1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2014 by Chunwei Chen. All rights reserved.
23 * Copyright (c) 2019 by Delphix. All rights reserved.
24 */
25
26 /*
27 * See abd.c for a general overview of the arc buffered data (ABD).
28 *
29 * Linear buffers act exactly like normal buffers and are always mapped into the
30 * kernel's virtual memory space, while scattered ABD data chunks are allocated
31 * as physical pages and then mapped in only while they are actually being
32 * accessed through one of the abd_* library functions. Using scattered ABDs
33 * provides several benefits:
34 *
35 * (1) They avoid use of kmem_*, preventing performance problems where running
36 * kmem_reap on very large memory systems never finishes and causes
37 * constant TLB shootdowns.
38 *
39 * (2) Fragmentation is less of an issue since when we are at the limit of
40 * allocatable space, we won't have to search around for a long free
41 * hole in the VA space for large ARC allocations. Each chunk is mapped in
42 * individually, so even if we are using HIGHMEM (see next point) we
43 * wouldn't need to worry about finding a contiguous address range.
44 *
45 * (3) If we are not using HIGHMEM, then all physical memory is always
46 * mapped into the kernel's address space, so we also avoid the map /
47 * unmap costs on each ABD access.
48 *
49 * If we are not using HIGHMEM, scattered buffers which have only one chunk
50 * can be treated as linear buffers, because they are contiguous in the
51 * kernel's virtual address space. See abd_alloc_chunks() for details.
52 */
53
54 #include <sys/abd_impl.h>
55 #include <sys/param.h>
56 #include <sys/zio.h>
57 #include <sys/arc.h>
58 #include <sys/zfs_context.h>
59 #include <sys/zfs_znode.h>
60 #ifdef _KERNEL
61 #include <linux/kmap_compat.h>
62 #include <linux/scatterlist.h>
63 #else
64 #define MAX_ORDER 1
65 #endif
66
67 typedef struct abd_stats {
68 kstat_named_t abdstat_struct_size;
69 kstat_named_t abdstat_linear_cnt;
70 kstat_named_t abdstat_linear_data_size;
71 kstat_named_t abdstat_scatter_cnt;
72 kstat_named_t abdstat_scatter_data_size;
73 kstat_named_t abdstat_scatter_chunk_waste;
74 kstat_named_t abdstat_scatter_orders[MAX_ORDER];
75 kstat_named_t abdstat_scatter_page_multi_chunk;
76 kstat_named_t abdstat_scatter_page_multi_zone;
77 kstat_named_t abdstat_scatter_page_alloc_retry;
78 kstat_named_t abdstat_scatter_sg_table_retry;
79 } abd_stats_t;
80
81 static abd_stats_t abd_stats = {
82 /* Amount of memory occupied by all of the abd_t struct allocations */
83 { "struct_size", KSTAT_DATA_UINT64 },
84 /*
85 * The number of linear ABDs which are currently allocated, excluding
86 * ABDs which don't own their data (for instance the ones which were
87 * allocated through abd_get_offset() and abd_get_from_buf()). If an
88 * ABD takes ownership of its buf then it will become tracked.
89 */
90 { "linear_cnt", KSTAT_DATA_UINT64 },
91 /* Amount of data stored in all linear ABDs tracked by linear_cnt */
92 { "linear_data_size", KSTAT_DATA_UINT64 },
93 /*
94 * The number of scatter ABDs which are currently allocated, excluding
95 * ABDs which don't own their data (for instance the ones which were
96 * allocated through abd_get_offset()).
97 */
98 { "scatter_cnt", KSTAT_DATA_UINT64 },
99 /* Amount of data stored in all scatter ABDs tracked by scatter_cnt */
100 { "scatter_data_size", KSTAT_DATA_UINT64 },
101 /*
102 * The amount of space wasted at the end of the last chunk across all
103 * scatter ABDs tracked by scatter_cnt.
104 */
105 { "scatter_chunk_waste", KSTAT_DATA_UINT64 },
106 /*
107 * The number of compound allocations of a given order. These
108 * allocations are spread over all currently allocated ABDs, and
109 * act as a measure of memory fragmentation.
110 */
111 { { "scatter_order_N", KSTAT_DATA_UINT64 } },
112 /*
113 * The number of scatter ABDs which contain multiple chunks.
114 * ABDs are preferentially allocated from the minimum number of
115 * contiguous multi-page chunks, a single chunk is optimal.
116 */
117 { "scatter_page_multi_chunk", KSTAT_DATA_UINT64 },
118 /*
119 * The number of scatter ABDs which are split across memory zones.
120 * ABDs are preferentially allocated using pages from a single zone.
121 */
122 { "scatter_page_multi_zone", KSTAT_DATA_UINT64 },
123 /*
124 * The total number of retries encountered when attempting to
125 * allocate the pages to populate the scatter ABD.
126 */
127 { "scatter_page_alloc_retry", KSTAT_DATA_UINT64 },
128 /*
129 * The total number of retries encountered when attempting to
130 * allocate the sg table for an ABD.
131 */
132 { "scatter_sg_table_retry", KSTAT_DATA_UINT64 },
133 };
134
135 #define abd_for_each_sg(abd, sg, n, i) \
136 for_each_sg(ABD_SCATTER(abd).abd_sgl, sg, n, i)
137
138 unsigned zfs_abd_scatter_max_order = MAX_ORDER - 1;
139
140 /*
141 * zfs_abd_scatter_min_size is the minimum allocation size to use scatter
142 * ABD's. Smaller allocations will use linear ABD's which uses
143 * zio_[data_]buf_alloc().
