xref: /sqlite-3.40.0/src/vdbesort.c (revision b248668b)
1 /*
2 ** 2011-07-09
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains code for the VdbeSorter object, used in concert with
13 ** a VdbeCursor to sort large numbers of keys for CREATE INDEX statements
14 ** or by SELECT statements with ORDER BY clauses that cannot be satisfied
15 ** using indexes and without LIMIT clauses.
16 **
17 ** The VdbeSorter object implements a multi-threaded external merge sort
18 ** algorithm that is efficient even if the number of elements being sorted
19 ** exceeds the available memory.
20 **
21 ** Here is the (internal, non-API) interface between this module and the
22 ** rest of the SQLite system:
23 **
24 **    sqlite3VdbeSorterInit()       Create a new VdbeSorter object.
25 **
26 **    sqlite3VdbeSorterWrite()      Add a single new row to the VdbeSorter
27 **                                  object.  The row is a binary blob in the
28 **                                  OP_MakeRecord format that contains both
29 **                                  the ORDER BY key columns and result columns
30 **                                  in the case of a SELECT w/ ORDER BY, or
31 **                                  the complete record for an index entry
32 **                                  in the case of a CREATE INDEX.
33 **
34 **    sqlite3VdbeSorterRewind()     Sort all content previously added.
35 **                                  Position the read cursor on the
36 **                                  first sorted element.
37 **
38 **    sqlite3VdbeSorterNext()       Advance the read cursor to the next sorted
39 **                                  element.
40 **
41 **    sqlite3VdbeSorterRowkey()     Return the complete binary blob for the
42 **                                  row currently under the read cursor.
43 **
44 **    sqlite3VdbeSorterCompare()    Compare the binary blob for the row
45 **                                  currently under the read cursor against
46 **                                  another binary blob X and report if
47 **                                  X is strictly less than the read cursor.
48 **                                  Used to enforce uniqueness in a
49 **                                  CREATE UNIQUE INDEX statement.
50 **
51 **    sqlite3VdbeSorterClose()      Close the VdbeSorter object and reclaim
52 **                                  all resources.
53 **
54 **    sqlite3VdbeSorterReset()      Refurbish the VdbeSorter for reuse.  This
55 **                                  is like Close() followed by Init() only
56 **                                  much faster.
57 **
58 ** The interfaces above must be called in a particular order.  Write() can
59 ** only occur in between Init()/Reset() and Rewind().  Next(), Rowkey(), and
60 ** Compare() can only occur in between Rewind() and Close()/Reset(). i.e.
61 **
62 **   Init()
63 **   for each record: Write()
64 **   Rewind()
65 **     Rowkey()/Compare()
66 **   Next()
67 **   Close()
68 **
69 ** Algorithm:
70 **
71 ** Records passed to the sorter via calls to Write() are initially held
72 ** unsorted in main memory. Assuming the amount of memory used never exceeds
73 ** a threshold, when Rewind() is called the set of records is sorted using
74 ** an in-memory merge sort. In this case, no temporary files are required
75 ** and subsequent calls to Rowkey(), Next() and Compare() read records
76 ** directly from main memory.
77 **
78 ** If the amount of space used to store records in main memory exceeds the
79 ** threshold, then the set of records currently in memory are sorted and
80 ** written to a temporary file in "Packed Memory Array" (PMA) format.
81 ** A PMA created at this point is known as a "level-0 PMA". Higher levels
82 ** of PMAs may be created by merging existing PMAs together - for example
83 ** merging two or more level-0 PMAs together creates a level-1 PMA.
84 **
85 ** The threshold for the amount of main memory to use before flushing
86 ** records to a PMA is roughly the same as the limit configured for the
87 ** page-cache of the main database. Specifically, the threshold is set to
88 ** the value returned by "PRAGMA main.page_size" multipled by
89 ** that returned by "PRAGMA main.cache_size", in bytes.
90 **
91 ** If the sorter is running in single-threaded mode, then all PMAs generated
92 ** are appended to a single temporary file. Or, if the sorter is running in
93 ** multi-threaded mode then up to (N+1) temporary files may be opened, where
94 ** N is the configured number of worker threads. In this case, instead of
95 ** sorting the records and writing the PMA to a temporary file itself, the
96 ** calling thread usually launches a worker thread to do so. Except, if
97 ** there are already N worker threads running, the main thread does the work
98 ** itself.
99 **
100 ** The sorter is running in multi-threaded mode if (a) the library was built
101 ** with pre-processor symbol SQLITE_MAX_WORKER_THREADS set to a value greater
102 ** than zero, and (b) worker threads have been enabled at runtime by calling
103 ** "PRAGMA threads=N" with some value of N greater than 0.
104 **
105 ** When Rewind() is called, any data remaining in memory is flushed to a
106 ** final PMA. So at this point the data is stored in some number of sorted
107 ** PMAs within temporary files on disk.
108 **
109 ** If there are fewer than SORTER_MAX_MERGE_COUNT PMAs in total and the
110 ** sorter is running in single-threaded mode, then these PMAs are merged
111 ** incrementally as keys are retreived from the sorter by the VDBE.  The
112 ** MergeEngine object, described in further detail below, performs this
113 ** merge.
114 **
115 ** Or, if running in multi-threaded mode, then a background thread is
116 ** launched to merge the existing PMAs. Once the background thread has
117 ** merged T bytes of data into a single sorted PMA, the main thread
118 ** begins reading keys from that PMA while the background thread proceeds
119 ** with merging the next T bytes of data. And so on.
120 **
121 ** Parameter T is set to half the value of the memory threshold used
122 ** by Write() above to determine when to create a new PMA.
123 **
124 ** If there are more than SORTER_MAX_MERGE_COUNT PMAs in total when
125 ** Rewind() is called, then a hierarchy of incremental-merges is used.
126 ** First, T bytes of data from the first SORTER_MAX_MERGE_COUNT PMAs on
127 ** disk are merged together. Then T bytes of data from the second set, and
128 ** so on, such that no operation ever merges more than SORTER_MAX_MERGE_COUNT
129 ** PMAs at a time. This done is to improve locality.
130 **
131 ** If running in multi-threaded mode and there are more than
132 ** SORTER_MAX_MERGE_COUNT PMAs on disk when Rewind() is called, then more
133 ** than one background thread may be created. Specifically, there may be
134 ** one background thread for each temporary file on disk, and one background
135 ** thread to merge the output of each of the others to a single PMA for
136 ** the main thread to read from.
137 */
138 #include "sqliteInt.h"
139 #include "vdbeInt.h"
140 
141 /*
142 ** If SQLITE_DEBUG_SORTER_THREADS is defined, this module outputs various
143 ** messages to stderr that may be helpful in understanding the performance
144 ** characteristics of the sorter in multi-threaded mode.
145 */
146 #if 0
147 # define SQLITE_DEBUG_SORTER_THREADS 1
148 #endif
149 
150 /*
151 ** Hard-coded maximum amount of data to accumulate in memory before flushing
152 ** to a level 0 PMA. The purpose of this limit is to prevent various integer
153 ** overflows. 512MiB.
154 */
155 #define SQLITE_MAX_PMASZ    (1<<29)
156 
157 /*
158 ** Private objects used by the sorter
159 */
160 typedef struct MergeEngine MergeEngine;     /* Merge PMAs together */
161 typedef struct PmaReader PmaReader;         /* Incrementally read one PMA */
162 typedef struct PmaWriter PmaWriter;         /* Incrementally write one PMA */
163 typedef struct SorterRecord SorterRecord;   /* A record being sorted */
164 typedef struct SortSubtask SortSubtask;     /* A sub-task in the sort process */
165 typedef struct SorterFile SorterFile;       /* Temporary file object wrapper */
166 typedef struct SorterList SorterList;       /* In-memory list of records */
167 typedef struct IncrMerger IncrMerger;       /* Read & merge multiple PMAs */
168 
169 /*
170 ** A container for a temp file handle and the current amount of data
171 ** stored in the file.
172 */
173 struct SorterFile {
174   sqlite3_file *pFd;              /* File handle */
175   i64 iEof;                       /* Bytes of data stored in pFd */
176 };
177 
178 /*
179 ** An in-memory list of objects to be sorted.
180 **
181 ** If aMemory==0 then each object is allocated separately and the objects
182 ** are connected using SorterRecord.u.pNext.  If aMemory!=0 then all objects
183 ** are stored in the aMemory[] bulk memory, one right after the other, and
184 ** are connected using SorterRecord.u.iNext.
185 */
186 struct SorterList {
187   SorterRecord *pList;            /* Linked list of records */
188   u8 *aMemory;                    /* If non-NULL, bulk memory to hold pList */
189   int szPMA;                      /* Size of pList as PMA in bytes */
190 };
191 
192 /*
193 ** The MergeEngine object is used to combine two or more smaller PMAs into
194 ** one big PMA using a merge operation.  Separate PMAs all need to be
195 ** combined into one big PMA in order to be able to step through the sorted
196 ** records in order.
197 **
198 ** The aReadr[] array contains a PmaReader object for each of the PMAs being
199 ** merged.  An aReadr[] object either points to a valid key or else is at EOF.
200 ** ("EOF" means "End Of File".  When aReadr[] is at EOF there is no more data.)
201 ** For the purposes of the paragraphs below, we assume that the array is
202 ** actually N elements in size, where N is the smallest power of 2 greater
203 ** to or equal to the number of PMAs being merged. The extra aReadr[] elements
204 ** are treated as if they are empty (always at EOF).
205 **
206 ** The aTree[] array is also N elements in size. The value of N is stored in
207 ** the MergeEngine.nTree variable.
208 **
209 ** The final (N/2) elements of aTree[] contain the results of comparing
210 ** pairs of PMA keys together. Element i contains the result of
211 ** comparing aReadr[2*i-N] and aReadr[2*i-N+1]. Whichever key is smaller, the
212 ** aTree element is set to the index of it.
213 **
214 ** For the purposes of this comparison, EOF is considered greater than any
215 ** other key value. If the keys are equal (only possible with two EOF
216 ** values), it doesn't matter which index is stored.
217 **
218 ** The (N/4) elements of aTree[] that precede the final (N/2) described
219 ** above contains the index of the smallest of each block of 4 PmaReaders
220 ** And so on. So that aTree[1] contains the index of the PmaReader that
221 ** currently points to the smallest key value. aTree[0] is unused.
222 **
223 ** Example:
224 **
225 **     aReadr[0] -> Banana
226 **     aReadr[1] -> Feijoa
227 **     aReadr[2] -> Elderberry
228 **     aReadr[3] -> Currant
229 **     aReadr[4] -> Grapefruit
230 **     aReadr[5] -> Apple
231 **     aReadr[6] -> Durian
232 **     aReadr[7] -> EOF
233 **
234 **     aTree[] = { X, 5   0, 5    0, 3, 5, 6 }
235 **
236 ** The current element is "Apple" (the value of the key indicated by
237 ** PmaReader 5). When the Next() operation is invoked, PmaReader 5 will
238 ** be advanced to the next key in its segment. Say the next key is
239 ** "Eggplant":
240 **
241 **     aReadr[5] -> Eggplant
242 **
243 ** The contents of aTree[] are updated first by comparing the new PmaReader
244 ** 5 key to the current key of PmaReader 4 (still "Grapefruit"). The PmaReader
245 ** 5 value is still smaller, so aTree[6] is set to 5. And so on up the tree.
246 ** The value of PmaReader 6 - "Durian" - is now smaller than that of PmaReader
247 ** 5, so aTree[3] is set to 6. Key 0 is smaller than key 6 (Banana<Durian),
248 ** so the value written into element 1 of the array is 0. As follows:
249 **
250 **     aTree[] = { X, 0   0, 6    0, 3, 5, 6 }
251 **
252 ** In other words, each time we advance to the next sorter element, log2(N)
253 ** key comparison operations are required, where N is the number of segments
254 ** being merged (rounded up to the next power of 2).
255 */
256 struct MergeEngine {
257   int nTree;                 /* Used size of aTree/aReadr (power of 2) */
258   SortSubtask *pTask;        /* Used by this thread only */
259   int *aTree;                /* Current state of incremental merge */
260   PmaReader *aReadr;         /* Array of PmaReaders to merge data from */
261 };
262 
263 /*
264 ** This object represents a single thread of control in a sort operation.
265 ** Exactly VdbeSorter.nTask instances of this object are allocated
266 ** as part of each VdbeSorter object. Instances are never allocated any
267 ** other way. VdbeSorter.nTask is set to the number of worker threads allowed
268 ** (see SQLITE_CONFIG_WORKER_THREADS) plus one (the main thread).  Thus for
269 ** single-threaded operation, there is exactly one instance of this object
270 ** and for multi-threaded operation there are two or more instances.
271 **
272 ** Essentially, this structure contains all those fields of the VdbeSorter
273 ** structure for which each thread requires a separate instance. For example,
274 ** each thread requries its own UnpackedRecord object to unpack records in
275 ** as part of comparison operations.
276 **
277 ** Before a background thread is launched, variable bDone is set to 0. Then,
278 ** right before it exits, the thread itself sets bDone to 1. This is used for
279 ** two purposes:
280 **
281 **   1. When flushing the contents of memory to a level-0 PMA on disk, to
282 **      attempt to select a SortSubtask for which there is not already an
283 **      active background thread (since doing so causes the main thread
284 **      to block until it finishes).
285 **
286 **   2. If SQLITE_DEBUG_SORTER_THREADS is defined, to determine if a call
287 **      to sqlite3ThreadJoin() is likely to block. Cases that are likely to
288 **      block provoke debugging output.
289 **
290 ** In both cases, the effects of the main thread seeing (bDone==0) even
291 ** after the thread has finished are not dire. So we don't worry about
292 ** memory barriers and such here.
293 */
294 typedef int (*SorterCompare)(SortSubtask*,int*,const void*,int,const void*,int);
295 struct SortSubtask {
296   SQLiteThread *pThread;          /* Background thread, if any */
297   int bDone;                      /* Set if thread is finished but not joined */
298   VdbeSorter *pSorter;            /* Sorter that owns this sub-task */
299   UnpackedRecord *pUnpacked;      /* Space to unpack a record */
300   SorterList list;                /* List for thread to write to a PMA */
301   int nPMA;                       /* Number of PMAs currently in file */
302   SorterCompare xCompare;         /* Compare function to use */
303   SorterFile file;                /* Temp file for level-0 PMAs */
304   SorterFile file2;               /* Space for other PMAs */
305 };
306 
307 
308 /*
309 ** Main sorter structure. A single instance of this is allocated for each
310 ** sorter cursor created by the VDBE.
311 **
312 ** mxKeysize:
313 **   As records are added to the sorter by calls to sqlite3VdbeSorterWrite(),
314 **   this variable is updated so as to be set to the size on disk of the
315 **   largest record in the sorter.
316 */
317 struct VdbeSorter {
318   int mnPmaSize;                  /* Minimum PMA size, in bytes */
319   int mxPmaSize;                  /* Maximum PMA size, in bytes.  0==no limit */
320   int mxKeysize;                  /* Largest serialized key seen so far */
321   int pgsz;                       /* Main database page size */
322   PmaReader *pReader;             /* Readr data from here after Rewind() */
323   MergeEngine *pMerger;           /* Or here, if bUseThreads==0 */
324   sqlite3 *db;                    /* Database connection */
325   KeyInfo *pKeyInfo;              /* How to compare records */
326   UnpackedRecord *pUnpacked;      /* Used by VdbeSorterCompare() */
327   SorterList list;                /* List of in-memory records */
328   int iMemory;                    /* Offset of free space in list.aMemory */
329   int nMemory;                    /* Size of list.aMemory allocation in bytes */
330   u8 bUsePMA;                     /* True if one or more PMAs created */
331   u8 bUseThreads;                 /* True to use background threads */
332   u8 iPrev;                       /* Previous thread used to flush PMA */
333   u8 nTask;                       /* Size of aTask[] array */
334   u8 typeMask;
335   SortSubtask aTask[1];           /* One or more subtasks */
336 };
337 
338 #define SORTER_TYPE_INTEGER 0x01
339 #define SORTER_TYPE_TEXT    0x02
340 
341 /*
342 ** An instance of the following object is used to read records out of a
343 ** PMA, in sorted order.  The next key to be read is cached in nKey/aKey.
344 ** aKey might point into aMap or into aBuffer.  If neither of those locations
345 ** contain a contiguous representation of the key, then aAlloc is allocated
346 ** and the key is copied into aAlloc and aKey is made to poitn to aAlloc.
