1 /* Hash Tables Implementation.
2 *
3 * This file implements in memory hash tables with insert/del/replace/find/
4 * get-random-element operations. Hash tables will auto resize if needed
5 * tables of power of two in size are used, collisions are handled by
6 * chaining. See the source code for more information... :)
7 *
8 * Copyright (c) 2006-2012, Salvatore Sanfilippo <antirez at gmail dot com>
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions are met:
13 *
14 * * Redistributions of source code must retain the above copyright notice,
15 * this list of conditions and the following disclaimer.
16 * * Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * * Neither the name of Redis nor the names of its contributors may be used
20 * to endorse or promote products derived from this software without
21 * specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
24 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
27 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35
36 #include "fmacros.h"
37
38 #include <stdio.h>
39 #include <stdlib.h>
40 #include <stdint.h>
41 #include <string.h>
42 #include <stdarg.h>
43 #include <limits.h>
44 #include <sys/time.h>
45
46 #include "dict.h"
47 #include "zmalloc.h"
48 #ifndef DICT_BENCHMARK_MAIN
49 #include "redisassert.h"
50 #else
51 #include <assert.h>
52 #endif
53
54 /* Using dictEnableResize() / dictDisableResize() we make possible to
55 * enable/disable resizing of the hash table as needed. This is very important
56 * for Redis, as we use copy-on-write and don't want to move too much memory
57 * around when there is a child performing saving operations.
58 *
59 * Note that even when dict_can_resize is set to 0, not all resizes are
60 * prevented: a hash table is still allowed to grow if the ratio between
61 * the number of elements and the buckets > dict_force_resize_ratio. */
62 static int dict_can_resize = 1;
63 static unsigned int dict_force_resize_ratio = 5;
64
65 /* -------------------------- private prototypes ---------------------------- */
66
67 static int _dictExpandIfNeeded(dict *ht);
68 static unsigned long _dictNextPower(unsigned long size);
69 static long _dictKeyIndex(dict *ht, const void *key, uint64_t hash, dictEntry **existing);
70 static int _dictInit(dict *ht, dictType *type, void *privDataPtr);
71
72 /* -------------------------- hash functions -------------------------------- */
73
74 static uint8_t dict_hash_function_seed[16];
75
dictSetHashFunctionSeed(uint8_t * seed)76 void dictSetHashFunctionSeed(uint8_t *seed) {
77 memcpy(dict_hash_function_seed,seed,sizeof(dict_hash_function_seed));
78 }
79
dictGetHashFunctionSeed(void)80 uint8_t *dictGetHashFunctionSeed(void) {
81 return dict_hash_function_seed;
82 }
83
84 /* The default hashing function uses SipHash implementation
85 * in siphash.c. */
86
87 uint64_t siphash(const uint8_t *in, const size_t inlen, const uint8_t *k);
88 uint64_t siphash_nocase(const uint8_t *in, const size_t inlen, const uint8_t *k);
89
dictGenHashFunction(const void * key,int len)90 uint64_t dictGenHashFunction(const void *key, int len) {
91 return siphash(key,len,dict_hash_function_seed);
92 }
93
dictGenCaseHashFunction(const unsigned char * buf,int len)94 uint64_t dictGenCaseHashFunction(const unsigned char *buf, int len) {
95 return siphash_nocase(buf,len,dict_hash_function_seed);
96 }
97
98 /* ----------------------------- API implementation ------------------------- */
99
100 /* Reset a hash table already initialized with ht_init().
101 * NOTE: This function should only be called by ht_destroy(). */
_dictReset(dictht * ht)102 static void _dictReset(dictht *ht)
103 {
104 ht->table = NULL;
105 ht->size = 0;
106 ht->sizemask = 0;
107 ht->used = 0;
108 }
109
110 /* Create a new hash table */
dictCreate(dictType * type,void * privDataPtr)111 dict *dictCreate(dictType *type,
112 void *privDataPtr)
113 {
114 dict *d = zmalloc(sizeof(*d));
115
116 _dictInit(d,type,privDataPtr);
117 return d;
118 }
119
120 /* Initialize the hash table */
_dictInit(dict * d,dictType * type,void * privDataPtr)121 int _dictInit(dict *d, dictType *type,
122 void *privDataPtr)
123 {
124 _dictReset(&d->ht[0]);
125 _dictReset(&d->ht[1]);
126 d->type = type;
127 d->privdata = privDataPtr;
128 d->rehashidx = -1;
129 d->iterators = 0;
130 return DICT_OK;
131 }
132
133 /* Resize the table to the minimal size that contains all the elements,
134 * but with the invariant of a USED/BUCKETS ratio near to <= 1 */
dictResize(dict * d)135 int dictResize(dict *d)
136 {
137 int minimal;
138
139 if (!dict_can_resize || dictIsRehashing(d)) return DICT_ERR;
140 minimal = d->ht[0].used;
141 if (minimal < DICT_HT_INITIAL_SIZE)
142 minimal = DICT_HT_INITIAL_SIZE;
143 return dictExpand(d, minimal);
144 }
145
146 /* Expand or create the hash table */
dictExpand(dict * d,unsigned long size)147 int dictExpand(dict *d, unsigned long size)
148 {
149 /* the size is invalid if it is smaller than the number of
150 * elements already inside the hash table */
151 if (dictIsRehashing(d) || d->ht[0].used > size)
152 return DICT_ERR;
153
154 dictht n; /* the new hash table */
155 unsigned long realsize = _dictNextPower(size);
156
157 /* Rehashing to the same table size is not useful. */
158 if (realsize == d->ht[0].size) return DICT_ERR;
159
160 /* Allocate the new hash table and initialize all pointers to NULL */
161 n.size = realsize;
162 n.sizemask = realsize-1;
163 n.table = zcalloc(realsize*sizeof(dictEntry*));
164 n.used = 0;
165
166 /* Is this the first initialization? If so it's not really a rehashing
167 * we just set the first hash table so that it can accept keys. */
168 if (d->ht[0].table == NULL) {
169 d->ht[0] = n;
170 return DICT_OK;
171 }
172
173 /* Prepare a second hash table for incremental rehashing */
174 d->ht[1] = n;
175 d->rehashidx = 0;
176 return DICT_OK;
177 }
178
179 /* Performs N steps of incremental rehashing. Returns 1 if there are still
180 * keys to move from the old to the new hash table, otherwise 0 is returned.
