1 //===--- CloneDetection.cpp - Finds code clones in an AST -------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// This file implements classes for searching and analyzing source code clones.
11 ///
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Analysis/CloneDetection.h"
15
16 #include "clang/AST/DataCollection.h"
17 #include "clang/AST/DeclTemplate.h"
18 #include "llvm/Support/MD5.h"
19 #include "llvm/Support/Path.h"
20
21 using namespace clang;
22
StmtSequence(const CompoundStmt * Stmt,const Decl * D,unsigned StartIndex,unsigned EndIndex)23 StmtSequence::StmtSequence(const CompoundStmt *Stmt, const Decl *D,
24 unsigned StartIndex, unsigned EndIndex)
25 : S(Stmt), D(D), StartIndex(StartIndex), EndIndex(EndIndex) {
26 assert(Stmt && "Stmt must not be a nullptr");
27 assert(StartIndex < EndIndex && "Given array should not be empty");
28 assert(EndIndex <= Stmt->size() && "Given array too big for this Stmt");
29 }
30
StmtSequence(const Stmt * Stmt,const Decl * D)31 StmtSequence::StmtSequence(const Stmt *Stmt, const Decl *D)
32 : S(Stmt), D(D), StartIndex(0), EndIndex(0) {}
33
StmtSequence()34 StmtSequence::StmtSequence()
35 : S(nullptr), D(nullptr), StartIndex(0), EndIndex(0) {}
36
contains(const StmtSequence & Other) const37 bool StmtSequence::contains(const StmtSequence &Other) const {
38 // If both sequences reside in different declarations, they can never contain
39 // each other.
40 if (D != Other.D)
41 return false;
42
43 const SourceManager &SM = getASTContext().getSourceManager();
44
45 // Otherwise check if the start and end locations of the current sequence
46 // surround the other sequence.
47 bool StartIsInBounds =
48 SM.isBeforeInTranslationUnit(getBeginLoc(), Other.getBeginLoc()) ||
49 getBeginLoc() == Other.getBeginLoc();
50 if (!StartIsInBounds)
51 return false;
52
53 bool EndIsInBounds =
54 SM.isBeforeInTranslationUnit(Other.getEndLoc(), getEndLoc()) ||
55 Other.getEndLoc() == getEndLoc();
56 return EndIsInBounds;
57 }
58
begin() const59 StmtSequence::iterator StmtSequence::begin() const {
60 if (!holdsSequence()) {
61 return &S;
62 }
63 auto CS = cast<CompoundStmt>(S);
64 return CS->body_begin() + StartIndex;
65 }
66
end() const67 StmtSequence::iterator StmtSequence::end() const {
68 if (!holdsSequence()) {
69 return reinterpret_cast<StmtSequence::iterator>(&S) + 1;
70 }
71 auto CS = cast<CompoundStmt>(S);
72 return CS->body_begin() + EndIndex;
73 }
74
getASTContext() const75 ASTContext &StmtSequence::getASTContext() const {
76 assert(D);
77 return D->getASTContext();
78 }
79
getBeginLoc() const80 SourceLocation StmtSequence::getBeginLoc() const {
81 return front()->getBeginLoc();
82 }
83
getEndLoc() const84 SourceLocation StmtSequence::getEndLoc() const { return back()->getEndLoc(); }
85
getSourceRange() const86 SourceRange StmtSequence::getSourceRange() const {
87 return SourceRange(getBeginLoc(), getEndLoc());
88 }
89
analyzeCodeBody(const Decl * D)90 void CloneDetector::analyzeCodeBody(const Decl *D) {
91 assert(D);
92 assert(D->hasBody());
93
94 Sequences.push_back(StmtSequence(D->getBody(), D));
95 }
96
97 /// Returns true if and only if \p Stmt contains at least one other
98 /// sequence in the \p Group.
