1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright(c) 2019-2020 Xilinx, Inc.
4  * Copyright(c) 2012-2019 Solarflare Communications Inc.
5  */
6 
7 #include "efx.h"
8 #include "efx_impl.h"
9 #if EFSYS_OPT_MON_MCDI
10 #include "mcdi_mon.h"
11 #endif
12 
13 #if EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10()
14 
15 #include "ef10_tlv_layout.h"
16 
17 	__checkReturn	efx_rc_t
efx_mcdi_get_port_assignment(__in efx_nic_t * enp,__out uint32_t * portp)18 efx_mcdi_get_port_assignment(
19 	__in		efx_nic_t *enp,
20 	__out		uint32_t *portp)
21 {
22 	efx_mcdi_req_t req;
23 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_PORT_ASSIGNMENT_IN_LEN,
24 		MC_CMD_GET_PORT_ASSIGNMENT_OUT_LEN);
25 	efx_rc_t rc;
26 
27 	EFSYS_ASSERT(EFX_FAMILY_IS_EF100(enp) || EFX_FAMILY_IS_EF10(enp));
28 
29 	req.emr_cmd = MC_CMD_GET_PORT_ASSIGNMENT;
30 	req.emr_in_buf = payload;
31 	req.emr_in_length = MC_CMD_GET_PORT_ASSIGNMENT_IN_LEN;
32 	req.emr_out_buf = payload;
33 	req.emr_out_length = MC_CMD_GET_PORT_ASSIGNMENT_OUT_LEN;
34 
35 	efx_mcdi_execute(enp, &req);
36 
37 	if (req.emr_rc != 0) {
38 		rc = req.emr_rc;
39 		goto fail1;
40 	}
41 
42 	if (req.emr_out_length_used < MC_CMD_GET_PORT_ASSIGNMENT_OUT_LEN) {
43 		rc = EMSGSIZE;
44 		goto fail2;
45 	}
46 
47 	*portp = MCDI_OUT_DWORD(req, GET_PORT_ASSIGNMENT_OUT_PORT);
48 
49 	return (0);
50 
51 fail2:
52 	EFSYS_PROBE(fail2);
53 fail1:
54 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
55 
56 	return (rc);
57 }
58 
59 	__checkReturn	efx_rc_t
efx_mcdi_get_port_modes(__in efx_nic_t * enp,__out uint32_t * modesp,__out_opt uint32_t * current_modep,__out_opt uint32_t * default_modep)60 efx_mcdi_get_port_modes(
61 	__in		efx_nic_t *enp,
62 	__out		uint32_t *modesp,
63 	__out_opt	uint32_t *current_modep,
64 	__out_opt	uint32_t *default_modep)
65 {
66 	efx_mcdi_req_t req;
67 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_PORT_MODES_IN_LEN,
68 		MC_CMD_GET_PORT_MODES_OUT_LEN);
69 	efx_rc_t rc;
70 
71 	EFSYS_ASSERT(EFX_FAMILY_IS_EF100(enp) || EFX_FAMILY_IS_EF10(enp));
72 
73 	req.emr_cmd = MC_CMD_GET_PORT_MODES;
74 	req.emr_in_buf = payload;
75 	req.emr_in_length = MC_CMD_GET_PORT_MODES_IN_LEN;
76 	req.emr_out_buf = payload;
77 	req.emr_out_length = MC_CMD_GET_PORT_MODES_OUT_LEN;
78 
79 	efx_mcdi_execute(enp, &req);
80 
81 	if (req.emr_rc != 0) {
82 		rc = req.emr_rc;
83 		goto fail1;
84 	}
85 
86 	/*
87 	 * Require only Modes and DefaultMode fields, unless the current mode
88 	 * was requested (CurrentMode field was added for Medford).
89 	 */
90 	if (req.emr_out_length_used <
91 	    MC_CMD_GET_PORT_MODES_OUT_CURRENT_MODE_OFST) {
92 		rc = EMSGSIZE;
93 		goto fail2;
94 	}
95 	if ((current_modep != NULL) && (req.emr_out_length_used <
96 	    MC_CMD_GET_PORT_MODES_OUT_CURRENT_MODE_OFST + 4)) {
97 		rc = EMSGSIZE;
98 		goto fail3;
99 	}
100 
101 	*modesp = MCDI_OUT_DWORD(req, GET_PORT_MODES_OUT_MODES);
102 
103 	if (current_modep != NULL) {
104 		*current_modep = MCDI_OUT_DWORD(req,
105 					    GET_PORT_MODES_OUT_CURRENT_MODE);
106 	}
107 
108 	if (default_modep != NULL) {
109 		*default_modep = MCDI_OUT_DWORD(req,
110 					    GET_PORT_MODES_OUT_DEFAULT_MODE);
111 	}
112 
113 	return (0);
114 
115 fail3:
116 	EFSYS_PROBE(fail3);
117 fail2:
118 	EFSYS_PROBE(fail2);
119 fail1:
120 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
121 
122 	return (rc);
123 }
124 
125 	__checkReturn	efx_rc_t
ef10_nic_get_port_mode_bandwidth(__in efx_nic_t * enp,__out uint32_t * bandwidth_mbpsp)126 ef10_nic_get_port_mode_bandwidth(
127 	__in		efx_nic_t *enp,
128 	__out		uint32_t *bandwidth_mbpsp)
129 {
130 	uint32_t port_modes;
131 	uint32_t current_mode;
132 	efx_port_t *epp = &(enp->en_port);
133 
134 	uint32_t single_lane;
135 	uint32_t dual_lane;
136 	uint32_t quad_lane;
137 	uint32_t bandwidth;
138 	efx_rc_t rc;
139 
140 	if ((rc = efx_mcdi_get_port_modes(enp, &port_modes,
141 				    &current_mode, NULL)) != 0) {
142 		/* No port mode info available. */
143 		goto fail1;
144 	}
145 
146 	if (epp->ep_phy_cap_mask & (1 << EFX_PHY_CAP_25000FDX))
147 		single_lane = 25000;
148 	else
149 		single_lane = 10000;
150 
151 	if (epp->ep_phy_cap_mask & (1 << EFX_PHY_CAP_50000FDX))
152 		dual_lane = 50000;
153 	else
154 		dual_lane = 20000;
155 
156 	if (epp->ep_phy_cap_mask & (1 << EFX_PHY_CAP_100000FDX))
157 		quad_lane = 100000;
158 	else
159 		quad_lane = 40000;
160 
161 	switch (current_mode) {
162 	case TLV_PORT_MODE_1x1_NA:			/* mode 0 */
163 		bandwidth = single_lane;
164 		break;
165 	case TLV_PORT_MODE_1x2_NA:			/* mode 10 */
166 	case TLV_PORT_MODE_NA_1x2:			/* mode 11 */
167 		bandwidth = dual_lane;
168 		break;
169 	case TLV_PORT_MODE_1x1_1x1:			/* mode 2 */
170 		bandwidth = single_lane + single_lane;
171 		break;
172 	case TLV_PORT_MODE_4x1_NA:			/* mode 4 */
173 	case TLV_PORT_MODE_NA_4x1:			/* mode 8 */
174 		bandwidth = 4 * single_lane;
175 		break;
176 	case TLV_PORT_MODE_2x1_2x1:			/* mode 5 */
177 		bandwidth = (2 * single_lane) + (2 * single_lane);
178 		break;
179 	case TLV_PORT_MODE_1x2_1x2:			/* mode 12 */
180 		bandwidth = dual_lane + dual_lane;
181 		break;
182 	case TLV_PORT_MODE_1x2_2x1:			/* mode 17 */
183 	case TLV_PORT_MODE_2x1_1x2:			/* mode 18 */
184 		bandwidth = dual_lane + (2 * single_lane);
185 		break;
186 	/* Legacy Medford-only mode. Do not use (see bug63270) */
187 	case TLV_PORT_MODE_10G_10G_10G_10G_Q1_Q2:	/* mode 9 */
188 		bandwidth = 4 * single_lane;
189 		break;
190 	case TLV_PORT_MODE_1x4_NA:			/* mode 1 */
191 	case TLV_PORT_MODE_NA_1x4:			/* mode 22 */
192 		bandwidth = quad_lane;
193 		break;
194 	case TLV_PORT_MODE_2x2_NA:			/* mode 13 */
195 	case TLV_PORT_MODE_NA_2x2:			/* mode 14 */
196 		bandwidth = 2 * dual_lane;
197 		break;
198 	case TLV_PORT_MODE_1x4_2x1:			/* mode 6 */
199 	case TLV_PORT_MODE_2x1_1x4:			/* mode 7 */
200 		bandwidth = quad_lane + (2 * single_lane);
201 		break;
202 	case TLV_PORT_MODE_1x4_1x2:			/* mode 15 */
203 	case TLV_PORT_MODE_1x2_1x4:			/* mode 16 */
204 		bandwidth = quad_lane + dual_lane;
205 		break;
206 	case TLV_PORT_MODE_1x4_1x4:			/* mode 3 */
207 		bandwidth = quad_lane + quad_lane;
208 		break;
209 	default:
210 		rc = EINVAL;
211 		goto fail2;
212 	}
213 
214 	*bandwidth_mbpsp = bandwidth;
215 
216 	return (0);
217 
218 fail2:
219 	EFSYS_PROBE(fail2);
220 fail1:
221 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
222 
223 	return (rc);
224 }
225 
226 #endif	/* EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10() */
227 
228 #if EFX_OPTS_EF10()
229 
230 	__checkReturn		efx_rc_t
efx_mcdi_vadaptor_alloc(__in efx_nic_t * enp,__in uint32_t port_id)231 efx_mcdi_vadaptor_alloc(
232 	__in			efx_nic_t *enp,
233 	__in			uint32_t port_id)
234 {
235 	efx_mcdi_req_t req;
236 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_VADAPTOR_ALLOC_IN_LEN,
237 		MC_CMD_VADAPTOR_ALLOC_OUT_LEN);
238 	efx_rc_t rc;
239 
240 	req.emr_cmd = MC_CMD_VADAPTOR_ALLOC;
241 	req.emr_in_buf = payload;
242 	req.emr_in_length = MC_CMD_VADAPTOR_ALLOC_IN_LEN;
243 	req.emr_out_buf = payload;
244 	req.emr_out_length = MC_CMD_VADAPTOR_ALLOC_OUT_LEN;
245 
246 	MCDI_IN_SET_DWORD(req, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id);
247 	MCDI_IN_POPULATE_DWORD_1(req, VADAPTOR_ALLOC_IN_FLAGS,
248 	    VADAPTOR_ALLOC_IN_FLAG_PERMIT_SET_MAC_WHEN_FILTERS_INSTALLED,
249 	    enp->en_nic_cfg.enc_allow_set_mac_with_installed_filters ? 1 : 0);
250 
251 	efx_mcdi_execute(enp, &req);
252 
253 	if (req.emr_rc != 0) {
254 		rc = req.emr_rc;
255 		goto fail1;
256 	}
257 
258 	return (0);
259 
260 fail1:
261 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
262 
263 	return (rc);
264 }
265 
266 	__checkReturn		efx_rc_t
efx_mcdi_vadaptor_free(__in efx_nic_t * enp,__in uint32_t port_id)267 efx_mcdi_vadaptor_free(
268 	__in			efx_nic_t *enp,
269 	__in			uint32_t port_id)
270 {
271 	efx_mcdi_req_t req;
272 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_VADAPTOR_FREE_IN_LEN,
273 		MC_CMD_VADAPTOR_FREE_OUT_LEN);
274 	efx_rc_t rc;
275 
276 	req.emr_cmd = MC_CMD_VADAPTOR_FREE;
277 	req.emr_in_buf = payload;
278 	req.emr_in_length = MC_CMD_VADAPTOR_FREE_IN_LEN;
279 	req.emr_out_buf = payload;
280 	req.emr_out_length = MC_CMD_VADAPTOR_FREE_OUT_LEN;
281 
282 	MCDI_IN_SET_DWORD(req, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id);
283 
284 	efx_mcdi_execute(enp, &req);
285 
286 	if (req.emr_rc != 0) {
287 		rc = req.emr_rc;
288 		goto fail1;
289 	}
290 
291 	return (0);
292 
293 fail1:
294 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
295 
296 	return (rc);
297 }
298 
299 #endif	/* EFX_OPTS_EF10() */
300 
301 #if EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10()
302 
303 	__checkReturn	efx_rc_t
304 efx_mcdi_get_mac_address_pf(
305 	__in			efx_nic_t *enp,
306 	__out_ecount_opt(6)	uint8_t mac_addrp[6])
307 {
308 	efx_mcdi_req_t req;
309 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_MAC_ADDRESSES_IN_LEN,
310 		MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
311 	efx_rc_t rc;
312 
313 	EFSYS_ASSERT(EFX_FAMILY_IS_EF100(enp) || EFX_FAMILY_IS_EF10(enp));
314 
315 	req.emr_cmd = MC_CMD_GET_MAC_ADDRESSES;
316 	req.emr_in_buf = payload;
317 	req.emr_in_length = MC_CMD_GET_MAC_ADDRESSES_IN_LEN;
318 	req.emr_out_buf = payload;
319 	req.emr_out_length = MC_CMD_GET_MAC_ADDRESSES_OUT_LEN;
320 
321 	efx_mcdi_execute(enp, &req);
322 
323 	if (req.emr_rc != 0) {
324 		rc = req.emr_rc;
325 		goto fail1;
326 	}
327 
328 	if (req.emr_out_length_used < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN) {
329 		rc = EMSGSIZE;
330 		goto fail2;
331 	}
332 
333 	if (MCDI_OUT_DWORD(req, GET_MAC_ADDRESSES_OUT_MAC_COUNT) < 1) {
334 		rc = ENOENT;
335 		goto fail3;
336 	}
337 
338 	if (mac_addrp != NULL) {
339 		uint8_t *addrp;
340 
341 		addrp = MCDI_OUT2(req, uint8_t,
342 		    GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE);
343 
344 		EFX_MAC_ADDR_COPY(mac_addrp, addrp);
345 	}
346 
347 	return (0);
348 
349 fail3:
350 	EFSYS_PROBE(fail3);
351 fail2:
352 	EFSYS_PROBE(fail2);
353 fail1:
354 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
355 
356 	return (rc);
357 }
358 
359 	__checkReturn	efx_rc_t
360 efx_mcdi_get_mac_address_vf(
361 	__in			efx_nic_t *enp,
362 	__out_ecount_opt(6)	uint8_t mac_addrp[6])
363 {
364 	efx_mcdi_req_t req;
365 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN,
366 		MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX);
367 	efx_rc_t rc;
368 
369 	EFSYS_ASSERT(EFX_FAMILY_IS_EF100(enp) || EFX_FAMILY_IS_EF10(enp));
370 
371 	req.emr_cmd = MC_CMD_VPORT_GET_MAC_ADDRESSES;
372 	req.emr_in_buf = payload;
373 	req.emr_in_length = MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN;
374 	req.emr_out_buf = payload;
375 	req.emr_out_length = MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX;
376 
377 	MCDI_IN_SET_DWORD(req, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID,
378 	    EVB_PORT_ID_ASSIGNED);
379 
380 	efx_mcdi_execute(enp, &req);
381 
382 	if (req.emr_rc != 0) {
383 		rc = req.emr_rc;
384 		goto fail1;
385 	}
386 
