1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2016-2020 Intel Corporation
3 */
4 #include <sys/types.h>
5 #include <netinet/in.h>
6 #include <netinet/ip.h>
7
8 #include <rte_branch_prediction.h>
9 #include <rte_log.h>
10 #include <rte_cryptodev.h>
11 #include <rte_ethdev.h>
12 #include <rte_mbuf.h>
13
14 #include "ipsec.h"
15 #include "ipsec-secgw.h"
16
17 #define SATP_OUT_IPV4(t) \
18 ((((t) & RTE_IPSEC_SATP_MODE_MASK) == RTE_IPSEC_SATP_MODE_TRANS && \
19 (((t) & RTE_IPSEC_SATP_IPV_MASK) == RTE_IPSEC_SATP_IPV4)) || \
20 ((t) & RTE_IPSEC_SATP_MODE_MASK) == RTE_IPSEC_SATP_MODE_TUNLV4)
21
22 /* helper routine to free bulk of crypto-ops and related packets */
23 static inline void
free_cops(struct rte_crypto_op * cop[],uint32_t n)24 free_cops(struct rte_crypto_op *cop[], uint32_t n)
25 {
26 uint32_t i;
27
28 for (i = 0; i != n; i++)
29 rte_pktmbuf_free(cop[i]->sym->m_src);
30 }
31
32 /* helper routine to enqueue bulk of crypto ops */
33 static inline void
enqueue_cop_bulk(struct cdev_qp * cqp,struct rte_crypto_op * cop[],uint32_t num)34 enqueue_cop_bulk(struct cdev_qp *cqp, struct rte_crypto_op *cop[], uint32_t num)
35 {
36 uint32_t i, k, len, n;
37
38 len = cqp->len;
39
40 /*
41 * if cqp is empty and we have enough ops,
42 * then queue them to the PMD straightway.
43 */
44 if (num >= RTE_DIM(cqp->buf) * 3 / 4 && len == 0) {
45 n = rte_cryptodev_enqueue_burst(cqp->id, cqp->qp, cop, num);
46 cqp->in_flight += n;
47 free_cops(cop + n, num - n);
48 return;
49 }
50
51 k = 0;
52
53 do {
54 n = RTE_DIM(cqp->buf) - len;
55 n = RTE_MIN(num - k, n);
56
57 /* put packets into cqp */
58 for (i = 0; i != n; i++)
59 cqp->buf[len + i] = cop[k + i];
60
61 len += n;
62 k += n;
63
64 /* if cqp is full then, enqueue crypto-ops to PMD */
65 if (len == RTE_DIM(cqp->buf)) {
66 n = rte_cryptodev_enqueue_burst(cqp->id, cqp->qp,
67 cqp->buf, len);
68 cqp->in_flight += n;
69 free_cops(cqp->buf + n, len - n);
70 len = 0;
71 }
72
73
74 } while (k != num);
75
76 cqp->len = len;
77 }
78
79 static inline int
fill_ipsec_session(struct rte_ipsec_session * ss,struct ipsec_ctx * ctx,struct ipsec_sa * sa)80 fill_ipsec_session(struct rte_ipsec_session *ss, struct ipsec_ctx *ctx,
81 struct ipsec_sa *sa)
82 {
83 int32_t rc;
84
85 /* setup crypto section */
86 if (ss->type == RTE_SECURITY_ACTION_TYPE_NONE ||
87 ss->type == RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO) {
88 RTE_ASSERT(ss->crypto.ses == NULL);
89 rc = create_lookaside_session(ctx, sa, ss);
90 if (rc != 0)
91 return rc;
92 /* setup session action type */
93 } else if (ss->type == RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL) {
94 RTE_ASSERT(ss->security.ses == NULL);
95 rc = create_lookaside_session(ctx, sa, ss);
96 if (rc != 0)
97 return rc;
98 } else
99 RTE_ASSERT(0);
100
101 rc = rte_ipsec_session_prepare(ss);
102 if (rc != 0)
103 memset(ss, 0, sizeof(*ss));
104
105 return rc;
106 }
107
108 /*
109 * group input packets byt the SA they belong to.