containsAnyInGroup(StmtSequence & Seq,CloneDetector::CloneGroup & Group)99 static bool containsAnyInGroup(StmtSequence &Seq,
100 CloneDetector::CloneGroup &Group) {
101 for (StmtSequence &GroupSeq : Group) {
102 if (Seq.contains(GroupSeq))
103 return true;
104 }
105 return false;
106 }
107
108 /// Returns true if and only if all sequences in \p OtherGroup are
109 /// contained by a sequence in \p Group.
containsGroup(CloneDetector::CloneGroup & Group,CloneDetector::CloneGroup & OtherGroup)110 static bool containsGroup(CloneDetector::CloneGroup &Group,
111 CloneDetector::CloneGroup &OtherGroup) {
112 // We have less sequences in the current group than we have in the other,
113 // so we will never fulfill the requirement for returning true. This is only
114 // possible because we know that a sequence in Group can contain at most
115 // one sequence in OtherGroup.
116 if (Group.size() < OtherGroup.size())
117 return false;
118
119 for (StmtSequence &Stmt : Group) {
120 if (!containsAnyInGroup(Stmt, OtherGroup))
121 return false;
122 }
123 return true;
124 }
125
constrain(std::vector<CloneDetector::CloneGroup> & Result)126 void OnlyLargestCloneConstraint::constrain(
127 std::vector<CloneDetector::CloneGroup> &Result) {
128 std::vector<unsigned> IndexesToRemove;
129
130 // Compare every group in the result with the rest. If one groups contains
131 // another group, we only need to return the bigger group.
132 // Note: This doesn't scale well, so if possible avoid calling any heavy
133 // function from this loop to minimize the performance impact.
134 for (unsigned i = 0; i < Result.size(); ++i) {
135 for (unsigned j = 0; j < Result.size(); ++j) {
136 // Don't compare a group with itself.
137 if (i == j)
138 continue;
139
140 if (containsGroup(Result[j], Result[i])) {
141 IndexesToRemove.push_back(i);
142 break;
143 }
144 }
145 }
146
147 // Erasing a list of indexes from the vector should be done with decreasing
148 // indexes. As IndexesToRemove is constructed with increasing values, we just
149 // reverse iterate over it to get the desired order.
150 for (auto I = IndexesToRemove.rbegin(); I != IndexesToRemove.rend(); ++I) {
151 Result.erase(Result.begin() + *I);
152 }
153 }
154
isAutoGenerated(const CloneDetector::CloneGroup & Group)155 bool FilenamePatternConstraint::isAutoGenerated(
156 const CloneDetector::CloneGroup &Group) {
157 std::string Error;
158 if (IgnoredFilesPattern.empty() || Group.empty() ||
159 !IgnoredFilesRegex->isValid(Error))
160 return false;
161
162 for (const StmtSequence &S : Group) {
163 const SourceManager &SM = S.getASTContext().getSourceManager();
164 StringRef Filename = llvm::sys::path::filename(
165 SM.getFilename(S.getContainingDecl()->getLocation()));
166 if (IgnoredFilesRegex->match(Filename))
167 return true;
168 }
169
170 return false;
171 }
172
173 /// This class defines what a type II code clone is: If it collects for two
174 /// statements the same data, then those two statements are considered to be
175 /// clones of each other.
176 ///
177 /// All collected data is forwarded to the given data consumer of the type T.
178 /// The data consumer class needs to provide a member method with the signature:
179 /// update(StringRef Str)
180 namespace {
181 template <class T>
182 class CloneTypeIIStmtDataCollector
183 : public ConstStmtVisitor<CloneTypeIIStmtDataCollector<T>> {
184 ASTContext &Context;
185 /// The data sink to which all data is forwarded.
