1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2017 Intel Corporation
3 */
4
5 #include <stdbool.h>
6
7 #include <rte_crypto.h>
8 #include <rte_cryptodev.h>
9 #include <rte_cycles.h>
10 #include <rte_malloc.h>
11
12 #include "cperf_ops.h"
13 #include "cperf_test_pmd_cyclecount.h"
14 #include "cperf_test_common.h"
15
16 #define PRETTY_HDR_FMT "%12s%12s%12s%12s%12s%12s%12s%12s%12s%12s\n\n"
17 #define PRETTY_LINE_FMT "%12u%12u%12u%12u%12u%12u%12u%12.0f%12.0f%12.0f\n"
18 #define CSV_HDR_FMT "%s,%s,%s,%s,%s,%s,%s,%s,%s,%s\n"
19 #define CSV_LINE_FMT "%10u;%10u;%u;%u;%u;%u;%u;%.3f;%.3f;%.3f\n"
20
21 struct cperf_pmd_cyclecount_ctx {
22 uint8_t dev_id;
23 uint16_t qp_id;
24 uint8_t lcore_id;
25
26 struct rte_mempool *pool;
27 struct rte_crypto_op **ops;
28 struct rte_crypto_op **ops_processed;
29
30 struct rte_cryptodev_sym_session *sess;
31
32 cperf_populate_ops_t populate_ops;
33
34 uint32_t src_buf_offset;
35 uint32_t dst_buf_offset;
36
37 const struct cperf_options *options;
38 const struct cperf_test_vector *test_vector;
39 };
40
41 struct pmd_cyclecount_state {
42 struct cperf_pmd_cyclecount_ctx *ctx;
43 const struct cperf_options *opts;
44 uint32_t lcore;
45 uint64_t delay;
46 int linearize;
47 uint32_t ops_enqd;
48 uint32_t ops_deqd;
49 uint32_t ops_enq_retries;
50 uint32_t ops_deq_retries;
51 double cycles_per_build;
52 double cycles_per_enq;
53 double cycles_per_deq;
54 };
55
56 static const uint16_t iv_offset =
57 sizeof(struct rte_crypto_op) + sizeof(struct rte_crypto_sym_op);
58
59 static void
cperf_pmd_cyclecount_test_free(struct cperf_pmd_cyclecount_ctx * ctx)60 cperf_pmd_cyclecount_test_free(struct cperf_pmd_cyclecount_ctx *ctx)
61 {
62 if (!ctx)
63 return;
64
65 if (ctx->sess) {
66 #ifdef RTE_LIB_SECURITY
67 if (ctx->options->op_type == CPERF_PDCP ||
68 ctx->options->op_type == CPERF_DOCSIS) {
69 struct rte_security_ctx *sec_ctx =
70 (struct rte_security_ctx *)
71 rte_cryptodev_get_sec_ctx(ctx->dev_id);
72 rte_security_session_destroy(sec_ctx,
73 (struct rte_security_session *)ctx->sess);
74 } else
75 #endif
76 {
77 rte_cryptodev_sym_session_clear(ctx->dev_id, ctx->sess);
78 rte_cryptodev_sym_session_free(ctx->sess);
79 }
80 }
81
82 if (ctx->pool)
83 rte_mempool_free(ctx->pool);
84
85 if (ctx->ops)
86 rte_free(ctx->ops);
87
88 if (ctx->ops_processed)
89 rte_free(ctx->ops_processed);
90
91 rte_free(ctx);
92 }
93
94 void *
cperf_pmd_cyclecount_test_constructor(struct rte_mempool * sess_mp,struct rte_mempool * sess_priv_mp,uint8_t dev_id,uint16_t qp_id,const struct cperf_options * options,const struct cperf_test_vector * test_vector,const struct cperf_op_fns * op_fns)95 cperf_pmd_cyclecount_test_constructor(struct rte_mempool *sess_mp,
96 struct rte_mempool *sess_priv_mp,
97 uint8_t dev_id, uint16_t qp_id,
98 const struct cperf_options *options,
99 const struct cperf_test_vector *test_vector,
100 const struct cperf_op_fns *op_fns)
101 {
102 struct cperf_pmd_cyclecount_ctx *ctx = NULL;
103
104 /* preallocate buffers for crypto ops as they can get quite big */
105 size_t alloc_sz = sizeof(struct rte_crypto_op *) *
106 options->nb_descriptors;
107
108 ctx = rte_malloc(NULL, sizeof(struct cperf_pmd_cyclecount_ctx), 0);
109 if (ctx == NULL)
110 goto err;
111
112 ctx->dev_id = dev_id;
