xref: /f-stack/freebsd/arm64/arm64/pmap.c (revision 22ce4aff)
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  * Copyright (c) 2003 Peter Wemm
9  * All rights reserved.
10  * Copyright (c) 2005-2010 Alan L. Cox <[email protected]>
11  * All rights reserved.
12  * Copyright (c) 2014 Andrew Turner
13  * All rights reserved.
14  * Copyright (c) 2014-2016 The FreeBSD Foundation
15  * All rights reserved.
16  *
17  * This code is derived from software contributed to Berkeley by
18  * the Systems Programming Group of the University of Utah Computer
19  * Science Department and William Jolitz of UUNET Technologies Inc.
20  *
21  * This software was developed by Andrew Turner under sponsorship from
22  * the FreeBSD Foundation.
23  *
24  * Redistribution and use in source and binary forms, with or without
25  * modification, are permitted provided that the following conditions
26  * are met:
27  * 1. Redistributions of source code must retain the above copyright
28  *    notice, this list of conditions and the following disclaimer.
29  * 2. Redistributions in binary form must reproduce the above copyright
30  *    notice, this list of conditions and the following disclaimer in the
31  *    documentation and/or other materials provided with the distribution.
32  * 3. All advertising materials mentioning features or use of this software
33  *    must display the following acknowledgement:
34  *	This product includes software developed by the University of
35  *	California, Berkeley and its contributors.
36  * 4. Neither the name of the University nor the names of its contributors
37  *    may be used to endorse or promote products derived from this software
38  *    without specific prior written permission.
39  *
40  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
53  */
54 /*-
55  * Copyright (c) 2003 Networks Associates Technology, Inc.
56  * All rights reserved.
57  *
58  * This software was developed for the FreeBSD Project by Jake Burkholder,
59  * Safeport Network Services, and Network Associates Laboratories, the
60  * Security Research Division of Network Associates, Inc. under
61  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
62  * CHATS research program.
63  *
64  * Redistribution and use in source and binary forms, with or without
65  * modification, are permitted provided that the following conditions
66  * are met:
67  * 1. Redistributions of source code must retain the above copyright
68  *    notice, this list of conditions and the following disclaimer.
69  * 2. Redistributions in binary form must reproduce the above copyright
70  *    notice, this list of conditions and the following disclaimer in the
71  *    documentation and/or other materials provided with the distribution.
72  *
73  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
74  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
75  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
76  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
77  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
78  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
79  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
80  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
81  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
82  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
83  * SUCH DAMAGE.
84  */
85 
86 #include <sys/cdefs.h>
87 __FBSDID("$FreeBSD$");
88 
89 /*
90  *	Manages physical address maps.
91  *
92  *	Since the information managed by this module is
93  *	also stored by the logical address mapping module,
94  *	this module may throw away valid virtual-to-physical
95  *	mappings at almost any time.  However, invalidations
96  *	of virtual-to-physical mappings must be done as
97  *	requested.
98  *
99  *	In order to cope with hardware architectures which
100  *	make virtual-to-physical map invalidates expensive,
101  *	this module may delay invalidate or reduced protection
102  *	operations until such time as they are actually
103  *	necessary.  This module is given full information as
104  *	to which processors are currently using which maps,
105  *	and to when physical maps must be made correct.
106  */
107 
108 #include "opt_vm.h"
109 
110 #include <sys/param.h>
111 #include <sys/bitstring.h>
112 #include <sys/bus.h>
113 #include <sys/systm.h>
114 #include <sys/kernel.h>
115 #include <sys/ktr.h>
116 #include <sys/limits.h>
117 #include <sys/lock.h>
118 #include <sys/malloc.h>
119 #include <sys/mman.h>
120 #include <sys/msgbuf.h>
121 #include <sys/mutex.h>
122 #include <sys/physmem.h>
123 #include <sys/proc.h>
124 #include <sys/rwlock.h>
125 #include <sys/sbuf.h>
126 #include <sys/sx.h>
127 #include <sys/vmem.h>
128 #include <sys/vmmeter.h>
129 #include <sys/sched.h>
130 #include <sys/sysctl.h>
131 #include <sys/_unrhdr.h>
132 #include <sys/smp.h>
133 
134 #include <vm/vm.h>
135 #include <vm/vm_param.h>
136 #include <vm/vm_kern.h>
137 #include <vm/vm_page.h>
138 #include <vm/vm_map.h>
139 #include <vm/vm_object.h>
140 #include <vm/vm_extern.h>
141 #include <vm/vm_pageout.h>
142 #include <vm/vm_pager.h>
143 #include <vm/vm_phys.h>
144 #include <vm/vm_radix.h>
145 #include <vm/vm_reserv.h>
146 #include <vm/vm_dumpset.h>
147 #include <vm/uma.h>
148 
149 #include <machine/machdep.h>
150 #include <machine/md_var.h>
151 #include <machine/pcb.h>
152 
153 #define	PMAP_ASSERT_STAGE1(pmap)	MPASS((pmap)->pm_stage == PM_STAGE1)
154 #define	PMAP_ASSERT_STAGE2(pmap)	MPASS((pmap)->pm_stage == PM_STAGE2)
155 
156 #define	NL0PG		(PAGE_SIZE/(sizeof (pd_entry_t)))
157 #define	NL1PG		(PAGE_SIZE/(sizeof (pd_entry_t)))
158 #define	NL2PG		(PAGE_SIZE/(sizeof (pd_entry_t)))
159 #define	NL3PG		(PAGE_SIZE/(sizeof (pt_entry_t)))
160 
161 #define	NUL0E		L0_ENTRIES
162 #define	NUL1E		(NUL0E * NL1PG)
163 #define	NUL2E		(NUL1E * NL2PG)
164 
165 #if !defined(DIAGNOSTIC)
166 #ifdef __GNUC_GNU_INLINE__
167 #define PMAP_INLINE	__attribute__((__gnu_inline__)) inline
168 #else
169 #define PMAP_INLINE	extern inline
170 #endif
171 #else
172 #define PMAP_INLINE
173 #endif
174 
175 #ifdef PV_STATS
176 #define PV_STAT(x)	do { x ; } while (0)
177 #else
178 #define PV_STAT(x)	do { } while (0)
179 #endif
180 
181 #define	pmap_l0_pindex(v)	(NUL2E + NUL1E + ((v) >> L0_SHIFT))
182 #define	pmap_l1_pindex(v)	(NUL2E + ((v) >> L1_SHIFT))
183 #define	pmap_l2_pindex(v)	((v) >> L2_SHIFT)
184 
185 static struct md_page *
pa_to_pvh(vm_paddr_t pa)186 pa_to_pvh(vm_paddr_t pa)
187 {
188 	struct vm_phys_seg *seg;
189 	int segind;
190 
191 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
192 		seg = &vm_phys_segs[segind];
193 		if (pa >= seg->start && pa < seg->end)
194 			return ((struct md_page *)seg->md_first +
195 			    pmap_l2_pindex(pa) - pmap_l2_pindex(seg->start));
196 	}
197 	panic("pa 0x%jx not within vm_phys_segs", (uintmax_t)pa);
198 }
199 
200 static struct md_page *
page_to_pvh(vm_page_t m)201 page_to_pvh(vm_page_t m)
202 {
203 	struct vm_phys_seg *seg;
204 
205 	seg = &vm_phys_segs[m->segind];
206 	return ((struct md_page *)seg->md_first +
207 	    pmap_l2_pindex(VM_PAGE_TO_PHYS(m)) - pmap_l2_pindex(seg->start));
208 }
209 
210 #define	NPV_LIST_LOCKS	MAXCPU
211 
212 #define	PHYS_TO_PV_LIST_LOCK(pa)	\
213 			(&pv_list_locks[pa_index(pa) % NPV_LIST_LOCKS])
214 
215 #define	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa)	do {	\
216 	struct rwlock **_lockp = (lockp);		\
217 	struct rwlock *_new_lock;			\
218 							\
219 	_new_lock = PHYS_TO_PV_LIST_LOCK(pa);		\
220 	if (_new_lock != *_lockp) {			\
221 		if (*_lockp != NULL)			\
222 			rw_wunlock(*_lockp);		\
223 		*_lockp = _new_lock;			\
224 		rw_wlock(*_lockp);			\
225 	}						\
226 } while (0)
227 
228 #define	CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m)	\
229 			CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, VM_PAGE_TO_PHYS(m))
230 
231 #define	RELEASE_PV_LIST_LOCK(lockp)		do {	\
232 	struct rwlock **_lockp = (lockp);		\
233 							\
234 	if (*_lockp != NULL) {				\
235 		rw_wunlock(*_lockp);			\
236 		*_lockp = NULL;				\
237 	}						\
238 } while (0)
239 
240 #define	VM_PAGE_TO_PV_LIST_LOCK(m)	\
241 			PHYS_TO_PV_LIST_LOCK(VM_PAGE_TO_PHYS(m))
242 
243 /*
244  * The presence of this flag indicates that the mapping is writeable.
245  * If the ATTR_S1_AP_RO bit is also set, then the mapping is clean, otherwise
246  * it is dirty.  This flag may only be set on managed mappings.
247  *
248  * The DBM bit is reserved on ARMv8.0 but it seems we can safely treat it
249  * as a software managed bit.
250  */
251 #define	ATTR_SW_DBM	ATTR_DBM
252 
253 struct pmap kernel_pmap_store;
254 
255 /* Used for mapping ACPI memory before VM is initialized */
256 #define	PMAP_PREINIT_MAPPING_COUNT	32
257 #define	PMAP_PREINIT_MAPPING_SIZE	(PMAP_PREINIT_MAPPING_COUNT * L2_SIZE)
258 static vm_offset_t preinit_map_va;	/* Start VA of pre-init mapping space */
259 static int vm_initialized = 0;		/* No need to use pre-init maps when set */
260 
261 /*
262  * Reserve a few L2 blocks starting from 'preinit_map_va' pointer.
263  * Always map entire L2 block for simplicity.
264  * VA of L2 block = preinit_map_va + i * L2_SIZE
265  */
266 static struct pmap_preinit_mapping {
267 	vm_paddr_t	pa;
268 	vm_offset_t	va;
269 	vm_size_t	size;
270 } pmap_preinit_mapping[PMAP_PREINIT_MAPPING_COUNT];
271 
272 vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
273 vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
274 vm_offset_t kernel_vm_end = 0;
275 
276 /*
277  * Data for the pv entry allocation mechanism.
278  */
279 static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
280 static struct mtx pv_chunks_mutex;
281 static struct rwlock pv_list_locks[NPV_LIST_LOCKS];
282 static struct md_page *pv_table;
283 static struct md_page pv_dummy;
284 
285 vm_paddr_t dmap_phys_base;	/* The start of the dmap region */
286 vm_paddr_t dmap_phys_max;	/* The limit of the dmap region */
287 vm_offset_t dmap_max_addr;	/* The virtual address limit of the dmap */
288 
289 /* This code assumes all L1 DMAP entries will be used */
290 CTASSERT((DMAP_MIN_ADDRESS  & ~L0_OFFSET) == DMAP_MIN_ADDRESS);
291 CTASSERT((DMAP_MAX_ADDRESS  & ~L0_OFFSET) == DMAP_MAX_ADDRESS);
292 
293 #define	DMAP_TABLES	((DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS) >> L0_SHIFT)
294 extern pt_entry_t pagetable_dmap[];
295 
296 #define	PHYSMAP_SIZE	(2 * (VM_PHYSSEG_MAX - 1))
297 static vm_paddr_t physmap[PHYSMAP_SIZE];
298 static u_int physmap_idx;
299 
300 static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
301     "VM/pmap parameters");
302 
303 /*
304  * This ASID allocator uses a bit vector ("asid_set") to remember which ASIDs
305  * that it has currently allocated to a pmap, a cursor ("asid_next") to
306  * optimize its search for a free ASID in the bit vector, and an epoch number
307  * ("asid_epoch") to indicate when it has reclaimed all previously allocated
308  * ASIDs that are not currently active on a processor.
309  *
310  * The current epoch number is always in the range [0, INT_MAX).  Negative
311  * numbers and INT_MAX are reserved for special cases that are described
312  * below.
313  */
314 struct asid_set {
315 	int asid_bits;
316 	bitstr_t *asid_set;
317 	int asid_set_size;
318 	int asid_next;
319 	int asid_epoch;
320 	struct mtx asid_set_mutex;
321 };
322 
323 static struct asid_set asids;
324 static struct asid_set vmids;
325 
326 static SYSCTL_NODE(_vm_pmap, OID_AUTO, asid, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
327     "ASID allocator");
328 SYSCTL_INT(_vm_pmap_asid, OID_AUTO, bits, CTLFLAG_RD, &asids.asid_bits, 0,
329     "The number of bits in an ASID");
330 SYSCTL_INT(_vm_pmap_asid, OID_AUTO, next, CTLFLAG_RD, &asids.asid_next, 0,
331     "The last allocated ASID plus one");
332 SYSCTL_INT(_vm_pmap_asid, OID_AUTO, epoch, CTLFLAG_RD, &asids.asid_epoch, 0,
333     "The current epoch number");
334 
335 static SYSCTL_NODE(_vm_pmap, OID_AUTO, vmid, CTLFLAG_RD, 0, "VMID allocator");
336 SYSCTL_INT(_vm_pmap_vmid, OID_AUTO, bits, CTLFLAG_RD, &vmids.asid_bits, 0,
337     "The number of bits in an VMID");
338 SYSCTL_INT(_vm_pmap_vmid, OID_AUTO, next, CTLFLAG_RD, &vmids.asid_next, 0,
339     "The last allocated VMID plus one");
340 SYSCTL_INT(_vm_pmap_vmid, OID_AUTO, epoch, CTLFLAG_RD, &vmids.asid_epoch, 0,
341     "The current epoch number");
342 
343 void (*pmap_clean_stage2_tlbi)(void);
344 void (*pmap_invalidate_vpipt_icache)(void);
345 
346 /*
347  * A pmap's cookie encodes an ASID and epoch number.  Cookies for reserved
348  * ASIDs have a negative epoch number, specifically, INT_MIN.  Cookies for
349  * dynamically allocated ASIDs have a non-negative epoch number.
350  *
351  * An invalid ASID is represented by -1.
352  *
353  * There are two special-case cookie values: (1) COOKIE_FROM(-1, INT_MIN),
354  * which indicates that an ASID should never be allocated to the pmap, and
355  * (2) COOKIE_FROM(-1, INT_MAX), which indicates that an ASID should be
356  * allocated when the pmap is next activated.
357  */
358 #define	COOKIE_FROM(asid, epoch)	((long)((u_int)(asid) |	\
359 					    ((u_long)(epoch) << 32)))
360 #define	COOKIE_TO_ASID(cookie)		((int)(cookie))
361 #define	COOKIE_TO_EPOCH(cookie)		((int)((u_long)(cookie) >> 32))
362 
363 static int superpages_enabled = 1;
364 SYSCTL_INT(_vm_pmap, OID_AUTO, superpages_enabled,
365     CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &superpages_enabled, 0,
366     "Are large page mappings enabled?");
367 
368 /*
369  * Internal flags for pmap_enter()'s helper functions.
370  */
371 #define	PMAP_ENTER_NORECLAIM	0x1000000	/* Don't reclaim PV entries. */
372 #define	PMAP_ENTER_NOREPLACE	0x2000000	/* Don't replace mappings. */
373 
374 static void	free_pv_chunk(struct pv_chunk *pc);
375 static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
376 static pv_entry_t get_pv_entry(pmap_t pmap, struct rwlock **lockp);
377 static vm_page_t reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp);
378 static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
379 static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
380 		    vm_offset_t va);
381 
382 static void pmap_abort_ptp(pmap_t pmap, vm_offset_t va, vm_page_t mpte);
383 static bool pmap_activate_int(pmap_t pmap);
384 static void pmap_alloc_asid(pmap_t pmap);
385 static int pmap_change_attr_locked(vm_offset_t va, vm_size_t size, int mode);
386 static pt_entry_t *pmap_demote_l1(pmap_t pmap, pt_entry_t *l1, vm_offset_t va);
387 static pt_entry_t *pmap_demote_l2_locked(pmap_t pmap, pt_entry_t *l2,
388     vm_offset_t va, struct rwlock **lockp);
389 static pt_entry_t *pmap_demote_l2(pmap_t pmap, pt_entry_t *l2, vm_offset_t va);
390 static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
391     vm_page_t m, vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp);
392 static int pmap_enter_l2(pmap_t pmap, vm_offset_t va, pd_entry_t new_l2,
393     u_int flags, vm_page_t m, struct rwlock **lockp);
394 static int pmap_remove_l2(pmap_t pmap, pt_entry_t *l2, vm_offset_t sva,
395     pd_entry_t l1e, struct spglist *free, struct rwlock **lockp);
396 static int pmap_remove_l3(pmap_t pmap, pt_entry_t *l3, vm_offset_t sva,
397     pd_entry_t l2e, struct spglist *free, struct rwlock **lockp);
398 static void pmap_reset_asid_set(pmap_t pmap);
399 static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
400     vm_page_t m, struct rwlock **lockp);
401 
402 static vm_page_t _pmap_alloc_l3(pmap_t pmap, vm_pindex_t ptepindex,
403 		struct rwlock **lockp);
404 
405 static void _pmap_unwire_l3(pmap_t pmap, vm_offset_t va, vm_page_t m,
406     struct spglist *free);
407 static int pmap_unuse_pt(pmap_t, vm_offset_t, pd_entry_t, struct spglist *);
408 static __inline vm_page_t pmap_remove_pt_page(pmap_t pmap, vm_offset_t va);
409 
410 /*
411  * These load the old table data and store the new value.
412  * They need to be atomic as the System MMU may write to the table at
413  * the same time as the CPU.
414  */
415 #define	pmap_clear(table)		atomic_store_64(table, 0)
416 #define	pmap_clear_bits(table, bits)	atomic_clear_64(table, bits)
417 #define	pmap_load(table)		(*table)
418 #define	pmap_load_clear(table)		atomic_swap_64(table, 0)
419 #define	pmap_load_store(table, entry)	atomic_swap_64(table, entry)
420 #define	pmap_set_bits(table, bits)	atomic_set_64(table, bits)
421 #define	pmap_store(table, entry)	atomic_store_64(table, entry)
422 
423 /********************/
424 /* Inline functions */
425 /********************/
426 
427 static __inline void
pagecopy(void * s,void * d)428 pagecopy(void *s, void *d)
429 {
430 
431 	memcpy(d, s, PAGE_SIZE);
432 }
433 
434 static __inline pd_entry_t *
pmap_l0(pmap_t pmap,vm_offset_t va)435 pmap_l0(pmap_t pmap, vm_offset_t va)
436 {
437 
438 	return (&pmap->pm_l0[pmap_l0_index(va)]);
439 }
440 
441 static __inline pd_entry_t *
pmap_l0_to_l1(pd_entry_t * l0,vm_offset_t va)442 pmap_l0_to_l1(pd_entry_t *l0, vm_offset_t va)
443 {
444 	pd_entry_t *l1;
445 
446 	l1 = (pd_entry_t *)PHYS_TO_DMAP(pmap_load(l0) & ~ATTR_MASK);
447 	return (&l1[pmap_l1_index(va)]);
448 }
449 
450 static __inline pd_entry_t *
pmap_l1(pmap_t pmap,vm_offset_t va)451 pmap_l1(pmap_t pmap, vm_offset_t va)
452 {
453 	pd_entry_t *l0;
454 
455 	l0 = pmap_l0(pmap, va);
456 	if ((pmap_load(l0) & ATTR_DESCR_MASK) != L0_TABLE)
457 		return (NULL);
458 
459 	return (pmap_l0_to_l1(l0, va));
460 }
461 
462 static __inline pd_entry_t *
pmap_l1_to_l2(pd_entry_t * l1p,vm_offset_t va)463 pmap_l1_to_l2(pd_entry_t *l1p, vm_offset_t va)
464 {
465 	pd_entry_t l1, *l2p;
466 
467 	l1 = pmap_load(l1p);
468 
469 	/*
470 	 * The valid bit may be clear if pmap_update_entry() is concurrently
471 	 * modifying the entry, so for KVA only the entry type may be checked.
472 	 */
473 	KASSERT(va >= VM_MAX_USER_ADDRESS || (l1 & ATTR_DESCR_VALID) != 0,
474 	    ("%s: L1 entry %#lx for %#lx is invalid", __func__, l1, va));
475 	KASSERT((l1 & ATTR_DESCR_TYPE_MASK) == ATTR_DESCR_TYPE_TABLE,
476 	    ("%s: L1 entry %#lx for %#lx is a leaf", __func__, l1, va));
477 	l2p = (pd_entry_t *)PHYS_TO_DMAP(l1 & ~ATTR_MASK);
478 	return (&l2p[pmap_l2_index(va)]);
479 }
480 
481 static __inline pd_entry_t *
pmap_l2(pmap_t pmap,vm_offset_t va)482 pmap_l2(pmap_t pmap, vm_offset_t va)
483 {
484 	pd_entry_t *l1;
485 
486 	l1 = pmap_l1(pmap, va);
487 	if ((pmap_load(l1) & ATTR_DESCR_MASK) != L1_TABLE)
488 		return (NULL);
489 
490 	return (pmap_l1_to_l2(l1, va));
491 }
492 
493 static __inline pt_entry_t *
pmap_l2_to_l3(pd_entry_t * l2p,vm_offset_t va)494 pmap_l2_to_l3(pd_entry_t *l2p, vm_offset_t va)
495 {
496 	pd_entry_t l2;
497 	pt_entry_t *l3p;
498 
499 	l2 = pmap_load(l2p);
500 
501 	/*
502 	 * The valid bit may be clear if pmap_update_entry() is concurrently
503 	 * modifying the entry, so for KVA only the entry type may be checked.
504 	 */
505 	KASSERT(va >= VM_MAX_USER_ADDRESS || (l2 & ATTR_DESCR_VALID) != 0,
506 	    ("%s: L2 entry %#lx for %#lx is invalid", __func__, l2, va));
507 	KASSERT((l2 & ATTR_DESCR_TYPE_MASK) == ATTR_DESCR_TYPE_TABLE,
508 	    ("%s: L2 entry %#lx for %#lx is a leaf", __func__, l2, va));
509 	l3p = (pt_entry_t *)PHYS_TO_DMAP(l2 & ~ATTR_MASK);
510 	return (&l3p[pmap_l3_index(va)]);
511 }
512 
513 /*
514  * Returns the lowest valid pde for a given virtual address.
515  * The next level may or may not point to a valid page or block.
516  */
517 static __inline pd_entry_t *
pmap_pde(pmap_t pmap,vm_offset_t va,int * level)518 pmap_pde(pmap_t pmap, vm_offset_t va, int *level)
519 {
520 	pd_entry_t *l0, *l1, *l2, desc;
521 
522 	l0 = pmap_l0(pmap, va);
523 	desc = pmap_load(l0) & ATTR_DESCR_MASK;
524 	if (desc != L0_TABLE) {
525 		*level = -1;
526 		return (NULL);
527 	}
528 
529 	l1 = pmap_l0_to_l1(l0, va);
530 	desc = pmap_load(l1) & ATTR_DESCR_MASK;
531 	if (desc != L1_TABLE) {
532 		*level = 0;
533 		return (l0);
534 	}
535 
536 	l2 = pmap_l1_to_l2(l1, va);
537 	desc = pmap_load(l2) & ATTR_DESCR_MASK;
538 	if (desc != L2_TABLE) {
539 		*level = 1;
540 		return (l1);
541 	}
542 
543 	*level = 2;
544 	return (l2);
545 }
546 
547 /*
548  * Returns the lowest valid pte block or table entry for a given virtual
549  * address. If there are no valid entries return NULL and set the level to
550  * the first invalid level.
551  */
552 static __inline pt_entry_t *
pmap_pte(pmap_t pmap,vm_offset_t va,int * level)553 pmap_pte(pmap_t pmap, vm_offset_t va, int *level)
554 {
555 	pd_entry_t *l1, *l2, desc;
556 	pt_entry_t *l3;
557 
558 	l1 = pmap_l1(pmap, va);
559 	if (l1 == NULL) {
560 		*level = 0;
561 		return (NULL);
562 	}
563 	desc = pmap_load(l1) & ATTR_DESCR_MASK;
564 	if (desc == L1_BLOCK) {
565 		*level = 1;
566 		return (l1);
567 	}
568 
569 	if (desc != L1_TABLE) {
570 		*level = 1;
571 		return (NULL);
572 	}
573 
574 	l2 = pmap_l1_to_l2(l1, va);
575 	desc = pmap_load(l2) & ATTR_DESCR_MASK;
576 	if (desc == L2_BLOCK) {
577 		*level = 2;
578 		return (l2);
579 	}
580 
581 	if (desc != L2_TABLE) {
582 		*level = 2;
583 		return (NULL);
584 	}
585 
586 	*level = 3;
587 	l3 = pmap_l2_to_l3(l2, va);
588 	if ((pmap_load(l3) & ATTR_DESCR_MASK) != L3_PAGE)
589 		return (NULL);
590 
591 	return (l3);
592 }
593 
594 bool
pmap_ps_enabled(pmap_t pmap __unused)595 pmap_ps_enabled(pmap_t pmap __unused)
596 {
597 
598 	return (superpages_enabled != 0);
599 }
600 
601 bool
pmap_get_tables(pmap_t pmap,vm_offset_t va,pd_entry_t ** l0,pd_entry_t ** l1,pd_entry_t ** l2,pt_entry_t ** l3)602 pmap_get_tables(pmap_t pmap, vm_offset_t va, pd_entry_t **l0, pd_entry_t **l1,
603     pd_entry_t **l2, pt_entry_t **l3)
604 {
605 	pd_entry_t *l0p, *l1p, *l2p;
606 
607 	if (pmap->pm_l0 == NULL)
608 		return (false);
609 
610 	l0p = pmap_l0(pmap, va);
611 	*l0 = l0p;
612 
613 	if ((pmap_load(l0p) & ATTR_DESCR_MASK) != L0_TABLE)
614 		return (false);
615 
616 	l1p = pmap_l0_to_l1(l0p, va);
617 	*l1 = l1p;
618 
619 	if ((pmap_load(l1p) & ATTR_DESCR_MASK) == L1_BLOCK) {
620 		*l2 = NULL;
621 		*l3 = NULL;
622 		return (true);
623 	}
624 
625 	if ((pmap_load(l1p) & ATTR_DESCR_MASK) != L1_TABLE)
626 		return (false);
627 
628 	l2p = pmap_l1_to_l2(l1p, va);
629 	*l2 = l2p;
630 
631 	if ((pmap_load(l2p) & ATTR_DESCR_MASK) == L2_BLOCK) {
632 		*l3 = NULL;
633 		return (true);
634 	}
635 
636 	if ((pmap_load(l2p) & ATTR_DESCR_MASK) != L2_TABLE)
637 		return (false);
638 
639 	*l3 = pmap_l2_to_l3(l2p, va);
640 
641 	return (true);
642 }
643 
644 static __inline int
pmap_l3_valid(pt_entry_t l3)645 pmap_l3_valid(pt_entry_t l3)
646 {
647 
648 	return ((l3 & ATTR_DESCR_MASK) == L3_PAGE);
649 }
650 
651 CTASSERT(L1_BLOCK == L2_BLOCK);
652 
653 static pt_entry_t
pmap_pte_memattr(pmap_t pmap,vm_memattr_t memattr)654 pmap_pte_memattr(pmap_t pmap, vm_memattr_t memattr)
655 {
656 	pt_entry_t val;
657 
658 	if (pmap->pm_stage == PM_STAGE1) {
659 		val = ATTR_S1_IDX(memattr);
660 		if (memattr == VM_MEMATTR_DEVICE)
661 			val |= ATTR_S1_XN;
662 		return (val);
663 	}
664 
665 	val = 0;
666 
667 	switch (memattr) {
668 	case VM_MEMATTR_DEVICE:
669 		return (ATTR_S2_MEMATTR(ATTR_S2_MEMATTR_DEVICE_nGnRnE) |
670 		    ATTR_S2_XN(ATTR_S2_XN_ALL));
671 	case VM_MEMATTR_UNCACHEABLE:
672 		return (ATTR_S2_MEMATTR(ATTR_S2_MEMATTR_NC));
673 	case VM_MEMATTR_WRITE_BACK:
674 		return (ATTR_S2_MEMATTR(ATTR_S2_MEMATTR_WB));
675 	case VM_MEMATTR_WRITE_THROUGH:
676 		return (ATTR_S2_MEMATTR(ATTR_S2_MEMATTR_WT));
677 	default:
678 		panic("%s: invalid memory attribute %x", __func__, memattr);
679 	}
680 }
681 
682 static pt_entry_t
pmap_pte_prot(pmap_t pmap,vm_prot_t prot)683 pmap_pte_prot(pmap_t pmap, vm_prot_t prot)
684 {
685 	pt_entry_t val;
686 
687 	val = 0;
688 	if (pmap->pm_stage == PM_STAGE1) {
689 		if ((prot & VM_PROT_EXECUTE) == 0)
690 			val |= ATTR_S1_XN;
691 		if ((prot & VM_PROT_WRITE) == 0)
692 			val |= ATTR_S1_AP(ATTR_S1_AP_RO);
693 	} else {
694 		if ((prot & VM_PROT_WRITE) != 0)
695 			val |= ATTR_S2_S2AP(ATTR_S2_S2AP_WRITE);
696 		if ((prot & VM_PROT_READ) != 0)
697 			val |= ATTR_S2_S2AP(ATTR_S2_S2AP_READ);
698 		if ((prot & VM_PROT_EXECUTE) == 0)
699 			val |= ATTR_S2_XN(ATTR_S2_XN_ALL);
700 	}
701 
702 	return (val);
703 }
704 
705 /*
706  * Checks if the PTE is dirty.
707  */
708 static inline int
pmap_pte_dirty(pmap_t pmap,pt_entry_t pte)709 pmap_pte_dirty(pmap_t pmap, pt_entry_t pte)
710 {
711 
712 	KASSERT((pte & ATTR_SW_MANAGED) != 0, ("pte %#lx is unmanaged", pte));
713 
714 	if (pmap->pm_stage == PM_STAGE1) {
715 		KASSERT((pte & (ATTR_S1_AP_RW_BIT | ATTR_SW_DBM)) != 0,
716 		    ("pte %#lx is writeable and missing ATTR_SW_DBM", pte));
717 
718 		return ((pte & (ATTR_S1_AP_RW_BIT | ATTR_SW_DBM)) ==
719 		    (ATTR_S1_AP(ATTR_S1_AP_RW) | ATTR_SW_DBM));
720 	}
721 
722 	return ((pte & ATTR_S2_S2AP(ATTR_S2_S2AP_WRITE)) ==
723 	    ATTR_S2_S2AP(ATTR_S2_S2AP_WRITE));
724 }
725 
726 static __inline void
pmap_resident_count_inc(pmap_t pmap,int count)727 pmap_resident_count_inc(pmap_t pmap, int count)
728 {
729 
730 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
731 	pmap->pm_stats.resident_count += count;
732 }
733 
734 static __inline void
pmap_resident_count_dec(pmap_t pmap,int count)735 pmap_resident_count_dec(pmap_t pmap, int count)
736 {
737 
738 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
739 	KASSERT(pmap->pm_stats.resident_count >= count,
740 	    ("pmap %p resident count underflow %ld %d", pmap,
741 	    pmap->pm_stats.resident_count, count));
742 	pmap->pm_stats.resident_count -= count;
743 }
744 
745 static pt_entry_t *
pmap_early_page_idx(vm_offset_t l1pt,vm_offset_t va,u_int * l1_slot,u_int * l2_slot)746 pmap_early_page_idx(vm_offset_t l1pt, vm_offset_t va, u_int *l1_slot,
747     u_int *l2_slot)
748 {
749 	pt_entry_t *l2;
750 	pd_entry_t *l1;
751 
752 	l1 = (pd_entry_t *)l1pt;
753 	*l1_slot = (va >> L1_SHIFT) & Ln_ADDR_MASK;
754 
755 	/* Check locore has used a table L1 map */
756 	KASSERT((l1[*l1_slot] & ATTR_DESCR_MASK) == L1_TABLE,
757 	   ("Invalid bootstrap L1 table"));
758 	/* Find the address of the L2 table */
759 	l2 = (pt_entry_t *)init_pt_va;
760 	*l2_slot = pmap_l2_index(va);
761 
762 	return (l2);
763 }
764 
765 static vm_paddr_t
pmap_early_vtophys(vm_offset_t l1pt,vm_offset_t va)766 pmap_early_vtophys(vm_offset_t l1pt, vm_offset_t va)
767 {
768 	u_int l1_slot, l2_slot;
769 	pt_entry_t *l2;
770 
771 	l2 = pmap_early_page_idx(l1pt, va, &l1_slot, &l2_slot);
772 
773 	return ((l2[l2_slot] & ~ATTR_MASK) + (va & L2_OFFSET));
774 }
775 
776 static vm_offset_t
pmap_bootstrap_dmap(vm_offset_t kern_l1,vm_paddr_t min_pa,vm_offset_t freemempos)777 pmap_bootstrap_dmap(vm_offset_t kern_l1, vm_paddr_t min_pa,
778     vm_offset_t freemempos)
779 {
780 	pt_entry_t *l2;
781 	vm_offset_t va;
782 	vm_paddr_t l2_pa, pa;
783 	u_int l1_slot, l2_slot, prev_l1_slot;
784 	int i;
785 
786 	dmap_phys_base = min_pa & ~L1_OFFSET;
787 	dmap_phys_max = 0;
788 	dmap_max_addr = 0;
789 	l2 = NULL;
790 	prev_l1_slot = -1;
791 
792 #define	DMAP_TABLES	((DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS) >> L0_SHIFT)
793 	memset(pagetable_dmap, 0, PAGE_SIZE * DMAP_TABLES);
794 
795 	for (i = 0; i < (physmap_idx * 2); i += 2) {
796 		pa = physmap[i] & ~L2_OFFSET;
797 		va = pa - dmap_phys_base + DMAP_MIN_ADDRESS;
798 
799 		/* Create L2 mappings at the start of the region */
800 		if ((pa & L1_OFFSET) != 0) {
801 			l1_slot = ((va - DMAP_MIN_ADDRESS) >> L1_SHIFT);
802 			if (l1_slot != prev_l1_slot) {
803 				prev_l1_slot = l1_slot;
804 				l2 = (pt_entry_t *)freemempos;
805 				l2_pa = pmap_early_vtophys(kern_l1,
806 				    (vm_offset_t)l2);
807 				freemempos += PAGE_SIZE;
808 
809 				pmap_store(&pagetable_dmap[l1_slot],
810 				    (l2_pa & ~Ln_TABLE_MASK) | L1_TABLE);
811 
812 				memset(l2, 0, PAGE_SIZE);
813 			}
814 			KASSERT(l2 != NULL,
815 			    ("pmap_bootstrap_dmap: NULL l2 map"));
816 			for (; va < DMAP_MAX_ADDRESS && pa < physmap[i + 1];
817 			    pa += L2_SIZE, va += L2_SIZE) {
818 				/*
819 				 * We are on a boundary, stop to
820 				 * create a level 1 block
821 				 */
822 				if ((pa & L1_OFFSET) == 0)
823 					break;
824 
825 				l2_slot = pmap_l2_index(va);
826 				KASSERT(l2_slot != 0, ("..."));
827 				pmap_store(&l2[l2_slot],
828 				    (pa & ~L2_OFFSET) | ATTR_DEFAULT |
829 				    ATTR_S1_XN |
830 				    ATTR_S1_IDX(VM_MEMATTR_WRITE_BACK) |
831 				    L2_BLOCK);
832 			}
833 			KASSERT(va == (pa - dmap_phys_base + DMAP_MIN_ADDRESS),
834 			    ("..."));
835 		}
836 
837 		for (; va < DMAP_MAX_ADDRESS && pa < physmap[i + 1] &&
838 		    (physmap[i + 1] - pa) >= L1_SIZE;
839 		    pa += L1_SIZE, va += L1_SIZE) {
840 			l1_slot = ((va - DMAP_MIN_ADDRESS) >> L1_SHIFT);
841 			pmap_store(&pagetable_dmap[l1_slot],
842 			    (pa & ~L1_OFFSET) | ATTR_DEFAULT | ATTR_S1_XN |
843 			    ATTR_S1_IDX(VM_MEMATTR_WRITE_BACK) | L1_BLOCK);
844 		}
845 
846 		/* Create L2 mappings at the end of the region */
847 		if (pa < physmap[i + 1]) {
848 			l1_slot = ((va - DMAP_MIN_ADDRESS) >> L1_SHIFT);
849 			if (l1_slot != prev_l1_slot) {
850 				prev_l1_slot = l1_slot;
851 				l2 = (pt_entry_t *)freemempos;
852 				l2_pa = pmap_early_vtophys(kern_l1,
853 				    (vm_offset_t)l2);
854 				freemempos += PAGE_SIZE;
855 
856 				pmap_store(&pagetable_dmap[l1_slot],
857 				    (l2_pa & ~Ln_TABLE_MASK) | L1_TABLE);
858 
859 				memset(l2, 0, PAGE_SIZE);
860 			}
861 			KASSERT(l2 != NULL,
862 			    ("pmap_bootstrap_dmap: NULL l2 map"));
863 			for (; va < DMAP_MAX_ADDRESS && pa < physmap[i + 1];
864 			    pa += L2_SIZE, va += L2_SIZE) {
865 				l2_slot = pmap_l2_index(va);
866 				pmap_store(&l2[l2_slot],
867 				    (pa & ~L2_OFFSET) | ATTR_DEFAULT |
868 				    ATTR_S1_XN |
869 				    ATTR_S1_IDX(VM_MEMATTR_WRITE_BACK) |
870 				    L2_BLOCK);
871 			}
872 		}
873 
874 		if (pa > dmap_phys_max) {
875 			dmap_phys_max = pa;
876 			dmap_max_addr = va;
877 		}
878 	}
879 
880 	cpu_tlb_flushID();
881 
882 	return (freemempos);
883 }
884 
885 static vm_offset_t
pmap_bootstrap_l2(vm_offset_t l1pt,vm_offset_t va,vm_offset_t l2_start)886 pmap_bootstrap_l2(vm_offset_t l1pt, vm_offset_t va, vm_offset_t l2_start)
887 {
888 	vm_offset_t l2pt;
889 	vm_paddr_t pa;
890 	pd_entry_t *l1;
891 	u_int l1_slot;
892 
893 	KASSERT((va & L1_OFFSET) == 0, ("Invalid virtual address"));
894 
895 	l1 = (pd_entry_t *)l1pt;
896 	l1_slot = pmap_l1_index(va);
897 	l2pt = l2_start;
898 
899 	for (; va < VM_MAX_KERNEL_ADDRESS; l1_slot++, va += L1_SIZE) {
900 		KASSERT(l1_slot < Ln_ENTRIES, ("Invalid L1 index"));
901 
902 		pa = pmap_early_vtophys(l1pt, l2pt);
903 		pmap_store(&l1[l1_slot],
904 		    (pa & ~Ln_TABLE_MASK) | L1_TABLE);
905 		l2pt += PAGE_SIZE;
906 	}
907 
908 	/* Clean the L2 page table */
909 	memset((void *)l2_start, 0, l2pt - l2_start);
910 
911 	return l2pt;
912 }
913 
914 static vm_offset_t
pmap_bootstrap_l3(vm_offset_t l1pt,vm_offset_t va,vm_offset_t l3_start)915 pmap_bootstrap_l3(vm_offset_t l1pt, vm_offset_t va, vm_offset_t l3_start)
916 {
917 	vm_offset_t l3pt;
918 	vm_paddr_t pa;
919 	pd_entry_t *l2;
920 	u_int l2_slot;
921 
922 	KASSERT((va & L2_OFFSET) == 0, ("Invalid virtual address"));
923 
924 	l2 = pmap_l2(kernel_pmap, va);
925 	l2 = (pd_entry_t *)rounddown2((uintptr_t)l2, PAGE_SIZE);
926 	l2_slot = pmap_l2_index(va);
927 	l3pt = l3_start;
928 
929 	for (; va < VM_MAX_KERNEL_ADDRESS; l2_slot++, va += L2_SIZE) {
930 		KASSERT(l2_slot < Ln_ENTRIES, ("Invalid L2 index"));
931 
932 		pa = pmap_early_vtophys(l1pt, l3pt);
933 		pmap_store(&l2[l2_slot],
934 		    (pa & ~Ln_TABLE_MASK) | ATTR_S1_UXN | L2_TABLE);
935 		l3pt += PAGE_SIZE;
936 	}
937 
938 	/* Clean the L2 page table */
939 	memset((void *)l3_start, 0, l3pt - l3_start);
940 
941 	return l3pt;
942 }
943 
944 /*
945  *	Bootstrap the system enough to run with virtual memory.