186 T &DataConsumer;
187
addData(const Ty & Data)188 template <class Ty> void addData(const Ty &Data) {
189 data_collection::addDataToConsumer(DataConsumer, Data);
190 }
191
192 public:
CloneTypeIIStmtDataCollector(const Stmt * S,ASTContext & Context,T & DataConsumer)193 CloneTypeIIStmtDataCollector(const Stmt *S, ASTContext &Context,
194 T &DataConsumer)
195 : Context(Context), DataConsumer(DataConsumer) {
196 this->Visit(S);
197 }
198
199 // Define a visit method for each class to collect data and subsequently visit
200 // all parent classes. This uses a template so that custom visit methods by us
201 // take precedence.
202 #define DEF_ADD_DATA(CLASS, CODE) \
203 template <class = void> void Visit##CLASS(const CLASS *S) { \
204 CODE; \
205 ConstStmtVisitor<CloneTypeIIStmtDataCollector<T>>::Visit##CLASS(S); \
206 }
207
208 #include "clang/AST/StmtDataCollectors.inc"
209
210 // Type II clones ignore variable names and literals, so let's skip them.
211 #define SKIP(CLASS) \
212 void Visit##CLASS(const CLASS *S) { \
213 ConstStmtVisitor<CloneTypeIIStmtDataCollector<T>>::Visit##CLASS(S); \
214 }
215 SKIP(DeclRefExpr)
216 SKIP(MemberExpr)
217 SKIP(IntegerLiteral)
218 SKIP(FloatingLiteral)
219 SKIP(StringLiteral)
220 SKIP(CXXBoolLiteralExpr)
221 SKIP(CharacterLiteral)
222 #undef SKIP
223 };
224 } // end anonymous namespace
225
createHash(llvm::MD5 & Hash)226 static size_t createHash(llvm::MD5 &Hash) {
227 size_t HashCode;
228
229 // Create the final hash code for the current Stmt.
230 llvm::MD5::MD5Result HashResult;
231 Hash.final(HashResult);
232
233 // Copy as much as possible of the generated hash code to the Stmt's hash
234 // code.
235 std::memcpy(&HashCode, &HashResult,
236 std::min(sizeof(HashCode), sizeof(HashResult)));
237
238 return HashCode;
239 }
240
241 /// Generates and saves a hash code for the given Stmt.
242 /// \param S The given Stmt.
243 /// \param D The Decl containing S.
244 /// \param StmtsByHash Output parameter that will contain the hash codes for
245 /// each StmtSequence in the given Stmt.
246 /// \return The hash code of the given Stmt.
247 ///
248 /// If the given Stmt is a CompoundStmt, this method will also generate
249 /// hashes for all possible StmtSequences in the children of this Stmt.
250 static size_t
saveHash(const Stmt * S,const Decl * D,std::vector<std::pair<size_t,StmtSequence>> & StmtsByHash)251 saveHash(const Stmt *S, const Decl *D,
252 std::vector<std::pair<size_t, StmtSequence>> &StmtsByHash) {
253 llvm::MD5 Hash;
254 ASTContext &Context = D->getASTContext();
255
256 CloneTypeIIStmtDataCollector<llvm::MD5>(S, Context, Hash);
257
258 auto CS = dyn_cast<CompoundStmt>(S);
259 SmallVector<size_t, 8> ChildHashes;
260
261 for (const Stmt *Child : S->children()) {
262 if (Child == nullptr) {
263 ChildHashes.push_back(0);
264 continue;
265 }
266 size_t ChildHash = saveHash(Child, D, StmtsByHash);
267 Hash.update(
268 StringRef(reinterpret_cast<char *>(&ChildHash), sizeof(ChildHash)));
269 ChildHashes.push_back(ChildHash);
270 }
271
272 if (CS) {
273 // If we're in a CompoundStmt, we hash all possible combinations of child
274 // statements to find clones in those subsequences.
275 // We first go through every possible starting position of a subsequence.
276 for (unsigned Pos = 0; Pos < CS->size(); ++Pos) {
277 // Then we try all possible lengths this subsequence could have and
278 // reuse the same hash object to make sure we only hash every child
279 // hash exactly once.
