1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2001-2020 Intel Corporation
3  */
4 
5 /* 82571EB Gigabit Ethernet Controller
6  * 82571EB Gigabit Ethernet Controller (Copper)
7  * 82571EB Gigabit Ethernet Controller (Fiber)
8  * 82571EB Dual Port Gigabit Mezzanine Adapter
9  * 82571EB Quad Port Gigabit Mezzanine Adapter
10  * 82571PT Gigabit PT Quad Port Server ExpressModule
11  * 82572EI Gigabit Ethernet Controller (Copper)
12  * 82572EI Gigabit Ethernet Controller (Fiber)
13  * 82572EI Gigabit Ethernet Controller
14  * 82573V Gigabit Ethernet Controller (Copper)
15  * 82573E Gigabit Ethernet Controller (Copper)
16  * 82573L Gigabit Ethernet Controller
17  * 82574L Gigabit Network Connection
18  * 82583V Gigabit Network Connection
19  */
20 
21 #include "e1000_api.h"
22 
23 STATIC s32  e1000_acquire_nvm_82571(struct e1000_hw *hw);
24 STATIC void e1000_release_nvm_82571(struct e1000_hw *hw);
25 STATIC s32  e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset,
26 				  u16 words, u16 *data);
27 STATIC s32  e1000_update_nvm_checksum_82571(struct e1000_hw *hw);
28 STATIC s32  e1000_validate_nvm_checksum_82571(struct e1000_hw *hw);
29 STATIC s32  e1000_get_cfg_done_82571(struct e1000_hw *hw);
30 STATIC s32  e1000_set_d0_lplu_state_82571(struct e1000_hw *hw,
31 					  bool active);
32 STATIC s32  e1000_reset_hw_82571(struct e1000_hw *hw);
33 STATIC s32  e1000_init_hw_82571(struct e1000_hw *hw);
34 STATIC void e1000_clear_vfta_82571(struct e1000_hw *hw);
35 STATIC bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
36 STATIC s32 e1000_led_on_82574(struct e1000_hw *hw);
37 STATIC s32  e1000_setup_link_82571(struct e1000_hw *hw);
38 STATIC s32  e1000_setup_copper_link_82571(struct e1000_hw *hw);
39 STATIC s32  e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
40 STATIC s32  e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
41 STATIC s32  e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data);
42 STATIC void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
43 STATIC s32  e1000_get_hw_semaphore_82571(struct e1000_hw *hw);
44 STATIC s32  e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
45 STATIC s32  e1000_get_phy_id_82571(struct e1000_hw *hw);
46 STATIC void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
47 STATIC void e1000_put_hw_semaphore_82573(struct e1000_hw *hw);
48 STATIC s32  e1000_get_hw_semaphore_82574(struct e1000_hw *hw);
49 STATIC void e1000_put_hw_semaphore_82574(struct e1000_hw *hw);
50 STATIC s32  e1000_set_d0_lplu_state_82574(struct e1000_hw *hw,
51 					  bool active);
52 STATIC s32  e1000_set_d3_lplu_state_82574(struct e1000_hw *hw,
53 					  bool active);
54 STATIC void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
55 STATIC s32  e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
56 				       u16 words, u16 *data);
57 STATIC s32  e1000_read_mac_addr_82571(struct e1000_hw *hw);
58 STATIC void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
59 
60 /**
61  *  e1000_init_phy_params_82571 - Init PHY func ptrs.
62  *  @hw: pointer to the HW structure
63  **/
e1000_init_phy_params_82571(struct e1000_hw * hw)64 STATIC s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
65 {
66 	struct e1000_phy_info *phy = &hw->phy;
67 	s32 ret_val;
68 
69 	DEBUGFUNC("e1000_init_phy_params_82571");
70 
71 	if (hw->phy.media_type != e1000_media_type_copper) {
72 		phy->type = e1000_phy_none;
73 		return E1000_SUCCESS;
74 	}
75 
76 	phy->addr			= 1;
77 	phy->autoneg_mask		= AUTONEG_ADVERTISE_SPEED_DEFAULT;
78 	phy->reset_delay_us		= 100;
79 
80 	phy->ops.check_reset_block	= e1000_check_reset_block_generic;
81 	phy->ops.reset			= e1000_phy_hw_reset_generic;
82 	phy->ops.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571;
83 	phy->ops.set_d3_lplu_state	= e1000_set_d3_lplu_state_generic;
84 	phy->ops.power_up		= e1000_power_up_phy_copper;
85 	phy->ops.power_down		= e1000_power_down_phy_copper_82571;
86 
87 	switch (hw->mac.type) {
88 	case e1000_82571:
89 	case e1000_82572:
90 		phy->type		= e1000_phy_igp_2;
91 		phy->ops.get_cfg_done	= e1000_get_cfg_done_82571;
92 		phy->ops.get_info	= e1000_get_phy_info_igp;
93 		phy->ops.check_polarity	= e1000_check_polarity_igp;
94 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp;
95 		phy->ops.get_cable_length = e1000_get_cable_length_igp_2;
96 		phy->ops.read_reg	= e1000_read_phy_reg_igp;
97 		phy->ops.write_reg	= e1000_write_phy_reg_igp;
98 		phy->ops.acquire	= e1000_get_hw_semaphore_82571;
99 		phy->ops.release	= e1000_put_hw_semaphore_82571;
100 		break;
101 	case e1000_82573:
102 		phy->type		= e1000_phy_m88;
103 		phy->ops.get_cfg_done	= e1000_get_cfg_done_generic;
104 		phy->ops.get_info	= e1000_get_phy_info_m88;
105 		phy->ops.check_polarity	= e1000_check_polarity_m88;
106 		phy->ops.commit		= e1000_phy_sw_reset_generic;
107 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
108 		phy->ops.get_cable_length = e1000_get_cable_length_m88;
109 		phy->ops.read_reg	= e1000_read_phy_reg_m88;
110 		phy->ops.write_reg	= e1000_write_phy_reg_m88;
111 		phy->ops.acquire	= e1000_get_hw_semaphore_82571;
112 		phy->ops.release	= e1000_put_hw_semaphore_82571;
113 		break;
114 	case e1000_82574:
115 	case e1000_82583:
116 		E1000_MUTEX_INIT(&hw->dev_spec._82571.swflag_mutex);
117 
118 		phy->type		= e1000_phy_bm;
119 		phy->ops.get_cfg_done	= e1000_get_cfg_done_generic;
120 		phy->ops.get_info	= e1000_get_phy_info_m88;
121 		phy->ops.check_polarity	= e1000_check_polarity_m88;
122 		phy->ops.commit		= e1000_phy_sw_reset_generic;
123 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
124 		phy->ops.get_cable_length = e1000_get_cable_length_m88;
125 		phy->ops.read_reg	= e1000_read_phy_reg_bm2;
126 		phy->ops.write_reg	= e1000_write_phy_reg_bm2;
127 		phy->ops.acquire	= e1000_get_hw_semaphore_82574;
128 		phy->ops.release	= e1000_put_hw_semaphore_82574;
129 		phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82574;
130 		phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82574;
131 		break;
132 	default:
133 		return -E1000_ERR_PHY;
134 		break;
135 	}
136 
137 	/* This can only be done after all function pointers are setup. */
138 	ret_val = e1000_get_phy_id_82571(hw);
139 	if (ret_val) {
140 		DEBUGOUT("Error getting PHY ID\n");
141 		return ret_val;
142 	}
143 
144 	/* Verify phy id */
145 	switch (hw->mac.type) {
146 	case e1000_82571:
147 	case e1000_82572:
148 		if (phy->id != IGP01E1000_I_PHY_ID)
149 			ret_val = -E1000_ERR_PHY;
150 		break;
151 	case e1000_82573:
152 		if (phy->id != M88E1111_I_PHY_ID)
153 			ret_val = -E1000_ERR_PHY;
154 		break;
155 	case e1000_82574:
156 	case e1000_82583:
157 		if (phy->id != BME1000_E_PHY_ID_R2)
158 			ret_val = -E1000_ERR_PHY;
159 		break;
160 	default:
161 		ret_val = -E1000_ERR_PHY;
162 		break;
163 	}
164 
165 	if (ret_val)
166 		DEBUGOUT1("PHY ID unknown: type = 0x%08x\n", phy->id);
167 
168 	return ret_val;
169 }
170 
171 /**
172  *  e1000_init_nvm_params_82571 - Init NVM func ptrs.
173  *  @hw: pointer to the HW structure
174  **/
e1000_init_nvm_params_82571(struct e1000_hw * hw)175 STATIC s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
176 {
177 	struct e1000_nvm_info *nvm = &hw->nvm;
178 	u32 eecd = E1000_READ_REG(hw, E1000_EECD);
179 	u16 size;
180 
181 	DEBUGFUNC("e1000_init_nvm_params_82571");
182 
183 	nvm->opcode_bits = 8;
184 	nvm->delay_usec = 1;
185 	switch (nvm->override) {
186 	case e1000_nvm_override_spi_large:
187 		nvm->page_size = 32;
188 		nvm->address_bits = 16;
189 		break;
190 	case e1000_nvm_override_spi_small:
191 		nvm->page_size = 8;
192 		nvm->address_bits = 8;
193 		break;
194 	default:
195 		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
196 		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
197 		break;
198 	}
199 
200 	switch (hw->mac.type) {
201 	case e1000_82573:
202 	case e1000_82574:
203 	case e1000_82583:
204 		if (((eecd >> 15) & 0x3) == 0x3) {
205 			nvm->type = e1000_nvm_flash_hw;
206 			nvm->word_size = 2048;
207 			/* Autonomous Flash update bit must be cleared due
208 			 * to Flash update issue.