181 *
182 * Note that a rehashing step consists in moving a bucket (that may have more
183 * than one key as we use chaining) from the old to the new hash table, however
184 * since part of the hash table may be composed of empty spaces, it is not
185 * guaranteed that this function will rehash even a single bucket, since it
186 * will visit at max N*10 empty buckets in total, otherwise the amount of
187 * work it does would be unbound and the function may block for a long time. */
dictRehash(dict * d,int n)188 int dictRehash(dict *d, int n) {
189 int empty_visits = n*10; /* Max number of empty buckets to visit. */
190 if (!dictIsRehashing(d)) return 0;
191
192 while(n-- && d->ht[0].used != 0) {
193 dictEntry *de, *nextde;
194
195 /* Note that rehashidx can't overflow as we are sure there are more
196 * elements because ht[0].used != 0 */
197 assert(d->ht[0].size > (unsigned long)d->rehashidx);
198 while(d->ht[0].table[d->rehashidx] == NULL) {
199 d->rehashidx++;
200 if (--empty_visits == 0) return 1;
201 }
202 de = d->ht[0].table[d->rehashidx];
203 /* Move all the keys in this bucket from the old to the new hash HT */
204 while(de) {
205 uint64_t h;
206
207 nextde = de->next;
208 /* Get the index in the new hash table */
209 h = dictHashKey(d, de->key) & d->ht[1].sizemask;
210 de->next = d->ht[1].table[h];
211 d->ht[1].table[h] = de;
212 d->ht[0].used--;
213 d->ht[1].used++;
214 de = nextde;
215 }
216 d->ht[0].table[d->rehashidx] = NULL;
217 d->rehashidx++;
218 }
219
220 /* Check if we already rehashed the whole table... */
221 if (d->ht[0].used == 0) {
222 zfree(d->ht[0].table);
223 d->ht[0] = d->ht[1];
224 _dictReset(&d->ht[1]);
225 d->rehashidx = -1;
226 return 0;
227 }
228
229 /* More to rehash... */
230 return 1;
231 }
232
timeInMilliseconds(void)233 long long timeInMilliseconds(void) {
234 struct timeval tv;
235
236 gettimeofday(&tv,NULL);
237 return (((long long)tv.tv_sec)*1000)+(tv.tv_usec/1000);
238 }
239
240 /* Rehash for an amount of time between ms milliseconds and ms+1 milliseconds */
dictRehashMilliseconds(dict * d,int ms)241 int dictRehashMilliseconds(dict *d, int ms) {
242 long long start = timeInMilliseconds();
243 int rehashes = 0;
244
245 while(dictRehash(d,100)) {
246 rehashes += 100;
247 if (timeInMilliseconds()-start > ms) break;
248 }
249 return rehashes;
250 }
251
252 /* This function performs just a step of rehashing, and only if there are
253 * no safe iterators bound to our hash table. When we have iterators in the
254 * middle of a rehashing we can't mess with the two hash tables otherwise
255 * some element can be missed or duplicated.
256 *
257 * This function is called by common lookup or update operations in the
258 * dictionary so that the hash table automatically migrates from H1 to H2
259 * while it is actively used. */
_dictRehashStep(dict * d)260 static void _dictRehashStep(dict *d) {
261 if (d->iterators == 0) dictRehash(d,1);
262 }
263
264 /* Add an element to the target hash table */
dictAdd(dict * d,void * key,void * val)265 int dictAdd(dict *d, void *key, void *val)
266 {
267 dictEntry *entry = dictAddRaw(d,key,NULL);
268
269 if (!entry) return DICT_ERR;
270 dictSetVal(d, entry, val);
271 return DICT_OK;
272 }
273
274 /* Low level add or find:
275 * This function adds the entry but instead of setting a value returns the
276 * dictEntry structure to the user, that will make sure to fill the value
277 * field as he wishes.
278 *
279 * This function is also directly exposed to the user API to be called
280 * mainly in order to store non-pointers inside the hash value, example:
281 *
282 * entry = dictAddRaw(dict,mykey,NULL);
283 * if (entry != NULL) dictSetSignedIntegerVal(entry,1000);
284 *
285 * Return values:
286 *
287 * If key already exists NULL is returned, and "*existing" is populated
288 * with the existing entry if existing is not NULL.
289 *
290 * If key was added, the hash entry is returned to be manipulated by the caller.
291 */
dictAddRaw(dict * d,void * key,dictEntry ** existing)292 dictEntry *dictAddRaw(dict *d, void *key, dictEntry **existing)
293 {
294 long index;
295 dictEntry *entry;
296 dictht *ht;
297
298 if (dictIsRehashing(d)) _dictRehashStep(d);
299
300 /* Get the index of the new element, or -1 if
301 * the element already exists. */
302 if ((index = _dictKeyIndex(d, key, dictHashKey(d,key), existing)) == -1)
303 return NULL;
304
305 /* Allocate the memory and store the new entry.
306 * Insert the element in top, with the assumption that in a database
307 * system it is more likely that recently added entries are accessed
308 * more frequently. */
309 ht = dictIsRehashing(d) ? &d->ht[1] : &d->ht[0];
310 entry = zmalloc(sizeof(*entry));
311 entry->next = ht->table[index];
312 ht->table[index] = entry;
313 ht->used++;
314
315 /* Set the hash entry fields. */
316 dictSetKey(d, entry, key);
317 return entry;
318 }
319
320 /* Add or Overwrite:
321 * Add an element, discarding the old value if the key already exists.
