1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2017-2018 Intel Corporation.
3 * All rights reserved.
4 */
5
6 #include <string.h>
7 #include <inttypes.h>
8 #include <stdbool.h>
9 #include <sys/queue.h>
10
11 #include <rte_memzone.h>
12 #include <rte_memory.h>
13 #include <rte_dev.h>
14 #include <rte_errno.h>
15 #include <rte_malloc.h>
16 #include <rte_ring.h>
17 #include <rte_mempool.h>
18 #include <rte_common.h>
19 #include <rte_timer.h>
20 #include <rte_service_component.h>
21 #include <rte_cycles.h>
22
23 #include "rte_eventdev.h"
24 #include "rte_eventdev_pmd.h"
25 #include "rte_eventdev_trace.h"
26 #include "rte_event_timer_adapter.h"
27 #include "rte_event_timer_adapter_pmd.h"
28
29 #define DATA_MZ_NAME_MAX_LEN 64
30 #define DATA_MZ_NAME_FORMAT "rte_event_timer_adapter_data_%d"
31
32 RTE_LOG_REGISTER(evtim_logtype, lib.eventdev.adapter.timer, NOTICE);
33 RTE_LOG_REGISTER(evtim_buffer_logtype, lib.eventdev.adapter.timer, NOTICE);
34 RTE_LOG_REGISTER(evtim_svc_logtype, lib.eventdev.adapter.timer.svc, NOTICE);
35
36 static struct rte_event_timer_adapter adapters[RTE_EVENT_TIMER_ADAPTER_NUM_MAX];
37
38 static const struct rte_event_timer_adapter_ops swtim_ops;
39
40 #define EVTIM_LOG(level, logtype, ...) \
41 rte_log(RTE_LOG_ ## level, logtype, \
42 RTE_FMT("EVTIMER: %s() line %u: " RTE_FMT_HEAD(__VA_ARGS__,) \
43 "\n", __func__, __LINE__, RTE_FMT_TAIL(__VA_ARGS__,)))
44
45 #define EVTIM_LOG_ERR(...) EVTIM_LOG(ERR, evtim_logtype, __VA_ARGS__)
46
47 #ifdef RTE_LIBRTE_EVENTDEV_DEBUG
48 #define EVTIM_LOG_DBG(...) \
49 EVTIM_LOG(DEBUG, evtim_logtype, __VA_ARGS__)
50 #define EVTIM_BUF_LOG_DBG(...) \
51 EVTIM_LOG(DEBUG, evtim_buffer_logtype, __VA_ARGS__)
52 #define EVTIM_SVC_LOG_DBG(...) \
53 EVTIM_LOG(DEBUG, evtim_svc_logtype, __VA_ARGS__)
54 #else
55 #define EVTIM_LOG_DBG(...) (void)0
56 #define EVTIM_BUF_LOG_DBG(...) (void)0
57 #define EVTIM_SVC_LOG_DBG(...) (void)0
58 #endif
59
60 static int
default_port_conf_cb(uint16_t id,uint8_t event_dev_id,uint8_t * event_port_id,void * conf_arg)61 default_port_conf_cb(uint16_t id, uint8_t event_dev_id, uint8_t *event_port_id,
62 void *conf_arg)
63 {
64 struct rte_event_timer_adapter *adapter;
65 struct rte_eventdev *dev;
66 struct rte_event_dev_config dev_conf;
67 struct rte_event_port_conf *port_conf, def_port_conf = {0};
68 int started;
69 uint8_t port_id;
70 uint8_t dev_id;
71 int ret;
72
73 RTE_SET_USED(event_dev_id);
74
75 adapter = &adapters[id];
76 dev = &rte_eventdevs[adapter->data->event_dev_id];
77 dev_id = dev->data->dev_id;
78 dev_conf = dev->data->dev_conf;
79
80 started = dev->data->dev_started;
81 if (started)
82 rte_event_dev_stop(dev_id);
83
84 port_id = dev_conf.nb_event_ports;
85 dev_conf.nb_event_ports += 1;
86 ret = rte_event_dev_configure(dev_id, &dev_conf);
87 if (ret < 0) {
88 EVTIM_LOG_ERR("failed to configure event dev %u\n", dev_id);
89 if (started)
90 if (rte_event_dev_start(dev_id))
91 return -EIO;
92
93 return ret;
94 }
95
96 if (conf_arg != NULL)
97 port_conf = conf_arg;
98 else {
99 port_conf = &def_port_conf;
100 ret = rte_event_port_default_conf_get(dev_id, port_id,
101 port_conf);
102 if (ret < 0)
103 return ret;
104 }
105
106 ret = rte_event_port_setup(dev_id, port_id, port_conf);
107 if (ret < 0) {
108 EVTIM_LOG_ERR("failed to setup event port %u on event dev %u\n",
109 port_id, dev_id);
110 return ret;
111 }
112
113 *event_port_id = port_id;
114
115 if (started)
116 ret = rte_event_dev_start(dev_id);
117
118 return ret;
119 }
120
121 struct rte_event_timer_adapter *
rte_event_timer_adapter_create(const struct rte_event_timer_adapter_conf * conf)122 rte_event_timer_adapter_create(const struct rte_event_timer_adapter_conf *conf)
123 {
124 return rte_event_timer_adapter_create_ext(conf, default_port_conf_cb,
125 NULL);
126 }
127
128 struct rte_event_timer_adapter *
rte_event_timer_adapter_create_ext(const struct rte_event_timer_adapter_conf * conf,rte_event_timer_adapter_port_conf_cb_t conf_cb,void * conf_arg)129 rte_event_timer_adapter_create_ext(
130 const struct rte_event_timer_adapter_conf *conf,
131 rte_event_timer_adapter_port_conf_cb_t conf_cb,
132 void *conf_arg)
133 {
134 uint16_t adapter_id;
135 struct rte_event_timer_adapter *adapter;
136 const struct rte_memzone *mz;
137 char mz_name[DATA_MZ_NAME_MAX_LEN];
138 int n, ret;
139 struct rte_eventdev *dev;
140
141 if (conf == NULL) {
142 rte_errno = EINVAL;
143 return NULL;
144 }
145
146 /* Check eventdev ID */
147 if (!rte_event_pmd_is_valid_dev(conf->event_dev_id)) {
148 rte_errno = EINVAL;
149 return NULL;
150 }
151 dev = &rte_eventdevs[conf->event_dev_id];
152
153 adapter_id = conf->timer_adapter_id;
154
155 /* Check that adapter_id is in range */
156 if (adapter_id >= RTE_EVENT_TIMER_ADAPTER_NUM_MAX) {
157 rte_errno = EINVAL;
158 return NULL;
159 }
160
161 /* Check adapter ID not already allocated */
162 adapter = &adapters[adapter_id];
163 if (adapter->allocated) {
164 rte_errno = EEXIST;
165 return NULL;
166 }
167
168 /* Create shared data area. */
169 n = snprintf(mz_name, sizeof(mz_name), DATA_MZ_NAME_FORMAT, adapter_id);
170 if (n >= (int)sizeof(mz_name)) {
