1 //===- ValueMapper.h - Remapping for constants and metadata -----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the MapValue interface which is used by various parts of 11 // the Transforms/Utils library to implement cloning and linking facilities. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #ifndef LLVM_TRANSFORMS_UTILS_VALUEMAPPER_H 16 #define LLVM_TRANSFORMS_UTILS_VALUEMAPPER_H 17 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/IR/ValueHandle.h" 20 #include "llvm/IR/ValueMap.h" 21 22 namespace llvm { 23 24 class Constant; 25 class Function; 26 class GlobalAlias; 27 class GlobalVariable; 28 class Instruction; 29 class MDNode; 30 class Metadata; 31 class Type; 32 class Value; 33 34 using ValueToValueMapTy = ValueMap<const Value *, WeakTrackingVH>; 35 36 /// This is a class that can be implemented by clients to remap types when 37 /// cloning constants and instructions. 38 class ValueMapTypeRemapper { 39 virtual void anchor(); // Out of line method. 40 41 public: 42 virtual ~ValueMapTypeRemapper() = default; 43 44 /// The client should implement this method if they want to remap types while 45 /// mapping values. 46 virtual Type *remapType(Type *SrcTy) = 0; 47 }; 48 49 /// This is a class that can be implemented by clients to materialize Values on 50 /// demand. 51 class ValueMaterializer { 52 virtual void anchor(); // Out of line method. 53 54 protected: 55 ValueMaterializer() = default; 56 ValueMaterializer(const ValueMaterializer &) = default; 57 ValueMaterializer &operator=(const ValueMaterializer &) = default; 58 ~ValueMaterializer() = default; 59 60 public: 61 /// This method can be implemented to generate a mapped Value on demand. For 62 /// example, if linking lazily. Returns null if the value is not materialized. 63 virtual Value *materialize(Value *V) = 0; 64 }; 65 66 /// These are flags that the value mapping APIs allow. 67 enum RemapFlags { 68 RF_None = 0, 69 70 /// If this flag is set, the remapper knows that only local values within a 71 /// function (such as an instruction or argument) are mapped, not global 72 /// values like functions and global metadata. 73 RF_NoModuleLevelChanges = 1, 74 75 /// If this flag is set, the remapper ignores missing function-local entries 76 /// (Argument, Instruction, BasicBlock) that are not in the value map. If it 77 /// is unset, it aborts if an operand is asked to be remapped which doesn't 78 /// exist in the mapping. 79 /// 80 /// There are no such assertions in MapValue(), whose results are almost 81 /// unchanged by this flag. This flag mainly changes the assertion behaviour 82 /// in RemapInstruction(). 83 /// 84 /// Since an Instruction's metadata operands (even that point to SSA values) 85 /// aren't guaranteed to be dominated by their definitions, MapMetadata will 86 /// return "!{}" instead of "null" for \a LocalAsMetadata instances whose SSA 87 /// values are unmapped when this flag is set. Otherwise, \a MapValue() 88 /// completely ignores this flag. 89 /// 90 /// \a MapMetadata() always ignores this flag. 91 RF_IgnoreMissingLocals = 2, 92 93 /// Instruct the remapper to move distinct metadata instead of duplicating it 94 /// when there are module-level changes. 95 RF_MoveDistinctMDs = 4, 96 97 /// Any global values not in value map are mapped to null instead of mapping 98 /// to self. Illegal if RF_IgnoreMissingLocals is also set. 99 RF_NullMapMissingGlobalValues = 8, 100 }; 101 102 inline RemapFlags operator|(RemapFlags LHS, RemapFlags RHS) { 103 return RemapFlags(unsigned(LHS) | unsigned(RHS)); 104 } 105 106 /// Context for (re-)mapping values (and metadata). 107 /// 108 /// A shared context used for mapping and remapping of Value and Metadata 109 /// instances using \a ValueToValueMapTy, \a RemapFlags, \a 110 /// ValueMapTypeRemapper, and \a ValueMaterializer. 