i++)
3020 			E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
3021 
3022 		E1000_WRITE_FLUSH(hw);
3023 	}
3024 }
3025 
3026 /**
3027  *  e1000_write_vfta_i350 - Write value to VLAN filter table
3028  *  @hw: pointer to the HW structure
3029  *  @offset: register offset in VLAN filter table
3030  *  @value: register value written to VLAN filter table
3031  *
3032  *  Writes value at the given offset in the register array which stores
3033  *  the VLAN filter table.
3034  **/
e1000_write_vfta_i350(struct e1000_hw * hw,u32 offset,u32 value)3035 void e1000_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value)
3036 {
3037 	int i;
3038 
3039 	DEBUGFUNC("e1000_write_vfta_350");
3040 
3041 	for (i = 0; i < 10; i++)
3042 		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
3043 
3044 	E1000_WRITE_FLUSH(hw);
3045 }
3046 
3047 
3048 /**
3049  *  e1000_set_i2c_bb - Enable I2C bit-bang
3050  *  @hw: pointer to the HW structure
3051  *
3052  *  Enable I2C bit-bang interface
3053  *
3054  **/
e1000_set_i2c_bb(struct e1000_hw * hw)3055 s32 e1000_set_i2c_bb(struct e1000_hw *hw)
3056 {
3057 	s32 ret_val = E1000_SUCCESS;
3058 	u32 ctrl_ext, i2cparams;
3059 
3060 	DEBUGFUNC("e1000_set_i2c_bb");
3061 
3062 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
3063 	ctrl_ext |= E1000_CTRL_I2C_ENA;
3064 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
3065 	E1000_WRITE_FLUSH(hw);
3066 
3067 	i2cparams = E1000_READ_REG(hw, E1000_I2CPARAMS);
3068 	i2cparams |= E1000_I2CBB_EN;
3069 	i2cparams |= E1000_I2C_DATA_OE_N;
3070 	i2cparams |= E1000_I2C_CLK_OE_N;
3071 	E1000_WRITE_REG(hw, E1000_I2CPARAMS, i2cparams);
3072 	E1000_WRITE_FLUSH(hw);
3073 
3074 	return ret_val;
3075 }
3076 
3077 /**
3078  *  e1000_read_i2c_byte_generic - Reads 8 bit word over I2C
3079  *  @hw: pointer to hardware structure
3080  *  @byte_offset: byte offset to read
3081  *  @dev_addr: device address
3082  *  @data: value read
3083  *
3084  *  Performs byte read operation over I2C interface at
3085  *  a specified device address.
3086  **/
e1000_read_i2c_byte_generic(struct e1000_hw * hw,u8 byte_offset,u8 dev_addr,u8 * data)3087 s32 e1000_read_i2c_byte_generic(struct e1000_hw *hw, u8 byte_offset,
3088 				u8 dev_addr, u8 *data)
3089 {
3090 	s32 status = E1000_SUCCESS;
3091 	u32 max_retry = 10;
3092 	u32 retry = 1;
3093 	u16 swfw_mask = 0;
3094 
3095 	bool nack = true;
3096 
3097 	DEBUGFUNC("e1000_read_i2c_byte_generic");
3098 
3099 	swfw_mask = E1000_SWFW_PHY0_SM;
3100 
3101 	do {
3102 		if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
3103 		    != E1000_SUCCESS) {
3104 			status = E1000_ERR_SWFW_SYNC;
3105 			goto read_byte_out;
3106 		}
3107 
3108 		e1000_i2c_start(hw);
3109 
3110 		/* Device Address and write indication */
3111 		status = e1000_clock_out_i2c_byte(hw, dev_addr);
3112 		if (status != E1000_SUCCESS)
3113 			goto fail;
3114 
3115 		status = e1000_get_i2c_ack(hw);
3116 		if (status != E1000_SUCCESS)
3117 			goto fail;
3118 
3119 		status = e1000_clock_out_i2c_byte(hw, byte_offset);
3120 		if (status != E1000_SUCCESS)
3121 			goto fail;
3122 
3123 		status = e1000_get_i2c_ack(hw);
3124 		if (status != E1000_SUCCESS)
3125 			goto fail;
3126 
3127 		e1000_i2c_start(hw);
3128 
3129 		/* Device Address and read indication */
3130 		status = e1000_clock_out_i2c_byte(hw, (dev_addr | 0x1));
3131 		if (status != E1000_SUCCESS)
3132 			goto fail;
3133 
3134 		status = e1000_get_i2c_ack(hw);
3135 		if (status != E1000_SUCCESS)
3136 			goto fail;
3137 
3138 		e1000_clock_in_i2c_byte(hw, data);
3139 
3140 		status = e1000_clock_out_i2c_bit(hw, nack);
3141 		if (status != E1000_SUCCESS)
3142 			goto fail;
3143 
3144 		e1000_i2c_stop(hw);
3145 		break;
3146 
3147 fail:
3148 		hw->mac.ops.release_swfw_sync(hw, swfw_mask);
3149 		msec_delay(100);
3150 		e1000_i2c_bus_clear(hw);
3151 		retry++;
3152 		if (retry < max_retry)
3153 			DEBUGOUT("I2C byte read error - Retrying.\n");
3154 		else
3155 			DEBUGOUT("I2C byte read error.\n");
3156 
3157 	} while (retry < max_retry);
3158 
3159 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
3160 
3161 read_byte_out:
3162 
3163 	return status;
3164 }
3165 
3166 /**
3167  *  e1000_write_i2c_byte_generic - Writes 8 bit word over I2C
3168  *  @hw: pointer to hardware structure
3169  *  @byte_offset: byte offset to write
3170  *  @dev_addr: device address
3171  *  @data: value to write
3172  *
3173  *  Performs byte write operation over I2C interface at
3174  *  a specified device address.
