1 //===--- SemaModule.cpp - Semantic Analysis for Modules -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements semantic analysis for modules (C++ modules syntax,
10 // Objective-C modules syntax, and Clang header modules).
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/AST/ASTConsumer.h"
15 #include "clang/Lex/HeaderSearch.h"
16 #include "clang/Lex/Preprocessor.h"
17 #include "clang/Sema/SemaInternal.h"
18
19 using namespace clang;
20 using namespace sema;
21
checkModuleImportContext(Sema & S,Module * M,SourceLocation ImportLoc,DeclContext * DC,bool FromInclude=false)22 static void checkModuleImportContext(Sema &S, Module *M,
23 SourceLocation ImportLoc, DeclContext *DC,
24 bool FromInclude = false) {
25 SourceLocation ExternCLoc;
26
27 if (auto *LSD = dyn_cast<LinkageSpecDecl>(DC)) {
28 switch (LSD->getLanguage()) {
29 case LinkageSpecDecl::lang_c:
30 if (ExternCLoc.isInvalid())
31 ExternCLoc = LSD->getBeginLoc();
32 break;
33 case LinkageSpecDecl::lang_cxx:
34 break;
35 }
36 DC = LSD->getParent();
37 }
38
39 while (isa<LinkageSpecDecl>(DC) || isa<ExportDecl>(DC))
40 DC = DC->getParent();
41
42 if (!isa<TranslationUnitDecl>(DC)) {
43 S.Diag(ImportLoc, (FromInclude && S.isModuleVisible(M))
44 ? diag::ext_module_import_not_at_top_level_noop
45 : diag::err_module_import_not_at_top_level_fatal)
46 << M->getFullModuleName() << DC;
47 S.Diag(cast<Decl>(DC)->getBeginLoc(),
48 diag::note_module_import_not_at_top_level)
49 << DC;
50 } else if (!M->IsExternC && ExternCLoc.isValid()) {
51 S.Diag(ImportLoc, diag::ext_module_import_in_extern_c)
52 << M->getFullModuleName();
53 S.Diag(ExternCLoc, diag::note_extern_c_begins_here);
54 }
55 }
56
57 // We represent the primary and partition names as 'Paths' which are sections
58 // of the hierarchical access path for a clang module. However for C++20
59 // the periods in a name are just another character, and we will need to
60 // flatten them into a string.
stringFromPath(ModuleIdPath Path)61 static std::string stringFromPath(ModuleIdPath Path) {
62 std::string Name;
63 if (Path.empty())
64 return Name;
65
66 for (auto &Piece : Path) {
67 if (!Name.empty())
68 Name += ".";
69 Name += Piece.first->getName();
70 }
71 return Name;
72 }
73
74 Sema::DeclGroupPtrTy
ActOnGlobalModuleFragmentDecl(SourceLocation ModuleLoc)75 Sema::ActOnGlobalModuleFragmentDecl(SourceLocation ModuleLoc) {
76 if (!ModuleScopes.empty() &&
77 ModuleScopes.back().Module->Kind == Module::GlobalModuleFragment) {
78 // Under -std=c++2a -fmodules-ts, we can find an explicit 'module;' after
79 // already implicitly entering the global module fragment. That's OK.
80 assert(getLangOpts().CPlusPlusModules && getLangOpts().ModulesTS &&
81 "unexpectedly encountered multiple global module fragment decls");
82 ModuleScopes.back().BeginLoc = ModuleLoc;
83 return nullptr;
84 }
85
86 // We start in the global module; all those declarations are implicitly
87 // module-private (though they do not have module linkage).
88 Module *GlobalModule =
89 PushGlobalModuleFragment(ModuleLoc, /*IsImplicit=*/false);
90
91 // All declarations created from now on are owned by the global module.
92 auto *TU = Context.getTranslationUnitDecl();
93 // [module.global.frag]p2
94 // A global-module-fragment specifies the contents of the global module
95 // fragment for a module unit. The global module fragment can be used to
96 // provide declarations that are attached to the global module and usable
97 // within the module unit.
98 //
99 // So the declations in the global module shouldn't be visible by default.
100 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ReachableWhenImported);
101 TU->setLocalOwningModule(GlobalModule);
102
103 // FIXME: Consider creating an explicit representation of this declaration.
104 return nullptr;
105 }
106
HandleStartOfHeaderUnit()107 void Sema::HandleStartOfHeaderUnit() {
108 assert(getLangOpts().CPlusPlusModules &&
109 "Header units are only valid for C++20 modules");
110 SourceLocation StartOfTU =
111 SourceMgr.getLocForStartOfFile(SourceMgr.getMainFileID());
112
113 StringRef HUName = getLangOpts().CurrentModule;
114 if (HUName.empty()) {
115 HUName = SourceMgr.getFileEntryForID(SourceMgr.getMainFileID())->getName();
116 const_cast<LangOptions &>(getLangOpts()).CurrentModule = HUName.str();
117 }
118
119 // TODO: Make the C++20 header lookup independent.
120 // When the input is pre-processed source, we need a file ref to the original
121 // file for the header map.
122 auto F = SourceMgr.getFileManager().getFile(HUName);
123 // For the sake of error recovery (if someone has moved the original header
124 // after creating the pre-processed output) fall back to obtaining the file
125 // ref for the input file, which must be present.
