1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
24 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
25 */
26
27 #include <sys/dmu.h>
28 #include <sys/zap.h>
29 #include <sys/zfs_context.h>
30 #include <sys/dsl_pool.h>
31 #include <sys/dsl_dataset.h>
32
33 /*
34 * Deadlist concurrency:
35 *
36 * Deadlists can only be modified from the syncing thread.
37 *
38 * Except for dsl_deadlist_insert(), it can only be modified with the
39 * dp_config_rwlock held with RW_WRITER.
40 *
41 * The accessors (dsl_deadlist_space() and dsl_deadlist_space_range()) can
42 * be called concurrently, from open context, with the dl_config_rwlock held
43 * with RW_READER.
44 *
45 * Therefore, we only need to provide locking between dsl_deadlist_insert() and
46 * the accessors, protecting:
47 * dl_phys->dl_used,comp,uncomp
48 * and protecting the dl_tree from being loaded.
49 * The locking is provided by dl_lock. Note that locking on the bpobj_t
50 * provides its own locking, and dl_oldfmt is immutable.
51 */
52
53 /*
54 * Livelist Overview
55 * ================
56 *
57 * Livelists use the same 'deadlist_t' struct as deadlists and are also used
58 * to track blkptrs over the lifetime of a dataset. Livelists however, belong
59 * to clones and track the blkptrs that are clone-specific (were born after
60 * the clone's creation). The exception is embedded block pointers which are
61 * not included in livelists because they do not need to be freed.
62 *
63 * When it comes time to delete the clone, the livelist provides a quick
64 * reference as to what needs to be freed. For this reason, livelists also track
65 * when clone-specific blkptrs are freed before deletion to prevent double
66 * frees. Each blkptr in a livelist is marked as a FREE or an ALLOC and the
67 * deletion algorithm iterates backwards over the livelist, matching
68 * FREE/ALLOC pairs and then freeing those ALLOCs which remain. livelists
69 * are also updated in the case when blkptrs are remapped: the old version
70 * of the blkptr is cancelled out with a FREE and the new version is tracked
71 * with an ALLOC.
72 *
73 * To bound the amount of memory required for deletion, livelists over a
74 * certain size are spread over multiple entries. Entries are grouped by
75 * birth txg so we can be sure the ALLOC/FREE pair for a given blkptr will
76 * be in the same entry. This allows us to delete livelists incrementally
77 * over multiple syncs, one entry at a time.
78 *
79 * During the lifetime of the clone, livelists can get extremely large.
80 * Their size is managed by periodic condensing (preemptively cancelling out
81 * FREE/ALLOC pairs). Livelists are disabled when a clone is promoted or when
82 * the shared space between the clone and its origin is so small that it
83 * doesn't make sense to use livelists anymore.
84 */
85
86 /*
87 * The threshold sublist size at which we create a new sub-livelist for the
88 * next txg. However, since blkptrs of the same transaction group must be in
89 * the same sub-list, the actual sublist size may exceed this. When picking the
90 * size we had to balance the fact that larger sublists mean fewer sublists
91 * (decreasing the cost of insertion) against the consideration that sublists
92 * will be loaded into memory and shouldn't take up an inordinate amount of
93 * space. We settled on ~500000 entries, corresponding to roughly 128M.
94 */
95 unsigned long zfs_livelist_max_entries = 500000;
96
97 /*
98 * We can approximate how much of a performance gain a livelist will give us
99 * based on the percentage of blocks shared between the clone and its origin.
100 * 0 percent shared means that the clone has completely diverged and that the
101 * old method is maximally effective: every read from the block tree will
102 * result in lots of frees. Livelists give us gains when they track blocks
103 * scattered across the tree, when one read in the old method might only
104 * result in a few frees. Once the clone has been overwritten enough,
105 * writes are no longer sparse and we'll no longer get much of a benefit from
106 * tracking them with a livelist. We chose a lower limit of 75 percent shared
107 * (25 percent overwritten). This means that 1/4 of all block pointers will be
108 * freed (e.g. each read frees 256, out of a max of 1024) so we expect livelists
109 * to make deletion 4x faster. Once the amount of shared space drops below this
110 * threshold, the clone will revert to the old deletion method.
111 */
112 int zfs_livelist_min_percent_shared = 75;
113
114 static int
dsl_deadlist_compare(const void * arg1,const void * arg2)115 dsl_deadlist_compare(const void *arg1, const void *arg2)
116 {
117 const dsl_deadlist_entry_t *dle1 = arg1;
118 const dsl_deadlist_entry_t *dle2 = arg2;
119
120 return (TREE_CMP(dle1->dle_mintxg, dle2->dle_mintxg));
121 }
122
123 static int
dsl_deadlist_cache_compare(const void * arg1,const void * arg2)124 dsl_deadlist_cache_compare(const void *arg1, const void *arg2)
125 {
126 const dsl_deadlist_cache_entry_t *dlce1 = arg1;
127 const dsl_deadlist_cache_entry_t *dlce2 = arg2;
128
129 return (TREE_CMP(dlce1->dlce_mintxg, dlce2->dlce_mintxg));
130 }
131
132 static void
dsl_deadlist_load_tree(dsl_deadlist_t * dl)133 dsl_deadlist_load_tree(dsl_deadlist_t *dl)
134 {
135 zap_cursor_t zc;
136 zap_attribute_t za;
137 int error;
138
139 ASSERT(MUTEX_HELD(&dl->dl_lock));
140
141 ASSERT(!dl->dl_oldfmt);
142 if (dl->dl_havecache) {
143 /*
144 * After loading the tree, the caller may modify the tree,
145 * e.g. to add or remove nodes, or to make a node no longer
146 * refer to the empty_bpobj. These changes would make the
147 * dl_cache incorrect. Therefore we discard the cache here,
148 * so that it can't become incorrect.