347 **
348 ** pFd==0 at EOF.
349 */
350 struct PmaReader {
351   i64 iReadOff;               /* Current read offset */
352   i64 iEof;                   /* 1 byte past EOF for this PmaReader */
353   int nAlloc;                 /* Bytes of space at aAlloc */
354   int nKey;                   /* Number of bytes in key */
355   sqlite3_file *pFd;          /* File handle we are reading from */
356   u8 *aAlloc;                 /* Space for aKey if aBuffer and pMap wont work */
357   u8 *aKey;                   /* Pointer to current key */
358   u8 *aBuffer;                /* Current read buffer */
359   int nBuffer;                /* Size of read buffer in bytes */
360   u8 *aMap;                   /* Pointer to mapping of entire file */
361   IncrMerger *pIncr;          /* Incremental merger */
362 };
363 
364 /*
365 ** Normally, a PmaReader object iterates through an existing PMA stored
366 ** within a temp file. However, if the PmaReader.pIncr variable points to
367 ** an object of the following type, it may be used to iterate/merge through
368 ** multiple PMAs simultaneously.
369 **
370 ** There are two types of IncrMerger object - single (bUseThread==0) and
371 ** multi-threaded (bUseThread==1).
372 **
373 ** A multi-threaded IncrMerger object uses two temporary files - aFile[0]
374 ** and aFile[1]. Neither file is allowed to grow to more than mxSz bytes in
375 ** size. When the IncrMerger is initialized, it reads enough data from
376 ** pMerger to populate aFile[0]. It then sets variables within the
377 ** corresponding PmaReader object to read from that file and kicks off
378 ** a background thread to populate aFile[1] with the next mxSz bytes of
379 ** sorted record data from pMerger.
380 **
381 ** When the PmaReader reaches the end of aFile[0], it blocks until the
382 ** background thread has finished populating aFile[1]. It then exchanges
383 ** the contents of the aFile[0] and aFile[1] variables within this structure,
384 ** sets the PmaReader fields to read from the new aFile[0] and kicks off
385 ** another background thread to populate the new aFile[1]. And so on, until
386 ** the contents of pMerger are exhausted.
387 **
388 ** A single-threaded IncrMerger does not open any temporary files of its
389 ** own. Instead, it has exclusive access to mxSz bytes of space beginning
390 ** at offset iStartOff of file pTask->file2. And instead of using a
391 ** background thread to prepare data for the PmaReader, with a single
392 ** threaded IncrMerger the allocate part of pTask->file2 is "refilled" with
393 ** keys from pMerger by the calling thread whenever the PmaReader runs out
394 ** of data.
395 */
396 struct IncrMerger {
397   SortSubtask *pTask;             /* Task that owns this merger */
398   MergeEngine *pMerger;           /* Merge engine thread reads data from */
399   i64 iStartOff;                  /* Offset to start writing file at */
400   int mxSz;                       /* Maximum bytes of data to store */
401   int bEof;                       /* Set to true when merge is finished */
402   int bUseThread;                 /* True to use a bg thread for this object */
403   SorterFile aFile[2];            /* aFile[0] for reading, [1] for writing */
404 };
405 
406 /*
407 ** An instance of this object is used for writing a PMA.
408 **
409 ** The PMA is written one record at a time.  Each record is of an arbitrary
410 ** size.  But I/O is more efficient if it occurs in page-sized blocks where
411 ** each block is aligned on a page boundary.  This object caches writes to
412 ** the PMA so that aligned, page-size blocks are written.
413 */
414 struct PmaWriter {
415   int eFWErr;                     /* Non-zero if in an error state */
416   u8 *aBuffer;                    /* Pointer to write buffer */
417   int nBuffer;                    /* Size of write buffer in bytes */
418   int iBufStart;                  /* First byte of buffer to write */
419   int iBufEnd;                    /* Last byte of buffer to write */
420   i64 iWriteOff;                  /* Offset of start of buffer in file */
421   sqlite3_file *pFd;              /* File handle to write to */
422 };
423 
424 /*
425 ** This object is the header on a single record while that record is being
426 ** held in memory and prior to being written out as part of a PMA.
427 **
428 ** How the linked list is connected depends on how memory is being managed
429 ** by this module. If using a separate allocation for each in-memory record
430 ** (VdbeSorter.list.aMemory==0), then the list is always connected using the
431 ** SorterRecord.u.pNext pointers.
432 **
433 ** Or, if using the single large allocation method (VdbeSorter.list.aMemory!=0),
434 ** then while records are being accumulated the list is linked using the
435 ** SorterRecord.u.iNext offset. This is because the aMemory[] array may
436 ** be sqlite3Realloc()ed while records are being accumulated. Once the VM
437 ** has finished passing records to the sorter, or when the in-memory buffer
438 ** is full, the list is sorted. As part of the sorting process, it is
439 ** converted to use the SorterRecord.u.pNext pointers. See function
440 ** vdbeSorterSort() for details.
441 */
442 struct SorterRecord {
443   int nVal;                       /* Size of the record in bytes */
444   union {
445     SorterRecord *pNext;          /* Pointer to next record in list */
446     int iNext;                    /* Offset within aMemory of next record */
447   } u;
448   /* The data for the record immediately follows this header */
449 };
450 
451 /* Return a pointer to the buffer containing the record data for SorterRecord
452 ** object p. Should be used as if:
453 **
454 **   void *SRVAL(SorterRecord *p) { return (void*)&p[1]; }
455 */
456 #define SRVAL(p) ((void*)((SorterRecord*)(p) + 1))
457 
458 
459 /* Maximum number of PMAs that a single MergeEngine can merge */
460 #define SORTER_MAX_MERGE_COUNT 16
461 
462 static int vdbeIncrSwap(IncrMerger*);
463 static void vdbeIncrFree(IncrMerger *);
464 
465 /*
466 ** Free all memory belonging to the PmaReader object passed as the
467 ** argument. All structure fields are set to zero before returning.
468 */
vdbePmaReaderClear(PmaReader * pReadr)469 static void vdbePmaReaderClear(PmaReader *pReadr){
470   sqlite3_free(pReadr->aAlloc);
471   sqlite3_free(pReadr->aBuffer);
472   if( pReadr->aMap ) sqlite3OsUnfetch(pReadr->pFd, 0, pReadr->aMap);
473   vdbeIncrFree(pReadr->pIncr);
474   memset(pReadr, 0, sizeof(PmaReader));
475 }
476 
477 /*
478 ** Read the next nByte bytes of data from the PMA p.
479 ** If successful, set *ppOut to point to a buffer containing the data
480 ** and return SQLITE_OK. Otherwise, if an error occurs, return an SQLite
481 ** error code.
482 **
483 ** The buffer returned in *ppOut is only valid until the
484 ** next call to this function.
485 */
vdbePmaReadBlob(PmaReader * p,int nByte,u8 ** ppOut)486 static int vdbePmaReadBlob(
487   PmaReader *p,                   /* PmaReader from which to take the blob */
488   int nByte,                      /* Bytes of data to read */
489   u8 **ppOut                      /* OUT: Pointer to buffer containing data */
490 ){
491   int iBuf;                       /* Offset within buffer to read from */
492   int nAvail;                     /* Bytes of data available in buffer */
493 
494   if( p->aMap ){
495     *ppOut = &p->aMap[p->iReadOff];
496     p->iReadOff += nByte;
497     return SQLITE_OK;
498   }
499 
500   assert( p->aBuffer );
501 
502   /* If there is no more data to be read from the buffer, read the next
503   ** p->nBuffer bytes of data from the file into it. Or, if there are less
504   ** than p->nBuffer bytes remaining in the PMA, read all remaining data.  */
505   iBuf = p->iReadOff % p->nBuffer;
506   if( iBuf==0 ){
507     int nRead;                    /* Bytes to read from disk */
508     int rc;                       /* sqlite3OsRead() return code */
509 
510     /* Determine how many bytes of data to read. */
511     if( (p->iEof - p->iReadOff) > (i64)p->nBuffer ){
512       nRead = p->nBuffer;
513     }else{
514       nRead = (int)(p->iEof - p->iReadOff);
515     }
516     assert( nRead>0 );
517 
518     /* Readr data from the file. Return early if an error occurs. */
519     rc = sqlite3OsRead(p->pFd, p->aBuffer, nRead, p->iReadOff);
520     assert( rc!=SQLITE_IOERR_SHORT_READ );
521     if( rc!=SQLITE_OK ) return rc;
522   }
523   nAvail = p->nBuffer - iBuf;
524 
525   if( nByte<=nAvail ){
526     /* The requested data is available in the in-memory buffer. In this
527     ** case there is no need to make a copy of the data, just return a
528     ** pointer into the buffer to the caller.  */
529     *ppOut = &p->aBuffer[iBuf];
530     p->iReadOff += nByte;
531   }else{
532     /* The requested data is not all available in the in-memory buffer.
533     ** In this case, allocate space at p->aAlloc[] to copy the requested
534     ** range into. Then return a copy of pointer p->aAlloc to the caller.  */
535     int nRem;                     /* Bytes remaining to copy */
536 
537     /* Extend the p->aAlloc[] allocation if required. */
538     if( p->nAlloc<nByte ){
539       u8 *aNew;
540       sqlite3_int64 nNew = MAX(128, 2*(sqlite3_int64)p->nAlloc);
541       while( nByte>nNew ) nNew = nNew*2;
542       aNew = sqlite3Realloc(p->aAlloc, nNew);
543       if( !aNew ) return SQLITE_NOMEM_BKPT;
544       p->nAlloc = nNew;
545       p->aAlloc = aNew;
546     }
547 
548     /* Copy as much data as is available in the buffer into the start of
549     ** p->aAlloc[].  */
550     memcpy(p->aAlloc, &p->aBuffer[iBuf], nAvail);
551     p->iReadOff += nAvail;
552     nRem = nByte - nAvail;
553 
554     /* The following loop copies up to p->nBuffer bytes per iteration into
555     ** the p->aAlloc[] buffer.  */
556     while( nRem>0 ){
557       int rc;                     /* vdbePmaReadBlob() return code */
558       int nCopy;                  /* Number of bytes to copy */
559       u8 *aNext;                  /* Pointer to buffer to copy data from */
560 
561       nCopy = nRem;
562       if( nRem>p->nBuffer ) nCopy = p->nBuffer;
563       rc = vdbePmaReadBlob(p, nCopy, &aNext);
564       if( rc!=SQLITE_OK ) return rc;
565       assert( aNext!=p->aAlloc );
566       memcpy(&p->aAlloc[nByte - nRem], aNext, nCopy);
567       nRem -= nCopy;
568     }
569 
570     *ppOut = p->aAlloc;
571   }
572 
573   return SQLITE_OK;
574 }
575 
576 /*
577 ** Read a varint from the stream of data accessed by p. Set *pnOut to
578 ** the value read.
579 */
vdbePmaReadVarint(PmaReader * p,u64 * pnOut)580 static int vdbePmaReadVarint(PmaReader *p, u64 *pnOut){
581   int iBuf;
582 
583   if( p->aMap ){
584     p->iReadOff += sqlite3GetVarint(&p->aMap[p->iReadOff], pnOut);
585   }else{
586     iBuf = p->iReadOff % p->nBuffer;
587     if( iBuf && (p->nBuffer-iBuf)>=9 ){
588       p->iReadOff += sqlite3GetVarint(&p->aBuffer[iBuf], pnOut);
589     }else{
590       u8 aVarint[16], *a;
591       int i = 0, rc;
592       do{
593         rc = vdbePmaReadBlob(p, 1, &a);
594         if( rc ) return rc;
595         aVarint[(i++)&0xf] = a[0];
596       }while( (a[0]&0x80)!=0 );
597       sqlite3GetVarint(aVarint, pnOut);
598     }
599   }
600 
601   return SQLITE_OK;
602 }
603 
604 /*
605 ** Attempt to memory map file pFile. If successful, set *pp to point to the
606 ** new mapping and return SQLITE_OK. If the mapping is not attempted
607 ** (because the file is too large or the VFS layer is configured not to use
608 ** mmap), return SQLITE_OK and set *pp to NULL.
609 **
610 ** Or, if an error occurs, return an SQLite error code. The final value of
611 ** *pp is undefined in this case.
612 */
vdbeSorterMapFile(SortSubtask * pTask,SorterFile * pFile,u8 ** pp)613 static int vdbeSorterMapFile(SortSubtask *pTask, SorterFile *pFile, u8 **pp){
614   int rc = SQLITE_OK;
615   if( pFile->iEof<=(i64)(pTask->pSorter->db->nMaxSorterMmap) ){
616     sqlite3_file *pFd = pFile->pFd;
617     if( pFd->pMethods->iVersion>=3 ){
618       rc = sqlite3OsFetch(pFd, 0, (int)pFile->iEof, (void**)pp);
619       testcase( rc!=SQLITE_OK );
620     }
621   }
622   return rc;
623 }
624 
625 /*
626 ** Attach PmaReader pReadr to file pFile (if it is not already attached to
627 ** that file) and seek it to offset iOff within the file.  Return SQLITE_OK
628 ** if successful, or an SQLite error code if an error occurs.
629 */
vdbePmaReaderSeek(SortSubtask * pTask,PmaReader * pReadr,SorterFile * pFile,i64 iOff)630 static int vdbePmaReaderSeek(
631   SortSubtask *pTask,             /* Task context */
632   PmaReader *pReadr,              /* Reader whose cursor is to be moved */
633   SorterFile *pFile,              /* Sorter file to read from */
634   i64 iOff                        /* Offset in pFile */
635 ){
636   int rc = SQLITE_OK;
637 
638   assert( pReadr->pIncr==0 || pReadr->pIncr->bEof==0 );
639 
640   if( sqlite3FaultSim(201) ) return SQLITE_IOERR_READ;
641   if( pReadr->aMap ){
642     sqlite3OsUnfetch(pReadr->pFd, 0, pReadr->aMap);
643     pReadr->aMap = 0;
644   }
645   pReadr->iReadOff = iOff;
646   pReadr->iEof = pFile->iEof;
647   pReadr->pFd = pFile->pFd;
648 
649   rc = vdbeSorterMapFile(pTask, pFile, &pReadr->aMap);
650   if( rc==SQLITE_OK && pReadr->aMap==0 ){
651     int pgsz = pTask->pSorter->pgsz;
652     int iBuf = pReadr->iReadOff % pgsz;
653     if( pReadr->aBuffer==0 ){
654       pReadr->aBuffer = (u8*)sqlite3Malloc(pgsz);
655       if( pReadr->aBuffer==0 ) rc = SQLITE_NOMEM_BKPT;
656       pReadr->nBuffer = pgsz;
657     }
658     if( rc==SQLITE_OK && iBuf ){
659       int nRead = pgsz - iBuf;
660       if( (pReadr->iReadOff + nRead) > pReadr->iEof ){
661         nRead = (int)(pReadr->iEof - pReadr->iReadOff);
662       }
663       rc = sqlite3OsRead(
664           pReadr->pFd, &pReadr->aBuffer[iBuf], nRead, pReadr->iReadOff
665       );
666       testcase( rc!=SQLITE_OK );
667     }
668   }
669 
670   return rc;
671 }
672 
673 /*
674 ** Advance PmaReader pReadr to the next key in its PMA. Return SQLITE_OK if
675 ** no error occurs, or an SQLite error code if one does.
676 */
vdbePmaReaderNext(PmaReader * pReadr)677 static int vdbePmaReaderNext(PmaReader *pReadr){
678   int rc = SQLITE_OK;             /* Return Code */
679   u64 nRec = 0;                   /* Size of record in bytes */
680 
681 
682   if( pReadr->iReadOff>=pReadr->iEof ){
683     IncrMerger *pIncr = pReadr->pIncr;
684     int bEof = 1;
685     if( pIncr ){
686       rc = vdbeIncrSwap(pIncr);
687       if( rc==SQLITE_OK && pIncr->bEof==0 ){
688         rc = vdbePmaReaderSeek(
689             pIncr->pTask, pReadr, &pIncr->aFile[0], pIncr->iStartOff
690         );
691         bEof = 0;
692       }
693     }
694 
695     if( bEof ){
696       /* This is an EOF condition */
697       vdbePmaReaderClear(pReadr);
698       testcase( rc!=SQLITE_OK );
699       return rc;
700     }
701   }
702 
703   if( rc==SQLITE_OK ){
704     rc = vdbePmaReadVarint(pReadr, &nRec);
705   }
706   if( rc==SQLITE_OK ){
707     pReadr->nKey = (int)nRec;
708     rc = vdbePmaReadBlob(pReadr, (int)nRec, &pReadr->aKey);
709     testcase( rc!=SQLITE_OK );
710   }
711 
712   return rc;
713 }
714 
715 /*
716 ** Initialize PmaReader pReadr to scan through the PMA stored in file pFile
717 ** starting at offset iStart and ending at offset iEof-1. This function
718 ** leaves the PmaReader pointing to the first key in the PMA (or EOF if the
719 ** PMA is empty).
