1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAG class.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/AliasAnalysis.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/CodeGen/Analysis.h"
31 #include "llvm/CodeGen/FunctionLoweringInfo.h"
32 #include "llvm/CodeGen/ISDOpcodes.h"
33 #include "llvm/CodeGen/MachineBasicBlock.h"
34 #include "llvm/CodeGen/MachineConstantPool.h"
35 #include "llvm/CodeGen/MachineFrameInfo.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineMemOperand.h"
38 #include "llvm/CodeGen/RuntimeLibcalls.h"
39 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
40 #include "llvm/CodeGen/SelectionDAGNodes.h"
41 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
42 #include "llvm/CodeGen/TargetFrameLowering.h"
43 #include "llvm/CodeGen/TargetLowering.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/CodeGen/TargetSubtargetInfo.h"
46 #include "llvm/CodeGen/ValueTypes.h"
47 #include "llvm/IR/Constant.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/DebugInfoMetadata.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/IR/DerivedTypes.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GlobalValue.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Type.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/CodeGen.h"
59 #include "llvm/Support/Compiler.h"
60 #include "llvm/Support/Debug.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include "llvm/Support/KnownBits.h"
63 #include "llvm/Support/MachineValueType.h"
64 #include "llvm/Support/MathExtras.h"
65 #include "llvm/Support/Mutex.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Target/TargetMachine.h"
68 #include "llvm/Target/TargetOptions.h"
69 #include "llvm/Transforms/Utils/SizeOpts.h"
70 #include <algorithm>
71 #include <cassert>
72 #include <cstdint>
73 #include <cstdlib>
74 #include <limits>
75 #include <set>
76 #include <string>
77 #include <utility>
78 #include <vector>
79
80 using namespace llvm;
81
82 /// makeVTList - Return an instance of the SDVTList struct initialized with the
83 /// specified members.
makeVTList(const EVT * VTs,unsigned NumVTs)84 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
85 SDVTList Res = {VTs, NumVTs};
86 return Res;
87 }
88
89 // Default null implementations of the callbacks.
NodeDeleted(SDNode *,SDNode *)90 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
NodeUpdated(SDNode *)91 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
NodeInserted(SDNode *)92 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
93
anchor()94 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
95
96 #define DEBUG_TYPE "selectiondag"
97
98 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
99 cl::Hidden, cl::init(true),
100 cl::desc("Gang up loads and stores generated by inlining of memcpy"));
101
102 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
103 cl::desc("Number limit for gluing ld/st of memcpy."),
104 cl::Hidden, cl::init(0));
105
NewSDValueDbgMsg(SDValue V,StringRef Msg,SelectionDAG * G)106 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
107 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
108 }
109
110 //===----------------------------------------------------------------------===//
111 // ConstantFPSDNode Class
112 //===----------------------------------------------------------------------===//
113
114 /// isExactlyValue - We don't rely on operator== working on double values, as
115 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
116 /// As such, this method can be used to do an exact bit-for-bit comparison of
117 /// two floating point values.
isExactlyValue(const APFloat & V) const118 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
119 return getValueAPF().bitwiseIsEqual(V);
120 }
121
isValueValidForType(EVT VT,const APFloat & Val)122 bool ConstantFPSDNode::isValueValidForType(EVT VT,
123 const APFloat& Val) {
124 assert(VT.isFloatingPoint() && "Can only convert between FP types");
125
126 // convert modifies in place, so make a copy.
127 APFloat Val2 = APFloat(Val);
128 bool losesInfo;
129 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
130 APFloat::rmNearestTiesToEven,
131 &losesInfo);
132 return !losesInfo;
133 }
134
135 //===----------------------------------------------------------------------===//
136 // ISD Namespace
137 //===----------------------------------------------------------------------===//
138
isConstantSplatVector(const SDNode * N,APInt & SplatVal)139 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
140 if (N->getOpcode() == ISD::SPLAT_VECTOR) {
141 unsigned EltSize =
142 N->getValueType(0).getVectorElementType().getSizeInBits();
143 if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
144 SplatVal = Op0->getAPIntValue().trunc(EltSize);
145 return true;
146 }
147 if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) {
148 SplatVal = Op0->getValueAPF().bitcastToAPInt().trunc(EltSize);
149 return true;
150 }
151 }
152
153 auto *BV = dyn_cast<BuildVectorSDNode>(N);
154 if (!BV)
155 return false;
156
157 APInt SplatUndef;
158 unsigned SplatBitSize;
159 bool HasUndefs;
160 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
161 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
162 EltSize) &&
163 EltSize == SplatBitSize;
164 }
165
166 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
167 // specializations of the more general isConstantSplatVector()?
168
isConstantSplatVectorAllOnes(const SDNode * N,bool BuildVectorOnly)169 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) {
170 // Look through a bit convert.
171 while (N->getOpcode() == ISD::BITCAST)
172 N = N->getOperand(0).getNode();
173
174 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
175 APInt SplatVal;
176 return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnes();
177 }
178
179 if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
180
181 unsigned i = 0, e = N->getNumOperands();
182
183 // Skip over all of the undef values.
184 while (i != e && N->getOperand(i).isUndef())
185 ++i;
186
187 // Do not accept an all-undef vector.
188 if (i == e) return false;
189
190 // Do not accept build_vectors that aren't all constants or which have non-~0
191 // elements. We have to be a bit careful here, as the type of the constant
192 // may not be the same as the type of the vector elements due to type
193 // legalization (the elements are promoted to a legal type for the target and
194 // a vector of a type may be legal when the base element type is not).
195 // We only want to check enough bits to cover the vector elements, because
196 // we care if the resultant vector is all ones, not whether the individual
197 // constants are.
198 SDValue NotZero = N->getOperand(i);
199 unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
200 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
201 if (CN->getAPIntValue().countTrailingOnes() < EltSize)
202 return false;
203 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
204 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
205 return false;
206 } else
207 return false;
208
209 // Okay, we have at least one ~0 value, check to see if the rest match or are
210 // undefs. Even with the above element type twiddling, this should be OK, as
211 // the same type legalization should have applied to all the elements.
212 for (++i; i != e; ++i)
213 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
214 return false;
215 return true;
216 }
217
isConstantSplatVectorAllZeros(const SDNode * N,bool BuildVectorOnly)218 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) {
219 // Look through a bit convert.
220 while (N->getOpcode() == ISD::BITCAST)
221 N = N->getOperand(0).getNode();
222
223 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
224 APInt SplatVal;
225 return isConstantSplatVector(N, SplatVal) && SplatVal.isZero();
226 }
227
228 if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
229
230 bool IsAllUndef = true;
231 for (const SDValue &Op : N->op_values()) {
232 if (Op.isUndef())
233 continue;
234 IsAllUndef = false;
235 // Do not accept build_vectors that aren't all constants or which have non-0
236 // elements. We have to be a bit careful here, as the type of the constant
237 // may not be the same as the type of the vector elements due to type
238 // legalization (the elements are promoted to a legal type for the target
239 // and a vector of a type may be legal when the base element type is not).
240 // We only want to check enough bits to cover the vector elements, because
241 // we care if the resultant vector is all zeros, not whether the individual
242 // constants are.
243 unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
244 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
245 if (CN->getAPIntValue().countTrailingZeros() < EltSize)
246 return false;
247 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
248 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
249 return false;
250 } else
251 return false;
252 }
253
254 // Do not accept an all-undef vector.
255 if (IsAllUndef)
256 return false;
257 return true;
258 }
259
isBuildVectorAllOnes(const SDNode * N)260 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
261 return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true);
262 }
263
isBuildVectorAllZeros(const SDNode * N)264 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
265 return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true);
266 }
267
isBuildVectorOfConstantSDNodes(const SDNode * N)268 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
269 if (N->getOpcode() != ISD::BUILD_VECTOR)
270 return false;
271
272 for (const SDValue &Op : N->op_values()) {
273 if (Op.isUndef())
274 continue;
275 if (!isa<ConstantSDNode>(Op))
276 return false;
277 }
278 return true;
279 }
280
isBuildVectorOfConstantFPSDNodes(const SDNode * N)281 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
282 if (N->getOpcode() != ISD::BUILD_VECTOR)
283 return false;
284
285 for (const SDValue &Op : N->op_values()) {
286 if (Op.isUndef())
287 continue;
288 if (!isa<ConstantFPSDNode>(Op))
289 return false;
290 }
291 return true;
292 }
293
allOperandsUndef(const SDNode * N)294 bool ISD::allOperandsUndef(const SDNode *N) {
295 // Return false if the node has no operands.
296 // This is "logically inconsistent" with the definition of "all" but
297 // is probably the desired behavior.
298 if (N->getNumOperands() == 0)
299 return false;
300 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
301 }
302
matchUnaryPredicate(SDValue Op,std::function<bool (ConstantSDNode *)> Match,bool AllowUndefs)303 bool ISD::matchUnaryPredicate(SDValue Op,
304 std::function<bool(ConstantSDNode *)> Match,
305 bool AllowUndefs) {
306 // FIXME: Add support for scalar UNDEF cases?
307 if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
308 return Match(Cst);
309
310 // FIXME: Add support for vector UNDEF cases?
311 if (ISD::BUILD_VECTOR != Op.getOpcode() &&
312 ISD::SPLAT_VECTOR != Op.getOpcode())
313 return false;
314
315 EVT SVT = Op.getValueType().getScalarType();
316 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
317 if (AllowUndefs && Op.getOperand(i).isUndef()) {
318 if (!Match(nullptr))
319 return false;
320 continue;
321 }
322
323 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
324 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
325 return false;
326 }
327 return true;
328 }
329
matchBinaryPredicate(SDValue LHS,SDValue RHS,std::function<bool (ConstantSDNode *,ConstantSDNode *)> Match,bool AllowUndefs,bool AllowTypeMismatch)330 bool ISD::matchBinaryPredicate(
331 SDValue LHS, SDValue RHS,
332 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
333 bool AllowUndefs, bool AllowTypeMismatch) {
334 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
335 return false;
336
337 // TODO: Add support for scalar UNDEF cases?
338 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
339 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
340 return Match(LHSCst, RHSCst);
341
342 // TODO: Add support for vector UNDEF cases?
343 if (LHS.getOpcode() != RHS.getOpcode() ||
344 (LHS.getOpcode() != ISD::BUILD_VECTOR &&
345 LHS.getOpcode() != ISD::SPLAT_VECTOR))
346 return false;
347
348 EVT SVT = LHS.getValueType().getScalarType();
349 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
350 SDValue LHSOp = LHS.getOperand(i);
351 SDValue RHSOp = RHS.getOperand(i);
352 bool LHSUndef = AllowUndefs && LHSOp.isUndef();
353 bool RHSUndef = AllowUndefs && RHSOp.isUndef();
354 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
355 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
356 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
357 return false;
358 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
359 LHSOp.getValueType() != RHSOp.getValueType()))
360 return false;
361 if (!Match(LHSCst, RHSCst))
362 return false;
363 }
364 return true;
365 }
366
getVecReduceBaseOpcode(unsigned VecReduceOpcode)367 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) {
368 switch (VecReduceOpcode) {
369 default:
370 llvm_unreachable("Expected VECREDUCE opcode");
371 case ISD::VECREDUCE_FADD:
372 case ISD::VECREDUCE_SEQ_FADD:
373 case ISD::VP_REDUCE_FADD:
374 case ISD::VP_REDUCE_SEQ_FADD:
375 return ISD::FADD;
376 case ISD::VECREDUCE_FMUL:
377 case ISD::VECREDUCE_SEQ_FMUL:
378 case ISD::VP_REDUCE_FMUL:
379 case ISD::VP_REDUCE_SEQ_FMUL:
380 return ISD::FMUL;
381 case ISD::VECREDUCE_ADD:
382 case ISD::VP_REDUCE_ADD:
383 return ISD::ADD;
384 case ISD::VECREDUCE_MUL:
385 case ISD::VP_REDUCE_MUL:
386 return ISD::MUL;
387 case ISD::VECREDUCE_AND:
388 case ISD::VP_REDUCE_AND:
389 return ISD::AND;
390 case ISD::VECREDUCE_OR:
391 case ISD::VP_REDUCE_OR:
392 return ISD::OR;
393 case ISD::VECREDUCE_XOR:
394 case ISD::VP_REDUCE_XOR:
395 return ISD::XOR;
396 case ISD::VECREDUCE_SMAX:
397 case ISD::VP_REDUCE_SMAX:
398 return ISD::SMAX;
399 case ISD::VECREDUCE_SMIN:
400 case ISD::VP_REDUCE_SMIN:
401 return ISD::SMIN;
402 case ISD::VECREDUCE_UMAX:
403 case ISD::VP_REDUCE_UMAX:
404 return ISD::UMAX;
405 case ISD::VECREDUCE_UMIN:
406 case ISD::VP_REDUCE_UMIN:
407 return ISD::UMIN;
408 case ISD::VECREDUCE_FMAX:
409 case ISD::VP_REDUCE_FMAX:
410 return ISD::FMAXNUM;
411 case ISD::VECREDUCE_FMIN:
412 case ISD::VP_REDUCE_FMIN:
413 return ISD::FMINNUM;
414 }
415 }
416
isVPOpcode(unsigned Opcode)417 bool ISD::isVPOpcode(unsigned Opcode) {
418 switch (Opcode) {
419 default:
420 return false;
421 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) \
422 case ISD::VPSD: \
423 return true;
424 #include "llvm/IR/VPIntrinsics.def"
425 }
426 }
427
isVPBinaryOp(unsigned Opcode)428 bool ISD::isVPBinaryOp(unsigned Opcode) {
429 switch (Opcode) {
430 default:
431 break;
432 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD:
433 #define VP_PROPERTY_BINARYOP return true;
434 #define END_REGISTER_VP_SDNODE(VPSD) break;
435 #include "llvm/IR/VPIntrinsics.def"
436 }
437 return false;
438 }
439
isVPReduction(unsigned Opcode)440 bool ISD::isVPReduction(unsigned Opcode) {
441 switch (Opcode) {
442 default:
443 break;
444 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD:
445 #define VP_PROPERTY_REDUCTION(STARTPOS, ...) return true;
446 #define END_REGISTER_VP_SDNODE(VPSD) break;
447 #include "llvm/IR/VPIntrinsics.def"
448 }
449 return false;
450 }
451
452 /// The operand position of the vector mask.
getVPMaskIdx(unsigned Opcode)453 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) {
454 switch (Opcode) {
455 default:
456 return None;
457 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, ...) \
458 case ISD::VPSD: \
459 return MASKPOS;
460 #include "llvm/IR/VPIntrinsics.def"
461 }
462 }
463
464 /// The operand position of the explicit vector length parameter.
getVPExplicitVectorLengthIdx(unsigned Opcode)465 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) {
466 switch (Opcode) {
467 default:
468 return None;
469 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, EVLPOS) \
470 case ISD::VPSD: \
471 return EVLPOS;
472 #include "llvm/IR/VPIntrinsics.def"
473 }
474 }
475
getExtForLoadExtType(bool IsFP,ISD::LoadExtType ExtType)476 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
477 switch (ExtType) {
478 case ISD::EXTLOAD:
479 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
480 case ISD::SEXTLOAD:
481 return ISD::SIGN_EXTEND;
482 case ISD::ZEXTLOAD:
483 return ISD::ZERO_EXTEND;
484 default:
485 break;
486 }
487
488 llvm_unreachable("Invalid LoadExtType");
489 }
490
getSetCCSwappedOperands(ISD::CondCode Operation)491 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
492 // To perform this operation, we just need to swap the L and G bits of the
493 // operation.
494 unsigned OldL = (Operation >> 2) & 1;
495 unsigned OldG = (Operation >> 1) & 1;
496 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits
497 (OldL << 1) | // New G bit
498 (OldG << 2)); // New L bit.
499 }
500
getSetCCInverseImpl(ISD::CondCode Op,bool isIntegerLike)501 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) {
502 unsigned Operation = Op;
503 if (isIntegerLike)
504 Operation ^= 7; // Flip L, G, E bits, but not U.
505 else
506 Operation ^= 15; // Flip all of the condition bits.
507
508 if (Operation > ISD::SETTRUE2)
509 Operation &= ~8; // Don't let N and U bits get set.
510
511 return ISD::CondCode(Operation);
512 }
513
getSetCCInverse(ISD::CondCode Op,EVT Type)514 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) {
515 return getSetCCInverseImpl(Op, Type.isInteger());
516 }
517
getSetCCInverse(ISD::CondCode Op,bool isIntegerLike)518 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op,
519 bool isIntegerLike) {
520 return getSetCCInverseImpl(Op, isIntegerLike);
521 }
522
523 /// For an integer comparison, return 1 if the comparison is a signed operation
524 /// and 2 if the result is an unsigned comparison. Return zero if the operation
525 /// does not depend on the sign of the input (setne and seteq).
isSignedOp(ISD::CondCode Opcode)526 static int isSignedOp(ISD::CondCode Opcode) {
527 switch (Opcode) {
528 default: llvm_unreachable("Illegal integer setcc operation!");
529 case ISD::SETEQ:
530 case ISD::SETNE: return 0;
531 case ISD::SETLT:
532 case ISD::SETLE:
533 case ISD::SETGT:
534 case ISD::SETGE: return 1;
535 case ISD::SETULT:
536 case ISD::SETULE:
537 case ISD::SETUGT:
538 case ISD::SETUGE: return 2;
539 }
540 }
541
getSetCCOrOperation(ISD::CondCode Op1,ISD::CondCode Op2,EVT Type)542 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
543 EVT Type) {
544 bool IsInteger = Type.isInteger();
545 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
546 // Cannot fold a signed integer setcc with an unsigned integer setcc.
547 return ISD::SETCC_INVALID;
548
549 unsigned Op = Op1 | Op2; // Combine all of the condition bits.
550
551 // If the N and U bits get set, then the resultant comparison DOES suddenly
552 // care about orderedness, and it is true when ordered.
553 if (Op > ISD::SETTRUE2)
554 Op &= ~16; // Clear the U bit if the N bit is set.
555
556 // Canonicalize illegal integer setcc's.
557 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT
558 Op = ISD::SETNE;
559
560 return ISD::CondCode(Op);
561 }
562
getSetCCAndOperation(ISD::CondCode Op1,ISD::CondCode Op2,EVT Type)563 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
564 EVT Type) {
565 bool IsInteger = Type.isInteger();
566 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
567 // Cannot fold a signed setcc with an unsigned setcc.
568 return ISD::SETCC_INVALID;
569
570 // Combine all of the condition bits.
571 ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
572
573 // Canonicalize illegal integer setcc's.
574 if (IsInteger) {
575 switch (Result) {
576 default: break;
577 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT
578 case ISD::SETOEQ: // SETEQ & SETU[LG]E
579 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE
580 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE
581 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE
582 }
583 }
584
585 return Result;
586 }
587
588 //===----------------------------------------------------------------------===//
589 // SDNode Profile Support
590 //===----------------------------------------------------------------------===//
591
592 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
AddNodeIDOpcode(FoldingSetNodeID & ID,unsigned OpC)593 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) {
594 ID.AddInteger(OpC);
595 }
596
597 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
598 /// solely with their pointer.
AddNodeIDValueTypes(FoldingSetNodeID & ID,SDVTList VTList)599 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
600 ID.AddPointer(VTList.VTs);
601 }
602
603 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
AddNodeIDOperands(FoldingSetNodeID & ID,ArrayRef<SDValue> Ops)604 static void AddNodeIDOperands(FoldingSetNodeID &ID,
605 ArrayRef<SDValue> Ops) {
606 for (const auto &Op : Ops) {
607 ID.AddPointer(Op.getNode());
608 ID.AddInteger(Op.getResNo());
609 }
610 }
611
612 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
AddNodeIDOperands(FoldingSetNodeID & ID,ArrayRef<SDUse> Ops)613 static void AddNodeIDOperands(FoldingSetNodeID &ID,
614 ArrayRef<SDUse> Ops) {
615 for (const auto &Op : Ops) {
616 ID.AddPointer(Op.getNode());
617 ID.AddInteger(Op.getResNo());
618 }
619 }
620
AddNodeIDNode(FoldingSetNodeID & ID,unsigned short OpC,SDVTList VTList,ArrayRef<SDValue> OpList)621 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
622 SDVTList VTList, ArrayRef<SDValue> OpList) {
623 AddNodeIDOpcode(ID, OpC);
624 AddNodeIDValueTypes(ID, VTList);
625 AddNodeIDOperands(ID, OpList);
626 }
627
628 /// If this is an SDNode with special info, add this info to the NodeID data.
AddNodeIDCustom(FoldingSetNodeID & ID,const SDNode * N)629 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
630 switch (N->getOpcode()) {
631 case ISD::TargetExternalSymbol:
632 case ISD::ExternalSymbol:
633 case ISD::MCSymbol:
634 llvm_unreachable("Should only be used on nodes with operands");
635 default: break; // Normal nodes don't need extra info.
636 case ISD::TargetConstant:
637 case ISD::Constant: {
638 const ConstantSDNode *C = cast<ConstantSDNode>(N);
639 ID.AddPointer(C->getConstantIntValue());
640 ID.AddBoolean(C->isOpaque());
641 break;
642 }
643 case ISD::TargetConstantFP:
644 case ISD::ConstantFP:
645 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
646 break;
647 case ISD::TargetGlobalAddress:
648 case ISD::GlobalAddress:
649 case ISD::TargetGlobalTLSAddress:
650 case ISD::GlobalTLSAddress: {
651 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
652 ID.AddPointer(GA->getGlobal());
653 ID.AddInteger(GA->getOffset());
654 ID.AddInteger(GA->getTargetFlags());
655 break;
656 }
657 case ISD::BasicBlock:
658 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
659 break;
660 case ISD::Register:
661 ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
662 break;
663 case ISD::RegisterMask:
664 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
665 break;
666 case ISD::SRCVALUE:
667 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
668 break;
669 case ISD::FrameIndex:
670 case ISD::TargetFrameIndex:
671 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
672 break;
673 case ISD::LIFETIME_START:
674 case ISD::LIFETIME_END:
675 if (cast<LifetimeSDNode>(N)->hasOffset()) {
676 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
677 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
678 }
679 break;
680 case ISD::PSEUDO_PROBE:
681 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid());
682 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex());
683 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes());
684 break;
685 case ISD::JumpTable:
686 case ISD::TargetJumpTable:
687 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
688 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
689 break;
690 case ISD::ConstantPool:
691 case ISD::TargetConstantPool: {
692 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
693 ID.AddInteger(CP->getAlign().value());
694 ID.AddInteger(CP->getOffset());
695 if (CP->isMachineConstantPoolEntry())
696 CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
697 else
698 ID.AddPointer(CP->getConstVal());
699 ID.AddInteger(CP->getTargetFlags());
700 break;
701 }
702 case ISD::TargetIndex: {
703 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
704 ID.AddInteger(TI->getIndex());
705 ID.AddInteger(TI->getOffset());
706 ID.AddInteger(TI->getTargetFlags());
707 break;
708 }
709 case ISD::LOAD: {
710 const LoadSDNode *LD = cast<LoadSDNode>(N);
711 ID.AddInteger(LD->getMemoryVT().getRawBits());
712 ID.AddInteger(LD->getRawSubclassData());
713 ID.AddInteger(LD->getPointerInfo().getAddrSpace());
714 ID.AddInteger(LD->getMemOperand()->getFlags());
715 break;
716 }
717 case ISD::STORE: {
718 const StoreSDNode *ST = cast<StoreSDNode>(N);
719 ID.AddInteger(ST->getMemoryVT().getRawBits());
720 ID.AddInteger(ST->getRawSubclassData());
721 ID.AddInteger(ST->getPointerInfo().getAddrSpace());
722 ID.AddInteger(ST->getMemOperand()->getFlags());
723 break;
724 }
725 case ISD::VP_LOAD: {
726 const VPLoadSDNode *ELD = cast<VPLoadSDNode>(N);
727 ID.AddInteger(ELD->getMemoryVT().getRawBits());
728 ID.AddInteger(ELD->getRawSubclassData());
729 ID.AddInteger(ELD->getPointerInfo().getAddrSpace());
730 ID.AddInteger(ELD->getMemOperand()->getFlags());
731 break;
732 }
733 case ISD::VP_STORE: {
734 const VPStoreSDNode *EST = cast<VPStoreSDNode>(N);
735 ID.AddInteger(EST->getMemoryVT().getRawBits());
736 ID.AddInteger(EST->getRawSubclassData());
737 ID.AddInteger(EST->getPointerInfo().getAddrSpace());
738 ID.AddInteger(EST->getMemOperand()->getFlags());
739 break;
740 }
741 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: {
742 const VPStridedLoadSDNode *SLD = cast<VPStridedLoadSDNode>(N);
743 ID.AddInteger(SLD->getMemoryVT().getRawBits());
744 ID.AddInteger(SLD->getRawSubclassData());
745 ID.AddInteger(SLD->getPointerInfo().getAddrSpace());
746 break;
747 }
748 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: {
749 const VPStridedStoreSDNode *SST = cast<VPStridedStoreSDNode>(N);
750 ID.AddInteger(SST->getMemoryVT().getRawBits());
751 ID.AddInteger(SST->getRawSubclassData());
752 ID.AddInteger(SST->getPointerInfo().getAddrSpace());
753 break;
754 }
755 case ISD::VP_GATHER: {
756 const VPGatherSDNode *EG = cast<VPGatherSDNode>(N);
757 ID.AddInteger(EG->getMemoryVT().getRawBits());
758 ID.AddInteger(EG->getRawSubclassData());
759 ID.AddInteger(EG->getPointerInfo().getAddrSpace());
760 ID.AddInteger(EG->getMemOperand()->getFlags());
761 break;
762 }
763 case ISD::VP_SCATTER: {
764 const VPScatterSDNode *ES = cast<VPScatterSDNode>(N);
765 ID.AddInteger(ES->getMemoryVT().getRawBits());
766 ID.AddInteger(ES->getRawSubclassData());
767 ID.AddInteger(ES->getPointerInfo().getAddrSpace());
768 ID.AddInteger(ES->getMemOperand()->getFlags());
769 break;
770 }
771 case ISD::MLOAD: {
772 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
773 ID.AddInteger(MLD->getMemoryVT().getRawBits());
774 ID.AddInteger(MLD->getRawSubclassData());
775 ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
776 ID.AddInteger(MLD->getMemOperand()->getFlags());
777 break;
778 }
779 case ISD::MSTORE: {
780 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
781 ID.AddInteger(MST->getMemoryVT().getRawBits());
782 ID.AddInteger(MST->getRawSubclassData());
783 ID.AddInteger(MST->getPointerInfo().getAddrSpace());
784 ID.AddInteger(MST->getMemOperand()->getFlags());
785 break;
786 }
787 case ISD::MGATHER: {
788 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
789 ID.AddInteger(MG->getMemoryVT().getRawBits());
790 ID.AddInteger(MG->getRawSubclassData());
791 ID.AddInteger(MG->getPointerInfo().getAddrSpace());
792 ID.AddInteger(MG->getMemOperand()->getFlags());
793 break;
794 }
795 case ISD::MSCATTER: {
796 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
797 ID.AddInteger(MS->getMemoryVT().getRawBits());
798 ID.AddInteger(MS->getRawSubclassData());
799 ID.AddInteger(MS->getPointerInfo().getAddrSpace());
800 ID.AddInteger(MS->getMemOperand()->getFlags());
801 break;
802 }
803 case ISD::ATOMIC_CMP_SWAP:
804 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
805 case ISD::ATOMIC_SWAP:
806 case ISD::ATOMIC_LOAD_ADD:
807 case ISD::ATOMIC_LOAD_SUB:
808 case ISD::ATOMIC_LOAD_AND:
809 case ISD::ATOMIC_LOAD_CLR:
810 case ISD::ATOMIC_LOAD_OR:
811 case ISD::ATOMIC_LOAD_XOR:
812 case ISD::ATOMIC_LOAD_NAND:
813 case ISD::ATOMIC_LOAD_MIN:
814 case ISD::ATOMIC_LOAD_MAX:
815 case ISD::ATOMIC_LOAD_UMIN:
816 case ISD::ATOMIC_LOAD_UMAX:
817 case ISD::ATOMIC_LOAD:
818 case ISD::ATOMIC_STORE: {
819 const AtomicSDNode *AT = cast<AtomicSDNode>(N);
820 ID.AddInteger(AT->getMemoryVT().getRawBits());
821 ID.AddInteger(AT->getRawSubclassData());
822 ID.AddInteger(AT->getPointerInfo().getAddrSpace());
823 ID.AddInteger(AT->getMemOperand()->getFlags());
824 break;
825 }
826 case ISD::PREFETCH: {
827 const MemSDNode *PF = cast<MemSDNode>(N);
828 ID.AddInteger(PF->getPointerInfo().getAddrSpace());
829 ID.AddInteger(PF->getMemOperand()->getFlags());
830 break;
831 }
832 case ISD::VECTOR_SHUFFLE: {
833 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
834 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
835 i != e; ++i)
836 ID.AddInteger(SVN->getMaskElt(i));
837 break;
838 }
839 case ISD::TargetBlockAddress:
840 case ISD::BlockAddress: {
841 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
842 ID.AddPointer(BA->getBlockAddress());
843 ID.AddInteger(BA->getOffset());
844 ID.AddInteger(BA->getTargetFlags());
845 break;
846 }
847 case ISD::AssertAlign:
848 ID.AddInteger(cast<AssertAlignSDNode>(N)->getAlign().value());
849 break;
850 } // end switch (N->getOpcode())
851
852 // Target specific memory nodes could also have address spaces and flags
853 // to check.
854 if (N->isTargetMemoryOpcode()) {
855 const MemSDNode *MN = cast<MemSDNode>(N);
856 ID.AddInteger(MN->getPointerInfo().getAddrSpace());
857 ID.AddInteger(MN->getMemOperand()->getFlags());
858 }
859 }
860
861 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
862 /// data.
AddNodeIDNode(FoldingSetNodeID & ID,const SDNode * N)863 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
864 AddNodeIDOpcode(ID, N->getOpcode());
865 // Add the return value info.
866 AddNodeIDValueTypes(ID, N->getVTList());
867 // Add the operand info.
868 AddNodeIDOperands(ID, N->ops());
869
870 // Handle SDNode leafs with special info.
871 AddNodeIDCustom(ID, N);
872 }
873
874 //===----------------------------------------------------------------------===//
875 // SelectionDAG Class
876 //===----------------------------------------------------------------------===//
877
878 /// doNotCSE - Return true if CSE should not be performed for this node.
doNotCSE(SDNode * N)879 static bool doNotCSE(SDNode *N) {
880 if (N->getValueType(0) == MVT::Glue)
881 return true; // Never CSE anything that produces a flag.
882
883 switch (N->getOpcode()) {
884 default: break;
885 case ISD::HANDLENODE:
886 case ISD::EH_LABEL:
887 return true; // Never CSE these nodes.
888 }
889
890 // Check that remaining values produced are not flags.
891 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
892 if (N->getValueType(i) == MVT::Glue)
893 return true; // Never CSE anything that produces a flag.
894
895 return false;
896 }
897
898 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
899 /// SelectionDAG.
RemoveDeadNodes()900 void SelectionDAG::RemoveDeadNodes() {
901 // Create a dummy node (which is not added to allnodes), that adds a reference
902 // to the root node, preventing it from being deleted.
903 HandleSDNode Dummy(getRoot());
904
905 SmallVector<SDNode*, 128> DeadNodes;
906
907 // Add all obviously-dead nodes to the DeadNodes worklist.
908 for (SDNode &Node : allnodes())
909 if (Node.use_empty())
910 DeadNodes.push_back(&Node);
911
912 RemoveDeadNodes(DeadNodes);
913
914 // If the root changed (e.g. it was a dead load, update the root).
915 setRoot(Dummy.getValue());
916 }
917
918 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
919 /// given list, and any nodes that become unreachable as a result.
RemoveDeadNodes(SmallVectorImpl<SDNode * > & DeadNodes)920 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
921
922 // Process the worklist, deleting the nodes and adding their uses to the
923 // worklist.
924 while (!DeadNodes.empty()) {
925 SDNode *N = DeadNodes.pop_back_val();
926 // Skip to next node if we've already managed to delete the node. This could
927 // happen if replacing a node causes a node previously added to the node to
928 // be deleted.
929 if (N->getOpcode() == ISD::DELETED_NODE)
930 continue;
931
932 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
933 DUL->NodeDeleted(N, nullptr);
934
935 // Take the node out of the appropriate CSE map.
936 RemoveNodeFromCSEMaps(N);
937
938 // Next, brutally remove the operand list. This is safe to do, as there are
939 // no cycles in the graph.
940 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
941 SDUse &Use = *I++;
942 SDNode *Operand = Use.getNode();
943 Use.set(SDValue());
944
945 // Now that we removed this operand, see if there are no uses of it left.
946 if (Operand->use_empty())
947 DeadNodes.push_back(Operand);
948 }
949
950 DeallocateNode(N);
951 }
952 }
953
RemoveDeadNode(SDNode * N)954 void SelectionDAG::RemoveDeadNode(SDNode *N){
955 SmallVector<SDNode*, 16> DeadNodes(1, N);
956
957 // Create a dummy node that adds a reference to the root node, preventing
958 // it from being deleted. (This matters if the root is an operand of the
959 // dead node.)
960 HandleSDNode Dummy(getRoot());
961
962 RemoveDeadNodes(DeadNodes);
963 }
964
DeleteNode(SDNode * N)965 void SelectionDAG::DeleteNode(SDNode *N) {
966 // First take this out of the appropriate CSE map.
967 RemoveNodeFromCSEMaps(N);
968
969 // Finally, remove uses due to operands of this node, remove from the
970 // AllNodes list, and delete the node.
971 DeleteNodeNotInCSEMaps(N);
972 }
973
DeleteNodeNotInCSEMaps(SDNode * N)974 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
975 assert(N->getIterator() != AllNodes.begin() &&
976 "Cannot delete the entry node!");
977 assert(N->use_empty() && "Cannot delete a node that is not dead!");
978
979 // Drop all of the operands and decrement used node's use counts.
980 N->DropOperands();
981
982 DeallocateNode(N);
983 }
984
add(SDDbgValue * V,bool isParameter)985 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) {
986 assert(!(V->isVariadic() && isParameter));
987 if (isParameter)
988 ByvalParmDbgValues.push_back(V);
989 else
990 DbgValues.push_back(V);
991 for (const SDNode *Node : V->getSDNodes())
992 if (Node)
993 DbgValMap[Node].push_back(V);
994 }
995
erase(const SDNode * Node)996 void SDDbgInfo::erase(const SDNode *Node) {
997 DbgValMapType::iterator I = DbgValMap.find(Node);
998 if (I == DbgValMap.end())
999 return;
1000 for (auto &Val: I->second)
1001 Val->setIsInvalidated();
1002 DbgValMap.erase(I);
1003 }
1004
DeallocateNode(SDNode * N)1005 void SelectionDAG::DeallocateNode(SDNode *N) {
1006 // If we have operands, deallocate them.
1007 removeOperands(N);
1008
1009 NodeAllocator.Deallocate(AllNodes.remove(N));
1010
1011 // Set the opcode to DELETED_NODE to help catch bugs when node
1012 // memory is reallocated.
1013 // FIXME: There are places in SDag that have grown a dependency on the opcode
1014 // value in the released node.
1015 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
1016 N->NodeType = ISD::DELETED_NODE;
1017
1018 // If any of the SDDbgValue nodes refer to this SDNode, invalidate
1019 // them and forget about that node.
1020 DbgInfo->erase(N);
1021 }
1022
1023 #ifndef NDEBUG
1024 /// VerifySDNode - Check the given SDNode. Aborts if it is invalid.
VerifySDNode(SDNode * N)1025 static void VerifySDNode(SDNode *N) {
1026 switch (N->getOpcode()) {
1027 default:
1028 break;
1029 case ISD::BUILD_PAIR: {
1030 EVT VT = N->getValueType(0);
1031 assert(N->getNumValues() == 1 && "Too many results!");
1032 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
1033 "Wrong return type!");
1034 assert(N->getNumOperands() == 2 && "Wrong number of operands!");
1035 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
1036 "Mismatched operand types!");
1037 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
1038 "Wrong operand type!");
1039 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
1040 "Wrong return type size");
1041 break;
1042 }
1043 case ISD::BUILD_VECTOR: {
1044 assert(N->getNumValues() == 1 && "Too many results!");
1045 assert(N->getValueType(0).isVector() && "Wrong return type!");
1046 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
1047 "Wrong number of operands!");
1048 EVT EltVT = N->getValueType(0).getVectorElementType();
1049 for (const SDUse &Op : N->ops()) {
1050 assert((Op.getValueType() == EltVT ||
1051 (EltVT.isInteger() && Op.getValueType().isInteger() &&
1052 EltVT.bitsLE(Op.getValueType()))) &&
1053 "Wrong operand type!");
1054 assert(Op.getValueType() == N->getOperand(0).getValueType() &&
1055 "Operands must all have the same type");
1056 }
1057 break;
1058 }
1059 }
1060 }
1061 #endif // NDEBUG
1062
1063 /// Insert a newly allocated node into the DAG.
1064 ///
1065 /// Handles insertion into the all nodes list and CSE map, as well as
1066 /// verification and other common operations when a new node is allocated.
InsertNode(SDNode * N)1067 void SelectionDAG::InsertNode(SDNode *N) {
1068 AllNodes.push_back(N);
1069 #ifndef NDEBUG
1070 N->PersistentId = NextPersistentId++;
1071 VerifySDNode(N);
1072 #endif
1073 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1074 DUL->NodeInserted(N);
1075 }
1076
1077 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
1078 /// correspond to it. This is useful when we're about to delete or repurpose
1079 /// the node. We don't want future request for structurally identical nodes
1080 /// to return N anymore.
RemoveNodeFromCSEMaps(SDNode * N)1081 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
1082 bool Erased = false;
1083 switch (N->getOpcode()) {
1084 case ISD::HANDLENODE: return false; // noop.
1085 case ISD::CONDCODE:
1086 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
1087 "Cond code doesn't exist!");
1088 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
1089 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
1090 break;
1091 case ISD::ExternalSymbol:
1092 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
1093 break;
1094 case ISD::TargetExternalSymbol: {
1095 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
1096 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
1097 ESN->getSymbol(), ESN->getTargetFlags()));
1098 break;
1099 }
1100 case ISD::MCSymbol: {
1101 auto *MCSN = cast<MCSymbolSDNode>(N);
1102 Erased = MCSymbols.erase(MCSN->getMCSymbol());
1103 break;
1104 }
1105 case ISD::VALUETYPE: {
1106 EVT VT = cast<VTSDNode>(N)->getVT();
1107 if (VT.isExtended()) {
1108 Erased = ExtendedValueTypeNodes.erase(VT);
1109 } else {
1110 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
1111 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
1112 }
1113 break;
1114 }
1115 default:
1116 // Remove it from the CSE Map.
1117 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
1118 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
1119 Erased = CSEMap.RemoveNode(N);
1120 break;
1121 }
1122 #ifndef NDEBUG
1123 // Verify that the node was actually in one of the CSE maps, unless it has a
1124 // flag result (which cannot be CSE'd) or is one of the special cases that are
1125 // not subject to CSE.
1126 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
1127 !N->isMachineOpcode() && !doNotCSE(N)) {
1128 N->dump(this);
1129 dbgs() << "\n";
1130 llvm_unreachable("Node is not in map!");
1131 }
1132 #endif
1133 return Erased;
1134 }
1135
1136 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
1137 /// maps and modified in place. Add it back to the CSE maps, unless an identical
1138 /// node already exists, in which case transfer all its users to the existing
1139 /// node. This transfer can potentially trigger recursive merging.
1140 void
AddModifiedNodeToCSEMaps(SDNode * N)1141 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
1142 // For node types that aren't CSE'd, just act as if no identical node
1143 // already exists.
1144 if (!doNotCSE(N)) {
1145 SDNode *Existing = CSEMap.GetOrInsertNode(N);
1146 if (Existing != N) {
1147 // If there was already an existing matching node, use ReplaceAllUsesWith
1148 // to replace the dead one with the existing one. This can cause
1149 // recursive merging of other unrelated nodes down the line.
1150 ReplaceAllUsesWith(N, Existing);
1151
1152 // N is now dead. Inform the listeners and delete it.
1153 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1154 DUL->NodeDeleted(N, Existing);
1155 DeleteNodeNotInCSEMaps(N);
1156 return;
1157 }
1158 }
1159
1160 // If the node doesn't already exist, we updated it. Inform listeners.
1161 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1162 DUL->NodeUpdated(N);
1163 }
1164
1165 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1166 /// were replaced with those specified. If this node is never memoized,
1167 /// return null, otherwise return a pointer to the slot it would take. If a
1168 /// node already exists with these operands, the slot will be non-null.
FindModifiedNodeSlot(SDNode * N,SDValue Op,void * & InsertPos)1169 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
1170 void *&InsertPos) {
1171 if (doNotCSE(N))
1172 return nullptr;
1173
1174 SDValue Ops[] = { Op };
1175 FoldingSetNodeID ID;
1176 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1177 AddNodeIDCustom(ID, N);
1178 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1179 if (Node)
1180 Node->intersectFlagsWith(N->getFlags());
1181 return Node;
1182 }
1183
1184 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1185 /// were replaced with those specified. If this node is never memoized,
1186 /// return null, otherwise return a pointer to the slot it would take. If a
1187 /// node already exists with these operands, the slot will be non-null.
FindModifiedNodeSlot(SDNode * N,SDValue Op1,SDValue Op2,void * & InsertPos)1188 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
1189 SDValue Op1, SDValue Op2,
1190 void *&InsertPos) {
1191 if (doNotCSE(N))
1192 return nullptr;
1193
1194 SDValue Ops[] = { Op1, Op2 };
1195 FoldingSetNodeID ID;
1196 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1197 AddNodeIDCustom(ID, N);
1198 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1199 if (Node)
1200 Node->intersectFlagsWith(N->getFlags());
1201 return Node;
1202 }
1203
1204 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1205 /// were replaced with those specified. If this node is never memoized,
1206 /// return null, otherwise return a pointer to the slot it would take. If a
1207 /// node already exists with these operands, the slot will be non-null.
FindModifiedNodeSlot(SDNode * N,ArrayRef<SDValue> Ops,void * & InsertPos)1208 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
1209 void *&InsertPos) {
1210 if (doNotCSE(N))
1211 return nullptr;
1212
1213 FoldingSetNodeID ID;
1214 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1215 AddNodeIDCustom(ID, N);
1216 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1217 if (Node)
1218 Node->intersectFlagsWith(N->getFlags());
1219 return Node;
1220 }
1221
getEVTAlign(EVT VT) const1222 Align SelectionDAG::getEVTAlign(EVT VT) const {
1223 Type *Ty = VT == MVT::iPTR ?
1224 PointerType::get(Type::getInt8Ty(*getContext()), 0) :
1225 VT.getTypeForEVT(*getContext());
1226
1227 return getDataLayout().getABITypeAlign(Ty);
1228 }
1229
1230 // EntryNode could meaningfully have debug info if we can find it...
SelectionDAG(const TargetMachine & tm,CodeGenOpt::Level OL)1231 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
1232 : TM(tm), OptLevel(OL),
1233 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
1234 Root(getEntryNode()) {
1235 InsertNode(&EntryNode);
1236 DbgInfo = new SDDbgInfo();
1237 }
1238
init(MachineFunction & NewMF,OptimizationRemarkEmitter & NewORE,Pass * PassPtr,const TargetLibraryInfo * LibraryInfo,LegacyDivergenceAnalysis * Divergence,ProfileSummaryInfo * PSIin,BlockFrequencyInfo * BFIin)1239 void SelectionDAG::init(MachineFunction &NewMF,
1240 OptimizationRemarkEmitter &NewORE,
1241 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
1242 LegacyDivergenceAnalysis * Divergence,
1243 ProfileSummaryInfo *PSIin,
1244 BlockFrequencyInfo *BFIin) {
1245 MF = &NewMF;
1246 SDAGISelPass = PassPtr;
1247 ORE = &NewORE;
1248 TLI = getSubtarget().getTargetLowering();
1249 TSI = getSubtarget().getSelectionDAGInfo();
1250 LibInfo = LibraryInfo;
1251 Context = &MF->getFunction().getContext();
1252 DA = Divergence;
1253 PSI = PSIin;
1254 BFI = BFIin;
1255 }
1256
~SelectionDAG()1257 SelectionDAG::~SelectionDAG() {
1258 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1259 allnodes_clear();
1260 OperandRecycler.clear(OperandAllocator);
1261 delete DbgInfo;
1262 }
1263
shouldOptForSize() const1264 bool SelectionDAG::shouldOptForSize() const {
1265 return MF->getFunction().hasOptSize() ||
1266 llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI);
1267 }
1268
allnodes_clear()1269 void SelectionDAG::allnodes_clear() {
1270 assert(&*AllNodes.begin() == &EntryNode);
1271 AllNodes.remove(AllNodes.begin());
1272 while (!AllNodes.empty())
1273 DeallocateNode(&AllNodes.front());
1274 #ifndef NDEBUG
1275 NextPersistentId = 0;
1276 #endif
1277 }
1278
FindNodeOrInsertPos(const FoldingSetNodeID & ID,void * & InsertPos)1279 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1280 void *&InsertPos) {
1281 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1282 if (N) {
1283 switch (N->getOpcode()) {
1284 default: break;
1285 case ISD::Constant:
1286 case ISD::ConstantFP:
1287 llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1288 "debug location. Use another overload.");
1289 }
1290 }
1291 return N;
1292 }
1293
FindNodeOrInsertPos(const FoldingSetNodeID & ID,const SDLoc & DL,void * & InsertPos)1294 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1295 const SDLoc &DL, void *&InsertPos) {
1296 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1297 if (N) {
1298 switch (N->getOpcode()) {
1299 case ISD::Constant:
1300 case ISD::ConstantFP:
1301 // Erase debug location from the node if the node is used at several
1302 // different places. Do not propagate one location to all uses as it
1303 // will cause a worse single stepping debugging experience.
1304 if (N->getDebugLoc() != DL.getDebugLoc())
1305 N->setDebugLoc(DebugLoc());
1306 break;
1307 default:
1308 // When the node's point of use is located earlier in the instruction
1309 // sequence than its prior point of use, update its debug info to the
1310 // earlier location.
1311 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1312 N->setDebugLoc(DL.getDebugLoc());
1313 break;
1314 }
1315 }
1316 return N;
1317 }
1318
clear()1319 void SelectionDAG::clear() {
1320 allnodes_clear();
1321 OperandRecycler.clear(OperandAllocator);
1322 OperandAllocator.Reset();
1323 CSEMap.clear();
1324
1325 ExtendedValueTypeNodes.clear();
1326 ExternalSymbols.clear();
1327 TargetExternalSymbols.clear();
1328 MCSymbols.clear();
1329 SDCallSiteDbgInfo.clear();
1330 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1331 static_cast<CondCodeSDNode*>(nullptr));
1332 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1333 static_cast<SDNode*>(nullptr));
1334
1335 EntryNode.UseList = nullptr;
1336 InsertNode(&EntryNode);
1337 Root = getEntryNode();
1338 DbgInfo->clear();
1339 }
1340
getFPExtendOrRound(SDValue Op,const SDLoc & DL,EVT VT)1341 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1342 return VT.bitsGT(Op.getValueType())
1343 ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1344 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1345 }
1346
1347 std::pair<SDValue, SDValue>
getStrictFPExtendOrRound(SDValue Op,SDValue Chain,const SDLoc & DL,EVT VT)1348 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain,
1349 const SDLoc &DL, EVT VT) {
1350 assert(!VT.bitsEq(Op.getValueType()) &&
1351 "Strict no-op FP extend/round not allowed.");
1352 SDValue Res =
1353 VT.bitsGT(Op.getValueType())
1354 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op})
1355 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other},
1356 {Chain, Op, getIntPtrConstant(0, DL)});
1357
1358 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1));
1359 }
1360
getAnyExtOrTrunc(SDValue Op,const SDLoc & DL,EVT VT)1361 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1362 return VT.bitsGT(Op.getValueType()) ?
1363 getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1364 getNode(ISD::TRUNCATE, DL, VT, Op);
1365 }
1366
getSExtOrTrunc(SDValue Op,const SDLoc & DL,EVT VT)1367 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1368 return VT.bitsGT(Op.getValueType()) ?
1369 getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1370 getNode(ISD::TRUNCATE, DL, VT, Op);
1371 }
1372
getZExtOrTrunc(SDValue Op,const SDLoc & DL,EVT VT)1373 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1374 return VT.bitsGT(Op.getValueType()) ?
1375 getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1376 getNode(ISD::TRUNCATE, DL, VT, Op);
1377 }
1378
getBoolExtOrTrunc(SDValue Op,const SDLoc & SL,EVT VT,EVT OpVT)1379 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1380 EVT OpVT) {
1381 if (VT.bitsLE(Op.getValueType()))
1382 return getNode(ISD::TRUNCATE, SL, VT, Op);
1383
1384 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1385 return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1386 }
1387
getZeroExtendInReg(SDValue Op,const SDLoc & DL,EVT VT)1388 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1389 EVT OpVT = Op.getValueType();
1390 assert(VT.isInteger() && OpVT.isInteger() &&
1391 "Cannot getZeroExtendInReg FP types");
1392 assert(VT.isVector() == OpVT.isVector() &&
1393 "getZeroExtendInReg type should be vector iff the operand "
1394 "type is vector!");
1395 assert((!VT.isVector() ||
1396 VT.getVectorElementCount() == OpVT.getVectorElementCount()) &&
1397 "Vector element counts must match in getZeroExtendInReg");
1398 assert(VT.bitsLE(OpVT) && "Not extending!");
1399 if (OpVT == VT)
1400 return Op;
1401 APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(),
1402 VT.getScalarSizeInBits());
1403 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT));
1404 }
1405
getPtrExtOrTrunc(SDValue Op,const SDLoc & DL,EVT VT)1406 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1407 // Only unsigned pointer semantics are supported right now. In the future this
1408 // might delegate to TLI to check pointer signedness.
1409 return getZExtOrTrunc(Op, DL, VT);
1410 }
1411
getPtrExtendInReg(SDValue Op,const SDLoc & DL,EVT VT)1412 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1413 // Only unsigned pointer semantics are supported right now. In the future this
1414 // might delegate to TLI to check pointer signedness.
1415 return getZeroExtendInReg(Op, DL, VT);
1416 }
1417
1418 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
getNOT(const SDLoc & DL,SDValue Val,EVT VT)1419 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1420 return getNode(ISD::XOR, DL, VT, Val, getAllOnesConstant(DL, VT));
1421 }
1422
getLogicalNOT(const SDLoc & DL,SDValue Val,EVT VT)1423 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1424 SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1425 return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1426 }
1427
getVPLogicalNOT(const SDLoc & DL,SDValue Val,SDValue Mask,SDValue EVL,EVT VT)1428 SDValue SelectionDAG::getVPLogicalNOT(const SDLoc &DL, SDValue Val,
1429 SDValue Mask, SDValue EVL, EVT VT) {
1430 SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1431 return getNode(ISD::VP_XOR, DL, VT, Val, TrueValue, Mask, EVL);
1432 }
1433
getBoolConstant(bool V,const SDLoc & DL,EVT VT,EVT OpVT)1434 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1435 EVT OpVT) {
1436 if (!V)
1437 return getConstant(0, DL, VT);
1438
1439 switch (TLI->getBooleanContents(OpVT)) {
1440 case TargetLowering::ZeroOrOneBooleanContent:
1441 case TargetLowering::UndefinedBooleanContent:
1442 return getConstant(1, DL, VT);
1443 case TargetLowering::ZeroOrNegativeOneBooleanContent:
1444 return getAllOnesConstant(DL, VT);
1445 }
1446 llvm_unreachable("Unexpected boolean content enum!");
1447 }
1448
getConstant(uint64_t Val,const SDLoc & DL,EVT VT,bool isT,bool isO)1449 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1450 bool isT, bool isO) {
1451 EVT EltVT = VT.getScalarType();
1452 assert((EltVT.getSizeInBits() >= 64 ||
1453 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1454 "getConstant with a uint64_t value that doesn't fit in the type!");
1455 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1456 }
1457
getConstant(const APInt & Val,const SDLoc & DL,EVT VT,bool isT,bool isO)1458 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1459 bool isT, bool isO) {
1460 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1461 }
1462
getConstant(const ConstantInt & Val,const SDLoc & DL,EVT VT,bool isT,bool isO)1463 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1464 EVT VT, bool isT, bool isO) {
1465 assert(VT.isInteger() && "Cannot create FP integer constant!");
1466
1467 EVT EltVT = VT.getScalarType();
1468 const ConstantInt *Elt = &Val;
1469
1470 // In some cases the vector type is legal but the element type is illegal and
1471 // needs to be promoted, for example v8i8 on ARM. In this case, promote the
1472 // inserted value (the type does not need to match the vector element type).
1473 // Any extra bits introduced will be truncated away.
1474 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1475 TargetLowering::TypePromoteInteger) {
1476 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1477 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1478 Elt = ConstantInt::get(*getContext(), NewVal);
1479 }
1480 // In other cases the element type is illegal and needs to be expanded, for
1481 // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1482 // the value into n parts and use a vector type with n-times the elements.
1483 // Then bitcast to the type requested.
1484 // Legalizing constants too early makes the DAGCombiner's job harder so we
1485 // only legalize if the DAG tells us we must produce legal types.
1486 else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1487 TLI->getTypeAction(*getContext(), EltVT) ==
1488 TargetLowering::TypeExpandInteger) {
1489 const APInt &NewVal = Elt->getValue();
1490 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1491 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1492
1493 // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node.
1494 if (VT.isScalableVector()) {
1495 assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 &&
1496 "Can only handle an even split!");
1497 unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits;
1498
1499 SmallVector<SDValue, 2> ScalarParts;
1500 for (unsigned i = 0; i != Parts; ++i)
1501 ScalarParts.push_back(getConstant(
1502 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL,
1503 ViaEltVT, isT, isO));
1504
1505 return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts);
1506 }
1507
1508 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1509 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1510
1511 // Check the temporary vector is the correct size. If this fails then
1512 // getTypeToTransformTo() probably returned a type whose size (in bits)
1513 // isn't a power-of-2 factor of the requested type size.
1514 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1515
1516 SmallVector<SDValue, 2> EltParts;
1517 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i)
1518 EltParts.push_back(getConstant(
1519 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL,
1520 ViaEltVT, isT, isO));
1521
1522 // EltParts is currently in little endian order. If we actually want
1523 // big-endian order then reverse it now.
1524 if (getDataLayout().isBigEndian())
1525 std::reverse(EltParts.begin(), EltParts.end());
1526
1527 // The elements must be reversed when the element order is different
1528 // to the endianness of the elements (because the BITCAST is itself a
1529 // vector shuffle in this situation). However, we do not need any code to
1530 // perform this reversal because getConstant() is producing a vector
1531 // splat.
1532 // This situation occurs in MIPS MSA.
1533
1534 SmallVector<SDValue, 8> Ops;
1535 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1536 llvm::append_range(Ops, EltParts);
1537
1538 SDValue V =
1539 getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1540 return V;
1541 }
1542
1543 assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1544 "APInt size does not match type size!");
1545 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1546 FoldingSetNodeID ID;
1547 AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1548 ID.AddPointer(Elt);
1549 ID.AddBoolean(isO);
1550 void *IP = nullptr;
1551 SDNode *N = nullptr;
1552 if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1553 if (!VT.isVector())
1554 return SDValue(N, 0);
1555
1556 if (!N) {
1557 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1558 CSEMap.InsertNode(N, IP);
1559 InsertNode(N);
1560 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1561 }
1562
1563 SDValue Result(N, 0);
1564 if (VT.isScalableVector())
1565 Result = getSplatVector(VT, DL, Result);
1566 else if (VT.isVector())
1567 Result = getSplatBuildVector(VT, DL, Result);
1568
1569 return Result;
1570 }
1571
getIntPtrConstant(uint64_t Val,const SDLoc & DL,bool isTarget)1572 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1573 bool isTarget) {
1574 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1575 }
1576
getShiftAmountConstant(uint64_t Val,EVT VT,const SDLoc & DL,bool LegalTypes)1577 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
1578 const SDLoc &DL, bool LegalTypes) {
1579 assert(VT.isInteger() && "Shift amount is not an integer type!");
1580 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
1581 return getConstant(Val, DL, ShiftVT);
1582 }
1583
getVectorIdxConstant(uint64_t Val,const SDLoc & DL,bool isTarget)1584 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL,
1585 bool isTarget) {
1586 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget);
1587 }
1588
getConstantFP(const APFloat & V,const SDLoc & DL,EVT VT,bool isTarget)1589 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1590 bool isTarget) {
1591 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1592 }
1593
getConstantFP(const ConstantFP & V,const SDLoc & DL,EVT VT,bool isTarget)1594 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1595 EVT VT, bool isTarget) {
1596 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1597
1598 EVT EltVT = VT.getScalarType();
1599
1600 // Do the map lookup using the actual bit pattern for the floating point
1601 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1602 // we don't have issues with SNANs.