126 if (!F)
127 F = SourceMgr.getFileEntryForID(SourceMgr.getMainFileID());
128 assert(F && "failed to find the header unit source?");
129 Module::Header H{HUName.str(), HUName.str(), *F};
130 auto &Map = PP.getHeaderSearchInfo().getModuleMap();
131 Module *Mod = Map.createHeaderUnit(StartOfTU, HUName, H);
132 assert(Mod && "module creation should not fail");
133 ModuleScopes.push_back({}); // No GMF
134 ModuleScopes.back().BeginLoc = StartOfTU;
135 ModuleScopes.back().Module = Mod;
136 ModuleScopes.back().ModuleInterface = true;
137 ModuleScopes.back().IsPartition = false;
138 VisibleModules.setVisible(Mod, StartOfTU);
139
140 // From now on, we have an owning module for all declarations we see.
141 // All of these are implicitly exported.
142 auto *TU = Context.getTranslationUnitDecl();
143 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::Visible);
144 TU->setLocalOwningModule(Mod);
145 }
146
147 Sema::DeclGroupPtrTy
ActOnModuleDecl(SourceLocation StartLoc,SourceLocation ModuleLoc,ModuleDeclKind MDK,ModuleIdPath Path,ModuleIdPath Partition,ModuleImportState & ImportState)148 Sema::ActOnModuleDecl(SourceLocation StartLoc, SourceLocation ModuleLoc,
149 ModuleDeclKind MDK, ModuleIdPath Path,
150 ModuleIdPath Partition, ModuleImportState &ImportState) {
151 assert((getLangOpts().ModulesTS || getLangOpts().CPlusPlusModules) &&
152 "should only have module decl in Modules TS or C++20");
153
154 bool IsFirstDecl = ImportState == ModuleImportState::FirstDecl;
155 bool SeenGMF = ImportState == ModuleImportState::GlobalFragment;
156 // If any of the steps here fail, we count that as invalidating C++20
157 // module state;
158 ImportState = ModuleImportState::NotACXX20Module;
159
160 bool IsPartition = !Partition.empty();
161 if (IsPartition)
162 switch (MDK) {
163 case ModuleDeclKind::Implementation:
164 MDK = ModuleDeclKind::PartitionImplementation;
165 break;
166 case ModuleDeclKind::Interface:
167 MDK = ModuleDeclKind::PartitionInterface;
168 break;
169 default:
170 llvm_unreachable("how did we get a partition type set?");
171 }
172
173 // A (non-partition) module implementation unit requires that we are not
174 // compiling a module of any kind. A partition implementation emits an
175 // interface (and the AST for the implementation), which will subsequently
176 // be consumed to emit a binary.
177 // A module interface unit requires that we are not compiling a module map.
178 switch (getLangOpts().getCompilingModule()) {
179 case LangOptions::CMK_None:
180 // It's OK to compile a module interface as a normal translation unit.
181 break;
182
183 case LangOptions::CMK_ModuleInterface:
184 if (MDK != ModuleDeclKind::Implementation)
185 break;
186
187 // We were asked to compile a module interface unit but this is a module
188 // implementation unit.
189 Diag(ModuleLoc, diag::err_module_interface_implementation_mismatch)
190 << FixItHint::CreateInsertion(ModuleLoc, "export ");
191 MDK = ModuleDeclKind::Interface;
192 break;
193
194 case LangOptions::CMK_ModuleMap:
195 Diag(ModuleLoc, diag::err_module_decl_in_module_map_module);
196 return nullptr;
197
198 case LangOptions::CMK_HeaderModule:
199 case LangOptions::CMK_HeaderUnit:
200 Diag(ModuleLoc, diag::err_module_decl_in_header_module);
201 return nullptr;
202 }
203
204 assert(ModuleScopes.size() <= 1 && "expected to be at global module scope");
205
206 // FIXME: Most of this work should be done by the preprocessor rather than
207 // here, in order to support macro import.
208
209 // Only one module-declaration is permitted per source file.
210 if (!ModuleScopes.empty() &&
211 ModuleScopes.back().Module->isModulePurview()) {
212 Diag(ModuleLoc, diag::err_module_redeclaration);
213 Diag(VisibleModules.getImportLoc(ModuleScopes.back().Module),
214 diag::note_prev_module_declaration);
215 return nullptr;
216 }
217
218 // Find the global module fragment we're adopting into this module, if any.
219 Module *GlobalModuleFragment = nullptr;
220 if (!ModuleScopes.empty() &&
221 ModuleScopes.back().Module->Kind == Module::GlobalModuleFragment)
222 GlobalModuleFragment = ModuleScopes.back().Module;
223
224 assert((!getLangOpts().CPlusPlusModules || getLangOpts().ModulesTS ||
225 SeenGMF == (bool)GlobalModuleFragment) &&
226 "mismatched global module state");
227
228 // In C++20, the module-declaration must be the first declaration if there
229 // is no global module fragment.
230 if (getLangOpts().CPlusPlusModules && !IsFirstDecl && !SeenGMF) {
231 Diag(ModuleLoc, diag::err_module_decl_not_at_start);
232 SourceLocation BeginLoc =
233 ModuleScopes.empty()
234 ? SourceMgr.getLocForStartOfFile(SourceMgr.getMainFileID())
235 : ModuleScopes.back().BeginLoc;
236 if (BeginLoc.isValid()) {
237 Diag(BeginLoc, diag::note_global_module_introducer_missing)
238 << FixItHint::CreateInsertion(BeginLoc, "module;\n");
239 }
240 }
241
242 // Flatten the dots in a module name. Unlike Clang's hierarchical module map
243 // modules, the dots here are just another character that can appear in a
244 // module name.