144 *
145 * Scatter ABD's use at least one page each, so sub-page allocations waste
146 * some space when allocated as scatter (e.g. 2KB scatter allocation wastes
147 * half of each page). Using linear ABD's for small allocations means that
148 * they will be put on slabs which contain many allocations. This can
149 * improve memory efficiency, but it also makes it much harder for ARC
150 * evictions to actually free pages, because all the buffers on one slab need
151 * to be freed in order for the slab (and underlying pages) to be freed.
152 * Typically, 512B and 1KB kmem caches have 16 buffers per slab, so it's
153 * possible for them to actually waste more memory than scatter (one page per
154 * buf = wasting 3/4 or 7/8th; one buf per slab = wasting 15/16th).
155 *
156 * Spill blocks are typically 512B and are heavily used on systems running
157 * selinux with the default dnode size and the `xattr=sa` property set.
158 *
159 * By default we use linear allocations for 512B and 1KB, and scatter
160 * allocations for larger (1.5KB and up).
161 */
162 int zfs_abd_scatter_min_size = 512 * 3;
163
164 /*
165 * We use a scattered SPA_MAXBLOCKSIZE sized ABD whose pages are
166 * just a single zero'd page. This allows us to conserve memory by
167 * only using a single zero page for the scatterlist.
168 */
169 abd_t *abd_zero_scatter = NULL;
170
171 struct page;
172 /*
173 * abd_zero_page we will be an allocated zero'd PAGESIZE buffer, which is
174 * assigned to set each of the pages of abd_zero_scatter.
175 */
176 static struct page *abd_zero_page = NULL;
177
178 static kmem_cache_t *abd_cache = NULL;
179 static kstat_t *abd_ksp;
180
181 static uint_t
abd_chunkcnt_for_bytes(size_t size)182 abd_chunkcnt_for_bytes(size_t size)
183 {
184 return (P2ROUNDUP(size, PAGESIZE) / PAGESIZE);
185 }
186
187 abd_t *
abd_alloc_struct(size_t size)188 abd_alloc_struct(size_t size)
189 {
190 /*
191 * In Linux we do not use the size passed in during ABD
192 * allocation, so we just ignore it.
193 */
194 abd_t *abd = kmem_cache_alloc(abd_cache, KM_PUSHPAGE);
195 ASSERT3P(abd, !=, NULL);
196 list_link_init(&abd->abd_gang_link);
197 mutex_init(&abd->abd_mtx, NULL, MUTEX_DEFAULT, NULL);
198 ABDSTAT_INCR(abdstat_struct_size, sizeof (abd_t));
199
200 return (abd);
201 }
202
203 void
abd_free_struct(abd_t * abd)204 abd_free_struct(abd_t *abd)
205 {
206 mutex_destroy(&abd->abd_mtx);
207 ASSERT(!list_link_active(&abd->abd_gang_link));
208 kmem_cache_free(abd_cache, abd);
209 ABDSTAT_INCR(abdstat_struct_size, -(int)sizeof (abd_t));
210 }
211
212 #ifdef _KERNEL
213 /*
214 * Mark zfs data pages so they can be excluded from kernel crash dumps
215 */
216 #ifdef _LP64
217 #define ABD_FILE_CACHE_PAGE 0x2F5ABDF11ECAC4E
218
219 static inline void
abd_mark_zfs_page(struct page * page)220 abd_mark_zfs_page(struct page *page)
221 {
222 get_page(page);
223 SetPagePrivate(page);
224 set_page_private(page, ABD_FILE_CACHE_PAGE);
225 }
226
227 static inline void
abd_unmark_zfs_page(struct page * page)228 abd_unmark_zfs_page(struct page *page)
229 {
230 set_page_private(page, 0UL);
231 ClearPagePrivate(page);
232 put_page(page);
233 }
234 #else
235 #define abd_mark_zfs_page(page)
236 #define abd_unmark_zfs_page(page)
237 #endif /* _LP64 */
238
239 #ifndef CONFIG_HIGHMEM
240
241 #ifndef __GFP_RECLAIM
242 #define __GFP_RECLAIM __GFP_WAIT
243 #endif
244
245 /*
246 * The goal is to minimize fragmentation by preferentially populating ABDs
247 * with higher order compound pages from a single zone. Allocation size is
248 * progressively decreased until it can be satisfied without performing
249 * reclaim or compaction. When necessary this function will degenerate to
250 * allocating individual pages and allowing reclaim to satisfy allocations.