322 * Return 1 if the key was added from scratch, 0 if there was already an
323 * element with such key and dictReplace() just performed a value update
324 * operation. */
dictReplace(dict * d,void * key,void * val)325 int dictReplace(dict *d, void *key, void *val)
326 {
327 dictEntry *entry, *existing, auxentry;
328
329 /* Try to add the element. If the key
330 * does not exists dictAdd will succeed. */
331 entry = dictAddRaw(d,key,&existing);
332 if (entry) {
333 dictSetVal(d, entry, val);
334 return 1;
335 }
336
337 /* Set the new value and free the old one. Note that it is important
338 * to do that in this order, as the value may just be exactly the same
339 * as the previous one. In this context, think to reference counting,
340 * you want to increment (set), and then decrement (free), and not the
341 * reverse. */
342 auxentry = *existing;
343 dictSetVal(d, existing, val);
344 dictFreeVal(d, &auxentry);
345 return 0;
346 }
347
348 /* Add or Find:
349 * dictAddOrFind() is simply a version of dictAddRaw() that always
350 * returns the hash entry of the specified key, even if the key already
351 * exists and can't be added (in that case the entry of the already
352 * existing key is returned.)
353 *
354 * See dictAddRaw() for more information. */
dictAddOrFind(dict * d,void * key)355 dictEntry *dictAddOrFind(dict *d, void *key) {
356 dictEntry *entry, *existing;
357 entry = dictAddRaw(d,key,&existing);
358 return entry ? entry : existing;
359 }
360
361 /* Search and remove an element. This is an helper function for
362 * dictDelete() and dictUnlink(), please check the top comment
363 * of those functions. */
dictGenericDelete(dict * d,const void * key,int nofree)364 static dictEntry *dictGenericDelete(dict *d, const void *key, int nofree) {
365 uint64_t h, idx;
366 dictEntry *he, *prevHe;
367 int table;
368
369 if (d->ht[0].used == 0 && d->ht[1].used == 0) return NULL;
370
371 if (dictIsRehashing(d)) _dictRehashStep(d);
372 h = dictHashKey(d, key);
373
374 for (table = 0; table <= 1; table++) {
375 idx = h & d->ht[table].sizemask;
376 he = d->ht[table].table[idx];
377 prevHe = NULL;
378 while(he) {
379 if (key==he->key || dictCompareKeys(d, key, he->key)) {
380 /* Unlink the element from the list */
381 if (prevHe)
382 prevHe->next = he->next;
383 else
384 d->ht[table].table[idx] = he->next;
385 if (!nofree) {
386 dictFreeKey(d, he);
387 dictFreeVal(d, he);
388 zfree(he);
389 }
390 d->ht[table].used--;
391 return he;
392 }
393 prevHe = he;
394 he = he->next;
395 }
396 if (!dictIsRehashing(d)) break;
397 }
398 return NULL; /* not found */
399 }
400
401 /* Remove an element, returning DICT_OK on success or DICT_ERR if the
402 * element was not found. */
dictDelete(dict * ht,const void * key)403 int dictDelete(dict *ht, const void *key) {
404 return dictGenericDelete(ht,key,0) ? DICT_OK : DICT_ERR;
405 }
406
407 /* Remove an element from the table, but without actually releasing
408 * the key, value and dictionary entry. The dictionary entry is returned
409 * if the element was found (and unlinked from the table), and the user
410 * should later call `dictFreeUnlinkedEntry()` with it in order to release it.
411 * Otherwise if the key is not found, NULL is returned.
412 *
413 * This function is useful when we want to remove something from the hash
414 * table but want to use its value before actually deleting the entry.
415 * Without this function the pattern would require two lookups:
416 *
417 * entry = dictFind(...);
418 * // Do something with entry
419 * dictDelete(dictionary,entry);
420 *
421 * Thanks to this function it is possible to avoid this, and use
422 * instead:
423 *
424 * entry = dictUnlink(dictionary,entry);
425 * // Do something with entry
426 * dictFreeUnlinkedEntry(entry); // <- This does not need to lookup again.
427 */
dictUnlink(dict * ht,const void * key)428 dictEntry *dictUnlink(dict *ht, const void *key) {
429 return dictGenericDelete(ht,key,1);
430 }
431
432 /* You need to call this function to really free the entry after a call
433 * to dictUnlink(). It's safe to call this function with 'he' = NULL. */
dictFreeUnlinkedEntry(dict * d,dictEntry * he)434 void dictFreeUnlinkedEntry(dict *d, dictEntry *he) {
435 if (he == NULL) return;
436 dictFreeKey(d, he);
437 dictFreeVal(d, he);
438 zfree(he);
439 }
440
441 /* Destroy an entire dictionary */
_dictClear(dict * d,dictht * ht,void (callback)(void *))442 int _dictClear(dict *d, dictht *ht, void(callback)(void *)) {
443 unsigned long i;
444
445 /* Free all the elements */
446 for (i = 0; i < ht->size && ht->used > 0; i++) {
447 dictEntry *he, *nextHe;
448
449 if (callback && (i & 65535) == 0) callback(d->privdata);
450
451 if ((he = ht->table[i]) == NULL) continue;
452 while(he) {
453 nextHe = he->next;
454 dictFreeKey(d, he);
455 dictFreeVal(d, he);
456 zfree(he);
457 ht->used--;
458 he = nextHe;
459 }
460 }
461 /* Free the table and the allocated cache structure */
462 zfree(ht->table);
463 /* Re-initialize the table */
464 _dictReset(ht);
465 return DICT_OK; /* never fails */
466 }
467
468 /* Clear & Release the hash table */
dictRelease(dict * d)469 void dictRelease(dict *d)
470 {
471 _dictClear(d,&d->ht[0],NULL);
472 _dictClear(d,&d->ht[1],NULL);
473 zfree(d);
474 }
475
dictFind(dict * d,const void * key)476 dictEntry *dictFind(dict *d, const void *key)
477 {
478 dictEntry *he;
479 uint64_t h, idx, table;
480
481 if (d->ht[0].used + d->ht[1].used == 0) return NULL; /* dict is empty */
482 if (dictIsRehashing(d)) _dictRehashStep(d);
483 h = dictHashKey(d, key);
484 for (table = 0; table <= 1; table++) {
485 idx = h & d->ht[table].sizemask;
486 he = d->ht[table].table[idx];
487 while(he) {
488 if (key==he->key || dictCompareKeys(d, key, he->key))
489 return he;
490 he = he->next;
491 }
492 if (!dictIsRehashing(d)) return NULL;
493 }
494 return NULL;
495 }
496
dictFetchValue(dict * d,const void * key)497 void *dictFetchValue(dict *d, const void *key) {
498 dictEntry *he;
499
500 he = dictFind(d,key);
501 return he ? dictGetVal(he) : NULL;
502 }
503
504 /* A fingerprint is a 64 bit number that represents the state of the dictionary
505 * at a given time, it's just a few dict properties xored together.