245 std::string ModuleName = stringFromPath(Path);
246 if (IsPartition) {
247 ModuleName += ":";
248 ModuleName += stringFromPath(Partition);
249 }
250 // If a module name was explicitly specified on the command line, it must be
251 // correct.
252 if (!getLangOpts().CurrentModule.empty() &&
253 getLangOpts().CurrentModule != ModuleName) {
254 Diag(Path.front().second, diag::err_current_module_name_mismatch)
255 << SourceRange(Path.front().second, IsPartition
256 ? Partition.back().second
257 : Path.back().second)
258 << getLangOpts().CurrentModule;
259 return nullptr;
260 }
261 const_cast<LangOptions&>(getLangOpts()).CurrentModule = ModuleName;
262
263 auto &Map = PP.getHeaderSearchInfo().getModuleMap();
264 Module *Mod;
265
266 switch (MDK) {
267 case ModuleDeclKind::Interface:
268 case ModuleDeclKind::PartitionInterface: {
269 // We can't have parsed or imported a definition of this module or parsed a
270 // module map defining it already.
271 if (auto *M = Map.findModule(ModuleName)) {
272 Diag(Path[0].second, diag::err_module_redefinition) << ModuleName;
273 if (M->DefinitionLoc.isValid())
274 Diag(M->DefinitionLoc, diag::note_prev_module_definition);
275 else if (Optional<FileEntryRef> FE = M->getASTFile())
276 Diag(M->DefinitionLoc, diag::note_prev_module_definition_from_ast_file)
277 << FE->getName();
278 Mod = M;
279 break;
280 }
281
282 // Create a Module for the module that we're defining.
283 Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName,
284 GlobalModuleFragment);
285 if (MDK == ModuleDeclKind::PartitionInterface)
286 Mod->Kind = Module::ModulePartitionInterface;
287 assert(Mod && "module creation should not fail");
288 break;
289 }
290
291 case ModuleDeclKind::Implementation: {
292 std::pair<IdentifierInfo *, SourceLocation> ModuleNameLoc(
293 PP.getIdentifierInfo(ModuleName), Path[0].second);
294 // C++20 A module-declaration that contains neither an export-
295 // keyword nor a module-partition implicitly imports the primary
296 // module interface unit of the module as if by a module-import-
297 // declaration.
298 Mod = getModuleLoader().loadModule(ModuleLoc, {ModuleNameLoc},
299 Module::AllVisible,
300 /*IsInclusionDirective=*/false);
301 if (!Mod) {
302 Diag(ModuleLoc, diag::err_module_not_defined) << ModuleName;
303 // Create an empty module interface unit for error recovery.
304 Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName,
305 GlobalModuleFragment);
306 }
307 } break;
308
309 case ModuleDeclKind::PartitionImplementation:
310 // Create an interface, but note that it is an implementation
311 // unit.
312 Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName,
313 GlobalModuleFragment);
314 Mod->Kind = Module::ModulePartitionImplementation;
315 break;
316 }
317
318 if (!GlobalModuleFragment) {
319 ModuleScopes.push_back({});
320 if (getLangOpts().ModulesLocalVisibility)
321 ModuleScopes.back().OuterVisibleModules = std::move(VisibleModules);
322 } else {
323 // We're done with the global module fragment now.
324 ActOnEndOfTranslationUnitFragment(TUFragmentKind::Global);
325 }
326
327 // Switch from the global module fragment (if any) to the named module.
328 ModuleScopes.back().BeginLoc = StartLoc;
329 ModuleScopes.back().Module = Mod;
330 ModuleScopes.back().ModuleInterface = MDK != ModuleDeclKind::Implementation;
331 ModuleScopes.back().IsPartition = IsPartition;
332 VisibleModules.setVisible(Mod, ModuleLoc);
333
334 // From now on, we have an owning module for all declarations we see.
335 // In C++20 modules, those declaration would be reachable when imported
336 // unless explicitily exported.
337 // Otherwise, those declarations are module-private unless explicitly
338 // exported.
339 auto *TU = Context.getTranslationUnitDecl();
340 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ReachableWhenImported);
341 TU->setLocalOwningModule(Mod);
342
343 // We are in the module purview, but before any other (non import)
344 // statements, so imports are allowed.
345 ImportState = ModuleImportState::ImportAllowed;
346
347 // For an implementation, We already made an implicit import (its interface).
348 // Make and return the import decl to be added to the current TU.
349 if (MDK == ModuleDeclKind::Implementation) {
350 // Make the import decl for the interface.
351 ImportDecl *Import =
352 ImportDecl::Create(Context, CurContext, ModuleLoc, Mod, Path[0].second);
353 // and return it to be added.
354 return ConvertDeclToDeclGroup(Import);
355 }
356
357 // FIXME: Create a ModuleDecl.
358 return nullptr;
359 }
360
361 Sema::DeclGroupPtrTy
ActOnPrivateModuleFragmentDecl(SourceLocation ModuleLoc,SourceLocation PrivateLoc)362 Sema::ActOnPrivateModuleFragmentDecl(SourceLocation ModuleLoc,
363 SourceLocation PrivateLoc) {
364 // C++20 [basic.link]/2:
365 // A private-module-fragment shall appear only in a primary module
366 // interface unit.
