1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2004 Poul-Henning Kamp
5 * Copyright (c) 1994,1997 John S. Dyson
6 * Copyright (c) 2013 The FreeBSD Foundation
7 * All rights reserved.
8 *
9 * Portions of this software were developed by Konstantin Belousov
10 * under sponsorship from the FreeBSD Foundation.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34 /*
35 * this file contains a new buffer I/O scheme implementing a coherent
36 * VM object and buffer cache scheme. Pains have been taken to make
37 * sure that the performance degradation associated with schemes such
38 * as this is not realized.
39 *
40 * Author: John S. Dyson
41 * Significant help during the development and debugging phases
42 * had been provided by David Greenman, also of the FreeBSD core team.
43 *
44 * see man buf(9) for more info.
45 */
46
47 #include <sys/cdefs.h>
48 __FBSDID("$FreeBSD$");
49
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/bio.h>
53 #include <sys/bitset.h>
54 #include <sys/conf.h>
55 #include <sys/counter.h>
56 #include <sys/buf.h>
57 #include <sys/devicestat.h>
58 #include <sys/eventhandler.h>
59 #include <sys/fail.h>
60 #include <sys/ktr.h>
61 #include <sys/limits.h>
62 #include <sys/lock.h>
63 #include <sys/malloc.h>
64 #include <sys/mount.h>
65 #include <sys/mutex.h>
66 #include <sys/kernel.h>
67 #include <sys/kthread.h>
68 #include <sys/proc.h>
69 #include <sys/racct.h>
70 #include <sys/refcount.h>
71 #include <sys/resourcevar.h>
72 #include <sys/rwlock.h>
73 #include <sys/smp.h>
74 #include <sys/sysctl.h>
75 #include <sys/syscallsubr.h>
76 #include <sys/vmem.h>
77 #include <sys/vmmeter.h>
78 #include <sys/vnode.h>
79 #include <sys/watchdog.h>
80 #include <geom/geom.h>
81 #include <vm/vm.h>
82 #include <vm/vm_param.h>
83 #include <vm/vm_kern.h>
84 #include <vm/vm_object.h>
85 #include <vm/vm_page.h>
86 #include <vm/vm_pageout.h>
87 #include <vm/vm_pager.h>
88 #include <vm/vm_extern.h>
89 #include <vm/vm_map.h>
90 #include <vm/swap_pager.h>
91
92 static MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer");
93
94 struct bio_ops bioops; /* I/O operation notification */
95
96 struct buf_ops buf_ops_bio = {
97 .bop_name = "buf_ops_bio",
98 .bop_write = bufwrite,
99 .bop_strategy = bufstrategy,
100 .bop_sync = bufsync,
101 .bop_bdflush = bufbdflush,
102 };
103
104 struct bufqueue {
105 struct mtx_padalign bq_lock;
106 TAILQ_HEAD(, buf) bq_queue;
107 uint8_t bq_index;
108 uint16_t bq_subqueue;
109 int bq_len;
110 } __aligned(CACHE_LINE_SIZE);
111
112 #define BQ_LOCKPTR(bq) (&(bq)->bq_lock)
113 #define BQ_LOCK(bq) mtx_lock(BQ_LOCKPTR((bq)))
114 #define BQ_UNLOCK(bq) mtx_unlock(BQ_LOCKPTR((bq)))
115 #define BQ_ASSERT_LOCKED(bq) mtx_assert(BQ_LOCKPTR((bq)), MA_OWNED)
116
117 struct bufdomain {
118 struct bufqueue bd_subq[MAXCPU + 1]; /* Per-cpu sub queues + global */
119 struct bufqueue bd_dirtyq;
120 struct bufqueue *bd_cleanq;
121 struct mtx_padalign bd_run_lock;
122 /* Constants */
123 long bd_maxbufspace;
124 long bd_hibufspace;
125 long bd_lobufspace;
126 long bd_bufspacethresh;
127 int bd_hifreebuffers;
128 int bd_lofreebuffers;
129 int bd_hidirtybuffers;
130 int bd_lodirtybuffers;
131 int bd_dirtybufthresh;
132 int bd_lim;
133 /* atomics */
134 int bd_wanted;
135 int __aligned(CACHE_LINE_SIZE) bd_numdirtybuffers;
136 int __aligned(CACHE_LINE_SIZE) bd_running;
137 long __aligned(CACHE_LINE_SIZE) bd_bufspace;
138 int __aligned(CACHE_LINE_SIZE) bd_freebuffers;
139 } __aligned(CACHE_LINE_SIZE);
140
141 #define BD_LOCKPTR(bd) (&(bd)->bd_cleanq->bq_lock)
142 #define BD_LOCK(bd) mtx_lock(BD_LOCKPTR((bd)))
143 #define BD_UNLOCK(bd) mtx_unlock(BD_LOCKPTR((bd)))
144 #define BD_ASSERT_LOCKED(bd) mtx_assert(BD_LOCKPTR((bd)), MA_OWNED)
145 #define BD_RUN_LOCKPTR(bd) (&(bd)->bd_run_lock)
146 #define BD_RUN_LOCK(bd) mtx_lock(BD_RUN_LOCKPTR((bd)))
147 #define BD_RUN_UNLOCK(bd) mtx_unlock(BD_RUN_LOCKPTR((bd)))
148 #define BD_DOMAIN(bd) (bd - bdomain)
149
150 static char *buf; /* buffer header pool */
151 static struct buf *
nbufp(unsigned i)152 nbufp(unsigned i)
153 {
154 return ((struct buf *)(buf + (sizeof(struct buf) +
155 sizeof(vm_page_t) * atop(maxbcachebuf)) * i));
156 }
157
158 caddr_t __read_mostly unmapped_buf;
159
160 /* Used below and for softdep flushing threads in ufs/ffs/ffs_softdep.c */
161 struct proc *bufdaemonproc;
162
163 static void vm_hold_free_pages(struct buf *bp, int newbsize);
164 static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
165 vm_offset_t to);
166 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m);
167 static void vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off,
168 vm_page_t m);
169 static void vfs_clean_pages_dirty_buf(struct buf *bp);
170 static void vfs_setdirty_range(struct buf *bp);
171 static void vfs_vmio_invalidate(struct buf *bp);
172 static void vfs_vmio_truncate(struct buf *bp, int npages);
173 static void vfs_vmio_extend(struct buf *bp, int npages, int size);
174 static int vfs_bio_clcheck(struct vnode *vp, int size,
175 daddr_t lblkno, daddr_t blkno);
176 static void breada(struct vnode *, daddr_t *, int *, int, struct ucred *, int,
177 void (*)(struct buf *));
178 static int buf_flush(struct vnode *vp, struct bufdomain *, int);
179 static int flushbufqueues(struct vnode *, struct bufdomain *, int, int);
180 static void buf_daemon(void);
181 static __inline void bd_wakeup(void);
182 static int sysctl_runningspace(SYSCTL_HANDLER_ARGS);
183 static void bufkva_reclaim(vmem_t *, int);
184 static void bufkva_free(struct buf *);
185 static int buf_import(void *, void **, int, int, int);
186 static void buf_release(void *, void **, int);
187 static void maxbcachebuf_adjust(void);
188 static inline struct bufdomain *bufdomain(struct buf *);
189 static void bq_remove(struct bufqueue *bq, struct buf *bp);
190 static void bq_insert(struct bufqueue *bq, struct buf *bp, bool unlock);
191 static int buf_recycle(struct bufdomain *, bool kva);
192 static void bq_init(struct bufqueue *bq, int qindex, int cpu,
193 const char *lockname);
194 static void bd_init(struct bufdomain *bd);
195 static int bd_flushall(struct bufdomain *bd);
196 static int sysctl_bufdomain_long(SYSCTL_HANDLER_ARGS);
197 static int sysctl_bufdomain_int(SYSCTL_HANDLER_ARGS);
198
199 static int sysctl_bufspace(SYSCTL_HANDLER_ARGS);
200 int vmiodirenable = TRUE;
201 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
202 "Use the VM system for directory writes");
203 long runningbufspace;
204 SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
205 "Amount of presently outstanding async buffer io");
206 SYSCTL_PROC(_vfs, OID_AUTO, bufspace, CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RD,
207 NULL, 0, sysctl_bufspace, "L", "Physical memory used for buffers");
208 static counter_u64_t bufkvaspace;
209 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, bufkvaspace, CTLFLAG_RD, &bufkvaspace,
210 "Kernel virtual memory used for buffers");
211 static long maxbufspace;
212 SYSCTL_PROC(_vfs, OID_AUTO, maxbufspace,
213 CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &maxbufspace,
214 __offsetof(struct bufdomain, bd_maxbufspace), sysctl_bufdomain_long, "L",
215 "Maximum allowed value of bufspace (including metadata)");
216 static long bufmallocspace;
217 SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
218 "Amount of malloced memory for buffers");
219 static long maxbufmallocspace;
220 SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace,
221 0, "Maximum amount of malloced memory for buffers");
222 static long lobufspace;
223 SYSCTL_PROC(_vfs, OID_AUTO, lobufspace,
224 CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &lobufspace,
225 __offsetof(struct bufdomain, bd_lobufspace), sysctl_bufdomain_long, "L",
226 "Minimum amount of buffers we want to have");
227 long hibufspace;
228 SYSCTL_PROC(_vfs, OID_AUTO, hibufspace,
229 CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &hibufspace,
230 __offsetof(struct bufdomain, bd_hibufspace), sysctl_bufdomain_long, "L",
231 "Maximum allowed value of bufspace (excluding metadata)");
232 long bufspacethresh;
233 SYSCTL_PROC(_vfs, OID_AUTO, bufspacethresh,
234 CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &bufspacethresh,
235 __offsetof(struct bufdomain, bd_bufspacethresh), sysctl_bufdomain_long, "L",
236 "Bufspace consumed before waking the daemon to free some");
237 static counter_u64_t buffreekvacnt;
238 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt,
239 "Number of times we have freed the KVA space from some buffer");
240 static counter_u64_t bufdefragcnt;
241 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt,
242 "Number of times we have had to repeat buffer allocation to defragment");
243 static long lorunningspace;
244 SYSCTL_PROC(_vfs, OID_AUTO, lorunningspace, CTLTYPE_LONG | CTLFLAG_MPSAFE |
245 CTLFLAG_RW, &lorunningspace, 0, sysctl_runningspace, "L",
246 "Minimum preferred space used for in-progress I/O");
247 static long hirunningspace;
248 SYSCTL_PROC(_vfs, OID_AUTO, hirunningspace, CTLTYPE_LONG | CTLFLAG_MPSAFE |
249 CTLFLAG_RW, &hirunningspace, 0, sysctl_runningspace, "L",
250 "Maximum amount of space to use for in-progress I/O");
251 int dirtybufferflushes;
252 SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
253 0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
254 int bdwriteskip;
255 SYSCTL_INT(_vfs, OID_AUTO, bdwriteskip, CTLFLAG_RW, &bdwriteskip,
256 0, "Number of buffers supplied to bdwrite with snapshot deadlock risk");
257 int altbufferflushes;
258 SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW | CTLFLAG_STATS,
259 &altbufferflushes, 0, "Number of fsync flushes to limit dirty buffers");
260 static int recursiveflushes;
261 SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW | CTLFLAG_STATS,
262 &recursiveflushes, 0, "Number of flushes skipped due to being recursive");
263 static int sysctl_numdirtybuffers(SYSCTL_HANDLER_ARGS);
264 SYSCTL_PROC(_vfs, OID_AUTO, numdirtybuffers,
265 CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RD, NULL, 0, sysctl_numdirtybuffers, "I",
266 "Number of buffers that are dirty (has unwritten changes) at the moment");
267 static int lodirtybuffers;
268 SYSCTL_PROC(_vfs, OID_AUTO, lodirtybuffers,
269 CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &lodirtybuffers,
270 __offsetof(struct bufdomain, bd_lodirtybuffers), sysctl_bufdomain_int, "I",
271 "How many buffers we want to have free before bufdaemon can sleep");
272 static int hidirtybuffers;
273 SYSCTL_PROC(_vfs, OID_AUTO, hidirtybuffers,
274 CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &hidirtybuffers,
275 __offsetof(struct bufdomain, bd_hidirtybuffers), sysctl_bufdomain_int, "I",
276 "When the number of dirty buffers is considered severe");
277 int dirtybufthresh;
278 SYSCTL_PROC(_vfs, OID_AUTO, dirtybufthresh,
279 CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &dirtybufthresh,
280 __offsetof(struct bufdomain, bd_dirtybufthresh), sysctl_bufdomain_int, "I",
281 "Number of bdwrite to bawrite conversions to clear dirty buffers");
282 static int numfreebuffers;
283 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
284 "Number of free buffers");
285 static int lofreebuffers;
286 SYSCTL_PROC(_vfs, OID_AUTO, lofreebuffers,
287 CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &lofreebuffers,
288 __offsetof(struct bufdomain, bd_lofreebuffers), sysctl_bufdomain_int, "I",
289 "Target number of free buffers");
290 static int hifreebuffers;
291 SYSCTL_PROC(_vfs, OID_AUTO, hifreebuffers,
292 CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &hifreebuffers,
293 __offsetof(struct bufdomain, bd_hifreebuffers), sysctl_bufdomain_int, "I",
294 "Threshold for clean buffer recycling");
295 static counter_u64_t getnewbufcalls;
296 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD,
297 &getnewbufcalls, "Number of calls to getnewbuf");
298 static counter_u64_t getnewbufrestarts;
299 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD,
300 &getnewbufrestarts,
301 "Number of times getnewbuf has had to restart a buffer acquisition");
302 static counter_u64_t mappingrestarts;
303 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, mappingrestarts, CTLFLAG_RD,
304 &mappingrestarts,
305 "Number of times getblk has had to restart a buffer mapping for "
306 "unmapped buffer");
307 static counter_u64_t numbufallocfails;
308 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, numbufallocfails, CTLFLAG_RW,
309 &numbufallocfails, "Number of times buffer allocations failed");
310 static int flushbufqtarget = 100;
311 SYSCTL_INT(_vfs, OID_AUTO, flushbufqtarget, CTLFLAG_RW, &flushbufqtarget, 0,
312 "Amount of work to do in flushbufqueues when helping bufdaemon");
313 static counter_u64_t notbufdflushes;
314 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, notbufdflushes, CTLFLAG_RD, ¬bufdflushes,
315 "Number of dirty buffer flushes done by the bufdaemon helpers");
316 static long barrierwrites;
317 SYSCTL_LONG(_vfs, OID_AUTO, barrierwrites, CTLFLAG_RW | CTLFLAG_STATS,
318 &barrierwrites, 0, "Number of barrier writes");
319 SYSCTL_INT(_vfs, OID_AUTO, unmapped_buf_allowed, CTLFLAG_RD,
320 &unmapped_buf_allowed, 0,
321 "Permit the use of the unmapped i/o");
322 int maxbcachebuf = MAXBCACHEBUF;
323 SYSCTL_INT(_vfs, OID_AUTO, maxbcachebuf, CTLFLAG_RDTUN, &maxbcachebuf, 0,
324 "Maximum size of a buffer cache block");
325
326 /*
327 * This lock synchronizes access to bd_request.
328 */
329 static struct mtx_padalign __exclusive_cache_line bdlock;
330
331 /*
332 * This lock protects the runningbufreq and synchronizes runningbufwakeup and
333 * waitrunningbufspace().
334 */
335 static struct mtx_padalign __exclusive_cache_line rbreqlock;
336
337 /*
338 * Lock that protects bdirtywait.
339 */
340 static struct mtx_padalign __exclusive_cache_line bdirtylock;
341
342 /*
343 * Wakeup point for bufdaemon, as well as indicator of whether it is already
344 * active. Set to 1 when the bufdaemon is already "on" the queue, 0 when it
345 * is idling.
346 */
347 static int bd_request;
348
349 /*
350 * Request for the buf daemon to write more buffers than is indicated by
351 * lodirtybuf. This may be necessary to push out excess dependencies or
352 * defragment the address space where a simple count of the number of dirty
353 * buffers is insufficient to characterize the demand for flushing them.
354 */
355 static int bd_speedupreq;
356
357 /*
358 * Synchronization (sleep/wakeup) variable for active buffer space requests.
359 * Set when wait starts, cleared prior to wakeup().
360 * Used in runningbufwakeup() and waitrunningbufspace().
361 */
362 static int runningbufreq;
363
364 /*
365 * Synchronization for bwillwrite() waiters.
366 */
367 static int bdirtywait;
368
369 /*
370 * Definitions for the buffer free lists.
371 */
372 #define QUEUE_NONE 0 /* on no queue */
373 #define QUEUE_EMPTY 1 /* empty buffer headers */
374 #define QUEUE_DIRTY 2 /* B_DELWRI buffers */
375 #define QUEUE_CLEAN 3 /* non-B_DELWRI buffers */
376 #define QUEUE_SENTINEL 4 /* not an queue index, but mark for sentinel */
377
378 /* Maximum number of buffer domains. */
379 #define BUF_DOMAINS 8
380
381 struct bufdomainset bdlodirty; /* Domains > lodirty */
382 struct bufdomainset bdhidirty; /* Domains > hidirty */
383
384 /* Configured number of clean queues. */
385 static int __read_mostly buf_domains;
386
387 BITSET_DEFINE(bufdomainset, BUF_DOMAINS);
388 struct bufdomain __exclusive_cache_line bdomain[BUF_DOMAINS];
389 struct bufqueue __exclusive_cache_line bqempty;
390
391 /*
392 * per-cpu empty buffer cache.
393 */
394 uma_zone_t buf_zone;
395
396 /*
397 * Single global constant for BUF_WMESG, to avoid getting multiple references.
398 * buf_wmesg is referred from macros.
399 */
400 const char *buf_wmesg = BUF_WMESG;
401
402 static int
sysctl_runningspace(SYSCTL_HANDLER_ARGS)403 sysctl_runningspace(SYSCTL_HANDLER_ARGS)
404 {
405 long value;
406 int error;
407
408 value = *(long *)arg1;
409 error = sysctl_handle_long(oidp, &value, 0, req);
410 if (error != 0 || req->newptr == NULL)
411 return (error);
412 mtx_lock(&rbreqlock);
413 if (arg1 == &hirunningspace) {
414 if (value < lorunningspace)
415 error = EINVAL;
416 else
417 hirunningspace = value;
418 } else {
419 KASSERT(arg1 == &lorunningspace,
420 ("%s: unknown arg1", __func__));
421 if (value > hirunningspace)
422 error = EINVAL;
423 else
424 lorunningspace = value;
425 }
426 mtx_unlock(&rbreqlock);
427 return (error);
428 }
429
430 static int
sysctl_bufdomain_int(SYSCTL_HANDLER_ARGS)431 sysctl_bufdomain_int(SYSCTL_HANDLER_ARGS)
432 {
433 int error;
434 int value;
435 int i;
436
437 value = *(int *)arg1;
438 error = sysctl_handle_int(oidp, &value, 0, req);
439 if (error != 0 || req->newptr == NULL)
440 return (error);
441 *(int *)arg1 = value;
442 for (i = 0; i < buf_domains; i++)
443 *(int *)(uintptr_t)(((uintptr_t)&bdomain[i]) + arg2) =
444 value / buf_domains;
445
446 return (error);
447 }
448
449 static int
sysctl_bufdomain_long(SYSCTL_HANDLER_ARGS)450 sysctl_bufdomain_long(SYSCTL_HANDLER_ARGS)
451 {
452 long value;
453 int error;
454 int i;
455
456 value = *(long *)arg1;
457 error = sysctl_handle_long(oidp, &value, 0, req);
458 if (error != 0 || req->newptr == NULL)
459 return (error);
460 *(long *)arg1 = value;
461 for (i = 0; i < buf_domains; i++)
462 *(long *)(uintptr_t)(((uintptr_t)&bdomain[i]) + arg2) =
463 value / buf_domains;
464
465 return (error);
466 }
467
468 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
469 defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
470 static int
sysctl_bufspace(SYSCTL_HANDLER_ARGS)471 sysctl_bufspace(SYSCTL_HANDLER_ARGS)
472 {
473 long lvalue;
474 int ivalue;
475 int i;
476
477 lvalue = 0;
478 for (i = 0; i < buf_domains; i++)
479 lvalue += bdomain[i].bd_bufspace;
480 if (sizeof(int) == sizeof(long) || req->oldlen >= sizeof(long))
481 return (sysctl_handle_long(oidp, &lvalue, 0, req));
482 if (lvalue > INT_MAX)
483 /* On overflow, still write out a long to trigger ENOMEM. */
484 return (sysctl_handle_long(oidp, &lvalue, 0, req));
485 ivalue = lvalue;
486 return (sysctl_handle_int(oidp, &ivalue, 0, req));
487 }
488 #else
489 static int
sysctl_bufspace(SYSCTL_HANDLER_ARGS)490 sysctl_bufspace(SYSCTL_HANDLER_ARGS)
491 {
492 long lvalue;
493 int i;
494
495 lvalue = 0;
496 for (i = 0; i < buf_domains; i++)
497 lvalue += bdomain[i].bd_bufspace;
498 return (sysctl_handle_long(oidp, &lvalue, 0, req));
499 }
500 #endif
501
502 static int
sysctl_numdirtybuffers(SYSCTL_HANDLER_ARGS)503 sysctl_numdirtybuffers(SYSCTL_HANDLER_ARGS)
504 {
505 int value;
506 int i;
507
508 value = 0;
509 for (i = 0; i < buf_domains; i++)
510 value += bdomain[i].bd_numdirtybuffers;
511 return (sysctl_handle_int(oidp, &value, 0, req));
512 }
513
514 /*
515 * bdirtywakeup:
516 *
517 * Wakeup any bwillwrite() waiters.
518 */
519 static void
bdirtywakeup(void)520 bdirtywakeup(void)
521 {
522 mtx_lock(&bdirtylock);
523 if (bdirtywait) {
524 bdirtywait = 0;
525 wakeup(&bdirtywait);
526 }
527 mtx_unlock(&bdirtylock);
528 }
529
530 /*
531 * bd_clear:
532 *
533 * Clear a domain from the appropriate bitsets when dirtybuffers
534 * is decremented.
535 */
536 static void
bd_clear(struct bufdomain * bd)537 bd_clear(struct bufdomain *bd)
538 {
539
540 mtx_lock(&bdirtylock);
541 if (bd->bd_numdirtybuffers <= bd->bd_lodirtybuffers)
542 BIT_CLR(BUF_DOMAINS, BD_DOMAIN(bd), &bdlodirty);
543 if (bd->bd_numdirtybuffers <= bd->bd_hidirtybuffers)
544 BIT_CLR(BUF_DOMAINS, BD_DOMAIN(bd), &bdhidirty);
545 mtx_unlock(&bdirtylock);
546 }
547
548 /*
549 * bd_set:
550 *
551 * Set a domain in the appropriate bitsets when dirtybuffers
552 * is incremented.
553 */
554 static void
bd_set(struct bufdomain * bd)555 bd_set(struct bufdomain *bd)
556 {
557
558 mtx_lock(&bdirtylock);
559 if (bd->bd_numdirtybuffers > bd->bd_lodirtybuffers)
560 BIT_SET(BUF_DOMAINS, BD_DOMAIN(bd), &bdlodirty);
561 if (bd->bd_numdirtybuffers > bd->bd_hidirtybuffers)
562 BIT_SET(BUF_DOMAINS, BD_DOMAIN(bd), &bdhidirty);
563 mtx_unlock(&bdirtylock);
564 }
565
566 /*
567 * bdirtysub:
568 *
569 * Decrement the numdirtybuffers count by one and wakeup any
570 * threads blocked in bwillwrite().
571 */
572 static void
bdirtysub(struct buf * bp)573 bdirtysub(struct buf *bp)
574 {
575 struct bufdomain *bd;
576 int num;
577
578 bd = bufdomain(bp);
579 num = atomic_fetchadd_int(&bd->bd_numdirtybuffers, -1);
580 if (num == (bd->bd_lodirtybuffers + bd->bd_hidirtybuffers) / 2)
581 bdirtywakeup();
582 if (num == bd->bd_lodirtybuffers || num == bd->bd_hidirtybuffers)
583 bd_clear(bd);
584 }
585
586 /*
587 * bdirtyadd:
588 *
589 * Increment the numdirtybuffers count by one and wakeup the buf
590 * daemon if needed.
591 */
592 static void
bdirtyadd(struct buf * bp)593 bdirtyadd(struct buf *bp)
594 {
595 struct bufdomain *bd;
596 int num;
597
598 /*
599 * Only do the wakeup once as we cross the boundary. The
600 * buf daemon will keep running until the condition clears.
601 */
602 bd = bufdomain(bp);
603 num = atomic_fetchadd_int(&bd->bd_numdirtybuffers, 1);
604 if (num == (bd->bd_lodirtybuffers + bd->bd_hidirtybuffers) / 2)
605 bd_wakeup();
606 if (num == bd->bd_lodirtybuffers || num == bd->bd_hidirtybuffers)
607 bd_set(bd);
608 }
609
610 /*
611 * bufspace_daemon_wakeup:
612 *
613 * Wakeup the daemons responsible for freeing clean bufs.
614 */
615 static void
bufspace_daemon_wakeup(struct bufdomain * bd)616 bufspace_daemon_wakeup(struct bufdomain *bd)
617 {
618
619 /*
620 * avoid the lock if the daemon is running.
621 */
622 if (atomic_fetchadd_int(&bd->bd_running, 1) == 0) {
623 BD_RUN_LOCK(bd);
624 atomic_store_int(&bd->bd_running, 1);
625 wakeup(&bd->bd_running);
626 BD_RUN_UNLOCK(bd);
627 }
628 }
629
630 /*
631 * bufspace_daemon_wait:
632 *
633 * Sleep until the domain falls below a limit or one second passes.
634 */
635 static void
bufspace_daemon_wait(struct bufdomain * bd)636 bufspace_daemon_wait(struct bufdomain *bd)
637 {
638 /*
639 * Re-check our limits and sleep. bd_running must be
640 * cleared prior to checking the limits to avoid missed
641 * wakeups. The waker will adjust one of bufspace or
642 * freebuffers prior to checking bd_running.
