1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
26 * Copyright (c) 2016, Nexenta Systems, Inc. All rights reserved.
27 * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
28 * Copyright (c) 2019 Datto Inc.
29 * Copyright (c) 2019, Klara Inc.
30 * Copyright (c) 2019, Allan Jude
31 */
32
33 #include <sys/dmu.h>
34 #include <sys/dmu_impl.h>
35 #include <sys/dmu_tx.h>
36 #include <sys/dbuf.h>
37 #include <sys/dnode.h>
38 #include <sys/zfs_context.h>
39 #include <sys/dmu_objset.h>
40 #include <sys/dmu_traverse.h>
41 #include <sys/dsl_dataset.h>
42 #include <sys/dsl_dir.h>
43 #include <sys/dsl_pool.h>
44 #include <sys/dsl_synctask.h>
45 #include <sys/dsl_prop.h>
46 #include <sys/dmu_zfetch.h>
47 #include <sys/zfs_ioctl.h>
48 #include <sys/zap.h>
49 #include <sys/zio_checksum.h>
50 #include <sys/zio_compress.h>
51 #include <sys/sa.h>
52 #include <sys/zfeature.h>
53 #include <sys/abd.h>
54 #include <sys/trace_zfs.h>
55 #include <sys/zfs_racct.h>
56 #include <sys/zfs_rlock.h>
57 #ifdef _KERNEL
58 #include <sys/vmsystm.h>
59 #include <sys/zfs_znode.h>
60 #endif
61
62 /*
63 * Enable/disable nopwrite feature.
64 */
65 int zfs_nopwrite_enabled = 1;
66
67 /*
68 * Tunable to control percentage of dirtied L1 blocks from frees allowed into
69 * one TXG. After this threshold is crossed, additional dirty blocks from frees
70 * will wait until the next TXG.
71 * A value of zero will disable this throttle.
72 */
73 unsigned long zfs_per_txg_dirty_frees_percent = 5;
74
75 /*
76 * Enable/disable forcing txg sync when dirty in dmu_offset_next.
77 */
78 int zfs_dmu_offset_next_sync = 0;
79
80 /*
81 * Limit the amount we can prefetch with one call to this amount. This
82 * helps to limit the amount of memory that can be used by prefetching.
83 * Larger objects should be prefetched a bit at a time.
84 */
85 int dmu_prefetch_max = 8 * SPA_MAXBLOCKSIZE;
86
87 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
88 {DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "unallocated" },
89 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "object directory" },
90 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "object array" },
91 {DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "packed nvlist" },
92 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "packed nvlist size" },
93 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj" },
94 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj header" },
95 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA space map header" },
96 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA space map" },
97 {DMU_BSWAP_UINT64, TRUE, FALSE, TRUE, "ZIL intent log" },
98 {DMU_BSWAP_DNODE, TRUE, FALSE, TRUE, "DMU dnode" },
99 {DMU_BSWAP_OBJSET, TRUE, TRUE, FALSE, "DMU objset" },
100 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL directory" },
101 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL directory child map"},
102 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dataset snap map" },
103 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL props" },
104 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL dataset" },
105 {DMU_BSWAP_ZNODE, TRUE, FALSE, FALSE, "ZFS znode" },
106 {DMU_BSWAP_OLDACL, TRUE, FALSE, TRUE, "ZFS V0 ACL" },
107 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "ZFS plain file" },
108 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS directory" },
109 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "ZFS master node" },
110 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS delete queue" },
111 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "zvol object" },
112 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "zvol prop" },
113 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "other uint8[]" },
114 {DMU_BSWAP_UINT64, FALSE, FALSE, TRUE, "other uint64[]" },
115 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "other ZAP" },
116 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "persistent error log" },
117 {DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "SPA history" },
118 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA history offsets" },
119 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "Pool properties" },
120 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL permissions" },
121 {DMU_BSWAP_ACL, TRUE, FALSE, TRUE, "ZFS ACL" },
122 {DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "ZFS SYSACL" },
123 {DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "FUID table" },
124 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "FUID table size" },
125 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dataset next clones"},
126 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "scan work queue" },
127 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS user/group/project used" },
128 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS user/group/project quota"},
129 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "snapshot refcount tags"},
130 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "DDT ZAP algorithm" },
131 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "DDT statistics" },
132 {DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "System attributes" },
133 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA master node" },
134 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA attr registration" },
135 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA attr layouts" },
136 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "scan translations" },
137 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "deduplicated block" },
138 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL deadlist map" },
139 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL deadlist map hdr" },
140 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dir clones" },
141 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj subobj" }
142 };
143
144 const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = {
145 { byteswap_uint8_array, "uint8" },
146 { byteswap_uint16_array, "uint16" },
147 { byteswap_uint32_array, "uint32" },
148 { byteswap_uint64_array, "uint64" },
149 { zap_byteswap, "zap" },
150 { dnode_buf_byteswap, "dnode" },
151 { dmu_objset_byteswap, "objset" },
152 { zfs_znode_byteswap, "znode" },
153 { zfs_oldacl_byteswap, "oldacl" },
154 { zfs_acl_byteswap, "acl" }
155 };
156
157 static int
dmu_buf_hold_noread_by_dnode(dnode_t * dn,uint64_t offset,void * tag,dmu_buf_t ** dbp)158 dmu_buf_hold_noread_by_dnode(dnode_t *dn, uint64_t offset,
159 void *tag, dmu_buf_t **dbp)
160 {
161 uint64_t blkid;
162 dmu_buf_impl_t *db;
163
164 rw_enter(&dn->dn_struct_rwlock, RW_READER);
165 blkid = dbuf_whichblock(dn, 0, offset);
166 db = dbuf_hold(dn, blkid, tag);
167 rw_exit(&dn->dn_struct_rwlock);
168
169 if (db == NULL) {
170 *dbp = NULL;
171 return (SET_ERROR(EIO));
172 }
173
174 *dbp = &db->db;
175 return (0);
176 }
177 int
dmu_buf_hold_noread(objset_t * os,uint64_t object,uint64_t offset,void * tag,dmu_buf_t ** dbp)178 dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset,
179 void *tag, dmu_buf_t **dbp)
180 {
181 dnode_t *dn;
182 uint64_t blkid;
183 dmu_buf_impl_t *db;
184 int err;
185
186 err = dnode_hold(os, object, FTAG, &dn);
187 if (err)
188 return (err);
189 rw_enter(&dn->dn_struct_rwlock, RW_READER);
190 blkid = dbuf_whichblock(dn, 0, offset);
191 db = dbuf_hold(dn, blkid, tag);
192 rw_exit(&dn->dn_struct_rwlock);
193 dnode_rele(dn, FTAG);
194
195 if (db == NULL) {
196 *dbp = NULL;
197 return (SET_ERROR(EIO));
198 }
199
200 *dbp = &db->db;
201 return (err);
202 }
203
204 int
dmu_buf_hold_by_dnode(dnode_t * dn,uint64_t offset,void * tag,dmu_buf_t ** dbp,int flags)205 dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset,
206 void *tag, dmu_buf_t **dbp, int flags)
207 {
208 int err;
209 int db_flags = DB_RF_CANFAIL;
210
211 if (flags & DMU_READ_NO_PREFETCH)
212 db_flags |= DB_RF_NOPREFETCH;
213 if (flags & DMU_READ_NO_DECRYPT)
214 db_flags |= DB_RF_NO_DECRYPT;
215
216 err = dmu_buf_hold_noread_by_dnode(dn, offset, tag, dbp);
217 if (err == 0) {
218 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
219 err = dbuf_read(db, NULL, db_flags);
220 if (err != 0) {
221 dbuf_rele(db, tag);
222 *dbp = NULL;
223 }
224 }
225
226 return (err);
227 }
228
229 int
dmu_buf_hold(objset_t * os,uint64_t object,uint64_t offset,void * tag,dmu_buf_t ** dbp,int flags)230 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
231 void *tag, dmu_buf_t **dbp, int flags)
232 {
233 int err;
234 int db_flags = DB_RF_CANFAIL;
235
236 if (flags & DMU_READ_NO_PREFETCH)
237 db_flags |= DB_RF_NOPREFETCH;
238 if (flags & DMU_READ_NO_DECRYPT)
239 db_flags |= DB_RF_NO_DECRYPT;
240
241 err = dmu_buf_hold_noread(os, object, offset, tag, dbp);
242 if (err == 0) {
243 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
244 err = dbuf_read(db, NULL, db_flags);
245 if (err != 0) {
246 dbuf_rele(db, tag);
247 *dbp = NULL;
248 }
249 }
250
251 return (err);
252 }
253
254 int
dmu_bonus_max(void)255 dmu_bonus_max(void)
256 {
257 return (DN_OLD_MAX_BONUSLEN);
258 }
259
260 int
dmu_set_bonus(dmu_buf_t * db_fake,int newsize,dmu_tx_t * tx)261 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
262 {
263 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
264 dnode_t *dn;
265 int error;
266
267 DB_DNODE_ENTER(db);
268 dn = DB_DNODE(db);
269
270 if (dn->dn_bonus != db) {
271 error = SET_ERROR(EINVAL);
272 } else if (newsize < 0 || newsize > db_fake->db_size) {
273 error = SET_ERROR(EINVAL);
274 } else {
275 dnode_setbonuslen(dn, newsize, tx);
276 error = 0;
277 }
278
279 DB_DNODE_EXIT(db);
280 return (error);
281 }
282
283 int
dmu_set_bonustype(dmu_buf_t * db_fake,dmu_object_type_t type,dmu_tx_t * tx)284 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
285 {
286 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
287 dnode_t *dn;
288 int error;
289
290 DB_DNODE_ENTER(db);
291 dn = DB_DNODE(db);
292
293 if (!DMU_OT_IS_VALID(type)) {
294 error = SET_ERROR(EINVAL);
295 } else if (dn->dn_bonus != db) {
296 error = SET_ERROR(EINVAL);
297 } else {
298 dnode_setbonus_type(dn, type, tx);
299 error = 0;
300 }
301
302 DB_DNODE_EXIT(db);
303 return (error);
304 }
305
306 dmu_object_type_t
dmu_get_bonustype(dmu_buf_t * db_fake)307 dmu_get_bonustype(dmu_buf_t *db_fake)
308 {
309 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
310 dnode_t *dn;
311 dmu_object_type_t type;
312
313 DB_DNODE_ENTER(db);
314 dn = DB_DNODE(db);
315 type = dn->dn_bonustype;
316 DB_DNODE_EXIT(db);
317
318 return (type);
319 }
320
321 int
dmu_rm_spill(objset_t * os,uint64_t object,dmu_tx_t * tx)322 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
323 {
324 dnode_t *dn;
325 int error;
326
327 error = dnode_hold(os, object, FTAG, &dn);
328 dbuf_rm_spill(dn, tx);
329 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
330 dnode_rm_spill(dn, tx);
331 rw_exit(&dn->dn_struct_rwlock);
332 dnode_rele(dn, FTAG);
333 return (error);
334 }
335
336 /*
337 * Lookup and hold the bonus buffer for the provided dnode. If the dnode
338 * has not yet been allocated a new bonus dbuf a will be allocated.
