1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2016 Intel Corporation
3 */
4
5 #include <stdbool.h>
6 #include <stdio.h>
7 #include <stdlib.h>
8 #include <stdint.h>
9 #include <inttypes.h>
10 #include <sys/types.h>
11 #include <netinet/in.h>
12 #include <netinet/ip.h>
13 #include <netinet/ip6.h>
14 #include <string.h>
15 #include <sys/queue.h>
16 #include <stdarg.h>
17 #include <errno.h>
18 #include <signal.h>
19 #include <getopt.h>
20
21 #include <rte_common.h>
22 #include <rte_bitmap.h>
23 #include <rte_byteorder.h>
24 #include <rte_log.h>
25 #include <rte_eal.h>
26 #include <rte_launch.h>
27 #include <rte_atomic.h>
28 #include <rte_cycles.h>
29 #include <rte_prefetch.h>
30 #include <rte_lcore.h>
31 #include <rte_per_lcore.h>
32 #include <rte_branch_prediction.h>
33 #include <rte_interrupts.h>
34 #include <rte_random.h>
35 #include <rte_debug.h>
36 #include <rte_ether.h>
37 #include <rte_ethdev.h>
38 #include <rte_mempool.h>
39 #include <rte_mbuf.h>
40 #include <rte_acl.h>
41 #include <rte_lpm.h>
42 #include <rte_lpm6.h>
43 #include <rte_hash.h>
44 #include <rte_jhash.h>
45 #include <rte_cryptodev.h>
46 #include <rte_security.h>
47 #include <rte_eventdev.h>
48 #include <rte_ip.h>
49 #include <rte_ip_frag.h>
50 #include <rte_alarm.h>
51
52 #include "event_helper.h"
53 #include "flow.h"
54 #include "ipsec.h"
55 #include "ipsec_worker.h"
56 #include "parser.h"
57 #include "sad.h"
58
59 volatile bool force_quit;
60
61 #define MAX_JUMBO_PKT_LEN 9600
62
63 #define MEMPOOL_CACHE_SIZE 256
64
65 #define CDEV_QUEUE_DESC 2048
66 #define CDEV_MAP_ENTRIES 16384
67 #define CDEV_MP_CACHE_SZ 64
68 #define CDEV_MP_CACHE_MULTIPLIER 1.5 /* from rte_mempool.c */
69 #define MAX_QUEUE_PAIRS 1
70
71 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
72
73 /* Configure how many packets ahead to prefetch, when reading packets */
74 #define PREFETCH_OFFSET 3
75
76 #define MAX_RX_QUEUE_PER_LCORE 16
77
78 #define MAX_LCORE_PARAMS 1024
79
80 /*
81 * Configurable number of RX/TX ring descriptors
82 */
83 #define IPSEC_SECGW_RX_DESC_DEFAULT 1024
84 #define IPSEC_SECGW_TX_DESC_DEFAULT 1024
85 static uint16_t nb_rxd = IPSEC_SECGW_RX_DESC_DEFAULT;
86 static uint16_t nb_txd = IPSEC_SECGW_TX_DESC_DEFAULT;
87
88 #define ETHADDR_TO_UINT64(addr) __BYTES_TO_UINT64( \
89 (addr)->addr_bytes[0], (addr)->addr_bytes[1], \
90 (addr)->addr_bytes[2], (addr)->addr_bytes[3], \
91 (addr)->addr_bytes[4], (addr)->addr_bytes[5], \
92 0, 0)
93
94 #define FRAG_TBL_BUCKET_ENTRIES 4
95 #define MAX_FRAG_TTL_NS (10LL * NS_PER_S)
96
97 #define MTU_TO_FRAMELEN(x) ((x) + RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN)
98
99 struct ethaddr_info ethaddr_tbl[RTE_MAX_ETHPORTS] = {
100 { 0, ETHADDR(0x00, 0x16, 0x3e, 0x7e, 0x94, 0x9a) },
101 { 0, ETHADDR(0x00, 0x16, 0x3e, 0x22, 0xa1, 0xd9) },
102 { 0, ETHADDR(0x00, 0x16, 0x3e, 0x08, 0x69, 0x26) },
103 { 0, ETHADDR(0x00, 0x16, 0x3e, 0x49, 0x9e, 0xdd) }
104 };
105
106 struct flow_info flow_info_tbl[RTE_MAX_ETHPORTS];
107
108 #define CMD_LINE_OPT_CONFIG "config"
109 #define CMD_LINE_OPT_SINGLE_SA "single-sa"
110 #define CMD_LINE_OPT_CRYPTODEV_MASK "cryptodev_mask"
111 #define CMD_LINE_OPT_TRANSFER_MODE "transfer-mode"
112 #define CMD_LINE_OPT_SCHEDULE_TYPE "event-schedule-type"
113 #define CMD_LINE_OPT_RX_OFFLOAD "rxoffload"
114 #define CMD_LINE_OPT_TX_OFFLOAD "txoffload"
115 #define CMD_LINE_OPT_REASSEMBLE "reassemble"
116 #define CMD_LINE_OPT_MTU "mtu"
117 #define CMD_LINE_OPT_FRAG_TTL "frag-ttl"
118
119 #define CMD_LINE_ARG_EVENT "event"
120 #define CMD_LINE_ARG_POLL "poll"
121 #define CMD_LINE_ARG_ORDERED "ordered"
122 #define CMD_LINE_ARG_ATOMIC "atomic"
123 #define CMD_LINE_ARG_PARALLEL "parallel"
124
125 enum {
126 /* long options mapped to a short option */
127
128 /* first long only option value must be >= 256, so that we won't
129 * conflict with short options
130 */
131 CMD_LINE_OPT_MIN_NUM = 256,
132 CMD_LINE_OPT_CONFIG_NUM,
133 CMD_LINE_OPT_SINGLE_SA_NUM,
134 CMD_LINE_OPT_CRYPTODEV_MASK_NUM,
135 CMD_LINE_OPT_TRANSFER_MODE_NUM,
136 CMD_LINE_OPT_SCHEDULE_TYPE_NUM,
137 CMD_LINE_OPT_RX_OFFLOAD_NUM,
138 CMD_LINE_OPT_TX_OFFLOAD_NUM,
139 CMD_LINE_OPT_REASSEMBLE_NUM,
140 CMD_LINE_OPT_MTU_NUM,
141 CMD_LINE_OPT_FRAG_TTL_NUM,
142 };
143
144 static const struct option lgopts[] = {
145 {CMD_LINE_OPT_CONFIG, 1, 0, CMD_LINE_OPT_CONFIG_NUM},
146 {CMD_LINE_OPT_SINGLE_SA, 1, 0, CMD_LINE_OPT_SINGLE_SA_NUM},
147 {CMD_LINE_OPT_CRYPTODEV_MASK, 1, 0, CMD_LINE_OPT_CRYPTODEV_MASK_NUM},
148 {CMD_LINE_OPT_TRANSFER_MODE, 1, 0, CMD_LINE_OPT_TRANSFER_MODE_NUM},
149 {CMD_LINE_OPT_SCHEDULE_TYPE, 1, 0, CMD_LINE_OPT_SCHEDULE_TYPE_NUM},
150 {CMD_LINE_OPT_RX_OFFLOAD, 1, 0, CMD_LINE_OPT_RX_OFFLOAD_NUM},
151 {CMD_LINE_OPT_TX_OFFLOAD, 1, 0, CMD_LINE_OPT_TX_OFFLOAD_NUM},
152 {CMD_LINE_OPT_REASSEMBLE, 1, 0, CMD_LINE_OPT_REASSEMBLE_NUM},
153 {CMD_LINE_OPT_MTU, 1, 0, CMD_LINE_OPT_MTU_NUM},
154 {CMD_LINE_OPT_FRAG_TTL, 1, 0, CMD_LINE_OPT_FRAG_TTL_NUM},
155 {NULL, 0, 0, 0}
156 };
157
158 uint32_t unprotected_port_mask;
159 uint32_t single_sa_idx;
160 /* mask of enabled ports */
161 static uint32_t enabled_port_mask;
162 static uint64_t enabled_cryptodev_mask = UINT64_MAX;
163 static int32_t promiscuous_on = 1;
164 static int32_t numa_on = 1; /**< NUMA is enabled by default. */
165 static uint32_t nb_lcores;
166 static uint32_t single_sa;
167 static uint32_t nb_bufs_in_pool;
168
169 /*
170 * RX/TX HW offload capabilities to enable/use on ethernet ports.
171 * By default all capabilities are enabled.
172 */
173 static uint64_t dev_rx_offload = UINT64_MAX;
174 static uint64_t dev_tx_offload = UINT64_MAX;
175
176 /*
177 * global values that determine multi-seg policy
178 */
179 static uint32_t frag_tbl_sz;
180 static uint32_t frame_buf_size = RTE_MBUF_DEFAULT_BUF_SIZE;
181 static uint32_t mtu_size = RTE_ETHER_MTU;
182 static uint64_t frag_ttl_ns = MAX_FRAG_TTL_NS;
183
184 /* application wide librte_ipsec/SA parameters */
185 struct app_sa_prm app_sa_prm = {
186 .enable = 0,
187 .cache_sz = SA_CACHE_SZ
188 };
189 static const char *cfgfile;
190
191 struct lcore_rx_queue {
192 uint16_t port_id;
193 uint8_t queue_id;
194 } __rte_cache_aligned;
195
196 struct lcore_params {
197 uint16_t port_id;
198 uint8_t queue_id;
199 uint8_t lcore_id;
200 } __rte_cache_aligned;
201
202 static struct lcore_params lcore_params_array[MAX_LCORE_PARAMS];
203
204 static struct lcore_params *lcore_params;
205 static uint16_t nb_lcore_params;
206
207 static struct rte_hash *cdev_map_in;
208 static struct rte_hash *cdev_map_out;
209
210 struct buffer {
211 uint16_t len;
212 struct rte_mbuf *m_table[MAX_PKT_BURST] __rte_aligned(sizeof(void *));
213 };
214
215 struct lcore_conf {
216 uint16_t nb_rx_queue;
217 struct lcore_rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
218 uint16_t tx_queue_id[RTE_MAX_ETHPORTS];
219 struct buffer tx_mbufs[RTE_MAX_ETHPORTS];
220 struct ipsec_ctx inbound;
221 struct ipsec_ctx outbound;
222 struct rt_ctx *rt4_ctx;
223 struct rt_ctx *rt6_ctx;
224 struct {
225 struct rte_ip_frag_tbl *tbl;
226 struct rte_mempool *pool_dir;
227 struct rte_mempool *pool_indir;
228 struct rte_ip_frag_death_row dr;
229 } frag;
230 } __rte_cache_aligned;
231
232 static struct lcore_conf lcore_conf[RTE_MAX_LCORE];
233
234 static struct rte_eth_conf port_conf = {
235 .rxmode = {
236 .mq_mode = ETH_MQ_RX_RSS,
237 .max_rx_pkt_len = RTE_ETHER_MAX_LEN,
238 .split_hdr_size = 0,
239 .offloads = DEV_RX_OFFLOAD_CHECKSUM,
240 },
241 .rx_adv_conf = {
242 .rss_conf = {
243 .rss_key = NULL,
244 .rss_hf = ETH_RSS_IP | ETH_RSS_UDP |
245 ETH_RSS_TCP | ETH_RSS_SCTP,
246 },
247 },
248 .txmode = {
249 .mq_mode = ETH_MQ_TX_NONE,
250 },
251 };
252
253 struct socket_ctx socket_ctx[NB_SOCKETS];
254
255 /*
256 * Determine is multi-segment support required:
257 * - either frame buffer size is smaller then mtu
258 * - or reassmeble support is requested
259 */
260 static int
multi_seg_required(void)261 multi_seg_required(void)
262 {
263 return (MTU_TO_FRAMELEN(mtu_size) + RTE_PKTMBUF_HEADROOM >
264 frame_buf_size || frag_tbl_sz != 0);
265 }
266
267 static inline void
adjust_ipv4_pktlen(struct rte_mbuf * m,const struct rte_ipv4_hdr * iph,uint32_t l2_len)268 adjust_ipv4_pktlen(struct rte_mbuf *m, const struct rte_ipv4_hdr *iph,
269 uint32_t l2_len)
270 {
271 uint32_t plen, trim;
272
273 plen = rte_be_to_cpu_16(iph->total_length) + l2_len;
274 if (plen < m->pkt_len) {
275 trim = m->pkt_len - plen;
276 rte_pktmbuf_trim(m, trim);
277 }
278 }
279
280 static inline void
adjust_ipv6_pktlen(struct rte_mbuf * m,const struct rte_ipv6_hdr * iph,uint32_t l2_len)281 adjust_ipv6_pktlen(struct rte_mbuf *m, const struct rte_ipv6_hdr *iph,
282 uint32_t l2_len)
283 {
284 uint32_t plen, trim;
285
286 plen = rte_be_to_cpu_16(iph->payload_len) + sizeof(*iph) + l2_len;
287 if (plen < m->pkt_len) {
288 trim = m->pkt_len - plen;
289 rte_pktmbuf_trim(m, trim);
290 }
291 }
292
293 #if (STATS_INTERVAL > 0)
294
295 /* Print out statistics on packet distribution */
296 static void
print_stats_cb(__rte_unused void * param)297 print_stats_cb(__rte_unused void *param)
298 {
299 uint64_t total_packets_dropped, total_packets_tx, total_packets_rx;
300 float burst_percent, rx_per_call, tx_per_call;
301 unsigned int coreid;
302
303 total_packets_dropped = 0;
304 total_packets_tx = 0;
305 total_packets_rx = 0;
306
307 const char clr[] = { 27, '[', '2', 'J', '\0' };
308 const char topLeft[] = { 27, '[', '1', ';', '1', 'H', '\0' };
309
310 /* Clear screen and move to top left */
311 printf("%s%s", clr, topLeft);
312
313 printf("\nCore statistics ====================================");
314
315 for (coreid = 0; coreid < RTE_MAX_LCORE; coreid++) {
316 /* skip disabled cores */
317 if (rte_lcore_is_enabled(coreid) == 0)
318 continue;
319 burst_percent = (float)(core_statistics[coreid].burst_rx * 100)/
320 core_statistics[coreid].rx;
321 rx_per_call = (float)(core_statistics[coreid].rx)/
322 core_statistics[coreid].rx_call;
323 tx_per_call = (float)(core_statistics[coreid].tx)/
324 core_statistics[coreid].tx_call;
325 printf("\nStatistics for core %u ------------------------------"
326 "\nPackets received: %20"PRIu64
327 "\nPackets sent: %24"PRIu64
328 "\nPackets dropped: %21"PRIu64
329 "\nBurst percent: %23.2f"
330 "\nPackets per Rx call: %17.2f"
331 "\nPackets per Tx call: %17.2f",
332 coreid,
333 core_statistics[coreid].rx,
334 core_statistics[coreid].tx,
335 core_statistics[coreid].dropped,
336 burst_percent,
337 rx_per_call,
338 tx_per_call);
339
340 total_packets_dropped += core_statistics[coreid].dropped;
341 total_packets_tx += core_statistics[coreid].tx;
342 total_packets_rx += core_statistics[coreid].rx;
343 }
344 printf("\nAggregate statistics ==============================="
345 "\nTotal packets received: %14"PRIu64
346 "\nTotal packets sent: %18"PRIu64
347 "\nTotal packets dropped: %15"PRIu64,
348 total_packets_rx,
349 total_packets_tx,
350 total_packets_dropped);
351 printf("\n====================================================\n");
352
353 rte_eal_alarm_set(STATS_INTERVAL * US_PER_S, print_stats_cb, NULL);
354 }
355 #endif /* STATS_INTERVAL */
356
357 static inline void
prepare_one_packet(struct rte_mbuf * pkt,struct ipsec_traffic * t)358 prepare_one_packet(struct rte_mbuf *pkt, struct ipsec_traffic *t)
359 {
360 const struct rte_ether_hdr *eth;
361 const struct rte_ipv4_hdr *iph4;
362 const struct rte_ipv6_hdr *iph6;
363
364 eth = rte_pktmbuf_mtod(pkt, const struct rte_ether_hdr *);
365 if (eth->ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4)) {
366
367 iph4 = (const struct rte_ipv4_hdr *)rte_pktmbuf_adj(pkt,
368 RTE_ETHER_HDR_LEN);
369 adjust_ipv4_pktlen(pkt, iph4, 0);
370
371 if (iph4->next_proto_id == IPPROTO_ESP)
372 t->ipsec.pkts[(t->ipsec.num)++] = pkt;
373 else {
374 t->ip4.data[t->ip4.num] = &iph4->next_proto_id;
375 t->ip4.pkts[(t->ip4.num)++] = pkt;
376 }
377 pkt->l2_len = 0;
378 pkt->l3_len = sizeof(*iph4);
379 pkt->packet_type |= RTE_PTYPE_L3_IPV4;
380 } else if (eth->ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6)) {
381 int next_proto;
382 size_t l3len, ext_len;
383 uint8_t *p;
384
385 /* get protocol type */
386 iph6 = (const struct rte_ipv6_hdr *)rte_pktmbuf_adj(pkt,
387 RTE_ETHER_HDR_LEN);
388 adjust_ipv6_pktlen(pkt, iph6, 0);
389
390 next_proto = iph6->proto;
391
392 /* determine l3 header size up to ESP extension */
393 l3len = sizeof(struct ip6_hdr);
394 p = rte_pktmbuf_mtod(pkt, uint8_t *);
395 while (next_proto != IPPROTO_ESP && l3len < pkt->data_len &&
396 (next_proto = rte_ipv6_get_next_ext(p + l3len,
397 next_proto, &ext_len)) >= 0)
398 l3len += ext_len;
399
400 /* drop packet when IPv6 header exceeds first segment length */
401 if (unlikely(l3len > pkt->data_len)) {
402 free_pkts(&pkt, 1);
403 return;
404 }
405
406 if (next_proto == IPPROTO_ESP)
407 t->ipsec.pkts[(t->ipsec.num)++] = pkt;
408 else {
409 t->ip6.data[t->ip6.num] = &iph6->proto;
410 t->ip6.pkts[(t->ip6.num)++] = pkt;
411 }
412 pkt->l2_len = 0;
413 pkt->l3_len = l3len;
414 pkt->packet_type |= RTE_PTYPE_L3_IPV6;
415 } else {
416 /* Unknown/Unsupported type, drop the packet */
417 RTE_LOG(ERR, IPSEC, "Unsupported packet type 0x%x\n",
418 rte_be_to_cpu_16(eth->ether_type));
419 free_pkts(&pkt, 1);
420 return;
421 }
422
423 /* Check if the packet has been processed inline. For inline protocol
424 * processed packets, the metadata in the mbuf can be used to identify
425 * the security processing done on the packet. The metadata will be
426 * used to retrieve the application registered userdata associated
427 * with the security session.