387 	if (req.emr_out_length_used <
388 	    MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN) {
389 		rc = EMSGSIZE;
390 		goto fail2;
391 	}
392 
393 	if (MCDI_OUT_DWORD(req,
394 		VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT) < 1) {
395 		rc = ENOENT;
396 		goto fail3;
397 	}
398 
399 	if (mac_addrp != NULL) {
400 		uint8_t *addrp;
401 
402 		addrp = MCDI_OUT2(req, uint8_t,
403 		    VPORT_GET_MAC_ADDRESSES_OUT_MACADDR);
404 
405 		EFX_MAC_ADDR_COPY(mac_addrp, addrp);
406 	}
407 
408 	return (0);
409 
410 fail3:
411 	EFSYS_PROBE(fail3);
412 fail2:
413 	EFSYS_PROBE(fail2);
414 fail1:
415 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
416 
417 	return (rc);
418 }
419 
420 	__checkReturn	efx_rc_t
efx_mcdi_get_clock(__in efx_nic_t * enp,__out uint32_t * sys_freqp,__out uint32_t * dpcpu_freqp)421 efx_mcdi_get_clock(
422 	__in		efx_nic_t *enp,
423 	__out		uint32_t *sys_freqp,
424 	__out		uint32_t *dpcpu_freqp)
425 {
426 	efx_mcdi_req_t req;
427 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_CLOCK_IN_LEN,
428 		MC_CMD_GET_CLOCK_OUT_LEN);
429 	efx_rc_t rc;
430 
431 	EFSYS_ASSERT(EFX_FAMILY_IS_EF100(enp) || EFX_FAMILY_IS_EF10(enp));
432 
433 	req.emr_cmd = MC_CMD_GET_CLOCK;
434 	req.emr_in_buf = payload;
435 	req.emr_in_length = MC_CMD_GET_CLOCK_IN_LEN;
436 	req.emr_out_buf = payload;
437 	req.emr_out_length = MC_CMD_GET_CLOCK_OUT_LEN;
438 
439 	efx_mcdi_execute(enp, &req);
440 
441 	if (req.emr_rc != 0) {
442 		rc = req.emr_rc;
443 		goto fail1;
444 	}
445 
446 	if (req.emr_out_length_used < MC_CMD_GET_CLOCK_OUT_LEN) {
447 		rc = EMSGSIZE;
448 		goto fail2;
449 	}
450 
451 	*sys_freqp = MCDI_OUT_DWORD(req, GET_CLOCK_OUT_SYS_FREQ);
452 	if (*sys_freqp == 0) {
453 		rc = EINVAL;
454 		goto fail3;
455 	}
456 	*dpcpu_freqp = MCDI_OUT_DWORD(req, GET_CLOCK_OUT_DPCPU_FREQ);
457 	if (*dpcpu_freqp == 0) {
458 		rc = EINVAL;
459 		goto fail4;
460 	}
461 
462 	return (0);
463 
464 fail4:
465 	EFSYS_PROBE(fail4);
466 fail3:
467 	EFSYS_PROBE(fail3);
468 fail2:
469 	EFSYS_PROBE(fail2);
470 fail1:
471 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
472 
473 	return (rc);
474 }
475 
476 	__checkReturn	efx_rc_t
efx_mcdi_get_rxdp_config(__in efx_nic_t * enp,__out uint32_t * end_paddingp)477 efx_mcdi_get_rxdp_config(
478 	__in		efx_nic_t *enp,
479 	__out		uint32_t *end_paddingp)
480 {
481 	efx_mcdi_req_t req;
482 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_RXDP_CONFIG_IN_LEN,
483 		MC_CMD_GET_RXDP_CONFIG_OUT_LEN);
484 	uint32_t end_padding;
485 	efx_rc_t rc;
486 
487 	req.emr_cmd = MC_CMD_GET_RXDP_CONFIG;
488 	req.emr_in_buf = payload;
489 	req.emr_in_length = MC_CMD_GET_RXDP_CONFIG_IN_LEN;
490 	req.emr_out_buf = payload;
491 	req.emr_out_length = MC_CMD_GET_RXDP_CONFIG_OUT_LEN;
492 
493 	efx_mcdi_execute(enp, &req);
494 	if (req.emr_rc != 0) {
495 		rc = req.emr_rc;
496 		goto fail1;
497 	}
498 
499 	if (MCDI_OUT_DWORD_FIELD(req, GET_RXDP_CONFIG_OUT_DATA,
500 				    GET_RXDP_CONFIG_OUT_PAD_HOST_DMA) == 0) {
501 		/* RX DMA end padding is disabled */
502 		end_padding = 0;
503 	} else {
504 		switch (MCDI_OUT_DWORD_FIELD(req, GET_RXDP_CONFIG_OUT_DATA,
505 					    GET_RXDP_CONFIG_OUT_PAD_HOST_LEN)) {
506 		case MC_CMD_SET_RXDP_CONFIG_IN_PAD_HOST_64:
507 			end_padding = 64;
508 			break;
509 		case MC_CMD_SET_RXDP_CONFIG_IN_PAD_HOST_128:
510 			end_padding = 128;
511 			break;
512 		case MC_CMD_SET_RXDP_CONFIG_IN_PAD_HOST_256:
513 			end_padding = 256;
514 			break;
515 		default:
516 			rc = ENOTSUP;
517 			goto fail2;
518 		}
519 	}
520 
521 	*end_paddingp = end_padding;
522 
523 	return (0);
524 
525 fail2:
526 	EFSYS_PROBE(fail2);
527 fail1:
528 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
529 
530 	return (rc);
531 }
532 
533 	__checkReturn	efx_rc_t
efx_mcdi_get_vector_cfg(__in efx_nic_t * enp,__out_opt uint32_t * vec_basep,__out_opt uint32_t * pf_nvecp,__out_opt uint32_t * vf_nvecp)534 efx_mcdi_get_vector_cfg(
535 	__in		efx_nic_t *enp,
536 	__out_opt	uint32_t *vec_basep,
537 	__out_opt	uint32_t *pf_nvecp,
538 	__out_opt	uint32_t *vf_nvecp)
539 {
540 	efx_mcdi_req_t req;
541 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_VECTOR_CFG_IN_LEN,
542 		MC_CMD_GET_VECTOR_CFG_OUT_LEN);
543 	efx_rc_t rc;
544 
545 	req.emr_cmd = MC_CMD_GET_VECTOR_CFG;
546 	req.emr_in_buf = payload;
547 	req.emr_in_length = MC_CMD_GET_VECTOR_CFG_IN_LEN;
548 	req.emr_out_buf = payload;
549 	req.emr_out_length = MC_CMD_GET_VECTOR_CFG_OUT_LEN;
550 
551 	efx_mcdi_execute(enp, &req);
552 
553 	if (req.emr_rc != 0) {
554 		rc = req.emr_rc;
555 		goto fail1;
556 	}
557 
558 	if (req.emr_out_length_used < MC_CMD_GET_VECTOR_CFG_OUT_LEN) {
559 		rc = EMSGSIZE;
560 		goto fail2;
561 	}
562 
563 	if (vec_basep != NULL)
564 		*vec_basep = MCDI_OUT_DWORD(req, GET_VECTOR_CFG_OUT_VEC_BASE);
565 	if (pf_nvecp != NULL)
566 		*pf_nvecp = MCDI_OUT_DWORD(req, GET_VECTOR_CFG_OUT_VECS_PER_PF);
567 	if (vf_nvecp != NULL)
568 		*vf_nvecp = MCDI_OUT_DWORD(req, GET_VECTOR_CFG_OUT_VECS_PER_VF);
569 
570 	return (0);
571 
572 fail2:
573 	EFSYS_PROBE(fail2);
574 fail1:
575 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
576 
577 	return (rc);
578 }
579 
580 	__checkReturn	efx_rc_t
efx_mcdi_alloc_vis(__in efx_nic_t * enp,__in uint32_t min_vi_count,__in uint32_t max_vi_count,__out uint32_t * vi_basep,__out uint32_t * vi_countp,__out uint32_t * vi_shiftp)581 efx_mcdi_alloc_vis(
582 	__in		efx_nic_t *enp,
583 	__in		uint32_t min_vi_count,
584 	__in		uint32_t max_vi_count,
585 	__out		uint32_t *vi_basep,
586 	__out		uint32_t *vi_countp,
587 	__out		uint32_t *vi_shiftp)
588 {
589 	efx_mcdi_req_t req;
590 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_ALLOC_VIS_IN_LEN,
591 		MC_CMD_ALLOC_VIS_EXT_OUT_LEN);
592 	efx_rc_t rc;
593 
594 	if (vi_countp == NULL) {
595 		rc = EINVAL;
596 		goto fail1;
597 	}
598 
599 	req.emr_cmd = MC_CMD_ALLOC_VIS;
600 	req.emr_in_buf = payload;
601 	req.emr_in_length = MC_CMD_ALLOC_VIS_IN_LEN;
602 	req.emr_out_buf = payload;
603 	req.emr_out_length = MC_CMD_ALLOC_VIS_EXT_OUT_LEN;
604 
605 	MCDI_IN_SET_DWORD(req, ALLOC_VIS_IN_MIN_VI_COUNT, min_vi_count);
606 	MCDI_IN_SET_DWORD(req, ALLOC_VIS_IN_MAX_VI_COUNT, max_vi_count);
607 
608 	efx_mcdi_execute(enp, &req);
609 
610 	if (req.emr_rc != 0) {
611 		rc = req.emr_rc;
612 		goto fail2;
613 	}
614 
615 	if (req.emr_out_length_used < MC_CMD_ALLOC_VIS_OUT_LEN) {
616 		rc = EMSGSIZE;
617 		goto fail3;
618 	}
619 
620 	*vi_basep = MCDI_OUT_DWORD(req, ALLOC_VIS_OUT_VI_BASE);
621 	*vi_countp = MCDI_OUT_DWORD(req, ALLOC_VIS_OUT_VI_COUNT);
622 
623 	/* Report VI_SHIFT if available (always zero for Huntington) */
624 	if (req.emr_out_length_used < MC_CMD_ALLOC_VIS_EXT_OUT_LEN)
625 		*vi_shiftp = 0;
626 	else
627 		*vi_shiftp = MCDI_OUT_DWORD(req, ALLOC_VIS_EXT_OUT_VI_SHIFT);
628 
629 	return (0);
630 
631 fail3:
632 	EFSYS_PROBE(fail3);
633 fail2:
634 	EFSYS_PROBE(fail2);
635 fail1:
636 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
637 
638 	return (rc);
639 }
640 
641 
642 	__checkReturn	efx_rc_t
efx_mcdi_free_vis(__in efx_nic_t * enp)643 efx_mcdi_free_vis(
644 	__in		efx_nic_t *enp)
645 {
646 	efx_mcdi_req_t req;
647 	efx_rc_t rc;
648 
649 	EFX_STATIC_ASSERT(MC_CMD_FREE_VIS_IN_LEN == 0);
650 	EFX_STATIC_ASSERT(MC_CMD_FREE_VIS_OUT_LEN == 0);
651 
652 	req.emr_cmd = MC_CMD_FREE_VIS;
653 	req.emr_in_buf = NULL;
654 	req.emr_in_length = 0;
655 	req.emr_out_buf = NULL;
656 	req.emr_out_length = 0;
657 
658 	efx_mcdi_execute_quiet(enp, &req);
659 
660 	/* Ignore ELREADY (no allocated VIs, so nothing to free) */
661 	if ((req.emr_rc != 0) && (req.emr_rc != EALREADY)) {
662 		rc = req.emr_rc;
663 		goto fail1;
664 	}
665 
666 	return (0);
667 
668 fail1:
669 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
670 
671 	return (rc);
672 }
673 
674 #endif	/* EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10() */
675 
676 #if EFX_OPTS_EF10()
677 
678 static	__checkReturn	efx_rc_t
efx_mcdi_alloc_piobuf(__in efx_nic_t * enp,__out efx_piobuf_handle_t * handlep)679 efx_mcdi_alloc_piobuf(
680 	__in		efx_nic_t *enp,
681 	__out		efx_piobuf_handle_t *handlep)
682 {
683 	efx_mcdi_req_t req;
684 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_ALLOC_PIOBUF_IN_LEN,
685 		MC_CMD_ALLOC_PIOBUF_OUT_LEN);
686 	efx_rc_t rc;
687 
688 	if (handlep == NULL) {
689 		rc = EINVAL;
690 		goto fail1;
691 	}
692 
693 	req.emr_cmd = MC_CMD_ALLOC_PIOBUF;
694 	req.emr_in_buf = payload;
695 	req.emr_in_length = MC_CMD_ALLOC_PIOBUF_IN_LEN;
696 	req.emr_out_buf = payload;
697 	req.emr_out_length = MC_CMD_ALLOC_PIOBUF_OUT_LEN;
698 
699 	efx_mcdi_execute_quiet(enp, &req);
700 
701 	if (req.emr_rc != 0) {
702 		rc = req.emr_rc;
703 		goto fail2;
704 	}
705 
706 	if (req.emr_out_length_used < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
707 		rc = EMSGSIZE;
708 		goto fail3;
709 	}
710 
711 	*handlep = MCDI_OUT_DWORD(req, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
712 
713 	return (0);
714 
715 fail3:
716 	EFSYS_PROBE(fail3);
717 fail2:
718 	EFSYS_PROBE(fail2);
719 fail1:
720 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
721 
722 	return (rc);
723 }
724 
725 static	__checkReturn	efx_rc_t
efx_mcdi_free_piobuf(__in efx_nic_t * enp,__in efx_piobuf_handle_t handle)726 efx_mcdi_free_piobuf(
727 	__in		efx_nic_t *enp,
728 	__in		efx_piobuf_handle_t handle)
729 {
730 	efx_mcdi_req_t req;
731 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_FREE_PIOBUF_IN_LEN,
732 		MC_CMD_FREE_PIOBUF_OUT_LEN);
733 	efx_rc_t rc;
734 
735 	req.emr_cmd = MC_CMD_FREE_PIOBUF;
736 	req.emr_in_buf = payload;
737 	req.emr_in_length = MC_CMD_FREE_PIOBUF_IN_LEN;
738 	req.emr_out_buf = payload;
739 	req.emr_out_length = MC_CMD_FREE_PIOBUF_OUT_LEN;
740 
741 	MCDI_IN_SET_DWORD(req, FREE_PIOBUF_IN_PIOBUF_HANDLE, handle);
742 
743 	efx_mcdi_execute_quiet(enp, &req);
744 
745 	if (req.emr_rc != 0) {
746 		rc = req.emr_rc;
747 		goto fail1;
748 	}
749 
750 	return (0);
751 
752 fail1:
753 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
754 
755 	return (rc);
756 }
757 
758 static	__checkReturn	efx_rc_t
efx_mcdi_link_piobuf(__in efx_nic_t * enp,__in uint32_t vi_index,__in efx_piobuf_handle_t handle)759 efx_mcdi_link_piobuf(
760 	__in		efx_nic_t *enp,
761 	__in		uint32_t vi_index,
762 	__in		efx_piobuf_handle_t handle)
763 {
764 	efx_mcdi_req_t req;
765 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_LINK_PIOBUF_IN_LEN,
766 		MC_CMD_LINK_PIOBUF_OUT_LEN);
767 	efx_rc_t rc;
768 
769 	req.emr_cmd = MC_CMD_LINK_PIOBUF;
770 	req.emr_in_buf = payload;
771 	req.emr_in_length = MC_CMD_LINK_PIOBUF_IN_LEN;
772 	req.emr_out_buf = payload;
773 	req.emr_out_length = MC_CMD_LINK_PIOBUF_OUT_LEN;
774 
775 	MCDI_IN_SET_DWORD(req, LINK_PIOBUF_IN_PIOBUF_HANDLE, handle);
776 	MCDI_IN_SET_DWORD(req, LINK_PIOBUF_IN_TXQ_INSTANCE, vi_index);
777 
778 	efx_mcdi_execute(enp, &req);
779 
780 	if (req.emr_rc != 0) {
781 		rc = req.emr_rc;
782 		goto fail1;
783 	}
784 
785 	return (0);
786 
787 fail1:
788 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
789 
790 	return (rc);
791 }
792 
