xref: /f-stack/dpdk/drivers/net/bnxt/bnxt_rxr.c (revision 2d9fd380)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2014-2018 Broadcom
3  * All rights reserved.
4  */
5 
6 #include <inttypes.h>
7 #include <stdbool.h>
8 
9 #include <rte_bitmap.h>
10 #include <rte_byteorder.h>
11 #include <rte_malloc.h>
12 #include <rte_memory.h>
13 
14 #include "bnxt.h"
15 #include "bnxt_reps.h"
16 #include "bnxt_ring.h"
17 #include "bnxt_rxr.h"
18 #include "bnxt_rxq.h"
19 #include "hsi_struct_def_dpdk.h"
20 #ifdef RTE_LIBRTE_IEEE1588
21 #include "bnxt_hwrm.h"
22 #endif
23 
24 #include <bnxt_tf_common.h>
25 #include <ulp_mark_mgr.h>
26 
27 /*
28  * RX Ring handling
29  */
30 
__bnxt_alloc_rx_data(struct rte_mempool * mb)31 static inline struct rte_mbuf *__bnxt_alloc_rx_data(struct rte_mempool *mb)
32 {
33 	struct rte_mbuf *data;
34 
35 	data = rte_mbuf_raw_alloc(mb);
36 
37 	return data;
38 }
39 
bnxt_alloc_rx_data(struct bnxt_rx_queue * rxq,struct bnxt_rx_ring_info * rxr,uint16_t prod)40 static inline int bnxt_alloc_rx_data(struct bnxt_rx_queue *rxq,
41 				     struct bnxt_rx_ring_info *rxr,
42 				     uint16_t prod)
43 {
44 	struct rx_prod_pkt_bd *rxbd = &rxr->rx_desc_ring[prod];
45 	struct rte_mbuf **rx_buf = &rxr->rx_buf_ring[prod];
46 	struct rte_mbuf *mbuf;
47 
48 	mbuf = __bnxt_alloc_rx_data(rxq->mb_pool);
49 	if (!mbuf) {
50 		rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
51 		return -ENOMEM;
52 	}
53 
54 	*rx_buf = mbuf;
55 	mbuf->data_off = RTE_PKTMBUF_HEADROOM;
56 
57 	rxbd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
58 
59 	return 0;
60 }
61 
bnxt_alloc_ag_data(struct bnxt_rx_queue * rxq,struct bnxt_rx_ring_info * rxr,uint16_t prod)62 static inline int bnxt_alloc_ag_data(struct bnxt_rx_queue *rxq,
63 				     struct bnxt_rx_ring_info *rxr,
64 				     uint16_t prod)
65 {
66 	struct rx_prod_pkt_bd *rxbd = &rxr->ag_desc_ring[prod];
67 	struct rte_mbuf **rx_buf = &rxr->ag_buf_ring[prod];
68 	struct rte_mbuf *mbuf;
69 
70 	if (rxbd == NULL) {
71 		PMD_DRV_LOG(ERR, "Jumbo Frame. rxbd is NULL\n");
72 		return -EINVAL;
73 	}
74 
75 	if (rx_buf == NULL) {
76 		PMD_DRV_LOG(ERR, "Jumbo Frame. rx_buf is NULL\n");
77 		return -EINVAL;
78 	}
79 
80 	mbuf = __bnxt_alloc_rx_data(rxq->mb_pool);
81 	if (!mbuf) {
82 		rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
83 		return -ENOMEM;
84 	}
85 
86 	*rx_buf = mbuf;
87 	mbuf->data_off = RTE_PKTMBUF_HEADROOM;
88 
89 	rxbd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
90 
91 	return 0;
92 }
93 
bnxt_reuse_rx_mbuf(struct bnxt_rx_ring_info * rxr,struct rte_mbuf * mbuf)94 static inline void bnxt_reuse_rx_mbuf(struct bnxt_rx_ring_info *rxr,
95 			       struct rte_mbuf *mbuf)
96 {
97 	uint16_t prod = RING_NEXT(rxr->rx_ring_struct, rxr->rx_prod);
98 	struct rte_mbuf **prod_rx_buf;
99 	struct rx_prod_pkt_bd *prod_bd;
100 
101 	prod_rx_buf = &rxr->rx_buf_ring[prod];
102 
103 	RTE_ASSERT(*prod_rx_buf == NULL);
104 	RTE_ASSERT(mbuf != NULL);
105 
106 	*prod_rx_buf = mbuf;
107 
108 	prod_bd = &rxr->rx_desc_ring[prod];
109 
110 	prod_bd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
111 
112 	rxr->rx_prod = prod;
113 }
114 
115 static inline
bnxt_consume_rx_buf(struct bnxt_rx_ring_info * rxr,uint16_t cons)116 struct rte_mbuf *bnxt_consume_rx_buf(struct bnxt_rx_ring_info *rxr,
117 				     uint16_t cons)
118 {
119 	struct rte_mbuf **cons_rx_buf;
120 	struct rte_mbuf *mbuf;
121 
122 	cons_rx_buf = &rxr->rx_buf_ring[cons];
123 	RTE_ASSERT(*cons_rx_buf != NULL);
124 	mbuf = *cons_rx_buf;
125 	*cons_rx_buf = NULL;
126 
127 	return mbuf;
128 }
129 
bnxt_tpa_start(struct bnxt_rx_queue * rxq,struct rx_tpa_start_cmpl * tpa_start,struct rx_tpa_start_cmpl_hi * tpa_start1)130 static void bnxt_tpa_start(struct bnxt_rx_queue *rxq,
131 			   struct rx_tpa_start_cmpl *tpa_start,
132 			   struct rx_tpa_start_cmpl_hi *tpa_start1)
133 {
134 	struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
135 	uint16_t agg_id;
136 	uint16_t data_cons;
137 	struct bnxt_tpa_info *tpa_info;
138 	struct rte_mbuf *mbuf;
139 
140 	agg_id = bnxt_tpa_start_agg_id(rxq->bp, tpa_start);
141 
142 	data_cons = tpa_start->opaque;
143 	tpa_info = &rxr->tpa_info[agg_id];
144 
145 	mbuf = bnxt_consume_rx_buf(rxr, data_cons);
146 
147 	bnxt_reuse_rx_mbuf(rxr, tpa_info->mbuf);
148 
149 	tpa_info->agg_count = 0;
150 	tpa_info->mbuf = mbuf;
151 	tpa_info->len = rte_le_to_cpu_32(tpa_start->len);
152 
153 	mbuf->data_off = RTE_PKTMBUF_HEADROOM;
154 	mbuf->nb_segs = 1;
155 	mbuf->next = NULL;
156 	mbuf->pkt_len = rte_le_to_cpu_32(tpa_start->len);
157 	mbuf->data_len = mbuf->pkt_len;
158 	mbuf->port = rxq->port_id;
159 	mbuf->ol_flags = PKT_RX_LRO;
160 	if (likely(tpa_start->flags_type &
161 		   rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS_RSS_VALID))) {
