1 /*
2  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
3  * Use is subject to license terms.
4  */
5 /*
6  * Copyright 2013 Saso Kiselkov.  All rights reserved.
7  */
8 
9 /*
10  * The basic framework for this code came from the reference
11  * implementation for MD5.  That implementation is Copyright (C)
12  * 1991-2, RSA Data Security, Inc. Created 1991. All rights reserved.
13  *
14  * License to copy and use this software is granted provided that it
15  * is identified as the "RSA Data Security, Inc. MD5 Message-Digest
16  * Algorithm" in all material mentioning or referencing this software
17  * or this function.
18  *
19  * License is also granted to make and use derivative works provided
20  * that such works are identified as "derived from the RSA Data
21  * Security, Inc. MD5 Message-Digest Algorithm" in all material
22  * mentioning or referencing the derived work.
23  *
24  * RSA Data Security, Inc. makes no representations concerning either
25  * the merchantability of this software or the suitability of this
26  * software for any particular purpose. It is provided "as is"
27  * without express or implied warranty of any kind.
28  *
29  * These notices must be retained in any copies of any part of this
30  * documentation and/or software.
31  *
32  * NOTE: Cleaned-up and optimized, version of SHA2, based on the FIPS 180-2
33  * standard, available at
34  * http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
35  * Not as fast as one would like -- further optimizations are encouraged
36  * and appreciated.
37  */
38 
39 #include <sys/zfs_context.h>
40 #define	_SHA2_IMPL
41 #include <sys/sha2.h>
42 #include <sha2/sha2_consts.h>
43 
44 #define	_RESTRICT_KYWD
45 
46 #ifdef _ZFS_LITTLE_ENDIAN
47 #include <sys/byteorder.h>
48 #define	HAVE_HTONL
49 #endif
50 #include <sys/isa_defs.h>	/* for _ILP32 */
51 
52 static void Encode(uint8_t *, uint32_t *, size_t);
53 static void Encode64(uint8_t *, uint64_t *, size_t);
54 
55 /* userspace only supports the generic version */
56 #if	defined(__amd64) && defined(_KERNEL)
57 #define	SHA512Transform(ctx, in) SHA512TransformBlocks((ctx), (in), 1)
58 #define	SHA256Transform(ctx, in) SHA256TransformBlocks((ctx), (in), 1)
59 
60 void SHA512TransformBlocks(SHA2_CTX *ctx, const void *in, size_t num);
61 void SHA256TransformBlocks(SHA2_CTX *ctx, const void *in, size_t num);
62 
63 #else
64 static void SHA256Transform(SHA2_CTX *, const uint8_t *);
65 static void SHA512Transform(SHA2_CTX *, const uint8_t *);
66 #endif	/* __amd64 && _KERNEL */
67 
68 static uint8_t PADDING[128] = { 0x80, /* all zeros */ };
69 
70 /*
71  * The low-level checksum routines use a lot of stack space. On systems where
72  * small stacks are enforced (like 32-bit kernel builds), insert compiler memory
73  * barriers to reduce stack frame size. This can reduce the SHA512Transform()
74  * stack frame usage from 3k to <1k on ARM32, for example.
75  */
76 #if defined(_ILP32) || defined(__powerpc)	/* small stack */
77 #define	SMALL_STACK_MEMORY_BARRIER	asm volatile("": : :"memory");
78 #else
79 #define	SMALL_STACK_MEMORY_BARRIER
80 #endif
81 
82 /* Ch and Maj are the basic SHA2 functions. */
83 #define	Ch(b, c, d)	(((b) & (c)) ^ ((~b) & (d)))
84 #define	Maj(b, c, d)	(((b) & (c)) ^ ((b) & (d)) ^ ((c) & (d)))
85 
86 /* Rotates x right n bits. */
87 #define	ROTR(x, n)	\
88 	(((x) >> (n)) | ((x) << ((sizeof (x) * NBBY)-(n))))
89 
90 /* Shift x right n bits */
91 #define	SHR(x, n)	((x) >> (n))
92 
93 /* SHA256 Functions */
94 #define	BIGSIGMA0_256(x)	(ROTR((x), 2) ^ ROTR((x), 13) ^ ROTR((x), 22))
95 #define	BIGSIGMA1_256(x)	(ROTR((x), 6) ^ ROTR((x), 11) ^ ROTR((x), 25))
96 #define	SIGMA0_256(x)		(ROTR((x), 7) ^ ROTR((x), 18) ^ SHR((x), 3))
97 #define	SIGMA1_256(x)		(ROTR((x), 17) ^ ROTR((x), 19) ^ SHR((x), 10))
98 
99 #define	SHA256ROUND(a, b, c, d, e, f, g, h, i, w)			\
100 	T1 = h + BIGSIGMA1_256(e) + Ch(e, f, g) + SHA256_CONST(i) + w;	\
101 	d += T1;							\
102 	T2 = BIGSIGMA0_256(a) + Maj(a, b, c);				\
103 	h = T1 + T2
104 
105 /* SHA384/512 Functions */
106 #define	BIGSIGMA0(x)	(ROTR((x), 28) ^ ROTR((x), 34) ^ ROTR((x), 39))
107 #define	BIGSIGMA1(x)	(ROTR((x), 14) ^ ROTR((x), 18) ^ ROTR((x), 41))
108 #define	SIGMA0(x)	(ROTR((x), 1) ^ ROTR((x), 8) ^ SHR((x), 7))
109 #define	SIGMA1(x)	(ROTR((x), 19) ^ ROTR((x), 61) ^ SHR((x), 6))
110 #define	SHA512ROUND(a, b, c, d, e, f, g, h, i, w)			\
111 	T1 = h + BIGSIGMA1(e) + Ch(e, f, g) + SHA512_CONST(i) + w;	\
112 	d += T1;							\
113 	T2 = BIGSIGMA0(a) + Maj(a, b, c);				\
114 	h = T1 + T2;							\
115 	SMALL_STACK_MEMORY_BARRIER;
116 
117 /*
118  * sparc optimization:
119  *
120  * on the sparc, we can load big endian 32-bit data easily.  note that
121  * special care must be taken to ensure the address is 32-bit aligned.
122  * in the interest of speed, we don't check to make sure, since
123  * careful programming can guarantee this for us.