209 			 */
210 			eecd &= ~E1000_EECD_AUPDEN;
211 			E1000_WRITE_REG(hw, E1000_EECD, eecd);
212 			break;
213 		}
214 		/* Fall Through */
215 	default:
216 		nvm->type = e1000_nvm_eeprom_spi;
217 		size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
218 			     E1000_EECD_SIZE_EX_SHIFT);
219 		/* Added to a constant, "size" becomes the left-shift value
220 		 * for setting word_size.
221 		 */
222 		size += NVM_WORD_SIZE_BASE_SHIFT;
223 
224 		/* EEPROM access above 16k is unsupported */
225 		if (size > 14)
226 			size = 14;
227 		nvm->word_size = 1 << size;
228 		break;
229 	}
230 
231 	/* Function Pointers */
232 	switch (hw->mac.type) {
233 	case e1000_82574:
234 	case e1000_82583:
235 		nvm->ops.acquire = e1000_get_hw_semaphore_82574;
236 		nvm->ops.release = e1000_put_hw_semaphore_82574;
237 		break;
238 	default:
239 		nvm->ops.acquire = e1000_acquire_nvm_82571;
240 		nvm->ops.release = e1000_release_nvm_82571;
241 		break;
242 	}
243 	nvm->ops.read = e1000_read_nvm_eerd;
244 	nvm->ops.update = e1000_update_nvm_checksum_82571;
245 	nvm->ops.validate = e1000_validate_nvm_checksum_82571;
246 	nvm->ops.valid_led_default = e1000_valid_led_default_82571;
247 	nvm->ops.write = e1000_write_nvm_82571;
248 
249 	return E1000_SUCCESS;
250 }
251 
252 /**
253  *  e1000_init_mac_params_82571 - Init MAC func ptrs.
254  *  @hw: pointer to the HW structure
255  **/
e1000_init_mac_params_82571(struct e1000_hw * hw)256 STATIC s32 e1000_init_mac_params_82571(struct e1000_hw *hw)
257 {
258 	struct e1000_mac_info *mac = &hw->mac;
259 	u32 swsm = 0;
260 	u32 swsm2 = 0;
261 	bool force_clear_smbi = false;
262 
263 	DEBUGFUNC("e1000_init_mac_params_82571");
264 
265 	/* Set media type and media-dependent function pointers */
266 	switch (hw->device_id) {
267 	case E1000_DEV_ID_82571EB_FIBER:
268 	case E1000_DEV_ID_82572EI_FIBER:
269 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
270 		hw->phy.media_type = e1000_media_type_fiber;
271 		mac->ops.setup_physical_interface =
272 			e1000_setup_fiber_serdes_link_82571;
273 		mac->ops.check_for_link = e1000_check_for_fiber_link_generic;
274 		mac->ops.get_link_up_info =
275 			e1000_get_speed_and_duplex_fiber_serdes_generic;
276 		break;
277 	case E1000_DEV_ID_82571EB_SERDES:
278 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
279 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
280 	case E1000_DEV_ID_82572EI_SERDES:
281 		hw->phy.media_type = e1000_media_type_internal_serdes;
282 		mac->ops.setup_physical_interface =
283 			e1000_setup_fiber_serdes_link_82571;
284 		mac->ops.check_for_link = e1000_check_for_serdes_link_82571;
285 		mac->ops.get_link_up_info =
286 			e1000_get_speed_and_duplex_fiber_serdes_generic;
287 		break;
288 	default:
289 		hw->phy.media_type = e1000_media_type_copper;
290 		mac->ops.setup_physical_interface =
291 			e1000_setup_copper_link_82571;
292 		mac->ops.check_for_link = e1000_check_for_copper_link_generic;
293 		mac->ops.get_link_up_info =
294 			e1000_get_speed_and_duplex_copper_generic;
295 		break;
296 	}
297 
298 	/* Set mta register count */
299 	mac->mta_reg_count = 128;
300 	/* Set rar entry count */
301 	mac->rar_entry_count = E1000_RAR_ENTRIES;
302 	/* Set if part includes ASF firmware */
303 	mac->asf_firmware_present = true;
304 	/* Adaptive IFS supported */
305 	mac->adaptive_ifs = true;
306 
307 	/* Function pointers */
308 
309 	/* bus type/speed/width */
310 	mac->ops.get_bus_info = e1000_get_bus_info_pcie_generic;
311 	/* reset */
312 	mac->ops.reset_hw = e1000_reset_hw_82571;
313 	/* hw initialization */
314 	mac->ops.init_hw = e1000_init_hw_82571;
315 	/* link setup */
316 	mac->ops.setup_link = e1000_setup_link_82571;
317 	/* multicast address update */
318 	mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
319 	/* writing VFTA */
320 	mac->ops.write_vfta = e1000_write_vfta_generic;
321 	/* clearing VFTA */
322 	mac->ops.clear_vfta = e1000_clear_vfta_82571;
323 	/* read mac address */
324 	mac->ops.read_mac_addr = e1000_read_mac_addr_82571;
325 	/* ID LED init */
326 	mac->ops.id_led_init = e1000_id_led_init_generic;
327 	/* setup LED */
328 	mac->ops.setup_led = e1000_setup_led_generic;
329 	/* cleanup LED */
330 	mac->ops.cleanup_led = e1000_cleanup_led_generic;
331 	/* turn off LED */
332 	mac->ops.led_off = e1000_led_off_generic;
333 	/* clear hardware counters */
334 	mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82571;
335 
336 	/* MAC-specific function pointers */
337 	switch (hw->mac.type) {
338 	case e1000_82573:
339 		mac->ops.set_lan_id = e1000_set_lan_id_single_port;
340 		mac->ops.check_mng_mode = e1000_check_mng_mode_generic;
341 		mac->ops.led_on = e1000_led_on_generic;
342 		mac->ops.blink_led = e1000_blink_led_generic;
343 
344 		/* FWSM register */
345 		mac->has_fwsm = true;
346 		/* ARC supported; valid only if manageability features are
347 		 * enabled.
348 		 */
349 		mac->arc_subsystem_valid = !!(E1000_READ_REG(hw, E1000_FWSM) &
350 					      E1000_FWSM_MODE_MASK);
351 		break;
352 	case e1000_82574:
353 	case e1000_82583:
354 		mac->ops.set_lan_id = e1000_set_lan_id_single_port;
355 		mac->ops.check_mng_mode = e1000_check_mng_mode_82574;
356 		mac->ops.led_on = e1000_led_on_82574;
357 		break;
358 	default:
359 		mac->ops.check_mng_mode = e1000_check_mng_mode_generic;
360 		mac->ops.led_on = e1000_led_on_generic;
361 		mac->ops.blink_led = e1000_blink_led_generic;
362 
363 		/* FWSM register */
364 		mac->has_fwsm = true;
365 		break;
366 	}
367 
368 	/* Ensure that the inter-port SWSM.SMBI lock bit is clear before
369 	 * first NVM or PHY access. This should be done for single-port
370 	 * devices, and for one port only on dual-port devices so that
371 	 * for those devices we can still use the SMBI lock to synchronize
372 	 * inter-port accesses to the PHY & NVM.
373 	 */
374 	switch (hw->mac.type) {
375 	case e1000_82571:
376 	case e1000_82572:
377 		swsm2 = E1000_READ_REG(hw, E1000_SWSM2);
378 
379 		if (!(swsm2 & E1000_SWSM2_LOCK)) {
380 			/* Only do this for the first interface on this card */
381 			E1000_WRITE_REG(hw, E1000_SWSM2, swsm2 |
382 					E1000_SWSM2_LOCK);
383 			force_clear_smbi = true;
384 		} else {
385 			force_clear_smbi = false;
386 		}
387 		break;
388 	default:
389 		force_clear_smbi = true;
390 		break;
391 	}
392 
393 	if (force_clear_smbi) {
394 		/* Make sure SWSM.SMBI is clear */
395 		swsm = E1000_READ_REG(hw, E1000_SWSM);
396 		if (swsm & E1000_SWSM_SMBI) {
397 			/* This bit should not be set on a first interface, and
398 			 * indicates that the bootagent or EFI code has
399 			 * improperly left this bit enabled
400 			 */
401 			DEBUGOUT("Please update your 82571 Bootagent\n");
402 		}
403 		E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_SMBI);
404 	}
405 
406 	/* Initialze device specific counter of SMBI acquisition timeouts. */
407 	 hw->dev_spec._82571.smb_counter = 0;
408 
409 	return E1000_SUCCESS;
410 }
411 
412 /**
413  *  e1000_init_function_pointers_82571 - Init func ptrs.
414  *  @hw: pointer to the HW structure
415  *
416  *  Called to initialize all function pointers and parameters.
417  **/
e1000_init_function_pointers_82571(struct e1000_hw * hw)418 void e1000_init_function_pointers_82571(struct e1000_hw *hw)
419 {
420 	DEBUGFUNC("e1000_init_function_pointers_82571");
421 
422 	hw->mac.ops.init_params = e1000_init_mac_params_82571;
423 	hw->nvm.ops.init_params = e1000_init_nvm_params_82571;
424 	hw->phy.ops.init_params = e1000_init_phy_params_82571;
425 }
426 
427 /**
428  *  e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
429  *  @hw: pointer to the HW structure
430  *
431  *  Reads the PHY registers and stores the PHY ID and possibly the PHY
432  *  revision in the hardware structure.
433  **/
e1000_get_phy_id_82571(struct e1000_hw * hw)434 STATIC s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
435 {
436 	struct e1000_phy_info *phy = &hw->phy;
437 	s32 ret_val;
438 	u16 phy_id = 0;
439 
440 	DEBUGFUNC("e1000_get_phy_id_82571");
441 
442 	switch (hw->mac.type) {
443 	case e1000_82571:
444 	case e1000_82572:
445 		/* The 82571 firmware may still be configuring the PHY.
