xref: /freebsd-12.1/sys/arm/include/pmap-v4.h (revision a24d3c09)
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * the Systems Programming Group of the University of Utah Computer
7  * Science Department and William Jolitz of UUNET Technologies Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *      This product includes software developed by the University of
20  *      California, Berkeley and its contributors.
21  * 4. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  * Derived from hp300 version by Mike Hibler, this version by William
38  * Jolitz uses a recursive map [a pde points to the page directory] to
39  * map the page tables using the pagetables themselves. This is done to
40  * reduce the impact on kernel virtual memory for lots of sparse address
41  * space, and to reduce the cost of memory to each process.
42  *
43  *      from: hp300: @(#)pmap.h 7.2 (Berkeley) 12/16/90
44  *      from: @(#)pmap.h        7.4 (Berkeley) 5/12/91
45  * 	from: FreeBSD: src/sys/i386/include/pmap.h,v 1.70 2000/11/30
46  *
47  * $FreeBSD$
48  */
49 
50 #ifndef _MACHINE_PMAP_V4_H_
51 #define _MACHINE_PMAP_V4_H_
52 
53 #include <machine/pte-v4.h>
54 
55 /*
56  * Pte related macros
57  */
58 #define PTE_NOCACHE	1
59 #define PTE_CACHE	2
60 #define PTE_DEVICE	PTE_NOCACHE
61 #define PTE_PAGETABLE	3
62 
63 enum mem_type {
64 	STRONG_ORD = 0,
65 	DEVICE_NOSHARE,
66 	DEVICE_SHARE,
67 	NRML_NOCACHE,
68 	NRML_IWT_OWT,
69 	NRML_IWB_OWB,
70 	NRML_IWBA_OWBA
71 };
72 
73 #ifndef LOCORE
74 
75 #include <sys/queue.h>
76 #include <sys/_cpuset.h>
77 #include <sys/_lock.h>
78 #include <sys/_mutex.h>
79 
80 #define PDESIZE		sizeof(pd_entry_t)	/* for assembly files */
81 #define PTESIZE		sizeof(pt_entry_t)	/* for assembly files */
82 
83 #define	pmap_page_get_memattr(m)	((m)->md.pv_memattr)
84 #define	pmap_page_is_mapped(m)	(!TAILQ_EMPTY(&(m)->md.pv_list))
85 
86 /*
87  * Pmap stuff
88  */
89 
90 /*
91  * This structure is used to hold a virtual<->physical address
92  * association and is used mostly by bootstrap code
93  */
94 struct pv_addr {
95 	SLIST_ENTRY(pv_addr) pv_list;
96 	vm_offset_t	pv_va;
97 	vm_paddr_t	pv_pa;
98 };
99 
100 struct	pv_entry;
101 struct	pv_chunk;
102 
103 struct	md_page {
104 	int pvh_attrs;
105 	vm_memattr_t	 pv_memattr;
106 	vm_offset_t pv_kva;		/* first kernel VA mapping */
107 	TAILQ_HEAD(,pv_entry)	pv_list;
108 };
109 
110 struct l1_ttable;
111 struct l2_dtable;
112 
113 
114 /*
115  * The number of L2 descriptor tables which can be tracked by an l2_dtable.
116  * A bucket size of 16 provides for 16MB of contiguous virtual address
117  * space per l2_dtable. Most processes will, therefore, require only two or
118  * three of these to map their whole working set.