113 ctx->qp_id = qp_id;
114
115 ctx->populate_ops = op_fns->populate_ops;
116 ctx->options = options;
117 ctx->test_vector = test_vector;
118
119 /* IV goes at the end of the crypto operation */
120 uint16_t iv_offset = sizeof(struct rte_crypto_op) +
121 sizeof(struct rte_crypto_sym_op);
122
123 ctx->sess = op_fns->sess_create(sess_mp, sess_priv_mp, dev_id, options,
124 test_vector, iv_offset);
125 if (ctx->sess == NULL)
126 goto err;
127
128 if (cperf_alloc_common_memory(options, test_vector, dev_id, qp_id, 0,
129 &ctx->src_buf_offset, &ctx->dst_buf_offset,
130 &ctx->pool) < 0)
131 goto err;
132
133 ctx->ops = rte_malloc("ops", alloc_sz, 0);
134 if (!ctx->ops)
135 goto err;
136
137 ctx->ops_processed = rte_malloc("ops_processed", alloc_sz, 0);
138 if (!ctx->ops_processed)
139 goto err;
140
141 return ctx;
142
143 err:
144 cperf_pmd_cyclecount_test_free(ctx);
145
146 return NULL;
147 }
148
149 /* benchmark alloc-build-free of ops */
150 static inline int
pmd_cyclecount_bench_ops(struct pmd_cyclecount_state * state,uint32_t cur_op,uint16_t test_burst_size)151 pmd_cyclecount_bench_ops(struct pmd_cyclecount_state *state, uint32_t cur_op,
152 uint16_t test_burst_size)
153 {
154 uint32_t iter_ops_left = state->opts->total_ops - cur_op;
155 uint32_t iter_ops_needed =
156 RTE_MIN(state->opts->nb_descriptors, iter_ops_left);
157 uint32_t cur_iter_op;
158 uint32_t imix_idx = 0;
159
160 for (cur_iter_op = 0; cur_iter_op < iter_ops_needed;
161 cur_iter_op += test_burst_size) {
162 uint32_t burst_size = RTE_MIN(iter_ops_needed - cur_iter_op,
163 test_burst_size);
164 struct rte_crypto_op **ops = &state->ctx->ops[cur_iter_op];
165
166 /* Allocate objects containing crypto operations and mbufs */
167 if (rte_mempool_get_bulk(state->ctx->pool, (void **)ops,
168 burst_size) != 0) {
169 RTE_LOG(ERR, USER1,
170 "Failed to allocate more crypto operations "
171 "from the crypto operation pool.\n"
172 "Consider increasing the pool size "
173 "with --pool-sz\n");
174 return -1;
175 }
176
177 /* Setup crypto op, attach mbuf etc */
178 (state->ctx->populate_ops)(ops,
179 state->ctx->src_buf_offset,
180 state->ctx->dst_buf_offset,
181 burst_size,
182 state->ctx->sess, state->opts,
183 state->ctx->test_vector, iv_offset,
184 &imix_idx);
185
186 #ifdef CPERF_LINEARIZATION_ENABLE
187 /* Check if source mbufs require coalescing */
188 if (state->linearize) {
189 uint8_t i;
190 for (i = 0; i < burst_size; i++) {
191 struct rte_mbuf *src = ops[i]->sym->m_src;
192 rte_pktmbuf_linearize(src);
193 }
194 }
195 #endif /* CPERF_LINEARIZATION_ENABLE */
196 rte_mempool_put_bulk(state->ctx->pool, (void **)ops,
197 burst_size);
198 }
199
200 return 0;
201 }
202
203 /* allocate and build ops (no free) */
204 static int
pmd_cyclecount_build_ops(struct pmd_cyclecount_state * state,uint32_t iter_ops_needed,uint16_t test_burst_size)205 pmd_cyclecount_build_ops(struct pmd_cyclecount_state *state,
206 uint32_t iter_ops_needed, uint16_t test_burst_size)
207 {
208 uint32_t cur_iter_op;
209 uint32_t imix_idx = 0;
210
211 for (cur_iter_op = 0; cur_iter_op < iter_ops_needed;
212 cur_iter_op += test_burst_size) {
213 uint32_t burst_size = RTE_MIN(
214 iter_ops_needed - cur_iter_op, test_burst_size);
215 struct rte_crypto_op **ops = &state->ctx->ops[cur_iter_op];