428 */
429
430 if (pkt->ol_flags & PKT_RX_SEC_OFFLOAD &&
431 rte_security_dynfield_is_registered()) {
432 struct ipsec_sa *sa;
433 struct ipsec_mbuf_metadata *priv;
434 struct rte_security_ctx *ctx = (struct rte_security_ctx *)
435 rte_eth_dev_get_sec_ctx(
436 pkt->port);
437
438 /* Retrieve the userdata registered. Here, the userdata
439 * registered is the SA pointer.
440 */
441 sa = (struct ipsec_sa *)rte_security_get_userdata(ctx,
442 *rte_security_dynfield(pkt));
443 if (sa == NULL) {
444 /* userdata could not be retrieved */
445 return;
446 }
447
448 /* Save SA as priv member in mbuf. This will be used in the
449 * IPsec selector(SP-SA) check.
450 */
451
452 priv = get_priv(pkt);
453 priv->sa = sa;
454 }
455 }
456
457 static inline void
prepare_traffic(struct rte_mbuf ** pkts,struct ipsec_traffic * t,uint16_t nb_pkts)458 prepare_traffic(struct rte_mbuf **pkts, struct ipsec_traffic *t,
459 uint16_t nb_pkts)
460 {
461 int32_t i;
462
463 t->ipsec.num = 0;
464 t->ip4.num = 0;
465 t->ip6.num = 0;
466
467 for (i = 0; i < (nb_pkts - PREFETCH_OFFSET); i++) {
468 rte_prefetch0(rte_pktmbuf_mtod(pkts[i + PREFETCH_OFFSET],
469 void *));
470 prepare_one_packet(pkts[i], t);
471 }
472 /* Process left packets */
473 for (; i < nb_pkts; i++)
474 prepare_one_packet(pkts[i], t);
475 }
476
477 static inline void
prepare_tx_pkt(struct rte_mbuf * pkt,uint16_t port,const struct lcore_conf * qconf)478 prepare_tx_pkt(struct rte_mbuf *pkt, uint16_t port,
479 const struct lcore_conf *qconf)
480 {
481 struct ip *ip;
482 struct rte_ether_hdr *ethhdr;
483
484 ip = rte_pktmbuf_mtod(pkt, struct ip *);
485
486 ethhdr = (struct rte_ether_hdr *)
487 rte_pktmbuf_prepend(pkt, RTE_ETHER_HDR_LEN);
488
489 if (ip->ip_v == IPVERSION) {
490 pkt->ol_flags |= qconf->outbound.ipv4_offloads;
491 pkt->l3_len = sizeof(struct ip);
492 pkt->l2_len = RTE_ETHER_HDR_LEN;
493
494 ip->ip_sum = 0;
495
496 /* calculate IPv4 cksum in SW */
497 if ((pkt->ol_flags & PKT_TX_IP_CKSUM) == 0)
498 ip->ip_sum = rte_ipv4_cksum((struct rte_ipv4_hdr *)ip);
499
500 ethhdr->ether_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
501 } else {
502 pkt->ol_flags |= qconf->outbound.ipv6_offloads;
503 pkt->l3_len = sizeof(struct ip6_hdr);
504 pkt->l2_len = RTE_ETHER_HDR_LEN;
505
506 ethhdr->ether_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
507 }
508
509 memcpy(ðhdr->s_addr, ðaddr_tbl[port].src,
510 sizeof(struct rte_ether_addr));
511 memcpy(ðhdr->d_addr, ðaddr_tbl[port].dst,
512 sizeof(struct rte_ether_addr));
513 }
514
515 static inline void
prepare_tx_burst(struct rte_mbuf * pkts[],uint16_t nb_pkts,uint16_t port,const struct lcore_conf * qconf)516 prepare_tx_burst(struct rte_mbuf *pkts[], uint16_t nb_pkts, uint16_t port,
517 const struct lcore_conf *qconf)
518 {
519 int32_t i;
520 const int32_t prefetch_offset = 2;
521
522 for (i = 0; i < (nb_pkts - prefetch_offset); i++) {
523 rte_mbuf_prefetch_part2(pkts[i + prefetch_offset]);
524 prepare_tx_pkt(pkts[i], port, qconf);
525 }
526 /* Process left packets */
527 for (; i < nb_pkts; i++)
528 prepare_tx_pkt(pkts[i], port, qconf);
529 }
530
531 /* Send burst of packets on an output interface */
532 static inline int32_t
send_burst(struct lcore_conf * qconf,uint16_t n,uint16_t port)533 send_burst(struct lcore_conf *qconf, uint16_t n, uint16_t port)
534 {
535 struct rte_mbuf **m_table;
536 int32_t ret;
537 uint16_t queueid;
538
539 queueid = qconf->tx_queue_id[port];
540 m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table;
541
542 prepare_tx_burst(m_table, n, port, qconf);
543
544 ret = rte_eth_tx_burst(port, queueid, m_table, n);
545
546 core_stats_update_tx(ret);
547
548 if (unlikely(ret < n)) {
549 do {
550 free_pkts(&m_table[ret], 1);
551 } while (++ret < n);
552 }
553
554 return 0;
555 }
556
557 /*
558 * Helper function to fragment and queue for TX one packet.
559 */
560 static inline uint32_t
send_fragment_packet(struct lcore_conf * qconf,struct rte_mbuf * m,uint16_t port,uint8_t proto)561 send_fragment_packet(struct lcore_conf *qconf, struct rte_mbuf *m,
562 uint16_t port, uint8_t proto)
563 {
564 struct buffer *tbl;
565 uint32_t len, n;
566 int32_t rc;
567
568 tbl = qconf->tx_mbufs + port;
569 len = tbl->len;
570
571 /* free space for new fragments */
572 if (len + RTE_LIBRTE_IP_FRAG_MAX_FRAG >= RTE_DIM(tbl->m_table)) {
573 send_burst(qconf, len, port);
574 len = 0;
575 }
576
577 n = RTE_DIM(tbl->m_table) - len;
578
579 if (proto == IPPROTO_IP)
580 rc = rte_ipv4_fragment_packet(m, tbl->m_table + len,
581 n, mtu_size, qconf->frag.pool_dir,
582 qconf->frag.pool_indir);
583 else
584 rc = rte_ipv6_fragment_packet(m, tbl->m_table + len,
585 n, mtu_size, qconf->frag.pool_dir,
586 qconf->frag.pool_indir);
587
588 if (rc >= 0)
589 len += rc;
590 else
591 RTE_LOG(ERR, IPSEC,
592 "%s: failed to fragment packet with size %u, "
593 "error code: %d\n",
594 __func__, m->pkt_len, rte_errno);
595
596 free_pkts(&m, 1);
597 return len;
598 }
599
600 /* Enqueue a single packet, and send burst if queue is filled */
601 static inline int32_t
send_single_packet(struct rte_mbuf * m,uint16_t port,uint8_t proto)602 send_single_packet(struct rte_mbuf *m, uint16_t port, uint8_t proto)
603 {
604 uint32_t lcore_id;
605 uint16_t len;
606 struct lcore_conf *qconf;
607
608 lcore_id = rte_lcore_id();
609
610 qconf = &lcore_conf[lcore_id];
611 len = qconf->tx_mbufs[port].len;
612
613 if (m->pkt_len <= mtu_size) {
614 qconf->tx_mbufs[port].m_table[len] = m;
615 len++;
616
617 /* need to fragment the packet */
618 } else if (frag_tbl_sz > 0)
619 len = send_fragment_packet(qconf, m, port, proto);
620 else
621 free_pkts(&m, 1);
622
623 /* enough pkts to be sent */
624 if (unlikely(len == MAX_PKT_BURST)) {
625 send_burst(qconf, MAX_PKT_BURST, port);
626 len = 0;
627 }
628
629 qconf->tx_mbufs[port].len = len;
630 return 0;
631 }
632
633 static inline void
inbound_sp_sa(struct sp_ctx * sp,struct sa_ctx * sa,struct traffic_type * ip,uint16_t lim)634 inbound_sp_sa(struct sp_ctx *sp, struct sa_ctx *sa, struct traffic_type *ip,
635 uint16_t lim)
636 {
637 struct rte_mbuf *m;
638 uint32_t i, j, res, sa_idx;
639
640 if (ip->num == 0 || sp == NULL)
641 return;
642
643 rte_acl_classify((struct rte_acl_ctx *)sp, ip->data, ip->res,
644 ip->num, DEFAULT_MAX_CATEGORIES);
645
646 j = 0;
647 for (i = 0; i < ip->num; i++) {
648 m = ip->pkts[i];
649 res = ip->res[i];
650 if (res == BYPASS) {
651 ip->pkts[j++] = m;
652 continue;
653 }
654 if (res == DISCARD) {
655 free_pkts(&m, 1);
656 continue;
657 }
658
659 /* Only check SPI match for processed IPSec packets */
660 if (i < lim && ((m->ol_flags & PKT_RX_SEC_OFFLOAD) == 0)) {
661 free_pkts(&m, 1);
662 continue;
663 }
664
665 sa_idx = res - 1;
666 if (!inbound_sa_check(sa, m, sa_idx)) {
667 free_pkts(&m, 1);
668 continue;
669 }
670 ip->pkts[j++] = m;
671 }
672 ip->num = j;
673 }
674
675 static void
split46_traffic(struct ipsec_traffic * trf,struct rte_mbuf * mb[],uint32_t num)676 split46_traffic(struct ipsec_traffic *trf, struct rte_mbuf *mb[], uint32_t num)
677 {
678 uint32_t i, n4, n6;
679 struct ip *ip;
680 struct rte_mbuf *m;
681
682 n4 = trf->ip4.num;
683 n6 = trf->ip6.num;
684
685 for (i = 0; i < num; i++) {
686
687 m = mb[i];
688 ip = rte_pktmbuf_mtod(m, struct ip *);
689
690 if (ip->ip_v == IPVERSION) {
691 trf->ip4.pkts[n4] = m;
692 trf->ip4.data[n4] = rte_pktmbuf_mtod_offset(m,
693 uint8_t *, offsetof(struct ip, ip_p));
694 n4++;
695 } else if (ip->ip_v == IP6_VERSION) {
696 trf->ip6.pkts[n6] = m;
697 trf->ip6.data[n6] = rte_pktmbuf_mtod_offset(m,
698 uint8_t *,
699 offsetof(struct ip6_hdr, ip6_nxt));
700 n6++;
701 } else
702 free_pkts(&m, 1);
703 }
704
705 trf->ip4.num = n4;
706 trf->ip6.num = n6;
707 }
708
709
710 static inline void
process_pkts_inbound(struct ipsec_ctx * ipsec_ctx,struct ipsec_traffic * traffic)711 process_pkts_inbound(struct ipsec_ctx *ipsec_ctx,
712 struct ipsec_traffic *traffic)
713 {
714 uint16_t nb_pkts_in, n_ip4, n_ip6;
715
716 n_ip4 = traffic->ip4.num;
717 n_ip6 = traffic->ip6.num;
718
719 if (app_sa_prm.enable == 0) {
720 nb_pkts_in = ipsec_inbound(ipsec_ctx, traffic->ipsec.pkts,
721 traffic->ipsec.num, MAX_PKT_BURST);
722 split46_traffic(traffic, traffic->ipsec.pkts, nb_pkts_in);
723 } else {
724 inbound_sa_lookup(ipsec_ctx->sa_ctx, traffic->ipsec.pkts,
725 traffic->ipsec.saptr, traffic->ipsec.num);
726 ipsec_process(ipsec_ctx, traffic);
727 }
728
729 inbound_sp_sa(ipsec_ctx->sp4_ctx, ipsec_ctx->sa_ctx, &traffic->ip4,
730 n_ip4);
731
732 inbound_sp_sa(ipsec_ctx->sp6_ctx, ipsec_ctx->sa_ctx, &traffic->ip6,
733 n_ip6);
734 }
735
736 static inline void
outbound_sp(struct sp_ctx * sp,struct traffic_type * ip,struct traffic_type * ipsec)737 outbound_sp(struct sp_ctx *sp, struct traffic_type *ip,
738 struct traffic_type *ipsec)
739 {
740 struct rte_mbuf *m;
741 uint32_t i, j, sa_idx;
742
743 if (ip->num == 0 || sp == NULL)
744 return;
745
746 rte_acl_classify((struct rte_acl_ctx *)sp, ip->data, ip->res,
747 ip->num, DEFAULT_MAX_CATEGORIES);
748
749 j = 0;
750 for (i = 0; i < ip->num; i++) {
751 m = ip->pkts[i];
752 sa_idx = ip->res[i] - 1;
753 if (ip->res[i] == DISCARD)
754 free_pkts(&m, 1);
755 else if (ip->res[i] == BYPASS)
756 ip->pkts[j++] = m;
757 else {
758 ipsec->res[ipsec->num] = sa_idx;
759 ipsec->pkts[ipsec->num++] = m;
760 }
761 }
762 ip->num = j;
763 }
764
765 static inline void
process_pkts_outbound(struct ipsec_ctx * ipsec_ctx,struct ipsec_traffic * traffic)766 process_pkts_outbound(struct ipsec_ctx *ipsec_ctx,
767 struct ipsec_traffic *traffic)
768 {
769 struct rte_mbuf *m;
770 uint16_t idx, nb_pkts_out, i;
771
772 /* Drop any IPsec traffic from protected ports */
773 free_pkts(traffic->ipsec.pkts, traffic->ipsec.num);
774
775 traffic->ipsec.num = 0;
776
777 outbound_sp(ipsec_ctx->sp4_ctx, &traffic->ip4, &traffic->ipsec);
778
779 outbound_sp(ipsec_ctx->sp6_ctx, &traffic->ip6, &traffic->ipsec);
780
781 if (app_sa_prm.enable == 0) {
782
783 nb_pkts_out = ipsec_outbound(ipsec_ctx, traffic->ipsec.pkts,
784 traffic->ipsec.res, traffic->ipsec.num,
785 MAX_PKT_BURST);
