1 /*-
2 * Copyright (c) 2016-2018 Netflix, Inc.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23 * SUCH DAMAGE.
24 *
25 */
26 #include <sys/cdefs.h>
27 __FBSDID("$FreeBSD$");
28
29 #include "opt_inet.h"
30 #include "opt_inet6.h"
31 #include "opt_rss.h"
32 #include "opt_tcpdebug.h"
33
34 /**
35 * Some notes about usage.
36 *
37 * The tcp_hpts system is designed to provide a high precision timer
38 * system for tcp. Its main purpose is to provide a mechanism for
39 * pacing packets out onto the wire. It can be used in two ways
40 * by a given TCP stack (and those two methods can be used simultaneously).
41 *
42 * First, and probably the main thing its used by Rack and BBR, it can
43 * be used to call tcp_output() of a transport stack at some time in the future.
44 * The normal way this is done is that tcp_output() of the stack schedules
45 * itself to be called again by calling tcp_hpts_insert(tcpcb, slot). The
46 * slot is the time from now that the stack wants to be called but it
47 * must be converted to tcp_hpts's notion of slot. This is done with
48 * one of the macros HPTS_MS_TO_SLOTS or HPTS_USEC_TO_SLOTS. So a typical
49 * call from the tcp_output() routine might look like:
50 *
51 * tcp_hpts_insert(tp, HPTS_USEC_TO_SLOTS(550));
52 *
53 * The above would schedule tcp_ouput() to be called in 550 useconds.
54 * Note that if using this mechanism the stack will want to add near
55 * its top a check to prevent unwanted calls (from user land or the
56 * arrival of incoming ack's). So it would add something like:
57 *
58 * if (inp->inp_in_hpts)
59 * return;
60 *
61 * to prevent output processing until the time alotted has gone by.
62 * Of course this is a bare bones example and the stack will probably
63 * have more consideration then just the above.
64 *
65 * Now the second function (actually two functions I guess :D)
66 * the tcp_hpts system provides is the ability to either abort
67 * a connection (later) or process input on a connection.
68 * Why would you want to do this? To keep processor locality
69 * and or not have to worry about untangling any recursive
70 * locks. The input function now is hooked to the new LRO
71 * system as well.
72 *
73 * In order to use the input redirection function the
74 * tcp stack must define an input function for
75 * tfb_do_queued_segments(). This function understands
76 * how to dequeue a array of packets that were input and
77 * knows how to call the correct processing routine.
78 *
79 * Locking in this is important as well so most likely the
80 * stack will need to define the tfb_do_segment_nounlock()
81 * splitting tfb_do_segment() into two parts. The main processing
82 * part that does not unlock the INP and returns a value of 1 or 0.
83 * It returns 0 if all is well and the lock was not released. It
84 * returns 1 if we had to destroy the TCB (a reset received etc).
85 * The remains of tfb_do_segment() then become just a simple call
86 * to the tfb_do_segment_nounlock() function and check the return
87 * code and possibly unlock.
88 *
89 * The stack must also set the flag on the INP that it supports this
90 * feature i.e. INP_SUPPORTS_MBUFQ. The LRO code recoginizes
91 * this flag as well and will queue packets when it is set.
92 * There are other flags as well INP_MBUF_QUEUE_READY and
93 * INP_DONT_SACK_QUEUE. The first flag tells the LRO code
94 * that we are in the pacer for output so there is no
95 * need to wake up the hpts system to get immediate
96 * input. The second tells the LRO code that its okay
97 * if a SACK arrives you can still defer input and let
98 * the current hpts timer run (this is usually set when
99 * a rack timer is up so we know SACK's are happening
100 * on the connection already and don't want to wakeup yet).
101 *
102 * There is a common functions within the rack_bbr_common code
103 * version i.e. ctf_do_queued_segments(). This function
104 * knows how to take the input queue of packets from
105 * tp->t_in_pkts and process them digging out
106 * all the arguments, calling any bpf tap and
107 * calling into tfb_do_segment_nounlock(). The common
108 * function (ctf_do_queued_segments()) requires that
109 * you have defined the tfb_do_segment_nounlock() as
110 * described above.
111 *
112 * The second feature of the input side of hpts is the
113 * dropping of a connection. This is due to the way that
114 * locking may have occured on the INP_WLOCK. So if
115 * a stack wants to drop a connection it calls:
116 *
117 * tcp_set_inp_to_drop(tp, ETIMEDOUT)
118 *
119 * To schedule the tcp_hpts system to call
120 *
121 * tcp_drop(tp, drop_reason)
122 *
123 * at a future point. This is quite handy to prevent locking
124 * issues when dropping connections.
125 *
126 */
127
128 #include <sys/param.h>
129 #include <sys/bus.h>
130 #include <sys/interrupt.h>
131 #include <sys/module.h>
132 #include <sys/kernel.h>
133 #include <sys/hhook.h>
134 #include <sys/malloc.h>
135 #include <sys/mbuf.h>
136 #include <sys/proc.h> /* for proc0 declaration */
137 #include <sys/socket.h>
138 #include <sys/socketvar.h>
139 #include <sys/sysctl.h>
140 #include <sys/systm.h>
141 #include <sys/refcount.h>
142 #include <sys/sched.h>
143 #include <sys/queue.h>
144 #include <sys/smp.h>
145 #include <sys/counter.h>
146 #include <sys/time.h>
147 #include <sys/kthread.h>
148 #include <sys/kern_prefetch.h>
149
150 #include <vm/uma.h>
151 #include <vm/vm.h>
152
153 #include <net/route.h>
154 #include <net/vnet.h>
155
156 #ifdef RSS
157 #include <net/netisr.h>
158 #include <net/rss_config.h>
159 #endif
160
161 #define TCPSTATES /* for logging */
162
163 #include <netinet/in.h>
164 #include <netinet/in_kdtrace.h>
165 #include <netinet/in_pcb.h>
166 #include <netinet/ip.h>
167 #include <netinet/ip_icmp.h> /* required for icmp_var.h */
168 #include <netinet/icmp_var.h> /* for ICMP_BANDLIM */
169 #include <netinet/ip_var.h>
170 #include <netinet/ip6.h>
171 #include <netinet6/in6_pcb.h>
172 #include <netinet6/ip6_var.h>
173 #include <netinet/tcp.h>
174 #include <netinet/tcp_fsm.h>
175 #include <netinet/tcp_seq.h>
176 #include <netinet/tcp_timer.h>
177 #include <netinet/tcp_var.h>
178 #include <netinet/tcpip.h>
179 #include <netinet/cc/cc.h>
180 #include <netinet/tcp_hpts.h>
181 #include <netinet/tcp_log_buf.h>
182
183 #ifdef tcpdebug
184 #include <netinet/tcp_debug.h>
185 #endif /* tcpdebug */
186 #ifdef tcp_offload
187 #include <netinet/tcp_offload.h>
188 #endif
189
190 MALLOC_DEFINE(M_TCPHPTS, "tcp_hpts", "TCP hpts");
191 #ifndef FSTACK
192 #ifdef RSS
193 static int tcp_bind_threads = 1;
194 #else
195 static int tcp_bind_threads = 2;
196 #endif
197 #else
198 static int tcp_bind_threads = 1;
199 #endif
200 TUNABLE_INT("net.inet.tcp.bind_hptss", &tcp_bind_threads);
201
202 static struct tcp_hptsi tcp_pace;
203 static int hpts_does_tp_logging = 0;
204
205 static void tcp_wakehpts(struct tcp_hpts_entry *p);
206 static void tcp_wakeinput(struct tcp_hpts_entry *p);
207 static void tcp_input_data(struct tcp_hpts_entry *hpts, struct timeval *tv);
208 static void tcp_hptsi(struct tcp_hpts_entry *hpts);
209 static void tcp_hpts_thread(void *ctx);
210 static void tcp_init_hptsi(void *st);
211
212 int32_t tcp_min_hptsi_time = DEFAULT_MIN_SLEEP;
213 static int32_t tcp_hpts_callout_skip_swi = 0;
214
215 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, hpts, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
216 "TCP Hpts controls");
217
218 #define timersub(tvp, uvp, vvp) \
219 do { \
220 (vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec; \
221 (vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec; \
222 if ((vvp)->tv_usec < 0) { \
223 (vvp)->tv_sec--; \
224 (vvp)->tv_usec += 1000000; \
225 } \
226 } while (0)
227
228 static int32_t tcp_hpts_precision = 120;
229
230 struct hpts_domain_info {
231 int count;
232 int cpu[MAXCPU];
233 };
234
235 struct hpts_domain_info hpts_domains[MAXMEMDOM];
236
237 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, precision, CTLFLAG_RW,
238 &tcp_hpts_precision, 120,
239 "Value for PRE() precision of callout");
240
241 counter_u64_t hpts_hopelessly_behind;
242
243 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts, OID_AUTO, hopeless, CTLFLAG_RD,
244 &hpts_hopelessly_behind,
245 "Number of times hpts could not catch up and was behind hopelessly");
246
247 counter_u64_t hpts_loops;
248
249 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts, OID_AUTO, loops, CTLFLAG_RD,
250 &hpts_loops, "Number of times hpts had to loop to catch up");
251
252 counter_u64_t back_tosleep;
253
254 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts, OID_AUTO, no_tcbsfound, CTLFLAG_RD,
255 &back_tosleep, "Number of times hpts found no tcbs");
256
257 counter_u64_t combined_wheel_wrap;
258
259 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts, OID_AUTO, comb_wheel_wrap, CTLFLAG_RD,
260 &combined_wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap");
261
262 counter_u64_t wheel_wrap;
263
264 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts, OID_AUTO, wheel_wrap, CTLFLAG_RD,
265 &wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap");
266
267 static int32_t out_ts_percision = 0;
268
269 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, out_tspercision, CTLFLAG_RW,
270 &out_ts_percision, 0,
271 "Do we use a percise timestamp for every output cts");
272 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, logging, CTLFLAG_RW,
273 &hpts_does_tp_logging, 0,
