1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2014 by Chunwei Chen. All rights reserved.
23 * Copyright (c) 2019 by Delphix. All rights reserved.
24 */
25
26 /*
27 * ARC buffer data (ABD).
28 *
29 * ABDs are an abstract data structure for the ARC which can use two
30 * different ways of storing the underlying data:
31 *
32 * (a) Linear buffer. In this case, all the data in the ABD is stored in one
33 * contiguous buffer in memory (from a zio_[data_]buf_* kmem cache).
34 *
35 * +-------------------+
36 * | ABD (linear) |
37 * | abd_flags = ... |
38 * | abd_size = ... | +--------------------------------+
39 * | abd_buf ------------->| raw buffer of size abd_size |
40 * +-------------------+ +--------------------------------+
41 * no abd_chunks
42 *
43 * (b) Scattered buffer. In this case, the data in the ABD is split into
44 * equal-sized chunks (from the abd_chunk_cache kmem_cache), with pointers
45 * to the chunks recorded in an array at the end of the ABD structure.
46 *
47 * +-------------------+
48 * | ABD (scattered) |
49 * | abd_flags = ... |
50 * | abd_size = ... |
51 * | abd_offset = 0 | +-----------+
52 * | abd_chunks[0] ----------------------------->| chunk 0 |
53 * | abd_chunks[1] ---------------------+ +-----------+
54 * | ... | | +-----------+
55 * | abd_chunks[N-1] ---------+ +------->| chunk 1 |
56 * +-------------------+ | +-----------+
57 * | ...
58 * | +-----------+
59 * +----------------->| chunk N-1 |
60 * +-----------+
61 *
62 * In addition to directly allocating a linear or scattered ABD, it is also
63 * possible to create an ABD by requesting the "sub-ABD" starting at an offset
64 * within an existing ABD. In linear buffers this is simple (set abd_buf of
65 * the new ABD to the starting point within the original raw buffer), but
66 * scattered ABDs are a little more complex. The new ABD makes a copy of the
67 * relevant abd_chunks pointers (but not the underlying data). However, to
68 * provide arbitrary rather than only chunk-aligned starting offsets, it also
69 * tracks an abd_offset field which represents the starting point of the data
70 * within the first chunk in abd_chunks. For both linear and scattered ABDs,
71 * creating an offset ABD marks the original ABD as the offset's parent, and the
72 * original ABD's abd_children refcount is incremented. This data allows us to
73 * ensure the root ABD isn't deleted before its children.
74 *
75 * Most consumers should never need to know what type of ABD they're using --
76 * the ABD public API ensures that it's possible to transparently switch from
77 * using a linear ABD to a scattered one when doing so would be beneficial.
78 *
79 * If you need to use the data within an ABD directly, if you know it's linear
80 * (because you allocated it) you can use abd_to_buf() to access the underlying
81 * raw buffer. Otherwise, you should use one of the abd_borrow_buf* functions
82 * which will allocate a raw buffer if necessary. Use the abd_return_buf*
83 * functions to return any raw buffers that are no longer necessary when you're
84 * done using them.
85 *
86 * There are a variety of ABD APIs that implement basic buffer operations:
87 * compare, copy, read, write, and fill with zeroes. If you need a custom
88 * function which progressively accesses the whole ABD, use the abd_iterate_*
89 * functions.
90 *
91 * As an additional feature, linear and scatter ABD's can be stitched together
92 * by using the gang ABD type (abd_alloc_gang_abd()). This allows for
93 * multiple ABDs to be viewed as a singular ABD.
94 *
95 * It is possible to make all ABDs linear by setting zfs_abd_scatter_enabled to
96 * B_FALSE.
97 */
98
99 #include <sys/abd_impl.h>
100 #include <sys/param.h>
101 #include <sys/zio.h>
102 #include <sys/zfs_context.h>
103 #include <sys/zfs_znode.h>
104
105 /* see block comment above for description */
106 int zfs_abd_scatter_enabled = B_TRUE;
107
108 boolean_t
abd_is_linear(abd_t * abd)109 abd_is_linear(abd_t *abd)
110 {
111 return ((abd->abd_flags & ABD_FLAG_LINEAR) != 0 ? B_TRUE : B_FALSE);
112 }
113
114 boolean_t
abd_is_linear_page(abd_t * abd)115 abd_is_linear_page(abd_t *abd)
116 {
117 return ((abd->abd_flags & ABD_FLAG_LINEAR_PAGE) != 0 ?
118 B_TRUE : B_FALSE);
119 }
120
121 boolean_t
abd_is_gang(abd_t * abd)122 abd_is_gang(abd_t *abd)
123 {
124 return ((abd->abd_flags & ABD_FLAG_GANG) != 0 ? B_TRUE :
125 B_FALSE);
126 }
127
128 void
abd_verify(abd_t * abd)129 abd_verify(abd_t *abd)
130 {
131 ASSERT3U(abd->abd_size, >, 0);
132 ASSERT3U(abd->abd_size, <=, SPA_MAXBLOCKSIZE);
133 ASSERT3U(abd->abd_flags, ==, abd->abd_flags & (ABD_FLAG_LINEAR |
134 ABD_FLAG_OWNER | ABD_FLAG_META | ABD_FLAG_MULTI_ZONE |
135 ABD_FLAG_MULTI_CHUNK | ABD_FLAG_LINEAR_PAGE | ABD_FLAG_GANG |
136 ABD_FLAG_GANG_FREE | ABD_FLAG_ZEROS));
137 IMPLY(abd->abd_parent != NULL, !(abd->abd_flags & ABD_FLAG_OWNER));
138 IMPLY(abd->abd_flags & ABD_FLAG_META, abd->abd_flags & ABD_FLAG_OWNER);
139 if (abd_is_linear(abd)) {
140 ASSERT3P(ABD_LINEAR_BUF(abd), !=, NULL);
141 } else if (abd_is_gang(abd)) {
142 uint_t child_sizes = 0;
143 for (abd_t *cabd = list_head(&ABD_GANG(abd).abd_gang_chain);
144 cabd != NULL;
145 cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) {
146 ASSERT(list_link_active(&cabd->abd_gang_link));
147 child_sizes += cabd->abd_size;
148 abd_verify(cabd);
149 }
150 ASSERT3U(abd->abd_size, ==, child_sizes);
151 } else {
152 abd_verify_scatter(abd);
153 }
154 }
155
156 uint_t
abd_get_size(abd_t * abd)157 abd_get_size(abd_t *abd)
158 {
159 abd_verify(abd);
160 return (abd->abd_size);
161 }
162
163 /*
164 * Allocate an ABD, along with its own underlying data buffers. Use this if you
165 * don't care whether the ABD is linear or not.
