xref: /dpdk/drivers/net/cxgbe/base/t4_hw.c (revision 745b8836)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2014-2018 Chelsio Communications.
3  * All rights reserved.
4  */
5 
6 #include <netinet/in.h>
7 
8 #include <rte_interrupts.h>
9 #include <rte_log.h>
10 #include <rte_debug.h>
11 #include <rte_pci.h>
12 #include <rte_branch_prediction.h>
13 #include <rte_memory.h>
14 #include <rte_tailq.h>
15 #include <rte_eal.h>
16 #include <rte_alarm.h>
17 #include <rte_ether.h>
18 #include <ethdev_driver.h>
19 #include <rte_malloc.h>
20 #include <rte_random.h>
21 #include <rte_dev.h>
22 #include <rte_byteorder.h>
23 
24 #include "common.h"
25 #include "t4_regs.h"
26 #include "t4_regs_values.h"
27 #include "t4fw_interface.h"
28 
29 /**
30  * t4_read_mtu_tbl - returns the values in the HW path MTU table
31  * @adap: the adapter
32  * @mtus: where to store the MTU values
33  * @mtu_log: where to store the MTU base-2 log (may be %NULL)
34  *
35  * Reads the HW path MTU table.
36  */
t4_read_mtu_tbl(struct adapter * adap,u16 * mtus,u8 * mtu_log)37 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
38 {
39 	u32 v;
40 	int i;
41 
42 	for (i = 0; i < NMTUS; ++i) {
43 		t4_write_reg(adap, A_TP_MTU_TABLE,
44 			     V_MTUINDEX(0xff) | V_MTUVALUE(i));
45 		v = t4_read_reg(adap, A_TP_MTU_TABLE);
46 		mtus[i] = G_MTUVALUE(v);
47 		if (mtu_log)
48 			mtu_log[i] = G_MTUWIDTH(v);
49 	}
50 }
51 
52 /**
53  * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
54  * @adap: the adapter
55  * @addr: the indirect TP register address
56  * @mask: specifies the field within the register to modify
57  * @val: new value for the field
58  *
59  * Sets a field of an indirect TP register to the given value.
60  */
t4_tp_wr_bits_indirect(struct adapter * adap,unsigned int addr,unsigned int mask,unsigned int val)61 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
62 			    unsigned int mask, unsigned int val)
63 {
64 	t4_write_reg(adap, A_TP_PIO_ADDR, addr);
65 	val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask;
66 	t4_write_reg(adap, A_TP_PIO_DATA, val);
67 }
68 
69 /* The minimum additive increment value for the congestion control table */
70 #define CC_MIN_INCR 2U
71 
72 /**
73  * t4_load_mtus - write the MTU and congestion control HW tables
74  * @adap: the adapter
75  * @mtus: the values for the MTU table
76  * @alpha: the values for the congestion control alpha parameter
77  * @beta: the values for the congestion control beta parameter
78  *
79  * Write the HW MTU table with the supplied MTUs and the high-speed
80  * congestion control table with the supplied alpha, beta, and MTUs.
81  * We write the two tables together because the additive increments
82  * depend on the MTUs.
83  */
t4_load_mtus(struct adapter * adap,const unsigned short * mtus,const unsigned short * alpha,const unsigned short * beta)84 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
85 		  const unsigned short *alpha, const unsigned short *beta)
86 {
87 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
88 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
89 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
90 		28672, 40960, 57344, 81920, 114688, 163840, 229376
91 	};
92 
93 	unsigned int i, w;
94 
95 	for (i = 0; i < NMTUS; ++i) {
96 		unsigned int mtu = mtus[i];
97 		unsigned int log2 = cxgbe_fls(mtu);
98 
99 		if (!(mtu & ((1 << log2) >> 2)))     /* round */
100 			log2--;
101 		t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) |
102 			     V_MTUWIDTH(log2) | V_MTUVALUE(mtu));
103 
104 		for (w = 0; w < NCCTRL_WIN; ++w) {
105 			unsigned int inc;
106 
107 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
108 				  CC_MIN_INCR);
109 
110 			t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
111 				     (w << 16) | (beta[w] << 13) | inc);
112 		}
113 	}
114 }
115 
116 /**
117  * t4_wait_op_done_val - wait until an operation is completed
118  * @adapter: the adapter performing the operation
119  * @reg: the register to check for completion
120  * @mask: a single-bit field within @reg that indicates completion
121  * @polarity: the value of the field when the operation is completed
122  * @attempts: number of check iterations
123  * @delay: delay in usecs between iterations
124  * @valp: where to store the value of the register at completion time
125  *
126  * Wait until an operation is completed by checking a bit in a register
127  * up to @attempts times.  If @valp is not NULL the value of the register
128  * at the time it indicated completion is stored there.  Returns 0 if the
129  * operation completes and -EAGAIN otherwise.
130  */
t4_wait_op_done_val(struct adapter * adapter,int reg,u32 mask,int polarity,int attempts,int delay,u32 * valp)131 int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
132 			int polarity, int attempts, int delay, u32 *valp)
133 {
134 	while (1) {
135 		u32 val = t4_read_reg(adapter, reg);
136 
137 		if (!!(val & mask) == polarity) {
138 			if (valp)
139 				*valp = val;
140 			return 0;
141 		}
142 		if (--attempts == 0)
143 			return -EAGAIN;
144 		if (delay)
145 			udelay(delay);
146 	}
147 }
148 
149 /**
150  * t4_set_reg_field - set a register field to a value
151  * @adapter: the adapter to program
152  * @addr: the register address
153  * @mask: specifies the portion of the register to modify
154  * @val: the new value for the register field
155  *
156  * Sets a register field specified by the supplied mask to the
157  * given value.
158  */
t4_set_reg_field(struct adapter * adapter,unsigned int addr,u32 mask,u32 val)159 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
160 		      u32 val)
161 {
162 	u32 v = t4_read_reg(adapter, addr) & ~mask;
163 
164 	t4_write_reg(adapter, addr, v | val);
165 	(void)t4_read_reg(adapter, addr);      /* flush */
166 }
167 
168 /**
169  * t4_read_indirect - read indirectly addressed registers
170  * @adap: the adapter
171  * @addr_reg: register holding the indirect address
172  * @data_reg: register holding the value of the indirect register
173  * @vals: where the read register values are stored
174  * @nregs: how many indirect registers to read
175  * @start_idx: index of first indirect register to read
176  *
177  * Reads registers that are accessed indirectly through an address/data
178  * register pair.
179  */
t4_read_indirect(struct adapter * adap,unsigned int addr_reg,unsigned int data_reg,u32 * vals,unsigned int nregs,unsigned int start_idx)180 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
181 		      unsigned int data_reg, u32 *vals, unsigned int nregs,
182 		      unsigned int start_idx)
183 {
184 	while (nregs--) {
185 		t4_write_reg(adap, addr_reg, start_idx);
186 		*vals++ = t4_read_reg(adap, data_reg);
187 		start_idx++;
188 	}
189 }
190 
191 /**
192  * t4_write_indirect - write indirectly addressed registers
193  * @adap: the adapter
194  * @addr_reg: register holding the indirect addresses
195  * @data_reg: register holding the value for the indirect registers
196  * @vals: values to write
197  * @nregs: how many indirect registers to write
198  * @start_idx: address of first indirect register to write
199  *
200  * Writes a sequential block of registers that are accessed indirectly
201  * through an address/data register pair.
202  */
t4_write_indirect(struct adapter * adap,unsigned int addr_reg,unsigned int data_reg,const u32 * vals,unsigned int nregs,unsigned int start_idx)203 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
204 		       unsigned int data_reg, const u32 *vals,
205 		       unsigned int nregs, unsigned int start_idx)
206 {
207 	while (nregs--) {
208 		t4_write_reg(adap, addr_reg, start_idx++);
209 		t4_write_reg(adap, data_reg, *vals++);
210 	}
211 }
212 
213 /**
214  * t4_report_fw_error - report firmware error
215  * @adap: the adapter
216  *
217  * The adapter firmware can indicate error conditions to the host.
218  * If the firmware has indicated an error, print out the reason for
219  * the firmware error.
220  */
t4_report_fw_error(struct adapter * adap)221 static void t4_report_fw_error(struct adapter *adap)
222 {
223 	static const char * const reason[] = {
224 		"Crash",			/* PCIE_FW_EVAL_CRASH */
225 		"During Device Preparation",	/* PCIE_FW_EVAL_PREP */
226 		"During Device Configuration",	/* PCIE_FW_EVAL_CONF */
227 		"During Device Initialization",	/* PCIE_FW_EVAL_INIT */
228 		"Unexpected Event",	/* PCIE_FW_EVAL_UNEXPECTEDEVENT */
229 		"Insufficient Airflow",		/* PCIE_FW_EVAL_OVERHEAT */
230 		"Device Shutdown",	/* PCIE_FW_EVAL_DEVICESHUTDOWN */
231 		"Reserved",			/* reserved */
232 	};
233 	u32 pcie_fw;
234 
235 	pcie_fw = t4_read_reg(adap, A_PCIE_FW);
236 	if (pcie_fw & F_PCIE_FW_ERR)
237 		pr_err("%s: Firmware reports adapter error: %s\n",
238 		       __func__, reason[G_PCIE_FW_EVAL(pcie_fw)]);
239 }
240 
241 /*
242  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
243  */
get_mbox_rpl(struct adapter * adap,__be64 * rpl,int nflit,u32 mbox_addr)244 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
245 			 u32 mbox_addr)
246 {
247 	for ( ; nflit; nflit--, mbox_addr += 8)
248 		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
249 }
250 
251 /*
252  * Handle a FW assertion reported in a mailbox.
253  */
fw_asrt(struct adapter * adap,u32 mbox_addr)254 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
255 {
256 	struct fw_debug_cmd asrt;
257 
258 	get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
259 	pr_warn("FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
260 		asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
261 		be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
262 }
263 
264 #define X_CIM_PF_NOACCESS 0xeeeeeeee
265 
266 /**
267  * t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
268  * @adap: the adapter
269  * @mbox: index of the mailbox to use
270  * @cmd: the command to write
271  * @size: command length in bytes
272  * @rpl: where to optionally store the reply
273  * @sleep_ok: if true we may sleep while awaiting command completion
274  * @timeout: time to wait for command to finish before timing out
275  *	     (negative implies @sleep_ok=false)
276  *
277  * Sends the given command to FW through the selected mailbox and waits
278  * for the FW to execute the command.  If @rpl is not %NULL it is used to
279  * store the FW's reply to the command.  The command and its optional
280  * reply are of the same length.  Some FW commands like RESET and
281  * INITIALIZE can take a considerable amount of time to execute.
282  * @sleep_ok determines whether we may sleep while awaiting the response.
283  * If sleeping is allowed we use progressive backoff otherwise we spin.
284  * Note that passing in a negative @timeout is an alternate mechanism
285  * for specifying @sleep_ok=false.  This is useful when a higher level
286  * interface allows for specification of @timeout but not @sleep_ok ...
287  *
288  * Returns 0 on success or a negative errno on failure.  A
289  * failure can happen either because we are not able to execute the
290  * command or FW executes it but signals an error.  In the latter case
291  * the return value is the error code indicated by FW (negated).
292  */
t4_wr_mbox_meat_timeout(struct adapter * adap,int mbox,const void * cmd,int size,void * rpl,bool sleep_ok,int timeout)293 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox,
294 			    const void __attribute__((__may_alias__)) *cmd,
295 			    int size, void *rpl, bool sleep_ok, int timeout)
296 {
297 	/*
298 	 * We delay in small increments at first in an effort to maintain
299 	 * responsiveness for simple, fast executing commands but then back
300 	 * off to larger delays to a maximum retry delay.
301 	 */
302 	static const int delay[] = {
303 		1, 1, 3, 5, 10, 10, 20, 50, 100
304 	};
305 
306 	u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA);
307 	u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL);
308 	struct mbox_entry *entry;
309 	u32 v, ctl, pcie_fw = 0;
310 	unsigned int delay_idx;
311 	const __be64 *p;
312 	int i, ms, ret;
313 	u64 res;
314 
315 	if ((size & 15) != 0 || size > MBOX_LEN)
316 		return -EINVAL;
317 
318 	/*
319 	 * If we have a negative timeout, that implies that we can't sleep.
320 	 */
321 	if (timeout < 0) {
322 		sleep_ok = false;
323 		timeout = -timeout;
324 	}
325 
326 	entry = t4_os_alloc(sizeof(*entry));
327 	if (entry == NULL)
328 		return -ENOMEM;
329 
330 	/*
331 	 * Queue ourselves onto the mailbox access list.  When our entry is at
332 	 * the front of the list, we have rights to access the mailbox.  So we
333 	 * wait [for a while] till we're at the front [or bail out with an
334 	 * EBUSY] ...
335 	 */
336 	t4_os_atomic_add_tail(entry, &adap->mbox_list, &adap->mbox_lock);
337 
338 	delay_idx = 0;
339 	ms = delay[0];
340 
341 	for (i = 0; ; i += ms) {
342 		/*
343 		 * If we've waited too long, return a busy indication.  This
344 		 * really ought to be based on our initial position in the
345 		 * mailbox access list but this is a start.  We very rarely
346 		 * contend on access to the mailbox ...  Also check for a
347 		 * firmware error which we'll report as a device error.
348 		 */
349 		pcie_fw = t4_read_reg(adap, A_PCIE_FW);
350 		if (i > 4 * timeout || (pcie_fw & F_PCIE_FW_ERR)) {
351 			t4_os_atomic_list_del(entry, &adap->mbox_list,
352 					      &adap->mbox_lock);
353 			t4_report_fw_error(adap);
354 			ret = ((pcie_fw & F_PCIE_FW_ERR) != 0) ? -ENXIO : -EBUSY;
355 			goto out_free;
356 		}
357 
358 		/*
359 		 * If we're at the head, break out and start the mailbox
360 		 * protocol.
361 		 */
362 		if (t4_os_list_first_entry(&adap->mbox_list) == entry)
363 			break;
364 
365 		/*
366 		 * Delay for a bit before checking again ...
367 		 */
368 		if (sleep_ok) {
369 			ms = delay[delay_idx];  /* last element may repeat */
370 			if (delay_idx < ARRAY_SIZE(delay) - 1)
371 				delay_idx++;
372 			msleep(ms);
373 		} else {
374 			rte_delay_ms(ms);
375 		}
376 	}
377 
378 	/*
379 	 * Attempt to gain access to the mailbox.
380 	 */
381 	for (i = 0; i < 4; i++) {
382 		ctl = t4_read_reg(adap, ctl_reg);
383 		v = G_MBOWNER(ctl);
384 		if (v != X_MBOWNER_NONE)
385 			break;
386 	}
387 
388 	/*
389 	 * If we were unable to gain access, dequeue ourselves from the
390 	 * mailbox atomic access list and report the error to our caller.
391 	 */
392 	if (v != X_MBOWNER_PL) {
393 		t4_os_atomic_list_del(entry, &adap->mbox_list,
394 				      &adap->mbox_lock);
395 		t4_report_fw_error(adap);
396 		ret = (v == X_MBOWNER_FW) ? -EBUSY : -ETIMEDOUT;
397 		goto out_free;
398 	}
399 
400 	/*
401 	 * If we gain ownership of the mailbox and there's a "valid" message
402 	 * in it, this is likely an asynchronous error message from the
403 	 * firmware.  So we'll report that and then proceed on with attempting
404 	 * to issue our own command ... which may well fail if the error
405 	 * presaged the firmware crashing ...
406 	 */
407 	if (ctl & F_MBMSGVALID) {
408 		dev_err(adap, "found VALID command in mbox %u: "
409 			"%llx %llx %llx %llx %llx %llx %llx %llx\n", mbox,
410 			(unsigned long long)t4_read_reg64(adap, data_reg),
411 			(unsigned long long)t4_read_reg64(adap, data_reg + 8),
412 			(unsigned long long)t4_read_reg64(adap, data_reg + 16),
413 			(unsigned long long)t4_read_reg64(adap, data_reg + 24),
414 			(unsigned long long)t4_read_reg64(adap, data_reg + 32),
415 			(unsigned long long)t4_read_reg64(adap, data_reg + 40),
416 			(unsigned long long)t4_read_reg64(adap, data_reg + 48),
417 			(unsigned long long)t4_read_reg64(adap, data_reg + 56));
418 	}
419 
420 	/*
421 	 * Copy in the new mailbox command and send it on its way ...
422 	 */
423 	for (i = 0, p = cmd; i < size; i += 8, p++)
424 		t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p));
425 
426 	CXGBE_DEBUG_MBOX(adap, "%s: mbox %u: %016llx %016llx %016llx %016llx "
427 			"%016llx %016llx %016llx %016llx\n", __func__,  (mbox),
428 			(unsigned long long)t4_read_reg64(adap, data_reg),
429 			(unsigned long long)t4_read_reg64(adap, data_reg + 8),
430 			(unsigned long long)t4_read_reg64(adap, data_reg + 16),
431 			(unsigned long long)t4_read_reg64(adap, data_reg + 24),
432 			(unsigned long long)t4_read_reg64(adap, data_reg + 32),
433 			(unsigned long long)t4_read_reg64(adap, data_reg + 40),
434 			(unsigned long long)t4_read_reg64(adap, data_reg + 48),
435 			(unsigned long long)t4_read_reg64(adap, data_reg + 56));
436 
437 	t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW));
438 	t4_read_reg(adap, ctl_reg);          /* flush write */
439 
440 	delay_idx = 0;
441 	ms = delay[0];
442 
443 	/*
444 	 * Loop waiting for the reply; bail out if we time out or the firmware
445 	 * reports an error.
446 	 */
447 	pcie_fw = t4_read_reg(adap, A_PCIE_FW);
448 	for (i = 0; i < timeout && !(pcie_fw & F_PCIE_FW_ERR); i += ms) {
449 		if (sleep_ok) {
450 			ms = delay[delay_idx];  /* last element may repeat */
451 			if (delay_idx < ARRAY_SIZE(delay) - 1)
452 				delay_idx++;
453 			msleep(ms);
454 		} else {
455 			msleep(ms);
456 		}
457 
458 		pcie_fw = t4_read_reg(adap, A_PCIE_FW);
459 		v = t4_read_reg(adap, ctl_reg);
460 		if (v == X_CIM_PF_NOACCESS)
461 			continue;
462 		if (G_MBOWNER(v) == X_MBOWNER_PL) {
463 			if (!(v & F_MBMSGVALID)) {
464 				t4_write_reg(adap, ctl_reg,
465 					     V_MBOWNER(X_MBOWNER_NONE));
466 				continue;
467 			}
468 
469 			CXGBE_DEBUG_MBOX(adap,
470 			"%s: mbox %u: %016llx %016llx %016llx %016llx "
471 			"%016llx %016llx %016llx %016llx\n", __func__,  (mbox),
472 			(unsigned long long)t4_read_reg64(adap, data_reg),
473 			(unsigned long long)t4_read_reg64(adap, data_reg + 8),
474 			(unsigned long long)t4_read_reg64(adap, data_reg + 16),
475 			(unsigned long long)t4_read_reg64(adap, data_reg + 24),
476 			(unsigned long long)t4_read_reg64(adap, data_reg + 32),
477 			(unsigned long long)t4_read_reg64(adap, data_reg + 40),
478 			(unsigned long long)t4_read_reg64(adap, data_reg + 48),
479 			(unsigned long long)t4_read_reg64(adap, data_reg + 56));
480 
481 			CXGBE_DEBUG_MBOX(adap,
482 				"command %#x completed in %d ms (%ssleeping)\n",
483 				*(const u8 *)cmd,
484 				i + ms, sleep_ok ? "" : "non-");
485 
486 			res = t4_read_reg64(adap, data_reg);
487 			if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) {
488 				fw_asrt(adap, data_reg);
489 				res = V_FW_CMD_RETVAL(EIO);
490 			} else if (rpl) {
491 				get_mbox_rpl(adap, rpl, size / 8, data_reg);
492 			}
493 			t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE));
494 			t4_os_atomic_list_del(entry, &adap->mbox_list,
495 					      &adap->mbox_lock);
496 			ret = -G_FW_CMD_RETVAL((int)res);
497 			goto out_free;
498 		}
499 	}
500 
501 	/*
502 	 * We timed out waiting for a reply to our mailbox command.  Report
503 	 * the error and also check to see if the firmware reported any
504 	 * errors ...
505 	 */
506 	dev_err(adap, "command %#x in mailbox %d timed out\n",
507 		*(const u8 *)cmd, mbox);
508 	t4_os_atomic_list_del(entry, &adap->mbox_list, &adap->mbox_lock);
509 	t4_report_fw_error(adap);
510 	ret = ((pcie_fw & F_PCIE_FW_ERR) != 0) ? -ENXIO : -ETIMEDOUT;
511 
512 out_free:
513 	t4_os_free(entry);
514 	return ret;
515 }
516 
t4_wr_mbox_meat(struct adapter * adap,int mbox,const void * cmd,int size,void * rpl,bool sleep_ok)517 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
518 		    void *rpl, bool sleep_ok)
519 {
520 	return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
521 				       FW_CMD_MAX_TIMEOUT);
522 }
523 
524 /**
525  * t4_get_regs_len - return the size of the chips register set
526  * @adapter: the adapter
527  *
528  * Returns the size of the chip's BAR0 register space.
529  */
t4_get_regs_len(struct adapter * adapter)530 unsigned int t4_get_regs_len(struct adapter *adapter)
531 {
532 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
533 
534 	switch (chip_version) {
535 	case CHELSIO_T5:
536 	case CHELSIO_T6:
537 		return T5_REGMAP_SIZE;
538 	}
539 
540 	dev_err(adapter,
541 		"Unsupported chip version %d\n", chip_version);
542 	return 0;
543 }
544 
545 /**
546  * t4_get_regs - read chip registers into provided buffer
547  * @adap: the adapter
548  * @buf: register buffer
549  * @buf_size: size (in bytes) of register buffer
550  *
551  * If the provided register buffer isn't large enough for the chip's
552  * full register range, the register dump will be truncated to the
553  * register buffer's size.