446 		 * In this case, we cannot access the PHY until the
447 		 * configuration is done.  So we explicitly set the
448 		 * PHY ID.
449 		 */
450 		phy->id = IGP01E1000_I_PHY_ID;
451 		break;
452 	case e1000_82573:
453 		return e1000_get_phy_id(hw);
454 		break;
455 	case e1000_82574:
456 	case e1000_82583:
457 		ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
458 		if (ret_val)
459 			return ret_val;
460 
461 		phy->id = (u32)(phy_id << 16);
462 		usec_delay(20);
463 		ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
464 		if (ret_val)
465 			return ret_val;
466 
467 		phy->id |= (u32)(phy_id);
468 		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
469 		break;
470 	default:
471 		return -E1000_ERR_PHY;
472 		break;
473 	}
474 
475 	return E1000_SUCCESS;
476 }
477 
478 /**
479  *  e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
480  *  @hw: pointer to the HW structure
481  *
482  *  Acquire the HW semaphore to access the PHY or NVM
483  **/
e1000_get_hw_semaphore_82571(struct e1000_hw * hw)484 STATIC s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
485 {
486 	u32 swsm;
487 	s32 sw_timeout = hw->nvm.word_size + 1;
488 	s32 fw_timeout = hw->nvm.word_size + 1;
489 	s32 i = 0;
490 
491 	DEBUGFUNC("e1000_get_hw_semaphore_82571");
492 
493 	/* If we have timedout 3 times on trying to acquire
494 	 * the inter-port SMBI semaphore, there is old code
495 	 * operating on the other port, and it is not
496 	 * releasing SMBI. Modify the number of times that
497 	 * we try for the semaphore to interwork with this
498 	 * older code.
499 	 */
500 	if (hw->dev_spec._82571.smb_counter > 2)
501 		sw_timeout = 1;
502 
503 	/* Get the SW semaphore */
504 	while (i < sw_timeout) {
505 		swsm = E1000_READ_REG(hw, E1000_SWSM);
506 		if (!(swsm & E1000_SWSM_SMBI))
507 			break;
508 
509 		usec_delay(50);
510 		i++;
511 	}
512 
513 	if (i == sw_timeout) {
514 		DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
515 		hw->dev_spec._82571.smb_counter++;
516 	}
517 	/* Get the FW semaphore. */
518 	for (i = 0; i < fw_timeout; i++) {
519 		swsm = E1000_READ_REG(hw, E1000_SWSM);
520 		E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
521 
522 		/* Semaphore acquired if bit latched */
523 		if (E1000_READ_REG(hw, E1000_SWSM) & E1000_SWSM_SWESMBI)
524 			break;
525 
526 		usec_delay(50);
527 	}
528 
529 	if (i == fw_timeout) {
530 		/* Release semaphores */
531 		e1000_put_hw_semaphore_82571(hw);
532 		DEBUGOUT("Driver can't access the NVM\n");
533 		return -E1000_ERR_NVM;
534 	}
535 
536 	return E1000_SUCCESS;
537 }
538 
539 /**
540  *  e1000_put_hw_semaphore_82571 - Release hardware semaphore
541  *  @hw: pointer to the HW structure
542  *
543  *  Release hardware semaphore used to access the PHY or NVM
544  **/
e1000_put_hw_semaphore_82571(struct e1000_hw * hw)545 STATIC void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
546 {
547 	u32 swsm;
548 
549 	DEBUGFUNC("e1000_put_hw_semaphore_generic");
550 
551 	swsm = E1000_READ_REG(hw, E1000_SWSM);
552 
553 	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
554 
555 	E1000_WRITE_REG(hw, E1000_SWSM, swsm);
556 }
557 
558 /**
559  *  e1000_get_hw_semaphore_82573 - Acquire hardware semaphore
560  *  @hw: pointer to the HW structure
561  *
562  *  Acquire the HW semaphore during reset.
563  *
564  **/
e1000_get_hw_semaphore_82573(struct e1000_hw * hw)565 STATIC s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw)
566 {
567 	u32 extcnf_ctrl;
568 	s32 i = 0;
569 
570 	DEBUGFUNC("e1000_get_hw_semaphore_82573");
571 
572 	extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
573 	do {
574 		extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
575 		E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
576 		extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
577 
578 		if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
579 			break;
580 
581 		msec_delay(2);
582 		i++;
583 	} while (i < MDIO_OWNERSHIP_TIMEOUT);
584 
585 	if (i == MDIO_OWNERSHIP_TIMEOUT) {
586 		/* Release semaphores */
587 		e1000_put_hw_semaphore_82573(hw);
588 		DEBUGOUT("Driver can't access the PHY\n");
589 		return -E1000_ERR_PHY;
590 	}
591 
592 	return E1000_SUCCESS;
593 }
594 
595 /**
596  *  e1000_put_hw_semaphore_82573 - Release hardware semaphore
597  *  @hw: pointer to the HW structure
598  *
599  *  Release hardware semaphore used during reset.
600  *
601  **/
e1000_put_hw_semaphore_82573(struct e1000_hw * hw)602 STATIC void e1000_put_hw_semaphore_82573(struct e1000_hw *hw)
603 {
604 	u32 extcnf_ctrl;
605 
606 	DEBUGFUNC("e1000_put_hw_semaphore_82573");
607 
608 	extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
609 	extcnf_ctrl &= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
610 	E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
611 }
612 
613 /**
614  *  e1000_get_hw_semaphore_82574 - Acquire hardware semaphore
615  *  @hw: pointer to the HW structure
616  *
617  *  Acquire the HW semaphore to access the PHY or NVM.
618  *
619  **/
e1000_get_hw_semaphore_82574(struct e1000_hw * hw)620 STATIC s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw)
621 {
622 	s32 ret_val;
623 
624 	DEBUGFUNC("e1000_get_hw_semaphore_82574");
625 
626 	E1000_MUTEX_LOCK(&hw->dev_spec._82571.swflag_mutex);
627 	ret_val = e1000_get_hw_semaphore_82573(hw);
628 	if (ret_val)
629 		E1000_MUTEX_UNLOCK(&hw->dev_spec._82571.swflag_mutex);
630 	return ret_val;
631 }
632 
633 /**
634  *  e1000_put_hw_semaphore_82574 - Release hardware semaphore
635  *  @hw: pointer to the HW structure
636  *
637  *  Release hardware semaphore used to access the PHY or NVM
638  *
639  **/
e1000_put_hw_semaphore_82574(struct e1000_hw * hw)640 STATIC void e1000_put_hw_semaphore_82574(struct e1000_hw *hw)
641 {
642 	DEBUGFUNC("e1000_put_hw_semaphore_82574");
643 
644 	e1000_put_hw_semaphore_82573(hw);
645 	E1000_MUTEX_UNLOCK(&hw->dev_spec._82571.swflag_mutex);
646 }
647 
648 /**
649  *  e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state
650  *  @hw: pointer to the HW structure
651  *  @active: true to enable LPLU, false to disable
652  *
653  *  Sets the LPLU D0 state according to the active flag.
654  *  LPLU will not be activated unless the
655  *  device autonegotiation advertisement meets standards of
656  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
657  *  This is a function pointer entry point only called by
658  *  PHY setup routines.
659  **/
e1000_set_d0_lplu_state_82574(struct e1000_hw * hw,bool active)660 STATIC s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active)
661 {
662 	u32 data = E1000_READ_REG(hw, E1000_POEMB);
663 
664 	DEBUGFUNC("e1000_set_d0_lplu_state_82574");
665 
666 	if (active)
667 		data |= E1000_PHY_CTRL_D0A_LPLU;
668 	else
669 		data &= ~E1000_PHY_CTRL_D0A_LPLU;
670 
671 	E1000_WRITE_REG(hw, E1000_POEMB, data);
672 	return E1000_SUCCESS;
673 }
674 
675 /**
676  *  e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3
677  *  @hw: pointer to the HW structure
678  *  @active: boolean used to enable/disable lplu
679  *
680  *  The low power link up (lplu) state is set to the power management level D3
681  *  when active is true, else clear lplu for D3. LPLU
682  *  is used during Dx states where the power conservation is most important.
683  *  During driver activity, SmartSpeed should be enabled so performance is
684  *  maintained.
685  **/
e1000_set_d3_lplu_state_82574(struct e1000_hw * hw,bool active)686 STATIC s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active)
687 {
688 	u32 data = E1000_READ_REG(hw, E1000_POEMB);
689 
690 	DEBUGFUNC("e1000_set_d3_lplu_state_82574");
691 
692 	if (!active) {
693 		data &= ~E1000_PHY_CTRL_NOND0A_LPLU;
694 	} else if ((hw->phy.autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
695 		   (hw->phy.autoneg_advertised == E1000_ALL_NOT_GIG) ||
696 		   (hw->phy.autoneg_advertised == E1000_ALL_10_SPEED)) {
697 		data |= E1000_PHY_CTRL_NOND0A_LPLU;
698 	}
699 
700 	E1000_WRITE_REG(hw, E1000_POEMB, data);
701 	return E1000_SUCCESS;
702 }
703 
704 /**
705  *  e1000_acquire_nvm_82571 - Request for access to the EEPROM
706  *  @hw: pointer to the HW structure
707  *
708  *  To gain access to the EEPROM, first we must obtain a hardware semaphore.
709  *  Then for non-82573 hardware, set the EEPROM access request bit and wait
710  *  for EEPROM access grant bit.  If the access grant bit is not set, release
711  *  hardware semaphore.
