1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2014-2018 Chelsio Communications.
3 * All rights reserved.
4 */
5
6 #include <sys/queue.h>
7 #include <stdio.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <string.h>
11 #include <unistd.h>
12 #include <stdarg.h>
13 #include <inttypes.h>
14 #include <netinet/in.h>
15
16 #include <rte_byteorder.h>
17 #include <rte_common.h>
18 #include <rte_cycles.h>
19 #include <rte_interrupts.h>
20 #include <rte_log.h>
21 #include <rte_debug.h>
22 #include <rte_pci.h>
23 #include <rte_atomic.h>
24 #include <rte_branch_prediction.h>
25 #include <rte_memory.h>
26 #include <rte_tailq.h>
27 #include <rte_eal.h>
28 #include <rte_alarm.h>
29 #include <rte_ether.h>
30 #include <rte_ethdev_driver.h>
31 #include <rte_ethdev_pci.h>
32 #include <rte_random.h>
33 #include <rte_dev.h>
34 #include <rte_kvargs.h>
35
36 #include "base/common.h"
37 #include "base/t4_regs.h"
38 #include "base/t4_msg.h"
39 #include "cxgbe.h"
40 #include "cxgbe_pfvf.h"
41 #include "clip_tbl.h"
42 #include "l2t.h"
43 #include "smt.h"
44 #include "mps_tcam.h"
45
46 static const u16 cxgbe_filter_mode_features[] = {
47 (F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_ETHERTYPE |
48 F_PROTOCOL | F_PORT),
49 (F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_ETHERTYPE |
50 F_PROTOCOL | F_FCOE),
51 (F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_ETHERTYPE | F_TOS |
52 F_PORT),
53 (F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_ETHERTYPE | F_TOS |
54 F_FCOE),
55 (F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_ETHERTYPE | F_PORT |
56 F_FCOE),
57 (F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_PROTOCOL | F_TOS |
58 F_PORT | F_FCOE),
59 (F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_PROTOCOL | F_VLAN |
60 F_FCOE),
61 (F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_PROTOCOL | F_VNIC_ID |
62 F_FCOE),
63 (F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_TOS | F_VLAN |
64 F_FCOE),
65 (F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_TOS | F_VNIC_ID |
66 F_FCOE),
67 (F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_VLAN | F_PORT |
68 F_FCOE),
69 (F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_VNIC_ID | F_PORT |
70 F_FCOE),
71 (F_FRAGMENTATION | F_MPSHITTYPE | F_ETHERTYPE | F_PROTOCOL | F_TOS |
72 F_PORT | F_FCOE),
73 (F_FRAGMENTATION | F_MPSHITTYPE | F_ETHERTYPE | F_VLAN | F_PORT),
74 (F_FRAGMENTATION | F_MPSHITTYPE | F_ETHERTYPE | F_VLAN | F_FCOE),
75 (F_FRAGMENTATION | F_MPSHITTYPE | F_ETHERTYPE | F_VNIC_ID | F_PORT),
76 (F_FRAGMENTATION | F_MPSHITTYPE | F_ETHERTYPE | F_VNIC_ID | F_FCOE),
77 (F_FRAGMENTATION | F_MPSHITTYPE | F_PROTOCOL | F_TOS | F_VLAN | F_PORT),
78 (F_FRAGMENTATION | F_MPSHITTYPE | F_PROTOCOL | F_TOS | F_VLAN | F_FCOE),
79 (F_FRAGMENTATION | F_MPSHITTYPE | F_PROTOCOL | F_TOS | F_VNIC_ID |
80 F_PORT),
81 (F_FRAGMENTATION | F_MPSHITTYPE | F_PROTOCOL | F_TOS | F_VNIC_ID |
82 F_FCOE),
83 (F_FRAGMENTATION | F_MPSHITTYPE | F_PROTOCOL | F_VLAN | F_PORT |
84 F_FCOE),
85 (F_FRAGMENTATION | F_MPSHITTYPE | F_PROTOCOL | F_VNIC_ID | F_PORT |
86 F_FCOE),
87 (F_FRAGMENTATION | F_MPSHITTYPE | F_TOS | F_VLAN | F_PORT | F_FCOE),
88 (F_FRAGMENTATION | F_MPSHITTYPE | F_TOS | F_VNIC_ID | F_PORT | F_FCOE),
89 (F_FRAGMENTATION | F_MPSHITTYPE | F_VLAN | F_VNIC_ID | F_FCOE),
90 (F_FRAGMENTATION | F_MACMATCH | F_ETHERTYPE | F_PROTOCOL | F_PORT |
91 F_FCOE),
92 (F_FRAGMENTATION | F_MACMATCH | F_ETHERTYPE | F_TOS | F_PORT | F_FCOE),
93 (F_FRAGMENTATION | F_MACMATCH | F_PROTOCOL | F_VLAN | F_PORT | F_FCOE),
94 (F_FRAGMENTATION | F_MACMATCH | F_PROTOCOL | F_VNIC_ID | F_PORT |
95 F_FCOE),
96 (F_FRAGMENTATION | F_MACMATCH | F_TOS | F_VLAN | F_PORT | F_FCOE),
97 (F_FRAGMENTATION | F_MACMATCH | F_TOS | F_VNIC_ID | F_PORT | F_FCOE),
98 (F_FRAGMENTATION | F_ETHERTYPE | F_VLAN | F_PORT | F_FCOE),
99 (F_FRAGMENTATION | F_ETHERTYPE | F_VNIC_ID | F_PORT | F_FCOE),
100 (F_FRAGMENTATION | F_PROTOCOL | F_TOS | F_VLAN | F_FCOE),
101 (F_FRAGMENTATION | F_PROTOCOL | F_TOS | F_VNIC_ID | F_FCOE),
102 (F_FRAGMENTATION | F_VLAN | F_VNIC_ID | F_PORT | F_FCOE),
103 (F_MPSHITTYPE | F_MACMATCH | F_ETHERTYPE | F_PROTOCOL | F_PORT |
104 F_FCOE),
105 (F_MPSHITTYPE | F_MACMATCH | F_ETHERTYPE | F_TOS | F_PORT | F_FCOE),
106 (F_MPSHITTYPE | F_MACMATCH | F_PROTOCOL | F_VLAN | F_PORT),
107 (F_MPSHITTYPE | F_MACMATCH | F_PROTOCOL | F_VNIC_ID | F_PORT),
108 (F_MPSHITTYPE | F_MACMATCH | F_TOS | F_VLAN | F_PORT),
109 (F_MPSHITTYPE | F_MACMATCH | F_TOS | F_VNIC_ID | F_PORT),
110 (F_MPSHITTYPE | F_ETHERTYPE | F_VLAN | F_PORT | F_FCOE),
111 (F_MPSHITTYPE | F_ETHERTYPE | F_VNIC_ID | F_PORT | F_FCOE),
112 (F_MPSHITTYPE | F_PROTOCOL | F_TOS | F_VLAN | F_PORT | F_FCOE),
113 (F_MPSHITTYPE | F_PROTOCOL | F_TOS | F_VNIC_ID | F_PORT | F_FCOE),
114 (F_MPSHITTYPE | F_VLAN | F_VNIC_ID | F_PORT),
115 };
116
117 /**
118 * Allocate a chunk of memory. The allocated memory is cleared.
119 */
t4_alloc_mem(size_t size)120 void *t4_alloc_mem(size_t size)
121 {
122 return rte_zmalloc(NULL, size, 0);
123 }
124
125 /**
126 * Free memory allocated through t4_alloc_mem().
127 */
t4_free_mem(void * addr)128 void t4_free_mem(void *addr)
129 {
130 rte_free(addr);
131 }
132
133 /*
134 * Response queue handler for the FW event queue.
135 */
fwevtq_handler(struct sge_rspq * q,const __be64 * rsp,__rte_unused const struct pkt_gl * gl)136 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
137 __rte_unused const struct pkt_gl *gl)
138 {
139 u8 opcode = ((const struct rss_header *)rsp)->opcode;
140
141 rsp++; /* skip RSS header */
142
143 /*
144 * FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
145 */
146 if (unlikely(opcode == CPL_FW4_MSG &&
147 ((const struct cpl_fw4_msg *)rsp)->type ==
148 FW_TYPE_RSSCPL)) {
149 rsp++;
150 opcode = ((const struct rss_header *)rsp)->opcode;
151 rsp++;
152 if (opcode != CPL_SGE_EGR_UPDATE) {
153 dev_err(q->adapter, "unexpected FW4/CPL %#x on FW event queue\n",
154 opcode);
155 goto out;
156 }
157 }
158
159 if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
160 /* do nothing */
161 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
162 const struct cpl_fw6_msg *msg = (const void *)rsp;
163
164 t4_handle_fw_rpl(q->adapter, msg->data);
165 } else if (opcode == CPL_ABORT_RPL_RSS) {
166 const struct cpl_abort_rpl_rss *p = (const void *)rsp;
167
168 cxgbe_hash_del_filter_rpl(q->adapter, p);
169 } else if (opcode == CPL_SET_TCB_RPL) {
170 const struct cpl_set_tcb_rpl *p = (const void *)rsp;
171
172 cxgbe_filter_rpl(q->adapter, p);
173 } else if (opcode == CPL_ACT_OPEN_RPL) {
174 const struct cpl_act_open_rpl *p = (const void *)rsp;
175
176 cxgbe_hash_filter_rpl(q->adapter, p);
177 } else if (opcode == CPL_L2T_WRITE_RPL) {
178 const struct cpl_l2t_write_rpl *p = (const void *)rsp;
179
180 cxgbe_do_l2t_write_rpl(q->adapter, p);
181 } else if (opcode == CPL_SMT_WRITE_RPL) {
182 const struct cpl_smt_write_rpl *p = (const void *)rsp;
183
184 cxgbe_do_smt_write_rpl(q->adapter, p);
185 } else {
186 dev_err(adapter, "unexpected CPL %#x on FW event queue\n",
187 opcode);
188 }
189 out:
190 return 0;
191 }
192
193 /**
194 * Setup sge control queues to pass control information.
195 */
cxgbe_setup_sge_ctrl_txq(struct adapter * adapter)196 int cxgbe_setup_sge_ctrl_txq(struct adapter *adapter)
197 {
198 struct sge *s = &adapter->sge;
199 int err = 0, i = 0;
200
201 for_each_port(adapter, i) {
202 struct port_info *pi = adap2pinfo(adapter, i);
203 char name[RTE_ETH_NAME_MAX_LEN];
204 struct sge_ctrl_txq *q = &s->ctrlq[i];
205
206 q->q.size = 1024;
207 err = t4_sge_alloc_ctrl_txq(adapter, q,
208 adapter->eth_dev, i,
209 s->fw_evtq.cntxt_id,
210 rte_socket_id());
211 if (err) {
212 dev_err(adapter, "Failed to alloc ctrl txq. Err: %d",
213 err);
214 goto out;
215 }
216 snprintf(name, sizeof(name), "%s_ctrl_pool_%d",
217 pi->eth_dev->device->driver->name,
218 pi->eth_dev->data->port_id);
219 q->mb_pool = rte_pktmbuf_pool_create(name, s->ctrlq[i].q.size,
220 RTE_CACHE_LINE_SIZE,
221 RTE_MBUF_PRIV_ALIGN,
222 RTE_MBUF_DEFAULT_BUF_SIZE,
223 SOCKET_ID_ANY);
224 if (!q->mb_pool) {
225 err = -rte_errno;
226 dev_err(adapter,
227 "Can't create ctrl pool for port %d. Err: %d\n",
228 pi->eth_dev->data->port_id, err);
229 goto out;
230 }
231 }
232 return 0;
233 out:
234 t4_free_sge_resources(adapter);
235 return err;
236 }
237
238 /**
239 * cxgbe_poll_for_completion: Poll rxq for completion
240 * @q: rxq to poll
241 * @ms: milliseconds to delay
242 * @cnt: number of times to poll
243 * @c: completion to check for 'done' status
244 *
245 * Polls the rxq for reples until completion is done or the count
246 * expires.