166 */
167 abd_t *
abd_alloc(size_t size,boolean_t is_metadata)168 abd_alloc(size_t size, boolean_t is_metadata)
169 {
170 if (!zfs_abd_scatter_enabled || abd_size_alloc_linear(size))
171 return (abd_alloc_linear(size, is_metadata));
172
173 VERIFY3U(size, <=, SPA_MAXBLOCKSIZE);
174
175 abd_t *abd = abd_alloc_struct(size);
176 abd->abd_flags = ABD_FLAG_OWNER;
177 abd->abd_u.abd_scatter.abd_offset = 0;
178 abd_alloc_chunks(abd, size);
179
180 if (is_metadata) {
181 abd->abd_flags |= ABD_FLAG_META;
182 }
183 abd->abd_size = size;
184 abd->abd_parent = NULL;
185 zfs_refcount_create(&abd->abd_children);
186
187 abd_update_scatter_stats(abd, ABDSTAT_INCR);
188
189 return (abd);
190 }
191
192 static void
abd_free_scatter(abd_t * abd)193 abd_free_scatter(abd_t *abd)
194 {
195 abd_free_chunks(abd);
196
197 zfs_refcount_destroy(&abd->abd_children);
198 abd_update_scatter_stats(abd, ABDSTAT_DECR);
199 abd_free_struct(abd);
200 }
201
202 static void
abd_put_gang_abd(abd_t * abd)203 abd_put_gang_abd(abd_t *abd)
204 {
205 ASSERT(abd_is_gang(abd));
206 abd_t *cabd;
207
208 while ((cabd = list_remove_head(&ABD_GANG(abd).abd_gang_chain))
209 != NULL) {
210 ASSERT0(cabd->abd_flags & ABD_FLAG_GANG_FREE);
211 abd->abd_size -= cabd->abd_size;
212 abd_put(cabd);
213 }
214 ASSERT0(abd->abd_size);
215 list_destroy(&ABD_GANG(abd).abd_gang_chain);
216 }
217
218 /*
219 * Free an ABD allocated from abd_get_offset() or abd_get_from_buf(). Will not
220 * free the underlying scatterlist or buffer.
221 */
222 void
abd_put(abd_t * abd)223 abd_put(abd_t *abd)
224 {
225 if (abd == NULL)
226 return;
227
228 abd_verify(abd);
229 ASSERT(!(abd->abd_flags & ABD_FLAG_OWNER));
230
231 if (abd->abd_parent != NULL) {
232 (void) zfs_refcount_remove_many(&abd->abd_parent->abd_children,
233 abd->abd_size, abd);
234 }
235
236 if (abd_is_gang(abd))
237 abd_put_gang_abd(abd);
238
239 zfs_refcount_destroy(&abd->abd_children);
240 abd_free_struct(abd);
241 }
242
243 /*
244 * Allocate an ABD that must be linear, along with its own underlying data
245 * buffer. Only use this when it would be very annoying to write your ABD
246 * consumer with a scattered ABD.
247 */
248 abd_t *
abd_alloc_linear(size_t size,boolean_t is_metadata)249 abd_alloc_linear(size_t size, boolean_t is_metadata)
250 {
251 abd_t *abd = abd_alloc_struct(0);
252
253 VERIFY3U(size, <=, SPA_MAXBLOCKSIZE);
254
255 abd->abd_flags = ABD_FLAG_LINEAR | ABD_FLAG_OWNER;
256 if (is_metadata) {
257 abd->abd_flags |= ABD_FLAG_META;
258 }
259 abd->abd_size = size;
260 abd->abd_parent = NULL;
261 zfs_refcount_create(&abd->abd_children);
262
263 if (is_metadata) {
264 ABD_LINEAR_BUF(abd) = zio_buf_alloc(size);
265 } else {
266 ABD_LINEAR_BUF(abd) = zio_data_buf_alloc(size);
267 }
268
269 abd_update_linear_stats(abd, ABDSTAT_INCR);
270
271 return (abd);
272 }
273
274 static void
abd_free_linear(abd_t * abd)275 abd_free_linear(abd_t *abd)
276 {
277 if (abd_is_linear_page(abd)) {
278 abd_free_linear_page(abd);
279 return;
280 }
281 if (abd->abd_flags & ABD_FLAG_META) {
282 zio_buf_free(ABD_LINEAR_BUF(abd), abd->abd_size);
283 } else {
284 zio_data_buf_free(ABD_LINEAR_BUF(abd), abd->abd_size);
285 }
286
287 zfs_refcount_destroy(&abd->abd_children);
288 abd_update_linear_stats(abd, ABDSTAT_DECR);
289
290 abd_free_struct(abd);
291 }
292
293 static void
abd_free_gang_abd(abd_t * abd)294 abd_free_gang_abd(abd_t *abd)
295 {
296 ASSERT(abd_is_gang(abd));
297 abd_t *cabd = list_head(&ABD_GANG(abd).abd_gang_chain);
298
299 while (cabd != NULL) {
300 /*
301 * We must acquire the child ABDs mutex to ensure that if it
302 * is being added to another gang ABD we will set the link
303 * as inactive when removing it from this gang ABD and before
304 * adding it to the other gang ABD.
