xref: /f-stack/app/redis-5.0.5/src/dict.c (revision 572c4311)
1 /* Hash Tables Implementation.
2  *
3  * This file implements in memory hash tables with insert/del/replace/find/
4  * get-random-element operations. Hash tables will auto resize if needed
5  * tables of power of two in size are used, collisions are handled by
6  * chaining. See the source code for more information... :)
7  *
8  * Copyright (c) 2006-2012, Salvatore Sanfilippo <antirez at gmail dot com>
9  * All rights reserved.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions are met:
13  *
14  *   * Redistributions of source code must retain the above copyright notice,
15  *     this list of conditions and the following disclaimer.
16  *   * Redistributions in binary form must reproduce the above copyright
17  *     notice, this list of conditions and the following disclaimer in the
18  *     documentation and/or other materials provided with the distribution.
19  *   * Neither the name of Redis nor the names of its contributors may be used
20  *     to endorse or promote products derived from this software without
21  *     specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
24  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
27  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33  * POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 #include "fmacros.h"
37 
38 #include <stdio.h>
39 #include <stdlib.h>
40 #include <stdint.h>
41 #include <string.h>
42 #include <stdarg.h>
43 #include <limits.h>
44 #include <sys/time.h>
45 
46 #include "dict.h"
47 #include "zmalloc.h"
48 #ifndef DICT_BENCHMARK_MAIN
49 #include "redisassert.h"
50 #else
51 #include <assert.h>
52 #endif
53 
54 /* Using dictEnableResize() / dictDisableResize() we make possible to
55  * enable/disable resizing of the hash table as needed. This is very important
56  * for Redis, as we use copy-on-write and don't want to move too much memory
57  * around when there is a child performing saving operations.
58  *
59  * Note that even when dict_can_resize is set to 0, not all resizes are
60  * prevented: a hash table is still allowed to grow if the ratio between
61  * the number of elements and the buckets > dict_force_resize_ratio. */
62 static int dict_can_resize = 1;
63 static unsigned int dict_force_resize_ratio = 5;
64 
65 /* -------------------------- private prototypes ---------------------------- */
66 
67 static int _dictExpandIfNeeded(dict *ht);
68 static unsigned long _dictNextPower(unsigned long size);
69 static long _dictKeyIndex(dict *ht, const void *key, uint64_t hash, dictEntry **existing);
70 static int _dictInit(dict *ht, dictType *type, void *privDataPtr);
71 
72 /* -------------------------- hash functions -------------------------------- */
73 
74 static uint8_t dict_hash_function_seed[16];
75 
dictSetHashFunctionSeed(uint8_t * seed)76 void dictSetHashFunctionSeed(uint8_t *seed) {
77     memcpy(dict_hash_function_seed,seed,sizeof(dict_hash_function_seed));
78 }
79 
dictGetHashFunctionSeed(void)80 uint8_t *dictGetHashFunctionSeed(void) {
81     return dict_hash_function_seed;
82 }
83 
84 /* The default hashing function uses SipHash implementation
85  * in siphash.c. */
86 
87 uint64_t siphash(const uint8_t *in, const size_t inlen, const uint8_t *k);
88 uint64_t siphash_nocase(const uint8_t *in, const size_t inlen, const uint8_t *k);
89 
dictGenHashFunction(const void * key,int len)90 uint64_t dictGenHashFunction(const void *key, int len) {
91     return siphash(key,len,dict_hash_function_seed);
92 }
93 
dictGenCaseHashFunction(const unsigned char * buf,int len)94 uint64_t dictGenCaseHashFunction(const unsigned char *buf, int len) {
95     return siphash_nocase(buf,len,dict_hash_function_seed);
96 }
97 
98 /* ----------------------------- API implementation ------------------------- */
99 
100 /* Reset a hash table already initialized with ht_init().
101  * NOTE: This function should only be called by ht_destroy(). */
_dictReset(dictht * ht)102 static void _dictReset(dictht *ht)
103 {
104     ht->table = NULL;
105     ht->size = 0;
106     ht->sizemask = 0;
107     ht->used = 0;
108 }
109 
110 /* Create a new hash table */
dictCreate(dictType * type,void * privDataPtr)111 dict *dictCreate(dictType *type,
112         void *privDataPtr)
113 {
114     dict *d = zmalloc(sizeof(*d));
115 
116     _dictInit(d,type,privDataPtr);
117     return d;
118 }
119 
120 /* Initialize the hash table */
_dictInit(dict * d,dictType * type,void * privDataPtr)121 int _dictInit(dict *d, dictType *type,
122         void *privDataPtr)
123 {
124     _dictReset(&d->ht[0]);
125     _dictReset(&d->ht[1]);
126     d->type = type;
127     d->privdata = privDataPtr;
128     d->rehashidx = -1;
129     d->iterators = 0;
130     return DICT_OK;
131 }
132 
133 /* Resize the table to the minimal size that contains all the elements,
134  * but with the invariant of a USED/BUCKETS ratio near to <= 1 */
dictResize(dict * d)135 int dictResize(dict *d)
136 {
137     int minimal;
138 
139     if (!dict_can_resize || dictIsRehashing(d)) return DICT_ERR;
140     minimal = d->ht[0].used;
141     if (minimal < DICT_HT_INITIAL_SIZE)
142         minimal = DICT_HT_INITIAL_SIZE;
143     return dictExpand(d, minimal);
144 }
145 
146 /* Expand or create the hash table */
dictExpand(dict * d,unsigned long size)147 int dictExpand(dict *d, unsigned long size)
148 {
149     /* the size is invalid if it is smaller than the number of
150      * elements already inside the hash table */
151     if (dictIsRehashing(d) || d->ht[0].used > size)
152         return DICT_ERR;
153 
154     dictht n; /* the new hash table */
155     unsigned long realsize = _dictNextPower(size);
156 
157     /* Rehashing to the same table size is not useful. */
158     if (realsize == d->ht[0].size) return DICT_ERR;
159 
160     /* Allocate the new hash table and initialize all pointers to NULL */
161     n.size = realsize;
162     n.sizemask = realsize-1;
163     n.table = zcalloc(realsize*sizeof(dictEntry*));
164     n.used = 0;
165 
166     /* Is this the first initialization? If so it's not really a rehashing
167      * we just set the first hash table so that it can accept keys. */
168     if (d->ht[0].table == NULL) {
169         d->ht[0] = n;
170         return DICT_OK;
171     }
172 
173     /* Prepare a second hash table for incremental rehashing */
174     d->ht[1] = n;
175     d->rehashidx = 0;
176     return DICT_OK;
177 }
178 
179 /* Performs N steps of incremental rehashing. Returns 1 if there are still
180  * keys to move from the old to the new hash table, otherwise 0 is returned.