786
787 for (i = 0; i < nb_pkts_out; i++) {
788 m = traffic->ipsec.pkts[i];
789 struct ip *ip = rte_pktmbuf_mtod(m, struct ip *);
790 if (ip->ip_v == IPVERSION) {
791 idx = traffic->ip4.num++;
792 traffic->ip4.pkts[idx] = m;
793 } else {
794 idx = traffic->ip6.num++;
795 traffic->ip6.pkts[idx] = m;
796 }
797 }
798 } else {
799 outbound_sa_lookup(ipsec_ctx->sa_ctx, traffic->ipsec.res,
800 traffic->ipsec.saptr, traffic->ipsec.num);
801 ipsec_process(ipsec_ctx, traffic);
802 }
803 }
804
805 static inline void
process_pkts_inbound_nosp(struct ipsec_ctx * ipsec_ctx,struct ipsec_traffic * traffic)806 process_pkts_inbound_nosp(struct ipsec_ctx *ipsec_ctx,
807 struct ipsec_traffic *traffic)
808 {
809 struct rte_mbuf *m;
810 uint32_t nb_pkts_in, i, idx;
811
812 /* Drop any IPv4 traffic from unprotected ports */
813 free_pkts(traffic->ip4.pkts, traffic->ip4.num);
814
815 traffic->ip4.num = 0;
816
817 /* Drop any IPv6 traffic from unprotected ports */
818 free_pkts(traffic->ip6.pkts, traffic->ip6.num);
819
820 traffic->ip6.num = 0;
821
822 if (app_sa_prm.enable == 0) {
823
824 nb_pkts_in = ipsec_inbound(ipsec_ctx, traffic->ipsec.pkts,
825 traffic->ipsec.num, MAX_PKT_BURST);
826
827 for (i = 0; i < nb_pkts_in; i++) {
828 m = traffic->ipsec.pkts[i];
829 struct ip *ip = rte_pktmbuf_mtod(m, struct ip *);
830 if (ip->ip_v == IPVERSION) {
831 idx = traffic->ip4.num++;
832 traffic->ip4.pkts[idx] = m;
833 } else {
834 idx = traffic->ip6.num++;
835 traffic->ip6.pkts[idx] = m;
836 }
837 }
838 } else {
839 inbound_sa_lookup(ipsec_ctx->sa_ctx, traffic->ipsec.pkts,
840 traffic->ipsec.saptr, traffic->ipsec.num);
841 ipsec_process(ipsec_ctx, traffic);
842 }
843 }
844
845 static inline void
process_pkts_outbound_nosp(struct ipsec_ctx * ipsec_ctx,struct ipsec_traffic * traffic)846 process_pkts_outbound_nosp(struct ipsec_ctx *ipsec_ctx,
847 struct ipsec_traffic *traffic)
848 {
849 struct rte_mbuf *m;
850 uint32_t nb_pkts_out, i, n;
851 struct ip *ip;
852
853 /* Drop any IPsec traffic from protected ports */
854 free_pkts(traffic->ipsec.pkts, traffic->ipsec.num);
855
856 n = 0;
857
858 for (i = 0; i < traffic->ip4.num; i++) {
859 traffic->ipsec.pkts[n] = traffic->ip4.pkts[i];
860 traffic->ipsec.res[n++] = single_sa_idx;
861 }
862
863 for (i = 0; i < traffic->ip6.num; i++) {
864 traffic->ipsec.pkts[n] = traffic->ip6.pkts[i];
865 traffic->ipsec.res[n++] = single_sa_idx;
866 }
867
868 traffic->ip4.num = 0;
869 traffic->ip6.num = 0;
870 traffic->ipsec.num = n;
871
872 if (app_sa_prm.enable == 0) {
873
874 nb_pkts_out = ipsec_outbound(ipsec_ctx, traffic->ipsec.pkts,
875 traffic->ipsec.res, traffic->ipsec.num,
876 MAX_PKT_BURST);
877
878 /* They all sue the same SA (ip4 or ip6 tunnel) */
879 m = traffic->ipsec.pkts[0];
880 ip = rte_pktmbuf_mtod(m, struct ip *);
881 if (ip->ip_v == IPVERSION) {
882 traffic->ip4.num = nb_pkts_out;
883 for (i = 0; i < nb_pkts_out; i++)
884 traffic->ip4.pkts[i] = traffic->ipsec.pkts[i];
885 } else {
886 traffic->ip6.num = nb_pkts_out;
887 for (i = 0; i < nb_pkts_out; i++)
888 traffic->ip6.pkts[i] = traffic->ipsec.pkts[i];
889 }
890 } else {
891 outbound_sa_lookup(ipsec_ctx->sa_ctx, traffic->ipsec.res,
892 traffic->ipsec.saptr, traffic->ipsec.num);
893 ipsec_process(ipsec_ctx, traffic);
894 }
895 }
896
897 static inline int32_t
get_hop_for_offload_pkt(struct rte_mbuf * pkt,int is_ipv6)898 get_hop_for_offload_pkt(struct rte_mbuf *pkt, int is_ipv6)
899 {
900 struct ipsec_mbuf_metadata *priv;
901 struct ipsec_sa *sa;
902
903 priv = get_priv(pkt);
904
905 sa = priv->sa;
906 if (unlikely(sa == NULL)) {
907 RTE_LOG(ERR, IPSEC, "SA not saved in private data\n");
908 goto fail;
909 }
910
911 if (is_ipv6)
912 return sa->portid;
913
914 /* else */
915 return (sa->portid | RTE_LPM_LOOKUP_SUCCESS);
916
917 fail:
918 if (is_ipv6)
919 return -1;
920
921 /* else */
922 return 0;
923 }
924
925 static inline void
route4_pkts(struct rt_ctx * rt_ctx,struct rte_mbuf * pkts[],uint8_t nb_pkts)926 route4_pkts(struct rt_ctx *rt_ctx, struct rte_mbuf *pkts[], uint8_t nb_pkts)
927 {
928 uint32_t hop[MAX_PKT_BURST * 2];
929 uint32_t dst_ip[MAX_PKT_BURST * 2];
930 int32_t pkt_hop = 0;
931 uint16_t i, offset;
932 uint16_t lpm_pkts = 0;
933
934 if (nb_pkts == 0)
935 return;
936
937 /* Need to do an LPM lookup for non-inline packets. Inline packets will
938 * have port ID in the SA
939 */
940
941 for (i = 0; i < nb_pkts; i++) {
942 if (!(pkts[i]->ol_flags & PKT_TX_SEC_OFFLOAD)) {
943 /* Security offload not enabled. So an LPM lookup is
944 * required to get the hop
945 */
946 offset = offsetof(struct ip, ip_dst);
947 dst_ip[lpm_pkts] = *rte_pktmbuf_mtod_offset(pkts[i],
948 uint32_t *, offset);
949 dst_ip[lpm_pkts] = rte_be_to_cpu_32(dst_ip[lpm_pkts]);
950 lpm_pkts++;
951 }
952 }
953
954 rte_lpm_lookup_bulk((struct rte_lpm *)rt_ctx, dst_ip, hop, lpm_pkts);
955
956 lpm_pkts = 0;
957
958 for (i = 0; i < nb_pkts; i++) {
959 if (pkts[i]->ol_flags & PKT_TX_SEC_OFFLOAD) {
960 /* Read hop from the SA */
961 pkt_hop = get_hop_for_offload_pkt(pkts[i], 0);
962 } else {
963 /* Need to use hop returned by lookup */
964 pkt_hop = hop[lpm_pkts++];
965 }
966
967 if ((pkt_hop & RTE_LPM_LOOKUP_SUCCESS) == 0) {
968 free_pkts(&pkts[i], 1);
969 continue;
970 }
971 send_single_packet(pkts[i], pkt_hop & 0xff, IPPROTO_IP);
972 }
973 }
974
975 static inline void
route6_pkts(struct rt_ctx * rt_ctx,struct rte_mbuf * pkts[],uint8_t nb_pkts)976 route6_pkts(struct rt_ctx *rt_ctx, struct rte_mbuf *pkts[], uint8_t nb_pkts)
977 {
978 int32_t hop[MAX_PKT_BURST * 2];
979 uint8_t dst_ip[MAX_PKT_BURST * 2][16];
980 uint8_t *ip6_dst;
981 int32_t pkt_hop = 0;
982 uint16_t i, offset;
983 uint16_t lpm_pkts = 0;
984
985 if (nb_pkts == 0)
986 return;
987
988 /* Need to do an LPM lookup for non-inline packets. Inline packets will
989 * have port ID in the SA
990 */
991
992 for (i = 0; i < nb_pkts; i++) {
993 if (!(pkts[i]->ol_flags & PKT_TX_SEC_OFFLOAD)) {
994 /* Security offload not enabled. So an LPM lookup is
995 * required to get the hop
996 */
997 offset = offsetof(struct ip6_hdr, ip6_dst);
998 ip6_dst = rte_pktmbuf_mtod_offset(pkts[i], uint8_t *,
999 offset);
1000 memcpy(&dst_ip[lpm_pkts][0], ip6_dst, 16);
1001 lpm_pkts++;
1002 }
1003 }
1004
1005 rte_lpm6_lookup_bulk_func((struct rte_lpm6 *)rt_ctx, dst_ip, hop,
1006 lpm_pkts);
1007
1008 lpm_pkts = 0;
1009
1010 for (i = 0; i < nb_pkts; i++) {
1011 if (pkts[i]->ol_flags & PKT_TX_SEC_OFFLOAD) {
1012 /* Read hop from the SA */
1013 pkt_hop = get_hop_for_offload_pkt(pkts[i], 1);
1014 } else {
1015 /* Need to use hop returned by lookup */
1016 pkt_hop = hop[lpm_pkts++];
1017 }
1018
1019 if (pkt_hop == -1) {
1020 free_pkts(&pkts[i], 1);
1021 continue;
1022 }
1023 send_single_packet(pkts[i], pkt_hop & 0xff, IPPROTO_IPV6);
1024 }
1025 }
1026
1027 static inline void
process_pkts(struct lcore_conf * qconf,struct rte_mbuf ** pkts,uint8_t nb_pkts,uint16_t portid)1028 process_pkts(struct lcore_conf *qconf, struct rte_mbuf **pkts,
1029 uint8_t nb_pkts, uint16_t portid)
1030 {
1031 struct ipsec_traffic traffic;
1032
1033 prepare_traffic(pkts, &traffic, nb_pkts);
1034
1035 if (unlikely(single_sa)) {
1036 if (is_unprotected_port(portid))
1037 process_pkts_inbound_nosp(&qconf->inbound, &traffic);
1038 else
1039 process_pkts_outbound_nosp(&qconf->outbound, &traffic);
1040 } else {
1041 if (is_unprotected_port(portid))
1042 process_pkts_inbound(&qconf->inbound, &traffic);
1043 else
1044 process_pkts_outbound(&qconf->outbound, &traffic);
1045 }
1046
1047 route4_pkts(qconf->rt4_ctx, traffic.ip4.pkts, traffic.ip4.num);
1048 route6_pkts(qconf->rt6_ctx, traffic.ip6.pkts, traffic.ip6.num);
1049 }
1050
1051 static inline void
drain_tx_buffers(struct lcore_conf * qconf)1052 drain_tx_buffers(struct lcore_conf *qconf)
1053 {
1054 struct buffer *buf;
1055 uint32_t portid;
1056
1057 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
1058 buf = &qconf->tx_mbufs[portid];
1059 if (buf->len == 0)
1060 continue;
1061 send_burst(qconf, buf->len, portid);
1062 buf->len = 0;
1063 }
1064 }
1065
1066 static inline void
drain_crypto_buffers(struct lcore_conf * qconf)1067 drain_crypto_buffers(struct lcore_conf *qconf)
1068 {
1069 uint32_t i;
1070 struct ipsec_ctx *ctx;
1071
1072 /* drain inbound buffers*/
1073 ctx = &qconf->inbound;
1074 for (i = 0; i != ctx->nb_qps; i++) {
1075 if (ctx->tbl[i].len != 0)
1076 enqueue_cop_burst(ctx->tbl + i);
1077 }
1078
1079 /* drain outbound buffers*/
1080 ctx = &qconf->outbound;
1081 for (i = 0; i != ctx->nb_qps; i++) {
1082 if (ctx->tbl[i].len != 0)
1083 enqueue_cop_burst(ctx->tbl + i);
1084 }
1085 }
1086
1087 static void
drain_inbound_crypto_queues(const struct lcore_conf * qconf,struct ipsec_ctx * ctx)1088 drain_inbound_crypto_queues(const struct lcore_conf *qconf,
1089 struct ipsec_ctx *ctx)
1090 {
1091 uint32_t n;
1092 struct ipsec_traffic trf;
1093
1094 if (app_sa_prm.enable == 0) {
1095
1096 /* dequeue packets from crypto-queue */
1097 n = ipsec_inbound_cqp_dequeue(ctx, trf.ipsec.pkts,
1098 RTE_DIM(trf.ipsec.pkts));
1099
1100 trf.ip4.num = 0;
1101 trf.ip6.num = 0;
1102
1103 /* split traffic by ipv4-ipv6 */
1104 split46_traffic(&trf, trf.ipsec.pkts, n);
1105 } else
1106 ipsec_cqp_process(ctx, &trf);
1107
1108 /* process ipv4 packets */
1109 if (trf.ip4.num != 0) {
1110 inbound_sp_sa(ctx->sp4_ctx, ctx->sa_ctx, &trf.ip4, 0);
1111 route4_pkts(qconf->rt4_ctx, trf.ip4.pkts, trf.ip4.num);
1112 }
1113
1114 /* process ipv6 packets */
1115 if (trf.ip6.num != 0) {
1116 inbound_sp_sa(ctx->sp6_ctx, ctx->sa_ctx, &trf.ip6, 0);
1117 route6_pkts(qconf->rt6_ctx, trf.ip6.pkts, trf.ip6.num);
1118 }
1119 }
1120
1121 static void
drain_outbound_crypto_queues(const struct lcore_conf * qconf,struct ipsec_ctx * ctx)1122 drain_outbound_crypto_queues(const struct lcore_conf *qconf,
1123 struct ipsec_ctx *ctx)
1124 {
1125 uint32_t n;
1126 struct ipsec_traffic trf;
1127
1128 if (app_sa_prm.enable == 0) {
1129
1130 /* dequeue packets from crypto-queue */
1131 n = ipsec_outbound_cqp_dequeue(ctx, trf.ipsec.pkts,
1132 RTE_DIM(trf.ipsec.pkts));
1133
1134 trf.ip4.num = 0;