793 static	__checkReturn	efx_rc_t
efx_mcdi_unlink_piobuf(__in efx_nic_t * enp,__in uint32_t vi_index)794 efx_mcdi_unlink_piobuf(
795 	__in		efx_nic_t *enp,
796 	__in		uint32_t vi_index)
797 {
798 	efx_mcdi_req_t req;
799 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_UNLINK_PIOBUF_IN_LEN,
800 		MC_CMD_UNLINK_PIOBUF_OUT_LEN);
801 	efx_rc_t rc;
802 
803 	req.emr_cmd = MC_CMD_UNLINK_PIOBUF;
804 	req.emr_in_buf = payload;
805 	req.emr_in_length = MC_CMD_UNLINK_PIOBUF_IN_LEN;
806 	req.emr_out_buf = payload;
807 	req.emr_out_length = MC_CMD_UNLINK_PIOBUF_OUT_LEN;
808 
809 	MCDI_IN_SET_DWORD(req, UNLINK_PIOBUF_IN_TXQ_INSTANCE, vi_index);
810 
811 	efx_mcdi_execute_quiet(enp, &req);
812 
813 	if (req.emr_rc != 0) {
814 		rc = req.emr_rc;
815 		goto fail1;
816 	}
817 
818 	return (0);
819 
820 fail1:
821 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
822 
823 	return (rc);
824 }
825 
826 static			void
ef10_nic_alloc_piobufs(__in efx_nic_t * enp,__in uint32_t max_piobuf_count)827 ef10_nic_alloc_piobufs(
828 	__in		efx_nic_t *enp,
829 	__in		uint32_t max_piobuf_count)
830 {
831 	efx_piobuf_handle_t *handlep;
832 	unsigned int i;
833 
834 	EFSYS_ASSERT3U(max_piobuf_count, <=,
835 	    EFX_ARRAY_SIZE(enp->en_arch.ef10.ena_piobuf_handle));
836 
837 	enp->en_arch.ef10.ena_piobuf_count = 0;
838 
839 	for (i = 0; i < max_piobuf_count; i++) {
840 		handlep = &enp->en_arch.ef10.ena_piobuf_handle[i];
841 
842 		if (efx_mcdi_alloc_piobuf(enp, handlep) != 0)
843 			goto fail1;
844 
845 		enp->en_arch.ef10.ena_pio_alloc_map[i] = 0;
846 		enp->en_arch.ef10.ena_piobuf_count++;
847 	}
848 
849 	return;
850 
851 fail1:
852 	for (i = 0; i < enp->en_arch.ef10.ena_piobuf_count; i++) {
853 		handlep = &enp->en_arch.ef10.ena_piobuf_handle[i];
854 
855 		(void) efx_mcdi_free_piobuf(enp, *handlep);
856 		*handlep = EFX_PIOBUF_HANDLE_INVALID;
857 	}
858 	enp->en_arch.ef10.ena_piobuf_count = 0;
859 }
860 
861 
862 static			void
ef10_nic_free_piobufs(__in efx_nic_t * enp)863 ef10_nic_free_piobufs(
864 	__in		efx_nic_t *enp)
865 {
866 	efx_piobuf_handle_t *handlep;
867 	unsigned int i;
868 
869 	for (i = 0; i < enp->en_arch.ef10.ena_piobuf_count; i++) {
870 		handlep = &enp->en_arch.ef10.ena_piobuf_handle[i];
871 
872 		(void) efx_mcdi_free_piobuf(enp, *handlep);
873 		*handlep = EFX_PIOBUF_HANDLE_INVALID;
874 	}
875 	enp->en_arch.ef10.ena_piobuf_count = 0;
876 }
877 
878 /* Sub-allocate a block from a piobuf */
879 	__checkReturn	efx_rc_t
ef10_nic_pio_alloc(__inout efx_nic_t * enp,__out uint32_t * bufnump,__out efx_piobuf_handle_t * handlep,__out uint32_t * blknump,__out uint32_t * offsetp,__out size_t * sizep)880 ef10_nic_pio_alloc(
881 	__inout		efx_nic_t *enp,
882 	__out		uint32_t *bufnump,
883 	__out		efx_piobuf_handle_t *handlep,
884 	__out		uint32_t *blknump,
885 	__out		uint32_t *offsetp,
886 	__out		size_t *sizep)
887 {
888 	efx_nic_cfg_t *encp = &enp->en_nic_cfg;
889 	efx_drv_cfg_t *edcp = &enp->en_drv_cfg;
890 	uint32_t blk_per_buf;
891 	uint32_t buf, blk;
892 	efx_rc_t rc;
893 
894 	EFSYS_ASSERT(EFX_FAMILY_IS_EF10(enp));
895 	EFSYS_ASSERT(bufnump);
896 	EFSYS_ASSERT(handlep);
897 	EFSYS_ASSERT(blknump);
898 	EFSYS_ASSERT(offsetp);
899 	EFSYS_ASSERT(sizep);
900 
901 	if ((edcp->edc_pio_alloc_size == 0) ||
902 	    (enp->en_arch.ef10.ena_piobuf_count == 0)) {
903 		rc = ENOMEM;
904 		goto fail1;
905 	}
906 	blk_per_buf = encp->enc_piobuf_size / edcp->edc_pio_alloc_size;
907 
908 	for (buf = 0; buf < enp->en_arch.ef10.ena_piobuf_count; buf++) {
909 		uint32_t *map = &enp->en_arch.ef10.ena_pio_alloc_map[buf];
910 
911 		if (~(*map) == 0)
912 			continue;
913 
914 		EFSYS_ASSERT3U(blk_per_buf, <=, (8 * sizeof (*map)));
915 		for (blk = 0; blk < blk_per_buf; blk++) {
916 			if ((*map & (1u << blk)) == 0) {
917 				*map |= (1u << blk);
918 				goto done;
919 			}
920 		}
921 	}
922 	rc = ENOMEM;
923 	goto fail2;
924 
925 done:
926 	*handlep = enp->en_arch.ef10.ena_piobuf_handle[buf];
927 	*bufnump = buf;
928 	*blknump = blk;
929 	*sizep = edcp->edc_pio_alloc_size;
930 	*offsetp = blk * (*sizep);
931 
932 	return (0);
933 
934 fail2:
935 	EFSYS_PROBE(fail2);
936 fail1:
937 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
938 
939 	return (rc);
940 }
941 
942 /* Free a piobuf sub-allocated block */
943 	__checkReturn	efx_rc_t
ef10_nic_pio_free(__inout efx_nic_t * enp,__in uint32_t bufnum,__in uint32_t blknum)944 ef10_nic_pio_free(
945 	__inout		efx_nic_t *enp,
946 	__in		uint32_t bufnum,
947 	__in		uint32_t blknum)
948 {
949 	uint32_t *map;
950 	efx_rc_t rc;
951 
952 	if ((bufnum >= enp->en_arch.ef10.ena_piobuf_count) ||
953 	    (blknum >= (8 * sizeof (*map)))) {
954 		rc = EINVAL;
955 		goto fail1;
956 	}
957 
958 	map = &enp->en_arch.ef10.ena_pio_alloc_map[bufnum];
959 	if ((*map & (1u << blknum)) == 0) {
960 		rc = ENOENT;
961 		goto fail2;
962 	}
963 	*map &= ~(1u << blknum);
964 
965 	return (0);
966 
967 fail2:
968 	EFSYS_PROBE(fail2);
969 fail1:
970 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
971 
972 	return (rc);
973 }
974 
975 	__checkReturn	efx_rc_t
ef10_nic_pio_link(__inout efx_nic_t * enp,__in uint32_t vi_index,__in efx_piobuf_handle_t handle)976 ef10_nic_pio_link(
977 	__inout		efx_nic_t *enp,
978 	__in		uint32_t vi_index,
979 	__in		efx_piobuf_handle_t handle)
980 {
981 	return (efx_mcdi_link_piobuf(enp, vi_index, handle));
982 }
983 
984 	__checkReturn	efx_rc_t
ef10_nic_pio_unlink(__inout efx_nic_t * enp,__in uint32_t vi_index)985 ef10_nic_pio_unlink(
986 	__inout		efx_nic_t *enp,
987 	__in		uint32_t vi_index)
988 {
989 	return (efx_mcdi_unlink_piobuf(enp, vi_index));
990 }
991 
992 #endif	/* EFX_OPTS_EF10() */
993 
994 #if EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10()
995 
996 static	__checkReturn	efx_rc_t
ef10_mcdi_get_pf_count(__in efx_nic_t * enp,__out uint32_t * pf_countp)997 ef10_mcdi_get_pf_count(
998 	__in		efx_nic_t *enp,
999 	__out		uint32_t *pf_countp)
1000 {
1001 	efx_mcdi_req_t req;
1002 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_PF_COUNT_IN_LEN,
1003 		MC_CMD_GET_PF_COUNT_OUT_LEN);
1004 	efx_rc_t rc;
1005 
1006 	req.emr_cmd = MC_CMD_GET_PF_COUNT;
1007 	req.emr_in_buf = payload;
1008 	req.emr_in_length = MC_CMD_GET_PF_COUNT_IN_LEN;
1009 	req.emr_out_buf = payload;
1010 	req.emr_out_length = MC_CMD_GET_PF_COUNT_OUT_LEN;
1011 
1012 	efx_mcdi_execute(enp, &req);
1013 
1014 	if (req.emr_rc != 0) {
1015 		rc = req.emr_rc;
1016 		goto fail1;
1017 	}
1018 
1019 	if (req.emr_out_length_used < MC_CMD_GET_PF_COUNT_OUT_LEN) {
1020 		rc = EMSGSIZE;
1021 		goto fail2;
1022 	}
1023 
1024 	*pf_countp = *MCDI_OUT(req, uint8_t,
1025 				MC_CMD_GET_PF_COUNT_OUT_PF_COUNT_OFST);
1026 
1027 	EFSYS_ASSERT(*pf_countp != 0);
1028 
1029 	return (0);
1030 
1031 fail2:
1032 	EFSYS_PROBE(fail2);
1033 fail1:
1034 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1035 
1036 	return (rc);
1037 }
1038 
1039 static	__checkReturn	efx_rc_t
ef10_get_datapath_caps(__in efx_nic_t * enp)1040 ef10_get_datapath_caps(
1041 	__in		efx_nic_t *enp)
1042 {
1043 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
1044 	efx_mcdi_req_t req;
1045 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_CAPABILITIES_IN_LEN,
1046 		MC_CMD_GET_CAPABILITIES_V7_OUT_LEN);
1047 	efx_rc_t rc;
1048 
1049 	req.emr_cmd = MC_CMD_GET_CAPABILITIES;
1050 	req.emr_in_buf = payload;
1051 	req.emr_in_length = MC_CMD_GET_CAPABILITIES_IN_LEN;
1052 	req.emr_out_buf = payload;
1053 	req.emr_out_length = MC_CMD_GET_CAPABILITIES_V7_OUT_LEN;
1054 
1055 	efx_mcdi_execute_quiet(enp, &req);
1056 
1057 	if (req.emr_rc != 0) {
1058 		rc = req.emr_rc;
1059 		goto fail1;
1060 	}
1061 
1062 	if (req.emr_out_length_used < MC_CMD_GET_CAPABILITIES_OUT_LEN) {
1063 		rc = EMSGSIZE;
1064 		goto fail2;
1065 	}
1066 
1067 #define	CAP_FLAGS1(_req, _flag)						\
1068 	(MCDI_OUT_DWORD((_req), GET_CAPABILITIES_OUT_FLAGS1) &		\
1069 	(1u << (MC_CMD_GET_CAPABILITIES_V2_OUT_ ## _flag ## _LBN)))
1070 
1071 #define	CAP_FLAGS2(_req, _flag)						\
1072 	(((_req).emr_out_length_used >= MC_CMD_GET_CAPABILITIES_V2_OUT_LEN) && \
1073 	    (MCDI_OUT_DWORD((_req), GET_CAPABILITIES_V2_OUT_FLAGS2) &	\
1074 	    (1u << (MC_CMD_GET_CAPABILITIES_V2_OUT_ ## _flag ## _LBN))))
1075 
1076 #define	CAP_FLAGS3(_req, _flag)						\
1077 	(((_req).emr_out_length_used >= MC_CMD_GET_CAPABILITIES_V7_OUT_LEN) && \
1078 	    (MCDI_OUT_DWORD((_req), GET_CAPABILITIES_V7_OUT_FLAGS3) &	\
1079 	    (1u << (MC_CMD_GET_CAPABILITIES_V7_OUT_ ## _flag ## _LBN))))
1080 
1081 	/* Check if RXDP firmware inserts 14 byte prefix */
1082 	if (CAP_FLAGS1(req, RX_PREFIX_LEN_14))
1083 		encp->enc_rx_prefix_size = 14;
1084 	else
1085 		encp->enc_rx_prefix_size = 0;
1086 
1087 #if EFSYS_OPT_RX_SCALE
1088 	/* Check if the firmware supports additional RSS modes */
1089 	if (CAP_FLAGS1(req, ADDITIONAL_RSS_MODES))
1090 		encp->enc_rx_scale_additional_modes_supported = B_TRUE;
1091 	else
1092 		encp->enc_rx_scale_additional_modes_supported = B_FALSE;
1093 #endif /* EFSYS_OPT_RX_SCALE */
1094 
1095 	/* Check if the firmware supports TSO */
1096 	if (CAP_FLAGS1(req, TX_TSO))
1097 		encp->enc_fw_assisted_tso_enabled = B_TRUE;
1098 	else
1099 		encp->enc_fw_assisted_tso_enabled = B_FALSE;
1100 
1101 	/* Check if the firmware supports FATSOv2 */
1102 	if (CAP_FLAGS2(req, TX_TSO_V2)) {
1103 		encp->enc_fw_assisted_tso_v2_enabled = B_TRUE;
1104 		encp->enc_fw_assisted_tso_v2_n_contexts = MCDI_OUT_WORD(req,
1105 		    GET_CAPABILITIES_V2_OUT_TX_TSO_V2_N_CONTEXTS);
1106 	} else {
1107 		encp->enc_fw_assisted_tso_v2_enabled = B_FALSE;
1108 		encp->enc_fw_assisted_tso_v2_n_contexts = 0;
1109 	}
1110 
1111 	/* Check if the firmware supports FATSOv2 encap */
1112 	if (CAP_FLAGS2(req, TX_TSO_V2_ENCAP))
1113 		encp->enc_fw_assisted_tso_v2_encap_enabled = B_TRUE;
1114 	else
1115 		encp->enc_fw_assisted_tso_v2_encap_enabled = B_FALSE;
1116 
1117 	/* Check if TSOv3 is supported */
1118 	if (CAP_FLAGS2(req, TX_TSO_V3))
1119 		encp->enc_tso_v3_enabled = B_TRUE;
1120 	else
1121 		encp->enc_tso_v3_enabled = B_FALSE;
1122 
1123 	/* Check if the firmware has vadapter/vport/vswitch support */
1124 	if (CAP_FLAGS1(req, EVB))
1125 		encp->enc_datapath_cap_evb = B_TRUE;
1126 	else
1127 		encp->enc_datapath_cap_evb = B_FALSE;
1128 
1129 	/* Check if the firmware supports vport reconfiguration */
1130 	if (CAP_FLAGS1(req, VPORT_RECONFIGURE))
1131 		encp->enc_vport_reconfigure_supported = B_TRUE;
1132 	else
1133 		encp->enc_vport_reconfigure_supported = B_FALSE;
1134 
1135 	/* Check if the firmware supports VLAN insertion */
1136 	if (CAP_FLAGS1(req, TX_VLAN_INSERTION))
1137 		encp->enc_hw_tx_insert_vlan_enabled = B_TRUE;
1138 	else
1139 		encp->enc_hw_tx_insert_vlan_enabled = B_FALSE;
1140 
1141 	/* Check if the firmware supports RX event batching */
1142 	if (CAP_FLAGS1(req, RX_BATCHING))
1143 		encp->enc_rx_batching_enabled = B_TRUE;
1144 	else
1145 		encp->enc_rx_batching_enabled = B_FALSE;
1146 
1147 	/*
1148 	 * Even if batching isn't reported as supported, we may still get
1149 	 * batched events (see bug61153).