305 */
306 mutex_enter(&cabd->abd_mtx);
307 ASSERT(list_link_active(&cabd->abd_gang_link));
308 list_remove(&ABD_GANG(abd).abd_gang_chain, cabd);
309 mutex_exit(&cabd->abd_mtx);
310 abd->abd_size -= cabd->abd_size;
311 if (cabd->abd_flags & ABD_FLAG_GANG_FREE) {
312 if (cabd->abd_flags & ABD_FLAG_OWNER)
313 abd_free(cabd);
314 else
315 abd_put(cabd);
316 }
317 cabd = list_head(&ABD_GANG(abd).abd_gang_chain);
318 }
319 ASSERT0(abd->abd_size);
320 list_destroy(&ABD_GANG(abd).abd_gang_chain);
321 zfs_refcount_destroy(&abd->abd_children);
322 abd_free_struct(abd);
323 }
324
325 /*
326 * Free an ABD. Only use this on ABDs allocated with abd_alloc(),
327 * abd_alloc_linear(), or abd_alloc_gang_abd().
328 */
329 void
abd_free(abd_t * abd)330 abd_free(abd_t *abd)
331 {
332 if (abd == NULL)
333 return;
334
335 abd_verify(abd);
336 ASSERT3P(abd->abd_parent, ==, NULL);
337 ASSERT(abd->abd_flags & ABD_FLAG_OWNER);
338 if (abd_is_linear(abd))
339 abd_free_linear(abd);
340 else if (abd_is_gang(abd))
341 abd_free_gang_abd(abd);
342 else
343 abd_free_scatter(abd);
344 }
345
346 /*
347 * Allocate an ABD of the same format (same metadata flag, same scatterize
348 * setting) as another ABD.
349 */
350 abd_t *
abd_alloc_sametype(abd_t * sabd,size_t size)351 abd_alloc_sametype(abd_t *sabd, size_t size)
352 {
353 boolean_t is_metadata = (sabd->abd_flags & ABD_FLAG_META) != 0;
354 if (abd_is_linear(sabd) &&
355 !abd_is_linear_page(sabd)) {
356 return (abd_alloc_linear(size, is_metadata));
357 } else {
358 return (abd_alloc(size, is_metadata));
359 }
360 }
361
362
363 /*
364 * Create gang ABD that will be the head of a list of ABD's. This is used
365 * to "chain" scatter/gather lists together when constructing aggregated
366 * IO's. To free this abd, abd_free() must be called.
367 */
368 abd_t *
abd_alloc_gang_abd(void)369 abd_alloc_gang_abd(void)
370 {
371 abd_t *abd;
372
373 abd = abd_alloc_struct(0);
374 abd->abd_flags = ABD_FLAG_GANG | ABD_FLAG_OWNER;
375 abd->abd_size = 0;
376 abd->abd_parent = NULL;
377 list_create(&ABD_GANG(abd).abd_gang_chain,
378 sizeof (abd_t), offsetof(abd_t, abd_gang_link));
379 zfs_refcount_create(&abd->abd_children);
380 return (abd);
381 }
382
383 /*
384 * Add a child gang ABD to a parent gang ABDs chained list.
385 */
386 static void
abd_gang_add_gang(abd_t * pabd,abd_t * cabd,boolean_t free_on_free)387 abd_gang_add_gang(abd_t *pabd, abd_t *cabd, boolean_t free_on_free)
388 {
389 ASSERT(abd_is_gang(pabd));
390 ASSERT(abd_is_gang(cabd));
391
392 if (free_on_free) {
393 /*
394 * If the parent is responsible for freeing the child gang
395 * ABD we will just splice the childs children ABD list to
396 * the parents list and immediately free the child gang ABD
397 * struct. The parent gang ABDs children from the child gang
398 * will retain all the free_on_free settings after being
399 * added to the parents list.
400 */
401 pabd->abd_size += cabd->abd_size;
402 list_move_tail(&ABD_GANG(pabd).abd_gang_chain,
403 &ABD_GANG(cabd).abd_gang_chain);
404 ASSERT(list_is_empty(&ABD_GANG(cabd).abd_gang_chain));
405 abd_verify(pabd);
406 abd_free_struct(cabd);
407 } else {
408 for (abd_t *child = list_head(&ABD_GANG(cabd).abd_gang_chain);
409 child != NULL;
410 child = list_next(&ABD_GANG(cabd).abd_gang_chain, child)) {
411 /*
412 * We always pass B_FALSE for free_on_free as it is the
413 * original child gang ABDs responsibilty to determine
414 * if any of its child ABDs should be free'd on the call
415 * to abd_free().
416 */
417 abd_gang_add(pabd, child, B_FALSE);
418 }
419 abd_verify(pabd);
420 }
421 }
422
423 /*
424 * Add a child ABD to a gang ABD's chained list.
425 */
426 void
abd_gang_add(abd_t * pabd,abd_t * cabd,boolean_t free_on_free)427 abd_gang_add(abd_t *pabd, abd_t *cabd, boolean_t free_on_free)
428 {
429 ASSERT(abd_is_gang(pabd));
430 abd_t *child_abd = NULL;
431
432 /*
433 * If the child being added is a gang ABD, we will add the
434 * childs ABDs to the parent gang ABD. This alllows us to account
435 * for the offset correctly in the parent gang ABD.
436 */
437 if (abd_is_gang(cabd)) {
438 ASSERT(!list_link_active(&cabd->abd_gang_link));
439 ASSERT(!list_is_empty(&ABD_GANG(cabd).abd_gang_chain));
440 return (abd_gang_add_gang(pabd, cabd, free_on_free));
441 }
442 ASSERT(!abd_is_gang(cabd));
443
444 /*
445 * In order to verify that an ABD is not already part of
446 * another gang ABD, we must lock the child ABD's abd_mtx
447 * to check its abd_gang_link status. We unlock the abd_mtx
448 * only after it is has been added to a gang ABD, which
449 * will update the abd_gang_link's status. See comment below
450 * for how an ABD can be in multiple gang ABD's simultaneously.