274 "Do we add to any tp that has logging on pacer logs");
275
276 static int32_t max_pacer_loops = 10;
277 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, loopmax, CTLFLAG_RW,
278 &max_pacer_loops, 10,
279 "What is the maximum number of times the pacer will loop trying to catch up");
280
281 #define HPTS_MAX_SLEEP_ALLOWED (NUM_OF_HPTSI_SLOTS/2)
282
283 static uint32_t hpts_sleep_max = HPTS_MAX_SLEEP_ALLOWED;
284
285 static int
sysctl_net_inet_tcp_hpts_max_sleep(SYSCTL_HANDLER_ARGS)286 sysctl_net_inet_tcp_hpts_max_sleep(SYSCTL_HANDLER_ARGS)
287 {
288 int error;
289 uint32_t new;
290
291 new = hpts_sleep_max;
292 error = sysctl_handle_int(oidp, &new, 0, req);
293 if (error == 0 && req->newptr) {
294 if ((new < (NUM_OF_HPTSI_SLOTS / 4)) ||
295 (new > HPTS_MAX_SLEEP_ALLOWED))
296 error = EINVAL;
297 else
298 hpts_sleep_max = new;
299 }
300 return (error);
301 }
302
303 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, maxsleep,
304 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
305 &hpts_sleep_max, 0,
306 &sysctl_net_inet_tcp_hpts_max_sleep, "IU",
307 "Maximum time hpts will sleep");
308
309 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, minsleep, CTLFLAG_RW,
310 &tcp_min_hptsi_time, 0,
311 "The minimum time the hpts must sleep before processing more slots");
312
313 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, skip_swi, CTLFLAG_RW,
314 &tcp_hpts_callout_skip_swi, 0,
315 "Do we have the callout call directly to the hpts?");
316
317 static void
tcp_hpts_log(struct tcp_hpts_entry * hpts,struct tcpcb * tp,struct timeval * tv,int ticks_to_run,int idx)318 tcp_hpts_log(struct tcp_hpts_entry *hpts, struct tcpcb *tp, struct timeval *tv,
319 int ticks_to_run, int idx)
320 {
321 union tcp_log_stackspecific log;
322
323 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
324 log.u_bbr.flex1 = hpts->p_nxt_slot;
325 log.u_bbr.flex2 = hpts->p_cur_slot;
326 log.u_bbr.flex3 = hpts->p_prev_slot;
327 log.u_bbr.flex4 = idx;
328 log.u_bbr.flex5 = hpts->p_curtick;
329 log.u_bbr.flex6 = hpts->p_on_queue_cnt;
330 log.u_bbr.use_lt_bw = 1;
331 log.u_bbr.inflight = ticks_to_run;
332 log.u_bbr.applimited = hpts->overidden_sleep;
333 log.u_bbr.delivered = hpts->saved_curtick;
334 log.u_bbr.timeStamp = tcp_tv_to_usectick(tv);
335 log.u_bbr.epoch = hpts->saved_curslot;
336 log.u_bbr.lt_epoch = hpts->saved_prev_slot;
337 log.u_bbr.pkts_out = hpts->p_delayed_by;
338 log.u_bbr.lost = hpts->p_hpts_sleep_time;
339 log.u_bbr.cur_del_rate = hpts->p_runningtick;
340 TCP_LOG_EVENTP(tp, NULL,
341 &tp->t_inpcb->inp_socket->so_rcv,
342 &tp->t_inpcb->inp_socket->so_snd,
343 BBR_LOG_HPTSDIAG, 0,
344 0, &log, false, tv);
345 }
346
347 static void
hpts_timeout_swi(void * arg)348 hpts_timeout_swi(void *arg)
349 {
350 struct tcp_hpts_entry *hpts;
351
352 hpts = (struct tcp_hpts_entry *)arg;
353 swi_sched(hpts->ie_cookie, 0);
354 }
355
356 static void
hpts_timeout_dir(void * arg)357 hpts_timeout_dir(void *arg)
358 {
359 tcp_hpts_thread(arg);
360 }
361
362 static inline void
hpts_sane_pace_remove(struct tcp_hpts_entry * hpts,struct inpcb * inp,struct hptsh * head,int clear)363 hpts_sane_pace_remove(struct tcp_hpts_entry *hpts, struct inpcb *inp, struct hptsh *head, int clear)
364 {
365 #ifdef INVARIANTS
366 if (mtx_owned(&hpts->p_mtx) == 0) {
367 /* We don't own the mutex? */
368 panic("%s: hpts:%p inp:%p no hpts mutex", __FUNCTION__, hpts, inp);
369 }
370 if (hpts->p_cpu != inp->inp_hpts_cpu) {
371 /* It is not the right cpu/mutex? */
372 panic("%s: hpts:%p inp:%p incorrect CPU", __FUNCTION__, hpts, inp);
373 }
374 if (inp->inp_in_hpts == 0) {
375 /* We are not on the hpts? */
376 panic("%s: hpts:%p inp:%p not on the hpts?", __FUNCTION__, hpts, inp);
377 }
378 #endif
379 TAILQ_REMOVE(head, inp, inp_hpts);
380 hpts->p_on_queue_cnt--;
381 if (hpts->p_on_queue_cnt < 0) {
382 /* Count should not go negative .. */
383 #ifdef INVARIANTS
384 panic("Hpts goes negative inp:%p hpts:%p",
385 inp, hpts);
386 #endif
387 hpts->p_on_queue_cnt = 0;
388 }
389 if (clear) {
390 inp->inp_hpts_request = 0;
391 inp->inp_in_hpts = 0;
392 }
393 }
394
395 static inline void
hpts_sane_pace_insert(struct tcp_hpts_entry * hpts,struct inpcb * inp,struct hptsh * head,int line,int noref)396 hpts_sane_pace_insert(struct tcp_hpts_entry *hpts, struct inpcb *inp, struct hptsh *head, int line, int noref)
397 {
398 #ifdef INVARIANTS
399 if (mtx_owned(&hpts->p_mtx) == 0) {
400 /* We don't own the mutex? */
401 panic("%s: hpts:%p inp:%p no hpts mutex", __FUNCTION__, hpts, inp);
402 }
403 if (hpts->p_cpu != inp->inp_hpts_cpu) {
404 /* It is not the right cpu/mutex? */
405 panic("%s: hpts:%p inp:%p incorrect CPU", __FUNCTION__, hpts, inp);
406 }
407 if ((noref == 0) && (inp->inp_in_hpts == 1)) {
408 /* We are already on the hpts? */
409 panic("%s: hpts:%p inp:%p already on the hpts?", __FUNCTION__, hpts, inp);
410 }
411 #endif
412 TAILQ_INSERT_TAIL(head, inp, inp_hpts);
413 inp->inp_in_hpts = 1;
414 hpts->p_on_queue_cnt++;
415 if (noref == 0) {
416 in_pcbref(inp);
417 }
418 }
419
420 static inline void
hpts_sane_input_remove(struct tcp_hpts_entry * hpts,struct inpcb * inp,int clear)421 hpts_sane_input_remove(struct tcp_hpts_entry *hpts, struct inpcb *inp, int clear)
422 {
423 #ifdef INVARIANTS
424 if (mtx_owned(&hpts->p_mtx) == 0) {
425 /* We don't own the mutex? */
426 panic("%s: hpts:%p inp:%p no hpts mutex", __FUNCTION__, hpts, inp);
427 }
428 if (hpts->p_cpu != inp->inp_input_cpu) {
429 /* It is not the right cpu/mutex? */
430 panic("%s: hpts:%p inp:%p incorrect CPU", __FUNCTION__, hpts, inp);
431 }
432 if (inp->inp_in_input == 0) {
433 /* We are not on the input hpts? */
434 panic("%s: hpts:%p inp:%p not on the input hpts?", __FUNCTION__, hpts, inp);
435 }
436 #endif
437 TAILQ_REMOVE(&hpts->p_input, inp, inp_input);
438 hpts->p_on_inqueue_cnt--;
439 if (hpts->p_on_inqueue_cnt < 0) {
440 #ifdef INVARIANTS
441 panic("Hpts in goes negative inp:%p hpts:%p",
442 inp, hpts);
443 #endif
444 hpts->p_on_inqueue_cnt = 0;
445 }
446 #ifdef INVARIANTS
447 if (TAILQ_EMPTY(&hpts->p_input) &&
448 (hpts->p_on_inqueue_cnt != 0)) {
449 /* We should not be empty with a queue count */
450 panic("%s hpts:%p in_hpts input empty but cnt:%d",
451 __FUNCTION__, hpts, hpts->p_on_inqueue_cnt);
452 }
453 #endif
454 if (clear)
455 inp->inp_in_input = 0;
456 }
457
458 static inline void
hpts_sane_input_insert(struct tcp_hpts_entry * hpts,struct inpcb * inp,int line)459 hpts_sane_input_insert(struct tcp_hpts_entry *hpts, struct inpcb *inp, int line)
460 {
461 #ifdef INVARIANTS
462 if (mtx_owned(&hpts->p_mtx) == 0) {
463 /* We don't own the mutex? */
464 panic("%s: hpts:%p inp:%p no hpts mutex", __FUNCTION__, hpts, inp);
465 }
466 if (hpts->p_cpu != inp->inp_input_cpu) {
467 /* It is not the right cpu/mutex? */
468 panic("%s: hpts:%p inp:%p incorrect CPU", __FUNCTION__, hpts, inp);
469 }
470 if (inp->inp_in_input == 1) {
471 /* We are already on the input hpts? */
472 panic("%s: hpts:%p inp:%p already on the input hpts?", __FUNCTION__, hpts, inp);
473 }
474 #endif
475 TAILQ_INSERT_TAIL(&hpts->p_input, inp, inp_input);
476 inp->inp_in_input = 1;
477 hpts->p_on_inqueue_cnt++;
478 in_pcbref(inp);
479 }
480
481 static void
tcp_wakehpts(struct tcp_hpts_entry * hpts)482 tcp_wakehpts(struct tcp_hpts_entry *hpts)
483 {
484 HPTS_MTX_ASSERT(hpts);
485 if (hpts->p_hpts_wake_scheduled == 0) {
486 hpts->p_hpts_wake_scheduled = 1;
487 swi_sched(hpts->ie_cookie, 0);
488 }
489 }
490
491 static void
tcp_wakeinput(struct tcp_hpts_entry * hpts)492 tcp_wakeinput(struct tcp_hpts_entry *hpts)
493 {
494 HPTS_MTX_ASSERT(hpts);
495 if (hpts->p_hpts_wake_scheduled == 0) {
496 hpts->p_hpts_wake_scheduled = 1;
497 swi_sched(hpts->ie_cookie, 0);
498 }
499 }
500
501 struct tcp_hpts_entry *
tcp_cur_hpts(struct inpcb * inp)502 tcp_cur_hpts(struct inpcb *inp)
503 {
504 int32_t hpts_num;
505 struct tcp_hpts_entry *hpts;
506
507 hpts_num = inp->inp_hpts_cpu;
508 hpts = tcp_pace.rp_ent[hpts_num];
509 return (hpts);
510 }
511
512 struct tcp_hpts_entry *
tcp_hpts_lock(struct inpcb * inp)513 tcp_hpts_lock(struct inpcb *inp)
514 {
515 struct tcp_hpts_entry *hpts;
516 int32_t hpts_num;
517
518 again:
519 hpts_num = inp->inp_hpts_cpu;
520 hpts = tcp_pace.rp_ent[hpts_num];
521 #ifdef INVARIANTS
522 if (mtx_owned(&hpts->p_mtx)) {
523 panic("Hpts:%p owns mtx prior-to lock line:%d",
524 hpts, __LINE__);
525 }
526 #endif
527 mtx_lock(&hpts->p_mtx);
528 if (hpts_num != inp->inp_hpts_cpu) {
529 mtx_unlock(&hpts->p_mtx);
530 goto again;
531 }
532 return (hpts);
533 }
534
535 struct tcp_hpts_entry *
tcp_input_lock(struct inpcb * inp)536 tcp_input_lock(struct inpcb *inp)
537 {
538 struct tcp_hpts_entry *hpts;
539 int32_t hpts_num;
540
541 again:
542 hpts_num = inp->inp_input_cpu;
543 hpts = tcp_pace.rp_ent[hpts_num];
544 #ifdef INVARIANTS
545 if (mtx_owned(&hpts->p_mtx)) {
546 panic("Hpts:%p owns mtx prior-to lock line:%d",
547 hpts, __LINE__);
548 }
549 #endif
550 mtx_lock(&hpts->p_mtx);
551 if (hpts_num != inp->inp_input_cpu) {
552 mtx_unlock(&hpts->p_mtx);
553 goto again;
554 }
555 return (hpts);
556 }
557
558 static void
tcp_remove_hpts_ref(struct inpcb * inp,struct tcp_hpts_entry * hpts,int line)559 tcp_remove_hpts_ref(struct inpcb *inp, struct tcp_hpts_entry *hpts, int line)
560 {
561 int32_t add_freed;
562
563 if (inp->inp_flags2 & INP_FREED) {
564 /*
565 * Need to play a special trick so that in_pcbrele_wlocked
566 * does not return 1 when it really should have returned 0.