171 rte_errno = EINVAL;
172 return NULL;
173 }
174 mz = rte_memzone_reserve(mz_name,
175 sizeof(struct rte_event_timer_adapter_data),
176 conf->socket_id, 0);
177 if (mz == NULL)
178 /* rte_errno set by rte_memzone_reserve */
179 return NULL;
180
181 adapter->data = mz->addr;
182 memset(adapter->data, 0, sizeof(struct rte_event_timer_adapter_data));
183
184 adapter->data->mz = mz;
185 adapter->data->event_dev_id = conf->event_dev_id;
186 adapter->data->id = adapter_id;
187 adapter->data->socket_id = conf->socket_id;
188 adapter->data->conf = *conf; /* copy conf structure */
189
190 /* Query eventdev PMD for timer adapter capabilities and ops */
191 ret = dev->dev_ops->timer_adapter_caps_get(dev,
192 adapter->data->conf.flags,
193 &adapter->data->caps,
194 &adapter->ops);
195 if (ret < 0) {
196 rte_errno = -ret;
197 goto free_memzone;
198 }
199
200 if (!(adapter->data->caps &
201 RTE_EVENT_TIMER_ADAPTER_CAP_INTERNAL_PORT)) {
202 FUNC_PTR_OR_NULL_RET_WITH_ERRNO(conf_cb, EINVAL);
203 ret = conf_cb(adapter->data->id, adapter->data->event_dev_id,
204 &adapter->data->event_port_id, conf_arg);
205 if (ret < 0) {
206 rte_errno = -ret;
207 goto free_memzone;
208 }
209 }
210
211 /* If eventdev PMD did not provide ops, use default software
212 * implementation.
213 */
214 if (adapter->ops == NULL)
215 adapter->ops = &swtim_ops;
216
217 /* Allow driver to do some setup */
218 FUNC_PTR_OR_NULL_RET_WITH_ERRNO(adapter->ops->init, ENOTSUP);
219 ret = adapter->ops->init(adapter);
220 if (ret < 0) {
221 rte_errno = -ret;
222 goto free_memzone;
223 }
224
225 /* Set fast-path function pointers */
226 adapter->arm_burst = adapter->ops->arm_burst;
227 adapter->arm_tmo_tick_burst = adapter->ops->arm_tmo_tick_burst;
228 adapter->cancel_burst = adapter->ops->cancel_burst;
229
230 adapter->allocated = 1;
231
232 rte_eventdev_trace_timer_adapter_create(adapter_id, adapter, conf,
233 conf_cb);
234 return adapter;
235
236 free_memzone:
237 rte_memzone_free(adapter->data->mz);
238 return NULL;
239 }
240
241 int
rte_event_timer_adapter_get_info(const struct rte_event_timer_adapter * adapter,struct rte_event_timer_adapter_info * adapter_info)242 rte_event_timer_adapter_get_info(const struct rte_event_timer_adapter *adapter,
243 struct rte_event_timer_adapter_info *adapter_info)
244 {
245 ADAPTER_VALID_OR_ERR_RET(adapter, -EINVAL);
246
247 if (adapter->ops->get_info)
248 /* let driver set values it knows */
249 adapter->ops->get_info(adapter, adapter_info);
250
251 /* Set common values */
252 adapter_info->conf = adapter->data->conf;
253 adapter_info->event_dev_port_id = adapter->data->event_port_id;
254 adapter_info->caps = adapter->data->caps;
255
256 return 0;
257 }
258
259 int
rte_event_timer_adapter_start(const struct rte_event_timer_adapter * adapter)260 rte_event_timer_adapter_start(const struct rte_event_timer_adapter *adapter)
261 {
262 int ret;
263
264 ADAPTER_VALID_OR_ERR_RET(adapter, -EINVAL);
265 FUNC_PTR_OR_ERR_RET(adapter->ops->start, -EINVAL);
266
267 if (adapter->data->started) {
268 EVTIM_LOG_ERR("event timer adapter %"PRIu8" already started",
269 adapter->data->id);
270 return -EALREADY;
271 }
272
273 ret = adapter->ops->start(adapter);
274 if (ret < 0)
275 return ret;
276
277 adapter->data->started = 1;
278 rte_eventdev_trace_timer_adapter_start(adapter);
279 return 0;
280 }
281
282 int
rte_event_timer_adapter_stop(const struct rte_event_timer_adapter * adapter)283 rte_event_timer_adapter_stop(const struct rte_event_timer_adapter *adapter)
284 {
285 int ret;
286
287 ADAPTER_VALID_OR_ERR_RET(adapter, -EINVAL);
288 FUNC_PTR_OR_ERR_RET(adapter->ops->stop, -EINVAL);
289
290 if (adapter->data->started == 0) {
291 EVTIM_LOG_ERR("event timer adapter %"PRIu8" already stopped",
292 adapter->data->id);
293 return 0;
294 }
295
296 ret = adapter->ops->stop(adapter);
297 if (ret < 0)
298 return ret;
299
300 adapter->data->started = 0;
301 rte_eventdev_trace_timer_adapter_stop(adapter);
302 return 0;
303 }
304
305 struct rte_event_timer_adapter *
rte_event_timer_adapter_lookup(uint16_t adapter_id)306 rte_event_timer_adapter_lookup(uint16_t adapter_id)
307 {
308 char name[DATA_MZ_NAME_MAX_LEN];
309 const struct rte_memzone *mz;
310 struct rte_event_timer_adapter_data *data;
311 struct rte_event_timer_adapter *adapter;
312 int ret;
313 struct rte_eventdev *dev;
314
315 if (adapters[adapter_id].allocated)
316 return &adapters[adapter_id]; /* Adapter is already loaded */
317
318 snprintf(name, DATA_MZ_NAME_MAX_LEN, DATA_MZ_NAME_FORMAT, adapter_id);
319 mz = rte_memzone_lookup(name);
320 if (mz == NULL) {
321 rte_errno = ENOENT;
322 return NULL;
323 }
324
325 data = mz->addr;
326
327 adapter = &adapters[data->id];
328 adapter->data = data;
329
330 dev = &rte_eventdevs[adapter->data->event_dev_id];
331
332 /* Query eventdev PMD for timer adapter capabilities and ops */
333 ret = dev->dev_ops->timer_adapter_caps_get(dev,
334 adapter->data->conf.flags,
335 &adapter->data->caps,
336 &adapter->ops);
337 if (ret < 0) {
338 rte_errno = EINVAL;
339 return NULL;
340 }
341
342 /* If eventdev PMD did not provide ops, use default software
343 * implementation.