367 switch (ModuleScopes.empty() ? Module::GlobalModuleFragment
368 : ModuleScopes.back().Module->Kind) {
369 case Module::ModuleMapModule:
370 case Module::GlobalModuleFragment:
371 case Module::ModulePartitionImplementation:
372 case Module::ModulePartitionInterface:
373 case Module::ModuleHeaderUnit:
374 Diag(PrivateLoc, diag::err_private_module_fragment_not_module);
375 return nullptr;
376
377 case Module::PrivateModuleFragment:
378 Diag(PrivateLoc, diag::err_private_module_fragment_redefined);
379 Diag(ModuleScopes.back().BeginLoc, diag::note_previous_definition);
380 return nullptr;
381
382 case Module::ModuleInterfaceUnit:
383 break;
384 }
385
386 if (!ModuleScopes.back().ModuleInterface) {
387 Diag(PrivateLoc, diag::err_private_module_fragment_not_module_interface);
388 Diag(ModuleScopes.back().BeginLoc,
389 diag::note_not_module_interface_add_export)
390 << FixItHint::CreateInsertion(ModuleScopes.back().BeginLoc, "export ");
391 return nullptr;
392 }
393
394 // FIXME: Check this isn't a module interface partition.
395 // FIXME: Check that this translation unit does not import any partitions;
396 // such imports would violate [basic.link]/2's "shall be the only module unit"
397 // restriction.
398
399 // We've finished the public fragment of the translation unit.
400 ActOnEndOfTranslationUnitFragment(TUFragmentKind::Normal);
401
402 auto &Map = PP.getHeaderSearchInfo().getModuleMap();
403 Module *PrivateModuleFragment =
404 Map.createPrivateModuleFragmentForInterfaceUnit(
405 ModuleScopes.back().Module, PrivateLoc);
406 assert(PrivateModuleFragment && "module creation should not fail");
407
408 // Enter the scope of the private module fragment.
409 ModuleScopes.push_back({});
410 ModuleScopes.back().BeginLoc = ModuleLoc;
411 ModuleScopes.back().Module = PrivateModuleFragment;
412 ModuleScopes.back().ModuleInterface = true;
413 VisibleModules.setVisible(PrivateModuleFragment, ModuleLoc);
414
415 // All declarations created from now on are scoped to the private module
416 // fragment (and are neither visible nor reachable in importers of the module
417 // interface).
418 auto *TU = Context.getTranslationUnitDecl();
419 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ModulePrivate);
420 TU->setLocalOwningModule(PrivateModuleFragment);
421
422 // FIXME: Consider creating an explicit representation of this declaration.
423 return nullptr;
424 }
425
ActOnModuleImport(SourceLocation StartLoc,SourceLocation ExportLoc,SourceLocation ImportLoc,ModuleIdPath Path,bool IsPartition)426 DeclResult Sema::ActOnModuleImport(SourceLocation StartLoc,
427 SourceLocation ExportLoc,
428 SourceLocation ImportLoc, ModuleIdPath Path,
429 bool IsPartition) {
430
431 bool Cxx20Mode = getLangOpts().CPlusPlusModules || getLangOpts().ModulesTS;
432 assert((!IsPartition || Cxx20Mode) && "partition seen in non-C++20 code?");
433
434 // For a C++20 module name, flatten into a single identifier with the source
435 // location of the first component.
436 std::pair<IdentifierInfo *, SourceLocation> ModuleNameLoc;
437
438 std::string ModuleName;
439 if (IsPartition) {
440 // We already checked that we are in a module purview in the parser.
441 assert(!ModuleScopes.empty() && "in a module purview, but no module?");
442 Module *NamedMod = ModuleScopes.back().Module;
443 // If we are importing into a partition, find the owning named module,
444 // otherwise, the name of the importing named module.
445 ModuleName = NamedMod->getPrimaryModuleInterfaceName().str();
446 ModuleName += ":";
447 ModuleName += stringFromPath(Path);
448 ModuleNameLoc = {PP.getIdentifierInfo(ModuleName), Path[0].second};
449 Path = ModuleIdPath(ModuleNameLoc);
450 } else if (Cxx20Mode) {
451 ModuleName = stringFromPath(Path);
452 ModuleNameLoc = {PP.getIdentifierInfo(ModuleName), Path[0].second};
453 Path = ModuleIdPath(ModuleNameLoc);
454 }
455
456 // Diagnose self-import before attempting a load.
457 // [module.import]/9
458 // A module implementation unit of a module M that is not a module partition
459 // shall not contain a module-import-declaration nominating M.
460 // (for an implementation, the module interface is imported implicitly,
461 // but that's handled in the module decl code).
462
463 if (getLangOpts().CPlusPlusModules && isCurrentModulePurview() &&
464 getCurrentModule()->Name == ModuleName) {
465 Diag(ImportLoc, diag::err_module_self_import_cxx20)
466 << ModuleName << !ModuleScopes.back().ModuleInterface;
467 return true;
468 }
469
470 Module *Mod = getModuleLoader().loadModule(
471 ImportLoc, Path, Module::AllVisible, /*IsInclusionDirective=*/false);
472 if (!Mod)
473 return true;
474
475 return ActOnModuleImport(StartLoc, ExportLoc, ImportLoc, Mod, Path);
476 }
477
478 /// Determine whether \p D is lexically within an export-declaration.
getEnclosingExportDecl(const Decl * D)479 static const ExportDecl *getEnclosingExportDecl(const Decl *D) {
480 for (auto *DC = D->getLexicalDeclContext(); DC; DC = DC->getLexicalParent())
481 if (auto *ED = dyn_cast<ExportDecl>(DC))
482 return ED;
483 return nullptr;
484 }
485
ActOnModuleImport(SourceLocation StartLoc,SourceLocation ExportLoc,SourceLocation ImportLoc,Module * Mod,ModuleIdPath Path)486 DeclResult Sema::ActOnModuleImport(SourceLocation StartLoc,
487 SourceLocation ExportLoc,
488 SourceLocation ImportLoc, Module *Mod,
489 ModuleIdPath Path) {
490 VisibleModules.setVisible(Mod, ImportLoc);
491
492 checkModuleImportContext(*this, Mod, ImportLoc, CurContext);
493
494 // FIXME: we should support importing a submodule within a different submodule
495 // of the same top-level module. Until we do, make it an error rather than
496 // silently ignoring the import.