946  */
947 void
pmap_bootstrap(vm_offset_t l0pt,vm_offset_t l1pt,vm_paddr_t kernstart,vm_size_t kernlen)948 pmap_bootstrap(vm_offset_t l0pt, vm_offset_t l1pt, vm_paddr_t kernstart,
949     vm_size_t kernlen)
950 {
951 	vm_offset_t freemempos;
952 	vm_offset_t dpcpu, msgbufpv;
953 	vm_paddr_t start_pa, pa, min_pa;
954 	uint64_t kern_delta;
955 	int i;
956 
957 	/* Verify that the ASID is set through TTBR0. */
958 	KASSERT((READ_SPECIALREG(tcr_el1) & TCR_A1) == 0,
959 	    ("pmap_bootstrap: TCR_EL1.A1 != 0"));
960 
961 	kern_delta = KERNBASE - kernstart;
962 
963 	printf("pmap_bootstrap %lx %lx %lx\n", l1pt, kernstart, kernlen);
964 	printf("%lx\n", l1pt);
965 	printf("%lx\n", (KERNBASE >> L1_SHIFT) & Ln_ADDR_MASK);
966 
967 	/* Set this early so we can use the pagetable walking functions */
968 	kernel_pmap_store.pm_l0 = (pd_entry_t *)l0pt;
969 	PMAP_LOCK_INIT(kernel_pmap);
970 	kernel_pmap->pm_l0_paddr = l0pt - kern_delta;
971 	kernel_pmap->pm_cookie = COOKIE_FROM(-1, INT_MIN);
972 	kernel_pmap->pm_stage = PM_STAGE1;
973 	kernel_pmap->pm_levels = 4;
974 	kernel_pmap->pm_ttbr = kernel_pmap->pm_l0_paddr;
975 	kernel_pmap->pm_asid_set = &asids;
976 
977 	/* Assume the address we were loaded to is a valid physical address */
978 	min_pa = KERNBASE - kern_delta;
979 
980 	physmap_idx = physmem_avail(physmap, nitems(physmap));
981 	physmap_idx /= 2;
982 
983 	/*
984 	 * Find the minimum physical address. physmap is sorted,
985 	 * but may contain empty ranges.
986 	 */
987 	for (i = 0; i < physmap_idx * 2; i += 2) {
988 		if (physmap[i] == physmap[i + 1])
989 			continue;
990 		if (physmap[i] <= min_pa)
991 			min_pa = physmap[i];
992 	}
993 
994 	freemempos = KERNBASE + kernlen;
995 	freemempos = roundup2(freemempos, PAGE_SIZE);
996 
997 	/* Create a direct map region early so we can use it for pa -> va */
998 	freemempos = pmap_bootstrap_dmap(l1pt, min_pa, freemempos);
999 
1000 	start_pa = pa = KERNBASE - kern_delta;
1001 
1002 	/*
1003 	 * Create the l2 tables up to VM_MAX_KERNEL_ADDRESS.  We assume that the
1004 	 * loader allocated the first and only l2 page table page used to map
1005 	 * the kernel, preloaded files and module metadata.
1006 	 */
1007 	freemempos = pmap_bootstrap_l2(l1pt, KERNBASE + L1_SIZE, freemempos);
1008 	/* And the l3 tables for the early devmap */
1009 	freemempos = pmap_bootstrap_l3(l1pt,
1010 	    VM_MAX_KERNEL_ADDRESS - (PMAP_MAPDEV_EARLY_SIZE), freemempos);
1011 
1012 	cpu_tlb_flushID();
1013 
1014 #define alloc_pages(var, np)						\
1015 	(var) = freemempos;						\
1016 	freemempos += (np * PAGE_SIZE);					\
1017 	memset((char *)(var), 0, ((np) * PAGE_SIZE));
1018 
1019 	/* Allocate dynamic per-cpu area. */
1020 	alloc_pages(dpcpu, DPCPU_SIZE / PAGE_SIZE);
1021 	dpcpu_init((void *)dpcpu, 0);
1022 
1023 	/* Allocate memory for the msgbuf, e.g. for /sbin/dmesg */
1024 	alloc_pages(msgbufpv, round_page(msgbufsize) / PAGE_SIZE);
1025 	msgbufp = (void *)msgbufpv;
1026 
1027 	/* Reserve some VA space for early BIOS/ACPI mapping */
1028 	preinit_map_va = roundup2(freemempos, L2_SIZE);
1029 
1030 	virtual_avail = preinit_map_va + PMAP_PREINIT_MAPPING_SIZE;
1031 	virtual_avail = roundup2(virtual_avail, L1_SIZE);
1032 	virtual_end = VM_MAX_KERNEL_ADDRESS - (PMAP_MAPDEV_EARLY_SIZE);
1033 	kernel_vm_end = virtual_avail;
1034 
1035 	pa = pmap_early_vtophys(l1pt, freemempos);
1036 
1037 	physmem_exclude_region(start_pa, pa - start_pa, EXFLAG_NOALLOC);
1038 
1039 	cpu_tlb_flushID();
1040 }
1041 
1042 /*
1043  *	Initialize a vm_page's machine-dependent fields.
1044  */
1045 void
pmap_page_init(vm_page_t m)1046 pmap_page_init(vm_page_t m)
1047 {
1048 
1049 	TAILQ_INIT(&m->md.pv_list);
1050 	m->md.pv_memattr = VM_MEMATTR_WRITE_BACK;
1051 }
1052 
1053 static void
pmap_init_asids(struct asid_set * set,int bits)1054 pmap_init_asids(struct asid_set *set, int bits)
1055 {
1056 	int i;
1057 
1058 	set->asid_bits = bits;
1059 
1060 	/*
1061 	 * We may be too early in the overall initialization process to use
1062 	 * bit_alloc().
1063 	 */
1064 	set->asid_set_size = 1 << set->asid_bits;
1065 	set->asid_set = (bitstr_t *)kmem_malloc(bitstr_size(set->asid_set_size),
1066 	    M_WAITOK | M_ZERO);
1067 	for (i = 0; i < ASID_FIRST_AVAILABLE; i++)
1068 		bit_set(set->asid_set, i);
1069 	set->asid_next = ASID_FIRST_AVAILABLE;
1070 	mtx_init(&set->asid_set_mutex, "asid set", NULL, MTX_SPIN);
1071 }
1072 
1073 /*
1074  *	Initialize the pmap module.
1075  *	Called by vm_init, to initialize any structures that the pmap
1076  *	system needs to map virtual memory.
1077  */
1078 void
pmap_init(void)1079 pmap_init(void)
1080 {
1081 	struct vm_phys_seg *seg, *next_seg;
1082 	struct md_page *pvh;
1083 	vm_size_t s;
1084 	uint64_t mmfr1;
1085 	int i, pv_npg, vmid_bits;
1086 
1087 	/*
1088 	 * Are large page mappings enabled?
1089 	 */
1090 	TUNABLE_INT_FETCH("vm.pmap.superpages_enabled", &superpages_enabled);
1091 	if (superpages_enabled) {
1092 		KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
1093 		    ("pmap_init: can't assign to pagesizes[1]"));
1094 		pagesizes[1] = L2_SIZE;
1095 		KASSERT(MAXPAGESIZES > 2 && pagesizes[2] == 0,
1096 		    ("pmap_init: can't assign to pagesizes[2]"));
1097 		pagesizes[2] = L1_SIZE;
1098 	}
1099 
1100 	/*
1101 	 * Initialize the ASID allocator.
1102 	 */
1103 	pmap_init_asids(&asids,
1104 	    (READ_SPECIALREG(tcr_el1) & TCR_ASID_16) != 0 ? 16 : 8);
1105 
1106 	if (has_hyp()) {
1107 		mmfr1 = READ_SPECIALREG(id_aa64mmfr1_el1);
1108 		vmid_bits = 8;
1109 
1110 		if (ID_AA64MMFR1_VMIDBits_VAL(mmfr1) ==
1111 		    ID_AA64MMFR1_VMIDBits_16)
1112 			vmid_bits = 16;
1113 		pmap_init_asids(&vmids, vmid_bits);
1114 	}
1115 
1116 	/*
1117 	 * Initialize the pv chunk list mutex.
1118 	 */
1119 	mtx_init(&pv_chunks_mutex, "pmap pv chunk list", NULL, MTX_DEF);
1120 
1121 	/*
1122 	 * Initialize the pool of pv list locks.
1123 	 */
1124 	for (i = 0; i < NPV_LIST_LOCKS; i++)
1125 		rw_init(&pv_list_locks[i], "pmap pv list");
1126 
1127 	/*
1128 	 * Calculate the size of the pv head table for superpages.
1129 	 */
1130 	pv_npg = 0;
1131 	for (i = 0; i < vm_phys_nsegs; i++) {
1132 		seg = &vm_phys_segs[i];
1133 		pv_npg += pmap_l2_pindex(roundup2(seg->end, L2_SIZE)) -
1134 		    pmap_l2_pindex(seg->start);
1135 	}
1136 
1137 	/*
1138 	 * Allocate memory for the pv head table for superpages.
1139 	 */
1140 	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
1141 	s = round_page(s);
1142 	pv_table = (struct md_page *)kmem_malloc(s, M_WAITOK | M_ZERO);
1143 	for (i = 0; i < pv_npg; i++)
1144 		TAILQ_INIT(&pv_table[i].pv_list);
1145 	TAILQ_INIT(&pv_dummy.pv_list);
1146 
1147 	/*
1148 	 * Set pointers from vm_phys_segs to pv_table.
1149 	 */
1150 	for (i = 0, pvh = pv_table; i < vm_phys_nsegs; i++) {
1151 		seg = &vm_phys_segs[i];
1152 		seg->md_first = pvh;
1153 		pvh += pmap_l2_pindex(roundup2(seg->end, L2_SIZE)) -
1154 		    pmap_l2_pindex(seg->start);
1155 
1156 		/*
1157 		 * If there is a following segment, and the final
1158 		 * superpage of this segment and the initial superpage
1159 		 * of the next segment are the same then adjust the
1160 		 * pv_table entry for that next segment down by one so
1161 		 * that the pv_table entries will be shared.
1162 		 */
1163 		if (i + 1 < vm_phys_nsegs) {
1164 			next_seg = &vm_phys_segs[i + 1];
1165 			if (pmap_l2_pindex(roundup2(seg->end, L2_SIZE)) - 1 ==
1166 			    pmap_l2_pindex(next_seg->start)) {
1167 				pvh--;
1168 			}
1169 		}
1170 	}
1171 
1172 	vm_initialized = 1;
1173 }
1174 
1175 static SYSCTL_NODE(_vm_pmap, OID_AUTO, l2, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
1176     "2MB page mapping counters");
1177 
1178 static u_long pmap_l2_demotions;
1179 SYSCTL_ULONG(_vm_pmap_l2, OID_AUTO, demotions, CTLFLAG_RD,
1180     &pmap_l2_demotions, 0, "2MB page demotions");
1181 
1182 static u_long pmap_l2_mappings;
1183 SYSCTL_ULONG(_vm_pmap_l2, OID_AUTO, mappings, CTLFLAG_RD,
1184     &pmap_l2_mappings, 0, "2MB page mappings");
1185 
1186 static u_long pmap_l2_p_failures;
1187 SYSCTL_ULONG(_vm_pmap_l2, OID_AUTO, p_failures, CTLFLAG_RD,
1188     &pmap_l2_p_failures, 0, "2MB page promotion failures");
1189 
1190 static u_long pmap_l2_promotions;
1191 SYSCTL_ULONG(_vm_pmap_l2, OID_AUTO, promotions, CTLFLAG_RD,
1192     &pmap_l2_promotions, 0, "2MB page promotions");
1193 
1194 /*
1195  * Invalidate a single TLB entry.
1196  */
1197 static __inline void
pmap_invalidate_page(pmap_t pmap,vm_offset_t va)1198 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
1199 {
1200 	uint64_t r;
1201 
1202 	PMAP_ASSERT_STAGE1(pmap);
1203 
1204 	dsb(ishst);
1205 	if (pmap == kernel_pmap) {
1206 		r = atop(va);
1207 		__asm __volatile("tlbi vaae1is, %0" : : "r" (r));
1208 	} else {
1209 		r = ASID_TO_OPERAND(COOKIE_TO_ASID(pmap->pm_cookie)) | atop(va);
1210 		__asm __volatile("tlbi vae1is, %0" : : "r" (r));
1211 	}
1212 	dsb(ish);
1213 	isb();
1214 }
1215 
1216 static __inline void
pmap_invalidate_range(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)1217 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1218 {
1219 	uint64_t end, r, start;
1220 
1221 	PMAP_ASSERT_STAGE1(pmap);
1222 
1223 	dsb(ishst);
1224 	if (pmap == kernel_pmap) {
1225 		start = atop(sva);
1226 		end = atop(eva);
1227 		for (r = start; r < end; r++)
1228 			__asm __volatile("tlbi vaae1is, %0" : : "r" (r));
1229 	} else {
1230 		start = end = ASID_TO_OPERAND(COOKIE_TO_ASID(pmap->pm_cookie));
1231 		start |= atop(sva);
1232 		end |= atop(eva);
1233 		for (r = start; r < end; r++)
1234 			__asm __volatile("tlbi vae1is, %0" : : "r" (r));
1235 	}
1236 	dsb(ish);
1237 	isb();
1238 }
1239 
1240 static __inline void
pmap_invalidate_all(pmap_t pmap)1241 pmap_invalidate_all(pmap_t pmap)
1242 {
1243 	uint64_t r;
1244 
1245 	PMAP_ASSERT_STAGE1(pmap);
1246 
1247 	dsb(ishst);
1248 	if (pmap == kernel_pmap) {
1249 		__asm __volatile("tlbi vmalle1is");
1250 	} else {
1251 		r = ASID_TO_OPERAND(COOKIE_TO_ASID(pmap->pm_cookie));
1252 		__asm __volatile("tlbi aside1is, %0" : : "r" (r));
1253 	}
1254 	dsb(ish);
1255 	isb();
1256 }
1257 
1258 /*
1259  *	Routine:	pmap_extract
1260  *	Function:
1261  *		Extract the physical page address associated
1262  *		with the given map/virtual_address pair.
1263  */
1264 vm_paddr_t
pmap_extract(pmap_t pmap,vm_offset_t va)1265 pmap_extract(pmap_t pmap, vm_offset_t va)
1266 {
1267 	pt_entry_t *pte, tpte;
1268 	vm_paddr_t pa;
1269 	int lvl;
1270 
1271 	pa = 0;
1272 	PMAP_LOCK(pmap);
1273 	/*
1274 	 * Find the block or page map for this virtual address. pmap_pte
1275 	 * will return either a valid block/page entry, or NULL.
1276 	 */
1277 	pte = pmap_pte(pmap, va, &lvl);
1278 	if (pte != NULL) {
1279 		tpte = pmap_load(pte);
1280 		pa = tpte & ~ATTR_MASK;
1281 		switch(lvl) {
1282 		case 1:
1283 			KASSERT((tpte & ATTR_DESCR_MASK) == L1_BLOCK,
1284 			    ("pmap_extract: Invalid L1 pte found: %lx",
1285 			    tpte & ATTR_DESCR_MASK));
1286 			pa |= (va & L1_OFFSET);
1287 			break;
1288 		case 2:
1289 			KASSERT((tpte & ATTR_DESCR_MASK) == L2_BLOCK,
1290 			    ("pmap_extract: Invalid L2 pte found: %lx",
1291 			    tpte & ATTR_DESCR_MASK));
1292 			pa |= (va & L2_OFFSET);
1293 			break;
1294 		case 3:
1295 			KASSERT((tpte & ATTR_DESCR_MASK) == L3_PAGE,
1296 			    ("pmap_extract: Invalid L3 pte found: %lx",
1297 			    tpte & ATTR_DESCR_MASK));
1298 			pa |= (va & L3_OFFSET);
1299 			break;
1300 		}
1301 	}
1302 	PMAP_UNLOCK(pmap);
1303 	return (pa);
1304 }
1305 
1306 /*
1307  *	Routine:	pmap_extract_and_hold
1308  *	Function:
1309  *		Atomically extract and hold the physical page
1310  *		with the given pmap and virtual address pair
1311  *		if that mapping permits the given protection.
1312  */
1313 vm_page_t
pmap_extract_and_hold(pmap_t pmap,vm_offset_t va,vm_prot_t prot)1314 pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1315 {
1316 	pt_entry_t *pte, tpte;
1317 	vm_offset_t off;
1318 	vm_page_t m;
1319 	int lvl;
1320 	bool use;
1321 
1322 	m = NULL;
1323 	PMAP_LOCK(pmap);
1324 	pte = pmap_pte(pmap, va, &lvl);
1325 	if (pte != NULL) {
1326 		tpte = pmap_load(pte);
1327 
1328 		KASSERT(lvl > 0 && lvl <= 3,
1329 		    ("pmap_extract_and_hold: Invalid level %d", lvl));
1330 		CTASSERT(L1_BLOCK == L2_BLOCK);
1331 		KASSERT((lvl == 3 && (tpte & ATTR_DESCR_MASK) == L3_PAGE) ||
1332 		    (lvl < 3 && (tpte & ATTR_DESCR_MASK) == L1_BLOCK),
1333 		    ("pmap_extract_and_hold: Invalid pte at L%d: %lx", lvl,
1334 		     tpte & ATTR_DESCR_MASK));
1335 
1336 		use = false;
1337 		if ((prot & VM_PROT_WRITE) == 0)
1338 			use = true;
1339 		else if (pmap->pm_stage == PM_STAGE1 &&
1340 		    (tpte & ATTR_S1_AP_RW_BIT) == ATTR_S1_AP(ATTR_S1_AP_RW))
1341 			use = true;
1342 		else if (pmap->pm_stage == PM_STAGE2 &&
1343 		    ((tpte & ATTR_S2_S2AP(ATTR_S2_S2AP_WRITE)) ==
1344 		     ATTR_S2_S2AP(ATTR_S2_S2AP_WRITE)))
1345 			use = true;
1346 
1347 		if (use) {
1348 			switch (lvl) {
1349 			case 1:
1350 				off = va & L1_OFFSET;
1351 				break;
1352 			case 2:
1353 				off = va & L2_OFFSET;
1354 				break;
1355 			case 3:
1356 			default:
1357 				off = 0;
1358 			}
1359 			m = PHYS_TO_VM_PAGE((tpte & ~ATTR_MASK) | off);
1360 			if (m != NULL && !vm_page_wire_mapped(m))
1361 				m = NULL;
1362 		}
1363 	}
1364 	PMAP_UNLOCK(pmap);
1365 	return (m);
1366 }
1367 
1368 /*
1369  * Walks the page tables to translate a kernel virtual address to a
1370  * physical address. Returns true if the kva is valid and stores the
1371  * physical address in pa if it is not NULL.
1372  */
1373 bool
pmap_klookup(vm_offset_t va,vm_paddr_t * pa)1374 pmap_klookup(vm_offset_t va, vm_paddr_t *pa)
1375 {
1376 	pt_entry_t *pte, tpte;
1377 	register_t intr;
1378 	uint64_t par;
1379 
1380 	/*
1381 	 * Disable interrupts so we don't get interrupted between asking
1382 	 * for address translation, and getting the result back.
1383 	 */
1384 	intr = intr_disable();
1385 	par = arm64_address_translate_s1e1r(va);
1386 	intr_restore(intr);
1387 
1388 	if (PAR_SUCCESS(par)) {
1389 		if (pa != NULL)
1390 			*pa = (par & PAR_PA_MASK) | (va & PAR_LOW_MASK);
1391 		return (true);
1392 	}
1393 
1394 	/*
1395 	 * Fall back to walking the page table. The address translation
1396 	 * instruction may fail when the page is in a break-before-make
1397 	 * sequence. As we only clear the valid bit in said sequence we
1398 	 * can walk the page table to find the physical address.
1399 	 */
1400 
1401 	pte = pmap_l1(kernel_pmap, va);
1402 	if (pte == NULL)
1403 		return (false);
1404 
1405 	/*
1406 	 * A concurrent pmap_update_entry() will clear the entry's valid bit
1407 	 * but leave the rest of the entry unchanged.  Therefore, we treat a
1408 	 * non-zero entry as being valid, and we ignore the valid bit when
1409 	 * determining whether the entry maps a block, page, or table.
1410 	 */
1411 	tpte = pmap_load(pte);
1412 	if (tpte == 0)
1413 		return (false);
1414 	if ((tpte & ATTR_DESCR_TYPE_MASK) == ATTR_DESCR_TYPE_BLOCK) {
1415 		if (pa != NULL)
1416 			*pa = (tpte & ~ATTR_MASK) | (va & L1_OFFSET);
1417 		return (true);
1418 	}
1419 	pte = pmap_l1_to_l2(&tpte, va);
1420 	tpte = pmap_load(pte);
1421 	if (tpte == 0)
1422 		return (false);
1423 	if ((tpte & ATTR_DESCR_TYPE_MASK) == ATTR_DESCR_TYPE_BLOCK) {
1424 		if (pa != NULL)
1425 			*pa = (tpte & ~ATTR_MASK) | (va & L2_OFFSET);
1426 		return (true);
1427 	}
1428 	pte = pmap_l2_to_l3(&tpte, va);
1429 	tpte = pmap_load(pte);
1430 	if (tpte == 0)
1431 		return (false);
1432 	if (pa != NULL)
1433 		*pa = (tpte & ~ATTR_MASK) | (va & L3_OFFSET);
1434 	return (true);
1435 }
1436 
1437 vm_paddr_t
pmap_kextract(vm_offset_t va)1438 pmap_kextract(vm_offset_t va)
1439 {
1440 	vm_paddr_t pa;
1441 
1442 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS)
1443 		return (DMAP_TO_PHYS(va));
1444 
1445 	if (pmap_klookup(va, &pa) == false)
1446 		return (0);
1447 	return (pa);
1448 }
1449 
1450 /***************************************************
1451  * Low level mapping routines.....
1452  ***************************************************/
1453 
1454 void
pmap_kenter(vm_offset_t sva,vm_size_t size,vm_paddr_t pa,int mode)1455 pmap_kenter(vm_offset_t sva, vm_size_t size, vm_paddr_t pa, int mode)
1456 {
1457 	pd_entry_t *pde;
1458 	pt_entry_t *pte, attr;
1459 	vm_offset_t va;
1460 	int lvl;
1461 
1462 	KASSERT((pa & L3_OFFSET) == 0,
1463 	   ("pmap_kenter: Invalid physical address"));
1464 	KASSERT((sva & L3_OFFSET) == 0,
1465 	   ("pmap_kenter: Invalid virtual address"));
1466 	KASSERT((size & PAGE_MASK) == 0,
1467 	    ("pmap_kenter: Mapping is not page-sized"));
1468 
1469 	attr = ATTR_DEFAULT | ATTR_S1_AP(ATTR_S1_AP_RW) | ATTR_S1_XN |
1470 	    ATTR_S1_IDX(mode) | L3_PAGE;
1471 	va = sva;
1472 	while (size != 0) {
1473 		pde = pmap_pde(kernel_pmap, va, &lvl);
1474 		KASSERT(pde != NULL,
1475 		    ("pmap_kenter: Invalid page entry, va: 0x%lx", va));
1476 		KASSERT(lvl == 2, ("pmap_kenter: Invalid level %d", lvl));
1477 
1478 		pte = pmap_l2_to_l3(pde, va);
1479 		pmap_load_store(pte, (pa & ~L3_OFFSET) | attr);
1480 
1481 		va += PAGE_SIZE;
1482 		pa += PAGE_SIZE;
1483 		size -= PAGE_SIZE;
1484 	}
1485 	pmap_invalidate_range(kernel_pmap, sva, va);
1486 }
1487 
1488 void
pmap_kenter_device(vm_offset_t sva,vm_size_t size,vm_paddr_t pa)1489 pmap_kenter_device(vm_offset_t sva, vm_size_t size, vm_paddr_t pa)
1490 {
1491 
1492 	pmap_kenter(sva, size, pa, VM_MEMATTR_DEVICE);
1493 }
1494 
1495 /*
1496  * Remove a page from the kernel pagetables.
1497  */
1498 PMAP_INLINE void
pmap_kremove(vm_offset_t va)1499 pmap_kremove(vm_offset_t va)
1500 {
1501 	pt_entry_t *pte;
1502 	int lvl;
1503 
1504 	pte = pmap_pte(kernel_pmap, va, &lvl);
1505 	KASSERT(pte != NULL, ("pmap_kremove: Invalid address"));
1506 	KASSERT(lvl == 3, ("pmap_kremove: Invalid pte level %d", lvl));
1507 
1508 	pmap_clear(pte);
1509 	pmap_invalidate_page(kernel_pmap, va);
1510 }
1511 
1512 void
pmap_kremove_device(vm_offset_t sva,vm_size_t size)1513 pmap_kremove_device(vm_offset_t sva, vm_size_t size)
1514 {
1515 	pt_entry_t *pte;
1516 	vm_offset_t va;
1517 	int lvl;
1518 
1519 	KASSERT((sva & L3_OFFSET) == 0,
1520 	   ("pmap_kremove_device: Invalid virtual address"));
1521 	KASSERT((size & PAGE_MASK) == 0,
1522 	    ("pmap_kremove_device: Mapping is not page-sized"));
1523 
1524 	va = sva;
1525 	while (size != 0) {
1526 		pte = pmap_pte(kernel_pmap, va, &lvl);
1527 		KASSERT(pte != NULL, ("Invalid page table, va: 0x%lx", va));
1528 		KASSERT(lvl == 3,
1529 		    ("Invalid device pagetable level: %d != 3", lvl));
1530 		pmap_clear(pte);
1531 
1532 		va += PAGE_SIZE;
1533 		size -= PAGE_SIZE;
1534 	}
1535 	pmap_invalidate_range(kernel_pmap, sva, va);
1536 }
1537 
1538 /*
1539  *	Used to map a range of physical addresses into kernel
1540  *	virtual address space.
1541  *
1542  *	The value passed in '*virt' is a suggested virtual address for
1543  *	the mapping. Architectures which can support a direct-mapped
1544  *	physical to virtual region can return the appropriate address
1545  *	within that region, leaving '*virt' unchanged. Other
1546  *	architectures should map the pages starting at '*virt' and
1547  *	update '*virt' with the first usable address after the mapped
1548  *	region.
1549  */
1550 vm_offset_t
pmap_map(vm_offset_t * virt,vm_paddr_t start,vm_paddr_t end,int prot)1551 pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1552 {
1553 	return PHYS_TO_DMAP(start);
1554 }
1555 
1556 /*
1557  * Add a list of wired pages to the kva
1558  * this routine is only used for temporary
1559  * kernel mappings that do not need to have
1560  * page modification or references recorded.
1561  * Note that old mappings are simply written
1562  * over.  The page *must* be wired.
1563  * Note: SMP coherent.  Uses a ranged shootdown IPI.
1564  */
1565 void
pmap_qenter(vm_offset_t sva,vm_page_t * ma,int count)1566 pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1567 {
1568 	pd_entry_t *pde;
1569 	pt_entry_t *pte, pa;
1570 	vm_offset_t va;
1571 	vm_page_t m;
1572 	int i, lvl;
1573 
1574 	va = sva;
1575 	for (i = 0; i < count; i++) {
1576 		pde = pmap_pde(kernel_pmap, va, &lvl);
1577 		KASSERT(pde != NULL,
1578 		    ("pmap_qenter: Invalid page entry, va: 0x%lx", va));
1579 		KASSERT(lvl == 2,
1580 		    ("pmap_qenter: Invalid level %d", lvl));
1581 
1582 		m = ma[i];
1583 		pa = VM_PAGE_TO_PHYS(m) | ATTR_DEFAULT |
1584 		    ATTR_S1_AP(ATTR_S1_AP_RW) | ATTR_S1_XN |
1585 		    ATTR_S1_IDX(m->md.pv_memattr) | L3_PAGE;
1586 		pte = pmap_l2_to_l3(pde, va);
1587 		pmap_load_store(pte, pa);
1588 
1589 		va += L3_SIZE;
1590 	}
1591 	pmap_invalidate_range(kernel_pmap, sva, va);
1592 }
1593 
1594 /*
1595  * This routine tears out page mappings from the
1596  * kernel -- it is meant only for temporary mappings.
1597  */
1598 void
pmap_qremove(vm_offset_t sva,int count)1599 pmap_qremove(vm_offset_t sva, int count)
1600 {
1601 	pt_entry_t *pte;
1602 	vm_offset_t va;
1603 	int lvl;
1604 
1605 	KASSERT(sva >= VM_MIN_KERNEL_ADDRESS, ("usermode va %lx", sva));
1606 
1607 	va = sva;
1608 	while (count-- > 0) {
1609 		pte = pmap_pte(kernel_pmap, va, &lvl);
1610 		KASSERT(lvl == 3,
1611 		    ("Invalid device pagetable level: %d != 3", lvl));
1612 		if (pte != NULL) {
1613 			pmap_clear(pte);
1614 		}
1615 
1616 		va += PAGE_SIZE;
1617 	}
1618 	pmap_invalidate_range(kernel_pmap, sva, va);
1619 }
1620 
1621 /***************************************************
1622  * Page table page management routines.....
1623  ***************************************************/
1624 /*
1625  * Schedule the specified unused page table page to be freed.  Specifically,
1626  * add the page to the specified list of pages that will be released to the
1627  * physical memory manager after the TLB has been updated.
1628  */
1629 static __inline void
pmap_add_delayed_free_list(vm_page_t m,struct spglist * free,boolean_t set_PG_ZERO)1630 pmap_add_delayed_free_list(vm_page_t m, struct spglist *free,
1631     boolean_t set_PG_ZERO)
1632 {
1633 
1634 	if (set_PG_ZERO)
1635 		m->flags |= PG_ZERO;
1636 	else
1637 		m->flags &= ~PG_ZERO;
1638 	SLIST_INSERT_HEAD(free, m, plinks.s.ss);
1639 }
1640 
1641 /*
1642  * Decrements a page table page's reference count, which is used to record the
1643  * number of valid page table entries within the page.  If the reference count
1644  * drops to zero, then the page table page is unmapped.  Returns TRUE if the
1645  * page table page was unmapped and FALSE otherwise.
1646  */
1647 static inline boolean_t
pmap_unwire_l3(pmap_t pmap,vm_offset_t va,vm_page_t m,struct spglist * free)1648 pmap_unwire_l3(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
1649 {
1650 
1651 	--m->ref_count;
1652 	if (m->ref_count == 0) {
1653 		_pmap_unwire_l3(pmap, va, m, free);
1654 		return (TRUE);
1655 	} else
1656 		return (FALSE);
1657 }
1658 
1659 static void
_pmap_unwire_l3(pmap_t pmap,vm_offset_t va,vm_page_t m,struct spglist * free)1660 _pmap_unwire_l3(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
1661 {
1662 
1663 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1664 	/*
1665 	 * unmap the page table page
1666 	 */
1667 	if (m->pindex >= (NUL2E + NUL1E)) {
1668 		/* l1 page */
1669 		pd_entry_t *l0;
1670 
1671 		l0 = pmap_l0(pmap, va);
1672 		pmap_clear(l0);
1673 	} else if (m->pindex >= NUL2E) {
1674 		/* l2 page */
1675 		pd_entry_t *l1;
1676 
1677 		l1 = pmap_l1(pmap, va);
1678 		pmap_clear(l1);
1679 	} else {
1680 		/* l3 page */
1681 		pd_entry_t *l2;
1682 
1683 		l2 = pmap_l2(pmap, va);
1684 		pmap_clear(l2);
1685 	}
1686 	pmap_resident_count_dec(pmap, 1);
1687 	if (m->pindex < NUL2E) {
1688 		/* We just released an l3, unhold the matching l2 */
1689 		pd_entry_t *l1, tl1;
1690 		vm_page_t l2pg;
1691 
1692 		l1 = pmap_l1(pmap, va);
1693 		tl1 = pmap_load(l1);
1694 		l2pg = PHYS_TO_VM_PAGE(tl1 & ~ATTR_MASK);
1695 		pmap_unwire_l3(pmap, va, l2pg, free);
1696 	} else if (m->pindex < (NUL2E + NUL1E)) {
1697 		/* We just released an l2, unhold the matching l1 */
1698 		pd_entry_t *l0, tl0;
1699 		vm_page_t l1pg;
1700 
1701 		l0 = pmap_l0(pmap, va);
1702 		tl0 = pmap_load(l0);
1703 		l1pg = PHYS_TO_VM_PAGE(tl0 & ~ATTR_MASK);
1704 		pmap_unwire_l3(pmap, va, l1pg, free);
1705 	}
1706 	pmap_invalidate_page(pmap, va);
1707 
1708 	/*
1709 	 * Put page on a list so that it is released after
1710 	 * *ALL* TLB shootdown is done
1711 	 */
1712 	pmap_add_delayed_free_list(m, free, TRUE);
1713 }
1714 
1715 /*
1716  * After removing a page table entry, this routine is used to
1717  * conditionally free the page, and manage the reference count.
1718  */
1719 static int
pmap_unuse_pt(pmap_t pmap,vm_offset_t va,pd_entry_t ptepde,struct spglist * free)1720 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, pd_entry_t ptepde,
1721     struct spglist *free)
1722 {
1723 	vm_page_t mpte;
1724 
1725 	if (va >= VM_MAXUSER_ADDRESS)
1726 		return (0);
1727 	KASSERT(ptepde != 0, ("pmap_unuse_pt: ptepde != 0"));
1728 	mpte = PHYS_TO_VM_PAGE(ptepde & ~ATTR_MASK);
1729 	return (pmap_unwire_l3(pmap, va, mpte, free));
1730 }
1731 
1732 /*
1733  * Release a page table page reference after a failed attempt to create a
1734  * mapping.
1735  */
1736 static void
pmap_abort_ptp(pmap_t pmap,vm_offset_t va,vm_page_t mpte)1737 pmap_abort_ptp(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
1738 {
1739 	struct spglist free;
1740 
1741 	SLIST_INIT(&free);
1742 	if (pmap_unwire_l3(pmap, va, mpte, &free)) {
1743 		/*
1744 		 * Although "va" was never mapped, the TLB could nonetheless
1745 		 * have intermediate entries that refer to the freed page
1746 		 * table pages.  Invalidate those entries.
1747 		 *
1748 		 * XXX redundant invalidation (See _pmap_unwire_l3().)
1749 		 */
1750 		pmap_invalidate_page(pmap, va);
1751 		vm_page_free_pages_toq(&free, true);
1752 	}
1753 }
1754 
1755 void
pmap_pinit0(pmap_t pmap)1756 pmap_pinit0(pmap_t pmap)
1757 {
1758 
1759 	PMAP_LOCK_INIT(pmap);
1760 	bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
1761 	pmap->pm_l0_paddr = READ_SPECIALREG(ttbr0_el1);
1762 	pmap->pm_l0 = (pd_entry_t *)PHYS_TO_DMAP(pmap->pm_l0_paddr);
1763 	pmap->pm_root.rt_root = 0;
1764 	pmap->pm_cookie = COOKIE_FROM(ASID_RESERVED_FOR_PID_0, INT_MIN);
1765 	pmap->pm_stage = PM_STAGE1;
1766 	pmap->pm_levels = 4;
1767 	pmap->pm_ttbr = pmap->pm_l0_paddr;
1768 	pmap->pm_asid_set = &asids;
1769 
1770 	PCPU_SET(curpmap, pmap);
1771 }
1772 
1773 int
pmap_pinit_stage(pmap_t pmap,enum pmap_stage stage,int levels)1774 pmap_pinit_stage(pmap_t pmap, enum pmap_stage stage, int levels)
1775 {
1776 	vm_page_t m;
1777 
1778 	/*
1779 	 * allocate the l0 page
1780 	 */
1781 	while ((m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
1782 	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL)
1783 		vm_wait(NULL);
1784 
1785 	pmap->pm_l0_paddr = VM_PAGE_TO_PHYS(m);
1786 	pmap->pm_l0 = (pd_entry_t *)PHYS_TO_DMAP(pmap->pm_l0_paddr);
1787 
1788 	if ((m->flags & PG_ZERO) == 0)
1789 		pagezero(pmap->pm_l0);
1790 
1791 	pmap->pm_root.rt_root = 0;
1792 	bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
1793 	pmap->pm_cookie = COOKIE_FROM(-1, INT_MAX);
1794 
1795 	MPASS(levels == 3 || levels == 4);
1796 	pmap->pm_levels = levels;
1797 	pmap->pm_stage = stage;
1798 	switch (stage) {
1799 	case PM_STAGE1:
1800 		pmap->pm_asid_set = &asids;
1801 		break;
1802 	case PM_STAGE2:
1803 		pmap->pm_asid_set = &vmids;
1804 		break;
1805 	default:
1806 		panic("%s: Invalid pmap type %d", __func__, stage);
1807 		break;
1808 	}
1809 
1810 	/* XXX Temporarily disable deferred ASID allocation. */
1811 	pmap_alloc_asid(pmap);
1812 
1813 	/*
1814 	 * Allocate the level 1 entry to use as the root. This will increase
1815 	 * the refcount on the level 1 page so it won't be removed until
1816 	 * pmap_release() is called.