1603 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1604 FoldingSetNodeID ID;
1605 AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1606 ID.AddPointer(&V);
1607 void *IP = nullptr;
1608 SDNode *N = nullptr;
1609 if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1610 if (!VT.isVector())
1611 return SDValue(N, 0);
1612
1613 if (!N) {
1614 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1615 CSEMap.InsertNode(N, IP);
1616 InsertNode(N);
1617 }
1618
1619 SDValue Result(N, 0);
1620 if (VT.isScalableVector())
1621 Result = getSplatVector(VT, DL, Result);
1622 else if (VT.isVector())
1623 Result = getSplatBuildVector(VT, DL, Result);
1624 NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1625 return Result;
1626 }
1627
getConstantFP(double Val,const SDLoc & DL,EVT VT,bool isTarget)1628 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1629 bool isTarget) {
1630 EVT EltVT = VT.getScalarType();
1631 if (EltVT == MVT::f32)
1632 return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1633 if (EltVT == MVT::f64)
1634 return getConstantFP(APFloat(Val), DL, VT, isTarget);
1635 if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1636 EltVT == MVT::f16 || EltVT == MVT::bf16) {
1637 bool Ignored;
1638 APFloat APF = APFloat(Val);
1639 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1640 &Ignored);
1641 return getConstantFP(APF, DL, VT, isTarget);
1642 }
1643 llvm_unreachable("Unsupported type in getConstantFP");
1644 }
1645
getGlobalAddress(const GlobalValue * GV,const SDLoc & DL,EVT VT,int64_t Offset,bool isTargetGA,unsigned TargetFlags)1646 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1647 EVT VT, int64_t Offset, bool isTargetGA,
1648 unsigned TargetFlags) {
1649 assert((TargetFlags == 0 || isTargetGA) &&
1650 "Cannot set target flags on target-independent globals");
1651
1652 // Truncate (with sign-extension) the offset value to the pointer size.
1653 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1654 if (BitWidth < 64)
1655 Offset = SignExtend64(Offset, BitWidth);
1656
1657 unsigned Opc;
1658 if (GV->isThreadLocal())
1659 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1660 else
1661 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1662
1663 FoldingSetNodeID ID;
1664 AddNodeIDNode(ID, Opc, getVTList(VT), None);
1665 ID.AddPointer(GV);
1666 ID.AddInteger(Offset);
1667 ID.AddInteger(TargetFlags);
1668 void *IP = nullptr;
1669 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1670 return SDValue(E, 0);
1671
1672 auto *N = newSDNode<GlobalAddressSDNode>(
1673 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1674 CSEMap.InsertNode(N, IP);
1675 InsertNode(N);
1676 return SDValue(N, 0);
1677 }
1678
getFrameIndex(int FI,EVT VT,bool isTarget)1679 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1680 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1681 FoldingSetNodeID ID;
1682 AddNodeIDNode(ID, Opc, getVTList(VT), None);
1683 ID.AddInteger(FI);
1684 void *IP = nullptr;
1685 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1686 return SDValue(E, 0);
1687
1688 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1689 CSEMap.InsertNode(N, IP);
1690 InsertNode(N);
1691 return SDValue(N, 0);
1692 }
1693
getJumpTable(int JTI,EVT VT,bool isTarget,unsigned TargetFlags)1694 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1695 unsigned TargetFlags) {
1696 assert((TargetFlags == 0 || isTarget) &&
1697 "Cannot set target flags on target-independent jump tables");
1698 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1699 FoldingSetNodeID ID;
1700 AddNodeIDNode(ID, Opc, getVTList(VT), None);
1701 ID.AddInteger(JTI);
1702 ID.AddInteger(TargetFlags);
1703 void *IP = nullptr;
1704 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1705 return SDValue(E, 0);
1706
1707 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1708 CSEMap.InsertNode(N, IP);
1709 InsertNode(N);
1710 return SDValue(N, 0);
1711 }
1712
getConstantPool(const Constant * C,EVT VT,MaybeAlign Alignment,int Offset,bool isTarget,unsigned TargetFlags)1713 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1714 MaybeAlign Alignment, int Offset,
1715 bool isTarget, unsigned TargetFlags) {
1716 assert((TargetFlags == 0 || isTarget) &&
1717 "Cannot set target flags on target-independent globals");
1718 if (!Alignment)
1719 Alignment = shouldOptForSize()
1720 ? getDataLayout().getABITypeAlign(C->getType())
1721 : getDataLayout().getPrefTypeAlign(C->getType());
1722 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1723 FoldingSetNodeID ID;
1724 AddNodeIDNode(ID, Opc, getVTList(VT), None);
1725 ID.AddInteger(Alignment->value());
1726 ID.AddInteger(Offset);
1727 ID.AddPointer(C);
1728 ID.AddInteger(TargetFlags);
1729 void *IP = nullptr;
1730 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1731 return SDValue(E, 0);
1732
1733 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1734 TargetFlags);
1735 CSEMap.InsertNode(N, IP);
1736 InsertNode(N);
1737 SDValue V = SDValue(N, 0);
1738 NewSDValueDbgMsg(V, "Creating new constant pool: ", this);
1739 return V;
1740 }
1741
getConstantPool(MachineConstantPoolValue * C,EVT VT,MaybeAlign Alignment,int Offset,bool isTarget,unsigned TargetFlags)1742 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1743 MaybeAlign Alignment, int Offset,
1744 bool isTarget, unsigned TargetFlags) {
1745 assert((TargetFlags == 0 || isTarget) &&
1746 "Cannot set target flags on target-independent globals");
1747 if (!Alignment)
1748 Alignment = getDataLayout().getPrefTypeAlign(C->getType());
1749 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1750 FoldingSetNodeID ID;
1751 AddNodeIDNode(ID, Opc, getVTList(VT), None);
1752 ID.AddInteger(Alignment->value());
1753 ID.AddInteger(Offset);
1754 C->addSelectionDAGCSEId(ID);
1755 ID.AddInteger(TargetFlags);
1756 void *IP = nullptr;
1757 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1758 return SDValue(E, 0);
1759
1760 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1761 TargetFlags);
1762 CSEMap.InsertNode(N, IP);
1763 InsertNode(N);
1764 return SDValue(N, 0);
1765 }
1766
getTargetIndex(int Index,EVT VT,int64_t Offset,unsigned TargetFlags)1767 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1768 unsigned TargetFlags) {
1769 FoldingSetNodeID ID;
1770 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1771 ID.AddInteger(Index);
1772 ID.AddInteger(Offset);
1773 ID.AddInteger(TargetFlags);
1774 void *IP = nullptr;
1775 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1776 return SDValue(E, 0);
1777
1778 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1779 CSEMap.InsertNode(N, IP);
1780 InsertNode(N);
1781 return SDValue(N, 0);
1782 }
1783
getBasicBlock(MachineBasicBlock * MBB)1784 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1785 FoldingSetNodeID ID;
1786 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1787 ID.AddPointer(MBB);
1788 void *IP = nullptr;
1789 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1790 return SDValue(E, 0);
1791
1792 auto *N = newSDNode<BasicBlockSDNode>(MBB);
1793 CSEMap.InsertNode(N, IP);
1794 InsertNode(N);
1795 return SDValue(N, 0);
1796 }
1797
getValueType(EVT VT)1798 SDValue SelectionDAG::getValueType(EVT VT) {
1799 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1800 ValueTypeNodes.size())
1801 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1802
1803 SDNode *&N = VT.isExtended() ?
1804 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1805
1806 if (N) return SDValue(N, 0);
1807 N = newSDNode<VTSDNode>(VT);
1808 InsertNode(N);
1809 return SDValue(N, 0);
1810 }
1811
getExternalSymbol(const char * Sym,EVT VT)1812 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1813 SDNode *&N = ExternalSymbols[Sym];
1814 if (N) return SDValue(N, 0);
1815 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1816 InsertNode(N);
1817 return SDValue(N, 0);
1818 }
1819
getMCSymbol(MCSymbol * Sym,EVT VT)1820 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1821 SDNode *&N = MCSymbols[Sym];
1822 if (N)
1823 return SDValue(N, 0);
1824 N = newSDNode<MCSymbolSDNode>(Sym, VT);
1825 InsertNode(N);
1826 return SDValue(N, 0);
1827 }
1828
getTargetExternalSymbol(const char * Sym,EVT VT,unsigned TargetFlags)1829 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1830 unsigned TargetFlags) {
1831 SDNode *&N =
1832 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
1833 if (N) return SDValue(N, 0);
1834 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1835 InsertNode(N);
1836 return SDValue(N, 0);
1837 }
1838
getCondCode(ISD::CondCode Cond)1839 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1840 if ((unsigned)Cond >= CondCodeNodes.size())
1841 CondCodeNodes.resize(Cond+1);
1842
1843 if (!CondCodeNodes[Cond]) {
1844 auto *N = newSDNode<CondCodeSDNode>(Cond);
1845 CondCodeNodes[Cond] = N;
1846 InsertNode(N);
1847 }
1848
1849 return SDValue(CondCodeNodes[Cond], 0);
1850 }
1851
getStepVector(const SDLoc & DL,EVT ResVT)1852 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT) {
1853 APInt One(ResVT.getScalarSizeInBits(), 1);
1854 return getStepVector(DL, ResVT, One);
1855 }
1856
getStepVector(const SDLoc & DL,EVT ResVT,APInt StepVal)1857 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT, APInt StepVal) {
1858 assert(ResVT.getScalarSizeInBits() == StepVal.getBitWidth());
1859 if (ResVT.isScalableVector())
1860 return getNode(
1861 ISD::STEP_VECTOR, DL, ResVT,
1862 getTargetConstant(StepVal, DL, ResVT.getVectorElementType()));
1863
1864 SmallVector<SDValue, 16> OpsStepConstants;
1865 for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++)
1866 OpsStepConstants.push_back(
1867 getConstant(StepVal * i, DL, ResVT.getVectorElementType()));
1868 return getBuildVector(ResVT, DL, OpsStepConstants);
1869 }
1870
1871 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1872 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
commuteShuffle(SDValue & N1,SDValue & N2,MutableArrayRef<int> M)1873 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1874 std::swap(N1, N2);
1875 ShuffleVectorSDNode::commuteMask(M);
1876 }
1877
getVectorShuffle(EVT VT,const SDLoc & dl,SDValue N1,SDValue N2,ArrayRef<int> Mask)1878 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1879 SDValue N2, ArrayRef<int> Mask) {
1880 assert(VT.getVectorNumElements() == Mask.size() &&
1881 "Must have the same number of vector elements as mask elements!");
1882 assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1883 "Invalid VECTOR_SHUFFLE");
1884
1885 // Canonicalize shuffle undef, undef -> undef
1886 if (N1.isUndef() && N2.isUndef())
1887 return getUNDEF(VT);
1888
1889 // Validate that all indices in Mask are within the range of the elements
1890 // input to the shuffle.
1891 int NElts = Mask.size();
1892 assert(llvm::all_of(Mask,
1893 [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1894 "Index out of range");
1895
1896 // Copy the mask so we can do any needed cleanup.
1897 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1898
1899 // Canonicalize shuffle v, v -> v, undef
1900 if (N1 == N2) {
1901 N2 = getUNDEF(VT);
1902 for (int i = 0; i != NElts; ++i)
1903 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1904 }
1905
1906 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask.
1907 if (N1.isUndef())
1908 commuteShuffle(N1, N2, MaskVec);
1909
1910 if (TLI->hasVectorBlend()) {
1911 // If shuffling a splat, try to blend the splat instead. We do this here so
1912 // that even when this arises during lowering we don't have to re-handle it.
1913 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1914 BitVector UndefElements;
1915 SDValue Splat = BV->getSplatValue(&UndefElements);
1916 if (!Splat)
1917 return;
1918
1919 for (int i = 0; i < NElts; ++i) {
1920 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1921 continue;
1922
1923 // If this input comes from undef, mark it as such.
1924 if (UndefElements[MaskVec[i] - Offset]) {
1925 MaskVec[i] = -1;
1926 continue;
1927 }
1928
1929 // If we can blend a non-undef lane, use that instead.
1930 if (!UndefElements[i])
1931 MaskVec[i] = i + Offset;
1932 }
1933 };
1934 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1935 BlendSplat(N1BV, 0);
1936 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1937 BlendSplat(N2BV, NElts);
1938 }
1939
1940 // Canonicalize all index into lhs, -> shuffle lhs, undef
1941 // Canonicalize all index into rhs, -> shuffle rhs, undef
1942 bool AllLHS = true, AllRHS = true;
1943 bool N2Undef = N2.isUndef();
1944 for (int i = 0; i != NElts; ++i) {
1945 if (MaskVec[i] >= NElts) {
1946 if (N2Undef)
1947 MaskVec[i] = -1;
1948 else
1949 AllLHS = false;
1950 } else if (MaskVec[i] >= 0) {
1951 AllRHS = false;
1952 }
1953 }
1954 if (AllLHS && AllRHS)
1955 return getUNDEF(VT);
1956 if (AllLHS && !N2Undef)
1957 N2 = getUNDEF(VT);
1958 if (AllRHS) {
1959 N1 = getUNDEF(VT);
1960 commuteShuffle(N1, N2, MaskVec);
1961 }
1962 // Reset our undef status after accounting for the mask.
1963 N2Undef = N2.isUndef();
1964 // Re-check whether both sides ended up undef.
1965 if (N1.isUndef() && N2Undef)
1966 return getUNDEF(VT);
1967
1968 // If Identity shuffle return that node.
1969 bool Identity = true, AllSame = true;
1970 for (int i = 0; i != NElts; ++i) {
1971 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1972 if (MaskVec[i] != MaskVec[0]) AllSame = false;
1973 }
1974 if (Identity && NElts)
1975 return N1;
1976
1977 // Shuffling a constant splat doesn't change the result.
1978 if (N2Undef) {
1979 SDValue V = N1;
1980
1981 // Look through any bitcasts. We check that these don't change the number
1982 // (and size) of elements and just changes their types.
1983 while (V.getOpcode() == ISD::BITCAST)
1984 V = V->getOperand(0);
1985
1986 // A splat should always show up as a build vector node.
1987 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1988 BitVector UndefElements;
1989 SDValue Splat = BV->getSplatValue(&UndefElements);
1990 // If this is a splat of an undef, shuffling it is also undef.
1991 if (Splat && Splat.isUndef())
1992 return getUNDEF(VT);
1993
1994 bool SameNumElts =
1995 V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1996
1997 // We only have a splat which can skip shuffles if there is a splatted
1998 // value and no undef lanes rearranged by the shuffle.
1999 if (Splat && UndefElements.none()) {
2000 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
2001 // number of elements match or the value splatted is a zero constant.
2002 if (SameNumElts)
2003 return N1;
2004 if (auto *C = dyn_cast<ConstantSDNode>(Splat))
2005 if (C->isZero())
2006 return N1;
2007 }
2008
2009 // If the shuffle itself creates a splat, build the vector directly.
2010 if (AllSame && SameNumElts) {
2011 EVT BuildVT = BV->getValueType(0);
2012 const SDValue &Splatted = BV->getOperand(MaskVec[0]);
2013 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
2014
2015 // We may have jumped through bitcasts, so the type of the
2016 // BUILD_VECTOR may not match the type of the shuffle.
2017 if (BuildVT != VT)
2018 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
2019 return NewBV;
2020 }
2021 }
2022 }
2023
2024 FoldingSetNodeID ID;
2025 SDValue Ops[2] = { N1, N2 };
2026 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
2027 for (int i = 0; i != NElts; ++i)
2028 ID.AddInteger(MaskVec[i]);
2029
2030 void* IP = nullptr;
2031 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
2032 return SDValue(E, 0);
2033
2034 // Allocate the mask array for the node out of the BumpPtrAllocator, since
2035 // SDNode doesn't have access to it. This memory will be "leaked" when
2036 // the node is deallocated, but recovered when the NodeAllocator is released.
2037 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
2038 llvm::copy(MaskVec, MaskAlloc);
2039
2040 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
2041 dl.getDebugLoc(), MaskAlloc);
2042 createOperands(N, Ops);
2043
2044 CSEMap.InsertNode(N, IP);
2045 InsertNode(N);
2046 SDValue V = SDValue(N, 0);
2047 NewSDValueDbgMsg(V, "Creating new node: ", this);
2048 return V;
2049 }
2050
getCommutedVectorShuffle(const ShuffleVectorSDNode & SV)2051 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
2052 EVT VT = SV.getValueType(0);
2053 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
2054 ShuffleVectorSDNode::commuteMask(MaskVec);
2055
2056 SDValue Op0 = SV.getOperand(0);
2057 SDValue Op1 = SV.getOperand(1);
2058 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
2059 }
2060
getRegister(unsigned RegNo,EVT VT)2061 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
2062 FoldingSetNodeID ID;
2063 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
2064 ID.AddInteger(RegNo);
2065 void *IP = nullptr;
2066 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2067 return SDValue(E, 0);
2068
2069 auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
2070 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
2071 CSEMap.InsertNode(N, IP);
2072 InsertNode(N);
2073 return SDValue(N, 0);
2074 }
2075
getRegisterMask(const uint32_t * RegMask)2076 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
2077 FoldingSetNodeID ID;
2078 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
2079 ID.AddPointer(RegMask);
2080 void *IP = nullptr;
2081 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2082 return SDValue(E, 0);
2083
2084 auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
2085 CSEMap.InsertNode(N, IP);
2086 InsertNode(N);
2087 return SDValue(N, 0);
2088 }
2089
getEHLabel(const SDLoc & dl,SDValue Root,MCSymbol * Label)2090 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
2091 MCSymbol *Label) {
2092 return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
2093 }
2094
getLabelNode(unsigned Opcode,const SDLoc & dl,SDValue Root,MCSymbol * Label)2095 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
2096 SDValue Root, MCSymbol *Label) {
2097 FoldingSetNodeID ID;
2098 SDValue Ops[] = { Root };
2099 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
2100 ID.AddPointer(Label);
2101 void *IP = nullptr;
2102 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2103 return SDValue(E, 0);
2104
2105 auto *N =
2106 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
2107 createOperands(N, Ops);
2108
2109 CSEMap.InsertNode(N, IP);
2110 InsertNode(N);
2111 return SDValue(N, 0);
2112 }
2113
getBlockAddress(const BlockAddress * BA,EVT VT,int64_t Offset,bool isTarget,unsigned TargetFlags)2114 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
2115 int64_t Offset, bool isTarget,
2116 unsigned TargetFlags) {
2117 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
2118
2119 FoldingSetNodeID ID;
2120 AddNodeIDNode(ID, Opc, getVTList(VT), None);
2121 ID.AddPointer(BA);
2122 ID.AddInteger(Offset);
2123 ID.AddInteger(TargetFlags);
2124 void *IP = nullptr;
2125 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2126 return SDValue(E, 0);
2127
2128 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
2129 CSEMap.InsertNode(N, IP);
2130 InsertNode(N);
2131 return SDValue(N, 0);
2132 }
2133
getSrcValue(const Value * V)2134 SDValue SelectionDAG::getSrcValue(const Value *V) {
2135 FoldingSetNodeID ID;
2136 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
2137 ID.AddPointer(V);
2138
2139 void *IP = nullptr;
2140 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2141 return SDValue(E, 0);
2142
2143 auto *N = newSDNode<SrcValueSDNode>(V);
2144 CSEMap.InsertNode(N, IP);
2145 InsertNode(N);
2146 return SDValue(N, 0);
2147 }
2148
getMDNode(const MDNode * MD)2149 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
2150 FoldingSetNodeID ID;
2151 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
2152 ID.AddPointer(MD);
2153
2154 void *IP = nullptr;
2155 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2156 return SDValue(E, 0);
2157
2158 auto *N = newSDNode<MDNodeSDNode>(MD);
2159 CSEMap.InsertNode(N, IP);
2160 InsertNode(N);
2161 return SDValue(N, 0);
2162 }
2163
getBitcast(EVT VT,SDValue V)2164 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
2165 if (VT == V.getValueType())
2166 return V;
2167
2168 return getNode(ISD::BITCAST, SDLoc(V), VT, V);
2169 }
2170
getAddrSpaceCast(const SDLoc & dl,EVT VT,SDValue Ptr,unsigned SrcAS,unsigned DestAS)2171 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
2172 unsigned SrcAS, unsigned DestAS) {
2173 SDValue Ops[] = {Ptr};
2174 FoldingSetNodeID ID;
2175 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
2176 ID.AddInteger(SrcAS);
2177 ID.AddInteger(DestAS);
2178
2179 void *IP = nullptr;
2180 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
2181 return SDValue(E, 0);
2182
2183 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
2184 VT, SrcAS, DestAS);
2185 createOperands(N, Ops);
2186
2187 CSEMap.InsertNode(N, IP);
2188 InsertNode(N);
2189 return SDValue(N, 0);
2190 }
2191
getFreeze(SDValue V)2192 SDValue SelectionDAG::getFreeze(SDValue V) {
2193 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V);
2194 }
2195
2196 /// getShiftAmountOperand - Return the specified value casted to
2197 /// the target's desired shift amount type.
getShiftAmountOperand(EVT LHSTy,SDValue Op)2198 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
2199 EVT OpTy = Op.getValueType();
2200 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
2201 if (OpTy == ShTy || OpTy.isVector()) return Op;
2202
2203 return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
2204 }
2205
expandVAArg(SDNode * Node)2206 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
2207 SDLoc dl(Node);
2208 const TargetLowering &TLI = getTargetLoweringInfo();
2209 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2210 EVT VT = Node->getValueType(0);
2211 SDValue Tmp1 = Node->getOperand(0);
2212 SDValue Tmp2 = Node->getOperand(1);
2213 const MaybeAlign MA(Node->getConstantOperandVal(3));
2214
2215 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
2216 Tmp2, MachinePointerInfo(V));
2217 SDValue VAList = VAListLoad;
2218
2219 if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
2220 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2221 getConstant(MA->value() - 1, dl, VAList.getValueType()));
2222
2223 VAList =
2224 getNode(ISD::AND, dl, VAList.getValueType(), VAList,
2225 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
2226 }
2227
2228 // Increment the pointer, VAList, to the next vaarg
2229 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2230 getConstant(getDataLayout().getTypeAllocSize(
2231 VT.getTypeForEVT(*getContext())),
2232 dl, VAList.getValueType()));
2233 // Store the incremented VAList to the legalized pointer
2234 Tmp1 =
2235 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
2236 // Load the actual argument out of the pointer VAList
2237 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
2238 }
2239
expandVACopy(SDNode * Node)2240 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
2241 SDLoc dl(Node);
2242 const TargetLowering &TLI = getTargetLoweringInfo();
2243 // This defaults to loading a pointer from the input and storing it to the
2244 // output, returning the chain.
2245 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2246 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2247 SDValue Tmp1 =
2248 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
2249 Node->getOperand(2), MachinePointerInfo(VS));
2250 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
2251 MachinePointerInfo(VD));
2252 }
2253
getReducedAlign(EVT VT,bool UseABI)2254 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) {
2255 const DataLayout &DL = getDataLayout();
2256 Type *Ty = VT.getTypeForEVT(*getContext());
2257 Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2258
2259 if (TLI->isTypeLegal(VT) || !VT.isVector())
2260 return RedAlign;
2261
2262 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2263 const Align StackAlign = TFI->getStackAlign();
2264
2265 // See if we can choose a smaller ABI alignment in cases where it's an
2266 // illegal vector type that will get broken down.
2267 if (RedAlign > StackAlign) {
2268 EVT IntermediateVT;
2269 MVT RegisterVT;
2270 unsigned NumIntermediates;
2271 TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT,
2272 NumIntermediates, RegisterVT);
2273 Ty = IntermediateVT.getTypeForEVT(*getContext());
2274 Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2275 if (RedAlign2 < RedAlign)
2276 RedAlign = RedAlign2;
2277 }
2278
2279 return RedAlign;
2280 }
2281
CreateStackTemporary(TypeSize Bytes,Align Alignment)2282 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) {
2283 MachineFrameInfo &MFI = MF->getFrameInfo();
2284 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2285 int StackID = 0;
2286 if (Bytes.isScalable())
2287 StackID = TFI->getStackIDForScalableVectors();
2288 // The stack id gives an indication of whether the object is scalable or
2289 // not, so it's safe to pass in the minimum size here.
2290 int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment,
2291 false, nullptr, StackID);
2292 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
2293 }
2294
CreateStackTemporary(EVT VT,unsigned minAlign)2295 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
2296 Type *Ty = VT.getTypeForEVT(*getContext());
2297 Align StackAlign =
2298 std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign));
2299 return CreateStackTemporary(VT.getStoreSize(), StackAlign);
2300 }
2301
CreateStackTemporary(EVT VT1,EVT VT2)2302 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
2303 TypeSize VT1Size = VT1.getStoreSize();
2304 TypeSize VT2Size = VT2.getStoreSize();
2305 assert(VT1Size.isScalable() == VT2Size.isScalable() &&
2306 "Don't know how to choose the maximum size when creating a stack "
2307 "temporary");
2308 TypeSize Bytes =
2309 VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size;
2310
2311 Type *Ty1 = VT1.getTypeForEVT(*getContext());
2312 Type *Ty2 = VT2.getTypeForEVT(*getContext());
2313 const DataLayout &DL = getDataLayout();
2314 Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2));
2315 return CreateStackTemporary(Bytes, Align);
2316 }
2317
FoldSetCC(EVT VT,SDValue N1,SDValue N2,ISD::CondCode Cond,const SDLoc & dl)2318 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
2319 ISD::CondCode Cond, const SDLoc &dl) {
2320 EVT OpVT = N1.getValueType();
2321
2322 // These setcc operations always fold.
2323 switch (Cond) {
2324 default: break;
2325 case ISD::SETFALSE:
2326 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
2327 case ISD::SETTRUE:
2328 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
2329
2330 case ISD::SETOEQ:
2331 case ISD::SETOGT:
2332 case ISD::SETOGE:
2333 case ISD::SETOLT:
2334 case ISD::SETOLE:
2335 case ISD::SETONE:
2336 case ISD::SETO:
2337 case ISD::SETUO:
2338 case ISD::SETUEQ:
2339 case ISD::SETUNE:
2340 assert(!OpVT.isInteger() && "Illegal setcc for integer!");
2341 break;
2342 }
2343
2344 if (OpVT.isInteger()) {
2345 // For EQ and NE, we can always pick a value for the undef to make the
2346 // predicate pass or fail, so we can return undef.
2347 // Matches behavior in llvm::ConstantFoldCompareInstruction.
2348 // icmp eq/ne X, undef -> undef.
2349 if ((N1.isUndef() || N2.isUndef()) &&
2350 (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2351 return getUNDEF(VT);
2352
2353 // If both operands are undef, we can return undef for int comparison.
2354 // icmp undef, undef -> undef.
2355 if (N1.isUndef() && N2.isUndef())
2356 return getUNDEF(VT);
2357
2358 // icmp X, X -> true/false
2359 // icmp X, undef -> true/false because undef could be X.
2360 if (N1 == N2)
2361 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2362 }
2363
2364 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
2365 const APInt &C2 = N2C->getAPIntValue();
2366 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
2367 const APInt &C1 = N1C->getAPIntValue();
2368
2369 return getBoolConstant(ICmpInst::compare(C1, C2, getICmpCondCode(Cond)),
2370 dl, VT, OpVT);
2371 }
2372 }
2373
2374 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2375 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2376
2377 if (N1CFP && N2CFP) {
2378 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2379 switch (Cond) {
2380 default: break;
2381 case ISD::SETEQ: if (R==APFloat::cmpUnordered)
2382 return getUNDEF(VT);
2383 LLVM_FALLTHROUGH;
2384 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2385 OpVT);
2386 case ISD::SETNE: if (R==APFloat::cmpUnordered)
2387 return getUNDEF(VT);
2388 LLVM_FALLTHROUGH;
2389 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2390 R==APFloat::cmpLessThan, dl, VT,
2391 OpVT);
2392 case ISD::SETLT: if (R==APFloat::cmpUnordered)
2393 return getUNDEF(VT);
2394 LLVM_FALLTHROUGH;
2395 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2396 OpVT);
2397 case ISD::SETGT: if (R==APFloat::cmpUnordered)
2398 return getUNDEF(VT);
2399 LLVM_FALLTHROUGH;
2400 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2401 VT, OpVT);
2402 case ISD::SETLE: if (R==APFloat::cmpUnordered)
2403 return getUNDEF(VT);
2404 LLVM_FALLTHROUGH;
2405 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2406 R==APFloat::cmpEqual, dl, VT,
2407 OpVT);
2408 case ISD::SETGE: if (R==APFloat::cmpUnordered)
2409 return getUNDEF(VT);
2410 LLVM_FALLTHROUGH;
2411 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2412 R==APFloat::cmpEqual, dl, VT, OpVT);
2413 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2414 OpVT);
2415 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2416 OpVT);
2417 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2418 R==APFloat::cmpEqual, dl, VT,
2419 OpVT);
2420 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2421 OpVT);
2422 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2423 R==APFloat::cmpLessThan, dl, VT,
2424 OpVT);
2425 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2426 R==APFloat::cmpUnordered, dl, VT,
2427 OpVT);
2428 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2429 VT, OpVT);
2430 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2431 OpVT);
2432 }
2433 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2434 // Ensure that the constant occurs on the RHS.
2435 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2436 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2437 return SDValue();
2438 return getSetCC(dl, VT, N2, N1, SwappedCond);
2439 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2440 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2441 // If an operand is known to be a nan (or undef that could be a nan), we can
2442 // fold it.
2443 // Choosing NaN for the undef will always make unordered comparison succeed
2444 // and ordered comparison fails.
2445 // Matches behavior in llvm::ConstantFoldCompareInstruction.
2446 switch (ISD::getUnorderedFlavor(Cond)) {
2447 default:
2448 llvm_unreachable("Unknown flavor!");
2449 case 0: // Known false.
2450 return getBoolConstant(false, dl, VT, OpVT);
2451 case 1: // Known true.
2452 return getBoolConstant(true, dl, VT, OpVT);
2453 case 2: // Undefined.
2454 return getUNDEF(VT);
2455 }
2456 }
2457
2458 // Could not fold it.
2459 return SDValue();
2460 }
2461
2462 /// See if the specified operand can be simplified with the knowledge that only
2463 /// the bits specified by DemandedBits are used.
2464 /// TODO: really we should be making this into the DAG equivalent of
2465 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
GetDemandedBits(SDValue V,const APInt & DemandedBits)2466 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) {
2467 EVT VT = V.getValueType();
2468
2469 if (VT.isScalableVector())
2470 return SDValue();
2471
2472 switch (V.getOpcode()) {
2473 default:
2474 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, *this);
2475 case ISD::Constant: {
2476 const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue();
2477 APInt NewVal = CVal & DemandedBits;
2478 if (NewVal != CVal)
2479 return getConstant(NewVal, SDLoc(V), V.getValueType());
2480 break;
2481 }
2482 case ISD::SRL:
2483 // Only look at single-use SRLs.
2484 if (!V.getNode()->hasOneUse())
2485 break;
2486 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2487 // See if we can recursively simplify the LHS.
2488 unsigned Amt = RHSC->getZExtValue();
2489
2490 // Watch out for shift count overflow though.
2491 if (Amt >= DemandedBits.getBitWidth())
2492 break;
2493 APInt SrcDemandedBits = DemandedBits << Amt;
2494 if (SDValue SimplifyLHS = TLI->SimplifyMultipleUseDemandedBits(
2495 V.getOperand(0), SrcDemandedBits, *this))
2496 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2497 V.getOperand(1));
2498 }
2499 break;
2500 }
2501 return SDValue();
2502 }
2503
2504 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We
2505 /// use this predicate to simplify operations downstream.
SignBitIsZero(SDValue Op,unsigned Depth) const2506 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2507 unsigned BitWidth = Op.getScalarValueSizeInBits();
2508 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2509 }
2510
2511 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
2512 /// this predicate to simplify operations downstream. Mask is known to be zero
2513 /// for bits that V cannot have.
MaskedValueIsZero(SDValue V,const APInt & Mask,unsigned Depth) const2514 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2515 unsigned Depth) const {
2516 return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero);
2517 }
2518
2519 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2520 /// DemandedElts. We use this predicate to simplify operations downstream.
2521 /// Mask is known to be zero for bits that V cannot have.
MaskedValueIsZero(SDValue V,const APInt & Mask,const APInt & DemandedElts,unsigned Depth) const2522 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2523 const APInt &DemandedElts,
2524 unsigned Depth) const {
2525 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2526 }
2527
2528 /// MaskedVectorIsZero - Return true if 'Op' is known to be zero in
2529 /// DemandedElts. We use this predicate to simplify operations downstream.
MaskedVectorIsZero(SDValue V,const APInt & DemandedElts,unsigned Depth) const2530 bool SelectionDAG::MaskedVectorIsZero(SDValue V, const APInt &DemandedElts,
2531 unsigned Depth /* = 0 */) const {
2532 return computeKnownBits(V, DemandedElts, Depth).isZero();
2533 }
2534
2535 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
MaskedValueIsAllOnes(SDValue V,const APInt & Mask,unsigned Depth) const2536 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask,
2537 unsigned Depth) const {
2538 return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2539 }
2540
2541 /// isSplatValue - Return true if the vector V has the same value
2542 /// across all DemandedElts. For scalable vectors it does not make
2543 /// sense to specify which elements are demanded or undefined, therefore
2544 /// they are simply ignored.
isSplatValue(SDValue V,const APInt & DemandedElts,APInt & UndefElts,unsigned Depth) const2545 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2546 APInt &UndefElts, unsigned Depth) const {
2547 unsigned Opcode = V.getOpcode();
2548 EVT VT = V.getValueType();
2549 assert(VT.isVector() && "Vector type expected");
2550
2551 if (!VT.isScalableVector() && !DemandedElts)
2552 return false; // No demanded elts, better to assume we don't know anything.
2553
2554 if (Depth >= MaxRecursionDepth)
2555 return false; // Limit search depth.
2556
2557 // Deal with some common cases here that work for both fixed and scalable
2558 // vector types.
2559 switch (Opcode) {
2560 case ISD::SPLAT_VECTOR:
2561 UndefElts = V.getOperand(0).isUndef()
2562 ? APInt::getAllOnes(DemandedElts.getBitWidth())
2563 : APInt(DemandedElts.getBitWidth(), 0);
2564 return true;
2565 case ISD::ADD:
2566 case ISD::SUB:
2567 case ISD::AND:
2568 case ISD::XOR:
2569 case ISD::OR: {
2570 APInt UndefLHS, UndefRHS;
2571 SDValue LHS = V.getOperand(0);
2572 SDValue RHS = V.getOperand(1);
2573 if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) &&
2574 isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) {
2575 UndefElts = UndefLHS | UndefRHS;
2576 return true;
2577 }
2578 return false;
2579 }
2580 case ISD::ABS:
2581 case ISD::TRUNCATE:
2582 case ISD::SIGN_EXTEND:
2583 case ISD::ZERO_EXTEND:
2584 return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1);
2585 default:
2586 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
2587 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
2588 return TLI->isSplatValueForTargetNode(V, DemandedElts, UndefElts, Depth);
2589 break;
2590 }
2591
2592 // We don't support other cases than those above for scalable vectors at
2593 // the moment.
2594 if (VT.isScalableVector())
2595 return false;
2596
2597 unsigned NumElts = VT.getVectorNumElements();
2598 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
2599 UndefElts = APInt::getZero(NumElts);
2600
2601 switch (Opcode) {
2602 case ISD::BUILD_VECTOR: {
2603 SDValue Scl;
2604 for (unsigned i = 0; i != NumElts; ++i) {
2605 SDValue Op = V.getOperand(i);
2606 if (Op.isUndef()) {
2607 UndefElts.setBit(i);
2608 continue;
2609 }
2610 if (!DemandedElts[i])
2611 continue;
2612 if (Scl && Scl != Op)
2613 return false;
2614 Scl = Op;
2615 }
2616 return true;
2617 }
2618 case ISD::VECTOR_SHUFFLE: {
2619 // Check if this is a shuffle node doing a splat or a shuffle of a splat.
2620 APInt DemandedLHS = APInt::getNullValue(NumElts);
2621 APInt DemandedRHS = APInt::getNullValue(NumElts);
2622 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
2623 for (int i = 0; i != (int)NumElts; ++i) {
2624 int M = Mask[i];
2625 if (M < 0) {
2626 UndefElts.setBit(i);
2627 continue;
2628 }
2629 if (!DemandedElts[i])
2630 continue;
2631 if (M < (int)NumElts)
2632 DemandedLHS.setBit(M);
2633 else
2634 DemandedRHS.setBit(M - NumElts);
2635 }
2636
2637 // If we aren't demanding either op, assume there's no splat.
2638 // If we are demanding both ops, assume there's no splat.
2639 if ((DemandedLHS.isZero() && DemandedRHS.isZero()) ||
2640 (!DemandedLHS.isZero() && !DemandedRHS.isZero()))
2641 return false;
2642
2643 // See if the demanded elts of the source op is a splat or we only demand
2644 // one element, which should always be a splat.
2645 // TODO: Handle source ops splats with undefs.
2646 auto CheckSplatSrc = [&](SDValue Src, const APInt &SrcElts) {
2647 APInt SrcUndefs;
2648 return (SrcElts.countPopulation() == 1) ||
2649 (isSplatValue(Src, SrcElts, SrcUndefs, Depth + 1) &&
2650 (SrcElts & SrcUndefs).isZero());
2651 };
2652 if (!DemandedLHS.isZero())
2653 return CheckSplatSrc(V.getOperand(0), DemandedLHS);
2654 return CheckSplatSrc(V.getOperand(1), DemandedRHS);
2655 }
2656 case ISD::EXTRACT_SUBVECTOR: {
2657 // Offset the demanded elts by the subvector index.
2658 SDValue Src = V.getOperand(0);
2659 // We don't support scalable vectors at the moment.
2660 if (Src.getValueType().isScalableVector())
2661 return false;
2662 uint64_t Idx = V.getConstantOperandVal(1);
2663 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2664 APInt UndefSrcElts;
2665 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
2666 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
2667 UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
2668 return true;
2669 }
2670 break;
2671 }
2672 case ISD::ANY_EXTEND_VECTOR_INREG:
2673 case ISD::SIGN_EXTEND_VECTOR_INREG:
2674 case ISD::ZERO_EXTEND_VECTOR_INREG: {
2675 // Widen the demanded elts by the src element count.
2676 SDValue Src = V.getOperand(0);
2677 // We don't support scalable vectors at the moment.
2678 if (Src.getValueType().isScalableVector())
2679 return false;
2680 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2681 APInt UndefSrcElts;
2682 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts);
2683 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
2684 UndefElts = UndefSrcElts.trunc(NumElts);
2685 return true;
2686 }
2687 break;
2688 }
2689 case ISD::BITCAST: {
2690 SDValue Src = V.getOperand(0);
2691 EVT SrcVT = Src.getValueType();
2692 unsigned SrcBitWidth = SrcVT.getScalarSizeInBits();
2693 unsigned BitWidth = VT.getScalarSizeInBits();
2694
2695 // Ignore bitcasts from unsupported types.
2696 // TODO: Add fp support?
2697 if (!SrcVT.isVector() || !SrcVT.isInteger() || !VT.isInteger())
2698 break;
2699
2700 // Bitcast 'small element' vector to 'large element' vector.
2701 if ((BitWidth % SrcBitWidth) == 0) {
2702 // See if each sub element is a splat.
2703 unsigned Scale = BitWidth / SrcBitWidth;
2704 unsigned NumSrcElts = SrcVT.getVectorNumElements();
2705 APInt ScaledDemandedElts =
2706 APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2707 for (unsigned I = 0; I != Scale; ++I) {
2708 APInt SubUndefElts;
2709 APInt SubDemandedElt = APInt::getOneBitSet(Scale, I);
2710 APInt SubDemandedElts = APInt::getSplat(NumSrcElts, SubDemandedElt);
2711 SubDemandedElts &= ScaledDemandedElts;
2712 if (!isSplatValue(Src, SubDemandedElts, SubUndefElts, Depth + 1))
2713 return false;
2714 // TODO: Add support for merging sub undef elements.
2715 if (!SubUndefElts.isZero())
2716 return false;
2717 }
2718 return true;
2719 }
2720 break;
2721 }
2722 }
2723
2724 return false;
2725 }
2726
2727 /// Helper wrapper to main isSplatValue function.
isSplatValue(SDValue V,bool AllowUndefs) const2728 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) const {
2729 EVT VT = V.getValueType();
2730 assert(VT.isVector() && "Vector type expected");
2731
2732 APInt UndefElts;
2733 APInt DemandedElts;
2734
2735 // For now we don't support this with scalable vectors.
2736 if (!VT.isScalableVector())
2737 DemandedElts = APInt::getAllOnes(VT.getVectorNumElements());
2738 return isSplatValue(V, DemandedElts, UndefElts) &&
2739 (AllowUndefs || !UndefElts);
2740 }
2741
getSplatSourceVector(SDValue V,int & SplatIdx)2742 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) {
2743 V = peekThroughExtractSubvectors(V);
2744
2745 EVT VT = V.getValueType();
2746 unsigned Opcode = V.getOpcode();
2747 switch (Opcode) {
2748 default: {
2749 APInt UndefElts;
2750 APInt DemandedElts;
2751
2752 if (!VT.isScalableVector())
2753 DemandedElts = APInt::getAllOnes(VT.getVectorNumElements());
2754
2755 if (isSplatValue(V, DemandedElts, UndefElts)) {
2756 if (VT.isScalableVector()) {
2757 // DemandedElts and UndefElts are ignored for scalable vectors, since
2758 // the only supported cases are SPLAT_VECTOR nodes.
2759 SplatIdx = 0;
2760 } else {
2761 // Handle case where all demanded elements are UNDEF.
2762 if (DemandedElts.isSubsetOf(UndefElts)) {
2763 SplatIdx = 0;
2764 return getUNDEF(VT);
2765 }
2766 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes();
2767 }
2768 return V;
2769 }
2770 break;
2771 }
2772 case ISD::SPLAT_VECTOR:
2773 SplatIdx = 0;
2774 return V;
2775 case ISD::VECTOR_SHUFFLE: {
2776 if (VT.isScalableVector())
2777 return SDValue();
2778
2779 // Check if this is a shuffle node doing a splat.
2780 // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
2781 // getTargetVShiftNode currently struggles without the splat source.
2782 auto *SVN = cast<ShuffleVectorSDNode>(V);
2783 if (!SVN->isSplat())
2784 break;
2785 int Idx = SVN->getSplatIndex();
2786 int NumElts = V.getValueType().getVectorNumElements();
2787 SplatIdx = Idx % NumElts;
2788 return V.getOperand(Idx / NumElts);
2789 }
2790 }
2791
2792 return SDValue();
2793 }
2794
getSplatValue(SDValue V,bool LegalTypes)2795 SDValue SelectionDAG::getSplatValue(SDValue V, bool LegalTypes) {
2796 int SplatIdx;
2797 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) {
2798 EVT SVT = SrcVector.getValueType().getScalarType();
2799 EVT LegalSVT = SVT;
2800 if (LegalTypes && !TLI->isTypeLegal(SVT)) {
2801 if (!SVT.isInteger())
2802 return SDValue();
2803 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
2804 if (LegalSVT.bitsLT(SVT))
2805 return SDValue();
2806 }
2807 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), LegalSVT, SrcVector,
2808 getVectorIdxConstant(SplatIdx, SDLoc(V)));
2809 }
2810 return SDValue();
2811 }
2812
2813 const APInt *
getValidShiftAmountConstant(SDValue V,const APInt & DemandedElts) const2814 SelectionDAG::getValidShiftAmountConstant(SDValue V,
2815 const APInt &DemandedElts) const {
2816 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2817 V.getOpcode() == ISD::SRA) &&
2818 "Unknown shift node");
2819 unsigned BitWidth = V.getScalarValueSizeInBits();
2820 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) {
2821 // Shifting more than the bitwidth is not valid.
2822 const APInt &ShAmt = SA->getAPIntValue();
2823 if (ShAmt.ult(BitWidth))
2824 return &ShAmt;
2825 }
2826 return nullptr;
2827 }
2828
getValidMinimumShiftAmountConstant(SDValue V,const APInt & DemandedElts) const2829 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant(
2830 SDValue V, const APInt &DemandedElts) const {
2831 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2832 V.getOpcode() == ISD::SRA) &&
2833 "Unknown shift node");
2834 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2835 return ValidAmt;
2836 unsigned BitWidth = V.getScalarValueSizeInBits();
2837 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2838 if (!BV)
2839 return nullptr;
2840 const APInt *MinShAmt = nullptr;
2841 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2842 if (!DemandedElts[i])
2843 continue;
2844 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2845 if (!SA)
2846 return nullptr;
2847 // Shifting more than the bitwidth is not valid.
2848 const APInt &ShAmt = SA->getAPIntValue();
2849 if (ShAmt.uge(BitWidth))
2850 return nullptr;
2851 if (MinShAmt && MinShAmt->ule(ShAmt))
2852 continue;
2853 MinShAmt = &ShAmt;
2854 }
2855 return MinShAmt;
2856 }
2857
getValidMaximumShiftAmountConstant(SDValue V,const APInt & DemandedElts) const2858 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant(
2859 SDValue V, const APInt &DemandedElts) const {
2860 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2861 V.getOpcode() == ISD::SRA) &&
2862 "Unknown shift node");
2863 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2864 return ValidAmt;
2865 unsigned BitWidth = V.getScalarValueSizeInBits();
2866 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2867 if (!BV)
2868 return nullptr;
2869 const APInt *MaxShAmt = nullptr;
2870 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2871 if (!DemandedElts[i])
2872 continue;
2873 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2874 if (!SA)
2875 return nullptr;
2876 // Shifting more than the bitwidth is not valid.
2877 const APInt &ShAmt = SA->getAPIntValue();
2878 if (ShAmt.uge(BitWidth))
2879 return nullptr;
2880 if (MaxShAmt && MaxShAmt->uge(ShAmt))
2881 continue;
2882 MaxShAmt = &ShAmt;
2883 }
2884 return MaxShAmt;
2885 }
2886
2887 /// Determine which bits of Op are known to be either zero or one and return
2888 /// them in Known. For vectors, the known bits are those that are shared by
2889 /// every vector element.
computeKnownBits(SDValue Op,unsigned Depth) const2890 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
2891 EVT VT = Op.getValueType();
2892
2893 // TOOD: Until we have a plan for how to represent demanded elements for
2894 // scalable vectors, we can just bail out for now.
2895 if (Op.getValueType().isScalableVector()) {
2896 unsigned BitWidth = Op.getScalarValueSizeInBits();
2897 return KnownBits(BitWidth);
2898 }
2899
2900 APInt DemandedElts = VT.isVector()
2901 ? APInt::getAllOnes(VT.getVectorNumElements())
2902 : APInt(1, 1);
2903 return computeKnownBits(Op, DemandedElts, Depth);
2904 }
2905
2906 /// Determine which bits of Op are known to be either zero or one and return
2907 /// them in Known. The DemandedElts argument allows us to only collect the known
2908 /// bits that are shared by the requested vector elements.
computeKnownBits(SDValue Op,const APInt & DemandedElts,unsigned Depth) const2909 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
2910 unsigned Depth) const {
2911 unsigned BitWidth = Op.getScalarValueSizeInBits();
2912
2913 KnownBits Known(BitWidth); // Don't know anything.
2914
2915 // TOOD: Until we have a plan for how to represent demanded elements for
2916 // scalable vectors, we can just bail out for now.
2917 if (Op.getValueType().isScalableVector())
2918 return Known;
2919
2920 if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2921 // We know all of the bits for a constant!
2922 return KnownBits::makeConstant(C->getAPIntValue());
2923 }
2924 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2925 // We know all of the bits for a constant fp!
2926 return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt());
2927 }
2928
2929 if (Depth >= MaxRecursionDepth)
2930 return Known; // Limit search depth.
2931
2932 KnownBits Known2;
2933 unsigned NumElts = DemandedElts.getBitWidth();
2934 assert((!Op.getValueType().isVector() ||
2935 NumElts == Op.getValueType().getVectorNumElements()) &&
2936 "Unexpected vector size");
2937
2938 if (!DemandedElts)
2939 return Known; // No demanded elts, better to assume we don't know anything.
2940
2941 unsigned Opcode = Op.getOpcode();
2942 switch (Opcode) {
2943 case ISD::MERGE_VALUES:
2944 return computeKnownBits(Op.getOperand(Op.getResNo()), DemandedElts,
2945 Depth + 1);
2946 case ISD::BUILD_VECTOR:
2947 // Collect the known bits that are shared by every demanded vector element.
2948 Known.Zero.setAllBits(); Known.One.setAllBits();
2949 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2950 if (!DemandedElts[i])
2951 continue;
2952
2953 SDValue SrcOp = Op.getOperand(i);
2954 Known2 = computeKnownBits(SrcOp, Depth + 1);
2955
2956 // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2957 if (SrcOp.getValueSizeInBits() != BitWidth) {
2958 assert(SrcOp.getValueSizeInBits() > BitWidth &&
2959 "Expected BUILD_VECTOR implicit truncation");
2960 Known2 = Known2.trunc(BitWidth);
2961 }
2962
2963 // Known bits are the values that are shared by every demanded element.
2964 Known = KnownBits::commonBits(Known, Known2);
2965
2966 // If we don't know any bits, early out.
2967 if (Known.isUnknown())
2968 break;
2969 }
2970 break;
2971 case ISD::VECTOR_SHUFFLE: {
2972 // Collect the known bits that are shared by every vector element referenced
2973 // by the shuffle.
2974 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2975 Known.Zero.setAllBits(); Known.One.setAllBits();
2976 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2977 assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2978 for (unsigned i = 0; i != NumElts; ++i) {
2979 if (!DemandedElts[i])
2980 continue;
2981
2982 int M = SVN->getMaskElt(i);
2983 if (M < 0) {
2984 // For UNDEF elements, we don't know anything about the common state of
2985 // the shuffle result.
2986 Known.resetAll();
2987 DemandedLHS.clearAllBits();
2988 DemandedRHS.clearAllBits();
2989 break;
2990 }
2991
2992 if ((unsigned)M < NumElts)
2993 DemandedLHS.setBit((unsigned)M % NumElts);
2994 else
2995 DemandedRHS.setBit((unsigned)M % NumElts);
2996 }
2997 // Known bits are the values that are shared by every demanded element.
2998 if (!!DemandedLHS) {
2999 SDValue LHS = Op.getOperand(0);
3000 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
3001 Known = KnownBits::commonBits(Known, Known2);
3002 }
3003 // If we don't know any bits, early out.
3004 if (Known.isUnknown())
3005 break;
3006 if (!!DemandedRHS) {
3007 SDValue RHS = Op.getOperand(1);
3008 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
3009 Known = KnownBits::commonBits(Known, Known2);
3010 }
3011 break;
3012 }
3013 case ISD::CONCAT_VECTORS: {
3014 // Split DemandedElts and test each of the demanded subvectors.
3015 Known.Zero.setAllBits(); Known.One.setAllBits();
3016 EVT SubVectorVT = Op.getOperand(0).getValueType();
3017 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
3018 unsigned NumSubVectors = Op.getNumOperands();
3019 for (unsigned i = 0; i != NumSubVectors; ++i) {
3020 APInt DemandedSub =
3021 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts);
3022 if (!!DemandedSub) {
3023 SDValue Sub = Op.getOperand(i);
3024 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
3025 Known = KnownBits::commonBits(Known, Known2);
3026 }
3027 // If we don't know any bits, early out.
3028 if (Known.isUnknown())
3029 break;
3030 }
3031 break;
3032 }
3033 case ISD::INSERT_SUBVECTOR: {
3034 // Demand any elements from the subvector and the remainder from the src its
3035 // inserted into.
3036 SDValue Src = Op.getOperand(0);
3037 SDValue Sub = Op.getOperand(1);
3038 uint64_t Idx = Op.getConstantOperandVal(2);
3039 unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
3040 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
3041 APInt DemandedSrcElts = DemandedElts;
3042 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
3043
3044 Known.One.setAllBits();
3045 Known.Zero.setAllBits();
3046 if (!!DemandedSubElts) {
3047 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
3048 if (Known.isUnknown())
3049 break; // early-out.
3050 }
3051 if (!!DemandedSrcElts) {
3052 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
3053 Known = KnownBits::commonBits(Known, Known2);
3054 }
3055 break;
3056 }
3057 case ISD::EXTRACT_SUBVECTOR: {
3058 // Offset the demanded elts by the subvector index.
3059 SDValue Src = Op.getOperand(0);
3060 // Bail until we can represent demanded elements for scalable vectors.
3061 if (Src.getValueType().isScalableVector())
3062 break;
3063 uint64_t Idx = Op.getConstantOperandVal(1);
3064 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3065 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
3066 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
3067 break;
3068 }
3069 case ISD::SCALAR_TO_VECTOR: {
3070 // We know about scalar_to_vector as much as we know about it source,
3071 // which becomes the first element of otherwise unknown vector.
3072 if (DemandedElts != 1)
3073 break;
3074
3075 SDValue N0 = Op.getOperand(0);
3076 Known = computeKnownBits(N0, Depth + 1);
3077 if (N0.getValueSizeInBits() != BitWidth)
3078 Known = Known.trunc(BitWidth);
3079
3080 break;
3081 }
3082 case ISD::BITCAST: {
3083 SDValue N0 = Op.getOperand(0);
3084 EVT SubVT = N0.getValueType();
3085 unsigned SubBitWidth = SubVT.getScalarSizeInBits();
3086
3087 // Ignore bitcasts from unsupported types.
3088 if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
3089 break;
3090
3091 // Fast handling of 'identity' bitcasts.
3092 if (BitWidth == SubBitWidth) {
3093 Known = computeKnownBits(N0, DemandedElts, Depth + 1);
3094 break;
3095 }
3096
3097 bool IsLE = getDataLayout().isLittleEndian();
3098
3099 // Bitcast 'small element' vector to 'large element' scalar/vector.
3100 if ((BitWidth % SubBitWidth) == 0) {
3101 assert(N0.getValueType().isVector() && "Expected bitcast from vector");
3102
3103 // Collect known bits for the (larger) output by collecting the known
3104 // bits from each set of sub elements and shift these into place.
3105 // We need to separately call computeKnownBits for each set of
3106 // sub elements as the knownbits for each is likely to be different.
3107 unsigned SubScale = BitWidth / SubBitWidth;
3108 APInt SubDemandedElts(NumElts * SubScale, 0);
3109 for (unsigned i = 0; i != NumElts; ++i)
3110 if (DemandedElts[i])
3111 SubDemandedElts.setBit(i * SubScale);
3112
3113 for (unsigned i = 0; i != SubScale; ++i) {
3114 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
3115 Depth + 1);
3116 unsigned Shifts = IsLE ? i : SubScale - 1 - i;
3117 Known.insertBits(Known2, SubBitWidth * Shifts);
3118 }
3119 }
3120
3121 // Bitcast 'large element' scalar/vector to 'small element' vector.
3122 if ((SubBitWidth % BitWidth) == 0) {
3123 assert(Op.getValueType().isVector() && "Expected bitcast to vector");
3124
3125 // Collect known bits for the (smaller) output by collecting the known
3126 // bits from the overlapping larger input elements and extracting the
3127 // sub sections we actually care about.
3128 unsigned SubScale = SubBitWidth / BitWidth;
3129 APInt SubDemandedElts =
3130 APIntOps::ScaleBitMask(DemandedElts, NumElts / SubScale);
3131 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
3132
3133 Known.Zero.setAllBits(); Known.One.setAllBits();
3134 for (unsigned i = 0; i != NumElts; ++i)
3135 if (DemandedElts[i]) {
3136 unsigned Shifts = IsLE ? i : NumElts - 1 - i;
3137 unsigned Offset = (Shifts % SubScale) * BitWidth;
3138 Known = KnownBits::commonBits(Known,
3139 Known2.extractBits(BitWidth, Offset));
3140 // If we don't know any bits, early out.
3141 if (Known.isUnknown())
3142 break;
3143 }
3144 }
3145 break;
3146 }
3147 case ISD::AND:
3148 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3149 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3150
3151 Known &= Known2;
3152 break;
3153 case ISD::OR:
3154 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3155 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3156
3157 Known |= Known2;
3158 break;
3159 case ISD::XOR:
3160 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3161 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3162
3163 Known ^= Known2;
3164 break;
3165 case ISD::MUL: {
3166 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3167 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3168 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3169 // TODO: SelfMultiply can be poison, but not undef.
3170 if (SelfMultiply)
3171 SelfMultiply &= isGuaranteedNotToBeUndefOrPoison(
3172 Op.getOperand(0), DemandedElts, false, Depth + 1);
3173 Known = KnownBits::mul(Known, Known2, SelfMultiply);
3174
3175 // If the multiplication is known not to overflow, the product of a number
3176 // with itself is non-negative. Only do this if we didn't already computed
3177 // the opposite value for the sign bit.
3178 if (Op->getFlags().hasNoSignedWrap() &&
3179 Op.getOperand(0) == Op.getOperand(1) &&
3180 !Known.isNegative())
3181 Known.makeNonNegative();
3182 break;
3183 }
3184 case ISD::MULHU: {
3185 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3186 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3187 Known = KnownBits::mulhu(Known, Known2);
3188 break;
3189 }
3190 case ISD::MULHS: {
3191 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3192 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3193 Known = KnownBits::mulhs(Known, Known2);
3194 break;
3195 }
3196 case ISD::UMUL_LOHI: {
3197 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3198 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3199 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3200 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3201 if (Op.getResNo() == 0)
3202 Known = KnownBits::mul(Known, Known2, SelfMultiply);
3203 else
3204 Known = KnownBits::mulhu(Known, Known2);
3205 break;
3206 }
3207 case ISD::SMUL_LOHI: {
3208 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3209 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3210 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3211 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3212 if (Op.getResNo() == 0)
3213 Known = KnownBits::mul(Known, Known2, SelfMultiply);
3214 else
3215 Known = KnownBits::mulhs(Known, Known2);
3216 break;
3217 }
3218 case ISD::AVGCEILU: {
3219 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3220 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3221 Known = Known.zext(BitWidth + 1);
3222 Known2 = Known2.zext(BitWidth + 1);
3223 KnownBits One = KnownBits::makeConstant(APInt(1, 1));
3224 Known = KnownBits::computeForAddCarry(Known, Known2, One);
3225 Known = Known.extractBits(BitWidth, 1);
3226 break;
3227 }
3228 case ISD::SELECT:
3229 case ISD::VSELECT:
3230 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3231 // If we don't know any bits, early out.