339 * Returns ENOENT, EIO, or 0.
340 */
dmu_bonus_hold_by_dnode(dnode_t * dn,void * tag,dmu_buf_t ** dbp,uint32_t flags)341 int dmu_bonus_hold_by_dnode(dnode_t *dn, void *tag, dmu_buf_t **dbp,
342 uint32_t flags)
343 {
344 dmu_buf_impl_t *db;
345 int error;
346 uint32_t db_flags = DB_RF_MUST_SUCCEED;
347
348 if (flags & DMU_READ_NO_PREFETCH)
349 db_flags |= DB_RF_NOPREFETCH;
350 if (flags & DMU_READ_NO_DECRYPT)
351 db_flags |= DB_RF_NO_DECRYPT;
352
353 rw_enter(&dn->dn_struct_rwlock, RW_READER);
354 if (dn->dn_bonus == NULL) {
355 rw_exit(&dn->dn_struct_rwlock);
356 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
357 if (dn->dn_bonus == NULL)
358 dbuf_create_bonus(dn);
359 }
360 db = dn->dn_bonus;
361
362 /* as long as the bonus buf is held, the dnode will be held */
363 if (zfs_refcount_add(&db->db_holds, tag) == 1) {
364 VERIFY(dnode_add_ref(dn, db));
365 atomic_inc_32(&dn->dn_dbufs_count);
366 }
367
368 /*
369 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
370 * hold and incrementing the dbuf count to ensure that dnode_move() sees
371 * a dnode hold for every dbuf.
372 */
373 rw_exit(&dn->dn_struct_rwlock);
374
375 error = dbuf_read(db, NULL, db_flags);
376 if (error) {
377 dnode_evict_bonus(dn);
378 dbuf_rele(db, tag);
379 *dbp = NULL;
380 return (error);
381 }
382
383 *dbp = &db->db;
384 return (0);
385 }
386
387 int
dmu_bonus_hold(objset_t * os,uint64_t object,void * tag,dmu_buf_t ** dbp)388 dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp)
389 {
390 dnode_t *dn;
391 int error;
392
393 error = dnode_hold(os, object, FTAG, &dn);
394 if (error)
395 return (error);
396
397 error = dmu_bonus_hold_by_dnode(dn, tag, dbp, DMU_READ_NO_PREFETCH);
398 dnode_rele(dn, FTAG);
399
400 return (error);
401 }
402
403 /*
404 * returns ENOENT, EIO, or 0.
405 *
406 * This interface will allocate a blank spill dbuf when a spill blk
407 * doesn't already exist on the dnode.
408 *
409 * if you only want to find an already existing spill db, then
410 * dmu_spill_hold_existing() should be used.
411 */
412 int
dmu_spill_hold_by_dnode(dnode_t * dn,uint32_t flags,void * tag,dmu_buf_t ** dbp)413 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp)
414 {
415 dmu_buf_impl_t *db = NULL;
416 int err;
417
418 if ((flags & DB_RF_HAVESTRUCT) == 0)
419 rw_enter(&dn->dn_struct_rwlock, RW_READER);
420
421 db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);
422
423 if ((flags & DB_RF_HAVESTRUCT) == 0)
424 rw_exit(&dn->dn_struct_rwlock);
425
426 if (db == NULL) {
427 *dbp = NULL;
428 return (SET_ERROR(EIO));
429 }
430 err = dbuf_read(db, NULL, flags);
431 if (err == 0)
432 *dbp = &db->db;
433 else {
434 dbuf_rele(db, tag);
435 *dbp = NULL;
436 }
437 return (err);
438 }
439
440 int
dmu_spill_hold_existing(dmu_buf_t * bonus,void * tag,dmu_buf_t ** dbp)441 dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
442 {
443 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
444 dnode_t *dn;
445 int err;
446
447 DB_DNODE_ENTER(db);
448 dn = DB_DNODE(db);
449
450 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
451 err = SET_ERROR(EINVAL);
452 } else {
453 rw_enter(&dn->dn_struct_rwlock, RW_READER);
454
455 if (!dn->dn_have_spill) {
456 err = SET_ERROR(ENOENT);
457 } else {
458 err = dmu_spill_hold_by_dnode(dn,
459 DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
460 }
461
462 rw_exit(&dn->dn_struct_rwlock);
463 }
464
465 DB_DNODE_EXIT(db);
466 return (err);
467 }
468
469 int
dmu_spill_hold_by_bonus(dmu_buf_t * bonus,uint32_t flags,void * tag,dmu_buf_t ** dbp)470 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, uint32_t flags, void *tag,
471 dmu_buf_t **dbp)
472 {
473 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
474 dnode_t *dn;
475 int err;
476 uint32_t db_flags = DB_RF_CANFAIL;
477
478 if (flags & DMU_READ_NO_DECRYPT)
479 db_flags |= DB_RF_NO_DECRYPT;
480
481 DB_DNODE_ENTER(db);
482 dn = DB_DNODE(db);
483 err = dmu_spill_hold_by_dnode(dn, db_flags, tag, dbp);
484 DB_DNODE_EXIT(db);
485
486 return (err);
487 }
488
489 /*
490 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
491 * to take a held dnode rather than <os, object> -- the lookup is wasteful,
492 * and can induce severe lock contention when writing to several files
493 * whose dnodes are in the same block.
494 */
495 int
dmu_buf_hold_array_by_dnode(dnode_t * dn,uint64_t offset,uint64_t length,boolean_t read,void * tag,int * numbufsp,dmu_buf_t *** dbpp,uint32_t flags)496 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
497 boolean_t read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags)
498 {
499 dmu_buf_t **dbp;
500 uint64_t blkid, nblks, i;
501 uint32_t dbuf_flags;
502 int err;
503 zio_t *zio = NULL;
504
505 ASSERT(length <= DMU_MAX_ACCESS);
506
507 /*
508 * Note: We directly notify the prefetch code of this read, so that
509 * we can tell it about the multi-block read. dbuf_read() only knows
510 * about the one block it is accessing.
511 */
512 dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT |
513 DB_RF_NOPREFETCH;
514
515 rw_enter(&dn->dn_struct_rwlock, RW_READER);
516 if (dn->dn_datablkshift) {
517 int blkshift = dn->dn_datablkshift;
518 nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) -
519 P2ALIGN(offset, 1ULL << blkshift)) >> blkshift;
520 } else {
521 if (offset + length > dn->dn_datablksz) {
522 zfs_panic_recover("zfs: accessing past end of object "
523 "%llx/%llx (size=%u access=%llu+%llu)",
524 (longlong_t)dn->dn_objset->
525 os_dsl_dataset->ds_object,
526 (longlong_t)dn->dn_object, dn->dn_datablksz,
527 (longlong_t)offset, (longlong_t)length);
528 rw_exit(&dn->dn_struct_rwlock);
529 return (SET_ERROR(EIO));
530 }
531 nblks = 1;
532 }
533 dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
534
535 if (read)
536 zio = zio_root(dn->dn_objset->os_spa, NULL, NULL,
537 ZIO_FLAG_CANFAIL);
538 blkid = dbuf_whichblock(dn, 0, offset);
539 for (i = 0; i < nblks; i++) {
540 dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag);
541 if (db == NULL) {
542 rw_exit(&dn->dn_struct_rwlock);
543 dmu_buf_rele_array(dbp, nblks, tag);
544 if (read)
545 zio_nowait(zio);
546 return (SET_ERROR(EIO));
547 }
548
549 /* initiate async i/o */
550 if (read)
551 (void) dbuf_read(db, zio, dbuf_flags);
552 dbp[i] = &db->db;
553 }
554
555 if (!read)
556 zfs_racct_write(length, nblks);
557
558 if ((flags & DMU_READ_NO_PREFETCH) == 0 &&
559 DNODE_META_IS_CACHEABLE(dn) && length <= zfetch_array_rd_sz) {
560 dmu_zfetch(&dn->dn_zfetch, blkid, nblks,
561 read && DNODE_IS_CACHEABLE(dn), B_TRUE);
562 }
563 rw_exit(&dn->dn_struct_rwlock);
564
565 if (read) {
566 /* wait for async read i/o */
567 err = zio_wait(zio);
568 if (err) {
569 dmu_buf_rele_array(dbp, nblks, tag);
570 return (err);
571 }
572
573 /* wait for other io to complete */
574 for (i = 0; i < nblks; i++) {
575 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
576 mutex_enter(&db->db_mtx);
577 while (db->db_state == DB_READ ||
578 db->db_state == DB_FILL)
579 cv_wait(&db->db_changed, &db->db_mtx);
580 if (db->db_state == DB_UNCACHED)
581 err = SET_ERROR(EIO);
582 mutex_exit(&db->db_mtx);
583 if (err) {
584 dmu_buf_rele_array(dbp, nblks, tag);
585 return (err);
586 }
587 }
588 }
589
590 *numbufsp = nblks;
591 *dbpp = dbp;
592 return (0);
593 }
594
595 static int
dmu_buf_hold_array(objset_t * os,uint64_t object,uint64_t offset,uint64_t length,int read,void * tag,int * numbufsp,dmu_buf_t *** dbpp)596 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
597 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
598 {
599 dnode_t *dn;
600 int err;
601
602 err = dnode_hold(os, object, FTAG, &dn);
603 if (err)
604 return (err);
605
606 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
607 numbufsp, dbpp, DMU_READ_PREFETCH);
608
609 dnode_rele(dn, FTAG);
610
611 return (err);
612 }
613
614 int
dmu_buf_hold_array_by_bonus(dmu_buf_t * db_fake,uint64_t offset,uint64_t length,boolean_t read,void * tag,int * numbufsp,dmu_buf_t *** dbpp)615 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
616 uint64_t length, boolean_t read, void *tag, int *numbufsp,
617 dmu_buf_t ***dbpp)
618 {
619 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
620 dnode_t *dn;
621 int err;
622
623 DB_DNODE_ENTER(db);
624 dn = DB_DNODE(db);
625 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
626 numbufsp, dbpp, DMU_READ_PREFETCH);
627 DB_DNODE_EXIT(db);
628
629 return (err);
630 }
631
632 void
dmu_buf_rele_array(dmu_buf_t ** dbp_fake,int numbufs,void * tag)633 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag)
634 {
635 int i;
636 dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
637
638 if (numbufs == 0)
639 return;
640
641 for (i = 0; i < numbufs; i++) {
642 if (dbp[i])
643 dbuf_rele(dbp[i], tag);
644 }
645
646 kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
647 }
648
649 /*
650 * Issue prefetch i/os for the given blocks. If level is greater than 0, the
651 * indirect blocks prefetched will be those that point to the blocks containing
652 * the data starting at offset, and continuing to offset + len.