451 */
452 mutex_enter(&cabd->abd_mtx);
453 if (list_link_active(&cabd->abd_gang_link)) {
454 /*
455 * If the child ABD is already part of another
456 * gang ABD then we must allocate a new
457 * ABD to use a separate link. We mark the newly
458 * allocated ABD with ABD_FLAG_GANG_FREE, before
459 * adding it to the gang ABD's list, to make the
460 * gang ABD aware that it is responsible to call
461 * abd_put(). We use abd_get_offset() in order
462 * to just allocate a new ABD but avoid copying the
463 * data over into the newly allocated ABD.
464 *
465 * An ABD may become part of multiple gang ABD's. For
466 * example, when writing ditto bocks, the same ABD
467 * is used to write 2 or 3 locations with 2 or 3
468 * zio_t's. Each of the zio's may be aggregated with
469 * different adjacent zio's. zio aggregation uses gang
470 * zio's, so the single ABD can become part of multiple
471 * gang zio's.
472 *
473 * The ASSERT below is to make sure that if
474 * free_on_free is passed as B_TRUE, the ABD can
475 * not be in multiple gang ABD's. The gang ABD
476 * can not be responsible for cleaning up the child
477 * ABD memory allocation if the ABD can be in
478 * multiple gang ABD's at one time.
479 */
480 ASSERT3B(free_on_free, ==, B_FALSE);
481 child_abd = abd_get_offset(cabd, 0);
482 child_abd->abd_flags |= ABD_FLAG_GANG_FREE;
483 } else {
484 child_abd = cabd;
485 if (free_on_free)
486 child_abd->abd_flags |= ABD_FLAG_GANG_FREE;
487 }
488 ASSERT3P(child_abd, !=, NULL);
489
490 list_insert_tail(&ABD_GANG(pabd).abd_gang_chain, child_abd);
491 mutex_exit(&cabd->abd_mtx);
492 pabd->abd_size += child_abd->abd_size;
493 }
494
495 /*
496 * Locate the ABD for the supplied offset in the gang ABD.
497 * Return a new offset relative to the returned ABD.
498 */
499 abd_t *
abd_gang_get_offset(abd_t * abd,size_t * off)500 abd_gang_get_offset(abd_t *abd, size_t *off)
501 {
502 abd_t *cabd;
503
504 ASSERT(abd_is_gang(abd));
505 ASSERT3U(*off, <, abd->abd_size);
506 for (cabd = list_head(&ABD_GANG(abd).abd_gang_chain); cabd != NULL;
507 cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) {
508 if (*off >= cabd->abd_size)
509 *off -= cabd->abd_size;
510 else
511 return (cabd);
512 }
513 VERIFY3P(cabd, !=, NULL);
514 return (cabd);
515 }
516
517 /*
518 * Allocate a new ABD to point to offset off of sabd. It shares the underlying
519 * buffer data with sabd. Use abd_put() to free. sabd must not be freed while
520 * any derived ABDs exist.
521 */
522 static abd_t *
abd_get_offset_impl(abd_t * sabd,size_t off,size_t size)523 abd_get_offset_impl(abd_t *sabd, size_t off, size_t size)
524 {
525 abd_t *abd = NULL;
526
527 abd_verify(sabd);
528 ASSERT3U(off, <=, sabd->abd_size);
529
530 if (abd_is_linear(sabd)) {
531 abd = abd_alloc_struct(0);
532
533 /*
534 * Even if this buf is filesystem metadata, we only track that
535 * if we own the underlying data buffer, which is not true in
536 * this case. Therefore, we don't ever use ABD_FLAG_META here.
537 */
538 abd->abd_flags = ABD_FLAG_LINEAR;
539
540 ABD_LINEAR_BUF(abd) = (char *)ABD_LINEAR_BUF(sabd) + off;
541 } else if (abd_is_gang(sabd)) {
542 size_t left = size;
543 abd = abd_alloc_gang_abd();
544 abd->abd_flags &= ~ABD_FLAG_OWNER;
545 for (abd_t *cabd = abd_gang_get_offset(sabd, &off);
546 cabd != NULL && left > 0;
547 cabd = list_next(&ABD_GANG(sabd).abd_gang_chain, cabd)) {
548 int csize = MIN(left, cabd->abd_size - off);
549
550 abd_t *nabd = abd_get_offset_impl(cabd, off, csize);
551 abd_gang_add(abd, nabd, B_FALSE);
552 left -= csize;
553 off = 0;
554 }
555 ASSERT3U(left, ==, 0);
556 } else {
557 abd = abd_get_offset_scatter(sabd, off);
558 }
559
560 abd->abd_size = size;
561 abd->abd_parent = sabd;
562 zfs_refcount_create(&abd->abd_children);
563 (void) zfs_refcount_add_many(&sabd->abd_children, abd->abd_size, abd);
564 return (abd);
565 }
566
567 abd_t *
abd_get_offset(abd_t * sabd,size_t off)568 abd_get_offset(abd_t *sabd, size_t off)
569 {
570 size_t size = sabd->abd_size > off ? sabd->abd_size - off : 0;
571 VERIFY3U(size, >, 0);
572 return (abd_get_offset_impl(sabd, off, size));
573 }
574
575 abd_t *
abd_get_offset_size(abd_t * sabd,size_t off,size_t size)576 abd_get_offset_size(abd_t *sabd, size_t off, size_t size)
577 {
578 ASSERT3U(off + size, <=, sabd->abd_size);
579 return (abd_get_offset_impl(sabd, off, size));
580 }
581
582 /*
583 * Return a size scatter ABD. In order to free the returned
584 * ABD abd_put() must be called.
585 */
586 abd_t *
abd_get_zeros(size_t size)587 abd_get_zeros(size_t size)
588 {
589 ASSERT3P(abd_zero_scatter, !=, NULL);
590 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
591 return (abd_get_offset_size(abd_zero_scatter, 0, size));
592 }
593
594 /*
595 * Allocate a linear ABD structure for buf. You must free this with abd_put()
596 * since the resulting ABD doesn't own its own buffer.