162 		mbuf->hash.rss = rte_le_to_cpu_32(tpa_start->rss_hash);
163 		mbuf->ol_flags |= PKT_RX_RSS_HASH;
164 	} else {
165 		mbuf->hash.fdir.id = rte_le_to_cpu_16(tpa_start1->cfa_code);
166 		mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
167 	}
168 	if (tpa_start1->flags2 &
169 	    rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS2_META_FORMAT_VLAN)) {
170 		mbuf->vlan_tci = rte_le_to_cpu_32(tpa_start1->metadata);
171 		mbuf->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
172 	}
173 	if (likely(tpa_start1->flags2 &
174 		   rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS2_L4_CS_CALC)))
175 		mbuf->ol_flags |= PKT_RX_L4_CKSUM_GOOD;
176 
177 	/* recycle next mbuf */
178 	data_cons = RING_NEXT(rxr->rx_ring_struct, data_cons);
179 	bnxt_reuse_rx_mbuf(rxr, bnxt_consume_rx_buf(rxr, data_cons));
180 }
181 
bnxt_agg_bufs_valid(struct bnxt_cp_ring_info * cpr,uint8_t agg_bufs,uint32_t raw_cp_cons)182 static int bnxt_agg_bufs_valid(struct bnxt_cp_ring_info *cpr,
183 		uint8_t agg_bufs, uint32_t raw_cp_cons)
184 {
185 	uint16_t last_cp_cons;
186 	struct rx_pkt_cmpl *agg_cmpl;
187 
188 	raw_cp_cons = ADV_RAW_CMP(raw_cp_cons, agg_bufs);
189 	last_cp_cons = RING_CMP(cpr->cp_ring_struct, raw_cp_cons);
190 	agg_cmpl = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[last_cp_cons];
191 	cpr->valid = FLIP_VALID(raw_cp_cons,
192 				cpr->cp_ring_struct->ring_mask,
193 				cpr->valid);
194 	return CMP_VALID(agg_cmpl, raw_cp_cons, cpr->cp_ring_struct);
195 }
196 
197 /* TPA consume agg buffer out of order, allocate connected data only */
bnxt_prod_ag_mbuf(struct bnxt_rx_queue * rxq)198 static int bnxt_prod_ag_mbuf(struct bnxt_rx_queue *rxq)
199 {
200 	struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
201 	uint16_t next = RING_NEXT(rxr->ag_ring_struct, rxr->ag_prod);
202 
203 	/* TODO batch allocation for better performance */
204 	while (rte_bitmap_get(rxr->ag_bitmap, next)) {
205 		if (unlikely(bnxt_alloc_ag_data(rxq, rxr, next))) {
206 			PMD_DRV_LOG(ERR,
207 				"agg mbuf alloc failed: prod=0x%x\n", next);
208 			break;
209 		}
210 		rte_bitmap_clear(rxr->ag_bitmap, next);
211 		rxr->ag_prod = next;
212 		next = RING_NEXT(rxr->ag_ring_struct, next);
213 	}
214 
215 	return 0;
216 }
217 
bnxt_rx_pages(struct bnxt_rx_queue * rxq,struct rte_mbuf * mbuf,uint32_t * tmp_raw_cons,uint8_t agg_buf,struct bnxt_tpa_info * tpa_info)218 static int bnxt_rx_pages(struct bnxt_rx_queue *rxq,
219 			 struct rte_mbuf *mbuf, uint32_t *tmp_raw_cons,
220 			 uint8_t agg_buf, struct bnxt_tpa_info *tpa_info)
221 {
222 	struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
223 	struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
224 	int i;
225 	uint16_t cp_cons, ag_cons;
226 	struct rx_pkt_cmpl *rxcmp;
227 	struct rte_mbuf *last = mbuf;
228 	bool is_thor_tpa = tpa_info && BNXT_CHIP_THOR(rxq->bp);
229 
230 	for (i = 0; i < agg_buf; i++) {
231 		struct rte_mbuf **ag_buf;
232 		struct rte_mbuf *ag_mbuf;
233 
234 		if (is_thor_tpa) {
235 			rxcmp = (void *)&tpa_info->agg_arr[i];
236 		} else {
237 			*tmp_raw_cons = NEXT_RAW_CMP(*tmp_raw_cons);
238 			cp_cons = RING_CMP(cpr->cp_ring_struct, *tmp_raw_cons);
239 			rxcmp = (struct rx_pkt_cmpl *)
240 					&cpr->cp_desc_ring[cp_cons];
241 		}
242 
243 #ifdef BNXT_DEBUG
244 		bnxt_dump_cmpl(cp_cons, rxcmp);
245 #endif
246 
247 		ag_cons = rxcmp->opaque;
248 		RTE_ASSERT(ag_cons <= rxr->ag_ring_struct->ring_mask);
249 		ag_buf = &rxr->ag_buf_ring[ag_cons];
250 		ag_mbuf = *ag_buf;
251 		RTE_ASSERT(ag_mbuf != NULL);
252 
253 		ag_mbuf->data_len = rte_le_to_cpu_16(rxcmp->len);
254 
255 		mbuf->nb_segs++;
256 		mbuf->pkt_len += ag_mbuf->data_len;
257 
258 		last->next = ag_mbuf;
259 		last = ag_mbuf;
260 
261 		*ag_buf = NULL;
262 
263 		/*
264 		 * As aggregation buffer consumed out of order in TPA module,
265 		 * use bitmap to track freed slots to be allocated and notified
266 		 * to NIC
267 		 */
268 		rte_bitmap_set(rxr->ag_bitmap, ag_cons);
269 	}
270 	bnxt_prod_ag_mbuf(rxq);
271 	return 0;
272 }
273 
bnxt_tpa_end(struct bnxt_rx_queue * rxq,uint32_t * raw_cp_cons,struct rx_tpa_end_cmpl * tpa_end,struct rx_tpa_end_cmpl_hi * tpa_end1)274 static inline struct rte_mbuf *bnxt_tpa_end(
275 		struct bnxt_rx_queue *rxq,
276 		uint32_t *raw_cp_cons,
277 		struct rx_tpa_end_cmpl *tpa_end,
278 		struct rx_tpa_end_cmpl_hi *tpa_end1)
279 {
280 	struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
281 	struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
282 	uint16_t agg_id;
283 	struct rte_mbuf *mbuf;
284 	uint8_t agg_bufs;
285 	uint8_t payload_offset;
286 	struct bnxt_tpa_info *tpa_info;
287 
288 	if (BNXT_CHIP_THOR(rxq->bp)) {
289 		struct rx_tpa_v2_end_cmpl *th_tpa_end;
290 		struct rx_tpa_v2_end_cmpl_hi *th_tpa_end1;
291 
292 		th_tpa_end = (void *)tpa_end;
293 		th_tpa_end1 = (void *)tpa_end1;