653 *
654 * Note that if the indirect blocks above the blocks being prefetched are not
655 * in cache, they will be asynchronously read in.
656 */
657 void
dmu_prefetch(objset_t * os,uint64_t object,int64_t level,uint64_t offset,uint64_t len,zio_priority_t pri)658 dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
659 uint64_t len, zio_priority_t pri)
660 {
661 dnode_t *dn;
662 uint64_t blkid;
663 int nblks, err;
664
665 if (len == 0) { /* they're interested in the bonus buffer */
666 dn = DMU_META_DNODE(os);
667
668 if (object == 0 || object >= DN_MAX_OBJECT)
669 return;
670
671 rw_enter(&dn->dn_struct_rwlock, RW_READER);
672 blkid = dbuf_whichblock(dn, level,
673 object * sizeof (dnode_phys_t));
674 dbuf_prefetch(dn, level, blkid, pri, 0);
675 rw_exit(&dn->dn_struct_rwlock);
676 return;
677 }
678
679 /*
680 * See comment before the definition of dmu_prefetch_max.
681 */
682 len = MIN(len, dmu_prefetch_max);
683
684 /*
685 * XXX - Note, if the dnode for the requested object is not
686 * already cached, we will do a *synchronous* read in the
687 * dnode_hold() call. The same is true for any indirects.
688 */
689 err = dnode_hold(os, object, FTAG, &dn);
690 if (err != 0)
691 return;
692
693 /*
694 * offset + len - 1 is the last byte we want to prefetch for, and offset
695 * is the first. Then dbuf_whichblk(dn, level, off + len - 1) is the
696 * last block we want to prefetch, and dbuf_whichblock(dn, level,
697 * offset) is the first. Then the number we need to prefetch is the
698 * last - first + 1.
699 */
700 rw_enter(&dn->dn_struct_rwlock, RW_READER);
701 if (level > 0 || dn->dn_datablkshift != 0) {
702 nblks = dbuf_whichblock(dn, level, offset + len - 1) -
703 dbuf_whichblock(dn, level, offset) + 1;
704 } else {
705 nblks = (offset < dn->dn_datablksz);
706 }
707
708 if (nblks != 0) {
709 blkid = dbuf_whichblock(dn, level, offset);
710 for (int i = 0; i < nblks; i++)
711 dbuf_prefetch(dn, level, blkid + i, pri, 0);
712 }
713 rw_exit(&dn->dn_struct_rwlock);
714
715 dnode_rele(dn, FTAG);
716 }
717
718 /*
719 * Get the next "chunk" of file data to free. We traverse the file from
720 * the end so that the file gets shorter over time (if we crashes in the
721 * middle, this will leave us in a better state). We find allocated file
722 * data by simply searching the allocated level 1 indirects.
723 *
724 * On input, *start should be the first offset that does not need to be
725 * freed (e.g. "offset + length"). On return, *start will be the first
726 * offset that should be freed and l1blks is set to the number of level 1
727 * indirect blocks found within the chunk.
728 */
729 static int
get_next_chunk(dnode_t * dn,uint64_t * start,uint64_t minimum,uint64_t * l1blks)730 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum, uint64_t *l1blks)
731 {
732 uint64_t blks;
733 uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1);
734 /* bytes of data covered by a level-1 indirect block */
735 uint64_t iblkrange = (uint64_t)dn->dn_datablksz *
736 EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
737
738 ASSERT3U(minimum, <=, *start);
739
740 /*
741 * Check if we can free the entire range assuming that all of the
742 * L1 blocks in this range have data. If we can, we use this
743 * worst case value as an estimate so we can avoid having to look
744 * at the object's actual data.
745 */
746 uint64_t total_l1blks =
747 (roundup(*start, iblkrange) - (minimum / iblkrange * iblkrange)) /
748 iblkrange;
749 if (total_l1blks <= maxblks) {
750 *l1blks = total_l1blks;
751 *start = minimum;
752 return (0);
753 }
754 ASSERT(ISP2(iblkrange));
755
756 for (blks = 0; *start > minimum && blks < maxblks; blks++) {
757 int err;
758
759 /*
760 * dnode_next_offset(BACKWARDS) will find an allocated L1
761 * indirect block at or before the input offset. We must
762 * decrement *start so that it is at the end of the region
763 * to search.
764 */
765 (*start)--;
766
767 err = dnode_next_offset(dn,
768 DNODE_FIND_BACKWARDS, start, 2, 1, 0);
769
770 /* if there are no indirect blocks before start, we are done */
771 if (err == ESRCH) {
772 *start = minimum;
773 break;
774 } else if (err != 0) {
775 *l1blks = blks;
776 return (err);
777 }
778
779 /* set start to the beginning of this L1 indirect */
780 *start = P2ALIGN(*start, iblkrange);
781 }
782 if (*start < minimum)
783 *start = minimum;
784 *l1blks = blks;
785
786 return (0);
787 }
788
789 /*
790 * If this objset is of type OST_ZFS return true if vfs's unmounted flag is set,
791 * otherwise return false.
792 * Used below in dmu_free_long_range_impl() to enable abort when unmounting
793 */
794 /*ARGSUSED*/
795 static boolean_t
dmu_objset_zfs_unmounting(objset_t * os)796 dmu_objset_zfs_unmounting(objset_t *os)
797 {
798 #ifdef _KERNEL
799 if (dmu_objset_type(os) == DMU_OST_ZFS)
800 return (zfs_get_vfs_flag_unmounted(os));
801 #endif
802 return (B_FALSE);
803 }
804
805 static int
dmu_free_long_range_impl(objset_t * os,dnode_t * dn,uint64_t offset,uint64_t length)806 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
807 uint64_t length)
808 {
809 uint64_t object_size;
810 int err;
811 uint64_t dirty_frees_threshold;
812 dsl_pool_t *dp = dmu_objset_pool(os);
813
814 if (dn == NULL)
815 return (SET_ERROR(EINVAL));
816
817 object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
818 if (offset >= object_size)
819 return (0);
820
821 if (zfs_per_txg_dirty_frees_percent <= 100)
822 dirty_frees_threshold =
823 zfs_per_txg_dirty_frees_percent * zfs_dirty_data_max / 100;
824 else
825 dirty_frees_threshold = zfs_dirty_data_max / 20;
826
827 if (length == DMU_OBJECT_END || offset + length > object_size)
828 length = object_size - offset;
829
830 while (length != 0) {
831 uint64_t chunk_end, chunk_begin, chunk_len;
832 uint64_t l1blks;
833 dmu_tx_t *tx;
834
835 if (dmu_objset_zfs_unmounting(dn->dn_objset))
836 return (SET_ERROR(EINTR));
837
838 chunk_end = chunk_begin = offset + length;
839
840 /* move chunk_begin backwards to the beginning of this chunk */
841 err = get_next_chunk(dn, &chunk_begin, offset, &l1blks);
842 if (err)
843 return (err);
844 ASSERT3U(chunk_begin, >=, offset);
845 ASSERT3U(chunk_begin, <=, chunk_end);
846
847 chunk_len = chunk_end - chunk_begin;
848
849 tx = dmu_tx_create(os);
850 dmu_tx_hold_free(tx, dn->dn_object, chunk_begin, chunk_len);
851
852 /*
853 * Mark this transaction as typically resulting in a net
854 * reduction in space used.
855 */
856 dmu_tx_mark_netfree(tx);
857 err = dmu_tx_assign(tx, TXG_WAIT);
858 if (err) {
859 dmu_tx_abort(tx);
860 return (err);
861 }
862
863 uint64_t txg = dmu_tx_get_txg(tx);
864
865 mutex_enter(&dp->dp_lock);
866 uint64_t long_free_dirty =
867 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK];
868 mutex_exit(&dp->dp_lock);
869
870 /*
871 * To avoid filling up a TXG with just frees, wait for
872 * the next TXG to open before freeing more chunks if
873 * we have reached the threshold of frees.
874 */
875 if (dirty_frees_threshold != 0 &&
876 long_free_dirty >= dirty_frees_threshold) {
877 DMU_TX_STAT_BUMP(dmu_tx_dirty_frees_delay);
878 dmu_tx_commit(tx);
879 txg_wait_open(dp, 0, B_TRUE);
880 continue;
881 }
882
883 /*
884 * In order to prevent unnecessary write throttling, for each
885 * TXG, we track the cumulative size of L1 blocks being dirtied
886 * in dnode_free_range() below. We compare this number to a
887 * tunable threshold, past which we prevent new L1 dirty freeing
888 * blocks from being added into the open TXG. See
889 * dmu_free_long_range_impl() for details. The threshold
890 * prevents write throttle activation due to dirty freeing L1
891 * blocks taking up a large percentage of zfs_dirty_data_max.
892 */
893 mutex_enter(&dp->dp_lock);
894 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] +=
895 l1blks << dn->dn_indblkshift;
896 mutex_exit(&dp->dp_lock);
897 DTRACE_PROBE3(free__long__range,
898 uint64_t, long_free_dirty, uint64_t, chunk_len,
899 uint64_t, txg);
900 dnode_free_range(dn, chunk_begin, chunk_len, tx);
901
902 dmu_tx_commit(tx);
903
904 length -= chunk_len;
905 }
906 return (0);
907 }
908
909 int
dmu_free_long_range(objset_t * os,uint64_t object,uint64_t offset,uint64_t length)910 dmu_free_long_range(objset_t *os, uint64_t object,
911 uint64_t offset, uint64_t length)
912 {
913 dnode_t *dn;
914 int err;
915
916 err = dnode_hold(os, object, FTAG, &dn);
917 if (err != 0)
918 return (err);
919 err = dmu_free_long_range_impl(os, dn, offset, length);
920
921 /*
922 * It is important to zero out the maxblkid when freeing the entire
923 * file, so that (a) subsequent calls to dmu_free_long_range_impl()
924 * will take the fast path, and (b) dnode_reallocate() can verify
925 * that the entire file has been freed.