1135 trf.ip6.num = 0;
1136
1137 /* split traffic by ipv4-ipv6 */
1138 split46_traffic(&trf, trf.ipsec.pkts, n);
1139 } else
1140 ipsec_cqp_process(ctx, &trf);
1141
1142 /* process ipv4 packets */
1143 if (trf.ip4.num != 0)
1144 route4_pkts(qconf->rt4_ctx, trf.ip4.pkts, trf.ip4.num);
1145
1146 /* process ipv6 packets */
1147 if (trf.ip6.num != 0)
1148 route6_pkts(qconf->rt6_ctx, trf.ip6.pkts, trf.ip6.num);
1149 }
1150
1151 /* main processing loop */
1152 void
ipsec_poll_mode_worker(void)1153 ipsec_poll_mode_worker(void)
1154 {
1155 struct rte_mbuf *pkts[MAX_PKT_BURST];
1156 uint32_t lcore_id;
1157 uint64_t prev_tsc, diff_tsc, cur_tsc;
1158 int32_t i, nb_rx;
1159 uint16_t portid;
1160 uint8_t queueid;
1161 struct lcore_conf *qconf;
1162 int32_t rc, socket_id;
1163 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1)
1164 / US_PER_S * BURST_TX_DRAIN_US;
1165 struct lcore_rx_queue *rxql;
1166
1167 prev_tsc = 0;
1168 lcore_id = rte_lcore_id();
1169 qconf = &lcore_conf[lcore_id];
1170 rxql = qconf->rx_queue_list;
1171 socket_id = rte_lcore_to_socket_id(lcore_id);
1172
1173 qconf->rt4_ctx = socket_ctx[socket_id].rt_ip4;
1174 qconf->rt6_ctx = socket_ctx[socket_id].rt_ip6;
1175 qconf->inbound.sp4_ctx = socket_ctx[socket_id].sp_ip4_in;
1176 qconf->inbound.sp6_ctx = socket_ctx[socket_id].sp_ip6_in;
1177 qconf->inbound.sa_ctx = socket_ctx[socket_id].sa_in;
1178 qconf->inbound.cdev_map = cdev_map_in;
1179 qconf->inbound.session_pool = socket_ctx[socket_id].session_pool;
1180 qconf->inbound.session_priv_pool =
1181 socket_ctx[socket_id].session_priv_pool;
1182 qconf->outbound.sp4_ctx = socket_ctx[socket_id].sp_ip4_out;
1183 qconf->outbound.sp6_ctx = socket_ctx[socket_id].sp_ip6_out;
1184 qconf->outbound.sa_ctx = socket_ctx[socket_id].sa_out;
1185 qconf->outbound.cdev_map = cdev_map_out;
1186 qconf->outbound.session_pool = socket_ctx[socket_id].session_pool;
1187 qconf->outbound.session_priv_pool =
1188 socket_ctx[socket_id].session_priv_pool;
1189 qconf->frag.pool_dir = socket_ctx[socket_id].mbuf_pool;
1190 qconf->frag.pool_indir = socket_ctx[socket_id].mbuf_pool_indir;
1191
1192 rc = ipsec_sad_lcore_cache_init(app_sa_prm.cache_sz);
1193 if (rc != 0) {
1194 RTE_LOG(ERR, IPSEC,
1195 "SAD cache init on lcore %u, failed with code: %d\n",
1196 lcore_id, rc);
1197 return;
1198 }
1199
1200 if (qconf->nb_rx_queue == 0) {
1201 RTE_LOG(DEBUG, IPSEC, "lcore %u has nothing to do\n",
1202 lcore_id);
1203 return;
1204 }
1205
1206 RTE_LOG(INFO, IPSEC, "entering main loop on lcore %u\n", lcore_id);
1207
1208 for (i = 0; i < qconf->nb_rx_queue; i++) {
1209 portid = rxql[i].port_id;
1210 queueid = rxql[i].queue_id;
1211 RTE_LOG(INFO, IPSEC,
1212 " -- lcoreid=%u portid=%u rxqueueid=%hhu\n",
1213 lcore_id, portid, queueid);
1214 }
1215
1216 while (!force_quit) {
1217 cur_tsc = rte_rdtsc();
1218
1219 /* TX queue buffer drain */
1220 diff_tsc = cur_tsc - prev_tsc;
1221
1222 if (unlikely(diff_tsc > drain_tsc)) {
1223 drain_tx_buffers(qconf);
1224 drain_crypto_buffers(qconf);
1225 prev_tsc = cur_tsc;
1226 }
1227
1228 for (i = 0; i < qconf->nb_rx_queue; ++i) {
1229
1230 /* Read packets from RX queues */
1231 portid = rxql[i].port_id;
1232 queueid = rxql[i].queue_id;
1233 nb_rx = rte_eth_rx_burst(portid, queueid,
1234 pkts, MAX_PKT_BURST);
1235
1236 if (nb_rx > 0) {
1237 core_stats_update_rx(nb_rx);
1238 process_pkts(qconf, pkts, nb_rx, portid);
1239 }
1240
1241 /* dequeue and process completed crypto-ops */
1242 if (is_unprotected_port(portid))
1243 drain_inbound_crypto_queues(qconf,
1244 &qconf->inbound);
1245 else
1246 drain_outbound_crypto_queues(qconf,
1247 &qconf->outbound);
1248 }
1249 }
1250 }
1251
1252 int
check_flow_params(uint16_t fdir_portid,uint8_t fdir_qid)1253 check_flow_params(uint16_t fdir_portid, uint8_t fdir_qid)
1254 {
1255 uint16_t i;
1256 uint16_t portid;
1257 uint8_t queueid;
1258
1259 for (i = 0; i < nb_lcore_params; ++i) {
1260 portid = lcore_params_array[i].port_id;
1261 if (portid == fdir_portid) {
1262 queueid = lcore_params_array[i].queue_id;
1263 if (queueid == fdir_qid)
1264 break;
1265 }
1266
1267 if (i == nb_lcore_params - 1)
1268 return -1;
1269 }
1270
1271 return 1;
1272 }
1273
1274 static int32_t
check_poll_mode_params(struct eh_conf * eh_conf)1275 check_poll_mode_params(struct eh_conf *eh_conf)
1276 {
1277 uint8_t lcore;
1278 uint16_t portid;
1279 uint16_t i;
1280 int32_t socket_id;
1281
1282 if (!eh_conf)
1283 return -EINVAL;
1284
1285 if (eh_conf->mode != EH_PKT_TRANSFER_MODE_POLL)
1286 return 0;
1287
1288 if (lcore_params == NULL) {
1289 printf("Error: No port/queue/core mappings\n");
1290 return -1;
1291 }
1292
1293 for (i = 0; i < nb_lcore_params; ++i) {
1294 lcore = lcore_params[i].lcore_id;
1295 if (!rte_lcore_is_enabled(lcore)) {
1296 printf("error: lcore %hhu is not enabled in "
1297 "lcore mask\n", lcore);
1298 return -1;
1299 }
1300 socket_id = rte_lcore_to_socket_id(lcore);
1301 if (socket_id != 0 && numa_on == 0) {
1302 printf("warning: lcore %hhu is on socket %d "
1303 "with numa off\n",
1304 lcore, socket_id);
1305 }
1306 portid = lcore_params[i].port_id;
1307 if ((enabled_port_mask & (1 << portid)) == 0) {
1308 printf("port %u is not enabled in port mask\n", portid);
1309 return -1;
1310 }
1311 if (!rte_eth_dev_is_valid_port(portid)) {
1312 printf("port %u is not present on the board\n", portid);
1313 return -1;
1314 }
1315 }
1316 return 0;
1317 }
1318
1319 static uint8_t
get_port_nb_rx_queues(const uint16_t port)1320 get_port_nb_rx_queues(const uint16_t port)
1321 {
1322 int32_t queue = -1;
1323 uint16_t i;
1324
1325 for (i = 0; i < nb_lcore_params; ++i) {
1326 if (lcore_params[i].port_id == port &&
1327 lcore_params[i].queue_id > queue)
1328 queue = lcore_params[i].queue_id;
1329 }
1330 return (uint8_t)(++queue);
1331 }
1332
1333 static int32_t
init_lcore_rx_queues(void)1334 init_lcore_rx_queues(void)
1335 {
1336 uint16_t i, nb_rx_queue;
1337 uint8_t lcore;
1338
1339 for (i = 0; i < nb_lcore_params; ++i) {
1340 lcore = lcore_params[i].lcore_id;
1341 nb_rx_queue = lcore_conf[lcore].nb_rx_queue;
1342 if (nb_rx_queue >= MAX_RX_QUEUE_PER_LCORE) {
1343 printf("error: too many queues (%u) for lcore: %u\n",
1344 nb_rx_queue + 1, lcore);
1345 return -1;
1346 }
1347 lcore_conf[lcore].rx_queue_list[nb_rx_queue].port_id =
1348 lcore_params[i].port_id;
1349 lcore_conf[lcore].rx_queue_list[nb_rx_queue].queue_id =
1350 lcore_params[i].queue_id;
1351 lcore_conf[lcore].nb_rx_queue++;
1352 }
1353 return 0;
1354 }
1355
1356 /* display usage */
1357 static void
print_usage(const char * prgname)1358 print_usage(const char *prgname)
1359 {
1360 fprintf(stderr, "%s [EAL options] --"
1361 " -p PORTMASK"
1362 " [-P]"
1363 " [-u PORTMASK]"
1364 " [-j FRAMESIZE]"
1365 " [-l]"
1366 " [-w REPLAY_WINDOW_SIZE]"
1367 " [-e]"
1368 " [-a]"
1369 " [-c]"
1370 " [-s NUMBER_OF_MBUFS_IN_PKT_POOL]"
1371 " -f CONFIG_FILE"
1372 " --config (port,queue,lcore)[,(port,queue,lcore)]"
1373 " [--single-sa SAIDX]"
1374 " [--cryptodev_mask MASK]"
1375 " [--transfer-mode MODE]"
1376 " [--event-schedule-type TYPE]"
1377 " [--" CMD_LINE_OPT_RX_OFFLOAD " RX_OFFLOAD_MASK]"
1378 " [--" CMD_LINE_OPT_TX_OFFLOAD " TX_OFFLOAD_MASK]"
1379 " [--" CMD_LINE_OPT_REASSEMBLE " REASSEMBLE_TABLE_SIZE]"
1380 " [--" CMD_LINE_OPT_MTU " MTU]"
1381 "\n\n"
1382 " -p PORTMASK: Hexadecimal bitmask of ports to configure\n"
1383 " -P : Enable promiscuous mode\n"
1384 " -u PORTMASK: Hexadecimal bitmask of unprotected ports\n"
1385 " -j FRAMESIZE: Data buffer size, minimum (and default)\n"
1386 " value: RTE_MBUF_DEFAULT_BUF_SIZE\n"
1387 " -l enables code-path that uses librte_ipsec\n"
1388 " -w REPLAY_WINDOW_SIZE specifies IPsec SQN replay window\n"
1389 " size for each SA\n"
1390 " -e enables ESN\n"
1391 " -a enables SA SQN atomic behaviour\n"
1392 " -c specifies inbound SAD cache size,\n"
1393 " zero value disables the cache (default value: 128)\n"
1394 " -s number of mbufs in packet pool, if not specified number\n"
1395 " of mbufs will be calculated based on number of cores,\n"
1396 " ports and crypto queues\n"
1397 " -f CONFIG_FILE: Configuration file\n"
1398 " --config (port,queue,lcore): Rx queue configuration. In poll\n"
1399 " mode determines which queues from\n"
1400 " which ports are mapped to which cores.\n"
1401 " In event mode this option is not used\n"
1402 " as packets are dynamically scheduled\n"
1403 " to cores by HW.\n"
1404 " --single-sa SAIDX: In poll mode use single SA index for\n"
1405 " outbound traffic, bypassing the SP\n"
1406 " In event mode selects driver submode,\n"
1407 " SA index value is ignored\n"
1408 " --cryptodev_mask MASK: Hexadecimal bitmask of the crypto\n"
1409 " devices to configure\n"
1410 " --transfer-mode MODE\n"
1411 " \"poll\" : Packet transfer via polling (default)\n"
1412 " \"event\" : Packet transfer via event device\n"
1413 " --event-schedule-type TYPE queue schedule type, used only when\n"
1414 " transfer mode is set to event\n"
1415 " \"ordered\" : Ordered (default)\n"
1416 " \"atomic\" : Atomic\n"
1417 " \"parallel\" : Parallel\n"
1418 " --" CMD_LINE_OPT_RX_OFFLOAD
1419 ": bitmask of the RX HW offload capabilities to enable/use\n"
1420 " (DEV_RX_OFFLOAD_*)\n"
1421 " --" CMD_LINE_OPT_TX_OFFLOAD
1422 ": bitmask of the TX HW offload capabilities to enable/use\n"
1423 " (DEV_TX_OFFLOAD_*)\n"
1424 " --" CMD_LINE_OPT_REASSEMBLE " NUM"
1425 ": max number of entries in reassemble(fragment) table\n"
1426 " (zero (default value) disables reassembly)\n"
1427 " --" CMD_LINE_OPT_MTU " MTU"
1428 ": MTU value on all ports (default value: 1500)\n"
1429 " outgoing packets with bigger size will be fragmented\n"
1430 " incoming packets with bigger size will be discarded\n"
1431 " --" CMD_LINE_OPT_FRAG_TTL " FRAG_TTL_NS"
1432 ": fragments lifetime in nanoseconds, default\n"
1433 " and maximum value is 10.000.000.000 ns (10 s)\n"
1434 "\n",
1435 prgname);
1436 }
1437
1438 static int
parse_mask(const char * str,uint64_t * val)1439 parse_mask(const char *str, uint64_t *val)
1440 {
1441 char *end;
1442 unsigned long t;
1443
1444 errno = 0;