119  */
120 #define	L2_BUCKET_LOG2	4
121 #define	L2_BUCKET_SIZE	(1 << L2_BUCKET_LOG2)
122 /*
123  * Given the above "L2-descriptors-per-l2_dtable" constant, the number
124  * of l2_dtable structures required to track all possible page descriptors
125  * mappable by an L1 translation table is given by the following constants:
126  */
127 #define	L2_LOG2		((32 - L1_S_SHIFT) - L2_BUCKET_LOG2)
128 #define	L2_SIZE		(1 << L2_LOG2)
129 
130 struct	pmap {
131 	struct mtx		pm_mtx;
132 	u_int8_t		pm_domain;
133 	struct l1_ttable	*pm_l1;
134 	struct l2_dtable	*pm_l2[L2_SIZE];
135 	cpuset_t		pm_active;	/* active on cpus */
136 	struct pmap_statistics	pm_stats;	/* pmap statictics */
137 	TAILQ_HEAD(,pv_entry)	pm_pvlist;	/* list of mappings in pmap */
138 };
139 
140 typedef struct pmap *pmap_t;
141 
142 #ifdef _KERNEL
143 extern struct pmap	kernel_pmap_store;
144 #define kernel_pmap	(&kernel_pmap_store)
145 
146 #define	PMAP_ASSERT_LOCKED(pmap) \
147 				mtx_assert(&(pmap)->pm_mtx, MA_OWNED)
148 #define	PMAP_LOCK(pmap)		mtx_lock(&(pmap)->pm_mtx)
149 #define	PMAP_LOCK_DESTROY(pmap)	mtx_destroy(&(pmap)->pm_mtx)
150 #define	PMAP_LOCK_INIT(pmap)	mtx_init(&(pmap)->pm_mtx, "pmap", \
151 				    NULL, MTX_DEF | MTX_DUPOK)
152 #define	PMAP_OWNED(pmap)	mtx_owned(&(pmap)->pm_mtx)
153 #define	PMAP_MTX(pmap)		(&(pmap)->pm_mtx)
154 #define	PMAP_TRYLOCK(pmap)	mtx_trylock(&(pmap)->pm_mtx)
155 #define	PMAP_UNLOCK(pmap)	mtx_unlock(&(pmap)->pm_mtx)
156 #endif
157 
158 /*
159  * For each vm_page_t, there is a list of all currently valid virtual
160  * mappings of that page.  An entry is a pv_entry_t, the list is pv_list.
161  */
162 typedef struct pv_entry {
163 	vm_offset_t     pv_va;          /* virtual address for mapping */
164 	TAILQ_ENTRY(pv_entry)   pv_list;
165 	int		pv_flags;	/* flags (wired, etc...) */
166 	pmap_t          pv_pmap;        /* pmap where mapping lies */
167 	TAILQ_ENTRY(pv_entry)	pv_plist;
168 } *pv_entry_t;
169 
170 /*
171  * pv_entries are allocated in chunks per-process.  This avoids the
172  * need to track per-pmap assignments.
173  */
174 #define	_NPCM	8
175 #define	_NPCPV	252
176 
177 struct pv_chunk {
178 	pmap_t			pc_pmap;
179 	TAILQ_ENTRY(pv_chunk)	pc_list;
180 	uint32_t		pc_map[_NPCM];	/* bitmap; 1 = free */
181 	uint32_t		pc_dummy[3];	/* aligns pv_chunk to 4KB */
182 	TAILQ_ENTRY(pv_chunk)	pc_lru;
183 	struct pv_entry		pc_pventry[_NPCPV];
184 };
185 
186 #ifdef _KERNEL
187 
188 boolean_t pmap_get_pde_pte(pmap_t, vm_offset_t, pd_entry_t **, pt_entry_t **);
189 
190 /*
191  * virtual address to page table entry and
192  * to physical address. Likewise for alternate address space.
193  * Note: these work recursively, thus vtopte of a pte will give
194  * the corresponding pde that in turn maps it.
195  */
196 
197 /*
198  * The current top of kernel VM.
