xref: /f-stack/freebsd/i386/i386/pmap.c (revision 22ce4aff)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  * Copyright (c) 2005-2010 Alan L. Cox <[email protected]>
11  * All rights reserved.
12  *
13  * This code is derived from software contributed to Berkeley by
14  * the Systems Programming Group of the University of Utah Computer
15  * Science Department and William Jolitz of UUNET Technologies Inc.
16  *
17  * Redistribution and use in source and binary forms, with or without
18  * modification, are permitted provided that the following conditions
19  * are met:
20  * 1. Redistributions of source code must retain the above copyright
21  *    notice, this list of conditions and the following disclaimer.
22  * 2. Redistributions in binary form must reproduce the above copyright
23  *    notice, this list of conditions and the following disclaimer in the
24  *    documentation and/or other materials provided with the distribution.
25  * 3. All advertising materials mentioning features or use of this software
26  *    must display the following acknowledgement:
27  *	This product includes software developed by the University of
28  *	California, Berkeley and its contributors.
29  * 4. Neither the name of the University nor the names of its contributors
30  *    may be used to endorse or promote products derived from this software
31  *    without specific prior written permission.
32  *
33  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
34  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
35  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
36  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
37  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
38  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
39  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
41  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
42  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
43  * SUCH DAMAGE.
44  *
45  *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
46  */
47 /*-
48  * Copyright (c) 2003 Networks Associates Technology, Inc.
49  * All rights reserved.
50  * Copyright (c) 2018 The FreeBSD Foundation
51  * All rights reserved.
52  *
53  * This software was developed for the FreeBSD Project by Jake Burkholder,
54  * Safeport Network Services, and Network Associates Laboratories, the
55  * Security Research Division of Network Associates, Inc. under
56  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
57  * CHATS research program.
58  *
59  * Portions of this software were developed by
60  * Konstantin Belousov <[email protected]> under sponsorship from
61  * the FreeBSD Foundation.
62  *
63  * Redistribution and use in source and binary forms, with or without
64  * modification, are permitted provided that the following conditions
65  * are met:
66  * 1. Redistributions of source code must retain the above copyright
67  *    notice, this list of conditions and the following disclaimer.
68  * 2. Redistributions in binary form must reproduce the above copyright
69  *    notice, this list of conditions and the following disclaimer in the
70  *    documentation and/or other materials provided with the distribution.
71  *
72  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
73  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
74  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
75  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
76  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
77  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
78  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
79  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
80  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
81  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
82  * SUCH DAMAGE.
83  */
84 
85 #include <sys/cdefs.h>
86 __FBSDID("$FreeBSD$");
87 
88 /*
89  *	Manages physical address maps.
90  *
91  *	Since the information managed by this module is
92  *	also stored by the logical address mapping module,
93  *	this module may throw away valid virtual-to-physical
94  *	mappings at almost any time.  However, invalidations
95  *	of virtual-to-physical mappings must be done as
96  *	requested.
97  *
98  *	In order to cope with hardware architectures which
99  *	make virtual-to-physical map invalidates expensive,
100  *	this module may delay invalidate or reduced protection
101  *	operations until such time as they are actually
102  *	necessary.  This module is given full information as
103  *	to which processors are currently using which maps,
104  *	and to when physical maps must be made correct.
