1 //===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //===----------------------------------------------------------------------===//
7 //
8 // This file implements semantic analysis for C++ templates.
9 //===----------------------------------------------------------------------===//
10
11 #include "TreeTransform.h"
12 #include "clang/AST/ASTConsumer.h"
13 #include "clang/AST/ASTContext.h"
14 #include "clang/AST/Decl.h"
15 #include "clang/AST/DeclFriend.h"
16 #include "clang/AST/DeclTemplate.h"
17 #include "clang/AST/Expr.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/RecursiveASTVisitor.h"
20 #include "clang/AST/TemplateName.h"
21 #include "clang/AST/TypeVisitor.h"
22 #include "clang/Basic/Builtins.h"
23 #include "clang/Basic/DiagnosticSema.h"
24 #include "clang/Basic/LangOptions.h"
25 #include "clang/Basic/PartialDiagnostic.h"
26 #include "clang/Basic/Stack.h"
27 #include "clang/Basic/TargetInfo.h"
28 #include "clang/Sema/DeclSpec.h"
29 #include "clang/Sema/Initialization.h"
30 #include "clang/Sema/Lookup.h"
31 #include "clang/Sema/Overload.h"
32 #include "clang/Sema/ParsedTemplate.h"
33 #include "clang/Sema/Scope.h"
34 #include "clang/Sema/SemaInternal.h"
35 #include "clang/Sema/Template.h"
36 #include "clang/Sema/TemplateDeduction.h"
37 #include "llvm/ADT/SmallBitVector.h"
38 #include "llvm/ADT/SmallString.h"
39 #include "llvm/ADT/StringExtras.h"
40
41 #include <iterator>
42 using namespace clang;
43 using namespace sema;
44
45 // Exported for use by Parser.
46 SourceRange
getTemplateParamsRange(TemplateParameterList const * const * Ps,unsigned N)47 clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
48 unsigned N) {
49 if (!N) return SourceRange();
50 return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
51 }
52
getTemplateDepth(Scope * S) const53 unsigned Sema::getTemplateDepth(Scope *S) const {
54 unsigned Depth = 0;
55
56 // Each template parameter scope represents one level of template parameter
57 // depth.
58 for (Scope *TempParamScope = S->getTemplateParamParent(); TempParamScope;
59 TempParamScope = TempParamScope->getParent()->getTemplateParamParent()) {
60 ++Depth;
61 }
62
63 // Note that there are template parameters with the given depth.
64 auto ParamsAtDepth = [&](unsigned D) { Depth = std::max(Depth, D + 1); };
65
66 // Look for parameters of an enclosing generic lambda. We don't create a
67 // template parameter scope for these.
68 for (FunctionScopeInfo *FSI : getFunctionScopes()) {
69 if (auto *LSI = dyn_cast<LambdaScopeInfo>(FSI)) {
70 if (!LSI->TemplateParams.empty()) {
71 ParamsAtDepth(LSI->AutoTemplateParameterDepth);
72 break;
73 }
74 if (LSI->GLTemplateParameterList) {
75 ParamsAtDepth(LSI->GLTemplateParameterList->getDepth());
76 break;
77 }
78 }
79 }
80
81 // Look for parameters of an enclosing terse function template. We don't
82 // create a template parameter scope for these either.
83 for (const InventedTemplateParameterInfo &Info :
84 getInventedParameterInfos()) {
85 if (!Info.TemplateParams.empty()) {
86 ParamsAtDepth(Info.AutoTemplateParameterDepth);
87 break;
88 }
89 }
90
91 return Depth;
92 }
93
94 /// \brief Determine whether the declaration found is acceptable as the name
95 /// of a template and, if so, return that template declaration. Otherwise,
96 /// returns null.
97 ///
98 /// Note that this may return an UnresolvedUsingValueDecl if AllowDependent
99 /// is true. In all other cases it will return a TemplateDecl (or null).
getAsTemplateNameDecl(NamedDecl * D,bool AllowFunctionTemplates,bool AllowDependent)100 NamedDecl *Sema::getAsTemplateNameDecl(NamedDecl *D,
101 bool AllowFunctionTemplates,
102 bool AllowDependent) {
103 D = D->getUnderlyingDecl();
104
105 if (isa<TemplateDecl>(D)) {
106 if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D))
107 return nullptr;
108
109 return D;
110 }
111
112 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
113 // C++ [temp.local]p1:
114 // Like normal (non-template) classes, class templates have an
115 // injected-class-name (Clause 9). The injected-class-name
116 // can be used with or without a template-argument-list. When
117 // it is used without a template-argument-list, it is
118 // equivalent to the injected-class-name followed by the
119 // template-parameters of the class template enclosed in
120 // <>. When it is used with a template-argument-list, it
121 // refers to the specified class template specialization,
122 // which could be the current specialization or another
123 // specialization.
124 if (Record->isInjectedClassName()) {
125 Record = cast<CXXRecordDecl>(Record->getDeclContext());
126 if (Record->getDescribedClassTemplate())
127 return Record->getDescribedClassTemplate();
128
129 if (ClassTemplateSpecializationDecl *Spec
130 = dyn_cast<ClassTemplateSpecializationDecl>(Record))
131 return Spec->getSpecializedTemplate();
132 }
133
134 return nullptr;
135 }
136
137 // 'using Dependent::foo;' can resolve to a template name.
138 // 'using typename Dependent::foo;' cannot (not even if 'foo' is an
139 // injected-class-name).
140 if (AllowDependent && isa<UnresolvedUsingValueDecl>(D))
141 return D;
142
143 return nullptr;
144 }
145
FilterAcceptableTemplateNames(LookupResult & R,bool AllowFunctionTemplates,bool AllowDependent)146 void Sema::FilterAcceptableTemplateNames(LookupResult &R,
147 bool AllowFunctionTemplates,
148 bool AllowDependent) {
149 LookupResult::Filter filter = R.makeFilter();
150 while (filter.hasNext()) {
151 NamedDecl *Orig = filter.next();
152 if (!getAsTemplateNameDecl(Orig, AllowFunctionTemplates, AllowDependent))
153 filter.erase();
154 }
155 filter.done();
156 }
157
hasAnyAcceptableTemplateNames(LookupResult & R,bool AllowFunctionTemplates,bool AllowDependent,bool AllowNonTemplateFunctions)158 bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R,
159 bool AllowFunctionTemplates,
160 bool AllowDependent,
161 bool AllowNonTemplateFunctions) {
162 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
163 if (getAsTemplateNameDecl(*I, AllowFunctionTemplates, AllowDependent))
164 return true;
165 if (AllowNonTemplateFunctions &&
166 isa<FunctionDecl>((*I)->getUnderlyingDecl()))
167 return true;
168 }
169
170 return false;
171 }
172
isTemplateName(Scope * S,CXXScopeSpec & SS,bool hasTemplateKeyword,const UnqualifiedId & Name,ParsedType ObjectTypePtr,bool EnteringContext,TemplateTy & TemplateResult,bool & MemberOfUnknownSpecialization,bool Disambiguation)173 TemplateNameKind Sema::isTemplateName(Scope *S,
174 CXXScopeSpec &SS,
175 bool hasTemplateKeyword,
176 const UnqualifiedId &Name,
177 ParsedType ObjectTypePtr,
178 bool EnteringContext,
179 TemplateTy &TemplateResult,
180 bool &MemberOfUnknownSpecialization,
181 bool Disambiguation) {
182 assert(getLangOpts().CPlusPlus && "No template names in C!");
183
184 DeclarationName TName;
185 MemberOfUnknownSpecialization = false;
186
187 switch (Name.getKind()) {
188 case UnqualifiedIdKind::IK_Identifier:
189 TName = DeclarationName(Name.Identifier);
190 break;
191
192 case UnqualifiedIdKind::IK_OperatorFunctionId:
193 TName = Context.DeclarationNames.getCXXOperatorName(
194 Name.OperatorFunctionId.Operator);
195 break;
196
197 case UnqualifiedIdKind::IK_LiteralOperatorId:
198 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
199 break;
200
201 default:
202 return TNK_Non_template;
203 }
204
205 QualType ObjectType = ObjectTypePtr.get();
206
207 AssumedTemplateKind AssumedTemplate;
208 LookupResult R(*this, TName, Name.getBeginLoc(), LookupOrdinaryName);
209 if (LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
210 MemberOfUnknownSpecialization, SourceLocation(),
211 &AssumedTemplate,
212 /*AllowTypoCorrection=*/!Disambiguation))
213 return TNK_Non_template;
214
215 if (AssumedTemplate != AssumedTemplateKind::None) {
216 TemplateResult = TemplateTy::make(Context.getAssumedTemplateName(TName));
217 // Let the parser know whether we found nothing or found functions; if we
218 // found nothing, we want to more carefully check whether this is actually
219 // a function template name versus some other kind of undeclared identifier.
220 return AssumedTemplate == AssumedTemplateKind::FoundNothing
221 ? TNK_Undeclared_template
222 : TNK_Function_template;
223 }
224
225 if (R.empty())
226 return TNK_Non_template;
227
228 NamedDecl *D = nullptr;
229 UsingShadowDecl *FoundUsingShadow = dyn_cast<UsingShadowDecl>(*R.begin());
230 if (R.isAmbiguous()) {
231 // If we got an ambiguity involving a non-function template, treat this
232 // as a template name, and pick an arbitrary template for error recovery.
233 bool AnyFunctionTemplates = false;
234 for (NamedDecl *FoundD : R) {
235 if (NamedDecl *FoundTemplate = getAsTemplateNameDecl(FoundD)) {
236 if (isa<FunctionTemplateDecl>(FoundTemplate))
237 AnyFunctionTemplates = true;
238 else {
239 D = FoundTemplate;
240 FoundUsingShadow = dyn_cast<UsingShadowDecl>(FoundD);
241 break;
242 }
243 }
244 }
245
246 // If we didn't find any templates at all, this isn't a template name.
247 // Leave the ambiguity for a later lookup to diagnose.
248 if (!D && !AnyFunctionTemplates) {
249 R.suppressDiagnostics();
250 return TNK_Non_template;
251 }
252
253 // If the only templates were function templates, filter out the rest.
254 // We'll diagnose the ambiguity later.
255 if (!D)
256 FilterAcceptableTemplateNames(R);
257 }
258
259 // At this point, we have either picked a single template name declaration D
260 // or we have a non-empty set of results R containing either one template name
261 // declaration or a set of function templates.
262
263 TemplateName Template;
264 TemplateNameKind TemplateKind;
265
266 unsigned ResultCount = R.end() - R.begin();
267 if (!D && ResultCount > 1) {
268 // We assume that we'll preserve the qualifier from a function
269 // template name in other ways.
270 Template = Context.getOverloadedTemplateName(R.begin(), R.end());
271 TemplateKind = TNK_Function_template;
272
273 // We'll do this lookup again later.
274 R.suppressDiagnostics();
275 } else {
276 if (!D) {
277 D = getAsTemplateNameDecl(*R.begin());
278 assert(D && "unambiguous result is not a template name");
279 }
280
281 if (isa<UnresolvedUsingValueDecl>(D)) {
282 // We don't yet know whether this is a template-name or not.
283 MemberOfUnknownSpecialization = true;
284 return TNK_Non_template;
285 }
286
287 TemplateDecl *TD = cast<TemplateDecl>(D);
288 Template =
289 FoundUsingShadow ? TemplateName(FoundUsingShadow) : TemplateName(TD);
290 assert(!FoundUsingShadow || FoundUsingShadow->getTargetDecl() == TD);
291 if (SS.isSet() && !SS.isInvalid()) {
292 NestedNameSpecifier *Qualifier = SS.getScopeRep();
293 Template = Context.getQualifiedTemplateName(Qualifier, hasTemplateKeyword,
294 Template);
295 }
296
297 if (isa<FunctionTemplateDecl>(TD)) {
298 TemplateKind = TNK_Function_template;
299
300 // We'll do this lookup again later.
301 R.suppressDiagnostics();
302 } else {
303 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) ||
304 isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD) ||
305 isa<BuiltinTemplateDecl>(TD) || isa<ConceptDecl>(TD));
306 TemplateKind =
307 isa<VarTemplateDecl>(TD) ? TNK_Var_template :
308 isa<ConceptDecl>(TD) ? TNK_Concept_template :
309 TNK_Type_template;
310 }
311 }
312
313 TemplateResult = TemplateTy::make(Template);
314 return TemplateKind;
315 }
316
isDeductionGuideName(Scope * S,const IdentifierInfo & Name,SourceLocation NameLoc,ParsedTemplateTy * Template)317 bool Sema::isDeductionGuideName(Scope *S, const IdentifierInfo &Name,
318 SourceLocation NameLoc,
319 ParsedTemplateTy *Template) {
320 CXXScopeSpec SS;
321 bool MemberOfUnknownSpecialization = false;
322
323 // We could use redeclaration lookup here, but we don't need to: the
324 // syntactic form of a deduction guide is enough to identify it even
325 // if we can't look up the template name at all.
326 LookupResult R(*this, DeclarationName(&Name), NameLoc, LookupOrdinaryName);
327 if (LookupTemplateName(R, S, SS, /*ObjectType*/ QualType(),
328 /*EnteringContext*/ false,
329 MemberOfUnknownSpecialization))
330 return false;
331
332 if (R.empty()) return false;
333 if (R.isAmbiguous()) {
334 // FIXME: Diagnose an ambiguity if we find at least one template.
335 R.suppressDiagnostics();
336 return false;
337 }
338
339 // We only treat template-names that name type templates as valid deduction
340 // guide names.
341 TemplateDecl *TD = R.getAsSingle<TemplateDecl>();
342 if (!TD || !getAsTypeTemplateDecl(TD))
343 return false;
344
345 if (Template)
346 *Template = TemplateTy::make(TemplateName(TD));
347 return true;
348 }
349
DiagnoseUnknownTemplateName(const IdentifierInfo & II,SourceLocation IILoc,Scope * S,const CXXScopeSpec * SS,TemplateTy & SuggestedTemplate,TemplateNameKind & SuggestedKind)350 bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
351 SourceLocation IILoc,
352 Scope *S,
353 const CXXScopeSpec *SS,
354 TemplateTy &SuggestedTemplate,
355 TemplateNameKind &SuggestedKind) {
356 // We can't recover unless there's a dependent scope specifier preceding the
357 // template name.
358 // FIXME: Typo correction?
359 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
360 computeDeclContext(*SS))
361 return false;
362
363 // The code is missing a 'template' keyword prior to the dependent template
364 // name.
365 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
366 Diag(IILoc, diag::err_template_kw_missing)
367 << Qualifier << II.getName()
368 << FixItHint::CreateInsertion(IILoc, "template ");
369 SuggestedTemplate
370 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
371 SuggestedKind = TNK_Dependent_template_name;
372 return true;
373 }
374
LookupTemplateName(LookupResult & Found,Scope * S,CXXScopeSpec & SS,QualType ObjectType,bool EnteringContext,bool & MemberOfUnknownSpecialization,RequiredTemplateKind RequiredTemplate,AssumedTemplateKind * ATK,bool AllowTypoCorrection)375 bool Sema::LookupTemplateName(LookupResult &Found,
376 Scope *S, CXXScopeSpec &SS,
377 QualType ObjectType,
378 bool EnteringContext,
379 bool &MemberOfUnknownSpecialization,
380 RequiredTemplateKind RequiredTemplate,
381 AssumedTemplateKind *ATK,
382 bool AllowTypoCorrection) {
383 if (ATK)
384 *ATK = AssumedTemplateKind::None;
385
386 if (SS.isInvalid())
387 return true;
388
389 Found.setTemplateNameLookup(true);
390
391 // Determine where to perform name lookup
392 MemberOfUnknownSpecialization = false;
393 DeclContext *LookupCtx = nullptr;
394 bool IsDependent = false;
395 if (!ObjectType.isNull()) {
396 // This nested-name-specifier occurs in a member access expression, e.g.,
397 // x->B::f, and we are looking into the type of the object.
398 assert(SS.isEmpty() && "ObjectType and scope specifier cannot coexist");
399 LookupCtx = computeDeclContext(ObjectType);
400 IsDependent = !LookupCtx && ObjectType->isDependentType();
401 assert((IsDependent || !ObjectType->isIncompleteType() ||
402 ObjectType->castAs<TagType>()->isBeingDefined()) &&
403 "Caller should have completed object type");
404
405 // Template names cannot appear inside an Objective-C class or object type
406 // or a vector type.
407 //
408 // FIXME: This is wrong. For example:
409 //
410 // template<typename T> using Vec = T __attribute__((ext_vector_type(4)));
411 // Vec<int> vi;
412 // vi.Vec<int>::~Vec<int>();
413 //
414 // ... should be accepted but we will not treat 'Vec' as a template name
415 // here. The right thing to do would be to check if the name is a valid
416 // vector component name, and look up a template name if not. And similarly
417 // for lookups into Objective-C class and object types, where the same
418 // problem can arise.
419 if (ObjectType->isObjCObjectOrInterfaceType() ||
420 ObjectType->isVectorType()) {
421 Found.clear();
422 return false;
423 }
424 } else if (SS.isNotEmpty()) {
425 // This nested-name-specifier occurs after another nested-name-specifier,
426 // so long into the context associated with the prior nested-name-specifier.
427 LookupCtx = computeDeclContext(SS, EnteringContext);
428 IsDependent = !LookupCtx && isDependentScopeSpecifier(SS);
429
430 // The declaration context must be complete.
431 if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
432 return true;
433 }
434
435 bool ObjectTypeSearchedInScope = false;
436 bool AllowFunctionTemplatesInLookup = true;
437 if (LookupCtx) {
438 // Perform "qualified" name lookup into the declaration context we
439 // computed, which is either the type of the base of a member access
440 // expression or the declaration context associated with a prior
441 // nested-name-specifier.
442 LookupQualifiedName(Found, LookupCtx);
443
444 // FIXME: The C++ standard does not clearly specify what happens in the
445 // case where the object type is dependent, and implementations vary. In
446 // Clang, we treat a name after a . or -> as a template-name if lookup
447 // finds a non-dependent member or member of the current instantiation that
448 // is a type template, or finds no such members and lookup in the context
449 // of the postfix-expression finds a type template. In the latter case, the
450 // name is nonetheless dependent, and we may resolve it to a member of an
451 // unknown specialization when we come to instantiate the template.
452 IsDependent |= Found.wasNotFoundInCurrentInstantiation();
453 }
454
455 if (SS.isEmpty() && (ObjectType.isNull() || Found.empty())) {
456 // C++ [basic.lookup.classref]p1:
457 // In a class member access expression (5.2.5), if the . or -> token is
458 // immediately followed by an identifier followed by a <, the
459 // identifier must be looked up to determine whether the < is the
460 // beginning of a template argument list (14.2) or a less-than operator.
461 // The identifier is first looked up in the class of the object
462 // expression. If the identifier is not found, it is then looked up in
463 // the context of the entire postfix-expression and shall name a class
464 // template.
465 if (S)
466 LookupName(Found, S);
467
468 if (!ObjectType.isNull()) {
469 // FIXME: We should filter out all non-type templates here, particularly
470 // variable templates and concepts. But the exclusion of alias templates
471 // and template template parameters is a wording defect.
472 AllowFunctionTemplatesInLookup = false;
473 ObjectTypeSearchedInScope = true;
474 }
475
476 IsDependent |= Found.wasNotFoundInCurrentInstantiation();
477 }
478
479 if (Found.isAmbiguous())
480 return false;
481
482 if (ATK && SS.isEmpty() && ObjectType.isNull() &&
483 !RequiredTemplate.hasTemplateKeyword()) {
484 // C++2a [temp.names]p2:
485 // A name is also considered to refer to a template if it is an
486 // unqualified-id followed by a < and name lookup finds either one or more
487 // functions or finds nothing.
488 //
489 // To keep our behavior consistent, we apply the "finds nothing" part in
490 // all language modes, and diagnose the empty lookup in ActOnCallExpr if we
491 // successfully form a call to an undeclared template-id.
492 bool AllFunctions =
493 getLangOpts().CPlusPlus20 && llvm::all_of(Found, [](NamedDecl *ND) {
494 return isa<FunctionDecl>(ND->getUnderlyingDecl());
495 });
496 if (AllFunctions || (Found.empty() && !IsDependent)) {
497 // If lookup found any functions, or if this is a name that can only be
498 // used for a function, then strongly assume this is a function
499 // template-id.
500 *ATK = (Found.empty() && Found.getLookupName().isIdentifier())
501 ? AssumedTemplateKind::FoundNothing
502 : AssumedTemplateKind::FoundFunctions;
503 Found.clear();
504 return false;
505 }
506 }
507
508 if (Found.empty() && !IsDependent && AllowTypoCorrection) {
509 // If we did not find any names, and this is not a disambiguation, attempt
510 // to correct any typos.
511 DeclarationName Name = Found.getLookupName();
512 Found.clear();
513 // Simple filter callback that, for keywords, only accepts the C++ *_cast
514 DefaultFilterCCC FilterCCC{};
515 FilterCCC.WantTypeSpecifiers = false;
516 FilterCCC.WantExpressionKeywords = false;
517 FilterCCC.WantRemainingKeywords = false;
518 FilterCCC.WantCXXNamedCasts = true;
519 if (TypoCorrection Corrected =
520 CorrectTypo(Found.getLookupNameInfo(), Found.getLookupKind(), S,
521 &SS, FilterCCC, CTK_ErrorRecovery, LookupCtx)) {
522 if (auto *ND = Corrected.getFoundDecl())
523 Found.addDecl(ND);
524 FilterAcceptableTemplateNames(Found);
525 if (Found.isAmbiguous()) {
526 Found.clear();
527 } else if (!Found.empty()) {
528 Found.setLookupName(Corrected.getCorrection());
529 if (LookupCtx) {
530 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
531 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
532 Name.getAsString() == CorrectedStr;
533 diagnoseTypo(Corrected, PDiag(diag::err_no_member_template_suggest)
534 << Name << LookupCtx << DroppedSpecifier
535 << SS.getRange());
536 } else {
537 diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) << Name);
538 }
539 }
540 }
541 }
542
543 NamedDecl *ExampleLookupResult =
544 Found.empty() ? nullptr : Found.getRepresentativeDecl();
545 FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup);
546 if (Found.empty()) {
547 if (IsDependent) {
548 MemberOfUnknownSpecialization = true;
549 return false;
550 }
551
552 // If a 'template' keyword was used, a lookup that finds only non-template
553 // names is an error.
554 if (ExampleLookupResult && RequiredTemplate) {
555 Diag(Found.getNameLoc(), diag::err_template_kw_refers_to_non_template)
556 << Found.getLookupName() << SS.getRange()
557 << RequiredTemplate.hasTemplateKeyword()
558 << RequiredTemplate.getTemplateKeywordLoc();
559 Diag(ExampleLookupResult->getUnderlyingDecl()->getLocation(),
560 diag::note_template_kw_refers_to_non_template)
561 << Found.getLookupName();
562 return true;
563 }
564
565 return false;
566 }
567
568 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope &&
569 !getLangOpts().CPlusPlus11) {
570 // C++03 [basic.lookup.classref]p1:
571 // [...] If the lookup in the class of the object expression finds a
572 // template, the name is also looked up in the context of the entire
573 // postfix-expression and [...]
574 //
575 // Note: C++11 does not perform this second lookup.
576 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
577 LookupOrdinaryName);
578 FoundOuter.setTemplateNameLookup(true);
579 LookupName(FoundOuter, S);
580 // FIXME: We silently accept an ambiguous lookup here, in violation of
581 // [basic.lookup]/1.
582 FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false);
583
584 NamedDecl *OuterTemplate;
585 if (FoundOuter.empty()) {
586 // - if the name is not found, the name found in the class of the
587 // object expression is used, otherwise
588 } else if (FoundOuter.isAmbiguous() || !FoundOuter.isSingleResult() ||
589 !(OuterTemplate =
590 getAsTemplateNameDecl(FoundOuter.getFoundDecl()))) {
591 // - if the name is found in the context of the entire
592 // postfix-expression and does not name a class template, the name
593 // found in the class of the object expression is used, otherwise
594 FoundOuter.clear();
595 } else if (!Found.isSuppressingDiagnostics()) {
596 // - if the name found is a class template, it must refer to the same
597 // entity as the one found in the class of the object expression,
598 // otherwise the program is ill-formed.
599 if (!Found.isSingleResult() ||
600 getAsTemplateNameDecl(Found.getFoundDecl())->getCanonicalDecl() !=
601 OuterTemplate->getCanonicalDecl()) {
602 Diag(Found.getNameLoc(),
603 diag::ext_nested_name_member_ref_lookup_ambiguous)
604 << Found.getLookupName()
605 << ObjectType;
606 Diag(Found.getRepresentativeDecl()->getLocation(),
607 diag::note_ambig_member_ref_object_type)
608 << ObjectType;
609 Diag(FoundOuter.getFoundDecl()->getLocation(),
610 diag::note_ambig_member_ref_scope);
611
612 // Recover by taking the template that we found in the object
613 // expression's type.
614 }
615 }
616 }
617
618 return false;
619 }
620
diagnoseExprIntendedAsTemplateName(Scope * S,ExprResult TemplateName,SourceLocation Less,SourceLocation Greater)621 void Sema::diagnoseExprIntendedAsTemplateName(Scope *S, ExprResult TemplateName,
622 SourceLocation Less,
623 SourceLocation Greater) {
624 if (TemplateName.isInvalid())
625 return;
626
627 DeclarationNameInfo NameInfo;
628 CXXScopeSpec SS;
629 LookupNameKind LookupKind;
630
631 DeclContext *LookupCtx = nullptr;
632 NamedDecl *Found = nullptr;
633 bool MissingTemplateKeyword = false;
634
635 // Figure out what name we looked up.
636 if (auto *DRE = dyn_cast<DeclRefExpr>(TemplateName.get())) {
637 NameInfo = DRE->getNameInfo();
638 SS.Adopt(DRE->getQualifierLoc());
639 LookupKind = LookupOrdinaryName;
640 Found = DRE->getFoundDecl();
641 } else if (auto *ME = dyn_cast<MemberExpr>(TemplateName.get())) {
642 NameInfo = ME->getMemberNameInfo();
643 SS.Adopt(ME->getQualifierLoc());
644 LookupKind = LookupMemberName;
645 LookupCtx = ME->getBase()->getType()->getAsCXXRecordDecl();
646 Found = ME->getMemberDecl();
647 } else if (auto *DSDRE =
648 dyn_cast<DependentScopeDeclRefExpr>(TemplateName.get())) {
649 NameInfo = DSDRE->getNameInfo();
650 SS.Adopt(DSDRE->getQualifierLoc());
651 MissingTemplateKeyword = true;
652 } else if (auto *DSME =
653 dyn_cast<CXXDependentScopeMemberExpr>(TemplateName.get())) {
654 NameInfo = DSME->getMemberNameInfo();
655 SS.Adopt(DSME->getQualifierLoc());
656 MissingTemplateKeyword = true;
657 } else {
658 llvm_unreachable("unexpected kind of potential template name");
659 }
660
661 // If this is a dependent-scope lookup, diagnose that the 'template' keyword
662 // was missing.
663 if (MissingTemplateKeyword) {
664 Diag(NameInfo.getBeginLoc(), diag::err_template_kw_missing)
665 << "" << NameInfo.getName().getAsString() << SourceRange(Less, Greater);
666 return;
667 }
668
669 // Try to correct the name by looking for templates and C++ named casts.
670 struct TemplateCandidateFilter : CorrectionCandidateCallback {
671 Sema &S;
672 TemplateCandidateFilter(Sema &S) : S(S) {
673 WantTypeSpecifiers = false;
674 WantExpressionKeywords = false;
675 WantRemainingKeywords = false;
676 WantCXXNamedCasts = true;
677 };
678 bool ValidateCandidate(const TypoCorrection &Candidate) override {
679 if (auto *ND = Candidate.getCorrectionDecl())
680 return S.getAsTemplateNameDecl(ND);
681 return Candidate.isKeyword();
682 }
683
684 std::unique_ptr<CorrectionCandidateCallback> clone() override {
685 return std::make_unique<TemplateCandidateFilter>(*this);
686 }
687 };
688
689 DeclarationName Name = NameInfo.getName();
690 TemplateCandidateFilter CCC(*this);
691 if (TypoCorrection Corrected = CorrectTypo(NameInfo, LookupKind, S, &SS, CCC,
692 CTK_ErrorRecovery, LookupCtx)) {
693 auto *ND = Corrected.getFoundDecl();
694 if (ND)
695 ND = getAsTemplateNameDecl(ND);
696 if (ND || Corrected.isKeyword()) {
697 if (LookupCtx) {
698 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
699 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
700 Name.getAsString() == CorrectedStr;
701 diagnoseTypo(Corrected,
702 PDiag(diag::err_non_template_in_member_template_id_suggest)
703 << Name << LookupCtx << DroppedSpecifier
704 << SS.getRange(), false);
705 } else {
706 diagnoseTypo(Corrected,
707 PDiag(diag::err_non_template_in_template_id_suggest)
708 << Name, false);
709 }
710 if (Found)
711 Diag(Found->getLocation(),
712 diag::note_non_template_in_template_id_found);
713 return;
714 }
715 }
716
717 Diag(NameInfo.getLoc(), diag::err_non_template_in_template_id)
718 << Name << SourceRange(Less, Greater);
719 if (Found)
720 Diag(Found->getLocation(), diag::note_non_template_in_template_id_found);
721 }
722
723 /// ActOnDependentIdExpression - Handle a dependent id-expression that
724 /// was just parsed. This is only possible with an explicit scope
725 /// specifier naming a dependent type.
726 ExprResult
ActOnDependentIdExpression(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,const DeclarationNameInfo & NameInfo,bool isAddressOfOperand,const TemplateArgumentListInfo * TemplateArgs)727 Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
728 SourceLocation TemplateKWLoc,
729 const DeclarationNameInfo &NameInfo,
730 bool isAddressOfOperand,
731 const TemplateArgumentListInfo *TemplateArgs) {
732 DeclContext *DC = getFunctionLevelDeclContext();
733
734 // C++11 [expr.prim.general]p12:
735 // An id-expression that denotes a non-static data member or non-static
736 // member function of a class can only be used:
737 // (...)
738 // - if that id-expression denotes a non-static data member and it
739 // appears in an unevaluated operand.
740 //
741 // If this might be the case, form a DependentScopeDeclRefExpr instead of a
742 // CXXDependentScopeMemberExpr. The former can instantiate to either
743 // DeclRefExpr or MemberExpr depending on lookup results, while the latter is
744 // always a MemberExpr.
745 bool MightBeCxx11UnevalField =
746 getLangOpts().CPlusPlus11 && isUnevaluatedContext();
747
748 // Check if the nested name specifier is an enum type.
749 bool IsEnum = false;
750 if (NestedNameSpecifier *NNS = SS.getScopeRep())
751 IsEnum = isa_and_nonnull<EnumType>(NNS->getAsType());
752
753 if (!MightBeCxx11UnevalField && !isAddressOfOperand && !IsEnum &&
754 isa<CXXMethodDecl>(DC) && cast<CXXMethodDecl>(DC)->isInstance()) {
755 QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType();
756
757 // Since the 'this' expression is synthesized, we don't need to
758 // perform the double-lookup check.
759 NamedDecl *FirstQualifierInScope = nullptr;
760
761 return CXXDependentScopeMemberExpr::Create(
762 Context, /*This*/ nullptr, ThisType, /*IsArrow*/ true,
763 /*Op*/ SourceLocation(), SS.getWithLocInContext(Context), TemplateKWLoc,
764 FirstQualifierInScope, NameInfo, TemplateArgs);
765 }
766
767 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
768 }
769
770 ExprResult
BuildDependentDeclRefExpr(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,const DeclarationNameInfo & NameInfo,const TemplateArgumentListInfo * TemplateArgs)771 Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
772 SourceLocation TemplateKWLoc,
773 const DeclarationNameInfo &NameInfo,
774 const TemplateArgumentListInfo *TemplateArgs) {
775 // DependentScopeDeclRefExpr::Create requires a valid QualifierLoc
776 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
777 if (!QualifierLoc)
778 return ExprError();
779
780 return DependentScopeDeclRefExpr::Create(
781 Context, QualifierLoc, TemplateKWLoc, NameInfo, TemplateArgs);
782 }
783
784
785 /// Determine whether we would be unable to instantiate this template (because
786 /// it either has no definition, or is in the process of being instantiated).
DiagnoseUninstantiableTemplate(SourceLocation PointOfInstantiation,NamedDecl * Instantiation,bool InstantiatedFromMember,const NamedDecl * Pattern,const NamedDecl * PatternDef,TemplateSpecializationKind TSK,bool Complain)787 bool Sema::DiagnoseUninstantiableTemplate(SourceLocation PointOfInstantiation,
788 NamedDecl *Instantiation,
789 bool InstantiatedFromMember,
790 const NamedDecl *Pattern,
791 const NamedDecl *PatternDef,
792 TemplateSpecializationKind TSK,
793 bool Complain /*= true*/) {
794 assert(isa<TagDecl>(Instantiation) || isa<FunctionDecl>(Instantiation) ||
795 isa<VarDecl>(Instantiation));
796
797 bool IsEntityBeingDefined = false;
798 if (const TagDecl *TD = dyn_cast_or_null<TagDecl>(PatternDef))
799 IsEntityBeingDefined = TD->isBeingDefined();
800
801 if (PatternDef && !IsEntityBeingDefined) {
802 NamedDecl *SuggestedDef = nullptr;
803 if (!hasReachableDefinition(const_cast<NamedDecl *>(PatternDef),
804 &SuggestedDef,
805 /*OnlyNeedComplete*/ false)) {
806 // If we're allowed to diagnose this and recover, do so.
807 bool Recover = Complain && !isSFINAEContext();
808 if (Complain)
809 diagnoseMissingImport(PointOfInstantiation, SuggestedDef,
810 Sema::MissingImportKind::Definition, Recover);
811 return !Recover;
812 }
813 return false;
814 }
815
816 if (!Complain || (PatternDef && PatternDef->isInvalidDecl()))
817 return true;
818
819 llvm::Optional<unsigned> Note;
820 QualType InstantiationTy;
821 if (TagDecl *TD = dyn_cast<TagDecl>(Instantiation))
822 InstantiationTy = Context.getTypeDeclType(TD);
823 if (PatternDef) {
824 Diag(PointOfInstantiation,
825 diag::err_template_instantiate_within_definition)
826 << /*implicit|explicit*/(TSK != TSK_ImplicitInstantiation)
827 << InstantiationTy;
828 // Not much point in noting the template declaration here, since
829 // we're lexically inside it.
830 Instantiation->setInvalidDecl();
831 } else if (InstantiatedFromMember) {
832 if (isa<FunctionDecl>(Instantiation)) {
833 Diag(PointOfInstantiation,
834 diag::err_explicit_instantiation_undefined_member)
835 << /*member function*/ 1 << Instantiation->getDeclName()
836 << Instantiation->getDeclContext();
837 Note = diag::note_explicit_instantiation_here;
838 } else {
839 assert(isa<TagDecl>(Instantiation) && "Must be a TagDecl!");
840 Diag(PointOfInstantiation,
841 diag::err_implicit_instantiate_member_undefined)
842 << InstantiationTy;
843 Note = diag::note_member_declared_at;
844 }
845 } else {
846 if (isa<FunctionDecl>(Instantiation)) {
847 Diag(PointOfInstantiation,
848 diag::err_explicit_instantiation_undefined_func_template)
849 << Pattern;
850 Note = diag::note_explicit_instantiation_here;
851 } else if (isa<TagDecl>(Instantiation)) {
852 Diag(PointOfInstantiation, diag::err_template_instantiate_undefined)
853 << (TSK != TSK_ImplicitInstantiation)
854 << InstantiationTy;
855 Note = diag::note_template_decl_here;
856 } else {
857 assert(isa<VarDecl>(Instantiation) && "Must be a VarDecl!");
858 if (isa<VarTemplateSpecializationDecl>(Instantiation)) {
859 Diag(PointOfInstantiation,
860 diag::err_explicit_instantiation_undefined_var_template)
861 << Instantiation;
862 Instantiation->setInvalidDecl();
863 } else
864 Diag(PointOfInstantiation,
865 diag::err_explicit_instantiation_undefined_member)
866 << /*static data member*/ 2 << Instantiation->getDeclName()
867 << Instantiation->getDeclContext();
868 Note = diag::note_explicit_instantiation_here;
869 }
870 }
871 if (Note) // Diagnostics were emitted.
872 Diag(Pattern->getLocation(), *Note);
873
874 // In general, Instantiation isn't marked invalid to get more than one
875 // error for multiple undefined instantiations. But the code that does
876 // explicit declaration -> explicit definition conversion can't handle
877 // invalid declarations, so mark as invalid in that case.
878 if (TSK == TSK_ExplicitInstantiationDeclaration)
879 Instantiation->setInvalidDecl();
880 return true;
881 }
882
883 /// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
884 /// that the template parameter 'PrevDecl' is being shadowed by a new
885 /// declaration at location Loc. Returns true to indicate that this is
886 /// an error, and false otherwise.
DiagnoseTemplateParameterShadow(SourceLocation Loc,Decl * PrevDecl)887 void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
888 assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
889
890 // C++ [temp.local]p4:
891 // A template-parameter shall not be redeclared within its
892 // scope (including nested scopes).
893 //
894 // Make this a warning when MSVC compatibility is requested.
895 unsigned DiagId = getLangOpts().MSVCCompat ? diag::ext_template_param_shadow
896 : diag::err_template_param_shadow;
897 Diag(Loc, DiagId) << cast<NamedDecl>(PrevDecl)->getDeclName();
898 Diag(PrevDecl->getLocation(), diag::note_template_param_here);
899 }
900
901 /// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
902 /// the parameter D to reference the templated declaration and return a pointer
903 /// to the template declaration. Otherwise, do nothing to D and return null.
AdjustDeclIfTemplate(Decl * & D)904 TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
905 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
906 D = Temp->getTemplatedDecl();
907 return Temp;
908 }
909 return nullptr;
910 }
911
getTemplatePackExpansion(SourceLocation EllipsisLoc) const912 ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
913 SourceLocation EllipsisLoc) const {
914 assert(Kind == Template &&
915 "Only template template arguments can be pack expansions here");
916 assert(getAsTemplate().get().containsUnexpandedParameterPack() &&
917 "Template template argument pack expansion without packs");
918 ParsedTemplateArgument Result(*this);
919 Result.EllipsisLoc = EllipsisLoc;
920 return Result;
921 }
922
translateTemplateArgument(Sema & SemaRef,const ParsedTemplateArgument & Arg)923 static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
924 const ParsedTemplateArgument &Arg) {
925
926 switch (Arg.getKind()) {
927 case ParsedTemplateArgument::Type: {
928 TypeSourceInfo *DI;
929 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
930 if (!DI)
931 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
932 return TemplateArgumentLoc(TemplateArgument(T), DI);
933 }
934
935 case ParsedTemplateArgument::NonType: {
936 Expr *E = static_cast<Expr *>(Arg.getAsExpr());
937 return TemplateArgumentLoc(TemplateArgument(E), E);
938 }
939
940 case ParsedTemplateArgument::Template: {
941 TemplateName Template = Arg.getAsTemplate().get();
942 TemplateArgument TArg;
943 if (Arg.getEllipsisLoc().isValid())
944 TArg = TemplateArgument(Template, Optional<unsigned int>());
945 else
946 TArg = Template;
947 return TemplateArgumentLoc(
948 SemaRef.Context, TArg,
949 Arg.getScopeSpec().getWithLocInContext(SemaRef.Context),
950 Arg.getLocation(), Arg.getEllipsisLoc());
951 }
952 }
953
954 llvm_unreachable("Unhandled parsed template argument");
955 }
956
957 /// Translates template arguments as provided by the parser
958 /// into template arguments used by semantic analysis.
translateTemplateArguments(const ASTTemplateArgsPtr & TemplateArgsIn,TemplateArgumentListInfo & TemplateArgs)959 void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
960 TemplateArgumentListInfo &TemplateArgs) {
961 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
962 TemplateArgs.addArgument(translateTemplateArgument(*this,
963 TemplateArgsIn[I]));
964 }
965
maybeDiagnoseTemplateParameterShadow(Sema & SemaRef,Scope * S,SourceLocation Loc,IdentifierInfo * Name)966 static void maybeDiagnoseTemplateParameterShadow(Sema &SemaRef, Scope *S,
967 SourceLocation Loc,
968 IdentifierInfo *Name) {
969 NamedDecl *PrevDecl = SemaRef.LookupSingleName(
970 S, Name, Loc, Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration);
971 if (PrevDecl && PrevDecl->isTemplateParameter())
972 SemaRef.DiagnoseTemplateParameterShadow(Loc, PrevDecl);
973 }
974
975 /// Convert a parsed type into a parsed template argument. This is mostly
976 /// trivial, except that we may have parsed a C++17 deduced class template
977 /// specialization type, in which case we should form a template template
978 /// argument instead of a type template argument.
ActOnTemplateTypeArgument(TypeResult ParsedType)979 ParsedTemplateArgument Sema::ActOnTemplateTypeArgument(TypeResult ParsedType) {
980 TypeSourceInfo *TInfo;
981 QualType T = GetTypeFromParser(ParsedType.get(), &TInfo);
982 if (T.isNull())
983 return ParsedTemplateArgument();
984 assert(TInfo && "template argument with no location");
985
986 // If we might have formed a deduced template specialization type, convert
987 // it to a template template argument.
988 if (getLangOpts().CPlusPlus17) {
989 TypeLoc TL = TInfo->getTypeLoc();
990 SourceLocation EllipsisLoc;
991 if (auto PET = TL.getAs<PackExpansionTypeLoc>()) {
992 EllipsisLoc = PET.getEllipsisLoc();
993 TL = PET.getPatternLoc();
994 }
995
996 CXXScopeSpec SS;
997 if (auto ET = TL.getAs<ElaboratedTypeLoc>()) {
998 SS.Adopt(ET.getQualifierLoc());
999 TL = ET.getNamedTypeLoc();
1000 }
1001
1002 if (auto DTST = TL.getAs<DeducedTemplateSpecializationTypeLoc>()) {
1003 TemplateName Name = DTST.getTypePtr()->getTemplateName();
1004 if (SS.isSet())
1005 Name = Context.getQualifiedTemplateName(SS.getScopeRep(),
1006 /*HasTemplateKeyword=*/false,
1007 Name);
1008 ParsedTemplateArgument Result(SS, TemplateTy::make(Name),
1009 DTST.getTemplateNameLoc());
1010 if (EllipsisLoc.isValid())
1011 Result = Result.getTemplatePackExpansion(EllipsisLoc);
1012 return Result;
1013 }
1014 }
1015
1016 // This is a normal type template argument. Note, if the type template
1017 // argument is an injected-class-name for a template, it has a dual nature
1018 // and can be used as either a type or a template. We handle that in
1019 // convertTypeTemplateArgumentToTemplate.
1020 return ParsedTemplateArgument(ParsedTemplateArgument::Type,
1021 ParsedType.get().getAsOpaquePtr(),
1022 TInfo->getTypeLoc().getBeginLoc());
1023 }
1024
1025 /// ActOnTypeParameter - Called when a C++ template type parameter
1026 /// (e.g., "typename T") has been parsed. Typename specifies whether
1027 /// the keyword "typename" was used to declare the type parameter
1028 /// (otherwise, "class" was used), and KeyLoc is the location of the
1029 /// "class" or "typename" keyword. ParamName is the name of the
1030 /// parameter (NULL indicates an unnamed template parameter) and
1031 /// ParamNameLoc is the location of the parameter name (if any).
1032 /// If the type parameter has a default argument, it will be added
1033 /// later via ActOnTypeParameterDefault.
ActOnTypeParameter(Scope * S,bool Typename,SourceLocation EllipsisLoc,SourceLocation KeyLoc,IdentifierInfo * ParamName,SourceLocation ParamNameLoc,unsigned Depth,unsigned Position,SourceLocation EqualLoc,ParsedType DefaultArg,bool HasTypeConstraint)1034 NamedDecl *Sema::ActOnTypeParameter(Scope *S, bool Typename,
1035 SourceLocation EllipsisLoc,
1036 SourceLocation KeyLoc,
1037 IdentifierInfo *ParamName,
1038 SourceLocation ParamNameLoc,
1039 unsigned Depth, unsigned Position,
1040 SourceLocation EqualLoc,
1041 ParsedType DefaultArg,
1042 bool HasTypeConstraint) {
1043 assert(S->isTemplateParamScope() &&
1044 "Template type parameter not in template parameter scope!");
1045
1046 bool IsParameterPack = EllipsisLoc.isValid();
1047 TemplateTypeParmDecl *Param
1048 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
1049 KeyLoc, ParamNameLoc, Depth, Position,
1050 ParamName, Typename, IsParameterPack,
1051 HasTypeConstraint);
1052 Param->setAccess(AS_public);
1053
1054 if (Param->isParameterPack())
1055 if (auto *LSI = getEnclosingLambda())
1056 LSI->LocalPacks.push_back(Param);
1057
1058 if (ParamName) {
1059 maybeDiagnoseTemplateParameterShadow(*this, S, ParamNameLoc, ParamName);
1060
1061 // Add the template parameter into the current scope.
1062 S->AddDecl(Param);
1063 IdResolver.AddDecl(Param);
1064 }
1065
1066 // C++0x [temp.param]p9:
1067 // A default template-argument may be specified for any kind of
1068 // template-parameter that is not a template parameter pack.
1069 if (DefaultArg && IsParameterPack) {
1070 Diag(EqualLoc, diag::err_template_param_pack_default_arg);
1071 DefaultArg = nullptr;
1072 }
1073
1074 // Handle the default argument, if provided.
1075 if (DefaultArg) {
1076 TypeSourceInfo *DefaultTInfo;
1077 GetTypeFromParser(DefaultArg, &DefaultTInfo);
1078
1079 assert(DefaultTInfo && "expected source information for type");
1080
1081 // Check for unexpanded parameter packs.
1082 if (DiagnoseUnexpandedParameterPack(ParamNameLoc, DefaultTInfo,
1083 UPPC_DefaultArgument))
1084 return Param;
1085
1086 // Check the template argument itself.
1087 if (CheckTemplateArgument(DefaultTInfo)) {
1088 Param->setInvalidDecl();
1089 return Param;
1090 }
1091
1092 Param->setDefaultArgument(DefaultTInfo);
1093 }
1094
1095 return Param;
1096 }
1097
1098 /// Convert the parser's template argument list representation into our form.
1099 static TemplateArgumentListInfo
makeTemplateArgumentListInfo(Sema & S,TemplateIdAnnotation & TemplateId)1100 makeTemplateArgumentListInfo(Sema &S, TemplateIdAnnotation &TemplateId) {
1101 TemplateArgumentListInfo TemplateArgs(TemplateId.LAngleLoc,
1102 TemplateId.RAngleLoc);
1103 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId.getTemplateArgs(),
1104 TemplateId.NumArgs);
1105 S.translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
1106 return TemplateArgs;
1107 }
1108
ActOnTypeConstraint(const CXXScopeSpec & SS,TemplateIdAnnotation * TypeConstr,TemplateTypeParmDecl * ConstrainedParameter,SourceLocation EllipsisLoc)1109 bool Sema::ActOnTypeConstraint(const CXXScopeSpec &SS,
1110 TemplateIdAnnotation *TypeConstr,
1111 TemplateTypeParmDecl *ConstrainedParameter,
1112 SourceLocation EllipsisLoc) {
1113 return BuildTypeConstraint(SS, TypeConstr, ConstrainedParameter, EllipsisLoc,
1114 false);
1115 }
1116
BuildTypeConstraint(const CXXScopeSpec & SS,TemplateIdAnnotation * TypeConstr,TemplateTypeParmDecl * ConstrainedParameter,SourceLocation EllipsisLoc,bool AllowUnexpandedPack)1117 bool Sema::BuildTypeConstraint(const CXXScopeSpec &SS,
1118 TemplateIdAnnotation *TypeConstr,
1119 TemplateTypeParmDecl *ConstrainedParameter,
1120 SourceLocation EllipsisLoc,
1121 bool AllowUnexpandedPack) {
1122 TemplateName TN = TypeConstr->Template.get();
1123 ConceptDecl *CD = cast<ConceptDecl>(TN.getAsTemplateDecl());
1124
1125 // C++2a [temp.param]p4:
1126 // [...] The concept designated by a type-constraint shall be a type
1127 // concept ([temp.concept]).
1128 if (!CD->isTypeConcept()) {
1129 Diag(TypeConstr->TemplateNameLoc,
1130 diag::err_type_constraint_non_type_concept);
1131 return true;
1132 }
1133
1134 bool WereArgsSpecified = TypeConstr->LAngleLoc.isValid();
1135
1136 if (!WereArgsSpecified &&
1137 CD->getTemplateParameters()->getMinRequiredArguments() > 1) {
1138 Diag(TypeConstr->TemplateNameLoc,
1139 diag::err_type_constraint_missing_arguments) << CD;
1140 return true;
1141 }
1142
1143 DeclarationNameInfo ConceptName(DeclarationName(TypeConstr->Name),
1144 TypeConstr->TemplateNameLoc);
1145
1146 TemplateArgumentListInfo TemplateArgs;
1147 if (TypeConstr->LAngleLoc.isValid()) {
1148 TemplateArgs =
1149 makeTemplateArgumentListInfo(*this, *TypeConstr);
1150
1151 if (EllipsisLoc.isInvalid() && !AllowUnexpandedPack) {
1152 for (TemplateArgumentLoc Arg : TemplateArgs.arguments()) {
1153 if (DiagnoseUnexpandedParameterPack(Arg, UPPC_TypeConstraint))
1154 return true;
1155 }
1156 }
1157 }
1158 return AttachTypeConstraint(
1159 SS.isSet() ? SS.getWithLocInContext(Context) : NestedNameSpecifierLoc(),
1160 ConceptName, CD,
1161 TypeConstr->LAngleLoc.isValid() ? &TemplateArgs : nullptr,
1162 ConstrainedParameter, EllipsisLoc);
1163 }
1164
1165 template<typename ArgumentLocAppender>
formImmediatelyDeclaredConstraint(Sema & S,NestedNameSpecifierLoc NS,DeclarationNameInfo NameInfo,ConceptDecl * NamedConcept,SourceLocation LAngleLoc,SourceLocation RAngleLoc,QualType ConstrainedType,SourceLocation ParamNameLoc,ArgumentLocAppender Appender,SourceLocation EllipsisLoc)1166 static ExprResult formImmediatelyDeclaredConstraint(
1167 Sema &S, NestedNameSpecifierLoc NS, DeclarationNameInfo NameInfo,
1168 ConceptDecl *NamedConcept, SourceLocation LAngleLoc,
1169 SourceLocation RAngleLoc, QualType ConstrainedType,
1170 SourceLocation ParamNameLoc, ArgumentLocAppender Appender,
1171 SourceLocation EllipsisLoc) {
1172
1173 TemplateArgumentListInfo ConstraintArgs;
1174 ConstraintArgs.addArgument(
1175 S.getTrivialTemplateArgumentLoc(TemplateArgument(ConstrainedType),
1176 /*NTTPType=*/QualType(), ParamNameLoc));
1177
1178 ConstraintArgs.setRAngleLoc(RAngleLoc);
1179 ConstraintArgs.setLAngleLoc(LAngleLoc);
1180 Appender(ConstraintArgs);
1181
1182 // C++2a [temp.param]p4:
1183 // [...] This constraint-expression E is called the immediately-declared
1184 // constraint of T. [...]
1185 CXXScopeSpec SS;
1186 SS.Adopt(NS);
1187 ExprResult ImmediatelyDeclaredConstraint = S.CheckConceptTemplateId(
1188 SS, /*TemplateKWLoc=*/SourceLocation(), NameInfo,
1189 /*FoundDecl=*/NamedConcept, NamedConcept, &ConstraintArgs);
1190 if (ImmediatelyDeclaredConstraint.isInvalid() || !EllipsisLoc.isValid())
1191 return ImmediatelyDeclaredConstraint;
1192
1193 // C++2a [temp.param]p4:
1194 // [...] If T is not a pack, then E is E', otherwise E is (E' && ...).
1195 //
1196 // We have the following case:
1197 //
1198 // template<typename T> concept C1 = true;
1199 // template<C1... T> struct s1;
1200 //
1201 // The constraint: (C1<T> && ...)
1202 //
1203 // Note that the type of C1<T> is known to be 'bool', so we don't need to do
1204 // any unqualified lookups for 'operator&&' here.
1205 return S.BuildCXXFoldExpr(/*UnqualifiedLookup=*/nullptr,
1206 /*LParenLoc=*/SourceLocation(),
1207 ImmediatelyDeclaredConstraint.get(), BO_LAnd,
1208 EllipsisLoc, /*RHS=*/nullptr,
1209 /*RParenLoc=*/SourceLocation(),
1210 /*NumExpansions=*/None);
1211 }
1212
1213 /// Attach a type-constraint to a template parameter.
1214 /// \returns true if an error occurred. This can happen if the
1215 /// immediately-declared constraint could not be formed (e.g. incorrect number
1216 /// of arguments for the named concept).
AttachTypeConstraint(NestedNameSpecifierLoc NS,DeclarationNameInfo NameInfo,ConceptDecl * NamedConcept,const TemplateArgumentListInfo * TemplateArgs,TemplateTypeParmDecl * ConstrainedParameter,SourceLocation EllipsisLoc)1217 bool Sema::AttachTypeConstraint(NestedNameSpecifierLoc NS,
1218 DeclarationNameInfo NameInfo,
1219 ConceptDecl *NamedConcept,
1220 const TemplateArgumentListInfo *TemplateArgs,
1221 TemplateTypeParmDecl *ConstrainedParameter,
1222 SourceLocation EllipsisLoc) {
1223 // C++2a [temp.param]p4:
1224 // [...] If Q is of the form C<A1, ..., An>, then let E' be
1225 // C<T, A1, ..., An>. Otherwise, let E' be C<T>. [...]
1226 const ASTTemplateArgumentListInfo *ArgsAsWritten =
1227 TemplateArgs ? ASTTemplateArgumentListInfo::Create(Context,
1228 *TemplateArgs) : nullptr;
1229
1230 QualType ParamAsArgument(ConstrainedParameter->getTypeForDecl(), 0);
1231
1232 ExprResult ImmediatelyDeclaredConstraint =
1233 formImmediatelyDeclaredConstraint(
1234 *this, NS, NameInfo, NamedConcept,
1235 TemplateArgs ? TemplateArgs->getLAngleLoc() : SourceLocation(),
1236 TemplateArgs ? TemplateArgs->getRAngleLoc() : SourceLocation(),
1237 ParamAsArgument, ConstrainedParameter->getLocation(),
1238 [&] (TemplateArgumentListInfo &ConstraintArgs) {
1239 if (TemplateArgs)
1240 for (const auto &ArgLoc : TemplateArgs->arguments())
1241 ConstraintArgs.addArgument(ArgLoc);
1242 }, EllipsisLoc);
1243 if (ImmediatelyDeclaredConstraint.isInvalid())
1244 return true;
1245
1246 ConstrainedParameter->setTypeConstraint(NS, NameInfo,
1247 /*FoundDecl=*/NamedConcept,
1248 NamedConcept, ArgsAsWritten,
1249 ImmediatelyDeclaredConstraint.get());
1250 return false;
1251 }
1252
AttachTypeConstraint(AutoTypeLoc TL,NonTypeTemplateParmDecl * NTTP,SourceLocation EllipsisLoc)1253 bool Sema::AttachTypeConstraint(AutoTypeLoc TL, NonTypeTemplateParmDecl *NTTP,
1254 SourceLocation EllipsisLoc) {
1255 if (NTTP->getType() != TL.getType() ||
1256 TL.getAutoKeyword() != AutoTypeKeyword::Auto) {
1257 Diag(NTTP->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
1258 diag::err_unsupported_placeholder_constraint)
1259 << NTTP->getTypeSourceInfo()->getTypeLoc().getSourceRange();
1260 return true;
1261 }
1262 // FIXME: Concepts: This should be the type of the placeholder, but this is
1263 // unclear in the wording right now.
1264 DeclRefExpr *Ref =
1265 BuildDeclRefExpr(NTTP, NTTP->getType(), VK_PRValue, NTTP->getLocation());
1266 if (!Ref)
1267 return true;
1268 ExprResult ImmediatelyDeclaredConstraint = formImmediatelyDeclaredConstraint(
1269 *this, TL.getNestedNameSpecifierLoc(), TL.getConceptNameInfo(),
1270 TL.getNamedConcept(), TL.getLAngleLoc(), TL.getRAngleLoc(),
1271 BuildDecltypeType(Ref), NTTP->getLocation(),
1272 [&](TemplateArgumentListInfo &ConstraintArgs) {
1273 for (unsigned I = 0, C = TL.getNumArgs(); I != C; ++I)
1274 ConstraintArgs.addArgument(TL.getArgLoc(I));
1275 },
1276 EllipsisLoc);
1277 if (ImmediatelyDeclaredConstraint.isInvalid() ||
1278 !ImmediatelyDeclaredConstraint.isUsable())
1279 return true;
1280
1281 NTTP->setPlaceholderTypeConstraint(ImmediatelyDeclaredConstraint.get());
1282 return false;
1283 }
1284
1285 /// Check that the type of a non-type template parameter is
1286 /// well-formed.
1287 ///
1288 /// \returns the (possibly-promoted) parameter type if valid;
1289 /// otherwise, produces a diagnostic and returns a NULL type.
CheckNonTypeTemplateParameterType(TypeSourceInfo * & TSI,SourceLocation Loc)1290 QualType Sema::CheckNonTypeTemplateParameterType(TypeSourceInfo *&TSI,
1291 SourceLocation Loc) {
1292 if (TSI->getType()->isUndeducedType()) {
1293 // C++17 [temp.dep.expr]p3:
1294 // An id-expression is type-dependent if it contains
1295 // - an identifier associated by name lookup with a non-type
1296 // template-parameter declared with a type that contains a
1297 // placeholder type (7.1.7.4),
1298 TSI = SubstAutoTypeSourceInfoDependent(TSI);
1299 }
1300
1301 return CheckNonTypeTemplateParameterType(TSI->getType(), Loc);
1302 }
1303
1304 /// Require the given type to be a structural type, and diagnose if it is not.
1305 ///
1306 /// \return \c true if an error was produced.
RequireStructuralType(QualType T,SourceLocation Loc)1307 bool Sema::RequireStructuralType(QualType T, SourceLocation Loc) {
1308 if (T->isDependentType())
1309 return false;
1310
1311 if (RequireCompleteType(Loc, T, diag::err_template_nontype_parm_incomplete))
1312 return true;
1313
1314 if (T->isStructuralType())
1315 return false;
1316
1317 // Structural types are required to be object types or lvalue references.
1318 if (T->isRValueReferenceType()) {
1319 Diag(Loc, diag::err_template_nontype_parm_rvalue_ref) << T;
1320 return true;
1321 }
1322
1323 // Don't mention structural types in our diagnostic prior to C++20. Also,
1324 // there's not much more we can say about non-scalar non-class types --
1325 // because we can't see functions or arrays here, those can only be language
1326 // extensions.
1327 if (!getLangOpts().CPlusPlus20 ||
1328 (!T->isScalarType() && !T->isRecordType())) {
1329 Diag(Loc, diag::err_template_nontype_parm_bad_type) << T;
1330 return true;
1331 }
1332
1333 // Structural types are required to be literal types.