149 */
150 dsl_deadlist_cache_entry_t *dlce;
151 void *cookie = NULL;
152 while ((dlce = avl_destroy_nodes(&dl->dl_cache, &cookie))
153 != NULL) {
154 kmem_free(dlce, sizeof (*dlce));
155 }
156 avl_destroy(&dl->dl_cache);
157 dl->dl_havecache = B_FALSE;
158 }
159 if (dl->dl_havetree)
160 return;
161
162 avl_create(&dl->dl_tree, dsl_deadlist_compare,
163 sizeof (dsl_deadlist_entry_t),
164 offsetof(dsl_deadlist_entry_t, dle_node));
165 for (zap_cursor_init(&zc, dl->dl_os, dl->dl_object);
166 (error = zap_cursor_retrieve(&zc, &za)) == 0;
167 zap_cursor_advance(&zc)) {
168 dsl_deadlist_entry_t *dle = kmem_alloc(sizeof (*dle), KM_SLEEP);
169 dle->dle_mintxg = zfs_strtonum(za.za_name, NULL);
170
171 /*
172 * Prefetch all the bpobj's so that we do that i/o
173 * in parallel. Then open them all in a second pass.
174 */
175 dle->dle_bpobj.bpo_object = za.za_first_integer;
176 dmu_prefetch(dl->dl_os, dle->dle_bpobj.bpo_object,
177 0, 0, 0, ZIO_PRIORITY_SYNC_READ);
178
179 avl_add(&dl->dl_tree, dle);
180 }
181 VERIFY3U(error, ==, ENOENT);
182 zap_cursor_fini(&zc);
183
184 for (dsl_deadlist_entry_t *dle = avl_first(&dl->dl_tree);
185 dle != NULL; dle = AVL_NEXT(&dl->dl_tree, dle)) {
186 VERIFY0(bpobj_open(&dle->dle_bpobj, dl->dl_os,
187 dle->dle_bpobj.bpo_object));
188 }
189 dl->dl_havetree = B_TRUE;
190 }
191
192 /*
193 * Load only the non-empty bpobj's into the dl_cache. The cache is an analog
194 * of the dl_tree, but contains only non-empty_bpobj nodes from the ZAP. It
195 * is used only for gathering space statistics. The dl_cache has two
196 * advantages over the dl_tree:
197 *
198 * 1. Loading the dl_cache is ~5x faster than loading the dl_tree (if it's
199 * mostly empty_bpobj's), due to less CPU overhead to open the empty_bpobj
200 * many times and to inquire about its (zero) space stats many times.
201 *
202 * 2. The dl_cache uses less memory than the dl_tree. We only need to load
203 * the dl_tree of snapshots when deleting a snapshot, after which we free the
204 * dl_tree with dsl_deadlist_discard_tree
205 */
206 static void
dsl_deadlist_load_cache(dsl_deadlist_t * dl)207 dsl_deadlist_load_cache(dsl_deadlist_t *dl)
208 {
209 zap_cursor_t zc;
210 zap_attribute_t za;
211 int error;
212
213 ASSERT(MUTEX_HELD(&dl->dl_lock));
214
215 ASSERT(!dl->dl_oldfmt);
216 if (dl->dl_havecache)
217 return;
218
219 uint64_t empty_bpobj = dmu_objset_pool(dl->dl_os)->dp_empty_bpobj;
220
221 avl_create(&dl->dl_cache, dsl_deadlist_cache_compare,
222 sizeof (dsl_deadlist_cache_entry_t),
223 offsetof(dsl_deadlist_cache_entry_t, dlce_node));
224 for (zap_cursor_init(&zc, dl->dl_os, dl->dl_object);
225 (error = zap_cursor_retrieve(&zc, &za)) == 0;
226 zap_cursor_advance(&zc)) {
227 if (za.za_first_integer == empty_bpobj)
228 continue;
229 dsl_deadlist_cache_entry_t *dlce =
230 kmem_zalloc(sizeof (*dlce), KM_SLEEP);
231 dlce->dlce_mintxg = zfs_strtonum(za.za_name, NULL);
232
233 /*
234 * Prefetch all the bpobj's so that we do that i/o
235 * in parallel. Then open them all in a second pass.
236 */
237 dlce->dlce_bpobj = za.za_first_integer;
238 dmu_prefetch(dl->dl_os, dlce->dlce_bpobj,
239 0, 0, 0, ZIO_PRIORITY_SYNC_READ);
240 avl_add(&dl->dl_cache, dlce);
241 }
242 VERIFY3U(error, ==, ENOENT);
243 zap_cursor_fini(&zc);
244
245 for (dsl_deadlist_cache_entry_t *dlce = avl_first(&dl->dl_cache);
246 dlce != NULL; dlce = AVL_NEXT(&dl->dl_cache, dlce)) {
247 bpobj_t bpo;
248 VERIFY0(bpobj_open(&bpo, dl->dl_os, dlce->dlce_bpobj));
249
250 VERIFY0(bpobj_space(&bpo,
251 &dlce->dlce_bytes, &dlce->dlce_comp, &dlce->dlce_uncomp));
252 bpobj_close(&bpo);
253 }
254 dl->dl_havecache = B_TRUE;
255 }
256
257 /*
258 * Discard the tree to save memory.