712  **/
e1000_acquire_nvm_82571(struct e1000_hw * hw)713 STATIC s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
714 {
715 	s32 ret_val;
716 
717 	DEBUGFUNC("e1000_acquire_nvm_82571");
718 
719 	ret_val = e1000_get_hw_semaphore_82571(hw);
720 	if (ret_val)
721 		return ret_val;
722 
723 	switch (hw->mac.type) {
724 	case e1000_82573:
725 		break;
726 	default:
727 		ret_val = e1000_acquire_nvm_generic(hw);
728 		break;
729 	}
730 
731 	if (ret_val)
732 		e1000_put_hw_semaphore_82571(hw);
733 
734 	return ret_val;
735 }
736 
737 /**
738  *  e1000_release_nvm_82571 - Release exclusive access to EEPROM
739  *  @hw: pointer to the HW structure
740  *
741  *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
742  **/
e1000_release_nvm_82571(struct e1000_hw * hw)743 STATIC void e1000_release_nvm_82571(struct e1000_hw *hw)
744 {
745 	DEBUGFUNC("e1000_release_nvm_82571");
746 
747 	e1000_release_nvm_generic(hw);
748 	e1000_put_hw_semaphore_82571(hw);
749 }
750 
751 /**
752  *  e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
753  *  @hw: pointer to the HW structure
754  *  @offset: offset within the EEPROM to be written to
755  *  @words: number of words to write
756  *  @data: 16 bit word(s) to be written to the EEPROM
757  *
758  *  For non-82573 silicon, write data to EEPROM at offset using SPI interface.
759  *
760  *  If e1000_update_nvm_checksum is not called after this function, the
761  *  EEPROM will most likely contain an invalid checksum.
762  **/
e1000_write_nvm_82571(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)763 STATIC s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
764 				 u16 *data)
765 {
766 	s32 ret_val;
767 
768 	DEBUGFUNC("e1000_write_nvm_82571");
769 
770 	switch (hw->mac.type) {
771 	case e1000_82573:
772 	case e1000_82574:
773 	case e1000_82583:
774 		ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
775 		break;
776 	case e1000_82571:
777 	case e1000_82572:
778 		ret_val = e1000_write_nvm_spi(hw, offset, words, data);
779 		break;
780 	default:
781 		ret_val = -E1000_ERR_NVM;
782 		break;
783 	}
784 
785 	return ret_val;
786 }
787 
788 /**
789  *  e1000_update_nvm_checksum_82571 - Update EEPROM checksum
790  *  @hw: pointer to the HW structure
791  *
792  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
793  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
794  *  value to the EEPROM.
795  **/
e1000_update_nvm_checksum_82571(struct e1000_hw * hw)796 STATIC s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
797 {
798 	u32 eecd;
799 	s32 ret_val;
800 	u16 i;
801 
802 	DEBUGFUNC("e1000_update_nvm_checksum_82571");
803 
804 	ret_val = e1000_update_nvm_checksum_generic(hw);
805 	if (ret_val)
806 		return ret_val;
807 
808 	/* If our nvm is an EEPROM, then we're done
809 	 * otherwise, commit the checksum to the flash NVM.
810 	 */
811 	if (hw->nvm.type != e1000_nvm_flash_hw)
812 		return E1000_SUCCESS;
813 
814 	/* Check for pending operations. */
815 	for (i = 0; i < E1000_FLASH_UPDATES; i++) {
816 		msec_delay(1);
817 		if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_FLUPD))
818 			break;
819 	}
820 
821 	if (i == E1000_FLASH_UPDATES)
822 		return -E1000_ERR_NVM;
823 
824 	/* Reset the firmware if using STM opcode. */
825 	if ((E1000_READ_REG(hw, E1000_FLOP) & 0xFF00) == E1000_STM_OPCODE) {
826 		/* The enabling of and the actual reset must be done
827 		 * in two write cycles.
828 		 */
829 		E1000_WRITE_REG(hw, E1000_HICR, E1000_HICR_FW_RESET_ENABLE);
830 		E1000_WRITE_FLUSH(hw);
831 		E1000_WRITE_REG(hw, E1000_HICR, E1000_HICR_FW_RESET);
832 	}
833 
834 	/* Commit the write to flash */
835 	eecd = E1000_READ_REG(hw, E1000_EECD) | E1000_EECD_FLUPD;
836 	E1000_WRITE_REG(hw, E1000_EECD, eecd);
837 
838 	for (i = 0; i < E1000_FLASH_UPDATES; i++) {
839 		msec_delay(1);
840 		if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_FLUPD))
841 			break;
842 	}
843 
844 	if (i == E1000_FLASH_UPDATES)
845 		return -E1000_ERR_NVM;
846 
847 	return E1000_SUCCESS;
848 }
849 
850 /**
851  *  e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
852  *  @hw: pointer to the HW structure
853  *
854  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
855  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
856  **/
e1000_validate_nvm_checksum_82571(struct e1000_hw * hw)857 STATIC s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
858 {
859 	DEBUGFUNC("e1000_validate_nvm_checksum_82571");
860 
861 	if (hw->nvm.type == e1000_nvm_flash_hw)
862 		e1000_fix_nvm_checksum_82571(hw);
863 
864 	return e1000_validate_nvm_checksum_generic(hw);
865 }
866 
867 /**
868  *  e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
869  *  @hw: pointer to the HW structure
870  *  @offset: offset within the EEPROM to be written to
871  *  @words: number of words to write
872  *  @data: 16 bit word(s) to be written to the EEPROM
873  *
874  *  After checking for invalid values, poll the EEPROM to ensure the previous
875  *  command has completed before trying to write the next word.  After write
876  *  poll for completion.
877  *
878  *  If e1000_update_nvm_checksum is not called after this function, the
879  *  EEPROM will most likely contain an invalid checksum.
880  **/
e1000_write_nvm_eewr_82571(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)881 STATIC s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
882 				      u16 words, u16 *data)
883 {
884 	struct e1000_nvm_info *nvm = &hw->nvm;
885 	u32 i, eewr = 0;
886 	s32 ret_val = E1000_SUCCESS;
887 
888 	DEBUGFUNC("e1000_write_nvm_eewr_82571");
889 
890 	/* A check for invalid values:  offset too large, too many words,
891 	 * and not enough words.
892 	 */
893 	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
894 	    (words == 0)) {
895 		DEBUGOUT("nvm parameter(s) out of bounds\n");
896 		return -E1000_ERR_NVM;
897 	}
898 
899 	for (i = 0; i < words; i++) {
900 		eewr = ((data[i] << E1000_NVM_RW_REG_DATA) |
901 			((offset + i) << E1000_NVM_RW_ADDR_SHIFT) |
902 			E1000_NVM_RW_REG_START);
903 
904 		ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
905 		if (ret_val)
906 			break;
907 
908 		E1000_WRITE_REG(hw, E1000_EEWR, eewr);
909 
910 		ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
911 		if (ret_val)
912 			break;
913 	}
914 
915 	return ret_val;
916 }
917 
918 /**
919  *  e1000_get_cfg_done_82571 - Poll for configuration done
920  *  @hw: pointer to the HW structure
921  *
922  *  Reads the management control register for the config done bit to be set.
923  **/
e1000_get_cfg_done_82571(struct e1000_hw * hw)924 STATIC s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
925 {
926 	s32 timeout = PHY_CFG_TIMEOUT;
927 
928 	DEBUGFUNC("e1000_get_cfg_done_82571");
929 
930 	while (timeout) {
931 		if (E1000_READ_REG(hw, E1000_EEMNGCTL) &
932 		    E1000_NVM_CFG_DONE_PORT_0)
933 			break;
934 		msec_delay(1);
935 		timeout--;
936 	}
937 	if (!timeout) {
938 		DEBUGOUT("MNG configuration cycle has not completed.\n");
939 		return -E1000_ERR_RESET;
940 	}
941 
942 	return E1000_SUCCESS;
943 }
944 
945 /**
946  *  e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
947  *  @hw: pointer to the HW structure
948  *  @active: true to enable LPLU, false to disable
949  *
950  *  Sets the LPLU D0 state according to the active flag.  When activating LPLU
951  *  this function also disables smart speed and vice versa.  LPLU will not be
952  *  activated unless the device autonegotiation advertisement meets standards
953  *  of either 10 or 10/100 or 10/100/1000 at all duplexes.  This is a function
954  *  pointer entry point only called by PHY setup routines.
955  **/
e1000_set_d0_lplu_state_82571(struct e1000_hw * hw,bool active)956 STATIC s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
957 {
958 	struct e1000_phy_info *phy = &hw->phy;
959 	s32 ret_val;
960 	u16 data;
961 
962 	DEBUGFUNC("e1000_set_d0_lplu_state_82571");
963 
964 	if (!(phy->ops.read_reg))
965 		return E1000_SUCCESS;
966 
967 	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
968 	if (ret_val)
969 		return ret_val;
970 
971 	if (active) {
972 		data |= IGP02E1000_PM_D0_LPLU;
973 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
974 					     data);
975 		if (ret_val)
976 			return ret_val;
977 
978 		/* When LPLU is enabled, we should disable SmartSpeed */
979 		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
980 					    &data);
981 		if (ret_val)
982 			return ret_val;
983 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
984 		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
985 					     data);
986 		if (ret_val)
987 			return ret_val;
988 	} else {
989 		data &= ~IGP02E1000_PM_D0_LPLU;
990 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
991 					     data);
992 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
993 		 * during Dx states where the power conservation is most
994 		 * important.  During driver activity we should enable
995 		 * SmartSpeed, so performance is maintained.