181  *
182  * Note that a rehashing step consists in moving a bucket (that may have more
183  * than one key as we use chaining) from the old to the new hash table, however
184  * since part of the hash table may be composed of empty spaces, it is not
185  * guaranteed that this function will rehash even a single bucket, since it
186  * will visit at max N*10 empty buckets in total, otherwise the amount of
187  * work it does would be unbound and the function may block for a long time. */
dictRehash(dict * d,int n)188 int dictRehash(dict *d, int n) {
189     int empty_visits = n*10; /* Max number of empty buckets to visit. */
190     if (!dictIsRehashing(d)) return 0;
191 
192     while(n-- && d->ht[0].used != 0) {
193         dictEntry *de, *nextde;
194 
195         /* Note that rehashidx can't overflow as we are sure there are more
196          * elements because ht[0].used != 0 */
197         assert(d->ht[0].size > (unsigned long)d->rehashidx);
198         while(d->ht[0].table[d->rehashidx] == NULL) {
199             d->rehashidx++;
200             if (--empty_visits == 0) return 1;
201         }
202         de = d->ht[0].table[d->rehashidx];
203         /* Move all the keys in this bucket from the old to the new hash HT */
204         while(de) {
205             uint64_t h;
206 
207             nextde = de->next;
208             /* Get the index in the new hash table */
209             h = dictHashKey(d, de->key) & d->ht[1].sizemask;
210             de->next = d->ht[1].table[h];
211             d->ht[1].table[h] = de;
212             d->ht[0].used--;
213             d->ht[1].used++;
214             de = nextde;
215         }
216         d->ht[0].table[d->rehashidx] = NULL;
217         d->rehashidx++;
218     }
219 
220     /* Check if we already rehashed the whole table... */
221     if (d->ht[0].used == 0) {
222         zfree(d->ht[0].table);
223         d->ht[0] = d->ht[1];
224         _dictReset(&d->ht[1]);
225         d->rehashidx = -1;
226         return 0;
227     }
228 
229     /* More to rehash... */
230     return 1;
231 }
232 
timeInMilliseconds(void)233 long long timeInMilliseconds(void) {
234     struct timeval tv;
235 
236     gettimeofday(&tv,NULL);
237     return (((long long)tv.tv_sec)*1000)+(tv.tv_usec/1000);
238 }
239 
240 /* Rehash for an amount of time between ms milliseconds and ms+1 milliseconds */
dictRehashMilliseconds(dict * d,int ms)241 int dictRehashMilliseconds(dict *d, int ms) {
242     long long start = timeInMilliseconds();
243     int rehashes = 0;
244 
245     while(dictRehash(d,100)) {
246         rehashes += 100;
247         if (timeInMilliseconds()-start > ms) break;
248     }
249     return rehashes;
250 }
251 
252 /* This function performs just a step of rehashing, and only if there are
253  * no safe iterators bound to our hash table. When we have iterators in the
254  * middle of a rehashing we can't mess with the two hash tables otherwise
255  * some element can be missed or duplicated.
256  *
257  * This function is called by common lookup or update operations in the
258  * dictionary so that the hash table automatically migrates from H1 to H2
259  * while it is actively used. */
_dictRehashStep(dict * d)260 static void _dictRehashStep(dict *d) {
261     if (d->iterators == 0) dictRehash(d,1);
262 }
263 
264 /* Add an element to the target hash table */
dictAdd(dict * d,void * key,void * val)265 int dictAdd(dict *d, void *key, void *val)
266 {
267     dictEntry *entry = dictAddRaw(d,key,NULL);
268 
269     if (!entry) return DICT_ERR;
270     dictSetVal(d, entry, val);
271     return DICT_OK;
272 }
273 
274 /* Low level add or find:
275  * This function adds the entry but instead of setting a value returns the
276  * dictEntry structure to the user, that will make sure to fill the value
277  * field as he wishes.
278  *
279  * This function is also directly exposed to the user API to be called
280  * mainly in order to store non-pointers inside the hash value, example:
281  *
282  * entry = dictAddRaw(dict,mykey,NULL);
283  * if (entry != NULL) dictSetSignedIntegerVal(entry,1000);
284  *
285  * Return values:
286  *
287  * If key already exists NULL is returned, and "*existing" is populated
288  * with the existing entry if existing is not NULL.
289  *
290  * If key was added, the hash entry is returned to be manipulated by the caller.
291  */
dictAddRaw(dict * d,void * key,dictEntry ** existing)292 dictEntry *dictAddRaw(dict *d, void *key, dictEntry **existing)
293 {
294     long index;
295     dictEntry *entry;
296     dictht *ht;
297 
298     if (dictIsRehashing(d)) _dictRehashStep(d);
299 
300     /* Get the index of the new element, or -1 if
301      * the element already exists. */
302     if ((index = _dictKeyIndex(d, key, dictHashKey(d,key), existing)) == -1)
303         return NULL;
304 
305     /* Allocate the memory and store the new entry.