259 */
260 void
dsl_deadlist_discard_tree(dsl_deadlist_t * dl)261 dsl_deadlist_discard_tree(dsl_deadlist_t *dl)
262 {
263 mutex_enter(&dl->dl_lock);
264
265 if (!dl->dl_havetree) {
266 mutex_exit(&dl->dl_lock);
267 return;
268 }
269 dsl_deadlist_entry_t *dle;
270 void *cookie = NULL;
271 while ((dle = avl_destroy_nodes(&dl->dl_tree, &cookie)) != NULL) {
272 bpobj_close(&dle->dle_bpobj);
273 kmem_free(dle, sizeof (*dle));
274 }
275 avl_destroy(&dl->dl_tree);
276
277 dl->dl_havetree = B_FALSE;
278 mutex_exit(&dl->dl_lock);
279 }
280
281 void
dsl_deadlist_iterate(dsl_deadlist_t * dl,deadlist_iter_t func,void * args)282 dsl_deadlist_iterate(dsl_deadlist_t *dl, deadlist_iter_t func, void *args)
283 {
284 dsl_deadlist_entry_t *dle;
285
286 ASSERT(dsl_deadlist_is_open(dl));
287
288 mutex_enter(&dl->dl_lock);
289 dsl_deadlist_load_tree(dl);
290 mutex_exit(&dl->dl_lock);
291 for (dle = avl_first(&dl->dl_tree); dle != NULL;
292 dle = AVL_NEXT(&dl->dl_tree, dle)) {
293 if (func(args, dle) != 0)
294 break;
295 }
296 }
297
298 void
dsl_deadlist_open(dsl_deadlist_t * dl,objset_t * os,uint64_t object)299 dsl_deadlist_open(dsl_deadlist_t *dl, objset_t *os, uint64_t object)
300 {
301 dmu_object_info_t doi;
302
303 ASSERT(!dsl_deadlist_is_open(dl));
304
305 mutex_init(&dl->dl_lock, NULL, MUTEX_DEFAULT, NULL);
306 dl->dl_os = os;
307 dl->dl_object = object;
308 VERIFY0(dmu_bonus_hold(os, object, dl, &dl->dl_dbuf));
309 dmu_object_info_from_db(dl->dl_dbuf, &doi);
310 if (doi.doi_type == DMU_OT_BPOBJ) {
311 dmu_buf_rele(dl->dl_dbuf, dl);
312 dl->dl_dbuf = NULL;
313 dl->dl_oldfmt = B_TRUE;
314 VERIFY0(bpobj_open(&dl->dl_bpobj, os, object));
315 return;
316 }
317
318 dl->dl_oldfmt = B_FALSE;
319 dl->dl_phys = dl->dl_dbuf->db_data;
320 dl->dl_havetree = B_FALSE;
321 dl->dl_havecache = B_FALSE;
322 }
323
324 boolean_t
dsl_deadlist_is_open(dsl_deadlist_t * dl)325 dsl_deadlist_is_open(dsl_deadlist_t *dl)
326 {
327 return (dl->dl_os != NULL);
328 }
329
330 void
dsl_deadlist_close(dsl_deadlist_t * dl)331 dsl_deadlist_close(dsl_deadlist_t *dl)
332 {
333 ASSERT(dsl_deadlist_is_open(dl));
334 mutex_destroy(&dl->dl_lock);
335
336 if (dl->dl_oldfmt) {
337 dl->dl_oldfmt = B_FALSE;
338 bpobj_close(&dl->dl_bpobj);
339 dl->dl_os = NULL;
340 dl->dl_object = 0;
341 return;
342 }
343
344 if (dl->dl_havetree) {
345 dsl_deadlist_entry_t *dle;
346 void *cookie = NULL;
347 while ((dle = avl_destroy_nodes(&dl->dl_tree, &cookie))
348 != NULL) {
349 bpobj_close(&dle->dle_bpobj);
350 kmem_free(dle, sizeof (*dle));
351 }
352 avl_destroy(&dl->dl_tree);
353 }
354 if (dl->dl_havecache) {
355 dsl_deadlist_cache_entry_t *dlce;
356 void *cookie = NULL;
357 while ((dlce = avl_destroy_nodes(&dl->dl_cache, &cookie))
358 != NULL) {
359 kmem_free(dlce, sizeof (*dlce));
360 }
361 avl_destroy(&dl->dl_cache);
362 }
363 dmu_buf_rele(dl->dl_dbuf, dl);
364 dl->dl_dbuf = NULL;
365 dl->dl_phys = NULL;
366 dl->dl_os = NULL;
367 dl->dl_object = 0;
368 }
369
370 uint64_t
dsl_deadlist_alloc(objset_t * os,dmu_tx_t * tx)371 dsl_deadlist_alloc(objset_t *os, dmu_tx_t *tx)
372 {
373 if (spa_version(dmu_objset_spa(os)) < SPA_VERSION_DEADLISTS)
374 return (bpobj_alloc(os, SPA_OLD_MAXBLOCKSIZE, tx));
375 return (zap_create(os, DMU_OT_DEADLIST, DMU_OT_DEADLIST_HDR,
376 sizeof (dsl_deadlist_phys_t), tx));
377 }
378
379 void
dsl_deadlist_free(objset_t * os,uint64_t dlobj,dmu_tx_t * tx)380 dsl_deadlist_free(objset_t *os, uint64_t dlobj, dmu_tx_t *tx)
381 {
382 dmu_object_info_t doi;
383 zap_cursor_t zc;
384 zap_attribute_t za;
385 int error;
386
387 VERIFY0(dmu_object_info(os, dlobj, &doi));
388 if (doi.doi_type == DMU_OT_BPOBJ) {
389 bpobj_free(os, dlobj, tx);
390 return;
391 }
392
393 for (zap_cursor_init(&zc, os, dlobj);
394 (error = zap_cursor_retrieve(&zc, &za)) == 0;
395 zap_cursor_advance(&zc)) {
396 uint64_t obj = za.za_first_integer;
397 if (obj == dmu_objset_pool(os)->dp_empty_bpobj)
398 bpobj_decr_empty(os, tx);
399 else
400 bpobj_free(os, obj, tx);
401 }
402 VERIFY3U(error, ==, ENOENT);
403 zap_cursor_fini(&zc);
404 VERIFY0(dmu_object_free(os, dlobj, tx));