124  */
125 
126 #if	defined(_ZFS_BIG_ENDIAN)
127 #define	LOAD_BIG_32(addr)	(*(uint32_t *)(addr))
128 #define	LOAD_BIG_64(addr)	(*(uint64_t *)(addr))
129 
130 #elif	defined(HAVE_HTONL)
131 #define	LOAD_BIG_32(addr) htonl(*((uint32_t *)(addr)))
132 #define	LOAD_BIG_64(addr) htonll(*((uint64_t *)(addr)))
133 
134 #else
135 /* little endian -- will work on big endian, but slowly */
136 #define	LOAD_BIG_32(addr)	\
137 	(((addr)[0] << 24) | ((addr)[1] << 16) | ((addr)[2] << 8) | (addr)[3])
138 #define	LOAD_BIG_64(addr)	\
139 	(((uint64_t)(addr)[0] << 56) | ((uint64_t)(addr)[1] << 48) |	\
140 	    ((uint64_t)(addr)[2] << 40) | ((uint64_t)(addr)[3] << 32) |	\
141 	    ((uint64_t)(addr)[4] << 24) | ((uint64_t)(addr)[5] << 16) |	\
142 	    ((uint64_t)(addr)[6] << 8) | (uint64_t)(addr)[7])
143 #endif	/* _BIG_ENDIAN */
144 
145 
146 #if	!defined(__amd64) || !defined(_KERNEL)
147 /* SHA256 Transform */
148 
149 static void
SHA256Transform(SHA2_CTX * ctx,const uint8_t * blk)150 SHA256Transform(SHA2_CTX *ctx, const uint8_t *blk)
151 {
152 	uint32_t a = ctx->state.s32[0];
153 	uint32_t b = ctx->state.s32[1];
154 	uint32_t c = ctx->state.s32[2];
155 	uint32_t d = ctx->state.s32[3];
156 	uint32_t e = ctx->state.s32[4];
157 	uint32_t f = ctx->state.s32[5];
158 	uint32_t g = ctx->state.s32[6];
159 	uint32_t h = ctx->state.s32[7];
160 
161 	uint32_t w0, w1, w2, w3, w4, w5, w6, w7;
162 	uint32_t w8, w9, w10, w11, w12, w13, w14, w15;
163 	uint32_t T1, T2;
164 
165 #if	defined(__sparc)
166 	static const uint32_t sha256_consts[] = {
167 		SHA256_CONST_0, SHA256_CONST_1, SHA256_CONST_2,
168 		SHA256_CONST_3, SHA256_CONST_4, SHA256_CONST_5,
169 		SHA256_CONST_6, SHA256_CONST_7, SHA256_CONST_8,
170 		SHA256_CONST_9, SHA256_CONST_10, SHA256_CONST_11,
171 		SHA256_CONST_12, SHA256_CONST_13, SHA256_CONST_14,
172 		SHA256_CONST_15, SHA256_CONST_16, SHA256_CONST_17,
173 		SHA256_CONST_18, SHA256_CONST_19, SHA256_CONST_20,
174 		SHA256_CONST_21, SHA256_CONST_22, SHA256_CONST_23,
175 		SHA256_CONST_24, SHA256_CONST_25, SHA256_CONST_26,
176 		SHA256_CONST_27, SHA256_CONST_28, SHA256_CONST_29,
177 		SHA256_CONST_30, SHA256_CONST_31, SHA256_CONST_32,
178 		SHA256_CONST_33, SHA256_CONST_34, SHA256_CONST_35,
179 		SHA256_CONST_36, SHA256_CONST_37, SHA256_CONST_38,
180 		SHA256_CONST_39, SHA256_CONST_40, SHA256_CONST_41,
181 		SHA256_CONST_42, SHA256_CONST_43, SHA256_CONST_44,
182 		SHA256_CONST_45, SHA256_CONST_46, SHA256_CONST_47,
183 		SHA256_CONST_48, SHA256_CONST_49, SHA256_CONST_50,
184 		SHA256_CONST_51, SHA256_CONST_52, SHA256_CONST_53,
185 		SHA256_CONST_54, SHA256_CONST_55, SHA256_CONST_56,
186 		SHA256_CONST_57, SHA256_CONST_58, SHA256_CONST_59,
187 		SHA256_CONST_60, SHA256_CONST_61, SHA256_CONST_62,
188 		SHA256_CONST_63
189 	};
190 #endif	/* __sparc */
191 
192 	if ((uintptr_t)blk & 0x3) {		/* not 4-byte aligned? */
193 		bcopy(blk, ctx->buf_un.buf32,  sizeof (ctx->buf_un.buf32));
194 		blk = (uint8_t *)ctx->buf_un.buf32;
195 	}
196 
197 	/* LINTED E_BAD_PTR_CAST_ALIGN */
198 	w0 =  LOAD_BIG_32(blk + 4 * 0);
199 	SHA256ROUND(a, b, c, d, e, f, g, h, 0, w0);
200 	/* LINTED E_BAD_PTR_CAST_ALIGN */
201 	w1 =  LOAD_BIG_32(blk + 4 * 1);
202 	SHA256ROUND(h, a, b, c, d, e, f, g, 1, w1);
203 	/* LINTED E_BAD_PTR_CAST_ALIGN */
204 	w2 =  LOAD_BIG_32(blk + 4 * 2);
205 	SHA256ROUND(g, h, a, b, c, d, e, f, 2, w2);
206 	/* LINTED E_BAD_PTR_CAST_ALIGN */
207 	w3 =  LOAD_BIG_32(blk + 4 * 3);
208 	SHA256ROUND(f, g, h, a, b, c, d, e, 3, w3);
209 	/* LINTED E_BAD_PTR_CAST_ALIGN */
210 	w4 =  LOAD_BIG_32(blk + 4 * 4);
211 	SHA256ROUND(e, f, g, h, a, b, c, d, 4, w4);
212 	/* LINTED E_BAD_PTR_CAST_ALIGN */
213 	w5 =  LOAD_BIG_32(blk + 4 * 5);
214 	SHA256ROUND(d, e, f, g, h, a, b, c, 5, w5);
215 	/* LINTED E_BAD_PTR_CAST_ALIGN */
216 	w6 =  LOAD_BIG_32(blk + 4 * 6);
217 	SHA256ROUND(c, d, e, f, g, h, a, b, 6, w6);
218 	/* LINTED E_BAD_PTR_CAST_ALIGN */
219 	w7 =  LOAD_BIG_32(blk + 4 * 7);
220 	SHA256ROUND(b, c, d, e, f, g, h, a, 7, w7);
221 	/* LINTED E_BAD_PTR_CAST_ALIGN */
222 	w8 =  LOAD_BIG_32(blk + 4 * 8);
223 	SHA256ROUND(a, b, c, d, e, f, g, h, 8, w8);
224 	/* LINTED E_BAD_PTR_CAST_ALIGN */
225 	w9 =  LOAD_BIG_32(blk + 4 * 9);
226 	SHA256ROUND(h, a, b, c, d, e, f, g, 9, w9);
227 	/* LINTED E_BAD_PTR_CAST_ALIGN */
228 	w10 =  LOAD_BIG_32(blk + 4 * 10);
229 	SHA256ROUND(g, h, a, b, c, d, e, f, 10, w10);
230 	/* LINTED E_BAD_PTR_CAST_ALIGN */
231 	w11 =  LOAD_BIG_32(blk + 4 * 11);
232 	SHA256ROUND(f, g, h, a, b, c, d, e, 11, w11);