199  */
200 extern vm_offset_t pmap_curmaxkvaddr;
201 
202 /* Virtual address to page table entry */
203 static __inline pt_entry_t *
vtopte(vm_offset_t va)204 vtopte(vm_offset_t va)
205 {
206 	pd_entry_t *pdep;
207 	pt_entry_t *ptep;
208 
209 	if (pmap_get_pde_pte(kernel_pmap, va, &pdep, &ptep) == FALSE)
210 		return (NULL);
211 	return (ptep);
212 }
213 
214 void	pmap_bootstrap(vm_offset_t firstaddr, struct pv_addr *l1pt);
215 int	pmap_change_attr(vm_offset_t, vm_size_t, int);
216 void	pmap_kenter(vm_offset_t va, vm_paddr_t pa);
217 void	pmap_kenter_nocache(vm_offset_t va, vm_paddr_t pa);
218 void 	pmap_kenter_user(vm_offset_t va, vm_paddr_t pa);
219 vm_paddr_t pmap_dump_kextract(vm_offset_t, pt2_entry_t *);
220 void	pmap_kremove(vm_offset_t);
221 vm_page_t	pmap_use_pt(pmap_t, vm_offset_t);
222 void	pmap_debug(int);
223 void	pmap_map_section(vm_offset_t, vm_offset_t, vm_offset_t, int, int);
224 void	pmap_link_l2pt(vm_offset_t, vm_offset_t, struct pv_addr *);
225 vm_size_t	pmap_map_chunk(vm_offset_t, vm_offset_t, vm_offset_t, vm_size_t, int, int);
226 void
227 pmap_map_entry(vm_offset_t l1pt, vm_offset_t va, vm_offset_t pa, int prot,
228     int cache);
229 int pmap_fault_fixup(pmap_t, vm_offset_t, vm_prot_t, int);
230 
231 /*
232  * Definitions for MMU domains
233  */
234 #define	PMAP_DOMAINS		15	/* 15 'user' domains (1-15) */
235 #define	PMAP_DOMAIN_KERNEL	0	/* The kernel uses domain #0 */
236 
237 /*
238  * The new pmap ensures that page-tables are always mapping Write-Thru.
239  * Thus, on some platforms we can run fast and loose and avoid syncing PTEs
240  * on every change.
241  *
242  * Unfortunately, not all CPUs have a write-through cache mode.  So we
243  * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
244  * and if there is the chance for PTE syncs to be needed, we define
245  * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
246  * the code.
247  */
248 extern int pmap_needs_pte_sync;
249 
250 /*
251  * These macros define the various bit masks in the PTE.
252  */
253 
254 #define	L1_S_CACHE_MASK		(L1_S_B|L1_S_C)
255 #define	L2_L_CACHE_MASK		(L2_B|L2_C)
256 #define	L2_S_PROT_U		(L2_AP(AP_U))
257 #define	L2_S_PROT_W		(L2_AP(AP_W))
258 #define	L2_S_PROT_MASK		(L2_S_PROT_U|L2_S_PROT_W)
259 #define	L2_S_CACHE_MASK		(L2_B|L2_C)
260 #define	L1_S_PROTO		(L1_TYPE_S | L1_S_IMP)
261 #define	L1_C_PROTO		(L1_TYPE_C | L1_C_IMP2)
262 #define	L2_L_PROTO		(L2_TYPE_L)
263 #define	L2_S_PROTO		(L2_TYPE_S)
264 
265 /*
266  * User-visible names for the ones that vary with MMU class.
267  */
268 #define	L2_AP(x)	(L2_AP0(x) | L2_AP1(x) | L2_AP2(x) | L2_AP3(x))
269 
270 #if defined(CPU_XSCALE_81342)
271 #define CPU_XSCALE_CORE3
272 #define PMAP_NEEDS_PTE_SYNC	1
273 #define PMAP_INCLUDE_PTE_SYNC
274 #else
275 #define	PMAP_NEEDS_PTE_SYNC	0
276 #endif
277 
278 /*
279  * These macros return various bits based on kernel/user and protection.
280  * Note that the compiler will usually fold these at compile time.