720 **
721 ** If the pnByte parameter is NULL, then it is assumed that the file
722 ** contains a single PMA, and that that PMA omits the initial length varint.
723 */
vdbePmaReaderInit(SortSubtask * pTask,SorterFile * pFile,i64 iStart,PmaReader * pReadr,i64 * pnByte)724 static int vdbePmaReaderInit(
725   SortSubtask *pTask,             /* Task context */
726   SorterFile *pFile,              /* Sorter file to read from */
727   i64 iStart,                     /* Start offset in pFile */
728   PmaReader *pReadr,              /* PmaReader to populate */
729   i64 *pnByte                     /* IN/OUT: Increment this value by PMA size */
730 ){
731   int rc;
732 
733   assert( pFile->iEof>iStart );
734   assert( pReadr->aAlloc==0 && pReadr->nAlloc==0 );
735   assert( pReadr->aBuffer==0 );
736   assert( pReadr->aMap==0 );
737 
738   rc = vdbePmaReaderSeek(pTask, pReadr, pFile, iStart);
739   if( rc==SQLITE_OK ){
740     u64 nByte = 0;                 /* Size of PMA in bytes */
741     rc = vdbePmaReadVarint(pReadr, &nByte);
742     pReadr->iEof = pReadr->iReadOff + nByte;
743     *pnByte += nByte;
744   }
745 
746   if( rc==SQLITE_OK ){
747     rc = vdbePmaReaderNext(pReadr);
748   }
749   return rc;
750 }
751 
752 /*
753 ** A version of vdbeSorterCompare() that assumes that it has already been
754 ** determined that the first field of key1 is equal to the first field of
755 ** key2.
756 */
vdbeSorterCompareTail(SortSubtask * pTask,int * pbKey2Cached,const void * pKey1,int nKey1,const void * pKey2,int nKey2)757 static int vdbeSorterCompareTail(
758   SortSubtask *pTask,             /* Subtask context (for pKeyInfo) */
759   int *pbKey2Cached,              /* True if pTask->pUnpacked is pKey2 */
760   const void *pKey1, int nKey1,   /* Left side of comparison */
761   const void *pKey2, int nKey2    /* Right side of comparison */
762 ){
763   UnpackedRecord *r2 = pTask->pUnpacked;
764   if( *pbKey2Cached==0 ){
765     sqlite3VdbeRecordUnpack(pTask->pSorter->pKeyInfo, nKey2, pKey2, r2);
766     *pbKey2Cached = 1;
767   }
768   return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, r2, 1);
769 }
770 
771 /*
772 ** Compare key1 (buffer pKey1, size nKey1 bytes) with key2 (buffer pKey2,
773 ** size nKey2 bytes). Use (pTask->pKeyInfo) for the collation sequences
774 ** used by the comparison. Return the result of the comparison.
775 **
776 ** If IN/OUT parameter *pbKey2Cached is true when this function is called,
777 ** it is assumed that (pTask->pUnpacked) contains the unpacked version
778 ** of key2. If it is false, (pTask->pUnpacked) is populated with the unpacked
779 ** version of key2 and *pbKey2Cached set to true before returning.
780 **
781 ** If an OOM error is encountered, (pTask->pUnpacked->error_rc) is set
782 ** to SQLITE_NOMEM.
783 */
vdbeSorterCompare(SortSubtask * pTask,int * pbKey2Cached,const void * pKey1,int nKey1,const void * pKey2,int nKey2)784 static int vdbeSorterCompare(
785   SortSubtask *pTask,             /* Subtask context (for pKeyInfo) */
786   int *pbKey2Cached,              /* True if pTask->pUnpacked is pKey2 */
787   const void *pKey1, int nKey1,   /* Left side of comparison */
788   const void *pKey2, int nKey2    /* Right side of comparison */
789 ){
790   UnpackedRecord *r2 = pTask->pUnpacked;
791   if( !*pbKey2Cached ){
792     sqlite3VdbeRecordUnpack(pTask->pSorter->pKeyInfo, nKey2, pKey2, r2);
793     *pbKey2Cached = 1;
794   }
795   return sqlite3VdbeRecordCompare(nKey1, pKey1, r2);
796 }
797 
798 /*
799 ** A specially optimized version of vdbeSorterCompare() that assumes that
800 ** the first field of each key is a TEXT value and that the collation
801 ** sequence to compare them with is BINARY.
802 */
vdbeSorterCompareText(SortSubtask * pTask,int * pbKey2Cached,const void * pKey1,int nKey1,const void * pKey2,int nKey2)803 static int vdbeSorterCompareText(
804   SortSubtask *pTask,             /* Subtask context (for pKeyInfo) */
805   int *pbKey2Cached,              /* True if pTask->pUnpacked is pKey2 */
806   const void *pKey1, int nKey1,   /* Left side of comparison */
807   const void *pKey2, int nKey2    /* Right side of comparison */
808 ){
809   const u8 * const p1 = (const u8 * const)pKey1;
810   const u8 * const p2 = (const u8 * const)pKey2;
811   const u8 * const v1 = &p1[ p1[0] ];   /* Pointer to value 1 */
812   const u8 * const v2 = &p2[ p2[0] ];   /* Pointer to value 2 */
813 
814   int n1;
815   int n2;
816   int res;
817 
818   getVarint32NR(&p1[1], n1);
819   getVarint32NR(&p2[1], n2);
820   res = memcmp(v1, v2, (MIN(n1, n2) - 13)/2);
821   if( res==0 ){
822     res = n1 - n2;
823   }
824 
825   if( res==0 ){
826     if( pTask->pSorter->pKeyInfo->nKeyField>1 ){
827       res = vdbeSorterCompareTail(
828           pTask, pbKey2Cached, pKey1, nKey1, pKey2, nKey2
829       );
830     }
831   }else{
832     assert( !(pTask->pSorter->pKeyInfo->aSortFlags[0]&KEYINFO_ORDER_BIGNULL) );
833     if( pTask->pSorter->pKeyInfo->aSortFlags[0] ){
834       res = res * -1;
835     }
836   }
837 
838   return res;
839 }
840 
841 /*
842 ** A specially optimized version of vdbeSorterCompare() that assumes that
843 ** the first field of each key is an INTEGER value.
844 */
vdbeSorterCompareInt(SortSubtask * pTask,int * pbKey2Cached,const void * pKey1,int nKey1,const void * pKey2,int nKey2)845 static int vdbeSorterCompareInt(
846   SortSubtask *pTask,             /* Subtask context (for pKeyInfo) */
847   int *pbKey2Cached,              /* True if pTask->pUnpacked is pKey2 */
848   const void *pKey1, int nKey1,   /* Left side of comparison */
849   const void *pKey2, int nKey2    /* Right side of comparison */
850 ){
851   const u8 * const p1 = (const u8 * const)pKey1;
852   const u8 * const p2 = (const u8 * const)pKey2;
853   const int s1 = p1[1];                 /* Left hand serial type */
854   const int s2 = p2[1];                 /* Right hand serial type */
855   const u8 * const v1 = &p1[ p1[0] ];   /* Pointer to value 1 */
856   const u8 * const v2 = &p2[ p2[0] ];   /* Pointer to value 2 */
857   int res;                              /* Return value */
858 
859   assert( (s1>0 && s1<7) || s1==8 || s1==9 );
860   assert( (s2>0 && s2<7) || s2==8 || s2==9 );
861 
862   if( s1==s2 ){
863     /* The two values have the same sign. Compare using memcmp(). */
864     static const u8 aLen[] = {0, 1, 2, 3, 4, 6, 8, 0, 0, 0 };
865     const u8 n = aLen[s1];
866     int i;
867     res = 0;
868     for(i=0; i<n; i++){
869       if( (res = v1[i] - v2[i])!=0 ){
870         if( ((v1[0] ^ v2[0]) & 0x80)!=0 ){
871           res = v1[0] & 0x80 ? -1 : +1;
872         }
873         break;
874       }
875     }
876   }else if( s1>7 && s2>7 ){
877     res = s1 - s2;
878   }else{
879     if( s2>7 ){
880       res = +1;
881     }else if( s1>7 ){
882       res = -1;
883     }else{
884       res = s1 - s2;
885     }
886     assert( res!=0 );
887 
888     if( res>0 ){
889       if( *v1 & 0x80 ) res = -1;
890     }else{
891       if( *v2 & 0x80 ) res = +1;
892     }
893   }
894 
895   if( res==0 ){
896     if( pTask->pSorter->pKeyInfo->nKeyField>1 ){
897       res = vdbeSorterCompareTail(
898           pTask, pbKey2Cached, pKey1, nKey1, pKey2, nKey2
899       );
900     }
901   }else if( pTask->pSorter->pKeyInfo->aSortFlags[0] ){
902     assert( !(pTask->pSorter->pKeyInfo->aSortFlags[0]&KEYINFO_ORDER_BIGNULL) );
903     res = res * -1;
904   }
905 
906   return res;
907 }
908 
909 /*
910 ** Initialize the temporary index cursor just opened as a sorter cursor.
911 **
912 ** Usually, the sorter module uses the value of (pCsr->pKeyInfo->nKeyField)
913 ** to determine the number of fields that should be compared from the
914 ** records being sorted. However, if the value passed as argument nField
915 ** is non-zero and the sorter is able to guarantee a stable sort, nField
916 ** is used instead. This is used when sorting records for a CREATE INDEX
917 ** statement. In this case, keys are always delivered to the sorter in
918 ** order of the primary key, which happens to be make up the final part
919 ** of the records being sorted. So if the sort is stable, there is never
920 ** any reason to compare PK fields and they can be ignored for a small
921 ** performance boost.
922 **
923 ** The sorter can guarantee a stable sort when running in single-threaded
924 ** mode, but not in multi-threaded mode.
925 **
926 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
927 */
sqlite3VdbeSorterInit(sqlite3 * db,int nField,VdbeCursor * pCsr)928 int sqlite3VdbeSorterInit(
929   sqlite3 *db,                    /* Database connection (for malloc()) */
930   int nField,                     /* Number of key fields in each record */
931   VdbeCursor *pCsr                /* Cursor that holds the new sorter */
932 ){
933   int pgsz;                       /* Page size of main database */
934   int i;                          /* Used to iterate through aTask[] */
935   VdbeSorter *pSorter;            /* The new sorter */
936   KeyInfo *pKeyInfo;              /* Copy of pCsr->pKeyInfo with db==0 */
937   int szKeyInfo;                  /* Size of pCsr->pKeyInfo in bytes */
938   int sz;                         /* Size of pSorter in bytes */
939   int rc = SQLITE_OK;
940 #if SQLITE_MAX_WORKER_THREADS==0
941 # define nWorker 0
942 #else
943   int nWorker;
944 #endif
945 
946   /* Initialize the upper limit on the number of worker threads */
947 #if SQLITE_MAX_WORKER_THREADS>0
948   if( sqlite3TempInMemory(db) || sqlite3GlobalConfig.bCoreMutex==0 ){
949     nWorker = 0;
950   }else{
951     nWorker = db->aLimit[SQLITE_LIMIT_WORKER_THREADS];
952   }
953 #endif
954 
955   /* Do not allow the total number of threads (main thread + all workers)
956   ** to exceed the maximum merge count */
957 #if SQLITE_MAX_WORKER_THREADS>=SORTER_MAX_MERGE_COUNT
958   if( nWorker>=SORTER_MAX_MERGE_COUNT ){
959     nWorker = SORTER_MAX_MERGE_COUNT-1;
960   }
961 #endif
962 
963   assert( pCsr->pKeyInfo );
964   assert( !pCsr->isEphemeral );
965   assert( pCsr->eCurType==CURTYPE_SORTER );
966   szKeyInfo = sizeof(KeyInfo) + (pCsr->pKeyInfo->nKeyField-1)*sizeof(CollSeq*);
967   sz = sizeof(VdbeSorter) + nWorker * sizeof(SortSubtask);
968 
969   pSorter = (VdbeSorter*)sqlite3DbMallocZero(db, sz + szKeyInfo);
970   pCsr->uc.pSorter = pSorter;
971   if( pSorter==0 ){
972     rc = SQLITE_NOMEM_BKPT;
973   }else{
974     Btree *pBt = db->aDb[0].pBt;
975     pSorter->pKeyInfo = pKeyInfo = (KeyInfo*)((u8*)pSorter + sz);
976     memcpy(pKeyInfo, pCsr->pKeyInfo, szKeyInfo);
977     pKeyInfo->db = 0;
978     if( nField && nWorker==0 ){
979       pKeyInfo->nKeyField = nField;
980     }
981     sqlite3BtreeEnter(pBt);
982     pSorter->pgsz = pgsz = sqlite3BtreeGetPageSize(pBt);
983     sqlite3BtreeLeave(pBt);
984     pSorter->nTask = nWorker + 1;
985     pSorter->iPrev = (u8)(nWorker - 1);
986     pSorter->bUseThreads = (pSorter->nTask>1);
987     pSorter->db = db;
988     for(i=0; i<pSorter->nTask; i++){
989       SortSubtask *pTask = &pSorter->aTask[i];
990       pTask->pSorter = pSorter;
991     }
992 
993     if( !sqlite3TempInMemory(db) ){
994       i64 mxCache;                /* Cache size in bytes*/
995       u32 szPma = sqlite3GlobalConfig.szPma;
996       pSorter->mnPmaSize = szPma * pgsz;
997 
998       mxCache = db->aDb[0].pSchema->cache_size;
999       if( mxCache<0 ){
1000         /* A negative cache-size value C indicates that the cache is abs(C)
1001         ** KiB in size.  */
1002         mxCache = mxCache * -1024;
1003       }else{
1004         mxCache = mxCache * pgsz;
1005       }
1006       mxCache = MIN(mxCache, SQLITE_MAX_PMASZ);
1007       pSorter->mxPmaSize = MAX(pSorter->mnPmaSize, (int)mxCache);
1008 
1009       /* Avoid large memory allocations if the application has requested
1010       ** SQLITE_CONFIG_SMALL_MALLOC. */
1011       if( sqlite3GlobalConfig.bSmallMalloc==0 ){
1012         assert( pSorter->iMemory==0 );
1013         pSorter->nMemory = pgsz;
1014         pSorter->list.aMemory = (u8*)sqlite3Malloc(pgsz);
1015         if( !pSorter->list.aMemory ) rc = SQLITE_NOMEM_BKPT;
1016       }
1017     }
1018 
1019     if( pKeyInfo->nAllField<13
1020      && (pKeyInfo->aColl[0]==0 || pKeyInfo->aColl[0]==db->pDfltColl)
1021      && (pKeyInfo->aSortFlags[0] & KEYINFO_ORDER_BIGNULL)==0
1022     ){
1023       pSorter->typeMask = SORTER_TYPE_INTEGER | SORTER_TYPE_TEXT;
1024     }
1025   }
1026 
1027   return rc;
1028 }
1029 #undef nWorker   /* Defined at the top of this function */
1030 
1031 /*
1032 ** Free the list of sorted records starting at pRecord.
1033 */
vdbeSorterRecordFree(sqlite3 * db,SorterRecord * pRecord)1034 static void vdbeSorterRecordFree(sqlite3 *db, SorterRecord *pRecord){
1035   SorterRecord *p;
1036   SorterRecord *pNext;
1037   for(p=pRecord; p; p=pNext){
1038     pNext = p->u.pNext;
1039     sqlite3DbFree(db, p);
1040   }
1041 }
1042 
1043 /*
1044 ** Free all resources owned by the object indicated by argument pTask. All
1045 ** fields of *pTask are zeroed before returning.