3175  **/
e1000_write_i2c_byte_generic(struct e1000_hw * hw,u8 byte_offset,u8 dev_addr,u8 data)3176 s32 e1000_write_i2c_byte_generic(struct e1000_hw *hw, u8 byte_offset,
3177 				 u8 dev_addr, u8 data)
3178 {
3179 	s32 status = E1000_SUCCESS;
3180 	u32 max_retry = 1;
3181 	u32 retry = 0;
3182 	u16 swfw_mask = 0;
3183 
3184 	DEBUGFUNC("e1000_write_i2c_byte_generic");
3185 
3186 	swfw_mask = E1000_SWFW_PHY0_SM;
3187 
3188 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS) {
3189 		status = E1000_ERR_SWFW_SYNC;
3190 		goto write_byte_out;
3191 	}
3192 
3193 	do {
3194 		e1000_i2c_start(hw);
3195 
3196 		status = e1000_clock_out_i2c_byte(hw, dev_addr);
3197 		if (status != E1000_SUCCESS)
3198 			goto fail;
3199 
3200 		status = e1000_get_i2c_ack(hw);
3201 		if (status != E1000_SUCCESS)
3202 			goto fail;
3203 
3204 		status = e1000_clock_out_i2c_byte(hw, byte_offset);
3205 		if (status != E1000_SUCCESS)
3206 			goto fail;
3207 
3208 		status = e1000_get_i2c_ack(hw);
3209 		if (status != E1000_SUCCESS)
3210 			goto fail;
3211 
3212 		status = e1000_clock_out_i2c_byte(hw, data);
3213 		if (status != E1000_SUCCESS)
3214 			goto fail;
3215 
3216 		status = e1000_get_i2c_ack(hw);
3217 		if (status != E1000_SUCCESS)
3218 			goto fail;
3219 
3220 		e1000_i2c_stop(hw);
3221 		break;
3222 
3223 fail:
3224 		e1000_i2c_bus_clear(hw);
3225 		retry++;
3226 		if (retry < max_retry)
3227 			DEBUGOUT("I2C byte write error - Retrying.\n");
3228 		else
3229 			DEBUGOUT("I2C byte write error.\n");
3230 	} while (retry < max_retry);
3231 
3232 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
3233 
3234 write_byte_out:
3235 
3236 	return status;
3237 }
3238 
3239 /**
3240  *  e1000_i2c_start - Sets I2C start condition
3241  *  @hw: pointer to hardware structure
3242  *
3243  *  Sets I2C start condition (High -> Low on SDA while SCL is High)
3244  **/
e1000_i2c_start(struct e1000_hw * hw)3245 STATIC void e1000_i2c_start(struct e1000_hw *hw)
3246 {
3247 	u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
3248 
3249 	DEBUGFUNC("e1000_i2c_start");
3250 
3251 	/* Start condition must begin with data and clock high */
3252 	e1000_set_i2c_data(hw, &i2cctl, 1);
3253 	e1000_raise_i2c_clk(hw, &i2cctl);
3254 
3255 	/* Setup time for start condition (4.7us) */
3256 	usec_delay(E1000_I2C_T_SU_STA);
3257 
3258 	e1000_set_i2c_data(hw, &i2cctl, 0);
3259 
3260 	/* Hold time for start condition (4us) */
3261 	usec_delay(E1000_I2C_T_HD_STA);
3262 
3263 	e1000_lower_i2c_clk(hw, &i2cctl);
3264 
3265 	/* Minimum low period of clock is 4.7 us */
3266 	usec_delay(E1000_I2C_T_LOW);
3267 
3268 }
3269 
3270 /**
3271  *  e1000_i2c_stop - Sets I2C stop condition
3272  *  @hw: pointer to hardware structure
3273  *
3274  *  Sets I2C stop condition (Low -> High on SDA while SCL is High)
3275  **/
e1000_i2c_stop(struct e1000_hw * hw)3276 STATIC void e1000_i2c_stop(struct e1000_hw *hw)
3277 {
3278 	u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
3279 
3280 	DEBUGFUNC("e1000_i2c_stop");