1445 t = strtoul(str, &end, 0);
1446 if (errno != 0 || end[0] != 0)
1447 return -EINVAL;
1448
1449 *val = t;
1450 return 0;
1451 }
1452
1453 static int32_t
parse_portmask(const char * portmask)1454 parse_portmask(const char *portmask)
1455 {
1456 char *end = NULL;
1457 unsigned long pm;
1458
1459 /* parse hexadecimal string */
1460 pm = strtoul(portmask, &end, 16);
1461 if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
1462 return -1;
1463
1464 if ((pm == 0) && errno)
1465 return -1;
1466
1467 return pm;
1468 }
1469
1470 static int64_t
parse_decimal(const char * str)1471 parse_decimal(const char *str)
1472 {
1473 char *end = NULL;
1474 uint64_t num;
1475
1476 num = strtoull(str, &end, 10);
1477 if ((str[0] == '\0') || (end == NULL) || (*end != '\0')
1478 || num > INT64_MAX)
1479 return -1;
1480
1481 return num;
1482 }
1483
1484 static int32_t
parse_config(const char * q_arg)1485 parse_config(const char *q_arg)
1486 {
1487 char s[256];
1488 const char *p, *p0 = q_arg;
1489 char *end;
1490 enum fieldnames {
1491 FLD_PORT = 0,
1492 FLD_QUEUE,
1493 FLD_LCORE,
1494 _NUM_FLD
1495 };
1496 unsigned long int_fld[_NUM_FLD];
1497 char *str_fld[_NUM_FLD];
1498 int32_t i;
1499 uint32_t size;
1500
1501 nb_lcore_params = 0;
1502
1503 while ((p = strchr(p0, '(')) != NULL) {
1504 ++p;
1505 p0 = strchr(p, ')');
1506 if (p0 == NULL)
1507 return -1;
1508
1509 size = p0 - p;
1510 if (size >= sizeof(s))
1511 return -1;
1512
1513 snprintf(s, sizeof(s), "%.*s", size, p);
1514 if (rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',') !=
1515 _NUM_FLD)
1516 return -1;
1517 for (i = 0; i < _NUM_FLD; i++) {
1518 errno = 0;
1519 int_fld[i] = strtoul(str_fld[i], &end, 0);
1520 if (errno != 0 || end == str_fld[i] || int_fld[i] > 255)
1521 return -1;
1522 }
1523 if (nb_lcore_params >= MAX_LCORE_PARAMS) {
1524 printf("exceeded max number of lcore params: %hu\n",
1525 nb_lcore_params);
1526 return -1;
1527 }
1528 lcore_params_array[nb_lcore_params].port_id =
1529 (uint8_t)int_fld[FLD_PORT];
1530 lcore_params_array[nb_lcore_params].queue_id =
1531 (uint8_t)int_fld[FLD_QUEUE];
1532 lcore_params_array[nb_lcore_params].lcore_id =
1533 (uint8_t)int_fld[FLD_LCORE];
1534 ++nb_lcore_params;
1535 }
1536 lcore_params = lcore_params_array;
1537 return 0;
1538 }
1539
1540 static void
print_app_sa_prm(const struct app_sa_prm * prm)1541 print_app_sa_prm(const struct app_sa_prm *prm)
1542 {
1543 printf("librte_ipsec usage: %s\n",
1544 (prm->enable == 0) ? "disabled" : "enabled");
1545
1546 printf("replay window size: %u\n", prm->window_size);
1547 printf("ESN: %s\n", (prm->enable_esn == 0) ? "disabled" : "enabled");
1548 printf("SA flags: %#" PRIx64 "\n", prm->flags);
1549 printf("Frag TTL: %" PRIu64 " ns\n", frag_ttl_ns);
1550 }
1551
1552 static int
parse_transfer_mode(struct eh_conf * conf,const char * optarg)1553 parse_transfer_mode(struct eh_conf *conf, const char *optarg)
1554 {
1555 if (!strcmp(CMD_LINE_ARG_POLL, optarg))
1556 conf->mode = EH_PKT_TRANSFER_MODE_POLL;
1557 else if (!strcmp(CMD_LINE_ARG_EVENT, optarg))
1558 conf->mode = EH_PKT_TRANSFER_MODE_EVENT;
1559 else {
1560 printf("Unsupported packet transfer mode\n");
1561 return -EINVAL;
1562 }
1563
1564 return 0;
1565 }
1566
1567 static int
parse_schedule_type(struct eh_conf * conf,const char * optarg)1568 parse_schedule_type(struct eh_conf *conf, const char *optarg)
1569 {
1570 struct eventmode_conf *em_conf = NULL;
1571
1572 /* Get eventmode conf */
1573 em_conf = conf->mode_params;
1574
1575 if (!strcmp(CMD_LINE_ARG_ORDERED, optarg))
1576 em_conf->ext_params.sched_type = RTE_SCHED_TYPE_ORDERED;
1577 else if (!strcmp(CMD_LINE_ARG_ATOMIC, optarg))
1578 em_conf->ext_params.sched_type = RTE_SCHED_TYPE_ATOMIC;
1579 else if (!strcmp(CMD_LINE_ARG_PARALLEL, optarg))
1580 em_conf->ext_params.sched_type = RTE_SCHED_TYPE_PARALLEL;
1581 else {
1582 printf("Unsupported queue schedule type\n");
1583 return -EINVAL;
1584 }
1585
1586 return 0;
1587 }
1588
1589 static int32_t
parse_args(int32_t argc,char ** argv,struct eh_conf * eh_conf)1590 parse_args(int32_t argc, char **argv, struct eh_conf *eh_conf)
1591 {
1592 int opt;
1593 int64_t ret;
1594 char **argvopt;
1595 int32_t option_index;
1596 char *prgname = argv[0];
1597 int32_t f_present = 0;
1598
1599 argvopt = argv;
1600
1601 while ((opt = getopt_long(argc, argvopt, "aelp:Pu:f:j:w:c:s:",
1602 lgopts, &option_index)) != EOF) {
1603
1604 switch (opt) {
1605 case 'p':
1606 enabled_port_mask = parse_portmask(optarg);
1607 if (enabled_port_mask == 0) {
1608 printf("invalid portmask\n");
1609 print_usage(prgname);
1610 return -1;
1611 }
1612 break;
1613 case 'P':
1614 printf("Promiscuous mode selected\n");
1615 promiscuous_on = 1;
1616 break;
1617 case 'u':
1618 unprotected_port_mask = parse_portmask(optarg);
1619 if (unprotected_port_mask == 0) {
1620 printf("invalid unprotected portmask\n");
1621 print_usage(prgname);
1622 return -1;
1623 }
1624 break;
1625 case 'f':
1626 if (f_present == 1) {
1627 printf("\"-f\" option present more than "
1628 "once!\n");
1629 print_usage(prgname);
1630 return -1;
1631 }
1632 cfgfile = optarg;
1633 f_present = 1;
1634 break;
1635
1636 case 's':
1637 ret = parse_decimal(optarg);
1638 if (ret < 0) {
1639 printf("Invalid number of buffers in a pool: "
1640 "%s\n", optarg);
1641 print_usage(prgname);
1642 return -1;
1643 }
1644
1645 nb_bufs_in_pool = ret;
1646 break;
1647
1648 case 'j':
1649 ret = parse_decimal(optarg);
1650 if (ret < RTE_MBUF_DEFAULT_BUF_SIZE ||
1651 ret > UINT16_MAX) {
1652 printf("Invalid frame buffer size value: %s\n",
1653 optarg);
1654 print_usage(prgname);
1655 return -1;
1656 }
1657 frame_buf_size = ret;
1658 printf("Custom frame buffer size %u\n", frame_buf_size);
1659 break;
1660 case 'l':
1661 app_sa_prm.enable = 1;
1662 break;
1663 case 'w':
1664 app_sa_prm.window_size = parse_decimal(optarg);
1665 break;
1666 case 'e':
1667 app_sa_prm.enable_esn = 1;
1668 break;
1669 case 'a':
1670 app_sa_prm.enable = 1;
1671 app_sa_prm.flags |= RTE_IPSEC_SAFLAG_SQN_ATOM;
1672 break;
1673 case 'c':
1674 ret = parse_decimal(optarg);
1675 if (ret < 0) {
1676 printf("Invalid SA cache size: %s\n", optarg);
1677 print_usage(prgname);
1678 return -1;
1679 }
1680 app_sa_prm.cache_sz = ret;
1681 break;
1682 case CMD_LINE_OPT_CONFIG_NUM:
1683 ret = parse_config(optarg);
1684 if (ret) {
1685 printf("Invalid config\n");
1686 print_usage(prgname);
1687 return -1;
1688 }
1689 break;
1690 case CMD_LINE_OPT_SINGLE_SA_NUM:
1691 ret = parse_decimal(optarg);
1692 if (ret == -1 || ret > UINT32_MAX) {
1693 printf("Invalid argument[sa_idx]\n");
1694 print_usage(prgname);
1695 return -1;
1696 }
1697
1698 /* else */
1699 single_sa = 1;
1700 single_sa_idx = ret;
1701 eh_conf->ipsec_mode = EH_IPSEC_MODE_TYPE_DRIVER;
1702 printf("Configured with single SA index %u\n",
1703 single_sa_idx);
1704 break;
1705 case CMD_LINE_OPT_CRYPTODEV_MASK_NUM:
1706 ret = parse_portmask(optarg);
1707 if (ret == -1) {
1708 printf("Invalid argument[portmask]\n");
1709 print_usage(prgname);
1710 return -1;
1711 }
1712
1713 /* else */
1714 enabled_cryptodev_mask = ret;
1715 break;
1716
1717 case CMD_LINE_OPT_TRANSFER_MODE_NUM:
1718 ret = parse_transfer_mode(eh_conf, optarg);
1719 if (ret < 0) {
1720 printf("Invalid packet transfer mode\n");
1721 print_usage(prgname);
1722 return -1;
1723 }
1724 break;
1725
1726 case CMD_LINE_OPT_SCHEDULE_TYPE_NUM:
1727 ret = parse_schedule_type(eh_conf, optarg);
1728 if (ret < 0) {
1729 printf("Invalid queue schedule type\n");
1730 print_usage(prgname);
1731 return -1;
1732 }
1733 break;
1734
1735 case CMD_LINE_OPT_RX_OFFLOAD_NUM:
1736 ret = parse_mask(optarg, &dev_rx_offload);
1737 if (ret != 0) {
1738 printf("Invalid argument for \'%s\': %s\n",
1739 CMD_LINE_OPT_RX_OFFLOAD, optarg);
1740 print_usage(prgname);
1741 return -1;
1742 }
1743 break;
1744 case CMD_LINE_OPT_TX_OFFLOAD_NUM:
1745 ret = parse_mask(optarg, &dev_tx_offload);
1746 if (ret != 0) {
1747 printf("Invalid argument for \'%s\': %s\n",
1748 CMD_LINE_OPT_TX_OFFLOAD, optarg);
1749 print_usage(prgname);
1750 return -1;
1751 }
1752 break;
1753 case CMD_LINE_OPT_REASSEMBLE_NUM:
1754 ret = parse_decimal(optarg);
1755 if (ret < 0 || ret > UINT32_MAX) {
1756 printf("Invalid argument for \'%s\': %s\n",
1757 CMD_LINE_OPT_REASSEMBLE, optarg);
1758 print_usage(prgname);
1759 return -1;
1760 }
1761 frag_tbl_sz = ret;
1762 break;
1763 case CMD_LINE_OPT_MTU_NUM:
1764 ret = parse_decimal(optarg);
1765 if (ret < 0 || ret > RTE_IPV4_MAX_PKT_LEN) {
1766 printf("Invalid argument for \'%s\': %s\n",
1767 CMD_LINE_OPT_MTU, optarg);
1768 print_usage(prgname);
1769 return -1;
1770 }
1771 mtu_size = ret;
1772 break;
1773 case CMD_LINE_OPT_FRAG_TTL_NUM:
1774 ret = parse_decimal(optarg);
1775 if (ret < 0 || ret > MAX_FRAG_TTL_NS) {
1776 printf("Invalid argument for \'%s\': %s\n",
1777 CMD_LINE_OPT_MTU, optarg);
1778 print_usage(prgname);
1779 return -1;
1780 }
1781 frag_ttl_ns = ret;
1782 break;
1783 default:
1784 print_usage(prgname);
1785 return -1;
1786 }
1787 }
1788
1789 if (f_present == 0) {
1790 printf("Mandatory option \"-f\" not present\n");
1791 return -1;
1792 }
1793
1794 /* check do we need to enable multi-seg support */
1795 if (multi_seg_required()) {
1796 /* legacy mode doesn't support multi-seg */
1797 app_sa_prm.enable = 1;
1798 printf("frame buf size: %u, mtu: %u, "
1799 "number of reassemble entries: %u\n"
1800 "multi-segment support is required\n",
1801 frame_buf_size, mtu_size, frag_tbl_sz);
1802 }
1803
1804 print_app_sa_prm(&app_sa_prm);
1805
1806 if (optind >= 0)
1807 argv[optind-1] = prgname;
1808
1809 ret = optind-1;
1810 optind = 1; /* reset getopt lib */
1811 return ret;
1812 }
1813
1814 static void
print_ethaddr(const char * name,const struct rte_ether_addr * eth_addr)1815 print_ethaddr(const char *name, const struct rte_ether_addr *eth_addr)
1816 {
1817 char buf[RTE_ETHER_ADDR_FMT_SIZE];
1818 rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr);
1819 printf("%s%s", name, buf);
1820 }
1821
1822 /*
1823 * Update destination ethaddr for the port.