1046 */
vdbeSortSubtaskCleanup(sqlite3 * db,SortSubtask * pTask)1047 static void vdbeSortSubtaskCleanup(sqlite3 *db, SortSubtask *pTask){
1048   sqlite3DbFree(db, pTask->pUnpacked);
1049 #if SQLITE_MAX_WORKER_THREADS>0
1050   /* pTask->list.aMemory can only be non-zero if it was handed memory
1051   ** from the main thread.  That only occurs SQLITE_MAX_WORKER_THREADS>0 */
1052   if( pTask->list.aMemory ){
1053     sqlite3_free(pTask->list.aMemory);
1054   }else
1055 #endif
1056   {
1057     assert( pTask->list.aMemory==0 );
1058     vdbeSorterRecordFree(0, pTask->list.pList);
1059   }
1060   if( pTask->file.pFd ){
1061     sqlite3OsCloseFree(pTask->file.pFd);
1062   }
1063   if( pTask->file2.pFd ){
1064     sqlite3OsCloseFree(pTask->file2.pFd);
1065   }
1066   memset(pTask, 0, sizeof(SortSubtask));
1067 }
1068 
1069 #ifdef SQLITE_DEBUG_SORTER_THREADS
vdbeSorterWorkDebug(SortSubtask * pTask,const char * zEvent)1070 static void vdbeSorterWorkDebug(SortSubtask *pTask, const char *zEvent){
1071   i64 t;
1072   int iTask = (pTask - pTask->pSorter->aTask);
1073   sqlite3OsCurrentTimeInt64(pTask->pSorter->db->pVfs, &t);
1074   fprintf(stderr, "%lld:%d %s\n", t, iTask, zEvent);
1075 }
vdbeSorterRewindDebug(const char * zEvent)1076 static void vdbeSorterRewindDebug(const char *zEvent){
1077   i64 t = 0;
1078   sqlite3_vfs *pVfs = sqlite3_vfs_find(0);
1079   if( ALWAYS(pVfs) ) sqlite3OsCurrentTimeInt64(pVfs, &t);
1080   fprintf(stderr, "%lld:X %s\n", t, zEvent);
1081 }
vdbeSorterPopulateDebug(SortSubtask * pTask,const char * zEvent)1082 static void vdbeSorterPopulateDebug(
1083   SortSubtask *pTask,
1084   const char *zEvent
1085 ){
1086   i64 t;
1087   int iTask = (pTask - pTask->pSorter->aTask);
1088   sqlite3OsCurrentTimeInt64(pTask->pSorter->db->pVfs, &t);
1089   fprintf(stderr, "%lld:bg%d %s\n", t, iTask, zEvent);
1090 }
vdbeSorterBlockDebug(SortSubtask * pTask,int bBlocked,const char * zEvent)1091 static void vdbeSorterBlockDebug(
1092   SortSubtask *pTask,
1093   int bBlocked,
1094   const char *zEvent
1095 ){
1096   if( bBlocked ){
1097     i64 t;
1098     sqlite3OsCurrentTimeInt64(pTask->pSorter->db->pVfs, &t);
1099     fprintf(stderr, "%lld:main %s\n", t, zEvent);
1100   }
1101 }
1102 #else
1103 # define vdbeSorterWorkDebug(x,y)
1104 # define vdbeSorterRewindDebug(y)
1105 # define vdbeSorterPopulateDebug(x,y)
1106 # define vdbeSorterBlockDebug(x,y,z)
1107 #endif
1108 
1109 #if SQLITE_MAX_WORKER_THREADS>0
1110 /*
1111 ** Join thread pTask->thread.
1112 */
vdbeSorterJoinThread(SortSubtask * pTask)1113 static int vdbeSorterJoinThread(SortSubtask *pTask){
1114   int rc = SQLITE_OK;
1115   if( pTask->pThread ){
1116 #ifdef SQLITE_DEBUG_SORTER_THREADS
1117     int bDone = pTask->bDone;
1118 #endif
1119     void *pRet = SQLITE_INT_TO_PTR(SQLITE_ERROR);
1120     vdbeSorterBlockDebug(pTask, !bDone, "enter");
1121     (void)sqlite3ThreadJoin(pTask->pThread, &pRet);
1122     vdbeSorterBlockDebug(pTask, !bDone, "exit");
1123     rc = SQLITE_PTR_TO_INT(pRet);
1124     assert( pTask->bDone==1 );
1125     pTask->bDone = 0;
1126     pTask->pThread = 0;
1127   }
1128   return rc;
1129 }
1130 
1131 /*
1132 ** Launch a background thread to run xTask(pIn).
1133 */
vdbeSorterCreateThread(SortSubtask * pTask,void * (* xTask)(void *),void * pIn)1134 static int vdbeSorterCreateThread(
1135   SortSubtask *pTask,             /* Thread will use this task object */
1136   void *(*xTask)(void*),          /* Routine to run in a separate thread */
1137   void *pIn                       /* Argument passed into xTask() */
1138 ){
1139   assert( pTask->pThread==0 && pTask->bDone==0 );
1140   return sqlite3ThreadCreate(&pTask->pThread, xTask, pIn);
1141 }
1142 
1143 /*
1144 ** Join all outstanding threads launched by SorterWrite() to create
1145 ** level-0 PMAs.
1146 */
vdbeSorterJoinAll(VdbeSorter * pSorter,int rcin)1147 static int vdbeSorterJoinAll(VdbeSorter *pSorter, int rcin){
1148   int rc = rcin;
1149   int i;
1150 
1151   /* This function is always called by the main user thread.
1152   **
1153   ** If this function is being called after SorterRewind() has been called,
1154   ** it is possible that thread pSorter->aTask[pSorter->nTask-1].pThread
1155   ** is currently attempt to join one of the other threads. To avoid a race
1156   ** condition where this thread also attempts to join the same object, join
1157   ** thread pSorter->aTask[pSorter->nTask-1].pThread first. */
1158   for(i=pSorter->nTask-1; i>=0; i--){
1159     SortSubtask *pTask = &pSorter->aTask[i];
1160     int rc2 = vdbeSorterJoinThread(pTask);
1161     if( rc==SQLITE_OK ) rc = rc2;
1162   }
1163   return rc;
1164 }
1165 #else
1166 # define vdbeSorterJoinAll(x,rcin) (rcin)
1167 # define vdbeSorterJoinThread(pTask) SQLITE_OK
1168 #endif
1169 
1170 /*
1171 ** Allocate a new MergeEngine object capable of handling up to
1172 ** nReader PmaReader inputs.
1173 **
1174 ** nReader is automatically rounded up to the next power of two.
1175 ** nReader may not exceed SORTER_MAX_MERGE_COUNT even after rounding up.
1176 */
vdbeMergeEngineNew(int nReader)1177 static MergeEngine *vdbeMergeEngineNew(int nReader){
1178   int N = 2;                      /* Smallest power of two >= nReader */
1179   int nByte;                      /* Total bytes of space to allocate */
1180   MergeEngine *pNew;              /* Pointer to allocated object to return */
1181 
1182   assert( nReader<=SORTER_MAX_MERGE_COUNT );
1183 
1184   while( N<nReader ) N += N;
1185   nByte = sizeof(MergeEngine) + N * (sizeof(int) + sizeof(PmaReader));
1186 
1187   pNew = sqlite3FaultSim(100) ? 0 : (MergeEngine*)sqlite3MallocZero(nByte);
1188   if( pNew ){
1189     pNew->nTree = N;
1190     pNew->pTask = 0;
1191     pNew->aReadr = (PmaReader*)&pNew[1];
1192     pNew->aTree = (int*)&pNew->aReadr[N];
1193   }
1194   return pNew;
1195 }
1196 
1197 /*
1198 ** Free the MergeEngine object passed as the only argument.
1199 */
vdbeMergeEngineFree(MergeEngine * pMerger)1200 static void vdbeMergeEngineFree(MergeEngine *pMerger){
1201   int i;
1202   if( pMerger ){
1203     for(i=0; i<pMerger->nTree; i++){
1204       vdbePmaReaderClear(&pMerger->aReadr[i]);
1205     }
1206   }
1207   sqlite3_free(pMerger);
1208 }
1209 
1210 /*
1211 ** Free all resources associated with the IncrMerger object indicated by
1212 ** the first argument.
1213 */
vdbeIncrFree(IncrMerger * pIncr)1214 static void vdbeIncrFree(IncrMerger *pIncr){
1215   if( pIncr ){
1216 #if SQLITE_MAX_WORKER_THREADS>0
1217     if( pIncr->bUseThread ){
1218       vdbeSorterJoinThread(pIncr->pTask);
1219       if( pIncr->aFile[0].pFd ) sqlite3OsCloseFree(pIncr->aFile[0].pFd);
1220       if( pIncr->aFile[1].pFd ) sqlite3OsCloseFree(pIncr->aFile[1].pFd);
1221     }
1222 #endif
1223     vdbeMergeEngineFree(pIncr->pMerger);
1224     sqlite3_free(pIncr);
1225   }
1226 }
1227 
1228 /*
1229 ** Reset a sorting cursor back to its original empty state.
1230 */
sqlite3VdbeSorterReset(sqlite3 * db,VdbeSorter * pSorter)1231 void sqlite3VdbeSorterReset(sqlite3 *db, VdbeSorter *pSorter){
1232   int i;
1233   (void)vdbeSorterJoinAll(pSorter, SQLITE_OK);
1234   assert( pSorter->bUseThreads || pSorter->pReader==0 );
1235 #if SQLITE_MAX_WORKER_THREADS>0
1236   if( pSorter->pReader ){
1237     vdbePmaReaderClear(pSorter->pReader);
1238     sqlite3DbFree(db, pSorter->pReader);
1239     pSorter->pReader = 0;
1240   }
1241 #endif
1242   vdbeMergeEngineFree(pSorter->pMerger);
1243   pSorter->pMerger = 0;
1244   for(i=0; i<pSorter->nTask; i++){
1245     SortSubtask *pTask = &pSorter->aTask[i];
1246     vdbeSortSubtaskCleanup(db, pTask);
1247     pTask->pSorter = pSorter;
1248   }
1249   if( pSorter->list.aMemory==0 ){
1250     vdbeSorterRecordFree(0, pSorter->list.pList);
1251   }
1252   pSorter->list.pList = 0;
1253   pSorter->list.szPMA = 0;
1254   pSorter->bUsePMA = 0;
1255   pSorter->iMemory = 0;
1256   pSorter->mxKeysize = 0;
1257   sqlite3DbFree(db, pSorter->pUnpacked);
1258   pSorter->pUnpacked = 0;
1259 }
1260 
1261 /*
1262 ** Free any cursor components allocated by sqlite3VdbeSorterXXX routines.
1263 */
sqlite3VdbeSorterClose(sqlite3 * db,VdbeCursor * pCsr)1264 void sqlite3VdbeSorterClose(sqlite3 *db, VdbeCursor *pCsr){
1265   VdbeSorter *pSorter;
1266   assert( pCsr->eCurType==CURTYPE_SORTER );
1267   pSorter = pCsr->uc.pSorter;
1268   if( pSorter ){
1269     sqlite3VdbeSorterReset(db, pSorter);
1270     sqlite3_free(pSorter->list.aMemory);
1271     sqlite3DbFree(db, pSorter);
1272     pCsr->uc.pSorter = 0;
1273   }
1274 }
1275 
1276 #if SQLITE_MAX_MMAP_SIZE>0
1277 /*
1278 ** The first argument is a file-handle open on a temporary file. The file
1279 ** is guaranteed to be nByte bytes or smaller in size. This function
1280 ** attempts to extend the file to nByte bytes in size and to ensure that
1281 ** the VFS has memory mapped it.
1282 **
1283 ** Whether or not the file does end up memory mapped of course depends on
1284 ** the specific VFS implementation.
1285 */
vdbeSorterExtendFile(sqlite3 * db,sqlite3_file * pFd,i64 nByte)1286 static void vdbeSorterExtendFile(sqlite3 *db, sqlite3_file *pFd, i64 nByte){
1287   if( nByte<=(i64)(db->nMaxSorterMmap) && pFd->pMethods->iVersion>=3 ){
1288     void *p = 0;
1289     int chunksize = 4*1024;
1290     sqlite3OsFileControlHint(pFd, SQLITE_FCNTL_CHUNK_SIZE, &chunksize);
1291     sqlite3OsFileControlHint(pFd, SQLITE_FCNTL_SIZE_HINT, &nByte);
1292     sqlite3OsFetch(pFd, 0, (int)nByte, &p);
1293     if( p ) sqlite3OsUnfetch(pFd, 0, p);
1294   }
1295 }
1296 #else
1297 # define vdbeSorterExtendFile(x,y,z)
1298 #endif
1299 
1300 /*
1301 ** Allocate space for a file-handle and open a temporary file. If successful,
1302 ** set *ppFd to point to the malloc'd file-handle and return SQLITE_OK.
1303 ** Otherwise, set *ppFd to 0 and return an SQLite error code.
1304 */
vdbeSorterOpenTempFile(sqlite3 * db,i64 nExtend,sqlite3_file ** ppFd)1305 static int vdbeSorterOpenTempFile(
1306   sqlite3 *db,                    /* Database handle doing sort */
1307   i64 nExtend,                    /* Attempt to extend file to this size */
1308   sqlite3_file **ppFd
1309 ){
1310   int rc;
1311   if( sqlite3FaultSim(202) ) return SQLITE_IOERR_ACCESS;
1312   rc = sqlite3OsOpenMalloc(db->pVfs, 0, ppFd,
1313       SQLITE_OPEN_TEMP_JOURNAL |
1314       SQLITE_OPEN_READWRITE    | SQLITE_OPEN_CREATE |
1315       SQLITE_OPEN_EXCLUSIVE    | SQLITE_OPEN_DELETEONCLOSE, &rc
1316   );
1317   if( rc==SQLITE_OK ){
1318     i64 max = SQLITE_MAX_MMAP_SIZE;
1319     sqlite3OsFileControlHint(*ppFd, SQLITE_FCNTL_MMAP_SIZE, (void*)&max);
1320     if( nExtend>0 ){
1321       vdbeSorterExtendFile(db, *ppFd, nExtend);
1322     }
1323   }
1324   return rc;
1325 }
1326 
1327 /*
1328 ** If it has not already been allocated, allocate the UnpackedRecord
1329 ** structure at pTask->pUnpacked. Return SQLITE_OK if successful (or
1330 ** if no allocation was required), or SQLITE_NOMEM otherwise.
1331 */
vdbeSortAllocUnpacked(SortSubtask * pTask)1332 static int vdbeSortAllocUnpacked(SortSubtask *pTask){
1333   if( pTask->pUnpacked==0 ){
1334     pTask->pUnpacked = sqlite3VdbeAllocUnpackedRecord(pTask->pSorter->pKeyInfo);
1335     if( pTask->pUnpacked==0 ) return SQLITE_NOMEM_BKPT;
1336     pTask->pUnpacked->nField = pTask->pSorter->pKeyInfo->nKeyField;
1337     pTask->pUnpacked->errCode = 0;
1338   }
1339   return SQLITE_OK;
1340 }
1341 
1342 
1343 /*
1344 ** Merge the two sorted lists p1 and p2 into a single list.
1345 */
vdbeSorterMerge(SortSubtask * pTask,SorterRecord * p1,SorterRecord * p2)1346 static SorterRecord *vdbeSorterMerge(
1347   SortSubtask *pTask,             /* Calling thread context */
1348   SorterRecord *p1,               /* First list to merge */
1349   SorterRecord *p2                /* Second list to merge */
1350 ){
1351   SorterRecord *pFinal = 0;
1352   SorterRecord **pp = &pFinal;
1353   int bCached = 0;
1354 
1355   assert( p1!=0 && p2!=0 );
1356   for(;;){
1357     int res;
1358     res = pTask->xCompare(
1359         pTask, &bCached, SRVAL(p1), p1->nVal, SRVAL(p2), p2->nVal
1360     );
1361 
1362     if( res<=0 ){
1363       *pp = p1;
1364       pp = &p1->u.pNext;
1365       p1 = p1->u.pNext;
1366       if( p1==0 ){
1367         *pp = p2;
1368         break;
1369       }
1370     }else{
1371       *pp = p2;
1372       pp = &p2->u.pNext;
1373       p2 = p2->u.pNext;
1374       bCached = 0;
1375       if( p2==0 ){
1376         *pp = p1;
1377         break;
1378       }
1379     }
1380   }
1381   return pFinal;
1382 }
1383 
1384 /*
1385 ** Return the SorterCompare function to compare values collected by the
1386 ** sorter object passed as the only argument.