567 */
568 add_freed = 1;
569 inp->inp_flags2 &= ~INP_FREED;
570 } else {
571 add_freed = 0;
572 }
573 #ifndef INP_REF_DEBUG
574 if (in_pcbrele_wlocked(inp)) {
575 /*
576 * This should not happen. We have the inpcb referred to by
577 * the main socket (why we are called) and the hpts. It
578 * should always return 0.
579 */
580 panic("inpcb:%p release ret 1",
581 inp);
582 }
583 #else
584 if (__in_pcbrele_wlocked(inp, line)) {
585 /*
586 * This should not happen. We have the inpcb referred to by
587 * the main socket (why we are called) and the hpts. It
588 * should always return 0.
589 */
590 panic("inpcb:%p release ret 1",
591 inp);
592 }
593 #endif
594 if (add_freed) {
595 inp->inp_flags2 |= INP_FREED;
596 }
597 }
598
599 static void
tcp_hpts_remove_locked_output(struct tcp_hpts_entry * hpts,struct inpcb * inp,int32_t flags,int32_t line)600 tcp_hpts_remove_locked_output(struct tcp_hpts_entry *hpts, struct inpcb *inp, int32_t flags, int32_t line)
601 {
602 if (inp->inp_in_hpts) {
603 hpts_sane_pace_remove(hpts, inp, &hpts->p_hptss[inp->inp_hptsslot], 1);
604 tcp_remove_hpts_ref(inp, hpts, line);
605 }
606 }
607
608 static void
tcp_hpts_remove_locked_input(struct tcp_hpts_entry * hpts,struct inpcb * inp,int32_t flags,int32_t line)609 tcp_hpts_remove_locked_input(struct tcp_hpts_entry *hpts, struct inpcb *inp, int32_t flags, int32_t line)
610 {
611 HPTS_MTX_ASSERT(hpts);
612 if (inp->inp_in_input) {
613 hpts_sane_input_remove(hpts, inp, 1);
614 tcp_remove_hpts_ref(inp, hpts, line);
615 }
616 }
617
618 /*
619 * Called normally with the INP_LOCKED but it
620 * does not matter, the hpts lock is the key
621 * but the lock order allows us to hold the
622 * INP lock and then get the hpts lock.
623 *
624 * Valid values in the flags are
625 * HPTS_REMOVE_OUTPUT - remove from the output of the hpts.
626 * HPTS_REMOVE_INPUT - remove from the input of the hpts.
627 * Note that you can use one or both values together
628 * and get two actions.
629 */
630 void
__tcp_hpts_remove(struct inpcb * inp,int32_t flags,int32_t line)631 __tcp_hpts_remove(struct inpcb *inp, int32_t flags, int32_t line)
632 {
633 struct tcp_hpts_entry *hpts;
634
635 INP_WLOCK_ASSERT(inp);
636 if (flags & HPTS_REMOVE_OUTPUT) {
637 hpts = tcp_hpts_lock(inp);
638 tcp_hpts_remove_locked_output(hpts, inp, flags, line);
639 mtx_unlock(&hpts->p_mtx);
640 }
641 if (flags & HPTS_REMOVE_INPUT) {
642 hpts = tcp_input_lock(inp);
643 tcp_hpts_remove_locked_input(hpts, inp, flags, line);
644 mtx_unlock(&hpts->p_mtx);
645 }
646 }
647
648 static inline int
hpts_tick(uint32_t wheel_tick,uint32_t plus)649 hpts_tick(uint32_t wheel_tick, uint32_t plus)
650 {
651 /*
652 * Given a slot on the wheel, what slot
653 * is that plus ticks out?
654 */
655 KASSERT(wheel_tick < NUM_OF_HPTSI_SLOTS, ("Invalid tick %u not on wheel", wheel_tick));
656 return ((wheel_tick + plus) % NUM_OF_HPTSI_SLOTS);
657 }
658
659 static inline int
tick_to_wheel(uint32_t cts_in_wticks)660 tick_to_wheel(uint32_t cts_in_wticks)
661 {
662 /*
663 * Given a timestamp in wheel ticks (10usec inc's)
664 * map it to our limited space wheel.
665 */
666 return (cts_in_wticks % NUM_OF_HPTSI_SLOTS);
667 }
668
669 static inline int
hpts_ticks_diff(int prev_tick,int tick_now)670 hpts_ticks_diff(int prev_tick, int tick_now)
671 {
672 /*
673 * Given two ticks that are someplace
674 * on our wheel. How far are they apart?
675 */
676 if (tick_now > prev_tick)
677 return (tick_now - prev_tick);
678 else if (tick_now == prev_tick)
679 /*
680 * Special case, same means we can go all of our
681 * wheel less one slot.
682 */
683 return (NUM_OF_HPTSI_SLOTS - 1);
684 else
685 return ((NUM_OF_HPTSI_SLOTS - prev_tick) + tick_now);
686 }
687
688 /*
689 * Given a tick on the wheel that is the current time
690 * mapped to the wheel (wheel_tick), what is the maximum
691 * distance forward that can be obtained without
692 * wrapping past either prev_tick or running_tick
693 * depending on the htps state? Also if passed
694 * a uint32_t *, fill it with the tick location.
695 *
696 * Note if you do not give this function the current
697 * time (that you think it is) mapped to the wheel
698 * then the results will not be what you expect and
699 * could lead to invalid inserts.
700 */
701 static inline int32_t
max_ticks_available(struct tcp_hpts_entry * hpts,uint32_t wheel_tick,uint32_t * target_tick)702 max_ticks_available(struct tcp_hpts_entry *hpts, uint32_t wheel_tick, uint32_t *target_tick)
703 {
704 uint32_t dis_to_travel, end_tick, pacer_to_now, avail_on_wheel;
705
706 if ((hpts->p_hpts_active == 1) &&
707 (hpts->p_wheel_complete == 0)) {
708 end_tick = hpts->p_runningtick;
709 /* Back up one tick */
710 if (end_tick == 0)
711 end_tick = NUM_OF_HPTSI_SLOTS - 1;
712 else
713 end_tick--;
714 if (target_tick)
715 *target_tick = end_tick;
716 } else {
717 /*
718 * For the case where we are
719 * not active, or we have
720 * completed the pass over
721 * the wheel, we can use the
722 * prev tick and subtract one from it. This puts us
723 * as far out as possible on the wheel.
724 */
725 end_tick = hpts->p_prev_slot;
726 if (end_tick == 0)
727 end_tick = NUM_OF_HPTSI_SLOTS - 1;
728 else
729 end_tick--;
730 if (target_tick)
731 *target_tick = end_tick;
732 /*
733 * Now we have close to the full wheel left minus the
734 * time it has been since the pacer went to sleep. Note
735 * that wheel_tick, passed in, should be the current time
736 * from the perspective of the caller, mapped to the wheel.
737 */
738 if (hpts->p_prev_slot != wheel_tick)
739 dis_to_travel = hpts_ticks_diff(hpts->p_prev_slot, wheel_tick);
740 else
741 dis_to_travel = 1;
742 /*
743 * dis_to_travel in this case is the space from when the
744 * pacer stopped (p_prev_slot) and where our wheel_tick
745 * is now. To know how many slots we can put it in we
746 * subtract from the wheel size. We would not want
747 * to place something after p_prev_slot or it will
748 * get ran too soon.
749 */
750 return (NUM_OF_HPTSI_SLOTS - dis_to_travel);
751 }
752 /*
753 * So how many slots are open between p_runningtick -> p_cur_slot
754 * that is what is currently un-available for insertion. Special
755 * case when we are at the last slot, this gets 1, so that
756 * the answer to how many slots are available is all but 1.
757 */
758 if (hpts->p_runningtick == hpts->p_cur_slot)
759 dis_to_travel = 1;
760 else
761 dis_to_travel = hpts_ticks_diff(hpts->p_runningtick, hpts->p_cur_slot);
762 /*
763 * How long has the pacer been running?
764 */
765 if (hpts->p_cur_slot != wheel_tick) {
766 /* The pacer is a bit late */
767 pacer_to_now = hpts_ticks_diff(hpts->p_cur_slot, wheel_tick);
768 } else {
769 /* The pacer is right on time, now == pacers start time */
770 pacer_to_now = 0;
771 }
772 /*
773 * To get the number left we can insert into we simply
774 * subract the distance the pacer has to run from how
775 * many slots there are.
776 */
777 avail_on_wheel = NUM_OF_HPTSI_SLOTS - dis_to_travel;
778 /*
779 * Now how many of those we will eat due to the pacer's
780 * time (p_cur_slot) of start being behind the
781 * real time (wheel_tick)?