926 */
927 if (err == 0 && offset == 0 && length == DMU_OBJECT_END)
928 dn->dn_maxblkid = 0;
929
930 dnode_rele(dn, FTAG);
931 return (err);
932 }
933
934 int
dmu_free_long_object(objset_t * os,uint64_t object)935 dmu_free_long_object(objset_t *os, uint64_t object)
936 {
937 dmu_tx_t *tx;
938 int err;
939
940 err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END);
941 if (err != 0)
942 return (err);
943
944 tx = dmu_tx_create(os);
945 dmu_tx_hold_bonus(tx, object);
946 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
947 dmu_tx_mark_netfree(tx);
948 err = dmu_tx_assign(tx, TXG_WAIT);
949 if (err == 0) {
950 if (err == 0)
951 err = dmu_object_free(os, object, tx);
952
953 dmu_tx_commit(tx);
954 } else {
955 dmu_tx_abort(tx);
956 }
957
958 return (err);
959 }
960
961 int
dmu_free_range(objset_t * os,uint64_t object,uint64_t offset,uint64_t size,dmu_tx_t * tx)962 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
963 uint64_t size, dmu_tx_t *tx)
964 {
965 dnode_t *dn;
966 int err = dnode_hold(os, object, FTAG, &dn);
967 if (err)
968 return (err);
969 ASSERT(offset < UINT64_MAX);
970 ASSERT(size == DMU_OBJECT_END || size <= UINT64_MAX - offset);
971 dnode_free_range(dn, offset, size, tx);
972 dnode_rele(dn, FTAG);
973 return (0);
974 }
975
976 static int
dmu_read_impl(dnode_t * dn,uint64_t offset,uint64_t size,void * buf,uint32_t flags)977 dmu_read_impl(dnode_t *dn, uint64_t offset, uint64_t size,
978 void *buf, uint32_t flags)
979 {
980 dmu_buf_t **dbp;
981 int numbufs, err = 0;
982
983 /*
984 * Deal with odd block sizes, where there can't be data past the first
985 * block. If we ever do the tail block optimization, we will need to
986 * handle that here as well.
987 */
988 if (dn->dn_maxblkid == 0) {
989 uint64_t newsz = offset > dn->dn_datablksz ? 0 :
990 MIN(size, dn->dn_datablksz - offset);
991 bzero((char *)buf + newsz, size - newsz);
992 size = newsz;
993 }
994
995 while (size > 0) {
996 uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
997 int i;
998
999 /*
1000 * NB: we could do this block-at-a-time, but it's nice
1001 * to be reading in parallel.
1002 */
1003 err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
1004 TRUE, FTAG, &numbufs, &dbp, flags);
1005 if (err)
1006 break;
1007
1008 for (i = 0; i < numbufs; i++) {
1009 uint64_t tocpy;
1010 int64_t bufoff;
1011 dmu_buf_t *db = dbp[i];
1012
1013 ASSERT(size > 0);
1014
1015 bufoff = offset - db->db_offset;
1016 tocpy = MIN(db->db_size - bufoff, size);
1017
1018 (void) memcpy(buf, (char *)db->db_data + bufoff, tocpy);
1019
1020 offset += tocpy;
1021 size -= tocpy;
1022 buf = (char *)buf + tocpy;
1023 }
1024 dmu_buf_rele_array(dbp, numbufs, FTAG);
1025 }
1026 return (err);
1027 }
1028
1029 int
dmu_read(objset_t * os,uint64_t object,uint64_t offset,uint64_t size,void * buf,uint32_t flags)1030 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1031 void *buf, uint32_t flags)
1032 {
1033 dnode_t *dn;
1034 int err;
1035
1036 err = dnode_hold(os, object, FTAG, &dn);
1037 if (err != 0)
1038 return (err);
1039
1040 err = dmu_read_impl(dn, offset, size, buf, flags);
1041 dnode_rele(dn, FTAG);
1042 return (err);
1043 }
1044
1045 int
dmu_read_by_dnode(dnode_t * dn,uint64_t offset,uint64_t size,void * buf,uint32_t flags)1046 dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf,
1047 uint32_t flags)
1048 {
1049 return (dmu_read_impl(dn, offset, size, buf, flags));
1050 }
1051
1052 static void
dmu_write_impl(dmu_buf_t ** dbp,int numbufs,uint64_t offset,uint64_t size,const void * buf,dmu_tx_t * tx)1053 dmu_write_impl(dmu_buf_t **dbp, int numbufs, uint64_t offset, uint64_t size,
1054 const void *buf, dmu_tx_t *tx)
1055 {
1056 int i;
1057
1058 for (i = 0; i < numbufs; i++) {
1059 uint64_t tocpy;
1060 int64_t bufoff;
1061 dmu_buf_t *db = dbp[i];
1062
1063 ASSERT(size > 0);
1064
1065 bufoff = offset - db->db_offset;
1066 tocpy = MIN(db->db_size - bufoff, size);
1067
1068 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1069
1070 if (tocpy == db->db_size)
1071 dmu_buf_will_fill(db, tx);
1072 else
1073 dmu_buf_will_dirty(db, tx);
1074
1075 (void) memcpy((char *)db->db_data + bufoff, buf, tocpy);
1076
1077 if (tocpy == db->db_size)
1078 dmu_buf_fill_done(db, tx);
1079
1080 offset += tocpy;
1081 size -= tocpy;
1082 buf = (char *)buf + tocpy;
1083 }
1084 }
1085
1086 void
dmu_write(objset_t * os,uint64_t object,uint64_t offset,uint64_t size,const void * buf,dmu_tx_t * tx)1087 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1088 const void *buf, dmu_tx_t *tx)
1089 {
1090 dmu_buf_t **dbp;
1091 int numbufs;
1092
1093 if (size == 0)
1094 return;
1095
1096 VERIFY0(dmu_buf_hold_array(os, object, offset, size,
1097 FALSE, FTAG, &numbufs, &dbp));
1098 dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
1099 dmu_buf_rele_array(dbp, numbufs, FTAG);
1100 }
1101
1102 /*
1103 * Note: Lustre is an external consumer of this interface.
1104 */
1105 void
dmu_write_by_dnode(dnode_t * dn,uint64_t offset,uint64_t size,const void * buf,dmu_tx_t * tx)1106 dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size,
1107 const void *buf, dmu_tx_t *tx)
1108 {
1109 dmu_buf_t **dbp;
1110 int numbufs;
1111
1112 if (size == 0)
1113 return;
1114
1115 VERIFY0(dmu_buf_hold_array_by_dnode(dn, offset, size,
1116 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH));
1117 dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
1118 dmu_buf_rele_array(dbp, numbufs, FTAG);
1119 }
1120
1121 void
dmu_prealloc(objset_t * os,uint64_t object,uint64_t offset,uint64_t size,dmu_tx_t * tx)1122 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1123 dmu_tx_t *tx)
1124 {
1125 dmu_buf_t **dbp;
1126 int numbufs, i;
1127
1128 if (size == 0)
1129 return;
1130
1131 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
1132 FALSE, FTAG, &numbufs, &dbp));
1133
1134 for (i = 0; i < numbufs; i++) {
1135 dmu_buf_t *db = dbp[i];
1136
1137 dmu_buf_will_not_fill(db, tx);
1138 }
1139 dmu_buf_rele_array(dbp, numbufs, FTAG);
1140 }
1141
1142 void
dmu_write_embedded(objset_t * os,uint64_t object,uint64_t offset,void * data,uint8_t etype,uint8_t comp,int uncompressed_size,int compressed_size,int byteorder,dmu_tx_t * tx)1143 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
1144 void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
1145 int compressed_size, int byteorder, dmu_tx_t *tx)
1146 {
1147 dmu_buf_t *db;
1148
1149 ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES);
1150 ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS);
1151 VERIFY0(dmu_buf_hold_noread(os, object, offset,
1152 FTAG, &db));
1153
1154 dmu_buf_write_embedded(db,
1155 data, (bp_embedded_type_t)etype, (enum zio_compress)comp,
1156 uncompressed_size, compressed_size, byteorder, tx);
1157
1158 dmu_buf_rele(db, FTAG);
1159 }
1160
1161 void
dmu_redact(objset_t * os,uint64_t object,uint64_t offset,uint64_t size,dmu_tx_t * tx)1162 dmu_redact(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1163 dmu_tx_t *tx)
1164 {
1165 int numbufs, i;
1166 dmu_buf_t **dbp;
1167
1168 VERIFY0(dmu_buf_hold_array(os, object, offset, size, FALSE, FTAG,
1169 &numbufs, &dbp));
1170 for (i = 0; i < numbufs; i++)
1171 dmu_buf_redact(dbp[i], tx);
1172 dmu_buf_rele_array(dbp, numbufs, FTAG);
1173 }
1174
1175 #ifdef _KERNEL
1176 int
dmu_read_uio_dnode(dnode_t * dn,uio_t * uio,uint64_t size)1177 dmu_read_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size)
1178 {
1179 dmu_buf_t **dbp;
1180 int numbufs, i, err;
1181
1182 /*
1183 * NB: we could do this block-at-a-time, but it's nice
1184 * to be reading in parallel.
1185 */
1186 err = dmu_buf_hold_array_by_dnode(dn, uio_offset(uio), size,
1187 TRUE, FTAG, &numbufs, &dbp, 0);
1188 if (err)
1189 return (err);
1190
1191 for (i = 0; i < numbufs; i++) {
1192 uint64_t tocpy;
1193 int64_t bufoff;
1194 dmu_buf_t *db = dbp[i];
1195
1196 ASSERT(size > 0);
1197
1198 bufoff = uio_offset(uio) - db->db_offset;
1199 tocpy = MIN(db->db_size - bufoff, size);
1200
1201 #ifdef __FreeBSD__
1202 err = vn_io_fault_uiomove((char *)db->db_data + bufoff,
1203 tocpy, uio);
1204 #else
1205 err = uiomove((char *)db->db_data + bufoff, tocpy,
1206 UIO_READ, uio);
1207 #endif
1208 if (err)
1209 break;
1210
1211 size -= tocpy;
1212 }
1213 dmu_buf_rele_array(dbp, numbufs, FTAG);
1214
1215 return (err);
1216 }
1217
1218 /*
1219 * Read 'size' bytes into the uio buffer.
1220 * From object zdb->db_object.
1221 * Starting at offset uio->uio_loffset.
1222 *
1223 * If the caller already has a dbuf in the target object
1224 * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(),
1225 * because we don't have to find the dnode_t for the object.
1226 */
1227 int
dmu_read_uio_dbuf(dmu_buf_t * zdb,uio_t * uio,uint64_t size)1228 dmu_read_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size)
1229 {
1230 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1231 dnode_t *dn;
1232 int err;
1233
1234 if (size == 0)
1235 return (0);
1236
1237 DB_DNODE_ENTER(db);
1238 dn = DB_DNODE(db);
1239 err = dmu_read_uio_dnode(dn, uio, size);
1240 DB_DNODE_EXIT(db);
1241
1242 return (err);
1243 }
1244
1245 /*
1246 * Read 'size' bytes into the uio buffer.