105  */
106 
107 #include "opt_apic.h"
108 #include "opt_cpu.h"
109 #include "opt_pmap.h"
110 #include "opt_smp.h"
111 #include "opt_vm.h"
112 
113 #include <sys/param.h>
114 #include <sys/systm.h>
115 #include <sys/kernel.h>
116 #include <sys/ktr.h>
117 #include <sys/lock.h>
118 #include <sys/malloc.h>
119 #include <sys/mman.h>
120 #include <sys/msgbuf.h>
121 #include <sys/mutex.h>
122 #include <sys/proc.h>
123 #include <sys/rwlock.h>
124 #include <sys/sbuf.h>
125 #include <sys/sf_buf.h>
126 #include <sys/sx.h>
127 #include <sys/vmmeter.h>
128 #include <sys/sched.h>
129 #include <sys/sysctl.h>
130 #include <sys/smp.h>
131 #include <sys/vmem.h>
132 
133 #include <vm/vm.h>
134 #include <vm/vm_param.h>
135 #include <vm/vm_kern.h>
136 #include <vm/vm_page.h>
137 #include <vm/vm_map.h>
138 #include <vm/vm_object.h>
139 #include <vm/vm_extern.h>
140 #include <vm/vm_pageout.h>
141 #include <vm/vm_pager.h>
142 #include <vm/vm_phys.h>
143 #include <vm/vm_radix.h>
144 #include <vm/vm_reserv.h>
145 #include <vm/uma.h>
146 
147 #ifdef DEV_APIC
148 #include <sys/bus.h>
149 #include <machine/intr_machdep.h>
150 #include <x86/apicvar.h>
151 #endif
152 #include <x86/ifunc.h>
153 #include <machine/bootinfo.h>
154 #include <machine/cpu.h>
155 #include <machine/cputypes.h>
156 #include <machine/md_var.h>
157 #include <machine/pcb.h>
158 #include <machine/specialreg.h>
159 #ifdef SMP
160 #include <machine/smp.h>
161 #endif
162 #include <machine/pmap_base.h>
163 
164 #if !defined(DIAGNOSTIC)
165 #ifdef __GNUC_GNU_INLINE__
166 #define PMAP_INLINE	__attribute__((__gnu_inline__)) inline
167 #else
168 #define PMAP_INLINE	extern inline
169 #endif
170 #else
171 #define PMAP_INLINE
172 #endif
173 
174 #ifdef PV_STATS
175 #define PV_STAT(x)	do { x ; } while (0)
176 #else
177 #define PV_STAT(x)	do { } while (0)
178 #endif
179 
180 #define	pa_index(pa)	((pa) >> PDRSHIFT)
181 #define	pa_to_pvh(pa)	(&pv_table[pa_index(pa)])
182 
183 /*
184  * PTmap is recursive pagemap at top of virtual address space.
185  * Within PTmap, the page directory can be found (third indirection).
186  */
187 #define	PTmap	((pt_entry_t *)(PTDPTDI << PDRSHIFT))
188 #define	PTD	((pd_entry_t *)((PTDPTDI << PDRSHIFT) + (PTDPTDI * PAGE_SIZE)))
189 #define	PTDpde	((pd_entry_t *)((PTDPTDI << PDRSHIFT) + (PTDPTDI * PAGE_SIZE) + \
190     (PTDPTDI * PDESIZE)))
191 
192 /*
193  * Translate a virtual address to the kernel virtual address of its page table
194  * entry (PTE).  This can be used recursively.  If the address of a PTE as
195  * previously returned by this macro is itself given as the argument, then the
196  * address of the page directory entry (PDE) that maps the PTE will be
197  * returned.
198  *
199  * This macro may be used before pmap_bootstrap() is called.