280 llvm::MD5 Hash;
281 for (unsigned Length = 1; Length <= CS->size() - Pos; ++Length) {
282 // Grab the current child hash and put it into our hash. We do
283 // -1 on the index because we start counting the length at 1.
284 size_t ChildHash = ChildHashes[Pos + Length - 1];
285 Hash.update(
286 StringRef(reinterpret_cast<char *>(&ChildHash), sizeof(ChildHash)));
287 // If we have at least two elements in our subsequence, we can start
288 // saving it.
289 if (Length > 1) {
290 llvm::MD5 SubHash = Hash;
291 StmtsByHash.push_back(std::make_pair(
292 createHash(SubHash), StmtSequence(CS, D, Pos, Pos + Length)));
293 }
294 }
295 }
296 }
297
298 size_t HashCode = createHash(Hash);
299 StmtsByHash.push_back(std::make_pair(HashCode, StmtSequence(S, D)));
300 return HashCode;
301 }
302
303 namespace {
304 /// Wrapper around FoldingSetNodeID that it can be used as the template
305 /// argument of the StmtDataCollector.
306 class FoldingSetNodeIDWrapper {
307
308 llvm::FoldingSetNodeID &FS;
309
310 public:
FoldingSetNodeIDWrapper(llvm::FoldingSetNodeID & FS)311 FoldingSetNodeIDWrapper(llvm::FoldingSetNodeID &FS) : FS(FS) {}
312
update(StringRef Str)313 void update(StringRef Str) { FS.AddString(Str); }
314 };
315 } // end anonymous namespace
316
317 /// Writes the relevant data from all statements and child statements
318 /// in the given StmtSequence into the given FoldingSetNodeID.
CollectStmtSequenceData(const StmtSequence & Sequence,FoldingSetNodeIDWrapper & OutputData)319 static void CollectStmtSequenceData(const StmtSequence &Sequence,
320 FoldingSetNodeIDWrapper &OutputData) {
321 for (const Stmt *S : Sequence) {
322 CloneTypeIIStmtDataCollector<FoldingSetNodeIDWrapper>(
323 S, Sequence.getASTContext(), OutputData);
324
325 for (const Stmt *Child : S->children()) {
326 if (!Child)
327 continue;
328
329 CollectStmtSequenceData(StmtSequence(Child, Sequence.getContainingDecl()),
330 OutputData);
331 }
332 }
333 }
334
335 /// Returns true if both sequences are clones of each other.
areSequencesClones(const StmtSequence & LHS,const StmtSequence & RHS)336 static bool areSequencesClones(const StmtSequence &LHS,
337 const StmtSequence &RHS) {
338 // We collect the data from all statements in the sequence as we did before
339 // when generating a hash value for each sequence. But this time we don't
340 // hash the collected data and compare the whole data set instead. This
341 // prevents any false-positives due to hash code collisions.
342 llvm::FoldingSetNodeID DataLHS, DataRHS;
343 FoldingSetNodeIDWrapper LHSWrapper(DataLHS);
344 FoldingSetNodeIDWrapper RHSWrapper(DataRHS);
345
346 CollectStmtSequenceData(LHS, LHSWrapper);
347 CollectStmtSequenceData(RHS, RHSWrapper);
348
349 return DataLHS == DataRHS;
350 }
351
constrain(std::vector<CloneDetector::CloneGroup> & Sequences)352 void RecursiveCloneTypeIIHashConstraint::constrain(
353 std::vector<CloneDetector::CloneGroup> &Sequences) {
354 // FIXME: Maybe we can do this in-place and don't need this additional vector.
355 std::vector<CloneDetector::CloneGroup> Result;
356
357 for (CloneDetector::CloneGroup &Group : Sequences) {
358 // We assume in the following code that the Group is non-empty, so we
359 // skip all empty groups.