3232 if (Known.isUnknown())
3233 break;
3234 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
3235
3236 // Only known if known in both the LHS and RHS.
3237 Known = KnownBits::commonBits(Known, Known2);
3238 break;
3239 case ISD::SELECT_CC:
3240 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
3241 // If we don't know any bits, early out.
3242 if (Known.isUnknown())
3243 break;
3244 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3245
3246 // Only known if known in both the LHS and RHS.
3247 Known = KnownBits::commonBits(Known, Known2);
3248 break;
3249 case ISD::SMULO:
3250 case ISD::UMULO:
3251 if (Op.getResNo() != 1)
3252 break;
3253 // The boolean result conforms to getBooleanContents.
3254 // If we know the result of a setcc has the top bits zero, use this info.
3255 // We know that we have an integer-based boolean since these operations
3256 // are only available for integer.
3257 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3258 TargetLowering::ZeroOrOneBooleanContent &&
3259 BitWidth > 1)
3260 Known.Zero.setBitsFrom(1);
3261 break;
3262 case ISD::SETCC:
3263 case ISD::SETCCCARRY:
3264 case ISD::STRICT_FSETCC:
3265 case ISD::STRICT_FSETCCS: {
3266 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3267 // If we know the result of a setcc has the top bits zero, use this info.
3268 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3269 TargetLowering::ZeroOrOneBooleanContent &&
3270 BitWidth > 1)
3271 Known.Zero.setBitsFrom(1);
3272 break;
3273 }
3274 case ISD::SHL:
3275 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3276 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3277 Known = KnownBits::shl(Known, Known2);
3278
3279 // Minimum shift low bits are known zero.
3280 if (const APInt *ShMinAmt =
3281 getValidMinimumShiftAmountConstant(Op, DemandedElts))
3282 Known.Zero.setLowBits(ShMinAmt->getZExtValue());
3283 break;
3284 case ISD::SRL:
3285 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3286 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3287 Known = KnownBits::lshr(Known, Known2);
3288
3289 // Minimum shift high bits are known zero.
3290 if (const APInt *ShMinAmt =
3291 getValidMinimumShiftAmountConstant(Op, DemandedElts))
3292 Known.Zero.setHighBits(ShMinAmt->getZExtValue());
3293 break;
3294 case ISD::SRA:
3295 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3296 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3297 Known = KnownBits::ashr(Known, Known2);
3298 // TODO: Add minimum shift high known sign bits.
3299 break;
3300 case ISD::FSHL:
3301 case ISD::FSHR:
3302 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
3303 unsigned Amt = C->getAPIntValue().urem(BitWidth);
3304
3305 // For fshl, 0-shift returns the 1st arg.
3306 // For fshr, 0-shift returns the 2nd arg.
3307 if (Amt == 0) {
3308 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
3309 DemandedElts, Depth + 1);
3310 break;
3311 }
3312
3313 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
3314 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
3315 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3316 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3317 if (Opcode == ISD::FSHL) {
3318 Known.One <<= Amt;
3319 Known.Zero <<= Amt;
3320 Known2.One.lshrInPlace(BitWidth - Amt);
3321 Known2.Zero.lshrInPlace(BitWidth - Amt);
3322 } else {
3323 Known.One <<= BitWidth - Amt;
3324 Known.Zero <<= BitWidth - Amt;
3325 Known2.One.lshrInPlace(Amt);
3326 Known2.Zero.lshrInPlace(Amt);
3327 }
3328 Known.One |= Known2.One;
3329 Known.Zero |= Known2.Zero;
3330 }
3331 break;
3332 case ISD::SHL_PARTS:
3333 case ISD::SRA_PARTS:
3334 case ISD::SRL_PARTS: {
3335 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3336
3337 // Collect lo/hi source values and concatenate.
3338 // TODO: Would a KnownBits::concatBits helper be useful?
3339 unsigned LoBits = Op.getOperand(0).getScalarValueSizeInBits();
3340 unsigned HiBits = Op.getOperand(1).getScalarValueSizeInBits();
3341 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3342 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3343 Known = Known.anyext(LoBits + HiBits);
3344 Known.insertBits(Known2, LoBits);
3345
3346 // Collect shift amount.
3347 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3348
3349 if (Opcode == ISD::SHL_PARTS)
3350 Known = KnownBits::shl(Known, Known2);
3351 else if (Opcode == ISD::SRA_PARTS)
3352 Known = KnownBits::ashr(Known, Known2);
3353 else // if (Opcode == ISD::SRL_PARTS)
3354 Known = KnownBits::lshr(Known, Known2);
3355
3356 // TODO: Minimum shift low/high bits are known zero.
3357
3358 if (Op.getResNo() == 0)
3359 Known = Known.extractBits(LoBits, 0);
3360 else
3361 Known = Known.extractBits(HiBits, LoBits);
3362 break;
3363 }
3364 case ISD::SIGN_EXTEND_INREG: {
3365 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3366 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3367 Known = Known.sextInReg(EVT.getScalarSizeInBits());
3368 break;
3369 }
3370 case ISD::CTTZ:
3371 case ISD::CTTZ_ZERO_UNDEF: {
3372 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3373 // If we have a known 1, its position is our upper bound.
3374 unsigned PossibleTZ = Known2.countMaxTrailingZeros();
3375 unsigned LowBits = Log2_32(PossibleTZ) + 1;
3376 Known.Zero.setBitsFrom(LowBits);
3377 break;
3378 }
3379 case ISD::CTLZ:
3380 case ISD::CTLZ_ZERO_UNDEF: {
3381 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3382 // If we have a known 1, its position is our upper bound.
3383 unsigned PossibleLZ = Known2.countMaxLeadingZeros();
3384 unsigned LowBits = Log2_32(PossibleLZ) + 1;
3385 Known.Zero.setBitsFrom(LowBits);
3386 break;
3387 }
3388 case ISD::CTPOP: {
3389 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3390 // If we know some of the bits are zero, they can't be one.
3391 unsigned PossibleOnes = Known2.countMaxPopulation();
3392 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
3393 break;
3394 }
3395 case ISD::PARITY: {
3396 // Parity returns 0 everywhere but the LSB.
3397 Known.Zero.setBitsFrom(1);
3398 break;
3399 }
3400 case ISD::LOAD: {
3401 LoadSDNode *LD = cast<LoadSDNode>(Op);
3402 const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3403 if (ISD::isNON_EXTLoad(LD) && Cst) {
3404 // Determine any common known bits from the loaded constant pool value.
3405 Type *CstTy = Cst->getType();
3406 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) {
3407 // If its a vector splat, then we can (quickly) reuse the scalar path.
3408 // NOTE: We assume all elements match and none are UNDEF.
3409 if (CstTy->isVectorTy()) {
3410 if (const Constant *Splat = Cst->getSplatValue()) {
3411 Cst = Splat;
3412 CstTy = Cst->getType();
3413 }
3414 }
3415 // TODO - do we need to handle different bitwidths?
3416 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
3417 // Iterate across all vector elements finding common known bits.
3418 Known.One.setAllBits();
3419 Known.Zero.setAllBits();
3420 for (unsigned i = 0; i != NumElts; ++i) {
3421 if (!DemandedElts[i])
3422 continue;
3423 if (Constant *Elt = Cst->getAggregateElement(i)) {
3424 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
3425 const APInt &Value = CInt->getValue();
3426 Known.One &= Value;
3427 Known.Zero &= ~Value;
3428 continue;
3429 }
3430 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
3431 APInt Value = CFP->getValueAPF().bitcastToAPInt();
3432 Known.One &= Value;
3433 Known.Zero &= ~Value;
3434 continue;
3435 }
3436 }
3437 Known.One.clearAllBits();
3438 Known.Zero.clearAllBits();
3439 break;
3440 }
3441 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
3442 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
3443 Known = KnownBits::makeConstant(CInt->getValue());
3444 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
3445 Known =
3446 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt());
3447 }
3448 }
3449 }
3450 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
3451 // If this is a ZEXTLoad and we are looking at the loaded value.
3452 EVT VT = LD->getMemoryVT();
3453 unsigned MemBits = VT.getScalarSizeInBits();
3454 Known.Zero.setBitsFrom(MemBits);
3455 } else if (const MDNode *Ranges = LD->getRanges()) {
3456 if (LD->getExtensionType() == ISD::NON_EXTLOAD)
3457 computeKnownBitsFromRangeMetadata(*Ranges, Known);
3458 }
3459 break;
3460 }
3461 case ISD::ZERO_EXTEND_VECTOR_INREG: {
3462 EVT InVT = Op.getOperand(0).getValueType();
3463 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements());
3464 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3465 Known = Known.zext(BitWidth);
3466 break;
3467 }
3468 case ISD::ZERO_EXTEND: {
3469 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3470 Known = Known.zext(BitWidth);
3471 break;
3472 }
3473 case ISD::SIGN_EXTEND_VECTOR_INREG: {
3474 EVT InVT = Op.getOperand(0).getValueType();
3475 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements());
3476 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3477 // If the sign bit is known to be zero or one, then sext will extend
3478 // it to the top bits, else it will just zext.
3479 Known = Known.sext(BitWidth);
3480 break;
3481 }
3482 case ISD::SIGN_EXTEND: {
3483 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3484 // If the sign bit is known to be zero or one, then sext will extend
3485 // it to the top bits, else it will just zext.
3486 Known = Known.sext(BitWidth);
3487 break;
3488 }
3489 case ISD::ANY_EXTEND_VECTOR_INREG: {
3490 EVT InVT = Op.getOperand(0).getValueType();
3491 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements());
3492 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3493 Known = Known.anyext(BitWidth);
3494 break;
3495 }
3496 case ISD::ANY_EXTEND: {
3497 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3498 Known = Known.anyext(BitWidth);
3499 break;
3500 }
3501 case ISD::TRUNCATE: {
3502 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3503 Known = Known.trunc(BitWidth);
3504 break;
3505 }
3506 case ISD::AssertZext: {
3507 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3508 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
3509 Known = computeKnownBits(Op.getOperand(0), Depth+1);
3510 Known.Zero |= (~InMask);
3511 Known.One &= (~Known.Zero);
3512 break;
3513 }
3514 case ISD::AssertAlign: {
3515 unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign());
3516 assert(LogOfAlign != 0);
3517
3518 // TODO: Should use maximum with source
3519 // If a node is guaranteed to be aligned, set low zero bits accordingly as
3520 // well as clearing one bits.
3521 Known.Zero.setLowBits(LogOfAlign);
3522 Known.One.clearLowBits(LogOfAlign);
3523 break;
3524 }
3525 case ISD::FGETSIGN:
3526 // All bits are zero except the low bit.
3527 Known.Zero.setBitsFrom(1);
3528 break;
3529 case ISD::USUBO:
3530 case ISD::SSUBO:
3531 case ISD::SUBCARRY:
3532 case ISD::SSUBO_CARRY:
3533 if (Op.getResNo() == 1) {
3534 // If we know the result of a setcc has the top bits zero, use this info.
3535 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3536 TargetLowering::ZeroOrOneBooleanContent &&
3537 BitWidth > 1)
3538 Known.Zero.setBitsFrom(1);
3539 break;
3540 }
3541 LLVM_FALLTHROUGH;
3542 case ISD::SUB:
3543 case ISD::SUBC: {
3544 assert(Op.getResNo() == 0 &&
3545 "We only compute knownbits for the difference here.");
3546
3547 // TODO: Compute influence of the carry operand.
3548 if (Opcode == ISD::SUBCARRY || Opcode == ISD::SSUBO_CARRY)
3549 break;
3550
3551 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3552 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3553 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false,
3554 Known, Known2);
3555 break;
3556 }
3557 case ISD::UADDO:
3558 case ISD::SADDO:
3559 case ISD::ADDCARRY:
3560 case ISD::SADDO_CARRY:
3561 if (Op.getResNo() == 1) {
3562 // If we know the result of a setcc has the top bits zero, use this info.
3563 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3564 TargetLowering::ZeroOrOneBooleanContent &&
3565 BitWidth > 1)
3566 Known.Zero.setBitsFrom(1);
3567 break;
3568 }
3569 LLVM_FALLTHROUGH;
3570 case ISD::ADD:
3571 case ISD::ADDC:
3572 case ISD::ADDE: {
3573 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
3574
3575 // With ADDE and ADDCARRY, a carry bit may be added in.
3576 KnownBits Carry(1);
3577 if (Opcode == ISD::ADDE)
3578 // Can't track carry from glue, set carry to unknown.
3579 Carry.resetAll();
3580 else if (Opcode == ISD::ADDCARRY || Opcode == ISD::SADDO_CARRY)
3581 // TODO: Compute known bits for the carry operand. Not sure if it is worth
3582 // the trouble (how often will we find a known carry bit). And I haven't
3583 // tested this very much yet, but something like this might work:
3584 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3585 // Carry = Carry.zextOrTrunc(1, false);
3586 Carry.resetAll();
3587 else
3588 Carry.setAllZero();
3589
3590 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3591 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3592 Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
3593 break;
3594 }
3595 case ISD::UDIV: {
3596 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3597 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3598 Known = KnownBits::udiv(Known, Known2);
3599 break;
3600 }
3601 case ISD::SREM: {
3602 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3603 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3604 Known = KnownBits::srem(Known, Known2);
3605 break;
3606 }
3607 case ISD::UREM: {
3608 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3609 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3610 Known = KnownBits::urem(Known, Known2);
3611 break;
3612 }
3613 case ISD::EXTRACT_ELEMENT: {
3614 Known = computeKnownBits(Op.getOperand(0), Depth+1);
3615 const unsigned Index = Op.getConstantOperandVal(1);
3616 const unsigned EltBitWidth = Op.getValueSizeInBits();
3617
3618 // Remove low part of known bits mask
3619 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3620 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3621
3622 // Remove high part of known bit mask
3623 Known = Known.trunc(EltBitWidth);
3624 break;
3625 }
3626 case ISD::EXTRACT_VECTOR_ELT: {
3627 SDValue InVec = Op.getOperand(0);
3628 SDValue EltNo = Op.getOperand(1);
3629 EVT VecVT = InVec.getValueType();
3630 // computeKnownBits not yet implemented for scalable vectors.
3631 if (VecVT.isScalableVector())
3632 break;
3633 const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
3634 const unsigned NumSrcElts = VecVT.getVectorNumElements();
3635
3636 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3637 // anything about the extended bits.
3638 if (BitWidth > EltBitWidth)
3639 Known = Known.trunc(EltBitWidth);
3640
3641 // If we know the element index, just demand that vector element, else for
3642 // an unknown element index, ignore DemandedElts and demand them all.
3643 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
3644 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3645 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3646 DemandedSrcElts =
3647 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3648
3649 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1);
3650 if (BitWidth > EltBitWidth)
3651 Known = Known.anyext(BitWidth);
3652 break;
3653 }
3654 case ISD::INSERT_VECTOR_ELT: {
3655 // If we know the element index, split the demand between the
3656 // source vector and the inserted element, otherwise assume we need
3657 // the original demanded vector elements and the value.
3658 SDValue InVec = Op.getOperand(0);
3659 SDValue InVal = Op.getOperand(1);
3660 SDValue EltNo = Op.getOperand(2);
3661 bool DemandedVal = true;
3662 APInt DemandedVecElts = DemandedElts;
3663 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3664 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3665 unsigned EltIdx = CEltNo->getZExtValue();
3666 DemandedVal = !!DemandedElts[EltIdx];
3667 DemandedVecElts.clearBit(EltIdx);
3668 }
3669 Known.One.setAllBits();
3670 Known.Zero.setAllBits();
3671 if (DemandedVal) {
3672 Known2 = computeKnownBits(InVal, Depth + 1);
3673 Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth));
3674 }
3675 if (!!DemandedVecElts) {
3676 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1);
3677 Known = KnownBits::commonBits(Known, Known2);
3678 }
3679 break;
3680 }
3681 case ISD::BITREVERSE: {
3682 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3683 Known = Known2.reverseBits();
3684 break;
3685 }
3686 case ISD::BSWAP: {
3687 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3688 Known = Known2.byteSwap();
3689 break;
3690 }
3691 case ISD::ABS: {
3692 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3693 Known = Known2.abs();
3694 break;
3695 }
3696 case ISD::USUBSAT: {
3697 // The result of usubsat will never be larger than the LHS.
3698 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3699 Known.Zero.setHighBits(Known2.countMinLeadingZeros());
3700 break;
3701 }
3702 case ISD::UMIN: {
3703 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3704 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3705 Known = KnownBits::umin(Known, Known2);
3706 break;
3707 }
3708 case ISD::UMAX: {
3709 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3710 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3711 Known = KnownBits::umax(Known, Known2);
3712 break;
3713 }
3714 case ISD::SMIN:
3715 case ISD::SMAX: {
3716 // If we have a clamp pattern, we know that the number of sign bits will be
3717 // the minimum of the clamp min/max range.
3718 bool IsMax = (Opcode == ISD::SMAX);
3719 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3720 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3721 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3722 CstHigh =
3723 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3724 if (CstLow && CstHigh) {
3725 if (!IsMax)
3726 std::swap(CstLow, CstHigh);
3727
3728 const APInt &ValueLow = CstLow->getAPIntValue();
3729 const APInt &ValueHigh = CstHigh->getAPIntValue();
3730 if (ValueLow.sle(ValueHigh)) {
3731 unsigned LowSignBits = ValueLow.getNumSignBits();
3732 unsigned HighSignBits = ValueHigh.getNumSignBits();
3733 unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3734 if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3735 Known.One.setHighBits(MinSignBits);
3736 break;
3737 }
3738 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3739 Known.Zero.setHighBits(MinSignBits);
3740 break;
3741 }
3742 }
3743 }
3744
3745 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3746 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3747 if (IsMax)
3748 Known = KnownBits::smax(Known, Known2);
3749 else
3750 Known = KnownBits::smin(Known, Known2);
3751
3752 // For SMAX, if CstLow is non-negative we know the result will be
3753 // non-negative and thus all sign bits are 0.
3754 // TODO: There's an equivalent of this for smin with negative constant for
3755 // known ones.
3756 if (IsMax && CstLow) {
3757 const APInt &ValueLow = CstLow->getAPIntValue();
3758 if (ValueLow.isNonNegative()) {
3759 unsigned SignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3760 Known.Zero.setHighBits(std::min(SignBits, ValueLow.getNumSignBits()));
3761 }
3762 }
3763
3764 break;
3765 }
3766 case ISD::FP_TO_UINT_SAT: {
3767 // FP_TO_UINT_SAT produces an unsigned value that fits in the saturating VT.
3768 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3769 Known.Zero |= APInt::getBitsSetFrom(BitWidth, VT.getScalarSizeInBits());
3770 break;
3771 }
3772 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
3773 if (Op.getResNo() == 1) {
3774 // The boolean result conforms to getBooleanContents.
3775 // If we know the result of a setcc has the top bits zero, use this info.
3776 // We know that we have an integer-based boolean since these operations
3777 // are only available for integer.
3778 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3779 TargetLowering::ZeroOrOneBooleanContent &&
3780 BitWidth > 1)
3781 Known.Zero.setBitsFrom(1);
3782 break;
3783 }
3784 LLVM_FALLTHROUGH;
3785 case ISD::ATOMIC_CMP_SWAP:
3786 case ISD::ATOMIC_SWAP:
3787 case ISD::ATOMIC_LOAD_ADD:
3788 case ISD::ATOMIC_LOAD_SUB:
3789 case ISD::ATOMIC_LOAD_AND:
3790 case ISD::ATOMIC_LOAD_CLR:
3791 case ISD::ATOMIC_LOAD_OR:
3792 case ISD::ATOMIC_LOAD_XOR:
3793 case ISD::ATOMIC_LOAD_NAND:
3794 case ISD::ATOMIC_LOAD_MIN:
3795 case ISD::ATOMIC_LOAD_MAX:
3796 case ISD::ATOMIC_LOAD_UMIN:
3797 case ISD::ATOMIC_LOAD_UMAX:
3798 case ISD::ATOMIC_LOAD: {
3799 unsigned MemBits =
3800 cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits();
3801 // If we are looking at the loaded value.
3802 if (Op.getResNo() == 0) {
3803 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
3804 Known.Zero.setBitsFrom(MemBits);
3805 }
3806 break;
3807 }
3808 case ISD::FrameIndex:
3809 case ISD::TargetFrameIndex:
3810 TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(),
3811 Known, getMachineFunction());
3812 break;
3813
3814 default:
3815 if (Opcode < ISD::BUILTIN_OP_END)
3816 break;
3817 LLVM_FALLTHROUGH;
3818 case ISD::INTRINSIC_WO_CHAIN:
3819 case ISD::INTRINSIC_W_CHAIN:
3820 case ISD::INTRINSIC_VOID:
3821 // Allow the target to implement this method for its nodes.
3822 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3823 break;
3824 }
3825
3826 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3827 return Known;
3828 }
3829
computeOverflowKind(SDValue N0,SDValue N1) const3830 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3831 SDValue N1) const {
3832 // X + 0 never overflow
3833 if (isNullConstant(N1))
3834 return OFK_Never;
3835
3836 KnownBits N1Known = computeKnownBits(N1);
3837 if (N1Known.Zero.getBoolValue()) {
3838 KnownBits N0Known = computeKnownBits(N0);
3839
3840 bool overflow;
3841 (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow);
3842 if (!overflow)
3843 return OFK_Never;
3844 }
3845
3846 // mulhi + 1 never overflow
3847 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3848 (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue())
3849 return OFK_Never;
3850
3851 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3852 KnownBits N0Known = computeKnownBits(N0);
3853
3854 if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue())
3855 return OFK_Never;
3856 }
3857
3858 return OFK_Sometime;
3859 }
3860
isKnownToBeAPowerOfTwo(SDValue Val) const3861 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3862 EVT OpVT = Val.getValueType();
3863 unsigned BitWidth = OpVT.getScalarSizeInBits();
3864
3865 // Is the constant a known power of 2?
3866 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3867 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3868
3869 // A left-shift of a constant one will have exactly one bit set because
3870 // shifting the bit off the end is undefined.
3871 if (Val.getOpcode() == ISD::SHL) {
3872 auto *C = isConstOrConstSplat(Val.getOperand(0));
3873 if (C && C->getAPIntValue() == 1)
3874 return true;
3875 }
3876
3877 // Similarly, a logical right-shift of a constant sign-bit will have exactly
3878 // one bit set.
3879 if (Val.getOpcode() == ISD::SRL) {
3880 auto *C = isConstOrConstSplat(Val.getOperand(0));
3881 if (C && C->getAPIntValue().isSignMask())
3882 return true;
3883 }
3884
3885 // Are all operands of a build vector constant powers of two?
3886 if (Val.getOpcode() == ISD::BUILD_VECTOR)
3887 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3888 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3889 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3890 return false;
3891 }))
3892 return true;
3893
3894 // Is the operand of a splat vector a constant power of two?
3895 if (Val.getOpcode() == ISD::SPLAT_VECTOR)
3896 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val->getOperand(0)))
3897 if (C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2())
3898 return true;
3899
3900 // vscale(power-of-two) is a power-of-two for some targets
3901 if (Val.getOpcode() == ISD::VSCALE &&
3902 getTargetLoweringInfo().isVScaleKnownToBeAPowerOfTwo() &&
3903 isKnownToBeAPowerOfTwo(Val.getOperand(0)))
3904 return true;
3905
3906 // More could be done here, though the above checks are enough
3907 // to handle some common cases.
3908
3909 // Fall back to computeKnownBits to catch other known cases.
3910 KnownBits Known = computeKnownBits(Val);
3911 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3912 }
3913
ComputeNumSignBits(SDValue Op,unsigned Depth) const3914 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3915 EVT VT = Op.getValueType();
3916
3917 // TODO: Assume we don't know anything for now.
3918 if (VT.isScalableVector())
3919 return 1;
3920
3921 APInt DemandedElts = VT.isVector()
3922 ? APInt::getAllOnes(VT.getVectorNumElements())
3923 : APInt(1, 1);
3924 return ComputeNumSignBits(Op, DemandedElts, Depth);
3925 }
3926
ComputeNumSignBits(SDValue Op,const APInt & DemandedElts,unsigned Depth) const3927 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3928 unsigned Depth) const {
3929 EVT VT = Op.getValueType();
3930 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3931 unsigned VTBits = VT.getScalarSizeInBits();
3932 unsigned NumElts = DemandedElts.getBitWidth();
3933 unsigned Tmp, Tmp2;
3934 unsigned FirstAnswer = 1;
3935
3936 if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3937 const APInt &Val = C->getAPIntValue();
3938 return Val.getNumSignBits();
3939 }
3940
3941 if (Depth >= MaxRecursionDepth)
3942 return 1; // Limit search depth.
3943
3944 if (!DemandedElts || VT.isScalableVector())
3945 return 1; // No demanded elts, better to assume we don't know anything.
3946
3947 unsigned Opcode = Op.getOpcode();
3948 switch (Opcode) {
3949 default: break;
3950 case ISD::AssertSext:
3951 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3952 return VTBits-Tmp+1;
3953 case ISD::AssertZext:
3954 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3955 return VTBits-Tmp;
3956 case ISD::MERGE_VALUES:
3957 return ComputeNumSignBits(Op.getOperand(Op.getResNo()), DemandedElts,
3958 Depth + 1);
3959 case ISD::BUILD_VECTOR:
3960 Tmp = VTBits;
3961 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3962 if (!DemandedElts[i])
3963 continue;
3964
3965 SDValue SrcOp = Op.getOperand(i);
3966 Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1);
3967
3968 // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3969 if (SrcOp.getValueSizeInBits() != VTBits) {
3970 assert(SrcOp.getValueSizeInBits() > VTBits &&
3971 "Expected BUILD_VECTOR implicit truncation");
3972 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3973 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3974 }
3975 Tmp = std::min(Tmp, Tmp2);
3976 }
3977 return Tmp;
3978
3979 case ISD::VECTOR_SHUFFLE: {
3980 // Collect the minimum number of sign bits that are shared by every vector
3981 // element referenced by the shuffle.
3982 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3983 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3984 assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3985 for (unsigned i = 0; i != NumElts; ++i) {
3986 int M = SVN->getMaskElt(i);
3987 if (!DemandedElts[i])
3988 continue;
3989 // For UNDEF elements, we don't know anything about the common state of
3990 // the shuffle result.
3991 if (M < 0)
3992 return 1;
3993 if ((unsigned)M < NumElts)
3994 DemandedLHS.setBit((unsigned)M % NumElts);
3995 else
3996 DemandedRHS.setBit((unsigned)M % NumElts);
3997 }
3998 Tmp = std::numeric_limits<unsigned>::max();
3999 if (!!DemandedLHS)
4000 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
4001 if (!!DemandedRHS) {
4002 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
4003 Tmp = std::min(Tmp, Tmp2);
4004 }
4005 // If we don't know anything, early out and try computeKnownBits fall-back.
4006 if (Tmp == 1)
4007 break;
4008 assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4009 return Tmp;
4010 }
4011
4012 case ISD::BITCAST: {
4013 SDValue N0 = Op.getOperand(0);
4014 EVT SrcVT = N0.getValueType();
4015 unsigned SrcBits = SrcVT.getScalarSizeInBits();
4016
4017 // Ignore bitcasts from unsupported types..
4018 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
4019 break;
4020
4021 // Fast handling of 'identity' bitcasts.
4022 if (VTBits == SrcBits)
4023 return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
4024
4025 bool IsLE = getDataLayout().isLittleEndian();
4026
4027 // Bitcast 'large element' scalar/vector to 'small element' vector.
4028 if ((SrcBits % VTBits) == 0) {
4029 assert(VT.isVector() && "Expected bitcast to vector");
4030
4031 unsigned Scale = SrcBits / VTBits;
4032 APInt SrcDemandedElts =
4033 APIntOps::ScaleBitMask(DemandedElts, NumElts / Scale);
4034
4035 // Fast case - sign splat can be simply split across the small elements.
4036 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
4037 if (Tmp == SrcBits)
4038 return VTBits;
4039
4040 // Slow case - determine how far the sign extends into each sub-element.
4041 Tmp2 = VTBits;
4042 for (unsigned i = 0; i != NumElts; ++i)
4043 if (DemandedElts[i]) {
4044 unsigned SubOffset = i % Scale;
4045 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
4046 SubOffset = SubOffset * VTBits;
4047 if (Tmp <= SubOffset)
4048 return 1;
4049 Tmp2 = std::min(Tmp2, Tmp - SubOffset);
4050 }
4051 return Tmp2;
4052 }
4053 break;
4054 }
4055
4056 case ISD::FP_TO_SINT_SAT:
4057 // FP_TO_SINT_SAT produces a signed value that fits in the saturating VT.
4058 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
4059 return VTBits - Tmp + 1;
4060 case ISD::SIGN_EXTEND:
4061 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
4062 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
4063 case ISD::SIGN_EXTEND_INREG:
4064 // Max of the input and what this extends.
4065 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
4066 Tmp = VTBits-Tmp+1;
4067 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
4068 return std::max(Tmp, Tmp2);
4069 case ISD::SIGN_EXTEND_VECTOR_INREG: {
4070 SDValue Src = Op.getOperand(0);
4071 EVT SrcVT = Src.getValueType();
4072 APInt DemandedSrcElts = DemandedElts.zext(SrcVT.getVectorNumElements());
4073 Tmp = VTBits - SrcVT.getScalarSizeInBits();
4074 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
4075 }
4076 case ISD::SRA:
4077 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4078 // SRA X, C -> adds C sign bits.
4079 if (const APInt *ShAmt =
4080 getValidMinimumShiftAmountConstant(Op, DemandedElts))
4081 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits);
4082 return Tmp;
4083 case ISD::SHL:
4084 if (const APInt *ShAmt =
4085 getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
4086 // shl destroys sign bits, ensure it doesn't shift out all sign bits.
4087 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4088 if (ShAmt->ult(Tmp))
4089 return Tmp - ShAmt->getZExtValue();
4090 }
4091 break;
4092 case ISD::AND:
4093 case ISD::OR:
4094 case ISD::XOR: // NOT is handled here.
4095 // Logical binary ops preserve the number of sign bits at the worst.
4096 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
4097 if (Tmp != 1) {
4098 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
4099 FirstAnswer = std::min(Tmp, Tmp2);
4100 // We computed what we know about the sign bits as our first
4101 // answer. Now proceed to the generic code that uses
4102 // computeKnownBits, and pick whichever answer is better.
4103 }
4104 break;
4105
4106 case ISD::SELECT:
4107 case ISD::VSELECT:
4108 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
4109 if (Tmp == 1) return 1; // Early out.
4110 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
4111 return std::min(Tmp, Tmp2);
4112 case ISD::SELECT_CC:
4113 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
4114 if (Tmp == 1) return 1; // Early out.
4115 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
4116 return std::min(Tmp, Tmp2);
4117
4118 case ISD::SMIN:
4119 case ISD::SMAX: {
4120 // If we have a clamp pattern, we know that the number of sign bits will be
4121 // the minimum of the clamp min/max range.
4122 bool IsMax = (Opcode == ISD::SMAX);
4123 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
4124 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
4125 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
4126 CstHigh =
4127 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
4128 if (CstLow && CstHigh) {
4129 if (!IsMax)
4130 std::swap(CstLow, CstHigh);
4131 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
4132 Tmp = CstLow->getAPIntValue().getNumSignBits();
4133 Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
4134 return std::min(Tmp, Tmp2);
4135 }
4136 }
4137
4138 // Fallback - just get the minimum number of sign bits of the operands.
4139 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4140 if (Tmp == 1)
4141 return 1; // Early out.
4142 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4143 return std::min(Tmp, Tmp2);
4144 }
4145 case ISD::UMIN:
4146 case ISD::UMAX:
4147 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4148 if (Tmp == 1)
4149 return 1; // Early out.
4150 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4151 return std::min(Tmp, Tmp2);
4152 case ISD::SADDO:
4153 case ISD::UADDO:
4154 case ISD::SADDO_CARRY:
4155 case ISD::ADDCARRY:
4156 case ISD::SSUBO:
4157 case ISD::USUBO:
4158 case ISD::SSUBO_CARRY:
4159 case ISD::SUBCARRY:
4160 case ISD::SMULO:
4161 case ISD::UMULO:
4162 if (Op.getResNo() != 1)
4163 break;
4164 // The boolean result conforms to getBooleanContents. Fall through.
4165 // If setcc returns 0/-1, all bits are sign bits.
4166 // We know that we have an integer-based boolean since these operations
4167 // are only available for integer.
4168 if (TLI->getBooleanContents(VT.isVector(), false) ==
4169 TargetLowering::ZeroOrNegativeOneBooleanContent)
4170 return VTBits;
4171 break;
4172 case ISD::SETCC:
4173 case ISD::SETCCCARRY:
4174 case ISD::STRICT_FSETCC:
4175 case ISD::STRICT_FSETCCS: {
4176 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
4177 // If setcc returns 0/-1, all bits are sign bits.
4178 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
4179 TargetLowering::ZeroOrNegativeOneBooleanContent)
4180 return VTBits;
4181 break;
4182 }
4183 case ISD::ROTL:
4184 case ISD::ROTR:
4185 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4186
4187 // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
4188 if (Tmp == VTBits)
4189 return VTBits;
4190
4191 if (ConstantSDNode *C =
4192 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
4193 unsigned RotAmt = C->getAPIntValue().urem(VTBits);
4194
4195 // Handle rotate right by N like a rotate left by 32-N.
4196 if (Opcode == ISD::ROTR)
4197 RotAmt = (VTBits - RotAmt) % VTBits;
4198
4199 // If we aren't rotating out all of the known-in sign bits, return the
4200 // number that are left. This handles rotl(sext(x), 1) for example.
4201 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
4202 }
4203 break;
4204 case ISD::ADD:
4205 case ISD::ADDC:
4206 // Add can have at most one carry bit. Thus we know that the output
4207 // is, at worst, one more bit than the inputs.
4208 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4209 if (Tmp == 1) return 1; // Early out.
4210
4211 // Special case decrementing a value (ADD X, -1):
4212 if (ConstantSDNode *CRHS =
4213 isConstOrConstSplat(Op.getOperand(1), DemandedElts))
4214 if (CRHS->isAllOnes()) {
4215 KnownBits Known =
4216 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4217
4218 // If the input is known to be 0 or 1, the output is 0/-1, which is all
4219 // sign bits set.
4220 if ((Known.Zero | 1).isAllOnes())
4221 return VTBits;
4222
4223 // If we are subtracting one from a positive number, there is no carry
4224 // out of the result.
4225 if (Known.isNonNegative())
4226 return Tmp;
4227 }
4228
4229 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4230 if (Tmp2 == 1) return 1; // Early out.
4231 return std::min(Tmp, Tmp2) - 1;
4232 case ISD::SUB:
4233 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4234 if (Tmp2 == 1) return 1; // Early out.
4235
4236 // Handle NEG.
4237 if (ConstantSDNode *CLHS =
4238 isConstOrConstSplat(Op.getOperand(0), DemandedElts))
4239 if (CLHS->isZero()) {
4240 KnownBits Known =
4241 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4242 // If the input is known to be 0 or 1, the output is 0/-1, which is all
4243 // sign bits set.
4244 if ((Known.Zero | 1).isAllOnes())
4245 return VTBits;
4246
4247 // If the input is known to be positive (the sign bit is known clear),
4248 // the output of the NEG has the same number of sign bits as the input.
4249 if (Known.isNonNegative())
4250 return Tmp2;
4251
4252 // Otherwise, we treat this like a SUB.
4253 }
4254
4255 // Sub can have at most one carry bit. Thus we know that the output
4256 // is, at worst, one more bit than the inputs.
4257 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4258 if (Tmp == 1) return 1; // Early out.
4259 return std::min(Tmp, Tmp2) - 1;
4260 case ISD::MUL: {
4261 // The output of the Mul can be at most twice the valid bits in the inputs.
4262 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4263 if (SignBitsOp0 == 1)
4264 break;
4265 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
4266 if (SignBitsOp1 == 1)
4267 break;
4268 unsigned OutValidBits =
4269 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
4270 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
4271 }
4272 case ISD::SREM:
4273 // The sign bit is the LHS's sign bit, except when the result of the
4274 // remainder is zero. The magnitude of the result should be less than or
4275 // equal to the magnitude of the LHS. Therefore, the result should have
4276 // at least as many sign bits as the left hand side.
4277 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4278 case ISD::TRUNCATE: {
4279 // Check if the sign bits of source go down as far as the truncated value.
4280 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
4281 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4282 if (NumSrcSignBits > (NumSrcBits - VTBits))
4283 return NumSrcSignBits - (NumSrcBits - VTBits);
4284 break;
4285 }
4286 case ISD::EXTRACT_ELEMENT: {
4287 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
4288 const int BitWidth = Op.getValueSizeInBits();
4289 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
4290
4291 // Get reverse index (starting from 1), Op1 value indexes elements from
4292 // little end. Sign starts at big end.
4293 const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
4294
4295 // If the sign portion ends in our element the subtraction gives correct
4296 // result. Otherwise it gives either negative or > bitwidth result
4297 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
4298 }
4299 case ISD::INSERT_VECTOR_ELT: {
4300 // If we know the element index, split the demand between the
4301 // source vector and the inserted element, otherwise assume we need
4302 // the original demanded vector elements and the value.
4303 SDValue InVec = Op.getOperand(0);
4304 SDValue InVal = Op.getOperand(1);
4305 SDValue EltNo = Op.getOperand(2);
4306 bool DemandedVal = true;
4307 APInt DemandedVecElts = DemandedElts;
4308 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
4309 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
4310 unsigned EltIdx = CEltNo->getZExtValue();
4311 DemandedVal = !!DemandedElts[EltIdx];
4312 DemandedVecElts.clearBit(EltIdx);
4313 }
4314 Tmp = std::numeric_limits<unsigned>::max();
4315 if (DemandedVal) {
4316 // TODO - handle implicit truncation of inserted elements.
4317 if (InVal.getScalarValueSizeInBits() != VTBits)
4318 break;
4319 Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
4320 Tmp = std::min(Tmp, Tmp2);
4321 }
4322 if (!!DemandedVecElts) {
4323 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1);
4324 Tmp = std::min(Tmp, Tmp2);
4325 }
4326 assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4327 return Tmp;
4328 }
4329 case ISD::EXTRACT_VECTOR_ELT: {
4330 SDValue InVec = Op.getOperand(0);
4331 SDValue EltNo = Op.getOperand(1);
4332 EVT VecVT = InVec.getValueType();
4333 // ComputeNumSignBits not yet implemented for scalable vectors.
4334 if (VecVT.isScalableVector())
4335 break;
4336 const unsigned BitWidth = Op.getValueSizeInBits();
4337 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
4338 const unsigned NumSrcElts = VecVT.getVectorNumElements();
4339
4340 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
4341 // anything about sign bits. But if the sizes match we can derive knowledge
4342 // about sign bits from the vector operand.
4343 if (BitWidth != EltBitWidth)
4344 break;
4345
4346 // If we know the element index, just demand that vector element, else for
4347 // an unknown element index, ignore DemandedElts and demand them all.
4348 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
4349 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
4350 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
4351 DemandedSrcElts =
4352 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
4353
4354 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
4355 }
4356 case ISD::EXTRACT_SUBVECTOR: {
4357 // Offset the demanded elts by the subvector index.
4358 SDValue Src = Op.getOperand(0);
4359 // Bail until we can represent demanded elements for scalable vectors.
4360 if (Src.getValueType().isScalableVector())
4361 break;
4362 uint64_t Idx = Op.getConstantOperandVal(1);
4363 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
4364 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
4365 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4366 }
4367 case ISD::CONCAT_VECTORS: {
4368 // Determine the minimum number of sign bits across all demanded
4369 // elts of the input vectors. Early out if the result is already 1.
4370 Tmp = std::numeric_limits<unsigned>::max();
4371 EVT SubVectorVT = Op.getOperand(0).getValueType();
4372 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
4373 unsigned NumSubVectors = Op.getNumOperands();
4374 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
4375 APInt DemandedSub =
4376 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts);
4377 if (!DemandedSub)
4378 continue;
4379 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
4380 Tmp = std::min(Tmp, Tmp2);
4381 }
4382 assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4383 return Tmp;
4384 }
4385 case ISD::INSERT_SUBVECTOR: {
4386 // Demand any elements from the subvector and the remainder from the src its
4387 // inserted into.
4388 SDValue Src = Op.getOperand(0);
4389 SDValue Sub = Op.getOperand(1);
4390 uint64_t Idx = Op.getConstantOperandVal(2);
4391 unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
4392 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
4393 APInt DemandedSrcElts = DemandedElts;
4394 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
4395
4396 Tmp = std::numeric_limits<unsigned>::max();
4397 if (!!DemandedSubElts) {
4398 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
4399 if (Tmp == 1)
4400 return 1; // early-out
4401 }
4402 if (!!DemandedSrcElts) {
4403 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4404 Tmp = std::min(Tmp, Tmp2);
4405 }
4406 assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4407 return Tmp;
4408 }
4409 case ISD::ATOMIC_CMP_SWAP:
4410 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
4411 case ISD::ATOMIC_SWAP:
4412 case ISD::ATOMIC_LOAD_ADD:
4413 case ISD::ATOMIC_LOAD_SUB:
4414 case ISD::ATOMIC_LOAD_AND:
4415 case ISD::ATOMIC_LOAD_CLR:
4416 case ISD::ATOMIC_LOAD_OR:
4417 case ISD::ATOMIC_LOAD_XOR:
4418 case ISD::ATOMIC_LOAD_NAND:
4419 case ISD::ATOMIC_LOAD_MIN:
4420 case ISD::ATOMIC_LOAD_MAX:
4421 case ISD::ATOMIC_LOAD_UMIN:
4422 case ISD::ATOMIC_LOAD_UMAX:
4423 case ISD::ATOMIC_LOAD: {
4424 Tmp = cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits();
4425 // If we are looking at the loaded value.
4426 if (Op.getResNo() == 0) {
4427 if (Tmp == VTBits)
4428 return 1; // early-out
4429 if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND)
4430 return VTBits - Tmp + 1;
4431 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
4432 return VTBits - Tmp;
4433 }
4434 break;
4435 }
4436 }
4437
4438 // If we are looking at the loaded value of the SDNode.
4439 if (Op.getResNo() == 0) {
4440 // Handle LOADX separately here. EXTLOAD case will fallthrough.
4441 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
4442 unsigned ExtType = LD->getExtensionType();
4443 switch (ExtType) {
4444 default: break;
4445 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
4446 Tmp = LD->getMemoryVT().getScalarSizeInBits();
4447 return VTBits - Tmp + 1;
4448 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
4449 Tmp = LD->getMemoryVT().getScalarSizeInBits();
4450 return VTBits - Tmp;
4451 case ISD::NON_EXTLOAD:
4452 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
4453 // We only need to handle vectors - computeKnownBits should handle
4454 // scalar cases.
4455 Type *CstTy = Cst->getType();
4456 if (CstTy->isVectorTy() &&
4457 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits() &&
4458 VTBits == CstTy->getScalarSizeInBits()) {
4459 Tmp = VTBits;
4460 for (unsigned i = 0; i != NumElts; ++i) {
4461 if (!DemandedElts[i])
4462 continue;
4463 if (Constant *Elt = Cst->getAggregateElement(i)) {
4464 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
4465 const APInt &Value = CInt->getValue();
4466 Tmp = std::min(Tmp, Value.getNumSignBits());
4467 continue;
4468 }
4469 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
4470 APInt Value = CFP->getValueAPF().bitcastToAPInt();
4471 Tmp = std::min(Tmp, Value.getNumSignBits());
4472 continue;
4473 }
4474 }
4475 // Unknown type. Conservatively assume no bits match sign bit.
4476 return 1;
4477 }
4478 return Tmp;
4479 }
4480 }
4481 break;
4482 }
4483 }
4484 }
4485
4486 // Allow the target to implement this method for its nodes.
4487 if (Opcode >= ISD::BUILTIN_OP_END ||
4488 Opcode == ISD::INTRINSIC_WO_CHAIN ||
4489 Opcode == ISD::INTRINSIC_W_CHAIN ||
4490 Opcode == ISD::INTRINSIC_VOID) {
4491 unsigned NumBits =
4492 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
4493 if (NumBits > 1)
4494 FirstAnswer = std::max(FirstAnswer, NumBits);
4495 }
4496
4497 // Finally, if we can prove that the top bits of the result are 0's or 1's,
4498 // use this information.
4499 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
4500 return std::max(FirstAnswer, Known.countMinSignBits());
4501 }
4502
ComputeMaxSignificantBits(SDValue Op,unsigned Depth) const4503 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op,
4504 unsigned Depth) const {
4505 unsigned SignBits = ComputeNumSignBits(Op, Depth);
4506 return Op.getScalarValueSizeInBits() - SignBits + 1;
4507 }
4508
ComputeMaxSignificantBits(SDValue Op,const APInt & DemandedElts,unsigned Depth) const4509 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op,
4510 const APInt &DemandedElts,
4511 unsigned Depth) const {
4512 unsigned SignBits = ComputeNumSignBits(Op, DemandedElts, Depth);
4513 return Op.getScalarValueSizeInBits() - SignBits + 1;
4514 }
4515
isGuaranteedNotToBeUndefOrPoison(SDValue Op,bool PoisonOnly,unsigned Depth) const4516 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly,
4517 unsigned Depth) const {
4518 // Early out for FREEZE.
4519 if (Op.getOpcode() == ISD::FREEZE)
4520 return true;
4521
4522 // TODO: Assume we don't know anything for now.
4523 EVT VT = Op.getValueType();
4524 if (VT.isScalableVector())
4525 return false;
4526
4527 APInt DemandedElts = VT.isVector()
4528 ? APInt::getAllOnes(VT.getVectorNumElements())
4529 : APInt(1, 1);
4530 return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts, PoisonOnly, Depth);
4531 }
4532
isGuaranteedNotToBeUndefOrPoison(SDValue Op,const APInt & DemandedElts,bool PoisonOnly,unsigned Depth) const4533 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op,
4534 const APInt &DemandedElts,
4535 bool PoisonOnly,
4536 unsigned Depth) const {
4537 unsigned Opcode = Op.getOpcode();
4538
4539 // Early out for FREEZE.
4540 if (Opcode == ISD::FREEZE)
4541 return true;
4542
4543 if (Depth >= MaxRecursionDepth)
4544 return false; // Limit search depth.
4545
4546 if (isIntOrFPConstant(Op))
4547 return true;
4548
4549 switch (Opcode) {
4550 case ISD::UNDEF:
4551 return PoisonOnly;
4552
4553 case ISD::BUILD_VECTOR:
4554 // NOTE: BUILD_VECTOR has implicit truncation of wider scalar elements -
4555 // this shouldn't affect the result.
4556 for (unsigned i = 0, e = Op.getNumOperands(); i < e; ++i) {
4557 if (!DemandedElts[i])
4558 continue;
4559 if (!isGuaranteedNotToBeUndefOrPoison(Op.getOperand(i), PoisonOnly,
4560 Depth + 1))
4561 return false;
4562 }
4563 return true;
4564
4565 // TODO: Search for noundef attributes from library functions.
4566
4567 // TODO: Pointers dereferenced by ISD::LOAD/STORE ops are noundef.
4568
4569 default:
4570 // Allow the target to implement this method for its nodes.
4571 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
4572 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
4573 return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode(
4574 Op, DemandedElts, *this, PoisonOnly, Depth);
4575 break;
4576 }
4577
4578 return false;
4579 }
4580
isBaseWithConstantOffset(SDValue Op) const4581 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
4582 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
4583 !isa<ConstantSDNode>(Op.getOperand(1)))
4584 return false;
4585
4586 if (Op.getOpcode() == ISD::OR &&
4587 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
4588 return false;
4589
4590 return true;
4591 }
4592
isKnownNeverNaN(SDValue Op,bool SNaN,unsigned Depth) const4593 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
4594 // If we're told that NaNs won't happen, assume they won't.
4595 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
4596 return true;
4597
4598 if (Depth >= MaxRecursionDepth)
4599 return false; // Limit search depth.
4600
4601 // TODO: Handle vectors.
4602 // If the value is a constant, we can obviously see if it is a NaN or not.
4603 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
4604 return !C->getValueAPF().isNaN() ||
4605 (SNaN && !C->getValueAPF().isSignaling());
4606 }
4607
4608 unsigned Opcode = Op.getOpcode();
4609 switch (Opcode) {
4610 case ISD::FADD:
4611 case ISD::FSUB:
4612 case ISD::FMUL:
4613 case ISD::FDIV:
4614 case ISD::FREM:
4615 case ISD::FSIN:
4616 case ISD::FCOS: {
4617 if (SNaN)
4618 return true;
4619 // TODO: Need isKnownNeverInfinity
4620 return false;
4621 }
4622 case ISD::FCANONICALIZE:
4623 case ISD::FEXP:
4624 case ISD::FEXP2:
4625 case ISD::FTRUNC:
4626 case ISD::FFLOOR:
4627 case ISD::FCEIL:
4628 case ISD::FROUND:
4629 case ISD::FROUNDEVEN:
4630 case ISD::FRINT:
4631 case ISD::FNEARBYINT: {
4632 if (SNaN)
4633 return true;
4634 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4635 }
4636 case ISD::FABS:
4637 case ISD::FNEG:
4638 case ISD::FCOPYSIGN: {
4639 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4640 }
4641 case ISD::SELECT:
4642 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4643 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4644 case ISD::FP_EXTEND:
4645 case ISD::FP_ROUND: {
4646 if (SNaN)
4647 return true;
4648 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4649 }
4650 case ISD::SINT_TO_FP:
4651 case ISD::UINT_TO_FP:
4652 return true;
4653 case ISD::FMA:
4654 case ISD::FMAD: {
4655 if (SNaN)
4656 return true;
4657 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4658 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4659 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4660 }
4661 case ISD::FSQRT: // Need is known positive
4662 case ISD::FLOG:
4663 case ISD::FLOG2:
4664 case ISD::FLOG10:
4665 case ISD::FPOWI:
4666 case ISD::FPOW: {
4667 if (SNaN)
4668 return true;
4669 // TODO: Refine on operand
4670 return false;
4671 }
4672 case ISD::FMINNUM:
4673 case ISD::FMAXNUM: {
4674 // Only one needs to be known not-nan, since it will be returned if the
4675 // other ends up being one.
4676 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
4677 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4678 }
4679 case ISD::FMINNUM_IEEE:
4680 case ISD::FMAXNUM_IEEE: {
4681 if (SNaN)
4682 return true;
4683 // This can return a NaN if either operand is an sNaN, or if both operands
4684 // are NaN.
4685 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
4686 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
4687 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
4688 isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
4689 }
4690 case ISD::FMINIMUM:
4691 case ISD::FMAXIMUM: {
4692 // TODO: Does this quiet or return the origina NaN as-is?
4693 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4694 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4695 }
4696 case ISD::EXTRACT_VECTOR_ELT: {
4697 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4698 }
4699 default:
4700 if (Opcode >= ISD::BUILTIN_OP_END ||
4701 Opcode == ISD::INTRINSIC_WO_CHAIN ||
4702 Opcode == ISD::INTRINSIC_W_CHAIN ||
4703 Opcode == ISD::INTRINSIC_VOID) {
4704 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
4705 }
4706
4707 return false;
4708 }
4709 }
4710
isKnownNeverZeroFloat(SDValue Op) const4711 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
4712 assert(Op.getValueType().isFloatingPoint() &&
4713 "Floating point type expected");
4714
4715 // If the value is a constant, we can obviously see if it is a zero or not.
4716 // TODO: Add BuildVector support.
4717 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
4718 return !C->isZero();
4719 return false;
4720 }
4721
isKnownNeverZero(SDValue Op) const4722 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
4723 assert(!Op.getValueType().isFloatingPoint() &&
4724 "Floating point types unsupported - use isKnownNeverZeroFloat");
4725
4726 // If the value is a constant, we can obviously see if it is a zero or not.
4727 if (ISD::matchUnaryPredicate(Op,
4728 [](ConstantSDNode *C) { return !C->isZero(); }))
4729 return true;
4730
4731 // TODO: Recognize more cases here.
4732 switch (Op.getOpcode()) {
4733 default: break;
4734 case ISD::OR:
4735 if (isKnownNeverZero(Op.getOperand(1)) ||
4736 isKnownNeverZero(Op.getOperand(0)))
4737 return true;
4738 break;
4739 }
4740
4741 return false;
4742 }
4743
isEqualTo(SDValue A,SDValue B) const4744 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
4745 // Check the obvious case.
4746 if (A == B) return true;
4747
4748 // For for negative and positive zero.
4749 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
4750 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
4751 if (CA->isZero() && CB->isZero()) return true;
4752
4753 // Otherwise they may not be equal.
4754 return false;
4755 }
4756
4757 // Only bits set in Mask must be negated, other bits may be arbitrary.
getBitwiseNotOperand(SDValue V,SDValue Mask,bool AllowUndefs)4758 SDValue llvm::getBitwiseNotOperand(SDValue V, SDValue Mask, bool AllowUndefs) {
4759 if (isBitwiseNot(V, AllowUndefs))
4760 return V.getOperand(0);
4761
4762 // Handle any_extend (not (truncate X)) pattern, where Mask only sets
4763 // bits in the non-extended part.
4764 ConstantSDNode *MaskC = isConstOrConstSplat(Mask);
4765 if (!MaskC || V.getOpcode() != ISD::ANY_EXTEND)
4766 return SDValue();
4767 SDValue ExtArg = V.getOperand(0);
4768 if (ExtArg.getScalarValueSizeInBits() >=
4769 MaskC->getAPIntValue().getActiveBits() &&
4770 isBitwiseNot(ExtArg, AllowUndefs) &&
4771 ExtArg.getOperand(0).getOpcode() == ISD::TRUNCATE &&
4772 ExtArg.getOperand(0).getOperand(0).getValueType() == V.getValueType())
4773 return ExtArg.getOperand(0).getOperand(0);
4774 return SDValue();
4775 }
4776
haveNoCommonBitsSetCommutative(SDValue A,SDValue B)4777 static bool haveNoCommonBitsSetCommutative(SDValue A, SDValue B) {
4778 // Match masked merge pattern (X & ~M) op (Y & M)
4779 // Including degenerate case (X & ~M) op M
4780 auto MatchNoCommonBitsPattern = [&](SDValue Not, SDValue Mask,
4781 SDValue Other) {
4782 if (SDValue NotOperand =
4783 getBitwiseNotOperand(Not, Mask, /* AllowUndefs */ true)) {
4784 if (Other == NotOperand)
4785 return true;
4786 if (Other->getOpcode() == ISD::AND)
4787 return NotOperand == Other->getOperand(0) ||
4788 NotOperand == Other->getOperand(1);
4789 }
4790 return false;
4791 };
4792 if (A->getOpcode() == ISD::AND)
4793 return MatchNoCommonBitsPattern(A->getOperand(0), A->getOperand(1), B) ||
4794 MatchNoCommonBitsPattern(A->getOperand(1), A->getOperand(0), B);
4795 return false;
4796 }
4797
4798 // FIXME: unify with llvm::haveNoCommonBitsSet.
haveNoCommonBitsSet(SDValue A,SDValue B) const4799 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
4800 assert(A.getValueType() == B.getValueType() &&
4801 "Values must have the same type");
4802 if (haveNoCommonBitsSetCommutative(A, B) ||
4803 haveNoCommonBitsSetCommutative(B, A))
4804 return true;
4805 return KnownBits::haveNoCommonBitsSet(computeKnownBits(A),
4806 computeKnownBits(B));
4807 }
4808
FoldSTEP_VECTOR(const SDLoc & DL,EVT VT,SDValue Step,SelectionDAG & DAG)4809 static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step,
4810 SelectionDAG &DAG) {
4811 if (cast<ConstantSDNode>(Step)->isZero())
4812 return DAG.getConstant(0, DL, VT);
4813
4814 return SDValue();
4815 }
4816
FoldBUILD_VECTOR(const SDLoc & DL,EVT VT,ArrayRef<SDValue> Ops,SelectionDAG & DAG)4817 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
4818 ArrayRef<SDValue> Ops,
4819 SelectionDAG &DAG) {
4820 int NumOps = Ops.size();
4821 assert(NumOps != 0 && "Can't build an empty vector!");
4822 assert(!VT.isScalableVector() &&
4823 "BUILD_VECTOR cannot be used with scalable types");
4824 assert(VT.getVectorNumElements() == (unsigned)NumOps &&
4825 "Incorrect element count in BUILD_VECTOR!");
4826
4827 // BUILD_VECTOR of UNDEFs is UNDEF.
4828 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4829 return DAG.getUNDEF(VT);
4830
4831 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
4832 SDValue IdentitySrc;
4833 bool IsIdentity = true;
4834 for (int i = 0; i != NumOps; ++i) {
4835 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4836 Ops[i].getOperand(0).getValueType() != VT ||
4837 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
4838 !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
4839 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
4840 IsIdentity = false;
4841 break;
4842 }
4843 IdentitySrc = Ops[i].getOperand(0);
4844 }
4845 if (IsIdentity)
4846 return IdentitySrc;
4847
4848 return SDValue();
4849 }
4850
4851 /// Try to simplify vector concatenation to an input value, undef, or build
4852 /// vector.
foldCONCAT_VECTORS(const SDLoc & DL,EVT VT,ArrayRef<SDValue> Ops,SelectionDAG & DAG)4853 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
4854 ArrayRef<SDValue> Ops,
4855 SelectionDAG &DAG) {
4856 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
4857 assert(llvm::all_of(Ops,
4858 [Ops](SDValue Op) {
4859 return Ops[0].getValueType() == Op.getValueType();
4860 }) &&
4861 "Concatenation of vectors with inconsistent value types!");
4862 assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) ==
4863 VT.getVectorElementCount() &&
4864 "Incorrect element count in vector concatenation!");
4865
4866 if (Ops.size() == 1)
4867 return Ops[0];
4868
4869 // Concat of UNDEFs is UNDEF.