782 */
783 if (avail_on_wheel <= pacer_to_now) {
784 /*
785 * Wheel wrap, we can't fit on the wheel, that
786 * is unusual the system must be way overloaded!
787 * Insert into the assured tick, and return special
788 * "0".
789 */
790 counter_u64_add(combined_wheel_wrap, 1);
791 *target_tick = hpts->p_nxt_slot;
792 return (0);
793 } else {
794 /*
795 * We know how many slots are open
796 * on the wheel (the reverse of what
797 * is left to run. Take away the time
798 * the pacer started to now (wheel_tick)
799 * and that tells you how many slots are
800 * open that can be inserted into that won't
801 * be touched by the pacer until later.
802 */
803 return (avail_on_wheel - pacer_to_now);
804 }
805 }
806
807 static int
tcp_queue_to_hpts_immediate_locked(struct inpcb * inp,struct tcp_hpts_entry * hpts,int32_t line,int32_t noref)808 tcp_queue_to_hpts_immediate_locked(struct inpcb *inp, struct tcp_hpts_entry *hpts, int32_t line, int32_t noref)
809 {
810 uint32_t need_wake = 0;
811
812 HPTS_MTX_ASSERT(hpts);
813 if (inp->inp_in_hpts == 0) {
814 /* Ok we need to set it on the hpts in the current slot */
815 inp->inp_hpts_request = 0;
816 if ((hpts->p_hpts_active == 0) ||
817 (hpts->p_wheel_complete)) {
818 /*
819 * A sleeping hpts we want in next slot to run
820 * note that in this state p_prev_slot == p_cur_slot
821 */
822 inp->inp_hptsslot = hpts_tick(hpts->p_prev_slot, 1);
823 if ((hpts->p_on_min_sleep == 0) && (hpts->p_hpts_active == 0))
824 need_wake = 1;
825 } else if ((void *)inp == hpts->p_inp) {
826 /*
827 * The hpts system is running and the caller
828 * was awoken by the hpts system.
829 * We can't allow you to go into the same slot we
830 * are in (we don't want a loop :-D).
831 */
832 inp->inp_hptsslot = hpts->p_nxt_slot;
833 } else
834 inp->inp_hptsslot = hpts->p_runningtick;
835 hpts_sane_pace_insert(hpts, inp, &hpts->p_hptss[inp->inp_hptsslot], line, noref);
836 if (need_wake) {
837 /*
838 * Activate the hpts if it is sleeping and its
839 * timeout is not 1.
840 */
841 hpts->p_direct_wake = 1;
842 tcp_wakehpts(hpts);
843 }
844 }
845 return (need_wake);
846 }
847
848 int
__tcp_queue_to_hpts_immediate(struct inpcb * inp,int32_t line)849 __tcp_queue_to_hpts_immediate(struct inpcb *inp, int32_t line)
850 {
851 int32_t ret;
852 struct tcp_hpts_entry *hpts;
853
854 INP_WLOCK_ASSERT(inp);
855 hpts = tcp_hpts_lock(inp);
856 ret = tcp_queue_to_hpts_immediate_locked(inp, hpts, line, 0);
857 mtx_unlock(&hpts->p_mtx);
858 return (ret);
859 }
860
861 #ifdef INVARIANTS
862 static void
check_if_slot_would_be_wrong(struct tcp_hpts_entry * hpts,struct inpcb * inp,uint32_t inp_hptsslot,int line)863 check_if_slot_would_be_wrong(struct tcp_hpts_entry *hpts, struct inpcb *inp, uint32_t inp_hptsslot, int line)
864 {
865 /*
866 * Sanity checks for the pacer with invariants
867 * on insert.
868 */
869 if (inp_hptsslot >= NUM_OF_HPTSI_SLOTS)
870 panic("hpts:%p inp:%p slot:%d > max",
871 hpts, inp, inp_hptsslot);
872 if ((hpts->p_hpts_active) &&
873 (hpts->p_wheel_complete == 0)) {
874 /*
875 * If the pacer is processing a arc
876 * of the wheel, we need to make
877 * sure we are not inserting within
878 * that arc.
879 */
880 int distance, yet_to_run;
881
882 distance = hpts_ticks_diff(hpts->p_runningtick, inp_hptsslot);
883 if (hpts->p_runningtick != hpts->p_cur_slot)
884 yet_to_run = hpts_ticks_diff(hpts->p_runningtick, hpts->p_cur_slot);
885 else
886 yet_to_run = 0; /* processing last slot */
887 if (yet_to_run > distance) {
888 panic("hpts:%p inp:%p slot:%d distance:%d yet_to_run:%d rs:%d cs:%d",
889 hpts, inp, inp_hptsslot,
890 distance, yet_to_run,
891 hpts->p_runningtick, hpts->p_cur_slot);
892 }
893 }
894 }
895 #endif
896
897 static void
tcp_hpts_insert_locked(struct tcp_hpts_entry * hpts,struct inpcb * inp,uint32_t slot,int32_t line,struct hpts_diag * diag,struct timeval * tv)898 tcp_hpts_insert_locked(struct tcp_hpts_entry *hpts, struct inpcb *inp, uint32_t slot, int32_t line,
899 struct hpts_diag *diag, struct timeval *tv)
900 {
901 uint32_t need_new_to = 0;
902 uint32_t wheel_cts, last_tick;
903 int32_t wheel_tick, maxticks;
904 int8_t need_wakeup = 0;
905
906 HPTS_MTX_ASSERT(hpts);
907 if (diag) {
908 memset(diag, 0, sizeof(struct hpts_diag));
909 diag->p_hpts_active = hpts->p_hpts_active;
910 diag->p_prev_slot = hpts->p_prev_slot;
911 diag->p_runningtick = hpts->p_runningtick;
912 diag->p_nxt_slot = hpts->p_nxt_slot;
913 diag->p_cur_slot = hpts->p_cur_slot;
914 diag->p_curtick = hpts->p_curtick;
915 diag->p_lasttick = hpts->p_lasttick;
916 diag->slot_req = slot;
917 diag->p_on_min_sleep = hpts->p_on_min_sleep;
918 diag->hpts_sleep_time = hpts->p_hpts_sleep_time;
919 }
920 if (inp->inp_in_hpts == 0) {
921 if (slot == 0) {
922 /* Immediate */
923 tcp_queue_to_hpts_immediate_locked(inp, hpts, line, 0);
924 return;
925 }
926 /* Get the current time relative to the wheel */
927 wheel_cts = tcp_tv_to_hptstick(tv);
928 /* Map it onto the wheel */
929 wheel_tick = tick_to_wheel(wheel_cts);
930 /* Now what's the max we can place it at? */
931 maxticks = max_ticks_available(hpts, wheel_tick, &last_tick);
932 if (diag) {
933 diag->wheel_tick = wheel_tick;
934 diag->maxticks = maxticks;
935 diag->wheel_cts = wheel_cts;
936 }
937 if (maxticks == 0) {
938 /* The pacer is in a wheel wrap behind, yikes! */
939 if (slot > 1) {
940 /*
941 * Reduce by 1 to prevent a forever loop in
942 * case something else is wrong. Note this
943 * probably does not hurt because the pacer
944 * if its true is so far behind we will be
945 * > 1second late calling anyway.
946 */
947 slot--;
948 }
949 inp->inp_hptsslot = last_tick;
950 inp->inp_hpts_request = slot;
951 } else if (maxticks >= slot) {
952 /* It all fits on the wheel */
953 inp->inp_hpts_request = 0;
954 inp->inp_hptsslot = hpts_tick(wheel_tick, slot);
955 } else {
956 /* It does not fit */
957 inp->inp_hpts_request = slot - maxticks;
958 inp->inp_hptsslot = last_tick;
959 }
960 if (diag) {
961 diag->slot_remaining = inp->inp_hpts_request;
962 diag->inp_hptsslot = inp->inp_hptsslot;
963 }
964 #ifdef INVARIANTS
965 check_if_slot_would_be_wrong(hpts, inp, inp->inp_hptsslot, line);
966 #endif
967 hpts_sane_pace_insert(hpts, inp, &hpts->p_hptss[inp->inp_hptsslot], line, 0);
968 if ((hpts->p_hpts_active == 0) &&
969 (inp->inp_hpts_request == 0) &&
970 (hpts->p_on_min_sleep == 0)) {
971 /*
972 * The hpts is sleeping and not on a minimum
973 * sleep time, we need to figure out where
974 * it will wake up at and if we need to reschedule
975 * its time-out.
976 */
977 uint32_t have_slept, yet_to_sleep;
978
979 /* Now do we need to restart the hpts's timer? */
980 have_slept = hpts_ticks_diff(hpts->p_prev_slot, wheel_tick);
981 if (have_slept < hpts->p_hpts_sleep_time)
982 yet_to_sleep = hpts->p_hpts_sleep_time - have_slept;
983 else {
984 /* We are over-due */
985 yet_to_sleep = 0;
986 need_wakeup = 1;
987 }
988 if (diag) {
989 diag->have_slept = have_slept;
990 diag->yet_to_sleep = yet_to_sleep;
991 }
992 if (yet_to_sleep &&
993 (yet_to_sleep > slot)) {
994 /*
995 * We need to reschedule the hpts's time-out.
996 */
997 hpts->p_hpts_sleep_time = slot;
998 need_new_to = slot * HPTS_TICKS_PER_USEC;
999 }
1000 }
1001 /*
1002 * Now how far is the hpts sleeping to? if active is 1, its
1003 * up and ticking we do nothing, otherwise we may need to
1004 * reschedule its callout if need_new_to is set from above.
1005 */
1006 if (need_wakeup) {
1007 hpts->p_direct_wake = 1;
1008 tcp_wakehpts(hpts);
1009 if (diag) {
1010 diag->need_new_to = 0;
1011 diag->co_ret = 0xffff0000;
1012 }
1013 } else if (need_new_to) {
1014 int32_t co_ret;
1015 struct timeval tv;
1016 sbintime_t sb;
1017
1018 tv.tv_sec = 0;
1019 tv.tv_usec = 0;
1020 while (need_new_to > HPTS_USEC_IN_SEC) {
1021 tv.tv_sec++;
1022 need_new_to -= HPTS_USEC_IN_SEC;
1023 }
1024 tv.tv_usec = need_new_to;
1025 sb = tvtosbt(tv);
1026 if (tcp_hpts_callout_skip_swi == 0) {
1027 co_ret = callout_reset_sbt_on(&hpts->co, sb, 0,
1028 hpts_timeout_swi, hpts, hpts->p_cpu,
1029 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
1030 } else {
1031 co_ret = callout_reset_sbt_on(&hpts->co, sb, 0,
1032 hpts_timeout_dir, hpts,
1033 hpts->p_cpu,
1034 C_PREL(tcp_hpts_precision));
1035 }
1036 if (diag) {
1037 diag->need_new_to = need_new_to;
1038 diag->co_ret = co_ret;
1039 }
1040 }
1041 } else {
1042 #ifdef INVARIANTS
1043 panic("Hpts:%p tp:%p already on hpts and add?", hpts, inp);
1044 #endif
1045 }
1046 }
1047
1048 uint32_t
tcp_hpts_insert_diag(struct inpcb * inp,uint32_t slot,int32_t line,struct hpts_diag * diag)1049 tcp_hpts_insert_diag(struct inpcb *inp, uint32_t slot, int32_t line, struct hpts_diag *diag)
1050 {
1051 struct tcp_hpts_entry *hpts;
1052 uint32_t slot_on;
1053 struct timeval tv;
1054
1055 /*
1056 * We now return the next-slot the hpts will be on, beyond its
1057 * current run (if up) or where it was when it stopped if it is
1058 * sleeping.