233 	/* LINTED E_BAD_PTR_CAST_ALIGN */
234 	w12 =  LOAD_BIG_32(blk + 4 * 12);
235 	SHA256ROUND(e, f, g, h, a, b, c, d, 12, w12);
236 	/* LINTED E_BAD_PTR_CAST_ALIGN */
237 	w13 =  LOAD_BIG_32(blk + 4 * 13);
238 	SHA256ROUND(d, e, f, g, h, a, b, c, 13, w13);
239 	/* LINTED E_BAD_PTR_CAST_ALIGN */
240 	w14 =  LOAD_BIG_32(blk + 4 * 14);
241 	SHA256ROUND(c, d, e, f, g, h, a, b, 14, w14);
242 	/* LINTED E_BAD_PTR_CAST_ALIGN */
243 	w15 =  LOAD_BIG_32(blk + 4 * 15);
244 	SHA256ROUND(b, c, d, e, f, g, h, a, 15, w15);
245 
246 	w0 = SIGMA1_256(w14) + w9 + SIGMA0_256(w1) + w0;
247 	SHA256ROUND(a, b, c, d, e, f, g, h, 16, w0);
248 	w1 = SIGMA1_256(w15) + w10 + SIGMA0_256(w2) + w1;
249 	SHA256ROUND(h, a, b, c, d, e, f, g, 17, w1);
250 	w2 = SIGMA1_256(w0) + w11 + SIGMA0_256(w3) + w2;
251 	SHA256ROUND(g, h, a, b, c, d, e, f, 18, w2);
252 	w3 = SIGMA1_256(w1) + w12 + SIGMA0_256(w4) + w3;
253 	SHA256ROUND(f, g, h, a, b, c, d, e, 19, w3);
254 	w4 = SIGMA1_256(w2) + w13 + SIGMA0_256(w5) + w4;
255 	SHA256ROUND(e, f, g, h, a, b, c, d, 20, w4);
256 	w5 = SIGMA1_256(w3) + w14 + SIGMA0_256(w6) + w5;
257 	SHA256ROUND(d, e, f, g, h, a, b, c, 21, w5);
258 	w6 = SIGMA1_256(w4) + w15 + SIGMA0_256(w7) + w6;
259 	SHA256ROUND(c, d, e, f, g, h, a, b, 22, w6);
260 	w7 = SIGMA1_256(w5) + w0 + SIGMA0_256(w8) + w7;
261 	SHA256ROUND(b, c, d, e, f, g, h, a, 23, w7);
262 	w8 = SIGMA1_256(w6) + w1 + SIGMA0_256(w9) + w8;
263 	SHA256ROUND(a, b, c, d, e, f, g, h, 24, w8);
264 	w9 = SIGMA1_256(w7) + w2 + SIGMA0_256(w10) + w9;
265 	SHA256ROUND(h, a, b, c, d, e, f, g, 25, w9);
266 	w10 = SIGMA1_256(w8) + w3 + SIGMA0_256(w11) + w10;
267 	SHA256ROUND(g, h, a, b, c, d, e, f, 26, w10);
268 	w11 = SIGMA1_256(w9) + w4 + SIGMA0_256(w12) + w11;
269 	SHA256ROUND(f, g, h, a, b, c, d, e, 27, w11);
270 	w12 = SIGMA1_256(w10) + w5 + SIGMA0_256(w13) + w12;
271 	SHA256ROUND(e, f, g, h, a, b, c, d, 28, w12);
272 	w13 = SIGMA1_256(w11) + w6 + SIGMA0_256(w14) + w13;
273 	SHA256ROUND(d, e, f, g, h, a, b, c, 29, w13);
274 	w14 = SIGMA1_256(w12) + w7 + SIGMA0_256(w15) + w14;
275 	SHA256ROUND(c, d, e, f, g, h, a, b, 30, w14);
276 	w15 = SIGMA1_256(w13) + w8 + SIGMA0_256(w0) + w15;
277 	SHA256ROUND(b, c, d, e, f, g, h, a, 31, w15);
278 
279 	w0 = SIGMA1_256(w14) + w9 + SIGMA0_256(w1) + w0;
280 	SHA256ROUND(a, b, c, d, e, f, g, h, 32, w0);
281 	w1 = SIGMA1_256(w15) + w10 + SIGMA0_256(w2) + w1;
282 	SHA256ROUND(h, a, b, c, d, e, f, g, 33, w1);
283 	w2 = SIGMA1_256(w0) + w11 + SIGMA0_256(w3) + w2;
284 	SHA256ROUND(g, h, a, b, c, d, e, f, 34, w2);
285 	w3 = SIGMA1_256(w1) + w12 + SIGMA0_256(w4) + w3;
286 	SHA256ROUND(f, g, h, a, b, c, d, e, 35, w3);
287 	w4 = SIGMA1_256(w2) + w13 + SIGMA0_256(w5) + w4;
288 	SHA256ROUND(e, f, g, h, a, b, c, d, 36, w4);
289 	w5 = SIGMA1_256(w3) + w14 + SIGMA0_256(w6) + w5;
290 	SHA256ROUND(d, e, f, g, h, a, b, c, 37, w5);
291 	w6 = SIGMA1_256(w4) + w15 + SIGMA0_256(w7) + w6;
292 	SHA256ROUND(c, d, e, f, g, h, a, b, 38, w6);
293 	w7 = SIGMA1_256(w5) + w0 + SIGMA0_256(w8) + w7;
294 	SHA256ROUND(b, c, d, e, f, g, h, a, 39, w7);
295 	w8 = SIGMA1_256(w6) + w1 + SIGMA0_256(w9) + w8;
296 	SHA256ROUND(a, b, c, d, e, f, g, h, 40, w8);
297 	w9 = SIGMA1_256(w7) + w2 + SIGMA0_256(w10) + w9;
298 	SHA256ROUND(h, a, b, c, d, e, f, g, 41, w9);
299 	w10 = SIGMA1_256(w8) + w3 + SIGMA0_256(w11) + w10;
300 	SHA256ROUND(g, h, a, b, c, d, e, f, 42, w10);
301 	w11 = SIGMA1_256(w9) + w4 + SIGMA0_256(w12) + w11;
302 	SHA256ROUND(f, g, h, a, b, c, d, e, 43, w11);
303 	w12 = SIGMA1_256(w10) + w5 + SIGMA0_256(w13) + w12;
304 	SHA256ROUND(e, f, g, h, a, b, c, d, 44, w12);
305 	w13 = SIGMA1_256(w11) + w6 + SIGMA0_256(w14) + w13;
306 	SHA256ROUND(d, e, f, g, h, a, b, c, 45, w13);
307 	w14 = SIGMA1_256(w12) + w7 + SIGMA0_256(w15) + w14;
308 	SHA256ROUND(c, d, e, f, g, h, a, b, 46, w14);
309 	w15 = SIGMA1_256(w13) + w8 + SIGMA0_256(w0) + w15;
310 	SHA256ROUND(b, c, d, e, f, g, h, a, 47, w15);
311 
312 	w0 = SIGMA1_256(w14) + w9 + SIGMA0_256(w1) + w0;
313 	SHA256ROUND(a, b, c, d, e, f, g, h, 48, w0);
314 	w1 = SIGMA1_256(w15) + w10 + SIGMA0_256(w2) + w1;
315 	SHA256ROUND(h, a, b, c, d, e, f, g, 49, w1);
316 	w2 = SIGMA1_256(w0) + w11 + SIGMA0_256(w3) + w2;
317 	SHA256ROUND(g, h, a, b, c, d, e, f, 50, w2);
318 	w3 = SIGMA1_256(w1) + w12 + SIGMA0_256(w4) + w3;
319 	SHA256ROUND(f, g, h, a, b, c, d, e, 51, w3);
320 	w4 = SIGMA1_256(w2) + w13 + SIGMA0_256(w5) + w4;
321 	SHA256ROUND(e, f, g, h, a, b, c, d, 52, w4);
322 	w5 = SIGMA1_256(w3) + w14 + SIGMA0_256(w6) + w5;