597 */
598 abd_t *
abd_get_from_buf(void * buf,size_t size)599 abd_get_from_buf(void *buf, size_t size)
600 {
601 abd_t *abd = abd_alloc_struct(0);
602
603 VERIFY3U(size, <=, SPA_MAXBLOCKSIZE);
604
605 /*
606 * Even if this buf is filesystem metadata, we only track that if we
607 * own the underlying data buffer, which is not true in this case.
608 * Therefore, we don't ever use ABD_FLAG_META here.
609 */
610 abd->abd_flags = ABD_FLAG_LINEAR;
611 abd->abd_size = size;
612 abd->abd_parent = NULL;
613 zfs_refcount_create(&abd->abd_children);
614
615 ABD_LINEAR_BUF(abd) = buf;
616
617 return (abd);
618 }
619
620 /*
621 * Get the raw buffer associated with a linear ABD.
622 */
623 void *
abd_to_buf(abd_t * abd)624 abd_to_buf(abd_t *abd)
625 {
626 ASSERT(abd_is_linear(abd));
627 abd_verify(abd);
628 return (ABD_LINEAR_BUF(abd));
629 }
630
631 /*
632 * Borrow a raw buffer from an ABD without copying the contents of the ABD
633 * into the buffer. If the ABD is scattered, this will allocate a raw buffer
634 * whose contents are undefined. To copy over the existing data in the ABD, use
635 * abd_borrow_buf_copy() instead.
636 */
637 void *
abd_borrow_buf(abd_t * abd,size_t n)638 abd_borrow_buf(abd_t *abd, size_t n)
639 {
640 void *buf;
641 abd_verify(abd);
642 ASSERT3U(abd->abd_size, >=, n);
643 if (abd_is_linear(abd)) {
644 buf = abd_to_buf(abd);
645 } else {
646 buf = zio_buf_alloc(n);
647 }
648 (void) zfs_refcount_add_many(&abd->abd_children, n, buf);
649 return (buf);
650 }
651
652 void *
abd_borrow_buf_copy(abd_t * abd,size_t n)653 abd_borrow_buf_copy(abd_t *abd, size_t n)
654 {
655 void *buf = abd_borrow_buf(abd, n);
656 if (!abd_is_linear(abd)) {
657 abd_copy_to_buf(buf, abd, n);
658 }
659 return (buf);
660 }
661
662 /*
663 * Return a borrowed raw buffer to an ABD. If the ABD is scattered, this will
664 * not change the contents of the ABD and will ASSERT that you didn't modify
665 * the buffer since it was borrowed. If you want any changes you made to buf to
666 * be copied back to abd, use abd_return_buf_copy() instead.
667 */
668 void
abd_return_buf(abd_t * abd,void * buf,size_t n)669 abd_return_buf(abd_t *abd, void *buf, size_t n)
670 {
671 abd_verify(abd);
672 ASSERT3U(abd->abd_size, >=, n);
673 if (abd_is_linear(abd)) {
674 ASSERT3P(buf, ==, abd_to_buf(abd));
675 } else {
676 ASSERT0(abd_cmp_buf(abd, buf, n));
677 zio_buf_free(buf, n);
678 }
679 (void) zfs_refcount_remove_many(&abd->abd_children, n, buf);
680 }
681
682 void
abd_return_buf_copy(abd_t * abd,void * buf,size_t n)683 abd_return_buf_copy(abd_t *abd, void *buf, size_t n)
684 {
685 if (!abd_is_linear(abd)) {
686 abd_copy_from_buf(abd, buf, n);
687 }
688 abd_return_buf(abd, buf, n);
689 }
690
691 void
abd_release_ownership_of_buf(abd_t * abd)692 abd_release_ownership_of_buf(abd_t *abd)
693 {
694 ASSERT(abd_is_linear(abd));
695 ASSERT(abd->abd_flags & ABD_FLAG_OWNER);
696
697 /*
698 * abd_free() needs to handle LINEAR_PAGE ABD's specially.
699 * Since that flag does not survive the
700 * abd_release_ownership_of_buf() -> abd_get_from_buf() ->
701 * abd_take_ownership_of_buf() sequence, we don't allow releasing
702 * these "linear but not zio_[data_]buf_alloc()'ed" ABD's.
703 */
704 ASSERT(!abd_is_linear_page(abd));
705
706 abd_verify(abd);
707
708 abd->abd_flags &= ~ABD_FLAG_OWNER;
709 /* Disable this flag since we no longer own the data buffer */
710 abd->abd_flags &= ~ABD_FLAG_META;
711
712 abd_update_linear_stats(abd, ABDSTAT_DECR);
713 }
714
715
716 /*
717 * Give this ABD ownership of the buffer that it's storing. Can only be used on
718 * linear ABDs which were allocated via abd_get_from_buf(), or ones allocated
719 * with abd_alloc_linear() which subsequently released ownership of their buf
720 * with abd_release_ownership_of_buf().
721 */
722 void
abd_take_ownership_of_buf(abd_t * abd,boolean_t is_metadata)723 abd_take_ownership_of_buf(abd_t *abd, boolean_t is_metadata)
724 {
725 ASSERT(abd_is_linear(abd));
726 ASSERT(!(abd->abd_flags & ABD_FLAG_OWNER));
727 abd_verify(abd);
728
729 abd->abd_flags |= ABD_FLAG_OWNER;
730 if (is_metadata) {
731 abd->abd_flags |= ABD_FLAG_META;
732 }
733
734 abd_update_linear_stats(abd, ABDSTAT_INCR);
735 }
736
737 /*
738 * Initializes an abd_iter based on whether the abd is a gang ABD
739 * or just a single ABD.
740 */
741 static inline abd_t *
abd_init_abd_iter(abd_t * abd,struct abd_iter * aiter,size_t off)742 abd_init_abd_iter(abd_t *abd, struct abd_iter *aiter, size_t off)
743 {
744 abd_t *cabd = NULL;
745
746 if (abd_is_gang(abd)) {
747 cabd = abd_gang_get_offset(abd, &off);
748 if (cabd) {
749 abd_iter_init(aiter, cabd);
750 abd_iter_advance(aiter, off);
751 }
752 } else {
753 abd_iter_init(aiter, abd);
754 abd_iter_advance(aiter, off);
755 }
756 return (cabd);
757 }
758
759 /*
760 * Advances an abd_iter. We have to be careful with gang ABD as
761 * advancing could mean that we are at the end of a particular ABD and
762 * must grab the ABD in the gang ABD's list.