344 */
345 if (adapter->ops == NULL)
346 adapter->ops = &swtim_ops;
347
348 /* Set fast-path function pointers */
349 adapter->arm_burst = adapter->ops->arm_burst;
350 adapter->arm_tmo_tick_burst = adapter->ops->arm_tmo_tick_burst;
351 adapter->cancel_burst = adapter->ops->cancel_burst;
352
353 adapter->allocated = 1;
354
355 return adapter;
356 }
357
358 int
rte_event_timer_adapter_free(struct rte_event_timer_adapter * adapter)359 rte_event_timer_adapter_free(struct rte_event_timer_adapter *adapter)
360 {
361 int ret;
362
363 ADAPTER_VALID_OR_ERR_RET(adapter, -EINVAL);
364 FUNC_PTR_OR_ERR_RET(adapter->ops->uninit, -EINVAL);
365
366 if (adapter->data->started == 1) {
367 EVTIM_LOG_ERR("event timer adapter %"PRIu8" must be stopped "
368 "before freeing", adapter->data->id);
369 return -EBUSY;
370 }
371
372 /* free impl priv data */
373 ret = adapter->ops->uninit(adapter);
374 if (ret < 0)
375 return ret;
376
377 /* free shared data area */
378 ret = rte_memzone_free(adapter->data->mz);
379 if (ret < 0)
380 return ret;
381
382 adapter->data = NULL;
383 adapter->allocated = 0;
384
385 rte_eventdev_trace_timer_adapter_free(adapter);
386 return 0;
387 }
388
389 int
rte_event_timer_adapter_service_id_get(struct rte_event_timer_adapter * adapter,uint32_t * service_id)390 rte_event_timer_adapter_service_id_get(struct rte_event_timer_adapter *adapter,
391 uint32_t *service_id)
392 {
393 ADAPTER_VALID_OR_ERR_RET(adapter, -EINVAL);
394
395 if (adapter->data->service_inited && service_id != NULL)
396 *service_id = adapter->data->service_id;
397
398 return adapter->data->service_inited ? 0 : -ESRCH;
399 }
400
401 int
rte_event_timer_adapter_stats_get(struct rte_event_timer_adapter * adapter,struct rte_event_timer_adapter_stats * stats)402 rte_event_timer_adapter_stats_get(struct rte_event_timer_adapter *adapter,
403 struct rte_event_timer_adapter_stats *stats)
404 {
405 ADAPTER_VALID_OR_ERR_RET(adapter, -EINVAL);
406 FUNC_PTR_OR_ERR_RET(adapter->ops->stats_get, -EINVAL);
407 if (stats == NULL)
408 return -EINVAL;
409
410 return adapter->ops->stats_get(adapter, stats);
411 }
412
413 int
rte_event_timer_adapter_stats_reset(struct rte_event_timer_adapter * adapter)414 rte_event_timer_adapter_stats_reset(struct rte_event_timer_adapter *adapter)
415 {
416 ADAPTER_VALID_OR_ERR_RET(adapter, -EINVAL);
417 FUNC_PTR_OR_ERR_RET(adapter->ops->stats_reset, -EINVAL);
418 return adapter->ops->stats_reset(adapter);
419 }
420
421 /*
422 * Software event timer adapter buffer helper functions
423 */
424
425 #define NSECPERSEC 1E9
426
427 /* Optimizations used to index into the buffer require that the buffer size
428 * be a power of 2.
429 */
430 #define EVENT_BUFFER_SZ 4096
431 #define EVENT_BUFFER_BATCHSZ 32
432 #define EVENT_BUFFER_MASK (EVENT_BUFFER_SZ - 1)
433
434 #define EXP_TIM_BUF_SZ 128
435
436 struct event_buffer {
437 size_t head;
438 size_t tail;
439 struct rte_event events[EVENT_BUFFER_SZ];
440 } __rte_cache_aligned;
441
442 static inline bool
event_buffer_full(struct event_buffer * bufp)443 event_buffer_full(struct event_buffer *bufp)
444 {
445 return (bufp->head - bufp->tail) == EVENT_BUFFER_SZ;
446 }
447
448 static inline bool
event_buffer_batch_ready(struct event_buffer * bufp)449 event_buffer_batch_ready(struct event_buffer *bufp)
450 {
451 return (bufp->head - bufp->tail) >= EVENT_BUFFER_BATCHSZ;
452 }
453
454 static void
event_buffer_init(struct event_buffer * bufp)455 event_buffer_init(struct event_buffer *bufp)
456 {
457 bufp->head = bufp->tail = 0;
458 memset(&bufp->events, 0, sizeof(struct rte_event) * EVENT_BUFFER_SZ);
459 }
460
461 static int
event_buffer_add(struct event_buffer * bufp,struct rte_event * eventp)462 event_buffer_add(struct event_buffer *bufp, struct rte_event *eventp)
463 {
464 size_t head_idx;
465 struct rte_event *buf_eventp;
466
467 if (event_buffer_full(bufp))
468 return -1;
469
470 /* Instead of modulus, bitwise AND with mask to get head_idx. */
471 head_idx = bufp->head & EVENT_BUFFER_MASK;
472 buf_eventp = &bufp->events[head_idx];
473 rte_memcpy(buf_eventp, eventp, sizeof(struct rte_event));
474
475 /* Wrap automatically when overflow occurs. */
476 bufp->head++;
477
478 return 0;
479 }
480
481 static void
event_buffer_flush(struct event_buffer * bufp,uint8_t dev_id,uint8_t port_id,uint16_t * nb_events_flushed,uint16_t * nb_events_inv)482 event_buffer_flush(struct event_buffer *bufp, uint8_t dev_id, uint8_t port_id,
483 uint16_t *nb_events_flushed,
484 uint16_t *nb_events_inv)
485 {
486 struct rte_event *events = bufp->events;
487 size_t head_idx, tail_idx;
488 uint16_t n = 0;
489
490 /* Instead of modulus, bitwise AND with mask to get index. */
491 head_idx = bufp->head & EVENT_BUFFER_MASK;
492 tail_idx = bufp->tail & EVENT_BUFFER_MASK;
493
494 RTE_ASSERT(head_idx < EVENT_BUFFER_SZ && tail_idx < EVENT_BUFFER_SZ);
495
496 /* Determine the largest contigous run we can attempt to enqueue to the
497 * event device.