323 	SHA256ROUND(d, e, f, g, h, a, b, c, 53, w5);
324 	w6 = SIGMA1_256(w4) + w15 + SIGMA0_256(w7) + w6;
325 	SHA256ROUND(c, d, e, f, g, h, a, b, 54, w6);
326 	w7 = SIGMA1_256(w5) + w0 + SIGMA0_256(w8) + w7;
327 	SHA256ROUND(b, c, d, e, f, g, h, a, 55, w7);
328 	w8 = SIGMA1_256(w6) + w1 + SIGMA0_256(w9) + w8;
329 	SHA256ROUND(a, b, c, d, e, f, g, h, 56, w8);
330 	w9 = SIGMA1_256(w7) + w2 + SIGMA0_256(w10) + w9;
331 	SHA256ROUND(h, a, b, c, d, e, f, g, 57, w9);
332 	w10 = SIGMA1_256(w8) + w3 + SIGMA0_256(w11) + w10;
333 	SHA256ROUND(g, h, a, b, c, d, e, f, 58, w10);
334 	w11 = SIGMA1_256(w9) + w4 + SIGMA0_256(w12) + w11;
335 	SHA256ROUND(f, g, h, a, b, c, d, e, 59, w11);
336 	w12 = SIGMA1_256(w10) + w5 + SIGMA0_256(w13) + w12;
337 	SHA256ROUND(e, f, g, h, a, b, c, d, 60, w12);
338 	w13 = SIGMA1_256(w11) + w6 + SIGMA0_256(w14) + w13;
339 	SHA256ROUND(d, e, f, g, h, a, b, c, 61, w13);
340 	w14 = SIGMA1_256(w12) + w7 + SIGMA0_256(w15) + w14;
341 	SHA256ROUND(c, d, e, f, g, h, a, b, 62, w14);
342 	w15 = SIGMA1_256(w13) + w8 + SIGMA0_256(w0) + w15;
343 	SHA256ROUND(b, c, d, e, f, g, h, a, 63, w15);
344 
345 	ctx->state.s32[0] += a;
346 	ctx->state.s32[1] += b;
347 	ctx->state.s32[2] += c;
348 	ctx->state.s32[3] += d;
349 	ctx->state.s32[4] += e;
350 	ctx->state.s32[5] += f;
351 	ctx->state.s32[6] += g;
352 	ctx->state.s32[7] += h;
353 }
354 
355 
356 /* SHA384 and SHA512 Transform */
357 
358 static void
SHA512Transform(SHA2_CTX * ctx,const uint8_t * blk)359 SHA512Transform(SHA2_CTX *ctx, const uint8_t *blk)
360 {
361 
362 	uint64_t a = ctx->state.s64[0];
363 	uint64_t b = ctx->state.s64[1];
364 	uint64_t c = ctx->state.s64[2];
365 	uint64_t d = ctx->state.s64[3];
366 	uint64_t e = ctx->state.s64[4];
367 	uint64_t f = ctx->state.s64[5];
368 	uint64_t g = ctx->state.s64[6];
369 	uint64_t h = ctx->state.s64[7];
370 
371 	uint64_t w0, w1, w2, w3, w4, w5, w6, w7;
372 	uint64_t w8, w9, w10, w11, w12, w13, w14, w15;
373 	uint64_t T1, T2;
374 
375 #if	defined(__sparc)
376 	static const uint64_t sha512_consts[] = {
377 		SHA512_CONST_0, SHA512_CONST_1, SHA512_CONST_2,
378 		SHA512_CONST_3, SHA512_CONST_4, SHA512_CONST_5,
379 		SHA512_CONST_6, SHA512_CONST_7, SHA512_CONST_8,
380 		SHA512_CONST_9, SHA512_CONST_10, SHA512_CONST_11,
381 		SHA512_CONST_12, SHA512_CONST_13, SHA512_CONST_14,
382 		SHA512_CONST_15, SHA512_CONST_16, SHA512_CONST_17,
383 		SHA512_CONST_18, SHA512_CONST_19, SHA512_CONST_20,
384 		SHA512_CONST_21, SHA512_CONST_22, SHA512_CONST_23,
385 		SHA512_CONST_24, SHA512_CONST_25, SHA512_CONST_26,
386 		SHA512_CONST_27, SHA512_CONST_28, SHA512_CONST_29,
387 		SHA512_CONST_30, SHA512_CONST_31, SHA512_CONST_32,
388 		SHA512_CONST_33, SHA512_CONST_34, SHA512_CONST_35,
389 		SHA512_CONST_36, SHA512_CONST_37, SHA512_CONST_38,
390 		SHA512_CONST_39, SHA512_CONST_40, SHA512_CONST_41,
391 		SHA512_CONST_42, SHA512_CONST_43, SHA512_CONST_44,
392 		SHA512_CONST_45, SHA512_CONST_46, SHA512_CONST_47,
393 		SHA512_CONST_48, SHA512_CONST_49, SHA512_CONST_50,
394 		SHA512_CONST_51, SHA512_CONST_52, SHA512_CONST_53,
395 		SHA512_CONST_54, SHA512_CONST_55, SHA512_CONST_56,
396 		SHA512_CONST_57, SHA512_CONST_58, SHA512_CONST_59,
397 		SHA512_CONST_60, SHA512_CONST_61, SHA512_CONST_62,
398 		SHA512_CONST_63, SHA512_CONST_64, SHA512_CONST_65,
399 		SHA512_CONST_66, SHA512_CONST_67, SHA512_CONST_68,
400 		SHA512_CONST_69, SHA512_CONST_70, SHA512_CONST_71,
401 		SHA512_CONST_72, SHA512_CONST_73, SHA512_CONST_74,
402 		SHA512_CONST_75, SHA512_CONST_76, SHA512_CONST_77,
403 		SHA512_CONST_78, SHA512_CONST_79
404 	};
405 #endif	/* __sparc */
406 
407 
408 	if ((uintptr_t)blk & 0x7) {		/* not 8-byte aligned? */
409 		bcopy(blk, ctx->buf_un.buf64,  sizeof (ctx->buf_un.buf64));
410 		blk = (uint8_t *)ctx->buf_un.buf64;
411 	}
412 
413 	/* LINTED E_BAD_PTR_CAST_ALIGN */
414 	w0 =  LOAD_BIG_64(blk + 8 * 0);
415 	SHA512ROUND(a, b, c, d, e, f, g, h, 0, w0);
416 	/* LINTED E_BAD_PTR_CAST_ALIGN */
417 	w1 =  LOAD_BIG_64(blk + 8 * 1);
418 	SHA512ROUND(h, a, b, c, d, e, f, g, 1, w1);
419 	/* LINTED E_BAD_PTR_CAST_ALIGN */
420 	w2 =  LOAD_BIG_64(blk + 8 * 2);
421 	SHA512ROUND(g, h, a, b, c, d, e, f, 2, w2);
422 	/* LINTED E_BAD_PTR_CAST_ALIGN */
423 	w3 =  LOAD_BIG_64(blk + 8 * 3);
424 	SHA512ROUND(f, g, h, a, b, c, d, e, 3, w3);
425 	/* LINTED E_BAD_PTR_CAST_ALIGN */
426 	w4 =  LOAD_BIG_64(blk + 8 * 4);
427 	SHA512ROUND(e, f, g, h, a, b, c, d, 4, w4);
428 	/* LINTED E_BAD_PTR_CAST_ALIGN */
429 	w5 =  LOAD_BIG_64(blk + 8 * 5);
