1 //===- InferAddressSpace.cpp - --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // CUDA C/C++ includes memory space designation as variable type qualifers (such
10 // as __global__ and __shared__). Knowing the space of a memory access allows
11 // CUDA compilers to emit faster PTX loads and stores. For example, a load from
12 // shared memory can be translated to `ld.shared` which is roughly 10% faster
13 // than a generic `ld` on an NVIDIA Tesla K40c.
14 //
15 // Unfortunately, type qualifiers only apply to variable declarations, so CUDA
16 // compilers must infer the memory space of an address expression from
17 // type-qualified variables.
18 //
19 // LLVM IR uses non-zero (so-called) specific address spaces to represent memory
20 // spaces (e.g. addrspace(3) means shared memory). The Clang frontend
21 // places only type-qualified variables in specific address spaces, and then
22 // conservatively `addrspacecast`s each type-qualified variable to addrspace(0)
23 // (so-called the generic address space) for other instructions to use.
24 //
25 // For example, the Clang translates the following CUDA code
26 // __shared__ float a[10];
27 // float v = a[i];
28 // to
29 // %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]*
30 // %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i
31 // %v = load float, float* %1 ; emits ld.f32
32 // @a is in addrspace(3) since it's type-qualified, but its use from %1 is
33 // redirected to %0 (the generic version of @a).
34 //
35 // The optimization implemented in this file propagates specific address spaces
36 // from type-qualified variable declarations to its users. For example, it
37 // optimizes the above IR to
38 // %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i
39 // %v = load float addrspace(3)* %1 ; emits ld.shared.f32
40 // propagating the addrspace(3) from @a to %1. As the result, the NVPTX
41 // codegen is able to emit ld.shared.f32 for %v.
42 //
43 // Address space inference works in two steps. First, it uses a data-flow
44 // analysis to infer as many generic pointers as possible to point to only one
45 // specific address space. In the above example, it can prove that %1 only
46 // points to addrspace(3). This algorithm was published in
47 // CUDA: Compiling and optimizing for a GPU platform
48 // Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang
49 // ICCS 2012
50 //
51 // Then, address space inference replaces all refinable generic pointers with
52 // equivalent specific pointers.
53 //
54 // The major challenge of implementing this optimization is handling PHINodes,
55 // which may create loops in the data flow graph. This brings two complications.
56 //
57 // First, the data flow analysis in Step 1 needs to be circular. For example,
58 // %generic.input = addrspacecast float addrspace(3)* %input to float*
59 // loop:
60 // %y = phi [ %generic.input, %y2 ]
61 // %y2 = getelementptr %y, 1
62 // %v = load %y2
63 // br ..., label %loop, ...
64 // proving %y specific requires proving both %generic.input and %y2 specific,
65 // but proving %y2 specific circles back to %y. To address this complication,
66 // the data flow analysis operates on a lattice:
67 // uninitialized > specific address spaces > generic.
68 // All address expressions (our implementation only considers phi, bitcast,
69 // addrspacecast, and getelementptr) start with the uninitialized address space.
70 // The monotone transfer function moves the address space of a pointer down a
71 // lattice path from uninitialized to specific and then to generic. A join
72 // operation of two different specific address spaces pushes the expression down
73 // to the generic address space. The analysis completes once it reaches a fixed
74 // point.
75 //
76 // Second, IR rewriting in Step 2 also needs to be circular. For example,
77 // converting %y to addrspace(3) requires the compiler to know the converted
78 // %y2, but converting %y2 needs the converted %y. To address this complication,
79 // we break these cycles using "undef" placeholders. When converting an
80 // instruction `I` to a new address space, if its operand `Op` is not converted
81 // yet, we let `I` temporarily use `undef` and fix all the uses of undef later.
82 // For instance, our algorithm first converts %y to
83 // %y' = phi float addrspace(3)* [ %input, undef ]
84 // Then, it converts %y2 to
85 // %y2' = getelementptr %y', 1
86 // Finally, it fixes the undef in %y' so that
87 // %y' = phi float addrspace(3)* [ %input, %y2' ]
88 //
89 //===----------------------------------------------------------------------===//
90
91 #include "llvm/Transforms/Scalar/InferAddressSpaces.h"
92 #include "llvm/ADT/ArrayRef.h"
93 #include "llvm/ADT/DenseMap.h"
94 #include "llvm/ADT/DenseSet.h"
95 #include "llvm/ADT/SetVector.h"
96 #include "llvm/ADT/SmallVector.h"
97 #include "llvm/Analysis/AssumptionCache.h"
98 #include "llvm/Analysis/TargetTransformInfo.h"
99 #include "llvm/Analysis/ValueTracking.h"
100 #include "llvm/IR/BasicBlock.h"
101 #include "llvm/IR/Constant.h"
102 #include "llvm/IR/Constants.h"
103 #include "llvm/IR/Dominators.h"
104 #include "llvm/IR/Function.h"
105 #include "llvm/IR/IRBuilder.h"
106 #include "llvm/IR/InstIterator.h"
107 #include "llvm/IR/Instruction.h"
108 #include "llvm/IR/Instructions.h"
109 #include "llvm/IR/IntrinsicInst.h"
110 #include "llvm/IR/Intrinsics.h"
111 #include "llvm/IR/LLVMContext.h"
112 #include "llvm/IR/Operator.h"
113 #include "llvm/IR/PassManager.h"
114 #include "llvm/IR/Type.h"
115 #include "llvm/IR/Use.h"
116 #include "llvm/IR/User.h"
117 #include "llvm/IR/Value.h"
118 #include "llvm/IR/ValueHandle.h"
119 #include "llvm/InitializePasses.h"
120 #include "llvm/Pass.h"
121 #include "llvm/Support/Casting.h"
122 #include "llvm/Support/CommandLine.h"
123 #include "llvm/Support/Compiler.h"
124 #include "llvm/Support/Debug.h"
125 #include "llvm/Support/ErrorHandling.h"
126 #include "llvm/Support/raw_ostream.h"
127 #include "llvm/Transforms/Scalar.h"
128 #include "llvm/Transforms/Utils/Local.h"
129 #include "llvm/Transforms/Utils/ValueMapper.h"
130 #include <cassert>
131 #include <iterator>
132 #include <limits>
133 #include <utility>
134 #include <vector>
135
136 #define DEBUG_TYPE "infer-address-spaces"
137
138 using namespace llvm;
139
140 static cl::opt<bool> AssumeDefaultIsFlatAddressSpace(
141 "assume-default-is-flat-addrspace", cl::init(false), cl::ReallyHidden,
142 cl::desc("The default address space is assumed as the flat address space. "
143 "This is mainly for test purpose."));
144
145 static const unsigned UninitializedAddressSpace =
146 std::numeric_limits<unsigned>::max();
147
148 namespace {
149
150 using ValueToAddrSpaceMapTy = DenseMap<const Value *, unsigned>;
151 // Different from ValueToAddrSpaceMapTy, where a new addrspace is inferred on
152 // the *def* of a value, PredicatedAddrSpaceMapTy is map where a new
153 // addrspace is inferred on the *use* of a pointer. This map is introduced to
154 // infer addrspace from the addrspace predicate assumption built from assume
155 // intrinsic. In that scenario, only specific uses (under valid assumption
156 // context) could be inferred with a new addrspace.