200  */
201 #define	vtopte(va)	(PTmap + i386_btop(va))
202 
203 /*
204  * Get PDEs and PTEs for user/kernel address space
205  */
206 #define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
207 #define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
208 
209 #define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
210 #define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
211 #define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
212 #define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
213 #define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
214 
215 #define pmap_pte_set_w(pte, v)	((v) ? atomic_set_int((u_int *)(pte), PG_W) : \
216     atomic_clear_int((u_int *)(pte), PG_W))
217 #define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
218 
219 static int pgeflag = 0;		/* PG_G or-in */
220 static int pseflag = 0;		/* PG_PS or-in */
221 
222 static int nkpt = NKPT;
223 
224 #ifdef PMAP_PAE_COMP
225 pt_entry_t pg_nx;
226 static uma_zone_t pdptzone;
227 #else
228 #define	pg_nx	0
229 #endif
230 
231 _Static_assert(VM_MAXUSER_ADDRESS == VADDR(TRPTDI, 0), "VM_MAXUSER_ADDRESS");
232 _Static_assert(VM_MAX_KERNEL_ADDRESS <= VADDR(PTDPTDI, 0),
233     "VM_MAX_KERNEL_ADDRESS");
234 _Static_assert(PMAP_MAP_LOW == VADDR(LOWPTDI, 0), "PMAP_MAP_LOW");
235 _Static_assert(KERNLOAD == (KERNPTDI << PDRSHIFT), "KERNLOAD");
236 
237 extern int pat_works;
238 extern int pg_ps_enabled;
239 
240 extern int elf32_nxstack;
241 
242 #define	PAT_INDEX_SIZE	8
243 static int pat_index[PAT_INDEX_SIZE];	/* cache mode to PAT index conversion */
244 
245 /*
246  * pmap_mapdev support pre initialization (i.e. console)
247  */
248 #define	PMAP_PREINIT_MAPPING_COUNT	8
249 static struct pmap_preinit_mapping {
250 	vm_paddr_t	pa;
251 	vm_offset_t	va;
252 	vm_size_t	sz;
253 	int		mode;
254 } pmap_preinit_mapping[PMAP_PREINIT_MAPPING_COUNT];
255 static int pmap_initialized;
256 
257 static struct rwlock_padalign pvh_global_lock;
258 
259 /*
260  * Data for the pv entry allocation mechanism
261  */
262 static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
263 extern int pv_entry_max, pv_entry_count;
264 static int pv_entry_high_water = 0;
265 static struct md_page *pv_table;
266 extern int shpgperproc;
267 
268 static struct pv_chunk *pv_chunkbase;	/* KVA block for pv_chunks */
269 static int pv_maxchunks;		/* How many chunks we have KVA for */
270 static vm_offset_t pv_vafree;		/* freelist stored in the PTE */
271 
272 /*
273  * All those kernel PT submaps that BSD is so fond of
274  */
275 static pt_entry_t *CMAP3;
276 static pd_entry_t *KPTD;
277 static caddr_t CADDR3;
278 
279 /*
280  * Crashdump maps.
281  */
282 static caddr_t crashdumpmap;
283 
284 static pt_entry_t *PMAP1 = NULL, *PMAP2, *PMAP3;
285 static pt_entry_t *PADDR1 = NULL, *PADDR2, *PADDR3;
286 #ifdef SMP
287 static int PMAP1cpu, PMAP3cpu;
288 extern int PMAP1changedcpu;
289 #endif
290 extern int PMAP1changed;
291 extern int PMAP1unchanged;
292 static struct mtx PMAP2mutex;
293 
294 /*
295  * Internal flags for pmap_enter()'s helper functions.
296  */
297 #define	PMAP_ENTER_NORECLAIM	0x1000000	/* Don't reclaim PV entries. */
298 #define	PMAP_ENTER_NOREPLACE	0x2000000	/* Don't replace mappings. */
299 
300 static void	free_pv_chunk(struct pv_chunk *pc);
301 static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
302 static pv_entry_t get_pv_entry(pmap_t pmap, boolean_t try);
303 static void	pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
304 static bool	pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, pd_entry_t pde,
305 		    u_int flags);
306 #if VM_NRESERVLEVEL > 0