506 * When an unsafe iterator is initialized, we get the dict fingerprint, and check
507 * the fingerprint again when the iterator is released.
508 * If the two fingerprints are different it means that the user of the iterator
509 * performed forbidden operations against the dictionary while iterating. */
dictFingerprint(dict * d)510 long long dictFingerprint(dict *d) {
511 long long integers[6], hash = 0;
512 int j;
513
514 integers[0] = (long) d->ht[0].table;
515 integers[1] = d->ht[0].size;
516 integers[2] = d->ht[0].used;
517 integers[3] = (long) d->ht[1].table;
518 integers[4] = d->ht[1].size;
519 integers[5] = d->ht[1].used;
520
521 /* We hash N integers by summing every successive integer with the integer
522 * hashing of the previous sum. Basically:
523 *
524 * Result = hash(hash(hash(int1)+int2)+int3) ...
525 *
526 * This way the same set of integers in a different order will (likely) hash
527 * to a different number. */
528 for (j = 0; j < 6; j++) {
529 hash += integers[j];
530 /* For the hashing step we use Tomas Wang's 64 bit integer hash. */
531 hash = (~hash) + (hash << 21); // hash = (hash << 21) - hash - 1;
532 hash = hash ^ (hash >> 24);
533 hash = (hash + (hash << 3)) + (hash << 8); // hash * 265
534 hash = hash ^ (hash >> 14);
535 hash = (hash + (hash << 2)) + (hash << 4); // hash * 21
536 hash = hash ^ (hash >> 28);
537 hash = hash + (hash << 31);
538 }
539 return hash;
540 }
541
dictGetIterator(dict * d)542 dictIterator *dictGetIterator(dict *d)
543 {
544 dictIterator *iter = zmalloc(sizeof(*iter));
545
546 iter->d = d;
547 iter->table = 0;
548 iter->index = -1;
549 iter->safe = 0;
550 iter->entry = NULL;
551 iter->nextEntry = NULL;
552 return iter;
553 }
554
dictGetSafeIterator(dict * d)555 dictIterator *dictGetSafeIterator(dict *d) {
556 dictIterator *i = dictGetIterator(d);
557
558 i->safe = 1;
559 return i;
560 }
561
dictNext(dictIterator * iter)562 dictEntry *dictNext(dictIterator *iter)
563 {
564 while (1) {
565 if (iter->entry == NULL) {
566 dictht *ht = &iter->d->ht[iter->table];
567 if (iter->index == -1 && iter->table == 0) {
568 if (iter->safe)
569 iter->d->iterators++;
570 else
571 iter->fingerprint = dictFingerprint(iter->d);
572 }
573 iter->index++;
574 if (iter->index >= (long) ht->size) {
575 if (dictIsRehashing(iter->d) && iter->table == 0) {
576 iter->table++;
577 iter->index = 0;
578 ht = &iter->d->ht[1];
579 } else {
580 break;
581 }
582 }
583 iter->entry = ht->table[iter->index];
584 } else {
585 iter->entry = iter->nextEntry;
586 }
587 if (iter->entry) {
588 /* We need to save the 'next' here, the iterator user
589 * may delete the entry we are returning. */
590 iter->nextEntry = iter->entry->next;
591 return iter->entry;
592 }
593 }
594 return NULL;
595 }
596
dictReleaseIterator(dictIterator * iter)597 void dictReleaseIterator(dictIterator *iter)
598 {
599 if (!(iter->index == -1 && iter->table == 0)) {
600 if (iter->safe)
601 iter->d->iterators--;
602 else
603 assert(iter->fingerprint == dictFingerprint(iter->d));
604 }
605 zfree(iter);
606 }
607
608 /* Return a random entry from the hash table. Useful to
609 * implement randomized algorithms */
dictGetRandomKey(dict * d)610 dictEntry *dictGetRandomKey(dict *d)
611 {
612 dictEntry *he, *orighe;
613 unsigned long h;
614 int listlen, listele;
615
616 if (dictSize(d) == 0) return NULL;
617 if (dictIsRehashing(d)) _dictRehashStep(d);
618 if (dictIsRehashing(d)) {
619 do {
620 /* We are sure there are no elements in indexes from 0
621 * to rehashidx-1 */
622 h = d->rehashidx + (random() % (d->ht[0].size +
623 d->ht[1].size -
624 d->rehashidx));
625 he = (h >= d->ht[0].size) ? d->ht[1].table[h - d->ht[0].size] :
626 d->ht[0].table[h];
627 } while(he == NULL);
628 } else {
629 do {
630 h = random() & d->ht[0].sizemask;
631 he = d->ht[0].table[h];
632 } while(he == NULL);
633 }
634
635 /* Now we found a non empty bucket, but it is a linked
636 * list and we need to get a random element from the list.