1150 	 */
1151 	encp->enc_rx_batch_max = 16;
1152 
1153 	/* Check if the firmware supports disabling scatter on RXQs */
1154 	if (CAP_FLAGS1(req, RX_DISABLE_SCATTER))
1155 		encp->enc_rx_disable_scatter_supported = B_TRUE;
1156 	else
1157 		encp->enc_rx_disable_scatter_supported = B_FALSE;
1158 
1159 	/* No limit on maximum number of Rx scatter elements per packet. */
1160 	encp->enc_rx_scatter_max = -1;
1161 
1162 	/* Check if the firmware supports packed stream mode */
1163 	if (CAP_FLAGS1(req, RX_PACKED_STREAM))
1164 		encp->enc_rx_packed_stream_supported = B_TRUE;
1165 	else
1166 		encp->enc_rx_packed_stream_supported = B_FALSE;
1167 
1168 	/*
1169 	 * Check if the firmware supports configurable buffer sizes
1170 	 * for packed stream mode (otherwise buffer size is 1Mbyte)
1171 	 */
1172 	if (CAP_FLAGS1(req, RX_PACKED_STREAM_VAR_BUFFERS))
1173 		encp->enc_rx_var_packed_stream_supported = B_TRUE;
1174 	else
1175 		encp->enc_rx_var_packed_stream_supported = B_FALSE;
1176 
1177 	/* Check if the firmware supports equal stride super-buffer mode */
1178 	if (CAP_FLAGS2(req, EQUAL_STRIDE_SUPER_BUFFER))
1179 		encp->enc_rx_es_super_buffer_supported = B_TRUE;
1180 	else
1181 		encp->enc_rx_es_super_buffer_supported = B_FALSE;
1182 
1183 	/* Check if the firmware supports FW subvariant w/o Tx checksumming */
1184 	if (CAP_FLAGS2(req, FW_SUBVARIANT_NO_TX_CSUM))
1185 		encp->enc_fw_subvariant_no_tx_csum_supported = B_TRUE;
1186 	else
1187 		encp->enc_fw_subvariant_no_tx_csum_supported = B_FALSE;
1188 
1189 	/* Check if the firmware supports set mac with running filters */
1190 	if (CAP_FLAGS1(req, VADAPTOR_PERMIT_SET_MAC_WHEN_FILTERS_INSTALLED))
1191 		encp->enc_allow_set_mac_with_installed_filters = B_TRUE;
1192 	else
1193 		encp->enc_allow_set_mac_with_installed_filters = B_FALSE;
1194 
1195 	/*
1196 	 * Check if firmware supports the extended MC_CMD_SET_MAC, which allows
1197 	 * specifying which parameters to configure.
1198 	 */
1199 	if (CAP_FLAGS1(req, SET_MAC_ENHANCED))
1200 		encp->enc_enhanced_set_mac_supported = B_TRUE;
1201 	else
1202 		encp->enc_enhanced_set_mac_supported = B_FALSE;
1203 
1204 	/*
1205 	 * Check if firmware supports version 2 of MC_CMD_INIT_EVQ, which allows
1206 	 * us to let the firmware choose the settings to use on an EVQ.
1207 	 */
1208 	if (CAP_FLAGS2(req, INIT_EVQ_V2))
1209 		encp->enc_init_evq_v2_supported = B_TRUE;
1210 	else
1211 		encp->enc_init_evq_v2_supported = B_FALSE;
1212 
1213 	/*
1214 	 * Check if firmware supports extended width event queues, which have
1215 	 * a different event descriptor layout.
1216 	 */
1217 	if (CAP_FLAGS3(req, EXTENDED_WIDTH_EVQS_SUPPORTED))
1218 		encp->enc_init_evq_extended_width_supported = B_TRUE;
1219 	else
1220 		encp->enc_init_evq_extended_width_supported = B_FALSE;
1221 
1222 	/*
1223 	 * Check if the NO_CONT_EV mode for RX events is supported.
1224 	 */
1225 	if (CAP_FLAGS2(req, INIT_RXQ_NO_CONT_EV))
1226 		encp->enc_no_cont_ev_mode_supported = B_TRUE;
1227 	else
1228 		encp->enc_no_cont_ev_mode_supported = B_FALSE;
1229 
1230 	/*
1231 	 * Check if buffer size may and must be specified on INIT_RXQ.
1232 	 * It may be always specified to efx_rx_qcreate(), but will be
1233 	 * just kept libefx internal if MCDI does not support it.
1234 	 */
1235 	if (CAP_FLAGS2(req, INIT_RXQ_WITH_BUFFER_SIZE))
1236 		encp->enc_init_rxq_with_buffer_size = B_TRUE;
1237 	else
1238 		encp->enc_init_rxq_with_buffer_size = B_FALSE;
1239 
1240 	/*
1241 	 * Check if firmware-verified NVRAM updates must be used.
1242 	 *
1243 	 * The firmware trusted installer requires all NVRAM updates to use
1244 	 * version 2 of MC_CMD_NVRAM_UPDATE_START (to enable verified update)
1245 	 * and version 2 of MC_CMD_NVRAM_UPDATE_FINISH (to verify the updated
1246 	 * partition and report the result).
1247 	 */
1248 	if (CAP_FLAGS2(req, NVRAM_UPDATE_REPORT_VERIFY_RESULT))
1249 		encp->enc_nvram_update_verify_result_supported = B_TRUE;
1250 	else
1251 		encp->enc_nvram_update_verify_result_supported = B_FALSE;
1252 
1253 	if (CAP_FLAGS2(req, NVRAM_UPDATE_POLL_VERIFY_RESULT))
1254 		encp->enc_nvram_update_poll_verify_result_supported = B_TRUE;
1255 	else
1256 		encp->enc_nvram_update_poll_verify_result_supported = B_FALSE;
1257 
1258 	/*
1259 	 * Check if firmware update via the BUNDLE partition is supported
1260 	 */
1261 	if (CAP_FLAGS2(req, BUNDLE_UPDATE))
1262 		encp->enc_nvram_bundle_update_supported = B_TRUE;
1263 	else
1264 		encp->enc_nvram_bundle_update_supported = B_FALSE;
1265 
1266 	/*
1267 	 * Check if firmware provides packet memory and Rx datapath
1268 	 * counters.
1269 	 */
1270 	if (CAP_FLAGS1(req, PM_AND_RXDP_COUNTERS))
1271 		encp->enc_pm_and_rxdp_counters = B_TRUE;
1272 	else
1273 		encp->enc_pm_and_rxdp_counters = B_FALSE;
1274 
1275 	/*
1276 	 * Check if the 40G MAC hardware is capable of reporting
1277 	 * statistics for Tx size bins.
1278 	 */
1279 	if (CAP_FLAGS2(req, MAC_STATS_40G_TX_SIZE_BINS))
1280 		encp->enc_mac_stats_40g_tx_size_bins = B_TRUE;
1281 	else
1282 		encp->enc_mac_stats_40g_tx_size_bins = B_FALSE;
1283 
1284 	/*
1285 	 * Check if firmware supports VXLAN and NVGRE tunnels.
1286 	 * The capability indicates Geneve protocol support as well.
1287 	 */
1288 	if (CAP_FLAGS1(req, VXLAN_NVGRE)) {
1289 		encp->enc_tunnel_encapsulations_supported =
1290 		    (1u << EFX_TUNNEL_PROTOCOL_VXLAN) |
1291 		    (1u << EFX_TUNNEL_PROTOCOL_GENEVE) |
1292 		    (1u << EFX_TUNNEL_PROTOCOL_NVGRE);
1293 
1294 		EFX_STATIC_ASSERT(EFX_TUNNEL_MAXNENTRIES ==
1295 		    MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES_MAXNUM);
1296 		encp->enc_tunnel_config_udp_entries_max =
1297 		    EFX_TUNNEL_MAXNENTRIES;
1298 	} else {
1299 		encp->enc_tunnel_config_udp_entries_max = 0;
1300 	}
1301 
1302 	/*
1303 	 * Check if firmware reports the VI window mode.
1304 	 * Medford2 has a variable VI window size (8K, 16K or 64K).
1305 	 * Medford and Huntington have a fixed 8K VI window size.
1306 	 */
1307 	if (req.emr_out_length_used >= MC_CMD_GET_CAPABILITIES_V3_OUT_LEN) {
1308 		uint8_t mode =
1309 		    MCDI_OUT_BYTE(req, GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE);
1310 
1311 		switch (mode) {
1312 		case MC_CMD_GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE_8K:
1313 			encp->enc_vi_window_shift = EFX_VI_WINDOW_SHIFT_8K;
1314 			break;
1315 		case MC_CMD_GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE_16K:
1316 			encp->enc_vi_window_shift = EFX_VI_WINDOW_SHIFT_16K;
1317 			break;
1318 		case MC_CMD_GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE_64K:
1319 			encp->enc_vi_window_shift = EFX_VI_WINDOW_SHIFT_64K;
1320 			break;
1321 		default:
1322 			encp->enc_vi_window_shift = EFX_VI_WINDOW_SHIFT_INVALID;
1323 			break;
1324 		}
1325 	} else if ((enp->en_family == EFX_FAMILY_HUNTINGTON) ||
1326 		    (enp->en_family == EFX_FAMILY_MEDFORD)) {
1327 		/* Huntington and Medford have fixed 8K window size */
1328 		encp->enc_vi_window_shift = EFX_VI_WINDOW_SHIFT_8K;
1329 	} else {
1330 		encp->enc_vi_window_shift = EFX_VI_WINDOW_SHIFT_INVALID;
1331 	}
1332 
1333 	/* Check if firmware supports extended MAC stats. */
1334 	if (req.emr_out_length_used >= MC_CMD_GET_CAPABILITIES_V4_OUT_LEN) {
1335 		/* Extended stats buffer supported */
1336 		encp->enc_mac_stats_nstats = MCDI_OUT_WORD(req,
1337 		    GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS);
1338 	} else {
1339 		/* Use Siena-compatible legacy MAC stats */
1340 		encp->enc_mac_stats_nstats = MC_CMD_MAC_NSTATS;
1341 	}
1342 
1343 	if (encp->enc_mac_stats_nstats >= MC_CMD_MAC_NSTATS_V2)
1344 		encp->enc_fec_counters = B_TRUE;
1345 	else
1346 		encp->enc_fec_counters = B_FALSE;
1347 
1348 	/* Check if the firmware provides head-of-line blocking counters */
1349 	if (CAP_FLAGS2(req, RXDP_HLB_IDLE))
1350 		encp->enc_hlb_counters = B_TRUE;
1351 	else
1352 		encp->enc_hlb_counters = B_FALSE;
1353 
1354 #if EFSYS_OPT_RX_SCALE
1355 	if (CAP_FLAGS1(req, RX_RSS_LIMITED)) {
1356 		/* Only one exclusive RSS context is available per port. */
1357 		encp->enc_rx_scale_max_exclusive_contexts = 1;
1358 
1359 		switch (enp->en_family) {
1360 		case EFX_FAMILY_MEDFORD2:
1361 			encp->enc_rx_scale_hash_alg_mask =
1362 			    (1U << EFX_RX_HASHALG_TOEPLITZ);
1363 			break;
1364 
1365 		case EFX_FAMILY_MEDFORD:
1366 		case EFX_FAMILY_HUNTINGTON:
1367 			/*
1368 			 * Packed stream firmware variant maintains a
1369 			 * non-standard algorithm for hash computation.
1370 			 * It implies explicit XORing together
1371 			 * source + destination IP addresses (or last
1372 			 * four bytes in the case of IPv6) and using the
1373 			 * resulting value as the input to a Toeplitz hash.
1374 			 */
1375 			encp->enc_rx_scale_hash_alg_mask =
1376 			    (1U << EFX_RX_HASHALG_PACKED_STREAM);
1377 			break;
1378 
1379 		default:
1380 			rc = EINVAL;
1381 			goto fail3;
1382 		}
1383 
1384 		/* Port numbers cannot contribute to the hash value */
1385 		encp->enc_rx_scale_l4_hash_supported = B_FALSE;
1386 	} else {
1387 		/*
1388 		 * Maximum number of exclusive RSS contexts.
1389 		 * EF10 hardware supports 64 in total, but 6 are reserved
1390 		 * for shared contexts. They are a global resource so
1391 		 * not all may be available.
1392 		 */
1393 		encp->enc_rx_scale_max_exclusive_contexts = 64 - 6;
1394 
1395 		encp->enc_rx_scale_hash_alg_mask =
1396 		    (1U << EFX_RX_HASHALG_TOEPLITZ);
1397 
1398 		/*
1399 		 * It is possible to use port numbers as
1400 		 * the input data for hash computation.