430 	SHA512ROUND(d, e, f, g, h, a, b, c, 5, w5);
431 	/* LINTED E_BAD_PTR_CAST_ALIGN */
432 	w6 =  LOAD_BIG_64(blk + 8 * 6);
433 	SHA512ROUND(c, d, e, f, g, h, a, b, 6, w6);
434 	/* LINTED E_BAD_PTR_CAST_ALIGN */
435 	w7 =  LOAD_BIG_64(blk + 8 * 7);
436 	SHA512ROUND(b, c, d, e, f, g, h, a, 7, w7);
437 	/* LINTED E_BAD_PTR_CAST_ALIGN */
438 	w8 =  LOAD_BIG_64(blk + 8 * 8);
439 	SHA512ROUND(a, b, c, d, e, f, g, h, 8, w8);
440 	/* LINTED E_BAD_PTR_CAST_ALIGN */
441 	w9 =  LOAD_BIG_64(blk + 8 * 9);
442 	SHA512ROUND(h, a, b, c, d, e, f, g, 9, w9);
443 	/* LINTED E_BAD_PTR_CAST_ALIGN */
444 	w10 =  LOAD_BIG_64(blk + 8 * 10);
445 	SHA512ROUND(g, h, a, b, c, d, e, f, 10, w10);
446 	/* LINTED E_BAD_PTR_CAST_ALIGN */
447 	w11 =  LOAD_BIG_64(blk + 8 * 11);
448 	SHA512ROUND(f, g, h, a, b, c, d, e, 11, w11);
449 	/* LINTED E_BAD_PTR_CAST_ALIGN */
450 	w12 =  LOAD_BIG_64(blk + 8 * 12);
451 	SHA512ROUND(e, f, g, h, a, b, c, d, 12, w12);
452 	/* LINTED E_BAD_PTR_CAST_ALIGN */
453 	w13 =  LOAD_BIG_64(blk + 8 * 13);
454 	SHA512ROUND(d, e, f, g, h, a, b, c, 13, w13);
455 	/* LINTED E_BAD_PTR_CAST_ALIGN */
456 	w14 =  LOAD_BIG_64(blk + 8 * 14);
457 	SHA512ROUND(c, d, e, f, g, h, a, b, 14, w14);
458 	/* LINTED E_BAD_PTR_CAST_ALIGN */
459 	w15 =  LOAD_BIG_64(blk + 8 * 15);
460 	SHA512ROUND(b, c, d, e, f, g, h, a, 15, w15);
461 
462 	w0 = SIGMA1(w14) + w9 + SIGMA0(w1) + w0;
463 	SHA512ROUND(a, b, c, d, e, f, g, h, 16, w0);
464 	w1 = SIGMA1(w15) + w10 + SIGMA0(w2) + w1;
465 	SHA512ROUND(h, a, b, c, d, e, f, g, 17, w1);
466 	w2 = SIGMA1(w0) + w11 + SIGMA0(w3) + w2;
467 	SHA512ROUND(g, h, a, b, c, d, e, f, 18, w2);
468 	w3 = SIGMA1(w1) + w12 + SIGMA0(w4) + w3;
469 	SHA512ROUND(f, g, h, a, b, c, d, e, 19, w3);
470 	w4 = SIGMA1(w2) + w13 + SIGMA0(w5) + w4;
471 	SHA512ROUND(e, f, g, h, a, b, c, d, 20, w4);
472 	w5 = SIGMA1(w3) + w14 + SIGMA0(w6) + w5;
473 	SHA512ROUND(d, e, f, g, h, a, b, c, 21, w5);
474 	w6 = SIGMA1(w4) + w15 + SIGMA0(w7) + w6;
475 	SHA512ROUND(c, d, e, f, g, h, a, b, 22, w6);
476 	w7 = SIGMA1(w5) + w0 + SIGMA0(w8) + w7;
477 	SHA512ROUND(b, c, d, e, f, g, h, a, 23, w7);
478 	w8 = SIGMA1(w6) + w1 + SIGMA0(w9) + w8;
479 	SHA512ROUND(a, b, c, d, e, f, g, h, 24, w8);
480 	w9 = SIGMA1(w7) + w2 + SIGMA0(w10) + w9;
481 	SHA512ROUND(h, a, b, c, d, e, f, g, 25, w9);
482 	w10 = SIGMA1(w8) + w3 + SIGMA0(w11) + w10;
483 	SHA512ROUND(g, h, a, b, c, d, e, f, 26, w10);
484 	w11 = SIGMA1(w9) + w4 + SIGMA0(w12) + w11;
485 	SHA512ROUND(f, g, h, a, b, c, d, e, 27, w11);
486 	w12 = SIGMA1(w10) + w5 + SIGMA0(w13) + w12;
487 	SHA512ROUND(e, f, g, h, a, b, c, d, 28, w12);
488 	w13 = SIGMA1(w11) + w6 + SIGMA0(w14) + w13;
489 	SHA512ROUND(d, e, f, g, h, a, b, c, 29, w13);
490 	w14 = SIGMA1(w12) + w7 + SIGMA0(w15) + w14;
491 	SHA512ROUND(c, d, e, f, g, h, a, b, 30, w14);
492 	w15 = SIGMA1(w13) + w8 + SIGMA0(w0) + w15;
493 	SHA512ROUND(b, c, d, e, f, g, h, a, 31, w15);
494 
495 	w0 = SIGMA1(w14) + w9 + SIGMA0(w1) + w0;
496 	SHA512ROUND(a, b, c, d, e, f, g, h, 32, w0);
497 	w1 = SIGMA1(w15) + w10 + SIGMA0(w2) + w1;
498 	SHA512ROUND(h, a, b, c, d, e, f, g, 33, w1);
499 	w2 = SIGMA1(w0) + w11 + SIGMA0(w3) + w2;
500 	SHA512ROUND(g, h, a, b, c, d, e, f, 34, w2);
501 	w3 = SIGMA1(w1) + w12 + SIGMA0(w4) + w3;
502 	SHA512ROUND(f, g, h, a, b, c, d, e, 35, w3);
503 	w4 = SIGMA1(w2) + w13 + SIGMA0(w5) + w4;
504 	SHA512ROUND(e, f, g, h, a, b, c, d, 36, w4);
505 	w5 = SIGMA1(w3) + w14 + SIGMA0(w6) + w5;
506 	SHA512ROUND(d, e, f, g, h, a, b, c, 37, w5);
507 	w6 = SIGMA1(w4) + w15 + SIGMA0(w7) + w6;
508 	SHA512ROUND(c, d, e, f, g, h, a, b, 38, w6);
509 	w7 = SIGMA1(w5) + w0 + SIGMA0(w8) + w7;
510 	SHA512ROUND(b, c, d, e, f, g, h, a, 39, w7);
511 	w8 = SIGMA1(w6) + w1 + SIGMA0(w9) + w8;
512 	SHA512ROUND(a, b, c, d, e, f, g, h, 40, w8);
513 	w9 = SIGMA1(w7) + w2 + SIGMA0(w10) + w9;
514 	SHA512ROUND(h, a, b, c, d, e, f, g, 41, w9);
515 	w10 = SIGMA1(w8) + w3 + SIGMA0(w11) + w10;
516 	SHA512ROUND(g, h, a, b, c, d, e, f, 42, w10);
517 	w11 = SIGMA1(w9) + w4 + SIGMA0(w12) + w11;
518 	SHA512ROUND(f, g, h, a, b, c, d, e, 43, w11);
519 	w12 = SIGMA1(w10) + w5 + SIGMA0(w13) + w12;
520 	SHA512ROUND(e, f, g, h, a, b, c, d, 44, w12);
521 	w13 = SIGMA1(w11) + w6 + SIGMA0(w14) + w13;
522 	SHA512ROUND(d, e, f, g, h, a, b, c, 45, w13);
523 	w14 = SIGMA1(w12) + w7 + SIGMA0(w15) + w14;
524 	SHA512ROUND(c, d, e, f, g, h, a, b, 46, w14);
525 	w15 = SIGMA1(w13) + w8 + SIGMA0(w0) + w15;
526 	SHA512ROUND(b, c, d, e, f, g, h, a, 47, w15);
527 
528 	w0 = SIGMA1(w14) + w9 + SIGMA0(w1) + w0;