1247 * From the specified object
1248 * Starting at offset uio->uio_loffset.
1249 */
1250 int
dmu_read_uio(objset_t * os,uint64_t object,uio_t * uio,uint64_t size)1251 dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size)
1252 {
1253 dnode_t *dn;
1254 int err;
1255
1256 if (size == 0)
1257 return (0);
1258
1259 err = dnode_hold(os, object, FTAG, &dn);
1260 if (err)
1261 return (err);
1262
1263 err = dmu_read_uio_dnode(dn, uio, size);
1264
1265 dnode_rele(dn, FTAG);
1266
1267 return (err);
1268 }
1269
1270 int
dmu_write_uio_dnode(dnode_t * dn,uio_t * uio,uint64_t size,dmu_tx_t * tx)1271 dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx)
1272 {
1273 dmu_buf_t **dbp;
1274 int numbufs;
1275 int err = 0;
1276 int i;
1277
1278 err = dmu_buf_hold_array_by_dnode(dn, uio_offset(uio), size,
1279 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
1280 if (err)
1281 return (err);
1282
1283 for (i = 0; i < numbufs; i++) {
1284 uint64_t tocpy;
1285 int64_t bufoff;
1286 dmu_buf_t *db = dbp[i];
1287
1288 ASSERT(size > 0);
1289
1290 bufoff = uio_offset(uio) - db->db_offset;
1291 tocpy = MIN(db->db_size - bufoff, size);
1292
1293 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1294
1295 if (tocpy == db->db_size)
1296 dmu_buf_will_fill(db, tx);
1297 else
1298 dmu_buf_will_dirty(db, tx);
1299
1300 /*
1301 * XXX uiomove could block forever (eg.nfs-backed
1302 * pages). There needs to be a uiolockdown() function
1303 * to lock the pages in memory, so that uiomove won't
1304 * block.
1305 */
1306 #ifdef __FreeBSD__
1307 err = vn_io_fault_uiomove((char *)db->db_data + bufoff,
1308 tocpy, uio);
1309 #else
1310 err = uiomove((char *)db->db_data + bufoff, tocpy,
1311 UIO_WRITE, uio);
1312 #endif
1313 if (tocpy == db->db_size)
1314 dmu_buf_fill_done(db, tx);
1315
1316 if (err)
1317 break;
1318
1319 size -= tocpy;
1320 }
1321
1322 dmu_buf_rele_array(dbp, numbufs, FTAG);
1323 return (err);
1324 }
1325
1326 /*
1327 * Write 'size' bytes from the uio buffer.
1328 * To object zdb->db_object.
1329 * Starting at offset uio->uio_loffset.
1330 *
1331 * If the caller already has a dbuf in the target object
1332 * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(),
1333 * because we don't have to find the dnode_t for the object.
1334 */
1335 int
dmu_write_uio_dbuf(dmu_buf_t * zdb,uio_t * uio,uint64_t size,dmu_tx_t * tx)1336 dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size,
1337 dmu_tx_t *tx)
1338 {
1339 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1340 dnode_t *dn;
1341 int err;
1342
1343 if (size == 0)
1344 return (0);
1345
1346 DB_DNODE_ENTER(db);
1347 dn = DB_DNODE(db);
1348 err = dmu_write_uio_dnode(dn, uio, size, tx);
1349 DB_DNODE_EXIT(db);
1350
1351 return (err);
1352 }
1353
1354 /*
1355 * Write 'size' bytes from the uio buffer.
1356 * To the specified object.
1357 * Starting at offset uio->uio_loffset.
1358 */
1359 int
dmu_write_uio(objset_t * os,uint64_t object,uio_t * uio,uint64_t size,dmu_tx_t * tx)1360 dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size,
1361 dmu_tx_t *tx)
1362 {
1363 dnode_t *dn;
1364 int err;
1365
1366 if (size == 0)
1367 return (0);
1368
1369 err = dnode_hold(os, object, FTAG, &dn);
1370 if (err)
1371 return (err);
1372
1373 err = dmu_write_uio_dnode(dn, uio, size, tx);
1374
1375 dnode_rele(dn, FTAG);
1376
1377 return (err);
1378 }
1379 #endif /* _KERNEL */
1380
1381 /*
1382 * Allocate a loaned anonymous arc buffer.
1383 */
1384 arc_buf_t *
dmu_request_arcbuf(dmu_buf_t * handle,int size)1385 dmu_request_arcbuf(dmu_buf_t *handle, int size)
1386 {
1387 dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
1388
1389 return (arc_loan_buf(db->db_objset->os_spa, B_FALSE, size));
1390 }
1391
1392 /*
1393 * Free a loaned arc buffer.
1394 */
1395 void
dmu_return_arcbuf(arc_buf_t * buf)1396 dmu_return_arcbuf(arc_buf_t *buf)
1397 {
1398 arc_return_buf(buf, FTAG);
1399 arc_buf_destroy(buf, FTAG);
1400 }
1401
1402 /*
1403 * A "lightweight" write is faster than a regular write (e.g.
1404 * dmu_write_by_dnode() or dmu_assign_arcbuf_by_dnode()), because it avoids the
1405 * CPU cost of creating a dmu_buf_impl_t and arc_buf_[hdr_]_t. However, the
1406 * data can not be read or overwritten until the transaction's txg has been
1407 * synced. This makes it appropriate for workloads that are known to be
1408 * (temporarily) write-only, like "zfs receive".
1409 *
1410 * A single block is written, starting at the specified offset in bytes. If
1411 * the call is successful, it returns 0 and the provided abd has been
1412 * consumed (the caller should not free it).
1413 */
1414 int
dmu_lightweight_write_by_dnode(dnode_t * dn,uint64_t offset,abd_t * abd,const zio_prop_t * zp,enum zio_flag flags,dmu_tx_t * tx)1415 dmu_lightweight_write_by_dnode(dnode_t *dn, uint64_t offset, abd_t *abd,
1416 const zio_prop_t *zp, enum zio_flag flags, dmu_tx_t *tx)
1417 {
1418 dbuf_dirty_record_t *dr =
1419 dbuf_dirty_lightweight(dn, dbuf_whichblock(dn, 0, offset), tx);
1420 if (dr == NULL)
1421 return (SET_ERROR(EIO));
1422 dr->dt.dll.dr_abd = abd;
1423 dr->dt.dll.dr_props = *zp;
1424 dr->dt.dll.dr_flags = flags;
1425 return (0);
1426 }
1427
1428 /*
1429 * When possible directly assign passed loaned arc buffer to a dbuf.
1430 * If this is not possible copy the contents of passed arc buf via
1431 * dmu_write().
1432 */
1433 int
dmu_assign_arcbuf_by_dnode(dnode_t * dn,uint64_t offset,arc_buf_t * buf,dmu_tx_t * tx)1434 dmu_assign_arcbuf_by_dnode(dnode_t *dn, uint64_t offset, arc_buf_t *buf,
1435 dmu_tx_t *tx)
1436 {
1437 dmu_buf_impl_t *db;
1438 objset_t *os = dn->dn_objset;
1439 uint64_t object = dn->dn_object;
1440 uint32_t blksz = (uint32_t)arc_buf_lsize(buf);
1441 uint64_t blkid;
1442
1443 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1444 blkid = dbuf_whichblock(dn, 0, offset);
1445 db = dbuf_hold(dn, blkid, FTAG);
1446 if (db == NULL)
1447 return (SET_ERROR(EIO));
1448 rw_exit(&dn->dn_struct_rwlock);
1449
1450 /*
1451 * We can only assign if the offset is aligned and the arc buf is the
1452 * same size as the dbuf.
1453 */
1454 if (offset == db->db.db_offset && blksz == db->db.db_size) {
1455 zfs_racct_write(blksz, 1);
1456 dbuf_assign_arcbuf(db, buf, tx);
1457 dbuf_rele(db, FTAG);
1458 } else {
1459 /* compressed bufs must always be assignable to their dbuf */
1460 ASSERT3U(arc_get_compression(buf), ==, ZIO_COMPRESS_OFF);
1461 ASSERT(!(buf->b_flags & ARC_BUF_FLAG_COMPRESSED));
1462
1463 dbuf_rele(db, FTAG);
1464 dmu_write(os, object, offset, blksz, buf->b_data, tx);
1465 dmu_return_arcbuf(buf);
1466 }
1467
1468 return (0);
1469 }
1470
1471 int
dmu_assign_arcbuf_by_dbuf(dmu_buf_t * handle,uint64_t offset,arc_buf_t * buf,dmu_tx_t * tx)1472 dmu_assign_arcbuf_by_dbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
1473 dmu_tx_t *tx)
1474 {
1475 int err;
1476 dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle;
1477
1478 DB_DNODE_ENTER(dbuf);
1479 err = dmu_assign_arcbuf_by_dnode(DB_DNODE(dbuf), offset, buf, tx);
1480 DB_DNODE_EXIT(dbuf);
1481
1482 return (err);
1483 }
1484
1485 typedef struct {
1486 dbuf_dirty_record_t *dsa_dr;
1487 dmu_sync_cb_t *dsa_done;
1488 zgd_t *dsa_zgd;
1489 dmu_tx_t *dsa_tx;
1490 } dmu_sync_arg_t;
1491
1492 /* ARGSUSED */
1493 static void
dmu_sync_ready(zio_t * zio,arc_buf_t * buf,void * varg)1494 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
1495 {
1496 dmu_sync_arg_t *dsa = varg;
1497 dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
1498 blkptr_t *bp = zio->io_bp;
1499
1500 if (zio->io_error == 0) {
1501 if (BP_IS_HOLE(bp)) {
1502 /*
1503 * A block of zeros may compress to a hole, but the
1504 * block size still needs to be known for replay.
1505 */
1506 BP_SET_LSIZE(bp, db->db_size);
1507 } else if (!BP_IS_EMBEDDED(bp)) {
1508 ASSERT(BP_GET_LEVEL(bp) == 0);
1509 BP_SET_FILL(bp, 1);
1510 }
1511 }
1512 }
1513
1514 static void
dmu_sync_late_arrival_ready(zio_t * zio)1515 dmu_sync_late_arrival_ready(zio_t *zio)
1516 {
1517 dmu_sync_ready(zio, NULL, zio->io_private);
1518 }
1519
1520 /* ARGSUSED */
1521 static void
dmu_sync_done(zio_t * zio,arc_buf_t * buf,void * varg)1522 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
1523 {
1524 dmu_sync_arg_t *dsa = varg;
1525 dbuf_dirty_record_t *dr = dsa->dsa_dr;
1526 dmu_buf_impl_t *db = dr->dr_dbuf;
1527 zgd_t *zgd = dsa->dsa_zgd;
1528
1529 /*
1530 * Record the vdev(s) backing this blkptr so they can be flushed after
1531 * the writes for the lwb have completed.