1334 if (RequireLiteralType(Loc, T, diag::err_template_nontype_parm_not_literal))
1335 return true;
1336
1337 Diag(Loc, diag::err_template_nontype_parm_not_structural) << T;
1338
1339 // Drill down into the reason why the class is non-structural.
1340 while (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
1341 // All members are required to be public and non-mutable, and can't be of
1342 // rvalue reference type. Check these conditions first to prefer a "local"
1343 // reason over a more distant one.
1344 for (const FieldDecl *FD : RD->fields()) {
1345 if (FD->getAccess() != AS_public) {
1346 Diag(FD->getLocation(), diag::note_not_structural_non_public) << T << 0;
1347 return true;
1348 }
1349 if (FD->isMutable()) {
1350 Diag(FD->getLocation(), diag::note_not_structural_mutable_field) << T;
1351 return true;
1352 }
1353 if (FD->getType()->isRValueReferenceType()) {
1354 Diag(FD->getLocation(), diag::note_not_structural_rvalue_ref_field)
1355 << T;
1356 return true;
1357 }
1358 }
1359
1360 // All bases are required to be public.
1361 for (const auto &BaseSpec : RD->bases()) {
1362 if (BaseSpec.getAccessSpecifier() != AS_public) {
1363 Diag(BaseSpec.getBaseTypeLoc(), diag::note_not_structural_non_public)
1364 << T << 1;
1365 return true;
1366 }
1367 }
1368
1369 // All subobjects are required to be of structural types.
1370 SourceLocation SubLoc;
1371 QualType SubType;
1372 int Kind = -1;
1373
1374 for (const FieldDecl *FD : RD->fields()) {
1375 QualType T = Context.getBaseElementType(FD->getType());
1376 if (!T->isStructuralType()) {
1377 SubLoc = FD->getLocation();
1378 SubType = T;
1379 Kind = 0;
1380 break;
1381 }
1382 }
1383
1384 if (Kind == -1) {
1385 for (const auto &BaseSpec : RD->bases()) {
1386 QualType T = BaseSpec.getType();
1387 if (!T->isStructuralType()) {
1388 SubLoc = BaseSpec.getBaseTypeLoc();
1389 SubType = T;
1390 Kind = 1;
1391 break;
1392 }
1393 }
1394 }
1395
1396 assert(Kind != -1 && "couldn't find reason why type is not structural");
1397 Diag(SubLoc, diag::note_not_structural_subobject)
1398 << T << Kind << SubType;
1399 T = SubType;
1400 RD = T->getAsCXXRecordDecl();
1401 }
1402
1403 return true;
1404 }
1405
CheckNonTypeTemplateParameterType(QualType T,SourceLocation Loc)1406 QualType Sema::CheckNonTypeTemplateParameterType(QualType T,
1407 SourceLocation Loc) {
1408 // We don't allow variably-modified types as the type of non-type template
1409 // parameters.
1410 if (T->isVariablyModifiedType()) {
1411 Diag(Loc, diag::err_variably_modified_nontype_template_param)
1412 << T;
1413 return QualType();
1414 }
1415
1416 // C++ [temp.param]p4:
1417 //
1418 // A non-type template-parameter shall have one of the following
1419 // (optionally cv-qualified) types:
1420 //
1421 // -- integral or enumeration type,
1422 if (T->isIntegralOrEnumerationType() ||
1423 // -- pointer to object or pointer to function,
1424 T->isPointerType() ||
1425 // -- lvalue reference to object or lvalue reference to function,
1426 T->isLValueReferenceType() ||
1427 // -- pointer to member,
1428 T->isMemberPointerType() ||
1429 // -- std::nullptr_t, or
1430 T->isNullPtrType() ||
1431 // -- a type that contains a placeholder type.
1432 T->isUndeducedType()) {
1433 // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter
1434 // are ignored when determining its type.
1435 return T.getUnqualifiedType();
1436 }
1437
1438 // C++ [temp.param]p8:
1439 //
1440 // A non-type template-parameter of type "array of T" or
1441 // "function returning T" is adjusted to be of type "pointer to
1442 // T" or "pointer to function returning T", respectively.
1443 if (T->isArrayType() || T->isFunctionType())
1444 return Context.getDecayedType(T);
1445
1446 // If T is a dependent type, we can't do the check now, so we
1447 // assume that it is well-formed. Note that stripping off the
1448 // qualifiers here is not really correct if T turns out to be
1449 // an array type, but we'll recompute the type everywhere it's
1450 // used during instantiation, so that should be OK. (Using the
1451 // qualified type is equally wrong.)
1452 if (T->isDependentType())
1453 return T.getUnqualifiedType();
1454
1455 // C++20 [temp.param]p6:
1456 // -- a structural type
1457 if (RequireStructuralType(T, Loc))
1458 return QualType();
1459
1460 if (!getLangOpts().CPlusPlus20) {
1461 // FIXME: Consider allowing structural types as an extension in C++17. (In
1462 // earlier language modes, the template argument evaluation rules are too
1463 // inflexible.)
1464 Diag(Loc, diag::err_template_nontype_parm_bad_structural_type) << T;
1465 return QualType();
1466 }
1467
1468 Diag(Loc, diag::warn_cxx17_compat_template_nontype_parm_type) << T;
1469 return T.getUnqualifiedType();
1470 }
1471
ActOnNonTypeTemplateParameter(Scope * S,Declarator & D,unsigned Depth,unsigned Position,SourceLocation EqualLoc,Expr * Default)1472 NamedDecl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
1473 unsigned Depth,
1474 unsigned Position,
1475 SourceLocation EqualLoc,
1476 Expr *Default) {
1477 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
1478
1479 // Check that we have valid decl-specifiers specified.
1480 auto CheckValidDeclSpecifiers = [this, &D] {
1481 // C++ [temp.param]
1482 // p1
1483 // template-parameter:
1484 // ...
1485 // parameter-declaration
1486 // p2
1487 // ... A storage class shall not be specified in a template-parameter
1488 // declaration.
1489 // [dcl.typedef]p1:
1490 // The typedef specifier [...] shall not be used in the decl-specifier-seq
1491 // of a parameter-declaration
1492 const DeclSpec &DS = D.getDeclSpec();
1493 auto EmitDiag = [this](SourceLocation Loc) {
1494 Diag(Loc, diag::err_invalid_decl_specifier_in_nontype_parm)
1495 << FixItHint::CreateRemoval(Loc);
1496 };
1497 if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified)
1498 EmitDiag(DS.getStorageClassSpecLoc());
1499
1500 if (DS.getThreadStorageClassSpec() != TSCS_unspecified)
1501 EmitDiag(DS.getThreadStorageClassSpecLoc());
1502
1503 // [dcl.inline]p1:
1504 // The inline specifier can be applied only to the declaration or
1505 // definition of a variable or function.
1506
1507 if (DS.isInlineSpecified())
1508 EmitDiag(DS.getInlineSpecLoc());
1509
1510 // [dcl.constexpr]p1:
1511 // The constexpr specifier shall be applied only to the definition of a
1512 // variable or variable template or the declaration of a function or
1513 // function template.
1514
1515 if (DS.hasConstexprSpecifier())
1516 EmitDiag(DS.getConstexprSpecLoc());
1517
1518 // [dcl.fct.spec]p1:
1519 // Function-specifiers can be used only in function declarations.
1520
1521 if (DS.isVirtualSpecified())
1522 EmitDiag(DS.getVirtualSpecLoc());
1523
1524 if (DS.hasExplicitSpecifier())
1525 EmitDiag(DS.getExplicitSpecLoc());
1526
1527 if (DS.isNoreturnSpecified())
1528 EmitDiag(DS.getNoreturnSpecLoc());
1529 };
1530
1531 CheckValidDeclSpecifiers();
1532
1533 if (TInfo->getType()->isUndeducedType()) {
1534 Diag(D.getIdentifierLoc(),
1535 diag::warn_cxx14_compat_template_nontype_parm_auto_type)
1536 << QualType(TInfo->getType()->getContainedAutoType(), 0);
1537 }
1538
1539 assert(S->isTemplateParamScope() &&
1540 "Non-type template parameter not in template parameter scope!");
1541 bool Invalid = false;
1542
1543 QualType T = CheckNonTypeTemplateParameterType(TInfo, D.getIdentifierLoc());
1544 if (T.isNull()) {
1545 T = Context.IntTy; // Recover with an 'int' type.
1546 Invalid = true;
1547 }
1548
1549 CheckFunctionOrTemplateParamDeclarator(S, D);
1550
1551 IdentifierInfo *ParamName = D.getIdentifier();
1552 bool IsParameterPack = D.hasEllipsis();
1553 NonTypeTemplateParmDecl *Param = NonTypeTemplateParmDecl::Create(
1554 Context, Context.getTranslationUnitDecl(), D.getBeginLoc(),
1555 D.getIdentifierLoc(), Depth, Position, ParamName, T, IsParameterPack,
1556 TInfo);
1557 Param->setAccess(AS_public);
1558
1559 if (AutoTypeLoc TL = TInfo->getTypeLoc().getContainedAutoTypeLoc())
1560 if (TL.isConstrained())
1561 if (AttachTypeConstraint(TL, Param, D.getEllipsisLoc()))
1562 Invalid = true;
1563
1564 if (Invalid)
1565 Param->setInvalidDecl();
1566
1567 if (Param->isParameterPack())
1568 if (auto *LSI = getEnclosingLambda())
1569 LSI->LocalPacks.push_back(Param);
1570
1571 if (ParamName) {
1572 maybeDiagnoseTemplateParameterShadow(*this, S, D.getIdentifierLoc(),
1573 ParamName);
1574
1575 // Add the template parameter into the current scope.
1576 S->AddDecl(Param);
1577 IdResolver.AddDecl(Param);
1578 }
1579
1580 // C++0x [temp.param]p9:
1581 // A default template-argument may be specified for any kind of
1582 // template-parameter that is not a template parameter pack.
1583 if (Default && IsParameterPack) {
1584 Diag(EqualLoc, diag::err_template_param_pack_default_arg);
1585 Default = nullptr;
1586 }
1587
1588 // Check the well-formedness of the default template argument, if provided.
1589 if (Default) {
1590 // Check for unexpanded parameter packs.
1591 if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
1592 return Param;
1593
1594 TemplateArgument Converted;
1595 ExprResult DefaultRes =
1596 CheckTemplateArgument(Param, Param->getType(), Default, Converted);
1597 if (DefaultRes.isInvalid()) {
1598 Param->setInvalidDecl();
1599 return Param;
1600 }
1601 Default = DefaultRes.get();
1602
1603 Param->setDefaultArgument(Default);
1604 }
1605
1606 return Param;
1607 }
1608
1609 /// ActOnTemplateTemplateParameter - Called when a C++ template template
1610 /// parameter (e.g. T in template <template \<typename> class T> class array)
1611 /// has been parsed. S is the current scope.
ActOnTemplateTemplateParameter(Scope * S,SourceLocation TmpLoc,TemplateParameterList * Params,SourceLocation EllipsisLoc,IdentifierInfo * Name,SourceLocation NameLoc,unsigned Depth,unsigned Position,SourceLocation EqualLoc,ParsedTemplateArgument Default)1612 NamedDecl *Sema::ActOnTemplateTemplateParameter(Scope* S,
1613 SourceLocation TmpLoc,
1614 TemplateParameterList *Params,
1615 SourceLocation EllipsisLoc,
1616 IdentifierInfo *Name,
1617 SourceLocation NameLoc,
1618 unsigned Depth,
1619 unsigned Position,
1620 SourceLocation EqualLoc,
1621 ParsedTemplateArgument Default) {
1622 assert(S->isTemplateParamScope() &&
1623 "Template template parameter not in template parameter scope!");
1624
1625 // Construct the parameter object.
1626 bool IsParameterPack = EllipsisLoc.isValid();
1627 TemplateTemplateParmDecl *Param =
1628 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
1629 NameLoc.isInvalid()? TmpLoc : NameLoc,
1630 Depth, Position, IsParameterPack,
1631 Name, Params);
1632 Param->setAccess(AS_public);
1633
1634 if (Param->isParameterPack())
1635 if (auto *LSI = getEnclosingLambda())
1636 LSI->LocalPacks.push_back(Param);
1637
1638 // If the template template parameter has a name, then link the identifier
1639 // into the scope and lookup mechanisms.
1640 if (Name) {
1641 maybeDiagnoseTemplateParameterShadow(*this, S, NameLoc, Name);
1642
1643 S->AddDecl(Param);
1644 IdResolver.AddDecl(Param);
1645 }
1646
1647 if (Params->size() == 0) {
1648 Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
1649 << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
1650 Param->setInvalidDecl();
1651 }
1652
1653 // C++0x [temp.param]p9:
1654 // A default template-argument may be specified for any kind of
1655 // template-parameter that is not a template parameter pack.
1656 if (IsParameterPack && !Default.isInvalid()) {
1657 Diag(EqualLoc, diag::err_template_param_pack_default_arg);
1658 Default = ParsedTemplateArgument();
1659 }
1660
1661 if (!Default.isInvalid()) {
1662 // Check only that we have a template template argument. We don't want to
1663 // try to check well-formedness now, because our template template parameter
1664 // might have dependent types in its template parameters, which we wouldn't
1665 // be able to match now.
1666 //
1667 // If none of the template template parameter's template arguments mention
1668 // other template parameters, we could actually perform more checking here.
1669 // However, it isn't worth doing.
1670 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
1671 if (DefaultArg.getArgument().getAsTemplate().isNull()) {
1672 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_valid_template)
1673 << DefaultArg.getSourceRange();
1674 return Param;
1675 }
1676
1677 // Check for unexpanded parameter packs.
1678 if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
1679 DefaultArg.getArgument().getAsTemplate(),
1680 UPPC_DefaultArgument))
1681 return Param;
1682
1683 Param->setDefaultArgument(Context, DefaultArg);
1684 }
1685
1686 return Param;
1687 }
1688
1689 /// ActOnTemplateParameterList - Builds a TemplateParameterList, optionally
1690 /// constrained by RequiresClause, that contains the template parameters in
1691 /// Params.
1692 TemplateParameterList *
ActOnTemplateParameterList(unsigned Depth,SourceLocation ExportLoc,SourceLocation TemplateLoc,SourceLocation LAngleLoc,ArrayRef<NamedDecl * > Params,SourceLocation RAngleLoc,Expr * RequiresClause)1693 Sema::ActOnTemplateParameterList(unsigned Depth,
1694 SourceLocation ExportLoc,
1695 SourceLocation TemplateLoc,
1696 SourceLocation LAngleLoc,
1697 ArrayRef<NamedDecl *> Params,
1698 SourceLocation RAngleLoc,
1699 Expr *RequiresClause) {
1700 if (ExportLoc.isValid())
1701 Diag(ExportLoc, diag::warn_template_export_unsupported);
1702
1703 for (NamedDecl *P : Params)
1704 warnOnReservedIdentifier(P);
1705
1706 return TemplateParameterList::Create(
1707 Context, TemplateLoc, LAngleLoc,
1708 llvm::makeArrayRef(Params.data(), Params.size()),
1709 RAngleLoc, RequiresClause);
1710 }
1711
SetNestedNameSpecifier(Sema & S,TagDecl * T,const CXXScopeSpec & SS)1712 static void SetNestedNameSpecifier(Sema &S, TagDecl *T,
1713 const CXXScopeSpec &SS) {
1714 if (SS.isSet())
1715 T->setQualifierInfo(SS.getWithLocInContext(S.Context));
1716 }
1717
CheckClassTemplate(Scope * S,unsigned TagSpec,TagUseKind TUK,SourceLocation KWLoc,CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation NameLoc,const ParsedAttributesView & Attr,TemplateParameterList * TemplateParams,AccessSpecifier AS,SourceLocation ModulePrivateLoc,SourceLocation FriendLoc,unsigned NumOuterTemplateParamLists,TemplateParameterList ** OuterTemplateParamLists,SkipBodyInfo * SkipBody)1718 DeclResult Sema::CheckClassTemplate(
1719 Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc,
1720 CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc,
1721 const ParsedAttributesView &Attr, TemplateParameterList *TemplateParams,
1722 AccessSpecifier AS, SourceLocation ModulePrivateLoc,
1723 SourceLocation FriendLoc, unsigned NumOuterTemplateParamLists,
1724 TemplateParameterList **OuterTemplateParamLists, SkipBodyInfo *SkipBody) {
1725 assert(TemplateParams && TemplateParams->size() > 0 &&
1726 "No template parameters");
1727 assert(TUK != TUK_Reference && "Can only declare or define class templates");
1728 bool Invalid = false;
1729
1730 // Check that we can declare a template here.
1731 if (CheckTemplateDeclScope(S, TemplateParams))
1732 return true;
1733
1734 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
1735 assert(Kind != TTK_Enum && "can't build template of enumerated type");
1736
1737 // There is no such thing as an unnamed class template.
1738 if (!Name) {
1739 Diag(KWLoc, diag::err_template_unnamed_class);
1740 return true;
1741 }
1742
1743 // Find any previous declaration with this name. For a friend with no
1744 // scope explicitly specified, we only look for tag declarations (per
1745 // C++11 [basic.lookup.elab]p2).
1746 DeclContext *SemanticContext;
1747 LookupResult Previous(*this, Name, NameLoc,
1748 (SS.isEmpty() && TUK == TUK_Friend)
1749 ? LookupTagName : LookupOrdinaryName,
1750 forRedeclarationInCurContext());
1751 if (SS.isNotEmpty() && !SS.isInvalid()) {
1752 SemanticContext = computeDeclContext(SS, true);
1753 if (!SemanticContext) {
1754 // FIXME: Horrible, horrible hack! We can't currently represent this
1755 // in the AST, and historically we have just ignored such friend
1756 // class templates, so don't complain here.
1757 Diag(NameLoc, TUK == TUK_Friend
1758 ? diag::warn_template_qualified_friend_ignored
1759 : diag::err_template_qualified_declarator_no_match)
1760 << SS.getScopeRep() << SS.getRange();
1761 return TUK != TUK_Friend;
1762 }
1763
1764 if (RequireCompleteDeclContext(SS, SemanticContext))
1765 return true;
1766
1767 // If we're adding a template to a dependent context, we may need to
1768 // rebuilding some of the types used within the template parameter list,
1769 // now that we know what the current instantiation is.
1770 if (SemanticContext->isDependentContext()) {
1771 ContextRAII SavedContext(*this, SemanticContext);
1772 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
1773 Invalid = true;
1774 } else if (TUK != TUK_Friend && TUK != TUK_Reference)
1775 diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc, false);
1776
1777 LookupQualifiedName(Previous, SemanticContext);
1778 } else {
1779 SemanticContext = CurContext;
1780
1781 // C++14 [class.mem]p14:
1782 // If T is the name of a class, then each of the following shall have a
1783 // name different from T:
1784 // -- every member template of class T
1785 if (TUK != TUK_Friend &&
1786 DiagnoseClassNameShadow(SemanticContext,
1787 DeclarationNameInfo(Name, NameLoc)))
1788 return true;
1789
1790 LookupName(Previous, S);
1791 }
1792
1793 if (Previous.isAmbiguous())
1794 return true;
1795
1796 NamedDecl *PrevDecl = nullptr;
1797 if (Previous.begin() != Previous.end())
1798 PrevDecl = (*Previous.begin())->getUnderlyingDecl();
1799
1800 if (PrevDecl && PrevDecl->isTemplateParameter()) {
1801 // Maybe we will complain about the shadowed template parameter.
1802 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
1803 // Just pretend that we didn't see the previous declaration.
1804 PrevDecl = nullptr;
1805 }
1806
1807 // If there is a previous declaration with the same name, check
1808 // whether this is a valid redeclaration.
1809 ClassTemplateDecl *PrevClassTemplate =
1810 dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
1811
1812 // We may have found the injected-class-name of a class template,
1813 // class template partial specialization, or class template specialization.
1814 // In these cases, grab the template that is being defined or specialized.
1815 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
1816 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
1817 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
1818 PrevClassTemplate
1819 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
1820 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
1821 PrevClassTemplate
1822 = cast<ClassTemplateSpecializationDecl>(PrevDecl)
1823 ->getSpecializedTemplate();
1824 }
1825 }
1826
1827 if (TUK == TUK_Friend) {
1828 // C++ [namespace.memdef]p3:
1829 // [...] When looking for a prior declaration of a class or a function
1830 // declared as a friend, and when the name of the friend class or
1831 // function is neither a qualified name nor a template-id, scopes outside
1832 // the innermost enclosing namespace scope are not considered.
1833 if (!SS.isSet()) {
1834 DeclContext *OutermostContext = CurContext;
1835 while (!OutermostContext->isFileContext())
1836 OutermostContext = OutermostContext->getLookupParent();
1837
1838 if (PrevDecl &&
1839 (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
1840 OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
1841 SemanticContext = PrevDecl->getDeclContext();
1842 } else {
1843 // Declarations in outer scopes don't matter. However, the outermost
1844 // context we computed is the semantic context for our new
1845 // declaration.
1846 PrevDecl = PrevClassTemplate = nullptr;
1847 SemanticContext = OutermostContext;
1848
1849 // Check that the chosen semantic context doesn't already contain a
1850 // declaration of this name as a non-tag type.
1851 Previous.clear(LookupOrdinaryName);
1852 DeclContext *LookupContext = SemanticContext;
1853 while (LookupContext->isTransparentContext())
1854 LookupContext = LookupContext->getLookupParent();
1855 LookupQualifiedName(Previous, LookupContext);
1856
1857 if (Previous.isAmbiguous())
1858 return true;
1859
1860 if (Previous.begin() != Previous.end())
1861 PrevDecl = (*Previous.begin())->getUnderlyingDecl();
1862 }
1863 }
1864 } else if (PrevDecl &&
1865 !isDeclInScope(Previous.getRepresentativeDecl(), SemanticContext,
1866 S, SS.isValid()))
1867 PrevDecl = PrevClassTemplate = nullptr;
1868
1869 if (auto *Shadow = dyn_cast_or_null<UsingShadowDecl>(
1870 PrevDecl ? Previous.getRepresentativeDecl() : nullptr)) {
1871 if (SS.isEmpty() &&
1872 !(PrevClassTemplate &&
1873 PrevClassTemplate->getDeclContext()->getRedeclContext()->Equals(
1874 SemanticContext->getRedeclContext()))) {
1875 Diag(KWLoc, diag::err_using_decl_conflict_reverse);
1876 Diag(Shadow->getTargetDecl()->getLocation(),
1877 diag::note_using_decl_target);
1878 Diag(Shadow->getIntroducer()->getLocation(), diag::note_using_decl) << 0;
1879 // Recover by ignoring the old declaration.
1880 PrevDecl = PrevClassTemplate = nullptr;
1881 }
1882 }
1883
1884 if (PrevClassTemplate) {
1885 // Ensure that the template parameter lists are compatible. Skip this check
1886 // for a friend in a dependent context: the template parameter list itself
1887 // could be dependent.
1888 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
1889 !TemplateParameterListsAreEqual(TemplateParams,
1890 PrevClassTemplate->getTemplateParameters(),
1891 /*Complain=*/true,
1892 TPL_TemplateMatch))
1893 return true;
1894
1895 // C++ [temp.class]p4:
1896 // In a redeclaration, partial specialization, explicit
1897 // specialization or explicit instantiation of a class template,
1898 // the class-key shall agree in kind with the original class
1899 // template declaration (7.1.5.3).
1900 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
1901 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind,
1902 TUK == TUK_Definition, KWLoc, Name)) {
1903 Diag(KWLoc, diag::err_use_with_wrong_tag)
1904 << Name
1905 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
1906 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
1907 Kind = PrevRecordDecl->getTagKind();
1908 }
1909
1910 // Check for redefinition of this class template.
1911 if (TUK == TUK_Definition) {
1912 if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
1913 // If we have a prior definition that is not visible, treat this as
1914 // simply making that previous definition visible.
1915 NamedDecl *Hidden = nullptr;
1916 if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
1917 SkipBody->ShouldSkip = true;
1918 SkipBody->Previous = Def;
1919 auto *Tmpl = cast<CXXRecordDecl>(Hidden)->getDescribedClassTemplate();
1920 assert(Tmpl && "original definition of a class template is not a "
1921 "class template?");
1922 makeMergedDefinitionVisible(Hidden);
1923 makeMergedDefinitionVisible(Tmpl);
1924 } else {
1925 Diag(NameLoc, diag::err_redefinition) << Name;
1926 Diag(Def->getLocation(), diag::note_previous_definition);
1927 // FIXME: Would it make sense to try to "forget" the previous
1928 // definition, as part of error recovery?
1929 return true;
1930 }
1931 }
1932 }
1933 } else if (PrevDecl) {
1934 // C++ [temp]p5:
1935 // A class template shall not have the same name as any other
1936 // template, class, function, object, enumeration, enumerator,
1937 // namespace, or type in the same scope (3.3), except as specified
1938 // in (14.5.4).
1939 Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
1940 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1941 return true;
1942 }
1943
1944 // Check the template parameter list of this declaration, possibly
1945 // merging in the template parameter list from the previous class
1946 // template declaration. Skip this check for a friend in a dependent
1947 // context, because the template parameter list might be dependent.
1948 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
1949 CheckTemplateParameterList(
1950 TemplateParams,
1951 PrevClassTemplate
1952 ? PrevClassTemplate->getMostRecentDecl()->getTemplateParameters()
1953 : nullptr,
1954 (SS.isSet() && SemanticContext && SemanticContext->isRecord() &&
1955 SemanticContext->isDependentContext())
1956 ? TPC_ClassTemplateMember
1957 : TUK == TUK_Friend ? TPC_FriendClassTemplate : TPC_ClassTemplate,
1958 SkipBody))
1959 Invalid = true;
1960
1961 if (SS.isSet()) {
1962 // If the name of the template was qualified, we must be defining the
1963 // template out-of-line.
1964 if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) {
1965 Diag(NameLoc, TUK == TUK_Friend ? diag::err_friend_decl_does_not_match
1966 : diag::err_member_decl_does_not_match)
1967 << Name << SemanticContext << /*IsDefinition*/true << SS.getRange();
1968 Invalid = true;
1969 }
1970 }
1971
1972 // If this is a templated friend in a dependent context we should not put it
1973 // on the redecl chain. In some cases, the templated friend can be the most
1974 // recent declaration tricking the template instantiator to make substitutions
1975 // there.
1976 // FIXME: Figure out how to combine with shouldLinkDependentDeclWithPrevious
1977 bool ShouldAddRedecl
1978 = !(TUK == TUK_Friend && CurContext->isDependentContext());
1979
1980 CXXRecordDecl *NewClass =
1981 CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name,
1982 PrevClassTemplate && ShouldAddRedecl ?
1983 PrevClassTemplate->getTemplatedDecl() : nullptr,
1984 /*DelayTypeCreation=*/true);
1985 SetNestedNameSpecifier(*this, NewClass, SS);
1986 if (NumOuterTemplateParamLists > 0)
1987 NewClass->setTemplateParameterListsInfo(
1988 Context, llvm::makeArrayRef(OuterTemplateParamLists,
1989 NumOuterTemplateParamLists));
1990
1991 // Add alignment attributes if necessary; these attributes are checked when
1992 // the ASTContext lays out the structure.
1993 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
1994 AddAlignmentAttributesForRecord(NewClass);
1995 AddMsStructLayoutForRecord(NewClass);
1996 }
1997
1998 ClassTemplateDecl *NewTemplate
1999 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
2000 DeclarationName(Name), TemplateParams,
2001 NewClass);
2002
2003 if (ShouldAddRedecl)
2004 NewTemplate->setPreviousDecl(PrevClassTemplate);
2005
2006 NewClass->setDescribedClassTemplate(NewTemplate);
2007
2008 if (ModulePrivateLoc.isValid())
2009 NewTemplate->setModulePrivate();
2010
2011 // Build the type for the class template declaration now.
2012 QualType T = NewTemplate->getInjectedClassNameSpecialization();
2013 T = Context.getInjectedClassNameType(NewClass, T);
2014 assert(T->isDependentType() && "Class template type is not dependent?");
2015 (void)T;
2016
2017 // If we are providing an explicit specialization of a member that is a
2018 // class template, make a note of that.
2019 if (PrevClassTemplate &&
2020 PrevClassTemplate->getInstantiatedFromMemberTemplate())
2021 PrevClassTemplate->setMemberSpecialization();
2022
2023 // Set the access specifier.
2024 if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord())
2025 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
2026
2027 // Set the lexical context of these templates
2028 NewClass->setLexicalDeclContext(CurContext);
2029 NewTemplate->setLexicalDeclContext(CurContext);
2030
2031 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip))
2032 NewClass->startDefinition();
2033
2034 ProcessDeclAttributeList(S, NewClass, Attr);
2035
2036 if (PrevClassTemplate)
2037 mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl());
2038
2039 AddPushedVisibilityAttribute(NewClass);
2040 inferGslOwnerPointerAttribute(NewClass);
2041
2042 if (TUK != TUK_Friend) {
2043 // Per C++ [basic.scope.temp]p2, skip the template parameter scopes.
2044 Scope *Outer = S;
2045 while ((Outer->getFlags() & Scope::TemplateParamScope) != 0)
2046 Outer = Outer->getParent();
2047 PushOnScopeChains(NewTemplate, Outer);
2048 } else {
2049 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
2050 NewTemplate->setAccess(PrevClassTemplate->getAccess());
2051 NewClass->setAccess(PrevClassTemplate->getAccess());
2052 }
2053
2054 NewTemplate->setObjectOfFriendDecl();
2055
2056 // Friend templates are visible in fairly strange ways.
2057 if (!CurContext->isDependentContext()) {
2058 DeclContext *DC = SemanticContext->getRedeclContext();
2059 DC->makeDeclVisibleInContext(NewTemplate);
2060 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
2061 PushOnScopeChains(NewTemplate, EnclosingScope,
2062 /* AddToContext = */ false);
2063 }
2064
2065 FriendDecl *Friend = FriendDecl::Create(
2066 Context, CurContext, NewClass->getLocation(), NewTemplate, FriendLoc);
2067 Friend->setAccess(AS_public);
2068 CurContext->addDecl(Friend);
2069 }
2070
2071 if (PrevClassTemplate)
2072 CheckRedeclarationInModule(NewTemplate, PrevClassTemplate);
2073
2074 if (Invalid) {
2075 NewTemplate->setInvalidDecl();
2076 NewClass->setInvalidDecl();
2077 }
2078
2079 ActOnDocumentableDecl(NewTemplate);
2080
2081 if (SkipBody && SkipBody->ShouldSkip)
2082 return SkipBody->Previous;
2083
2084 return NewTemplate;
2085 }
2086
2087 namespace {
2088 /// Tree transform to "extract" a transformed type from a class template's
2089 /// constructor to a deduction guide.
2090 class ExtractTypeForDeductionGuide
2091 : public TreeTransform<ExtractTypeForDeductionGuide> {
2092 llvm::SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs;
2093
2094 public:
2095 typedef TreeTransform<ExtractTypeForDeductionGuide> Base;
ExtractTypeForDeductionGuide(Sema & SemaRef,llvm::SmallVectorImpl<TypedefNameDecl * > & MaterializedTypedefs)2096 ExtractTypeForDeductionGuide(
2097 Sema &SemaRef,
2098 llvm::SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs)
2099 : Base(SemaRef), MaterializedTypedefs(MaterializedTypedefs) {}
2100
transform(TypeSourceInfo * TSI)2101 TypeSourceInfo *transform(TypeSourceInfo *TSI) { return TransformType(TSI); }
2102
TransformTypedefType(TypeLocBuilder & TLB,TypedefTypeLoc TL)2103 QualType TransformTypedefType(TypeLocBuilder &TLB, TypedefTypeLoc TL) {
2104 ASTContext &Context = SemaRef.getASTContext();
2105 TypedefNameDecl *OrigDecl = TL.getTypedefNameDecl();
2106 TypedefNameDecl *Decl = OrigDecl;
2107 // Transform the underlying type of the typedef and clone the Decl only if
2108 // the typedef has a dependent context.
2109 if (OrigDecl->getDeclContext()->isDependentContext()) {
2110 TypeLocBuilder InnerTLB;
2111 QualType Transformed =
2112 TransformType(InnerTLB, OrigDecl->getTypeSourceInfo()->getTypeLoc());
2113 TypeSourceInfo *TSI = InnerTLB.getTypeSourceInfo(Context, Transformed);
2114 if (isa<TypeAliasDecl>(OrigDecl))
2115 Decl = TypeAliasDecl::Create(
2116 Context, Context.getTranslationUnitDecl(), OrigDecl->getBeginLoc(),
2117 OrigDecl->getLocation(), OrigDecl->getIdentifier(), TSI);
2118 else {
2119 assert(isa<TypedefDecl>(OrigDecl) && "Not a Type alias or typedef");
2120 Decl = TypedefDecl::Create(
2121 Context, Context.getTranslationUnitDecl(), OrigDecl->getBeginLoc(),
2122 OrigDecl->getLocation(), OrigDecl->getIdentifier(), TSI);
2123 }
2124 MaterializedTypedefs.push_back(Decl);
2125 }
2126
2127 QualType TDTy = Context.getTypedefType(Decl);
2128 TypedefTypeLoc TypedefTL = TLB.push<TypedefTypeLoc>(TDTy);
2129 TypedefTL.setNameLoc(TL.getNameLoc());
2130
2131 return TDTy;
2132 }
2133 };
2134
2135 /// Transform to convert portions of a constructor declaration into the
2136 /// corresponding deduction guide, per C++1z [over.match.class.deduct]p1.
2137 struct ConvertConstructorToDeductionGuideTransform {
ConvertConstructorToDeductionGuideTransform__anoncd9c0a410711::ConvertConstructorToDeductionGuideTransform2138 ConvertConstructorToDeductionGuideTransform(Sema &S,
2139 ClassTemplateDecl *Template)
2140 : SemaRef(S), Template(Template) {}
2141
2142 Sema &SemaRef;
2143 ClassTemplateDecl *Template;
2144
2145 DeclContext *DC = Template->getDeclContext();
2146 CXXRecordDecl *Primary = Template->getTemplatedDecl();
2147 DeclarationName DeductionGuideName =
2148 SemaRef.Context.DeclarationNames.getCXXDeductionGuideName(Template);
2149
2150 QualType DeducedType = SemaRef.Context.getTypeDeclType(Primary);
2151
2152 // Index adjustment to apply to convert depth-1 template parameters into
2153 // depth-0 template parameters.
2154 unsigned Depth1IndexAdjustment = Template->getTemplateParameters()->size();
2155
2156 /// Transform a constructor declaration into a deduction guide.
transformConstructor__anoncd9c0a410711::ConvertConstructorToDeductionGuideTransform2157 NamedDecl *transformConstructor(FunctionTemplateDecl *FTD,
2158 CXXConstructorDecl *CD) {
2159 SmallVector<TemplateArgument, 16> SubstArgs;
2160
2161 LocalInstantiationScope Scope(SemaRef);
2162
2163 // C++ [over.match.class.deduct]p1:
2164 // -- For each constructor of the class template designated by the
2165 // template-name, a function template with the following properties:
2166
2167 // -- The template parameters are the template parameters of the class
2168 // template followed by the template parameters (including default
2169 // template arguments) of the constructor, if any.
2170 TemplateParameterList *TemplateParams = Template->getTemplateParameters();
2171 if (FTD) {
2172 TemplateParameterList *InnerParams = FTD->getTemplateParameters();
2173 SmallVector<NamedDecl *, 16> AllParams;
2174 AllParams.reserve(TemplateParams->size() + InnerParams->size());
2175 AllParams.insert(AllParams.begin(),
2176 TemplateParams->begin(), TemplateParams->end());
2177 SubstArgs.reserve(InnerParams->size());
2178
2179 // Later template parameters could refer to earlier ones, so build up
2180 // a list of substituted template arguments as we go.
2181 for (NamedDecl *Param : *InnerParams) {
2182 MultiLevelTemplateArgumentList Args;
2183 Args.setKind(TemplateSubstitutionKind::Rewrite);
2184 Args.addOuterTemplateArguments(SubstArgs);
2185 Args.addOuterRetainedLevel();
2186 NamedDecl *NewParam = transformTemplateParameter(Param, Args);
2187 if (!NewParam)
2188 return nullptr;
2189 AllParams.push_back(NewParam);
2190 SubstArgs.push_back(SemaRef.Context.getCanonicalTemplateArgument(
2191 SemaRef.Context.getInjectedTemplateArg(NewParam)));
2192 }
2193
2194 // Substitute new template parameters into requires-clause if present.
2195 Expr *RequiresClause = nullptr;
2196 if (Expr *InnerRC = InnerParams->getRequiresClause()) {
2197 MultiLevelTemplateArgumentList Args;
2198 Args.setKind(TemplateSubstitutionKind::Rewrite);
2199 Args.addOuterTemplateArguments(SubstArgs);
2200 Args.addOuterRetainedLevel();
2201 ExprResult E = SemaRef.SubstExpr(InnerRC, Args);
2202 if (E.isInvalid())
2203 return nullptr;
2204 RequiresClause = E.getAs<Expr>();
2205 }
2206
2207 TemplateParams = TemplateParameterList::Create(
2208 SemaRef.Context, InnerParams->getTemplateLoc(),
2209 InnerParams->getLAngleLoc(), AllParams, InnerParams->getRAngleLoc(),
2210 RequiresClause);
2211 }
2212
2213 // If we built a new template-parameter-list, track that we need to
2214 // substitute references to the old parameters into references to the
2215 // new ones.
2216 MultiLevelTemplateArgumentList Args;
2217 Args.setKind(TemplateSubstitutionKind::Rewrite);
2218 if (FTD) {
2219 Args.addOuterTemplateArguments(SubstArgs);
2220 Args.addOuterRetainedLevel();
2221 }
2222
2223 FunctionProtoTypeLoc FPTL = CD->getTypeSourceInfo()->getTypeLoc()
2224 .getAsAdjusted<FunctionProtoTypeLoc>();
2225 assert(FPTL && "no prototype for constructor declaration");
2226
2227 // Transform the type of the function, adjusting the return type and
2228 // replacing references to the old parameters with references to the
2229 // new ones.
2230 TypeLocBuilder TLB;
2231 SmallVector<ParmVarDecl*, 8> Params;
2232 SmallVector<TypedefNameDecl *, 4> MaterializedTypedefs;
2233 QualType NewType = transformFunctionProtoType(TLB, FPTL, Params, Args,
2234 MaterializedTypedefs);
2235 if (NewType.isNull())
2236 return nullptr;
2237 TypeSourceInfo *NewTInfo = TLB.getTypeSourceInfo(SemaRef.Context, NewType);
2238
2239 return buildDeductionGuide(TemplateParams, CD, CD->getExplicitSpecifier(),
2240 NewTInfo, CD->getBeginLoc(), CD->getLocation(),
2241 CD->getEndLoc(), MaterializedTypedefs);
2242 }
2243
2244 /// Build a deduction guide with the specified parameter types.
buildSimpleDeductionGuide__anoncd9c0a410711::ConvertConstructorToDeductionGuideTransform2245 NamedDecl *buildSimpleDeductionGuide(MutableArrayRef<QualType> ParamTypes) {
2246 SourceLocation Loc = Template->getLocation();
2247
2248 // Build the requested type.
2249 FunctionProtoType::ExtProtoInfo EPI;
2250 EPI.HasTrailingReturn = true;
2251 QualType Result = SemaRef.BuildFunctionType(DeducedType, ParamTypes, Loc,
2252 DeductionGuideName, EPI);
2253 TypeSourceInfo *TSI = SemaRef.Context.getTrivialTypeSourceInfo(Result, Loc);
2254
2255 FunctionProtoTypeLoc FPTL =
2256 TSI->getTypeLoc().castAs<FunctionProtoTypeLoc>();
2257
2258 // Build the parameters, needed during deduction / substitution.
2259 SmallVector<ParmVarDecl*, 4> Params;
2260 for (auto T : ParamTypes) {
2261 ParmVarDecl *NewParam = ParmVarDecl::Create(
2262 SemaRef.Context, DC, Loc, Loc, nullptr, T,
2263 SemaRef.Context.getTrivialTypeSourceInfo(T, Loc), SC_None, nullptr);
2264 NewParam->setScopeInfo(0, Params.size());
2265 FPTL.setParam(Params.size(), NewParam);
2266 Params.push_back(NewParam);
2267 }
2268
2269 return buildDeductionGuide(Template->getTemplateParameters(), nullptr,
2270 ExplicitSpecifier(), TSI, Loc, Loc, Loc);
2271 }
2272
2273 private:
2274 /// Transform a constructor template parameter into a deduction guide template
2275 /// parameter, rebuilding any internal references to earlier parameters and
2276 /// renumbering as we go.
transformTemplateParameter__anoncd9c0a410711::ConvertConstructorToDeductionGuideTransform2277 NamedDecl *transformTemplateParameter(NamedDecl *TemplateParam,
2278 MultiLevelTemplateArgumentList &Args) {
2279 if (auto *TTP = dyn_cast<TemplateTypeParmDecl>(TemplateParam)) {
2280 // TemplateTypeParmDecl's index cannot be changed after creation, so
2281 // substitute it directly.
2282 auto *NewTTP = TemplateTypeParmDecl::Create(
2283 SemaRef.Context, DC, TTP->getBeginLoc(), TTP->getLocation(),
2284 /*Depth*/ 0, Depth1IndexAdjustment + TTP->getIndex(),
2285 TTP->getIdentifier(), TTP->wasDeclaredWithTypename(),
2286 TTP->isParameterPack(), TTP->hasTypeConstraint(),
2287 TTP->isExpandedParameterPack() ?
2288 llvm::Optional<unsigned>(TTP->getNumExpansionParameters()) : None);
2289 if (const auto *TC = TTP->getTypeConstraint())
2290 SemaRef.SubstTypeConstraint(NewTTP, TC, Args);
2291 if (TTP->hasDefaultArgument()) {
2292 TypeSourceInfo *InstantiatedDefaultArg =
2293 SemaRef.SubstType(TTP->getDefaultArgumentInfo(), Args,
2294 TTP->getDefaultArgumentLoc(), TTP->getDeclName());
2295 if (InstantiatedDefaultArg)
2296 NewTTP->setDefaultArgument(InstantiatedDefaultArg);
2297 }
2298 SemaRef.CurrentInstantiationScope->InstantiatedLocal(TemplateParam,
2299 NewTTP);
2300 return NewTTP;
2301 }
2302
2303 if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(TemplateParam))
2304 return transformTemplateParameterImpl(TTP, Args);
2305
2306 return transformTemplateParameterImpl(
2307 cast<NonTypeTemplateParmDecl>(TemplateParam), Args);
2308 }
2309 template<typename TemplateParmDecl>
2310 TemplateParmDecl *
transformTemplateParameterImpl__anoncd9c0a410711::ConvertConstructorToDeductionGuideTransform2311 transformTemplateParameterImpl(TemplateParmDecl *OldParam,
2312 MultiLevelTemplateArgumentList &Args) {
2313 // Ask the template instantiator to do the heavy lifting for us, then adjust
2314 // the index of the parameter once it's done.
2315 auto *NewParam =
2316 cast<TemplateParmDecl>(SemaRef.SubstDecl(OldParam, DC, Args));
2317 assert(NewParam->getDepth() == 0 && "unexpected template param depth");
2318 NewParam->setPosition(NewParam->getPosition() + Depth1IndexAdjustment);
2319 return NewParam;
2320 }
2321
transformFunctionProtoType__anoncd9c0a410711::ConvertConstructorToDeductionGuideTransform2322 QualType transformFunctionProtoType(
2323 TypeLocBuilder &TLB, FunctionProtoTypeLoc TL,
2324 SmallVectorImpl<ParmVarDecl *> &Params,
2325 MultiLevelTemplateArgumentList &Args,
2326 SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs) {
2327 SmallVector<QualType, 4> ParamTypes;
2328 const FunctionProtoType *T = TL.getTypePtr();
2329
2330 // -- The types of the function parameters are those of the constructor.
2331 for (auto *OldParam : TL.getParams()) {
2332 ParmVarDecl *NewParam =
2333 transformFunctionTypeParam(OldParam, Args, MaterializedTypedefs);
2334 if (!NewParam)
2335 return QualType();
2336 ParamTypes.push_back(NewParam->getType());
2337 Params.push_back(NewParam);
2338 }
2339
2340 // -- The return type is the class template specialization designated by
2341 // the template-name and template arguments corresponding to the
2342 // template parameters obtained from the class template.
2343 //
2344 // We use the injected-class-name type of the primary template instead.
2345 // This has the convenient property that it is different from any type that
2346 // the user can write in a deduction-guide (because they cannot enter the
2347 // context of the template), so implicit deduction guides can never collide
2348 // with explicit ones.
2349 QualType ReturnType = DeducedType;
2350 TLB.pushTypeSpec(ReturnType).setNameLoc(Primary->getLocation());
2351
2352 // Resolving a wording defect, we also inherit the variadicness of the
2353 // constructor.
2354 FunctionProtoType::ExtProtoInfo EPI;
2355 EPI.Variadic = T->isVariadic();
2356 EPI.HasTrailingReturn = true;
2357
2358 QualType Result = SemaRef.BuildFunctionType(
2359 ReturnType, ParamTypes, TL.getBeginLoc(), DeductionGuideName, EPI);
2360 if (Result.isNull())
2361 return QualType();
2362
2363 FunctionProtoTypeLoc NewTL = TLB.push<FunctionProtoTypeLoc>(Result);
2364 NewTL.setLocalRangeBegin(TL.getLocalRangeBegin());
2365 NewTL.setLParenLoc(TL.getLParenLoc());
2366 NewTL.setRParenLoc(TL.getRParenLoc());
2367 NewTL.setExceptionSpecRange(SourceRange());
2368 NewTL.setLocalRangeEnd(TL.getLocalRangeEnd());
2369 for (unsigned I = 0, E = NewTL.getNumParams(); I != E; ++I)
2370 NewTL.setParam(I, Params[I]);
2371
2372 return Result;
2373 }
2374
transformFunctionTypeParam__anoncd9c0a410711::ConvertConstructorToDeductionGuideTransform2375 ParmVarDecl *transformFunctionTypeParam(
2376 ParmVarDecl *OldParam, MultiLevelTemplateArgumentList &Args,
2377 llvm::SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs) {
2378 TypeSourceInfo *OldDI = OldParam->getTypeSourceInfo();
2379 TypeSourceInfo *NewDI;
2380 if (auto PackTL = OldDI->getTypeLoc().getAs<PackExpansionTypeLoc>()) {
2381 // Expand out the one and only element in each inner pack.
2382 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, 0);
2383 NewDI =
2384 SemaRef.SubstType(PackTL.getPatternLoc(), Args,
2385 OldParam->getLocation(), OldParam->getDeclName());
2386 if (!NewDI) return nullptr;
2387 NewDI =
2388 SemaRef.CheckPackExpansion(NewDI, PackTL.getEllipsisLoc(),
2389 PackTL.getTypePtr()->getNumExpansions());
2390 } else
2391 NewDI = SemaRef.SubstType(OldDI, Args, OldParam->getLocation(),
2392 OldParam->getDeclName());
2393 if (!NewDI)
2394 return nullptr;
2395
2396 // Extract the type. This (for instance) replaces references to typedef
2397 // members of the current instantiations with the definitions of those
2398 // typedefs, avoiding triggering instantiation of the deduced type during
2399 // deduction.
2400 NewDI = ExtractTypeForDeductionGuide(SemaRef, MaterializedTypedefs)
2401 .transform(NewDI);
2402
2403 // Resolving a wording defect, we also inherit default arguments from the
2404 // constructor.
2405 ExprResult NewDefArg;
2406 if (OldParam->hasDefaultArg()) {
2407 // We don't care what the value is (we won't use it); just create a
2408 // placeholder to indicate there is a default argument.
2409 QualType ParamTy = NewDI->getType();
2410 NewDefArg = new (SemaRef.Context)
2411 OpaqueValueExpr(OldParam->getDefaultArg()->getBeginLoc(),
2412 ParamTy.getNonLValueExprType(SemaRef.Context),
2413 ParamTy->isLValueReferenceType() ? VK_LValue
2414 : ParamTy->isRValueReferenceType() ? VK_XValue
2415 : VK_PRValue);
2416 }
2417
2418 ParmVarDecl *NewParam = ParmVarDecl::Create(SemaRef.Context, DC,
2419 OldParam->getInnerLocStart(),
2420 OldParam->getLocation(),
2421 OldParam->getIdentifier(),
2422 NewDI->getType(),
2423 NewDI,
2424 OldParam->getStorageClass(),
2425 NewDefArg.get());
2426 NewParam->setScopeInfo(OldParam->getFunctionScopeDepth(),
2427 OldParam->getFunctionScopeIndex());
2428 SemaRef.CurrentInstantiationScope->InstantiatedLocal(OldParam, NewParam);
2429 return NewParam;
2430 }
2431
buildDeductionGuide__anoncd9c0a410711::ConvertConstructorToDeductionGuideTransform2432 FunctionTemplateDecl *buildDeductionGuide(
2433 TemplateParameterList *TemplateParams, CXXConstructorDecl *Ctor,
2434 ExplicitSpecifier ES, TypeSourceInfo *TInfo, SourceLocation LocStart,
2435 SourceLocation Loc, SourceLocation LocEnd,
2436 llvm::ArrayRef<TypedefNameDecl *> MaterializedTypedefs = {}) {
2437 DeclarationNameInfo Name(DeductionGuideName, Loc);
2438 ArrayRef<ParmVarDecl *> Params =
2439 TInfo->getTypeLoc().castAs<FunctionProtoTypeLoc>().getParams();
2440
2441 // Build the implicit deduction guide template.
2442 auto *Guide =
2443 CXXDeductionGuideDecl::Create(SemaRef.Context, DC, LocStart, ES, Name,
2444 TInfo->getType(), TInfo, LocEnd, Ctor);
2445 Guide->setImplicit();
2446 Guide->setParams(Params);
2447
2448 for (auto *Param : Params)
2449 Param->setDeclContext(Guide);
2450 for (auto *TD : MaterializedTypedefs)
2451 TD->setDeclContext(Guide);
2452
2453 auto *GuideTemplate = FunctionTemplateDecl::Create(
2454 SemaRef.Context, DC, Loc, DeductionGuideName, TemplateParams, Guide);
2455 GuideTemplate->setImplicit();
2456 Guide->setDescribedFunctionTemplate(GuideTemplate);
2457
2458 if (isa<CXXRecordDecl>(DC)) {
2459 Guide->setAccess(AS_public);
2460 GuideTemplate->setAccess(AS_public);
2461 }
2462
2463 DC->addDecl(GuideTemplate);
2464 return GuideTemplate;
2465 }
2466 };
2467 }
2468
DeclareImplicitDeductionGuides(TemplateDecl * Template,SourceLocation Loc)2469 void Sema::DeclareImplicitDeductionGuides(TemplateDecl *Template,
2470 SourceLocation Loc) {
2471 if (CXXRecordDecl *DefRecord =
2472 cast<CXXRecordDecl>(Template->getTemplatedDecl())->getDefinition()) {
2473 TemplateDecl *DescribedTemplate = DefRecord->getDescribedClassTemplate();
2474 Template = DescribedTemplate ? DescribedTemplate : Template;
2475 }
2476
2477 DeclContext *DC = Template->getDeclContext();
2478 if (DC->isDependentContext())
2479 return;
2480
2481 ConvertConstructorToDeductionGuideTransform Transform(
2482 *this, cast<ClassTemplateDecl>(Template));
2483 if (!isCompleteType(Loc, Transform.DeducedType))
2484 return;
2485
2486 // Check whether we've already declared deduction guides for this template.
2487 // FIXME: Consider storing a flag on the template to indicate this.
2488 auto Existing = DC->lookup(Transform.DeductionGuideName);
2489 for (auto *D : Existing)
2490 if (D->isImplicit())
2491 return;
2492
2493 // In case we were expanding a pack when we attempted to declare deduction
2494 // guides, turn off pack expansion for everything we're about to do.
2495 ArgumentPackSubstitutionIndexRAII SubstIndex(*this, -1);
2496 // Create a template instantiation record to track the "instantiation" of
2497 // constructors into deduction guides.
2498 // FIXME: Add a kind for this to give more meaningful diagnostics. But can
2499 // this substitution process actually fail?
2500 InstantiatingTemplate BuildingDeductionGuides(*this, Loc, Template);
2501 if (BuildingDeductionGuides.isInvalid())
2502 return;
2503
2504 // Convert declared constructors into deduction guide templates.
2505 // FIXME: Skip constructors for which deduction must necessarily fail (those
2506 // for which some class template parameter without a default argument never
2507 // appears in a deduced context).
2508 bool AddedAny = false;
2509 for (NamedDecl *D : LookupConstructors(Transform.Primary)) {
2510 D = D->getUnderlyingDecl();
2511 if (D->isInvalidDecl() || D->isImplicit())
2512 continue;
2513 D = cast<NamedDecl>(D->getCanonicalDecl());
2514
2515 auto *FTD = dyn_cast<FunctionTemplateDecl>(D);
2516 auto *CD =
2517 dyn_cast_or_null<CXXConstructorDecl>(FTD ? FTD->getTemplatedDecl() : D);
2518 // Class-scope explicit specializations (MS extension) do not result in
2519 // deduction guides.
2520 if (!CD || (!FTD && CD->isFunctionTemplateSpecialization()))
2521 continue;
2522
2523 // Cannot make a deduction guide when unparsed arguments are present.
2524 if (llvm::any_of(CD->parameters(), [](ParmVarDecl *P) {
2525 return !P || P->hasUnparsedDefaultArg();
2526 }))
2527 continue;
2528
2529 Transform.transformConstructor(FTD, CD);
2530 AddedAny = true;
2531 }
2532
2533 // C++17 [over.match.class.deduct]
2534 // -- If C is not defined or does not declare any constructors, an
2535 // additional function template derived as above from a hypothetical
2536 // constructor C().
2537 if (!AddedAny)
2538 Transform.buildSimpleDeductionGuide(None);
2539
2540 // -- An additional function template derived as above from a hypothetical
2541 // constructor C(C), called the copy deduction candidate.
2542 cast<CXXDeductionGuideDecl>(
2543 cast<FunctionTemplateDecl>(
2544 Transform.buildSimpleDeductionGuide(Transform.DeducedType))
2545 ->getTemplatedDecl())
2546 ->setIsCopyDeductionCandidate();
2547 }
2548
2549 /// Diagnose the presence of a default template argument on a
2550 /// template parameter, which is ill-formed in certain contexts.
2551 ///
2552 /// \returns true if the default template argument should be dropped.
DiagnoseDefaultTemplateArgument(Sema & S,Sema::TemplateParamListContext TPC,SourceLocation ParamLoc,SourceRange DefArgRange)2553 static bool DiagnoseDefaultTemplateArgument(Sema &S,
2554 Sema::TemplateParamListContext TPC,
2555 SourceLocation ParamLoc,
2556 SourceRange DefArgRange) {
2557 switch (TPC) {
2558 case Sema::TPC_ClassTemplate:
2559 case Sema::TPC_VarTemplate:
2560 case Sema::TPC_TypeAliasTemplate:
2561 return false;
2562
2563 case Sema::TPC_FunctionTemplate:
2564 case Sema::TPC_FriendFunctionTemplateDefinition:
2565 // C++ [temp.param]p9:
2566 // A default template-argument shall not be specified in a
2567 // function template declaration or a function template
2568 // definition [...]
2569 // If a friend function template declaration specifies a default
2570 // template-argument, that declaration shall be a definition and shall be
2571 // the only declaration of the function template in the translation unit.
2572 // (C++98/03 doesn't have this wording; see DR226).
2573 S.Diag(ParamLoc, S.getLangOpts().CPlusPlus11 ?
2574 diag::warn_cxx98_compat_template_parameter_default_in_function_template
2575 : diag::ext_template_parameter_default_in_function_template)
2576 << DefArgRange;
2577 return false;
2578
2579 case Sema::TPC_ClassTemplateMember:
2580 // C++0x [temp.param]p9:
2581 // A default template-argument shall not be specified in the
2582 // template-parameter-lists of the definition of a member of a
2583 // class template that appears outside of the member's class.
2584 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
2585 << DefArgRange;
2586 return true;
2587
2588 case Sema::TPC_FriendClassTemplate:
2589 case Sema::TPC_FriendFunctionTemplate:
2590 // C++ [temp.param]p9:
2591 // A default template-argument shall not be specified in a
2592 // friend template declaration.
2593 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
2594 << DefArgRange;
2595 return true;
2596
2597 // FIXME: C++0x [temp.param]p9 allows default template-arguments
2598 // for friend function templates if there is only a single
2599 // declaration (and it is a definition). Strange!
2600 }
2601
2602 llvm_unreachable("Invalid TemplateParamListContext!");
2603 }
2604
2605 /// Check for unexpanded parameter packs within the template parameters
2606 /// of a template template parameter, recursively.
DiagnoseUnexpandedParameterPacks(Sema & S,TemplateTemplateParmDecl * TTP)2607 static bool DiagnoseUnexpandedParameterPacks(Sema &S,
2608 TemplateTemplateParmDecl *TTP) {
2609 // A template template parameter which is a parameter pack is also a pack
2610 // expansion.
2611 if (TTP->isParameterPack())
2612 return false;
2613
2614 TemplateParameterList *Params = TTP->getTemplateParameters();
2615 for (unsigned I = 0, N = Params->size(); I != N; ++I) {
2616 NamedDecl *P = Params->getParam(I);
2617 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(P)) {
2618 if (!TTP->isParameterPack())
2619 if (const TypeConstraint *TC = TTP->getTypeConstraint())
2620 if (TC->hasExplicitTemplateArgs())
2621 for (auto &ArgLoc : TC->getTemplateArgsAsWritten()->arguments())
2622 if (S.DiagnoseUnexpandedParameterPack(ArgLoc,
2623 Sema::UPPC_TypeConstraint))
2624 return true;
2625 continue;
2626 }
2627
2628 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
2629 if (!NTTP->isParameterPack() &&
2630 S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
2631 NTTP->getTypeSourceInfo(),
2632 Sema::UPPC_NonTypeTemplateParameterType))
2633 return true;
2634
2635 continue;
2636 }
2637
2638 if (TemplateTemplateParmDecl *InnerTTP
2639 = dyn_cast<TemplateTemplateParmDecl>(P))
2640 if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
2641 return true;
2642 }
2643
2644 return false;
2645 }
2646
2647 /// Checks the validity of a template parameter list, possibly
2648 /// considering the template parameter list from a previous
2649 /// declaration.
2650 ///
2651 /// If an "old" template parameter list is provided, it must be
2652 /// equivalent (per TemplateParameterListsAreEqual) to the "new"
2653 /// template parameter list.
2654 ///
2655 /// \param NewParams Template parameter list for a new template
2656 /// declaration. This template parameter list will be updated with any
2657 /// default arguments that are carried through from the previous
2658 /// template parameter list.
2659 ///
2660 /// \param OldParams If provided, template parameter list from a
2661 /// previous declaration of the same template. Default template
2662 /// arguments will be merged from the old template parameter list to
2663 /// the new template parameter list.
2664 ///
2665 /// \param TPC Describes the context in which we are checking the given
2666 /// template parameter list.
2667 ///
2668 /// \param SkipBody If we might have already made a prior merged definition
2669 /// of this template visible, the corresponding body-skipping information.
2670 /// Default argument redefinition is not an error when skipping such a body,
2671 /// because (under the ODR) we can assume the default arguments are the same
2672 /// as the prior merged definition.
2673 ///
2674 /// \returns true if an error occurred, false otherwise.