247 */
cxgbe_poll_for_completion(struct sge_rspq * q,unsigned int ms,unsigned int cnt,struct t4_completion * c)248 int cxgbe_poll_for_completion(struct sge_rspq *q, unsigned int ms,
249 unsigned int cnt, struct t4_completion *c)
250 {
251 unsigned int i;
252 unsigned int work_done, budget = 32;
253
254 if (!c)
255 return -EINVAL;
256
257 for (i = 0; i < cnt; i++) {
258 cxgbe_poll(q, NULL, budget, &work_done);
259 t4_os_lock(&c->lock);
260 if (c->done) {
261 t4_os_unlock(&c->lock);
262 return 0;
263 }
264 t4_os_unlock(&c->lock);
265 rte_delay_ms(ms);
266 }
267 return -ETIMEDOUT;
268 }
269
cxgbe_setup_sge_fwevtq(struct adapter * adapter)270 int cxgbe_setup_sge_fwevtq(struct adapter *adapter)
271 {
272 struct sge *s = &adapter->sge;
273 int err = 0;
274 int msi_idx = 0;
275
276 err = t4_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->eth_dev,
277 msi_idx, NULL, fwevtq_handler, -1, NULL, 0,
278 rte_socket_id());
279 return err;
280 }
281
closest_timer(const struct sge * s,int time)282 static int closest_timer(const struct sge *s, int time)
283 {
284 unsigned int i, match = 0;
285 int delta, min_delta = INT_MAX;
286
287 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
288 delta = time - s->timer_val[i];
289 if (delta < 0)
290 delta = -delta;
291 if (delta < min_delta) {
292 min_delta = delta;
293 match = i;
294 }
295 }
296 return match;
297 }
298
closest_thres(const struct sge * s,int thres)299 static int closest_thres(const struct sge *s, int thres)
300 {
301 unsigned int i, match = 0;
302 int delta, min_delta = INT_MAX;
303
304 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
305 delta = thres - s->counter_val[i];
306 if (delta < 0)
307 delta = -delta;
308 if (delta < min_delta) {
309 min_delta = delta;
310 match = i;
311 }
312 }
313 return match;
314 }
315
316 /**
317 * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
318 * @q: the Rx queue
319 * @us: the hold-off time in us, or 0 to disable timer
320 * @cnt: the hold-off packet count, or 0 to disable counter
321 *
322 * Sets an Rx queue's interrupt hold-off time and packet count. At least
323 * one of the two needs to be enabled for the queue to generate interrupts.
324 */
cxgb4_set_rspq_intr_params(struct sge_rspq * q,unsigned int us,unsigned int cnt)325 int cxgb4_set_rspq_intr_params(struct sge_rspq *q, unsigned int us,
326 unsigned int cnt)
327 {
328 struct adapter *adap = q->adapter;
329 unsigned int timer_val;
330
331 if (cnt) {
332 int err;
333 u32 v, new_idx;
334
335 new_idx = closest_thres(&adap->sge, cnt);
336 if (q->desc && q->pktcnt_idx != new_idx) {
337 /* the queue has already been created, update it */
338 v = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
339 V_FW_PARAMS_PARAM_X(
340 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
341 V_FW_PARAMS_PARAM_YZ(q->cntxt_id);
342 err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
343 &v, &new_idx);
344 if (err)
345 return err;
346 }
347 q->pktcnt_idx = new_idx;
348 }
349
350 timer_val = (us == 0) ? X_TIMERREG_RESTART_COUNTER :
351 closest_timer(&adap->sge, us);
352
353 if ((us | cnt) == 0)
354 q->intr_params = V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX);
355 else
356 q->intr_params = V_QINTR_TIMER_IDX(timer_val) |
357 V_QINTR_CNT_EN(cnt > 0);
358 return 0;
359 }
360
361 /**
362 * Allocate an active-open TID and set it to the supplied value.
363 */
cxgbe_alloc_atid(struct tid_info * t,void * data)364 int cxgbe_alloc_atid(struct tid_info *t, void *data)
365 {
366 int atid = -1;
367
368 t4_os_lock(&t->atid_lock);
369 if (t->afree) {
370 union aopen_entry *p = t->afree;
371
372 atid = p - t->atid_tab;
373 t->afree = p->next;
374 p->data = data;
375 t->atids_in_use++;
376 }
377 t4_os_unlock(&t->atid_lock);
378 return atid;
379 }
380
381 /**
382 * Release an active-open TID.
383 */
cxgbe_free_atid(struct tid_info * t,unsigned int atid)384 void cxgbe_free_atid(struct tid_info *t, unsigned int atid)
385 {
386 union aopen_entry *p = &t->atid_tab[atid];
387
388 t4_os_lock(&t->atid_lock);
389 p->next = t->afree;
390 t->afree = p;
391 t->atids_in_use--;
392 t4_os_unlock(&t->atid_lock);
393 }
394
395 /**
396 * Populate a TID_RELEASE WR. Caller must properly size the skb.
397 */
mk_tid_release(struct rte_mbuf * mbuf,unsigned int tid)398 static void mk_tid_release(struct rte_mbuf *mbuf, unsigned int tid)
399 {
400 struct cpl_tid_release *req;
401
402 req = rte_pktmbuf_mtod(mbuf, struct cpl_tid_release *);
403 INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid);
404 }
405
406 /**
407 * Release a TID and inform HW. If we are unable to allocate the release
408 * message we defer to a work queue.
409 */
cxgbe_remove_tid(struct tid_info * t,unsigned int chan,unsigned int tid,unsigned short family)410 void cxgbe_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid,
411 unsigned short family)
412 {
413 struct rte_mbuf *mbuf;
414 struct adapter *adap = container_of(t, struct adapter, tids);
415
416 WARN_ON(tid >= t->ntids);
417
418 if (t->tid_tab[tid]) {
419 t->tid_tab[tid] = NULL;
420 rte_atomic32_dec(&t->conns_in_use);
421 if (t->hash_base && tid >= t->hash_base) {
422 if (family == FILTER_TYPE_IPV4)
423 rte_atomic32_dec(&t->hash_tids_in_use);
424 } else {
425 if (family == FILTER_TYPE_IPV4)
426 rte_atomic32_dec(&t->tids_in_use);
427 }
428 }
429
430 mbuf = rte_pktmbuf_alloc((&adap->sge.ctrlq[chan])->mb_pool);
431 if (mbuf) {
432 mbuf->data_len = sizeof(struct cpl_tid_release);
433 mbuf->pkt_len = mbuf->data_len;
434 mk_tid_release(mbuf, tid);
435 t4_mgmt_tx(&adap->sge.ctrlq[chan], mbuf);
436 }
437 }
438
439 /**
440 * Insert a TID.
441 */
cxgbe_insert_tid(struct tid_info * t,void * data,unsigned int tid,unsigned short family)442 void cxgbe_insert_tid(struct tid_info *t, void *data, unsigned int tid,
443 unsigned short family)
444 {
445 t->tid_tab[tid] = data;
446 if (t->hash_base && tid >= t->hash_base) {
447 if (family == FILTER_TYPE_IPV4)
448 rte_atomic32_inc(&t->hash_tids_in_use);
449 } else {
450 if (family == FILTER_TYPE_IPV4)
451 rte_atomic32_inc(&t->tids_in_use);
452 }
453
454 rte_atomic32_inc(&t->conns_in_use);
455 }
456
457 /**
458 * Free TID tables.
459 */
tid_free(struct tid_info * t)460 static void tid_free(struct tid_info *t)
461 {
462 if (t->tid_tab) {
463 if (t->ftid_bmap)
464 rte_bitmap_free(t->ftid_bmap);
465
466 if (t->ftid_bmap_array)
467 t4_os_free(t->ftid_bmap_array);
468
469 t4_os_free(t->tid_tab);
470 }
471
472 memset(t, 0, sizeof(struct tid_info));
473 }
474
475 /**
476 * Allocate and initialize the TID tables. Returns 0 on success.