1817 	 */
1818 	if (pmap->pm_levels == 3) {
1819 		PMAP_LOCK(pmap);
1820 		m = _pmap_alloc_l3(pmap, NUL2E + NUL1E, NULL);
1821 		PMAP_UNLOCK(pmap);
1822 	}
1823 	pmap->pm_ttbr = VM_PAGE_TO_PHYS(m);
1824 
1825 	return (1);
1826 }
1827 
1828 int
pmap_pinit(pmap_t pmap)1829 pmap_pinit(pmap_t pmap)
1830 {
1831 
1832 	return (pmap_pinit_stage(pmap, PM_STAGE1, 4));
1833 }
1834 
1835 /*
1836  * This routine is called if the desired page table page does not exist.
1837  *
1838  * If page table page allocation fails, this routine may sleep before
1839  * returning NULL.  It sleeps only if a lock pointer was given.
1840  *
1841  * Note: If a page allocation fails at page table level two or three,
1842  * one or two pages may be held during the wait, only to be released
1843  * afterwards.  This conservative approach is easily argued to avoid
1844  * race conditions.
1845  */
1846 static vm_page_t
_pmap_alloc_l3(pmap_t pmap,vm_pindex_t ptepindex,struct rwlock ** lockp)1847 _pmap_alloc_l3(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp)
1848 {
1849 	vm_page_t m, l1pg, l2pg;
1850 
1851 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1852 
1853 	/*
1854 	 * Allocate a page table page.
1855 	 */
1856 	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1857 	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1858 		if (lockp != NULL) {
1859 			RELEASE_PV_LIST_LOCK(lockp);
1860 			PMAP_UNLOCK(pmap);
1861 			vm_wait(NULL);
1862 			PMAP_LOCK(pmap);
1863 		}
1864 
1865 		/*
1866 		 * Indicate the need to retry.  While waiting, the page table
1867 		 * page may have been allocated.
1868 		 */
1869 		return (NULL);
1870 	}
1871 	if ((m->flags & PG_ZERO) == 0)
1872 		pmap_zero_page(m);
1873 
1874 	/*
1875 	 * Because of AArch64's weak memory consistency model, we must have a
1876 	 * barrier here to ensure that the stores for zeroing "m", whether by
1877 	 * pmap_zero_page() or an earlier function, are visible before adding
1878 	 * "m" to the page table.  Otherwise, a page table walk by another
1879 	 * processor's MMU could see the mapping to "m" and a stale, non-zero
1880 	 * PTE within "m".
1881 	 */
1882 	dmb(ishst);
1883 
1884 	/*
1885 	 * Map the pagetable page into the process address space, if
1886 	 * it isn't already there.
1887 	 */
1888 
1889 	if (ptepindex >= (NUL2E + NUL1E)) {
1890 		pd_entry_t *l0;
1891 		vm_pindex_t l0index;
1892 
1893 		l0index = ptepindex - (NUL2E + NUL1E);
1894 		l0 = &pmap->pm_l0[l0index];
1895 		pmap_store(l0, VM_PAGE_TO_PHYS(m) | L0_TABLE);
1896 	} else if (ptepindex >= NUL2E) {
1897 		vm_pindex_t l0index, l1index;
1898 		pd_entry_t *l0, *l1;
1899 		pd_entry_t tl0;
1900 
1901 		l1index = ptepindex - NUL2E;
1902 		l0index = l1index >> L0_ENTRIES_SHIFT;
1903 
1904 		l0 = &pmap->pm_l0[l0index];
1905 		tl0 = pmap_load(l0);
1906 		if (tl0 == 0) {
1907 			/* recurse for allocating page dir */
1908 			if (_pmap_alloc_l3(pmap, NUL2E + NUL1E + l0index,
1909 			    lockp) == NULL) {
1910 				vm_page_unwire_noq(m);
1911 				vm_page_free_zero(m);
1912 				return (NULL);
1913 			}
1914 		} else {
1915 			l1pg = PHYS_TO_VM_PAGE(tl0 & ~ATTR_MASK);
1916 			l1pg->ref_count++;
1917 		}
1918 
1919 		l1 = (pd_entry_t *)PHYS_TO_DMAP(pmap_load(l0) & ~ATTR_MASK);
1920 		l1 = &l1[ptepindex & Ln_ADDR_MASK];
1921 		pmap_store(l1, VM_PAGE_TO_PHYS(m) | L1_TABLE);
1922 	} else {
1923 		vm_pindex_t l0index, l1index;
1924 		pd_entry_t *l0, *l1, *l2;
1925 		pd_entry_t tl0, tl1;
1926 
1927 		l1index = ptepindex >> Ln_ENTRIES_SHIFT;
1928 		l0index = l1index >> L0_ENTRIES_SHIFT;
1929 
1930 		l0 = &pmap->pm_l0[l0index];
1931 		tl0 = pmap_load(l0);
1932 		if (tl0 == 0) {
1933 			/* recurse for allocating page dir */
1934 			if (_pmap_alloc_l3(pmap, NUL2E + l1index,
1935 			    lockp) == NULL) {
1936 				vm_page_unwire_noq(m);
1937 				vm_page_free_zero(m);
1938 				return (NULL);
1939 			}
1940 			tl0 = pmap_load(l0);
1941 			l1 = (pd_entry_t *)PHYS_TO_DMAP(tl0 & ~ATTR_MASK);
1942 			l1 = &l1[l1index & Ln_ADDR_MASK];
1943 		} else {
1944 			l1 = (pd_entry_t *)PHYS_TO_DMAP(tl0 & ~ATTR_MASK);
1945 			l1 = &l1[l1index & Ln_ADDR_MASK];
1946 			tl1 = pmap_load(l1);
1947 			if (tl1 == 0) {
1948 				/* recurse for allocating page dir */
1949 				if (_pmap_alloc_l3(pmap, NUL2E + l1index,
1950 				    lockp) == NULL) {
1951 					vm_page_unwire_noq(m);
1952 					vm_page_free_zero(m);
1953 					return (NULL);
1954 				}
1955 			} else {
1956 				l2pg = PHYS_TO_VM_PAGE(tl1 & ~ATTR_MASK);
1957 				l2pg->ref_count++;
1958 			}
1959 		}
1960 
1961 		l2 = (pd_entry_t *)PHYS_TO_DMAP(pmap_load(l1) & ~ATTR_MASK);
1962 		l2 = &l2[ptepindex & Ln_ADDR_MASK];
1963 		pmap_store(l2, VM_PAGE_TO_PHYS(m) | L2_TABLE);
1964 	}
1965 
1966 	pmap_resident_count_inc(pmap, 1);
1967 
1968 	return (m);
1969 }
1970 
1971 static pd_entry_t *
pmap_alloc_l2(pmap_t pmap,vm_offset_t va,vm_page_t * l2pgp,struct rwlock ** lockp)1972 pmap_alloc_l2(pmap_t pmap, vm_offset_t va, vm_page_t *l2pgp,
1973     struct rwlock **lockp)
1974 {
1975 	pd_entry_t *l1, *l2;
1976 	vm_page_t l2pg;
1977 	vm_pindex_t l2pindex;
1978 
1979 retry:
1980 	l1 = pmap_l1(pmap, va);
1981 	if (l1 != NULL && (pmap_load(l1) & ATTR_DESCR_MASK) == L1_TABLE) {
1982 		l2 = pmap_l1_to_l2(l1, va);
1983 		if (va < VM_MAXUSER_ADDRESS) {
1984 			/* Add a reference to the L2 page. */
1985 			l2pg = PHYS_TO_VM_PAGE(pmap_load(l1) & ~ATTR_MASK);
1986 			l2pg->ref_count++;
1987 		} else
1988 			l2pg = NULL;
1989 	} else if (va < VM_MAXUSER_ADDRESS) {
1990 		/* Allocate a L2 page. */
1991 		l2pindex = pmap_l2_pindex(va) >> Ln_ENTRIES_SHIFT;
1992 		l2pg = _pmap_alloc_l3(pmap, NUL2E + l2pindex, lockp);
1993 		if (l2pg == NULL) {
1994 			if (lockp != NULL)
1995 				goto retry;
1996 			else
1997 				return (NULL);
1998 		}
1999 		l2 = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(l2pg));
2000 		l2 = &l2[pmap_l2_index(va)];
2001 	} else
2002 		panic("pmap_alloc_l2: missing page table page for va %#lx",
2003 		    va);
2004 	*l2pgp = l2pg;
2005 	return (l2);
2006 }
2007 
2008 static vm_page_t
pmap_alloc_l3(pmap_t pmap,vm_offset_t va,struct rwlock ** lockp)2009 pmap_alloc_l3(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
2010 {
2011 	vm_pindex_t ptepindex;
2012 	pd_entry_t *pde, tpde;
2013 #ifdef INVARIANTS
2014 	pt_entry_t *pte;
2015 #endif
2016 	vm_page_t m;
2017 	int lvl;
2018 
2019 	/*
2020 	 * Calculate pagetable page index
2021 	 */
2022 	ptepindex = pmap_l2_pindex(va);
2023 retry:
2024 	/*
2025 	 * Get the page directory entry
2026 	 */
2027 	pde = pmap_pde(pmap, va, &lvl);
2028 
2029 	/*
2030 	 * If the page table page is mapped, we just increment the hold count,
2031 	 * and activate it. If we get a level 2 pde it will point to a level 3
2032 	 * table.
2033 	 */
2034 	switch (lvl) {
2035 	case -1:
2036 		break;
2037 	case 0:
2038 #ifdef INVARIANTS
2039 		pte = pmap_l0_to_l1(pde, va);
2040 		KASSERT(pmap_load(pte) == 0,
2041 		    ("pmap_alloc_l3: TODO: l0 superpages"));
2042 #endif
2043 		break;
2044 	case 1:
2045 #ifdef INVARIANTS
2046 		pte = pmap_l1_to_l2(pde, va);
2047 		KASSERT(pmap_load(pte) == 0,
2048 		    ("pmap_alloc_l3: TODO: l1 superpages"));
2049 #endif
2050 		break;
2051 	case 2:
2052 		tpde = pmap_load(pde);
2053 		if (tpde != 0) {
2054 			m = PHYS_TO_VM_PAGE(tpde & ~ATTR_MASK);
2055 			m->ref_count++;
2056 			return (m);
2057 		}
2058 		break;
2059 	default:
2060 		panic("pmap_alloc_l3: Invalid level %d", lvl);
2061 	}
2062 
2063 	/*
2064 	 * Here if the pte page isn't mapped, or if it has been deallocated.
2065 	 */
2066 	m = _pmap_alloc_l3(pmap, ptepindex, lockp);
2067 	if (m == NULL && lockp != NULL)
2068 		goto retry;
2069 
2070 	return (m);
2071 }
2072 
2073 /***************************************************
2074  * Pmap allocation/deallocation routines.
2075  ***************************************************/
2076 
2077 /*
2078  * Release any resources held by the given physical map.
2079  * Called when a pmap initialized by pmap_pinit is being released.
2080  * Should only be called if the map contains no valid mappings.
2081  */
2082 void
pmap_release(pmap_t pmap)2083 pmap_release(pmap_t pmap)
2084 {
2085 	boolean_t rv;
2086 	struct spglist free;
2087 	struct asid_set *set;
2088 	vm_page_t m;
2089 	int asid;
2090 
2091 	if (pmap->pm_levels != 4) {
2092 		PMAP_ASSERT_STAGE2(pmap);
2093 		KASSERT(pmap->pm_stats.resident_count == 1,
2094 		    ("pmap_release: pmap resident count %ld != 0",
2095 		    pmap->pm_stats.resident_count));
2096 		KASSERT((pmap->pm_l0[0] & ATTR_DESCR_VALID) == ATTR_DESCR_VALID,
2097 		    ("pmap_release: Invalid l0 entry: %lx", pmap->pm_l0[0]));
2098 
2099 		SLIST_INIT(&free);
2100 		m = PHYS_TO_VM_PAGE(pmap->pm_ttbr);
2101 		PMAP_LOCK(pmap);
2102 		rv = pmap_unwire_l3(pmap, 0, m, &free);
2103 		PMAP_UNLOCK(pmap);
2104 		MPASS(rv == TRUE);
2105 		vm_page_free_pages_toq(&free, true);
2106 	}
2107 
2108 	KASSERT(pmap->pm_stats.resident_count == 0,
2109 	    ("pmap_release: pmap resident count %ld != 0",
2110 	    pmap->pm_stats.resident_count));
2111 	KASSERT(vm_radix_is_empty(&pmap->pm_root),
2112 	    ("pmap_release: pmap has reserved page table page(s)"));
2113 
2114 	set = pmap->pm_asid_set;
2115 	KASSERT(set != NULL, ("%s: NULL asid set", __func__));
2116 
2117 	/*
2118 	 * Allow the ASID to be reused. In stage 2 VMIDs we don't invalidate
2119 	 * the entries when removing them so rely on a later tlb invalidation.
2120 	 * this will happen when updating the VMID generation. Because of this
2121 	 * we don't reuse VMIDs within a generation.
2122 	 */
2123 	if (pmap->pm_stage == PM_STAGE1) {
2124 		mtx_lock_spin(&set->asid_set_mutex);
2125 		if (COOKIE_TO_EPOCH(pmap->pm_cookie) == set->asid_epoch) {
2126 			asid = COOKIE_TO_ASID(pmap->pm_cookie);
2127 			KASSERT(asid >= ASID_FIRST_AVAILABLE &&
2128 			    asid < set->asid_set_size,
2129 			    ("pmap_release: pmap cookie has out-of-range asid"));
2130 			bit_clear(set->asid_set, asid);
2131 		}
2132 		mtx_unlock_spin(&set->asid_set_mutex);
2133 	}
2134 
2135 	m = PHYS_TO_VM_PAGE(pmap->pm_l0_paddr);
2136 	vm_page_unwire_noq(m);
2137 	vm_page_free_zero(m);
2138 }
2139 
2140 static int
kvm_size(SYSCTL_HANDLER_ARGS)2141 kvm_size(SYSCTL_HANDLER_ARGS)
2142 {
2143 	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS;
2144 
2145 	return sysctl_handle_long(oidp, &ksize, 0, req);
2146 }
2147 SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG | CTLFLAG_RD | CTLFLAG_MPSAFE,
2148     0, 0, kvm_size, "LU",
2149     "Size of KVM");
2150 
2151 static int
kvm_free(SYSCTL_HANDLER_ARGS)2152 kvm_free(SYSCTL_HANDLER_ARGS)
2153 {
2154 	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
2155 
2156 	return sysctl_handle_long(oidp, &kfree, 0, req);
2157 }
2158 SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG | CTLFLAG_RD | CTLFLAG_MPSAFE,
2159     0, 0, kvm_free, "LU",
2160     "Amount of KVM free");
2161 
2162 /*
2163  * grow the number of kernel page table entries, if needed
2164  */
2165 void
pmap_growkernel(vm_offset_t addr)2166 pmap_growkernel(vm_offset_t addr)
2167 {
2168 	vm_paddr_t paddr;
2169 	vm_page_t nkpg;
2170 	pd_entry_t *l0, *l1, *l2;
2171 
2172 	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
2173 
2174 	addr = roundup2(addr, L2_SIZE);
2175 	if (addr - 1 >= vm_map_max(kernel_map))
2176 		addr = vm_map_max(kernel_map);
2177 	while (kernel_vm_end < addr) {
2178 		l0 = pmap_l0(kernel_pmap, kernel_vm_end);
2179 		KASSERT(pmap_load(l0) != 0,
2180 		    ("pmap_growkernel: No level 0 kernel entry"));
2181 
2182 		l1 = pmap_l0_to_l1(l0, kernel_vm_end);
2183 		if (pmap_load(l1) == 0) {
2184 			/* We need a new PDP entry */
2185 			nkpg = vm_page_alloc(NULL, kernel_vm_end >> L1_SHIFT,
2186 			    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ |
2187 			    VM_ALLOC_WIRED | VM_ALLOC_ZERO);
2188 			if (nkpg == NULL)
2189 				panic("pmap_growkernel: no memory to grow kernel");
2190 			if ((nkpg->flags & PG_ZERO) == 0)
2191 				pmap_zero_page(nkpg);
2192 			/* See the dmb() in _pmap_alloc_l3(). */
2193 			dmb(ishst);
2194 			paddr = VM_PAGE_TO_PHYS(nkpg);
2195 			pmap_store(l1, paddr | L1_TABLE);
2196 			continue; /* try again */
2197 		}
2198 		l2 = pmap_l1_to_l2(l1, kernel_vm_end);
2199 		if (pmap_load(l2) != 0) {
2200 			kernel_vm_end = (kernel_vm_end + L2_SIZE) & ~L2_OFFSET;
2201 			if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
2202 				kernel_vm_end = vm_map_max(kernel_map);
2203 				break;
2204 			}
2205 			continue;
2206 		}
2207 
2208 		nkpg = vm_page_alloc(NULL, kernel_vm_end >> L2_SHIFT,
2209 		    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
2210 		    VM_ALLOC_ZERO);
2211 		if (nkpg == NULL)
2212 			panic("pmap_growkernel: no memory to grow kernel");
2213 		if ((nkpg->flags & PG_ZERO) == 0)
2214 			pmap_zero_page(nkpg);
2215 		/* See the dmb() in _pmap_alloc_l3(). */
2216 		dmb(ishst);
2217 		paddr = VM_PAGE_TO_PHYS(nkpg);
2218 		pmap_store(l2, paddr | L2_TABLE);
2219 
2220 		kernel_vm_end = (kernel_vm_end + L2_SIZE) & ~L2_OFFSET;
2221 		if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
2222 			kernel_vm_end = vm_map_max(kernel_map);
2223 			break;
2224 		}
2225 	}
2226 }
2227 
2228 /***************************************************
2229  * page management routines.
2230  ***************************************************/
2231 
2232 CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
2233 CTASSERT(_NPCM == 3);
2234 CTASSERT(_NPCPV == 168);
2235 
2236 static __inline struct pv_chunk *
pv_to_chunk(pv_entry_t pv)2237 pv_to_chunk(pv_entry_t pv)
2238 {
2239 
2240 	return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
2241 }
2242 
2243 #define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
2244 
2245 #define	PC_FREE0	0xfffffffffffffffful
2246 #define	PC_FREE1	0xfffffffffffffffful
2247 #define	PC_FREE2	0x000000fffffffffful
2248 
2249 static const uint64_t pc_freemask[_NPCM] = { PC_FREE0, PC_FREE1, PC_FREE2 };
2250 
2251 #if 0
2252 #ifdef PV_STATS
2253 static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
2254 
2255 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
2256 	"Current number of pv entry chunks");
2257 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
2258 	"Current number of pv entry chunks allocated");
2259 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
2260 	"Current number of pv entry chunks frees");
2261 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
2262 	"Number of times tried to get a chunk page but failed.");
2263 
2264 static long pv_entry_frees, pv_entry_allocs, pv_entry_count;
2265 static int pv_entry_spare;
2266 
2267 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
2268 	"Current number of pv entry frees");
2269 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
2270 	"Current number of pv entry allocs");
2271 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
2272 	"Current number of pv entries");
2273 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
2274 	"Current number of spare pv entries");
2275 #endif
2276 #endif /* 0 */
2277 
2278 /*
2279  * We are in a serious low memory condition.  Resort to
2280  * drastic measures to free some pages so we can allocate
2281  * another pv entry chunk.
2282  *
2283  * Returns NULL if PV entries were reclaimed from the specified pmap.
2284  *
2285  * We do not, however, unmap 2mpages because subsequent accesses will
2286  * allocate per-page pv entries until repromotion occurs, thereby
2287  * exacerbating the shortage of free pv entries.
2288  */
2289 static vm_page_t
reclaim_pv_chunk(pmap_t locked_pmap,struct rwlock ** lockp)2290 reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp)
2291 {
2292 	struct pv_chunk *pc, *pc_marker, *pc_marker_end;
2293 	struct pv_chunk_header pc_marker_b, pc_marker_end_b;
2294 	struct md_page *pvh;
2295 	pd_entry_t *pde;
2296 	pmap_t next_pmap, pmap;
2297 	pt_entry_t *pte, tpte;
2298 	pv_entry_t pv;
2299 	vm_offset_t va;
2300 	vm_page_t m, m_pc;
2301 	struct spglist free;
2302 	uint64_t inuse;
2303 	int bit, field, freed, lvl;
2304 	static int active_reclaims = 0;
2305 
2306 	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
2307 	KASSERT(lockp != NULL, ("reclaim_pv_chunk: lockp is NULL"));
2308 
2309 	pmap = NULL;
2310 	m_pc = NULL;
2311 	SLIST_INIT(&free);
2312 	bzero(&pc_marker_b, sizeof(pc_marker_b));
2313 	bzero(&pc_marker_end_b, sizeof(pc_marker_end_b));
2314 	pc_marker = (struct pv_chunk *)&pc_marker_b;
2315 	pc_marker_end = (struct pv_chunk *)&pc_marker_end_b;
2316 
2317 	mtx_lock(&pv_chunks_mutex);
2318 	active_reclaims++;
2319 	TAILQ_INSERT_HEAD(&pv_chunks, pc_marker, pc_lru);
2320 	TAILQ_INSERT_TAIL(&pv_chunks, pc_marker_end, pc_lru);
2321 	while ((pc = TAILQ_NEXT(pc_marker, pc_lru)) != pc_marker_end &&
2322 	    SLIST_EMPTY(&free)) {
2323 		next_pmap = pc->pc_pmap;
2324 		if (next_pmap == NULL) {
2325 			/*
2326 			 * The next chunk is a marker.  However, it is
2327 			 * not our marker, so active_reclaims must be
2328 			 * > 1.  Consequently, the next_chunk code
2329 			 * will not rotate the pv_chunks list.
2330 			 */
2331 			goto next_chunk;
2332 		}
2333 		mtx_unlock(&pv_chunks_mutex);
2334 
2335 		/*
2336 		 * A pv_chunk can only be removed from the pc_lru list
2337 		 * when both pv_chunks_mutex is owned and the
2338 		 * corresponding pmap is locked.
2339 		 */
2340 		if (pmap != next_pmap) {
2341 			if (pmap != NULL && pmap != locked_pmap)
2342 				PMAP_UNLOCK(pmap);
2343 			pmap = next_pmap;
2344 			/* Avoid deadlock and lock recursion. */
2345 			if (pmap > locked_pmap) {
2346 				RELEASE_PV_LIST_LOCK(lockp);
2347 				PMAP_LOCK(pmap);
2348 				mtx_lock(&pv_chunks_mutex);
2349 				continue;
2350 			} else if (pmap != locked_pmap) {
2351 				if (PMAP_TRYLOCK(pmap)) {
2352 					mtx_lock(&pv_chunks_mutex);
2353 					continue;
2354 				} else {
2355 					pmap = NULL; /* pmap is not locked */
2356 					mtx_lock(&pv_chunks_mutex);
2357 					pc = TAILQ_NEXT(pc_marker, pc_lru);
2358 					if (pc == NULL ||
2359 					    pc->pc_pmap != next_pmap)
2360 						continue;
2361 					goto next_chunk;
2362 				}
2363 			}
2364 		}
2365 
2366 		/*
2367 		 * Destroy every non-wired, 4 KB page mapping in the chunk.
2368 		 */
2369 		freed = 0;
2370 		for (field = 0; field < _NPCM; field++) {
2371 			for (inuse = ~pc->pc_map[field] & pc_freemask[field];
2372 			    inuse != 0; inuse &= ~(1UL << bit)) {
2373 				bit = ffsl(inuse) - 1;
2374 				pv = &pc->pc_pventry[field * 64 + bit];
2375 				va = pv->pv_va;
2376 				pde = pmap_pde(pmap, va, &lvl);
2377 				if (lvl != 2)
2378 					continue;
2379 				pte = pmap_l2_to_l3(pde, va);
2380 				tpte = pmap_load(pte);
2381 				if ((tpte & ATTR_SW_WIRED) != 0)
2382 					continue;
2383 				tpte = pmap_load_clear(pte);
2384 				m = PHYS_TO_VM_PAGE(tpte & ~ATTR_MASK);
2385 				if (pmap_pte_dirty(pmap, tpte))
2386 					vm_page_dirty(m);
2387 				if ((tpte & ATTR_AF) != 0) {
2388 					pmap_invalidate_page(pmap, va);
2389 					vm_page_aflag_set(m, PGA_REFERENCED);
2390 				}
2391 				CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
2392 				TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
2393 				m->md.pv_gen++;
2394 				if (TAILQ_EMPTY(&m->md.pv_list) &&
2395 				    (m->flags & PG_FICTITIOUS) == 0) {
2396 					pvh = page_to_pvh(m);
2397 					if (TAILQ_EMPTY(&pvh->pv_list)) {
2398 						vm_page_aflag_clear(m,
2399 						    PGA_WRITEABLE);
2400 					}
2401 				}
2402 				pc->pc_map[field] |= 1UL << bit;
2403 				pmap_unuse_pt(pmap, va, pmap_load(pde), &free);
2404 				freed++;
2405 			}
2406 		}
2407 		if (freed == 0) {
2408 			mtx_lock(&pv_chunks_mutex);
2409 			goto next_chunk;
2410 		}
2411 		/* Every freed mapping is for a 4 KB page. */
2412 		pmap_resident_count_dec(pmap, freed);
2413 		PV_STAT(atomic_add_long(&pv_entry_frees, freed));
2414 		PV_STAT(atomic_add_int(&pv_entry_spare, freed));
2415 		PV_STAT(atomic_subtract_long(&pv_entry_count, freed));
2416 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2417 		if (pc->pc_map[0] == PC_FREE0 && pc->pc_map[1] == PC_FREE1 &&
2418 		    pc->pc_map[2] == PC_FREE2) {
2419 			PV_STAT(atomic_subtract_int(&pv_entry_spare, _NPCPV));
2420 			PV_STAT(atomic_subtract_int(&pc_chunk_count, 1));
2421 			PV_STAT(atomic_add_int(&pc_chunk_frees, 1));
2422 			/* Entire chunk is free; return it. */
2423 			m_pc = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
2424 			dump_drop_page(m_pc->phys_addr);
2425 			mtx_lock(&pv_chunks_mutex);
2426 			TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2427 			break;
2428 		}
2429 		TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2430 		mtx_lock(&pv_chunks_mutex);
2431 		/* One freed pv entry in locked_pmap is sufficient. */
2432 		if (pmap == locked_pmap)
2433 			break;
2434 
2435 next_chunk:
2436 		TAILQ_REMOVE(&pv_chunks, pc_marker, pc_lru);
2437 		TAILQ_INSERT_AFTER(&pv_chunks, pc, pc_marker, pc_lru);
2438 		if (active_reclaims == 1 && pmap != NULL) {
2439 			/*
2440 			 * Rotate the pv chunks list so that we do not
2441 			 * scan the same pv chunks that could not be
2442 			 * freed (because they contained a wired
2443 			 * and/or superpage mapping) on every
2444 			 * invocation of reclaim_pv_chunk().
2445 			 */
2446 			while ((pc = TAILQ_FIRST(&pv_chunks)) != pc_marker) {
2447 				MPASS(pc->pc_pmap != NULL);
2448 				TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2449 				TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
2450 			}
2451 		}
2452 	}
2453 	TAILQ_REMOVE(&pv_chunks, pc_marker, pc_lru);
2454 	TAILQ_REMOVE(&pv_chunks, pc_marker_end, pc_lru);
2455 	active_reclaims--;
2456 	mtx_unlock(&pv_chunks_mutex);
2457 	if (pmap != NULL && pmap != locked_pmap)
2458 		PMAP_UNLOCK(pmap);
2459 	if (m_pc == NULL && !SLIST_EMPTY(&free)) {
2460 		m_pc = SLIST_FIRST(&free);
2461 		SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2462 		/* Recycle a freed page table page. */
2463 		m_pc->ref_count = 1;
2464 	}
2465 	vm_page_free_pages_toq(&free, true);
2466 	return (m_pc);
2467 }
2468 
2469 /*
2470  * free the pv_entry back to the free list
2471  */
2472 static void
free_pv_entry(pmap_t pmap,pv_entry_t pv)2473 free_pv_entry(pmap_t pmap, pv_entry_t pv)
2474 {
2475 	struct pv_chunk *pc;
2476 	int idx, field, bit;
2477 
2478 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2479 	PV_STAT(atomic_add_long(&pv_entry_frees, 1));
2480 	PV_STAT(atomic_add_int(&pv_entry_spare, 1));
2481 	PV_STAT(atomic_subtract_long(&pv_entry_count, 1));
2482 	pc = pv_to_chunk(pv);
2483 	idx = pv - &pc->pc_pventry[0];
2484 	field = idx / 64;
2485 	bit = idx % 64;
2486 	pc->pc_map[field] |= 1ul << bit;
2487 	if (pc->pc_map[0] != PC_FREE0 || pc->pc_map[1] != PC_FREE1 ||
2488 	    pc->pc_map[2] != PC_FREE2) {
2489 		/* 98% of the time, pc is already at the head of the list. */
2490 		if (__predict_false(pc != TAILQ_FIRST(&pmap->pm_pvchunk))) {
2491 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2492 			TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2493 		}
2494 		return;
2495 	}
2496 	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2497 	free_pv_chunk(pc);
2498 }
2499 
2500 static void
free_pv_chunk(struct pv_chunk * pc)2501 free_pv_chunk(struct pv_chunk *pc)
2502 {
2503 	vm_page_t m;
2504 
2505 	mtx_lock(&pv_chunks_mutex);
2506  	TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2507 	mtx_unlock(&pv_chunks_mutex);
2508 	PV_STAT(atomic_subtract_int(&pv_entry_spare, _NPCPV));
2509 	PV_STAT(atomic_subtract_int(&pc_chunk_count, 1));
2510 	PV_STAT(atomic_add_int(&pc_chunk_frees, 1));
2511 	/* entire chunk is free, return it */
2512 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
2513 	dump_drop_page(m->phys_addr);
2514 	vm_page_unwire_noq(m);
2515 	vm_page_free(m);
2516 }
2517 
2518 /*
2519  * Returns a new PV entry, allocating a new PV chunk from the system when
2520  * needed.  If this PV chunk allocation fails and a PV list lock pointer was
2521  * given, a PV chunk is reclaimed from an arbitrary pmap.  Otherwise, NULL is
2522  * returned.
2523  *
2524  * The given PV list lock may be released.
2525  */
2526 static pv_entry_t
get_pv_entry(pmap_t pmap,struct rwlock ** lockp)2527 get_pv_entry(pmap_t pmap, struct rwlock **lockp)
2528 {
2529 	int bit, field;
2530 	pv_entry_t pv;
2531 	struct pv_chunk *pc;
2532 	vm_page_t m;
2533 
2534 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2535 	PV_STAT(atomic_add_long(&pv_entry_allocs, 1));
2536 retry:
2537 	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2538 	if (pc != NULL) {
2539 		for (field = 0; field < _NPCM; field++) {
2540 			if (pc->pc_map[field]) {
2541 				bit = ffsl(pc->pc_map[field]) - 1;
2542 				break;
2543 			}
2544 		}
2545 		if (field < _NPCM) {
2546 			pv = &pc->pc_pventry[field * 64 + bit];
2547 			pc->pc_map[field] &= ~(1ul << bit);
2548 			/* If this was the last item, move it to tail */
2549 			if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0 &&
2550 			    pc->pc_map[2] == 0) {
2551 				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2552 				TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc,
2553 				    pc_list);
2554 			}
2555 			PV_STAT(atomic_add_long(&pv_entry_count, 1));
2556 			PV_STAT(atomic_subtract_int(&pv_entry_spare, 1));
2557 			return (pv);
2558 		}
2559 	}
2560 	/* No free items, allocate another chunk */
2561 	m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
2562 	    VM_ALLOC_WIRED);
2563 	if (m == NULL) {
2564 		if (lockp == NULL) {
2565 			PV_STAT(pc_chunk_tryfail++);
2566 			return (NULL);
2567 		}
2568 		m = reclaim_pv_chunk(pmap, lockp);
2569 		if (m == NULL)
2570 			goto retry;
2571 	}
2572 	PV_STAT(atomic_add_int(&pc_chunk_count, 1));
2573 	PV_STAT(atomic_add_int(&pc_chunk_allocs, 1));
2574 	dump_add_page(m->phys_addr);
2575 	pc = (void *)PHYS_TO_DMAP(m->phys_addr);
2576 	pc->pc_pmap = pmap;
2577 	pc->pc_map[0] = PC_FREE0 & ~1ul;	/* preallocated bit 0 */
2578 	pc->pc_map[1] = PC_FREE1;
2579 	pc->pc_map[2] = PC_FREE2;
2580 	mtx_lock(&pv_chunks_mutex);
2581 	TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
2582 	mtx_unlock(&pv_chunks_mutex);
2583 	pv = &pc->pc_pventry[0];
2584 	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2585 	PV_STAT(atomic_add_long(&pv_entry_count, 1));
2586 	PV_STAT(atomic_add_int(&pv_entry_spare, _NPCPV - 1));
2587 	return (pv);
2588 }
2589 
2590 /*
2591  * Ensure that the number of spare PV entries in the specified pmap meets or
2592  * exceeds the given count, "needed".
2593  *
2594  * The given PV list lock may be released.
2595  */
2596 static void
reserve_pv_entries(pmap_t pmap,int needed,struct rwlock ** lockp)2597 reserve_pv_entries(pmap_t pmap, int needed, struct rwlock **lockp)
2598 {
2599 	struct pch new_tail;
2600 	struct pv_chunk *pc;
2601 	vm_page_t m;
2602 	int avail, free;
2603 	bool reclaimed;
2604 
2605 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2606 	KASSERT(lockp != NULL, ("reserve_pv_entries: lockp is NULL"));
2607 
2608 	/*
2609 	 * Newly allocated PV chunks must be stored in a private list until
2610 	 * the required number of PV chunks have been allocated.  Otherwise,
2611 	 * reclaim_pv_chunk() could recycle one of these chunks.  In
2612 	 * contrast, these chunks must be added to the pmap upon allocation.
2613 	 */
2614 	TAILQ_INIT(&new_tail);
2615 retry:
2616 	avail = 0;
2617 	TAILQ_FOREACH(pc, &pmap->pm_pvchunk, pc_list) {
2618 		bit_count((bitstr_t *)pc->pc_map, 0,
2619 		    sizeof(pc->pc_map) * NBBY, &free);
2620 		if (free == 0)
2621 			break;
2622 		avail += free;
2623 		if (avail >= needed)
2624 			break;
2625 	}
2626 	for (reclaimed = false; avail < needed; avail += _NPCPV) {
2627 		m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
2628 		    VM_ALLOC_WIRED);
2629 		if (m == NULL) {
2630 			m = reclaim_pv_chunk(pmap, lockp);
2631 			if (m == NULL)
2632 				goto retry;
2633 			reclaimed = true;
2634 		}
2635 		PV_STAT(atomic_add_int(&pc_chunk_count, 1));
2636 		PV_STAT(atomic_add_int(&pc_chunk_allocs, 1));
2637 		dump_add_page(m->phys_addr);
2638 		pc = (void *)PHYS_TO_DMAP(m->phys_addr);
2639 		pc->pc_pmap = pmap;
2640 		pc->pc_map[0] = PC_FREE0;
2641 		pc->pc_map[1] = PC_FREE1;
2642 		pc->pc_map[2] = PC_FREE2;
2643 		TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2644 		TAILQ_INSERT_TAIL(&new_tail, pc, pc_lru);
2645 		PV_STAT(atomic_add_int(&pv_entry_spare, _NPCPV));
2646 
2647 		/*
2648 		 * The reclaim might have freed a chunk from the current pmap.
2649 		 * If that chunk contained available entries, we need to
2650 		 * re-count the number of available entries.
2651 		 */
2652 		if (reclaimed)
2653 			goto retry;
2654 	}
2655 	if (!TAILQ_EMPTY(&new_tail)) {
2656 		mtx_lock(&pv_chunks_mutex);
2657 		TAILQ_CONCAT(&pv_chunks, &new_tail, pc_lru);
2658 		mtx_unlock(&pv_chunks_mutex);
2659 	}
2660 }
2661 
2662 /*
2663  * First find and then remove the pv entry for the specified pmap and virtual
2664  * address from the specified pv list.  Returns the pv entry if found and NULL
2665  * otherwise.  This operation can be performed on pv lists for either 4KB or
2666  * 2MB page mappings.
2667  */
2668 static __inline pv_entry_t
pmap_pvh_remove(struct md_page * pvh,pmap_t pmap,vm_offset_t va)2669 pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2670 {
2671 	pv_entry_t pv;
2672 
2673 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
2674 		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
2675 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
2676 			pvh->pv_gen++;
2677 			break;
2678 		}
2679 	}
2680 	return (pv);
2681 }
2682 
2683 /*
2684  * After demotion from a 2MB page mapping to 512 4KB page mappings,
2685  * destroy the pv entry for the 2MB page mapping and reinstantiate the pv
2686  * entries for each of the 4KB page mappings.
2687  */
2688 static void
pmap_pv_demote_l2(pmap_t pmap,vm_offset_t va,vm_paddr_t pa,struct rwlock ** lockp)2689 pmap_pv_demote_l2(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
2690     struct rwlock **lockp)
2691 {
2692 	struct md_page *pvh;
2693 	struct pv_chunk *pc;
2694 	pv_entry_t pv;
2695 	vm_offset_t va_last;
2696 	vm_page_t m;
2697 	int bit, field;
2698 
2699 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2700 	KASSERT((va & L2_OFFSET) == 0,
2701 	    ("pmap_pv_demote_l2: va is not 2mpage aligned"));
2702 	KASSERT((pa & L2_OFFSET) == 0,
2703 	    ("pmap_pv_demote_l2: pa is not 2mpage aligned"));
2704 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
2705 
2706 	/*
2707 	 * Transfer the 2mpage's pv entry for this mapping to the first
2708 	 * page's pv list.  Once this transfer begins, the pv list lock
2709 	 * must not be released until the last pv entry is reinstantiated.
2710 	 */
2711 	pvh = pa_to_pvh(pa);
2712 	pv = pmap_pvh_remove(pvh, pmap, va);
2713 	KASSERT(pv != NULL, ("pmap_pv_demote_l2: pv not found"));
2714 	m = PHYS_TO_VM_PAGE(pa);
2715 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2716 	m->md.pv_gen++;
2717 	/* Instantiate the remaining Ln_ENTRIES - 1 pv entries. */
2718 	PV_STAT(atomic_add_long(&pv_entry_allocs, Ln_ENTRIES - 1));
2719 	va_last = va + L2_SIZE - PAGE_SIZE;
2720 	for (;;) {
2721 		pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2722 		KASSERT(pc->pc_map[0] != 0 || pc->pc_map[1] != 0 ||
2723 		    pc->pc_map[2] != 0, ("pmap_pv_demote_l2: missing spare"));
2724 		for (field = 0; field < _NPCM; field++) {
2725 			while (pc->pc_map[field]) {
2726 				bit = ffsl(pc->pc_map[field]) - 1;
2727 				pc->pc_map[field] &= ~(1ul << bit);
2728 				pv = &pc->pc_pventry[field * 64 + bit];
2729 				va += PAGE_SIZE;
2730 				pv->pv_va = va;
2731 				m++;
2732 				KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2733 			    ("pmap_pv_demote_l2: page %p is not managed", m));
2734 				TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2735 				m->md.pv_gen++;
2736 				if (va == va_last)
2737 					goto out;
2738 			}
2739 		}
2740 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2741 		TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2742 	}
2743 out:
2744 	if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0 && pc->pc_map[2] == 0) {
2745 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2746 		TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2747 	}
2748 	PV_STAT(atomic_add_long(&pv_entry_count, Ln_ENTRIES - 1));
2749 	PV_STAT(atomic_subtract_int(&pv_entry_spare, Ln_ENTRIES - 1));
2750 }
2751 
2752 /*
2753  * First find and then destroy the pv entry for the specified pmap and virtual
2754  * address.  This operation can be performed on pv lists for either 4KB or 2MB
2755  * page mappings.