643 */
644 BD_RUN_LOCK(bd);
645 atomic_store_int(&bd->bd_running, 0);
646 if (bd->bd_bufspace < bd->bd_bufspacethresh &&
647 bd->bd_freebuffers > bd->bd_lofreebuffers) {
648 msleep(&bd->bd_running, BD_RUN_LOCKPTR(bd), PRIBIO|PDROP,
649 "-", hz);
650 } else {
651 /* Avoid spurious wakeups while running. */
652 atomic_store_int(&bd->bd_running, 1);
653 BD_RUN_UNLOCK(bd);
654 }
655 }
656
657 /*
658 * bufspace_adjust:
659 *
660 * Adjust the reported bufspace for a KVA managed buffer, possibly
661 * waking any waiters.
662 */
663 static void
bufspace_adjust(struct buf * bp,int bufsize)664 bufspace_adjust(struct buf *bp, int bufsize)
665 {
666 struct bufdomain *bd;
667 long space;
668 int diff;
669
670 KASSERT((bp->b_flags & B_MALLOC) == 0,
671 ("bufspace_adjust: malloc buf %p", bp));
672 bd = bufdomain(bp);
673 diff = bufsize - bp->b_bufsize;
674 if (diff < 0) {
675 atomic_subtract_long(&bd->bd_bufspace, -diff);
676 } else if (diff > 0) {
677 space = atomic_fetchadd_long(&bd->bd_bufspace, diff);
678 /* Wake up the daemon on the transition. */
679 if (space < bd->bd_bufspacethresh &&
680 space + diff >= bd->bd_bufspacethresh)
681 bufspace_daemon_wakeup(bd);
682 }
683 bp->b_bufsize = bufsize;
684 }
685
686 /*
687 * bufspace_reserve:
688 *
689 * Reserve bufspace before calling allocbuf(). metadata has a
690 * different space limit than data.
691 */
692 static int
bufspace_reserve(struct bufdomain * bd,int size,bool metadata)693 bufspace_reserve(struct bufdomain *bd, int size, bool metadata)
694 {
695 long limit, new;
696 long space;
697
698 if (metadata)
699 limit = bd->bd_maxbufspace;
700 else
701 limit = bd->bd_hibufspace;
702 space = atomic_fetchadd_long(&bd->bd_bufspace, size);
703 new = space + size;
704 if (new > limit) {
705 atomic_subtract_long(&bd->bd_bufspace, size);
706 return (ENOSPC);
707 }
708
709 /* Wake up the daemon on the transition. */
710 if (space < bd->bd_bufspacethresh && new >= bd->bd_bufspacethresh)
711 bufspace_daemon_wakeup(bd);
712
713 return (0);
714 }
715
716 /*
717 * bufspace_release:
718 *
719 * Release reserved bufspace after bufspace_adjust() has consumed it.
720 */
721 static void
bufspace_release(struct bufdomain * bd,int size)722 bufspace_release(struct bufdomain *bd, int size)
723 {
724
725 atomic_subtract_long(&bd->bd_bufspace, size);
726 }
727
728 /*
729 * bufspace_wait:
730 *
731 * Wait for bufspace, acting as the buf daemon if a locked vnode is
732 * supplied. bd_wanted must be set prior to polling for space. The
733 * operation must be re-tried on return.
734 */
735 static void
bufspace_wait(struct bufdomain * bd,struct vnode * vp,int gbflags,int slpflag,int slptimeo)736 bufspace_wait(struct bufdomain *bd, struct vnode *vp, int gbflags,
737 int slpflag, int slptimeo)
738 {
739 struct thread *td;
740 int error, fl, norunbuf;
741
742 if ((gbflags & GB_NOWAIT_BD) != 0)
743 return;
744
745 td = curthread;
746 BD_LOCK(bd);
747 while (bd->bd_wanted) {
748 if (vp != NULL && vp->v_type != VCHR &&
749 (td->td_pflags & TDP_BUFNEED) == 0) {
750 BD_UNLOCK(bd);
751 /*
752 * getblk() is called with a vnode locked, and
753 * some majority of the dirty buffers may as
754 * well belong to the vnode. Flushing the
755 * buffers there would make a progress that
756 * cannot be achieved by the buf_daemon, that
757 * cannot lock the vnode.
758 */
759 norunbuf = ~(TDP_BUFNEED | TDP_NORUNNINGBUF) |
760 (td->td_pflags & TDP_NORUNNINGBUF);
761
762 /*
763 * Play bufdaemon. The getnewbuf() function
764 * may be called while the thread owns lock
765 * for another dirty buffer for the same
766 * vnode, which makes it impossible to use
767 * VOP_FSYNC() there, due to the buffer lock
768 * recursion.
769 */
770 td->td_pflags |= TDP_BUFNEED | TDP_NORUNNINGBUF;
771 fl = buf_flush(vp, bd, flushbufqtarget);
772 td->td_pflags &= norunbuf;
773 BD_LOCK(bd);
774 if (fl != 0)
775 continue;
776 if (bd->bd_wanted == 0)
777 break;
778 }
779 error = msleep(&bd->bd_wanted, BD_LOCKPTR(bd),
780 (PRIBIO + 4) | slpflag, "newbuf", slptimeo);
781 if (error != 0)
782 break;
783 }
784 BD_UNLOCK(bd);
785 }
786
787 /*
788 * bufspace_daemon:
789 *
790 * buffer space management daemon. Tries to maintain some marginal
791 * amount of free buffer space so that requesting processes neither
792 * block nor work to reclaim buffers.
793 */
794 static void
bufspace_daemon(void * arg)795 bufspace_daemon(void *arg)
796 {
797 struct bufdomain *bd;
798
799 EVENTHANDLER_REGISTER(shutdown_pre_sync, kthread_shutdown, curthread,
800 SHUTDOWN_PRI_LAST + 100);
801
802 bd = arg;
803 for (;;) {
804 kthread_suspend_check();
805
806 /*
807 * Free buffers from the clean queue until we meet our
808 * targets.
809 *
810 * Theory of operation: The buffer cache is most efficient
811 * when some free buffer headers and space are always
812 * available to getnewbuf(). This daemon attempts to prevent
813 * the excessive blocking and synchronization associated
814 * with shortfall. It goes through three phases according
815 * demand:
816 *
817 * 1) The daemon wakes up voluntarily once per-second
818 * during idle periods when the counters are below
819 * the wakeup thresholds (bufspacethresh, lofreebuffers).
820 *
821 * 2) The daemon wakes up as we cross the thresholds
822 * ahead of any potential blocking. This may bounce
823 * slightly according to the rate of consumption and
824 * release.
825 *
826 * 3) The daemon and consumers are starved for working
827 * clean buffers. This is the 'bufspace' sleep below
828 * which will inefficiently trade bufs with bqrelse
829 * until we return to condition 2.
830 */
831 while (bd->bd_bufspace > bd->bd_lobufspace ||
832 bd->bd_freebuffers < bd->bd_hifreebuffers) {
833 if (buf_recycle(bd, false) != 0) {
834 if (bd_flushall(bd))
835 continue;
836 /*
837 * Speedup dirty if we've run out of clean
838 * buffers. This is possible in particular
839 * because softdep may held many bufs locked
840 * pending writes to other bufs which are
841 * marked for delayed write, exhausting
842 * clean space until they are written.
843 */
844 bd_speedup();
845 BD_LOCK(bd);
846 if (bd->bd_wanted) {
847 msleep(&bd->bd_wanted, BD_LOCKPTR(bd),
848 PRIBIO|PDROP, "bufspace", hz/10);
849 } else
850 BD_UNLOCK(bd);
851 }
852 maybe_yield();
853 }
854 bufspace_daemon_wait(bd);
855 }
856 }
857
858 /*
859 * bufmallocadjust:
860 *
861 * Adjust the reported bufspace for a malloc managed buffer, possibly
862 * waking any waiters.
863 */
864 static void
bufmallocadjust(struct buf * bp,int bufsize)865 bufmallocadjust(struct buf *bp, int bufsize)
866 {
867 int diff;
868
869 KASSERT((bp->b_flags & B_MALLOC) != 0,
870 ("bufmallocadjust: non-malloc buf %p", bp));
871 diff = bufsize - bp->b_bufsize;
872 if (diff < 0)
873 atomic_subtract_long(&bufmallocspace, -diff);
874 else
875 atomic_add_long(&bufmallocspace, diff);
876 bp->b_bufsize = bufsize;
877 }
878
879 /*
880 * runningwakeup:
881 *
882 * Wake up processes that are waiting on asynchronous writes to fall
883 * below lorunningspace.
884 */
885 static void
runningwakeup(void)886 runningwakeup(void)
887 {
888
889 mtx_lock(&rbreqlock);
890 if (runningbufreq) {
891 runningbufreq = 0;
892 wakeup(&runningbufreq);
893 }
894 mtx_unlock(&rbreqlock);
895 }
896
897 /*
898 * runningbufwakeup:
899 *
900 * Decrement the outstanding write count according.
901 */
902 void
runningbufwakeup(struct buf * bp)903 runningbufwakeup(struct buf *bp)
904 {
905 long space, bspace;
906
907 bspace = bp->b_runningbufspace;
908 if (bspace == 0)
909 return;
910 space = atomic_fetchadd_long(&runningbufspace, -bspace);
911 KASSERT(space >= bspace, ("runningbufspace underflow %ld %ld",
912 space, bspace));
913 bp->b_runningbufspace = 0;
914 /*
915 * Only acquire the lock and wakeup on the transition from exceeding
916 * the threshold to falling below it.
917 */
918 if (space < lorunningspace)
919 return;
920 if (space - bspace > lorunningspace)
921 return;
922 runningwakeup();
923 }
924
925 /*
926 * waitrunningbufspace()
927 *
928 * runningbufspace is a measure of the amount of I/O currently
929 * running. This routine is used in async-write situations to
930 * prevent creating huge backups of pending writes to a device.
931 * Only asynchronous writes are governed by this function.
932 *
933 * This does NOT turn an async write into a sync write. It waits
934 * for earlier writes to complete and generally returns before the
935 * caller's write has reached the device.
936 */
937 void
waitrunningbufspace(void)938 waitrunningbufspace(void)
939 {
940
941 mtx_lock(&rbreqlock);
942 while (runningbufspace > hirunningspace) {
943 runningbufreq = 1;
944 msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
945 }
946 mtx_unlock(&rbreqlock);
947 }
948
949 /*
950 * vfs_buf_test_cache:
951 *
952 * Called when a buffer is extended. This function clears the B_CACHE
953 * bit if the newly extended portion of the buffer does not contain
954 * valid data.
955 */
956 static __inline void
vfs_buf_test_cache(struct buf * bp,vm_ooffset_t foff,vm_offset_t off,vm_offset_t size,vm_page_t m)957 vfs_buf_test_cache(struct buf *bp, vm_ooffset_t foff, vm_offset_t off,
958 vm_offset_t size, vm_page_t m)
959 {
960
961 /*
962 * This function and its results are protected by higher level
963 * synchronization requiring vnode and buf locks to page in and
964 * validate pages.
965 */
966 if (bp->b_flags & B_CACHE) {
967 int base = (foff + off) & PAGE_MASK;
968 if (vm_page_is_valid(m, base, size) == 0)
969 bp->b_flags &= ~B_CACHE;
970 }
971 }
972
973 /* Wake up the buffer daemon if necessary */
974 static void
bd_wakeup(void)975 bd_wakeup(void)
976 {
977
978 mtx_lock(&bdlock);
979 if (bd_request == 0) {
980 bd_request = 1;
981 wakeup(&bd_request);
982 }
983 mtx_unlock(&bdlock);
984 }
985
986 /*
987 * Adjust the maxbcachbuf tunable.
988 */
989 static void
maxbcachebuf_adjust(void)990 maxbcachebuf_adjust(void)
991 {
992 int i;
993
994 /*
995 * maxbcachebuf must be a power of 2 >= MAXBSIZE.
996 */
997 i = 2;
998 while (i * 2 <= maxbcachebuf)
999 i *= 2;
1000 maxbcachebuf = i;
1001 if (maxbcachebuf < MAXBSIZE)
1002 maxbcachebuf = MAXBSIZE;
1003 if (maxbcachebuf > maxphys)
1004 maxbcachebuf = maxphys;
1005 if (bootverbose != 0 && maxbcachebuf != MAXBCACHEBUF)
1006 printf("maxbcachebuf=%d\n", maxbcachebuf);
1007 }
1008
1009 /*
1010 * bd_speedup - speedup the buffer cache flushing code
1011 */
1012 void
bd_speedup(void)1013 bd_speedup(void)
1014 {
1015 int needwake;
1016
1017 mtx_lock(&bdlock);
1018 needwake = 0;
1019 if (bd_speedupreq == 0 || bd_request == 0)
1020 needwake = 1;
1021 bd_speedupreq = 1;
1022 bd_request = 1;
1023 if (needwake)
1024 wakeup(&bd_request);
1025 mtx_unlock(&bdlock);
1026 }
1027
1028 #ifdef __i386__
1029 #define TRANSIENT_DENOM 5
1030 #else
1031 #define TRANSIENT_DENOM 10
1032 #endif
1033
1034 /*
1035 * Calculating buffer cache scaling values and reserve space for buffer
1036 * headers. This is called during low level kernel initialization and
1037 * may be called more then once. We CANNOT write to the memory area
1038 * being reserved at this time.
1039 */
1040 caddr_t
kern_vfs_bio_buffer_alloc(caddr_t v,long physmem_est)1041 kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
1042 {
1043 int tuned_nbuf;
1044 long maxbuf, maxbuf_sz, buf_sz, biotmap_sz;
1045
1046 /*
1047 * physmem_est is in pages. Convert it to kilobytes (assumes
1048 * PAGE_SIZE is >= 1K)
1049 */
1050 physmem_est = physmem_est * (PAGE_SIZE / 1024);
1051
1052 maxbcachebuf_adjust();
1053 /*
1054 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
1055 * For the first 64MB of ram nominally allocate sufficient buffers to
1056 * cover 1/4 of our ram. Beyond the first 64MB allocate additional
1057 * buffers to cover 1/10 of our ram over 64MB. When auto-sizing
1058 * the buffer cache we limit the eventual kva reservation to
1059 * maxbcache bytes.
1060 *
1061 * factor represents the 1/4 x ram conversion.
1062 */
1063 if (nbuf == 0) {
1064 int factor = 4 * BKVASIZE / 1024;
1065
1066 nbuf = 50;
1067 if (physmem_est > 4096)
1068 nbuf += min((physmem_est - 4096) / factor,
1069 65536 / factor);
1070 if (physmem_est > 65536)
1071 nbuf += min((physmem_est - 65536) * 2 / (factor * 5),
1072 32 * 1024 * 1024 / (factor * 5));
1073
1074 if (maxbcache && nbuf > maxbcache / BKVASIZE)
1075 nbuf = maxbcache / BKVASIZE;
1076 tuned_nbuf = 1;
1077 } else
1078 tuned_nbuf = 0;
1079
1080 /* XXX Avoid unsigned long overflows later on with maxbufspace. */
1081 maxbuf = (LONG_MAX / 3) / BKVASIZE;
1082 if (nbuf > maxbuf) {
1083 if (!tuned_nbuf)
1084 printf("Warning: nbufs lowered from %d to %ld\n", nbuf,
1085 maxbuf);
1086 nbuf = maxbuf;
1087 }
1088
1089 /*
1090 * Ideal allocation size for the transient bio submap is 10%
1091 * of the maximal space buffer map. This roughly corresponds
1092 * to the amount of the buffer mapped for typical UFS load.
1093 *
1094 * Clip the buffer map to reserve space for the transient
1095 * BIOs, if its extent is bigger than 90% (80% on i386) of the
1096 * maximum buffer map extent on the platform.
1097 *
1098 * The fall-back to the maxbuf in case of maxbcache unset,
1099 * allows to not trim the buffer KVA for the architectures
1100 * with ample KVA space.
1101 */
1102 if (bio_transient_maxcnt == 0 && unmapped_buf_allowed) {
1103 maxbuf_sz = maxbcache != 0 ? maxbcache : maxbuf * BKVASIZE;
1104 buf_sz = (long)nbuf * BKVASIZE;
1105 if (buf_sz < maxbuf_sz / TRANSIENT_DENOM *
1106 (TRANSIENT_DENOM - 1)) {
1107 /*
1108 * There is more KVA than memory. Do not
1109 * adjust buffer map size, and assign the rest
1110 * of maxbuf to transient map.
1111 */
1112 biotmap_sz = maxbuf_sz - buf_sz;
1113 } else {
1114 /*
1115 * Buffer map spans all KVA we could afford on
1116 * this platform. Give 10% (20% on i386) of
1117 * the buffer map to the transient bio map.
1118 */
1119 biotmap_sz = buf_sz / TRANSIENT_DENOM;
1120 buf_sz -= biotmap_sz;
1121 }
1122 if (biotmap_sz / INT_MAX > maxphys)
1123 bio_transient_maxcnt = INT_MAX;
1124 else
1125 bio_transient_maxcnt = biotmap_sz / maxphys;
1126 /*
1127 * Artificially limit to 1024 simultaneous in-flight I/Os
1128 * using the transient mapping.
1129 */
1130 if (bio_transient_maxcnt > 1024)
1131 bio_transient_maxcnt = 1024;
1132 if (tuned_nbuf)
1133 nbuf = buf_sz / BKVASIZE;
1134 }
1135
1136 if (nswbuf == 0) {
1137 nswbuf = min(nbuf / 4, 256);
1138 if (nswbuf < NSWBUF_MIN)
1139 nswbuf = NSWBUF_MIN;
1140 }
1141
1142 /*
1143 * Reserve space for the buffer cache buffers
1144 */
1145 buf = (char *)v;
1146 v = (caddr_t)buf + (sizeof(struct buf) + sizeof(vm_page_t) *
1147 atop(maxbcachebuf)) * nbuf;
1148
1149 return (v);
1150 }
1151
1152 /* Initialize the buffer subsystem. Called before use of any buffers. */
1153 void
bufinit(void)1154 bufinit(void)
1155 {
1156 struct buf *bp;
1157 int i;
1158
1159 KASSERT(maxbcachebuf >= MAXBSIZE,
1160 ("maxbcachebuf (%d) must be >= MAXBSIZE (%d)\n", maxbcachebuf,
1161 MAXBSIZE));
1162 bq_init(&bqempty, QUEUE_EMPTY, -1, "bufq empty lock");
1163 mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
1164 mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
1165 mtx_init(&bdirtylock, "dirty buf lock", NULL, MTX_DEF);
1166
1167 unmapped_buf = (caddr_t)kva_alloc(maxphys);
1168
1169 /* finally, initialize each buffer header and stick on empty q */
1170 for (i = 0; i < nbuf; i++) {
1171 bp = nbufp(i);
1172 bzero(bp, sizeof(*bp) + sizeof(vm_page_t) * atop(maxbcachebuf));
1173 bp->b_flags = B_INVAL;
1174 bp->b_rcred = NOCRED;
1175 bp->b_wcred = NOCRED;
1176 bp->b_qindex = QUEUE_NONE;
1177 bp->b_domain = -1;
1178 bp->b_subqueue = mp_maxid + 1;
1179 bp->b_xflags = 0;
1180 bp->b_data = bp->b_kvabase = unmapped_buf;
1181 LIST_INIT(&bp->b_dep);
1182 BUF_LOCKINIT(bp);
1183 bq_insert(&bqempty, bp, false);
1184 }
1185
1186 /*
1187 * maxbufspace is the absolute maximum amount of buffer space we are
1188 * allowed to reserve in KVM and in real terms. The absolute maximum
1189 * is nominally used by metadata. hibufspace is the nominal maximum
1190 * used by most other requests. The differential is required to
1191 * ensure that metadata deadlocks don't occur.
1192 *
1193 * maxbufspace is based on BKVASIZE. Allocating buffers larger then
1194 * this may result in KVM fragmentation which is not handled optimally
1195 * by the system. XXX This is less true with vmem. We could use
1196 * PAGE_SIZE.
1197 */
1198 maxbufspace = (long)nbuf * BKVASIZE;
1199 hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - maxbcachebuf * 10);
1200 lobufspace = (hibufspace / 20) * 19; /* 95% */
1201 bufspacethresh = lobufspace + (hibufspace - lobufspace) / 2;
1202
1203 /*
1204 * Note: The 16 MiB upper limit for hirunningspace was chosen
1205 * arbitrarily and may need further tuning. It corresponds to
1206 * 128 outstanding write IO requests (if IO size is 128 KiB),
1207 * which fits with many RAID controllers' tagged queuing limits.
1208 * The lower 1 MiB limit is the historical upper limit for
1209 * hirunningspace.
1210 */
1211 hirunningspace = lmax(lmin(roundup(hibufspace / 64, maxbcachebuf),
1212 16 * 1024 * 1024), 1024 * 1024);
1213 lorunningspace = roundup((hirunningspace * 2) / 3, maxbcachebuf);
1214
1215 /*
1216 * Limit the amount of malloc memory since it is wired permanently into
1217 * the kernel space. Even though this is accounted for in the buffer
1218 * allocation, we don't want the malloced region to grow uncontrolled.
1219 * The malloc scheme improves memory utilization significantly on
1220 * average (small) directories.
1221 */
1222 maxbufmallocspace = hibufspace / 20;
1223
1224 /*
1225 * Reduce the chance of a deadlock occurring by limiting the number
1226 * of delayed-write dirty buffers we allow to stack up.
1227 */
1228 hidirtybuffers = nbuf / 4 + 20;
1229 dirtybufthresh = hidirtybuffers * 9 / 10;
1230 /*
1231 * To support extreme low-memory systems, make sure hidirtybuffers
1232 * cannot eat up all available buffer space. This occurs when our
1233 * minimum cannot be met. We try to size hidirtybuffers to 3/4 our
1234 * buffer space assuming BKVASIZE'd buffers.
1235 */
1236 while ((long)hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
1237 hidirtybuffers >>= 1;
1238 }
1239 lodirtybuffers = hidirtybuffers / 2;
1240
1241 /*
1242 * lofreebuffers should be sufficient to avoid stalling waiting on
1243 * buf headers under heavy utilization. The bufs in per-cpu caches
1244 * are counted as free but will be unavailable to threads executing
1245 * on other cpus.
1246 *
1247 * hifreebuffers is the free target for the bufspace daemon. This
1248 * should be set appropriately to limit work per-iteration.
1249 */
1250 lofreebuffers = MIN((nbuf / 25) + (20 * mp_ncpus), 128 * mp_ncpus);
1251 hifreebuffers = (3 * lofreebuffers) / 2;
1252 numfreebuffers = nbuf;
1253
1254 /* Setup the kva and free list allocators. */
1255 vmem_set_reclaim(buffer_arena, bufkva_reclaim);
1256 buf_zone = uma_zcache_create("buf free cache",
1257 sizeof(struct buf) + sizeof(vm_page_t) * atop(maxbcachebuf),
1258 NULL, NULL, NULL, NULL, buf_import, buf_release, NULL, 0);
1259
1260 /*
1261 * Size the clean queue according to the amount of buffer space.
1262 * One queue per-256mb up to the max. More queues gives better
1263 * concurrency but less accurate LRU.
1264 */
1265 buf_domains = MIN(howmany(maxbufspace, 256*1024*1024), BUF_DOMAINS);
1266 for (i = 0 ; i < buf_domains; i++) {
1267 struct bufdomain *bd;
1268
1269 bd = &bdomain[i];
1270 bd_init(bd);
1271 bd->bd_freebuffers = nbuf / buf_domains;
1272 bd->bd_hifreebuffers = hifreebuffers / buf_domains;
1273 bd->bd_lofreebuffers = lofreebuffers / buf_domains;
1274 bd->bd_bufspace = 0;
1275 bd->bd_maxbufspace = maxbufspace / buf_domains;
1276 bd->bd_hibufspace = hibufspace / buf_domains;
1277 bd->bd_lobufspace = lobufspace / buf_domains;
1278 bd->bd_bufspacethresh = bufspacethresh / buf_domains;
1279 bd->bd_numdirtybuffers = 0;
1280 bd->bd_hidirtybuffers = hidirtybuffers / buf_domains;
1281 bd->bd_lodirtybuffers = lodirtybuffers / buf_domains;
1282 bd->bd_dirtybufthresh = dirtybufthresh / buf_domains;
1283 /* Don't allow more than 2% of bufs in the per-cpu caches. */
1284 bd->bd_lim = nbuf / buf_domains / 50 / mp_ncpus;
1285 }
1286 getnewbufcalls = counter_u64_alloc(M_WAITOK);
1287 getnewbufrestarts = counter_u64_alloc(M_WAITOK);
1288 mappingrestarts = counter_u64_alloc(M_WAITOK);
1289 numbufallocfails = counter_u64_alloc(M_WAITOK);
1290 notbufdflushes = counter_u64_alloc(M_WAITOK);
1291 buffreekvacnt = counter_u64_alloc(M_WAITOK);
1292 bufdefragcnt = counter_u64_alloc(M_WAITOK);
1293 bufkvaspace = counter_u64_alloc(M_WAITOK);
1294 }
1295
1296 #ifdef INVARIANTS
1297 static inline void
vfs_buf_check_mapped(struct buf * bp)1298 vfs_buf_check_mapped(struct buf *bp)
1299 {
1300
1301 KASSERT(bp->b_kvabase != unmapped_buf,
1302 ("mapped buf: b_kvabase was not updated %p", bp));
1303 KASSERT(bp->b_data != unmapped_buf,
1304 ("mapped buf: b_data was not updated %p", bp));
1305 KASSERT(bp->b_data < unmapped_buf || bp->b_data >= unmapped_buf +
1306 maxphys, ("b_data + b_offset unmapped %p", bp));
1307 }
1308
1309 static inline void
vfs_buf_check_unmapped(struct buf * bp)1310 vfs_buf_check_unmapped(struct buf *bp)
1311 {
1312
1313 KASSERT(bp->b_data == unmapped_buf,
1314 ("unmapped buf: corrupted b_data %p", bp));
1315 }
1316
1317 #define BUF_CHECK_MAPPED(bp) vfs_buf_check_mapped(bp)
1318 #define BUF_CHECK_UNMAPPED(bp) vfs_buf_check_unmapped(bp)
1319 #else
1320 #define BUF_CHECK_MAPPED(bp) do {} while (0)
1321 #define BUF_CHECK_UNMAPPED(bp) do {} while (0)
1322 #endif
1323
1324 static int
isbufbusy(struct buf * bp)1325 isbufbusy(struct buf *bp)
1326 {
1327 if (((bp->b_flags & B_INVAL) == 0 && BUF_ISLOCKED(bp)) ||
1328 ((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI))
1329 return (1);
1330 return (0);
1331 }
1332
1333 /*
1334 * Shutdown the system cleanly to prepare for reboot, halt, or power off.