529 	SHA512ROUND(a, b, c, d, e, f, g, h, 48, w0);
530 	w1 = SIGMA1(w15) + w10 + SIGMA0(w2) + w1;
531 	SHA512ROUND(h, a, b, c, d, e, f, g, 49, w1);
532 	w2 = SIGMA1(w0) + w11 + SIGMA0(w3) + w2;
533 	SHA512ROUND(g, h, a, b, c, d, e, f, 50, w2);
534 	w3 = SIGMA1(w1) + w12 + SIGMA0(w4) + w3;
535 	SHA512ROUND(f, g, h, a, b, c, d, e, 51, w3);
536 	w4 = SIGMA1(w2) + w13 + SIGMA0(w5) + w4;
537 	SHA512ROUND(e, f, g, h, a, b, c, d, 52, w4);
538 	w5 = SIGMA1(w3) + w14 + SIGMA0(w6) + w5;
539 	SHA512ROUND(d, e, f, g, h, a, b, c, 53, w5);
540 	w6 = SIGMA1(w4) + w15 + SIGMA0(w7) + w6;
541 	SHA512ROUND(c, d, e, f, g, h, a, b, 54, w6);
542 	w7 = SIGMA1(w5) + w0 + SIGMA0(w8) + w7;
543 	SHA512ROUND(b, c, d, e, f, g, h, a, 55, w7);
544 	w8 = SIGMA1(w6) + w1 + SIGMA0(w9) + w8;
545 	SHA512ROUND(a, b, c, d, e, f, g, h, 56, w8);
546 	w9 = SIGMA1(w7) + w2 + SIGMA0(w10) + w9;
547 	SHA512ROUND(h, a, b, c, d, e, f, g, 57, w9);
548 	w10 = SIGMA1(w8) + w3 + SIGMA0(w11) + w10;
549 	SHA512ROUND(g, h, a, b, c, d, e, f, 58, w10);
550 	w11 = SIGMA1(w9) + w4 + SIGMA0(w12) + w11;
551 	SHA512ROUND(f, g, h, a, b, c, d, e, 59, w11);
552 	w12 = SIGMA1(w10) + w5 + SIGMA0(w13) + w12;
553 	SHA512ROUND(e, f, g, h, a, b, c, d, 60, w12);
554 	w13 = SIGMA1(w11) + w6 + SIGMA0(w14) + w13;
555 	SHA512ROUND(d, e, f, g, h, a, b, c, 61, w13);
556 	w14 = SIGMA1(w12) + w7 + SIGMA0(w15) + w14;
557 	SHA512ROUND(c, d, e, f, g, h, a, b, 62, w14);
558 	w15 = SIGMA1(w13) + w8 + SIGMA0(w0) + w15;
559 	SHA512ROUND(b, c, d, e, f, g, h, a, 63, w15);
560 
561 	w0 = SIGMA1(w14) + w9 + SIGMA0(w1) + w0;
562 	SHA512ROUND(a, b, c, d, e, f, g, h, 64, w0);
563 	w1 = SIGMA1(w15) + w10 + SIGMA0(w2) + w1;
564 	SHA512ROUND(h, a, b, c, d, e, f, g, 65, w1);
565 	w2 = SIGMA1(w0) + w11 + SIGMA0(w3) + w2;
566 	SHA512ROUND(g, h, a, b, c, d, e, f, 66, w2);
567 	w3 = SIGMA1(w1) + w12 + SIGMA0(w4) + w3;
568 	SHA512ROUND(f, g, h, a, b, c, d, e, 67, w3);
569 	w4 = SIGMA1(w2) + w13 + SIGMA0(w5) + w4;
570 	SHA512ROUND(e, f, g, h, a, b, c, d, 68, w4);
571 	w5 = SIGMA1(w3) + w14 + SIGMA0(w6) + w5;
572 	SHA512ROUND(d, e, f, g, h, a, b, c, 69, w5);
573 	w6 = SIGMA1(w4) + w15 + SIGMA0(w7) + w6;
574 	SHA512ROUND(c, d, e, f, g, h, a, b, 70, w6);
575 	w7 = SIGMA1(w5) + w0 + SIGMA0(w8) + w7;
576 	SHA512ROUND(b, c, d, e, f, g, h, a, 71, w7);
577 	w8 = SIGMA1(w6) + w1 + SIGMA0(w9) + w8;
578 	SHA512ROUND(a, b, c, d, e, f, g, h, 72, w8);
579 	w9 = SIGMA1(w7) + w2 + SIGMA0(w10) + w9;
580 	SHA512ROUND(h, a, b, c, d, e, f, g, 73, w9);
581 	w10 = SIGMA1(w8) + w3 + SIGMA0(w11) + w10;
582 	SHA512ROUND(g, h, a, b, c, d, e, f, 74, w10);
583 	w11 = SIGMA1(w9) + w4 + SIGMA0(w12) + w11;
584 	SHA512ROUND(f, g, h, a, b, c, d, e, 75, w11);
585 	w12 = SIGMA1(w10) + w5 + SIGMA0(w13) + w12;
586 	SHA512ROUND(e, f, g, h, a, b, c, d, 76, w12);
587 	w13 = SIGMA1(w11) + w6 + SIGMA0(w14) + w13;
588 	SHA512ROUND(d, e, f, g, h, a, b, c, 77, w13);
589 	w14 = SIGMA1(w12) + w7 + SIGMA0(w15) + w14;
590 	SHA512ROUND(c, d, e, f, g, h, a, b, 78, w14);
591 	w15 = SIGMA1(w13) + w8 + SIGMA0(w0) + w15;
592 	SHA512ROUND(b, c, d, e, f, g, h, a, 79, w15);
593 
594 	ctx->state.s64[0] += a;
595 	ctx->state.s64[1] += b;
596 	ctx->state.s64[2] += c;
597 	ctx->state.s64[3] += d;
598 	ctx->state.s64[4] += e;
599 	ctx->state.s64[5] += f;
600 	ctx->state.s64[6] += g;
601 	ctx->state.s64[7] += h;
602 
603 }
604 #endif	/* !__amd64 || !_KERNEL */
605 
606 
607 /*
608  * Encode()
609  *
610  * purpose: to convert a list of numbers from little endian to big endian
611  *   input: uint8_t *	: place to store the converted big endian numbers
612  *	    uint32_t *	: place to get numbers to convert from
613  *          size_t	: the length of the input in bytes
614  *  output: void
615  */
616 
617 static void
Encode(uint8_t * _RESTRICT_KYWD output,uint32_t * _RESTRICT_KYWD input,size_t len)618 Encode(uint8_t *_RESTRICT_KYWD output, uint32_t *_RESTRICT_KYWD input,
619     size_t len)
620 {
621 	size_t		i, j;
622 
623 #if	defined(__sparc)
624 	if (IS_P2ALIGNED(output, sizeof (uint32_t))) {
625 		for (i = 0, j = 0; j < len; i++, j += 4) {
626 			/* LINTED E_BAD_PTR_CAST_ALIGN */
627 			*((uint32_t *)(output + j)) = input[i];
628 		}
629 	} else {
630 #endif	/* little endian -- will work on big endian, but slowly */
631 		for (i = 0, j = 0; j < len; i++, j += 4) {
632 			output[j]	= (input[i] >> 24) & 0xff;
633 			output[j + 1]	= (input[i] >> 16) & 0xff;
634 			output[j + 2]	= (input[i] >>  8) & 0xff;
635 			output[j + 3]	= input[i] & 0xff;