2756  */
2757 static void
pmap_pvh_free(struct md_page * pvh,pmap_t pmap,vm_offset_t va)2758 pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2759 {
2760 	pv_entry_t pv;
2761 
2762 	pv = pmap_pvh_remove(pvh, pmap, va);
2763 	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
2764 	free_pv_entry(pmap, pv);
2765 }
2766 
2767 /*
2768  * Conditionally create the PV entry for a 4KB page mapping if the required
2769  * memory can be allocated without resorting to reclamation.
2770  */
2771 static boolean_t
pmap_try_insert_pv_entry(pmap_t pmap,vm_offset_t va,vm_page_t m,struct rwlock ** lockp)2772 pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m,
2773     struct rwlock **lockp)
2774 {
2775 	pv_entry_t pv;
2776 
2777 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2778 	/* Pass NULL instead of the lock pointer to disable reclamation. */
2779 	if ((pv = get_pv_entry(pmap, NULL)) != NULL) {
2780 		pv->pv_va = va;
2781 		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
2782 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2783 		m->md.pv_gen++;
2784 		return (TRUE);
2785 	} else
2786 		return (FALSE);
2787 }
2788 
2789 /*
2790  * Create the PV entry for a 2MB page mapping.  Always returns true unless the
2791  * flag PMAP_ENTER_NORECLAIM is specified.  If that flag is specified, returns
2792  * false if the PV entry cannot be allocated without resorting to reclamation.
2793  */
2794 static bool
pmap_pv_insert_l2(pmap_t pmap,vm_offset_t va,pd_entry_t l2e,u_int flags,struct rwlock ** lockp)2795 pmap_pv_insert_l2(pmap_t pmap, vm_offset_t va, pd_entry_t l2e, u_int flags,
2796     struct rwlock **lockp)
2797 {
2798 	struct md_page *pvh;
2799 	pv_entry_t pv;
2800 	vm_paddr_t pa;
2801 
2802 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2803 	/* Pass NULL instead of the lock pointer to disable reclamation. */
2804 	if ((pv = get_pv_entry(pmap, (flags & PMAP_ENTER_NORECLAIM) != 0 ?
2805 	    NULL : lockp)) == NULL)
2806 		return (false);
2807 	pv->pv_va = va;
2808 	pa = l2e & ~ATTR_MASK;
2809 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
2810 	pvh = pa_to_pvh(pa);
2811 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
2812 	pvh->pv_gen++;
2813 	return (true);
2814 }
2815 
2816 static void
pmap_remove_kernel_l2(pmap_t pmap,pt_entry_t * l2,vm_offset_t va)2817 pmap_remove_kernel_l2(pmap_t pmap, pt_entry_t *l2, vm_offset_t va)
2818 {
2819 	pt_entry_t newl2, oldl2;
2820 	vm_page_t ml3;
2821 	vm_paddr_t ml3pa;
2822 
2823 	KASSERT(!VIRT_IN_DMAP(va), ("removing direct mapping of %#lx", va));
2824 	KASSERT(pmap == kernel_pmap, ("pmap %p is not kernel_pmap", pmap));
2825 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2826 
2827 	ml3 = pmap_remove_pt_page(pmap, va);
2828 	if (ml3 == NULL)
2829 		panic("pmap_remove_kernel_l2: Missing pt page");
2830 
2831 	ml3pa = VM_PAGE_TO_PHYS(ml3);
2832 	newl2 = ml3pa | L2_TABLE;
2833 
2834 	/*
2835 	 * If this page table page was unmapped by a promotion, then it
2836 	 * contains valid mappings.  Zero it to invalidate those mappings.
2837 	 */
2838 	if (ml3->valid != 0)
2839 		pagezero((void *)PHYS_TO_DMAP(ml3pa));
2840 
2841 	/*
2842 	 * Demote the mapping.  The caller must have already invalidated the
2843 	 * mapping (i.e., the "break" in break-before-make).
2844 	 */
2845 	oldl2 = pmap_load_store(l2, newl2);
2846 	KASSERT(oldl2 == 0, ("%s: found existing mapping at %p: %#lx",
2847 	    __func__, l2, oldl2));
2848 }
2849 
2850 /*
2851  * pmap_remove_l2: Do the things to unmap a level 2 superpage.
2852  */
2853 static int
pmap_remove_l2(pmap_t pmap,pt_entry_t * l2,vm_offset_t sva,pd_entry_t l1e,struct spglist * free,struct rwlock ** lockp)2854 pmap_remove_l2(pmap_t pmap, pt_entry_t *l2, vm_offset_t sva,
2855     pd_entry_t l1e, struct spglist *free, struct rwlock **lockp)
2856 {
2857 	struct md_page *pvh;
2858 	pt_entry_t old_l2;
2859 	vm_offset_t eva, va;
2860 	vm_page_t m, ml3;
2861 
2862 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2863 	KASSERT((sva & L2_OFFSET) == 0, ("pmap_remove_l2: sva is not aligned"));
2864 	old_l2 = pmap_load_clear(l2);
2865 	KASSERT((old_l2 & ATTR_DESCR_MASK) == L2_BLOCK,
2866 	    ("pmap_remove_l2: L2e %lx is not a block mapping", old_l2));
2867 
2868 	/*
2869 	 * Since a promotion must break the 4KB page mappings before making
2870 	 * the 2MB page mapping, a pmap_invalidate_page() suffices.
2871 	 */
2872 	pmap_invalidate_page(pmap, sva);
2873 
2874 	if (old_l2 & ATTR_SW_WIRED)
2875 		pmap->pm_stats.wired_count -= L2_SIZE / PAGE_SIZE;
2876 	pmap_resident_count_dec(pmap, L2_SIZE / PAGE_SIZE);
2877 	if (old_l2 & ATTR_SW_MANAGED) {
2878 		CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, old_l2 & ~ATTR_MASK);
2879 		pvh = pa_to_pvh(old_l2 & ~ATTR_MASK);
2880 		pmap_pvh_free(pvh, pmap, sva);
2881 		eva = sva + L2_SIZE;
2882 		for (va = sva, m = PHYS_TO_VM_PAGE(old_l2 & ~ATTR_MASK);
2883 		    va < eva; va += PAGE_SIZE, m++) {
2884 			if (pmap_pte_dirty(pmap, old_l2))
2885 				vm_page_dirty(m);
2886 			if (old_l2 & ATTR_AF)
2887 				vm_page_aflag_set(m, PGA_REFERENCED);
2888 			if (TAILQ_EMPTY(&m->md.pv_list) &&
2889 			    TAILQ_EMPTY(&pvh->pv_list))
2890 				vm_page_aflag_clear(m, PGA_WRITEABLE);
2891 		}
2892 	}
2893 	if (pmap == kernel_pmap) {
2894 		pmap_remove_kernel_l2(pmap, l2, sva);
2895 	} else {
2896 		ml3 = pmap_remove_pt_page(pmap, sva);
2897 		if (ml3 != NULL) {
2898 			KASSERT(ml3->valid == VM_PAGE_BITS_ALL,
2899 			    ("pmap_remove_l2: l3 page not promoted"));
2900 			pmap_resident_count_dec(pmap, 1);
2901 			KASSERT(ml3->ref_count == NL3PG,
2902 			    ("pmap_remove_l2: l3 page ref count error"));
2903 			ml3->ref_count = 0;
2904 			pmap_add_delayed_free_list(ml3, free, FALSE);
2905 		}
2906 	}
2907 	return (pmap_unuse_pt(pmap, sva, l1e, free));
2908 }
2909 
2910 /*
2911  * pmap_remove_l3: do the things to unmap a page in a process
2912  */
2913 static int
pmap_remove_l3(pmap_t pmap,pt_entry_t * l3,vm_offset_t va,pd_entry_t l2e,struct spglist * free,struct rwlock ** lockp)2914 pmap_remove_l3(pmap_t pmap, pt_entry_t *l3, vm_offset_t va,
2915     pd_entry_t l2e, struct spglist *free, struct rwlock **lockp)
2916 {
2917 	struct md_page *pvh;
2918 	pt_entry_t old_l3;
2919 	vm_page_t m;
2920 
2921 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2922 	old_l3 = pmap_load_clear(l3);
2923 	pmap_invalidate_page(pmap, va);
2924 	if (old_l3 & ATTR_SW_WIRED)
2925 		pmap->pm_stats.wired_count -= 1;
2926 	pmap_resident_count_dec(pmap, 1);
2927 	if (old_l3 & ATTR_SW_MANAGED) {
2928 		m = PHYS_TO_VM_PAGE(old_l3 & ~ATTR_MASK);
2929 		if (pmap_pte_dirty(pmap, old_l3))
2930 			vm_page_dirty(m);
2931 		if (old_l3 & ATTR_AF)
2932 			vm_page_aflag_set(m, PGA_REFERENCED);
2933 		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
2934 		pmap_pvh_free(&m->md, pmap, va);
2935 		if (TAILQ_EMPTY(&m->md.pv_list) &&
2936 		    (m->flags & PG_FICTITIOUS) == 0) {
2937 			pvh = page_to_pvh(m);
2938 			if (TAILQ_EMPTY(&pvh->pv_list))
2939 				vm_page_aflag_clear(m, PGA_WRITEABLE);
2940 		}
2941 	}
2942 	return (pmap_unuse_pt(pmap, va, l2e, free));
2943 }
2944 
2945 /*
2946  * Remove the specified range of addresses from the L3 page table that is
2947  * identified by the given L2 entry.
2948  */
2949 static void
pmap_remove_l3_range(pmap_t pmap,pd_entry_t l2e,vm_offset_t sva,vm_offset_t eva,struct spglist * free,struct rwlock ** lockp)2950 pmap_remove_l3_range(pmap_t pmap, pd_entry_t l2e, vm_offset_t sva,
2951     vm_offset_t eva, struct spglist *free, struct rwlock **lockp)
2952 {
2953 	struct md_page *pvh;
2954 	struct rwlock *new_lock;
2955 	pt_entry_t *l3, old_l3;
2956 	vm_offset_t va;
2957 	vm_page_t l3pg, m;
2958 
2959 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2960 	KASSERT(rounddown2(sva, L2_SIZE) + L2_SIZE == roundup2(eva, L2_SIZE),
2961 	    ("pmap_remove_l3_range: range crosses an L3 page table boundary"));
2962 	l3pg = sva < VM_MAXUSER_ADDRESS ? PHYS_TO_VM_PAGE(l2e & ~ATTR_MASK) :
2963 	    NULL;
2964 	va = eva;
2965 	for (l3 = pmap_l2_to_l3(&l2e, sva); sva != eva; l3++, sva += L3_SIZE) {
2966 		if (!pmap_l3_valid(pmap_load(l3))) {
2967 			if (va != eva) {
2968 				pmap_invalidate_range(pmap, va, sva);
2969 				va = eva;
2970 			}
2971 			continue;
2972 		}
2973 		old_l3 = pmap_load_clear(l3);
2974 		if ((old_l3 & ATTR_SW_WIRED) != 0)
2975 			pmap->pm_stats.wired_count--;
2976 		pmap_resident_count_dec(pmap, 1);
2977 		if ((old_l3 & ATTR_SW_MANAGED) != 0) {
2978 			m = PHYS_TO_VM_PAGE(old_l3 & ~ATTR_MASK);
2979 			if (pmap_pte_dirty(pmap, old_l3))
2980 				vm_page_dirty(m);
2981 			if ((old_l3 & ATTR_AF) != 0)
2982 				vm_page_aflag_set(m, PGA_REFERENCED);
2983 			new_lock = PHYS_TO_PV_LIST_LOCK(VM_PAGE_TO_PHYS(m));
2984 			if (new_lock != *lockp) {
2985 				if (*lockp != NULL) {
2986 					/*
2987 					 * Pending TLB invalidations must be
2988 					 * performed before the PV list lock is
2989 					 * released.  Otherwise, a concurrent
2990 					 * pmap_remove_all() on a physical page
2991 					 * could return while a stale TLB entry
2992 					 * still provides access to that page.
2993 					 */
2994 					if (va != eva) {
2995 						pmap_invalidate_range(pmap, va,
2996 						    sva);
2997 						va = eva;
2998 					}
2999 					rw_wunlock(*lockp);
3000 				}
3001 				*lockp = new_lock;
3002 				rw_wlock(*lockp);
3003 			}
3004 			pmap_pvh_free(&m->md, pmap, sva);
3005 			if (TAILQ_EMPTY(&m->md.pv_list) &&
3006 			    (m->flags & PG_FICTITIOUS) == 0) {
3007 				pvh = page_to_pvh(m);
3008 				if (TAILQ_EMPTY(&pvh->pv_list))
3009 					vm_page_aflag_clear(m, PGA_WRITEABLE);
3010 			}
3011 		}
3012 		if (va == eva)
3013 			va = sva;
3014 		if (l3pg != NULL && pmap_unwire_l3(pmap, sva, l3pg, free)) {
3015 			sva += L3_SIZE;
3016 			break;
3017 		}
3018 	}
3019 	if (va != eva)
3020 		pmap_invalidate_range(pmap, va, sva);
3021 }
3022 
3023 /*
3024  *	Remove the given range of addresses from the specified map.
3025  *
3026  *	It is assumed that the start and end are properly
3027  *	rounded to the page size.
3028  */
3029 void
pmap_remove(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)3030 pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3031 {
3032 	struct rwlock *lock;
3033 	vm_offset_t va_next;
3034 	pd_entry_t *l0, *l1, *l2;
3035 	pt_entry_t l3_paddr;
3036 	struct spglist free;
3037 
3038 	/*
3039 	 * Perform an unsynchronized read.  This is, however, safe.
3040 	 */
3041 	if (pmap->pm_stats.resident_count == 0)
3042 		return;
3043 
3044 	SLIST_INIT(&free);
3045 
3046 	PMAP_LOCK(pmap);
3047 
3048 	lock = NULL;
3049 	for (; sva < eva; sva = va_next) {
3050 		if (pmap->pm_stats.resident_count == 0)
3051 			break;
3052 
3053 		l0 = pmap_l0(pmap, sva);
3054 		if (pmap_load(l0) == 0) {
3055 			va_next = (sva + L0_SIZE) & ~L0_OFFSET;
3056 			if (va_next < sva)
3057 				va_next = eva;
3058 			continue;
3059 		}
3060 
3061 		va_next = (sva + L1_SIZE) & ~L1_OFFSET;
3062 		if (va_next < sva)
3063 			va_next = eva;
3064 		l1 = pmap_l0_to_l1(l0, sva);
3065 		if (pmap_load(l1) == 0)
3066 			continue;
3067 		if ((pmap_load(l1) & ATTR_DESCR_MASK) == L1_BLOCK) {
3068 			KASSERT(va_next <= eva,
3069 			    ("partial update of non-transparent 1G page "
3070 			    "l1 %#lx sva %#lx eva %#lx va_next %#lx",
3071 			    pmap_load(l1), sva, eva, va_next));
3072 			MPASS(pmap != kernel_pmap);
3073 			MPASS((pmap_load(l1) & ATTR_SW_MANAGED) == 0);
3074 			pmap_clear(l1);
3075 			pmap_invalidate_page(pmap, sva);
3076 			pmap_resident_count_dec(pmap, L1_SIZE / PAGE_SIZE);
3077 			pmap_unuse_pt(pmap, sva, pmap_load(l0), &free);
3078 			continue;
3079 		}
3080 
3081 		/*
3082 		 * Calculate index for next page table.
3083 		 */
3084 		va_next = (sva + L2_SIZE) & ~L2_OFFSET;
3085 		if (va_next < sva)
3086 			va_next = eva;
3087 
3088 		l2 = pmap_l1_to_l2(l1, sva);
3089 		if (l2 == NULL)
3090 			continue;
3091 
3092 		l3_paddr = pmap_load(l2);
3093 
3094 		if ((l3_paddr & ATTR_DESCR_MASK) == L2_BLOCK) {
3095 			if (sva + L2_SIZE == va_next && eva >= va_next) {
3096 				pmap_remove_l2(pmap, l2, sva, pmap_load(l1),
3097 				    &free, &lock);
3098 				continue;
3099 			} else if (pmap_demote_l2_locked(pmap, l2, sva,
3100 			    &lock) == NULL)
3101 				continue;
3102 			l3_paddr = pmap_load(l2);
3103 		}
3104 
3105 		/*
3106 		 * Weed out invalid mappings.
3107 		 */
3108 		if ((l3_paddr & ATTR_DESCR_MASK) != L2_TABLE)
3109 			continue;
3110 
3111 		/*
3112 		 * Limit our scan to either the end of the va represented
3113 		 * by the current page table page, or to the end of the
3114 		 * range being removed.
3115 		 */
3116 		if (va_next > eva)
3117 			va_next = eva;
3118 
3119 		pmap_remove_l3_range(pmap, l3_paddr, sva, va_next, &free,
3120 		    &lock);
3121 	}
3122 	if (lock != NULL)
3123 		rw_wunlock(lock);
3124 	PMAP_UNLOCK(pmap);
3125 	vm_page_free_pages_toq(&free, true);
3126 }
3127 
3128 /*
3129  *	Routine:	pmap_remove_all
3130  *	Function:
3131  *		Removes this physical page from
3132  *		all physical maps in which it resides.
3133  *		Reflects back modify bits to the pager.
3134  *
3135  *	Notes:
3136  *		Original versions of this routine were very
3137  *		inefficient because they iteratively called
3138  *		pmap_remove (slow...)
3139  */
3140 
3141 void
pmap_remove_all(vm_page_t m)3142 pmap_remove_all(vm_page_t m)
3143 {
3144 	struct md_page *pvh;
3145 	pv_entry_t pv;
3146 	pmap_t pmap;
3147 	struct rwlock *lock;
3148 	pd_entry_t *pde, tpde;
3149 	pt_entry_t *pte, tpte;
3150 	vm_offset_t va;
3151 	struct spglist free;
3152 	int lvl, pvh_gen, md_gen;
3153 
3154 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3155 	    ("pmap_remove_all: page %p is not managed", m));
3156 	SLIST_INIT(&free);
3157 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
3158 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy : page_to_pvh(m);
3159 retry:
3160 	rw_wlock(lock);
3161 	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
3162 		pmap = PV_PMAP(pv);
3163 		if (!PMAP_TRYLOCK(pmap)) {
3164 			pvh_gen = pvh->pv_gen;
3165 			rw_wunlock(lock);
3166 			PMAP_LOCK(pmap);
3167 			rw_wlock(lock);
3168 			if (pvh_gen != pvh->pv_gen) {
3169 				rw_wunlock(lock);
3170 				PMAP_UNLOCK(pmap);
3171 				goto retry;
3172 			}
3173 		}
3174 		va = pv->pv_va;
3175 		pte = pmap_pte(pmap, va, &lvl);
3176 		KASSERT(pte != NULL,
3177 		    ("pmap_remove_all: no page table entry found"));
3178 		KASSERT(lvl == 2,
3179 		    ("pmap_remove_all: invalid pte level %d", lvl));
3180 
3181 		pmap_demote_l2_locked(pmap, pte, va, &lock);
3182 		PMAP_UNLOCK(pmap);
3183 	}
3184 	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3185 		pmap = PV_PMAP(pv);
3186 		PMAP_ASSERT_STAGE1(pmap);
3187 		if (!PMAP_TRYLOCK(pmap)) {
3188 			pvh_gen = pvh->pv_gen;
3189 			md_gen = m->md.pv_gen;
3190 			rw_wunlock(lock);
3191 			PMAP_LOCK(pmap);
3192 			rw_wlock(lock);
3193 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
3194 				rw_wunlock(lock);
3195 				PMAP_UNLOCK(pmap);
3196 				goto retry;
3197 			}
3198 		}
3199 		pmap_resident_count_dec(pmap, 1);
3200 
3201 		pde = pmap_pde(pmap, pv->pv_va, &lvl);
3202 		KASSERT(pde != NULL,
3203 		    ("pmap_remove_all: no page directory entry found"));
3204 		KASSERT(lvl == 2,
3205 		    ("pmap_remove_all: invalid pde level %d", lvl));
3206 		tpde = pmap_load(pde);
3207 
3208 		pte = pmap_l2_to_l3(pde, pv->pv_va);
3209 		tpte = pmap_load_clear(pte);
3210 		if (tpte & ATTR_SW_WIRED)
3211 			pmap->pm_stats.wired_count--;
3212 		if ((tpte & ATTR_AF) != 0) {
3213 			pmap_invalidate_page(pmap, pv->pv_va);
3214 			vm_page_aflag_set(m, PGA_REFERENCED);
3215 		}
3216 
3217 		/*
3218 		 * Update the vm_page_t clean and reference bits.
3219 		 */
3220 		if (pmap_pte_dirty(pmap, tpte))
3221 			vm_page_dirty(m);
3222 		pmap_unuse_pt(pmap, pv->pv_va, tpde, &free);
3223 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
3224 		m->md.pv_gen++;
3225 		free_pv_entry(pmap, pv);
3226 		PMAP_UNLOCK(pmap);
3227 	}
3228 	vm_page_aflag_clear(m, PGA_WRITEABLE);
3229 	rw_wunlock(lock);
3230 	vm_page_free_pages_toq(&free, true);
3231 }
3232 
3233 /*
3234  * pmap_protect_l2: do the things to protect a 2MB page in a pmap
3235  */
3236 static void
pmap_protect_l2(pmap_t pmap,pt_entry_t * l2,vm_offset_t sva,pt_entry_t mask,pt_entry_t nbits)3237 pmap_protect_l2(pmap_t pmap, pt_entry_t *l2, vm_offset_t sva, pt_entry_t mask,
3238     pt_entry_t nbits)
3239 {
3240 	pd_entry_t old_l2;
3241 	vm_page_t m, mt;
3242 
3243 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3244 	PMAP_ASSERT_STAGE1(pmap);
3245 	KASSERT((sva & L2_OFFSET) == 0,
3246 	    ("pmap_protect_l2: sva is not 2mpage aligned"));
3247 	old_l2 = pmap_load(l2);
3248 	KASSERT((old_l2 & ATTR_DESCR_MASK) == L2_BLOCK,
3249 	    ("pmap_protect_l2: L2e %lx is not a block mapping", old_l2));
3250 
3251 	/*
3252 	 * Return if the L2 entry already has the desired access restrictions
3253 	 * in place.
3254 	 */
3255 retry:
3256 	if ((old_l2 & mask) == nbits)
3257 		return;
3258 
3259 	/*
3260 	 * When a dirty read/write superpage mapping is write protected,
3261 	 * update the dirty field of each of the superpage's constituent 4KB
3262 	 * pages.
3263 	 */
3264 	if ((old_l2 & ATTR_SW_MANAGED) != 0 &&
3265 	    (nbits & ATTR_S1_AP(ATTR_S1_AP_RO)) != 0 &&
3266 	    pmap_pte_dirty(pmap, old_l2)) {
3267 		m = PHYS_TO_VM_PAGE(old_l2 & ~ATTR_MASK);
3268 		for (mt = m; mt < &m[L2_SIZE / PAGE_SIZE]; mt++)
3269 			vm_page_dirty(mt);
3270 	}
3271 
3272 	if (!atomic_fcmpset_64(l2, &old_l2, (old_l2 & ~mask) | nbits))
3273 		goto retry;
3274 
3275 	/*
3276 	 * Since a promotion must break the 4KB page mappings before making
3277 	 * the 2MB page mapping, a pmap_invalidate_page() suffices.
3278 	 */
3279 	pmap_invalidate_page(pmap, sva);
3280 }
3281 
3282 /*
3283  *	Set the physical protection on the
3284  *	specified range of this map as requested.
3285  */
3286 void
pmap_protect(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,vm_prot_t prot)3287 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
3288 {
3289 	vm_offset_t va, va_next;
3290 	pd_entry_t *l0, *l1, *l2;
3291 	pt_entry_t *l3p, l3, mask, nbits;
3292 
3293 	PMAP_ASSERT_STAGE1(pmap);
3294 	KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
3295 	if (prot == VM_PROT_NONE) {
3296 		pmap_remove(pmap, sva, eva);
3297 		return;
3298 	}
3299 
3300 	mask = nbits = 0;
3301 	if ((prot & VM_PROT_WRITE) == 0) {
3302 		mask |= ATTR_S1_AP_RW_BIT | ATTR_SW_DBM;
3303 		nbits |= ATTR_S1_AP(ATTR_S1_AP_RO);
3304 	}
3305 	if ((prot & VM_PROT_EXECUTE) == 0) {
3306 		mask |= ATTR_S1_XN;
3307 		nbits |= ATTR_S1_XN;
3308 	}
3309 	if (mask == 0)
3310 		return;
3311 
3312 	PMAP_LOCK(pmap);
3313 	for (; sva < eva; sva = va_next) {
3314 		l0 = pmap_l0(pmap, sva);
3315 		if (pmap_load(l0) == 0) {
3316 			va_next = (sva + L0_SIZE) & ~L0_OFFSET;
3317 			if (va_next < sva)
3318 				va_next = eva;
3319 			continue;
3320 		}
3321 
3322 		va_next = (sva + L1_SIZE) & ~L1_OFFSET;
3323 		if (va_next < sva)
3324 			va_next = eva;
3325 		l1 = pmap_l0_to_l1(l0, sva);
3326 		if (pmap_load(l1) == 0)
3327 			continue;
3328 		if ((pmap_load(l1) & ATTR_DESCR_MASK) == L1_BLOCK) {
3329 			KASSERT(va_next <= eva,
3330 			    ("partial update of non-transparent 1G page "
3331 			    "l1 %#lx sva %#lx eva %#lx va_next %#lx",
3332 			    pmap_load(l1), sva, eva, va_next));
3333 			MPASS((pmap_load(l1) & ATTR_SW_MANAGED) == 0);
3334 			if ((pmap_load(l1) & mask) != nbits) {
3335 				pmap_store(l1, (pmap_load(l1) & ~mask) | nbits);
3336 				pmap_invalidate_page(pmap, sva);
3337 			}
3338 			continue;
3339 		}
3340 
3341 		va_next = (sva + L2_SIZE) & ~L2_OFFSET;
3342 		if (va_next < sva)
3343 			va_next = eva;
3344 
3345 		l2 = pmap_l1_to_l2(l1, sva);
3346 		if (pmap_load(l2) == 0)
3347 			continue;
3348 
3349 		if ((pmap_load(l2) & ATTR_DESCR_MASK) == L2_BLOCK) {
3350 			if (sva + L2_SIZE == va_next && eva >= va_next) {
3351 				pmap_protect_l2(pmap, l2, sva, mask, nbits);
3352 				continue;
3353 			} else if (pmap_demote_l2(pmap, l2, sva) == NULL)
3354 				continue;
3355 		}
3356 		KASSERT((pmap_load(l2) & ATTR_DESCR_MASK) == L2_TABLE,
3357 		    ("pmap_protect: Invalid L2 entry after demotion"));
3358 
3359 		if (va_next > eva)
3360 			va_next = eva;
3361 
3362 		va = va_next;
3363 		for (l3p = pmap_l2_to_l3(l2, sva); sva != va_next; l3p++,
3364 		    sva += L3_SIZE) {
3365 			l3 = pmap_load(l3p);
3366 retry:
3367 			/*
3368 			 * Go to the next L3 entry if the current one is
3369 			 * invalid or already has the desired access
3370 			 * restrictions in place.  (The latter case occurs
3371 			 * frequently.  For example, in a "buildworld"
3372 			 * workload, almost 1 out of 4 L3 entries already
3373 			 * have the desired restrictions.)
3374 			 */
3375 			if (!pmap_l3_valid(l3) || (l3 & mask) == nbits) {
3376 				if (va != va_next) {
3377 					pmap_invalidate_range(pmap, va, sva);
3378 					va = va_next;
3379 				}
3380 				continue;
3381 			}
3382 
3383 			/*
3384 			 * When a dirty read/write mapping is write protected,
3385 			 * update the page's dirty field.
3386 			 */
3387 			if ((l3 & ATTR_SW_MANAGED) != 0 &&
3388 			    (nbits & ATTR_S1_AP(ATTR_S1_AP_RO)) != 0 &&
3389 			    pmap_pte_dirty(pmap, l3))
3390 				vm_page_dirty(PHYS_TO_VM_PAGE(l3 & ~ATTR_MASK));
3391 
3392 			if (!atomic_fcmpset_64(l3p, &l3, (l3 & ~mask) | nbits))
3393 				goto retry;
3394 			if (va == va_next)
3395 				va = sva;
3396 		}
3397 		if (va != va_next)
3398 			pmap_invalidate_range(pmap, va, sva);
3399 	}
3400 	PMAP_UNLOCK(pmap);
3401 }
3402 
3403 /*
3404  * Inserts the specified page table page into the specified pmap's collection
3405  * of idle page table pages.  Each of a pmap's page table pages is responsible
3406  * for mapping a distinct range of virtual addresses.  The pmap's collection is
3407  * ordered by this virtual address range.
3408  *
3409  * If "promoted" is false, then the page table page "mpte" must be zero filled.
3410  */
3411 static __inline int
pmap_insert_pt_page(pmap_t pmap,vm_page_t mpte,bool promoted)3412 pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte, bool promoted)
3413 {
3414 
3415 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3416 	mpte->valid = promoted ? VM_PAGE_BITS_ALL : 0;
3417 	return (vm_radix_insert(&pmap->pm_root, mpte));
3418 }
3419 
3420 /*
3421  * Removes the page table page mapping the specified virtual address from the
3422  * specified pmap's collection of idle page table pages, and returns it.
3423  * Otherwise, returns NULL if there is no page table page corresponding to the
3424  * specified virtual address.
3425  */
3426 static __inline vm_page_t
pmap_remove_pt_page(pmap_t pmap,vm_offset_t va)3427 pmap_remove_pt_page(pmap_t pmap, vm_offset_t va)
3428 {
3429 
3430 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3431 	return (vm_radix_remove(&pmap->pm_root, pmap_l2_pindex(va)));
3432 }
3433 
3434 /*
3435  * Performs a break-before-make update of a pmap entry. This is needed when
3436  * either promoting or demoting pages to ensure the TLB doesn't get into an
3437  * inconsistent state.
3438  */
3439 static void
pmap_update_entry(pmap_t pmap,pd_entry_t * pte,pd_entry_t newpte,vm_offset_t va,vm_size_t size)3440 pmap_update_entry(pmap_t pmap, pd_entry_t *pte, pd_entry_t newpte,
3441     vm_offset_t va, vm_size_t size)
3442 {
3443 	register_t intr;
3444 
3445 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3446 
3447 	/*
3448 	 * Ensure we don't get switched out with the page table in an
3449 	 * inconsistent state. We also need to ensure no interrupts fire
3450 	 * as they may make use of an address we are about to invalidate.
3451 	 */
3452 	intr = intr_disable();
3453 
3454 	/*
3455 	 * Clear the old mapping's valid bit, but leave the rest of the entry
3456 	 * unchanged, so that a lockless, concurrent pmap_kextract() can still
3457 	 * lookup the physical address.
3458 	 */
3459 	pmap_clear_bits(pte, ATTR_DESCR_VALID);
3460 	pmap_invalidate_range(pmap, va, va + size);
3461 
3462 	/* Create the new mapping */
3463 	pmap_store(pte, newpte);
3464 	dsb(ishst);
3465 
3466 	intr_restore(intr);
3467 }
3468 
3469 #if VM_NRESERVLEVEL > 0
3470 /*
3471  * After promotion from 512 4KB page mappings to a single 2MB page mapping,
3472  * replace the many pv entries for the 4KB page mappings by a single pv entry
3473  * for the 2MB page mapping.
3474  */
3475 static void
pmap_pv_promote_l2(pmap_t pmap,vm_offset_t va,vm_paddr_t pa,struct rwlock ** lockp)3476 pmap_pv_promote_l2(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
3477     struct rwlock **lockp)
3478 {
3479 	struct md_page *pvh;
3480 	pv_entry_t pv;
3481 	vm_offset_t va_last;
3482 	vm_page_t m;
3483 
3484 	KASSERT((pa & L2_OFFSET) == 0,
3485 	    ("pmap_pv_promote_l2: pa is not 2mpage aligned"));
3486 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
3487 
3488 	/*
3489 	 * Transfer the first page's pv entry for this mapping to the 2mpage's
3490 	 * pv list.  Aside from avoiding the cost of a call to get_pv_entry(),
3491 	 * a transfer avoids the possibility that get_pv_entry() calls
3492 	 * reclaim_pv_chunk() and that reclaim_pv_chunk() removes one of the
3493 	 * mappings that is being promoted.
3494 	 */
3495 	m = PHYS_TO_VM_PAGE(pa);
3496 	va = va & ~L2_OFFSET;
3497 	pv = pmap_pvh_remove(&m->md, pmap, va);
3498 	KASSERT(pv != NULL, ("pmap_pv_promote_l2: pv not found"));
3499 	pvh = pa_to_pvh(pa);
3500 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
3501 	pvh->pv_gen++;
3502 	/* Free the remaining NPTEPG - 1 pv entries. */
3503 	va_last = va + L2_SIZE - PAGE_SIZE;
3504 	do {
3505 		m++;
3506 		va += PAGE_SIZE;
3507 		pmap_pvh_free(&m->md, pmap, va);
3508 	} while (va < va_last);
3509 }
3510 
3511 /*
3512  * Tries to promote the 512, contiguous 4KB page mappings that are within a
3513  * single level 2 table entry to a single 2MB page mapping.  For promotion
3514  * to occur, two conditions must be met: (1) the 4KB page mappings must map
3515  * aligned, contiguous physical memory and (2) the 4KB page mappings must have
3516  * identical characteristics.
3517  */
3518 static void
pmap_promote_l2(pmap_t pmap,pd_entry_t * l2,vm_offset_t va,struct rwlock ** lockp)3519 pmap_promote_l2(pmap_t pmap, pd_entry_t *l2, vm_offset_t va,
3520     struct rwlock **lockp)
3521 {
3522 	pt_entry_t *firstl3, *l3, newl2, oldl3, pa;
3523 	vm_page_t mpte;
3524 	vm_offset_t sva;
3525 
3526 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3527 	PMAP_ASSERT_STAGE1(pmap);
3528 
3529 	sva = va & ~L2_OFFSET;
3530 	firstl3 = pmap_l2_to_l3(l2, sva);
3531 	newl2 = pmap_load(firstl3);
3532 
3533 setl2:
3534 	if (((newl2 & (~ATTR_MASK | ATTR_AF)) & L2_OFFSET) != ATTR_AF) {
3535 		atomic_add_long(&pmap_l2_p_failures, 1);
3536 		CTR2(KTR_PMAP, "pmap_promote_l2: failure for va %#lx"
3537 		    " in pmap %p", va, pmap);
3538 		return;
3539 	}
3540 
3541 	if ((newl2 & (ATTR_S1_AP_RW_BIT | ATTR_SW_DBM)) ==
3542 	    (ATTR_S1_AP(ATTR_S1_AP_RO) | ATTR_SW_DBM)) {
3543 		if (!atomic_fcmpset_64(l2, &newl2, newl2 & ~ATTR_SW_DBM))
3544 			goto setl2;
3545 		newl2 &= ~ATTR_SW_DBM;
3546 	}
3547 
3548 	pa = newl2 + L2_SIZE - PAGE_SIZE;
3549 	for (l3 = firstl3 + NL3PG - 1; l3 > firstl3; l3--) {
3550 		oldl3 = pmap_load(l3);
3551 setl3:
3552 		if ((oldl3 & (ATTR_S1_AP_RW_BIT | ATTR_SW_DBM)) ==
3553 		    (ATTR_S1_AP(ATTR_S1_AP_RO) | ATTR_SW_DBM)) {
3554 			if (!atomic_fcmpset_64(l3, &oldl3, oldl3 &
3555 			    ~ATTR_SW_DBM))
3556 				goto setl3;
3557 			oldl3 &= ~ATTR_SW_DBM;
3558 		}
3559 		if (oldl3 != pa) {
3560 			atomic_add_long(&pmap_l2_p_failures, 1);
3561 			CTR2(KTR_PMAP, "pmap_promote_l2: failure for va %#lx"
3562 			    " in pmap %p", va, pmap);
3563 			return;
3564 		}
3565 		pa -= PAGE_SIZE;
3566 	}
3567 
3568 	/*
3569 	 * Save the page table page in its current state until the L2
3570 	 * mapping the superpage is demoted by pmap_demote_l2() or
3571 	 * destroyed by pmap_remove_l3().