306      * Insert the element in top, with the assumption that in a database
307      * system it is more likely that recently added entries are accessed
308      * more frequently. */
309     ht = dictIsRehashing(d) ? &d->ht[1] : &d->ht[0];
310     entry = zmalloc(sizeof(*entry));
311     entry->next = ht->table[index];
312     ht->table[index] = entry;
313     ht->used++;
314 
315     /* Set the hash entry fields. */
316     dictSetKey(d, entry, key);
317     return entry;
318 }
319 
320 /* Add or Overwrite:
321  * Add an element, discarding the old value if the key already exists.
322  * Return 1 if the key was added from scratch, 0 if there was already an
323  * element with such key and dictReplace() just performed a value update
324  * operation. */
dictReplace(dict * d,void * key,void * val)325 int dictReplace(dict *d, void *key, void *val)
326 {
327     dictEntry *entry, *existing, auxentry;
328 
329     /* Try to add the element. If the key
330      * does not exists dictAdd will succeed. */
331     entry = dictAddRaw(d,key,&existing);
332     if (entry) {
333         dictSetVal(d, entry, val);
334         return 1;
335     }
336 
337     /* Set the new value and free the old one. Note that it is important
338      * to do that in this order, as the value may just be exactly the same
339      * as the previous one. In this context, think to reference counting,
340      * you want to increment (set), and then decrement (free), and not the
341      * reverse. */
342     auxentry = *existing;
343     dictSetVal(d, existing, val);
344     dictFreeVal(d, &auxentry);
345     return 0;
346 }
347 
348 /* Add or Find:
349  * dictAddOrFind() is simply a version of dictAddRaw() that always
350  * returns the hash entry of the specified key, even if the key already
351  * exists and can't be added (in that case the entry of the already
352  * existing key is returned.)
353  *
354  * See dictAddRaw() for more information. */
dictAddOrFind(dict * d,void * key)355 dictEntry *dictAddOrFind(dict *d, void *key) {
356     dictEntry *entry, *existing;
357     entry = dictAddRaw(d,key,&existing);
358     return entry ? entry : existing;
359 }
360 
361 /* Search and remove an element. This is an helper function for
362  * dictDelete() and dictUnlink(), please check the top comment
363  * of those functions. */
dictGenericDelete(dict * d,const void * key,int nofree)364 static dictEntry *dictGenericDelete(dict *d, const void *key, int nofree) {
365     uint64_t h, idx;
366     dictEntry *he, *prevHe;
367     int table;
368 
369     if (d->ht[0].used == 0 && d->ht[1].used == 0) return NULL;
370 
371     if (dictIsRehashing(d)) _dictRehashStep(d);
372     h = dictHashKey(d, key);
373 
374     for (table = 0; table <= 1; table++) {
375         idx = h & d->ht[table].sizemask;
376         he = d->ht[table].table[idx];
377         prevHe = NULL;
378         while(he) {
379             if (key==he->key || dictCompareKeys(d, key, he->key)) {
380                 /* Unlink the element from the list */
381                 if (prevHe)
382                     prevHe->next = he->next;
383                 else
384                     d->ht[table].table[idx] = he->next;
385                 if (!nofree) {
386                     dictFreeKey(d, he);
387                     dictFreeVal(d, he);
388                     zfree(he);
389                 }
390                 d->ht[table].used--;
391                 return he;
392             }
393             prevHe = he;
394             he = he->next;
395         }
396         if (!dictIsRehashing(d)) break;
397     }
398     return NULL; /* not found */
399 }
400 
401 /* Remove an element, returning DICT_OK on success or DICT_ERR if the
402  * element was not found. */
dictDelete(dict * ht,const void * key)403 int dictDelete(dict *ht, const void *key) {
404     return dictGenericDelete(ht,key,0) ? DICT_OK : DICT_ERR;
405 }
406 
407 /* Remove an element from the table, but without actually releasing
408  * the key, value and dictionary entry. The dictionary entry is returned
409  * if the element was found (and unlinked from the table), and the user
410  * should later call `dictFreeUnlinkedEntry()` with it in order to release it.
411  * Otherwise if the key is not found, NULL is returned.
412  *
413  * This function is useful when we want to remove something from the hash
414  * table but want to use its value before actually deleting the entry.
415  * Without this function the pattern would require two lookups:
416  *
417  *  entry = dictFind(...);
418  *  // Do something with entry
419  *  dictDelete(dictionary,entry);
420  *
421  * Thanks to this function it is possible to avoid this, and use
422  * instead:
423  *
424  * entry = dictUnlink(dictionary,entry);
425  * // Do something with entry
426  * dictFreeUnlinkedEntry(entry); // <- This does not need to lookup again.