996 		 */
997 		if (phy->smart_speed == e1000_smart_speed_on) {
998 			ret_val = phy->ops.read_reg(hw,
999 						    IGP01E1000_PHY_PORT_CONFIG,
1000 						    &data);
1001 			if (ret_val)
1002 				return ret_val;
1003 
1004 			data |= IGP01E1000_PSCFR_SMART_SPEED;
1005 			ret_val = phy->ops.write_reg(hw,
1006 						     IGP01E1000_PHY_PORT_CONFIG,
1007 						     data);
1008 			if (ret_val)
1009 				return ret_val;
1010 		} else if (phy->smart_speed == e1000_smart_speed_off) {
1011 			ret_val = phy->ops.read_reg(hw,
1012 						    IGP01E1000_PHY_PORT_CONFIG,
1013 						    &data);
1014 			if (ret_val)
1015 				return ret_val;
1016 
1017 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1018 			ret_val = phy->ops.write_reg(hw,
1019 						     IGP01E1000_PHY_PORT_CONFIG,
1020 						     data);
1021 			if (ret_val)
1022 				return ret_val;
1023 		}
1024 	}
1025 
1026 	return E1000_SUCCESS;
1027 }
1028 
1029 /**
1030  *  e1000_reset_hw_82571 - Reset hardware
1031  *  @hw: pointer to the HW structure
1032  *
1033  *  This resets the hardware into a known state.
1034  **/
e1000_reset_hw_82571(struct e1000_hw * hw)1035 STATIC s32 e1000_reset_hw_82571(struct e1000_hw *hw)
1036 {
1037 	u32 ctrl, ctrl_ext, eecd, tctl;
1038 	s32 ret_val;
1039 
1040 	DEBUGFUNC("e1000_reset_hw_82571");
1041 
1042 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
1043 	 * on the last TLP read/write transaction when MAC is reset.
1044 	 */
1045 	ret_val = e1000_disable_pcie_master_generic(hw);
1046 	if (ret_val)
1047 		DEBUGOUT("PCI-E Master disable polling has failed.\n");
1048 
1049 	DEBUGOUT("Masking off all interrupts\n");
1050 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
1051 
1052 	E1000_WRITE_REG(hw, E1000_RCTL, 0);
1053 	tctl = E1000_READ_REG(hw, E1000_TCTL);
1054 	tctl &= ~E1000_TCTL_EN;
1055 	E1000_WRITE_REG(hw, E1000_TCTL, tctl);
1056 	E1000_WRITE_FLUSH(hw);
1057 
1058 	msec_delay(10);
1059 
1060 	/* Must acquire the MDIO ownership before MAC reset.
1061 	 * Ownership defaults to firmware after a reset.
1062 	 */
1063 	switch (hw->mac.type) {
1064 	case e1000_82573:
1065 		ret_val = e1000_get_hw_semaphore_82573(hw);
1066 		break;
1067 	case e1000_82574:
1068 	case e1000_82583:
1069 		ret_val = e1000_get_hw_semaphore_82574(hw);
1070 		break;
1071 	default:
1072 		break;
1073 	}
1074 
1075 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
1076 
1077 	DEBUGOUT("Issuing a global reset to MAC\n");
1078 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
1079 
1080 	/* Must release MDIO ownership and mutex after MAC reset. */
1081 	switch (hw->mac.type) {
1082 	case e1000_82573:
1083 		/* Release mutex only if the hw semaphore is acquired */
1084 		if (!ret_val)
1085 			e1000_put_hw_semaphore_82573(hw);
1086 		break;
1087 	case e1000_82574:
1088 	case e1000_82583:
1089 		/* Release mutex only if the hw semaphore is acquired */
1090 		if (!ret_val)
1091 			e1000_put_hw_semaphore_82574(hw);
1092 		break;
1093 	default:
1094 		break;
1095 	}
1096 
1097 	if (hw->nvm.type == e1000_nvm_flash_hw) {
1098 		usec_delay(10);
1099 		ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1100 		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1101 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
1102 		E1000_WRITE_FLUSH(hw);
1103 	}
1104 
1105 	ret_val = e1000_get_auto_rd_done_generic(hw);
1106 	if (ret_val)
1107 		/* We don't want to continue accessing MAC registers. */
1108 		return ret_val;
1109 
1110 	/* Phy configuration from NVM just starts after EECD_AUTO_RD is set.
1111 	 * Need to wait for Phy configuration completion before accessing
1112 	 * NVM and Phy.
1113 	 */
1114 
1115 	switch (hw->mac.type) {
1116 	case e1000_82571:
1117 	case e1000_82572:
1118 		/* REQ and GNT bits need to be cleared when using AUTO_RD
1119 		 * to access the EEPROM.
1120 		 */
1121 		eecd = E1000_READ_REG(hw, E1000_EECD);
1122 		eecd &= ~(E1000_EECD_REQ | E1000_EECD_GNT);
1123 		E1000_WRITE_REG(hw, E1000_EECD, eecd);
1124 		break;
1125 	case e1000_82573:
1126 	case e1000_82574:
1127 	case e1000_82583:
1128 		msec_delay(25);
1129 		break;
1130 	default:
1131 		break;
1132 	}
1133 
1134 	/* Clear any pending interrupt events. */
1135 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
1136 	E1000_READ_REG(hw, E1000_ICR);
1137 
1138 	if (hw->mac.type == e1000_82571) {
1139 		/* Install any alternate MAC address into RAR0 */
1140 		ret_val = e1000_check_alt_mac_addr_generic(hw);
1141 		if (ret_val)
1142 			return ret_val;
1143 
1144 		e1000_set_laa_state_82571(hw, true);
1145 	}
1146 
1147 	/* Reinitialize the 82571 serdes link state machine */
1148 	if (hw->phy.media_type == e1000_media_type_internal_serdes)
1149 		hw->mac.serdes_link_state = e1000_serdes_link_down;
1150 
1151 	return E1000_SUCCESS;
1152 }
1153 
1154 /**
1155  *  e1000_init_hw_82571 - Initialize hardware
1156  *  @hw: pointer to the HW structure
1157  *
1158  *  This inits the hardware readying it for operation.
1159  **/
e1000_init_hw_82571(struct e1000_hw * hw)1160 STATIC s32 e1000_init_hw_82571(struct e1000_hw *hw)
1161 {
1162 	struct e1000_mac_info *mac = &hw->mac;
1163 	u32 reg_data;
1164 	s32 ret_val;
1165 	u16 i, rar_count = mac->rar_entry_count;
1166 
1167 	DEBUGFUNC("e1000_init_hw_82571");
1168 
1169 	e1000_initialize_hw_bits_82571(hw);
1170 
1171 	/* Initialize identification LED */
1172 	ret_val = mac->ops.id_led_init(hw);
1173 	/* An error is not fatal and we should not stop init due to this */
1174 	if (ret_val)
1175 		DEBUGOUT("Error initializing identification LED\n");
1176 
1177 	/* Disabling VLAN filtering */
1178 	DEBUGOUT("Initializing the IEEE VLAN\n");
1179 	mac->ops.clear_vfta(hw);
1180 
1181 	/* Setup the receive address.
1182 	 * If, however, a locally administered address was assigned to the
1183 	 * 82571, we must reserve a RAR for it to work around an issue where
1184 	 * resetting one port will reload the MAC on the other port.
1185 	 */
1186 	if (e1000_get_laa_state_82571(hw))
1187 		rar_count--;
1188 	e1000_init_rx_addrs_generic(hw, rar_count);
1189 
1190 	/* Zero out the Multicast HASH table */
1191 	DEBUGOUT("Zeroing the MTA\n");
1192 	for (i = 0; i < mac->mta_reg_count; i++)
1193 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
1194 
1195 	/* Setup link and flow control */
1196 	ret_val = mac->ops.setup_link(hw);
1197 
1198 	/* Set the transmit descriptor write-back policy */
1199 	reg_data = E1000_READ_REG(hw, E1000_TXDCTL(0));
1200 	reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
1201 		    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
1202 	E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg_data);
1203 
1204 	/* ...for both queues. */
1205 	switch (mac->type) {
1206 	case e1000_82573:
1207 		e1000_enable_tx_pkt_filtering_generic(hw);
1208 		/* fall through */
1209 	case e1000_82574:
1210 	case e1000_82583:
1211 		reg_data = E1000_READ_REG(hw, E1000_GCR);
1212 		reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1213 		E1000_WRITE_REG(hw, E1000_GCR, reg_data);
1214 		break;
1215 	default:
1216 		reg_data = E1000_READ_REG(hw, E1000_TXDCTL(1));
1217 		reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
1218 			    E1000_TXDCTL_FULL_TX_DESC_WB |
1219 			    E1000_TXDCTL_COUNT_DESC);
1220 		E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg_data);
1221 		break;
1222 	}
1223 
1224 	/* Clear all of the statistics registers (clear on read).  It is
1225 	 * important that we do this after we have tried to establish link
1226 	 * because the symbol error count will increment wildly if there
1227 	 * is no link.
1228 	 */
1229 	e1000_clear_hw_cntrs_82571(hw);
1230 
1231 	/* MSI-X configure for 82574 */
1232 	if (mac->type == e1000_82574)
1233 		E1000_WRITE_REG(hw, E1000_IVAR,
1234 				(E1000_IVAR_INT_ALLOC_VALID << 16));
1235 
1236 	return ret_val;
1237 }
1238 
1239 /**
1240  *  e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
1241  *  @hw: pointer to the HW structure
1242  *
1243  *  Initializes required hardware-dependent bits needed for normal operation.