216
217 /* Allocate objects containing crypto operations and mbufs */
218 if (rte_mempool_get_bulk(state->ctx->pool, (void **)ops,
219 burst_size) != 0) {
220 RTE_LOG(ERR, USER1,
221 "Failed to allocate more crypto operations "
222 "from the crypto operation pool.\n"
223 "Consider increasing the pool size "
224 "with --pool-sz\n");
225 return -1;
226 }
227
228 /* Setup crypto op, attach mbuf etc */
229 (state->ctx->populate_ops)(ops,
230 state->ctx->src_buf_offset,
231 state->ctx->dst_buf_offset,
232 burst_size,
233 state->ctx->sess, state->opts,
234 state->ctx->test_vector, iv_offset,
235 &imix_idx);
236 }
237 return 0;
238 }
239
240 /* benchmark enqueue, returns number of ops enqueued */
241 static uint32_t
pmd_cyclecount_bench_enq(struct pmd_cyclecount_state * state,uint32_t iter_ops_needed,uint16_t test_burst_size)242 pmd_cyclecount_bench_enq(struct pmd_cyclecount_state *state,
243 uint32_t iter_ops_needed, uint16_t test_burst_size)
244 {
245 /* Enqueue full descriptor ring of ops on crypto device */
246 uint32_t cur_iter_op = 0;
247 while (cur_iter_op < iter_ops_needed) {
248 uint32_t burst_size = RTE_MIN(iter_ops_needed - cur_iter_op,
249 test_burst_size);
250 struct rte_crypto_op **ops = &state->ctx->ops[cur_iter_op];
251 uint32_t burst_enqd;
252
253 burst_enqd = rte_cryptodev_enqueue_burst(state->ctx->dev_id,
254 state->ctx->qp_id, ops, burst_size);
255
256 /* if we couldn't enqueue anything, the queue is full */
257 if (!burst_enqd) {
258 /* don't try to dequeue anything we didn't enqueue */
259 return cur_iter_op;
260 }
261
262 if (burst_enqd < burst_size)
263 state->ops_enq_retries++;
264 state->ops_enqd += burst_enqd;
265 cur_iter_op += burst_enqd;
266 }
267 return iter_ops_needed;
268 }
269
270 /* benchmark dequeue */
271 static void
pmd_cyclecount_bench_deq(struct pmd_cyclecount_state * state,uint32_t iter_ops_needed,uint16_t test_burst_size)272 pmd_cyclecount_bench_deq(struct pmd_cyclecount_state *state,
273 uint32_t iter_ops_needed, uint16_t test_burst_size)
274 {
275 /* Dequeue full descriptor ring of ops on crypto device */
276 uint32_t cur_iter_op = 0;
277 while (cur_iter_op < iter_ops_needed) {
278 uint32_t burst_size = RTE_MIN(iter_ops_needed - cur_iter_op,
279 test_burst_size);
280 struct rte_crypto_op **ops_processed =
281 &state->ctx->ops[cur_iter_op];
282 uint32_t burst_deqd;
283
284 burst_deqd = rte_cryptodev_dequeue_burst(state->ctx->dev_id,
285 state->ctx->qp_id, ops_processed, burst_size);
286
287 if (burst_deqd < burst_size)
288 state->ops_deq_retries++;
289 state->ops_deqd += burst_deqd;
290 cur_iter_op += burst_deqd;
291 }
292 }
293
294 /* run benchmark per burst size */
295 static inline int
pmd_cyclecount_bench_burst_sz(struct pmd_cyclecount_state * state,uint16_t test_burst_size)296 pmd_cyclecount_bench_burst_sz(
297 struct pmd_cyclecount_state *state, uint16_t test_burst_size)
298 {
299 uint64_t tsc_start;
300 uint64_t tsc_end;
301 uint64_t tsc_op;
302 uint64_t tsc_enq;
303 uint64_t tsc_deq;
304 uint32_t cur_op;
305
306 /* reset all counters */
307 tsc_enq = 0;
308 tsc_deq = 0;
309 state->ops_enqd = 0;
310 state->ops_enq_retries = 0;
311 state->ops_deqd = 0;
312 state->ops_deq_retries = 0;
313
314 /*
315 * Benchmark crypto op alloc-build-free separately.