1824 */
1825 int
add_dst_ethaddr(uint16_t port,const struct rte_ether_addr * addr)1826 add_dst_ethaddr(uint16_t port, const struct rte_ether_addr *addr)
1827 {
1828 if (port >= RTE_DIM(ethaddr_tbl))
1829 return -EINVAL;
1830
1831 ethaddr_tbl[port].dst = ETHADDR_TO_UINT64(addr);
1832 return 0;
1833 }
1834
1835 /* Check the link status of all ports in up to 9s, and print them finally */
1836 static void
check_all_ports_link_status(uint32_t port_mask)1837 check_all_ports_link_status(uint32_t port_mask)
1838 {
1839 #define CHECK_INTERVAL 100 /* 100ms */
1840 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
1841 uint16_t portid;
1842 uint8_t count, all_ports_up, print_flag = 0;
1843 struct rte_eth_link link;
1844 int ret;
1845 char link_status_text[RTE_ETH_LINK_MAX_STR_LEN];
1846
1847 printf("\nChecking link status");
1848 fflush(stdout);
1849 for (count = 0; count <= MAX_CHECK_TIME; count++) {
1850 all_ports_up = 1;
1851 RTE_ETH_FOREACH_DEV(portid) {
1852 if ((port_mask & (1 << portid)) == 0)
1853 continue;
1854 memset(&link, 0, sizeof(link));
1855 ret = rte_eth_link_get_nowait(portid, &link);
1856 if (ret < 0) {
1857 all_ports_up = 0;
1858 if (print_flag == 1)
1859 printf("Port %u link get failed: %s\n",
1860 portid, rte_strerror(-ret));
1861 continue;
1862 }
1863 /* print link status if flag set */
1864 if (print_flag == 1) {
1865 rte_eth_link_to_str(link_status_text,
1866 sizeof(link_status_text), &link);
1867 printf("Port %d %s\n", portid,
1868 link_status_text);
1869 continue;
1870 }
1871 /* clear all_ports_up flag if any link down */
1872 if (link.link_status == ETH_LINK_DOWN) {
1873 all_ports_up = 0;
1874 break;
1875 }
1876 }
1877 /* after finally printing all link status, get out */
1878 if (print_flag == 1)
1879 break;
1880
1881 if (all_ports_up == 0) {
1882 printf(".");
1883 fflush(stdout);
1884 rte_delay_ms(CHECK_INTERVAL);
1885 }
1886
1887 /* set the print_flag if all ports up or timeout */
1888 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
1889 print_flag = 1;
1890 printf("done\n");
1891 }
1892 }
1893 }
1894
1895 static int32_t
add_mapping(struct rte_hash * map,const char * str,uint16_t cdev_id,uint16_t qp,struct lcore_params * params,struct ipsec_ctx * ipsec_ctx,const struct rte_cryptodev_capabilities * cipher,const struct rte_cryptodev_capabilities * auth,const struct rte_cryptodev_capabilities * aead)1896 add_mapping(struct rte_hash *map, const char *str, uint16_t cdev_id,
1897 uint16_t qp, struct lcore_params *params,
1898 struct ipsec_ctx *ipsec_ctx,
1899 const struct rte_cryptodev_capabilities *cipher,
1900 const struct rte_cryptodev_capabilities *auth,
1901 const struct rte_cryptodev_capabilities *aead)
1902 {
1903 int32_t ret = 0;
1904 unsigned long i;
1905 struct cdev_key key = { 0 };
1906
1907 key.lcore_id = params->lcore_id;
1908 if (cipher)
1909 key.cipher_algo = cipher->sym.cipher.algo;
1910 if (auth)
1911 key.auth_algo = auth->sym.auth.algo;
1912 if (aead)
1913 key.aead_algo = aead->sym.aead.algo;
1914
1915 ret = rte_hash_lookup(map, &key);
1916 if (ret != -ENOENT)
1917 return 0;
1918
1919 for (i = 0; i < ipsec_ctx->nb_qps; i++)
1920 if (ipsec_ctx->tbl[i].id == cdev_id)
1921 break;
1922
1923 if (i == ipsec_ctx->nb_qps) {
1924 if (ipsec_ctx->nb_qps == MAX_QP_PER_LCORE) {
1925 printf("Maximum number of crypto devices assigned to "
1926 "a core, increase MAX_QP_PER_LCORE value\n");
1927 return 0;
1928 }
1929 ipsec_ctx->tbl[i].id = cdev_id;
1930 ipsec_ctx->tbl[i].qp = qp;
1931 ipsec_ctx->nb_qps++;
1932 printf("%s cdev mapping: lcore %u using cdev %u qp %u "
1933 "(cdev_id_qp %lu)\n", str, key.lcore_id,
1934 cdev_id, qp, i);
1935 }
1936
1937 ret = rte_hash_add_key_data(map, &key, (void *)i);
1938 if (ret < 0) {
1939 printf("Faled to insert cdev mapping for (lcore %u, "
1940 "cdev %u, qp %u), errno %d\n",
1941 key.lcore_id, ipsec_ctx->tbl[i].id,
1942 ipsec_ctx->tbl[i].qp, ret);
1943 return 0;
1944 }
1945
1946 return 1;
1947 }
1948
1949 static int32_t
add_cdev_mapping(struct rte_cryptodev_info * dev_info,uint16_t cdev_id,uint16_t qp,struct lcore_params * params)1950 add_cdev_mapping(struct rte_cryptodev_info *dev_info, uint16_t cdev_id,
1951 uint16_t qp, struct lcore_params *params)
1952 {
1953 int32_t ret = 0;
1954 const struct rte_cryptodev_capabilities *i, *j;
1955 struct rte_hash *map;
1956 struct lcore_conf *qconf;
1957 struct ipsec_ctx *ipsec_ctx;
1958 const char *str;
1959
1960 qconf = &lcore_conf[params->lcore_id];
1961
1962 if ((unprotected_port_mask & (1 << params->port_id)) == 0) {
1963 map = cdev_map_out;
1964 ipsec_ctx = &qconf->outbound;
1965 str = "Outbound";
1966 } else {
1967 map = cdev_map_in;
1968 ipsec_ctx = &qconf->inbound;
1969 str = "Inbound";
1970 }
1971
1972 /* Required cryptodevs with operation chainning */
1973 if (!(dev_info->feature_flags &
1974 RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING))
1975 return ret;
1976
1977 for (i = dev_info->capabilities;
1978 i->op != RTE_CRYPTO_OP_TYPE_UNDEFINED; i++) {
1979 if (i->op != RTE_CRYPTO_OP_TYPE_SYMMETRIC)
1980 continue;
1981
1982 if (i->sym.xform_type == RTE_CRYPTO_SYM_XFORM_AEAD) {
1983 ret |= add_mapping(map, str, cdev_id, qp, params,
1984 ipsec_ctx, NULL, NULL, i);
1985 continue;
1986 }
1987
1988 if (i->sym.xform_type != RTE_CRYPTO_SYM_XFORM_CIPHER)
1989 continue;
1990
1991 for (j = dev_info->capabilities;
1992 j->op != RTE_CRYPTO_OP_TYPE_UNDEFINED; j++) {
1993 if (j->op != RTE_CRYPTO_OP_TYPE_SYMMETRIC)
1994 continue;
1995
1996 if (j->sym.xform_type != RTE_CRYPTO_SYM_XFORM_AUTH)
1997 continue;
1998
1999 ret |= add_mapping(map, str, cdev_id, qp, params,
2000 ipsec_ctx, i, j, NULL);
2001 }
2002 }
2003
2004 return ret;
2005 }
2006
2007 /* Check if the device is enabled by cryptodev_mask */
2008 static int
check_cryptodev_mask(uint8_t cdev_id)2009 check_cryptodev_mask(uint8_t cdev_id)
2010 {
2011 if (enabled_cryptodev_mask & (1 << cdev_id))
2012 return 0;
2013
2014 return -1;
2015 }
2016
2017 static uint16_t
cryptodevs_init(uint16_t req_queue_num)2018 cryptodevs_init(uint16_t req_queue_num)
2019 {
2020 struct rte_cryptodev_config dev_conf;
2021 struct rte_cryptodev_qp_conf qp_conf;
2022 uint16_t idx, max_nb_qps, qp, total_nb_qps, i;
2023 int16_t cdev_id;
2024 struct rte_hash_parameters params = { 0 };
2025
2026 const uint64_t mseg_flag = multi_seg_required() ?
2027 RTE_CRYPTODEV_FF_IN_PLACE_SGL : 0;
2028
2029 params.entries = CDEV_MAP_ENTRIES;
2030 params.key_len = sizeof(struct cdev_key);
2031 params.hash_func = rte_jhash;
2032 params.hash_func_init_val = 0;
2033 params.socket_id = rte_socket_id();
2034
2035 params.name = "cdev_map_in";
2036 cdev_map_in = rte_hash_create(¶ms);
2037 if (cdev_map_in == NULL)
2038 rte_panic("Failed to create cdev_map hash table, errno = %d\n",
2039 rte_errno);
2040
2041 params.name = "cdev_map_out";
2042 cdev_map_out = rte_hash_create(¶ms);
2043 if (cdev_map_out == NULL)
2044 rte_panic("Failed to create cdev_map hash table, errno = %d\n",
2045 rte_errno);
2046
2047 printf("lcore/cryptodev/qp mappings:\n");
2048
2049 idx = 0;
2050 total_nb_qps = 0;
2051 for (cdev_id = 0; cdev_id < rte_cryptodev_count(); cdev_id++) {
2052 struct rte_cryptodev_info cdev_info;
2053
2054 if (check_cryptodev_mask((uint8_t)cdev_id))
2055 continue;
2056
2057 rte_cryptodev_info_get(cdev_id, &cdev_info);
2058
2059 if ((mseg_flag & cdev_info.feature_flags) != mseg_flag)
2060 rte_exit(EXIT_FAILURE,
2061 "Device %hd does not support \'%s\' feature\n",
2062 cdev_id,
2063 rte_cryptodev_get_feature_name(mseg_flag));
2064
2065 if (nb_lcore_params > cdev_info.max_nb_queue_pairs)
2066 max_nb_qps = cdev_info.max_nb_queue_pairs;
2067 else
2068 max_nb_qps = nb_lcore_params;
2069
2070 qp = 0;
2071 i = 0;
2072 while (qp < max_nb_qps && i < nb_lcore_params) {
2073 if (add_cdev_mapping(&cdev_info, cdev_id, qp,
2074 &lcore_params[idx]))
2075 qp++;
2076 idx++;
2077 idx = idx % nb_lcore_params;
2078 i++;
2079 }
2080
2081 qp = RTE_MIN(max_nb_qps, RTE_MAX(req_queue_num, qp));
2082 if (qp == 0)
2083 continue;
2084
2085 total_nb_qps += qp;
2086 dev_conf.socket_id = rte_cryptodev_socket_id(cdev_id);
2087 dev_conf.nb_queue_pairs = qp;
2088 dev_conf.ff_disable = RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO;
2089
2090 uint32_t dev_max_sess = cdev_info.sym.max_nb_sessions;
2091 if (dev_max_sess != 0 &&
2092 dev_max_sess < get_nb_crypto_sessions())
2093 rte_exit(EXIT_FAILURE,
2094 "Device does not support at least %u "
2095 "sessions", get_nb_crypto_sessions());
2096
2097 if (rte_cryptodev_configure(cdev_id, &dev_conf))
2098 rte_panic("Failed to initialize cryptodev %u\n",
2099 cdev_id);
2100
2101 qp_conf.nb_descriptors = CDEV_QUEUE_DESC;
2102 qp_conf.mp_session =
2103 socket_ctx[dev_conf.socket_id].session_pool;
2104 qp_conf.mp_session_private =
2105 socket_ctx[dev_conf.socket_id].session_priv_pool;
2106 for (qp = 0; qp < dev_conf.nb_queue_pairs; qp++)
2107 if (rte_cryptodev_queue_pair_setup(cdev_id, qp,
2108 &qp_conf, dev_conf.socket_id))
2109 rte_panic("Failed to setup queue %u for "
2110 "cdev_id %u\n", 0, cdev_id);
2111
2112 if (rte_cryptodev_start(cdev_id))
2113 rte_panic("Failed to start cryptodev %u\n",
2114 cdev_id);
2115 }
2116
2117 printf("\n");
2118
2119 return total_nb_qps;
2120 }
2121
2122 static void
port_init(uint16_t portid,uint64_t req_rx_offloads,uint64_t req_tx_offloads)2123 port_init(uint16_t portid, uint64_t req_rx_offloads, uint64_t req_tx_offloads)
2124 {
2125 uint32_t frame_size;
2126 struct rte_eth_dev_info dev_info;
2127 struct rte_eth_txconf *txconf;
2128 uint16_t nb_tx_queue, nb_rx_queue;
2129 uint16_t tx_queueid, rx_queueid, queue, lcore_id;
2130 int32_t ret, socket_id;
2131 struct lcore_conf *qconf;
2132 struct rte_ether_addr ethaddr;
2133 struct rte_eth_conf local_port_conf = port_conf;
2134
2135 ret = rte_eth_dev_info_get(portid, &dev_info);
2136 if (ret != 0)
2137 rte_exit(EXIT_FAILURE,
2138 "Error during getting device (port %u) info: %s\n",
2139 portid, strerror(-ret));
2140
2141 /* limit allowed HW offloafs, as user requested */
2142 dev_info.rx_offload_capa &= dev_rx_offload;
2143 dev_info.tx_offload_capa &= dev_tx_offload;
2144
2145 printf("Configuring device port %u:\n", portid);
2146
2147 ret = rte_eth_macaddr_get(portid, ðaddr);
2148 if (ret != 0)
2149 rte_exit(EXIT_FAILURE,
2150 "Error getting MAC address (port %u): %s\n",
2151 portid, rte_strerror(-ret));
2152
2153 ethaddr_tbl[portid].src = ETHADDR_TO_UINT64(ðaddr);
2154 print_ethaddr("Address: ", ðaddr);
2155 printf("\n");
2156
2157 nb_rx_queue = get_port_nb_rx_queues(portid);
2158 nb_tx_queue = nb_lcores;
2159
2160 if (nb_rx_queue > dev_info.max_rx_queues)
2161 rte_exit(EXIT_FAILURE, "Error: queue %u not available "
2162 "(max rx queue is %u)\n",
2163 nb_rx_queue, dev_info.max_rx_queues);
2164
2165 if (nb_tx_queue > dev_info.max_tx_queues)
2166 rte_exit(EXIT_FAILURE, "Error: queue %u not available "
2167 "(max tx queue is %u)\n",
2168 nb_tx_queue, dev_info.max_tx_queues);
2169
2170 printf("Creating queues: nb_rx_queue=%d nb_tx_queue=%u...\n",
2171 nb_rx_queue, nb_tx_queue);
2172
2173 frame_size = MTU_TO_FRAMELEN(mtu_size);
2174 if (frame_size > local_port_conf.rxmode.max_rx_pkt_len)
2175 local_port_conf.rxmode.offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME;
2176 local_port_conf.rxmode.max_rx_pkt_len = frame_size;
2177
2178 if (multi_seg_required()) {
2179 local_port_conf.rxmode.offloads |= DEV_RX_OFFLOAD_SCATTER;
2180 local_port_conf.txmode.offloads |= DEV_TX_OFFLOAD_MULTI_SEGS;
2181 }
2182
2183 local_port_conf.rxmode.offloads |= req_rx_offloads;
2184 local_port_conf.txmode.offloads |= req_tx_offloads;
2185
2186 /* Check that all required capabilities are supported */
2187 if ((local_port_conf.rxmode.offloads & dev_info.rx_offload_capa) !=
2188 local_port_conf.rxmode.offloads)
2189 rte_exit(EXIT_FAILURE,
2190 "Error: port %u required RX offloads: 0x%" PRIx64
2191 ", avaialbe RX offloads: 0x%" PRIx64 "\n",
2192 portid, local_port_conf.rxmode.offloads,
2193 dev_info.rx_offload_capa);
2194
2195 if ((local_port_conf.txmode.offloads & dev_info.tx_offload_capa) !=
2196 local_port_conf.txmode.offloads)
2197 rte_exit(EXIT_FAILURE,
2198 "Error: port %u required TX offloads: 0x%" PRIx64
2199 ", avaialbe TX offloads: 0x%" PRIx64 "\n",
2200 portid, local_port_conf.txmode.offloads,
2201 dev_info.tx_offload_capa);
2202
2203 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
2204 local_port_conf.txmode.offloads |=
2205 DEV_TX_OFFLOAD_MBUF_FAST_FREE;
2206
2207 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPV4_CKSUM)
2208 local_port_conf.txmode.offloads |= DEV_TX_OFFLOAD_IPV4_CKSUM;
2209
2210 printf("port %u configurng rx_offloads=0x%" PRIx64
2211 ", tx_offloads=0x%" PRIx64 "\n",
2212 portid, local_port_conf.rxmode.offloads,
2213 local_port_conf.txmode.offloads);
2214
2215 local_port_conf.rx_adv_conf.rss_conf.rss_hf &=
2216 dev_info.flow_type_rss_offloads;
2217 if (local_port_conf.rx_adv_conf.rss_conf.rss_hf !=
2218 port_conf.rx_adv_conf.rss_conf.rss_hf) {
2219 printf("Port %u modified RSS hash function based on hardware support,"
2220 "requested:%#"PRIx64" configured:%#"PRIx64"\n",
2221 portid,
2222 port_conf.rx_adv_conf.rss_conf.rss_hf,
2223 local_port_conf.rx_adv_conf.rss_conf.rss_hf);
2224 }
2225
2226 ret = rte_eth_dev_configure(portid, nb_rx_queue, nb_tx_queue,
2227 &local_port_conf);
2228 if (ret < 0)
2229 rte_exit(EXIT_FAILURE, "Cannot configure device: "
2230 "err=%d, port=%d\n", ret, portid);
2231
2232 ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd, &nb_txd);
2233 if (ret < 0)
2234 rte_exit(EXIT_FAILURE, "Cannot adjust number of descriptors: "
2235 "err=%d, port=%d\n", ret, portid);
2236
2237 /* init one TX queue per lcore */
2238 tx_queueid = 0;
2239 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
2240 if (rte_lcore_is_enabled(lcore_id) == 0)
2241 continue;
2242
2243 if (numa_on)
2244 socket_id = (uint8_t)rte_lcore_to_socket_id(lcore_id);
2245 else
2246 socket_id = 0;
2247
2248 /* init TX queue */
2249 printf("Setup txq=%u,%d,%d\n", lcore_id, tx_queueid, socket_id);
2250
2251 txconf = &dev_info.default_txconf;
2252 txconf->offloads = local_port_conf.txmode.offloads;
2253
2254 ret = rte_eth_tx_queue_setup(portid, tx_queueid, nb_txd,
2255 socket_id, txconf);
2256 if (ret < 0)
2257 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: "
2258 "err=%d, port=%d\n", ret, portid);
2259
2260 qconf = &lcore_conf[lcore_id];
2261 qconf->tx_queue_id[portid] = tx_queueid;
2262
2263 /* Pre-populate pkt offloads based on capabilities */
2264 qconf->outbound.ipv4_offloads = PKT_TX_IPV4;
2265 qconf->outbound.ipv6_offloads = PKT_TX_IPV6;
2266 if (local_port_conf.txmode.offloads & DEV_TX_OFFLOAD_IPV4_CKSUM)
2267 qconf->outbound.ipv4_offloads |= PKT_TX_IP_CKSUM;
2268
2269 tx_queueid++;
2270
2271 /* init RX queues */
2272 for (queue = 0; queue < qconf->nb_rx_queue; ++queue) {
2273 struct rte_eth_rxconf rxq_conf;
2274
2275 if (portid != qconf->rx_queue_list[queue].port_id)
2276 continue;
2277
2278 rx_queueid = qconf->rx_queue_list[queue].queue_id;
2279
2280 printf("Setup rxq=%d,%d,%d\n", portid, rx_queueid,
2281 socket_id);
2282
2283 rxq_conf = dev_info.default_rxconf;
2284 rxq_conf.offloads = local_port_conf.rxmode.offloads;
2285 ret = rte_eth_rx_queue_setup(portid, rx_queueid,
2286 nb_rxd, socket_id, &rxq_conf,
2287 socket_ctx[socket_id].mbuf_pool);
2288 if (ret < 0)
2289 rte_exit(EXIT_FAILURE,
2290 "rte_eth_rx_queue_setup: err=%d, "
2291 "port=%d\n", ret, portid);
2292 }
2293 }
2294 printf("\n");
2295 }
2296
2297 static size_t
max_session_size(void)2298 max_session_size(void)
2299 {
2300 size_t max_sz, sz;
2301 void *sec_ctx;
2302 int16_t cdev_id, port_id, n;
2303
2304 max_sz = 0;
2305 n = rte_cryptodev_count();
2306 for (cdev_id = 0; cdev_id != n; cdev_id++) {
2307 sz = rte_cryptodev_sym_get_private_session_size(cdev_id);
2308 if (sz > max_sz)
2309 max_sz = sz;
2310 /*
2311 * If crypto device is security capable, need to check the
2312 * size of security session as well.