157 using PredicatedAddrSpaceMapTy =
158 DenseMap<std::pair<const Value *, const Value *>, unsigned>;
159 using PostorderStackTy = llvm::SmallVector<PointerIntPair<Value *, 1, bool>, 4>;
160
161 class InferAddressSpaces : public FunctionPass {
162 unsigned FlatAddrSpace = 0;
163
164 public:
165 static char ID;
166
InferAddressSpaces()167 InferAddressSpaces() :
168 FunctionPass(ID), FlatAddrSpace(UninitializedAddressSpace) {}
InferAddressSpaces(unsigned AS)169 InferAddressSpaces(unsigned AS) : FunctionPass(ID), FlatAddrSpace(AS) {}
170
getAnalysisUsage(AnalysisUsage & AU) const171 void getAnalysisUsage(AnalysisUsage &AU) const override {
172 AU.setPreservesCFG();
173 AU.addPreserved<DominatorTreeWrapperPass>();
174 AU.addRequired<AssumptionCacheTracker>();
175 AU.addRequired<TargetTransformInfoWrapperPass>();
176 }
177
178 bool runOnFunction(Function &F) override;
179 };
180
181 class InferAddressSpacesImpl {
182 AssumptionCache &AC;
183 const DominatorTree *DT = nullptr;
184 const TargetTransformInfo *TTI = nullptr;
185 const DataLayout *DL = nullptr;
186
187 /// Target specific address space which uses of should be replaced if
188 /// possible.
189 unsigned FlatAddrSpace = 0;
190
191 // Try to update the address space of V. If V is updated, returns true and
192 // false otherwise.
193 bool updateAddressSpace(const Value &V,
194 ValueToAddrSpaceMapTy &InferredAddrSpace,
195 PredicatedAddrSpaceMapTy &PredicatedAS) const;
196
197 // Tries to infer the specific address space of each address expression in
198 // Postorder.
199 void inferAddressSpaces(ArrayRef<WeakTrackingVH> Postorder,
200 ValueToAddrSpaceMapTy &InferredAddrSpace,
201 PredicatedAddrSpaceMapTy &PredicatedAS) const;
202
203 bool isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const;
204
205 Value *cloneInstructionWithNewAddressSpace(
206 Instruction *I, unsigned NewAddrSpace,
207 const ValueToValueMapTy &ValueWithNewAddrSpace,
208 const PredicatedAddrSpaceMapTy &PredicatedAS,
209 SmallVectorImpl<const Use *> *UndefUsesToFix) const;
210
211 // Changes the flat address expressions in function F to point to specific
212 // address spaces if InferredAddrSpace says so. Postorder is the postorder of
213 // all flat expressions in the use-def graph of function F.
214 bool
215 rewriteWithNewAddressSpaces(ArrayRef<WeakTrackingVH> Postorder,
216 const ValueToAddrSpaceMapTy &InferredAddrSpace,
217 const PredicatedAddrSpaceMapTy &PredicatedAS,
218 Function *F) const;
219
220 void appendsFlatAddressExpressionToPostorderStack(
221 Value *V, PostorderStackTy &PostorderStack,
222 DenseSet<Value *> &Visited) const;
223
224 bool rewriteIntrinsicOperands(IntrinsicInst *II,
225 Value *OldV, Value *NewV) const;
226 void collectRewritableIntrinsicOperands(IntrinsicInst *II,
227 PostorderStackTy &PostorderStack,
228 DenseSet<Value *> &Visited) const;
229
230 std::vector<WeakTrackingVH> collectFlatAddressExpressions(Function &F) const;
231
232 Value *cloneValueWithNewAddressSpace(
233 Value *V, unsigned NewAddrSpace,
234 const ValueToValueMapTy &ValueWithNewAddrSpace,
235 const PredicatedAddrSpaceMapTy &PredicatedAS,
236 SmallVectorImpl<const Use *> *UndefUsesToFix) const;
237 unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) const;
238
239 unsigned getPredicatedAddrSpace(const Value &V, Value *Opnd) const;
240
241 public:
InferAddressSpacesImpl(AssumptionCache & AC,const DominatorTree * DT,const TargetTransformInfo * TTI,unsigned FlatAddrSpace)242 InferAddressSpacesImpl(AssumptionCache &AC, const DominatorTree *DT,
243 const TargetTransformInfo *TTI, unsigned FlatAddrSpace)
244 : AC(AC), DT(DT), TTI(TTI), FlatAddrSpace(FlatAddrSpace) {}
245 bool run(Function &F);
246 };
247
248 } // end anonymous namespace
249
250 char InferAddressSpaces::ID = 0;
251
252 INITIALIZE_PASS_BEGIN(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces",
253 false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)254 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
255 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
256 INITIALIZE_PASS_END(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces",
257 false, false)
258
259 // Check whether that's no-op pointer bicast using a pair of
260 // `ptrtoint`/`inttoptr` due to the missing no-op pointer bitcast over
261 // different address spaces.
262 static bool isNoopPtrIntCastPair(const Operator *I2P, const DataLayout &DL,
263 const TargetTransformInfo *TTI) {
264 assert(I2P->getOpcode() == Instruction::IntToPtr);
265 auto *P2I = dyn_cast<Operator>(I2P->getOperand(0));
266 if (!P2I || P2I->getOpcode() != Instruction::PtrToInt)
267 return false;
268 // Check it's really safe to treat that pair of `ptrtoint`/`inttoptr` as a
269 // no-op cast. Besides checking both of them are no-op casts, as the
270 // reinterpreted pointer may be used in other pointer arithmetic, we also
271 // need to double-check that through the target-specific hook. That ensures
272 // the underlying target also agrees that's a no-op address space cast and
273 // pointer bits are preserved.
274 // The current IR spec doesn't have clear rules on address space casts,
275 // especially a clear definition for pointer bits in non-default address
276 // spaces. It would be undefined if that pointer is dereferenced after an
277 // invalid reinterpret cast. Also, due to the unclearness for the meaning of
278 // bits in non-default address spaces in the current spec, the pointer
279 // arithmetic may also be undefined after invalid pointer reinterpret cast.
280 // However, as we confirm through the target hooks that it's a no-op
281 // addrspacecast, it doesn't matter since the bits should be the same.
282 unsigned P2IOp0AS = P2I->getOperand(0)->getType()->getPointerAddressSpace();
283 unsigned I2PAS = I2P->getType()->getPointerAddressSpace();
284 return CastInst::isNoopCast(Instruction::CastOps(I2P->getOpcode()),
285 I2P->getOperand(0)->getType(), I2P->getType(),
286 DL) &&
287 CastInst::isNoopCast(Instruction::CastOps(P2I->getOpcode()),
288 P2I->getOperand(0)->getType(), P2I->getType(),
289 DL) &&
290 (P2IOp0AS == I2PAS || TTI->isNoopAddrSpaceCast(P2IOp0AS, I2PAS));
291 }
292
293 // Returns true if V is an address expression.
294 // TODO: Currently, we consider only phi, bitcast, addrspacecast, and
295 // getelementptr operators.
isAddressExpression(const Value & V,const DataLayout & DL,const TargetTransformInfo * TTI)296 static bool isAddressExpression(const Value &V, const DataLayout &DL,
297 const TargetTransformInfo *TTI) {
298 const Operator *Op = dyn_cast<Operator>(&V);
299 if (!Op)
300 return false;
301
302 switch (Op->getOpcode()) {
303 case Instruction::PHI:
304 assert(Op->getType()->isPointerTy());
305 return true;
306 case Instruction::BitCast:
307 case Instruction::AddrSpaceCast:
308 case Instruction::GetElementPtr:
309 return true;
310 case Instruction::Select:
311 return Op->getType()->isPointerTy();
312 case Instruction::Call: {
313 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(&V);
314 return II && II->getIntrinsicID() == Intrinsic::ptrmask;
315 }
316 case Instruction::IntToPtr:
317 return isNoopPtrIntCastPair(Op, DL, TTI);
318 default:
319 // That value is an address expression if it has an assumed address space.
320 return TTI->getAssumedAddrSpace(&V) != UninitializedAddressSpace;
321 }
322 }
323
324 // Returns the pointer operands of V.
325 //
326 // Precondition: V is an address expression.