477 */
tid_init(struct tid_info * t)478 static int tid_init(struct tid_info *t)
479 {
480 size_t size;
481 unsigned int ftid_bmap_size;
482 unsigned int natids = t->natids;
483 unsigned int max_ftids = t->nftids;
484
485 ftid_bmap_size = rte_bitmap_get_memory_footprint(t->nftids);
486 size = t->ntids * sizeof(*t->tid_tab) +
487 max_ftids * sizeof(*t->ftid_tab) +
488 natids * sizeof(*t->atid_tab);
489
490 t->tid_tab = t4_os_alloc(size);
491 if (!t->tid_tab)
492 return -ENOMEM;
493
494 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
495 t->ftid_tab = (struct filter_entry *)&t->atid_tab[t->natids];
496 t->ftid_bmap_array = t4_os_alloc(ftid_bmap_size);
497 if (!t->ftid_bmap_array) {
498 tid_free(t);
499 return -ENOMEM;
500 }
501
502 t4_os_lock_init(&t->atid_lock);
503 t4_os_lock_init(&t->ftid_lock);
504
505 t->afree = NULL;
506 t->atids_in_use = 0;
507 rte_atomic32_init(&t->tids_in_use);
508 rte_atomic32_set(&t->tids_in_use, 0);
509 rte_atomic32_init(&t->conns_in_use);
510 rte_atomic32_set(&t->conns_in_use, 0);
511
512 /* Setup the free list for atid_tab and clear the stid bitmap. */
513 if (natids) {
514 while (--natids)
515 t->atid_tab[natids - 1].next = &t->atid_tab[natids];
516 t->afree = t->atid_tab;
517 }
518
519 t->ftid_bmap = rte_bitmap_init(t->nftids, t->ftid_bmap_array,
520 ftid_bmap_size);
521 if (!t->ftid_bmap) {
522 tid_free(t);
523 return -ENOMEM;
524 }
525
526 return 0;
527 }
528
init_rspq(struct adapter * adap,struct sge_rspq * q,unsigned int us,unsigned int cnt,unsigned int size,unsigned int iqe_size)529 static inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
530 unsigned int us, unsigned int cnt,
531 unsigned int size, unsigned int iqe_size)
532 {
533 q->adapter = adap;
534 cxgb4_set_rspq_intr_params(q, us, cnt);
535 q->iqe_len = iqe_size;
536 q->size = size;
537 }
538
cxgbe_cfg_queue_count(struct rte_eth_dev * eth_dev)539 int cxgbe_cfg_queue_count(struct rte_eth_dev *eth_dev)
540 {
541 struct port_info *temp_pi, *pi = eth_dev->data->dev_private;
542 struct adapter *adap = pi->adapter;
543 u16 first_txq = 0, first_rxq = 0;
544 struct sge *s = &adap->sge;
545 u16 i, max_rxqs, max_txqs;
546
547 max_rxqs = s->max_ethqsets;
548 max_txqs = s->max_ethqsets;
549 for_each_port(adap, i) {
550 temp_pi = adap2pinfo(adap, i);
551 if (i == pi->port_id)
552 break;
553
554 if (max_rxqs <= temp_pi->n_rx_qsets ||
555 max_txqs <= temp_pi->n_tx_qsets)
556 return -ENOMEM;
557
558 first_rxq += temp_pi->n_rx_qsets;
559 first_txq += temp_pi->n_tx_qsets;
560 max_rxqs -= temp_pi->n_rx_qsets;
561 max_txqs -= temp_pi->n_tx_qsets;
562 }
563
564 if ((eth_dev->data->nb_rx_queues < 1) ||
565 (eth_dev->data->nb_tx_queues < 1))
566 return -EINVAL;
567
568 if (eth_dev->data->nb_rx_queues > max_rxqs ||
569 eth_dev->data->nb_tx_queues > max_txqs)
570 return -EINVAL;
571
572 /* We must configure RSS, since config has changed*/
573 pi->flags &= ~PORT_RSS_DONE;
574
575 pi->n_rx_qsets = eth_dev->data->nb_rx_queues;
576 pi->n_tx_qsets = eth_dev->data->nb_tx_queues;
577 pi->first_rxqset = first_rxq;
578 pi->first_txqset = first_txq;
579
580 return 0;
581 }
582
cxgbe_cfg_queues_free(struct adapter * adap)583 void cxgbe_cfg_queues_free(struct adapter *adap)
584 {
585 if (adap->sge.ethtxq) {
586 rte_free(adap->sge.ethtxq);
587 adap->sge.ethtxq = NULL;
588 }
589
590 if (adap->sge.ethrxq) {
591 rte_free(adap->sge.ethrxq);
592 adap->sge.ethrxq = NULL;
593 }
594
595 adap->flags &= ~CFG_QUEUES;
596 }
597
cxgbe_cfg_queues(struct rte_eth_dev * eth_dev)598 int cxgbe_cfg_queues(struct rte_eth_dev *eth_dev)
599 {
600 struct port_info *pi = eth_dev->data->dev_private;
601 struct adapter *adap = pi->adapter;
602 struct sge *s = &adap->sge;
603 u16 i;
604
605 if (!(adap->flags & CFG_QUEUES)) {
606 s->ethrxq = rte_calloc_socket(NULL, s->max_ethqsets,
607 sizeof(struct sge_eth_rxq), 0,
608 rte_socket_id());
609 if (!s->ethrxq)
610 return -ENOMEM;
611
612 s->ethtxq = rte_calloc_socket(NULL, s->max_ethqsets,
613 sizeof(struct sge_eth_txq), 0,
614 rte_socket_id());
615 if (!s->ethtxq) {
616 rte_free(s->ethrxq);
617 s->ethrxq = NULL;
618 return -ENOMEM;
619 }
620
621 for (i = 0; i < s->max_ethqsets; i++) {
622 struct sge_eth_rxq *r = &s->ethrxq[i];
623 struct sge_eth_txq *t = &s->ethtxq[i];
624
625 init_rspq(adap, &r->rspq, 5, 32, 1024, 64);
626 r->usembufs = 1;
627 r->fl.size = (r->usembufs ? 1024 : 72);
628
629 t->q.size = 1024;
630 }
631
632 init_rspq(adap, &adap->sge.fw_evtq, 0, 0, 1024, 64);
633 adap->flags |= CFG_QUEUES;
634 }
635
636 return 0;
637 }
638
cxgbe_stats_get(struct port_info * pi,struct port_stats * stats)639 void cxgbe_stats_get(struct port_info *pi, struct port_stats *stats)
640 {
641 t4_get_port_stats_offset(pi->adapter, pi->tx_chan, stats,
642 &pi->stats_base);
643 }
644
cxgbe_stats_reset(struct port_info * pi)645 void cxgbe_stats_reset(struct port_info *pi)
646 {
647 t4_clr_port_stats(pi->adapter, pi->tx_chan);
648 }
649
setup_memwin(struct adapter * adap)650 static void setup_memwin(struct adapter *adap)
651 {
652 u32 mem_win0_base;
653
654 /* For T5, only relative offset inside the PCIe BAR is passed */
655 mem_win0_base = MEMWIN0_BASE;
656
657 /*
658 * Set up memory window for accessing adapter memory ranges. (Read
659 * back MA register to ensure that changes propagate before we attempt
660 * to use the new values.)
661 */
662 t4_write_reg(adap,
663 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN,
664 MEMWIN_NIC),
665 mem_win0_base | V_BIR(0) |
666 V_WINDOW(ilog2(MEMWIN0_APERTURE) - X_WINDOW_SHIFT));
667 t4_read_reg(adap,
668 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN,
669 MEMWIN_NIC));
670 }
671
cxgbe_init_rss(struct adapter * adap)672 int cxgbe_init_rss(struct adapter *adap)
673 {
674 unsigned int i;
675
676 if (is_pf4(adap)) {
677 int err;
678
679 err = t4_init_rss_mode(adap, adap->mbox);
680 if (err)
681 return err;
682 }
683
684 for_each_port(adap, i) {
685 struct port_info *pi = adap2pinfo(adap, i);
686
687 pi->rss = rte_zmalloc(NULL, pi->rss_size * sizeof(u16), 0);
688 if (!pi->rss)
689 return -ENOMEM;
690
691 pi->rss_hf = CXGBE_RSS_HF_ALL;
692 }
693 return 0;
694 }
695
696 /**
697 * Dump basic information about the adapter.
698 */
cxgbe_print_adapter_info(struct adapter * adap)699 void cxgbe_print_adapter_info(struct adapter *adap)
700 {
701 /**
702 * Hardware/Firmware/etc. Version/Revision IDs.
703 */
704 t4_dump_version_info(adap);
705 }
706
cxgbe_print_port_info(struct adapter * adap)707 void cxgbe_print_port_info(struct adapter *adap)
708 {
709 int i;
710 char buf[80];
711 struct rte_pci_addr *loc = &adap->pdev->addr;
712
713 for_each_port(adap, i) {
714 const struct port_info *pi = adap2pinfo(adap, i);
715 char *bufp = buf;
716
717 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M)
718 bufp += sprintf(bufp, "100M/");
719 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G)
720 bufp += sprintf(bufp, "1G/");
721 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G)
722 bufp += sprintf(bufp, "10G/");
723 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G)
724 bufp += sprintf(bufp, "25G/");
725 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G)
726 bufp += sprintf(bufp, "40G/");
727 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G)
728 bufp += sprintf(bufp, "50G/");
729 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G)
730 bufp += sprintf(bufp, "100G/");
731 if (bufp != buf)
732 --bufp;
733 sprintf(bufp, "BASE-%s",
734 t4_get_port_type_description(
735 (enum fw_port_type)pi->port_type));
736
737 dev_info(adap,
738 " " PCI_PRI_FMT " Chelsio rev %d %s %s\n",
739 loc->domain, loc->bus, loc->devid, loc->function,
740 CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
741 (adap->flags & USING_MSIX) ? " MSI-X" :
742 (adap->flags & USING_MSI) ? " MSI" : "");
743 }
744 }
745
check_devargs_handler(const char * key,const char * value,void * p)746 static int check_devargs_handler(const char *key, const char *value, void *p)
747 {
748 if (!strncmp(key, CXGBE_DEVARG_CMN_KEEP_OVLAN, strlen(key)) ||
749 !strncmp(key, CXGBE_DEVARG_CMN_TX_MODE_LATENCY, strlen(key)) ||
750 !strncmp(key, CXGBE_DEVARG_VF_FORCE_LINK_UP, strlen(key))) {
751 if (!strncmp(value, "1", 1)) {
752 bool *dst_val = (bool *)p;
753
754 *dst_val = true;
755 }
756 }
757
758 if (!strncmp(key, CXGBE_DEVARG_PF_FILTER_MODE, strlen(key)) ||
759 !strncmp(key, CXGBE_DEVARG_PF_FILTER_MASK, strlen(key))) {
760 u32 *dst_val = (u32 *)p;
761 char *endptr = NULL;
762 u32 arg_val;
763
764 arg_val = strtoul(value, &endptr, 16);
765 if (errno || endptr == value)
766 return -EINVAL;
767
768 *dst_val = arg_val;
769 }
770
771 return 0;
772 }
773
cxgbe_get_devargs(struct rte_devargs * devargs,const char * key,void * p)774 static int cxgbe_get_devargs(struct rte_devargs *devargs, const char *key,
775 void *p)
776 {
777 struct rte_kvargs *kvlist;
778 int ret = 0;
779
780 if (!devargs)
781 return 0;
782
783 kvlist = rte_kvargs_parse(devargs->args, NULL);
784 if (!kvlist)
785 return 0;
786
787 if (!rte_kvargs_count(kvlist, key))
788 goto out;
789
790 ret = rte_kvargs_process(kvlist, key, check_devargs_handler, p);
791
792 out:
793 rte_kvargs_free(kvlist);
794
795 return ret;
796 }
797
cxgbe_get_devargs_int(struct adapter * adap,bool * dst,const char * key,bool default_value)798 static void cxgbe_get_devargs_int(struct adapter *adap, bool *dst,
799 const char *key, bool default_value)
800 {
801 struct rte_pci_device *pdev = adap->pdev;
802 int ret;
803 bool devarg_value = default_value;
804
805 *dst = default_value;
806 if (!pdev)
807 return;
808
809 ret = cxgbe_get_devargs(pdev->device.devargs, key, &devarg_value);
810 if (ret)
811 return;
812
813 *dst = devarg_value;
814 }
815
cxgbe_get_devargs_u32(struct adapter * adap,u32 * dst,const char * key,u32 default_value)816 static void cxgbe_get_devargs_u32(struct adapter *adap, u32 *dst,
817 const char *key, u32 default_value)
818 {
819 struct rte_pci_device *pdev = adap->pdev;
820 u32 devarg_value = default_value;
821 int ret;
822
823 *dst = default_value;
824 if (!pdev)
825 return;
826
827 ret = cxgbe_get_devargs(pdev->device.devargs, key, &devarg_value);
828 if (ret)
829 return;
830
831 *dst = devarg_value;
832 }
833
cxgbe_process_devargs(struct adapter * adap)834 void cxgbe_process_devargs(struct adapter *adap)
835 {
836 cxgbe_get_devargs_int(adap, &adap->devargs.keep_ovlan,
837 CXGBE_DEVARG_CMN_KEEP_OVLAN, false);
838 cxgbe_get_devargs_int(adap, &adap->devargs.tx_mode_latency,
839 CXGBE_DEVARG_CMN_TX_MODE_LATENCY, false);
840 cxgbe_get_devargs_int(adap, &adap->devargs.force_link_up,
841 CXGBE_DEVARG_VF_FORCE_LINK_UP, false);
842 cxgbe_get_devargs_u32(adap, &adap->devargs.filtermode,
843 CXGBE_DEVARG_PF_FILTER_MODE, 0);
844 cxgbe_get_devargs_u32(adap, &adap->devargs.filtermask,
845 CXGBE_DEVARG_PF_FILTER_MASK, 0);
846 }
847
configure_vlan_types(struct adapter * adapter)848 static void configure_vlan_types(struct adapter *adapter)
849 {
850 int i;
851
852 for_each_port(adapter, i) {
853 /* OVLAN Type 0x88a8 */
854 t4_set_reg_field(adapter, MPS_PORT_RX_OVLAN_REG(i, A_RX_OVLAN0),
855 V_OVLAN_MASK(M_OVLAN_MASK) |
856 V_OVLAN_ETYPE(M_OVLAN_ETYPE),
857 V_OVLAN_MASK(M_OVLAN_MASK) |
858 V_OVLAN_ETYPE(0x88a8));
859 /* OVLAN Type 0x9100 */
860 t4_set_reg_field(adapter, MPS_PORT_RX_OVLAN_REG(i, A_RX_OVLAN1),
861 V_OVLAN_MASK(M_OVLAN_MASK) |
862 V_OVLAN_ETYPE(M_OVLAN_ETYPE),
863 V_OVLAN_MASK(M_OVLAN_MASK) |
864 V_OVLAN_ETYPE(0x9100));
865
866 /* IVLAN 0X8100 */
867 t4_set_reg_field(adapter, MPS_PORT_RX_IVLAN(i),
868 V_IVLAN_ETYPE(M_IVLAN_ETYPE),
869 V_IVLAN_ETYPE(0x8100));
870
871 t4_set_reg_field(adapter, MPS_PORT_RX_CTL(i),
872 F_OVLAN_EN0 | F_OVLAN_EN1 |
873 F_IVLAN_EN,
874 F_OVLAN_EN0 | F_OVLAN_EN1 |
875 F_IVLAN_EN);
876 }
877
878 t4_tp_wr_bits_indirect(adapter, A_TP_INGRESS_CONFIG, V_RM_OVLAN(1),
879 V_RM_OVLAN(!adapter->devargs.keep_ovlan));
880 }
881
cxgbe_get_filter_vnic_mode_from_devargs(u32 val)882 static int cxgbe_get_filter_vnic_mode_from_devargs(u32 val)
883 {
884 u32 vnic_mode;
885
886 vnic_mode = val & (CXGBE_DEVARGS_FILTER_MODE_PF_VF |
887 CXGBE_DEVARGS_FILTER_MODE_VLAN_OUTER);
888 if (vnic_mode) {
889 switch (vnic_mode) {
890 case CXGBE_DEVARGS_FILTER_MODE_VLAN_OUTER:
891 return CXGBE_FILTER_VNIC_MODE_OVLAN;
892 case CXGBE_DEVARGS_FILTER_MODE_PF_VF:
893 return CXGBE_FILTER_VNIC_MODE_PFVF;
894 default:
895 return -EINVAL;
896 }
897 }
898
899 return CXGBE_FILTER_VNIC_MODE_NONE;
900 }
901
cxgbe_get_filter_mode_from_devargs(u32 val,bool closest_match)902 static int cxgbe_get_filter_mode_from_devargs(u32 val, bool closest_match)
903 {
904 int vnic_mode, fmode = 0;
905 bool found = false;
906 u8 i;
907
908 if (val >= CXGBE_DEVARGS_FILTER_MODE_MAX) {
909 pr_err("Unsupported flags set in filter mode. Must be < 0x%x\n",
910 CXGBE_DEVARGS_FILTER_MODE_MAX);
911 return -ERANGE;
912 }
913
914 vnic_mode = cxgbe_get_filter_vnic_mode_from_devargs(val);
915 if (vnic_mode < 0) {
916 pr_err("Unsupported Vnic-mode, more than 1 Vnic-mode selected\n");
917 return vnic_mode;
918 }
919
920 if (vnic_mode)
921 fmode |= F_VNIC_ID;
922 if (val & CXGBE_DEVARGS_FILTER_MODE_PHYSICAL_PORT)
923 fmode |= F_PORT;
924 if (val & CXGBE_DEVARGS_FILTER_MODE_ETHERNET_DSTMAC)
925 fmode |= F_MACMATCH;
926 if (val & CXGBE_DEVARGS_FILTER_MODE_ETHERNET_ETHTYPE)
927 fmode |= F_ETHERTYPE;
928 if (val & CXGBE_DEVARGS_FILTER_MODE_VLAN_INNER)
929 fmode |= F_VLAN;
930 if (val & CXGBE_DEVARGS_FILTER_MODE_IP_TOS)
931 fmode |= F_TOS;
932 if (val & CXGBE_DEVARGS_FILTER_MODE_IP_PROTOCOL)
933 fmode |= F_PROTOCOL;
934
935 for (i = 0; i < ARRAY_SIZE(cxgbe_filter_mode_features); i++) {
936 if ((cxgbe_filter_mode_features[i] & fmode) == fmode) {
937 found = true;
938 break;
939 }
940 }
941
942 if (!found)
943 return -EINVAL;
944
945 return closest_match ? cxgbe_filter_mode_features[i] : fmode;
946 }
947
configure_filter_mode_mask(struct adapter * adap)948 static int configure_filter_mode_mask(struct adapter *adap)
949 {
950 u32 params[2], val[2], nparams = 0;
951 int ret;
952
953 if (!adap->devargs.filtermode && !adap->devargs.filtermask)
954 return 0;
955
956 if (!adap->devargs.filtermode || !adap->devargs.filtermask) {
957 pr_err("Unsupported, Provide both filtermode and filtermask devargs\n");
958 return -EINVAL;
959 }
960
961 if (adap->devargs.filtermask & ~adap->devargs.filtermode) {
962 pr_err("Unsupported, filtermask (0x%x) must be subset of filtermode (0x%x)\n",
963 adap->devargs.filtermask, adap->devargs.filtermode);
964
965 return -EINVAL;
966 }
967
968 params[0] = CXGBE_FW_PARAM_DEV(FILTER) |
969 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_MODE_MASK);
970
971 ret = cxgbe_get_filter_mode_from_devargs(adap->devargs.filtermode,
972 true);
973 if (ret < 0) {
974 pr_err("Unsupported filtermode devargs combination:0x%x\n",
975 adap->devargs.filtermode);
976 return ret;
977 }
978
979 val[0] = V_FW_PARAMS_PARAM_FILTER_MODE(ret);
980
981 ret = cxgbe_get_filter_mode_from_devargs(adap->devargs.filtermask,
982 false);
983 if (ret < 0) {
984 pr_err("Unsupported filtermask devargs combination:0x%x\n",
985 adap->devargs.filtermask);
986 return ret;
987 }
988
989 val[0] |= V_FW_PARAMS_PARAM_FILTER_MASK(ret);
990
991 nparams++;
992
993 ret = cxgbe_get_filter_vnic_mode_from_devargs(adap->devargs.filtermode);
994 if (ret < 0)
995 return ret;
996
997 if (ret) {
998 params[1] = CXGBE_FW_PARAM_DEV(FILTER) |
999 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_VNIC_MODE);
1000
1001 val[1] = ret - 1;
1002
1003 nparams++;
1004 }
1005
1006 return t4_set_params(adap, adap->mbox, adap->pf, 0, nparams,
1007 params, val);
1008 }
1009
configure_pcie_ext_tag(struct adapter * adapter)1010 static void configure_pcie_ext_tag(struct adapter *adapter)
1011 {
1012 u16 v;
1013 int pos = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
1014
1015 if (!pos)
1016 return;
1017
1018 if (pos > 0) {
1019 t4_os_pci_read_cfg2(adapter, pos + PCI_EXP_DEVCTL, &v);
1020 v |= PCI_EXP_DEVCTL_EXT_TAG;
1021 t4_os_pci_write_cfg2(adapter, pos + PCI_EXP_DEVCTL, v);
1022 if (is_t6(adapter->params.chip)) {
1023 t4_set_reg_field(adapter, A_PCIE_CFG2,
1024 V_T6_TOTMAXTAG(M_T6_TOTMAXTAG),
1025 V_T6_TOTMAXTAG(7));
1026 t4_set_reg_field(adapter, A_PCIE_CMD_CFG,
1027 V_T6_MINTAG(M_T6_MINTAG),
1028 V_T6_MINTAG(8));
1029 } else {
1030 t4_set_reg_field(adapter, A_PCIE_CFG2,
1031 V_TOTMAXTAG(M_TOTMAXTAG),
1032 V_TOTMAXTAG(3));
1033 t4_set_reg_field(adapter, A_PCIE_CMD_CFG,
1034 V_MINTAG(M_MINTAG),
1035 V_MINTAG(8));
1036 }
1037 }
1038 }
1039
1040 /* Figure out how many Queue Sets we can support */
cxgbe_configure_max_ethqsets(struct adapter * adapter)1041 void cxgbe_configure_max_ethqsets(struct adapter *adapter)
1042 {
1043 unsigned int ethqsets, reserved;
1044
1045 /* We need to reserve an Ingress Queue for the Asynchronous Firmware
1046 * Event Queue and 1 Control Queue per port.
1047 *
1048 * For each Queue Set, we'll need the ability to allocate two Egress
1049 * Contexts -- one for the Ingress Queue Free List and one for the TX
1050 * Ethernet Queue.
1051 */
1052 reserved = max(adapter->params.nports, 1);
1053 if (is_pf4(adapter)) {
1054 struct pf_resources *pfres = &adapter->params.pfres;
1055
1056 ethqsets = min(pfres->niqflint, pfres->nethctrl);
1057 if (ethqsets > (pfres->neq / 2))
1058 ethqsets = pfres->neq / 2;
1059 } else {
1060 struct vf_resources *vfres = &adapter->params.vfres;
1061
1062 ethqsets = min(vfres->niqflint, vfres->nethctrl);
1063 if (ethqsets > (vfres->neq / 2))
1064 ethqsets = vfres->neq / 2;
1065 }
1066
1067 ethqsets -= reserved;
1068 adapter->sge.max_ethqsets = ethqsets;
1069 }
1070
1071 /*
1072 * Tweak configuration based on system architecture, etc. Most of these have
1073 * defaults assigned to them by Firmware Configuration Files (if we're using
1074 * them) but need to be explicitly set if we're using hard-coded
1075 * initialization. So these are essentially common tweaks/settings for
1076 * Configuration Files and hard-coded initialization ...
1077 */
adap_init0_tweaks(struct adapter * adapter)1078 static int adap_init0_tweaks(struct adapter *adapter)
1079 {
1080 u8 rx_dma_offset;
1081
1082 /*
1083 * Fix up various Host-Dependent Parameters like Page Size, Cache
1084 * Line Size, etc. The firmware default is for a 4KB Page Size and
1085 * 64B Cache Line Size ...