1387 */
vdbeSorterGetCompare(VdbeSorter * p)1388 static SorterCompare vdbeSorterGetCompare(VdbeSorter *p){
1389   if( p->typeMask==SORTER_TYPE_INTEGER ){
1390     return vdbeSorterCompareInt;
1391   }else if( p->typeMask==SORTER_TYPE_TEXT ){
1392     return vdbeSorterCompareText;
1393   }
1394   return vdbeSorterCompare;
1395 }
1396 
1397 /*
1398 ** Sort the linked list of records headed at pTask->pList. Return
1399 ** SQLITE_OK if successful, or an SQLite error code (i.e. SQLITE_NOMEM) if
1400 ** an error occurs.
1401 */
vdbeSorterSort(SortSubtask * pTask,SorterList * pList)1402 static int vdbeSorterSort(SortSubtask *pTask, SorterList *pList){
1403   int i;
1404   SorterRecord *p;
1405   int rc;
1406   SorterRecord *aSlot[64];
1407 
1408   rc = vdbeSortAllocUnpacked(pTask);
1409   if( rc!=SQLITE_OK ) return rc;
1410 
1411   p = pList->pList;
1412   pTask->xCompare = vdbeSorterGetCompare(pTask->pSorter);
1413   memset(aSlot, 0, sizeof(aSlot));
1414 
1415   while( p ){
1416     SorterRecord *pNext;
1417     if( pList->aMemory ){
1418       if( (u8*)p==pList->aMemory ){
1419         pNext = 0;
1420       }else{
1421         assert( p->u.iNext<sqlite3MallocSize(pList->aMemory) );
1422         pNext = (SorterRecord*)&pList->aMemory[p->u.iNext];
1423       }
1424     }else{
1425       pNext = p->u.pNext;
1426     }
1427 
1428     p->u.pNext = 0;
1429     for(i=0; aSlot[i]; i++){
1430       p = vdbeSorterMerge(pTask, p, aSlot[i]);
1431       aSlot[i] = 0;
1432     }
1433     aSlot[i] = p;
1434     p = pNext;
1435   }
1436 
1437   p = 0;
1438   for(i=0; i<ArraySize(aSlot); i++){
1439     if( aSlot[i]==0 ) continue;
1440     p = p ? vdbeSorterMerge(pTask, p, aSlot[i]) : aSlot[i];
1441   }
1442   pList->pList = p;
1443 
1444   assert( pTask->pUnpacked->errCode==SQLITE_OK
1445        || pTask->pUnpacked->errCode==SQLITE_NOMEM
1446   );
1447   return pTask->pUnpacked->errCode;
1448 }
1449 
1450 /*
1451 ** Initialize a PMA-writer object.
1452 */
vdbePmaWriterInit(sqlite3_file * pFd,PmaWriter * p,int nBuf,i64 iStart)1453 static void vdbePmaWriterInit(
1454   sqlite3_file *pFd,              /* File handle to write to */
1455   PmaWriter *p,                   /* Object to populate */
1456   int nBuf,                       /* Buffer size */
1457   i64 iStart                      /* Offset of pFd to begin writing at */
1458 ){
1459   memset(p, 0, sizeof(PmaWriter));
1460   p->aBuffer = (u8*)sqlite3Malloc(nBuf);
1461   if( !p->aBuffer ){
1462     p->eFWErr = SQLITE_NOMEM_BKPT;
1463   }else{
1464     p->iBufEnd = p->iBufStart = (iStart % nBuf);
1465     p->iWriteOff = iStart - p->iBufStart;
1466     p->nBuffer = nBuf;
1467     p->pFd = pFd;
1468   }
1469 }
1470 
1471 /*
1472 ** Write nData bytes of data to the PMA. Return SQLITE_OK
1473 ** if successful, or an SQLite error code if an error occurs.
1474 */
vdbePmaWriteBlob(PmaWriter * p,u8 * pData,int nData)1475 static void vdbePmaWriteBlob(PmaWriter *p, u8 *pData, int nData){
1476   int nRem = nData;
1477   while( nRem>0 && p->eFWErr==0 ){
1478     int nCopy = nRem;
1479     if( nCopy>(p->nBuffer - p->iBufEnd) ){
1480       nCopy = p->nBuffer - p->iBufEnd;
1481     }
1482 
1483     memcpy(&p->aBuffer[p->iBufEnd], &pData[nData-nRem], nCopy);
1484     p->iBufEnd += nCopy;
1485     if( p->iBufEnd==p->nBuffer ){
1486       p->eFWErr = sqlite3OsWrite(p->pFd,
1487           &p->aBuffer[p->iBufStart], p->iBufEnd - p->iBufStart,
1488           p->iWriteOff + p->iBufStart
1489       );
1490       p->iBufStart = p->iBufEnd = 0;
1491       p->iWriteOff += p->nBuffer;
1492     }
1493     assert( p->iBufEnd<p->nBuffer );
1494 
1495     nRem -= nCopy;
1496   }
1497 }
1498 
1499 /*
1500 ** Flush any buffered data to disk and clean up the PMA-writer object.
1501 ** The results of using the PMA-writer after this call are undefined.
1502 ** Return SQLITE_OK if flushing the buffered data succeeds or is not
1503 ** required. Otherwise, return an SQLite error code.
1504 **
1505 ** Before returning, set *piEof to the offset immediately following the
1506 ** last byte written to the file.
1507 */
vdbePmaWriterFinish(PmaWriter * p,i64 * piEof)1508 static int vdbePmaWriterFinish(PmaWriter *p, i64 *piEof){
1509   int rc;
1510   if( p->eFWErr==0 && ALWAYS(p->aBuffer) && p->iBufEnd>p->iBufStart ){
1511     p->eFWErr = sqlite3OsWrite(p->pFd,
1512         &p->aBuffer[p->iBufStart], p->iBufEnd - p->iBufStart,
1513         p->iWriteOff + p->iBufStart
1514     );
1515   }
1516   *piEof = (p->iWriteOff + p->iBufEnd);
1517   sqlite3_free(p->aBuffer);
1518   rc = p->eFWErr;
1519   memset(p, 0, sizeof(PmaWriter));
1520   return rc;
1521 }
1522 
1523 /*
1524 ** Write value iVal encoded as a varint to the PMA. Return
1525 ** SQLITE_OK if successful, or an SQLite error code if an error occurs.
1526 */
vdbePmaWriteVarint(PmaWriter * p,u64 iVal)1527 static void vdbePmaWriteVarint(PmaWriter *p, u64 iVal){
1528   int nByte;
1529   u8 aByte[10];
1530   nByte = sqlite3PutVarint(aByte, iVal);
1531   vdbePmaWriteBlob(p, aByte, nByte);
1532 }
1533 
1534 /*
1535 ** Write the current contents of in-memory linked-list pList to a level-0
1536 ** PMA in the temp file belonging to sub-task pTask. Return SQLITE_OK if
1537 ** successful, or an SQLite error code otherwise.
1538 **
1539 ** The format of a PMA is:
1540 **
1541 **     * A varint. This varint contains the total number of bytes of content
1542 **       in the PMA (not including the varint itself).
1543 **
1544 **     * One or more records packed end-to-end in order of ascending keys.
1545 **       Each record consists of a varint followed by a blob of data (the
1546 **       key). The varint is the number of bytes in the blob of data.
1547 */
vdbeSorterListToPMA(SortSubtask * pTask,SorterList * pList)1548 static int vdbeSorterListToPMA(SortSubtask *pTask, SorterList *pList){
1549   sqlite3 *db = pTask->pSorter->db;
1550   int rc = SQLITE_OK;             /* Return code */
1551   PmaWriter writer;               /* Object used to write to the file */
1552 
1553 #ifdef SQLITE_DEBUG
1554   /* Set iSz to the expected size of file pTask->file after writing the PMA.
1555   ** This is used by an assert() statement at the end of this function.  */
1556   i64 iSz = pList->szPMA + sqlite3VarintLen(pList->szPMA) + pTask->file.iEof;
1557 #endif
1558 
1559   vdbeSorterWorkDebug(pTask, "enter");
1560   memset(&writer, 0, sizeof(PmaWriter));
1561   assert( pList->szPMA>0 );
1562 
1563   /* If the first temporary PMA file has not been opened, open it now. */
1564   if( pTask->file.pFd==0 ){
1565     rc = vdbeSorterOpenTempFile(db, 0, &pTask->file.pFd);
1566     assert( rc!=SQLITE_OK || pTask->file.pFd );
1567     assert( pTask->file.iEof==0 );
1568     assert( pTask->nPMA==0 );
1569   }
1570 
1571   /* Try to get the file to memory map */
1572   if( rc==SQLITE_OK ){
1573     vdbeSorterExtendFile(db, pTask->file.pFd, pTask->file.iEof+pList->szPMA+9);
1574   }
1575 
1576   /* Sort the list */
1577   if( rc==SQLITE_OK ){
1578     rc = vdbeSorterSort(pTask, pList);
1579   }
1580 
1581   if( rc==SQLITE_OK ){
1582     SorterRecord *p;
1583     SorterRecord *pNext = 0;
1584 
1585     vdbePmaWriterInit(pTask->file.pFd, &writer, pTask->pSorter->pgsz,
1586                       pTask->file.iEof);
1587     pTask->nPMA++;
1588     vdbePmaWriteVarint(&writer, pList->szPMA);
1589     for(p=pList->pList; p; p=pNext){
1590       pNext = p->u.pNext;
1591       vdbePmaWriteVarint(&writer, p->nVal);
1592       vdbePmaWriteBlob(&writer, SRVAL(p), p->nVal);
1593       if( pList->aMemory==0 ) sqlite3_free(p);
1594     }
1595     pList->pList = p;
1596     rc = vdbePmaWriterFinish(&writer, &pTask->file.iEof);
1597   }
1598 
1599   vdbeSorterWorkDebug(pTask, "exit");
1600   assert( rc!=SQLITE_OK || pList->pList==0 );
1601   assert( rc!=SQLITE_OK || pTask->file.iEof==iSz );
1602   return rc;
1603 }
1604 
1605 /*
1606 ** Advance the MergeEngine to its next entry.
1607 ** Set *pbEof to true there is no next entry because
1608 ** the MergeEngine has reached the end of all its inputs.
1609 **
1610 ** Return SQLITE_OK if successful or an error code if an error occurs.
1611 */
vdbeMergeEngineStep(MergeEngine * pMerger,int * pbEof)1612 static int vdbeMergeEngineStep(
1613   MergeEngine *pMerger,      /* The merge engine to advance to the next row */
1614   int *pbEof                 /* Set TRUE at EOF.  Set false for more content */
1615 ){
1616   int rc;
1617   int iPrev = pMerger->aTree[1];/* Index of PmaReader to advance */
1618   SortSubtask *pTask = pMerger->pTask;
1619 
1620   /* Advance the current PmaReader */
1621   rc = vdbePmaReaderNext(&pMerger->aReadr[iPrev]);
1622 
1623   /* Update contents of aTree[] */
1624   if( rc==SQLITE_OK ){
1625     int i;                      /* Index of aTree[] to recalculate */
1626     PmaReader *pReadr1;         /* First PmaReader to compare */
1627     PmaReader *pReadr2;         /* Second PmaReader to compare */
1628     int bCached = 0;
1629 
1630     /* Find the first two PmaReaders to compare. The one that was just
1631     ** advanced (iPrev) and the one next to it in the array.  */
1632     pReadr1 = &pMerger->aReadr[(iPrev & 0xFFFE)];
1633     pReadr2 = &pMerger->aReadr[(iPrev | 0x0001)];
1634 
1635     for(i=(pMerger->nTree+iPrev)/2; i>0; i=i/2){
1636       /* Compare pReadr1 and pReadr2. Store the result in variable iRes. */
1637       int iRes;
1638       if( pReadr1->pFd==0 ){
1639         iRes = +1;
1640       }else if( pReadr2->pFd==0 ){
1641         iRes = -1;
1642       }else{
1643         iRes = pTask->xCompare(pTask, &bCached,
1644             pReadr1->aKey, pReadr1->nKey, pReadr2->aKey, pReadr2->nKey
1645         );
1646       }
1647 
1648       /* If pReadr1 contained the smaller value, set aTree[i] to its index.
1649       ** Then set pReadr2 to the next PmaReader to compare to pReadr1. In this
1650       ** case there is no cache of pReadr2 in pTask->pUnpacked, so set
1651       ** pKey2 to point to the record belonging to pReadr2.
1652       **
1653       ** Alternatively, if pReadr2 contains the smaller of the two values,
1654       ** set aTree[i] to its index and update pReadr1. If vdbeSorterCompare()
1655       ** was actually called above, then pTask->pUnpacked now contains
1656       ** a value equivalent to pReadr2. So set pKey2 to NULL to prevent
1657       ** vdbeSorterCompare() from decoding pReadr2 again.
1658       **
1659       ** If the two values were equal, then the value from the oldest
1660       ** PMA should be considered smaller. The VdbeSorter.aReadr[] array
1661       ** is sorted from oldest to newest, so pReadr1 contains older values
1662       ** than pReadr2 iff (pReadr1<pReadr2).  */
1663       if( iRes<0 || (iRes==0 && pReadr1<pReadr2) ){
1664         pMerger->aTree[i] = (int)(pReadr1 - pMerger->aReadr);
1665         pReadr2 = &pMerger->aReadr[ pMerger->aTree[i ^ 0x0001] ];
1666         bCached = 0;
1667       }else{
1668         if( pReadr1->pFd ) bCached = 0;
1669         pMerger->aTree[i] = (int)(pReadr2 - pMerger->aReadr);
1670         pReadr1 = &pMerger->aReadr[ pMerger->aTree[i ^ 0x0001] ];
1671       }
1672     }
1673     *pbEof = (pMerger->aReadr[pMerger->aTree[1]].pFd==0);
1674   }
1675 
1676   return (rc==SQLITE_OK ? pTask->pUnpacked->errCode : rc);
1677 }
1678 
1679 #if SQLITE_MAX_WORKER_THREADS>0
1680 /*
1681 ** The main routine for background threads that write level-0 PMAs.
1682 */
vdbeSorterFlushThread(void * pCtx)1683 static void *vdbeSorterFlushThread(void *pCtx){
1684   SortSubtask *pTask = (SortSubtask*)pCtx;
1685   int rc;                         /* Return code */
1686   assert( pTask->bDone==0 );
1687   rc = vdbeSorterListToPMA(pTask, &pTask->list);
1688   pTask->bDone = 1;
1689   return SQLITE_INT_TO_PTR(rc);
1690 }
1691 #endif /* SQLITE_MAX_WORKER_THREADS>0 */
1692 
1693 /*
1694 ** Flush the current contents of VdbeSorter.list to a new PMA, possibly
1695 ** using a background thread.
1696 */
vdbeSorterFlushPMA(VdbeSorter * pSorter)1697 static int vdbeSorterFlushPMA(VdbeSorter *pSorter){
1698 #if SQLITE_MAX_WORKER_THREADS==0
1699   pSorter->bUsePMA = 1;
1700   return vdbeSorterListToPMA(&pSorter->aTask[0], &pSorter->list);
1701 #else
1702   int rc = SQLITE_OK;
1703   int i;
1704   SortSubtask *pTask = 0;    /* Thread context used to create new PMA */
1705   int nWorker = (pSorter->nTask-1);
1706 
1707   /* Set the flag to indicate that at least one PMA has been written.