427  */
dictUnlink(dict * ht,const void * key)428 dictEntry *dictUnlink(dict *ht, const void *key) {
429     return dictGenericDelete(ht,key,1);
430 }
431 
432 /* You need to call this function to really free the entry after a call
433  * to dictUnlink(). It's safe to call this function with 'he' = NULL. */
dictFreeUnlinkedEntry(dict * d,dictEntry * he)434 void dictFreeUnlinkedEntry(dict *d, dictEntry *he) {
435     if (he == NULL) return;
436     dictFreeKey(d, he);
437     dictFreeVal(d, he);
438     zfree(he);
439 }
440 
441 /* Destroy an entire dictionary */
_dictClear(dict * d,dictht * ht,void (callback)(void *))442 int _dictClear(dict *d, dictht *ht, void(callback)(void *)) {
443     unsigned long i;
444 
445     /* Free all the elements */
446     for (i = 0; i < ht->size && ht->used > 0; i++) {
447         dictEntry *he, *nextHe;
448 
449         if (callback && (i & 65535) == 0) callback(d->privdata);
450 
451         if ((he = ht->table[i]) == NULL) continue;
452         while(he) {
453             nextHe = he->next;
454             dictFreeKey(d, he);
455             dictFreeVal(d, he);
456             zfree(he);
457             ht->used--;
458             he = nextHe;
459         }
460     }
461     /* Free the table and the allocated cache structure */
462     zfree(ht->table);
463     /* Re-initialize the table */
464     _dictReset(ht);
465     return DICT_OK; /* never fails */
466 }
467 
468 /* Clear & Release the hash table */
dictRelease(dict * d)469 void dictRelease(dict *d)
470 {
471     _dictClear(d,&d->ht[0],NULL);
472     _dictClear(d,&d->ht[1],NULL);
473     zfree(d);
474 }
475 
dictFind(dict * d,const void * key)476 dictEntry *dictFind(dict *d, const void *key)
477 {
478     dictEntry *he;
479     uint64_t h, idx, table;
480 
481     if (d->ht[0].used + d->ht[1].used == 0) return NULL; /* dict is empty */
482     if (dictIsRehashing(d)) _dictRehashStep(d);
483     h = dictHashKey(d, key);
484     for (table = 0; table <= 1; table++) {
485         idx = h & d->ht[table].sizemask;
486         he = d->ht[table].table[idx];
487         while(he) {
488             if (key==he->key || dictCompareKeys(d, key, he->key))
489                 return he;
490             he = he->next;
491         }
492         if (!dictIsRehashing(d)) return NULL;
493     }
494     return NULL;
495 }
496 
dictFetchValue(dict * d,const void * key)497 void *dictFetchValue(dict *d, const void *key) {
498     dictEntry *he;
499 
500     he = dictFind(d,key);
501     return he ? dictGetVal(he) : NULL;
502 }
503 
504 /* A fingerprint is a 64 bit number that represents the state of the dictionary
505  * at a given time, it's just a few dict properties xored together.
506  * When an unsafe iterator is initialized, we get the dict fingerprint, and check
507  * the fingerprint again when the iterator is released.
508  * If the two fingerprints are different it means that the user of the iterator
509  * performed forbidden operations against the dictionary while iterating. */
dictFingerprint(dict * d)510 long long dictFingerprint(dict *d) {
511     long long integers[6], hash = 0;
512     int j;
513 
514     integers[0] = (long) d->ht[0].table;
515     integers[1] = d->ht[0].size;
516     integers[2] = d->ht[0].used;
517     integers[3] = (long) d->ht[1].table;
518     integers[4] = d->ht[1].size;
519     integers[5] = d->ht[1].used;
520 
521     /* We hash N integers by summing every successive integer with the integer
522      * hashing of the previous sum. Basically:
523      *
524      * Result = hash(hash(hash(int1)+int2)+int3) ...
525      *
526      * This way the same set of integers in a different order will (likely) hash
527      * to a different number. */
528     for (j = 0; j < 6; j++) {
529         hash += integers[j];
530         /* For the hashing step we use Tomas Wang's 64 bit integer hash. */
531         hash = (~hash) + (hash << 21); // hash = (hash << 21) - hash - 1;
532         hash = hash ^ (hash >> 24);
533         hash = (hash + (hash << 3)) + (hash << 8); // hash * 265
534         hash = hash ^ (hash >> 14);
535         hash = (hash + (hash << 2)) + (hash << 4); // hash * 21
536         hash = hash ^ (hash >> 28);
537         hash = hash + (hash << 31);
538     }
539     return hash;
540 }
541 
dictGetIterator(dict * d)542 dictIterator *dictGetIterator(dict *d)
543 {
544     dictIterator *iter = zmalloc(sizeof(*iter));
545 
546     iter->d = d;
547     iter->table = 0;
548     iter->index = -1;
549     iter->safe = 0;
550     iter->entry = NULL;
551     iter->nextEntry = NULL;
552     return iter;
553 }
554 
dictGetSafeIterator(dict * d)555 dictIterator *dictGetSafeIterator(dict *d) {
556     dictIterator *i = dictGetIterator(d);
557 
558     i->safe = 1;
559     return i;
560 }
561 
dictNext(dictIterator * iter)562 dictEntry *dictNext(dictIterator *iter)
563 {
564     while (1) {
565         if (iter->entry == NULL) {
566             dictht *ht = &iter->d->ht[iter->table];
567             if (iter->index == -1 && iter->table == 0) {
568                 if (iter->safe)
569                     iter->d->iterators++;
570                 else
571                     iter->fingerprint = dictFingerprint(iter->d);
572             }
573             iter->index++;
574             if (iter->index >= (long) ht->size) {
575                 if (dictIsRehashing(iter->d) && iter->table == 0) {
576                     iter->table++;
577                     iter->index = 0;
578                     ht = &iter->d->ht[1];
579                 } else {
580                     break;
581                 }
582             }
583             iter->entry = ht->table[iter->index];
584         } else {
585             iter->entry = iter->nextEntry;
586         }
587         if (iter->entry) {
588             /* We need to save the 'next' here, the iterator user
589              * may delete the entry we are returning. */
590             iter->nextEntry = iter->entry->next;
591             return iter->entry;
592         }
593     }
594     return NULL;
595 }
596 
dictReleaseIterator(dictIterator * iter)597 void dictReleaseIterator(dictIterator *iter)
598 {
599     if (!(iter->index == -1 && iter->table == 0)) {
600         if (iter->safe)
601             iter->d->iterators--;
602         else
603             assert(iter->fingerprint == dictFingerprint(iter->d));
604     }
605     zfree(iter);
606 }
607 
608 /* Return a random entry from the hash table. Useful to
609  * implement randomized algorithms */
dictGetRandomKey(dict * d)610 dictEntry *dictGetRandomKey(dict *d)
611 {
612     dictEntry *he, *orighe;
613     unsigned long h;
614     int listlen, listele;
615 
616     if (dictSize(d) == 0) return NULL;
617     if (dictIsRehashing(d)) _dictRehashStep(d);
618     if (dictIsRehashing(d)) {
619         do {
620             /* We are sure there are no elements in indexes from 0
621              * to rehashidx-1 */
622             h = d->rehashidx + (random() % (d->ht[0].size +
623                                             d->ht[1].size -
624                                             d->rehashidx));
625             he = (h >= d->ht[0].size) ? d->ht[1].table[h - d->ht[0].size] :
626                                       d->ht[0].table[h];
627         } while(he == NULL);
628     } else {
629         do {
630             h = random() & d->ht[0].sizemask;
631             he = d->ht[0].table[h];
632         } while(he == NULL);
633     }
634 
635     /* Now we found a non empty bucket, but it is a linked
636      * list and we need to get a random element from the list.