1086 */
1087 t4_fixup_host_params_compat(adapter, CXGBE_PAGE_SIZE, L1_CACHE_BYTES,
1088 T5_LAST_REV);
1089
1090 /*
1091 * Keep the chip default offset to deliver Ingress packets into our
1092 * DMA buffers to zero
1093 */
1094 rx_dma_offset = 0;
1095 t4_set_reg_field(adapter, A_SGE_CONTROL, V_PKTSHIFT(M_PKTSHIFT),
1096 V_PKTSHIFT(rx_dma_offset));
1097
1098 t4_set_reg_field(adapter, A_SGE_FLM_CFG,
1099 V_CREDITCNT(M_CREDITCNT) | M_CREDITCNTPACKING,
1100 V_CREDITCNT(3) | V_CREDITCNTPACKING(1));
1101
1102 t4_set_reg_field(adapter, A_SGE_INGRESS_RX_THRESHOLD,
1103 V_THRESHOLD_3(M_THRESHOLD_3), V_THRESHOLD_3(32U));
1104
1105 t4_set_reg_field(adapter, A_SGE_CONTROL2, V_IDMAARBROUNDROBIN(1U),
1106 V_IDMAARBROUNDROBIN(1U));
1107
1108 /*
1109 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
1110 * adds the pseudo header itself.
1111 */
1112 t4_tp_wr_bits_indirect(adapter, A_TP_INGRESS_CONFIG,
1113 F_CSUM_HAS_PSEUDO_HDR, 0);
1114
1115 return 0;
1116 }
1117
1118 /*
1119 * Attempt to initialize the adapter via a Firmware Configuration File.
1120 */
adap_init0_config(struct adapter * adapter,int reset)1121 static int adap_init0_config(struct adapter *adapter, int reset)
1122 {
1123 u32 finiver, finicsum, cfcsum, param, val;
1124 struct fw_caps_config_cmd caps_cmd;
1125 unsigned long mtype = 0, maddr = 0;
1126 u8 config_issued = 0;
1127 char config_name[20];
1128 int cfg_addr, ret;
1129
1130 /*
1131 * Reset device if necessary.
1132 */
1133 if (reset) {
1134 ret = t4_fw_reset(adapter, adapter->mbox,
1135 F_PIORSTMODE | F_PIORST);
1136 if (ret < 0) {
1137 dev_warn(adapter, "Firmware reset failed, error %d\n",
1138 -ret);
1139 goto bye;
1140 }
1141 }
1142
1143 cfg_addr = t4_flash_cfg_addr(adapter);
1144 if (cfg_addr < 0) {
1145 ret = cfg_addr;
1146 dev_warn(adapter, "Finding address for firmware config file in flash failed, error %d\n",
1147 -ret);
1148 goto bye;
1149 }
1150
1151 strcpy(config_name, "On Flash");
1152 mtype = FW_MEMTYPE_CF_FLASH;
1153 maddr = cfg_addr;
1154
1155 /* Enable HASH filter region when support is available. */
1156 val = 1;
1157 param = CXGBE_FW_PARAM_DEV(HASHFILTER_WITH_OFLD);
1158 t4_set_params(adapter, adapter->mbox, adapter->pf, 0, 1,
1159 ¶m, &val);
1160
1161 /*
1162 * Issue a Capability Configuration command to the firmware to get it
1163 * to parse the Configuration File. We don't use t4_fw_config_file()
1164 * because we want the ability to modify various features after we've
1165 * processed the configuration file ...
1166 */
1167 memset(&caps_cmd, 0, sizeof(caps_cmd));
1168 caps_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
1169 F_FW_CMD_REQUEST | F_FW_CMD_READ);
1170 caps_cmd.cfvalid_to_len16 =
1171 cpu_to_be32(F_FW_CAPS_CONFIG_CMD_CFVALID |
1172 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
1173 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) |
1174 FW_LEN16(caps_cmd));
1175 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
1176 &caps_cmd);
1177 /*
1178 * If the CAPS_CONFIG failed with an ENOENT (for a Firmware
1179 * Configuration File in FLASH), our last gasp effort is to use the
1180 * Firmware Configuration File which is embedded in the firmware. A
1181 * very few early versions of the firmware didn't have one embedded
1182 * but we can ignore those.
1183 */
1184 if (ret == -ENOENT) {
1185 dev_info(adapter, "%s: Going for embedded config in firmware..\n",
1186 __func__);
1187
1188 memset(&caps_cmd, 0, sizeof(caps_cmd));
1189 caps_cmd.op_to_write =
1190 cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
1191 F_FW_CMD_REQUEST | F_FW_CMD_READ);
1192 caps_cmd.cfvalid_to_len16 = cpu_to_be32(FW_LEN16(caps_cmd));
1193 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
1194 sizeof(caps_cmd), &caps_cmd);
1195 strcpy(config_name, "Firmware Default");
1196 }
1197
1198 config_issued = 1;
1199 if (ret < 0)
1200 goto bye;
1201
1202 finiver = be32_to_cpu(caps_cmd.finiver);
1203 finicsum = be32_to_cpu(caps_cmd.finicsum);
1204 cfcsum = be32_to_cpu(caps_cmd.cfcsum);
1205 if (finicsum != cfcsum)
1206 dev_warn(adapter, "Configuration File checksum mismatch: [fini] csum=%#x, computed csum=%#x\n",
1207 finicsum, cfcsum);
1208
1209 /*
1210 * If we're a pure NIC driver then disable all offloading facilities.
1211 * This will allow the firmware to optimize aspects of the hardware
1212 * configuration which will result in improved performance.
1213 */
1214 caps_cmd.niccaps &= cpu_to_be16(~FW_CAPS_CONFIG_NIC_ETHOFLD);
1215 caps_cmd.toecaps = 0;
1216 caps_cmd.iscsicaps = 0;
1217 caps_cmd.rdmacaps = 0;
1218 caps_cmd.fcoecaps = 0;
1219 caps_cmd.cryptocaps = 0;
1220
1221 /*
1222 * And now tell the firmware to use the configuration we just loaded.
1223 */
1224 caps_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
1225 F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
1226 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
1227 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
1228 NULL);
1229 if (ret < 0) {
1230 dev_warn(adapter, "Unable to finalize Firmware Capabilities %d\n",
1231 -ret);
1232 goto bye;
1233 }
1234
1235 /*
1236 * Tweak configuration based on system architecture, etc.
1237 */
1238 ret = adap_init0_tweaks(adapter);
1239 if (ret < 0) {
1240 dev_warn(adapter, "Unable to do init0-tweaks %d\n", -ret);
1241 goto bye;
1242 }
1243
1244 /*
1245 * And finally tell the firmware to initialize itself using the
1246 * parameters from the Configuration File.
1247 */
1248 ret = t4_fw_initialize(adapter, adapter->mbox);
1249 if (ret < 0) {
1250 dev_warn(adapter, "Initializing Firmware failed, error %d\n",
1251 -ret);
1252 goto bye;
1253 }
1254
1255 /*
1256 * Return successfully and note that we're operating with parameters
1257 * not supplied by the driver, rather than from hard-wired
1258 * initialization constants buried in the driver.
1259 */
1260 dev_info(adapter,
1261 "Successfully configured using Firmware Configuration File \"%s\", version %#x, computed checksum %#x\n",
1262 config_name, finiver, cfcsum);
1263
1264 return 0;
1265
1266 /*
1267 * Something bad happened. Return the error ... (If the "error"
1268 * is that there's no Configuration File on the adapter we don't
1269 * want to issue a warning since this is fairly common.)
1270 */
1271 bye:
1272 if (config_issued && ret != -ENOENT)
1273 dev_warn(adapter, "\"%s\" configuration file error %d\n",
1274 config_name, -ret);
1275
1276 dev_debug(adapter, "%s: returning ret = %d ..\n", __func__, ret);
1277 return ret;
1278 }
1279
adap_init0(struct adapter * adap)1280 static int adap_init0(struct adapter *adap)
1281 {
1282 struct fw_caps_config_cmd caps_cmd;
1283 int ret = 0;
1284 u32 v, port_vec;
1285 enum dev_state state;
1286 u32 params[7], val[7];
1287 int reset = 1;
1288 int mbox = adap->mbox;
1289
1290 /*
1291 * Contact FW, advertising Master capability.
1292 */
1293 ret = t4_fw_hello(adap, adap->mbox, adap->mbox, MASTER_MAY, &state);
1294 if (ret < 0) {
1295 dev_err(adap, "%s: could not connect to FW, error %d\n",
1296 __func__, -ret);
1297 goto bye;
1298 }
1299
1300 CXGBE_DEBUG_MBOX(adap, "%s: adap->mbox = %d; ret = %d\n", __func__,
1301 adap->mbox, ret);
1302
1303 if (ret == mbox)
1304 adap->flags |= MASTER_PF;
1305
1306 if (state == DEV_STATE_INIT) {
1307 /*
1308 * Force halt and reset FW because a previous instance may have
1309 * exited abnormally without properly shutting down
1310 */
1311 ret = t4_fw_halt(adap, adap->mbox, reset);
1312 if (ret < 0) {
1313 dev_err(adap, "Failed to halt. Exit.\n");
1314 goto bye;
1315 }
1316
1317 ret = t4_fw_restart(adap, adap->mbox, reset);
1318 if (ret < 0) {
1319 dev_err(adap, "Failed to restart. Exit.\n");
1320 goto bye;
1321 }
1322 state = (enum dev_state)((unsigned)state & ~DEV_STATE_INIT);
1323 }
1324
1325 t4_get_version_info(adap);
1326
1327 ret = t4_get_core_clock(adap, &adap->params.vpd);
1328 if (ret < 0) {
1329 dev_err(adap, "%s: could not get core clock, error %d\n",
1330 __func__, -ret);
1331 goto bye;
1332 }
1333
1334 /*
1335 * If the firmware is initialized already (and we're not forcing a
1336 * master initialization), note that we're living with existing
1337 * adapter parameters. Otherwise, it's time to try initializing the
1338 * adapter ...
1339 */
1340 if (state == DEV_STATE_INIT) {
1341 dev_info(adap, "Coming up as %s: Adapter already initialized\n",
1342 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
1343 } else {
1344 dev_info(adap, "Coming up as MASTER: Initializing adapter\n");
1345
1346 ret = adap_init0_config(adap, reset);
1347 if (ret == -ENOENT) {
1348 dev_err(adap,
1349 "No Configuration File present on adapter. Using hard-wired configuration parameters.\n");
1350 goto bye;
1351 }
1352 }
1353 if (ret < 0) {
1354 dev_err(adap, "could not initialize adapter, error %d\n", -ret);
1355 goto bye;
1356 }
1357
1358 /* Now that we've successfully configured and initialized the adapter
1359 * (or found it already initialized), we can ask the Firmware what
1360 * resources it has provisioned for us.
1361 */
1362 ret = t4_get_pfres(adap);
1363 if (ret) {
1364 dev_err(adap->pdev_dev,
1365 "Unable to retrieve resource provisioning info\n");
1366 goto bye;
1367 }
1368
1369 /* Find out what ports are available to us. */
1370 v = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
1371 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_PORTVEC);
1372 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
1373 if (ret < 0) {
1374 dev_err(adap, "%s: failure in t4_query_params; error = %d\n",
1375 __func__, ret);
1376 goto bye;
1377 }
1378
1379 adap->params.nports = hweight32(port_vec);
1380 adap->params.portvec = port_vec;
1381
1382 dev_debug(adap, "%s: adap->params.nports = %u\n", __func__,
1383 adap->params.nports);
1384
1385 /*
1386 * Give the SGE code a chance to pull in anything that it needs ...