1059 */
1060 INP_WLOCK_ASSERT(inp);
1061 hpts = tcp_hpts_lock(inp);
1062 microuptime(&tv);
1063 tcp_hpts_insert_locked(hpts, inp, slot, line, diag, &tv);
1064 slot_on = hpts->p_nxt_slot;
1065 mtx_unlock(&hpts->p_mtx);
1066 return (slot_on);
1067 }
1068
1069 uint32_t
__tcp_hpts_insert(struct inpcb * inp,uint32_t slot,int32_t line)1070 __tcp_hpts_insert(struct inpcb *inp, uint32_t slot, int32_t line){
1071 return (tcp_hpts_insert_diag(inp, slot, line, NULL));
1072 }
1073 int
__tcp_queue_to_input_locked(struct inpcb * inp,struct tcp_hpts_entry * hpts,int32_t line)1074 __tcp_queue_to_input_locked(struct inpcb *inp, struct tcp_hpts_entry *hpts, int32_t line)
1075 {
1076 int32_t retval = 0;
1077
1078 HPTS_MTX_ASSERT(hpts);
1079 if (inp->inp_in_input == 0) {
1080 /* Ok we need to set it on the hpts in the current slot */
1081 hpts_sane_input_insert(hpts, inp, line);
1082 retval = 1;
1083 if (hpts->p_hpts_active == 0) {
1084 /*
1085 * Activate the hpts if it is sleeping.
1086 */
1087 retval = 2;
1088 hpts->p_direct_wake = 1;
1089 tcp_wakeinput(hpts);
1090 }
1091 } else if (hpts->p_hpts_active == 0) {
1092 retval = 4;
1093 hpts->p_direct_wake = 1;
1094 tcp_wakeinput(hpts);
1095 }
1096 return (retval);
1097 }
1098
1099 int32_t
__tcp_queue_to_input(struct inpcb * inp,int line)1100 __tcp_queue_to_input(struct inpcb *inp, int line)
1101 {
1102 struct tcp_hpts_entry *hpts;
1103 int32_t ret;
1104
1105 hpts = tcp_input_lock(inp);
1106 ret = __tcp_queue_to_input_locked(inp, hpts, line);
1107 mtx_unlock(&hpts->p_mtx);
1108 return (ret);
1109 }
1110
1111 void
__tcp_set_inp_to_drop(struct inpcb * inp,uint16_t reason,int32_t line)1112 __tcp_set_inp_to_drop(struct inpcb *inp, uint16_t reason, int32_t line)
1113 {
1114 struct tcp_hpts_entry *hpts;
1115 struct tcpcb *tp;
1116
1117 tp = intotcpcb(inp);
1118 hpts = tcp_input_lock(tp->t_inpcb);
1119 if (inp->inp_in_input == 0) {
1120 /* Ok we need to set it on the hpts in the current slot */
1121 hpts_sane_input_insert(hpts, inp, line);
1122 if (hpts->p_hpts_active == 0) {
1123 /*
1124 * Activate the hpts if it is sleeping.
1125 */
1126 hpts->p_direct_wake = 1;
1127 tcp_wakeinput(hpts);
1128 }
1129 } else if (hpts->p_hpts_active == 0) {
1130 hpts->p_direct_wake = 1;
1131 tcp_wakeinput(hpts);
1132 }
1133 inp->inp_hpts_drop_reas = reason;
1134 mtx_unlock(&hpts->p_mtx);
1135 }
1136
1137 static uint16_t
hpts_random_cpu(struct inpcb * inp)1138 hpts_random_cpu(struct inpcb *inp){
1139 /*
1140 * No flow type set distribute the load randomly.
1141 */
1142 uint16_t cpuid;
1143 uint32_t ran;
1144
1145 /*
1146 * If one has been set use it i.e. we want both in and out on the
1147 * same hpts.
1148 */
1149 if (inp->inp_input_cpu_set) {
1150 return (inp->inp_input_cpu);
1151 } else if (inp->inp_hpts_cpu_set) {
1152 return (inp->inp_hpts_cpu);
1153 }
1154 /* Nothing set use a random number */
1155 ran = arc4random();
1156 cpuid = (ran & 0xffff) % mp_ncpus;
1157 return (cpuid);
1158 }
1159
1160 static uint16_t
hpts_cpuid(struct inpcb * inp)1161 hpts_cpuid(struct inpcb *inp)
1162 {
1163 u_int cpuid;
1164 #if !defined(RSS) && defined(NUMA)
1165 struct hpts_domain_info *di;
1166 #endif
1167
1168 /*
1169 * If one has been set use it i.e. we want both in and out on the
1170 * same hpts.
1171 */
1172 if (inp->inp_input_cpu_set) {
1173 return (inp->inp_input_cpu);
1174 } else if (inp->inp_hpts_cpu_set) {
1175 return (inp->inp_hpts_cpu);
1176 }
1177 /* If one is set the other must be the same */
1178 #ifdef RSS
1179 cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype);
1180 if (cpuid == NETISR_CPUID_NONE)
1181 return (hpts_random_cpu(inp));
1182 else
1183 return (cpuid);
1184 #else
1185 /*
1186 * We don't have a flowid -> cpuid mapping, so cheat and just map
1187 * unknown cpuids to curcpu. Not the best, but apparently better
1188 * than defaulting to swi 0.
1189 */
1190
1191 if (inp->inp_flowtype == M_HASHTYPE_NONE)
1192 return (hpts_random_cpu(inp));
1193 /*
1194 * Hash to a thread based on the flowid. If we are using numa,
1195 * then restrict the hash to the numa domain where the inp lives.
1196 */
1197 #ifdef NUMA
1198 if (tcp_bind_threads == 2 && inp->inp_numa_domain != M_NODOM) {
1199 di = &hpts_domains[inp->inp_numa_domain];
1200 cpuid = di->cpu[inp->inp_flowid % di->count];
1201 } else
1202 #endif
1203 cpuid = inp->inp_flowid % mp_ncpus;
1204
1205 return (cpuid);
1206 #endif
1207 }
1208
1209 static void
tcp_drop_in_pkts(struct tcpcb * tp)1210 tcp_drop_in_pkts(struct tcpcb *tp)
1211 {
1212 struct mbuf *m, *n;
1213
1214 m = tp->t_in_pkt;
1215 if (m)
1216 n = m->m_nextpkt;
1217 else
1218 n = NULL;
1219 tp->t_in_pkt = NULL;
1220 while (m) {
1221 m_freem(m);
1222 m = n;
1223 if (m)
1224 n = m->m_nextpkt;
1225 }
1226 }
1227
1228 /*
1229 * Do NOT try to optimize the processing of inp's
1230 * by first pulling off all the inp's into a temporary
1231 * list (e.g. TAILQ_CONCAT). If you do that the subtle
1232 * interactions of switching CPU's will kill because of
1233 * problems in the linked list manipulation. Basically
1234 * you would switch cpu's with the hpts mutex locked
1235 * but then while you were processing one of the inp's
1236 * some other one that you switch will get a new
1237 * packet on the different CPU. It will insert it
1238 * on the new hpts's input list. Creating a temporary
1239 * link in the inp will not fix it either, since
1240 * the other hpts will be doing the same thing and
1241 * you will both end up using the temporary link.
1242 *
1243 * You will die in an ASSERT for tailq corruption if you
1244 * run INVARIANTS or you will die horribly without
1245 * INVARIANTS in some unknown way with a corrupt linked
1246 * list.
1247 */
1248 static void
tcp_input_data(struct tcp_hpts_entry * hpts,struct timeval * tv)1249 tcp_input_data(struct tcp_hpts_entry *hpts, struct timeval *tv)
1250 {
1251 struct tcpcb *tp;
1252 struct inpcb *inp;
1253 uint16_t drop_reason;
1254 int16_t set_cpu;
1255 uint32_t did_prefetch = 0;
1256 int dropped;
1257
1258 HPTS_MTX_ASSERT(hpts);
1259 NET_EPOCH_ASSERT();
1260
1261 while ((inp = TAILQ_FIRST(&hpts->p_input)) != NULL) {
1262 HPTS_MTX_ASSERT(hpts);
1263 hpts_sane_input_remove(hpts, inp, 0);
1264 if (inp->inp_input_cpu_set == 0) {
1265 set_cpu = 1;
1266 } else {
1267 set_cpu = 0;
1268 }
1269 hpts->p_inp = inp;
1270 drop_reason = inp->inp_hpts_drop_reas;
1271 inp->inp_in_input = 0;
1272 mtx_unlock(&hpts->p_mtx);
1273 INP_WLOCK(inp);
1274 #ifdef VIMAGE
1275 CURVNET_SET(inp->inp_vnet);
1276 #endif
1277 if ((inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) ||
1278 (inp->inp_flags2 & INP_FREED)) {
1279 out:
1280 hpts->p_inp = NULL;
1281 if (in_pcbrele_wlocked(inp) == 0) {
1282 INP_WUNLOCK(inp);
1283 }
1284 #ifdef VIMAGE
1285 CURVNET_RESTORE();
1286 #endif
1287 mtx_lock(&hpts->p_mtx);
1288 continue;
1289 }
1290 tp = intotcpcb(inp);
1291 if ((tp == NULL) || (tp->t_inpcb == NULL)) {
1292 goto out;
1293 }
1294 if (drop_reason) {
1295 /* This tcb is being destroyed for drop_reason */
1296 tcp_drop_in_pkts(tp);
1297 tp = tcp_drop(tp, drop_reason);
1298 if (tp == NULL) {
1299 INP_WLOCK(inp);
1300 }
1301 if (in_pcbrele_wlocked(inp) == 0)
1302 INP_WUNLOCK(inp);
1303 #ifdef VIMAGE
1304 CURVNET_RESTORE();
1305 #endif
1306 mtx_lock(&hpts->p_mtx);
1307 continue;
1308 }
1309 if (set_cpu) {
1310 /*
1311 * Setup so the next time we will move to the right
1312 * CPU. This should be a rare event. It will
1313 * sometimes happens when we are the client side
1314 * (usually not the server). Somehow tcp_output()
1315 * gets called before the tcp_do_segment() sets the
1316 * intial state. This means the r_cpu and r_hpts_cpu
1317 * is 0. We get on the hpts, and then tcp_input()
1318 * gets called setting up the r_cpu to the correct
1319 * value. The hpts goes off and sees the mis-match.