251 */
252 void
abd_alloc_chunks(abd_t * abd,size_t size)253 abd_alloc_chunks(abd_t *abd, size_t size)
254 {
255 struct list_head pages;
256 struct sg_table table;
257 struct scatterlist *sg;
258 struct page *page, *tmp_page = NULL;
259 gfp_t gfp = __GFP_NOWARN | GFP_NOIO;
260 gfp_t gfp_comp = (gfp | __GFP_NORETRY | __GFP_COMP) & ~__GFP_RECLAIM;
261 int max_order = MIN(zfs_abd_scatter_max_order, MAX_ORDER - 1);
262 int nr_pages = abd_chunkcnt_for_bytes(size);
263 int chunks = 0, zones = 0;
264 size_t remaining_size;
265 int nid = NUMA_NO_NODE;
266 int alloc_pages = 0;
267
268 INIT_LIST_HEAD(&pages);
269
270 while (alloc_pages < nr_pages) {
271 unsigned chunk_pages;
272 int order;
273
274 order = MIN(highbit64(nr_pages - alloc_pages) - 1, max_order);
275 chunk_pages = (1U << order);
276
277 page = alloc_pages_node(nid, order ? gfp_comp : gfp, order);
278 if (page == NULL) {
279 if (order == 0) {
280 ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry);
281 schedule_timeout_interruptible(1);
282 } else {
283 max_order = MAX(0, order - 1);
284 }
285 continue;
286 }
287
288 list_add_tail(&page->lru, &pages);
289
290 if ((nid != NUMA_NO_NODE) && (page_to_nid(page) != nid))
291 zones++;
292
293 nid = page_to_nid(page);
294 ABDSTAT_BUMP(abdstat_scatter_orders[order]);
295 chunks++;
296 alloc_pages += chunk_pages;
297 }
298
299 ASSERT3S(alloc_pages, ==, nr_pages);
300
301 while (sg_alloc_table(&table, chunks, gfp)) {
302 ABDSTAT_BUMP(abdstat_scatter_sg_table_retry);
303 schedule_timeout_interruptible(1);
304 }
305
306 sg = table.sgl;
307 remaining_size = size;
308 list_for_each_entry_safe(page, tmp_page, &pages, lru) {
309 size_t sg_size = MIN(PAGESIZE << compound_order(page),
310 remaining_size);
311 sg_set_page(sg, page, sg_size, 0);
312 abd_mark_zfs_page(page);
313 remaining_size -= sg_size;
314
315 sg = sg_next(sg);
316 list_del(&page->lru);
317 }
318
319 /*
320 * These conditions ensure that a possible transformation to a linear
321 * ABD would be valid.
322 */
323 ASSERT(!PageHighMem(sg_page(table.sgl)));
324 ASSERT0(ABD_SCATTER(abd).abd_offset);
325
326 if (table.nents == 1) {
327 /*
328 * Since there is only one entry, this ABD can be represented
329 * as a linear buffer. All single-page (4K) ABD's can be
330 * represented this way. Some multi-page ABD's can also be
331 * represented this way, if we were able to allocate a single
332 * "chunk" (higher-order "page" which represents a power-of-2
333 * series of physically-contiguous pages). This is often the
334 * case for 2-page (8K) ABD's.
335 *
336 * Representing a single-entry scatter ABD as a linear ABD
337 * has the performance advantage of avoiding the copy (and
338 * allocation) in abd_borrow_buf_copy / abd_return_buf_copy.
339 * A performance increase of around 5% has been observed for
340 * ARC-cached reads (of small blocks which can take advantage
341 * of this).
342 *
343 * Note that this optimization is only possible because the
344 * pages are always mapped into the kernel's address space.
345 * This is not the case for highmem pages, so the
346 * optimization can not be made there.
347 */
348 abd->abd_flags |= ABD_FLAG_LINEAR;
349 abd->abd_flags |= ABD_FLAG_LINEAR_PAGE;
350 abd->abd_u.abd_linear.abd_sgl = table.sgl;
351 ABD_LINEAR_BUF(abd) = page_address(sg_page(table.sgl));
352 } else if (table.nents > 1) {
353 ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk);
354 abd->abd_flags |= ABD_FLAG_MULTI_CHUNK;
355
356 if (zones) {
357 ABDSTAT_BUMP(abdstat_scatter_page_multi_zone);
358 abd->abd_flags |= ABD_FLAG_MULTI_ZONE;
359 }
360
361 ABD_SCATTER(abd).abd_sgl = table.sgl;
362 ABD_SCATTER(abd).abd_nents = table.nents;
363 }
364 }
365 #else
366
367 /*
368 * Allocate N individual pages to construct a scatter ABD. This function
369 * makes no attempt to request contiguous pages and requires the minimal
370 * number of kernel interfaces. It's designed for maximum compatibility.
371 */
372 void
abd_alloc_chunks(abd_t * abd,size_t size)373 abd_alloc_chunks(abd_t *abd, size_t size)
374 {
375 struct scatterlist *sg = NULL;
376 struct sg_table table;
377 struct page *page;
378 gfp_t gfp = __GFP_NOWARN | GFP_NOIO;
379 int nr_pages = abd_chunkcnt_for_bytes(size);
380 int i = 0;
381
382 while (sg_alloc_table(&table, nr_pages, gfp)) {
383 ABDSTAT_BUMP(abdstat_scatter_sg_table_retry);
384 schedule_timeout_interruptible(1);
385 }
386
387 ASSERT3U(table.nents, ==, nr_pages);
388 ABD_SCATTER(abd).abd_sgl = table.sgl;
389 ABD_SCATTER(abd).abd_nents = nr_pages;
390
391 abd_for_each_sg(abd, sg, nr_pages, i) {
392 while ((page = __page_cache_alloc(gfp)) == NULL) {
393 ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry);
394 schedule_timeout_interruptible(1);
395 }
396
397 ABDSTAT_BUMP(abdstat_scatter_orders[0]);
398 sg_set_page(sg, page, PAGESIZE, 0);
399 abd_mark_zfs_page(page);
400 }
401
402 if (nr_pages > 1) {
403 ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk);
404 abd->abd_flags |= ABD_FLAG_MULTI_CHUNK;
405 }
406 }
407 #endif /* !CONFIG_HIGHMEM */
408
409 /*
410 * This must be called if any of the sg_table allocation functions
411 * are called.