110 */
111 static uint32_t
sa_group(void * sa_ptr[],struct rte_mbuf * pkts[],struct rte_ipsec_group grp[],uint32_t num)112 sa_group(void *sa_ptr[], struct rte_mbuf *pkts[],
113 struct rte_ipsec_group grp[], uint32_t num)
114 {
115 uint32_t i, n, spi;
116 void *sa;
117 void * const nosa = &spi;
118
119 sa = nosa;
120 grp[0].m = pkts;
121 for (i = 0, n = 0; i != num; i++) {
122
123 if (sa != sa_ptr[i]) {
124 grp[n].cnt = pkts + i - grp[n].m;
125 n += (sa != nosa);
126 grp[n].id.ptr = sa_ptr[i];
127 grp[n].m = pkts + i;
128 sa = sa_ptr[i];
129 }
130 }
131
132 /* terminate last group */
133 if (sa != nosa) {
134 grp[n].cnt = pkts + i - grp[n].m;
135 n++;
136 }
137
138 return n;
139 }
140
141 /*
142 * helper function, splits processed packets into ipv4/ipv6 traffic.
143 */
144 static inline void
copy_to_trf(struct ipsec_traffic * trf,uint64_t satp,struct rte_mbuf * mb[],uint32_t num)145 copy_to_trf(struct ipsec_traffic *trf, uint64_t satp, struct rte_mbuf *mb[],
146 uint32_t num)
147 {
148 uint32_t j, ofs, s;
149 struct traffic_type *out;
150
151 /*
152 * determine traffic type(ipv4/ipv6) and offset for ACL classify
153 * based on SA type
154 */
155 if ((satp & RTE_IPSEC_SATP_DIR_MASK) == RTE_IPSEC_SATP_DIR_IB) {
156 if ((satp & RTE_IPSEC_SATP_IPV_MASK) == RTE_IPSEC_SATP_IPV4) {
157 out = &trf->ip4;
158 ofs = offsetof(struct ip, ip_p);
159 } else {
160 out = &trf->ip6;
161 ofs = offsetof(struct ip6_hdr, ip6_nxt);
162 }
163 } else if (SATP_OUT_IPV4(satp)) {
164 out = &trf->ip4;
165 ofs = offsetof(struct ip, ip_p);
166 } else {
167 out = &trf->ip6;
168 ofs = offsetof(struct ip6_hdr, ip6_nxt);
169 }
170
171 for (j = 0, s = out->num; j != num; j++) {
172 out->data[s + j] = rte_pktmbuf_mtod_offset(mb[j],
173 void *, ofs);
174 out->pkts[s + j] = mb[j];
175 }
176
177 out->num += num;
178 }
179
180 static uint32_t
ipsec_prepare_crypto_group(struct ipsec_ctx * ctx,struct ipsec_sa * sa,struct rte_ipsec_session * ips,struct rte_mbuf ** m,unsigned int cnt)181 ipsec_prepare_crypto_group(struct ipsec_ctx *ctx, struct ipsec_sa *sa,
182 struct rte_ipsec_session *ips, struct rte_mbuf **m,
183 unsigned int cnt)
184 {
185 struct cdev_qp *cqp;
186 struct rte_crypto_op *cop[cnt];
187 uint32_t j, k;
188 struct ipsec_mbuf_metadata *priv;
189
190 cqp = &ctx->tbl[sa->cdev_id_qp];
191
192 /* for that app each mbuf has it's own crypto op */
193 for (j = 0; j != cnt; j++) {
194 priv = get_priv(m[j]);
195 cop[j] = &priv->cop;
196 /*
197 * this is just to satisfy inbound_sa_check()
198 * should be removed in future.