3281 
3282 	/* Stop condition must begin with data low and clock high */
3283 	e1000_set_i2c_data(hw, &i2cctl, 0);
3284 	e1000_raise_i2c_clk(hw, &i2cctl);
3285 
3286 	/* Setup time for stop condition (4us) */
3287 	usec_delay(E1000_I2C_T_SU_STO);
3288 
3289 	e1000_set_i2c_data(hw, &i2cctl, 1);
3290 
3291 	/* bus free time between stop and start (4.7us)*/
3292 	usec_delay(E1000_I2C_T_BUF);
3293 }
3294 
3295 /**
3296  *  e1000_clock_in_i2c_byte - Clocks in one byte via I2C
3297  *  @hw: pointer to hardware structure
3298  *  @data: data byte to clock in
3299  *
3300  *  Clocks in one byte data via I2C data/clock
3301  **/
e1000_clock_in_i2c_byte(struct e1000_hw * hw,u8 * data)3302 STATIC void e1000_clock_in_i2c_byte(struct e1000_hw *hw, u8 *data)
3303 {
3304 	s32 i;
3305 	bool bit = 0;
3306 
3307 	DEBUGFUNC("e1000_clock_in_i2c_byte");
3308 
3309 	*data = 0;
3310 	for (i = 7; i >= 0; i--) {
3311 		e1000_clock_in_i2c_bit(hw, &bit);
3312 		*data |= bit << i;
3313 	}
3314 }
3315 
3316 /**
3317  *  e1000_clock_out_i2c_byte - Clocks out one byte via I2C
3318  *  @hw: pointer to hardware structure
3319  *  @data: data byte clocked out
3320  *
3321  *  Clocks out one byte data via I2C data/clock
3322  **/
e1000_clock_out_i2c_byte(struct e1000_hw * hw,u8 data)3323 STATIC s32 e1000_clock_out_i2c_byte(struct e1000_hw *hw, u8 data)
3324 {
3325 	s32 status = E1000_SUCCESS;
3326 	s32 i;
3327 	u32 i2cctl;
3328 	bool bit = 0;
3329 
3330 	DEBUGFUNC("e1000_clock_out_i2c_byte");
3331 
3332 	for (i = 7; i >= 0; i--) {
3333 		bit = (data >> i) & 0x1;
3334 		status = e1000_clock_out_i2c_bit(hw, bit);
3335 
3336 		if (status != E1000_SUCCESS)
3337 			break;
3338 	}
3339 
3340 	/* Release SDA line (set high) */
3341 	i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
3342 
3343 	i2cctl |= E1000_I2C_DATA_OE_N;
3344 	E1000_WRITE_REG(hw, E1000_I2CPARAMS, i2cctl);
3345 	E1000_WRITE_FLUSH(hw);
3346 
3347 	return status;
3348 }
3349 
3350 /**
3351  *  e1000_get_i2c_ack - Polls for I2C ACK
3352  *  @hw: pointer to hardware structure
3353  *
3354  *  Clocks in/out one bit via I2C data/clock
3355  **/
e1000_get_i2c_ack(struct e1000_hw * hw)3356 STATIC s32 e1000_get_i2c_ack(struct e1000_hw *hw)
3357 {
3358 	s32 status = E1000_SUCCESS;
3359 	u32 i = 0;
3360 	u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
3361 	u32 timeout = 10;
3362 	bool ack = true;
3363 
3364 	DEBUGFUNC("e1000_get_i2c_ack");
3365 
3366 	e1000_raise_i2c_clk(hw, &i2cctl);
3367 
3368 	/* Minimum high period of clock is 4us */
3369 	usec_delay(E1000_I2C_T_HIGH);
3370 
3371 	/* Wait until SCL returns high */
3372 	for (i = 0; i < timeout; i++) {
3373 		usec_delay(1);
3374 		i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
3375 		if (i2cctl & E1000_I2C_CLK_IN)
3376 			break;
3377 	}
3378 	if (!(i2cctl & E1000_I2C_CLK_IN))
3379 		return E1000_ERR_I2C;
3380 
3381 	ack = e1000_get_i2c_data(&i2cctl);
3382 	if (ack) {
3383 		DEBUGOUT("I2C ack was not received.\n");
3384 		status = E1000_ERR_I2C;