307 static void	pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
308 #endif
309 static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
310 static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
311 		    vm_offset_t va);
312 static int	pmap_pvh_wired_mappings(struct md_page *pvh, int count);
313 
314 static void	pmap_abort_ptp(pmap_t pmap, vm_offset_t va, vm_page_t mpte);
315 static boolean_t pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
316 static bool	pmap_enter_4mpage(pmap_t pmap, vm_offset_t va, vm_page_t m,
317 		    vm_prot_t prot);
318 static int	pmap_enter_pde(pmap_t pmap, vm_offset_t va, pd_entry_t newpde,
319 		    u_int flags, vm_page_t m);
320 static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
321     vm_page_t m, vm_prot_t prot, vm_page_t mpte);
322 static int pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte, bool promoted);
323 static void pmap_invalidate_pde_page(pmap_t pmap, vm_offset_t va,
324 		    pd_entry_t pde);
325 static void pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte);
326 static boolean_t pmap_is_modified_pvh(struct md_page *pvh);
327 static boolean_t pmap_is_referenced_pvh(struct md_page *pvh);
328 static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
329 static void pmap_kenter_pde(vm_offset_t va, pd_entry_t newpde);
330 static void pmap_pde_attr(pd_entry_t *pde, int cache_bits);
331 #if VM_NRESERVLEVEL > 0
332 static void pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
333 #endif
334 static boolean_t pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva,
335     vm_prot_t prot);
336 static void pmap_pte_attr(pt_entry_t *pte, int cache_bits);
337 static void pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
338     struct spglist *free);
339 static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
340     struct spglist *free);
341 static vm_page_t pmap_remove_pt_page(pmap_t pmap, vm_offset_t va);
342 static void pmap_remove_page(pmap_t pmap, vm_offset_t va, struct spglist *free);
343 static bool	pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
344 		    struct spglist *free);
345 static void pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va);
346 static void pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m);
347 static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
348     vm_page_t m);
349 static void pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
350     pd_entry_t newpde);
351 static void pmap_update_pde_invalidate(vm_offset_t va, pd_entry_t newpde);
352 
353 static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, u_int flags);
354 
355 static vm_page_t _pmap_allocpte(pmap_t pmap, u_int ptepindex, u_int flags);
356 static void _pmap_unwire_ptp(pmap_t pmap, vm_page_t m, struct spglist *free);
357 static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
358 static void pmap_pte_release(pt_entry_t *pte);
359 static int pmap_unuse_pt(pmap_t, vm_offset_t, struct spglist *);
360 #ifdef PMAP_PAE_COMP
361 static void *pmap_pdpt_allocf(uma_zone_t zone, vm_size_t bytes, int domain,
362     uint8_t *flags, int wait);
363 #endif
364 static void pmap_init_trm(void);
365 static void pmap_invalidate_all_int(pmap_t pmap);
366 
367 static __inline void pagezero(void *page);
368 
369 CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
370 CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
371 
372 extern char _end[];
373 extern u_long physfree;	/* phys addr of next free page */
374 extern u_long vm86phystk;/* PA of vm86/bios stack */
375 extern u_long vm86paddr;/* address of vm86 region */