3572 	 */
3573 	mpte = PHYS_TO_VM_PAGE(pmap_load(l2) & ~ATTR_MASK);
3574 	KASSERT(mpte >= vm_page_array &&
3575 	    mpte < &vm_page_array[vm_page_array_size],
3576 	    ("pmap_promote_l2: page table page is out of range"));
3577 	KASSERT(mpte->pindex == pmap_l2_pindex(va),
3578 	    ("pmap_promote_l2: page table page's pindex is wrong"));
3579 	if (pmap_insert_pt_page(pmap, mpte, true)) {
3580 		atomic_add_long(&pmap_l2_p_failures, 1);
3581 		CTR2(KTR_PMAP,
3582 		    "pmap_promote_l2: failure for va %#lx in pmap %p", va,
3583 		    pmap);
3584 		return;
3585 	}
3586 
3587 	if ((newl2 & ATTR_SW_MANAGED) != 0)
3588 		pmap_pv_promote_l2(pmap, va, newl2 & ~ATTR_MASK, lockp);
3589 
3590 	newl2 &= ~ATTR_DESCR_MASK;
3591 	newl2 |= L2_BLOCK;
3592 
3593 	pmap_update_entry(pmap, l2, newl2, sva, L2_SIZE);
3594 
3595 	atomic_add_long(&pmap_l2_promotions, 1);
3596 	CTR2(KTR_PMAP, "pmap_promote_l2: success for va %#lx in pmap %p", va,
3597 		    pmap);
3598 }
3599 #endif /* VM_NRESERVLEVEL > 0 */
3600 
3601 static int
pmap_enter_largepage(pmap_t pmap,vm_offset_t va,pt_entry_t newpte,int flags,int psind)3602 pmap_enter_largepage(pmap_t pmap, vm_offset_t va, pt_entry_t newpte, int flags,
3603     int psind)
3604 {
3605 	pd_entry_t *l0p, *l1p, *l2p, origpte;
3606 	vm_page_t mp;
3607 
3608 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3609 	KASSERT(psind > 0 && psind < MAXPAGESIZES,
3610 	    ("psind %d unexpected", psind));
3611 	KASSERT(((newpte & ~ATTR_MASK) & (pagesizes[psind] - 1)) == 0,
3612 	    ("unaligned phys address %#lx newpte %#lx psind %d",
3613 	    (newpte & ~ATTR_MASK), newpte, psind));
3614 
3615 restart:
3616 	if (psind == 2) {
3617 		l0p = pmap_l0(pmap, va);
3618 		if ((pmap_load(l0p) & ATTR_DESCR_VALID) == 0) {
3619 			mp = _pmap_alloc_l3(pmap, pmap_l0_pindex(va), NULL);
3620 			if (mp == NULL) {
3621 				if ((flags & PMAP_ENTER_NOSLEEP) != 0)
3622 					return (KERN_RESOURCE_SHORTAGE);
3623 				PMAP_UNLOCK(pmap);
3624 				vm_wait(NULL);
3625 				PMAP_LOCK(pmap);
3626 				goto restart;
3627 			}
3628 			l1p = pmap_l0_to_l1(l0p, va);
3629 			KASSERT(l1p != NULL, ("va %#lx lost l1 entry", va));
3630 			origpte = pmap_load(l1p);
3631 		} else {
3632 			l1p = pmap_l0_to_l1(l0p, va);
3633 			KASSERT(l1p != NULL, ("va %#lx lost l1 entry", va));
3634 			origpte = pmap_load(l1p);
3635 			if ((origpte & ATTR_DESCR_VALID) == 0) {
3636 				mp = PHYS_TO_VM_PAGE(pmap_load(l0p) &
3637 				    ~ATTR_MASK);
3638 				mp->ref_count++;
3639 			}
3640 		}
3641 		KASSERT((origpte & ATTR_DESCR_VALID) == 0 ||
3642 		    ((origpte & ATTR_DESCR_MASK) == L1_BLOCK &&
3643 		     (origpte & ~ATTR_MASK) == (newpte & ~ATTR_MASK)),
3644 		    ("va %#lx changing 1G phys page l1 %#lx newpte %#lx",
3645 		    va, origpte, newpte));
3646 		pmap_store(l1p, newpte);
3647 	} else /* (psind == 1) */ {
3648 		l2p = pmap_l2(pmap, va);
3649 		if (l2p == NULL) {
3650 			mp = _pmap_alloc_l3(pmap, pmap_l1_pindex(va), NULL);
3651 			if (mp == NULL) {
3652 				if ((flags & PMAP_ENTER_NOSLEEP) != 0)
3653 					return (KERN_RESOURCE_SHORTAGE);
3654 				PMAP_UNLOCK(pmap);
3655 				vm_wait(NULL);
3656 				PMAP_LOCK(pmap);
3657 				goto restart;
3658 			}
3659 			l2p = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mp));
3660 			l2p = &l2p[pmap_l2_index(va)];
3661 			origpte = pmap_load(l2p);
3662 		} else {
3663 			l1p = pmap_l1(pmap, va);
3664 			origpte = pmap_load(l2p);
3665 			if ((origpte & ATTR_DESCR_VALID) == 0) {
3666 				mp = PHYS_TO_VM_PAGE(pmap_load(l1p) &
3667 				    ~ATTR_MASK);
3668 				mp->ref_count++;
3669 			}
3670 		}
3671 		KASSERT((origpte & ATTR_DESCR_VALID) == 0 ||
3672 		    ((origpte & ATTR_DESCR_MASK) == L2_BLOCK &&
3673 		     (origpte & ~ATTR_MASK) == (newpte & ~ATTR_MASK)),
3674 		    ("va %#lx changing 2M phys page l2 %#lx newpte %#lx",
3675 		    va, origpte, newpte));
3676 		pmap_store(l2p, newpte);
3677 	}
3678 	dsb(ishst);
3679 
3680 	if ((origpte & ATTR_DESCR_VALID) == 0)
3681 		pmap_resident_count_inc(pmap, pagesizes[psind] / PAGE_SIZE);
3682 	if ((newpte & ATTR_SW_WIRED) != 0 && (origpte & ATTR_SW_WIRED) == 0)
3683 		pmap->pm_stats.wired_count += pagesizes[psind] / PAGE_SIZE;
3684 	else if ((newpte & ATTR_SW_WIRED) == 0 &&
3685 	    (origpte & ATTR_SW_WIRED) != 0)
3686 		pmap->pm_stats.wired_count -= pagesizes[psind] / PAGE_SIZE;
3687 
3688 	return (KERN_SUCCESS);
3689 }
3690 
3691 /*
3692  * Add a single SMMU entry. This function does not sleep.
3693  */
3694 int
pmap_senter(pmap_t pmap,vm_offset_t va,vm_paddr_t pa,vm_prot_t prot,u_int flags)3695 pmap_senter(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
3696     vm_prot_t prot, u_int flags)
3697 {
3698 	pd_entry_t *pde;
3699 	pt_entry_t new_l3, orig_l3;
3700 	pt_entry_t *l3;
3701 	vm_page_t mpte;
3702 	int lvl;
3703 	int rv;
3704 
3705 	PMAP_ASSERT_STAGE1(pmap);
3706 	KASSERT(va < VM_MAXUSER_ADDRESS, ("wrong address space"));
3707 
3708 	va = trunc_page(va);
3709 	new_l3 = (pt_entry_t)(pa | ATTR_DEFAULT |
3710 	    ATTR_S1_IDX(VM_MEMATTR_DEVICE) | L3_PAGE);
3711 	if ((prot & VM_PROT_WRITE) == 0)
3712 		new_l3 |= ATTR_S1_AP(ATTR_S1_AP_RO);
3713 	new_l3 |= ATTR_S1_XN; /* Execute never. */
3714 	new_l3 |= ATTR_S1_AP(ATTR_S1_AP_USER);
3715 	new_l3 |= ATTR_S1_nG; /* Non global. */
3716 
3717 	CTR2(KTR_PMAP, "pmap_senter: %.16lx -> %.16lx", va, pa);
3718 
3719 	PMAP_LOCK(pmap);
3720 
3721 	/*
3722 	 * In the case that a page table page is not
3723 	 * resident, we are creating it here.
3724 	 */
3725 retry:
3726 	pde = pmap_pde(pmap, va, &lvl);
3727 	if (pde != NULL && lvl == 2) {
3728 		l3 = pmap_l2_to_l3(pde, va);
3729 	} else {
3730 		mpte = _pmap_alloc_l3(pmap, pmap_l2_pindex(va), NULL);
3731 		if (mpte == NULL) {
3732 			CTR0(KTR_PMAP, "pmap_enter: mpte == NULL");
3733 			rv = KERN_RESOURCE_SHORTAGE;
3734 			goto out;
3735 		}
3736 		goto retry;
3737 	}
3738 
3739 	orig_l3 = pmap_load(l3);
3740 	KASSERT(!pmap_l3_valid(orig_l3), ("l3 is valid"));
3741 
3742 	/* New mapping */
3743 	pmap_store(l3, new_l3);
3744 	pmap_resident_count_inc(pmap, 1);
3745 	dsb(ishst);
3746 
3747 	rv = KERN_SUCCESS;
3748 out:
3749 	PMAP_UNLOCK(pmap);
3750 
3751 	return (rv);
3752 }
3753 
3754 /*
3755  * Remove a single SMMU entry.
3756  */
3757 int
pmap_sremove(pmap_t pmap,vm_offset_t va)3758 pmap_sremove(pmap_t pmap, vm_offset_t va)
3759 {
3760 	pt_entry_t *pte;
3761 	int lvl;
3762 	int rc;
3763 
3764 	PMAP_LOCK(pmap);
3765 
3766 	pte = pmap_pte(pmap, va, &lvl);
3767 	KASSERT(lvl == 3,
3768 	    ("Invalid SMMU pagetable level: %d != 3", lvl));
3769 
3770 	if (pte != NULL) {
3771 		pmap_resident_count_dec(pmap, 1);
3772 		pmap_clear(pte);
3773 		rc = KERN_SUCCESS;
3774 	} else
3775 		rc = KERN_FAILURE;
3776 
3777 	PMAP_UNLOCK(pmap);
3778 
3779 	return (rc);
3780 }
3781 
3782 /*
3783  * Remove all the allocated L1, L2 pages from SMMU pmap.
3784  * All the L3 entires must be cleared in advance, otherwise
3785  * this function panics.
3786  */
3787 void
pmap_sremove_pages(pmap_t pmap)3788 pmap_sremove_pages(pmap_t pmap)
3789 {
3790 	pd_entry_t l0e, *l1, l1e, *l2, l2e;
3791 	pt_entry_t *l3, l3e;
3792 	vm_page_t m, m0, m1;
3793 	vm_offset_t sva;
3794 	vm_paddr_t pa;
3795 	vm_paddr_t pa0;
3796 	vm_paddr_t pa1;
3797 	int i, j, k, l;
3798 
3799 	PMAP_LOCK(pmap);
3800 
3801 	for (sva = VM_MINUSER_ADDRESS, i = pmap_l0_index(sva);
3802 	    (i < Ln_ENTRIES && sva < VM_MAXUSER_ADDRESS); i++) {
3803 		l0e = pmap->pm_l0[i];
3804 		if ((l0e & ATTR_DESCR_VALID) == 0) {
3805 			sva += L0_SIZE;
3806 			continue;
3807 		}
3808 		pa0 = l0e & ~ATTR_MASK;
3809 		m0 = PHYS_TO_VM_PAGE(pa0);
3810 		l1 = (pd_entry_t *)PHYS_TO_DMAP(pa0);
3811 
3812 		for (j = pmap_l1_index(sva); j < Ln_ENTRIES; j++) {
3813 			l1e = l1[j];
3814 			if ((l1e & ATTR_DESCR_VALID) == 0) {
3815 				sva += L1_SIZE;
3816 				continue;
3817 			}
3818 			if ((l1e & ATTR_DESCR_MASK) == L1_BLOCK) {
3819 				sva += L1_SIZE;
3820 				continue;
3821 			}
3822 			pa1 = l1e & ~ATTR_MASK;
3823 			m1 = PHYS_TO_VM_PAGE(pa1);
3824 			l2 = (pd_entry_t *)PHYS_TO_DMAP(pa1);
3825 
3826 			for (k = pmap_l2_index(sva); k < Ln_ENTRIES; k++) {
3827 				l2e = l2[k];
3828 				if ((l2e & ATTR_DESCR_VALID) == 0) {
3829 					sva += L2_SIZE;
3830 					continue;
3831 				}
3832 				pa = l2e & ~ATTR_MASK;
3833 				m = PHYS_TO_VM_PAGE(pa);
3834 				l3 = (pt_entry_t *)PHYS_TO_DMAP(pa);
3835 
3836 				for (l = pmap_l3_index(sva); l < Ln_ENTRIES;
3837 				    l++, sva += L3_SIZE) {
3838 					l3e = l3[l];
3839 					if ((l3e & ATTR_DESCR_VALID) == 0)
3840 						continue;
3841 					panic("%s: l3e found for va %jx\n",
3842 					    __func__, sva);
3843 				}
3844 
3845 				vm_page_unwire_noq(m1);
3846 				vm_page_unwire_noq(m);
3847 				pmap_resident_count_dec(pmap, 1);
3848 				vm_page_free(m);
3849 				pmap_clear(&l2[k]);
3850 			}
3851 
3852 			vm_page_unwire_noq(m0);
3853 			pmap_resident_count_dec(pmap, 1);
3854 			vm_page_free(m1);
3855 			pmap_clear(&l1[j]);
3856 		}
3857 
3858 		pmap_resident_count_dec(pmap, 1);
3859 		vm_page_free(m0);
3860 		pmap_clear(&pmap->pm_l0[i]);
3861 	}
3862 
3863 	KASSERT(pmap->pm_stats.resident_count == 0,
3864 	    ("Invalid resident count %jd", pmap->pm_stats.resident_count));
3865 
3866 	PMAP_UNLOCK(pmap);
3867 }
3868 
3869 /*
3870  *	Insert the given physical page (p) at
3871  *	the specified virtual address (v) in the
3872  *	target physical map with the protection requested.
3873  *
3874  *	If specified, the page will be wired down, meaning
3875  *	that the related pte can not be reclaimed.
3876  *
3877  *	NB:  This is the only routine which MAY NOT lazy-evaluate
3878  *	or lose information.  That is, this routine must actually
3879  *	insert this page into the given map NOW.
3880  */
3881 int
pmap_enter(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot,u_int flags,int8_t psind)3882 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
3883     u_int flags, int8_t psind)
3884 {
3885 	struct rwlock *lock;
3886 	pd_entry_t *pde;
3887 	pt_entry_t new_l3, orig_l3;
3888 	pt_entry_t *l2, *l3;
3889 	pv_entry_t pv;
3890 	vm_paddr_t opa, pa;
3891 	vm_page_t mpte, om;
3892 	boolean_t nosleep;
3893 	int lvl, rv;
3894 
3895 	va = trunc_page(va);
3896 	if ((m->oflags & VPO_UNMANAGED) == 0)
3897 		VM_PAGE_OBJECT_BUSY_ASSERT(m);
3898 	pa = VM_PAGE_TO_PHYS(m);
3899 	new_l3 = (pt_entry_t)(pa | ATTR_DEFAULT | L3_PAGE);
3900 	new_l3 |= pmap_pte_memattr(pmap, m->md.pv_memattr);
3901 	new_l3 |= pmap_pte_prot(pmap, prot);
3902 
3903 	if ((flags & PMAP_ENTER_WIRED) != 0)
3904 		new_l3 |= ATTR_SW_WIRED;
3905 	if (pmap->pm_stage == PM_STAGE1) {
3906 		if (va < VM_MAXUSER_ADDRESS)
3907 			new_l3 |= ATTR_S1_AP(ATTR_S1_AP_USER) | ATTR_S1_PXN;
3908 		else
3909 			new_l3 |= ATTR_S1_UXN;
3910 		if (pmap != kernel_pmap)
3911 			new_l3 |= ATTR_S1_nG;
3912 	} else {
3913 		/*
3914 		 * Clear the access flag on executable mappings, this will be
3915 		 * set later when the page is accessed. The fault handler is
3916 		 * required to invalidate the I-cache.
3917 		 *
3918 		 * TODO: Switch to the valid flag to allow hardware management
3919 		 * of the access flag. Much of the pmap code assumes the
3920 		 * valid flag is set and fails to destroy the old page tables
3921 		 * correctly if it is clear.
3922 		 */
3923 		if (prot & VM_PROT_EXECUTE)
3924 			new_l3 &= ~ATTR_AF;
3925 	}
3926 	if ((m->oflags & VPO_UNMANAGED) == 0) {
3927 		new_l3 |= ATTR_SW_MANAGED;
3928 		if ((prot & VM_PROT_WRITE) != 0) {
3929 			new_l3 |= ATTR_SW_DBM;
3930 			if ((flags & VM_PROT_WRITE) == 0) {
3931 				if (pmap->pm_stage == PM_STAGE1)
3932 					new_l3 |= ATTR_S1_AP(ATTR_S1_AP_RO);
3933 				else
3934 					new_l3 &=
3935 					    ~ATTR_S2_S2AP(ATTR_S2_S2AP_WRITE);
3936 			}
3937 		}
3938 	}
3939 
3940 	CTR2(KTR_PMAP, "pmap_enter: %.16lx -> %.16lx", va, pa);
3941 
3942 	lock = NULL;
3943 	PMAP_LOCK(pmap);
3944 	if ((flags & PMAP_ENTER_LARGEPAGE) != 0) {
3945 		KASSERT((m->oflags & VPO_UNMANAGED) != 0,
3946 		    ("managed largepage va %#lx flags %#x", va, flags));
3947 		new_l3 &= ~L3_PAGE;
3948 		if (psind == 2)
3949 			new_l3 |= L1_BLOCK;
3950 		else /* (psind == 1) */
3951 			new_l3 |= L2_BLOCK;
3952 		rv = pmap_enter_largepage(pmap, va, new_l3, flags, psind);
3953 		goto out;
3954 	}
3955 	if (psind == 1) {
3956 		/* Assert the required virtual and physical alignment. */
3957 		KASSERT((va & L2_OFFSET) == 0, ("pmap_enter: va unaligned"));
3958 		KASSERT(m->psind > 0, ("pmap_enter: m->psind < psind"));
3959 		rv = pmap_enter_l2(pmap, va, (new_l3 & ~L3_PAGE) | L2_BLOCK,
3960 		    flags, m, &lock);
3961 		goto out;
3962 	}
3963 	mpte = NULL;
3964 
3965 	/*
3966 	 * In the case that a page table page is not
3967 	 * resident, we are creating it here.
3968 	 */
3969 retry:
3970 	pde = pmap_pde(pmap, va, &lvl);
3971 	if (pde != NULL && lvl == 2) {
3972 		l3 = pmap_l2_to_l3(pde, va);
3973 		if (va < VM_MAXUSER_ADDRESS && mpte == NULL) {
3974 			mpte = PHYS_TO_VM_PAGE(pmap_load(pde) & ~ATTR_MASK);
3975 			mpte->ref_count++;
3976 		}
3977 		goto havel3;
3978 	} else if (pde != NULL && lvl == 1) {
3979 		l2 = pmap_l1_to_l2(pde, va);
3980 		if ((pmap_load(l2) & ATTR_DESCR_MASK) == L2_BLOCK &&
3981 		    (l3 = pmap_demote_l2_locked(pmap, l2, va, &lock)) != NULL) {
3982 			l3 = &l3[pmap_l3_index(va)];
3983 			if (va < VM_MAXUSER_ADDRESS) {
3984 				mpte = PHYS_TO_VM_PAGE(
3985 				    pmap_load(l2) & ~ATTR_MASK);
3986 				mpte->ref_count++;
3987 			}
3988 			goto havel3;
3989 		}
3990 		/* We need to allocate an L3 table. */
3991 	}
3992 	if (va < VM_MAXUSER_ADDRESS) {
3993 		nosleep = (flags & PMAP_ENTER_NOSLEEP) != 0;
3994 
3995 		/*
3996 		 * We use _pmap_alloc_l3() instead of pmap_alloc_l3() in order
3997 		 * to handle the possibility that a superpage mapping for "va"
3998 		 * was created while we slept.
3999 		 */
4000 		mpte = _pmap_alloc_l3(pmap, pmap_l2_pindex(va),
4001 		    nosleep ? NULL : &lock);
4002 		if (mpte == NULL && nosleep) {
4003 			CTR0(KTR_PMAP, "pmap_enter: mpte == NULL");
4004 			rv = KERN_RESOURCE_SHORTAGE;
4005 			goto out;
4006 		}
4007 		goto retry;
4008 	} else
4009 		panic("pmap_enter: missing L3 table for kernel va %#lx", va);
4010 
4011 havel3:
4012 	orig_l3 = pmap_load(l3);
4013 	opa = orig_l3 & ~ATTR_MASK;
4014 	pv = NULL;
4015 
4016 	/*
4017 	 * Is the specified virtual address already mapped?
4018 	 */
4019 	if (pmap_l3_valid(orig_l3)) {
4020 		/*
4021 		 * Only allow adding new entries on stage 2 tables for now.
4022 		 * This simplifies cache invalidation as we may need to call
4023 		 * into EL2 to perform such actions.
4024 		 */
4025 		PMAP_ASSERT_STAGE1(pmap);
4026 		/*
4027 		 * Wiring change, just update stats. We don't worry about
4028 		 * wiring PT pages as they remain resident as long as there
4029 		 * are valid mappings in them. Hence, if a user page is wired,
4030 		 * the PT page will be also.
4031 		 */
4032 		if ((flags & PMAP_ENTER_WIRED) != 0 &&
4033 		    (orig_l3 & ATTR_SW_WIRED) == 0)
4034 			pmap->pm_stats.wired_count++;
4035 		else if ((flags & PMAP_ENTER_WIRED) == 0 &&
4036 		    (orig_l3 & ATTR_SW_WIRED) != 0)
4037 			pmap->pm_stats.wired_count--;
4038 
4039 		/*
4040 		 * Remove the extra PT page reference.
4041 		 */
4042 		if (mpte != NULL) {
4043 			mpte->ref_count--;
4044 			KASSERT(mpte->ref_count > 0,
4045 			    ("pmap_enter: missing reference to page table page,"
4046 			     " va: 0x%lx", va));
4047 		}
4048 
4049 		/*
4050 		 * Has the physical page changed?
4051 		 */
4052 		if (opa == pa) {
4053 			/*
4054 			 * No, might be a protection or wiring change.
4055 			 */
4056 			if ((orig_l3 & ATTR_SW_MANAGED) != 0 &&
4057 			    (new_l3 & ATTR_SW_DBM) != 0)
4058 				vm_page_aflag_set(m, PGA_WRITEABLE);
4059 			goto validate;
4060 		}
4061 
4062 		/*
4063 		 * The physical page has changed.  Temporarily invalidate
4064 		 * the mapping.
4065 		 */
4066 		orig_l3 = pmap_load_clear(l3);
4067 		KASSERT((orig_l3 & ~ATTR_MASK) == opa,
4068 		    ("pmap_enter: unexpected pa update for %#lx", va));
4069 		if ((orig_l3 & ATTR_SW_MANAGED) != 0) {
4070 			om = PHYS_TO_VM_PAGE(opa);
4071 
4072 			/*
4073 			 * The pmap lock is sufficient to synchronize with
4074 			 * concurrent calls to pmap_page_test_mappings() and
4075 			 * pmap_ts_referenced().
4076 			 */
4077 			if (pmap_pte_dirty(pmap, orig_l3))
4078 				vm_page_dirty(om);
4079 			if ((orig_l3 & ATTR_AF) != 0) {
4080 				pmap_invalidate_page(pmap, va);
4081 				vm_page_aflag_set(om, PGA_REFERENCED);
4082 			}
4083 			CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, opa);
4084 			pv = pmap_pvh_remove(&om->md, pmap, va);
4085 			if ((m->oflags & VPO_UNMANAGED) != 0)
4086 				free_pv_entry(pmap, pv);
4087 			if ((om->a.flags & PGA_WRITEABLE) != 0 &&
4088 			    TAILQ_EMPTY(&om->md.pv_list) &&
4089 			    ((om->flags & PG_FICTITIOUS) != 0 ||
4090 			    TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
4091 				vm_page_aflag_clear(om, PGA_WRITEABLE);
4092 		} else {
4093 			KASSERT((orig_l3 & ATTR_AF) != 0,
4094 			    ("pmap_enter: unmanaged mapping lacks ATTR_AF"));
4095 			pmap_invalidate_page(pmap, va);
4096 		}
4097 		orig_l3 = 0;
4098 	} else {
4099 		/*
4100 		 * Increment the counters.
4101 		 */
4102 		if ((new_l3 & ATTR_SW_WIRED) != 0)
4103 			pmap->pm_stats.wired_count++;
4104 		pmap_resident_count_inc(pmap, 1);
4105 	}
4106 	/*
4107 	 * Enter on the PV list if part of our managed memory.
4108 	 */
4109 	if ((m->oflags & VPO_UNMANAGED) == 0) {
4110 		if (pv == NULL) {
4111 			pv = get_pv_entry(pmap, &lock);
4112 			pv->pv_va = va;
4113 		}
4114 		CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, pa);
4115 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
4116 		m->md.pv_gen++;
4117 		if ((new_l3 & ATTR_SW_DBM) != 0)
4118 			vm_page_aflag_set(m, PGA_WRITEABLE);
4119 	}
4120 
4121 validate:
4122 	if (pmap->pm_stage == PM_STAGE1) {
4123 		/*
4124 		 * Sync icache if exec permission and attribute
4125 		 * VM_MEMATTR_WRITE_BACK is set. Do it now, before the mapping
4126 		 * is stored and made valid for hardware table walk. If done
4127 		 * later, then other can access this page before caches are
4128 		 * properly synced. Don't do it for kernel memory which is
4129 		 * mapped with exec permission even if the memory isn't going
4130 		 * to hold executable code. The only time when icache sync is
4131 		 * needed is after kernel module is loaded and the relocation
4132 		 * info is processed. And it's done in elf_cpu_load_file().
4133 		*/
4134 		if ((prot & VM_PROT_EXECUTE) &&  pmap != kernel_pmap &&
4135 		    m->md.pv_memattr == VM_MEMATTR_WRITE_BACK &&
4136 		    (opa != pa || (orig_l3 & ATTR_S1_XN))) {
4137 			PMAP_ASSERT_STAGE1(pmap);
4138 			cpu_icache_sync_range(PHYS_TO_DMAP(pa), PAGE_SIZE);
4139 		}
4140 	} else {
4141 		cpu_dcache_wb_range(PHYS_TO_DMAP(pa), PAGE_SIZE);
4142 	}
4143 
4144 	/*
4145 	 * Update the L3 entry
4146 	 */
4147 	if (pmap_l3_valid(orig_l3)) {
4148 		PMAP_ASSERT_STAGE1(pmap);
4149 		KASSERT(opa == pa, ("pmap_enter: invalid update"));
4150 		if ((orig_l3 & ~ATTR_AF) != (new_l3 & ~ATTR_AF)) {
4151 			/* same PA, different attributes */
4152 			orig_l3 = pmap_load_store(l3, new_l3);
4153 			pmap_invalidate_page(pmap, va);
4154 			if ((orig_l3 & ATTR_SW_MANAGED) != 0 &&
4155 			    pmap_pte_dirty(pmap, orig_l3))
4156 				vm_page_dirty(m);
4157 		} else {
4158 			/*
4159 			 * orig_l3 == new_l3
4160 			 * This can happens if multiple threads simultaneously
4161 			 * access not yet mapped page. This bad for performance
4162 			 * since this can cause full demotion-NOP-promotion
4163 			 * cycle.
4164 			 * Another possible reasons are:
4165 			 * - VM and pmap memory layout are diverged
4166 			 * - tlb flush is missing somewhere and CPU doesn't see
4167 			 *   actual mapping.
4168 			 */
4169 			CTR4(KTR_PMAP, "%s: already mapped page - "
4170 			    "pmap %p va 0x%#lx pte 0x%lx",
4171 			    __func__, pmap, va, new_l3);
4172 		}
4173 	} else {
4174 		/* New mapping */
4175 		pmap_store(l3, new_l3);
4176 		dsb(ishst);
4177 	}
4178 
4179 #if VM_NRESERVLEVEL > 0
4180 	/*
4181 	 * Try to promote from level 3 pages to a level 2 superpage. This
4182 	 * currently only works on stage 1 pmaps as pmap_promote_l2 looks at
4183 	 * stage 1 specific fields and performs a break-before-make sequence
4184 	 * that is incorrect a stage 2 pmap.
4185 	 */
4186 	if ((mpte == NULL || mpte->ref_count == NL3PG) &&
4187 	    pmap_ps_enabled(pmap) && pmap->pm_stage == PM_STAGE1 &&
4188 	    (m->flags & PG_FICTITIOUS) == 0 &&
4189 	    vm_reserv_level_iffullpop(m) == 0) {
4190 		pmap_promote_l2(pmap, pde, va, &lock);
4191 	}
4192 #endif
4193 
4194 	rv = KERN_SUCCESS;
4195 out:
4196 	if (lock != NULL)
4197 		rw_wunlock(lock);
4198 	PMAP_UNLOCK(pmap);
4199 	return (rv);
4200 }
4201 
4202 /*
4203  * Tries to create a read- and/or execute-only 2MB page mapping.  Returns true
4204  * if successful.  Returns false if (1) a page table page cannot be allocated
4205  * without sleeping, (2) a mapping already exists at the specified virtual
4206  * address, or (3) a PV entry cannot be allocated without reclaiming another
4207  * PV entry.
4208  */
4209 static bool
pmap_enter_2mpage(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot,struct rwlock ** lockp)4210 pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
4211     struct rwlock **lockp)
4212 {
4213 	pd_entry_t new_l2;
4214 
4215 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4216 	PMAP_ASSERT_STAGE1(pmap);
4217 
4218 	new_l2 = (pd_entry_t)(VM_PAGE_TO_PHYS(m) | ATTR_DEFAULT |
4219 	    ATTR_S1_IDX(m->md.pv_memattr) | ATTR_S1_AP(ATTR_S1_AP_RO) |
4220 	    L2_BLOCK);
4221 	if ((m->oflags & VPO_UNMANAGED) == 0) {
4222 		new_l2 |= ATTR_SW_MANAGED;
4223 		new_l2 &= ~ATTR_AF;
4224 	}
4225 	if ((prot & VM_PROT_EXECUTE) == 0 ||
4226 	    m->md.pv_memattr == VM_MEMATTR_DEVICE)
4227 		new_l2 |= ATTR_S1_XN;
4228 	if (va < VM_MAXUSER_ADDRESS)
4229 		new_l2 |= ATTR_S1_AP(ATTR_S1_AP_USER) | ATTR_S1_PXN;
4230 	else
4231 		new_l2 |= ATTR_S1_UXN;
4232 	if (pmap != kernel_pmap)
4233 		new_l2 |= ATTR_S1_nG;
4234 	return (pmap_enter_l2(pmap, va, new_l2, PMAP_ENTER_NOSLEEP |
4235 	    PMAP_ENTER_NOREPLACE | PMAP_ENTER_NORECLAIM, NULL, lockp) ==
4236 	    KERN_SUCCESS);
4237 }
4238 
4239 /*
4240  * Returns true if every page table entry in the specified page table is
4241  * zero.
4242  */
4243 static bool
pmap_every_pte_zero(vm_paddr_t pa)4244 pmap_every_pte_zero(vm_paddr_t pa)
4245 {
4246 	pt_entry_t *pt_end, *pte;
4247 
4248 	KASSERT((pa & PAGE_MASK) == 0, ("pa is misaligned"));
4249 	pte = (pt_entry_t *)PHYS_TO_DMAP(pa);
4250 	for (pt_end = pte + Ln_ENTRIES; pte < pt_end; pte++) {
4251 		if (*pte != 0)
4252 			return (false);
4253 	}
4254 	return (true);
4255 }
4256 
4257 /*
4258  * Tries to create the specified 2MB page mapping.  Returns KERN_SUCCESS if
4259  * the mapping was created, and either KERN_FAILURE or KERN_RESOURCE_SHORTAGE
4260  * otherwise.  Returns KERN_FAILURE if PMAP_ENTER_NOREPLACE was specified and
4261  * a mapping already exists at the specified virtual address.  Returns
4262  * KERN_RESOURCE_SHORTAGE if PMAP_ENTER_NOSLEEP was specified and a page table
4263  * page allocation failed.  Returns KERN_RESOURCE_SHORTAGE if
4264  * PMAP_ENTER_NORECLAIM was specified and a PV entry allocation failed.
4265  *
4266  * The parameter "m" is only used when creating a managed, writeable mapping.
4267  */
4268 static int
pmap_enter_l2(pmap_t pmap,vm_offset_t va,pd_entry_t new_l2,u_int flags,vm_page_t m,struct rwlock ** lockp)4269 pmap_enter_l2(pmap_t pmap, vm_offset_t va, pd_entry_t new_l2, u_int flags,
4270     vm_page_t m, struct rwlock **lockp)
4271 {
4272 	struct spglist free;
4273 	pd_entry_t *l2, old_l2;
4274 	vm_page_t l2pg, mt;
4275 
4276 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4277 
4278 	if ((l2 = pmap_alloc_l2(pmap, va, &l2pg, (flags &
4279 	    PMAP_ENTER_NOSLEEP) != 0 ? NULL : lockp)) == NULL) {
4280 		CTR2(KTR_PMAP, "pmap_enter_l2: failure for va %#lx in pmap %p",
4281 		    va, pmap);
4282 		return (KERN_RESOURCE_SHORTAGE);
4283 	}
4284 
4285 	/*
4286 	 * If there are existing mappings, either abort or remove them.
4287 	 */
4288 	if ((old_l2 = pmap_load(l2)) != 0) {
4289 		KASSERT(l2pg == NULL || l2pg->ref_count > 1,
4290 		    ("pmap_enter_l2: l2pg's ref count is too low"));
4291 		if ((flags & PMAP_ENTER_NOREPLACE) != 0 && (va <
4292 		    VM_MAXUSER_ADDRESS || (old_l2 & ATTR_DESCR_MASK) ==
4293 		    L2_BLOCK || !pmap_every_pte_zero(old_l2 & ~ATTR_MASK))) {
4294 			if (l2pg != NULL)
4295 				l2pg->ref_count--;
4296 			CTR2(KTR_PMAP, "pmap_enter_l2: failure for va %#lx"
4297 			    " in pmap %p", va, pmap);
4298 			return (KERN_FAILURE);
4299 		}
4300 		SLIST_INIT(&free);
4301 		if ((old_l2 & ATTR_DESCR_MASK) == L2_BLOCK)
4302 			(void)pmap_remove_l2(pmap, l2, va,
4303 			    pmap_load(pmap_l1(pmap, va)), &free, lockp);
4304 		else
4305 			pmap_remove_l3_range(pmap, old_l2, va, va + L2_SIZE,
4306 			    &free, lockp);
4307 		if (va < VM_MAXUSER_ADDRESS) {
4308 			vm_page_free_pages_toq(&free, true);
4309 			KASSERT(pmap_load(l2) == 0,
4310 			    ("pmap_enter_l2: non-zero L2 entry %p", l2));
4311 		} else {
4312 			KASSERT(SLIST_EMPTY(&free),
4313 			    ("pmap_enter_l2: freed kernel page table page"));
4314 
4315 			/*
4316 			 * Both pmap_remove_l2() and pmap_remove_l3_range()
4317 			 * will leave the kernel page table page zero filled.
4318 			 * Nonetheless, the TLB could have an intermediate
4319 			 * entry for the kernel page table page.
4320 			 */
4321 			mt = PHYS_TO_VM_PAGE(pmap_load(l2) & ~ATTR_MASK);
4322 			if (pmap_insert_pt_page(pmap, mt, false))
4323 				panic("pmap_enter_l2: trie insert failed");
4324 			pmap_clear(l2);
4325 			pmap_invalidate_page(pmap, va);
4326 		}
4327 	}
4328 
4329 	if ((new_l2 & ATTR_SW_MANAGED) != 0) {
4330 		/*
4331 		 * Abort this mapping if its PV entry could not be created.
4332 		 */
4333 		if (!pmap_pv_insert_l2(pmap, va, new_l2, flags, lockp)) {
4334 			if (l2pg != NULL)
4335 				pmap_abort_ptp(pmap, va, l2pg);
4336 			CTR2(KTR_PMAP,
4337 			    "pmap_enter_l2: failure for va %#lx in pmap %p",
4338 			    va, pmap);
4339 			return (KERN_RESOURCE_SHORTAGE);
4340 		}
4341 		if ((new_l2 & ATTR_SW_DBM) != 0)
4342 			for (mt = m; mt < &m[L2_SIZE / PAGE_SIZE]; mt++)
4343 				vm_page_aflag_set(mt, PGA_WRITEABLE);
4344 	}
4345 
4346 	/*
4347 	 * Increment counters.
4348 	 */
4349 	if ((new_l2 & ATTR_SW_WIRED) != 0)
4350 		pmap->pm_stats.wired_count += L2_SIZE / PAGE_SIZE;
4351 	pmap->pm_stats.resident_count += L2_SIZE / PAGE_SIZE;
4352 
4353 	/*
4354 	 * Map the superpage.
4355 	 */
4356 	pmap_store(l2, new_l2);
4357 	dsb(ishst);
4358 
4359 	atomic_add_long(&pmap_l2_mappings, 1);
4360 	CTR2(KTR_PMAP, "pmap_enter_l2: success for va %#lx in pmap %p",
4361 	    va, pmap);
4362 
4363 	return (KERN_SUCCESS);
4364 }
4365 
4366 /*
4367  * Maps a sequence of resident pages belonging to the same object.
4368  * The sequence begins with the given page m_start.  This page is
4369  * mapped at the given virtual address start.  Each subsequent page is
4370  * mapped at a virtual address that is offset from start by the same
4371  * amount as the page is offset from m_start within the object.  The
4372  * last page in the sequence is the page with the largest offset from
4373  * m_start that can be mapped at a virtual address less than the given
4374  * virtual address end.  Not every virtual page between start and end
4375  * is mapped; only those for which a resident page exists with the
4376  * corresponding offset from m_start are mapped.
4377  */
4378 void
pmap_enter_object(pmap_t pmap,vm_offset_t start,vm_offset_t end,vm_page_t m_start,vm_prot_t prot)4379 pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
4380     vm_page_t m_start, vm_prot_t prot)
4381 {
4382 	struct rwlock *lock;
4383 	vm_offset_t va;
4384 	vm_page_t m, mpte;
4385 	vm_pindex_t diff, psize;
4386 
4387 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
4388 
4389 	psize = atop(end - start);
4390 	mpte = NULL;
4391 	m = m_start;
4392 	lock = NULL;
4393 	PMAP_LOCK(pmap);
4394 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
4395 		va = start + ptoa(diff);
4396 		if ((va & L2_OFFSET) == 0 && va + L2_SIZE <= end &&
4397 		    m->psind == 1 && pmap_ps_enabled(pmap) &&
4398 		    pmap_enter_2mpage(pmap, va, m, prot, &lock))
4399 			m = &m[L2_SIZE / PAGE_SIZE - 1];
4400 		else
4401 			mpte = pmap_enter_quick_locked(pmap, va, m, prot, mpte,
4402 			    &lock);
4403 		m = TAILQ_NEXT(m, listq);
4404 	}
4405 	if (lock != NULL)
4406 		rw_wunlock(lock);
4407 	PMAP_UNLOCK(pmap);
4408 }
4409 
4410 /*
4411  * this code makes some *MAJOR* assumptions:
4412  * 1. Current pmap & pmap exists.
4413  * 2. Not wired.
4414  * 3. Read access.
4415  * 4. No page table pages.
4416  * but is *MUCH* faster than pmap_enter...
4417  */
4418 
4419 void
pmap_enter_quick(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot)4420 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
4421 {
4422 	struct rwlock *lock;
4423 
4424 	lock = NULL;
4425 	PMAP_LOCK(pmap);
4426 	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL, &lock);
4427 	if (lock != NULL)
4428 		rw_wunlock(lock);
4429 	PMAP_UNLOCK(pmap);
4430 }
4431 
4432 static vm_page_t
pmap_enter_quick_locked(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot,vm_page_t mpte,struct rwlock ** lockp)4433 pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
4434     vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp)
4435 {
4436 	pd_entry_t *pde;
4437 	pt_entry_t *l2, *l3, l3_val;
4438 	vm_paddr_t pa;
4439 	int lvl;
4440 
4441 	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
4442 	    (m->oflags & VPO_UNMANAGED) != 0,
4443 	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
4444 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4445 	PMAP_ASSERT_STAGE1(pmap);
4446 
4447 	CTR2(KTR_PMAP, "pmap_enter_quick_locked: %p %lx", pmap, va);
4448 	/*
4449 	 * In the case that a page table page is not
4450 	 * resident, we are creating it here.