412 */
413 static void
abd_free_sg_table(abd_t * abd)414 abd_free_sg_table(abd_t *abd)
415 {
416 struct sg_table table;
417
418 table.sgl = ABD_SCATTER(abd).abd_sgl;
419 table.nents = table.orig_nents = ABD_SCATTER(abd).abd_nents;
420 sg_free_table(&table);
421 }
422
423 void
abd_free_chunks(abd_t * abd)424 abd_free_chunks(abd_t *abd)
425 {
426 struct scatterlist *sg = NULL;
427 struct page *page;
428 int nr_pages = ABD_SCATTER(abd).abd_nents;
429 int order, i = 0;
430
431 if (abd->abd_flags & ABD_FLAG_MULTI_ZONE)
432 ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_zone);
433
434 if (abd->abd_flags & ABD_FLAG_MULTI_CHUNK)
435 ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_chunk);
436
437 abd_for_each_sg(abd, sg, nr_pages, i) {
438 page = sg_page(sg);
439 abd_unmark_zfs_page(page);
440 order = compound_order(page);
441 __free_pages(page, order);
442 ASSERT3U(sg->length, <=, PAGE_SIZE << order);
443 ABDSTAT_BUMPDOWN(abdstat_scatter_orders[order]);
444 }
445 abd_free_sg_table(abd);
446 }
447
448 /*
449 * Allocate scatter ABD of size SPA_MAXBLOCKSIZE, where each page in
450 * the scatterlist will be set to the zero'd out buffer abd_zero_page.
451 */
452 static void
abd_alloc_zero_scatter(void)453 abd_alloc_zero_scatter(void)
454 {
455 struct scatterlist *sg = NULL;
456 struct sg_table table;
457 gfp_t gfp = __GFP_NOWARN | GFP_NOIO;
458 gfp_t gfp_zero_page = gfp | __GFP_ZERO;
459 int nr_pages = abd_chunkcnt_for_bytes(SPA_MAXBLOCKSIZE);
460 int i = 0;
461
462 while ((abd_zero_page = __page_cache_alloc(gfp_zero_page)) == NULL) {
463 ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry);
464 schedule_timeout_interruptible(1);
465 }
466 abd_mark_zfs_page(abd_zero_page);
467
468 while (sg_alloc_table(&table, nr_pages, gfp)) {
469 ABDSTAT_BUMP(abdstat_scatter_sg_table_retry);
470 schedule_timeout_interruptible(1);
471 }
472 ASSERT3U(table.nents, ==, nr_pages);
473
474 abd_zero_scatter = abd_alloc_struct(SPA_MAXBLOCKSIZE);
475 abd_zero_scatter->abd_flags = ABD_FLAG_OWNER;
476 ABD_SCATTER(abd_zero_scatter).abd_offset = 0;
477 ABD_SCATTER(abd_zero_scatter).abd_sgl = table.sgl;
478 ABD_SCATTER(abd_zero_scatter).abd_nents = nr_pages;
479 abd_zero_scatter->abd_size = SPA_MAXBLOCKSIZE;
480 abd_zero_scatter->abd_parent = NULL;
481 abd_zero_scatter->abd_flags |= ABD_FLAG_MULTI_CHUNK | ABD_FLAG_ZEROS;
482 zfs_refcount_create(&abd_zero_scatter->abd_children);
483
484 abd_for_each_sg(abd_zero_scatter, sg, nr_pages, i) {
485 sg_set_page(sg, abd_zero_page, PAGESIZE, 0);
486 }
487
488 ABDSTAT_BUMP(abdstat_scatter_cnt);
489 ABDSTAT_INCR(abdstat_scatter_data_size, PAGESIZE);
490 ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk);
491 }
492
493 #else /* _KERNEL */
494
495 #ifndef PAGE_SHIFT
496 #define PAGE_SHIFT (highbit64(PAGESIZE)-1)
497 #endif
498
499 #define zfs_kmap_atomic(chunk, km) ((void *)chunk)
500 #define zfs_kunmap_atomic(addr, km) do { (void)(addr); } while (0)
501 #define local_irq_save(flags) do { (void)(flags); } while (0)
502 #define local_irq_restore(flags) do { (void)(flags); } while (0)
503 #define nth_page(pg, i) \
504 ((struct page *)((void *)(pg) + (i) * PAGESIZE))
505
506 struct scatterlist {
507 struct page *page;
508 int length;
509 int end;
510 };
511
512 static void
sg_init_table(struct scatterlist * sg,int nr)513 sg_init_table(struct scatterlist *sg, int nr)
514 {
515 memset(sg, 0, nr * sizeof (struct scatterlist));
516 sg[nr - 1].end = 1;
517 }
518
519 /*
520 * This must be called if any of the sg_table allocation functions
521 * are called.