554  */
t4_get_regs(struct adapter * adap,void * buf,size_t buf_size)555 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
556 {
557 	static const unsigned int t5_reg_ranges[] = {
558 		0x1008, 0x10c0,
559 		0x10cc, 0x10f8,
560 		0x1100, 0x1100,
561 		0x110c, 0x1148,
562 		0x1180, 0x1184,
563 		0x1190, 0x1194,
564 		0x11a0, 0x11a4,
565 		0x11b0, 0x11b4,
566 		0x11fc, 0x123c,
567 		0x1280, 0x173c,
568 		0x1800, 0x18fc,
569 		0x3000, 0x3028,
570 		0x3060, 0x30b0,
571 		0x30b8, 0x30d8,
572 		0x30e0, 0x30fc,
573 		0x3140, 0x357c,
574 		0x35a8, 0x35cc,
575 		0x35ec, 0x35ec,
576 		0x3600, 0x5624,
577 		0x56cc, 0x56ec,
578 		0x56f4, 0x5720,
579 		0x5728, 0x575c,
580 		0x580c, 0x5814,
581 		0x5890, 0x589c,
582 		0x58a4, 0x58ac,
583 		0x58b8, 0x58bc,
584 		0x5940, 0x59c8,
585 		0x59d0, 0x59dc,
586 		0x59fc, 0x5a18,
587 		0x5a60, 0x5a70,
588 		0x5a80, 0x5a9c,
589 		0x5b94, 0x5bfc,
590 		0x6000, 0x6020,
591 		0x6028, 0x6040,
592 		0x6058, 0x609c,
593 		0x60a8, 0x614c,
594 		0x7700, 0x7798,
595 		0x77c0, 0x78fc,
596 		0x7b00, 0x7b58,
597 		0x7b60, 0x7b84,
598 		0x7b8c, 0x7c54,
599 		0x7d00, 0x7d38,
600 		0x7d40, 0x7d80,
601 		0x7d8c, 0x7ddc,
602 		0x7de4, 0x7e04,
603 		0x7e10, 0x7e1c,
604 		0x7e24, 0x7e38,
605 		0x7e40, 0x7e44,
606 		0x7e4c, 0x7e78,
607 		0x7e80, 0x7edc,
608 		0x7ee8, 0x7efc,
609 		0x8dc0, 0x8de0,
610 		0x8df8, 0x8e04,
611 		0x8e10, 0x8e84,
612 		0x8ea0, 0x8f84,
613 		0x8fc0, 0x9058,
614 		0x9060, 0x9060,
615 		0x9068, 0x90f8,
616 		0x9400, 0x9408,
617 		0x9410, 0x9470,
618 		0x9600, 0x9600,
619 		0x9608, 0x9638,
620 		0x9640, 0x96f4,
621 		0x9800, 0x9808,
622 		0x9820, 0x983c,
623 		0x9850, 0x9864,
624 		0x9c00, 0x9c6c,
625 		0x9c80, 0x9cec,
626 		0x9d00, 0x9d6c,
627 		0x9d80, 0x9dec,
628 		0x9e00, 0x9e6c,
629 		0x9e80, 0x9eec,
630 		0x9f00, 0x9f6c,
631 		0x9f80, 0xa020,
632 		0xd004, 0xd004,
633 		0xd010, 0xd03c,
634 		0xdfc0, 0xdfe0,
635 		0xe000, 0x1106c,
636 		0x11074, 0x11088,
637 		0x1109c, 0x1117c,
638 		0x11190, 0x11204,
639 		0x19040, 0x1906c,
640 		0x19078, 0x19080,
641 		0x1908c, 0x190e8,
642 		0x190f0, 0x190f8,
643 		0x19100, 0x19110,
644 		0x19120, 0x19124,
645 		0x19150, 0x19194,
646 		0x1919c, 0x191b0,
647 		0x191d0, 0x191e8,
648 		0x19238, 0x19290,
649 		0x193f8, 0x19428,
650 		0x19430, 0x19444,
651 		0x1944c, 0x1946c,
652 		0x19474, 0x19474,
653 		0x19490, 0x194cc,
654 		0x194f0, 0x194f8,
655 		0x19c00, 0x19c08,
656 		0x19c10, 0x19c60,
657 		0x19c94, 0x19ce4,
658 		0x19cf0, 0x19d40,
659 		0x19d50, 0x19d94,
660 		0x19da0, 0x19de8,
661 		0x19df0, 0x19e10,
662 		0x19e50, 0x19e90,
663 		0x19ea0, 0x19f24,
664 		0x19f34, 0x19f34,
665 		0x19f40, 0x19f50,
666 		0x19f90, 0x19fb4,
667 		0x19fc4, 0x19fe4,
668 		0x1a000, 0x1a004,
669 		0x1a010, 0x1a06c,
670 		0x1a0b0, 0x1a0e4,
671 		0x1a0ec, 0x1a0f8,
672 		0x1a100, 0x1a108,
673 		0x1a114, 0x1a120,
674 		0x1a128, 0x1a130,
675 		0x1a138, 0x1a138,
676 		0x1a190, 0x1a1c4,
677 		0x1a1fc, 0x1a1fc,
678 		0x1e008, 0x1e00c,
679 		0x1e040, 0x1e044,
680 		0x1e04c, 0x1e04c,
681 		0x1e284, 0x1e290,
682 		0x1e2c0, 0x1e2c0,
683 		0x1e2e0, 0x1e2e0,
684 		0x1e300, 0x1e384,
685 		0x1e3c0, 0x1e3c8,
686 		0x1e408, 0x1e40c,
687 		0x1e440, 0x1e444,
688 		0x1e44c, 0x1e44c,
689 		0x1e684, 0x1e690,
690 		0x1e6c0, 0x1e6c0,
691 		0x1e6e0, 0x1e6e0,
692 		0x1e700, 0x1e784,
693 		0x1e7c0, 0x1e7c8,
694 		0x1e808, 0x1e80c,
695 		0x1e840, 0x1e844,
696 		0x1e84c, 0x1e84c,
697 		0x1ea84, 0x1ea90,
698 		0x1eac0, 0x1eac0,
699 		0x1eae0, 0x1eae0,
700 		0x1eb00, 0x1eb84,
701 		0x1ebc0, 0x1ebc8,
702 		0x1ec08, 0x1ec0c,
703 		0x1ec40, 0x1ec44,
704 		0x1ec4c, 0x1ec4c,
705 		0x1ee84, 0x1ee90,
706 		0x1eec0, 0x1eec0,
707 		0x1eee0, 0x1eee0,
708 		0x1ef00, 0x1ef84,
709 		0x1efc0, 0x1efc8,
710 		0x1f008, 0x1f00c,
711 		0x1f040, 0x1f044,
712 		0x1f04c, 0x1f04c,
713 		0x1f284, 0x1f290,
714 		0x1f2c0, 0x1f2c0,
715 		0x1f2e0, 0x1f2e0,
716 		0x1f300, 0x1f384,
717 		0x1f3c0, 0x1f3c8,
718 		0x1f408, 0x1f40c,
719 		0x1f440, 0x1f444,
720 		0x1f44c, 0x1f44c,
721 		0x1f684, 0x1f690,
722 		0x1f6c0, 0x1f6c0,
723 		0x1f6e0, 0x1f6e0,
724 		0x1f700, 0x1f784,
725 		0x1f7c0, 0x1f7c8,
726 		0x1f808, 0x1f80c,
727 		0x1f840, 0x1f844,
728 		0x1f84c, 0x1f84c,
729 		0x1fa84, 0x1fa90,
730 		0x1fac0, 0x1fac0,
731 		0x1fae0, 0x1fae0,
732 		0x1fb00, 0x1fb84,
733 		0x1fbc0, 0x1fbc8,
734 		0x1fc08, 0x1fc0c,
735 		0x1fc40, 0x1fc44,
736 		0x1fc4c, 0x1fc4c,
737 		0x1fe84, 0x1fe90,
738 		0x1fec0, 0x1fec0,
739 		0x1fee0, 0x1fee0,
740 		0x1ff00, 0x1ff84,
741 		0x1ffc0, 0x1ffc8,
742 		0x30000, 0x30030,
743 		0x30038, 0x30038,
744 		0x30040, 0x30040,
745 		0x30100, 0x30144,
746 		0x30190, 0x301a0,
747 		0x301a8, 0x301b8,
748 		0x301c4, 0x301c8,
749 		0x301d0, 0x301d0,
750 		0x30200, 0x30318,
751 		0x30400, 0x304b4,
752 		0x304c0, 0x3052c,
753 		0x30540, 0x3061c,
754 		0x30800, 0x30828,
755 		0x30834, 0x30834,
756 		0x308c0, 0x30908,
757 		0x30910, 0x309ac,
758 		0x30a00, 0x30a14,
759 		0x30a1c, 0x30a2c,
760 		0x30a44, 0x30a50,
761 		0x30a74, 0x30a74,
762 		0x30a7c, 0x30afc,
763 		0x30b08, 0x30c24,
764 		0x30d00, 0x30d00,
765 		0x30d08, 0x30d14,
766 		0x30d1c, 0x30d20,
767 		0x30d3c, 0x30d3c,
768 		0x30d48, 0x30d50,
769 		0x31200, 0x3120c,
770 		0x31220, 0x31220,
771 		0x31240, 0x31240,
772 		0x31600, 0x3160c,
773 		0x31a00, 0x31a1c,
774 		0x31e00, 0x31e20,
775 		0x31e38, 0x31e3c,
776 		0x31e80, 0x31e80,
777 		0x31e88, 0x31ea8,
778 		0x31eb0, 0x31eb4,
779 		0x31ec8, 0x31ed4,
780 		0x31fb8, 0x32004,
781 		0x32200, 0x32200,
782 		0x32208, 0x32240,
783 		0x32248, 0x32280,
784 		0x32288, 0x322c0,
785 		0x322c8, 0x322fc,
786 		0x32600, 0x32630,
787 		0x32a00, 0x32abc,
788 		0x32b00, 0x32b10,
789 		0x32b20, 0x32b30,
790 		0x32b40, 0x32b50,
791 		0x32b60, 0x32b70,
792 		0x33000, 0x33028,
793 		0x33030, 0x33048,
794 		0x33060, 0x33068,
795 		0x33070, 0x3309c,
796 		0x330f0, 0x33128,
797 		0x33130, 0x33148,
798 		0x33160, 0x33168,
799 		0x33170, 0x3319c,
800 		0x331f0, 0x33238,
801 		0x33240, 0x33240,
802 		0x33248, 0x33250,
803 		0x3325c, 0x33264,
804 		0x33270, 0x332b8,
805 		0x332c0, 0x332e4,
806 		0x332f8, 0x33338,
807 		0x33340, 0x33340,
808 		0x33348, 0x33350,
809 		0x3335c, 0x33364,
810 		0x33370, 0x333b8,
811 		0x333c0, 0x333e4,
812 		0x333f8, 0x33428,
813 		0x33430, 0x33448,
814 		0x33460, 0x33468,
815 		0x33470, 0x3349c,
816 		0x334f0, 0x33528,
817 		0x33530, 0x33548,
818 		0x33560, 0x33568,
819 		0x33570, 0x3359c,
820 		0x335f0, 0x33638,
821 		0x33640, 0x33640,
822 		0x33648, 0x33650,
823 		0x3365c, 0x33664,
824 		0x33670, 0x336b8,
825 		0x336c0, 0x336e4,
826 		0x336f8, 0x33738,
827 		0x33740, 0x33740,
828 		0x33748, 0x33750,
829 		0x3375c, 0x33764,
830 		0x33770, 0x337b8,
831 		0x337c0, 0x337e4,
832 		0x337f8, 0x337fc,
833 		0x33814, 0x33814,
834 		0x3382c, 0x3382c,
835 		0x33880, 0x3388c,
836 		0x338e8, 0x338ec,
837 		0x33900, 0x33928,
838 		0x33930, 0x33948,
839 		0x33960, 0x33968,
840 		0x33970, 0x3399c,
841 		0x339f0, 0x33a38,
842 		0x33a40, 0x33a40,
843 		0x33a48, 0x33a50,
844 		0x33a5c, 0x33a64,
845 		0x33a70, 0x33ab8,
846 		0x33ac0, 0x33ae4,
847 		0x33af8, 0x33b10,
848 		0x33b28, 0x33b28,
849 		0x33b3c, 0x33b50,
850 		0x33bf0, 0x33c10,
851 		0x33c28, 0x33c28,
852 		0x33c3c, 0x33c50,
853 		0x33cf0, 0x33cfc,
854 		0x34000, 0x34030,
855 		0x34038, 0x34038,
856 		0x34040, 0x34040,
857 		0x34100, 0x34144,
858 		0x34190, 0x341a0,
859 		0x341a8, 0x341b8,
860 		0x341c4, 0x341c8,
861 		0x341d0, 0x341d0,
862 		0x34200, 0x34318,
863 		0x34400, 0x344b4,
864 		0x344c0, 0x3452c,
865 		0x34540, 0x3461c,
866 		0x34800, 0x34828,
867 		0x34834, 0x34834,
868 		0x348c0, 0x34908,
869 		0x34910, 0x349ac,
870 		0x34a00, 0x34a14,
871 		0x34a1c, 0x34a2c,
872 		0x34a44, 0x34a50,
873 		0x34a74, 0x34a74,
874 		0x34a7c, 0x34afc,
875 		0x34b08, 0x34c24,
876 		0x34d00, 0x34d00,
877 		0x34d08, 0x34d14,
878 		0x34d1c, 0x34d20,
879 		0x34d3c, 0x34d3c,
880 		0x34d48, 0x34d50,
881 		0x35200, 0x3520c,
882 		0x35220, 0x35220,
883 		0x35240, 0x35240,
884 		0x35600, 0x3560c,
885 		0x35a00, 0x35a1c,
886 		0x35e00, 0x35e20,
887 		0x35e38, 0x35e3c,
888 		0x35e80, 0x35e80,
889 		0x35e88, 0x35ea8,
890 		0x35eb0, 0x35eb4,
891 		0x35ec8, 0x35ed4,
892 		0x35fb8, 0x36004,
893 		0x36200, 0x36200,
894 		0x36208, 0x36240,
895 		0x36248, 0x36280,
896 		0x36288, 0x362c0,
897 		0x362c8, 0x362fc,
898 		0x36600, 0x36630,
899 		0x36a00, 0x36abc,
900 		0x36b00, 0x36b10,
901 		0x36b20, 0x36b30,
902 		0x36b40, 0x36b50,
903 		0x36b60, 0x36b70,
904 		0x37000, 0x37028,
905 		0x37030, 0x37048,
906 		0x37060, 0x37068,
907 		0x37070, 0x3709c,
908 		0x370f0, 0x37128,
909 		0x37130, 0x37148,
910 		0x37160, 0x37168,
911 		0x37170, 0x3719c,
912 		0x371f0, 0x37238,
913 		0x37240, 0x37240,
914 		0x37248, 0x37250,
915 		0x3725c, 0x37264,
916 		0x37270, 0x372b8,
917 		0x372c0, 0x372e4,
918 		0x372f8, 0x37338,
919 		0x37340, 0x37340,
920 		0x37348, 0x37350,
921 		0x3735c, 0x37364,
922 		0x37370, 0x373b8,
923 		0x373c0, 0x373e4,
924 		0x373f8, 0x37428,
925 		0x37430, 0x37448,
926 		0x37460, 0x37468,
927 		0x37470, 0x3749c,
928 		0x374f0, 0x37528,
929 		0x37530, 0x37548,
930 		0x37560, 0x37568,
931 		0x37570, 0x3759c,
932 		0x375f0, 0x37638,
933 		0x37640, 0x37640,
934 		0x37648, 0x37650,
935 		0x3765c, 0x37664,
936 		0x37670, 0x376b8,
937 		0x376c0, 0x376e4,
938 		0x376f8, 0x37738,
939 		0x37740, 0x37740,
940 		0x37748, 0x37750,
941 		0x3775c, 0x37764,
942 		0x37770, 0x377b8,
943 		0x377c0, 0x377e4,
944 		0x377f8, 0x377fc,
945 		0x37814, 0x37814,
946 		0x3782c, 0x3782c,
947 		0x37880, 0x3788c,
948 		0x378e8, 0x378ec,
949 		0x37900, 0x37928,
950 		0x37930, 0x37948,
951 		0x37960, 0x37968,
952 		0x37970, 0x3799c,
953 		0x379f0, 0x37a38,
954 		0x37a40, 0x37a40,
955 		0x37a48, 0x37a50,
956 		0x37a5c, 0x37a64,
957 		0x37a70, 0x37ab8,
958 		0x37ac0, 0x37ae4,
959 		0x37af8, 0x37b10,
960 		0x37b28, 0x37b28,
961 		0x37b3c, 0x37b50,
962 		0x37bf0, 0x37c10,
963 		0x37c28, 0x37c28,
964 		0x37c3c, 0x37c50,
965 		0x37cf0, 0x37cfc,
966 		0x38000, 0x38030,
967 		0x38038, 0x38038,
968 		0x38040, 0x38040,
969 		0x38100, 0x38144,
970 		0x38190, 0x381a0,
971 		0x381a8, 0x381b8,
972 		0x381c4, 0x381c8,
973 		0x381d0, 0x381d0,
974 		0x38200, 0x38318,
975 		0x38400, 0x384b4,
976 		0x384c0, 0x3852c,
977 		0x38540, 0x3861c,
978 		0x38800, 0x38828,
979 		0x38834, 0x38834,
980 		0x388c0, 0x38908,
981 		0x38910, 0x389ac,
982 		0x38a00, 0x38a14,
983 		0x38a1c, 0x38a2c,
984 		0x38a44, 0x38a50,
985 		0x38a74, 0x38a74,
986 		0x38a7c, 0x38afc,
987 		0x38b08, 0x38c24,
988 		0x38d00, 0x38d00,
989 		0x38d08, 0x38d14,
990 		0x38d1c, 0x38d20,
991 		0x38d3c, 0x38d3c,
992 		0x38d48, 0x38d50,
993 		0x39200, 0x3920c,
994 		0x39220, 0x39220,
995 		0x39240, 0x39240,
996 		0x39600, 0x3960c,
997 		0x39a00, 0x39a1c,
998 		0x39e00, 0x39e20,
999 		0x39e38, 0x39e3c,
1000 		0x39e80, 0x39e80,
1001 		0x39e88, 0x39ea8,
1002 		0x39eb0, 0x39eb4,
1003 		0x39ec8, 0x39ed4,
1004 		0x39fb8, 0x3a004,
1005 		0x3a200, 0x3a200,
1006 		0x3a208, 0x3a240,
1007 		0x3a248, 0x3a280,
1008 		0x3a288, 0x3a2c0,
1009 		0x3a2c8, 0x3a2fc,
1010 		0x3a600, 0x3a630,
1011 		0x3aa00, 0x3aabc,
1012 		0x3ab00, 0x3ab10,
1013 		0x3ab20, 0x3ab30,
1014 		0x3ab40, 0x3ab50,
1015 		0x3ab60, 0x3ab70,
1016 		0x3b000, 0x3b028,
1017 		0x3b030, 0x3b048,
1018 		0x3b060, 0x3b068,
1019 		0x3b070, 0x3b09c,
1020 		0x3b0f0, 0x3b128,
1021 		0x3b130, 0x3b148,
1022 		0x3b160, 0x3b168,
1023 		0x3b170, 0x3b19c,
1024 		0x3b1f0, 0x3b238,
1025 		0x3b240, 0x3b240,
1026 		0x3b248, 0x3b250,
1027 		0x3b25c, 0x3b264,
1028 		0x3b270, 0x3b2b8,
1029 		0x3b2c0, 0x3b2e4,
1030 		0x3b2f8, 0x3b338,
1031 		0x3b340, 0x3b340,
1032 		0x3b348, 0x3b350,
1033 		0x3b35c, 0x3b364,
1034 		0x3b370, 0x3b3b8,
1035 		0x3b3c0, 0x3b3e4,
1036 		0x3b3f8, 0x3b428,
1037 		0x3b430, 0x3b448,
1038 		0x3b460, 0x3b468,
1039 		0x3b470, 0x3b49c,
1040 		0x3b4f0, 0x3b528,
1041 		0x3b530, 0x3b548,
1042 		0x3b560, 0x3b568,
1043 		0x3b570, 0x3b59c,
1044 		0x3b5f0, 0x3b638,
1045 		0x3b640, 0x3b640,
1046 		0x3b648, 0x3b650,
1047 		0x3b65c, 0x3b664,
1048 		0x3b670, 0x3b6b8,
1049 		0x3b6c0, 0x3b6e4,
1050 		0x3b6f8, 0x3b738,
1051 		0x3b740, 0x3b740,
1052 		0x3b748, 0x3b750,
1053 		0x3b75c, 0x3b764,
1054 		0x3b770, 0x3b7b8,
1055 		0x3b7c0, 0x3b7e4,
1056 		0x3b7f8, 0x3b7fc,
1057 		0x3b814, 0x3b814,
1058 		0x3b82c, 0x3b82c,
1059 		0x3b880, 0x3b88c,
1060 		0x3b8e8, 0x3b8ec,
1061 		0x3b900, 0x3b928,
1062 		0x3b930, 0x3b948,
1063 		0x3b960, 0x3b968,
1064 		0x3b970, 0x3b99c,
1065 		0x3b9f0, 0x3ba38,
1066 		0x3ba40, 0x3ba40,
1067 		0x3ba48, 0x3ba50,
1068 		0x3ba5c, 0x3ba64,
1069 		0x3ba70, 0x3bab8,
1070 		0x3bac0, 0x3bae4,
1071 		0x3baf8, 0x3bb10,
1072 		0x3bb28, 0x3bb28,
1073 		0x3bb3c, 0x3bb50,
1074 		0x3bbf0, 0x3bc10,
1075 		0x3bc28, 0x3bc28,
1076 		0x3bc3c, 0x3bc50,
1077 		0x3bcf0, 0x3bcfc,
1078 		0x3c000, 0x3c030,
1079 		0x3c038, 0x3c038,
1080 		0x3c040, 0x3c040,
1081 		0x3c100, 0x3c144,
1082 		0x3c190, 0x3c1a0,
1083 		0x3c1a8, 0x3c1b8,
1084 		0x3c1c4, 0x3c1c8,
1085 		0x3c1d0, 0x3c1d0,
1086 		0x3c200, 0x3c318,
1087 		0x3c400, 0x3c4b4,
1088 		0x3c4c0, 0x3c52c,
1089 		0x3c540, 0x3c61c,
1090 		0x3c800, 0x3c828,
1091 		0x3c834, 0x3c834,
1092 		0x3c8c0, 0x3c908,
1093 		0x3c910, 0x3c9ac,
1094 		0x3ca00, 0x3ca14,
1095 		0x3ca1c, 0x3ca2c,
1096 		0x3ca44, 0x3ca50,
1097 		0x3ca74, 0x3ca74,
1098 		0x3ca7c, 0x3cafc,
1099 		0x3cb08, 0x3cc24,
1100 		0x3cd00, 0x3cd00,
1101 		0x3cd08, 0x3cd14,
1102 		0x3cd1c, 0x3cd20,
1103 		0x3cd3c, 0x3cd3c,
1104 		0x3cd48, 0x3cd50,
1105 		0x3d200, 0x3d20c,
1106 		0x3d220, 0x3d220,
1107 		0x3d240, 0x3d240,
1108 		0x3d600, 0x3d60c,
1109 		0x3da00, 0x3da1c,
1110 		0x3de00, 0x3de20,
1111 		0x3de38, 0x3de3c,
1112 		0x3de80, 0x3de80,
1113 		0x3de88, 0x3dea8,
1114 		0x3deb0, 0x3deb4,
1115 		0x3dec8, 0x3ded4,
1116 		0x3dfb8, 0x3e004,
1117 		0x3e200, 0x3e200,
1118 		0x3e208, 0x3e240,
1119 		0x3e248, 0x3e280,
1120 		0x3e288, 0x3e2c0,
1121 		0x3e2c8, 0x3e2fc,
1122 		0x3e600, 0x3e630,
1123 		0x3ea00, 0x3eabc,
1124 		0x3eb00, 0x3eb10,
1125 		0x3eb20, 0x3eb30,
1126 		0x3eb40, 0x3eb50,
1127 		0x3eb60, 0x3eb70,
1128 		0x3f000, 0x3f028,
1129 		0x3f030, 0x3f048,
1130 		0x3f060, 0x3f068,
1131 		0x3f070, 0x3f09c,
1132 		0x3f0f0, 0x3f128,
1133 		0x3f130, 0x3f148,
1134 		0x3f160, 0x3f168,
1135 		0x3f170, 0x3f19c,
1136 		0x3f1f0, 0x3f238,
1137 		0x3f240, 0x3f240,
1138 		0x3f248, 0x3f250,
1139 		0x3f25c, 0x3f264,
1140 		0x3f270, 0x3f2b8,
1141 		0x3f2c0, 0x3f2e4,
1142 		0x3f2f8, 0x3f338,
1143 		0x3f340, 0x3f340,
1144 		0x3f348, 0x3f350,
1145 		0x3f35c, 0x3f364,
1146 		0x3f370, 0x3f3b8,
1147 		0x3f3c0, 0x3f3e4,
1148 		0x3f3f8, 0x3f428,
1149 		0x3f430, 0x3f448,
1150 		0x3f460, 0x3f468,
1151 		0x3f470, 0x3f49c,
1152 		0x3f4f0, 0x3f528,
1153 		0x3f530, 0x3f548,
1154 		0x3f560, 0x3f568,
1155 		0x3f570, 0x3f59c,
1156 		0x3f5f0, 0x3f638,
1157 		0x3f640, 0x3f640,
1158 		0x3f648, 0x3f650,
1159 		0x3f65c, 0x3f664,
1160 		0x3f670, 0x3f6b8,
1161 		0x3f6c0, 0x3f6e4,
1162 		0x3f6f8, 0x3f738,
1163 		0x3f740, 0x3f740,
1164 		0x3f748, 0x3f750,
1165 		0x3f75c, 0x3f764,
1166 		0x3f770, 0x3f7b8,
1167 		0x3f7c0, 0x3f7e4,
1168 		0x3f7f8, 0x3f7fc,
1169 		0x3f814, 0x3f814,
1170 		0x3f82c, 0x3f82c,
1171 		0x3f880, 0x3f88c,
1172 		0x3f8e8, 0x3f8ec,
1173 		0x3f900, 0x3f928,
1174 		0x3f930, 0x3f948,
1175 		0x3f960, 0x3f968,
1176 		0x3f970, 0x3f99c,
1177 		0x3f9f0, 0x3fa38,
1178 		0x3fa40, 0x3fa40,
1179 		0x3fa48, 0x3fa50,
1180 		0x3fa5c, 0x3fa64,
1181 		0x3fa70, 0x3fab8,
1182 		0x3fac0, 0x3fae4,
1183 		0x3faf8, 0x3fb10,
1184 		0x3fb28, 0x3fb28,
1185 		0x3fb3c, 0x3fb50,
1186 		0x3fbf0, 0x3fc10,
1187 		0x3fc28, 0x3fc28,
1188 		0x3fc3c, 0x3fc50,
1189 		0x3fcf0, 0x3fcfc,
1190 		0x40000, 0x4000c,
1191 		0x40040, 0x40050,
1192 		0x40060, 0x40068,
1193 		0x4007c, 0x4008c,
1194 		0x40094, 0x400b0,
1195 		0x400c0, 0x40144,
1196 		0x40180, 0x4018c,
1197 		0x40200, 0x40254,
1198 		0x40260, 0x40264,
1199 		0x40270, 0x40288,
1200 		0x40290, 0x40298,
1201 		0x402ac, 0x402c8,
1202 		0x402d0, 0x402e0,
1203 		0x402f0, 0x402f0,
1204 		0x40300, 0x4033c,
1205 		0x403f8, 0x403fc,
1206 		0x41304, 0x413c4,
1207 		0x41400, 0x4140c,
1208 		0x41414, 0x4141c,
1209 		0x41480, 0x414d0,
1210 		0x44000, 0x44054,
1211 		0x4405c, 0x44078,
1212 		0x440c0, 0x44174,
1213 		0x44180, 0x441ac,
1214 		0x441b4, 0x441b8,
1215 		0x441c0, 0x44254,
1216 		0x4425c, 0x44278,
1217 		0x442c0, 0x44374,
1218 		0x44380, 0x443ac,
1219 		0x443b4, 0x443b8,
1220 		0x443c0, 0x44454,
1221 		0x4445c, 0x44478,
1222 		0x444c0, 0x44574,
1223 		0x44580, 0x445ac,
1224 		0x445b4, 0x445b8,
1225 		0x445c0, 0x44654,
1226 		0x4465c, 0x44678,
1227 		0x446c0, 0x44774,
1228 		0x44780, 0x447ac,
1229 		0x447b4, 0x447b8,
1230 		0x447c0, 0x44854,
1231 		0x4485c, 0x44878,
1232 		0x448c0, 0x44974,
1233 		0x44980, 0x449ac,
1234 		0x449b4, 0x449b8,
1235 		0x449c0, 0x449fc,
1236 		0x45000, 0x45004,
1237 		0x45010, 0x45030,
1238 		0x45040, 0x45060,
1239 		0x45068, 0x45068,
1240 		0x45080, 0x45084,
1241 		0x450a0, 0x450b0,
1242 		0x45200, 0x45204,
1243 		0x45210, 0x45230,
1244 		0x45240, 0x45260,
1245 		0x45268, 0x45268,
1246 		0x45280, 0x45284,
1247 		0x452a0, 0x452b0,
1248 		0x460c0, 0x460e4,
1249 		0x47000, 0x4703c,
1250 		0x47044, 0x4708c,
1251 		0x47200, 0x47250,
1252 		0x47400, 0x47408,
1253 		0x47414, 0x47420,
1254 		0x47600, 0x47618,
1255 		0x47800, 0x47814,
1256 		0x48000, 0x4800c,
1257 		0x48040, 0x48050,
1258 		0x48060, 0x48068,
1259 		0x4807c, 0x4808c,
1260 		0x48094, 0x480b0,
1261 		0x480c0, 0x48144,
1262 		0x48180, 0x4818c,
1263 		0x48200, 0x48254,
1264 		0x48260, 0x48264,
1265 		0x48270, 0x48288,
1266 		0x48290, 0x48298,
1267 		0x482ac, 0x482c8,
1268 		0x482d0, 0x482e0,
1269 		0x482f0, 0x482f0,
1270 		0x48300, 0x4833c,
1271 		0x483f8, 0x483fc,
1272 		0x49304, 0x493c4,
1273 		0x49400, 0x4940c,
1274 		0x49414, 0x4941c,
1275 		0x49480, 0x494d0,
1276 		0x4c000, 0x4c054,
1277 		0x4c05c, 0x4c078,
1278 		0x4c0c0, 0x4c174,
1279 		0x4c180, 0x4c1ac,
1280 		0x4c1b4, 0x4c1b8,
1281 		0x4c1c0, 0x4c254,
1282 		0x4c25c, 0x4c278,
1283 		0x4c2c0, 0x4c374,
1284 		0x4c380, 0x4c3ac,
1285 		0x4c3b4, 0x4c3b8,
1286 		0x4c3c0, 0x4c454,
1287 		0x4c45c, 0x4c478,
1288 		0x4c4c0, 0x4c574,
1289 		0x4c580, 0x4c5ac,
1290 		0x4c5b4, 0x4c5b8,
1291 		0x4c5c0, 0x4c654,
1292 		0x4c65c, 0x4c678,
1293 		0x4c6c0, 0x4c774,
1294 		0x4c780, 0x4c7ac,
1295 		0x4c7b4, 0x4c7b8,
1296 		0x4c7c0, 0x4c854,
1297 		0x4c85c, 0x4c878,
1298 		0x4c8c0, 0x4c974,
1299 		0x4c980, 0x4c9ac,
1300 		0x4c9b4, 0x4c9b8,
1301 		0x4c9c0, 0x4c9fc,
1302 		0x4d000, 0x4d004,
1303 		0x4d010, 0x4d030,
1304 		0x4d040, 0x4d060,
1305 		0x4d068, 0x4d068,
1306 		0x4d080, 0x4d084,
1307 		0x4d0a0, 0x4d0b0,
1308 		0x4d200, 0x4d204,
1309 		0x4d210, 0x4d230,
1310 		0x4d240, 0x4d260,
1311 		0x4d268, 0x4d268,
1312 		0x4d280, 0x4d284,
1313 		0x4d2a0, 0x4d2b0,
1314 		0x4e0c0, 0x4e0e4,
1315 		0x4f000, 0x4f03c,
1316 		0x4f044, 0x4f08c,
1317 		0x4f200, 0x4f250,
1318 		0x4f400, 0x4f408,
1319 		0x4f414, 0x4f420,
1320 		0x4f600, 0x4f618,
1321 		0x4f800, 0x4f814,
1322 		0x50000, 0x50084,
1323 		0x50090, 0x500cc,
1324 		0x50400, 0x50400,
1325 		0x50800, 0x50884,
1326 		0x50890, 0x508cc,
1327 		0x50c00, 0x50c00,
1328 		0x51000, 0x5101c,
1329 		0x51300, 0x51308,
1330 	};
1331 
1332 	static const unsigned int t6_reg_ranges[] = {
1333 		0x1008, 0x101c,
1334 		0x1024, 0x10a8,
1335 		0x10b4, 0x10f8,
1336 		0x1100, 0x1114,
1337 		0x111c, 0x112c,
1338 		0x1138, 0x113c,
1339 		0x1144, 0x114c,
1340 		0x1180, 0x1184,
1341 		0x1190, 0x1194,
1342 		0x11a0, 0x11a4,
1343 		0x11b0, 0x11b4,
1344 		0x11fc, 0x1274,
1345 		0x1280, 0x133c,
1346 		0x1800, 0x18fc,
1347 		0x3000, 0x302c,
1348 		0x3060, 0x30b0,
1349 		0x30b8, 0x30d8,
1350 		0x30e0, 0x30fc,
1351 		0x3140, 0x357c,
1352 		0x35a8, 0x35cc,
1353 		0x35ec, 0x35ec,
1354 		0x3600, 0x5624,
1355 		0x56cc, 0x56ec,
1356 		0x56f4, 0x5720,
1357 		0x5728, 0x575c,
1358 		0x580c, 0x5814,
1359 		0x5890, 0x589c,