498 */
499 if (head_idx > tail_idx)
500 n = head_idx - tail_idx;
501 else if (head_idx < tail_idx)
502 n = EVENT_BUFFER_SZ - tail_idx;
503 else if (event_buffer_full(bufp))
504 n = EVENT_BUFFER_SZ - tail_idx;
505 else {
506 *nb_events_flushed = 0;
507 return;
508 }
509
510 n = RTE_MIN(EVENT_BUFFER_BATCHSZ, n);
511 *nb_events_inv = 0;
512
513 *nb_events_flushed = rte_event_enqueue_burst(dev_id, port_id,
514 &events[tail_idx], n);
515 if (*nb_events_flushed != n) {
516 if (rte_errno == EINVAL) {
517 EVTIM_LOG_ERR("failed to enqueue invalid event - "
518 "dropping it");
519 (*nb_events_inv)++;
520 } else if (rte_errno == ENOSPC)
521 rte_pause();
522 }
523
524 if (*nb_events_flushed > 0)
525 EVTIM_BUF_LOG_DBG("enqueued %"PRIu16" timer events to event "
526 "device", *nb_events_flushed);
527
528 bufp->tail = bufp->tail + *nb_events_flushed + *nb_events_inv;
529 }
530
531 /*
532 * Software event timer adapter implementation
533 */
534 struct swtim {
535 /* Identifier of service executing timer management logic. */
536 uint32_t service_id;
537 /* The cycle count at which the adapter should next tick */
538 uint64_t next_tick_cycles;
539 /* The tick resolution used by adapter instance. May have been
540 * adjusted from what user requested
541 */
542 uint64_t timer_tick_ns;
543 /* Maximum timeout in nanoseconds allowed by adapter instance. */
544 uint64_t max_tmo_ns;
545 /* Buffered timer expiry events to be enqueued to an event device. */
546 struct event_buffer buffer;
547 /* Statistics */
548 struct rte_event_timer_adapter_stats stats;
549 /* Mempool of timer objects */
550 struct rte_mempool *tim_pool;
551 /* Back pointer for convenience */
552 struct rte_event_timer_adapter *adapter;
553 /* Identifier of timer data instance */
554 uint32_t timer_data_id;
555 /* Track which cores have actually armed a timer */
556 struct {
557 uint16_t v;
558 } __rte_cache_aligned in_use[RTE_MAX_LCORE];
559 /* Track which cores' timer lists should be polled */
560 unsigned int poll_lcores[RTE_MAX_LCORE];
561 /* The number of lists that should be polled */
562 int n_poll_lcores;
563 /* Timers which have expired and can be returned to a mempool */
564 struct rte_timer *expired_timers[EXP_TIM_BUF_SZ];
565 /* The number of timers that can be returned to a mempool */
566 size_t n_expired_timers;
567 };
568
569 static inline struct swtim *
swtim_pmd_priv(const struct rte_event_timer_adapter * adapter)570 swtim_pmd_priv(const struct rte_event_timer_adapter *adapter)
571 {
572 return adapter->data->adapter_priv;
573 }
574
575 static void
swtim_callback(struct rte_timer * tim)576 swtim_callback(struct rte_timer *tim)
577 {
578 struct rte_event_timer *evtim = tim->arg;
579 struct rte_event_timer_adapter *adapter;
580 unsigned int lcore = rte_lcore_id();
581 struct swtim *sw;
582 uint16_t nb_evs_flushed = 0;
583 uint16_t nb_evs_invalid = 0;
584 uint64_t opaque;
585 int ret;
586 int n_lcores;
587
588 opaque = evtim->impl_opaque[1];
589 adapter = (struct rte_event_timer_adapter *)(uintptr_t)opaque;
590 sw = swtim_pmd_priv(adapter);
591
592 ret = event_buffer_add(&sw->buffer, &evtim->ev);
593 if (ret < 0) {
594 /* If event buffer is full, put timer back in list with
595 * immediate expiry value, so that we process it again on the
596 * next iteration.