376 extern int vm86pa;	/* phys addr of vm86 region */
377 extern u_long KERNend;	/* phys addr end of kernel (just after bss) */
378 #ifdef PMAP_PAE_COMP
379 pd_entry_t *IdlePTD_pae;	/* phys addr of kernel PTD */
380 pdpt_entry_t *IdlePDPT;	/* phys addr of kernel PDPT */
381 pt_entry_t *KPTmap_pae;	/* address of kernel page tables */
382 #define	IdlePTD	IdlePTD_pae
383 #define	KPTmap	KPTmap_pae
384 #else
385 pd_entry_t *IdlePTD_nopae;
386 pt_entry_t *KPTmap_nopae;
387 #define	IdlePTD	IdlePTD_nopae
388 #define	KPTmap	KPTmap_nopae
389 #endif
390 extern u_long KPTphys;	/* phys addr of kernel page tables */
391 extern u_long tramp_idleptd;
392 
393 static u_long
allocpages(u_int cnt,u_long * physfree)394 allocpages(u_int cnt, u_long *physfree)
395 {
396 	u_long res;
397 
398 	res = *physfree;
399 	*physfree += PAGE_SIZE * cnt;
400 	bzero((void *)res, PAGE_SIZE * cnt);
401 	return (res);
402 }
403 
404 static void
pmap_cold_map(u_long pa,u_long va,u_long cnt)405 pmap_cold_map(u_long pa, u_long va, u_long cnt)
406 {
407 	pt_entry_t *pt;
408 
409 	for (pt = (pt_entry_t *)KPTphys + atop(va); cnt > 0;
410 	    cnt--, pt++, va += PAGE_SIZE, pa += PAGE_SIZE)
411 		*pt = pa | PG_V | PG_RW | PG_A | PG_M;
412 }
413 
414 static void
pmap_cold_mapident(u_long pa,u_long cnt)415 pmap_cold_mapident(u_long pa, u_long cnt)
416 {
417 
418 	pmap_cold_map(pa, pa, cnt);
419 }
420 
421 _Static_assert(LOWPTDI * 2 * NBPDR == KERNBASE,
422     "Broken double-map of zero PTD");
423 
424 static void
__CONCAT(PMTYPE,remap_lower)425 __CONCAT(PMTYPE, remap_lower)(bool enable)
426 {
427 	int i;
428 
429 	for (i = 0; i < LOWPTDI; i++)
430 		IdlePTD[i] = enable ? IdlePTD[LOWPTDI + i] : 0;
431 	load_cr3(rcr3());		/* invalidate TLB */
432 }
433 
434 /*
435  * Called from locore.s before paging is enabled.  Sets up the first
436  * kernel page table.  Since kernel is mapped with PA == VA, this code
437  * does not require relocations.
438  */
439 void
__CONCAT(PMTYPE,cold)440 __CONCAT(PMTYPE, cold)(void)
441 {
442 	pt_entry_t *pt;
443 	u_long a;
444 	u_int cr3, ncr4;
445 
446 	physfree = (u_long)&_end;
447 	if (bootinfo.bi_esymtab != 0)
448 		physfree = bootinfo.bi_esymtab;
449 	if (bootinfo.bi_kernend != 0)
450 		physfree = bootinfo.bi_kernend;
451 	physfree = roundup2(physfree, NBPDR);
452 	KERNend = physfree;
453 
454 	/* Allocate Kernel Page Tables */
455 	KPTphys = allocpages(NKPT, &physfree);
456 	KPTmap = (pt_entry_t *)KPTphys;
457 
458 	/* Allocate Page Table Directory */
459 #ifdef PMAP_PAE_COMP
460 	/* XXX only need 32 bytes (easier for now) */
461 	IdlePDPT = (pdpt_entry_t *)allocpages(1, &physfree);
462 #endif
463 	IdlePTD = (pd_entry_t *)allocpages(NPGPTD, &physfree);
464 
465 	/*
466 	 * Allocate KSTACK.  Leave a guard page between IdlePTD and
467 	 * proc0kstack, to control stack overflow for thread0 and
468 	 * prevent corruption of the page table.  We leak the guard
469 	 * physical memory due to 1:1 mappings.
470 	 */
471 	allocpages(1, &physfree);
472 	proc0kstack = allocpages(TD0_KSTACK_PAGES, &physfree);
473 
474 	/* vm86/bios stack */
475 	vm86phystk = allocpages(1, &physfree);
476 
477 	/* pgtable + ext + IOPAGES */
478 	vm86paddr = vm86pa = allocpages(3, &physfree);
479 
480 	/* Install page tables into PTD.  Page table page 1 is wasted. */
481 	for (a = 0; a < NKPT; a++)
482 		IdlePTD[a] = (KPTphys + ptoa(a)) | PG_V | PG_RW | PG_A | PG_M;
483 
484 #ifdef PMAP_PAE_COMP
485 	/* PAE install PTD pointers into PDPT */
486 	for (a = 0; a < NPGPTD; a++)
487 		IdlePDPT[a] = ((u_int)IdlePTD + ptoa(a)) | PG_V;
488 #endif
489 
490 	/*
491 	 * Install recursive mapping for kernel page tables into
492 	 * itself.