1360 		0x58a4, 0x58ac,
1361 		0x58b8, 0x58bc,
1362 		0x5940, 0x595c,
1363 		0x5980, 0x598c,
1364 		0x59b0, 0x59c8,
1365 		0x59d0, 0x59dc,
1366 		0x59fc, 0x5a18,
1367 		0x5a60, 0x5a6c,
1368 		0x5a80, 0x5a8c,
1369 		0x5a94, 0x5a9c,
1370 		0x5b94, 0x5bfc,
1371 		0x5c10, 0x5e48,
1372 		0x5e50, 0x5e94,
1373 		0x5ea0, 0x5eb0,
1374 		0x5ec0, 0x5ec0,
1375 		0x5ec8, 0x5ed0,
1376 		0x5ee0, 0x5ee0,
1377 		0x5ef0, 0x5ef0,
1378 		0x5f00, 0x5f00,
1379 		0x6000, 0x6020,
1380 		0x6028, 0x6040,
1381 		0x6058, 0x609c,
1382 		0x60a8, 0x619c,
1383 		0x7700, 0x7798,
1384 		0x77c0, 0x7880,
1385 		0x78cc, 0x78fc,
1386 		0x7b00, 0x7b58,
1387 		0x7b60, 0x7b84,
1388 		0x7b8c, 0x7c54,
1389 		0x7d00, 0x7d38,
1390 		0x7d40, 0x7d84,
1391 		0x7d8c, 0x7ddc,
1392 		0x7de4, 0x7e04,
1393 		0x7e10, 0x7e1c,
1394 		0x7e24, 0x7e38,
1395 		0x7e40, 0x7e44,
1396 		0x7e4c, 0x7e78,
1397 		0x7e80, 0x7edc,
1398 		0x7ee8, 0x7efc,
1399 		0x8dc0, 0x8de4,
1400 		0x8df8, 0x8e04,
1401 		0x8e10, 0x8e84,
1402 		0x8ea0, 0x8f88,
1403 		0x8fb8, 0x9058,
1404 		0x9060, 0x9060,
1405 		0x9068, 0x90f8,
1406 		0x9100, 0x9124,
1407 		0x9400, 0x9470,
1408 		0x9600, 0x9600,
1409 		0x9608, 0x9638,
1410 		0x9640, 0x9704,
1411 		0x9710, 0x971c,
1412 		0x9800, 0x9808,
1413 		0x9820, 0x983c,
1414 		0x9850, 0x9864,
1415 		0x9c00, 0x9c6c,
1416 		0x9c80, 0x9cec,
1417 		0x9d00, 0x9d6c,
1418 		0x9d80, 0x9dec,
1419 		0x9e00, 0x9e6c,
1420 		0x9e80, 0x9eec,
1421 		0x9f00, 0x9f6c,
1422 		0x9f80, 0xa020,
1423 		0xd004, 0xd03c,
1424 		0xd100, 0xd118,
1425 		0xd200, 0xd214,
1426 		0xd220, 0xd234,
1427 		0xd240, 0xd254,
1428 		0xd260, 0xd274,
1429 		0xd280, 0xd294,
1430 		0xd2a0, 0xd2b4,
1431 		0xd2c0, 0xd2d4,
1432 		0xd2e0, 0xd2f4,
1433 		0xd300, 0xd31c,
1434 		0xdfc0, 0xdfe0,
1435 		0xe000, 0xf008,
1436 		0xf010, 0xf018,
1437 		0xf020, 0xf028,
1438 		0x11000, 0x11014,
1439 		0x11048, 0x1106c,
1440 		0x11074, 0x11088,
1441 		0x11098, 0x11120,
1442 		0x1112c, 0x1117c,
1443 		0x11190, 0x112e0,
1444 		0x11300, 0x1130c,
1445 		0x12000, 0x1206c,
1446 		0x19040, 0x1906c,
1447 		0x19078, 0x19080,
1448 		0x1908c, 0x190e8,
1449 		0x190f0, 0x190f8,
1450 		0x19100, 0x19110,
1451 		0x19120, 0x19124,
1452 		0x19150, 0x19194,
1453 		0x1919c, 0x191b0,
1454 		0x191d0, 0x191e8,
1455 		0x19238, 0x19290,
1456 		0x192a4, 0x192b0,
1457 		0x192bc, 0x192bc,
1458 		0x19348, 0x1934c,
1459 		0x193f8, 0x19418,
1460 		0x19420, 0x19428,
1461 		0x19430, 0x19444,
1462 		0x1944c, 0x1946c,
1463 		0x19474, 0x19474,
1464 		0x19490, 0x194cc,
1465 		0x194f0, 0x194f8,
1466 		0x19c00, 0x19c48,
1467 		0x19c50, 0x19c80,
1468 		0x19c94, 0x19c98,
1469 		0x19ca0, 0x19cbc,
1470 		0x19ce4, 0x19ce4,
1471 		0x19cf0, 0x19cf8,
1472 		0x19d00, 0x19d28,
1473 		0x19d50, 0x19d78,
1474 		0x19d94, 0x19d98,
1475 		0x19da0, 0x19dc8,
1476 		0x19df0, 0x19e10,
1477 		0x19e50, 0x19e6c,
1478 		0x19ea0, 0x19ebc,
1479 		0x19ec4, 0x19ef4,
1480 		0x19f04, 0x19f2c,
1481 		0x19f34, 0x19f34,
1482 		0x19f40, 0x19f50,
1483 		0x19f90, 0x19fac,
1484 		0x19fc4, 0x19fc8,
1485 		0x19fd0, 0x19fe4,
1486 		0x1a000, 0x1a004,
1487 		0x1a010, 0x1a06c,
1488 		0x1a0b0, 0x1a0e4,
1489 		0x1a0ec, 0x1a0f8,
1490 		0x1a100, 0x1a108,
1491 		0x1a114, 0x1a120,
1492 		0x1a128, 0x1a130,
1493 		0x1a138, 0x1a138,
1494 		0x1a190, 0x1a1c4,
1495 		0x1a1fc, 0x1a1fc,
1496 		0x1e008, 0x1e00c,
1497 		0x1e040, 0x1e044,
1498 		0x1e04c, 0x1e04c,
1499 		0x1e284, 0x1e290,
1500 		0x1e2c0, 0x1e2c0,
1501 		0x1e2e0, 0x1e2e0,
1502 		0x1e300, 0x1e384,
1503 		0x1e3c0, 0x1e3c8,
1504 		0x1e408, 0x1e40c,
1505 		0x1e440, 0x1e444,
1506 		0x1e44c, 0x1e44c,
1507 		0x1e684, 0x1e690,
1508 		0x1e6c0, 0x1e6c0,
1509 		0x1e6e0, 0x1e6e0,
1510 		0x1e700, 0x1e784,
1511 		0x1e7c0, 0x1e7c8,
1512 		0x1e808, 0x1e80c,
1513 		0x1e840, 0x1e844,
1514 		0x1e84c, 0x1e84c,
1515 		0x1ea84, 0x1ea90,
1516 		0x1eac0, 0x1eac0,
1517 		0x1eae0, 0x1eae0,
1518 		0x1eb00, 0x1eb84,
1519 		0x1ebc0, 0x1ebc8,
1520 		0x1ec08, 0x1ec0c,
1521 		0x1ec40, 0x1ec44,
1522 		0x1ec4c, 0x1ec4c,
1523 		0x1ee84, 0x1ee90,
1524 		0x1eec0, 0x1eec0,
1525 		0x1eee0, 0x1eee0,
1526 		0x1ef00, 0x1ef84,
1527 		0x1efc0, 0x1efc8,
1528 		0x1f008, 0x1f00c,
1529 		0x1f040, 0x1f044,
1530 		0x1f04c, 0x1f04c,
1531 		0x1f284, 0x1f290,
1532 		0x1f2c0, 0x1f2c0,
1533 		0x1f2e0, 0x1f2e0,
1534 		0x1f300, 0x1f384,
1535 		0x1f3c0, 0x1f3c8,
1536 		0x1f408, 0x1f40c,
1537 		0x1f440, 0x1f444,
1538 		0x1f44c, 0x1f44c,
1539 		0x1f684, 0x1f690,
1540 		0x1f6c0, 0x1f6c0,
1541 		0x1f6e0, 0x1f6e0,
1542 		0x1f700, 0x1f784,
1543 		0x1f7c0, 0x1f7c8,
1544 		0x1f808, 0x1f80c,
1545 		0x1f840, 0x1f844,
1546 		0x1f84c, 0x1f84c,
1547 		0x1fa84, 0x1fa90,
1548 		0x1fac0, 0x1fac0,
1549 		0x1fae0, 0x1fae0,
1550 		0x1fb00, 0x1fb84,
1551 		0x1fbc0, 0x1fbc8,
1552 		0x1fc08, 0x1fc0c,
1553 		0x1fc40, 0x1fc44,
1554 		0x1fc4c, 0x1fc4c,
1555 		0x1fe84, 0x1fe90,
1556 		0x1fec0, 0x1fec0,
1557 		0x1fee0, 0x1fee0,
1558 		0x1ff00, 0x1ff84,
1559 		0x1ffc0, 0x1ffc8,
1560 		0x30000, 0x30030,
1561 		0x30100, 0x30168,
1562 		0x30190, 0x301a0,
1563 		0x301a8, 0x301b8,
1564 		0x301c4, 0x301c8,
1565 		0x301d0, 0x301d0,
1566 		0x30200, 0x30320,
1567 		0x30400, 0x304b4,
1568 		0x304c0, 0x3052c,
1569 		0x30540, 0x3061c,
1570 		0x30800, 0x308a0,
1571 		0x308c0, 0x30908,
1572 		0x30910, 0x309b8,
1573 		0x30a00, 0x30a04,
1574 		0x30a0c, 0x30a14,
1575 		0x30a1c, 0x30a2c,
1576 		0x30a44, 0x30a50,
1577 		0x30a74, 0x30a74,
1578 		0x30a7c, 0x30afc,
1579 		0x30b08, 0x30c24,
1580 		0x30d00, 0x30d14,
1581 		0x30d1c, 0x30d3c,
1582 		0x30d44, 0x30d4c,
1583 		0x30d54, 0x30d74,
1584 		0x30d7c, 0x30d7c,
1585 		0x30de0, 0x30de0,
1586 		0x30e00, 0x30ed4,
1587 		0x30f00, 0x30fa4,
1588 		0x30fc0, 0x30fc4,
1589 		0x31000, 0x31004,
1590 		0x31080, 0x310fc,
1591 		0x31208, 0x31220,
1592 		0x3123c, 0x31254,
1593 		0x31300, 0x31300,
1594 		0x31308, 0x3131c,
1595 		0x31338, 0x3133c,
1596 		0x31380, 0x31380,
1597 		0x31388, 0x313a8,
1598 		0x313b4, 0x313b4,
1599 		0x31400, 0x31420,
1600 		0x31438, 0x3143c,
1601 		0x31480, 0x31480,
1602 		0x314a8, 0x314a8,
1603 		0x314b0, 0x314b4,
1604 		0x314c8, 0x314d4,
1605 		0x31a40, 0x31a4c,
1606 		0x31af0, 0x31b20,
1607 		0x31b38, 0x31b3c,
1608 		0x31b80, 0x31b80,
1609 		0x31ba8, 0x31ba8,
1610 		0x31bb0, 0x31bb4,
1611 		0x31bc8, 0x31bd4,
1612 		0x32140, 0x3218c,
1613 		0x321f0, 0x321f4,
1614 		0x32200, 0x32200,
1615 		0x32218, 0x32218,
1616 		0x32400, 0x32400,
1617 		0x32408, 0x3241c,
1618 		0x32618, 0x32620,
1619 		0x32664, 0x32664,
1620 		0x326a8, 0x326a8,
1621 		0x326ec, 0x326ec,
1622 		0x32a00, 0x32abc,
1623 		0x32b00, 0x32b38,
1624 		0x32b20, 0x32b38,
1625 		0x32b40, 0x32b58,
1626 		0x32b60, 0x32b78,
1627 		0x32c00, 0x32c00,
1628 		0x32c08, 0x32c3c,
1629 		0x33000, 0x3302c,
1630 		0x33034, 0x33050,
1631 		0x33058, 0x33058,
1632 		0x33060, 0x3308c,
1633 		0x3309c, 0x330ac,
1634 		0x330c0, 0x330c0,
1635 		0x330c8, 0x330d0,
1636 		0x330d8, 0x330e0,
1637 		0x330ec, 0x3312c,
1638 		0x33134, 0x33150,
1639 		0x33158, 0x33158,
1640 		0x33160, 0x3318c,
1641 		0x3319c, 0x331ac,
1642 		0x331c0, 0x331c0,
1643 		0x331c8, 0x331d0,
1644 		0x331d8, 0x331e0,
1645 		0x331ec, 0x33290,
1646 		0x33298, 0x332c4,
1647 		0x332e4, 0x33390,
1648 		0x33398, 0x333c4,
1649 		0x333e4, 0x3342c,
1650 		0x33434, 0x33450,
1651 		0x33458, 0x33458,
1652 		0x33460, 0x3348c,
1653 		0x3349c, 0x334ac,
1654 		0x334c0, 0x334c0,
1655 		0x334c8, 0x334d0,
1656 		0x334d8, 0x334e0,
1657 		0x334ec, 0x3352c,
1658 		0x33534, 0x33550,
1659 		0x33558, 0x33558,
1660 		0x33560, 0x3358c,
1661 		0x3359c, 0x335ac,
1662 		0x335c0, 0x335c0,
1663 		0x335c8, 0x335d0,
1664 		0x335d8, 0x335e0,
1665 		0x335ec, 0x33690,
1666 		0x33698, 0x336c4,
1667 		0x336e4, 0x33790,
1668 		0x33798, 0x337c4,
1669 		0x337e4, 0x337fc,
1670 		0x33814, 0x33814,
1671 		0x33854, 0x33868,
1672 		0x33880, 0x3388c,
1673 		0x338c0, 0x338d0,
1674 		0x338e8, 0x338ec,
1675 		0x33900, 0x3392c,
1676 		0x33934, 0x33950,
1677 		0x33958, 0x33958,
1678 		0x33960, 0x3398c,
1679 		0x3399c, 0x339ac,
1680 		0x339c0, 0x339c0,
1681 		0x339c8, 0x339d0,
1682 		0x339d8, 0x339e0,
1683 		0x339ec, 0x33a90,
1684 		0x33a98, 0x33ac4,
1685 		0x33ae4, 0x33b10,
1686 		0x33b24, 0x33b28,
1687 		0x33b38, 0x33b50,
1688 		0x33bf0, 0x33c10,
1689 		0x33c24, 0x33c28,
1690 		0x33c38, 0x33c50,
1691 		0x33cf0, 0x33cfc,
1692 		0x34000, 0x34030,
1693 		0x34100, 0x34168,
1694 		0x34190, 0x341a0,
1695 		0x341a8, 0x341b8,
1696 		0x341c4, 0x341c8,
1697 		0x341d0, 0x341d0,
1698 		0x34200, 0x34320,
1699 		0x34400, 0x344b4,
1700 		0x344c0, 0x3452c,
1701 		0x34540, 0x3461c,
1702 		0x34800, 0x348a0,
1703 		0x348c0, 0x34908,
1704 		0x34910, 0x349b8,
1705 		0x34a00, 0x34a04,
1706 		0x34a0c, 0x34a14,
1707 		0x34a1c, 0x34a2c,
1708 		0x34a44, 0x34a50,
1709 		0x34a74, 0x34a74,
1710 		0x34a7c, 0x34afc,
1711 		0x34b08, 0x34c24,
1712 		0x34d00, 0x34d14,
1713 		0x34d1c, 0x34d3c,
1714 		0x34d44, 0x34d4c,
1715 		0x34d54, 0x34d74,
1716 		0x34d7c, 0x34d7c,
1717 		0x34de0, 0x34de0,
1718 		0x34e00, 0x34ed4,
1719 		0x34f00, 0x34fa4,
1720 		0x34fc0, 0x34fc4,
1721 		0x35000, 0x35004,
1722 		0x35080, 0x350fc,
1723 		0x35208, 0x35220,
1724 		0x3523c, 0x35254,
1725 		0x35300, 0x35300,
1726 		0x35308, 0x3531c,
1727 		0x35338, 0x3533c,
1728 		0x35380, 0x35380,
1729 		0x35388, 0x353a8,
1730 		0x353b4, 0x353b4,
1731 		0x35400, 0x35420,
1732 		0x35438, 0x3543c,
1733 		0x35480, 0x35480,
1734 		0x354a8, 0x354a8,
1735 		0x354b0, 0x354b4,
1736 		0x354c8, 0x354d4,
1737 		0x35a40, 0x35a4c,
1738 		0x35af0, 0x35b20,
1739 		0x35b38, 0x35b3c,
1740 		0x35b80, 0x35b80,
1741 		0x35ba8, 0x35ba8,
1742 		0x35bb0, 0x35bb4,
1743 		0x35bc8, 0x35bd4,
1744 		0x36140, 0x3618c,
1745 		0x361f0, 0x361f4,
1746 		0x36200, 0x36200,
1747 		0x36218, 0x36218,
1748 		0x36400, 0x36400,
1749 		0x36408, 0x3641c,
1750 		0x36618, 0x36620,
1751 		0x36664, 0x36664,
1752 		0x366a8, 0x366a8,
1753 		0x366ec, 0x366ec,
1754 		0x36a00, 0x36abc,
1755 		0x36b00, 0x36b38,
1756 		0x36b20, 0x36b38,
1757 		0x36b40, 0x36b58,
1758 		0x36b60, 0x36b78,
1759 		0x36c00, 0x36c00,
1760 		0x36c08, 0x36c3c,
1761 		0x37000, 0x3702c,
1762 		0x37034, 0x37050,
1763 		0x37058, 0x37058,
1764 		0x37060, 0x3708c,
1765 		0x3709c, 0x370ac,
1766 		0x370c0, 0x370c0,
1767 		0x370c8, 0x370d0,
1768 		0x370d8, 0x370e0,
1769 		0x370ec, 0x3712c,
1770 		0x37134, 0x37150,
1771 		0x37158, 0x37158,
1772 		0x37160, 0x3718c,
1773 		0x3719c, 0x371ac,
1774 		0x371c0, 0x371c0,
1775 		0x371c8, 0x371d0,
1776 		0x371d8, 0x371e0,
1777 		0x371ec, 0x37290,
1778 		0x37298, 0x372c4,
1779 		0x372e4, 0x37390,
1780 		0x37398, 0x373c4,
1781 		0x373e4, 0x3742c,
1782 		0x37434, 0x37450,
1783 		0x37458, 0x37458,
1784 		0x37460, 0x3748c,
1785 		0x3749c, 0x374ac,
1786 		0x374c0, 0x374c0,
1787 		0x374c8, 0x374d0,
1788 		0x374d8, 0x374e0,
1789 		0x374ec, 0x3752c,
1790 		0x37534, 0x37550,
1791 		0x37558, 0x37558,
1792 		0x37560, 0x3758c,
1793 		0x3759c, 0x375ac,
1794 		0x375c0, 0x375c0,
1795 		0x375c8, 0x375d0,
1796 		0x375d8, 0x375e0,
1797 		0x375ec, 0x37690,
1798 		0x37698, 0x376c4,
1799 		0x376e4, 0x37790,
1800 		0x37798, 0x377c4,
1801 		0x377e4, 0x377fc,
1802 		0x37814, 0x37814,
1803 		0x37854, 0x37868,
1804 		0x37880, 0x3788c,
1805 		0x378c0, 0x378d0,
1806 		0x378e8, 0x378ec,
1807 		0x37900, 0x3792c,
1808 		0x37934, 0x37950,
1809 		0x37958, 0x37958,
1810 		0x37960, 0x3798c,
1811 		0x3799c, 0x379ac,
1812 		0x379c0, 0x379c0,
1813 		0x379c8, 0x379d0,
1814 		0x379d8, 0x379e0,
1815 		0x379ec, 0x37a90,
1816 		0x37a98, 0x37ac4,
1817 		0x37ae4, 0x37b10,
1818 		0x37b24, 0x37b28,
1819 		0x37b38, 0x37b50,
1820 		0x37bf0, 0x37c10,
1821 		0x37c24, 0x37c28,
1822 		0x37c38, 0x37c50,
1823 		0x37cf0, 0x37cfc,
1824 		0x40040, 0x40040,
1825 		0x40080, 0x40084,
1826 		0x40100, 0x40100,
1827 		0x40140, 0x401bc,
1828 		0x40200, 0x40214,
1829 		0x40228, 0x40228,
1830 		0x40240, 0x40258,
1831 		0x40280, 0x40280,
1832 		0x40304, 0x40304,
1833 		0x40330, 0x4033c,
1834 		0x41304, 0x413c8,
1835 		0x413d0, 0x413dc,
1836 		0x413f0, 0x413f0,
1837 		0x41400, 0x4140c,
1838 		0x41414, 0x4141c,
1839 		0x41480, 0x414d0,
1840 		0x44000, 0x4407c,
1841 		0x440c0, 0x441ac,
1842 		0x441b4, 0x4427c,
1843 		0x442c0, 0x443ac,
1844 		0x443b4, 0x4447c,
1845 		0x444c0, 0x445ac,
1846 		0x445b4, 0x4467c,
1847 		0x446c0, 0x447ac,
1848 		0x447b4, 0x4487c,
1849 		0x448c0, 0x449ac,
1850 		0x449b4, 0x44a7c,
1851 		0x44ac0, 0x44bac,
1852 		0x44bb4, 0x44c7c,
1853 		0x44cc0, 0x44dac,
1854 		0x44db4, 0x44e7c,
1855 		0x44ec0, 0x44fac,
1856 		0x44fb4, 0x4507c,
1857 		0x450c0, 0x451ac,
1858 		0x451b4, 0x451fc,
1859 		0x45800, 0x45804,
1860 		0x45810, 0x45830,
1861 		0x45840, 0x45860,
1862 		0x45868, 0x45868,
1863 		0x45880, 0x45884,
1864 		0x458a0, 0x458b0,
1865 		0x45a00, 0x45a04,
1866 		0x45a10, 0x45a30,
1867 		0x45a40, 0x45a60,
1868 		0x45a68, 0x45a68,
1869 		0x45a80, 0x45a84,
1870 		0x45aa0, 0x45ab0,
1871 		0x460c0, 0x460e4,
1872 		0x47000, 0x4703c,
1873 		0x47044, 0x4708c,
1874 		0x47200, 0x47250,
1875 		0x47400, 0x47408,
1876 		0x47414, 0x47420,
1877 		0x47600, 0x47618,
1878 		0x47800, 0x47814,
1879 		0x47820, 0x4782c,
1880 		0x50000, 0x50084,
1881 		0x50090, 0x500cc,
1882 		0x50300, 0x50384,
1883 		0x50400, 0x50400,
1884 		0x50800, 0x50884,
1885 		0x50890, 0x508cc,
1886 		0x50b00, 0x50b84,
1887 		0x50c00, 0x50c00,
1888 		0x51000, 0x51020,
1889 		0x51028, 0x510b0,
1890 		0x51300, 0x51324,
1891 	};
1892 
1893 	u32 *buf_end = (u32 *)((char *)buf + buf_size);
1894 	const unsigned int *reg_ranges;
1895 	int reg_ranges_size, range;
1896 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
1897 
1898 	/* Select the right set of register ranges to dump depending on the
1899 	 * adapter chip type.
1900 	 */
1901 	switch (chip_version) {
1902 	case CHELSIO_T5:
1903 		reg_ranges = t5_reg_ranges;
1904 		reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
1905 		break;
1906 
1907 	case CHELSIO_T6:
1908 		reg_ranges = t6_reg_ranges;
1909 		reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
1910 		break;
1911 
1912 	default:
1913 		dev_err(adap,
1914 			"Unsupported chip version %d\n", chip_version);
1915 		return;
1916 	}
1917 
1918 	/* Clear the register buffer and insert the appropriate register
1919 	 * values selected by the above register ranges.
1920 	 */
1921 	memset(buf, 0, buf_size);
1922 	for (range = 0; range < reg_ranges_size; range += 2) {
1923 		unsigned int reg = reg_ranges[range];
1924 		unsigned int last_reg = reg_ranges[range + 1];
1925 		u32 *bufp = (u32 *)((char *)buf + reg);
1926 
1927 		/* Iterate across the register range filling in the register
1928 		 * buffer but don't write past the end of the register buffer.
1929 		 */
1930 		while (reg <= last_reg && bufp < buf_end) {
1931 			*bufp++ = t4_read_reg(adap, reg);
1932 			reg += sizeof(u32);
1933 		}
1934 	}
1935 }
1936 
1937 /* EEPROM reads take a few tens of us while writes can take a bit over 5 ms. */
1938 #define EEPROM_DELAY            10              /* 10us per poll spin */
1939 #define EEPROM_MAX_POLL         5000            /* x 5000 == 50ms */
1940 
1941 #define EEPROM_STAT_ADDR        0x7bfc
1942 
1943 /**
1944  * Small utility function to wait till any outstanding VPD Access is complete.
1945  * We have a per-adapter state variable "VPD Busy" to indicate when we have a
1946  * VPD Access in flight.  This allows us to handle the problem of having a
1947  * previous VPD Access time out and prevent an attempt to inject a new VPD
1948  * Request before any in-flight VPD request has completed.
1949  */
t4_seeprom_wait(struct adapter * adapter)1950 static int t4_seeprom_wait(struct adapter *adapter)
1951 {
1952 	unsigned int base = adapter->params.pci.vpd_cap_addr;
1953 	int max_poll;
1954 
1955 	/* If no VPD Access is in flight, we can just return success right
1956 	 * away.
1957 	 */
1958 	if (!adapter->vpd_busy)
1959 		return 0;
1960 
1961 	/* Poll the VPD Capability Address/Flag register waiting for it
1962 	 * to indicate that the operation is complete.
1963 	 */
1964 	max_poll = EEPROM_MAX_POLL;
1965 	do {
1966 		u16 val;
1967 
1968 		udelay(EEPROM_DELAY);
1969 		t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val);
1970 
1971 		/* If the operation is complete, mark the VPD as no longer
1972 		 * busy and return success.
1973 		 */
1974 		if ((val & PCI_VPD_ADDR_F) == adapter->vpd_flag) {
1975 			adapter->vpd_busy = 0;
1976 			return 0;
1977 		}
1978 	} while (--max_poll);
1979 
1980 	/* Failure!  Note that we leave the VPD Busy status set in order to
1981 	 * avoid pushing a new VPD Access request into the VPD Capability till
1982 	 * the current operation eventually succeeds.  It's a bug to issue a
1983 	 * new request when an existing request is in flight and will result
1984 	 * in corrupt hardware state.
1985 	 */
1986 	return -ETIMEDOUT;
1987 }
1988 
1989 /**
1990  * t4_seeprom_read - read a serial EEPROM location
1991  * @adapter: adapter to read
1992  * @addr: EEPROM virtual address
1993  * @data: where to store the read data
1994  *
1995  * Read a 32-bit word from a location in serial EEPROM using the card's PCI
1996  * VPD capability.  Note that this function must be called with a virtual
1997  * address.
1998  */
t4_seeprom_read(struct adapter * adapter,u32 addr,u32 * data)1999 int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
2000 {
2001 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2002 	int ret;
2003 
2004 	/* VPD Accesses must alway be 4-byte aligned!
2005 	 */
2006 	if (addr >= EEPROMVSIZE || (addr & 3))
2007 		return -EINVAL;
2008 
2009 	/* Wait for any previous operation which may still be in flight to
2010 	 * complete.
2011 	 */
2012 	ret = t4_seeprom_wait(adapter);
2013 	if (ret) {
2014 		dev_err(adapter, "VPD still busy from previous operation\n");
2015 		return ret;
2016 	}
2017 
2018 	/* Issue our new VPD Read request, mark the VPD as being busy and wait
2019 	 * for our request to complete.  If it doesn't complete, note the
2020 	 * error and return it to our caller.  Note that we do not reset the
2021 	 * VPD Busy status!
2022 	 */
2023 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr);
2024 	adapter->vpd_busy = 1;
2025 	adapter->vpd_flag = PCI_VPD_ADDR_F;
2026 	ret = t4_seeprom_wait(adapter);
2027 	if (ret) {
2028 		dev_err(adapter, "VPD read of address %#x failed\n", addr);
2029 		return ret;
2030 	}
2031 
2032 	/* Grab the returned data, swizzle it into our endianness and
2033 	 * return success.
2034 	 */
2035 	t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data);
2036 	*data = le32_to_cpu(*data);
2037 	return 0;
2038 }
2039 
2040 /**
2041  * t4_seeprom_write - write a serial EEPROM location
2042  * @adapter: adapter to write
2043  * @addr: virtual EEPROM address
2044  * @data: value to write
2045  *
2046  * Write a 32-bit word to a location in serial EEPROM using the card's PCI
2047  * VPD capability.  Note that this function must be called with a virtual
2048  * address.
2049  */
t4_seeprom_write(struct adapter * adapter,u32 addr,u32 data)2050 int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
2051 {
2052 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2053 	int ret;
2054 	u32 stats_reg = 0;
2055 	int max_poll;
2056 
2057 	/* VPD Accesses must alway be 4-byte aligned!
2058 	 */
2059 	if (addr >= EEPROMVSIZE || (addr & 3))
2060 		return -EINVAL;
2061 
2062 	/* Wait for any previous operation which may still be in flight to
2063 	 * complete.
2064 	 */
2065 	ret = t4_seeprom_wait(adapter);
2066 	if (ret) {
2067 		dev_err(adapter, "VPD still busy from previous operation\n");
2068 		return ret;
2069 	}
2070 
2071 	/* Issue our new VPD Read request, mark the VPD as being busy and wait
2072 	 * for our request to complete.  If it doesn't complete, note the
2073 	 * error and return it to our caller.  Note that we do not reset the
2074 	 * VPD Busy status!