497 // FIXME: Should we warn on a redundant import of the current module?
498 if (Mod->getTopLevelModuleName() == getLangOpts().CurrentModule &&
499 (getLangOpts().isCompilingModule() || !getLangOpts().ModulesTS)) {
500 Diag(ImportLoc, getLangOpts().isCompilingModule()
501 ? diag::err_module_self_import
502 : diag::err_module_import_in_implementation)
503 << Mod->getFullModuleName() << getLangOpts().CurrentModule;
504 }
505
506 SmallVector<SourceLocation, 2> IdentifierLocs;
507
508 if (Path.empty()) {
509 // If this was a header import, pad out with dummy locations.
510 // FIXME: Pass in and use the location of the header-name token in this
511 // case.
512 for (Module *ModCheck = Mod; ModCheck; ModCheck = ModCheck->Parent)
513 IdentifierLocs.push_back(SourceLocation());
514 } else if (getLangOpts().CPlusPlusModules && !Mod->Parent) {
515 // A single identifier for the whole name.
516 IdentifierLocs.push_back(Path[0].second);
517 } else {
518 Module *ModCheck = Mod;
519 for (unsigned I = 0, N = Path.size(); I != N; ++I) {
520 // If we've run out of module parents, just drop the remaining
521 // identifiers. We need the length to be consistent.
522 if (!ModCheck)
523 break;
524 ModCheck = ModCheck->Parent;
525
526 IdentifierLocs.push_back(Path[I].second);
527 }
528 }
529
530 ImportDecl *Import = ImportDecl::Create(Context, CurContext, StartLoc,
531 Mod, IdentifierLocs);
532 CurContext->addDecl(Import);
533
534 // Sequence initialization of the imported module before that of the current
535 // module, if any.
536 if (!ModuleScopes.empty())
537 Context.addModuleInitializer(ModuleScopes.back().Module, Import);
538
539 // A module (partition) implementation unit shall not be exported.
540 if (getLangOpts().CPlusPlusModules && ExportLoc.isValid() &&
541 Mod->Kind == Module::ModuleKind::ModulePartitionImplementation) {
542 Diag(ExportLoc, diag::err_export_partition_impl)
543 << SourceRange(ExportLoc, Path.back().second);
544 } else if (!ModuleScopes.empty() &&
545 (ModuleScopes.back().ModuleInterface ||
546 (getLangOpts().CPlusPlusModules &&
547 ModuleScopes.back().Module->isGlobalModule()))) {
548 assert((!ModuleScopes.back().Module->isGlobalModule() ||
549 Mod->Kind == Module::ModuleKind::ModuleHeaderUnit) &&
550 "should only be importing a header unit into the GMF");
551 // Re-export the module if the imported module is exported.
552 // Note that we don't need to add re-exported module to Imports field
553 // since `Exports` implies the module is imported already.
554 if (ExportLoc.isValid() || getEnclosingExportDecl(Import))
555 getCurrentModule()->Exports.emplace_back(Mod, false);
556 else
557 getCurrentModule()->Imports.insert(Mod);
558 } else if (ExportLoc.isValid()) {
559 // [module.interface]p1:
560 // An export-declaration shall inhabit a namespace scope and appear in the
561 // purview of a module interface unit.
562 Diag(ExportLoc, diag::err_export_not_in_module_interface)
563 << (!ModuleScopes.empty() &&
564 !ModuleScopes.back().ImplicitGlobalModuleFragment);
565 } else if (getLangOpts().isCompilingModule()) {
566 Module *ThisModule = PP.getHeaderSearchInfo().lookupModule(
567 getLangOpts().CurrentModule, ExportLoc, false, false);
568 (void)ThisModule;
569 assert(ThisModule && "was expecting a module if building one");
570 }
571
572 // In some cases we need to know if an entity was present in a directly-
573 // imported module (as opposed to a transitive import). This avoids
574 // searching both Imports and Exports.
575 DirectModuleImports.insert(Mod);
576
577 return Import;
578 }
579
ActOnModuleInclude(SourceLocation DirectiveLoc,Module * Mod)580 void Sema::ActOnModuleInclude(SourceLocation DirectiveLoc, Module *Mod) {
581 checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext, true);
582 BuildModuleInclude(DirectiveLoc, Mod);
583 }
584
BuildModuleInclude(SourceLocation DirectiveLoc,Module * Mod)585 void Sema::BuildModuleInclude(SourceLocation DirectiveLoc, Module *Mod) {
586 // Determine whether we're in the #include buffer for a module. The #includes
587 // in that buffer do not qualify as module imports; they're just an
588 // implementation detail of us building the module.
589 //
590 // FIXME: Should we even get ActOnModuleInclude calls for those?
591 bool IsInModuleIncludes =
592 TUKind == TU_Module &&
593 getSourceManager().isWrittenInMainFile(DirectiveLoc);
594
595 bool ShouldAddImport = !IsInModuleIncludes;
596
597 // If this module import was due to an inclusion directive, create an
598 // implicit import declaration to capture it in the AST.