CheckTemplateParameterList(TemplateParameterList * NewParams,TemplateParameterList * OldParams,TemplateParamListContext TPC,SkipBodyInfo * SkipBody)2675 bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
2676 TemplateParameterList *OldParams,
2677 TemplateParamListContext TPC,
2678 SkipBodyInfo *SkipBody) {
2679 bool Invalid = false;
2680
2681 // C++ [temp.param]p10:
2682 // The set of default template-arguments available for use with a
2683 // template declaration or definition is obtained by merging the
2684 // default arguments from the definition (if in scope) and all
2685 // declarations in scope in the same way default function
2686 // arguments are (8.3.6).
2687 bool SawDefaultArgument = false;
2688 SourceLocation PreviousDefaultArgLoc;
2689
2690 // Dummy initialization to avoid warnings.
2691 TemplateParameterList::iterator OldParam = NewParams->end();
2692 if (OldParams)
2693 OldParam = OldParams->begin();
2694
2695 bool RemoveDefaultArguments = false;
2696 for (TemplateParameterList::iterator NewParam = NewParams->begin(),
2697 NewParamEnd = NewParams->end();
2698 NewParam != NewParamEnd; ++NewParam) {
2699 // Whether we've seen a duplicate default argument in the same translation
2700 // unit.
2701 bool RedundantDefaultArg = false;
2702 // Whether we've found inconsis inconsitent default arguments in different
2703 // translation unit.
2704 bool InconsistentDefaultArg = false;
2705 // The name of the module which contains the inconsistent default argument.
2706 std::string PrevModuleName;
2707
2708 SourceLocation OldDefaultLoc;
2709 SourceLocation NewDefaultLoc;
2710
2711 // Variable used to diagnose missing default arguments
2712 bool MissingDefaultArg = false;
2713
2714 // Variable used to diagnose non-final parameter packs
2715 bool SawParameterPack = false;
2716
2717 if (TemplateTypeParmDecl *NewTypeParm
2718 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
2719 // Check the presence of a default argument here.
2720 if (NewTypeParm->hasDefaultArgument() &&
2721 DiagnoseDefaultTemplateArgument(*this, TPC,
2722 NewTypeParm->getLocation(),
2723 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
2724 .getSourceRange()))
2725 NewTypeParm->removeDefaultArgument();
2726
2727 // Merge default arguments for template type parameters.
2728 TemplateTypeParmDecl *OldTypeParm
2729 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : nullptr;
2730 if (NewTypeParm->isParameterPack()) {
2731 assert(!NewTypeParm->hasDefaultArgument() &&
2732 "Parameter packs can't have a default argument!");
2733 SawParameterPack = true;
2734 } else if (OldTypeParm && hasVisibleDefaultArgument(OldTypeParm) &&
2735 NewTypeParm->hasDefaultArgument() &&
2736 (!SkipBody || !SkipBody->ShouldSkip)) {
2737 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
2738 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
2739 SawDefaultArgument = true;
2740
2741 if (!OldTypeParm->getOwningModule() ||
2742 isModuleUnitOfCurrentTU(OldTypeParm->getOwningModule()))
2743 RedundantDefaultArg = true;
2744 else if (!getASTContext().isSameDefaultTemplateArgument(OldTypeParm,
2745 NewTypeParm)) {
2746 InconsistentDefaultArg = true;
2747 PrevModuleName =
2748 OldTypeParm->getImportedOwningModule()->getFullModuleName();
2749 }
2750 PreviousDefaultArgLoc = NewDefaultLoc;
2751 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
2752 // Merge the default argument from the old declaration to the
2753 // new declaration.
2754 NewTypeParm->setInheritedDefaultArgument(Context, OldTypeParm);
2755 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
2756 } else if (NewTypeParm->hasDefaultArgument()) {
2757 SawDefaultArgument = true;
2758 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
2759 } else if (SawDefaultArgument)
2760 MissingDefaultArg = true;
2761 } else if (NonTypeTemplateParmDecl *NewNonTypeParm
2762 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
2763 // Check for unexpanded parameter packs.
2764 if (!NewNonTypeParm->isParameterPack() &&
2765 DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
2766 NewNonTypeParm->getTypeSourceInfo(),
2767 UPPC_NonTypeTemplateParameterType)) {
2768 Invalid = true;
2769 continue;
2770 }
2771
2772 // Check the presence of a default argument here.
2773 if (NewNonTypeParm->hasDefaultArgument() &&
2774 DiagnoseDefaultTemplateArgument(*this, TPC,
2775 NewNonTypeParm->getLocation(),
2776 NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
2777 NewNonTypeParm->removeDefaultArgument();
2778 }
2779
2780 // Merge default arguments for non-type template parameters
2781 NonTypeTemplateParmDecl *OldNonTypeParm
2782 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : nullptr;
2783 if (NewNonTypeParm->isParameterPack()) {
2784 assert(!NewNonTypeParm->hasDefaultArgument() &&
2785 "Parameter packs can't have a default argument!");
2786 if (!NewNonTypeParm->isPackExpansion())
2787 SawParameterPack = true;
2788 } else if (OldNonTypeParm && hasVisibleDefaultArgument(OldNonTypeParm) &&
2789 NewNonTypeParm->hasDefaultArgument() &&
2790 (!SkipBody || !SkipBody->ShouldSkip)) {
2791 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
2792 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
2793 SawDefaultArgument = true;
2794 if (!OldNonTypeParm->getOwningModule() ||
2795 isModuleUnitOfCurrentTU(OldNonTypeParm->getOwningModule()))
2796 RedundantDefaultArg = true;
2797 else if (!getASTContext().isSameDefaultTemplateArgument(
2798 OldNonTypeParm, NewNonTypeParm)) {
2799 InconsistentDefaultArg = true;
2800 PrevModuleName =
2801 OldNonTypeParm->getImportedOwningModule()->getFullModuleName();
2802 }
2803 PreviousDefaultArgLoc = NewDefaultLoc;
2804 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
2805 // Merge the default argument from the old declaration to the
2806 // new declaration.
2807 NewNonTypeParm->setInheritedDefaultArgument(Context, OldNonTypeParm);
2808 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
2809 } else if (NewNonTypeParm->hasDefaultArgument()) {
2810 SawDefaultArgument = true;
2811 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
2812 } else if (SawDefaultArgument)
2813 MissingDefaultArg = true;
2814 } else {
2815 TemplateTemplateParmDecl *NewTemplateParm
2816 = cast<TemplateTemplateParmDecl>(*NewParam);
2817
2818 // Check for unexpanded parameter packs, recursively.
2819 if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
2820 Invalid = true;
2821 continue;
2822 }
2823
2824 // Check the presence of a default argument here.
2825 if (NewTemplateParm->hasDefaultArgument() &&
2826 DiagnoseDefaultTemplateArgument(*this, TPC,
2827 NewTemplateParm->getLocation(),
2828 NewTemplateParm->getDefaultArgument().getSourceRange()))
2829 NewTemplateParm->removeDefaultArgument();
2830
2831 // Merge default arguments for template template parameters
2832 TemplateTemplateParmDecl *OldTemplateParm
2833 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : nullptr;
2834 if (NewTemplateParm->isParameterPack()) {
2835 assert(!NewTemplateParm->hasDefaultArgument() &&
2836 "Parameter packs can't have a default argument!");
2837 if (!NewTemplateParm->isPackExpansion())
2838 SawParameterPack = true;
2839 } else if (OldTemplateParm &&
2840 hasVisibleDefaultArgument(OldTemplateParm) &&
2841 NewTemplateParm->hasDefaultArgument() &&
2842 (!SkipBody || !SkipBody->ShouldSkip)) {
2843 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
2844 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
2845 SawDefaultArgument = true;
2846 if (!OldTemplateParm->getOwningModule() ||
2847 isModuleUnitOfCurrentTU(OldTemplateParm->getOwningModule()))
2848 RedundantDefaultArg = true;
2849 else if (!getASTContext().isSameDefaultTemplateArgument(
2850 OldTemplateParm, NewTemplateParm)) {
2851 InconsistentDefaultArg = true;
2852 PrevModuleName =
2853 OldTemplateParm->getImportedOwningModule()->getFullModuleName();
2854 }
2855 PreviousDefaultArgLoc = NewDefaultLoc;
2856 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
2857 // Merge the default argument from the old declaration to the
2858 // new declaration.
2859 NewTemplateParm->setInheritedDefaultArgument(Context, OldTemplateParm);
2860 PreviousDefaultArgLoc
2861 = OldTemplateParm->getDefaultArgument().getLocation();
2862 } else if (NewTemplateParm->hasDefaultArgument()) {
2863 SawDefaultArgument = true;
2864 PreviousDefaultArgLoc
2865 = NewTemplateParm->getDefaultArgument().getLocation();
2866 } else if (SawDefaultArgument)
2867 MissingDefaultArg = true;
2868 }
2869
2870 // C++11 [temp.param]p11:
2871 // If a template parameter of a primary class template or alias template
2872 // is a template parameter pack, it shall be the last template parameter.
2873 if (SawParameterPack && (NewParam + 1) != NewParamEnd &&
2874 (TPC == TPC_ClassTemplate || TPC == TPC_VarTemplate ||
2875 TPC == TPC_TypeAliasTemplate)) {
2876 Diag((*NewParam)->getLocation(),
2877 diag::err_template_param_pack_must_be_last_template_parameter);
2878 Invalid = true;
2879 }
2880
2881 // [basic.def.odr]/13:
2882 // There can be more than one definition of a
2883 // ...
2884 // default template argument
2885 // ...
2886 // in a program provided that each definition appears in a different
2887 // translation unit and the definitions satisfy the [same-meaning
2888 // criteria of the ODR].
2889 //
2890 // Simply, the design of modules allows the definition of template default
2891 // argument to be repeated across translation unit. Note that the ODR is
2892 // checked elsewhere. But it is still not allowed to repeat template default
2893 // argument in the same translation unit.
2894 if (RedundantDefaultArg) {
2895 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
2896 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
2897 Invalid = true;
2898 } else if (InconsistentDefaultArg) {
2899 // We could only diagnose about the case that the OldParam is imported.
2900 // The case NewParam is imported should be handled in ASTReader.
2901 Diag(NewDefaultLoc,
2902 diag::err_template_param_default_arg_inconsistent_redefinition);
2903 Diag(OldDefaultLoc,
2904 diag::note_template_param_prev_default_arg_in_other_module)
2905 << PrevModuleName;
2906 Invalid = true;
2907 } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) {
2908 // C++ [temp.param]p11:
2909 // If a template-parameter of a class template has a default
2910 // template-argument, each subsequent template-parameter shall either
2911 // have a default template-argument supplied or be a template parameter
2912 // pack.
2913 Diag((*NewParam)->getLocation(),
2914 diag::err_template_param_default_arg_missing);
2915 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
2916 Invalid = true;
2917 RemoveDefaultArguments = true;
2918 }
2919
2920 // If we have an old template parameter list that we're merging
2921 // in, move on to the next parameter.
2922 if (OldParams)
2923 ++OldParam;
2924 }
2925
2926 // We were missing some default arguments at the end of the list, so remove
2927 // all of the default arguments.
2928 if (RemoveDefaultArguments) {
2929 for (TemplateParameterList::iterator NewParam = NewParams->begin(),
2930 NewParamEnd = NewParams->end();
2931 NewParam != NewParamEnd; ++NewParam) {
2932 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
2933 TTP->removeDefaultArgument();
2934 else if (NonTypeTemplateParmDecl *NTTP
2935 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
2936 NTTP->removeDefaultArgument();
2937 else
2938 cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
2939 }
2940 }
2941
2942 return Invalid;
2943 }
2944
2945 namespace {
2946
2947 /// A class which looks for a use of a certain level of template
2948 /// parameter.
2949 struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
2950 typedef RecursiveASTVisitor<DependencyChecker> super;
2951
2952 unsigned Depth;
2953
2954 // Whether we're looking for a use of a template parameter that makes the
2955 // overall construct type-dependent / a dependent type. This is strictly
2956 // best-effort for now; we may fail to match at all for a dependent type
2957 // in some cases if this is set.
2958 bool IgnoreNonTypeDependent;
2959
2960 bool Match;
2961 SourceLocation MatchLoc;
2962
DependencyChecker__anoncd9c0a410911::DependencyChecker2963 DependencyChecker(unsigned Depth, bool IgnoreNonTypeDependent)
2964 : Depth(Depth), IgnoreNonTypeDependent(IgnoreNonTypeDependent),
2965 Match(false) {}
2966
DependencyChecker__anoncd9c0a410911::DependencyChecker2967 DependencyChecker(TemplateParameterList *Params, bool IgnoreNonTypeDependent)
2968 : IgnoreNonTypeDependent(IgnoreNonTypeDependent), Match(false) {
2969 NamedDecl *ND = Params->getParam(0);
2970 if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
2971 Depth = PD->getDepth();
2972 } else if (NonTypeTemplateParmDecl *PD =
2973 dyn_cast<NonTypeTemplateParmDecl>(ND)) {
2974 Depth = PD->getDepth();
2975 } else {
2976 Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
2977 }
2978 }
2979
Matches__anoncd9c0a410911::DependencyChecker2980 bool Matches(unsigned ParmDepth, SourceLocation Loc = SourceLocation()) {
2981 if (ParmDepth >= Depth) {
2982 Match = true;
2983 MatchLoc = Loc;
2984 return true;
2985 }
2986 return false;
2987 }
2988
TraverseStmt__anoncd9c0a410911::DependencyChecker2989 bool TraverseStmt(Stmt *S, DataRecursionQueue *Q = nullptr) {
2990 // Prune out non-type-dependent expressions if requested. This can
2991 // sometimes result in us failing to find a template parameter reference
2992 // (if a value-dependent expression creates a dependent type), but this
2993 // mode is best-effort only.
2994 if (auto *E = dyn_cast_or_null<Expr>(S))
2995 if (IgnoreNonTypeDependent && !E->isTypeDependent())
2996 return true;
2997 return super::TraverseStmt(S, Q);
2998 }
2999
TraverseTypeLoc__anoncd9c0a410911::DependencyChecker3000 bool TraverseTypeLoc(TypeLoc TL) {
3001 if (IgnoreNonTypeDependent && !TL.isNull() &&
3002 !TL.getType()->isDependentType())
3003 return true;
3004 return super::TraverseTypeLoc(TL);
3005 }
3006
VisitTemplateTypeParmTypeLoc__anoncd9c0a410911::DependencyChecker3007 bool VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) {
3008 return !Matches(TL.getTypePtr()->getDepth(), TL.getNameLoc());
3009 }
3010
VisitTemplateTypeParmType__anoncd9c0a410911::DependencyChecker3011 bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
3012 // For a best-effort search, keep looking until we find a location.
3013 return IgnoreNonTypeDependent || !Matches(T->getDepth());
3014 }
3015
TraverseTemplateName__anoncd9c0a410911::DependencyChecker3016 bool TraverseTemplateName(TemplateName N) {
3017 if (TemplateTemplateParmDecl *PD =
3018 dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
3019 if (Matches(PD->getDepth()))
3020 return false;
3021 return super::TraverseTemplateName(N);
3022 }
3023
VisitDeclRefExpr__anoncd9c0a410911::DependencyChecker3024 bool VisitDeclRefExpr(DeclRefExpr *E) {
3025 if (NonTypeTemplateParmDecl *PD =
3026 dyn_cast<NonTypeTemplateParmDecl>(E->getDecl()))
3027 if (Matches(PD->getDepth(), E->getExprLoc()))
3028 return false;
3029 return super::VisitDeclRefExpr(E);
3030 }
3031
VisitSubstTemplateTypeParmType__anoncd9c0a410911::DependencyChecker3032 bool VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) {
3033 return TraverseType(T->getReplacementType());
3034 }
3035
3036 bool
VisitSubstTemplateTypeParmPackType__anoncd9c0a410911::DependencyChecker3037 VisitSubstTemplateTypeParmPackType(const SubstTemplateTypeParmPackType *T) {
3038 return TraverseTemplateArgument(T->getArgumentPack());
3039 }
3040
TraverseInjectedClassNameType__anoncd9c0a410911::DependencyChecker3041 bool TraverseInjectedClassNameType(const InjectedClassNameType *T) {
3042 return TraverseType(T->getInjectedSpecializationType());
3043 }
3044 };
3045 } // end anonymous namespace
3046
3047 /// Determines whether a given type depends on the given parameter
3048 /// list.
3049 static bool
DependsOnTemplateParameters(QualType T,TemplateParameterList * Params)3050 DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) {
3051 if (!Params->size())
3052 return false;
3053
3054 DependencyChecker Checker(Params, /*IgnoreNonTypeDependent*/false);
3055 Checker.TraverseType(T);
3056 return Checker.Match;
3057 }
3058
3059 // Find the source range corresponding to the named type in the given
3060 // nested-name-specifier, if any.
getRangeOfTypeInNestedNameSpecifier(ASTContext & Context,QualType T,const CXXScopeSpec & SS)3061 static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context,
3062 QualType T,
3063 const CXXScopeSpec &SS) {
3064 NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data());
3065 while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) {
3066 if (const Type *CurType = NNS->getAsType()) {
3067 if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0)))
3068 return NNSLoc.getTypeLoc().getSourceRange();
3069 } else
3070 break;
3071
3072 NNSLoc = NNSLoc.getPrefix();
3073 }
3074
3075 return SourceRange();
3076 }
3077
3078 /// Match the given template parameter lists to the given scope
3079 /// specifier, returning the template parameter list that applies to the
3080 /// name.
3081 ///
3082 /// \param DeclStartLoc the start of the declaration that has a scope
3083 /// specifier or a template parameter list.
3084 ///
3085 /// \param DeclLoc The location of the declaration itself.
3086 ///
3087 /// \param SS the scope specifier that will be matched to the given template
3088 /// parameter lists. This scope specifier precedes a qualified name that is
3089 /// being declared.
3090 ///
3091 /// \param TemplateId The template-id following the scope specifier, if there
3092 /// is one. Used to check for a missing 'template<>'.
3093 ///
3094 /// \param ParamLists the template parameter lists, from the outermost to the
3095 /// innermost template parameter lists.
3096 ///
3097 /// \param IsFriend Whether to apply the slightly different rules for
3098 /// matching template parameters to scope specifiers in friend
3099 /// declarations.
3100 ///
3101 /// \param IsMemberSpecialization will be set true if the scope specifier
3102 /// denotes a fully-specialized type, and therefore this is a declaration of
3103 /// a member specialization.
3104 ///
3105 /// \returns the template parameter list, if any, that corresponds to the
3106 /// name that is preceded by the scope specifier @p SS. This template
3107 /// parameter list may have template parameters (if we're declaring a
3108 /// template) or may have no template parameters (if we're declaring a
3109 /// template specialization), or may be NULL (if what we're declaring isn't
3110 /// itself a template).
MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,SourceLocation DeclLoc,const CXXScopeSpec & SS,TemplateIdAnnotation * TemplateId,ArrayRef<TemplateParameterList * > ParamLists,bool IsFriend,bool & IsMemberSpecialization,bool & Invalid,bool SuppressDiagnostic)3111 TemplateParameterList *Sema::MatchTemplateParametersToScopeSpecifier(
3112 SourceLocation DeclStartLoc, SourceLocation DeclLoc, const CXXScopeSpec &SS,
3113 TemplateIdAnnotation *TemplateId,
3114 ArrayRef<TemplateParameterList *> ParamLists, bool IsFriend,
3115 bool &IsMemberSpecialization, bool &Invalid, bool SuppressDiagnostic) {
3116 IsMemberSpecialization = false;
3117 Invalid = false;
3118
3119 // The sequence of nested types to which we will match up the template
3120 // parameter lists. We first build this list by starting with the type named
3121 // by the nested-name-specifier and walking out until we run out of types.
3122 SmallVector<QualType, 4> NestedTypes;
3123 QualType T;
3124 if (SS.getScopeRep()) {
3125 if (CXXRecordDecl *Record
3126 = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true)))
3127 T = Context.getTypeDeclType(Record);
3128 else
3129 T = QualType(SS.getScopeRep()->getAsType(), 0);
3130 }
3131
3132 // If we found an explicit specialization that prevents us from needing
3133 // 'template<>' headers, this will be set to the location of that
3134 // explicit specialization.
3135 SourceLocation ExplicitSpecLoc;
3136
3137 while (!T.isNull()) {
3138 NestedTypes.push_back(T);
3139
3140 // Retrieve the parent of a record type.
3141 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
3142 // If this type is an explicit specialization, we're done.
3143 if (ClassTemplateSpecializationDecl *Spec
3144 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
3145 if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) &&
3146 Spec->getSpecializationKind() == TSK_ExplicitSpecialization) {
3147 ExplicitSpecLoc = Spec->getLocation();
3148 break;
3149 }
3150 } else if (Record->getTemplateSpecializationKind()
3151 == TSK_ExplicitSpecialization) {
3152 ExplicitSpecLoc = Record->getLocation();
3153 break;
3154 }
3155
3156 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent()))
3157 T = Context.getTypeDeclType(Parent);
3158 else
3159 T = QualType();
3160 continue;
3161 }
3162
3163 if (const TemplateSpecializationType *TST
3164 = T->getAs<TemplateSpecializationType>()) {
3165 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
3166 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext()))
3167 T = Context.getTypeDeclType(Parent);
3168 else
3169 T = QualType();
3170 continue;
3171 }
3172 }
3173
3174 // Look one step prior in a dependent template specialization type.
3175 if (const DependentTemplateSpecializationType *DependentTST
3176 = T->getAs<DependentTemplateSpecializationType>()) {
3177 if (NestedNameSpecifier *NNS = DependentTST->getQualifier())
3178 T = QualType(NNS->getAsType(), 0);
3179 else
3180 T = QualType();
3181 continue;
3182 }
3183
3184 // Look one step prior in a dependent name type.
3185 if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){
3186 if (NestedNameSpecifier *NNS = DependentName->getQualifier())
3187 T = QualType(NNS->getAsType(), 0);
3188 else
3189 T = QualType();
3190 continue;
3191 }
3192
3193 // Retrieve the parent of an enumeration type.
3194 if (const EnumType *EnumT = T->getAs<EnumType>()) {
3195 // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization
3196 // check here.
3197 EnumDecl *Enum = EnumT->getDecl();
3198
3199 // Get to the parent type.
3200 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent()))
3201 T = Context.getTypeDeclType(Parent);
3202 else
3203 T = QualType();
3204 continue;
3205 }
3206
3207 T = QualType();
3208 }
3209 // Reverse the nested types list, since we want to traverse from the outermost
3210 // to the innermost while checking template-parameter-lists.
3211 std::reverse(NestedTypes.begin(), NestedTypes.end());
3212
3213 // C++0x [temp.expl.spec]p17:
3214 // A member or a member template may be nested within many
3215 // enclosing class templates. In an explicit specialization for
3216 // such a member, the member declaration shall be preceded by a
3217 // template<> for each enclosing class template that is
3218 // explicitly specialized.
3219 bool SawNonEmptyTemplateParameterList = false;
3220
3221 auto CheckExplicitSpecialization = [&](SourceRange Range, bool Recovery) {
3222 if (SawNonEmptyTemplateParameterList) {
3223 if (!SuppressDiagnostic)
3224 Diag(DeclLoc, diag::err_specialize_member_of_template)
3225 << !Recovery << Range;
3226 Invalid = true;
3227 IsMemberSpecialization = false;
3228 return true;
3229 }
3230
3231 return false;
3232 };
3233
3234 auto DiagnoseMissingExplicitSpecialization = [&] (SourceRange Range) {
3235 // Check that we can have an explicit specialization here.
3236 if (CheckExplicitSpecialization(Range, true))
3237 return true;
3238
3239 // We don't have a template header, but we should.
3240 SourceLocation ExpectedTemplateLoc;
3241 if (!ParamLists.empty())
3242 ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc();
3243 else
3244 ExpectedTemplateLoc = DeclStartLoc;
3245
3246 if (!SuppressDiagnostic)
3247 Diag(DeclLoc, diag::err_template_spec_needs_header)
3248 << Range
3249 << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> ");
3250 return false;
3251 };
3252
3253 unsigned ParamIdx = 0;
3254 for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes;
3255 ++TypeIdx) {
3256 T = NestedTypes[TypeIdx];
3257
3258 // Whether we expect a 'template<>' header.
3259 bool NeedEmptyTemplateHeader = false;
3260
3261 // Whether we expect a template header with parameters.
3262 bool NeedNonemptyTemplateHeader = false;
3263
3264 // For a dependent type, the set of template parameters that we
3265 // expect to see.
3266 TemplateParameterList *ExpectedTemplateParams = nullptr;
3267
3268 // C++0x [temp.expl.spec]p15:
3269 // A member or a member template may be nested within many enclosing
3270 // class templates. In an explicit specialization for such a member, the
3271 // member declaration shall be preceded by a template<> for each
3272 // enclosing class template that is explicitly specialized.
3273 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
3274 if (ClassTemplatePartialSpecializationDecl *Partial
3275 = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) {
3276 ExpectedTemplateParams = Partial->getTemplateParameters();
3277 NeedNonemptyTemplateHeader = true;
3278 } else if (Record->isDependentType()) {
3279 if (Record->getDescribedClassTemplate()) {
3280 ExpectedTemplateParams = Record->getDescribedClassTemplate()
3281 ->getTemplateParameters();
3282 NeedNonemptyTemplateHeader = true;
3283 }
3284 } else if (ClassTemplateSpecializationDecl *Spec
3285 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
3286 // C++0x [temp.expl.spec]p4:
3287 // Members of an explicitly specialized class template are defined
3288 // in the same manner as members of normal classes, and not using
3289 // the template<> syntax.
3290 if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization)
3291 NeedEmptyTemplateHeader = true;
3292 else
3293 continue;
3294 } else if (Record->getTemplateSpecializationKind()) {
3295 if (Record->getTemplateSpecializationKind()
3296 != TSK_ExplicitSpecialization &&
3297 TypeIdx == NumTypes - 1)
3298 IsMemberSpecialization = true;
3299
3300 continue;
3301 }
3302 } else if (const TemplateSpecializationType *TST
3303 = T->getAs<TemplateSpecializationType>()) {
3304 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
3305 ExpectedTemplateParams = Template->getTemplateParameters();
3306 NeedNonemptyTemplateHeader = true;
3307 }
3308 } else if (T->getAs<DependentTemplateSpecializationType>()) {
3309 // FIXME: We actually could/should check the template arguments here
3310 // against the corresponding template parameter list.
3311 NeedNonemptyTemplateHeader = false;
3312 }
3313
3314 // C++ [temp.expl.spec]p16:
3315 // In an explicit specialization declaration for a member of a class
3316 // template or a member template that ap- pears in namespace scope, the
3317 // member template and some of its enclosing class templates may remain
3318 // unspecialized, except that the declaration shall not explicitly
3319 // specialize a class member template if its en- closing class templates
3320 // are not explicitly specialized as well.
3321 if (ParamIdx < ParamLists.size()) {
3322 if (ParamLists[ParamIdx]->size() == 0) {
3323 if (CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
3324 false))
3325 return nullptr;
3326 } else
3327 SawNonEmptyTemplateParameterList = true;
3328 }
3329
3330 if (NeedEmptyTemplateHeader) {
3331 // If we're on the last of the types, and we need a 'template<>' header
3332 // here, then it's a member specialization.
3333 if (TypeIdx == NumTypes - 1)
3334 IsMemberSpecialization = true;
3335
3336 if (ParamIdx < ParamLists.size()) {
3337 if (ParamLists[ParamIdx]->size() > 0) {
3338 // The header has template parameters when it shouldn't. Complain.
3339 if (!SuppressDiagnostic)
3340 Diag(ParamLists[ParamIdx]->getTemplateLoc(),
3341 diag::err_template_param_list_matches_nontemplate)
3342 << T
3343 << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(),
3344 ParamLists[ParamIdx]->getRAngleLoc())
3345 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
3346 Invalid = true;
3347 return nullptr;
3348 }
3349
3350 // Consume this template header.
3351 ++ParamIdx;
3352 continue;
3353 }
3354
3355 if (!IsFriend)
3356 if (DiagnoseMissingExplicitSpecialization(
3357 getRangeOfTypeInNestedNameSpecifier(Context, T, SS)))
3358 return nullptr;
3359
3360 continue;
3361 }
3362
3363 if (NeedNonemptyTemplateHeader) {
3364 // In friend declarations we can have template-ids which don't
3365 // depend on the corresponding template parameter lists. But
3366 // assume that empty parameter lists are supposed to match this
3367 // template-id.
3368 if (IsFriend && T->isDependentType()) {
3369 if (ParamIdx < ParamLists.size() &&
3370 DependsOnTemplateParameters(T, ParamLists[ParamIdx]))
3371 ExpectedTemplateParams = nullptr;
3372 else
3373 continue;
3374 }
3375
3376 if (ParamIdx < ParamLists.size()) {
3377 // Check the template parameter list, if we can.
3378 if (ExpectedTemplateParams &&
3379 !TemplateParameterListsAreEqual(ParamLists[ParamIdx],
3380 ExpectedTemplateParams,
3381 !SuppressDiagnostic, TPL_TemplateMatch))
3382 Invalid = true;
3383
3384 if (!Invalid &&
3385 CheckTemplateParameterList(ParamLists[ParamIdx], nullptr,
3386 TPC_ClassTemplateMember))
3387 Invalid = true;
3388
3389 ++ParamIdx;
3390 continue;
3391 }
3392
3393 if (!SuppressDiagnostic)
3394 Diag(DeclLoc, diag::err_template_spec_needs_template_parameters)
3395 << T
3396 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
3397 Invalid = true;
3398 continue;
3399 }
3400 }
3401
3402 // If there were at least as many template-ids as there were template
3403 // parameter lists, then there are no template parameter lists remaining for
3404 // the declaration itself.
3405 if (ParamIdx >= ParamLists.size()) {
3406 if (TemplateId && !IsFriend) {
3407 // We don't have a template header for the declaration itself, but we
3408 // should.
3409 DiagnoseMissingExplicitSpecialization(SourceRange(TemplateId->LAngleLoc,
3410 TemplateId->RAngleLoc));
3411
3412 // Fabricate an empty template parameter list for the invented header.
3413 return TemplateParameterList::Create(Context, SourceLocation(),
3414 SourceLocation(), None,
3415 SourceLocation(), nullptr);
3416 }
3417
3418 return nullptr;
3419 }
3420
3421 // If there were too many template parameter lists, complain about that now.
3422 if (ParamIdx < ParamLists.size() - 1) {
3423 bool HasAnyExplicitSpecHeader = false;
3424 bool AllExplicitSpecHeaders = true;
3425 for (unsigned I = ParamIdx, E = ParamLists.size() - 1; I != E; ++I) {
3426 if (ParamLists[I]->size() == 0)
3427 HasAnyExplicitSpecHeader = true;
3428 else
3429 AllExplicitSpecHeaders = false;
3430 }
3431
3432 if (!SuppressDiagnostic)
3433 Diag(ParamLists[ParamIdx]->getTemplateLoc(),
3434 AllExplicitSpecHeaders ? diag::warn_template_spec_extra_headers
3435 : diag::err_template_spec_extra_headers)
3436 << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
3437 ParamLists[ParamLists.size() - 2]->getRAngleLoc());
3438
3439 // If there was a specialization somewhere, such that 'template<>' is
3440 // not required, and there were any 'template<>' headers, note where the
3441 // specialization occurred.
3442 if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader &&
3443 !SuppressDiagnostic)
3444 Diag(ExplicitSpecLoc,
3445 diag::note_explicit_template_spec_does_not_need_header)
3446 << NestedTypes.back();
3447
3448 // We have a template parameter list with no corresponding scope, which
3449 // means that the resulting template declaration can't be instantiated
3450 // properly (we'll end up with dependent nodes when we shouldn't).
3451 if (!AllExplicitSpecHeaders)
3452 Invalid = true;
3453 }
3454
3455 // C++ [temp.expl.spec]p16:
3456 // In an explicit specialization declaration for a member of a class
3457 // template or a member template that ap- pears in namespace scope, the
3458 // member template and some of its enclosing class templates may remain
3459 // unspecialized, except that the declaration shall not explicitly
3460 // specialize a class member template if its en- closing class templates
3461 // are not explicitly specialized as well.
3462 if (ParamLists.back()->size() == 0 &&
3463 CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
3464 false))
3465 return nullptr;
3466
3467 // Return the last template parameter list, which corresponds to the
3468 // entity being declared.
3469 return ParamLists.back();
3470 }
3471
NoteAllFoundTemplates(TemplateName Name)3472 void Sema::NoteAllFoundTemplates(TemplateName Name) {
3473 if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
3474 Diag(Template->getLocation(), diag::note_template_declared_here)
3475 << (isa<FunctionTemplateDecl>(Template)
3476 ? 0
3477 : isa<ClassTemplateDecl>(Template)
3478 ? 1
3479 : isa<VarTemplateDecl>(Template)
3480 ? 2
3481 : isa<TypeAliasTemplateDecl>(Template) ? 3 : 4)
3482 << Template->getDeclName();
3483 return;
3484 }
3485
3486 if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) {
3487 for (OverloadedTemplateStorage::iterator I = OST->begin(),
3488 IEnd = OST->end();
3489 I != IEnd; ++I)
3490 Diag((*I)->getLocation(), diag::note_template_declared_here)
3491 << 0 << (*I)->getDeclName();
3492
3493 return;
3494 }
3495 }
3496
3497 static QualType
checkBuiltinTemplateIdType(Sema & SemaRef,BuiltinTemplateDecl * BTD,const SmallVectorImpl<TemplateArgument> & Converted,SourceLocation TemplateLoc,TemplateArgumentListInfo & TemplateArgs)3498 checkBuiltinTemplateIdType(Sema &SemaRef, BuiltinTemplateDecl *BTD,
3499 const SmallVectorImpl<TemplateArgument> &Converted,
3500 SourceLocation TemplateLoc,
3501 TemplateArgumentListInfo &TemplateArgs) {
3502 ASTContext &Context = SemaRef.getASTContext();
3503 switch (BTD->getBuiltinTemplateKind()) {
3504 case BTK__make_integer_seq: {
3505 // Specializations of __make_integer_seq<S, T, N> are treated like
3506 // S<T, 0, ..., N-1>.
3507
3508 // C++14 [inteseq.intseq]p1:
3509 // T shall be an integer type.
3510 if (!Converted[1].getAsType()->isIntegralType(Context)) {
3511 SemaRef.Diag(TemplateArgs[1].getLocation(),
3512 diag::err_integer_sequence_integral_element_type);
3513 return QualType();
3514 }
3515
3516 // C++14 [inteseq.make]p1:
3517 // If N is negative the program is ill-formed.
3518 TemplateArgument NumArgsArg = Converted[2];
3519 llvm::APSInt NumArgs = NumArgsArg.getAsIntegral();
3520 if (NumArgs < 0) {
3521 SemaRef.Diag(TemplateArgs[2].getLocation(),
3522 diag::err_integer_sequence_negative_length);
3523 return QualType();
3524 }
3525
3526 QualType ArgTy = NumArgsArg.getIntegralType();
3527 TemplateArgumentListInfo SyntheticTemplateArgs;
3528 // The type argument gets reused as the first template argument in the
3529 // synthetic template argument list.
3530 SyntheticTemplateArgs.addArgument(TemplateArgs[1]);
3531 // Expand N into 0 ... N-1.
3532 for (llvm::APSInt I(NumArgs.getBitWidth(), NumArgs.isUnsigned());
3533 I < NumArgs; ++I) {
3534 TemplateArgument TA(Context, I, ArgTy);
3535 SyntheticTemplateArgs.addArgument(SemaRef.getTrivialTemplateArgumentLoc(
3536 TA, ArgTy, TemplateArgs[2].getLocation()));
3537 }
3538 // The first template argument will be reused as the template decl that
3539 // our synthetic template arguments will be applied to.
3540 return SemaRef.CheckTemplateIdType(Converted[0].getAsTemplate(),
3541 TemplateLoc, SyntheticTemplateArgs);
3542 }
3543
3544 case BTK__type_pack_element:
3545 // Specializations of
3546 // __type_pack_element<Index, T_1, ..., T_N>
3547 // are treated like T_Index.
3548 assert(Converted.size() == 2 &&
3549 "__type_pack_element should be given an index and a parameter pack");
3550
3551 // If the Index is out of bounds, the program is ill-formed.
3552 TemplateArgument IndexArg = Converted[0], Ts = Converted[1];
3553 llvm::APSInt Index = IndexArg.getAsIntegral();
3554 assert(Index >= 0 && "the index used with __type_pack_element should be of "
3555 "type std::size_t, and hence be non-negative");
3556 if (Index >= Ts.pack_size()) {
3557 SemaRef.Diag(TemplateArgs[0].getLocation(),
3558 diag::err_type_pack_element_out_of_bounds);
3559 return QualType();
3560 }
3561
3562 // We simply return the type at index `Index`.
3563 auto Nth = std::next(Ts.pack_begin(), Index.getExtValue());
3564 return Nth->getAsType();
3565 }
3566 llvm_unreachable("unexpected BuiltinTemplateDecl!");
3567 }
3568
3569 /// Determine whether this alias template is "enable_if_t".
3570 /// libc++ >=14 uses "__enable_if_t" in C++11 mode.
isEnableIfAliasTemplate(TypeAliasTemplateDecl * AliasTemplate)3571 static bool isEnableIfAliasTemplate(TypeAliasTemplateDecl *AliasTemplate) {
3572 return AliasTemplate->getName().equals("enable_if_t") ||
3573 AliasTemplate->getName().equals("__enable_if_t");
3574 }
3575
3576 /// Collect all of the separable terms in the given condition, which
3577 /// might be a conjunction.
3578 ///
3579 /// FIXME: The right answer is to convert the logical expression into
3580 /// disjunctive normal form, so we can find the first failed term
3581 /// within each possible clause.
collectConjunctionTerms(Expr * Clause,SmallVectorImpl<Expr * > & Terms)3582 static void collectConjunctionTerms(Expr *Clause,
3583 SmallVectorImpl<Expr *> &Terms) {
3584 if (auto BinOp = dyn_cast<BinaryOperator>(Clause->IgnoreParenImpCasts())) {
3585 if (BinOp->getOpcode() == BO_LAnd) {
3586 collectConjunctionTerms(BinOp->getLHS(), Terms);
3587 collectConjunctionTerms(BinOp->getRHS(), Terms);
3588 }
3589
3590 return;
3591 }
3592
3593 Terms.push_back(Clause);
3594 }
3595
3596 // The ranges-v3 library uses an odd pattern of a top-level "||" with
3597 // a left-hand side that is value-dependent but never true. Identify
3598 // the idiom and ignore that term.
lookThroughRangesV3Condition(Preprocessor & PP,Expr * Cond)3599 static Expr *lookThroughRangesV3Condition(Preprocessor &PP, Expr *Cond) {
3600 // Top-level '||'.
3601 auto *BinOp = dyn_cast<BinaryOperator>(Cond->IgnoreParenImpCasts());
3602 if (!BinOp) return Cond;
3603
3604 if (BinOp->getOpcode() != BO_LOr) return Cond;
3605
3606 // With an inner '==' that has a literal on the right-hand side.
3607 Expr *LHS = BinOp->getLHS();
3608 auto *InnerBinOp = dyn_cast<BinaryOperator>(LHS->IgnoreParenImpCasts());
3609 if (!InnerBinOp) return Cond;
3610
3611 if (InnerBinOp->getOpcode() != BO_EQ ||
3612 !isa<IntegerLiteral>(InnerBinOp->getRHS()))
3613 return Cond;
3614
3615 // If the inner binary operation came from a macro expansion named
3616 // CONCEPT_REQUIRES or CONCEPT_REQUIRES_, return the right-hand side
3617 // of the '||', which is the real, user-provided condition.
3618 SourceLocation Loc = InnerBinOp->getExprLoc();
3619 if (!Loc.isMacroID()) return Cond;
3620
3621 StringRef MacroName = PP.getImmediateMacroName(Loc);
3622 if (MacroName == "CONCEPT_REQUIRES" || MacroName == "CONCEPT_REQUIRES_")
3623 return BinOp->getRHS();
3624
3625 return Cond;
3626 }
3627
3628 namespace {
3629
3630 // A PrinterHelper that prints more helpful diagnostics for some sub-expressions
3631 // within failing boolean expression, such as substituting template parameters
3632 // for actual types.
3633 class FailedBooleanConditionPrinterHelper : public PrinterHelper {
3634 public:
FailedBooleanConditionPrinterHelper(const PrintingPolicy & P)3635 explicit FailedBooleanConditionPrinterHelper(const PrintingPolicy &P)
3636 : Policy(P) {}
3637
handledStmt(Stmt * E,raw_ostream & OS)3638 bool handledStmt(Stmt *E, raw_ostream &OS) override {
3639 const auto *DR = dyn_cast<DeclRefExpr>(E);
3640 if (DR && DR->getQualifier()) {
3641 // If this is a qualified name, expand the template arguments in nested
3642 // qualifiers.
3643 DR->getQualifier()->print(OS, Policy, true);
3644 // Then print the decl itself.
3645 const ValueDecl *VD = DR->getDecl();
3646 OS << VD->getName();
3647 if (const auto *IV = dyn_cast<VarTemplateSpecializationDecl>(VD)) {
3648 // This is a template variable, print the expanded template arguments.
3649 printTemplateArgumentList(
3650 OS, IV->getTemplateArgs().asArray(), Policy,
3651 IV->getSpecializedTemplate()->getTemplateParameters());
3652 }
3653 return true;
3654 }
3655 return false;
3656 }
3657
3658 private:
3659 const PrintingPolicy Policy;
3660 };
3661
3662 } // end anonymous namespace
3663
3664 std::pair<Expr *, std::string>
findFailedBooleanCondition(Expr * Cond)3665 Sema::findFailedBooleanCondition(Expr *Cond) {
3666 Cond = lookThroughRangesV3Condition(PP, Cond);
3667
3668 // Separate out all of the terms in a conjunction.
3669 SmallVector<Expr *, 4> Terms;
3670 collectConjunctionTerms(Cond, Terms);
3671
3672 // Determine which term failed.
3673 Expr *FailedCond = nullptr;
3674 for (Expr *Term : Terms) {
3675 Expr *TermAsWritten = Term->IgnoreParenImpCasts();
3676
3677 // Literals are uninteresting.
3678 if (isa<CXXBoolLiteralExpr>(TermAsWritten) ||
3679 isa<IntegerLiteral>(TermAsWritten))
3680 continue;
3681
3682 // The initialization of the parameter from the argument is
3683 // a constant-evaluated context.
3684 EnterExpressionEvaluationContext ConstantEvaluated(
3685 *this, Sema::ExpressionEvaluationContext::ConstantEvaluated);
3686
3687 bool Succeeded;
3688 if (Term->EvaluateAsBooleanCondition(Succeeded, Context) &&
3689 !Succeeded) {
3690 FailedCond = TermAsWritten;
3691 break;
3692 }
3693 }
3694 if (!FailedCond)
3695 FailedCond = Cond->IgnoreParenImpCasts();
3696
3697 std::string Description;
3698 {
3699 llvm::raw_string_ostream Out(Description);
3700 PrintingPolicy Policy = getPrintingPolicy();
3701 Policy.PrintCanonicalTypes = true;
3702 FailedBooleanConditionPrinterHelper Helper(Policy);
3703 FailedCond->printPretty(Out, &Helper, Policy, 0, "\n", nullptr);
3704 }
3705 return { FailedCond, Description };
3706 }
3707
CheckTemplateIdType(TemplateName Name,SourceLocation TemplateLoc,TemplateArgumentListInfo & TemplateArgs)3708 QualType Sema::CheckTemplateIdType(TemplateName Name,
3709 SourceLocation TemplateLoc,
3710 TemplateArgumentListInfo &TemplateArgs) {
3711 DependentTemplateName *DTN
3712 = Name.getUnderlying().getAsDependentTemplateName();
3713 if (DTN && DTN->isIdentifier())
3714 // When building a template-id where the template-name is dependent,
3715 // assume the template is a type template. Either our assumption is
3716 // correct, or the code is ill-formed and will be diagnosed when the
3717 // dependent name is substituted.
3718 return Context.getDependentTemplateSpecializationType(ETK_None,
3719 DTN->getQualifier(),
3720 DTN->getIdentifier(),
3721 TemplateArgs);
3722
3723 if (Name.getAsAssumedTemplateName() &&
3724 resolveAssumedTemplateNameAsType(/*Scope*/nullptr, Name, TemplateLoc))
3725 return QualType();
3726
3727 TemplateDecl *Template = Name.getAsTemplateDecl();
3728 if (!Template || isa<FunctionTemplateDecl>(Template) ||
3729 isa<VarTemplateDecl>(Template) || isa<ConceptDecl>(Template)) {
3730 // We might have a substituted template template parameter pack. If so,
3731 // build a template specialization type for it.
3732 if (Name.getAsSubstTemplateTemplateParmPack())
3733 return Context.getTemplateSpecializationType(Name, TemplateArgs);
3734
3735 Diag(TemplateLoc, diag::err_template_id_not_a_type)
3736 << Name;
3737 NoteAllFoundTemplates(Name);
3738 return QualType();
3739 }
3740
3741 // Check that the template argument list is well-formed for this
3742 // template.
3743 SmallVector<TemplateArgument, 4> Converted;
3744 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
3745 false, Converted,
3746 /*UpdateArgsWithConversions=*/true))
3747 return QualType();
3748
3749 QualType CanonType;
3750
3751 if (TypeAliasTemplateDecl *AliasTemplate =
3752 dyn_cast<TypeAliasTemplateDecl>(Template)) {
3753
3754 // Find the canonical type for this type alias template specialization.
3755 TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl();
3756 if (Pattern->isInvalidDecl())
3757 return QualType();
3758
3759 TemplateArgumentList StackTemplateArgs(TemplateArgumentList::OnStack,
3760 Converted);
3761
3762 // Only substitute for the innermost template argument list.
3763 MultiLevelTemplateArgumentList TemplateArgLists;
3764 TemplateArgLists.addOuterTemplateArguments(&StackTemplateArgs);
3765 TemplateArgLists.addOuterRetainedLevels(
3766 AliasTemplate->getTemplateParameters()->getDepth());
3767
3768 LocalInstantiationScope Scope(*this);
3769 InstantiatingTemplate Inst(*this, TemplateLoc, Template);
3770 if (Inst.isInvalid())
3771 return QualType();
3772
3773 CanonType = SubstType(Pattern->getUnderlyingType(),
3774 TemplateArgLists, AliasTemplate->getLocation(),
3775 AliasTemplate->getDeclName());
3776 if (CanonType.isNull()) {
3777 // If this was enable_if and we failed to find the nested type
3778 // within enable_if in a SFINAE context, dig out the specific
3779 // enable_if condition that failed and present that instead.
3780 if (isEnableIfAliasTemplate(AliasTemplate)) {
3781 if (auto DeductionInfo = isSFINAEContext()) {
3782 if (*DeductionInfo &&
3783 (*DeductionInfo)->hasSFINAEDiagnostic() &&
3784 (*DeductionInfo)->peekSFINAEDiagnostic().second.getDiagID() ==
3785 diag::err_typename_nested_not_found_enable_if &&
3786 TemplateArgs[0].getArgument().getKind()
3787 == TemplateArgument::Expression) {
3788 Expr *FailedCond;
3789 std::string FailedDescription;
3790 std::tie(FailedCond, FailedDescription) =
3791 findFailedBooleanCondition(TemplateArgs[0].getSourceExpression());
3792
3793 // Remove the old SFINAE diagnostic.
3794 PartialDiagnosticAt OldDiag =
3795 {SourceLocation(), PartialDiagnostic::NullDiagnostic()};
3796 (*DeductionInfo)->takeSFINAEDiagnostic(OldDiag);
3797
3798 // Add a new SFINAE diagnostic specifying which condition
3799 // failed.
3800 (*DeductionInfo)->addSFINAEDiagnostic(
3801 OldDiag.first,
3802 PDiag(diag::err_typename_nested_not_found_requirement)
3803 << FailedDescription
3804 << FailedCond->getSourceRange());
3805 }
3806 }
3807 }
3808
3809 return QualType();
3810 }
3811 } else if (Name.isDependent() ||
3812 TemplateSpecializationType::anyDependentTemplateArguments(
3813 TemplateArgs, Converted)) {
3814 // This class template specialization is a dependent
3815 // type. Therefore, its canonical type is another class template
3816 // specialization type that contains all of the converted
3817 // arguments in canonical form. This ensures that, e.g., A<T> and
3818 // A<T, T> have identical types when A is declared as:
3819 //
3820 // template<typename T, typename U = T> struct A;
3821 CanonType = Context.getCanonicalTemplateSpecializationType(Name, Converted);
3822
3823 // This might work out to be a current instantiation, in which
3824 // case the canonical type needs to be the InjectedClassNameType.
3825 //
3826 // TODO: in theory this could be a simple hashtable lookup; most
3827 // changes to CurContext don't change the set of current
3828 // instantiations.
3829 if (isa<ClassTemplateDecl>(Template)) {
3830 for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
3831 // If we get out to a namespace, we're done.
3832 if (Ctx->isFileContext()) break;
3833
3834 // If this isn't a record, keep looking.
3835 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
3836 if (!Record) continue;
3837
3838 // Look for one of the two cases with InjectedClassNameTypes
3839 // and check whether it's the same template.
3840 if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
3841 !Record->getDescribedClassTemplate())
3842 continue;
3843
3844 // Fetch the injected class name type and check whether its
3845 // injected type is equal to the type we just built.
3846 QualType ICNT = Context.getTypeDeclType(Record);
3847 QualType Injected = cast<InjectedClassNameType>(ICNT)
3848 ->getInjectedSpecializationType();
3849
3850 if (CanonType != Injected->getCanonicalTypeInternal())
3851 continue;
3852
3853 // If so, the canonical type of this TST is the injected
3854 // class name type of the record we just found.
3855 assert(ICNT.isCanonical());
3856 CanonType = ICNT;
3857 break;
3858 }
3859 }
3860 } else if (ClassTemplateDecl *ClassTemplate
3861 = dyn_cast<ClassTemplateDecl>(Template)) {
3862 // Find the class template specialization declaration that
3863 // corresponds to these arguments.
3864 void *InsertPos = nullptr;
3865 ClassTemplateSpecializationDecl *Decl
3866 = ClassTemplate->findSpecialization(Converted, InsertPos);
3867 if (!Decl) {
3868 // This is the first time we have referenced this class template
3869 // specialization. Create the canonical declaration and add it to
3870 // the set of specializations.
3871 Decl = ClassTemplateSpecializationDecl::Create(
3872 Context, ClassTemplate->getTemplatedDecl()->getTagKind(),
3873 ClassTemplate->getDeclContext(),
3874 ClassTemplate->getTemplatedDecl()->getBeginLoc(),
3875 ClassTemplate->getLocation(), ClassTemplate, Converted, nullptr);
3876 ClassTemplate->AddSpecialization(Decl, InsertPos);
3877 if (ClassTemplate->isOutOfLine())
3878 Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext());
3879 }
3880
3881 if (Decl->getSpecializationKind() == TSK_Undeclared &&
3882 ClassTemplate->getTemplatedDecl()->hasAttrs()) {
3883 InstantiatingTemplate Inst(*this, TemplateLoc, Decl);
3884 if (!Inst.isInvalid()) {
3885 MultiLevelTemplateArgumentList TemplateArgLists;
3886 TemplateArgLists.addOuterTemplateArguments(Converted);
3887 InstantiateAttrsForDecl(TemplateArgLists,
3888 ClassTemplate->getTemplatedDecl(), Decl);
3889 }
3890 }
3891
3892 // Diagnose uses of this specialization.
3893 (void)DiagnoseUseOfDecl(Decl, TemplateLoc);
3894
3895 CanonType = Context.getTypeDeclType(Decl);
3896 assert(isa<RecordType>(CanonType) &&
3897 "type of non-dependent specialization is not a RecordType");
3898 } else if (auto *BTD = dyn_cast<BuiltinTemplateDecl>(Template)) {
3899 CanonType = checkBuiltinTemplateIdType(*this, BTD, Converted, TemplateLoc,
3900 TemplateArgs);
3901 }
3902
3903 // Build the fully-sugared type for this class template
3904 // specialization, which refers back to the class template
3905 // specialization we created or found.
3906 return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
3907 }
3908
ActOnUndeclaredTypeTemplateName(Scope * S,TemplateTy & ParsedName,TemplateNameKind & TNK,SourceLocation NameLoc,IdentifierInfo * & II)3909 void Sema::ActOnUndeclaredTypeTemplateName(Scope *S, TemplateTy &ParsedName,
3910 TemplateNameKind &TNK,
3911 SourceLocation NameLoc,
3912 IdentifierInfo *&II) {
3913 assert(TNK == TNK_Undeclared_template && "not an undeclared template name");
3914
3915 TemplateName Name = ParsedName.get();
3916 auto *ATN = Name.getAsAssumedTemplateName();
3917 assert(ATN && "not an assumed template name");
3918 II = ATN->getDeclName().getAsIdentifierInfo();
3919
3920 if (!resolveAssumedTemplateNameAsType(S, Name, NameLoc, /*Diagnose*/false)) {
3921 // Resolved to a type template name.
3922 ParsedName = TemplateTy::make(Name);
3923 TNK = TNK_Type_template;
3924 }
3925 }
3926
resolveAssumedTemplateNameAsType(Scope * S,TemplateName & Name,SourceLocation NameLoc,bool Diagnose)3927 bool Sema::resolveAssumedTemplateNameAsType(Scope *S, TemplateName &Name,
3928 SourceLocation NameLoc,
3929 bool Diagnose) {
3930 // We assumed this undeclared identifier to be an (ADL-only) function
3931 // template name, but it was used in a context where a type was required.
3932 // Try to typo-correct it now.
3933 AssumedTemplateStorage *ATN = Name.getAsAssumedTemplateName();
3934 assert(ATN && "not an assumed template name");
3935
3936 LookupResult R(*this, ATN->getDeclName(), NameLoc, LookupOrdinaryName);
3937 struct CandidateCallback : CorrectionCandidateCallback {
3938 bool ValidateCandidate(const TypoCorrection &TC) override {
3939 return TC.getCorrectionDecl() &&
3940 getAsTypeTemplateDecl(TC.getCorrectionDecl());
3941 }
3942 std::unique_ptr<CorrectionCandidateCallback> clone() override {
3943 return std::make_unique<CandidateCallback>(*this);
3944 }
3945 } FilterCCC;
3946
3947 TypoCorrection Corrected =
3948 CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, nullptr,
3949 FilterCCC, CTK_ErrorRecovery);
3950 if (Corrected && Corrected.getFoundDecl()) {
3951 diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest)
3952 << ATN->getDeclName());
3953 Name = TemplateName(Corrected.getCorrectionDeclAs<TemplateDecl>());
3954 return false;
3955 }
3956
3957 if (Diagnose)
3958 Diag(R.getNameLoc(), diag::err_no_template) << R.getLookupName();
3959 return true;
3960 }
3961
ActOnTemplateIdType(Scope * S,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,TemplateTy TemplateD,IdentifierInfo * TemplateII,SourceLocation TemplateIILoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc,bool IsCtorOrDtorName,bool IsClassName)3962 TypeResult Sema::ActOnTemplateIdType(
3963 Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
3964 TemplateTy TemplateD, IdentifierInfo *TemplateII,
3965 SourceLocation TemplateIILoc, SourceLocation LAngleLoc,
3966 ASTTemplateArgsPtr TemplateArgsIn, SourceLocation RAngleLoc,
3967 bool IsCtorOrDtorName, bool IsClassName) {
3968 if (SS.isInvalid())
3969 return true;
3970
3971 if (!IsCtorOrDtorName && !IsClassName && SS.isSet()) {
3972 DeclContext *LookupCtx = computeDeclContext(SS, /*EnteringContext*/false);
3973
3974 // C++ [temp.res]p3:
3975 // A qualified-id that refers to a type and in which the
3976 // nested-name-specifier depends on a template-parameter (14.6.2)
3977 // shall be prefixed by the keyword typename to indicate that the
3978 // qualified-id denotes a type, forming an
3979 // elaborated-type-specifier (7.1.5.3).
3980 if (!LookupCtx && isDependentScopeSpecifier(SS)) {
3981 Diag(SS.getBeginLoc(), diag::err_typename_missing_template)
3982 << SS.getScopeRep() << TemplateII->getName();
3983 // Recover as if 'typename' were specified.
3984 // FIXME: This is not quite correct recovery as we don't transform SS
3985 // into the corresponding dependent form (and we don't diagnose missing
3986 // 'template' keywords within SS as a result).
3987 return ActOnTypenameType(nullptr, SourceLocation(), SS, TemplateKWLoc,
3988 TemplateD, TemplateII, TemplateIILoc, LAngleLoc,
3989 TemplateArgsIn, RAngleLoc);
3990 }
3991
3992 // Per C++ [class.qual]p2, if the template-id was an injected-class-name,
3993 // it's not actually allowed to be used as a type in most cases. Because
3994 // we annotate it before we know whether it's valid, we have to check for
3995 // this case here.
3996 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx);
3997 if (LookupRD && LookupRD->getIdentifier() == TemplateII) {
3998 Diag(TemplateIILoc,
3999 TemplateKWLoc.isInvalid()
4000 ? diag::err_out_of_line_qualified_id_type_names_constructor
4001 : diag::ext_out_of_line_qualified_id_type_names_constructor)
4002 << TemplateII << 0 /*injected-class-name used as template name*/
4003 << 1 /*if any keyword was present, it was 'template'*/;
4004 }
4005 }
4006
4007 TemplateName Template = TemplateD.get();
4008 if (Template.getAsAssumedTemplateName() &&
4009 resolveAssumedTemplateNameAsType(S, Template, TemplateIILoc))
4010 return true;
4011
4012 // Translate the parser's template argument list in our AST format.
4013 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
4014 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
4015
4016 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
4017 QualType T
4018 = Context.getDependentTemplateSpecializationType(ETK_None,
4019 DTN->getQualifier(),
4020 DTN->getIdentifier(),
4021 TemplateArgs);
4022 // Build type-source information.
4023 TypeLocBuilder TLB;
4024 DependentTemplateSpecializationTypeLoc SpecTL
4025 = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
4026 SpecTL.setElaboratedKeywordLoc(SourceLocation());
4027 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
4028 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
4029 SpecTL.setTemplateNameLoc(TemplateIILoc);
4030 SpecTL.setLAngleLoc(LAngleLoc);
4031 SpecTL.setRAngleLoc(RAngleLoc);
4032 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
4033 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
4034 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
4035 }
4036
4037 QualType Result = CheckTemplateIdType(Template, TemplateIILoc, TemplateArgs);
4038 if (Result.isNull())
4039 return true;
4040
4041 // Build type-source information.
4042 TypeLocBuilder TLB;
4043 TemplateSpecializationTypeLoc SpecTL
4044 = TLB.push<TemplateSpecializationTypeLoc>(Result);
4045 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
4046 SpecTL.setTemplateNameLoc(TemplateIILoc);
4047 SpecTL.setLAngleLoc(LAngleLoc);
4048 SpecTL.setRAngleLoc(RAngleLoc);
4049 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
4050 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
4051
4052 // NOTE: avoid constructing an ElaboratedTypeLoc if this is a
4053 // constructor or destructor name (in such a case, the scope specifier
4054 // will be attached to the enclosing Decl or Expr node).
4055 if (SS.isNotEmpty() && !IsCtorOrDtorName) {
4056 // Create an elaborated-type-specifier containing the nested-name-specifier.