1320 * We simply correct it here and the CPU will switch
1321 * to the new hpts nextime the tcb gets added to the
1322 * the hpts (not this time) :-)
1323 */
1324 tcp_set_hpts(inp);
1325 }
1326 if (tp->t_fb_ptr != NULL) {
1327 kern_prefetch(tp->t_fb_ptr, &did_prefetch);
1328 did_prefetch = 1;
1329 }
1330 if ((inp->inp_flags2 & INP_SUPPORTS_MBUFQ) && tp->t_in_pkt) {
1331 if (inp->inp_in_input)
1332 tcp_hpts_remove(inp, HPTS_REMOVE_INPUT);
1333 dropped = (*tp->t_fb->tfb_do_queued_segments)(inp->inp_socket, tp, 0);
1334 if (dropped) {
1335 /* Re-acquire the wlock so we can release the reference */
1336 INP_WLOCK(inp);
1337 }
1338 } else if (tp->t_in_pkt) {
1339 /*
1340 * We reach here only if we had a
1341 * stack that supported INP_SUPPORTS_MBUFQ
1342 * and then somehow switched to a stack that
1343 * does not. The packets are basically stranded
1344 * and would hang with the connection until
1345 * cleanup without this code. Its not the
1346 * best way but I know of no other way to
1347 * handle it since the stack needs functions
1348 * it does not have to handle queued packets.
1349 */
1350 tcp_drop_in_pkts(tp);
1351 }
1352 if (in_pcbrele_wlocked(inp) == 0)
1353 INP_WUNLOCK(inp);
1354 INP_UNLOCK_ASSERT(inp);
1355 #ifdef VIMAGE
1356 CURVNET_RESTORE();
1357 #endif
1358 mtx_lock(&hpts->p_mtx);
1359 hpts->p_inp = NULL;
1360 }
1361 }
1362
1363 static void
tcp_hptsi(struct tcp_hpts_entry * hpts)1364 tcp_hptsi(struct tcp_hpts_entry *hpts)
1365 {
1366 struct tcpcb *tp;
1367 struct inpcb *inp = NULL, *ninp;
1368 struct timeval tv;
1369 int32_t ticks_to_run, i, error;
1370 int32_t paced_cnt = 0;
1371 int32_t loop_cnt = 0;
1372 int32_t did_prefetch = 0;
1373 int32_t prefetch_ninp = 0;
1374 int32_t prefetch_tp = 0;
1375 int32_t wrap_loop_cnt = 0;
1376 int16_t set_cpu;
1377
1378 HPTS_MTX_ASSERT(hpts);
1379 NET_EPOCH_ASSERT();
1380
1381 /* record previous info for any logging */
1382 hpts->saved_lasttick = hpts->p_lasttick;
1383 hpts->saved_curtick = hpts->p_curtick;
1384 hpts->saved_curslot = hpts->p_cur_slot;
1385 hpts->saved_prev_slot = hpts->p_prev_slot;
1386
1387 hpts->p_lasttick = hpts->p_curtick;
1388 hpts->p_curtick = tcp_gethptstick(&tv);
1389 hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1390 if ((hpts->p_on_queue_cnt == 0) ||
1391 (hpts->p_lasttick == hpts->p_curtick)) {
1392 /*
1393 * No time has yet passed,
1394 * or nothing to do.
1395 */
1396 hpts->p_prev_slot = hpts->p_cur_slot;
1397 hpts->p_lasttick = hpts->p_curtick;
1398 goto no_run;
1399 }
1400 again:
1401 hpts->p_wheel_complete = 0;
1402 HPTS_MTX_ASSERT(hpts);
1403 ticks_to_run = hpts_ticks_diff(hpts->p_prev_slot, hpts->p_cur_slot);
1404 if (((hpts->p_curtick - hpts->p_lasttick) > ticks_to_run) &&
1405 (hpts->p_on_queue_cnt != 0)) {
1406 /*
1407 * Wheel wrap is occuring, basically we
1408 * are behind and the distance between
1409 * run's has spread so much it has exceeded
1410 * the time on the wheel (1.024 seconds). This
1411 * is ugly and should NOT be happening. We
1412 * need to run the entire wheel. We last processed
1413 * p_prev_slot, so that needs to be the last slot
1414 * we run. The next slot after that should be our
1415 * reserved first slot for new, and then starts
1416 * the running postion. Now the problem is the
1417 * reserved "not to yet" place does not exist
1418 * and there may be inp's in there that need
1419 * running. We can merge those into the
1420 * first slot at the head.
1421 */
1422 wrap_loop_cnt++;
1423 hpts->p_nxt_slot = hpts_tick(hpts->p_prev_slot, 1);
1424 hpts->p_runningtick = hpts_tick(hpts->p_prev_slot, 2);
1425 /*
1426 * Adjust p_cur_slot to be where we are starting from
1427 * hopefully we will catch up (fat chance if something
1428 * is broken this bad :( )
1429 */
1430 hpts->p_cur_slot = hpts->p_prev_slot;
1431 /*
1432 * The next slot has guys to run too, and that would
1433 * be where we would normally start, lets move them into
1434 * the next slot (p_prev_slot + 2) so that we will
1435 * run them, the extra 10usecs of late (by being
1436 * put behind) does not really matter in this situation.
1437 */
1438 #ifdef INVARIANTS
1439 /*
1440 * To prevent a panic we need to update the inpslot to the
1441 * new location. This is safe since it takes both the
1442 * INP lock and the pacer mutex to change the inp_hptsslot.
1443 */
1444 TAILQ_FOREACH(inp, &hpts->p_hptss[hpts->p_nxt_slot], inp_hpts) {
1445 inp->inp_hptsslot = hpts->p_runningtick;
1446 }
1447 #endif
1448 TAILQ_CONCAT(&hpts->p_hptss[hpts->p_runningtick],
1449 &hpts->p_hptss[hpts->p_nxt_slot], inp_hpts);
1450 ticks_to_run = NUM_OF_HPTSI_SLOTS - 1;
1451 counter_u64_add(wheel_wrap, 1);
1452 } else {
1453 /*
1454 * Nxt slot is always one after p_runningtick though
1455 * its not used usually unless we are doing wheel wrap.
1456 */
1457 hpts->p_nxt_slot = hpts->p_prev_slot;
1458 hpts->p_runningtick = hpts_tick(hpts->p_prev_slot, 1);
1459 }
1460 #ifdef INVARIANTS
1461 if (TAILQ_EMPTY(&hpts->p_input) &&
1462 (hpts->p_on_inqueue_cnt != 0)) {
1463 panic("tp:%p in_hpts input empty but cnt:%d",
1464 hpts, hpts->p_on_inqueue_cnt);
1465 }
1466 #endif
1467 HPTS_MTX_ASSERT(hpts);
1468 if (hpts->p_on_queue_cnt == 0) {
1469 goto no_one;
1470 }
1471 HPTS_MTX_ASSERT(hpts);
1472 for (i = 0; i < ticks_to_run; i++) {
1473 /*
1474 * Calculate our delay, if there are no extra ticks there
1475 * was not any (i.e. if ticks_to_run == 1, no delay).
1476 */
1477 hpts->p_delayed_by = (ticks_to_run - (i + 1)) * HPTS_TICKS_PER_USEC;
1478 HPTS_MTX_ASSERT(hpts);
1479 while ((inp = TAILQ_FIRST(&hpts->p_hptss[hpts->p_runningtick])) != NULL) {
1480 /* For debugging */
1481 hpts->p_inp = inp;
1482 paced_cnt++;
1483 #ifdef INVARIANTS
1484 if (hpts->p_runningtick != inp->inp_hptsslot) {
1485 panic("Hpts:%p inp:%p slot mis-aligned %u vs %u",
1486 hpts, inp, hpts->p_runningtick, inp->inp_hptsslot);
1487 }
1488 #endif
1489 /* Now pull it */
1490 if (inp->inp_hpts_cpu_set == 0) {
1491 set_cpu = 1;
1492 } else {
1493 set_cpu = 0;
1494 }
1495 hpts_sane_pace_remove(hpts, inp, &hpts->p_hptss[hpts->p_runningtick], 0);
1496 if ((ninp = TAILQ_FIRST(&hpts->p_hptss[hpts->p_runningtick])) != NULL) {
1497 /* We prefetch the next inp if possible */
1498 kern_prefetch(ninp, &prefetch_ninp);
1499 prefetch_ninp = 1;
1500 }
1501 if (inp->inp_hpts_request) {
1502 /*
1503 * This guy is deferred out further in time
1504 * then our wheel had available on it.
1505 * Push him back on the wheel or run it
1506 * depending.
1507 */
1508 uint32_t maxticks, last_tick, remaining_slots;
1509
1510 remaining_slots = ticks_to_run - (i + 1);
1511 if (inp->inp_hpts_request > remaining_slots) {
1512 /*
1513 * How far out can we go?
1514 */
1515 maxticks = max_ticks_available(hpts, hpts->p_cur_slot, &last_tick);
1516 if (maxticks >= inp->inp_hpts_request) {
1517 /* we can place it finally to be processed */
1518 inp->inp_hptsslot = hpts_tick(hpts->p_runningtick, inp->inp_hpts_request);
1519 inp->inp_hpts_request = 0;
1520 } else {
1521 /* Work off some more time */
1522 inp->inp_hptsslot = last_tick;
1523 inp->inp_hpts_request-= maxticks;
1524 }
1525 hpts_sane_pace_insert(hpts, inp, &hpts->p_hptss[inp->inp_hptsslot], __LINE__, 1);
1526 hpts->p_inp = NULL;
1527 continue;
1528 }
1529 inp->inp_hpts_request = 0;
1530 /* Fall through we will so do it now */
1531 }
1532 /*
1533 * We clear the hpts flag here after dealing with
1534 * remaining slots. This way anyone looking with the
1535 * TCB lock will see its on the hpts until just
1536 * before we unlock.