637 * The only sane way to do so is counting the elements and
638 * select a random index. */
639 listlen = 0;
640 orighe = he;
641 while(he) {
642 he = he->next;
643 listlen++;
644 }
645 listele = random() % listlen;
646 he = orighe;
647 while(listele--) he = he->next;
648 return he;
649 }
650
651 /* This function samples the dictionary to return a few keys from random
652 * locations.
653 *
654 * It does not guarantee to return all the keys specified in 'count', nor
655 * it does guarantee to return non-duplicated elements, however it will make
656 * some effort to do both things.
657 *
658 * Returned pointers to hash table entries are stored into 'des' that
659 * points to an array of dictEntry pointers. The array must have room for
660 * at least 'count' elements, that is the argument we pass to the function
661 * to tell how many random elements we need.
662 *
663 * The function returns the number of items stored into 'des', that may
664 * be less than 'count' if the hash table has less than 'count' elements
665 * inside, or if not enough elements were found in a reasonable amount of
666 * steps.
667 *
668 * Note that this function is not suitable when you need a good distribution
669 * of the returned items, but only when you need to "sample" a given number
670 * of continuous elements to run some kind of algorithm or to produce
671 * statistics. However the function is much faster than dictGetRandomKey()
672 * at producing N elements. */
dictGetSomeKeys(dict * d,dictEntry ** des,unsigned int count)673 unsigned int dictGetSomeKeys(dict *d, dictEntry **des, unsigned int count) {
674 unsigned long j; /* internal hash table id, 0 or 1. */
675 unsigned long tables; /* 1 or 2 tables? */
676 unsigned long stored = 0, maxsizemask;
677 unsigned long maxsteps;
678
679 if (dictSize(d) < count) count = dictSize(d);
680 maxsteps = count*10;
681
682 /* Try to do a rehashing work proportional to 'count'. */
683 for (j = 0; j < count; j++) {
684 if (dictIsRehashing(d))
685 _dictRehashStep(d);
686 else
687 break;
688 }
689
690 tables = dictIsRehashing(d) ? 2 : 1;
691 maxsizemask = d->ht[0].sizemask;
692 if (tables > 1 && maxsizemask < d->ht[1].sizemask)
693 maxsizemask = d->ht[1].sizemask;
694
695 /* Pick a random point inside the larger table. */
696 unsigned long i = random() & maxsizemask;
697 unsigned long emptylen = 0; /* Continuous empty entries so far. */
698 while(stored < count && maxsteps--) {
699 for (j = 0; j < tables; j++) {
700 /* Invariant of the dict.c rehashing: up to the indexes already
701 * visited in ht[0] during the rehashing, there are no populated
702 * buckets, so we can skip ht[0] for indexes between 0 and idx-1. */
703 if (tables == 2 && j == 0 && i < (unsigned long) d->rehashidx) {
704 /* Moreover, if we are currently out of range in the second
705 * table, there will be no elements in both tables up to
706 * the current rehashing index, so we jump if possible.
707 * (this happens when going from big to small table). */
708 if (i >= d->ht[1].size)
709 i = d->rehashidx;
710 else
711 continue;
712 }
713 if (i >= d->ht[j].size) continue; /* Out of range for this table. */
714 dictEntry *he = d->ht[j].table[i];
715
716 /* Count contiguous empty buckets, and jump to other
717 * locations if they reach 'count' (with a minimum of 5). */
718 if (he == NULL) {
719 emptylen++;
720 if (emptylen >= 5 && emptylen > count) {
721 i = random() & maxsizemask;
722 emptylen = 0;
723 }
724 } else {
725 emptylen = 0;
726 while (he) {
727 /* Collect all the elements of the buckets found non
728 * empty while iterating. */
729 *des = he;
730 des++;
731 he = he->next;
732 stored++;
733 if (stored == count) return stored;
734 }
735 }
736 }
737 i = (i+1) & maxsizemask;
738 }
739 return stored;
740 }
741
742 /* Function to reverse bits. Algorithm from:
743 * http://graphics.stanford.edu/~seander/bithacks.html#ReverseParallel */
rev(unsigned long v)744 static unsigned long rev(unsigned long v) {
745 unsigned long s = 8 * sizeof(v); // bit size; must be power of 2
746 unsigned long mask = ~0;
747 while ((s >>= 1) > 0) {
748 mask ^= (mask << s);
749 v = ((v >> s) & mask) | ((v << s) & ~mask);
750 }
751 return v;
752 }
753
754 /* dictScan() is used to iterate over the elements of a dictionary.
755 *
756 * Iterating works the following way:
757 *
758 * 1) Initially you call the function using a cursor (v) value of 0.
759 * 2) The function performs one step of the iteration, and returns the
760 * new cursor value you must use in the next call.
761 * 3) When the returned cursor is 0, the iteration is complete.
762 *
763 * The function guarantees all elements present in the
764 * dictionary get returned between the start and end of the iteration.
765 * However it is possible some elements get returned multiple times.
766 *
767 * For every element returned, the callback argument 'fn' is
768 * called with 'privdata' as first argument and the dictionary entry
769 * 'de' as second argument.
770 *
771 * HOW IT WORKS.
772 *
773 * The iteration algorithm was designed by Pieter Noordhuis.
774 * The main idea is to increment a cursor starting from the higher order
775 * bits. That is, instead of incrementing the cursor normally, the bits
776 * of the cursor are reversed, then the cursor is incremented, and finally
777 * the bits are reversed again.
778 *
779 * This strategy is needed because the hash table may be resized between
780 * iteration calls.