294 		agg_id = BNXT_TPA_END_AGG_ID_TH(th_tpa_end);
295 		agg_bufs = BNXT_TPA_END_AGG_BUFS_TH(th_tpa_end1);
296 		payload_offset = th_tpa_end1->payload_offset;
297 	} else {
298 		agg_id = BNXT_TPA_END_AGG_ID(tpa_end);
299 		agg_bufs = BNXT_TPA_END_AGG_BUFS(tpa_end);
300 		if (!bnxt_agg_bufs_valid(cpr, agg_bufs, *raw_cp_cons))
301 			return NULL;
302 		payload_offset = tpa_end->payload_offset;
303 	}
304 
305 	tpa_info = &rxr->tpa_info[agg_id];
306 	mbuf = tpa_info->mbuf;
307 	RTE_ASSERT(mbuf != NULL);
308 
309 	if (agg_bufs) {
310 		bnxt_rx_pages(rxq, mbuf, raw_cp_cons, agg_bufs, tpa_info);
311 	}
312 	mbuf->l4_len = payload_offset;
313 
314 	struct rte_mbuf *new_data = __bnxt_alloc_rx_data(rxq->mb_pool);
315 	RTE_ASSERT(new_data != NULL);
316 	if (!new_data) {
317 		rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
318 		return NULL;
319 	}
320 	tpa_info->mbuf = new_data;
321 
322 	return mbuf;
323 }
324 
325 uint32_t bnxt_ptype_table[BNXT_PTYPE_TBL_DIM] __rte_cache_aligned;
326 
327 static void __rte_cold
bnxt_init_ptype_table(void)328 bnxt_init_ptype_table(void)
329 {
330 	uint32_t *pt = bnxt_ptype_table;
331 	static bool initialized;
332 	int ip6, tun, type;
333 	uint32_t l3;
334 	int i;
335 
336 	if (initialized)
337 		return;
338 
339 	for (i = 0; i < BNXT_PTYPE_TBL_DIM; i++) {
340 		if (i & (RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN >> 2))
341 			pt[i] = RTE_PTYPE_L2_ETHER_VLAN;
342 		else
343 			pt[i] = RTE_PTYPE_L2_ETHER;
344 
345 		ip6 = i & (RX_PKT_CMPL_FLAGS2_IP_TYPE >> 7);
346 		tun = i & (RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC >> 2);
347 		type = (i & 0x38) << 9;
348 
349 		if (!tun && !ip6)
350 			l3 = RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
351 		else if (!tun && ip6)
352 			l3 = RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
353 		else if (tun && !ip6)
354 			l3 = RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN;
355 		else
356 			l3 = RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN;
357 
358 		switch (type) {
359 		case RX_PKT_CMPL_FLAGS_ITYPE_ICMP:
360 			if (tun)
361 				pt[i] |= l3 | RTE_PTYPE_INNER_L4_ICMP;
362 			else
363 				pt[i] |= l3 | RTE_PTYPE_L4_ICMP;
364 			break;
365 		case RX_PKT_CMPL_FLAGS_ITYPE_TCP:
366 			if (tun)
367 				pt[i] |= l3 | RTE_PTYPE_INNER_L4_TCP;
368 			else
369 				pt[i] |= l3 | RTE_PTYPE_L4_TCP;
370 			break;
371 		case RX_PKT_CMPL_FLAGS_ITYPE_UDP:
372 			if (tun)
373 				pt[i] |= l3 | RTE_PTYPE_INNER_L4_UDP;
374 			else
375 				pt[i] |= l3 | RTE_PTYPE_L4_UDP;
376 			break;
377 		case RX_PKT_CMPL_FLAGS_ITYPE_IP:
378 			pt[i] |= l3;
379 			break;
380 		}
381 	}
382 	initialized = true;
383 }
384 
385 static uint32_t
bnxt_parse_pkt_type(struct rx_pkt_cmpl * rxcmp,struct rx_pkt_cmpl_hi * rxcmp1)386 bnxt_parse_pkt_type(struct rx_pkt_cmpl *rxcmp, struct rx_pkt_cmpl_hi *rxcmp1)
387 {
388 	uint32_t flags_type, flags2;
389 	uint8_t index;
390 
391 	flags_type = rte_le_to_cpu_16(rxcmp->flags_type);
392 	flags2 = rte_le_to_cpu_32(rxcmp1->flags2);
393 
394 	/*
395 	 * Index format:
396 	 *     bit 0: RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC
397 	 *     bit 1: RX_CMPL_FLAGS2_IP_TYPE
398 	 *     bit 2: RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN
399 	 *     bits 3-6: RX_PKT_CMPL_FLAGS_ITYPE
400 	 */
401 	index = ((flags_type & RX_PKT_CMPL_FLAGS_ITYPE_MASK) >> 9) |
402 		((flags2 & (RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN |
403 			   RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC)) >> 2) |
404 		((flags2 & RX_PKT_CMPL_FLAGS2_IP_TYPE) >> 7);
405 
406 	return bnxt_ptype_table[index];
407 }
408 
409 uint32_t
410 bnxt_ol_flags_table[BNXT_OL_FLAGS_TBL_DIM] __rte_cache_aligned;
411 
412 uint32_t
413 bnxt_ol_flags_err_table[BNXT_OL_FLAGS_ERR_TBL_DIM] __rte_cache_aligned;
414 
415 static void __rte_cold
bnxt_init_ol_flags_tables(void)416 bnxt_init_ol_flags_tables(void)
417 {
418 	static bool initialized;
419 	uint32_t *pt;
420 	int i;
421 
422 	if (initialized)
423 		return;
424 
425 	/* Initialize ol_flags table. */
426 	pt = bnxt_ol_flags_table;
427 	for (i = 0; i < BNXT_OL_FLAGS_TBL_DIM; i++) {
428 		pt[i] = 0;
429 		if (i & RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN)
430 			pt[i] |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
431 
432 		if (i & RX_PKT_CMPL_FLAGS2_IP_CS_CALC)
433 			pt[i] |= PKT_RX_IP_CKSUM_GOOD;
434 
435 		if (i & RX_PKT_CMPL_FLAGS2_L4_CS_CALC)
436 			pt[i] |= PKT_RX_L4_CKSUM_GOOD;
437 
438 		if (i & RX_PKT_CMPL_FLAGS2_T_L4_CS_CALC)
439 			pt[i] |= PKT_RX_OUTER_L4_CKSUM_GOOD;
440 	}
441 
442 	/* Initialize checksum error table. */
443 	pt = bnxt_ol_flags_err_table;
444 	for (i = 0; i < BNXT_OL_FLAGS_ERR_TBL_DIM; i++) {
445 		pt[i] = 0;
446 		if (i & (RX_PKT_CMPL_ERRORS_IP_CS_ERROR >> 4))