1401 		 */
1402 		encp->enc_rx_scale_l4_hash_supported = B_TRUE;
1403 	}
1404 #endif /* EFSYS_OPT_RX_SCALE */
1405 
1406 	/* Check if the firmware supports "FLAG" and "MARK" filter actions */
1407 	if (CAP_FLAGS2(req, FILTER_ACTION_FLAG))
1408 		encp->enc_filter_action_flag_supported = B_TRUE;
1409 	else
1410 		encp->enc_filter_action_flag_supported = B_FALSE;
1411 
1412 	if (CAP_FLAGS2(req, FILTER_ACTION_MARK))
1413 		encp->enc_filter_action_mark_supported = B_TRUE;
1414 	else
1415 		encp->enc_filter_action_mark_supported = B_FALSE;
1416 
1417 	/* Get maximum supported value for "MARK" filter action */
1418 	if (req.emr_out_length_used >= MC_CMD_GET_CAPABILITIES_V5_OUT_LEN)
1419 		encp->enc_filter_action_mark_max = MCDI_OUT_DWORD(req,
1420 		    GET_CAPABILITIES_V5_OUT_FILTER_ACTION_MARK_MAX);
1421 	else
1422 		encp->enc_filter_action_mark_max = 0;
1423 
1424 #if EFSYS_OPT_MAE
1425 	/*
1426 	 * Indicate support for MAE.
1427 	 * MAE is supported by Riverhead boards starting with R2,
1428 	 * and it is required that FW is built with MAE support, too.
1429 	 */
1430 	if (CAP_FLAGS3(req, MAE_SUPPORTED))
1431 		encp->enc_mae_supported = B_TRUE;
1432 	else
1433 		encp->enc_mae_supported = B_FALSE;
1434 #else
1435 	encp->enc_mae_supported = B_FALSE;
1436 #endif /* EFSYS_OPT_MAE */
1437 
1438 #undef CAP_FLAGS1
1439 #undef CAP_FLAGS2
1440 #undef CAP_FLAGS3
1441 
1442 	return (0);
1443 
1444 #if EFSYS_OPT_RX_SCALE
1445 fail3:
1446 	EFSYS_PROBE(fail3);
1447 #endif /* EFSYS_OPT_RX_SCALE */
1448 fail2:
1449 	EFSYS_PROBE(fail2);
1450 fail1:
1451 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1452 
1453 	return (rc);
1454 }
1455 
1456 
1457 #define	EF10_LEGACY_PF_PRIVILEGE_MASK					\
1458 	(MC_CMD_PRIVILEGE_MASK_IN_GRP_ADMIN			|	\
1459 	MC_CMD_PRIVILEGE_MASK_IN_GRP_LINK			|	\
1460 	MC_CMD_PRIVILEGE_MASK_IN_GRP_ONLOAD			|	\
1461 	MC_CMD_PRIVILEGE_MASK_IN_GRP_PTP			|	\
1462 	MC_CMD_PRIVILEGE_MASK_IN_GRP_INSECURE_FILTERS		|	\
1463 	MC_CMD_PRIVILEGE_MASK_IN_GRP_MAC_SPOOFING		|	\
1464 	MC_CMD_PRIVILEGE_MASK_IN_GRP_UNICAST			|	\
1465 	MC_CMD_PRIVILEGE_MASK_IN_GRP_MULTICAST			|	\
1466 	MC_CMD_PRIVILEGE_MASK_IN_GRP_BROADCAST			|	\
1467 	MC_CMD_PRIVILEGE_MASK_IN_GRP_ALL_MULTICAST		|	\
1468 	MC_CMD_PRIVILEGE_MASK_IN_GRP_PROMISCUOUS)
1469 
1470 #define	EF10_LEGACY_VF_PRIVILEGE_MASK	0
1471 
1472 
1473 	__checkReturn		efx_rc_t
ef10_get_privilege_mask(__in efx_nic_t * enp,__out uint32_t * maskp)1474 ef10_get_privilege_mask(
1475 	__in			efx_nic_t *enp,
1476 	__out			uint32_t *maskp)
1477 {
1478 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
1479 	uint32_t mask;
1480 	efx_rc_t rc;
1481 
1482 	if ((rc = efx_mcdi_privilege_mask(enp, encp->enc_pf, encp->enc_vf,
1483 					    &mask)) != 0) {
1484 		if (rc != ENOTSUP)
1485 			goto fail1;
1486 
1487 		/* Fallback for old firmware without privilege mask support */
1488 		if (EFX_PCI_FUNCTION_IS_PF(encp)) {
1489 			/* Assume PF has admin privilege */
1490 			mask = EF10_LEGACY_PF_PRIVILEGE_MASK;
1491 		} else {
1492 			/* VF is always unprivileged by default */
1493 			mask = EF10_LEGACY_VF_PRIVILEGE_MASK;
1494 		}
1495 	}
1496 
1497 	*maskp = mask;
1498 
1499 	return (0);
1500 
1501 fail1:
1502 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1503 
1504 	return (rc);
1505 }
1506 
1507 
1508 #define	EFX_EXT_PORT_MAX	4
1509 #define	EFX_EXT_PORT_NA		0xFF
1510 
1511 /*
1512  * Table of mapping schemes from port number to external number.
1513  *
1514  * Each port number ultimately corresponds to a connector: either as part of
1515  * a cable assembly attached to a module inserted in an SFP+/QSFP+ cage on
1516  * the board, or fixed to the board (e.g. 10GBASE-T magjack on SFN5121T
1517  * "Salina"). In general:
1518  *
1519  * Port number (0-based)
1520  *     |
1521  *   port mapping (n:1)
1522  *     |
1523  *     v
1524  * External port number (1-based)
1525  *     |
1526  *   fixed (1:1) or cable assembly (1:m)
1527  *     |
1528  *     v
1529  * Connector
1530  *
1531  * The external numbering refers to the cages or magjacks on the board,
1532  * as visibly annotated on the board or back panel. This table describes
1533  * how to determine which external cage/magjack corresponds to the port
1534  * numbers used by the driver.
1535  *
1536  * The count of consecutive port numbers that map to each external number,
1537  * is determined by the chip family and the current port mode.
1538  *
1539  * For the Huntington family, the current port mode cannot be discovered,
1540  * but a single mapping is used by all modes for a given chip variant,
1541  * so the mapping used is instead the last match in the table to the full
1542  * set of port modes to which the NIC can be configured. Therefore the
1543  * ordering of entries in the mapping table is significant.
1544  */
1545 static struct ef10_external_port_map_s {
1546 	efx_family_t	family;
1547 	uint32_t	modes_mask;
1548 	uint8_t		base_port[EFX_EXT_PORT_MAX];
1549 }	__ef10_external_port_mappings[] = {
1550 	/*
1551 	 * Modes used by Huntington family controllers where each port
1552 	 * number maps to a separate cage.
1553 	 * SFN7x22F (Torino):
1554 	 *	port 0 -> cage 1
1555 	 *	port 1 -> cage 2
1556 	 * SFN7xx4F (Pavia):
1557 	 *	port 0 -> cage 1
1558 	 *	port 1 -> cage 2
1559 	 *	port 2 -> cage 3
1560 	 *	port 3 -> cage 4
1561 	 */
1562 	{
1563 		EFX_FAMILY_HUNTINGTON,
1564 		(1U << TLV_PORT_MODE_10G) |			/* mode 0 */
1565 		(1U << TLV_PORT_MODE_10G_10G) |			/* mode 2 */
1566 		(1U << TLV_PORT_MODE_10G_10G_10G_10G),		/* mode 4 */
1567 		{ 0, 1, 2, 3 }
1568 	},
1569 	/*
1570 	 * Modes which for Huntington identify a chip variant where 2
1571 	 * adjacent port numbers map to each cage.
1572 	 * SFN7x42Q (Monza):
1573 	 *	port 0 -> cage 1
1574 	 *	port 1 -> cage 1
1575 	 *	port 2 -> cage 2
1576 	 *	port 3 -> cage 2
1577 	 */
1578 	{
1579 		EFX_FAMILY_HUNTINGTON,
1580 		(1U << TLV_PORT_MODE_40G) |			/* mode 1 */
1581 		(1U << TLV_PORT_MODE_40G_40G) |			/* mode 3 */
1582 		(1U << TLV_PORT_MODE_40G_10G_10G) |		/* mode 6 */
1583 		(1U << TLV_PORT_MODE_10G_10G_40G),		/* mode 7 */
1584 		{ 0, 2, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
1585 	},
1586 	/*
1587 	 * Modes that on Medford allocate each port number to a separate
1588 	 * cage.
1589 	 *	port 0 -> cage 1
1590 	 *	port 1 -> cage 2
1591 	 *	port 2 -> cage 3
1592 	 *	port 3 -> cage 4
1593 	 */
1594 	{
1595 		EFX_FAMILY_MEDFORD,
1596 		(1U << TLV_PORT_MODE_1x1_NA) |			/* mode 0 */
1597 		(1U << TLV_PORT_MODE_1x4_NA) |			/* mode 1 */
1598 		(1U << TLV_PORT_MODE_1x1_1x1),			/* mode 2 */
1599 		{ 0, 1, 2, 3 }
1600 	},
1601 	/*
1602 	 * Modes that on Medford allocate 2 adjacent port numbers to each
1603 	 * cage.
1604 	 *	port 0 -> cage 1
1605 	 *	port 1 -> cage 1
1606 	 *	port 2 -> cage 2
1607 	 *	port 3 -> cage 2
1608 	 */
1609 	{
1610 		EFX_FAMILY_MEDFORD,
1611 		(1U << TLV_PORT_MODE_1x4_1x4) |			/* mode 3 */
1612 		(1U << TLV_PORT_MODE_2x1_2x1) |			/* mode 5 */
1613 		(1U << TLV_PORT_MODE_1x4_2x1) |			/* mode 6 */
1614 		(1U << TLV_PORT_MODE_2x1_1x4) |			/* mode 7 */
1615 		/* Do not use 10G_10G_10G_10G_Q1_Q2 (see bug63270) */
1616 		(1U << TLV_PORT_MODE_10G_10G_10G_10G_Q1_Q2),	/* mode 9 */
1617 		{ 0, 2, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
1618 	},
1619 	/*
1620 	 * Modes that on Medford allocate 4 adjacent port numbers to
1621 	 * cage 1.
1622 	 *	port 0 -> cage 1
1623 	 *	port 1 -> cage 1
1624 	 *	port 2 -> cage 1
1625 	 *	port 3 -> cage 1
1626 	 */
1627 	{
1628 		EFX_FAMILY_MEDFORD,
1629 		/* Do not use 10G_10G_10G_10G_Q1 (see bug63270) */
1630 		(1U << TLV_PORT_MODE_4x1_NA),			/* mode 4 */
1631 		{ 0, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
1632 	},
1633 	/*
1634 	 * Modes that on Medford allocate 4 adjacent port numbers to
1635 	 * cage 2.
1636 	 *	port 0 -> cage 2
1637 	 *	port 1 -> cage 2
1638 	 *	port 2 -> cage 2
1639 	 *	port 3 -> cage 2
1640 	 */
1641 	{
1642 		EFX_FAMILY_MEDFORD,
1643 		(1U << TLV_PORT_MODE_NA_4x1),			/* mode 8 */
1644 		{ EFX_EXT_PORT_NA, 0, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
1645 	},
1646 	/*
1647 	 * Modes that on Medford2 allocate each port number to a separate
1648 	 * cage.
1649 	 *	port 0 -> cage 1
1650 	 *	port 1 -> cage 2
1651 	 *	port 2 -> cage 3
1652 	 *	port 3 -> cage 4
1653 	 */
1654 	{
1655 		EFX_FAMILY_MEDFORD2,
1656 		(1U << TLV_PORT_MODE_1x1_NA) |			/* mode 0 */
1657 		(1U << TLV_PORT_MODE_1x4_NA) |			/* mode 1 */
1658 		(1U << TLV_PORT_MODE_1x1_1x1) |			/* mode 2 */
1659 		(1U << TLV_PORT_MODE_1x4_1x4) |			/* mode 3 */
1660 		(1U << TLV_PORT_MODE_1x2_NA) |			/* mode 10 */
1661 		(1U << TLV_PORT_MODE_1x2_1x2) |			/* mode 12 */
1662 		(1U << TLV_PORT_MODE_1x4_1x2) |			/* mode 15 */
1663 		(1U << TLV_PORT_MODE_1x2_1x4),			/* mode 16 */
1664 		{ 0, 1, 2, 3 }
1665 	},
1666 	/*
1667 	 * Modes that on Medford2 allocate 1 port to cage 1 and the rest
1668 	 * to cage 2.
1669 	 *	port 0 -> cage 1
1670 	 *	port 1 -> cage 2
1671 	 *	port 2 -> cage 2
1672 	 */
1673 	{
1674 		EFX_FAMILY_MEDFORD2,
1675 		(1U << TLV_PORT_MODE_1x2_2x1) |			/* mode 17 */
1676 		(1U << TLV_PORT_MODE_1x4_2x1),			/* mode 6 */
1677 		{ 0, 1, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
1678 	},
1679 	/*
1680 	 * Modes that on Medford2 allocate 2 adjacent port numbers to cage 1
1681 	 * and the rest to cage 2.
1682 	 *	port 0 -> cage 1
1683 	 *	port 1 -> cage 1
1684 	 *	port 2 -> cage 2
1685 	 *	port 3 -> cage 2
1686 	 */
1687 	{
1688 		EFX_FAMILY_MEDFORD2,
1689 		(1U << TLV_PORT_MODE_2x1_2x1) |			/* mode 4 */
1690 		(1U << TLV_PORT_MODE_2x1_1x4) |			/* mode 7 */
1691 		(1U << TLV_PORT_MODE_2x2_NA) |			/* mode 13 */
1692 		(1U << TLV_PORT_MODE_2x1_1x2),			/* mode 18 */
1693 		{ 0, 2, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
1694 	},
1695 	/*
1696 	 * Modes that on Medford2 allocate up to 4 adjacent port numbers
1697 	 * to cage 1.
1698 	 *	port 0 -> cage 1
1699 	 *	port 1 -> cage 1
1700 	 *	port 2 -> cage 1
1701 	 *	port 3 -> cage 1
1702 	 */
1703 	{
1704 		EFX_FAMILY_MEDFORD2,
1705 		(1U << TLV_PORT_MODE_4x1_NA),			/* mode 5 */
1706 		{ 0, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
1707 	},
1708 	/*
1709 	 * Modes that on Medford2 allocate up to 4 adjacent port numbers
1710 	 * to cage 2.
1711 	 *	port 0 -> cage 2
1712 	 *	port 1 -> cage 2
1713 	 *	port 2 -> cage 2
1714 	 *	port 3 -> cage 2
1715 	 */
1716 	{
1717 		EFX_FAMILY_MEDFORD2,
1718 		(1U << TLV_PORT_MODE_NA_4x1) |			/* mode 8 */
1719 		(1U << TLV_PORT_MODE_NA_1x2) |			/* mode 11 */
1720 		(1U << TLV_PORT_MODE_NA_2x2),			/* mode 14 */
1721 		{ EFX_EXT_PORT_NA, 0, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
1722 	},
1723 	/*
1724 	 * Modes that on Riverhead allocate each port number to a separate
1725 	 * cage.