781 *
782 * dict.c hash tables are always power of two in size, and they
783 * use chaining, so the position of an element in a given table is given
784 * by computing the bitwise AND between Hash(key) and SIZE-1
785 * (where SIZE-1 is always the mask that is equivalent to taking the rest
786 * of the division between the Hash of the key and SIZE).
787 *
788 * For example if the current hash table size is 16, the mask is
789 * (in binary) 1111. The position of a key in the hash table will always be
790 * the last four bits of the hash output, and so forth.
791 *
792 * WHAT HAPPENS IF THE TABLE CHANGES IN SIZE?
793 *
794 * If the hash table grows, elements can go anywhere in one multiple of
795 * the old bucket: for example let's say we already iterated with
796 * a 4 bit cursor 1100 (the mask is 1111 because hash table size = 16).
797 *
798 * If the hash table will be resized to 64 elements, then the new mask will
799 * be 111111. The new buckets you obtain by substituting in ??1100
800 * with either 0 or 1 can be targeted only by keys we already visited
801 * when scanning the bucket 1100 in the smaller hash table.
802 *
803 * By iterating the higher bits first, because of the inverted counter, the
804 * cursor does not need to restart if the table size gets bigger. It will
805 * continue iterating using cursors without '1100' at the end, and also
806 * without any other combination of the final 4 bits already explored.
807 *
808 * Similarly when the table size shrinks over time, for example going from
809 * 16 to 8, if a combination of the lower three bits (the mask for size 8
810 * is 111) were already completely explored, it would not be visited again
811 * because we are sure we tried, for example, both 0111 and 1111 (all the
812 * variations of the higher bit) so we don't need to test it again.
813 *
814 * WAIT... YOU HAVE *TWO* TABLES DURING REHASHING!
815 *
816 * Yes, this is true, but we always iterate the smaller table first, then
817 * we test all the expansions of the current cursor into the larger
818 * table. For example if the current cursor is 101 and we also have a
819 * larger table of size 16, we also test (0)101 and (1)101 inside the larger
820 * table. This reduces the problem back to having only one table, where
821 * the larger one, if it exists, is just an expansion of the smaller one.
822 *
823 * LIMITATIONS
824 *
825 * This iterator is completely stateless, and this is a huge advantage,
826 * including no additional memory used.
827 *
828 * The disadvantages resulting from this design are:
829 *
830 * 1) It is possible we return elements more than once. However this is usually
831 * easy to deal with in the application level.
832 * 2) The iterator must return multiple elements per call, as it needs to always
833 * return all the keys chained in a given bucket, and all the expansions, so
834 * we are sure we don't miss keys moving during rehashing.
835 * 3) The reverse cursor is somewhat hard to understand at first, but this
836 * comment is supposed to help.
837 */
dictScan(dict * d,unsigned long v,dictScanFunction * fn,dictScanBucketFunction * bucketfn,void * privdata)838 unsigned long dictScan(dict *d,
839 unsigned long v,
840 dictScanFunction *fn,
841 dictScanBucketFunction* bucketfn,
842 void *privdata)
843 {
844 dictht *t0, *t1;
845 const dictEntry *de, *next;
846 unsigned long m0, m1;
847
848 if (dictSize(d) == 0) return 0;
849
850 if (!dictIsRehashing(d)) {
851 t0 = &(d->ht[0]);
852 m0 = t0->sizemask;
853
854 /* Emit entries at cursor */
855 if (bucketfn) bucketfn(privdata, &t0->table[v & m0]);
856 de = t0->table[v & m0];
857 while (de) {
858 next = de->next;
859 fn(privdata, de);
860 de = next;
861 }
862
863 /* Set unmasked bits so incrementing the reversed cursor
864 * operates on the masked bits */
865 v |= ~m0;
866
867 /* Increment the reverse cursor */
868 v = rev(v);
869 v++;
870 v = rev(v);
871
872 } else {
873 t0 = &d->ht[0];
874 t1 = &d->ht[1];
875
876 /* Make sure t0 is the smaller and t1 is the bigger table */
877 if (t0->size > t1->size) {
878 t0 = &d->ht[1];
879 t1 = &d->ht[0];
880 }
881
882 m0 = t0->sizemask;
883 m1 = t1->sizemask;
884
885 /* Emit entries at cursor */
886 if (bucketfn) bucketfn(privdata, &t0->table[v & m0]);
887 de = t0->table[v & m0];
888 while (de) {
889 next = de->next;
890 fn(privdata, de);
891 de = next;
892 }
893
894 /* Iterate over indices in larger table that are the expansion
895 * of the index pointed to by the cursor in the smaller table */
896 do {
897 /* Emit entries at cursor */
898 if (bucketfn) bucketfn(privdata, &t1->table[v & m1]);
899 de = t1->table[v & m1];
900 while (de) {
901 next = de->next;
902 fn(privdata, de);
903 de = next;
904 }
905
906 /* Increment the reverse cursor not covered by the smaller mask.*/
907 v |= ~m1;
908 v = rev(v);
909 v++;
910 v = rev(v);
911
912 /* Continue while bits covered by mask difference is non-zero */
913 } while (v & (m0 ^ m1));
914 }
915
916 return v;
917 }
918
919 /* ------------------------- private functions ------------------------------ */
920
921 /* Expand the hash table if needed */
_dictExpandIfNeeded(dict * d)922 static int _dictExpandIfNeeded(dict *d)
923 {
924 /* Incremental rehashing already in progress. Return. */
925 if (dictIsRehashing(d)) return DICT_OK;
926
927 /* If the hash table is empty expand it to the initial size. */
928 if (d->ht[0].size == 0) return dictExpand(d, DICT_HT_INITIAL_SIZE);
929
930 /* If we reached the 1:1 ratio, and we are allowed to resize the hash
931 * table (global setting) or we should avoid it but the ratio between
932 * elements/buckets is over the "safe" threshold, we resize doubling
933 * the number of buckets. */
934 if (d->ht[0].used >= d->ht[0].size &&
935 (dict_can_resize ||
936 d->ht[0].used/d->ht[0].size > dict_force_resize_ratio))
937 {
938 return dictExpand(d, d->ht[0].used*2);
939 }
940 return DICT_OK;
941 }
942
943 /* Our hash table capability is a power of two */
_dictNextPower(unsigned long size)944 static unsigned long _dictNextPower(unsigned long size)
945 {
946 unsigned long i = DICT_HT_INITIAL_SIZE;
947
948 if (size >= LONG_MAX) return LONG_MAX + 1LU;
949 while(1) {
950 if (i >= size)
951 return i;
952 i *= 2;
953 }
954 }
955
956 /* Returns the index of a free slot that can be populated with
957 * a hash entry for the given 'key'.