763 */
764 static inline abd_t *
abd_advance_abd_iter(abd_t * abd,abd_t * cabd,struct abd_iter * aiter,size_t len)765 abd_advance_abd_iter(abd_t *abd, abd_t *cabd, struct abd_iter *aiter,
766 size_t len)
767 {
768 abd_iter_advance(aiter, len);
769 if (abd_is_gang(abd) && abd_iter_at_end(aiter)) {
770 ASSERT3P(cabd, !=, NULL);
771 cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd);
772 if (cabd) {
773 abd_iter_init(aiter, cabd);
774 abd_iter_advance(aiter, 0);
775 }
776 }
777 return (cabd);
778 }
779
780 int
abd_iterate_func(abd_t * abd,size_t off,size_t size,abd_iter_func_t * func,void * private)781 abd_iterate_func(abd_t *abd, size_t off, size_t size,
782 abd_iter_func_t *func, void *private)
783 {
784 struct abd_iter aiter;
785 int ret = 0;
786
787 if (size == 0)
788 return (0);
789
790 abd_verify(abd);
791 ASSERT3U(off + size, <=, abd->abd_size);
792
793 boolean_t abd_multi = abd_is_gang(abd);
794 abd_t *c_abd = abd_init_abd_iter(abd, &aiter, off);
795
796 while (size > 0) {
797 /* If we are at the end of the gang ABD we are done */
798 if (abd_multi && !c_abd)
799 break;
800
801 abd_iter_map(&aiter);
802
803 size_t len = MIN(aiter.iter_mapsize, size);
804 ASSERT3U(len, >, 0);
805
806 ret = func(aiter.iter_mapaddr, len, private);
807
808 abd_iter_unmap(&aiter);
809
810 if (ret != 0)
811 break;
812
813 size -= len;
814 c_abd = abd_advance_abd_iter(abd, c_abd, &aiter, len);
815 }
816
817 return (ret);
818 }
819
820 struct buf_arg {
821 void *arg_buf;
822 };
823
824 static int
abd_copy_to_buf_off_cb(void * buf,size_t size,void * private)825 abd_copy_to_buf_off_cb(void *buf, size_t size, void *private)
826 {
827 struct buf_arg *ba_ptr = private;
828
829 (void) memcpy(ba_ptr->arg_buf, buf, size);
830 ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size;
831
832 return (0);
833 }
834
835 /*
836 * Copy abd to buf. (off is the offset in abd.)
837 */
838 void
abd_copy_to_buf_off(void * buf,abd_t * abd,size_t off,size_t size)839 abd_copy_to_buf_off(void *buf, abd_t *abd, size_t off, size_t size)
840 {
841 struct buf_arg ba_ptr = { buf };
842
843 (void) abd_iterate_func(abd, off, size, abd_copy_to_buf_off_cb,
844 &ba_ptr);
845 }
846
847 static int
abd_cmp_buf_off_cb(void * buf,size_t size,void * private)848 abd_cmp_buf_off_cb(void *buf, size_t size, void *private)
849 {
850 int ret;
851 struct buf_arg *ba_ptr = private;
852
853 ret = memcmp(buf, ba_ptr->arg_buf, size);
854 ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size;
855
856 return (ret);
857 }
858
859 /*
860 * Compare the contents of abd to buf. (off is the offset in abd.)
861 */
862 int
abd_cmp_buf_off(abd_t * abd,const void * buf,size_t off,size_t size)863 abd_cmp_buf_off(abd_t *abd, const void *buf, size_t off, size_t size)
864 {
865 struct buf_arg ba_ptr = { (void *) buf };
866
867 return (abd_iterate_func(abd, off, size, abd_cmp_buf_off_cb, &ba_ptr));
868 }
869
870 static int
abd_copy_from_buf_off_cb(void * buf,size_t size,void * private)871 abd_copy_from_buf_off_cb(void *buf, size_t size, void *private)
872 {
873 struct buf_arg *ba_ptr = private;
874
875 (void) memcpy(buf, ba_ptr->arg_buf, size);
876 ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size;
877
878 return (0);
879 }
880
881 /*
882 * Copy from buf to abd. (off is the offset in abd.)
883 */
884 void
abd_copy_from_buf_off(abd_t * abd,const void * buf,size_t off,size_t size)885 abd_copy_from_buf_off(abd_t *abd, const void *buf, size_t off, size_t size)
886 {
887 struct buf_arg ba_ptr = { (void *) buf };
888
889 (void) abd_iterate_func(abd, off, size, abd_copy_from_buf_off_cb,
890 &ba_ptr);
891 }
892
893 /*ARGSUSED*/
894 static int
abd_zero_off_cb(void * buf,size_t size,void * private)895 abd_zero_off_cb(void *buf, size_t size, void *private)
896 {
897 (void) memset(buf, 0, size);
898 return (0);
899 }
900
901 /*
902 * Zero out the abd from a particular offset to the end.
903 */
904 void
abd_zero_off(abd_t * abd,size_t off,size_t size)905 abd_zero_off(abd_t *abd, size_t off, size_t size)
906 {
907 (void) abd_iterate_func(abd, off, size, abd_zero_off_cb, NULL);
908 }
909
910 /*
911 * Iterate over two ABDs and call func incrementally on the two ABDs' data in
912 * equal-sized chunks (passed to func as raw buffers). func could be called many
913 * times during this iteration.