4057 Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result);
4058 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
4059 ElabTL.setElaboratedKeywordLoc(SourceLocation());
4060 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
4061 }
4062
4063 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
4064 }
4065
ActOnTagTemplateIdType(TagUseKind TUK,TypeSpecifierType TagSpec,SourceLocation TagLoc,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,TemplateTy TemplateD,SourceLocation TemplateLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc)4066 TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK,
4067 TypeSpecifierType TagSpec,
4068 SourceLocation TagLoc,
4069 CXXScopeSpec &SS,
4070 SourceLocation TemplateKWLoc,
4071 TemplateTy TemplateD,
4072 SourceLocation TemplateLoc,
4073 SourceLocation LAngleLoc,
4074 ASTTemplateArgsPtr TemplateArgsIn,
4075 SourceLocation RAngleLoc) {
4076 if (SS.isInvalid())
4077 return TypeResult(true);
4078
4079 TemplateName Template = TemplateD.get();
4080
4081 // Translate the parser's template argument list in our AST format.
4082 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
4083 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
4084
4085 // Determine the tag kind
4086 TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
4087 ElaboratedTypeKeyword Keyword
4088 = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
4089
4090 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
4091 QualType T = Context.getDependentTemplateSpecializationType(Keyword,
4092 DTN->getQualifier(),
4093 DTN->getIdentifier(),
4094 TemplateArgs);
4095
4096 // Build type-source information.
4097 TypeLocBuilder TLB;
4098 DependentTemplateSpecializationTypeLoc SpecTL
4099 = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
4100 SpecTL.setElaboratedKeywordLoc(TagLoc);
4101 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
4102 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
4103 SpecTL.setTemplateNameLoc(TemplateLoc);
4104 SpecTL.setLAngleLoc(LAngleLoc);
4105 SpecTL.setRAngleLoc(RAngleLoc);
4106 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
4107 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
4108 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
4109 }
4110
4111 if (TypeAliasTemplateDecl *TAT =
4112 dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) {
4113 // C++0x [dcl.type.elab]p2:
4114 // If the identifier resolves to a typedef-name or the simple-template-id
4115 // resolves to an alias template specialization, the
4116 // elaborated-type-specifier is ill-formed.
4117 Diag(TemplateLoc, diag::err_tag_reference_non_tag)
4118 << TAT << NTK_TypeAliasTemplate << TagKind;
4119 Diag(TAT->getLocation(), diag::note_declared_at);
4120 }
4121
4122 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
4123 if (Result.isNull())
4124 return TypeResult(true);
4125
4126 // Check the tag kind
4127 if (const RecordType *RT = Result->getAs<RecordType>()) {
4128 RecordDecl *D = RT->getDecl();
4129
4130 IdentifierInfo *Id = D->getIdentifier();
4131 assert(Id && "templated class must have an identifier");
4132
4133 if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition,
4134 TagLoc, Id)) {
4135 Diag(TagLoc, diag::err_use_with_wrong_tag)
4136 << Result
4137 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
4138 Diag(D->getLocation(), diag::note_previous_use);
4139 }
4140 }
4141
4142 // Provide source-location information for the template specialization.
4143 TypeLocBuilder TLB;
4144 TemplateSpecializationTypeLoc SpecTL
4145 = TLB.push<TemplateSpecializationTypeLoc>(Result);
4146 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
4147 SpecTL.setTemplateNameLoc(TemplateLoc);
4148 SpecTL.setLAngleLoc(LAngleLoc);
4149 SpecTL.setRAngleLoc(RAngleLoc);
4150 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
4151 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
4152
4153 // Construct an elaborated type containing the nested-name-specifier (if any)
4154 // and tag keyword.
4155 Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result);
4156 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
4157 ElabTL.setElaboratedKeywordLoc(TagLoc);
4158 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
4159 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
4160 }
4161
4162 static bool CheckTemplateSpecializationScope(Sema &S, NamedDecl *Specialized,
4163 NamedDecl *PrevDecl,
4164 SourceLocation Loc,
4165 bool IsPartialSpecialization);
4166
4167 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D);
4168
isTemplateArgumentTemplateParameter(const TemplateArgument & Arg,unsigned Depth,unsigned Index)4169 static bool isTemplateArgumentTemplateParameter(
4170 const TemplateArgument &Arg, unsigned Depth, unsigned Index) {
4171 switch (Arg.getKind()) {
4172 case TemplateArgument::Null:
4173 case TemplateArgument::NullPtr:
4174 case TemplateArgument::Integral:
4175 case TemplateArgument::Declaration:
4176 case TemplateArgument::Pack:
4177 case TemplateArgument::TemplateExpansion:
4178 return false;
4179
4180 case TemplateArgument::Type: {
4181 QualType Type = Arg.getAsType();
4182 const TemplateTypeParmType *TPT =
4183 Arg.getAsType()->getAs<TemplateTypeParmType>();
4184 return TPT && !Type.hasQualifiers() &&
4185 TPT->getDepth() == Depth && TPT->getIndex() == Index;
4186 }
4187
4188 case TemplateArgument::Expression: {
4189 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg.getAsExpr());
4190 if (!DRE || !DRE->getDecl())
4191 return false;
4192 const NonTypeTemplateParmDecl *NTTP =
4193 dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
4194 return NTTP && NTTP->getDepth() == Depth && NTTP->getIndex() == Index;
4195 }
4196
4197 case TemplateArgument::Template:
4198 const TemplateTemplateParmDecl *TTP =
4199 dyn_cast_or_null<TemplateTemplateParmDecl>(
4200 Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl());
4201 return TTP && TTP->getDepth() == Depth && TTP->getIndex() == Index;
4202 }
4203 llvm_unreachable("unexpected kind of template argument");
4204 }
4205
isSameAsPrimaryTemplate(TemplateParameterList * Params,ArrayRef<TemplateArgument> Args)4206 static bool isSameAsPrimaryTemplate(TemplateParameterList *Params,
4207 ArrayRef<TemplateArgument> Args) {
4208 if (Params->size() != Args.size())
4209 return false;
4210
4211 unsigned Depth = Params->getDepth();
4212
4213 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
4214 TemplateArgument Arg = Args[I];
4215
4216 // If the parameter is a pack expansion, the argument must be a pack
4217 // whose only element is a pack expansion.
4218 if (Params->getParam(I)->isParameterPack()) {
4219 if (Arg.getKind() != TemplateArgument::Pack || Arg.pack_size() != 1 ||
4220 !Arg.pack_begin()->isPackExpansion())
4221 return false;
4222 Arg = Arg.pack_begin()->getPackExpansionPattern();
4223 }
4224
4225 if (!isTemplateArgumentTemplateParameter(Arg, Depth, I))
4226 return false;
4227 }
4228
4229 return true;
4230 }
4231
4232 template<typename PartialSpecDecl>
checkMoreSpecializedThanPrimary(Sema & S,PartialSpecDecl * Partial)4233 static void checkMoreSpecializedThanPrimary(Sema &S, PartialSpecDecl *Partial) {
4234 if (Partial->getDeclContext()->isDependentContext())
4235 return;
4236
4237 // FIXME: Get the TDK from deduction in order to provide better diagnostics
4238 // for non-substitution-failure issues?
4239 TemplateDeductionInfo Info(Partial->getLocation());
4240 if (S.isMoreSpecializedThanPrimary(Partial, Info))
4241 return;
4242
4243 auto *Template = Partial->getSpecializedTemplate();
4244 S.Diag(Partial->getLocation(),
4245 diag::ext_partial_spec_not_more_specialized_than_primary)
4246 << isa<VarTemplateDecl>(Template);
4247
4248 if (Info.hasSFINAEDiagnostic()) {
4249 PartialDiagnosticAt Diag = {SourceLocation(),
4250 PartialDiagnostic::NullDiagnostic()};
4251 Info.takeSFINAEDiagnostic(Diag);
4252 SmallString<128> SFINAEArgString;
4253 Diag.second.EmitToString(S.getDiagnostics(), SFINAEArgString);
4254 S.Diag(Diag.first,
4255 diag::note_partial_spec_not_more_specialized_than_primary)
4256 << SFINAEArgString;
4257 }
4258
4259 S.Diag(Template->getLocation(), diag::note_template_decl_here);
4260 SmallVector<const Expr *, 3> PartialAC, TemplateAC;
4261 Template->getAssociatedConstraints(TemplateAC);
4262 Partial->getAssociatedConstraints(PartialAC);
4263 S.MaybeEmitAmbiguousAtomicConstraintsDiagnostic(Partial, PartialAC, Template,
4264 TemplateAC);
4265 }
4266
4267 static void
noteNonDeducibleParameters(Sema & S,TemplateParameterList * TemplateParams,const llvm::SmallBitVector & DeducibleParams)4268 noteNonDeducibleParameters(Sema &S, TemplateParameterList *TemplateParams,
4269 const llvm::SmallBitVector &DeducibleParams) {
4270 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
4271 if (!DeducibleParams[I]) {
4272 NamedDecl *Param = TemplateParams->getParam(I);
4273 if (Param->getDeclName())
4274 S.Diag(Param->getLocation(), diag::note_non_deducible_parameter)
4275 << Param->getDeclName();
4276 else
4277 S.Diag(Param->getLocation(), diag::note_non_deducible_parameter)
4278 << "(anonymous)";
4279 }
4280 }
4281 }
4282
4283
4284 template<typename PartialSpecDecl>
checkTemplatePartialSpecialization(Sema & S,PartialSpecDecl * Partial)4285 static void checkTemplatePartialSpecialization(Sema &S,
4286 PartialSpecDecl *Partial) {
4287 // C++1z [temp.class.spec]p8: (DR1495)
4288 // - The specialization shall be more specialized than the primary
4289 // template (14.5.5.2).
4290 checkMoreSpecializedThanPrimary(S, Partial);
4291
4292 // C++ [temp.class.spec]p8: (DR1315)
4293 // - Each template-parameter shall appear at least once in the
4294 // template-id outside a non-deduced context.
4295 // C++1z [temp.class.spec.match]p3 (P0127R2)
4296 // If the template arguments of a partial specialization cannot be
4297 // deduced because of the structure of its template-parameter-list
4298 // and the template-id, the program is ill-formed.
4299 auto *TemplateParams = Partial->getTemplateParameters();
4300 llvm::SmallBitVector DeducibleParams(TemplateParams->size());
4301 S.MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
4302 TemplateParams->getDepth(), DeducibleParams);
4303
4304 if (!DeducibleParams.all()) {
4305 unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count();
4306 S.Diag(Partial->getLocation(), diag::ext_partial_specs_not_deducible)
4307 << isa<VarTemplatePartialSpecializationDecl>(Partial)
4308 << (NumNonDeducible > 1)
4309 << SourceRange(Partial->getLocation(),
4310 Partial->getTemplateArgsAsWritten()->RAngleLoc);
4311 noteNonDeducibleParameters(S, TemplateParams, DeducibleParams);
4312 }
4313 }
4314
CheckTemplatePartialSpecialization(ClassTemplatePartialSpecializationDecl * Partial)4315 void Sema::CheckTemplatePartialSpecialization(
4316 ClassTemplatePartialSpecializationDecl *Partial) {
4317 checkTemplatePartialSpecialization(*this, Partial);
4318 }
4319
CheckTemplatePartialSpecialization(VarTemplatePartialSpecializationDecl * Partial)4320 void Sema::CheckTemplatePartialSpecialization(
4321 VarTemplatePartialSpecializationDecl *Partial) {
4322 checkTemplatePartialSpecialization(*this, Partial);
4323 }
4324
CheckDeductionGuideTemplate(FunctionTemplateDecl * TD)4325 void Sema::CheckDeductionGuideTemplate(FunctionTemplateDecl *TD) {
4326 // C++1z [temp.param]p11:
4327 // A template parameter of a deduction guide template that does not have a
4328 // default-argument shall be deducible from the parameter-type-list of the
4329 // deduction guide template.
4330 auto *TemplateParams = TD->getTemplateParameters();
4331 llvm::SmallBitVector DeducibleParams(TemplateParams->size());
4332 MarkDeducedTemplateParameters(TD, DeducibleParams);
4333 for (unsigned I = 0; I != TemplateParams->size(); ++I) {
4334 // A parameter pack is deducible (to an empty pack).
4335 auto *Param = TemplateParams->getParam(I);
4336 if (Param->isParameterPack() || hasVisibleDefaultArgument(Param))
4337 DeducibleParams[I] = true;
4338 }
4339
4340 if (!DeducibleParams.all()) {
4341 unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count();
4342 Diag(TD->getLocation(), diag::err_deduction_guide_template_not_deducible)
4343 << (NumNonDeducible > 1);
4344 noteNonDeducibleParameters(*this, TemplateParams, DeducibleParams);
4345 }
4346 }
4347
ActOnVarTemplateSpecialization(Scope * S,Declarator & D,TypeSourceInfo * DI,SourceLocation TemplateKWLoc,TemplateParameterList * TemplateParams,StorageClass SC,bool IsPartialSpecialization)4348 DeclResult Sema::ActOnVarTemplateSpecialization(
4349 Scope *S, Declarator &D, TypeSourceInfo *DI, SourceLocation TemplateKWLoc,
4350 TemplateParameterList *TemplateParams, StorageClass SC,
4351 bool IsPartialSpecialization) {
4352 // D must be variable template id.
4353 assert(D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId &&
4354 "Variable template specialization is declared with a template id.");
4355
4356 TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
4357 TemplateArgumentListInfo TemplateArgs =
4358 makeTemplateArgumentListInfo(*this, *TemplateId);
4359 SourceLocation TemplateNameLoc = D.getIdentifierLoc();
4360 SourceLocation LAngleLoc = TemplateId->LAngleLoc;
4361 SourceLocation RAngleLoc = TemplateId->RAngleLoc;
4362
4363 TemplateName Name = TemplateId->Template.get();
4364
4365 // The template-id must name a variable template.
4366 VarTemplateDecl *VarTemplate =
4367 dyn_cast_or_null<VarTemplateDecl>(Name.getAsTemplateDecl());
4368 if (!VarTemplate) {
4369 NamedDecl *FnTemplate;
4370 if (auto *OTS = Name.getAsOverloadedTemplate())
4371 FnTemplate = *OTS->begin();
4372 else
4373 FnTemplate = dyn_cast_or_null<FunctionTemplateDecl>(Name.getAsTemplateDecl());
4374 if (FnTemplate)
4375 return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template_but_method)
4376 << FnTemplate->getDeclName();
4377 return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template)
4378 << IsPartialSpecialization;
4379 }
4380
4381 // Check for unexpanded parameter packs in any of the template arguments.
4382 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
4383 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
4384 UPPC_PartialSpecialization))
4385 return true;
4386
4387 // Check that the template argument list is well-formed for this
4388 // template.
4389 SmallVector<TemplateArgument, 4> Converted;
4390 if (CheckTemplateArgumentList(VarTemplate, TemplateNameLoc, TemplateArgs,
4391 false, Converted,
4392 /*UpdateArgsWithConversions=*/true))
4393 return true;
4394
4395 // Find the variable template (partial) specialization declaration that
4396 // corresponds to these arguments.
4397 if (IsPartialSpecialization) {
4398 if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, VarTemplate,
4399 TemplateArgs.size(), Converted))
4400 return true;
4401
4402 // FIXME: Move these checks to CheckTemplatePartialSpecializationArgs so we
4403 // also do them during instantiation.
4404 if (!Name.isDependent() &&
4405 !TemplateSpecializationType::anyDependentTemplateArguments(TemplateArgs,
4406 Converted)) {
4407 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
4408 << VarTemplate->getDeclName();
4409 IsPartialSpecialization = false;
4410 }
4411
4412 if (isSameAsPrimaryTemplate(VarTemplate->getTemplateParameters(),
4413 Converted) &&
4414 (!Context.getLangOpts().CPlusPlus20 ||
4415 !TemplateParams->hasAssociatedConstraints())) {
4416 // C++ [temp.class.spec]p9b3:
4417 //
4418 // -- The argument list of the specialization shall not be identical
4419 // to the implicit argument list of the primary template.
4420 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
4421 << /*variable template*/ 1
4422 << /*is definition*/(SC != SC_Extern && !CurContext->isRecord())
4423 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
4424 // FIXME: Recover from this by treating the declaration as a redeclaration
4425 // of the primary template.
4426 return true;
4427 }
4428 }
4429
4430 void *InsertPos = nullptr;
4431 VarTemplateSpecializationDecl *PrevDecl = nullptr;
4432
4433 if (IsPartialSpecialization)
4434 PrevDecl = VarTemplate->findPartialSpecialization(Converted, TemplateParams,
4435 InsertPos);
4436 else
4437 PrevDecl = VarTemplate->findSpecialization(Converted, InsertPos);
4438
4439 VarTemplateSpecializationDecl *Specialization = nullptr;
4440
4441 // Check whether we can declare a variable template specialization in
4442 // the current scope.
4443 if (CheckTemplateSpecializationScope(*this, VarTemplate, PrevDecl,
4444 TemplateNameLoc,
4445 IsPartialSpecialization))
4446 return true;
4447
4448 if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) {
4449 // Since the only prior variable template specialization with these
4450 // arguments was referenced but not declared, reuse that
4451 // declaration node as our own, updating its source location and
4452 // the list of outer template parameters to reflect our new declaration.
4453 Specialization = PrevDecl;
4454 Specialization->setLocation(TemplateNameLoc);
4455 PrevDecl = nullptr;
4456 } else if (IsPartialSpecialization) {
4457 // Create a new class template partial specialization declaration node.
4458 VarTemplatePartialSpecializationDecl *PrevPartial =
4459 cast_or_null<VarTemplatePartialSpecializationDecl>(PrevDecl);
4460 VarTemplatePartialSpecializationDecl *Partial =
4461 VarTemplatePartialSpecializationDecl::Create(
4462 Context, VarTemplate->getDeclContext(), TemplateKWLoc,
4463 TemplateNameLoc, TemplateParams, VarTemplate, DI->getType(), DI, SC,
4464 Converted, TemplateArgs);
4465
4466 if (!PrevPartial)
4467 VarTemplate->AddPartialSpecialization(Partial, InsertPos);
4468 Specialization = Partial;
4469
4470 // If we are providing an explicit specialization of a member variable
4471 // template specialization, make a note of that.
4472 if (PrevPartial && PrevPartial->getInstantiatedFromMember())
4473 PrevPartial->setMemberSpecialization();
4474
4475 CheckTemplatePartialSpecialization(Partial);
4476 } else {
4477 // Create a new class template specialization declaration node for
4478 // this explicit specialization or friend declaration.
4479 Specialization = VarTemplateSpecializationDecl::Create(
4480 Context, VarTemplate->getDeclContext(), TemplateKWLoc, TemplateNameLoc,
4481 VarTemplate, DI->getType(), DI, SC, Converted);
4482 Specialization->setTemplateArgsInfo(TemplateArgs);
4483
4484 if (!PrevDecl)
4485 VarTemplate->AddSpecialization(Specialization, InsertPos);
4486 }
4487
4488 // C++ [temp.expl.spec]p6:
4489 // If a template, a member template or the member of a class template is
4490 // explicitly specialized then that specialization shall be declared
4491 // before the first use of that specialization that would cause an implicit
4492 // instantiation to take place, in every translation unit in which such a
4493 // use occurs; no diagnostic is required.
4494 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
4495 bool Okay = false;
4496 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
4497 // Is there any previous explicit specialization declaration?
4498 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
4499 Okay = true;
4500 break;
4501 }
4502 }
4503
4504 if (!Okay) {
4505 SourceRange Range(TemplateNameLoc, RAngleLoc);
4506 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
4507 << Name << Range;
4508
4509 Diag(PrevDecl->getPointOfInstantiation(),
4510 diag::note_instantiation_required_here)
4511 << (PrevDecl->getTemplateSpecializationKind() !=
4512 TSK_ImplicitInstantiation);
4513 return true;
4514 }
4515 }
4516
4517 Specialization->setTemplateKeywordLoc(TemplateKWLoc);
4518 Specialization->setLexicalDeclContext(CurContext);
4519
4520 // Add the specialization into its lexical context, so that it can
4521 // be seen when iterating through the list of declarations in that
4522 // context. However, specializations are not found by name lookup.
4523 CurContext->addDecl(Specialization);
4524
4525 // Note that this is an explicit specialization.
4526 Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
4527
4528 if (PrevDecl) {
4529 // Check that this isn't a redefinition of this specialization,
4530 // merging with previous declarations.
4531 LookupResult PrevSpec(*this, GetNameForDeclarator(D), LookupOrdinaryName,
4532 forRedeclarationInCurContext());
4533 PrevSpec.addDecl(PrevDecl);
4534 D.setRedeclaration(CheckVariableDeclaration(Specialization, PrevSpec));
4535 } else if (Specialization->isStaticDataMember() &&
4536 Specialization->isOutOfLine()) {
4537 Specialization->setAccess(VarTemplate->getAccess());
4538 }
4539
4540 return Specialization;
4541 }
4542
4543 namespace {
4544 /// A partial specialization whose template arguments have matched
4545 /// a given template-id.
4546 struct PartialSpecMatchResult {
4547 VarTemplatePartialSpecializationDecl *Partial;
4548 TemplateArgumentList *Args;
4549 };
4550 } // end anonymous namespace
4551
4552 DeclResult
CheckVarTemplateId(VarTemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation TemplateNameLoc,const TemplateArgumentListInfo & TemplateArgs)4553 Sema::CheckVarTemplateId(VarTemplateDecl *Template, SourceLocation TemplateLoc,
4554 SourceLocation TemplateNameLoc,
4555 const TemplateArgumentListInfo &TemplateArgs) {
4556 assert(Template && "A variable template id without template?");
4557
4558 // Check that the template argument list is well-formed for this template.
4559 SmallVector<TemplateArgument, 4> Converted;
4560 if (CheckTemplateArgumentList(
4561 Template, TemplateNameLoc,
4562 const_cast<TemplateArgumentListInfo &>(TemplateArgs), false,
4563 Converted, /*UpdateArgsWithConversions=*/true))
4564 return true;
4565
4566 // Produce a placeholder value if the specialization is dependent.
4567 if (Template->getDeclContext()->isDependentContext() ||
4568 TemplateSpecializationType::anyDependentTemplateArguments(TemplateArgs,
4569 Converted))
4570 return DeclResult();
4571
4572 // Find the variable template specialization declaration that
4573 // corresponds to these arguments.
4574 void *InsertPos = nullptr;
4575 if (VarTemplateSpecializationDecl *Spec = Template->findSpecialization(
4576 Converted, InsertPos)) {
4577 checkSpecializationReachability(TemplateNameLoc, Spec);
4578 // If we already have a variable template specialization, return it.
4579 return Spec;
4580 }
4581
4582 // This is the first time we have referenced this variable template
4583 // specialization. Create the canonical declaration and add it to
4584 // the set of specializations, based on the closest partial specialization
4585 // that it represents. That is,
4586 VarDecl *InstantiationPattern = Template->getTemplatedDecl();
4587 TemplateArgumentList TemplateArgList(TemplateArgumentList::OnStack,
4588 Converted);
4589 TemplateArgumentList *InstantiationArgs = &TemplateArgList;
4590 bool AmbiguousPartialSpec = false;
4591 typedef PartialSpecMatchResult MatchResult;
4592 SmallVector<MatchResult, 4> Matched;
4593 SourceLocation PointOfInstantiation = TemplateNameLoc;
4594 TemplateSpecCandidateSet FailedCandidates(PointOfInstantiation,
4595 /*ForTakingAddress=*/false);
4596
4597 // 1. Attempt to find the closest partial specialization that this
4598 // specializes, if any.
4599 // TODO: Unify with InstantiateClassTemplateSpecialization()?
4600 // Perhaps better after unification of DeduceTemplateArguments() and
4601 // getMoreSpecializedPartialSpecialization().
4602 SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs;
4603 Template->getPartialSpecializations(PartialSpecs);
4604
4605 for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) {
4606 VarTemplatePartialSpecializationDecl *Partial = PartialSpecs[I];
4607 TemplateDeductionInfo Info(FailedCandidates.getLocation());
4608
4609 if (TemplateDeductionResult Result =
4610 DeduceTemplateArguments(Partial, TemplateArgList, Info)) {
4611 // Store the failed-deduction information for use in diagnostics, later.
4612 // TODO: Actually use the failed-deduction info?
4613 FailedCandidates.addCandidate().set(
4614 DeclAccessPair::make(Template, AS_public), Partial,
4615 MakeDeductionFailureInfo(Context, Result, Info));
4616 (void)Result;
4617 } else {
4618 Matched.push_back(PartialSpecMatchResult());
4619 Matched.back().Partial = Partial;
4620 Matched.back().Args = Info.take();
4621 }
4622 }
4623
4624 if (Matched.size() >= 1) {
4625 SmallVector<MatchResult, 4>::iterator Best = Matched.begin();
4626 if (Matched.size() == 1) {
4627 // -- If exactly one matching specialization is found, the
4628 // instantiation is generated from that specialization.
4629 // We don't need to do anything for this.
4630 } else {
4631 // -- If more than one matching specialization is found, the
4632 // partial order rules (14.5.4.2) are used to determine
4633 // whether one of the specializations is more specialized
4634 // than the others. If none of the specializations is more
4635 // specialized than all of the other matching
4636 // specializations, then the use of the variable template is
4637 // ambiguous and the program is ill-formed.
4638 for (SmallVector<MatchResult, 4>::iterator P = Best + 1,
4639 PEnd = Matched.end();
4640 P != PEnd; ++P) {
4641 if (getMoreSpecializedPartialSpecialization(P->Partial, Best->Partial,
4642 PointOfInstantiation) ==
4643 P->Partial)
4644 Best = P;
4645 }
4646
4647 // Determine if the best partial specialization is more specialized than
4648 // the others.
4649 for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(),
4650 PEnd = Matched.end();
4651 P != PEnd; ++P) {
4652 if (P != Best && getMoreSpecializedPartialSpecialization(
4653 P->Partial, Best->Partial,
4654 PointOfInstantiation) != Best->Partial) {
4655 AmbiguousPartialSpec = true;
4656 break;
4657 }
4658 }
4659 }
4660
4661 // Instantiate using the best variable template partial specialization.
4662 InstantiationPattern = Best->Partial;
4663 InstantiationArgs = Best->Args;
4664 } else {
4665 // -- If no match is found, the instantiation is generated
4666 // from the primary template.
4667 // InstantiationPattern = Template->getTemplatedDecl();
4668 }
4669
4670 // 2. Create the canonical declaration.
4671 // Note that we do not instantiate a definition until we see an odr-use
4672 // in DoMarkVarDeclReferenced().
4673 // FIXME: LateAttrs et al.?
4674 VarTemplateSpecializationDecl *Decl = BuildVarTemplateInstantiation(
4675 Template, InstantiationPattern, *InstantiationArgs, TemplateArgs,
4676 Converted, TemplateNameLoc /*, LateAttrs, StartingScope*/);
4677 if (!Decl)
4678 return true;
4679
4680 if (AmbiguousPartialSpec) {
4681 // Partial ordering did not produce a clear winner. Complain.
4682 Decl->setInvalidDecl();
4683 Diag(PointOfInstantiation, diag::err_partial_spec_ordering_ambiguous)
4684 << Decl;
4685
4686 // Print the matching partial specializations.
4687 for (MatchResult P : Matched)
4688 Diag(P.Partial->getLocation(), diag::note_partial_spec_match)
4689 << getTemplateArgumentBindingsText(P.Partial->getTemplateParameters(),
4690 *P.Args);
4691 return true;
4692 }
4693
4694 if (VarTemplatePartialSpecializationDecl *D =
4695 dyn_cast<VarTemplatePartialSpecializationDecl>(InstantiationPattern))
4696 Decl->setInstantiationOf(D, InstantiationArgs);
4697
4698 checkSpecializationReachability(TemplateNameLoc, Decl);
4699
4700 assert(Decl && "No variable template specialization?");
4701 return Decl;
4702 }
4703
4704 ExprResult
CheckVarTemplateId(const CXXScopeSpec & SS,const DeclarationNameInfo & NameInfo,VarTemplateDecl * Template,SourceLocation TemplateLoc,const TemplateArgumentListInfo * TemplateArgs)4705 Sema::CheckVarTemplateId(const CXXScopeSpec &SS,
4706 const DeclarationNameInfo &NameInfo,
4707 VarTemplateDecl *Template, SourceLocation TemplateLoc,
4708 const TemplateArgumentListInfo *TemplateArgs) {
4709
4710 DeclResult Decl = CheckVarTemplateId(Template, TemplateLoc, NameInfo.getLoc(),
4711 *TemplateArgs);
4712 if (Decl.isInvalid())
4713 return ExprError();
4714
4715 if (!Decl.get())
4716 return ExprResult();
4717
4718 VarDecl *Var = cast<VarDecl>(Decl.get());
4719 if (!Var->getTemplateSpecializationKind())
4720 Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation,
4721 NameInfo.getLoc());
4722
4723 // Build an ordinary singleton decl ref.
4724 return BuildDeclarationNameExpr(SS, NameInfo, Var,
4725 /*FoundD=*/nullptr, TemplateArgs);
4726 }
4727
diagnoseMissingTemplateArguments(TemplateName Name,SourceLocation Loc)4728 void Sema::diagnoseMissingTemplateArguments(TemplateName Name,
4729 SourceLocation Loc) {
4730 Diag(Loc, diag::err_template_missing_args)
4731 << (int)getTemplateNameKindForDiagnostics(Name) << Name;
4732 if (TemplateDecl *TD = Name.getAsTemplateDecl()) {
4733 Diag(TD->getLocation(), diag::note_template_decl_here)
4734 << TD->getTemplateParameters()->getSourceRange();
4735 }
4736 }
4737
4738 ExprResult
CheckConceptTemplateId(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,const DeclarationNameInfo & ConceptNameInfo,NamedDecl * FoundDecl,ConceptDecl * NamedConcept,const TemplateArgumentListInfo * TemplateArgs)4739 Sema::CheckConceptTemplateId(const CXXScopeSpec &SS,
4740 SourceLocation TemplateKWLoc,
4741 const DeclarationNameInfo &ConceptNameInfo,
4742 NamedDecl *FoundDecl,
4743 ConceptDecl *NamedConcept,
4744 const TemplateArgumentListInfo *TemplateArgs) {
4745 assert(NamedConcept && "A concept template id without a template?");
4746
4747 llvm::SmallVector<TemplateArgument, 4> Converted;
4748 if (CheckTemplateArgumentList(NamedConcept, ConceptNameInfo.getLoc(),
4749 const_cast<TemplateArgumentListInfo&>(*TemplateArgs),
4750 /*PartialTemplateArgs=*/false, Converted,
4751 /*UpdateArgsWithConversions=*/false))
4752 return ExprError();
4753
4754 ConstraintSatisfaction Satisfaction;
4755 bool AreArgsDependent =
4756 TemplateSpecializationType::anyDependentTemplateArguments(*TemplateArgs,
4757 Converted);
4758 if (!AreArgsDependent &&
4759 CheckConstraintSatisfaction(
4760 NamedConcept, {NamedConcept->getConstraintExpr()}, Converted,
4761 SourceRange(SS.isSet() ? SS.getBeginLoc() : ConceptNameInfo.getLoc(),
4762 TemplateArgs->getRAngleLoc()),
4763 Satisfaction))
4764 return ExprError();
4765
4766 return ConceptSpecializationExpr::Create(Context,
4767 SS.isSet() ? SS.getWithLocInContext(Context) : NestedNameSpecifierLoc{},
4768 TemplateKWLoc, ConceptNameInfo, FoundDecl, NamedConcept,
4769 ASTTemplateArgumentListInfo::Create(Context, *TemplateArgs), Converted,
4770 AreArgsDependent ? nullptr : &Satisfaction);
4771 }
4772
BuildTemplateIdExpr(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,LookupResult & R,bool RequiresADL,const TemplateArgumentListInfo * TemplateArgs)4773 ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
4774 SourceLocation TemplateKWLoc,
4775 LookupResult &R,
4776 bool RequiresADL,
4777 const TemplateArgumentListInfo *TemplateArgs) {
4778 // FIXME: Can we do any checking at this point? I guess we could check the
4779 // template arguments that we have against the template name, if the template
4780 // name refers to a single template. That's not a terribly common case,
4781 // though.
4782 // foo<int> could identify a single function unambiguously
4783 // This approach does NOT work, since f<int>(1);
4784 // gets resolved prior to resorting to overload resolution
4785 // i.e., template<class T> void f(double);
4786 // vs template<class T, class U> void f(U);
4787
4788 // These should be filtered out by our callers.
4789 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
4790
4791 // Non-function templates require a template argument list.
4792 if (auto *TD = R.getAsSingle<TemplateDecl>()) {
4793 if (!TemplateArgs && !isa<FunctionTemplateDecl>(TD)) {
4794 diagnoseMissingTemplateArguments(TemplateName(TD), R.getNameLoc());
4795 return ExprError();
4796 }
4797 }
4798
4799 // In C++1y, check variable template ids.
4800 if (R.getAsSingle<VarTemplateDecl>()) {
4801 ExprResult Res = CheckVarTemplateId(SS, R.getLookupNameInfo(),
4802 R.getAsSingle<VarTemplateDecl>(),
4803 TemplateKWLoc, TemplateArgs);
4804 if (Res.isInvalid() || Res.isUsable())
4805 return Res;
4806 // Result is dependent. Carry on to build an UnresolvedLookupEpxr.
4807 }
4808
4809 if (R.getAsSingle<ConceptDecl>()) {
4810 return CheckConceptTemplateId(SS, TemplateKWLoc, R.getLookupNameInfo(),
4811 R.getFoundDecl(),
4812 R.getAsSingle<ConceptDecl>(), TemplateArgs);
4813 }
4814
4815 // We don't want lookup warnings at this point.
4816 R.suppressDiagnostics();
4817
4818 UnresolvedLookupExpr *ULE
4819 = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
4820 SS.getWithLocInContext(Context),
4821 TemplateKWLoc,
4822 R.getLookupNameInfo(),
4823 RequiresADL, TemplateArgs,
4824 R.begin(), R.end());
4825
4826 return ULE;
4827 }
4828
4829 // We actually only call this from template instantiation.
4830 ExprResult
BuildQualifiedTemplateIdExpr(CXXScopeSpec & SS,SourceLocation TemplateKWLoc,const DeclarationNameInfo & NameInfo,const TemplateArgumentListInfo * TemplateArgs)4831 Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
4832 SourceLocation TemplateKWLoc,
4833 const DeclarationNameInfo &NameInfo,
4834 const TemplateArgumentListInfo *TemplateArgs) {
4835
4836 assert(TemplateArgs || TemplateKWLoc.isValid());
4837 DeclContext *DC;
4838 if (!(DC = computeDeclContext(SS, false)) ||
4839 DC->isDependentContext() ||
4840 RequireCompleteDeclContext(SS, DC))
4841 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
4842
4843 bool MemberOfUnknownSpecialization;
4844 LookupResult R(*this, NameInfo, LookupOrdinaryName);
4845 if (LookupTemplateName(R, (Scope *)nullptr, SS, QualType(),
4846 /*Entering*/false, MemberOfUnknownSpecialization,
4847 TemplateKWLoc))
4848 return ExprError();
4849
4850 if (R.isAmbiguous())
4851 return ExprError();
4852
4853 if (R.empty()) {
4854 Diag(NameInfo.getLoc(), diag::err_no_member)
4855 << NameInfo.getName() << DC << SS.getRange();
4856 return ExprError();
4857 }
4858
4859 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
4860 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
4861 << SS.getScopeRep()
4862 << NameInfo.getName().getAsString() << SS.getRange();
4863 Diag(Temp->getLocation(), diag::note_referenced_class_template);
4864 return ExprError();
4865 }
4866
4867 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs);
4868 }
4869
4870 /// Form a template name from a name that is syntactically required to name a
4871 /// template, either due to use of the 'template' keyword or because a name in
4872 /// this syntactic context is assumed to name a template (C++ [temp.names]p2-4).
4873 ///
4874 /// This action forms a template name given the name of the template and its
4875 /// optional scope specifier. This is used when the 'template' keyword is used
4876 /// or when the parsing context unambiguously treats a following '<' as
4877 /// introducing a template argument list. Note that this may produce a
4878 /// non-dependent template name if we can perform the lookup now and identify
4879 /// the named template.
4880 ///
4881 /// For example, given "x.MetaFun::template apply", the scope specifier
4882 /// \p SS will be "MetaFun::", \p TemplateKWLoc contains the location
4883 /// of the "template" keyword, and "apply" is the \p Name.
ActOnTemplateName(Scope * S,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,const UnqualifiedId & Name,ParsedType ObjectType,bool EnteringContext,TemplateTy & Result,bool AllowInjectedClassName)4884 TemplateNameKind Sema::ActOnTemplateName(Scope *S,
4885 CXXScopeSpec &SS,
4886 SourceLocation TemplateKWLoc,
4887 const UnqualifiedId &Name,
4888 ParsedType ObjectType,
4889 bool EnteringContext,
4890 TemplateTy &Result,
4891 bool AllowInjectedClassName) {
4892 if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent())
4893 Diag(TemplateKWLoc,
4894 getLangOpts().CPlusPlus11 ?
4895 diag::warn_cxx98_compat_template_outside_of_template :
4896 diag::ext_template_outside_of_template)
4897 << FixItHint::CreateRemoval(TemplateKWLoc);
4898
4899 if (SS.isInvalid())
4900 return TNK_Non_template;
4901
4902 // Figure out where isTemplateName is going to look.
4903 DeclContext *LookupCtx = nullptr;
4904 if (SS.isNotEmpty())
4905 LookupCtx = computeDeclContext(SS, EnteringContext);
4906 else if (ObjectType)
4907 LookupCtx = computeDeclContext(GetTypeFromParser(ObjectType));
4908
4909 // C++0x [temp.names]p5:
4910 // If a name prefixed by the keyword template is not the name of
4911 // a template, the program is ill-formed. [Note: the keyword
4912 // template may not be applied to non-template members of class
4913 // templates. -end note ] [ Note: as is the case with the
4914 // typename prefix, the template prefix is allowed in cases
4915 // where it is not strictly necessary; i.e., when the
4916 // nested-name-specifier or the expression on the left of the ->
4917 // or . is not dependent on a template-parameter, or the use
4918 // does not appear in the scope of a template. -end note]
4919 //
4920 // Note: C++03 was more strict here, because it banned the use of
4921 // the "template" keyword prior to a template-name that was not a
4922 // dependent name. C++ DR468 relaxed this requirement (the
4923 // "template" keyword is now permitted). We follow the C++0x
4924 // rules, even in C++03 mode with a warning, retroactively applying the DR.
4925 bool MemberOfUnknownSpecialization;
4926 TemplateNameKind TNK = isTemplateName(S, SS, TemplateKWLoc.isValid(), Name,
4927 ObjectType, EnteringContext, Result,
4928 MemberOfUnknownSpecialization);
4929 if (TNK != TNK_Non_template) {
4930 // We resolved this to a (non-dependent) template name. Return it.
4931 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx);
4932 if (!AllowInjectedClassName && SS.isNotEmpty() && LookupRD &&
4933 Name.getKind() == UnqualifiedIdKind::IK_Identifier &&
4934 Name.Identifier && LookupRD->getIdentifier() == Name.Identifier) {
4935 // C++14 [class.qual]p2:
4936 // In a lookup in which function names are not ignored and the
4937 // nested-name-specifier nominates a class C, if the name specified
4938 // [...] is the injected-class-name of C, [...] the name is instead
4939 // considered to name the constructor
4940 //
4941 // We don't get here if naming the constructor would be valid, so we
4942 // just reject immediately and recover by treating the
4943 // injected-class-name as naming the template.
4944 Diag(Name.getBeginLoc(),
4945 diag::ext_out_of_line_qualified_id_type_names_constructor)
4946 << Name.Identifier
4947 << 0 /*injected-class-name used as template name*/
4948 << TemplateKWLoc.isValid();
4949 }
4950 return TNK;
4951 }
4952
4953 if (!MemberOfUnknownSpecialization) {
4954 // Didn't find a template name, and the lookup wasn't dependent.
4955 // Do the lookup again to determine if this is a "nothing found" case or
4956 // a "not a template" case. FIXME: Refactor isTemplateName so we don't
4957 // need to do this.
4958 DeclarationNameInfo DNI = GetNameFromUnqualifiedId(Name);
4959 LookupResult R(*this, DNI.getName(), Name.getBeginLoc(),
4960 LookupOrdinaryName);
4961 bool MOUS;
4962 // Tell LookupTemplateName that we require a template so that it diagnoses
4963 // cases where it finds a non-template.
4964 RequiredTemplateKind RTK = TemplateKWLoc.isValid()
4965 ? RequiredTemplateKind(TemplateKWLoc)
4966 : TemplateNameIsRequired;
4967 if (!LookupTemplateName(R, S, SS, ObjectType.get(), EnteringContext, MOUS,
4968 RTK, nullptr, /*AllowTypoCorrection=*/false) &&
4969 !R.isAmbiguous()) {
4970 if (LookupCtx)
4971 Diag(Name.getBeginLoc(), diag::err_no_member)
4972 << DNI.getName() << LookupCtx << SS.getRange();
4973 else
4974 Diag(Name.getBeginLoc(), diag::err_undeclared_use)
4975 << DNI.getName() << SS.getRange();
4976 }
4977 return TNK_Non_template;
4978 }
4979
4980 NestedNameSpecifier *Qualifier = SS.getScopeRep();
4981
4982 switch (Name.getKind()) {
4983 case UnqualifiedIdKind::IK_Identifier:
4984 Result = TemplateTy::make(
4985 Context.getDependentTemplateName(Qualifier, Name.Identifier));
4986 return TNK_Dependent_template_name;
4987
4988 case UnqualifiedIdKind::IK_OperatorFunctionId:
4989 Result = TemplateTy::make(Context.getDependentTemplateName(
4990 Qualifier, Name.OperatorFunctionId.Operator));
4991 return TNK_Function_template;
4992
4993 case UnqualifiedIdKind::IK_LiteralOperatorId:
4994 // This is a kind of template name, but can never occur in a dependent
4995 // scope (literal operators can only be declared at namespace scope).
4996 break;
4997
4998 default:
4999 break;
5000 }
5001
5002 // This name cannot possibly name a dependent template. Diagnose this now
5003 // rather than building a dependent template name that can never be valid.
5004 Diag(Name.getBeginLoc(),
5005 diag::err_template_kw_refers_to_dependent_non_template)
5006 << GetNameFromUnqualifiedId(Name).getName() << Name.getSourceRange()
5007 << TemplateKWLoc.isValid() << TemplateKWLoc;
5008 return TNK_Non_template;
5009 }
5010
CheckTemplateTypeArgument(TemplateTypeParmDecl * Param,TemplateArgumentLoc & AL,SmallVectorImpl<TemplateArgument> & Converted)5011 bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
5012 TemplateArgumentLoc &AL,
5013 SmallVectorImpl<TemplateArgument> &Converted) {
5014 const TemplateArgument &Arg = AL.getArgument();
5015 QualType ArgType;
5016 TypeSourceInfo *TSI = nullptr;
5017
5018 // Check template type parameter.
5019 switch(Arg.getKind()) {
5020 case TemplateArgument::Type:
5021 // C++ [temp.arg.type]p1:
5022 // A template-argument for a template-parameter which is a
5023 // type shall be a type-id.
5024 ArgType = Arg.getAsType();
5025 TSI = AL.getTypeSourceInfo();
5026 break;
5027 case TemplateArgument::Template:
5028 case TemplateArgument::TemplateExpansion: {
5029 // We have a template type parameter but the template argument
5030 // is a template without any arguments.
5031 SourceRange SR = AL.getSourceRange();
5032 TemplateName Name = Arg.getAsTemplateOrTemplatePattern();
5033 diagnoseMissingTemplateArguments(Name, SR.getEnd());
5034 return true;
5035 }
5036 case TemplateArgument::Expression: {
5037 // We have a template type parameter but the template argument is an
5038 // expression; see if maybe it is missing the "typename" keyword.
5039 CXXScopeSpec SS;
5040 DeclarationNameInfo NameInfo;
5041
5042 if (DependentScopeDeclRefExpr *ArgExpr =
5043 dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) {
5044 SS.Adopt(ArgExpr->getQualifierLoc());
5045 NameInfo = ArgExpr->getNameInfo();
5046 } else if (CXXDependentScopeMemberExpr *ArgExpr =
5047 dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) {
5048 if (ArgExpr->isImplicitAccess()) {
5049 SS.Adopt(ArgExpr->getQualifierLoc());
5050 NameInfo = ArgExpr->getMemberNameInfo();
5051 }
5052 }
5053
5054 if (auto *II = NameInfo.getName().getAsIdentifierInfo()) {
5055 LookupResult Result(*this, NameInfo, LookupOrdinaryName);
5056 LookupParsedName(Result, CurScope, &SS);
5057
5058 if (Result.getAsSingle<TypeDecl>() ||
5059 Result.getResultKind() ==
5060 LookupResult::NotFoundInCurrentInstantiation) {
5061 assert(SS.getScopeRep() && "dependent scope expr must has a scope!");
5062 // Suggest that the user add 'typename' before the NNS.
5063 SourceLocation Loc = AL.getSourceRange().getBegin();
5064 Diag(Loc, getLangOpts().MSVCCompat
5065 ? diag::ext_ms_template_type_arg_missing_typename
5066 : diag::err_template_arg_must_be_type_suggest)
5067 << FixItHint::CreateInsertion(Loc, "typename ");
5068 Diag(Param->getLocation(), diag::note_template_param_here);
5069
5070 // Recover by synthesizing a type using the location information that we
5071 // already have.
5072 ArgType =
5073 Context.getDependentNameType(ETK_Typename, SS.getScopeRep(), II);
5074 TypeLocBuilder TLB;
5075 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(ArgType);
5076 TL.setElaboratedKeywordLoc(SourceLocation(/*synthesized*/));
5077 TL.setQualifierLoc(SS.getWithLocInContext(Context));
5078 TL.setNameLoc(NameInfo.getLoc());
5079 TSI = TLB.getTypeSourceInfo(Context, ArgType);
5080
5081 // Overwrite our input TemplateArgumentLoc so that we can recover
5082 // properly.
5083 AL = TemplateArgumentLoc(TemplateArgument(ArgType),
5084 TemplateArgumentLocInfo(TSI));
5085
5086 break;
5087 }
5088 }
5089 // fallthrough
5090 LLVM_FALLTHROUGH;
5091 }
5092 default: {
5093 // We have a template type parameter but the template argument
5094 // is not a type.
5095 SourceRange SR = AL.getSourceRange();
5096 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
5097 Diag(Param->getLocation(), diag::note_template_param_here);
5098
5099 return true;
5100 }
5101 }
5102
5103 if (CheckTemplateArgument(TSI))
5104 return true;
5105
5106 // Add the converted template type argument.
5107 ArgType = Context.getCanonicalType(ArgType);
5108
5109 // Objective-C ARC:
5110 // If an explicitly-specified template argument type is a lifetime type
5111 // with no lifetime qualifier, the __strong lifetime qualifier is inferred.
5112 if (getLangOpts().ObjCAutoRefCount &&
5113 ArgType->isObjCLifetimeType() &&
5114 !ArgType.getObjCLifetime()) {
5115 Qualifiers Qs;
5116 Qs.setObjCLifetime(Qualifiers::OCL_Strong);
5117 ArgType = Context.getQualifiedType(ArgType, Qs);
5118 }
5119
5120 Converted.push_back(TemplateArgument(ArgType));
5121 return false;
5122 }
5123
5124 /// Substitute template arguments into the default template argument for
5125 /// the given template type parameter.
5126 ///
5127 /// \param SemaRef the semantic analysis object for which we are performing
5128 /// the substitution.
5129 ///
5130 /// \param Template the template that we are synthesizing template arguments
5131 /// for.
5132 ///
5133 /// \param TemplateLoc the location of the template name that started the
5134 /// template-id we are checking.
5135 ///
5136 /// \param RAngleLoc the location of the right angle bracket ('>') that
5137 /// terminates the template-id.
5138 ///
5139 /// \param Param the template template parameter whose default we are
5140 /// substituting into.
5141 ///
5142 /// \param Converted the list of template arguments provided for template
5143 /// parameters that precede \p Param in the template parameter list.
5144 /// \returns the substituted template argument, or NULL if an error occurred.
5145 static TypeSourceInfo *
SubstDefaultTemplateArgument(Sema & SemaRef,TemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,TemplateTypeParmDecl * Param,SmallVectorImpl<TemplateArgument> & Converted)5146 SubstDefaultTemplateArgument(Sema &SemaRef,
5147 TemplateDecl *Template,
5148 SourceLocation TemplateLoc,
5149 SourceLocation RAngleLoc,
5150 TemplateTypeParmDecl *Param,
5151 SmallVectorImpl<TemplateArgument> &Converted) {
5152 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
5153
5154 // If the argument type is dependent, instantiate it now based
5155 // on the previously-computed template arguments.
5156 if (ArgType->getType()->isInstantiationDependentType()) {
5157 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
5158 Param, Template, Converted,
5159 SourceRange(TemplateLoc, RAngleLoc));
5160 if (Inst.isInvalid())
5161 return nullptr;
5162
5163 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
5164
5165 // Only substitute for the innermost template argument list.
5166 MultiLevelTemplateArgumentList TemplateArgLists;
5167 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
5168 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
5169 TemplateArgLists.addOuterTemplateArguments(None);
5170
5171 bool ForLambdaCallOperator = false;
5172 if (const auto *Rec = dyn_cast<CXXRecordDecl>(Template->getDeclContext()))
5173 ForLambdaCallOperator = Rec->isLambda();
5174 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext(),
5175 !ForLambdaCallOperator);
5176 ArgType =
5177 SemaRef.SubstType(ArgType, TemplateArgLists,
5178 Param->getDefaultArgumentLoc(), Param->getDeclName());
5179 }
5180
5181 return ArgType;
5182 }
5183
5184 /// Substitute template arguments into the default template argument for
5185 /// the given non-type template parameter.
5186 ///
5187 /// \param SemaRef the semantic analysis object for which we are performing
5188 /// the substitution.
5189 ///
5190 /// \param Template the template that we are synthesizing template arguments
5191 /// for.
5192 ///
5193 /// \param TemplateLoc the location of the template name that started the
5194 /// template-id we are checking.
5195 ///
5196 /// \param RAngleLoc the location of the right angle bracket ('>') that
5197 /// terminates the template-id.
5198 ///
5199 /// \param Param the non-type template parameter whose default we are
5200 /// substituting into.
5201 ///
5202 /// \param Converted the list of template arguments provided for template
5203 /// parameters that precede \p Param in the template parameter list.
5204 ///
5205 /// \returns the substituted template argument, or NULL if an error occurred.
5206 static ExprResult
SubstDefaultTemplateArgument(Sema & SemaRef,TemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,NonTypeTemplateParmDecl * Param,SmallVectorImpl<TemplateArgument> & Converted)5207 SubstDefaultTemplateArgument(Sema &SemaRef,
5208 TemplateDecl *Template,
5209 SourceLocation TemplateLoc,
5210 SourceLocation RAngleLoc,
5211 NonTypeTemplateParmDecl *Param,
5212 SmallVectorImpl<TemplateArgument> &Converted) {
5213 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
5214 Param, Template, Converted,
5215 SourceRange(TemplateLoc, RAngleLoc));
5216 if (Inst.isInvalid())
5217 return ExprError();
5218
5219 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
5220
5221 // Only substitute for the innermost template argument list.
5222 MultiLevelTemplateArgumentList TemplateArgLists;
5223 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
5224 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
5225 TemplateArgLists.addOuterTemplateArguments(None);
5226
5227 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
5228 EnterExpressionEvaluationContext ConstantEvaluated(
5229 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
5230 return SemaRef.SubstExpr(Param->getDefaultArgument(), TemplateArgLists);
5231 }
5232
5233 /// Substitute template arguments into the default template argument for
5234 /// the given template template parameter.
5235 ///
5236 /// \param SemaRef the semantic analysis object for which we are performing
5237 /// the substitution.
5238 ///
5239 /// \param Template the template that we are synthesizing template arguments
5240 /// for.
5241 ///
5242 /// \param TemplateLoc the location of the template name that started the
5243 /// template-id we are checking.
5244 ///
5245 /// \param RAngleLoc the location of the right angle bracket ('>') that
5246 /// terminates the template-id.
5247 ///
5248 /// \param Param the template template parameter whose default we are
5249 /// substituting into.
5250 ///
5251 /// \param Converted the list of template arguments provided for template
5252 /// parameters that precede \p Param in the template parameter list.
5253 ///
5254 /// \param QualifierLoc Will be set to the nested-name-specifier (with
5255 /// source-location information) that precedes the template name.
5256 ///
5257 /// \returns the substituted template argument, or NULL if an error occurred.
5258 static TemplateName
SubstDefaultTemplateArgument(Sema & SemaRef,TemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,TemplateTemplateParmDecl * Param,SmallVectorImpl<TemplateArgument> & Converted,NestedNameSpecifierLoc & QualifierLoc)5259 SubstDefaultTemplateArgument(Sema &SemaRef,
5260 TemplateDecl *Template,
5261 SourceLocation TemplateLoc,
5262 SourceLocation RAngleLoc,
5263 TemplateTemplateParmDecl *Param,
5264 SmallVectorImpl<TemplateArgument> &Converted,
5265 NestedNameSpecifierLoc &QualifierLoc) {
5266 Sema::InstantiatingTemplate Inst(
5267 SemaRef, TemplateLoc, TemplateParameter(Param), Template, Converted,
5268 SourceRange(TemplateLoc, RAngleLoc));
5269 if (Inst.isInvalid())
5270 return TemplateName();
5271
5272 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
5273
5274 // Only substitute for the innermost template argument list.
5275 MultiLevelTemplateArgumentList TemplateArgLists;
5276 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
5277 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
5278 TemplateArgLists.addOuterTemplateArguments(None);
5279
5280 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
5281 // Substitute into the nested-name-specifier first,
5282 QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc();
5283 if (QualifierLoc) {
5284 QualifierLoc =
5285 SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgLists);
5286 if (!QualifierLoc)
5287 return TemplateName();
5288 }
5289
5290 return SemaRef.SubstTemplateName(
5291 QualifierLoc,
5292 Param->getDefaultArgument().getArgument().getAsTemplate(),
5293 Param->getDefaultArgument().getTemplateNameLoc(),
5294 TemplateArgLists);
5295 }
5296
5297 /// If the given template parameter has a default template
5298 /// argument, substitute into that default template argument and
5299 /// return the corresponding template argument.
5300 TemplateArgumentLoc
SubstDefaultTemplateArgumentIfAvailable(TemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,Decl * Param,SmallVectorImpl<TemplateArgument> & Converted,bool & HasDefaultArg)5301 Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
5302 SourceLocation TemplateLoc,
5303 SourceLocation RAngleLoc,
5304 Decl *Param,
5305 SmallVectorImpl<TemplateArgument>
5306 &Converted,
5307 bool &HasDefaultArg) {
5308 HasDefaultArg = false;
5309
5310 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
5311 if (!hasReachableDefaultArgument(TypeParm))
5312 return TemplateArgumentLoc();
5313
5314 HasDefaultArg = true;
5315 TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
5316 TemplateLoc,
5317 RAngleLoc,
5318 TypeParm,
5319 Converted);
5320 if (DI)
5321 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
5322
5323 return TemplateArgumentLoc();
5324 }
5325
5326 if (NonTypeTemplateParmDecl *NonTypeParm
5327 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
5328 if (!hasReachableDefaultArgument(NonTypeParm))
5329 return TemplateArgumentLoc();
5330
5331 HasDefaultArg = true;
5332 ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
5333 TemplateLoc,
5334 RAngleLoc,
5335 NonTypeParm,
5336 Converted);
5337 if (Arg.isInvalid())
5338 return TemplateArgumentLoc();
5339
5340 Expr *ArgE = Arg.getAs<Expr>();
5341 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
5342 }
5343
5344 TemplateTemplateParmDecl *TempTempParm
5345 = cast<TemplateTemplateParmDecl>(Param);
5346 if (!hasReachableDefaultArgument(TempTempParm))
5347 return TemplateArgumentLoc();
5348
5349 HasDefaultArg = true;
5350 NestedNameSpecifierLoc QualifierLoc;
5351 TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
5352 TemplateLoc,
5353 RAngleLoc,
5354 TempTempParm,
5355 Converted,
5356 QualifierLoc);
5357 if (TName.isNull())
5358 return TemplateArgumentLoc();
5359
5360 return TemplateArgumentLoc(
5361 Context, TemplateArgument(TName),
5362 TempTempParm->getDefaultArgument().getTemplateQualifierLoc(),
5363 TempTempParm->getDefaultArgument().getTemplateNameLoc());
5364 }
5365
5366 /// Convert a template-argument that we parsed as a type into a template, if
5367 /// possible. C++ permits injected-class-names to perform dual service as
5368 /// template template arguments and as template type arguments.
5369 static TemplateArgumentLoc
convertTypeTemplateArgumentToTemplate(ASTContext & Context,TypeLoc TLoc)5370 convertTypeTemplateArgumentToTemplate(ASTContext &Context, TypeLoc TLoc) {
5371 // Extract and step over any surrounding nested-name-specifier.
5372 NestedNameSpecifierLoc QualLoc;
5373 if (auto ETLoc = TLoc.getAs<ElaboratedTypeLoc>()) {
5374 if (ETLoc.getTypePtr()->getKeyword() != ETK_None)
5375 return TemplateArgumentLoc();
5376
5377 QualLoc = ETLoc.getQualifierLoc();
5378 TLoc = ETLoc.getNamedTypeLoc();
5379 }
5380 // If this type was written as an injected-class-name, it can be used as a
5381 // template template argument.
5382 if (auto InjLoc = TLoc.getAs<InjectedClassNameTypeLoc>())
5383 return TemplateArgumentLoc(Context, InjLoc.getTypePtr()->getTemplateName(),
5384 QualLoc, InjLoc.getNameLoc());
5385
5386 // If this type was written as an injected-class-name, it may have been
5387 // converted to a RecordType during instantiation. If the RecordType is
5388 // *not* wrapped in a TemplateSpecializationType and denotes a class
5389 // template specialization, it must have come from an injected-class-name.
5390 if (auto RecLoc = TLoc.getAs<RecordTypeLoc>())
5391 if (auto *CTSD =
5392 dyn_cast<ClassTemplateSpecializationDecl>(RecLoc.getDecl()))
5393 return TemplateArgumentLoc(Context,
5394 TemplateName(CTSD->getSpecializedTemplate()),
5395 QualLoc, RecLoc.getNameLoc());
5396
5397 return TemplateArgumentLoc();
5398 }
5399
5400 /// Check that the given template argument corresponds to the given
5401 /// template parameter.
5402 ///
5403 /// \param Param The template parameter against which the argument will be
5404 /// checked.
5405 ///
5406 /// \param Arg The template argument, which may be updated due to conversions.
5407 ///
5408 /// \param Template The template in which the template argument resides.
5409 ///
5410 /// \param TemplateLoc The location of the template name for the template
5411 /// whose argument list we're matching.
5412 ///
5413 /// \param RAngleLoc The location of the right angle bracket ('>') that closes
5414 /// the template argument list.
5415 ///
5416 /// \param ArgumentPackIndex The index into the argument pack where this
5417 /// argument will be placed. Only valid if the parameter is a parameter pack.
5418 ///
5419 /// \param Converted The checked, converted argument will be added to the
5420 /// end of this small vector.
5421 ///
5422 /// \param CTAK Describes how we arrived at this particular template argument:
5423 /// explicitly written, deduced, etc.