316 */
317 tsc_start = rte_rdtsc_precise();
318
319 for (cur_op = 0; cur_op < state->opts->total_ops;
320 cur_op += state->opts->nb_descriptors) {
321 if (unlikely(pmd_cyclecount_bench_ops(
322 state, cur_op, test_burst_size)))
323 return -1;
324 }
325
326 tsc_end = rte_rdtsc_precise();
327 tsc_op = tsc_end - tsc_start;
328
329
330 /*
331 * Hardware acceleration cyclecount benchmarking loop.
332 *
333 * We're benchmarking raw enq/deq performance by filling up the device
334 * queue, so we never get any failed enqs unless the driver won't accept
335 * the exact number of descriptors we requested, or the driver won't
336 * wrap around the end of the TX ring. However, since we're only
337 * dequeueing once we've filled up the queue, we have to benchmark it
338 * piecemeal and then average out the results.
339 */
340 cur_op = 0;
341 while (cur_op < state->opts->total_ops) {
342 uint32_t iter_ops_left = state->opts->total_ops - cur_op;
343 uint32_t iter_ops_needed = RTE_MIN(
344 state->opts->nb_descriptors, iter_ops_left);
345 uint32_t iter_ops_allocd = iter_ops_needed;
346
347 /* allocate and build ops */
348 if (unlikely(pmd_cyclecount_build_ops(state, iter_ops_needed,
349 test_burst_size)))
350 return -1;
351
352 tsc_start = rte_rdtsc_precise();
353
354 /* fill up TX ring */
355 iter_ops_needed = pmd_cyclecount_bench_enq(state,
356 iter_ops_needed, test_burst_size);
357
358 tsc_end = rte_rdtsc_precise();
359
360 tsc_enq += tsc_end - tsc_start;
361
362 /* allow for HW to catch up */
363 if (state->delay)
364 rte_delay_us_block(state->delay);
365
366 tsc_start = rte_rdtsc_precise();
367
368 /* drain RX ring */
369 pmd_cyclecount_bench_deq(state, iter_ops_needed,
370 test_burst_size);
371
372 tsc_end = rte_rdtsc_precise();
373
374 tsc_deq += tsc_end - tsc_start;
375
376 cur_op += iter_ops_needed;
377
378 /*
379 * we may not have processed all ops that we allocated, so
380 * free everything we've allocated.