199 */
200 priv->sa = sa;
201 }
202
203 /* prepare and enqueue crypto ops */
204 k = rte_ipsec_pkt_crypto_prepare(ips, m, cop, cnt);
205 if (k != 0)
206 enqueue_cop_bulk(cqp, cop, k);
207
208 return k;
209 }
210
211 /*
212 * helper routine for inline and cpu(synchronous) processing
213 * this is just to satisfy inbound_sa_check() and get_hop_for_offload_pkt().
214 * Should be removed in future.
215 */
216 static inline void
prep_process_group(void * sa,struct rte_mbuf * mb[],uint32_t cnt)217 prep_process_group(void *sa, struct rte_mbuf *mb[], uint32_t cnt)
218 {
219 uint32_t j;
220 struct ipsec_mbuf_metadata *priv;
221
222 for (j = 0; j != cnt; j++) {
223 priv = get_priv(mb[j]);
224 priv->sa = sa;
225 }
226 }
227
228 /*
229 * finish processing of packets successfully decrypted by an inline processor
230 */
231 static uint32_t
ipsec_process_inline_group(struct rte_ipsec_session * ips,void * sa,struct ipsec_traffic * trf,struct rte_mbuf * mb[],uint32_t cnt)232 ipsec_process_inline_group(struct rte_ipsec_session *ips, void *sa,
233 struct ipsec_traffic *trf, struct rte_mbuf *mb[], uint32_t cnt)
234 {
235 uint64_t satp;
236 uint32_t k;
237
238 /* get SA type */
239 satp = rte_ipsec_sa_type(ips->sa);
240 prep_process_group(sa, mb, cnt);
241
242 k = rte_ipsec_pkt_process(ips, mb, cnt);
243 copy_to_trf(trf, satp, mb, k);
244 return k;
245 }
246
247 /*
248 * process packets synchronously
249 */
250 static uint32_t
ipsec_process_cpu_group(struct rte_ipsec_session * ips,void * sa,struct ipsec_traffic * trf,struct rte_mbuf * mb[],uint32_t cnt)251 ipsec_process_cpu_group(struct rte_ipsec_session *ips, void *sa,
252 struct ipsec_traffic *trf, struct rte_mbuf *mb[], uint32_t cnt)
253 {
254 uint64_t satp;
255 uint32_t k;
256
257 /* get SA type */
258 satp = rte_ipsec_sa_type(ips->sa);
259 prep_process_group(sa, mb, cnt);
260
261 k = rte_ipsec_pkt_cpu_prepare(ips, mb, cnt);
262 k = rte_ipsec_pkt_process(ips, mb, k);
263 copy_to_trf(trf, satp, mb, k);
264 return k;
265 }
266
267 /*
268 * Process ipsec packets.
269 * If packet belong to SA that is subject of inline-crypto,
270 * then process it immediately.
271 * Otherwise do necessary preparations and queue it to related
272 * crypto-dev queue.
273 */
274 void
ipsec_process(struct ipsec_ctx * ctx,struct ipsec_traffic * trf)275 ipsec_process(struct ipsec_ctx *ctx, struct ipsec_traffic *trf)
276 {
277 uint32_t i, k, n;
278 struct ipsec_sa *sa;
279 struct rte_ipsec_group *pg;
280 struct rte_ipsec_session *ips;
281 struct rte_ipsec_group grp[RTE_DIM(trf->ipsec.pkts)];
282
283 n = sa_group(trf->ipsec.saptr, trf->ipsec.pkts, grp, trf->ipsec.num);
284
285 for (i = 0; i != n; i++) {
286
287 pg = grp + i;
288 sa = ipsec_mask_saptr(pg->id.ptr);
289
290 /* fallback to cryptodev with RX packets which inline
291 * processor was unable to process
292 */
293 if (sa != NULL)
294 ips = (pg->id.val & IPSEC_SA_OFFLOAD_FALLBACK_FLAG) ?