4870 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4871 return DAG.getUNDEF(VT);
4872
4873 // Scan the operands and look for extract operations from a single source
4874 // that correspond to insertion at the same location via this concatenation:
4875 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
4876 SDValue IdentitySrc;
4877 bool IsIdentity = true;
4878 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
4879 SDValue Op = Ops[i];
4880 unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements();
4881 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
4882 Op.getOperand(0).getValueType() != VT ||
4883 (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
4884 Op.getConstantOperandVal(1) != IdentityIndex) {
4885 IsIdentity = false;
4886 break;
4887 }
4888 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
4889 "Unexpected identity source vector for concat of extracts");
4890 IdentitySrc = Op.getOperand(0);
4891 }
4892 if (IsIdentity) {
4893 assert(IdentitySrc && "Failed to set source vector of extracts");
4894 return IdentitySrc;
4895 }
4896
4897 // The code below this point is only designed to work for fixed width
4898 // vectors, so we bail out for now.
4899 if (VT.isScalableVector())
4900 return SDValue();
4901
4902 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
4903 // simplified to one big BUILD_VECTOR.
4904 // FIXME: Add support for SCALAR_TO_VECTOR as well.
4905 EVT SVT = VT.getScalarType();
4906 SmallVector<SDValue, 16> Elts;
4907 for (SDValue Op : Ops) {
4908 EVT OpVT = Op.getValueType();
4909 if (Op.isUndef())
4910 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
4911 else if (Op.getOpcode() == ISD::BUILD_VECTOR)
4912 Elts.append(Op->op_begin(), Op->op_end());
4913 else
4914 return SDValue();
4915 }
4916
4917 // BUILD_VECTOR requires all inputs to be of the same type, find the
4918 // maximum type and extend them all.
4919 for (SDValue Op : Elts)
4920 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
4921
4922 if (SVT.bitsGT(VT.getScalarType())) {
4923 for (SDValue &Op : Elts) {
4924 if (Op.isUndef())
4925 Op = DAG.getUNDEF(SVT);
4926 else
4927 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
4928 ? DAG.getZExtOrTrunc(Op, DL, SVT)
4929 : DAG.getSExtOrTrunc(Op, DL, SVT);
4930 }
4931 }
4932
4933 SDValue V = DAG.getBuildVector(VT, DL, Elts);
4934 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
4935 return V;
4936 }
4937
4938 /// Gets or creates the specified node.
getNode(unsigned Opcode,const SDLoc & DL,EVT VT)4939 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
4940 FoldingSetNodeID ID;
4941 AddNodeIDNode(ID, Opcode, getVTList(VT), None);
4942 void *IP = nullptr;
4943 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4944 return SDValue(E, 0);
4945
4946 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4947 getVTList(VT));
4948 CSEMap.InsertNode(N, IP);
4949
4950 InsertNode(N);
4951 SDValue V = SDValue(N, 0);
4952 NewSDValueDbgMsg(V, "Creating new node: ", this);
4953 return V;
4954 }
4955
getNode(unsigned Opcode,const SDLoc & DL,EVT VT,SDValue Operand)4956 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4957 SDValue Operand) {
4958 SDNodeFlags Flags;
4959 if (Inserter)
4960 Flags = Inserter->getFlags();
4961 return getNode(Opcode, DL, VT, Operand, Flags);
4962 }
4963
getNode(unsigned Opcode,const SDLoc & DL,EVT VT,SDValue Operand,const SDNodeFlags Flags)4964 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4965 SDValue Operand, const SDNodeFlags Flags) {
4966 assert(Operand.getOpcode() != ISD::DELETED_NODE &&
4967 "Operand is DELETED_NODE!");
4968 // Constant fold unary operations with an integer constant operand. Even
4969 // opaque constant will be folded, because the folding of unary operations
4970 // doesn't create new constants with different values. Nevertheless, the
4971 // opaque flag is preserved during folding to prevent future folding with
4972 // other constants.
4973 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
4974 const APInt &Val = C->getAPIntValue();
4975 switch (Opcode) {
4976 default: break;
4977 case ISD::SIGN_EXTEND:
4978 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4979 C->isTargetOpcode(), C->isOpaque());
4980 case ISD::TRUNCATE:
4981 if (C->isOpaque())
4982 break;
4983 LLVM_FALLTHROUGH;
4984 case ISD::ZERO_EXTEND:
4985 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4986 C->isTargetOpcode(), C->isOpaque());
4987 case ISD::ANY_EXTEND:
4988 // Some targets like RISCV prefer to sign extend some types.
4989 if (TLI->isSExtCheaperThanZExt(Operand.getValueType(), VT))
4990 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4991 C->isTargetOpcode(), C->isOpaque());
4992 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4993 C->isTargetOpcode(), C->isOpaque());
4994 case ISD::UINT_TO_FP:
4995 case ISD::SINT_TO_FP: {
4996 APFloat apf(EVTToAPFloatSemantics(VT),
4997 APInt::getZero(VT.getSizeInBits()));
4998 (void)apf.convertFromAPInt(Val,
4999 Opcode==ISD::SINT_TO_FP,
5000 APFloat::rmNearestTiesToEven);
5001 return getConstantFP(apf, DL, VT);
5002 }
5003 case ISD::BITCAST:
5004 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
5005 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
5006 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
5007 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
5008 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
5009 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
5010 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
5011 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
5012 break;
5013 case ISD::ABS:
5014 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
5015 C->isOpaque());
5016 case ISD::BITREVERSE:
5017 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
5018 C->isOpaque());
5019 case ISD::BSWAP:
5020 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
5021 C->isOpaque());
5022 case ISD::CTPOP:
5023 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
5024 C->isOpaque());
5025 case ISD::CTLZ:
5026 case ISD::CTLZ_ZERO_UNDEF:
5027 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
5028 C->isOpaque());
5029 case ISD::CTTZ:
5030 case ISD::CTTZ_ZERO_UNDEF:
5031 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
5032 C->isOpaque());
5033 case ISD::FP16_TO_FP:
5034 case ISD::BF16_TO_FP: {
5035 bool Ignored;
5036 APFloat FPV(Opcode == ISD::FP16_TO_FP ? APFloat::IEEEhalf()
5037 : APFloat::BFloat(),
5038 (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
5039
5040 // This can return overflow, underflow, or inexact; we don't care.
5041 // FIXME need to be more flexible about rounding mode.
5042 (void)FPV.convert(EVTToAPFloatSemantics(VT),
5043 APFloat::rmNearestTiesToEven, &Ignored);
5044 return getConstantFP(FPV, DL, VT);
5045 }
5046 case ISD::STEP_VECTOR: {
5047 if (SDValue V = FoldSTEP_VECTOR(DL, VT, Operand, *this))
5048 return V;
5049 break;
5050 }
5051 }
5052 }
5053
5054 // Constant fold unary operations with a floating point constant operand.
5055 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
5056 APFloat V = C->getValueAPF(); // make copy
5057 switch (Opcode) {
5058 case ISD::FNEG:
5059 V.changeSign();
5060 return getConstantFP(V, DL, VT);
5061 case ISD::FABS:
5062 V.clearSign();
5063 return getConstantFP(V, DL, VT);
5064 case ISD::FCEIL: {
5065 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
5066 if (fs == APFloat::opOK || fs == APFloat::opInexact)
5067 return getConstantFP(V, DL, VT);
5068 break;
5069 }
5070 case ISD::FTRUNC: {
5071 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
5072 if (fs == APFloat::opOK || fs == APFloat::opInexact)
5073 return getConstantFP(V, DL, VT);
5074 break;
5075 }
5076 case ISD::FFLOOR: {
5077 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
5078 if (fs == APFloat::opOK || fs == APFloat::opInexact)
5079 return getConstantFP(V, DL, VT);
5080 break;
5081 }
5082 case ISD::FP_EXTEND: {
5083 bool ignored;
5084 // This can return overflow, underflow, or inexact; we don't care.
5085 // FIXME need to be more flexible about rounding mode.
5086 (void)V.convert(EVTToAPFloatSemantics(VT),
5087 APFloat::rmNearestTiesToEven, &ignored);
5088 return getConstantFP(V, DL, VT);
5089 }
5090 case ISD::FP_TO_SINT:
5091 case ISD::FP_TO_UINT: {
5092 bool ignored;
5093 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
5094 // FIXME need to be more flexible about rounding mode.
5095 APFloat::opStatus s =
5096 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
5097 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
5098 break;
5099 return getConstant(IntVal, DL, VT);
5100 }
5101 case ISD::BITCAST:
5102 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
5103 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
5104 if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16)
5105 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
5106 if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
5107 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
5108 if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
5109 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
5110 break;
5111 case ISD::FP_TO_FP16:
5112 case ISD::FP_TO_BF16: {
5113 bool Ignored;
5114 // This can return overflow, underflow, or inexact; we don't care.
5115 // FIXME need to be more flexible about rounding mode.
5116 (void)V.convert(Opcode == ISD::FP_TO_FP16 ? APFloat::IEEEhalf()
5117 : APFloat::BFloat(),
5118 APFloat::rmNearestTiesToEven, &Ignored);
5119 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
5120 }
5121 }
5122 }
5123
5124 // Constant fold unary operations with a vector integer or float operand.
5125 switch (Opcode) {
5126 default:
5127 // FIXME: Entirely reasonable to perform folding of other unary
5128 // operations here as the need arises.
5129 break;
5130 case ISD::FNEG:
5131 case ISD::FABS:
5132 case ISD::FCEIL:
5133 case ISD::FTRUNC:
5134 case ISD::FFLOOR:
5135 case ISD::FP_EXTEND:
5136 case ISD::FP_TO_SINT:
5137 case ISD::FP_TO_UINT:
5138 case ISD::TRUNCATE:
5139 case ISD::ANY_EXTEND:
5140 case ISD::ZERO_EXTEND:
5141 case ISD::SIGN_EXTEND:
5142 case ISD::UINT_TO_FP:
5143 case ISD::SINT_TO_FP:
5144 case ISD::ABS:
5145 case ISD::BITREVERSE:
5146 case ISD::BSWAP:
5147 case ISD::CTLZ:
5148 case ISD::CTLZ_ZERO_UNDEF:
5149 case ISD::CTTZ:
5150 case ISD::CTTZ_ZERO_UNDEF:
5151 case ISD::CTPOP: {
5152 SDValue Ops = {Operand};
5153 if (SDValue Fold = FoldConstantArithmetic(Opcode, DL, VT, Ops))
5154 return Fold;
5155 }
5156 }
5157
5158 unsigned OpOpcode = Operand.getNode()->getOpcode();
5159 switch (Opcode) {
5160 case ISD::STEP_VECTOR:
5161 assert(VT.isScalableVector() &&
5162 "STEP_VECTOR can only be used with scalable types");
5163 assert(OpOpcode == ISD::TargetConstant &&
5164 VT.getVectorElementType() == Operand.getValueType() &&
5165 "Unexpected step operand");
5166 break;
5167 case ISD::FREEZE:
5168 assert(VT == Operand.getValueType() && "Unexpected VT!");
5169 if (isGuaranteedNotToBeUndefOrPoison(Operand))
5170 return Operand;
5171 break;
5172 case ISD::TokenFactor:
5173 case ISD::MERGE_VALUES:
5174 case ISD::CONCAT_VECTORS:
5175 return Operand; // Factor, merge or concat of one node? No need.
5176 case ISD::BUILD_VECTOR: {
5177 // Attempt to simplify BUILD_VECTOR.
5178 SDValue Ops[] = {Operand};
5179 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5180 return V;
5181 break;
5182 }
5183 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
5184 case ISD::FP_EXTEND:
5185 assert(VT.isFloatingPoint() &&
5186 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
5187 if (Operand.getValueType() == VT) return Operand; // noop conversion.
5188 assert((!VT.isVector() ||
5189 VT.getVectorElementCount() ==
5190 Operand.getValueType().getVectorElementCount()) &&
5191 "Vector element count mismatch!");
5192 assert(Operand.getValueType().bitsLT(VT) &&
5193 "Invalid fpext node, dst < src!");
5194 if (Operand.isUndef())
5195 return getUNDEF(VT);
5196 break;
5197 case ISD::FP_TO_SINT:
5198 case ISD::FP_TO_UINT:
5199 if (Operand.isUndef())
5200 return getUNDEF(VT);
5201 break;
5202 case ISD::SINT_TO_FP:
5203 case ISD::UINT_TO_FP:
5204 // [us]itofp(undef) = 0, because the result value is bounded.
5205 if (Operand.isUndef())
5206 return getConstantFP(0.0, DL, VT);
5207 break;
5208 case ISD::SIGN_EXTEND:
5209 assert(VT.isInteger() && Operand.getValueType().isInteger() &&
5210 "Invalid SIGN_EXTEND!");
5211 assert(VT.isVector() == Operand.getValueType().isVector() &&
5212 "SIGN_EXTEND result type type should be vector iff the operand "
5213 "type is vector!");
5214 if (Operand.getValueType() == VT) return Operand; // noop extension
5215 assert((!VT.isVector() ||
5216 VT.getVectorElementCount() ==
5217 Operand.getValueType().getVectorElementCount()) &&
5218 "Vector element count mismatch!");
5219 assert(Operand.getValueType().bitsLT(VT) &&
5220 "Invalid sext node, dst < src!");
5221 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
5222 return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
5223 if (OpOpcode == ISD::UNDEF)
5224 // sext(undef) = 0, because the top bits will all be the same.
5225 return getConstant(0, DL, VT);
5226 break;
5227 case ISD::ZERO_EXTEND:
5228 assert(VT.isInteger() && Operand.getValueType().isInteger() &&
5229 "Invalid ZERO_EXTEND!");
5230 assert(VT.isVector() == Operand.getValueType().isVector() &&
5231 "ZERO_EXTEND result type type should be vector iff the operand "
5232 "type is vector!");
5233 if (Operand.getValueType() == VT) return Operand; // noop extension
5234 assert((!VT.isVector() ||
5235 VT.getVectorElementCount() ==
5236 Operand.getValueType().getVectorElementCount()) &&
5237 "Vector element count mismatch!");
5238 assert(Operand.getValueType().bitsLT(VT) &&
5239 "Invalid zext node, dst < src!");
5240 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x)
5241 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
5242 if (OpOpcode == ISD::UNDEF)
5243 // zext(undef) = 0, because the top bits will be zero.
5244 return getConstant(0, DL, VT);
5245 break;
5246 case ISD::ANY_EXTEND:
5247 assert(VT.isInteger() && Operand.getValueType().isInteger() &&
5248 "Invalid ANY_EXTEND!");
5249 assert(VT.isVector() == Operand.getValueType().isVector() &&
5250 "ANY_EXTEND result type type should be vector iff the operand "
5251 "type is vector!");
5252 if (Operand.getValueType() == VT) return Operand; // noop extension
5253 assert((!VT.isVector() ||
5254 VT.getVectorElementCount() ==
5255 Operand.getValueType().getVectorElementCount()) &&
5256 "Vector element count mismatch!");
5257 assert(Operand.getValueType().bitsLT(VT) &&
5258 "Invalid anyext node, dst < src!");
5259
5260 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
5261 OpOpcode == ISD::ANY_EXTEND)
5262 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x)
5263 return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
5264 if (OpOpcode == ISD::UNDEF)
5265 return getUNDEF(VT);
5266
5267 // (ext (trunc x)) -> x
5268 if (OpOpcode == ISD::TRUNCATE) {
5269 SDValue OpOp = Operand.getOperand(0);
5270 if (OpOp.getValueType() == VT) {
5271 transferDbgValues(Operand, OpOp);
5272 return OpOp;
5273 }
5274 }
5275 break;
5276 case ISD::TRUNCATE:
5277 assert(VT.isInteger() && Operand.getValueType().isInteger() &&
5278 "Invalid TRUNCATE!");
5279 assert(VT.isVector() == Operand.getValueType().isVector() &&
5280 "TRUNCATE result type type should be vector iff the operand "
5281 "type is vector!");
5282 if (Operand.getValueType() == VT) return Operand; // noop truncate
5283 assert((!VT.isVector() ||
5284 VT.getVectorElementCount() ==
5285 Operand.getValueType().getVectorElementCount()) &&
5286 "Vector element count mismatch!");
5287 assert(Operand.getValueType().bitsGT(VT) &&
5288 "Invalid truncate node, src < dst!");
5289 if (OpOpcode == ISD::TRUNCATE)
5290 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
5291 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
5292 OpOpcode == ISD::ANY_EXTEND) {
5293 // If the source is smaller than the dest, we still need an extend.
5294 if (Operand.getOperand(0).getValueType().getScalarType()
5295 .bitsLT(VT.getScalarType()))
5296 return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
5297 if (Operand.getOperand(0).getValueType().bitsGT(VT))
5298 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
5299 return Operand.getOperand(0);
5300 }
5301 if (OpOpcode == ISD::UNDEF)
5302 return getUNDEF(VT);
5303 if (OpOpcode == ISD::VSCALE && !NewNodesMustHaveLegalTypes)
5304 return getVScale(DL, VT, Operand.getConstantOperandAPInt(0));
5305 break;
5306 case ISD::ANY_EXTEND_VECTOR_INREG:
5307 case ISD::ZERO_EXTEND_VECTOR_INREG:
5308 case ISD::SIGN_EXTEND_VECTOR_INREG:
5309 assert(VT.isVector() && "This DAG node is restricted to vector types.");
5310 assert(Operand.getValueType().bitsLE(VT) &&
5311 "The input must be the same size or smaller than the result.");
5312 assert(VT.getVectorMinNumElements() <
5313 Operand.getValueType().getVectorMinNumElements() &&
5314 "The destination vector type must have fewer lanes than the input.");
5315 break;
5316 case ISD::ABS:
5317 assert(VT.isInteger() && VT == Operand.getValueType() &&
5318 "Invalid ABS!");
5319 if (OpOpcode == ISD::UNDEF)
5320 return getConstant(0, DL, VT);
5321 break;
5322 case ISD::BSWAP:
5323 assert(VT.isInteger() && VT == Operand.getValueType() &&
5324 "Invalid BSWAP!");
5325 assert((VT.getScalarSizeInBits() % 16 == 0) &&
5326 "BSWAP types must be a multiple of 16 bits!");
5327 if (OpOpcode == ISD::UNDEF)
5328 return getUNDEF(VT);
5329 // bswap(bswap(X)) -> X.
5330 if (OpOpcode == ISD::BSWAP)
5331 return Operand.getOperand(0);
5332 break;
5333 case ISD::BITREVERSE:
5334 assert(VT.isInteger() && VT == Operand.getValueType() &&
5335 "Invalid BITREVERSE!");
5336 if (OpOpcode == ISD::UNDEF)
5337 return getUNDEF(VT);
5338 break;
5339 case ISD::BITCAST:
5340 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
5341 "Cannot BITCAST between types of different sizes!");
5342 if (VT == Operand.getValueType()) return Operand; // noop conversion.
5343 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x)
5344 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
5345 if (OpOpcode == ISD::UNDEF)
5346 return getUNDEF(VT);
5347 break;
5348 case ISD::SCALAR_TO_VECTOR:
5349 assert(VT.isVector() && !Operand.getValueType().isVector() &&
5350 (VT.getVectorElementType() == Operand.getValueType() ||
5351 (VT.getVectorElementType().isInteger() &&
5352 Operand.getValueType().isInteger() &&
5353 VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
5354 "Illegal SCALAR_TO_VECTOR node!");
5355 if (OpOpcode == ISD::UNDEF)
5356 return getUNDEF(VT);
5357 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
5358 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
5359 isa<ConstantSDNode>(Operand.getOperand(1)) &&
5360 Operand.getConstantOperandVal(1) == 0 &&
5361 Operand.getOperand(0).getValueType() == VT)
5362 return Operand.getOperand(0);
5363 break;
5364 case ISD::FNEG:
5365 // Negation of an unknown bag of bits is still completely undefined.
5366 if (OpOpcode == ISD::UNDEF)
5367 return getUNDEF(VT);
5368
5369 if (OpOpcode == ISD::FNEG) // --X -> X
5370 return Operand.getOperand(0);
5371 break;
5372 case ISD::FABS:
5373 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X)
5374 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
5375 break;
5376 case ISD::VSCALE:
5377 assert(VT == Operand.getValueType() && "Unexpected VT!");
5378 break;
5379 case ISD::CTPOP:
5380 if (Operand.getValueType().getScalarType() == MVT::i1)
5381 return Operand;
5382 break;
5383 case ISD::CTLZ:
5384 case ISD::CTTZ:
5385 if (Operand.getValueType().getScalarType() == MVT::i1)
5386 return getNOT(DL, Operand, Operand.getValueType());
5387 break;
5388 case ISD::VECREDUCE_ADD:
5389 if (Operand.getValueType().getScalarType() == MVT::i1)
5390 return getNode(ISD::VECREDUCE_XOR, DL, VT, Operand);
5391 break;
5392 case ISD::VECREDUCE_SMIN:
5393 case ISD::VECREDUCE_UMAX:
5394 if (Operand.getValueType().getScalarType() == MVT::i1)
5395 return getNode(ISD::VECREDUCE_OR, DL, VT, Operand);
5396 break;
5397 case ISD::VECREDUCE_SMAX:
5398 case ISD::VECREDUCE_UMIN:
5399 if (Operand.getValueType().getScalarType() == MVT::i1)
5400 return getNode(ISD::VECREDUCE_AND, DL, VT, Operand);
5401 break;
5402 }
5403
5404 SDNode *N;
5405 SDVTList VTs = getVTList(VT);
5406 SDValue Ops[] = {Operand};
5407 if (VT != MVT::Glue) { // Don't CSE flag producing nodes
5408 FoldingSetNodeID ID;
5409 AddNodeIDNode(ID, Opcode, VTs, Ops);
5410 void *IP = nullptr;
5411 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5412 E->intersectFlagsWith(Flags);
5413 return SDValue(E, 0);
5414 }
5415
5416 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5417 N->setFlags(Flags);
5418 createOperands(N, Ops);
5419 CSEMap.InsertNode(N, IP);
5420 } else {
5421 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5422 createOperands(N, Ops);
5423 }
5424
5425 InsertNode(N);
5426 SDValue V = SDValue(N, 0);
5427 NewSDValueDbgMsg(V, "Creating new node: ", this);
5428 return V;
5429 }
5430
FoldValue(unsigned Opcode,const APInt & C1,const APInt & C2)5431 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1,
5432 const APInt &C2) {
5433 switch (Opcode) {
5434 case ISD::ADD: return C1 + C2;
5435 case ISD::SUB: return C1 - C2;
5436 case ISD::MUL: return C1 * C2;
5437 case ISD::AND: return C1 & C2;
5438 case ISD::OR: return C1 | C2;
5439 case ISD::XOR: return C1 ^ C2;
5440 case ISD::SHL: return C1 << C2;
5441 case ISD::SRL: return C1.lshr(C2);
5442 case ISD::SRA: return C1.ashr(C2);
5443 case ISD::ROTL: return C1.rotl(C2);
5444 case ISD::ROTR: return C1.rotr(C2);
5445 case ISD::SMIN: return C1.sle(C2) ? C1 : C2;
5446 case ISD::SMAX: return C1.sge(C2) ? C1 : C2;
5447 case ISD::UMIN: return C1.ule(C2) ? C1 : C2;
5448 case ISD::UMAX: return C1.uge(C2) ? C1 : C2;
5449 case ISD::SADDSAT: return C1.sadd_sat(C2);
5450 case ISD::UADDSAT: return C1.uadd_sat(C2);
5451 case ISD::SSUBSAT: return C1.ssub_sat(C2);
5452 case ISD::USUBSAT: return C1.usub_sat(C2);
5453 case ISD::SSHLSAT: return C1.sshl_sat(C2);
5454 case ISD::USHLSAT: return C1.ushl_sat(C2);
5455 case ISD::UDIV:
5456 if (!C2.getBoolValue())
5457 break;
5458 return C1.udiv(C2);
5459 case ISD::UREM:
5460 if (!C2.getBoolValue())
5461 break;
5462 return C1.urem(C2);
5463 case ISD::SDIV:
5464 if (!C2.getBoolValue())
5465 break;
5466 return C1.sdiv(C2);
5467 case ISD::SREM:
5468 if (!C2.getBoolValue())
5469 break;
5470 return C1.srem(C2);
5471 case ISD::MULHS: {
5472 unsigned FullWidth = C1.getBitWidth() * 2;
5473 APInt C1Ext = C1.sext(FullWidth);
5474 APInt C2Ext = C2.sext(FullWidth);
5475 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth());
5476 }
5477 case ISD::MULHU: {
5478 unsigned FullWidth = C1.getBitWidth() * 2;
5479 APInt C1Ext = C1.zext(FullWidth);
5480 APInt C2Ext = C2.zext(FullWidth);
5481 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth());
5482 }
5483 case ISD::AVGFLOORS: {
5484 unsigned FullWidth = C1.getBitWidth() + 1;
5485 APInt C1Ext = C1.sext(FullWidth);
5486 APInt C2Ext = C2.sext(FullWidth);
5487 return (C1Ext + C2Ext).extractBits(C1.getBitWidth(), 1);
5488 }
5489 case ISD::AVGFLOORU: {
5490 unsigned FullWidth = C1.getBitWidth() + 1;
5491 APInt C1Ext = C1.zext(FullWidth);
5492 APInt C2Ext = C2.zext(FullWidth);
5493 return (C1Ext + C2Ext).extractBits(C1.getBitWidth(), 1);
5494 }
5495 case ISD::AVGCEILS: {
5496 unsigned FullWidth = C1.getBitWidth() + 1;
5497 APInt C1Ext = C1.sext(FullWidth);
5498 APInt C2Ext = C2.sext(FullWidth);
5499 return (C1Ext + C2Ext + 1).extractBits(C1.getBitWidth(), 1);
5500 }
5501 case ISD::AVGCEILU: {
5502 unsigned FullWidth = C1.getBitWidth() + 1;
5503 APInt C1Ext = C1.zext(FullWidth);
5504 APInt C2Ext = C2.zext(FullWidth);
5505 return (C1Ext + C2Ext + 1).extractBits(C1.getBitWidth(), 1);
5506 }
5507 }
5508 return llvm::None;
5509 }
5510
FoldSymbolOffset(unsigned Opcode,EVT VT,const GlobalAddressSDNode * GA,const SDNode * N2)5511 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
5512 const GlobalAddressSDNode *GA,
5513 const SDNode *N2) {
5514 if (GA->getOpcode() != ISD::GlobalAddress)
5515 return SDValue();
5516 if (!TLI->isOffsetFoldingLegal(GA))
5517 return SDValue();
5518 auto *C2 = dyn_cast<ConstantSDNode>(N2);
5519 if (!C2)
5520 return SDValue();
5521 int64_t Offset = C2->getSExtValue();
5522 switch (Opcode) {
5523 case ISD::ADD: break;
5524 case ISD::SUB: Offset = -uint64_t(Offset); break;
5525 default: return SDValue();
5526 }
5527 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
5528 GA->getOffset() + uint64_t(Offset));
5529 }
5530
isUndef(unsigned Opcode,ArrayRef<SDValue> Ops)5531 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
5532 switch (Opcode) {
5533 case ISD::SDIV:
5534 case ISD::UDIV:
5535 case ISD::SREM:
5536 case ISD::UREM: {
5537 // If a divisor is zero/undef or any element of a divisor vector is
5538 // zero/undef, the whole op is undef.
5539 assert(Ops.size() == 2 && "Div/rem should have 2 operands");
5540 SDValue Divisor = Ops[1];
5541 if (Divisor.isUndef() || isNullConstant(Divisor))
5542 return true;
5543
5544 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
5545 llvm::any_of(Divisor->op_values(),
5546 [](SDValue V) { return V.isUndef() ||
5547 isNullConstant(V); });
5548 // TODO: Handle signed overflow.
5549 }
5550 // TODO: Handle oversized shifts.
5551 default:
5552 return false;
5553 }
5554 }
5555
FoldConstantArithmetic(unsigned Opcode,const SDLoc & DL,EVT VT,ArrayRef<SDValue> Ops)5556 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
5557 EVT VT, ArrayRef<SDValue> Ops) {
5558 // If the opcode is a target-specific ISD node, there's nothing we can
5559 // do here and the operand rules may not line up with the below, so
5560 // bail early.
5561 // We can't create a scalar CONCAT_VECTORS so skip it. It will break
5562 // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by
5563 // foldCONCAT_VECTORS in getNode before this is called.
5564 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS)
5565 return SDValue();
5566
5567 unsigned NumOps = Ops.size();
5568 if (NumOps == 0)
5569 return SDValue();
5570
5571 if (isUndef(Opcode, Ops))
5572 return getUNDEF(VT);
5573
5574 // Handle binops special cases.
5575 if (NumOps == 2) {
5576 if (SDValue CFP = foldConstantFPMath(Opcode, DL, VT, Ops[0], Ops[1]))
5577 return CFP;
5578
5579 if (auto *C1 = dyn_cast<ConstantSDNode>(Ops[0])) {
5580 if (auto *C2 = dyn_cast<ConstantSDNode>(Ops[1])) {
5581 if (C1->isOpaque() || C2->isOpaque())
5582 return SDValue();
5583
5584 Optional<APInt> FoldAttempt =
5585 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
5586 if (!FoldAttempt)
5587 return SDValue();
5588
5589 SDValue Folded = getConstant(*FoldAttempt, DL, VT);
5590 assert((!Folded || !VT.isVector()) &&
5591 "Can't fold vectors ops with scalar operands");
5592 return Folded;
5593 }
5594 }
5595
5596 // fold (add Sym, c) -> Sym+c
5597 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[0]))
5598 return FoldSymbolOffset(Opcode, VT, GA, Ops[1].getNode());
5599 if (TLI->isCommutativeBinOp(Opcode))
5600 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[1]))
5601 return FoldSymbolOffset(Opcode, VT, GA, Ops[0].getNode());
5602 }
5603
5604 // This is for vector folding only from here on.
5605 if (!VT.isVector())
5606 return SDValue();
5607
5608 ElementCount NumElts = VT.getVectorElementCount();
5609
5610 // See if we can fold through bitcasted integer ops.
5611 // TODO: Can we handle undef elements?
5612 if (NumOps == 2 && VT.isFixedLengthVector() && VT.isInteger() &&
5613 Ops[0].getValueType() == VT && Ops[1].getValueType() == VT &&
5614 Ops[0].getOpcode() == ISD::BITCAST &&
5615 Ops[1].getOpcode() == ISD::BITCAST) {
5616 SDValue N1 = peekThroughBitcasts(Ops[0]);
5617 SDValue N2 = peekThroughBitcasts(Ops[1]);
5618 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
5619 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2);
5620 EVT BVVT = N1.getValueType();
5621 if (BV1 && BV2 && BVVT.isInteger() && BVVT == N2.getValueType()) {
5622 bool IsLE = getDataLayout().isLittleEndian();
5623 unsigned EltBits = VT.getScalarSizeInBits();
5624 SmallVector<APInt> RawBits1, RawBits2;
5625 BitVector UndefElts1, UndefElts2;
5626 if (BV1->getConstantRawBits(IsLE, EltBits, RawBits1, UndefElts1) &&
5627 BV2->getConstantRawBits(IsLE, EltBits, RawBits2, UndefElts2) &&
5628 UndefElts1.none() && UndefElts2.none()) {
5629 SmallVector<APInt> RawBits;
5630 for (unsigned I = 0, E = NumElts.getFixedValue(); I != E; ++I) {
5631 Optional<APInt> Fold = FoldValue(Opcode, RawBits1[I], RawBits2[I]);
5632 if (!Fold)
5633 break;
5634 RawBits.push_back(*Fold);
5635 }
5636 if (RawBits.size() == NumElts.getFixedValue()) {
5637 // We have constant folded, but we need to cast this again back to
5638 // the original (possibly legalized) type.
5639 SmallVector<APInt> DstBits;
5640 BitVector DstUndefs;
5641 BuildVectorSDNode::recastRawBits(IsLE, BVVT.getScalarSizeInBits(),
5642 DstBits, RawBits, DstUndefs,
5643 BitVector(RawBits.size(), false));
5644 EVT BVEltVT = BV1->getOperand(0).getValueType();
5645 unsigned BVEltBits = BVEltVT.getSizeInBits();
5646 SmallVector<SDValue> Ops(DstBits.size(), getUNDEF(BVEltVT));
5647 for (unsigned I = 0, E = DstBits.size(); I != E; ++I) {
5648 if (DstUndefs[I])
5649 continue;
5650 Ops[I] = getConstant(DstBits[I].sext(BVEltBits), DL, BVEltVT);
5651 }
5652 return getBitcast(VT, getBuildVector(BVVT, DL, Ops));
5653 }
5654 }
5655 }
5656 }
5657
5658 // Fold (mul step_vector(C0), C1) to (step_vector(C0 * C1)).
5659 // (shl step_vector(C0), C1) -> (step_vector(C0 << C1))
5660 if ((Opcode == ISD::MUL || Opcode == ISD::SHL) &&
5661 Ops[0].getOpcode() == ISD::STEP_VECTOR) {
5662 APInt RHSVal;
5663 if (ISD::isConstantSplatVector(Ops[1].getNode(), RHSVal)) {
5664 APInt NewStep = Opcode == ISD::MUL
5665 ? Ops[0].getConstantOperandAPInt(0) * RHSVal
5666 : Ops[0].getConstantOperandAPInt(0) << RHSVal;
5667 return getStepVector(DL, VT, NewStep);
5668 }
5669 }
5670
5671 auto IsScalarOrSameVectorSize = [NumElts](const SDValue &Op) {
5672 return !Op.getValueType().isVector() ||
5673 Op.getValueType().getVectorElementCount() == NumElts;
5674 };
5675
5676 auto IsBuildVectorSplatVectorOrUndef = [](const SDValue &Op) {
5677 return Op.isUndef() || Op.getOpcode() == ISD::CONDCODE ||
5678 Op.getOpcode() == ISD::BUILD_VECTOR ||
5679 Op.getOpcode() == ISD::SPLAT_VECTOR;
5680 };
5681
5682 // All operands must be vector types with the same number of elements as
5683 // the result type and must be either UNDEF or a build/splat vector
5684 // or UNDEF scalars.
5685 if (!llvm::all_of(Ops, IsBuildVectorSplatVectorOrUndef) ||
5686 !llvm::all_of(Ops, IsScalarOrSameVectorSize))
5687 return SDValue();
5688
5689 // If we are comparing vectors, then the result needs to be a i1 boolean that
5690 // is then extended back to the legal result type depending on how booleans
5691 // are represented.
5692 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
5693 ISD::NodeType ExtendCode =
5694 (Opcode == ISD::SETCC && SVT != VT.getScalarType())
5695 ? TargetLowering::getExtendForContent(TLI->getBooleanContents(VT))
5696 : ISD::SIGN_EXTEND;
5697
5698 // Find legal integer scalar type for constant promotion and
5699 // ensure that its scalar size is at least as large as source.
5700 EVT LegalSVT = VT.getScalarType();
5701 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5702 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5703 if (LegalSVT.bitsLT(VT.getScalarType()))
5704 return SDValue();
5705 }
5706
5707 // For scalable vector types we know we're dealing with SPLAT_VECTORs. We
5708 // only have one operand to check. For fixed-length vector types we may have
5709 // a combination of BUILD_VECTOR and SPLAT_VECTOR.
5710 unsigned NumVectorElts = NumElts.isScalable() ? 1 : NumElts.getFixedValue();
5711
5712 // Constant fold each scalar lane separately.
5713 SmallVector<SDValue, 4> ScalarResults;
5714 for (unsigned I = 0; I != NumVectorElts; I++) {
5715 SmallVector<SDValue, 4> ScalarOps;
5716 for (SDValue Op : Ops) {
5717 EVT InSVT = Op.getValueType().getScalarType();
5718 if (Op.getOpcode() != ISD::BUILD_VECTOR &&
5719 Op.getOpcode() != ISD::SPLAT_VECTOR) {
5720 if (Op.isUndef())
5721 ScalarOps.push_back(getUNDEF(InSVT));
5722 else
5723 ScalarOps.push_back(Op);
5724 continue;
5725 }
5726
5727 SDValue ScalarOp =
5728 Op.getOperand(Op.getOpcode() == ISD::SPLAT_VECTOR ? 0 : I);
5729 EVT ScalarVT = ScalarOp.getValueType();
5730
5731 // Build vector (integer) scalar operands may need implicit
5732 // truncation - do this before constant folding.
5733 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) {
5734 // Don't create illegally-typed nodes unless they're constants or undef
5735 // - if we fail to constant fold we can't guarantee the (dead) nodes
5736 // we're creating will be cleaned up before being visited for
5737 // legalization.
5738 if (NewNodesMustHaveLegalTypes && !ScalarOp.isUndef() &&
5739 !isa<ConstantSDNode>(ScalarOp) &&
5740 TLI->getTypeAction(*getContext(), InSVT) !=
5741 TargetLowering::TypeLegal)
5742 return SDValue();
5743 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
5744 }
5745
5746 ScalarOps.push_back(ScalarOp);
5747 }
5748
5749 // Constant fold the scalar operands.
5750 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps);
5751
5752 // Legalize the (integer) scalar constant if necessary.
5753 if (LegalSVT != SVT)
5754 ScalarResult = getNode(ExtendCode, DL, LegalSVT, ScalarResult);
5755
5756 // Scalar folding only succeeded if the result is a constant or UNDEF.
5757 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5758 ScalarResult.getOpcode() != ISD::ConstantFP)
5759 return SDValue();
5760 ScalarResults.push_back(ScalarResult);
5761 }
5762
5763 SDValue V = NumElts.isScalable() ? getSplatVector(VT, DL, ScalarResults[0])
5764 : getBuildVector(VT, DL, ScalarResults);
5765 NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
5766 return V;
5767 }
5768
foldConstantFPMath(unsigned Opcode,const SDLoc & DL,EVT VT,SDValue N1,SDValue N2)5769 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
5770 EVT VT, SDValue N1, SDValue N2) {
5771 // TODO: We don't do any constant folding for strict FP opcodes here, but we
5772 // should. That will require dealing with a potentially non-default
5773 // rounding mode, checking the "opStatus" return value from the APFloat
5774 // math calculations, and possibly other variations.
5775 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, /*AllowUndefs*/ false);
5776 ConstantFPSDNode *N2CFP = isConstOrConstSplatFP(N2, /*AllowUndefs*/ false);
5777 if (N1CFP && N2CFP) {
5778 APFloat C1 = N1CFP->getValueAPF(); // make copy
5779 const APFloat &C2 = N2CFP->getValueAPF();
5780 switch (Opcode) {
5781 case ISD::FADD:
5782 C1.add(C2, APFloat::rmNearestTiesToEven);
5783 return getConstantFP(C1, DL, VT);
5784 case ISD::FSUB:
5785 C1.subtract(C2, APFloat::rmNearestTiesToEven);
5786 return getConstantFP(C1, DL, VT);
5787 case ISD::FMUL:
5788 C1.multiply(C2, APFloat::rmNearestTiesToEven);
5789 return getConstantFP(C1, DL, VT);
5790 case ISD::FDIV:
5791 C1.divide(C2, APFloat::rmNearestTiesToEven);
5792 return getConstantFP(C1, DL, VT);
5793 case ISD::FREM:
5794 C1.mod(C2);
5795 return getConstantFP(C1, DL, VT);
5796 case ISD::FCOPYSIGN:
5797 C1.copySign(C2);
5798 return getConstantFP(C1, DL, VT);
5799 case ISD::FMINNUM:
5800 return getConstantFP(minnum(C1, C2), DL, VT);
5801 case ISD::FMAXNUM:
5802 return getConstantFP(maxnum(C1, C2), DL, VT);
5803 case ISD::FMINIMUM:
5804 return getConstantFP(minimum(C1, C2), DL, VT);
5805 case ISD::FMAXIMUM:
5806 return getConstantFP(maximum(C1, C2), DL, VT);
5807 default: break;
5808 }
5809 }
5810 if (N1CFP && Opcode == ISD::FP_ROUND) {
5811 APFloat C1 = N1CFP->getValueAPF(); // make copy
5812 bool Unused;
5813 // This can return overflow, underflow, or inexact; we don't care.
5814 // FIXME need to be more flexible about rounding mode.
5815 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
5816 &Unused);
5817 return getConstantFP(C1, DL, VT);
5818 }
5819
5820 switch (Opcode) {
5821 case ISD::FSUB:
5822 // -0.0 - undef --> undef (consistent with "fneg undef")
5823 if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, /*AllowUndefs*/ true))
5824 if (N1C && N1C->getValueAPF().isNegZero() && N2.isUndef())
5825 return getUNDEF(VT);
5826 LLVM_FALLTHROUGH;
5827
5828 case ISD::FADD:
5829 case ISD::FMUL:
5830 case ISD::FDIV:
5831 case ISD::FREM:
5832 // If both operands are undef, the result is undef. If 1 operand is undef,
5833 // the result is NaN. This should match the behavior of the IR optimizer.
5834 if (N1.isUndef() && N2.isUndef())
5835 return getUNDEF(VT);
5836 if (N1.isUndef() || N2.isUndef())
5837 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
5838 }
5839 return SDValue();
5840 }
5841
getAssertAlign(const SDLoc & DL,SDValue Val,Align A)5842 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) {
5843 assert(Val.getValueType().isInteger() && "Invalid AssertAlign!");
5844
5845 // There's no need to assert on a byte-aligned pointer. All pointers are at
5846 // least byte aligned.
5847 if (A == Align(1))
5848 return Val;
5849
5850 FoldingSetNodeID ID;
5851 AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val});
5852 ID.AddInteger(A.value());
5853
5854 void *IP = nullptr;
5855 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
5856 return SDValue(E, 0);
5857
5858 auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(),
5859 Val.getValueType(), A);
5860 createOperands(N, {Val});
5861
5862 CSEMap.InsertNode(N, IP);
5863 InsertNode(N);
5864
5865 SDValue V(N, 0);
5866 NewSDValueDbgMsg(V, "Creating new node: ", this);
5867 return V;
5868 }
5869
getNode(unsigned Opcode,const SDLoc & DL,EVT VT,SDValue N1,SDValue N2)5870 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5871 SDValue N1, SDValue N2) {
5872 SDNodeFlags Flags;
5873 if (Inserter)
5874 Flags = Inserter->getFlags();
5875 return getNode(Opcode, DL, VT, N1, N2, Flags);
5876 }
5877
canonicalizeCommutativeBinop(unsigned Opcode,SDValue & N1,SDValue & N2) const5878 void SelectionDAG::canonicalizeCommutativeBinop(unsigned Opcode, SDValue &N1,
5879 SDValue &N2) const {
5880 if (!TLI->isCommutativeBinOp(Opcode))
5881 return;
5882
5883 // Canonicalize:
5884 // binop(const, nonconst) -> binop(nonconst, const)
5885 bool IsN1C = isConstantIntBuildVectorOrConstantInt(N1);
5886 bool IsN2C = isConstantIntBuildVectorOrConstantInt(N2);
5887 bool IsN1CFP = isConstantFPBuildVectorOrConstantFP(N1);
5888 bool IsN2CFP = isConstantFPBuildVectorOrConstantFP(N2);
5889 if ((IsN1C && !IsN2C) || (IsN1CFP && !IsN2CFP))
5890 std::swap(N1, N2);
5891
5892 // Canonicalize:
5893 // binop(splat(x), step_vector) -> binop(step_vector, splat(x))
5894 else if (N1.getOpcode() == ISD::SPLAT_VECTOR &&
5895 N2.getOpcode() == ISD::STEP_VECTOR)
5896 std::swap(N1, N2);
5897 }
5898
getNode(unsigned Opcode,const SDLoc & DL,EVT VT,SDValue N1,SDValue N2,const SDNodeFlags Flags)5899 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5900 SDValue N1, SDValue N2, const SDNodeFlags Flags) {
5901 assert(N1.getOpcode() != ISD::DELETED_NODE &&
5902 N2.getOpcode() != ISD::DELETED_NODE &&
5903 "Operand is DELETED_NODE!");
5904
5905 canonicalizeCommutativeBinop(Opcode, N1, N2);
5906
5907 auto *N1C = dyn_cast<ConstantSDNode>(N1);
5908 auto *N2C = dyn_cast<ConstantSDNode>(N2);
5909
5910 // Don't allow undefs in vector splats - we might be returning N2 when folding
5911 // to zero etc.
5912 ConstantSDNode *N2CV =
5913 isConstOrConstSplat(N2, /*AllowUndefs*/ false, /*AllowTruncation*/ true);
5914
5915 switch (Opcode) {
5916 default: break;
5917 case ISD::TokenFactor:
5918 assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
5919 N2.getValueType() == MVT::Other && "Invalid token factor!");
5920 // Fold trivial token factors.
5921 if (N1.getOpcode() == ISD::EntryToken) return N2;
5922 if (N2.getOpcode() == ISD::EntryToken) return N1;
5923 if (N1 == N2) return N1;
5924 break;
5925 case ISD::BUILD_VECTOR: {
5926 // Attempt to simplify BUILD_VECTOR.
5927 SDValue Ops[] = {N1, N2};
5928 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5929 return V;
5930 break;
5931 }
5932 case ISD::CONCAT_VECTORS: {
5933 SDValue Ops[] = {N1, N2};
5934 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5935 return V;
5936 break;
5937 }
5938 case ISD::AND:
5939 assert(VT.isInteger() && "This operator does not apply to FP types!");
5940 assert(N1.getValueType() == N2.getValueType() &&
5941 N1.getValueType() == VT && "Binary operator types must match!");
5942 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's
5943 // worth handling here.
5944 if (N2CV && N2CV->isZero())
5945 return N2;
5946 if (N2CV && N2CV->isAllOnes()) // X & -1 -> X
5947 return N1;
5948 break;
5949 case ISD::OR:
5950 case ISD::XOR:
5951 case ISD::ADD:
5952 case ISD::SUB:
5953 assert(VT.isInteger() && "This operator does not apply to FP types!");
5954 assert(N1.getValueType() == N2.getValueType() &&
5955 N1.getValueType() == VT && "Binary operator types must match!");
5956 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so
5957 // it's worth handling here.
5958 if (N2CV && N2CV->isZero())
5959 return N1;
5960 if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() &&
5961 VT.getVectorElementType() == MVT::i1)
5962 return getNode(ISD::XOR, DL, VT, N1, N2);
5963 break;
5964 case ISD::MUL:
5965 assert(VT.isInteger() && "This operator does not apply to FP types!");
5966 assert(N1.getValueType() == N2.getValueType() &&
5967 N1.getValueType() == VT && "Binary operator types must match!");
5968 if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5969 return getNode(ISD::AND, DL, VT, N1, N2);
5970 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5971 const APInt &MulImm = N1->getConstantOperandAPInt(0);
5972 const APInt &N2CImm = N2C->getAPIntValue();
5973 return getVScale(DL, VT, MulImm * N2CImm);
5974 }
5975 break;
5976 case ISD::UDIV:
5977 case ISD::UREM:
5978 case ISD::MULHU:
5979 case ISD::MULHS:
5980 case ISD::SDIV:
5981 case ISD::SREM:
5982 case ISD::SADDSAT:
5983 case ISD::SSUBSAT:
5984 case ISD::UADDSAT:
5985 case ISD::USUBSAT:
5986 assert(VT.isInteger() && "This operator does not apply to FP types!");
5987 assert(N1.getValueType() == N2.getValueType() &&
5988 N1.getValueType() == VT && "Binary operator types must match!");
5989 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) {
5990 // fold (add_sat x, y) -> (or x, y) for bool types.
5991 if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT)
5992 return getNode(ISD::OR, DL, VT, N1, N2);
5993 // fold (sub_sat x, y) -> (and x, ~y) for bool types.
5994 if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT)
5995 return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT));
5996 }
5997 break;
5998 case ISD::SMIN:
5999 case ISD::UMAX:
6000 assert(VT.isInteger() && "This operator does not apply to FP types!");
6001 assert(N1.getValueType() == N2.getValueType() &&
6002 N1.getValueType() == VT && "Binary operator types must match!");
6003 if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
6004 return getNode(ISD::OR, DL, VT, N1, N2);
6005 break;
6006 case ISD::SMAX:
6007 case ISD::UMIN:
6008 assert(VT.isInteger() && "This operator does not apply to FP types!");
6009 assert(N1.getValueType() == N2.getValueType() &&
6010 N1.getValueType() == VT && "Binary operator types must match!");
6011 if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
6012 return getNode(ISD::AND, DL, VT, N1, N2);
6013 break;
6014 case ISD::FADD:
6015 case ISD::FSUB:
6016 case ISD::FMUL:
6017 case ISD::FDIV:
6018 case ISD::FREM:
6019 assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
6020 assert(N1.getValueType() == N2.getValueType() &&
6021 N1.getValueType() == VT && "Binary operator types must match!");
6022 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags))
6023 return V;
6024 break;
6025 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match.
6026 assert(N1.getValueType() == VT &&
6027 N1.getValueType().isFloatingPoint() &&
6028 N2.getValueType().isFloatingPoint() &&
6029 "Invalid FCOPYSIGN!");
6030 break;
6031 case ISD::SHL:
6032 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
6033 const APInt &MulImm = N1->getConstantOperandAPInt(0);
6034 const APInt &ShiftImm = N2C->getAPIntValue();
6035 return getVScale(DL, VT, MulImm << ShiftImm);
6036 }
6037 LLVM_FALLTHROUGH;
6038 case ISD::SRA:
6039 case ISD::SRL:
6040 if (SDValue V = simplifyShift(N1, N2))
6041 return V;
6042 LLVM_FALLTHROUGH;
6043 case ISD::ROTL:
6044 case ISD::ROTR:
6045 assert(VT == N1.getValueType() &&
6046 "Shift operators return type must be the same as their first arg");
6047 assert(VT.isInteger() && N2.getValueType().isInteger() &&
6048 "Shifts only work on integers");
6049 assert((!VT.isVector() || VT == N2.getValueType()) &&
6050 "Vector shift amounts must be in the same as their first arg");
6051 // Verify that the shift amount VT is big enough to hold valid shift
6052 // amounts. This catches things like trying to shift an i1024 value by an
6053 // i8, which is easy to fall into in generic code that uses
6054 // TLI.getShiftAmount().
6055 assert(N2.getValueType().getScalarSizeInBits() >=
6056 Log2_32_Ceil(VT.getScalarSizeInBits()) &&
6057 "Invalid use of small shift amount with oversized value!");
6058
6059 // Always fold shifts of i1 values so the code generator doesn't need to
6060 // handle them. Since we know the size of the shift has to be less than the
6061 // size of the value, the shift/rotate count is guaranteed to be zero.
6062 if (VT == MVT::i1)
6063 return N1;
6064 if (N2CV && N2CV->isZero())
6065 return N1;
6066 break;
6067 case ISD::FP_ROUND:
6068 assert(VT.isFloatingPoint() &&
6069 N1.getValueType().isFloatingPoint() &&
6070 VT.bitsLE(N1.getValueType()) &&
6071 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
6072 "Invalid FP_ROUND!");
6073 if (N1.getValueType() == VT) return N1; // noop conversion.
6074 break;
6075 case ISD::AssertSext:
6076 case ISD::AssertZext: {
6077 EVT EVT = cast<VTSDNode>(N2)->getVT();
6078 assert(VT == N1.getValueType() && "Not an inreg extend!");
6079 assert(VT.isInteger() && EVT.isInteger() &&
6080 "Cannot *_EXTEND_INREG FP types");
6081 assert(!EVT.isVector() &&
6082 "AssertSExt/AssertZExt type should be the vector element type "
6083 "rather than the vector type!");
6084 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
6085 if (VT.getScalarType() == EVT) return N1; // noop assertion.
6086 break;
6087 }
6088 case ISD::SIGN_EXTEND_INREG: {
6089 EVT EVT = cast<VTSDNode>(N2)->getVT();
6090 assert(VT == N1.getValueType() && "Not an inreg extend!");
6091 assert(VT.isInteger() && EVT.isInteger() &&
6092 "Cannot *_EXTEND_INREG FP types");
6093 assert(EVT.isVector() == VT.isVector() &&
6094 "SIGN_EXTEND_INREG type should be vector iff the operand "
6095 "type is vector!");
6096 assert((!EVT.isVector() ||
6097 EVT.getVectorElementCount() == VT.getVectorElementCount()) &&
6098 "Vector element counts must match in SIGN_EXTEND_INREG");
6099 assert(EVT.bitsLE(VT) && "Not extending!");
6100 if (EVT == VT) return N1; // Not actually extending
6101
6102 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
6103 unsigned FromBits = EVT.getScalarSizeInBits();
6104 Val <<= Val.getBitWidth() - FromBits;
6105 Val.ashrInPlace(Val.getBitWidth() - FromBits);
6106 return getConstant(Val, DL, ConstantVT);
6107 };
6108
6109 if (N1C) {
6110 const APInt &Val = N1C->getAPIntValue();
6111 return SignExtendInReg(Val, VT);
6112 }
6113
6114 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
6115 SmallVector<SDValue, 8> Ops;
6116 llvm::EVT OpVT = N1.getOperand(0).getValueType();
6117 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
6118 SDValue Op = N1.getOperand(i);
6119 if (Op.isUndef()) {
6120 Ops.push_back(getUNDEF(OpVT));
6121 continue;
6122 }
6123 ConstantSDNode *C = cast<ConstantSDNode>(Op);
6124 APInt Val = C->getAPIntValue();
6125 Ops.push_back(SignExtendInReg(Val, OpVT));
6126 }
6127 return getBuildVector(VT, DL, Ops);
6128 }
6129 break;
6130 }
6131 case ISD::FP_TO_SINT_SAT:
6132 case ISD::FP_TO_UINT_SAT: {
6133 assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() &&
6134 N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT");
6135 assert(N1.getValueType().isVector() == VT.isVector() &&
6136 "FP_TO_*INT_SAT type should be vector iff the operand type is "
6137 "vector!");
6138 assert((!VT.isVector() || VT.getVectorElementCount() ==
6139 N1.getValueType().getVectorElementCount()) &&
6140 "Vector element counts must match in FP_TO_*INT_SAT");
6141 assert(!cast<VTSDNode>(N2)->getVT().isVector() &&
6142 "Type to saturate to must be a scalar.");
6143 assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) &&
6144 "Not extending!");
6145 break;
6146 }
6147 case ISD::EXTRACT_VECTOR_ELT:
6148 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
6149 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
6150 element type of the vector.");
6151
6152 // Extract from an undefined value or using an undefined index is undefined.
6153 if (N1.isUndef() || N2.isUndef())
6154 return getUNDEF(VT);
6155
6156 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length
6157 // vectors. For scalable vectors we will provide appropriate support for
6158 // dealing with arbitrary indices.
6159 if (N2C && N1.getValueType().isFixedLengthVector() &&
6160 N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
6161 return getUNDEF(VT);
6162
6163 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
6164 // expanding copies of large vectors from registers. This only works for
6165 // fixed length vectors, since we need to know the exact number of
6166 // elements.
6167 if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() &&
6168 N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) {
6169 unsigned Factor =
6170 N1.getOperand(0).getValueType().getVectorNumElements();
6171 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
6172 N1.getOperand(N2C->getZExtValue() / Factor),
6173 getVectorIdxConstant(N2C->getZExtValue() % Factor, DL));
6174 }
6175
6176 // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while
6177 // lowering is expanding large vector constants.
6178 if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR ||
6179 N1.getOpcode() == ISD::SPLAT_VECTOR)) {
6180 assert((N1.getOpcode() != ISD::BUILD_VECTOR ||
6181 N1.getValueType().isFixedLengthVector()) &&
6182 "BUILD_VECTOR used for scalable vectors");
6183 unsigned Index =
6184 N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0;
6185 SDValue Elt = N1.getOperand(Index);
6186
6187 if (VT != Elt.getValueType())
6188 // If the vector element type is not legal, the BUILD_VECTOR operands
6189 // are promoted and implicitly truncated, and the result implicitly
6190 // extended. Make that explicit here.
6191 Elt = getAnyExtOrTrunc(Elt, DL, VT);
6192
6193 return Elt;
6194 }
6195
6196 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
6197 // operations are lowered to scalars.
6198 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
6199 // If the indices are the same, return the inserted element else
6200 // if the indices are known different, extract the element from
6201 // the original vector.
6202 SDValue N1Op2 = N1.getOperand(2);
6203 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
6204
6205 if (N1Op2C && N2C) {
6206 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
6207 if (VT == N1.getOperand(1).getValueType())
6208 return N1.getOperand(1);
6209 if (VT.isFloatingPoint()) {
6210 assert(VT.getSizeInBits() > N1.getOperand(1).getValueType().getSizeInBits());
6211 return getFPExtendOrRound(N1.getOperand(1), DL, VT);
6212 }
6213 return getSExtOrTrunc(N1.getOperand(1), DL, VT);
6214 }
6215 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
6216 }
6217 }
6218
6219 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
6220 // when vector types are scalarized and v1iX is legal.
6221 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx).
6222 // Here we are completely ignoring the extract element index (N2),
6223 // which is fine for fixed width vectors, since any index other than 0
6224 // is undefined anyway. However, this cannot be ignored for scalable
6225 // vectors - in theory we could support this, but we don't want to do this
6226 // without a profitability check.