360 if (Group.empty())
361 continue;
362
363 std::vector<std::pair<size_t, StmtSequence>> StmtsByHash;
364
365 // Generate hash codes for all children of S and save them in StmtsByHash.
366 for (const StmtSequence &S : Group) {
367 saveHash(S.front(), S.getContainingDecl(), StmtsByHash);
368 }
369
370 // Sort hash_codes in StmtsByHash.
371 std::stable_sort(StmtsByHash.begin(), StmtsByHash.end(),
372 [](std::pair<size_t, StmtSequence> LHS,
373 std::pair<size_t, StmtSequence> RHS) {
374 return LHS.first < RHS.first;
375 });
376
377 // Check for each StmtSequence if its successor has the same hash value.
378 // We don't check the last StmtSequence as it has no successor.
379 // Note: The 'size - 1 ' in the condition is safe because we check for an
380 // empty Group vector at the beginning of this function.
381 for (unsigned i = 0; i < StmtsByHash.size() - 1; ++i) {
382 const auto Current = StmtsByHash[i];
383
384 // It's likely that we just found a sequence of StmtSequences that
385 // represent a CloneGroup, so we create a new group and start checking and
386 // adding the StmtSequences in this sequence.
387 CloneDetector::CloneGroup NewGroup;
388
389 size_t PrototypeHash = Current.first;
390
391 for (; i < StmtsByHash.size(); ++i) {
392 // A different hash value means we have reached the end of the sequence.
393 if (PrototypeHash != StmtsByHash[i].first) {
394 // The current sequence could be the start of a new CloneGroup. So we
395 // decrement i so that we visit it again in the outer loop.
396 // Note: i can never be 0 at this point because we are just comparing
397 // the hash of the Current StmtSequence with itself in the 'if' above.
398 assert(i != 0);
399 --i;
400 break;
401 }
402 // Same hash value means we should add the StmtSequence to the current
403 // group.
404 NewGroup.push_back(StmtsByHash[i].second);
405 }
406
407 // We created a new clone group with matching hash codes and move it to
408 // the result vector.
409 Result.push_back(NewGroup);
410 }
411 }
412 // Sequences is the output parameter, so we copy our result into it.
413 Sequences = Result;
414 }
415
constrain(std::vector<CloneDetector::CloneGroup> & Sequences)416 void RecursiveCloneTypeIIVerifyConstraint::constrain(
417 std::vector<CloneDetector::CloneGroup> &Sequences) {
418 CloneConstraint::splitCloneGroups(
419 Sequences, [](const StmtSequence &A, const StmtSequence &B) {
420 return areSequencesClones(A, B);
421 });
422 }
423
calculateStmtComplexity(const StmtSequence & Seq,std::size_t Limit,const std::string & ParentMacroStack)424 size_t MinComplexityConstraint::calculateStmtComplexity(
425 const StmtSequence &Seq, std::size_t Limit,
426 const std::string &ParentMacroStack) {
427 if (Seq.empty())
428 return 0;
429
430 size_t Complexity = 1;
431
432 ASTContext &Context = Seq.getASTContext();
433
434 // Look up what macros expanded into the current statement.
435 std::string MacroStack =
436 data_collection::getMacroStack(Seq.getBeginLoc(), Context);
437
438 // First, check if ParentMacroStack is not empty which means we are currently
439 // dealing with a parent statement which was expanded from a macro.
440 // If this parent statement was expanded from the same macros as this
441 // statement, we reduce the initial complexity of this statement to zero.
442 // This causes that a group of statements that were generated by a single
443 // macro expansion will only increase the total complexity by one.
444 // Note: This is not the final complexity of this statement as we still
445 // add the complexity of the child statements to the complexity value.
446 if (!ParentMacroStack.empty() && MacroStack == ParentMacroStack) {
447 Complexity = 0;
448 }
449
450 // Iterate over the Stmts in the StmtSequence and add their complexity values
451 // to the current complexity value.