447 			pt[i] |= PKT_RX_IP_CKSUM_BAD;
448 
449 		if (i & (RX_PKT_CMPL_ERRORS_L4_CS_ERROR >> 4))
450 			pt[i] |= PKT_RX_L4_CKSUM_BAD;
451 
452 		if (i & (RX_PKT_CMPL_ERRORS_T_IP_CS_ERROR >> 4))
453 			pt[i] |= PKT_RX_EIP_CKSUM_BAD;
454 
455 		if (i & (RX_PKT_CMPL_ERRORS_T_L4_CS_ERROR >> 4))
456 			pt[i] |= PKT_RX_OUTER_L4_CKSUM_BAD;
457 	}
458 
459 	initialized = true;
460 }
461 
462 static void
bnxt_set_ol_flags(struct rx_pkt_cmpl * rxcmp,struct rx_pkt_cmpl_hi * rxcmp1,struct rte_mbuf * mbuf)463 bnxt_set_ol_flags(struct rx_pkt_cmpl *rxcmp, struct rx_pkt_cmpl_hi *rxcmp1,
464 		  struct rte_mbuf *mbuf)
465 {
466 	uint16_t flags_type, errors, flags;
467 	uint64_t ol_flags;
468 
469 	flags_type = rte_le_to_cpu_16(rxcmp->flags_type);
470 
471 	flags = rte_le_to_cpu_32(rxcmp1->flags2) &
472 				(RX_PKT_CMPL_FLAGS2_IP_CS_CALC |
473 				 RX_PKT_CMPL_FLAGS2_L4_CS_CALC |
474 				 RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC |
475 				 RX_PKT_CMPL_FLAGS2_T_L4_CS_CALC |
476 				 RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN);
477 
478 	errors = rte_le_to_cpu_16(rxcmp1->errors_v2) &
479 				(RX_PKT_CMPL_ERRORS_IP_CS_ERROR |
480 				 RX_PKT_CMPL_ERRORS_L4_CS_ERROR |
481 				 RX_PKT_CMPL_ERRORS_T_IP_CS_ERROR |
482 				 RX_PKT_CMPL_ERRORS_T_L4_CS_ERROR);
483 	errors = (errors >> 4) & flags;
484 
485 	ol_flags = bnxt_ol_flags_table[flags & ~errors];
486 
487 	if (errors)
488 		ol_flags |= bnxt_ol_flags_err_table[errors];
489 
490 	if (flags_type & RX_PKT_CMPL_FLAGS_RSS_VALID) {
491 		mbuf->hash.rss = rte_le_to_cpu_32(rxcmp->rss_hash);
492 		ol_flags |= PKT_RX_RSS_HASH;
493 	}
494 
495 	mbuf->ol_flags = ol_flags;
496 }
497 
498 #ifdef RTE_LIBRTE_IEEE1588
499 static void
bnxt_get_rx_ts_thor(struct bnxt * bp,uint32_t rx_ts_cmpl)500 bnxt_get_rx_ts_thor(struct bnxt *bp, uint32_t rx_ts_cmpl)
501 {
502 	uint64_t systime_cycles = 0;
503 
504 	if (!BNXT_CHIP_THOR(bp))
505 		return;
506 
507 	/* On Thor, Rx timestamps are provided directly in the
508 	 * Rx completion records to the driver. Only 32 bits of
509 	 * the timestamp is present in the completion. Driver needs
510 	 * to read the current 48 bit free running timer using the
511 	 * HWRM_PORT_TS_QUERY command and combine the upper 16 bits
512 	 * from the HWRM response with the lower 32 bits in the
513 	 * Rx completion to produce the 48 bit timestamp for the Rx packet
514 	 */
515 	bnxt_hwrm_port_ts_query(bp, BNXT_PTP_FLAGS_CURRENT_TIME,
516 				&systime_cycles);
517 	bp->ptp_cfg->rx_timestamp = (systime_cycles & 0xFFFF00000000);
518 	bp->ptp_cfg->rx_timestamp |= rx_ts_cmpl;
519 }
520 #endif
521 
522 static uint32_t
bnxt_ulp_set_mark_in_mbuf(struct bnxt * bp,struct rx_pkt_cmpl_hi * rxcmp1,struct rte_mbuf * mbuf,uint32_t * vfr_flag)523 bnxt_ulp_set_mark_in_mbuf(struct bnxt *bp, struct rx_pkt_cmpl_hi *rxcmp1,
524 			  struct rte_mbuf *mbuf, uint32_t *vfr_flag)
525 {
526 	uint32_t cfa_code;
527 	uint32_t meta_fmt;
528 	uint32_t meta;
529 	bool gfid = false;
530 	uint32_t mark_id;
531 	uint32_t flags2;
532 	uint32_t gfid_support = 0;
533 	int rc;
534 
535 	if (BNXT_GFID_ENABLED(bp))
536 		gfid_support = 1;
537 
538 	cfa_code = rte_le_to_cpu_16(rxcmp1->cfa_code);
539 	flags2 = rte_le_to_cpu_32(rxcmp1->flags2);
540 	meta = rte_le_to_cpu_32(rxcmp1->metadata);
541 
542 	/*
543 	 * The flags field holds extra bits of info from [6:4]
544 	 * which indicate if the flow is in TCAM or EM or EEM
545 	 */
546 	meta_fmt = (flags2 & BNXT_CFA_META_FMT_MASK) >>
547 		BNXT_CFA_META_FMT_SHFT;
548 
549 	switch (meta_fmt) {
550 	case 0:
551 		if (gfid_support) {
552 			/* Not an LFID or GFID, a flush cmd. */
553 			goto skip_mark;
554 		} else {
555 			/* LFID mode, no vlan scenario */
556 			gfid = false;
557 		}
558 		break;
559 	case 4:
560 	case 5:
561 		/*
562 		 * EM/TCAM case
563 		 * Assume that EM doesn't support Mark due to GFID
564 		 * collisions with EEM.  Simply return without setting the mark
565 		 * in the mbuf.
566 		 */
567 		if (BNXT_CFA_META_EM_TEST(meta)) {
568 			/*This is EM hit {EM(1), GFID[27:16], 19'd0 or vtag } */
569 			gfid = true;
570 			meta >>= BNXT_RX_META_CFA_CODE_SHIFT;
571 			cfa_code |= meta << BNXT_CFA_CODE_META_SHIFT;
572 		} else {
573 			/*
574 			 * It is a TCAM entry, so it is an LFID.
575 			 * The TCAM IDX and Mode can also be determined
576 			 * by decoding the meta_data. We are not
577 			 * using these for now.
578 			 */
579 		}
580 		break;
581 	case 6:
582 	case 7:
583 		/* EEM Case, only using gfid in EEM for now. */
584 		gfid = true;
585 
586 		/*
587 		 * For EEM flows, The first part of cfa_code is 16 bits.
588 		 * The second part is embedded in the
589 		 * metadata field from bit 19 onwards. The driver needs to
590 		 * ignore the first 19 bits of metadata and use the next 12
591 		 * bits as higher 12 bits of cfa_code.