1387 * Note that this must be called after we retrieve our VPD parameters
1388 * in order to know how to convert core ticks to seconds, etc.
1389 */
1390 ret = t4_sge_init(adap);
1391 if (ret < 0) {
1392 dev_err(adap, "t4_sge_init failed with error %d\n",
1393 -ret);
1394 goto bye;
1395 }
1396
1397 /*
1398 * Grab some of our basic fundamental operating parameters.
1399 */
1400 params[0] = CXGBE_FW_PARAM_PFVF(L2T_START);
1401 params[1] = CXGBE_FW_PARAM_PFVF(L2T_END);
1402 params[2] = CXGBE_FW_PARAM_PFVF(FILTER_START);
1403 params[3] = CXGBE_FW_PARAM_PFVF(FILTER_END);
1404 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4, params, val);
1405 if (ret < 0)
1406 goto bye;
1407 adap->l2t_start = val[0];
1408 adap->l2t_end = val[1];
1409 adap->tids.ftid_base = val[2];
1410 adap->tids.nftids = val[3] - val[2] + 1;
1411
1412 params[0] = CXGBE_FW_PARAM_PFVF(CLIP_START);
1413 params[1] = CXGBE_FW_PARAM_PFVF(CLIP_END);
1414 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
1415 if (ret < 0)
1416 goto bye;
1417 adap->clipt_start = val[0];
1418 adap->clipt_end = val[1];
1419
1420 /*
1421 * Get device capabilities so we can determine what resources we need
1422 * to manage.
1423 */
1424 memset(&caps_cmd, 0, sizeof(caps_cmd));
1425 caps_cmd.op_to_write = htonl(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
1426 F_FW_CMD_REQUEST | F_FW_CMD_READ);
1427 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
1428 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
1429 &caps_cmd);
1430 if (ret < 0)
1431 goto bye;
1432
1433 if ((caps_cmd.niccaps & cpu_to_be16(FW_CAPS_CONFIG_NIC_HASHFILTER)) &&
1434 is_t6(adap->params.chip)) {
1435 if (cxgbe_init_hash_filter(adap) < 0)
1436 goto bye;
1437 }
1438
1439 /* See if FW supports FW_FILTER2 work request */
1440 if (is_t4(adap->params.chip)) {
1441 adap->params.filter2_wr_support = 0;
1442 } else {
1443 params[0] = CXGBE_FW_PARAM_DEV(FILTER2_WR);
1444 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
1445 1, params, val);
1446 adap->params.filter2_wr_support = (ret == 0 && val[0] != 0);
1447 }
1448
1449 /* Check if FW supports returning vin.
1450 * If this is not supported, driver will interpret
1451 * these values from viid.
1452 */
1453 params[0] = CXGBE_FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN);
1454 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
1455 1, params, val);
1456 adap->params.viid_smt_extn_support = (ret == 0 && val[0] != 0);
1457
1458 /* query tid-related parameters */
1459 params[0] = CXGBE_FW_PARAM_DEV(NTID);
1460 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
1461 params, val);
1462 if (ret < 0)
1463 goto bye;
1464 adap->tids.ntids = val[0];
1465 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
1466
1467 /* If we're running on newer firmware, let it know that we're
1468 * prepared to deal with encapsulated CPL messages. Older
1469 * firmware won't understand this and we'll just get
1470 * unencapsulated messages ...
1471 */
1472 params[0] = CXGBE_FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
1473 val[0] = 1;
1474 (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
1475
1476 /*
1477 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
1478 * capability. Earlier versions of the firmware didn't have the
1479 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
1480 * permission to use ULPTX MEMWRITE DSGL.
1481 */
1482 if (is_t4(adap->params.chip)) {
1483 adap->params.ulptx_memwrite_dsgl = false;
1484 } else {
1485 params[0] = CXGBE_FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
1486 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
1487 1, params, val);
1488 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
1489 }
1490
1491 /* Query for max number of packets that can be coalesced for Tx */
1492 params[0] = CXGBE_FW_PARAM_PFVF(MAX_PKTS_PER_ETH_TX_PKTS_WR);
1493 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
1494 if (!ret && val[0] > 0)
1495 adap->params.max_tx_coalesce_num = val[0];
1496 else
1497 adap->params.max_tx_coalesce_num = ETH_COALESCE_PKT_NUM;
1498
1499 /*
1500 * The MTU/MSS Table is initialized by now, so load their values. If
1501 * we're initializing the adapter, then we'll make any modifications
1502 * we want to the MTU/MSS Table and also initialize the congestion
1503 * parameters.
1504 */
1505 t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
1506 if (state != DEV_STATE_INIT) {
1507 int i;
1508
1509 /*
1510 * The default MTU Table contains values 1492 and 1500.
1511 * However, for TCP, it's better to have two values which are
1512 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
1513 * This allows us to have a TCP Data Payload which is a
1514 * multiple of 8 regardless of what combination of TCP Options
1515 * are in use (always a multiple of 4 bytes) which is
1516 * important for performance reasons. For instance, if no
1517 * options are in use, then we have a 20-byte IP header and a
1518 * 20-byte TCP header. In this case, a 1500-byte MSS would
1519 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
1520 * which is not a multiple of 8. So using an MSS of 1488 in
1521 * this case results in a TCP Data Payload of 1448 bytes which
1522 * is a multiple of 8. On the other hand, if 12-byte TCP Time
1523 * Stamps have been negotiated, then an MTU of 1500 bytes
1524 * results in a TCP Data Payload of 1448 bytes which, as
1525 * above, is a multiple of 8 bytes ...
1526 */
1527 for (i = 0; i < NMTUS; i++)
1528 if (adap->params.mtus[i] == 1492) {
1529 adap->params.mtus[i] = 1488;
1530 break;
1531 }
1532
1533 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
1534 adap->params.b_wnd);
1535 }
1536 t4_init_sge_params(adap);
1537 ret = configure_filter_mode_mask(adap);
1538 if (ret < 0)
1539 goto bye;
1540 t4_init_tp_params(adap);
1541 configure_pcie_ext_tag(adap);
1542 configure_vlan_types(adap);
1543 cxgbe_configure_max_ethqsets(adap);
1544
1545 adap->params.drv_memwin = MEMWIN_NIC;
1546 adap->flags |= FW_OK;
1547 dev_debug(adap, "%s: returning zero..\n", __func__);
1548 return 0;
1549
1550 /*
1551 * Something bad happened. If a command timed out or failed with EIO
1552 * FW does not operate within its spec or something catastrophic
1553 * happened to HW/FW, stop issuing commands.
1554 */
1555 bye:
1556 if (ret != -ETIMEDOUT && ret != -EIO)
1557 t4_fw_bye(adap, adap->mbox);
1558 return ret;
1559 }
1560
1561 /**
1562 * t4_os_portmod_changed - handle port module changes
1563 * @adap: the adapter associated with the module change
1564 * @port_id: the port index whose module status has changed
1565 *
1566 * This is the OS-dependent handler for port module changes. It is
1567 * invoked when a port module is removed or inserted for any OS-specific
1568 * processing.
1569 */
t4_os_portmod_changed(const struct adapter * adap,int port_id)1570 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
1571 {
1572 static const char * const mod_str[] = {
1573 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
1574 };
1575
1576 const struct port_info *pi = adap2pinfo(adap, port_id);
1577
1578 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
1579 dev_info(adap, "Port%d: port module unplugged\n", pi->port_id);
1580 else if (pi->mod_type < ARRAY_SIZE(mod_str))
1581 dev_info(adap, "Port%d: %s port module inserted\n", pi->port_id,
1582 mod_str[pi->mod_type]);
1583 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
1584 dev_info(adap, "Port%d: unsupported port module inserted\n",
1585 pi->port_id);
1586 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
1587 dev_info(adap, "Port%d: unknown port module inserted\n",
1588 pi->port_id);
1589 else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
1590 dev_info(adap, "Port%d: transceiver module error\n",
1591 pi->port_id);
1592 else
1593 dev_info(adap, "Port%d: unknown module type %d inserted\n",
1594 pi->port_id, pi->mod_type);
1595 }
1596
cxgbe_force_linkup(struct adapter * adap)1597 bool cxgbe_force_linkup(struct adapter *adap)
1598 {
1599 if (is_pf4(adap))
1600 return false; /* force_linkup not required for pf driver */
1601
1602 return adap->devargs.force_link_up;
1603 }
1604
1605 /**
1606 * link_start - enable a port
1607 * @dev: the port to enable
1608 *
1609 * Performs the MAC and PHY actions needed to enable a port.
1610 */
cxgbe_link_start(struct port_info * pi)1611 int cxgbe_link_start(struct port_info *pi)
1612 {
1613 struct adapter *adapter = pi->adapter;
1614 u64 conf_offloads;
1615 unsigned int mtu;
1616 int ret;
1617
1618 mtu = pi->eth_dev->data->dev_conf.rxmode.max_rx_pkt_len -
1619 (RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN);
1620
1621 conf_offloads = pi->eth_dev->data->dev_conf.rxmode.offloads;
1622
1623 /*
1624 * We do not set address filters and promiscuity here, the stack does
1625 * that step explicitly.
1626 */
1627 ret = t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu, -1, -1, -1,
1628 !!(conf_offloads & DEV_RX_OFFLOAD_VLAN_STRIP),
1629 true);
1630 if (ret == 0) {
1631 ret = cxgbe_mpstcam_modify(pi, (int)pi->xact_addr_filt,
1632 (u8 *)&pi->eth_dev->data->mac_addrs[0]);
1633 if (ret >= 0) {
1634 pi->xact_addr_filt = ret;
1635 ret = 0;
1636 }
1637 }
1638 if (ret == 0 && is_pf4(adapter))
1639 ret = t4_link_l1cfg(adapter, adapter->mbox, pi->tx_chan,
1640 &pi->link_cfg);
1641 if (ret == 0) {
1642 /*
1643 * Enabling a Virtual Interface can result in an interrupt
1644 * during the processing of the VI Enable command and, in some
1645 * paths, result in an attempt to issue another command in the
1646 * interrupt context. Thus, we disable interrupts during the
1647 * course of the VI Enable command ...