327 static SmallVector<Value *, 2>
getPointerOperands(const Value & V,const DataLayout & DL,const TargetTransformInfo * TTI)328 getPointerOperands(const Value &V, const DataLayout &DL,
329 const TargetTransformInfo *TTI) {
330 const Operator &Op = cast<Operator>(V);
331 switch (Op.getOpcode()) {
332 case Instruction::PHI: {
333 auto IncomingValues = cast<PHINode>(Op).incoming_values();
334 return {IncomingValues.begin(), IncomingValues.end()};
335 }
336 case Instruction::BitCast:
337 case Instruction::AddrSpaceCast:
338 case Instruction::GetElementPtr:
339 return {Op.getOperand(0)};
340 case Instruction::Select:
341 return {Op.getOperand(1), Op.getOperand(2)};
342 case Instruction::Call: {
343 const IntrinsicInst &II = cast<IntrinsicInst>(Op);
344 assert(II.getIntrinsicID() == Intrinsic::ptrmask &&
345 "unexpected intrinsic call");
346 return {II.getArgOperand(0)};
347 }
348 case Instruction::IntToPtr: {
349 assert(isNoopPtrIntCastPair(&Op, DL, TTI));
350 auto *P2I = cast<Operator>(Op.getOperand(0));
351 return {P2I->getOperand(0)};
352 }
353 default:
354 llvm_unreachable("Unexpected instruction type.");
355 }
356 }
357
rewriteIntrinsicOperands(IntrinsicInst * II,Value * OldV,Value * NewV) const358 bool InferAddressSpacesImpl::rewriteIntrinsicOperands(IntrinsicInst *II,
359 Value *OldV,
360 Value *NewV) const {
361 Module *M = II->getParent()->getParent()->getParent();
362
363 switch (II->getIntrinsicID()) {
364 case Intrinsic::objectsize: {
365 Type *DestTy = II->getType();
366 Type *SrcTy = NewV->getType();
367 Function *NewDecl =
368 Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy});
369 II->setArgOperand(0, NewV);
370 II->setCalledFunction(NewDecl);
371 return true;
372 }
373 case Intrinsic::ptrmask:
374 // This is handled as an address expression, not as a use memory operation.
375 return false;
376 default: {
377 Value *Rewrite = TTI->rewriteIntrinsicWithAddressSpace(II, OldV, NewV);
378 if (!Rewrite)
379 return false;
380 if (Rewrite != II)
381 II->replaceAllUsesWith(Rewrite);
382 return true;
383 }
384 }
385 }
386
collectRewritableIntrinsicOperands(IntrinsicInst * II,PostorderStackTy & PostorderStack,DenseSet<Value * > & Visited) const387 void InferAddressSpacesImpl::collectRewritableIntrinsicOperands(
388 IntrinsicInst *II, PostorderStackTy &PostorderStack,
389 DenseSet<Value *> &Visited) const {
390 auto IID = II->getIntrinsicID();
391 switch (IID) {
392 case Intrinsic::ptrmask:
393 case Intrinsic::objectsize:
394 appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0),
395 PostorderStack, Visited);
396 break;
397 default:
398 SmallVector<int, 2> OpIndexes;
399 if (TTI->collectFlatAddressOperands(OpIndexes, IID)) {
400 for (int Idx : OpIndexes) {
401 appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(Idx),
402 PostorderStack, Visited);
403 }
404 }
405 break;
406 }
407 }
408
409 // Returns all flat address expressions in function F. The elements are
410 // If V is an unvisited flat address expression, appends V to PostorderStack
411 // and marks it as visited.
appendsFlatAddressExpressionToPostorderStack(Value * V,PostorderStackTy & PostorderStack,DenseSet<Value * > & Visited) const412 void InferAddressSpacesImpl::appendsFlatAddressExpressionToPostorderStack(
413 Value *V, PostorderStackTy &PostorderStack,
414 DenseSet<Value *> &Visited) const {
415 assert(V->getType()->isPointerTy());
416
417 // Generic addressing expressions may be hidden in nested constant
418 // expressions.
419 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
420 // TODO: Look in non-address parts, like icmp operands.
421 if (isAddressExpression(*CE, *DL, TTI) && Visited.insert(CE).second)
422 PostorderStack.emplace_back(CE, false);
423
424 return;
425 }
426
427 if (V->getType()->getPointerAddressSpace() == FlatAddrSpace &&
428 isAddressExpression(*V, *DL, TTI)) {
429 if (Visited.insert(V).second) {
430 PostorderStack.emplace_back(V, false);
431
432 Operator *Op = cast<Operator>(V);
433 for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I) {
434 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op->getOperand(I))) {
435 if (isAddressExpression(*CE, *DL, TTI) && Visited.insert(CE).second)
436 PostorderStack.emplace_back(CE, false);
437 }
438 }
439 }
440 }
441 }
442
443 // Returns all flat address expressions in function F. The elements are ordered
444 // ordered in postorder.
445 std::vector<WeakTrackingVH>
collectFlatAddressExpressions(Function & F) const446 InferAddressSpacesImpl::collectFlatAddressExpressions(Function &F) const {
447 // This function implements a non-recursive postorder traversal of a partial
448 // use-def graph of function F.
449 PostorderStackTy PostorderStack;
450 // The set of visited expressions.
451 DenseSet<Value *> Visited;
452
453 auto PushPtrOperand = [&](Value *Ptr) {
454 appendsFlatAddressExpressionToPostorderStack(Ptr, PostorderStack,
455 Visited);
456 };
457
458 // Look at operations that may be interesting accelerate by moving to a known
459 // address space. We aim at generating after loads and stores, but pure
460 // addressing calculations may also be faster.
461 for (Instruction &I : instructions(F)) {
462 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
463 if (!GEP->getType()->isVectorTy())
464 PushPtrOperand(GEP->getPointerOperand());
465 } else if (auto *LI = dyn_cast<LoadInst>(&I))
466 PushPtrOperand(LI->getPointerOperand());
467 else if (auto *SI = dyn_cast<StoreInst>(&I))
468 PushPtrOperand(SI->getPointerOperand());
469 else if (auto *RMW = dyn_cast<AtomicRMWInst>(&I))
470 PushPtrOperand(RMW->getPointerOperand());
471 else if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(&I))
472 PushPtrOperand(CmpX->getPointerOperand());
473 else if (auto *MI = dyn_cast<MemIntrinsic>(&I)) {
474 // For memset/memcpy/memmove, any pointer operand can be replaced.
475 PushPtrOperand(MI->getRawDest());
476
477 // Handle 2nd operand for memcpy/memmove.
478 if (auto *MTI = dyn_cast<MemTransferInst>(MI))
479 PushPtrOperand(MTI->getRawSource());
480 } else if (auto *II = dyn_cast<IntrinsicInst>(&I))
481 collectRewritableIntrinsicOperands(II, PostorderStack, Visited);
482 else if (ICmpInst *Cmp = dyn_cast<ICmpInst>(&I)) {
483 // FIXME: Handle vectors of pointers
484 if (Cmp->getOperand(0)->getType()->isPointerTy()) {
485 PushPtrOperand(Cmp->getOperand(0));
486 PushPtrOperand(Cmp->getOperand(1));
487 }
488 } else if (auto *ASC = dyn_cast<AddrSpaceCastInst>(&I)) {
489 if (!ASC->getType()->isVectorTy())
490 PushPtrOperand(ASC->getPointerOperand());
491 } else if (auto *I2P = dyn_cast<IntToPtrInst>(&I)) {
492 if (isNoopPtrIntCastPair(cast<Operator>(I2P), *DL, TTI))
493 PushPtrOperand(
494 cast<Operator>(I2P->getOperand(0))->getOperand(0));
495 }
496 }
497
498 std::vector<WeakTrackingVH> Postorder; // The resultant postorder.
499 while (!PostorderStack.empty()) {
500 Value *TopVal = PostorderStack.back().getPointer();
501 // If the operands of the expression on the top are already explored,
502 // adds that expression to the resultant postorder.