592 		 */
593 		meta >>= BNXT_RX_META_CFA_CODE_SHIFT;
594 		cfa_code |= meta << BNXT_CFA_CODE_META_SHIFT;
595 		break;
596 	default:
597 		/* For other values, the cfa_code is assumed to be an LFID. */
598 		break;
599 	}
600 
601 	rc = ulp_mark_db_mark_get(bp->ulp_ctx, gfid,
602 				  cfa_code, vfr_flag, &mark_id);
603 	if (!rc) {
604 		/* VF to VFR Rx path. So, skip mark_id injection in mbuf */
605 		if (vfr_flag && *vfr_flag)
606 			return mark_id;
607 		/* Got the mark, write it to the mbuf and return */
608 		mbuf->hash.fdir.hi = mark_id;
609 		*bnxt_cfa_code_dynfield(mbuf) = cfa_code & 0xffffffffull;
610 		mbuf->hash.fdir.id = rxcmp1->cfa_code;
611 		mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
612 		return mark_id;
613 	}
614 
615 skip_mark:
616 	mbuf->hash.fdir.hi = 0;
617 	mbuf->hash.fdir.id = 0;
618 
619 	return 0;
620 }
621 
bnxt_set_mark_in_mbuf(struct bnxt * bp,struct rx_pkt_cmpl_hi * rxcmp1,struct rte_mbuf * mbuf)622 void bnxt_set_mark_in_mbuf(struct bnxt *bp,
623 			   struct rx_pkt_cmpl_hi *rxcmp1,
624 			   struct rte_mbuf *mbuf)
625 {
626 	uint32_t cfa_code = 0;
627 	uint8_t meta_fmt = 0;
628 	uint16_t flags2 = 0;
629 	uint32_t meta =  0;
630 
631 	cfa_code = rte_le_to_cpu_16(rxcmp1->cfa_code);
632 	if (!cfa_code)
633 		return;
634 
635 	if (cfa_code && !bp->mark_table[cfa_code].valid)
636 		return;
637 
638 	flags2 = rte_le_to_cpu_16(rxcmp1->flags2);
639 	meta = rte_le_to_cpu_32(rxcmp1->metadata);
640 	if (meta) {
641 		meta >>= BNXT_RX_META_CFA_CODE_SHIFT;
642 
643 		/* The flags field holds extra bits of info from [6:4]
644 		 * which indicate if the flow is in TCAM or EM or EEM
645 		 */
646 		meta_fmt = (flags2 & BNXT_CFA_META_FMT_MASK) >>
647 			   BNXT_CFA_META_FMT_SHFT;
648 
649 		/* meta_fmt == 4 => 'b100 => 'b10x => EM.
650 		 * meta_fmt == 5 => 'b101 => 'b10x => EM + VLAN
651 		 * meta_fmt == 6 => 'b110 => 'b11x => EEM
652 		 * meta_fmt == 7 => 'b111 => 'b11x => EEM + VLAN.
653 		 */
654 		meta_fmt >>= BNXT_CFA_META_FMT_EM_EEM_SHFT;
655 	}
656 
657 	mbuf->hash.fdir.hi = bp->mark_table[cfa_code].mark_id;
658 	mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
659 }
660 
bnxt_rx_pkt(struct rte_mbuf ** rx_pkt,struct bnxt_rx_queue * rxq,uint32_t * raw_cons)661 static int bnxt_rx_pkt(struct rte_mbuf **rx_pkt,
662 		       struct bnxt_rx_queue *rxq, uint32_t *raw_cons)
663 {
664 	struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
665 	struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
666 	struct rx_pkt_cmpl *rxcmp;
667 	struct rx_pkt_cmpl_hi *rxcmp1;
668 	uint32_t tmp_raw_cons = *raw_cons;
669 	uint16_t cons, prod, cp_cons =
670 	    RING_CMP(cpr->cp_ring_struct, tmp_raw_cons);
671 	struct rte_mbuf *mbuf;
672 	int rc = 0;
673 	uint8_t agg_buf = 0;
674 	uint16_t cmp_type;
675 	uint32_t vfr_flag = 0, mark_id = 0;
676 	struct bnxt *bp = rxq->bp;
677 
678 	rxcmp = (struct rx_pkt_cmpl *)
679 	    &cpr->cp_desc_ring[cp_cons];
680 
681 	cmp_type = CMP_TYPE(rxcmp);
682 
683 	if (cmp_type == RX_TPA_V2_ABUF_CMPL_TYPE_RX_TPA_AGG) {
684 		struct rx_tpa_v2_abuf_cmpl *rx_agg = (void *)rxcmp;
685 		uint16_t agg_id = rte_cpu_to_le_16(rx_agg->agg_id);
686 		struct bnxt_tpa_info *tpa_info;
687 
688 		tpa_info = &rxr->tpa_info[agg_id];
689 		RTE_ASSERT(tpa_info->agg_count < 16);
690 		tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg;
691 		rc = -EINVAL; /* Continue w/o new mbuf */
692 		goto next_rx;
693 	}
694 
695 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
696 	cp_cons = RING_CMP(cpr->cp_ring_struct, tmp_raw_cons);
697 	rxcmp1 = (struct rx_pkt_cmpl_hi *)&cpr->cp_desc_ring[cp_cons];
698 
699 	if (!CMP_VALID(rxcmp1, tmp_raw_cons, cpr->cp_ring_struct))
700 		return -EBUSY;
701 
702 	cpr->valid = FLIP_VALID(cp_cons,
703 				cpr->cp_ring_struct->ring_mask,
704 				cpr->valid);
705 
706 	if (cmp_type == RX_TPA_START_CMPL_TYPE_RX_TPA_START) {
707 		bnxt_tpa_start(rxq, (struct rx_tpa_start_cmpl *)rxcmp,
708 			       (struct rx_tpa_start_cmpl_hi *)rxcmp1);
709 		rc = -EINVAL; /* Continue w/o new mbuf */
710 		goto next_rx;
711 	} else if (cmp_type == RX_TPA_END_CMPL_TYPE_RX_TPA_END) {
712 		mbuf = bnxt_tpa_end(rxq, &tmp_raw_cons,
713 				   (struct rx_tpa_end_cmpl *)rxcmp,
714 				   (struct rx_tpa_end_cmpl_hi *)rxcmp1);