1335 */
1336 void
bufshutdown(int show_busybufs)1337 bufshutdown(int show_busybufs)
1338 {
1339 static int first_buf_printf = 1;
1340 struct buf *bp;
1341 int i, iter, nbusy, pbusy;
1342 #ifndef PREEMPTION
1343 int subiter;
1344 #endif
1345
1346 /*
1347 * Sync filesystems for shutdown
1348 */
1349 wdog_kern_pat(WD_LASTVAL);
1350 kern_sync(curthread);
1351
1352 /*
1353 * With soft updates, some buffers that are
1354 * written will be remarked as dirty until other
1355 * buffers are written.
1356 */
1357 for (iter = pbusy = 0; iter < 20; iter++) {
1358 nbusy = 0;
1359 for (i = nbuf - 1; i >= 0; i--) {
1360 bp = nbufp(i);
1361 if (isbufbusy(bp))
1362 nbusy++;
1363 }
1364 if (nbusy == 0) {
1365 if (first_buf_printf)
1366 printf("All buffers synced.");
1367 break;
1368 }
1369 if (first_buf_printf) {
1370 printf("Syncing disks, buffers remaining... ");
1371 first_buf_printf = 0;
1372 }
1373 printf("%d ", nbusy);
1374 if (nbusy < pbusy)
1375 iter = 0;
1376 pbusy = nbusy;
1377
1378 wdog_kern_pat(WD_LASTVAL);
1379 kern_sync(curthread);
1380
1381 #ifdef PREEMPTION
1382 /*
1383 * Spin for a while to allow interrupt threads to run.
1384 */
1385 DELAY(50000 * iter);
1386 #else
1387 /*
1388 * Context switch several times to allow interrupt
1389 * threads to run.
1390 */
1391 for (subiter = 0; subiter < 50 * iter; subiter++) {
1392 thread_lock(curthread);
1393 mi_switch(SW_VOL);
1394 DELAY(1000);
1395 }
1396 #endif
1397 }
1398 printf("\n");
1399 /*
1400 * Count only busy local buffers to prevent forcing
1401 * a fsck if we're just a client of a wedged NFS server
1402 */
1403 nbusy = 0;
1404 for (i = nbuf - 1; i >= 0; i--) {
1405 bp = nbufp(i);
1406 if (isbufbusy(bp)) {
1407 #if 0
1408 /* XXX: This is bogus. We should probably have a BO_REMOTE flag instead */
1409 if (bp->b_dev == NULL) {
1410 TAILQ_REMOVE(&mountlist,
1411 bp->b_vp->v_mount, mnt_list);
1412 continue;
1413 }
1414 #endif
1415 nbusy++;
1416 if (show_busybufs > 0) {
1417 printf(
1418 "%d: buf:%p, vnode:%p, flags:%0x, blkno:%jd, lblkno:%jd, buflock:",
1419 nbusy, bp, bp->b_vp, bp->b_flags,
1420 (intmax_t)bp->b_blkno,
1421 (intmax_t)bp->b_lblkno);
1422 BUF_LOCKPRINTINFO(bp);
1423 if (show_busybufs > 1)
1424 vn_printf(bp->b_vp,
1425 "vnode content: ");
1426 }
1427 }
1428 }
1429 if (nbusy) {
1430 /*
1431 * Failed to sync all blocks. Indicate this and don't
1432 * unmount filesystems (thus forcing an fsck on reboot).
1433 */
1434 printf("Giving up on %d buffers\n", nbusy);
1435 DELAY(5000000); /* 5 seconds */
1436 } else {
1437 if (!first_buf_printf)
1438 printf("Final sync complete\n");
1439 /*
1440 * Unmount filesystems
1441 */
1442 if (!KERNEL_PANICKED())
1443 vfs_unmountall();
1444 }
1445 swapoff_all();
1446 DELAY(100000); /* wait for console output to finish */
1447 }
1448
1449 static void
bpmap_qenter(struct buf * bp)1450 bpmap_qenter(struct buf *bp)
1451 {
1452
1453 BUF_CHECK_MAPPED(bp);
1454
1455 /*
1456 * bp->b_data is relative to bp->b_offset, but
1457 * bp->b_offset may be offset into the first page.
1458 */
1459 bp->b_data = (caddr_t)trunc_page((vm_offset_t)bp->b_data);
1460 pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, bp->b_npages);
1461 bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
1462 (vm_offset_t)(bp->b_offset & PAGE_MASK));
1463 }
1464
1465 static inline struct bufdomain *
bufdomain(struct buf * bp)1466 bufdomain(struct buf *bp)
1467 {
1468
1469 return (&bdomain[bp->b_domain]);
1470 }
1471
1472 static struct bufqueue *
bufqueue(struct buf * bp)1473 bufqueue(struct buf *bp)
1474 {
1475
1476 switch (bp->b_qindex) {
1477 case QUEUE_NONE:
1478 /* FALLTHROUGH */
1479 case QUEUE_SENTINEL:
1480 return (NULL);
1481 case QUEUE_EMPTY:
1482 return (&bqempty);
1483 case QUEUE_DIRTY:
1484 return (&bufdomain(bp)->bd_dirtyq);
1485 case QUEUE_CLEAN:
1486 return (&bufdomain(bp)->bd_subq[bp->b_subqueue]);
1487 default:
1488 break;
1489 }
1490 panic("bufqueue(%p): Unhandled type %d\n", bp, bp->b_qindex);
1491 }
1492
1493 /*
1494 * Return the locked bufqueue that bp is a member of.
1495 */
1496 static struct bufqueue *
bufqueue_acquire(struct buf * bp)1497 bufqueue_acquire(struct buf *bp)
1498 {
1499 struct bufqueue *bq, *nbq;
1500
1501 /*
1502 * bp can be pushed from a per-cpu queue to the
1503 * cleanq while we're waiting on the lock. Retry
1504 * if the queues don't match.
1505 */
1506 bq = bufqueue(bp);
1507 BQ_LOCK(bq);
1508 for (;;) {
1509 nbq = bufqueue(bp);
1510 if (bq == nbq)
1511 break;
1512 BQ_UNLOCK(bq);
1513 BQ_LOCK(nbq);
1514 bq = nbq;
1515 }
1516 return (bq);
1517 }
1518
1519 /*
1520 * binsfree:
1521 *
1522 * Insert the buffer into the appropriate free list. Requires a
1523 * locked buffer on entry and buffer is unlocked before return.
1524 */
1525 static void
binsfree(struct buf * bp,int qindex)1526 binsfree(struct buf *bp, int qindex)
1527 {
1528 struct bufdomain *bd;
1529 struct bufqueue *bq;
1530
1531 KASSERT(qindex == QUEUE_CLEAN || qindex == QUEUE_DIRTY,
1532 ("binsfree: Invalid qindex %d", qindex));
1533 BUF_ASSERT_XLOCKED(bp);
1534
1535 /*
1536 * Handle delayed bremfree() processing.
1537 */
1538 if (bp->b_flags & B_REMFREE) {
1539 if (bp->b_qindex == qindex) {
1540 bp->b_flags |= B_REUSE;
1541 bp->b_flags &= ~B_REMFREE;
1542 BUF_UNLOCK(bp);
1543 return;
1544 }
1545 bq = bufqueue_acquire(bp);
1546 bq_remove(bq, bp);
1547 BQ_UNLOCK(bq);
1548 }
1549 bd = bufdomain(bp);
1550 if (qindex == QUEUE_CLEAN) {
1551 if (bd->bd_lim != 0)
1552 bq = &bd->bd_subq[PCPU_GET(cpuid)];
1553 else
1554 bq = bd->bd_cleanq;
1555 } else
1556 bq = &bd->bd_dirtyq;
1557 bq_insert(bq, bp, true);
1558 }
1559
1560 /*
1561 * buf_free:
1562 *
1563 * Free a buffer to the buf zone once it no longer has valid contents.
1564 */
1565 static void
buf_free(struct buf * bp)1566 buf_free(struct buf *bp)
1567 {
1568
1569 if (bp->b_flags & B_REMFREE)
1570 bremfreef(bp);
1571 if (bp->b_vflags & BV_BKGRDINPROG)
1572 panic("losing buffer 1");
1573 if (bp->b_rcred != NOCRED) {
1574 crfree(bp->b_rcred);
1575 bp->b_rcred = NOCRED;
1576 }
1577 if (bp->b_wcred != NOCRED) {
1578 crfree(bp->b_wcred);
1579 bp->b_wcred = NOCRED;
1580 }
1581 if (!LIST_EMPTY(&bp->b_dep))
1582 buf_deallocate(bp);
1583 bufkva_free(bp);
1584 atomic_add_int(&bufdomain(bp)->bd_freebuffers, 1);
1585 MPASS((bp->b_flags & B_MAXPHYS) == 0);
1586 BUF_UNLOCK(bp);
1587 uma_zfree(buf_zone, bp);
1588 }
1589
1590 /*
1591 * buf_import:
1592 *
1593 * Import bufs into the uma cache from the buf list. The system still
1594 * expects a static array of bufs and much of the synchronization
1595 * around bufs assumes type stable storage. As a result, UMA is used
1596 * only as a per-cpu cache of bufs still maintained on a global list.
1597 */
1598 static int
buf_import(void * arg,void ** store,int cnt,int domain,int flags)1599 buf_import(void *arg, void **store, int cnt, int domain, int flags)
1600 {
1601 struct buf *bp;
1602 int i;
1603
1604 BQ_LOCK(&bqempty);
1605 for (i = 0; i < cnt; i++) {
1606 bp = TAILQ_FIRST(&bqempty.bq_queue);
1607 if (bp == NULL)
1608 break;
1609 bq_remove(&bqempty, bp);
1610 store[i] = bp;
1611 }
1612 BQ_UNLOCK(&bqempty);
1613
1614 return (i);
1615 }
1616
1617 /*
1618 * buf_release:
1619 *
1620 * Release bufs from the uma cache back to the buffer queues.
1621 */
1622 static void
buf_release(void * arg,void ** store,int cnt)1623 buf_release(void *arg, void **store, int cnt)
1624 {
1625 struct bufqueue *bq;
1626 struct buf *bp;
1627 int i;
1628
1629 bq = &bqempty;
1630 BQ_LOCK(bq);
1631 for (i = 0; i < cnt; i++) {
1632 bp = store[i];
1633 /* Inline bq_insert() to batch locking. */
1634 TAILQ_INSERT_TAIL(&bq->bq_queue, bp, b_freelist);
1635 bp->b_flags &= ~(B_AGE | B_REUSE);
1636 bq->bq_len++;
1637 bp->b_qindex = bq->bq_index;
1638 }
1639 BQ_UNLOCK(bq);
1640 }
1641
1642 /*
1643 * buf_alloc:
1644 *
1645 * Allocate an empty buffer header.
1646 */
1647 static struct buf *
buf_alloc(struct bufdomain * bd)1648 buf_alloc(struct bufdomain *bd)
1649 {
1650 struct buf *bp;
1651 int freebufs, error;
1652
1653 /*
1654 * We can only run out of bufs in the buf zone if the average buf
1655 * is less than BKVASIZE. In this case the actual wait/block will
1656 * come from buf_reycle() failing to flush one of these small bufs.
1657 */
1658 bp = NULL;
1659 freebufs = atomic_fetchadd_int(&bd->bd_freebuffers, -1);
1660 if (freebufs > 0)
1661 bp = uma_zalloc(buf_zone, M_NOWAIT);
1662 if (bp == NULL) {
1663 atomic_add_int(&bd->bd_freebuffers, 1);
1664 bufspace_daemon_wakeup(bd);
1665 counter_u64_add(numbufallocfails, 1);
1666 return (NULL);
1667 }
1668 /*
1669 * Wake-up the bufspace daemon on transition below threshold.
1670 */
1671 if (freebufs == bd->bd_lofreebuffers)
1672 bufspace_daemon_wakeup(bd);
1673
1674 error = BUF_LOCK(bp, LK_EXCLUSIVE, NULL);
1675 KASSERT(error == 0, ("%s: BUF_LOCK on free buf %p: %d.", __func__, bp,
1676 error));
1677 (void)error;
1678
1679 KASSERT(bp->b_vp == NULL,
1680 ("bp: %p still has vnode %p.", bp, bp->b_vp));
1681 KASSERT((bp->b_flags & (B_DELWRI | B_NOREUSE)) == 0,
1682 ("invalid buffer %p flags %#x", bp, bp->b_flags));
1683 KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0,
1684 ("bp: %p still on a buffer list. xflags %X", bp, bp->b_xflags));
1685 KASSERT(bp->b_npages == 0,
1686 ("bp: %p still has %d vm pages\n", bp, bp->b_npages));
1687 KASSERT(bp->b_kvasize == 0, ("bp: %p still has kva\n", bp));
1688 KASSERT(bp->b_bufsize == 0, ("bp: %p still has bufspace\n", bp));
1689 MPASS((bp->b_flags & B_MAXPHYS) == 0);
1690
1691 bp->b_domain = BD_DOMAIN(bd);
1692 bp->b_flags = 0;
1693 bp->b_ioflags = 0;
1694 bp->b_xflags = 0;
1695 bp->b_vflags = 0;
1696 bp->b_vp = NULL;
1697 bp->b_blkno = bp->b_lblkno = 0;
1698 bp->b_offset = NOOFFSET;
1699 bp->b_iodone = 0;
1700 bp->b_error = 0;
1701 bp->b_resid = 0;
1702 bp->b_bcount = 0;
1703 bp->b_npages = 0;
1704 bp->b_dirtyoff = bp->b_dirtyend = 0;
1705 bp->b_bufobj = NULL;
1706 bp->b_data = bp->b_kvabase = unmapped_buf;
1707 bp->b_fsprivate1 = NULL;
1708 bp->b_fsprivate2 = NULL;
1709 bp->b_fsprivate3 = NULL;
1710 LIST_INIT(&bp->b_dep);
1711
1712 return (bp);
1713 }
1714
1715 /*
1716 * buf_recycle:
1717 *
1718 * Free a buffer from the given bufqueue. kva controls whether the
1719 * freed buf must own some kva resources. This is used for
1720 * defragmenting.
1721 */
1722 static int
buf_recycle(struct bufdomain * bd,bool kva)1723 buf_recycle(struct bufdomain *bd, bool kva)
1724 {
1725 struct bufqueue *bq;
1726 struct buf *bp, *nbp;
1727
1728 if (kva)
1729 counter_u64_add(bufdefragcnt, 1);
1730 nbp = NULL;
1731 bq = bd->bd_cleanq;
1732 BQ_LOCK(bq);
1733 KASSERT(BQ_LOCKPTR(bq) == BD_LOCKPTR(bd),
1734 ("buf_recycle: Locks don't match"));
1735 nbp = TAILQ_FIRST(&bq->bq_queue);
1736
1737 /*
1738 * Run scan, possibly freeing data and/or kva mappings on the fly
1739 * depending.
1740 */
1741 while ((bp = nbp) != NULL) {
1742 /*
1743 * Calculate next bp (we can only use it if we do not
1744 * release the bqlock).
1745 */
1746 nbp = TAILQ_NEXT(bp, b_freelist);
1747
1748 /*
1749 * If we are defragging then we need a buffer with
1750 * some kva to reclaim.
1751 */
1752 if (kva && bp->b_kvasize == 0)
1753 continue;
1754
1755 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1756 continue;
1757
1758 /*
1759 * Implement a second chance algorithm for frequently
1760 * accessed buffers.
1761 */
1762 if ((bp->b_flags & B_REUSE) != 0) {
1763 TAILQ_REMOVE(&bq->bq_queue, bp, b_freelist);
1764 TAILQ_INSERT_TAIL(&bq->bq_queue, bp, b_freelist);
1765 bp->b_flags &= ~B_REUSE;
1766 BUF_UNLOCK(bp);
1767 continue;
1768 }
1769
1770 /*
1771 * Skip buffers with background writes in progress.
1772 */
1773 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
1774 BUF_UNLOCK(bp);
1775 continue;
1776 }
1777
1778 KASSERT(bp->b_qindex == QUEUE_CLEAN,
1779 ("buf_recycle: inconsistent queue %d bp %p",
1780 bp->b_qindex, bp));
1781 KASSERT(bp->b_domain == BD_DOMAIN(bd),
1782 ("getnewbuf: queue domain %d doesn't match request %d",
1783 bp->b_domain, (int)BD_DOMAIN(bd)));
1784 /*
1785 * NOTE: nbp is now entirely invalid. We can only restart
1786 * the scan from this point on.
1787 */
1788 bq_remove(bq, bp);
1789 BQ_UNLOCK(bq);
1790
1791 /*
1792 * Requeue the background write buffer with error and
1793 * restart the scan.
1794 */
1795 if ((bp->b_vflags & BV_BKGRDERR) != 0) {
1796 bqrelse(bp);
1797 BQ_LOCK(bq);
1798 nbp = TAILQ_FIRST(&bq->bq_queue);
1799 continue;
1800 }
1801 bp->b_flags |= B_INVAL;
1802 brelse(bp);
1803 return (0);
1804 }
1805 bd->bd_wanted = 1;
1806 BQ_UNLOCK(bq);
1807
1808 return (ENOBUFS);
1809 }
1810
1811 /*
1812 * bremfree:
1813 *
1814 * Mark the buffer for removal from the appropriate free list.
1815 *
1816 */
1817 void
bremfree(struct buf * bp)1818 bremfree(struct buf *bp)
1819 {
1820
1821 CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1822 KASSERT((bp->b_flags & B_REMFREE) == 0,
1823 ("bremfree: buffer %p already marked for delayed removal.", bp));
1824 KASSERT(bp->b_qindex != QUEUE_NONE,
1825 ("bremfree: buffer %p not on a queue.", bp));
1826 BUF_ASSERT_XLOCKED(bp);
1827
1828 bp->b_flags |= B_REMFREE;
1829 }
1830
1831 /*
1832 * bremfreef:
1833 *
1834 * Force an immediate removal from a free list. Used only in nfs when
1835 * it abuses the b_freelist pointer.
1836 */
1837 void
bremfreef(struct buf * bp)1838 bremfreef(struct buf *bp)
1839 {
1840 struct bufqueue *bq;
1841
1842 bq = bufqueue_acquire(bp);
1843 bq_remove(bq, bp);
1844 BQ_UNLOCK(bq);
1845 }
1846
1847 static void
bq_init(struct bufqueue * bq,int qindex,int subqueue,const char * lockname)1848 bq_init(struct bufqueue *bq, int qindex, int subqueue, const char *lockname)
1849 {
1850
1851 mtx_init(&bq->bq_lock, lockname, NULL, MTX_DEF);
1852 TAILQ_INIT(&bq->bq_queue);
1853 bq->bq_len = 0;
1854 bq->bq_index = qindex;
1855 bq->bq_subqueue = subqueue;
1856 }
1857
1858 static void
bd_init(struct bufdomain * bd)1859 bd_init(struct bufdomain *bd)
1860 {
1861 int i;
1862
1863 bd->bd_cleanq = &bd->bd_subq[mp_maxid + 1];
1864 bq_init(bd->bd_cleanq, QUEUE_CLEAN, mp_maxid + 1, "bufq clean lock");
1865 bq_init(&bd->bd_dirtyq, QUEUE_DIRTY, -1, "bufq dirty lock");
1866 for (i = 0; i <= mp_maxid; i++)
1867 bq_init(&bd->bd_subq[i], QUEUE_CLEAN, i,
1868 "bufq clean subqueue lock");
1869 mtx_init(&bd->bd_run_lock, "bufspace daemon run lock", NULL, MTX_DEF);
1870 }
1871
1872 /*
1873 * bq_remove:
1874 *
1875 * Removes a buffer from the free list, must be called with the
1876 * correct qlock held.
1877 */
1878 static void
bq_remove(struct bufqueue * bq,struct buf * bp)1879 bq_remove(struct bufqueue *bq, struct buf *bp)
1880 {
1881
1882 CTR3(KTR_BUF, "bq_remove(%p) vp %p flags %X",
1883 bp, bp->b_vp, bp->b_flags);
1884 KASSERT(bp->b_qindex != QUEUE_NONE,
1885 ("bq_remove: buffer %p not on a queue.", bp));
1886 KASSERT(bufqueue(bp) == bq,
1887 ("bq_remove: Remove buffer %p from wrong queue.", bp));
1888
1889 BQ_ASSERT_LOCKED(bq);
1890 if (bp->b_qindex != QUEUE_EMPTY) {
1891 BUF_ASSERT_XLOCKED(bp);
1892 }
1893 KASSERT(bq->bq_len >= 1,
1894 ("queue %d underflow", bp->b_qindex));
1895 TAILQ_REMOVE(&bq->bq_queue, bp, b_freelist);
1896 bq->bq_len--;
1897 bp->b_qindex = QUEUE_NONE;
1898 bp->b_flags &= ~(B_REMFREE | B_REUSE);
1899 }
1900
1901 static void
bd_flush(struct bufdomain * bd,struct bufqueue * bq)1902 bd_flush(struct bufdomain *bd, struct bufqueue *bq)
1903 {
1904 struct buf *bp;
1905
1906 BQ_ASSERT_LOCKED(bq);
1907 if (bq != bd->bd_cleanq) {
1908 BD_LOCK(bd);
1909 while ((bp = TAILQ_FIRST(&bq->bq_queue)) != NULL) {
1910 TAILQ_REMOVE(&bq->bq_queue, bp, b_freelist);
1911 TAILQ_INSERT_TAIL(&bd->bd_cleanq->bq_queue, bp,
1912 b_freelist);
1913 bp->b_subqueue = bd->bd_cleanq->bq_subqueue;
1914 }
1915 bd->bd_cleanq->bq_len += bq->bq_len;
1916 bq->bq_len = 0;
1917 }
1918 if (bd->bd_wanted) {
1919 bd->bd_wanted = 0;
1920 wakeup(&bd->bd_wanted);
1921 }
1922 if (bq != bd->bd_cleanq)
1923 BD_UNLOCK(bd);
1924 }
1925
1926 static int
bd_flushall(struct bufdomain * bd)1927 bd_flushall(struct bufdomain *bd)
1928 {
1929 struct bufqueue *bq;
1930 int flushed;
1931 int i;
1932
1933 if (bd->bd_lim == 0)
1934 return (0);
1935 flushed = 0;
1936 for (i = 0; i <= mp_maxid; i++) {
1937 bq = &bd->bd_subq[i];
1938 if (bq->bq_len == 0)
1939 continue;
1940 BQ_LOCK(bq);
1941 bd_flush(bd, bq);
1942 BQ_UNLOCK(bq);
1943 flushed++;
1944 }
1945
1946 return (flushed);
1947 }
1948
1949 static void
bq_insert(struct bufqueue * bq,struct buf * bp,bool unlock)1950 bq_insert(struct bufqueue *bq, struct buf *bp, bool unlock)
1951 {
1952 struct bufdomain *bd;
1953
1954 if (bp->b_qindex != QUEUE_NONE)
1955 panic("bq_insert: free buffer %p onto another queue?", bp);
1956
1957 bd = bufdomain(bp);
1958 if (bp->b_flags & B_AGE) {
1959 /* Place this buf directly on the real queue. */
1960 if (bq->bq_index == QUEUE_CLEAN)
1961 bq = bd->bd_cleanq;
1962 BQ_LOCK(bq);
1963 TAILQ_INSERT_HEAD(&bq->bq_queue, bp, b_freelist);
1964 } else {
1965 BQ_LOCK(bq);
1966 TAILQ_INSERT_TAIL(&bq->bq_queue, bp, b_freelist);
1967 }
1968 bp->b_flags &= ~(B_AGE | B_REUSE);
1969 bq->bq_len++;
1970 bp->b_qindex = bq->bq_index;
1971 bp->b_subqueue = bq->bq_subqueue;
1972
1973 /*
1974 * Unlock before we notify so that we don't wakeup a waiter that
1975 * fails a trylock on the buf and sleeps again.
1976 */
1977 if (unlock)
1978 BUF_UNLOCK(bp);
1979
1980 if (bp->b_qindex == QUEUE_CLEAN) {
1981 /*
1982 * Flush the per-cpu queue and notify any waiters.
1983 */
1984 if (bd->bd_wanted || (bq != bd->bd_cleanq &&
1985 bq->bq_len >= bd->bd_lim))
1986 bd_flush(bd, bq);
1987 }
1988 BQ_UNLOCK(bq);
1989 }
1990
1991 /*
1992 * bufkva_free:
1993 *
1994 * Free the kva allocation for a buffer.
1995 *
1996 */
1997 static void
bufkva_free(struct buf * bp)1998 bufkva_free(struct buf *bp)
1999 {
2000
2001 #ifdef INVARIANTS
2002 if (bp->b_kvasize == 0) {
2003 KASSERT(bp->b_kvabase == unmapped_buf &&
2004 bp->b_data == unmapped_buf,
2005 ("Leaked KVA space on %p", bp));
2006 } else if (buf_mapped(bp))
2007 BUF_CHECK_MAPPED(bp);
2008 else
2009 BUF_CHECK_UNMAPPED(bp);
2010 #endif
2011 if (bp->b_kvasize == 0)
2012 return;
2013
2014 vmem_free(buffer_arena, (vm_offset_t)bp->b_kvabase, bp->b_kvasize);
2015 counter_u64_add(bufkvaspace, -bp->b_kvasize);
2016 counter_u64_add(buffreekvacnt, 1);
2017 bp->b_data = bp->b_kvabase = unmapped_buf;
2018 bp->b_kvasize = 0;
2019 }
2020
2021 /*
2022 * bufkva_alloc:
2023 *
2024 * Allocate the buffer KVA and set b_kvasize and b_kvabase.
2025 */
2026 static int
bufkva_alloc(struct buf * bp,int maxsize,int gbflags)2027 bufkva_alloc(struct buf *bp, int maxsize, int gbflags)
2028 {
2029 vm_offset_t addr;
2030 int error;
2031
2032 KASSERT((gbflags & GB_UNMAPPED) == 0 || (gbflags & GB_KVAALLOC) != 0,
2033 ("Invalid gbflags 0x%x in %s", gbflags, __func__));
2034 MPASS((bp->b_flags & B_MAXPHYS) == 0);
2035 KASSERT(maxsize <= maxbcachebuf,
2036 ("bufkva_alloc kva too large %d %u", maxsize, maxbcachebuf));
2037
2038 bufkva_free(bp);
2039
2040 addr = 0;
2041 error = vmem_alloc(buffer_arena, maxsize, M_BESTFIT | M_NOWAIT, &addr);
2042 if (error != 0) {
2043 /*
2044 * Buffer map is too fragmented. Request the caller
2045 * to defragment the map.