597 */
598 ret = rte_timer_alt_reset(sw->timer_data_id, tim, 0, SINGLE,
599 lcore, NULL, evtim);
600 if (ret < 0) {
601 EVTIM_LOG_DBG("event buffer full, failed to reset "
602 "timer with immediate expiry value");
603 } else {
604 sw->stats.evtim_retry_count++;
605 EVTIM_LOG_DBG("event buffer full, resetting rte_timer "
606 "with immediate expiry value");
607 }
608
609 if (unlikely(sw->in_use[lcore].v == 0)) {
610 sw->in_use[lcore].v = 1;
611 n_lcores = __atomic_fetch_add(&sw->n_poll_lcores, 1,
612 __ATOMIC_RELAXED);
613 __atomic_store_n(&sw->poll_lcores[n_lcores], lcore,
614 __ATOMIC_RELAXED);
615 }
616 } else {
617 EVTIM_BUF_LOG_DBG("buffered an event timer expiry event");
618
619 /* Empty the buffer here, if necessary, to free older expired
620 * timers only
621 */
622 if (unlikely(sw->n_expired_timers == EXP_TIM_BUF_SZ)) {
623 rte_mempool_put_bulk(sw->tim_pool,
624 (void **)sw->expired_timers,
625 sw->n_expired_timers);
626 sw->n_expired_timers = 0;
627 }
628
629 sw->expired_timers[sw->n_expired_timers++] = tim;
630 sw->stats.evtim_exp_count++;
631
632 __atomic_store_n(&evtim->state, RTE_EVENT_TIMER_NOT_ARMED,
633 __ATOMIC_RELEASE);
634 }
635
636 if (event_buffer_batch_ready(&sw->buffer)) {
637 event_buffer_flush(&sw->buffer,
638 adapter->data->event_dev_id,
639 adapter->data->event_port_id,
640 &nb_evs_flushed,
641 &nb_evs_invalid);
642
643 sw->stats.ev_enq_count += nb_evs_flushed;
644 sw->stats.ev_inv_count += nb_evs_invalid;
645 }
646 }
647
648 static __rte_always_inline uint64_t
get_timeout_cycles(struct rte_event_timer * evtim,const struct rte_event_timer_adapter * adapter)649 get_timeout_cycles(struct rte_event_timer *evtim,
650 const struct rte_event_timer_adapter *adapter)
651 {
652 struct swtim *sw = swtim_pmd_priv(adapter);
653 uint64_t timeout_ns = evtim->timeout_ticks * sw->timer_tick_ns;
654 return timeout_ns * rte_get_timer_hz() / NSECPERSEC;
655 }
656
657 /* This function returns true if one or more (adapter) ticks have occurred since
658 * the last time it was called.
659 */
660 static inline bool
swtim_did_tick(struct swtim * sw)661 swtim_did_tick(struct swtim *sw)
662 {
663 uint64_t cycles_per_adapter_tick, start_cycles;
664 uint64_t *next_tick_cyclesp;
665
666 next_tick_cyclesp = &sw->next_tick_cycles;
667 cycles_per_adapter_tick = sw->timer_tick_ns *
668 (rte_get_timer_hz() / NSECPERSEC);
669 start_cycles = rte_get_timer_cycles();
670
671 /* Note: initially, *next_tick_cyclesp == 0, so the clause below will
672 * execute, and set things going.
673 */
674
675 if (start_cycles >= *next_tick_cyclesp) {
676 /* Snap the current cycle count to the preceding adapter tick
677 * boundary.
678 */
679 start_cycles -= start_cycles % cycles_per_adapter_tick;
680 *next_tick_cyclesp = start_cycles + cycles_per_adapter_tick;
681
682 return true;
683 }
684
685 return false;
686 }
687
688 /* Check that event timer timeout value is in range */
689 static __rte_always_inline int
check_timeout(struct rte_event_timer * evtim,const struct rte_event_timer_adapter * adapter)690 check_timeout(struct rte_event_timer *evtim,
691 const struct rte_event_timer_adapter *adapter)
692 {
693 uint64_t tmo_nsec;
694 struct swtim *sw = swtim_pmd_priv(adapter);
695
696 tmo_nsec = evtim->timeout_ticks * sw->timer_tick_ns;
697 if (tmo_nsec > sw->max_tmo_ns)
698 return -1;
699 if (tmo_nsec < sw->timer_tick_ns)
700 return -2;
701
702 return 0;
703 }
704
705 /* Check that event timer event queue sched type matches destination event queue
706 * sched type
707 */
708 static __rte_always_inline int
check_destination_event_queue(struct rte_event_timer * evtim,const struct rte_event_timer_adapter * adapter)709 check_destination_event_queue(struct rte_event_timer *evtim,
710 const struct rte_event_timer_adapter *adapter)
711 {
712 int ret;
713 uint32_t sched_type;
714
715 ret = rte_event_queue_attr_get(adapter->data->event_dev_id,
716 evtim->ev.queue_id,
717 RTE_EVENT_QUEUE_ATTR_SCHEDULE_TYPE,
718 &sched_type);
719
720 if ((ret == 0 && evtim->ev.sched_type == sched_type) ||
721 ret == -EOVERFLOW)
722 return 0;
723
724 return -1;
725 }
726
727 static int
swtim_service_func(void * arg)728 swtim_service_func(void *arg)
729 {
730 struct rte_event_timer_adapter *adapter = arg;
731 struct swtim *sw = swtim_pmd_priv(adapter);
732 uint16_t nb_evs_flushed = 0;
733 uint16_t nb_evs_invalid = 0;
734
735 if (swtim_did_tick(sw)) {
736 rte_timer_alt_manage(sw->timer_data_id,
737 sw->poll_lcores,
738 sw->n_poll_lcores,
739 swtim_callback);
740
741 /* Return expired timer objects back to mempool */
742 rte_mempool_put_bulk(sw->tim_pool, (void **)sw->expired_timers,
743 sw->n_expired_timers);
744 sw->n_expired_timers = 0;
745
746 event_buffer_flush(&sw->buffer,
747 adapter->data->event_dev_id,
748 adapter->data->event_port_id,
749 &nb_evs_flushed,
750 &nb_evs_invalid);
751
752 sw->stats.ev_enq_count += nb_evs_flushed;
753 sw->stats.ev_inv_count += nb_evs_invalid;
754 sw->stats.adapter_tick_count++;
755 }
756
757 return 0;
758 }
759
760 /* The adapter initialization function rounds the mempool size up to the next
761 * power of 2, so we can take the difference between that value and what the
762 * user requested, and use the space for caches. This avoids a scenario where a
763 * user can't arm the number of timers the adapter was configured with because
764 * mempool objects have been lost to caches.
765 *
766 * nb_actual should always be a power of 2, so we can iterate over the powers
767 * of 2 to see what the largest cache size we can use is.