5424 ///
5425 /// \returns true on error, false otherwise.
CheckTemplateArgument(NamedDecl * Param,TemplateArgumentLoc & Arg,NamedDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,unsigned ArgumentPackIndex,SmallVectorImpl<TemplateArgument> & Converted,CheckTemplateArgumentKind CTAK)5426 bool Sema::CheckTemplateArgument(NamedDecl *Param,
5427 TemplateArgumentLoc &Arg,
5428 NamedDecl *Template,
5429 SourceLocation TemplateLoc,
5430 SourceLocation RAngleLoc,
5431 unsigned ArgumentPackIndex,
5432 SmallVectorImpl<TemplateArgument> &Converted,
5433 CheckTemplateArgumentKind CTAK) {
5434 // Check template type parameters.
5435 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
5436 return CheckTemplateTypeArgument(TTP, Arg, Converted);
5437
5438 // Check non-type template parameters.
5439 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
5440 // Do substitution on the type of the non-type template parameter
5441 // with the template arguments we've seen thus far. But if the
5442 // template has a dependent context then we cannot substitute yet.
5443 QualType NTTPType = NTTP->getType();
5444 if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
5445 NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
5446
5447 if (NTTPType->isInstantiationDependentType() &&
5448 !isa<TemplateTemplateParmDecl>(Template) &&
5449 !Template->getDeclContext()->isDependentContext()) {
5450 // Do substitution on the type of the non-type template parameter.
5451 InstantiatingTemplate Inst(*this, TemplateLoc, Template,
5452 NTTP, Converted,
5453 SourceRange(TemplateLoc, RAngleLoc));
5454 if (Inst.isInvalid())
5455 return true;
5456
5457 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
5458 Converted);
5459
5460 // If the parameter is a pack expansion, expand this slice of the pack.
5461 if (auto *PET = NTTPType->getAs<PackExpansionType>()) {
5462 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(*this,
5463 ArgumentPackIndex);
5464 NTTPType = SubstType(PET->getPattern(),
5465 MultiLevelTemplateArgumentList(TemplateArgs),
5466 NTTP->getLocation(),
5467 NTTP->getDeclName());
5468 } else {
5469 NTTPType = SubstType(NTTPType,
5470 MultiLevelTemplateArgumentList(TemplateArgs),
5471 NTTP->getLocation(),
5472 NTTP->getDeclName());
5473 }
5474
5475 // If that worked, check the non-type template parameter type
5476 // for validity.
5477 if (!NTTPType.isNull())
5478 NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
5479 NTTP->getLocation());
5480 if (NTTPType.isNull())
5481 return true;
5482 }
5483
5484 switch (Arg.getArgument().getKind()) {
5485 case TemplateArgument::Null:
5486 llvm_unreachable("Should never see a NULL template argument here");
5487
5488 case TemplateArgument::Expression: {
5489 TemplateArgument Result;
5490 unsigned CurSFINAEErrors = NumSFINAEErrors;
5491 ExprResult Res =
5492 CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(),
5493 Result, CTAK);
5494 if (Res.isInvalid())
5495 return true;
5496 // If the current template argument causes an error, give up now.
5497 if (CurSFINAEErrors < NumSFINAEErrors)
5498 return true;
5499
5500 // If the resulting expression is new, then use it in place of the
5501 // old expression in the template argument.
5502 if (Res.get() != Arg.getArgument().getAsExpr()) {
5503 TemplateArgument TA(Res.get());
5504 Arg = TemplateArgumentLoc(TA, Res.get());
5505 }
5506
5507 Converted.push_back(Result);
5508 break;
5509 }
5510
5511 case TemplateArgument::Declaration:
5512 case TemplateArgument::Integral:
5513 case TemplateArgument::NullPtr:
5514 // We've already checked this template argument, so just copy
5515 // it to the list of converted arguments.
5516 Converted.push_back(Arg.getArgument());
5517 break;
5518
5519 case TemplateArgument::Template:
5520 case TemplateArgument::TemplateExpansion:
5521 // We were given a template template argument. It may not be ill-formed;
5522 // see below.
5523 if (DependentTemplateName *DTN
5524 = Arg.getArgument().getAsTemplateOrTemplatePattern()
5525 .getAsDependentTemplateName()) {
5526 // We have a template argument such as \c T::template X, which we
5527 // parsed as a template template argument. However, since we now
5528 // know that we need a non-type template argument, convert this
5529 // template name into an expression.
5530
5531 DeclarationNameInfo NameInfo(DTN->getIdentifier(),
5532 Arg.getTemplateNameLoc());
5533
5534 CXXScopeSpec SS;
5535 SS.Adopt(Arg.getTemplateQualifierLoc());
5536 // FIXME: the template-template arg was a DependentTemplateName,
5537 // so it was provided with a template keyword. However, its source
5538 // location is not stored in the template argument structure.
5539 SourceLocation TemplateKWLoc;
5540 ExprResult E = DependentScopeDeclRefExpr::Create(
5541 Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
5542 nullptr);
5543
5544 // If we parsed the template argument as a pack expansion, create a
5545 // pack expansion expression.
5546 if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
5547 E = ActOnPackExpansion(E.get(), Arg.getTemplateEllipsisLoc());
5548 if (E.isInvalid())
5549 return true;
5550 }
5551
5552 TemplateArgument Result;
5553 E = CheckTemplateArgument(NTTP, NTTPType, E.get(), Result);
5554 if (E.isInvalid())
5555 return true;
5556
5557 Converted.push_back(Result);
5558 break;
5559 }
5560
5561 // We have a template argument that actually does refer to a class
5562 // template, alias template, or template template parameter, and
5563 // therefore cannot be a non-type template argument.
5564 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
5565 << Arg.getSourceRange();
5566
5567 Diag(Param->getLocation(), diag::note_template_param_here);
5568 return true;
5569
5570 case TemplateArgument::Type: {
5571 // We have a non-type template parameter but the template
5572 // argument is a type.
5573
5574 // C++ [temp.arg]p2:
5575 // In a template-argument, an ambiguity between a type-id and
5576 // an expression is resolved to a type-id, regardless of the
5577 // form of the corresponding template-parameter.
5578 //
5579 // We warn specifically about this case, since it can be rather
5580 // confusing for users.
5581 QualType T = Arg.getArgument().getAsType();
5582 SourceRange SR = Arg.getSourceRange();
5583 if (T->isFunctionType())
5584 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
5585 else
5586 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
5587 Diag(Param->getLocation(), diag::note_template_param_here);
5588 return true;
5589 }
5590
5591 case TemplateArgument::Pack:
5592 llvm_unreachable("Caller must expand template argument packs");
5593 }
5594
5595 return false;
5596 }
5597
5598
5599 // Check template template parameters.
5600 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
5601
5602 TemplateParameterList *Params = TempParm->getTemplateParameters();
5603 if (TempParm->isExpandedParameterPack())
5604 Params = TempParm->getExpansionTemplateParameters(ArgumentPackIndex);
5605
5606 // Substitute into the template parameter list of the template
5607 // template parameter, since previously-supplied template arguments
5608 // may appear within the template template parameter.
5609 //
5610 // FIXME: Skip this if the parameters aren't instantiation-dependent.
5611 {
5612 // Set up a template instantiation context.
5613 LocalInstantiationScope Scope(*this);
5614 InstantiatingTemplate Inst(*this, TemplateLoc, Template,
5615 TempParm, Converted,
5616 SourceRange(TemplateLoc, RAngleLoc));
5617 if (Inst.isInvalid())
5618 return true;
5619
5620 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
5621 Params = SubstTemplateParams(Params, CurContext,
5622 MultiLevelTemplateArgumentList(TemplateArgs));
5623 if (!Params)
5624 return true;
5625 }
5626
5627 // C++1z [temp.local]p1: (DR1004)
5628 // When [the injected-class-name] is used [...] as a template-argument for
5629 // a template template-parameter [...] it refers to the class template
5630 // itself.
5631 if (Arg.getArgument().getKind() == TemplateArgument::Type) {
5632 TemplateArgumentLoc ConvertedArg = convertTypeTemplateArgumentToTemplate(
5633 Context, Arg.getTypeSourceInfo()->getTypeLoc());
5634 if (!ConvertedArg.getArgument().isNull())
5635 Arg = ConvertedArg;
5636 }
5637
5638 switch (Arg.getArgument().getKind()) {
5639 case TemplateArgument::Null:
5640 llvm_unreachable("Should never see a NULL template argument here");
5641
5642 case TemplateArgument::Template:
5643 case TemplateArgument::TemplateExpansion:
5644 if (CheckTemplateTemplateArgument(TempParm, Params, Arg))
5645 return true;
5646
5647 Converted.push_back(Arg.getArgument());
5648 break;
5649
5650 case TemplateArgument::Expression:
5651 case TemplateArgument::Type:
5652 // We have a template template parameter but the template
5653 // argument does not refer to a template.
5654 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template)
5655 << getLangOpts().CPlusPlus11;
5656 return true;
5657
5658 case TemplateArgument::Declaration:
5659 llvm_unreachable("Declaration argument with template template parameter");
5660 case TemplateArgument::Integral:
5661 llvm_unreachable("Integral argument with template template parameter");
5662 case TemplateArgument::NullPtr:
5663 llvm_unreachable("Null pointer argument with template template parameter");
5664
5665 case TemplateArgument::Pack:
5666 llvm_unreachable("Caller must expand template argument packs");
5667 }
5668
5669 return false;
5670 }
5671
5672 /// Diagnose a missing template argument.
5673 template<typename TemplateParmDecl>
diagnoseMissingArgument(Sema & S,SourceLocation Loc,TemplateDecl * TD,const TemplateParmDecl * D,TemplateArgumentListInfo & Args)5674 static bool diagnoseMissingArgument(Sema &S, SourceLocation Loc,
5675 TemplateDecl *TD,
5676 const TemplateParmDecl *D,
5677 TemplateArgumentListInfo &Args) {
5678 // Dig out the most recent declaration of the template parameter; there may be
5679 // declarations of the template that are more recent than TD.
5680 D = cast<TemplateParmDecl>(cast<TemplateDecl>(TD->getMostRecentDecl())
5681 ->getTemplateParameters()
5682 ->getParam(D->getIndex()));
5683
5684 // If there's a default argument that's not reachable, diagnose that we're
5685 // missing a module import.
5686 llvm::SmallVector<Module*, 8> Modules;
5687 if (D->hasDefaultArgument() && !S.hasReachableDefaultArgument(D, &Modules)) {
5688 S.diagnoseMissingImport(Loc, cast<NamedDecl>(TD),
5689 D->getDefaultArgumentLoc(), Modules,
5690 Sema::MissingImportKind::DefaultArgument,
5691 /*Recover*/true);
5692 return true;
5693 }
5694
5695 // FIXME: If there's a more recent default argument that *is* visible,
5696 // diagnose that it was declared too late.
5697
5698 TemplateParameterList *Params = TD->getTemplateParameters();
5699
5700 S.Diag(Loc, diag::err_template_arg_list_different_arity)
5701 << /*not enough args*/0
5702 << (int)S.getTemplateNameKindForDiagnostics(TemplateName(TD))
5703 << TD;
5704 S.Diag(TD->getLocation(), diag::note_template_decl_here)
5705 << Params->getSourceRange();
5706 return true;
5707 }
5708
5709 /// Check that the given template argument list is well-formed
5710 /// for specializing the given template.
CheckTemplateArgumentList(TemplateDecl * Template,SourceLocation TemplateLoc,TemplateArgumentListInfo & TemplateArgs,bool PartialTemplateArgs,SmallVectorImpl<TemplateArgument> & Converted,bool UpdateArgsWithConversions,bool * ConstraintsNotSatisfied)5711 bool Sema::CheckTemplateArgumentList(
5712 TemplateDecl *Template, SourceLocation TemplateLoc,
5713 TemplateArgumentListInfo &TemplateArgs, bool PartialTemplateArgs,
5714 SmallVectorImpl<TemplateArgument> &Converted,
5715 bool UpdateArgsWithConversions, bool *ConstraintsNotSatisfied) {
5716
5717 if (ConstraintsNotSatisfied)
5718 *ConstraintsNotSatisfied = false;
5719
5720 // Make a copy of the template arguments for processing. Only make the
5721 // changes at the end when successful in matching the arguments to the
5722 // template.
5723 TemplateArgumentListInfo NewArgs = TemplateArgs;
5724
5725 // Make sure we get the template parameter list from the most
5726 // recent declaration, since that is the only one that is guaranteed to
5727 // have all the default template argument information.
5728 TemplateParameterList *Params =
5729 cast<TemplateDecl>(Template->getMostRecentDecl())
5730 ->getTemplateParameters();
5731
5732 SourceLocation RAngleLoc = NewArgs.getRAngleLoc();
5733
5734 // C++ [temp.arg]p1:
5735 // [...] The type and form of each template-argument specified in
5736 // a template-id shall match the type and form specified for the
5737 // corresponding parameter declared by the template in its
5738 // template-parameter-list.
5739 bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template);
5740 SmallVector<TemplateArgument, 2> ArgumentPack;
5741 unsigned ArgIdx = 0, NumArgs = NewArgs.size();
5742 LocalInstantiationScope InstScope(*this, true);
5743 for (TemplateParameterList::iterator Param = Params->begin(),
5744 ParamEnd = Params->end();
5745 Param != ParamEnd; /* increment in loop */) {
5746 // If we have an expanded parameter pack, make sure we don't have too
5747 // many arguments.
5748 if (Optional<unsigned> Expansions = getExpandedPackSize(*Param)) {
5749 if (*Expansions == ArgumentPack.size()) {
5750 // We're done with this parameter pack. Pack up its arguments and add
5751 // them to the list.
5752 Converted.push_back(
5753 TemplateArgument::CreatePackCopy(Context, ArgumentPack));
5754 ArgumentPack.clear();
5755
5756 // This argument is assigned to the next parameter.
5757 ++Param;
5758 continue;
5759 } else if (ArgIdx == NumArgs && !PartialTemplateArgs) {
5760 // Not enough arguments for this parameter pack.
5761 Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
5762 << /*not enough args*/0
5763 << (int)getTemplateNameKindForDiagnostics(TemplateName(Template))
5764 << Template;
5765 Diag(Template->getLocation(), diag::note_template_decl_here)
5766 << Params->getSourceRange();
5767 return true;
5768 }
5769 }
5770
5771 if (ArgIdx < NumArgs) {
5772 // Check the template argument we were given.
5773 if (CheckTemplateArgument(*Param, NewArgs[ArgIdx], Template,
5774 TemplateLoc, RAngleLoc,
5775 ArgumentPack.size(), Converted))
5776 return true;
5777
5778 bool PackExpansionIntoNonPack =
5779 NewArgs[ArgIdx].getArgument().isPackExpansion() &&
5780 (!(*Param)->isTemplateParameterPack() || getExpandedPackSize(*Param));
5781 if (PackExpansionIntoNonPack && (isa<TypeAliasTemplateDecl>(Template) ||
5782 isa<ConceptDecl>(Template))) {
5783 // Core issue 1430: we have a pack expansion as an argument to an
5784 // alias template, and it's not part of a parameter pack. This
5785 // can't be canonicalized, so reject it now.
5786 // As for concepts - we cannot normalize constraints where this
5787 // situation exists.
5788 Diag(NewArgs[ArgIdx].getLocation(),
5789 diag::err_template_expansion_into_fixed_list)
5790 << (isa<ConceptDecl>(Template) ? 1 : 0)
5791 << NewArgs[ArgIdx].getSourceRange();
5792 Diag((*Param)->getLocation(), diag::note_template_param_here);
5793 return true;
5794 }
5795
5796 // We're now done with this argument.
5797 ++ArgIdx;
5798
5799 if ((*Param)->isTemplateParameterPack()) {
5800 // The template parameter was a template parameter pack, so take the
5801 // deduced argument and place it on the argument pack. Note that we
5802 // stay on the same template parameter so that we can deduce more
5803 // arguments.
5804 ArgumentPack.push_back(Converted.pop_back_val());
5805 } else {
5806 // Move to the next template parameter.
5807 ++Param;
5808 }
5809
5810 // If we just saw a pack expansion into a non-pack, then directly convert
5811 // the remaining arguments, because we don't know what parameters they'll
5812 // match up with.
5813 if (PackExpansionIntoNonPack) {
5814 if (!ArgumentPack.empty()) {
5815 // If we were part way through filling in an expanded parameter pack,
5816 // fall back to just producing individual arguments.
5817 Converted.insert(Converted.end(),
5818 ArgumentPack.begin(), ArgumentPack.end());
5819 ArgumentPack.clear();
5820 }
5821
5822 while (ArgIdx < NumArgs) {
5823 Converted.push_back(NewArgs[ArgIdx].getArgument());
5824 ++ArgIdx;
5825 }
5826
5827 return false;
5828 }
5829
5830 continue;
5831 }
5832
5833 // If we're checking a partial template argument list, we're done.
5834 if (PartialTemplateArgs) {
5835 if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty())
5836 Converted.push_back(
5837 TemplateArgument::CreatePackCopy(Context, ArgumentPack));
5838 return false;
5839 }
5840
5841 // If we have a template parameter pack with no more corresponding
5842 // arguments, just break out now and we'll fill in the argument pack below.
5843 if ((*Param)->isTemplateParameterPack()) {
5844 assert(!getExpandedPackSize(*Param) &&
5845 "Should have dealt with this already");
5846
5847 // A non-expanded parameter pack before the end of the parameter list
5848 // only occurs for an ill-formed template parameter list, unless we've
5849 // got a partial argument list for a function template, so just bail out.
5850 if (Param + 1 != ParamEnd)
5851 return true;
5852
5853 Converted.push_back(
5854 TemplateArgument::CreatePackCopy(Context, ArgumentPack));
5855 ArgumentPack.clear();
5856
5857 ++Param;
5858 continue;
5859 }
5860
5861 // Check whether we have a default argument.
5862 TemplateArgumentLoc Arg;
5863
5864 // Retrieve the default template argument from the template
5865 // parameter. For each kind of template parameter, we substitute the
5866 // template arguments provided thus far and any "outer" template arguments
5867 // (when the template parameter was part of a nested template) into
5868 // the default argument.
5869 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
5870 if (!hasReachableDefaultArgument(TTP))
5871 return diagnoseMissingArgument(*this, TemplateLoc, Template, TTP,
5872 NewArgs);
5873
5874 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
5875 Template,
5876 TemplateLoc,
5877 RAngleLoc,
5878 TTP,
5879 Converted);
5880 if (!ArgType)
5881 return true;
5882
5883 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
5884 ArgType);
5885 } else if (NonTypeTemplateParmDecl *NTTP
5886 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
5887 if (!hasReachableDefaultArgument(NTTP))
5888 return diagnoseMissingArgument(*this, TemplateLoc, Template, NTTP,
5889 NewArgs);
5890
5891 ExprResult E = SubstDefaultTemplateArgument(*this, Template,
5892 TemplateLoc,
5893 RAngleLoc,
5894 NTTP,
5895 Converted);
5896 if (E.isInvalid())
5897 return true;
5898
5899 Expr *Ex = E.getAs<Expr>();
5900 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
5901 } else {
5902 TemplateTemplateParmDecl *TempParm
5903 = cast<TemplateTemplateParmDecl>(*Param);
5904
5905 if (!hasReachableDefaultArgument(TempParm))
5906 return diagnoseMissingArgument(*this, TemplateLoc, Template, TempParm,
5907 NewArgs);
5908
5909 NestedNameSpecifierLoc QualifierLoc;
5910 TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
5911 TemplateLoc,
5912 RAngleLoc,
5913 TempParm,
5914 Converted,
5915 QualifierLoc);
5916 if (Name.isNull())
5917 return true;
5918
5919 Arg = TemplateArgumentLoc(
5920 Context, TemplateArgument(Name), QualifierLoc,
5921 TempParm->getDefaultArgument().getTemplateNameLoc());
5922 }
5923
5924 // Introduce an instantiation record that describes where we are using
5925 // the default template argument. We're not actually instantiating a
5926 // template here, we just create this object to put a note into the
5927 // context stack.
5928 InstantiatingTemplate Inst(*this, RAngleLoc, Template, *Param, Converted,
5929 SourceRange(TemplateLoc, RAngleLoc));
5930 if (Inst.isInvalid())
5931 return true;
5932
5933 // Check the default template argument.
5934 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
5935 RAngleLoc, 0, Converted))
5936 return true;
5937
5938 // Core issue 150 (assumed resolution): if this is a template template
5939 // parameter, keep track of the default template arguments from the
5940 // template definition.
5941 if (isTemplateTemplateParameter)
5942 NewArgs.addArgument(Arg);
5943
5944 // Move to the next template parameter and argument.
5945 ++Param;
5946 ++ArgIdx;
5947 }
5948
5949 // If we're performing a partial argument substitution, allow any trailing
5950 // pack expansions; they might be empty. This can happen even if
5951 // PartialTemplateArgs is false (the list of arguments is complete but
5952 // still dependent).
5953 if (ArgIdx < NumArgs && CurrentInstantiationScope &&
5954 CurrentInstantiationScope->getPartiallySubstitutedPack()) {
5955 while (ArgIdx < NumArgs && NewArgs[ArgIdx].getArgument().isPackExpansion())
5956 Converted.push_back(NewArgs[ArgIdx++].getArgument());
5957 }
5958
5959 // If we have any leftover arguments, then there were too many arguments.
5960 // Complain and fail.
5961 if (ArgIdx < NumArgs) {
5962 Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
5963 << /*too many args*/1
5964 << (int)getTemplateNameKindForDiagnostics(TemplateName(Template))
5965 << Template
5966 << SourceRange(NewArgs[ArgIdx].getLocation(), NewArgs.getRAngleLoc());
5967 Diag(Template->getLocation(), diag::note_template_decl_here)
5968 << Params->getSourceRange();
5969 return true;
5970 }
5971
5972 // No problems found with the new argument list, propagate changes back
5973 // to caller.
5974 if (UpdateArgsWithConversions)
5975 TemplateArgs = std::move(NewArgs);
5976
5977 if (!PartialTemplateArgs &&
5978 EnsureTemplateArgumentListConstraints(
5979 Template, Converted, SourceRange(TemplateLoc,
5980 TemplateArgs.getRAngleLoc()))) {
5981 if (ConstraintsNotSatisfied)
5982 *ConstraintsNotSatisfied = true;
5983 return true;
5984 }
5985
5986 return false;
5987 }
5988
5989 namespace {
5990 class UnnamedLocalNoLinkageFinder
5991 : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
5992 {
5993 Sema &S;
5994 SourceRange SR;
5995
5996 typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
5997
5998 public:
UnnamedLocalNoLinkageFinder(Sema & S,SourceRange SR)5999 UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
6000
Visit(QualType T)6001 bool Visit(QualType T) {
6002 return T.isNull() ? false : inherited::Visit(T.getTypePtr());
6003 }
6004
6005 #define TYPE(Class, Parent) \
6006 bool Visit##Class##Type(const Class##Type *);
6007 #define ABSTRACT_TYPE(Class, Parent) \
6008 bool Visit##Class##Type(const Class##Type *) { return false; }
6009 #define NON_CANONICAL_TYPE(Class, Parent) \
6010 bool Visit##Class##Type(const Class##Type *) { return false; }
6011 #include "clang/AST/TypeNodes.inc"
6012
6013 bool VisitTagDecl(const TagDecl *Tag);
6014 bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
6015 };
6016 } // end anonymous namespace
6017
VisitBuiltinType(const BuiltinType *)6018 bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
6019 return false;
6020 }
6021
VisitComplexType(const ComplexType * T)6022 bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
6023 return Visit(T->getElementType());
6024 }
6025
VisitPointerType(const PointerType * T)6026 bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
6027 return Visit(T->getPointeeType());
6028 }
6029
VisitBlockPointerType(const BlockPointerType * T)6030 bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
6031 const BlockPointerType* T) {
6032 return Visit(T->getPointeeType());
6033 }
6034
VisitLValueReferenceType(const LValueReferenceType * T)6035 bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
6036 const LValueReferenceType* T) {
6037 return Visit(T->getPointeeType());
6038 }
6039
VisitRValueReferenceType(const RValueReferenceType * T)6040 bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
6041 const RValueReferenceType* T) {
6042 return Visit(T->getPointeeType());
6043 }
6044
VisitMemberPointerType(const MemberPointerType * T)6045 bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
6046 const MemberPointerType* T) {
6047 return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
6048 }
6049
VisitConstantArrayType(const ConstantArrayType * T)6050 bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
6051 const ConstantArrayType* T) {
6052 return Visit(T->getElementType());
6053 }
6054
VisitIncompleteArrayType(const IncompleteArrayType * T)6055 bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
6056 const IncompleteArrayType* T) {
6057 return Visit(T->getElementType());
6058 }
6059
VisitVariableArrayType(const VariableArrayType * T)6060 bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
6061 const VariableArrayType* T) {
6062 return Visit(T->getElementType());
6063 }
6064
VisitDependentSizedArrayType(const DependentSizedArrayType * T)6065 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
6066 const DependentSizedArrayType* T) {
6067 return Visit(T->getElementType());
6068 }
6069
VisitDependentSizedExtVectorType(const DependentSizedExtVectorType * T)6070 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
6071 const DependentSizedExtVectorType* T) {
6072 return Visit(T->getElementType());
6073 }
6074
VisitDependentSizedMatrixType(const DependentSizedMatrixType * T)6075 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedMatrixType(
6076 const DependentSizedMatrixType *T) {
6077 return Visit(T->getElementType());
6078 }
6079
VisitDependentAddressSpaceType(const DependentAddressSpaceType * T)6080 bool UnnamedLocalNoLinkageFinder::VisitDependentAddressSpaceType(
6081 const DependentAddressSpaceType *T) {
6082 return Visit(T->getPointeeType());
6083 }
6084
VisitVectorType(const VectorType * T)6085 bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
6086 return Visit(T->getElementType());
6087 }
6088
VisitDependentVectorType(const DependentVectorType * T)6089 bool UnnamedLocalNoLinkageFinder::VisitDependentVectorType(
6090 const DependentVectorType *T) {
6091 return Visit(T->getElementType());
6092 }
6093
VisitExtVectorType(const ExtVectorType * T)6094 bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
6095 return Visit(T->getElementType());
6096 }
6097
VisitConstantMatrixType(const ConstantMatrixType * T)6098 bool UnnamedLocalNoLinkageFinder::VisitConstantMatrixType(
6099 const ConstantMatrixType *T) {
6100 return Visit(T->getElementType());
6101 }
6102
VisitFunctionProtoType(const FunctionProtoType * T)6103 bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
6104 const FunctionProtoType* T) {
6105 for (const auto &A : T->param_types()) {
6106 if (Visit(A))
6107 return true;
6108 }
6109
6110 return Visit(T->getReturnType());
6111 }
6112
VisitFunctionNoProtoType(const FunctionNoProtoType * T)6113 bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
6114 const FunctionNoProtoType* T) {
6115 return Visit(T->getReturnType());
6116 }
6117
VisitUnresolvedUsingType(const UnresolvedUsingType *)6118 bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
6119 const UnresolvedUsingType*) {
6120 return false;
6121 }
6122
VisitTypeOfExprType(const TypeOfExprType *)6123 bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
6124 return false;
6125 }
6126
VisitTypeOfType(const TypeOfType * T)6127 bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
6128 return Visit(T->getUnderlyingType());
6129 }
6130
VisitDecltypeType(const DecltypeType *)6131 bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
6132 return false;
6133 }
6134
VisitUnaryTransformType(const UnaryTransformType *)6135 bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType(
6136 const UnaryTransformType*) {
6137 return false;
6138 }
6139
VisitAutoType(const AutoType * T)6140 bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) {
6141 return Visit(T->getDeducedType());
6142 }
6143
VisitDeducedTemplateSpecializationType(const DeducedTemplateSpecializationType * T)6144 bool UnnamedLocalNoLinkageFinder::VisitDeducedTemplateSpecializationType(
6145 const DeducedTemplateSpecializationType *T) {
6146 return Visit(T->getDeducedType());
6147 }
6148
VisitRecordType(const RecordType * T)6149 bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
6150 return VisitTagDecl(T->getDecl());
6151 }
6152
VisitEnumType(const EnumType * T)6153 bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
6154 return VisitTagDecl(T->getDecl());
6155 }
6156
VisitTemplateTypeParmType(const TemplateTypeParmType *)6157 bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
6158 const TemplateTypeParmType*) {
6159 return false;
6160 }
6161
VisitSubstTemplateTypeParmPackType(const SubstTemplateTypeParmPackType *)6162 bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
6163 const SubstTemplateTypeParmPackType *) {
6164 return false;
6165 }
6166
VisitTemplateSpecializationType(const TemplateSpecializationType *)6167 bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
6168 const TemplateSpecializationType*) {
6169 return false;
6170 }
6171
VisitInjectedClassNameType(const InjectedClassNameType * T)6172 bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
6173 const InjectedClassNameType* T) {
6174 return VisitTagDecl(T->getDecl());
6175 }
6176
VisitDependentNameType(const DependentNameType * T)6177 bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
6178 const DependentNameType* T) {
6179 return VisitNestedNameSpecifier(T->getQualifier());
6180 }
6181
VisitDependentTemplateSpecializationType(const DependentTemplateSpecializationType * T)6182 bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
6183 const DependentTemplateSpecializationType* T) {
6184 if (auto *Q = T->getQualifier())
6185 return VisitNestedNameSpecifier(Q);
6186 return false;
6187 }
6188
VisitPackExpansionType(const PackExpansionType * T)6189 bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
6190 const PackExpansionType* T) {
6191 return Visit(T->getPattern());
6192 }
6193
VisitObjCObjectType(const ObjCObjectType *)6194 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
6195 return false;
6196 }
6197
VisitObjCInterfaceType(const ObjCInterfaceType *)6198 bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
6199 const ObjCInterfaceType *) {
6200 return false;
6201 }
6202
VisitObjCObjectPointerType(const ObjCObjectPointerType *)6203 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
6204 const ObjCObjectPointerType *) {
6205 return false;
6206 }
6207
VisitAtomicType(const AtomicType * T)6208 bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) {
6209 return Visit(T->getValueType());
6210 }
6211
VisitPipeType(const PipeType * T)6212 bool UnnamedLocalNoLinkageFinder::VisitPipeType(const PipeType* T) {
6213 return false;
6214 }
6215
VisitBitIntType(const BitIntType * T)6216 bool UnnamedLocalNoLinkageFinder::VisitBitIntType(const BitIntType *T) {
6217 return false;
6218 }
6219
VisitDependentBitIntType(const DependentBitIntType * T)6220 bool UnnamedLocalNoLinkageFinder::VisitDependentBitIntType(
6221 const DependentBitIntType *T) {
6222 return false;
6223 }
6224
VisitTagDecl(const TagDecl * Tag)6225 bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
6226 if (Tag->getDeclContext()->isFunctionOrMethod()) {
6227 S.Diag(SR.getBegin(),
6228 S.getLangOpts().CPlusPlus11 ?
6229 diag::warn_cxx98_compat_template_arg_local_type :
6230 diag::ext_template_arg_local_type)
6231 << S.Context.getTypeDeclType(Tag) << SR;
6232 return true;
6233 }
6234
6235 if (!Tag->hasNameForLinkage()) {
6236 S.Diag(SR.getBegin(),
6237 S.getLangOpts().CPlusPlus11 ?
6238 diag::warn_cxx98_compat_template_arg_unnamed_type :
6239 diag::ext_template_arg_unnamed_type) << SR;
6240 S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
6241 return true;
6242 }
6243
6244 return false;
6245 }
6246
VisitNestedNameSpecifier(NestedNameSpecifier * NNS)6247 bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
6248 NestedNameSpecifier *NNS) {
6249 assert(NNS);
6250 if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
6251 return true;
6252
6253 switch (NNS->getKind()) {
6254 case NestedNameSpecifier::Identifier:
6255 case NestedNameSpecifier::Namespace:
6256 case NestedNameSpecifier::NamespaceAlias:
6257 case NestedNameSpecifier::Global:
6258 case NestedNameSpecifier::Super:
6259 return false;
6260
6261 case NestedNameSpecifier::TypeSpec:
6262 case NestedNameSpecifier::TypeSpecWithTemplate:
6263 return Visit(QualType(NNS->getAsType(), 0));
6264 }
6265 llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
6266 }
6267
6268 /// Check a template argument against its corresponding
6269 /// template type parameter.
6270 ///
6271 /// This routine implements the semantics of C++ [temp.arg.type]. It
6272 /// returns true if an error occurred, and false otherwise.
CheckTemplateArgument(TypeSourceInfo * ArgInfo)6273 bool Sema::CheckTemplateArgument(TypeSourceInfo *ArgInfo) {
6274 assert(ArgInfo && "invalid TypeSourceInfo");
6275 QualType Arg = ArgInfo->getType();
6276 SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
6277
6278 if (Arg->isVariablyModifiedType()) {
6279 return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
6280 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
6281 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
6282 }
6283
6284 // C++03 [temp.arg.type]p2:
6285 // A local type, a type with no linkage, an unnamed type or a type
6286 // compounded from any of these types shall not be used as a
6287 // template-argument for a template type-parameter.
6288 //
6289 // C++11 allows these, and even in C++03 we allow them as an extension with
6290 // a warning.
6291 if (LangOpts.CPlusPlus11 || Arg->hasUnnamedOrLocalType()) {
6292 UnnamedLocalNoLinkageFinder Finder(*this, SR);
6293 (void)Finder.Visit(Context.getCanonicalType(Arg));
6294 }
6295
6296 return false;
6297 }
6298
6299 enum NullPointerValueKind {
6300 NPV_NotNullPointer,
6301 NPV_NullPointer,
6302 NPV_Error
6303 };
6304
6305 /// Determine whether the given template argument is a null pointer
6306 /// value of the appropriate type.
6307 static NullPointerValueKind
isNullPointerValueTemplateArgument(Sema & S,NonTypeTemplateParmDecl * Param,QualType ParamType,Expr * Arg,Decl * Entity=nullptr)6308 isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param,
6309 QualType ParamType, Expr *Arg,
6310 Decl *Entity = nullptr) {
6311 if (Arg->isValueDependent() || Arg->isTypeDependent())
6312 return NPV_NotNullPointer;
6313
6314 // dllimport'd entities aren't constant but are available inside of template
6315 // arguments.
6316 if (Entity && Entity->hasAttr<DLLImportAttr>())
6317 return NPV_NotNullPointer;
6318
6319 if (!S.isCompleteType(Arg->getExprLoc(), ParamType))
6320 llvm_unreachable(
6321 "Incomplete parameter type in isNullPointerValueTemplateArgument!");
6322
6323 if (!S.getLangOpts().CPlusPlus11)
6324 return NPV_NotNullPointer;
6325
6326 // Determine whether we have a constant expression.
6327 ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg);
6328 if (ArgRV.isInvalid())
6329 return NPV_Error;
6330 Arg = ArgRV.get();
6331
6332 Expr::EvalResult EvalResult;
6333 SmallVector<PartialDiagnosticAt, 8> Notes;
6334 EvalResult.Diag = &Notes;
6335 if (!Arg->EvaluateAsRValue(EvalResult, S.Context) ||
6336 EvalResult.HasSideEffects) {
6337 SourceLocation DiagLoc = Arg->getExprLoc();
6338
6339 // If our only note is the usual "invalid subexpression" note, just point
6340 // the caret at its location rather than producing an essentially
6341 // redundant note.
6342 if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
6343 diag::note_invalid_subexpr_in_const_expr) {
6344 DiagLoc = Notes[0].first;
6345 Notes.clear();
6346 }
6347
6348 S.Diag(DiagLoc, diag::err_template_arg_not_address_constant)
6349 << Arg->getType() << Arg->getSourceRange();
6350 for (unsigned I = 0, N = Notes.size(); I != N; ++I)
6351 S.Diag(Notes[I].first, Notes[I].second);
6352
6353 S.Diag(Param->getLocation(), diag::note_template_param_here);
6354 return NPV_Error;
6355 }
6356
6357 // C++11 [temp.arg.nontype]p1:
6358 // - an address constant expression of type std::nullptr_t
6359 if (Arg->getType()->isNullPtrType())
6360 return NPV_NullPointer;
6361
6362 // - a constant expression that evaluates to a null pointer value (4.10); or
6363 // - a constant expression that evaluates to a null member pointer value
6364 // (4.11); or
6365 if ((EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) ||
6366 (EvalResult.Val.isMemberPointer() &&
6367 !EvalResult.Val.getMemberPointerDecl())) {
6368 // If our expression has an appropriate type, we've succeeded.
6369 bool ObjCLifetimeConversion;
6370 if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) ||
6371 S.IsQualificationConversion(Arg->getType(), ParamType, false,
6372 ObjCLifetimeConversion))
6373 return NPV_NullPointer;
6374
6375 // The types didn't match, but we know we got a null pointer; complain,
6376 // then recover as if the types were correct.
6377 S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant)
6378 << Arg->getType() << ParamType << Arg->getSourceRange();
6379 S.Diag(Param->getLocation(), diag::note_template_param_here);
6380 return NPV_NullPointer;
6381 }
6382
6383 // If we don't have a null pointer value, but we do have a NULL pointer
6384 // constant, suggest a cast to the appropriate type.
6385 if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) {
6386 std::string Code = "static_cast<" + ParamType.getAsString() + ">(";
6387 S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant)
6388 << ParamType << FixItHint::CreateInsertion(Arg->getBeginLoc(), Code)
6389 << FixItHint::CreateInsertion(S.getLocForEndOfToken(Arg->getEndLoc()),
6390 ")");
6391 S.Diag(Param->getLocation(), diag::note_template_param_here);
6392 return NPV_NullPointer;
6393 }
6394
6395 // FIXME: If we ever want to support general, address-constant expressions
6396 // as non-type template arguments, we should return the ExprResult here to
6397 // be interpreted by the caller.
6398 return NPV_NotNullPointer;
6399 }
6400
6401 /// Checks whether the given template argument is compatible with its
6402 /// template parameter.
CheckTemplateArgumentIsCompatibleWithParameter(Sema & S,NonTypeTemplateParmDecl * Param,QualType ParamType,Expr * ArgIn,Expr * Arg,QualType ArgType)6403 static bool CheckTemplateArgumentIsCompatibleWithParameter(
6404 Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn,
6405 Expr *Arg, QualType ArgType) {
6406 bool ObjCLifetimeConversion;
6407 if (ParamType->isPointerType() &&
6408 !ParamType->castAs<PointerType>()->getPointeeType()->isFunctionType() &&
6409 S.IsQualificationConversion(ArgType, ParamType, false,
6410 ObjCLifetimeConversion)) {
6411 // For pointer-to-object types, qualification conversions are
6412 // permitted.
6413 } else {
6414 if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
6415 if (!ParamRef->getPointeeType()->isFunctionType()) {
6416 // C++ [temp.arg.nontype]p5b3:
6417 // For a non-type template-parameter of type reference to
6418 // object, no conversions apply. The type referred to by the
6419 // reference may be more cv-qualified than the (otherwise
6420 // identical) type of the template- argument. The
6421 // template-parameter is bound directly to the
6422 // template-argument, which shall be an lvalue.
6423
6424 // FIXME: Other qualifiers?
6425 unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
6426 unsigned ArgQuals = ArgType.getCVRQualifiers();
6427
6428 if ((ParamQuals | ArgQuals) != ParamQuals) {
6429 S.Diag(Arg->getBeginLoc(),
6430 diag::err_template_arg_ref_bind_ignores_quals)
6431 << ParamType << Arg->getType() << Arg->getSourceRange();
6432 S.Diag(Param->getLocation(), diag::note_template_param_here);
6433 return true;
6434 }
6435 }
6436 }
6437
6438 // At this point, the template argument refers to an object or
6439 // function with external linkage. We now need to check whether the
6440 // argument and parameter types are compatible.
6441 if (!S.Context.hasSameUnqualifiedType(ArgType,
6442 ParamType.getNonReferenceType())) {
6443 // We can't perform this conversion or binding.
6444 if (ParamType->isReferenceType())
6445 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_no_ref_bind)
6446 << ParamType << ArgIn->getType() << Arg->getSourceRange();
6447 else
6448 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_convertible)
6449 << ArgIn->getType() << ParamType << Arg->getSourceRange();
6450 S.Diag(Param->getLocation(), diag::note_template_param_here);
6451 return true;
6452 }
6453 }
6454
6455 return false;
6456 }
6457
6458 /// Checks whether the given template argument is the address
6459 /// of an object or function according to C++ [temp.arg.nontype]p1.
6460 static bool
CheckTemplateArgumentAddressOfObjectOrFunction(Sema & S,NonTypeTemplateParmDecl * Param,QualType ParamType,Expr * ArgIn,TemplateArgument & Converted)6461 CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
6462 NonTypeTemplateParmDecl *Param,
6463 QualType ParamType,
6464 Expr *ArgIn,
6465 TemplateArgument &Converted) {
6466 bool Invalid = false;
6467 Expr *Arg = ArgIn;
6468 QualType ArgType = Arg->getType();
6469
6470 bool AddressTaken = false;
6471 SourceLocation AddrOpLoc;
6472 if (S.getLangOpts().MicrosoftExt) {
6473 // Microsoft Visual C++ strips all casts, allows an arbitrary number of
6474 // dereference and address-of operators.
6475 Arg = Arg->IgnoreParenCasts();
6476
6477 bool ExtWarnMSTemplateArg = false;
6478 UnaryOperatorKind FirstOpKind;
6479 SourceLocation FirstOpLoc;
6480 while (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
6481 UnaryOperatorKind UnOpKind = UnOp->getOpcode();
6482 if (UnOpKind == UO_Deref)
6483 ExtWarnMSTemplateArg = true;
6484 if (UnOpKind == UO_AddrOf || UnOpKind == UO_Deref) {
6485 Arg = UnOp->getSubExpr()->IgnoreParenCasts();
6486 if (!AddrOpLoc.isValid()) {
6487 FirstOpKind = UnOpKind;
6488 FirstOpLoc = UnOp->getOperatorLoc();
6489 }
6490 } else
6491 break;
6492 }
6493 if (FirstOpLoc.isValid()) {
6494 if (ExtWarnMSTemplateArg)
6495 S.Diag(ArgIn->getBeginLoc(), diag::ext_ms_deref_template_argument)
6496 << ArgIn->getSourceRange();
6497
6498 if (FirstOpKind == UO_AddrOf)
6499 AddressTaken = true;
6500 else if (Arg->getType()->isPointerType()) {
6501 // We cannot let pointers get dereferenced here, that is obviously not a
6502 // constant expression.
6503 assert(FirstOpKind == UO_Deref);
6504 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref)
6505 << Arg->getSourceRange();
6506 }
6507 }
6508 } else {
6509 // See through any implicit casts we added to fix the type.
6510 Arg = Arg->IgnoreImpCasts();
6511
6512 // C++ [temp.arg.nontype]p1:
6513 //
6514 // A template-argument for a non-type, non-template
6515 // template-parameter shall be one of: [...]
6516 //
6517 // -- the address of an object or function with external
6518 // linkage, including function templates and function
6519 // template-ids but excluding non-static class members,
6520 // expressed as & id-expression where the & is optional if
6521 // the name refers to a function or array, or if the
6522 // corresponding template-parameter is a reference; or
6523
6524 // In C++98/03 mode, give an extension warning on any extra parentheses.
6525 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
6526 bool ExtraParens = false;
6527 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
6528 if (!Invalid && !ExtraParens) {
6529 S.Diag(Arg->getBeginLoc(),
6530 S.getLangOpts().CPlusPlus11
6531 ? diag::warn_cxx98_compat_template_arg_extra_parens
6532 : diag::ext_template_arg_extra_parens)
6533 << Arg->getSourceRange();
6534 ExtraParens = true;
6535 }
6536
6537 Arg = Parens->getSubExpr();
6538 }
6539
6540 while (SubstNonTypeTemplateParmExpr *subst =
6541 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
6542 Arg = subst->getReplacement()->IgnoreImpCasts();
6543
6544 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
6545 if (UnOp->getOpcode() == UO_AddrOf) {
6546 Arg = UnOp->getSubExpr();
6547 AddressTaken = true;
6548 AddrOpLoc = UnOp->getOperatorLoc();
6549 }
6550 }
6551
6552 while (SubstNonTypeTemplateParmExpr *subst =
6553 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
6554 Arg = subst->getReplacement()->IgnoreImpCasts();
6555 }
6556
6557 ValueDecl *Entity = nullptr;
6558 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg))
6559 Entity = DRE->getDecl();
6560 else if (CXXUuidofExpr *CUE = dyn_cast<CXXUuidofExpr>(Arg))
6561 Entity = CUE->getGuidDecl();
6562
6563 // If our parameter has pointer type, check for a null template value.
6564 if (ParamType->isPointerType() || ParamType->isNullPtrType()) {
6565 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ArgIn,
6566 Entity)) {
6567 case NPV_NullPointer:
6568 S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
6569 Converted = TemplateArgument(S.Context.getCanonicalType(ParamType),
6570 /*isNullPtr=*/true);
6571 return false;
6572
6573 case NPV_Error:
6574 return true;
6575
6576 case NPV_NotNullPointer:
6577 break;
6578 }
6579 }
6580
6581 // Stop checking the precise nature of the argument if it is value dependent,
6582 // it should be checked when instantiated.
6583 if (Arg->isValueDependent()) {
6584 Converted = TemplateArgument(ArgIn);
6585 return false;
6586 }
6587
6588 if (!Entity) {
6589 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref)
6590 << Arg->getSourceRange();
6591 S.Diag(Param->getLocation(), diag::note_template_param_here);
6592 return true;
6593 }
6594
6595 // Cannot refer to non-static data members
6596 if (isa<FieldDecl>(Entity) || isa<IndirectFieldDecl>(Entity)) {
6597 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_field)
6598 << Entity << Arg->getSourceRange();
6599 S.Diag(Param->getLocation(), diag::note_template_param_here);
6600 return true;
6601 }
6602
6603 // Cannot refer to non-static member functions
6604 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) {
6605 if (!Method->isStatic()) {
6606 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_method)
6607 << Method << Arg->getSourceRange();
6608 S.Diag(Param->getLocation(), diag::note_template_param_here);
6609 return true;
6610 }
6611 }
6612
6613 FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity);
6614 VarDecl *Var = dyn_cast<VarDecl>(Entity);
6615 MSGuidDecl *Guid = dyn_cast<MSGuidDecl>(Entity);
6616
6617 // A non-type template argument must refer to an object or function.
6618 if (!Func && !Var && !Guid) {
6619 // We found something, but we don't know specifically what it is.
6620 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_object_or_func)
6621 << Arg->getSourceRange();
6622 S.Diag(Entity->getLocation(), diag::note_template_arg_refers_here);
6623 return true;
6624 }
6625
6626 // Address / reference template args must have external linkage in C++98.
6627 if (Entity->getFormalLinkage() == InternalLinkage) {
6628 S.Diag(Arg->getBeginLoc(),
6629 S.getLangOpts().CPlusPlus11
6630 ? diag::warn_cxx98_compat_template_arg_object_internal
6631 : diag::ext_template_arg_object_internal)
6632 << !Func << Entity << Arg->getSourceRange();
6633 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
6634 << !Func;
6635 } else if (!Entity->hasLinkage()) {
6636 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_object_no_linkage)
6637 << !Func << Entity << Arg->getSourceRange();
6638 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
6639 << !Func;
6640 return true;
6641 }
6642
6643 if (Var) {
6644 // A value of reference type is not an object.
6645 if (Var->getType()->isReferenceType()) {
6646 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_reference_var)
6647 << Var->getType() << Arg->getSourceRange();
6648 S.Diag(Param->getLocation(), diag::note_template_param_here);
6649 return true;
6650 }
6651
6652 // A template argument must have static storage duration.
6653 if (Var->getTLSKind()) {
6654 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_thread_local)
6655 << Arg->getSourceRange();
6656 S.Diag(Var->getLocation(), diag::note_template_arg_refers_here);
6657 return true;
6658 }
6659 }
6660
6661 if (AddressTaken && ParamType->isReferenceType()) {
6662 // If we originally had an address-of operator, but the
6663 // parameter has reference type, complain and (if things look
6664 // like they will work) drop the address-of operator.
6665 if (!S.Context.hasSameUnqualifiedType(Entity->getType(),
6666 ParamType.getNonReferenceType())) {
6667 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
6668 << ParamType;
6669 S.Diag(Param->getLocation(), diag::note_template_param_here);
6670 return true;
6671 }
6672
6673 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
6674 << ParamType
6675 << FixItHint::CreateRemoval(AddrOpLoc);
6676 S.Diag(Param->getLocation(), diag::note_template_param_here);
6677
6678 ArgType = Entity->getType();
6679 }
6680
6681 // If the template parameter has pointer type, either we must have taken the
6682 // address or the argument must decay to a pointer.
6683 if (!AddressTaken && ParamType->isPointerType()) {
6684 if (Func) {
6685 // Function-to-pointer decay.
6686 ArgType = S.Context.getPointerType(Func->getType());
6687 } else if (Entity->getType()->isArrayType()) {
6688 // Array-to-pointer decay.
6689 ArgType = S.Context.getArrayDecayedType(Entity->getType());
6690 } else {
6691 // If the template parameter has pointer type but the address of
6692 // this object was not taken, complain and (possibly) recover by
6693 // taking the address of the entity.
6694 ArgType = S.Context.getPointerType(Entity->getType());
6695 if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
6696 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_address_of)
6697 << ParamType;
6698 S.Diag(Param->getLocation(), diag::note_template_param_here);
6699 return true;
6700 }
6701
6702 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_address_of)
6703 << ParamType << FixItHint::CreateInsertion(Arg->getBeginLoc(), "&");
6704
6705 S.Diag(Param->getLocation(), diag::note_template_param_here);
6706 }
6707 }
6708
6709 if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType, ArgIn,
6710 Arg, ArgType))
6711 return true;
6712
6713 // Create the template argument.
6714 Converted = TemplateArgument(cast<ValueDecl>(Entity->getCanonicalDecl()),
6715 S.Context.getCanonicalType(ParamType));
6716 S.MarkAnyDeclReferenced(Arg->getBeginLoc(), Entity, false);
6717 return false;
6718 }
6719
6720 /// Checks whether the given template argument is a pointer to
6721 /// member constant according to C++ [temp.arg.nontype]p1.
CheckTemplateArgumentPointerToMember(Sema & S,NonTypeTemplateParmDecl * Param,QualType ParamType,Expr * & ResultArg,TemplateArgument & Converted)6722 static bool CheckTemplateArgumentPointerToMember(Sema &S,
6723 NonTypeTemplateParmDecl *Param,
6724 QualType ParamType,
6725 Expr *&ResultArg,
6726 TemplateArgument &Converted) {
6727 bool Invalid = false;
6728
6729 Expr *Arg = ResultArg;
6730 bool ObjCLifetimeConversion;
6731
6732 // C++ [temp.arg.nontype]p1:
6733 //
6734 // A template-argument for a non-type, non-template
6735 // template-parameter shall be one of: [...]
6736 //
6737 // -- a pointer to member expressed as described in 5.3.1.
6738 DeclRefExpr *DRE = nullptr;
6739
6740 // In C++98/03 mode, give an extension warning on any extra parentheses.
6741 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
6742 bool ExtraParens = false;
6743 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
6744 if (!Invalid && !ExtraParens) {
6745 S.Diag(Arg->getBeginLoc(),
6746 S.getLangOpts().CPlusPlus11
6747 ? diag::warn_cxx98_compat_template_arg_extra_parens
6748 : diag::ext_template_arg_extra_parens)
6749 << Arg->getSourceRange();
6750 ExtraParens = true;
6751 }
6752
6753 Arg = Parens->getSubExpr();
6754 }
6755
6756 while (SubstNonTypeTemplateParmExpr *subst =
6757 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
6758 Arg = subst->getReplacement()->IgnoreImpCasts();
6759
6760 // A pointer-to-member constant written &Class::member.
6761 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
6762 if (UnOp->getOpcode() == UO_AddrOf) {
6763 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
6764 if (DRE && !DRE->getQualifier())
6765 DRE = nullptr;
6766 }
6767 }
6768 // A constant of pointer-to-member type.
6769 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
6770 ValueDecl *VD = DRE->getDecl();
6771 if (VD->getType()->isMemberPointerType()) {
6772 if (isa<NonTypeTemplateParmDecl>(VD)) {
6773 if (Arg->isTypeDependent() || Arg->isValueDependent()) {
6774 Converted = TemplateArgument(Arg);
6775 } else {
6776 VD = cast<ValueDecl>(VD->getCanonicalDecl());
6777 Converted = TemplateArgument(VD, ParamType);
6778 }
6779 return Invalid;
6780 }
6781 }
6782
6783 DRE = nullptr;
6784 }
6785
6786 ValueDecl *Entity = DRE ? DRE->getDecl() : nullptr;
6787
6788 // Check for a null pointer value.
6789 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ResultArg,
6790 Entity)) {
6791 case NPV_Error:
6792 return true;
6793 case NPV_NullPointer:
6794 S.Diag(ResultArg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
6795 Converted = TemplateArgument(S.Context.getCanonicalType(ParamType),
6796 /*isNullPtr*/true);
6797 return false;
6798 case NPV_NotNullPointer:
6799 break;
6800 }
6801
6802 if (S.IsQualificationConversion(ResultArg->getType(),
6803 ParamType.getNonReferenceType(), false,
6804 ObjCLifetimeConversion)) {
6805 ResultArg = S.ImpCastExprToType(ResultArg, ParamType, CK_NoOp,
6806 ResultArg->getValueKind())
6807 .get();
6808 } else if (!S.Context.hasSameUnqualifiedType(
6809 ResultArg->getType(), ParamType.getNonReferenceType())) {
6810 // We can't perform this conversion.
6811 S.Diag(ResultArg->getBeginLoc(), diag::err_template_arg_not_convertible)
6812 << ResultArg->getType() << ParamType << ResultArg->getSourceRange();
6813 S.Diag(Param->getLocation(), diag::note_template_param_here);
6814 return true;
6815 }
6816
6817 if (!DRE)
6818 return S.Diag(Arg->getBeginLoc(),
6819 diag::err_template_arg_not_pointer_to_member_form)
6820 << Arg->getSourceRange();
6821
6822 if (isa<FieldDecl>(DRE->getDecl()) ||
6823 isa<IndirectFieldDecl>(DRE->getDecl()) ||
6824 isa<CXXMethodDecl>(DRE->getDecl())) {
6825 assert((isa<FieldDecl>(DRE->getDecl()) ||
6826 isa<IndirectFieldDecl>(DRE->getDecl()) ||
6827 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
6828 "Only non-static member pointers can make it here");
6829
6830 // Okay: this is the address of a non-static member, and therefore
6831 // a member pointer constant.
6832 if (Arg->isTypeDependent() || Arg->isValueDependent()) {
6833 Converted = TemplateArgument(Arg);
6834 } else {
6835 ValueDecl *D = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl());
6836 Converted = TemplateArgument(D, S.Context.getCanonicalType(ParamType));
6837 }
6838 return Invalid;
6839 }
6840
6841 // We found something else, but we don't know specifically what it is.
6842 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_pointer_to_member_form)
6843 << Arg->getSourceRange();
6844 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
6845 return true;
6846 }
6847
6848 /// Check a template argument against its corresponding
6849 /// non-type template parameter.
6850 ///
6851 /// This routine implements the semantics of C++ [temp.arg.nontype].
6852 /// If an error occurred, it returns ExprError(); otherwise, it
6853 /// returns the converted template argument. \p ParamType is the
6854 /// type of the non-type template parameter after it has been instantiated.
CheckTemplateArgument(NonTypeTemplateParmDecl * Param,QualType ParamType,Expr * Arg,TemplateArgument & Converted,CheckTemplateArgumentKind CTAK)6855 ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
6856 QualType ParamType, Expr *Arg,
6857 TemplateArgument &Converted,
6858 CheckTemplateArgumentKind CTAK) {
6859 SourceLocation StartLoc = Arg->getBeginLoc();
6860
6861 // If the parameter type somehow involves auto, deduce the type now.
6862 DeducedType *DeducedT = ParamType->getContainedDeducedType();
6863 if (getLangOpts().CPlusPlus17 && DeducedT && !DeducedT->isDeduced()) {
6864 // During template argument deduction, we allow 'decltype(auto)' to
6865 // match an arbitrary dependent argument.
6866 // FIXME: The language rules don't say what happens in this case.
6867 // FIXME: We get an opaque dependent type out of decltype(auto) if the
6868 // expression is merely instantiation-dependent; is this enough?
6869 if (CTAK == CTAK_Deduced && Arg->isTypeDependent()) {
6870 auto *AT = dyn_cast<AutoType>(DeducedT);
6871 if (AT && AT->isDecltypeAuto()) {
6872 Converted = TemplateArgument(Arg);
6873 return Arg;
6874 }
6875 }
6876
6877 // When checking a deduced template argument, deduce from its type even if
6878 // the type is dependent, in order to check the types of non-type template
6879 // arguments line up properly in partial ordering.
6880 Optional<unsigned> Depth = Param->getDepth() + 1;
6881 Expr *DeductionArg = Arg;
6882 if (auto *PE = dyn_cast<PackExpansionExpr>(DeductionArg))
6883 DeductionArg = PE->getPattern();
6884 TypeSourceInfo *TSI =
6885 Context.getTrivialTypeSourceInfo(ParamType, Param->getLocation());
6886 if (isa<DeducedTemplateSpecializationType>(DeducedT)) {
6887 InitializedEntity Entity =
6888 InitializedEntity::InitializeTemplateParameter(ParamType, Param);
6889 InitializationKind Kind = InitializationKind::CreateForInit(
6890 DeductionArg->getBeginLoc(), /*DirectInit*/false, DeductionArg);
6891 Expr *Inits[1] = {DeductionArg};
6892 ParamType =
6893 DeduceTemplateSpecializationFromInitializer(TSI, Entity, Kind, Inits);
6894 if (ParamType.isNull())
6895 return ExprError();
6896 } else if (DeduceAutoType(
6897 TSI, DeductionArg, ParamType, Depth,
6898 // We do not check constraints right now because the
6899 // immediately-declared constraint of the auto type is also
6900 // an associated constraint, and will be checked along with
6901 // the other associated constraints after checking the
6902 // template argument list.
6903 /*IgnoreConstraints=*/true) == DAR_Failed) {
6904 Diag(Arg->getExprLoc(),
6905 diag::err_non_type_template_parm_type_deduction_failure)
6906 << Param->getDeclName() << Param->getType() << Arg->getType()
6907 << Arg->getSourceRange();
6908 Diag(Param->getLocation(), diag::note_template_param_here);
6909 return ExprError();
6910 }
6911 // CheckNonTypeTemplateParameterType will produce a diagnostic if there's
6912 // an error. The error message normally references the parameter
6913 // declaration, but here we'll pass the argument location because that's
6914 // where the parameter type is deduced.
6915 ParamType = CheckNonTypeTemplateParameterType(ParamType, Arg->getExprLoc());
6916 if (ParamType.isNull()) {
6917 Diag(Param->getLocation(), diag::note_template_param_here);
6918 return ExprError();
6919 }
6920 }
6921
6922 // We should have already dropped all cv-qualifiers by now.
6923 assert(!ParamType.hasQualifiers() &&
6924 "non-type template parameter type cannot be qualified");
6925
6926 // FIXME: When Param is a reference, should we check that Arg is an lvalue?