405 }
406
407 static void
dle_enqueue(dsl_deadlist_t * dl,dsl_deadlist_entry_t * dle,const blkptr_t * bp,boolean_t bp_freed,dmu_tx_t * tx)408 dle_enqueue(dsl_deadlist_t *dl, dsl_deadlist_entry_t *dle,
409 const blkptr_t *bp, boolean_t bp_freed, dmu_tx_t *tx)
410 {
411 ASSERT(MUTEX_HELD(&dl->dl_lock));
412 if (dle->dle_bpobj.bpo_object ==
413 dmu_objset_pool(dl->dl_os)->dp_empty_bpobj) {
414 uint64_t obj = bpobj_alloc(dl->dl_os, SPA_OLD_MAXBLOCKSIZE, tx);
415 bpobj_close(&dle->dle_bpobj);
416 bpobj_decr_empty(dl->dl_os, tx);
417 VERIFY0(bpobj_open(&dle->dle_bpobj, dl->dl_os, obj));
418 VERIFY0(zap_update_int_key(dl->dl_os, dl->dl_object,
419 dle->dle_mintxg, obj, tx));
420 }
421 bpobj_enqueue(&dle->dle_bpobj, bp, bp_freed, tx);
422 }
423
424 static void
dle_enqueue_subobj(dsl_deadlist_t * dl,dsl_deadlist_entry_t * dle,uint64_t obj,dmu_tx_t * tx)425 dle_enqueue_subobj(dsl_deadlist_t *dl, dsl_deadlist_entry_t *dle,
426 uint64_t obj, dmu_tx_t *tx)
427 {
428 ASSERT(MUTEX_HELD(&dl->dl_lock));
429 if (dle->dle_bpobj.bpo_object !=
430 dmu_objset_pool(dl->dl_os)->dp_empty_bpobj) {
431 bpobj_enqueue_subobj(&dle->dle_bpobj, obj, tx);
432 } else {
433 bpobj_close(&dle->dle_bpobj);
434 bpobj_decr_empty(dl->dl_os, tx);
435 VERIFY0(bpobj_open(&dle->dle_bpobj, dl->dl_os, obj));
436 VERIFY0(zap_update_int_key(dl->dl_os, dl->dl_object,
437 dle->dle_mintxg, obj, tx));
438 }
439 }
440
441 void
dsl_deadlist_insert(dsl_deadlist_t * dl,const blkptr_t * bp,boolean_t bp_freed,dmu_tx_t * tx)442 dsl_deadlist_insert(dsl_deadlist_t *dl, const blkptr_t *bp, boolean_t bp_freed,
443 dmu_tx_t *tx)
444 {
445 dsl_deadlist_entry_t dle_tofind;
446 dsl_deadlist_entry_t *dle;
447 avl_index_t where;
448
449 if (dl->dl_oldfmt) {
450 bpobj_enqueue(&dl->dl_bpobj, bp, bp_freed, tx);
451 return;
452 }
453
454 mutex_enter(&dl->dl_lock);
455 dsl_deadlist_load_tree(dl);
456
457 dmu_buf_will_dirty(dl->dl_dbuf, tx);
458
459 int sign = bp_freed ? -1 : +1;
460 dl->dl_phys->dl_used +=
461 sign * bp_get_dsize_sync(dmu_objset_spa(dl->dl_os), bp);
462 dl->dl_phys->dl_comp += sign * BP_GET_PSIZE(bp);
463 dl->dl_phys->dl_uncomp += sign * BP_GET_UCSIZE(bp);
464
465 dle_tofind.dle_mintxg = bp->blk_birth;
466 dle = avl_find(&dl->dl_tree, &dle_tofind, &where);
467 if (dle == NULL)
468 dle = avl_nearest(&dl->dl_tree, where, AVL_BEFORE);
469 else
470 dle = AVL_PREV(&dl->dl_tree, dle);
471
472 if (dle == NULL) {
473 zfs_panic_recover("blkptr at %p has invalid BLK_BIRTH %llu",
474 bp, (longlong_t)bp->blk_birth);
475 dle = avl_first(&dl->dl_tree);
476 }
477
478 ASSERT3P(dle, !=, NULL);
479 dle_enqueue(dl, dle, bp, bp_freed, tx);
480 mutex_exit(&dl->dl_lock);
481 }
482
483 int
dsl_deadlist_insert_alloc_cb(void * arg,const blkptr_t * bp,dmu_tx_t * tx)484 dsl_deadlist_insert_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
485 {
486 dsl_deadlist_t *dl = arg;
487 dsl_deadlist_insert(dl, bp, B_FALSE, tx);
488 return (0);
489 }
490
491 int
dsl_deadlist_insert_free_cb(void * arg,const blkptr_t * bp,dmu_tx_t * tx)492 dsl_deadlist_insert_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
493 {
494 dsl_deadlist_t *dl = arg;
495 dsl_deadlist_insert(dl, bp, B_TRUE, tx);
496 return (0);
497 }
498
499 /*
500 * Insert new key in deadlist, which must be > all current entries.
501 * mintxg is not inclusive.
502 */
503 void
dsl_deadlist_add_key(dsl_deadlist_t * dl,uint64_t mintxg,dmu_tx_t * tx)504 dsl_deadlist_add_key(dsl_deadlist_t *dl, uint64_t mintxg, dmu_tx_t *tx)
505 {
506 uint64_t obj;
507 dsl_deadlist_entry_t *dle;
508
509 if (dl->dl_oldfmt)
510 return;
511
512 dle = kmem_alloc(sizeof (*dle), KM_SLEEP);
513 dle->dle_mintxg = mintxg;
514
515 mutex_enter(&dl->dl_lock);
516 dsl_deadlist_load_tree(dl);
517
518 obj = bpobj_alloc_empty(dl->dl_os, SPA_OLD_MAXBLOCKSIZE, tx);
519 VERIFY0(bpobj_open(&dle->dle_bpobj, dl->dl_os, obj));
520 avl_add(&dl->dl_tree, dle);
521
522 VERIFY0(zap_add_int_key(dl->dl_os, dl->dl_object,
523 mintxg, obj, tx));
524 mutex_exit(&dl->dl_lock);
525 }
526
527 /*
528 * Remove this key, merging its entries into the previous key.