637      * The only sane way to do so is counting the elements and
638      * select a random index. */
639     listlen = 0;
640     orighe = he;
641     while(he) {
642         he = he->next;
643         listlen++;
644     }
645     listele = random() % listlen;
646     he = orighe;
647     while(listele--) he = he->next;
648     return he;
649 }
650 
651 /* This function samples the dictionary to return a few keys from random
652  * locations.
653  *
654  * It does not guarantee to return all the keys specified in 'count', nor
655  * it does guarantee to return non-duplicated elements, however it will make
656  * some effort to do both things.
657  *
658  * Returned pointers to hash table entries are stored into 'des' that
659  * points to an array of dictEntry pointers. The array must have room for
660  * at least 'count' elements, that is the argument we pass to the function
661  * to tell how many random elements we need.
662  *
663  * The function returns the number of items stored into 'des', that may
664  * be less than 'count' if the hash table has less than 'count' elements
665  * inside, or if not enough elements were found in a reasonable amount of
666  * steps.
667  *
668  * Note that this function is not suitable when you need a good distribution
669  * of the returned items, but only when you need to "sample" a given number
670  * of continuous elements to run some kind of algorithm or to produce
671  * statistics. However the function is much faster than dictGetRandomKey()
672  * at producing N elements. */
dictGetSomeKeys(dict * d,dictEntry ** des,unsigned int count)673 unsigned int dictGetSomeKeys(dict *d, dictEntry **des, unsigned int count) {
674     unsigned long j; /* internal hash table id, 0 or 1. */
675     unsigned long tables; /* 1 or 2 tables? */
676     unsigned long stored = 0, maxsizemask;
677     unsigned long maxsteps;
678 
679     if (dictSize(d) < count) count = dictSize(d);
680     maxsteps = count*10;
681 
682     /* Try to do a rehashing work proportional to 'count'. */
683     for (j = 0; j < count; j++) {
684         if (dictIsRehashing(d))
685             _dictRehashStep(d);
686         else
687             break;
688     }
689 
690     tables = dictIsRehashing(d) ? 2 : 1;
691     maxsizemask = d->ht[0].sizemask;
692     if (tables > 1 && maxsizemask < d->ht[1].sizemask)
693         maxsizemask = d->ht[1].sizemask;
694 
695     /* Pick a random point inside the larger table. */
696     unsigned long i = random() & maxsizemask;
697     unsigned long emptylen = 0; /* Continuous empty entries so far. */
698     while(stored < count && maxsteps--) {
699         for (j = 0; j < tables; j++) {
700             /* Invariant of the dict.c rehashing: up to the indexes already
701              * visited in ht[0] during the rehashing, there are no populated
702              * buckets, so we can skip ht[0] for indexes between 0 and idx-1. */
703             if (tables == 2 && j == 0 && i < (unsigned long) d->rehashidx) {
704                 /* Moreover, if we are currently out of range in the second
705                  * table, there will be no elements in both tables up to
706                  * the current rehashing index, so we jump if possible.
707                  * (this happens when going from big to small table). */
708                 if (i >= d->ht[1].size)
709                     i = d->rehashidx;
710                 else
711                     continue;
712             }
713             if (i >= d->ht[j].size) continue; /* Out of range for this table. */
714             dictEntry *he = d->ht[j].table[i];
715 
716             /* Count contiguous empty buckets, and jump to other
717              * locations if they reach 'count' (with a minimum of 5). */
718             if (he == NULL) {
719                 emptylen++;
720                 if (emptylen >= 5 && emptylen > count) {
721                     i = random() & maxsizemask;
722                     emptylen = 0;
723                 }
724             } else {
725                 emptylen = 0;
726                 while (he) {
727                     /* Collect all the elements of the buckets found non
728                      * empty while iterating. */
729                     *des = he;
730                     des++;
731                     he = he->next;
732                     stored++;
733                     if (stored == count) return stored;
734                 }
735             }
736         }
737         i = (i+1) & maxsizemask;
738     }
739     return stored;
740 }
741 
742 /* Function to reverse bits. Algorithm from:
743  * http://graphics.stanford.edu/~seander/bithacks.html#ReverseParallel */
rev(unsigned long v)744 static unsigned long rev(unsigned long v) {
745     unsigned long s = 8 * sizeof(v); // bit size; must be power of 2
746     unsigned long mask = ~0;
747     while ((s >>= 1) > 0) {
748         mask ^= (mask << s);
749         v = ((v >> s) & mask) | ((v << s) & ~mask);
750     }
751     return v;
752 }
753 
754 /* dictScan() is used to iterate over the elements of a dictionary.
755  *
756  * Iterating works the following way:
757  *
758  * 1) Initially you call the function using a cursor (v) value of 0.
759  * 2) The function performs one step of the iteration, and returns the
760  *    new cursor value you must use in the next call.
761  * 3) When the returned cursor is 0, the iteration is complete.
762  *
763  * The function guarantees all elements present in the
764  * dictionary get returned between the start and end of the iteration.
765  * However it is possible some elements get returned multiple times.
766  *
767  * For every element returned, the callback argument 'fn' is
768  * called with 'privdata' as first argument and the dictionary entry
769  * 'de' as second argument.
770  *
771  * HOW IT WORKS.
772  *
773  * The iteration algorithm was designed by Pieter Noordhuis.
774  * The main idea is to increment a cursor starting from the higher order
775  * bits. That is, instead of incrementing the cursor normally, the bits
776  * of the cursor are reversed, then the cursor is incremented, and finally
777  * the bits are reversed again.