2046 */
2047 return (error);
2048 }
2049 bp->b_kvabase = (caddr_t)addr;
2050 bp->b_kvasize = maxsize;
2051 counter_u64_add(bufkvaspace, bp->b_kvasize);
2052 if ((gbflags & GB_UNMAPPED) != 0) {
2053 bp->b_data = unmapped_buf;
2054 BUF_CHECK_UNMAPPED(bp);
2055 } else {
2056 bp->b_data = bp->b_kvabase;
2057 BUF_CHECK_MAPPED(bp);
2058 }
2059 return (0);
2060 }
2061
2062 /*
2063 * bufkva_reclaim:
2064 *
2065 * Reclaim buffer kva by freeing buffers holding kva. This is a vmem
2066 * callback that fires to avoid returning failure.
2067 */
2068 static void
bufkva_reclaim(vmem_t * vmem,int flags)2069 bufkva_reclaim(vmem_t *vmem, int flags)
2070 {
2071 bool done;
2072 int q;
2073 int i;
2074
2075 done = false;
2076 for (i = 0; i < 5; i++) {
2077 for (q = 0; q < buf_domains; q++)
2078 if (buf_recycle(&bdomain[q], true) != 0)
2079 done = true;
2080 if (done)
2081 break;
2082 }
2083 return;
2084 }
2085
2086 /*
2087 * Attempt to initiate asynchronous I/O on read-ahead blocks. We must
2088 * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set,
2089 * the buffer is valid and we do not have to do anything.
2090 */
2091 static void
breada(struct vnode * vp,daddr_t * rablkno,int * rabsize,int cnt,struct ucred * cred,int flags,void (* ckhashfunc)(struct buf *))2092 breada(struct vnode * vp, daddr_t * rablkno, int * rabsize, int cnt,
2093 struct ucred * cred, int flags, void (*ckhashfunc)(struct buf *))
2094 {
2095 struct buf *rabp;
2096 struct thread *td;
2097 int i;
2098
2099 td = curthread;
2100
2101 for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
2102 if (inmem(vp, *rablkno))
2103 continue;
2104 rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
2105 if ((rabp->b_flags & B_CACHE) != 0) {
2106 brelse(rabp);
2107 continue;
2108 }
2109 #ifdef RACCT
2110 if (racct_enable) {
2111 PROC_LOCK(curproc);
2112 racct_add_buf(curproc, rabp, 0);
2113 PROC_UNLOCK(curproc);
2114 }
2115 #endif /* RACCT */
2116 td->td_ru.ru_inblock++;
2117 rabp->b_flags |= B_ASYNC;
2118 rabp->b_flags &= ~B_INVAL;
2119 if ((flags & GB_CKHASH) != 0) {
2120 rabp->b_flags |= B_CKHASH;
2121 rabp->b_ckhashcalc = ckhashfunc;
2122 }
2123 rabp->b_ioflags &= ~BIO_ERROR;
2124 rabp->b_iocmd = BIO_READ;
2125 if (rabp->b_rcred == NOCRED && cred != NOCRED)
2126 rabp->b_rcred = crhold(cred);
2127 vfs_busy_pages(rabp, 0);
2128 BUF_KERNPROC(rabp);
2129 rabp->b_iooffset = dbtob(rabp->b_blkno);
2130 bstrategy(rabp);
2131 }
2132 }
2133
2134 /*
2135 * Entry point for bread() and breadn() via #defines in sys/buf.h.
2136 *
2137 * Get a buffer with the specified data. Look in the cache first. We
2138 * must clear BIO_ERROR and B_INVAL prior to initiating I/O. If B_CACHE
2139 * is set, the buffer is valid and we do not have to do anything, see
2140 * getblk(). Also starts asynchronous I/O on read-ahead blocks.
2141 *
2142 * Always return a NULL buffer pointer (in bpp) when returning an error.
2143 *
2144 * The blkno parameter is the logical block being requested. Normally
2145 * the mapping of logical block number to disk block address is done
2146 * by calling VOP_BMAP(). However, if the mapping is already known, the
2147 * disk block address can be passed using the dblkno parameter. If the
2148 * disk block address is not known, then the same value should be passed
2149 * for blkno and dblkno.
2150 */
2151 int
breadn_flags(struct vnode * vp,daddr_t blkno,daddr_t dblkno,int size,daddr_t * rablkno,int * rabsize,int cnt,struct ucred * cred,int flags,void (* ckhashfunc)(struct buf *),struct buf ** bpp)2152 breadn_flags(struct vnode *vp, daddr_t blkno, daddr_t dblkno, int size,
2153 daddr_t *rablkno, int *rabsize, int cnt, struct ucred *cred, int flags,
2154 void (*ckhashfunc)(struct buf *), struct buf **bpp)
2155 {
2156 struct buf *bp;
2157 struct thread *td;
2158 int error, readwait, rv;
2159
2160 CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size);
2161 td = curthread;
2162 /*
2163 * Can only return NULL if GB_LOCK_NOWAIT or GB_SPARSE flags
2164 * are specified.
2165 */
2166 error = getblkx(vp, blkno, dblkno, size, 0, 0, flags, &bp);
2167 if (error != 0) {
2168 *bpp = NULL;
2169 return (error);
2170 }
2171 KASSERT(blkno == bp->b_lblkno,
2172 ("getblkx returned buffer for blkno %jd instead of blkno %jd",
2173 (intmax_t)bp->b_lblkno, (intmax_t)blkno));
2174 flags &= ~GB_NOSPARSE;
2175 *bpp = bp;
2176
2177 /*
2178 * If not found in cache, do some I/O
2179 */
2180 readwait = 0;
2181 if ((bp->b_flags & B_CACHE) == 0) {
2182 #ifdef RACCT
2183 if (racct_enable) {
2184 PROC_LOCK(td->td_proc);
2185 racct_add_buf(td->td_proc, bp, 0);
2186 PROC_UNLOCK(td->td_proc);
2187 }
2188 #endif /* RACCT */
2189 td->td_ru.ru_inblock++;
2190 bp->b_iocmd = BIO_READ;
2191 bp->b_flags &= ~B_INVAL;
2192 if ((flags & GB_CKHASH) != 0) {
2193 bp->b_flags |= B_CKHASH;
2194 bp->b_ckhashcalc = ckhashfunc;
2195 }
2196 if ((flags & GB_CVTENXIO) != 0)
2197 bp->b_xflags |= BX_CVTENXIO;
2198 bp->b_ioflags &= ~BIO_ERROR;
2199 if (bp->b_rcred == NOCRED && cred != NOCRED)
2200 bp->b_rcred = crhold(cred);
2201 vfs_busy_pages(bp, 0);
2202 bp->b_iooffset = dbtob(bp->b_blkno);
2203 bstrategy(bp);
2204 ++readwait;
2205 }
2206
2207 /*
2208 * Attempt to initiate asynchronous I/O on read-ahead blocks.
2209 */
2210 breada(vp, rablkno, rabsize, cnt, cred, flags, ckhashfunc);
2211
2212 rv = 0;
2213 if (readwait) {
2214 rv = bufwait(bp);
2215 if (rv != 0) {
2216 brelse(bp);
2217 *bpp = NULL;
2218 }
2219 }
2220 return (rv);
2221 }
2222
2223 /*
2224 * Write, release buffer on completion. (Done by iodone
2225 * if async). Do not bother writing anything if the buffer
2226 * is invalid.
2227 *
2228 * Note that we set B_CACHE here, indicating that buffer is
2229 * fully valid and thus cacheable. This is true even of NFS
2230 * now so we set it generally. This could be set either here
2231 * or in biodone() since the I/O is synchronous. We put it
2232 * here.
2233 */
2234 int
bufwrite(struct buf * bp)2235 bufwrite(struct buf *bp)
2236 {
2237 int oldflags;
2238 struct vnode *vp;
2239 long space;
2240 int vp_md;
2241
2242 CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2243 if ((bp->b_bufobj->bo_flag & BO_DEAD) != 0) {
2244 bp->b_flags |= B_INVAL | B_RELBUF;
2245 bp->b_flags &= ~B_CACHE;
2246 brelse(bp);
2247 return (ENXIO);
2248 }
2249 if (bp->b_flags & B_INVAL) {
2250 brelse(bp);
2251 return (0);
2252 }
2253
2254 if (bp->b_flags & B_BARRIER)
2255 atomic_add_long(&barrierwrites, 1);
2256
2257 oldflags = bp->b_flags;
2258
2259 KASSERT(!(bp->b_vflags & BV_BKGRDINPROG),
2260 ("FFS background buffer should not get here %p", bp));
2261
2262 vp = bp->b_vp;
2263 if (vp)
2264 vp_md = vp->v_vflag & VV_MD;
2265 else
2266 vp_md = 0;
2267
2268 /*
2269 * Mark the buffer clean. Increment the bufobj write count
2270 * before bundirty() call, to prevent other thread from seeing
2271 * empty dirty list and zero counter for writes in progress,
2272 * falsely indicating that the bufobj is clean.
2273 */
2274 bufobj_wref(bp->b_bufobj);
2275 bundirty(bp);
2276
2277 bp->b_flags &= ~B_DONE;
2278 bp->b_ioflags &= ~BIO_ERROR;
2279 bp->b_flags |= B_CACHE;
2280 bp->b_iocmd = BIO_WRITE;
2281
2282 vfs_busy_pages(bp, 1);
2283
2284 /*
2285 * Normal bwrites pipeline writes
2286 */
2287 bp->b_runningbufspace = bp->b_bufsize;
2288 space = atomic_fetchadd_long(&runningbufspace, bp->b_runningbufspace);
2289
2290 #ifdef RACCT
2291 if (racct_enable) {
2292 PROC_LOCK(curproc);
2293 racct_add_buf(curproc, bp, 1);
2294 PROC_UNLOCK(curproc);
2295 }
2296 #endif /* RACCT */
2297 curthread->td_ru.ru_oublock++;
2298 if (oldflags & B_ASYNC)
2299 BUF_KERNPROC(bp);
2300 bp->b_iooffset = dbtob(bp->b_blkno);
2301 buf_track(bp, __func__);
2302 bstrategy(bp);
2303
2304 if ((oldflags & B_ASYNC) == 0) {
2305 int rtval = bufwait(bp);
2306 brelse(bp);
2307 return (rtval);
2308 } else if (space > hirunningspace) {
2309 /*
2310 * don't allow the async write to saturate the I/O
2311 * system. We will not deadlock here because
2312 * we are blocking waiting for I/O that is already in-progress
2313 * to complete. We do not block here if it is the update
2314 * or syncer daemon trying to clean up as that can lead
2315 * to deadlock.
2316 */
2317 if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0 && !vp_md)
2318 waitrunningbufspace();
2319 }
2320
2321 return (0);
2322 }
2323
2324 void
bufbdflush(struct bufobj * bo,struct buf * bp)2325 bufbdflush(struct bufobj *bo, struct buf *bp)
2326 {
2327 struct buf *nbp;
2328
2329 if (bo->bo_dirty.bv_cnt > dirtybufthresh + 10) {
2330 (void) VOP_FSYNC(bp->b_vp, MNT_NOWAIT, curthread);
2331 altbufferflushes++;
2332 } else if (bo->bo_dirty.bv_cnt > dirtybufthresh) {
2333 BO_LOCK(bo);
2334 /*
2335 * Try to find a buffer to flush.
2336 */
2337 TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
2338 if ((nbp->b_vflags & BV_BKGRDINPROG) ||
2339 BUF_LOCK(nbp,
2340 LK_EXCLUSIVE | LK_NOWAIT, NULL))
2341 continue;
2342 if (bp == nbp)
2343 panic("bdwrite: found ourselves");
2344 BO_UNLOCK(bo);
2345 /* Don't countdeps with the bo lock held. */
2346 if (buf_countdeps(nbp, 0)) {
2347 BO_LOCK(bo);
2348 BUF_UNLOCK(nbp);
2349 continue;
2350 }
2351 if (nbp->b_flags & B_CLUSTEROK) {
2352 vfs_bio_awrite(nbp);
2353 } else {
2354 bremfree(nbp);
2355 bawrite(nbp);
2356 }
2357 dirtybufferflushes++;
2358 break;
2359 }
2360 if (nbp == NULL)
2361 BO_UNLOCK(bo);
2362 }
2363 }
2364
2365 /*
2366 * Delayed write. (Buffer is marked dirty). Do not bother writing
2367 * anything if the buffer is marked invalid.
2368 *
2369 * Note that since the buffer must be completely valid, we can safely
2370 * set B_CACHE. In fact, we have to set B_CACHE here rather then in
2371 * biodone() in order to prevent getblk from writing the buffer
2372 * out synchronously.
2373 */
2374 void
bdwrite(struct buf * bp)2375 bdwrite(struct buf *bp)
2376 {
2377 struct thread *td = curthread;
2378 struct vnode *vp;
2379 struct bufobj *bo;
2380
2381 CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2382 KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2383 KASSERT((bp->b_flags & B_BARRIER) == 0,
2384 ("Barrier request in delayed write %p", bp));
2385
2386 if (bp->b_flags & B_INVAL) {
2387 brelse(bp);
2388 return;
2389 }
2390
2391 /*
2392 * If we have too many dirty buffers, don't create any more.
2393 * If we are wildly over our limit, then force a complete
2394 * cleanup. Otherwise, just keep the situation from getting
2395 * out of control. Note that we have to avoid a recursive
2396 * disaster and not try to clean up after our own cleanup!
2397 */
2398 vp = bp->b_vp;
2399 bo = bp->b_bufobj;
2400 if ((td->td_pflags & (TDP_COWINPROGRESS|TDP_INBDFLUSH)) == 0) {
2401 td->td_pflags |= TDP_INBDFLUSH;
2402 BO_BDFLUSH(bo, bp);
2403 td->td_pflags &= ~TDP_INBDFLUSH;
2404 } else
2405 recursiveflushes++;
2406
2407 bdirty(bp);
2408 /*
2409 * Set B_CACHE, indicating that the buffer is fully valid. This is
2410 * true even of NFS now.
2411 */
2412 bp->b_flags |= B_CACHE;
2413
2414 /*
2415 * This bmap keeps the system from needing to do the bmap later,
2416 * perhaps when the system is attempting to do a sync. Since it
2417 * is likely that the indirect block -- or whatever other datastructure
2418 * that the filesystem needs is still in memory now, it is a good
2419 * thing to do this. Note also, that if the pageout daemon is
2420 * requesting a sync -- there might not be enough memory to do
2421 * the bmap then... So, this is important to do.
2422 */
2423 if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
2424 VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
2425 }
2426
2427 buf_track(bp, __func__);
2428
2429 /*
2430 * Set the *dirty* buffer range based upon the VM system dirty
2431 * pages.
2432 *
2433 * Mark the buffer pages as clean. We need to do this here to
2434 * satisfy the vnode_pager and the pageout daemon, so that it
2435 * thinks that the pages have been "cleaned". Note that since
2436 * the pages are in a delayed write buffer -- the VFS layer
2437 * "will" see that the pages get written out on the next sync,
2438 * or perhaps the cluster will be completed.
2439 */
2440 vfs_clean_pages_dirty_buf(bp);
2441 bqrelse(bp);
2442
2443 /*
2444 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
2445 * due to the softdep code.
2446 */
2447 }
2448
2449 /*
2450 * bdirty:
2451 *
2452 * Turn buffer into delayed write request. We must clear BIO_READ and
2453 * B_RELBUF, and we must set B_DELWRI. We reassign the buffer to
2454 * itself to properly update it in the dirty/clean lists. We mark it
2455 * B_DONE to ensure that any asynchronization of the buffer properly
2456 * clears B_DONE ( else a panic will occur later ).
2457 *
2458 * bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
2459 * might have been set pre-getblk(). Unlike bwrite/bdwrite, bdirty()
2460 * should only be called if the buffer is known-good.
2461 *
2462 * Since the buffer is not on a queue, we do not update the numfreebuffers
2463 * count.
2464 *
2465 * The buffer must be on QUEUE_NONE.
2466 */
2467 void
bdirty(struct buf * bp)2468 bdirty(struct buf *bp)
2469 {
2470
2471 CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X",
2472 bp, bp->b_vp, bp->b_flags);
2473 KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2474 KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
2475 ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
2476 bp->b_flags &= ~(B_RELBUF);
2477 bp->b_iocmd = BIO_WRITE;
2478
2479 if ((bp->b_flags & B_DELWRI) == 0) {
2480 bp->b_flags |= /* XXX B_DONE | */ B_DELWRI;
2481 reassignbuf(bp);
2482 bdirtyadd(bp);
2483 }
2484 }
2485
2486 /*
2487 * bundirty:
2488 *
2489 * Clear B_DELWRI for buffer.
2490 *
2491 * Since the buffer is not on a queue, we do not update the numfreebuffers
2492 * count.
2493 *
2494 * The buffer must be on QUEUE_NONE.
2495 */
2496
2497 void
bundirty(struct buf * bp)2498 bundirty(struct buf *bp)
2499 {
2500
2501 CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2502 KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2503 KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
2504 ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
2505
2506 if (bp->b_flags & B_DELWRI) {
2507 bp->b_flags &= ~B_DELWRI;
2508 reassignbuf(bp);
2509 bdirtysub(bp);
2510 }
2511 /*
2512 * Since it is now being written, we can clear its deferred write flag.
2513 */
2514 bp->b_flags &= ~B_DEFERRED;
2515 }
2516
2517 /*
2518 * bawrite:
2519 *
2520 * Asynchronous write. Start output on a buffer, but do not wait for
2521 * it to complete. The buffer is released when the output completes.
2522 *
2523 * bwrite() ( or the VOP routine anyway ) is responsible for handling
2524 * B_INVAL buffers. Not us.
2525 */
2526 void
bawrite(struct buf * bp)2527 bawrite(struct buf *bp)
2528 {
2529
2530 bp->b_flags |= B_ASYNC;
2531 (void) bwrite(bp);
2532 }
2533
2534 /*
2535 * babarrierwrite:
2536 *
2537 * Asynchronous barrier write. Start output on a buffer, but do not
2538 * wait for it to complete. Place a write barrier after this write so
2539 * that this buffer and all buffers written before it are committed to
2540 * the disk before any buffers written after this write are committed
2541 * to the disk. The buffer is released when the output completes.
2542 */
2543 void
babarrierwrite(struct buf * bp)2544 babarrierwrite(struct buf *bp)
2545 {
2546
2547 bp->b_flags |= B_ASYNC | B_BARRIER;
2548 (void) bwrite(bp);
2549 }
2550
2551 /*
2552 * bbarrierwrite:
2553 *
2554 * Synchronous barrier write. Start output on a buffer and wait for
2555 * it to complete. Place a write barrier after this write so that
2556 * this buffer and all buffers written before it are committed to
2557 * the disk before any buffers written after this write are committed
2558 * to the disk. The buffer is released when the output completes.
2559 */
2560 int
bbarrierwrite(struct buf * bp)2561 bbarrierwrite(struct buf *bp)
2562 {
2563
2564 bp->b_flags |= B_BARRIER;
2565 return (bwrite(bp));
2566 }
2567
2568 /*
2569 * bwillwrite:
2570 *
2571 * Called prior to the locking of any vnodes when we are expecting to
2572 * write. We do not want to starve the buffer cache with too many
2573 * dirty buffers so we block here. By blocking prior to the locking
2574 * of any vnodes we attempt to avoid the situation where a locked vnode
2575 * prevents the various system daemons from flushing related buffers.
2576 */
2577 void
bwillwrite(void)2578 bwillwrite(void)
2579 {
2580
2581 if (buf_dirty_count_severe()) {
2582 mtx_lock(&bdirtylock);
2583 while (buf_dirty_count_severe()) {
2584 bdirtywait = 1;
2585 msleep(&bdirtywait, &bdirtylock, (PRIBIO + 4),
2586 "flswai", 0);
2587 }
2588 mtx_unlock(&bdirtylock);
2589 }
2590 }
2591
2592 /*
2593 * Return true if we have too many dirty buffers.
2594 */
2595 int
buf_dirty_count_severe(void)2596 buf_dirty_count_severe(void)
2597 {
2598
2599 return (!BIT_EMPTY(BUF_DOMAINS, &bdhidirty));
2600 }
2601
2602 /*
2603 * brelse:
2604 *
2605 * Release a busy buffer and, if requested, free its resources. The
2606 * buffer will be stashed in the appropriate bufqueue[] allowing it
2607 * to be accessed later as a cache entity or reused for other purposes.
2608 */
2609 void
brelse(struct buf * bp)2610 brelse(struct buf *bp)
2611 {
2612 struct mount *v_mnt;
2613 int qindex;
2614
2615 /*
2616 * Many functions erroneously call brelse with a NULL bp under rare
2617 * error conditions. Simply return when called with a NULL bp.
2618 */
2619 if (bp == NULL)
2620 return;
2621 CTR3(KTR_BUF, "brelse(%p) vp %p flags %X",
2622 bp, bp->b_vp, bp->b_flags);
2623 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
2624 ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
2625 KASSERT((bp->b_flags & B_VMIO) != 0 || (bp->b_flags & B_NOREUSE) == 0,
2626 ("brelse: non-VMIO buffer marked NOREUSE"));
2627
2628 if (BUF_LOCKRECURSED(bp)) {
2629 /*
2630 * Do not process, in particular, do not handle the
2631 * B_INVAL/B_RELBUF and do not release to free list.
2632 */
2633 BUF_UNLOCK(bp);
2634 return;
2635 }
2636
2637 if (bp->b_flags & B_MANAGED) {
2638 bqrelse(bp);
2639 return;
2640 }
2641
2642 if (LIST_EMPTY(&bp->b_dep)) {
2643 bp->b_flags &= ~B_IOSTARTED;
2644 } else {
2645 KASSERT((bp->b_flags & B_IOSTARTED) == 0,
2646 ("brelse: SU io not finished bp %p", bp));
2647 }
2648
2649 if ((bp->b_vflags & (BV_BKGRDINPROG | BV_BKGRDERR)) == BV_BKGRDERR) {
2650 BO_LOCK(bp->b_bufobj);
2651 bp->b_vflags &= ~BV_BKGRDERR;
2652 BO_UNLOCK(bp->b_bufobj);
2653 bdirty(bp);
2654 }
2655
2656 if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) &&
2657 (bp->b_flags & B_INVALONERR)) {
2658 /*
2659 * Forced invalidation of dirty buffer contents, to be used
2660 * after a failed write in the rare case that the loss of the
2661 * contents is acceptable. The buffer is invalidated and
2662 * freed.
2663 */
2664 bp->b_flags |= B_INVAL | B_RELBUF | B_NOCACHE;
2665 bp->b_flags &= ~(B_ASYNC | B_CACHE);
2666 }
2667
2668 if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) &&
2669 (bp->b_error != ENXIO || !LIST_EMPTY(&bp->b_dep)) &&
2670 !(bp->b_flags & B_INVAL)) {
2671 /*
2672 * Failed write, redirty. All errors except ENXIO (which
2673 * means the device is gone) are treated as being
2674 * transient.
2675 *
2676 * XXX Treating EIO as transient is not correct; the
2677 * contract with the local storage device drivers is that
2678 * they will only return EIO once the I/O is no longer
2679 * retriable. Network I/O also respects this through the
2680 * guarantees of TCP and/or the internal retries of NFS.
2681 * ENOMEM might be transient, but we also have no way of
2682 * knowing when its ok to retry/reschedule. In general,
2683 * this entire case should be made obsolete through better
2684 * error handling/recovery and resource scheduling.
2685 *
2686 * Do this also for buffers that failed with ENXIO, but have
2687 * non-empty dependencies - the soft updates code might need
2688 * to access the buffer to untangle them.
2689 *
2690 * Must clear BIO_ERROR to prevent pages from being scrapped.
2691 */
2692 bp->b_ioflags &= ~BIO_ERROR;
2693 bdirty(bp);
2694 } else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
2695 (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
2696 /*
2697 * Either a failed read I/O, or we were asked to free or not
2698 * cache the buffer, or we failed to write to a device that's
2699 * no longer present.
2700 */
2701 bp->b_flags |= B_INVAL;
2702 if (!LIST_EMPTY(&bp->b_dep))
2703 buf_deallocate(bp);
2704 if (bp->b_flags & B_DELWRI)
2705 bdirtysub(bp);
2706 bp->b_flags &= ~(B_DELWRI | B_CACHE);
2707 if ((bp->b_flags & B_VMIO) == 0) {
2708 allocbuf(bp, 0);
2709 if (bp->b_vp)
2710 brelvp(bp);
2711 }
2712 }
2713
2714 /*
2715 * We must clear B_RELBUF if B_DELWRI is set. If vfs_vmio_truncate()
2716 * is called with B_DELWRI set, the underlying pages may wind up
2717 * getting freed causing a previous write (bdwrite()) to get 'lost'
2718 * because pages associated with a B_DELWRI bp are marked clean.
2719 *
2720 * We still allow the B_INVAL case to call vfs_vmio_truncate(), even
2721 * if B_DELWRI is set.
2722 */
2723 if (bp->b_flags & B_DELWRI)
2724 bp->b_flags &= ~B_RELBUF;
2725
2726 /*
2727 * VMIO buffer rundown. It is not very necessary to keep a VMIO buffer
2728 * constituted, not even NFS buffers now. Two flags effect this. If
2729 * B_INVAL, the struct buf is invalidated but the VM object is kept
2730 * around ( i.e. so it is trivial to reconstitute the buffer later ).
2731 *
2732 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
2733 * invalidated. BIO_ERROR cannot be set for a failed write unless the
2734 * buffer is also B_INVAL because it hits the re-dirtying code above.
2735 *
2736 * Normally we can do this whether a buffer is B_DELWRI or not. If
2737 * the buffer is an NFS buffer, it is tracking piecemeal writes or
2738 * the commit state and we cannot afford to lose the buffer. If the
2739 * buffer has a background write in progress, we need to keep it
2740 * around to prevent it from being reconstituted and starting a second
2741 * background write.