295 ipsec_get_fallback_session(sa) :
296 ipsec_get_primary_session(sa);
297
298 /* no valid HW session for that SA, try to create one */
299 if (sa == NULL || (ips->crypto.ses == NULL &&
300 fill_ipsec_session(ips, ctx, sa) != 0))
301 k = 0;
302
303 /* process packets inline */
304 else {
305 switch (ips->type) {
306 /* enqueue packets to crypto dev */
307 case RTE_SECURITY_ACTION_TYPE_NONE:
308 case RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL:
309 k = ipsec_prepare_crypto_group(ctx, sa, ips,
310 pg->m, pg->cnt);
311 break;
312 case RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO:
313 case RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL:
314 k = ipsec_process_inline_group(ips, sa,
315 trf, pg->m, pg->cnt);
316 break;
317 case RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO:
318 k = ipsec_process_cpu_group(ips, sa,
319 trf, pg->m, pg->cnt);
320 break;
321 default:
322 k = 0;
323 }
324 }
325
326 /* drop packets that cannot be enqueued/processed */
327 if (k != pg->cnt)
328 free_pkts(pg->m + k, pg->cnt - k);
329 }
330 }
331
332 static inline uint32_t
cqp_dequeue(struct cdev_qp * cqp,struct rte_crypto_op * cop[],uint32_t num)333 cqp_dequeue(struct cdev_qp *cqp, struct rte_crypto_op *cop[], uint32_t num)
334 {
335 uint32_t n;
336
337 if (cqp->in_flight == 0)
338 return 0;
339
340 n = rte_cryptodev_dequeue_burst(cqp->id, cqp->qp, cop, num);
341 RTE_ASSERT(cqp->in_flight >= n);
342 cqp->in_flight -= n;
343
344 return n;
345 }
346
347 static inline uint32_t
ctx_dequeue(struct ipsec_ctx * ctx,struct rte_crypto_op * cop[],uint32_t num)348 ctx_dequeue(struct ipsec_ctx *ctx, struct rte_crypto_op *cop[], uint32_t num)
349 {
350 uint32_t i, n;
351
352 n = 0;
353
354 for (i = ctx->last_qp; n != num && i != ctx->nb_qps; i++)
355 n += cqp_dequeue(ctx->tbl + i, cop + n, num - n);
356
357 for (i = 0; n != num && i != ctx->last_qp; i++)
358 n += cqp_dequeue(ctx->tbl + i, cop + n, num - n);
359
360 ctx->last_qp = i;
361 return n;
362 }
363
364 /*
365 * dequeue packets from crypto-queues and finalize processing.
366 */
367 void
ipsec_cqp_process(struct ipsec_ctx * ctx,struct ipsec_traffic * trf)368 ipsec_cqp_process(struct ipsec_ctx *ctx, struct ipsec_traffic *trf)
369 {
370 uint64_t satp;
371 uint32_t i, k, n, ng;
372 struct rte_ipsec_session *ss;
373 struct traffic_type *out;
374 struct rte_ipsec_group *pg;
375 struct rte_crypto_op *cop[RTE_DIM(trf->ipsec.pkts)];
376 struct rte_ipsec_group grp[RTE_DIM(trf->ipsec.pkts)];
377
378 trf->ip4.num = 0;
379 trf->ip6.num = 0;
380
381 out = &trf->ipsec;
382
383 /* dequeue completed crypto-ops */
384 n = ctx_dequeue(ctx, cop, RTE_DIM(cop));
385 if (n == 0)
386 return;
387
388 /* group them by ipsec session */
389 ng = rte_ipsec_pkt_crypto_group((const struct rte_crypto_op **)
390 (uintptr_t)cop, out->pkts, grp, n);
391
392 /* process each group of packets */
393 for (i = 0; i != ng; i++) {
394
395 pg = grp + i;
396 ss = pg->id.ptr;
397 satp = rte_ipsec_sa_type(ss->sa);
398
399 k = rte_ipsec_pkt_process(ss, pg->m, pg->cnt);
400 copy_to_trf(trf, satp, pg->m, k);
401
402 /* free bad packets, if any */
403 free_pkts(pg->m + k, pg->cnt - k);
404
405 n -= pg->cnt;
406 }
407
408 /* we should never have packet with unknown SA here */
409 RTE_VERIFY(n == 0);
410 }
411