715 		if (unlikely(!mbuf))
716 			return -EBUSY;
717 		*rx_pkt = mbuf;
718 		goto next_rx;
719 	} else if (cmp_type != 0x11) {
720 		rc = -EINVAL;
721 		goto next_rx;
722 	}
723 
724 	agg_buf = (rxcmp->agg_bufs_v1 & RX_PKT_CMPL_AGG_BUFS_MASK)
725 			>> RX_PKT_CMPL_AGG_BUFS_SFT;
726 	if (agg_buf && !bnxt_agg_bufs_valid(cpr, agg_buf, tmp_raw_cons))
727 		return -EBUSY;
728 
729 	prod = rxr->rx_prod;
730 
731 	cons = rxcmp->opaque;
732 	mbuf = bnxt_consume_rx_buf(rxr, cons);
733 	if (mbuf == NULL)
734 		return -EBUSY;
735 
736 	mbuf->data_off = RTE_PKTMBUF_HEADROOM;
737 	mbuf->nb_segs = 1;
738 	mbuf->next = NULL;
739 	mbuf->pkt_len = rxcmp->len;
740 	mbuf->data_len = mbuf->pkt_len;
741 	mbuf->port = rxq->port_id;
742 
743 	bnxt_set_ol_flags(rxcmp, rxcmp1, mbuf);
744 
745 #ifdef RTE_LIBRTE_IEEE1588
746 	if (unlikely((rte_le_to_cpu_16(rxcmp->flags_type) &
747 		      RX_PKT_CMPL_FLAGS_MASK) ==
748 		      RX_PKT_CMPL_FLAGS_ITYPE_PTP_W_TIMESTAMP)) {
749 		mbuf->ol_flags |= PKT_RX_IEEE1588_PTP | PKT_RX_IEEE1588_TMST;
750 		bnxt_get_rx_ts_thor(rxq->bp, rxcmp1->reorder);
751 	}
752 #endif
753 
754 	if (BNXT_TRUFLOW_EN(bp))
755 		mark_id = bnxt_ulp_set_mark_in_mbuf(rxq->bp, rxcmp1, mbuf,
756 						    &vfr_flag);
757 	else
758 		bnxt_set_mark_in_mbuf(rxq->bp, rxcmp1, mbuf);
759 
760 	if (agg_buf)
761 		bnxt_rx_pages(rxq, mbuf, &tmp_raw_cons, agg_buf, NULL);
762 
763 	mbuf->packet_type = bnxt_parse_pkt_type(rxcmp, rxcmp1);
764 
765 #ifdef BNXT_DEBUG
766 	if (rxcmp1->errors_v2 & RX_CMP_L2_ERRORS) {
767 		/* Re-install the mbuf back to the rx ring */
768 		bnxt_reuse_rx_mbuf(rxr, cons, mbuf);
769 
770 		rc = -EIO;
771 		goto next_rx;
772 	}
773 #endif
774 	/*
775 	 * TODO: Redesign this....
776 	 * If the allocation fails, the packet does not get received.
777 	 * Simply returning this will result in slowly falling behind
778 	 * on the producer ring buffers.
779 	 * Instead, "filling up" the producer just before ringing the
780 	 * doorbell could be a better solution since it will let the
781 	 * producer ring starve until memory is available again pushing
782 	 * the drops into hardware and getting them out of the driver
783 	 * allowing recovery to a full producer ring.
784 	 *
785 	 * This could also help with cache usage by preventing per-packet
786 	 * calls in favour of a tight loop with the same function being called
787 	 * in it.
788 	 */
789 	prod = RING_NEXT(rxr->rx_ring_struct, prod);
790 	if (bnxt_alloc_rx_data(rxq, rxr, prod)) {
791 		PMD_DRV_LOG(ERR, "mbuf alloc failed with prod=0x%x\n", prod);
792 		rc = -ENOMEM;
793 		goto rx;
794 	}
795 	rxr->rx_prod = prod;
796 
797 	if (BNXT_TRUFLOW_EN(bp) && (BNXT_VF_IS_TRUSTED(bp) || BNXT_PF(bp)) &&
798 	    vfr_flag) {
799 		bnxt_vfr_recv(mark_id, rxq->queue_id, mbuf);
800 		/* Now return an error so that nb_rx_pkts is not
801 		 * incremented.
802 		 * This packet was meant to be given to the representor.
803 		 * So no need to account the packet and give it to
804 		 * parent Rx burst function.
805 		 */
806 		rc = -ENODEV;
807 		goto next_rx;
808 	}
809 	/*
810 	 * All MBUFs are allocated with the same size under DPDK,
811 	 * no optimization for rx_copy_thresh
812 	 */
813 rx:
814 	*rx_pkt = mbuf;
815 
816 next_rx:
817 
818 	*raw_cons = tmp_raw_cons;
819 
820 	return rc;
821 }
822 
bnxt_recv_pkts(void * rx_queue,struct rte_mbuf ** rx_pkts,uint16_t nb_pkts)823 uint16_t bnxt_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
824 			       uint16_t nb_pkts)
825 {
826 	struct bnxt_rx_queue *rxq = rx_queue;
827 	struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
828 	struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
829 	uint32_t raw_cons = cpr->cp_raw_cons;
830 	uint32_t cons;
831 	int nb_rx_pkts = 0;
832 	int nb_rep_rx_pkts = 0;
833 	struct rx_pkt_cmpl *rxcmp;
834 	uint16_t prod = rxr->rx_prod;
835 	uint16_t ag_prod = rxr->ag_prod;
836 	int rc = 0;
837 	bool evt = false;
838 
839 	if (unlikely(is_bnxt_in_error(rxq->bp)))
840 		return 0;
841 
842 	/* If Rx Q was stopped return */
843 	if (unlikely(!rxq->rx_started))
844 		return 0;
845 
846 #if defined(RTE_ARCH_X86) || defined(RTE_ARCH_ARM64)
847 	/*
848 	 * Replenish buffers if needed when a transition has been made from
849 	 * vector- to non-vector- receive processing.