1532 */
1533 if (zio->io_error == 0) {
1534 zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
1535 }
1536
1537 mutex_enter(&db->db_mtx);
1538 ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
1539 if (zio->io_error == 0) {
1540 dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE);
1541 if (dr->dt.dl.dr_nopwrite) {
1542 blkptr_t *bp = zio->io_bp;
1543 blkptr_t *bp_orig = &zio->io_bp_orig;
1544 uint8_t chksum = BP_GET_CHECKSUM(bp_orig);
1545
1546 ASSERT(BP_EQUAL(bp, bp_orig));
1547 VERIFY(BP_EQUAL(bp, db->db_blkptr));
1548 ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF);
1549 VERIFY(zio_checksum_table[chksum].ci_flags &
1550 ZCHECKSUM_FLAG_NOPWRITE);
1551 }
1552 dr->dt.dl.dr_overridden_by = *zio->io_bp;
1553 dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
1554 dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
1555
1556 /*
1557 * Old style holes are filled with all zeros, whereas
1558 * new-style holes maintain their lsize, type, level,
1559 * and birth time (see zio_write_compress). While we
1560 * need to reset the BP_SET_LSIZE() call that happened
1561 * in dmu_sync_ready for old style holes, we do *not*
1562 * want to wipe out the information contained in new
1563 * style holes. Thus, only zero out the block pointer if
1564 * it's an old style hole.
1565 */
1566 if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) &&
1567 dr->dt.dl.dr_overridden_by.blk_birth == 0)
1568 BP_ZERO(&dr->dt.dl.dr_overridden_by);
1569 } else {
1570 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1571 }
1572 cv_broadcast(&db->db_changed);
1573 mutex_exit(&db->db_mtx);
1574
1575 dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1576
1577 kmem_free(dsa, sizeof (*dsa));
1578 }
1579
1580 static void
dmu_sync_late_arrival_done(zio_t * zio)1581 dmu_sync_late_arrival_done(zio_t *zio)
1582 {
1583 blkptr_t *bp = zio->io_bp;
1584 dmu_sync_arg_t *dsa = zio->io_private;
1585 zgd_t *zgd = dsa->dsa_zgd;
1586
1587 if (zio->io_error == 0) {
1588 /*
1589 * Record the vdev(s) backing this blkptr so they can be
1590 * flushed after the writes for the lwb have completed.
1591 */
1592 zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
1593
1594 if (!BP_IS_HOLE(bp)) {
1595 blkptr_t *bp_orig __maybe_unused = &zio->io_bp_orig;
1596 ASSERT(!(zio->io_flags & ZIO_FLAG_NOPWRITE));
1597 ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig));
1598 ASSERT(zio->io_bp->blk_birth == zio->io_txg);
1599 ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
1600 zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
1601 }
1602 }
1603
1604 dmu_tx_commit(dsa->dsa_tx);
1605
1606 dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1607
1608 abd_put(zio->io_abd);
1609 kmem_free(dsa, sizeof (*dsa));
1610 }
1611
1612 static int
dmu_sync_late_arrival(zio_t * pio,objset_t * os,dmu_sync_cb_t * done,zgd_t * zgd,zio_prop_t * zp,zbookmark_phys_t * zb)1613 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
1614 zio_prop_t *zp, zbookmark_phys_t *zb)
1615 {
1616 dmu_sync_arg_t *dsa;
1617 dmu_tx_t *tx;
1618
1619 tx = dmu_tx_create(os);
1620 dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
1621 if (dmu_tx_assign(tx, TXG_WAIT) != 0) {
1622 dmu_tx_abort(tx);
1623 /* Make zl_get_data do txg_waited_synced() */
1624 return (SET_ERROR(EIO));
1625 }
1626
1627 /*
1628 * In order to prevent the zgd's lwb from being free'd prior to
1629 * dmu_sync_late_arrival_done() being called, we have to ensure
1630 * the lwb's "max txg" takes this tx's txg into account.
1631 */
1632 zil_lwb_add_txg(zgd->zgd_lwb, dmu_tx_get_txg(tx));
1633
1634 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1635 dsa->dsa_dr = NULL;
1636 dsa->dsa_done = done;
1637 dsa->dsa_zgd = zgd;
1638 dsa->dsa_tx = tx;
1639
1640 /*
1641 * Since we are currently syncing this txg, it's nontrivial to
1642 * determine what BP to nopwrite against, so we disable nopwrite.
1643 *
1644 * When syncing, the db_blkptr is initially the BP of the previous
1645 * txg. We can not nopwrite against it because it will be changed
1646 * (this is similar to the non-late-arrival case where the dbuf is
1647 * dirty in a future txg).
1648 *
1649 * Then dbuf_write_ready() sets bp_blkptr to the location we will write.
1650 * We can not nopwrite against it because although the BP will not
1651 * (typically) be changed, the data has not yet been persisted to this
1652 * location.
1653 *
1654 * Finally, when dbuf_write_done() is called, it is theoretically
1655 * possible to always nopwrite, because the data that was written in
1656 * this txg is the same data that we are trying to write. However we
1657 * would need to check that this dbuf is not dirty in any future
1658 * txg's (as we do in the normal dmu_sync() path). For simplicity, we
1659 * don't nopwrite in this case.
1660 */
1661 zp->zp_nopwrite = B_FALSE;
1662
1663 zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
1664 abd_get_from_buf(zgd->zgd_db->db_data, zgd->zgd_db->db_size),
1665 zgd->zgd_db->db_size, zgd->zgd_db->db_size, zp,
1666 dmu_sync_late_arrival_ready, NULL, NULL, dmu_sync_late_arrival_done,
1667 dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));
1668
1669 return (0);
1670 }
1671
1672 /*
1673 * Intent log support: sync the block associated with db to disk.
1674 * N.B. and XXX: the caller is responsible for making sure that the
1675 * data isn't changing while dmu_sync() is writing it.
1676 *
1677 * Return values:
1678 *
1679 * EEXIST: this txg has already been synced, so there's nothing to do.
1680 * The caller should not log the write.
1681 *
1682 * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
1683 * The caller should not log the write.
1684 *
1685 * EALREADY: this block is already in the process of being synced.
1686 * The caller should track its progress (somehow).
1687 *
1688 * EIO: could not do the I/O.
1689 * The caller should do a txg_wait_synced().
1690 *
1691 * 0: the I/O has been initiated.
1692 * The caller should log this blkptr in the done callback.
1693 * It is possible that the I/O will fail, in which case
1694 * the error will be reported to the done callback and
1695 * propagated to pio from zio_done().
1696 */
1697 int
dmu_sync(zio_t * pio,uint64_t txg,dmu_sync_cb_t * done,zgd_t * zgd)1698 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
1699 {
1700 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
1701 objset_t *os = db->db_objset;
1702 dsl_dataset_t *ds = os->os_dsl_dataset;
1703 dbuf_dirty_record_t *dr, *dr_next;
1704 dmu_sync_arg_t *dsa;
1705 zbookmark_phys_t zb;
1706 zio_prop_t zp;
1707 dnode_t *dn;
1708
1709 ASSERT(pio != NULL);
1710 ASSERT(txg != 0);
1711
1712 SET_BOOKMARK(&zb, ds->ds_object,
1713 db->db.db_object, db->db_level, db->db_blkid);
1714
1715 DB_DNODE_ENTER(db);
1716 dn = DB_DNODE(db);
1717 dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp);
1718 DB_DNODE_EXIT(db);
1719
1720 /*
1721 * If we're frozen (running ziltest), we always need to generate a bp.
1722 */
1723 if (txg > spa_freeze_txg(os->os_spa))
1724 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1725
1726 /*
1727 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
1728 * and us. If we determine that this txg is not yet syncing,
1729 * but it begins to sync a moment later, that's OK because the
1730 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
1731 */
1732 mutex_enter(&db->db_mtx);
1733
1734 if (txg <= spa_last_synced_txg(os->os_spa)) {
1735 /*
1736 * This txg has already synced. There's nothing to do.
1737 */
1738 mutex_exit(&db->db_mtx);
1739 return (SET_ERROR(EEXIST));
1740 }
1741
1742 if (txg <= spa_syncing_txg(os->os_spa)) {
1743 /*
1744 * This txg is currently syncing, so we can't mess with
1745 * the dirty record anymore; just write a new log block.
1746 */
1747 mutex_exit(&db->db_mtx);
1748 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1749 }
1750
1751 dr = dbuf_find_dirty_eq(db, txg);
1752
1753 if (dr == NULL) {
1754 /*
1755 * There's no dr for this dbuf, so it must have been freed.
1756 * There's no need to log writes to freed blocks, so we're done.
1757 */
1758 mutex_exit(&db->db_mtx);
1759 return (SET_ERROR(ENOENT));
1760 }
1761
1762 dr_next = list_next(&db->db_dirty_records, dr);
1763 ASSERT(dr_next == NULL || dr_next->dr_txg < txg);
1764
1765 if (db->db_blkptr != NULL) {
1766 /*
1767 * We need to fill in zgd_bp with the current blkptr so that
1768 * the nopwrite code can check if we're writing the same
1769 * data that's already on disk. We can only nopwrite if we
1770 * are sure that after making the copy, db_blkptr will not
1771 * change until our i/o completes. We ensure this by
1772 * holding the db_mtx, and only allowing nopwrite if the
1773 * block is not already dirty (see below). This is verified
1774 * by dmu_sync_done(), which VERIFYs that the db_blkptr has
1775 * not changed.
1776 */
1777 *zgd->zgd_bp = *db->db_blkptr;
1778 }
1779
1780 /*
1781 * Assume the on-disk data is X, the current syncing data (in
1782 * txg - 1) is Y, and the current in-memory data is Z (currently
1783 * in dmu_sync).
1784 *
1785 * We usually want to perform a nopwrite if X and Z are the
1786 * same. However, if Y is different (i.e. the BP is going to
1787 * change before this write takes effect), then a nopwrite will
1788 * be incorrect - we would override with X, which could have
1789 * been freed when Y was written.
1790 *
1791 * (Note that this is not a concern when we are nop-writing from
1792 * syncing context, because X and Y must be identical, because
1793 * all previous txgs have been synced.)
1794 *
1795 * Therefore, we disable nopwrite if the current BP could change
1796 * before this TXG. There are two ways it could change: by
1797 * being dirty (dr_next is non-NULL), or by being freed
1798 * (dnode_block_freed()). This behavior is verified by
1799 * zio_done(), which VERIFYs that the override BP is identical
1800 * to the on-disk BP.