1726 	 *	port 0 -> cage 1
1727 	 *	port 1 -> cage 2
1728 	 */
1729 	{
1730 		EFX_FAMILY_RIVERHEAD,
1731 		(1U << TLV_PORT_MODE_1x1_NA) |			/* mode 0 */
1732 		(1U << TLV_PORT_MODE_1x4_NA) |			/* mode 1 */
1733 		(1U << TLV_PORT_MODE_1x1_1x1),			/* mode 2 */
1734 		{ 0, 1, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
1735 	},
1736 };
1737 
1738 static	__checkReturn	efx_rc_t
ef10_external_port_mapping(__in efx_nic_t * enp,__in uint32_t port,__out uint8_t * external_portp)1739 ef10_external_port_mapping(
1740 	__in		efx_nic_t *enp,
1741 	__in		uint32_t port,
1742 	__out		uint8_t *external_portp)
1743 {
1744 	efx_rc_t rc;
1745 	int i;
1746 	uint32_t port_modes;
1747 	uint32_t matches;
1748 	uint32_t current;
1749 	struct ef10_external_port_map_s *mapp = NULL;
1750 	int ext_index = port; /* Default 1-1 mapping */
1751 
1752 	if ((rc = efx_mcdi_get_port_modes(enp, &port_modes, &current,
1753 		    NULL)) != 0) {
1754 		/*
1755 		 * No current port mode information (i.e. Huntington)
1756 		 * - infer mapping from available modes
1757 		 */
1758 		if ((rc = efx_mcdi_get_port_modes(enp,
1759 			    &port_modes, NULL, NULL)) != 0) {
1760 			/*
1761 			 * No port mode information available
1762 			 * - use default mapping
1763 			 */
1764 			goto out;
1765 		}
1766 	} else {
1767 		/* Only need to scan the current mode */
1768 		port_modes = 1 << current;
1769 	}
1770 
1771 	/*
1772 	 * Infer the internal port -> external number mapping from
1773 	 * the possible port modes for this NIC.
1774 	 */
1775 	for (i = 0; i < EFX_ARRAY_SIZE(__ef10_external_port_mappings); ++i) {
1776 		struct ef10_external_port_map_s *eepmp =
1777 		    &__ef10_external_port_mappings[i];
1778 		if (eepmp->family != enp->en_family)
1779 			continue;
1780 		matches = (eepmp->modes_mask & port_modes);
1781 		if (matches != 0) {
1782 			/*
1783 			 * Some modes match. For some Huntington boards
1784 			 * there will be multiple matches. The mapping on the
1785 			 * last match is used.
1786 			 */
1787 			mapp = eepmp;
1788 			port_modes &= ~matches;
1789 		}
1790 	}
1791 
1792 	if (port_modes != 0) {
1793 		/* Some advertised modes are not supported */
1794 		rc = ENOTSUP;
1795 		goto fail1;
1796 	}
1797 
1798 out:
1799 	if (mapp != NULL) {
1800 		/*
1801 		 * External ports are assigned a sequence of consecutive
1802 		 * port numbers, so find the one with the closest base_port.
1803 		 */
1804 		uint32_t delta = EFX_EXT_PORT_NA;
1805 
1806 		for (i = 0; i < EFX_EXT_PORT_MAX; i++) {
1807 			uint32_t base = mapp->base_port[i];
1808 			if ((base != EFX_EXT_PORT_NA) && (base <= port)) {
1809 				if ((port - base) < delta) {
1810 					delta = (port - base);
1811 					ext_index = i;
1812 				}
1813 			}
1814 		}
1815 	}
1816 	*external_portp = (uint8_t)(ext_index + 1);
1817 
1818 	return (0);
1819 
1820 fail1:
1821 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1822 
1823 	return (rc);
1824 }
1825 
1826 	__checkReturn	efx_rc_t
efx_mcdi_nic_board_cfg(__in efx_nic_t * enp)1827 efx_mcdi_nic_board_cfg(
1828 	__in		efx_nic_t *enp)
1829 {
1830 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
1831 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
1832 	ef10_link_state_t els;
1833 	efx_port_t *epp = &(enp->en_port);
1834 	uint32_t board_type = 0;
1835 	uint32_t base, nvec;
1836 	uint32_t port;
1837 	uint32_t mask;
1838 	uint32_t pf;
1839 	uint32_t vf;
1840 	uint8_t mac_addr[6] = { 0 };
1841 	efx_rc_t rc;
1842 
1843 	/* Get the (zero-based) MCDI port number */
1844 	if ((rc = efx_mcdi_get_port_assignment(enp, &port)) != 0)
1845 		goto fail1;
1846 
1847 	/* EFX MCDI interface uses one-based port numbers */
1848 	emip->emi_port = port + 1;
1849 
1850 	encp->enc_assigned_port = port;
1851 
1852 	if ((rc = ef10_external_port_mapping(enp, port,
1853 		    &encp->enc_external_port)) != 0)
1854 		goto fail2;
1855 
1856 	/*
1857 	 * Get PCIe function number from firmware (used for
1858 	 * per-function privilege and dynamic config info).
1859 	 *  - PCIe PF: pf = PF number, vf = 0xffff.
1860 	 *  - PCIe VF: pf = parent PF, vf = VF number.
1861 	 */
1862 	if ((rc = efx_mcdi_get_function_info(enp, &pf, &vf)) != 0)
1863 		goto fail3;
1864 
1865 	encp->enc_pf = pf;
1866 	encp->enc_vf = vf;
1867 
1868 	if ((rc = ef10_mcdi_get_pf_count(enp, &encp->enc_hw_pf_count)) != 0)
1869 		goto fail4;
1870 
1871 	/* MAC address for this function */
1872 	if (EFX_PCI_FUNCTION_IS_PF(encp)) {
1873 		rc = efx_mcdi_get_mac_address_pf(enp, mac_addr);
1874 #if EFSYS_OPT_ALLOW_UNCONFIGURED_NIC
1875 		/*
1876 		 * Disable static config checking, ONLY for manufacturing test
1877 		 * and setup at the factory, to allow the static config to be
1878 		 * installed.
1879 		 */
1880 #else /* EFSYS_OPT_ALLOW_UNCONFIGURED_NIC */
1881 		if ((rc == 0) && (mac_addr[0] & 0x02)) {
1882 			/*
1883 			 * If the static config does not include a global MAC
1884 			 * address pool then the board may return a locally
1885 			 * administered MAC address (this should only happen on
1886 			 * incorrectly programmed boards).
1887 			 */
1888 			rc = EINVAL;
1889 		}
1890 #endif /* EFSYS_OPT_ALLOW_UNCONFIGURED_NIC */
1891 	} else {
1892 		rc = efx_mcdi_get_mac_address_vf(enp, mac_addr);
1893 	}
1894 	if (rc != 0)
1895 		goto fail5;
1896 
1897 	EFX_MAC_ADDR_COPY(encp->enc_mac_addr, mac_addr);
1898 
1899 	/* Board configuration (legacy) */
1900 	rc = efx_mcdi_get_board_cfg(enp, &board_type, NULL, NULL);
1901 	if (rc != 0) {
1902 		/* Unprivileged functions may not be able to read board cfg */
1903 		if (rc == EACCES)
1904 			board_type = 0;
1905 		else
1906 			goto fail6;
1907 	}
1908 
1909 	encp->enc_board_type = board_type;
1910 
1911 	/* Fill out fields in enp->en_port and enp->en_nic_cfg from MCDI */
1912 	if ((rc = efx_mcdi_get_phy_cfg(enp)) != 0)
1913 		goto fail7;
1914 
1915 	/*
1916 	 * Firmware with support for *_FEC capability bits does not
1917 	 * report that the corresponding *_FEC_REQUESTED bits are supported.
1918 	 * Add them here so that drivers understand that they are supported.
1919 	 */
1920 	if (epp->ep_phy_cap_mask & (1u << EFX_PHY_CAP_BASER_FEC))
1921 		epp->ep_phy_cap_mask |=
1922 		    (1u << EFX_PHY_CAP_BASER_FEC_REQUESTED);
1923 	if (epp->ep_phy_cap_mask & (1u << EFX_PHY_CAP_RS_FEC))
1924 		epp->ep_phy_cap_mask |=
1925 		    (1u << EFX_PHY_CAP_RS_FEC_REQUESTED);
1926 	if (epp->ep_phy_cap_mask & (1u << EFX_PHY_CAP_25G_BASER_FEC))
1927 		epp->ep_phy_cap_mask |=
1928 		    (1u << EFX_PHY_CAP_25G_BASER_FEC_REQUESTED);
1929 
1930 	/* Obtain the default PHY advertised capabilities */
1931 	if ((rc = ef10_phy_get_link(enp, &els)) != 0)
1932 		goto fail8;
1933 	epp->ep_default_adv_cap_mask = els.epls.epls_adv_cap_mask;
1934 	epp->ep_adv_cap_mask = els.epls.epls_adv_cap_mask;
1935 
1936 	/* Check capabilities of running datapath firmware */
1937 	if ((rc = ef10_get_datapath_caps(enp)) != 0)
1938 		goto fail9;
1939 
1940 	/* Get interrupt vector limits */
1941 	if ((rc = efx_mcdi_get_vector_cfg(enp, &base, &nvec, NULL)) != 0) {
1942 		if (EFX_PCI_FUNCTION_IS_PF(encp))
1943 			goto fail10;
1944 
1945 		/* Ignore error (cannot query vector limits from a VF). */
1946 		base = 0;
1947 		nvec = 1024;
1948 	}
1949 	encp->enc_intr_vec_base = base;
1950 	encp->enc_intr_limit = nvec;
1951 
1952 	/*
1953 	 * Get the current privilege mask. Note that this may be modified
1954 	 * dynamically, so this value is informational only. DO NOT use
1955 	 * the privilege mask to check for sufficient privileges, as that
1956 	 * can result in time-of-check/time-of-use bugs.
1957 	 */
1958 	if ((rc = ef10_get_privilege_mask(enp, &mask)) != 0)
1959 		goto fail11;
1960 	encp->enc_privilege_mask = mask;
1961 
1962 	return (0);
1963 
1964 fail11:
1965 	EFSYS_PROBE(fail11);
1966 fail10:
1967 	EFSYS_PROBE(fail10);
1968 fail9:
1969 	EFSYS_PROBE(fail9);
1970 fail8:
1971 	EFSYS_PROBE(fail8);
1972 fail7:
1973 	EFSYS_PROBE(fail7);
1974 fail6:
1975 	EFSYS_PROBE(fail6);
1976 fail5:
1977 	EFSYS_PROBE(fail5);
1978 fail4:
1979 	EFSYS_PROBE(fail4);
1980 fail3:
1981 	EFSYS_PROBE(fail3);
1982 fail2:
1983 	EFSYS_PROBE(fail2);
1984 fail1:
1985 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1986 
1987 	return (rc);
1988 }
1989 
1990 	__checkReturn	efx_rc_t
efx_mcdi_entity_reset(__in efx_nic_t * enp)1991 efx_mcdi_entity_reset(
1992 	__in		efx_nic_t *enp)
1993 {
1994 	efx_mcdi_req_t req;
1995 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_ENTITY_RESET_IN_LEN,
1996 		MC_CMD_ENTITY_RESET_OUT_LEN);
1997 	efx_rc_t rc;
1998 
1999 	req.emr_cmd = MC_CMD_ENTITY_RESET;
2000 	req.emr_in_buf = payload;
2001 	req.emr_in_length = MC_CMD_ENTITY_RESET_IN_LEN;
2002 	req.emr_out_buf = payload;
2003 	req.emr_out_length = MC_CMD_ENTITY_RESET_OUT_LEN;
2004 
2005 	MCDI_IN_POPULATE_DWORD_1(req, ENTITY_RESET_IN_FLAG,
2006 	    ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET, 1);
2007 
2008 	efx_mcdi_execute(enp, &req);
2009 
2010 	if (req.emr_rc != 0) {
2011 		rc = req.emr_rc;
2012 		goto fail1;
2013 	}
2014 
2015 	return (0);
2016 
2017 fail1:
2018 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2019 
2020 	return (rc);
2021 }
2022 
2023 #endif	/* EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10() */
2024 
2025 #if EFX_OPTS_EF10()
2026 
2027 static	__checkReturn	efx_rc_t
ef10_set_workaround_bug26807(__in efx_nic_t * enp)2028 ef10_set_workaround_bug26807(
2029 	__in		efx_nic_t *enp)
2030 {
2031 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
2032 	uint32_t flags;
2033 	efx_rc_t rc;
2034 
2035 	/*
2036 	 * If the bug26807 workaround is enabled, then firmware has enabled
2037 	 * support for chained multicast filters. Firmware will reset (FLR)
2038 	 * functions which have filters in the hardware filter table when the
2039 	 * workaround is enabled/disabled.
2040 	 *
2041 	 * We must recheck if the workaround is enabled after inserting the
2042 	 * first hardware filter, in case it has been changed since this check.
2043 	 */
2044 	rc = efx_mcdi_set_workaround(enp, MC_CMD_WORKAROUND_BUG26807,
2045 	    B_TRUE, &flags);
2046 	if (rc == 0) {
2047 		encp->enc_bug26807_workaround = B_TRUE;
2048 		if (flags & (1 << MC_CMD_WORKAROUND_EXT_OUT_FLR_DONE_LBN)) {
2049 			/*
2050 			 * Other functions had installed filters before the
2051 			 * workaround was enabled, and they have been reset
2052 			 * by firmware.
2053 			 */
2054 			EFSYS_PROBE(bug26807_workaround_flr_done);
2055 			/* FIXME: bump MC warm boot count ? */
2056 		}
2057 	} else if (rc == EACCES) {
2058 		/*
2059 		 * Unprivileged functions cannot enable the workaround in older
2060 		 * firmware.
2061 		 */
2062 		encp->enc_bug26807_workaround = B_FALSE;
2063 	} else if ((rc == ENOTSUP) || (rc == ENOENT)) {
2064 		encp->enc_bug26807_workaround = B_FALSE;
2065 	} else {
2066 		goto fail1;
2067 	}
2068 
2069 	return (0);
2070 
2071 fail1:
2072 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2073 
2074 	return (rc);
2075 }
2076 
2077 static	__checkReturn	efx_rc_t
ef10_nic_board_cfg(__in efx_nic_t * enp)2078 ef10_nic_board_cfg(
2079 	__in		efx_nic_t *enp)
2080 {
2081 	const efx_nic_ops_t *enop = enp->en_enop;
2082 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
2083 	efx_rc_t rc;
2084 
2085 	if ((rc = efx_mcdi_nic_board_cfg(enp)) != 0)
2086 		goto fail1;
2087 
2088 	/*
2089 	 * Huntington RXDP firmware inserts a 0 or 14 byte prefix.
2090 	 * We only support the 14 byte prefix here.