6227 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
6228 N1.getValueType().isFixedLengthVector() &&
6229 N1.getValueType().getVectorNumElements() == 1) {
6230 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
6231 N1.getOperand(1));
6232 }
6233 break;
6234 case ISD::EXTRACT_ELEMENT:
6235 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
6236 assert(!N1.getValueType().isVector() && !VT.isVector() &&
6237 (N1.getValueType().isInteger() == VT.isInteger()) &&
6238 N1.getValueType() != VT &&
6239 "Wrong types for EXTRACT_ELEMENT!");
6240
6241 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
6242 // 64-bit integers into 32-bit parts. Instead of building the extract of
6243 // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
6244 if (N1.getOpcode() == ISD::BUILD_PAIR)
6245 return N1.getOperand(N2C->getZExtValue());
6246
6247 // EXTRACT_ELEMENT of a constant int is also very common.
6248 if (N1C) {
6249 unsigned ElementSize = VT.getSizeInBits();
6250 unsigned Shift = ElementSize * N2C->getZExtValue();
6251 const APInt &Val = N1C->getAPIntValue();
6252 return getConstant(Val.extractBits(ElementSize, Shift), DL, VT);
6253 }
6254 break;
6255 case ISD::EXTRACT_SUBVECTOR: {
6256 EVT N1VT = N1.getValueType();
6257 assert(VT.isVector() && N1VT.isVector() &&
6258 "Extract subvector VTs must be vectors!");
6259 assert(VT.getVectorElementType() == N1VT.getVectorElementType() &&
6260 "Extract subvector VTs must have the same element type!");
6261 assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) &&
6262 "Cannot extract a scalable vector from a fixed length vector!");
6263 assert((VT.isScalableVector() != N1VT.isScalableVector() ||
6264 VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) &&
6265 "Extract subvector must be from larger vector to smaller vector!");
6266 assert(N2C && "Extract subvector index must be a constant");
6267 assert((VT.isScalableVector() != N1VT.isScalableVector() ||
6268 (VT.getVectorMinNumElements() + N2C->getZExtValue()) <=
6269 N1VT.getVectorMinNumElements()) &&
6270 "Extract subvector overflow!");
6271 assert(N2C->getAPIntValue().getBitWidth() ==
6272 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
6273 "Constant index for EXTRACT_SUBVECTOR has an invalid size");
6274
6275 // Trivial extraction.
6276 if (VT == N1VT)
6277 return N1;
6278
6279 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
6280 if (N1.isUndef())
6281 return getUNDEF(VT);
6282
6283 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
6284 // the concat have the same type as the extract.
6285 if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 &&
6286 VT == N1.getOperand(0).getValueType()) {
6287 unsigned Factor = VT.getVectorMinNumElements();
6288 return N1.getOperand(N2C->getZExtValue() / Factor);
6289 }
6290
6291 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
6292 // during shuffle legalization.
6293 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
6294 VT == N1.getOperand(1).getValueType())
6295 return N1.getOperand(1);
6296 break;
6297 }
6298 }
6299
6300 // Perform trivial constant folding.
6301 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2}))
6302 return SV;
6303
6304 // Canonicalize an UNDEF to the RHS, even over a constant.
6305 if (N1.isUndef()) {
6306 if (TLI->isCommutativeBinOp(Opcode)) {
6307 std::swap(N1, N2);
6308 } else {
6309 switch (Opcode) {
6310 case ISD::SUB:
6311 return getUNDEF(VT); // fold op(undef, arg2) -> undef
6312 case ISD::SIGN_EXTEND_INREG:
6313 case ISD::UDIV:
6314 case ISD::SDIV:
6315 case ISD::UREM:
6316 case ISD::SREM:
6317 case ISD::SSUBSAT:
6318 case ISD::USUBSAT:
6319 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0
6320 }
6321 }
6322 }
6323
6324 // Fold a bunch of operators when the RHS is undef.
6325 if (N2.isUndef()) {
6326 switch (Opcode) {
6327 case ISD::XOR:
6328 if (N1.isUndef())
6329 // Handle undef ^ undef -> 0 special case. This is a common
6330 // idiom (misuse).
6331 return getConstant(0, DL, VT);
6332 LLVM_FALLTHROUGH;
6333 case ISD::ADD:
6334 case ISD::SUB:
6335 case ISD::UDIV:
6336 case ISD::SDIV:
6337 case ISD::UREM:
6338 case ISD::SREM:
6339 return getUNDEF(VT); // fold op(arg1, undef) -> undef
6340 case ISD::MUL:
6341 case ISD::AND:
6342 case ISD::SSUBSAT:
6343 case ISD::USUBSAT:
6344 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0
6345 case ISD::OR:
6346 case ISD::SADDSAT:
6347 case ISD::UADDSAT:
6348 return getAllOnesConstant(DL, VT);
6349 }
6350 }
6351
6352 // Memoize this node if possible.
6353 SDNode *N;
6354 SDVTList VTs = getVTList(VT);
6355 SDValue Ops[] = {N1, N2};
6356 if (VT != MVT::Glue) {
6357 FoldingSetNodeID ID;
6358 AddNodeIDNode(ID, Opcode, VTs, Ops);
6359 void *IP = nullptr;
6360 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
6361 E->intersectFlagsWith(Flags);
6362 return SDValue(E, 0);
6363 }
6364
6365 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6366 N->setFlags(Flags);
6367 createOperands(N, Ops);
6368 CSEMap.InsertNode(N, IP);
6369 } else {
6370 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6371 createOperands(N, Ops);
6372 }
6373
6374 InsertNode(N);
6375 SDValue V = SDValue(N, 0);
6376 NewSDValueDbgMsg(V, "Creating new node: ", this);
6377 return V;
6378 }
6379
getNode(unsigned Opcode,const SDLoc & DL,EVT VT,SDValue N1,SDValue N2,SDValue N3)6380 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6381 SDValue N1, SDValue N2, SDValue N3) {
6382 SDNodeFlags Flags;
6383 if (Inserter)
6384 Flags = Inserter->getFlags();
6385 return getNode(Opcode, DL, VT, N1, N2, N3, Flags);
6386 }
6387
getNode(unsigned Opcode,const SDLoc & DL,EVT VT,SDValue N1,SDValue N2,SDValue N3,const SDNodeFlags Flags)6388 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6389 SDValue N1, SDValue N2, SDValue N3,
6390 const SDNodeFlags Flags) {
6391 assert(N1.getOpcode() != ISD::DELETED_NODE &&
6392 N2.getOpcode() != ISD::DELETED_NODE &&
6393 N3.getOpcode() != ISD::DELETED_NODE &&
6394 "Operand is DELETED_NODE!");
6395 // Perform various simplifications.
6396 switch (Opcode) {
6397 case ISD::FMA: {
6398 assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
6399 assert(N1.getValueType() == VT && N2.getValueType() == VT &&
6400 N3.getValueType() == VT && "FMA types must match!");
6401 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6402 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
6403 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
6404 if (N1CFP && N2CFP && N3CFP) {
6405 APFloat V1 = N1CFP->getValueAPF();
6406 const APFloat &V2 = N2CFP->getValueAPF();
6407 const APFloat &V3 = N3CFP->getValueAPF();
6408 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
6409 return getConstantFP(V1, DL, VT);
6410 }
6411 break;
6412 }
6413 case ISD::BUILD_VECTOR: {
6414 // Attempt to simplify BUILD_VECTOR.
6415 SDValue Ops[] = {N1, N2, N3};
6416 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
6417 return V;
6418 break;
6419 }
6420 case ISD::CONCAT_VECTORS: {
6421 SDValue Ops[] = {N1, N2, N3};
6422 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
6423 return V;
6424 break;
6425 }
6426 case ISD::SETCC: {
6427 assert(VT.isInteger() && "SETCC result type must be an integer!");
6428 assert(N1.getValueType() == N2.getValueType() &&
6429 "SETCC operands must have the same type!");
6430 assert(VT.isVector() == N1.getValueType().isVector() &&
6431 "SETCC type should be vector iff the operand type is vector!");
6432 assert((!VT.isVector() || VT.getVectorElementCount() ==
6433 N1.getValueType().getVectorElementCount()) &&
6434 "SETCC vector element counts must match!");
6435 // Use FoldSetCC to simplify SETCC's.
6436 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
6437 return V;
6438 // Vector constant folding.
6439 SDValue Ops[] = {N1, N2, N3};
6440 if (SDValue V = FoldConstantArithmetic(Opcode, DL, VT, Ops)) {
6441 NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
6442 return V;
6443 }
6444 break;
6445 }
6446 case ISD::SELECT:
6447 case ISD::VSELECT:
6448 if (SDValue V = simplifySelect(N1, N2, N3))
6449 return V;
6450 break;
6451 case ISD::VECTOR_SHUFFLE:
6452 llvm_unreachable("should use getVectorShuffle constructor!");
6453 case ISD::VECTOR_SPLICE: {
6454 if (cast<ConstantSDNode>(N3)->isNullValue())
6455 return N1;
6456 break;
6457 }
6458 case ISD::INSERT_VECTOR_ELT: {
6459 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
6460 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except
6461 // for scalable vectors where we will generate appropriate code to
6462 // deal with out-of-bounds cases correctly.
6463 if (N3C && N1.getValueType().isFixedLengthVector() &&
6464 N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
6465 return getUNDEF(VT);
6466
6467 // Undefined index can be assumed out-of-bounds, so that's UNDEF too.
6468 if (N3.isUndef())
6469 return getUNDEF(VT);
6470
6471 // If the inserted element is an UNDEF, just use the input vector.
6472 if (N2.isUndef())
6473 return N1;
6474
6475 break;
6476 }
6477 case ISD::INSERT_SUBVECTOR: {
6478 // Inserting undef into undef is still undef.
6479 if (N1.isUndef() && N2.isUndef())
6480 return getUNDEF(VT);
6481
6482 EVT N2VT = N2.getValueType();
6483 assert(VT == N1.getValueType() &&
6484 "Dest and insert subvector source types must match!");
6485 assert(VT.isVector() && N2VT.isVector() &&
6486 "Insert subvector VTs must be vectors!");
6487 assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) &&
6488 "Cannot insert a scalable vector into a fixed length vector!");
6489 assert((VT.isScalableVector() != N2VT.isScalableVector() ||
6490 VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) &&
6491 "Insert subvector must be from smaller vector to larger vector!");
6492 assert(isa<ConstantSDNode>(N3) &&
6493 "Insert subvector index must be constant");
6494 assert((VT.isScalableVector() != N2VT.isScalableVector() ||
6495 (N2VT.getVectorMinNumElements() +
6496 cast<ConstantSDNode>(N3)->getZExtValue()) <=
6497 VT.getVectorMinNumElements()) &&
6498 "Insert subvector overflow!");
6499 assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() ==
6500 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
6501 "Constant index for INSERT_SUBVECTOR has an invalid size");
6502
6503 // Trivial insertion.
6504 if (VT == N2VT)
6505 return N2;
6506
6507 // If this is an insert of an extracted vector into an undef vector, we
6508 // can just use the input to the extract.
6509 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
6510 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT)
6511 return N2.getOperand(0);
6512 break;
6513 }
6514 case ISD::BITCAST:
6515 // Fold bit_convert nodes from a type to themselves.
6516 if (N1.getValueType() == VT)
6517 return N1;
6518 break;
6519 }
6520
6521 // Memoize node if it doesn't produce a flag.
6522 SDNode *N;
6523 SDVTList VTs = getVTList(VT);
6524 SDValue Ops[] = {N1, N2, N3};
6525 if (VT != MVT::Glue) {
6526 FoldingSetNodeID ID;
6527 AddNodeIDNode(ID, Opcode, VTs, Ops);
6528 void *IP = nullptr;
6529 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
6530 E->intersectFlagsWith(Flags);
6531 return SDValue(E, 0);
6532 }
6533
6534 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6535 N->setFlags(Flags);
6536 createOperands(N, Ops);
6537 CSEMap.InsertNode(N, IP);
6538 } else {
6539 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6540 createOperands(N, Ops);
6541 }
6542
6543 InsertNode(N);
6544 SDValue V = SDValue(N, 0);
6545 NewSDValueDbgMsg(V, "Creating new node: ", this);
6546 return V;
6547 }
6548
getNode(unsigned Opcode,const SDLoc & DL,EVT VT,SDValue N1,SDValue N2,SDValue N3,SDValue N4)6549 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6550 SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
6551 SDValue Ops[] = { N1, N2, N3, N4 };
6552 return getNode(Opcode, DL, VT, Ops);
6553 }
6554
getNode(unsigned Opcode,const SDLoc & DL,EVT VT,SDValue N1,SDValue N2,SDValue N3,SDValue N4,SDValue N5)6555 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6556 SDValue N1, SDValue N2, SDValue N3, SDValue N4,
6557 SDValue N5) {
6558 SDValue Ops[] = { N1, N2, N3, N4, N5 };
6559 return getNode(Opcode, DL, VT, Ops);
6560 }
6561
6562 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
6563 /// the incoming stack arguments to be loaded from the stack.
getStackArgumentTokenFactor(SDValue Chain)6564 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
6565 SmallVector<SDValue, 8> ArgChains;
6566
6567 // Include the original chain at the beginning of the list. When this is
6568 // used by target LowerCall hooks, this helps legalize find the
6569 // CALLSEQ_BEGIN node.
6570 ArgChains.push_back(Chain);
6571
6572 // Add a chain value for each stack argument.
6573 for (SDNode *U : getEntryNode().getNode()->uses())
6574 if (LoadSDNode *L = dyn_cast<LoadSDNode>(U))
6575 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
6576 if (FI->getIndex() < 0)
6577 ArgChains.push_back(SDValue(L, 1));
6578
6579 // Build a tokenfactor for all the chains.
6580 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
6581 }
6582
6583 /// getMemsetValue - Vectorized representation of the memset value
6584 /// operand.
getMemsetValue(SDValue Value,EVT VT,SelectionDAG & DAG,const SDLoc & dl)6585 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
6586 const SDLoc &dl) {
6587 assert(!Value.isUndef());
6588
6589 unsigned NumBits = VT.getScalarSizeInBits();
6590 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
6591 assert(C->getAPIntValue().getBitWidth() == 8);
6592 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
6593 if (VT.isInteger()) {
6594 bool IsOpaque = VT.getSizeInBits() > 64 ||
6595 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
6596 return DAG.getConstant(Val, dl, VT, false, IsOpaque);
6597 }
6598 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
6599 VT);
6600 }
6601
6602 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
6603 EVT IntVT = VT.getScalarType();
6604 if (!IntVT.isInteger())
6605 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
6606
6607 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
6608 if (NumBits > 8) {
6609 // Use a multiplication with 0x010101... to extend the input to the
6610 // required length.
6611 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
6612 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
6613 DAG.getConstant(Magic, dl, IntVT));
6614 }
6615
6616 if (VT != Value.getValueType() && !VT.isInteger())
6617 Value = DAG.getBitcast(VT.getScalarType(), Value);
6618 if (VT != Value.getValueType())
6619 Value = DAG.getSplatBuildVector(VT, dl, Value);
6620
6621 return Value;
6622 }
6623
6624 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
6625 /// used when a memcpy is turned into a memset when the source is a constant
6626 /// string ptr.
getMemsetStringVal(EVT VT,const SDLoc & dl,SelectionDAG & DAG,const TargetLowering & TLI,const ConstantDataArraySlice & Slice)6627 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
6628 const TargetLowering &TLI,
6629 const ConstantDataArraySlice &Slice) {
6630 // Handle vector with all elements zero.
6631 if (Slice.Array == nullptr) {
6632 if (VT.isInteger())
6633 return DAG.getConstant(0, dl, VT);
6634 if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
6635 return DAG.getConstantFP(0.0, dl, VT);
6636 if (VT.isVector()) {
6637 unsigned NumElts = VT.getVectorNumElements();
6638 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
6639 return DAG.getNode(ISD::BITCAST, dl, VT,
6640 DAG.getConstant(0, dl,
6641 EVT::getVectorVT(*DAG.getContext(),
6642 EltVT, NumElts)));
6643 }
6644 llvm_unreachable("Expected type!");
6645 }
6646
6647 assert(!VT.isVector() && "Can't handle vector type here!");
6648 unsigned NumVTBits = VT.getSizeInBits();
6649 unsigned NumVTBytes = NumVTBits / 8;
6650 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
6651
6652 APInt Val(NumVTBits, 0);
6653 if (DAG.getDataLayout().isLittleEndian()) {
6654 for (unsigned i = 0; i != NumBytes; ++i)
6655 Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
6656 } else {
6657 for (unsigned i = 0; i != NumBytes; ++i)
6658 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
6659 }
6660
6661 // If the "cost" of materializing the integer immediate is less than the cost
6662 // of a load, then it is cost effective to turn the load into the immediate.
6663 Type *Ty = VT.getTypeForEVT(*DAG.getContext());
6664 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
6665 return DAG.getConstant(Val, dl, VT);
6666 return SDValue();
6667 }
6668
getMemBasePlusOffset(SDValue Base,TypeSize Offset,const SDLoc & DL,const SDNodeFlags Flags)6669 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset,
6670 const SDLoc &DL,
6671 const SDNodeFlags Flags) {
6672 EVT VT = Base.getValueType();
6673 SDValue Index;
6674
6675 if (Offset.isScalable())
6676 Index = getVScale(DL, Base.getValueType(),
6677 APInt(Base.getValueSizeInBits().getFixedSize(),
6678 Offset.getKnownMinSize()));
6679 else
6680 Index = getConstant(Offset.getFixedSize(), DL, VT);
6681
6682 return getMemBasePlusOffset(Base, Index, DL, Flags);
6683 }
6684
getMemBasePlusOffset(SDValue Ptr,SDValue Offset,const SDLoc & DL,const SDNodeFlags Flags)6685 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset,
6686 const SDLoc &DL,
6687 const SDNodeFlags Flags) {
6688 assert(Offset.getValueType().isInteger());
6689 EVT BasePtrVT = Ptr.getValueType();
6690 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags);
6691 }
6692
6693 /// Returns true if memcpy source is constant data.
isMemSrcFromConstant(SDValue Src,ConstantDataArraySlice & Slice)6694 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
6695 uint64_t SrcDelta = 0;
6696 GlobalAddressSDNode *G = nullptr;
6697 if (Src.getOpcode() == ISD::GlobalAddress)
6698 G = cast<GlobalAddressSDNode>(Src);
6699 else if (Src.getOpcode() == ISD::ADD &&
6700 Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
6701 Src.getOperand(1).getOpcode() == ISD::Constant) {
6702 G = cast<GlobalAddressSDNode>(Src.getOperand(0));
6703 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
6704 }
6705 if (!G)
6706 return false;
6707
6708 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
6709 SrcDelta + G->getOffset());
6710 }
6711
shouldLowerMemFuncForSize(const MachineFunction & MF,SelectionDAG & DAG)6712 static bool shouldLowerMemFuncForSize(const MachineFunction &MF,
6713 SelectionDAG &DAG) {
6714 // On Darwin, -Os means optimize for size without hurting performance, so
6715 // only really optimize for size when -Oz (MinSize) is used.
6716 if (MF.getTarget().getTargetTriple().isOSDarwin())
6717 return MF.getFunction().hasMinSize();
6718 return DAG.shouldOptForSize();
6719 }
6720
chainLoadsAndStoresForMemcpy(SelectionDAG & DAG,const SDLoc & dl,SmallVector<SDValue,32> & OutChains,unsigned From,unsigned To,SmallVector<SDValue,16> & OutLoadChains,SmallVector<SDValue,16> & OutStoreChains)6721 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
6722 SmallVector<SDValue, 32> &OutChains, unsigned From,
6723 unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
6724 SmallVector<SDValue, 16> &OutStoreChains) {
6725 assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
6726 assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
6727 SmallVector<SDValue, 16> GluedLoadChains;
6728 for (unsigned i = From; i < To; ++i) {
6729 OutChains.push_back(OutLoadChains[i]);
6730 GluedLoadChains.push_back(OutLoadChains[i]);
6731 }
6732
6733 // Chain for all loads.
6734 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6735 GluedLoadChains);
6736
6737 for (unsigned i = From; i < To; ++i) {
6738 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
6739 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
6740 ST->getBasePtr(), ST->getMemoryVT(),
6741 ST->getMemOperand());
6742 OutChains.push_back(NewStore);
6743 }
6744 }
6745
getMemcpyLoadsAndStores(SelectionDAG & DAG,const SDLoc & dl,SDValue Chain,SDValue Dst,SDValue Src,uint64_t Size,Align Alignment,bool isVol,bool AlwaysInline,MachinePointerInfo DstPtrInfo,MachinePointerInfo SrcPtrInfo,const AAMDNodes & AAInfo,AAResults * AA)6746 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6747 SDValue Chain, SDValue Dst, SDValue Src,
6748 uint64_t Size, Align Alignment,
6749 bool isVol, bool AlwaysInline,
6750 MachinePointerInfo DstPtrInfo,
6751 MachinePointerInfo SrcPtrInfo,
6752 const AAMDNodes &AAInfo, AAResults *AA) {
6753 // Turn a memcpy of undef to nop.
6754 // FIXME: We need to honor volatile even is Src is undef.
6755 if (Src.isUndef())
6756 return Chain;
6757
6758 // Expand memcpy to a series of load and store ops if the size operand falls
6759 // below a certain threshold.
6760 // TODO: In the AlwaysInline case, if the size is big then generate a loop
6761 // rather than maybe a humongous number of loads and stores.
6762 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6763 const DataLayout &DL = DAG.getDataLayout();
6764 LLVMContext &C = *DAG.getContext();
6765 std::vector<EVT> MemOps;
6766 bool DstAlignCanChange = false;
6767 MachineFunction &MF = DAG.getMachineFunction();
6768 MachineFrameInfo &MFI = MF.getFrameInfo();
6769 bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6770 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6771 if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6772 DstAlignCanChange = true;
6773 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6774 if (!SrcAlign || Alignment > *SrcAlign)
6775 SrcAlign = Alignment;
6776 assert(SrcAlign && "SrcAlign must be set");
6777 ConstantDataArraySlice Slice;
6778 // If marked as volatile, perform a copy even when marked as constant.
6779 bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice);
6780 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
6781 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
6782 const MemOp Op = isZeroConstant
6783 ? MemOp::Set(Size, DstAlignCanChange, Alignment,
6784 /*IsZeroMemset*/ true, isVol)
6785 : MemOp::Copy(Size, DstAlignCanChange, Alignment,
6786 *SrcAlign, isVol, CopyFromConstant);
6787 if (!TLI.findOptimalMemOpLowering(
6788 MemOps, Limit, Op, DstPtrInfo.getAddrSpace(),
6789 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
6790 return SDValue();
6791
6792 if (DstAlignCanChange) {
6793 Type *Ty = MemOps[0].getTypeForEVT(C);
6794 Align NewAlign = DL.getABITypeAlign(Ty);
6795
6796 // Don't promote to an alignment that would require dynamic stack
6797 // realignment.
6798 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
6799 if (!TRI->hasStackRealignment(MF))
6800 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
6801 NewAlign = NewAlign.previous();
6802
6803 if (NewAlign > Alignment) {
6804 // Give the stack frame object a larger alignment if needed.
6805 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6806 MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6807 Alignment = NewAlign;
6808 }
6809 }
6810
6811 // Prepare AAInfo for loads/stores after lowering this memcpy.
6812 AAMDNodes NewAAInfo = AAInfo;
6813 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
6814
6815 const Value *SrcVal = SrcPtrInfo.V.dyn_cast<const Value *>();
6816 bool isConstant =
6817 AA && SrcVal &&
6818 AA->pointsToConstantMemory(MemoryLocation(SrcVal, Size, AAInfo));
6819
6820 MachineMemOperand::Flags MMOFlags =
6821 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6822 SmallVector<SDValue, 16> OutLoadChains;
6823 SmallVector<SDValue, 16> OutStoreChains;
6824 SmallVector<SDValue, 32> OutChains;
6825 unsigned NumMemOps = MemOps.size();
6826 uint64_t SrcOff = 0, DstOff = 0;
6827 for (unsigned i = 0; i != NumMemOps; ++i) {
6828 EVT VT = MemOps[i];
6829 unsigned VTSize = VT.getSizeInBits() / 8;
6830 SDValue Value, Store;
6831
6832 if (VTSize > Size) {
6833 // Issuing an unaligned load / store pair that overlaps with the previous
6834 // pair. Adjust the offset accordingly.
6835 assert(i == NumMemOps-1 && i != 0);
6836 SrcOff -= VTSize - Size;
6837 DstOff -= VTSize - Size;
6838 }
6839
6840 if (CopyFromConstant &&
6841 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
6842 // It's unlikely a store of a vector immediate can be done in a single
6843 // instruction. It would require a load from a constantpool first.
6844 // We only handle zero vectors here.
6845 // FIXME: Handle other cases where store of vector immediate is done in
6846 // a single instruction.
6847 ConstantDataArraySlice SubSlice;
6848 if (SrcOff < Slice.Length) {
6849 SubSlice = Slice;
6850 SubSlice.move(SrcOff);
6851 } else {
6852 // This is an out-of-bounds access and hence UB. Pretend we read zero.
6853 SubSlice.Array = nullptr;
6854 SubSlice.Offset = 0;
6855 SubSlice.Length = VTSize;
6856 }
6857 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
6858 if (Value.getNode()) {
6859 Store = DAG.getStore(
6860 Chain, dl, Value,
6861 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6862 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
6863 OutChains.push_back(Store);
6864 }
6865 }
6866
6867 if (!Store.getNode()) {
6868 // The type might not be legal for the target. This should only happen
6869 // if the type is smaller than a legal type, as on PPC, so the right
6870 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify
6871 // to Load/Store if NVT==VT.
6872 // FIXME does the case above also need this?
6873 EVT NVT = TLI.getTypeToTransformTo(C, VT);
6874 assert(NVT.bitsGE(VT));
6875
6876 bool isDereferenceable =
6877 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6878 MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6879 if (isDereferenceable)
6880 SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6881 if (isConstant)
6882 SrcMMOFlags |= MachineMemOperand::MOInvariant;
6883
6884 Value = DAG.getExtLoad(
6885 ISD::EXTLOAD, dl, NVT, Chain,
6886 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6887 SrcPtrInfo.getWithOffset(SrcOff), VT,
6888 commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags, NewAAInfo);
6889 OutLoadChains.push_back(Value.getValue(1));
6890
6891 Store = DAG.getTruncStore(
6892 Chain, dl, Value,
6893 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6894 DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo);
6895 OutStoreChains.push_back(Store);
6896 }
6897 SrcOff += VTSize;
6898 DstOff += VTSize;
6899 Size -= VTSize;
6900 }
6901
6902 unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
6903 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
6904 unsigned NumLdStInMemcpy = OutStoreChains.size();
6905
6906 if (NumLdStInMemcpy) {
6907 // It may be that memcpy might be converted to memset if it's memcpy
6908 // of constants. In such a case, we won't have loads and stores, but
6909 // just stores. In the absence of loads, there is nothing to gang up.
6910 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
6911 // If target does not care, just leave as it.
6912 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
6913 OutChains.push_back(OutLoadChains[i]);
6914 OutChains.push_back(OutStoreChains[i]);
6915 }
6916 } else {
6917 // Ld/St less than/equal limit set by target.
6918 if (NumLdStInMemcpy <= GluedLdStLimit) {
6919 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6920 NumLdStInMemcpy, OutLoadChains,
6921 OutStoreChains);
6922 } else {
6923 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit;
6924 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
6925 unsigned GlueIter = 0;
6926
6927 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
6928 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
6929 unsigned IndexTo = NumLdStInMemcpy - GlueIter;
6930
6931 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
6932 OutLoadChains, OutStoreChains);
6933 GlueIter += GluedLdStLimit;
6934 }
6935
6936 // Residual ld/st.
6937 if (RemainingLdStInMemcpy) {
6938 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6939 RemainingLdStInMemcpy, OutLoadChains,
6940 OutStoreChains);
6941 }
6942 }
6943 }
6944 }
6945 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6946 }
6947
getMemmoveLoadsAndStores(SelectionDAG & DAG,const SDLoc & dl,SDValue Chain,SDValue Dst,SDValue Src,uint64_t Size,Align Alignment,bool isVol,bool AlwaysInline,MachinePointerInfo DstPtrInfo,MachinePointerInfo SrcPtrInfo,const AAMDNodes & AAInfo)6948 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6949 SDValue Chain, SDValue Dst, SDValue Src,
6950 uint64_t Size, Align Alignment,
6951 bool isVol, bool AlwaysInline,
6952 MachinePointerInfo DstPtrInfo,
6953 MachinePointerInfo SrcPtrInfo,
6954 const AAMDNodes &AAInfo) {
6955 // Turn a memmove of undef to nop.
6956 // FIXME: We need to honor volatile even is Src is undef.
6957 if (Src.isUndef())
6958 return Chain;
6959
6960 // Expand memmove to a series of load and store ops if the size operand falls
6961 // below a certain threshold.
6962 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6963 const DataLayout &DL = DAG.getDataLayout();
6964 LLVMContext &C = *DAG.getContext();
6965 std::vector<EVT> MemOps;
6966 bool DstAlignCanChange = false;
6967 MachineFunction &MF = DAG.getMachineFunction();
6968 MachineFrameInfo &MFI = MF.getFrameInfo();
6969 bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6970 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6971 if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6972 DstAlignCanChange = true;
6973 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6974 if (!SrcAlign || Alignment > *SrcAlign)
6975 SrcAlign = Alignment;
6976 assert(SrcAlign && "SrcAlign must be set");
6977 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
6978 if (!TLI.findOptimalMemOpLowering(
6979 MemOps, Limit,
6980 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign,
6981 /*IsVolatile*/ true),
6982 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
6983 MF.getFunction().getAttributes()))
6984 return SDValue();
6985
6986 if (DstAlignCanChange) {
6987 Type *Ty = MemOps[0].getTypeForEVT(C);
6988 Align NewAlign = DL.getABITypeAlign(Ty);
6989 if (NewAlign > Alignment) {
6990 // Give the stack frame object a larger alignment if needed.
6991 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6992 MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6993 Alignment = NewAlign;
6994 }
6995 }
6996
6997 // Prepare AAInfo for loads/stores after lowering this memmove.
6998 AAMDNodes NewAAInfo = AAInfo;
6999 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
7000
7001 MachineMemOperand::Flags MMOFlags =
7002 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
7003 uint64_t SrcOff = 0, DstOff = 0;
7004 SmallVector<SDValue, 8> LoadValues;
7005 SmallVector<SDValue, 8> LoadChains;
7006 SmallVector<SDValue, 8> OutChains;
7007 unsigned NumMemOps = MemOps.size();
7008 for (unsigned i = 0; i < NumMemOps; i++) {
7009 EVT VT = MemOps[i];
7010 unsigned VTSize = VT.getSizeInBits() / 8;
7011 SDValue Value;
7012
7013 bool isDereferenceable =
7014 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
7015 MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
7016 if (isDereferenceable)
7017 SrcMMOFlags |= MachineMemOperand::MODereferenceable;
7018
7019 Value = DAG.getLoad(
7020 VT, dl, Chain,
7021 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
7022 SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo);
7023 LoadValues.push_back(Value);
7024 LoadChains.push_back(Value.getValue(1));
7025 SrcOff += VTSize;
7026 }
7027 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
7028 OutChains.clear();
7029 for (unsigned i = 0; i < NumMemOps; i++) {
7030 EVT VT = MemOps[i];
7031 unsigned VTSize = VT.getSizeInBits() / 8;
7032 SDValue Store;
7033
7034 Store = DAG.getStore(
7035 Chain, dl, LoadValues[i],
7036 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
7037 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
7038 OutChains.push_back(Store);
7039 DstOff += VTSize;
7040 }
7041
7042 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
7043 }
7044
7045 /// Lower the call to 'memset' intrinsic function into a series of store
7046 /// operations.
7047 ///
7048 /// \param DAG Selection DAG where lowered code is placed.
7049 /// \param dl Link to corresponding IR location.
7050 /// \param Chain Control flow dependency.
7051 /// \param Dst Pointer to destination memory location.
7052 /// \param Src Value of byte to write into the memory.
7053 /// \param Size Number of bytes to write.
7054 /// \param Alignment Alignment of the destination in bytes.
7055 /// \param isVol True if destination is volatile.
7056 /// \param AlwaysInline Makes sure no function call is generated.
7057 /// \param DstPtrInfo IR information on the memory pointer.
7058 /// \returns New head in the control flow, if lowering was successful, empty
7059 /// SDValue otherwise.
7060 ///
7061 /// The function tries to replace 'llvm.memset' intrinsic with several store
7062 /// operations and value calculation code. This is usually profitable for small
7063 /// memory size or when the semantic requires inlining.
getMemsetStores(SelectionDAG & DAG,const SDLoc & dl,SDValue Chain,SDValue Dst,SDValue Src,uint64_t Size,Align Alignment,bool isVol,bool AlwaysInline,MachinePointerInfo DstPtrInfo,const AAMDNodes & AAInfo)7064 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
7065 SDValue Chain, SDValue Dst, SDValue Src,
7066 uint64_t Size, Align Alignment, bool isVol,
7067 bool AlwaysInline, MachinePointerInfo DstPtrInfo,
7068 const AAMDNodes &AAInfo) {
7069 // Turn a memset of undef to nop.
7070 // FIXME: We need to honor volatile even is Src is undef.
7071 if (Src.isUndef())
7072 return Chain;
7073
7074 // Expand memset to a series of load/store ops if the size operand
7075 // falls below a certain threshold.
7076 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7077 std::vector<EVT> MemOps;
7078 bool DstAlignCanChange = false;
7079 MachineFunction &MF = DAG.getMachineFunction();
7080 MachineFrameInfo &MFI = MF.getFrameInfo();
7081 bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
7082 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
7083 if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
7084 DstAlignCanChange = true;
7085 bool IsZeroVal =
7086 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isZero();
7087 unsigned Limit = AlwaysInline ? ~0 : TLI.getMaxStoresPerMemset(OptSize);
7088
7089 if (!TLI.findOptimalMemOpLowering(
7090 MemOps, Limit,
7091 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
7092 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes()))
7093 return SDValue();
7094
7095 if (DstAlignCanChange) {
7096 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
7097 Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty);
7098 if (NewAlign > Alignment) {
7099 // Give the stack frame object a larger alignment if needed.
7100 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
7101 MFI.setObjectAlignment(FI->getIndex(), NewAlign);
7102 Alignment = NewAlign;
7103 }
7104 }
7105
7106 SmallVector<SDValue, 8> OutChains;
7107 uint64_t DstOff = 0;
7108 unsigned NumMemOps = MemOps.size();
7109
7110 // Find the largest store and generate the bit pattern for it.
7111 EVT LargestVT = MemOps[0];
7112 for (unsigned i = 1; i < NumMemOps; i++)
7113 if (MemOps[i].bitsGT(LargestVT))
7114 LargestVT = MemOps[i];
7115 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
7116
7117 // Prepare AAInfo for loads/stores after lowering this memset.
7118 AAMDNodes NewAAInfo = AAInfo;
7119 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
7120
7121 for (unsigned i = 0; i < NumMemOps; i++) {
7122 EVT VT = MemOps[i];
7123 unsigned VTSize = VT.getSizeInBits() / 8;
7124 if (VTSize > Size) {
7125 // Issuing an unaligned load / store pair that overlaps with the previous
7126 // pair. Adjust the offset accordingly.
7127 assert(i == NumMemOps-1 && i != 0);
7128 DstOff -= VTSize - Size;
7129 }
7130
7131 // If this store is smaller than the largest store see whether we can get
7132 // the smaller value for free with a truncate.
7133 SDValue Value = MemSetValue;
7134 if (VT.bitsLT(LargestVT)) {
7135 if (!LargestVT.isVector() && !VT.isVector() &&
7136 TLI.isTruncateFree(LargestVT, VT))
7137 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
7138 else
7139 Value = getMemsetValue(Src, VT, DAG, dl);
7140 }
7141 assert(Value.getValueType() == VT && "Value with wrong type.");
7142 SDValue Store = DAG.getStore(
7143 Chain, dl, Value,
7144 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
7145 DstPtrInfo.getWithOffset(DstOff), Alignment,
7146 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone,
7147 NewAAInfo);
7148 OutChains.push_back(Store);
7149 DstOff += VT.getSizeInBits() / 8;
7150 Size -= VTSize;
7151 }
7152
7153 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
7154 }
7155
checkAddrSpaceIsValidForLibcall(const TargetLowering * TLI,unsigned AS)7156 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
7157 unsigned AS) {
7158 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
7159 // pointer operands can be losslessly bitcasted to pointers of address space 0
7160 if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) {
7161 report_fatal_error("cannot lower memory intrinsic in address space " +
7162 Twine(AS));
7163 }
7164 }
7165
getMemcpy(SDValue Chain,const SDLoc & dl,SDValue Dst,SDValue Src,SDValue Size,Align Alignment,bool isVol,bool AlwaysInline,bool isTailCall,MachinePointerInfo DstPtrInfo,MachinePointerInfo SrcPtrInfo,const AAMDNodes & AAInfo,AAResults * AA)7166 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
7167 SDValue Src, SDValue Size, Align Alignment,
7168 bool isVol, bool AlwaysInline, bool isTailCall,
7169 MachinePointerInfo DstPtrInfo,
7170 MachinePointerInfo SrcPtrInfo,
7171 const AAMDNodes &AAInfo, AAResults *AA) {
7172 // Check to see if we should lower the memcpy to loads and stores first.
7173 // For cases within the target-specified limits, this is the best choice.
7174 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
7175 if (ConstantSize) {
7176 // Memcpy with size zero? Just return the original chain.
7177 if (ConstantSize->isZero())
7178 return Chain;
7179
7180 SDValue Result = getMemcpyLoadsAndStores(
7181 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
7182 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo, AA);
7183 if (Result.getNode())
7184 return Result;
7185 }
7186
7187 // Then check to see if we should lower the memcpy with target-specific
7188 // code. If the target chooses to do this, this is the next best.
7189 if (TSI) {
7190 SDValue Result = TSI->EmitTargetCodeForMemcpy(
7191 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline,
7192 DstPtrInfo, SrcPtrInfo);
7193 if (Result.getNode())
7194 return Result;
7195 }
7196
7197 // If we really need inline code and the target declined to provide it,
7198 // use a (potentially long) sequence of loads and stores.
7199 if (AlwaysInline) {
7200 assert(ConstantSize && "AlwaysInline requires a constant size!");
7201 return getMemcpyLoadsAndStores(
7202 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
7203 isVol, true, DstPtrInfo, SrcPtrInfo, AAInfo, AA);
7204 }
7205
7206 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
7207 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
7208
7209 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
7210 // memcpy is not guaranteed to be safe. libc memcpys aren't required to
7211 // respect volatile, so they may do things like read or write memory
7212 // beyond the given memory regions. But fixing this isn't easy, and most
7213 // people don't care.
7214
7215 // Emit a library call.
7216 TargetLowering::ArgListTy Args;
7217 TargetLowering::ArgListEntry Entry;
7218 Entry.Ty = Type::getInt8PtrTy(*getContext());
7219 Entry.Node = Dst; Args.push_back(Entry);
7220 Entry.Node = Src; Args.push_back(Entry);
7221
7222 Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7223 Entry.Node = Size; Args.push_back(Entry);
7224 // FIXME: pass in SDLoc
7225 TargetLowering::CallLoweringInfo CLI(*this);
7226 CLI.setDebugLoc(dl)
7227 .setChain(Chain)
7228 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
7229 Dst.getValueType().getTypeForEVT(*getContext()),
7230 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
7231 TLI->getPointerTy(getDataLayout())),
7232 std::move(Args))
7233 .setDiscardResult()
7234 .setTailCall(isTailCall);
7235
7236 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
7237 return CallResult.second;
7238 }
7239
getAtomicMemcpy(SDValue Chain,const SDLoc & dl,SDValue Dst,SDValue Src,SDValue Size,Type * SizeTy,unsigned ElemSz,bool isTailCall,MachinePointerInfo DstPtrInfo,MachinePointerInfo SrcPtrInfo)7240 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
7241 SDValue Dst, SDValue Src, SDValue Size,
7242 Type *SizeTy, unsigned ElemSz,
7243 bool isTailCall,
7244 MachinePointerInfo DstPtrInfo,
7245 MachinePointerInfo SrcPtrInfo) {
7246 // Emit a library call.
7247 TargetLowering::ArgListTy Args;
7248 TargetLowering::ArgListEntry Entry;
7249 Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7250 Entry.Node = Dst;
7251 Args.push_back(Entry);
7252
7253 Entry.Node = Src;
7254 Args.push_back(Entry);
7255
7256 Entry.Ty = SizeTy;
7257 Entry.Node = Size;
7258 Args.push_back(Entry);
7259
7260 RTLIB::Libcall LibraryCall =
7261 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
7262 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
7263 report_fatal_error("Unsupported element size");
7264
7265 TargetLowering::CallLoweringInfo CLI(*this);
7266 CLI.setDebugLoc(dl)
7267 .setChain(Chain)
7268 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
7269 Type::getVoidTy(*getContext()),
7270 getExternalSymbol(TLI->getLibcallName(LibraryCall),
7271 TLI->getPointerTy(getDataLayout())),
7272 std::move(Args))
7273 .setDiscardResult()
7274 .setTailCall(isTailCall);
7275
7276 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
7277 return CallResult.second;
7278 }
7279
getMemmove(SDValue Chain,const SDLoc & dl,SDValue Dst,SDValue Src,SDValue Size,Align Alignment,bool isVol,bool isTailCall,MachinePointerInfo DstPtrInfo,MachinePointerInfo SrcPtrInfo,const AAMDNodes & AAInfo,AAResults * AA)7280 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
7281 SDValue Src, SDValue Size, Align Alignment,
7282 bool isVol, bool isTailCall,
7283 MachinePointerInfo DstPtrInfo,
7284 MachinePointerInfo SrcPtrInfo,
7285 const AAMDNodes &AAInfo, AAResults *AA) {
7286 // Check to see if we should lower the memmove to loads and stores first.
7287 // For cases within the target-specified limits, this is the best choice.
7288 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
7289 if (ConstantSize) {
7290 // Memmove with size zero? Just return the original chain.
7291 if (ConstantSize->isZero())
7292 return Chain;
7293
7294 SDValue Result = getMemmoveLoadsAndStores(
7295 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
7296 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo);
7297 if (Result.getNode())
7298 return Result;
7299 }
7300
7301 // Then check to see if we should lower the memmove with target-specific
7302 // code. If the target chooses to do this, this is the next best.
7303 if (TSI) {
7304 SDValue Result =
7305 TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size,
7306 Alignment, isVol, DstPtrInfo, SrcPtrInfo);
7307 if (Result.getNode())
7308 return Result;
7309 }
7310
7311 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
7312 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
7313
7314 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
7315 // not be safe. See memcpy above for more details.
7316
7317 // Emit a library call.
7318 TargetLowering::ArgListTy Args;
7319 TargetLowering::ArgListEntry Entry;
7320 Entry.Ty = Type::getInt8PtrTy(*getContext());
7321 Entry.Node = Dst; Args.push_back(Entry);
7322 Entry.Node = Src; Args.push_back(Entry);
7323
7324 Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7325 Entry.Node = Size; Args.push_back(Entry);
7326 // FIXME: pass in SDLoc
7327 TargetLowering::CallLoweringInfo CLI(*this);
7328 CLI.setDebugLoc(dl)
7329 .setChain(Chain)
7330 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
7331 Dst.getValueType().getTypeForEVT(*getContext()),
7332 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
7333 TLI->getPointerTy(getDataLayout())),
7334 std::move(Args))
7335 .setDiscardResult()
7336 .setTailCall(isTailCall);
7337
7338 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
7339 return CallResult.second;
7340 }
7341
getAtomicMemmove(SDValue Chain,const SDLoc & dl,SDValue Dst,SDValue Src,SDValue Size,Type * SizeTy,unsigned ElemSz,bool isTailCall,MachinePointerInfo DstPtrInfo,MachinePointerInfo SrcPtrInfo)7342 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
7343 SDValue Dst, SDValue Src, SDValue Size,
7344 Type *SizeTy, unsigned ElemSz,
7345 bool isTailCall,
7346 MachinePointerInfo DstPtrInfo,
7347 MachinePointerInfo SrcPtrInfo) {
7348 // Emit a library call.
7349 TargetLowering::ArgListTy Args;
7350 TargetLowering::ArgListEntry Entry;
7351 Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7352 Entry.Node = Dst;
7353 Args.push_back(Entry);
7354
7355 Entry.Node = Src;
7356 Args.push_back(Entry);
7357
7358 Entry.Ty = SizeTy;
7359 Entry.Node = Size;
7360 Args.push_back(Entry);
7361
7362 RTLIB::Libcall LibraryCall =
7363 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
7364 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
7365 report_fatal_error("Unsupported element size");
7366
7367 TargetLowering::CallLoweringInfo CLI(*this);
7368 CLI.setDebugLoc(dl)
7369 .setChain(Chain)
7370 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
7371 Type::getVoidTy(*getContext()),
7372 getExternalSymbol(TLI->getLibcallName(LibraryCall),
7373 TLI->getPointerTy(getDataLayout())),
7374 std::move(Args))
7375 .setDiscardResult()
7376 .setTailCall(isTailCall);
7377
7378 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
7379 return CallResult.second;
7380 }
7381
getMemset(SDValue Chain,const SDLoc & dl,SDValue Dst,SDValue Src,SDValue Size,Align Alignment,bool isVol,bool AlwaysInline,bool isTailCall,MachinePointerInfo DstPtrInfo,const AAMDNodes & AAInfo)7382 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
7383 SDValue Src, SDValue Size, Align Alignment,
7384 bool isVol, bool AlwaysInline, bool isTailCall,
7385 MachinePointerInfo DstPtrInfo,
7386 const AAMDNodes &AAInfo) {
7387 // Check to see if we should lower the memset to stores first.
7388 // For cases within the target-specified limits, this is the best choice.
7389 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
7390 if (ConstantSize) {
7391 // Memset with size zero? Just return the original chain.
7392 if (ConstantSize->isZero())
7393 return Chain;
7394
7395 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
7396 ConstantSize->getZExtValue(), Alignment,
7397 isVol, false, DstPtrInfo, AAInfo);
7398
7399 if (Result.getNode())
7400 return Result;
7401 }
7402
7403 // Then check to see if we should lower the memset with target-specific
7404 // code. If the target chooses to do this, this is the next best.
7405 if (TSI) {
7406 SDValue Result = TSI->EmitTargetCodeForMemset(
7407 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, DstPtrInfo);
7408 if (Result.getNode())
7409 return Result;
7410 }
7411
7412 // If we really need inline code and the target declined to provide it,
7413 // use a (potentially long) sequence of loads and stores.
7414 if (AlwaysInline) {
7415 assert(ConstantSize && "AlwaysInline requires a constant size!");
7416 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
7417 ConstantSize->getZExtValue(), Alignment,
7418 isVol, true, DstPtrInfo, AAInfo);
7419 assert(Result &&
7420 "getMemsetStores must return a valid sequence when AlwaysInline");
7421 return Result;
7422 }
7423
7424 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
7425
7426 // Emit a library call.
7427 auto &Ctx = *getContext();
7428 const auto& DL = getDataLayout();
7429
7430 TargetLowering::CallLoweringInfo CLI(*this);
7431 // FIXME: pass in SDLoc
7432 CLI.setDebugLoc(dl).setChain(Chain);
7433
7434 ConstantSDNode *ConstantSrc = dyn_cast<ConstantSDNode>(Src);
7435 const bool SrcIsZero = ConstantSrc && ConstantSrc->isZero();
7436 const char *BzeroName = getTargetLoweringInfo().getLibcallName(RTLIB::BZERO);
7437
7438 // Helper function to create an Entry from Node and Type.
7439 const auto CreateEntry = [](SDValue Node, Type *Ty) {
7440 TargetLowering::ArgListEntry Entry;
7441 Entry.Node = Node;
7442 Entry.Ty = Ty;
7443 return Entry;
7444 };
7445
7446 // If zeroing out and bzero is present, use it.
7447 if (SrcIsZero && BzeroName) {
7448 TargetLowering::ArgListTy Args;
7449 Args.push_back(CreateEntry(Dst, Type::getInt8PtrTy(Ctx)));
7450 Args.push_back(CreateEntry(Size, DL.getIntPtrType(Ctx)));
7451 CLI.setLibCallee(
7452 TLI->getLibcallCallingConv(RTLIB::BZERO), Type::getVoidTy(Ctx),
7453 getExternalSymbol(BzeroName, TLI->getPointerTy(DL)), std::move(Args));
7454 } else {
7455 TargetLowering::ArgListTy Args;
7456 Args.push_back(CreateEntry(Dst, Type::getInt8PtrTy(Ctx)));
7457 Args.push_back(CreateEntry(Src, Src.getValueType().getTypeForEVT(Ctx)));
7458 Args.push_back(CreateEntry(Size, DL.getIntPtrType(Ctx)));
7459 CLI.setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
7460 Dst.getValueType().getTypeForEVT(Ctx),
7461 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
7462 TLI->getPointerTy(DL)),
7463 std::move(Args));
7464 }
7465
7466 CLI.setDiscardResult().setTailCall(isTailCall);
7467
7468 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
7469 return CallResult.second;
7470 }
7471
getAtomicMemset(SDValue Chain,const SDLoc & dl,SDValue Dst,SDValue Value,SDValue Size,Type * SizeTy,unsigned ElemSz,bool isTailCall,MachinePointerInfo DstPtrInfo)7472 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
7473 SDValue Dst, SDValue Value, SDValue Size,
7474 Type *SizeTy, unsigned ElemSz,
7475 bool isTailCall,
7476 MachinePointerInfo DstPtrInfo) {
7477 // Emit a library call.
7478 TargetLowering::ArgListTy Args;
7479 TargetLowering::ArgListEntry Entry;
7480 Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7481 Entry.Node = Dst;
7482 Args.push_back(Entry);
7483
7484 Entry.Ty = Type::getInt8Ty(*getContext());
7485 Entry.Node = Value;
7486 Args.push_back(Entry);
7487
7488 Entry.Ty = SizeTy;
7489 Entry.Node = Size;
7490 Args.push_back(Entry);
7491
7492 RTLIB::Libcall LibraryCall =
7493 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
7494 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
7495 report_fatal_error("Unsupported element size");
7496
7497 TargetLowering::CallLoweringInfo CLI(*this);
7498 CLI.setDebugLoc(dl)
7499 .setChain(Chain)
7500 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
7501 Type::getVoidTy(*getContext()),
7502 getExternalSymbol(TLI->getLibcallName(LibraryCall),
7503 TLI->getPointerTy(getDataLayout())),
7504 std::move(Args))
7505 .setDiscardResult()
7506 .setTailCall(isTailCall);
7507
7508 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
7509 return CallResult.second;
7510 }
7511
getAtomic(unsigned Opcode,const SDLoc & dl,EVT MemVT,SDVTList VTList,ArrayRef<SDValue> Ops,MachineMemOperand * MMO)7512 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7513 SDVTList VTList, ArrayRef<SDValue> Ops,
7514 MachineMemOperand *MMO) {
7515 FoldingSetNodeID ID;
7516 ID.AddInteger(MemVT.getRawBits());
7517 AddNodeIDNode(ID, Opcode, VTList, Ops);
7518 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7519 ID.AddInteger(MMO->getFlags());
7520 void* IP = nullptr;
7521 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7522 cast<AtomicSDNode>(E)->refineAlignment(MMO);
7523 return SDValue(E, 0);
7524 }
7525
7526 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7527 VTList, MemVT, MMO);
7528 createOperands(N, Ops);
7529
7530 CSEMap.InsertNode(N, IP);
7531 InsertNode(N);
7532 return SDValue(N, 0);
7533 }
7534
getAtomicCmpSwap(unsigned Opcode,const SDLoc & dl,EVT MemVT,SDVTList VTs,SDValue Chain,SDValue Ptr,SDValue Cmp,SDValue Swp,MachineMemOperand * MMO)7535 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
7536 EVT MemVT, SDVTList VTs, SDValue Chain,
7537 SDValue Ptr, SDValue Cmp, SDValue Swp,
7538 MachineMemOperand *MMO) {
7539 assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
7540 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
7541 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
7542
7543 SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
7544 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7545 }
7546
getAtomic(unsigned Opcode,const SDLoc & dl,EVT MemVT,SDValue Chain,SDValue Ptr,SDValue Val,MachineMemOperand * MMO)7547 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7548 SDValue Chain, SDValue Ptr, SDValue Val,
7549 MachineMemOperand *MMO) {
7550 assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
7551 Opcode == ISD::ATOMIC_LOAD_SUB ||
7552 Opcode == ISD::ATOMIC_LOAD_AND ||
7553 Opcode == ISD::ATOMIC_LOAD_CLR ||
7554 Opcode == ISD::ATOMIC_LOAD_OR ||
7555 Opcode == ISD::ATOMIC_LOAD_XOR ||
7556 Opcode == ISD::ATOMIC_LOAD_NAND ||
7557 Opcode == ISD::ATOMIC_LOAD_MIN ||
7558 Opcode == ISD::ATOMIC_LOAD_MAX ||
7559 Opcode == ISD::ATOMIC_LOAD_UMIN ||
7560 Opcode == ISD::ATOMIC_LOAD_UMAX ||
7561 Opcode == ISD::ATOMIC_LOAD_FADD ||
7562 Opcode == ISD::ATOMIC_LOAD_FSUB ||
7563 Opcode == ISD::ATOMIC_LOAD_FMAX ||
7564 Opcode == ISD::ATOMIC_LOAD_FMIN ||
7565 Opcode == ISD::ATOMIC_SWAP ||
7566 Opcode == ISD::ATOMIC_STORE) &&
7567 "Invalid Atomic Op");
7568
7569 EVT VT = Val.getValueType();
7570
7571 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
7572 getVTList(VT, MVT::Other);
7573 SDValue Ops[] = {Chain, Ptr, Val};
7574 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7575 }
7576
getAtomic(unsigned Opcode,const SDLoc & dl,EVT MemVT,EVT VT,SDValue Chain,SDValue Ptr,MachineMemOperand * MMO)7577 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7578 EVT VT, SDValue Chain, SDValue Ptr,
7579 MachineMemOperand *MMO) {
7580 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
7581
7582 SDVTList VTs = getVTList(VT, MVT::Other);
7583 SDValue Ops[] = {Chain, Ptr};
7584 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7585 }
7586
7587 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
getMergeValues(ArrayRef<SDValue> Ops,const SDLoc & dl)7588 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
7589 if (Ops.size() == 1)
7590 return Ops[0];
7591
7592 SmallVector<EVT, 4> VTs;
7593 VTs.reserve(Ops.size());
7594 for (const SDValue &Op : Ops)
7595 VTs.push_back(Op.getValueType());
7596 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
7597 }
7598
getMemIntrinsicNode(unsigned Opcode,const SDLoc & dl,SDVTList VTList,ArrayRef<SDValue> Ops,EVT MemVT,MachinePointerInfo PtrInfo,Align Alignment,MachineMemOperand::Flags Flags,uint64_t Size,const AAMDNodes & AAInfo)7599 SDValue SelectionDAG::getMemIntrinsicNode(
7600 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
7601 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment,
7602 MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) {
7603 if (!Size && MemVT.isScalableVector())
7604 Size = MemoryLocation::UnknownSize;
7605 else if (!Size)
7606 Size = MemVT.getStoreSize();
7607
7608 MachineFunction &MF = getMachineFunction();
7609 MachineMemOperand *MMO =
7610 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo);
7611
7612 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
7613 }
7614
getMemIntrinsicNode(unsigned Opcode,const SDLoc & dl,SDVTList VTList,ArrayRef<SDValue> Ops,EVT MemVT,MachineMemOperand * MMO)7615 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
7616 SDVTList VTList,
7617 ArrayRef<SDValue> Ops, EVT MemVT,
7618 MachineMemOperand *MMO) {
7619 assert((Opcode == ISD::INTRINSIC_VOID ||
7620 Opcode == ISD::INTRINSIC_W_CHAIN ||
7621 Opcode == ISD::PREFETCH ||
7622 ((int)Opcode <= std::numeric_limits<int>::max() &&
7623 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
7624 "Opcode is not a memory-accessing opcode!");
7625
7626 // Memoize the node unless it returns a flag.
7627 MemIntrinsicSDNode *N;
7628 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7629 FoldingSetNodeID ID;
7630 AddNodeIDNode(ID, Opcode, VTList, Ops);
7631 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
7632 Opcode, dl.getIROrder(), VTList, MemVT, MMO));
7633 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7634 ID.AddInteger(MMO->getFlags());
7635 void *IP = nullptr;
7636 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7637 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
7638 return SDValue(E, 0);
7639 }
7640
7641 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7642 VTList, MemVT, MMO);
7643 createOperands(N, Ops);
7644
7645 CSEMap.InsertNode(N, IP);
7646 } else {
7647 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7648 VTList, MemVT, MMO);
7649 createOperands(N, Ops);
7650 }
7651 InsertNode(N);
7652 SDValue V(N, 0);
7653 NewSDValueDbgMsg(V, "Creating new node: ", this);
7654 return V;
7655 }
7656
getLifetimeNode(bool IsStart,const SDLoc & dl,SDValue Chain,int FrameIndex,int64_t Size,int64_t Offset)7657 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
7658 SDValue Chain, int FrameIndex,
7659 int64_t Size, int64_t Offset) {
7660 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
7661 const auto VTs = getVTList(MVT::Other);
7662 SDValue Ops[2] = {
7663 Chain,
7664 getFrameIndex(FrameIndex,
7665 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
7666 true)};
7667
7668 FoldingSetNodeID ID;
7669 AddNodeIDNode(ID, Opcode, VTs, Ops);
7670 ID.AddInteger(FrameIndex);
7671 ID.AddInteger(Size);
7672 ID.AddInteger(Offset);
7673 void *IP = nullptr;
7674 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7675 return SDValue(E, 0);
7676
7677 LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
7678 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
7679 createOperands(N, Ops);
7680 CSEMap.InsertNode(N, IP);
7681 InsertNode(N);
7682 SDValue V(N, 0);
7683 NewSDValueDbgMsg(V, "Creating new node: ", this);
7684 return V;
7685 }
7686
getPseudoProbeNode(const SDLoc & Dl,SDValue Chain,uint64_t Guid,uint64_t Index,uint32_t Attr)7687 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain,
7688 uint64_t Guid, uint64_t Index,
7689 uint32_t Attr) {
7690 const unsigned Opcode = ISD::PSEUDO_PROBE;
7691 const auto VTs = getVTList(MVT::Other);
7692 SDValue Ops[] = {Chain};
7693 FoldingSetNodeID ID;
7694 AddNodeIDNode(ID, Opcode, VTs, Ops);
7695 ID.AddInteger(Guid);
7696 ID.AddInteger(Index);
7697 void *IP = nullptr;
7698 if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP))
7699 return SDValue(E, 0);
7700
7701 auto *N = newSDNode<PseudoProbeSDNode>(
7702 Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr);
7703 createOperands(N, Ops);
7704 CSEMap.InsertNode(N, IP);
7705 InsertNode(N);
7706 SDValue V(N, 0);
7707 NewSDValueDbgMsg(V, "Creating new node: ", this);
7708 return V;
7709 }
7710
7711 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
7712 /// MachinePointerInfo record from it. This is particularly useful because the
7713 /// code generator has many cases where it doesn't bother passing in a
7714 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
InferPointerInfo(const MachinePointerInfo & Info,SelectionDAG & DAG,SDValue Ptr,int64_t Offset=0)7715 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
7716 SelectionDAG &DAG, SDValue Ptr,
7717 int64_t Offset = 0) {
7718 // If this is FI+Offset, we can model it.