636 		}
637 #if	defined(__sparc)
638 	}
639 #endif
640 }
641 
642 static void
Encode64(uint8_t * _RESTRICT_KYWD output,uint64_t * _RESTRICT_KYWD input,size_t len)643 Encode64(uint8_t *_RESTRICT_KYWD output, uint64_t *_RESTRICT_KYWD input,
644     size_t len)
645 {
646 	size_t		i, j;
647 
648 #if	defined(__sparc)
649 	if (IS_P2ALIGNED(output, sizeof (uint64_t))) {
650 		for (i = 0, j = 0; j < len; i++, j += 8) {
651 			/* LINTED E_BAD_PTR_CAST_ALIGN */
652 			*((uint64_t *)(output + j)) = input[i];
653 		}
654 	} else {
655 #endif	/* little endian -- will work on big endian, but slowly */
656 		for (i = 0, j = 0; j < len; i++, j += 8) {
657 
658 			output[j]	= (input[i] >> 56) & 0xff;
659 			output[j + 1]	= (input[i] >> 48) & 0xff;
660 			output[j + 2]	= (input[i] >> 40) & 0xff;
661 			output[j + 3]	= (input[i] >> 32) & 0xff;
662 			output[j + 4]	= (input[i] >> 24) & 0xff;
663 			output[j + 5]	= (input[i] >> 16) & 0xff;
664 			output[j + 6]	= (input[i] >>  8) & 0xff;
665 			output[j + 7]	= input[i] & 0xff;
666 		}
667 #if	defined(__sparc)
668 	}
669 #endif
670 }
671 
672 
673 void
SHA2Init(uint64_t mech,SHA2_CTX * ctx)674 SHA2Init(uint64_t mech, SHA2_CTX *ctx)
675 {
676 
677 	switch (mech) {
678 	case SHA256_MECH_INFO_TYPE:
679 	case SHA256_HMAC_MECH_INFO_TYPE:
680 	case SHA256_HMAC_GEN_MECH_INFO_TYPE:
681 		ctx->state.s32[0] = 0x6a09e667U;
682 		ctx->state.s32[1] = 0xbb67ae85U;
683 		ctx->state.s32[2] = 0x3c6ef372U;
684 		ctx->state.s32[3] = 0xa54ff53aU;
685 		ctx->state.s32[4] = 0x510e527fU;
686 		ctx->state.s32[5] = 0x9b05688cU;
687 		ctx->state.s32[6] = 0x1f83d9abU;
688 		ctx->state.s32[7] = 0x5be0cd19U;
689 		break;
690 	case SHA384_MECH_INFO_TYPE:
691 	case SHA384_HMAC_MECH_INFO_TYPE:
692 	case SHA384_HMAC_GEN_MECH_INFO_TYPE:
693 		ctx->state.s64[0] = 0xcbbb9d5dc1059ed8ULL;
694 		ctx->state.s64[1] = 0x629a292a367cd507ULL;
695 		ctx->state.s64[2] = 0x9159015a3070dd17ULL;
696 		ctx->state.s64[3] = 0x152fecd8f70e5939ULL;
697 		ctx->state.s64[4] = 0x67332667ffc00b31ULL;
698 		ctx->state.s64[5] = 0x8eb44a8768581511ULL;
699 		ctx->state.s64[6] = 0xdb0c2e0d64f98fa7ULL;
700 		ctx->state.s64[7] = 0x47b5481dbefa4fa4ULL;
701 		break;
702 	case SHA512_MECH_INFO_TYPE:
703 	case SHA512_HMAC_MECH_INFO_TYPE:
704 	case SHA512_HMAC_GEN_MECH_INFO_TYPE:
705 		ctx->state.s64[0] = 0x6a09e667f3bcc908ULL;
706 		ctx->state.s64[1] = 0xbb67ae8584caa73bULL;
707 		ctx->state.s64[2] = 0x3c6ef372fe94f82bULL;
708 		ctx->state.s64[3] = 0xa54ff53a5f1d36f1ULL;
709 		ctx->state.s64[4] = 0x510e527fade682d1ULL;
710 		ctx->state.s64[5] = 0x9b05688c2b3e6c1fULL;
711 		ctx->state.s64[6] = 0x1f83d9abfb41bd6bULL;
712 		ctx->state.s64[7] = 0x5be0cd19137e2179ULL;
713 		break;
714 	case SHA512_224_MECH_INFO_TYPE:
715 		ctx->state.s64[0] = 0x8C3D37C819544DA2ULL;
716 		ctx->state.s64[1] = 0x73E1996689DCD4D6ULL;
717 		ctx->state.s64[2] = 0x1DFAB7AE32FF9C82ULL;
718 		ctx->state.s64[3] = 0x679DD514582F9FCFULL;
719 		ctx->state.s64[4] = 0x0F6D2B697BD44DA8ULL;
720 		ctx->state.s64[5] = 0x77E36F7304C48942ULL;
721 		ctx->state.s64[6] = 0x3F9D85A86A1D36C8ULL;
722 		ctx->state.s64[7] = 0x1112E6AD91D692A1ULL;
723 		break;
724 	case SHA512_256_MECH_INFO_TYPE:
725 		ctx->state.s64[0] = 0x22312194FC2BF72CULL;
726 		ctx->state.s64[1] = 0x9F555FA3C84C64C2ULL;
727 		ctx->state.s64[2] = 0x2393B86B6F53B151ULL;
728 		ctx->state.s64[3] = 0x963877195940EABDULL;
729 		ctx->state.s64[4] = 0x96283EE2A88EFFE3ULL;
730 		ctx->state.s64[5] = 0xBE5E1E2553863992ULL;
731 		ctx->state.s64[6] = 0x2B0199FC2C85B8AAULL;
732 		ctx->state.s64[7] = 0x0EB72DDC81C52CA2ULL;
733 		break;
734 #ifdef _KERNEL
735 	default:
736 		cmn_err(CE_PANIC,
737 		    "sha2_init: failed to find a supported algorithm: 0x%x",
738 		    (uint32_t)mech);
739 
740 #endif /* _KERNEL */
741 	}
742 
743 	ctx->algotype = (uint32_t)mech;
744 	ctx->count.c64[0] = ctx->count.c64[1] = 0;
745 }
746 
747 #ifndef _KERNEL
748 
749 // #pragma inline(SHA256Init, SHA384Init, SHA512Init)
750 void
SHA256Init(SHA256_CTX * ctx)751 SHA256Init(SHA256_CTX *ctx)
752 {
753 	SHA2Init(SHA256, ctx);
754 }
755 
756 void
SHA384Init(SHA384_CTX * ctx)757 SHA384Init(SHA384_CTX *ctx)
758 {
759 	SHA2Init(SHA384, ctx);
760 }
761 
762 void
SHA512Init(SHA512_CTX * ctx)763 SHA512Init(SHA512_CTX *ctx)
764 {
765 	SHA2Init(SHA512, ctx);
766 }
767 
768 #endif /* _KERNEL */
769 
770 /*
771  * SHA2Update()
772  *
773  * purpose: continues an sha2 digest operation, using the message block
774  *          to update the context.