503 if (PostorderStack.back().getInt()) {
504 if (TopVal->getType()->getPointerAddressSpace() == FlatAddrSpace)
505 Postorder.push_back(TopVal);
506 PostorderStack.pop_back();
507 continue;
508 }
509 // Otherwise, adds its operands to the stack and explores them.
510 PostorderStack.back().setInt(true);
511 // Skip values with an assumed address space.
512 if (TTI->getAssumedAddrSpace(TopVal) == UninitializedAddressSpace) {
513 for (Value *PtrOperand : getPointerOperands(*TopVal, *DL, TTI)) {
514 appendsFlatAddressExpressionToPostorderStack(PtrOperand, PostorderStack,
515 Visited);
516 }
517 }
518 }
519 return Postorder;
520 }
521
522 // A helper function for cloneInstructionWithNewAddressSpace. Returns the clone
523 // of OperandUse.get() in the new address space. If the clone is not ready yet,
524 // returns an undef in the new address space as a placeholder.
operandWithNewAddressSpaceOrCreateUndef(const Use & OperandUse,unsigned NewAddrSpace,const ValueToValueMapTy & ValueWithNewAddrSpace,const PredicatedAddrSpaceMapTy & PredicatedAS,SmallVectorImpl<const Use * > * UndefUsesToFix)525 static Value *operandWithNewAddressSpaceOrCreateUndef(
526 const Use &OperandUse, unsigned NewAddrSpace,
527 const ValueToValueMapTy &ValueWithNewAddrSpace,
528 const PredicatedAddrSpaceMapTy &PredicatedAS,
529 SmallVectorImpl<const Use *> *UndefUsesToFix) {
530 Value *Operand = OperandUse.get();
531
532 Type *NewPtrTy = PointerType::getWithSamePointeeType(
533 cast<PointerType>(Operand->getType()), NewAddrSpace);
534
535 if (Constant *C = dyn_cast<Constant>(Operand))
536 return ConstantExpr::getAddrSpaceCast(C, NewPtrTy);
537
538 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand))
539 return NewOperand;
540
541 Instruction *Inst = cast<Instruction>(OperandUse.getUser());
542 auto I = PredicatedAS.find(std::make_pair(Inst, Operand));
543 if (I != PredicatedAS.end()) {
544 // Insert an addrspacecast on that operand before the user.
545 unsigned NewAS = I->second;
546 Type *NewPtrTy = PointerType::getWithSamePointeeType(
547 cast<PointerType>(Operand->getType()), NewAS);
548 auto *NewI = new AddrSpaceCastInst(Operand, NewPtrTy);
549 NewI->insertBefore(Inst);
550 return NewI;
551 }
552
553 UndefUsesToFix->push_back(&OperandUse);
554 return UndefValue::get(NewPtrTy);
555 }
556
557 // Returns a clone of `I` with its operands converted to those specified in
558 // ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an
559 // operand whose address space needs to be modified might not exist in
560 // ValueWithNewAddrSpace. In that case, uses undef as a placeholder operand and
561 // adds that operand use to UndefUsesToFix so that caller can fix them later.
562 //
563 // Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast
564 // from a pointer whose type already matches. Therefore, this function returns a
565 // Value* instead of an Instruction*.
566 //
567 // This may also return nullptr in the case the instruction could not be
568 // rewritten.
cloneInstructionWithNewAddressSpace(Instruction * I,unsigned NewAddrSpace,const ValueToValueMapTy & ValueWithNewAddrSpace,const PredicatedAddrSpaceMapTy & PredicatedAS,SmallVectorImpl<const Use * > * UndefUsesToFix) const569 Value *InferAddressSpacesImpl::cloneInstructionWithNewAddressSpace(
570 Instruction *I, unsigned NewAddrSpace,
571 const ValueToValueMapTy &ValueWithNewAddrSpace,
572 const PredicatedAddrSpaceMapTy &PredicatedAS,
573 SmallVectorImpl<const Use *> *UndefUsesToFix) const {
574 Type *NewPtrType = PointerType::getWithSamePointeeType(
575 cast<PointerType>(I->getType()), NewAddrSpace);
576
577 if (I->getOpcode() == Instruction::AddrSpaceCast) {
578 Value *Src = I->getOperand(0);
579 // Because `I` is flat, the source address space must be specific.
580 // Therefore, the inferred address space must be the source space, according
581 // to our algorithm.
582 assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace);
583 if (Src->getType() != NewPtrType)
584 return new BitCastInst(Src, NewPtrType);
585 return Src;
586 }
587
588 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
589 // Technically the intrinsic ID is a pointer typed argument, so specially
590 // handle calls early.
591 assert(II->getIntrinsicID() == Intrinsic::ptrmask);
592 Value *NewPtr = operandWithNewAddressSpaceOrCreateUndef(
593 II->getArgOperandUse(0), NewAddrSpace, ValueWithNewAddrSpace,
594 PredicatedAS, UndefUsesToFix);
595 Value *Rewrite =
596 TTI->rewriteIntrinsicWithAddressSpace(II, II->getArgOperand(0), NewPtr);
597 if (Rewrite) {
598 assert(Rewrite != II && "cannot modify this pointer operation in place");
599 return Rewrite;
600 }
601
602 return nullptr;
603 }
604
605 unsigned AS = TTI->getAssumedAddrSpace(I);
606 if (AS != UninitializedAddressSpace) {
607 // For the assumed address space, insert an `addrspacecast` to make that
608 // explicit.
609 Type *NewPtrTy = PointerType::getWithSamePointeeType(
610 cast<PointerType>(I->getType()), AS);
611 auto *NewI = new AddrSpaceCastInst(I, NewPtrTy);
612 NewI->insertAfter(I);
613 return NewI;
614 }
615
616 // Computes the converted pointer operands.
617 SmallVector<Value *, 4> NewPointerOperands;
618 for (const Use &OperandUse : I->operands()) {
619 if (!OperandUse.get()->getType()->isPointerTy())
620 NewPointerOperands.push_back(nullptr);
621 else
622 NewPointerOperands.push_back(operandWithNewAddressSpaceOrCreateUndef(
623 OperandUse, NewAddrSpace, ValueWithNewAddrSpace, PredicatedAS,
624 UndefUsesToFix));
625 }
626
627 switch (I->getOpcode()) {
628 case Instruction::BitCast:
629 return new BitCastInst(NewPointerOperands[0], NewPtrType);
630 case Instruction::PHI: {
631 assert(I->getType()->isPointerTy());
632 PHINode *PHI = cast<PHINode>(I);
633 PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues());
634 for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) {
635 unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index);
636 NewPHI->addIncoming(NewPointerOperands[OperandNo],
637 PHI->getIncomingBlock(Index));
638 }
639 return NewPHI;
640 }
641 case Instruction::GetElementPtr: {
642 GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
643 GetElementPtrInst *NewGEP = GetElementPtrInst::Create(
644 GEP->getSourceElementType(), NewPointerOperands[0],
645 SmallVector<Value *, 4>(GEP->indices()));
646 NewGEP->setIsInBounds(GEP->isInBounds());
647 return NewGEP;
648 }
649 case Instruction::Select:
650 assert(I->getType()->isPointerTy());
651 return SelectInst::Create(I->getOperand(0), NewPointerOperands[1],
652 NewPointerOperands[2], "", nullptr, I);
653 case Instruction::IntToPtr: {
654 assert(isNoopPtrIntCastPair(cast<Operator>(I), *DL, TTI));
655 Value *Src = cast<Operator>(I->getOperand(0))->getOperand(0);
656 if (Src->getType() == NewPtrType)
657 return Src;
658
659 // If we had a no-op inttoptr/ptrtoint pair, we may still have inferred a
660 // source address space from a generic pointer source need to insert a cast
661 // back.