7719 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
7720 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
7721 FI->getIndex(), Offset);
7722
7723 // If this is (FI+Offset1)+Offset2, we can model it.
7724 if (Ptr.getOpcode() != ISD::ADD ||
7725 !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
7726 !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
7727 return Info;
7728
7729 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
7730 return MachinePointerInfo::getFixedStack(
7731 DAG.getMachineFunction(), FI,
7732 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
7733 }
7734
7735 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
7736 /// MachinePointerInfo record from it. This is particularly useful because the
7737 /// code generator has many cases where it doesn't bother passing in a
7738 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
InferPointerInfo(const MachinePointerInfo & Info,SelectionDAG & DAG,SDValue Ptr,SDValue OffsetOp)7739 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
7740 SelectionDAG &DAG, SDValue Ptr,
7741 SDValue OffsetOp) {
7742 // If the 'Offset' value isn't a constant, we can't handle this.
7743 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
7744 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
7745 if (OffsetOp.isUndef())
7746 return InferPointerInfo(Info, DAG, Ptr);
7747 return Info;
7748 }
7749
getLoad(ISD::MemIndexedMode AM,ISD::LoadExtType ExtType,EVT VT,const SDLoc & dl,SDValue Chain,SDValue Ptr,SDValue Offset,MachinePointerInfo PtrInfo,EVT MemVT,Align Alignment,MachineMemOperand::Flags MMOFlags,const AAMDNodes & AAInfo,const MDNode * Ranges)7750 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
7751 EVT VT, const SDLoc &dl, SDValue Chain,
7752 SDValue Ptr, SDValue Offset,
7753 MachinePointerInfo PtrInfo, EVT MemVT,
7754 Align Alignment,
7755 MachineMemOperand::Flags MMOFlags,
7756 const AAMDNodes &AAInfo, const MDNode *Ranges) {
7757 assert(Chain.getValueType() == MVT::Other &&
7758 "Invalid chain type");
7759
7760 MMOFlags |= MachineMemOperand::MOLoad;
7761 assert((MMOFlags & MachineMemOperand::MOStore) == 0);
7762 // If we don't have a PtrInfo, infer the trivial frame index case to simplify
7763 // clients.
7764 if (PtrInfo.V.isNull())
7765 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
7766
7767 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
7768 MachineFunction &MF = getMachineFunction();
7769 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
7770 Alignment, AAInfo, Ranges);
7771 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
7772 }
7773
getLoad(ISD::MemIndexedMode AM,ISD::LoadExtType ExtType,EVT VT,const SDLoc & dl,SDValue Chain,SDValue Ptr,SDValue Offset,EVT MemVT,MachineMemOperand * MMO)7774 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
7775 EVT VT, const SDLoc &dl, SDValue Chain,
7776 SDValue Ptr, SDValue Offset, EVT MemVT,
7777 MachineMemOperand *MMO) {
7778 if (VT == MemVT) {
7779 ExtType = ISD::NON_EXTLOAD;
7780 } else if (ExtType == ISD::NON_EXTLOAD) {
7781 assert(VT == MemVT && "Non-extending load from different memory type!");
7782 } else {
7783 // Extending load.
7784 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
7785 "Should only be an extending load, not truncating!");
7786 assert(VT.isInteger() == MemVT.isInteger() &&
7787 "Cannot convert from FP to Int or Int -> FP!");
7788 assert(VT.isVector() == MemVT.isVector() &&
7789 "Cannot use an ext load to convert to or from a vector!");
7790 assert((!VT.isVector() ||
7791 VT.getVectorElementCount() == MemVT.getVectorElementCount()) &&
7792 "Cannot use an ext load to change the number of vector elements!");
7793 }
7794
7795 bool Indexed = AM != ISD::UNINDEXED;
7796 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
7797
7798 SDVTList VTs = Indexed ?
7799 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
7800 SDValue Ops[] = { Chain, Ptr, Offset };
7801 FoldingSetNodeID ID;
7802 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
7803 ID.AddInteger(MemVT.getRawBits());
7804 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
7805 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
7806 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7807 ID.AddInteger(MMO->getFlags());
7808 void *IP = nullptr;
7809 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7810 cast<LoadSDNode>(E)->refineAlignment(MMO);
7811 return SDValue(E, 0);
7812 }
7813 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7814 ExtType, MemVT, MMO);
7815 createOperands(N, Ops);
7816
7817 CSEMap.InsertNode(N, IP);
7818 InsertNode(N);
7819 SDValue V(N, 0);
7820 NewSDValueDbgMsg(V, "Creating new node: ", this);
7821 return V;
7822 }
7823
getLoad(EVT VT,const SDLoc & dl,SDValue Chain,SDValue Ptr,MachinePointerInfo PtrInfo,MaybeAlign Alignment,MachineMemOperand::Flags MMOFlags,const AAMDNodes & AAInfo,const MDNode * Ranges)7824 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7825 SDValue Ptr, MachinePointerInfo PtrInfo,
7826 MaybeAlign Alignment,
7827 MachineMemOperand::Flags MMOFlags,
7828 const AAMDNodes &AAInfo, const MDNode *Ranges) {
7829 SDValue Undef = getUNDEF(Ptr.getValueType());
7830 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7831 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
7832 }
7833
getLoad(EVT VT,const SDLoc & dl,SDValue Chain,SDValue Ptr,MachineMemOperand * MMO)7834 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7835 SDValue Ptr, MachineMemOperand *MMO) {
7836 SDValue Undef = getUNDEF(Ptr.getValueType());
7837 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7838 VT, MMO);
7839 }
7840
getExtLoad(ISD::LoadExtType ExtType,const SDLoc & dl,EVT VT,SDValue Chain,SDValue Ptr,MachinePointerInfo PtrInfo,EVT MemVT,MaybeAlign Alignment,MachineMemOperand::Flags MMOFlags,const AAMDNodes & AAInfo)7841 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7842 EVT VT, SDValue Chain, SDValue Ptr,
7843 MachinePointerInfo PtrInfo, EVT MemVT,
7844 MaybeAlign Alignment,
7845 MachineMemOperand::Flags MMOFlags,
7846 const AAMDNodes &AAInfo) {
7847 SDValue Undef = getUNDEF(Ptr.getValueType());
7848 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
7849 MemVT, Alignment, MMOFlags, AAInfo);
7850 }
7851
getExtLoad(ISD::LoadExtType ExtType,const SDLoc & dl,EVT VT,SDValue Chain,SDValue Ptr,EVT MemVT,MachineMemOperand * MMO)7852 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7853 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
7854 MachineMemOperand *MMO) {
7855 SDValue Undef = getUNDEF(Ptr.getValueType());
7856 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
7857 MemVT, MMO);
7858 }
7859
getIndexedLoad(SDValue OrigLoad,const SDLoc & dl,SDValue Base,SDValue Offset,ISD::MemIndexedMode AM)7860 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
7861 SDValue Base, SDValue Offset,
7862 ISD::MemIndexedMode AM) {
7863 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
7864 assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
7865 // Don't propagate the invariant or dereferenceable flags.
7866 auto MMOFlags =
7867 LD->getMemOperand()->getFlags() &
7868 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
7869 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
7870 LD->getChain(), Base, Offset, LD->getPointerInfo(),
7871 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo());
7872 }
7873
getStore(SDValue Chain,const SDLoc & dl,SDValue Val,SDValue Ptr,MachinePointerInfo PtrInfo,Align Alignment,MachineMemOperand::Flags MMOFlags,const AAMDNodes & AAInfo)7874 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7875 SDValue Ptr, MachinePointerInfo PtrInfo,
7876 Align Alignment,
7877 MachineMemOperand::Flags MMOFlags,
7878 const AAMDNodes &AAInfo) {
7879 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7880
7881 MMOFlags |= MachineMemOperand::MOStore;
7882 assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7883
7884 if (PtrInfo.V.isNull())
7885 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7886
7887 MachineFunction &MF = getMachineFunction();
7888 uint64_t Size =
7889 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize());
7890 MachineMemOperand *MMO =
7891 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
7892 return getStore(Chain, dl, Val, Ptr, MMO);
7893 }
7894
getStore(SDValue Chain,const SDLoc & dl,SDValue Val,SDValue Ptr,MachineMemOperand * MMO)7895 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7896 SDValue Ptr, MachineMemOperand *MMO) {
7897 assert(Chain.getValueType() == MVT::Other &&
7898 "Invalid chain type");
7899 EVT VT = Val.getValueType();
7900 SDVTList VTs = getVTList(MVT::Other);
7901 SDValue Undef = getUNDEF(Ptr.getValueType());
7902 SDValue Ops[] = { Chain, Val, Ptr, Undef };
7903 FoldingSetNodeID ID;
7904 AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7905 ID.AddInteger(VT.getRawBits());
7906 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7907 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
7908 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7909 ID.AddInteger(MMO->getFlags());
7910 void *IP = nullptr;
7911 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7912 cast<StoreSDNode>(E)->refineAlignment(MMO);
7913 return SDValue(E, 0);
7914 }
7915 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7916 ISD::UNINDEXED, false, VT, MMO);
7917 createOperands(N, Ops);
7918
7919 CSEMap.InsertNode(N, IP);
7920 InsertNode(N);
7921 SDValue V(N, 0);
7922 NewSDValueDbgMsg(V, "Creating new node: ", this);
7923 return V;
7924 }
7925
getTruncStore(SDValue Chain,const SDLoc & dl,SDValue Val,SDValue Ptr,MachinePointerInfo PtrInfo,EVT SVT,Align Alignment,MachineMemOperand::Flags MMOFlags,const AAMDNodes & AAInfo)7926 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7927 SDValue Ptr, MachinePointerInfo PtrInfo,
7928 EVT SVT, Align Alignment,
7929 MachineMemOperand::Flags MMOFlags,
7930 const AAMDNodes &AAInfo) {
7931 assert(Chain.getValueType() == MVT::Other &&
7932 "Invalid chain type");
7933
7934 MMOFlags |= MachineMemOperand::MOStore;
7935 assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7936
7937 if (PtrInfo.V.isNull())
7938 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7939
7940 MachineFunction &MF = getMachineFunction();
7941 MachineMemOperand *MMO = MF.getMachineMemOperand(
7942 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()),
7943 Alignment, AAInfo);
7944 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
7945 }
7946
getTruncStore(SDValue Chain,const SDLoc & dl,SDValue Val,SDValue Ptr,EVT SVT,MachineMemOperand * MMO)7947 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7948 SDValue Ptr, EVT SVT,
7949 MachineMemOperand *MMO) {
7950 EVT VT = Val.getValueType();
7951
7952 assert(Chain.getValueType() == MVT::Other &&
7953 "Invalid chain type");
7954 if (VT == SVT)
7955 return getStore(Chain, dl, Val, Ptr, MMO);
7956
7957 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
7958 "Should only be a truncating store, not extending!");
7959 assert(VT.isInteger() == SVT.isInteger() &&
7960 "Can't do FP-INT conversion!");
7961 assert(VT.isVector() == SVT.isVector() &&
7962 "Cannot use trunc store to convert to or from a vector!");
7963 assert((!VT.isVector() ||
7964 VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
7965 "Cannot use trunc store to change the number of vector elements!");
7966
7967 SDVTList VTs = getVTList(MVT::Other);
7968 SDValue Undef = getUNDEF(Ptr.getValueType());
7969 SDValue Ops[] = { Chain, Val, Ptr, Undef };
7970 FoldingSetNodeID ID;
7971 AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7972 ID.AddInteger(SVT.getRawBits());
7973 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7974 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
7975 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7976 ID.AddInteger(MMO->getFlags());
7977 void *IP = nullptr;
7978 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7979 cast<StoreSDNode>(E)->refineAlignment(MMO);
7980 return SDValue(E, 0);
7981 }
7982 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7983 ISD::UNINDEXED, true, SVT, MMO);
7984 createOperands(N, Ops);
7985
7986 CSEMap.InsertNode(N, IP);
7987 InsertNode(N);
7988 SDValue V(N, 0);
7989 NewSDValueDbgMsg(V, "Creating new node: ", this);
7990 return V;
7991 }
7992
getIndexedStore(SDValue OrigStore,const SDLoc & dl,SDValue Base,SDValue Offset,ISD::MemIndexedMode AM)7993 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
7994 SDValue Base, SDValue Offset,
7995 ISD::MemIndexedMode AM) {
7996 StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
7997 assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
7998 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
7999 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
8000 FoldingSetNodeID ID;
8001 AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
8002 ID.AddInteger(ST->getMemoryVT().getRawBits());
8003 ID.AddInteger(ST->getRawSubclassData());
8004 ID.AddInteger(ST->getPointerInfo().getAddrSpace());
8005 ID.AddInteger(ST->getMemOperand()->getFlags());
8006 void *IP = nullptr;
8007 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
8008 return SDValue(E, 0);
8009
8010 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
8011 ST->isTruncatingStore(), ST->getMemoryVT(),
8012 ST->getMemOperand());
8013 createOperands(N, Ops);
8014
8015 CSEMap.InsertNode(N, IP);
8016 InsertNode(N);
8017 SDValue V(N, 0);
8018 NewSDValueDbgMsg(V, "Creating new node: ", this);
8019 return V;
8020 }
8021
getLoadVP(ISD::MemIndexedMode AM,ISD::LoadExtType ExtType,EVT VT,const SDLoc & dl,SDValue Chain,SDValue Ptr,SDValue Offset,SDValue Mask,SDValue EVL,MachinePointerInfo PtrInfo,EVT MemVT,Align Alignment,MachineMemOperand::Flags MMOFlags,const AAMDNodes & AAInfo,const MDNode * Ranges,bool IsExpanding)8022 SDValue SelectionDAG::getLoadVP(
8023 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl,
8024 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL,
8025 MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment,
8026 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
8027 const MDNode *Ranges, bool IsExpanding) {
8028 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
8029
8030 MMOFlags |= MachineMemOperand::MOLoad;
8031 assert((MMOFlags & MachineMemOperand::MOStore) == 0);
8032 // If we don't have a PtrInfo, infer the trivial frame index case to simplify
8033 // clients.
8034 if (PtrInfo.V.isNull())
8035 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
8036
8037 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
8038 MachineFunction &MF = getMachineFunction();
8039 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
8040 Alignment, AAInfo, Ranges);
8041 return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr, Offset, Mask, EVL, MemVT,
8042 MMO, IsExpanding);
8043 }
8044
getLoadVP(ISD::MemIndexedMode AM,ISD::LoadExtType ExtType,EVT VT,const SDLoc & dl,SDValue Chain,SDValue Ptr,SDValue Offset,SDValue Mask,SDValue EVL,EVT MemVT,MachineMemOperand * MMO,bool IsExpanding)8045 SDValue SelectionDAG::getLoadVP(ISD::MemIndexedMode AM,
8046 ISD::LoadExtType ExtType, EVT VT,
8047 const SDLoc &dl, SDValue Chain, SDValue Ptr,
8048 SDValue Offset, SDValue Mask, SDValue EVL,
8049 EVT MemVT, MachineMemOperand *MMO,
8050 bool IsExpanding) {
8051 bool Indexed = AM != ISD::UNINDEXED;
8052 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
8053
8054 SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other)
8055 : getVTList(VT, MVT::Other);
8056 SDValue Ops[] = {Chain, Ptr, Offset, Mask, EVL};
8057 FoldingSetNodeID ID;
8058 AddNodeIDNode(ID, ISD::VP_LOAD, VTs, Ops);
8059 ID.AddInteger(VT.getRawBits());
8060 ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>(
8061 dl.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
8062 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8063 ID.AddInteger(MMO->getFlags());
8064 void *IP = nullptr;
8065 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8066 cast<VPLoadSDNode>(E)->refineAlignment(MMO);
8067 return SDValue(E, 0);
8068 }
8069 auto *N = newSDNode<VPLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
8070 ExtType, IsExpanding, MemVT, MMO);
8071 createOperands(N, Ops);
8072
8073 CSEMap.InsertNode(N, IP);
8074 InsertNode(N);
8075 SDValue V(N, 0);
8076 NewSDValueDbgMsg(V, "Creating new node: ", this);
8077 return V;
8078 }
8079
getLoadVP(EVT VT,const SDLoc & dl,SDValue Chain,SDValue Ptr,SDValue Mask,SDValue EVL,MachinePointerInfo PtrInfo,MaybeAlign Alignment,MachineMemOperand::Flags MMOFlags,const AAMDNodes & AAInfo,const MDNode * Ranges,bool IsExpanding)8080 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain,
8081 SDValue Ptr, SDValue Mask, SDValue EVL,
8082 MachinePointerInfo PtrInfo,
8083 MaybeAlign Alignment,
8084 MachineMemOperand::Flags MMOFlags,
8085 const AAMDNodes &AAInfo, const MDNode *Ranges,
8086 bool IsExpanding) {
8087 SDValue Undef = getUNDEF(Ptr.getValueType());
8088 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
8089 Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges,
8090 IsExpanding);
8091 }
8092
getLoadVP(EVT VT,const SDLoc & dl,SDValue Chain,SDValue Ptr,SDValue Mask,SDValue EVL,MachineMemOperand * MMO,bool IsExpanding)8093 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain,
8094 SDValue Ptr, SDValue Mask, SDValue EVL,
8095 MachineMemOperand *MMO, bool IsExpanding) {
8096 SDValue Undef = getUNDEF(Ptr.getValueType());
8097 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
8098 Mask, EVL, VT, MMO, IsExpanding);
8099 }
8100
getExtLoadVP(ISD::LoadExtType ExtType,const SDLoc & dl,EVT VT,SDValue Chain,SDValue Ptr,SDValue Mask,SDValue EVL,MachinePointerInfo PtrInfo,EVT MemVT,MaybeAlign Alignment,MachineMemOperand::Flags MMOFlags,const AAMDNodes & AAInfo,bool IsExpanding)8101 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl,
8102 EVT VT, SDValue Chain, SDValue Ptr,
8103 SDValue Mask, SDValue EVL,
8104 MachinePointerInfo PtrInfo, EVT MemVT,
8105 MaybeAlign Alignment,
8106 MachineMemOperand::Flags MMOFlags,
8107 const AAMDNodes &AAInfo, bool IsExpanding) {
8108 SDValue Undef = getUNDEF(Ptr.getValueType());
8109 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask,
8110 EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo, nullptr,
8111 IsExpanding);
8112 }
8113
getExtLoadVP(ISD::LoadExtType ExtType,const SDLoc & dl,EVT VT,SDValue Chain,SDValue Ptr,SDValue Mask,SDValue EVL,EVT MemVT,MachineMemOperand * MMO,bool IsExpanding)8114 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl,
8115 EVT VT, SDValue Chain, SDValue Ptr,
8116 SDValue Mask, SDValue EVL, EVT MemVT,
8117 MachineMemOperand *MMO, bool IsExpanding) {
8118 SDValue Undef = getUNDEF(Ptr.getValueType());
8119 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask,
8120 EVL, MemVT, MMO, IsExpanding);
8121 }
8122
getIndexedLoadVP(SDValue OrigLoad,const SDLoc & dl,SDValue Base,SDValue Offset,ISD::MemIndexedMode AM)8123 SDValue SelectionDAG::getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl,
8124 SDValue Base, SDValue Offset,
8125 ISD::MemIndexedMode AM) {
8126 auto *LD = cast<VPLoadSDNode>(OrigLoad);
8127 assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
8128 // Don't propagate the invariant or dereferenceable flags.
8129 auto MMOFlags =
8130 LD->getMemOperand()->getFlags() &
8131 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
8132 return getLoadVP(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
8133 LD->getChain(), Base, Offset, LD->getMask(),
8134 LD->getVectorLength(), LD->getPointerInfo(),
8135 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(),
8136 nullptr, LD->isExpandingLoad());
8137 }
8138
getStoreVP(SDValue Chain,const SDLoc & dl,SDValue Val,SDValue Ptr,SDValue Offset,SDValue Mask,SDValue EVL,EVT MemVT,MachineMemOperand * MMO,ISD::MemIndexedMode AM,bool IsTruncating,bool IsCompressing)8139 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val,
8140 SDValue Ptr, SDValue Offset, SDValue Mask,
8141 SDValue EVL, EVT MemVT, MachineMemOperand *MMO,
8142 ISD::MemIndexedMode AM, bool IsTruncating,
8143 bool IsCompressing) {
8144 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
8145 bool Indexed = AM != ISD::UNINDEXED;
8146 assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!");
8147 SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other)
8148 : getVTList(MVT::Other);
8149 SDValue Ops[] = {Chain, Val, Ptr, Offset, Mask, EVL};
8150 FoldingSetNodeID ID;
8151 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
8152 ID.AddInteger(MemVT.getRawBits());
8153 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
8154 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
8155 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8156 ID.AddInteger(MMO->getFlags());
8157 void *IP = nullptr;
8158 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8159 cast<VPStoreSDNode>(E)->refineAlignment(MMO);
8160 return SDValue(E, 0);
8161 }
8162 auto *N = newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
8163 IsTruncating, IsCompressing, MemVT, MMO);
8164 createOperands(N, Ops);
8165
8166 CSEMap.InsertNode(N, IP);
8167 InsertNode(N);
8168 SDValue V(N, 0);
8169 NewSDValueDbgMsg(V, "Creating new node: ", this);
8170 return V;
8171 }
8172
getTruncStoreVP(SDValue Chain,const SDLoc & dl,SDValue Val,SDValue Ptr,SDValue Mask,SDValue EVL,MachinePointerInfo PtrInfo,EVT SVT,Align Alignment,MachineMemOperand::Flags MMOFlags,const AAMDNodes & AAInfo,bool IsCompressing)8173 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl,
8174 SDValue Val, SDValue Ptr, SDValue Mask,
8175 SDValue EVL, MachinePointerInfo PtrInfo,
8176 EVT SVT, Align Alignment,
8177 MachineMemOperand::Flags MMOFlags,
8178 const AAMDNodes &AAInfo,
8179 bool IsCompressing) {
8180 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
8181
8182 MMOFlags |= MachineMemOperand::MOStore;
8183 assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
8184
8185 if (PtrInfo.V.isNull())
8186 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
8187
8188 MachineFunction &MF = getMachineFunction();
8189 MachineMemOperand *MMO = MF.getMachineMemOperand(
8190 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()),
8191 Alignment, AAInfo);
8192 return getTruncStoreVP(Chain, dl, Val, Ptr, Mask, EVL, SVT, MMO,
8193 IsCompressing);
8194 }
8195
getTruncStoreVP(SDValue Chain,const SDLoc & dl,SDValue Val,SDValue Ptr,SDValue Mask,SDValue EVL,EVT SVT,MachineMemOperand * MMO,bool IsCompressing)8196 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl,
8197 SDValue Val, SDValue Ptr, SDValue Mask,
8198 SDValue EVL, EVT SVT,
8199 MachineMemOperand *MMO,
8200 bool IsCompressing) {
8201 EVT VT = Val.getValueType();
8202
8203 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
8204 if (VT == SVT)
8205 return getStoreVP(Chain, dl, Val, Ptr, getUNDEF(Ptr.getValueType()), Mask,
8206 EVL, VT, MMO, ISD::UNINDEXED,
8207 /*IsTruncating*/ false, IsCompressing);
8208
8209 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
8210 "Should only be a truncating store, not extending!");
8211 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!");
8212 assert(VT.isVector() == SVT.isVector() &&
8213 "Cannot use trunc store to convert to or from a vector!");
8214 assert((!VT.isVector() ||
8215 VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
8216 "Cannot use trunc store to change the number of vector elements!");
8217
8218 SDVTList VTs = getVTList(MVT::Other);
8219 SDValue Undef = getUNDEF(Ptr.getValueType());
8220 SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL};
8221 FoldingSetNodeID ID;
8222 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
8223 ID.AddInteger(SVT.getRawBits());
8224 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
8225 dl.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO));
8226 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8227 ID.AddInteger(MMO->getFlags());
8228 void *IP = nullptr;
8229 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8230 cast<VPStoreSDNode>(E)->refineAlignment(MMO);
8231 return SDValue(E, 0);
8232 }
8233 auto *N =
8234 newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
8235 ISD::UNINDEXED, true, IsCompressing, SVT, MMO);
8236 createOperands(N, Ops);
8237
8238 CSEMap.InsertNode(N, IP);
8239 InsertNode(N);
8240 SDValue V(N, 0);
8241 NewSDValueDbgMsg(V, "Creating new node: ", this);
8242 return V;
8243 }
8244
getIndexedStoreVP(SDValue OrigStore,const SDLoc & dl,SDValue Base,SDValue Offset,ISD::MemIndexedMode AM)8245 SDValue SelectionDAG::getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl,
8246 SDValue Base, SDValue Offset,
8247 ISD::MemIndexedMode AM) {
8248 auto *ST = cast<VPStoreSDNode>(OrigStore);
8249 assert(ST->getOffset().isUndef() && "Store is already an indexed store!");
8250 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
8251 SDValue Ops[] = {ST->getChain(), ST->getValue(), Base,
8252 Offset, ST->getMask(), ST->getVectorLength()};
8253 FoldingSetNodeID ID;
8254 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
8255 ID.AddInteger(ST->getMemoryVT().getRawBits());
8256 ID.AddInteger(ST->getRawSubclassData());
8257 ID.AddInteger(ST->getPointerInfo().getAddrSpace());
8258 ID.AddInteger(ST->getMemOperand()->getFlags());
8259 void *IP = nullptr;
8260 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
8261 return SDValue(E, 0);
8262
8263 auto *N = newSDNode<VPStoreSDNode>(
8264 dl.getIROrder(), dl.getDebugLoc(), VTs, AM, ST->isTruncatingStore(),
8265 ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand());
8266 createOperands(N, Ops);
8267
8268 CSEMap.InsertNode(N, IP);
8269 InsertNode(N);
8270 SDValue V(N, 0);
8271 NewSDValueDbgMsg(V, "Creating new node: ", this);
8272 return V;
8273 }
8274
getStridedLoadVP(ISD::MemIndexedMode AM,ISD::LoadExtType ExtType,EVT VT,const SDLoc & DL,SDValue Chain,SDValue Ptr,SDValue Offset,SDValue Stride,SDValue Mask,SDValue EVL,MachinePointerInfo PtrInfo,EVT MemVT,Align Alignment,MachineMemOperand::Flags MMOFlags,const AAMDNodes & AAInfo,const MDNode * Ranges,bool IsExpanding)8275 SDValue SelectionDAG::getStridedLoadVP(
8276 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL,
8277 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask,
8278 SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment,
8279 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
8280 const MDNode *Ranges, bool IsExpanding) {
8281 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
8282
8283 MMOFlags |= MachineMemOperand::MOLoad;
8284 assert((MMOFlags & MachineMemOperand::MOStore) == 0);
8285 // If we don't have a PtrInfo, infer the trivial frame index case to simplify
8286 // clients.
8287 if (PtrInfo.V.isNull())
8288 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
8289
8290 uint64_t Size = MemoryLocation::UnknownSize;
8291 MachineFunction &MF = getMachineFunction();
8292 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
8293 Alignment, AAInfo, Ranges);
8294 return getStridedLoadVP(AM, ExtType, VT, DL, Chain, Ptr, Offset, Stride, Mask,
8295 EVL, MemVT, MMO, IsExpanding);
8296 }
8297
getStridedLoadVP(ISD::MemIndexedMode AM,ISD::LoadExtType ExtType,EVT VT,const SDLoc & DL,SDValue Chain,SDValue Ptr,SDValue Offset,SDValue Stride,SDValue Mask,SDValue EVL,EVT MemVT,MachineMemOperand * MMO,bool IsExpanding)8298 SDValue SelectionDAG::getStridedLoadVP(
8299 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL,
8300 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask,
8301 SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding) {
8302 bool Indexed = AM != ISD::UNINDEXED;
8303 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
8304
8305 SDValue Ops[] = {Chain, Ptr, Offset, Stride, Mask, EVL};
8306 SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other)
8307 : getVTList(VT, MVT::Other);
8308 FoldingSetNodeID ID;
8309 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_LOAD, VTs, Ops);
8310 ID.AddInteger(VT.getRawBits());
8311 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedLoadSDNode>(
8312 DL.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
8313 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8314
8315 void *IP = nullptr;
8316 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8317 cast<VPStridedLoadSDNode>(E)->refineAlignment(MMO);
8318 return SDValue(E, 0);
8319 }
8320
8321 auto *N =
8322 newSDNode<VPStridedLoadSDNode>(DL.getIROrder(), DL.getDebugLoc(), VTs, AM,
8323 ExtType, IsExpanding, MemVT, MMO);
8324 createOperands(N, Ops);
8325 CSEMap.InsertNode(N, IP);
8326 InsertNode(N);
8327 SDValue V(N, 0);
8328 NewSDValueDbgMsg(V, "Creating new node: ", this);
8329 return V;
8330 }
8331
getStridedLoadVP(EVT VT,const SDLoc & DL,SDValue Chain,SDValue Ptr,SDValue Stride,SDValue Mask,SDValue EVL,MachinePointerInfo PtrInfo,MaybeAlign Alignment,MachineMemOperand::Flags MMOFlags,const AAMDNodes & AAInfo,const MDNode * Ranges,bool IsExpanding)8332 SDValue SelectionDAG::getStridedLoadVP(
8333 EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr, SDValue Stride,
8334 SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, MaybeAlign Alignment,
8335 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
8336 const MDNode *Ranges, bool IsExpanding) {
8337 SDValue Undef = getUNDEF(Ptr.getValueType());
8338 return getStridedLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, DL, Chain, Ptr,
8339 Undef, Stride, Mask, EVL, PtrInfo, VT, Alignment,
8340 MMOFlags, AAInfo, Ranges, IsExpanding);
8341 }
8342
getStridedLoadVP(EVT VT,const SDLoc & DL,SDValue Chain,SDValue Ptr,SDValue Stride,SDValue Mask,SDValue EVL,MachineMemOperand * MMO,bool IsExpanding)8343 SDValue SelectionDAG::getStridedLoadVP(EVT VT, const SDLoc &DL, SDValue Chain,
8344 SDValue Ptr, SDValue Stride,
8345 SDValue Mask, SDValue EVL,
8346 MachineMemOperand *MMO,
8347 bool IsExpanding) {
8348 SDValue Undef = getUNDEF(Ptr.getValueType());
8349 return getStridedLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, DL, Chain, Ptr,
8350 Undef, Stride, Mask, EVL, VT, MMO, IsExpanding);
8351 }
8352
getExtStridedLoadVP(ISD::LoadExtType ExtType,const SDLoc & DL,EVT VT,SDValue Chain,SDValue Ptr,SDValue Stride,SDValue Mask,SDValue EVL,MachinePointerInfo PtrInfo,EVT MemVT,MaybeAlign Alignment,MachineMemOperand::Flags MMOFlags,const AAMDNodes & AAInfo,bool IsExpanding)8353 SDValue SelectionDAG::getExtStridedLoadVP(
8354 ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain,
8355 SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL,
8356 MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment,
8357 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
8358 bool IsExpanding) {
8359 SDValue Undef = getUNDEF(Ptr.getValueType());
8360 return getStridedLoadVP(ISD::UNINDEXED, ExtType, VT, DL, Chain, Ptr, Undef,
8361 Stride, Mask, EVL, PtrInfo, MemVT, Alignment,
8362 MMOFlags, AAInfo, nullptr, IsExpanding);
8363 }
8364
getExtStridedLoadVP(ISD::LoadExtType ExtType,const SDLoc & DL,EVT VT,SDValue Chain,SDValue Ptr,SDValue Stride,SDValue Mask,SDValue EVL,EVT MemVT,MachineMemOperand * MMO,bool IsExpanding)8365 SDValue SelectionDAG::getExtStridedLoadVP(
8366 ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain,
8367 SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT,
8368 MachineMemOperand *MMO, bool IsExpanding) {
8369 SDValue Undef = getUNDEF(Ptr.getValueType());
8370 return getStridedLoadVP(ISD::UNINDEXED, ExtType, VT, DL, Chain, Ptr, Undef,
8371 Stride, Mask, EVL, MemVT, MMO, IsExpanding);
8372 }
8373
getIndexedStridedLoadVP(SDValue OrigLoad,const SDLoc & DL,SDValue Base,SDValue Offset,ISD::MemIndexedMode AM)8374 SDValue SelectionDAG::getIndexedStridedLoadVP(SDValue OrigLoad, const SDLoc &DL,
8375 SDValue Base, SDValue Offset,
8376 ISD::MemIndexedMode AM) {
8377 auto *SLD = cast<VPStridedLoadSDNode>(OrigLoad);
8378 assert(SLD->getOffset().isUndef() &&
8379 "Strided load is already a indexed load!");
8380 // Don't propagate the invariant or dereferenceable flags.
8381 auto MMOFlags =
8382 SLD->getMemOperand()->getFlags() &
8383 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
8384 return getStridedLoadVP(
8385 AM, SLD->getExtensionType(), OrigLoad.getValueType(), DL, SLD->getChain(),
8386 Base, Offset, SLD->getStride(), SLD->getMask(), SLD->getVectorLength(),
8387 SLD->getPointerInfo(), SLD->getMemoryVT(), SLD->getAlign(), MMOFlags,
8388 SLD->getAAInfo(), nullptr, SLD->isExpandingLoad());
8389 }
8390
getStridedStoreVP(SDValue Chain,const SDLoc & DL,SDValue Val,SDValue Ptr,SDValue Offset,SDValue Stride,SDValue Mask,SDValue EVL,EVT MemVT,MachineMemOperand * MMO,ISD::MemIndexedMode AM,bool IsTruncating,bool IsCompressing)8391 SDValue SelectionDAG::getStridedStoreVP(SDValue Chain, const SDLoc &DL,
8392 SDValue Val, SDValue Ptr,
8393 SDValue Offset, SDValue Stride,
8394 SDValue Mask, SDValue EVL, EVT MemVT,
8395 MachineMemOperand *MMO,
8396 ISD::MemIndexedMode AM,
8397 bool IsTruncating, bool IsCompressing) {
8398 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
8399 bool Indexed = AM != ISD::UNINDEXED;
8400 assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!");
8401 SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other)
8402 : getVTList(MVT::Other);
8403 SDValue Ops[] = {Chain, Val, Ptr, Offset, Stride, Mask, EVL};
8404 FoldingSetNodeID ID;
8405 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops);
8406 ID.AddInteger(MemVT.getRawBits());
8407 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>(
8408 DL.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
8409 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8410 void *IP = nullptr;
8411 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8412 cast<VPStridedStoreSDNode>(E)->refineAlignment(MMO);
8413 return SDValue(E, 0);
8414 }
8415 auto *N = newSDNode<VPStridedStoreSDNode>(DL.getIROrder(), DL.getDebugLoc(),
8416 VTs, AM, IsTruncating,
8417 IsCompressing, MemVT, MMO);
8418 createOperands(N, Ops);
8419
8420 CSEMap.InsertNode(N, IP);
8421 InsertNode(N);
8422 SDValue V(N, 0);
8423 NewSDValueDbgMsg(V, "Creating new node: ", this);
8424 return V;
8425 }
8426
getTruncStridedStoreVP(SDValue Chain,const SDLoc & DL,SDValue Val,SDValue Ptr,SDValue Stride,SDValue Mask,SDValue EVL,MachinePointerInfo PtrInfo,EVT SVT,Align Alignment,MachineMemOperand::Flags MMOFlags,const AAMDNodes & AAInfo,bool IsCompressing)8427 SDValue SelectionDAG::getTruncStridedStoreVP(
8428 SDValue Chain, const SDLoc &DL, SDValue Val, SDValue Ptr, SDValue Stride,
8429 SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT SVT,
8430 Align Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
8431 bool IsCompressing) {
8432 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
8433
8434 MMOFlags |= MachineMemOperand::MOStore;
8435 assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
8436
8437 if (PtrInfo.V.isNull())
8438 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
8439
8440 MachineFunction &MF = getMachineFunction();
8441 MachineMemOperand *MMO = MF.getMachineMemOperand(
8442 PtrInfo, MMOFlags, MemoryLocation::UnknownSize, Alignment, AAInfo);
8443 return getTruncStridedStoreVP(Chain, DL, Val, Ptr, Stride, Mask, EVL, SVT,
8444 MMO, IsCompressing);
8445 }
8446
getTruncStridedStoreVP(SDValue Chain,const SDLoc & DL,SDValue Val,SDValue Ptr,SDValue Stride,SDValue Mask,SDValue EVL,EVT SVT,MachineMemOperand * MMO,bool IsCompressing)8447 SDValue SelectionDAG::getTruncStridedStoreVP(SDValue Chain, const SDLoc &DL,
8448 SDValue Val, SDValue Ptr,
8449 SDValue Stride, SDValue Mask,
8450 SDValue EVL, EVT SVT,
8451 MachineMemOperand *MMO,
8452 bool IsCompressing) {
8453 EVT VT = Val.getValueType();
8454
8455 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
8456 if (VT == SVT)
8457 return getStridedStoreVP(Chain, DL, Val, Ptr, getUNDEF(Ptr.getValueType()),
8458 Stride, Mask, EVL, VT, MMO, ISD::UNINDEXED,
8459 /*IsTruncating*/ false, IsCompressing);
8460
8461 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
8462 "Should only be a truncating store, not extending!");
8463 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!");
8464 assert(VT.isVector() == SVT.isVector() &&
8465 "Cannot use trunc store to convert to or from a vector!");
8466 assert((!VT.isVector() ||
8467 VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
8468 "Cannot use trunc store to change the number of vector elements!");
8469
8470 SDVTList VTs = getVTList(MVT::Other);
8471 SDValue Undef = getUNDEF(Ptr.getValueType());
8472 SDValue Ops[] = {Chain, Val, Ptr, Undef, Stride, Mask, EVL};
8473 FoldingSetNodeID ID;
8474 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops);
8475 ID.AddInteger(SVT.getRawBits());
8476 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>(
8477 DL.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO));
8478 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8479 void *IP = nullptr;
8480 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8481 cast<VPStridedStoreSDNode>(E)->refineAlignment(MMO);
8482 return SDValue(E, 0);
8483 }
8484 auto *N = newSDNode<VPStridedStoreSDNode>(DL.getIROrder(), DL.getDebugLoc(),
8485 VTs, ISD::UNINDEXED, true,
8486 IsCompressing, SVT, MMO);
8487 createOperands(N, Ops);
8488
8489 CSEMap.InsertNode(N, IP);
8490 InsertNode(N);
8491 SDValue V(N, 0);
8492 NewSDValueDbgMsg(V, "Creating new node: ", this);
8493 return V;
8494 }
8495
getIndexedStridedStoreVP(SDValue OrigStore,const SDLoc & DL,SDValue Base,SDValue Offset,ISD::MemIndexedMode AM)8496 SDValue SelectionDAG::getIndexedStridedStoreVP(SDValue OrigStore,
8497 const SDLoc &DL, SDValue Base,
8498 SDValue Offset,
8499 ISD::MemIndexedMode AM) {
8500 auto *SST = cast<VPStridedStoreSDNode>(OrigStore);
8501 assert(SST->getOffset().isUndef() &&
8502 "Strided store is already an indexed store!");
8503 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
8504 SDValue Ops[] = {
8505 SST->getChain(), SST->getValue(), Base, Offset, SST->getStride(),
8506 SST->getMask(), SST->getVectorLength()};
8507 FoldingSetNodeID ID;
8508 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops);
8509 ID.AddInteger(SST->getMemoryVT().getRawBits());
8510 ID.AddInteger(SST->getRawSubclassData());
8511 ID.AddInteger(SST->getPointerInfo().getAddrSpace());
8512 void *IP = nullptr;
8513 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
8514 return SDValue(E, 0);
8515
8516 auto *N = newSDNode<VPStridedStoreSDNode>(
8517 DL.getIROrder(), DL.getDebugLoc(), VTs, AM, SST->isTruncatingStore(),
8518 SST->isCompressingStore(), SST->getMemoryVT(), SST->getMemOperand());
8519 createOperands(N, Ops);
8520
8521 CSEMap.InsertNode(N, IP);
8522 InsertNode(N);
8523 SDValue V(N, 0);
8524 NewSDValueDbgMsg(V, "Creating new node: ", this);
8525 return V;
8526 }
8527
getGatherVP(SDVTList VTs,EVT VT,const SDLoc & dl,ArrayRef<SDValue> Ops,MachineMemOperand * MMO,ISD::MemIndexType IndexType)8528 SDValue SelectionDAG::getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl,
8529 ArrayRef<SDValue> Ops, MachineMemOperand *MMO,
8530 ISD::MemIndexType IndexType) {
8531 assert(Ops.size() == 6 && "Incompatible number of operands");
8532
8533 FoldingSetNodeID ID;
8534 AddNodeIDNode(ID, ISD::VP_GATHER, VTs, Ops);
8535 ID.AddInteger(VT.getRawBits());
8536 ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>(
8537 dl.getIROrder(), VTs, VT, MMO, IndexType));
8538 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8539 ID.AddInteger(MMO->getFlags());
8540 void *IP = nullptr;
8541 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8542 cast<VPGatherSDNode>(E)->refineAlignment(MMO);
8543 return SDValue(E, 0);
8544 }
8545
8546 auto *N = newSDNode<VPGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
8547 VT, MMO, IndexType);
8548 createOperands(N, Ops);
8549
8550 assert(N->getMask().getValueType().getVectorElementCount() ==
8551 N->getValueType(0).getVectorElementCount() &&
8552 "Vector width mismatch between mask and data");
8553 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
8554 N->getValueType(0).getVectorElementCount().isScalable() &&
8555 "Scalable flags of index and data do not match");
8556 assert(ElementCount::isKnownGE(
8557 N->getIndex().getValueType().getVectorElementCount(),
8558 N->getValueType(0).getVectorElementCount()) &&
8559 "Vector width mismatch between index and data");
8560 assert(isa<ConstantSDNode>(N->getScale()) &&
8561 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
8562 "Scale should be a constant power of 2");
8563
8564 CSEMap.InsertNode(N, IP);
8565 InsertNode(N);
8566 SDValue V(N, 0);
8567 NewSDValueDbgMsg(V, "Creating new node: ", this);
8568 return V;
8569 }
8570
getScatterVP(SDVTList VTs,EVT VT,const SDLoc & dl,ArrayRef<SDValue> Ops,MachineMemOperand * MMO,ISD::MemIndexType IndexType)8571 SDValue SelectionDAG::getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl,
8572 ArrayRef<SDValue> Ops,
8573 MachineMemOperand *MMO,
8574 ISD::MemIndexType IndexType) {
8575 assert(Ops.size() == 7 && "Incompatible number of operands");
8576
8577 FoldingSetNodeID ID;
8578 AddNodeIDNode(ID, ISD::VP_SCATTER, VTs, Ops);
8579 ID.AddInteger(VT.getRawBits());
8580 ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>(
8581 dl.getIROrder(), VTs, VT, MMO, IndexType));
8582 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8583 ID.AddInteger(MMO->getFlags());
8584 void *IP = nullptr;
8585 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8586 cast<VPScatterSDNode>(E)->refineAlignment(MMO);
8587 return SDValue(E, 0);
8588 }
8589 auto *N = newSDNode<VPScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
8590 VT, MMO, IndexType);
8591 createOperands(N, Ops);
8592
8593 assert(N->getMask().getValueType().getVectorElementCount() ==
8594 N->getValue().getValueType().getVectorElementCount() &&
8595 "Vector width mismatch between mask and data");
8596 assert(
8597 N->getIndex().getValueType().getVectorElementCount().isScalable() ==
8598 N->getValue().getValueType().getVectorElementCount().isScalable() &&
8599 "Scalable flags of index and data do not match");
8600 assert(ElementCount::isKnownGE(
8601 N->getIndex().getValueType().getVectorElementCount(),
8602 N->getValue().getValueType().getVectorElementCount()) &&
8603 "Vector width mismatch between index and data");
8604 assert(isa<ConstantSDNode>(N->getScale()) &&
8605 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
8606 "Scale should be a constant power of 2");
8607
8608 CSEMap.InsertNode(N, IP);
8609 InsertNode(N);
8610 SDValue V(N, 0);
8611 NewSDValueDbgMsg(V, "Creating new node: ", this);
8612 return V;
8613 }
8614
getMaskedLoad(EVT VT,const SDLoc & dl,SDValue Chain,SDValue Base,SDValue Offset,SDValue Mask,SDValue PassThru,EVT MemVT,MachineMemOperand * MMO,ISD::MemIndexedMode AM,ISD::LoadExtType ExtTy,bool isExpanding)8615 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
8616 SDValue Base, SDValue Offset, SDValue Mask,
8617 SDValue PassThru, EVT MemVT,
8618 MachineMemOperand *MMO,
8619 ISD::MemIndexedMode AM,
8620 ISD::LoadExtType ExtTy, bool isExpanding) {
8621 bool Indexed = AM != ISD::UNINDEXED;
8622 assert((Indexed || Offset.isUndef()) &&
8623 "Unindexed masked load with an offset!");
8624 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other)
8625 : getVTList(VT, MVT::Other);
8626 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru};
8627 FoldingSetNodeID ID;
8628 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
8629 ID.AddInteger(MemVT.getRawBits());
8630 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
8631 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
8632 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8633 ID.AddInteger(MMO->getFlags());
8634 void *IP = nullptr;
8635 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8636 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
8637 return SDValue(E, 0);
8638 }
8639 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
8640 AM, ExtTy, isExpanding, MemVT, MMO);
8641 createOperands(N, Ops);
8642
8643 CSEMap.InsertNode(N, IP);
8644 InsertNode(N);
8645 SDValue V(N, 0);
8646 NewSDValueDbgMsg(V, "Creating new node: ", this);
8647 return V;
8648 }
8649
getIndexedMaskedLoad(SDValue OrigLoad,const SDLoc & dl,SDValue Base,SDValue Offset,ISD::MemIndexedMode AM)8650 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl,
8651 SDValue Base, SDValue Offset,
8652 ISD::MemIndexedMode AM) {
8653 MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad);
8654 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!");
8655 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base,
8656 Offset, LD->getMask(), LD->getPassThru(),
8657 LD->getMemoryVT(), LD->getMemOperand(), AM,
8658 LD->getExtensionType(), LD->isExpandingLoad());
8659 }
8660
getMaskedStore(SDValue Chain,const SDLoc & dl,SDValue Val,SDValue Base,SDValue Offset,SDValue Mask,EVT MemVT,MachineMemOperand * MMO,ISD::MemIndexedMode AM,bool IsTruncating,bool IsCompressing)8661 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
8662 SDValue Val, SDValue Base, SDValue Offset,
8663 SDValue Mask, EVT MemVT,
8664 MachineMemOperand *MMO,
8665 ISD::MemIndexedMode AM, bool IsTruncating,
8666 bool IsCompressing) {
8667 assert(Chain.getValueType() == MVT::Other &&
8668 "Invalid chain type");
8669 bool Indexed = AM != ISD::UNINDEXED;
8670 assert((Indexed || Offset.isUndef()) &&
8671 "Unindexed masked store with an offset!");
8672 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other)
8673 : getVTList(MVT::Other);
8674 SDValue Ops[] = {Chain, Val, Base, Offset, Mask};
8675 FoldingSetNodeID ID;
8676 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
8677 ID.AddInteger(MemVT.getRawBits());
8678 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
8679 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
8680 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8681 ID.AddInteger(MMO->getFlags());
8682 void *IP = nullptr;
8683 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8684 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
8685 return SDValue(E, 0);
8686 }
8687 auto *N =
8688 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
8689 IsTruncating, IsCompressing, MemVT, MMO);
8690 createOperands(N, Ops);
8691
8692 CSEMap.InsertNode(N, IP);
8693 InsertNode(N);
8694 SDValue V(N, 0);
8695 NewSDValueDbgMsg(V, "Creating new node: ", this);
8696 return V;
8697 }
8698
getIndexedMaskedStore(SDValue OrigStore,const SDLoc & dl,SDValue Base,SDValue Offset,ISD::MemIndexedMode AM)8699 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl,
8700 SDValue Base, SDValue Offset,
8701 ISD::MemIndexedMode AM) {
8702 MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore);
8703 assert(ST->getOffset().isUndef() &&
8704 "Masked store is already a indexed store!");
8705 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
8706 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
8707 AM, ST->isTruncatingStore(), ST->isCompressingStore());
8708 }
8709
getMaskedGather(SDVTList VTs,EVT MemVT,const SDLoc & dl,ArrayRef<SDValue> Ops,MachineMemOperand * MMO,ISD::MemIndexType IndexType,ISD::LoadExtType ExtTy)8710 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl,
8711 ArrayRef<SDValue> Ops,
8712 MachineMemOperand *MMO,
8713 ISD::MemIndexType IndexType,
8714 ISD::LoadExtType ExtTy) {
8715 assert(Ops.size() == 6 && "Incompatible number of operands");
8716
8717 FoldingSetNodeID ID;
8718 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
8719 ID.AddInteger(MemVT.getRawBits());
8720 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
8721 dl.getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy));
8722 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8723 ID.AddInteger(MMO->getFlags());
8724 void *IP = nullptr;
8725 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8726 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
8727 return SDValue(E, 0);
8728 }
8729
8730 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
8731 VTs, MemVT, MMO, IndexType, ExtTy);
8732 createOperands(N, Ops);
8733
8734 assert(N->getPassThru().getValueType() == N->getValueType(0) &&
8735 "Incompatible type of the PassThru value in MaskedGatherSDNode");
8736 assert(N->getMask().getValueType().getVectorElementCount() ==
8737 N->getValueType(0).getVectorElementCount() &&
8738 "Vector width mismatch between mask and data");
8739 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
8740 N->getValueType(0).getVectorElementCount().isScalable() &&
8741 "Scalable flags of index and data do not match");
8742 assert(ElementCount::isKnownGE(
8743 N->getIndex().getValueType().getVectorElementCount(),
8744 N->getValueType(0).getVectorElementCount()) &&
8745 "Vector width mismatch between index and data");
8746 assert(isa<ConstantSDNode>(N->getScale()) &&
8747 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
8748 "Scale should be a constant power of 2");
8749
8750 CSEMap.InsertNode(N, IP);
8751 InsertNode(N);
8752 SDValue V(N, 0);
8753 NewSDValueDbgMsg(V, "Creating new node: ", this);
8754 return V;
8755 }
8756
getMaskedScatter(SDVTList VTs,EVT MemVT,const SDLoc & dl,ArrayRef<SDValue> Ops,MachineMemOperand * MMO,ISD::MemIndexType IndexType,bool IsTrunc)8757 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl,
8758 ArrayRef<SDValue> Ops,
8759 MachineMemOperand *MMO,
8760 ISD::MemIndexType IndexType,
8761 bool IsTrunc) {
8762 assert(Ops.size() == 6 && "Incompatible number of operands");
8763
8764 FoldingSetNodeID ID;
8765 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
8766 ID.AddInteger(MemVT.getRawBits());
8767 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
8768 dl.getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc));
8769 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8770 ID.AddInteger(MMO->getFlags());
8771 void *IP = nullptr;
8772 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8773 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
8774 return SDValue(E, 0);
8775 }
8776
8777 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
8778 VTs, MemVT, MMO, IndexType, IsTrunc);
8779 createOperands(N, Ops);
8780
8781 assert(N->getMask().getValueType().getVectorElementCount() ==
8782 N->getValue().getValueType().getVectorElementCount() &&
8783 "Vector width mismatch between mask and data");
8784 assert(
8785 N->getIndex().getValueType().getVectorElementCount().isScalable() ==
8786 N->getValue().getValueType().getVectorElementCount().isScalable() &&
8787 "Scalable flags of index and data do not match");
8788 assert(ElementCount::isKnownGE(
8789 N->getIndex().getValueType().getVectorElementCount(),
8790 N->getValue().getValueType().getVectorElementCount()) &&
8791 "Vector width mismatch between index and data");
8792 assert(isa<ConstantSDNode>(N->getScale()) &&
8793 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
8794 "Scale should be a constant power of 2");
8795
8796 CSEMap.InsertNode(N, IP);
8797 InsertNode(N);
8798 SDValue V(N, 0);
8799 NewSDValueDbgMsg(V, "Creating new node: ", this);
8800 return V;
8801 }
8802
simplifySelect(SDValue Cond,SDValue T,SDValue F)8803 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
8804 // select undef, T, F --> T (if T is a constant), otherwise F
8805 // select, ?, undef, F --> F
8806 // select, ?, T, undef --> T
8807 if (Cond.isUndef())
8808 return isConstantValueOfAnyType(T) ? T : F;
8809 if (T.isUndef())
8810 return F;
8811 if (F.isUndef())
8812 return T;
8813
8814 // select true, T, F --> T
8815 // select false, T, F --> F
8816 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
8817 return CondC->isZero() ? F : T;
8818
8819 // TODO: This should simplify VSELECT with constant condition using something
8820 // like this (but check boolean contents to be complete?):
8821 // if (ISD::isBuildVectorAllOnes(Cond.getNode()))
8822 // return T;
8823 // if (ISD::isBuildVectorAllZeros(Cond.getNode()))
8824 // return F;
8825
8826 // select ?, T, T --> T
8827 if (T == F)
8828 return T;
8829
8830 return SDValue();
8831 }
8832
simplifyShift(SDValue X,SDValue Y)8833 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
8834 // shift undef, Y --> 0 (can always assume that the undef value is 0)
8835 if (X.isUndef())
8836 return getConstant(0, SDLoc(X.getNode()), X.getValueType());
8837 // shift X, undef --> undef (because it may shift by the bitwidth)
8838 if (Y.isUndef())
8839 return getUNDEF(X.getValueType());
8840
8841 // shift 0, Y --> 0
8842 // shift X, 0 --> X
8843 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
8844 return X;
8845
8846 // shift X, C >= bitwidth(X) --> undef
8847 // All vector elements must be too big (or undef) to avoid partial undefs.
8848 auto isShiftTooBig = [X](ConstantSDNode *Val) {
8849 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
8850 };
8851 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
8852 return getUNDEF(X.getValueType());
8853
8854 return SDValue();
8855 }
8856
simplifyFPBinop(unsigned Opcode,SDValue X,SDValue Y,SDNodeFlags Flags)8857 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y,
8858 SDNodeFlags Flags) {
8859 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
8860 // (an undef operand can be chosen to be Nan/Inf), then the result of this
8861 // operation is poison. That result can be relaxed to undef.
8862 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true);
8863 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
8864 bool HasNan = (XC && XC->getValueAPF().isNaN()) ||
8865 (YC && YC->getValueAPF().isNaN());
8866 bool HasInf = (XC && XC->getValueAPF().isInfinity()) ||
8867 (YC && YC->getValueAPF().isInfinity());
8868
8869 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef()))
8870 return getUNDEF(X.getValueType());
8871
8872 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef()))
8873 return getUNDEF(X.getValueType());
8874
8875 if (!YC)
8876 return SDValue();
8877
8878 // X + -0.0 --> X
8879 if (Opcode == ISD::FADD)
8880 if (YC->getValueAPF().isNegZero())
8881 return X;
8882
8883 // X - +0.0 --> X
8884 if (Opcode == ISD::FSUB)
8885 if (YC->getValueAPF().isPosZero())
8886 return X;
8887
8888 // X * 1.0 --> X
8889 // X / 1.0 --> X
8890 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
8891 if (YC->getValueAPF().isExactlyValue(1.0))
8892 return X;
8893
8894 // X * 0.0 --> 0.0
8895 if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros())
8896 if (YC->getValueAPF().isZero())
8897 return getConstantFP(0.0, SDLoc(Y), Y.getValueType());
8898
8899 return SDValue();
8900 }
8901
getVAArg(EVT VT,const SDLoc & dl,SDValue Chain,SDValue Ptr,SDValue SV,unsigned Align)8902 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
8903 SDValue Ptr, SDValue SV, unsigned Align) {
8904 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
8905 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
8906 }
8907
getNode(unsigned Opcode,const SDLoc & DL,EVT VT,ArrayRef<SDUse> Ops)8908 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8909 ArrayRef<SDUse> Ops) {
8910 switch (Ops.size()) {
8911 case 0: return getNode(Opcode, DL, VT);
8912 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
8913 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
8914 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
8915 default: break;
8916 }
8917
8918 // Copy from an SDUse array into an SDValue array for use with
8919 // the regular getNode logic.