529 */
530 void
dsl_deadlist_remove_key(dsl_deadlist_t * dl,uint64_t mintxg,dmu_tx_t * tx)531 dsl_deadlist_remove_key(dsl_deadlist_t *dl, uint64_t mintxg, dmu_tx_t *tx)
532 {
533 dsl_deadlist_entry_t dle_tofind;
534 dsl_deadlist_entry_t *dle, *dle_prev;
535
536 if (dl->dl_oldfmt)
537 return;
538 mutex_enter(&dl->dl_lock);
539 dsl_deadlist_load_tree(dl);
540
541 dle_tofind.dle_mintxg = mintxg;
542 dle = avl_find(&dl->dl_tree, &dle_tofind, NULL);
543 ASSERT3P(dle, !=, NULL);
544 dle_prev = AVL_PREV(&dl->dl_tree, dle);
545
546 dle_enqueue_subobj(dl, dle_prev, dle->dle_bpobj.bpo_object, tx);
547
548 avl_remove(&dl->dl_tree, dle);
549 bpobj_close(&dle->dle_bpobj);
550 kmem_free(dle, sizeof (*dle));
551
552 VERIFY0(zap_remove_int(dl->dl_os, dl->dl_object, mintxg, tx));
553 mutex_exit(&dl->dl_lock);
554 }
555
556 /*
557 * Remove a deadlist entry and all of its contents by removing the entry from
558 * the deadlist's avl tree, freeing the entry's bpobj and adjusting the
559 * deadlist's space accounting accordingly.
560 */
561 void
dsl_deadlist_remove_entry(dsl_deadlist_t * dl,uint64_t mintxg,dmu_tx_t * tx)562 dsl_deadlist_remove_entry(dsl_deadlist_t *dl, uint64_t mintxg, dmu_tx_t *tx)
563 {
564 uint64_t used, comp, uncomp;
565 dsl_deadlist_entry_t dle_tofind;
566 dsl_deadlist_entry_t *dle;
567 objset_t *os = dl->dl_os;
568
569 if (dl->dl_oldfmt)
570 return;
571
572 mutex_enter(&dl->dl_lock);
573 dsl_deadlist_load_tree(dl);
574
575 dle_tofind.dle_mintxg = mintxg;
576 dle = avl_find(&dl->dl_tree, &dle_tofind, NULL);
577 VERIFY3P(dle, !=, NULL);
578
579 avl_remove(&dl->dl_tree, dle);
580 VERIFY0(zap_remove_int(os, dl->dl_object, mintxg, tx));
581 VERIFY0(bpobj_space(&dle->dle_bpobj, &used, &comp, &uncomp));
582 dmu_buf_will_dirty(dl->dl_dbuf, tx);
583 dl->dl_phys->dl_used -= used;
584 dl->dl_phys->dl_comp -= comp;
585 dl->dl_phys->dl_uncomp -= uncomp;
586 if (dle->dle_bpobj.bpo_object == dmu_objset_pool(os)->dp_empty_bpobj) {
587 bpobj_decr_empty(os, tx);
588 } else {
589 bpobj_free(os, dle->dle_bpobj.bpo_object, tx);
590 }
591 bpobj_close(&dle->dle_bpobj);
592 kmem_free(dle, sizeof (*dle));
593 mutex_exit(&dl->dl_lock);
594 }
595
596 /*
597 * Clear out the contents of a deadlist_entry by freeing its bpobj,
598 * replacing it with an empty bpobj and adjusting the deadlist's
599 * space accounting
600 */
601 void
dsl_deadlist_clear_entry(dsl_deadlist_entry_t * dle,dsl_deadlist_t * dl,dmu_tx_t * tx)602 dsl_deadlist_clear_entry(dsl_deadlist_entry_t *dle, dsl_deadlist_t *dl,
603 dmu_tx_t *tx)
604 {
605 uint64_t new_obj, used, comp, uncomp;
606 objset_t *os = dl->dl_os;
607
608 mutex_enter(&dl->dl_lock);
609 VERIFY0(zap_remove_int(os, dl->dl_object, dle->dle_mintxg, tx));
610 VERIFY0(bpobj_space(&dle->dle_bpobj, &used, &comp, &uncomp));
611 dmu_buf_will_dirty(dl->dl_dbuf, tx);
612 dl->dl_phys->dl_used -= used;
613 dl->dl_phys->dl_comp -= comp;
614 dl->dl_phys->dl_uncomp -= uncomp;
615 if (dle->dle_bpobj.bpo_object == dmu_objset_pool(os)->dp_empty_bpobj)
616 bpobj_decr_empty(os, tx);
617 else
618 bpobj_free(os, dle->dle_bpobj.bpo_object, tx);
619 bpobj_close(&dle->dle_bpobj);
620 new_obj = bpobj_alloc_empty(os, SPA_OLD_MAXBLOCKSIZE, tx);
621 VERIFY0(bpobj_open(&dle->dle_bpobj, os, new_obj));
622 VERIFY0(zap_add_int_key(os, dl->dl_object, dle->dle_mintxg,
623 new_obj, tx));
624 ASSERT(bpobj_is_empty(&dle->dle_bpobj));
625 mutex_exit(&dl->dl_lock);
626 }
627
628 /*
629 * Return the first entry in deadlist's avl tree
630 */
631 dsl_deadlist_entry_t *
dsl_deadlist_first(dsl_deadlist_t * dl)632 dsl_deadlist_first(dsl_deadlist_t *dl)
633 {
634 dsl_deadlist_entry_t *dle;
635
636 mutex_enter(&dl->dl_lock);
637 dsl_deadlist_load_tree(dl);
638 dle = avl_first(&dl->dl_tree);
639 mutex_exit(&dl->dl_lock);
640
641 return (dle);
642 }
643
644 /*
645 * Return the last entry in deadlist's avl tree
646 */
647 dsl_deadlist_entry_t *
dsl_deadlist_last(dsl_deadlist_t * dl)648 dsl_deadlist_last(dsl_deadlist_t *dl)
649 {
650 dsl_deadlist_entry_t *dle;
651
652 mutex_enter(&dl->dl_lock);
653 dsl_deadlist_load_tree(dl);
654 dle = avl_last(&dl->dl_tree);
655 mutex_exit(&dl->dl_lock);
656
657 return (dle);
658 }
659
660 /*
661 * Walk ds's snapshots to regenerate generate ZAP & AVL.