4451 	 */
4452 	if (va < VM_MAXUSER_ADDRESS) {
4453 		vm_pindex_t l2pindex;
4454 
4455 		/*
4456 		 * Calculate pagetable page index
4457 		 */
4458 		l2pindex = pmap_l2_pindex(va);
4459 		if (mpte && (mpte->pindex == l2pindex)) {
4460 			mpte->ref_count++;
4461 		} else {
4462 			/*
4463 			 * Get the l2 entry
4464 			 */
4465 			pde = pmap_pde(pmap, va, &lvl);
4466 
4467 			/*
4468 			 * If the page table page is mapped, we just increment
4469 			 * the hold count, and activate it.  Otherwise, we
4470 			 * attempt to allocate a page table page.  If this
4471 			 * attempt fails, we don't retry.  Instead, we give up.
4472 			 */
4473 			if (lvl == 1) {
4474 				l2 = pmap_l1_to_l2(pde, va);
4475 				if ((pmap_load(l2) & ATTR_DESCR_MASK) ==
4476 				    L2_BLOCK)
4477 					return (NULL);
4478 			}
4479 			if (lvl == 2 && pmap_load(pde) != 0) {
4480 				mpte =
4481 				    PHYS_TO_VM_PAGE(pmap_load(pde) & ~ATTR_MASK);
4482 				mpte->ref_count++;
4483 			} else {
4484 				/*
4485 				 * Pass NULL instead of the PV list lock
4486 				 * pointer, because we don't intend to sleep.
4487 				 */
4488 				mpte = _pmap_alloc_l3(pmap, l2pindex, NULL);
4489 				if (mpte == NULL)
4490 					return (mpte);
4491 			}
4492 		}
4493 		l3 = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mpte));
4494 		l3 = &l3[pmap_l3_index(va)];
4495 	} else {
4496 		mpte = NULL;
4497 		pde = pmap_pde(kernel_pmap, va, &lvl);
4498 		KASSERT(pde != NULL,
4499 		    ("pmap_enter_quick_locked: Invalid page entry, va: 0x%lx",
4500 		     va));
4501 		KASSERT(lvl == 2,
4502 		    ("pmap_enter_quick_locked: Invalid level %d", lvl));
4503 		l3 = pmap_l2_to_l3(pde, va);
4504 	}
4505 
4506 	/*
4507 	 * Abort if a mapping already exists.
4508 	 */
4509 	if (pmap_load(l3) != 0) {
4510 		if (mpte != NULL)
4511 			mpte->ref_count--;
4512 		return (NULL);
4513 	}
4514 
4515 	/*
4516 	 * Enter on the PV list if part of our managed memory.
4517 	 */
4518 	if ((m->oflags & VPO_UNMANAGED) == 0 &&
4519 	    !pmap_try_insert_pv_entry(pmap, va, m, lockp)) {
4520 		if (mpte != NULL)
4521 			pmap_abort_ptp(pmap, va, mpte);
4522 		return (NULL);
4523 	}
4524 
4525 	/*
4526 	 * Increment counters
4527 	 */
4528 	pmap_resident_count_inc(pmap, 1);
4529 
4530 	pa = VM_PAGE_TO_PHYS(m);
4531 	l3_val = pa | ATTR_DEFAULT | ATTR_S1_IDX(m->md.pv_memattr) |
4532 	    ATTR_S1_AP(ATTR_S1_AP_RO) | L3_PAGE;
4533 	if ((prot & VM_PROT_EXECUTE) == 0 ||
4534 	    m->md.pv_memattr == VM_MEMATTR_DEVICE)
4535 		l3_val |= ATTR_S1_XN;
4536 	if (va < VM_MAXUSER_ADDRESS)
4537 		l3_val |= ATTR_S1_AP(ATTR_S1_AP_USER) | ATTR_S1_PXN;
4538 	else
4539 		l3_val |= ATTR_S1_UXN;
4540 	if (pmap != kernel_pmap)
4541 		l3_val |= ATTR_S1_nG;
4542 
4543 	/*
4544 	 * Now validate mapping with RO protection
4545 	 */
4546 	if ((m->oflags & VPO_UNMANAGED) == 0) {
4547 		l3_val |= ATTR_SW_MANAGED;
4548 		l3_val &= ~ATTR_AF;
4549 	}
4550 
4551 	/* Sync icache before the mapping is stored to PTE */
4552 	if ((prot & VM_PROT_EXECUTE) && pmap != kernel_pmap &&
4553 	    m->md.pv_memattr == VM_MEMATTR_WRITE_BACK)
4554 		cpu_icache_sync_range(PHYS_TO_DMAP(pa), PAGE_SIZE);
4555 
4556 	pmap_store(l3, l3_val);
4557 	dsb(ishst);
4558 
4559 	return (mpte);
4560 }
4561 
4562 /*
4563  * This code maps large physical mmap regions into the
4564  * processor address space.  Note that some shortcuts
4565  * are taken, but the code works.
4566  */
4567 void
pmap_object_init_pt(pmap_t pmap,vm_offset_t addr,vm_object_t object,vm_pindex_t pindex,vm_size_t size)4568 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
4569     vm_pindex_t pindex, vm_size_t size)
4570 {
4571 
4572 	VM_OBJECT_ASSERT_WLOCKED(object);
4573 	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
4574 	    ("pmap_object_init_pt: non-device object"));
4575 }
4576 
4577 /*
4578  *	Clear the wired attribute from the mappings for the specified range of
4579  *	addresses in the given pmap.  Every valid mapping within that range
4580  *	must have the wired attribute set.  In contrast, invalid mappings
4581  *	cannot have the wired attribute set, so they are ignored.
4582  *
4583  *	The wired attribute of the page table entry is not a hardware feature,
4584  *	so there is no need to invalidate any TLB entries.
4585  */
4586 void
pmap_unwire(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)4587 pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
4588 {
4589 	vm_offset_t va_next;
4590 	pd_entry_t *l0, *l1, *l2;
4591 	pt_entry_t *l3;
4592 
4593 	PMAP_LOCK(pmap);
4594 	for (; sva < eva; sva = va_next) {
4595 		l0 = pmap_l0(pmap, sva);
4596 		if (pmap_load(l0) == 0) {
4597 			va_next = (sva + L0_SIZE) & ~L0_OFFSET;
4598 			if (va_next < sva)
4599 				va_next = eva;
4600 			continue;
4601 		}
4602 
4603 		l1 = pmap_l0_to_l1(l0, sva);
4604 		va_next = (sva + L1_SIZE) & ~L1_OFFSET;
4605 		if (va_next < sva)
4606 			va_next = eva;
4607 		if (pmap_load(l1) == 0)
4608 			continue;
4609 
4610 		if ((pmap_load(l1) & ATTR_DESCR_MASK) == L1_BLOCK) {
4611 			KASSERT(va_next <= eva,
4612 			    ("partial update of non-transparent 1G page "
4613 			    "l1 %#lx sva %#lx eva %#lx va_next %#lx",
4614 			    pmap_load(l1), sva, eva, va_next));
4615 			MPASS(pmap != kernel_pmap);
4616 			MPASS((pmap_load(l1) & (ATTR_SW_MANAGED |
4617 			    ATTR_SW_WIRED)) == ATTR_SW_WIRED);
4618 			pmap_clear_bits(l1, ATTR_SW_WIRED);
4619 			pmap->pm_stats.wired_count -= L1_SIZE / PAGE_SIZE;
4620 			continue;
4621 		}
4622 
4623 		va_next = (sva + L2_SIZE) & ~L2_OFFSET;
4624 		if (va_next < sva)
4625 			va_next = eva;
4626 
4627 		l2 = pmap_l1_to_l2(l1, sva);
4628 		if (pmap_load(l2) == 0)
4629 			continue;
4630 
4631 		if ((pmap_load(l2) & ATTR_DESCR_MASK) == L2_BLOCK) {
4632 			if ((pmap_load(l2) & ATTR_SW_WIRED) == 0)
4633 				panic("pmap_unwire: l2 %#jx is missing "
4634 				    "ATTR_SW_WIRED", (uintmax_t)pmap_load(l2));
4635 
4636 			/*
4637 			 * Are we unwiring the entire large page?  If not,
4638 			 * demote the mapping and fall through.
4639 			 */
4640 			if (sva + L2_SIZE == va_next && eva >= va_next) {
4641 				pmap_clear_bits(l2, ATTR_SW_WIRED);
4642 				pmap->pm_stats.wired_count -= L2_SIZE /
4643 				    PAGE_SIZE;
4644 				continue;
4645 			} else if (pmap_demote_l2(pmap, l2, sva) == NULL)
4646 				panic("pmap_unwire: demotion failed");
4647 		}
4648 		KASSERT((pmap_load(l2) & ATTR_DESCR_MASK) == L2_TABLE,
4649 		    ("pmap_unwire: Invalid l2 entry after demotion"));
4650 
4651 		if (va_next > eva)
4652 			va_next = eva;
4653 		for (l3 = pmap_l2_to_l3(l2, sva); sva != va_next; l3++,
4654 		    sva += L3_SIZE) {
4655 			if (pmap_load(l3) == 0)
4656 				continue;
4657 			if ((pmap_load(l3) & ATTR_SW_WIRED) == 0)
4658 				panic("pmap_unwire: l3 %#jx is missing "
4659 				    "ATTR_SW_WIRED", (uintmax_t)pmap_load(l3));
4660 
4661 			/*
4662 			 * ATTR_SW_WIRED must be cleared atomically.  Although
4663 			 * the pmap lock synchronizes access to ATTR_SW_WIRED,
4664 			 * the System MMU may write to the entry concurrently.
4665 			 */
4666 			pmap_clear_bits(l3, ATTR_SW_WIRED);
4667 			pmap->pm_stats.wired_count--;
4668 		}
4669 	}
4670 	PMAP_UNLOCK(pmap);
4671 }
4672 
4673 /*
4674  *	Copy the range specified by src_addr/len
4675  *	from the source map to the range dst_addr/len
4676  *	in the destination map.
4677  *
4678  *	This routine is only advisory and need not do anything.
4679  *
4680  *	Because the executable mappings created by this routine are copied,
4681  *	it should not have to flush the instruction cache.
4682  */
4683 void
pmap_copy(pmap_t dst_pmap,pmap_t src_pmap,vm_offset_t dst_addr,vm_size_t len,vm_offset_t src_addr)4684 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
4685     vm_offset_t src_addr)
4686 {
4687 	struct rwlock *lock;
4688 	pd_entry_t *l0, *l1, *l2, srcptepaddr;
4689 	pt_entry_t *dst_pte, mask, nbits, ptetemp, *src_pte;
4690 	vm_offset_t addr, end_addr, va_next;
4691 	vm_page_t dst_m, dstmpte, srcmpte;
4692 
4693 	PMAP_ASSERT_STAGE1(dst_pmap);
4694 	PMAP_ASSERT_STAGE1(src_pmap);
4695 
4696 	if (dst_addr != src_addr)
4697 		return;
4698 	end_addr = src_addr + len;
4699 	lock = NULL;
4700 	if (dst_pmap < src_pmap) {
4701 		PMAP_LOCK(dst_pmap);
4702 		PMAP_LOCK(src_pmap);
4703 	} else {
4704 		PMAP_LOCK(src_pmap);
4705 		PMAP_LOCK(dst_pmap);
4706 	}
4707 	for (addr = src_addr; addr < end_addr; addr = va_next) {
4708 		l0 = pmap_l0(src_pmap, addr);
4709 		if (pmap_load(l0) == 0) {
4710 			va_next = (addr + L0_SIZE) & ~L0_OFFSET;
4711 			if (va_next < addr)
4712 				va_next = end_addr;
4713 			continue;
4714 		}
4715 
4716 		va_next = (addr + L1_SIZE) & ~L1_OFFSET;
4717 		if (va_next < addr)
4718 			va_next = end_addr;
4719 		l1 = pmap_l0_to_l1(l0, addr);
4720 		if (pmap_load(l1) == 0)
4721 			continue;
4722 		if ((pmap_load(l1) & ATTR_DESCR_MASK) == L1_BLOCK) {
4723 			KASSERT(va_next <= end_addr,
4724 			    ("partial update of non-transparent 1G page "
4725 			    "l1 %#lx addr %#lx end_addr %#lx va_next %#lx",
4726 			    pmap_load(l1), addr, end_addr, va_next));
4727 			srcptepaddr = pmap_load(l1);
4728 			l1 = pmap_l1(dst_pmap, addr);
4729 			if (l1 == NULL) {
4730 				if (_pmap_alloc_l3(dst_pmap,
4731 				    pmap_l0_pindex(addr), NULL) == NULL)
4732 					break;
4733 				l1 = pmap_l1(dst_pmap, addr);
4734 			} else {
4735 				l0 = pmap_l0(dst_pmap, addr);
4736 				dst_m = PHYS_TO_VM_PAGE(pmap_load(l0) &
4737 				    ~ATTR_MASK);
4738 				dst_m->ref_count++;
4739 			}
4740 			KASSERT(pmap_load(l1) == 0,
4741 			    ("1G mapping present in dst pmap "
4742 			    "l1 %#lx addr %#lx end_addr %#lx va_next %#lx",
4743 			    pmap_load(l1), addr, end_addr, va_next));
4744 			pmap_store(l1, srcptepaddr & ~ATTR_SW_WIRED);
4745 			pmap_resident_count_inc(dst_pmap, L1_SIZE / PAGE_SIZE);
4746 			continue;
4747 		}
4748 
4749 		va_next = (addr + L2_SIZE) & ~L2_OFFSET;
4750 		if (va_next < addr)
4751 			va_next = end_addr;
4752 		l2 = pmap_l1_to_l2(l1, addr);
4753 		srcptepaddr = pmap_load(l2);
4754 		if (srcptepaddr == 0)
4755 			continue;
4756 		if ((srcptepaddr & ATTR_DESCR_MASK) == L2_BLOCK) {
4757 			if ((addr & L2_OFFSET) != 0 ||
4758 			    addr + L2_SIZE > end_addr)
4759 				continue;
4760 			l2 = pmap_alloc_l2(dst_pmap, addr, &dst_m, NULL);
4761 			if (l2 == NULL)
4762 				break;
4763 			if (pmap_load(l2) == 0 &&
4764 			    ((srcptepaddr & ATTR_SW_MANAGED) == 0 ||
4765 			    pmap_pv_insert_l2(dst_pmap, addr, srcptepaddr,
4766 			    PMAP_ENTER_NORECLAIM, &lock))) {
4767 				mask = ATTR_AF | ATTR_SW_WIRED;
4768 				nbits = 0;
4769 				if ((srcptepaddr & ATTR_SW_DBM) != 0)
4770 					nbits |= ATTR_S1_AP_RW_BIT;
4771 				pmap_store(l2, (srcptepaddr & ~mask) | nbits);
4772 				pmap_resident_count_inc(dst_pmap, L2_SIZE /
4773 				    PAGE_SIZE);
4774 				atomic_add_long(&pmap_l2_mappings, 1);
4775 			} else
4776 				pmap_abort_ptp(dst_pmap, addr, dst_m);
4777 			continue;
4778 		}
4779 		KASSERT((srcptepaddr & ATTR_DESCR_MASK) == L2_TABLE,
4780 		    ("pmap_copy: invalid L2 entry"));
4781 		srcptepaddr &= ~ATTR_MASK;
4782 		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr);
4783 		KASSERT(srcmpte->ref_count > 0,
4784 		    ("pmap_copy: source page table page is unused"));
4785 		if (va_next > end_addr)
4786 			va_next = end_addr;
4787 		src_pte = (pt_entry_t *)PHYS_TO_DMAP(srcptepaddr);
4788 		src_pte = &src_pte[pmap_l3_index(addr)];
4789 		dstmpte = NULL;
4790 		for (; addr < va_next; addr += PAGE_SIZE, src_pte++) {
4791 			ptetemp = pmap_load(src_pte);
4792 
4793 			/*
4794 			 * We only virtual copy managed pages.
4795 			 */
4796 			if ((ptetemp & ATTR_SW_MANAGED) == 0)
4797 				continue;
4798 
4799 			if (dstmpte != NULL) {
4800 				KASSERT(dstmpte->pindex == pmap_l2_pindex(addr),
4801 				    ("dstmpte pindex/addr mismatch"));
4802 				dstmpte->ref_count++;
4803 			} else if ((dstmpte = pmap_alloc_l3(dst_pmap, addr,
4804 			    NULL)) == NULL)
4805 				goto out;
4806 			dst_pte = (pt_entry_t *)
4807 			    PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dstmpte));
4808 			dst_pte = &dst_pte[pmap_l3_index(addr)];
4809 			if (pmap_load(dst_pte) == 0 &&
4810 			    pmap_try_insert_pv_entry(dst_pmap, addr,
4811 			    PHYS_TO_VM_PAGE(ptetemp & ~ATTR_MASK), &lock)) {
4812 				/*
4813 				 * Clear the wired, modified, and accessed
4814 				 * (referenced) bits during the copy.
4815 				 */
4816 				mask = ATTR_AF | ATTR_SW_WIRED;
4817 				nbits = 0;
4818 				if ((ptetemp & ATTR_SW_DBM) != 0)
4819 					nbits |= ATTR_S1_AP_RW_BIT;
4820 				pmap_store(dst_pte, (ptetemp & ~mask) | nbits);
4821 				pmap_resident_count_inc(dst_pmap, 1);
4822 			} else {
4823 				pmap_abort_ptp(dst_pmap, addr, dstmpte);
4824 				goto out;
4825 			}
4826 			/* Have we copied all of the valid mappings? */
4827 			if (dstmpte->ref_count >= srcmpte->ref_count)
4828 				break;
4829 		}
4830 	}
4831 out:
4832 	/*
4833 	 * XXX This barrier may not be needed because the destination pmap is
4834 	 * not active.
4835 	 */
4836 	dsb(ishst);
4837 
4838 	if (lock != NULL)
4839 		rw_wunlock(lock);
4840 	PMAP_UNLOCK(src_pmap);
4841 	PMAP_UNLOCK(dst_pmap);
4842 }
4843 
4844 /*
4845  *	pmap_zero_page zeros the specified hardware page by mapping
4846  *	the page into KVM and using bzero to clear its contents.
4847  */
4848 void
pmap_zero_page(vm_page_t m)4849 pmap_zero_page(vm_page_t m)
4850 {
4851 	vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
4852 
4853 	pagezero((void *)va);
4854 }
4855 
4856 /*
4857  *	pmap_zero_page_area zeros the specified hardware page by mapping
4858  *	the page into KVM and using bzero to clear its contents.
4859  *
4860  *	off and size may not cover an area beyond a single hardware page.
4861  */
4862 void
pmap_zero_page_area(vm_page_t m,int off,int size)4863 pmap_zero_page_area(vm_page_t m, int off, int size)
4864 {
4865 	vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
4866 
4867 	if (off == 0 && size == PAGE_SIZE)
4868 		pagezero((void *)va);
4869 	else
4870 		bzero((char *)va + off, size);
4871 }
4872 
4873 /*
4874  *	pmap_copy_page copies the specified (machine independent)
4875  *	page by mapping the page into virtual memory and using
4876  *	bcopy to copy the page, one machine dependent page at a
4877  *	time.
4878  */
4879 void
pmap_copy_page(vm_page_t msrc,vm_page_t mdst)4880 pmap_copy_page(vm_page_t msrc, vm_page_t mdst)
4881 {
4882 	vm_offset_t src = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(msrc));
4883 	vm_offset_t dst = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mdst));
4884 
4885 	pagecopy((void *)src, (void *)dst);
4886 }
4887 
4888 int unmapped_buf_allowed = 1;
4889 
4890 void
pmap_copy_pages(vm_page_t ma[],vm_offset_t a_offset,vm_page_t mb[],vm_offset_t b_offset,int xfersize)4891 pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
4892     vm_offset_t b_offset, int xfersize)
4893 {
4894 	void *a_cp, *b_cp;
4895 	vm_page_t m_a, m_b;
4896 	vm_paddr_t p_a, p_b;
4897 	vm_offset_t a_pg_offset, b_pg_offset;
4898 	int cnt;
4899 
4900 	while (xfersize > 0) {
4901 		a_pg_offset = a_offset & PAGE_MASK;
4902 		m_a = ma[a_offset >> PAGE_SHIFT];
4903 		p_a = m_a->phys_addr;
4904 		b_pg_offset = b_offset & PAGE_MASK;
4905 		m_b = mb[b_offset >> PAGE_SHIFT];
4906 		p_b = m_b->phys_addr;
4907 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
4908 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
4909 		if (__predict_false(!PHYS_IN_DMAP(p_a))) {
4910 			panic("!DMAP a %lx", p_a);
4911 		} else {
4912 			a_cp = (char *)PHYS_TO_DMAP(p_a) + a_pg_offset;
4913 		}
4914 		if (__predict_false(!PHYS_IN_DMAP(p_b))) {
4915 			panic("!DMAP b %lx", p_b);
4916 		} else {
4917 			b_cp = (char *)PHYS_TO_DMAP(p_b) + b_pg_offset;
4918 		}
4919 		bcopy(a_cp, b_cp, cnt);
4920 		a_offset += cnt;
4921 		b_offset += cnt;
4922 		xfersize -= cnt;
4923 	}
4924 }
4925 
4926 vm_offset_t
pmap_quick_enter_page(vm_page_t m)4927 pmap_quick_enter_page(vm_page_t m)
4928 {
4929 
4930 	return (PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)));
4931 }
4932 
4933 void
pmap_quick_remove_page(vm_offset_t addr)4934 pmap_quick_remove_page(vm_offset_t addr)
4935 {
4936 }
4937 
4938 /*
4939  * Returns true if the pmap's pv is one of the first
4940  * 16 pvs linked to from this page.  This count may
4941  * be changed upwards or downwards in the future; it
4942  * is only necessary that true be returned for a small
4943  * subset of pmaps for proper page aging.
4944  */
4945 boolean_t
pmap_page_exists_quick(pmap_t pmap,vm_page_t m)4946 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
4947 {
4948 	struct md_page *pvh;
4949 	struct rwlock *lock;
4950 	pv_entry_t pv;
4951 	int loops = 0;
4952 	boolean_t rv;
4953 
4954 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4955 	    ("pmap_page_exists_quick: page %p is not managed", m));
4956 	rv = FALSE;
4957 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
4958 	rw_rlock(lock);
4959 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
4960 		if (PV_PMAP(pv) == pmap) {
4961 			rv = TRUE;
4962 			break;
4963 		}
4964 		loops++;
4965 		if (loops >= 16)
4966 			break;
4967 	}
4968 	if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
4969 		pvh = page_to_pvh(m);
4970 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
4971 			if (PV_PMAP(pv) == pmap) {
4972 				rv = TRUE;
4973 				break;
4974 			}
4975 			loops++;
4976 			if (loops >= 16)
4977 				break;
4978 		}
4979 	}
4980 	rw_runlock(lock);
4981 	return (rv);
4982 }
4983 
4984 /*
4985  *	pmap_page_wired_mappings:
4986  *
4987  *	Return the number of managed mappings to the given physical page
4988  *	that are wired.
4989  */
4990 int
pmap_page_wired_mappings(vm_page_t m)4991 pmap_page_wired_mappings(vm_page_t m)
4992 {
4993 	struct rwlock *lock;
4994 	struct md_page *pvh;
4995 	pmap_t pmap;
4996 	pt_entry_t *pte;
4997 	pv_entry_t pv;
4998 	int count, lvl, md_gen, pvh_gen;
4999 
5000 	if ((m->oflags & VPO_UNMANAGED) != 0)
5001 		return (0);
5002 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
5003 	rw_rlock(lock);
5004 restart:
5005 	count = 0;
5006 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5007 		pmap = PV_PMAP(pv);
5008 		if (!PMAP_TRYLOCK(pmap)) {
5009 			md_gen = m->md.pv_gen;
5010 			rw_runlock(lock);
5011 			PMAP_LOCK(pmap);
5012 			rw_rlock(lock);
5013 			if (md_gen != m->md.pv_gen) {
5014 				PMAP_UNLOCK(pmap);
5015 				goto restart;
5016 			}
5017 		}
5018 		pte = pmap_pte(pmap, pv->pv_va, &lvl);
5019 		if (pte != NULL && (pmap_load(pte) & ATTR_SW_WIRED) != 0)
5020 			count++;
5021 		PMAP_UNLOCK(pmap);
5022 	}
5023 	if ((m->flags & PG_FICTITIOUS) == 0) {
5024 		pvh = page_to_pvh(m);
5025 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5026 			pmap = PV_PMAP(pv);
5027 			if (!PMAP_TRYLOCK(pmap)) {
5028 				md_gen = m->md.pv_gen;
5029 				pvh_gen = pvh->pv_gen;
5030 				rw_runlock(lock);
5031 				PMAP_LOCK(pmap);
5032 				rw_rlock(lock);
5033 				if (md_gen != m->md.pv_gen ||
5034 				    pvh_gen != pvh->pv_gen) {
5035 					PMAP_UNLOCK(pmap);
5036 					goto restart;
5037 				}
5038 			}
5039 			pte = pmap_pte(pmap, pv->pv_va, &lvl);
5040 			if (pte != NULL &&
5041 			    (pmap_load(pte) & ATTR_SW_WIRED) != 0)
5042 				count++;
5043 			PMAP_UNLOCK(pmap);
5044 		}
5045 	}
5046 	rw_runlock(lock);
5047 	return (count);
5048 }
5049 
5050 /*
5051  * Returns true if the given page is mapped individually or as part of
5052  * a 2mpage.  Otherwise, returns false.
5053  */
5054 bool
pmap_page_is_mapped(vm_page_t m)5055 pmap_page_is_mapped(vm_page_t m)
5056 {
5057 	struct rwlock *lock;
5058 	bool rv;
5059 
5060 	if ((m->oflags & VPO_UNMANAGED) != 0)
5061 		return (false);
5062 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
5063 	rw_rlock(lock);
5064 	rv = !TAILQ_EMPTY(&m->md.pv_list) ||
5065 	    ((m->flags & PG_FICTITIOUS) == 0 &&
5066 	    !TAILQ_EMPTY(&page_to_pvh(m)->pv_list));
5067 	rw_runlock(lock);
5068 	return (rv);
5069 }
5070 
5071 /*
5072  * Destroy all managed, non-wired mappings in the given user-space
5073  * pmap.  This pmap cannot be active on any processor besides the
5074  * caller.
5075  *
5076  * This function cannot be applied to the kernel pmap.  Moreover, it
5077  * is not intended for general use.  It is only to be used during
5078  * process termination.  Consequently, it can be implemented in ways
5079  * that make it faster than pmap_remove().  First, it can more quickly
5080  * destroy mappings by iterating over the pmap's collection of PV
5081  * entries, rather than searching the page table.  Second, it doesn't
5082  * have to test and clear the page table entries atomically, because
5083  * no processor is currently accessing the user address space.  In
5084  * particular, a page table entry's dirty bit won't change state once
5085  * this function starts.
5086  */
5087 void
pmap_remove_pages(pmap_t pmap)5088 pmap_remove_pages(pmap_t pmap)
5089 {
5090 	pd_entry_t *pde;
5091 	pt_entry_t *pte, tpte;
5092 	struct spglist free;
5093 	vm_page_t m, ml3, mt;
5094 	pv_entry_t pv;
5095 	struct md_page *pvh;
5096 	struct pv_chunk *pc, *npc;
5097 	struct rwlock *lock;
5098 	int64_t bit;
5099 	uint64_t inuse, bitmask;
5100 	int allfree, field, freed, idx, lvl;
5101 	vm_paddr_t pa;
5102 
5103 	lock = NULL;
5104 
5105 	SLIST_INIT(&free);
5106 	PMAP_LOCK(pmap);
5107 	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
5108 		allfree = 1;
5109 		freed = 0;
5110 		for (field = 0; field < _NPCM; field++) {
5111 			inuse = ~pc->pc_map[field] & pc_freemask[field];
5112 			while (inuse != 0) {
5113 				bit = ffsl(inuse) - 1;
5114 				bitmask = 1UL << bit;
5115 				idx = field * 64 + bit;
5116 				pv = &pc->pc_pventry[idx];
5117 				inuse &= ~bitmask;
5118 
5119 				pde = pmap_pde(pmap, pv->pv_va, &lvl);
5120 				KASSERT(pde != NULL,
5121 				    ("Attempting to remove an unmapped page"));
5122 
5123 				switch(lvl) {
5124 				case 1:
5125 					pte = pmap_l1_to_l2(pde, pv->pv_va);
5126 					tpte = pmap_load(pte);
5127 					KASSERT((tpte & ATTR_DESCR_MASK) ==
5128 					    L2_BLOCK,
5129 					    ("Attempting to remove an invalid "
5130 					    "block: %lx", tpte));
5131 					break;
5132 				case 2:
5133 					pte = pmap_l2_to_l3(pde, pv->pv_va);
5134 					tpte = pmap_load(pte);
5135 					KASSERT((tpte & ATTR_DESCR_MASK) ==
5136 					    L3_PAGE,
5137 					    ("Attempting to remove an invalid "
5138 					     "page: %lx", tpte));
5139 					break;
5140 				default:
5141 					panic(
5142 					    "Invalid page directory level: %d",
5143 					    lvl);
5144 				}
5145 
5146 /*
5147  * We cannot remove wired pages from a process' mapping at this time
5148  */
5149 				if (tpte & ATTR_SW_WIRED) {
5150 					allfree = 0;
5151 					continue;
5152 				}
5153 
5154 				pa = tpte & ~ATTR_MASK;
5155 
5156 				m = PHYS_TO_VM_PAGE(pa);
5157 				KASSERT(m->phys_addr == pa,
5158 				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
5159 				    m, (uintmax_t)m->phys_addr,
5160 				    (uintmax_t)tpte));
5161 
5162 				KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
5163 				    m < &vm_page_array[vm_page_array_size],
5164 				    ("pmap_remove_pages: bad pte %#jx",
5165 				    (uintmax_t)tpte));
5166 
5167 				/*
5168 				 * Because this pmap is not active on other
5169 				 * processors, the dirty bit cannot have
5170 				 * changed state since we last loaded pte.
5171 				 */
5172 				pmap_clear(pte);
5173 
5174 				/*
5175 				 * Update the vm_page_t clean/reference bits.
5176 				 */
5177 				if (pmap_pte_dirty(pmap, tpte)) {
5178 					switch (lvl) {
5179 					case 1:
5180 						for (mt = m; mt < &m[L2_SIZE / PAGE_SIZE]; mt++)
5181 							vm_page_dirty(mt);
5182 						break;
5183 					case 2:
5184 						vm_page_dirty(m);
5185 						break;
5186 					}
5187 				}
5188 
5189 				CHANGE_PV_LIST_LOCK_TO_VM_PAGE(&lock, m);
5190 
5191 				/* Mark free */
5192 				pc->pc_map[field] |= bitmask;
5193 				switch (lvl) {
5194 				case 1:
5195 					pmap_resident_count_dec(pmap,
5196 					    L2_SIZE / PAGE_SIZE);
5197 					pvh = pa_to_pvh(tpte & ~ATTR_MASK);
5198 					TAILQ_REMOVE(&pvh->pv_list, pv,pv_next);
5199 					pvh->pv_gen++;
5200 					if (TAILQ_EMPTY(&pvh->pv_list)) {
5201 						for (mt = m; mt < &m[L2_SIZE / PAGE_SIZE]; mt++)
5202 							if ((mt->a.flags & PGA_WRITEABLE) != 0 &&
5203 							    TAILQ_EMPTY(&mt->md.pv_list))
5204 								vm_page_aflag_clear(mt, PGA_WRITEABLE);
5205 					}
5206 					ml3 = pmap_remove_pt_page(pmap,
5207 					    pv->pv_va);
5208 					if (ml3 != NULL) {
5209 						KASSERT(ml3->valid == VM_PAGE_BITS_ALL,
5210 						    ("pmap_remove_pages: l3 page not promoted"));
5211 						pmap_resident_count_dec(pmap,1);
5212 						KASSERT(ml3->ref_count == NL3PG,
5213 						    ("pmap_remove_pages: l3 page ref count error"));
5214 						ml3->ref_count = 0;
5215 						pmap_add_delayed_free_list(ml3,
5216 						    &free, FALSE);
5217 					}
5218 					break;
5219 				case 2:
5220 					pmap_resident_count_dec(pmap, 1);
5221 					TAILQ_REMOVE(&m->md.pv_list, pv,
5222 					    pv_next);
5223 					m->md.pv_gen++;
5224 					if ((m->a.flags & PGA_WRITEABLE) != 0 &&
5225 					    TAILQ_EMPTY(&m->md.pv_list) &&
5226 					    (m->flags & PG_FICTITIOUS) == 0) {
5227 						pvh = page_to_pvh(m);
5228 						if (TAILQ_EMPTY(&pvh->pv_list))
5229 							vm_page_aflag_clear(m,
5230 							    PGA_WRITEABLE);
5231 					}
5232 					break;
5233 				}
5234 				pmap_unuse_pt(pmap, pv->pv_va, pmap_load(pde),
5235 				    &free);
5236 				freed++;
5237 			}
5238 		}
5239 		PV_STAT(atomic_add_long(&pv_entry_frees, freed));
5240 		PV_STAT(atomic_add_int(&pv_entry_spare, freed));
5241 		PV_STAT(atomic_subtract_long(&pv_entry_count, freed));
5242 		if (allfree) {
5243 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5244 			free_pv_chunk(pc);
5245 		}
5246 	}
5247 	if (lock != NULL)
5248 		rw_wunlock(lock);
5249 	pmap_invalidate_all(pmap);
5250 	PMAP_UNLOCK(pmap);
5251 	vm_page_free_pages_toq(&free, true);
5252 }
5253 
5254 /*
5255  * This is used to check if a page has been accessed or modified.
5256  */
5257 static boolean_t
pmap_page_test_mappings(vm_page_t m,boolean_t accessed,boolean_t modified)5258 pmap_page_test_mappings(vm_page_t m, boolean_t accessed, boolean_t modified)
5259 {
5260 	struct rwlock *lock;
5261 	pv_entry_t pv;
5262 	struct md_page *pvh;
5263 	pt_entry_t *pte, mask, value;
5264 	pmap_t pmap;
5265 	int lvl, md_gen, pvh_gen;
5266 	boolean_t rv;
5267 
5268 	rv = FALSE;
5269 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
5270 	rw_rlock(lock);
5271 restart:
5272 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5273 		pmap = PV_PMAP(pv);
5274 		PMAP_ASSERT_STAGE1(pmap);
5275 		if (!PMAP_TRYLOCK(pmap)) {
5276 			md_gen = m->md.pv_gen;
5277 			rw_runlock(lock);
5278 			PMAP_LOCK(pmap);
5279 			rw_rlock(lock);
5280 			if (md_gen != m->md.pv_gen) {
5281 				PMAP_UNLOCK(pmap);
5282 				goto restart;
5283 			}
5284 		}
5285 		pte = pmap_pte(pmap, pv->pv_va, &lvl);
5286 		KASSERT(lvl == 3,
5287 		    ("pmap_page_test_mappings: Invalid level %d", lvl));
5288 		mask = 0;
5289 		value = 0;
5290 		if (modified) {
5291 			mask |= ATTR_S1_AP_RW_BIT;
5292 			value |= ATTR_S1_AP(ATTR_S1_AP_RW);
5293 		}
5294 		if (accessed) {
5295 			mask |= ATTR_AF | ATTR_DESCR_MASK;
5296 			value |= ATTR_AF | L3_PAGE;
5297 		}
5298 		rv = (pmap_load(pte) & mask) == value;
5299 		PMAP_UNLOCK(pmap);
5300 		if (rv)
5301 			goto out;
5302 	}
5303 	if ((m->flags & PG_FICTITIOUS) == 0) {
5304 		pvh = page_to_pvh(m);
5305 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5306 			pmap = PV_PMAP(pv);
5307 			PMAP_ASSERT_STAGE1(pmap);
5308 			if (!PMAP_TRYLOCK(pmap)) {
5309 				md_gen = m->md.pv_gen;
5310 				pvh_gen = pvh->pv_gen;
5311 				rw_runlock(lock);
5312 				PMAP_LOCK(pmap);
5313 				rw_rlock(lock);
5314 				if (md_gen != m->md.pv_gen ||
5315 				    pvh_gen != pvh->pv_gen) {
5316 					PMAP_UNLOCK(pmap);
5317 					goto restart;
5318 				}
5319 			}
5320 			pte = pmap_pte(pmap, pv->pv_va, &lvl);
5321 			KASSERT(lvl == 2,
5322 			    ("pmap_page_test_mappings: Invalid level %d", lvl));
5323 			mask = 0;
5324 			value = 0;
5325 			if (modified) {
5326 				mask |= ATTR_S1_AP_RW_BIT;
5327 				value |= ATTR_S1_AP(ATTR_S1_AP_RW);
5328 			}
5329 			if (accessed) {
5330 				mask |= ATTR_AF | ATTR_DESCR_MASK;
5331 				value |= ATTR_AF | L2_BLOCK;
5332 			}
5333 			rv = (pmap_load(pte) & mask) == value;
5334 			PMAP_UNLOCK(pmap);
5335 			if (rv)
5336 				goto out;
5337 		}
5338 	}
5339 out:
5340 	rw_runlock(lock);
5341 	return (rv);
5342 }
5343 
5344 /*
5345  *	pmap_is_modified:
5346  *
5347  *	Return whether or not the specified physical page was modified
5348  *	in any physical maps.
5349  */
5350 boolean_t
pmap_is_modified(vm_page_t m)5351 pmap_is_modified(vm_page_t m)
5352 {
5353 
5354 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5355 	    ("pmap_is_modified: page %p is not managed", m));
5356 
5357 	/*
5358 	 * If the page is not busied then this check is racy.
5359 	 */
5360 	if (!pmap_page_is_write_mapped(m))
5361 		return (FALSE);
5362 	return (pmap_page_test_mappings(m, FALSE, TRUE));
5363 }
5364 
5365 /*
5366  *	pmap_is_prefaultable:
5367  *
5368  *	Return whether or not the specified virtual address is eligible
5369  *	for prefault.
5370  */
5371 boolean_t
pmap_is_prefaultable(pmap_t pmap,vm_offset_t addr)5372 pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
5373 {
5374 	pt_entry_t *pte;
5375 	boolean_t rv;
5376 	int lvl;
5377 
5378 	rv = FALSE;
5379 	PMAP_LOCK(pmap);
5380 	pte = pmap_pte(pmap, addr, &lvl);
5381 	if (pte != NULL && pmap_load(pte) != 0) {
5382 		rv = TRUE;
5383 	}
5384 	PMAP_UNLOCK(pmap);
5385 	return (rv);
5386 }
5387 
5388 /*
5389  *	pmap_is_referenced:
5390  *
5391  *	Return whether or not the specified physical page was referenced
5392  *	in any physical maps.
5393  */
5394 boolean_t
pmap_is_referenced(vm_page_t m)5395 pmap_is_referenced(vm_page_t m)
5396 {
5397 
5398 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5399 	    ("pmap_is_referenced: page %p is not managed", m));
5400 	return (pmap_page_test_mappings(m, TRUE, FALSE));
5401 }
5402 
5403 /*
5404  * Clear the write and modified bits in each of the given page's mappings.