850 	 */
851 	while (unlikely(rxq->rxrearm_nb)) {
852 		if (!bnxt_alloc_rx_data(rxq, rxr, rxq->rxrearm_start)) {
853 			rxr->rx_prod = rxq->rxrearm_start;
854 			bnxt_db_write(&rxr->rx_db, rxr->rx_prod);
855 			rxq->rxrearm_start++;
856 			rxq->rxrearm_nb--;
857 		} else {
858 			/* Retry allocation on next call. */
859 			break;
860 		}
861 	}
862 #endif
863 
864 	/* Handle RX burst request */
865 	while (1) {
866 		cons = RING_CMP(cpr->cp_ring_struct, raw_cons);
867 		rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
868 
869 		if (!CMP_VALID(rxcmp, raw_cons, cpr->cp_ring_struct))
870 			break;
871 		cpr->valid = FLIP_VALID(cons,
872 					cpr->cp_ring_struct->ring_mask,
873 					cpr->valid);
874 
875 		/* TODO: Avoid magic numbers... */
876 		if ((CMP_TYPE(rxcmp) & 0x30) == 0x10) {
877 			rc = bnxt_rx_pkt(&rx_pkts[nb_rx_pkts], rxq, &raw_cons);
878 			if (likely(!rc) || rc == -ENOMEM)
879 				nb_rx_pkts++;
880 			if (rc == -EBUSY)	/* partial completion */
881 				break;
882 			if (rc == -ENODEV)	/* completion for representor */
883 				nb_rep_rx_pkts++;
884 		} else if (!BNXT_NUM_ASYNC_CPR(rxq->bp)) {
885 			evt =
886 			bnxt_event_hwrm_resp_handler(rxq->bp,
887 						     (struct cmpl_base *)rxcmp);
888 			/* If the async event is Fatal error, return */
889 			if (unlikely(is_bnxt_in_error(rxq->bp)))
890 				goto done;
891 		}
892 
893 		raw_cons = NEXT_RAW_CMP(raw_cons);
894 		if (nb_rx_pkts == nb_pkts || evt)
895 			break;
896 		/* Post some Rx buf early in case of larger burst processing */
897 		if (nb_rx_pkts == BNXT_RX_POST_THRESH)
898 			bnxt_db_write(&rxr->rx_db, rxr->rx_prod);
899 	}
900 
901 	cpr->cp_raw_cons = raw_cons;
902 	if (!nb_rx_pkts && !nb_rep_rx_pkts && !evt) {
903 		/*
904 		 * For PMD, there is no need to keep on pushing to REARM
905 		 * the doorbell if there are no new completions
906 		 */
907 		goto done;
908 	}
909 
910 	if (prod != rxr->rx_prod)
911 		bnxt_db_write(&rxr->rx_db, rxr->rx_prod);
912 
913 	/* Ring the AGG ring DB */
914 	if (ag_prod != rxr->ag_prod)
915 		bnxt_db_write(&rxr->ag_db, rxr->ag_prod);
916 
917 	bnxt_db_cq(cpr);
918 
919 	/* Attempt to alloc Rx buf in case of a previous allocation failure. */
920 	if (rc == -ENOMEM) {
921 		int i = RING_NEXT(rxr->rx_ring_struct, prod);
922 		int cnt = nb_rx_pkts;
923 
924 		for (; cnt;
925 			i = RING_NEXT(rxr->rx_ring_struct, i), cnt--) {
926 			struct rte_mbuf **rx_buf = &rxr->rx_buf_ring[i];
927 
928 			/* Buffer already allocated for this index. */
929 			if (*rx_buf != NULL && *rx_buf != &rxq->fake_mbuf)
930 				continue;
931 
932 			/* This slot is empty. Alloc buffer for Rx */
933 			if (!bnxt_alloc_rx_data(rxq, rxr, i)) {
934 				rxr->rx_prod = i;
935 				bnxt_db_write(&rxr->rx_db, rxr->rx_prod);
936 			} else {
937 				PMD_DRV_LOG(ERR, "Alloc  mbuf failed\n");
938 				break;
939 			}
940 		}
941 	}
942 
943 done:
944 	return nb_rx_pkts;
945 }
946 
947 /*
948  * Dummy DPDK callback for RX.
949  *
950  * This function is used to temporarily replace the real callback during
951  * unsafe control operations on the queue, or in case of error.
952  */
953 uint16_t
bnxt_dummy_recv_pkts(void * rx_queue __rte_unused,struct rte_mbuf ** rx_pkts __rte_unused,uint16_t nb_pkts __rte_unused)954 bnxt_dummy_recv_pkts(void *rx_queue __rte_unused,
955 		     struct rte_mbuf **rx_pkts __rte_unused,
956 		     uint16_t nb_pkts __rte_unused)
957 {
958 	return 0;
959 }
960 
bnxt_free_rx_rings(struct bnxt * bp)961 void bnxt_free_rx_rings(struct bnxt *bp)
962 {
963 	int i;
964 	struct bnxt_rx_queue *rxq;
965 
966 	if (!bp->rx_queues)
967 		return;
968 
969 	for (i = 0; i < (int)bp->rx_nr_rings; i++) {
970 		rxq = bp->rx_queues[i];
971 		if (!rxq)
972 			continue;
973 
974 		bnxt_free_ring(rxq->rx_ring->rx_ring_struct);
975 		rte_free(rxq->rx_ring->rx_ring_struct);
976 
977 		/* Free the Aggregator ring */
978 		bnxt_free_ring(rxq->rx_ring->ag_ring_struct);
979 		rte_free(rxq->rx_ring->ag_ring_struct);
980 		rxq->rx_ring->ag_ring_struct = NULL;
981 
982 		rte_free(rxq->rx_ring);
983 
984 		bnxt_free_ring(rxq->cp_ring->cp_ring_struct);
985 		rte_free(rxq->cp_ring->cp_ring_struct);
986 		rte_free(rxq->cp_ring);
987 
988 		rte_free(rxq);
989 		bp->rx_queues[i] = NULL;
990 	}
991 }
992 
bnxt_init_rx_ring_struct(struct bnxt_rx_queue * rxq,unsigned int socket_id)993 int bnxt_init_rx_ring_struct(struct bnxt_rx_queue *rxq, unsigned int socket_id)
994 {
995 	struct rte_eth_dev *eth_dev = rxq->bp->eth_dev;
996 	struct rte_eth_rxmode *rxmode;
997 	struct bnxt_cp_ring_info *cpr;
998 	struct bnxt_rx_ring_info *rxr;
999 	struct bnxt_ring *ring;
1000 	bool use_agg_ring;
1001 
1002 	rxq->rx_buf_size = BNXT_MAX_PKT_LEN + sizeof(struct rte_mbuf);
1003 
1004 	rxr = rte_zmalloc_socket("bnxt_rx_ring",
1005 				 sizeof(struct bnxt_rx_ring_info),
1006 				 RTE_CACHE_LINE_SIZE, socket_id);
1007 	if (rxr == NULL)
1008 		return -ENOMEM;
1009 	rxq->rx_ring = rxr;
1010 
1011 	ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
1012 				   sizeof(struct bnxt_ring),
1013 				   RTE_CACHE_LINE_SIZE, socket_id);
1014 	if (ring == NULL)
1015 		return -ENOMEM;
1016 	rxr->rx_ring_struct = ring;
1017 	ring->ring_size = rte_align32pow2(rxq->nb_rx_desc);
1018 	ring->ring_mask = ring->ring_size - 1;
1019 	ring->bd = (void *)rxr->rx_desc_ring;
1020 	ring->bd_dma = rxr->rx_desc_mapping;
1021 