111 /// 112 /// There are a number of top-level entry points: 113 /// - \a mapValue() (and \a mapConstant()); 114 /// - \a mapMetadata() (and \a mapMDNode()); 115 /// - \a remapInstruction(); and 116 /// - \a remapFunction(). 117 /// 118 /// The \a ValueMaterializer can be used as a callback, but cannot invoke any 119 /// of these top-level functions recursively. Instead, callbacks should use 120 /// one of the following to schedule work lazily in the \a ValueMapper 121 /// instance: 122 /// - \a scheduleMapGlobalInitializer() 123 /// - \a scheduleMapAppendingVariable() 124 /// - \a scheduleMapGlobalAliasee() 125 /// - \a scheduleRemapFunction() 126 /// 127 /// Sometimes a callback needs a different mapping context. Such a context can 128 /// be registered using \a registerAlternateMappingContext(), which takes an 129 /// alternate \a ValueToValueMapTy and \a ValueMaterializer and returns a ID to 130 /// pass into the schedule*() functions. 131 /// 132 /// TODO: lib/Linker really doesn't need the \a ValueHandle in the \a 133 /// ValueToValueMapTy. We should template \a ValueMapper (and its 134 /// implementation classes), and explicitly instantiate on two concrete 135 /// instances of \a ValueMap (one as \a ValueToValueMap, and one with raw \a 136 /// Value pointers). It may be viable to do away with \a TrackingMDRef in the 137 /// \a Metadata side map for the lib/Linker case as well, in which case we'll 138 /// need a new template parameter on \a ValueMap. 139 /// 140 /// TODO: Update callers of \a RemapInstruction() and \a MapValue() (etc.) to 141 /// use \a ValueMapper directly. 142 class ValueMapper { 143 void *pImpl; 144 145 public: 146 ValueMapper(ValueToValueMapTy &VM, RemapFlags Flags = RF_None, 147 ValueMapTypeRemapper *TypeMapper = nullptr, 148 ValueMaterializer *Materializer = nullptr); 149 ValueMapper(ValueMapper &&) = delete; 150 ValueMapper(const ValueMapper &) = delete; 151 ValueMapper &operator=(ValueMapper &&) = delete; 152 ValueMapper &operator=(const ValueMapper &) = delete; 153 ~ValueMapper(); 154 155 /// Register an alternate mapping context. 156 /// 157 /// Returns a MappingContextID that can be used with the various schedule*() 158 /// API to switch in a different value map on-the-fly. 159 unsigned 160 registerAlternateMappingContext(ValueToValueMapTy &VM, 161 ValueMaterializer *Materializer = nullptr); 162 163 /// Add to the current \a RemapFlags. 164 /// 165 /// \note Like the top-level mapping functions, \a addFlags() must be called 166 /// at the top level, not during a callback in a \a ValueMaterializer. 167 void addFlags(RemapFlags Flags); 168 169 Metadata *mapMetadata(const Metadata &MD); 170 MDNode *mapMDNode(const MDNode &N); 171 172 Value *mapValue(const Value &V); 173 Constant *mapConstant(const Constant &C); 174 175 void remapInstruction(Instruction &I); 176 void remapFunction(Function &F); 177 178 void scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init, 179 unsigned MappingContextID = 0); 180 void scheduleMapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, 181 bool IsOldCtorDtor, 182 ArrayRef<Constant *> NewMembers, 183 unsigned MappingContextID = 0); 184 void scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee, 185 unsigned MappingContextID = 0); 186 void scheduleRemapFunction(Function &F, unsigned MappingContextID = 0); 187 }; 188 189 /// Look up or compute a value in the value map. 190 /// 191 /// Return a mapped value for a function-local value (Argument, Instruction, 192 /// BasicBlock), or compute and memoize a value for a Constant. 193 /// 194 /// 1. If \c V is in VM, return the result. 195 /// 2. Else if \c V can be materialized with \c Materializer, do so, memoize 196 /// it in \c VM, and return it. 197 /// 3. Else if \c V is a function-local value, return nullptr. 198 /// 4. Else if \c V is a \a GlobalValue, return \c nullptr or \c V depending 199 /// on \a RF_NullMapMissingGlobalValues. 