1708   ** Or will be, anyhow.  */
1709   pSorter->bUsePMA = 1;
1710 
1711   /* Select a sub-task to sort and flush the current list of in-memory
1712   ** records to disk. If the sorter is running in multi-threaded mode,
1713   ** round-robin between the first (pSorter->nTask-1) tasks. Except, if
1714   ** the background thread from a sub-tasks previous turn is still running,
1715   ** skip it. If the first (pSorter->nTask-1) sub-tasks are all still busy,
1716   ** fall back to using the final sub-task. The first (pSorter->nTask-1)
1717   ** sub-tasks are prefered as they use background threads - the final
1718   ** sub-task uses the main thread. */
1719   for(i=0; i<nWorker; i++){
1720     int iTest = (pSorter->iPrev + i + 1) % nWorker;
1721     pTask = &pSorter->aTask[iTest];
1722     if( pTask->bDone ){
1723       rc = vdbeSorterJoinThread(pTask);
1724     }
1725     if( rc!=SQLITE_OK || pTask->pThread==0 ) break;
1726   }
1727 
1728   if( rc==SQLITE_OK ){
1729     if( i==nWorker ){
1730       /* Use the foreground thread for this operation */
1731       rc = vdbeSorterListToPMA(&pSorter->aTask[nWorker], &pSorter->list);
1732     }else{
1733       /* Launch a background thread for this operation */
1734       u8 *aMem;
1735       void *pCtx;
1736 
1737       assert( pTask!=0 );
1738       assert( pTask->pThread==0 && pTask->bDone==0 );
1739       assert( pTask->list.pList==0 );
1740       assert( pTask->list.aMemory==0 || pSorter->list.aMemory!=0 );
1741 
1742       aMem = pTask->list.aMemory;
1743       pCtx = (void*)pTask;
1744       pSorter->iPrev = (u8)(pTask - pSorter->aTask);
1745       pTask->list = pSorter->list;
1746       pSorter->list.pList = 0;
1747       pSorter->list.szPMA = 0;
1748       if( aMem ){
1749         pSorter->list.aMemory = aMem;
1750         pSorter->nMemory = sqlite3MallocSize(aMem);
1751       }else if( pSorter->list.aMemory ){
1752         pSorter->list.aMemory = sqlite3Malloc(pSorter->nMemory);
1753         if( !pSorter->list.aMemory ) return SQLITE_NOMEM_BKPT;
1754       }
1755 
1756       rc = vdbeSorterCreateThread(pTask, vdbeSorterFlushThread, pCtx);
1757     }
1758   }
1759 
1760   return rc;
1761 #endif /* SQLITE_MAX_WORKER_THREADS!=0 */
1762 }
1763 
1764 /*
1765 ** Add a record to the sorter.
1766 */
sqlite3VdbeSorterWrite(const VdbeCursor * pCsr,Mem * pVal)1767 int sqlite3VdbeSorterWrite(
1768   const VdbeCursor *pCsr,         /* Sorter cursor */
1769   Mem *pVal                       /* Memory cell containing record */
1770 ){
1771   VdbeSorter *pSorter;
1772   int rc = SQLITE_OK;             /* Return Code */
1773   SorterRecord *pNew;             /* New list element */
1774   int bFlush;                     /* True to flush contents of memory to PMA */
1775   int nReq;                       /* Bytes of memory required */
1776   int nPMA;                       /* Bytes of PMA space required */
1777   int t;                          /* serial type of first record field */
1778 
1779   assert( pCsr->eCurType==CURTYPE_SORTER );
1780   pSorter = pCsr->uc.pSorter;
1781   getVarint32NR((const u8*)&pVal->z[1], t);
1782   if( t>0 && t<10 && t!=7 ){
1783     pSorter->typeMask &= SORTER_TYPE_INTEGER;
1784   }else if( t>10 && (t & 0x01) ){
1785     pSorter->typeMask &= SORTER_TYPE_TEXT;
1786   }else{
1787     pSorter->typeMask = 0;
1788   }
1789 
1790   assert( pSorter );
1791 
1792   /* Figure out whether or not the current contents of memory should be
1793   ** flushed to a PMA before continuing. If so, do so.
1794   **
1795   ** If using the single large allocation mode (pSorter->aMemory!=0), then
1796   ** flush the contents of memory to a new PMA if (a) at least one value is
1797   ** already in memory and (b) the new value will not fit in memory.
1798   **
1799   ** Or, if using separate allocations for each record, flush the contents
1800   ** of memory to a PMA if either of the following are true:
1801   **
1802   **   * The total memory allocated for the in-memory list is greater
1803   **     than (page-size * cache-size), or
1804   **
1805   **   * The total memory allocated for the in-memory list is greater
1806   **     than (page-size * 10) and sqlite3HeapNearlyFull() returns true.
1807   */
1808   nReq = pVal->n + sizeof(SorterRecord);
1809   nPMA = pVal->n + sqlite3VarintLen(pVal->n);
1810   if( pSorter->mxPmaSize ){
1811     if( pSorter->list.aMemory ){
1812       bFlush = pSorter->iMemory && (pSorter->iMemory+nReq) > pSorter->mxPmaSize;
1813     }else{
1814       bFlush = (
1815           (pSorter->list.szPMA > pSorter->mxPmaSize)
1816        || (pSorter->list.szPMA > pSorter->mnPmaSize && sqlite3HeapNearlyFull())
1817       );
1818     }
1819     if( bFlush ){
1820       rc = vdbeSorterFlushPMA(pSorter);
1821       pSorter->list.szPMA = 0;
1822       pSorter->iMemory = 0;
1823       assert( rc!=SQLITE_OK || pSorter->list.pList==0 );
1824     }
1825   }
1826 
1827   pSorter->list.szPMA += nPMA;
1828   if( nPMA>pSorter->mxKeysize ){
1829     pSorter->mxKeysize = nPMA;
1830   }
1831 
1832   if( pSorter->list.aMemory ){
1833     int nMin = pSorter->iMemory + nReq;
1834 
1835     if( nMin>pSorter->nMemory ){
1836       u8 *aNew;
1837       sqlite3_int64 nNew = 2 * (sqlite3_int64)pSorter->nMemory;
1838       int iListOff = -1;
1839       if( pSorter->list.pList ){
1840         iListOff = (u8*)pSorter->list.pList - pSorter->list.aMemory;
1841       }
1842       while( nNew < nMin ) nNew = nNew*2;
1843       if( nNew > pSorter->mxPmaSize ) nNew = pSorter->mxPmaSize;
1844       if( nNew < nMin ) nNew = nMin;
1845       aNew = sqlite3Realloc(pSorter->list.aMemory, nNew);
1846       if( !aNew ) return SQLITE_NOMEM_BKPT;
1847       if( iListOff>=0 ){
1848         pSorter->list.pList = (SorterRecord*)&aNew[iListOff];
1849       }
1850       pSorter->list.aMemory = aNew;
1851       pSorter->nMemory = nNew;
1852     }
1853 
1854     pNew = (SorterRecord*)&pSorter->list.aMemory[pSorter->iMemory];
1855     pSorter->iMemory += ROUND8(nReq);
1856     if( pSorter->list.pList ){
1857       pNew->u.iNext = (int)((u8*)(pSorter->list.pList) - pSorter->list.aMemory);
1858     }
1859   }else{
1860     pNew = (SorterRecord *)sqlite3Malloc(nReq);
1861     if( pNew==0 ){
1862       return SQLITE_NOMEM_BKPT;
1863     }
1864     pNew->u.pNext = pSorter->list.pList;
1865   }
1866 
1867   memcpy(SRVAL(pNew), pVal->z, pVal->n);
1868   pNew->nVal = pVal->n;
1869   pSorter->list.pList = pNew;
1870 
1871   return rc;
1872 }
1873 
1874 /*
1875 ** Read keys from pIncr->pMerger and populate pIncr->aFile[1]. The format
1876 ** of the data stored in aFile[1] is the same as that used by regular PMAs,
1877 ** except that the number-of-bytes varint is omitted from the start.
1878 */
vdbeIncrPopulate(IncrMerger * pIncr)1879 static int vdbeIncrPopulate(IncrMerger *pIncr){
1880   int rc = SQLITE_OK;
1881   int rc2;
1882   i64 iStart = pIncr->iStartOff;
1883   SorterFile *pOut = &pIncr->aFile[1];
1884   SortSubtask *pTask = pIncr->pTask;
1885   MergeEngine *pMerger = pIncr->pMerger;
1886   PmaWriter writer;
1887   assert( pIncr->bEof==0 );
1888 
1889   vdbeSorterPopulateDebug(pTask, "enter");
1890 
1891   vdbePmaWriterInit(pOut->pFd, &writer, pTask->pSorter->pgsz, iStart);
1892   while( rc==SQLITE_OK ){
1893     int dummy;
1894     PmaReader *pReader = &pMerger->aReadr[ pMerger->aTree[1] ];
1895     int nKey = pReader->nKey;
1896     i64 iEof = writer.iWriteOff + writer.iBufEnd;
1897 
1898     /* Check if the output file is full or if the input has been exhausted.
1899     ** In either case exit the loop. */
1900     if( pReader->pFd==0 ) break;
1901     if( (iEof + nKey + sqlite3VarintLen(nKey))>(iStart + pIncr->mxSz) ) break;
1902 
1903     /* Write the next key to the output. */
1904     vdbePmaWriteVarint(&writer, nKey);
1905     vdbePmaWriteBlob(&writer, pReader->aKey, nKey);
1906     assert( pIncr->pMerger->pTask==pTask );
1907     rc = vdbeMergeEngineStep(pIncr->pMerger, &dummy);
1908   }
1909 
1910   rc2 = vdbePmaWriterFinish(&writer, &pOut->iEof);
1911   if( rc==SQLITE_OK ) rc = rc2;
1912   vdbeSorterPopulateDebug(pTask, "exit");
1913   return rc;
1914 }
1915 
1916 #if SQLITE_MAX_WORKER_THREADS>0
1917 /*
1918 ** The main routine for background threads that populate aFile[1] of
1919 ** multi-threaded IncrMerger objects.
1920 */
vdbeIncrPopulateThread(void * pCtx)1921 static void *vdbeIncrPopulateThread(void *pCtx){
1922   IncrMerger *pIncr = (IncrMerger*)pCtx;
1923   void *pRet = SQLITE_INT_TO_PTR( vdbeIncrPopulate(pIncr) );
1924   pIncr->pTask->bDone = 1;
1925   return pRet;
1926 }
1927 
1928 /*
1929 ** Launch a background thread to populate aFile[1] of pIncr.
1930 */
vdbeIncrBgPopulate(IncrMerger * pIncr)1931 static int vdbeIncrBgPopulate(IncrMerger *pIncr){
1932   void *p = (void*)pIncr;
1933   assert( pIncr->bUseThread );
1934   return vdbeSorterCreateThread(pIncr->pTask, vdbeIncrPopulateThread, p);
1935 }
1936 #endif
1937 
1938 /*
1939 ** This function is called when the PmaReader corresponding to pIncr has
1940 ** finished reading the contents of aFile[0]. Its purpose is to "refill"
1941 ** aFile[0] such that the PmaReader should start rereading it from the
1942 ** beginning.
1943 **
1944 ** For single-threaded objects, this is accomplished by literally reading
1945 ** keys from pIncr->pMerger and repopulating aFile[0].
1946 **
1947 ** For multi-threaded objects, all that is required is to wait until the
1948 ** background thread is finished (if it is not already) and then swap
1949 ** aFile[0] and aFile[1] in place. If the contents of pMerger have not
1950 ** been exhausted, this function also launches a new background thread
1951 ** to populate the new aFile[1].
1952 **
1953 ** SQLITE_OK is returned on success, or an SQLite error code otherwise.
1954 */
vdbeIncrSwap(IncrMerger * pIncr)1955 static int vdbeIncrSwap(IncrMerger *pIncr){
1956   int rc = SQLITE_OK;
1957 
1958 #if SQLITE_MAX_WORKER_THREADS>0
1959   if( pIncr->bUseThread ){
1960     rc = vdbeSorterJoinThread(pIncr->pTask);
1961 
1962     if( rc==SQLITE_OK ){
1963       SorterFile f0 = pIncr->aFile[0];
1964       pIncr->aFile[0] = pIncr->aFile[1];
1965       pIncr->aFile[1] = f0;
1966     }
1967 
1968     if( rc==SQLITE_OK ){
1969       if( pIncr->aFile[0].iEof==pIncr->iStartOff ){
1970         pIncr->bEof = 1;
1971       }else{
1972         rc = vdbeIncrBgPopulate(pIncr);
1973       }
1974     }
1975   }else
1976 #endif
1977   {
1978     rc = vdbeIncrPopulate(pIncr);
1979     pIncr->aFile[0] = pIncr->aFile[1];
1980     if( pIncr->aFile[0].iEof==pIncr->iStartOff ){
1981       pIncr->bEof = 1;
1982     }
1983   }
1984 
1985   return rc;
1986 }
1987 
1988 /*
1989 ** Allocate and return a new IncrMerger object to read data from pMerger.
1990 **
1991 ** If an OOM condition is encountered, return NULL. In this case free the
1992 ** pMerger argument before returning.
1993 */
vdbeIncrMergerNew(SortSubtask * pTask,MergeEngine * pMerger,IncrMerger ** ppOut)1994 static int vdbeIncrMergerNew(
1995   SortSubtask *pTask,     /* The thread that will be using the new IncrMerger */
1996   MergeEngine *pMerger,   /* The MergeEngine that the IncrMerger will control */
1997   IncrMerger **ppOut      /* Write the new IncrMerger here */
1998 ){
1999   int rc = SQLITE_OK;
2000   IncrMerger *pIncr = *ppOut = (IncrMerger*)
2001        (sqlite3FaultSim(100) ? 0 : sqlite3MallocZero(sizeof(*pIncr)));
2002   if( pIncr ){
2003     pIncr->pMerger = pMerger;
2004     pIncr->pTask = pTask;
2005     pIncr->mxSz = MAX(pTask->pSorter->mxKeysize+9,pTask->pSorter->mxPmaSize/2);
2006     pTask->file2.iEof += pIncr->mxSz;
2007   }else{
2008     vdbeMergeEngineFree(pMerger);
2009     rc = SQLITE_NOMEM_BKPT;
2010   }
2011   assert( *ppOut!=0 || rc!=SQLITE_OK );
2012   return rc;
2013 }
2014 
2015 #if SQLITE_MAX_WORKER_THREADS>0
2016 /*
2017 ** Set the "use-threads" flag on object pIncr.
2018 */
vdbeIncrMergerSetThreads(IncrMerger * pIncr)2019 static void vdbeIncrMergerSetThreads(IncrMerger *pIncr){
2020   pIncr->bUseThread = 1;
2021   pIncr->pTask->file2.iEof -= pIncr->mxSz;
2022 }
2023 #endif /* SQLITE_MAX_WORKER_THREADS>0 */
2024 
2025 
2026 
2027 /*
2028 ** Recompute pMerger->aTree[iOut] by comparing the next keys on the
2029 ** two PmaReaders that feed that entry.  Neither of the PmaReaders
2030 ** are advanced.  This routine merely does the comparison.
2031 */
vdbeMergeEngineCompare(MergeEngine * pMerger,int iOut)2032 static void vdbeMergeEngineCompare(
2033   MergeEngine *pMerger,  /* Merge engine containing PmaReaders to compare */
2034   int iOut               /* Store the result in pMerger->aTree[iOut] */
2035 ){
2036   int i1;
2037   int i2;
2038   int iRes;
2039   PmaReader *p1;
2040   PmaReader *p2;
2041 
2042   assert( iOut<pMerger->nTree && iOut>0 );
2043 
2044   if( iOut>=(pMerger->nTree/2) ){
2045     i1 = (iOut - pMerger->nTree/2) * 2;
2046     i2 = i1 + 1;
2047   }else{
2048     i1 = pMerger->aTree[iOut*2];
2049     i2 = pMerger->aTree[iOut*2+1];
2050   }
2051 
2052   p1 = &pMerger->aReadr[i1];
2053   p2 = &pMerger->aReadr[i2];
2054 
2055   if( p1->pFd==0 ){
2056     iRes = i2;
2057   }else if( p2->pFd==0 ){
2058     iRes = i1;
2059   }else{
2060     SortSubtask *pTask = pMerger->pTask;
2061     int bCached = 0;
2062     int res;
2063     assert( pTask->pUnpacked!=0 );  /* from vdbeSortSubtaskMain() */
2064     res = pTask->xCompare(
2065         pTask, &bCached, p1->aKey, p1->nKey, p2->aKey, p2->nKey
2066     );
2067     if( res<=0 ){
2068       iRes = i1;
2069     }else{
2070       iRes = i2;
2071     }
2072   }
2073 
2074   pMerger->aTree[iOut] = iRes;
2075 }
2076 
2077 /*
2078 ** Allowed values for the eMode parameter to vdbeMergeEngineInit()
2079 ** and vdbePmaReaderIncrMergeInit().
2080 **
2081 ** Only INCRINIT_NORMAL is valid in single-threaded builds (when
2082 ** SQLITE_MAX_WORKER_THREADS==0).  The other values are only used
2083 ** when there exists one or more separate worker threads.
2084 */
2085 #define INCRINIT_NORMAL 0
2086 #define INCRINIT_TASK   1
2087 #define INCRINIT_ROOT   2
2088 
2089 /*
2090 ** Forward reference required as the vdbeIncrMergeInit() and
2091 ** vdbePmaReaderIncrInit() routines are called mutually recursively when
2092 ** building a merge tree.