5405  */
5406 void
pmap_remove_write(vm_page_t m)5407 pmap_remove_write(vm_page_t m)
5408 {
5409 	struct md_page *pvh;
5410 	pmap_t pmap;
5411 	struct rwlock *lock;
5412 	pv_entry_t next_pv, pv;
5413 	pt_entry_t oldpte, *pte;
5414 	vm_offset_t va;
5415 	int lvl, md_gen, pvh_gen;
5416 
5417 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5418 	    ("pmap_remove_write: page %p is not managed", m));
5419 	vm_page_assert_busied(m);
5420 
5421 	if (!pmap_page_is_write_mapped(m))
5422 		return;
5423 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
5424 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy : page_to_pvh(m);
5425 retry_pv_loop:
5426 	rw_wlock(lock);
5427 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
5428 		pmap = PV_PMAP(pv);
5429 		PMAP_ASSERT_STAGE1(pmap);
5430 		if (!PMAP_TRYLOCK(pmap)) {
5431 			pvh_gen = pvh->pv_gen;
5432 			rw_wunlock(lock);
5433 			PMAP_LOCK(pmap);
5434 			rw_wlock(lock);
5435 			if (pvh_gen != pvh->pv_gen) {
5436 				PMAP_UNLOCK(pmap);
5437 				rw_wunlock(lock);
5438 				goto retry_pv_loop;
5439 			}
5440 		}
5441 		va = pv->pv_va;
5442 		pte = pmap_pte(pmap, pv->pv_va, &lvl);
5443 		if ((pmap_load(pte) & ATTR_SW_DBM) != 0)
5444 			(void)pmap_demote_l2_locked(pmap, pte, va, &lock);
5445 		KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
5446 		    ("inconsistent pv lock %p %p for page %p",
5447 		    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
5448 		PMAP_UNLOCK(pmap);
5449 	}
5450 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5451 		pmap = PV_PMAP(pv);
5452 		PMAP_ASSERT_STAGE1(pmap);
5453 		if (!PMAP_TRYLOCK(pmap)) {
5454 			pvh_gen = pvh->pv_gen;
5455 			md_gen = m->md.pv_gen;
5456 			rw_wunlock(lock);
5457 			PMAP_LOCK(pmap);
5458 			rw_wlock(lock);
5459 			if (pvh_gen != pvh->pv_gen ||
5460 			    md_gen != m->md.pv_gen) {
5461 				PMAP_UNLOCK(pmap);
5462 				rw_wunlock(lock);
5463 				goto retry_pv_loop;
5464 			}
5465 		}
5466 		pte = pmap_pte(pmap, pv->pv_va, &lvl);
5467 		oldpte = pmap_load(pte);
5468 retry:
5469 		if ((oldpte & ATTR_SW_DBM) != 0) {
5470 			if (!atomic_fcmpset_long(pte, &oldpte,
5471 			    (oldpte | ATTR_S1_AP_RW_BIT) & ~ATTR_SW_DBM))
5472 				goto retry;
5473 			if ((oldpte & ATTR_S1_AP_RW_BIT) ==
5474 			    ATTR_S1_AP(ATTR_S1_AP_RW))
5475 				vm_page_dirty(m);
5476 			pmap_invalidate_page(pmap, pv->pv_va);
5477 		}
5478 		PMAP_UNLOCK(pmap);
5479 	}
5480 	rw_wunlock(lock);
5481 	vm_page_aflag_clear(m, PGA_WRITEABLE);
5482 }
5483 
5484 /*
5485  *	pmap_ts_referenced:
5486  *
5487  *	Return a count of reference bits for a page, clearing those bits.
5488  *	It is not necessary for every reference bit to be cleared, but it
5489  *	is necessary that 0 only be returned when there are truly no
5490  *	reference bits set.
5491  *
5492  *	As an optimization, update the page's dirty field if a modified bit is
5493  *	found while counting reference bits.  This opportunistic update can be
5494  *	performed at low cost and can eliminate the need for some future calls
5495  *	to pmap_is_modified().  However, since this function stops after
5496  *	finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
5497  *	dirty pages.  Those dirty pages will only be detected by a future call
5498  *	to pmap_is_modified().
5499  */
5500 int
pmap_ts_referenced(vm_page_t m)5501 pmap_ts_referenced(vm_page_t m)
5502 {
5503 	struct md_page *pvh;
5504 	pv_entry_t pv, pvf;
5505 	pmap_t pmap;
5506 	struct rwlock *lock;
5507 	pd_entry_t *pde, tpde;
5508 	pt_entry_t *pte, tpte;
5509 	vm_offset_t va;
5510 	vm_paddr_t pa;
5511 	int cleared, lvl, md_gen, not_cleared, pvh_gen;
5512 	struct spglist free;
5513 
5514 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5515 	    ("pmap_ts_referenced: page %p is not managed", m));
5516 	SLIST_INIT(&free);
5517 	cleared = 0;
5518 	pa = VM_PAGE_TO_PHYS(m);
5519 	lock = PHYS_TO_PV_LIST_LOCK(pa);
5520 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy : page_to_pvh(m);
5521 	rw_wlock(lock);
5522 retry:
5523 	not_cleared = 0;
5524 	if ((pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
5525 		goto small_mappings;
5526 	pv = pvf;
5527 	do {
5528 		if (pvf == NULL)
5529 			pvf = pv;
5530 		pmap = PV_PMAP(pv);
5531 		if (!PMAP_TRYLOCK(pmap)) {
5532 			pvh_gen = pvh->pv_gen;
5533 			rw_wunlock(lock);
5534 			PMAP_LOCK(pmap);
5535 			rw_wlock(lock);
5536 			if (pvh_gen != pvh->pv_gen) {
5537 				PMAP_UNLOCK(pmap);
5538 				goto retry;
5539 			}
5540 		}
5541 		va = pv->pv_va;
5542 		pde = pmap_pde(pmap, pv->pv_va, &lvl);
5543 		KASSERT(pde != NULL, ("pmap_ts_referenced: no l1 table found"));
5544 		KASSERT(lvl == 1,
5545 		    ("pmap_ts_referenced: invalid pde level %d", lvl));
5546 		tpde = pmap_load(pde);
5547 		KASSERT((tpde & ATTR_DESCR_MASK) == L1_TABLE,
5548 		    ("pmap_ts_referenced: found an invalid l1 table"));
5549 		pte = pmap_l1_to_l2(pde, pv->pv_va);
5550 		tpte = pmap_load(pte);
5551 		if (pmap_pte_dirty(pmap, tpte)) {
5552 			/*
5553 			 * Although "tpte" is mapping a 2MB page, because
5554 			 * this function is called at a 4KB page granularity,
5555 			 * we only update the 4KB page under test.
5556 			 */
5557 			vm_page_dirty(m);
5558 		}
5559 
5560 		if ((tpte & ATTR_AF) != 0) {
5561 			/*
5562 			 * Since this reference bit is shared by 512 4KB pages,
5563 			 * it should not be cleared every time it is tested.
5564 			 * Apply a simple "hash" function on the physical page
5565 			 * number, the virtual superpage number, and the pmap
5566 			 * address to select one 4KB page out of the 512 on
5567 			 * which testing the reference bit will result in
5568 			 * clearing that reference bit.  This function is
5569 			 * designed to avoid the selection of the same 4KB page
5570 			 * for every 2MB page mapping.
5571 			 *
5572 			 * On demotion, a mapping that hasn't been referenced
5573 			 * is simply destroyed.  To avoid the possibility of a
5574 			 * subsequent page fault on a demoted wired mapping,
5575 			 * always leave its reference bit set.  Moreover,
5576 			 * since the superpage is wired, the current state of
5577 			 * its reference bit won't affect page replacement.
5578 			 */
5579 			if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> L2_SHIFT) ^
5580 			    (uintptr_t)pmap) & (Ln_ENTRIES - 1)) == 0 &&
5581 			    (tpte & ATTR_SW_WIRED) == 0) {
5582 				pmap_clear_bits(pte, ATTR_AF);
5583 				pmap_invalidate_page(pmap, pv->pv_va);
5584 				cleared++;
5585 			} else
5586 				not_cleared++;
5587 		}
5588 		PMAP_UNLOCK(pmap);
5589 		/* Rotate the PV list if it has more than one entry. */
5590 		if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
5591 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
5592 			TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
5593 			pvh->pv_gen++;
5594 		}
5595 		if (cleared + not_cleared >= PMAP_TS_REFERENCED_MAX)
5596 			goto out;
5597 	} while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
5598 small_mappings:
5599 	if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
5600 		goto out;
5601 	pv = pvf;
5602 	do {
5603 		if (pvf == NULL)
5604 			pvf = pv;
5605 		pmap = PV_PMAP(pv);
5606 		if (!PMAP_TRYLOCK(pmap)) {
5607 			pvh_gen = pvh->pv_gen;
5608 			md_gen = m->md.pv_gen;
5609 			rw_wunlock(lock);
5610 			PMAP_LOCK(pmap);
5611 			rw_wlock(lock);
5612 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
5613 				PMAP_UNLOCK(pmap);
5614 				goto retry;
5615 			}
5616 		}
5617 		pde = pmap_pde(pmap, pv->pv_va, &lvl);
5618 		KASSERT(pde != NULL, ("pmap_ts_referenced: no l2 table found"));
5619 		KASSERT(lvl == 2,
5620 		    ("pmap_ts_referenced: invalid pde level %d", lvl));
5621 		tpde = pmap_load(pde);
5622 		KASSERT((tpde & ATTR_DESCR_MASK) == L2_TABLE,
5623 		    ("pmap_ts_referenced: found an invalid l2 table"));
5624 		pte = pmap_l2_to_l3(pde, pv->pv_va);
5625 		tpte = pmap_load(pte);
5626 		if (pmap_pte_dirty(pmap, tpte))
5627 			vm_page_dirty(m);
5628 		if ((tpte & ATTR_AF) != 0) {
5629 			if ((tpte & ATTR_SW_WIRED) == 0) {
5630 				pmap_clear_bits(pte, ATTR_AF);
5631 				pmap_invalidate_page(pmap, pv->pv_va);
5632 				cleared++;
5633 			} else
5634 				not_cleared++;
5635 		}
5636 		PMAP_UNLOCK(pmap);
5637 		/* Rotate the PV list if it has more than one entry. */
5638 		if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
5639 			TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
5640 			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5641 			m->md.pv_gen++;
5642 		}
5643 	} while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && cleared +
5644 	    not_cleared < PMAP_TS_REFERENCED_MAX);
5645 out:
5646 	rw_wunlock(lock);
5647 	vm_page_free_pages_toq(&free, true);
5648 	return (cleared + not_cleared);
5649 }
5650 
5651 /*
5652  *	Apply the given advice to the specified range of addresses within the
5653  *	given pmap.  Depending on the advice, clear the referenced and/or
5654  *	modified flags in each mapping and set the mapped page's dirty field.
5655  */
5656 void
pmap_advise(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,int advice)5657 pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
5658 {
5659 	struct rwlock *lock;
5660 	vm_offset_t va, va_next;
5661 	vm_page_t m;
5662 	pd_entry_t *l0, *l1, *l2, oldl2;
5663 	pt_entry_t *l3, oldl3;
5664 
5665 	PMAP_ASSERT_STAGE1(pmap);
5666 
5667 	if (advice != MADV_DONTNEED && advice != MADV_FREE)
5668 		return;
5669 
5670 	PMAP_LOCK(pmap);
5671 	for (; sva < eva; sva = va_next) {
5672 		l0 = pmap_l0(pmap, sva);
5673 		if (pmap_load(l0) == 0) {
5674 			va_next = (sva + L0_SIZE) & ~L0_OFFSET;
5675 			if (va_next < sva)
5676 				va_next = eva;
5677 			continue;
5678 		}
5679 
5680 		va_next = (sva + L1_SIZE) & ~L1_OFFSET;
5681 		if (va_next < sva)
5682 			va_next = eva;
5683 		l1 = pmap_l0_to_l1(l0, sva);
5684 		if (pmap_load(l1) == 0)
5685 			continue;
5686 		if ((pmap_load(l1) & ATTR_DESCR_MASK) == L1_BLOCK) {
5687 			KASSERT(va_next <= eva,
5688 			    ("partial update of non-transparent 1G page "
5689 			    "l1 %#lx sva %#lx eva %#lx va_next %#lx",
5690 			    pmap_load(l1), sva, eva, va_next));
5691 			continue;
5692 		}
5693 
5694 		va_next = (sva + L2_SIZE) & ~L2_OFFSET;
5695 		if (va_next < sva)
5696 			va_next = eva;
5697 		l2 = pmap_l1_to_l2(l1, sva);
5698 		oldl2 = pmap_load(l2);
5699 		if (oldl2 == 0)
5700 			continue;
5701 		if ((oldl2 & ATTR_DESCR_MASK) == L2_BLOCK) {
5702 			if ((oldl2 & ATTR_SW_MANAGED) == 0)
5703 				continue;
5704 			lock = NULL;
5705 			if (!pmap_demote_l2_locked(pmap, l2, sva, &lock)) {
5706 				if (lock != NULL)
5707 					rw_wunlock(lock);
5708 
5709 				/*
5710 				 * The 2MB page mapping was destroyed.
5711 				 */
5712 				continue;
5713 			}
5714 
5715 			/*
5716 			 * Unless the page mappings are wired, remove the
5717 			 * mapping to a single page so that a subsequent
5718 			 * access may repromote.  Choosing the last page
5719 			 * within the address range [sva, min(va_next, eva))
5720 			 * generally results in more repromotions.  Since the
5721 			 * underlying page table page is fully populated, this
5722 			 * removal never frees a page table page.
5723 			 */
5724 			if ((oldl2 & ATTR_SW_WIRED) == 0) {
5725 				va = eva;
5726 				if (va > va_next)
5727 					va = va_next;
5728 				va -= PAGE_SIZE;
5729 				KASSERT(va >= sva,
5730 				    ("pmap_advise: no address gap"));
5731 				l3 = pmap_l2_to_l3(l2, va);
5732 				KASSERT(pmap_load(l3) != 0,
5733 				    ("pmap_advise: invalid PTE"));
5734 				pmap_remove_l3(pmap, l3, va, pmap_load(l2),
5735 				    NULL, &lock);
5736 			}
5737 			if (lock != NULL)
5738 				rw_wunlock(lock);
5739 		}
5740 		KASSERT((pmap_load(l2) & ATTR_DESCR_MASK) == L2_TABLE,
5741 		    ("pmap_advise: invalid L2 entry after demotion"));
5742 		if (va_next > eva)
5743 			va_next = eva;
5744 		va = va_next;
5745 		for (l3 = pmap_l2_to_l3(l2, sva); sva != va_next; l3++,
5746 		    sva += L3_SIZE) {
5747 			oldl3 = pmap_load(l3);
5748 			if ((oldl3 & (ATTR_SW_MANAGED | ATTR_DESCR_MASK)) !=
5749 			    (ATTR_SW_MANAGED | L3_PAGE))
5750 				goto maybe_invlrng;
5751 			else if (pmap_pte_dirty(pmap, oldl3)) {
5752 				if (advice == MADV_DONTNEED) {
5753 					/*
5754 					 * Future calls to pmap_is_modified()
5755 					 * can be avoided by making the page
5756 					 * dirty now.
5757 					 */
5758 					m = PHYS_TO_VM_PAGE(oldl3 & ~ATTR_MASK);
5759 					vm_page_dirty(m);
5760 				}
5761 				while (!atomic_fcmpset_long(l3, &oldl3,
5762 				    (oldl3 & ~ATTR_AF) |
5763 				    ATTR_S1_AP(ATTR_S1_AP_RO)))
5764 					cpu_spinwait();
5765 			} else if ((oldl3 & ATTR_AF) != 0)
5766 				pmap_clear_bits(l3, ATTR_AF);
5767 			else
5768 				goto maybe_invlrng;
5769 			if (va == va_next)
5770 				va = sva;
5771 			continue;
5772 maybe_invlrng:
5773 			if (va != va_next) {
5774 				pmap_invalidate_range(pmap, va, sva);
5775 				va = va_next;
5776 			}
5777 		}
5778 		if (va != va_next)
5779 			pmap_invalidate_range(pmap, va, sva);
5780 	}
5781 	PMAP_UNLOCK(pmap);
5782 }
5783 
5784 /*
5785  *	Clear the modify bits on the specified physical page.
5786  */
5787 void
pmap_clear_modify(vm_page_t m)5788 pmap_clear_modify(vm_page_t m)
5789 {
5790 	struct md_page *pvh;
5791 	struct rwlock *lock;
5792 	pmap_t pmap;
5793 	pv_entry_t next_pv, pv;
5794 	pd_entry_t *l2, oldl2;
5795 	pt_entry_t *l3, oldl3;
5796 	vm_offset_t va;
5797 	int md_gen, pvh_gen;
5798 
5799 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5800 	    ("pmap_clear_modify: page %p is not managed", m));
5801 	vm_page_assert_busied(m);
5802 
5803 	if (!pmap_page_is_write_mapped(m))
5804 		return;
5805 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy : page_to_pvh(m);
5806 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
5807 	rw_wlock(lock);
5808 restart:
5809 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
5810 		pmap = PV_PMAP(pv);
5811 		PMAP_ASSERT_STAGE1(pmap);
5812 		if (!PMAP_TRYLOCK(pmap)) {
5813 			pvh_gen = pvh->pv_gen;
5814 			rw_wunlock(lock);
5815 			PMAP_LOCK(pmap);
5816 			rw_wlock(lock);
5817 			if (pvh_gen != pvh->pv_gen) {
5818 				PMAP_UNLOCK(pmap);
5819 				goto restart;
5820 			}
5821 		}
5822 		va = pv->pv_va;
5823 		l2 = pmap_l2(pmap, va);
5824 		oldl2 = pmap_load(l2);
5825 		/* If oldl2 has ATTR_SW_DBM set, then it is also dirty. */
5826 		if ((oldl2 & ATTR_SW_DBM) != 0 &&
5827 		    pmap_demote_l2_locked(pmap, l2, va, &lock) &&
5828 		    (oldl2 & ATTR_SW_WIRED) == 0) {
5829 			/*
5830 			 * Write protect the mapping to a single page so that
5831 			 * a subsequent write access may repromote.
5832 			 */
5833 			va += VM_PAGE_TO_PHYS(m) - (oldl2 & ~ATTR_MASK);
5834 			l3 = pmap_l2_to_l3(l2, va);
5835 			oldl3 = pmap_load(l3);
5836 			while (!atomic_fcmpset_long(l3, &oldl3,
5837 			    (oldl3 & ~ATTR_SW_DBM) | ATTR_S1_AP(ATTR_S1_AP_RO)))
5838 				cpu_spinwait();
5839 			vm_page_dirty(m);
5840 			pmap_invalidate_page(pmap, va);
5841 		}
5842 		PMAP_UNLOCK(pmap);
5843 	}
5844 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5845 		pmap = PV_PMAP(pv);
5846 		PMAP_ASSERT_STAGE1(pmap);
5847 		if (!PMAP_TRYLOCK(pmap)) {
5848 			md_gen = m->md.pv_gen;
5849 			pvh_gen = pvh->pv_gen;
5850 			rw_wunlock(lock);
5851 			PMAP_LOCK(pmap);
5852 			rw_wlock(lock);
5853 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
5854 				PMAP_UNLOCK(pmap);
5855 				goto restart;
5856 			}
5857 		}
5858 		l2 = pmap_l2(pmap, pv->pv_va);
5859 		l3 = pmap_l2_to_l3(l2, pv->pv_va);
5860 		oldl3 = pmap_load(l3);
5861 		if (pmap_l3_valid(oldl3) &&
5862 		    (oldl3 & (ATTR_S1_AP_RW_BIT | ATTR_SW_DBM)) == ATTR_SW_DBM){
5863 			pmap_set_bits(l3, ATTR_S1_AP(ATTR_S1_AP_RO));
5864 			pmap_invalidate_page(pmap, pv->pv_va);
5865 		}
5866 		PMAP_UNLOCK(pmap);
5867 	}
5868 	rw_wunlock(lock);
5869 }
5870 
5871 void *
pmap_mapbios(vm_paddr_t pa,vm_size_t size)5872 pmap_mapbios(vm_paddr_t pa, vm_size_t size)
5873 {
5874 	struct pmap_preinit_mapping *ppim;
5875 	vm_offset_t va, offset;
5876 	pd_entry_t *pde;
5877 	pt_entry_t *l2;
5878 	int i, lvl, l2_blocks, free_l2_count, start_idx;
5879 
5880 	if (!vm_initialized) {
5881 		/*
5882 		 * No L3 ptables so map entire L2 blocks where start VA is:
5883 		 * 	preinit_map_va + start_idx * L2_SIZE
5884 		 * There may be duplicate mappings (multiple VA -> same PA) but
5885 		 * ARM64 dcache is always PIPT so that's acceptable.
5886 		 */
5887 		 if (size == 0)
5888 			 return (NULL);
5889 
5890 		 /* Calculate how many L2 blocks are needed for the mapping */
5891 		l2_blocks = (roundup2(pa + size, L2_SIZE) -
5892 		    rounddown2(pa, L2_SIZE)) >> L2_SHIFT;
5893 
5894 		offset = pa & L2_OFFSET;
5895 
5896 		if (preinit_map_va == 0)
5897 			return (NULL);
5898 
5899 		/* Map 2MiB L2 blocks from reserved VA space */
5900 
5901 		free_l2_count = 0;
5902 		start_idx = -1;
5903 		/* Find enough free contiguous VA space */
5904 		for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
5905 			ppim = pmap_preinit_mapping + i;
5906 			if (free_l2_count > 0 && ppim->pa != 0) {
5907 				/* Not enough space here */
5908 				free_l2_count = 0;
5909 				start_idx = -1;
5910 				continue;
5911 			}
5912 
5913 			if (ppim->pa == 0) {
5914 				/* Free L2 block */
5915 				if (start_idx == -1)
5916 					start_idx = i;
5917 				free_l2_count++;
5918 				if (free_l2_count == l2_blocks)
5919 					break;
5920 			}
5921 		}
5922 		if (free_l2_count != l2_blocks)
5923 			panic("%s: too many preinit mappings", __func__);
5924 
5925 		va = preinit_map_va + (start_idx * L2_SIZE);
5926 		for (i = start_idx; i < start_idx + l2_blocks; i++) {
5927 			/* Mark entries as allocated */
5928 			ppim = pmap_preinit_mapping + i;
5929 			ppim->pa = pa;
5930 			ppim->va = va + offset;
5931 			ppim->size = size;
5932 		}
5933 
5934 		/* Map L2 blocks */
5935 		pa = rounddown2(pa, L2_SIZE);
5936 		for (i = 0; i < l2_blocks; i++) {
5937 			pde = pmap_pde(kernel_pmap, va, &lvl);
5938 			KASSERT(pde != NULL,
5939 			    ("pmap_mapbios: Invalid page entry, va: 0x%lx",
5940 			    va));
5941 			KASSERT(lvl == 1,
5942 			    ("pmap_mapbios: Invalid level %d", lvl));
5943 
5944 			/* Insert L2_BLOCK */
5945 			l2 = pmap_l1_to_l2(pde, va);
5946 			pmap_load_store(l2,
5947 			    pa | ATTR_DEFAULT | ATTR_S1_XN |
5948 			    ATTR_S1_IDX(VM_MEMATTR_WRITE_BACK) | L2_BLOCK);
5949 
5950 			va += L2_SIZE;
5951 			pa += L2_SIZE;
5952 		}
5953 		pmap_invalidate_all(kernel_pmap);
5954 
5955 		va = preinit_map_va + (start_idx * L2_SIZE);
5956 
5957 	} else {
5958 		/* kva_alloc may be used to map the pages */
5959 		offset = pa & PAGE_MASK;
5960 		size = round_page(offset + size);
5961 
5962 		va = kva_alloc(size);
5963 		if (va == 0)
5964 			panic("%s: Couldn't allocate KVA", __func__);
5965 
5966 		pde = pmap_pde(kernel_pmap, va, &lvl);
5967 		KASSERT(lvl == 2, ("pmap_mapbios: Invalid level %d", lvl));
5968 
5969 		/* L3 table is linked */
5970 		va = trunc_page(va);
5971 		pa = trunc_page(pa);
5972 		pmap_kenter(va, size, pa, memory_mapping_mode(pa));
5973 	}
5974 
5975 	return ((void *)(va + offset));
5976 }
5977 
5978 void
pmap_unmapbios(vm_offset_t va,vm_size_t size)5979 pmap_unmapbios(vm_offset_t va, vm_size_t size)
5980 {
5981 	struct pmap_preinit_mapping *ppim;
5982 	vm_offset_t offset, tmpsize, va_trunc;
5983 	pd_entry_t *pde;
5984 	pt_entry_t *l2;
5985 	int i, lvl, l2_blocks, block;
5986 	bool preinit_map;
5987 
5988 	l2_blocks =
5989 	   (roundup2(va + size, L2_SIZE) - rounddown2(va, L2_SIZE)) >> L2_SHIFT;
5990 	KASSERT(l2_blocks > 0, ("pmap_unmapbios: invalid size %lx", size));
5991 
5992 	/* Remove preinit mapping */
5993 	preinit_map = false;
5994 	block = 0;
5995 	for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
5996 		ppim = pmap_preinit_mapping + i;
5997 		if (ppim->va == va) {
5998 			KASSERT(ppim->size == size,
5999 			    ("pmap_unmapbios: size mismatch"));
6000 			ppim->va = 0;
6001 			ppim->pa = 0;
6002 			ppim->size = 0;
6003 			preinit_map = true;
6004 			offset = block * L2_SIZE;
6005 			va_trunc = rounddown2(va, L2_SIZE) + offset;
6006 
6007 			/* Remove L2_BLOCK */
6008 			pde = pmap_pde(kernel_pmap, va_trunc, &lvl);
6009 			KASSERT(pde != NULL,
6010 			    ("pmap_unmapbios: Invalid page entry, va: 0x%lx",
6011 			    va_trunc));
6012 			l2 = pmap_l1_to_l2(pde, va_trunc);
6013 			pmap_clear(l2);
6014 
6015 			if (block == (l2_blocks - 1))
6016 				break;
6017 			block++;
6018 		}
6019 	}
6020 	if (preinit_map) {
6021 		pmap_invalidate_all(kernel_pmap);
6022 		return;
6023 	}
6024 
6025 	/* Unmap the pages reserved with kva_alloc. */
6026 	if (vm_initialized) {
6027 		offset = va & PAGE_MASK;
6028 		size = round_page(offset + size);
6029 		va = trunc_page(va);
6030 
6031 		pde = pmap_pde(kernel_pmap, va, &lvl);
6032 		KASSERT(pde != NULL,
6033 		    ("pmap_unmapbios: Invalid page entry, va: 0x%lx", va));
6034 		KASSERT(lvl == 2, ("pmap_unmapbios: Invalid level %d", lvl));
6035 
6036 		/* Unmap and invalidate the pages */
6037                 for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
6038 			pmap_kremove(va + tmpsize);
6039 
6040 		kva_free(va, size);
6041 	}
6042 }
6043 
6044 /*
6045  * Sets the memory attribute for the specified page.
6046  */
6047 void
pmap_page_set_memattr(vm_page_t m,vm_memattr_t ma)6048 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
6049 {
6050 
6051 	m->md.pv_memattr = ma;
6052 
6053 	/*
6054 	 * If "m" is a normal page, update its direct mapping.  This update
6055 	 * can be relied upon to perform any cache operations that are
6056 	 * required for data coherence.
6057 	 */
6058 	if ((m->flags & PG_FICTITIOUS) == 0 &&
6059 	    pmap_change_attr(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)), PAGE_SIZE,
6060 	    m->md.pv_memattr) != 0)
6061 		panic("memory attribute change on the direct map failed");
6062 }
6063 
6064 /*
6065  * Changes the specified virtual address range's memory type to that given by
6066  * the parameter "mode".  The specified virtual address range must be
6067  * completely contained within either the direct map or the kernel map.  If
6068  * the virtual address range is contained within the kernel map, then the
6069  * memory type for each of the corresponding ranges of the direct map is also
6070  * changed.  (The corresponding ranges of the direct map are those ranges that
6071  * map the same physical pages as the specified virtual address range.)  These
6072  * changes to the direct map are necessary because Intel describes the
6073  * behavior of their processors as "undefined" if two or more mappings to the
6074  * same physical page have different memory types.
6075  *
6076  * Returns zero if the change completed successfully, and either EINVAL or
6077  * ENOMEM if the change failed.  Specifically, EINVAL is returned if some part
6078  * of the virtual address range was not mapped, and ENOMEM is returned if
6079  * there was insufficient memory available to complete the change.  In the
6080  * latter case, the memory type may have been changed on some part of the
6081  * virtual address range or the direct map.
6082  */
6083 int
pmap_change_attr(vm_offset_t va,vm_size_t size,int mode)6084 pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
6085 {
6086 	int error;
6087 
6088 	PMAP_LOCK(kernel_pmap);
6089 	error = pmap_change_attr_locked(va, size, mode);
6090 	PMAP_UNLOCK(kernel_pmap);
6091 	return (error);
6092 }
6093 
6094 static int
pmap_change_attr_locked(vm_offset_t va,vm_size_t size,int mode)6095 pmap_change_attr_locked(vm_offset_t va, vm_size_t size, int mode)
6096 {
6097 	vm_offset_t base, offset, tmpva;
6098 	pt_entry_t l3, *pte, *newpte;
6099 	int lvl;
6100 
6101 	PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED);
6102 	base = trunc_page(va);
6103 	offset = va & PAGE_MASK;
6104 	size = round_page(offset + size);
6105 
6106 	if (!VIRT_IN_DMAP(base) &&
6107 	    !(base >= VM_MIN_KERNEL_ADDRESS && base < VM_MAX_KERNEL_ADDRESS))
6108 		return (EINVAL);
6109 
6110 	for (tmpva = base; tmpva < base + size; ) {
6111 		pte = pmap_pte(kernel_pmap, tmpva, &lvl);
6112 		if (pte == NULL)
6113 			return (EINVAL);
6114 
6115 		if ((pmap_load(pte) & ATTR_S1_IDX_MASK) == ATTR_S1_IDX(mode)) {
6116 			/*
6117 			 * We already have the correct attribute,
6118 			 * ignore this entry.
6119 			 */
6120 			switch (lvl) {
6121 			default:
6122 				panic("Invalid DMAP table level: %d\n", lvl);
6123 			case 1:
6124 				tmpva = (tmpva & ~L1_OFFSET) + L1_SIZE;
6125 				break;
6126 			case 2:
6127 				tmpva = (tmpva & ~L2_OFFSET) + L2_SIZE;
6128 				break;
6129 			case 3:
6130 				tmpva += PAGE_SIZE;
6131 				break;
6132 			}
6133 		} else {
6134 			/*
6135 			 * Split the entry to an level 3 table, then
6136 			 * set the new attribute.
6137 			 */
6138 			switch (lvl) {
6139 			default:
6140 				panic("Invalid DMAP table level: %d\n", lvl);
6141 			case 1:
6142 				newpte = pmap_demote_l1(kernel_pmap, pte,
6143 				    tmpva & ~L1_OFFSET);
6144 				if (newpte == NULL)
6145 					return (EINVAL);
6146 				pte = pmap_l1_to_l2(pte, tmpva);
6147 			case 2:
6148 				newpte = pmap_demote_l2(kernel_pmap, pte,
6149 				    tmpva);
6150 				if (newpte == NULL)
6151 					return (EINVAL);
6152 				pte = pmap_l2_to_l3(pte, tmpva);
6153 			case 3:
6154 				/* Update the entry */
6155 				l3 = pmap_load(pte);
6156 				l3 &= ~ATTR_S1_IDX_MASK;
6157 				l3 |= ATTR_S1_IDX(mode);
6158 				if (mode == VM_MEMATTR_DEVICE)
6159 					l3 |= ATTR_S1_XN;
6160 
6161 				pmap_update_entry(kernel_pmap, pte, l3, tmpva,
6162 				    PAGE_SIZE);
6163 
6164 				/*
6165 				 * If moving to a non-cacheable entry flush
6166 				 * the cache.
6167 				 */
6168 				if (mode == VM_MEMATTR_UNCACHEABLE)
6169 					cpu_dcache_wbinv_range(tmpva, L3_SIZE);
6170 
6171 				break;
6172 			}
6173 			tmpva += PAGE_SIZE;
6174 		}
6175 	}
6176 
6177 	return (0);
6178 }
6179 
6180 /*
6181  * Create an L2 table to map all addresses within an L1 mapping.
6182  */
6183 static pt_entry_t *
pmap_demote_l1(pmap_t pmap,pt_entry_t * l1,vm_offset_t va)6184 pmap_demote_l1(pmap_t pmap, pt_entry_t *l1, vm_offset_t va)
6185 {
6186 	pt_entry_t *l2, newl2, oldl1;
6187 	vm_offset_t tmpl1;
6188 	vm_paddr_t l2phys, phys;
6189 	vm_page_t ml2;
6190 	int i;
6191 
6192 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6193 	oldl1 = pmap_load(l1);
6194 	KASSERT((oldl1 & ATTR_DESCR_MASK) == L1_BLOCK,
6195 	    ("pmap_demote_l1: Demoting a non-block entry"));
6196 	KASSERT((va & L1_OFFSET) == 0,
6197 	    ("pmap_demote_l1: Invalid virtual address %#lx", va));
6198 	KASSERT((oldl1 & ATTR_SW_MANAGED) == 0,
6199 	    ("pmap_demote_l1: Level 1 table shouldn't be managed"));
6200 
6201 	tmpl1 = 0;
6202 	if (va <= (vm_offset_t)l1 && va + L1_SIZE > (vm_offset_t)l1) {
6203 		tmpl1 = kva_alloc(PAGE_SIZE);
6204 		if (tmpl1 == 0)
6205 			return (NULL);
6206 	}
6207 
6208 	if ((ml2 = vm_page_alloc(NULL, 0, VM_ALLOC_INTERRUPT |
6209 	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
6210 		CTR2(KTR_PMAP, "pmap_demote_l1: failure for va %#lx"
6211 		    " in pmap %p", va, pmap);
6212 		return (NULL);
6213 	}
6214 
6215 	l2phys = VM_PAGE_TO_PHYS(ml2);
6216 	l2 = (pt_entry_t *)PHYS_TO_DMAP(l2phys);
6217 
6218 	/* Address the range points at */
6219 	phys = oldl1 & ~ATTR_MASK;
6220 	/* The attributed from the old l1 table to be copied */
6221 	newl2 = oldl1 & ATTR_MASK;
6222 
6223 	/* Create the new entries */
6224 	for (i = 0; i < Ln_ENTRIES; i++) {
6225 		l2[i] = newl2 | phys;
6226 		phys += L2_SIZE;
6227 	}
6228 	KASSERT(l2[0] == ((oldl1 & ~ATTR_DESCR_MASK) | L2_BLOCK),
6229 	    ("Invalid l2 page (%lx != %lx)", l2[0],
6230 	    (oldl1 & ~ATTR_DESCR_MASK) | L2_BLOCK));
6231 
6232 	if (tmpl1 != 0) {
6233 		pmap_kenter(tmpl1, PAGE_SIZE,
6234 		    DMAP_TO_PHYS((vm_offset_t)l1) & ~L3_OFFSET,
6235 		    VM_MEMATTR_WRITE_BACK);
6236 		l1 = (pt_entry_t *)(tmpl1 + ((vm_offset_t)l1 & PAGE_MASK));
6237 	}
6238 
6239 	pmap_update_entry(pmap, l1, l2phys | L1_TABLE, va, PAGE_SIZE);
6240 
6241 	if (tmpl1 != 0) {
6242 		pmap_kremove(tmpl1);
6243 		kva_free(tmpl1, PAGE_SIZE);
6244 	}
6245 
6246 	return (l2);
6247 }
6248 
6249 static void
pmap_fill_l3(pt_entry_t * firstl3,pt_entry_t newl3)6250 pmap_fill_l3(pt_entry_t *firstl3, pt_entry_t newl3)
6251 {
6252 	pt_entry_t *l3;
6253 
6254 	for (l3 = firstl3; l3 - firstl3 < Ln_ENTRIES; l3++) {
6255 		*l3 = newl3;
6256 		newl3 += L3_SIZE;
6257 	}
6258 }
6259 
6260 static void
pmap_demote_l2_abort(pmap_t pmap,vm_offset_t va,pt_entry_t * l2,struct rwlock ** lockp)6261 pmap_demote_l2_abort(pmap_t pmap, vm_offset_t va, pt_entry_t *l2,
6262     struct rwlock **lockp)
6263 {
6264 	struct spglist free;
6265 
6266 	SLIST_INIT(&free);
6267 	(void)pmap_remove_l2(pmap, l2, va, pmap_load(pmap_l1(pmap, va)), &free,
6268 	    lockp);
6269 	vm_page_free_pages_toq(&free, true);
6270 }
6271 
6272 /*
6273  * Create an L3 table to map all addresses within an L2 mapping.
6274  */
6275 static pt_entry_t *
pmap_demote_l2_locked(pmap_t pmap,pt_entry_t * l2,vm_offset_t va,struct rwlock ** lockp)6276 pmap_demote_l2_locked(pmap_t pmap, pt_entry_t *l2, vm_offset_t va,
6277     struct rwlock **lockp)
6278 {
6279 	pt_entry_t *l3, newl3, oldl2;
6280 	vm_offset_t tmpl2;
6281 	vm_paddr_t l3phys;
6282 	vm_page_t ml3;
6283 
6284 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6285 	PMAP_ASSERT_STAGE1(pmap);
6286 	l3 = NULL;
6287 	oldl2 = pmap_load(l2);
6288 	KASSERT((oldl2 & ATTR_DESCR_MASK) == L2_BLOCK,
6289 	    ("pmap_demote_l2: Demoting a non-block entry"));
6290 	va &= ~L2_OFFSET;
6291 
6292 	tmpl2 = 0;
6293 	if (va <= (vm_offset_t)l2 && va + L2_SIZE > (vm_offset_t)l2) {
6294 		tmpl2 = kva_alloc(PAGE_SIZE);
6295 		if (tmpl2 == 0)
6296 			return (NULL);
6297 	}
6298 
6299 	/*
6300 	 * Invalidate the 2MB page mapping and return "failure" if the
6301 	 * mapping was never accessed.
6302 	 */
6303 	if ((oldl2 & ATTR_AF) == 0) {
6304 		KASSERT((oldl2 & ATTR_SW_WIRED) == 0,
6305 		    ("pmap_demote_l2: a wired mapping is missing ATTR_AF"));
6306 		pmap_demote_l2_abort(pmap, va, l2, lockp);
6307 		CTR2(KTR_PMAP, "pmap_demote_l2: failure for va %#lx in pmap %p",
6308 		    va, pmap);
6309 		goto fail;
6310 	}
6311 
6312 	if ((ml3 = pmap_remove_pt_page(pmap, va)) == NULL) {
6313 		KASSERT((oldl2 & ATTR_SW_WIRED) == 0,
6314 		    ("pmap_demote_l2: page table page for a wired mapping"
6315 		    " is missing"));
6316 
6317 		/*
6318 		 * If the page table page is missing and the mapping
6319 		 * is for a kernel address, the mapping must belong to
6320 		 * the direct map.  Page table pages are preallocated
6321 		 * for every other part of the kernel address space,
6322 		 * so the direct map region is the only part of the
6323 		 * kernel address space that must be handled here.