200 /// 5. Else if \c V is a \a MetadataAsValue wrapping a LocalAsMetadata, 201 /// recurse on the local SSA value, and return nullptr or "metadata !{}" on 202 /// missing depending on RF_IgnoreMissingValues. 203 /// 6. Else if \c V is a \a MetadataAsValue, rewrap the return of \a 204 /// MapMetadata(). 205 /// 7. Else, compute the equivalent constant, and return it. 206 inline Value *MapValue(const Value *V, ValueToValueMapTy &VM, 207 RemapFlags Flags = RF_None, 208 ValueMapTypeRemapper *TypeMapper = nullptr, 209 ValueMaterializer *Materializer = nullptr) { 210 return ValueMapper(VM, Flags, TypeMapper, Materializer).mapValue(*V); 211 } 212 213 /// Lookup or compute a mapping for a piece of metadata. 214 /// 215 /// Compute and memoize a mapping for \c MD. 216 /// 217 /// 1. If \c MD is mapped, return it. 218 /// 2. Else if \a RF_NoModuleLevelChanges or \c MD is an \a MDString, return 219 /// \c MD. 220 /// 3. Else if \c MD is a \a ConstantAsMetadata, call \a MapValue() and 221 /// re-wrap its return (returning nullptr on nullptr). 222 /// 4. Else, \c MD is an \a MDNode. These are remapped, along with their 223 /// transitive operands. Distinct nodes are duplicated or moved depending 224 /// on \a RF_MoveDistinctNodes. Uniqued nodes are remapped like constants. 225 /// 226 /// \note \a LocalAsMetadata is completely unsupported by \a MapMetadata. 227 /// Instead, use \a MapValue() with its wrapping \a MetadataAsValue instance. 228 inline Metadata *MapMetadata(const Metadata *MD, ValueToValueMapTy &VM, 229 RemapFlags Flags = RF_None, 230 ValueMapTypeRemapper *TypeMapper = nullptr, 231 ValueMaterializer *Materializer = nullptr) { 232 return ValueMapper(VM, Flags, TypeMapper, Materializer).mapMetadata(*MD); 233 } 234 235 /// Version of MapMetadata with type safety for MDNode. 236 inline MDNode *MapMetadata(const MDNode *MD, ValueToValueMapTy &VM, 237 RemapFlags Flags = RF_None, 238 ValueMapTypeRemapper *TypeMapper = nullptr, 239 ValueMaterializer *Materializer = nullptr) { 240 return ValueMapper(VM, Flags, TypeMapper, Materializer).mapMDNode(*MD); 241 } 242 243 /// Convert the instruction operands from referencing the current values into 244 /// those specified by VM. 245 /// 246 /// If \a RF_IgnoreMissingLocals is set and an operand can't be found via \a 247 /// MapValue(), use the old value. Otherwise assert that this doesn't happen. 248 /// 249 /// Note that \a MapValue() only returns \c nullptr for SSA values missing from 250 /// \c VM. 251 inline void RemapInstruction(Instruction *I, ValueToValueMapTy &VM, 252 RemapFlags Flags = RF_None, 253 ValueMapTypeRemapper *TypeMapper = nullptr, 254 ValueMaterializer *Materializer = nullptr) { 255 ValueMapper(VM, Flags, TypeMapper, Materializer).remapInstruction(*I); 256 } 257 258 /// Remap the operands, metadata, arguments, and instructions of a function. 259 /// 260 /// Calls \a MapValue() on prefix data, prologue data, and personality 261 /// function; calls \a MapMetadata() on each attached MDNode; remaps the 262 /// argument types using the provided \c TypeMapper; and calls \a 263 /// RemapInstruction() on every instruction. 264 inline void RemapFunction(Function &F, ValueToValueMapTy &VM, 265 RemapFlags Flags = RF_None, 266 ValueMapTypeRemapper *TypeMapper = nullptr, 267 ValueMaterializer *Materializer = nullptr) { 268 ValueMapper(VM, Flags, TypeMapper, Materializer).remapFunction(F); 269 } 270 271 /// Version of MapValue with type safety for Constant. 272 inline Constant *MapValue(const Constant *V, ValueToValueMapTy &VM, 273 RemapFlags Flags = RF_None, 274 ValueMapTypeRemapper *TypeMapper = nullptr, 275 ValueMaterializer *Materializer = nullptr) { 276 return ValueMapper(VM, Flags, TypeMapper, Materializer).mapConstant(*V); 277 } 278 279 } // end namespace llvm 280 281 #endif // LLVM_TRANSFORMS_UTILS_VALUEMAPPER_H 282