1244  **/
e1000_initialize_hw_bits_82571(struct e1000_hw * hw)1245 STATIC void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
1246 {
1247 	u32 reg;
1248 
1249 	DEBUGFUNC("e1000_initialize_hw_bits_82571");
1250 
1251 	/* Transmit Descriptor Control 0 */
1252 	reg = E1000_READ_REG(hw, E1000_TXDCTL(0));
1253 	reg |= (1 << 22);
1254 	E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg);
1255 
1256 	/* Transmit Descriptor Control 1 */
1257 	reg = E1000_READ_REG(hw, E1000_TXDCTL(1));
1258 	reg |= (1 << 22);
1259 	E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg);
1260 
1261 	/* Transmit Arbitration Control 0 */
1262 	reg = E1000_READ_REG(hw, E1000_TARC(0));
1263 	reg &= ~(0xF << 27); /* 30:27 */
1264 	switch (hw->mac.type) {
1265 	case e1000_82571:
1266 	case e1000_82572:
1267 		reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
1268 		break;
1269 	case e1000_82574:
1270 	case e1000_82583:
1271 		reg |= (1 << 26);
1272 		break;
1273 	default:
1274 		break;
1275 	}
1276 	E1000_WRITE_REG(hw, E1000_TARC(0), reg);
1277 
1278 	/* Transmit Arbitration Control 1 */
1279 	reg = E1000_READ_REG(hw, E1000_TARC(1));
1280 	switch (hw->mac.type) {
1281 	case e1000_82571:
1282 	case e1000_82572:
1283 		reg &= ~((1 << 29) | (1 << 30));
1284 		reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
1285 		if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR)
1286 			reg &= ~(1 << 28);
1287 		else
1288 			reg |= (1 << 28);
1289 		E1000_WRITE_REG(hw, E1000_TARC(1), reg);
1290 		break;
1291 	default:
1292 		break;
1293 	}
1294 
1295 	/* Device Control */
1296 	switch (hw->mac.type) {
1297 	case e1000_82573:
1298 	case e1000_82574:
1299 	case e1000_82583:
1300 		reg = E1000_READ_REG(hw, E1000_CTRL);
1301 		reg &= ~(1 << 29);
1302 		E1000_WRITE_REG(hw, E1000_CTRL, reg);
1303 		break;
1304 	default:
1305 		break;
1306 	}
1307 
1308 	/* Extended Device Control */
1309 	switch (hw->mac.type) {
1310 	case e1000_82573:
1311 	case e1000_82574:
1312 	case e1000_82583:
1313 		reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1314 		reg &= ~(1 << 23);
1315 		reg |= (1 << 22);
1316 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
1317 		break;
1318 	default:
1319 		break;
1320 	}
1321 
1322 	if (hw->mac.type == e1000_82571) {
1323 		reg = E1000_READ_REG(hw, E1000_PBA_ECC);
1324 		reg |= E1000_PBA_ECC_CORR_EN;
1325 		E1000_WRITE_REG(hw, E1000_PBA_ECC, reg);
1326 	}
1327 
1328 	/* Workaround for hardware errata.
1329 	 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
1330 	 */
1331 	if ((hw->mac.type == e1000_82571) ||
1332 	   (hw->mac.type == e1000_82572)) {
1333 		reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1334 		reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
1335 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
1336 	}
1337 
1338 	/* Disable IPv6 extension header parsing because some malformed
1339 	 * IPv6 headers can hang the Rx.
1340 	 */
1341 	if (hw->mac.type <= e1000_82573) {
1342 		reg = E1000_READ_REG(hw, E1000_RFCTL);
1343 		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
1344 		E1000_WRITE_REG(hw, E1000_RFCTL, reg);
1345 	}
1346 
1347 	/* PCI-Ex Control Registers */
1348 	switch (hw->mac.type) {
1349 	case e1000_82574:
1350 	case e1000_82583:
1351 		reg = E1000_READ_REG(hw, E1000_GCR);
1352 		reg |= (1 << 22);
1353 		E1000_WRITE_REG(hw, E1000_GCR, reg);
1354 
1355 		/* Workaround for hardware errata.
1356 		 * apply workaround for hardware errata documented in errata
1357 		 * docs Fixes issue where some error prone or unreliable PCIe
1358 		 * completions are occurring, particularly with ASPM enabled.
1359 		 * Without fix, issue can cause Tx timeouts.
1360 		 */
1361 		reg = E1000_READ_REG(hw, E1000_GCR2);
1362 		reg |= 1;
1363 		E1000_WRITE_REG(hw, E1000_GCR2, reg);
1364 		break;
1365 	default:
1366 		break;
1367 	}
1368 
1369 	return;
1370 }
1371 
1372 /**
1373  *  e1000_clear_vfta_82571 - Clear VLAN filter table
1374  *  @hw: pointer to the HW structure
1375  *
1376  *  Clears the register array which contains the VLAN filter table by
1377  *  setting all the values to 0.
1378  **/
e1000_clear_vfta_82571(struct e1000_hw * hw)1379 STATIC void e1000_clear_vfta_82571(struct e1000_hw *hw)
1380 {
1381 	u32 offset;
1382 	u32 vfta_value = 0;
1383 	u32 vfta_offset = 0;
1384 	u32 vfta_bit_in_reg = 0;
1385 
1386 	DEBUGFUNC("e1000_clear_vfta_82571");
1387 
1388 	switch (hw->mac.type) {
1389 	case e1000_82573:
1390 	case e1000_82574:
1391 	case e1000_82583:
1392 		if (hw->mng_cookie.vlan_id != 0) {
1393 			/* The VFTA is a 4096b bit-field, each identifying
1394 			 * a single VLAN ID.  The following operations
1395 			 * determine which 32b entry (i.e. offset) into the
1396 			 * array we want to set the VLAN ID (i.e. bit) of
1397 			 * the manageability unit.
1398 			 */
1399 			vfta_offset = (hw->mng_cookie.vlan_id >>
1400 				       E1000_VFTA_ENTRY_SHIFT) &
1401 			    E1000_VFTA_ENTRY_MASK;
1402 			vfta_bit_in_reg =
1403 			    1 << (hw->mng_cookie.vlan_id &
1404 				  E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
1405 		}
1406 		break;
1407 	default:
1408 		break;
1409 	}
1410 	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
1411 		/* If the offset we want to clear is the same offset of the
1412 		 * manageability VLAN ID, then clear all bits except that of
1413 		 * the manageability unit.
1414 		 */
1415 		vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
1416 		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
1417 		E1000_WRITE_FLUSH(hw);
1418 	}
1419 }
1420 
1421 /**
1422  *  e1000_check_mng_mode_82574 - Check manageability is enabled
1423  *  @hw: pointer to the HW structure
1424  *
1425  *  Reads the NVM Initialization Control Word 2 and returns true
1426  *  (>0) if any manageability is enabled, else false (0).
1427  **/
e1000_check_mng_mode_82574(struct e1000_hw * hw)1428 STATIC bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
1429 {
1430 	u16 data;
1431 	s32 ret_val;
1432 
1433 	DEBUGFUNC("e1000_check_mng_mode_82574");
1434 
1435 	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1436 	if (ret_val)
1437 		return false;
1438 
1439 	return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
1440 }
1441 
1442 /**
1443  *  e1000_led_on_82574 - Turn LED on
1444  *  @hw: pointer to the HW structure
1445  *
1446  *  Turn LED on.
1447  **/
e1000_led_on_82574(struct e1000_hw * hw)1448 STATIC s32 e1000_led_on_82574(struct e1000_hw *hw)
1449 {
1450 	u32 ctrl;
1451 	u32 i;
1452 
1453 	DEBUGFUNC("e1000_led_on_82574");
1454 
1455 	ctrl = hw->mac.ledctl_mode2;
1456 	if (!(E1000_STATUS_LU & E1000_READ_REG(hw, E1000_STATUS))) {
1457 		/* If no link, then turn LED on by setting the invert bit
1458 		 * for each LED that's "on" (0x0E) in ledctl_mode2.
1459 		 */
1460 		for (i = 0; i < 4; i++)
1461 			if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1462 			    E1000_LEDCTL_MODE_LED_ON)
1463 				ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
1464 	}
1465 	E1000_WRITE_REG(hw, E1000_LEDCTL, ctrl);
1466 
1467 	return E1000_SUCCESS;
1468 }
1469 
1470 /**
1471  *  e1000_check_phy_82574 - check 82574 phy hung state
1472  *  @hw: pointer to the HW structure
1473  *
1474  *  Returns whether phy is hung or not
1475  **/
e1000_check_phy_82574(struct e1000_hw * hw)1476 bool e1000_check_phy_82574(struct e1000_hw *hw)
1477 {
1478 	u16 status_1kbt = 0;
1479 	u16 receive_errors = 0;
1480 	s32 ret_val;
1481 
1482 	DEBUGFUNC("e1000_check_phy_82574");
1483 
1484 	/* Read PHY Receive Error counter first, if its is max - all F's then
1485 	 * read the Base1000T status register If both are max then PHY is hung.
1486 	 */
1487 	ret_val = hw->phy.ops.read_reg(hw, E1000_RECEIVE_ERROR_COUNTER,
1488 				       &receive_errors);
1489 	if (ret_val)
1490 		return false;
1491 	if (receive_errors == E1000_RECEIVE_ERROR_MAX) {
1492 		ret_val = hw->phy.ops.read_reg(hw, E1000_BASE1000T_STATUS,
1493 					       &status_1kbt);
1494 		if (ret_val)
1495 			return false;
1496 		if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) ==
1497 		    E1000_IDLE_ERROR_COUNT_MASK)
1498 			return true;
1499 	}
1500 
1501 	return false;
1502 }
1503 
1504 
1505 /**
1506  *  e1000_setup_link_82571 - Setup flow control and link settings
1507  *  @hw: pointer to the HW structure
1508  *
1509  *  Determines which flow control settings to use, then configures flow
1510  *  control.  Calls the appropriate media-specific link configuration
1511  *  function.  Assuming the adapter has a valid link partner, a valid link
1512  *  should be established.  Assumes the hardware has previously been reset
1513  *  and the transmitter and receiver are not enabled.
1514  **/
e1000_setup_link_82571(struct e1000_hw * hw)1515 STATIC s32 e1000_setup_link_82571(struct e1000_hw *hw)
1516 {
1517 	DEBUGFUNC("e1000_setup_link_82571");
1518 
1519 	/* 82573 does not have a word in the NVM to determine
1520 	 * the default flow control setting, so we explicitly
1521 	 * set it to full.