2075 	 */
2076 	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA,
2077 			     cpu_to_le32(data));
2078 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR,
2079 			     (u16)addr | PCI_VPD_ADDR_F);
2080 	adapter->vpd_busy = 1;
2081 	adapter->vpd_flag = 0;
2082 	ret = t4_seeprom_wait(adapter);
2083 	if (ret) {
2084 		dev_err(adapter, "VPD write of address %#x failed\n", addr);
2085 		return ret;
2086 	}
2087 
2088 	/* Reset PCI_VPD_DATA register after a transaction and wait for our
2089 	 * request to complete. If it doesn't complete, return error.
2090 	 */
2091 	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 0);
2092 	max_poll = EEPROM_MAX_POLL;
2093 	do {
2094 		udelay(EEPROM_DELAY);
2095 		t4_seeprom_read(adapter, EEPROM_STAT_ADDR, &stats_reg);
2096 	} while ((stats_reg & 0x1) && --max_poll);
2097 	if (!max_poll)
2098 		return -ETIMEDOUT;
2099 
2100 	/* Return success! */
2101 	return 0;
2102 }
2103 
2104 /**
2105  * t4_seeprom_wp - enable/disable EEPROM write protection
2106  * @adapter: the adapter
2107  * @enable: whether to enable or disable write protection
2108  *
2109  * Enables or disables write protection on the serial EEPROM.
2110  */
t4_seeprom_wp(struct adapter * adapter,int enable)2111 int t4_seeprom_wp(struct adapter *adapter, int enable)
2112 {
2113 	return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
2114 }
2115 
2116 /**
2117  * t4_fw_tp_pio_rw - Access TP PIO through LDST
2118  * @adap: the adapter
2119  * @vals: where the indirect register values are stored/written
2120  * @nregs: how many indirect registers to read/write
2121  * @start_idx: index of first indirect register to read/write
2122  * @rw: Read (1) or Write (0)
2123  *
2124  * Access TP PIO registers through LDST
2125  */
t4_fw_tp_pio_rw(struct adapter * adap,u32 * vals,unsigned int nregs,unsigned int start_index,unsigned int rw)2126 void t4_fw_tp_pio_rw(struct adapter *adap, u32 *vals, unsigned int nregs,
2127 		     unsigned int start_index, unsigned int rw)
2128 {
2129 	int cmd = FW_LDST_ADDRSPC_TP_PIO;
2130 	struct fw_ldst_cmd c;
2131 	unsigned int i;
2132 	int ret;
2133 
2134 	for (i = 0 ; i < nregs; i++) {
2135 		memset(&c, 0, sizeof(c));
2136 		c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
2137 						F_FW_CMD_REQUEST |
2138 						(rw ? F_FW_CMD_READ :
2139 						      F_FW_CMD_WRITE) |
2140 						V_FW_LDST_CMD_ADDRSPACE(cmd));
2141 		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
2142 
2143 		c.u.addrval.addr = cpu_to_be32(start_index + i);
2144 		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
2145 		ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
2146 		if (ret == 0) {
2147 			if (rw)
2148 				vals[i] = be32_to_cpu(c.u.addrval.val);
2149 		}
2150 	}
2151 }
2152 
2153 /**
2154  * t4_read_rss_key - read the global RSS key
2155  * @adap: the adapter
2156  * @key: 10-entry array holding the 320-bit RSS key
2157  *
2158  * Reads the global 320-bit RSS key.
2159  */
t4_read_rss_key(struct adapter * adap,u32 * key)2160 void t4_read_rss_key(struct adapter *adap, u32 *key)
2161 {
2162 	t4_fw_tp_pio_rw(adap, key, 10, A_TP_RSS_SECRET_KEY0, 1);
2163 }
2164 
2165 /**
2166  * t4_write_rss_key - program one of the RSS keys
2167  * @adap: the adapter
2168  * @key: 10-entry array holding the 320-bit RSS key
2169  * @idx: which RSS key to write
2170  *
2171  * Writes one of the RSS keys with the given 320-bit value.  If @idx is
2172  * 0..15 the corresponding entry in the RSS key table is written,
2173  * otherwise the global RSS key is written.
2174  */
t4_write_rss_key(struct adapter * adap,u32 * key,int idx)2175 void t4_write_rss_key(struct adapter *adap, u32 *key, int idx)
2176 {
2177 	u32 vrt = t4_read_reg(adap, A_TP_RSS_CONFIG_VRT);
2178 	u8 rss_key_addr_cnt = 16;
2179 
2180 	/* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
2181 	 * allows access to key addresses 16-63 by using KeyWrAddrX
2182 	 * as index[5:4](upper 2) into key table
2183 	 */
2184 	if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
2185 	    (vrt & F_KEYEXTEND) && (G_KEYMODE(vrt) == 3))
2186 		rss_key_addr_cnt = 32;
2187 
2188 	t4_fw_tp_pio_rw(adap, key, 10, A_TP_RSS_SECRET_KEY0, 0);
2189 
2190 	if (idx >= 0 && idx < rss_key_addr_cnt) {
2191 		if (rss_key_addr_cnt > 16)
2192 			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
2193 				     V_KEYWRADDRX(idx >> 4) |
2194 				     V_T6_VFWRADDR(idx) | F_KEYWREN);
2195 		else
2196 			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
2197 				     V_KEYWRADDR(idx) | F_KEYWREN);
2198 	}
2199 }
2200 
2201 /**
2202  * t4_config_rss_range - configure a portion of the RSS mapping table
2203  * @adapter: the adapter
2204  * @mbox: mbox to use for the FW command
2205  * @viid: virtual interface whose RSS subtable is to be written
2206  * @start: start entry in the table to write
2207  * @n: how many table entries to write
2208  * @rspq: values for the "response queue" (Ingress Queue) lookup table
2209  * @nrspq: number of values in @rspq
2210  *
2211  * Programs the selected part of the VI's RSS mapping table with the
2212  * provided values.  If @nrspq < @n the supplied values are used repeatedly
2213  * until the full table range is populated.
2214  *
2215  * The caller must ensure the values in @rspq are in the range allowed for
2216  * @viid.
2217  */
t4_config_rss_range(struct adapter * adapter,int mbox,unsigned int viid,int start,int n,const u16 * rspq,unsigned int nrspq)2218 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
2219 			int start, int n, const u16 *rspq, unsigned int nrspq)
2220 {
2221 	int ret;
2222 	const u16 *rsp = rspq;
2223 	const u16 *rsp_end = rspq + nrspq;
2224 	struct fw_rss_ind_tbl_cmd cmd;
2225 
2226 	memset(&cmd, 0, sizeof(cmd));
2227 	cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
2228 				     F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
2229 				     V_FW_RSS_IND_TBL_CMD_VIID(viid));
2230 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
2231 
2232 	/*
2233 	 * Each firmware RSS command can accommodate up to 32 RSS Ingress
2234 	 * Queue Identifiers.  These Ingress Queue IDs are packed three to
2235 	 * a 32-bit word as 10-bit values with the upper remaining 2 bits
2236 	 * reserved.
2237 	 */
2238 	while (n > 0) {
2239 		int nq = min(n, 32);
2240 		int nq_packed = 0;
2241 		__be32 *qp = &cmd.iq0_to_iq2;
2242 
2243 		/*
2244 		 * Set up the firmware RSS command header to send the next
2245 		 * "nq" Ingress Queue IDs to the firmware.
2246 		 */
2247 		cmd.niqid = cpu_to_be16(nq);
2248 		cmd.startidx = cpu_to_be16(start);
2249 
2250 		/*
2251 		 * "nq" more done for the start of the next loop.
2252 		 */
2253 		start += nq;
2254 		n -= nq;
2255 
2256 		/*
2257 		 * While there are still Ingress Queue IDs to stuff into the
2258 		 * current firmware RSS command, retrieve them from the
2259 		 * Ingress Queue ID array and insert them into the command.
2260 		 */
2261 		while (nq > 0) {
2262 			/*
2263 			 * Grab up to the next 3 Ingress Queue IDs (wrapping
2264 			 * around the Ingress Queue ID array if necessary) and
2265 			 * insert them into the firmware RSS command at the
2266 			 * current 3-tuple position within the commad.
2267 			 */
2268 			u16 qbuf[3];
2269 			u16 *qbp = qbuf;
2270 			int nqbuf = min(3, nq);
2271 
2272 			nq -= nqbuf;
2273 			qbuf[0] = 0;
2274 			qbuf[1] = 0;
2275 			qbuf[2] = 0;
2276 			while (nqbuf && nq_packed < 32) {
2277 				nqbuf--;
2278 				nq_packed++;
2279 				*qbp++ = *rsp++;
2280 				if (rsp >= rsp_end)
2281 					rsp = rspq;
2282 			}
2283 			*qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
2284 					    V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
2285 					    V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
2286 		}
2287 
2288 		/*
2289 		 * Send this portion of the RRS table update to the firmware;
2290 		 * bail out on any errors.
2291 		 */
2292 		if (is_pf4(adapter))
2293 			ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd),
2294 					 NULL);
2295 		else
2296 			ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
2297 		if (ret)
2298 			return ret;
2299 	}
2300 
2301 	return 0;
2302 }
2303 
2304 /**
2305  * t4_config_vi_rss - configure per VI RSS settings
2306  * @adapter: the adapter
2307  * @mbox: mbox to use for the FW command
2308  * @viid: the VI id
2309  * @flags: RSS flags
2310  * @defq: id of the default RSS queue for the VI.
2311  *
2312  * Configures VI-specific RSS properties.
2313  */
t4_config_vi_rss(struct adapter * adapter,int mbox,unsigned int viid,unsigned int flags,unsigned int defq)2314 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
2315 		     unsigned int flags, unsigned int defq)
2316 {
2317 	struct fw_rss_vi_config_cmd c;
2318 
2319 	memset(&c, 0, sizeof(c));
2320 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
2321 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
2322 				   V_FW_RSS_VI_CONFIG_CMD_VIID(viid));
2323 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
2324 	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
2325 			V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq));
2326 	if (is_pf4(adapter))
2327 		return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
2328 	else
2329 		return t4vf_wr_mbox(adapter, &c, sizeof(c), NULL);
2330 }
2331 
2332 /**
2333  * t4_read_config_vi_rss - read the configured per VI RSS settings
2334  * @adapter: the adapter
2335  * @mbox: mbox to use for the FW command
2336  * @viid: the VI id
2337  * @flags: where to place the configured flags
2338  * @defq: where to place the id of the default RSS queue for the VI.
2339  *
2340  * Read configured VI-specific RSS properties.
2341  */
t4_read_config_vi_rss(struct adapter * adapter,int mbox,unsigned int viid,u64 * flags,unsigned int * defq)2342 int t4_read_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
2343 			  u64 *flags, unsigned int *defq)
2344 {
2345 	struct fw_rss_vi_config_cmd c;
2346 	unsigned int result;
2347 	int ret;
2348 
2349 	memset(&c, 0, sizeof(c));
2350 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
2351 				   F_FW_CMD_REQUEST | F_FW_CMD_READ |
2352 				   V_FW_RSS_VI_CONFIG_CMD_VIID(viid));
2353 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
2354 	ret = t4_wr_mbox(adapter, mbox, &c, sizeof(c), &c);
2355 	if (!ret) {
2356 		result = be32_to_cpu(c.u.basicvirtual.defaultq_to_udpen);
2357 		if (defq)
2358 			*defq = G_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(result);
2359 		if (flags)
2360 			*flags = result & M_FW_RSS_VI_CONFIG_CMD_DEFAULTQ;
2361 	}
2362 
2363 	return ret;
2364 }
2365 
2366 /**
2367  * init_cong_ctrl - initialize congestion control parameters
2368  * @a: the alpha values for congestion control
2369  * @b: the beta values for congestion control
2370  *
2371  * Initialize the congestion control parameters.
2372  */
init_cong_ctrl(unsigned short * a,unsigned short * b)2373 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
2374 {
2375 	int i;
2376 
2377 	for (i = 0; i < 9; i++) {
2378 		a[i] = 1;
2379 		b[i] = 0;
2380 	}
2381 
2382 	a[9] = 2;
2383 	a[10] = 3;
2384 	a[11] = 4;
2385 	a[12] = 5;
2386 	a[13] = 6;
2387 	a[14] = 7;
2388 	a[15] = 8;
2389 	a[16] = 9;
2390 	a[17] = 10;
2391 	a[18] = 14;
2392 	a[19] = 17;
2393 	a[20] = 21;
2394 	a[21] = 25;
2395 	a[22] = 30;
2396 	a[23] = 35;
2397 	a[24] = 45;
2398 	a[25] = 60;
2399 	a[26] = 80;
2400 	a[27] = 100;
2401 	a[28] = 200;
2402 	a[29] = 300;
2403 	a[30] = 400;
2404 	a[31] = 500;
2405 
2406 	b[9] = 1;
2407 	b[10] = 1;
2408 	b[11] = 2;
2409 	b[12] = 2;
2410 	b[13] = 3;
2411 	b[14] = 3;
2412 	b[15] = 3;
2413 	b[16] = 3;
2414 	b[17] = 4;
2415 	b[18] = 4;
2416 	b[19] = 4;
2417 	b[20] = 4;
2418 	b[21] = 4;
2419 	b[22] = 5;
2420 	b[23] = 5;
2421 	b[24] = 5;
2422 	b[25] = 5;
2423 	b[26] = 5;
2424 	b[27] = 5;
2425 	b[28] = 6;
2426 	b[29] = 6;
2427 	b[30] = 7;
2428 	b[31] = 7;
2429 }
2430 
2431 #define INIT_CMD(var, cmd, rd_wr) do { \
2432 	(var).op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_##cmd##_CMD) | \
2433 			F_FW_CMD_REQUEST | F_FW_CMD_##rd_wr); \
2434 	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
2435 } while (0)
2436 
t4_get_core_clock(struct adapter * adapter,struct vpd_params * p)2437 int t4_get_core_clock(struct adapter *adapter, struct vpd_params *p)
2438 {
2439 	u32 cclk_param, cclk_val;
2440 	int ret;
2441 
2442 	/*
2443 	 * Ask firmware for the Core Clock since it knows how to translate the
2444 	 * Reference Clock ('V2') VPD field into a Core Clock value ...
2445 	 */
2446 	cclk_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
2447 		      V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CCLK));
2448 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2449 			      1, &cclk_param, &cclk_val);
2450 	if (ret) {
2451 		dev_err(adapter, "%s: error in fetching from coreclock - %d\n",
2452 			__func__, ret);
2453 		return ret;
2454 	}
2455 
2456 	p->cclk = cclk_val;
2457 	dev_debug(adapter, "%s: p->cclk = %u\n", __func__, p->cclk);
2458 	return 0;
2459 }
2460 
2461 /**
2462  * t4_get_pfres - retrieve VF resource limits
2463  * @adapter: the adapter
2464  *
2465  * Retrieves configured resource limits and capabilities for a physical
2466  * function.  The results are stored in @adapter->pfres.
2467  */
t4_get_pfres(struct adapter * adapter)2468 int t4_get_pfres(struct adapter *adapter)
2469 {
2470 	struct pf_resources *pfres = &adapter->params.pfres;
2471 	struct fw_pfvf_cmd cmd, rpl;
2472 	u32 word;
2473 	int v;
2474 
2475 	/*
2476 	 * Execute PFVF Read command to get VF resource limits; bail out early
2477 	 * with error on command failure.
2478 	 */
2479 	memset(&cmd, 0, sizeof(cmd));
2480 	cmd.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PFVF_CMD) |
2481 				    F_FW_CMD_REQUEST |
2482 				    F_FW_CMD_READ |
2483 				    V_FW_PFVF_CMD_PFN(adapter->pf) |
2484 				    V_FW_PFVF_CMD_VFN(0));
2485 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
2486 	v = t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &rpl);
2487 	if (v != FW_SUCCESS)
2488 		return v;
2489 
2490 	/*
2491 	 * Extract PF resource limits and return success.
2492 	 */
2493 	word = be32_to_cpu(rpl.niqflint_niq);
2494 	pfres->niqflint = G_FW_PFVF_CMD_NIQFLINT(word);
2495 
2496 	word = be32_to_cpu(rpl.type_to_neq);
2497 	pfres->neq = G_FW_PFVF_CMD_NEQ(word);
2498 
2499 	word = be32_to_cpu(rpl.r_caps_to_nethctrl);
2500 	pfres->nethctrl = G_FW_PFVF_CMD_NETHCTRL(word);
2501 
2502 	return 0;
2503 }
2504 
2505 /* serial flash and firmware constants and flash config file constants */
2506 enum {
2507 	SF_ATTEMPTS = 10,             /* max retries for SF operations */
2508 
2509 	/* flash command opcodes */
2510 	SF_PROG_PAGE    = 2,          /* program page */
2511 	SF_WR_DISABLE   = 4,          /* disable writes */
2512 	SF_RD_STATUS    = 5,          /* read status register */
2513 	SF_WR_ENABLE    = 6,          /* enable writes */
2514 	SF_RD_DATA_FAST = 0xb,        /* read flash */
2515 	SF_RD_ID        = 0x9f,       /* read ID */
2516 	SF_ERASE_SECTOR = 0xd8,       /* erase sector */
2517 };
2518 
2519 /**
2520  * sf1_read - read data from the serial flash
2521  * @adapter: the adapter
2522  * @byte_cnt: number of bytes to read
2523  * @cont: whether another operation will be chained
2524  * @lock: whether to lock SF for PL access only
2525  * @valp: where to store the read data
2526  *
2527  * Reads up to 4 bytes of data from the serial flash.  The location of
2528  * the read needs to be specified prior to calling this by issuing the
2529  * appropriate commands to the serial flash.
2530  */
sf1_read(struct adapter * adapter,unsigned int byte_cnt,int cont,int lock,u32 * valp)2531 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2532 		    int lock, u32 *valp)
2533 {
2534 	int ret;
2535 
2536 	if (!byte_cnt || byte_cnt > 4)
2537 		return -EINVAL;
2538 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
2539 		return -EBUSY;
2540 	t4_write_reg(adapter, A_SF_OP,
2541 		     V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
2542 	ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
2543 	if (!ret)
2544 		*valp = t4_read_reg(adapter, A_SF_DATA);
2545 	return ret;
2546 }
2547 
2548 /**
2549  * sf1_write - write data to the serial flash
2550  * @adapter: the adapter
2551  * @byte_cnt: number of bytes to write
2552  * @cont: whether another operation will be chained
2553  * @lock: whether to lock SF for PL access only
2554  * @val: value to write
2555  *
2556  * Writes up to 4 bytes of data to the serial flash.  The location of
2557  * the write needs to be specified prior to calling this by issuing the
2558  * appropriate commands to the serial flash.
2559  */
sf1_write(struct adapter * adapter,unsigned int byte_cnt,int cont,int lock,u32 val)2560 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2561 		     int lock, u32 val)
2562 {
2563 	if (!byte_cnt || byte_cnt > 4)
2564 		return -EINVAL;
2565 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
2566 		return -EBUSY;
2567 	t4_write_reg(adapter, A_SF_DATA, val);
2568 	t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) |
2569 		     V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
2570 	return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
2571 }
2572 
2573 /**
2574  * t4_read_flash - read words from serial flash
2575  * @adapter: the adapter
2576  * @addr: the start address for the read
2577  * @nwords: how many 32-bit words to read
2578  * @data: where to store the read data
2579  * @byte_oriented: whether to store data as bytes or as words
2580  *
2581  * Read the specified number of 32-bit words from the serial flash.
2582  * If @byte_oriented is set the read data is stored as a byte array
2583  * (i.e., big-endian), otherwise as 32-bit words in the platform's
2584  * natural endianness.
2585  */
t4_read_flash(struct adapter * adapter,unsigned int addr,unsigned int nwords,u32 * data,int byte_oriented)2586 int t4_read_flash(struct adapter *adapter, unsigned int addr,
2587 		  unsigned int nwords, u32 *data, int byte_oriented)
2588 {
2589 	int ret;
2590 
2591 	if (((addr + nwords * sizeof(u32)) > adapter->params.sf_size) ||
2592 	    (addr & 3))
2593 		return -EINVAL;
2594 
2595 	addr = rte_constant_bswap32(addr) | SF_RD_DATA_FAST;
2596 
2597 	ret = sf1_write(adapter, 4, 1, 0, addr);
2598 	if (ret != 0)
2599 		return ret;
2600 
2601 	ret = sf1_read(adapter, 1, 1, 0, data);
2602 	if (ret != 0)
2603 		return ret;
2604 
2605 	for ( ; nwords; nwords--, data++) {
2606 		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
2607 		if (nwords == 1)
2608 			t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
2609 		if (ret)
2610 			return ret;
2611 		if (byte_oriented)
2612 			*data = cpu_to_be32(*data);
2613 	}
2614 	return 0;
2615 }
2616 
2617 /**
2618  * t4_get_exprom_version - return the Expansion ROM version (if any)
2619  * @adapter: the adapter
2620  * @vers: where to place the version
2621  *
2622  * Reads the Expansion ROM header from FLASH and returns the version
2623  * number (if present) through the @vers return value pointer.  We return
2624  * this in the Firmware Version Format since it's convenient.  Return
2625  * 0 on success, -ENOENT if no Expansion ROM is present.
2626  */
t4_get_exprom_version(struct adapter * adapter,u32 * vers)2627 static int t4_get_exprom_version(struct adapter *adapter, u32 *vers)
2628 {
2629 	struct exprom_header {
2630 		unsigned char hdr_arr[16];      /* must start with 0x55aa */
2631 		unsigned char hdr_ver[4];       /* Expansion ROM version */
2632 	} *hdr;
2633 	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
2634 					   sizeof(u32))];
2635 	int ret;
2636 
2637 	ret = t4_read_flash(adapter, FLASH_EXP_ROM_START,
2638 			    ARRAY_SIZE(exprom_header_buf),
2639 			    exprom_header_buf, 0);
2640 	if (ret)
2641 		return ret;
2642 
2643 	hdr = (struct exprom_header *)exprom_header_buf;
2644 	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
2645 		return -ENOENT;
2646 
2647 	*vers = (V_FW_HDR_FW_VER_MAJOR(hdr->hdr_ver[0]) |
2648 		 V_FW_HDR_FW_VER_MINOR(hdr->hdr_ver[1]) |
2649 		 V_FW_HDR_FW_VER_MICRO(hdr->hdr_ver[2]) |
2650 		 V_FW_HDR_FW_VER_BUILD(hdr->hdr_ver[3]));
2651 	return 0;
2652 }
2653 
2654 /**
2655  * t4_get_fw_version - read the firmware version
2656  * @adapter: the adapter
2657  * @vers: where to place the version
2658  *
2659  * Reads the FW version from flash.
2660  */
t4_get_fw_version(struct adapter * adapter,u32 * vers)2661 static int t4_get_fw_version(struct adapter *adapter, u32 *vers)
2662 {
2663 	return t4_read_flash(adapter, FLASH_FW_START +
2664 			     offsetof(struct fw_hdr, fw_ver), 1, vers, 0);
2665 }
2666 
2667 /**
2668  *     t4_get_bs_version - read the firmware bootstrap version
2669  *     @adapter: the adapter
2670  *     @vers: where to place the version
2671  *
2672  *     Reads the FW Bootstrap version from flash.
2673  */
t4_get_bs_version(struct adapter * adapter,u32 * vers)2674 static int t4_get_bs_version(struct adapter *adapter, u32 *vers)
2675 {
2676 	return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
2677 			     offsetof(struct fw_hdr, fw_ver), 1,
2678 			     vers, 0);
2679 }
2680 
2681 /**
2682  * t4_get_tp_version - read the TP microcode version
2683  * @adapter: the adapter
2684  * @vers: where to place the version
2685  *
2686  * Reads the TP microcode version from flash.
2687  */
t4_get_tp_version(struct adapter * adapter,u32 * vers)2688 static int t4_get_tp_version(struct adapter *adapter, u32 *vers)
2689 {
2690 	return t4_read_flash(adapter, FLASH_FW_START +
2691 			     offsetof(struct fw_hdr, tp_microcode_ver),
2692 			     1, vers, 0);
2693 }
2694 
2695 /**
2696  * t4_get_version_info - extract various chip/firmware version information
2697  * @adapter: the adapter
2698  *
2699  * Reads various chip/firmware version numbers and stores them into the
2700  * adapter Adapter Parameters structure.  If any of the efforts fails
2701  * the first failure will be returned, but all of the version numbers
2702  * will be read.
2703  */
t4_get_version_info(struct adapter * adapter)2704 int t4_get_version_info(struct adapter *adapter)
2705 {
2706 	int ret = 0;
2707 
2708 #define FIRST_RET(__getvinfo) \
2709 	do { \
2710 		int __ret = __getvinfo; \
2711 		if (__ret && !ret) \
2712 			ret = __ret; \
2713 	} while (0)
2714 
2715 	FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
2716 	FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
2717 	FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
2718 	FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
2719 
2720 #undef FIRST_RET
2721 
2722 	return ret;
2723 }
2724 
2725 /**
2726  * t4_dump_version_info - dump all of the adapter configuration IDs
2727  * @adapter: the adapter
2728  *
2729  * Dumps all of the various bits of adapter configuration version/revision
2730  * IDs information.  This is typically called at some point after
2731  * t4_get_version_info() has been called.
2732  */
t4_dump_version_info(struct adapter * adapter)2733 void t4_dump_version_info(struct adapter *adapter)
2734 {
2735 	/**
2736 	 * Device information.
2737 	 */
2738 	dev_info(adapter, "Chelsio rev %d\n",
2739 		 CHELSIO_CHIP_RELEASE(adapter->params.chip));
2740 
2741 	/**
2742 	 * Firmware Version.
2743 	 */
2744 	if (!adapter->params.fw_vers)
2745 		dev_warn(adapter, "No firmware loaded\n");
2746 	else
2747 		dev_info(adapter, "Firmware version: %u.%u.%u.%u\n",
2748 			 G_FW_HDR_FW_VER_MAJOR(adapter->params.fw_vers),
2749 			 G_FW_HDR_FW_VER_MINOR(adapter->params.fw_vers),
2750 			 G_FW_HDR_FW_VER_MICRO(adapter->params.fw_vers),
2751 			 G_FW_HDR_FW_VER_BUILD(adapter->params.fw_vers));
2752 
2753 	/**
2754 	 * Bootstrap Firmware Version.
2755 	 */
2756 	if (!adapter->params.bs_vers)
2757 		dev_warn(adapter, "No bootstrap loaded\n");
2758 	else
2759 		dev_info(adapter, "Bootstrap version: %u.%u.%u.%u\n",
2760 			 G_FW_HDR_FW_VER_MAJOR(adapter->params.bs_vers),
2761 			 G_FW_HDR_FW_VER_MINOR(adapter->params.bs_vers),
2762 			 G_FW_HDR_FW_VER_MICRO(adapter->params.bs_vers),
2763 			 G_FW_HDR_FW_VER_BUILD(adapter->params.bs_vers));
2764 
2765 	/**
2766 	 * TP Microcode Version.
2767 	 */
2768 	if (!adapter->params.tp_vers)
2769 		dev_warn(adapter, "No TP Microcode loaded\n");
2770 	else
2771 		dev_info(adapter, "TP Microcode version: %u.%u.%u.%u\n",
2772 			 G_FW_HDR_FW_VER_MAJOR(adapter->params.tp_vers),
2773 			 G_FW_HDR_FW_VER_MINOR(adapter->params.tp_vers),
2774 			 G_FW_HDR_FW_VER_MICRO(adapter->params.tp_vers),
2775 			 G_FW_HDR_FW_VER_BUILD(adapter->params.tp_vers));
2776 
2777 	/**
2778 	 * Expansion ROM version.
2779 	 */
2780 	if (!adapter->params.er_vers)
2781 		dev_info(adapter, "No Expansion ROM loaded\n");
2782 	else
2783 		dev_info(adapter, "Expansion ROM version: %u.%u.%u.%u\n",
2784 			 G_FW_HDR_FW_VER_MAJOR(adapter->params.er_vers),
2785 			 G_FW_HDR_FW_VER_MINOR(adapter->params.er_vers),
2786 			 G_FW_HDR_FW_VER_MICRO(adapter->params.er_vers),
2787 			 G_FW_HDR_FW_VER_BUILD(adapter->params.er_vers));
2788 }
2789 
2790 /**
2791  * t4_link_l1cfg_core - apply link configuration to MAC/PHY
2792  * @pi: the port info
2793  * @caps: link capabilities to configure
2794  * @sleep_ok: if true we may sleep while awaiting command completion
2795  *
2796  * Set up a port's MAC and PHY according to a desired link configuration.
2797  * - If the PHY can auto-negotiate first decide what to advertise, then
2798  *   enable/disable auto-negotiation as desired, and reset.
2799  * - If the PHY does not auto-negotiate just reset it.
2800  * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
2801  *   otherwise do it later based on the outcome of auto-negotiation.