768 */
769 static int
compute_msg_mempool_cache_size(uint64_t nb_requested,uint64_t nb_actual)770 compute_msg_mempool_cache_size(uint64_t nb_requested, uint64_t nb_actual)
771 {
772 int i;
773 int size;
774 int cache_size = 0;
775
776 for (i = 0;; i++) {
777 size = 1 << i;
778
779 if (RTE_MAX_LCORE * size < (int)(nb_actual - nb_requested) &&
780 size < RTE_MEMPOOL_CACHE_MAX_SIZE &&
781 size <= nb_actual / 1.5)
782 cache_size = size;
783 else
784 break;
785 }
786
787 return cache_size;
788 }
789
790 static int
swtim_init(struct rte_event_timer_adapter * adapter)791 swtim_init(struct rte_event_timer_adapter *adapter)
792 {
793 int i, ret;
794 struct swtim *sw;
795 unsigned int flags;
796 struct rte_service_spec service;
797
798 /* Allocate storage for private data area */
799 #define SWTIM_NAMESIZE 32
800 char swtim_name[SWTIM_NAMESIZE];
801 snprintf(swtim_name, SWTIM_NAMESIZE, "swtim_%"PRIu8,
802 adapter->data->id);
803 sw = rte_zmalloc_socket(swtim_name, sizeof(*sw), RTE_CACHE_LINE_SIZE,
804 adapter->data->socket_id);
805 if (sw == NULL) {
806 EVTIM_LOG_ERR("failed to allocate space for private data");
807 rte_errno = ENOMEM;
808 return -1;
809 }
810
811 /* Connect storage to adapter instance */
812 adapter->data->adapter_priv = sw;
813 sw->adapter = adapter;
814
815 sw->timer_tick_ns = adapter->data->conf.timer_tick_ns;
816 sw->max_tmo_ns = adapter->data->conf.max_tmo_ns;
817
818 /* Create a timer pool */
819 char pool_name[SWTIM_NAMESIZE];
820 snprintf(pool_name, SWTIM_NAMESIZE, "swtim_pool_%"PRIu8,
821 adapter->data->id);
822 /* Optimal mempool size is a power of 2 minus one */
823 uint64_t nb_timers = rte_align64pow2(adapter->data->conf.nb_timers);
824 int pool_size = nb_timers - 1;
825 int cache_size = compute_msg_mempool_cache_size(
826 adapter->data->conf.nb_timers, nb_timers);
827 flags = 0; /* pool is multi-producer, multi-consumer */
828 sw->tim_pool = rte_mempool_create(pool_name, pool_size,
829 sizeof(struct rte_timer), cache_size, 0, NULL, NULL,
830 NULL, NULL, adapter->data->socket_id, flags);
831 if (sw->tim_pool == NULL) {
832 EVTIM_LOG_ERR("failed to create timer object mempool");
833 rte_errno = ENOMEM;
834 goto free_alloc;
835 }
836
837 /* Initialize the variables that track in-use timer lists */
838 for (i = 0; i < RTE_MAX_LCORE; i++)
839 sw->in_use[i].v = 0;
840
841 /* Initialize the timer subsystem and allocate timer data instance */
842 ret = rte_timer_subsystem_init();
843 if (ret < 0) {
844 if (ret != -EALREADY) {
845 EVTIM_LOG_ERR("failed to initialize timer subsystem");
846 rte_errno = -ret;
847 goto free_mempool;
848 }
849 }
850
851 ret = rte_timer_data_alloc(&sw->timer_data_id);
852 if (ret < 0) {
853 EVTIM_LOG_ERR("failed to allocate timer data instance");
854 rte_errno = -ret;
855 goto free_mempool;
856 }
857
858 /* Initialize timer event buffer */
859 event_buffer_init(&sw->buffer);
860
861 sw->adapter = adapter;
862
863 /* Register a service component to run adapter logic */
864 memset(&service, 0, sizeof(service));
865 snprintf(service.name, RTE_SERVICE_NAME_MAX,
866 "swtim_svc_%"PRIu8, adapter->data->id);
867 service.socket_id = adapter->data->socket_id;
868 service.callback = swtim_service_func;
869 service.callback_userdata = adapter;
870 service.capabilities &= ~(RTE_SERVICE_CAP_MT_SAFE);
871 ret = rte_service_component_register(&service, &sw->service_id);
872 if (ret < 0) {
873 EVTIM_LOG_ERR("failed to register service %s with id %"PRIu32
874 ": err = %d", service.name, sw->service_id,
875 ret);
876
877 rte_errno = ENOSPC;
878 goto free_mempool;
879 }
880
881 EVTIM_LOG_DBG("registered service %s with id %"PRIu32, service.name,
882 sw->service_id);
883
884 adapter->data->service_id = sw->service_id;
885 adapter->data->service_inited = 1;
886
887 return 0;
888 free_mempool:
889 rte_mempool_free(sw->tim_pool);
890 free_alloc:
891 rte_free(sw);
892 return -1;
893 }
894
895 static void
swtim_free_tim(struct rte_timer * tim,void * arg)896 swtim_free_tim(struct rte_timer *tim, void *arg)
897 {
898 struct swtim *sw = arg;
899
900 rte_mempool_put(sw->tim_pool, tim);
901 }
902
903 /* Traverse the list of outstanding timers and put them back in the mempool
904 * before freeing the adapter to avoid leaking the memory.
905 */
906 static int
swtim_uninit(struct rte_event_timer_adapter * adapter)907 swtim_uninit(struct rte_event_timer_adapter *adapter)
908 {
909 int ret;
910 struct swtim *sw = swtim_pmd_priv(adapter);
911
912 /* Free outstanding timers */
913 rte_timer_stop_all(sw->timer_data_id,
914 sw->poll_lcores,
915 sw->n_poll_lcores,
916 swtim_free_tim,
917 sw);
918
919 ret = rte_service_component_unregister(sw->service_id);
920 if (ret < 0) {
921 EVTIM_LOG_ERR("failed to unregister service component");
922 return ret;
923 }
924
925 rte_mempool_free(sw->tim_pool);
926 rte_free(sw);
927 adapter->data->adapter_priv = NULL;
928
929 return 0;
930 }
931
932 static inline int32_t
get_mapped_count_for_service(uint32_t service_id)933 get_mapped_count_for_service(uint32_t service_id)
934 {
935 int32_t core_count, i, mapped_count = 0;
936 uint32_t lcore_arr[RTE_MAX_LCORE];
937
938 core_count = rte_service_lcore_list(lcore_arr, RTE_MAX_LCORE);
939
940 for (i = 0; i < core_count; i++)
941 if (rte_service_map_lcore_get(service_id, lcore_arr[i]) == 1)
942 mapped_count++;
943
944 return mapped_count;
945 }
946
947 static int
swtim_start(const struct rte_event_timer_adapter * adapter)948 swtim_start(const struct rte_event_timer_adapter *adapter)
949 {
950 int mapped_count;
951 struct swtim *sw = swtim_pmd_priv(adapter);
952
953 /* Mapping the service to more than one service core can introduce
954 * delays while one thread is waiting to acquire a lock, so only allow
955 * one core to be mapped to the service.