662 */
663 static void
dsl_deadlist_regenerate(objset_t * os,uint64_t dlobj,uint64_t mrs_obj,dmu_tx_t * tx)664 dsl_deadlist_regenerate(objset_t *os, uint64_t dlobj,
665 uint64_t mrs_obj, dmu_tx_t *tx)
666 {
667 dsl_deadlist_t dl = { 0 };
668 dsl_pool_t *dp = dmu_objset_pool(os);
669
670 dsl_deadlist_open(&dl, os, dlobj);
671 if (dl.dl_oldfmt) {
672 dsl_deadlist_close(&dl);
673 return;
674 }
675
676 while (mrs_obj != 0) {
677 dsl_dataset_t *ds;
678 VERIFY0(dsl_dataset_hold_obj(dp, mrs_obj, FTAG, &ds));
679 dsl_deadlist_add_key(&dl,
680 dsl_dataset_phys(ds)->ds_prev_snap_txg, tx);
681 mrs_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
682 dsl_dataset_rele(ds, FTAG);
683 }
684 dsl_deadlist_close(&dl);
685 }
686
687 uint64_t
dsl_deadlist_clone(dsl_deadlist_t * dl,uint64_t maxtxg,uint64_t mrs_obj,dmu_tx_t * tx)688 dsl_deadlist_clone(dsl_deadlist_t *dl, uint64_t maxtxg,
689 uint64_t mrs_obj, dmu_tx_t *tx)
690 {
691 dsl_deadlist_entry_t *dle;
692 uint64_t newobj;
693
694 newobj = dsl_deadlist_alloc(dl->dl_os, tx);
695
696 if (dl->dl_oldfmt) {
697 dsl_deadlist_regenerate(dl->dl_os, newobj, mrs_obj, tx);
698 return (newobj);
699 }
700
701 mutex_enter(&dl->dl_lock);
702 dsl_deadlist_load_tree(dl);
703
704 for (dle = avl_first(&dl->dl_tree); dle;
705 dle = AVL_NEXT(&dl->dl_tree, dle)) {
706 uint64_t obj;
707
708 if (dle->dle_mintxg >= maxtxg)
709 break;
710
711 obj = bpobj_alloc_empty(dl->dl_os, SPA_OLD_MAXBLOCKSIZE, tx);
712 VERIFY0(zap_add_int_key(dl->dl_os, newobj,
713 dle->dle_mintxg, obj, tx));
714 }
715 mutex_exit(&dl->dl_lock);
716 return (newobj);
717 }
718
719 void
dsl_deadlist_space(dsl_deadlist_t * dl,uint64_t * usedp,uint64_t * compp,uint64_t * uncompp)720 dsl_deadlist_space(dsl_deadlist_t *dl,
721 uint64_t *usedp, uint64_t *compp, uint64_t *uncompp)
722 {
723 ASSERT(dsl_deadlist_is_open(dl));
724 if (dl->dl_oldfmt) {
725 VERIFY0(bpobj_space(&dl->dl_bpobj,
726 usedp, compp, uncompp));
727 return;
728 }
729
730 mutex_enter(&dl->dl_lock);
731 *usedp = dl->dl_phys->dl_used;
732 *compp = dl->dl_phys->dl_comp;
733 *uncompp = dl->dl_phys->dl_uncomp;
734 mutex_exit(&dl->dl_lock);
735 }
736
737 /*
738 * return space used in the range (mintxg, maxtxg].
739 * Includes maxtxg, does not include mintxg.
740 * mintxg and maxtxg must both be keys in the deadlist (unless maxtxg is
741 * UINT64_MAX).
742 */
743 void
dsl_deadlist_space_range(dsl_deadlist_t * dl,uint64_t mintxg,uint64_t maxtxg,uint64_t * usedp,uint64_t * compp,uint64_t * uncompp)744 dsl_deadlist_space_range(dsl_deadlist_t *dl, uint64_t mintxg, uint64_t maxtxg,
745 uint64_t *usedp, uint64_t *compp, uint64_t *uncompp)
746 {
747 dsl_deadlist_cache_entry_t *dlce;
748 dsl_deadlist_cache_entry_t dlce_tofind;
749 avl_index_t where;
750
751 if (dl->dl_oldfmt) {
752 VERIFY0(bpobj_space_range(&dl->dl_bpobj,
753 mintxg, maxtxg, usedp, compp, uncompp));
754 return;
755 }
756
757 *usedp = *compp = *uncompp = 0;
758
759 mutex_enter(&dl->dl_lock);
760 dsl_deadlist_load_cache(dl);
761 dlce_tofind.dlce_mintxg = mintxg;
762 dlce = avl_find(&dl->dl_cache, &dlce_tofind, &where);
763
764 /*
765 * If this mintxg doesn't exist, it may be an empty_bpobj which
766 * is omitted from the sparse tree. Start at the next non-empty
767 * entry.