8920 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
8921 return getNode(Opcode, DL, VT, NewOps);
8922 }
8923
getNode(unsigned Opcode,const SDLoc & DL,EVT VT,ArrayRef<SDValue> Ops)8924 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8925 ArrayRef<SDValue> Ops) {
8926 SDNodeFlags Flags;
8927 if (Inserter)
8928 Flags = Inserter->getFlags();
8929 return getNode(Opcode, DL, VT, Ops, Flags);
8930 }
8931
getNode(unsigned Opcode,const SDLoc & DL,EVT VT,ArrayRef<SDValue> Ops,const SDNodeFlags Flags)8932 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8933 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
8934 unsigned NumOps = Ops.size();
8935 switch (NumOps) {
8936 case 0: return getNode(Opcode, DL, VT);
8937 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
8938 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
8939 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
8940 default: break;
8941 }
8942
8943 #ifndef NDEBUG
8944 for (const auto &Op : Ops)
8945 assert(Op.getOpcode() != ISD::DELETED_NODE &&
8946 "Operand is DELETED_NODE!");
8947 #endif
8948
8949 switch (Opcode) {
8950 default: break;
8951 case ISD::BUILD_VECTOR:
8952 // Attempt to simplify BUILD_VECTOR.
8953 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
8954 return V;
8955 break;
8956 case ISD::CONCAT_VECTORS:
8957 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
8958 return V;
8959 break;
8960 case ISD::SELECT_CC:
8961 assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
8962 assert(Ops[0].getValueType() == Ops[1].getValueType() &&
8963 "LHS and RHS of condition must have same type!");
8964 assert(Ops[2].getValueType() == Ops[3].getValueType() &&
8965 "True and False arms of SelectCC must have same type!");
8966 assert(Ops[2].getValueType() == VT &&
8967 "select_cc node must be of same type as true and false value!");
8968 assert((!Ops[0].getValueType().isVector() ||
8969 Ops[0].getValueType().getVectorElementCount() ==
8970 VT.getVectorElementCount()) &&
8971 "Expected select_cc with vector result to have the same sized "
8972 "comparison type!");
8973 break;
8974 case ISD::BR_CC:
8975 assert(NumOps == 5 && "BR_CC takes 5 operands!");
8976 assert(Ops[2].getValueType() == Ops[3].getValueType() &&
8977 "LHS/RHS of comparison should match types!");
8978 break;
8979 case ISD::VP_ADD:
8980 case ISD::VP_SUB:
8981 // If it is VP_ADD/VP_SUB mask operation then turn it to VP_XOR
8982 if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
8983 Opcode = ISD::VP_XOR;
8984 break;
8985 case ISD::VP_MUL:
8986 // If it is VP_MUL mask operation then turn it to VP_AND
8987 if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
8988 Opcode = ISD::VP_AND;
8989 break;
8990 case ISD::VP_REDUCE_MUL:
8991 // If it is VP_REDUCE_MUL mask operation then turn it to VP_REDUCE_AND
8992 if (VT == MVT::i1)
8993 Opcode = ISD::VP_REDUCE_AND;
8994 break;
8995 case ISD::VP_REDUCE_ADD:
8996 // If it is VP_REDUCE_ADD mask operation then turn it to VP_REDUCE_XOR
8997 if (VT == MVT::i1)
8998 Opcode = ISD::VP_REDUCE_XOR;
8999 break;
9000 case ISD::VP_REDUCE_SMAX:
9001 case ISD::VP_REDUCE_UMIN:
9002 // If it is VP_REDUCE_SMAX/VP_REDUCE_UMIN mask operation then turn it to
9003 // VP_REDUCE_AND.
9004 if (VT == MVT::i1)
9005 Opcode = ISD::VP_REDUCE_AND;
9006 break;
9007 case ISD::VP_REDUCE_SMIN:
9008 case ISD::VP_REDUCE_UMAX:
9009 // If it is VP_REDUCE_SMIN/VP_REDUCE_UMAX mask operation then turn it to
9010 // VP_REDUCE_OR.
9011 if (VT == MVT::i1)
9012 Opcode = ISD::VP_REDUCE_OR;
9013 break;
9014 }
9015
9016 // Memoize nodes.
9017 SDNode *N;
9018 SDVTList VTs = getVTList(VT);
9019
9020 if (VT != MVT::Glue) {
9021 FoldingSetNodeID ID;
9022 AddNodeIDNode(ID, Opcode, VTs, Ops);
9023 void *IP = nullptr;
9024
9025 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
9026 return SDValue(E, 0);
9027
9028 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
9029 createOperands(N, Ops);
9030
9031 CSEMap.InsertNode(N, IP);
9032 } else {
9033 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
9034 createOperands(N, Ops);
9035 }
9036
9037 N->setFlags(Flags);
9038 InsertNode(N);
9039 SDValue V(N, 0);
9040 NewSDValueDbgMsg(V, "Creating new node: ", this);
9041 return V;
9042 }
9043
getNode(unsigned Opcode,const SDLoc & DL,ArrayRef<EVT> ResultTys,ArrayRef<SDValue> Ops)9044 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
9045 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
9046 return getNode(Opcode, DL, getVTList(ResultTys), Ops);
9047 }
9048
getNode(unsigned Opcode,const SDLoc & DL,SDVTList VTList,ArrayRef<SDValue> Ops)9049 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
9050 ArrayRef<SDValue> Ops) {
9051 SDNodeFlags Flags;
9052 if (Inserter)
9053 Flags = Inserter->getFlags();
9054 return getNode(Opcode, DL, VTList, Ops, Flags);
9055 }
9056
getNode(unsigned Opcode,const SDLoc & DL,SDVTList VTList,ArrayRef<SDValue> Ops,const SDNodeFlags Flags)9057 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
9058 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
9059 if (VTList.NumVTs == 1)
9060 return getNode(Opcode, DL, VTList.VTs[0], Ops, Flags);
9061
9062 #ifndef NDEBUG
9063 for (const auto &Op : Ops)
9064 assert(Op.getOpcode() != ISD::DELETED_NODE &&
9065 "Operand is DELETED_NODE!");
9066 #endif
9067
9068 switch (Opcode) {
9069 case ISD::SADDO:
9070 case ISD::UADDO:
9071 case ISD::SSUBO:
9072 case ISD::USUBO: {
9073 assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
9074 "Invalid add/sub overflow op!");
9075 assert(VTList.VTs[0].isInteger() && VTList.VTs[1].isInteger() &&
9076 Ops[0].getValueType() == Ops[1].getValueType() &&
9077 Ops[0].getValueType() == VTList.VTs[0] &&
9078 "Binary operator types must match!");
9079 SDValue N1 = Ops[0], N2 = Ops[1];
9080 canonicalizeCommutativeBinop(Opcode, N1, N2);
9081
9082 // (X +- 0) -> X with zero-overflow.
9083 ConstantSDNode *N2CV = isConstOrConstSplat(N2, /*AllowUndefs*/ false,
9084 /*AllowTruncation*/ true);
9085 if (N2CV && N2CV->isZero()) {
9086 SDValue ZeroOverFlow = getConstant(0, DL, VTList.VTs[1]);
9087 return getNode(ISD::MERGE_VALUES, DL, VTList, {N1, ZeroOverFlow}, Flags);
9088 }
9089 break;
9090 }
9091 case ISD::SMUL_LOHI:
9092 case ISD::UMUL_LOHI: {
9093 assert(VTList.NumVTs == 2 && Ops.size() == 2 && "Invalid mul lo/hi op!");
9094 assert(VTList.VTs[0].isInteger() && VTList.VTs[0] == VTList.VTs[1] &&
9095 VTList.VTs[0] == Ops[0].getValueType() &&
9096 VTList.VTs[0] == Ops[1].getValueType() &&
9097 "Binary operator types must match!");
9098 break;
9099 }
9100 case ISD::STRICT_FP_EXTEND:
9101 assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
9102 "Invalid STRICT_FP_EXTEND!");
9103 assert(VTList.VTs[0].isFloatingPoint() &&
9104 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!");
9105 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
9106 "STRICT_FP_EXTEND result type should be vector iff the operand "
9107 "type is vector!");
9108 assert((!VTList.VTs[0].isVector() ||
9109 VTList.VTs[0].getVectorNumElements() ==
9110 Ops[1].getValueType().getVectorNumElements()) &&
9111 "Vector element count mismatch!");
9112 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) &&
9113 "Invalid fpext node, dst <= src!");
9114 break;
9115 case ISD::STRICT_FP_ROUND:
9116 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!");
9117 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
9118 "STRICT_FP_ROUND result type should be vector iff the operand "
9119 "type is vector!");
9120 assert((!VTList.VTs[0].isVector() ||
9121 VTList.VTs[0].getVectorNumElements() ==
9122 Ops[1].getValueType().getVectorNumElements()) &&
9123 "Vector element count mismatch!");
9124 assert(VTList.VTs[0].isFloatingPoint() &&
9125 Ops[1].getValueType().isFloatingPoint() &&
9126 VTList.VTs[0].bitsLT(Ops[1].getValueType()) &&
9127 isa<ConstantSDNode>(Ops[2]) &&
9128 (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 ||
9129 cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) &&
9130 "Invalid STRICT_FP_ROUND!");
9131 break;
9132 #if 0
9133 // FIXME: figure out how to safely handle things like
9134 // int foo(int x) { return 1 << (x & 255); }
9135 // int bar() { return foo(256); }
9136 case ISD::SRA_PARTS:
9137 case ISD::SRL_PARTS:
9138 case ISD::SHL_PARTS:
9139 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
9140 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
9141 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
9142 else if (N3.getOpcode() == ISD::AND)
9143 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
9144 // If the and is only masking out bits that cannot effect the shift,
9145 // eliminate the and.
9146 unsigned NumBits = VT.getScalarSizeInBits()*2;
9147 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
9148 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
9149 }
9150 break;
9151 #endif
9152 }
9153
9154 // Memoize the node unless it returns a flag.
9155 SDNode *N;
9156 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
9157 FoldingSetNodeID ID;
9158 AddNodeIDNode(ID, Opcode, VTList, Ops);
9159 void *IP = nullptr;
9160 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
9161 return SDValue(E, 0);
9162
9163 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
9164 createOperands(N, Ops);
9165 CSEMap.InsertNode(N, IP);
9166 } else {
9167 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
9168 createOperands(N, Ops);
9169 }
9170
9171 N->setFlags(Flags);
9172 InsertNode(N);
9173 SDValue V(N, 0);
9174 NewSDValueDbgMsg(V, "Creating new node: ", this);
9175 return V;
9176 }
9177
getNode(unsigned Opcode,const SDLoc & DL,SDVTList VTList)9178 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
9179 SDVTList VTList) {
9180 return getNode(Opcode, DL, VTList, None);
9181 }
9182
getNode(unsigned Opcode,const SDLoc & DL,SDVTList VTList,SDValue N1)9183 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
9184 SDValue N1) {
9185 SDValue Ops[] = { N1 };
9186 return getNode(Opcode, DL, VTList, Ops);
9187 }
9188
getNode(unsigned Opcode,const SDLoc & DL,SDVTList VTList,SDValue N1,SDValue N2)9189 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
9190 SDValue N1, SDValue N2) {
9191 SDValue Ops[] = { N1, N2 };
9192 return getNode(Opcode, DL, VTList, Ops);
9193 }
9194
getNode(unsigned Opcode,const SDLoc & DL,SDVTList VTList,SDValue N1,SDValue N2,SDValue N3)9195 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
9196 SDValue N1, SDValue N2, SDValue N3) {
9197 SDValue Ops[] = { N1, N2, N3 };
9198 return getNode(Opcode, DL, VTList, Ops);
9199 }
9200
getNode(unsigned Opcode,const SDLoc & DL,SDVTList VTList,SDValue N1,SDValue N2,SDValue N3,SDValue N4)9201 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
9202 SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
9203 SDValue Ops[] = { N1, N2, N3, N4 };
9204 return getNode(Opcode, DL, VTList, Ops);
9205 }
9206
getNode(unsigned Opcode,const SDLoc & DL,SDVTList VTList,SDValue N1,SDValue N2,SDValue N3,SDValue N4,SDValue N5)9207 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
9208 SDValue N1, SDValue N2, SDValue N3, SDValue N4,
9209 SDValue N5) {
9210 SDValue Ops[] = { N1, N2, N3, N4, N5 };
9211 return getNode(Opcode, DL, VTList, Ops);
9212 }
9213
getVTList(EVT VT)9214 SDVTList SelectionDAG::getVTList(EVT VT) {
9215 return makeVTList(SDNode::getValueTypeList(VT), 1);
9216 }
9217
getVTList(EVT VT1,EVT VT2)9218 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
9219 FoldingSetNodeID ID;
9220 ID.AddInteger(2U);
9221 ID.AddInteger(VT1.getRawBits());
9222 ID.AddInteger(VT2.getRawBits());
9223
9224 void *IP = nullptr;
9225 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
9226 if (!Result) {
9227 EVT *Array = Allocator.Allocate<EVT>(2);
9228 Array[0] = VT1;
9229 Array[1] = VT2;
9230 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
9231 VTListMap.InsertNode(Result, IP);
9232 }
9233 return Result->getSDVTList();
9234 }
9235
getVTList(EVT VT1,EVT VT2,EVT VT3)9236 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
9237 FoldingSetNodeID ID;
9238 ID.AddInteger(3U);
9239 ID.AddInteger(VT1.getRawBits());
9240 ID.AddInteger(VT2.getRawBits());
9241 ID.AddInteger(VT3.getRawBits());
9242
9243 void *IP = nullptr;
9244 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
9245 if (!Result) {
9246 EVT *Array = Allocator.Allocate<EVT>(3);
9247 Array[0] = VT1;
9248 Array[1] = VT2;
9249 Array[2] = VT3;
9250 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
9251 VTListMap.InsertNode(Result, IP);
9252 }
9253 return Result->getSDVTList();
9254 }
9255
getVTList(EVT VT1,EVT VT2,EVT VT3,EVT VT4)9256 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
9257 FoldingSetNodeID ID;
9258 ID.AddInteger(4U);
9259 ID.AddInteger(VT1.getRawBits());
9260 ID.AddInteger(VT2.getRawBits());
9261 ID.AddInteger(VT3.getRawBits());
9262 ID.AddInteger(VT4.getRawBits());
9263
9264 void *IP = nullptr;
9265 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
9266 if (!Result) {
9267 EVT *Array = Allocator.Allocate<EVT>(4);
9268 Array[0] = VT1;
9269 Array[1] = VT2;
9270 Array[2] = VT3;
9271 Array[3] = VT4;
9272 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
9273 VTListMap.InsertNode(Result, IP);
9274 }
9275 return Result->getSDVTList();
9276 }
9277
getVTList(ArrayRef<EVT> VTs)9278 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
9279 unsigned NumVTs = VTs.size();
9280 FoldingSetNodeID ID;
9281 ID.AddInteger(NumVTs);
9282 for (unsigned index = 0; index < NumVTs; index++) {
9283 ID.AddInteger(VTs[index].getRawBits());
9284 }
9285
9286 void *IP = nullptr;
9287 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
9288 if (!Result) {
9289 EVT *Array = Allocator.Allocate<EVT>(NumVTs);
9290 llvm::copy(VTs, Array);
9291 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
9292 VTListMap.InsertNode(Result, IP);
9293 }
9294 return Result->getSDVTList();
9295 }
9296
9297
9298 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
9299 /// specified operands. If the resultant node already exists in the DAG,
9300 /// this does not modify the specified node, instead it returns the node that
9301 /// already exists. If the resultant node does not exist in the DAG, the
9302 /// input node is returned. As a degenerate case, if you specify the same
9303 /// input operands as the node already has, the input node is returned.
UpdateNodeOperands(SDNode * N,SDValue Op)9304 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
9305 assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
9306
9307 // Check to see if there is no change.
9308 if (Op == N->getOperand(0)) return N;
9309
9310 // See if the modified node already exists.
9311 void *InsertPos = nullptr;
9312 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
9313 return Existing;
9314
9315 // Nope it doesn't. Remove the node from its current place in the maps.
9316 if (InsertPos)
9317 if (!RemoveNodeFromCSEMaps(N))
9318 InsertPos = nullptr;
9319
9320 // Now we update the operands.
9321 N->OperandList[0].set(Op);
9322
9323 updateDivergence(N);
9324 // If this gets put into a CSE map, add it.
9325 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
9326 return N;
9327 }
9328
UpdateNodeOperands(SDNode * N,SDValue Op1,SDValue Op2)9329 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
9330 assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
9331
9332 // Check to see if there is no change.
9333 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
9334 return N; // No operands changed, just return the input node.
9335
9336 // See if the modified node already exists.
9337 void *InsertPos = nullptr;
9338 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
9339 return Existing;
9340
9341 // Nope it doesn't. Remove the node from its current place in the maps.
9342 if (InsertPos)
9343 if (!RemoveNodeFromCSEMaps(N))
9344 InsertPos = nullptr;
9345
9346 // Now we update the operands.
9347 if (N->OperandList[0] != Op1)
9348 N->OperandList[0].set(Op1);
9349 if (N->OperandList[1] != Op2)
9350 N->OperandList[1].set(Op2);
9351
9352 updateDivergence(N);
9353 // If this gets put into a CSE map, add it.
9354 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
9355 return N;
9356 }
9357
9358 SDNode *SelectionDAG::
UpdateNodeOperands(SDNode * N,SDValue Op1,SDValue Op2,SDValue Op3)9359 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
9360 SDValue Ops[] = { Op1, Op2, Op3 };
9361 return UpdateNodeOperands(N, Ops);
9362 }
9363
9364 SDNode *SelectionDAG::
UpdateNodeOperands(SDNode * N,SDValue Op1,SDValue Op2,SDValue Op3,SDValue Op4)9365 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
9366 SDValue Op3, SDValue Op4) {
9367 SDValue Ops[] = { Op1, Op2, Op3, Op4 };
9368 return UpdateNodeOperands(N, Ops);
9369 }
9370
9371 SDNode *SelectionDAG::
UpdateNodeOperands(SDNode * N,SDValue Op1,SDValue Op2,SDValue Op3,SDValue Op4,SDValue Op5)9372 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
9373 SDValue Op3, SDValue Op4, SDValue Op5) {
9374 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
9375 return UpdateNodeOperands(N, Ops);
9376 }
9377
9378 SDNode *SelectionDAG::
UpdateNodeOperands(SDNode * N,ArrayRef<SDValue> Ops)9379 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
9380 unsigned NumOps = Ops.size();
9381 assert(N->getNumOperands() == NumOps &&
9382 "Update with wrong number of operands");
9383
9384 // If no operands changed just return the input node.
9385 if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
9386 return N;
9387
9388 // See if the modified node already exists.
9389 void *InsertPos = nullptr;
9390 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
9391 return Existing;
9392
9393 // Nope it doesn't. Remove the node from its current place in the maps.
9394 if (InsertPos)
9395 if (!RemoveNodeFromCSEMaps(N))
9396 InsertPos = nullptr;
9397
9398 // Now we update the operands.
9399 for (unsigned i = 0; i != NumOps; ++i)
9400 if (N->OperandList[i] != Ops[i])
9401 N->OperandList[i].set(Ops[i]);
9402
9403 updateDivergence(N);
9404 // If this gets put into a CSE map, add it.
9405 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
9406 return N;
9407 }
9408
9409 /// DropOperands - Release the operands and set this node to have
9410 /// zero operands.
DropOperands()9411 void SDNode::DropOperands() {
9412 // Unlike the code in MorphNodeTo that does this, we don't need to
9413 // watch for dead nodes here.
9414 for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
9415 SDUse &Use = *I++;
9416 Use.set(SDValue());
9417 }
9418 }
9419
setNodeMemRefs(MachineSDNode * N,ArrayRef<MachineMemOperand * > NewMemRefs)9420 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
9421 ArrayRef<MachineMemOperand *> NewMemRefs) {
9422 if (NewMemRefs.empty()) {
9423 N->clearMemRefs();
9424 return;
9425 }
9426
9427 // Check if we can avoid allocating by storing a single reference directly.
9428 if (NewMemRefs.size() == 1) {
9429 N->MemRefs = NewMemRefs[0];
9430 N->NumMemRefs = 1;
9431 return;
9432 }
9433
9434 MachineMemOperand **MemRefsBuffer =
9435 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
9436 llvm::copy(NewMemRefs, MemRefsBuffer);
9437 N->MemRefs = MemRefsBuffer;
9438 N->NumMemRefs = static_cast<int>(NewMemRefs.size());
9439 }
9440
9441 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
9442 /// machine opcode.
9443 ///
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT)9444 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9445 EVT VT) {
9446 SDVTList VTs = getVTList(VT);
9447 return SelectNodeTo(N, MachineOpc, VTs, None);
9448 }
9449
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT,SDValue Op1)9450 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9451 EVT VT, SDValue Op1) {
9452 SDVTList VTs = getVTList(VT);
9453 SDValue Ops[] = { Op1 };
9454 return SelectNodeTo(N, MachineOpc, VTs, Ops);
9455 }
9456
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT,SDValue Op1,SDValue Op2)9457 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9458 EVT VT, SDValue Op1,
9459 SDValue Op2) {
9460 SDVTList VTs = getVTList(VT);
9461 SDValue Ops[] = { Op1, Op2 };
9462 return SelectNodeTo(N, MachineOpc, VTs, Ops);
9463 }
9464
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT,SDValue Op1,SDValue Op2,SDValue Op3)9465 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9466 EVT VT, SDValue Op1,
9467 SDValue Op2, SDValue Op3) {
9468 SDVTList VTs = getVTList(VT);
9469 SDValue Ops[] = { Op1, Op2, Op3 };
9470 return SelectNodeTo(N, MachineOpc, VTs, Ops);
9471 }
9472
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT,ArrayRef<SDValue> Ops)9473 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9474 EVT VT, ArrayRef<SDValue> Ops) {
9475 SDVTList VTs = getVTList(VT);
9476 return SelectNodeTo(N, MachineOpc, VTs, Ops);
9477 }
9478
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT1,EVT VT2,ArrayRef<SDValue> Ops)9479 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9480 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
9481 SDVTList VTs = getVTList(VT1, VT2);
9482 return SelectNodeTo(N, MachineOpc, VTs, Ops);
9483 }
9484
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT1,EVT VT2)9485 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9486 EVT VT1, EVT VT2) {
9487 SDVTList VTs = getVTList(VT1, VT2);
9488 return SelectNodeTo(N, MachineOpc, VTs, None);
9489 }
9490
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT1,EVT VT2,EVT VT3,ArrayRef<SDValue> Ops)9491 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9492 EVT VT1, EVT VT2, EVT VT3,
9493 ArrayRef<SDValue> Ops) {
9494 SDVTList VTs = getVTList(VT1, VT2, VT3);
9495 return SelectNodeTo(N, MachineOpc, VTs, Ops);
9496 }
9497
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT1,EVT VT2,SDValue Op1,SDValue Op2)9498 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9499 EVT VT1, EVT VT2,
9500 SDValue Op1, SDValue Op2) {
9501 SDVTList VTs = getVTList(VT1, VT2);
9502 SDValue Ops[] = { Op1, Op2 };
9503 return SelectNodeTo(N, MachineOpc, VTs, Ops);
9504 }
9505
SelectNodeTo(SDNode * N,unsigned MachineOpc,SDVTList VTs,ArrayRef<SDValue> Ops)9506 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9507 SDVTList VTs,ArrayRef<SDValue> Ops) {
9508 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
9509 // Reset the NodeID to -1.
9510 New->setNodeId(-1);
9511 if (New != N) {
9512 ReplaceAllUsesWith(N, New);
9513 RemoveDeadNode(N);
9514 }
9515 return New;
9516 }
9517
9518 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
9519 /// the line number information on the merged node since it is not possible to
9520 /// preserve the information that operation is associated with multiple lines.
9521 /// This will make the debugger working better at -O0, were there is a higher
9522 /// probability having other instructions associated with that line.
9523 ///
9524 /// For IROrder, we keep the smaller of the two
UpdateSDLocOnMergeSDNode(SDNode * N,const SDLoc & OLoc)9525 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
9526 DebugLoc NLoc = N->getDebugLoc();
9527 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
9528 N->setDebugLoc(DebugLoc());
9529 }
9530 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
9531 N->setIROrder(Order);
9532 return N;
9533 }
9534
9535 /// MorphNodeTo - This *mutates* the specified node to have the specified
9536 /// return type, opcode, and operands.
9537 ///
9538 /// Note that MorphNodeTo returns the resultant node. If there is already a
9539 /// node of the specified opcode and operands, it returns that node instead of
9540 /// the current one. Note that the SDLoc need not be the same.
9541 ///
9542 /// Using MorphNodeTo is faster than creating a new node and swapping it in
9543 /// with ReplaceAllUsesWith both because it often avoids allocating a new
9544 /// node, and because it doesn't require CSE recalculation for any of
9545 /// the node's users.
9546 ///
9547 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
9548 /// As a consequence it isn't appropriate to use from within the DAG combiner or
9549 /// the legalizer which maintain worklists that would need to be updated when
9550 /// deleting things.
MorphNodeTo(SDNode * N,unsigned Opc,SDVTList VTs,ArrayRef<SDValue> Ops)9551 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
9552 SDVTList VTs, ArrayRef<SDValue> Ops) {
9553 // If an identical node already exists, use it.
9554 void *IP = nullptr;
9555 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
9556 FoldingSetNodeID ID;
9557 AddNodeIDNode(ID, Opc, VTs, Ops);
9558 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
9559 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
9560 }
9561
9562 if (!RemoveNodeFromCSEMaps(N))
9563 IP = nullptr;
9564
9565 // Start the morphing.
9566 N->NodeType = Opc;
9567 N->ValueList = VTs.VTs;
9568 N->NumValues = VTs.NumVTs;
9569
9570 // Clear the operands list, updating used nodes to remove this from their
9571 // use list. Keep track of any operands that become dead as a result.
9572 SmallPtrSet<SDNode*, 16> DeadNodeSet;
9573 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
9574 SDUse &Use = *I++;
9575 SDNode *Used = Use.getNode();
9576 Use.set(SDValue());
9577 if (Used->use_empty())
9578 DeadNodeSet.insert(Used);
9579 }
9580
9581 // For MachineNode, initialize the memory references information.
9582 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
9583 MN->clearMemRefs();
9584
9585 // Swap for an appropriately sized array from the recycler.
9586 removeOperands(N);
9587 createOperands(N, Ops);
9588
9589 // Delete any nodes that are still dead after adding the uses for the
9590 // new operands.
9591 if (!DeadNodeSet.empty()) {
9592 SmallVector<SDNode *, 16> DeadNodes;
9593 for (SDNode *N : DeadNodeSet)
9594 if (N->use_empty())
9595 DeadNodes.push_back(N);
9596 RemoveDeadNodes(DeadNodes);
9597 }
9598
9599 if (IP)
9600 CSEMap.InsertNode(N, IP); // Memoize the new node.
9601 return N;
9602 }
9603
mutateStrictFPToFP(SDNode * Node)9604 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
9605 unsigned OrigOpc = Node->getOpcode();
9606 unsigned NewOpc;
9607 switch (OrigOpc) {
9608 default:
9609 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
9610 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
9611 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
9612 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
9613 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
9614 #include "llvm/IR/ConstrainedOps.def"
9615 }
9616
9617 assert(Node->getNumValues() == 2 && "Unexpected number of results!");
9618
9619 // We're taking this node out of the chain, so we need to re-link things.
9620 SDValue InputChain = Node->getOperand(0);
9621 SDValue OutputChain = SDValue(Node, 1);
9622 ReplaceAllUsesOfValueWith(OutputChain, InputChain);
9623
9624 SmallVector<SDValue, 3> Ops;
9625 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
9626 Ops.push_back(Node->getOperand(i));
9627
9628 SDVTList VTs = getVTList(Node->getValueType(0));
9629 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
9630
9631 // MorphNodeTo can operate in two ways: if an existing node with the
9632 // specified operands exists, it can just return it. Otherwise, it
9633 // updates the node in place to have the requested operands.
9634 if (Res == Node) {
9635 // If we updated the node in place, reset the node ID. To the isel,
9636 // this should be just like a newly allocated machine node.
9637 Res->setNodeId(-1);
9638 } else {
9639 ReplaceAllUsesWith(Node, Res);
9640 RemoveDeadNode(Node);
9641 }
9642
9643 return Res;
9644 }
9645
9646 /// getMachineNode - These are used for target selectors to create a new node
9647 /// with specified return type(s), MachineInstr opcode, and operands.
9648 ///
9649 /// Note that getMachineNode returns the resultant node. If there is already a
9650 /// node of the specified opcode and operands, it returns that node instead of
9651 /// the current one.
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT)9652 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9653 EVT VT) {
9654 SDVTList VTs = getVTList(VT);
9655 return getMachineNode(Opcode, dl, VTs, None);
9656 }
9657
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT,SDValue Op1)9658 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9659 EVT VT, SDValue Op1) {
9660 SDVTList VTs = getVTList(VT);
9661 SDValue Ops[] = { Op1 };
9662 return getMachineNode(Opcode, dl, VTs, Ops);
9663 }
9664
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT,SDValue Op1,SDValue Op2)9665 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9666 EVT VT, SDValue Op1, SDValue Op2) {
9667 SDVTList VTs = getVTList(VT);
9668 SDValue Ops[] = { Op1, Op2 };
9669 return getMachineNode(Opcode, dl, VTs, Ops);
9670 }
9671
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT,SDValue Op1,SDValue Op2,SDValue Op3)9672 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9673 EVT VT, SDValue Op1, SDValue Op2,
9674 SDValue Op3) {
9675 SDVTList VTs = getVTList(VT);
9676 SDValue Ops[] = { Op1, Op2, Op3 };
9677 return getMachineNode(Opcode, dl, VTs, Ops);
9678 }
9679
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT,ArrayRef<SDValue> Ops)9680 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9681 EVT VT, ArrayRef<SDValue> Ops) {
9682 SDVTList VTs = getVTList(VT);
9683 return getMachineNode(Opcode, dl, VTs, Ops);
9684 }
9685
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT1,EVT VT2,SDValue Op1,SDValue Op2)9686 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9687 EVT VT1, EVT VT2, SDValue Op1,
9688 SDValue Op2) {
9689 SDVTList VTs = getVTList(VT1, VT2);
9690 SDValue Ops[] = { Op1, Op2 };
9691 return getMachineNode(Opcode, dl, VTs, Ops);
9692 }
9693
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT1,EVT VT2,SDValue Op1,SDValue Op2,SDValue Op3)9694 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9695 EVT VT1, EVT VT2, SDValue Op1,
9696 SDValue Op2, SDValue Op3) {
9697 SDVTList VTs = getVTList(VT1, VT2);
9698 SDValue Ops[] = { Op1, Op2, Op3 };
9699 return getMachineNode(Opcode, dl, VTs, Ops);
9700 }
9701
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT1,EVT VT2,ArrayRef<SDValue> Ops)9702 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9703 EVT VT1, EVT VT2,
9704 ArrayRef<SDValue> Ops) {
9705 SDVTList VTs = getVTList(VT1, VT2);
9706 return getMachineNode(Opcode, dl, VTs, Ops);
9707 }
9708
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT1,EVT VT2,EVT VT3,SDValue Op1,SDValue Op2)9709 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9710 EVT VT1, EVT VT2, EVT VT3,
9711 SDValue Op1, SDValue Op2) {
9712 SDVTList VTs = getVTList(VT1, VT2, VT3);
9713 SDValue Ops[] = { Op1, Op2 };
9714 return getMachineNode(Opcode, dl, VTs, Ops);
9715 }
9716
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT1,EVT VT2,EVT VT3,SDValue Op1,SDValue Op2,SDValue Op3)9717 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9718 EVT VT1, EVT VT2, EVT VT3,
9719 SDValue Op1, SDValue Op2,
9720 SDValue Op3) {
9721 SDVTList VTs = getVTList(VT1, VT2, VT3);
9722 SDValue Ops[] = { Op1, Op2, Op3 };
9723 return getMachineNode(Opcode, dl, VTs, Ops);
9724 }
9725
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT1,EVT VT2,EVT VT3,ArrayRef<SDValue> Ops)9726 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9727 EVT VT1, EVT VT2, EVT VT3,
9728 ArrayRef<SDValue> Ops) {
9729 SDVTList VTs = getVTList(VT1, VT2, VT3);
9730 return getMachineNode(Opcode, dl, VTs, Ops);
9731 }
9732
getMachineNode(unsigned Opcode,const SDLoc & dl,ArrayRef<EVT> ResultTys,ArrayRef<SDValue> Ops)9733 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9734 ArrayRef<EVT> ResultTys,
9735 ArrayRef<SDValue> Ops) {
9736 SDVTList VTs = getVTList(ResultTys);
9737 return getMachineNode(Opcode, dl, VTs, Ops);
9738 }
9739
getMachineNode(unsigned Opcode,const SDLoc & DL,SDVTList VTs,ArrayRef<SDValue> Ops)9740 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
9741 SDVTList VTs,
9742 ArrayRef<SDValue> Ops) {
9743 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
9744 MachineSDNode *N;
9745 void *IP = nullptr;
9746
9747 if (DoCSE) {
9748 FoldingSetNodeID ID;
9749 AddNodeIDNode(ID, ~Opcode, VTs, Ops);
9750 IP = nullptr;
9751 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
9752 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
9753 }
9754 }
9755
9756 // Allocate a new MachineSDNode.
9757 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
9758 createOperands(N, Ops);
9759
9760 if (DoCSE)
9761 CSEMap.InsertNode(N, IP);
9762
9763 InsertNode(N);
9764 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
9765 return N;
9766 }
9767
9768 /// getTargetExtractSubreg - A convenience function for creating
9769 /// TargetOpcode::EXTRACT_SUBREG nodes.
getTargetExtractSubreg(int SRIdx,const SDLoc & DL,EVT VT,SDValue Operand)9770 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
9771 SDValue Operand) {
9772 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
9773 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
9774 VT, Operand, SRIdxVal);
9775 return SDValue(Subreg, 0);
9776 }
9777
9778 /// getTargetInsertSubreg - A convenience function for creating
9779 /// TargetOpcode::INSERT_SUBREG nodes.
getTargetInsertSubreg(int SRIdx,const SDLoc & DL,EVT VT,SDValue Operand,SDValue Subreg)9780 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
9781 SDValue Operand, SDValue Subreg) {
9782 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
9783 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
9784 VT, Operand, Subreg, SRIdxVal);
9785 return SDValue(Result, 0);
9786 }
9787
9788 /// getNodeIfExists - Get the specified node if it's already available, or
9789 /// else return NULL.
getNodeIfExists(unsigned Opcode,SDVTList VTList,ArrayRef<SDValue> Ops)9790 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
9791 ArrayRef<SDValue> Ops) {
9792 SDNodeFlags Flags;
9793 if (Inserter)
9794 Flags = Inserter->getFlags();
9795 return getNodeIfExists(Opcode, VTList, Ops, Flags);
9796 }
9797
getNodeIfExists(unsigned Opcode,SDVTList VTList,ArrayRef<SDValue> Ops,const SDNodeFlags Flags)9798 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
9799 ArrayRef<SDValue> Ops,
9800 const SDNodeFlags Flags) {
9801 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
9802 FoldingSetNodeID ID;
9803 AddNodeIDNode(ID, Opcode, VTList, Ops);
9804 void *IP = nullptr;
9805 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
9806 E->intersectFlagsWith(Flags);
9807 return E;
9808 }
9809 }
9810 return nullptr;
9811 }
9812
9813 /// doesNodeExist - Check if a node exists without modifying its flags.
doesNodeExist(unsigned Opcode,SDVTList VTList,ArrayRef<SDValue> Ops)9814 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList,
9815 ArrayRef<SDValue> Ops) {
9816 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
9817 FoldingSetNodeID ID;
9818 AddNodeIDNode(ID, Opcode, VTList, Ops);
9819 void *IP = nullptr;
9820 if (FindNodeOrInsertPos(ID, SDLoc(), IP))
9821 return true;
9822 }
9823 return false;
9824 }
9825
9826 /// getDbgValue - Creates a SDDbgValue node.
9827 ///
9828 /// SDNode
getDbgValue(DIVariable * Var,DIExpression * Expr,SDNode * N,unsigned R,bool IsIndirect,const DebugLoc & DL,unsigned O)9829 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
9830 SDNode *N, unsigned R, bool IsIndirect,
9831 const DebugLoc &DL, unsigned O) {
9832 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9833 "Expected inlined-at fields to agree");
9834 return new (DbgInfo->getAlloc())
9835 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R),
9836 {}, IsIndirect, DL, O,
9837 /*IsVariadic=*/false);
9838 }
9839
9840 /// Constant
getConstantDbgValue(DIVariable * Var,DIExpression * Expr,const Value * C,const DebugLoc & DL,unsigned O)9841 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
9842 DIExpression *Expr,
9843 const Value *C,
9844 const DebugLoc &DL, unsigned O) {
9845 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9846 "Expected inlined-at fields to agree");
9847 return new (DbgInfo->getAlloc())
9848 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {},
9849 /*IsIndirect=*/false, DL, O,
9850 /*IsVariadic=*/false);
9851 }
9852
9853 /// FrameIndex
getFrameIndexDbgValue(DIVariable * Var,DIExpression * Expr,unsigned FI,bool IsIndirect,const DebugLoc & DL,unsigned O)9854 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
9855 DIExpression *Expr, unsigned FI,
9856 bool IsIndirect,
9857 const DebugLoc &DL,
9858 unsigned O) {
9859 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9860 "Expected inlined-at fields to agree");
9861 return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O);
9862 }
9863
9864 /// FrameIndex with dependencies
getFrameIndexDbgValue(DIVariable * Var,DIExpression * Expr,unsigned FI,ArrayRef<SDNode * > Dependencies,bool IsIndirect,const DebugLoc & DL,unsigned O)9865 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
9866 DIExpression *Expr, unsigned FI,
9867 ArrayRef<SDNode *> Dependencies,
9868 bool IsIndirect,
9869 const DebugLoc &DL,
9870 unsigned O) {
9871 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9872 "Expected inlined-at fields to agree");
9873 return new (DbgInfo->getAlloc())
9874 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI),
9875 Dependencies, IsIndirect, DL, O,
9876 /*IsVariadic=*/false);
9877 }
9878
9879 /// VReg
getVRegDbgValue(DIVariable * Var,DIExpression * Expr,unsigned VReg,bool IsIndirect,const DebugLoc & DL,unsigned O)9880 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr,
9881 unsigned VReg, bool IsIndirect,
9882 const DebugLoc &DL, unsigned O) {
9883 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9884 "Expected inlined-at fields to agree");
9885 return new (DbgInfo->getAlloc())
9886 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg),
9887 {}, IsIndirect, DL, O,
9888 /*IsVariadic=*/false);
9889 }
9890
getDbgValueList(DIVariable * Var,DIExpression * Expr,ArrayRef<SDDbgOperand> Locs,ArrayRef<SDNode * > Dependencies,bool IsIndirect,const DebugLoc & DL,unsigned O,bool IsVariadic)9891 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr,
9892 ArrayRef<SDDbgOperand> Locs,
9893 ArrayRef<SDNode *> Dependencies,
9894 bool IsIndirect, const DebugLoc &DL,
9895 unsigned O, bool IsVariadic) {
9896 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9897 "Expected inlined-at fields to agree");
9898 return new (DbgInfo->getAlloc())
9899 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect,
9900 DL, O, IsVariadic);
9901 }
9902
transferDbgValues(SDValue From,SDValue To,unsigned OffsetInBits,unsigned SizeInBits,bool InvalidateDbg)9903 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
9904 unsigned OffsetInBits, unsigned SizeInBits,
9905 bool InvalidateDbg) {
9906 SDNode *FromNode = From.getNode();
9907 SDNode *ToNode = To.getNode();
9908 assert(FromNode && ToNode && "Can't modify dbg values");
9909
9910 // PR35338
9911 // TODO: assert(From != To && "Redundant dbg value transfer");
9912 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
9913 if (From == To || FromNode == ToNode)
9914 return;
9915
9916 if (!FromNode->getHasDebugValue())
9917 return;
9918
9919 SDDbgOperand FromLocOp =
9920 SDDbgOperand::fromNode(From.getNode(), From.getResNo());
9921 SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo());
9922
9923 SmallVector<SDDbgValue *, 2> ClonedDVs;
9924 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
9925 if (Dbg->isInvalidated())
9926 continue;
9927
9928 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
9929
9930 // Create a new location ops vector that is equal to the old vector, but
9931 // with each instance of FromLocOp replaced with ToLocOp.
9932 bool Changed = false;
9933 auto NewLocOps = Dbg->copyLocationOps();
9934 std::replace_if(
9935 NewLocOps.begin(), NewLocOps.end(),
9936 [&Changed, FromLocOp](const SDDbgOperand &Op) {
9937 bool Match = Op == FromLocOp;
9938 Changed |= Match;
9939 return Match;
9940 },
9941 ToLocOp);
9942 // Ignore this SDDbgValue if we didn't find a matching location.
9943 if (!Changed)
9944 continue;
9945
9946 DIVariable *Var = Dbg->getVariable();
9947 auto *Expr = Dbg->getExpression();
9948 // If a fragment is requested, update the expression.
9949 if (SizeInBits) {
9950 // When splitting a larger (e.g., sign-extended) value whose
9951 // lower bits are described with an SDDbgValue, do not attempt
9952 // to transfer the SDDbgValue to the upper bits.
9953 if (auto FI = Expr->getFragmentInfo())
9954 if (OffsetInBits + SizeInBits > FI->SizeInBits)
9955 continue;
9956 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
9957 SizeInBits);
9958 if (!Fragment)
9959 continue;
9960 Expr = *Fragment;
9961 }
9962
9963 auto AdditionalDependencies = Dbg->getAdditionalDependencies();
9964 // Clone the SDDbgValue and move it to To.
9965 SDDbgValue *Clone = getDbgValueList(
9966 Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(),
9967 Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()),
9968 Dbg->isVariadic());
9969 ClonedDVs.push_back(Clone);
9970
9971 if (InvalidateDbg) {
9972 // Invalidate value and indicate the SDDbgValue should not be emitted.
9973 Dbg->setIsInvalidated();
9974 Dbg->setIsEmitted();
9975 }
9976 }
9977
9978 for (SDDbgValue *Dbg : ClonedDVs) {
9979 assert(is_contained(Dbg->getSDNodes(), ToNode) &&
9980 "Transferred DbgValues should depend on the new SDNode");
9981 AddDbgValue(Dbg, false);
9982 }
9983 }
9984
salvageDebugInfo(SDNode & N)9985 void SelectionDAG::salvageDebugInfo(SDNode &N) {
9986 if (!N.getHasDebugValue())
9987 return;
9988
9989 SmallVector<SDDbgValue *, 2> ClonedDVs;
9990 for (auto *DV : GetDbgValues(&N)) {
9991 if (DV->isInvalidated())
9992 continue;
9993 switch (N.getOpcode()) {
9994 default:
9995 break;
9996 case ISD::ADD:
9997 SDValue N0 = N.getOperand(0);
9998 SDValue N1 = N.getOperand(1);
9999 if (!isConstantIntBuildVectorOrConstantInt(N0) &&
10000 isConstantIntBuildVectorOrConstantInt(N1)) {
10001 uint64_t Offset = N.getConstantOperandVal(1);
10002
10003 // Rewrite an ADD constant node into a DIExpression. Since we are
10004 // performing arithmetic to compute the variable's *value* in the
10005 // DIExpression, we need to mark the expression with a
10006 // DW_OP_stack_value.
10007 auto *DIExpr = DV->getExpression();
10008 auto NewLocOps = DV->copyLocationOps();
10009 bool Changed = false;
10010 for (size_t i = 0; i < NewLocOps.size(); ++i) {
10011 // We're not given a ResNo to compare against because the whole
10012 // node is going away. We know that any ISD::ADD only has one
10013 // result, so we can assume any node match is using the result.
10014 if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE ||
10015 NewLocOps[i].getSDNode() != &N)
10016 continue;
10017 NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo());
10018 SmallVector<uint64_t, 3> ExprOps;
10019 DIExpression::appendOffset(ExprOps, Offset);
10020 DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true);
10021 Changed = true;
10022 }
10023 (void)Changed;
10024 assert(Changed && "Salvage target doesn't use N");
10025
10026 auto AdditionalDependencies = DV->getAdditionalDependencies();
10027 SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr,
10028 NewLocOps, AdditionalDependencies,
10029 DV->isIndirect(), DV->getDebugLoc(),
10030 DV->getOrder(), DV->isVariadic());
10031 ClonedDVs.push_back(Clone);
10032 DV->setIsInvalidated();
10033 DV->setIsEmitted();
10034 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
10035 N0.getNode()->dumprFull(this);
10036 dbgs() << " into " << *DIExpr << '\n');
10037 }
10038 }
10039 }
10040
10041 for (SDDbgValue *Dbg : ClonedDVs) {
10042 assert(!Dbg->getSDNodes().empty() &&
10043 "Salvaged DbgValue should depend on a new SDNode");
10044 AddDbgValue(Dbg, false);
10045 }
10046 }
10047
10048 /// Creates a SDDbgLabel node.
getDbgLabel(DILabel * Label,const DebugLoc & DL,unsigned O)10049 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
10050 const DebugLoc &DL, unsigned O) {
10051 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
10052 "Expected inlined-at fields to agree");
10053 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
10054 }
10055
10056 namespace {
10057
10058 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
10059 /// pointed to by a use iterator is deleted, increment the use iterator
10060 /// so that it doesn't dangle.
10061 ///
10062 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
10063 SDNode::use_iterator &UI;
10064 SDNode::use_iterator &UE;
10065
NodeDeleted(SDNode * N,SDNode * E)10066 void NodeDeleted(SDNode *N, SDNode *E) override {
10067 // Increment the iterator as needed.
10068 while (UI != UE && N == *UI)
10069 ++UI;
10070 }
10071
10072 public:
RAUWUpdateListener(SelectionDAG & d,SDNode::use_iterator & ui,SDNode::use_iterator & ue)10073 RAUWUpdateListener(SelectionDAG &d,
10074 SDNode::use_iterator &ui,
10075 SDNode::use_iterator &ue)
10076 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
10077 };
10078
10079 } // end anonymous namespace
10080
10081 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
10082 /// This can cause recursive merging of nodes in the DAG.
10083 ///
10084 /// This version assumes From has a single result value.
10085 ///
ReplaceAllUsesWith(SDValue FromN,SDValue To)10086 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
10087 SDNode *From = FromN.getNode();
10088 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
10089 "Cannot replace with this method!");
10090 assert(From != To.getNode() && "Cannot replace uses of with self");
10091
10092 // Preserve Debug Values
10093 transferDbgValues(FromN, To);
10094
10095 // Iterate over all the existing uses of From. New uses will be added
10096 // to the beginning of the use list, which we avoid visiting.
10097 // This specifically avoids visiting uses of From that arise while the
10098 // replacement is happening, because any such uses would be the result
10099 // of CSE: If an existing node looks like From after one of its operands
10100 // is replaced by To, we don't want to replace of all its users with To
10101 // too. See PR3018 for more info.
10102 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
10103 RAUWUpdateListener Listener(*this, UI, UE);
10104 while (UI != UE) {
10105 SDNode *User = *UI;
10106
10107 // This node is about to morph, remove its old self from the CSE maps.
10108 RemoveNodeFromCSEMaps(User);
10109
10110 // A user can appear in a use list multiple times, and when this
10111 // happens the uses are usually next to each other in the list.
10112 // To help reduce the number of CSE recomputations, process all
10113 // the uses of this user that we can find this way.
10114 do {
10115 SDUse &Use = UI.getUse();
10116 ++UI;
10117 Use.set(To);
10118 if (To->isDivergent() != From->isDivergent())
10119 updateDivergence(User);
10120 } while (UI != UE && *UI == User);
10121 // Now that we have modified User, add it back to the CSE maps. If it
10122 // already exists there, recursively merge the results together.
10123 AddModifiedNodeToCSEMaps(User);
10124 }
10125
10126 // If we just RAUW'd the root, take note.
10127 if (FromN == getRoot())
10128 setRoot(To);
10129 }
10130
10131 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
10132 /// This can cause recursive merging of nodes in the DAG.
10133 ///
10134 /// This version assumes that for each value of From, there is a
10135 /// corresponding value in To in the same position with the same type.
10136 ///
ReplaceAllUsesWith(SDNode * From,SDNode * To)10137 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
10138 #ifndef NDEBUG
10139 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
10140 assert((!From->hasAnyUseOfValue(i) ||
10141 From->getValueType(i) == To->getValueType(i)) &&
10142 "Cannot use this version of ReplaceAllUsesWith!");
10143 #endif
10144
10145 // Handle the trivial case.
10146 if (From == To)
10147 return;
10148
10149 // Preserve Debug Info. Only do this if there's a use.
10150 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
10151 if (From->hasAnyUseOfValue(i)) {
10152 assert((i < To->getNumValues()) && "Invalid To location");
10153 transferDbgValues(SDValue(From, i), SDValue(To, i));
10154 }
10155
10156 // Iterate over just the existing users of From. See the comments in
10157 // the ReplaceAllUsesWith above.
10158 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
10159 RAUWUpdateListener Listener(*this, UI, UE);
10160 while (UI != UE) {
10161 SDNode *User = *UI;
10162
10163 // This node is about to morph, remove its old self from the CSE maps.
10164 RemoveNodeFromCSEMaps(User);
10165
10166 // A user can appear in a use list multiple times, and when this
10167 // happens the uses are usually next to each other in the list.
10168 // To help reduce the number of CSE recomputations, process all
10169 // the uses of this user that we can find this way.
10170 do {
10171 SDUse &Use = UI.getUse();
10172 ++UI;
10173 Use.setNode(To);
10174 if (To->isDivergent() != From->isDivergent())
10175 updateDivergence(User);
10176 } while (UI != UE && *UI == User);
10177
10178 // Now that we have modified User, add it back to the CSE maps. If it
10179 // already exists there, recursively merge the results together.
10180 AddModifiedNodeToCSEMaps(User);
10181 }
10182
10183 // If we just RAUW'd the root, take note.
10184 if (From == getRoot().getNode())
10185 setRoot(SDValue(To, getRoot().getResNo()));
10186 }
10187
10188 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
10189 /// This can cause recursive merging of nodes in the DAG.
10190 ///
10191 /// This version can replace From with any result values. To must match the
10192 /// number and types of values returned by From.
ReplaceAllUsesWith(SDNode * From,const SDValue * To)10193 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
10194 if (From->getNumValues() == 1) // Handle the simple case efficiently.
10195 return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
10196
10197 // Preserve Debug Info.
10198 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
10199 transferDbgValues(SDValue(From, i), To[i]);
10200
10201 // Iterate over just the existing users of From. See the comments in
10202 // the ReplaceAllUsesWith above.
10203 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
10204 RAUWUpdateListener Listener(*this, UI, UE);
10205 while (UI != UE) {
10206 SDNode *User = *UI;
10207
10208 // This node is about to morph, remove its old self from the CSE maps.
10209 RemoveNodeFromCSEMaps(User);
10210
10211 // A user can appear in a use list multiple times, and when this happens the
10212 // uses are usually next to each other in the list. To help reduce the
10213 // number of CSE and divergence recomputations, process all the uses of this
10214 // user that we can find this way.
10215 bool To_IsDivergent = false;
10216 do {
10217 SDUse &Use = UI.getUse();
10218 const SDValue &ToOp = To[Use.getResNo()];
10219 ++UI;
10220 Use.set(ToOp);
10221 To_IsDivergent |= ToOp->isDivergent();
10222 } while (UI != UE && *UI == User);
10223
10224 if (To_IsDivergent != From->isDivergent())
10225 updateDivergence(User);
10226
10227 // Now that we have modified User, add it back to the CSE maps. If it
10228 // already exists there, recursively merge the results together.
10229 AddModifiedNodeToCSEMaps(User);
10230 }
10231
10232 // If we just RAUW'd the root, take note.
10233 if (From == getRoot().getNode())
10234 setRoot(SDValue(To[getRoot().getResNo()]));
10235 }
10236
10237 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
10238 /// uses of other values produced by From.getNode() alone. The Deleted
10239 /// vector is handled the same way as for ReplaceAllUsesWith.
ReplaceAllUsesOfValueWith(SDValue From,SDValue To)10240 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
10241 // Handle the really simple, really trivial case efficiently.
10242 if (From == To) return;
10243
10244 // Handle the simple, trivial, case efficiently.
10245 if (From.getNode()->getNumValues() == 1) {
10246 ReplaceAllUsesWith(From, To);
10247 return;
10248 }
10249
10250 // Preserve Debug Info.
10251 transferDbgValues(From, To);
10252
10253 // Iterate over just the existing users of From. See the comments in
10254 // the ReplaceAllUsesWith above.
10255 SDNode::use_iterator UI = From.getNode()->use_begin(),
10256 UE = From.getNode()->use_end();
10257 RAUWUpdateListener Listener(*this, UI, UE);
10258 while (UI != UE) {
10259 SDNode *User = *UI;
10260 bool UserRemovedFromCSEMaps = false;
10261
10262 // A user can appear in a use list multiple times, and when this
10263 // happens the uses are usually next to each other in the list.
10264 // To help reduce the number of CSE recomputations, process all
10265 // the uses of this user that we can find this way.
10266 do {
10267 SDUse &Use = UI.getUse();
10268
10269 // Skip uses of different values from the same node.
10270 if (Use.getResNo() != From.getResNo()) {
10271 ++UI;
10272 continue;
10273 }
10274
10275 // If this node hasn't been modified yet, it's still in the CSE maps,
10276 // so remove its old self from the CSE maps.
10277 if (!UserRemovedFromCSEMaps) {
10278 RemoveNodeFromCSEMaps(User);
10279 UserRemovedFromCSEMaps = true;
10280 }
10281
10282 ++UI;
10283 Use.set(To);
10284 if (To->isDivergent() != From->isDivergent())
10285 updateDivergence(User);
10286 } while (UI != UE && *UI == User);
10287 // We are iterating over all uses of the From node, so if a use
10288 // doesn't use the specific value, no changes are made.
10289 if (!UserRemovedFromCSEMaps)
10290 continue;
10291
10292 // Now that we have modified User, add it back to the CSE maps. If it
10293 // already exists there, recursively merge the results together.
10294 AddModifiedNodeToCSEMaps(User);
10295 }
10296
10297 // If we just RAUW'd the root, take note.
10298 if (From == getRoot())
10299 setRoot(To);
10300 }
10301
10302 namespace {
10303
10304 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
10305 /// to record information about a use.
10306 struct UseMemo {
10307 SDNode *User;
10308 unsigned Index;
10309 SDUse *Use;
10310 };
10311
10312 /// operator< - Sort Memos by User.
operator <(const UseMemo & L,const UseMemo & R)10313 bool operator<(const UseMemo &L, const UseMemo &R) {
10314 return (intptr_t)L.User < (intptr_t)R.User;
10315 }
10316
10317 /// RAUOVWUpdateListener - Helper for ReplaceAllUsesOfValuesWith - When the node
10318 /// pointed to by a UseMemo is deleted, set the User to nullptr to indicate that
10319 /// the node already has been taken care of recursively.
10320 class RAUOVWUpdateListener : public SelectionDAG::DAGUpdateListener {
10321 SmallVector<UseMemo, 4> &Uses;
10322
NodeDeleted(SDNode * N,SDNode * E)10323 void NodeDeleted(SDNode *N, SDNode *E) override {
10324 for (UseMemo &Memo : Uses)
10325 if (Memo.User == N)
10326 Memo.User = nullptr;
10327 }
10328
10329 public:
RAUOVWUpdateListener(SelectionDAG & d,SmallVector<UseMemo,4> & uses)10330 RAUOVWUpdateListener(SelectionDAG &d, SmallVector<UseMemo, 4> &uses)
10331 : SelectionDAG::DAGUpdateListener(d), Uses(uses) {}
10332 };
10333
10334 } // end anonymous namespace
10335
calculateDivergence(SDNode * N)10336 bool SelectionDAG::calculateDivergence(SDNode *N) {
10337 if (TLI->isSDNodeAlwaysUniform(N)) {
10338 assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) &&
10339 "Conflicting divergence information!");
10340 return false;
10341 }
10342 if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA))
10343 return true;
10344 for (const auto &Op : N->ops()) {
10345 if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent())
10346 return true;
10347 }
10348 return false;
10349 }
10350
updateDivergence(SDNode * N)10351 void SelectionDAG::updateDivergence(SDNode *N) {
10352 SmallVector<SDNode *, 16> Worklist(1, N);
10353 do {
10354 N = Worklist.pop_back_val();
10355 bool IsDivergent = calculateDivergence(N);
10356 if (N->SDNodeBits.IsDivergent != IsDivergent) {
10357 N->SDNodeBits.IsDivergent = IsDivergent;
10358 llvm::append_range(Worklist, N->uses());
10359 }
10360 } while (!Worklist.empty());
10361 }
10362
CreateTopologicalOrder(std::vector<SDNode * > & Order)10363 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
10364 DenseMap<SDNode *, unsigned> Degree;
10365 Order.reserve(AllNodes.size());
10366 for (auto &N : allnodes()) {
10367 unsigned NOps = N.getNumOperands();
10368 Degree[&N] = NOps;
10369 if (0 == NOps)
10370 Order.push_back(&N);
10371 }
10372 for (size_t I = 0; I != Order.size(); ++I) {
10373 SDNode *N = Order[I];
10374 for (auto *U : N->uses()) {
10375 unsigned &UnsortedOps = Degree[U];
10376 if (0 == --UnsortedOps)
10377 Order.push_back(U);
10378 }
10379 }
10380 }
10381
10382 #ifndef NDEBUG
VerifyDAGDivergence()10383 void SelectionDAG::VerifyDAGDivergence() {
10384 std::vector<SDNode *> TopoOrder;
10385 CreateTopologicalOrder(TopoOrder);
10386 for (auto *N : TopoOrder) {
10387 assert(calculateDivergence(N) == N->isDivergent() &&
10388 "Divergence bit inconsistency detected");
10389 }
10390 }
10391 #endif
10392
10393 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
10394 /// uses of other values produced by From.getNode() alone. The same value
10395 /// may appear in both the From and To list. The Deleted vector is
10396 /// handled the same way as for ReplaceAllUsesWith.