6927 if (CTAK == CTAK_Deduced &&
6928 (ParamType->isReferenceType()
6929 ? !Context.hasSameType(ParamType.getNonReferenceType(),
6930 Arg->getType())
6931 : !Context.hasSameUnqualifiedType(ParamType, Arg->getType()))) {
6932 // FIXME: If either type is dependent, we skip the check. This isn't
6933 // correct, since during deduction we're supposed to have replaced each
6934 // template parameter with some unique (non-dependent) placeholder.
6935 // FIXME: If the argument type contains 'auto', we carry on and fail the
6936 // type check in order to force specific types to be more specialized than
6937 // 'auto'. It's not clear how partial ordering with 'auto' is supposed to
6938 // work. Similarly for CTAD, when comparing 'A<x>' against 'A'.
6939 if ((ParamType->isDependentType() || Arg->isTypeDependent()) &&
6940 !Arg->getType()->getContainedDeducedType()) {
6941 Converted = TemplateArgument(Arg);
6942 return Arg;
6943 }
6944 // FIXME: This attempts to implement C++ [temp.deduct.type]p17. Per DR1770,
6945 // we should actually be checking the type of the template argument in P,
6946 // not the type of the template argument deduced from A, against the
6947 // template parameter type.
6948 Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
6949 << Arg->getType()
6950 << ParamType.getUnqualifiedType();
6951 Diag(Param->getLocation(), diag::note_template_param_here);
6952 return ExprError();
6953 }
6954
6955 // If either the parameter has a dependent type or the argument is
6956 // type-dependent, there's nothing we can check now. The argument only
6957 // contains an unexpanded pack during partial ordering, and there's
6958 // nothing more we can check in that case.
6959 if (ParamType->isDependentType() || Arg->isTypeDependent() ||
6960 Arg->containsUnexpandedParameterPack()) {
6961 // Force the argument to the type of the parameter to maintain invariants.
6962 auto *PE = dyn_cast<PackExpansionExpr>(Arg);
6963 if (PE)
6964 Arg = PE->getPattern();
6965 ExprResult E = ImpCastExprToType(
6966 Arg, ParamType.getNonLValueExprType(Context), CK_Dependent,
6967 ParamType->isLValueReferenceType() ? VK_LValue
6968 : ParamType->isRValueReferenceType() ? VK_XValue
6969 : VK_PRValue);
6970 if (E.isInvalid())
6971 return ExprError();
6972 if (PE) {
6973 // Recreate a pack expansion if we unwrapped one.
6974 E = new (Context)
6975 PackExpansionExpr(E.get()->getType(), E.get(), PE->getEllipsisLoc(),
6976 PE->getNumExpansions());
6977 }
6978 Converted = TemplateArgument(E.get());
6979 return E;
6980 }
6981
6982 // The initialization of the parameter from the argument is
6983 // a constant-evaluated context.
6984 EnterExpressionEvaluationContext ConstantEvaluated(
6985 *this, Sema::ExpressionEvaluationContext::ConstantEvaluated);
6986
6987 if (getLangOpts().CPlusPlus17) {
6988 QualType CanonParamType = Context.getCanonicalType(ParamType);
6989
6990 // Avoid making a copy when initializing a template parameter of class type
6991 // from a template parameter object of the same type. This is going beyond
6992 // the standard, but is required for soundness: in
6993 // template<A a> struct X { X *p; X<a> *q; };
6994 // ... we need p and q to have the same type.
6995 //
6996 // Similarly, don't inject a call to a copy constructor when initializing
6997 // from a template parameter of the same type.
6998 Expr *InnerArg = Arg->IgnoreParenImpCasts();
6999 if (ParamType->isRecordType() && isa<DeclRefExpr>(InnerArg) &&
7000 Context.hasSameUnqualifiedType(ParamType, InnerArg->getType())) {
7001 NamedDecl *ND = cast<DeclRefExpr>(InnerArg)->getDecl();
7002 if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND)) {
7003 Converted = TemplateArgument(TPO, CanonParamType);
7004 return Arg;
7005 }
7006 if (isa<NonTypeTemplateParmDecl>(ND)) {
7007 Converted = TemplateArgument(Arg);
7008 return Arg;
7009 }
7010 }
7011
7012 // C++17 [temp.arg.nontype]p1:
7013 // A template-argument for a non-type template parameter shall be
7014 // a converted constant expression of the type of the template-parameter.
7015 APValue Value;
7016 ExprResult ArgResult = CheckConvertedConstantExpression(
7017 Arg, ParamType, Value, CCEK_TemplateArg, Param);
7018 if (ArgResult.isInvalid())
7019 return ExprError();
7020
7021 // For a value-dependent argument, CheckConvertedConstantExpression is
7022 // permitted (and expected) to be unable to determine a value.
7023 if (ArgResult.get()->isValueDependent()) {
7024 Converted = TemplateArgument(ArgResult.get());
7025 return ArgResult;
7026 }
7027
7028 // Convert the APValue to a TemplateArgument.
7029 switch (Value.getKind()) {
7030 case APValue::None:
7031 assert(ParamType->isNullPtrType());
7032 Converted = TemplateArgument(CanonParamType, /*isNullPtr*/true);
7033 break;
7034 case APValue::Indeterminate:
7035 llvm_unreachable("result of constant evaluation should be initialized");
7036 break;
7037 case APValue::Int:
7038 assert(ParamType->isIntegralOrEnumerationType());
7039 Converted = TemplateArgument(Context, Value.getInt(), CanonParamType);
7040 break;
7041 case APValue::MemberPointer: {
7042 assert(ParamType->isMemberPointerType());
7043
7044 // FIXME: We need TemplateArgument representation and mangling for these.
7045 if (!Value.getMemberPointerPath().empty()) {
7046 Diag(Arg->getBeginLoc(),
7047 diag::err_template_arg_member_ptr_base_derived_not_supported)
7048 << Value.getMemberPointerDecl() << ParamType
7049 << Arg->getSourceRange();
7050 return ExprError();
7051 }
7052
7053 auto *VD = const_cast<ValueDecl*>(Value.getMemberPointerDecl());
7054 Converted = VD ? TemplateArgument(VD, CanonParamType)
7055 : TemplateArgument(CanonParamType, /*isNullPtr*/true);
7056 break;
7057 }
7058 case APValue::LValue: {
7059 // For a non-type template-parameter of pointer or reference type,
7060 // the value of the constant expression shall not refer to
7061 assert(ParamType->isPointerType() || ParamType->isReferenceType() ||
7062 ParamType->isNullPtrType());
7063 // -- a temporary object
7064 // -- a string literal
7065 // -- the result of a typeid expression, or
7066 // -- a predefined __func__ variable
7067 APValue::LValueBase Base = Value.getLValueBase();
7068 auto *VD = const_cast<ValueDecl *>(Base.dyn_cast<const ValueDecl *>());
7069 if (Base &&
7070 (!VD ||
7071 isa<LifetimeExtendedTemporaryDecl, UnnamedGlobalConstantDecl>(VD))) {
7072 Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref)
7073 << Arg->getSourceRange();
7074 return ExprError();
7075 }
7076 // -- a subobject
7077 // FIXME: Until C++20
7078 if (Value.hasLValuePath() && Value.getLValuePath().size() == 1 &&
7079 VD && VD->getType()->isArrayType() &&
7080 Value.getLValuePath()[0].getAsArrayIndex() == 0 &&
7081 !Value.isLValueOnePastTheEnd() && ParamType->isPointerType()) {
7082 // Per defect report (no number yet):
7083 // ... other than a pointer to the first element of a complete array
7084 // object.
7085 } else if (!Value.hasLValuePath() || Value.getLValuePath().size() ||
7086 Value.isLValueOnePastTheEnd()) {
7087 Diag(StartLoc, diag::err_non_type_template_arg_subobject)
7088 << Value.getAsString(Context, ParamType);
7089 return ExprError();
7090 }
7091 assert((VD || !ParamType->isReferenceType()) &&
7092 "null reference should not be a constant expression");
7093 assert((!VD || !ParamType->isNullPtrType()) &&
7094 "non-null value of type nullptr_t?");
7095 Converted = VD ? TemplateArgument(VD, CanonParamType)
7096 : TemplateArgument(CanonParamType, /*isNullPtr*/true);
7097 break;
7098 }
7099 case APValue::Struct:
7100 case APValue::Union:
7101 // Get or create the corresponding template parameter object.
7102 Converted = TemplateArgument(
7103 Context.getTemplateParamObjectDecl(CanonParamType, Value),
7104 CanonParamType);
7105 break;
7106 case APValue::AddrLabelDiff:
7107 return Diag(StartLoc, diag::err_non_type_template_arg_addr_label_diff);
7108 case APValue::FixedPoint:
7109 case APValue::Float:
7110 case APValue::ComplexInt:
7111 case APValue::ComplexFloat:
7112 case APValue::Vector:
7113 case APValue::Array:
7114 return Diag(StartLoc, diag::err_non_type_template_arg_unsupported)
7115 << ParamType;
7116 }
7117
7118 return ArgResult.get();
7119 }
7120
7121 // C++ [temp.arg.nontype]p5:
7122 // The following conversions are performed on each expression used
7123 // as a non-type template-argument. If a non-type
7124 // template-argument cannot be converted to the type of the
7125 // corresponding template-parameter then the program is
7126 // ill-formed.
7127 if (ParamType->isIntegralOrEnumerationType()) {
7128 // C++11:
7129 // -- for a non-type template-parameter of integral or
7130 // enumeration type, conversions permitted in a converted
7131 // constant expression are applied.
7132 //
7133 // C++98:
7134 // -- for a non-type template-parameter of integral or
7135 // enumeration type, integral promotions (4.5) and integral
7136 // conversions (4.7) are applied.
7137
7138 if (getLangOpts().CPlusPlus11) {
7139 // C++ [temp.arg.nontype]p1:
7140 // A template-argument for a non-type, non-template template-parameter
7141 // shall be one of:
7142 //
7143 // -- for a non-type template-parameter of integral or enumeration
7144 // type, a converted constant expression of the type of the
7145 // template-parameter; or
7146 llvm::APSInt Value;
7147 ExprResult ArgResult =
7148 CheckConvertedConstantExpression(Arg, ParamType, Value,
7149 CCEK_TemplateArg);
7150 if (ArgResult.isInvalid())
7151 return ExprError();
7152
7153 // We can't check arbitrary value-dependent arguments.
7154 if (ArgResult.get()->isValueDependent()) {
7155 Converted = TemplateArgument(ArgResult.get());
7156 return ArgResult;
7157 }
7158
7159 // Widen the argument value to sizeof(parameter type). This is almost
7160 // always a no-op, except when the parameter type is bool. In
7161 // that case, this may extend the argument from 1 bit to 8 bits.
7162 QualType IntegerType = ParamType;
7163 if (const EnumType *Enum = IntegerType->getAs<EnumType>())
7164 IntegerType = Enum->getDecl()->getIntegerType();
7165 Value = Value.extOrTrunc(IntegerType->isBitIntType()
7166 ? Context.getIntWidth(IntegerType)
7167 : Context.getTypeSize(IntegerType));
7168
7169 Converted = TemplateArgument(Context, Value,
7170 Context.getCanonicalType(ParamType));
7171 return ArgResult;
7172 }
7173
7174 ExprResult ArgResult = DefaultLvalueConversion(Arg);
7175 if (ArgResult.isInvalid())
7176 return ExprError();
7177 Arg = ArgResult.get();
7178
7179 QualType ArgType = Arg->getType();
7180
7181 // C++ [temp.arg.nontype]p1:
7182 // A template-argument for a non-type, non-template
7183 // template-parameter shall be one of:
7184 //
7185 // -- an integral constant-expression of integral or enumeration
7186 // type; or
7187 // -- the name of a non-type template-parameter; or
7188 llvm::APSInt Value;
7189 if (!ArgType->isIntegralOrEnumerationType()) {
7190 Diag(Arg->getBeginLoc(), diag::err_template_arg_not_integral_or_enumeral)
7191 << ArgType << Arg->getSourceRange();
7192 Diag(Param->getLocation(), diag::note_template_param_here);
7193 return ExprError();
7194 } else if (!Arg->isValueDependent()) {
7195 class TmplArgICEDiagnoser : public VerifyICEDiagnoser {
7196 QualType T;
7197
7198 public:
7199 TmplArgICEDiagnoser(QualType T) : T(T) { }
7200
7201 SemaDiagnosticBuilder diagnoseNotICE(Sema &S,
7202 SourceLocation Loc) override {
7203 return S.Diag(Loc, diag::err_template_arg_not_ice) << T;
7204 }
7205 } Diagnoser(ArgType);
7206
7207 Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser).get();
7208 if (!Arg)
7209 return ExprError();
7210 }
7211
7212 // From here on out, all we care about is the unqualified form
7213 // of the argument type.
7214 ArgType = ArgType.getUnqualifiedType();
7215
7216 // Try to convert the argument to the parameter's type.
7217 if (Context.hasSameType(ParamType, ArgType)) {
7218 // Okay: no conversion necessary
7219 } else if (ParamType->isBooleanType()) {
7220 // This is an integral-to-boolean conversion.
7221 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).get();
7222 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
7223 !ParamType->isEnumeralType()) {
7224 // This is an integral promotion or conversion.
7225 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).get();
7226 } else {
7227 // We can't perform this conversion.
7228 Diag(Arg->getBeginLoc(), diag::err_template_arg_not_convertible)
7229 << Arg->getType() << ParamType << Arg->getSourceRange();
7230 Diag(Param->getLocation(), diag::note_template_param_here);
7231 return ExprError();
7232 }
7233
7234 // Add the value of this argument to the list of converted
7235 // arguments. We use the bitwidth and signedness of the template
7236 // parameter.
7237 if (Arg->isValueDependent()) {
7238 // The argument is value-dependent. Create a new
7239 // TemplateArgument with the converted expression.
7240 Converted = TemplateArgument(Arg);
7241 return Arg;
7242 }
7243
7244 QualType IntegerType = Context.getCanonicalType(ParamType);
7245 if (const EnumType *Enum = IntegerType->getAs<EnumType>())
7246 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
7247
7248 if (ParamType->isBooleanType()) {
7249 // Value must be zero or one.
7250 Value = Value != 0;
7251 unsigned AllowedBits = Context.getTypeSize(IntegerType);
7252 if (Value.getBitWidth() != AllowedBits)
7253 Value = Value.extOrTrunc(AllowedBits);
7254 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
7255 } else {
7256 llvm::APSInt OldValue = Value;
7257
7258 // Coerce the template argument's value to the value it will have
7259 // based on the template parameter's type.
7260 unsigned AllowedBits = IntegerType->isBitIntType()
7261 ? Context.getIntWidth(IntegerType)
7262 : Context.getTypeSize(IntegerType);
7263 if (Value.getBitWidth() != AllowedBits)
7264 Value = Value.extOrTrunc(AllowedBits);
7265 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
7266
7267 // Complain if an unsigned parameter received a negative value.
7268 if (IntegerType->isUnsignedIntegerOrEnumerationType() &&
7269 (OldValue.isSigned() && OldValue.isNegative())) {
7270 Diag(Arg->getBeginLoc(), diag::warn_template_arg_negative)
7271 << toString(OldValue, 10) << toString(Value, 10) << Param->getType()
7272 << Arg->getSourceRange();
7273 Diag(Param->getLocation(), diag::note_template_param_here);
7274 }
7275
7276 // Complain if we overflowed the template parameter's type.
7277 unsigned RequiredBits;
7278 if (IntegerType->isUnsignedIntegerOrEnumerationType())
7279 RequiredBits = OldValue.getActiveBits();
7280 else if (OldValue.isUnsigned())
7281 RequiredBits = OldValue.getActiveBits() + 1;
7282 else
7283 RequiredBits = OldValue.getMinSignedBits();
7284 if (RequiredBits > AllowedBits) {
7285 Diag(Arg->getBeginLoc(), diag::warn_template_arg_too_large)
7286 << toString(OldValue, 10) << toString(Value, 10) << Param->getType()
7287 << Arg->getSourceRange();
7288 Diag(Param->getLocation(), diag::note_template_param_here);
7289 }
7290 }
7291
7292 Converted = TemplateArgument(Context, Value,
7293 ParamType->isEnumeralType()
7294 ? Context.getCanonicalType(ParamType)
7295 : IntegerType);
7296 return Arg;
7297 }
7298
7299 QualType ArgType = Arg->getType();
7300 DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
7301
7302 // Handle pointer-to-function, reference-to-function, and
7303 // pointer-to-member-function all in (roughly) the same way.
7304 if (// -- For a non-type template-parameter of type pointer to
7305 // function, only the function-to-pointer conversion (4.3) is
7306 // applied. If the template-argument represents a set of
7307 // overloaded functions (or a pointer to such), the matching
7308 // function is selected from the set (13.4).
7309 (ParamType->isPointerType() &&
7310 ParamType->castAs<PointerType>()->getPointeeType()->isFunctionType()) ||
7311 // -- For a non-type template-parameter of type reference to
7312 // function, no conversions apply. If the template-argument
7313 // represents a set of overloaded functions, the matching
7314 // function is selected from the set (13.4).
7315 (ParamType->isReferenceType() &&
7316 ParamType->castAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
7317 // -- For a non-type template-parameter of type pointer to
7318 // member function, no conversions apply. If the
7319 // template-argument represents a set of overloaded member
7320 // functions, the matching member function is selected from
7321 // the set (13.4).
7322 (ParamType->isMemberPointerType() &&
7323 ParamType->castAs<MemberPointerType>()->getPointeeType()
7324 ->isFunctionType())) {
7325
7326 if (Arg->getType() == Context.OverloadTy) {
7327 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
7328 true,
7329 FoundResult)) {
7330 if (DiagnoseUseOfDecl(Fn, Arg->getBeginLoc()))
7331 return ExprError();
7332
7333 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
7334 ArgType = Arg->getType();
7335 } else
7336 return ExprError();
7337 }
7338
7339 if (!ParamType->isMemberPointerType()) {
7340 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
7341 ParamType,
7342 Arg, Converted))
7343 return ExprError();
7344 return Arg;
7345 }
7346
7347 if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
7348 Converted))
7349 return ExprError();
7350 return Arg;
7351 }
7352
7353 if (ParamType->isPointerType()) {
7354 // -- for a non-type template-parameter of type pointer to
7355 // object, qualification conversions (4.4) and the
7356 // array-to-pointer conversion (4.2) are applied.
7357 // C++0x also allows a value of std::nullptr_t.
7358 assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
7359 "Only object pointers allowed here");
7360
7361 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
7362 ParamType,
7363 Arg, Converted))
7364 return ExprError();
7365 return Arg;
7366 }
7367
7368 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
7369 // -- For a non-type template-parameter of type reference to
7370 // object, no conversions apply. The type referred to by the
7371 // reference may be more cv-qualified than the (otherwise
7372 // identical) type of the template-argument. The
7373 // template-parameter is bound directly to the
7374 // template-argument, which must be an lvalue.
7375 assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
7376 "Only object references allowed here");
7377
7378 if (Arg->getType() == Context.OverloadTy) {
7379 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
7380 ParamRefType->getPointeeType(),
7381 true,
7382 FoundResult)) {
7383 if (DiagnoseUseOfDecl(Fn, Arg->getBeginLoc()))
7384 return ExprError();
7385
7386 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
7387 ArgType = Arg->getType();
7388 } else
7389 return ExprError();
7390 }
7391
7392 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
7393 ParamType,
7394 Arg, Converted))
7395 return ExprError();
7396 return Arg;
7397 }
7398
7399 // Deal with parameters of type std::nullptr_t.
7400 if (ParamType->isNullPtrType()) {
7401 if (Arg->isTypeDependent() || Arg->isValueDependent()) {
7402 Converted = TemplateArgument(Arg);
7403 return Arg;
7404 }
7405
7406 switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) {
7407 case NPV_NotNullPointer:
7408 Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible)
7409 << Arg->getType() << ParamType;
7410 Diag(Param->getLocation(), diag::note_template_param_here);
7411 return ExprError();
7412
7413 case NPV_Error:
7414 return ExprError();
7415
7416 case NPV_NullPointer:
7417 Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
7418 Converted = TemplateArgument(Context.getCanonicalType(ParamType),
7419 /*isNullPtr*/true);
7420 return Arg;
7421 }
7422 }
7423
7424 // -- For a non-type template-parameter of type pointer to data
7425 // member, qualification conversions (4.4) are applied.
7426 assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
7427
7428 if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
7429 Converted))
7430 return ExprError();
7431 return Arg;
7432 }
7433
7434 static void DiagnoseTemplateParameterListArityMismatch(
7435 Sema &S, TemplateParameterList *New, TemplateParameterList *Old,
7436 Sema::TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc);
7437
7438 /// Check a template argument against its corresponding
7439 /// template template parameter.
7440 ///
7441 /// This routine implements the semantics of C++ [temp.arg.template].
7442 /// It returns true if an error occurred, and false otherwise.
CheckTemplateTemplateArgument(TemplateTemplateParmDecl * Param,TemplateParameterList * Params,TemplateArgumentLoc & Arg)7443 bool Sema::CheckTemplateTemplateArgument(TemplateTemplateParmDecl *Param,
7444 TemplateParameterList *Params,
7445 TemplateArgumentLoc &Arg) {
7446 TemplateName Name = Arg.getArgument().getAsTemplateOrTemplatePattern();
7447 TemplateDecl *Template = Name.getAsTemplateDecl();
7448 if (!Template) {
7449 // Any dependent template name is fine.
7450 assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
7451 return false;
7452 }
7453
7454 if (Template->isInvalidDecl())
7455 return true;
7456
7457 // C++0x [temp.arg.template]p1:
7458 // A template-argument for a template template-parameter shall be
7459 // the name of a class template or an alias template, expressed as an
7460 // id-expression. When the template-argument names a class template, only
7461 // primary class templates are considered when matching the
7462 // template template argument with the corresponding parameter;
7463 // partial specializations are not considered even if their
7464 // parameter lists match that of the template template parameter.
7465 //
7466 // Note that we also allow template template parameters here, which
7467 // will happen when we are dealing with, e.g., class template
7468 // partial specializations.
7469 if (!isa<ClassTemplateDecl>(Template) &&
7470 !isa<TemplateTemplateParmDecl>(Template) &&
7471 !isa<TypeAliasTemplateDecl>(Template) &&
7472 !isa<BuiltinTemplateDecl>(Template)) {
7473 assert(isa<FunctionTemplateDecl>(Template) &&
7474 "Only function templates are possible here");
7475 Diag(Arg.getLocation(), diag::err_template_arg_not_valid_template);
7476 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
7477 << Template;
7478 }
7479
7480 // C++1z [temp.arg.template]p3: (DR 150)
7481 // A template-argument matches a template template-parameter P when P
7482 // is at least as specialized as the template-argument A.
7483 // FIXME: We should enable RelaxedTemplateTemplateArgs by default as it is a
7484 // defect report resolution from C++17 and shouldn't be introduced by
7485 // concepts.
7486 if (getLangOpts().RelaxedTemplateTemplateArgs) {
7487 // Quick check for the common case:
7488 // If P contains a parameter pack, then A [...] matches P if each of A's
7489 // template parameters matches the corresponding template parameter in
7490 // the template-parameter-list of P.
7491 if (TemplateParameterListsAreEqual(
7492 Template->getTemplateParameters(), Params, false,
7493 TPL_TemplateTemplateArgumentMatch, Arg.getLocation()) &&
7494 // If the argument has no associated constraints, then the parameter is
7495 // definitely at least as specialized as the argument.
7496 // Otherwise - we need a more thorough check.
7497 !Template->hasAssociatedConstraints())
7498 return false;
7499
7500 if (isTemplateTemplateParameterAtLeastAsSpecializedAs(Params, Template,
7501 Arg.getLocation())) {
7502 // C++2a[temp.func.order]p2
7503 // [...] If both deductions succeed, the partial ordering selects the
7504 // more constrained template as described by the rules in
7505 // [temp.constr.order].
7506 SmallVector<const Expr *, 3> ParamsAC, TemplateAC;
7507 Params->getAssociatedConstraints(ParamsAC);
7508 // C++2a[temp.arg.template]p3
7509 // [...] In this comparison, if P is unconstrained, the constraints on A
7510 // are not considered.
7511 if (ParamsAC.empty())
7512 return false;
7513 Template->getAssociatedConstraints(TemplateAC);
7514 bool IsParamAtLeastAsConstrained;
7515 if (IsAtLeastAsConstrained(Param, ParamsAC, Template, TemplateAC,
7516 IsParamAtLeastAsConstrained))
7517 return true;
7518 if (!IsParamAtLeastAsConstrained) {
7519 Diag(Arg.getLocation(),
7520 diag::err_template_template_parameter_not_at_least_as_constrained)
7521 << Template << Param << Arg.getSourceRange();
7522 Diag(Param->getLocation(), diag::note_entity_declared_at) << Param;
7523 Diag(Template->getLocation(), diag::note_entity_declared_at)
7524 << Template;
7525 MaybeEmitAmbiguousAtomicConstraintsDiagnostic(Param, ParamsAC, Template,
7526 TemplateAC);
7527 return true;
7528 }
7529 return false;
7530 }
7531 // FIXME: Produce better diagnostics for deduction failures.
7532 }
7533
7534 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
7535 Params,
7536 true,
7537 TPL_TemplateTemplateArgumentMatch,
7538 Arg.getLocation());
7539 }
7540
7541 /// Given a non-type template argument that refers to a
7542 /// declaration and the type of its corresponding non-type template
7543 /// parameter, produce an expression that properly refers to that
7544 /// declaration.
7545 ExprResult
BuildExpressionFromDeclTemplateArgument(const TemplateArgument & Arg,QualType ParamType,SourceLocation Loc)7546 Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
7547 QualType ParamType,
7548 SourceLocation Loc) {
7549 // C++ [temp.param]p8:
7550 //
7551 // A non-type template-parameter of type "array of T" or
7552 // "function returning T" is adjusted to be of type "pointer to
7553 // T" or "pointer to function returning T", respectively.
7554 if (ParamType->isArrayType())
7555 ParamType = Context.getArrayDecayedType(ParamType);
7556 else if (ParamType->isFunctionType())
7557 ParamType = Context.getPointerType(ParamType);
7558
7559 // For a NULL non-type template argument, return nullptr casted to the
7560 // parameter's type.
7561 if (Arg.getKind() == TemplateArgument::NullPtr) {
7562 return ImpCastExprToType(
7563 new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc),
7564 ParamType,
7565 ParamType->getAs<MemberPointerType>()
7566 ? CK_NullToMemberPointer
7567 : CK_NullToPointer);
7568 }
7569 assert(Arg.getKind() == TemplateArgument::Declaration &&
7570 "Only declaration template arguments permitted here");
7571
7572 ValueDecl *VD = Arg.getAsDecl();
7573
7574 CXXScopeSpec SS;
7575 if (ParamType->isMemberPointerType()) {
7576 // If this is a pointer to member, we need to use a qualified name to
7577 // form a suitable pointer-to-member constant.
7578 assert(VD->getDeclContext()->isRecord() &&
7579 (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD) ||
7580 isa<IndirectFieldDecl>(VD)));
7581 QualType ClassType
7582 = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
7583 NestedNameSpecifier *Qualifier
7584 = NestedNameSpecifier::Create(Context, nullptr, false,
7585 ClassType.getTypePtr());
7586 SS.MakeTrivial(Context, Qualifier, Loc);
7587 }
7588
7589 ExprResult RefExpr = BuildDeclarationNameExpr(
7590 SS, DeclarationNameInfo(VD->getDeclName(), Loc), VD);
7591 if (RefExpr.isInvalid())
7592 return ExprError();
7593
7594 // For a pointer, the argument declaration is the pointee. Take its address.
7595 QualType ElemT(RefExpr.get()->getType()->getArrayElementTypeNoTypeQual(), 0);
7596 if (ParamType->isPointerType() && !ElemT.isNull() &&
7597 Context.hasSimilarType(ElemT, ParamType->getPointeeType())) {
7598 // Decay an array argument if we want a pointer to its first element.
7599 RefExpr = DefaultFunctionArrayConversion(RefExpr.get());
7600 if (RefExpr.isInvalid())
7601 return ExprError();
7602 } else if (ParamType->isPointerType() || ParamType->isMemberPointerType()) {
7603 // For any other pointer, take the address (or form a pointer-to-member).
7604 RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
7605 if (RefExpr.isInvalid())
7606 return ExprError();
7607 } else if (ParamType->isRecordType()) {
7608 assert(isa<TemplateParamObjectDecl>(VD) &&
7609 "arg for class template param not a template parameter object");
7610 // No conversions apply in this case.
7611 return RefExpr;
7612 } else {
7613 assert(ParamType->isReferenceType() &&
7614 "unexpected type for decl template argument");
7615 }
7616
7617 // At this point we should have the right value category.
7618 assert(ParamType->isReferenceType() == RefExpr.get()->isLValue() &&
7619 "value kind mismatch for non-type template argument");
7620
7621 // The type of the template parameter can differ from the type of the
7622 // argument in various ways; convert it now if necessary.
7623 QualType DestExprType = ParamType.getNonLValueExprType(Context);
7624 if (!Context.hasSameType(RefExpr.get()->getType(), DestExprType)) {
7625 CastKind CK;
7626 QualType Ignored;
7627 if (Context.hasSimilarType(RefExpr.get()->getType(), DestExprType) ||
7628 IsFunctionConversion(RefExpr.get()->getType(), DestExprType, Ignored)) {
7629 CK = CK_NoOp;
7630 } else if (ParamType->isVoidPointerType() &&
7631 RefExpr.get()->getType()->isPointerType()) {
7632 CK = CK_BitCast;
7633 } else {
7634 // FIXME: Pointers to members can need conversion derived-to-base or
7635 // base-to-derived conversions. We currently don't retain enough
7636 // information to convert properly (we need to track a cast path or
7637 // subobject number in the template argument).
7638 llvm_unreachable(
7639 "unexpected conversion required for non-type template argument");
7640 }
7641 RefExpr = ImpCastExprToType(RefExpr.get(), DestExprType, CK,
7642 RefExpr.get()->getValueKind());
7643 }
7644
7645 return RefExpr;
7646 }
7647
7648 /// Construct a new expression that refers to the given
7649 /// integral template argument with the given source-location
7650 /// information.
7651 ///
7652 /// This routine takes care of the mapping from an integral template
7653 /// argument (which may have any integral type) to the appropriate
7654 /// literal value.
7655 ExprResult
BuildExpressionFromIntegralTemplateArgument(const TemplateArgument & Arg,SourceLocation Loc)7656 Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
7657 SourceLocation Loc) {
7658 assert(Arg.getKind() == TemplateArgument::Integral &&
7659 "Operation is only valid for integral template arguments");
7660 QualType OrigT = Arg.getIntegralType();
7661
7662 // If this is an enum type that we're instantiating, we need to use an integer
7663 // type the same size as the enumerator. We don't want to build an
7664 // IntegerLiteral with enum type. The integer type of an enum type can be of
7665 // any integral type with C++11 enum classes, make sure we create the right
7666 // type of literal for it.
7667 QualType T = OrigT;
7668 if (const EnumType *ET = OrigT->getAs<EnumType>())
7669 T = ET->getDecl()->getIntegerType();
7670
7671 Expr *E;
7672 if (T->isAnyCharacterType()) {
7673 CharacterLiteral::CharacterKind Kind;
7674 if (T->isWideCharType())
7675 Kind = CharacterLiteral::Wide;
7676 else if (T->isChar8Type() && getLangOpts().Char8)
7677 Kind = CharacterLiteral::UTF8;
7678 else if (T->isChar16Type())
7679 Kind = CharacterLiteral::UTF16;
7680 else if (T->isChar32Type())
7681 Kind = CharacterLiteral::UTF32;
7682 else
7683 Kind = CharacterLiteral::Ascii;
7684
7685 E = new (Context) CharacterLiteral(Arg.getAsIntegral().getZExtValue(),
7686 Kind, T, Loc);
7687 } else if (T->isBooleanType()) {
7688 E = new (Context) CXXBoolLiteralExpr(Arg.getAsIntegral().getBoolValue(),
7689 T, Loc);
7690 } else if (T->isNullPtrType()) {
7691 E = new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
7692 } else {
7693 E = IntegerLiteral::Create(Context, Arg.getAsIntegral(), T, Loc);
7694 }
7695
7696 if (OrigT->isEnumeralType()) {
7697 // FIXME: This is a hack. We need a better way to handle substituted
7698 // non-type template parameters.
7699 E = CStyleCastExpr::Create(Context, OrigT, VK_PRValue, CK_IntegralCast, E,
7700 nullptr, CurFPFeatureOverrides(),
7701 Context.getTrivialTypeSourceInfo(OrigT, Loc),
7702 Loc, Loc);
7703 }
7704
7705 return E;
7706 }
7707
7708 /// Match two template parameters within template parameter lists.
MatchTemplateParameterKind(Sema & S,NamedDecl * New,NamedDecl * Old,bool Complain,Sema::TemplateParameterListEqualKind Kind,SourceLocation TemplateArgLoc)7709 static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old,
7710 bool Complain,
7711 Sema::TemplateParameterListEqualKind Kind,
7712 SourceLocation TemplateArgLoc) {
7713 // Check the actual kind (type, non-type, template).
7714 if (Old->getKind() != New->getKind()) {
7715 if (Complain) {
7716 unsigned NextDiag = diag::err_template_param_different_kind;
7717 if (TemplateArgLoc.isValid()) {
7718 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
7719 NextDiag = diag::note_template_param_different_kind;
7720 }
7721 S.Diag(New->getLocation(), NextDiag)
7722 << (Kind != Sema::TPL_TemplateMatch);
7723 S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
7724 << (Kind != Sema::TPL_TemplateMatch);
7725 }
7726
7727 return false;
7728 }
7729
7730 // Check that both are parameter packs or neither are parameter packs.
7731 // However, if we are matching a template template argument to a
7732 // template template parameter, the template template parameter can have
7733 // a parameter pack where the template template argument does not.
7734 if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
7735 !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
7736 Old->isTemplateParameterPack())) {
7737 if (Complain) {
7738 unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
7739 if (TemplateArgLoc.isValid()) {
7740 S.Diag(TemplateArgLoc,
7741 diag::err_template_arg_template_params_mismatch);
7742 NextDiag = diag::note_template_parameter_pack_non_pack;
7743 }
7744
7745 unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
7746 : isa<NonTypeTemplateParmDecl>(New)? 1
7747 : 2;
7748 S.Diag(New->getLocation(), NextDiag)
7749 << ParamKind << New->isParameterPack();
7750 S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
7751 << ParamKind << Old->isParameterPack();
7752 }
7753
7754 return false;
7755 }
7756
7757 // For non-type template parameters, check the type of the parameter.
7758 if (NonTypeTemplateParmDecl *OldNTTP
7759 = dyn_cast<NonTypeTemplateParmDecl>(Old)) {
7760 NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
7761
7762 // If we are matching a template template argument to a template
7763 // template parameter and one of the non-type template parameter types
7764 // is dependent, then we must wait until template instantiation time
7765 // to actually compare the arguments.
7766 if (Kind != Sema::TPL_TemplateTemplateArgumentMatch ||
7767 (!OldNTTP->getType()->isDependentType() &&
7768 !NewNTTP->getType()->isDependentType()))
7769 if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) {
7770 if (Complain) {
7771 unsigned NextDiag = diag::err_template_nontype_parm_different_type;
7772 if (TemplateArgLoc.isValid()) {
7773 S.Diag(TemplateArgLoc,
7774 diag::err_template_arg_template_params_mismatch);
7775 NextDiag = diag::note_template_nontype_parm_different_type;
7776 }
7777 S.Diag(NewNTTP->getLocation(), NextDiag)
7778 << NewNTTP->getType()
7779 << (Kind != Sema::TPL_TemplateMatch);
7780 S.Diag(OldNTTP->getLocation(),
7781 diag::note_template_nontype_parm_prev_declaration)
7782 << OldNTTP->getType();
7783 }
7784
7785 return false;
7786 }
7787 }
7788 // For template template parameters, check the template parameter types.
7789 // The template parameter lists of template template
7790 // parameters must agree.
7791 else if (TemplateTemplateParmDecl *OldTTP
7792 = dyn_cast<TemplateTemplateParmDecl>(Old)) {
7793 TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
7794 if (!S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
7795 OldTTP->getTemplateParameters(),
7796 Complain,
7797 (Kind == Sema::TPL_TemplateMatch
7798 ? Sema::TPL_TemplateTemplateParmMatch
7799 : Kind),
7800 TemplateArgLoc))
7801 return false;
7802 } else if (Kind != Sema::TPL_TemplateTemplateArgumentMatch) {
7803 const Expr *NewC = nullptr, *OldC = nullptr;
7804 if (const auto *TC = cast<TemplateTypeParmDecl>(New)->getTypeConstraint())
7805 NewC = TC->getImmediatelyDeclaredConstraint();
7806 if (const auto *TC = cast<TemplateTypeParmDecl>(Old)->getTypeConstraint())
7807 OldC = TC->getImmediatelyDeclaredConstraint();
7808
7809 auto Diagnose = [&] {
7810 S.Diag(NewC ? NewC->getBeginLoc() : New->getBeginLoc(),
7811 diag::err_template_different_type_constraint);
7812 S.Diag(OldC ? OldC->getBeginLoc() : Old->getBeginLoc(),
7813 diag::note_template_prev_declaration) << /*declaration*/0;
7814 };
7815
7816 if (!NewC != !OldC) {
7817 if (Complain)
7818 Diagnose();
7819 return false;
7820 }
7821
7822 if (NewC) {
7823 llvm::FoldingSetNodeID OldCID, NewCID;
7824 OldC->Profile(OldCID, S.Context, /*Canonical=*/true);
7825 NewC->Profile(NewCID, S.Context, /*Canonical=*/true);
7826 if (OldCID != NewCID) {
7827 if (Complain)
7828 Diagnose();
7829 return false;
7830 }
7831 }
7832 }
7833
7834 return true;
7835 }
7836
7837 /// Diagnose a known arity mismatch when comparing template argument
7838 /// lists.
7839 static
DiagnoseTemplateParameterListArityMismatch(Sema & S,TemplateParameterList * New,TemplateParameterList * Old,Sema::TemplateParameterListEqualKind Kind,SourceLocation TemplateArgLoc)7840 void DiagnoseTemplateParameterListArityMismatch(Sema &S,
7841 TemplateParameterList *New,
7842 TemplateParameterList *Old,
7843 Sema::TemplateParameterListEqualKind Kind,
7844 SourceLocation TemplateArgLoc) {
7845 unsigned NextDiag = diag::err_template_param_list_different_arity;
7846 if (TemplateArgLoc.isValid()) {
7847 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
7848 NextDiag = diag::note_template_param_list_different_arity;
7849 }
7850 S.Diag(New->getTemplateLoc(), NextDiag)
7851 << (New->size() > Old->size())
7852 << (Kind != Sema::TPL_TemplateMatch)
7853 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
7854 S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
7855 << (Kind != Sema::TPL_TemplateMatch)
7856 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
7857 }
7858
7859 /// Determine whether the given template parameter lists are
7860 /// equivalent.
7861 ///
7862 /// \param New The new template parameter list, typically written in the
7863 /// source code as part of a new template declaration.
7864 ///
7865 /// \param Old The old template parameter list, typically found via
7866 /// name lookup of the template declared with this template parameter
7867 /// list.
7868 ///
7869 /// \param Complain If true, this routine will produce a diagnostic if
7870 /// the template parameter lists are not equivalent.
7871 ///
7872 /// \param Kind describes how we are to match the template parameter lists.
7873 ///
7874 /// \param TemplateArgLoc If this source location is valid, then we
7875 /// are actually checking the template parameter list of a template
7876 /// argument (New) against the template parameter list of its
7877 /// corresponding template template parameter (Old). We produce
7878 /// slightly different diagnostics in this scenario.
7879 ///
7880 /// \returns True if the template parameter lists are equal, false
7881 /// otherwise.
7882 bool
TemplateParameterListsAreEqual(TemplateParameterList * New,TemplateParameterList * Old,bool Complain,TemplateParameterListEqualKind Kind,SourceLocation TemplateArgLoc)7883 Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
7884 TemplateParameterList *Old,
7885 bool Complain,
7886 TemplateParameterListEqualKind Kind,
7887 SourceLocation TemplateArgLoc) {
7888 if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
7889 if (Complain)
7890 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
7891 TemplateArgLoc);
7892
7893 return false;
7894 }
7895
7896 // C++0x [temp.arg.template]p3:
7897 // A template-argument matches a template template-parameter (call it P)
7898 // when each of the template parameters in the template-parameter-list of
7899 // the template-argument's corresponding class template or alias template
7900 // (call it A) matches the corresponding template parameter in the
7901 // template-parameter-list of P. [...]
7902 TemplateParameterList::iterator NewParm = New->begin();
7903 TemplateParameterList::iterator NewParmEnd = New->end();
7904 for (TemplateParameterList::iterator OldParm = Old->begin(),
7905 OldParmEnd = Old->end();
7906 OldParm != OldParmEnd; ++OldParm) {
7907 if (Kind != TPL_TemplateTemplateArgumentMatch ||
7908 !(*OldParm)->isTemplateParameterPack()) {
7909 if (NewParm == NewParmEnd) {
7910 if (Complain)
7911 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
7912 TemplateArgLoc);
7913
7914 return false;
7915 }
7916
7917 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
7918 Kind, TemplateArgLoc))
7919 return false;
7920
7921 ++NewParm;
7922 continue;
7923 }
7924
7925 // C++0x [temp.arg.template]p3:
7926 // [...] When P's template- parameter-list contains a template parameter
7927 // pack (14.5.3), the template parameter pack will match zero or more
7928 // template parameters or template parameter packs in the
7929 // template-parameter-list of A with the same type and form as the
7930 // template parameter pack in P (ignoring whether those template
7931 // parameters are template parameter packs).
7932 for (; NewParm != NewParmEnd; ++NewParm) {
7933 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
7934 Kind, TemplateArgLoc))
7935 return false;
7936 }
7937 }
7938
7939 // Make sure we exhausted all of the arguments.
7940 if (NewParm != NewParmEnd) {
7941 if (Complain)
7942 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
7943 TemplateArgLoc);
7944
7945 return false;
7946 }
7947
7948 if (Kind != TPL_TemplateTemplateArgumentMatch) {
7949 const Expr *NewRC = New->getRequiresClause();
7950 const Expr *OldRC = Old->getRequiresClause();
7951
7952 auto Diagnose = [&] {
7953 Diag(NewRC ? NewRC->getBeginLoc() : New->getTemplateLoc(),
7954 diag::err_template_different_requires_clause);
7955 Diag(OldRC ? OldRC->getBeginLoc() : Old->getTemplateLoc(),
7956 diag::note_template_prev_declaration) << /*declaration*/0;
7957 };
7958
7959 if (!NewRC != !OldRC) {
7960 if (Complain)
7961 Diagnose();
7962 return false;
7963 }
7964
7965 if (NewRC) {
7966 llvm::FoldingSetNodeID OldRCID, NewRCID;
7967 OldRC->Profile(OldRCID, Context, /*Canonical=*/true);
7968 NewRC->Profile(NewRCID, Context, /*Canonical=*/true);
7969 if (OldRCID != NewRCID) {
7970 if (Complain)
7971 Diagnose();
7972 return false;
7973 }
7974 }
7975 }
7976
7977 return true;
7978 }
7979
7980 /// Check whether a template can be declared within this scope.
7981 ///
7982 /// If the template declaration is valid in this scope, returns
7983 /// false. Otherwise, issues a diagnostic and returns true.
7984 bool
CheckTemplateDeclScope(Scope * S,TemplateParameterList * TemplateParams)7985 Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
7986 if (!S)
7987 return false;
7988
7989 // Find the nearest enclosing declaration scope.
7990 while ((S->getFlags() & Scope::DeclScope) == 0 ||
7991 (S->getFlags() & Scope::TemplateParamScope) != 0)
7992 S = S->getParent();
7993
7994 // C++ [temp.pre]p6: [P2096]
7995 // A template, explicit specialization, or partial specialization shall not
7996 // have C linkage.
7997 DeclContext *Ctx = S->getEntity();
7998 if (Ctx && Ctx->isExternCContext()) {
7999 Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
8000 << TemplateParams->getSourceRange();
8001 if (const LinkageSpecDecl *LSD = Ctx->getExternCContext())
8002 Diag(LSD->getExternLoc(), diag::note_extern_c_begins_here);
8003 return true;
8004 }
8005 Ctx = Ctx ? Ctx->getRedeclContext() : nullptr;
8006
8007 // C++ [temp]p2:
8008 // A template-declaration can appear only as a namespace scope or
8009 // class scope declaration.
8010 // C++ [temp.expl.spec]p3:
8011 // An explicit specialization may be declared in any scope in which the
8012 // corresponding primary template may be defined.
8013 // C++ [temp.class.spec]p6: [P2096]
8014 // A partial specialization may be declared in any scope in which the
8015 // corresponding primary template may be defined.
8016 if (Ctx) {
8017 if (Ctx->isFileContext())
8018 return false;
8019 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Ctx)) {
8020 // C++ [temp.mem]p2:
8021 // A local class shall not have member templates.
8022 if (RD->isLocalClass())
8023 return Diag(TemplateParams->getTemplateLoc(),
8024 diag::err_template_inside_local_class)
8025 << TemplateParams->getSourceRange();
8026 else
8027 return false;
8028 }
8029 }
8030
8031 return Diag(TemplateParams->getTemplateLoc(),
8032 diag::err_template_outside_namespace_or_class_scope)
8033 << TemplateParams->getSourceRange();
8034 }
8035
8036 /// Determine what kind of template specialization the given declaration
8037 /// is.
getTemplateSpecializationKind(Decl * D)8038 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) {
8039 if (!D)
8040 return TSK_Undeclared;
8041
8042 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
8043 return Record->getTemplateSpecializationKind();
8044 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
8045 return Function->getTemplateSpecializationKind();
8046 if (VarDecl *Var = dyn_cast<VarDecl>(D))
8047 return Var->getTemplateSpecializationKind();
8048
8049 return TSK_Undeclared;
8050 }
8051
8052 /// Check whether a specialization is well-formed in the current
8053 /// context.
8054 ///
8055 /// This routine determines whether a template specialization can be declared
8056 /// in the current context (C++ [temp.expl.spec]p2).
8057 ///
8058 /// \param S the semantic analysis object for which this check is being
8059 /// performed.
8060 ///
8061 /// \param Specialized the entity being specialized or instantiated, which
8062 /// may be a kind of template (class template, function template, etc.) or
8063 /// a member of a class template (member function, static data member,
8064 /// member class).
8065 ///
8066 /// \param PrevDecl the previous declaration of this entity, if any.
8067 ///
8068 /// \param Loc the location of the explicit specialization or instantiation of
8069 /// this entity.
8070 ///
8071 /// \param IsPartialSpecialization whether this is a partial specialization of
8072 /// a class template.
8073 ///
8074 /// \returns true if there was an error that we cannot recover from, false
8075 /// otherwise.
CheckTemplateSpecializationScope(Sema & S,NamedDecl * Specialized,NamedDecl * PrevDecl,SourceLocation Loc,bool IsPartialSpecialization)8076 static bool CheckTemplateSpecializationScope(Sema &S,
8077 NamedDecl *Specialized,
8078 NamedDecl *PrevDecl,
8079 SourceLocation Loc,
8080 bool IsPartialSpecialization) {
8081 // Keep these "kind" numbers in sync with the %select statements in the
8082 // various diagnostics emitted by this routine.
8083 int EntityKind = 0;
8084 if (isa<ClassTemplateDecl>(Specialized))
8085 EntityKind = IsPartialSpecialization? 1 : 0;
8086 else if (isa<VarTemplateDecl>(Specialized))
8087 EntityKind = IsPartialSpecialization ? 3 : 2;
8088 else if (isa<FunctionTemplateDecl>(Specialized))
8089 EntityKind = 4;
8090 else if (isa<CXXMethodDecl>(Specialized))
8091 EntityKind = 5;
8092 else if (isa<VarDecl>(Specialized))
8093 EntityKind = 6;
8094 else if (isa<RecordDecl>(Specialized))
8095 EntityKind = 7;
8096 else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus11)
8097 EntityKind = 8;
8098 else {
8099 S.Diag(Loc, diag::err_template_spec_unknown_kind)
8100 << S.getLangOpts().CPlusPlus11;
8101 S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
8102 return true;
8103 }
8104
8105 // C++ [temp.expl.spec]p2:
8106 // An explicit specialization may be declared in any scope in which
8107 // the corresponding primary template may be defined.
8108 if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
8109 S.Diag(Loc, diag::err_template_spec_decl_function_scope)
8110 << Specialized;
8111 return true;
8112 }
8113
8114 // C++ [temp.class.spec]p6:
8115 // A class template partial specialization may be declared in any
8116 // scope in which the primary template may be defined.
8117 DeclContext *SpecializedContext =
8118 Specialized->getDeclContext()->getRedeclContext();
8119 DeclContext *DC = S.CurContext->getRedeclContext();
8120
8121 // Make sure that this redeclaration (or definition) occurs in the same
8122 // scope or an enclosing namespace.
8123 if (!(DC->isFileContext() ? DC->Encloses(SpecializedContext)
8124 : DC->Equals(SpecializedContext))) {
8125 if (isa<TranslationUnitDecl>(SpecializedContext))
8126 S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
8127 << EntityKind << Specialized;
8128 else {
8129 auto *ND = cast<NamedDecl>(SpecializedContext);
8130 int Diag = diag::err_template_spec_redecl_out_of_scope;
8131 if (S.getLangOpts().MicrosoftExt && !DC->isRecord())
8132 Diag = diag::ext_ms_template_spec_redecl_out_of_scope;
8133 S.Diag(Loc, Diag) << EntityKind << Specialized
8134 << ND << isa<CXXRecordDecl>(ND);
8135 }
8136
8137 S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
8138
8139 // Don't allow specializing in the wrong class during error recovery.
8140 // Otherwise, things can go horribly wrong.
8141 if (DC->isRecord())
8142 return true;
8143 }
8144
8145 return false;
8146 }
8147
findTemplateParameterInType(unsigned Depth,Expr * E)8148 static SourceRange findTemplateParameterInType(unsigned Depth, Expr *E) {
8149 if (!E->isTypeDependent())
8150 return SourceLocation();
8151 DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true);
8152 Checker.TraverseStmt(E);
8153 if (Checker.MatchLoc.isInvalid())
8154 return E->getSourceRange();
8155 return Checker.MatchLoc;
8156 }
8157
findTemplateParameter(unsigned Depth,TypeLoc TL)8158 static SourceRange findTemplateParameter(unsigned Depth, TypeLoc TL) {
8159 if (!TL.getType()->isDependentType())
8160 return SourceLocation();
8161 DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true);
8162 Checker.TraverseTypeLoc(TL);
8163 if (Checker.MatchLoc.isInvalid())
8164 return TL.getSourceRange();
8165 return Checker.MatchLoc;
8166 }
8167
8168 /// Subroutine of Sema::CheckTemplatePartialSpecializationArgs
8169 /// that checks non-type template partial specialization arguments.
CheckNonTypeTemplatePartialSpecializationArgs(Sema & S,SourceLocation TemplateNameLoc,NonTypeTemplateParmDecl * Param,const TemplateArgument * Args,unsigned NumArgs,bool IsDefaultArgument)8170 static bool CheckNonTypeTemplatePartialSpecializationArgs(
8171 Sema &S, SourceLocation TemplateNameLoc, NonTypeTemplateParmDecl *Param,
8172 const TemplateArgument *Args, unsigned NumArgs, bool IsDefaultArgument) {
8173 for (unsigned I = 0; I != NumArgs; ++I) {
8174 if (Args[I].getKind() == TemplateArgument::Pack) {
8175 if (CheckNonTypeTemplatePartialSpecializationArgs(
8176 S, TemplateNameLoc, Param, Args[I].pack_begin(),
8177 Args[I].pack_size(), IsDefaultArgument))
8178 return true;
8179
8180 continue;
8181 }
8182
8183 if (Args[I].getKind() != TemplateArgument::Expression)
8184 continue;
8185
8186 Expr *ArgExpr = Args[I].getAsExpr();
8187
8188 // We can have a pack expansion of any of the bullets below.
8189 if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
8190 ArgExpr = Expansion->getPattern();
8191
8192 // Strip off any implicit casts we added as part of type checking.
8193 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
8194 ArgExpr = ICE->getSubExpr();
8195
8196 // C++ [temp.class.spec]p8:
8197 // A non-type argument is non-specialized if it is the name of a
8198 // non-type parameter. All other non-type arguments are
8199 // specialized.
8200 //
8201 // Below, we check the two conditions that only apply to
8202 // specialized non-type arguments, so skip any non-specialized
8203 // arguments.
8204 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
8205 if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
8206 continue;
8207
8208 // C++ [temp.class.spec]p9:
8209 // Within the argument list of a class template partial
8210 // specialization, the following restrictions apply:
8211 // -- A partially specialized non-type argument expression
8212 // shall not involve a template parameter of the partial
8213 // specialization except when the argument expression is a
8214 // simple identifier.
8215 // -- The type of a template parameter corresponding to a
8216 // specialized non-type argument shall not be dependent on a
8217 // parameter of the specialization.
8218 // DR1315 removes the first bullet, leaving an incoherent set of rules.
8219 // We implement a compromise between the original rules and DR1315:
8220 // -- A specialized non-type template argument shall not be
8221 // type-dependent and the corresponding template parameter
8222 // shall have a non-dependent type.
8223 SourceRange ParamUseRange =
8224 findTemplateParameterInType(Param->getDepth(), ArgExpr);
8225 if (ParamUseRange.isValid()) {
8226 if (IsDefaultArgument) {
8227 S.Diag(TemplateNameLoc,
8228 diag::err_dependent_non_type_arg_in_partial_spec);
8229 S.Diag(ParamUseRange.getBegin(),
8230 diag::note_dependent_non_type_default_arg_in_partial_spec)
8231 << ParamUseRange;
8232 } else {
8233 S.Diag(ParamUseRange.getBegin(),
8234 diag::err_dependent_non_type_arg_in_partial_spec)
8235 << ParamUseRange;
8236 }
8237 return true;
8238 }
8239
8240 ParamUseRange = findTemplateParameter(
8241 Param->getDepth(), Param->getTypeSourceInfo()->getTypeLoc());
8242 if (ParamUseRange.isValid()) {
8243 S.Diag(IsDefaultArgument ? TemplateNameLoc : ArgExpr->getBeginLoc(),
8244 diag::err_dependent_typed_non_type_arg_in_partial_spec)
8245 << Param->getType();
8246 S.Diag(Param->getLocation(), diag::note_template_param_here)
8247 << (IsDefaultArgument ? ParamUseRange : SourceRange())
8248 << ParamUseRange;
8249 return true;
8250 }
8251 }
8252
8253 return false;
8254 }
8255
8256 /// Check the non-type template arguments of a class template
8257 /// partial specialization according to C++ [temp.class.spec]p9.
8258 ///
8259 /// \param TemplateNameLoc the location of the template name.
8260 /// \param PrimaryTemplate the template parameters of the primary class
8261 /// template.
8262 /// \param NumExplicit the number of explicitly-specified template arguments.
8263 /// \param TemplateArgs the template arguments of the class template
8264 /// partial specialization.
8265 ///
8266 /// \returns \c true if there was an error, \c false otherwise.
CheckTemplatePartialSpecializationArgs(SourceLocation TemplateNameLoc,TemplateDecl * PrimaryTemplate,unsigned NumExplicit,ArrayRef<TemplateArgument> TemplateArgs)8267 bool Sema::CheckTemplatePartialSpecializationArgs(
8268 SourceLocation TemplateNameLoc, TemplateDecl *PrimaryTemplate,
8269 unsigned NumExplicit, ArrayRef<TemplateArgument> TemplateArgs) {
8270 // We have to be conservative when checking a template in a dependent
8271 // context.
8272 if (PrimaryTemplate->getDeclContext()->isDependentContext())
8273 return false;
8274
8275 TemplateParameterList *TemplateParams =
8276 PrimaryTemplate->getTemplateParameters();
8277 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
8278 NonTypeTemplateParmDecl *Param
8279 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
8280 if (!Param)
8281 continue;
8282
8283 if (CheckNonTypeTemplatePartialSpecializationArgs(*this, TemplateNameLoc,
8284 Param, &TemplateArgs[I],
8285 1, I >= NumExplicit))
8286 return true;
8287 }
8288
8289 return false;
8290 }
8291
ActOnClassTemplateSpecialization(Scope * S,unsigned TagSpec,TagUseKind TUK,SourceLocation KWLoc,SourceLocation ModulePrivateLoc,CXXScopeSpec & SS,TemplateIdAnnotation & TemplateId,const ParsedAttributesView & Attr,MultiTemplateParamsArg TemplateParameterLists,SkipBodyInfo * SkipBody)8292 DeclResult Sema::ActOnClassTemplateSpecialization(
8293 Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc,
8294 SourceLocation ModulePrivateLoc, CXXScopeSpec &SS,
8295 TemplateIdAnnotation &TemplateId, const ParsedAttributesView &Attr,
8296 MultiTemplateParamsArg TemplateParameterLists, SkipBodyInfo *SkipBody) {
8297 assert(TUK != TUK_Reference && "References are not specializations");
8298
8299 // NOTE: KWLoc is the location of the tag keyword. This will instead
8300 // store the location of the outermost template keyword in the declaration.
8301 SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0
8302 ? TemplateParameterLists[0]->getTemplateLoc() : KWLoc;
8303 SourceLocation TemplateNameLoc = TemplateId.TemplateNameLoc;
8304 SourceLocation LAngleLoc = TemplateId.LAngleLoc;
8305 SourceLocation RAngleLoc = TemplateId.RAngleLoc;
8306
8307 // Find the class template we're specializing
8308 TemplateName Name = TemplateId.Template.get();
8309 ClassTemplateDecl *ClassTemplate
8310 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
8311
8312 if (!ClassTemplate) {
8313 Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
8314 << (Name.getAsTemplateDecl() &&
8315 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
8316 return true;
8317 }
8318
8319 bool isMemberSpecialization = false;
8320 bool isPartialSpecialization = false;
8321
8322 // Check the validity of the template headers that introduce this
8323 // template.
8324 // FIXME: We probably shouldn't complain about these headers for
8325 // friend declarations.
8326 bool Invalid = false;
8327 TemplateParameterList *TemplateParams =
8328 MatchTemplateParametersToScopeSpecifier(
8329 KWLoc, TemplateNameLoc, SS, &TemplateId,
8330 TemplateParameterLists, TUK == TUK_Friend, isMemberSpecialization,
8331 Invalid);
8332 if (Invalid)
8333 return true;
8334
8335 // Check that we can declare a template specialization here.
8336 if (TemplateParams && CheckTemplateDeclScope(S, TemplateParams))
8337 return true;
8338
8339 if (TemplateParams && TemplateParams->size() > 0) {
8340 isPartialSpecialization = true;
8341
8342 if (TUK == TUK_Friend) {
8343 Diag(KWLoc, diag::err_partial_specialization_friend)
8344 << SourceRange(LAngleLoc, RAngleLoc);
8345 return true;
8346 }
8347
8348 // C++ [temp.class.spec]p10:
8349 // The template parameter list of a specialization shall not
8350 // contain default template argument values.