2802  */
t4_link_l1cfg_core(struct port_info * pi,u32 caps,u8 sleep_ok)2803 int t4_link_l1cfg_core(struct port_info *pi, u32 caps, u8 sleep_ok)
2804 {
2805 	struct link_config *lc = &pi->link_cfg;
2806 	struct adapter *adap = pi->adapter;
2807 	struct fw_port_cmd cmd;
2808 	int ret;
2809 
2810 	memset(&cmd, 0, sizeof(cmd));
2811 	cmd.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
2812 				       F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
2813 				       V_FW_PORT_CMD_PORTID(pi->port_id));
2814 	cmd.action_to_len16 =
2815 		cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG32) |
2816 			    FW_LEN16(cmd));
2817 
2818 	cmd.u.l1cfg32.rcap32 = cpu_to_be32(caps);
2819 
2820 	if (sleep_ok)
2821 		ret = t4_wr_mbox(adap, adap->mbox, &cmd, sizeof(cmd), NULL);
2822 	else
2823 		ret = t4_wr_mbox_ns(adap, adap->mbox, &cmd, sizeof(cmd), NULL);
2824 
2825 	if (ret == FW_SUCCESS)
2826 		lc->link_caps = caps;
2827 	else
2828 		dev_err(adap,
2829 			"Requested Port Capabilities %#x rejected, error %d\n",
2830 			caps, ret);
2831 
2832 	return ret;
2833 }
2834 
2835 /**
2836  * t4_flash_cfg_addr - return the address of the flash configuration file
2837  * @adapter: the adapter
2838  *
2839  * Return the address within the flash where the Firmware Configuration
2840  * File is stored, or an error if the device FLASH is too small to contain
2841  * a Firmware Configuration File.
2842  */
t4_flash_cfg_addr(struct adapter * adapter)2843 int t4_flash_cfg_addr(struct adapter *adapter)
2844 {
2845 	/*
2846 	 * If the device FLASH isn't large enough to hold a Firmware
2847 	 * Configuration File, return an error.
2848 	 */
2849 	if (adapter->params.sf_size < FLASH_CFG_START + FLASH_CFG_MAX_SIZE)
2850 		return -ENOSPC;
2851 
2852 	return FLASH_CFG_START;
2853 }
2854 
2855 #define PF_INTR_MASK (F_PFSW | F_PFCIM)
2856 
2857 /**
2858  * t4_intr_enable - enable interrupts
2859  * @adapter: the adapter whose interrupts should be enabled
2860  *
2861  * Enable PF-specific interrupts for the calling function and the top-level
2862  * interrupt concentrator for global interrupts.  Interrupts are already
2863  * enabled at each module, here we just enable the roots of the interrupt
2864  * hierarchies.
2865  *
2866  * Note: this function should be called only when the driver manages
2867  * non PF-specific interrupts from the various HW modules.  Only one PCI
2868  * function at a time should be doing this.
2869  */
t4_intr_enable(struct adapter * adapter)2870 void t4_intr_enable(struct adapter *adapter)
2871 {
2872 	u32 val = 0;
2873 	u32 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
2874 	u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
2875 		 G_SOURCEPF(whoami) : G_T6_SOURCEPF(whoami);
2876 
2877 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
2878 		val = F_ERR_DROPPED_DB | F_ERR_EGR_CTXT_PRIO | F_DBFIFO_HP_INT;
2879 	t4_write_reg(adapter, A_SGE_INT_ENABLE3, F_ERR_CPL_EXCEED_IQE_SIZE |
2880 		     F_ERR_INVALID_CIDX_INC | F_ERR_CPL_OPCODE_0 |
2881 		     F_ERR_DATA_CPL_ON_HIGH_QID1 | F_INGRESS_SIZE_ERR |
2882 		     F_ERR_DATA_CPL_ON_HIGH_QID0 | F_ERR_BAD_DB_PIDX3 |
2883 		     F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
2884 		     F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO |
2885 		     F_DBFIFO_LP_INT | F_EGRESS_SIZE_ERR | val);
2886 	t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK);
2887 	t4_set_reg_field(adapter, A_PL_INT_MAP0, 0, 1 << pf);
2888 }
2889 
2890 /**
2891  * t4_intr_disable - disable interrupts
2892  * @adapter: the adapter whose interrupts should be disabled
2893  *
2894  * Disable interrupts.  We only disable the top-level interrupt
2895  * concentrators.  The caller must be a PCI function managing global
2896  * interrupts.
2897  */
t4_intr_disable(struct adapter * adapter)2898 void t4_intr_disable(struct adapter *adapter)
2899 {
2900 	u32 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
2901 	u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
2902 		 G_SOURCEPF(whoami) : G_T6_SOURCEPF(whoami);
2903 
2904 	t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), 0);
2905 	t4_set_reg_field(adapter, A_PL_INT_MAP0, 1 << pf, 0);
2906 }
2907 
2908 /**
2909  * t4_get_port_type_description - return Port Type string description
2910  * @port_type: firmware Port Type enumeration
2911  */
t4_get_port_type_description(enum fw_port_type port_type)2912 const char *t4_get_port_type_description(enum fw_port_type port_type)
2913 {
2914 	static const char * const port_type_description[] = {
2915 		"Fiber_XFI",
2916 		"Fiber_XAUI",
2917 		"BT_SGMII",
2918 		"BT_XFI",
2919 		"BT_XAUI",
2920 		"KX4",
2921 		"CX4",
2922 		"KX",
2923 		"KR",
2924 		"SFP",
2925 		"BP_AP",
2926 		"BP4_AP",
2927 		"QSFP_10G",
2928 		"QSA",
2929 		"QSFP",
2930 		"BP40_BA",
2931 		"KR4_100G",
2932 		"CR4_QSFP",
2933 		"CR_QSFP",
2934 		"CR2_QSFP",
2935 		"SFP28",
2936 		"KR_SFP28",
2937 	};
2938 
2939 	if (port_type < ARRAY_SIZE(port_type_description))
2940 		return port_type_description[port_type];
2941 	return "UNKNOWN";
2942 }
2943 
2944 /**
2945  * t4_get_mps_bg_map - return the buffer groups associated with a port
2946  * @adap: the adapter
2947  * @pidx: the port index
2948  *
2949  * Returns a bitmap indicating which MPS buffer groups are associated
2950  * with the given port.  Bit i is set if buffer group i is used by the
2951  * port.
2952  */
t4_get_mps_bg_map(struct adapter * adap,unsigned int pidx)2953 unsigned int t4_get_mps_bg_map(struct adapter *adap, unsigned int pidx)
2954 {
2955 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2956 	unsigned int nports = 1 << G_NUMPORTS(t4_read_reg(adap,
2957 							  A_MPS_CMN_CTL));
2958 
2959 	if (pidx >= nports) {
2960 		dev_warn(adap, "MPS Port Index %d >= Nports %d\n",
2961 			 pidx, nports);
2962 		return 0;
2963 	}
2964 
2965 	switch (chip_version) {
2966 	case CHELSIO_T4:
2967 	case CHELSIO_T5:
2968 		switch (nports) {
2969 		case 1: return 0xf;
2970 		case 2: return 3 << (2 * pidx);
2971 		case 4: return 1 << pidx;
2972 		}
2973 		break;
2974 
2975 	case CHELSIO_T6:
2976 		switch (nports) {
2977 		case 2: return 1 << (2 * pidx);
2978 		}
2979 		break;
2980 	}
2981 
2982 	dev_err(adap, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n",
2983 		chip_version, nports);
2984 	return 0;
2985 }
2986 
2987 /**
2988  * t4_get_tp_ch_map - return TP ingress channels associated with a port
2989  * @adapter: the adapter
2990  * @pidx: the port index
2991  *
2992  * Returns a bitmap indicating which TP Ingress Channels are associated with
2993  * a given Port.  Bit i is set if TP Ingress Channel i is used by the Port.
2994  */
t4_get_tp_ch_map(struct adapter * adapter,unsigned int pidx)2995 unsigned int t4_get_tp_ch_map(struct adapter *adapter, unsigned int pidx)
2996 {
2997 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
2998 	unsigned int nports = 1 << G_NUMPORTS(t4_read_reg(adapter,
2999 							  A_MPS_CMN_CTL));
3000 
3001 	if (pidx >= nports) {
3002 		dev_warn(adap, "TP Port Index %d >= Nports %d\n",
3003 			 pidx, nports);
3004 		return 0;
3005 	}
3006 
3007 	switch (chip_version) {
3008 	case CHELSIO_T4:
3009 	case CHELSIO_T5:
3010 		/* Note that this happens to be the same values as the MPS
3011 		 * Buffer Group Map for these Chips.  But we replicate the code
3012 		 * here because they're really separate concepts.
3013 		 */
3014 		switch (nports) {
3015 		case 1: return 0xf;
3016 		case 2: return 3 << (2 * pidx);
3017 		case 4: return 1 << pidx;
3018 		}
3019 		break;
3020 
3021 	case CHELSIO_T6:
3022 		switch (nports) {
3023 		case 2: return 1 << pidx;
3024 		}
3025 		break;
3026 	}
3027 
3028 	dev_err(adapter, "Need TP Channel Map for Chip %0x, Nports %d\n",
3029 		chip_version, nports);
3030 	return 0;
3031 }
3032 
3033 /**
3034  * t4_get_port_stats - collect port statistics
3035  * @adap: the adapter
3036  * @idx: the port index
3037  * @p: the stats structure to fill
3038  *
3039  * Collect statistics related to the given port from HW.
3040  */
t4_get_port_stats(struct adapter * adap,int idx,struct port_stats * p)3041 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
3042 {
3043 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
3044 	u32 stat_ctl = t4_read_reg(adap, A_MPS_STAT_CTL);
3045 
3046 #define GET_STAT(name) \
3047 	t4_read_reg64(adap, \
3048 		      (is_t4(adap->params.chip) ? \
3049 		       PORT_REG(idx, A_MPS_PORT_STAT_##name##_L) :\
3050 		       T5_PORT_REG(idx, A_MPS_PORT_STAT_##name##_L)))
3051 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
3052 
3053 	p->tx_octets           = GET_STAT(TX_PORT_BYTES);
3054 	p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
3055 	p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
3056 	p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
3057 	p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
3058 	p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
3059 	p->tx_frames_64        = GET_STAT(TX_PORT_64B);
3060 	p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
3061 	p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
3062 	p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
3063 	p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
3064 	p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
3065 	p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
3066 	p->tx_drop             = GET_STAT(TX_PORT_DROP);
3067 	p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
3068 	p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
3069 	p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
3070 	p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
3071 	p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
3072 	p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
3073 	p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
3074 	p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
3075 	p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);
3076 
3077 	if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
3078 		if (stat_ctl & F_COUNTPAUSESTATTX) {
3079 			p->tx_frames -= p->tx_pause;
3080 			p->tx_octets -= p->tx_pause * 64;
3081 		}
3082 		if (stat_ctl & F_COUNTPAUSEMCTX)
3083 			p->tx_mcast_frames -= p->tx_pause;
3084 	}
3085 
3086 	p->rx_octets           = GET_STAT(RX_PORT_BYTES);
3087 	p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
3088 	p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
3089 	p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
3090 	p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
3091 	p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
3092 	p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
3093 	p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
3094 	p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
3095 	p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
3096 	p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
3097 	p->rx_frames_64        = GET_STAT(RX_PORT_64B);
3098 	p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
3099 	p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
3100 	p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
3101 	p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
3102 	p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
3103 	p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
3104 	p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
3105 	p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
3106 	p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
3107 	p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
3108 	p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
3109 	p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
3110 	p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
3111 	p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
3112 	p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
3113 
3114 	if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
3115 		if (stat_ctl & F_COUNTPAUSESTATRX) {
3116 			p->rx_frames -= p->rx_pause;
3117 			p->rx_octets -= p->rx_pause * 64;
3118 		}
3119 		if (stat_ctl & F_COUNTPAUSEMCRX)
3120 			p->rx_mcast_frames -= p->rx_pause;
3121 	}
3122 
3123 	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
3124 	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
3125 	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
3126 	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
3127 	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
3128 	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
3129 	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
3130 	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
3131 
3132 #undef GET_STAT
3133 #undef GET_STAT_COM
3134 }
3135 
3136 /**
3137  * t4_get_port_stats_offset - collect port stats relative to a previous snapshot
3138  * @adap: The adapter
3139  * @idx: The port
3140  * @stats: Current stats to fill
3141  * @offset: Previous stats snapshot
3142  */
t4_get_port_stats_offset(struct adapter * adap,int idx,struct port_stats * stats,struct port_stats * offset)3143 void t4_get_port_stats_offset(struct adapter *adap, int idx,
3144 			      struct port_stats *stats,
3145 			      struct port_stats *offset)
3146 {
3147 	u64 *s, *o;
3148 	unsigned int i;
3149 
3150 	t4_get_port_stats(adap, idx, stats);
3151 	for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
3152 	     i < (sizeof(struct port_stats) / sizeof(u64));
3153 	     i++, s++, o++)
3154 		*s -= *o;
3155 }
3156 
3157 /**
3158  * t4_clr_port_stats - clear port statistics
3159  * @adap: the adapter
3160  * @idx: the port index
3161  *
3162  * Clear HW statistics for the given port.
3163  */
t4_clr_port_stats(struct adapter * adap,int idx)3164 void t4_clr_port_stats(struct adapter *adap, int idx)
3165 {
3166 	unsigned int i;
3167 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
3168 	u32 port_base_addr;
3169 
3170 	if (is_t4(adap->params.chip))
3171 		port_base_addr = PORT_BASE(idx);
3172 	else
3173 		port_base_addr = T5_PORT_BASE(idx);
3174 
3175 	for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L;
3176 	     i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8)
3177 		t4_write_reg(adap, port_base_addr + i, 0);
3178 	for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L;
3179 	     i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8)
3180 		t4_write_reg(adap, port_base_addr + i, 0);
3181 	for (i = 0; i < 4; i++)
3182 		if (bgmap & (1 << i)) {
3183 			t4_write_reg(adap,
3184 				     A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L +
3185 				     i * 8, 0);
3186 			t4_write_reg(adap,
3187 				     A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L +
3188 				     i * 8, 0);
3189 		}
3190 }
3191 
3192 /**
3193  * t4_fw_hello - establish communication with FW
3194  * @adap: the adapter
3195  * @mbox: mailbox to use for the FW command
3196  * @evt_mbox: mailbox to receive async FW events
3197  * @master: specifies the caller's willingness to be the device master
3198  * @state: returns the current device state (if non-NULL)
3199  *
3200  * Issues a command to establish communication with FW.  Returns either
3201  * an error (negative integer) or the mailbox of the Master PF.
3202  */
t4_fw_hello(struct adapter * adap,unsigned int mbox,unsigned int evt_mbox,enum dev_master master,enum dev_state * state)3203 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
3204 		enum dev_master master, enum dev_state *state)
3205 {
3206 	int ret;
3207 	struct fw_hello_cmd c;
3208 	u32 v;
3209 	unsigned int master_mbox;
3210 	int retries = FW_CMD_HELLO_RETRIES;
3211 
3212 retry:
3213 	memset(&c, 0, sizeof(c));
3214 	INIT_CMD(c, HELLO, WRITE);
3215 	c.err_to_clearinit = cpu_to_be32(
3216 			V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
3217 			V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
3218 			V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ? mbox :
3219 						M_FW_HELLO_CMD_MBMASTER) |
3220 			V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
3221 			V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) |
3222 			F_FW_HELLO_CMD_CLEARINIT);
3223 
3224 	/*
3225 	 * Issue the HELLO command to the firmware.  If it's not successful
3226 	 * but indicates that we got a "busy" or "timeout" condition, retry
3227 	 * the HELLO until we exhaust our retry limit.  If we do exceed our
3228 	 * retry limit, check to see if the firmware left us any error
3229 	 * information and report that if so ...
3230 	 */
3231 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
3232 	if (ret != FW_SUCCESS) {
3233 		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
3234 			goto retry;
3235 		if (t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_ERR)
3236 			t4_report_fw_error(adap);
3237 		return ret;
3238 	}
3239 
3240 	v = be32_to_cpu(c.err_to_clearinit);
3241 	master_mbox = G_FW_HELLO_CMD_MBMASTER(v);
3242 	if (state) {
3243 		if (v & F_FW_HELLO_CMD_ERR)
3244 			*state = DEV_STATE_ERR;
3245 		else if (v & F_FW_HELLO_CMD_INIT)
3246 			*state = DEV_STATE_INIT;
3247 		else
3248 			*state = DEV_STATE_UNINIT;
3249 	}
3250 
3251 	/*
3252 	 * If we're not the Master PF then we need to wait around for the
3253 	 * Master PF Driver to finish setting up the adapter.
3254 	 *
3255 	 * Note that we also do this wait if we're a non-Master-capable PF and
3256 	 * there is no current Master PF; a Master PF may show up momentarily
3257 	 * and we wouldn't want to fail pointlessly.  (This can happen when an
3258 	 * OS loads lots of different drivers rapidly at the same time).  In
3259 	 * this case, the Master PF returned by the firmware will be
3260 	 * M_PCIE_FW_MASTER so the test below will work ...
3261 	 */
3262 	if ((v & (F_FW_HELLO_CMD_ERR | F_FW_HELLO_CMD_INIT)) == 0 &&
3263 	    master_mbox != mbox) {
3264 		int waiting = FW_CMD_HELLO_TIMEOUT;
3265 
3266 		/*
3267 		 * Wait for the firmware to either indicate an error or
3268 		 * initialized state.  If we see either of these we bail out
3269 		 * and report the issue to the caller.  If we exhaust the
3270 		 * "hello timeout" and we haven't exhausted our retries, try
3271 		 * again.  Otherwise bail with a timeout error.
3272 		 */
3273 		for (;;) {
3274 			u32 pcie_fw;
3275 
3276 			msleep(50);
3277 			waiting -= 50;
3278 
3279 			/*
3280 			 * If neither Error nor Initialialized are indicated
3281 			 * by the firmware keep waiting till we exaust our
3282 			 * timeout ... and then retry if we haven't exhausted
3283 			 * our retries ...
3284 			 */
3285 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
3286 			if (!(pcie_fw & (F_PCIE_FW_ERR | F_PCIE_FW_INIT))) {
3287 				if (waiting <= 0) {
3288 					if (retries-- > 0)
3289 						goto retry;
3290 
3291 					return -ETIMEDOUT;
3292 				}
3293 				continue;
3294 			}
3295 
3296 			/*
3297 			 * We either have an Error or Initialized condition
3298 			 * report errors preferentially.
3299 			 */
3300 			if (state) {
3301 				if (pcie_fw & F_PCIE_FW_ERR)
3302 					*state = DEV_STATE_ERR;
3303 				else if (pcie_fw & F_PCIE_FW_INIT)
3304 					*state = DEV_STATE_INIT;
3305 			}
3306 
3307 			/*
3308 			 * If we arrived before a Master PF was selected and
3309 			 * there's not a valid Master PF, grab its identity
3310 			 * for our caller.
3311 			 */
3312 			if (master_mbox == M_PCIE_FW_MASTER &&
3313 			    (pcie_fw & F_PCIE_FW_MASTER_VLD))
3314 				master_mbox = G_PCIE_FW_MASTER(pcie_fw);
3315 			break;
3316 		}
3317 	}
3318 
3319 	return master_mbox;
3320 }
3321 
3322 /**
3323  * t4_fw_bye - end communication with FW
3324  * @adap: the adapter
3325  * @mbox: mailbox to use for the FW command
3326  *
3327  * Issues a command to terminate communication with FW.
3328  */
t4_fw_bye(struct adapter * adap,unsigned int mbox)3329 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
3330 {
3331 	struct fw_bye_cmd c;
3332 
3333 	memset(&c, 0, sizeof(c));
3334 	INIT_CMD(c, BYE, WRITE);
3335 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3336 }
3337 
3338 /**
3339  * t4_fw_reset - issue a reset to FW
3340  * @adap: the adapter
3341  * @mbox: mailbox to use for the FW command
3342  * @reset: specifies the type of reset to perform
3343  *
3344  * Issues a reset command of the specified type to FW.
3345  */
t4_fw_reset(struct adapter * adap,unsigned int mbox,int reset)3346 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
3347 {
3348 	struct fw_reset_cmd c;
3349 
3350 	memset(&c, 0, sizeof(c));
3351 	INIT_CMD(c, RESET, WRITE);
3352 	c.val = cpu_to_be32(reset);
3353 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3354 }
3355 
3356 /**
3357  * t4_fw_halt - issue a reset/halt to FW and put uP into RESET
3358  * @adap: the adapter
3359  * @mbox: mailbox to use for the FW RESET command (if desired)
3360  * @force: force uP into RESET even if FW RESET command fails
3361  *
3362  * Issues a RESET command to firmware (if desired) with a HALT indication
3363  * and then puts the microprocessor into RESET state.  The RESET command
3364  * will only be issued if a legitimate mailbox is provided (mbox <=
3365  * M_PCIE_FW_MASTER).
3366  *
3367  * This is generally used in order for the host to safely manipulate the
3368  * adapter without fear of conflicting with whatever the firmware might
3369  * be doing.  The only way out of this state is to RESTART the firmware
3370  * ...
3371  */
t4_fw_halt(struct adapter * adap,unsigned int mbox,int force)3372 int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
3373 {
3374 	int ret = 0;
3375 
3376 	/*
3377 	 * If a legitimate mailbox is provided, issue a RESET command
3378 	 * with a HALT indication.
3379 	 */
3380 	if (mbox <= M_PCIE_FW_MASTER) {
3381 		struct fw_reset_cmd c;
3382 
3383 		memset(&c, 0, sizeof(c));
3384 		INIT_CMD(c, RESET, WRITE);
3385 		c.val = cpu_to_be32(F_PIORST | F_PIORSTMODE);
3386 		c.halt_pkd = cpu_to_be32(F_FW_RESET_CMD_HALT);
3387 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3388 	}
3389 
3390 	/*
3391 	 * Normally we won't complete the operation if the firmware RESET
3392 	 * command fails but if our caller insists we'll go ahead and put the
3393 	 * uP into RESET.  This can be useful if the firmware is hung or even
3394 	 * missing ...  We'll have to take the risk of putting the uP into
3395 	 * RESET without the cooperation of firmware in that case.
3396 	 *
3397 	 * We also force the firmware's HALT flag to be on in case we bypassed
3398 	 * the firmware RESET command above or we're dealing with old firmware
3399 	 * which doesn't have the HALT capability.  This will serve as a flag
3400 	 * for the incoming firmware to know that it's coming out of a HALT
3401 	 * rather than a RESET ... if it's new enough to understand that ...
3402 	 */
3403 	if (ret == 0 || force) {
3404 		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
3405 		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT,
3406 				 F_PCIE_FW_HALT);
3407 	}
3408 
3409 	/*
3410 	 * And we always return the result of the firmware RESET command
3411 	 * even when we force the uP into RESET ...
3412 	 */
3413 	return ret;
3414 }
3415 
3416 /**
3417  * t4_fw_restart - restart the firmware by taking the uP out of RESET
3418  * @adap: the adapter
3419  * @mbox: mailbox to use for the FW RESET command (if desired)
3420  * @reset: if we want to do a RESET to restart things
3421  *
3422  * Restart firmware previously halted by t4_fw_halt().  On successful
3423  * return the previous PF Master remains as the new PF Master and there
3424  * is no need to issue a new HELLO command, etc.
3425  *
3426  * We do this in two ways:
3427  *
3428  * 1. If we're dealing with newer firmware we'll simply want to take
3429  *    the chip's microprocessor out of RESET.  This will cause the
3430  *    firmware to start up from its start vector.  And then we'll loop
3431  *    until the firmware indicates it's started again (PCIE_FW.HALT
3432  *    reset to 0) or we timeout.
3433  *
3434  * 2. If we're dealing with older firmware then we'll need to RESET
3435  *    the chip since older firmware won't recognize the PCIE_FW.HALT
3436  *    flag and automatically RESET itself on startup.
3437  */
t4_fw_restart(struct adapter * adap,unsigned int mbox,int reset)3438 int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
3439 {
3440 	if (reset) {
3441 		/*
3442 		 * Since we're directing the RESET instead of the firmware
3443 		 * doing it automatically, we need to clear the PCIE_FW.HALT
3444 		 * bit.
3445 		 */
3446 		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT, 0);
3447 
3448 		/*
3449 		 * If we've been given a valid mailbox, first try to get the
3450 		 * firmware to do the RESET.  If that works, great and we can
3451 		 * return success.  Otherwise, if we haven't been given a
3452 		 * valid mailbox or the RESET command failed, fall back to
3453 		 * hitting the chip with a hammer.
3454 		 */
3455 		if (mbox <= M_PCIE_FW_MASTER) {
3456 			t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
3457 			msleep(100);
3458 			if (t4_fw_reset(adap, mbox,
3459 					F_PIORST | F_PIORSTMODE) == 0)
3460 				return 0;
3461 		}
3462 
3463 		t4_write_reg(adap, A_PL_RST, F_PIORST | F_PIORSTMODE);
3464 		msleep(2000);
3465 	} else {
3466 		int ms;
3467 
3468 		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
3469 		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
3470 			if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT))
3471 				return FW_SUCCESS;
3472 			msleep(100);
3473 			ms += 100;
3474 		}
3475 		return -ETIMEDOUT;
3476 	}
3477 	return 0;
3478 }
3479 
3480 /**
3481  * t4_fixup_host_params_compat - fix up host-dependent parameters
3482  * @adap: the adapter
3483  * @page_size: the host's Base Page Size
3484  * @cache_line_size: the host's Cache Line Size
3485  * @chip_compat: maintain compatibility with designated chip
3486  *
3487  * Various registers in the chip contain values which are dependent on the
3488  * host's Base Page and Cache Line Sizes.  This function will fix all of
3489  * those registers with the appropriate values as passed in ...
3490  *
3491  * @chip_compat is used to limit the set of changes that are made
3492  * to be compatible with the indicated chip release.  This is used by
3493  * drivers to maintain compatibility with chip register settings when
3494  * the drivers haven't [yet] been updated with new chip support.
3495  */
t4_fixup_host_params_compat(struct adapter * adap,unsigned int page_size,unsigned int cache_line_size,enum chip_type chip_compat)3496 int t4_fixup_host_params_compat(struct adapter *adap,
3497 				unsigned int page_size,
3498 				unsigned int cache_line_size,
3499 				enum chip_type chip_compat)
3500 {
3501 	unsigned int page_shift = cxgbe_fls(page_size) - 1;
3502 	unsigned int sge_hps = page_shift - 10;
3503 	unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
3504 	unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
3505 	unsigned int fl_align_log = cxgbe_fls(fl_align) - 1;
3506 
3507 	t4_write_reg(adap, A_SGE_HOST_PAGE_SIZE,
3508 		     V_HOSTPAGESIZEPF0(sge_hps) |
3509 		     V_HOSTPAGESIZEPF1(sge_hps) |
3510 		     V_HOSTPAGESIZEPF2(sge_hps) |
3511 		     V_HOSTPAGESIZEPF3(sge_hps) |
3512 		     V_HOSTPAGESIZEPF4(sge_hps) |
3513 		     V_HOSTPAGESIZEPF5(sge_hps) |
3514 		     V_HOSTPAGESIZEPF6(sge_hps) |
3515 		     V_HOSTPAGESIZEPF7(sge_hps));
3516 
3517 	if (is_t4(adap->params.chip) || is_t4(chip_compat))
3518 		t4_set_reg_field(adap, A_SGE_CONTROL,
3519 				 V_INGPADBOUNDARY(M_INGPADBOUNDARY) |
3520 				 F_EGRSTATUSPAGESIZE,
3521 				 V_INGPADBOUNDARY(fl_align_log -
3522 						  X_INGPADBOUNDARY_SHIFT) |
3523 				V_EGRSTATUSPAGESIZE(stat_len != 64));
3524 	else {
3525 		unsigned int pack_align;
3526 		unsigned int ingpad, ingpack;
3527 		unsigned int pcie_cap;
3528 
3529 		/*
3530 		 * T5 introduced the separation of the Free List Padding and
3531 		 * Packing Boundaries.  Thus, we can select a smaller Padding
3532 		 * Boundary to avoid uselessly chewing up PCIe Link and Memory
3533 		 * Bandwidth, and use a Packing Boundary which is large enough
3534 		 * to avoid false sharing between CPUs, etc.
3535 		 *
3536 		 * For the PCI Link, the smaller the Padding Boundary the
3537 		 * better.  For the Memory Controller, a smaller Padding
3538 		 * Boundary is better until we cross under the Memory Line
3539 		 * Size (the minimum unit of transfer to/from Memory).  If we
3540 		 * have a Padding Boundary which is smaller than the Memory
3541 		 * Line Size, that'll involve a Read-Modify-Write cycle on the
3542 		 * Memory Controller which is never good.