1537 */
1538 inp->inp_in_hpts = 0;
1539 mtx_unlock(&hpts->p_mtx);
1540 INP_WLOCK(inp);
1541 if (in_pcbrele_wlocked(inp)) {
1542 mtx_lock(&hpts->p_mtx);
1543 hpts->p_inp = NULL;
1544 continue;
1545 }
1546 if ((inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) ||
1547 (inp->inp_flags2 & INP_FREED)) {
1548 out_now:
1549 #ifdef INVARIANTS
1550 if (mtx_owned(&hpts->p_mtx)) {
1551 panic("Hpts:%p owns mtx prior-to lock line:%d",
1552 hpts, __LINE__);
1553 }
1554 #endif
1555 INP_WUNLOCK(inp);
1556 mtx_lock(&hpts->p_mtx);
1557 hpts->p_inp = NULL;
1558 continue;
1559 }
1560 tp = intotcpcb(inp);
1561 if ((tp == NULL) || (tp->t_inpcb == NULL)) {
1562 goto out_now;
1563 }
1564 if (set_cpu) {
1565 /*
1566 * Setup so the next time we will move to
1567 * the right CPU. This should be a rare
1568 * event. It will sometimes happens when we
1569 * are the client side (usually not the
1570 * server). Somehow tcp_output() gets called
1571 * before the tcp_do_segment() sets the
1572 * intial state. This means the r_cpu and
1573 * r_hpts_cpu is 0. We get on the hpts, and
1574 * then tcp_input() gets called setting up
1575 * the r_cpu to the correct value. The hpts
1576 * goes off and sees the mis-match. We
1577 * simply correct it here and the CPU will
1578 * switch to the new hpts nextime the tcb
1579 * gets added to the the hpts (not this one)
1580 * :-)
1581 */
1582 tcp_set_hpts(inp);
1583 }
1584 #ifdef VIMAGE
1585 CURVNET_SET(inp->inp_vnet);
1586 #endif
1587 /* Lets do any logging that we might want to */
1588 if (hpts_does_tp_logging && (tp->t_logstate != TCP_LOG_STATE_OFF)) {
1589 tcp_hpts_log(hpts, tp, &tv, ticks_to_run, i);
1590 }
1591 /*
1592 * There is a hole here, we get the refcnt on the
1593 * inp so it will still be preserved but to make
1594 * sure we can get the INP we need to hold the p_mtx
1595 * above while we pull out the tp/inp, as long as
1596 * fini gets the lock first we are assured of having
1597 * a sane INP we can lock and test.
1598 */
1599 #ifdef INVARIANTS
1600 if (mtx_owned(&hpts->p_mtx)) {
1601 panic("Hpts:%p owns mtx before tcp-output:%d",
1602 hpts, __LINE__);
1603 }
1604 #endif
1605 if (tp->t_fb_ptr != NULL) {
1606 kern_prefetch(tp->t_fb_ptr, &did_prefetch);
1607 did_prefetch = 1;
1608 }
1609 if ((inp->inp_flags2 & INP_SUPPORTS_MBUFQ) && tp->t_in_pkt) {
1610 error = (*tp->t_fb->tfb_do_queued_segments)(inp->inp_socket, tp, 0);
1611 if (error) {
1612 /* The input killed the connection */
1613 goto skip_pacing;
1614 }
1615 }
1616 inp->inp_hpts_calls = 1;
1617 error = tp->t_fb->tfb_tcp_output(tp);
1618 inp->inp_hpts_calls = 0;
1619 if (ninp && ninp->inp_ppcb) {
1620 /*
1621 * If we have a nxt inp, see if we can
1622 * prefetch its ppcb. Note this may seem
1623 * "risky" since we have no locks (other
1624 * than the previous inp) and there no
1625 * assurance that ninp was not pulled while
1626 * we were processing inp and freed. If this
1627 * occured it could mean that either:
1628 *
1629 * a) Its NULL (which is fine we won't go
1630 * here) <or> b) Its valid (which is cool we
1631 * will prefetch it) <or> c) The inp got
1632 * freed back to the slab which was
1633 * reallocated. Then the piece of memory was
1634 * re-used and something else (not an
1635 * address) is in inp_ppcb. If that occurs
1636 * we don't crash, but take a TLB shootdown
1637 * performance hit (same as if it was NULL
1638 * and we tried to pre-fetch it).
1639 *
1640 * Considering that the likelyhood of <c> is
1641 * quite rare we will take a risk on doing
1642 * this. If performance drops after testing
1643 * we can always take this out. NB: the
1644 * kern_prefetch on amd64 actually has
1645 * protection against a bad address now via
1646 * the DMAP_() tests. This will prevent the
1647 * TLB hit, and instead if <c> occurs just
1648 * cause us to load cache with a useless
1649 * address (to us).
1650 */
1651 kern_prefetch(ninp->inp_ppcb, &prefetch_tp);
1652 prefetch_tp = 1;
1653 }
1654 INP_WUNLOCK(inp);
1655 skip_pacing:
1656 #ifdef VIMAGE
1657 CURVNET_RESTORE();
1658 #endif
1659 INP_UNLOCK_ASSERT(inp);
1660 #ifdef INVARIANTS
1661 if (mtx_owned(&hpts->p_mtx)) {
1662 panic("Hpts:%p owns mtx prior-to lock line:%d",
1663 hpts, __LINE__);
1664 }
1665 #endif
1666 mtx_lock(&hpts->p_mtx);
1667 hpts->p_inp = NULL;
1668 }
1669 HPTS_MTX_ASSERT(hpts);
1670 hpts->p_inp = NULL;
1671 hpts->p_runningtick++;
1672 if (hpts->p_runningtick >= NUM_OF_HPTSI_SLOTS) {
1673 hpts->p_runningtick = 0;
1674 }
1675 }
1676 no_one:
1677 HPTS_MTX_ASSERT(hpts);
1678 hpts->p_delayed_by = 0;
1679 /*
1680 * Check to see if we took an excess amount of time and need to run
1681 * more ticks (if we did not hit eno-bufs).
1682 */
1683 #ifdef INVARIANTS
1684 if (TAILQ_EMPTY(&hpts->p_input) &&
1685 (hpts->p_on_inqueue_cnt != 0)) {
1686 panic("tp:%p in_hpts input empty but cnt:%d",
1687 hpts, hpts->p_on_inqueue_cnt);
1688 }
1689 #endif
1690 hpts->p_prev_slot = hpts->p_cur_slot;
1691 hpts->p_lasttick = hpts->p_curtick;
1692 if (loop_cnt > max_pacer_loops) {
1693 /*
1694 * Something is serious slow we have
1695 * looped through processing the wheel
1696 * and by the time we cleared the
1697 * needs to run max_pacer_loops time
1698 * we still needed to run. That means
1699 * the system is hopelessly behind and
1700 * can never catch up :(
1701 *
1702 * We will just lie to this thread
1703 * and let it thing p_curtick is
1704 * correct. When it next awakens
1705 * it will find itself further behind.
1706 */
1707 counter_u64_add(hpts_hopelessly_behind, 1);
1708 goto no_run;
1709 }
1710 hpts->p_curtick = tcp_gethptstick(&tv);
1711 hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1712 if ((wrap_loop_cnt < 2) &&
1713 (hpts->p_lasttick != hpts->p_curtick)) {
1714 counter_u64_add(hpts_loops, 1);
1715 loop_cnt++;
1716 goto again;
1717 }
1718 no_run:
1719 /*
1720 * Set flag to tell that we are done for
1721 * any slot input that happens during
1722 * input.
1723 */
1724 hpts->p_wheel_complete = 1;
1725 /*
1726 * Run any input that may be there not covered
1727 * in running data.
1728 */
1729 if (!TAILQ_EMPTY(&hpts->p_input)) {
1730 tcp_input_data(hpts, &tv);
1731 /*
1732 * Now did we spend too long running
1733 * input and need to run more ticks?
1734 */
1735 KASSERT(hpts->p_prev_slot == hpts->p_cur_slot,
1736 ("H:%p p_prev_slot:%u not equal to p_cur_slot:%u", hpts,
1737 hpts->p_prev_slot, hpts->p_cur_slot));
1738 KASSERT(hpts->p_lasttick == hpts->p_curtick,
1739 ("H:%p p_lasttick:%u not equal to p_curtick:%u", hpts,
1740 hpts->p_lasttick, hpts->p_curtick));
1741 hpts->p_curtick = tcp_gethptstick(&tv);
1742 if (hpts->p_lasttick != hpts->p_curtick) {
1743 counter_u64_add(hpts_loops, 1);
1744 hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1745 goto again;
1746 }
1747 }
1748 {
1749 uint32_t t = 0, i, fnd = 0;
1750
1751 if ((hpts->p_on_queue_cnt) && (wrap_loop_cnt < 2)) {
1752 /*
1753 * Find next slot that is occupied and use that to
1754 * be the sleep time.