522 */
523 static void
abd_free_sg_table(abd_t * abd)524 abd_free_sg_table(abd_t *abd)
525 {
526 int nents = ABD_SCATTER(abd).abd_nents;
527 vmem_free(ABD_SCATTER(abd).abd_sgl,
528 nents * sizeof (struct scatterlist));
529 }
530
531 #define for_each_sg(sgl, sg, nr, i) \
532 for ((i) = 0, (sg) = (sgl); (i) < (nr); (i)++, (sg) = sg_next(sg))
533
534 static inline void
sg_set_page(struct scatterlist * sg,struct page * page,unsigned int len,unsigned int offset)535 sg_set_page(struct scatterlist *sg, struct page *page, unsigned int len,
536 unsigned int offset)
537 {
538 /* currently we don't use offset */
539 ASSERT(offset == 0);
540 sg->page = page;
541 sg->length = len;
542 }
543
544 static inline struct page *
sg_page(struct scatterlist * sg)545 sg_page(struct scatterlist *sg)
546 {
547 return (sg->page);
548 }
549
550 static inline struct scatterlist *
sg_next(struct scatterlist * sg)551 sg_next(struct scatterlist *sg)
552 {
553 if (sg->end)
554 return (NULL);
555
556 return (sg + 1);
557 }
558
559 void
abd_alloc_chunks(abd_t * abd,size_t size)560 abd_alloc_chunks(abd_t *abd, size_t size)
561 {
562 unsigned nr_pages = abd_chunkcnt_for_bytes(size);
563 struct scatterlist *sg;
564 int i;
565
566 ABD_SCATTER(abd).abd_sgl = vmem_alloc(nr_pages *
567 sizeof (struct scatterlist), KM_SLEEP);
568 sg_init_table(ABD_SCATTER(abd).abd_sgl, nr_pages);
569
570 abd_for_each_sg(abd, sg, nr_pages, i) {
571 struct page *p = umem_alloc_aligned(PAGESIZE, 64, KM_SLEEP);
572 sg_set_page(sg, p, PAGESIZE, 0);
573 }
574 ABD_SCATTER(abd).abd_nents = nr_pages;
575 }
576
577 void
abd_free_chunks(abd_t * abd)578 abd_free_chunks(abd_t *abd)
579 {
580 int i, n = ABD_SCATTER(abd).abd_nents;
581 struct scatterlist *sg;
582
583 abd_for_each_sg(abd, sg, n, i) {
584 for (int j = 0; j < sg->length; j += PAGESIZE) {
585 struct page *p = nth_page(sg_page(sg), j >> PAGE_SHIFT);
586 umem_free(p, PAGESIZE);
587 }
588 }
589 abd_free_sg_table(abd);
590 }
591
592 static void
abd_alloc_zero_scatter(void)593 abd_alloc_zero_scatter(void)
594 {
595 unsigned nr_pages = abd_chunkcnt_for_bytes(SPA_MAXBLOCKSIZE);
596 struct scatterlist *sg;
597 int i;
598
599 abd_zero_page = umem_alloc_aligned(PAGESIZE, 64, KM_SLEEP);
600 memset(abd_zero_page, 0, PAGESIZE);
601 abd_zero_scatter = abd_alloc_struct(SPA_MAXBLOCKSIZE);
602 abd_zero_scatter->abd_flags = ABD_FLAG_OWNER;
603 abd_zero_scatter->abd_flags |= ABD_FLAG_MULTI_CHUNK | ABD_FLAG_ZEROS;
604 ABD_SCATTER(abd_zero_scatter).abd_offset = 0;
605 ABD_SCATTER(abd_zero_scatter).abd_nents = nr_pages;
606 abd_zero_scatter->abd_size = SPA_MAXBLOCKSIZE;
607 abd_zero_scatter->abd_parent = NULL;
608 zfs_refcount_create(&abd_zero_scatter->abd_children);
609 ABD_SCATTER(abd_zero_scatter).abd_sgl = vmem_alloc(nr_pages *
610 sizeof (struct scatterlist), KM_SLEEP);
611
612 sg_init_table(ABD_SCATTER(abd_zero_scatter).abd_sgl, nr_pages);
613
614 abd_for_each_sg(abd_zero_scatter, sg, nr_pages, i) {
615 sg_set_page(sg, abd_zero_page, PAGESIZE, 0);
616 }
617
618 ABDSTAT_BUMP(abdstat_scatter_cnt);
619 ABDSTAT_INCR(abdstat_scatter_data_size, PAGESIZE);
620 ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk);
621 }
622
623 #endif /* _KERNEL */
624
625 boolean_t
abd_size_alloc_linear(size_t size)626 abd_size_alloc_linear(size_t size)
627 {
628 return (size < zfs_abd_scatter_min_size ? B_TRUE : B_FALSE);
629 }
630
631 void
abd_update_scatter_stats(abd_t * abd,abd_stats_op_t op)632 abd_update_scatter_stats(abd_t *abd, abd_stats_op_t op)
633 {
634 ASSERT(op == ABDSTAT_INCR || op == ABDSTAT_DECR);
635 int waste = P2ROUNDUP(abd->abd_size, PAGESIZE) - abd->abd_size;
636 if (op == ABDSTAT_INCR) {
637 ABDSTAT_BUMP(abdstat_scatter_cnt);
638 ABDSTAT_INCR(abdstat_scatter_data_size, abd->abd_size);
639 ABDSTAT_INCR(abdstat_scatter_chunk_waste, waste);
640 arc_space_consume(waste, ARC_SPACE_ABD_CHUNK_WASTE);
641 } else {
642 ABDSTAT_BUMPDOWN(abdstat_scatter_cnt);
643 ABDSTAT_INCR(abdstat_scatter_data_size, -(int)abd->abd_size);
644 ABDSTAT_INCR(abdstat_scatter_chunk_waste, -waste);
645 arc_space_return(waste, ARC_SPACE_ABD_CHUNK_WASTE);
646 }
647 }
648
649 void
abd_update_linear_stats(abd_t * abd,abd_stats_op_t op)650 abd_update_linear_stats(abd_t *abd, abd_stats_op_t op)
651 {