3543 		 */
3544 
3545 		/* We want the Packing Boundary to be based on the Cache Line
3546 		 * Size in order to help avoid False Sharing performance
3547 		 * issues between CPUs, etc.  We also want the Packing
3548 		 * Boundary to incorporate the PCI-E Maximum Payload Size.  We
3549 		 * get best performance when the Packing Boundary is a
3550 		 * multiple of the Maximum Payload Size.
3551 		 */
3552 		pack_align = fl_align;
3553 		pcie_cap = t4_os_find_pci_capability(adap, PCI_CAP_ID_EXP);
3554 		if (pcie_cap) {
3555 			unsigned int mps, mps_log;
3556 			u16 devctl;
3557 
3558 			/* The PCIe Device Control Maximum Payload Size field
3559 			 * [bits 7:5] encodes sizes as powers of 2 starting at
3560 			 * 128 bytes.
3561 			 */
3562 			t4_os_pci_read_cfg2(adap, pcie_cap + PCI_EXP_DEVCTL,
3563 					    &devctl);
3564 			mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7;
3565 			mps = 1 << mps_log;
3566 			if (mps > pack_align)
3567 				pack_align = mps;
3568 		}
3569 
3570 		/*
3571 		 * N.B. T5 has a different interpretation of the "0" value for
3572 		 * the Packing Boundary.  This corresponds to 16 bytes instead
3573 		 * of the expected 32 bytes.  We never have a Packing Boundary
3574 		 * less than 32 bytes so we can't use that special value but
3575 		 * on the other hand, if we wanted 32 bytes, the best we can
3576 		 * really do is 64 bytes ...
3577 		 */
3578 		if (pack_align <= 16) {
3579 			ingpack = X_INGPACKBOUNDARY_16B;
3580 			fl_align = 16;
3581 		} else if (pack_align == 32) {
3582 			ingpack = X_INGPACKBOUNDARY_64B;
3583 			fl_align = 64;
3584 		} else {
3585 			unsigned int pack_align_log = cxgbe_fls(pack_align) - 1;
3586 
3587 			ingpack = pack_align_log - X_INGPACKBOUNDARY_SHIFT;
3588 			fl_align = pack_align;
3589 		}
3590 
3591 		/* Use the smallest Ingress Padding which isn't smaller than
3592 		 * the Memory Controller Read/Write Size.  We'll take that as
3593 		 * being 8 bytes since we don't know of any system with a
3594 		 * wider Memory Controller Bus Width.
3595 		 */
3596 		if (is_t5(adap->params.chip))
3597 			ingpad = X_INGPADBOUNDARY_32B;
3598 		else
3599 			ingpad = X_T6_INGPADBOUNDARY_8B;
3600 		t4_set_reg_field(adap, A_SGE_CONTROL,
3601 				 V_INGPADBOUNDARY(M_INGPADBOUNDARY) |
3602 				 F_EGRSTATUSPAGESIZE,
3603 				 V_INGPADBOUNDARY(ingpad) |
3604 				 V_EGRSTATUSPAGESIZE(stat_len != 64));
3605 		t4_set_reg_field(adap, A_SGE_CONTROL2,
3606 				 V_INGPACKBOUNDARY(M_INGPACKBOUNDARY),
3607 				 V_INGPACKBOUNDARY(ingpack));
3608 	}
3609 
3610 	/*
3611 	 * Adjust various SGE Free List Host Buffer Sizes.
3612 	 *
3613 	 * The first four entries are:
3614 	 *
3615 	 *   0: Host Page Size
3616 	 *   1: 64KB
3617 	 *   2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
3618 	 *   3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
3619 	 *
3620 	 * For the single-MTU buffers in unpacked mode we need to include
3621 	 * space for the SGE Control Packet Shift, 14 byte Ethernet header,
3622 	 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
3623 	 * Padding boundary.  All of these are accommodated in the Factory
3624 	 * Default Firmware Configuration File but we need to adjust it for
3625 	 * this host's cache line size.
3626 	 */
3627 	t4_write_reg(adap, A_SGE_FL_BUFFER_SIZE0, page_size);
3628 	t4_write_reg(adap, A_SGE_FL_BUFFER_SIZE2,
3629 		     (t4_read_reg(adap, A_SGE_FL_BUFFER_SIZE2) + fl_align - 1)
3630 		     & ~(fl_align - 1));
3631 	t4_write_reg(adap, A_SGE_FL_BUFFER_SIZE3,
3632 		     (t4_read_reg(adap, A_SGE_FL_BUFFER_SIZE3) + fl_align - 1)
3633 		     & ~(fl_align - 1));
3634 
3635 	t4_write_reg(adap, A_ULP_RX_TDDP_PSZ, V_HPZ0(page_shift - 12));
3636 
3637 	return 0;
3638 }
3639 
3640 /**
3641  * t4_fixup_host_params - fix up host-dependent parameters (T4 compatible)
3642  * @adap: the adapter
3643  * @page_size: the host's Base Page Size
3644  * @cache_line_size: the host's Cache Line Size
3645  *
3646  * Various registers in T4 contain values which are dependent on the
3647  * host's Base Page and Cache Line Sizes.  This function will fix all of
3648  * those registers with the appropriate values as passed in ...
3649  *
3650  * This routine makes changes which are compatible with T4 chips.
3651  */
t4_fixup_host_params(struct adapter * adap,unsigned int page_size,unsigned int cache_line_size)3652 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
3653 			 unsigned int cache_line_size)
3654 {
3655 	return t4_fixup_host_params_compat(adap, page_size, cache_line_size,
3656 					   T4_LAST_REV);
3657 }
3658 
3659 /**
3660  * t4_fw_initialize - ask FW to initialize the device
3661  * @adap: the adapter
3662  * @mbox: mailbox to use for the FW command
3663  *
3664  * Issues a command to FW to partially initialize the device.  This
3665  * performs initialization that generally doesn't depend on user input.
3666  */
t4_fw_initialize(struct adapter * adap,unsigned int mbox)3667 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
3668 {
3669 	struct fw_initialize_cmd c;
3670 
3671 	memset(&c, 0, sizeof(c));
3672 	INIT_CMD(c, INITIALIZE, WRITE);
3673 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3674 }
3675 
3676 /**
3677  * t4_query_params_rw - query FW or device parameters
3678  * @adap: the adapter
3679  * @mbox: mailbox to use for the FW command
3680  * @pf: the PF
3681  * @vf: the VF
3682  * @nparams: the number of parameters
3683  * @params: the parameter names
3684  * @val: the parameter values
3685  * @rw: Write and read flag
3686  *
3687  * Reads the value of FW or device parameters.  Up to 7 parameters can be
3688  * queried at once.
3689  */
t4_query_params_rw(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int nparams,const u32 * params,u32 * val,int rw)3690 static int t4_query_params_rw(struct adapter *adap, unsigned int mbox,
3691 			      unsigned int pf, unsigned int vf,
3692 			      unsigned int nparams, const u32 *params,
3693 			      u32 *val, int rw)
3694 {
3695 	unsigned int i;
3696 	int ret;
3697 	struct fw_params_cmd c;
3698 	__be32 *p = &c.param[0].mnem;
3699 
3700 	if (nparams > 7)
3701 		return -EINVAL;
3702 
3703 	memset(&c, 0, sizeof(c));
3704 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
3705 				  F_FW_CMD_REQUEST | F_FW_CMD_READ |
3706 				  V_FW_PARAMS_CMD_PFN(pf) |
3707 				  V_FW_PARAMS_CMD_VFN(vf));
3708 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3709 
3710 	for (i = 0; i < nparams; i++) {
3711 		*p++ = cpu_to_be32(*params++);
3712 		if (rw)
3713 			*p = cpu_to_be32(*(val + i));
3714 		p++;
3715 	}
3716 
3717 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
3718 	if (ret == 0)
3719 		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
3720 			*val++ = be32_to_cpu(*p);
3721 	return ret;
3722 }
3723 
t4_query_params(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int nparams,const u32 * params,u32 * val)3724 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
3725 		    unsigned int vf, unsigned int nparams, const u32 *params,
3726 		    u32 *val)
3727 {
3728 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
3729 }
3730 
3731 /**
3732  * t4_set_params_timeout - sets FW or device parameters
3733  * @adap: the adapter
3734  * @mbox: mailbox to use for the FW command
3735  * @pf: the PF
3736  * @vf: the VF
3737  * @nparams: the number of parameters
3738  * @params: the parameter names
3739  * @val: the parameter values
3740  * @timeout: the timeout time
3741  *
3742  * Sets the value of FW or device parameters.  Up to 7 parameters can be
3743  * specified at once.
3744  */
t4_set_params_timeout(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int nparams,const u32 * params,const u32 * val,int timeout)3745 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
3746 			  unsigned int pf, unsigned int vf,
3747 			  unsigned int nparams, const u32 *params,
3748 			  const u32 *val, int timeout)
3749 {
3750 	struct fw_params_cmd c;
3751 	__be32 *p = &c.param[0].mnem;
3752 
3753 	if (nparams > 7)
3754 		return -EINVAL;
3755 
3756 	memset(&c, 0, sizeof(c));
3757 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
3758 				  F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
3759 				  V_FW_PARAMS_CMD_PFN(pf) |
3760 				  V_FW_PARAMS_CMD_VFN(vf));
3761 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3762 
3763 	while (nparams--) {
3764 		*p++ = cpu_to_be32(*params++);
3765 		*p++ = cpu_to_be32(*val++);
3766 	}
3767 
3768 	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
3769 }
3770 
t4_set_params(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int nparams,const u32 * params,const u32 * val)3771 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
3772 		  unsigned int vf, unsigned int nparams, const u32 *params,
3773 		  const u32 *val)
3774 {
3775 	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
3776 				     FW_CMD_MAX_TIMEOUT);
3777 }
3778 
3779 /**
3780  * t4_alloc_vi_func - allocate a virtual interface
3781  * @adap: the adapter
3782  * @mbox: mailbox to use for the FW command
3783  * @port: physical port associated with the VI
3784  * @pf: the PF owning the VI
3785  * @vf: the VF owning the VI
3786  * @nmac: number of MAC addresses needed (1 to 5)
3787  * @mac: the MAC addresses of the VI
3788  * @rss_size: size of RSS table slice associated with this VI
3789  * @portfunc: which Port Application Function MAC Address is desired
3790  * @idstype: Intrusion Detection Type
3791  *
3792  * Allocates a virtual interface for the given physical port.  If @mac is
3793  * not %NULL it contains the MAC addresses of the VI as assigned by FW.
3794  * @mac should be large enough to hold @nmac Ethernet addresses, they are
3795  * stored consecutively so the space needed is @nmac * 6 bytes.
3796  * Returns a negative error number or the non-negative VI id.
3797  */
t4_alloc_vi_func(struct adapter * adap,unsigned int mbox,unsigned int port,unsigned int pf,unsigned int vf,unsigned int nmac,u8 * mac,unsigned int * rss_size,unsigned int portfunc,unsigned int idstype,u8 * vivld,u8 * vin)3798 int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox,
3799 		     unsigned int port, unsigned int pf, unsigned int vf,
3800 		     unsigned int nmac, u8 *mac, unsigned int *rss_size,
3801 		     unsigned int portfunc, unsigned int idstype,
3802 		     u8 *vivld, u8 *vin)
3803 {
3804 	int ret;
3805 	struct fw_vi_cmd c;
3806 
3807 	memset(&c, 0, sizeof(c));
3808 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
3809 				  F_FW_CMD_WRITE | F_FW_CMD_EXEC |
3810 				  V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf));
3811 	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_ALLOC | FW_LEN16(c));
3812 	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_TYPE(idstype) |
3813 				     V_FW_VI_CMD_FUNC(portfunc));
3814 	c.portid_pkd = V_FW_VI_CMD_PORTID(port);
3815 	c.nmac = nmac - 1;
3816 
3817 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
3818 	if (ret)
3819 		return ret;
3820 
3821 	if (mac) {
3822 		memcpy(mac, c.mac, sizeof(c.mac));
3823 		switch (nmac) {
3824 		case 5:
3825 			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
3826 			/* FALLTHROUGH */
3827 		case 4:
3828 			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
3829 			/* FALLTHROUGH */
3830 		case 3:
3831 			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
3832 			/* FALLTHROUGH */
3833 		case 2:
3834 			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
3835 			/* FALLTHROUGH */
3836 		}
3837 	}
3838 	if (rss_size)
3839 		*rss_size = G_FW_VI_CMD_RSSSIZE(be16_to_cpu(c.norss_rsssize));
3840 	if (vivld)
3841 		*vivld = G_FW_VI_CMD_VFVLD(be32_to_cpu(c.alloc_to_len16));
3842 	if (vin)
3843 		*vin = G_FW_VI_CMD_VIN(be32_to_cpu(c.alloc_to_len16));
3844 	return G_FW_VI_CMD_VIID(cpu_to_be16(c.type_to_viid));
3845 }
3846 
3847 /**
3848  * t4_alloc_vi - allocate an [Ethernet Function] virtual interface
3849  * @adap: the adapter
3850  * @mbox: mailbox to use for the FW command
3851  * @port: physical port associated with the VI
3852  * @pf: the PF owning the VI
3853  * @vf: the VF owning the VI
3854  * @nmac: number of MAC addresses needed (1 to 5)
3855  * @mac: the MAC addresses of the VI
3856  * @rss_size: size of RSS table slice associated with this VI
3857  *
3858  * Backwards compatible and convieniance routine to allocate a Virtual
3859  * Interface with a Ethernet Port Application Function and Intrustion
3860  * Detection System disabled.
3861  */
t4_alloc_vi(struct adapter * adap,unsigned int mbox,unsigned int port,unsigned int pf,unsigned int vf,unsigned int nmac,u8 * mac,unsigned int * rss_size,u8 * vivld,u8 * vin)3862 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
3863 		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
3864 		unsigned int *rss_size, u8 *vivld, u8 *vin)
3865 {
3866 	return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size,
3867 				FW_VI_FUNC_ETH, 0, vivld, vin);
3868 }
3869 
3870 /**
3871  * t4_free_vi - free a virtual interface
3872  * @adap: the adapter
3873  * @mbox: mailbox to use for the FW command
3874  * @pf: the PF owning the VI
3875  * @vf: the VF owning the VI
3876  * @viid: virtual interface identifiler
3877  *
3878  * Free a previously allocated virtual interface.
3879  */
t4_free_vi(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int viid)3880 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
3881 	       unsigned int vf, unsigned int viid)
3882 {
3883 	struct fw_vi_cmd c;
3884 
3885 	memset(&c, 0, sizeof(c));
3886 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
3887 				  F_FW_CMD_EXEC);
3888 	if (is_pf4(adap))
3889 		c.op_to_vfn |= cpu_to_be32(V_FW_VI_CMD_PFN(pf) |
3890 					   V_FW_VI_CMD_VFN(vf));
3891 	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_FREE | FW_LEN16(c));
3892 	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(viid));
3893 
3894 	if (is_pf4(adap))
3895 		return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
3896 	else
3897 		return t4vf_wr_mbox(adap, &c, sizeof(c), NULL);
3898 }
3899 
3900 /**
3901  * t4_set_rxmode - set Rx properties of a virtual interface
3902  * @adap: the adapter
3903  * @mbox: mailbox to use for the FW command
3904  * @viid: the VI id
3905  * @mtu: the new MTU or -1
3906  * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
3907  * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
3908  * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
3909  * @vlanex: 1 to enable hardware VLAN Tag extraction, 0 to disable it,
3910  *          -1 no change
3911  * @sleep_ok: if true we may sleep while awaiting command completion
3912  *
3913  * Sets Rx properties of a virtual interface.
3914  */
t4_set_rxmode(struct adapter * adap,unsigned int mbox,unsigned int viid,int mtu,int promisc,int all_multi,int bcast,int vlanex,bool sleep_ok)3915 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
3916 		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
3917 		  bool sleep_ok)
3918 {
3919 	struct fw_vi_rxmode_cmd c;
3920 
3921 	/* convert to FW values */
3922 	if (mtu < 0)
3923 		mtu = M_FW_VI_RXMODE_CMD_MTU;
3924 	if (promisc < 0)
3925 		promisc = M_FW_VI_RXMODE_CMD_PROMISCEN;
3926 	if (all_multi < 0)
3927 		all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN;
3928 	if (bcast < 0)
3929 		bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN;
3930 	if (vlanex < 0)
3931 		vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN;
3932 
3933 	memset(&c, 0, sizeof(c));
3934 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_RXMODE_CMD) |
3935 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
3936 				   V_FW_VI_RXMODE_CMD_VIID(viid));
3937 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3938 	c.mtu_to_vlanexen = cpu_to_be32(V_FW_VI_RXMODE_CMD_MTU(mtu) |
3939 			    V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
3940 			    V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
3941 			    V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
3942 			    V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
3943 	if (is_pf4(adap))
3944 		return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL,
3945 				       sleep_ok);
3946 	else
3947 		return t4vf_wr_mbox(adap, &c, sizeof(c), NULL);
3948 }
3949 
3950 /**
3951  *	t4_alloc_raw_mac_filt - Adds a raw mac entry in mps tcam
3952  *	@adap: the adapter
3953  *	@viid: the VI id
3954  *	@mac: the MAC address
3955  *	@mask: the mask
3956  *	@idx: index at which to add this entry
3957  *	@port_id: the port index
3958  *	@lookup_type: MAC address for inner (1) or outer (0) header
3959  *	@sleep_ok: call is allowed to sleep
3960  *
3961  *	Adds the mac entry at the specified index using raw mac interface.
3962  *
3963  *	Returns a negative error number or the allocated index for this mac.
3964  */
t4_alloc_raw_mac_filt(struct adapter * adap,unsigned int viid,const u8 * addr,const u8 * mask,unsigned int idx,u8 lookup_type,u8 port_id,bool sleep_ok)3965 int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid,
3966 			  const u8 *addr, const u8 *mask, unsigned int idx,
3967 			  u8 lookup_type, u8 port_id, bool sleep_ok)
3968 {
3969 	int ret = 0;
3970 	struct fw_vi_mac_cmd c;
3971 	struct fw_vi_mac_raw *p = &c.u.raw;
3972 	u32 val;
3973 
3974 	memset(&c, 0, sizeof(c));
3975 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
3976 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
3977 				   V_FW_VI_MAC_CMD_VIID(viid));
3978 	val = V_FW_CMD_LEN16(1) |
3979 	      V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_RAW);
3980 	c.freemacs_to_len16 = cpu_to_be32(val);
3981 
3982 	/* Specify that this is an inner mac address */
3983 	p->raw_idx_pkd = cpu_to_be32(V_FW_VI_MAC_CMD_RAW_IDX(idx));
3984 
3985 	/* Lookup Type. Outer header: 0, Inner header: 1 */
3986 	p->data0_pkd = cpu_to_be32(V_DATALKPTYPE(lookup_type) |
3987 				   V_DATAPORTNUM(port_id));
3988 	/* Lookup mask and port mask */
3989 	p->data0m_pkd = cpu_to_be64(V_DATALKPTYPE(M_DATALKPTYPE) |
3990 				    V_DATAPORTNUM(M_DATAPORTNUM));
3991 
3992 	/* Copy the address and the mask */
3993 	memcpy((u8 *)&p->data1[0] + 2, addr, ETHER_ADDR_LEN);
3994 	memcpy((u8 *)&p->data1m[0] + 2, mask, ETHER_ADDR_LEN);
3995 
3996 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
3997 	if (ret == 0) {
3998 		ret = G_FW_VI_MAC_CMD_RAW_IDX(be32_to_cpu(p->raw_idx_pkd));
3999 		if (ret != (int)idx)
4000 			ret = -ENOMEM;
4001 	}
4002 
4003 	return ret;
4004 }
4005 
4006 /**
4007  *	t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam
4008  *	@adap: the adapter
4009  *	@viid: the VI id
4010  *	@addr: the MAC address
4011  *	@mask: the mask
4012  *	@idx: index of the entry in mps tcam
4013  *	@lookup_type: MAC address for inner (1) or outer (0) header
4014  *	@port_id: the port index
4015  *	@sleep_ok: call is allowed to sleep
4016  *
4017  *	Removes the mac entry at the specified index using raw mac interface.
4018  *
4019  *	Returns a negative error number on failure.
4020  */
t4_free_raw_mac_filt(struct adapter * adap,unsigned int viid,const u8 * addr,const u8 * mask,unsigned int idx,u8 lookup_type,u8 port_id,bool sleep_ok)4021 int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid,
4022 			 const u8 *addr, const u8 *mask, unsigned int idx,
4023 			 u8 lookup_type, u8 port_id, bool sleep_ok)
4024 {
4025 	struct fw_vi_mac_cmd c;
4026 	struct fw_vi_mac_raw *p = &c.u.raw;
4027 	u32 raw;
4028 
4029 	memset(&c, 0, sizeof(c));
4030 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
4031 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
4032 				   V_FW_CMD_EXEC(0) |
4033 				   V_FW_VI_MAC_CMD_VIID(viid));
4034 	raw = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_RAW);
4035 	c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(0U) |
4036 					  raw |
4037 					  V_FW_CMD_LEN16(1));
4038 
4039 	p->raw_idx_pkd = cpu_to_be32(V_FW_VI_MAC_CMD_RAW_IDX(idx) |
4040 				     FW_VI_MAC_ID_BASED_FREE);
4041 
4042 	/* Lookup Type. Outer header: 0, Inner header: 1 */
4043 	p->data0_pkd = cpu_to_be32(V_DATALKPTYPE(lookup_type) |
4044 				   V_DATAPORTNUM(port_id));
4045 	/* Lookup mask and port mask */
4046 	p->data0m_pkd = cpu_to_be64(V_DATALKPTYPE(M_DATALKPTYPE) |
4047 				    V_DATAPORTNUM(M_DATAPORTNUM));
4048 
4049 	/* Copy the address and the mask */
4050 	memcpy((u8 *)&p->data1[0] + 2, addr, ETHER_ADDR_LEN);
4051 	memcpy((u8 *)&p->data1m[0] + 2, mask, ETHER_ADDR_LEN);
4052 
4053 	return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
4054 }
4055 
4056 /**
4057  * t4_change_mac - modifies the exact-match filter for a MAC address
4058  * @adap: the adapter
4059  * @mbox: mailbox to use for the FW command
4060  * @viid: the VI id
4061  * @idx: index of existing filter for old value of MAC address, or -1
4062  * @addr: the new MAC address value
4063  * @persist: whether a new MAC allocation should be persistent
4064  * @add_smt: if true also add the address to the HW SMT
4065  *
4066  * Modifies an exact-match filter and sets it to the new MAC address if
4067  * @idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
4068  * latter case the address is added persistently if @persist is %true.
4069  *
4070  * Note that in general it is not possible to modify the value of a given
4071  * filter so the generic way to modify an address filter is to free the one
4072  * being used by the old address value and allocate a new filter for the
4073  * new address value.
4074  *
4075  * Returns a negative error number or the index of the filter with the new
4076  * MAC value.  Note that this index may differ from @idx.
4077  */
t4_change_mac(struct adapter * adap,unsigned int mbox,unsigned int viid,int idx,const u8 * addr,bool persist,bool add_smt)4078 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
4079 		  int idx, const u8 *addr, bool persist, bool add_smt)
4080 {
4081 	int ret, mode;
4082 	struct fw_vi_mac_cmd c;
4083 	struct fw_vi_mac_exact *p = c.u.exact;
4084 	int max_mac_addr = adap->params.arch.mps_tcam_size;
4085 
4086 	if (idx < 0)                             /* new allocation */
4087 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
4088 	mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
4089 
4090 	memset(&c, 0, sizeof(c));
4091 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
4092 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
4093 				   V_FW_VI_MAC_CMD_VIID(viid));
4094 	c.freemacs_to_len16 = cpu_to_be32(V_FW_CMD_LEN16(1));
4095 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
4096 				      V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
4097 				      V_FW_VI_MAC_CMD_IDX(idx));
4098 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
4099 
4100 	if (is_pf4(adap))
4101 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
4102 	else
4103 		ret = t4vf_wr_mbox(adap, &c, sizeof(c), &c);
4104 	if (ret == 0) {
4105 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
4106 		if (ret >= max_mac_addr)
4107 			ret = -ENOMEM;
4108 	}
4109 	return ret;
4110 }
4111 
4112 /**
4113  * t4_enable_vi_params - enable/disable a virtual interface
4114  * @adap: the adapter
4115  * @mbox: mailbox to use for the FW command
4116  * @viid: the VI id
4117  * @rx_en: 1=enable Rx, 0=disable Rx
4118  * @tx_en: 1=enable Tx, 0=disable Tx
4119  * @dcb_en: 1=enable delivery of Data Center Bridging messages.
4120  *
4121  * Enables/disables a virtual interface.  Note that setting DCB Enable
4122  * only makes sense when enabling a Virtual Interface ...
4123  */
t4_enable_vi_params(struct adapter * adap,unsigned int mbox,unsigned int viid,bool rx_en,bool tx_en,bool dcb_en)4124 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
4125 			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
4126 {
4127 	struct fw_vi_enable_cmd c;
4128 
4129 	memset(&c, 0, sizeof(c));
4130 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
4131 				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
4132 				   V_FW_VI_ENABLE_CMD_VIID(viid));
4133 	c.ien_to_len16 = cpu_to_be32(V_FW_VI_ENABLE_CMD_IEN(rx_en) |
4134 				     V_FW_VI_ENABLE_CMD_EEN(tx_en) |
4135 				     V_FW_VI_ENABLE_CMD_DCB_INFO(dcb_en) |
4136 				     FW_LEN16(c));
4137 	if (is_pf4(adap))
4138 		return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
4139 	else
4140 		return t4vf_wr_mbox_ns(adap, &c, sizeof(c), NULL);
4141 }
4142 
4143 /**
4144  * t4_enable_vi - enable/disable a virtual interface
4145  * @adap: the adapter
4146  * @mbox: mailbox to use for the FW command
4147  * @viid: the VI id
4148  * @rx_en: 1=enable Rx, 0=disable Rx
4149  * @tx_en: 1=enable Tx, 0=disable Tx
4150  *
4151  * Enables/disables a virtual interface.  Note that setting DCB Enable
4152  * only makes sense when enabling a Virtual Interface ...
4153  */
t4_enable_vi(struct adapter * adap,unsigned int mbox,unsigned int viid,bool rx_en,bool tx_en)4154 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
4155 		 bool rx_en, bool tx_en)
4156 {
4157 	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
4158 }
4159 
4160 /**
4161  * t4_iq_start_stop - enable/disable an ingress queue and its FLs
4162  * @adap: the adapter
4163  * @mbox: mailbox to use for the FW command
4164  * @start: %true to enable the queues, %false to disable them
4165  * @pf: the PF owning the queues
4166  * @vf: the VF owning the queues
4167  * @iqid: ingress queue id
4168  * @fl0id: FL0 queue id or 0xffff if no attached FL0
4169  * @fl1id: FL1 queue id or 0xffff if no attached FL1
4170  *
4171  * Starts or stops an ingress queue and its associated FLs, if any.
4172  */
t4_iq_start_stop(struct adapter * adap,unsigned int mbox,bool start,unsigned int pf,unsigned int vf,unsigned int iqid,unsigned int fl0id,unsigned int fl1id)4173 int t4_iq_start_stop(struct adapter *adap, unsigned int mbox, bool start,
4174 		     unsigned int pf, unsigned int vf, unsigned int iqid,
4175 		     unsigned int fl0id, unsigned int fl1id)
4176 {
4177 	struct fw_iq_cmd c;
4178 
4179 	memset(&c, 0, sizeof(c));
4180 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
4181 				  F_FW_CMD_EXEC);
4182 	c.alloc_to_len16 = cpu_to_be32(V_FW_IQ_CMD_IQSTART(start) |
4183 				       V_FW_IQ_CMD_IQSTOP(!start) |
4184 				       FW_LEN16(c));
4185 	c.iqid = cpu_to_be16(iqid);
4186 	c.fl0id = cpu_to_be16(fl0id);
4187 	c.fl1id = cpu_to_be16(fl1id);
4188 	if (is_pf4(adap)) {
4189 		c.op_to_vfn |= cpu_to_be32(V_FW_IQ_CMD_PFN(pf) |
4190 					   V_FW_IQ_CMD_VFN(vf));
4191 		return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4192 	} else {
4193 		return t4vf_wr_mbox(adap, &c, sizeof(c), NULL);
4194 	}
4195 }
4196 
4197 /**
4198  * t4_iq_free - free an ingress queue and its FLs
4199  * @adap: the adapter
4200  * @mbox: mailbox to use for the FW command
4201  * @pf: the PF owning the queues
4202  * @vf: the VF owning the queues
4203  * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
4204  * @iqid: ingress queue id
4205  * @fl0id: FL0 queue id or 0xffff if no attached FL0
4206  * @fl1id: FL1 queue id or 0xffff if no attached FL1
4207  *
4208  * Frees an ingress queue and its associated FLs, if any.