2742 */
2743
2744 v_mnt = bp->b_vp != NULL ? bp->b_vp->v_mount : NULL;
2745
2746 if ((bp->b_flags & B_VMIO) && (bp->b_flags & B_NOCACHE ||
2747 (bp->b_ioflags & BIO_ERROR && bp->b_iocmd == BIO_READ)) &&
2748 (v_mnt == NULL || (v_mnt->mnt_vfc->vfc_flags & VFCF_NETWORK) == 0 ||
2749 vn_isdisk(bp->b_vp) || (bp->b_flags & B_DELWRI) == 0)) {
2750 vfs_vmio_invalidate(bp);
2751 allocbuf(bp, 0);
2752 }
2753
2754 if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0 ||
2755 (bp->b_flags & (B_DELWRI | B_NOREUSE)) == B_NOREUSE) {
2756 allocbuf(bp, 0);
2757 bp->b_flags &= ~B_NOREUSE;
2758 if (bp->b_vp != NULL)
2759 brelvp(bp);
2760 }
2761
2762 /*
2763 * If the buffer has junk contents signal it and eventually
2764 * clean up B_DELWRI and diassociate the vnode so that gbincore()
2765 * doesn't find it.
2766 */
2767 if (bp->b_bufsize == 0 || (bp->b_ioflags & BIO_ERROR) != 0 ||
2768 (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) != 0)
2769 bp->b_flags |= B_INVAL;
2770 if (bp->b_flags & B_INVAL) {
2771 if (bp->b_flags & B_DELWRI)
2772 bundirty(bp);
2773 if (bp->b_vp)
2774 brelvp(bp);
2775 }
2776
2777 buf_track(bp, __func__);
2778
2779 /* buffers with no memory */
2780 if (bp->b_bufsize == 0) {
2781 buf_free(bp);
2782 return;
2783 }
2784 /* buffers with junk contents */
2785 if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
2786 (bp->b_ioflags & BIO_ERROR)) {
2787 bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
2788 if (bp->b_vflags & BV_BKGRDINPROG)
2789 panic("losing buffer 2");
2790 qindex = QUEUE_CLEAN;
2791 bp->b_flags |= B_AGE;
2792 /* remaining buffers */
2793 } else if (bp->b_flags & B_DELWRI)
2794 qindex = QUEUE_DIRTY;
2795 else
2796 qindex = QUEUE_CLEAN;
2797
2798 if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
2799 panic("brelse: not dirty");
2800
2801 bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_RELBUF | B_DIRECT);
2802 bp->b_xflags &= ~(BX_CVTENXIO);
2803 /* binsfree unlocks bp. */
2804 binsfree(bp, qindex);
2805 }
2806
2807 /*
2808 * Release a buffer back to the appropriate queue but do not try to free
2809 * it. The buffer is expected to be used again soon.
2810 *
2811 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
2812 * biodone() to requeue an async I/O on completion. It is also used when
2813 * known good buffers need to be requeued but we think we may need the data
2814 * again soon.
2815 *
2816 * XXX we should be able to leave the B_RELBUF hint set on completion.
2817 */
2818 void
bqrelse(struct buf * bp)2819 bqrelse(struct buf *bp)
2820 {
2821 int qindex;
2822
2823 CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2824 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
2825 ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
2826
2827 qindex = QUEUE_NONE;
2828 if (BUF_LOCKRECURSED(bp)) {
2829 /* do not release to free list */
2830 BUF_UNLOCK(bp);
2831 return;
2832 }
2833 bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
2834 bp->b_xflags &= ~(BX_CVTENXIO);
2835
2836 if (LIST_EMPTY(&bp->b_dep)) {
2837 bp->b_flags &= ~B_IOSTARTED;
2838 } else {
2839 KASSERT((bp->b_flags & B_IOSTARTED) == 0,
2840 ("bqrelse: SU io not finished bp %p", bp));
2841 }
2842
2843 if (bp->b_flags & B_MANAGED) {
2844 if (bp->b_flags & B_REMFREE)
2845 bremfreef(bp);
2846 goto out;
2847 }
2848
2849 /* buffers with stale but valid contents */
2850 if ((bp->b_flags & B_DELWRI) != 0 || (bp->b_vflags & (BV_BKGRDINPROG |
2851 BV_BKGRDERR)) == BV_BKGRDERR) {
2852 BO_LOCK(bp->b_bufobj);
2853 bp->b_vflags &= ~BV_BKGRDERR;
2854 BO_UNLOCK(bp->b_bufobj);
2855 qindex = QUEUE_DIRTY;
2856 } else {
2857 if ((bp->b_flags & B_DELWRI) == 0 &&
2858 (bp->b_xflags & BX_VNDIRTY))
2859 panic("bqrelse: not dirty");
2860 if ((bp->b_flags & B_NOREUSE) != 0) {
2861 brelse(bp);
2862 return;
2863 }
2864 qindex = QUEUE_CLEAN;
2865 }
2866 buf_track(bp, __func__);
2867 /* binsfree unlocks bp. */
2868 binsfree(bp, qindex);
2869 return;
2870
2871 out:
2872 buf_track(bp, __func__);
2873 /* unlock */
2874 BUF_UNLOCK(bp);
2875 }
2876
2877 /*
2878 * Complete I/O to a VMIO backed page. Validate the pages as appropriate,
2879 * restore bogus pages.
2880 */
2881 static void
vfs_vmio_iodone(struct buf * bp)2882 vfs_vmio_iodone(struct buf *bp)
2883 {
2884 vm_ooffset_t foff;
2885 vm_page_t m;
2886 vm_object_t obj;
2887 struct vnode *vp __unused;
2888 int i, iosize, resid;
2889 bool bogus;
2890
2891 obj = bp->b_bufobj->bo_object;
2892 KASSERT(blockcount_read(&obj->paging_in_progress) >= bp->b_npages,
2893 ("vfs_vmio_iodone: paging in progress(%d) < b_npages(%d)",
2894 blockcount_read(&obj->paging_in_progress), bp->b_npages));
2895
2896 vp = bp->b_vp;
2897 VNPASS(vp->v_holdcnt > 0, vp);
2898 VNPASS(vp->v_object != NULL, vp);
2899
2900 foff = bp->b_offset;
2901 KASSERT(bp->b_offset != NOOFFSET,
2902 ("vfs_vmio_iodone: bp %p has no buffer offset", bp));
2903
2904 bogus = false;
2905 iosize = bp->b_bcount - bp->b_resid;
2906 for (i = 0; i < bp->b_npages; i++) {
2907 resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
2908 if (resid > iosize)
2909 resid = iosize;
2910
2911 /*
2912 * cleanup bogus pages, restoring the originals
2913 */
2914 m = bp->b_pages[i];
2915 if (m == bogus_page) {
2916 bogus = true;
2917 m = vm_page_relookup(obj, OFF_TO_IDX(foff));
2918 if (m == NULL)
2919 panic("biodone: page disappeared!");
2920 bp->b_pages[i] = m;
2921 } else if ((bp->b_iocmd == BIO_READ) && resid > 0) {
2922 /*
2923 * In the write case, the valid and clean bits are
2924 * already changed correctly ( see bdwrite() ), so we
2925 * only need to do this here in the read case.
2926 */
2927 KASSERT((m->dirty & vm_page_bits(foff & PAGE_MASK,
2928 resid)) == 0, ("vfs_vmio_iodone: page %p "
2929 "has unexpected dirty bits", m));
2930 vfs_page_set_valid(bp, foff, m);
2931 }
2932 KASSERT(OFF_TO_IDX(foff) == m->pindex,
2933 ("vfs_vmio_iodone: foff(%jd)/pindex(%ju) mismatch",
2934 (intmax_t)foff, (uintmax_t)m->pindex));
2935
2936 vm_page_sunbusy(m);
2937 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
2938 iosize -= resid;
2939 }
2940 vm_object_pip_wakeupn(obj, bp->b_npages);
2941 if (bogus && buf_mapped(bp)) {
2942 BUF_CHECK_MAPPED(bp);
2943 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
2944 bp->b_pages, bp->b_npages);
2945 }
2946 }
2947
2948 /*
2949 * Perform page invalidation when a buffer is released. The fully invalid
2950 * pages will be reclaimed later in vfs_vmio_truncate().
2951 */
2952 static void
vfs_vmio_invalidate(struct buf * bp)2953 vfs_vmio_invalidate(struct buf *bp)
2954 {
2955 vm_object_t obj;
2956 vm_page_t m;
2957 int flags, i, resid, poffset, presid;
2958
2959 if (buf_mapped(bp)) {
2960 BUF_CHECK_MAPPED(bp);
2961 pmap_qremove(trunc_page((vm_offset_t)bp->b_data), bp->b_npages);
2962 } else
2963 BUF_CHECK_UNMAPPED(bp);
2964 /*
2965 * Get the base offset and length of the buffer. Note that
2966 * in the VMIO case if the buffer block size is not
2967 * page-aligned then b_data pointer may not be page-aligned.
2968 * But our b_pages[] array *IS* page aligned.
2969 *
2970 * block sizes less then DEV_BSIZE (usually 512) are not
2971 * supported due to the page granularity bits (m->valid,
2972 * m->dirty, etc...).
2973 *
2974 * See man buf(9) for more information
2975 */
2976 flags = (bp->b_flags & B_NOREUSE) != 0 ? VPR_NOREUSE : 0;
2977 obj = bp->b_bufobj->bo_object;
2978 resid = bp->b_bufsize;
2979 poffset = bp->b_offset & PAGE_MASK;
2980 VM_OBJECT_WLOCK(obj);
2981 for (i = 0; i < bp->b_npages; i++) {
2982 m = bp->b_pages[i];
2983 if (m == bogus_page)
2984 panic("vfs_vmio_invalidate: Unexpected bogus page.");
2985 bp->b_pages[i] = NULL;
2986
2987 presid = resid > (PAGE_SIZE - poffset) ?
2988 (PAGE_SIZE - poffset) : resid;
2989 KASSERT(presid >= 0, ("brelse: extra page"));
2990 vm_page_busy_acquire(m, VM_ALLOC_SBUSY);
2991 if (pmap_page_wired_mappings(m) == 0)
2992 vm_page_set_invalid(m, poffset, presid);
2993 vm_page_sunbusy(m);
2994 vm_page_release_locked(m, flags);
2995 resid -= presid;
2996 poffset = 0;
2997 }
2998 VM_OBJECT_WUNLOCK(obj);
2999 bp->b_npages = 0;
3000 }
3001
3002 /*
3003 * Page-granular truncation of an existing VMIO buffer.
3004 */
3005 static void
vfs_vmio_truncate(struct buf * bp,int desiredpages)3006 vfs_vmio_truncate(struct buf *bp, int desiredpages)
3007 {
3008 vm_object_t obj;
3009 vm_page_t m;
3010 int flags, i;
3011
3012 if (bp->b_npages == desiredpages)
3013 return;
3014
3015 if (buf_mapped(bp)) {
3016 BUF_CHECK_MAPPED(bp);
3017 pmap_qremove((vm_offset_t)trunc_page((vm_offset_t)bp->b_data) +
3018 (desiredpages << PAGE_SHIFT), bp->b_npages - desiredpages);
3019 } else
3020 BUF_CHECK_UNMAPPED(bp);
3021
3022 /*
3023 * The object lock is needed only if we will attempt to free pages.
3024 */
3025 flags = (bp->b_flags & B_NOREUSE) != 0 ? VPR_NOREUSE : 0;
3026 if ((bp->b_flags & B_DIRECT) != 0) {
3027 flags |= VPR_TRYFREE;
3028 obj = bp->b_bufobj->bo_object;
3029 VM_OBJECT_WLOCK(obj);
3030 } else {
3031 obj = NULL;
3032 }
3033 for (i = desiredpages; i < bp->b_npages; i++) {
3034 m = bp->b_pages[i];
3035 KASSERT(m != bogus_page, ("allocbuf: bogus page found"));
3036 bp->b_pages[i] = NULL;
3037 if (obj != NULL)
3038 vm_page_release_locked(m, flags);
3039 else
3040 vm_page_release(m, flags);
3041 }
3042 if (obj != NULL)
3043 VM_OBJECT_WUNLOCK(obj);
3044 bp->b_npages = desiredpages;
3045 }
3046
3047 /*
3048 * Byte granular extension of VMIO buffers.
3049 */
3050 static void
vfs_vmio_extend(struct buf * bp,int desiredpages,int size)3051 vfs_vmio_extend(struct buf *bp, int desiredpages, int size)
3052 {
3053 /*
3054 * We are growing the buffer, possibly in a
3055 * byte-granular fashion.
3056 */
3057 vm_object_t obj;
3058 vm_offset_t toff;
3059 vm_offset_t tinc;
3060 vm_page_t m;
3061
3062 /*
3063 * Step 1, bring in the VM pages from the object, allocating
3064 * them if necessary. We must clear B_CACHE if these pages
3065 * are not valid for the range covered by the buffer.
3066 */
3067 obj = bp->b_bufobj->bo_object;
3068 if (bp->b_npages < desiredpages) {
3069 KASSERT(desiredpages <= atop(maxbcachebuf),
3070 ("vfs_vmio_extend past maxbcachebuf %p %d %u",
3071 bp, desiredpages, maxbcachebuf));
3072
3073 /*
3074 * We must allocate system pages since blocking
3075 * here could interfere with paging I/O, no
3076 * matter which process we are.
3077 *
3078 * Only exclusive busy can be tested here.
3079 * Blocking on shared busy might lead to
3080 * deadlocks once allocbuf() is called after
3081 * pages are vfs_busy_pages().
3082 */
3083 (void)vm_page_grab_pages_unlocked(obj,
3084 OFF_TO_IDX(bp->b_offset) + bp->b_npages,
3085 VM_ALLOC_SYSTEM | VM_ALLOC_IGN_SBUSY |
3086 VM_ALLOC_NOBUSY | VM_ALLOC_WIRED,
3087 &bp->b_pages[bp->b_npages], desiredpages - bp->b_npages);
3088 bp->b_npages = desiredpages;
3089 }
3090
3091 /*
3092 * Step 2. We've loaded the pages into the buffer,
3093 * we have to figure out if we can still have B_CACHE
3094 * set. Note that B_CACHE is set according to the
3095 * byte-granular range ( bcount and size ), not the
3096 * aligned range ( newbsize ).
3097 *
3098 * The VM test is against m->valid, which is DEV_BSIZE
3099 * aligned. Needless to say, the validity of the data
3100 * needs to also be DEV_BSIZE aligned. Note that this
3101 * fails with NFS if the server or some other client
3102 * extends the file's EOF. If our buffer is resized,
3103 * B_CACHE may remain set! XXX
3104 */
3105 toff = bp->b_bcount;
3106 tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
3107 while ((bp->b_flags & B_CACHE) && toff < size) {
3108 vm_pindex_t pi;
3109
3110 if (tinc > (size - toff))
3111 tinc = size - toff;
3112 pi = ((bp->b_offset & PAGE_MASK) + toff) >> PAGE_SHIFT;
3113 m = bp->b_pages[pi];
3114 vfs_buf_test_cache(bp, bp->b_offset, toff, tinc, m);
3115 toff += tinc;
3116 tinc = PAGE_SIZE;
3117 }
3118
3119 /*
3120 * Step 3, fixup the KVA pmap.
3121 */
3122 if (buf_mapped(bp))
3123 bpmap_qenter(bp);
3124 else
3125 BUF_CHECK_UNMAPPED(bp);
3126 }
3127
3128 /*
3129 * Check to see if a block at a particular lbn is available for a clustered
3130 * write.
3131 */
3132 static int
vfs_bio_clcheck(struct vnode * vp,int size,daddr_t lblkno,daddr_t blkno)3133 vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
3134 {
3135 struct buf *bpa;
3136 int match;
3137
3138 match = 0;
3139
3140 /* If the buf isn't in core skip it */
3141 if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
3142 return (0);
3143
3144 /* If the buf is busy we don't want to wait for it */
3145 if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
3146 return (0);
3147
3148 /* Only cluster with valid clusterable delayed write buffers */
3149 if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
3150 (B_DELWRI | B_CLUSTEROK))
3151 goto done;
3152
3153 if (bpa->b_bufsize != size)
3154 goto done;
3155
3156 /*
3157 * Check to see if it is in the expected place on disk and that the
3158 * block has been mapped.
3159 */
3160 if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
3161 match = 1;
3162 done:
3163 BUF_UNLOCK(bpa);
3164 return (match);
3165 }
3166
3167 /*
3168 * vfs_bio_awrite:
3169 *
3170 * Implement clustered async writes for clearing out B_DELWRI buffers.
3171 * This is much better then the old way of writing only one buffer at
3172 * a time. Note that we may not be presented with the buffers in the
3173 * correct order, so we search for the cluster in both directions.
3174 */
3175 int
vfs_bio_awrite(struct buf * bp)3176 vfs_bio_awrite(struct buf *bp)
3177 {
3178 struct bufobj *bo;
3179 int i;
3180 int j;
3181 daddr_t lblkno = bp->b_lblkno;
3182 struct vnode *vp = bp->b_vp;
3183 int ncl;
3184 int nwritten;
3185 int size;
3186 int maxcl;
3187 int gbflags;
3188
3189 bo = &vp->v_bufobj;
3190 gbflags = (bp->b_data == unmapped_buf) ? GB_UNMAPPED : 0;
3191 /*
3192 * right now we support clustered writing only to regular files. If
3193 * we find a clusterable block we could be in the middle of a cluster
3194 * rather then at the beginning.
3195 */
3196 if ((vp->v_type == VREG) &&
3197 (vp->v_mount != 0) && /* Only on nodes that have the size info */
3198 (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
3199 size = vp->v_mount->mnt_stat.f_iosize;
3200 maxcl = maxphys / size;
3201
3202 BO_RLOCK(bo);
3203 for (i = 1; i < maxcl; i++)
3204 if (vfs_bio_clcheck(vp, size, lblkno + i,
3205 bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
3206 break;
3207
3208 for (j = 1; i + j <= maxcl && j <= lblkno; j++)
3209 if (vfs_bio_clcheck(vp, size, lblkno - j,
3210 bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
3211 break;
3212 BO_RUNLOCK(bo);
3213 --j;
3214 ncl = i + j;
3215 /*
3216 * this is a possible cluster write
3217 */
3218 if (ncl != 1) {
3219 BUF_UNLOCK(bp);
3220 nwritten = cluster_wbuild(vp, size, lblkno - j, ncl,
3221 gbflags);
3222 return (nwritten);
3223 }
3224 }
3225 bremfree(bp);
3226 bp->b_flags |= B_ASYNC;
3227 /*
3228 * default (old) behavior, writing out only one block
3229 *
3230 * XXX returns b_bufsize instead of b_bcount for nwritten?
3231 */
3232 nwritten = bp->b_bufsize;
3233 (void) bwrite(bp);
3234
3235 return (nwritten);
3236 }
3237
3238 /*
3239 * getnewbuf_kva:
3240 *
3241 * Allocate KVA for an empty buf header according to gbflags.
3242 */
3243 static int
getnewbuf_kva(struct buf * bp,int gbflags,int maxsize)3244 getnewbuf_kva(struct buf *bp, int gbflags, int maxsize)
3245 {
3246
3247 if ((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_UNMAPPED) {
3248 /*
3249 * In order to keep fragmentation sane we only allocate kva
3250 * in BKVASIZE chunks. XXX with vmem we can do page size.
3251 */
3252 maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
3253
3254 if (maxsize != bp->b_kvasize &&
3255 bufkva_alloc(bp, maxsize, gbflags))
3256 return (ENOSPC);
3257 }
3258 return (0);
3259 }
3260
3261 /*
3262 * getnewbuf:
3263 *
3264 * Find and initialize a new buffer header, freeing up existing buffers
3265 * in the bufqueues as necessary. The new buffer is returned locked.
3266 *
3267 * We block if:
3268 * We have insufficient buffer headers
3269 * We have insufficient buffer space
3270 * buffer_arena is too fragmented ( space reservation fails )
3271 * If we have to flush dirty buffers ( but we try to avoid this )
3272 *
3273 * The caller is responsible for releasing the reserved bufspace after
3274 * allocbuf() is called.
3275 */
3276 static struct buf *
getnewbuf(struct vnode * vp,int slpflag,int slptimeo,int maxsize,int gbflags)3277 getnewbuf(struct vnode *vp, int slpflag, int slptimeo, int maxsize, int gbflags)
3278 {
3279 struct bufdomain *bd;
3280 struct buf *bp;
3281 bool metadata, reserved;
3282
3283 bp = NULL;
3284 KASSERT((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC,
3285 ("GB_KVAALLOC only makes sense with GB_UNMAPPED"));
3286 if (!unmapped_buf_allowed)
3287 gbflags &= ~(GB_UNMAPPED | GB_KVAALLOC);
3288
3289 if (vp == NULL || (vp->v_vflag & (VV_MD | VV_SYSTEM)) != 0 ||
3290 vp->v_type == VCHR)
3291 metadata = true;
3292 else
3293 metadata = false;
3294 if (vp == NULL)
3295 bd = &bdomain[0];
3296 else
3297 bd = &bdomain[vp->v_bufobj.bo_domain];
3298
3299 counter_u64_add(getnewbufcalls, 1);
3300 reserved = false;
3301 do {
3302 if (reserved == false &&
3303 bufspace_reserve(bd, maxsize, metadata) != 0) {
3304 counter_u64_add(getnewbufrestarts, 1);
3305 continue;
3306 }
3307 reserved = true;
3308 if ((bp = buf_alloc(bd)) == NULL) {
3309 counter_u64_add(getnewbufrestarts, 1);
3310 continue;
3311 }
3312 if (getnewbuf_kva(bp, gbflags, maxsize) == 0)
3313 return (bp);
3314 break;
3315 } while (buf_recycle(bd, false) == 0);
3316
3317 if (reserved)
3318 bufspace_release(bd, maxsize);
3319 if (bp != NULL) {
3320 bp->b_flags |= B_INVAL;
3321 brelse(bp);
3322 }
3323 bufspace_wait(bd, vp, gbflags, slpflag, slptimeo);
3324
3325 return (NULL);
3326 }
3327
3328 /*
3329 * buf_daemon:
3330 *
3331 * buffer flushing daemon. Buffers are normally flushed by the
3332 * update daemon but if it cannot keep up this process starts to
3333 * take the load in an attempt to prevent getnewbuf() from blocking.
3334 */
3335 static struct kproc_desc buf_kp = {
3336 "bufdaemon",
3337 buf_daemon,
3338 &bufdaemonproc
3339 };
3340 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp);
3341
3342 static int
buf_flush(struct vnode * vp,struct bufdomain * bd,int target)3343 buf_flush(struct vnode *vp, struct bufdomain *bd, int target)
3344 {
3345 int flushed;
3346
3347 flushed = flushbufqueues(vp, bd, target, 0);
3348 if (flushed == 0) {
3349 /*
3350 * Could not find any buffers without rollback
3351 * dependencies, so just write the first one
3352 * in the hopes of eventually making progress.
3353 */
3354 if (vp != NULL && target > 2)
3355 target /= 2;
3356 flushbufqueues(vp, bd, target, 1);
3357 }
3358 return (flushed);
3359 }
3360
3361 static void
buf_daemon()3362 buf_daemon()
3363 {
3364 struct bufdomain *bd;
3365 int speedupreq;
3366 int lodirty;
3367 int i;
3368
3369 /*
3370 * This process needs to be suspended prior to shutdown sync.
3371 */
3372 EVENTHANDLER_REGISTER(shutdown_pre_sync, kthread_shutdown, curthread,
3373 SHUTDOWN_PRI_LAST + 100);
3374
3375 /*
3376 * Start the buf clean daemons as children threads.
3377 */
3378 for (i = 0 ; i < buf_domains; i++) {
3379 int error;
3380
3381 error = kthread_add((void (*)(void *))bufspace_daemon,
3382 &bdomain[i], curproc, NULL, 0, 0, "bufspacedaemon-%d", i);
3383 if (error)
3384 panic("error %d spawning bufspace daemon", error);
3385 }
3386
3387 /*
3388 * This process is allowed to take the buffer cache to the limit
3389 */
3390 curthread->td_pflags |= TDP_NORUNNINGBUF | TDP_BUFNEED;
3391 mtx_lock(&bdlock);
3392 for (;;) {
3393 bd_request = 0;
3394 mtx_unlock(&bdlock);
3395
3396 kthread_suspend_check();
3397
3398 /*
3399 * Save speedupreq for this pass and reset to capture new
3400 * requests.
3401 */
3402 speedupreq = bd_speedupreq;
3403 bd_speedupreq = 0;
3404
3405 /*
3406 * Flush each domain sequentially according to its level and
3407 * the speedup request.
3408 */
3409 for (i = 0; i < buf_domains; i++) {
3410 bd = &bdomain[i];
3411 if (speedupreq)
3412 lodirty = bd->bd_numdirtybuffers / 2;
3413 else
3414 lodirty = bd->bd_lodirtybuffers;
3415 while (bd->bd_numdirtybuffers > lodirty) {
3416 if (buf_flush(NULL, bd,
3417 bd->bd_numdirtybuffers - lodirty) == 0)
3418 break;
3419 kern_yield(PRI_USER);
3420 }
3421 }
3422
3423 /*
3424 * Only clear bd_request if we have reached our low water
3425 * mark. The buf_daemon normally waits 1 second and
3426 * then incrementally flushes any dirty buffers that have
3427 * built up, within reason.
3428 *
3429 * If we were unable to hit our low water mark and couldn't
3430 * find any flushable buffers, we sleep for a short period
3431 * to avoid endless loops on unlockable buffers.
3432 */
3433 mtx_lock(&bdlock);
3434 if (!BIT_EMPTY(BUF_DOMAINS, &bdlodirty)) {
3435 /*
3436 * We reached our low water mark, reset the
3437 * request and sleep until we are needed again.
3438 * The sleep is just so the suspend code works.
3439 */
3440 bd_request = 0;
3441 /*
3442 * Do an extra wakeup in case dirty threshold
3443 * changed via sysctl and the explicit transition
3444 * out of shortfall was missed.
3445 */
3446 bdirtywakeup();
3447 if (runningbufspace <= lorunningspace)
3448 runningwakeup();
3449 msleep(&bd_request, &bdlock, PVM, "psleep", hz);
3450 } else {
3451 /*
3452 * We couldn't find any flushable dirty buffers but
3453 * still have too many dirty buffers, we
3454 * have to sleep and try again. (rare)
3455 */
3456 msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
3457 }
3458 }
3459 }
3460
3461 /*
3462 * flushbufqueues:
3463 *
3464 * Try to flush a buffer in the dirty queue. We must be careful to
3465 * free up B_INVAL buffers instead of write them, which NFS is
3466 * particularly sensitive to.