2093 */
2094 static int vdbePmaReaderIncrInit(PmaReader *pReadr, int eMode);
2095 
2096 /*
2097 ** Initialize the MergeEngine object passed as the second argument. Once this
2098 ** function returns, the first key of merged data may be read from the
2099 ** MergeEngine object in the usual fashion.
2100 **
2101 ** If argument eMode is INCRINIT_ROOT, then it is assumed that any IncrMerge
2102 ** objects attached to the PmaReader objects that the merger reads from have
2103 ** already been populated, but that they have not yet populated aFile[0] and
2104 ** set the PmaReader objects up to read from it. In this case all that is
2105 ** required is to call vdbePmaReaderNext() on each PmaReader to point it at
2106 ** its first key.
2107 **
2108 ** Otherwise, if eMode is any value other than INCRINIT_ROOT, then use
2109 ** vdbePmaReaderIncrMergeInit() to initialize each PmaReader that feeds data
2110 ** to pMerger.
2111 **
2112 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
2113 */
vdbeMergeEngineInit(SortSubtask * pTask,MergeEngine * pMerger,int eMode)2114 static int vdbeMergeEngineInit(
2115   SortSubtask *pTask,             /* Thread that will run pMerger */
2116   MergeEngine *pMerger,           /* MergeEngine to initialize */
2117   int eMode                       /* One of the INCRINIT_XXX constants */
2118 ){
2119   int rc = SQLITE_OK;             /* Return code */
2120   int i;                          /* For looping over PmaReader objects */
2121   int nTree;                      /* Number of subtrees to merge */
2122 
2123   /* Failure to allocate the merge would have been detected prior to
2124   ** invoking this routine */
2125   assert( pMerger!=0 );
2126 
2127   /* eMode is always INCRINIT_NORMAL in single-threaded mode */
2128   assert( SQLITE_MAX_WORKER_THREADS>0 || eMode==INCRINIT_NORMAL );
2129 
2130   /* Verify that the MergeEngine is assigned to a single thread */
2131   assert( pMerger->pTask==0 );
2132   pMerger->pTask = pTask;
2133 
2134   nTree = pMerger->nTree;
2135   for(i=0; i<nTree; i++){
2136     if( SQLITE_MAX_WORKER_THREADS>0 && eMode==INCRINIT_ROOT ){
2137       /* PmaReaders should be normally initialized in order, as if they are
2138       ** reading from the same temp file this makes for more linear file IO.
2139       ** However, in the INCRINIT_ROOT case, if PmaReader aReadr[nTask-1] is
2140       ** in use it will block the vdbePmaReaderNext() call while it uses
2141       ** the main thread to fill its buffer. So calling PmaReaderNext()
2142       ** on this PmaReader before any of the multi-threaded PmaReaders takes
2143       ** better advantage of multi-processor hardware. */
2144       rc = vdbePmaReaderNext(&pMerger->aReadr[nTree-i-1]);
2145     }else{
2146       rc = vdbePmaReaderIncrInit(&pMerger->aReadr[i], INCRINIT_NORMAL);
2147     }
2148     if( rc!=SQLITE_OK ) return rc;
2149   }
2150 
2151   for(i=pMerger->nTree-1; i>0; i--){
2152     vdbeMergeEngineCompare(pMerger, i);
2153   }
2154   return pTask->pUnpacked->errCode;
2155 }
2156 
2157 /*
2158 ** The PmaReader passed as the first argument is guaranteed to be an
2159 ** incremental-reader (pReadr->pIncr!=0). This function serves to open
2160 ** and/or initialize the temp file related fields of the IncrMerge
2161 ** object at (pReadr->pIncr).
2162 **
2163 ** If argument eMode is set to INCRINIT_NORMAL, then all PmaReaders
2164 ** in the sub-tree headed by pReadr are also initialized. Data is then
2165 ** loaded into the buffers belonging to pReadr and it is set to point to
2166 ** the first key in its range.
2167 **
2168 ** If argument eMode is set to INCRINIT_TASK, then pReadr is guaranteed
2169 ** to be a multi-threaded PmaReader and this function is being called in a
2170 ** background thread. In this case all PmaReaders in the sub-tree are
2171 ** initialized as for INCRINIT_NORMAL and the aFile[1] buffer belonging to
2172 ** pReadr is populated. However, pReadr itself is not set up to point
2173 ** to its first key. A call to vdbePmaReaderNext() is still required to do
2174 ** that.
2175 **
2176 ** The reason this function does not call vdbePmaReaderNext() immediately
2177 ** in the INCRINIT_TASK case is that vdbePmaReaderNext() assumes that it has
2178 ** to block on thread (pTask->thread) before accessing aFile[1]. But, since
2179 ** this entire function is being run by thread (pTask->thread), that will
2180 ** lead to the current background thread attempting to join itself.
2181 **
2182 ** Finally, if argument eMode is set to INCRINIT_ROOT, it may be assumed
2183 ** that pReadr->pIncr is a multi-threaded IncrMerge objects, and that all
2184 ** child-trees have already been initialized using IncrInit(INCRINIT_TASK).
2185 ** In this case vdbePmaReaderNext() is called on all child PmaReaders and
2186 ** the current PmaReader set to point to the first key in its range.
2187 **
2188 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
2189 */
vdbePmaReaderIncrMergeInit(PmaReader * pReadr,int eMode)2190 static int vdbePmaReaderIncrMergeInit(PmaReader *pReadr, int eMode){
2191   int rc = SQLITE_OK;
2192   IncrMerger *pIncr = pReadr->pIncr;
2193   SortSubtask *pTask = pIncr->pTask;
2194   sqlite3 *db = pTask->pSorter->db;
2195 
2196   /* eMode is always INCRINIT_NORMAL in single-threaded mode */
2197   assert( SQLITE_MAX_WORKER_THREADS>0 || eMode==INCRINIT_NORMAL );
2198 
2199   rc = vdbeMergeEngineInit(pTask, pIncr->pMerger, eMode);
2200 
2201   /* Set up the required files for pIncr. A multi-theaded IncrMerge object
2202   ** requires two temp files to itself, whereas a single-threaded object
2203   ** only requires a region of pTask->file2. */
2204   if( rc==SQLITE_OK ){
2205     int mxSz = pIncr->mxSz;
2206 #if SQLITE_MAX_WORKER_THREADS>0
2207     if( pIncr->bUseThread ){
2208       rc = vdbeSorterOpenTempFile(db, mxSz, &pIncr->aFile[0].pFd);
2209       if( rc==SQLITE_OK ){
2210         rc = vdbeSorterOpenTempFile(db, mxSz, &pIncr->aFile[1].pFd);
2211       }
2212     }else
2213 #endif
2214     /*if( !pIncr->bUseThread )*/{
2215       if( pTask->file2.pFd==0 ){
2216         assert( pTask->file2.iEof>0 );
2217         rc = vdbeSorterOpenTempFile(db, pTask->file2.iEof, &pTask->file2.pFd);
2218         pTask->file2.iEof = 0;
2219       }
2220       if( rc==SQLITE_OK ){
2221         pIncr->aFile[1].pFd = pTask->file2.pFd;
2222         pIncr->iStartOff = pTask->file2.iEof;
2223         pTask->file2.iEof += mxSz;
2224       }
2225     }
2226   }
2227 
2228 #if SQLITE_MAX_WORKER_THREADS>0
2229   if( rc==SQLITE_OK && pIncr->bUseThread ){
2230     /* Use the current thread to populate aFile[1], even though this
2231     ** PmaReader is multi-threaded. If this is an INCRINIT_TASK object,
2232     ** then this function is already running in background thread
2233     ** pIncr->pTask->thread.
2234     **
2235     ** If this is the INCRINIT_ROOT object, then it is running in the
2236     ** main VDBE thread. But that is Ok, as that thread cannot return
2237     ** control to the VDBE or proceed with anything useful until the
2238     ** first results are ready from this merger object anyway.
2239     */
2240     assert( eMode==INCRINIT_ROOT || eMode==INCRINIT_TASK );
2241     rc = vdbeIncrPopulate(pIncr);
2242   }
2243 #endif
2244 
2245   if( rc==SQLITE_OK && (SQLITE_MAX_WORKER_THREADS==0 || eMode!=INCRINIT_TASK) ){
2246     rc = vdbePmaReaderNext(pReadr);
2247   }
2248 
2249   return rc;
2250 }
2251 
2252 #if SQLITE_MAX_WORKER_THREADS>0
2253 /*
2254 ** The main routine for vdbePmaReaderIncrMergeInit() operations run in
2255 ** background threads.
2256 */
vdbePmaReaderBgIncrInit(void * pCtx)2257 static void *vdbePmaReaderBgIncrInit(void *pCtx){
2258   PmaReader *pReader = (PmaReader*)pCtx;
2259   void *pRet = SQLITE_INT_TO_PTR(
2260                   vdbePmaReaderIncrMergeInit(pReader,INCRINIT_TASK)
2261                );
2262   pReader->pIncr->pTask->bDone = 1;
2263   return pRet;
2264 }
2265 #endif
2266 
2267 /*
2268 ** If the PmaReader passed as the first argument is not an incremental-reader
2269 ** (if pReadr->pIncr==0), then this function is a no-op. Otherwise, it invokes
2270 ** the vdbePmaReaderIncrMergeInit() function with the parameters passed to
2271 ** this routine to initialize the incremental merge.
2272 **
2273 ** If the IncrMerger object is multi-threaded (IncrMerger.bUseThread==1),
2274 ** then a background thread is launched to call vdbePmaReaderIncrMergeInit().
2275 ** Or, if the IncrMerger is single threaded, the same function is called
2276 ** using the current thread.
2277 */
vdbePmaReaderIncrInit(PmaReader * pReadr,int eMode)2278 static int vdbePmaReaderIncrInit(PmaReader *pReadr, int eMode){
2279   IncrMerger *pIncr = pReadr->pIncr;   /* Incremental merger */
2280   int rc = SQLITE_OK;                  /* Return code */
2281   if( pIncr ){
2282 #if SQLITE_MAX_WORKER_THREADS>0
2283     assert( pIncr->bUseThread==0 || eMode==INCRINIT_TASK );
2284     if( pIncr->bUseThread ){
2285       void *pCtx = (void*)pReadr;
2286       rc = vdbeSorterCreateThread(pIncr->pTask, vdbePmaReaderBgIncrInit, pCtx);
2287     }else
2288 #endif
2289     {
2290       rc = vdbePmaReaderIncrMergeInit(pReadr, eMode);
2291     }
2292   }
2293   return rc;
2294 }
2295 
2296 /*
2297 ** Allocate a new MergeEngine object to merge the contents of nPMA level-0
2298 ** PMAs from pTask->file. If no error occurs, set *ppOut to point to
2299 ** the new object and return SQLITE_OK. Or, if an error does occur, set *ppOut
2300 ** to NULL and return an SQLite error code.
2301 **
2302 ** When this function is called, *piOffset is set to the offset of the
2303 ** first PMA to read from pTask->file. Assuming no error occurs, it is
2304 ** set to the offset immediately following the last byte of the last
2305 ** PMA before returning. If an error does occur, then the final value of
2306 ** *piOffset is undefined.
2307 */
vdbeMergeEngineLevel0(SortSubtask * pTask,int nPMA,i64 * piOffset,MergeEngine ** ppOut)2308 static int vdbeMergeEngineLevel0(
2309   SortSubtask *pTask,             /* Sorter task to read from */
2310   int nPMA,                       /* Number of PMAs to read */
2311   i64 *piOffset,                  /* IN/OUT: Readr offset in pTask->file */
2312   MergeEngine **ppOut             /* OUT: New merge-engine */
2313 ){
2314   MergeEngine *pNew;              /* Merge engine to return */
2315   i64 iOff = *piOffset;
2316   int i;
2317   int rc = SQLITE_OK;
2318 
2319   *ppOut = pNew = vdbeMergeEngineNew(nPMA);
2320   if( pNew==0 ) rc = SQLITE_NOMEM_BKPT;
2321 
2322   for(i=0; i<nPMA && rc==SQLITE_OK; i++){
2323     i64 nDummy = 0;
2324     PmaReader *pReadr = &pNew->aReadr[i];
2325     rc = vdbePmaReaderInit(pTask, &pTask->file, iOff, pReadr, &nDummy);
2326     iOff = pReadr->iEof;
2327   }
2328 
2329   if( rc!=SQLITE_OK ){
2330     vdbeMergeEngineFree(pNew);
2331     *ppOut = 0;
2332   }
2333   *piOffset = iOff;
2334   return rc;
2335 }
2336 
2337 /*
2338 ** Return the depth of a tree comprising nPMA PMAs, assuming a fanout of
2339 ** SORTER_MAX_MERGE_COUNT. The returned value does not include leaf nodes.
2340 **
2341 ** i.e.
2342 **
2343 **   nPMA<=16    -> TreeDepth() == 0
2344 **   nPMA<=256   -> TreeDepth() == 1
2345 **   nPMA<=65536 -> TreeDepth() == 2
2346 */
vdbeSorterTreeDepth(int nPMA)2347 static int vdbeSorterTreeDepth(int nPMA){
2348   int nDepth = 0;
2349   i64 nDiv = SORTER_MAX_MERGE_COUNT;
2350   while( nDiv < (i64)nPMA ){
2351     nDiv = nDiv * SORTER_MAX_MERGE_COUNT;
2352     nDepth++;
2353   }
2354   return nDepth;
2355 }
2356 
2357 /*
2358 ** pRoot is the root of an incremental merge-tree with depth nDepth (according
2359 ** to vdbeSorterTreeDepth()). pLeaf is the iSeq'th leaf to be added to the
2360 ** tree, counting from zero. This function adds pLeaf to the tree.
2361 **
2362 ** If successful, SQLITE_OK is returned. If an error occurs, an SQLite error
2363 ** code is returned and pLeaf is freed.
2364 */
vdbeSorterAddToTree(SortSubtask * pTask,int nDepth,int iSeq,MergeEngine * pRoot,MergeEngine * pLeaf)2365 static int vdbeSorterAddToTree(
2366   SortSubtask *pTask,             /* Task context */
2367   int nDepth,                     /* Depth of tree according to TreeDepth() */
2368   int iSeq,                       /* Sequence number of leaf within tree */
2369   MergeEngine *pRoot,             /* Root of tree */
2370   MergeEngine *pLeaf              /* Leaf to add to tree */
2371 ){
2372   int rc = SQLITE_OK;
2373   int nDiv = 1;
2374   int i;
2375   MergeEngine *p = pRoot;
2376   IncrMerger *pIncr;
2377 
2378   rc = vdbeIncrMergerNew(pTask, pLeaf, &pIncr);
2379 
2380   for(i=1; i<nDepth; i++){
2381     nDiv = nDiv * SORTER_MAX_MERGE_COUNT;
2382   }
2383 
2384   for(i=1; i<nDepth && rc==SQLITE_OK; i++){
2385     int iIter = (iSeq / nDiv) % SORTER_MAX_MERGE_COUNT;
2386     PmaReader *pReadr = &p->aReadr[iIter];
2387 
2388     if( pReadr->pIncr==0 ){
2389       MergeEngine *pNew = vdbeMergeEngineNew(SORTER_MAX_MERGE_COUNT);
2390       if( pNew==0 ){
2391         rc = SQLITE_NOMEM_BKPT;
2392       }else{
2393         rc = vdbeIncrMergerNew(pTask, pNew, &pReadr->pIncr);
2394       }
2395     }
2396     if( rc==SQLITE_OK ){
2397       p = pReadr->pIncr->pMerger;
2398       nDiv = nDiv / SORTER_MAX_MERGE_COUNT;
2399     }
2400   }
2401 
2402   if( rc==SQLITE_OK ){
2403     p->aReadr[iSeq % SORTER_MAX_MERGE_COUNT].pIncr = pIncr;
2404   }else{
2405     vdbeIncrFree(pIncr);
2406   }
2407   return rc;
2408 }
2409 
2410 /*
2411 ** This function is called as part of a SorterRewind() operation on a sorter
2412 ** that has already written two or more level-0 PMAs to one or more temp
2413 ** files. It builds a tree of MergeEngine/IncrMerger/PmaReader objects that
2414 ** can be used to incrementally merge all PMAs on disk.
2415 **
2416 ** If successful, SQLITE_OK is returned and *ppOut set to point to the
2417 ** MergeEngine object at the root of the tree before returning. Or, if an
2418 ** error occurs, an SQLite error code is returned and the final value
2419 ** of *ppOut is undefined.