452 if (Seq.holdsSequence()) {
453 for (const Stmt *S : Seq) {
454 Complexity += calculateStmtComplexity(
455 StmtSequence(S, Seq.getContainingDecl()), Limit, MacroStack);
456 if (Complexity >= Limit)
457 return Limit;
458 }
459 } else {
460 for (const Stmt *S : Seq.front()->children()) {
461 Complexity += calculateStmtComplexity(
462 StmtSequence(S, Seq.getContainingDecl()), Limit, MacroStack);
463 if (Complexity >= Limit)
464 return Limit;
465 }
466 }
467 return Complexity;
468 }
469
constrain(std::vector<CloneDetector::CloneGroup> & CloneGroups)470 void MatchingVariablePatternConstraint::constrain(
471 std::vector<CloneDetector::CloneGroup> &CloneGroups) {
472 CloneConstraint::splitCloneGroups(
473 CloneGroups, [](const StmtSequence &A, const StmtSequence &B) {
474 VariablePattern PatternA(A);
475 VariablePattern PatternB(B);
476 return PatternA.countPatternDifferences(PatternB) == 0;
477 });
478 }
479
splitCloneGroups(std::vector<CloneDetector::CloneGroup> & CloneGroups,llvm::function_ref<bool (const StmtSequence &,const StmtSequence &)> Compare)480 void CloneConstraint::splitCloneGroups(
481 std::vector<CloneDetector::CloneGroup> &CloneGroups,
482 llvm::function_ref<bool(const StmtSequence &, const StmtSequence &)>
483 Compare) {
484 std::vector<CloneDetector::CloneGroup> Result;
485 for (auto &HashGroup : CloneGroups) {
486 // Contains all indexes in HashGroup that were already added to a
487 // CloneGroup.
488 std::vector<char> Indexes;
489 Indexes.resize(HashGroup.size());
490
491 for (unsigned i = 0; i < HashGroup.size(); ++i) {
492 // Skip indexes that are already part of a CloneGroup.
493 if (Indexes[i])
494 continue;
495
496 // Pick the first unhandled StmtSequence and consider it as the
497 // beginning
498 // of a new CloneGroup for now.
499 // We don't add i to Indexes because we never iterate back.
500 StmtSequence Prototype = HashGroup[i];
501 CloneDetector::CloneGroup PotentialGroup = {Prototype};
502 ++Indexes[i];
503
504 // Check all following StmtSequences for clones.
505 for (unsigned j = i + 1; j < HashGroup.size(); ++j) {
506 // Skip indexes that are already part of a CloneGroup.
507 if (Indexes[j])
508 continue;
509
510 // If a following StmtSequence belongs to our CloneGroup, we add it.
511 const StmtSequence &Candidate = HashGroup[j];
512
513 if (!Compare(Prototype, Candidate))
514 continue;
515
516 PotentialGroup.push_back(Candidate);
517 // Make sure we never visit this StmtSequence again.
518 ++Indexes[j];
519 }
520
521 // Otherwise, add it to the result and continue searching for more
522 // groups.
523 Result.push_back(PotentialGroup);
524 }
525
526 assert(llvm::all_of(Indexes, [](char c) { return c == 1; }));
527 }
528 CloneGroups = Result;
529 }
530
addVariableOccurence(const VarDecl * VarDecl,const Stmt * Mention)531 void VariablePattern::addVariableOccurence(const VarDecl *VarDecl,
532 const Stmt *Mention) {
533 // First check if we already reference this variable
534 for (size_t KindIndex = 0; KindIndex < Variables.size(); ++KindIndex) {
535 if (Variables[KindIndex] == VarDecl) {
536 // If yes, add a new occurrence that points to the existing entry in
537 // the Variables vector.
538 Occurences.emplace_back(KindIndex, Mention);
539 return;
540 }
541 }
542 // If this variable wasn't already referenced, add it to the list of
543 // referenced variables and add a occurrence that points to this new entry.