958 * If the key already exists, -1 is returned
959 * and the optional output parameter may be filled.
960 *
961 * Note that if we are in the process of rehashing the hash table, the
962 * index is always returned in the context of the second (new) hash table. */
_dictKeyIndex(dict * d,const void * key,uint64_t hash,dictEntry ** existing)963 static long _dictKeyIndex(dict *d, const void *key, uint64_t hash, dictEntry **existing)
964 {
965 unsigned long idx, table;
966 dictEntry *he;
967 if (existing) *existing = NULL;
968
969 /* Expand the hash table if needed */
970 if (_dictExpandIfNeeded(d) == DICT_ERR)
971 return -1;
972 for (table = 0; table <= 1; table++) {
973 idx = hash & d->ht[table].sizemask;
974 /* Search if this slot does not already contain the given key */
975 he = d->ht[table].table[idx];
976 while(he) {
977 if (key==he->key || dictCompareKeys(d, key, he->key)) {
978 if (existing) *existing = he;
979 return -1;
980 }
981 he = he->next;
982 }
983 if (!dictIsRehashing(d)) break;
984 }
985 return idx;
986 }
987
dictEmpty(dict * d,void (callback)(void *))988 void dictEmpty(dict *d, void(callback)(void*)) {
989 _dictClear(d,&d->ht[0],callback);
990 _dictClear(d,&d->ht[1],callback);
991 d->rehashidx = -1;
992 d->iterators = 0;
993 }
994
dictEnableResize(void)995 void dictEnableResize(void) {
996 dict_can_resize = 1;
997 }
998
dictDisableResize(void)999 void dictDisableResize(void) {
1000 dict_can_resize = 0;
1001 }
1002
dictGetHash(dict * d,const void * key)1003 uint64_t dictGetHash(dict *d, const void *key) {
1004 return dictHashKey(d, key);
1005 }
1006
1007 /* Finds the dictEntry reference by using pointer and pre-calculated hash.
1008 * oldkey is a dead pointer and should not be accessed.
1009 * the hash value should be provided using dictGetHash.
1010 * no string / key comparison is performed.
1011 * return value is the reference to the dictEntry if found, or NULL if not found. */
dictFindEntryRefByPtrAndHash(dict * d,const void * oldptr,uint64_t hash)1012 dictEntry **dictFindEntryRefByPtrAndHash(dict *d, const void *oldptr, uint64_t hash) {
1013 dictEntry *he, **heref;
1014 unsigned long idx, table;
1015
1016 if (d->ht[0].used + d->ht[1].used == 0) return NULL; /* dict is empty */
1017 for (table = 0; table <= 1; table++) {
1018 idx = hash & d->ht[table].sizemask;
1019 heref = &d->ht[table].table[idx];
1020 he = *heref;
1021 while(he) {
1022 if (oldptr==he->key)
1023 return heref;
1024 heref = &he->next;
1025 he = *heref;
1026 }
1027 if (!dictIsRehashing(d)) return NULL;
1028 }
1029 return NULL;
1030 }
1031
1032 /* ------------------------------- Debugging ---------------------------------*/
1033
1034 #define DICT_STATS_VECTLEN 50
_dictGetStatsHt(char * buf,size_t bufsize,dictht * ht,int tableid)1035 size_t _dictGetStatsHt(char *buf, size_t bufsize, dictht *ht, int tableid) {
1036 unsigned long i, slots = 0, chainlen, maxchainlen = 0;
1037 unsigned long totchainlen = 0;
1038 unsigned long clvector[DICT_STATS_VECTLEN];
1039 size_t l = 0;
1040
1041 if (ht->used == 0) {
1042 return snprintf(buf,bufsize,
1043 "No stats available for empty dictionaries\n");
1044 }
1045
1046 /* Compute stats. */
1047 for (i = 0; i < DICT_STATS_VECTLEN; i++) clvector[i] = 0;
1048 for (i = 0; i < ht->size; i++) {
1049 dictEntry *he;
1050
1051 if (ht->table[i] == NULL) {
1052 clvector[0]++;
1053 continue;
1054 }
1055 slots++;
1056 /* For each hash entry on this slot... */
1057 chainlen = 0;
1058 he = ht->table[i];
1059 while(he) {
1060 chainlen++;
1061 he = he->next;
1062 }
1063 clvector[(chainlen < DICT_STATS_VECTLEN) ? chainlen : (DICT_STATS_VECTLEN-1)]++;
1064 if (chainlen > maxchainlen) maxchainlen = chainlen;
1065 totchainlen += chainlen;
1066 }
1067
1068 /* Generate human readable stats. */
1069 l += snprintf(buf+l,bufsize-l,
1070 "Hash table %d stats (%s):\n"
1071 " table size: %ld\n"
1072 " number of elements: %ld\n"
1073 " different slots: %ld\n"
1074 " max chain length: %ld\n"
1075 " avg chain length (counted): %.02f\n"
1076 " avg chain length (computed): %.02f\n"
1077 " Chain length distribution:\n",
1078 tableid, (tableid == 0) ? "main hash table" : "rehashing target",
1079 ht->size, ht->used, slots, maxchainlen,
1080 (float)totchainlen/slots, (float)ht->used/slots);