768 */
769 if (dlce == NULL)
770 dlce = avl_nearest(&dl->dl_cache, where, AVL_AFTER);
771
772 for (; dlce && dlce->dlce_mintxg < maxtxg;
773 dlce = AVL_NEXT(&dl->dl_tree, dlce)) {
774 *usedp += dlce->dlce_bytes;
775 *compp += dlce->dlce_comp;
776 *uncompp += dlce->dlce_uncomp;
777 }
778
779 mutex_exit(&dl->dl_lock);
780 }
781
782 static void
dsl_deadlist_insert_bpobj(dsl_deadlist_t * dl,uint64_t obj,uint64_t birth,dmu_tx_t * tx)783 dsl_deadlist_insert_bpobj(dsl_deadlist_t *dl, uint64_t obj, uint64_t birth,
784 dmu_tx_t *tx)
785 {
786 dsl_deadlist_entry_t dle_tofind;
787 dsl_deadlist_entry_t *dle;
788 avl_index_t where;
789 uint64_t used, comp, uncomp;
790 bpobj_t bpo;
791
792 ASSERT(MUTEX_HELD(&dl->dl_lock));
793
794 VERIFY0(bpobj_open(&bpo, dl->dl_os, obj));
795 VERIFY0(bpobj_space(&bpo, &used, &comp, &uncomp));
796 bpobj_close(&bpo);
797
798 dsl_deadlist_load_tree(dl);
799
800 dmu_buf_will_dirty(dl->dl_dbuf, tx);
801 dl->dl_phys->dl_used += used;
802 dl->dl_phys->dl_comp += comp;
803 dl->dl_phys->dl_uncomp += uncomp;
804
805 dle_tofind.dle_mintxg = birth;
806 dle = avl_find(&dl->dl_tree, &dle_tofind, &where);
807 if (dle == NULL)
808 dle = avl_nearest(&dl->dl_tree, where, AVL_BEFORE);
809 dle_enqueue_subobj(dl, dle, obj, tx);
810 }
811
812 static int
dsl_deadlist_insert_cb(void * arg,const blkptr_t * bp,boolean_t bp_freed,dmu_tx_t * tx)813 dsl_deadlist_insert_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
814 dmu_tx_t *tx)
815 {
816 dsl_deadlist_t *dl = arg;
817 dsl_deadlist_insert(dl, bp, bp_freed, tx);
818 return (0);
819 }
820
821 /*
822 * Merge the deadlist pointed to by 'obj' into dl. obj will be left as
823 * an empty deadlist.
824 */
825 void
dsl_deadlist_merge(dsl_deadlist_t * dl,uint64_t obj,dmu_tx_t * tx)826 dsl_deadlist_merge(dsl_deadlist_t *dl, uint64_t obj, dmu_tx_t *tx)
827 {
828 zap_cursor_t zc;
829 zap_attribute_t za;
830 dmu_buf_t *bonus;
831 dsl_deadlist_phys_t *dlp;
832 dmu_object_info_t doi;
833 int error;
834
835 VERIFY0(dmu_object_info(dl->dl_os, obj, &doi));
836 if (doi.doi_type == DMU_OT_BPOBJ) {
837 bpobj_t bpo;
838 VERIFY0(bpobj_open(&bpo, dl->dl_os, obj));
839 VERIFY0(bpobj_iterate(&bpo, dsl_deadlist_insert_cb, dl, tx));
840 bpobj_close(&bpo);
841 return;
842 }
843
844 mutex_enter(&dl->dl_lock);
845 for (zap_cursor_init(&zc, dl->dl_os, obj);
846 (error = zap_cursor_retrieve(&zc, &za)) == 0;
847 zap_cursor_advance(&zc)) {
848 uint64_t mintxg = zfs_strtonum(za.za_name, NULL);
849 dsl_deadlist_insert_bpobj(dl, za.za_first_integer, mintxg, tx);
850 VERIFY0(zap_remove_int(dl->dl_os, obj, mintxg, tx));
851 }
852 VERIFY3U(error, ==, ENOENT);
853 zap_cursor_fini(&zc);
854
855 VERIFY0(dmu_bonus_hold(dl->dl_os, obj, FTAG, &bonus));
856 dlp = bonus->db_data;
857 dmu_buf_will_dirty(bonus, tx);
858 bzero(dlp, sizeof (*dlp));
859 dmu_buf_rele(bonus, FTAG);
860 mutex_exit(&dl->dl_lock);
861 }
862
863 /*
864 * Remove entries on dl that are born > mintxg, and put them on the bpobj.