493 	 */
494 	for (a = 0; a < NPGPTD; a++)
495 		IdlePTD[PTDPTDI + a] = ((u_int)IdlePTD + ptoa(a)) | PG_V |
496 		    PG_RW;
497 
498 	/*
499 	 * Initialize page table pages mapping physical address zero
500 	 * through the (physical) end of the kernel.  Many of these
501 	 * pages must be reserved, and we reserve them all and map
502 	 * them linearly for convenience.  We do this even if we've
503 	 * enabled PSE above; we'll just switch the corresponding
504 	 * kernel PDEs before we turn on paging.
505 	 *
506 	 * This and all other page table entries allow read and write
507 	 * access for various reasons.  Kernel mappings never have any
508 	 * access restrictions.
509 	 */
510 	pmap_cold_mapident(0, atop(NBPDR) * LOWPTDI);
511 	pmap_cold_map(0, NBPDR * LOWPTDI, atop(NBPDR) * LOWPTDI);
512 	pmap_cold_mapident(KERNBASE, atop(KERNend - KERNBASE));
513 
514 	/* Map page table directory */
515 #ifdef PMAP_PAE_COMP
516 	pmap_cold_mapident((u_long)IdlePDPT, 1);
517 #endif
518 	pmap_cold_mapident((u_long)IdlePTD, NPGPTD);
519 
520 	/* Map early KPTmap.  It is really pmap_cold_mapident. */
521 	pmap_cold_map(KPTphys, (u_long)KPTmap, NKPT);
522 
523 	/* Map proc0kstack */
524 	pmap_cold_mapident(proc0kstack, TD0_KSTACK_PAGES);
525 	/* ISA hole already mapped */
526 
527 	pmap_cold_mapident(vm86phystk, 1);
528 	pmap_cold_mapident(vm86pa, 3);
529 
530 	/* Map page 0 into the vm86 page table */
531 	*(pt_entry_t *)vm86pa = 0 | PG_RW | PG_U | PG_A | PG_M | PG_V;
532 
533 	/* ...likewise for the ISA hole for vm86 */
534 	for (pt = (pt_entry_t *)vm86pa + atop(ISA_HOLE_START), a = 0;
535 	    a < atop(ISA_HOLE_LENGTH); a++, pt++)
536 		*pt = (ISA_HOLE_START + ptoa(a)) | PG_RW | PG_U | PG_A |
537 		    PG_M | PG_V;
538 
539 	/* Enable PSE, PGE, VME, and PAE if configured. */
540 	ncr4 = 0;
541 	if ((cpu_feature & CPUID_PSE) != 0) {
542 		ncr4 |= CR4_PSE;
543 		pseflag = PG_PS;
544 		/*
545 		 * Superpage mapping of the kernel text.  Existing 4k
546 		 * page table pages are wasted.
547 		 */
548 		for (a = KERNBASE; a < KERNend; a += NBPDR)
549 			IdlePTD[a >> PDRSHIFT] = a | PG_PS | PG_A | PG_M |
550 			    PG_RW | PG_V;
551 	}
552 	if ((cpu_feature & CPUID_PGE) != 0) {
553 		ncr4 |= CR4_PGE;
554 		pgeflag = PG_G;
555 	}
556 	ncr4 |= (cpu_feature & CPUID_VME) != 0 ? CR4_VME : 0;
557 #ifdef PMAP_PAE_COMP
558 	ncr4 |= CR4_PAE;
559 #endif
560 	if (ncr4 != 0)
561 		load_cr4(rcr4() | ncr4);
562 
563 	/* Now enable paging */
564 #ifdef PMAP_PAE_COMP
565 	cr3 = (u_int)IdlePDPT;
566 	if ((cpu_feature & CPUID_PAT) == 0)
567 		wbinvd();
568 #else
569 	cr3 = (u_int)IdlePTD;
570 #endif
571 	tramp_idleptd = cr3;
572 	load_cr3(cr3);
573 	load_cr0(rcr0() | CR0_PG);
574 
575 	/*
576 	 * Now running relocated at KERNBASE where the system is
577 	 * linked to run.
578 	 */
579 
580 	/*
581 	 * Remove the lowest part of the double mapping of low memory
582 	 * to get some null pointer checks.