281  */
282 #define	L1_S_PROT_U		(L1_S_AP(AP_U))
283 #define	L1_S_PROT_W		(L1_S_AP(AP_W))
284 #define	L1_S_PROT_MASK		(L1_S_PROT_U|L1_S_PROT_W)
285 #define	L1_S_WRITABLE(pd)	((pd) & L1_S_PROT_W)
286 
287 #define	L1_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \
288 				 (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0))
289 
290 #define	L2_L_PROT_U		(L2_AP(AP_U))
291 #define	L2_L_PROT_W		(L2_AP(AP_W))
292 #define	L2_L_PROT_MASK		(L2_L_PROT_U|L2_L_PROT_W)
293 
294 #define	L2_L_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \
295 				 (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0))
296 
297 #define	L2_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \
298 				 (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0))
299 
300 /*
301  * Macros to test if a mapping is mappable with an L1 Section mapping
302  * or an L2 Large Page mapping.
303  */
304 #define	L1_S_MAPPABLE_P(va, pa, size)					\
305 	((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
306 
307 #define	L2_L_MAPPABLE_P(va, pa, size)					\
308 	((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
309 
310 /*
311  * Provide a fallback in case we were not able to determine it at
312  * compile-time.
313  */
314 #ifndef PMAP_NEEDS_PTE_SYNC
315 #define	PMAP_NEEDS_PTE_SYNC	pmap_needs_pte_sync
316 #define	PMAP_INCLUDE_PTE_SYNC
317 #endif
318 
319 #ifdef ARM_L2_PIPT
320 #define _sync_l2(pte, size) 	cpu_l2cache_wb_range(vtophys(pte), size)
321 #else
322 #define _sync_l2(pte, size) 	cpu_l2cache_wb_range(pte, size)
323 #endif
324 
325 #define	PTE_SYNC(pte)							\
326 do {									\
327 	if (PMAP_NEEDS_PTE_SYNC) {					\
328 		cpu_dcache_wb_range((vm_offset_t)(pte), sizeof(pt_entry_t));\
329 		cpu_drain_writebuf();					\
330 		_sync_l2((vm_offset_t)(pte), sizeof(pt_entry_t));\
331 	} else								\
332 		cpu_drain_writebuf();					\
333 } while (/*CONSTCOND*/0)
334 
335 #define	PTE_SYNC_RANGE(pte, cnt)					\
336 do {									\
337 	if (PMAP_NEEDS_PTE_SYNC) {					\
338 		cpu_dcache_wb_range((vm_offset_t)(pte),			\
339 		    (cnt) << 2); /* * sizeof(pt_entry_t) */		\
340 		cpu_drain_writebuf();					\
341 		_sync_l2((vm_offset_t)(pte),		 		\
342 		    (cnt) << 2); /* * sizeof(pt_entry_t) */		\
343 	} else								\
344 		cpu_drain_writebuf();					\
345 } while (/*CONSTCOND*/0)
346 
347 void	pmap_pte_init_generic(void);
348 
349 #define PTE_KERNEL	0
350 #define PTE_USER	1
351 
352 /*
353  * Flags that indicate attributes of pages or mappings of pages.
354  *
355  * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
356  * page.  PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
357  * pv_entry's for each page.  They live in the same "namespace" so
358  * that we can clear multiple attributes at a time.
359  *
360  * Note the "non-cacheable" flag generally means the page has
361  * multiple mappings in a given address space.
362  */
363 #define	PVF_MOD		0x01		/* page is modified */
364 #define	PVF_REF		0x02		/* page is referenced */
365 #define	PVF_WIRED	0x04		/* mapping is wired */
366 #define	PVF_WRITE	0x08		/* mapping is writable */
367 #define	PVF_EXEC	0x10		/* mapping is executable */
368 #define	PVF_NC		0x20		/* mapping is non-cacheable */
369 #define	PVF_MWC		0x40		/* mapping is used multiple times in userland */
370 #define	PVF_UNMAN	0x80		/* mapping is unmanaged */
371 
372 void vector_page_setprot(int);
373 
374 #define SECTION_CACHE	0x1
375 #define SECTION_PT	0x2
376 void	pmap_postinit(void);
377 
378 #endif	/* _KERNEL */
379 
380 #endif	/* !LOCORE */
381 
382 #endif	/* !_MACHINE_PMAP_V4_H_ */
383