1801 */
1802 DB_DNODE_ENTER(db);
1803 dn = DB_DNODE(db);
1804 if (dr_next != NULL || dnode_block_freed(dn, db->db_blkid))
1805 zp.zp_nopwrite = B_FALSE;
1806 DB_DNODE_EXIT(db);
1807
1808 ASSERT(dr->dr_txg == txg);
1809 if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
1810 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
1811 /*
1812 * We have already issued a sync write for this buffer,
1813 * or this buffer has already been synced. It could not
1814 * have been dirtied since, or we would have cleared the state.
1815 */
1816 mutex_exit(&db->db_mtx);
1817 return (SET_ERROR(EALREADY));
1818 }
1819
1820 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
1821 dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
1822 mutex_exit(&db->db_mtx);
1823
1824 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1825 dsa->dsa_dr = dr;
1826 dsa->dsa_done = done;
1827 dsa->dsa_zgd = zgd;
1828 dsa->dsa_tx = NULL;
1829
1830 zio_nowait(arc_write(pio, os->os_spa, txg,
1831 zgd->zgd_bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db),
1832 &zp, dmu_sync_ready, NULL, NULL, dmu_sync_done, dsa,
1833 ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb));
1834
1835 return (0);
1836 }
1837
1838 int
dmu_object_set_nlevels(objset_t * os,uint64_t object,int nlevels,dmu_tx_t * tx)1839 dmu_object_set_nlevels(objset_t *os, uint64_t object, int nlevels, dmu_tx_t *tx)
1840 {
1841 dnode_t *dn;
1842 int err;
1843
1844 err = dnode_hold(os, object, FTAG, &dn);
1845 if (err)
1846 return (err);
1847 err = dnode_set_nlevels(dn, nlevels, tx);
1848 dnode_rele(dn, FTAG);
1849 return (err);
1850 }
1851
1852 int
dmu_object_set_blocksize(objset_t * os,uint64_t object,uint64_t size,int ibs,dmu_tx_t * tx)1853 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
1854 dmu_tx_t *tx)
1855 {
1856 dnode_t *dn;
1857 int err;
1858
1859 err = dnode_hold(os, object, FTAG, &dn);
1860 if (err)
1861 return (err);
1862 err = dnode_set_blksz(dn, size, ibs, tx);
1863 dnode_rele(dn, FTAG);
1864 return (err);
1865 }
1866
1867 int
dmu_object_set_maxblkid(objset_t * os,uint64_t object,uint64_t maxblkid,dmu_tx_t * tx)1868 dmu_object_set_maxblkid(objset_t *os, uint64_t object, uint64_t maxblkid,
1869 dmu_tx_t *tx)
1870 {
1871 dnode_t *dn;
1872 int err;
1873
1874 err = dnode_hold(os, object, FTAG, &dn);
1875 if (err)
1876 return (err);
1877 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1878 dnode_new_blkid(dn, maxblkid, tx, B_FALSE, B_TRUE);
1879 rw_exit(&dn->dn_struct_rwlock);
1880 dnode_rele(dn, FTAG);
1881 return (0);
1882 }
1883
1884 void
dmu_object_set_checksum(objset_t * os,uint64_t object,uint8_t checksum,dmu_tx_t * tx)1885 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
1886 dmu_tx_t *tx)
1887 {
1888 dnode_t *dn;
1889
1890 /*
1891 * Send streams include each object's checksum function. This
1892 * check ensures that the receiving system can understand the
1893 * checksum function transmitted.
1894 */
1895 ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS);
1896
1897 VERIFY0(dnode_hold(os, object, FTAG, &dn));
1898 ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS);
1899 dn->dn_checksum = checksum;
1900 dnode_setdirty(dn, tx);
1901 dnode_rele(dn, FTAG);
1902 }
1903
1904 void
dmu_object_set_compress(objset_t * os,uint64_t object,uint8_t compress,dmu_tx_t * tx)1905 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
1906 dmu_tx_t *tx)
1907 {
1908 dnode_t *dn;
1909
1910 /*
1911 * Send streams include each object's compression function. This
1912 * check ensures that the receiving system can understand the
1913 * compression function transmitted.
1914 */
1915 ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS);
1916
1917 VERIFY0(dnode_hold(os, object, FTAG, &dn));
1918 dn->dn_compress = compress;
1919 dnode_setdirty(dn, tx);
1920 dnode_rele(dn, FTAG);
1921 }
1922
1923 /*
1924 * When the "redundant_metadata" property is set to "most", only indirect
1925 * blocks of this level and higher will have an additional ditto block.
1926 */
1927 int zfs_redundant_metadata_most_ditto_level = 2;
1928
1929 void
dmu_write_policy(objset_t * os,dnode_t * dn,int level,int wp,zio_prop_t * zp)1930 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
1931 {
1932 dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
1933 boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) ||
1934 (wp & WP_SPILL));
1935 enum zio_checksum checksum = os->os_checksum;
1936 enum zio_compress compress = os->os_compress;
1937 uint8_t complevel = os->os_complevel;
1938 enum zio_checksum dedup_checksum = os->os_dedup_checksum;
1939 boolean_t dedup = B_FALSE;
1940 boolean_t nopwrite = B_FALSE;
1941 boolean_t dedup_verify = os->os_dedup_verify;
1942 boolean_t encrypt = B_FALSE;
1943 int copies = os->os_copies;
1944
1945 /*
1946 * We maintain different write policies for each of the following
1947 * types of data:
1948 * 1. metadata
1949 * 2. preallocated blocks (i.e. level-0 blocks of a dump device)
1950 * 3. all other level 0 blocks
1951 */
1952 if (ismd) {
1953 /*
1954 * XXX -- we should design a compression algorithm
1955 * that specializes in arrays of bps.
1956 */
1957 compress = zio_compress_select(os->os_spa,
1958 ZIO_COMPRESS_ON, ZIO_COMPRESS_ON);
1959
1960 /*
1961 * Metadata always gets checksummed. If the data
1962 * checksum is multi-bit correctable, and it's not a
1963 * ZBT-style checksum, then it's suitable for metadata
1964 * as well. Otherwise, the metadata checksum defaults
1965 * to fletcher4.
1966 */
1967 if (!(zio_checksum_table[checksum].ci_flags &
1968 ZCHECKSUM_FLAG_METADATA) ||
1969 (zio_checksum_table[checksum].ci_flags &
1970 ZCHECKSUM_FLAG_EMBEDDED))
1971 checksum = ZIO_CHECKSUM_FLETCHER_4;
1972
1973 if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL ||
1974 (os->os_redundant_metadata ==
1975 ZFS_REDUNDANT_METADATA_MOST &&
1976 (level >= zfs_redundant_metadata_most_ditto_level ||
1977 DMU_OT_IS_METADATA(type) || (wp & WP_SPILL))))
1978 copies++;
1979 } else if (wp & WP_NOFILL) {
1980 ASSERT(level == 0);
1981
1982 /*
1983 * If we're writing preallocated blocks, we aren't actually
1984 * writing them so don't set any policy properties. These
1985 * blocks are currently only used by an external subsystem
1986 * outside of zfs (i.e. dump) and not written by the zio
1987 * pipeline.
1988 */
1989 compress = ZIO_COMPRESS_OFF;
1990 checksum = ZIO_CHECKSUM_OFF;
1991 } else {
1992 compress = zio_compress_select(os->os_spa, dn->dn_compress,
1993 compress);
1994 complevel = zio_complevel_select(os->os_spa, compress,
1995 complevel, complevel);
1996
1997 checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ?
1998 zio_checksum_select(dn->dn_checksum, checksum) :
1999 dedup_checksum;
2000
2001 /*
2002 * Determine dedup setting. If we are in dmu_sync(),
2003 * we won't actually dedup now because that's all
2004 * done in syncing context; but we do want to use the
2005 * dedup checksum. If the checksum is not strong
2006 * enough to ensure unique signatures, force
2007 * dedup_verify.
2008 */
2009 if (dedup_checksum != ZIO_CHECKSUM_OFF) {
2010 dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE;
2011 if (!(zio_checksum_table[checksum].ci_flags &
2012 ZCHECKSUM_FLAG_DEDUP))
2013 dedup_verify = B_TRUE;
2014 }
2015
2016 /*
2017 * Enable nopwrite if we have secure enough checksum
2018 * algorithm (see comment in zio_nop_write) and
2019 * compression is enabled. We don't enable nopwrite if
2020 * dedup is enabled as the two features are mutually
2021 * exclusive.
2022 */
2023 nopwrite = (!dedup && (zio_checksum_table[checksum].ci_flags &
2024 ZCHECKSUM_FLAG_NOPWRITE) &&
2025 compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled);
2026 }
2027
2028 /*
2029 * All objects in an encrypted objset are protected from modification
2030 * via a MAC. Encrypted objects store their IV and salt in the last DVA
2031 * in the bp, so we cannot use all copies. Encrypted objects are also
2032 * not subject to nopwrite since writing the same data will still
2033 * result in a new ciphertext. Only encrypted blocks can be dedup'd
2034 * to avoid ambiguity in the dedup code since the DDT does not store
2035 * object types.
2036 */
2037 if (os->os_encrypted && (wp & WP_NOFILL) == 0) {
2038 encrypt = B_TRUE;
2039
2040 if (DMU_OT_IS_ENCRYPTED(type)) {
2041 copies = MIN(copies, SPA_DVAS_PER_BP - 1);
2042 nopwrite = B_FALSE;
2043 } else {
2044 dedup = B_FALSE;
2045 }
2046
2047 if (level <= 0 &&
2048 (type == DMU_OT_DNODE || type == DMU_OT_OBJSET)) {
2049 compress = ZIO_COMPRESS_EMPTY;
2050 }
2051 }
2052
2053 zp->zp_compress = compress;
2054 zp->zp_complevel = complevel;
2055 zp->zp_checksum = checksum;
2056 zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
2057 zp->zp_level = level;
2058 zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa));
2059 zp->zp_dedup = dedup;
2060 zp->zp_dedup_verify = dedup && dedup_verify;
2061 zp->zp_nopwrite = nopwrite;
2062 zp->zp_encrypt = encrypt;
2063 zp->zp_byteorder = ZFS_HOST_BYTEORDER;
2064 bzero(zp->zp_salt, ZIO_DATA_SALT_LEN);
2065 bzero(zp->zp_iv, ZIO_DATA_IV_LEN);
2066 bzero(zp->zp_mac, ZIO_DATA_MAC_LEN);
2067 zp->zp_zpl_smallblk = DMU_OT_IS_FILE(zp->zp_type) ?
2068 os->os_zpl_special_smallblock : 0;
2069
2070 ASSERT3U(zp->zp_compress, !=, ZIO_COMPRESS_INHERIT);
2071 }
2072
2073 /*
2074 * This function is only called from zfs_holey_common() for zpl_llseek()
2075 * in order to determine the location of holes. In order to accurately
2076 * report holes all dirty data must be synced to disk. This causes extremely
2077 * poor performance when seeking for holes in a dirty file. As a compromise,
2078 * only provide hole data when the dnode is clean. When a dnode is dirty
2079 * report the dnode as having no holes which is always a safe thing to do.