1648 */
1649 ret = t4_enable_vi_params(adapter, adapter->mbox, pi->viid,
1650 true, true, false);
1651 }
1652
1653 if (ret == 0 && cxgbe_force_linkup(adapter))
1654 pi->eth_dev->data->dev_link.link_status = ETH_LINK_UP;
1655 return ret;
1656 }
1657
1658 /**
1659 * cxgbe_write_rss_conf - flash the RSS configuration for a given port
1660 * @pi: the port
1661 * @rss_hf: Hash configuration to apply
1662 */
cxgbe_write_rss_conf(const struct port_info * pi,uint64_t rss_hf)1663 int cxgbe_write_rss_conf(const struct port_info *pi, uint64_t rss_hf)
1664 {
1665 struct adapter *adapter = pi->adapter;
1666 const struct sge_eth_rxq *rxq;
1667 u64 flags = 0;
1668 u16 rss;
1669 int err;
1670
1671 /* Should never be called before setting up sge eth rx queues */
1672 if (!(adapter->flags & FULL_INIT_DONE)) {
1673 dev_err(adap, "%s No RXQs available on port %d\n",
1674 __func__, pi->port_id);
1675 return -EINVAL;
1676 }
1677
1678 /* Don't allow unsupported hash functions */
1679 if (rss_hf & ~CXGBE_RSS_HF_ALL)
1680 return -EINVAL;
1681
1682 if (rss_hf & CXGBE_RSS_HF_IPV4_MASK)
1683 flags |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN;
1684
1685 if (rss_hf & ETH_RSS_NONFRAG_IPV4_TCP)
1686 flags |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
1687
1688 if (rss_hf & ETH_RSS_NONFRAG_IPV4_UDP)
1689 flags |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
1690 F_FW_RSS_VI_CONFIG_CMD_UDPEN;
1691
1692 if (rss_hf & CXGBE_RSS_HF_IPV6_MASK)
1693 flags |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN;
1694
1695 if (rss_hf & CXGBE_RSS_HF_TCP_IPV6_MASK)
1696 flags |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN |
1697 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
1698
1699 if (rss_hf & CXGBE_RSS_HF_UDP_IPV6_MASK)
1700 flags |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN |
1701 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN |
1702 F_FW_RSS_VI_CONFIG_CMD_UDPEN;
1703
1704 rxq = &adapter->sge.ethrxq[pi->first_rxqset];
1705 rss = rxq[0].rspq.abs_id;
1706
1707 /* If Tunnel All Lookup isn't specified in the global RSS
1708 * Configuration, then we need to specify a default Ingress
1709 * Queue for any ingress packets which aren't hashed. We'll
1710 * use our first ingress queue ...
1711 */
1712 err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
1713 flags, rss);
1714 return err;
1715 }
1716
1717 /**
1718 * cxgbe_write_rss - write the RSS table for a given port
1719 * @pi: the port
1720 * @queues: array of queue indices for RSS
1721 *
1722 * Sets up the portion of the HW RSS table for the port's VI to distribute
1723 * packets to the Rx queues in @queues.
1724 */
cxgbe_write_rss(const struct port_info * pi,const u16 * queues)1725 int cxgbe_write_rss(const struct port_info *pi, const u16 *queues)
1726 {
1727 u16 *rss;
1728 int i, err;
1729 struct adapter *adapter = pi->adapter;
1730 const struct sge_eth_rxq *rxq;
1731
1732 /* Should never be called before setting up sge eth rx queues */
1733 BUG_ON(!(adapter->flags & FULL_INIT_DONE));
1734
1735 rxq = &adapter->sge.ethrxq[pi->first_rxqset];
1736 rss = rte_zmalloc(NULL, pi->rss_size * sizeof(u16), 0);
1737 if (!rss)
1738 return -ENOMEM;
1739
1740 /* map the queue indices to queue ids */
1741 for (i = 0; i < pi->rss_size; i++, queues++)
1742 rss[i] = rxq[*queues].rspq.abs_id;
1743
1744 err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
1745 pi->rss_size, rss, pi->rss_size);
1746 rte_free(rss);
1747 return err;
1748 }
1749
1750 /**
1751 * setup_rss - configure RSS
1752 * @adapter: the adapter
1753 *
1754 * Sets up RSS to distribute packets to multiple receive queues. We
1755 * configure the RSS CPU lookup table to distribute to the number of HW
1756 * receive queues, and the response queue lookup table to narrow that
1757 * down to the response queues actually configured for each port.
1758 * We always configure the RSS mapping for all ports since the mapping
1759 * table has plenty of entries.
1760 */
cxgbe_setup_rss(struct port_info * pi)1761 int cxgbe_setup_rss(struct port_info *pi)
1762 {
1763 int j, err;
1764 struct adapter *adapter = pi->adapter;
1765
1766 dev_debug(adapter, "%s: pi->rss_size = %u; pi->n_rx_qsets = %u\n",
1767 __func__, pi->rss_size, pi->n_rx_qsets);
1768
1769 if (!(pi->flags & PORT_RSS_DONE)) {
1770 if (adapter->flags & FULL_INIT_DONE) {
1771 /* Fill default values with equal distribution */
1772 for (j = 0; j < pi->rss_size; j++)
1773 pi->rss[j] = j % pi->n_rx_qsets;
1774
1775 err = cxgbe_write_rss(pi, pi->rss);
1776 if (err)
1777 return err;
1778
1779 err = cxgbe_write_rss_conf(pi, pi->rss_hf);
1780 if (err)
1781 return err;
1782 pi->flags |= PORT_RSS_DONE;
1783 }
1784 }
1785 return 0;
1786 }
1787
1788 /*
1789 * Enable NAPI scheduling and interrupt generation for all Rx queues.
1790 */
enable_rx(struct adapter * adap,struct sge_rspq * q)1791 static void enable_rx(struct adapter *adap, struct sge_rspq *q)
1792 {
1793 /* 0-increment GTS to start the timer and enable interrupts */
1794 t4_write_reg(adap, is_pf4(adap) ? MYPF_REG(A_SGE_PF_GTS) :
1795 T4VF_SGE_BASE_ADDR + A_SGE_VF_GTS,
1796 V_SEINTARM(q->intr_params) |
1797 V_INGRESSQID(q->cntxt_id));
1798 }
1799
cxgbe_enable_rx_queues(struct port_info * pi)1800 void cxgbe_enable_rx_queues(struct port_info *pi)
1801 {
1802 struct adapter *adap = pi->adapter;
1803 struct sge *s = &adap->sge;
1804 unsigned int i;
1805
1806 for (i = 0; i < pi->n_rx_qsets; i++)
1807 enable_rx(adap, &s->ethrxq[pi->first_rxqset + i].rspq);
1808 }
1809
1810 /**
1811 * fw_caps_to_speed_caps - translate Firmware Port Caps to Speed Caps.
1812 * @port_type: Firmware Port Type
1813 * @fw_caps: Firmware Port Capabilities
1814 * @speed_caps: Device Info Speed Capabilities
1815 *
1816 * Translate a Firmware Port Capabilities specification to Device Info
1817 * Speed Capabilities.
1818 */
fw_caps_to_speed_caps(enum fw_port_type port_type,unsigned int fw_caps,u32 * speed_caps)1819 static void fw_caps_to_speed_caps(enum fw_port_type port_type,
1820 unsigned int fw_caps,
1821 u32 *speed_caps)
1822 {
1823 #define SET_SPEED(__speed_name) \
1824 do { \
1825 *speed_caps |= ETH_LINK_ ## __speed_name; \
1826 } while (0)
1827
1828 #define FW_CAPS_TO_SPEED(__fw_name) \
1829 do { \
1830 if (fw_caps & FW_PORT_CAP32_ ## __fw_name) \
1831 SET_SPEED(__fw_name); \
1832 } while (0)
1833
1834 switch (port_type) {
1835 case FW_PORT_TYPE_BT_SGMII:
1836 case FW_PORT_TYPE_BT_XFI:
1837 case FW_PORT_TYPE_BT_XAUI:
1838 FW_CAPS_TO_SPEED(SPEED_100M);
1839 FW_CAPS_TO_SPEED(SPEED_1G);
1840 FW_CAPS_TO_SPEED(SPEED_10G);
1841 break;
1842
1843 case FW_PORT_TYPE_KX4:
1844 case FW_PORT_TYPE_KX:
1845 case FW_PORT_TYPE_FIBER_XFI:
1846 case FW_PORT_TYPE_FIBER_XAUI:
1847 case FW_PORT_TYPE_SFP:
1848 case FW_PORT_TYPE_QSFP_10G:
1849 case FW_PORT_TYPE_QSA:
1850 FW_CAPS_TO_SPEED(SPEED_1G);
1851 FW_CAPS_TO_SPEED(SPEED_10G);
1852 break;
1853
1854 case FW_PORT_TYPE_KR:
1855 SET_SPEED(SPEED_10G);
1856 break;
1857
1858 case FW_PORT_TYPE_BP_AP:
1859 case FW_PORT_TYPE_BP4_AP:
1860 SET_SPEED(SPEED_1G);
1861 SET_SPEED(SPEED_10G);
1862 break;
1863
1864 case FW_PORT_TYPE_BP40_BA:
1865 case FW_PORT_TYPE_QSFP:
1866 SET_SPEED(SPEED_40G);
1867 break;
1868
1869 case FW_PORT_TYPE_CR_QSFP:
1870 case FW_PORT_TYPE_SFP28:
1871 case FW_PORT_TYPE_KR_SFP28:
1872 FW_CAPS_TO_SPEED(SPEED_1G);
1873 FW_CAPS_TO_SPEED(SPEED_10G);
1874 FW_CAPS_TO_SPEED(SPEED_25G);
1875 break;
1876
1877 case FW_PORT_TYPE_CR2_QSFP:
1878 SET_SPEED(SPEED_50G);
1879 break;
1880
1881 case FW_PORT_TYPE_KR4_100G:
1882 case FW_PORT_TYPE_CR4_QSFP:
1883 FW_CAPS_TO_SPEED(SPEED_25G);
1884 FW_CAPS_TO_SPEED(SPEED_40G);
1885 FW_CAPS_TO_SPEED(SPEED_50G);
1886 FW_CAPS_TO_SPEED(SPEED_100G);
1887 break;
1888
1889 default:
1890 break;
1891 }
1892
1893 #undef FW_CAPS_TO_SPEED
1894 #undef SET_SPEED
1895 }
1896
1897 /**
1898 * cxgbe_get_speed_caps - Fetch supported speed capabilities
1899 * @pi: Underlying port's info
1900 * @speed_caps: Device Info speed capabilities
1901 *
1902 * Fetch supported speed capabilities of the underlying port.
1903 */
cxgbe_get_speed_caps(struct port_info * pi,u32 * speed_caps)1904 void cxgbe_get_speed_caps(struct port_info *pi, u32 *speed_caps)
1905 {
1906 *speed_caps = 0;
1907
1908 fw_caps_to_speed_caps(pi->port_type, pi->link_cfg.pcaps,
1909 speed_caps);
1910
1911 if (!(pi->link_cfg.pcaps & FW_PORT_CAP32_ANEG))
1912 *speed_caps |= ETH_LINK_SPEED_FIXED;
1913 }
1914
1915 /**
1916 * cxgbe_set_link_status - Set device link up or down.
1917 * @pi: Underlying port's info
1918 * @status: 0 - down, 1 - up
1919 *
1920 * Set the device link up or down.
1921 */
cxgbe_set_link_status(struct port_info * pi,bool status)1922 int cxgbe_set_link_status(struct port_info *pi, bool status)
1923 {
1924 struct adapter *adapter = pi->adapter;
1925 int err = 0;
1926
1927 err = t4_enable_vi(adapter, adapter->mbox, pi->viid, status, status);
1928 if (err) {
1929 dev_err(adapter, "%s: disable_vi failed: %d\n", __func__, err);
1930 return err;
1931 }
1932
1933 if (!status)
1934 t4_reset_link_config(adapter, pi->pidx);
1935
1936 return 0;
1937 }
1938
1939 /**
1940 * cxgb_up - enable the adapter
1941 * @adap: adapter being enabled
1942 *
1943 * Called when the first port is enabled, this function performs the
1944 * actions necessary to make an adapter operational, such as completing
1945 * the initialization of HW modules, and enabling interrupts.