662 return CastInst::CreatePointerBitCastOrAddrSpaceCast(Src, NewPtrType);
663 }
664 default:
665 llvm_unreachable("Unexpected opcode");
666 }
667 }
668
669 // Similar to cloneInstructionWithNewAddressSpace, returns a clone of the
670 // constant expression `CE` with its operands replaced as specified in
671 // ValueWithNewAddrSpace.
cloneConstantExprWithNewAddressSpace(ConstantExpr * CE,unsigned NewAddrSpace,const ValueToValueMapTy & ValueWithNewAddrSpace,const DataLayout * DL,const TargetTransformInfo * TTI)672 static Value *cloneConstantExprWithNewAddressSpace(
673 ConstantExpr *CE, unsigned NewAddrSpace,
674 const ValueToValueMapTy &ValueWithNewAddrSpace, const DataLayout *DL,
675 const TargetTransformInfo *TTI) {
676 Type *TargetType = CE->getType()->isPointerTy()
677 ? PointerType::getWithSamePointeeType(
678 cast<PointerType>(CE->getType()), NewAddrSpace)
679 : CE->getType();
680
681 if (CE->getOpcode() == Instruction::AddrSpaceCast) {
682 // Because CE is flat, the source address space must be specific.
683 // Therefore, the inferred address space must be the source space according
684 // to our algorithm.
685 assert(CE->getOperand(0)->getType()->getPointerAddressSpace() ==
686 NewAddrSpace);
687 return ConstantExpr::getBitCast(CE->getOperand(0), TargetType);
688 }
689
690 if (CE->getOpcode() == Instruction::BitCast) {
691 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(CE->getOperand(0)))
692 return ConstantExpr::getBitCast(cast<Constant>(NewOperand), TargetType);
693 return ConstantExpr::getAddrSpaceCast(CE, TargetType);
694 }
695
696 if (CE->getOpcode() == Instruction::Select) {
697 Constant *Src0 = CE->getOperand(1);
698 Constant *Src1 = CE->getOperand(2);
699 if (Src0->getType()->getPointerAddressSpace() ==
700 Src1->getType()->getPointerAddressSpace()) {
701
702 return ConstantExpr::getSelect(
703 CE->getOperand(0), ConstantExpr::getAddrSpaceCast(Src0, TargetType),
704 ConstantExpr::getAddrSpaceCast(Src1, TargetType));
705 }
706 }
707
708 if (CE->getOpcode() == Instruction::IntToPtr) {
709 assert(isNoopPtrIntCastPair(cast<Operator>(CE), *DL, TTI));
710 Constant *Src = cast<ConstantExpr>(CE->getOperand(0))->getOperand(0);
711 assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace);
712 return ConstantExpr::getBitCast(Src, TargetType);
713 }
714
715 // Computes the operands of the new constant expression.
716 bool IsNew = false;
717 SmallVector<Constant *, 4> NewOperands;
718 for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) {
719 Constant *Operand = CE->getOperand(Index);
720 // If the address space of `Operand` needs to be modified, the new operand
721 // with the new address space should already be in ValueWithNewAddrSpace
722 // because (1) the constant expressions we consider (i.e. addrspacecast,
723 // bitcast, and getelementptr) do not incur cycles in the data flow graph
724 // and (2) this function is called on constant expressions in postorder.
725 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) {
726 IsNew = true;
727 NewOperands.push_back(cast<Constant>(NewOperand));
728 continue;
729 }
730 if (auto *CExpr = dyn_cast<ConstantExpr>(Operand))
731 if (Value *NewOperand = cloneConstantExprWithNewAddressSpace(
732 CExpr, NewAddrSpace, ValueWithNewAddrSpace, DL, TTI)) {
733 IsNew = true;
734 NewOperands.push_back(cast<Constant>(NewOperand));
735 continue;
736 }
737 // Otherwise, reuses the old operand.
738 NewOperands.push_back(Operand);
739 }
740
741 // If !IsNew, we will replace the Value with itself. However, replaced values
742 // are assumed to wrapped in an addrspacecast cast later so drop it now.
743 if (!IsNew)
744 return nullptr;
745
746 if (CE->getOpcode() == Instruction::GetElementPtr) {
747 // Needs to specify the source type while constructing a getelementptr
748 // constant expression.
749 return CE->getWithOperands(NewOperands, TargetType, /*OnlyIfReduced=*/false,
750 cast<GEPOperator>(CE)->getSourceElementType());
751 }
752
753 return CE->getWithOperands(NewOperands, TargetType);
754 }
755
756 // Returns a clone of the value `V`, with its operands replaced as specified in
757 // ValueWithNewAddrSpace. This function is called on every flat address
758 // expression whose address space needs to be modified, in postorder.
759 //
760 // See cloneInstructionWithNewAddressSpace for the meaning of UndefUsesToFix.
cloneValueWithNewAddressSpace(Value * V,unsigned NewAddrSpace,const ValueToValueMapTy & ValueWithNewAddrSpace,const PredicatedAddrSpaceMapTy & PredicatedAS,SmallVectorImpl<const Use * > * UndefUsesToFix) const761 Value *InferAddressSpacesImpl::cloneValueWithNewAddressSpace(
762 Value *V, unsigned NewAddrSpace,
763 const ValueToValueMapTy &ValueWithNewAddrSpace,
764 const PredicatedAddrSpaceMapTy &PredicatedAS,
765 SmallVectorImpl<const Use *> *UndefUsesToFix) const {
766 // All values in Postorder are flat address expressions.
767 assert(V->getType()->getPointerAddressSpace() == FlatAddrSpace &&
768 isAddressExpression(*V, *DL, TTI));
769
770 if (Instruction *I = dyn_cast<Instruction>(V)) {
771 Value *NewV = cloneInstructionWithNewAddressSpace(
772 I, NewAddrSpace, ValueWithNewAddrSpace, PredicatedAS, UndefUsesToFix);
773 if (Instruction *NewI = dyn_cast_or_null<Instruction>(NewV)) {
774 if (NewI->getParent() == nullptr) {
775 NewI->insertBefore(I);
776 NewI->takeName(I);
777 }
778 }
779 return NewV;
780 }
781
782 return cloneConstantExprWithNewAddressSpace(
783 cast<ConstantExpr>(V), NewAddrSpace, ValueWithNewAddrSpace, DL, TTI);
784 }
785
786 // Defines the join operation on the address space lattice (see the file header
787 // comments).
joinAddressSpaces(unsigned AS1,unsigned AS2) const788 unsigned InferAddressSpacesImpl::joinAddressSpaces(unsigned AS1,
789 unsigned AS2) const {
790 if (AS1 == FlatAddrSpace || AS2 == FlatAddrSpace)
791 return FlatAddrSpace;
792
793 if (AS1 == UninitializedAddressSpace)
794 return AS2;
795 if (AS2 == UninitializedAddressSpace)
796 return AS1;
797
798 // The join of two different specific address spaces is flat.
799 return (AS1 == AS2) ? AS1 : FlatAddrSpace;
800 }
801
run(Function & F)802 bool InferAddressSpacesImpl::run(Function &F) {
803 DL = &F.getParent()->getDataLayout();
804
805 if (AssumeDefaultIsFlatAddressSpace)
806 FlatAddrSpace = 0;
807
808 if (FlatAddrSpace == UninitializedAddressSpace) {
809 FlatAddrSpace = TTI->getFlatAddressSpace();
810 if (FlatAddrSpace == UninitializedAddressSpace)
811 return false;
812 }
813
814 // Collects all flat address expressions in postorder.
815 std::vector<WeakTrackingVH> Postorder = collectFlatAddressExpressions(F);
816
817 // Runs a data-flow analysis to refine the address spaces of every expression
818 // in Postorder.