914 */
915 int
abd_iterate_func2(abd_t * dabd,abd_t * sabd,size_t doff,size_t soff,size_t size,abd_iter_func2_t * func,void * private)916 abd_iterate_func2(abd_t *dabd, abd_t *sabd, size_t doff, size_t soff,
917 size_t size, abd_iter_func2_t *func, void *private)
918 {
919 int ret = 0;
920 struct abd_iter daiter, saiter;
921 boolean_t dabd_is_gang_abd, sabd_is_gang_abd;
922 abd_t *c_dabd, *c_sabd;
923
924 if (size == 0)
925 return (0);
926
927 abd_verify(dabd);
928 abd_verify(sabd);
929
930 ASSERT3U(doff + size, <=, dabd->abd_size);
931 ASSERT3U(soff + size, <=, sabd->abd_size);
932
933 dabd_is_gang_abd = abd_is_gang(dabd);
934 sabd_is_gang_abd = abd_is_gang(sabd);
935 c_dabd = abd_init_abd_iter(dabd, &daiter, doff);
936 c_sabd = abd_init_abd_iter(sabd, &saiter, soff);
937
938 while (size > 0) {
939 /* if we are at the end of the gang ABD we are done */
940 if ((dabd_is_gang_abd && !c_dabd) ||
941 (sabd_is_gang_abd && !c_sabd))
942 break;
943
944 abd_iter_map(&daiter);
945 abd_iter_map(&saiter);
946
947 size_t dlen = MIN(daiter.iter_mapsize, size);
948 size_t slen = MIN(saiter.iter_mapsize, size);
949 size_t len = MIN(dlen, slen);
950 ASSERT(dlen > 0 || slen > 0);
951
952 ret = func(daiter.iter_mapaddr, saiter.iter_mapaddr, len,
953 private);
954
955 abd_iter_unmap(&saiter);
956 abd_iter_unmap(&daiter);
957
958 if (ret != 0)
959 break;
960
961 size -= len;
962 c_dabd =
963 abd_advance_abd_iter(dabd, c_dabd, &daiter, len);
964 c_sabd =
965 abd_advance_abd_iter(sabd, c_sabd, &saiter, len);
966 }
967
968 return (ret);
969 }
970
971 /*ARGSUSED*/
972 static int
abd_copy_off_cb(void * dbuf,void * sbuf,size_t size,void * private)973 abd_copy_off_cb(void *dbuf, void *sbuf, size_t size, void *private)
974 {
975 (void) memcpy(dbuf, sbuf, size);
976 return (0);
977 }
978
979 /*
980 * Copy from sabd to dabd starting from soff and doff.
981 */
982 void
abd_copy_off(abd_t * dabd,abd_t * sabd,size_t doff,size_t soff,size_t size)983 abd_copy_off(abd_t *dabd, abd_t *sabd, size_t doff, size_t soff, size_t size)
984 {
985 (void) abd_iterate_func2(dabd, sabd, doff, soff, size,
986 abd_copy_off_cb, NULL);
987 }
988
989 /*ARGSUSED*/
990 static int
abd_cmp_cb(void * bufa,void * bufb,size_t size,void * private)991 abd_cmp_cb(void *bufa, void *bufb, size_t size, void *private)
992 {
993 return (memcmp(bufa, bufb, size));
994 }
995
996 /*
997 * Compares the contents of two ABDs.
998 */
999 int
abd_cmp(abd_t * dabd,abd_t * sabd)1000 abd_cmp(abd_t *dabd, abd_t *sabd)
1001 {
1002 ASSERT3U(dabd->abd_size, ==, sabd->abd_size);
1003 return (abd_iterate_func2(dabd, sabd, 0, 0, dabd->abd_size,
1004 abd_cmp_cb, NULL));
1005 }
1006
1007 /*
1008 * Iterate over code ABDs and a data ABD and call @func_raidz_gen.
1009 *
1010 * @cabds parity ABDs, must have equal size
1011 * @dabd data ABD. Can be NULL (in this case @dsize = 0)
1012 * @func_raidz_gen should be implemented so that its behaviour
1013 * is the same when taking linear and when taking scatter
1014 */
1015 void
abd_raidz_gen_iterate(abd_t ** cabds,abd_t * dabd,ssize_t csize,ssize_t dsize,const unsigned parity,void (* func_raidz_gen)(void **,const void *,size_t,size_t))1016 abd_raidz_gen_iterate(abd_t **cabds, abd_t *dabd,
1017 ssize_t csize, ssize_t dsize, const unsigned parity,
1018 void (*func_raidz_gen)(void **, const void *, size_t, size_t))
1019 {
1020 int i;
1021 ssize_t len, dlen;
1022 struct abd_iter caiters[3];
1023 struct abd_iter daiter = {0};
1024 void *caddrs[3];
1025 unsigned long flags __maybe_unused = 0;
1026 abd_t *c_cabds[3];
1027 abd_t *c_dabd = NULL;
1028 boolean_t cabds_is_gang_abd[3];
1029 boolean_t dabd_is_gang_abd = B_FALSE;
1030
1031 ASSERT3U(parity, <=, 3);
1032
1033 for (i = 0; i < parity; i++) {
1034 cabds_is_gang_abd[i] = abd_is_gang(cabds[i]);
1035 c_cabds[i] = abd_init_abd_iter(cabds[i], &caiters[i], 0);
1036 }
1037
1038 if (dabd) {
1039 dabd_is_gang_abd = abd_is_gang(dabd);
1040 c_dabd = abd_init_abd_iter(dabd, &daiter, 0);
1041 }
1042
1043 ASSERT3S(dsize, >=, 0);
1044
1045 abd_enter_critical(flags);
1046 while (csize > 0) {
1047 /* if we are at the end of the gang ABD we are done */
1048 if (dabd_is_gang_abd && !c_dabd)
1049 break;
1050
1051 for (i = 0; i < parity; i++) {
1052 /*
1053 * If we are at the end of the gang ABD we are
1054 * done.