956 *
957 * Note: the service could be modified such that it spreads cores to
958 * poll over multiple service instances.
959 */
960 mapped_count = get_mapped_count_for_service(sw->service_id);
961
962 if (mapped_count != 1)
963 return mapped_count < 1 ? -ENOENT : -ENOTSUP;
964
965 return rte_service_component_runstate_set(sw->service_id, 1);
966 }
967
968 static int
swtim_stop(const struct rte_event_timer_adapter * adapter)969 swtim_stop(const struct rte_event_timer_adapter *adapter)
970 {
971 int ret;
972 struct swtim *sw = swtim_pmd_priv(adapter);
973
974 ret = rte_service_component_runstate_set(sw->service_id, 0);
975 if (ret < 0)
976 return ret;
977
978 /* Wait for the service to complete its final iteration */
979 while (rte_service_may_be_active(sw->service_id))
980 rte_pause();
981
982 return 0;
983 }
984
985 static void
swtim_get_info(const struct rte_event_timer_adapter * adapter,struct rte_event_timer_adapter_info * adapter_info)986 swtim_get_info(const struct rte_event_timer_adapter *adapter,
987 struct rte_event_timer_adapter_info *adapter_info)
988 {
989 struct swtim *sw = swtim_pmd_priv(adapter);
990 adapter_info->min_resolution_ns = sw->timer_tick_ns;
991 adapter_info->max_tmo_ns = sw->max_tmo_ns;
992 }
993
994 static int
swtim_stats_get(const struct rte_event_timer_adapter * adapter,struct rte_event_timer_adapter_stats * stats)995 swtim_stats_get(const struct rte_event_timer_adapter *adapter,
996 struct rte_event_timer_adapter_stats *stats)
997 {
998 struct swtim *sw = swtim_pmd_priv(adapter);
999 *stats = sw->stats; /* structure copy */
1000 return 0;
1001 }
1002
1003 static int
swtim_stats_reset(const struct rte_event_timer_adapter * adapter)1004 swtim_stats_reset(const struct rte_event_timer_adapter *adapter)
1005 {
1006 struct swtim *sw = swtim_pmd_priv(adapter);
1007 memset(&sw->stats, 0, sizeof(sw->stats));
1008 return 0;
1009 }
1010
1011 static uint16_t
__swtim_arm_burst(const struct rte_event_timer_adapter * adapter,struct rte_event_timer ** evtims,uint16_t nb_evtims)1012 __swtim_arm_burst(const struct rte_event_timer_adapter *adapter,
1013 struct rte_event_timer **evtims,
1014 uint16_t nb_evtims)
1015 {
1016 int i, ret;
1017 struct swtim *sw = swtim_pmd_priv(adapter);
1018 uint32_t lcore_id = rte_lcore_id();
1019 struct rte_timer *tim, *tims[nb_evtims];
1020 uint64_t cycles;
1021 int n_lcores;
1022 /* Timer list for this lcore is not in use. */
1023 uint16_t exp_state = 0;
1024 enum rte_event_timer_state n_state;
1025
1026 #ifdef RTE_LIBRTE_EVENTDEV_DEBUG
1027 /* Check that the service is running. */
1028 if (rte_service_runstate_get(adapter->data->service_id) != 1) {
1029 rte_errno = EINVAL;
1030 return 0;
1031 }
1032 #endif
1033
1034 /* Adjust lcore_id if non-EAL thread. Arbitrarily pick the timer list of
1035 * the highest lcore to insert such timers into
1036 */
1037 if (lcore_id == LCORE_ID_ANY)
1038 lcore_id = RTE_MAX_LCORE - 1;
1039
1040 /* If this is the first time we're arming an event timer on this lcore,
1041 * mark this lcore as "in use"; this will cause the service
1042 * function to process the timer list that corresponds to this lcore.
1043 * The atomic compare-and-swap operation can prevent the race condition
1044 * on in_use flag between multiple non-EAL threads.