3467 */
3468 static int flushwithdeps = 0;
3469 SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW | CTLFLAG_STATS,
3470 &flushwithdeps, 0,
3471 "Number of buffers flushed with dependecies that require rollbacks");
3472
3473 static int
flushbufqueues(struct vnode * lvp,struct bufdomain * bd,int target,int flushdeps)3474 flushbufqueues(struct vnode *lvp, struct bufdomain *bd, int target,
3475 int flushdeps)
3476 {
3477 struct bufqueue *bq;
3478 struct buf *sentinel;
3479 struct vnode *vp;
3480 struct mount *mp;
3481 struct buf *bp;
3482 int hasdeps;
3483 int flushed;
3484 int error;
3485 bool unlock;
3486
3487 flushed = 0;
3488 bq = &bd->bd_dirtyq;
3489 bp = NULL;
3490 sentinel = malloc(sizeof(struct buf), M_TEMP, M_WAITOK | M_ZERO);
3491 sentinel->b_qindex = QUEUE_SENTINEL;
3492 BQ_LOCK(bq);
3493 TAILQ_INSERT_HEAD(&bq->bq_queue, sentinel, b_freelist);
3494 BQ_UNLOCK(bq);
3495 while (flushed != target) {
3496 maybe_yield();
3497 BQ_LOCK(bq);
3498 bp = TAILQ_NEXT(sentinel, b_freelist);
3499 if (bp != NULL) {
3500 TAILQ_REMOVE(&bq->bq_queue, sentinel, b_freelist);
3501 TAILQ_INSERT_AFTER(&bq->bq_queue, bp, sentinel,
3502 b_freelist);
3503 } else {
3504 BQ_UNLOCK(bq);
3505 break;
3506 }
3507 /*
3508 * Skip sentinels inserted by other invocations of the
3509 * flushbufqueues(), taking care to not reorder them.
3510 *
3511 * Only flush the buffers that belong to the
3512 * vnode locked by the curthread.
3513 */
3514 if (bp->b_qindex == QUEUE_SENTINEL || (lvp != NULL &&
3515 bp->b_vp != lvp)) {
3516 BQ_UNLOCK(bq);
3517 continue;
3518 }
3519 error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL);
3520 BQ_UNLOCK(bq);
3521 if (error != 0)
3522 continue;
3523
3524 /*
3525 * BKGRDINPROG can only be set with the buf and bufobj
3526 * locks both held. We tolerate a race to clear it here.
3527 */
3528 if ((bp->b_vflags & BV_BKGRDINPROG) != 0 ||
3529 (bp->b_flags & B_DELWRI) == 0) {
3530 BUF_UNLOCK(bp);
3531 continue;
3532 }
3533 if (bp->b_flags & B_INVAL) {
3534 bremfreef(bp);
3535 brelse(bp);
3536 flushed++;
3537 continue;
3538 }
3539
3540 if (!LIST_EMPTY(&bp->b_dep) && buf_countdeps(bp, 0)) {
3541 if (flushdeps == 0) {
3542 BUF_UNLOCK(bp);
3543 continue;
3544 }
3545 hasdeps = 1;
3546 } else
3547 hasdeps = 0;
3548 /*
3549 * We must hold the lock on a vnode before writing
3550 * one of its buffers. Otherwise we may confuse, or
3551 * in the case of a snapshot vnode, deadlock the
3552 * system.
3553 *
3554 * The lock order here is the reverse of the normal
3555 * of vnode followed by buf lock. This is ok because
3556 * the NOWAIT will prevent deadlock.
3557 */
3558 vp = bp->b_vp;
3559 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
3560 BUF_UNLOCK(bp);
3561 continue;
3562 }
3563 if (lvp == NULL) {
3564 unlock = true;
3565 error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT);
3566 } else {
3567 ASSERT_VOP_LOCKED(vp, "getbuf");
3568 unlock = false;
3569 error = VOP_ISLOCKED(vp) == LK_EXCLUSIVE ? 0 :
3570 vn_lock(vp, LK_TRYUPGRADE);
3571 }
3572 if (error == 0) {
3573 CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X",
3574 bp, bp->b_vp, bp->b_flags);
3575 if (curproc == bufdaemonproc) {
3576 vfs_bio_awrite(bp);
3577 } else {
3578 bremfree(bp);
3579 bwrite(bp);
3580 counter_u64_add(notbufdflushes, 1);
3581 }
3582 vn_finished_write(mp);
3583 if (unlock)
3584 VOP_UNLOCK(vp);
3585 flushwithdeps += hasdeps;
3586 flushed++;
3587
3588 /*
3589 * Sleeping on runningbufspace while holding
3590 * vnode lock leads to deadlock.
3591 */
3592 if (curproc == bufdaemonproc &&
3593 runningbufspace > hirunningspace)
3594 waitrunningbufspace();
3595 continue;
3596 }
3597 vn_finished_write(mp);
3598 BUF_UNLOCK(bp);
3599 }
3600 BQ_LOCK(bq);
3601 TAILQ_REMOVE(&bq->bq_queue, sentinel, b_freelist);
3602 BQ_UNLOCK(bq);
3603 free(sentinel, M_TEMP);
3604 return (flushed);
3605 }
3606
3607 /*
3608 * Check to see if a block is currently memory resident.
3609 */
3610 struct buf *
incore(struct bufobj * bo,daddr_t blkno)3611 incore(struct bufobj *bo, daddr_t blkno)
3612 {
3613 return (gbincore_unlocked(bo, blkno));
3614 }
3615
3616 /*
3617 * Returns true if no I/O is needed to access the
3618 * associated VM object. This is like incore except
3619 * it also hunts around in the VM system for the data.
3620 */
3621 bool
inmem(struct vnode * vp,daddr_t blkno)3622 inmem(struct vnode * vp, daddr_t blkno)
3623 {
3624 vm_object_t obj;
3625 vm_offset_t toff, tinc, size;
3626 vm_page_t m, n;
3627 vm_ooffset_t off;
3628 int valid;
3629
3630 ASSERT_VOP_LOCKED(vp, "inmem");
3631
3632 if (incore(&vp->v_bufobj, blkno))
3633 return (true);
3634 if (vp->v_mount == NULL)
3635 return (false);
3636 obj = vp->v_object;
3637 if (obj == NULL)
3638 return (false);
3639
3640 size = PAGE_SIZE;
3641 if (size > vp->v_mount->mnt_stat.f_iosize)
3642 size = vp->v_mount->mnt_stat.f_iosize;
3643 off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
3644
3645 for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
3646 m = vm_page_lookup_unlocked(obj, OFF_TO_IDX(off + toff));
3647 recheck:
3648 if (m == NULL)
3649 return (false);
3650
3651 tinc = size;
3652 if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
3653 tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
3654 /*
3655 * Consider page validity only if page mapping didn't change
3656 * during the check.
3657 */
3658 valid = vm_page_is_valid(m,
3659 (vm_offset_t)((toff + off) & PAGE_MASK), tinc);
3660 n = vm_page_lookup_unlocked(obj, OFF_TO_IDX(off + toff));
3661 if (m != n) {
3662 m = n;
3663 goto recheck;
3664 }
3665 if (!valid)
3666 return (false);
3667 }
3668 return (true);
3669 }
3670
3671 /*
3672 * Set the dirty range for a buffer based on the status of the dirty
3673 * bits in the pages comprising the buffer. The range is limited
3674 * to the size of the buffer.
3675 *
3676 * Tell the VM system that the pages associated with this buffer
3677 * are clean. This is used for delayed writes where the data is
3678 * going to go to disk eventually without additional VM intevention.
3679 *
3680 * Note that while we only really need to clean through to b_bcount, we
3681 * just go ahead and clean through to b_bufsize.
3682 */
3683 static void
vfs_clean_pages_dirty_buf(struct buf * bp)3684 vfs_clean_pages_dirty_buf(struct buf *bp)
3685 {
3686 vm_ooffset_t foff, noff, eoff;
3687 vm_page_t m;
3688 int i;
3689
3690 if ((bp->b_flags & B_VMIO) == 0 || bp->b_bufsize == 0)
3691 return;
3692
3693 foff = bp->b_offset;
3694 KASSERT(bp->b_offset != NOOFFSET,
3695 ("vfs_clean_pages_dirty_buf: no buffer offset"));
3696
3697 vfs_busy_pages_acquire(bp);
3698 vfs_setdirty_range(bp);
3699 for (i = 0; i < bp->b_npages; i++) {
3700 noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3701 eoff = noff;
3702 if (eoff > bp->b_offset + bp->b_bufsize)
3703 eoff = bp->b_offset + bp->b_bufsize;
3704 m = bp->b_pages[i];
3705 vfs_page_set_validclean(bp, foff, m);
3706 /* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3707 foff = noff;
3708 }
3709 vfs_busy_pages_release(bp);
3710 }
3711
3712 static void
vfs_setdirty_range(struct buf * bp)3713 vfs_setdirty_range(struct buf *bp)
3714 {
3715 vm_offset_t boffset;
3716 vm_offset_t eoffset;
3717 int i;
3718
3719 /*
3720 * test the pages to see if they have been modified directly
3721 * by users through the VM system.
3722 */
3723 for (i = 0; i < bp->b_npages; i++)
3724 vm_page_test_dirty(bp->b_pages[i]);
3725
3726 /*
3727 * Calculate the encompassing dirty range, boffset and eoffset,
3728 * (eoffset - boffset) bytes.
3729 */
3730
3731 for (i = 0; i < bp->b_npages; i++) {
3732 if (bp->b_pages[i]->dirty)
3733 break;
3734 }
3735 boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
3736
3737 for (i = bp->b_npages - 1; i >= 0; --i) {
3738 if (bp->b_pages[i]->dirty) {
3739 break;
3740 }
3741 }
3742 eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
3743
3744 /*
3745 * Fit it to the buffer.
3746 */
3747
3748 if (eoffset > bp->b_bcount)
3749 eoffset = bp->b_bcount;
3750
3751 /*
3752 * If we have a good dirty range, merge with the existing
3753 * dirty range.
3754 */
3755
3756 if (boffset < eoffset) {
3757 if (bp->b_dirtyoff > boffset)
3758 bp->b_dirtyoff = boffset;
3759 if (bp->b_dirtyend < eoffset)
3760 bp->b_dirtyend = eoffset;
3761 }
3762 }
3763
3764 /*
3765 * Allocate the KVA mapping for an existing buffer.
3766 * If an unmapped buffer is provided but a mapped buffer is requested, take
3767 * also care to properly setup mappings between pages and KVA.
3768 */
3769 static void
bp_unmapped_get_kva(struct buf * bp,daddr_t blkno,int size,int gbflags)3770 bp_unmapped_get_kva(struct buf *bp, daddr_t blkno, int size, int gbflags)
3771 {
3772 int bsize, maxsize, need_mapping, need_kva;
3773 off_t offset;
3774
3775 need_mapping = bp->b_data == unmapped_buf &&
3776 (gbflags & GB_UNMAPPED) == 0;
3777 need_kva = bp->b_kvabase == unmapped_buf &&
3778 bp->b_data == unmapped_buf &&
3779 (gbflags & GB_KVAALLOC) != 0;
3780 if (!need_mapping && !need_kva)
3781 return;
3782
3783 BUF_CHECK_UNMAPPED(bp);
3784
3785 if (need_mapping && bp->b_kvabase != unmapped_buf) {
3786 /*
3787 * Buffer is not mapped, but the KVA was already
3788 * reserved at the time of the instantiation. Use the
3789 * allocated space.
3790 */
3791 goto has_addr;
3792 }
3793
3794 /*
3795 * Calculate the amount of the address space we would reserve
3796 * if the buffer was mapped.
3797 */
3798 bsize = vn_isdisk(bp->b_vp) ? DEV_BSIZE : bp->b_bufobj->bo_bsize;
3799 KASSERT(bsize != 0, ("bsize == 0, check bo->bo_bsize"));
3800 offset = blkno * bsize;
3801 maxsize = size + (offset & PAGE_MASK);
3802 maxsize = imax(maxsize, bsize);
3803
3804 while (bufkva_alloc(bp, maxsize, gbflags) != 0) {
3805 if ((gbflags & GB_NOWAIT_BD) != 0) {
3806 /*
3807 * XXXKIB: defragmentation cannot
3808 * succeed, not sure what else to do.
3809 */
3810 panic("GB_NOWAIT_BD and GB_UNMAPPED %p", bp);
3811 }
3812 counter_u64_add(mappingrestarts, 1);
3813 bufspace_wait(bufdomain(bp), bp->b_vp, gbflags, 0, 0);
3814 }
3815 has_addr:
3816 if (need_mapping) {
3817 /* b_offset is handled by bpmap_qenter. */
3818 bp->b_data = bp->b_kvabase;
3819 BUF_CHECK_MAPPED(bp);
3820 bpmap_qenter(bp);
3821 }
3822 }
3823
3824 struct buf *
getblk(struct vnode * vp,daddr_t blkno,int size,int slpflag,int slptimeo,int flags)3825 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo,
3826 int flags)
3827 {
3828 struct buf *bp;
3829 int error;
3830
3831 error = getblkx(vp, blkno, blkno, size, slpflag, slptimeo, flags, &bp);
3832 if (error != 0)
3833 return (NULL);
3834 return (bp);
3835 }
3836
3837 /*
3838 * getblkx:
3839 *
3840 * Get a block given a specified block and offset into a file/device.
3841 * The buffers B_DONE bit will be cleared on return, making it almost
3842 * ready for an I/O initiation. B_INVAL may or may not be set on
3843 * return. The caller should clear B_INVAL prior to initiating a
3844 * READ.
3845 *
3846 * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
3847 * an existing buffer.
3848 *
3849 * For a VMIO buffer, B_CACHE is modified according to the backing VM.
3850 * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
3851 * and then cleared based on the backing VM. If the previous buffer is
3852 * non-0-sized but invalid, B_CACHE will be cleared.
3853 *
3854 * If getblk() must create a new buffer, the new buffer is returned with
3855 * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
3856 * case it is returned with B_INVAL clear and B_CACHE set based on the
3857 * backing VM.
3858 *
3859 * getblk() also forces a bwrite() for any B_DELWRI buffer whose
3860 * B_CACHE bit is clear.
3861 *
3862 * What this means, basically, is that the caller should use B_CACHE to
3863 * determine whether the buffer is fully valid or not and should clear
3864 * B_INVAL prior to issuing a read. If the caller intends to validate
3865 * the buffer by loading its data area with something, the caller needs
3866 * to clear B_INVAL. If the caller does this without issuing an I/O,
3867 * the caller should set B_CACHE ( as an optimization ), else the caller
3868 * should issue the I/O and biodone() will set B_CACHE if the I/O was
3869 * a write attempt or if it was a successful read. If the caller
3870 * intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
3871 * prior to issuing the READ. biodone() will *not* clear B_INVAL.
3872 *
3873 * The blkno parameter is the logical block being requested. Normally
3874 * the mapping of logical block number to disk block address is done
3875 * by calling VOP_BMAP(). However, if the mapping is already known, the
3876 * disk block address can be passed using the dblkno parameter. If the
3877 * disk block address is not known, then the same value should be passed
3878 * for blkno and dblkno.
3879 */
3880 int
getblkx(struct vnode * vp,daddr_t blkno,daddr_t dblkno,int size,int slpflag,int slptimeo,int flags,struct buf ** bpp)3881 getblkx(struct vnode *vp, daddr_t blkno, daddr_t dblkno, int size, int slpflag,
3882 int slptimeo, int flags, struct buf **bpp)
3883 {
3884 struct buf *bp;
3885 struct bufobj *bo;
3886 daddr_t d_blkno;
3887 int bsize, error, maxsize, vmio;
3888 off_t offset;
3889
3890 CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size);
3891 KASSERT((flags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC,
3892 ("GB_KVAALLOC only makes sense with GB_UNMAPPED"));
3893 ASSERT_VOP_LOCKED(vp, "getblk");
3894 if (size > maxbcachebuf)
3895 panic("getblk: size(%d) > maxbcachebuf(%d)\n", size,
3896 maxbcachebuf);
3897 if (!unmapped_buf_allowed)
3898 flags &= ~(GB_UNMAPPED | GB_KVAALLOC);
3899
3900 bo = &vp->v_bufobj;
3901 d_blkno = dblkno;
3902
3903 /* Attempt lockless lookup first. */
3904 bp = gbincore_unlocked(bo, blkno);
3905 if (bp == NULL)
3906 goto newbuf_unlocked;
3907
3908 error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL, "getblku", 0,
3909 0);
3910 if (error != 0)
3911 goto loop;
3912
3913 /* Verify buf identify has not changed since lookup. */
3914 if (bp->b_bufobj == bo && bp->b_lblkno == blkno)
3915 goto foundbuf_fastpath;
3916
3917 /* It changed, fallback to locked lookup. */
3918 BUF_UNLOCK_RAW(bp);
3919
3920 loop:
3921 BO_RLOCK(bo);
3922 bp = gbincore(bo, blkno);
3923 if (bp != NULL) {
3924 int lockflags;
3925
3926 /*
3927 * Buffer is in-core. If the buffer is not busy nor managed,
3928 * it must be on a queue.
3929 */
3930 lockflags = LK_EXCLUSIVE | LK_INTERLOCK |
3931 ((flags & GB_LOCK_NOWAIT) ? LK_NOWAIT : LK_SLEEPFAIL);
3932
3933 error = BUF_TIMELOCK(bp, lockflags,
3934 BO_LOCKPTR(bo), "getblk", slpflag, slptimeo);
3935
3936 /*
3937 * If we slept and got the lock we have to restart in case
3938 * the buffer changed identities.
3939 */
3940 if (error == ENOLCK)
3941 goto loop;
3942 /* We timed out or were interrupted. */
3943 else if (error != 0)
3944 return (error);
3945
3946 foundbuf_fastpath:
3947 /* If recursed, assume caller knows the rules. */
3948 if (BUF_LOCKRECURSED(bp))
3949 goto end;
3950
3951 /*
3952 * The buffer is locked. B_CACHE is cleared if the buffer is
3953 * invalid. Otherwise, for a non-VMIO buffer, B_CACHE is set
3954 * and for a VMIO buffer B_CACHE is adjusted according to the
3955 * backing VM cache.
3956 */
3957 if (bp->b_flags & B_INVAL)
3958 bp->b_flags &= ~B_CACHE;
3959 else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
3960 bp->b_flags |= B_CACHE;
3961 if (bp->b_flags & B_MANAGED)
3962 MPASS(bp->b_qindex == QUEUE_NONE);
3963 else
3964 bremfree(bp);
3965
3966 /*
3967 * check for size inconsistencies for non-VMIO case.
3968 */
3969 if (bp->b_bcount != size) {
3970 if ((bp->b_flags & B_VMIO) == 0 ||
3971 (size > bp->b_kvasize)) {
3972 if (bp->b_flags & B_DELWRI) {
3973 bp->b_flags |= B_NOCACHE;
3974 bwrite(bp);
3975 } else {
3976 if (LIST_EMPTY(&bp->b_dep)) {
3977 bp->b_flags |= B_RELBUF;
3978 brelse(bp);
3979 } else {
3980 bp->b_flags |= B_NOCACHE;
3981 bwrite(bp);
3982 }
3983 }
3984 goto loop;
3985 }
3986 }
3987
3988 /*
3989 * Handle the case of unmapped buffer which should
3990 * become mapped, or the buffer for which KVA
3991 * reservation is requested.
3992 */
3993 bp_unmapped_get_kva(bp, blkno, size, flags);
3994
3995 /*
3996 * If the size is inconsistent in the VMIO case, we can resize
3997 * the buffer. This might lead to B_CACHE getting set or
3998 * cleared. If the size has not changed, B_CACHE remains
3999 * unchanged from its previous state.
4000 */
4001 allocbuf(bp, size);
4002
4003 KASSERT(bp->b_offset != NOOFFSET,
4004 ("getblk: no buffer offset"));
4005
4006 /*
4007 * A buffer with B_DELWRI set and B_CACHE clear must
4008 * be committed before we can return the buffer in
4009 * order to prevent the caller from issuing a read
4010 * ( due to B_CACHE not being set ) and overwriting
4011 * it.
4012 *
4013 * Most callers, including NFS and FFS, need this to
4014 * operate properly either because they assume they
4015 * can issue a read if B_CACHE is not set, or because
4016 * ( for example ) an uncached B_DELWRI might loop due
4017 * to softupdates re-dirtying the buffer. In the latter
4018 * case, B_CACHE is set after the first write completes,
4019 * preventing further loops.
4020 * NOTE! b*write() sets B_CACHE. If we cleared B_CACHE
4021 * above while extending the buffer, we cannot allow the
4022 * buffer to remain with B_CACHE set after the write
4023 * completes or it will represent a corrupt state. To
4024 * deal with this we set B_NOCACHE to scrap the buffer
4025 * after the write.
4026 *
4027 * We might be able to do something fancy, like setting
4028 * B_CACHE in bwrite() except if B_DELWRI is already set,
4029 * so the below call doesn't set B_CACHE, but that gets real
4030 * confusing. This is much easier.
4031 */
4032
4033 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
4034 bp->b_flags |= B_NOCACHE;
4035 bwrite(bp);
4036 goto loop;
4037 }
4038 bp->b_flags &= ~B_DONE;
4039 } else {
4040 /*
4041 * Buffer is not in-core, create new buffer. The buffer
4042 * returned by getnewbuf() is locked. Note that the returned
4043 * buffer is also considered valid (not marked B_INVAL).
4044 */
4045 BO_RUNLOCK(bo);
4046 newbuf_unlocked:
4047 /*
4048 * If the user does not want us to create the buffer, bail out
4049 * here.
4050 */
4051 if (flags & GB_NOCREAT)
4052 return (EEXIST);
4053
4054 bsize = vn_isdisk(vp) ? DEV_BSIZE : bo->bo_bsize;
4055 KASSERT(bsize != 0, ("bsize == 0, check bo->bo_bsize"));
4056 offset = blkno * bsize;
4057 vmio = vp->v_object != NULL;
4058 if (vmio) {
4059 maxsize = size + (offset & PAGE_MASK);
4060 } else {
4061 maxsize = size;
4062 /* Do not allow non-VMIO notmapped buffers. */
4063 flags &= ~(GB_UNMAPPED | GB_KVAALLOC);
4064 }
4065 maxsize = imax(maxsize, bsize);
4066 if ((flags & GB_NOSPARSE) != 0 && vmio &&
4067 !vn_isdisk(vp)) {
4068 error = VOP_BMAP(vp, blkno, NULL, &d_blkno, 0, 0);
4069 KASSERT(error != EOPNOTSUPP,
4070 ("GB_NOSPARSE from fs not supporting bmap, vp %p",
4071 vp));
4072 if (error != 0)
4073 return (error);
4074 if (d_blkno == -1)
4075 return (EJUSTRETURN);
4076 }
4077
4078 bp = getnewbuf(vp, slpflag, slptimeo, maxsize, flags);
4079 if (bp == NULL) {
4080 if (slpflag || slptimeo)
4081 return (ETIMEDOUT);
4082 /*
4083 * XXX This is here until the sleep path is diagnosed
4084 * enough to work under very low memory conditions.
4085 *
4086 * There's an issue on low memory, 4BSD+non-preempt
4087 * systems (eg MIPS routers with 32MB RAM) where buffer
4088 * exhaustion occurs without sleeping for buffer
4089 * reclaimation. This just sticks in a loop and
4090 * constantly attempts to allocate a buffer, which
4091 * hits exhaustion and tries to wakeup bufdaemon.
4092 * This never happens because we never yield.
4093 *
4094 * The real solution is to identify and fix these cases
4095 * so we aren't effectively busy-waiting in a loop
4096 * until the reclaimation path has cycles to run.
4097 */
4098 kern_yield(PRI_USER);
4099 goto loop;
4100 }
4101
4102 /*
4103 * This code is used to make sure that a buffer is not
4104 * created while the getnewbuf routine is blocked.
4105 * This can be a problem whether the vnode is locked or not.
4106 * If the buffer is created out from under us, we have to
4107 * throw away the one we just created.
4108 *
4109 * Note: this must occur before we associate the buffer
4110 * with the vp especially considering limitations in
4111 * the splay tree implementation when dealing with duplicate
4112 * lblkno's.
4113 */
4114 BO_LOCK(bo);
4115 if (gbincore(bo, blkno)) {
4116 BO_UNLOCK(bo);
4117 bp->b_flags |= B_INVAL;
4118 bufspace_release(bufdomain(bp), maxsize);
4119 brelse(bp);
4120 goto loop;
4121 }
4122
4123 /*
4124 * Insert the buffer into the hash, so that it can
4125 * be found by incore.
4126 */
4127 bp->b_lblkno = blkno;
4128 bp->b_blkno = d_blkno;
4129 bp->b_offset = offset;
4130 bgetvp(vp, bp);
4131 BO_UNLOCK(bo);
4132
4133 /*
4134 * set B_VMIO bit. allocbuf() the buffer bigger. Since the
4135 * buffer size starts out as 0, B_CACHE will be set by
4136 * allocbuf() for the VMIO case prior to it testing the
4137 * backing store for validity.
4138 */
4139
4140 if (vmio) {
4141 bp->b_flags |= B_VMIO;
4142 KASSERT(vp->v_object == bp->b_bufobj->bo_object,
4143 ("ARGH! different b_bufobj->bo_object %p %p %p\n",
4144 bp, vp->v_object, bp->b_bufobj->bo_object));
4145 } else {
4146 bp->b_flags &= ~B_VMIO;
4147 KASSERT(bp->b_bufobj->bo_object == NULL,
4148 ("ARGH! has b_bufobj->bo_object %p %p\n",
4149 bp, bp->b_bufobj->bo_object));
4150 BUF_CHECK_MAPPED(bp);
4151 }
4152
4153 allocbuf(bp, size);
4154 bufspace_release(bufdomain(bp), maxsize);
4155 bp->b_flags &= ~B_DONE;
4156 }
4157 CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp);
4158 end:
4159 buf_track(bp, __func__);
4160 KASSERT(bp->b_bufobj == bo,
4161 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
4162 *bpp = bp;
4163 return (0);
4164 }
4165
4166 /*
4167 * Get an empty, disassociated buffer of given size. The buffer is initially
4168 * set to B_INVAL.