1055 */
1056 if (cabds_is_gang_abd[i] && !c_cabds[i])
1057 break;
1058 abd_iter_map(&caiters[i]);
1059 caddrs[i] = caiters[i].iter_mapaddr;
1060 }
1061
1062 len = csize;
1063
1064 if (dabd && dsize > 0)
1065 abd_iter_map(&daiter);
1066
1067 switch (parity) {
1068 case 3:
1069 len = MIN(caiters[2].iter_mapsize, len);
1070 /* falls through */
1071 case 2:
1072 len = MIN(caiters[1].iter_mapsize, len);
1073 /* falls through */
1074 case 1:
1075 len = MIN(caiters[0].iter_mapsize, len);
1076 }
1077
1078 /* must be progressive */
1079 ASSERT3S(len, >, 0);
1080
1081 if (dabd && dsize > 0) {
1082 /* this needs precise iter.length */
1083 len = MIN(daiter.iter_mapsize, len);
1084 dlen = len;
1085 } else
1086 dlen = 0;
1087
1088 /* must be progressive */
1089 ASSERT3S(len, >, 0);
1090 /*
1091 * The iterated function likely will not do well if each
1092 * segment except the last one is not multiple of 512 (raidz).
1093 */
1094 ASSERT3U(((uint64_t)len & 511ULL), ==, 0);
1095
1096 func_raidz_gen(caddrs, daiter.iter_mapaddr, len, dlen);
1097
1098 for (i = parity-1; i >= 0; i--) {
1099 abd_iter_unmap(&caiters[i]);
1100 c_cabds[i] =
1101 abd_advance_abd_iter(cabds[i], c_cabds[i],
1102 &caiters[i], len);
1103 }
1104
1105 if (dabd && dsize > 0) {
1106 abd_iter_unmap(&daiter);
1107 c_dabd =
1108 abd_advance_abd_iter(dabd, c_dabd, &daiter,
1109 dlen);
1110 dsize -= dlen;
1111 }
1112
1113 csize -= len;
1114
1115 ASSERT3S(dsize, >=, 0);
1116 ASSERT3S(csize, >=, 0);
1117 }
1118 abd_exit_critical(flags);
1119 }
1120
1121 /*
1122 * Iterate over code ABDs and data reconstruction target ABDs and call
1123 * @func_raidz_rec. Function maps at most 6 pages atomically.
1124 *
1125 * @cabds parity ABDs, must have equal size
1126 * @tabds rec target ABDs, at most 3
1127 * @tsize size of data target columns
1128 * @func_raidz_rec expects syndrome data in target columns. Function
1129 * reconstructs data and overwrites target columns.
1130 */
1131 void
abd_raidz_rec_iterate(abd_t ** cabds,abd_t ** tabds,ssize_t tsize,const unsigned parity,void (* func_raidz_rec)(void ** t,const size_t tsize,void ** c,const unsigned * mul),const unsigned * mul)1132 abd_raidz_rec_iterate(abd_t **cabds, abd_t **tabds,
1133 ssize_t tsize, const unsigned parity,
1134 void (*func_raidz_rec)(void **t, const size_t tsize, void **c,
1135 const unsigned *mul),
1136 const unsigned *mul)
1137 {
1138 int i;
1139 ssize_t len;
1140 struct abd_iter citers[3];
1141 struct abd_iter xiters[3];
1142 void *caddrs[3], *xaddrs[3];
1143 unsigned long flags __maybe_unused = 0;
1144 boolean_t cabds_is_gang_abd[3];
1145 boolean_t tabds_is_gang_abd[3];
1146 abd_t *c_cabds[3];
1147 abd_t *c_tabds[3];
1148
1149 ASSERT3U(parity, <=, 3);
1150
1151 for (i = 0; i < parity; i++) {
1152 cabds_is_gang_abd[i] = abd_is_gang(cabds[i]);
1153 tabds_is_gang_abd[i] = abd_is_gang(tabds[i]);
1154 c_cabds[i] =
1155 abd_init_abd_iter(cabds[i], &citers[i], 0);
1156 c_tabds[i] =
1157 abd_init_abd_iter(tabds[i], &xiters[i], 0);
1158 }
1159
1160 abd_enter_critical(flags);
1161 while (tsize > 0) {
1162
1163 for (i = 0; i < parity; i++) {
1164 /*
1165 * If we are at the end of the gang ABD we
1166 * are done.
1167 */
1168 if (cabds_is_gang_abd[i] && !c_cabds[i])
1169 break;
1170 if (tabds_is_gang_abd[i] && !c_tabds[i])
1171 break;
1172 abd_iter_map(&citers[i]);
1173 abd_iter_map(&xiters[i]);
1174 caddrs[i] = citers[i].iter_mapaddr;
1175 xaddrs[i] = xiters[i].iter_mapaddr;
1176 }
1177
1178 len = tsize;
1179 switch (parity) {
1180 case 3:
1181 len = MIN(xiters[2].iter_mapsize, len);
1182 len = MIN(citers[2].iter_mapsize, len);
1183 /* falls through */
1184 case 2:
1185 len = MIN(xiters[1].iter_mapsize, len);
1186 len = MIN(citers[1].iter_mapsize, len);
1187 /* falls through */
1188 case 1:
1189 len = MIN(xiters[0].iter_mapsize, len);
1190 len = MIN(citers[0].iter_mapsize, len);
1191 }
1192 /* must be progressive */
1193 ASSERT3S(len, >, 0);
1194 /*
1195 * The iterated function likely will not do well if each
1196 * segment except the last one is not multiple of 512 (raidz).
1197 */
1198 ASSERT3U(((uint64_t)len & 511ULL), ==, 0);
1199
1200 func_raidz_rec(xaddrs, len, caddrs, mul);
1201
1202 for (i = parity-1; i >= 0; i--) {
1203 abd_iter_unmap(&xiters[i]);
1204 abd_iter_unmap(&citers[i]);
1205 c_tabds[i] =
1206 abd_advance_abd_iter(tabds[i], c_tabds[i],
1207 &xiters[i], len);
1208 c_cabds[i] =
1209 abd_advance_abd_iter(cabds[i], c_cabds[i],
1210 &citers[i], len);
1211 }
1212
1213 tsize -= len;
1214 ASSERT3S(tsize, >=, 0);
1215 }
1216 abd_exit_critical(flags);
1217 }
1218