2313 */
2314
2315 /* Get security context of the crypto device */
2316 sec_ctx = rte_cryptodev_get_sec_ctx(cdev_id);
2317 if (sec_ctx == NULL)
2318 continue;
2319
2320 /* Get size of security session */
2321 sz = rte_security_session_get_size(sec_ctx);
2322 if (sz > max_sz)
2323 max_sz = sz;
2324 }
2325
2326 RTE_ETH_FOREACH_DEV(port_id) {
2327 if ((enabled_port_mask & (1 << port_id)) == 0)
2328 continue;
2329
2330 sec_ctx = rte_eth_dev_get_sec_ctx(port_id);
2331 if (sec_ctx == NULL)
2332 continue;
2333
2334 sz = rte_security_session_get_size(sec_ctx);
2335 if (sz > max_sz)
2336 max_sz = sz;
2337 }
2338
2339 return max_sz;
2340 }
2341
2342 static void
session_pool_init(struct socket_ctx * ctx,int32_t socket_id,size_t sess_sz)2343 session_pool_init(struct socket_ctx *ctx, int32_t socket_id, size_t sess_sz)
2344 {
2345 char mp_name[RTE_MEMPOOL_NAMESIZE];
2346 struct rte_mempool *sess_mp;
2347 uint32_t nb_sess;
2348
2349 snprintf(mp_name, RTE_MEMPOOL_NAMESIZE,
2350 "sess_mp_%u", socket_id);
2351 nb_sess = (get_nb_crypto_sessions() + CDEV_MP_CACHE_SZ *
2352 rte_lcore_count());
2353 nb_sess = RTE_MAX(nb_sess, CDEV_MP_CACHE_SZ *
2354 CDEV_MP_CACHE_MULTIPLIER);
2355 sess_mp = rte_cryptodev_sym_session_pool_create(
2356 mp_name, nb_sess, sess_sz, CDEV_MP_CACHE_SZ, 0,
2357 socket_id);
2358 ctx->session_pool = sess_mp;
2359
2360 if (ctx->session_pool == NULL)
2361 rte_exit(EXIT_FAILURE,
2362 "Cannot init session pool on socket %d\n", socket_id);
2363 else
2364 printf("Allocated session pool on socket %d\n", socket_id);
2365 }
2366
2367 static void
session_priv_pool_init(struct socket_ctx * ctx,int32_t socket_id,size_t sess_sz)2368 session_priv_pool_init(struct socket_ctx *ctx, int32_t socket_id,
2369 size_t sess_sz)
2370 {
2371 char mp_name[RTE_MEMPOOL_NAMESIZE];
2372 struct rte_mempool *sess_mp;
2373 uint32_t nb_sess;
2374
2375 snprintf(mp_name, RTE_MEMPOOL_NAMESIZE,
2376 "sess_mp_priv_%u", socket_id);
2377 nb_sess = (get_nb_crypto_sessions() + CDEV_MP_CACHE_SZ *
2378 rte_lcore_count());
2379 nb_sess = RTE_MAX(nb_sess, CDEV_MP_CACHE_SZ *
2380 CDEV_MP_CACHE_MULTIPLIER);
2381 sess_mp = rte_mempool_create(mp_name,
2382 nb_sess,
2383 sess_sz,
2384 CDEV_MP_CACHE_SZ,
2385 0, NULL, NULL, NULL,
2386 NULL, socket_id,
2387 0);
2388 ctx->session_priv_pool = sess_mp;
2389
2390 if (ctx->session_priv_pool == NULL)
2391 rte_exit(EXIT_FAILURE,
2392 "Cannot init session priv pool on socket %d\n",
2393 socket_id);
2394 else
2395 printf("Allocated session priv pool on socket %d\n",
2396 socket_id);
2397 }
2398
2399 static void
pool_init(struct socket_ctx * ctx,int32_t socket_id,uint32_t nb_mbuf)2400 pool_init(struct socket_ctx *ctx, int32_t socket_id, uint32_t nb_mbuf)
2401 {
2402 char s[64];
2403 int32_t ms;
2404
2405 snprintf(s, sizeof(s), "mbuf_pool_%d", socket_id);
2406 ctx->mbuf_pool = rte_pktmbuf_pool_create(s, nb_mbuf,
2407 MEMPOOL_CACHE_SIZE, ipsec_metadata_size(),
2408 frame_buf_size, socket_id);
2409
2410 /*
2411 * if multi-segment support is enabled, then create a pool
2412 * for indirect mbufs.
2413 */
2414 ms = multi_seg_required();
2415 if (ms != 0) {
2416 snprintf(s, sizeof(s), "mbuf_pool_indir_%d", socket_id);
2417 ctx->mbuf_pool_indir = rte_pktmbuf_pool_create(s, nb_mbuf,
2418 MEMPOOL_CACHE_SIZE, 0, 0, socket_id);
2419 }
2420
2421 if (ctx->mbuf_pool == NULL || (ms != 0 && ctx->mbuf_pool_indir == NULL))
2422 rte_exit(EXIT_FAILURE, "Cannot init mbuf pool on socket %d\n",
2423 socket_id);
2424 else
2425 printf("Allocated mbuf pool on socket %d\n", socket_id);
2426 }
2427
2428 static inline int
inline_ipsec_event_esn_overflow(struct rte_security_ctx * ctx,uint64_t md)2429 inline_ipsec_event_esn_overflow(struct rte_security_ctx *ctx, uint64_t md)
2430 {
2431 struct ipsec_sa *sa;
2432
2433 /* For inline protocol processing, the metadata in the event will
2434 * uniquely identify the security session which raised the event.
2435 * Application would then need the userdata it had registered with the
2436 * security session to process the event.
2437 */
2438
2439 sa = (struct ipsec_sa *)rte_security_get_userdata(ctx, md);
2440
2441 if (sa == NULL) {
2442 /* userdata could not be retrieved */
2443 return -1;
2444 }
2445
2446 /* Sequence number over flow. SA need to be re-established */
2447 RTE_SET_USED(sa);
2448 return 0;
2449 }
2450
2451 static int
inline_ipsec_event_callback(uint16_t port_id,enum rte_eth_event_type type,void * param,void * ret_param)2452 inline_ipsec_event_callback(uint16_t port_id, enum rte_eth_event_type type,
2453 void *param, void *ret_param)
2454 {
2455 uint64_t md;
2456 struct rte_eth_event_ipsec_desc *event_desc = NULL;
2457 struct rte_security_ctx *ctx = (struct rte_security_ctx *)
2458 rte_eth_dev_get_sec_ctx(port_id);
2459
2460 RTE_SET_USED(param);
2461
2462 if (type != RTE_ETH_EVENT_IPSEC)
2463 return -1;
2464
2465 event_desc = ret_param;
2466 if (event_desc == NULL) {
2467 printf("Event descriptor not set\n");
2468 return -1;
2469 }
2470
2471 md = event_desc->metadata;
2472
2473 if (event_desc->subtype == RTE_ETH_EVENT_IPSEC_ESN_OVERFLOW)
2474 return inline_ipsec_event_esn_overflow(ctx, md);
2475 else if (event_desc->subtype >= RTE_ETH_EVENT_IPSEC_MAX) {
2476 printf("Invalid IPsec event reported\n");
2477 return -1;
2478 }
2479
2480 return -1;
2481 }
2482
2483 static uint16_t
rx_callback(__rte_unused uint16_t port,__rte_unused uint16_t queue,struct rte_mbuf * pkt[],uint16_t nb_pkts,__rte_unused uint16_t max_pkts,void * user_param)2484 rx_callback(__rte_unused uint16_t port, __rte_unused uint16_t queue,
2485 struct rte_mbuf *pkt[], uint16_t nb_pkts,
2486 __rte_unused uint16_t max_pkts, void *user_param)
2487 {
2488 uint64_t tm;
2489 uint32_t i, k;
2490 struct lcore_conf *lc;
2491 struct rte_mbuf *mb;
2492 struct rte_ether_hdr *eth;
2493
2494 lc = user_param;
2495 k = 0;
2496 tm = 0;
2497
2498 for (i = 0; i != nb_pkts; i++) {
2499
2500 mb = pkt[i];
2501 eth = rte_pktmbuf_mtod(mb, struct rte_ether_hdr *);
2502 if (eth->ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4)) {
2503
2504 struct rte_ipv4_hdr *iph;
2505
2506 iph = (struct rte_ipv4_hdr *)(eth + 1);
2507 if (rte_ipv4_frag_pkt_is_fragmented(iph)) {
2508
2509 mb->l2_len = sizeof(*eth);
2510 mb->l3_len = sizeof(*iph);
2511 tm = (tm != 0) ? tm : rte_rdtsc();
2512 mb = rte_ipv4_frag_reassemble_packet(
2513 lc->frag.tbl, &lc->frag.dr,
2514 mb, tm, iph);
2515
2516 if (mb != NULL) {
2517 /* fix ip cksum after reassemble. */
2518 iph = rte_pktmbuf_mtod_offset(mb,
2519 struct rte_ipv4_hdr *,
2520 mb->l2_len);
2521 iph->hdr_checksum = 0;
2522 iph->hdr_checksum = rte_ipv4_cksum(iph);
2523 }
2524 }
2525 } else if (eth->ether_type ==
2526 rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6)) {
2527
2528 struct rte_ipv6_hdr *iph;
2529 struct ipv6_extension_fragment *fh;
2530
2531 iph = (struct rte_ipv6_hdr *)(eth + 1);
2532 fh = rte_ipv6_frag_get_ipv6_fragment_header(iph);
2533 if (fh != NULL) {
2534 mb->l2_len = sizeof(*eth);
2535 mb->l3_len = (uintptr_t)fh - (uintptr_t)iph +
2536 sizeof(*fh);
2537 tm = (tm != 0) ? tm : rte_rdtsc();
2538 mb = rte_ipv6_frag_reassemble_packet(
2539 lc->frag.tbl, &lc->frag.dr,
2540 mb, tm, iph, fh);
2541 if (mb != NULL)
2542 /* fix l3_len after reassemble. */
2543 mb->l3_len = mb->l3_len - sizeof(*fh);
2544 }
2545 }
2546
2547 pkt[k] = mb;
2548 k += (mb != NULL);
2549 }
2550
2551 /* some fragments were encountered, drain death row */
2552 if (tm != 0)
2553 rte_ip_frag_free_death_row(&lc->frag.dr, 0);
2554
2555 return k;
2556 }
2557
2558
2559 static int
reassemble_lcore_init(struct lcore_conf * lc,uint32_t cid)2560 reassemble_lcore_init(struct lcore_conf *lc, uint32_t cid)
2561 {
2562 int32_t sid;
2563 uint32_t i;
2564 uint64_t frag_cycles;
2565 const struct lcore_rx_queue *rxq;
2566 const struct rte_eth_rxtx_callback *cb;
2567
2568 /* create fragment table */
2569 sid = rte_lcore_to_socket_id(cid);
2570 frag_cycles = (rte_get_tsc_hz() + NS_PER_S - 1) /
2571 NS_PER_S * frag_ttl_ns;
2572
2573 lc->frag.tbl = rte_ip_frag_table_create(frag_tbl_sz,
2574 FRAG_TBL_BUCKET_ENTRIES, frag_tbl_sz, frag_cycles, sid);
2575 if (lc->frag.tbl == NULL) {
2576 printf("%s(%u): failed to create fragment table of size: %u, "
2577 "error code: %d\n",
2578 __func__, cid, frag_tbl_sz, rte_errno);
2579 return -ENOMEM;
2580 }
2581
2582 /* setup reassemble RX callbacks for all queues */
2583 for (i = 0; i != lc->nb_rx_queue; i++) {
2584
2585 rxq = lc->rx_queue_list + i;
2586 cb = rte_eth_add_rx_callback(rxq->port_id, rxq->queue_id,
2587 rx_callback, lc);
2588 if (cb == NULL) {
2589 printf("%s(%u): failed to install RX callback for "
2590 "portid=%u, queueid=%u, error code: %d\n",
2591 __func__, cid,
2592 rxq->port_id, rxq->queue_id, rte_errno);
2593 return -ENOMEM;
2594 }
2595 }
2596
2597 return 0;
2598 }
2599
2600 static int
reassemble_init(void)2601 reassemble_init(void)
2602 {
2603 int32_t rc;
2604 uint32_t i, lc;
2605
2606 rc = 0;
2607 for (i = 0; i != nb_lcore_params; i++) {
2608 lc = lcore_params[i].lcore_id;
2609 rc = reassemble_lcore_init(lcore_conf + lc, lc);
2610 if (rc != 0)
2611 break;
2612 }
2613
2614 return rc;
2615 }
2616
2617 static void
create_default_ipsec_flow(uint16_t port_id,uint64_t rx_offloads)2618 create_default_ipsec_flow(uint16_t port_id, uint64_t rx_offloads)
2619 {
2620 struct rte_flow_action action[2];
2621 struct rte_flow_item pattern[2];
2622 struct rte_flow_attr attr = {0};
2623 struct rte_flow_error err;
2624 struct rte_flow *flow;
2625 int ret;
2626
2627 if (!(rx_offloads & DEV_RX_OFFLOAD_SECURITY))
2628 return;
2629
2630 /* Add the default rte_flow to enable SECURITY for all ESP packets */
2631
2632 pattern[0].type = RTE_FLOW_ITEM_TYPE_ESP;
2633 pattern[0].spec = NULL;
2634 pattern[0].mask = NULL;
2635 pattern[0].last = NULL;
2636 pattern[1].type = RTE_FLOW_ITEM_TYPE_END;
2637
2638 action[0].type = RTE_FLOW_ACTION_TYPE_SECURITY;
2639 action[0].conf = NULL;
2640 action[1].type = RTE_FLOW_ACTION_TYPE_END;
2641 action[1].conf = NULL;
2642
2643 attr.ingress = 1;
2644
2645 ret = rte_flow_validate(port_id, &attr, pattern, action, &err);
2646 if (ret)
2647 return;
2648
2649 flow = rte_flow_create(port_id, &attr, pattern, action, &err);
2650 if (flow == NULL)
2651 return;
2652
2653 flow_info_tbl[port_id].rx_def_flow = flow;
2654 RTE_LOG(INFO, IPSEC,
2655 "Created default flow enabling SECURITY for all ESP traffic on port %d\n",
2656 port_id);
2657 }
2658
2659 static void
signal_handler(int signum)2660 signal_handler(int signum)
2661 {
2662 if (signum == SIGINT || signum == SIGTERM) {
2663 printf("\n\nSignal %d received, preparing to exit...\n",
2664 signum);
2665 force_quit = true;
2666 }
2667 }
2668
2669 static void
ev_mode_sess_verify(struct ipsec_sa * sa,int nb_sa)2670 ev_mode_sess_verify(struct ipsec_sa *sa, int nb_sa)
2671 {
2672 struct rte_ipsec_session *ips;
2673 int32_t i;
2674
2675 if (!sa || !nb_sa)
2676 return;
2677
2678 for (i = 0; i < nb_sa; i++) {
2679 ips = ipsec_get_primary_session(&sa[i]);
2680 if (ips->type != RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL)
2681 rte_exit(EXIT_FAILURE, "Event mode supports only "
2682 "inline protocol sessions\n");
2683 }
2684
2685 }
2686
2687 static int32_t
check_event_mode_params(struct eh_conf * eh_conf)2688 check_event_mode_params(struct eh_conf *eh_conf)
2689 {
2690 struct eventmode_conf *em_conf = NULL;
2691 struct lcore_params *params;
2692 uint16_t portid;
2693
2694 if (!eh_conf || !eh_conf->mode_params)
2695 return -EINVAL;
2696
2697 /* Get eventmode conf */
2698 em_conf = eh_conf->mode_params;
2699
2700 if (eh_conf->mode == EH_PKT_TRANSFER_MODE_POLL &&
2701 em_conf->ext_params.sched_type != SCHED_TYPE_NOT_SET) {
2702 printf("error: option --event-schedule-type applies only to "
2703 "event mode\n");
2704 return -EINVAL;
2705 }
2706
2707 if (eh_conf->mode != EH_PKT_TRANSFER_MODE_EVENT)
2708 return 0;
2709
2710 /* Set schedule type to ORDERED if it wasn't explicitly set by user */
2711 if (em_conf->ext_params.sched_type == SCHED_TYPE_NOT_SET)
2712 em_conf->ext_params.sched_type = RTE_SCHED_TYPE_ORDERED;
2713
2714 /*
2715 * Event mode currently supports only inline protocol sessions.