1755 */
1756 for (i = 0, t = hpts_tick(hpts->p_cur_slot, 1); i < NUM_OF_HPTSI_SLOTS; i++) {
1757 if (TAILQ_EMPTY(&hpts->p_hptss[t]) == 0) {
1758 fnd = 1;
1759 break;
1760 }
1761 t = (t + 1) % NUM_OF_HPTSI_SLOTS;
1762 }
1763 if (fnd) {
1764 hpts->p_hpts_sleep_time = min((i + 1), hpts_sleep_max);
1765 } else {
1766 #ifdef INVARIANTS
1767 panic("Hpts:%p cnt:%d but none found", hpts, hpts->p_on_queue_cnt);
1768 #endif
1769 counter_u64_add(back_tosleep, 1);
1770 hpts->p_on_queue_cnt = 0;
1771 goto non_found;
1772 }
1773 } else if (wrap_loop_cnt >= 2) {
1774 /* Special case handling */
1775 hpts->p_hpts_sleep_time = tcp_min_hptsi_time;
1776 } else {
1777 /* No one on the wheel sleep for all but 400 slots or sleep max */
1778 non_found:
1779 hpts->p_hpts_sleep_time = hpts_sleep_max;
1780 }
1781 }
1782 }
1783
1784 void
__tcp_set_hpts(struct inpcb * inp,int32_t line)1785 __tcp_set_hpts(struct inpcb *inp, int32_t line)
1786 {
1787 struct tcp_hpts_entry *hpts;
1788
1789 INP_WLOCK_ASSERT(inp);
1790 hpts = tcp_hpts_lock(inp);
1791 if ((inp->inp_in_hpts == 0) &&
1792 (inp->inp_hpts_cpu_set == 0)) {
1793 inp->inp_hpts_cpu = hpts_cpuid(inp);
1794 inp->inp_hpts_cpu_set = 1;
1795 }
1796 mtx_unlock(&hpts->p_mtx);
1797 hpts = tcp_input_lock(inp);
1798 if ((inp->inp_input_cpu_set == 0) &&
1799 (inp->inp_in_input == 0)) {
1800 inp->inp_input_cpu = hpts_cpuid(inp);
1801 inp->inp_input_cpu_set = 1;
1802 }
1803 mtx_unlock(&hpts->p_mtx);
1804 }
1805
1806 uint16_t
tcp_hpts_delayedby(struct inpcb * inp)1807 tcp_hpts_delayedby(struct inpcb *inp){
1808 return (tcp_pace.rp_ent[inp->inp_hpts_cpu]->p_delayed_by);
1809 }
1810
1811 static void
tcp_hpts_thread(void * ctx)1812 tcp_hpts_thread(void *ctx)
1813 {
1814 struct tcp_hpts_entry *hpts;
1815 struct epoch_tracker et;
1816 struct timeval tv;
1817 sbintime_t sb;
1818
1819 hpts = (struct tcp_hpts_entry *)ctx;
1820 mtx_lock(&hpts->p_mtx);
1821 if (hpts->p_direct_wake) {
1822 /* Signaled by input */
1823 callout_stop(&hpts->co);
1824 } else {
1825 /* Timed out */
1826 if (callout_pending(&hpts->co) ||
1827 !callout_active(&hpts->co)) {
1828 mtx_unlock(&hpts->p_mtx);
1829 return;
1830 }
1831 callout_deactivate(&hpts->co);
1832 }
1833 hpts->p_hpts_wake_scheduled = 0;
1834 hpts->p_hpts_active = 1;
1835 NET_EPOCH_ENTER(et);
1836 tcp_hptsi(hpts);
1837 NET_EPOCH_EXIT(et);
1838 HPTS_MTX_ASSERT(hpts);
1839 tv.tv_sec = 0;
1840 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_USEC;
1841 if (tcp_min_hptsi_time && (tv.tv_usec < tcp_min_hptsi_time)) {
1842 hpts->overidden_sleep = tv.tv_usec;
1843 tv.tv_usec = tcp_min_hptsi_time;
1844 hpts->p_on_min_sleep = 1;
1845 } else {
1846 /* Clear the min sleep flag */
1847 hpts->overidden_sleep = 0;
1848 hpts->p_on_min_sleep = 0;
1849 }
1850 hpts->p_hpts_active = 0;
1851 sb = tvtosbt(tv);
1852 if (tcp_hpts_callout_skip_swi == 0) {
1853 callout_reset_sbt_on(&hpts->co, sb, 0,
1854 hpts_timeout_swi, hpts, hpts->p_cpu,
1855 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
1856 } else {
1857 callout_reset_sbt_on(&hpts->co, sb, 0,
1858 hpts_timeout_dir, hpts,
1859 hpts->p_cpu,
1860 C_PREL(tcp_hpts_precision));
1861 }
1862 hpts->p_direct_wake = 0;
1863 mtx_unlock(&hpts->p_mtx);
1864 }
1865
1866 #undef timersub
1867
1868 static void
tcp_init_hptsi(void * st)1869 tcp_init_hptsi(void *st)
1870 {
1871 int32_t i, j, error, bound = 0, created = 0;
1872 size_t sz, asz;
1873 struct timeval tv;
1874 sbintime_t sb;
1875 struct tcp_hpts_entry *hpts;
1876 struct pcpu *pc;
1877 cpuset_t cs;
1878 char unit[16];
1879 uint32_t ncpus = mp_ncpus ? mp_ncpus : MAXCPU;
1880 int count, domain;
1881
1882 tcp_pace.rp_proc = NULL;
1883 tcp_pace.rp_num_hptss = ncpus;
1884 hpts_hopelessly_behind = counter_u64_alloc(M_WAITOK);
1885 hpts_loops = counter_u64_alloc(M_WAITOK);
1886 back_tosleep = counter_u64_alloc(M_WAITOK);
1887 combined_wheel_wrap = counter_u64_alloc(M_WAITOK);
1888 wheel_wrap = counter_u64_alloc(M_WAITOK);
1889 sz = (tcp_pace.rp_num_hptss * sizeof(struct tcp_hpts_entry *));
1890 tcp_pace.rp_ent = malloc(sz, M_TCPHPTS, M_WAITOK | M_ZERO);
1891 asz = sizeof(struct hptsh) * NUM_OF_HPTSI_SLOTS;
1892 for (i = 0; i < tcp_pace.rp_num_hptss; i++) {
1893 tcp_pace.rp_ent[i] = malloc(sizeof(struct tcp_hpts_entry),
1894 M_TCPHPTS, M_WAITOK | M_ZERO);
1895 tcp_pace.rp_ent[i]->p_hptss = malloc(asz,
1896 M_TCPHPTS, M_WAITOK);
1897 hpts = tcp_pace.rp_ent[i];
1898 /*
1899 * Init all the hpts structures that are not specifically
1900 * zero'd by the allocations. Also lets attach them to the
1901 * appropriate sysctl block as well.
1902 */
1903 mtx_init(&hpts->p_mtx, "tcp_hpts_lck",
1904 "hpts", MTX_DEF | MTX_DUPOK);
1905 TAILQ_INIT(&hpts->p_input);
1906 for (j = 0; j < NUM_OF_HPTSI_SLOTS; j++) {
1907 TAILQ_INIT(&hpts->p_hptss[j]);
1908 }
1909 sysctl_ctx_init(&hpts->hpts_ctx);
1910 sprintf(unit, "%d", i);
1911 hpts->hpts_root = SYSCTL_ADD_NODE(&hpts->hpts_ctx,
1912 SYSCTL_STATIC_CHILDREN(_net_inet_tcp_hpts),
1913 OID_AUTO,
1914 unit,
1915 CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1916 "");
1917 SYSCTL_ADD_INT(&hpts->hpts_ctx,
1918 SYSCTL_CHILDREN(hpts->hpts_root),
1919 OID_AUTO, "in_qcnt", CTLFLAG_RD,
1920 &hpts->p_on_inqueue_cnt, 0,
1921 "Count TCB's awaiting input processing");
1922 SYSCTL_ADD_INT(&hpts->hpts_ctx,
1923 SYSCTL_CHILDREN(hpts->hpts_root),
1924 OID_AUTO, "out_qcnt", CTLFLAG_RD,
1925 &hpts->p_on_queue_cnt, 0,
1926 "Count TCB's awaiting output processing");
1927 SYSCTL_ADD_U16(&hpts->hpts_ctx,
1928 SYSCTL_CHILDREN(hpts->hpts_root),
1929 OID_AUTO, "active", CTLFLAG_RD,
1930 &hpts->p_hpts_active, 0,
1931 "Is the hpts active");
1932 SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1933 SYSCTL_CHILDREN(hpts->hpts_root),
1934 OID_AUTO, "curslot", CTLFLAG_RD,
1935 &hpts->p_cur_slot, 0,
1936 "What the current running pacers goal");
1937 SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1938 SYSCTL_CHILDREN(hpts->hpts_root),
1939 OID_AUTO, "runtick", CTLFLAG_RD,
1940 &hpts->p_runningtick, 0,
1941 "What the running pacers current slot is");
1942 SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1943 SYSCTL_CHILDREN(hpts->hpts_root),
1944 OID_AUTO, "curtick", CTLFLAG_RD,
1945 &hpts->p_curtick, 0,
1946 "What the running pacers last tick mapped to the wheel was");
1947 hpts->p_hpts_sleep_time = hpts_sleep_max;
1948 hpts->p_num = i;
1949 hpts->p_curtick = tcp_gethptstick(&tv);
1950 hpts->p_prev_slot = hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1951 hpts->p_cpu = 0xffff;
1952 hpts->p_nxt_slot = hpts_tick(hpts->p_cur_slot, 1);
1953 callout_init(&hpts->co, 1);
1954 }
1955
1956 /* Don't try to bind to NUMA domains if we don't have any */
1957 if (vm_ndomains == 1 && tcp_bind_threads == 2)
1958 tcp_bind_threads = 0;
1959
1960 /*
1961 * Now lets start ithreads to handle the hptss.
1962 */
1963 CPU_FOREACH(i) {
1964 hpts = tcp_pace.rp_ent[i];
1965 hpts->p_cpu = i;
1966 error = swi_add(&hpts->ie, "hpts",
1967 tcp_hpts_thread, (void *)hpts,
1968 SWI_NET, INTR_MPSAFE, &hpts->ie_cookie);
1969 if (error) {
1970 panic("Can't add hpts:%p i:%d err:%d",
1971 hpts, i, error);
1972 }
1973 created++;
1974 if (tcp_bind_threads == 1) {
1975 if (intr_event_bind(hpts->ie, i) == 0)
1976 bound++;
1977 } else if (tcp_bind_threads == 2) {
1978 #ifndef FSTACK
1979 pc = pcpu_find(i);
1980 domain = pc->pc_domain;
1981 CPU_COPY(&cpuset_domain[domain], &cs);
1982 if (intr_event_bind_ithread_cpuset(hpts->ie, &cs)
1983 == 0) {
1984 bound++;
1985 count = hpts_domains[domain].count;
1986 hpts_domains[domain].cpu[count] = i;
1987 hpts_domains[domain].count++;
1988 }
1989 #endif
1990 }
1991 tv.tv_sec = 0;
1992 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_USEC;
1993 sb = tvtosbt(tv);
1994 if (tcp_hpts_callout_skip_swi == 0) {
1995 callout_reset_sbt_on(&hpts->co, sb, 0,
1996 hpts_timeout_swi, hpts, hpts->p_cpu,
1997 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
1998 } else {
1999 callout_reset_sbt_on(&hpts->co, sb, 0,
2000 hpts_timeout_dir, hpts,
2001 hpts->p_cpu,
2002 C_PREL(tcp_hpts_precision));
2003 }
2004 }
2005 /*
2006 * If we somehow have an empty domain, fall back to choosing
2007 * among all htps threads.
2008 */
2009 for (i = 0; i < vm_ndomains; i++) {
2010 if (hpts_domains[i].count == 0) {
2011 tcp_bind_threads = 0;
2012 break;
2013 }
2014 }
2015
2016 printf("TCP Hpts created %d swi interrupt threads and bound %d to %s\n",
2017 created, bound,
2018 tcp_bind_threads == 2 ? "NUMA domains" : "cpus");
2019 }
2020
2021 SYSINIT(tcphptsi, SI_SUB_KTHREAD_IDLE, SI_ORDER_ANY, tcp_init_hptsi, NULL);
2022 MODULE_VERSION(tcphpts, 1);
2023