819 ValueToAddrSpaceMapTy InferredAddrSpace;
820 PredicatedAddrSpaceMapTy PredicatedAS;
821 inferAddressSpaces(Postorder, InferredAddrSpace, PredicatedAS);
822
823 // Changes the address spaces of the flat address expressions who are inferred
824 // to point to a specific address space.
825 return rewriteWithNewAddressSpaces(Postorder, InferredAddrSpace, PredicatedAS,
826 &F);
827 }
828
829 // Constants need to be tracked through RAUW to handle cases with nested
830 // constant expressions, so wrap values in WeakTrackingVH.
inferAddressSpaces(ArrayRef<WeakTrackingVH> Postorder,ValueToAddrSpaceMapTy & InferredAddrSpace,PredicatedAddrSpaceMapTy & PredicatedAS) const831 void InferAddressSpacesImpl::inferAddressSpaces(
832 ArrayRef<WeakTrackingVH> Postorder,
833 ValueToAddrSpaceMapTy &InferredAddrSpace,
834 PredicatedAddrSpaceMapTy &PredicatedAS) const {
835 SetVector<Value *> Worklist(Postorder.begin(), Postorder.end());
836 // Initially, all expressions are in the uninitialized address space.
837 for (Value *V : Postorder)
838 InferredAddrSpace[V] = UninitializedAddressSpace;
839
840 while (!Worklist.empty()) {
841 Value *V = Worklist.pop_back_val();
842
843 // Try to update the address space of the stack top according to the
844 // address spaces of its operands.
845 if (!updateAddressSpace(*V, InferredAddrSpace, PredicatedAS))
846 continue;
847
848 for (Value *User : V->users()) {
849 // Skip if User is already in the worklist.
850 if (Worklist.count(User))
851 continue;
852
853 auto Pos = InferredAddrSpace.find(User);
854 // Our algorithm only updates the address spaces of flat address
855 // expressions, which are those in InferredAddrSpace.
856 if (Pos == InferredAddrSpace.end())
857 continue;
858
859 // Function updateAddressSpace moves the address space down a lattice
860 // path. Therefore, nothing to do if User is already inferred as flat (the
861 // bottom element in the lattice).
862 if (Pos->second == FlatAddrSpace)
863 continue;
864
865 Worklist.insert(User);
866 }
867 }
868 }
869
getPredicatedAddrSpace(const Value & V,Value * Opnd) const870 unsigned InferAddressSpacesImpl::getPredicatedAddrSpace(const Value &V,
871 Value *Opnd) const {
872 const Instruction *I = dyn_cast<Instruction>(&V);
873 if (!I)
874 return UninitializedAddressSpace;
875
876 Opnd = Opnd->stripInBoundsOffsets();
877 for (auto &AssumeVH : AC.assumptionsFor(Opnd)) {
878 if (!AssumeVH)
879 continue;
880 CallInst *CI = cast<CallInst>(AssumeVH);
881 if (!isValidAssumeForContext(CI, I, DT))
882 continue;
883
884 const Value *Ptr;
885 unsigned AS;
886 std::tie(Ptr, AS) = TTI->getPredicatedAddrSpace(CI->getArgOperand(0));
887 if (Ptr)
888 return AS;
889 }
890
891 return UninitializedAddressSpace;
892 }
893
updateAddressSpace(const Value & V,ValueToAddrSpaceMapTy & InferredAddrSpace,PredicatedAddrSpaceMapTy & PredicatedAS) const894 bool InferAddressSpacesImpl::updateAddressSpace(
895 const Value &V, ValueToAddrSpaceMapTy &InferredAddrSpace,
896 PredicatedAddrSpaceMapTy &PredicatedAS) const {
897 assert(InferredAddrSpace.count(&V));
898
899 LLVM_DEBUG(dbgs() << "Updating the address space of\n " << V << '\n');
900
901 // The new inferred address space equals the join of the address spaces
902 // of all its pointer operands.
903 unsigned NewAS = UninitializedAddressSpace;
904
905 const Operator &Op = cast<Operator>(V);
906 if (Op.getOpcode() == Instruction::Select) {
907 Value *Src0 = Op.getOperand(1);
908 Value *Src1 = Op.getOperand(2);
909
910 auto I = InferredAddrSpace.find(Src0);
911 unsigned Src0AS = (I != InferredAddrSpace.end()) ?
912 I->second : Src0->getType()->getPointerAddressSpace();
913
914 auto J = InferredAddrSpace.find(Src1);
915 unsigned Src1AS = (J != InferredAddrSpace.end()) ?
916 J->second : Src1->getType()->getPointerAddressSpace();
917
918 auto *C0 = dyn_cast<Constant>(Src0);
919 auto *C1 = dyn_cast<Constant>(Src1);
920
921 // If one of the inputs is a constant, we may be able to do a constant
922 // addrspacecast of it. Defer inferring the address space until the input
923 // address space is known.
924 if ((C1 && Src0AS == UninitializedAddressSpace) ||
925 (C0 && Src1AS == UninitializedAddressSpace))
926 return false;
927
928 if (C0 && isSafeToCastConstAddrSpace(C0, Src1AS))
929 NewAS = Src1AS;
930 else if (C1 && isSafeToCastConstAddrSpace(C1, Src0AS))
931 NewAS = Src0AS;
932 else
933 NewAS = joinAddressSpaces(Src0AS, Src1AS);
934 } else {
935 unsigned AS = TTI->getAssumedAddrSpace(&V);
936 if (AS != UninitializedAddressSpace) {
937 // Use the assumed address space directly.
938 NewAS = AS;
939 } else {
940 // Otherwise, infer the address space from its pointer operands.
941 for (Value *PtrOperand : getPointerOperands(V, *DL, TTI)) {
942 auto I = InferredAddrSpace.find(PtrOperand);
943 unsigned OperandAS;
944 if (I == InferredAddrSpace.end()) {
945 OperandAS = PtrOperand->getType()->getPointerAddressSpace();
946 if (OperandAS == FlatAddrSpace) {
947 // Check AC for assumption dominating V.
948 unsigned AS = getPredicatedAddrSpace(V, PtrOperand);
949 if (AS != UninitializedAddressSpace) {
950 LLVM_DEBUG(dbgs()
951 << " deduce operand AS from the predicate addrspace "
952 << AS << '\n');
953 OperandAS = AS;
954 // Record this use with the predicated AS.
955 PredicatedAS[std::make_pair(&V, PtrOperand)] = OperandAS;
956 }
957 }
958 } else
959 OperandAS = I->second;
960
961 // join(flat, *) = flat. So we can break if NewAS is already flat.
962 NewAS = joinAddressSpaces(NewAS, OperandAS);
963 if (NewAS == FlatAddrSpace)
964 break;
965 }
966 }
967 }
968
969 unsigned OldAS = InferredAddrSpace.lookup(&V);
970 assert(OldAS != FlatAddrSpace);
971 if (OldAS == NewAS)
972 return false;
973
974 // If any updates are made, grabs its users to the worklist because
975 // their address spaces can also be possibly updated.