583 	 */
584 	__CONCAT(PMTYPE, remap_lower)(false);
585 
586 	kernel_vm_end = /* 0 + */ NKPT * NBPDR;
587 #ifdef PMAP_PAE_COMP
588 	i386_pmap_VM_NFREEORDER = VM_NFREEORDER_PAE;
589 	i386_pmap_VM_LEVEL_0_ORDER = VM_LEVEL_0_ORDER_PAE;
590 	i386_pmap_PDRSHIFT = PDRSHIFT_PAE;
591 #else
592 	i386_pmap_VM_NFREEORDER = VM_NFREEORDER_NOPAE;
593 	i386_pmap_VM_LEVEL_0_ORDER = VM_LEVEL_0_ORDER_NOPAE;
594 	i386_pmap_PDRSHIFT = PDRSHIFT_NOPAE;
595 #endif
596 }
597 
598 static void
__CONCAT(PMTYPE,set_nx)599 __CONCAT(PMTYPE, set_nx)(void)
600 {
601 
602 #ifdef PMAP_PAE_COMP
603 	if ((amd_feature & AMDID_NX) == 0)
604 		return;
605 	pg_nx = PG_NX;
606 	elf32_nxstack = 1;
607 	/* EFER.EFER_NXE is set in initializecpu(). */
608 #endif
609 }
610 
611 /*
612  *	Bootstrap the system enough to run with virtual memory.
613  *
614  *	On the i386 this is called after pmap_cold() created initial
615  *	kernel page table and enabled paging, and just syncs the pmap
616  *	module with what has already been done.
617  */
618 static void
__CONCAT(PMTYPE,bootstrap)619 __CONCAT(PMTYPE, bootstrap)(vm_paddr_t firstaddr)
620 {
621 	vm_offset_t va;
622 	pt_entry_t *pte, *unused;
623 	struct pcpu *pc;
624 	u_long res;
625 	int i;
626 
627 	res = atop(firstaddr - (vm_paddr_t)KERNLOAD);
628 
629 	/*
630 	 * Add a physical memory segment (vm_phys_seg) corresponding to the
631 	 * preallocated kernel page table pages so that vm_page structures
632 	 * representing these pages will be created.  The vm_page structures
633 	 * are required for promotion of the corresponding kernel virtual
634 	 * addresses to superpage mappings.
635 	 */
636 	vm_phys_early_add_seg(KPTphys, KPTphys + ptoa(nkpt));
637 
638 	/*
639 	 * Initialize the first available kernel virtual address.
640 	 * However, using "firstaddr" may waste a few pages of the
641 	 * kernel virtual address space, because pmap_cold() may not
642 	 * have mapped every physical page that it allocated.
643 	 * Preferably, pmap_cold() would provide a first unused
644 	 * virtual address in addition to "firstaddr".
645 	 */
646 	virtual_avail = (vm_offset_t)firstaddr;
647 	virtual_end = VM_MAX_KERNEL_ADDRESS;
648 
649 	/*
650 	 * Initialize the kernel pmap (which is statically allocated).
651 	 * Count bootstrap data as being resident in case any of this data is
652 	 * later unmapped (using pmap_remove()) and freed.
653 	 */
654 	PMAP_LOCK_INIT(kernel_pmap);
655 	kernel_pmap->pm_pdir = IdlePTD;
656 #ifdef PMAP_PAE_COMP
657 	kernel_pmap->pm_pdpt = IdlePDPT;
658 #endif
659 	CPU_FILL(&kernel_pmap->pm_active);	/* don't allow deactivation */
660 	kernel_pmap->pm_stats.resident_count = res;
661 	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
662 
663  	/*
664 	 * Initialize the global pv list lock.
665 	 */
666 	rw_init(&pvh_global_lock, "pmap pv global");
667 
668 	/*
669 	 * Reserve some special page table entries/VA space for temporary
670 	 * mapping of pages.