599 if (ShouldAddImport) {
600 TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
601 ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
602 DirectiveLoc, Mod,
603 DirectiveLoc);
604 if (!ModuleScopes.empty())
605 Context.addModuleInitializer(ModuleScopes.back().Module, ImportD);
606 TU->addDecl(ImportD);
607 Consumer.HandleImplicitImportDecl(ImportD);
608 }
609
610 getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, DirectiveLoc);
611 VisibleModules.setVisible(Mod, DirectiveLoc);
612
613 if (getLangOpts().isCompilingModule()) {
614 Module *ThisModule = PP.getHeaderSearchInfo().lookupModule(
615 getLangOpts().CurrentModule, DirectiveLoc, false, false);
616 (void)ThisModule;
617 assert(ThisModule && "was expecting a module if building one");
618 }
619 }
620
ActOnModuleBegin(SourceLocation DirectiveLoc,Module * Mod)621 void Sema::ActOnModuleBegin(SourceLocation DirectiveLoc, Module *Mod) {
622 checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext, true);
623
624 ModuleScopes.push_back({});
625 ModuleScopes.back().Module = Mod;
626 if (getLangOpts().ModulesLocalVisibility)
627 ModuleScopes.back().OuterVisibleModules = std::move(VisibleModules);
628
629 VisibleModules.setVisible(Mod, DirectiveLoc);
630
631 // The enclosing context is now part of this module.
632 // FIXME: Consider creating a child DeclContext to hold the entities
633 // lexically within the module.
634 if (getLangOpts().trackLocalOwningModule()) {
635 for (auto *DC = CurContext; DC; DC = DC->getLexicalParent()) {
636 cast<Decl>(DC)->setModuleOwnershipKind(
637 getLangOpts().ModulesLocalVisibility
638 ? Decl::ModuleOwnershipKind::VisibleWhenImported
639 : Decl::ModuleOwnershipKind::Visible);
640 cast<Decl>(DC)->setLocalOwningModule(Mod);
641 }
642 }
643 }
644
ActOnModuleEnd(SourceLocation EomLoc,Module * Mod)645 void Sema::ActOnModuleEnd(SourceLocation EomLoc, Module *Mod) {
646 if (getLangOpts().ModulesLocalVisibility) {
647 VisibleModules = std::move(ModuleScopes.back().OuterVisibleModules);
648 // Leaving a module hides namespace names, so our visible namespace cache
649 // is now out of date.
650 VisibleNamespaceCache.clear();
651 }
652
653 assert(!ModuleScopes.empty() && ModuleScopes.back().Module == Mod &&
654 "left the wrong module scope");
655 ModuleScopes.pop_back();
656
657 // We got to the end of processing a local module. Create an
658 // ImportDecl as we would for an imported module.
659 FileID File = getSourceManager().getFileID(EomLoc);
660 SourceLocation DirectiveLoc;
661 if (EomLoc == getSourceManager().getLocForEndOfFile(File)) {
662 // We reached the end of a #included module header. Use the #include loc.
663 assert(File != getSourceManager().getMainFileID() &&
664 "end of submodule in main source file");
665 DirectiveLoc = getSourceManager().getIncludeLoc(File);
666 } else {
667 // We reached an EOM pragma. Use the pragma location.
668 DirectiveLoc = EomLoc;
669 }
670 BuildModuleInclude(DirectiveLoc, Mod);
671
672 // Any further declarations are in whatever module we returned to.
673 if (getLangOpts().trackLocalOwningModule()) {
674 // The parser guarantees that this is the same context that we entered
675 // the module within.
676 for (auto *DC = CurContext; DC; DC = DC->getLexicalParent()) {
677 cast<Decl>(DC)->setLocalOwningModule(getCurrentModule());
678 if (!getCurrentModule())
679 cast<Decl>(DC)->setModuleOwnershipKind(
680 Decl::ModuleOwnershipKind::Unowned);
681 }
682 }
683 }
684
createImplicitModuleImportForErrorRecovery(SourceLocation Loc,Module * Mod)685 void Sema::createImplicitModuleImportForErrorRecovery(SourceLocation Loc,
686 Module *Mod) {
687 // Bail if we're not allowed to implicitly import a module here.
688 if (isSFINAEContext() || !getLangOpts().ModulesErrorRecovery ||
689 VisibleModules.isVisible(Mod))
690 return;
691
692 // Create the implicit import declaration.
693 TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
694 ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
695 Loc, Mod, Loc);
696 TU->addDecl(ImportD);
697 Consumer.HandleImplicitImportDecl(ImportD);
698
699 // Make the module visible.
700 getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc);
701 VisibleModules.setVisible(Mod, Loc);
702 }
703
704 /// We have parsed the start of an export declaration, including the '{'
705 /// (if present).
ActOnStartExportDecl(Scope * S,SourceLocation ExportLoc,SourceLocation LBraceLoc)706 Decl *Sema::ActOnStartExportDecl(Scope *S, SourceLocation ExportLoc,
707 SourceLocation LBraceLoc) {
708 ExportDecl *D = ExportDecl::Create(Context, CurContext, ExportLoc);
709
710 // Set this temporarily so we know the export-declaration was braced.
711 D->setRBraceLoc(LBraceLoc);
712
713 CurContext->addDecl(D);
714 PushDeclContext(S, D);
715
716 // C++2a [module.interface]p1:
717 // An export-declaration shall appear only [...] in the purview of a module
718 // interface unit. An export-declaration shall not appear directly or
719 // indirectly within [...] a private-module-fragment.