4169 */
4170 struct buf *
geteblk(int size,int flags)4171 geteblk(int size, int flags)
4172 {
4173 struct buf *bp;
4174 int maxsize;
4175
4176 maxsize = (size + BKVAMASK) & ~BKVAMASK;
4177 while ((bp = getnewbuf(NULL, 0, 0, maxsize, flags)) == NULL) {
4178 if ((flags & GB_NOWAIT_BD) &&
4179 (curthread->td_pflags & TDP_BUFNEED) != 0)
4180 return (NULL);
4181 }
4182 allocbuf(bp, size);
4183 bufspace_release(bufdomain(bp), maxsize);
4184 bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */
4185 return (bp);
4186 }
4187
4188 /*
4189 * Truncate the backing store for a non-vmio buffer.
4190 */
4191 static void
vfs_nonvmio_truncate(struct buf * bp,int newbsize)4192 vfs_nonvmio_truncate(struct buf *bp, int newbsize)
4193 {
4194
4195 if (bp->b_flags & B_MALLOC) {
4196 /*
4197 * malloced buffers are not shrunk
4198 */
4199 if (newbsize == 0) {
4200 bufmallocadjust(bp, 0);
4201 free(bp->b_data, M_BIOBUF);
4202 bp->b_data = bp->b_kvabase;
4203 bp->b_flags &= ~B_MALLOC;
4204 }
4205 return;
4206 }
4207 vm_hold_free_pages(bp, newbsize);
4208 bufspace_adjust(bp, newbsize);
4209 }
4210
4211 /*
4212 * Extend the backing for a non-VMIO buffer.
4213 */
4214 static void
vfs_nonvmio_extend(struct buf * bp,int newbsize)4215 vfs_nonvmio_extend(struct buf *bp, int newbsize)
4216 {
4217 caddr_t origbuf;
4218 int origbufsize;
4219
4220 /*
4221 * We only use malloced memory on the first allocation.
4222 * and revert to page-allocated memory when the buffer
4223 * grows.
4224 *
4225 * There is a potential smp race here that could lead
4226 * to bufmallocspace slightly passing the max. It
4227 * is probably extremely rare and not worth worrying
4228 * over.
4229 */
4230 if (bp->b_bufsize == 0 && newbsize <= PAGE_SIZE/2 &&
4231 bufmallocspace < maxbufmallocspace) {
4232 bp->b_data = malloc(newbsize, M_BIOBUF, M_WAITOK);
4233 bp->b_flags |= B_MALLOC;
4234 bufmallocadjust(bp, newbsize);
4235 return;
4236 }
4237
4238 /*
4239 * If the buffer is growing on its other-than-first
4240 * allocation then we revert to the page-allocation
4241 * scheme.
4242 */
4243 origbuf = NULL;
4244 origbufsize = 0;
4245 if (bp->b_flags & B_MALLOC) {
4246 origbuf = bp->b_data;
4247 origbufsize = bp->b_bufsize;
4248 bp->b_data = bp->b_kvabase;
4249 bufmallocadjust(bp, 0);
4250 bp->b_flags &= ~B_MALLOC;
4251 newbsize = round_page(newbsize);
4252 }
4253 vm_hold_load_pages(bp, (vm_offset_t) bp->b_data + bp->b_bufsize,
4254 (vm_offset_t) bp->b_data + newbsize);
4255 if (origbuf != NULL) {
4256 bcopy(origbuf, bp->b_data, origbufsize);
4257 free(origbuf, M_BIOBUF);
4258 }
4259 bufspace_adjust(bp, newbsize);
4260 }
4261
4262 /*
4263 * This code constitutes the buffer memory from either anonymous system
4264 * memory (in the case of non-VMIO operations) or from an associated
4265 * VM object (in the case of VMIO operations). This code is able to
4266 * resize a buffer up or down.
4267 *
4268 * Note that this code is tricky, and has many complications to resolve
4269 * deadlock or inconsistent data situations. Tread lightly!!!
4270 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
4271 * the caller. Calling this code willy nilly can result in the loss of data.
4272 *
4273 * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with
4274 * B_CACHE for the non-VMIO case.
4275 */
4276 int
allocbuf(struct buf * bp,int size)4277 allocbuf(struct buf *bp, int size)
4278 {
4279 int newbsize;
4280
4281 if (bp->b_bcount == size)
4282 return (1);
4283
4284 if (bp->b_kvasize != 0 && bp->b_kvasize < size)
4285 panic("allocbuf: buffer too small");
4286
4287 newbsize = roundup2(size, DEV_BSIZE);
4288 if ((bp->b_flags & B_VMIO) == 0) {
4289 if ((bp->b_flags & B_MALLOC) == 0)
4290 newbsize = round_page(newbsize);
4291 /*
4292 * Just get anonymous memory from the kernel. Don't
4293 * mess with B_CACHE.
4294 */
4295 if (newbsize < bp->b_bufsize)
4296 vfs_nonvmio_truncate(bp, newbsize);
4297 else if (newbsize > bp->b_bufsize)
4298 vfs_nonvmio_extend(bp, newbsize);
4299 } else {
4300 int desiredpages;
4301
4302 desiredpages = (size == 0) ? 0 :
4303 num_pages((bp->b_offset & PAGE_MASK) + newbsize);
4304
4305 if (bp->b_flags & B_MALLOC)
4306 panic("allocbuf: VMIO buffer can't be malloced");
4307 /*
4308 * Set B_CACHE initially if buffer is 0 length or will become
4309 * 0-length.
4310 */
4311 if (size == 0 || bp->b_bufsize == 0)
4312 bp->b_flags |= B_CACHE;
4313
4314 if (newbsize < bp->b_bufsize)
4315 vfs_vmio_truncate(bp, desiredpages);
4316 /* XXX This looks as if it should be newbsize > b_bufsize */
4317 else if (size > bp->b_bcount)
4318 vfs_vmio_extend(bp, desiredpages, size);
4319 bufspace_adjust(bp, newbsize);
4320 }
4321 bp->b_bcount = size; /* requested buffer size. */
4322 return (1);
4323 }
4324
4325 extern int inflight_transient_maps;
4326
4327 static struct bio_queue nondump_bios;
4328
4329 void
biodone(struct bio * bp)4330 biodone(struct bio *bp)
4331 {
4332 struct mtx *mtxp;
4333 void (*done)(struct bio *);
4334 vm_offset_t start, end;
4335
4336 biotrack(bp, __func__);
4337
4338 /*
4339 * Avoid completing I/O when dumping after a panic since that may
4340 * result in a deadlock in the filesystem or pager code. Note that
4341 * this doesn't affect dumps that were started manually since we aim
4342 * to keep the system usable after it has been resumed.
4343 */
4344 if (__predict_false(dumping && SCHEDULER_STOPPED())) {
4345 TAILQ_INSERT_HEAD(&nondump_bios, bp, bio_queue);
4346 return;
4347 }
4348 if ((bp->bio_flags & BIO_TRANSIENT_MAPPING) != 0) {
4349 bp->bio_flags &= ~BIO_TRANSIENT_MAPPING;
4350 bp->bio_flags |= BIO_UNMAPPED;
4351 start = trunc_page((vm_offset_t)bp->bio_data);
4352 end = round_page((vm_offset_t)bp->bio_data + bp->bio_length);
4353 bp->bio_data = unmapped_buf;
4354 pmap_qremove(start, atop(end - start));
4355 vmem_free(transient_arena, start, end - start);
4356 atomic_add_int(&inflight_transient_maps, -1);
4357 }
4358 done = bp->bio_done;
4359 if (done == NULL) {
4360 mtxp = mtx_pool_find(mtxpool_sleep, bp);
4361 mtx_lock(mtxp);
4362 bp->bio_flags |= BIO_DONE;
4363 wakeup(bp);
4364 mtx_unlock(mtxp);
4365 } else
4366 done(bp);
4367 }
4368
4369 /*
4370 * Wait for a BIO to finish.
4371 */
4372 int
biowait(struct bio * bp,const char * wchan)4373 biowait(struct bio *bp, const char *wchan)
4374 {
4375 struct mtx *mtxp;
4376
4377 mtxp = mtx_pool_find(mtxpool_sleep, bp);
4378 mtx_lock(mtxp);
4379 while ((bp->bio_flags & BIO_DONE) == 0)
4380 msleep(bp, mtxp, PRIBIO, wchan, 0);
4381 mtx_unlock(mtxp);
4382 if (bp->bio_error != 0)
4383 return (bp->bio_error);
4384 if (!(bp->bio_flags & BIO_ERROR))
4385 return (0);
4386 return (EIO);
4387 }
4388
4389 void
biofinish(struct bio * bp,struct devstat * stat,int error)4390 biofinish(struct bio *bp, struct devstat *stat, int error)
4391 {
4392
4393 if (error) {
4394 bp->bio_error = error;
4395 bp->bio_flags |= BIO_ERROR;
4396 }
4397 if (stat != NULL)
4398 devstat_end_transaction_bio(stat, bp);
4399 biodone(bp);
4400 }
4401
4402 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
4403 void
biotrack_buf(struct bio * bp,const char * location)4404 biotrack_buf(struct bio *bp, const char *location)
4405 {
4406
4407 buf_track(bp->bio_track_bp, location);
4408 }
4409 #endif
4410
4411 /*
4412 * bufwait:
4413 *
4414 * Wait for buffer I/O completion, returning error status. The buffer
4415 * is left locked and B_DONE on return. B_EINTR is converted into an EINTR
4416 * error and cleared.
4417 */
4418 int
bufwait(struct buf * bp)4419 bufwait(struct buf *bp)
4420 {
4421 if (bp->b_iocmd == BIO_READ)
4422 bwait(bp, PRIBIO, "biord");
4423 else
4424 bwait(bp, PRIBIO, "biowr");
4425 if (bp->b_flags & B_EINTR) {
4426 bp->b_flags &= ~B_EINTR;
4427 return (EINTR);
4428 }
4429 if (bp->b_ioflags & BIO_ERROR) {
4430 return (bp->b_error ? bp->b_error : EIO);
4431 } else {
4432 return (0);
4433 }
4434 }
4435
4436 /*
4437 * bufdone:
4438 *
4439 * Finish I/O on a buffer, optionally calling a completion function.
4440 * This is usually called from an interrupt so process blocking is
4441 * not allowed.
4442 *
4443 * biodone is also responsible for setting B_CACHE in a B_VMIO bp.
4444 * In a non-VMIO bp, B_CACHE will be set on the next getblk()
4445 * assuming B_INVAL is clear.
4446 *
4447 * For the VMIO case, we set B_CACHE if the op was a read and no
4448 * read error occurred, or if the op was a write. B_CACHE is never
4449 * set if the buffer is invalid or otherwise uncacheable.
4450 *
4451 * bufdone does not mess with B_INVAL, allowing the I/O routine or the
4452 * initiator to leave B_INVAL set to brelse the buffer out of existence
4453 * in the biodone routine.
4454 */
4455 void
bufdone(struct buf * bp)4456 bufdone(struct buf *bp)
4457 {
4458 struct bufobj *dropobj;
4459 void (*biodone)(struct buf *);
4460
4461 buf_track(bp, __func__);
4462 CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
4463 dropobj = NULL;
4464
4465 KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
4466
4467 runningbufwakeup(bp);
4468 if (bp->b_iocmd == BIO_WRITE)
4469 dropobj = bp->b_bufobj;
4470 /* call optional completion function if requested */
4471 if (bp->b_iodone != NULL) {
4472 biodone = bp->b_iodone;
4473 bp->b_iodone = NULL;
4474 (*biodone) (bp);
4475 if (dropobj)
4476 bufobj_wdrop(dropobj);
4477 return;
4478 }
4479 if (bp->b_flags & B_VMIO) {
4480 /*
4481 * Set B_CACHE if the op was a normal read and no error
4482 * occurred. B_CACHE is set for writes in the b*write()
4483 * routines.
4484 */
4485 if (bp->b_iocmd == BIO_READ &&
4486 !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
4487 !(bp->b_ioflags & BIO_ERROR))
4488 bp->b_flags |= B_CACHE;
4489 vfs_vmio_iodone(bp);
4490 }
4491 if (!LIST_EMPTY(&bp->b_dep))
4492 buf_complete(bp);
4493 if ((bp->b_flags & B_CKHASH) != 0) {
4494 KASSERT(bp->b_iocmd == BIO_READ,
4495 ("bufdone: b_iocmd %d not BIO_READ", bp->b_iocmd));
4496 KASSERT(buf_mapped(bp), ("bufdone: bp %p not mapped", bp));
4497 (*bp->b_ckhashcalc)(bp);
4498 }
4499 /*
4500 * For asynchronous completions, release the buffer now. The brelse
4501 * will do a wakeup there if necessary - so no need to do a wakeup
4502 * here in the async case. The sync case always needs to do a wakeup.
4503 */
4504 if (bp->b_flags & B_ASYNC) {
4505 if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) ||
4506 (bp->b_ioflags & BIO_ERROR))
4507 brelse(bp);
4508 else
4509 bqrelse(bp);
4510 } else
4511 bdone(bp);
4512 if (dropobj)
4513 bufobj_wdrop(dropobj);
4514 }
4515
4516 /*
4517 * This routine is called in lieu of iodone in the case of
4518 * incomplete I/O. This keeps the busy status for pages
4519 * consistent.
4520 */
4521 void
vfs_unbusy_pages(struct buf * bp)4522 vfs_unbusy_pages(struct buf *bp)
4523 {
4524 int i;
4525 vm_object_t obj;
4526 vm_page_t m;
4527
4528 runningbufwakeup(bp);
4529 if (!(bp->b_flags & B_VMIO))
4530 return;
4531
4532 obj = bp->b_bufobj->bo_object;
4533 for (i = 0; i < bp->b_npages; i++) {
4534 m = bp->b_pages[i];
4535 if (m == bogus_page) {
4536 m = vm_page_relookup(obj, OFF_TO_IDX(bp->b_offset) + i);
4537 if (!m)
4538 panic("vfs_unbusy_pages: page missing\n");
4539 bp->b_pages[i] = m;
4540 if (buf_mapped(bp)) {
4541 BUF_CHECK_MAPPED(bp);
4542 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4543 bp->b_pages, bp->b_npages);
4544 } else
4545 BUF_CHECK_UNMAPPED(bp);
4546 }
4547 vm_page_sunbusy(m);
4548 }
4549 vm_object_pip_wakeupn(obj, bp->b_npages);
4550 }
4551
4552 /*
4553 * vfs_page_set_valid:
4554 *
4555 * Set the valid bits in a page based on the supplied offset. The
4556 * range is restricted to the buffer's size.
4557 *
4558 * This routine is typically called after a read completes.
4559 */
4560 static void
vfs_page_set_valid(struct buf * bp,vm_ooffset_t off,vm_page_t m)4561 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m)
4562 {
4563 vm_ooffset_t eoff;
4564
4565 /*
4566 * Compute the end offset, eoff, such that [off, eoff) does not span a
4567 * page boundary and eoff is not greater than the end of the buffer.
4568 * The end of the buffer, in this case, is our file EOF, not the
4569 * allocation size of the buffer.
4570 */
4571 eoff = (off + PAGE_SIZE) & ~(vm_ooffset_t)PAGE_MASK;
4572 if (eoff > bp->b_offset + bp->b_bcount)
4573 eoff = bp->b_offset + bp->b_bcount;
4574
4575 /*
4576 * Set valid range. This is typically the entire buffer and thus the
4577 * entire page.
4578 */
4579 if (eoff > off)
4580 vm_page_set_valid_range(m, off & PAGE_MASK, eoff - off);
4581 }
4582
4583 /*
4584 * vfs_page_set_validclean:
4585 *
4586 * Set the valid bits and clear the dirty bits in a page based on the
4587 * supplied offset. The range is restricted to the buffer's size.
4588 */
4589 static void
vfs_page_set_validclean(struct buf * bp,vm_ooffset_t off,vm_page_t m)4590 vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off, vm_page_t m)
4591 {
4592 vm_ooffset_t soff, eoff;
4593
4594 /*
4595 * Start and end offsets in buffer. eoff - soff may not cross a
4596 * page boundary or cross the end of the buffer. The end of the
4597 * buffer, in this case, is our file EOF, not the allocation size
4598 * of the buffer.
4599 */
4600 soff = off;
4601 eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
4602 if (eoff > bp->b_offset + bp->b_bcount)
4603 eoff = bp->b_offset + bp->b_bcount;
4604
4605 /*
4606 * Set valid range. This is typically the entire buffer and thus the
4607 * entire page.
4608 */
4609 if (eoff > soff) {
4610 vm_page_set_validclean(
4611 m,
4612 (vm_offset_t) (soff & PAGE_MASK),
4613 (vm_offset_t) (eoff - soff)
4614 );
4615 }
4616 }
4617
4618 /*
4619 * Acquire a shared busy on all pages in the buf.
4620 */
4621 void
vfs_busy_pages_acquire(struct buf * bp)4622 vfs_busy_pages_acquire(struct buf *bp)
4623 {
4624 int i;
4625
4626 for (i = 0; i < bp->b_npages; i++)
4627 vm_page_busy_acquire(bp->b_pages[i], VM_ALLOC_SBUSY);
4628 }
4629
4630 void
vfs_busy_pages_release(struct buf * bp)4631 vfs_busy_pages_release(struct buf *bp)
4632 {
4633 int i;
4634
4635 for (i = 0; i < bp->b_npages; i++)
4636 vm_page_sunbusy(bp->b_pages[i]);
4637 }
4638
4639 /*
4640 * This routine is called before a device strategy routine.
4641 * It is used to tell the VM system that paging I/O is in
4642 * progress, and treat the pages associated with the buffer
4643 * almost as being exclusive busy. Also the object paging_in_progress
4644 * flag is handled to make sure that the object doesn't become
4645 * inconsistent.
4646 *
4647 * Since I/O has not been initiated yet, certain buffer flags
4648 * such as BIO_ERROR or B_INVAL may be in an inconsistent state
4649 * and should be ignored.
4650 */
4651 void
vfs_busy_pages(struct buf * bp,int clear_modify)4652 vfs_busy_pages(struct buf *bp, int clear_modify)
4653 {
4654 vm_object_t obj;
4655 vm_ooffset_t foff;
4656 vm_page_t m;
4657 int i;
4658 bool bogus;
4659
4660 if (!(bp->b_flags & B_VMIO))
4661 return;
4662
4663 obj = bp->b_bufobj->bo_object;
4664 foff = bp->b_offset;
4665 KASSERT(bp->b_offset != NOOFFSET,
4666 ("vfs_busy_pages: no buffer offset"));
4667 if ((bp->b_flags & B_CLUSTER) == 0) {
4668 vm_object_pip_add(obj, bp->b_npages);
4669 vfs_busy_pages_acquire(bp);
4670 }
4671 if (bp->b_bufsize != 0)
4672 vfs_setdirty_range(bp);
4673 bogus = false;
4674 for (i = 0; i < bp->b_npages; i++) {
4675 m = bp->b_pages[i];
4676 vm_page_assert_sbusied(m);
4677
4678 /*
4679 * When readying a buffer for a read ( i.e
4680 * clear_modify == 0 ), it is important to do
4681 * bogus_page replacement for valid pages in
4682 * partially instantiated buffers. Partially
4683 * instantiated buffers can, in turn, occur when
4684 * reconstituting a buffer from its VM backing store
4685 * base. We only have to do this if B_CACHE is
4686 * clear ( which causes the I/O to occur in the
4687 * first place ). The replacement prevents the read
4688 * I/O from overwriting potentially dirty VM-backed
4689 * pages. XXX bogus page replacement is, uh, bogus.
4690 * It may not work properly with small-block devices.
4691 * We need to find a better way.
4692 */
4693 if (clear_modify) {
4694 pmap_remove_write(m);
4695 vfs_page_set_validclean(bp, foff, m);
4696 } else if (vm_page_all_valid(m) &&
4697 (bp->b_flags & B_CACHE) == 0) {
4698 bp->b_pages[i] = bogus_page;
4699 bogus = true;
4700 }
4701 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
4702 }
4703 if (bogus && buf_mapped(bp)) {
4704 BUF_CHECK_MAPPED(bp);
4705 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4706 bp->b_pages, bp->b_npages);
4707 }
4708 }
4709
4710 /*
4711 * vfs_bio_set_valid:
4712 *
4713 * Set the range within the buffer to valid. The range is
4714 * relative to the beginning of the buffer, b_offset. Note that
4715 * b_offset itself may be offset from the beginning of the first
4716 * page.
4717 */
4718 void
vfs_bio_set_valid(struct buf * bp,int base,int size)4719 vfs_bio_set_valid(struct buf *bp, int base, int size)
4720 {
4721 int i, n;
4722 vm_page_t m;
4723
4724 if (!(bp->b_flags & B_VMIO))
4725 return;
4726
4727 /*
4728 * Fixup base to be relative to beginning of first page.
4729 * Set initial n to be the maximum number of bytes in the
4730 * first page that can be validated.
4731 */
4732 base += (bp->b_offset & PAGE_MASK);
4733 n = PAGE_SIZE - (base & PAGE_MASK);
4734
4735 /*
4736 * Busy may not be strictly necessary here because the pages are
4737 * unlikely to be fully valid and the vnode lock will synchronize
4738 * their access via getpages. It is grabbed for consistency with
4739 * other page validation.
4740 */
4741 vfs_busy_pages_acquire(bp);
4742 for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
4743 m = bp->b_pages[i];
4744 if (n > size)
4745 n = size;
4746 vm_page_set_valid_range(m, base & PAGE_MASK, n);
4747 base += n;
4748 size -= n;
4749 n = PAGE_SIZE;
4750 }
4751 vfs_busy_pages_release(bp);
4752 }
4753
4754 /*
4755 * vfs_bio_clrbuf:
4756 *
4757 * If the specified buffer is a non-VMIO buffer, clear the entire
4758 * buffer. If the specified buffer is a VMIO buffer, clear and
4759 * validate only the previously invalid portions of the buffer.
4760 * This routine essentially fakes an I/O, so we need to clear
4761 * BIO_ERROR and B_INVAL.
4762 *
4763 * Note that while we only theoretically need to clear through b_bcount,
4764 * we go ahead and clear through b_bufsize.
4765 */
4766 void
vfs_bio_clrbuf(struct buf * bp)4767 vfs_bio_clrbuf(struct buf *bp)
4768 {
4769 int i, j, mask, sa, ea, slide;
4770
4771 if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
4772 clrbuf(bp);
4773 return;
4774 }
4775 bp->b_flags &= ~B_INVAL;
4776 bp->b_ioflags &= ~BIO_ERROR;
4777 vfs_busy_pages_acquire(bp);
4778 sa = bp->b_offset & PAGE_MASK;
4779 slide = 0;
4780 for (i = 0; i < bp->b_npages; i++, sa = 0) {
4781 slide = imin(slide + PAGE_SIZE, bp->b_offset + bp->b_bufsize);
4782 ea = slide & PAGE_MASK;
4783 if (ea == 0)
4784 ea = PAGE_SIZE;
4785 if (bp->b_pages[i] == bogus_page)
4786 continue;
4787 j = sa / DEV_BSIZE;
4788 mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
4789 if ((bp->b_pages[i]->valid & mask) == mask)
4790 continue;
4791 if ((bp->b_pages[i]->valid & mask) == 0)
4792 pmap_zero_page_area(bp->b_pages[i], sa, ea - sa);
4793 else {
4794 for (; sa < ea; sa += DEV_BSIZE, j++) {
4795 if ((bp->b_pages[i]->valid & (1 << j)) == 0) {
4796 pmap_zero_page_area(bp->b_pages[i],
4797 sa, DEV_BSIZE);
4798 }
4799 }
4800 }
4801 vm_page_set_valid_range(bp->b_pages[i], j * DEV_BSIZE,
4802 roundup2(ea - sa, DEV_BSIZE));
4803 }
4804 vfs_busy_pages_release(bp);
4805 bp->b_resid = 0;
4806 }
4807
4808 void
vfs_bio_bzero_buf(struct buf * bp,int base,int size)4809 vfs_bio_bzero_buf(struct buf *bp, int base, int size)
4810 {
4811 vm_page_t m;
4812 int i, n;
4813
4814 if (buf_mapped(bp)) {
4815 BUF_CHECK_MAPPED(bp);
4816 bzero(bp->b_data + base, size);
4817 } else {
4818 BUF_CHECK_UNMAPPED(bp);
4819 n = PAGE_SIZE - (base & PAGE_MASK);
4820 for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
4821 m = bp->b_pages[i];
4822 if (n > size)
4823 n = size;
4824 pmap_zero_page_area(m, base & PAGE_MASK, n);
4825 base += n;
4826 size -= n;
4827 n = PAGE_SIZE;
4828 }
4829 }
4830 }
4831
4832 /*
4833 * Update buffer flags based on I/O request parameters, optionally releasing the
4834 * buffer. If it's VMIO or direct I/O, the buffer pages are released to the VM,
4835 * where they may be placed on a page queue (VMIO) or freed immediately (direct
4836 * I/O). Otherwise the buffer is released to the cache.
4837 */
4838 static void
b_io_dismiss(struct buf * bp,int ioflag,bool release)4839 b_io_dismiss(struct buf *bp, int ioflag, bool release)
4840 {
4841
4842 KASSERT((ioflag & IO_NOREUSE) == 0 || (ioflag & IO_VMIO) != 0,
4843 ("buf %p non-VMIO noreuse", bp));
4844
4845 if ((ioflag & IO_DIRECT) != 0)
4846 bp->b_flags |= B_DIRECT;
4847 if ((ioflag & IO_EXT) != 0)
4848 bp->b_xflags |= BX_ALTDATA;
4849 if ((ioflag & (IO_VMIO | IO_DIRECT)) != 0 && LIST_EMPTY(&bp->b_dep)) {
4850 bp->b_flags |= B_RELBUF;
4851 if ((ioflag & IO_NOREUSE) != 0)
4852 bp->b_flags |= B_NOREUSE;
4853 if (release)
4854 brelse(bp);
4855 } else if (release)
4856 bqrelse(bp);
4857 }
4858
4859 void
vfs_bio_brelse(struct buf * bp,int ioflag)4860 vfs_bio_brelse(struct buf *bp, int ioflag)
4861 {
4862
4863 b_io_dismiss(bp, ioflag, true);
4864 }
4865
4866 void
vfs_bio_set_flags(struct buf * bp,int ioflag)4867 vfs_bio_set_flags(struct buf *bp, int ioflag)
4868 {
4869
4870 b_io_dismiss(bp, ioflag, false);
4871 }
4872
4873 /*
4874 * vm_hold_load_pages and vm_hold_free_pages get pages into
4875 * a buffers address space. The pages are anonymous and are
4876 * not associated with a file object.