4209  */
t4_iq_free(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int iqtype,unsigned int iqid,unsigned int fl0id,unsigned int fl1id)4210 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
4211 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
4212 	       unsigned int fl0id, unsigned int fl1id)
4213 {
4214 	struct fw_iq_cmd c;
4215 
4216 	memset(&c, 0, sizeof(c));
4217 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
4218 				  F_FW_CMD_EXEC);
4219 	if (is_pf4(adap))
4220 		c.op_to_vfn |= cpu_to_be32(V_FW_IQ_CMD_PFN(pf) |
4221 					   V_FW_IQ_CMD_VFN(vf));
4222 	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_FREE | FW_LEN16(c));
4223 	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
4224 	c.iqid = cpu_to_be16(iqid);
4225 	c.fl0id = cpu_to_be16(fl0id);
4226 	c.fl1id = cpu_to_be16(fl1id);
4227 	if (is_pf4(adap))
4228 		return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4229 	else
4230 		return t4vf_wr_mbox(adap, &c, sizeof(c), NULL);
4231 }
4232 
4233 /**
4234  * t4_eth_eq_free - free an Ethernet egress queue
4235  * @adap: the adapter
4236  * @mbox: mailbox to use for the FW command
4237  * @pf: the PF owning the queue
4238  * @vf: the VF owning the queue
4239  * @eqid: egress queue id
4240  *
4241  * Frees an Ethernet egress queue.
4242  */
t4_eth_eq_free(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int eqid)4243 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
4244 		   unsigned int vf, unsigned int eqid)
4245 {
4246 	struct fw_eq_eth_cmd c;
4247 
4248 	memset(&c, 0, sizeof(c));
4249 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
4250 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC);
4251 	if (is_pf4(adap))
4252 		c.op_to_vfn |= cpu_to_be32(V_FW_IQ_CMD_PFN(pf) |
4253 					   V_FW_IQ_CMD_VFN(vf));
4254 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
4255 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
4256 	if (is_pf4(adap))
4257 		return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4258 	else
4259 		return t4vf_wr_mbox(adap, &c, sizeof(c), NULL);
4260 }
4261 
4262 /**
4263  * t4_link_down_rc_str - return a string for a Link Down Reason Code
4264  * @link_down_rc: Link Down Reason Code
4265  *
4266  * Returns a string representation of the Link Down Reason Code.
4267  */
t4_link_down_rc_str(unsigned char link_down_rc)4268 static const char *t4_link_down_rc_str(unsigned char link_down_rc)
4269 {
4270 	static const char * const reason[] = {
4271 		"Link Down",
4272 		"Remote Fault",
4273 		"Auto-negotiation Failure",
4274 		"Reserved",
4275 		"Insufficient Airflow",
4276 		"Unable To Determine Reason",
4277 		"No RX Signal Detected",
4278 		"Reserved",
4279 	};
4280 
4281 	if (link_down_rc >= ARRAY_SIZE(reason))
4282 		return "Bad Reason Code";
4283 
4284 	return reason[link_down_rc];
4285 }
4286 
t4_speed_to_fwcap(u32 speed)4287 static u32 t4_speed_to_fwcap(u32 speed)
4288 {
4289 	switch (speed) {
4290 	case 100000:
4291 		return FW_PORT_CAP32_SPEED_100G;
4292 	case 50000:
4293 		return FW_PORT_CAP32_SPEED_50G;
4294 	case 40000:
4295 		return FW_PORT_CAP32_SPEED_40G;
4296 	case 25000:
4297 		return FW_PORT_CAP32_SPEED_25G;
4298 	case 10000:
4299 		return FW_PORT_CAP32_SPEED_10G;
4300 	case 1000:
4301 		return FW_PORT_CAP32_SPEED_1G;
4302 	case 100:
4303 		return FW_PORT_CAP32_SPEED_100M;
4304 	default:
4305 		break;
4306 	}
4307 
4308 	return 0;
4309 }
4310 
4311 /* Return the highest speed set in the port capabilities, in Mb/s. */
t4_fwcap_to_speed(u32 caps)4312 unsigned int t4_fwcap_to_speed(u32 caps)
4313 {
4314 #define TEST_SPEED_RETURN(__caps_speed, __speed) \
4315 	do { \
4316 		if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
4317 			return __speed; \
4318 	} while (0)
4319 
4320 	TEST_SPEED_RETURN(100G, 100000);
4321 	TEST_SPEED_RETURN(50G,   50000);
4322 	TEST_SPEED_RETURN(40G,   40000);
4323 	TEST_SPEED_RETURN(25G,   25000);
4324 	TEST_SPEED_RETURN(10G,   10000);
4325 	TEST_SPEED_RETURN(1G,     1000);
4326 	TEST_SPEED_RETURN(100M,    100);
4327 
4328 #undef TEST_SPEED_RETURN
4329 
4330 	return 0;
4331 }
4332 
t4_set_link_autoneg_speed(struct port_info * pi,u32 * new_caps)4333 static void t4_set_link_autoneg_speed(struct port_info *pi, u32 *new_caps)
4334 {
4335 	struct link_config *lc = &pi->link_cfg;
4336 	u32 caps = *new_caps;
4337 
4338 	caps &= ~V_FW_PORT_CAP32_SPEED(M_FW_PORT_CAP32_SPEED);
4339 	caps |= G_FW_PORT_CAP32_SPEED(lc->acaps);
4340 
4341 	*new_caps = caps;
4342 }
4343 
t4_set_link_speed(struct port_info * pi,u32 speed,u32 * new_caps)4344 int t4_set_link_speed(struct port_info *pi, u32 speed, u32 *new_caps)
4345 {
4346 	u32 fw_speed_cap = t4_speed_to_fwcap(speed);
4347 	struct link_config *lc = &pi->link_cfg;
4348 	u32 caps = *new_caps;
4349 
4350 	if (!(lc->pcaps & fw_speed_cap))
4351 		return -EOPNOTSUPP;
4352 
4353 	caps &= ~V_FW_PORT_CAP32_SPEED(M_FW_PORT_CAP32_SPEED);
4354 	caps |= fw_speed_cap;
4355 
4356 	*new_caps = caps;
4357 
4358 	return 0;
4359 }
4360 
t4_set_link_pause(struct port_info * pi,u8 autoneg,u8 pause_tx,u8 pause_rx,u32 * new_caps)4361 int t4_set_link_pause(struct port_info *pi, u8 autoneg, u8 pause_tx,
4362 		      u8 pause_rx, u32 *new_caps)
4363 {
4364 	struct link_config *lc = &pi->link_cfg;
4365 	u32 caps = *new_caps;
4366 	u32 max_speed;
4367 
4368 	max_speed = t4_fwcap_to_speed(lc->link_caps);
4369 
4370 	if (autoneg) {
4371 		if (!(lc->pcaps & FW_PORT_CAP32_ANEG))
4372 			return -EINVAL;
4373 
4374 		caps |= FW_PORT_CAP32_ANEG;
4375 		t4_set_link_autoneg_speed(pi, &caps);
4376 	} else {
4377 		if (!max_speed)
4378 			max_speed = t4_fwcap_to_speed(lc->acaps);
4379 
4380 		caps &= ~FW_PORT_CAP32_ANEG;
4381 		t4_set_link_speed(pi, max_speed, &caps);
4382 	}
4383 
4384 	if (lc->pcaps & FW_PORT_CAP32_MDIAUTO)
4385 		caps |= V_FW_PORT_CAP32_MDI(FW_PORT_CAP32_MDI_AUTO);
4386 
4387 	caps &= ~V_FW_PORT_CAP32_FC(M_FW_PORT_CAP32_FC);
4388 	caps &= ~V_FW_PORT_CAP32_802_3(M_FW_PORT_CAP32_802_3);
4389 	if (pause_tx && pause_rx) {
4390 		caps |= FW_PORT_CAP32_FC_TX | FW_PORT_CAP32_FC_RX;
4391 		if (lc->pcaps & FW_PORT_CAP32_802_3_PAUSE)
4392 			caps |= FW_PORT_CAP32_802_3_PAUSE;
4393 	} else if (pause_tx) {
4394 		caps |= FW_PORT_CAP32_FC_TX;
4395 		if (lc->pcaps & FW_PORT_CAP32_802_3_ASM_DIR)
4396 			caps |= FW_PORT_CAP32_802_3_ASM_DIR;
4397 	} else if (pause_rx) {
4398 		caps |= FW_PORT_CAP32_FC_RX;
4399 		if (lc->pcaps & FW_PORT_CAP32_802_3_PAUSE)
4400 			caps |= FW_PORT_CAP32_802_3_PAUSE;
4401 
4402 		if (lc->pcaps & FW_PORT_CAP32_802_3_ASM_DIR)
4403 			caps |= FW_PORT_CAP32_802_3_ASM_DIR;
4404 	}
4405 
4406 	*new_caps = caps;
4407 
4408 	return 0;
4409 }
4410 
t4_set_link_fec(struct port_info * pi,u8 fec_rs,u8 fec_baser,u8 fec_none,u32 * new_caps)4411 int t4_set_link_fec(struct port_info *pi, u8 fec_rs, u8 fec_baser,
4412 		    u8 fec_none, u32 *new_caps)
4413 {
4414 	struct link_config *lc = &pi->link_cfg;
4415 	u32 max_speed, caps = *new_caps;
4416 
4417 	if (!(lc->pcaps & V_FW_PORT_CAP32_FEC(M_FW_PORT_CAP32_FEC)))
4418 		return -EOPNOTSUPP;
4419 
4420 	/* Link might be down. In that case consider the max
4421 	 * speed advertised
4422 	 */
4423 	max_speed = t4_fwcap_to_speed(lc->link_caps);
4424 	if (!max_speed)
4425 		max_speed = t4_fwcap_to_speed(lc->acaps);
4426 
4427 	caps &= ~V_FW_PORT_CAP32_FEC(M_FW_PORT_CAP32_FEC);
4428 	if (fec_rs) {
4429 		switch (max_speed) {
4430 		case 100000:
4431 		case 25000:
4432 			caps |= FW_PORT_CAP32_FEC_RS;
4433 			break;
4434 		default:
4435 			return -EOPNOTSUPP;
4436 		}
4437 	}
4438 
4439 	if (fec_baser) {
4440 		switch (max_speed) {
4441 		case 50000:
4442 		case 25000:
4443 			caps |= FW_PORT_CAP32_FEC_BASER_RS;
4444 			break;
4445 		default:
4446 			return -EOPNOTSUPP;
4447 		}
4448 	}
4449 
4450 	if (fec_none)
4451 		caps |= FW_PORT_CAP32_FEC_NO_FEC;
4452 
4453 	if (!(caps & V_FW_PORT_CAP32_FEC(M_FW_PORT_CAP32_FEC))) {
4454 		/* No explicit encoding is requested.
4455 		 * So, default back to AUTO.
4456 		 */
4457 		switch (max_speed) {
4458 		case 100000:
4459 			caps |= FW_PORT_CAP32_FEC_RS |
4460 				FW_PORT_CAP32_FEC_NO_FEC;
4461 			break;
4462 		case 50000:
4463 			caps |= FW_PORT_CAP32_FEC_BASER_RS |
4464 				FW_PORT_CAP32_FEC_NO_FEC;
4465 			break;
4466 		case 25000:
4467 			caps |= FW_PORT_CAP32_FEC_RS |
4468 				FW_PORT_CAP32_FEC_BASER_RS |
4469 				FW_PORT_CAP32_FEC_NO_FEC;
4470 			break;
4471 		default:
4472 			return -EOPNOTSUPP;
4473 		}
4474 	}
4475 
4476 	*new_caps = caps;
4477 
4478 	return 0;
4479 }
4480 
4481 /**
4482  * t4_handle_get_port_info - process a FW reply message
4483  * @pi: the port info
4484  * @rpl: start of the FW message
4485  *
4486  * Processes a GET_PORT_INFO FW reply message.
4487  */
t4_handle_get_port_info(struct port_info * pi,const __be64 * rpl)4488 static void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl)
4489 {
4490 	const struct fw_port_cmd *cmd = (const void *)rpl;
4491 	u8 link_ok, link_down_rc, mod_type, port_type;
4492 	u32 action, pcaps, acaps, link_caps, lstatus;
4493 	struct link_config *lc = &pi->link_cfg;
4494 	struct adapter *adapter = pi->adapter;
4495 	u8 mod_changed = 0;
4496 
4497 	/* Extract the various fields from the Port Information message.
4498 	 */
4499 	action = be32_to_cpu(cmd->action_to_len16);
4500 	if (G_FW_PORT_CMD_ACTION(action) != FW_PORT_ACTION_GET_PORT_INFO32) {
4501 		dev_warn(adapter, "Handle Port Information: Bad Command/Action %#x\n",
4502 			 action);
4503 		return;
4504 	}
4505 
4506 	lstatus = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32);
4507 	link_ok = (lstatus & F_FW_PORT_CMD_LSTATUS32) ? 1 : 0;
4508 	link_down_rc = G_FW_PORT_CMD_LINKDNRC32(lstatus);
4509 	port_type = G_FW_PORT_CMD_PORTTYPE32(lstatus);
4510 	mod_type = G_FW_PORT_CMD_MODTYPE32(lstatus);
4511 
4512 	pcaps = be32_to_cpu(cmd->u.info32.pcaps32);
4513 	acaps = be32_to_cpu(cmd->u.info32.acaps32);
4514 	link_caps = be32_to_cpu(cmd->u.info32.linkattr32);
4515 
4516 	if (mod_type != lc->mod_type) {
4517 		t4_init_link_config(pi, pcaps, acaps, lc->mdio_addr,
4518 				    port_type, mod_type);
4519 		t4_os_portmod_changed(adapter, pi->pidx);
4520 		mod_changed = 1;
4521 	}
4522 	if (link_ok != lc->link_ok || acaps != lc->acaps ||
4523 	    link_caps != lc->link_caps) { /* something changed */
4524 		if (!link_ok && lc->link_ok) {
4525 			lc->link_down_rc = link_down_rc;
4526 			dev_warn(adap, "Port %d link down, reason: %s\n",
4527 				 pi->port_id,
4528 				 t4_link_down_rc_str(link_down_rc));
4529 		}
4530 		lc->link_ok = link_ok;
4531 		lc->acaps = acaps;
4532 		lc->link_caps = link_caps;
4533 		t4_os_link_changed(adapter, pi->pidx);
4534 	}
4535 
4536 	if (mod_changed != 0 && is_pf4(adapter) != 0) {
4537 		u32 mod_caps = lc->admin_caps;
4538 		int ret;
4539 
4540 		ret = t4_link_l1cfg_ns(pi, mod_caps);
4541 		if (ret != FW_SUCCESS)
4542 			dev_warn(adapter,
4543 				 "Attempt to update new Transceiver Module settings %#x failed with error: %d\n",
4544 				 mod_caps, ret);
4545 	}
4546 }
4547 
4548 /**
4549  * t4_ctrl_eq_free - free a control egress queue
4550  * @adap: the adapter
4551  * @mbox: mailbox to use for the FW command
4552  * @pf: the PF owning the queue
4553  * @vf: the VF owning the queue
4554  * @eqid: egress queue id
4555  *
4556  * Frees a control egress queue.
4557  */
t4_ctrl_eq_free(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int eqid)4558 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
4559 		    unsigned int vf, unsigned int eqid)
4560 {
4561 	struct fw_eq_ctrl_cmd c;
4562 
4563 	memset(&c, 0, sizeof(c));
4564 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) |
4565 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
4566 				  V_FW_EQ_CTRL_CMD_PFN(pf) |
4567 				  V_FW_EQ_CTRL_CMD_VFN(vf));
4568 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
4569 	c.cmpliqid_eqid = cpu_to_be32(V_FW_EQ_CTRL_CMD_EQID(eqid));
4570 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4571 }
4572 
4573 /**
4574  * t4_handle_fw_rpl - process a FW reply message
4575  * @adap: the adapter
4576  * @rpl: start of the FW message
4577  *
4578  * Processes a FW message, such as link state change messages.
4579  */
t4_handle_fw_rpl(struct adapter * adap,const __be64 * rpl)4580 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
4581 {
4582 	u8 opcode = *(const u8 *)rpl;
4583 
4584 	/*
4585 	 * This might be a port command ... this simplifies the following
4586 	 * conditionals ...  We can get away with pre-dereferencing
4587 	 * action_to_len16 because it's in the first 16 bytes and all messages
4588 	 * will be at least that long.
4589 	 */
4590 	const struct fw_port_cmd *p = (const void *)rpl;
4591 	unsigned int action =
4592 		G_FW_PORT_CMD_ACTION(be32_to_cpu(p->action_to_len16));
4593 
4594 	if (opcode == FW_PORT_CMD && action == FW_PORT_ACTION_GET_PORT_INFO32) {
4595 		/* link/module state change message */
4596 		int chan = G_FW_PORT_CMD_PORTID(be32_to_cpu(p->op_to_portid));
4597 		struct port_info *pi = NULL;
4598 		int i;
4599 
4600 		for_each_port(adap, i) {
4601 			pi = adap2pinfo(adap, i);
4602 			if (pi->tx_chan == chan)
4603 				break;
4604 		}
4605 
4606 		t4_handle_get_port_info(pi, rpl);
4607 	} else {
4608 		dev_warn(adap, "Unknown firmware reply %d\n", opcode);
4609 		return -EINVAL;
4610 	}
4611 	return 0;
4612 }
4613 
t4_reset_link_config(struct adapter * adap,int idx)4614 void t4_reset_link_config(struct adapter *adap, int idx)
4615 {
4616 	struct port_info *pi = adap2pinfo(adap, idx);
4617 	struct link_config *lc = &pi->link_cfg;
4618 
4619 	lc->link_ok = 0;
4620 	lc->link_down_rc = 0;
4621 	lc->link_caps = 0;
4622 }
4623 
4624 /**
4625  * t4_init_link_config - initialize a link's SW state
4626  * @pi: the port info
4627  * @pcaps: link Port Capabilities
4628  * @acaps: link current Advertised Port Capabilities
4629  * @mdio_addr : address of the PHY
4630  * @port_type : firmware port type
4631  * @mod_type  : firmware module type
4632  *
4633  * Initializes the SW state maintained for each link, including the link's
4634  * capabilities and default speed/flow-control/autonegotiation settings.
4635  */
t4_init_link_config(struct port_info * pi,u32 pcaps,u32 acaps,u8 mdio_addr,u8 port_type,u8 mod_type)4636 void t4_init_link_config(struct port_info *pi, u32 pcaps, u32 acaps,
4637 			 u8 mdio_addr, u8 port_type, u8 mod_type)
4638 {
4639 	u8 fec_rs = 0, fec_baser = 0, fec_none = 0;
4640 	struct link_config *lc = &pi->link_cfg;
4641 
4642 	lc->pcaps = pcaps;
4643 	lc->acaps = acaps;
4644 	lc->admin_caps = acaps;
4645 	lc->link_caps = 0;
4646 
4647 	lc->mdio_addr = mdio_addr;
4648 	lc->port_type = port_type;
4649 	lc->mod_type = mod_type;
4650 
4651 	lc->link_ok = 0;
4652 	lc->link_down_rc = 0;
4653 
4654 	/* Turn Tx and Rx pause off by default */
4655 	lc->admin_caps &= ~V_FW_PORT_CAP32_FC(M_FW_PORT_CAP32_FC);
4656 	lc->admin_caps &= ~V_FW_PORT_CAP32_802_3(M_FW_PORT_CAP32_802_3);
4657 	if (lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE)
4658 		lc->admin_caps &= ~FW_PORT_CAP32_FORCE_PAUSE;
4659 
4660 	/* Reset FEC caps to default values */
4661 	if (lc->pcaps & V_FW_PORT_CAP32_FEC(M_FW_PORT_CAP32_FEC)) {
4662 		if (lc->acaps & FW_PORT_CAP32_FEC_RS)
4663 			fec_rs = 1;
4664 		else if (lc->acaps & FW_PORT_CAP32_FEC_BASER_RS)
4665 			fec_baser = 1;
4666 		else
4667 			fec_none = 1;
4668 
4669 		lc->admin_caps &= ~V_FW_PORT_CAP32_FEC(M_FW_PORT_CAP32_FEC);
4670 		t4_set_link_fec(pi, fec_rs, fec_baser, fec_none,
4671 				&lc->admin_caps);
4672 	}
4673 
4674 	if (lc->pcaps & FW_PORT_CAP32_FORCE_FEC)
4675 		lc->admin_caps &= ~FW_PORT_CAP32_FORCE_FEC;
4676 
4677 	/* Reset MDI to AUTO */
4678 	if (lc->pcaps & FW_PORT_CAP32_MDIAUTO) {
4679 		lc->admin_caps &= ~V_FW_PORT_CAP32_MDI(M_FW_PORT_CAP32_MDI);
4680 		lc->admin_caps |= V_FW_PORT_CAP32_MDI(FW_PORT_CAP32_MDI_AUTO);
4681 	}
4682 }
4683 
4684 /**
4685  * t4_wait_dev_ready - wait till to reads of registers work
4686  *
4687  * Right after the device is RESET is can take a small amount of time
4688  * for it to respond to register reads.  Until then, all reads will
4689  * return either 0xff...ff or 0xee...ee.  Return an error if reads
4690  * don't work within a reasonable time frame.
4691  */
t4_wait_dev_ready(struct adapter * adapter)4692 static int t4_wait_dev_ready(struct adapter *adapter)
4693 {
4694 	u32 whoami;
4695 
4696 	whoami = t4_read_reg(adapter, A_PL_WHOAMI);
4697 
4698 	if (whoami != 0xffffffff && whoami != X_CIM_PF_NOACCESS)
4699 		return 0;
4700 
4701 	msleep(500);
4702 	whoami = t4_read_reg(adapter, A_PL_WHOAMI);
4703 	if (whoami != 0xffffffff && whoami != X_CIM_PF_NOACCESS)
4704 		return 0;
4705 
4706 	dev_err(adapter, "Device didn't become ready for access, whoami = %#x\n",
4707 		whoami);
4708 	return -EIO;
4709 }
4710 
4711 struct flash_desc {
4712 	u32 vendor_and_model_id;
4713 	u32 size_mb;
4714 };
4715 
t4_get_flash_params(struct adapter * adapter)4716 int t4_get_flash_params(struct adapter *adapter)
4717 {
4718 	/*
4719 	 * Table for non-standard supported Flash parts.  Note, all Flash
4720 	 * parts must have 64KB sectors.
4721 	 */
4722 	static struct flash_desc supported_flash[] = {
4723 		{ 0x00150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
4724 	};
4725 
4726 	int ret;
4727 	u32 flashid = 0;
4728 	unsigned int part, manufacturer;
4729 	unsigned int density, size = 0;
4730 
4731 	/**
4732 	 * Issue a Read ID Command to the Flash part.  We decode supported
4733 	 * Flash parts and their sizes from this.  There's a newer Query
4734 	 * Command which can retrieve detailed geometry information but
4735 	 * many Flash parts don't support it.
4736 	 */
4737 	ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID);
4738 	if (!ret)
4739 		ret = sf1_read(adapter, 3, 0, 1, &flashid);
4740 	t4_write_reg(adapter, A_SF_OP, 0);               /* unlock SF */
4741 	if (ret < 0)
4742 		return ret;
4743 
4744 	/**
4745 	 * Check to see if it's one of our non-standard supported Flash parts.
4746 	 */
4747 	for (part = 0; part < ARRAY_SIZE(supported_flash); part++) {
4748 		if (supported_flash[part].vendor_and_model_id == flashid) {
4749 			adapter->params.sf_size =
4750 				supported_flash[part].size_mb;
4751 			adapter->params.sf_nsec =
4752 				adapter->params.sf_size / SF_SEC_SIZE;
4753 			goto found;
4754 		}
4755 	}
4756 
4757 	/**
4758 	 * Decode Flash part size.  The code below looks repetative with
4759 	 * common encodings, but that's not guaranteed in the JEDEC
4760 	 * specification for the Read JADEC ID command.  The only thing that
4761 	 * we're guaranteed by the JADEC specification is where the
4762 	 * Manufacturer ID is in the returned result.  After that each
4763 	 * Manufacturer ~could~ encode things completely differently.
4764 	 * Note, all Flash parts must have 64KB sectors.
4765 	 */
4766 	manufacturer = flashid & 0xff;
4767 	switch (manufacturer) {
4768 	case 0x20: { /* Micron/Numonix */
4769 		/**
4770 		 * This Density -> Size decoding table is taken from Micron
4771 		 * Data Sheets.
4772 		 */
4773 		density = (flashid >> 16) & 0xff;
4774 		switch (density) {
4775 		case 0x14:
4776 			size = 1 << 20; /* 1MB */
4777 			break;
4778 		case 0x15:
4779 			size = 1 << 21; /* 2MB */
4780 			break;
4781 		case 0x16:
4782 			size = 1 << 22; /* 4MB */
4783 			break;
4784 		case 0x17:
4785 			size = 1 << 23; /* 8MB */
4786 			break;
4787 		case 0x18:
4788 			size = 1 << 24; /* 16MB */
4789 			break;
4790 		case 0x19:
4791 			size = 1 << 25; /* 32MB */
4792 			break;
4793 		case 0x20:
4794 			size = 1 << 26; /* 64MB */
4795 			break;
4796 		case 0x21:
4797 			size = 1 << 27; /* 128MB */
4798 			break;
4799 		case 0x22:
4800 			size = 1 << 28; /* 256MB */
4801 			break;
4802 		}
4803 		break;
4804 	}
4805 
4806 	case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */
4807 		/**
4808 		 * This Density -> Size decoding table is taken from ISSI
4809 		 * Data Sheets.
4810 		 */
4811 		density = (flashid >> 16) & 0xff;
4812 		switch (density) {
4813 		case 0x16:
4814 			size = 1 << 25; /* 32MB */
4815 			break;
4816 		case 0x17:
4817 			size = 1 << 26; /* 64MB */
4818 			break;
4819 		}
4820 		break;
4821 	}
4822 
4823 	case 0xc2: { /* Macronix */
4824 		/**
4825 		 * This Density -> Size decoding table is taken from Macronix
4826 		 * Data Sheets.
4827 		 */
4828 		density = (flashid >> 16) & 0xff;
4829 		switch (density) {
4830 		case 0x17:
4831 			size = 1 << 23; /* 8MB */
4832 			break;
4833 		case 0x18:
4834 			size = 1 << 24; /* 16MB */
4835 			break;
4836 		}
4837 		break;
4838 	}
4839 
4840 	case 0xef: { /* Winbond */
4841 		/**
4842 		 * This Density -> Size decoding table is taken from Winbond
4843 		 * Data Sheets.
4844 		 */
4845 		density = (flashid >> 16) & 0xff;
4846 		switch (density) {
4847 		case 0x17:
4848 			size = 1 << 23; /* 8MB */
4849 			break;
4850 		case 0x18:
4851 			size = 1 << 24; /* 16MB */
4852 			break;
4853 		}
4854 		break;
4855 	}
4856 	}
4857 
4858 	/* If we didn't recognize the FLASH part, that's no real issue: the
4859 	 * Hardware/Software contract says that Hardware will _*ALWAYS*_
4860 	 * use a FLASH part which is at least 4MB in size and has 64KB
4861 	 * sectors.  The unrecognized FLASH part is likely to be much larger
4862 	 * than 4MB, but that's all we really need.
4863 	 */
4864 	if (size == 0) {
4865 		dev_warn(adapter,
4866 			 "Unknown Flash Part, ID = %#x, assuming 4MB\n",
4867 			 flashid);
4868 		size = 1 << 22;
4869 	}
4870 
4871 	/**
4872 	 * Store decoded Flash size and fall through into vetting code.
4873 	 */
4874 	adapter->params.sf_size = size;
4875 	adapter->params.sf_nsec = size / SF_SEC_SIZE;
4876 
4877 found:
4878 	/*
4879 	 * We should reject adapters with FLASHes which are too small. So, emit
4880 	 * a warning.