1522 	 */
1523 	switch (hw->mac.type) {
1524 	case e1000_82573:
1525 	case e1000_82574:
1526 	case e1000_82583:
1527 		if (hw->fc.requested_mode == e1000_fc_default)
1528 			hw->fc.requested_mode = e1000_fc_full;
1529 		break;
1530 	default:
1531 		break;
1532 	}
1533 
1534 	return e1000_setup_link_generic(hw);
1535 }
1536 
1537 /**
1538  *  e1000_setup_copper_link_82571 - Configure copper link settings
1539  *  @hw: pointer to the HW structure
1540  *
1541  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1542  *  for link, once link is established calls to configure collision distance
1543  *  and flow control are called.
1544  **/
e1000_setup_copper_link_82571(struct e1000_hw * hw)1545 STATIC s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
1546 {
1547 	u32 ctrl;
1548 	s32 ret_val;
1549 
1550 	DEBUGFUNC("e1000_setup_copper_link_82571");
1551 
1552 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
1553 	ctrl |= E1000_CTRL_SLU;
1554 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1555 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1556 
1557 	switch (hw->phy.type) {
1558 	case e1000_phy_m88:
1559 	case e1000_phy_bm:
1560 		ret_val = e1000_copper_link_setup_m88(hw);
1561 		break;
1562 	case e1000_phy_igp_2:
1563 		ret_val = e1000_copper_link_setup_igp(hw);
1564 		break;
1565 	default:
1566 		return -E1000_ERR_PHY;
1567 		break;
1568 	}
1569 
1570 	if (ret_val)
1571 		return ret_val;
1572 
1573 	return e1000_setup_copper_link_generic(hw);
1574 }
1575 
1576 /**
1577  *  e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1578  *  @hw: pointer to the HW structure
1579  *
1580  *  Configures collision distance and flow control for fiber and serdes links.
1581  *  Upon successful setup, poll for link.
1582  **/
e1000_setup_fiber_serdes_link_82571(struct e1000_hw * hw)1583 STATIC s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
1584 {
1585 	DEBUGFUNC("e1000_setup_fiber_serdes_link_82571");
1586 
1587 	switch (hw->mac.type) {
1588 	case e1000_82571:
1589 	case e1000_82572:
1590 		/* If SerDes loopback mode is entered, there is no form
1591 		 * of reset to take the adapter out of that mode.  So we
1592 		 * have to explicitly take the adapter out of loopback
1593 		 * mode.  This prevents drivers from twiddling their thumbs
1594 		 * if another tool failed to take it out of loopback mode.
1595 		 */
1596 		E1000_WRITE_REG(hw, E1000_SCTL,
1597 				E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1598 		break;
1599 	default:
1600 		break;
1601 	}
1602 
1603 	return e1000_setup_fiber_serdes_link_generic(hw);
1604 }
1605 
1606 /**
1607  *  e1000_check_for_serdes_link_82571 - Check for link (Serdes)
1608  *  @hw: pointer to the HW structure
1609  *
1610  *  Reports the link state as up or down.
1611  *
1612  *  If autonegotiation is supported by the link partner, the link state is
1613  *  determined by the result of autonegotiation. This is the most likely case.
1614  *  If autonegotiation is not supported by the link partner, and the link
1615  *  has a valid signal, force the link up.
1616  *
1617  *  The link state is represented internally here by 4 states:
1618  *
1619  *  1) down
1620  *  2) autoneg_progress
1621  *  3) autoneg_complete (the link successfully autonegotiated)
1622  *  4) forced_up (the link has been forced up, it did not autonegotiate)
1623  *
1624  **/
e1000_check_for_serdes_link_82571(struct e1000_hw * hw)1625 STATIC s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
1626 {
1627 	struct e1000_mac_info *mac = &hw->mac;
1628 	u32 rxcw;
1629 	u32 ctrl;
1630 	u32 status;
1631 	u32 txcw;
1632 	u32 i;
1633 	s32 ret_val = E1000_SUCCESS;
1634 
1635 	DEBUGFUNC("e1000_check_for_serdes_link_82571");
1636 
1637 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
1638 	status = E1000_READ_REG(hw, E1000_STATUS);
1639 	E1000_READ_REG(hw, E1000_RXCW);
1640 	/* SYNCH bit and IV bit are sticky */
1641 	usec_delay(10);
1642 	rxcw = E1000_READ_REG(hw, E1000_RXCW);
1643 
1644 	if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
1645 		/* Receiver is synchronized with no invalid bits.  */
1646 		switch (mac->serdes_link_state) {
1647 		case e1000_serdes_link_autoneg_complete:
1648 			if (!(status & E1000_STATUS_LU)) {
1649 				/* We have lost link, retry autoneg before
1650 				 * reporting link failure
1651 				 */
1652 				mac->serdes_link_state =
1653 				    e1000_serdes_link_autoneg_progress;
1654 				mac->serdes_has_link = false;
1655 				DEBUGOUT("AN_UP     -> AN_PROG\n");
1656 			} else {
1657 				mac->serdes_has_link = true;
1658 			}
1659 			break;
1660 
1661 		case e1000_serdes_link_forced_up:
1662 			/* If we are receiving /C/ ordered sets, re-enable
1663 			 * auto-negotiation in the TXCW register and disable
1664 			 * forced link in the Device Control register in an
1665 			 * attempt to auto-negotiate with our link partner.
1666 			 */
1667 			if (rxcw & E1000_RXCW_C) {
1668 				/* Enable autoneg, and unforce link up */
1669 				E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
1670 				E1000_WRITE_REG(hw, E1000_CTRL,
1671 				    (ctrl & ~E1000_CTRL_SLU));
1672 				mac->serdes_link_state =
1673 				    e1000_serdes_link_autoneg_progress;
1674 				mac->serdes_has_link = false;
1675 				DEBUGOUT("FORCED_UP -> AN_PROG\n");
1676 			} else {
1677 				mac->serdes_has_link = true;
1678 			}
1679 			break;
1680 
1681 		case e1000_serdes_link_autoneg_progress:
1682 			if (rxcw & E1000_RXCW_C) {
1683 				/* We received /C/ ordered sets, meaning the
1684 				 * link partner has autonegotiated, and we can
1685 				 * trust the Link Up (LU) status bit.
1686 				 */
1687 				if (status & E1000_STATUS_LU) {
1688 					mac->serdes_link_state =
1689 					    e1000_serdes_link_autoneg_complete;
1690 					DEBUGOUT("AN_PROG   -> AN_UP\n");
1691 					mac->serdes_has_link = true;
1692 				} else {
1693 					/* Autoneg completed, but failed. */
1694 					mac->serdes_link_state =
1695 					    e1000_serdes_link_down;
1696 					DEBUGOUT("AN_PROG   -> DOWN\n");
1697 				}
1698 			} else {
1699 				/* The link partner did not autoneg.
1700 				 * Force link up and full duplex, and change
1701 				 * state to forced.
1702 				 */
1703 				E1000_WRITE_REG(hw, E1000_TXCW,
1704 				(mac->txcw & ~E1000_TXCW_ANE));
1705 				ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1706 				E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1707 
1708 				/* Configure Flow Control after link up. */
1709 				ret_val =
1710 				    e1000_config_fc_after_link_up_generic(hw);
1711 				if (ret_val) {
1712 					DEBUGOUT("Error config flow control\n");
1713 					break;
1714 				}
1715 				mac->serdes_link_state =
1716 						e1000_serdes_link_forced_up;
1717 				mac->serdes_has_link = true;
1718 				DEBUGOUT("AN_PROG   -> FORCED_UP\n");
1719 			}
1720 			break;
1721 
1722 		case e1000_serdes_link_down:
1723 		default:
1724 			/* The link was down but the receiver has now gained
1725 			 * valid sync, so lets see if we can bring the link
1726 			 * up.
1727 			 */
1728 			E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
1729 			E1000_WRITE_REG(hw, E1000_CTRL, (ctrl &
1730 					~E1000_CTRL_SLU));
1731 			mac->serdes_link_state =
1732 					e1000_serdes_link_autoneg_progress;
1733 			mac->serdes_has_link = false;
1734 			DEBUGOUT("DOWN      -> AN_PROG\n");
1735 			break;
1736 		}
1737 	} else {
1738 		if (!(rxcw & E1000_RXCW_SYNCH)) {
1739 			mac->serdes_has_link = false;
1740 			mac->serdes_link_state = e1000_serdes_link_down;
1741 			DEBUGOUT("ANYSTATE  -> DOWN\n");
1742 		} else {
1743 			/* Check several times, if SYNCH bit and CONFIG
1744 			 * bit both are consistently 1 then simply ignore
1745 			 * the IV bit and restart Autoneg
1746 			 */
1747 			for (i = 0; i < AN_RETRY_COUNT; i++) {
1748 				usec_delay(10);
1749 				rxcw = E1000_READ_REG(hw, E1000_RXCW);
1750 				if ((rxcw & E1000_RXCW_SYNCH) &&
1751 				    (rxcw & E1000_RXCW_C))
1752 					continue;
1753 
1754 				if (rxcw & E1000_RXCW_IV) {
1755 					mac->serdes_has_link = false;
1756 					mac->serdes_link_state =
1757 							e1000_serdes_link_down;
1758 					DEBUGOUT("ANYSTATE  -> DOWN\n");
1759 					break;
1760 				}
1761 			}
1762 
1763 			if (i == AN_RETRY_COUNT) {
1764 				txcw = E1000_READ_REG(hw, E1000_TXCW);
1765 				txcw |= E1000_TXCW_ANE;
1766 				E1000_WRITE_REG(hw, E1000_TXCW, txcw);
1767 				mac->serdes_link_state =
1768 					e1000_serdes_link_autoneg_progress;
1769 				mac->serdes_has_link = false;
1770 				DEBUGOUT("ANYSTATE  -> AN_PROG\n");
1771 			}
1772 		}
1773 	}
1774 
1775 	return ret_val;
1776 }
1777 
1778 /**
1779  *  e1000_valid_led_default_82571 - Verify a valid default LED config
1780  *  @hw: pointer to the HW structure
1781  *  @data: pointer to the NVM (EEPROM)
1782  *
1783  *  Read the EEPROM for the current default LED configuration.  If the
1784  *  LED configuration is not valid, set to a valid LED configuration.