544 Occurences.emplace_back(Variables.size(), Mention);
545 Variables.push_back(VarDecl);
546 }
547
addVariables(const Stmt * S)548 void VariablePattern::addVariables(const Stmt *S) {
549 // Sometimes we get a nullptr (such as from IfStmts which often have nullptr
550 // children). We skip such statements as they don't reference any
551 // variables.
552 if (!S)
553 return;
554
555 // Check if S is a reference to a variable. If yes, add it to the pattern.
556 if (auto D = dyn_cast<DeclRefExpr>(S)) {
557 if (auto VD = dyn_cast<VarDecl>(D->getDecl()->getCanonicalDecl()))
558 addVariableOccurence(VD, D);
559 }
560
561 // Recursively check all children of the given statement.
562 for (const Stmt *Child : S->children()) {
563 addVariables(Child);
564 }
565 }
566
countPatternDifferences(const VariablePattern & Other,VariablePattern::SuspiciousClonePair * FirstMismatch)567 unsigned VariablePattern::countPatternDifferences(
568 const VariablePattern &Other,
569 VariablePattern::SuspiciousClonePair *FirstMismatch) {
570 unsigned NumberOfDifferences = 0;
571
572 assert(Other.Occurences.size() == Occurences.size());
573 for (unsigned i = 0; i < Occurences.size(); ++i) {
574 auto ThisOccurence = Occurences[i];
575 auto OtherOccurence = Other.Occurences[i];
576 if (ThisOccurence.KindID == OtherOccurence.KindID)
577 continue;
578
579 ++NumberOfDifferences;
580
581 // If FirstMismatch is not a nullptr, we need to store information about
582 // the first difference between the two patterns.
583 if (FirstMismatch == nullptr)
584 continue;
585
586 // Only proceed if we just found the first difference as we only store
587 // information about the first difference.
588 if (NumberOfDifferences != 1)
589 continue;
590
591 const VarDecl *FirstSuggestion = nullptr;
592 // If there is a variable available in the list of referenced variables
593 // which wouldn't break the pattern if it is used in place of the
594 // current variable, we provide this variable as the suggested fix.
595 if (OtherOccurence.KindID < Variables.size())
596 FirstSuggestion = Variables[OtherOccurence.KindID];
597
598 // Store information about the first clone.
599 FirstMismatch->FirstCloneInfo =
600 VariablePattern::SuspiciousClonePair::SuspiciousCloneInfo(
601 Variables[ThisOccurence.KindID], ThisOccurence.Mention,
602 FirstSuggestion);
603
604 // Same as above but with the other clone. We do this for both clones as
605 // we don't know which clone is the one containing the unintended
606 // pattern error.
607 const VarDecl *SecondSuggestion = nullptr;
608 if (ThisOccurence.KindID < Other.Variables.size())
609 SecondSuggestion = Other.Variables[ThisOccurence.KindID];
610
611 // Store information about the second clone.
612 FirstMismatch->SecondCloneInfo =
613 VariablePattern::SuspiciousClonePair::SuspiciousCloneInfo(
614 Other.Variables[OtherOccurence.KindID], OtherOccurence.Mention,
615 SecondSuggestion);
616
617 // SuspiciousClonePair guarantees that the first clone always has a
618 // suggested variable associated with it. As we know that one of the two
619 // clones in the pair always has suggestion, we swap the two clones
620 // in case the first clone has no suggested variable which means that
621 // the second clone has a suggested variable and should be first.
622 if (!FirstMismatch->FirstCloneInfo.Suggestion)
623 std::swap(FirstMismatch->FirstCloneInfo, FirstMismatch->SecondCloneInfo);
624
625 // This ensures that we always have at least one suggestion in a pair.
626 assert(FirstMismatch->FirstCloneInfo.Suggestion);
627 }
628
629 return NumberOfDifferences;
630 }
631