381 */
382 rte_mempool_put_bulk(state->ctx->pool,
383 (void **)state->ctx->ops, iter_ops_allocd);
384 }
385
386 state->cycles_per_build = (double)tsc_op / state->opts->total_ops;
387 state->cycles_per_enq = (double)tsc_enq / state->ops_enqd;
388 state->cycles_per_deq = (double)tsc_deq / state->ops_deqd;
389
390 return 0;
391 }
392
393 int
cperf_pmd_cyclecount_test_runner(void * test_ctx)394 cperf_pmd_cyclecount_test_runner(void *test_ctx)
395 {
396 struct pmd_cyclecount_state state = {0};
397 const struct cperf_options *opts;
398 uint16_t test_burst_size;
399 uint8_t burst_size_idx = 0;
400
401 state.ctx = test_ctx;
402 opts = state.ctx->options;
403 state.opts = opts;
404 state.lcore = rte_lcore_id();
405 state.linearize = 0;
406
407 static rte_atomic16_t display_once = RTE_ATOMIC16_INIT(0);
408 static bool warmup = true;
409
410 /*
411 * We need a small delay to allow for hardware to process all the crypto
412 * operations. We can't automatically figure out what the delay should
413 * be, so we leave it up to the user (by default it's 0).
414 */
415 state.delay = 1000 * opts->pmdcc_delay;
416
417 #ifdef CPERF_LINEARIZATION_ENABLE
418 struct rte_cryptodev_info dev_info;
419
420 /* Check if source mbufs require coalescing */
421 if (opts->segments_sz < ctx->options->max_buffer_size) {
422 rte_cryptodev_info_get(state.ctx->dev_id, &dev_info);
423 if ((dev_info.feature_flags &
424 RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) ==
425 0) {
426 state.linearize = 1;
427 }
428 }
429 #endif /* CPERF_LINEARIZATION_ENABLE */
430
431 state.ctx->lcore_id = state.lcore;
432
433 /* Get first size from range or list */
434 if (opts->inc_burst_size != 0)
435 test_burst_size = opts->min_burst_size;
436 else
437 test_burst_size = opts->burst_size_list[0];
438
439 while (test_burst_size <= opts->max_burst_size) {
440 /* do a benchmark run */
441 if (pmd_cyclecount_bench_burst_sz(&state, test_burst_size))
442 return -1;
443
444 /*
445 * First run is always a warm up run.
446 */
447 if (warmup) {
448 warmup = false;
449 continue;
450 }
451
452 if (!opts->csv) {
453 if (rte_atomic16_test_and_set(&display_once))
454 printf(PRETTY_HDR_FMT, "lcore id", "Buf Size",
455 "Burst Size", "Enqueued",
456 "Dequeued", "Enq Retries",
457 "Deq Retries", "Cycles/Op",
458 "Cycles/Enq", "Cycles/Deq");
459
460 printf(PRETTY_LINE_FMT, state.ctx->lcore_id,
461 opts->test_buffer_size, test_burst_size,
462 state.ops_enqd, state.ops_deqd,
463 state.ops_enq_retries,
464 state.ops_deq_retries,
465 state.cycles_per_build,
466 state.cycles_per_enq,
467 state.cycles_per_deq);
468 } else {
469 if (rte_atomic16_test_and_set(&display_once))
470 printf(CSV_HDR_FMT, "# lcore id", "Buf Size",
471 "Burst Size", "Enqueued",
472 "Dequeued", "Enq Retries",
473 "Deq Retries", "Cycles/Op",
474 "Cycles/Enq", "Cycles/Deq");
475
476 printf(CSV_LINE_FMT, state.ctx->lcore_id,
477 opts->test_buffer_size, test_burst_size,
478 state.ops_enqd, state.ops_deqd,
479 state.ops_enq_retries,
480 state.ops_deq_retries,
481 state.cycles_per_build,
482 state.cycles_per_enq,
483 state.cycles_per_deq);
484 }
485
486 /* Get next size from range or list */
487 if (opts->inc_burst_size != 0)
488 test_burst_size += opts->inc_burst_size;
489 else {
490 if (++burst_size_idx == opts->burst_size_count)
491 break;
492 test_burst_size = opts->burst_size_list[burst_size_idx];
493 }
494 }
495
496 return 0;
497 }
498
499 void
cperf_pmd_cyclecount_test_destructor(void * arg)500 cperf_pmd_cyclecount_test_destructor(void *arg)
501 {
502 struct cperf_pmd_cyclecount_ctx *ctx = arg;
503
504 if (ctx == NULL)
505 return;
506
507 cperf_pmd_cyclecount_test_free(ctx);
508 }
509