2716 * If there are other types of sessions configured then exit with
2717 * error.
2718 */
2719 ev_mode_sess_verify(sa_in, nb_sa_in);
2720 ev_mode_sess_verify(sa_out, nb_sa_out);
2721
2722
2723 /* Option --config does not apply to event mode */
2724 if (nb_lcore_params > 0) {
2725 printf("error: option --config applies only to poll mode\n");
2726 return -EINVAL;
2727 }
2728
2729 /*
2730 * In order to use the same port_init routine for both poll and event
2731 * modes initialize lcore_params with one queue for each eth port
2732 */
2733 lcore_params = lcore_params_array;
2734 RTE_ETH_FOREACH_DEV(portid) {
2735 if ((enabled_port_mask & (1 << portid)) == 0)
2736 continue;
2737
2738 params = &lcore_params[nb_lcore_params++];
2739 params->port_id = portid;
2740 params->queue_id = 0;
2741 params->lcore_id = rte_get_next_lcore(0, 0, 1);
2742 }
2743
2744 return 0;
2745 }
2746
2747 static void
inline_sessions_free(struct sa_ctx * sa_ctx)2748 inline_sessions_free(struct sa_ctx *sa_ctx)
2749 {
2750 struct rte_ipsec_session *ips;
2751 struct ipsec_sa *sa;
2752 int32_t ret;
2753 uint32_t i;
2754
2755 if (!sa_ctx)
2756 return;
2757
2758 for (i = 0; i < sa_ctx->nb_sa; i++) {
2759
2760 sa = &sa_ctx->sa[i];
2761 if (!sa->spi)
2762 continue;
2763
2764 ips = ipsec_get_primary_session(sa);
2765 if (ips->type != RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL &&
2766 ips->type != RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO)
2767 continue;
2768
2769 if (!rte_eth_dev_is_valid_port(sa->portid))
2770 continue;
2771
2772 ret = rte_security_session_destroy(
2773 rte_eth_dev_get_sec_ctx(sa->portid),
2774 ips->security.ses);
2775 if (ret)
2776 RTE_LOG(ERR, IPSEC, "Failed to destroy security "
2777 "session type %d, spi %d\n",
2778 ips->type, sa->spi);
2779 }
2780 }
2781
2782 static uint32_t
calculate_nb_mbufs(uint16_t nb_ports,uint16_t nb_crypto_qp,uint32_t nb_rxq,uint32_t nb_txq)2783 calculate_nb_mbufs(uint16_t nb_ports, uint16_t nb_crypto_qp, uint32_t nb_rxq,
2784 uint32_t nb_txq)
2785 {
2786 return RTE_MAX((nb_rxq * nb_rxd +
2787 nb_ports * nb_lcores * MAX_PKT_BURST +
2788 nb_ports * nb_txq * nb_txd +
2789 nb_lcores * MEMPOOL_CACHE_SIZE +
2790 nb_crypto_qp * CDEV_QUEUE_DESC +
2791 nb_lcores * frag_tbl_sz *
2792 FRAG_TBL_BUCKET_ENTRIES),
2793 8192U);
2794 }
2795
2796 int32_t
main(int32_t argc,char ** argv)2797 main(int32_t argc, char **argv)
2798 {
2799 int32_t ret;
2800 uint32_t lcore_id, nb_txq, nb_rxq = 0;
2801 uint32_t cdev_id;
2802 uint32_t i;
2803 uint8_t socket_id;
2804 uint16_t portid, nb_crypto_qp, nb_ports = 0;
2805 uint64_t req_rx_offloads[RTE_MAX_ETHPORTS];
2806 uint64_t req_tx_offloads[RTE_MAX_ETHPORTS];
2807 struct eh_conf *eh_conf = NULL;
2808 size_t sess_sz;
2809
2810 nb_bufs_in_pool = 0;
2811
2812 /* init EAL */
2813 ret = rte_eal_init(argc, argv);
2814 if (ret < 0)
2815 rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n");
2816 argc -= ret;
2817 argv += ret;
2818
2819 force_quit = false;
2820 signal(SIGINT, signal_handler);
2821 signal(SIGTERM, signal_handler);
2822
2823 /* initialize event helper configuration */
2824 eh_conf = eh_conf_init();
2825 if (eh_conf == NULL)
2826 rte_exit(EXIT_FAILURE, "Failed to init event helper config");
2827
2828 /* parse application arguments (after the EAL ones) */
2829 ret = parse_args(argc, argv, eh_conf);
2830 if (ret < 0)
2831 rte_exit(EXIT_FAILURE, "Invalid parameters\n");
2832
2833 /* parse configuration file */
2834 if (parse_cfg_file(cfgfile) < 0) {
2835 printf("parsing file \"%s\" failed\n",
2836 optarg);
2837 print_usage(argv[0]);
2838 return -1;
2839 }
2840
2841 if ((unprotected_port_mask & enabled_port_mask) !=
2842 unprotected_port_mask)
2843 rte_exit(EXIT_FAILURE, "Invalid unprotected portmask 0x%x\n",
2844 unprotected_port_mask);
2845
2846 if (check_poll_mode_params(eh_conf) < 0)
2847 rte_exit(EXIT_FAILURE, "check_poll_mode_params failed\n");
2848
2849 if (check_event_mode_params(eh_conf) < 0)
2850 rte_exit(EXIT_FAILURE, "check_event_mode_params failed\n");
2851
2852 ret = init_lcore_rx_queues();
2853 if (ret < 0)
2854 rte_exit(EXIT_FAILURE, "init_lcore_rx_queues failed\n");
2855
2856 nb_lcores = rte_lcore_count();
2857
2858 sess_sz = max_session_size();
2859
2860 /*
2861 * In event mode request minimum number of crypto queues
2862 * to be reserved equal to number of ports.
2863 */
2864 if (eh_conf->mode == EH_PKT_TRANSFER_MODE_EVENT)
2865 nb_crypto_qp = rte_eth_dev_count_avail();
2866 else
2867 nb_crypto_qp = 0;
2868
2869 nb_crypto_qp = cryptodevs_init(nb_crypto_qp);
2870
2871 if (nb_bufs_in_pool == 0) {
2872 RTE_ETH_FOREACH_DEV(portid) {
2873 if ((enabled_port_mask & (1 << portid)) == 0)
2874 continue;
2875 nb_ports++;
2876 nb_rxq += get_port_nb_rx_queues(portid);
2877 }
2878
2879 nb_txq = nb_lcores;
2880
2881 nb_bufs_in_pool = calculate_nb_mbufs(nb_ports, nb_crypto_qp,
2882 nb_rxq, nb_txq);
2883 }
2884
2885 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
2886 if (rte_lcore_is_enabled(lcore_id) == 0)
2887 continue;
2888
2889 if (numa_on)
2890 socket_id = (uint8_t)rte_lcore_to_socket_id(lcore_id);
2891 else
2892 socket_id = 0;
2893
2894 /* mbuf_pool is initialised by the pool_init() function*/
2895 if (socket_ctx[socket_id].mbuf_pool)
2896 continue;
2897
2898 pool_init(&socket_ctx[socket_id], socket_id, nb_bufs_in_pool);
2899 session_pool_init(&socket_ctx[socket_id], socket_id, sess_sz);
2900 session_priv_pool_init(&socket_ctx[socket_id], socket_id,
2901 sess_sz);
2902 }
2903 printf("Number of mbufs in packet pool %d\n", nb_bufs_in_pool);
2904
2905 RTE_ETH_FOREACH_DEV(portid) {
2906 if ((enabled_port_mask & (1 << portid)) == 0)
2907 continue;
2908
2909 sa_check_offloads(portid, &req_rx_offloads[portid],
2910 &req_tx_offloads[portid]);
2911 port_init(portid, req_rx_offloads[portid],
2912 req_tx_offloads[portid]);
2913 }
2914
2915 /*
2916 * Set the enabled port mask in helper config for use by helper
2917 * sub-system. This will be used while initializing devices using
2918 * helper sub-system.
2919 */
2920 eh_conf->eth_portmask = enabled_port_mask;
2921
2922 /* Initialize eventmode components */
2923 ret = eh_devs_init(eh_conf);
2924 if (ret < 0)
2925 rte_exit(EXIT_FAILURE, "eh_devs_init failed, err=%d\n", ret);
2926
2927 /* start ports */
2928 RTE_ETH_FOREACH_DEV(portid) {
2929 if ((enabled_port_mask & (1 << portid)) == 0)
2930 continue;
2931
2932 /* Create flow before starting the device */
2933 create_default_ipsec_flow(portid, req_rx_offloads[portid]);
2934
2935 ret = rte_eth_dev_start(portid);
2936 if (ret < 0)
2937 rte_exit(EXIT_FAILURE, "rte_eth_dev_start: "
2938 "err=%d, port=%d\n", ret, portid);
2939 /*
2940 * If enabled, put device in promiscuous mode.
2941 * This allows IO forwarding mode to forward packets
2942 * to itself through 2 cross-connected ports of the
2943 * target machine.
2944 */
2945 if (promiscuous_on) {
2946 ret = rte_eth_promiscuous_enable(portid);
2947 if (ret != 0)
2948 rte_exit(EXIT_FAILURE,
2949 "rte_eth_promiscuous_enable: err=%s, port=%d\n",
2950 rte_strerror(-ret), portid);
2951 }
2952
2953 rte_eth_dev_callback_register(portid,
2954 RTE_ETH_EVENT_IPSEC, inline_ipsec_event_callback, NULL);
2955 }
2956
2957 /* fragment reassemble is enabled */
2958 if (frag_tbl_sz != 0) {
2959 ret = reassemble_init();
2960 if (ret != 0)
2961 rte_exit(EXIT_FAILURE, "failed at reassemble init");
2962 }
2963
2964 /* Replicate each context per socket */
2965 for (i = 0; i < NB_SOCKETS && i < rte_socket_count(); i++) {
2966 socket_id = rte_socket_id_by_idx(i);
2967 if ((socket_ctx[socket_id].mbuf_pool != NULL) &&
2968 (socket_ctx[socket_id].sa_in == NULL) &&
2969 (socket_ctx[socket_id].sa_out == NULL)) {
2970 sa_init(&socket_ctx[socket_id], socket_id);
2971 sp4_init(&socket_ctx[socket_id], socket_id);
2972 sp6_init(&socket_ctx[socket_id], socket_id);
2973 rt_init(&socket_ctx[socket_id], socket_id);
2974 }
2975 }
2976
2977 flow_init();
2978
2979 check_all_ports_link_status(enabled_port_mask);
2980
2981 #if (STATS_INTERVAL > 0)
2982 rte_eal_alarm_set(STATS_INTERVAL * US_PER_S, print_stats_cb, NULL);
2983 #else
2984 RTE_LOG(INFO, IPSEC, "Stats display disabled\n");
2985 #endif /* STATS_INTERVAL */
2986
2987 /* launch per-lcore init on every lcore */
2988 rte_eal_mp_remote_launch(ipsec_launch_one_lcore, eh_conf, CALL_MAIN);
2989 RTE_LCORE_FOREACH_WORKER(lcore_id) {
2990 if (rte_eal_wait_lcore(lcore_id) < 0)
2991 return -1;
2992 }
2993
2994 /* Uninitialize eventmode components */
2995 ret = eh_devs_uninit(eh_conf);
2996 if (ret < 0)
2997 rte_exit(EXIT_FAILURE, "eh_devs_uninit failed, err=%d\n", ret);
2998
2999 /* Free eventmode configuration memory */
3000 eh_conf_uninit(eh_conf);
3001
3002 /* Destroy inline inbound and outbound sessions */
3003 for (i = 0; i < NB_SOCKETS && i < rte_socket_count(); i++) {
3004 socket_id = rte_socket_id_by_idx(i);
3005 inline_sessions_free(socket_ctx[socket_id].sa_in);
3006 inline_sessions_free(socket_ctx[socket_id].sa_out);
3007 }
3008
3009 for (cdev_id = 0; cdev_id < rte_cryptodev_count(); cdev_id++) {
3010 printf("Closing cryptodev %d...", cdev_id);
3011 rte_cryptodev_stop(cdev_id);
3012 rte_cryptodev_close(cdev_id);
3013 printf(" Done\n");
3014 }
3015
3016 RTE_ETH_FOREACH_DEV(portid) {
3017 if ((enabled_port_mask & (1 << portid)) == 0)
3018 continue;
3019
3020 printf("Closing port %d...", portid);
3021 if (flow_info_tbl[portid].rx_def_flow) {
3022 struct rte_flow_error err;
3023
3024 ret = rte_flow_destroy(portid,
3025 flow_info_tbl[portid].rx_def_flow, &err);
3026 if (ret)
3027 RTE_LOG(ERR, IPSEC, "Failed to destroy flow "
3028 " for port %u, err msg: %s\n", portid,
3029 err.message);
3030 }
3031 ret = rte_eth_dev_stop(portid);
3032 if (ret != 0)
3033 RTE_LOG(ERR, IPSEC,
3034 "rte_eth_dev_stop: err=%s, port=%u\n",
3035 rte_strerror(-ret), portid);
3036
3037 rte_eth_dev_close(portid);
3038 printf(" Done\n");
3039 }
3040 printf("Bye...\n");
3041
3042 return 0;
3043 }
3044