976 LLVM_DEBUG(dbgs() << " to " << NewAS << '\n');
977 InferredAddrSpace[&V] = NewAS;
978 return true;
979 }
980
981 /// \p returns true if \p U is the pointer operand of a memory instruction with
982 /// a single pointer operand that can have its address space changed by simply
983 /// mutating the use to a new value. If the memory instruction is volatile,
984 /// return true only if the target allows the memory instruction to be volatile
985 /// in the new address space.
isSimplePointerUseValidToReplace(const TargetTransformInfo & TTI,Use & U,unsigned AddrSpace)986 static bool isSimplePointerUseValidToReplace(const TargetTransformInfo &TTI,
987 Use &U, unsigned AddrSpace) {
988 User *Inst = U.getUser();
989 unsigned OpNo = U.getOperandNo();
990 bool VolatileIsAllowed = false;
991 if (auto *I = dyn_cast<Instruction>(Inst))
992 VolatileIsAllowed = TTI.hasVolatileVariant(I, AddrSpace);
993
994 if (auto *LI = dyn_cast<LoadInst>(Inst))
995 return OpNo == LoadInst::getPointerOperandIndex() &&
996 (VolatileIsAllowed || !LI->isVolatile());
997
998 if (auto *SI = dyn_cast<StoreInst>(Inst))
999 return OpNo == StoreInst::getPointerOperandIndex() &&
1000 (VolatileIsAllowed || !SI->isVolatile());
1001
1002 if (auto *RMW = dyn_cast<AtomicRMWInst>(Inst))
1003 return OpNo == AtomicRMWInst::getPointerOperandIndex() &&
1004 (VolatileIsAllowed || !RMW->isVolatile());
1005
1006 if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst))
1007 return OpNo == AtomicCmpXchgInst::getPointerOperandIndex() &&
1008 (VolatileIsAllowed || !CmpX->isVolatile());
1009
1010 return false;
1011 }
1012
1013 /// Update memory intrinsic uses that require more complex processing than
1014 /// simple memory instructions. These require re-mangling and may have multiple
1015 /// pointer operands.
handleMemIntrinsicPtrUse(MemIntrinsic * MI,Value * OldV,Value * NewV)1016 static bool handleMemIntrinsicPtrUse(MemIntrinsic *MI, Value *OldV,
1017 Value *NewV) {
1018 IRBuilder<> B(MI);
1019 MDNode *TBAA = MI->getMetadata(LLVMContext::MD_tbaa);
1020 MDNode *ScopeMD = MI->getMetadata(LLVMContext::MD_alias_scope);
1021 MDNode *NoAliasMD = MI->getMetadata(LLVMContext::MD_noalias);
1022
1023 if (auto *MSI = dyn_cast<MemSetInst>(MI)) {
1024 B.CreateMemSet(NewV, MSI->getValue(), MSI->getLength(), MSI->getDestAlign(),
1025 false, // isVolatile
1026 TBAA, ScopeMD, NoAliasMD);
1027 } else if (auto *MTI = dyn_cast<MemTransferInst>(MI)) {
1028 Value *Src = MTI->getRawSource();
1029 Value *Dest = MTI->getRawDest();
1030
1031 // Be careful in case this is a self-to-self copy.
1032 if (Src == OldV)
1033 Src = NewV;
1034
1035 if (Dest == OldV)
1036 Dest = NewV;
1037
1038 if (isa<MemCpyInlineInst>(MTI)) {
1039 MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct);
1040 B.CreateMemCpyInline(Dest, MTI->getDestAlign(), Src,
1041 MTI->getSourceAlign(), MTI->getLength(),
1042 false, // isVolatile
1043 TBAA, TBAAStruct, ScopeMD, NoAliasMD);
1044 } else if (isa<MemCpyInst>(MTI)) {
1045 MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct);
1046 B.CreateMemCpy(Dest, MTI->getDestAlign(), Src, MTI->getSourceAlign(),
1047 MTI->getLength(),
1048 false, // isVolatile
1049 TBAA, TBAAStruct, ScopeMD, NoAliasMD);
1050 } else {
1051 assert(isa<MemMoveInst>(MTI));
1052 B.CreateMemMove(Dest, MTI->getDestAlign(), Src, MTI->getSourceAlign(),
1053 MTI->getLength(),
1054 false, // isVolatile
1055 TBAA, ScopeMD, NoAliasMD);
1056 }
1057 } else
1058 llvm_unreachable("unhandled MemIntrinsic");
1059
1060 MI->eraseFromParent();
1061 return true;
1062 }
1063
1064 // \p returns true if it is OK to change the address space of constant \p C with
1065 // a ConstantExpr addrspacecast.
isSafeToCastConstAddrSpace(Constant * C,unsigned NewAS) const1066 bool InferAddressSpacesImpl::isSafeToCastConstAddrSpace(Constant *C,
1067 unsigned NewAS) const {
1068 assert(NewAS != UninitializedAddressSpace);
1069
1070 unsigned SrcAS = C->getType()->getPointerAddressSpace();
1071 if (SrcAS == NewAS || isa<UndefValue>(C))
1072 return true;
1073
1074 // Prevent illegal casts between different non-flat address spaces.
1075 if (SrcAS != FlatAddrSpace && NewAS != FlatAddrSpace)
1076 return false;
1077
1078 if (isa<ConstantPointerNull>(C))
1079 return true;
1080
1081 if (auto *Op = dyn_cast<Operator>(C)) {
1082 // If we already have a constant addrspacecast, it should be safe to cast it
1083 // off.
1084 if (Op->getOpcode() == Instruction::AddrSpaceCast)
1085 return isSafeToCastConstAddrSpace(cast<Constant>(Op->getOperand(0)), NewAS);
1086
1087 if (Op->getOpcode() == Instruction::IntToPtr &&
1088 Op->getType()->getPointerAddressSpace() == FlatAddrSpace)
1089 return true;
1090 }
1091
1092 return false;
1093 }
1094
skipToNextUser(Value::use_iterator I,Value::use_iterator End)1095 static Value::use_iterator skipToNextUser(Value::use_iterator I,
1096 Value::use_iterator End) {
1097 User *CurUser = I->getUser();
1098 ++I;
1099
1100 while (I != End && I->getUser() == CurUser)
1101 ++I;
1102
1103 return I;
1104 }
1105
rewriteWithNewAddressSpaces(ArrayRef<WeakTrackingVH> Postorder,const ValueToAddrSpaceMapTy & InferredAddrSpace,const PredicatedAddrSpaceMapTy & PredicatedAS,Function * F) const1106 bool InferAddressSpacesImpl::rewriteWithNewAddressSpaces(
1107 ArrayRef<WeakTrackingVH> Postorder,
1108 const ValueToAddrSpaceMapTy &InferredAddrSpace,
1109 const PredicatedAddrSpaceMapTy &PredicatedAS, Function *F) const {
1110 // For each address expression to be modified, creates a clone of it with its
1111 // pointer operands converted to the new address space. Since the pointer
1112 // operands are converted, the clone is naturally in the new address space by
1113 // construction.
1114 ValueToValueMapTy ValueWithNewAddrSpace;
1115 SmallVector<const Use *, 32> UndefUsesToFix;
1116 for (Value* V : Postorder) {
1117 unsigned NewAddrSpace = InferredAddrSpace.lookup(V);
1118
1119 // In some degenerate cases (e.g. invalid IR in unreachable code), we may
1120 // not even infer the value to have its original address space.
1121 if (NewAddrSpace == UninitializedAddressSpace)
1122 continue;
1123
1124 if (V->getType()->getPointerAddressSpace() != NewAddrSpace) {
1125 Value *New =
1126 cloneValueWithNewAddressSpace(V, NewAddrSpace, ValueWithNewAddrSpace,
1127 PredicatedAS, &UndefUsesToFix);
1128 if (New)
1129 ValueWithNewAddrSpace[V] = New;
1130 }
1131 }
1132
1133 if (ValueWithNewAddrSpace.empty())
1134 return false;
1135
1136 // Fixes all the undef uses generated by cloneInstructionWithNewAddressSpace.
1137 for (const Use *UndefUse : UndefUsesToFix) {
1138 User *V = UndefUse->getUser();
1139 User *NewV = cast_or_null<User>(ValueWithNewAddrSpace.lookup(V));
1140 if (!NewV)
1141 continue;
1142
1143 unsigned OperandNo = UndefUse->getOperandNo();
1144 assert(isa<UndefValue>(NewV->getOperand(OperandNo)));
1145 NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(UndefUse->get()));
1146 }
1147
1148 SmallVector<Instruction *, 16> DeadInstructions;
1149
1150 // Replaces the uses of the old address expressions with the new ones.