778  *
779  * This strategy is needed because the hash table may be resized between
780  * iteration calls.
781  *
782  * dict.c hash tables are always power of two in size, and they
783  * use chaining, so the position of an element in a given table is given
784  * by computing the bitwise AND between Hash(key) and SIZE-1
785  * (where SIZE-1 is always the mask that is equivalent to taking the rest
786  *  of the division between the Hash of the key and SIZE).
787  *
788  * For example if the current hash table size is 16, the mask is
789  * (in binary) 1111. The position of a key in the hash table will always be
790  * the last four bits of the hash output, and so forth.
791  *
792  * WHAT HAPPENS IF THE TABLE CHANGES IN SIZE?
793  *
794  * If the hash table grows, elements can go anywhere in one multiple of
795  * the old bucket: for example let's say we already iterated with
796  * a 4 bit cursor 1100 (the mask is 1111 because hash table size = 16).
797  *
798  * If the hash table will be resized to 64 elements, then the new mask will
799  * be 111111. The new buckets you obtain by substituting in ??1100
800  * with either 0 or 1 can be targeted only by keys we already visited
801  * when scanning the bucket 1100 in the smaller hash table.
802  *
803  * By iterating the higher bits first, because of the inverted counter, the
804  * cursor does not need to restart if the table size gets bigger. It will
805  * continue iterating using cursors without '1100' at the end, and also
806  * without any other combination of the final 4 bits already explored.
807  *
808  * Similarly when the table size shrinks over time, for example going from
809  * 16 to 8, if a combination of the lower three bits (the mask for size 8
810  * is 111) were already completely explored, it would not be visited again
811  * because we are sure we tried, for example, both 0111 and 1111 (all the
812  * variations of the higher bit) so we don't need to test it again.
813  *
814  * WAIT... YOU HAVE *TWO* TABLES DURING REHASHING!
815  *
816  * Yes, this is true, but we always iterate the smaller table first, then
817  * we test all the expansions of the current cursor into the larger
818  * table. For example if the current cursor is 101 and we also have a
819  * larger table of size 16, we also test (0)101 and (1)101 inside the larger
820  * table. This reduces the problem back to having only one table, where
821  * the larger one, if it exists, is just an expansion of the smaller one.
822  *
823  * LIMITATIONS
824  *
825  * This iterator is completely stateless, and this is a huge advantage,
826  * including no additional memory used.
827  *
828  * The disadvantages resulting from this design are:
829  *
830  * 1) It is possible we return elements more than once. However this is usually
831  *    easy to deal with in the application level.
832  * 2) The iterator must return multiple elements per call, as it needs to always
833  *    return all the keys chained in a given bucket, and all the expansions, so
834  *    we are sure we don't miss keys moving during rehashing.
835  * 3) The reverse cursor is somewhat hard to understand at first, but this
836  *    comment is supposed to help.
837  */
dictScan(dict * d,unsigned long v,dictScanFunction * fn,dictScanBucketFunction * bucketfn,void * privdata)838 unsigned long dictScan(dict *d,
839                        unsigned long v,
840                        dictScanFunction *fn,
841                        dictScanBucketFunction* bucketfn,
842                        void *privdata)
843 {
844     dictht *t0, *t1;
845     const dictEntry *de, *next;
846     unsigned long m0, m1;
847 
848     if (dictSize(d) == 0) return 0;
849 
850     if (!dictIsRehashing(d)) {
851         t0 = &(d->ht[0]);
852         m0 = t0->sizemask;
853 
854         /* Emit entries at cursor */
855         if (bucketfn) bucketfn(privdata, &t0->table[v & m0]);
856         de = t0->table[v & m0];
857         while (de) {
858             next = de->next;
859             fn(privdata, de);
860             de = next;
861         }
862 
863         /* Set unmasked bits so incrementing the reversed cursor
864          * operates on the masked bits */
865         v |= ~m0;
866 
867         /* Increment the reverse cursor */
868         v = rev(v);
869         v++;
870         v = rev(v);
871 
872     } else {
873         t0 = &d->ht[0];
874         t1 = &d->ht[1];
875 
876         /* Make sure t0 is the smaller and t1 is the bigger table */
877         if (t0->size > t1->size) {
878             t0 = &d->ht[1];
879             t1 = &d->ht[0];
880         }
881 
882         m0 = t0->sizemask;
883         m1 = t1->sizemask;
884 
885         /* Emit entries at cursor */
886         if (bucketfn) bucketfn(privdata, &t0->table[v & m0]);
887         de = t0->table[v & m0];
888         while (de) {
889             next = de->next;
890             fn(privdata, de);
891             de = next;
892         }
893 
894         /* Iterate over indices in larger table that are the expansion
895          * of the index pointed to by the cursor in the smaller table */
896         do {
897             /* Emit entries at cursor */
898             if (bucketfn) bucketfn(privdata, &t1->table[v & m1]);
899             de = t1->table[v & m1];
900             while (de) {
901                 next = de->next;
902                 fn(privdata, de);
903                 de = next;
904             }
905 
906             /* Increment the reverse cursor not covered by the smaller mask.*/
907             v |= ~m1;
908             v = rev(v);
909             v++;
910             v = rev(v);
911 
912             /* Continue while bits covered by mask difference is non-zero */
913         } while (v & (m0 ^ m1));
914     }
915 
916     return v;
917 }
918 
919 /* ------------------------- private functions ------------------------------ */
920 
921 /* Expand the hash table if needed */
_dictExpandIfNeeded(dict * d)922 static int _dictExpandIfNeeded(dict *d)
923 {
924     /* Incremental rehashing already in progress. Return. */
925     if (dictIsRehashing(d)) return DICT_OK;
926 
927     /* If the hash table is empty expand it to the initial size. */
928     if (d->ht[0].size == 0) return dictExpand(d, DICT_HT_INITIAL_SIZE);
929 
930     /* If we reached the 1:1 ratio, and we are allowed to resize the hash
931      * table (global setting) or we should avoid it but the ratio between
932      * elements/buckets is over the "safe" threshold, we resize doubling
933      * the number of buckets. */
934     if (d->ht[0].used >= d->ht[0].size &&
935         (dict_can_resize ||
936          d->ht[0].used/d->ht[0].size > dict_force_resize_ratio))
937     {
938         return dictExpand(d, d->ht[0].used*2);
939     }
940     return DICT_OK;
941 }
942 
943 /* Our hash table capability is a power of two */
_dictNextPower(unsigned long size)944 static unsigned long _dictNextPower(unsigned long size)
945 {
946     unsigned long i = DICT_HT_INITIAL_SIZE;
947 
948     if (size >= LONG_MAX) return LONG_MAX + 1LU;
949     while(1) {
950         if (i >= size)
951             return i;
952         i *= 2;
953     }
954 }
955 
956 /* Returns the index of a free slot that can be populated with
957  * a hash entry for the given 'key'.