3385 	}
3386 
3387 	e1000_lower_i2c_clk(hw, &i2cctl);
3388 
3389 	/* Minimum low period of clock is 4.7 us */
3390 	usec_delay(E1000_I2C_T_LOW);
3391 
3392 	return status;
3393 }
3394 
3395 /**
3396  *  e1000_clock_in_i2c_bit - Clocks in one bit via I2C data/clock
3397  *  @hw: pointer to hardware structure
3398  *  @data: read data value
3399  *
3400  *  Clocks in one bit via I2C data/clock
3401  **/
e1000_clock_in_i2c_bit(struct e1000_hw * hw,bool * data)3402 STATIC void e1000_clock_in_i2c_bit(struct e1000_hw *hw, bool *data)
3403 {
3404 	u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
3405 
3406 	DEBUGFUNC("e1000_clock_in_i2c_bit");
3407 
3408 	e1000_raise_i2c_clk(hw, &i2cctl);
3409 
3410 	/* Minimum high period of clock is 4us */
3411 	usec_delay(E1000_I2C_T_HIGH);
3412 
3413 	i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
3414 	*data = e1000_get_i2c_data(&i2cctl);
3415 
3416 	e1000_lower_i2c_clk(hw, &i2cctl);
3417 
3418 	/* Minimum low period of clock is 4.7 us */
3419 	usec_delay(E1000_I2C_T_LOW);
3420 }
3421 
3422 /**
3423  *  e1000_clock_out_i2c_bit - Clocks in/out one bit via I2C data/clock
3424  *  @hw: pointer to hardware structure
3425  *  @data: data value to write
3426  *
3427  *  Clocks out one bit via I2C data/clock
3428  **/
e1000_clock_out_i2c_bit(struct e1000_hw * hw,bool data)3429 STATIC s32 e1000_clock_out_i2c_bit(struct e1000_hw *hw, bool data)
3430 {
3431 	s32 status;
3432 	u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
3433 
3434 	DEBUGFUNC("e1000_clock_out_i2c_bit");
3435 
3436 	status = e1000_set_i2c_data(hw, &i2cctl, data);
3437 	if (status == E1000_SUCCESS) {
3438 		e1000_raise_i2c_clk(hw, &i2cctl);
3439 
3440 		/* Minimum high period of clock is 4us */
3441 		usec_delay(E1000_I2C_T_HIGH);
3442 
3443 		e1000_lower_i2c_clk(hw, &i2cctl);
3444 
3445 		/* Minimum low period of clock is 4.7 us.
3446 		 * This also takes care of the data hold time.
3447 		 */
3448 		usec_delay(E1000_I2C_T_LOW);
3449 	} else {
3450 		status = E1000_ERR_I2C;
3451 		DEBUGOUT1("I2C data was not set to %X\n", data);
3452 	}
3453 
3454 	return status;
3455 }
3456 /**
3457  *  e1000_raise_i2c_clk - Raises the I2C SCL clock
3458  *  @hw: pointer to hardware structure
3459  *  @i2cctl: Current value of I2CCTL register
3460  *
3461  *  Raises the I2C clock line '0'->'1'
3462  **/
e1000_raise_i2c_clk(struct e1000_hw * hw,u32 * i2cctl)3463 STATIC void e1000_raise_i2c_clk(struct e1000_hw *hw, u32 *i2cctl)
3464 {
3465 	DEBUGFUNC("e1000_raise_i2c_clk");
3466 
3467 	*i2cctl |= E1000_I2C_CLK_OUT;
3468 	*i2cctl &= ~E1000_I2C_CLK_OE_N;
3469 	E1000_WRITE_REG(hw, E1000_I2CPARAMS, *i2cctl);
3470 	E1000_WRITE_FLUSH(hw);
3471 
3472 	/* SCL rise time (1000ns) */
3473 	usec_delay(E1000_I2C_T_RISE);
3474 }
3475 
3476 /**
3477  *  e1000_lower_i2c_clk - Lowers the I2C SCL clock
3478  *  @hw: pointer to hardware structure
3479  *  @i2cctl: Current value of I2CCTL register
3480  *
3481  *  Lowers the I2C clock line '1'->'0'
3482  **/