720 if (ModuleScopes.empty() || !ModuleScopes.back().Module->isModulePurview()) {
721 Diag(ExportLoc, diag::err_export_not_in_module_interface) << 0;
722 D->setInvalidDecl();
723 return D;
724 } else if (!ModuleScopes.back().ModuleInterface) {
725 Diag(ExportLoc, diag::err_export_not_in_module_interface) << 1;
726 Diag(ModuleScopes.back().BeginLoc,
727 diag::note_not_module_interface_add_export)
728 << FixItHint::CreateInsertion(ModuleScopes.back().BeginLoc, "export ");
729 D->setInvalidDecl();
730 return D;
731 } else if (ModuleScopes.back().Module->Kind ==
732 Module::PrivateModuleFragment) {
733 Diag(ExportLoc, diag::err_export_in_private_module_fragment);
734 Diag(ModuleScopes.back().BeginLoc, diag::note_private_module_fragment);
735 D->setInvalidDecl();
736 return D;
737 }
738
739 for (const DeclContext *DC = CurContext; DC; DC = DC->getLexicalParent()) {
740 if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) {
741 // An export-declaration shall not appear directly or indirectly within
742 // an unnamed namespace [...]
743 if (ND->isAnonymousNamespace()) {
744 Diag(ExportLoc, diag::err_export_within_anonymous_namespace);
745 Diag(ND->getLocation(), diag::note_anonymous_namespace);
746 // Don't diagnose internal-linkage declarations in this region.
747 D->setInvalidDecl();
748 return D;
749 }
750
751 // A declaration is exported if it is [...] a namespace-definition
752 // that contains an exported declaration.
753 //
754 // Defer exporting the namespace until after we leave it, in order to
755 // avoid marking all subsequent declarations in the namespace as exported.
756 if (!DeferredExportedNamespaces.insert(ND).second)
757 break;
758 }
759 }
760
761 // [...] its declaration or declaration-seq shall not contain an
762 // export-declaration.
763 if (auto *ED = getEnclosingExportDecl(D)) {
764 Diag(ExportLoc, diag::err_export_within_export);
765 if (ED->hasBraces())
766 Diag(ED->getLocation(), diag::note_export);
767 D->setInvalidDecl();
768 return D;
769 }
770
771 D->setModuleOwnershipKind(Decl::ModuleOwnershipKind::VisibleWhenImported);
772 return D;
773 }
774
775 static bool checkExportedDeclContext(Sema &S, DeclContext *DC,
776 SourceLocation BlockStart);
777
778 namespace {
779 enum class UnnamedDeclKind {
780 Empty,
781 StaticAssert,
782 Asm,
783 UsingDirective,
784 Namespace,
785 Context
786 };
787 }
788
getUnnamedDeclKind(Decl * D)789 static llvm::Optional<UnnamedDeclKind> getUnnamedDeclKind(Decl *D) {
790 if (isa<EmptyDecl>(D))
791 return UnnamedDeclKind::Empty;
792 if (isa<StaticAssertDecl>(D))
793 return UnnamedDeclKind::StaticAssert;
794 if (isa<FileScopeAsmDecl>(D))
795 return UnnamedDeclKind::Asm;
796 if (isa<UsingDirectiveDecl>(D))
797 return UnnamedDeclKind::UsingDirective;
798 // Everything else either introduces one or more names or is ill-formed.
799 return llvm::None;
800 }
801
getUnnamedDeclDiag(UnnamedDeclKind UDK,bool InBlock)802 unsigned getUnnamedDeclDiag(UnnamedDeclKind UDK, bool InBlock) {
803 switch (UDK) {
804 case UnnamedDeclKind::Empty:
805 case UnnamedDeclKind::StaticAssert:
806 // Allow empty-declarations and static_asserts in an export block as an
807 // extension.
808 return InBlock ? diag::ext_export_no_name_block : diag::err_export_no_name;
809
810 case UnnamedDeclKind::UsingDirective:
811 // Allow exporting using-directives as an extension.
812 return diag::ext_export_using_directive;
813
814 case UnnamedDeclKind::Namespace:
815 // Anonymous namespace with no content.
816 return diag::introduces_no_names;
817
818 case UnnamedDeclKind::Context:
819 // Allow exporting DeclContexts that transitively contain no declarations
820 // as an extension.
821 return diag::ext_export_no_names;
822
823 case UnnamedDeclKind::Asm:
824 return diag::err_export_no_name;
825 }
826 llvm_unreachable("unknown kind");
827 }
828
diagExportedUnnamedDecl(Sema & S,UnnamedDeclKind UDK,Decl * D,SourceLocation BlockStart)829 static void diagExportedUnnamedDecl(Sema &S, UnnamedDeclKind UDK, Decl *D,
830 SourceLocation BlockStart) {
831 S.Diag(D->getLocation(), getUnnamedDeclDiag(UDK, BlockStart.isValid()))
832 << (unsigned)UDK;
833 if (BlockStart.isValid())
834 S.Diag(BlockStart, diag::note_export);
835 }
836
837 /// Check that it's valid to export \p D.
checkExportedDecl(Sema & S,Decl * D,SourceLocation BlockStart)838 static bool checkExportedDecl(Sema &S, Decl *D, SourceLocation BlockStart) {
839 // C++2a [module.interface]p3:
840 // An exported declaration shall declare at least one name
841 if (auto UDK = getUnnamedDeclKind(D))
842 diagExportedUnnamedDecl(S, *UDK, D, BlockStart);
843
844 // [...] shall not declare a name with internal linkage.