ReplaceAllUsesOfValuesWith(const SDValue * From,const SDValue * To,unsigned Num)10397 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
10398 const SDValue *To,
10399 unsigned Num){
10400 // Handle the simple, trivial case efficiently.
10401 if (Num == 1)
10402 return ReplaceAllUsesOfValueWith(*From, *To);
10403
10404 transferDbgValues(*From, *To);
10405
10406 // Read up all the uses and make records of them. This helps
10407 // processing new uses that are introduced during the
10408 // replacement process.
10409 SmallVector<UseMemo, 4> Uses;
10410 for (unsigned i = 0; i != Num; ++i) {
10411 unsigned FromResNo = From[i].getResNo();
10412 SDNode *FromNode = From[i].getNode();
10413 for (SDNode::use_iterator UI = FromNode->use_begin(),
10414 E = FromNode->use_end(); UI != E; ++UI) {
10415 SDUse &Use = UI.getUse();
10416 if (Use.getResNo() == FromResNo) {
10417 UseMemo Memo = { *UI, i, &Use };
10418 Uses.push_back(Memo);
10419 }
10420 }
10421 }
10422
10423 // Sort the uses, so that all the uses from a given User are together.
10424 llvm::sort(Uses);
10425 RAUOVWUpdateListener Listener(*this, Uses);
10426
10427 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
10428 UseIndex != UseIndexEnd; ) {
10429 // We know that this user uses some value of From. If it is the right
10430 // value, update it.
10431 SDNode *User = Uses[UseIndex].User;
10432 // If the node has been deleted by recursive CSE updates when updating
10433 // another node, then just skip this entry.
10434 if (User == nullptr) {
10435 ++UseIndex;
10436 continue;
10437 }
10438
10439 // This node is about to morph, remove its old self from the CSE maps.
10440 RemoveNodeFromCSEMaps(User);
10441
10442 // The Uses array is sorted, so all the uses for a given User
10443 // are next to each other in the list.
10444 // To help reduce the number of CSE recomputations, process all
10445 // the uses of this user that we can find this way.
10446 do {
10447 unsigned i = Uses[UseIndex].Index;
10448 SDUse &Use = *Uses[UseIndex].Use;
10449 ++UseIndex;
10450
10451 Use.set(To[i]);
10452 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
10453
10454 // Now that we have modified User, add it back to the CSE maps. If it
10455 // already exists there, recursively merge the results together.
10456 AddModifiedNodeToCSEMaps(User);
10457 }
10458 }
10459
10460 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
10461 /// based on their topological order. It returns the maximum id and a vector
10462 /// of the SDNodes* in assigned order by reference.
AssignTopologicalOrder()10463 unsigned SelectionDAG::AssignTopologicalOrder() {
10464 unsigned DAGSize = 0;
10465
10466 // SortedPos tracks the progress of the algorithm. Nodes before it are
10467 // sorted, nodes after it are unsorted. When the algorithm completes
10468 // it is at the end of the list.
10469 allnodes_iterator SortedPos = allnodes_begin();
10470
10471 // Visit all the nodes. Move nodes with no operands to the front of
10472 // the list immediately. Annotate nodes that do have operands with their
10473 // operand count. Before we do this, the Node Id fields of the nodes
10474 // may contain arbitrary values. After, the Node Id fields for nodes
10475 // before SortedPos will contain the topological sort index, and the
10476 // Node Id fields for nodes At SortedPos and after will contain the
10477 // count of outstanding operands.
10478 for (SDNode &N : llvm::make_early_inc_range(allnodes())) {
10479 checkForCycles(&N, this);
10480 unsigned Degree = N.getNumOperands();
10481 if (Degree == 0) {
10482 // A node with no uses, add it to the result array immediately.
10483 N.setNodeId(DAGSize++);
10484 allnodes_iterator Q(&N);
10485 if (Q != SortedPos)
10486 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
10487 assert(SortedPos != AllNodes.end() && "Overran node list");
10488 ++SortedPos;
10489 } else {
10490 // Temporarily use the Node Id as scratch space for the degree count.
10491 N.setNodeId(Degree);
10492 }
10493 }
10494
10495 // Visit all the nodes. As we iterate, move nodes into sorted order,
10496 // such that by the time the end is reached all nodes will be sorted.
10497 for (SDNode &Node : allnodes()) {
10498 SDNode *N = &Node;
10499 checkForCycles(N, this);
10500 // N is in sorted position, so all its uses have one less operand
10501 // that needs to be sorted.
10502 for (SDNode *P : N->uses()) {
10503 unsigned Degree = P->getNodeId();
10504 assert(Degree != 0 && "Invalid node degree");
10505 --Degree;
10506 if (Degree == 0) {
10507 // All of P's operands are sorted, so P may sorted now.
10508 P->setNodeId(DAGSize++);
10509 if (P->getIterator() != SortedPos)
10510 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
10511 assert(SortedPos != AllNodes.end() && "Overran node list");
10512 ++SortedPos;
10513 } else {
10514 // Update P's outstanding operand count.
10515 P->setNodeId(Degree);
10516 }
10517 }
10518 if (Node.getIterator() == SortedPos) {
10519 #ifndef NDEBUG
10520 allnodes_iterator I(N);
10521 SDNode *S = &*++I;
10522 dbgs() << "Overran sorted position:\n";
10523 S->dumprFull(this); dbgs() << "\n";
10524 dbgs() << "Checking if this is due to cycles\n";
10525 checkForCycles(this, true);
10526 #endif
10527 llvm_unreachable(nullptr);
10528 }
10529 }
10530
10531 assert(SortedPos == AllNodes.end() &&
10532 "Topological sort incomplete!");
10533 assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
10534 "First node in topological sort is not the entry token!");
10535 assert(AllNodes.front().getNodeId() == 0 &&
10536 "First node in topological sort has non-zero id!");
10537 assert(AllNodes.front().getNumOperands() == 0 &&
10538 "First node in topological sort has operands!");
10539 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
10540 "Last node in topologic sort has unexpected id!");
10541 assert(AllNodes.back().use_empty() &&
10542 "Last node in topologic sort has users!");
10543 assert(DAGSize == allnodes_size() && "Node count mismatch!");
10544 return DAGSize;
10545 }
10546
10547 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
10548 /// value is produced by SD.
AddDbgValue(SDDbgValue * DB,bool isParameter)10549 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) {
10550 for (SDNode *SD : DB->getSDNodes()) {
10551 if (!SD)
10552 continue;
10553 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
10554 SD->setHasDebugValue(true);
10555 }
10556 DbgInfo->add(DB, isParameter);
10557 }
10558
AddDbgLabel(SDDbgLabel * DB)10559 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); }
10560
makeEquivalentMemoryOrdering(SDValue OldChain,SDValue NewMemOpChain)10561 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain,
10562 SDValue NewMemOpChain) {
10563 assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node");
10564 assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT");
10565 // The new memory operation must have the same position as the old load in
10566 // terms of memory dependency. Create a TokenFactor for the old load and new
10567 // memory operation and update uses of the old load's output chain to use that
10568 // TokenFactor.
10569 if (OldChain == NewMemOpChain || OldChain.use_empty())
10570 return NewMemOpChain;
10571
10572 SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other,
10573 OldChain, NewMemOpChain);
10574 ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
10575 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain);
10576 return TokenFactor;
10577 }
10578
makeEquivalentMemoryOrdering(LoadSDNode * OldLoad,SDValue NewMemOp)10579 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
10580 SDValue NewMemOp) {
10581 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
10582 SDValue OldChain = SDValue(OldLoad, 1);
10583 SDValue NewMemOpChain = NewMemOp.getValue(1);
10584 return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain);
10585 }
10586
getSymbolFunctionGlobalAddress(SDValue Op,Function ** OutFunction)10587 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
10588 Function **OutFunction) {
10589 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
10590
10591 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
10592 auto *Module = MF->getFunction().getParent();
10593 auto *Function = Module->getFunction(Symbol);
10594
10595 if (OutFunction != nullptr)
10596 *OutFunction = Function;
10597
10598 if (Function != nullptr) {
10599 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
10600 return getGlobalAddress(Function, SDLoc(Op), PtrTy);
10601 }
10602
10603 std::string ErrorStr;
10604 raw_string_ostream ErrorFormatter(ErrorStr);
10605 ErrorFormatter << "Undefined external symbol ";
10606 ErrorFormatter << '"' << Symbol << '"';
10607 report_fatal_error(Twine(ErrorFormatter.str()));
10608 }
10609
10610 //===----------------------------------------------------------------------===//
10611 // SDNode Class
10612 //===----------------------------------------------------------------------===//
10613
isNullConstant(SDValue V)10614 bool llvm::isNullConstant(SDValue V) {
10615 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
10616 return Const != nullptr && Const->isZero();
10617 }
10618
isNullFPConstant(SDValue V)10619 bool llvm::isNullFPConstant(SDValue V) {
10620 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
10621 return Const != nullptr && Const->isZero() && !Const->isNegative();
10622 }
10623
isAllOnesConstant(SDValue V)10624 bool llvm::isAllOnesConstant(SDValue V) {
10625 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
10626 return Const != nullptr && Const->isAllOnes();
10627 }
10628
isOneConstant(SDValue V)10629 bool llvm::isOneConstant(SDValue V) {
10630 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
10631 return Const != nullptr && Const->isOne();
10632 }
10633
isMinSignedConstant(SDValue V)10634 bool llvm::isMinSignedConstant(SDValue V) {
10635 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
10636 return Const != nullptr && Const->isMinSignedValue();
10637 }
10638
peekThroughBitcasts(SDValue V)10639 SDValue llvm::peekThroughBitcasts(SDValue V) {
10640 while (V.getOpcode() == ISD::BITCAST)
10641 V = V.getOperand(0);
10642 return V;
10643 }
10644
peekThroughOneUseBitcasts(SDValue V)10645 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
10646 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
10647 V = V.getOperand(0);
10648 return V;
10649 }
10650
peekThroughExtractSubvectors(SDValue V)10651 SDValue llvm::peekThroughExtractSubvectors(SDValue V) {
10652 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
10653 V = V.getOperand(0);
10654 return V;
10655 }
10656
isBitwiseNot(SDValue V,bool AllowUndefs)10657 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
10658 if (V.getOpcode() != ISD::XOR)
10659 return false;
10660 V = peekThroughBitcasts(V.getOperand(1));
10661 unsigned NumBits = V.getScalarValueSizeInBits();
10662 ConstantSDNode *C =
10663 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
10664 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits);
10665 }
10666
isConstOrConstSplat(SDValue N,bool AllowUndefs,bool AllowTruncation)10667 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs,
10668 bool AllowTruncation) {
10669 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
10670 return CN;
10671
10672 // SplatVectors can truncate their operands. Ignore that case here unless
10673 // AllowTruncation is set.
10674 if (N->getOpcode() == ISD::SPLAT_VECTOR) {
10675 EVT VecEltVT = N->getValueType(0).getVectorElementType();
10676 if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
10677 EVT CVT = CN->getValueType(0);
10678 assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension");
10679 if (AllowTruncation || CVT == VecEltVT)
10680 return CN;
10681 }
10682 }
10683
10684 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10685 BitVector UndefElements;
10686 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
10687
10688 // BuildVectors can truncate their operands. Ignore that case here unless
10689 // AllowTruncation is set.
10690 if (CN && (UndefElements.none() || AllowUndefs)) {
10691 EVT CVT = CN->getValueType(0);
10692 EVT NSVT = N.getValueType().getScalarType();
10693 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
10694 if (AllowTruncation || (CVT == NSVT))
10695 return CN;
10696 }
10697 }
10698
10699 return nullptr;
10700 }
10701
isConstOrConstSplat(SDValue N,const APInt & DemandedElts,bool AllowUndefs,bool AllowTruncation)10702 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
10703 bool AllowUndefs,
10704 bool AllowTruncation) {
10705 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
10706 return CN;
10707
10708 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10709 BitVector UndefElements;
10710 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
10711
10712 // BuildVectors can truncate their operands. Ignore that case here unless
10713 // AllowTruncation is set.
10714 if (CN && (UndefElements.none() || AllowUndefs)) {
10715 EVT CVT = CN->getValueType(0);
10716 EVT NSVT = N.getValueType().getScalarType();
10717 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
10718 if (AllowTruncation || (CVT == NSVT))
10719 return CN;
10720 }
10721 }
10722
10723 return nullptr;
10724 }
10725
isConstOrConstSplatFP(SDValue N,bool AllowUndefs)10726 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
10727 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
10728 return CN;
10729
10730 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10731 BitVector UndefElements;
10732 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
10733 if (CN && (UndefElements.none() || AllowUndefs))
10734 return CN;
10735 }
10736
10737 if (N.getOpcode() == ISD::SPLAT_VECTOR)
10738 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0)))
10739 return CN;
10740
10741 return nullptr;
10742 }
10743
isConstOrConstSplatFP(SDValue N,const APInt & DemandedElts,bool AllowUndefs)10744 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
10745 const APInt &DemandedElts,
10746 bool AllowUndefs) {
10747 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
10748 return CN;
10749
10750 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10751 BitVector UndefElements;
10752 ConstantFPSDNode *CN =
10753 BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
10754 if (CN && (UndefElements.none() || AllowUndefs))
10755 return CN;
10756 }
10757
10758 return nullptr;
10759 }
10760
isNullOrNullSplat(SDValue N,bool AllowUndefs)10761 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
10762 // TODO: may want to use peekThroughBitcast() here.
10763 ConstantSDNode *C =
10764 isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation=*/true);
10765 return C && C->isZero();
10766 }
10767
isOneOrOneSplat(SDValue N,bool AllowUndefs)10768 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) {
10769 ConstantSDNode *C =
10770 isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation*/ true);
10771 return C && C->isOne();
10772 }
10773
isAllOnesOrAllOnesSplat(SDValue N,bool AllowUndefs)10774 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) {
10775 N = peekThroughBitcasts(N);
10776 unsigned BitWidth = N.getScalarValueSizeInBits();
10777 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
10778 return C && C->isAllOnes() && C->getValueSizeInBits(0) == BitWidth;
10779 }
10780
~HandleSDNode()10781 HandleSDNode::~HandleSDNode() {
10782 DropOperands();
10783 }
10784
GlobalAddressSDNode(unsigned Opc,unsigned Order,const DebugLoc & DL,const GlobalValue * GA,EVT VT,int64_t o,unsigned TF)10785 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
10786 const DebugLoc &DL,
10787 const GlobalValue *GA, EVT VT,
10788 int64_t o, unsigned TF)
10789 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
10790 TheGlobal = GA;
10791 }
10792
AddrSpaceCastSDNode(unsigned Order,const DebugLoc & dl,EVT VT,unsigned SrcAS,unsigned DestAS)10793 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
10794 EVT VT, unsigned SrcAS,
10795 unsigned DestAS)
10796 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
10797 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
10798
MemSDNode(unsigned Opc,unsigned Order,const DebugLoc & dl,SDVTList VTs,EVT memvt,MachineMemOperand * mmo)10799 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
10800 SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
10801 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
10802 MemSDNodeBits.IsVolatile = MMO->isVolatile();
10803 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
10804 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
10805 MemSDNodeBits.IsInvariant = MMO->isInvariant();
10806
10807 // We check here that the size of the memory operand fits within the size of
10808 // the MMO. This is because the MMO might indicate only a possible address
10809 // range instead of specifying the affected memory addresses precisely.
10810 // TODO: Make MachineMemOperands aware of scalable vectors.
10811 assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() &&
10812 "Size mismatch!");
10813 }
10814
10815 /// Profile - Gather unique data for the node.
10816 ///
Profile(FoldingSetNodeID & ID) const10817 void SDNode::Profile(FoldingSetNodeID &ID) const {
10818 AddNodeIDNode(ID, this);
10819 }
10820
10821 namespace {
10822
10823 struct EVTArray {
10824 std::vector<EVT> VTs;
10825
EVTArray__anon8f6fc9171411::EVTArray10826 EVTArray() {
10827 VTs.reserve(MVT::VALUETYPE_SIZE);
10828 for (unsigned i = 0; i < MVT::VALUETYPE_SIZE; ++i)
10829 VTs.push_back(MVT((MVT::SimpleValueType)i));
10830 }
10831 };
10832
10833 } // end anonymous namespace
10834
10835 /// getValueTypeList - Return a pointer to the specified value type.
10836 ///
getValueTypeList(EVT VT)10837 const EVT *SDNode::getValueTypeList(EVT VT) {
10838 static std::set<EVT, EVT::compareRawBits> EVTs;
10839 static EVTArray SimpleVTArray;
10840 static sys::SmartMutex<true> VTMutex;
10841
10842 if (VT.isExtended()) {
10843 sys::SmartScopedLock<true> Lock(VTMutex);
10844 return &(*EVTs.insert(VT).first);
10845 }
10846 assert(VT.getSimpleVT() < MVT::VALUETYPE_SIZE && "Value type out of range!");
10847 return &SimpleVTArray.VTs[VT.getSimpleVT().SimpleTy];
10848 }
10849
10850 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
10851 /// indicated value. This method ignores uses of other values defined by this
10852 /// operation.
hasNUsesOfValue(unsigned NUses,unsigned Value) const10853 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
10854 assert(Value < getNumValues() && "Bad value!");
10855
10856 // TODO: Only iterate over uses of a given value of the node
10857 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
10858 if (UI.getUse().getResNo() == Value) {
10859 if (NUses == 0)
10860 return false;
10861 --NUses;
10862 }
10863 }
10864
10865 // Found exactly the right number of uses?
10866 return NUses == 0;
10867 }
10868
10869 /// hasAnyUseOfValue - Return true if there are any use of the indicated
10870 /// value. This method ignores uses of other values defined by this operation.
hasAnyUseOfValue(unsigned Value) const10871 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
10872 assert(Value < getNumValues() && "Bad value!");
10873
10874 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
10875 if (UI.getUse().getResNo() == Value)
10876 return true;
10877
10878 return false;
10879 }
10880
10881 /// isOnlyUserOf - Return true if this node is the only use of N.
isOnlyUserOf(const SDNode * N) const10882 bool SDNode::isOnlyUserOf(const SDNode *N) const {
10883 bool Seen = false;
10884 for (const SDNode *User : N->uses()) {
10885 if (User == this)
10886 Seen = true;
10887 else
10888 return false;
10889 }
10890
10891 return Seen;
10892 }
10893
10894 /// Return true if the only users of N are contained in Nodes.
areOnlyUsersOf(ArrayRef<const SDNode * > Nodes,const SDNode * N)10895 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
10896 bool Seen = false;
10897 for (const SDNode *User : N->uses()) {
10898 if (llvm::is_contained(Nodes, User))
10899 Seen = true;
10900 else
10901 return false;
10902 }
10903
10904 return Seen;
10905 }
10906
10907 /// isOperand - Return true if this node is an operand of N.
isOperandOf(const SDNode * N) const10908 bool SDValue::isOperandOf(const SDNode *N) const {
10909 return is_contained(N->op_values(), *this);
10910 }
10911
isOperandOf(const SDNode * N) const10912 bool SDNode::isOperandOf(const SDNode *N) const {
10913 return any_of(N->op_values(),
10914 [this](SDValue Op) { return this == Op.getNode(); });
10915 }
10916
10917 /// reachesChainWithoutSideEffects - Return true if this operand (which must
10918 /// be a chain) reaches the specified operand without crossing any
10919 /// side-effecting instructions on any chain path. In practice, this looks
10920 /// through token factors and non-volatile loads. In order to remain efficient,
10921 /// this only looks a couple of nodes in, it does not do an exhaustive search.
10922 ///
10923 /// Note that we only need to examine chains when we're searching for
10924 /// side-effects; SelectionDAG requires that all side-effects are represented
10925 /// by chains, even if another operand would force a specific ordering. This
10926 /// constraint is necessary to allow transformations like splitting loads.
reachesChainWithoutSideEffects(SDValue Dest,unsigned Depth) const10927 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
10928 unsigned Depth) const {
10929 if (*this == Dest) return true;
10930
10931 // Don't search too deeply, we just want to be able to see through
10932 // TokenFactor's etc.
10933 if (Depth == 0) return false;
10934
10935 // If this is a token factor, all inputs to the TF happen in parallel.
10936 if (getOpcode() == ISD::TokenFactor) {
10937 // First, try a shallow search.
10938 if (is_contained((*this)->ops(), Dest)) {
10939 // We found the chain we want as an operand of this TokenFactor.
10940 // Essentially, we reach the chain without side-effects if we could
10941 // serialize the TokenFactor into a simple chain of operations with
10942 // Dest as the last operation. This is automatically true if the
10943 // chain has one use: there are no other ordering constraints.
10944 // If the chain has more than one use, we give up: some other
10945 // use of Dest might force a side-effect between Dest and the current
10946 // node.
10947 if (Dest.hasOneUse())
10948 return true;
10949 }
10950 // Next, try a deep search: check whether every operand of the TokenFactor
10951 // reaches Dest.
10952 return llvm::all_of((*this)->ops(), [=](SDValue Op) {
10953 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
10954 });
10955 }
10956
10957 // Loads don't have side effects, look through them.
10958 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
10959 if (Ld->isUnordered())
10960 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
10961 }
10962 return false;
10963 }
10964
hasPredecessor(const SDNode * N) const10965 bool SDNode::hasPredecessor(const SDNode *N) const {
10966 SmallPtrSet<const SDNode *, 32> Visited;
10967 SmallVector<const SDNode *, 16> Worklist;
10968 Worklist.push_back(this);
10969 return hasPredecessorHelper(N, Visited, Worklist);
10970 }
10971
intersectFlagsWith(const SDNodeFlags Flags)10972 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
10973 this->Flags.intersectWith(Flags);
10974 }
10975
10976 SDValue
matchBinOpReduction(SDNode * Extract,ISD::NodeType & BinOp,ArrayRef<ISD::NodeType> CandidateBinOps,bool AllowPartials)10977 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
10978 ArrayRef<ISD::NodeType> CandidateBinOps,
10979 bool AllowPartials) {
10980 // The pattern must end in an extract from index 0.
10981 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
10982 !isNullConstant(Extract->getOperand(1)))
10983 return SDValue();
10984
10985 // Match against one of the candidate binary ops.
10986 SDValue Op = Extract->getOperand(0);
10987 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
10988 return Op.getOpcode() == unsigned(BinOp);
10989 }))
10990 return SDValue();
10991
10992 // Floating-point reductions may require relaxed constraints on the final step
10993 // of the reduction because they may reorder intermediate operations.
10994 unsigned CandidateBinOp = Op.getOpcode();
10995 if (Op.getValueType().isFloatingPoint()) {
10996 SDNodeFlags Flags = Op->getFlags();
10997 switch (CandidateBinOp) {
10998 case ISD::FADD:
10999 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
11000 return SDValue();
11001 break;
11002 default:
11003 llvm_unreachable("Unhandled FP opcode for binop reduction");
11004 }
11005 }
11006
11007 // Matching failed - attempt to see if we did enough stages that a partial
11008 // reduction from a subvector is possible.
11009 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
11010 if (!AllowPartials || !Op)
11011 return SDValue();
11012 EVT OpVT = Op.getValueType();
11013 EVT OpSVT = OpVT.getScalarType();
11014 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
11015 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
11016 return SDValue();
11017 BinOp = (ISD::NodeType)CandidateBinOp;
11018 return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op,
11019 getVectorIdxConstant(0, SDLoc(Op)));
11020 };
11021
11022 // At each stage, we're looking for something that looks like:
11023 // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
11024 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
11025 // i32 undef, i32 undef, i32 undef, i32 undef>
11026 // %a = binop <8 x i32> %op, %s
11027 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
11028 // we expect something like:
11029 // <4,5,6,7,u,u,u,u>
11030 // <2,3,u,u,u,u,u,u>
11031 // <1,u,u,u,u,u,u,u>
11032 // While a partial reduction match would be:
11033 // <2,3,u,u,u,u,u,u>
11034 // <1,u,u,u,u,u,u,u>
11035 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
11036 SDValue PrevOp;
11037 for (unsigned i = 0; i < Stages; ++i) {
11038 unsigned MaskEnd = (1 << i);
11039
11040 if (Op.getOpcode() != CandidateBinOp)
11041 return PartialReduction(PrevOp, MaskEnd);
11042
11043 SDValue Op0 = Op.getOperand(0);
11044 SDValue Op1 = Op.getOperand(1);
11045
11046 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
11047 if (Shuffle) {
11048 Op = Op1;
11049 } else {
11050 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
11051 Op = Op0;
11052 }
11053
11054 // The first operand of the shuffle should be the same as the other operand
11055 // of the binop.
11056 if (!Shuffle || Shuffle->getOperand(0) != Op)
11057 return PartialReduction(PrevOp, MaskEnd);
11058
11059 // Verify the shuffle has the expected (at this stage of the pyramid) mask.
11060 for (int Index = 0; Index < (int)MaskEnd; ++Index)
11061 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
11062 return PartialReduction(PrevOp, MaskEnd);
11063
11064 PrevOp = Op;
11065 }
11066
11067 // Handle subvector reductions, which tend to appear after the shuffle
11068 // reduction stages.
11069 while (Op.getOpcode() == CandidateBinOp) {
11070 unsigned NumElts = Op.getValueType().getVectorNumElements();
11071 SDValue Op0 = Op.getOperand(0);
11072 SDValue Op1 = Op.getOperand(1);
11073 if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
11074 Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
11075 Op0.getOperand(0) != Op1.getOperand(0))
11076 break;
11077 SDValue Src = Op0.getOperand(0);
11078 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
11079 if (NumSrcElts != (2 * NumElts))
11080 break;
11081 if (!(Op0.getConstantOperandAPInt(1) == 0 &&
11082 Op1.getConstantOperandAPInt(1) == NumElts) &&
11083 !(Op1.getConstantOperandAPInt(1) == 0 &&
11084 Op0.getConstantOperandAPInt(1) == NumElts))
11085 break;
11086 Op = Src;
11087 }
11088
11089 BinOp = (ISD::NodeType)CandidateBinOp;
11090 return Op;
11091 }
11092
UnrollVectorOp(SDNode * N,unsigned ResNE)11093 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
11094 assert(N->getNumValues() == 1 &&
11095 "Can't unroll a vector with multiple results!");
11096
11097 EVT VT = N->getValueType(0);
11098 unsigned NE = VT.getVectorNumElements();
11099 EVT EltVT = VT.getVectorElementType();
11100 SDLoc dl(N);
11101
11102 SmallVector<SDValue, 8> Scalars;
11103 SmallVector<SDValue, 4> Operands(N->getNumOperands());
11104
11105 // If ResNE is 0, fully unroll the vector op.
11106 if (ResNE == 0)
11107 ResNE = NE;
11108 else if (NE > ResNE)
11109 NE = ResNE;
11110
11111 unsigned i;
11112 for (i= 0; i != NE; ++i) {
11113 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
11114 SDValue Operand = N->getOperand(j);
11115 EVT OperandVT = Operand.getValueType();
11116 if (OperandVT.isVector()) {
11117 // A vector operand; extract a single element.
11118 EVT OperandEltVT = OperandVT.getVectorElementType();
11119 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT,
11120 Operand, getVectorIdxConstant(i, dl));
11121 } else {
11122 // A scalar operand; just use it as is.
11123 Operands[j] = Operand;
11124 }
11125 }
11126
11127 switch (N->getOpcode()) {
11128 default: {
11129 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
11130 N->getFlags()));
11131 break;
11132 }
11133 case ISD::VSELECT:
11134 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
11135 break;
11136 case ISD::SHL:
11137 case ISD::SRA:
11138 case ISD::SRL:
11139 case ISD::ROTL:
11140 case ISD::ROTR:
11141 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
11142 getShiftAmountOperand(Operands[0].getValueType(),
11143 Operands[1])));
11144 break;
11145 case ISD::SIGN_EXTEND_INREG: {
11146 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
11147 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
11148 Operands[0],
11149 getValueType(ExtVT)));
11150 }
11151 }
11152 }
11153
11154 for (; i < ResNE; ++i)
11155 Scalars.push_back(getUNDEF(EltVT));
11156
11157 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
11158 return getBuildVector(VecVT, dl, Scalars);
11159 }
11160
UnrollVectorOverflowOp(SDNode * N,unsigned ResNE)11161 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
11162 SDNode *N, unsigned ResNE) {
11163 unsigned Opcode = N->getOpcode();
11164 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
11165 Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
11166 Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
11167 "Expected an overflow opcode");
11168
11169 EVT ResVT = N->getValueType(0);
11170 EVT OvVT = N->getValueType(1);
11171 EVT ResEltVT = ResVT.getVectorElementType();
11172 EVT OvEltVT = OvVT.getVectorElementType();
11173 SDLoc dl(N);
11174
11175 // If ResNE is 0, fully unroll the vector op.
11176 unsigned NE = ResVT.getVectorNumElements();
11177 if (ResNE == 0)
11178 ResNE = NE;
11179 else if (NE > ResNE)
11180 NE = ResNE;
11181
11182 SmallVector<SDValue, 8> LHSScalars;
11183 SmallVector<SDValue, 8> RHSScalars;
11184 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
11185 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
11186
11187 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
11188 SDVTList VTs = getVTList(ResEltVT, SVT);
11189 SmallVector<SDValue, 8> ResScalars;
11190 SmallVector<SDValue, 8> OvScalars;
11191 for (unsigned i = 0; i < NE; ++i) {
11192 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
11193 SDValue Ov =
11194 getSelect(dl, OvEltVT, Res.getValue(1),
11195 getBoolConstant(true, dl, OvEltVT, ResVT),
11196 getConstant(0, dl, OvEltVT));
11197
11198 ResScalars.push_back(Res);
11199 OvScalars.push_back(Ov);
11200 }
11201
11202 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
11203 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
11204
11205 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
11206 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
11207 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
11208 getBuildVector(NewOvVT, dl, OvScalars));
11209 }
11210
areNonVolatileConsecutiveLoads(LoadSDNode * LD,LoadSDNode * Base,unsigned Bytes,int Dist) const11211 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
11212 LoadSDNode *Base,
11213 unsigned Bytes,
11214 int Dist) const {
11215 if (LD->isVolatile() || Base->isVolatile())
11216 return false;
11217 // TODO: probably too restrictive for atomics, revisit
11218 if (!LD->isSimple())
11219 return false;
11220 if (LD->isIndexed() || Base->isIndexed())
11221 return false;
11222 if (LD->getChain() != Base->getChain())
11223 return false;
11224 EVT VT = LD->getValueType(0);
11225 if (VT.getSizeInBits() / 8 != Bytes)
11226 return false;
11227
11228 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
11229 auto LocDecomp = BaseIndexOffset::match(LD, *this);
11230
11231 int64_t Offset = 0;
11232 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
11233 return (Dist * Bytes == Offset);
11234 return false;
11235 }
11236
11237 /// InferPtrAlignment - Infer alignment of a load / store address. Return None
11238 /// if it cannot be inferred.
InferPtrAlign(SDValue Ptr) const11239 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const {
11240 // If this is a GlobalAddress + cst, return the alignment.
11241 const GlobalValue *GV = nullptr;
11242 int64_t GVOffset = 0;
11243 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
11244 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
11245 KnownBits Known(PtrWidth);
11246 llvm::computeKnownBits(GV, Known, getDataLayout());
11247 unsigned AlignBits = Known.countMinTrailingZeros();
11248 if (AlignBits)
11249 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset);
11250 }
11251
11252 // If this is a direct reference to a stack slot, use information about the
11253 // stack slot's alignment.
11254 int FrameIdx = INT_MIN;
11255 int64_t FrameOffset = 0;
11256 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
11257 FrameIdx = FI->getIndex();
11258 } else if (isBaseWithConstantOffset(Ptr) &&
11259 isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
11260 // Handle FI+Cst
11261 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
11262 FrameOffset = Ptr.getConstantOperandVal(1);
11263 }
11264
11265 if (FrameIdx != INT_MIN) {
11266 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
11267 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset);
11268 }
11269
11270 return None;
11271 }
11272
11273 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
11274 /// which is split (or expanded) into two not necessarily identical pieces.
GetSplitDestVTs(const EVT & VT) const11275 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
11276 // Currently all types are split in half.
11277 EVT LoVT, HiVT;
11278 if (!VT.isVector())
11279 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
11280 else
11281 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
11282
11283 return std::make_pair(LoVT, HiVT);
11284 }
11285
11286 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a
11287 /// type, dependent on an enveloping VT that has been split into two identical
11288 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size.
11289 std::pair<EVT, EVT>
GetDependentSplitDestVTs(const EVT & VT,const EVT & EnvVT,bool * HiIsEmpty) const11290 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT,
11291 bool *HiIsEmpty) const {
11292 EVT EltTp = VT.getVectorElementType();
11293 // Examples:
11294 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty)
11295 // custom VL=9 with enveloping VL=8/8 yields 8/1
11296 // custom VL=10 with enveloping VL=8/8 yields 8/2
11297 // etc.
11298 ElementCount VTNumElts = VT.getVectorElementCount();
11299 ElementCount EnvNumElts = EnvVT.getVectorElementCount();
11300 assert(VTNumElts.isScalable() == EnvNumElts.isScalable() &&
11301 "Mixing fixed width and scalable vectors when enveloping a type");
11302 EVT LoVT, HiVT;
11303 if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) {
11304 LoVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts);
11305 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts);
11306 *HiIsEmpty = false;
11307 } else {
11308 // Flag that hi type has zero storage size, but return split envelop type
11309 // (this would be easier if vector types with zero elements were allowed).
11310 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts);
11311 HiVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts);
11312 *HiIsEmpty = true;
11313 }
11314 return std::make_pair(LoVT, HiVT);
11315 }
11316
11317 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
11318 /// low/high part.
11319 std::pair<SDValue, SDValue>
SplitVector(const SDValue & N,const SDLoc & DL,const EVT & LoVT,const EVT & HiVT)11320 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
11321 const EVT &HiVT) {
11322 assert(LoVT.isScalableVector() == HiVT.isScalableVector() &&
11323 LoVT.isScalableVector() == N.getValueType().isScalableVector() &&
11324 "Splitting vector with an invalid mixture of fixed and scalable "
11325 "vector types");
11326 assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <=
11327 N.getValueType().getVectorMinNumElements() &&
11328 "More vector elements requested than available!");
11329 SDValue Lo, Hi;
11330 Lo =
11331 getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL));
11332 // For scalable vectors it is safe to use LoVT.getVectorMinNumElements()
11333 // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales
11334 // IDX with the runtime scaling factor of the result vector type. For
11335 // fixed-width result vectors, that runtime scaling factor is 1.
11336 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
11337 getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL));
11338 return std::make_pair(Lo, Hi);
11339 }
11340
SplitEVL(SDValue N,EVT VecVT,const SDLoc & DL)11341 std::pair<SDValue, SDValue> SelectionDAG::SplitEVL(SDValue N, EVT VecVT,
11342 const SDLoc &DL) {
11343 // Split the vector length parameter.
11344 // %evl -> umin(%evl, %halfnumelts) and usubsat(%evl - %halfnumelts).
11345 EVT VT = N.getValueType();
11346 assert(VecVT.getVectorElementCount().isKnownEven() &&
11347 "Expecting the mask to be an evenly-sized vector");
11348 unsigned HalfMinNumElts = VecVT.getVectorMinNumElements() / 2;
11349 SDValue HalfNumElts =
11350 VecVT.isFixedLengthVector()
11351 ? getConstant(HalfMinNumElts, DL, VT)
11352 : getVScale(DL, VT, APInt(VT.getScalarSizeInBits(), HalfMinNumElts));
11353 SDValue Lo = getNode(ISD::UMIN, DL, VT, N, HalfNumElts);
11354 SDValue Hi = getNode(ISD::USUBSAT, DL, VT, N, HalfNumElts);
11355 return std::make_pair(Lo, Hi);
11356 }
11357
11358 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
WidenVector(const SDValue & N,const SDLoc & DL)11359 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
11360 EVT VT = N.getValueType();
11361 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
11362 NextPowerOf2(VT.getVectorNumElements()));
11363 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
11364 getVectorIdxConstant(0, DL));
11365 }
11366
ExtractVectorElements(SDValue Op,SmallVectorImpl<SDValue> & Args,unsigned Start,unsigned Count,EVT EltVT)11367 void SelectionDAG::ExtractVectorElements(SDValue Op,
11368 SmallVectorImpl<SDValue> &Args,
11369 unsigned Start, unsigned Count,
11370 EVT EltVT) {
11371 EVT VT = Op.getValueType();
11372 if (Count == 0)
11373 Count = VT.getVectorNumElements();
11374 if (EltVT == EVT())
11375 EltVT = VT.getVectorElementType();
11376 SDLoc SL(Op);
11377 for (unsigned i = Start, e = Start + Count; i != e; ++i) {
11378 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op,
11379 getVectorIdxConstant(i, SL)));
11380 }
11381 }
11382
11383 // getAddressSpace - Return the address space this GlobalAddress belongs to.
getAddressSpace() const11384 unsigned GlobalAddressSDNode::getAddressSpace() const {
11385 return getGlobal()->getType()->getAddressSpace();
11386 }
11387
getType() const11388 Type *ConstantPoolSDNode::getType() const {
11389 if (isMachineConstantPoolEntry())
11390 return Val.MachineCPVal->getType();
11391 return Val.ConstVal->getType();
11392 }
11393
isConstantSplat(APInt & SplatValue,APInt & SplatUndef,unsigned & SplatBitSize,bool & HasAnyUndefs,unsigned MinSplatBits,bool IsBigEndian) const11394 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
11395 unsigned &SplatBitSize,
11396 bool &HasAnyUndefs,
11397 unsigned MinSplatBits,
11398 bool IsBigEndian) const {
11399 EVT VT = getValueType(0);
11400 assert(VT.isVector() && "Expected a vector type");
11401 unsigned VecWidth = VT.getSizeInBits();
11402 if (MinSplatBits > VecWidth)
11403 return false;
11404
11405 // FIXME: The widths are based on this node's type, but build vectors can
11406 // truncate their operands.
11407 SplatValue = APInt(VecWidth, 0);
11408 SplatUndef = APInt(VecWidth, 0);
11409
11410 // Get the bits. Bits with undefined values (when the corresponding element
11411 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
11412 // in SplatValue. If any of the values are not constant, give up and return
11413 // false.
11414 unsigned int NumOps = getNumOperands();
11415 assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
11416 unsigned EltWidth = VT.getScalarSizeInBits();
11417
11418 for (unsigned j = 0; j < NumOps; ++j) {
11419 unsigned i = IsBigEndian ? NumOps - 1 - j : j;
11420 SDValue OpVal = getOperand(i);
11421 unsigned BitPos = j * EltWidth;
11422
11423 if (OpVal.isUndef())
11424 SplatUndef.setBits(BitPos, BitPos + EltWidth);
11425 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
11426 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
11427 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
11428 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
11429 else
11430 return false;
11431 }
11432
11433 // The build_vector is all constants or undefs. Find the smallest element
11434 // size that splats the vector.
11435 HasAnyUndefs = (SplatUndef != 0);
11436
11437 // FIXME: This does not work for vectors with elements less than 8 bits.
11438 while (VecWidth > 8) {
11439 unsigned HalfSize = VecWidth / 2;
11440 APInt HighValue = SplatValue.extractBits(HalfSize, HalfSize);
11441 APInt LowValue = SplatValue.extractBits(HalfSize, 0);
11442 APInt HighUndef = SplatUndef.extractBits(HalfSize, HalfSize);
11443 APInt LowUndef = SplatUndef.extractBits(HalfSize, 0);
11444
11445 // If the two halves do not match (ignoring undef bits), stop here.
11446 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
11447 MinSplatBits > HalfSize)
11448 break;
11449
11450 SplatValue = HighValue | LowValue;
11451 SplatUndef = HighUndef & LowUndef;
11452
11453 VecWidth = HalfSize;
11454 }
11455
11456 SplatBitSize = VecWidth;
11457 return true;
11458 }
11459
getSplatValue(const APInt & DemandedElts,BitVector * UndefElements) const11460 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
11461 BitVector *UndefElements) const {
11462 unsigned NumOps = getNumOperands();
11463 if (UndefElements) {
11464 UndefElements->clear();
11465 UndefElements->resize(NumOps);
11466 }
11467 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
11468 if (!DemandedElts)
11469 return SDValue();
11470 SDValue Splatted;
11471 for (unsigned i = 0; i != NumOps; ++i) {
11472 if (!DemandedElts[i])
11473 continue;
11474 SDValue Op = getOperand(i);
11475 if (Op.isUndef()) {
11476 if (UndefElements)
11477 (*UndefElements)[i] = true;
11478 } else if (!Splatted) {
11479 Splatted = Op;
11480 } else if (Splatted != Op) {
11481 return SDValue();
11482 }
11483 }
11484
11485 if (!Splatted) {
11486 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros();
11487 assert(getOperand(FirstDemandedIdx).isUndef() &&
11488 "Can only have a splat without a constant for all undefs.");
11489 return getOperand(FirstDemandedIdx);
11490 }
11491
11492 return Splatted;
11493 }
11494
getSplatValue(BitVector * UndefElements) const11495 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
11496 APInt DemandedElts = APInt::getAllOnes(getNumOperands());
11497 return getSplatValue(DemandedElts, UndefElements);
11498 }
11499
getRepeatedSequence(const APInt & DemandedElts,SmallVectorImpl<SDValue> & Sequence,BitVector * UndefElements) const11500 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts,
11501 SmallVectorImpl<SDValue> &Sequence,
11502 BitVector *UndefElements) const {
11503 unsigned NumOps = getNumOperands();
11504 Sequence.clear();
11505 if (UndefElements) {
11506 UndefElements->clear();
11507 UndefElements->resize(NumOps);
11508 }
11509 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
11510 if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps))
11511 return false;
11512
11513 // Set the undefs even if we don't find a sequence (like getSplatValue).
11514 if (UndefElements)
11515 for (unsigned I = 0; I != NumOps; ++I)
11516 if (DemandedElts[I] && getOperand(I).isUndef())
11517 (*UndefElements)[I] = true;
11518
11519 // Iteratively widen the sequence length looking for repetitions.
11520 for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) {
11521 Sequence.append(SeqLen, SDValue());
11522 for (unsigned I = 0; I != NumOps; ++I) {
11523 if (!DemandedElts[I])
11524 continue;
11525 SDValue &SeqOp = Sequence[I % SeqLen];
11526 SDValue Op = getOperand(I);
11527 if (Op.isUndef()) {
11528 if (!SeqOp)
11529 SeqOp = Op;
11530 continue;
11531 }
11532 if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) {
11533 Sequence.clear();
11534 break;
11535 }
11536 SeqOp = Op;
11537 }
11538 if (!Sequence.empty())
11539 return true;
11540 }
11541
11542 assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern");
11543 return false;
11544 }
11545
getRepeatedSequence(SmallVectorImpl<SDValue> & Sequence,BitVector * UndefElements) const11546 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence,
11547 BitVector *UndefElements) const {
11548 APInt DemandedElts = APInt::getAllOnes(getNumOperands());
11549 return getRepeatedSequence(DemandedElts, Sequence, UndefElements);
11550 }
11551
11552 ConstantSDNode *
getConstantSplatNode(const APInt & DemandedElts,BitVector * UndefElements) const11553 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
11554 BitVector *UndefElements) const {
11555 return dyn_cast_or_null<ConstantSDNode>(
11556 getSplatValue(DemandedElts, UndefElements));
11557 }
11558
11559 ConstantSDNode *
getConstantSplatNode(BitVector * UndefElements) const11560 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
11561 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
11562 }
11563
11564 ConstantFPSDNode *
getConstantFPSplatNode(const APInt & DemandedElts,BitVector * UndefElements) const11565 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
11566 BitVector *UndefElements) const {
11567 return dyn_cast_or_null<ConstantFPSDNode>(
11568 getSplatValue(DemandedElts, UndefElements));
11569 }
11570
11571 ConstantFPSDNode *
getConstantFPSplatNode(BitVector * UndefElements) const11572 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
11573 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
11574 }
11575
11576 int32_t
getConstantFPSplatPow2ToLog2Int(BitVector * UndefElements,uint32_t BitWidth) const11577 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
11578 uint32_t BitWidth) const {
11579 if (ConstantFPSDNode *CN =
11580 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
11581 bool IsExact;
11582 APSInt IntVal(BitWidth);
11583 const APFloat &APF = CN->getValueAPF();
11584 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
11585 APFloat::opOK ||
11586 !IsExact)
11587 return -1;
11588
11589 return IntVal.exactLogBase2();
11590 }
11591 return -1;
11592 }
11593
getConstantRawBits(bool IsLittleEndian,unsigned DstEltSizeInBits,SmallVectorImpl<APInt> & RawBitElements,BitVector & UndefElements) const11594 bool BuildVectorSDNode::getConstantRawBits(
11595 bool IsLittleEndian, unsigned DstEltSizeInBits,
11596 SmallVectorImpl<APInt> &RawBitElements, BitVector &UndefElements) const {
11597 // Early-out if this contains anything but Undef/Constant/ConstantFP.
11598 if (!isConstant())
11599 return false;
11600
11601 unsigned NumSrcOps = getNumOperands();
11602 unsigned SrcEltSizeInBits = getValueType(0).getScalarSizeInBits();
11603 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
11604 "Invalid bitcast scale");
11605
11606 // Extract raw src bits.
11607 SmallVector<APInt> SrcBitElements(NumSrcOps,
11608 APInt::getNullValue(SrcEltSizeInBits));
11609 BitVector SrcUndeElements(NumSrcOps, false);
11610
11611 for (unsigned I = 0; I != NumSrcOps; ++I) {
11612 SDValue Op = getOperand(I);
11613 if (Op.isUndef()) {
11614 SrcUndeElements.set(I);
11615 continue;
11616 }
11617 auto *CInt = dyn_cast<ConstantSDNode>(Op);
11618 auto *CFP = dyn_cast<ConstantFPSDNode>(Op);
11619 assert((CInt || CFP) && "Unknown constant");
11620 SrcBitElements[I] = CInt ? CInt->getAPIntValue().trunc(SrcEltSizeInBits)
11621 : CFP->getValueAPF().bitcastToAPInt();
11622 }
11623
11624 // Recast to dst width.
11625 recastRawBits(IsLittleEndian, DstEltSizeInBits, RawBitElements,
11626 SrcBitElements, UndefElements, SrcUndeElements);
11627 return true;
11628 }
11629
recastRawBits(bool IsLittleEndian,unsigned DstEltSizeInBits,SmallVectorImpl<APInt> & DstBitElements,ArrayRef<APInt> SrcBitElements,BitVector & DstUndefElements,const BitVector & SrcUndefElements)11630 void BuildVectorSDNode::recastRawBits(bool IsLittleEndian,
11631 unsigned DstEltSizeInBits,
11632 SmallVectorImpl<APInt> &DstBitElements,
11633 ArrayRef<APInt> SrcBitElements,
11634 BitVector &DstUndefElements,
11635 const BitVector &SrcUndefElements) {
11636 unsigned NumSrcOps = SrcBitElements.size();
11637 unsigned SrcEltSizeInBits = SrcBitElements[0].getBitWidth();
11638 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
11639 "Invalid bitcast scale");
11640 assert(NumSrcOps == SrcUndefElements.size() &&
11641 "Vector size mismatch");
11642
11643 unsigned NumDstOps = (NumSrcOps * SrcEltSizeInBits) / DstEltSizeInBits;
11644 DstUndefElements.clear();
11645 DstUndefElements.resize(NumDstOps, false);
11646 DstBitElements.assign(NumDstOps, APInt::getNullValue(DstEltSizeInBits));
11647
11648 // Concatenate src elements constant bits together into dst element.
11649 if (SrcEltSizeInBits <= DstEltSizeInBits) {
11650 unsigned Scale = DstEltSizeInBits / SrcEltSizeInBits;
11651 for (unsigned I = 0; I != NumDstOps; ++I) {
11652 DstUndefElements.set(I);
11653 APInt &DstBits = DstBitElements[I];
11654 for (unsigned J = 0; J != Scale; ++J) {
11655 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
11656 if (SrcUndefElements[Idx])
11657 continue;
11658 DstUndefElements.reset(I);
11659 const APInt &SrcBits = SrcBitElements[Idx];
11660 assert(SrcBits.getBitWidth() == SrcEltSizeInBits &&
11661 "Illegal constant bitwidths");
11662 DstBits.insertBits(SrcBits, J * SrcEltSizeInBits);
11663 }
11664 }
11665 return;
11666 }
11667
11668 // Split src element constant bits into dst elements.
11669 unsigned Scale = SrcEltSizeInBits / DstEltSizeInBits;
11670 for (unsigned I = 0; I != NumSrcOps; ++I) {
11671 if (SrcUndefElements[I]) {
11672 DstUndefElements.set(I * Scale, (I + 1) * Scale);
11673 continue;
11674 }
11675 const APInt &SrcBits = SrcBitElements[I];
11676 for (unsigned J = 0; J != Scale; ++J) {
11677 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
11678 APInt &DstBits = DstBitElements[Idx];
11679 DstBits = SrcBits.extractBits(DstEltSizeInBits, J * DstEltSizeInBits);
11680 }
11681 }
11682 }
11683
isConstant() const11684 bool BuildVectorSDNode::isConstant() const {
11685 for (const SDValue &Op : op_values()) {
11686 unsigned Opc = Op.getOpcode();
11687 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
11688 return false;
11689 }
11690 return true;
11691 }
11692
11693 Optional<std::pair<APInt, APInt>>
isConstantSequence() const11694 BuildVectorSDNode::isConstantSequence() const {
11695 unsigned NumOps = getNumOperands();
11696 if (NumOps < 2)
11697 return None;
11698
11699 if (!isa<ConstantSDNode>(getOperand(0)) ||
11700 !isa<ConstantSDNode>(getOperand(1)))
11701 return None;
11702
11703 unsigned EltSize = getValueType(0).getScalarSizeInBits();
11704 APInt Start = getConstantOperandAPInt(0).trunc(EltSize);
11705 APInt Stride = getConstantOperandAPInt(1).trunc(EltSize) - Start;
11706
11707 if (Stride.isZero())
11708 return None;
11709
11710 for (unsigned i = 2; i < NumOps; ++i) {
11711 if (!isa<ConstantSDNode>(getOperand(i)))
11712 return None;
11713
11714 APInt Val = getConstantOperandAPInt(i).trunc(EltSize);
11715 if (Val != (Start + (Stride * i)))
11716 return None;
11717 }
11718
11719 return std::make_pair(Start, Stride);
11720 }
11721
isSplatMask(const int * Mask,EVT VT)11722 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
11723 // Find the first non-undef value in the shuffle mask.
11724 unsigned i, e;
11725 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
11726 /* search */;
11727
11728 // If all elements are undefined, this shuffle can be considered a splat
11729 // (although it should eventually get simplified away completely).
11730 if (i == e)
11731 return true;
11732
11733 // Make sure all remaining elements are either undef or the same as the first
11734 // non-undef value.
11735 for (int Idx = Mask[i]; i != e; ++i)
11736 if (Mask[i] >= 0 && Mask[i] != Idx)
11737 return false;
11738 return true;
11739 }
11740
11741 // Returns the SDNode if it is a constant integer BuildVector
11742 // or constant integer.
isConstantIntBuildVectorOrConstantInt(SDValue N) const11743 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const {
11744 if (isa<ConstantSDNode>(N))
11745 return N.getNode();
11746 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
11747 return N.getNode();
11748 // Treat a GlobalAddress supporting constant offset folding as a
11749 // constant integer.
11750 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
11751 if (GA->getOpcode() == ISD::GlobalAddress &&
11752 TLI->isOffsetFoldingLegal(GA))
11753 return GA;
11754 if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
11755 isa<ConstantSDNode>(N.getOperand(0)))
11756 return N.getNode();
11757 return nullptr;
11758 }
11759
11760 // Returns the SDNode if it is a constant float BuildVector
11761 // or constant float.
isConstantFPBuildVectorOrConstantFP(SDValue N) const11762 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const {
11763 if (isa<ConstantFPSDNode>(N))
11764 return N.getNode();
11765
11766 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
11767 return N.getNode();
11768
11769 if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
11770 isa<ConstantFPSDNode>(N.getOperand(0)))
11771 return N.getNode();
11772
11773 return nullptr;
11774 }
11775
createOperands(SDNode * Node,ArrayRef<SDValue> Vals)11776 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
11777 assert(!Node->OperandList && "Node already has operands");
11778 assert(SDNode::getMaxNumOperands() >= Vals.size() &&
11779 "too many operands to fit into SDNode");
11780 SDUse *Ops = OperandRecycler.allocate(
11781 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
11782
11783 bool IsDivergent = false;
11784 for (unsigned I = 0; I != Vals.size(); ++I) {
11785 Ops[I].setUser(Node);
11786 Ops[I].setInitial(Vals[I]);
11787 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
11788 IsDivergent |= Ops[I].getNode()->isDivergent();
11789 }
11790 Node->NumOperands = Vals.size();
11791 Node->OperandList = Ops;
11792 if (!TLI->isSDNodeAlwaysUniform(Node)) {
11793 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
11794 Node->SDNodeBits.IsDivergent = IsDivergent;
11795 }
11796 checkForCycles(Node);
11797 }
11798
getTokenFactor(const SDLoc & DL,SmallVectorImpl<SDValue> & Vals)11799 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
11800 SmallVectorImpl<SDValue> &Vals) {
11801 size_t Limit = SDNode::getMaxNumOperands();
11802 while (Vals.size() > Limit) {
11803 unsigned SliceIdx = Vals.size() - Limit;
11804 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
11805 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
11806 Vals.erase(Vals.begin() + SliceIdx, Vals.end());
11807 Vals.emplace_back(NewTF);
11808 }
11809 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
11810 }
11811
getNeutralElement(unsigned Opcode,const SDLoc & DL,EVT VT,SDNodeFlags Flags)11812 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL,
11813 EVT VT, SDNodeFlags Flags) {
11814 switch (Opcode) {
11815 default:
11816 return SDValue();
11817 case ISD::ADD:
11818 case ISD::OR:
11819 case ISD::XOR:
11820 case ISD::UMAX:
11821 return getConstant(0, DL, VT);
11822 case ISD::MUL:
11823 return getConstant(1, DL, VT);
11824 case ISD::AND:
11825 case ISD::UMIN:
11826 return getAllOnesConstant(DL, VT);
11827 case ISD::SMAX:
11828 return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT);
11829 case ISD::SMIN:
11830 return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT);
11831 case ISD::FADD:
11832 return getConstantFP(-0.0, DL, VT);
11833 case ISD::FMUL:
11834 return getConstantFP(1.0, DL, VT);
11835 case ISD::FMINNUM:
11836 case ISD::FMAXNUM: {
11837 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF.
11838 const fltSemantics &Semantics = EVTToAPFloatSemantics(VT);
11839 APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) :
11840 !Flags.hasNoInfs() ? APFloat::getInf(Semantics) :
11841 APFloat::getLargest(Semantics);
11842 if (Opcode == ISD::FMAXNUM)
11843 NeutralAF.changeSign();
11844
11845 return getConstantFP(NeutralAF, DL, VT);
11846 }
11847 }
11848 }
11849
11850 #ifndef NDEBUG
checkForCyclesHelper(const SDNode * N,SmallPtrSetImpl<const SDNode * > & Visited,SmallPtrSetImpl<const SDNode * > & Checked,const llvm::SelectionDAG * DAG)11851 static void checkForCyclesHelper(const SDNode *N,
11852 SmallPtrSetImpl<const SDNode*> &Visited,
11853 SmallPtrSetImpl<const SDNode*> &Checked,
11854 const llvm::SelectionDAG *DAG) {
11855 // If this node has already been checked, don't check it again.
11856 if (Checked.count(N))
11857 return;
11858
11859 // If a node has already been visited on this depth-first walk, reject it as
11860 // a cycle.
11861 if (!Visited.insert(N).second) {
11862 errs() << "Detected cycle in SelectionDAG\n";
11863 dbgs() << "Offending node:\n";
11864 N->dumprFull(DAG); dbgs() << "\n";
11865 abort();
11866 }
11867
11868 for (const SDValue &Op : N->op_values())
11869 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
11870
11871 Checked.insert(N);
11872 Visited.erase(N);
11873 }
11874 #endif
11875
checkForCycles(const llvm::SDNode * N,const llvm::SelectionDAG * DAG,bool force)11876 void llvm::checkForCycles(const llvm::SDNode *N,
11877 const llvm::SelectionDAG *DAG,
11878 bool force) {
11879 #ifndef NDEBUG
11880 bool check = force;
11881 #ifdef EXPENSIVE_CHECKS
11882 check = true;
11883 #endif // EXPENSIVE_CHECKS
11884 if (check) {
11885 assert(N && "Checking nonexistent SDNode");
11886 SmallPtrSet<const SDNode*, 32> visited;
11887 SmallPtrSet<const SDNode*, 32> checked;
11888 checkForCyclesHelper(N, visited, checked, DAG);
11889 }
11890 #endif // !NDEBUG
11891 }
11892
checkForCycles(const llvm::SelectionDAG * DAG,bool force)11893 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
11894 checkForCycles(DAG->getRoot().getNode(), DAG, force);
11895 }
11896