958  * If the key already exists, -1 is returned
959  * and the optional output parameter may be filled.
960  *
961  * Note that if we are in the process of rehashing the hash table, the
962  * index is always returned in the context of the second (new) hash table. */
_dictKeyIndex(dict * d,const void * key,uint64_t hash,dictEntry ** existing)963 static long _dictKeyIndex(dict *d, const void *key, uint64_t hash, dictEntry **existing)
964 {
965     unsigned long idx, table;
966     dictEntry *he;
967     if (existing) *existing = NULL;
968 
969     /* Expand the hash table if needed */
970     if (_dictExpandIfNeeded(d) == DICT_ERR)
971         return -1;
972     for (table = 0; table <= 1; table++) {
973         idx = hash & d->ht[table].sizemask;
974         /* Search if this slot does not already contain the given key */
975         he = d->ht[table].table[idx];
976         while(he) {
977             if (key==he->key || dictCompareKeys(d, key, he->key)) {
978                 if (existing) *existing = he;
979                 return -1;
980             }
981             he = he->next;
982         }
983         if (!dictIsRehashing(d)) break;
984     }
985     return idx;
986 }
987 
dictEmpty(dict * d,void (callback)(void *))988 void dictEmpty(dict *d, void(callback)(void*)) {
989     _dictClear(d,&d->ht[0],callback);
990     _dictClear(d,&d->ht[1],callback);
991     d->rehashidx = -1;
992     d->iterators = 0;
993 }
994 
dictEnableResize(void)995 void dictEnableResize(void) {
996     dict_can_resize = 1;
997 }
998 
dictDisableResize(void)999 void dictDisableResize(void) {
1000     dict_can_resize = 0;
1001 }
1002 
dictGetHash(dict * d,const void * key)1003 uint64_t dictGetHash(dict *d, const void *key) {
1004     return dictHashKey(d, key);
1005 }
1006 
1007 /* Finds the dictEntry reference by using pointer and pre-calculated hash.
1008  * oldkey is a dead pointer and should not be accessed.
1009  * the hash value should be provided using dictGetHash.
1010  * no string / key comparison is performed.
1011  * return value is the reference to the dictEntry if found, or NULL if not found. */
dictFindEntryRefByPtrAndHash(dict * d,const void * oldptr,uint64_t hash)1012 dictEntry **dictFindEntryRefByPtrAndHash(dict *d, const void *oldptr, uint64_t hash) {
1013     dictEntry *he, **heref;
1014     unsigned long idx, table;
1015 
1016     if (d->ht[0].used + d->ht[1].used == 0) return NULL; /* dict is empty */
1017     for (table = 0; table <= 1; table++) {
1018         idx = hash & d->ht[table].sizemask;
1019         heref = &d->ht[table].table[idx];
1020         he = *heref;
1021         while(he) {
1022             if (oldptr==he->key)
1023                 return heref;
1024             heref = &he->next;
1025             he = *heref;
1026         }
1027         if (!dictIsRehashing(d)) return NULL;
1028     }
1029     return NULL;
1030 }
1031 
1032 /* ------------------------------- Debugging ---------------------------------*/
1033 
1034 #define DICT_STATS_VECTLEN 50
_dictGetStatsHt(char * buf,size_t bufsize,dictht * ht,int tableid)1035 size_t _dictGetStatsHt(char *buf, size_t bufsize, dictht *ht, int tableid) {
1036     unsigned long i, slots = 0, chainlen, maxchainlen = 0;
1037     unsigned long totchainlen = 0;
1038     unsigned long clvector[DICT_STATS_VECTLEN];
1039     size_t l = 0;
1040 
1041     if (ht->used == 0) {
1042         return snprintf(buf,bufsize,
1043             "No stats available for empty dictionaries\n");
1044     }
1045 
1046     /* Compute stats. */
1047     for (i = 0; i < DICT_STATS_VECTLEN; i++) clvector[i] = 0;
1048     for (i = 0; i < ht->size; i++) {
1049         dictEntry *he;
1050 
1051         if (ht->table[i] == NULL) {
1052             clvector[0]++;
1053             continue;
1054         }
1055         slots++;
1056         /* For each hash entry on this slot... */
1057         chainlen = 0;
1058         he = ht->table[i];
1059         while(he) {
1060             chainlen++;
1061             he = he->next;
1062         }
1063         clvector[(chainlen < DICT_STATS_VECTLEN) ? chainlen : (DICT_STATS_VECTLEN-1)]++;
1064         if (chainlen > maxchainlen) maxchainlen = chainlen;
1065         totchainlen += chainlen;
1066     }
1067 
1068     /* Generate human readable stats. */
1069     l += snprintf(buf+l,bufsize-l,
1070         "Hash table %d stats (%s):\n"
1071         " table size: %ld\n"
1072         " number of elements: %ld\n"
1073         " different slots: %ld\n"
1074         " max chain length: %ld\n"
1075         " avg chain length (counted): %.02f\n"
1076         " avg chain length (computed): %.02f\n"
1077         " Chain length distribution:\n",
1078         tableid, (tableid == 0) ? "main hash table" : "rehashing target",
1079         ht->size, ht->used, slots, maxchainlen,
1080         (float)totchainlen/slots, (float)ht->used/slots);