845 bool HasName = false;
846 if (auto *ND = dyn_cast<NamedDecl>(D)) {
847 // Don't diagnose anonymous union objects; we'll diagnose their members
848 // instead.
849 HasName = (bool)ND->getDeclName();
850 if (HasName && ND->getFormalLinkage() == InternalLinkage) {
851 S.Diag(ND->getLocation(), diag::err_export_internal) << ND;
852 if (BlockStart.isValid())
853 S.Diag(BlockStart, diag::note_export);
854 }
855 }
856
857 // C++2a [module.interface]p5:
858 // all entities to which all of the using-declarators ultimately refer
859 // shall have been introduced with a name having external linkage
860 if (auto *USD = dyn_cast<UsingShadowDecl>(D)) {
861 NamedDecl *Target = USD->getUnderlyingDecl();
862 Linkage Lk = Target->getFormalLinkage();
863 if (Lk == InternalLinkage || Lk == ModuleLinkage) {
864 S.Diag(USD->getLocation(), diag::err_export_using_internal)
865 << (Lk == InternalLinkage ? 0 : 1) << Target;
866 S.Diag(Target->getLocation(), diag::note_using_decl_target);
867 if (BlockStart.isValid())
868 S.Diag(BlockStart, diag::note_export);
869 }
870 }
871
872 // Recurse into namespace-scope DeclContexts. (Only namespace-scope
873 // declarations are exported.).
874 if (auto *DC = dyn_cast<DeclContext>(D)) {
875 if (isa<NamespaceDecl>(D) && DC->decls().empty()) {
876 if (!HasName)
877 // We don't allow an empty anonymous namespace (we don't allow decls
878 // in them either, but that's handled in the recursion).
879 diagExportedUnnamedDecl(S, UnnamedDeclKind::Namespace, D, BlockStart);
880 // We allow an empty named namespace decl.
881 } else if (DC->getRedeclContext()->isFileContext() && !isa<EnumDecl>(D))
882 return checkExportedDeclContext(S, DC, BlockStart);
883 }
884 return false;
885 }
886
887 /// Check that it's valid to export all the declarations in \p DC.
checkExportedDeclContext(Sema & S,DeclContext * DC,SourceLocation BlockStart)888 static bool checkExportedDeclContext(Sema &S, DeclContext *DC,
889 SourceLocation BlockStart) {
890 bool AllUnnamed = true;
891 for (auto *D : DC->decls())
892 AllUnnamed &= checkExportedDecl(S, D, BlockStart);
893 return AllUnnamed;
894 }
895
896 /// Complete the definition of an export declaration.
ActOnFinishExportDecl(Scope * S,Decl * D,SourceLocation RBraceLoc)897 Decl *Sema::ActOnFinishExportDecl(Scope *S, Decl *D, SourceLocation RBraceLoc) {
898 auto *ED = cast<ExportDecl>(D);
899 if (RBraceLoc.isValid())
900 ED->setRBraceLoc(RBraceLoc);
901
902 PopDeclContext();
903
904 if (!D->isInvalidDecl()) {
905 SourceLocation BlockStart =
906 ED->hasBraces() ? ED->getBeginLoc() : SourceLocation();
907 for (auto *Child : ED->decls()) {
908 if (checkExportedDecl(*this, Child, BlockStart)) {
909 // If a top-level child is a linkage-spec declaration, it might contain
910 // no declarations (transitively), in which case it's ill-formed.
911 diagExportedUnnamedDecl(*this, UnnamedDeclKind::Context, Child,
912 BlockStart);
913 }
914 }
915 }
916
917 return D;
918 }
919
PushGlobalModuleFragment(SourceLocation BeginLoc,bool IsImplicit)920 Module *Sema::PushGlobalModuleFragment(SourceLocation BeginLoc,
921 bool IsImplicit) {
922 // We shouldn't create new global module fragment if there is already
923 // one.
924 if (!GlobalModuleFragment) {
925 ModuleMap &Map = PP.getHeaderSearchInfo().getModuleMap();
926 GlobalModuleFragment = Map.createGlobalModuleFragmentForModuleUnit(
927 BeginLoc, getCurrentModule());
928 }
929
930 assert(GlobalModuleFragment && "module creation should not fail");
931
932 // Enter the scope of the global module.
933 ModuleScopes.push_back({BeginLoc, GlobalModuleFragment,
934 /*ModuleInterface=*/false,
935 /*IsPartition=*/false,
936 /*ImplicitGlobalModuleFragment=*/IsImplicit,
937 /*OuterVisibleModules=*/{}});
938 VisibleModules.setVisible(GlobalModuleFragment, BeginLoc);
939
940 return GlobalModuleFragment;
941 }
942
PopGlobalModuleFragment()943 void Sema::PopGlobalModuleFragment() {
944 assert(!ModuleScopes.empty() && getCurrentModule()->isGlobalModule() &&
945 "left the wrong module scope, which is not global module fragment");
946 ModuleScopes.pop_back();
947 }
948
isModuleUnitOfCurrentTU(const Module * M) const949 bool Sema::isModuleUnitOfCurrentTU(const Module *M) const {
950 assert(M);
951
952 Module *CurrentModuleUnit = getCurrentModule();
953
954 // If we are not in a module currently, M must not be the module unit of
955 // current TU.
956 if (!CurrentModuleUnit)
957 return false;
958
959 return M->isSubModuleOf(CurrentModuleUnit->getTopLevelModule());
960 }
961