2080 */
2081 int
dmu_offset_next(objset_t * os,uint64_t object,boolean_t hole,uint64_t * off)2082 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
2083 {
2084 dnode_t *dn;
2085 int i, err;
2086 boolean_t clean = B_TRUE;
2087
2088 err = dnode_hold(os, object, FTAG, &dn);
2089 if (err)
2090 return (err);
2091
2092 /*
2093 * Check if dnode is dirty
2094 */
2095 for (i = 0; i < TXG_SIZE; i++) {
2096 if (multilist_link_active(&dn->dn_dirty_link[i])) {
2097 clean = B_FALSE;
2098 break;
2099 }
2100 }
2101
2102 /*
2103 * If compatibility option is on, sync any current changes before
2104 * we go trundling through the block pointers.
2105 */
2106 if (!clean && zfs_dmu_offset_next_sync) {
2107 clean = B_TRUE;
2108 dnode_rele(dn, FTAG);
2109 txg_wait_synced(dmu_objset_pool(os), 0);
2110 err = dnode_hold(os, object, FTAG, &dn);
2111 if (err)
2112 return (err);
2113 }
2114
2115 if (clean)
2116 err = dnode_next_offset(dn,
2117 (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
2118 else
2119 err = SET_ERROR(EBUSY);
2120
2121 dnode_rele(dn, FTAG);
2122
2123 return (err);
2124 }
2125
2126 void
__dmu_object_info_from_dnode(dnode_t * dn,dmu_object_info_t * doi)2127 __dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
2128 {
2129 dnode_phys_t *dnp = dn->dn_phys;
2130
2131 doi->doi_data_block_size = dn->dn_datablksz;
2132 doi->doi_metadata_block_size = dn->dn_indblkshift ?
2133 1ULL << dn->dn_indblkshift : 0;
2134 doi->doi_type = dn->dn_type;
2135 doi->doi_bonus_type = dn->dn_bonustype;
2136 doi->doi_bonus_size = dn->dn_bonuslen;
2137 doi->doi_dnodesize = dn->dn_num_slots << DNODE_SHIFT;
2138 doi->doi_indirection = dn->dn_nlevels;
2139 doi->doi_checksum = dn->dn_checksum;
2140 doi->doi_compress = dn->dn_compress;
2141 doi->doi_nblkptr = dn->dn_nblkptr;
2142 doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
2143 doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
2144 doi->doi_fill_count = 0;
2145 for (int i = 0; i < dnp->dn_nblkptr; i++)
2146 doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]);
2147 }
2148
2149 void
dmu_object_info_from_dnode(dnode_t * dn,dmu_object_info_t * doi)2150 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
2151 {
2152 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2153 mutex_enter(&dn->dn_mtx);
2154
2155 __dmu_object_info_from_dnode(dn, doi);
2156
2157 mutex_exit(&dn->dn_mtx);
2158 rw_exit(&dn->dn_struct_rwlock);
2159 }
2160
2161 /*
2162 * Get information on a DMU object.
2163 * If doi is NULL, just indicates whether the object exists.
2164 */
2165 int
dmu_object_info(objset_t * os,uint64_t object,dmu_object_info_t * doi)2166 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
2167 {
2168 dnode_t *dn;
2169 int err = dnode_hold(os, object, FTAG, &dn);
2170
2171 if (err)
2172 return (err);
2173
2174 if (doi != NULL)
2175 dmu_object_info_from_dnode(dn, doi);
2176
2177 dnode_rele(dn, FTAG);
2178 return (0);
2179 }
2180
2181 /*
2182 * As above, but faster; can be used when you have a held dbuf in hand.
2183 */
2184 void
dmu_object_info_from_db(dmu_buf_t * db_fake,dmu_object_info_t * doi)2185 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
2186 {
2187 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2188
2189 DB_DNODE_ENTER(db);
2190 dmu_object_info_from_dnode(DB_DNODE(db), doi);
2191 DB_DNODE_EXIT(db);
2192 }
2193
2194 /*
2195 * Faster still when you only care about the size.
2196 */
2197 void
dmu_object_size_from_db(dmu_buf_t * db_fake,uint32_t * blksize,u_longlong_t * nblk512)2198 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
2199 u_longlong_t *nblk512)
2200 {
2201 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2202 dnode_t *dn;
2203
2204 DB_DNODE_ENTER(db);
2205 dn = DB_DNODE(db);
2206
2207 *blksize = dn->dn_datablksz;
2208 /* add in number of slots used for the dnode itself */
2209 *nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
2210 SPA_MINBLOCKSHIFT) + dn->dn_num_slots;
2211 DB_DNODE_EXIT(db);
2212 }
2213
2214 void
dmu_object_dnsize_from_db(dmu_buf_t * db_fake,int * dnsize)2215 dmu_object_dnsize_from_db(dmu_buf_t *db_fake, int *dnsize)
2216 {
2217 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2218 dnode_t *dn;
2219
2220 DB_DNODE_ENTER(db);
2221 dn = DB_DNODE(db);
2222 *dnsize = dn->dn_num_slots << DNODE_SHIFT;
2223 DB_DNODE_EXIT(db);
2224 }
2225
2226 void
byteswap_uint64_array(void * vbuf,size_t size)2227 byteswap_uint64_array(void *vbuf, size_t size)
2228 {
2229 uint64_t *buf = vbuf;
2230 size_t count = size >> 3;
2231 int i;
2232
2233 ASSERT((size & 7) == 0);
2234
2235 for (i = 0; i < count; i++)
2236 buf[i] = BSWAP_64(buf[i]);
2237 }
2238
2239 void
byteswap_uint32_array(void * vbuf,size_t size)2240 byteswap_uint32_array(void *vbuf, size_t size)
2241 {
2242 uint32_t *buf = vbuf;
2243 size_t count = size >> 2;
2244 int i;
2245
2246 ASSERT((size & 3) == 0);
2247
2248 for (i = 0; i < count; i++)
2249 buf[i] = BSWAP_32(buf[i]);
2250 }
2251
2252 void
byteswap_uint16_array(void * vbuf,size_t size)2253 byteswap_uint16_array(void *vbuf, size_t size)
2254 {
2255 uint16_t *buf = vbuf;
2256 size_t count = size >> 1;
2257 int i;
2258
2259 ASSERT((size & 1) == 0);
2260
2261 for (i = 0; i < count; i++)
2262 buf[i] = BSWAP_16(buf[i]);
2263 }
2264
2265 /* ARGSUSED */
2266 void
byteswap_uint8_array(void * vbuf,size_t size)2267 byteswap_uint8_array(void *vbuf, size_t size)
2268 {
2269 }
2270
2271 void
dmu_init(void)2272 dmu_init(void)
2273 {
2274 abd_init();
2275 zfs_dbgmsg_init();
2276 sa_cache_init();
2277 dmu_objset_init();
2278 dnode_init();
2279 zfetch_init();
2280 dmu_tx_init();
2281 l2arc_init();
2282 arc_init();
2283 dbuf_init();
2284 }
2285
2286 void
dmu_fini(void)2287 dmu_fini(void)
2288 {
2289 arc_fini(); /* arc depends on l2arc, so arc must go first */
2290 l2arc_fini();
2291 dmu_tx_fini();
2292 zfetch_fini();
2293 dbuf_fini();
2294 dnode_fini();
2295 dmu_objset_fini();
2296 sa_cache_fini();
2297 zfs_dbgmsg_fini();
2298 abd_fini();
2299 }
2300
2301 EXPORT_SYMBOL(dmu_bonus_hold);
2302 EXPORT_SYMBOL(dmu_bonus_hold_by_dnode);
2303 EXPORT_SYMBOL(dmu_buf_hold_array_by_bonus);
2304 EXPORT_SYMBOL(dmu_buf_rele_array);
2305 EXPORT_SYMBOL(dmu_prefetch);
2306 EXPORT_SYMBOL(dmu_free_range);
2307 EXPORT_SYMBOL(dmu_free_long_range);
2308 EXPORT_SYMBOL(dmu_free_long_object);
2309 EXPORT_SYMBOL(dmu_read);
2310 EXPORT_SYMBOL(dmu_read_by_dnode);
2311 EXPORT_SYMBOL(dmu_write);
2312 EXPORT_SYMBOL(dmu_write_by_dnode);
2313 EXPORT_SYMBOL(dmu_prealloc);
2314 EXPORT_SYMBOL(dmu_object_info);
2315 EXPORT_SYMBOL(dmu_object_info_from_dnode);
2316 EXPORT_SYMBOL(dmu_object_info_from_db);
2317 EXPORT_SYMBOL(dmu_object_size_from_db);
2318 EXPORT_SYMBOL(dmu_object_dnsize_from_db);
2319 EXPORT_SYMBOL(dmu_object_set_nlevels);
2320 EXPORT_SYMBOL(dmu_object_set_blocksize);
2321 EXPORT_SYMBOL(dmu_object_set_maxblkid);
2322 EXPORT_SYMBOL(dmu_object_set_checksum);
2323 EXPORT_SYMBOL(dmu_object_set_compress);
2324 EXPORT_SYMBOL(dmu_offset_next);
2325 EXPORT_SYMBOL(dmu_write_policy);
2326 EXPORT_SYMBOL(dmu_sync);
2327 EXPORT_SYMBOL(dmu_request_arcbuf);
2328 EXPORT_SYMBOL(dmu_return_arcbuf);
2329 EXPORT_SYMBOL(dmu_assign_arcbuf_by_dnode);
2330 EXPORT_SYMBOL(dmu_assign_arcbuf_by_dbuf);
2331 EXPORT_SYMBOL(dmu_buf_hold);
2332 EXPORT_SYMBOL(dmu_ot);
2333
2334 /* BEGIN CSTYLED */
2335 ZFS_MODULE_PARAM(zfs, zfs_, nopwrite_enabled, INT, ZMOD_RW,
2336 "Enable NOP writes");
2337
2338 ZFS_MODULE_PARAM(zfs, zfs_, per_txg_dirty_frees_percent, ULONG, ZMOD_RW,
2339 "Percentage of dirtied blocks from frees in one TXG");
2340
2341 ZFS_MODULE_PARAM(zfs, zfs_, dmu_offset_next_sync, INT, ZMOD_RW,
2342 "Enable forcing txg sync to find holes");
2343
2344 ZFS_MODULE_PARAM(zfs, , dmu_prefetch_max, INT, ZMOD_RW,
2345 "Limit one prefetch call to this size");
2346 /* END CSTYLED */
2347