4877 */
4878 static void
vm_hold_load_pages(struct buf * bp,vm_offset_t from,vm_offset_t to)4879 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4880 {
4881 vm_offset_t pg;
4882 vm_page_t p;
4883 int index;
4884
4885 BUF_CHECK_MAPPED(bp);
4886
4887 to = round_page(to);
4888 from = round_page(from);
4889 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4890 MPASS((bp->b_flags & B_MAXPHYS) == 0);
4891 KASSERT(to - from <= maxbcachebuf,
4892 ("vm_hold_load_pages too large %p %#jx %#jx %u",
4893 bp, (uintmax_t)from, (uintmax_t)to, maxbcachebuf));
4894
4895 for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
4896 /*
4897 * note: must allocate system pages since blocking here
4898 * could interfere with paging I/O, no matter which
4899 * process we are.
4900 */
4901 p = vm_page_alloc(NULL, 0, VM_ALLOC_SYSTEM | VM_ALLOC_NOOBJ |
4902 VM_ALLOC_WIRED | VM_ALLOC_COUNT((to - pg) >> PAGE_SHIFT) |
4903 VM_ALLOC_WAITOK);
4904 pmap_qenter(pg, &p, 1);
4905 bp->b_pages[index] = p;
4906 }
4907 bp->b_npages = index;
4908 }
4909
4910 /* Return pages associated with this buf to the vm system */
4911 static void
vm_hold_free_pages(struct buf * bp,int newbsize)4912 vm_hold_free_pages(struct buf *bp, int newbsize)
4913 {
4914 vm_offset_t from;
4915 vm_page_t p;
4916 int index, newnpages;
4917
4918 BUF_CHECK_MAPPED(bp);
4919
4920 from = round_page((vm_offset_t)bp->b_data + newbsize);
4921 newnpages = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4922 if (bp->b_npages > newnpages)
4923 pmap_qremove(from, bp->b_npages - newnpages);
4924 for (index = newnpages; index < bp->b_npages; index++) {
4925 p = bp->b_pages[index];
4926 bp->b_pages[index] = NULL;
4927 vm_page_unwire_noq(p);
4928 vm_page_free(p);
4929 }
4930 bp->b_npages = newnpages;
4931 }
4932
4933 /*
4934 * Map an IO request into kernel virtual address space.
4935 *
4936 * All requests are (re)mapped into kernel VA space.
4937 * Notice that we use b_bufsize for the size of the buffer
4938 * to be mapped. b_bcount might be modified by the driver.
4939 *
4940 * Note that even if the caller determines that the address space should
4941 * be valid, a race or a smaller-file mapped into a larger space may
4942 * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
4943 * check the return value.
4944 *
4945 * This function only works with pager buffers.
4946 */
4947 int
vmapbuf(struct buf * bp,void * uaddr,size_t len,int mapbuf)4948 vmapbuf(struct buf *bp, void *uaddr, size_t len, int mapbuf)
4949 {
4950 vm_prot_t prot;
4951 int pidx;
4952
4953 MPASS((bp->b_flags & B_MAXPHYS) != 0);
4954 prot = VM_PROT_READ;
4955 if (bp->b_iocmd == BIO_READ)
4956 prot |= VM_PROT_WRITE; /* Less backwards than it looks */
4957 pidx = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
4958 (vm_offset_t)uaddr, len, prot, bp->b_pages, PBUF_PAGES);
4959 if (pidx < 0)
4960 return (-1);
4961 bp->b_bufsize = len;
4962 bp->b_npages = pidx;
4963 bp->b_offset = ((vm_offset_t)uaddr) & PAGE_MASK;
4964 if (mapbuf || !unmapped_buf_allowed) {
4965 pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_pages, pidx);
4966 bp->b_data = bp->b_kvabase + bp->b_offset;
4967 } else
4968 bp->b_data = unmapped_buf;
4969 return (0);
4970 }
4971
4972 /*
4973 * Free the io map PTEs associated with this IO operation.
4974 * We also invalidate the TLB entries and restore the original b_addr.
4975 *
4976 * This function only works with pager buffers.
4977 */
4978 void
vunmapbuf(struct buf * bp)4979 vunmapbuf(struct buf *bp)
4980 {
4981 int npages;
4982
4983 npages = bp->b_npages;
4984 if (buf_mapped(bp))
4985 pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
4986 vm_page_unhold_pages(bp->b_pages, npages);
4987
4988 bp->b_data = unmapped_buf;
4989 }
4990
4991 void
bdone(struct buf * bp)4992 bdone(struct buf *bp)
4993 {
4994 struct mtx *mtxp;
4995
4996 mtxp = mtx_pool_find(mtxpool_sleep, bp);
4997 mtx_lock(mtxp);
4998 bp->b_flags |= B_DONE;
4999 wakeup(bp);
5000 mtx_unlock(mtxp);
5001 }
5002
5003 void
bwait(struct buf * bp,u_char pri,const char * wchan)5004 bwait(struct buf *bp, u_char pri, const char *wchan)
5005 {
5006 struct mtx *mtxp;
5007
5008 mtxp = mtx_pool_find(mtxpool_sleep, bp);
5009 mtx_lock(mtxp);
5010 while ((bp->b_flags & B_DONE) == 0)
5011 msleep(bp, mtxp, pri, wchan, 0);
5012 mtx_unlock(mtxp);
5013 }
5014
5015 int
bufsync(struct bufobj * bo,int waitfor)5016 bufsync(struct bufobj *bo, int waitfor)
5017 {
5018
5019 return (VOP_FSYNC(bo2vnode(bo), waitfor, curthread));
5020 }
5021
5022 void
bufstrategy(struct bufobj * bo,struct buf * bp)5023 bufstrategy(struct bufobj *bo, struct buf *bp)
5024 {
5025 int i __unused;
5026 struct vnode *vp;
5027
5028 vp = bp->b_vp;
5029 KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy"));
5030 KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
5031 ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
5032 i = VOP_STRATEGY(vp, bp);
5033 KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
5034 }
5035
5036 /*
5037 * Initialize a struct bufobj before use. Memory is assumed zero filled.
5038 */
5039 void
bufobj_init(struct bufobj * bo,void * private)5040 bufobj_init(struct bufobj *bo, void *private)
5041 {
5042 static volatile int bufobj_cleanq;
5043
5044 bo->bo_domain =
5045 atomic_fetchadd_int(&bufobj_cleanq, 1) % buf_domains;
5046 rw_init(BO_LOCKPTR(bo), "bufobj interlock");
5047 bo->bo_private = private;
5048 TAILQ_INIT(&bo->bo_clean.bv_hd);
5049 TAILQ_INIT(&bo->bo_dirty.bv_hd);
5050 }
5051
5052 void
bufobj_wrefl(struct bufobj * bo)5053 bufobj_wrefl(struct bufobj *bo)
5054 {
5055
5056 KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
5057 ASSERT_BO_WLOCKED(bo);
5058 bo->bo_numoutput++;
5059 }
5060
5061 void
bufobj_wref(struct bufobj * bo)5062 bufobj_wref(struct bufobj *bo)
5063 {
5064
5065 KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
5066 BO_LOCK(bo);
5067 bo->bo_numoutput++;
5068 BO_UNLOCK(bo);
5069 }
5070
5071 void
bufobj_wdrop(struct bufobj * bo)5072 bufobj_wdrop(struct bufobj *bo)
5073 {
5074
5075 KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
5076 BO_LOCK(bo);
5077 KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
5078 if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
5079 bo->bo_flag &= ~BO_WWAIT;
5080 wakeup(&bo->bo_numoutput);
5081 }
5082 BO_UNLOCK(bo);
5083 }
5084
5085 int
bufobj_wwait(struct bufobj * bo,int slpflag,int timeo)5086 bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
5087 {
5088 int error;
5089
5090 KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
5091 ASSERT_BO_WLOCKED(bo);
5092 error = 0;
5093 while (bo->bo_numoutput) {
5094 bo->bo_flag |= BO_WWAIT;
5095 error = msleep(&bo->bo_numoutput, BO_LOCKPTR(bo),
5096 slpflag | (PRIBIO + 1), "bo_wwait", timeo);
5097 if (error)
5098 break;
5099 }
5100 return (error);
5101 }
5102
5103 /*
5104 * Set bio_data or bio_ma for struct bio from the struct buf.
5105 */
5106 void
bdata2bio(struct buf * bp,struct bio * bip)5107 bdata2bio(struct buf *bp, struct bio *bip)
5108 {
5109
5110 if (!buf_mapped(bp)) {
5111 KASSERT(unmapped_buf_allowed, ("unmapped"));
5112 bip->bio_ma = bp->b_pages;
5113 bip->bio_ma_n = bp->b_npages;
5114 bip->bio_data = unmapped_buf;
5115 bip->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
5116 bip->bio_flags |= BIO_UNMAPPED;
5117 KASSERT(round_page(bip->bio_ma_offset + bip->bio_length) /
5118 PAGE_SIZE == bp->b_npages,
5119 ("Buffer %p too short: %d %lld %d", bp, bip->bio_ma_offset,
5120 (long long)bip->bio_length, bip->bio_ma_n));
5121 } else {
5122 bip->bio_data = bp->b_data;
5123 bip->bio_ma = NULL;
5124 }
5125 }
5126
5127 /*
5128 * The MIPS pmap code currently doesn't handle aliased pages.
5129 * The VIPT caches may not handle page aliasing themselves, leading
5130 * to data corruption.
5131 *
5132 * As such, this code makes a system extremely unhappy if said
5133 * system doesn't support unaliasing the above situation in hardware.
5134 * Some "recent" systems (eg some mips24k/mips74k cores) don't enable
5135 * this feature at build time, so it has to be handled in software.
5136 *
5137 * Once the MIPS pmap/cache code grows to support this function on
5138 * earlier chips, it should be flipped back off.
5139 */
5140 #ifdef __mips__
5141 static int buf_pager_relbuf = 1;
5142 #else
5143 static int buf_pager_relbuf = 0;
5144 #endif
5145 SYSCTL_INT(_vfs, OID_AUTO, buf_pager_relbuf, CTLFLAG_RWTUN,
5146 &buf_pager_relbuf, 0,
5147 "Make buffer pager release buffers after reading");
5148
5149 /*
5150 * The buffer pager. It uses buffer reads to validate pages.
5151 *
5152 * In contrast to the generic local pager from vm/vnode_pager.c, this
5153 * pager correctly and easily handles volumes where the underlying
5154 * device block size is greater than the machine page size. The
5155 * buffer cache transparently extends the requested page run to be
5156 * aligned at the block boundary, and does the necessary bogus page
5157 * replacements in the addends to avoid obliterating already valid
5158 * pages.
5159 *
5160 * The only non-trivial issue is that the exclusive busy state for
5161 * pages, which is assumed by the vm_pager_getpages() interface, is
5162 * incompatible with the VMIO buffer cache's desire to share-busy the
5163 * pages. This function performs a trivial downgrade of the pages'
5164 * state before reading buffers, and a less trivial upgrade from the
5165 * shared-busy to excl-busy state after the read.
5166 */
5167 int
vfs_bio_getpages(struct vnode * vp,vm_page_t * ma,int count,int * rbehind,int * rahead,vbg_get_lblkno_t get_lblkno,vbg_get_blksize_t get_blksize)5168 vfs_bio_getpages(struct vnode *vp, vm_page_t *ma, int count,
5169 int *rbehind, int *rahead, vbg_get_lblkno_t get_lblkno,
5170 vbg_get_blksize_t get_blksize)
5171 {
5172 vm_page_t m;
5173 vm_object_t object;
5174 struct buf *bp;
5175 struct mount *mp;
5176 daddr_t lbn, lbnp;
5177 vm_ooffset_t la, lb, poff, poffe;
5178 long bsize;
5179 int bo_bs, br_flags, error, i, pgsin, pgsin_a, pgsin_b;
5180 bool redo, lpart;
5181
5182 object = vp->v_object;
5183 mp = vp->v_mount;
5184 error = 0;
5185 la = IDX_TO_OFF(ma[count - 1]->pindex);
5186 if (la >= object->un_pager.vnp.vnp_size)
5187 return (VM_PAGER_BAD);
5188
5189 /*
5190 * Change the meaning of la from where the last requested page starts
5191 * to where it ends, because that's the end of the requested region
5192 * and the start of the potential read-ahead region.
5193 */
5194 la += PAGE_SIZE;
5195 lpart = la > object->un_pager.vnp.vnp_size;
5196 bo_bs = get_blksize(vp, get_lblkno(vp, IDX_TO_OFF(ma[0]->pindex)));
5197
5198 /*
5199 * Calculate read-ahead, behind and total pages.
5200 */
5201 pgsin = count;
5202 lb = IDX_TO_OFF(ma[0]->pindex);
5203 pgsin_b = OFF_TO_IDX(lb - rounddown2(lb, bo_bs));
5204 pgsin += pgsin_b;
5205 if (rbehind != NULL)
5206 *rbehind = pgsin_b;
5207 pgsin_a = OFF_TO_IDX(roundup2(la, bo_bs) - la);
5208 if (la + IDX_TO_OFF(pgsin_a) >= object->un_pager.vnp.vnp_size)
5209 pgsin_a = OFF_TO_IDX(roundup2(object->un_pager.vnp.vnp_size,
5210 PAGE_SIZE) - la);
5211 pgsin += pgsin_a;
5212 if (rahead != NULL)
5213 *rahead = pgsin_a;
5214 VM_CNT_INC(v_vnodein);
5215 VM_CNT_ADD(v_vnodepgsin, pgsin);
5216
5217 br_flags = (mp != NULL && (mp->mnt_kern_flag & MNTK_UNMAPPED_BUFS)
5218 != 0) ? GB_UNMAPPED : 0;
5219 again:
5220 for (i = 0; i < count; i++) {
5221 if (ma[i] != bogus_page)
5222 vm_page_busy_downgrade(ma[i]);
5223 }
5224
5225 lbnp = -1;
5226 for (i = 0; i < count; i++) {
5227 m = ma[i];
5228 if (m == bogus_page)
5229 continue;
5230
5231 /*
5232 * Pages are shared busy and the object lock is not
5233 * owned, which together allow for the pages'
5234 * invalidation. The racy test for validity avoids
5235 * useless creation of the buffer for the most typical
5236 * case when invalidation is not used in redo or for
5237 * parallel read. The shared->excl upgrade loop at
5238 * the end of the function catches the race in a
5239 * reliable way (protected by the object lock).
5240 */
5241 if (vm_page_all_valid(m))
5242 continue;
5243
5244 poff = IDX_TO_OFF(m->pindex);
5245 poffe = MIN(poff + PAGE_SIZE, object->un_pager.vnp.vnp_size);
5246 for (; poff < poffe; poff += bsize) {
5247 lbn = get_lblkno(vp, poff);
5248 if (lbn == lbnp)
5249 goto next_page;
5250 lbnp = lbn;
5251
5252 bsize = get_blksize(vp, lbn);
5253 error = bread_gb(vp, lbn, bsize, curthread->td_ucred,
5254 br_flags, &bp);
5255 if (error != 0)
5256 goto end_pages;
5257 if (bp->b_rcred == curthread->td_ucred) {
5258 crfree(bp->b_rcred);
5259 bp->b_rcred = NOCRED;
5260 }
5261 if (LIST_EMPTY(&bp->b_dep)) {
5262 /*
5263 * Invalidation clears m->valid, but
5264 * may leave B_CACHE flag if the
5265 * buffer existed at the invalidation
5266 * time. In this case, recycle the
5267 * buffer to do real read on next
5268 * bread() after redo.
5269 *
5270 * Otherwise B_RELBUF is not strictly
5271 * necessary, enable to reduce buf
5272 * cache pressure.
5273 */
5274 if (buf_pager_relbuf ||
5275 !vm_page_all_valid(m))
5276 bp->b_flags |= B_RELBUF;
5277
5278 bp->b_flags &= ~B_NOCACHE;
5279 brelse(bp);
5280 } else {
5281 bqrelse(bp);
5282 }
5283 }
5284 KASSERT(1 /* racy, enable for debugging */ ||
5285 vm_page_all_valid(m) || i == count - 1,
5286 ("buf %d %p invalid", i, m));
5287 if (i == count - 1 && lpart) {
5288 if (!vm_page_none_valid(m) &&
5289 !vm_page_all_valid(m))
5290 vm_page_zero_invalid(m, TRUE);
5291 }
5292 next_page:;
5293 }
5294 end_pages:
5295
5296 redo = false;
5297 for (i = 0; i < count; i++) {
5298 if (ma[i] == bogus_page)
5299 continue;
5300 if (vm_page_busy_tryupgrade(ma[i]) == 0) {
5301 vm_page_sunbusy(ma[i]);
5302 ma[i] = vm_page_grab_unlocked(object, ma[i]->pindex,
5303 VM_ALLOC_NORMAL);
5304 }
5305
5306 /*
5307 * Since the pages were only sbusy while neither the
5308 * buffer nor the object lock was held by us, or
5309 * reallocated while vm_page_grab() slept for busy
5310 * relinguish, they could have been invalidated.
5311 * Recheck the valid bits and re-read as needed.
5312 *
5313 * Note that the last page is made fully valid in the
5314 * read loop, and partial validity for the page at
5315 * index count - 1 could mean that the page was
5316 * invalidated or removed, so we must restart for
5317 * safety as well.
5318 */
5319 if (!vm_page_all_valid(ma[i]))
5320 redo = true;
5321 }
5322 if (redo && error == 0)
5323 goto again;
5324 return (error != 0 ? VM_PAGER_ERROR : VM_PAGER_OK);
5325 }
5326
5327 #include "opt_ddb.h"
5328 #ifdef DDB
5329 #include <ddb/ddb.h>
5330
5331 /* DDB command to show buffer data */
DB_SHOW_COMMAND(buffer,db_show_buffer)5332 DB_SHOW_COMMAND(buffer, db_show_buffer)
5333 {
5334 /* get args */
5335 struct buf *bp = (struct buf *)addr;
5336 #ifdef FULL_BUF_TRACKING
5337 uint32_t i, j;
5338 #endif
5339
5340 if (!have_addr) {
5341 db_printf("usage: show buffer <addr>\n");
5342 return;
5343 }
5344
5345 db_printf("buf at %p\n", bp);
5346 db_printf("b_flags = 0x%b, b_xflags=0x%b\n",
5347 (u_int)bp->b_flags, PRINT_BUF_FLAGS,
5348 (u_int)bp->b_xflags, PRINT_BUF_XFLAGS);
5349 db_printf("b_vflags=0x%b b_ioflags0x%b\n",
5350 (u_int)bp->b_vflags, PRINT_BUF_VFLAGS,
5351 (u_int)bp->b_ioflags, PRINT_BIO_FLAGS);
5352 db_printf(
5353 "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
5354 "b_bufobj = (%p), b_data = %p\n, b_blkno = %jd, b_lblkno = %jd, "
5355 "b_vp = %p, b_dep = %p\n",
5356 bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
5357 bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno,
5358 (intmax_t)bp->b_lblkno, bp->b_vp, bp->b_dep.lh_first);
5359 db_printf("b_kvabase = %p, b_kvasize = %d\n",
5360 bp->b_kvabase, bp->b_kvasize);
5361 if (bp->b_npages) {
5362 int i;
5363 db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
5364 for (i = 0; i < bp->b_npages; i++) {
5365 vm_page_t m;
5366 m = bp->b_pages[i];
5367 if (m != NULL)
5368 db_printf("(%p, 0x%lx, 0x%lx)", m->object,
5369 (u_long)m->pindex,
5370 (u_long)VM_PAGE_TO_PHYS(m));
5371 else
5372 db_printf("( ??? )");
5373 if ((i + 1) < bp->b_npages)
5374 db_printf(",");
5375 }
5376 db_printf("\n");
5377 }
5378 BUF_LOCKPRINTINFO(bp);
5379 #if defined(FULL_BUF_TRACKING)
5380 db_printf("b_io_tracking: b_io_tcnt = %u\n", bp->b_io_tcnt);
5381
5382 i = bp->b_io_tcnt % BUF_TRACKING_SIZE;
5383 for (j = 1; j <= BUF_TRACKING_SIZE; j++) {
5384 if (bp->b_io_tracking[BUF_TRACKING_ENTRY(i - j)] == NULL)
5385 continue;
5386 db_printf(" %2u: %s\n", j,
5387 bp->b_io_tracking[BUF_TRACKING_ENTRY(i - j)]);
5388 }
5389 #elif defined(BUF_TRACKING)
5390 db_printf("b_io_tracking: %s\n", bp->b_io_tracking);
5391 #endif
5392 db_printf(" ");
5393 }
5394
DB_SHOW_COMMAND(bufqueues,bufqueues)5395 DB_SHOW_COMMAND(bufqueues, bufqueues)
5396 {
5397 struct bufdomain *bd;
5398 struct buf *bp;
5399 long total;
5400 int i, j, cnt;
5401
5402 db_printf("bqempty: %d\n", bqempty.bq_len);
5403
5404 for (i = 0; i < buf_domains; i++) {
5405 bd = &bdomain[i];
5406 db_printf("Buf domain %d\n", i);
5407 db_printf("\tfreebufs\t%d\n", bd->bd_freebuffers);
5408 db_printf("\tlofreebufs\t%d\n", bd->bd_lofreebuffers);
5409 db_printf("\thifreebufs\t%d\n", bd->bd_hifreebuffers);
5410 db_printf("\n");
5411 db_printf("\tbufspace\t%ld\n", bd->bd_bufspace);
5412 db_printf("\tmaxbufspace\t%ld\n", bd->bd_maxbufspace);
5413 db_printf("\thibufspace\t%ld\n", bd->bd_hibufspace);
5414 db_printf("\tlobufspace\t%ld\n", bd->bd_lobufspace);
5415 db_printf("\tbufspacethresh\t%ld\n", bd->bd_bufspacethresh);
5416 db_printf("\n");
5417 db_printf("\tnumdirtybuffers\t%d\n", bd->bd_numdirtybuffers);
5418 db_printf("\tlodirtybuffers\t%d\n", bd->bd_lodirtybuffers);
5419 db_printf("\thidirtybuffers\t%d\n", bd->bd_hidirtybuffers);
5420 db_printf("\tdirtybufthresh\t%d\n", bd->bd_dirtybufthresh);
5421 db_printf("\n");
5422 total = 0;
5423 TAILQ_FOREACH(bp, &bd->bd_cleanq->bq_queue, b_freelist)
5424 total += bp->b_bufsize;
5425 db_printf("\tcleanq count\t%d (%ld)\n",
5426 bd->bd_cleanq->bq_len, total);
5427 total = 0;
5428 TAILQ_FOREACH(bp, &bd->bd_dirtyq.bq_queue, b_freelist)
5429 total += bp->b_bufsize;
5430 db_printf("\tdirtyq count\t%d (%ld)\n",
5431 bd->bd_dirtyq.bq_len, total);
5432 db_printf("\twakeup\t\t%d\n", bd->bd_wanted);
5433 db_printf("\tlim\t\t%d\n", bd->bd_lim);
5434 db_printf("\tCPU ");
5435 for (j = 0; j <= mp_maxid; j++)
5436 db_printf("%d, ", bd->bd_subq[j].bq_len);
5437 db_printf("\n");
5438 cnt = 0;
5439 total = 0;
5440 for (j = 0; j < nbuf; j++) {
5441 bp = nbufp(j);
5442 if (bp->b_domain == i && BUF_ISLOCKED(bp)) {
5443 cnt++;
5444 total += bp->b_bufsize;
5445 }
5446 }
5447 db_printf("\tLocked buffers: %d space %ld\n", cnt, total);
5448 cnt = 0;
5449 total = 0;
5450 for (j = 0; j < nbuf; j++) {
5451 bp = nbufp(j);
5452 if (bp->b_domain == i) {
5453 cnt++;
5454 total += bp->b_bufsize;
5455 }
5456 }
5457 db_printf("\tTotal buffers: %d space %ld\n", cnt, total);
5458 }
5459 }
5460
DB_SHOW_COMMAND(lockedbufs,lockedbufs)5461 DB_SHOW_COMMAND(lockedbufs, lockedbufs)
5462 {
5463 struct buf *bp;
5464 int i;
5465
5466 for (i = 0; i < nbuf; i++) {
5467 bp = nbufp(i);
5468 if (BUF_ISLOCKED(bp)) {
5469 db_show_buffer((uintptr_t)bp, 1, 0, NULL);
5470 db_printf("\n");
5471 if (db_pager_quit)
5472 break;
5473 }
5474 }
5475 }
5476
DB_SHOW_COMMAND(vnodebufs,db_show_vnodebufs)5477 DB_SHOW_COMMAND(vnodebufs, db_show_vnodebufs)
5478 {
5479 struct vnode *vp;
5480 struct buf *bp;
5481
5482 if (!have_addr) {
5483 db_printf("usage: show vnodebufs <addr>\n");
5484 return;
5485 }
5486 vp = (struct vnode *)addr;
5487 db_printf("Clean buffers:\n");
5488 TAILQ_FOREACH(bp, &vp->v_bufobj.bo_clean.bv_hd, b_bobufs) {
5489 db_show_buffer((uintptr_t)bp, 1, 0, NULL);
5490 db_printf("\n");
5491 }
5492 db_printf("Dirty buffers:\n");
5493 TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) {
5494 db_show_buffer((uintptr_t)bp, 1, 0, NULL);
5495 db_printf("\n");
5496 }
5497 }
5498
DB_COMMAND(countfreebufs,db_coundfreebufs)5499 DB_COMMAND(countfreebufs, db_coundfreebufs)
5500 {
5501 struct buf *bp;
5502 int i, used = 0, nfree = 0;
5503
5504 if (have_addr) {
5505 db_printf("usage: countfreebufs\n");
5506 return;
5507 }
5508
5509 for (i = 0; i < nbuf; i++) {
5510 bp = nbufp(i);
5511 if (bp->b_qindex == QUEUE_EMPTY)
5512 nfree++;
5513 else
5514 used++;
5515 }
5516
5517 db_printf("Counted %d free, %d used (%d tot)\n", nfree, used,
5518 nfree + used);
5519 db_printf("numfreebuffers is %d\n", numfreebuffers);
5520 }
5521 #endif /* DDB */
5522