e1000_lower_i2c_clk(struct e1000_hw * hw,u32 * i2cctl)3483 STATIC void e1000_lower_i2c_clk(struct e1000_hw *hw, u32 *i2cctl)
3484 {
3485 
3486 	DEBUGFUNC("e1000_lower_i2c_clk");
3487 
3488 	*i2cctl &= ~E1000_I2C_CLK_OUT;
3489 	*i2cctl &= ~E1000_I2C_CLK_OE_N;
3490 	E1000_WRITE_REG(hw, E1000_I2CPARAMS, *i2cctl);
3491 	E1000_WRITE_FLUSH(hw);
3492 
3493 	/* SCL fall time (300ns) */
3494 	usec_delay(E1000_I2C_T_FALL);
3495 }
3496 
3497 /**
3498  *  e1000_set_i2c_data - Sets the I2C data bit
3499  *  @hw: pointer to hardware structure
3500  *  @i2cctl: Current value of I2CCTL register
3501  *  @data: I2C data value (0 or 1) to set
3502  *
3503  *  Sets the I2C data bit
3504  **/
e1000_set_i2c_data(struct e1000_hw * hw,u32 * i2cctl,bool data)3505 STATIC s32 e1000_set_i2c_data(struct e1000_hw *hw, u32 *i2cctl, bool data)
3506 {
3507 	s32 status = E1000_SUCCESS;
3508 
3509 	DEBUGFUNC("e1000_set_i2c_data");
3510 
3511 	if (data)
3512 		*i2cctl |= E1000_I2C_DATA_OUT;
3513 	else
3514 		*i2cctl &= ~E1000_I2C_DATA_OUT;
3515 
3516 	*i2cctl &= ~E1000_I2C_DATA_OE_N;
3517 	*i2cctl |= E1000_I2C_CLK_OE_N;
3518 	E1000_WRITE_REG(hw, E1000_I2CPARAMS, *i2cctl);
3519 	E1000_WRITE_FLUSH(hw);
3520 
3521 	/* Data rise/fall (1000ns/300ns) and set-up time (250ns) */
3522 	usec_delay(E1000_I2C_T_RISE + E1000_I2C_T_FALL + E1000_I2C_T_SU_DATA);
3523 
3524 	*i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
3525 	if (data != e1000_get_i2c_data(i2cctl)) {
3526 		status = E1000_ERR_I2C;
3527 		DEBUGOUT1("Error - I2C data was not set to %X.\n", data);
3528 	}
3529 
3530 	return status;
3531 }
3532 
3533 /**
3534  *  e1000_get_i2c_data - Reads the I2C SDA data bit
3535  *  @i2cctl: Current value of I2CCTL register
3536  *
3537  *  Returns the I2C data bit value
3538  **/
e1000_get_i2c_data(u32 * i2cctl)3539 STATIC bool e1000_get_i2c_data(u32 *i2cctl)
3540 {
3541 	bool data;
3542 
3543 	DEBUGFUNC("e1000_get_i2c_data");
3544 
3545 	if (*i2cctl & E1000_I2C_DATA_IN)
3546 		data = 1;
3547 	else
3548 		data = 0;
3549 
3550 	return data;
3551 }
3552 
3553 /**
3554  *  e1000_i2c_bus_clear - Clears the I2C bus
3555  *  @hw: pointer to hardware structure
3556  *
3557  *  Clears the I2C bus by sending nine clock pulses.
3558  *  Used when data line is stuck low.
3559  **/
e1000_i2c_bus_clear(struct e1000_hw * hw)3560 void e1000_i2c_bus_clear(struct e1000_hw *hw)
3561 {
3562 	u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
3563 	u32 i;
3564 
3565 	DEBUGFUNC("e1000_i2c_bus_clear");
3566 
3567 	e1000_i2c_start(hw);
3568 
3569 	e1000_set_i2c_data(hw, &i2cctl, 1);
3570 
3571 	for (i = 0; i < 9; i++) {
3572 		e1000_raise_i2c_clk(hw, &i2cctl);
3573 
3574 		/* Min high period of clock is 4us */
3575 		usec_delay(E1000_I2C_T_HIGH);
3576 
3577 		e1000_lower_i2c_clk(hw, &i2cctl);
3578 
3579 		/* Min low period of clock is 4.7us*/
3580 		usec_delay(E1000_I2C_T_LOW);
3581 	}
3582 
3583 	e1000_i2c_start(hw);
3584 
3585 	/* Put the i2c bus back to default state */
3586 	e1000_i2c_stop(hw);
3587 }
3588 
3589