775  *   input: SHA2_CTX *	: the context to update
776  *          void *	: the message block
777  *          size_t      : the length of the message block, in bytes
778  *  output: void
779  */
780 
781 void
SHA2Update(SHA2_CTX * ctx,const void * inptr,size_t input_len)782 SHA2Update(SHA2_CTX *ctx, const void *inptr, size_t input_len)
783 {
784 	uint32_t	i, buf_index, buf_len, buf_limit;
785 	const uint8_t	*input = inptr;
786 	uint32_t	algotype = ctx->algotype;
787 
788 	/* check for noop */
789 	if (input_len == 0)
790 		return;
791 
792 	if (algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) {
793 		buf_limit = 64;
794 
795 		/* compute number of bytes mod 64 */
796 		buf_index = (ctx->count.c32[1] >> 3) & 0x3F;
797 
798 		/* update number of bits */
799 		if ((ctx->count.c32[1] += (input_len << 3)) < (input_len << 3))
800 			ctx->count.c32[0]++;
801 
802 		ctx->count.c32[0] += (input_len >> 29);
803 
804 	} else {
805 		buf_limit = 128;
806 
807 		/* compute number of bytes mod 128 */
808 		buf_index = (ctx->count.c64[1] >> 3) & 0x7F;
809 
810 		/* update number of bits */
811 		if ((ctx->count.c64[1] += (input_len << 3)) < (input_len << 3))
812 			ctx->count.c64[0]++;
813 
814 		ctx->count.c64[0] += (input_len >> 29);
815 	}
816 
817 	buf_len = buf_limit - buf_index;
818 
819 	/* transform as many times as possible */
820 	i = 0;
821 	if (input_len >= buf_len) {
822 
823 		/*
824 		 * general optimization:
825 		 *
826 		 * only do initial bcopy() and SHA2Transform() if
827 		 * buf_index != 0.  if buf_index == 0, we're just
828 		 * wasting our time doing the bcopy() since there
829 		 * wasn't any data left over from a previous call to
830 		 * SHA2Update().
831 		 */
832 		if (buf_index) {
833 			bcopy(input, &ctx->buf_un.buf8[buf_index], buf_len);
834 			if (algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE)
835 				SHA256Transform(ctx, ctx->buf_un.buf8);
836 			else
837 				SHA512Transform(ctx, ctx->buf_un.buf8);
838 
839 			i = buf_len;
840 		}
841 
842 #if !defined(__amd64) || !defined(_KERNEL)
843 		if (algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) {
844 			for (; i + buf_limit - 1 < input_len; i += buf_limit) {
845 				SHA256Transform(ctx, &input[i]);
846 			}
847 		} else {
848 			for (; i + buf_limit - 1 < input_len; i += buf_limit) {
849 				SHA512Transform(ctx, &input[i]);
850 			}
851 		}
852 
853 #else
854 		uint32_t block_count;
855 		if (algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) {
856 			block_count = (input_len - i) >> 6;
857 			if (block_count > 0) {
858 				SHA256TransformBlocks(ctx, &input[i],
859 				    block_count);
860 				i += block_count << 6;
861 			}
862 		} else {
863 			block_count = (input_len - i) >> 7;
864 			if (block_count > 0) {
865 				SHA512TransformBlocks(ctx, &input[i],
866 				    block_count);
867 				i += block_count << 7;
868 			}
869 		}
870 #endif	/* !__amd64 || !_KERNEL */
871 
872 		/*
873 		 * general optimization:
874 		 *
875 		 * if i and input_len are the same, return now instead
876 		 * of calling bcopy(), since the bcopy() in this case
877 		 * will be an expensive noop.
878 		 */
879 
880 		if (input_len == i)
881 			return;
882 
883 		buf_index = 0;
884 	}
885 
886 	/* buffer remaining input */
887 	bcopy(&input[i], &ctx->buf_un.buf8[buf_index], input_len - i);
888 }
889 
890 
891 /*
892  * SHA2Final()
893  *
894  * purpose: ends an sha2 digest operation, finalizing the message digest and
895  *          zeroing the context.
896  *   input: uchar_t *	: a buffer to store the digest
897  *			: The function actually uses void* because many
898  *			: callers pass things other than uchar_t here.
899  *          SHA2_CTX *  : the context to finalize, save, and zero
900  *  output: void
901  */
902 
903 void
SHA2Final(void * digest,SHA2_CTX * ctx)904 SHA2Final(void *digest, SHA2_CTX *ctx)
905 {
906 	uint8_t		bitcount_be[sizeof (ctx->count.c32)];
907 	uint8_t		bitcount_be64[sizeof (ctx->count.c64)];
908 	uint32_t	index;
909 	uint32_t	algotype = ctx->algotype;
910 
911 	if (algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) {
912 		index  = (ctx->count.c32[1] >> 3) & 0x3f;
913 		Encode(bitcount_be, ctx->count.c32, sizeof (bitcount_be));
914 		SHA2Update(ctx, PADDING, ((index < 56) ? 56 : 120) - index);
915 		SHA2Update(ctx, bitcount_be, sizeof (bitcount_be));
916 		Encode(digest, ctx->state.s32, sizeof (ctx->state.s32));
917 	} else {
918 		index  = (ctx->count.c64[1] >> 3) & 0x7f;
919 		Encode64(bitcount_be64, ctx->count.c64,
920 		    sizeof (bitcount_be64));
921 		SHA2Update(ctx, PADDING, ((index < 112) ? 112 : 240) - index);
922 		SHA2Update(ctx, bitcount_be64, sizeof (bitcount_be64));
923 		if (algotype <= SHA384_HMAC_GEN_MECH_INFO_TYPE) {
924 			ctx->state.s64[6] = ctx->state.s64[7] = 0;
925 			Encode64(digest, ctx->state.s64,
926 			    sizeof (uint64_t) * 6);
927 		} else if (algotype == SHA512_224_MECH_INFO_TYPE) {
928 			uint8_t last[sizeof (uint64_t)];
929 			/*
930 			 * Since SHA-512/224 doesn't align well to 64-bit
931 			 * boundaries, we must do the encoding in three steps:
932 			 * 1) encode the three 64-bit words that fit neatly
933 			 * 2) encode the last 64-bit word to a temp buffer
934 			 * 3) chop out the lower 32-bits from the temp buffer
935 			 *    and append them to the digest
936 			 */
937 			Encode64(digest, ctx->state.s64, sizeof (uint64_t) * 3);
938 			Encode64(last, &ctx->state.s64[3], sizeof (uint64_t));
939 			bcopy(last, (uint8_t *)digest + 24, 4);
940 		} else if (algotype == SHA512_256_MECH_INFO_TYPE) {
941 			Encode64(digest, ctx->state.s64, sizeof (uint64_t) * 4);
942 		} else {
943 			Encode64(digest, ctx->state.s64,
944 			    sizeof (ctx->state.s64));
945 		}
946 	}
947 
948 	/* zeroize sensitive information */
949 	bzero(ctx, sizeof (*ctx));
950 }
951 
952 #ifdef _KERNEL
953 EXPORT_SYMBOL(SHA2Init);
954 EXPORT_SYMBOL(SHA2Update);
955 EXPORT_SYMBOL(SHA2Final);
956 #endif
957