1151 for (const WeakTrackingVH &WVH : Postorder) {
1152 assert(WVH && "value was unexpectedly deleted");
1153 Value *V = WVH;
1154 Value *NewV = ValueWithNewAddrSpace.lookup(V);
1155 if (NewV == nullptr)
1156 continue;
1157
1158 LLVM_DEBUG(dbgs() << "Replacing the uses of " << *V << "\n with\n "
1159 << *NewV << '\n');
1160
1161 if (Constant *C = dyn_cast<Constant>(V)) {
1162 Constant *Replace = ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV),
1163 C->getType());
1164 if (C != Replace) {
1165 LLVM_DEBUG(dbgs() << "Inserting replacement const cast: " << Replace
1166 << ": " << *Replace << '\n');
1167 C->replaceAllUsesWith(Replace);
1168 V = Replace;
1169 }
1170 }
1171
1172 Value::use_iterator I, E, Next;
1173 for (I = V->use_begin(), E = V->use_end(); I != E; ) {
1174 Use &U = *I;
1175
1176 // Some users may see the same pointer operand in multiple operands. Skip
1177 // to the next instruction.
1178 I = skipToNextUser(I, E);
1179
1180 if (isSimplePointerUseValidToReplace(
1181 *TTI, U, V->getType()->getPointerAddressSpace())) {
1182 // If V is used as the pointer operand of a compatible memory operation,
1183 // sets the pointer operand to NewV. This replacement does not change
1184 // the element type, so the resultant load/store is still valid.
1185 U.set(NewV);
1186 continue;
1187 }
1188
1189 User *CurUser = U.getUser();
1190 // Skip if the current user is the new value itself.
1191 if (CurUser == NewV)
1192 continue;
1193 // Handle more complex cases like intrinsic that need to be remangled.
1194 if (auto *MI = dyn_cast<MemIntrinsic>(CurUser)) {
1195 if (!MI->isVolatile() && handleMemIntrinsicPtrUse(MI, V, NewV))
1196 continue;
1197 }
1198
1199 if (auto *II = dyn_cast<IntrinsicInst>(CurUser)) {
1200 if (rewriteIntrinsicOperands(II, V, NewV))
1201 continue;
1202 }
1203
1204 if (isa<Instruction>(CurUser)) {
1205 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CurUser)) {
1206 // If we can infer that both pointers are in the same addrspace,
1207 // transform e.g.
1208 // %cmp = icmp eq float* %p, %q
1209 // into
1210 // %cmp = icmp eq float addrspace(3)* %new_p, %new_q
1211
1212 unsigned NewAS = NewV->getType()->getPointerAddressSpace();
1213 int SrcIdx = U.getOperandNo();
1214 int OtherIdx = (SrcIdx == 0) ? 1 : 0;
1215 Value *OtherSrc = Cmp->getOperand(OtherIdx);
1216
1217 if (Value *OtherNewV = ValueWithNewAddrSpace.lookup(OtherSrc)) {
1218 if (OtherNewV->getType()->getPointerAddressSpace() == NewAS) {
1219 Cmp->setOperand(OtherIdx, OtherNewV);
1220 Cmp->setOperand(SrcIdx, NewV);
1221 continue;
1222 }
1223 }
1224
1225 // Even if the type mismatches, we can cast the constant.
1226 if (auto *KOtherSrc = dyn_cast<Constant>(OtherSrc)) {
1227 if (isSafeToCastConstAddrSpace(KOtherSrc, NewAS)) {
1228 Cmp->setOperand(SrcIdx, NewV);
1229 Cmp->setOperand(OtherIdx,
1230 ConstantExpr::getAddrSpaceCast(KOtherSrc, NewV->getType()));
1231 continue;
1232 }
1233 }
1234 }
1235
1236 if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(CurUser)) {
1237 unsigned NewAS = NewV->getType()->getPointerAddressSpace();
1238 if (ASC->getDestAddressSpace() == NewAS) {
1239 if (!cast<PointerType>(ASC->getType())
1240 ->hasSameElementTypeAs(
1241 cast<PointerType>(NewV->getType()))) {
1242 BasicBlock::iterator InsertPos;
1243 if (Instruction *NewVInst = dyn_cast<Instruction>(NewV))
1244 InsertPos = std::next(NewVInst->getIterator());
1245 else if (Instruction *VInst = dyn_cast<Instruction>(V))
1246 InsertPos = std::next(VInst->getIterator());
1247 else
1248 InsertPos = ASC->getIterator();
1249
1250 NewV = CastInst::Create(Instruction::BitCast, NewV,
1251 ASC->getType(), "", &*InsertPos);
1252 }
1253 ASC->replaceAllUsesWith(NewV);
1254 DeadInstructions.push_back(ASC);
1255 continue;
1256 }
1257 }
1258
1259 // Otherwise, replaces the use with flat(NewV).
1260 if (Instruction *VInst = dyn_cast<Instruction>(V)) {
1261 // Don't create a copy of the original addrspacecast.
1262 if (U == V && isa<AddrSpaceCastInst>(V))
1263 continue;
1264
1265 // Insert the addrspacecast after NewV.
1266 BasicBlock::iterator InsertPos;
1267 if (Instruction *NewVInst = dyn_cast<Instruction>(NewV))
1268 InsertPos = std::next(NewVInst->getIterator());
1269 else
1270 InsertPos = std::next(VInst->getIterator());
1271
1272 while (isa<PHINode>(InsertPos))
1273 ++InsertPos;
1274 U.set(new AddrSpaceCastInst(NewV, V->getType(), "", &*InsertPos));
1275 } else {
1276 U.set(ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV),
1277 V->getType()));
1278 }
1279 }
1280 }
1281
1282 if (V->use_empty()) {
1283 if (Instruction *I = dyn_cast<Instruction>(V))
1284 DeadInstructions.push_back(I);
1285 }
1286 }
1287
1288 for (Instruction *I : DeadInstructions)
1289 RecursivelyDeleteTriviallyDeadInstructions(I);
1290
1291 return true;
1292 }
1293
runOnFunction(Function & F)1294 bool InferAddressSpaces::runOnFunction(Function &F) {
1295 if (skipFunction(F))
1296 return false;
1297
1298 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
1299 DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
1300 return InferAddressSpacesImpl(
1301 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), DT,
1302 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F),
1303 FlatAddrSpace)
1304 .run(F);
1305 }
1306
createInferAddressSpacesPass(unsigned AddressSpace)1307 FunctionPass *llvm::createInferAddressSpacesPass(unsigned AddressSpace) {
1308 return new InferAddressSpaces(AddressSpace);
1309 }
1310
InferAddressSpacesPass()1311 InferAddressSpacesPass::InferAddressSpacesPass()
1312 : FlatAddrSpace(UninitializedAddressSpace) {}
InferAddressSpacesPass(unsigned AddressSpace)1313 InferAddressSpacesPass::InferAddressSpacesPass(unsigned AddressSpace)
1314 : FlatAddrSpace(AddressSpace) {}
1315
run(Function & F,FunctionAnalysisManager & AM)1316 PreservedAnalyses InferAddressSpacesPass::run(Function &F,
1317 FunctionAnalysisManager &AM) {
1318 bool Changed =
1319 InferAddressSpacesImpl(AM.getResult<AssumptionAnalysis>(F),
1320 AM.getCachedResult<DominatorTreeAnalysis>(F),
1321 &AM.getResult<TargetIRAnalysis>(F), FlatAddrSpace)
1322 .run(F);
1323 if (Changed) {
1324 PreservedAnalyses PA;
1325 PA.preserveSet<CFGAnalyses>();
1326 PA.preserve<DominatorTreeAnalysis>();
1327 return PA;
1328 }
1329 return PreservedAnalyses::all();
1330 }
1331