1081 
1082     for (i = 0; i < DICT_STATS_VECTLEN-1; i++) {
1083         if (clvector[i] == 0) continue;
1084         if (l >= bufsize) break;
1085         l += snprintf(buf+l,bufsize-l,
1086             "   %s%ld: %ld (%.02f%%)\n",
1087             (i == DICT_STATS_VECTLEN-1)?">= ":"",
1088             i, clvector[i], ((float)clvector[i]/ht->size)*100);
1089     }
1090 
1091     /* Unlike snprintf(), teturn the number of characters actually written. */
1092     if (bufsize) buf[bufsize-1] = '\0';
1093     return strlen(buf);
1094 }
1095 
dictGetStats(char * buf,size_t bufsize,dict * d)1096 void dictGetStats(char *buf, size_t bufsize, dict *d) {
1097     size_t l;
1098     char *orig_buf = buf;
1099     size_t orig_bufsize = bufsize;
1100 
1101     l = _dictGetStatsHt(buf,bufsize,&d->ht[0],0);
1102     buf += l;
1103     bufsize -= l;
1104     if (dictIsRehashing(d) && bufsize > 0) {
1105         _dictGetStatsHt(buf,bufsize,&d->ht[1],1);
1106     }
1107     /* Make sure there is a NULL term at the end. */
1108     if (orig_bufsize) orig_buf[orig_bufsize-1] = '\0';
1109 }
1110 
1111 /* ------------------------------- Benchmark ---------------------------------*/
1112 
1113 #ifdef DICT_BENCHMARK_MAIN
1114 
1115 #include "sds.h"
1116 
hashCallback(const void * key)1117 uint64_t hashCallback(const void *key) {
1118     return dictGenHashFunction((unsigned char*)key, sdslen((char*)key));
1119 }
1120 
compareCallback(void * privdata,const void * key1,const void * key2)1121 int compareCallback(void *privdata, const void *key1, const void *key2) {
1122     int l1,l2;
1123     DICT_NOTUSED(privdata);
1124 
1125     l1 = sdslen((sds)key1);
1126     l2 = sdslen((sds)key2);
1127     if (l1 != l2) return 0;
1128     return memcmp(key1, key2, l1) == 0;
1129 }
1130 
freeCallback(void * privdata,void * val)1131 void freeCallback(void *privdata, void *val) {
1132     DICT_NOTUSED(privdata);
1133 
1134     sdsfree(val);
1135 }
1136 
1137 dictType BenchmarkDictType = {
1138     hashCallback,
1139     NULL,
1140     NULL,
1141     compareCallback,
1142     freeCallback,
1143     NULL
1144 };
1145 
1146 #define start_benchmark() start = timeInMilliseconds()
1147 #define end_benchmark(msg) do { \
1148     elapsed = timeInMilliseconds()-start; \
1149     printf(msg ": %ld items in %lld ms\n", count, elapsed); \
1150 } while(0);
1151 
1152 /* dict-benchmark [count] */
main(int argc,char ** argv)1153 int main(int argc, char **argv) {
1154     long j;
1155     long long start, elapsed;
1156     dict *dict = dictCreate(&BenchmarkDictType,NULL);
1157     long count = 0;
1158 
1159     if (argc == 2) {
1160         count = strtol(argv[1],NULL,10);
1161     } else {
1162         count = 5000000;
1163     }
1164 
1165     start_benchmark();
1166     for (j = 0; j < count; j++) {
1167         int retval = dictAdd(dict,sdsfromlonglong(j),(void*)j);
1168         assert(retval == DICT_OK);
1169     }
1170     end_benchmark("Inserting");
1171     assert((long)dictSize(dict) == count);
1172 
1173     /* Wait for rehashing. */
1174     while (dictIsRehashing(dict)) {
1175         dictRehashMilliseconds(dict,100);
1176     }
1177 
1178     start_benchmark();
1179     for (j = 0; j < count; j++) {
1180         sds key = sdsfromlonglong(j);
1181         dictEntry *de = dictFind(dict,key);
1182         assert(de != NULL);
1183         sdsfree(key);
1184     }
1185     end_benchmark("Linear access of existing elements");
1186 
1187     start_benchmark();
1188     for (j = 0; j < count; j++) {
1189         sds key = sdsfromlonglong(j);
1190         dictEntry *de = dictFind(dict,key);
1191         assert(de != NULL);
1192         sdsfree(key);
1193     }
1194     end_benchmark("Linear access of existing elements (2nd round)");
1195 
1196     start_benchmark();
1197     for (j = 0; j < count; j++) {
1198         sds key = sdsfromlonglong(rand() % count);
1199         dictEntry *de = dictFind(dict,key);
1200         assert(de != NULL);
1201         sdsfree(key);
1202     }
1203     end_benchmark("Random access of existing elements");
1204 
1205     start_benchmark();
1206     for (j = 0; j < count; j++) {
1207         sds key = sdsfromlonglong(rand() % count);
1208         key[0] = 'X';
1209         dictEntry *de = dictFind(dict,key);
1210         assert(de == NULL);
1211         sdsfree(key);
1212     }
1213     end_benchmark("Accessing missing");
1214 
1215     start_benchmark();
1216     for (j = 0; j < count; j++) {
1217         sds key = sdsfromlonglong(j);
1218         int retval = dictDelete(dict,key);
1219         assert(retval == DICT_OK);
1220         key[0] += 17; /* Change first number to letter. */
1221         retval = dictAdd(dict,key,(void*)j);
1222         assert(retval == DICT_OK);
1223     }
1224     end_benchmark("Removing and adding");
1225 }
1226 #endif
1227