1081
1082 for (i = 0; i < DICT_STATS_VECTLEN-1; i++) {
1083 if (clvector[i] == 0) continue;
1084 if (l >= bufsize) break;
1085 l += snprintf(buf+l,bufsize-l,
1086 " %s%ld: %ld (%.02f%%)\n",
1087 (i == DICT_STATS_VECTLEN-1)?">= ":"",
1088 i, clvector[i], ((float)clvector[i]/ht->size)*100);
1089 }
1090
1091 /* Unlike snprintf(), teturn the number of characters actually written. */
1092 if (bufsize) buf[bufsize-1] = '\0';
1093 return strlen(buf);
1094 }
1095
dictGetStats(char * buf,size_t bufsize,dict * d)1096 void dictGetStats(char *buf, size_t bufsize, dict *d) {
1097 size_t l;
1098 char *orig_buf = buf;
1099 size_t orig_bufsize = bufsize;
1100
1101 l = _dictGetStatsHt(buf,bufsize,&d->ht[0],0);
1102 buf += l;
1103 bufsize -= l;
1104 if (dictIsRehashing(d) && bufsize > 0) {
1105 _dictGetStatsHt(buf,bufsize,&d->ht[1],1);
1106 }
1107 /* Make sure there is a NULL term at the end. */
1108 if (orig_bufsize) orig_buf[orig_bufsize-1] = '\0';
1109 }
1110
1111 /* ------------------------------- Benchmark ---------------------------------*/
1112
1113 #ifdef DICT_BENCHMARK_MAIN
1114
1115 #include "sds.h"
1116
hashCallback(const void * key)1117 uint64_t hashCallback(const void *key) {
1118 return dictGenHashFunction((unsigned char*)key, sdslen((char*)key));
1119 }
1120
compareCallback(void * privdata,const void * key1,const void * key2)1121 int compareCallback(void *privdata, const void *key1, const void *key2) {
1122 int l1,l2;
1123 DICT_NOTUSED(privdata);
1124
1125 l1 = sdslen((sds)key1);
1126 l2 = sdslen((sds)key2);
1127 if (l1 != l2) return 0;
1128 return memcmp(key1, key2, l1) == 0;
1129 }
1130
freeCallback(void * privdata,void * val)1131 void freeCallback(void *privdata, void *val) {
1132 DICT_NOTUSED(privdata);
1133
1134 sdsfree(val);
1135 }
1136
1137 dictType BenchmarkDictType = {
1138 hashCallback,
1139 NULL,
1140 NULL,
1141 compareCallback,
1142 freeCallback,
1143 NULL
1144 };
1145
1146 #define start_benchmark() start = timeInMilliseconds()
1147 #define end_benchmark(msg) do { \
1148 elapsed = timeInMilliseconds()-start; \
1149 printf(msg ": %ld items in %lld ms\n", count, elapsed); \
1150 } while(0);
1151
1152 /* dict-benchmark [count] */
main(int argc,char ** argv)1153 int main(int argc, char **argv) {
1154 long j;
1155 long long start, elapsed;
1156 dict *dict = dictCreate(&BenchmarkDictType,NULL);
1157 long count = 0;
1158
1159 if (argc == 2) {
1160 count = strtol(argv[1],NULL,10);
1161 } else {
1162 count = 5000000;
1163 }
1164
1165 start_benchmark();
1166 for (j = 0; j < count; j++) {
1167 int retval = dictAdd(dict,sdsfromlonglong(j),(void*)j);
1168 assert(retval == DICT_OK);
1169 }
1170 end_benchmark("Inserting");
1171 assert((long)dictSize(dict) == count);
1172
1173 /* Wait for rehashing. */
1174 while (dictIsRehashing(dict)) {
1175 dictRehashMilliseconds(dict,100);
1176 }
1177
1178 start_benchmark();
1179 for (j = 0; j < count; j++) {
1180 sds key = sdsfromlonglong(j);
1181 dictEntry *de = dictFind(dict,key);
1182 assert(de != NULL);
1183 sdsfree(key);
1184 }
1185 end_benchmark("Linear access of existing elements");
1186
1187 start_benchmark();
1188 for (j = 0; j < count; j++) {
1189 sds key = sdsfromlonglong(j);
1190 dictEntry *de = dictFind(dict,key);
1191 assert(de != NULL);
1192 sdsfree(key);
1193 }
1194 end_benchmark("Linear access of existing elements (2nd round)");
1195
1196 start_benchmark();
1197 for (j = 0; j < count; j++) {
1198 sds key = sdsfromlonglong(rand() % count);
1199 dictEntry *de = dictFind(dict,key);
1200 assert(de != NULL);
1201 sdsfree(key);
1202 }
1203 end_benchmark("Random access of existing elements");
1204
1205 start_benchmark();
1206 for (j = 0; j < count; j++) {
1207 sds key = sdsfromlonglong(rand() % count);
1208 key[0] = 'X';
1209 dictEntry *de = dictFind(dict,key);
1210 assert(de == NULL);
1211 sdsfree(key);
1212 }
1213 end_benchmark("Accessing missing");
1214
1215 start_benchmark();
1216 for (j = 0; j < count; j++) {
1217 sds key = sdsfromlonglong(j);
1218 int retval = dictDelete(dict,key);
1219 assert(retval == DICT_OK);
1220 key[0] += 17; /* Change first number to letter. */
1221 retval = dictAdd(dict,key,(void*)j);
1222 assert(retval == DICT_OK);
1223 }
1224 end_benchmark("Removing and adding");
1225 }
1226 #endif
1227