1022 	/* Allocate extra rx ring entries for vector rx. */
1023 	ring->vmem_size = sizeof(struct rte_mbuf *) *
1024 				(ring->ring_size + RTE_BNXT_DESCS_PER_LOOP);
1025 
1026 	ring->vmem = (void **)&rxr->rx_buf_ring;
1027 	ring->fw_ring_id = INVALID_HW_RING_ID;
1028 
1029 	cpr = rte_zmalloc_socket("bnxt_rx_ring",
1030 				 sizeof(struct bnxt_cp_ring_info),
1031 				 RTE_CACHE_LINE_SIZE, socket_id);
1032 	if (cpr == NULL)
1033 		return -ENOMEM;
1034 	rxq->cp_ring = cpr;
1035 
1036 	ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
1037 				   sizeof(struct bnxt_ring),
1038 				   RTE_CACHE_LINE_SIZE, socket_id);
1039 	if (ring == NULL)
1040 		return -ENOMEM;
1041 	cpr->cp_ring_struct = ring;
1042 
1043 	rxmode = &eth_dev->data->dev_conf.rxmode;
1044 	use_agg_ring = (rxmode->offloads & DEV_RX_OFFLOAD_SCATTER) ||
1045 		       (rxmode->offloads & DEV_RX_OFFLOAD_TCP_LRO) ||
1046 		       (rxmode->max_rx_pkt_len >
1047 			 (uint32_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
1048 				    RTE_PKTMBUF_HEADROOM));
1049 
1050 	/* Allocate two completion slots per entry in desc ring. */
1051 	ring->ring_size = rxr->rx_ring_struct->ring_size * 2;
1052 
1053 	/* Allocate additional slots if aggregation ring is in use. */
1054 	if (use_agg_ring)
1055 		ring->ring_size *= AGG_RING_SIZE_FACTOR;
1056 
1057 	ring->ring_size = rte_align32pow2(ring->ring_size);
1058 	ring->ring_mask = ring->ring_size - 1;
1059 	ring->bd = (void *)cpr->cp_desc_ring;
1060 	ring->bd_dma = cpr->cp_desc_mapping;
1061 	ring->vmem_size = 0;
1062 	ring->vmem = NULL;
1063 	ring->fw_ring_id = INVALID_HW_RING_ID;
1064 
1065 	/* Allocate Aggregator rings */
1066 	ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
1067 				   sizeof(struct bnxt_ring),
1068 				   RTE_CACHE_LINE_SIZE, socket_id);
1069 	if (ring == NULL)
1070 		return -ENOMEM;
1071 	rxr->ag_ring_struct = ring;
1072 	ring->ring_size = rte_align32pow2(rxq->nb_rx_desc *
1073 					  AGG_RING_SIZE_FACTOR);
1074 	ring->ring_mask = ring->ring_size - 1;
1075 	ring->bd = (void *)rxr->ag_desc_ring;
1076 	ring->bd_dma = rxr->ag_desc_mapping;
1077 	ring->vmem_size = ring->ring_size * sizeof(struct rte_mbuf *);
1078 	ring->vmem = (void **)&rxr->ag_buf_ring;
1079 	ring->fw_ring_id = INVALID_HW_RING_ID;
1080 
1081 	return 0;
1082 }
1083 
bnxt_init_rxbds(struct bnxt_ring * ring,uint32_t type,uint16_t len)1084 static void bnxt_init_rxbds(struct bnxt_ring *ring, uint32_t type,
1085 			    uint16_t len)
1086 {
1087 	uint32_t j;
1088 	struct rx_prod_pkt_bd *rx_bd_ring = (struct rx_prod_pkt_bd *)ring->bd;
1089 
1090 	if (!rx_bd_ring)
1091 		return;
1092 	for (j = 0; j < ring->ring_size; j++) {
1093 		rx_bd_ring[j].flags_type = rte_cpu_to_le_16(type);
1094 		rx_bd_ring[j].len = rte_cpu_to_le_16(len);
1095 		rx_bd_ring[j].opaque = j;
1096 	}
1097 }
1098 
bnxt_init_one_rx_ring(struct bnxt_rx_queue * rxq)1099 int bnxt_init_one_rx_ring(struct bnxt_rx_queue *rxq)
1100 {
1101 	struct bnxt_rx_ring_info *rxr;
1102 	struct bnxt_ring *ring;
1103 	uint32_t prod, type;
1104 	unsigned int i;
1105 	uint16_t size;
1106 
1107 	/* Initialize packet type table. */
1108 	bnxt_init_ptype_table();
1109 
1110 	/* Initialize offload flags parsing table. */
1111 	bnxt_init_ol_flags_tables();
1112 
1113 	size = rte_pktmbuf_data_room_size(rxq->mb_pool) - RTE_PKTMBUF_HEADROOM;
1114 	size = RTE_MIN(BNXT_MAX_PKT_LEN, size);
1115 
1116 	type = RX_PROD_PKT_BD_TYPE_RX_PROD_PKT | RX_PROD_PKT_BD_FLAGS_EOP_PAD;
1117 
1118 	rxr = rxq->rx_ring;
1119 	ring = rxr->rx_ring_struct;
1120 	bnxt_init_rxbds(ring, type, size);
1121 
1122 	prod = rxr->rx_prod;
1123 	for (i = 0; i < ring->ring_size; i++) {
1124 		if (unlikely(!rxr->rx_buf_ring[i])) {
1125 			if (bnxt_alloc_rx_data(rxq, rxr, prod) != 0) {
1126 				PMD_DRV_LOG(WARNING,
1127 					    "init'ed rx ring %d with %d/%d mbufs only\n",
1128 					    rxq->queue_id, i, ring->ring_size);
1129 				break;
1130 			}
1131 		}
1132 		rxr->rx_prod = prod;
1133 		prod = RING_NEXT(rxr->rx_ring_struct, prod);
1134 	}
1135 
1136 	/* Initialize dummy mbuf pointers for vector mode rx. */
1137 	for (i = ring->ring_size;
1138 	     i < ring->ring_size + RTE_BNXT_DESCS_PER_LOOP; i++) {
1139 		rxr->rx_buf_ring[i] = &rxq->fake_mbuf;
1140 	}
1141 
1142 	ring = rxr->ag_ring_struct;
1143 	type = RX_PROD_AGG_BD_TYPE_RX_PROD_AGG;
1144 	bnxt_init_rxbds(ring, type, size);
1145 	prod = rxr->ag_prod;
1146 
1147 	for (i = 0; i < ring->ring_size; i++) {
1148 		if (unlikely(!rxr->ag_buf_ring[i])) {
1149 			if (bnxt_alloc_ag_data(rxq, rxr, prod) != 0) {
1150 				PMD_DRV_LOG(WARNING,
1151 					    "init'ed AG ring %d with %d/%d mbufs only\n",
1152 					    rxq->queue_id, i, ring->ring_size);
1153 				break;
1154 			}
1155 		}
1156 		rxr->ag_prod = prod;
1157 		prod = RING_NEXT(rxr->ag_ring_struct, prod);
1158 	}
1159 	PMD_DRV_LOG(DEBUG, "AGG Done!\n");
1160 
1161 	if (rxr->tpa_info) {
1162 		unsigned int max_aggs = BNXT_TPA_MAX_AGGS(rxq->bp);
1163 
1164 		for (i = 0; i < max_aggs; i++) {
1165 			if (unlikely(!rxr->tpa_info[i].mbuf)) {
1166 				rxr->tpa_info[i].mbuf =
1167 					__bnxt_alloc_rx_data(rxq->mb_pool);
1168 				if (!rxr->tpa_info[i].mbuf) {
1169 					rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
1170 					return -ENOMEM;
1171 				}
1172 			}
1173 		}
1174 	}
1175 	PMD_DRV_LOG(DEBUG, "TPA alloc Done!\n");
1176 
1177 	return 0;
1178 }
1179