6324 		 */
6325 		KASSERT(va < VM_MAXUSER_ADDRESS || VIRT_IN_DMAP(va),
6326 		    ("pmap_demote_l2: No saved mpte for va %#lx", va));
6327 
6328 		/*
6329 		 * If the 2MB page mapping belongs to the direct map
6330 		 * region of the kernel's address space, then the page
6331 		 * allocation request specifies the highest possible
6332 		 * priority (VM_ALLOC_INTERRUPT).  Otherwise, the
6333 		 * priority is normal.
6334 		 */
6335 		ml3 = vm_page_alloc(NULL, pmap_l2_pindex(va),
6336 		    (VIRT_IN_DMAP(va) ? VM_ALLOC_INTERRUPT : VM_ALLOC_NORMAL) |
6337 		    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED);
6338 
6339 		/*
6340 		 * If the allocation of the new page table page fails,
6341 		 * invalidate the 2MB page mapping and return "failure".
6342 		 */
6343 		if (ml3 == NULL) {
6344 			pmap_demote_l2_abort(pmap, va, l2, lockp);
6345 			CTR2(KTR_PMAP, "pmap_demote_l2: failure for va %#lx"
6346 			    " in pmap %p", va, pmap);
6347 			goto fail;
6348 		}
6349 
6350 		if (va < VM_MAXUSER_ADDRESS) {
6351 			ml3->ref_count = NL3PG;
6352 			pmap_resident_count_inc(pmap, 1);
6353 		}
6354 	}
6355 	l3phys = VM_PAGE_TO_PHYS(ml3);
6356 	l3 = (pt_entry_t *)PHYS_TO_DMAP(l3phys);
6357 	newl3 = (oldl2 & ~ATTR_DESCR_MASK) | L3_PAGE;
6358 	KASSERT((oldl2 & (ATTR_S1_AP_RW_BIT | ATTR_SW_DBM)) !=
6359 	    (ATTR_S1_AP(ATTR_S1_AP_RO) | ATTR_SW_DBM),
6360 	    ("pmap_demote_l2: L2 entry is writeable but not dirty"));
6361 
6362 	/*
6363 	 * If the page table page is not leftover from an earlier promotion,
6364 	 * or the mapping attributes have changed, (re)initialize the L3 table.
6365 	 *
6366 	 * When pmap_update_entry() clears the old L2 mapping, it (indirectly)
6367 	 * performs a dsb().  That dsb() ensures that the stores for filling
6368 	 * "l3" are visible before "l3" is added to the page table.
6369 	 */
6370 	if (ml3->valid == 0 || (l3[0] & ATTR_MASK) != (newl3 & ATTR_MASK))
6371 		pmap_fill_l3(l3, newl3);
6372 
6373 	/*
6374 	 * Map the temporary page so we don't lose access to the l2 table.
6375 	 */
6376 	if (tmpl2 != 0) {
6377 		pmap_kenter(tmpl2, PAGE_SIZE,
6378 		    DMAP_TO_PHYS((vm_offset_t)l2) & ~L3_OFFSET,
6379 		    VM_MEMATTR_WRITE_BACK);
6380 		l2 = (pt_entry_t *)(tmpl2 + ((vm_offset_t)l2 & PAGE_MASK));
6381 	}
6382 
6383 	/*
6384 	 * The spare PV entries must be reserved prior to demoting the
6385 	 * mapping, that is, prior to changing the PDE.  Otherwise, the state
6386 	 * of the L2 and the PV lists will be inconsistent, which can result
6387 	 * in reclaim_pv_chunk() attempting to remove a PV entry from the
6388 	 * wrong PV list and pmap_pv_demote_l2() failing to find the expected
6389 	 * PV entry for the 2MB page mapping that is being demoted.
6390 	 */
6391 	if ((oldl2 & ATTR_SW_MANAGED) != 0)
6392 		reserve_pv_entries(pmap, Ln_ENTRIES - 1, lockp);
6393 
6394 	/*
6395 	 * Pass PAGE_SIZE so that a single TLB invalidation is performed on
6396 	 * the 2MB page mapping.
6397 	 */
6398 	pmap_update_entry(pmap, l2, l3phys | L2_TABLE, va, PAGE_SIZE);
6399 
6400 	/*
6401 	 * Demote the PV entry.
6402 	 */
6403 	if ((oldl2 & ATTR_SW_MANAGED) != 0)
6404 		pmap_pv_demote_l2(pmap, va, oldl2 & ~ATTR_MASK, lockp);
6405 
6406 	atomic_add_long(&pmap_l2_demotions, 1);
6407 	CTR3(KTR_PMAP, "pmap_demote_l2: success for va %#lx"
6408 	    " in pmap %p %lx", va, pmap, l3[0]);
6409 
6410 fail:
6411 	if (tmpl2 != 0) {
6412 		pmap_kremove(tmpl2);
6413 		kva_free(tmpl2, PAGE_SIZE);
6414 	}
6415 
6416 	return (l3);
6417 
6418 }
6419 
6420 static pt_entry_t *
pmap_demote_l2(pmap_t pmap,pt_entry_t * l2,vm_offset_t va)6421 pmap_demote_l2(pmap_t pmap, pt_entry_t *l2, vm_offset_t va)
6422 {
6423 	struct rwlock *lock;
6424 	pt_entry_t *l3;
6425 
6426 	lock = NULL;
6427 	l3 = pmap_demote_l2_locked(pmap, l2, va, &lock);
6428 	if (lock != NULL)
6429 		rw_wunlock(lock);
6430 	return (l3);
6431 }
6432 
6433 /*
6434  * Perform the pmap work for mincore(2).  If the page is not both referenced and
6435  * modified by this pmap, returns its physical address so that the caller can
6436  * find other mappings.
6437  */
6438 int
pmap_mincore(pmap_t pmap,vm_offset_t addr,vm_paddr_t * pap)6439 pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *pap)
6440 {
6441 	pt_entry_t *pte, tpte;
6442 	vm_paddr_t mask, pa;
6443 	int lvl, val;
6444 	bool managed;
6445 
6446 	PMAP_ASSERT_STAGE1(pmap);
6447 	PMAP_LOCK(pmap);
6448 	pte = pmap_pte(pmap, addr, &lvl);
6449 	if (pte != NULL) {
6450 		tpte = pmap_load(pte);
6451 
6452 		switch (lvl) {
6453 		case 3:
6454 			mask = L3_OFFSET;
6455 			break;
6456 		case 2:
6457 			mask = L2_OFFSET;
6458 			break;
6459 		case 1:
6460 			mask = L1_OFFSET;
6461 			break;
6462 		default:
6463 			panic("pmap_mincore: invalid level %d", lvl);
6464 		}
6465 
6466 		managed = (tpte & ATTR_SW_MANAGED) != 0;
6467 		val = MINCORE_INCORE;
6468 		if (lvl != 3)
6469 			val |= MINCORE_PSIND(3 - lvl);
6470 		if ((managed && pmap_pte_dirty(pmap, tpte)) || (!managed &&
6471 		    (tpte & ATTR_S1_AP_RW_BIT) == ATTR_S1_AP(ATTR_S1_AP_RW)))
6472 			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
6473 		if ((tpte & ATTR_AF) == ATTR_AF)
6474 			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
6475 
6476 		pa = (tpte & ~ATTR_MASK) | (addr & mask);
6477 	} else {
6478 		managed = false;
6479 		val = 0;
6480 	}
6481 
6482 	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
6483 	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) && managed) {
6484 		*pap = pa;
6485 	}
6486 	PMAP_UNLOCK(pmap);
6487 	return (val);
6488 }
6489 
6490 /*
6491  * Garbage collect every ASID that is neither active on a processor nor
6492  * reserved.
6493  */
6494 static void
pmap_reset_asid_set(pmap_t pmap)6495 pmap_reset_asid_set(pmap_t pmap)
6496 {
6497 	pmap_t curpmap;
6498 	int asid, cpuid, epoch;
6499 	struct asid_set *set;
6500 	enum pmap_stage stage;
6501 
6502 	set = pmap->pm_asid_set;
6503 	stage = pmap->pm_stage;
6504 
6505 	set = pmap->pm_asid_set;
6506 	KASSERT(set != NULL, ("%s: NULL asid set", __func__));
6507 	mtx_assert(&set->asid_set_mutex, MA_OWNED);
6508 
6509 	/*
6510 	 * Ensure that the store to asid_epoch is globally visible before the
6511 	 * loads from pc_curpmap are performed.
6512 	 */
6513 	epoch = set->asid_epoch + 1;
6514 	if (epoch == INT_MAX)
6515 		epoch = 0;
6516 	set->asid_epoch = epoch;
6517 	dsb(ishst);
6518 	if (stage == PM_STAGE1) {
6519 		__asm __volatile("tlbi vmalle1is");
6520 	} else {
6521 		KASSERT(pmap_clean_stage2_tlbi != NULL,
6522 		    ("%s: Unset stage 2 tlb invalidation callback\n",
6523 		    __func__));
6524 		pmap_clean_stage2_tlbi();
6525 	}
6526 	dsb(ish);
6527 	bit_nclear(set->asid_set, ASID_FIRST_AVAILABLE,
6528 	    set->asid_set_size - 1);
6529 	CPU_FOREACH(cpuid) {
6530 		if (cpuid == curcpu)
6531 			continue;
6532 		if (stage == PM_STAGE1) {
6533 			curpmap = pcpu_find(cpuid)->pc_curpmap;
6534 			PMAP_ASSERT_STAGE1(pmap);
6535 		} else {
6536 			curpmap = pcpu_find(cpuid)->pc_curvmpmap;
6537 			if (curpmap == NULL)
6538 				continue;
6539 			PMAP_ASSERT_STAGE2(pmap);
6540 		}
6541 		KASSERT(curpmap->pm_asid_set == set, ("Incorrect set"));
6542 		asid = COOKIE_TO_ASID(curpmap->pm_cookie);
6543 		if (asid == -1)
6544 			continue;
6545 		bit_set(set->asid_set, asid);
6546 		curpmap->pm_cookie = COOKIE_FROM(asid, epoch);
6547 	}
6548 }
6549 
6550 /*
6551  * Allocate a new ASID for the specified pmap.
6552  */
6553 static void
pmap_alloc_asid(pmap_t pmap)6554 pmap_alloc_asid(pmap_t pmap)
6555 {
6556 	struct asid_set *set;
6557 	int new_asid;
6558 
6559 	set = pmap->pm_asid_set;
6560 	KASSERT(set != NULL, ("%s: NULL asid set", __func__));
6561 
6562 	mtx_lock_spin(&set->asid_set_mutex);
6563 
6564 	/*
6565 	 * While this processor was waiting to acquire the asid set mutex,
6566 	 * pmap_reset_asid_set() running on another processor might have
6567 	 * updated this pmap's cookie to the current epoch.  In which case, we
6568 	 * don't need to allocate a new ASID.
6569 	 */
6570 	if (COOKIE_TO_EPOCH(pmap->pm_cookie) == set->asid_epoch)
6571 		goto out;
6572 
6573 	bit_ffc_at(set->asid_set, set->asid_next, set->asid_set_size,
6574 	    &new_asid);
6575 	if (new_asid == -1) {
6576 		bit_ffc_at(set->asid_set, ASID_FIRST_AVAILABLE,
6577 		    set->asid_next, &new_asid);
6578 		if (new_asid == -1) {
6579 			pmap_reset_asid_set(pmap);
6580 			bit_ffc_at(set->asid_set, ASID_FIRST_AVAILABLE,
6581 			    set->asid_set_size, &new_asid);
6582 			KASSERT(new_asid != -1, ("ASID allocation failure"));
6583 		}
6584 	}
6585 	bit_set(set->asid_set, new_asid);
6586 	set->asid_next = new_asid + 1;
6587 	pmap->pm_cookie = COOKIE_FROM(new_asid, set->asid_epoch);
6588 out:
6589 	mtx_unlock_spin(&set->asid_set_mutex);
6590 }
6591 
6592 /*
6593  * Compute the value that should be stored in ttbr0 to activate the specified
6594  * pmap.  This value may change from time to time.
6595  */
6596 uint64_t
pmap_to_ttbr0(pmap_t pmap)6597 pmap_to_ttbr0(pmap_t pmap)
6598 {
6599 
6600 	return (ASID_TO_OPERAND(COOKIE_TO_ASID(pmap->pm_cookie)) |
6601 	    pmap->pm_ttbr);
6602 }
6603 
6604 static bool
pmap_activate_int(pmap_t pmap)6605 pmap_activate_int(pmap_t pmap)
6606 {
6607 	struct asid_set *set;
6608 	int epoch;
6609 
6610 	KASSERT(PCPU_GET(curpmap) != NULL, ("no active pmap"));
6611 	KASSERT(pmap != kernel_pmap, ("kernel pmap activation"));
6612 
6613 	if ((pmap->pm_stage == PM_STAGE1 && pmap == PCPU_GET(curpmap)) ||
6614 	    (pmap->pm_stage == PM_STAGE2 && pmap == PCPU_GET(curvmpmap))) {
6615 		/*
6616 		 * Handle the possibility that the old thread was preempted
6617 		 * after an "ic" or "tlbi" instruction but before it performed
6618 		 * a "dsb" instruction.  If the old thread migrates to a new
6619 		 * processor, its completion of a "dsb" instruction on that
6620 		 * new processor does not guarantee that the "ic" or "tlbi"
6621 		 * instructions performed on the old processor have completed.
6622 		 */
6623 		dsb(ish);
6624 		return (false);
6625 	}
6626 
6627 	set = pmap->pm_asid_set;
6628 	KASSERT(set != NULL, ("%s: NULL asid set", __func__));
6629 
6630 	/*
6631 	 * Ensure that the store to curpmap is globally visible before the
6632 	 * load from asid_epoch is performed.
6633 	 */
6634 	if (pmap->pm_stage == PM_STAGE1)
6635 		PCPU_SET(curpmap, pmap);
6636 	else
6637 		PCPU_SET(curvmpmap, pmap);
6638 	dsb(ish);
6639 	epoch = COOKIE_TO_EPOCH(pmap->pm_cookie);
6640 	if (epoch >= 0 && epoch != set->asid_epoch)
6641 		pmap_alloc_asid(pmap);
6642 
6643 	if (pmap->pm_stage == PM_STAGE1) {
6644 		set_ttbr0(pmap_to_ttbr0(pmap));
6645 		if (PCPU_GET(bcast_tlbi_workaround) != 0)
6646 			invalidate_local_icache();
6647 	}
6648 	return (true);
6649 }
6650 
6651 void
pmap_activate_vm(pmap_t pmap)6652 pmap_activate_vm(pmap_t pmap)
6653 {
6654 
6655 	PMAP_ASSERT_STAGE2(pmap);
6656 
6657 	(void)pmap_activate_int(pmap);
6658 }
6659 
6660 void
pmap_activate(struct thread * td)6661 pmap_activate(struct thread *td)
6662 {
6663 	pmap_t	pmap;
6664 
6665 	pmap = vmspace_pmap(td->td_proc->p_vmspace);
6666 	PMAP_ASSERT_STAGE1(pmap);
6667 	critical_enter();
6668 	(void)pmap_activate_int(pmap);
6669 	critical_exit();
6670 }
6671 
6672 /*
6673  * To eliminate the unused parameter "old", we would have to add an instruction
6674  * to cpu_switch().
6675  */
6676 struct pcb *
pmap_switch(struct thread * old __unused,struct thread * new)6677 pmap_switch(struct thread *old __unused, struct thread *new)
6678 {
6679 	pcpu_bp_harden bp_harden;
6680 	struct pcb *pcb;
6681 
6682 	/* Store the new curthread */
6683 	PCPU_SET(curthread, new);
6684 
6685 	/* And the new pcb */
6686 	pcb = new->td_pcb;
6687 	PCPU_SET(curpcb, pcb);
6688 
6689 	/*
6690 	 * TODO: We may need to flush the cache here if switching
6691 	 * to a user process.
6692 	 */
6693 
6694 	if (pmap_activate_int(vmspace_pmap(new->td_proc->p_vmspace))) {
6695 		/*
6696 		 * Stop userspace from training the branch predictor against
6697 		 * other processes. This will call into a CPU specific
6698 		 * function that clears the branch predictor state.
6699 		 */
6700 		bp_harden = PCPU_GET(bp_harden);
6701 		if (bp_harden != NULL)
6702 			bp_harden();
6703 	}
6704 
6705 	return (pcb);
6706 }
6707 
6708 void
pmap_sync_icache(pmap_t pmap,vm_offset_t va,vm_size_t sz)6709 pmap_sync_icache(pmap_t pmap, vm_offset_t va, vm_size_t sz)
6710 {
6711 
6712 	PMAP_ASSERT_STAGE1(pmap);
6713 	if (va >= VM_MIN_KERNEL_ADDRESS) {
6714 		cpu_icache_sync_range(va, sz);
6715 	} else {
6716 		u_int len, offset;
6717 		vm_paddr_t pa;
6718 
6719 		/* Find the length of data in this page to flush */
6720 		offset = va & PAGE_MASK;
6721 		len = imin(PAGE_SIZE - offset, sz);
6722 
6723 		while (sz != 0) {
6724 			/* Extract the physical address & find it in the DMAP */
6725 			pa = pmap_extract(pmap, va);
6726 			if (pa != 0)
6727 				cpu_icache_sync_range(PHYS_TO_DMAP(pa), len);
6728 
6729 			/* Move to the next page */
6730 			sz -= len;
6731 			va += len;
6732 			/* Set the length for the next iteration */
6733 			len = imin(PAGE_SIZE, sz);
6734 		}
6735 	}
6736 }
6737 
6738 static int
pmap_stage2_fault(pmap_t pmap,uint64_t esr,uint64_t far)6739 pmap_stage2_fault(pmap_t pmap, uint64_t esr, uint64_t far)
6740 {
6741 	pd_entry_t *pdep;
6742 	pt_entry_t *ptep, pte;
6743 	int rv, lvl, dfsc;
6744 
6745 	PMAP_ASSERT_STAGE2(pmap);
6746 	rv = KERN_FAILURE;
6747 
6748 	/* Data and insn aborts use same encoding for FSC field. */
6749 	dfsc = esr & ISS_DATA_DFSC_MASK;
6750 	switch (dfsc) {
6751 	case ISS_DATA_DFSC_TF_L0:
6752 	case ISS_DATA_DFSC_TF_L1:
6753 	case ISS_DATA_DFSC_TF_L2:
6754 	case ISS_DATA_DFSC_TF_L3:
6755 		PMAP_LOCK(pmap);
6756 		pdep = pmap_pde(pmap, far, &lvl);
6757 		if (pdep == NULL || lvl != (dfsc - ISS_DATA_DFSC_TF_L1)) {
6758 			PMAP_LOCK(pmap);
6759 			break;
6760 		}
6761 
6762 		switch (lvl) {
6763 		case 0:
6764 			ptep = pmap_l0_to_l1(pdep, far);
6765 			break;
6766 		case 1:
6767 			ptep = pmap_l1_to_l2(pdep, far);
6768 			break;
6769 		case 2:
6770 			ptep = pmap_l2_to_l3(pdep, far);
6771 			break;
6772 		default:
6773 			panic("%s: Invalid pde level %d", __func__,lvl);
6774 		}
6775 		goto fault_exec;
6776 
6777 	case ISS_DATA_DFSC_AFF_L1:
6778 	case ISS_DATA_DFSC_AFF_L2:
6779 	case ISS_DATA_DFSC_AFF_L3:
6780 		PMAP_LOCK(pmap);
6781 		ptep = pmap_pte(pmap, far, &lvl);
6782 fault_exec:
6783 		if (ptep != NULL && (pte = pmap_load(ptep)) != 0) {
6784 			if (icache_vmid) {
6785 				pmap_invalidate_vpipt_icache();
6786 			} else {
6787 				/*
6788 				 * If accessing an executable page invalidate
6789 				 * the I-cache so it will be valid when we
6790 				 * continue execution in the guest. The D-cache
6791 				 * is assumed to already be clean to the Point
6792 				 * of Coherency.
6793 				 */
6794 				if ((pte & ATTR_S2_XN_MASK) !=
6795 				    ATTR_S2_XN(ATTR_S2_XN_NONE)) {
6796 					invalidate_icache();
6797 				}
6798 			}
6799 			pmap_set_bits(ptep, ATTR_AF | ATTR_DESCR_VALID);
6800 			rv = KERN_SUCCESS;
6801 		}
6802 		PMAP_UNLOCK(pmap);
6803 		break;
6804 	}
6805 
6806 	return (rv);
6807 }
6808 
6809 int
pmap_fault(pmap_t pmap,uint64_t esr,uint64_t far)6810 pmap_fault(pmap_t pmap, uint64_t esr, uint64_t far)
6811 {
6812 	pt_entry_t pte, *ptep;
6813 	register_t intr;
6814 	uint64_t ec, par;
6815 	int lvl, rv;
6816 
6817 	rv = KERN_FAILURE;
6818 
6819 	ec = ESR_ELx_EXCEPTION(esr);
6820 	switch (ec) {
6821 	case EXCP_INSN_ABORT_L:
6822 	case EXCP_INSN_ABORT:
6823 	case EXCP_DATA_ABORT_L:
6824 	case EXCP_DATA_ABORT:
6825 		break;
6826 	default:
6827 		return (rv);
6828 	}
6829 
6830 	if (pmap->pm_stage == PM_STAGE2)
6831 		return (pmap_stage2_fault(pmap, esr, far));
6832 
6833 	/* Data and insn aborts use same encoding for FSC field. */
6834 	switch (esr & ISS_DATA_DFSC_MASK) {
6835 	case ISS_DATA_DFSC_AFF_L1:
6836 	case ISS_DATA_DFSC_AFF_L2:
6837 	case ISS_DATA_DFSC_AFF_L3:
6838 		PMAP_LOCK(pmap);
6839 		ptep = pmap_pte(pmap, far, &lvl);
6840 		if (ptep != NULL) {
6841 			pmap_set_bits(ptep, ATTR_AF);
6842 			rv = KERN_SUCCESS;
6843 			/*
6844 			 * XXXMJ as an optimization we could mark the entry
6845 			 * dirty if this is a write fault.
6846 			 */
6847 		}
6848 		PMAP_UNLOCK(pmap);
6849 		break;
6850 	case ISS_DATA_DFSC_PF_L1:
6851 	case ISS_DATA_DFSC_PF_L2:
6852 	case ISS_DATA_DFSC_PF_L3:
6853 		if ((ec != EXCP_DATA_ABORT_L && ec != EXCP_DATA_ABORT) ||
6854 		    (esr & ISS_DATA_WnR) == 0)
6855 			return (rv);
6856 		PMAP_LOCK(pmap);
6857 		ptep = pmap_pte(pmap, far, &lvl);
6858 		if (ptep != NULL &&
6859 		    ((pte = pmap_load(ptep)) & ATTR_SW_DBM) != 0) {
6860 			if ((pte & ATTR_S1_AP_RW_BIT) ==
6861 			    ATTR_S1_AP(ATTR_S1_AP_RO)) {
6862 				pmap_clear_bits(ptep, ATTR_S1_AP_RW_BIT);
6863 				pmap_invalidate_page(pmap, far);
6864 			}
6865 			rv = KERN_SUCCESS;
6866 		}
6867 		PMAP_UNLOCK(pmap);
6868 		break;
6869 	case ISS_DATA_DFSC_TF_L0:
6870 	case ISS_DATA_DFSC_TF_L1:
6871 	case ISS_DATA_DFSC_TF_L2:
6872 	case ISS_DATA_DFSC_TF_L3:
6873 		/*
6874 		 * Retry the translation.  A break-before-make sequence can
6875 		 * produce a transient fault.
6876 		 */
6877 		if (pmap == kernel_pmap) {
6878 			/*
6879 			 * The translation fault may have occurred within a
6880 			 * critical section.  Therefore, we must check the
6881 			 * address without acquiring the kernel pmap's lock.
6882 			 */
6883 			if (pmap_klookup(far, NULL))
6884 				rv = KERN_SUCCESS;
6885 		} else {
6886 			PMAP_LOCK(pmap);
6887 			/* Ask the MMU to check the address. */
6888 			intr = intr_disable();
6889 			par = arm64_address_translate_s1e0r(far);
6890 			intr_restore(intr);
6891 			PMAP_UNLOCK(pmap);
6892 
6893 			/*
6894 			 * If the translation was successful, then we can
6895 			 * return success to the trap handler.
6896 			 */
6897 			if (PAR_SUCCESS(par))
6898 				rv = KERN_SUCCESS;
6899 		}
6900 		break;
6901 	}
6902 
6903 	return (rv);
6904 }
6905 
6906 /*
6907  *	Increase the starting virtual address of the given mapping if a
6908  *	different alignment might result in more superpage mappings.
6909  */
6910 void
pmap_align_superpage(vm_object_t object,vm_ooffset_t offset,vm_offset_t * addr,vm_size_t size)6911 pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
6912     vm_offset_t *addr, vm_size_t size)
6913 {
6914 	vm_offset_t superpage_offset;
6915 
6916 	if (size < L2_SIZE)
6917 		return;
6918 	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
6919 		offset += ptoa(object->pg_color);
6920 	superpage_offset = offset & L2_OFFSET;
6921 	if (size - ((L2_SIZE - superpage_offset) & L2_OFFSET) < L2_SIZE ||
6922 	    (*addr & L2_OFFSET) == superpage_offset)
6923 		return;
6924 	if ((*addr & L2_OFFSET) < superpage_offset)
6925 		*addr = (*addr & ~L2_OFFSET) + superpage_offset;
6926 	else
6927 		*addr = ((*addr + L2_OFFSET) & ~L2_OFFSET) + superpage_offset;
6928 }
6929 
6930 /**
6931  * Get the kernel virtual address of a set of physical pages. If there are
6932  * physical addresses not covered by the DMAP perform a transient mapping
6933  * that will be removed when calling pmap_unmap_io_transient.
6934  *
6935  * \param page        The pages the caller wishes to obtain the virtual
6936  *                    address on the kernel memory map.
6937  * \param vaddr       On return contains the kernel virtual memory address
6938  *                    of the pages passed in the page parameter.
6939  * \param count       Number of pages passed in.
6940  * \param can_fault   TRUE if the thread using the mapped pages can take
6941  *                    page faults, FALSE otherwise.
6942  *
6943  * \returns TRUE if the caller must call pmap_unmap_io_transient when
6944  *          finished or FALSE otherwise.
6945  *
6946  */
6947 boolean_t
pmap_map_io_transient(vm_page_t page[],vm_offset_t vaddr[],int count,boolean_t can_fault)6948 pmap_map_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
6949     boolean_t can_fault)
6950 {
6951 	vm_paddr_t paddr;
6952 	boolean_t needs_mapping;
6953 	int error, i;
6954 
6955 	/*
6956 	 * Allocate any KVA space that we need, this is done in a separate
6957 	 * loop to prevent calling vmem_alloc while pinned.
6958 	 */
6959 	needs_mapping = FALSE;
6960 	for (i = 0; i < count; i++) {
6961 		paddr = VM_PAGE_TO_PHYS(page[i]);
6962 		if (__predict_false(!PHYS_IN_DMAP(paddr))) {
6963 			error = vmem_alloc(kernel_arena, PAGE_SIZE,
6964 			    M_BESTFIT | M_WAITOK, &vaddr[i]);
6965 			KASSERT(error == 0, ("vmem_alloc failed: %d", error));
6966 			needs_mapping = TRUE;
6967 		} else {
6968 			vaddr[i] = PHYS_TO_DMAP(paddr);
6969 		}
6970 	}
6971 
6972 	/* Exit early if everything is covered by the DMAP */
6973 	if (!needs_mapping)
6974 		return (FALSE);
6975 
6976 	if (!can_fault)
6977 		sched_pin();
6978 	for (i = 0; i < count; i++) {
6979 		paddr = VM_PAGE_TO_PHYS(page[i]);
6980 		if (!PHYS_IN_DMAP(paddr)) {
6981 			panic(
6982 			   "pmap_map_io_transient: TODO: Map out of DMAP data");
6983 		}
6984 	}
6985 
6986 	return (needs_mapping);
6987 }
6988 
6989 void
pmap_unmap_io_transient(vm_page_t page[],vm_offset_t vaddr[],int count,boolean_t can_fault)6990 pmap_unmap_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
6991     boolean_t can_fault)
6992 {
6993 	vm_paddr_t paddr;
6994 	int i;
6995 
6996 	if (!can_fault)
6997 		sched_unpin();
6998 	for (i = 0; i < count; i++) {
6999 		paddr = VM_PAGE_TO_PHYS(page[i]);
7000 		if (!PHYS_IN_DMAP(paddr)) {
7001 			panic("ARM64TODO: pmap_unmap_io_transient: Unmap data");
7002 		}
7003 	}
7004 }
7005 
7006 boolean_t
pmap_is_valid_memattr(pmap_t pmap __unused,vm_memattr_t mode)7007 pmap_is_valid_memattr(pmap_t pmap __unused, vm_memattr_t mode)
7008 {
7009 
7010 	return (mode >= VM_MEMATTR_DEVICE && mode <= VM_MEMATTR_WRITE_THROUGH);
7011 }
7012 
7013 /*
7014  * Track a range of the kernel's virtual address space that is contiguous
7015  * in various mapping attributes.
7016  */
7017 struct pmap_kernel_map_range {
7018 	vm_offset_t sva;
7019 	pt_entry_t attrs;
7020 	int l3pages;
7021 	int l3contig;
7022 	int l2blocks;
7023 	int l1blocks;
7024 };
7025 
7026 static void
sysctl_kmaps_dump(struct sbuf * sb,struct pmap_kernel_map_range * range,vm_offset_t eva)7027 sysctl_kmaps_dump(struct sbuf *sb, struct pmap_kernel_map_range *range,
7028     vm_offset_t eva)
7029 {
7030 	const char *mode;
7031 	int index;
7032 
7033 	if (eva <= range->sva)
7034 		return;
7035 
7036 	index = range->attrs & ATTR_S1_IDX_MASK;
7037 	switch (index) {
7038 	case ATTR_S1_IDX(VM_MEMATTR_DEVICE):
7039 		mode = "DEV";
7040 		break;
7041 	case ATTR_S1_IDX(VM_MEMATTR_UNCACHEABLE):
7042 		mode = "UC";
7043 		break;
7044 	case ATTR_S1_IDX(VM_MEMATTR_WRITE_BACK):
7045 		mode = "WB";
7046 		break;
7047 	case ATTR_S1_IDX(VM_MEMATTR_WRITE_THROUGH):
7048 		mode = "WT";
7049 		break;
7050 	default:
7051 		printf(
7052 		    "%s: unknown memory type %x for range 0x%016lx-0x%016lx\n",
7053 		    __func__, index, range->sva, eva);
7054 		mode = "??";
7055 		break;
7056 	}
7057 
7058 	sbuf_printf(sb, "0x%016lx-0x%016lx r%c%c%c %3s %d %d %d %d\n",
7059 	    range->sva, eva,
7060 	    (range->attrs & ATTR_S1_AP_RW_BIT) == ATTR_S1_AP_RW ? 'w' : '-',
7061 	    (range->attrs & ATTR_S1_PXN) != 0 ? '-' : 'x',
7062 	    (range->attrs & ATTR_S1_AP_USER) != 0 ? 'u' : 's',
7063 	    mode, range->l1blocks, range->l2blocks, range->l3contig,
7064 	    range->l3pages);
7065 
7066 	/* Reset to sentinel value. */
7067 	range->sva = 0xfffffffffffffffful;
7068 }
7069 
7070 /*
7071  * Determine whether the attributes specified by a page table entry match those
7072  * being tracked by the current range.
7073  */
7074 static bool
sysctl_kmaps_match(struct pmap_kernel_map_range * range,pt_entry_t attrs)7075 sysctl_kmaps_match(struct pmap_kernel_map_range *range, pt_entry_t attrs)
7076 {
7077 
7078 	return (range->attrs == attrs);
7079 }
7080 
7081 static void
sysctl_kmaps_reinit(struct pmap_kernel_map_range * range,vm_offset_t va,pt_entry_t attrs)7082 sysctl_kmaps_reinit(struct pmap_kernel_map_range *range, vm_offset_t va,
7083     pt_entry_t attrs)
7084 {
7085 
7086 	memset(range, 0, sizeof(*range));
7087 	range->sva = va;
7088 	range->attrs = attrs;
7089 }
7090 
7091 /*
7092  * Given a leaf PTE, derive the mapping's attributes.  If they do not match
7093  * those of the current run, dump the address range and its attributes, and
7094  * begin a new run.
7095  */
7096 static void
sysctl_kmaps_check(struct sbuf * sb,struct pmap_kernel_map_range * range,vm_offset_t va,pd_entry_t l0e,pd_entry_t l1e,pd_entry_t l2e,pt_entry_t l3e)7097 sysctl_kmaps_check(struct sbuf *sb, struct pmap_kernel_map_range *range,
7098     vm_offset_t va, pd_entry_t l0e, pd_entry_t l1e, pd_entry_t l2e,
7099     pt_entry_t l3e)
7100 {
7101 	pt_entry_t attrs;
7102 
7103 	attrs = l0e & (ATTR_S1_AP_MASK | ATTR_S1_XN);
7104 	attrs |= l1e & (ATTR_S1_AP_MASK | ATTR_S1_XN);
7105 	if ((l1e & ATTR_DESCR_MASK) == L1_BLOCK)
7106 		attrs |= l1e & ATTR_S1_IDX_MASK;
7107 	attrs |= l2e & (ATTR_S1_AP_MASK | ATTR_S1_XN);
7108 	if ((l2e & ATTR_DESCR_MASK) == L2_BLOCK)
7109 		attrs |= l2e & ATTR_S1_IDX_MASK;
7110 	attrs |= l3e & (ATTR_S1_AP_MASK | ATTR_S1_XN | ATTR_S1_IDX_MASK);
7111 
7112 	if (range->sva > va || !sysctl_kmaps_match(range, attrs)) {
7113 		sysctl_kmaps_dump(sb, range, va);
7114 		sysctl_kmaps_reinit(range, va, attrs);
7115 	}
7116 }
7117 
7118 static int
sysctl_kmaps(SYSCTL_HANDLER_ARGS)7119 sysctl_kmaps(SYSCTL_HANDLER_ARGS)
7120 {
7121 	struct pmap_kernel_map_range range;
7122 	struct sbuf sbuf, *sb;
7123 	pd_entry_t l0e, *l1, l1e, *l2, l2e;
7124 	pt_entry_t *l3, l3e;
7125 	vm_offset_t sva;
7126 	vm_paddr_t pa;
7127 	int error, i, j, k, l;
7128 
7129 	error = sysctl_wire_old_buffer(req, 0);
7130 	if (error != 0)
7131 		return (error);
7132 	sb = &sbuf;
7133 	sbuf_new_for_sysctl(sb, NULL, PAGE_SIZE, req);
7134 
7135 	/* Sentinel value. */
7136 	range.sva = 0xfffffffffffffffful;
7137 
7138 	/*
7139 	 * Iterate over the kernel page tables without holding the kernel pmap
7140 	 * lock.  Kernel page table pages are never freed, so at worst we will
7141 	 * observe inconsistencies in the output.
7142 	 */
7143 	for (sva = 0xffff000000000000ul, i = pmap_l0_index(sva); i < Ln_ENTRIES;
7144 	    i++) {
7145 		if (i == pmap_l0_index(DMAP_MIN_ADDRESS))
7146 			sbuf_printf(sb, "\nDirect map:\n");
7147 		else if (i == pmap_l0_index(VM_MIN_KERNEL_ADDRESS))
7148 			sbuf_printf(sb, "\nKernel map:\n");
7149 
7150 		l0e = kernel_pmap->pm_l0[i];
7151 		if ((l0e & ATTR_DESCR_VALID) == 0) {
7152 			sysctl_kmaps_dump(sb, &range, sva);
7153 			sva += L0_SIZE;
7154 			continue;
7155 		}
7156 		pa = l0e & ~ATTR_MASK;
7157 		l1 = (pd_entry_t *)PHYS_TO_DMAP(pa);
7158 
7159 		for (j = pmap_l1_index(sva); j < Ln_ENTRIES; j++) {
7160 			l1e = l1[j];
7161 			if ((l1e & ATTR_DESCR_VALID) == 0) {
7162 				sysctl_kmaps_dump(sb, &range, sva);
7163 				sva += L1_SIZE;
7164 				continue;
7165 			}
7166 			if ((l1e & ATTR_DESCR_MASK) == L1_BLOCK) {
7167 				sysctl_kmaps_check(sb, &range, sva, l0e, l1e,
7168 				    0, 0);
7169 				range.l1blocks++;
7170 				sva += L1_SIZE;
7171 				continue;
7172 			}
7173 			pa = l1e & ~ATTR_MASK;
7174 			l2 = (pd_entry_t *)PHYS_TO_DMAP(pa);
7175 
7176 			for (k = pmap_l2_index(sva); k < Ln_ENTRIES; k++) {
7177 				l2e = l2[k];
7178 				if ((l2e & ATTR_DESCR_VALID) == 0) {
7179 					sysctl_kmaps_dump(sb, &range, sva);
7180 					sva += L2_SIZE;
7181 					continue;
7182 				}
7183 				if ((l2e & ATTR_DESCR_MASK) == L2_BLOCK) {
7184 					sysctl_kmaps_check(sb, &range, sva,
7185 					    l0e, l1e, l2e, 0);
7186 					range.l2blocks++;
7187 					sva += L2_SIZE;
7188 					continue;
7189 				}
7190 				pa = l2e & ~ATTR_MASK;
7191 				l3 = (pt_entry_t *)PHYS_TO_DMAP(pa);
7192 
7193 				for (l = pmap_l3_index(sva); l < Ln_ENTRIES;
7194 				    l++, sva += L3_SIZE) {
7195 					l3e = l3[l];
7196 					if ((l3e & ATTR_DESCR_VALID) == 0) {
7197 						sysctl_kmaps_dump(sb, &range,
7198 						    sva);
7199 						continue;
7200 					}
7201 					sysctl_kmaps_check(sb, &range, sva,
7202 					    l0e, l1e, l2e, l3e);
7203 					if ((l3e & ATTR_CONTIGUOUS) != 0)
7204 						range.l3contig += l % 16 == 0 ?
7205 						    1 : 0;
7206 					else
7207 						range.l3pages++;
7208 				}
7209 			}
7210 		}
7211 	}
7212 
7213 	error = sbuf_finish(sb);
7214 	sbuf_delete(sb);
7215 	return (error);
7216 }
7217 SYSCTL_OID(_vm_pmap, OID_AUTO, kernel_maps,
7218     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE | CTLFLAG_SKIP,
7219     NULL, 0, sysctl_kmaps, "A",
7220     "Dump kernel address layout");
7221