652 ASSERT(op == ABDSTAT_INCR || op == ABDSTAT_DECR);
653 if (op == ABDSTAT_INCR) {
654 ABDSTAT_BUMP(abdstat_linear_cnt);
655 ABDSTAT_INCR(abdstat_linear_data_size, abd->abd_size);
656 } else {
657 ABDSTAT_BUMPDOWN(abdstat_linear_cnt);
658 ABDSTAT_INCR(abdstat_linear_data_size, -(int)abd->abd_size);
659 }
660 }
661
662 void
abd_verify_scatter(abd_t * abd)663 abd_verify_scatter(abd_t *abd)
664 {
665 size_t n;
666 int i = 0;
667 struct scatterlist *sg = NULL;
668
669 ASSERT3U(ABD_SCATTER(abd).abd_nents, >, 0);
670 ASSERT3U(ABD_SCATTER(abd).abd_offset, <,
671 ABD_SCATTER(abd).abd_sgl->length);
672 n = ABD_SCATTER(abd).abd_nents;
673 abd_for_each_sg(abd, sg, n, i) {
674 ASSERT3P(sg_page(sg), !=, NULL);
675 }
676 }
677
678 static void
abd_free_zero_scatter(void)679 abd_free_zero_scatter(void)
680 {
681 zfs_refcount_destroy(&abd_zero_scatter->abd_children);
682 ABDSTAT_BUMPDOWN(abdstat_scatter_cnt);
683 ABDSTAT_INCR(abdstat_scatter_data_size, -(int)PAGESIZE);
684 ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_chunk);
685
686 abd_free_sg_table(abd_zero_scatter);
687 abd_free_struct(abd_zero_scatter);
688 abd_zero_scatter = NULL;
689 ASSERT3P(abd_zero_page, !=, NULL);
690 #if defined(_KERNEL)
691 abd_unmark_zfs_page(abd_zero_page);
692 __free_page(abd_zero_page);
693 #else
694 umem_free(abd_zero_page, PAGESIZE);
695 #endif /* _KERNEL */
696 }
697
698 void
abd_init(void)699 abd_init(void)
700 {
701 int i;
702
703 abd_cache = kmem_cache_create("abd_t", sizeof (abd_t),
704 0, NULL, NULL, NULL, NULL, NULL, 0);
705
706 abd_ksp = kstat_create("zfs", 0, "abdstats", "misc", KSTAT_TYPE_NAMED,
707 sizeof (abd_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
708 if (abd_ksp != NULL) {
709 for (i = 0; i < MAX_ORDER; i++) {
710 snprintf(abd_stats.abdstat_scatter_orders[i].name,
711 KSTAT_STRLEN, "scatter_order_%d", i);
712 abd_stats.abdstat_scatter_orders[i].data_type =
713 KSTAT_DATA_UINT64;
714 }
715 abd_ksp->ks_data = &abd_stats;
716 kstat_install(abd_ksp);
717 }
718
719 abd_alloc_zero_scatter();
720 }
721
722 void
abd_fini(void)723 abd_fini(void)
724 {
725 abd_free_zero_scatter();
726
727 if (abd_ksp != NULL) {
728 kstat_delete(abd_ksp);
729 abd_ksp = NULL;
730 }
731
732 if (abd_cache) {
733 kmem_cache_destroy(abd_cache);
734 abd_cache = NULL;
735 }
736 }
737
738 void
abd_free_linear_page(abd_t * abd)739 abd_free_linear_page(abd_t *abd)
740 {
741 /* Transform it back into a scatter ABD for freeing */
742 struct scatterlist *sg = abd->abd_u.abd_linear.abd_sgl;
743 abd->abd_flags &= ~ABD_FLAG_LINEAR;
744 abd->abd_flags &= ~ABD_FLAG_LINEAR_PAGE;
745 ABD_SCATTER(abd).abd_nents = 1;
746 ABD_SCATTER(abd).abd_offset = 0;
747 ABD_SCATTER(abd).abd_sgl = sg;
748 abd_free_chunks(abd);
749
750 zfs_refcount_destroy(&abd->abd_children);
751 abd_update_scatter_stats(abd, ABDSTAT_DECR);
752 abd_free_struct(abd);
753 }
754
755 /*
756 * If we're going to use this ABD for doing I/O using the block layer, the
757 * consumer of the ABD data doesn't care if it's scattered or not, and we don't
758 * plan to store this ABD in memory for a long period of time, we should
759 * allocate the ABD type that requires the least data copying to do the I/O.
760 *
761 * On Linux the optimal thing to do would be to use abd_get_offset() and
762 * construct a new ABD which shares the original pages thereby eliminating
763 * the copy. But for the moment a new linear ABD is allocated until this
764 * performance optimization can be implemented.
765 */
766 abd_t *
abd_alloc_for_io(size_t size,boolean_t is_metadata)767 abd_alloc_for_io(size_t size, boolean_t is_metadata)
768 {
769 return (abd_alloc(size, is_metadata));
770 }
771
772 abd_t *
abd_get_offset_scatter(abd_t * sabd,size_t off)773 abd_get_offset_scatter(abd_t *sabd, size_t off)
774 {
775 abd_t *abd = NULL;
776 int i = 0;
777 struct scatterlist *sg = NULL;
778
779 abd_verify(sabd);
780 ASSERT3U(off, <=, sabd->abd_size);
781
782 size_t new_offset = ABD_SCATTER(sabd).abd_offset + off;
783
784 abd = abd_alloc_struct(0);
785
786 /*
787 * Even if this buf is filesystem metadata, we only track that
788 * if we own the underlying data buffer, which is not true in
789 * this case. Therefore, we don't ever use ABD_FLAG_META here.