1785  **/
e1000_valid_led_default_82571(struct e1000_hw * hw,u16 * data)1786 STATIC s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
1787 {
1788 	s32 ret_val;
1789 
1790 	DEBUGFUNC("e1000_valid_led_default_82571");
1791 
1792 	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
1793 	if (ret_val) {
1794 		DEBUGOUT("NVM Read Error\n");
1795 		return ret_val;
1796 	}
1797 
1798 	switch (hw->mac.type) {
1799 	case e1000_82573:
1800 	case e1000_82574:
1801 	case e1000_82583:
1802 		if (*data == ID_LED_RESERVED_F746)
1803 			*data = ID_LED_DEFAULT_82573;
1804 		break;
1805 	default:
1806 		if (*data == ID_LED_RESERVED_0000 ||
1807 		    *data == ID_LED_RESERVED_FFFF)
1808 			*data = ID_LED_DEFAULT;
1809 		break;
1810 	}
1811 
1812 	return E1000_SUCCESS;
1813 }
1814 
1815 /**
1816  *  e1000_get_laa_state_82571 - Get locally administered address state
1817  *  @hw: pointer to the HW structure
1818  *
1819  *  Retrieve and return the current locally administered address state.
1820  **/
e1000_get_laa_state_82571(struct e1000_hw * hw)1821 bool e1000_get_laa_state_82571(struct e1000_hw *hw)
1822 {
1823 	DEBUGFUNC("e1000_get_laa_state_82571");
1824 
1825 	if (hw->mac.type != e1000_82571)
1826 		return false;
1827 
1828 	return hw->dev_spec._82571.laa_is_present;
1829 }
1830 
1831 /**
1832  *  e1000_set_laa_state_82571 - Set locally administered address state
1833  *  @hw: pointer to the HW structure
1834  *  @state: enable/disable locally administered address
1835  *
1836  *  Enable/Disable the current locally administered address state.
1837  **/
e1000_set_laa_state_82571(struct e1000_hw * hw,bool state)1838 void e1000_set_laa_state_82571(struct e1000_hw *hw, bool state)
1839 {
1840 	DEBUGFUNC("e1000_set_laa_state_82571");
1841 
1842 	if (hw->mac.type != e1000_82571)
1843 		return;
1844 
1845 	hw->dev_spec._82571.laa_is_present = state;
1846 
1847 	/* If workaround is activated... */
1848 	if (state)
1849 		/* Hold a copy of the LAA in RAR[14] This is done so that
1850 		 * between the time RAR[0] gets clobbered and the time it
1851 		 * gets fixed, the actual LAA is in one of the RARs and no
1852 		 * incoming packets directed to this port are dropped.
1853 		 * Eventually the LAA will be in RAR[0] and RAR[14].
1854 		 */
1855 		hw->mac.ops.rar_set(hw, hw->mac.addr,
1856 				    hw->mac.rar_entry_count - 1);
1857 	return;
1858 }
1859 
1860 /**
1861  *  e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1862  *  @hw: pointer to the HW structure
1863  *
1864  *  Verifies that the EEPROM has completed the update.  After updating the
1865  *  EEPROM, we need to check bit 15 in work 0x23 for the checksum fix.  If
1866  *  the checksum fix is not implemented, we need to set the bit and update
1867  *  the checksum.  Otherwise, if bit 15 is set and the checksum is incorrect,
1868  *  we need to return bad checksum.
1869  **/
e1000_fix_nvm_checksum_82571(struct e1000_hw * hw)1870 STATIC s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
1871 {
1872 	struct e1000_nvm_info *nvm = &hw->nvm;
1873 	s32 ret_val;
1874 	u16 data;
1875 
1876 	DEBUGFUNC("e1000_fix_nvm_checksum_82571");
1877 
1878 	if (nvm->type != e1000_nvm_flash_hw)
1879 		return E1000_SUCCESS;
1880 
1881 	/* Check bit 4 of word 10h.  If it is 0, firmware is done updating
1882 	 * 10h-12h.  Checksum may need to be fixed.
1883 	 */
1884 	ret_val = nvm->ops.read(hw, 0x10, 1, &data);
1885 	if (ret_val)
1886 		return ret_val;
1887 
1888 	if (!(data & 0x10)) {
1889 		/* Read 0x23 and check bit 15.  This bit is a 1
1890 		 * when the checksum has already been fixed.  If
1891 		 * the checksum is still wrong and this bit is a
1892 		 * 1, we need to return bad checksum.  Otherwise,
1893 		 * we need to set this bit to a 1 and update the
1894 		 * checksum.
1895 		 */
1896 		ret_val = nvm->ops.read(hw, 0x23, 1, &data);
1897 		if (ret_val)
1898 			return ret_val;
1899 
1900 		if (!(data & 0x8000)) {
1901 			data |= 0x8000;
1902 			ret_val = nvm->ops.write(hw, 0x23, 1, &data);
1903 			if (ret_val)
1904 				return ret_val;
1905 			ret_val = nvm->ops.update(hw);
1906 			if (ret_val)
1907 				return ret_val;
1908 		}
1909 	}
1910 
1911 	return E1000_SUCCESS;
1912 }
1913 
1914 
1915 /**
1916  *  e1000_read_mac_addr_82571 - Read device MAC address
1917  *  @hw: pointer to the HW structure
1918  **/
e1000_read_mac_addr_82571(struct e1000_hw * hw)1919 STATIC s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
1920 {
1921 	DEBUGFUNC("e1000_read_mac_addr_82571");
1922 
1923 	if (hw->mac.type == e1000_82571) {
1924 		s32 ret_val;
1925 
1926 		/* If there's an alternate MAC address place it in RAR0
1927 		 * so that it will override the Si installed default perm
1928 		 * address.
1929 		 */
1930 		ret_val = e1000_check_alt_mac_addr_generic(hw);
1931 		if (ret_val)
1932 			return ret_val;
1933 	}
1934 
1935 	return e1000_read_mac_addr_generic(hw);
1936 }
1937 
1938 /**
1939  * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
1940  * @hw: pointer to the HW structure
1941  *
1942  * In the case of a PHY power down to save power, or to turn off link during a
1943  * driver unload, or wake on lan is not enabled, remove the link.
1944  **/
e1000_power_down_phy_copper_82571(struct e1000_hw * hw)1945 STATIC void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
1946 {
1947 	struct e1000_phy_info *phy = &hw->phy;
1948 	struct e1000_mac_info *mac = &hw->mac;
1949 
1950 	if (!phy->ops.check_reset_block)
1951 		return;
1952 
1953 	/* If the management interface is not enabled, then power down */
1954 	if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
1955 		e1000_power_down_phy_copper(hw);
1956 
1957 	return;
1958 }
1959 
1960 /**
1961  *  e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1962  *  @hw: pointer to the HW structure
1963  *
1964  *  Clears the hardware counters by reading the counter registers.
1965  **/
e1000_clear_hw_cntrs_82571(struct e1000_hw * hw)1966 STATIC void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
1967 {
1968 	DEBUGFUNC("e1000_clear_hw_cntrs_82571");
1969 
1970 	e1000_clear_hw_cntrs_base_generic(hw);
1971 
1972 	E1000_READ_REG(hw, E1000_PRC64);
1973 	E1000_READ_REG(hw, E1000_PRC127);
1974 	E1000_READ_REG(hw, E1000_PRC255);
1975 	E1000_READ_REG(hw, E1000_PRC511);
1976 	E1000_READ_REG(hw, E1000_PRC1023);
1977 	E1000_READ_REG(hw, E1000_PRC1522);
1978 	E1000_READ_REG(hw, E1000_PTC64);
1979 	E1000_READ_REG(hw, E1000_PTC127);
1980 	E1000_READ_REG(hw, E1000_PTC255);
1981 	E1000_READ_REG(hw, E1000_PTC511);
1982 	E1000_READ_REG(hw, E1000_PTC1023);
1983 	E1000_READ_REG(hw, E1000_PTC1522);
1984 
1985 	E1000_READ_REG(hw, E1000_ALGNERRC);
1986 	E1000_READ_REG(hw, E1000_RXERRC);
1987 	E1000_READ_REG(hw, E1000_TNCRS);
1988 	E1000_READ_REG(hw, E1000_CEXTERR);
1989 	E1000_READ_REG(hw, E1000_TSCTC);
1990 	E1000_READ_REG(hw, E1000_TSCTFC);
1991 
1992 	E1000_READ_REG(hw, E1000_MGTPRC);
1993 	E1000_READ_REG(hw, E1000_MGTPDC);
1994 	E1000_READ_REG(hw, E1000_MGTPTC);
1995 
1996 	E1000_READ_REG(hw, E1000_IAC);
1997 	E1000_READ_REG(hw, E1000_ICRXOC);
1998 
1999 	E1000_READ_REG(hw, E1000_ICRXPTC);
2000 	E1000_READ_REG(hw, E1000_ICRXATC);
2001 	E1000_READ_REG(hw, E1000_ICTXPTC);
2002 	E1000_READ_REG(hw, E1000_ICTXATC);
2003 	E1000_READ_REG(hw, E1000_ICTXQEC);
2004 	E1000_READ_REG(hw, E1000_ICTXQMTC);
2005 	E1000_READ_REG(hw, E1000_ICRXDMTC);
2006 }
2007