1946 */
cxgbe_up(struct adapter * adap)1947 int cxgbe_up(struct adapter *adap)
1948 {
1949 enable_rx(adap, &adap->sge.fw_evtq);
1950 t4_sge_tx_monitor_start(adap);
1951 if (is_pf4(adap))
1952 t4_intr_enable(adap);
1953 adap->flags |= FULL_INIT_DONE;
1954
1955 /* TODO: deadman watchdog ?? */
1956 return 0;
1957 }
1958
1959 /*
1960 * Close the port
1961 */
cxgbe_down(struct port_info * pi)1962 int cxgbe_down(struct port_info *pi)
1963 {
1964 return cxgbe_set_link_status(pi, false);
1965 }
1966
1967 /*
1968 * Release resources when all the ports have been stopped.
1969 */
cxgbe_close(struct adapter * adapter)1970 void cxgbe_close(struct adapter *adapter)
1971 {
1972 if (adapter->flags & FULL_INIT_DONE) {
1973 tid_free(&adapter->tids);
1974 t4_cleanup_mpstcam(adapter);
1975 t4_cleanup_clip_tbl(adapter);
1976 t4_cleanup_l2t(adapter);
1977 t4_cleanup_smt(adapter);
1978 if (is_pf4(adapter))
1979 t4_intr_disable(adapter);
1980 t4_sge_tx_monitor_stop(adapter);
1981 t4_free_sge_resources(adapter);
1982 adapter->flags &= ~FULL_INIT_DONE;
1983 }
1984
1985 cxgbe_cfg_queues_free(adapter);
1986
1987 if (is_pf4(adapter) && (adapter->flags & FW_OK))
1988 t4_fw_bye(adapter, adapter->mbox);
1989 }
1990
adap_smt_index(struct adapter * adapter,u32 * smt_start_idx,u32 * smt_size)1991 static void adap_smt_index(struct adapter *adapter, u32 *smt_start_idx,
1992 u32 *smt_size)
1993 {
1994 u32 params[2], smt_val[2];
1995 int ret;
1996
1997 params[0] = CXGBE_FW_PARAM_PFVF(GET_SMT_START);
1998 params[1] = CXGBE_FW_PARAM_PFVF(GET_SMT_SIZE);
1999
2000 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2001 2, params, smt_val);
2002
2003 /* if FW doesn't recognize this command then set it to default setting
2004 * which is start index as 0 and size as 256.
2005 */
2006 if (ret < 0) {
2007 *smt_start_idx = 0;
2008 *smt_size = SMT_SIZE;
2009 } else {
2010 *smt_start_idx = smt_val[0];
2011 /* smt size can be zero, if nsmt is not yet configured in
2012 * the config file or set as zero, then configure all the
2013 * remaining entries to this PF itself.
2014 */
2015 if (!smt_val[1])
2016 *smt_size = SMT_SIZE - *smt_start_idx;
2017 else
2018 *smt_size = smt_val[1];
2019 }
2020 }
2021
cxgbe_probe(struct adapter * adapter)2022 int cxgbe_probe(struct adapter *adapter)
2023 {
2024 u32 smt_start_idx, smt_size;
2025 struct port_info *pi;
2026 int func, i;
2027 int err = 0;
2028 u32 whoami;
2029 int chip;
2030
2031 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
2032 chip = t4_get_chip_type(adapter,
2033 CHELSIO_PCI_ID_VER(adapter->pdev->id.device_id));
2034 if (chip < 0)
2035 return chip;
2036
2037 func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ?
2038 G_SOURCEPF(whoami) : G_T6_SOURCEPF(whoami);
2039
2040 adapter->mbox = func;
2041 adapter->pf = func;
2042
2043 t4_os_lock_init(&adapter->mbox_lock);
2044 TAILQ_INIT(&adapter->mbox_list);
2045 t4_os_lock_init(&adapter->win0_lock);
2046
2047 err = t4_prep_adapter(adapter);
2048 if (err)
2049 return err;
2050
2051 setup_memwin(adapter);
2052 err = adap_init0(adapter);
2053 if (err) {
2054 dev_err(adapter, "%s: Adapter initialization failed, error %d\n",
2055 __func__, err);
2056 goto out_free;
2057 }
2058
2059 if (!is_t4(adapter->params.chip)) {
2060 /*
2061 * The userspace doorbell BAR is split evenly into doorbell
2062 * regions, each associated with an egress queue. If this
2063 * per-queue region is large enough (at least UDBS_SEG_SIZE)
2064 * then it can be used to submit a tx work request with an
2065 * implied doorbell. Enable write combining on the BAR if
2066 * there is room for such work requests.
2067 */
2068 int s_qpp, qpp, num_seg;
2069
2070 s_qpp = (S_QUEUESPERPAGEPF0 +
2071 (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) *
2072 adapter->pf);
2073 qpp = 1 << ((t4_read_reg(adapter,
2074 A_SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp)
2075 & M_QUEUESPERPAGEPF0);
2076 num_seg = CXGBE_PAGE_SIZE / UDBS_SEG_SIZE;
2077 if (qpp > num_seg)
2078 dev_warn(adapter, "Incorrect SGE EGRESS QUEUES_PER_PAGE configuration, continuing in debug mode\n");
2079
2080 adapter->bar2 = (void *)adapter->pdev->mem_resource[2].addr;
2081 if (!adapter->bar2) {
2082 dev_err(adapter, "cannot map device bar2 region\n");
2083 err = -ENOMEM;
2084 goto out_free;
2085 }
2086 t4_write_reg(adapter, A_SGE_STAT_CFG, V_STATSOURCE_T5(7) |
2087 V_STATMODE(0));
2088 }
2089
2090 for_each_port(adapter, i) {
2091 const unsigned int numa_node = rte_socket_id();
2092 char name[RTE_ETH_NAME_MAX_LEN];
2093 struct rte_eth_dev *eth_dev;
2094
2095 snprintf(name, sizeof(name), "%s_%d",
2096 adapter->pdev->device.name, i);
2097
2098 if (i == 0) {
2099 /* First port is already allocated by DPDK */
2100 eth_dev = adapter->eth_dev;
2101 goto allocate_mac;
2102 }
2103
2104 /*
2105 * now do all data allocation - for eth_dev structure,
2106 * and internal (private) data for the remaining ports
2107 */
2108
2109 /* reserve an ethdev entry */
2110 eth_dev = rte_eth_dev_allocate(name);
2111 if (!eth_dev)
2112 goto out_free;
2113
2114 eth_dev->data->dev_private =
2115 rte_zmalloc_socket(name, sizeof(struct port_info),
2116 RTE_CACHE_LINE_SIZE, numa_node);
2117 if (!eth_dev->data->dev_private)
2118 goto out_free;
2119
2120 allocate_mac:
2121 pi = eth_dev->data->dev_private;
2122 adapter->port[i] = pi;
2123 pi->eth_dev = eth_dev;
2124 pi->adapter = adapter;
2125 pi->xact_addr_filt = -1;
2126 pi->port_id = i;
2127 pi->pidx = i;
2128
2129 pi->eth_dev->device = &adapter->pdev->device;
2130 pi->eth_dev->dev_ops = adapter->eth_dev->dev_ops;
2131 pi->eth_dev->tx_pkt_burst = adapter->eth_dev->tx_pkt_burst;
2132 pi->eth_dev->rx_pkt_burst = adapter->eth_dev->rx_pkt_burst;
2133
2134 rte_eth_copy_pci_info(pi->eth_dev, adapter->pdev);
2135
2136 pi->eth_dev->data->mac_addrs = rte_zmalloc(name,
2137 RTE_ETHER_ADDR_LEN, 0);
2138 if (!pi->eth_dev->data->mac_addrs) {
2139 dev_err(adapter, "%s: Mem allocation failed for storing mac addr, aborting\n",
2140 __func__);
2141 err = -1;
2142 goto out_free;
2143 }
2144
2145 if (i > 0) {
2146 /* First port will be notified by upper layer */
2147 rte_eth_dev_probing_finish(eth_dev);
2148 }
2149 }
2150
2151 if (adapter->flags & FW_OK) {
2152 err = t4_port_init(adapter, adapter->mbox, adapter->pf, 0);
2153 if (err) {
2154 dev_err(adapter, "%s: t4_port_init failed with err %d\n",
2155 __func__, err);
2156 goto out_free;
2157 }
2158 }
2159
2160 err = cxgbe_cfg_queues(adapter->eth_dev);
2161 if (err)
2162 goto out_free;
2163
2164 cxgbe_print_adapter_info(adapter);
2165 cxgbe_print_port_info(adapter);
2166
2167 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
2168 adapter->clipt_end);
2169 if (!adapter->clipt) {
2170 /* We tolerate a lack of clip_table, giving up some
2171 * functionality
2172 */
2173 dev_warn(adapter, "could not allocate CLIP. Continuing\n");
2174 }
2175
2176 adap_smt_index(adapter, &smt_start_idx, &smt_size);
2177 adapter->smt = t4_init_smt(smt_start_idx, smt_size);
2178 if (!adapter->smt)
2179 dev_warn(adapter, "could not allocate SMT, continuing\n");
2180
2181 adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
2182 if (!adapter->l2t) {
2183 /* We tolerate a lack of L2T, giving up some functionality */
2184 dev_warn(adapter, "could not allocate L2T. Continuing\n");
2185 }
2186
2187 if (tid_init(&adapter->tids) < 0) {
2188 /* Disable filtering support */
2189 dev_warn(adapter, "could not allocate TID table, "
2190 "filter support disabled. Continuing\n");
2191 }
2192
2193 t4_os_lock_init(&adapter->flow_lock);
2194
2195 adapter->mpstcam = t4_init_mpstcam(adapter);
2196 if (!adapter->mpstcam)
2197 dev_warn(adapter, "could not allocate mps tcam table."
2198 " Continuing\n");
2199
2200 if (is_hashfilter(adapter)) {
2201 if (t4_read_reg(adapter, A_LE_DB_CONFIG) & F_HASHEN) {
2202 u32 hash_base, hash_reg;
2203
2204 hash_reg = A_LE_DB_TID_HASHBASE;
2205 hash_base = t4_read_reg(adapter, hash_reg);
2206 adapter->tids.hash_base = hash_base / 4;
2207 }
2208 } else {
2209 /* Disable hash filtering support */
2210 dev_warn(adapter,
2211 "Maskless filter support disabled. Continuing\n");
2212 }
2213
2214 err = cxgbe_init_rss(adapter);
2215 if (err)
2216 goto out_free;
2217
2218 return 0;
2219
2220 out_free:
2221 cxgbe_cfg_queues_free(adapter);
2222
2223 for_each_port(adapter, i) {
2224 pi = adap2pinfo(adapter, i);
2225 if (pi->viid != 0)
2226 t4_free_vi(adapter, adapter->mbox, adapter->pf,
2227 0, pi->viid);
2228 rte_eth_dev_release_port(pi->eth_dev);
2229 }
2230
2231 if (adapter->flags & FW_OK)
2232 t4_fw_bye(adapter, adapter->mbox);
2233 return -err;
2234 }
2235