8351 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
8352 Decl *Param = TemplateParams->getParam(I);
8353 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
8354 if (TTP->hasDefaultArgument()) {
8355 Diag(TTP->getDefaultArgumentLoc(),
8356 diag::err_default_arg_in_partial_spec);
8357 TTP->removeDefaultArgument();
8358 }
8359 } else if (NonTypeTemplateParmDecl *NTTP
8360 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
8361 if (Expr *DefArg = NTTP->getDefaultArgument()) {
8362 Diag(NTTP->getDefaultArgumentLoc(),
8363 diag::err_default_arg_in_partial_spec)
8364 << DefArg->getSourceRange();
8365 NTTP->removeDefaultArgument();
8366 }
8367 } else {
8368 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
8369 if (TTP->hasDefaultArgument()) {
8370 Diag(TTP->getDefaultArgument().getLocation(),
8371 diag::err_default_arg_in_partial_spec)
8372 << TTP->getDefaultArgument().getSourceRange();
8373 TTP->removeDefaultArgument();
8374 }
8375 }
8376 }
8377 } else if (TemplateParams) {
8378 if (TUK == TUK_Friend)
8379 Diag(KWLoc, diag::err_template_spec_friend)
8380 << FixItHint::CreateRemoval(
8381 SourceRange(TemplateParams->getTemplateLoc(),
8382 TemplateParams->getRAngleLoc()))
8383 << SourceRange(LAngleLoc, RAngleLoc);
8384 } else {
8385 assert(TUK == TUK_Friend && "should have a 'template<>' for this decl");
8386 }
8387
8388 // Check that the specialization uses the same tag kind as the
8389 // original template.
8390 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
8391 assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
8392 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
8393 Kind, TUK == TUK_Definition, KWLoc,
8394 ClassTemplate->getIdentifier())) {
8395 Diag(KWLoc, diag::err_use_with_wrong_tag)
8396 << ClassTemplate
8397 << FixItHint::CreateReplacement(KWLoc,
8398 ClassTemplate->getTemplatedDecl()->getKindName());
8399 Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
8400 diag::note_previous_use);
8401 Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
8402 }
8403
8404 // Translate the parser's template argument list in our AST format.
8405 TemplateArgumentListInfo TemplateArgs =
8406 makeTemplateArgumentListInfo(*this, TemplateId);
8407
8408 // Check for unexpanded parameter packs in any of the template arguments.
8409 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
8410 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
8411 UPPC_PartialSpecialization))
8412 return true;
8413
8414 // Check that the template argument list is well-formed for this
8415 // template.
8416 SmallVector<TemplateArgument, 4> Converted;
8417 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
8418 TemplateArgs, false, Converted,
8419 /*UpdateArgsWithConversions=*/true))
8420 return true;
8421
8422 // Find the class template (partial) specialization declaration that
8423 // corresponds to these arguments.
8424 if (isPartialSpecialization) {
8425 if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, ClassTemplate,
8426 TemplateArgs.size(), Converted))
8427 return true;
8428
8429 // FIXME: Move this to CheckTemplatePartialSpecializationArgs so we
8430 // also do it during instantiation.
8431 if (!Name.isDependent() &&
8432 !TemplateSpecializationType::anyDependentTemplateArguments(TemplateArgs,
8433 Converted)) {
8434 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
8435 << ClassTemplate->getDeclName();
8436 isPartialSpecialization = false;
8437 }
8438 }
8439
8440 void *InsertPos = nullptr;
8441 ClassTemplateSpecializationDecl *PrevDecl = nullptr;
8442
8443 if (isPartialSpecialization)
8444 PrevDecl = ClassTemplate->findPartialSpecialization(Converted,
8445 TemplateParams,
8446 InsertPos);
8447 else
8448 PrevDecl = ClassTemplate->findSpecialization(Converted, InsertPos);
8449
8450 ClassTemplateSpecializationDecl *Specialization = nullptr;
8451
8452 // Check whether we can declare a class template specialization in
8453 // the current scope.
8454 if (TUK != TUK_Friend &&
8455 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
8456 TemplateNameLoc,
8457 isPartialSpecialization))
8458 return true;
8459
8460 // The canonical type
8461 QualType CanonType;
8462 if (isPartialSpecialization) {
8463 // Build the canonical type that describes the converted template
8464 // arguments of the class template partial specialization.
8465 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
8466 CanonType = Context.getTemplateSpecializationType(CanonTemplate,
8467 Converted);
8468
8469 if (Context.hasSameType(CanonType,
8470 ClassTemplate->getInjectedClassNameSpecialization()) &&
8471 (!Context.getLangOpts().CPlusPlus20 ||
8472 !TemplateParams->hasAssociatedConstraints())) {
8473 // C++ [temp.class.spec]p9b3:
8474 //
8475 // -- The argument list of the specialization shall not be identical
8476 // to the implicit argument list of the primary template.
8477 //
8478 // This rule has since been removed, because it's redundant given DR1495,
8479 // but we keep it because it produces better diagnostics and recovery.
8480 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
8481 << /*class template*/0 << (TUK == TUK_Definition)
8482 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
8483 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
8484 ClassTemplate->getIdentifier(),
8485 TemplateNameLoc,
8486 Attr,
8487 TemplateParams,
8488 AS_none, /*ModulePrivateLoc=*/SourceLocation(),
8489 /*FriendLoc*/SourceLocation(),
8490 TemplateParameterLists.size() - 1,
8491 TemplateParameterLists.data());
8492 }
8493
8494 // Create a new class template partial specialization declaration node.
8495 ClassTemplatePartialSpecializationDecl *PrevPartial
8496 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
8497 ClassTemplatePartialSpecializationDecl *Partial
8498 = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
8499 ClassTemplate->getDeclContext(),
8500 KWLoc, TemplateNameLoc,
8501 TemplateParams,
8502 ClassTemplate,
8503 Converted,
8504 TemplateArgs,
8505 CanonType,
8506 PrevPartial);
8507 SetNestedNameSpecifier(*this, Partial, SS);
8508 if (TemplateParameterLists.size() > 1 && SS.isSet()) {
8509 Partial->setTemplateParameterListsInfo(
8510 Context, TemplateParameterLists.drop_back(1));
8511 }
8512
8513 if (!PrevPartial)
8514 ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
8515 Specialization = Partial;
8516
8517 // If we are providing an explicit specialization of a member class
8518 // template specialization, make a note of that.
8519 if (PrevPartial && PrevPartial->getInstantiatedFromMember())
8520 PrevPartial->setMemberSpecialization();
8521
8522 CheckTemplatePartialSpecialization(Partial);
8523 } else {
8524 // Create a new class template specialization declaration node for
8525 // this explicit specialization or friend declaration.
8526 Specialization
8527 = ClassTemplateSpecializationDecl::Create(Context, Kind,
8528 ClassTemplate->getDeclContext(),
8529 KWLoc, TemplateNameLoc,
8530 ClassTemplate,
8531 Converted,
8532 PrevDecl);
8533 SetNestedNameSpecifier(*this, Specialization, SS);
8534 if (TemplateParameterLists.size() > 0) {
8535 Specialization->setTemplateParameterListsInfo(Context,
8536 TemplateParameterLists);
8537 }
8538
8539 if (!PrevDecl)
8540 ClassTemplate->AddSpecialization(Specialization, InsertPos);
8541
8542 if (CurContext->isDependentContext()) {
8543 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
8544 CanonType = Context.getTemplateSpecializationType(
8545 CanonTemplate, Converted);
8546 } else {
8547 CanonType = Context.getTypeDeclType(Specialization);
8548 }
8549 }
8550
8551 // C++ [temp.expl.spec]p6:
8552 // If a template, a member template or the member of a class template is
8553 // explicitly specialized then that specialization shall be declared
8554 // before the first use of that specialization that would cause an implicit
8555 // instantiation to take place, in every translation unit in which such a
8556 // use occurs; no diagnostic is required.
8557 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
8558 bool Okay = false;
8559 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
8560 // Is there any previous explicit specialization declaration?
8561 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
8562 Okay = true;
8563 break;
8564 }
8565 }
8566
8567 if (!Okay) {
8568 SourceRange Range(TemplateNameLoc, RAngleLoc);
8569 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
8570 << Context.getTypeDeclType(Specialization) << Range;
8571
8572 Diag(PrevDecl->getPointOfInstantiation(),
8573 diag::note_instantiation_required_here)
8574 << (PrevDecl->getTemplateSpecializationKind()
8575 != TSK_ImplicitInstantiation);
8576 return true;
8577 }
8578 }
8579
8580 // If this is not a friend, note that this is an explicit specialization.
8581 if (TUK != TUK_Friend)
8582 Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
8583
8584 // Check that this isn't a redefinition of this specialization.
8585 if (TUK == TUK_Definition) {
8586 RecordDecl *Def = Specialization->getDefinition();
8587 NamedDecl *Hidden = nullptr;
8588 if (Def && SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
8589 SkipBody->ShouldSkip = true;
8590 SkipBody->Previous = Def;
8591 makeMergedDefinitionVisible(Hidden);
8592 } else if (Def) {
8593 SourceRange Range(TemplateNameLoc, RAngleLoc);
8594 Diag(TemplateNameLoc, diag::err_redefinition) << Specialization << Range;
8595 Diag(Def->getLocation(), diag::note_previous_definition);
8596 Specialization->setInvalidDecl();
8597 return true;
8598 }
8599 }
8600
8601 ProcessDeclAttributeList(S, Specialization, Attr);
8602
8603 // Add alignment attributes if necessary; these attributes are checked when
8604 // the ASTContext lays out the structure.
8605 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
8606 AddAlignmentAttributesForRecord(Specialization);
8607 AddMsStructLayoutForRecord(Specialization);
8608 }
8609
8610 if (ModulePrivateLoc.isValid())
8611 Diag(Specialization->getLocation(), diag::err_module_private_specialization)
8612 << (isPartialSpecialization? 1 : 0)
8613 << FixItHint::CreateRemoval(ModulePrivateLoc);
8614
8615 // Build the fully-sugared type for this class template
8616 // specialization as the user wrote in the specialization
8617 // itself. This means that we'll pretty-print the type retrieved
8618 // from the specialization's declaration the way that the user
8619 // actually wrote the specialization, rather than formatting the
8620 // name based on the "canonical" representation used to store the
8621 // template arguments in the specialization.
8622 TypeSourceInfo *WrittenTy
8623 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
8624 TemplateArgs, CanonType);
8625 if (TUK != TUK_Friend) {
8626 Specialization->setTypeAsWritten(WrittenTy);
8627 Specialization->setTemplateKeywordLoc(TemplateKWLoc);
8628 }
8629
8630 // C++ [temp.expl.spec]p9:
8631 // A template explicit specialization is in the scope of the
8632 // namespace in which the template was defined.
8633 //
8634 // We actually implement this paragraph where we set the semantic
8635 // context (in the creation of the ClassTemplateSpecializationDecl),
8636 // but we also maintain the lexical context where the actual
8637 // definition occurs.
8638 Specialization->setLexicalDeclContext(CurContext);
8639
8640 // We may be starting the definition of this specialization.
8641 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip))
8642 Specialization->startDefinition();
8643
8644 if (TUK == TUK_Friend) {
8645 FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
8646 TemplateNameLoc,
8647 WrittenTy,
8648 /*FIXME:*/KWLoc);
8649 Friend->setAccess(AS_public);
8650 CurContext->addDecl(Friend);
8651 } else {
8652 // Add the specialization into its lexical context, so that it can
8653 // be seen when iterating through the list of declarations in that
8654 // context. However, specializations are not found by name lookup.
8655 CurContext->addDecl(Specialization);
8656 }
8657
8658 if (SkipBody && SkipBody->ShouldSkip)
8659 return SkipBody->Previous;
8660
8661 return Specialization;
8662 }
8663
ActOnTemplateDeclarator(Scope * S,MultiTemplateParamsArg TemplateParameterLists,Declarator & D)8664 Decl *Sema::ActOnTemplateDeclarator(Scope *S,
8665 MultiTemplateParamsArg TemplateParameterLists,
8666 Declarator &D) {
8667 Decl *NewDecl = HandleDeclarator(S, D, TemplateParameterLists);
8668 ActOnDocumentableDecl(NewDecl);
8669 return NewDecl;
8670 }
8671
ActOnConceptDefinition(Scope * S,MultiTemplateParamsArg TemplateParameterLists,IdentifierInfo * Name,SourceLocation NameLoc,Expr * ConstraintExpr)8672 Decl *Sema::ActOnConceptDefinition(Scope *S,
8673 MultiTemplateParamsArg TemplateParameterLists,
8674 IdentifierInfo *Name, SourceLocation NameLoc,
8675 Expr *ConstraintExpr) {
8676 DeclContext *DC = CurContext;
8677
8678 if (!DC->getRedeclContext()->isFileContext()) {
8679 Diag(NameLoc,
8680 diag::err_concept_decls_may_only_appear_in_global_namespace_scope);
8681 return nullptr;
8682 }
8683
8684 if (TemplateParameterLists.size() > 1) {
8685 Diag(NameLoc, diag::err_concept_extra_headers);
8686 return nullptr;
8687 }
8688
8689 if (TemplateParameterLists.front()->size() == 0) {
8690 Diag(NameLoc, diag::err_concept_no_parameters);
8691 return nullptr;
8692 }
8693
8694 if (DiagnoseUnexpandedParameterPack(ConstraintExpr))
8695 return nullptr;
8696
8697 ConceptDecl *NewDecl = ConceptDecl::Create(Context, DC, NameLoc, Name,
8698 TemplateParameterLists.front(),
8699 ConstraintExpr);
8700
8701 if (NewDecl->hasAssociatedConstraints()) {
8702 // C++2a [temp.concept]p4:
8703 // A concept shall not have associated constraints.
8704 Diag(NameLoc, diag::err_concept_no_associated_constraints);
8705 NewDecl->setInvalidDecl();
8706 }
8707
8708 // Check for conflicting previous declaration.
8709 DeclarationNameInfo NameInfo(NewDecl->getDeclName(), NameLoc);
8710 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
8711 forRedeclarationInCurContext());
8712 LookupName(Previous, S);
8713 FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage=*/false,
8714 /*AllowInlineNamespace*/false);
8715 bool AddToScope = true;
8716 CheckConceptRedefinition(NewDecl, Previous, AddToScope);
8717
8718 ActOnDocumentableDecl(NewDecl);
8719 if (AddToScope)
8720 PushOnScopeChains(NewDecl, S);
8721 return NewDecl;
8722 }
8723
CheckConceptRedefinition(ConceptDecl * NewDecl,LookupResult & Previous,bool & AddToScope)8724 void Sema::CheckConceptRedefinition(ConceptDecl *NewDecl,
8725 LookupResult &Previous, bool &AddToScope) {
8726 AddToScope = true;
8727
8728 if (Previous.empty())
8729 return;
8730
8731 auto *OldConcept = dyn_cast<ConceptDecl>(Previous.getRepresentativeDecl()->getUnderlyingDecl());
8732 if (!OldConcept) {
8733 auto *Old = Previous.getRepresentativeDecl();
8734 Diag(NewDecl->getLocation(), diag::err_redefinition_different_kind)
8735 << NewDecl->getDeclName();
8736 notePreviousDefinition(Old, NewDecl->getLocation());
8737 AddToScope = false;
8738 return;
8739 }
8740 // Check if we can merge with a concept declaration.
8741 bool IsSame = Context.isSameEntity(NewDecl, OldConcept);
8742 if (!IsSame) {
8743 Diag(NewDecl->getLocation(), diag::err_redefinition_different_concept)
8744 << NewDecl->getDeclName();
8745 notePreviousDefinition(OldConcept, NewDecl->getLocation());
8746 AddToScope = false;
8747 return;
8748 }
8749 if (hasReachableDefinition(OldConcept) &&
8750 IsRedefinitionInModule(NewDecl, OldConcept)) {
8751 Diag(NewDecl->getLocation(), diag::err_redefinition)
8752 << NewDecl->getDeclName();
8753 notePreviousDefinition(OldConcept, NewDecl->getLocation());
8754 AddToScope = false;
8755 return;
8756 }
8757 if (!Previous.isSingleResult()) {
8758 // FIXME: we should produce an error in case of ambig and failed lookups.
8759 // Other decls (e.g. namespaces) also have this shortcoming.
8760 return;
8761 }
8762 // We unwrap canonical decl late to check for module visibility.
8763 Context.setPrimaryMergedDecl(NewDecl, OldConcept->getCanonicalDecl());
8764 }
8765
8766 /// \brief Strips various properties off an implicit instantiation
8767 /// that has just been explicitly specialized.
StripImplicitInstantiation(NamedDecl * D)8768 static void StripImplicitInstantiation(NamedDecl *D) {
8769 D->dropAttr<DLLImportAttr>();
8770 D->dropAttr<DLLExportAttr>();
8771
8772 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
8773 FD->setInlineSpecified(false);
8774 }
8775
8776 /// Compute the diagnostic location for an explicit instantiation
8777 // declaration or definition.
DiagLocForExplicitInstantiation(NamedDecl * D,SourceLocation PointOfInstantiation)8778 static SourceLocation DiagLocForExplicitInstantiation(
8779 NamedDecl* D, SourceLocation PointOfInstantiation) {
8780 // Explicit instantiations following a specialization have no effect and
8781 // hence no PointOfInstantiation. In that case, walk decl backwards
8782 // until a valid name loc is found.
8783 SourceLocation PrevDiagLoc = PointOfInstantiation;
8784 for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid();
8785 Prev = Prev->getPreviousDecl()) {
8786 PrevDiagLoc = Prev->getLocation();
8787 }
8788 assert(PrevDiagLoc.isValid() &&
8789 "Explicit instantiation without point of instantiation?");
8790 return PrevDiagLoc;
8791 }
8792
8793 /// Diagnose cases where we have an explicit template specialization
8794 /// before/after an explicit template instantiation, producing diagnostics
8795 /// for those cases where they are required and determining whether the
8796 /// new specialization/instantiation will have any effect.
8797 ///
8798 /// \param NewLoc the location of the new explicit specialization or
8799 /// instantiation.
8800 ///
8801 /// \param NewTSK the kind of the new explicit specialization or instantiation.
8802 ///
8803 /// \param PrevDecl the previous declaration of the entity.
8804 ///
8805 /// \param PrevTSK the kind of the old explicit specialization or instantiatin.
8806 ///
8807 /// \param PrevPointOfInstantiation if valid, indicates where the previous
8808 /// declaration was instantiated (either implicitly or explicitly).
8809 ///
8810 /// \param HasNoEffect will be set to true to indicate that the new
8811 /// specialization or instantiation has no effect and should be ignored.
8812 ///
8813 /// \returns true if there was an error that should prevent the introduction of
8814 /// the new declaration into the AST, false otherwise.
8815 bool
CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,TemplateSpecializationKind NewTSK,NamedDecl * PrevDecl,TemplateSpecializationKind PrevTSK,SourceLocation PrevPointOfInstantiation,bool & HasNoEffect)8816 Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
8817 TemplateSpecializationKind NewTSK,
8818 NamedDecl *PrevDecl,
8819 TemplateSpecializationKind PrevTSK,
8820 SourceLocation PrevPointOfInstantiation,
8821 bool &HasNoEffect) {
8822 HasNoEffect = false;
8823
8824 switch (NewTSK) {
8825 case TSK_Undeclared:
8826 case TSK_ImplicitInstantiation:
8827 assert(
8828 (PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) &&
8829 "previous declaration must be implicit!");
8830 return false;
8831
8832 case TSK_ExplicitSpecialization:
8833 switch (PrevTSK) {
8834 case TSK_Undeclared:
8835 case TSK_ExplicitSpecialization:
8836 // Okay, we're just specializing something that is either already
8837 // explicitly specialized or has merely been mentioned without any
8838 // instantiation.
8839 return false;
8840
8841 case TSK_ImplicitInstantiation:
8842 if (PrevPointOfInstantiation.isInvalid()) {
8843 // The declaration itself has not actually been instantiated, so it is
8844 // still okay to specialize it.
8845 StripImplicitInstantiation(PrevDecl);
8846 return false;
8847 }
8848 // Fall through
8849 LLVM_FALLTHROUGH;
8850
8851 case TSK_ExplicitInstantiationDeclaration:
8852 case TSK_ExplicitInstantiationDefinition:
8853 assert((PrevTSK == TSK_ImplicitInstantiation ||
8854 PrevPointOfInstantiation.isValid()) &&
8855 "Explicit instantiation without point of instantiation?");
8856
8857 // C++ [temp.expl.spec]p6:
8858 // If a template, a member template or the member of a class template
8859 // is explicitly specialized then that specialization shall be declared
8860 // before the first use of that specialization that would cause an
8861 // implicit instantiation to take place, in every translation unit in
8862 // which such a use occurs; no diagnostic is required.
8863 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
8864 // Is there any previous explicit specialization declaration?
8865 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
8866 return false;
8867 }
8868
8869 Diag(NewLoc, diag::err_specialization_after_instantiation)
8870 << PrevDecl;
8871 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
8872 << (PrevTSK != TSK_ImplicitInstantiation);
8873
8874 return true;
8875 }
8876 llvm_unreachable("The switch over PrevTSK must be exhaustive.");
8877
8878 case TSK_ExplicitInstantiationDeclaration:
8879 switch (PrevTSK) {
8880 case TSK_ExplicitInstantiationDeclaration:
8881 // This explicit instantiation declaration is redundant (that's okay).
8882 HasNoEffect = true;
8883 return false;
8884
8885 case TSK_Undeclared:
8886 case TSK_ImplicitInstantiation:
8887 // We're explicitly instantiating something that may have already been
8888 // implicitly instantiated; that's fine.
8889 return false;
8890
8891 case TSK_ExplicitSpecialization:
8892 // C++0x [temp.explicit]p4:
8893 // For a given set of template parameters, if an explicit instantiation
8894 // of a template appears after a declaration of an explicit
8895 // specialization for that template, the explicit instantiation has no
8896 // effect.
8897 HasNoEffect = true;
8898 return false;
8899
8900 case TSK_ExplicitInstantiationDefinition:
8901 // C++0x [temp.explicit]p10:
8902 // If an entity is the subject of both an explicit instantiation
8903 // declaration and an explicit instantiation definition in the same
8904 // translation unit, the definition shall follow the declaration.
8905 Diag(NewLoc,
8906 diag::err_explicit_instantiation_declaration_after_definition);
8907
8908 // Explicit instantiations following a specialization have no effect and
8909 // hence no PrevPointOfInstantiation. In that case, walk decl backwards
8910 // until a valid name loc is found.
8911 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
8912 diag::note_explicit_instantiation_definition_here);
8913 HasNoEffect = true;
8914 return false;
8915 }
8916 llvm_unreachable("Unexpected TemplateSpecializationKind!");
8917
8918 case TSK_ExplicitInstantiationDefinition:
8919 switch (PrevTSK) {
8920 case TSK_Undeclared:
8921 case TSK_ImplicitInstantiation:
8922 // We're explicitly instantiating something that may have already been
8923 // implicitly instantiated; that's fine.
8924 return false;
8925
8926 case TSK_ExplicitSpecialization:
8927 // C++ DR 259, C++0x [temp.explicit]p4:
8928 // For a given set of template parameters, if an explicit
8929 // instantiation of a template appears after a declaration of
8930 // an explicit specialization for that template, the explicit
8931 // instantiation has no effect.
8932 Diag(NewLoc, diag::warn_explicit_instantiation_after_specialization)
8933 << PrevDecl;
8934 Diag(PrevDecl->getLocation(),
8935 diag::note_previous_template_specialization);
8936 HasNoEffect = true;
8937 return false;
8938
8939 case TSK_ExplicitInstantiationDeclaration:
8940 // We're explicitly instantiating a definition for something for which we
8941 // were previously asked to suppress instantiations. That's fine.
8942
8943 // C++0x [temp.explicit]p4:
8944 // For a given set of template parameters, if an explicit instantiation
8945 // of a template appears after a declaration of an explicit
8946 // specialization for that template, the explicit instantiation has no
8947 // effect.
8948 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
8949 // Is there any previous explicit specialization declaration?
8950 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
8951 HasNoEffect = true;
8952 break;
8953 }
8954 }
8955
8956 return false;
8957
8958 case TSK_ExplicitInstantiationDefinition:
8959 // C++0x [temp.spec]p5:
8960 // For a given template and a given set of template-arguments,
8961 // - an explicit instantiation definition shall appear at most once
8962 // in a program,
8963
8964 // MSVCCompat: MSVC silently ignores duplicate explicit instantiations.
8965 Diag(NewLoc, (getLangOpts().MSVCCompat)
8966 ? diag::ext_explicit_instantiation_duplicate
8967 : diag::err_explicit_instantiation_duplicate)
8968 << PrevDecl;
8969 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
8970 diag::note_previous_explicit_instantiation);
8971 HasNoEffect = true;
8972 return false;
8973 }
8974 }
8975
8976 llvm_unreachable("Missing specialization/instantiation case?");
8977 }
8978
8979 /// Perform semantic analysis for the given dependent function
8980 /// template specialization.
8981 ///
8982 /// The only possible way to get a dependent function template specialization
8983 /// is with a friend declaration, like so:
8984 ///
8985 /// \code
8986 /// template \<class T> void foo(T);
8987 /// template \<class T> class A {
8988 /// friend void foo<>(T);
8989 /// };
8990 /// \endcode
8991 ///
8992 /// There really isn't any useful analysis we can do here, so we
8993 /// just store the information.
8994 bool
CheckDependentFunctionTemplateSpecialization(FunctionDecl * FD,const TemplateArgumentListInfo & ExplicitTemplateArgs,LookupResult & Previous)8995 Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
8996 const TemplateArgumentListInfo &ExplicitTemplateArgs,
8997 LookupResult &Previous) {
8998 // Remove anything from Previous that isn't a function template in
8999 // the correct context.
9000 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
9001 LookupResult::Filter F = Previous.makeFilter();
9002 enum DiscardReason { NotAFunctionTemplate, NotAMemberOfEnclosing };
9003 SmallVector<std::pair<DiscardReason, Decl *>, 8> DiscardedCandidates;
9004 while (F.hasNext()) {
9005 NamedDecl *D = F.next()->getUnderlyingDecl();
9006 if (!isa<FunctionTemplateDecl>(D)) {
9007 F.erase();
9008 DiscardedCandidates.push_back(std::make_pair(NotAFunctionTemplate, D));
9009 continue;
9010 }
9011
9012 if (!FDLookupContext->InEnclosingNamespaceSetOf(
9013 D->getDeclContext()->getRedeclContext())) {
9014 F.erase();
9015 DiscardedCandidates.push_back(std::make_pair(NotAMemberOfEnclosing, D));
9016 continue;
9017 }
9018 }
9019 F.done();
9020
9021 if (Previous.empty()) {
9022 Diag(FD->getLocation(),
9023 diag::err_dependent_function_template_spec_no_match);
9024 for (auto &P : DiscardedCandidates)
9025 Diag(P.second->getLocation(),
9026 diag::note_dependent_function_template_spec_discard_reason)
9027 << P.first;
9028 return true;
9029 }
9030
9031 FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
9032 ExplicitTemplateArgs);
9033 return false;
9034 }
9035
9036 /// Perform semantic analysis for the given function template
9037 /// specialization.
9038 ///
9039 /// This routine performs all of the semantic analysis required for an
9040 /// explicit function template specialization. On successful completion,
9041 /// the function declaration \p FD will become a function template
9042 /// specialization.
9043 ///
9044 /// \param FD the function declaration, which will be updated to become a
9045 /// function template specialization.
9046 ///
9047 /// \param ExplicitTemplateArgs the explicitly-provided template arguments,
9048 /// if any. Note that this may be valid info even when 0 arguments are
9049 /// explicitly provided as in, e.g., \c void sort<>(char*, char*);
9050 /// as it anyway contains info on the angle brackets locations.
9051 ///
9052 /// \param Previous the set of declarations that may be specialized by
9053 /// this function specialization.
9054 ///
9055 /// \param QualifiedFriend whether this is a lookup for a qualified friend
9056 /// declaration with no explicit template argument list that might be
9057 /// befriending a function template specialization.
CheckFunctionTemplateSpecialization(FunctionDecl * FD,TemplateArgumentListInfo * ExplicitTemplateArgs,LookupResult & Previous,bool QualifiedFriend)9058 bool Sema::CheckFunctionTemplateSpecialization(
9059 FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs,
9060 LookupResult &Previous, bool QualifiedFriend) {
9061 // The set of function template specializations that could match this
9062 // explicit function template specialization.
9063 UnresolvedSet<8> Candidates;
9064 TemplateSpecCandidateSet FailedCandidates(FD->getLocation(),
9065 /*ForTakingAddress=*/false);
9066
9067 llvm::SmallDenseMap<FunctionDecl *, TemplateArgumentListInfo, 8>
9068 ConvertedTemplateArgs;
9069
9070 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
9071 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
9072 I != E; ++I) {
9073 NamedDecl *Ovl = (*I)->getUnderlyingDecl();
9074 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
9075 // Only consider templates found within the same semantic lookup scope as
9076 // FD.
9077 if (!FDLookupContext->InEnclosingNamespaceSetOf(
9078 Ovl->getDeclContext()->getRedeclContext()))
9079 continue;
9080
9081 // When matching a constexpr member function template specialization
9082 // against the primary template, we don't yet know whether the
9083 // specialization has an implicit 'const' (because we don't know whether
9084 // it will be a static member function until we know which template it
9085 // specializes), so adjust it now assuming it specializes this template.
9086 QualType FT = FD->getType();
9087 if (FD->isConstexpr()) {
9088 CXXMethodDecl *OldMD =
9089 dyn_cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl());
9090 if (OldMD && OldMD->isConst()) {
9091 const FunctionProtoType *FPT = FT->castAs<FunctionProtoType>();
9092 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
9093 EPI.TypeQuals.addConst();
9094 FT = Context.getFunctionType(FPT->getReturnType(),
9095 FPT->getParamTypes(), EPI);
9096 }
9097 }
9098
9099 TemplateArgumentListInfo Args;
9100 if (ExplicitTemplateArgs)
9101 Args = *ExplicitTemplateArgs;
9102
9103 // C++ [temp.expl.spec]p11:
9104 // A trailing template-argument can be left unspecified in the
9105 // template-id naming an explicit function template specialization
9106 // provided it can be deduced from the function argument type.
9107 // Perform template argument deduction to determine whether we may be
9108 // specializing this template.
9109 // FIXME: It is somewhat wasteful to build
9110 TemplateDeductionInfo Info(FailedCandidates.getLocation());
9111 FunctionDecl *Specialization = nullptr;
9112 if (TemplateDeductionResult TDK = DeduceTemplateArguments(
9113 cast<FunctionTemplateDecl>(FunTmpl->getFirstDecl()),
9114 ExplicitTemplateArgs ? &Args : nullptr, FT, Specialization,
9115 Info)) {
9116 // Template argument deduction failed; record why it failed, so
9117 // that we can provide nifty diagnostics.
9118 FailedCandidates.addCandidate().set(
9119 I.getPair(), FunTmpl->getTemplatedDecl(),
9120 MakeDeductionFailureInfo(Context, TDK, Info));
9121 (void)TDK;
9122 continue;
9123 }
9124
9125 // Target attributes are part of the cuda function signature, so
9126 // the deduced template's cuda target must match that of the
9127 // specialization. Given that C++ template deduction does not
9128 // take target attributes into account, we reject candidates
9129 // here that have a different target.
9130 if (LangOpts.CUDA &&
9131 IdentifyCUDATarget(Specialization,
9132 /* IgnoreImplicitHDAttr = */ true) !=
9133 IdentifyCUDATarget(FD, /* IgnoreImplicitHDAttr = */ true)) {
9134 FailedCandidates.addCandidate().set(
9135 I.getPair(), FunTmpl->getTemplatedDecl(),
9136 MakeDeductionFailureInfo(Context, TDK_CUDATargetMismatch, Info));
9137 continue;
9138 }
9139
9140 // Record this candidate.
9141 if (ExplicitTemplateArgs)
9142 ConvertedTemplateArgs[Specialization] = std::move(Args);
9143 Candidates.addDecl(Specialization, I.getAccess());
9144 }
9145 }
9146
9147 // For a qualified friend declaration (with no explicit marker to indicate
9148 // that a template specialization was intended), note all (template and
9149 // non-template) candidates.
9150 if (QualifiedFriend && Candidates.empty()) {
9151 Diag(FD->getLocation(), diag::err_qualified_friend_no_match)
9152 << FD->getDeclName() << FDLookupContext;
9153 // FIXME: We should form a single candidate list and diagnose all
9154 // candidates at once, to get proper sorting and limiting.
9155 for (auto *OldND : Previous) {
9156 if (auto *OldFD = dyn_cast<FunctionDecl>(OldND->getUnderlyingDecl()))
9157 NoteOverloadCandidate(OldND, OldFD, CRK_None, FD->getType(), false);
9158 }
9159 FailedCandidates.NoteCandidates(*this, FD->getLocation());
9160 return true;
9161 }
9162
9163 // Find the most specialized function template.
9164 UnresolvedSetIterator Result = getMostSpecialized(
9165 Candidates.begin(), Candidates.end(), FailedCandidates, FD->getLocation(),
9166 PDiag(diag::err_function_template_spec_no_match) << FD->getDeclName(),
9167 PDiag(diag::err_function_template_spec_ambiguous)
9168 << FD->getDeclName() << (ExplicitTemplateArgs != nullptr),
9169 PDiag(diag::note_function_template_spec_matched));
9170
9171 if (Result == Candidates.end())
9172 return true;
9173
9174 // Ignore access information; it doesn't figure into redeclaration checking.
9175 FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
9176
9177 FunctionTemplateSpecializationInfo *SpecInfo
9178 = Specialization->getTemplateSpecializationInfo();
9179 assert(SpecInfo && "Function template specialization info missing?");
9180
9181 // Note: do not overwrite location info if previous template
9182 // specialization kind was explicit.
9183 TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind();
9184 if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) {
9185 Specialization->setLocation(FD->getLocation());
9186 Specialization->setLexicalDeclContext(FD->getLexicalDeclContext());
9187 // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr
9188 // function can differ from the template declaration with respect to
9189 // the constexpr specifier.
9190 // FIXME: We need an update record for this AST mutation.
9191 // FIXME: What if there are multiple such prior declarations (for instance,
9192 // from different modules)?
9193 Specialization->setConstexprKind(FD->getConstexprKind());
9194 }
9195
9196 // FIXME: Check if the prior specialization has a point of instantiation.
9197 // If so, we have run afoul of .
9198
9199 // If this is a friend declaration, then we're not really declaring
9200 // an explicit specialization.
9201 bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
9202
9203 // Check the scope of this explicit specialization.
9204 if (!isFriend &&
9205 CheckTemplateSpecializationScope(*this,
9206 Specialization->getPrimaryTemplate(),
9207 Specialization, FD->getLocation(),
9208 false))
9209 return true;
9210
9211 // C++ [temp.expl.spec]p6:
9212 // If a template, a member template or the member of a class template is
9213 // explicitly specialized then that specialization shall be declared
9214 // before the first use of that specialization that would cause an implicit
9215 // instantiation to take place, in every translation unit in which such a
9216 // use occurs; no diagnostic is required.
9217 bool HasNoEffect = false;
9218 if (!isFriend &&
9219 CheckSpecializationInstantiationRedecl(FD->getLocation(),
9220 TSK_ExplicitSpecialization,
9221 Specialization,
9222 SpecInfo->getTemplateSpecializationKind(),
9223 SpecInfo->getPointOfInstantiation(),
9224 HasNoEffect))
9225 return true;
9226
9227 // Mark the prior declaration as an explicit specialization, so that later
9228 // clients know that this is an explicit specialization.
9229 if (!isFriend) {
9230 // Since explicit specializations do not inherit '=delete' from their
9231 // primary function template - check if the 'specialization' that was
9232 // implicitly generated (during template argument deduction for partial
9233 // ordering) from the most specialized of all the function templates that
9234 // 'FD' could have been specializing, has a 'deleted' definition. If so,
9235 // first check that it was implicitly generated during template argument
9236 // deduction by making sure it wasn't referenced, and then reset the deleted
9237 // flag to not-deleted, so that we can inherit that information from 'FD'.
9238 if (Specialization->isDeleted() && !SpecInfo->isExplicitSpecialization() &&
9239 !Specialization->getCanonicalDecl()->isReferenced()) {
9240 // FIXME: This assert will not hold in the presence of modules.
9241 assert(
9242 Specialization->getCanonicalDecl() == Specialization &&
9243 "This must be the only existing declaration of this specialization");
9244 // FIXME: We need an update record for this AST mutation.
9245 Specialization->setDeletedAsWritten(false);
9246 }
9247 // FIXME: We need an update record for this AST mutation.
9248 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
9249 MarkUnusedFileScopedDecl(Specialization);
9250 }
9251
9252 // Turn the given function declaration into a function template
9253 // specialization, with the template arguments from the previous
9254 // specialization.
9255 // Take copies of (semantic and syntactic) template argument lists.
9256 const TemplateArgumentList* TemplArgs = new (Context)
9257 TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
9258 FD->setFunctionTemplateSpecialization(
9259 Specialization->getPrimaryTemplate(), TemplArgs, /*InsertPos=*/nullptr,
9260 SpecInfo->getTemplateSpecializationKind(),
9261 ExplicitTemplateArgs ? &ConvertedTemplateArgs[Specialization] : nullptr);
9262
9263 // A function template specialization inherits the target attributes
9264 // of its template. (We require the attributes explicitly in the
9265 // code to match, but a template may have implicit attributes by
9266 // virtue e.g. of being constexpr, and it passes these implicit
9267 // attributes on to its specializations.)
9268 if (LangOpts.CUDA)
9269 inheritCUDATargetAttrs(FD, *Specialization->getPrimaryTemplate());
9270
9271 // The "previous declaration" for this function template specialization is
9272 // the prior function template specialization.
9273 Previous.clear();
9274 Previous.addDecl(Specialization);
9275 return false;
9276 }
9277
9278 /// Perform semantic analysis for the given non-template member
9279 /// specialization.
9280 ///
9281 /// This routine performs all of the semantic analysis required for an
9282 /// explicit member function specialization. On successful completion,
9283 /// the function declaration \p FD will become a member function
9284 /// specialization.
9285 ///
9286 /// \param Member the member declaration, which will be updated to become a
9287 /// specialization.
9288 ///
9289 /// \param Previous the set of declarations, one of which may be specialized
9290 /// by this function specialization; the set will be modified to contain the
9291 /// redeclared member.
9292 bool
CheckMemberSpecialization(NamedDecl * Member,LookupResult & Previous)9293 Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
9294 assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
9295
9296 // Try to find the member we are instantiating.
9297 NamedDecl *FoundInstantiation = nullptr;
9298 NamedDecl *Instantiation = nullptr;
9299 NamedDecl *InstantiatedFrom = nullptr;
9300 MemberSpecializationInfo *MSInfo = nullptr;
9301
9302 if (Previous.empty()) {
9303 // Nowhere to look anyway.
9304 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
9305 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
9306 I != E; ++I) {
9307 NamedDecl *D = (*I)->getUnderlyingDecl();
9308 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
9309 QualType Adjusted = Function->getType();
9310 if (!hasExplicitCallingConv(Adjusted))
9311 Adjusted = adjustCCAndNoReturn(Adjusted, Method->getType());
9312 // This doesn't handle deduced return types, but both function
9313 // declarations should be undeduced at this point.
9314 if (Context.hasSameType(Adjusted, Method->getType())) {
9315 FoundInstantiation = *I;
9316 Instantiation = Method;
9317 InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
9318 MSInfo = Method->getMemberSpecializationInfo();
9319 break;
9320 }
9321 }
9322 }
9323 } else if (isa<VarDecl>(Member)) {
9324 VarDecl *PrevVar;
9325 if (Previous.isSingleResult() &&
9326 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
9327 if (PrevVar->isStaticDataMember()) {
9328 FoundInstantiation = Previous.getRepresentativeDecl();
9329 Instantiation = PrevVar;
9330 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
9331 MSInfo = PrevVar->getMemberSpecializationInfo();
9332 }
9333 } else if (isa<RecordDecl>(Member)) {
9334 CXXRecordDecl *PrevRecord;
9335 if (Previous.isSingleResult() &&
9336 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
9337 FoundInstantiation = Previous.getRepresentativeDecl();
9338 Instantiation = PrevRecord;
9339 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
9340 MSInfo = PrevRecord->getMemberSpecializationInfo();
9341 }
9342 } else if (isa<EnumDecl>(Member)) {
9343 EnumDecl *PrevEnum;
9344 if (Previous.isSingleResult() &&
9345 (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) {
9346 FoundInstantiation = Previous.getRepresentativeDecl();
9347 Instantiation = PrevEnum;
9348 InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum();
9349 MSInfo = PrevEnum->getMemberSpecializationInfo();
9350 }
9351 }
9352
9353 if (!Instantiation) {
9354 // There is no previous declaration that matches. Since member
9355 // specializations are always out-of-line, the caller will complain about
9356 // this mismatch later.
9357 return false;
9358 }
9359
9360 // A member specialization in a friend declaration isn't really declaring
9361 // an explicit specialization, just identifying a specific (possibly implicit)
9362 // specialization. Don't change the template specialization kind.
9363 //
9364 // FIXME: Is this really valid? Other compilers reject.
9365 if (Member->getFriendObjectKind() != Decl::FOK_None) {
9366 // Preserve instantiation information.
9367 if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
9368 cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
9369 cast<CXXMethodDecl>(InstantiatedFrom),
9370 cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
9371 } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
9372 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
9373 cast<CXXRecordDecl>(InstantiatedFrom),
9374 cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
9375 }
9376
9377 Previous.clear();
9378 Previous.addDecl(FoundInstantiation);
9379 return false;
9380 }
9381
9382 // Make sure that this is a specialization of a member.
9383 if (!InstantiatedFrom) {
9384 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
9385 << Member;
9386 Diag(Instantiation->getLocation(), diag::note_specialized_decl);
9387 return true;
9388 }
9389
9390 // C++ [temp.expl.spec]p6:
9391 // If a template, a member template or the member of a class template is
9392 // explicitly specialized then that specialization shall be declared
9393 // before the first use of that specialization that would cause an implicit
9394 // instantiation to take place, in every translation unit in which such a
9395 // use occurs; no diagnostic is required.
9396 assert(MSInfo && "Member specialization info missing?");
9397
9398 bool HasNoEffect = false;
9399 if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
9400 TSK_ExplicitSpecialization,
9401 Instantiation,
9402 MSInfo->getTemplateSpecializationKind(),
9403 MSInfo->getPointOfInstantiation(),
9404 HasNoEffect))
9405 return true;
9406
9407 // Check the scope of this explicit specialization.
9408 if (CheckTemplateSpecializationScope(*this,
9409 InstantiatedFrom,
9410 Instantiation, Member->getLocation(),
9411 false))
9412 return true;
9413
9414 // Note that this member specialization is an "instantiation of" the
9415 // corresponding member of the original template.
9416 if (auto *MemberFunction = dyn_cast<FunctionDecl>(Member)) {
9417 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
9418 if (InstantiationFunction->getTemplateSpecializationKind() ==
9419 TSK_ImplicitInstantiation) {
9420 // Explicit specializations of member functions of class templates do not
9421 // inherit '=delete' from the member function they are specializing.
9422 if (InstantiationFunction->isDeleted()) {
9423 // FIXME: This assert will not hold in the presence of modules.
9424 assert(InstantiationFunction->getCanonicalDecl() ==
9425 InstantiationFunction);
9426 // FIXME: We need an update record for this AST mutation.
9427 InstantiationFunction->setDeletedAsWritten(false);
9428 }
9429 }
9430
9431 MemberFunction->setInstantiationOfMemberFunction(
9432 cast<CXXMethodDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
9433 } else if (auto *MemberVar = dyn_cast<VarDecl>(Member)) {
9434 MemberVar->setInstantiationOfStaticDataMember(
9435 cast<VarDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
9436 } else if (auto *MemberClass = dyn_cast<CXXRecordDecl>(Member)) {
9437 MemberClass->setInstantiationOfMemberClass(
9438 cast<CXXRecordDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
9439 } else if (auto *MemberEnum = dyn_cast<EnumDecl>(Member)) {
9440 MemberEnum->setInstantiationOfMemberEnum(
9441 cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
9442 } else {
9443 llvm_unreachable("unknown member specialization kind");
9444 }
9445
9446 // Save the caller the trouble of having to figure out which declaration
9447 // this specialization matches.
9448 Previous.clear();
9449 Previous.addDecl(FoundInstantiation);
9450 return false;
9451 }
9452
9453 /// Complete the explicit specialization of a member of a class template by
9454 /// updating the instantiated member to be marked as an explicit specialization.
9455 ///
9456 /// \param OrigD The member declaration instantiated from the template.
9457 /// \param Loc The location of the explicit specialization of the member.
9458 template<typename DeclT>
completeMemberSpecializationImpl(Sema & S,DeclT * OrigD,SourceLocation Loc)9459 static void completeMemberSpecializationImpl(Sema &S, DeclT *OrigD,
9460 SourceLocation Loc) {
9461 if (OrigD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
9462 return;
9463
9464 // FIXME: Inform AST mutation listeners of this AST mutation.
9465 // FIXME: If there are multiple in-class declarations of the member (from
9466 // multiple modules, or a declaration and later definition of a member type),
9467 // should we update all of them?
9468 OrigD->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
9469 OrigD->setLocation(Loc);
9470 }
9471
CompleteMemberSpecialization(NamedDecl * Member,LookupResult & Previous)9472 void Sema::CompleteMemberSpecialization(NamedDecl *Member,
9473 LookupResult &Previous) {
9474 NamedDecl *Instantiation = cast<NamedDecl>(Member->getCanonicalDecl());
9475 if (Instantiation == Member)
9476 return;
9477
9478 if (auto *Function = dyn_cast<CXXMethodDecl>(Instantiation))
9479 completeMemberSpecializationImpl(*this, Function, Member->getLocation());
9480 else if (auto *Var = dyn_cast<VarDecl>(Instantiation))
9481 completeMemberSpecializationImpl(*this, Var, Member->getLocation());
9482 else if (auto *Record = dyn_cast<CXXRecordDecl>(Instantiation))
9483 completeMemberSpecializationImpl(*this, Record, Member->getLocation());
9484 else if (auto *Enum = dyn_cast<EnumDecl>(Instantiation))
9485 completeMemberSpecializationImpl(*this, Enum, Member->getLocation());
9486 else
9487 llvm_unreachable("unknown member specialization kind");
9488 }
9489
9490 /// Check the scope of an explicit instantiation.
9491 ///
9492 /// \returns true if a serious error occurs, false otherwise.
CheckExplicitInstantiationScope(Sema & S,NamedDecl * D,SourceLocation InstLoc,bool WasQualifiedName)9493 static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
9494 SourceLocation InstLoc,
9495 bool WasQualifiedName) {
9496 DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
9497 DeclContext *CurContext = S.CurContext->getRedeclContext();
9498
9499 if (CurContext->isRecord()) {
9500 S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
9501 << D;
9502 return true;
9503 }
9504
9505 // C++11 [temp.explicit]p3:
9506 // An explicit instantiation shall appear in an enclosing namespace of its
9507 // template. If the name declared in the explicit instantiation is an
9508 // unqualified name, the explicit instantiation shall appear in the
9509 // namespace where its template is declared or, if that namespace is inline
9510 // (7.3.1), any namespace from its enclosing namespace set.
9511 //
9512 // This is DR275, which we do not retroactively apply to C++98/03.
9513 if (WasQualifiedName) {
9514 if (CurContext->Encloses(OrigContext))
9515 return false;
9516 } else {
9517 if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
9518 return false;
9519 }
9520
9521 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) {
9522 if (WasQualifiedName)
9523 S.Diag(InstLoc,
9524 S.getLangOpts().CPlusPlus11?
9525 diag::err_explicit_instantiation_out_of_scope :
9526 diag::warn_explicit_instantiation_out_of_scope_0x)
9527 << D << NS;
9528 else
9529 S.Diag(InstLoc,
9530 S.getLangOpts().CPlusPlus11?
9531 diag::err_explicit_instantiation_unqualified_wrong_namespace :
9532 diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
9533 << D << NS;
9534 } else
9535 S.Diag(InstLoc,
9536 S.getLangOpts().CPlusPlus11?
9537 diag::err_explicit_instantiation_must_be_global :
9538 diag::warn_explicit_instantiation_must_be_global_0x)
9539 << D;
9540 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
9541 return false;
9542 }
9543
9544 /// Common checks for whether an explicit instantiation of \p D is valid.
CheckExplicitInstantiation(Sema & S,NamedDecl * D,SourceLocation InstLoc,bool WasQualifiedName,TemplateSpecializationKind TSK)9545 static bool CheckExplicitInstantiation(Sema &S, NamedDecl *D,
9546 SourceLocation InstLoc,
9547 bool WasQualifiedName,
9548 TemplateSpecializationKind TSK) {
9549 // C++ [temp.explicit]p13:
9550 // An explicit instantiation declaration shall not name a specialization of
9551 // a template with internal linkage.
9552 if (TSK == TSK_ExplicitInstantiationDeclaration &&
9553 D->getFormalLinkage() == InternalLinkage) {
9554 S.Diag(InstLoc, diag::err_explicit_instantiation_internal_linkage) << D;
9555 return true;
9556 }
9557
9558 // C++11 [temp.explicit]p3: [DR 275]
9559 // An explicit instantiation shall appear in an enclosing namespace of its
9560 // template.
9561 if (CheckExplicitInstantiationScope(S, D, InstLoc, WasQualifiedName))
9562 return true;
9563
9564 return false;
9565 }
9566
9567 /// Determine whether the given scope specifier has a template-id in it.
ScopeSpecifierHasTemplateId(const CXXScopeSpec & SS)9568 static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
9569 if (!SS.isSet())
9570 return false;
9571
9572 // C++11 [temp.explicit]p3:
9573 // If the explicit instantiation is for a member function, a member class
9574 // or a static data member of a class template specialization, the name of
9575 // the class template specialization in the qualified-id for the member
9576 // name shall be a simple-template-id.
9577 //
9578 // C++98 has the same restriction, just worded differently.
9579 for (NestedNameSpecifier *NNS = SS.getScopeRep(); NNS;
9580 NNS = NNS->getPrefix())
9581 if (const Type *T = NNS->getAsType())
9582 if (isa<TemplateSpecializationType>(T))
9583 return true;
9584
9585 return false;
9586 }
9587
9588 /// Make a dllexport or dllimport attr on a class template specialization take
9589 /// effect.
dllExportImportClassTemplateSpecialization(Sema & S,ClassTemplateSpecializationDecl * Def)9590 static void dllExportImportClassTemplateSpecialization(
9591 Sema &S, ClassTemplateSpecializationDecl *Def) {
9592 auto *A = cast_or_null<InheritableAttr>(getDLLAttr(Def));
9593 assert(A && "dllExportImportClassTemplateSpecialization called "
9594 "on Def without dllexport or dllimport");
9595
9596 // We reject explicit instantiations in class scope, so there should
9597 // never be any delayed exported classes to worry about.
9598 assert(S.DelayedDllExportClasses.empty() &&
9599 "delayed exports present at explicit instantiation");
9600 S.checkClassLevelDLLAttribute(Def);
9601
9602 // Propagate attribute to base class templates.
9603 for (auto &B : Def->bases()) {
9604 if (auto *BT = dyn_cast_or_null<ClassTemplateSpecializationDecl>(
9605 B.getType()->getAsCXXRecordDecl()))
9606 S.propagateDLLAttrToBaseClassTemplate(Def, A, BT, B.getBeginLoc());
9607 }
9608
9609 S.referenceDLLExportedClassMethods();
9610 }
9611
9612 // Explicit instantiation of a class template specialization
ActOnExplicitInstantiation(Scope * S,SourceLocation ExternLoc,SourceLocation TemplateLoc,unsigned TagSpec,SourceLocation KWLoc,const CXXScopeSpec & SS,TemplateTy TemplateD,SourceLocation TemplateNameLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc,const ParsedAttributesView & Attr)9613 DeclResult Sema::ActOnExplicitInstantiation(
9614 Scope *S, SourceLocation ExternLoc, SourceLocation TemplateLoc,
9615 unsigned TagSpec, SourceLocation KWLoc, const CXXScopeSpec &SS,
9616 TemplateTy TemplateD, SourceLocation TemplateNameLoc,
9617 SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgsIn,
9618 SourceLocation RAngleLoc, const ParsedAttributesView &Attr) {
9619 // Find the class template we're specializing
9620 TemplateName Name = TemplateD.get();
9621 TemplateDecl *TD = Name.getAsTemplateDecl();
9622 // Check that the specialization uses the same tag kind as the
9623 // original template.
9624 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
9625 assert(Kind != TTK_Enum &&
9626 "Invalid enum tag in class template explicit instantiation!");
9627
9628 ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(TD);
9629
9630 if (!ClassTemplate) {
9631 NonTagKind NTK = getNonTagTypeDeclKind(TD, Kind);
9632 Diag(TemplateNameLoc, diag::err_tag_reference_non_tag) << TD << NTK << Kind;
9633 Diag(TD->getLocation(), diag::note_previous_use);
9634 return true;
9635 }
9636
9637 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
9638 Kind, /*isDefinition*/false, KWLoc,
9639 ClassTemplate->getIdentifier())) {
9640 Diag(KWLoc, diag::err_use_with_wrong_tag)
9641 << ClassTemplate
9642 << FixItHint::CreateReplacement(KWLoc,
9643 ClassTemplate->getTemplatedDecl()->getKindName());
9644 Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
9645 diag::note_previous_use);
9646 Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
9647 }
9648
9649 // C++0x [temp.explicit]p2:
9650 // There are two forms of explicit instantiation: an explicit instantiation
9651 // definition and an explicit instantiation declaration. An explicit
9652 // instantiation declaration begins with the extern keyword. [...]
9653 TemplateSpecializationKind TSK = ExternLoc.isInvalid()
9654 ? TSK_ExplicitInstantiationDefinition
9655 : TSK_ExplicitInstantiationDeclaration;
9656
9657 if (TSK == TSK_ExplicitInstantiationDeclaration &&
9658 !Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) {
9659 // Check for dllexport class template instantiation declarations,
9660 // except for MinGW mode.
9661 for (const ParsedAttr &AL : Attr) {
9662 if (AL.getKind() == ParsedAttr::AT_DLLExport) {
9663 Diag(ExternLoc,
9664 diag::warn_attribute_dllexport_explicit_instantiation_decl);
9665 Diag(AL.getLoc(), diag::note_attribute);
9666 break;
9667 }
9668 }
9669
9670 if (auto *A = ClassTemplate->getTemplatedDecl()->getAttr<DLLExportAttr>()) {
9671 Diag(ExternLoc,
9672 diag::warn_attribute_dllexport_explicit_instantiation_decl);
9673 Diag(A->getLocation(), diag::note_attribute);
9674 }
9675 }
9676
9677 // In MSVC mode, dllimported explicit instantiation definitions are treated as
9678 // instantiation declarations for most purposes.
9679 bool DLLImportExplicitInstantiationDef = false;
9680 if (TSK == TSK_ExplicitInstantiationDefinition &&
9681 Context.getTargetInfo().getCXXABI().isMicrosoft()) {
9682 // Check for dllimport class template instantiation definitions.
9683 bool DLLImport =
9684 ClassTemplate->getTemplatedDecl()->getAttr<DLLImportAttr>();
9685 for (const ParsedAttr &AL : Attr) {
9686 if (AL.getKind() == ParsedAttr::AT_DLLImport)
9687 DLLImport = true;
9688 if (AL.getKind() == ParsedAttr::AT_DLLExport) {
9689 // dllexport trumps dllimport here.
9690 DLLImport = false;
9691 break;
9692 }
9693 }
9694 if (DLLImport) {
9695 TSK = TSK_ExplicitInstantiationDeclaration;
9696 DLLImportExplicitInstantiationDef = true;
9697 }
9698 }
9699
9700 // Translate the parser's template argument list in our AST format.
9701 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
9702 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
9703
9704 // Check that the template argument list is well-formed for this
9705 // template.
9706 SmallVector<TemplateArgument, 4> Converted;
9707 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
9708 TemplateArgs, false, Converted,
9709 /*UpdateArgsWithConversions=*/true))
9710 return true;
9711
9712 // Find the class template specialization declaration that
9713 // corresponds to these arguments.
9714 void *InsertPos = nullptr;
9715 ClassTemplateSpecializationDecl *PrevDecl
9716 = ClassTemplate->findSpecialization(Converted, InsertPos);
9717
9718 TemplateSpecializationKind PrevDecl_TSK
9719 = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
9720
9721 if (TSK == TSK_ExplicitInstantiationDefinition && PrevDecl != nullptr &&
9722 Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) {
9723 // Check for dllexport class template instantiation definitions in MinGW
9724 // mode, if a previous declaration of the instantiation was seen.
9725 for (const ParsedAttr &AL : Attr) {
9726 if (AL.getKind() == ParsedAttr::AT_DLLExport) {
9727 Diag(AL.getLoc(),
9728 diag::warn_attribute_dllexport_explicit_instantiation_def);
9729 break;
9730 }
9731 }
9732 }
9733
9734 if (CheckExplicitInstantiation(*this, ClassTemplate, TemplateNameLoc,
9735 SS.isSet(), TSK))
9736 return true;
9737
9738 ClassTemplateSpecializationDecl *Specialization = nullptr;
9739
9740 bool HasNoEffect = false;
9741 if (PrevDecl) {
9742 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
9743 PrevDecl, PrevDecl_TSK,
9744 PrevDecl->getPointOfInstantiation(),
9745 HasNoEffect))
9746 return PrevDecl;
9747
9748 // Even though HasNoEffect == true means that this explicit instantiation
9749 // has no effect on semantics, we go on to put its syntax in the AST.
9750
9751 if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
9752 PrevDecl_TSK == TSK_Undeclared) {
9753 // Since the only prior class template specialization with these
9754 // arguments was referenced but not declared, reuse that
9755 // declaration node as our own, updating the source location
9756 // for the template name to reflect our new declaration.
9757 // (Other source locations will be updated later.)
9758 Specialization = PrevDecl;
9759 Specialization->setLocation(TemplateNameLoc);
9760 PrevDecl = nullptr;
9761 }
9762
9763 if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration &&
9764 DLLImportExplicitInstantiationDef) {
9765 // The new specialization might add a dllimport attribute.
9766 HasNoEffect = false;
9767 }
9768 }
9769
9770 if (!Specialization) {
9771 // Create a new class template specialization declaration node for
9772 // this explicit specialization.
9773 Specialization
9774 = ClassTemplateSpecializationDecl::Create(Context, Kind,
9775 ClassTemplate->getDeclContext(),
9776 KWLoc, TemplateNameLoc,
9777 ClassTemplate,
9778 Converted,
9779 PrevDecl);
9780 SetNestedNameSpecifier(*this, Specialization, SS);
9781
9782 if (!HasNoEffect && !PrevDecl) {
9783 // Insert the new specialization.
9784 ClassTemplate->AddSpecialization(Specialization, InsertPos);
9785 }
9786 }
9787
9788 // Build the fully-sugared type for this explicit instantiation as
9789 // the user wrote in the explicit instantiation itself. This means
9790 // that we'll pretty-print the type retrieved from the
9791 // specialization's declaration the way that the user actually wrote
9792 // the explicit instantiation, rather than formatting the name based
9793 // on the "canonical" representation used to store the template
9794 // arguments in the specialization.
9795 TypeSourceInfo *WrittenTy
9796 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
9797 TemplateArgs,
9798 Context.getTypeDeclType(Specialization));
9799 Specialization->setTypeAsWritten(WrittenTy);
9800
9801 // Set source locations for keywords.