4881 	 */
4882 	if (adapter->params.sf_size < FLASH_MIN_SIZE)
4883 		dev_warn(adapter, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
4884 			 flashid, adapter->params.sf_size, FLASH_MIN_SIZE);
4885 
4886 	return 0;
4887 }
4888 
set_pcie_completion_timeout(struct adapter * adapter,u8 range)4889 static void set_pcie_completion_timeout(struct adapter *adapter,
4890 					u8 range)
4891 {
4892 	u32 pcie_cap;
4893 	u16 val;
4894 
4895 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
4896 	if (pcie_cap) {
4897 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val);
4898 		val &= 0xfff0;
4899 		val |= range;
4900 		t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val);
4901 	}
4902 }
4903 
4904 /**
4905  * t4_get_chip_type - Determine chip type from device ID
4906  * @adap: the adapter
4907  * @ver: adapter version
4908  */
t4_get_chip_type(struct adapter * adap,int ver)4909 int t4_get_chip_type(struct adapter *adap, int ver)
4910 {
4911 	enum chip_type chip = 0;
4912 	u32 pl_rev = G_REV(t4_read_reg(adap, A_PL_REV));
4913 
4914 	/* Retrieve adapter's device ID */
4915 	switch (ver) {
4916 	case CHELSIO_T5:
4917 		chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
4918 		break;
4919 	case CHELSIO_T6:
4920 		chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
4921 		break;
4922 	default:
4923 		dev_err(adap, "Device %d is not supported\n",
4924 			adap->params.pci.device_id);
4925 		return -EINVAL;
4926 	}
4927 
4928 	return chip;
4929 }
4930 
4931 /**
4932  * t4_prep_adapter - prepare SW and HW for operation
4933  * @adapter: the adapter
4934  *
4935  * Initialize adapter SW state for the various HW modules, set initial
4936  * values for some adapter tunables, take PHYs out of reset, and
4937  * initialize the MDIO interface.
4938  */
t4_prep_adapter(struct adapter * adapter)4939 int t4_prep_adapter(struct adapter *adapter)
4940 {
4941 	int ret, ver;
4942 	u32 pl_rev;
4943 
4944 	ret = t4_wait_dev_ready(adapter);
4945 	if (ret < 0)
4946 		return ret;
4947 
4948 	pl_rev = G_REV(t4_read_reg(adapter, A_PL_REV));
4949 	adapter->params.pci.device_id = adapter->pdev->id.device_id;
4950 	adapter->params.pci.vendor_id = adapter->pdev->id.vendor_id;
4951 
4952 	/*
4953 	 * WE DON'T NEED adapter->params.chip CODE ONCE PL_REV CONTAINS
4954 	 * ADAPTER (VERSION << 4 | REVISION)
4955 	 */
4956 	ver = CHELSIO_PCI_ID_VER(adapter->params.pci.device_id);
4957 	adapter->params.chip = 0;
4958 	switch (ver) {
4959 	case CHELSIO_T5:
4960 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
4961 		adapter->params.arch.sge_fl_db = F_DBPRIO | F_DBTYPE;
4962 		adapter->params.arch.mps_tcam_size =
4963 						NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
4964 		adapter->params.arch.mps_rplc_size = 128;
4965 		adapter->params.arch.nchan = NCHAN;
4966 		adapter->params.arch.vfcount = 128;
4967 		/* Congestion map is for 4 channels so that
4968 		 * MPS can have 4 priority per port.
4969 		 */
4970 		adapter->params.arch.cng_ch_bits_log = 2;
4971 		break;
4972 	case CHELSIO_T6:
4973 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
4974 		adapter->params.arch.sge_fl_db = 0;
4975 		adapter->params.arch.mps_tcam_size =
4976 						NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
4977 		adapter->params.arch.mps_rplc_size = 256;
4978 		adapter->params.arch.nchan = 2;
4979 		adapter->params.arch.vfcount = 256;
4980 		/* Congestion map is for 2 channels so that
4981 		 * MPS can have 8 priority per port.
4982 		 */
4983 		adapter->params.arch.cng_ch_bits_log = 3;
4984 		break;
4985 	default:
4986 		dev_err(adapter, "%s: Device %d is not supported\n",
4987 			__func__, adapter->params.pci.device_id);
4988 		return -EINVAL;
4989 	}
4990 
4991 	adapter->params.pci.vpd_cap_addr =
4992 		t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD);
4993 
4994 	ret = t4_get_flash_params(adapter);
4995 	if (ret < 0) {
4996 		dev_err(adapter, "Unable to retrieve Flash Parameters, ret = %d\n",
4997 			-ret);
4998 		return ret;
4999 	}
5000 
5001 	adapter->params.cim_la_size = CIMLA_SIZE;
5002 
5003 	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
5004 
5005 	/*
5006 	 * Default port and clock for debugging in case we can't reach FW.
5007 	 */
5008 	adapter->params.nports = 1;
5009 	adapter->params.portvec = 1;
5010 	adapter->params.vpd.cclk = 50000;
5011 
5012 	/* Set pci completion timeout value to 4 seconds. */
5013 	set_pcie_completion_timeout(adapter, 0xd);
5014 	return 0;
5015 }
5016 
5017 /**
5018  * t4_bar2_sge_qregs - return BAR2 SGE Queue register information
5019  * @adapter: the adapter
5020  * @qid: the Queue ID
5021  * @qtype: the Ingress or Egress type for @qid
5022  * @pbar2_qoffset: BAR2 Queue Offset
5023  * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
5024  *
5025  * Returns the BAR2 SGE Queue Registers information associated with the
5026  * indicated Absolute Queue ID.  These are passed back in return value
5027  * pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
5028  * and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
5029  *
5030  * This may return an error which indicates that BAR2 SGE Queue
5031  * registers aren't available.  If an error is not returned, then the
5032  * following values are returned:
5033  *
5034  *   *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
5035  *   *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
5036  *
5037  * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
5038  * require the "Inferred Queue ID" ability may be used.  E.g. the
5039  * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
5040  * then these "Inferred Queue ID" register may not be used.
5041  */
t4_bar2_sge_qregs(struct adapter * adapter,unsigned int qid,enum t4_bar2_qtype qtype,u64 * pbar2_qoffset,unsigned int * pbar2_qid)5042 int t4_bar2_sge_qregs(struct adapter *adapter, unsigned int qid,
5043 		      enum t4_bar2_qtype qtype, u64 *pbar2_qoffset,
5044 		      unsigned int *pbar2_qid)
5045 {
5046 	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
5047 	u64 bar2_page_offset, bar2_qoffset;
5048 	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
5049 
5050 	/*
5051 	 * T4 doesn't support BAR2 SGE Queue registers.
5052 	 */
5053 	if (is_t4(adapter->params.chip))
5054 		return -EINVAL;
5055 
5056 	/*
5057 	 * Get our SGE Page Size parameters.
5058 	 */
5059 	page_shift = adapter->params.sge.hps + 10;
5060 	page_size = 1 << page_shift;
5061 
5062 	/*
5063 	 * Get the right Queues per Page parameters for our Queue.
5064 	 */
5065 	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS ?
5066 			      adapter->params.sge.eq_qpp :
5067 			      adapter->params.sge.iq_qpp);
5068 	qpp_mask = (1 << qpp_shift) - 1;
5069 
5070 	/*
5071 	 * Calculate the basics of the BAR2 SGE Queue register area:
5072 	 *  o The BAR2 page the Queue registers will be in.
5073 	 *  o The BAR2 Queue ID.
5074 	 *  o The BAR2 Queue ID Offset into the BAR2 page.
5075 	 */
5076 	bar2_page_offset = ((qid >> qpp_shift) << page_shift);
5077 	bar2_qid = qid & qpp_mask;
5078 	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
5079 
5080 	/*
5081 	 * If the BAR2 Queue ID Offset is less than the Page Size, then the
5082 	 * hardware will infer the Absolute Queue ID simply from the writes to
5083 	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
5084 	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
5085 	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
5086 	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
5087 	 * from the BAR2 Page and BAR2 Queue ID.
5088 	 *
5089 	 * One important censequence of this is that some BAR2 SGE registers
5090 	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
5091 	 * there.  But other registers synthesize the SGE Queue ID purely
5092 	 * from the writes to the registers -- the Write Combined Doorbell
5093 	 * Buffer is a good example.  These BAR2 SGE Registers are only
5094 	 * available for those BAR2 SGE Register areas where the SGE Absolute
5095 	 * Queue ID can be inferred from simple writes.
5096 	 */
5097 	bar2_qoffset = bar2_page_offset;
5098 	bar2_qinferred = (bar2_qid_offset < page_size);
5099 	if (bar2_qinferred) {
5100 		bar2_qoffset += bar2_qid_offset;
5101 		bar2_qid = 0;
5102 	}
5103 
5104 	*pbar2_qoffset = bar2_qoffset;
5105 	*pbar2_qid = bar2_qid;
5106 	return 0;
5107 }
5108 
5109 /**
5110  * t4_init_sge_params - initialize adap->params.sge
5111  * @adapter: the adapter
5112  *
5113  * Initialize various fields of the adapter's SGE Parameters structure.
5114  */
t4_init_sge_params(struct adapter * adapter)5115 int t4_init_sge_params(struct adapter *adapter)
5116 {
5117 	struct sge_params *sge_params = &adapter->params.sge;
5118 	u32 hps, qpp;
5119 	unsigned int s_hps, s_qpp;
5120 
5121 	/*
5122 	 * Extract the SGE Page Size for our PF.
5123 	 */
5124 	hps = t4_read_reg(adapter, A_SGE_HOST_PAGE_SIZE);
5125 	s_hps = (S_HOSTPAGESIZEPF0 + (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) *
5126 		 adapter->pf);
5127 	sge_params->hps = ((hps >> s_hps) & M_HOSTPAGESIZEPF0);
5128 
5129 	/*
5130 	 * Extract the SGE Egress and Ingess Queues Per Page for our PF.
5131 	 */
5132 	s_qpp = (S_QUEUESPERPAGEPF0 +
5133 		 (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf);
5134 	qpp = t4_read_reg(adapter, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
5135 	sge_params->eq_qpp = ((qpp >> s_qpp) & M_QUEUESPERPAGEPF0);
5136 	qpp = t4_read_reg(adapter, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
5137 	sge_params->iq_qpp = ((qpp >> s_qpp) & M_QUEUESPERPAGEPF0);
5138 
5139 	return 0;
5140 }
5141 
5142 /**
5143  * t4_init_tp_params - initialize adap->params.tp
5144  * @adap: the adapter
5145  *
5146  * Initialize various fields of the adapter's TP Parameters structure.
5147  */
t4_init_tp_params(struct adapter * adap)5148 int t4_init_tp_params(struct adapter *adap)
5149 {
5150 	int chan, ret;
5151 	u32 param, v;
5152 
5153 	v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION);
5154 	adap->params.tp.tre = G_TIMERRESOLUTION(v);
5155 	adap->params.tp.dack_re = G_DELAYEDACKRESOLUTION(v);
5156 
5157 	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
5158 	for (chan = 0; chan < NCHAN; chan++)
5159 		adap->params.tp.tx_modq[chan] = chan;
5160 
5161 	/*
5162 	 * Cache the adapter's Compressed Filter Mode/Mask and global Ingress
5163 	 * Configuration.
5164 	 */
5165 	param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5166 		 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FILTER) |
5167 		 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_MODE_MASK));
5168 
5169 	/* Read current value */
5170 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5171 			      1, &param, &v);
5172 	if (!ret) {
5173 		dev_info(adap, "Current filter mode/mask 0x%x:0x%x\n",
5174 			 G_FW_PARAMS_PARAM_FILTER_MODE(v),
5175 			 G_FW_PARAMS_PARAM_FILTER_MASK(v));
5176 		adap->params.tp.vlan_pri_map =
5177 			G_FW_PARAMS_PARAM_FILTER_MODE(v);
5178 		adap->params.tp.filter_mask =
5179 			G_FW_PARAMS_PARAM_FILTER_MASK(v);
5180 	} else {
5181 		dev_info(adap,
5182 			 "Failed to read filter mode/mask via fw api, using indirect-reg-read\n");
5183 
5184 		/* In case of older-fw (which doesn't expose the api
5185 		 * FW_PARAM_DEV_FILTER_MODE_MASK) and newer-driver (which uses
5186 		 * the fw api) combination, fall-back to older method of reading
5187 		 * the filter mode from indirect-register
5188 		 */
5189 		t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5190 				 &adap->params.tp.vlan_pri_map, 1,
5191 				 A_TP_VLAN_PRI_MAP);
5192 
5193 		/* With the older-fw and newer-driver combination we might run
5194 		 * into an issue when user wants to use hash filter region but
5195 		 * the filter_mask is zero, in this case filter_mask validation
5196 		 * is tough. To avoid that we set the filter_mask same as filter
5197 		 * mode, which will behave exactly as the older way of ignoring
5198 		 * the filter mask validation.
5199 		 */
5200 		adap->params.tp.filter_mask = adap->params.tp.vlan_pri_map;
5201 	}
5202 
5203 	t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5204 			 &adap->params.tp.ingress_config, 1,
5205 			 A_TP_INGRESS_CONFIG);
5206 
5207 	/* For T6, cache the adapter's compressed error vector
5208 	 * and passing outer header info for encapsulated packets.
5209 	 */
5210 	if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
5211 		v = t4_read_reg(adap, A_TP_OUT_CONFIG);
5212 		adap->params.tp.rx_pkt_encap = (v & F_CRXPKTENC) ? 1 : 0;
5213 	}
5214 
5215 	/*
5216 	 * Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
5217 	 * shift positions of several elements of the Compressed Filter Tuple
5218 	 * for this adapter which we need frequently ...
5219 	 */
5220 	adap->params.tp.vlan_shift = t4_filter_field_shift(adap, F_VLAN);
5221 	adap->params.tp.vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID);
5222 	adap->params.tp.port_shift = t4_filter_field_shift(adap, F_PORT);
5223 	adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
5224 							       F_PROTOCOL);
5225 	adap->params.tp.ethertype_shift = t4_filter_field_shift(adap,
5226 								F_ETHERTYPE);
5227 	adap->params.tp.macmatch_shift = t4_filter_field_shift(adap,
5228 							       F_MACMATCH);
5229 	adap->params.tp.tos_shift = t4_filter_field_shift(adap, F_TOS);
5230 
5231 	v = t4_read_reg(adap, LE_3_DB_HASH_MASK_GEN_IPV4_T6_A);
5232 	adap->params.tp.hash_filter_mask = v;
5233 	v = t4_read_reg(adap, LE_4_DB_HASH_MASK_GEN_IPV4_T6_A);
5234 	adap->params.tp.hash_filter_mask |= ((u64)v << 32);
5235 
5236 	return 0;
5237 }
5238 
5239 /**
5240  * t4_filter_field_shift - calculate filter field shift
5241  * @adap: the adapter
5242  * @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
5243  *
5244  * Return the shift position of a filter field within the Compressed
5245  * Filter Tuple.  The filter field is specified via its selection bit
5246  * within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
5247  */
t4_filter_field_shift(const struct adapter * adap,unsigned int filter_sel)5248 int t4_filter_field_shift(const struct adapter *adap, unsigned int filter_sel)
5249 {
5250 	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
5251 	unsigned int sel;
5252 	int field_shift;
5253 
5254 	if ((filter_mode & filter_sel) == 0)
5255 		return -1;
5256 
5257 	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
5258 		switch (filter_mode & sel) {
5259 		case F_FCOE:
5260 			field_shift += W_FT_FCOE;
5261 			break;
5262 		case F_PORT:
5263 			field_shift += W_FT_PORT;
5264 			break;
5265 		case F_VNIC_ID:
5266 			field_shift += W_FT_VNIC_ID;
5267 			break;
5268 		case F_VLAN:
5269 			field_shift += W_FT_VLAN;
5270 			break;
5271 		case F_TOS:
5272 			field_shift += W_FT_TOS;
5273 			break;
5274 		case F_PROTOCOL:
5275 			field_shift += W_FT_PROTOCOL;
5276 			break;
5277 		case F_ETHERTYPE:
5278 			field_shift += W_FT_ETHERTYPE;
5279 			break;
5280 		case F_MACMATCH:
5281 			field_shift += W_FT_MACMATCH;
5282 			break;
5283 		case F_MPSHITTYPE:
5284 			field_shift += W_FT_MPSHITTYPE;
5285 			break;
5286 		case F_FRAGMENTATION:
5287 			field_shift += W_FT_FRAGMENTATION;
5288 			break;
5289 		}
5290 	}
5291 	return field_shift;
5292 }
5293 
t4_init_rss_mode(struct adapter * adap,int mbox)5294 int t4_init_rss_mode(struct adapter *adap, int mbox)
5295 {
5296 	int i, ret;
5297 	struct fw_rss_vi_config_cmd rvc;
5298 
5299 	memset(&rvc, 0, sizeof(rvc));
5300 
5301 	for_each_port(adap, i) {
5302 		struct port_info *p = adap2pinfo(adap, i);
5303 
5304 		rvc.op_to_viid = htonl(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
5305 				       F_FW_CMD_REQUEST | F_FW_CMD_READ |
5306 				       V_FW_RSS_VI_CONFIG_CMD_VIID(p->viid));
5307 		rvc.retval_len16 = htonl(FW_LEN16(rvc));
5308 		ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
5309 		if (ret)
5310 			return ret;
5311 		p->rss_mode = ntohl(rvc.u.basicvirtual.defaultq_to_udpen);
5312 	}
5313 	return 0;
5314 }
5315 
t4_port_init(struct adapter * adap,int mbox,int pf,int vf)5316 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
5317 {
5318 	u32 param, val, pcaps, acaps;
5319 	enum fw_port_type port_type;
5320 	struct fw_port_cmd cmd;
5321 	u8 vivld = 0, vin = 0;
5322 	int ret, i, j = 0;
5323 	int mdio_addr;
5324 	u8 addr[6];
5325 
5326 	param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) |
5327 		 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
5328 	val = 1;
5329 	ret = t4_set_params(adap, mbox, pf, vf, 1, &param, &val);
5330 	if (ret < 0)
5331 		return ret;
5332 
5333 	memset(&cmd, 0, sizeof(cmd));
5334 
5335 	for_each_port(adap, i) {
5336 		struct port_info *pi = adap2pinfo(adap, i);
5337 		unsigned int rss_size = 0;
5338 		u32 lstatus32;
5339 
5340 		while ((adap->params.portvec & (1 << j)) == 0)
5341 			j++;
5342 
5343 		memset(&cmd, 0, sizeof(cmd));
5344 		cmd.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
5345 					       F_FW_CMD_REQUEST |
5346 					       F_FW_CMD_READ |
5347 					       V_FW_PORT_CMD_PORTID(j));
5348 		val = FW_PORT_ACTION_GET_PORT_INFO32;
5349 		cmd.action_to_len16 = cpu_to_be32(V_FW_PORT_CMD_ACTION(val) |
5350 						  FW_LEN16(cmd));
5351 		ret = t4_wr_mbox(pi->adapter, mbox, &cmd, sizeof(cmd), &cmd);
5352 		if (ret)
5353 			return ret;
5354 
5355 		/* Extract the various fields from the Port Information
5356 		 * message.
5357 		 */
5358 		lstatus32 = be32_to_cpu(cmd.u.info32.lstatus32_to_cbllen32);
5359 
5360 		port_type = G_FW_PORT_CMD_PORTTYPE32(lstatus32);
5361 		mdio_addr = (lstatus32 & F_FW_PORT_CMD_MDIOCAP32) ?
5362 			    (int)G_FW_PORT_CMD_MDIOADDR32(lstatus32) : -1;
5363 		pcaps = be32_to_cpu(cmd.u.info32.pcaps32);
5364 		acaps = be32_to_cpu(cmd.u.info32.acaps32);
5365 
5366 		ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size,
5367 				  &vivld, &vin);
5368 		if (ret < 0)
5369 			return ret;
5370 
5371 		pi->viid = ret;
5372 		pi->tx_chan = j;
5373 		pi->rss_size = rss_size;
5374 		t4_os_set_hw_addr(adap, i, addr);
5375 
5376 		/* If fw supports returning the VIN as part of FW_VI_CMD,
5377 		 * save the returned values.
5378 		 */
5379 		if (adap->params.viid_smt_extn_support) {
5380 			pi->vivld = vivld;
5381 			pi->vin = vin;
5382 		} else {
5383 			/* Retrieve the values from VIID */
5384 			pi->vivld = G_FW_VIID_VIVLD(pi->viid);
5385 			pi->vin =  G_FW_VIID_VIN(pi->viid);
5386 		}
5387 
5388 		t4_init_link_config(pi, pcaps, acaps, mdio_addr, port_type,
5389 				    FW_PORT_MOD_TYPE_NA);
5390 		j++;
5391 	}
5392 	return 0;
5393 }
5394 
5395 /**
5396  * t4_memory_rw_addr - read/write adapter memory via PCIE memory window
5397  * @adap: the adapter
5398  * @win: PCI-E Memory Window to use
5399  * @addr: address within adapter memory
5400  * @len: amount of memory to transfer
5401  * @hbuf: host memory buffer
5402  * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
5403  *
5404  * Reads/writes an [almost] arbitrary memory region in the firmware: the
5405  * firmware memory address and host buffer must be aligned on 32-bit
5406  * boudaries; the length may be arbitrary.
5407  *
5408  * NOTES:
5409  *  1. The memory is transferred as a raw byte sequence from/to the
5410  *     firmware's memory.  If this memory contains data structures which
5411  *     contain multi-byte integers, it's the caller's responsibility to
5412  *     perform appropriate byte order conversions.
5413  *
5414  *  2. It is the Caller's responsibility to ensure that no other code
5415  *     uses the specified PCI-E Memory Window while this routine is
5416  *     using it.  This is typically done via the use of OS-specific
5417  *     locks, etc.
5418  */
t4_memory_rw_addr(struct adapter * adap,int win,u32 addr,u32 len,void * hbuf,int dir)5419 int t4_memory_rw_addr(struct adapter *adap, int win, u32 addr,
5420 		      u32 len, void *hbuf, int dir)
5421 {
5422 	u32 pos, offset, resid;
5423 	u32 win_pf, mem_reg, mem_aperture, mem_base;
5424 	u32 *buf;
5425 
5426 	/* Argument sanity checks ...*/
5427 	if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
5428 		return -EINVAL;
5429 	buf = (u32 *)hbuf;
5430 
5431 	/* It's convenient to be able to handle lengths which aren't a
5432 	 * multiple of 32-bits because we often end up transferring files to
5433 	 * the firmware.  So we'll handle that by normalizing the length here
5434 	 * and then handling any residual transfer at the end.
5435 	 */
5436 	resid = len & 0x3;
5437 	len -= resid;
5438 
5439 	/* Each PCI-E Memory Window is programmed with a window size -- or
5440 	 * "aperture" -- which controls the granularity of its mapping onto
5441 	 * adapter memory.  We need to grab that aperture in order to know
5442 	 * how to use the specified window.  The window is also programmed
5443 	 * with the base address of the Memory Window in BAR0's address
5444 	 * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
5445 	 * the address is relative to BAR0.
5446 	 */
5447 	mem_reg = t4_read_reg(adap,
5448 			      PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN,
5449 						  win));
5450 	mem_aperture = 1 << (G_WINDOW(mem_reg) + X_WINDOW_SHIFT);
5451 	mem_base = G_PCIEOFST(mem_reg) << X_PCIEOFST_SHIFT;
5452 
5453 	win_pf = is_t4(adap->params.chip) ? 0 : V_PFNUM(adap->pf);
5454 
5455 	/* Calculate our initial PCI-E Memory Window Position and Offset into
5456 	 * that Window.
5457 	 */
5458 	pos = addr & ~(mem_aperture - 1);
5459 	offset = addr - pos;
5460 
5461 	/* Set up initial PCI-E Memory Window to cover the start of our
5462 	 * transfer.  (Read it back to ensure that changes propagate before we
5463 	 * attempt to use the new value.)
5464 	 */
5465 	t4_write_reg(adap,
5466 		     PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, win),
5467 		     pos | win_pf);
5468 	t4_read_reg(adap,
5469 		    PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, win));
5470 
5471 	/* Transfer data to/from the adapter as long as there's an integral
5472 	 * number of 32-bit transfers to complete.
5473 	 *
5474 	 * A note on Endianness issues:
5475 	 *
5476 	 * The "register" reads and writes below from/to the PCI-E Memory
5477 	 * Window invoke the standard adapter Big-Endian to PCI-E Link
5478 	 * Little-Endian "swizzel."  As a result, if we have the following
5479 	 * data in adapter memory:
5480 	 *
5481 	 *     Memory:  ... | b0 | b1 | b2 | b3 | ...
5482 	 *     Address:      i+0  i+1  i+2  i+3
5483 	 *
5484 	 * Then a read of the adapter memory via the PCI-E Memory Window
5485 	 * will yield:
5486 	 *
5487 	 *     x = readl(i)
5488 	 *         31                  0
5489 	 *         [ b3 | b2 | b1 | b0 ]
5490 	 *
5491 	 * If this value is stored into local memory on a Little-Endian system
5492 	 * it will show up correctly in local memory as:
5493 	 *
5494 	 *     ( ..., b0, b1, b2, b3, ... )
5495 	 *
5496 	 * But on a Big-Endian system, the store will show up in memory
5497 	 * incorrectly swizzled as:
5498 	 *
5499 	 *     ( ..., b3, b2, b1, b0, ... )
5500 	 *
5501 	 * So we need to account for this in the reads and writes to the
5502 	 * PCI-E Memory Window below by undoing the register read/write
5503 	 * swizzels.
5504 	 */
5505 	while (len > 0) {
5506 		if (dir == T4_MEMORY_READ)
5507 			*buf++ = le32_to_cpu((__le32)t4_read_reg(adap,
5508 								 mem_base +
5509 								 offset));
5510 		else
5511 			t4_write_reg(adap, mem_base + offset,
5512 				     (u32)cpu_to_le32(*buf++));
5513 		offset += sizeof(__be32);
5514 		len -= sizeof(__be32);
5515 
5516 		/* If we've reached the end of our current window aperture,
5517 		 * move the PCI-E Memory Window on to the next.  Note that
5518 		 * doing this here after "len" may be 0 allows us to set up
5519 		 * the PCI-E Memory Window for a possible final residual
5520 		 * transfer below ...
5521 		 */
5522 		if (offset == mem_aperture) {
5523 			pos += mem_aperture;
5524 			offset = 0;
5525 			t4_write_reg(adap,
5526 				PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET,
5527 						    win), pos | win_pf);
5528 			t4_read_reg(adap,
5529 				PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET,
5530 						    win));
5531 		}
5532 	}
5533 
5534 	/* If the original transfer had a length which wasn't a multiple of
5535 	 * 32-bits, now's where we need to finish off the transfer of the
5536 	 * residual amount.  The PCI-E Memory Window has already been moved
5537 	 * above (if necessary) to cover this final transfer.
5538 	 */
5539 	if (resid) {
5540 		union {
5541 			u32 word;
5542 			char byte[4];
5543 		} last;
5544 		unsigned char *bp;
5545 		int i;
5546 
5547 		if (dir == T4_MEMORY_READ) {
5548 			last.word = le32_to_cpu((__le32)t4_read_reg(adap,
5549 								    mem_base +
5550 								    offset));
5551 			for (bp = (unsigned char *)buf, i = resid; i < 4; i++)
5552 				bp[i] = last.byte[i];
5553 		} else {
5554 			last.word = *buf;
5555 			for (i = resid; i < 4; i++)
5556 				last.byte[i] = 0;
5557 			t4_write_reg(adap, mem_base + offset,
5558 				     (u32)cpu_to_le32(last.word));
5559 		}
5560 	}
5561 
5562 	return 0;
5563 }
5564 
5565 /**
5566  * t4_memory_rw_mtype -read/write EDC 0, EDC 1 or MC via PCIE memory window
5567  * @adap: the adapter
5568  * @win: PCI-E Memory Window to use
5569  * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
5570  * @maddr: address within indicated memory type
5571  * @len: amount of memory to transfer
5572  * @hbuf: host memory buffer
5573  * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
5574  *
5575  * Reads/writes adapter memory using t4_memory_rw_addr().  This routine
5576  * provides an (memory type, address within memory type) interface.
5577  */
t4_memory_rw_mtype(struct adapter * adap,int win,int mtype,u32 maddr,u32 len,void * hbuf,int dir)5578 int t4_memory_rw_mtype(struct adapter *adap, int win, int mtype, u32 maddr,
5579 		       u32 len, void *hbuf, int dir)
5580 {
5581 	u32 mtype_offset;
5582 	u32 edc_size, mc_size;
5583 
5584 	/* Offset into the region of memory which is being accessed
5585 	 * MEM_EDC0 = 0
5586 	 * MEM_EDC1 = 1
5587 	 * MEM_MC   = 2 -- MEM_MC for chips with only 1 memory controller
5588 	 * MEM_MC1  = 3 -- for chips with 2 memory controllers (e.g. T5)
5589 	 */
5590 	edc_size  = G_EDRAM0_SIZE(t4_read_reg(adap, A_MA_EDRAM0_BAR));
5591 	if (mtype != MEM_MC1) {
5592 		mtype_offset = (mtype * (edc_size * 1024 * 1024));
5593 	} else {
5594 		mc_size = G_EXT_MEM0_SIZE(t4_read_reg(adap,
5595 						      A_MA_EXT_MEMORY0_BAR));
5596 		mtype_offset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
5597 	}
5598 
5599 	return t4_memory_rw_addr(adap, win,
5600 				 mtype_offset + maddr, len,
5601 				 hbuf, dir);
5602 }
5603