790 */
791 abd->abd_flags = 0;
792
793 abd_for_each_sg(sabd, sg, ABD_SCATTER(sabd).abd_nents, i) {
794 if (new_offset < sg->length)
795 break;
796 new_offset -= sg->length;
797 }
798
799 ABD_SCATTER(abd).abd_sgl = sg;
800 ABD_SCATTER(abd).abd_offset = new_offset;
801 ABD_SCATTER(abd).abd_nents = ABD_SCATTER(sabd).abd_nents - i;
802
803 return (abd);
804 }
805
806 /*
807 * Initialize the abd_iter.
808 */
809 void
abd_iter_init(struct abd_iter * aiter,abd_t * abd)810 abd_iter_init(struct abd_iter *aiter, abd_t *abd)
811 {
812 ASSERT(!abd_is_gang(abd));
813 abd_verify(abd);
814 aiter->iter_abd = abd;
815 aiter->iter_mapaddr = NULL;
816 aiter->iter_mapsize = 0;
817 aiter->iter_pos = 0;
818 if (abd_is_linear(abd)) {
819 aiter->iter_offset = 0;
820 aiter->iter_sg = NULL;
821 } else {
822 aiter->iter_offset = ABD_SCATTER(abd).abd_offset;
823 aiter->iter_sg = ABD_SCATTER(abd).abd_sgl;
824 }
825 }
826
827 /*
828 * This is just a helper function to see if we have exhausted the
829 * abd_iter and reached the end.
830 */
831 boolean_t
abd_iter_at_end(struct abd_iter * aiter)832 abd_iter_at_end(struct abd_iter *aiter)
833 {
834 return (aiter->iter_pos == aiter->iter_abd->abd_size);
835 }
836
837 /*
838 * Advance the iterator by a certain amount. Cannot be called when a chunk is
839 * in use. This can be safely called when the aiter has already exhausted, in
840 * which case this does nothing.
841 */
842 void
abd_iter_advance(struct abd_iter * aiter,size_t amount)843 abd_iter_advance(struct abd_iter *aiter, size_t amount)
844 {
845 ASSERT3P(aiter->iter_mapaddr, ==, NULL);
846 ASSERT0(aiter->iter_mapsize);
847
848 /* There's nothing left to advance to, so do nothing */
849 if (abd_iter_at_end(aiter))
850 return;
851
852 aiter->iter_pos += amount;
853 aiter->iter_offset += amount;
854 if (!abd_is_linear(aiter->iter_abd)) {
855 while (aiter->iter_offset >= aiter->iter_sg->length) {
856 aiter->iter_offset -= aiter->iter_sg->length;
857 aiter->iter_sg = sg_next(aiter->iter_sg);
858 if (aiter->iter_sg == NULL) {
859 ASSERT0(aiter->iter_offset);
860 break;
861 }
862 }
863 }
864 }
865
866 /*
867 * Map the current chunk into aiter. This can be safely called when the aiter
868 * has already exhausted, in which case this does nothing.
869 */
870 void
abd_iter_map(struct abd_iter * aiter)871 abd_iter_map(struct abd_iter *aiter)
872 {
873 void *paddr;
874 size_t offset = 0;
875
876 ASSERT3P(aiter->iter_mapaddr, ==, NULL);
877 ASSERT0(aiter->iter_mapsize);
878
879 /* There's nothing left to iterate over, so do nothing */
880 if (abd_iter_at_end(aiter))
881 return;
882
883 if (abd_is_linear(aiter->iter_abd)) {
884 ASSERT3U(aiter->iter_pos, ==, aiter->iter_offset);
885 offset = aiter->iter_offset;
886 aiter->iter_mapsize = aiter->iter_abd->abd_size - offset;
887 paddr = ABD_LINEAR_BUF(aiter->iter_abd);
888 } else {
889 offset = aiter->iter_offset;
890 aiter->iter_mapsize = MIN(aiter->iter_sg->length - offset,
891 aiter->iter_abd->abd_size - aiter->iter_pos);
892
893 paddr = zfs_kmap_atomic(sg_page(aiter->iter_sg),
894 km_table[aiter->iter_km]);
895 }
896
897 aiter->iter_mapaddr = (char *)paddr + offset;
898 }
899
900 /*
901 * Unmap the current chunk from aiter. This can be safely called when the aiter
902 * has already exhausted, in which case this does nothing.
903 */
904 void
abd_iter_unmap(struct abd_iter * aiter)905 abd_iter_unmap(struct abd_iter *aiter)
906 {
907 /* There's nothing left to unmap, so do nothing */
908 if (abd_iter_at_end(aiter))
909 return;
910
911 if (!abd_is_linear(aiter->iter_abd)) {
912 /* LINTED E_FUNC_SET_NOT_USED */
913 zfs_kunmap_atomic(aiter->iter_mapaddr - aiter->iter_offset,
914 km_table[aiter->iter_km]);
915 }
916
917 ASSERT3P(aiter->iter_mapaddr, !=, NULL);
918 ASSERT3U(aiter->iter_mapsize, >, 0);
919
920 aiter->iter_mapaddr = NULL;
921 aiter->iter_mapsize = 0;
922 }
923
924 void
abd_cache_reap_now(void)925 abd_cache_reap_now(void)
926 {
927 }
928
929 #if defined(_KERNEL)
930 /*
931 * bio_nr_pages for ABD.