2091 	 */
2092 	if (encp->enc_rx_prefix_size != 14) {
2093 		rc = ENOTSUP;
2094 		goto fail2;
2095 	}
2096 
2097 	encp->enc_clk_mult = 1; /* not used for EF10 */
2098 
2099 	/* Alignment for WPTR updates */
2100 	encp->enc_rx_push_align = EF10_RX_WPTR_ALIGN;
2101 
2102 	encp->enc_tx_dma_desc_size_max = EFX_MASK32(ESF_DZ_RX_KER_BYTE_CNT);
2103 	/* No boundary crossing limits */
2104 	encp->enc_tx_dma_desc_boundary = 0;
2105 
2106 	/*
2107 	 * Maximum number of bytes into the frame the TCP header can start for
2108 	 * firmware assisted TSO to work.
2109 	 */
2110 	encp->enc_tx_tso_tcp_header_offset_limit = EF10_TCP_HEADER_OFFSET_LIMIT;
2111 
2112 	/* EF10 TSO engine demands that packet header be contiguous. */
2113 	encp->enc_tx_tso_max_header_ndescs = 1;
2114 
2115 	/* The overall TSO header length is not limited. */
2116 	encp->enc_tx_tso_max_header_length = UINT32_MAX;
2117 
2118 	/*
2119 	 * There are no specific limitations on the number of
2120 	 * TSO payload descriptors.
2121 	 */
2122 	encp->enc_tx_tso_max_payload_ndescs = UINT32_MAX;
2123 
2124 	/* TSO superframe payload length is not limited. */
2125 	encp->enc_tx_tso_max_payload_length = UINT32_MAX;
2126 
2127 	/*
2128 	 * Limitation on the maximum number of outgoing packets per
2129 	 * TSO transaction described in SF-108452-SW.
2130 	 */
2131 	encp->enc_tx_tso_max_nframes = 32767;
2132 
2133 	/*
2134 	 * Set resource limits for MC_CMD_ALLOC_VIS. Note that we cannot use
2135 	 * MC_CMD_GET_RESOURCE_LIMITS here as that reports the available
2136 	 * resources (allocated to this PCIe function), which is zero until
2137 	 * after we have allocated VIs.
2138 	 */
2139 	encp->enc_evq_limit = 1024;
2140 	encp->enc_rxq_limit = EFX_RXQ_LIMIT_TARGET;
2141 	encp->enc_txq_limit = EFX_TXQ_LIMIT_TARGET;
2142 
2143 	encp->enc_buftbl_limit = UINT32_MAX;
2144 
2145 	if ((rc = ef10_set_workaround_bug26807(enp)) != 0)
2146 		goto fail3;
2147 
2148 	/* Get remaining controller-specific board config */
2149 	if ((rc = enop->eno_board_cfg(enp)) != 0)
2150 		if (rc != EACCES)
2151 			goto fail4;
2152 
2153 	return (0);
2154 
2155 fail4:
2156 	EFSYS_PROBE(fail4);
2157 fail3:
2158 	EFSYS_PROBE(fail3);
2159 fail2:
2160 	EFSYS_PROBE(fail2);
2161 fail1:
2162 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2163 
2164 	return (rc);
2165 }
2166 
2167 	__checkReturn	efx_rc_t
ef10_nic_probe(__in efx_nic_t * enp)2168 ef10_nic_probe(
2169 	__in		efx_nic_t *enp)
2170 {
2171 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
2172 	efx_drv_cfg_t *edcp = &(enp->en_drv_cfg);
2173 	efx_rc_t rc;
2174 
2175 	EFSYS_ASSERT(EFX_FAMILY_IS_EF10(enp));
2176 
2177 	/* Read and clear any assertion state */
2178 	if ((rc = efx_mcdi_read_assertion(enp)) != 0)
2179 		goto fail1;
2180 
2181 	/* Exit the assertion handler */
2182 	if ((rc = efx_mcdi_exit_assertion_handler(enp)) != 0)
2183 		if (rc != EACCES)
2184 			goto fail2;
2185 
2186 	if ((rc = efx_mcdi_drv_attach(enp, B_TRUE)) != 0)
2187 		goto fail3;
2188 
2189 	if ((rc = ef10_nic_board_cfg(enp)) != 0)
2190 		goto fail4;
2191 
2192 	/*
2193 	 * Set default driver config limits (based on board config).
2194 	 *
2195 	 * FIXME: For now allocate a fixed number of VIs which is likely to be
2196 	 * sufficient and small enough to allow multiple functions on the same
2197 	 * port.
2198 	 */
2199 	edcp->edc_min_vi_count = edcp->edc_max_vi_count =
2200 	    MIN(128, MAX(encp->enc_rxq_limit, encp->enc_txq_limit));
2201 
2202 	/* The client driver must configure and enable PIO buffer support */
2203 	edcp->edc_max_piobuf_count = 0;
2204 	edcp->edc_pio_alloc_size = 0;
2205 
2206 #if EFSYS_OPT_MAC_STATS
2207 	/* Wipe the MAC statistics */
2208 	if ((rc = efx_mcdi_mac_stats_clear(enp)) != 0)
2209 		goto fail5;
2210 #endif
2211 
2212 #if EFSYS_OPT_LOOPBACK
2213 	if ((rc = efx_mcdi_get_loopback_modes(enp)) != 0)
2214 		goto fail6;
2215 #endif
2216 
2217 #if EFSYS_OPT_MON_STATS
2218 	if ((rc = mcdi_mon_cfg_build(enp)) != 0) {
2219 		/* Unprivileged functions do not have access to sensors */
2220 		if (rc != EACCES)
2221 			goto fail7;
2222 	}
2223 #endif
2224 
2225 	return (0);
2226 
2227 #if EFSYS_OPT_MON_STATS
2228 fail7:
2229 	EFSYS_PROBE(fail7);
2230 #endif
2231 #if EFSYS_OPT_LOOPBACK
2232 fail6:
2233 	EFSYS_PROBE(fail6);
2234 #endif
2235 #if EFSYS_OPT_MAC_STATS
2236 fail5:
2237 	EFSYS_PROBE(fail5);
2238 #endif
2239 fail4:
2240 	EFSYS_PROBE(fail4);
2241 fail3:
2242 	EFSYS_PROBE(fail3);
2243 fail2:
2244 	EFSYS_PROBE(fail2);
2245 fail1:
2246 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2247 
2248 	return (rc);
2249 }
2250 
2251 	__checkReturn	efx_rc_t
ef10_nic_set_drv_limits(__inout efx_nic_t * enp,__in efx_drv_limits_t * edlp)2252 ef10_nic_set_drv_limits(
2253 	__inout		efx_nic_t *enp,
2254 	__in		efx_drv_limits_t *edlp)
2255 {
2256 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
2257 	efx_drv_cfg_t *edcp = &(enp->en_drv_cfg);
2258 	uint32_t min_evq_count, max_evq_count;
2259 	uint32_t min_rxq_count, max_rxq_count;
2260 	uint32_t min_txq_count, max_txq_count;
2261 	efx_rc_t rc;
2262 
2263 	if (edlp == NULL) {
2264 		rc = EINVAL;
2265 		goto fail1;
2266 	}
2267 
2268 	/* Get minimum required and maximum usable VI limits */
2269 	min_evq_count = MIN(edlp->edl_min_evq_count, encp->enc_evq_limit);
2270 	min_rxq_count = MIN(edlp->edl_min_rxq_count, encp->enc_rxq_limit);
2271 	min_txq_count = MIN(edlp->edl_min_txq_count, encp->enc_txq_limit);
2272 
2273 	edcp->edc_min_vi_count =
2274 	    MAX(min_evq_count, MAX(min_rxq_count, min_txq_count));
2275 
2276 	max_evq_count = MIN(edlp->edl_max_evq_count, encp->enc_evq_limit);
2277 	max_rxq_count = MIN(edlp->edl_max_rxq_count, encp->enc_rxq_limit);
2278 	max_txq_count = MIN(edlp->edl_max_txq_count, encp->enc_txq_limit);
2279 
2280 	edcp->edc_max_vi_count =
2281 	    MAX(max_evq_count, MAX(max_rxq_count, max_txq_count));
2282 
2283 	/*
2284 	 * Check limits for sub-allocated piobuf blocks.
2285 	 * PIO is optional, so don't fail if the limits are incorrect.
2286 	 */
2287 	if ((encp->enc_piobuf_size == 0) ||
2288 	    (encp->enc_piobuf_limit == 0) ||
2289 	    (edlp->edl_min_pio_alloc_size == 0) ||
2290 	    (edlp->edl_min_pio_alloc_size > encp->enc_piobuf_size)) {
2291 		/* Disable PIO */
2292 		edcp->edc_max_piobuf_count = 0;
2293 		edcp->edc_pio_alloc_size = 0;
2294 	} else {
2295 		uint32_t blk_size, blk_count, blks_per_piobuf;
2296 
2297 		blk_size =
2298 		    MAX(edlp->edl_min_pio_alloc_size,
2299 			    encp->enc_piobuf_min_alloc_size);
2300 
2301 		blks_per_piobuf = encp->enc_piobuf_size / blk_size;
2302 		EFSYS_ASSERT3U(blks_per_piobuf, <=, 32);
2303 
2304 		blk_count = (encp->enc_piobuf_limit * blks_per_piobuf);
2305 
2306 		/* A zero max pio alloc count means unlimited */
2307 		if ((edlp->edl_max_pio_alloc_count > 0) &&
2308 		    (edlp->edl_max_pio_alloc_count < blk_count)) {
2309 			blk_count = edlp->edl_max_pio_alloc_count;
2310 		}
2311 
2312 		edcp->edc_pio_alloc_size = blk_size;
2313 		edcp->edc_max_piobuf_count =
2314 		    (blk_count + (blks_per_piobuf - 1)) / blks_per_piobuf;
2315 	}
2316 
2317 	return (0);
2318 
2319 fail1:
2320 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2321 
2322 	return (rc);
2323 }
2324 
2325 
2326 	__checkReturn	efx_rc_t
ef10_nic_reset(__in efx_nic_t * enp)2327 ef10_nic_reset(
2328 	__in		efx_nic_t *enp)
2329 {
2330 	efx_rc_t rc;
2331 
2332 	/* ef10_nic_reset() is called to recover from BADASSERT failures. */
2333 	if ((rc = efx_mcdi_read_assertion(enp)) != 0)
2334 		goto fail1;
2335 	if ((rc = efx_mcdi_exit_assertion_handler(enp)) != 0)
2336 		goto fail2;
2337 
2338 	if ((rc = efx_mcdi_entity_reset(enp)) != 0)
2339 		goto fail3;
2340 
2341 	/* Clear RX/TX DMA queue errors */
2342 	enp->en_reset_flags &= ~(EFX_RESET_RXQ_ERR | EFX_RESET_TXQ_ERR);
2343 
2344 	return (0);
2345 
2346 fail3:
2347 	EFSYS_PROBE(fail3);
2348 fail2:
2349 	EFSYS_PROBE(fail2);
2350 fail1:
2351 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2352 
2353 	return (rc);
2354 }
2355 
2356 #endif	/* EFX_OPTS_EF10() */
2357 
2358 #if EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10()
2359 
2360 	__checkReturn	efx_rc_t
ef10_upstream_port_vadaptor_alloc(__in efx_nic_t * enp)2361 ef10_upstream_port_vadaptor_alloc(
2362 	__in		efx_nic_t *enp)
2363 {
2364 	uint32_t retry;
2365 	uint32_t delay_us;
2366 	efx_rc_t rc;
2367 
2368 	/*
2369 	 * On a VF, this may fail with MC_CMD_ERR_NO_EVB_PORT (ENOENT) if the PF
2370 	 * driver has yet to bring up the EVB port. See bug 56147. In this case,
2371 	 * retry the request several times after waiting a while. The wait time
2372 	 * between retries starts small (10ms) and exponentially increases.
2373 	 * Total wait time is a little over two seconds. Retry logic in the
2374 	 * client driver may mean this whole loop is repeated if it continues to
2375 	 * fail.
2376 	 */
2377 	retry = 0;
2378 	delay_us = 10000;
2379 	while ((rc = efx_mcdi_vadaptor_alloc(enp, EVB_PORT_ID_ASSIGNED)) != 0) {
2380 		if (EFX_PCI_FUNCTION_IS_PF(&enp->en_nic_cfg) ||
2381 		    (rc != ENOENT)) {
2382 			/*
2383 			 * Do not retry alloc for PF, or for other errors on
2384 			 * a VF.
2385 			 */
2386 			goto fail1;
2387 		}
2388 
2389 		/* VF startup before PF is ready. Retry allocation. */
2390 		if (retry > 5) {
2391 			/* Too many attempts */
2392 			rc = EINVAL;
2393 			goto fail2;
2394 		}
2395 		EFSYS_PROBE1(mcdi_no_evb_port_retry, int, retry);
2396 		EFSYS_SLEEP(delay_us);
2397 		retry++;
2398 		if (delay_us < 500000)
2399 			delay_us <<= 2;
2400 	}
2401 
2402 	return (0);
2403 
2404 fail2:
2405 	EFSYS_PROBE(fail2);
2406 fail1:
2407 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2408 
2409 	return (rc);
2410 }
2411 
2412 #endif	/* EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10() */
2413 
2414 #if EFX_OPTS_EF10()
2415 
2416 	__checkReturn	efx_rc_t
ef10_nic_init(__in efx_nic_t * enp)2417 ef10_nic_init(
2418 	__in		efx_nic_t *enp)
2419 {
2420 	efx_drv_cfg_t *edcp = &(enp->en_drv_cfg);
2421 	uint32_t min_vi_count, max_vi_count;
2422 	uint32_t vi_count, vi_base, vi_shift;
2423 	uint32_t i;
2424 	uint32_t vi_window_size;
2425 	efx_rc_t rc;
2426 	boolean_t alloc_vadaptor = B_TRUE;
2427 
2428 	EFSYS_ASSERT(EFX_FAMILY_IS_EF10(enp));
2429 
2430 	/* Enable reporting of some events (e.g. link change) */
2431 	if ((rc = efx_mcdi_log_ctrl(enp)) != 0)
2432 		goto fail1;
2433 
2434 	/* Allocate (optional) on-chip PIO buffers */
2435 	ef10_nic_alloc_piobufs(enp, edcp->edc_max_piobuf_count);
2436 
2437 	/*
2438 	 * For best performance, PIO writes should use a write-combined
2439 	 * (WC) memory mapping. Using a separate WC mapping for the PIO
2440 	 * aperture of each VI would be a burden to drivers (and not
2441 	 * possible if the host page size is >4Kbyte).
2442 	 *
2443 	 * To avoid this we use a single uncached (UC) mapping for VI
2444 	 * register access, and a single WC mapping for extra VIs used
2445 	 * for PIO writes.
2446 	 *
2447 	 * Each piobuf must be linked to a VI in the WC mapping, and to
2448 	 * each VI that is using a sub-allocated block from the piobuf.
2449 	 */
2450 	min_vi_count = edcp->edc_min_vi_count;
2451 	max_vi_count =
2452 	    edcp->edc_max_vi_count + enp->en_arch.ef10.ena_piobuf_count;
2453 
2454 	/* Ensure that the previously attached driver's VIs are freed */
2455 	if ((rc = efx_mcdi_free_vis(enp)) != 0)
2456 		goto fail2;
2457 
2458 	/*
2459 	 * Reserve VI resources (EVQ+RXQ+TXQ) for this PCIe function. If this
2460 	 * fails then retrying the request for fewer VI resources may succeed.