9802 Specialization->setExternLoc(ExternLoc);
9803 Specialization->setTemplateKeywordLoc(TemplateLoc);
9804 Specialization->setBraceRange(SourceRange());
9805
9806 bool PreviouslyDLLExported = Specialization->hasAttr<DLLExportAttr>();
9807 ProcessDeclAttributeList(S, Specialization, Attr);
9808
9809 // Add the explicit instantiation into its lexical context. However,
9810 // since explicit instantiations are never found by name lookup, we
9811 // just put it into the declaration context directly.
9812 Specialization->setLexicalDeclContext(CurContext);
9813 CurContext->addDecl(Specialization);
9814
9815 // Syntax is now OK, so return if it has no other effect on semantics.
9816 if (HasNoEffect) {
9817 // Set the template specialization kind.
9818 Specialization->setTemplateSpecializationKind(TSK);
9819 return Specialization;
9820 }
9821
9822 // C++ [temp.explicit]p3:
9823 // A definition of a class template or class member template
9824 // shall be in scope at the point of the explicit instantiation of
9825 // the class template or class member template.
9826 //
9827 // This check comes when we actually try to perform the
9828 // instantiation.
9829 ClassTemplateSpecializationDecl *Def
9830 = cast_or_null<ClassTemplateSpecializationDecl>(
9831 Specialization->getDefinition());
9832 if (!Def)
9833 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
9834 else if (TSK == TSK_ExplicitInstantiationDefinition) {
9835 MarkVTableUsed(TemplateNameLoc, Specialization, true);
9836 Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
9837 }
9838
9839 // Instantiate the members of this class template specialization.
9840 Def = cast_or_null<ClassTemplateSpecializationDecl>(
9841 Specialization->getDefinition());
9842 if (Def) {
9843 TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
9844 // Fix a TSK_ExplicitInstantiationDeclaration followed by a
9845 // TSK_ExplicitInstantiationDefinition
9846 if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
9847 (TSK == TSK_ExplicitInstantiationDefinition ||
9848 DLLImportExplicitInstantiationDef)) {
9849 // FIXME: Need to notify the ASTMutationListener that we did this.
9850 Def->setTemplateSpecializationKind(TSK);
9851
9852 if (!getDLLAttr(Def) && getDLLAttr(Specialization) &&
9853 (Context.getTargetInfo().shouldDLLImportComdatSymbols() &&
9854 !Context.getTargetInfo().getTriple().isPS())) {
9855 // An explicit instantiation definition can add a dll attribute to a
9856 // template with a previous instantiation declaration. MinGW doesn't
9857 // allow this.
9858 auto *A = cast<InheritableAttr>(
9859 getDLLAttr(Specialization)->clone(getASTContext()));
9860 A->setInherited(true);
9861 Def->addAttr(A);
9862 dllExportImportClassTemplateSpecialization(*this, Def);
9863 }
9864 }
9865
9866 // Fix a TSK_ImplicitInstantiation followed by a
9867 // TSK_ExplicitInstantiationDefinition
9868 bool NewlyDLLExported =
9869 !PreviouslyDLLExported && Specialization->hasAttr<DLLExportAttr>();
9870 if (Old_TSK == TSK_ImplicitInstantiation && NewlyDLLExported &&
9871 (Context.getTargetInfo().shouldDLLImportComdatSymbols() &&
9872 !Context.getTargetInfo().getTriple().isPS())) {
9873 // An explicit instantiation definition can add a dll attribute to a
9874 // template with a previous implicit instantiation. MinGW doesn't allow
9875 // this. We limit clang to only adding dllexport, to avoid potentially
9876 // strange codegen behavior. For example, if we extend this conditional
9877 // to dllimport, and we have a source file calling a method on an
9878 // implicitly instantiated template class instance and then declaring a
9879 // dllimport explicit instantiation definition for the same template
9880 // class, the codegen for the method call will not respect the dllimport,
9881 // while it will with cl. The Def will already have the DLL attribute,
9882 // since the Def and Specialization will be the same in the case of
9883 // Old_TSK == TSK_ImplicitInstantiation, and we already added the
9884 // attribute to the Specialization; we just need to make it take effect.
9885 assert(Def == Specialization &&
9886 "Def and Specialization should match for implicit instantiation");
9887 dllExportImportClassTemplateSpecialization(*this, Def);
9888 }
9889
9890 // In MinGW mode, export the template instantiation if the declaration
9891 // was marked dllexport.
9892 if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration &&
9893 Context.getTargetInfo().getTriple().isWindowsGNUEnvironment() &&
9894 PrevDecl->hasAttr<DLLExportAttr>()) {
9895 dllExportImportClassTemplateSpecialization(*this, Def);
9896 }
9897
9898 if (Def->hasAttr<MSInheritanceAttr>()) {
9899 Specialization->addAttr(Def->getAttr<MSInheritanceAttr>());
9900 Consumer.AssignInheritanceModel(Specialization);
9901 }
9902
9903 // Set the template specialization kind. Make sure it is set before
9904 // instantiating the members which will trigger ASTConsumer callbacks.
9905 Specialization->setTemplateSpecializationKind(TSK);
9906 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
9907 } else {
9908
9909 // Set the template specialization kind.
9910 Specialization->setTemplateSpecializationKind(TSK);
9911 }
9912
9913 return Specialization;
9914 }
9915
9916 // Explicit instantiation of a member class of a class template.
9917 DeclResult
ActOnExplicitInstantiation(Scope * S,SourceLocation ExternLoc,SourceLocation TemplateLoc,unsigned TagSpec,SourceLocation KWLoc,CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation NameLoc,const ParsedAttributesView & Attr)9918 Sema::ActOnExplicitInstantiation(Scope *S, SourceLocation ExternLoc,
9919 SourceLocation TemplateLoc, unsigned TagSpec,
9920 SourceLocation KWLoc, CXXScopeSpec &SS,
9921 IdentifierInfo *Name, SourceLocation NameLoc,
9922 const ParsedAttributesView &Attr) {
9923
9924 bool Owned = false;
9925 bool IsDependent = false;
9926 Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
9927 KWLoc, SS, Name, NameLoc, Attr, AS_none,
9928 /*ModulePrivateLoc=*/SourceLocation(),
9929 MultiTemplateParamsArg(), Owned, IsDependent,
9930 SourceLocation(), false, TypeResult(),
9931 /*IsTypeSpecifier*/false,
9932 /*IsTemplateParamOrArg*/false);
9933 assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
9934
9935 if (!TagD)
9936 return true;
9937
9938 TagDecl *Tag = cast<TagDecl>(TagD);
9939 assert(!Tag->isEnum() && "shouldn't see enumerations here");
9940
9941 if (Tag->isInvalidDecl())
9942 return true;
9943
9944 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
9945 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
9946 if (!Pattern) {
9947 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
9948 << Context.getTypeDeclType(Record);
9949 Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
9950 return true;
9951 }
9952
9953 // C++0x [temp.explicit]p2:
9954 // If the explicit instantiation is for a class or member class, the
9955 // elaborated-type-specifier in the declaration shall include a
9956 // simple-template-id.
9957 //
9958 // C++98 has the same restriction, just worded differently.
9959 if (!ScopeSpecifierHasTemplateId(SS))
9960 Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
9961 << Record << SS.getRange();
9962
9963 // C++0x [temp.explicit]p2:
9964 // There are two forms of explicit instantiation: an explicit instantiation
9965 // definition and an explicit instantiation declaration. An explicit
9966 // instantiation declaration begins with the extern keyword. [...]
9967 TemplateSpecializationKind TSK
9968 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
9969 : TSK_ExplicitInstantiationDeclaration;
9970
9971 CheckExplicitInstantiation(*this, Record, NameLoc, true, TSK);
9972
9973 // Verify that it is okay to explicitly instantiate here.
9974 CXXRecordDecl *PrevDecl
9975 = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl());
9976 if (!PrevDecl && Record->getDefinition())
9977 PrevDecl = Record;
9978 if (PrevDecl) {
9979 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
9980 bool HasNoEffect = false;
9981 assert(MSInfo && "No member specialization information?");
9982 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
9983 PrevDecl,
9984 MSInfo->getTemplateSpecializationKind(),
9985 MSInfo->getPointOfInstantiation(),
9986 HasNoEffect))
9987 return true;
9988 if (HasNoEffect)
9989 return TagD;
9990 }
9991
9992 CXXRecordDecl *RecordDef
9993 = cast_or_null<CXXRecordDecl>(Record->getDefinition());
9994 if (!RecordDef) {
9995 // C++ [temp.explicit]p3:
9996 // A definition of a member class of a class template shall be in scope
9997 // at the point of an explicit instantiation of the member class.
9998 CXXRecordDecl *Def
9999 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
10000 if (!Def) {
10001 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
10002 << 0 << Record->getDeclName() << Record->getDeclContext();
10003 Diag(Pattern->getLocation(), diag::note_forward_declaration)
10004 << Pattern;
10005 return true;
10006 } else {
10007 if (InstantiateClass(NameLoc, Record, Def,
10008 getTemplateInstantiationArgs(Record),
10009 TSK))
10010 return true;
10011
10012 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
10013 if (!RecordDef)
10014 return true;
10015 }
10016 }
10017
10018 // Instantiate all of the members of the class.
10019 InstantiateClassMembers(NameLoc, RecordDef,
10020 getTemplateInstantiationArgs(Record), TSK);
10021
10022 if (TSK == TSK_ExplicitInstantiationDefinition)
10023 MarkVTableUsed(NameLoc, RecordDef, true);
10024
10025 // FIXME: We don't have any representation for explicit instantiations of
10026 // member classes. Such a representation is not needed for compilation, but it
10027 // should be available for clients that want to see all of the declarations in
10028 // the source code.
10029 return TagD;
10030 }
10031
ActOnExplicitInstantiation(Scope * S,SourceLocation ExternLoc,SourceLocation TemplateLoc,Declarator & D)10032 DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
10033 SourceLocation ExternLoc,
10034 SourceLocation TemplateLoc,
10035 Declarator &D) {
10036 // Explicit instantiations always require a name.
10037 // TODO: check if/when DNInfo should replace Name.
10038 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
10039 DeclarationName Name = NameInfo.getName();
10040 if (!Name) {
10041 if (!D.isInvalidType())
10042 Diag(D.getDeclSpec().getBeginLoc(),
10043 diag::err_explicit_instantiation_requires_name)
10044 << D.getDeclSpec().getSourceRange() << D.getSourceRange();
10045
10046 return true;
10047 }
10048
10049 // The scope passed in may not be a decl scope. Zip up the scope tree until
10050 // we find one that is.
10051 while ((S->getFlags() & Scope::DeclScope) == 0 ||
10052 (S->getFlags() & Scope::TemplateParamScope) != 0)
10053 S = S->getParent();
10054
10055 // Determine the type of the declaration.
10056 TypeSourceInfo *T = GetTypeForDeclarator(D, S);
10057 QualType R = T->getType();
10058 if (R.isNull())
10059 return true;
10060
10061 // C++ [dcl.stc]p1:
10062 // A storage-class-specifier shall not be specified in [...] an explicit
10063 // instantiation (14.7.2) directive.
10064 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
10065 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
10066 << Name;
10067 return true;
10068 } else if (D.getDeclSpec().getStorageClassSpec()
10069 != DeclSpec::SCS_unspecified) {
10070 // Complain about then remove the storage class specifier.
10071 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class)
10072 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
10073
10074 D.getMutableDeclSpec().ClearStorageClassSpecs();
10075 }
10076
10077 // C++0x [temp.explicit]p1:
10078 // [...] An explicit instantiation of a function template shall not use the
10079 // inline or constexpr specifiers.
10080 // Presumably, this also applies to member functions of class templates as
10081 // well.
10082 if (D.getDeclSpec().isInlineSpecified())
10083 Diag(D.getDeclSpec().getInlineSpecLoc(),
10084 getLangOpts().CPlusPlus11 ?
10085 diag::err_explicit_instantiation_inline :
10086 diag::warn_explicit_instantiation_inline_0x)
10087 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
10088 if (D.getDeclSpec().hasConstexprSpecifier() && R->isFunctionType())
10089 // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is
10090 // not already specified.
10091 Diag(D.getDeclSpec().getConstexprSpecLoc(),
10092 diag::err_explicit_instantiation_constexpr);
10093
10094 // A deduction guide is not on the list of entities that can be explicitly
10095 // instantiated.
10096 if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) {
10097 Diag(D.getDeclSpec().getBeginLoc(), diag::err_deduction_guide_specialized)
10098 << /*explicit instantiation*/ 0;
10099 return true;
10100 }
10101
10102 // C++0x [temp.explicit]p2:
10103 // There are two forms of explicit instantiation: an explicit instantiation
10104 // definition and an explicit instantiation declaration. An explicit
10105 // instantiation declaration begins with the extern keyword. [...]
10106 TemplateSpecializationKind TSK
10107 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
10108 : TSK_ExplicitInstantiationDeclaration;
10109
10110 LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
10111 LookupParsedName(Previous, S, &D.getCXXScopeSpec());
10112
10113 if (!R->isFunctionType()) {
10114 // C++ [temp.explicit]p1:
10115 // A [...] static data member of a class template can be explicitly
10116 // instantiated from the member definition associated with its class
10117 // template.
10118 // C++1y [temp.explicit]p1:
10119 // A [...] variable [...] template specialization can be explicitly
10120 // instantiated from its template.
10121 if (Previous.isAmbiguous())
10122 return true;
10123
10124 VarDecl *Prev = Previous.getAsSingle<VarDecl>();
10125 VarTemplateDecl *PrevTemplate = Previous.getAsSingle<VarTemplateDecl>();
10126
10127 if (!PrevTemplate) {
10128 if (!Prev || !Prev->isStaticDataMember()) {
10129 // We expect to see a static data member here.
10130 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
10131 << Name;
10132 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
10133 P != PEnd; ++P)
10134 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
10135 return true;
10136 }
10137
10138 if (!Prev->getInstantiatedFromStaticDataMember()) {
10139 // FIXME: Check for explicit specialization?
10140 Diag(D.getIdentifierLoc(),
10141 diag::err_explicit_instantiation_data_member_not_instantiated)
10142 << Prev;
10143 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
10144 // FIXME: Can we provide a note showing where this was declared?
10145 return true;
10146 }
10147 } else {
10148 // Explicitly instantiate a variable template.
10149
10150 // C++1y [dcl.spec.auto]p6:
10151 // ... A program that uses auto or decltype(auto) in a context not
10152 // explicitly allowed in this section is ill-formed.
10153 //
10154 // This includes auto-typed variable template instantiations.
10155 if (R->isUndeducedType()) {
10156 Diag(T->getTypeLoc().getBeginLoc(),
10157 diag::err_auto_not_allowed_var_inst);
10158 return true;
10159 }
10160
10161 if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
10162 // C++1y [temp.explicit]p3:
10163 // If the explicit instantiation is for a variable, the unqualified-id
10164 // in the declaration shall be a template-id.
10165 Diag(D.getIdentifierLoc(),
10166 diag::err_explicit_instantiation_without_template_id)
10167 << PrevTemplate;
10168 Diag(PrevTemplate->getLocation(),
10169 diag::note_explicit_instantiation_here);
10170 return true;
10171 }
10172
10173 // Translate the parser's template argument list into our AST format.
10174 TemplateArgumentListInfo TemplateArgs =
10175 makeTemplateArgumentListInfo(*this, *D.getName().TemplateId);
10176
10177 DeclResult Res = CheckVarTemplateId(PrevTemplate, TemplateLoc,
10178 D.getIdentifierLoc(), TemplateArgs);
10179 if (Res.isInvalid())
10180 return true;
10181
10182 if (!Res.isUsable()) {
10183 // We somehow specified dependent template arguments in an explicit
10184 // instantiation. This should probably only happen during error
10185 // recovery.
10186 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_dependent);
10187 return true;
10188 }
10189
10190 // Ignore access control bits, we don't need them for redeclaration
10191 // checking.
10192 Prev = cast<VarDecl>(Res.get());
10193 }
10194
10195 // C++0x [temp.explicit]p2:
10196 // If the explicit instantiation is for a member function, a member class
10197 // or a static data member of a class template specialization, the name of
10198 // the class template specialization in the qualified-id for the member
10199 // name shall be a simple-template-id.
10200 //
10201 // C++98 has the same restriction, just worded differently.
10202 //
10203 // This does not apply to variable template specializations, where the
10204 // template-id is in the unqualified-id instead.
10205 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()) && !PrevTemplate)
10206 Diag(D.getIdentifierLoc(),
10207 diag::ext_explicit_instantiation_without_qualified_id)
10208 << Prev << D.getCXXScopeSpec().getRange();
10209
10210 CheckExplicitInstantiation(*this, Prev, D.getIdentifierLoc(), true, TSK);
10211
10212 // Verify that it is okay to explicitly instantiate here.
10213 TemplateSpecializationKind PrevTSK = Prev->getTemplateSpecializationKind();
10214 SourceLocation POI = Prev->getPointOfInstantiation();
10215 bool HasNoEffect = false;
10216 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
10217 PrevTSK, POI, HasNoEffect))
10218 return true;
10219
10220 if (!HasNoEffect) {
10221 // Instantiate static data member or variable template.
10222 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
10223 // Merge attributes.
10224 ProcessDeclAttributeList(S, Prev, D.getDeclSpec().getAttributes());
10225 if (TSK == TSK_ExplicitInstantiationDefinition)
10226 InstantiateVariableDefinition(D.getIdentifierLoc(), Prev);
10227 }
10228
10229 // Check the new variable specialization against the parsed input.
10230 if (PrevTemplate && !Context.hasSameType(Prev->getType(), R)) {
10231 Diag(T->getTypeLoc().getBeginLoc(),
10232 diag::err_invalid_var_template_spec_type)
10233 << 0 << PrevTemplate << R << Prev->getType();
10234 Diag(PrevTemplate->getLocation(), diag::note_template_declared_here)
10235 << 2 << PrevTemplate->getDeclName();
10236 return true;
10237 }
10238
10239 // FIXME: Create an ExplicitInstantiation node?
10240 return (Decl*) nullptr;
10241 }
10242
10243 // If the declarator is a template-id, translate the parser's template
10244 // argument list into our AST format.
10245 bool HasExplicitTemplateArgs = false;
10246 TemplateArgumentListInfo TemplateArgs;
10247 if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
10248 TemplateArgs = makeTemplateArgumentListInfo(*this, *D.getName().TemplateId);
10249 HasExplicitTemplateArgs = true;
10250 }
10251
10252 // C++ [temp.explicit]p1:
10253 // A [...] function [...] can be explicitly instantiated from its template.
10254 // A member function [...] of a class template can be explicitly
10255 // instantiated from the member definition associated with its class
10256 // template.
10257 UnresolvedSet<8> TemplateMatches;
10258 FunctionDecl *NonTemplateMatch = nullptr;
10259 TemplateSpecCandidateSet FailedCandidates(D.getIdentifierLoc());
10260 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
10261 P != PEnd; ++P) {
10262 NamedDecl *Prev = *P;
10263 if (!HasExplicitTemplateArgs) {
10264 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
10265 QualType Adjusted = adjustCCAndNoReturn(R, Method->getType(),
10266 /*AdjustExceptionSpec*/true);
10267 if (Context.hasSameUnqualifiedType(Method->getType(), Adjusted)) {
10268 if (Method->getPrimaryTemplate()) {
10269 TemplateMatches.addDecl(Method, P.getAccess());
10270 } else {
10271 // FIXME: Can this assert ever happen? Needs a test.
10272 assert(!NonTemplateMatch && "Multiple NonTemplateMatches");
10273 NonTemplateMatch = Method;
10274 }
10275 }
10276 }
10277 }
10278
10279 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
10280 if (!FunTmpl)
10281 continue;
10282
10283 TemplateDeductionInfo Info(FailedCandidates.getLocation());
10284 FunctionDecl *Specialization = nullptr;
10285 if (TemplateDeductionResult TDK
10286 = DeduceTemplateArguments(FunTmpl,
10287 (HasExplicitTemplateArgs ? &TemplateArgs
10288 : nullptr),
10289 R, Specialization, Info)) {
10290 // Keep track of almost-matches.
10291 FailedCandidates.addCandidate()
10292 .set(P.getPair(), FunTmpl->getTemplatedDecl(),
10293 MakeDeductionFailureInfo(Context, TDK, Info));
10294 (void)TDK;
10295 continue;
10296 }
10297
10298 // Target attributes are part of the cuda function signature, so
10299 // the cuda target of the instantiated function must match that of its
10300 // template. Given that C++ template deduction does not take
10301 // target attributes into account, we reject candidates here that
10302 // have a different target.
10303 if (LangOpts.CUDA &&
10304 IdentifyCUDATarget(Specialization,
10305 /* IgnoreImplicitHDAttr = */ true) !=
10306 IdentifyCUDATarget(D.getDeclSpec().getAttributes())) {
10307 FailedCandidates.addCandidate().set(
10308 P.getPair(), FunTmpl->getTemplatedDecl(),
10309 MakeDeductionFailureInfo(Context, TDK_CUDATargetMismatch, Info));
10310 continue;
10311 }
10312
10313 TemplateMatches.addDecl(Specialization, P.getAccess());
10314 }
10315
10316 FunctionDecl *Specialization = NonTemplateMatch;
10317 if (!Specialization) {
10318 // Find the most specialized function template specialization.
10319 UnresolvedSetIterator Result = getMostSpecialized(
10320 TemplateMatches.begin(), TemplateMatches.end(), FailedCandidates,
10321 D.getIdentifierLoc(),
10322 PDiag(diag::err_explicit_instantiation_not_known) << Name,
10323 PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
10324 PDiag(diag::note_explicit_instantiation_candidate));
10325
10326 if (Result == TemplateMatches.end())
10327 return true;
10328
10329 // Ignore access control bits, we don't need them for redeclaration checking.
10330 Specialization = cast<FunctionDecl>(*Result);
10331 }
10332
10333 // C++11 [except.spec]p4
10334 // In an explicit instantiation an exception-specification may be specified,
10335 // but is not required.
10336 // If an exception-specification is specified in an explicit instantiation
10337 // directive, it shall be compatible with the exception-specifications of
10338 // other declarations of that function.
10339 if (auto *FPT = R->getAs<FunctionProtoType>())
10340 if (FPT->hasExceptionSpec()) {
10341 unsigned DiagID =
10342 diag::err_mismatched_exception_spec_explicit_instantiation;
10343 if (getLangOpts().MicrosoftExt)
10344 DiagID = diag::ext_mismatched_exception_spec_explicit_instantiation;
10345 bool Result = CheckEquivalentExceptionSpec(
10346 PDiag(DiagID) << Specialization->getType(),
10347 PDiag(diag::note_explicit_instantiation_here),
10348 Specialization->getType()->getAs<FunctionProtoType>(),
10349 Specialization->getLocation(), FPT, D.getBeginLoc());
10350 // In Microsoft mode, mismatching exception specifications just cause a
10351 // warning.
10352 if (!getLangOpts().MicrosoftExt && Result)
10353 return true;
10354 }
10355
10356 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
10357 Diag(D.getIdentifierLoc(),
10358 diag::err_explicit_instantiation_member_function_not_instantiated)
10359 << Specialization
10360 << (Specialization->getTemplateSpecializationKind() ==
10361 TSK_ExplicitSpecialization);
10362 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
10363 return true;
10364 }
10365
10366 FunctionDecl *PrevDecl = Specialization->getPreviousDecl();
10367 if (!PrevDecl && Specialization->isThisDeclarationADefinition())
10368 PrevDecl = Specialization;
10369
10370 if (PrevDecl) {
10371 bool HasNoEffect = false;
10372 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
10373 PrevDecl,
10374 PrevDecl->getTemplateSpecializationKind(),
10375 PrevDecl->getPointOfInstantiation(),
10376 HasNoEffect))
10377 return true;
10378
10379 // FIXME: We may still want to build some representation of this
10380 // explicit specialization.
10381 if (HasNoEffect)
10382 return (Decl*) nullptr;
10383 }
10384
10385 // HACK: libc++ has a bug where it attempts to explicitly instantiate the
10386 // functions
10387 // valarray<size_t>::valarray(size_t) and
10388 // valarray<size_t>::~valarray()
10389 // that it declared to have internal linkage with the internal_linkage
10390 // attribute. Ignore the explicit instantiation declaration in this case.
10391 if (Specialization->hasAttr<InternalLinkageAttr>() &&
10392 TSK == TSK_ExplicitInstantiationDeclaration) {
10393 if (auto *RD = dyn_cast<CXXRecordDecl>(Specialization->getDeclContext()))
10394 if (RD->getIdentifier() && RD->getIdentifier()->isStr("valarray") &&
10395 RD->isInStdNamespace())
10396 return (Decl*) nullptr;
10397 }
10398
10399 ProcessDeclAttributeList(S, Specialization, D.getDeclSpec().getAttributes());
10400
10401 // In MSVC mode, dllimported explicit instantiation definitions are treated as
10402 // instantiation declarations.
10403 if (TSK == TSK_ExplicitInstantiationDefinition &&
10404 Specialization->hasAttr<DLLImportAttr>() &&
10405 Context.getTargetInfo().getCXXABI().isMicrosoft())
10406 TSK = TSK_ExplicitInstantiationDeclaration;
10407
10408 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
10409
10410 if (Specialization->isDefined()) {
10411 // Let the ASTConsumer know that this function has been explicitly
10412 // instantiated now, and its linkage might have changed.
10413 Consumer.HandleTopLevelDecl(DeclGroupRef(Specialization));
10414 } else if (TSK == TSK_ExplicitInstantiationDefinition)
10415 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
10416
10417 // C++0x [temp.explicit]p2:
10418 // If the explicit instantiation is for a member function, a member class
10419 // or a static data member of a class template specialization, the name of
10420 // the class template specialization in the qualified-id for the member
10421 // name shall be a simple-template-id.
10422 //
10423 // C++98 has the same restriction, just worded differently.
10424 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
10425 if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId && !FunTmpl &&
10426 D.getCXXScopeSpec().isSet() &&
10427 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
10428 Diag(D.getIdentifierLoc(),
10429 diag::ext_explicit_instantiation_without_qualified_id)
10430 << Specialization << D.getCXXScopeSpec().getRange();
10431
10432 CheckExplicitInstantiation(
10433 *this,
10434 FunTmpl ? (NamedDecl *)FunTmpl
10435 : Specialization->getInstantiatedFromMemberFunction(),
10436 D.getIdentifierLoc(), D.getCXXScopeSpec().isSet(), TSK);
10437
10438 // FIXME: Create some kind of ExplicitInstantiationDecl here.
10439 return (Decl*) nullptr;
10440 }
10441
10442 TypeResult
ActOnDependentTag(Scope * S,unsigned TagSpec,TagUseKind TUK,const CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation TagLoc,SourceLocation NameLoc)10443 Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
10444 const CXXScopeSpec &SS, IdentifierInfo *Name,
10445 SourceLocation TagLoc, SourceLocation NameLoc) {
10446 // This has to hold, because SS is expected to be defined.
10447 assert(Name && "Expected a name in a dependent tag");
10448
10449 NestedNameSpecifier *NNS = SS.getScopeRep();
10450 if (!NNS)
10451 return true;
10452
10453 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
10454
10455 if (TUK == TUK_Declaration || TUK == TUK_Definition) {
10456 Diag(NameLoc, diag::err_dependent_tag_decl)
10457 << (TUK == TUK_Definition) << Kind << SS.getRange();
10458 return true;
10459 }
10460
10461 // Create the resulting type.
10462 ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10463 QualType Result = Context.getDependentNameType(Kwd, NNS, Name);
10464
10465 // Create type-source location information for this type.
10466 TypeLocBuilder TLB;
10467 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result);
10468 TL.setElaboratedKeywordLoc(TagLoc);
10469 TL.setQualifierLoc(SS.getWithLocInContext(Context));
10470 TL.setNameLoc(NameLoc);
10471 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
10472 }
10473
10474 TypeResult
ActOnTypenameType(Scope * S,SourceLocation TypenameLoc,const CXXScopeSpec & SS,const IdentifierInfo & II,SourceLocation IdLoc)10475 Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
10476 const CXXScopeSpec &SS, const IdentifierInfo &II,
10477 SourceLocation IdLoc) {
10478 if (SS.isInvalid())
10479 return true;
10480
10481 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
10482 Diag(TypenameLoc,
10483 getLangOpts().CPlusPlus11 ?
10484 diag::warn_cxx98_compat_typename_outside_of_template :
10485 diag::ext_typename_outside_of_template)
10486 << FixItHint::CreateRemoval(TypenameLoc);
10487
10488 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
10489 TypeSourceInfo *TSI = nullptr;
10490 QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None,
10491 TypenameLoc, QualifierLoc, II, IdLoc, &TSI,
10492 /*DeducedTSTContext=*/true);
10493 if (T.isNull())
10494 return true;
10495 return CreateParsedType(T, TSI);
10496 }
10497
10498 TypeResult
ActOnTypenameType(Scope * S,SourceLocation TypenameLoc,const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,TemplateTy TemplateIn,IdentifierInfo * TemplateII,SourceLocation TemplateIILoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc)10499 Sema::ActOnTypenameType(Scope *S,
10500 SourceLocation TypenameLoc,
10501 const CXXScopeSpec &SS,
10502 SourceLocation TemplateKWLoc,
10503 TemplateTy TemplateIn,
10504 IdentifierInfo *TemplateII,
10505 SourceLocation TemplateIILoc,
10506 SourceLocation LAngleLoc,
10507 ASTTemplateArgsPtr TemplateArgsIn,
10508 SourceLocation RAngleLoc) {
10509 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
10510 Diag(TypenameLoc,
10511 getLangOpts().CPlusPlus11 ?
10512 diag::warn_cxx98_compat_typename_outside_of_template :
10513 diag::ext_typename_outside_of_template)
10514 << FixItHint::CreateRemoval(TypenameLoc);
10515
10516 // Strangely, non-type results are not ignored by this lookup, so the
10517 // program is ill-formed if it finds an injected-class-name.
10518 if (TypenameLoc.isValid()) {
10519 auto *LookupRD =
10520 dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, false));
10521 if (LookupRD && LookupRD->getIdentifier() == TemplateII) {
10522 Diag(TemplateIILoc,
10523 diag::ext_out_of_line_qualified_id_type_names_constructor)
10524 << TemplateII << 0 /*injected-class-name used as template name*/
10525 << (TemplateKWLoc.isValid() ? 1 : 0 /*'template'/'typename' keyword*/);
10526 }
10527 }
10528
10529 // Translate the parser's template argument list in our AST format.
10530 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
10531 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
10532
10533 TemplateName Template = TemplateIn.get();
10534 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
10535 // Construct a dependent template specialization type.
10536 assert(DTN && "dependent template has non-dependent name?");
10537 assert(DTN->getQualifier() == SS.getScopeRep());
10538 QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename,
10539 DTN->getQualifier(),
10540 DTN->getIdentifier(),
10541 TemplateArgs);
10542
10543 // Create source-location information for this type.
10544 TypeLocBuilder Builder;
10545 DependentTemplateSpecializationTypeLoc SpecTL
10546 = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
10547 SpecTL.setElaboratedKeywordLoc(TypenameLoc);
10548 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
10549 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
10550 SpecTL.setTemplateNameLoc(TemplateIILoc);
10551 SpecTL.setLAngleLoc(LAngleLoc);
10552 SpecTL.setRAngleLoc(RAngleLoc);
10553 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
10554 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
10555 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
10556 }
10557
10558 QualType T = CheckTemplateIdType(Template, TemplateIILoc, TemplateArgs);
10559 if (T.isNull())
10560 return true;
10561
10562 // Provide source-location information for the template specialization type.
10563 TypeLocBuilder Builder;
10564 TemplateSpecializationTypeLoc SpecTL
10565 = Builder.push<TemplateSpecializationTypeLoc>(T);
10566 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
10567 SpecTL.setTemplateNameLoc(TemplateIILoc);
10568 SpecTL.setLAngleLoc(LAngleLoc);
10569 SpecTL.setRAngleLoc(RAngleLoc);
10570 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
10571 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
10572
10573 T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T);
10574 ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
10575 TL.setElaboratedKeywordLoc(TypenameLoc);
10576 TL.setQualifierLoc(SS.getWithLocInContext(Context));
10577
10578 TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
10579 return CreateParsedType(T, TSI);
10580 }
10581
10582
10583 /// Determine whether this failed name lookup should be treated as being
10584 /// disabled by a usage of std::enable_if.
isEnableIf(NestedNameSpecifierLoc NNS,const IdentifierInfo & II,SourceRange & CondRange,Expr * & Cond)10585 static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II,
10586 SourceRange &CondRange, Expr *&Cond) {
10587 // We must be looking for a ::type...
10588 if (!II.isStr("type"))
10589 return false;
10590
10591 // ... within an explicitly-written template specialization...
10592 if (!NNS || !NNS.getNestedNameSpecifier()->getAsType())
10593 return false;
10594 TypeLoc EnableIfTy = NNS.getTypeLoc();
10595 TemplateSpecializationTypeLoc EnableIfTSTLoc =
10596 EnableIfTy.getAs<TemplateSpecializationTypeLoc>();
10597 if (!EnableIfTSTLoc || EnableIfTSTLoc.getNumArgs() == 0)
10598 return false;
10599 const TemplateSpecializationType *EnableIfTST = EnableIfTSTLoc.getTypePtr();
10600
10601 // ... which names a complete class template declaration...
10602 const TemplateDecl *EnableIfDecl =
10603 EnableIfTST->getTemplateName().getAsTemplateDecl();
10604 if (!EnableIfDecl || EnableIfTST->isIncompleteType())
10605 return false;
10606
10607 // ... called "enable_if".
10608 const IdentifierInfo *EnableIfII =
10609 EnableIfDecl->getDeclName().getAsIdentifierInfo();
10610 if (!EnableIfII || !EnableIfII->isStr("enable_if"))
10611 return false;
10612
10613 // Assume the first template argument is the condition.
10614 CondRange = EnableIfTSTLoc.getArgLoc(0).getSourceRange();
10615
10616 // Dig out the condition.
10617 Cond = nullptr;
10618 if (EnableIfTSTLoc.getArgLoc(0).getArgument().getKind()
10619 != TemplateArgument::Expression)
10620 return true;
10621
10622 Cond = EnableIfTSTLoc.getArgLoc(0).getSourceExpression();
10623
10624 // Ignore Boolean literals; they add no value.
10625 if (isa<CXXBoolLiteralExpr>(Cond->IgnoreParenCasts()))
10626 Cond = nullptr;
10627
10628 return true;
10629 }
10630
10631 QualType
CheckTypenameType(ElaboratedTypeKeyword Keyword,SourceLocation KeywordLoc,NestedNameSpecifierLoc QualifierLoc,const IdentifierInfo & II,SourceLocation IILoc,TypeSourceInfo ** TSI,bool DeducedTSTContext)10632 Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
10633 SourceLocation KeywordLoc,
10634 NestedNameSpecifierLoc QualifierLoc,
10635 const IdentifierInfo &II,
10636 SourceLocation IILoc,
10637 TypeSourceInfo **TSI,
10638 bool DeducedTSTContext) {
10639 QualType T = CheckTypenameType(Keyword, KeywordLoc, QualifierLoc, II, IILoc,
10640 DeducedTSTContext);
10641 if (T.isNull())
10642 return QualType();
10643
10644 *TSI = Context.CreateTypeSourceInfo(T);
10645 if (isa<DependentNameType>(T)) {
10646 DependentNameTypeLoc TL =
10647 (*TSI)->getTypeLoc().castAs<DependentNameTypeLoc>();
10648 TL.setElaboratedKeywordLoc(KeywordLoc);
10649 TL.setQualifierLoc(QualifierLoc);
10650 TL.setNameLoc(IILoc);
10651 } else {
10652 ElaboratedTypeLoc TL = (*TSI)->getTypeLoc().castAs<ElaboratedTypeLoc>();
10653 TL.setElaboratedKeywordLoc(KeywordLoc);
10654 TL.setQualifierLoc(QualifierLoc);
10655 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IILoc);
10656 }
10657 return T;
10658 }
10659
10660 /// Build the type that describes a C++ typename specifier,
10661 /// e.g., "typename T::type".
10662 QualType
CheckTypenameType(ElaboratedTypeKeyword Keyword,SourceLocation KeywordLoc,NestedNameSpecifierLoc QualifierLoc,const IdentifierInfo & II,SourceLocation IILoc,bool DeducedTSTContext)10663 Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
10664 SourceLocation KeywordLoc,
10665 NestedNameSpecifierLoc QualifierLoc,
10666 const IdentifierInfo &II,
10667 SourceLocation IILoc, bool DeducedTSTContext) {
10668 CXXScopeSpec SS;
10669 SS.Adopt(QualifierLoc);
10670
10671 DeclContext *Ctx = nullptr;
10672 if (QualifierLoc) {
10673 Ctx = computeDeclContext(SS);
10674 if (!Ctx) {
10675 // If the nested-name-specifier is dependent and couldn't be
10676 // resolved to a type, build a typename type.
10677 assert(QualifierLoc.getNestedNameSpecifier()->isDependent());
10678 return Context.getDependentNameType(Keyword,
10679 QualifierLoc.getNestedNameSpecifier(),
10680 &II);
10681 }
10682
10683 // If the nested-name-specifier refers to the current instantiation,
10684 // the "typename" keyword itself is superfluous. In C++03, the
10685 // program is actually ill-formed. However, DR 382 (in C++0x CD1)
10686 // allows such extraneous "typename" keywords, and we retroactively
10687 // apply this DR to C++03 code with only a warning. In any case we continue.
10688
10689 if (RequireCompleteDeclContext(SS, Ctx))
10690 return QualType();
10691 }
10692
10693 DeclarationName Name(&II);
10694 LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
10695 if (Ctx)
10696 LookupQualifiedName(Result, Ctx, SS);
10697 else
10698 LookupName(Result, CurScope);
10699 unsigned DiagID = 0;
10700 Decl *Referenced = nullptr;
10701 switch (Result.getResultKind()) {
10702 case LookupResult::NotFound: {
10703 // If we're looking up 'type' within a template named 'enable_if', produce
10704 // a more specific diagnostic.
10705 SourceRange CondRange;
10706 Expr *Cond = nullptr;
10707 if (Ctx && isEnableIf(QualifierLoc, II, CondRange, Cond)) {
10708 // If we have a condition, narrow it down to the specific failed
10709 // condition.
10710 if (Cond) {
10711 Expr *FailedCond;
10712 std::string FailedDescription;
10713 std::tie(FailedCond, FailedDescription) =
10714 findFailedBooleanCondition(Cond);
10715
10716 Diag(FailedCond->getExprLoc(),
10717 diag::err_typename_nested_not_found_requirement)
10718 << FailedDescription
10719 << FailedCond->getSourceRange();
10720 return QualType();
10721 }
10722
10723 Diag(CondRange.getBegin(),
10724 diag::err_typename_nested_not_found_enable_if)
10725 << Ctx << CondRange;
10726 return QualType();
10727 }
10728
10729 DiagID = Ctx ? diag::err_typename_nested_not_found
10730 : diag::err_unknown_typename;
10731 break;
10732 }
10733
10734 case LookupResult::FoundUnresolvedValue: {
10735 // We found a using declaration that is a value. Most likely, the using
10736 // declaration itself is meant to have the 'typename' keyword.
10737 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
10738 IILoc);
10739 Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
10740 << Name << Ctx << FullRange;
10741 if (UnresolvedUsingValueDecl *Using
10742 = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
10743 SourceLocation Loc = Using->getQualifierLoc().getBeginLoc();
10744 Diag(Loc, diag::note_using_value_decl_missing_typename)
10745 << FixItHint::CreateInsertion(Loc, "typename ");
10746 }
10747 }
10748 // Fall through to create a dependent typename type, from which we can recover
10749 // better.
10750 LLVM_FALLTHROUGH;
10751
10752 case LookupResult::NotFoundInCurrentInstantiation:
10753 // Okay, it's a member of an unknown instantiation.
10754 return Context.getDependentNameType(Keyword,
10755 QualifierLoc.getNestedNameSpecifier(),
10756 &II);
10757
10758 case LookupResult::Found:
10759 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
10760 // C++ [class.qual]p2:
10761 // In a lookup in which function names are not ignored and the
10762 // nested-name-specifier nominates a class C, if the name specified
10763 // after the nested-name-specifier, when looked up in C, is the
10764 // injected-class-name of C [...] then the name is instead considered
10765 // to name the constructor of class C.
10766 //
10767 // Unlike in an elaborated-type-specifier, function names are not ignored
10768 // in typename-specifier lookup. However, they are ignored in all the
10769 // contexts where we form a typename type with no keyword (that is, in
10770 // mem-initializer-ids, base-specifiers, and elaborated-type-specifiers).
10771 //
10772 // FIXME: That's not strictly true: mem-initializer-id lookup does not
10773 // ignore functions, but that appears to be an oversight.
10774 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(Ctx);
10775 auto *FoundRD = dyn_cast<CXXRecordDecl>(Type);
10776 if (Keyword == ETK_Typename && LookupRD && FoundRD &&
10777 FoundRD->isInjectedClassName() &&
10778 declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent())))
10779 Diag(IILoc, diag::ext_out_of_line_qualified_id_type_names_constructor)
10780 << &II << 1 << 0 /*'typename' keyword used*/;
10781
10782 // We found a type. Build an ElaboratedType, since the
10783 // typename-specifier was just sugar.
10784 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
10785 return Context.getElaboratedType(Keyword,
10786 QualifierLoc.getNestedNameSpecifier(),
10787 Context.getTypeDeclType(Type));
10788 }
10789
10790 // C++ [dcl.type.simple]p2:
10791 // A type-specifier of the form
10792 // typename[opt] nested-name-specifier[opt] template-name
10793 // is a placeholder for a deduced class type [...].
10794 if (getLangOpts().CPlusPlus17) {
10795 if (auto *TD = getAsTypeTemplateDecl(Result.getFoundDecl())) {
10796 if (!DeducedTSTContext) {
10797 QualType T(QualifierLoc
10798 ? QualifierLoc.getNestedNameSpecifier()->getAsType()
10799 : nullptr, 0);
10800 if (!T.isNull())
10801 Diag(IILoc, diag::err_dependent_deduced_tst)
10802 << (int)getTemplateNameKindForDiagnostics(TemplateName(TD)) << T;
10803 else
10804 Diag(IILoc, diag::err_deduced_tst)
10805 << (int)getTemplateNameKindForDiagnostics(TemplateName(TD));
10806 Diag(TD->getLocation(), diag::note_template_decl_here);
10807 return QualType();
10808 }
10809 return Context.getElaboratedType(
10810 Keyword, QualifierLoc.getNestedNameSpecifier(),
10811 Context.getDeducedTemplateSpecializationType(TemplateName(TD),
10812 QualType(), false));
10813 }
10814 }
10815
10816 DiagID = Ctx ? diag::err_typename_nested_not_type
10817 : diag::err_typename_not_type;
10818 Referenced = Result.getFoundDecl();
10819 break;
10820
10821 case LookupResult::FoundOverloaded:
10822 DiagID = Ctx ? diag::err_typename_nested_not_type
10823 : diag::err_typename_not_type;
10824 Referenced = *Result.begin();
10825 break;
10826
10827 case LookupResult::Ambiguous:
10828 return QualType();
10829 }
10830
10831 // If we get here, it's because name lookup did not find a
10832 // type. Emit an appropriate diagnostic and return an error.
10833 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
10834 IILoc);
10835 if (Ctx)
10836 Diag(IILoc, DiagID) << FullRange << Name << Ctx;
10837 else
10838 Diag(IILoc, DiagID) << FullRange << Name;
10839 if (Referenced)
10840 Diag(Referenced->getLocation(),
10841 Ctx ? diag::note_typename_member_refers_here
10842 : diag::note_typename_refers_here)
10843 << Name;
10844 return QualType();
10845 }
10846
10847 namespace {
10848 // See Sema::RebuildTypeInCurrentInstantiation
10849 class CurrentInstantiationRebuilder
10850 : public TreeTransform<CurrentInstantiationRebuilder> {
10851 SourceLocation Loc;
10852 DeclarationName Entity;
10853
10854 public:
10855 typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
10856
CurrentInstantiationRebuilder(Sema & SemaRef,SourceLocation Loc,DeclarationName Entity)10857 CurrentInstantiationRebuilder(Sema &SemaRef,
10858 SourceLocation Loc,
10859 DeclarationName Entity)
10860 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
10861 Loc(Loc), Entity(Entity) { }
10862
10863 /// Determine whether the given type \p T has already been
10864 /// transformed.
10865 ///
10866 /// For the purposes of type reconstruction, a type has already been
10867 /// transformed if it is NULL or if it is not dependent.
AlreadyTransformed(QualType T)10868 bool AlreadyTransformed(QualType T) {
10869 return T.isNull() || !T->isInstantiationDependentType();
10870 }
10871
10872 /// Returns the location of the entity whose type is being
10873 /// rebuilt.
getBaseLocation()10874 SourceLocation getBaseLocation() { return Loc; }
10875
10876 /// Returns the name of the entity whose type is being rebuilt.
getBaseEntity()10877 DeclarationName getBaseEntity() { return Entity; }
10878
10879 /// Sets the "base" location and entity when that
10880 /// information is known based on another transformation.
setBase(SourceLocation Loc,DeclarationName Entity)10881 void setBase(SourceLocation Loc, DeclarationName Entity) {
10882 this->Loc = Loc;
10883 this->Entity = Entity;
10884 }
10885
TransformLambdaExpr(LambdaExpr * E)10886 ExprResult TransformLambdaExpr(LambdaExpr *E) {
10887 // Lambdas never need to be transformed.
10888 return E;
10889 }
10890 };
10891 } // end anonymous namespace
10892
10893 /// Rebuilds a type within the context of the current instantiation.
10894 ///
10895 /// The type \p T is part of the type of an out-of-line member definition of
10896 /// a class template (or class template partial specialization) that was parsed
10897 /// and constructed before we entered the scope of the class template (or
10898 /// partial specialization thereof). This routine will rebuild that type now
10899 /// that we have entered the declarator's scope, which may produce different
10900 /// canonical types, e.g.,
10901 ///
10902 /// \code
10903 /// template<typename T>
10904 /// struct X {
10905 /// typedef T* pointer;
10906 /// pointer data();
10907 /// };
10908 ///
10909 /// template<typename T>
10910 /// typename X<T>::pointer X<T>::data() { ... }
10911 /// \endcode
10912 ///
10913 /// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
10914 /// since we do not know that we can look into X<T> when we parsed the type.
10915 /// This function will rebuild the type, performing the lookup of "pointer"
10916 /// in X<T> and returning an ElaboratedType whose canonical type is the same
10917 /// as the canonical type of T*, allowing the return types of the out-of-line
10918 /// definition and the declaration to match.
RebuildTypeInCurrentInstantiation(TypeSourceInfo * T,SourceLocation Loc,DeclarationName Name)10919 TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
10920 SourceLocation Loc,
10921 DeclarationName Name) {
10922 if (!T || !T->getType()->isInstantiationDependentType())
10923 return T;
10924
10925 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
10926 return Rebuilder.TransformType(T);
10927 }
10928
RebuildExprInCurrentInstantiation(Expr * E)10929 ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
10930 CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
10931 DeclarationName());
10932 return Rebuilder.TransformExpr(E);
10933 }
10934
RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec & SS)10935 bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
10936 if (SS.isInvalid())
10937 return true;
10938
10939 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
10940 CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
10941 DeclarationName());
10942 NestedNameSpecifierLoc Rebuilt
10943 = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc);
10944 if (!Rebuilt)
10945 return true;
10946
10947 SS.Adopt(Rebuilt);
10948 return false;
10949 }
10950
10951 /// Rebuild the template parameters now that we know we're in a current
10952 /// instantiation.
RebuildTemplateParamsInCurrentInstantiation(TemplateParameterList * Params)10953 bool Sema::RebuildTemplateParamsInCurrentInstantiation(
10954 TemplateParameterList *Params) {
10955 for (unsigned I = 0, N = Params->size(); I != N; ++I) {
10956 Decl *Param = Params->getParam(I);
10957
10958 // There is nothing to rebuild in a type parameter.
10959 if (isa<TemplateTypeParmDecl>(Param))
10960 continue;
10961
10962 // Rebuild the template parameter list of a template template parameter.
10963 if (TemplateTemplateParmDecl *TTP
10964 = dyn_cast<TemplateTemplateParmDecl>(Param)) {
10965 if (RebuildTemplateParamsInCurrentInstantiation(
10966 TTP->getTemplateParameters()))
10967 return true;
10968
10969 continue;
10970 }
10971
10972 // Rebuild the type of a non-type template parameter.
10973 NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param);
10974 TypeSourceInfo *NewTSI
10975 = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(),
10976 NTTP->getLocation(),
10977 NTTP->getDeclName());
10978 if (!NewTSI)
10979 return true;
10980
10981 if (NewTSI->getType()->isUndeducedType()) {
10982 // C++17 [temp.dep.expr]p3:
10983 // An id-expression is type-dependent if it contains
10984 // - an identifier associated by name lookup with a non-type
10985 // template-parameter declared with a type that contains a
10986 // placeholder type (7.1.7.4),
10987 NewTSI = SubstAutoTypeSourceInfoDependent(NewTSI);
10988 }
10989
10990 if (NewTSI != NTTP->getTypeSourceInfo()) {
10991 NTTP->setTypeSourceInfo(NewTSI);
10992 NTTP->setType(NewTSI->getType());
10993 }
10994 }
10995
10996 return false;
10997 }
10998
10999 /// Produces a formatted string that describes the binding of
11000 /// template parameters to template arguments.
11001 std::string
getTemplateArgumentBindingsText(const TemplateParameterList * Params,const TemplateArgumentList & Args)11002 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
11003 const TemplateArgumentList &Args) {
11004 return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
11005 }
11006
11007 std::string
getTemplateArgumentBindingsText(const TemplateParameterList * Params,const TemplateArgument * Args,unsigned NumArgs)11008 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
11009 const TemplateArgument *Args,
11010 unsigned NumArgs) {
11011 SmallString<128> Str;
11012 llvm::raw_svector_ostream Out(Str);
11013
11014 if (!Params || Params->size() == 0 || NumArgs == 0)
11015 return std::string();
11016
11017 for (unsigned I = 0, N = Params->size(); I != N; ++I) {
11018 if (I >= NumArgs)
11019 break;
11020
11021 if (I == 0)
11022 Out << "[with ";
11023 else
11024 Out << ", ";
11025
11026 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
11027 Out << Id->getName();
11028 } else {
11029 Out << '$' << I;
11030 }
11031
11032 Out << " = ";
11033 Args[I].print(getPrintingPolicy(), Out,
11034 TemplateParameterList::shouldIncludeTypeForArgument(
11035 getPrintingPolicy(), Params, I));
11036 }
11037
11038 Out << ']';
11039 return std::string(Out.str());
11040 }
11041
MarkAsLateParsedTemplate(FunctionDecl * FD,Decl * FnD,CachedTokens & Toks)11042 void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, Decl *FnD,
11043 CachedTokens &Toks) {
11044 if (!FD)
11045 return;
11046
11047 auto LPT = std::make_unique<LateParsedTemplate>();
11048
11049 // Take tokens to avoid allocations
11050 LPT->Toks.swap(Toks);
11051 LPT->D = FnD;
11052 LateParsedTemplateMap.insert(std::make_pair(FD, std::move(LPT)));
11053
11054 FD->setLateTemplateParsed(true);
11055 }
11056
UnmarkAsLateParsedTemplate(FunctionDecl * FD)11057 void Sema::UnmarkAsLateParsedTemplate(FunctionDecl *FD) {
11058 if (!FD)
11059 return;
11060 FD->setLateTemplateParsed(false);
11061 }
11062
IsInsideALocalClassWithinATemplateFunction()11063 bool Sema::IsInsideALocalClassWithinATemplateFunction() {
11064 DeclContext *DC = CurContext;
11065
11066 while (DC) {
11067 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
11068 const FunctionDecl *FD = RD->isLocalClass();
11069 return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate);
11070 } else if (DC->isTranslationUnit() || DC->isNamespace())
11071 return false;
11072
11073 DC = DC->getParent();
11074 }
11075 return false;
11076 }
11077
11078 namespace {
11079 /// Walk the path from which a declaration was instantiated, and check
11080 /// that every explicit specialization along that path is visible. This enforces
11081 /// C++ [temp.expl.spec]/6:
11082 ///
11083 /// If a template, a member template or a member of a class template is
11084 /// explicitly specialized then that specialization shall be declared before
11085 /// the first use of that specialization that would cause an implicit
11086 /// instantiation to take place, in every translation unit in which such a
11087 /// use occurs; no diagnostic is required.
11088 ///
11089 /// and also C++ [temp.class.spec]/1:
11090 ///
11091 /// A partial specialization shall be declared before the first use of a
11092 /// class template specialization that would make use of the partial
11093 /// specialization as the result of an implicit or explicit instantiation
11094 /// in every translation unit in which such a use occurs; no diagnostic is
11095 /// required.
11096 class ExplicitSpecializationVisibilityChecker {
11097 Sema &S;
11098 SourceLocation Loc;
11099 llvm::SmallVector<Module *, 8> Modules;
11100 Sema::AcceptableKind Kind;
11101
11102 public:
ExplicitSpecializationVisibilityChecker(Sema & S,SourceLocation Loc,Sema::AcceptableKind Kind)11103 ExplicitSpecializationVisibilityChecker(Sema &S, SourceLocation Loc,
11104 Sema::AcceptableKind Kind)
11105 : S(S), Loc(Loc), Kind(Kind) {}
11106
check(NamedDecl * ND)11107 void check(NamedDecl *ND) {
11108 if (auto *FD = dyn_cast<FunctionDecl>(ND))
11109 return checkImpl(FD);
11110 if (auto *RD = dyn_cast<CXXRecordDecl>(ND))
11111 return checkImpl(RD);
11112 if (auto *VD = dyn_cast<VarDecl>(ND))
11113 return checkImpl(VD);
11114 if (auto *ED = dyn_cast<EnumDecl>(ND))
11115 return checkImpl(ED);
11116 }
11117
11118 private:
diagnose(NamedDecl * D,bool IsPartialSpec)11119 void diagnose(NamedDecl *D, bool IsPartialSpec) {
11120 auto Kind = IsPartialSpec ? Sema::MissingImportKind::PartialSpecialization
11121 : Sema::MissingImportKind::ExplicitSpecialization;
11122 const bool Recover = true;
11123
11124 // If we got a custom set of modules (because only a subset of the
11125 // declarations are interesting), use them, otherwise let
11126 // diagnoseMissingImport intelligently pick some.
11127 if (Modules.empty())
11128 S.diagnoseMissingImport(Loc, D, Kind, Recover);
11129 else
11130 S.diagnoseMissingImport(Loc, D, D->getLocation(), Modules, Kind, Recover);
11131 }
11132
CheckMemberSpecialization(const NamedDecl * D)11133 bool CheckMemberSpecialization(const NamedDecl *D) {
11134 return Kind == Sema::AcceptableKind::Visible
11135 ? S.hasVisibleMemberSpecialization(D)
11136 : S.hasReachableMemberSpecialization(D);
11137 }
11138
CheckExplicitSpecialization(const NamedDecl * D)11139 bool CheckExplicitSpecialization(const NamedDecl *D) {
11140 return Kind == Sema::AcceptableKind::Visible
11141 ? S.hasVisibleExplicitSpecialization(D)
11142 : S.hasReachableExplicitSpecialization(D);
11143 }
11144
CheckDeclaration(const NamedDecl * D)11145 bool CheckDeclaration(const NamedDecl *D) {
11146 return Kind == Sema::AcceptableKind::Visible ? S.hasVisibleDeclaration(D)
11147 : S.hasReachableDeclaration(D);
11148 }
11149
11150 // Check a specific declaration. There are three problematic cases:
11151 //
11152 // 1) The declaration is an explicit specialization of a template
11153 // specialization.
11154 // 2) The declaration is an explicit specialization of a member of an
11155 // templated class.
11156 // 3) The declaration is an instantiation of a template, and that template
11157 // is an explicit specialization of a member of a templated class.
11158 //
11159 // We don't need to go any deeper than that, as the instantiation of the
11160 // surrounding class / etc is not triggered by whatever triggered this
11161 // instantiation, and thus should be checked elsewhere.
11162 template<typename SpecDecl>
checkImpl(SpecDecl * Spec)11163 void checkImpl(SpecDecl *Spec) {
11164 bool IsHiddenExplicitSpecialization = false;
11165 if (Spec->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) {
11166 IsHiddenExplicitSpecialization = Spec->getMemberSpecializationInfo()
11167 ? !CheckMemberSpecialization(Spec)
11168 : !CheckExplicitSpecialization(Spec);
11169 } else {
11170 checkInstantiated(Spec);
11171 }
11172
11173 if (IsHiddenExplicitSpecialization)
11174 diagnose(Spec->getMostRecentDecl(), false);
11175 }
11176
checkInstantiated(FunctionDecl * FD)11177 void checkInstantiated(FunctionDecl *FD) {
11178 if (auto *TD = FD->getPrimaryTemplate())
11179 checkTemplate(TD);
11180 }
11181
checkInstantiated(CXXRecordDecl * RD)11182 void checkInstantiated(CXXRecordDecl *RD) {
11183 auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(RD);
11184 if (!SD)
11185 return;
11186
11187 auto From = SD->getSpecializedTemplateOrPartial();
11188 if (auto *TD = From.dyn_cast<ClassTemplateDecl *>())
11189 checkTemplate(TD);
11190 else if (auto *TD =
11191 From.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) {
11192 if (!CheckDeclaration(TD))
11193 diagnose(TD, true);
11194 checkTemplate(TD);
11195 }
11196 }
11197
checkInstantiated(VarDecl * RD)11198 void checkInstantiated(VarDecl *RD) {
11199 auto *SD = dyn_cast<VarTemplateSpecializationDecl>(RD);
11200 if (!SD)
11201 return;
11202
11203 auto From = SD->getSpecializedTemplateOrPartial();
11204 if (auto *TD = From.dyn_cast<VarTemplateDecl *>())
11205 checkTemplate(TD);
11206 else if (auto *TD =
11207 From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) {
11208 if (!CheckDeclaration(TD))
11209 diagnose(TD, true);
11210 checkTemplate(TD);
11211 }
11212 }
11213
checkInstantiated(EnumDecl * FD)11214 void checkInstantiated(EnumDecl *FD) {}
11215
11216 template<typename TemplDecl>
checkTemplate(TemplDecl * TD)11217 void checkTemplate(TemplDecl *TD) {
11218 if (TD->isMemberSpecialization()) {
11219 if (!CheckMemberSpecialization(TD))
11220 diagnose(TD->getMostRecentDecl(), false);
11221 }
11222 }
11223 };
11224 } // end anonymous namespace
11225
checkSpecializationVisibility(SourceLocation Loc,NamedDecl * Spec)11226 void Sema::checkSpecializationVisibility(SourceLocation Loc, NamedDecl *Spec) {
11227 if (!getLangOpts().Modules)
11228 return;
11229
11230 ExplicitSpecializationVisibilityChecker(*this, Loc,
11231 Sema::AcceptableKind::Visible)
11232 .check(Spec);
11233 }
11234
checkSpecializationReachability(SourceLocation Loc,NamedDecl * Spec)11235 void Sema::checkSpecializationReachability(SourceLocation Loc,
11236 NamedDecl *Spec) {
11237 if (!getLangOpts().CPlusPlusModules)
11238 return checkSpecializationVisibility(Loc, Spec);
11239
11240 ExplicitSpecializationVisibilityChecker(*this, Loc,
11241 Sema::AcceptableKind::Reachable)
11242 .check(Spec);
11243 }
11244