2420 */
vdbeSorterMergeTreeBuild(VdbeSorter * pSorter,MergeEngine ** ppOut)2421 static int vdbeSorterMergeTreeBuild(
2422   VdbeSorter *pSorter,       /* The VDBE cursor that implements the sort */
2423   MergeEngine **ppOut        /* Write the MergeEngine here */
2424 ){
2425   MergeEngine *pMain = 0;
2426   int rc = SQLITE_OK;
2427   int iTask;
2428 
2429 #if SQLITE_MAX_WORKER_THREADS>0
2430   /* If the sorter uses more than one task, then create the top-level
2431   ** MergeEngine here. This MergeEngine will read data from exactly
2432   ** one PmaReader per sub-task.  */
2433   assert( pSorter->bUseThreads || pSorter->nTask==1 );
2434   if( pSorter->nTask>1 ){
2435     pMain = vdbeMergeEngineNew(pSorter->nTask);
2436     if( pMain==0 ) rc = SQLITE_NOMEM_BKPT;
2437   }
2438 #endif
2439 
2440   for(iTask=0; rc==SQLITE_OK && iTask<pSorter->nTask; iTask++){
2441     SortSubtask *pTask = &pSorter->aTask[iTask];
2442     assert( pTask->nPMA>0 || SQLITE_MAX_WORKER_THREADS>0 );
2443     if( SQLITE_MAX_WORKER_THREADS==0 || pTask->nPMA ){
2444       MergeEngine *pRoot = 0;     /* Root node of tree for this task */
2445       int nDepth = vdbeSorterTreeDepth(pTask->nPMA);
2446       i64 iReadOff = 0;
2447 
2448       if( pTask->nPMA<=SORTER_MAX_MERGE_COUNT ){
2449         rc = vdbeMergeEngineLevel0(pTask, pTask->nPMA, &iReadOff, &pRoot);
2450       }else{
2451         int i;
2452         int iSeq = 0;
2453         pRoot = vdbeMergeEngineNew(SORTER_MAX_MERGE_COUNT);
2454         if( pRoot==0 ) rc = SQLITE_NOMEM_BKPT;
2455         for(i=0; i<pTask->nPMA && rc==SQLITE_OK; i += SORTER_MAX_MERGE_COUNT){
2456           MergeEngine *pMerger = 0; /* New level-0 PMA merger */
2457           int nReader;              /* Number of level-0 PMAs to merge */
2458 
2459           nReader = MIN(pTask->nPMA - i, SORTER_MAX_MERGE_COUNT);
2460           rc = vdbeMergeEngineLevel0(pTask, nReader, &iReadOff, &pMerger);
2461           if( rc==SQLITE_OK ){
2462             rc = vdbeSorterAddToTree(pTask, nDepth, iSeq++, pRoot, pMerger);
2463           }
2464         }
2465       }
2466 
2467       if( rc==SQLITE_OK ){
2468 #if SQLITE_MAX_WORKER_THREADS>0
2469         if( pMain!=0 ){
2470           rc = vdbeIncrMergerNew(pTask, pRoot, &pMain->aReadr[iTask].pIncr);
2471         }else
2472 #endif
2473         {
2474           assert( pMain==0 );
2475           pMain = pRoot;
2476         }
2477       }else{
2478         vdbeMergeEngineFree(pRoot);
2479       }
2480     }
2481   }
2482 
2483   if( rc!=SQLITE_OK ){
2484     vdbeMergeEngineFree(pMain);
2485     pMain = 0;
2486   }
2487   *ppOut = pMain;
2488   return rc;
2489 }
2490 
2491 /*
2492 ** This function is called as part of an sqlite3VdbeSorterRewind() operation
2493 ** on a sorter that has written two or more PMAs to temporary files. It sets
2494 ** up either VdbeSorter.pMerger (for single threaded sorters) or pReader
2495 ** (for multi-threaded sorters) so that it can be used to iterate through
2496 ** all records stored in the sorter.
2497 **
2498 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
2499 */
vdbeSorterSetupMerge(VdbeSorter * pSorter)2500 static int vdbeSorterSetupMerge(VdbeSorter *pSorter){
2501   int rc;                         /* Return code */
2502   SortSubtask *pTask0 = &pSorter->aTask[0];
2503   MergeEngine *pMain = 0;
2504 #if SQLITE_MAX_WORKER_THREADS
2505   sqlite3 *db = pTask0->pSorter->db;
2506   int i;
2507   SorterCompare xCompare = vdbeSorterGetCompare(pSorter);
2508   for(i=0; i<pSorter->nTask; i++){
2509     pSorter->aTask[i].xCompare = xCompare;
2510   }
2511 #endif
2512 
2513   rc = vdbeSorterMergeTreeBuild(pSorter, &pMain);
2514   if( rc==SQLITE_OK ){
2515 #if SQLITE_MAX_WORKER_THREADS
2516     assert( pSorter->bUseThreads==0 || pSorter->nTask>1 );
2517     if( pSorter->bUseThreads ){
2518       int iTask;
2519       PmaReader *pReadr = 0;
2520       SortSubtask *pLast = &pSorter->aTask[pSorter->nTask-1];
2521       rc = vdbeSortAllocUnpacked(pLast);
2522       if( rc==SQLITE_OK ){
2523         pReadr = (PmaReader*)sqlite3DbMallocZero(db, sizeof(PmaReader));
2524         pSorter->pReader = pReadr;
2525         if( pReadr==0 ) rc = SQLITE_NOMEM_BKPT;
2526       }
2527       if( rc==SQLITE_OK ){
2528         rc = vdbeIncrMergerNew(pLast, pMain, &pReadr->pIncr);
2529         if( rc==SQLITE_OK ){
2530           vdbeIncrMergerSetThreads(pReadr->pIncr);
2531           for(iTask=0; iTask<(pSorter->nTask-1); iTask++){
2532             IncrMerger *pIncr;
2533             if( (pIncr = pMain->aReadr[iTask].pIncr) ){
2534               vdbeIncrMergerSetThreads(pIncr);
2535               assert( pIncr->pTask!=pLast );
2536             }
2537           }
2538           for(iTask=0; rc==SQLITE_OK && iTask<pSorter->nTask; iTask++){
2539             /* Check that:
2540             **
2541             **   a) The incremental merge object is configured to use the
2542             **      right task, and
2543             **   b) If it is using task (nTask-1), it is configured to run
2544             **      in single-threaded mode. This is important, as the
2545             **      root merge (INCRINIT_ROOT) will be using the same task
2546             **      object.
2547             */
2548             PmaReader *p = &pMain->aReadr[iTask];
2549             assert( p->pIncr==0 || (
2550                 (p->pIncr->pTask==&pSorter->aTask[iTask])             /* a */
2551              && (iTask!=pSorter->nTask-1 || p->pIncr->bUseThread==0)  /* b */
2552             ));
2553             rc = vdbePmaReaderIncrInit(p, INCRINIT_TASK);
2554           }
2555         }
2556         pMain = 0;
2557       }
2558       if( rc==SQLITE_OK ){
2559         rc = vdbePmaReaderIncrMergeInit(pReadr, INCRINIT_ROOT);
2560       }
2561     }else
2562 #endif
2563     {
2564       rc = vdbeMergeEngineInit(pTask0, pMain, INCRINIT_NORMAL);
2565       pSorter->pMerger = pMain;
2566       pMain = 0;
2567     }
2568   }
2569 
2570   if( rc!=SQLITE_OK ){
2571     vdbeMergeEngineFree(pMain);
2572   }
2573   return rc;
2574 }
2575 
2576 
2577 /*
2578 ** Once the sorter has been populated by calls to sqlite3VdbeSorterWrite,
2579 ** this function is called to prepare for iterating through the records
2580 ** in sorted order.
2581 */
sqlite3VdbeSorterRewind(const VdbeCursor * pCsr,int * pbEof)2582 int sqlite3VdbeSorterRewind(const VdbeCursor *pCsr, int *pbEof){
2583   VdbeSorter *pSorter;
2584   int rc = SQLITE_OK;             /* Return code */
2585 
2586   assert( pCsr->eCurType==CURTYPE_SORTER );
2587   pSorter = pCsr->uc.pSorter;
2588   assert( pSorter );
2589 
2590   /* If no data has been written to disk, then do not do so now. Instead,
2591   ** sort the VdbeSorter.pRecord list. The vdbe layer will read data directly
2592   ** from the in-memory list.  */
2593   if( pSorter->bUsePMA==0 ){
2594     if( pSorter->list.pList ){
2595       *pbEof = 0;
2596       rc = vdbeSorterSort(&pSorter->aTask[0], &pSorter->list);
2597     }else{
2598       *pbEof = 1;
2599     }
2600     return rc;
2601   }
2602 
2603   /* Write the current in-memory list to a PMA. When the VdbeSorterWrite()
2604   ** function flushes the contents of memory to disk, it immediately always
2605   ** creates a new list consisting of a single key immediately afterwards.
2606   ** So the list is never empty at this point.  */
2607   assert( pSorter->list.pList );
2608   rc = vdbeSorterFlushPMA(pSorter);
2609 
2610   /* Join all threads */
2611   rc = vdbeSorterJoinAll(pSorter, rc);
2612 
2613   vdbeSorterRewindDebug("rewind");
2614 
2615   /* Assuming no errors have occurred, set up a merger structure to
2616   ** incrementally read and merge all remaining PMAs.  */
2617   assert( pSorter->pReader==0 );
2618   if( rc==SQLITE_OK ){
2619     rc = vdbeSorterSetupMerge(pSorter);
2620     *pbEof = 0;
2621   }
2622 
2623   vdbeSorterRewindDebug("rewinddone");
2624   return rc;
2625 }
2626 
2627 /*
2628 ** Advance to the next element in the sorter.  Return value:
2629 **
2630 **    SQLITE_OK     success
2631 **    SQLITE_DONE   end of data
2632 **    otherwise     some kind of error.
2633 */
sqlite3VdbeSorterNext(sqlite3 * db,const VdbeCursor * pCsr)2634 int sqlite3VdbeSorterNext(sqlite3 *db, const VdbeCursor *pCsr){
2635   VdbeSorter *pSorter;
2636   int rc;                         /* Return code */
2637 
2638   assert( pCsr->eCurType==CURTYPE_SORTER );
2639   pSorter = pCsr->uc.pSorter;
2640   assert( pSorter->bUsePMA || (pSorter->pReader==0 && pSorter->pMerger==0) );
2641   if( pSorter->bUsePMA ){
2642     assert( pSorter->pReader==0 || pSorter->pMerger==0 );
2643     assert( pSorter->bUseThreads==0 || pSorter->pReader );
2644     assert( pSorter->bUseThreads==1 || pSorter->pMerger );
2645 #if SQLITE_MAX_WORKER_THREADS>0
2646     if( pSorter->bUseThreads ){
2647       rc = vdbePmaReaderNext(pSorter->pReader);
2648       if( rc==SQLITE_OK && pSorter->pReader->pFd==0 ) rc = SQLITE_DONE;
2649     }else
2650 #endif
2651     /*if( !pSorter->bUseThreads )*/ {
2652       int res = 0;
2653       assert( pSorter->pMerger!=0 );
2654       assert( pSorter->pMerger->pTask==(&pSorter->aTask[0]) );
2655       rc = vdbeMergeEngineStep(pSorter->pMerger, &res);
2656       if( rc==SQLITE_OK && res ) rc = SQLITE_DONE;
2657     }
2658   }else{
2659     SorterRecord *pFree = pSorter->list.pList;
2660     pSorter->list.pList = pFree->u.pNext;
2661     pFree->u.pNext = 0;
2662     if( pSorter->list.aMemory==0 ) vdbeSorterRecordFree(db, pFree);
2663     rc = pSorter->list.pList ? SQLITE_OK : SQLITE_DONE;
2664   }
2665   return rc;
2666 }
2667 
2668 /*
2669 ** Return a pointer to a buffer owned by the sorter that contains the
2670 ** current key.
2671 */
vdbeSorterRowkey(const VdbeSorter * pSorter,int * pnKey)2672 static void *vdbeSorterRowkey(
2673   const VdbeSorter *pSorter,      /* Sorter object */
2674   int *pnKey                      /* OUT: Size of current key in bytes */
2675 ){
2676   void *pKey;
2677   if( pSorter->bUsePMA ){
2678     PmaReader *pReader;
2679 #if SQLITE_MAX_WORKER_THREADS>0
2680     if( pSorter->bUseThreads ){
2681       pReader = pSorter->pReader;
2682     }else
2683 #endif
2684     /*if( !pSorter->bUseThreads )*/{
2685       pReader = &pSorter->pMerger->aReadr[pSorter->pMerger->aTree[1]];
2686     }
2687     *pnKey = pReader->nKey;
2688     pKey = pReader->aKey;
2689   }else{
2690     *pnKey = pSorter->list.pList->nVal;
2691     pKey = SRVAL(pSorter->list.pList);
2692   }
2693   return pKey;
2694 }
2695 
2696 /*
2697 ** Copy the current sorter key into the memory cell pOut.
2698 */
sqlite3VdbeSorterRowkey(const VdbeCursor * pCsr,Mem * pOut)2699 int sqlite3VdbeSorterRowkey(const VdbeCursor *pCsr, Mem *pOut){
2700   VdbeSorter *pSorter;
2701   void *pKey; int nKey;           /* Sorter key to copy into pOut */
2702 
2703   assert( pCsr->eCurType==CURTYPE_SORTER );
2704   pSorter = pCsr->uc.pSorter;
2705   pKey = vdbeSorterRowkey(pSorter, &nKey);
2706   if( sqlite3VdbeMemClearAndResize(pOut, nKey) ){
2707     return SQLITE_NOMEM_BKPT;
2708   }
2709   pOut->n = nKey;
2710   MemSetTypeFlag(pOut, MEM_Blob);
2711   memcpy(pOut->z, pKey, nKey);
2712 
2713   return SQLITE_OK;
2714 }
2715 
2716 /*
2717 ** Compare the key in memory cell pVal with the key that the sorter cursor
2718 ** passed as the first argument currently points to. For the purposes of
2719 ** the comparison, ignore the rowid field at the end of each record.
2720 **
2721 ** If the sorter cursor key contains any NULL values, consider it to be
2722 ** less than pVal. Even if pVal also contains NULL values.
2723 **
2724 ** If an error occurs, return an SQLite error code (i.e. SQLITE_NOMEM).
2725 ** Otherwise, set *pRes to a negative, zero or positive value if the
2726 ** key in pVal is smaller than, equal to or larger than the current sorter
2727 ** key.
2728 **
2729 ** This routine forms the core of the OP_SorterCompare opcode, which in
2730 ** turn is used to verify uniqueness when constructing a UNIQUE INDEX.
2731 */
sqlite3VdbeSorterCompare(const VdbeCursor * pCsr,Mem * pVal,int nKeyCol,int * pRes)2732 int sqlite3VdbeSorterCompare(
2733   const VdbeCursor *pCsr,         /* Sorter cursor */
2734   Mem *pVal,                      /* Value to compare to current sorter key */
2735   int nKeyCol,                    /* Compare this many columns */
2736   int *pRes                       /* OUT: Result of comparison */
2737 ){
2738   VdbeSorter *pSorter;
2739   UnpackedRecord *r2;
2740   KeyInfo *pKeyInfo;
2741   int i;
2742   void *pKey; int nKey;           /* Sorter key to compare pVal with */
2743 
2744   assert( pCsr->eCurType==CURTYPE_SORTER );
2745   pSorter = pCsr->uc.pSorter;
2746   r2 = pSorter->pUnpacked;
2747   pKeyInfo = pCsr->pKeyInfo;
2748   if( r2==0 ){
2749     r2 = pSorter->pUnpacked = sqlite3VdbeAllocUnpackedRecord(pKeyInfo);
2750     if( r2==0 ) return SQLITE_NOMEM_BKPT;
2751     r2->nField = nKeyCol;
2752   }
2753   assert( r2->nField==nKeyCol );
2754 
2755   pKey = vdbeSorterRowkey(pSorter, &nKey);
2756   sqlite3VdbeRecordUnpack(pKeyInfo, nKey, pKey, r2);
2757   for(i=0; i<nKeyCol; i++){
2758     if( r2->aMem[i].flags & MEM_Null ){
2759       *pRes = -1;
2760       return SQLITE_OK;
2761     }
2762   }
2763 
2764   *pRes = sqlite3VdbeRecordCompare(pVal->n, pVal->z, r2);
2765   return SQLITE_OK;
2766 }
2767