2461 	 */
2462 	vi_count = 0;
2463 	if ((rc = efx_mcdi_alloc_vis(enp, min_vi_count, max_vi_count,
2464 		    &vi_base, &vi_count, &vi_shift)) != 0)
2465 		goto fail3;
2466 
2467 	EFSYS_PROBE2(vi_alloc, uint32_t, vi_base, uint32_t, vi_count);
2468 
2469 	if (vi_count < min_vi_count) {
2470 		rc = ENOMEM;
2471 		goto fail4;
2472 	}
2473 
2474 	enp->en_arch.ef10.ena_vi_base = vi_base;
2475 	enp->en_arch.ef10.ena_vi_count = vi_count;
2476 	enp->en_arch.ef10.ena_vi_shift = vi_shift;
2477 
2478 	if (vi_count < min_vi_count + enp->en_arch.ef10.ena_piobuf_count) {
2479 		/* Not enough extra VIs to map piobufs */
2480 		ef10_nic_free_piobufs(enp);
2481 	}
2482 
2483 	enp->en_arch.ef10.ena_pio_write_vi_base =
2484 	    vi_count - enp->en_arch.ef10.ena_piobuf_count;
2485 
2486 	EFSYS_ASSERT3U(enp->en_nic_cfg.enc_vi_window_shift, !=,
2487 	    EFX_VI_WINDOW_SHIFT_INVALID);
2488 	EFSYS_ASSERT3U(enp->en_nic_cfg.enc_vi_window_shift, <=,
2489 	    EFX_VI_WINDOW_SHIFT_64K);
2490 	vi_window_size = 1U << enp->en_nic_cfg.enc_vi_window_shift;
2491 
2492 	/* Save UC memory mapping details */
2493 	enp->en_arch.ef10.ena_uc_mem_map_offset = 0;
2494 	if (enp->en_arch.ef10.ena_piobuf_count > 0) {
2495 		enp->en_arch.ef10.ena_uc_mem_map_size =
2496 		    (vi_window_size *
2497 		    enp->en_arch.ef10.ena_pio_write_vi_base);
2498 	} else {
2499 		enp->en_arch.ef10.ena_uc_mem_map_size =
2500 		    (vi_window_size *
2501 		    enp->en_arch.ef10.ena_vi_count);
2502 	}
2503 
2504 	/* Save WC memory mapping details */
2505 	enp->en_arch.ef10.ena_wc_mem_map_offset =
2506 	    enp->en_arch.ef10.ena_uc_mem_map_offset +
2507 	    enp->en_arch.ef10.ena_uc_mem_map_size;
2508 
2509 	enp->en_arch.ef10.ena_wc_mem_map_size =
2510 	    (vi_window_size *
2511 	    enp->en_arch.ef10.ena_piobuf_count);
2512 
2513 	/* Link piobufs to extra VIs in WC mapping */
2514 	if (enp->en_arch.ef10.ena_piobuf_count > 0) {
2515 		for (i = 0; i < enp->en_arch.ef10.ena_piobuf_count; i++) {
2516 			rc = efx_mcdi_link_piobuf(enp,
2517 			    enp->en_arch.ef10.ena_pio_write_vi_base + i,
2518 			    enp->en_arch.ef10.ena_piobuf_handle[i]);
2519 			if (rc != 0)
2520 				break;
2521 		}
2522 	}
2523 
2524 	/*
2525 	 * For SR-IOV use case, vAdaptor is allocated for PF and associated VFs
2526 	 * during NIC initialization when vSwitch is created and vports are
2527 	 * allocated. Hence, skip vAdaptor allocation for EVB and update vport
2528 	 * id in NIC structure with the one allocated for PF.
2529 	 */
2530 
2531 	enp->en_vport_id = EVB_PORT_ID_ASSIGNED;
2532 #if EFSYS_OPT_EVB
2533 	if ((enp->en_vswitchp != NULL) && (enp->en_vswitchp->ev_evcp != NULL)) {
2534 		/* For EVB use vport allocated on vswitch */
2535 		enp->en_vport_id = enp->en_vswitchp->ev_evcp->evc_vport_id;
2536 		alloc_vadaptor = B_FALSE;
2537 	}
2538 #endif
2539 	if (alloc_vadaptor != B_FALSE) {
2540 		/* Allocate a vAdaptor attached to our upstream vPort/pPort */
2541 		if ((rc = ef10_upstream_port_vadaptor_alloc(enp)) != 0)
2542 			goto fail5;
2543 	}
2544 	enp->en_nic_cfg.enc_mcdi_max_payload_length = MCDI_CTL_SDU_LEN_MAX_V2;
2545 
2546 	return (0);
2547 
2548 fail5:
2549 	EFSYS_PROBE(fail5);
2550 fail4:
2551 	EFSYS_PROBE(fail4);
2552 fail3:
2553 	EFSYS_PROBE(fail3);
2554 fail2:
2555 	EFSYS_PROBE(fail2);
2556 
2557 	ef10_nic_free_piobufs(enp);
2558 
2559 fail1:
2560 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2561 
2562 	return (rc);
2563 }
2564 
2565 	__checkReturn	efx_rc_t
ef10_nic_get_vi_pool(__in efx_nic_t * enp,__out uint32_t * vi_countp)2566 ef10_nic_get_vi_pool(
2567 	__in		efx_nic_t *enp,
2568 	__out		uint32_t *vi_countp)
2569 {
2570 	EFSYS_ASSERT(EFX_FAMILY_IS_EF10(enp));
2571 
2572 	/*
2573 	 * Report VIs that the client driver can use.
2574 	 * Do not include VIs used for PIO buffer writes.
2575 	 */
2576 	*vi_countp = enp->en_arch.ef10.ena_pio_write_vi_base;
2577 
2578 	return (0);
2579 }
2580 
2581 	__checkReturn	efx_rc_t
ef10_nic_get_bar_region(__in efx_nic_t * enp,__in efx_nic_region_t region,__out uint32_t * offsetp,__out size_t * sizep)2582 ef10_nic_get_bar_region(
2583 	__in		efx_nic_t *enp,
2584 	__in		efx_nic_region_t region,
2585 	__out		uint32_t *offsetp,
2586 	__out		size_t *sizep)
2587 {
2588 	efx_rc_t rc;
2589 
2590 	EFSYS_ASSERT(EFX_FAMILY_IS_EF10(enp));
2591 
2592 	/*
2593 	 * TODO: Specify host memory mapping alignment and granularity
2594 	 * in efx_drv_limits_t so that they can be taken into account
2595 	 * when allocating extra VIs for PIO writes.
2596 	 */
2597 	switch (region) {
2598 	case EFX_REGION_VI:
2599 		/* UC mapped memory BAR region for VI registers */
2600 		*offsetp = enp->en_arch.ef10.ena_uc_mem_map_offset;
2601 		*sizep = enp->en_arch.ef10.ena_uc_mem_map_size;
2602 		break;
2603 
2604 	case EFX_REGION_PIO_WRITE_VI:
2605 		/* WC mapped memory BAR region for piobuf writes */
2606 		*offsetp = enp->en_arch.ef10.ena_wc_mem_map_offset;
2607 		*sizep = enp->en_arch.ef10.ena_wc_mem_map_size;
2608 		break;
2609 
2610 	default:
2611 		rc = EINVAL;
2612 		goto fail1;
2613 	}
2614 
2615 	return (0);
2616 
2617 fail1:
2618 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2619 
2620 	return (rc);
2621 }
2622 
2623 	__checkReturn	boolean_t
ef10_nic_hw_unavailable(__in efx_nic_t * enp)2624 ef10_nic_hw_unavailable(
2625 	__in		efx_nic_t *enp)
2626 {
2627 	efx_dword_t dword;
2628 
2629 	if (enp->en_reset_flags & EFX_RESET_HW_UNAVAIL)
2630 		return (B_TRUE);
2631 
2632 	EFX_BAR_READD(enp, ER_DZ_BIU_MC_SFT_STATUS_REG, &dword, B_FALSE);
2633 	if (EFX_DWORD_FIELD(dword, EFX_DWORD_0) == 0xffffffff)
2634 		goto unavail;
2635 
2636 	return (B_FALSE);
2637 
2638 unavail:
2639 	ef10_nic_set_hw_unavailable(enp);
2640 
2641 	return (B_TRUE);
2642 }
2643 
2644 			void
ef10_nic_set_hw_unavailable(__in efx_nic_t * enp)2645 ef10_nic_set_hw_unavailable(
2646 	__in		efx_nic_t *enp)
2647 {
2648 	EFSYS_PROBE(hw_unavail);
2649 	enp->en_reset_flags |= EFX_RESET_HW_UNAVAIL;
2650 }
2651 
2652 
2653 			void
ef10_nic_fini(__in efx_nic_t * enp)2654 ef10_nic_fini(
2655 	__in		efx_nic_t *enp)
2656 {
2657 	uint32_t i;
2658 	efx_rc_t rc;
2659 	boolean_t do_vadaptor_free = B_TRUE;
2660 
2661 #if EFSYS_OPT_EVB
2662 	if (enp->en_vswitchp != NULL) {
2663 		/*
2664 		 * For SR-IOV the vAdaptor is freed with the vswitch,
2665 		 * so do not free it here.
2666 		 */
2667 		do_vadaptor_free = B_FALSE;
2668 	}
2669 #endif
2670 	if (do_vadaptor_free != B_FALSE) {
2671 		(void) efx_mcdi_vadaptor_free(enp, enp->en_vport_id);
2672 		enp->en_vport_id = EVB_PORT_ID_NULL;
2673 	}
2674 
2675 	/* Unlink piobufs from extra VIs in WC mapping */
2676 	if (enp->en_arch.ef10.ena_piobuf_count > 0) {
2677 		for (i = 0; i < enp->en_arch.ef10.ena_piobuf_count; i++) {
2678 			rc = efx_mcdi_unlink_piobuf(enp,
2679 			    enp->en_arch.ef10.ena_pio_write_vi_base + i);
2680 			if (rc != 0)
2681 				break;
2682 		}
2683 	}
2684 
2685 	ef10_nic_free_piobufs(enp);
2686 
2687 	(void) efx_mcdi_free_vis(enp);
2688 	enp->en_arch.ef10.ena_vi_count = 0;
2689 }
2690 
2691 			void
ef10_nic_unprobe(__in efx_nic_t * enp)2692 ef10_nic_unprobe(
2693 	__in		efx_nic_t *enp)
2694 {
2695 #if EFSYS_OPT_MON_STATS
2696 	mcdi_mon_cfg_free(enp);
2697 #endif /* EFSYS_OPT_MON_STATS */
2698 	(void) efx_mcdi_drv_attach(enp, B_FALSE);
2699 }
2700 
2701 #if EFSYS_OPT_DIAG
2702 
2703 	__checkReturn	efx_rc_t
ef10_nic_register_test(__in efx_nic_t * enp)2704 ef10_nic_register_test(
2705 	__in		efx_nic_t *enp)
2706 {
2707 	efx_rc_t rc;
2708 
2709 	/* FIXME */
2710 	_NOTE(ARGUNUSED(enp))
2711 	_NOTE(CONSTANTCONDITION)
2712 	if (B_FALSE) {
2713 		rc = ENOTSUP;
2714 		goto fail1;
2715 	}
2716 	/* FIXME */
2717 
2718 	return (0);
2719 
2720 fail1:
2721 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2722 
2723 	return (rc);
2724 }
2725 
2726 #endif	/* EFSYS_OPT_DIAG */
2727 
2728 #if EFSYS_OPT_FW_SUBVARIANT_AWARE
2729 
2730 	__checkReturn	efx_rc_t
efx_mcdi_get_nic_global(__in efx_nic_t * enp,__in uint32_t key,__out uint32_t * valuep)2731 efx_mcdi_get_nic_global(
2732 	__in		efx_nic_t *enp,
2733 	__in		uint32_t key,
2734 	__out		uint32_t *valuep)
2735 {
2736 	efx_mcdi_req_t req;
2737 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_NIC_GLOBAL_IN_LEN,
2738 		MC_CMD_GET_NIC_GLOBAL_OUT_LEN);
2739 	efx_rc_t rc;
2740 
2741 	req.emr_cmd = MC_CMD_GET_NIC_GLOBAL;
2742 	req.emr_in_buf = payload;
2743 	req.emr_in_length = MC_CMD_GET_NIC_GLOBAL_IN_LEN;
2744 	req.emr_out_buf = payload;
2745 	req.emr_out_length = MC_CMD_GET_NIC_GLOBAL_OUT_LEN;
2746 
2747 	MCDI_IN_SET_DWORD(req, GET_NIC_GLOBAL_IN_KEY, key);
2748 
2749 	efx_mcdi_execute(enp, &req);
2750 
2751 	if (req.emr_rc != 0) {
2752 		rc = req.emr_rc;
2753 		goto fail1;
2754 	}
2755 
2756 	if (req.emr_out_length_used != MC_CMD_GET_NIC_GLOBAL_OUT_LEN) {
2757 		rc = EMSGSIZE;
2758 		goto fail2;
2759 	}
2760 
2761 	*valuep = MCDI_OUT_DWORD(req, GET_NIC_GLOBAL_OUT_VALUE);
2762 
2763 	return (0);
2764 
2765 fail2:
2766 	EFSYS_PROBE(fail2);
2767 fail1:
2768 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2769 
2770 	return (rc);
2771 }
2772 
2773 	__checkReturn	efx_rc_t
efx_mcdi_set_nic_global(__in efx_nic_t * enp,__in uint32_t key,__in uint32_t value)2774 efx_mcdi_set_nic_global(
2775 	__in		efx_nic_t *enp,
2776 	__in		uint32_t key,
2777 	__in		uint32_t value)
2778 {
2779 	efx_mcdi_req_t req;
2780 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_SET_NIC_GLOBAL_IN_LEN, 0);
2781 	efx_rc_t rc;
2782 
2783 	req.emr_cmd = MC_CMD_SET_NIC_GLOBAL;
2784 	req.emr_in_buf = payload;
2785 	req.emr_in_length = MC_CMD_SET_NIC_GLOBAL_IN_LEN;
2786 	req.emr_out_buf = NULL;
2787 	req.emr_out_length = 0;
2788 
2789 	MCDI_IN_SET_DWORD(req, SET_NIC_GLOBAL_IN_KEY, key);
2790 	MCDI_IN_SET_DWORD(req, SET_NIC_GLOBAL_IN_VALUE, value);
2791 
2792 	efx_mcdi_execute(enp, &req);
2793 
2794 	if (req.emr_rc != 0) {
2795 		rc = req.emr_rc;
2796 		goto fail1;
2797 	}
2798 
2799 	return (0);
2800 
2801 fail1:
2802 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2803 
2804 	return (rc);
2805 }
2806 
2807 #endif	/* EFSYS_OPT_FW_SUBVARIANT_AWARE */
2808 
2809 #endif	/* EFX_OPTS_EF10() */
2810