1045 */
1046 if (unlikely(__atomic_compare_exchange_n(&sw->in_use[lcore_id].v,
1047 &exp_state, 1, 0,
1048 __ATOMIC_RELAXED, __ATOMIC_RELAXED))) {
1049 EVTIM_LOG_DBG("Adding lcore id = %u to list of lcores to poll",
1050 lcore_id);
1051 n_lcores = __atomic_fetch_add(&sw->n_poll_lcores, 1,
1052 __ATOMIC_RELAXED);
1053 __atomic_store_n(&sw->poll_lcores[n_lcores], lcore_id,
1054 __ATOMIC_RELAXED);
1055 }
1056
1057 ret = rte_mempool_get_bulk(sw->tim_pool, (void **)tims,
1058 nb_evtims);
1059 if (ret < 0) {
1060 rte_errno = ENOSPC;
1061 return 0;
1062 }
1063
1064 for (i = 0; i < nb_evtims; i++) {
1065 n_state = __atomic_load_n(&evtims[i]->state, __ATOMIC_ACQUIRE);
1066 if (n_state == RTE_EVENT_TIMER_ARMED) {
1067 rte_errno = EALREADY;
1068 break;
1069 } else if (!(n_state == RTE_EVENT_TIMER_NOT_ARMED ||
1070 n_state == RTE_EVENT_TIMER_CANCELED)) {
1071 rte_errno = EINVAL;
1072 break;
1073 }
1074
1075 ret = check_timeout(evtims[i], adapter);
1076 if (unlikely(ret == -1)) {
1077 __atomic_store_n(&evtims[i]->state,
1078 RTE_EVENT_TIMER_ERROR_TOOLATE,
1079 __ATOMIC_RELAXED);
1080 rte_errno = EINVAL;
1081 break;
1082 } else if (unlikely(ret == -2)) {
1083 __atomic_store_n(&evtims[i]->state,
1084 RTE_EVENT_TIMER_ERROR_TOOEARLY,
1085 __ATOMIC_RELAXED);
1086 rte_errno = EINVAL;
1087 break;
1088 }
1089
1090 if (unlikely(check_destination_event_queue(evtims[i],
1091 adapter) < 0)) {
1092 __atomic_store_n(&evtims[i]->state,
1093 RTE_EVENT_TIMER_ERROR,
1094 __ATOMIC_RELAXED);
1095 rte_errno = EINVAL;
1096 break;
1097 }
1098
1099 tim = tims[i];
1100 rte_timer_init(tim);
1101
1102 evtims[i]->impl_opaque[0] = (uintptr_t)tim;
1103 evtims[i]->impl_opaque[1] = (uintptr_t)adapter;
1104
1105 cycles = get_timeout_cycles(evtims[i], adapter);
1106 ret = rte_timer_alt_reset(sw->timer_data_id, tim, cycles,
1107 SINGLE, lcore_id, NULL, evtims[i]);
1108 if (ret < 0) {
1109 /* tim was in RUNNING or CONFIG state */
1110 __atomic_store_n(&evtims[i]->state,
1111 RTE_EVENT_TIMER_ERROR,
1112 __ATOMIC_RELEASE);
1113 break;
1114 }
1115
1116 EVTIM_LOG_DBG("armed an event timer");
1117 /* RELEASE ordering guarantees the adapter specific value
1118 * changes observed before the update of state.
1119 */
1120 __atomic_store_n(&evtims[i]->state, RTE_EVENT_TIMER_ARMED,
1121 __ATOMIC_RELEASE);
1122 }
1123
1124 if (i < nb_evtims)
1125 rte_mempool_put_bulk(sw->tim_pool,
1126 (void **)&tims[i], nb_evtims - i);
1127
1128 return i;
1129 }
1130
1131 static uint16_t
swtim_arm_burst(const struct rte_event_timer_adapter * adapter,struct rte_event_timer ** evtims,uint16_t nb_evtims)1132 swtim_arm_burst(const struct rte_event_timer_adapter *adapter,
1133 struct rte_event_timer **evtims,
1134 uint16_t nb_evtims)
1135 {
1136 return __swtim_arm_burst(adapter, evtims, nb_evtims);
1137 }
1138
1139 static uint16_t
swtim_cancel_burst(const struct rte_event_timer_adapter * adapter,struct rte_event_timer ** evtims,uint16_t nb_evtims)1140 swtim_cancel_burst(const struct rte_event_timer_adapter *adapter,
1141 struct rte_event_timer **evtims,
1142 uint16_t nb_evtims)
1143 {
1144 int i, ret;
1145 struct rte_timer *timp;
1146 uint64_t opaque;
1147 struct swtim *sw = swtim_pmd_priv(adapter);
1148 enum rte_event_timer_state n_state;
1149
1150 #ifdef RTE_LIBRTE_EVENTDEV_DEBUG
1151 /* Check that the service is running. */
1152 if (rte_service_runstate_get(adapter->data->service_id) != 1) {
1153 rte_errno = EINVAL;
1154 return 0;
1155 }
1156 #endif
1157
1158 for (i = 0; i < nb_evtims; i++) {
1159 /* Don't modify the event timer state in these cases */
1160 /* ACQUIRE ordering guarantees the access of implementation
1161 * specific opaque data under the correct state.
1162 */
1163 n_state = __atomic_load_n(&evtims[i]->state, __ATOMIC_ACQUIRE);
1164 if (n_state == RTE_EVENT_TIMER_CANCELED) {
1165 rte_errno = EALREADY;
1166 break;
1167 } else if (n_state != RTE_EVENT_TIMER_ARMED) {
1168 rte_errno = EINVAL;
1169 break;
1170 }
1171
1172 opaque = evtims[i]->impl_opaque[0];
1173 timp = (struct rte_timer *)(uintptr_t)opaque;
1174 RTE_ASSERT(timp != NULL);
1175
1176 ret = rte_timer_alt_stop(sw->timer_data_id, timp);
1177 if (ret < 0) {
1178 /* Timer is running or being configured */
1179 rte_errno = EAGAIN;
1180 break;
1181 }
1182
1183 rte_mempool_put(sw->tim_pool, (void **)timp);
1184
1185 /* The RELEASE ordering here pairs with atomic ordering
1186 * to make sure the state update data observed between
1187 * threads.
1188 */
1189 __atomic_store_n(&evtims[i]->state, RTE_EVENT_TIMER_CANCELED,
1190 __ATOMIC_RELEASE);
1191 }
1192
1193 return i;
1194 }
1195
1196 static uint16_t
swtim_arm_tmo_tick_burst(const struct rte_event_timer_adapter * adapter,struct rte_event_timer ** evtims,uint64_t timeout_ticks,uint16_t nb_evtims)1197 swtim_arm_tmo_tick_burst(const struct rte_event_timer_adapter *adapter,
1198 struct rte_event_timer **evtims,
1199 uint64_t timeout_ticks,
1200 uint16_t nb_evtims)
1201 {
1202 int i;
1203
1204 for (i = 0; i < nb_evtims; i++)
1205 evtims[i]->timeout_ticks = timeout_ticks;
1206
1207 return __swtim_arm_burst(adapter, evtims, nb_evtims);
1208 }
1209
1210 static const struct rte_event_timer_adapter_ops swtim_ops = {
1211 .init = swtim_init,
1212 .uninit = swtim_uninit,
1213 .start = swtim_start,
1214 .stop = swtim_stop,
1215 .get_info = swtim_get_info,
1216 .stats_get = swtim_stats_get,
1217 .stats_reset = swtim_stats_reset,
1218 .arm_burst = swtim_arm_burst,
1219 .arm_tmo_tick_burst = swtim_arm_tmo_tick_burst,
1220 .cancel_burst = swtim_cancel_burst,
1221 };
1222