932 * @off is the offset in @abd
933 */
934 unsigned long
abd_nr_pages_off(abd_t * abd,unsigned int size,size_t off)935 abd_nr_pages_off(abd_t *abd, unsigned int size, size_t off)
936 {
937 unsigned long pos;
938
939 while (abd_is_gang(abd))
940 abd = abd_gang_get_offset(abd, &off);
941
942 ASSERT(!abd_is_gang(abd));
943 if (abd_is_linear(abd))
944 pos = (unsigned long)abd_to_buf(abd) + off;
945 else
946 pos = ABD_SCATTER(abd).abd_offset + off;
947
948 return ((pos + size + PAGESIZE - 1) >> PAGE_SHIFT) -
949 (pos >> PAGE_SHIFT);
950 }
951
952 static unsigned int
bio_map(struct bio * bio,void * buf_ptr,unsigned int bio_size)953 bio_map(struct bio *bio, void *buf_ptr, unsigned int bio_size)
954 {
955 unsigned int offset, size, i;
956 struct page *page;
957
958 offset = offset_in_page(buf_ptr);
959 for (i = 0; i < bio->bi_max_vecs; i++) {
960 size = PAGE_SIZE - offset;
961
962 if (bio_size <= 0)
963 break;
964
965 if (size > bio_size)
966 size = bio_size;
967
968 if (is_vmalloc_addr(buf_ptr))
969 page = vmalloc_to_page(buf_ptr);
970 else
971 page = virt_to_page(buf_ptr);
972
973 /*
974 * Some network related block device uses tcp_sendpage, which
975 * doesn't behave well when using 0-count page, this is a
976 * safety net to catch them.
977 */
978 ASSERT3S(page_count(page), >, 0);
979
980 if (bio_add_page(bio, page, size, offset) != size)
981 break;
982
983 buf_ptr += size;
984 bio_size -= size;
985 offset = 0;
986 }
987
988 return (bio_size);
989 }
990
991 /*
992 * bio_map for gang ABD.
993 */
994 static unsigned int
abd_gang_bio_map_off(struct bio * bio,abd_t * abd,unsigned int io_size,size_t off)995 abd_gang_bio_map_off(struct bio *bio, abd_t *abd,
996 unsigned int io_size, size_t off)
997 {
998 ASSERT(abd_is_gang(abd));
999
1000 for (abd_t *cabd = abd_gang_get_offset(abd, &off);
1001 cabd != NULL;
1002 cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) {
1003 ASSERT3U(off, <, cabd->abd_size);
1004 int size = MIN(io_size, cabd->abd_size - off);
1005 int remainder = abd_bio_map_off(bio, cabd, size, off);
1006 io_size -= (size - remainder);
1007 if (io_size == 0 || remainder > 0)
1008 return (io_size);
1009 off = 0;
1010 }
1011 ASSERT0(io_size);
1012 return (io_size);
1013 }
1014
1015 /*
1016 * bio_map for ABD.
1017 * @off is the offset in @abd
1018 * Remaining IO size is returned
1019 */
1020 unsigned int
abd_bio_map_off(struct bio * bio,abd_t * abd,unsigned int io_size,size_t off)1021 abd_bio_map_off(struct bio *bio, abd_t *abd,
1022 unsigned int io_size, size_t off)
1023 {
1024 int i;
1025 struct abd_iter aiter;
1026
1027 ASSERT3U(io_size, <=, abd->abd_size - off);
1028 if (abd_is_linear(abd))
1029 return (bio_map(bio, ((char *)abd_to_buf(abd)) + off, io_size));
1030
1031 ASSERT(!abd_is_linear(abd));
1032 if (abd_is_gang(abd))
1033 return (abd_gang_bio_map_off(bio, abd, io_size, off));
1034
1035 abd_iter_init(&aiter, abd);
1036 abd_iter_advance(&aiter, off);
1037
1038 for (i = 0; i < bio->bi_max_vecs; i++) {
1039 struct page *pg;
1040 size_t len, sgoff, pgoff;
1041 struct scatterlist *sg;
1042
1043 if (io_size <= 0)
1044 break;
1045
1046 sg = aiter.iter_sg;
1047 sgoff = aiter.iter_offset;
1048 pgoff = sgoff & (PAGESIZE - 1);
1049 len = MIN(io_size, PAGESIZE - pgoff);
1050 ASSERT(len > 0);
1051
1052 pg = nth_page(sg_page(sg), sgoff >> PAGE_SHIFT);
1053 if (bio_add_page(bio, pg, len, pgoff) != len)
1054 break;
1055
1056 io_size -= len;
1057 abd_iter_advance(&aiter, len);
1058 }
1059
1060 return (io_size);
1061 }
1062
1063 /* Tunable Parameters */
1064 module_param(zfs_abd_scatter_enabled, int, 0644);
1065 MODULE_PARM_DESC(zfs_abd_scatter_enabled,
1066 "Toggle whether ABD allocations must be linear.");
1067 module_param(zfs_abd_scatter_min_size, int, 0644);
1068 MODULE_PARM_DESC(zfs_abd_scatter_min_size,
1069 "Minimum size of scatter allocations.");
1070 /* CSTYLED */
1071 module_param(zfs_abd_scatter_max_order, uint, 0644);
1072 MODULE_PARM_DESC(zfs_abd_scatter_max_order,
1073 "Maximum order allocation used for a scatter ABD.");
1074 #endif
1075