865 */
866 void
dsl_deadlist_move_bpobj(dsl_deadlist_t * dl,bpobj_t * bpo,uint64_t mintxg,dmu_tx_t * tx)867 dsl_deadlist_move_bpobj(dsl_deadlist_t *dl, bpobj_t *bpo, uint64_t mintxg,
868 dmu_tx_t *tx)
869 {
870 dsl_deadlist_entry_t dle_tofind;
871 dsl_deadlist_entry_t *dle;
872 avl_index_t where;
873
874 ASSERT(!dl->dl_oldfmt);
875
876 mutex_enter(&dl->dl_lock);
877 dmu_buf_will_dirty(dl->dl_dbuf, tx);
878 dsl_deadlist_load_tree(dl);
879
880 dle_tofind.dle_mintxg = mintxg;
881 dle = avl_find(&dl->dl_tree, &dle_tofind, &where);
882 if (dle == NULL)
883 dle = avl_nearest(&dl->dl_tree, where, AVL_AFTER);
884 while (dle) {
885 uint64_t used, comp, uncomp;
886 dsl_deadlist_entry_t *dle_next;
887
888 bpobj_enqueue_subobj(bpo, dle->dle_bpobj.bpo_object, tx);
889
890 VERIFY0(bpobj_space(&dle->dle_bpobj,
891 &used, &comp, &uncomp));
892 ASSERT3U(dl->dl_phys->dl_used, >=, used);
893 ASSERT3U(dl->dl_phys->dl_comp, >=, comp);
894 ASSERT3U(dl->dl_phys->dl_uncomp, >=, uncomp);
895 dl->dl_phys->dl_used -= used;
896 dl->dl_phys->dl_comp -= comp;
897 dl->dl_phys->dl_uncomp -= uncomp;
898
899 VERIFY0(zap_remove_int(dl->dl_os, dl->dl_object,
900 dle->dle_mintxg, tx));
901
902 dle_next = AVL_NEXT(&dl->dl_tree, dle);
903 avl_remove(&dl->dl_tree, dle);
904 bpobj_close(&dle->dle_bpobj);
905 kmem_free(dle, sizeof (*dle));
906 dle = dle_next;
907 }
908 mutex_exit(&dl->dl_lock);
909 }
910
911 typedef struct livelist_entry {
912 const blkptr_t *le_bp;
913 avl_node_t le_node;
914 } livelist_entry_t;
915
916 static int
livelist_compare(const void * larg,const void * rarg)917 livelist_compare(const void *larg, const void *rarg)
918 {
919 const blkptr_t *l = ((livelist_entry_t *)larg)->le_bp;
920 const blkptr_t *r = ((livelist_entry_t *)rarg)->le_bp;
921
922 /* Sort them according to dva[0] */
923 uint64_t l_dva0_vdev = DVA_GET_VDEV(&l->blk_dva[0]);
924 uint64_t r_dva0_vdev = DVA_GET_VDEV(&r->blk_dva[0]);
925
926 if (l_dva0_vdev != r_dva0_vdev)
927 return (TREE_CMP(l_dva0_vdev, r_dva0_vdev));
928
929 /* if vdevs are equal, sort by offsets. */
930 uint64_t l_dva0_offset = DVA_GET_OFFSET(&l->blk_dva[0]);
931 uint64_t r_dva0_offset = DVA_GET_OFFSET(&r->blk_dva[0]);
932 if (l_dva0_offset == r_dva0_offset)
933 ASSERT3U(l->blk_birth, ==, r->blk_birth);
934 return (TREE_CMP(l_dva0_offset, r_dva0_offset));
935 }
936
937 struct livelist_iter_arg {
938 avl_tree_t *avl;
939 bplist_t *to_free;
940 zthr_t *t;
941 };
942
943 /*
944 * Expects an AVL tree which is incrementally filled will FREE blkptrs
945 * and used to match up ALLOC/FREE pairs. ALLOC'd blkptrs without a
946 * corresponding FREE are stored in the supplied bplist.
947 */
948 static int
dsl_livelist_iterate(void * arg,const blkptr_t * bp,boolean_t bp_freed,dmu_tx_t * tx)949 dsl_livelist_iterate(void *arg, const blkptr_t *bp, boolean_t bp_freed,
950 dmu_tx_t *tx)
951 {
952 struct livelist_iter_arg *lia = arg;
953 avl_tree_t *avl = lia->avl;
954 bplist_t *to_free = lia->to_free;
955 zthr_t *t = lia->t;
956 ASSERT(tx == NULL);
957
958 if ((t != NULL) && (zthr_has_waiters(t) || zthr_iscancelled(t)))
959 return (SET_ERROR(EINTR));
960 if (bp_freed) {
961 livelist_entry_t *node = kmem_alloc(sizeof (livelist_entry_t),
962 KM_SLEEP);
963 blkptr_t *temp_bp = kmem_alloc(sizeof (blkptr_t), KM_SLEEP);
964 *temp_bp = *bp;
965 node->le_bp = temp_bp;
966 avl_add(avl, node);
967 } else {
968 livelist_entry_t node;
969 node.le_bp = bp;
970 livelist_entry_t *found = avl_find(avl, &node, NULL);
971 if (found != NULL) {
972 avl_remove(avl, found);
973 kmem_free((blkptr_t *)found->le_bp, sizeof (blkptr_t));
974 kmem_free(found, sizeof (livelist_entry_t));
975 } else {
976 bplist_append(to_free, bp);
977 }
978 }
979 return (0);
980 }
981
982 /*
983 * Accepts a bpobj and a bplist. Will insert into the bplist the blkptrs
984 * which have an ALLOC entry but no matching FREE
985 */
986 int
dsl_process_sub_livelist(bpobj_t * bpobj,bplist_t * to_free,zthr_t * t,uint64_t * size)987 dsl_process_sub_livelist(bpobj_t *bpobj, bplist_t *to_free, zthr_t *t,
988 uint64_t *size)
989 {
990 avl_tree_t avl;
991 avl_create(&avl, livelist_compare, sizeof (livelist_entry_t),
992 offsetof(livelist_entry_t, le_node));
993
994 /* process the sublist */
995 struct livelist_iter_arg arg = {
996 .avl = &avl,
997 .to_free = to_free,
998 .t = t
999 };
1000 int err = bpobj_iterate_nofree(bpobj, dsl_livelist_iterate, &arg, size);
1001
1002 avl_destroy(&avl);
1003 return (err);
1004 }
1005
1006 /* BEGIN CSTYLED */
1007 ZFS_MODULE_PARAM(zfs_livelist, zfs_livelist_, max_entries, ULONG, ZMOD_RW,
1008 "Size to start the next sub-livelist in a livelist");
1009
1010 ZFS_MODULE_PARAM(zfs_livelist, zfs_livelist_, min_percent_shared, INT, ZMOD_RW,
1011 "Threshold at which livelist is disabled");
1012 /* END CSTYLED */
1013