671 	 */
672 #define	SYSMAP(c, p, v, n)	\
673 	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
674 
675 	va = virtual_avail;
676 	pte = vtopte(va);
677 
678 	/*
679 	 * Initialize temporary map objects on the current CPU for use
680 	 * during early boot.
681 	 * CMAP1/CMAP2 are used for zeroing and copying pages.
682 	 * CMAP3 is used for the boot-time memory test.
683 	 */
684 	pc = get_pcpu();
685 	mtx_init(&pc->pc_cmap_lock, "SYSMAPS", NULL, MTX_DEF);
686 	SYSMAP(caddr_t, pc->pc_cmap_pte1, pc->pc_cmap_addr1, 1)
687 	SYSMAP(caddr_t, pc->pc_cmap_pte2, pc->pc_cmap_addr2, 1)
688 	SYSMAP(vm_offset_t, pte, pc->pc_qmap_addr, 1)
689 
690 	SYSMAP(caddr_t, CMAP3, CADDR3, 1);
691 
692 	/*
693 	 * Crashdump maps.
694 	 */
695 	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
696 
697 	/*
698 	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
699 	 */
700 	SYSMAP(caddr_t, unused, ptvmmap, 1)
701 
702 	/*
703 	 * msgbufp is used to map the system message buffer.
704 	 */
705 	SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(msgbufsize)))
706 
707 	/*
708 	 * KPTmap is used by pmap_kextract().
709 	 *
710 	 * KPTmap is first initialized by pmap_cold().  However, that initial
711 	 * KPTmap can only support NKPT page table pages.  Here, a larger
712 	 * KPTmap is created that can support KVA_PAGES page table pages.
713 	 */
714 	SYSMAP(pt_entry_t *, KPTD, KPTmap, KVA_PAGES)
715 
716 	for (i = 0; i < NKPT; i++)
717 		KPTD[i] = (KPTphys + ptoa(i)) | PG_RW | PG_V;
718 
719 	/*
720 	 * PADDR1 and PADDR2 are used by pmap_pte_quick() and pmap_pte(),
721 	 * respectively.
722 	 */
723 	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1)
724 	SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1)
725 	SYSMAP(pt_entry_t *, PMAP3, PADDR3, 1)
726 
727 	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
728 
729 	virtual_avail = va;
730 
731 	/*
732 	 * Initialize the PAT MSR if present.
733 	 * pmap_init_pat() clears and sets CR4_PGE, which, as a
734 	 * side-effect, invalidates stale PG_G TLB entries that might
735 	 * have been created in our pre-boot environment.  We assume
736 	 * that PAT support implies PGE and in reverse, PGE presence
737 	 * comes with PAT.  Both features were added for Pentium Pro.
738 	 */
739 	pmap_init_pat();
740 }
741 
742 static void
pmap_init_reserved_pages(void)743 pmap_init_reserved_pages(void)
744 {
745 	struct pcpu *pc;
746 	vm_offset_t pages;
747 	int i;
748 
749 #ifdef PMAP_PAE_COMP
750 	if (!pae_mode)
751 		return;
752 #else
753 	if (pae_mode)
754 		return;
755 #endif
756 	CPU_FOREACH(i) {
757 		pc = pcpu_find(i);
758 		mtx_init(&pc->pc_copyout_mlock, "cpmlk", NULL, MTX_DEF |
759 		    MTX_NEW);
760 		pc->pc_copyout_maddr = kva_alloc(ptoa(2));
761 		if (pc->pc_copyout_maddr == 0)
762 			panic("unable to allocate non-sleepable copyout KVA");
763 		sx_init(&pc->pc_copyout_slock, "cpslk");
764 		pc->pc_copyout_saddr = kva_alloc(ptoa(2));
765 		if (pc->pc_copyout_saddr == 0)
766 			panic("unable to allocate sleepable copyout KVA");
767 		pc->pc_pmap_eh_va = kva_alloc(ptoa(1));
768 		if (pc->pc_pmap_eh_va == 0)
769 			panic("unable to allocate pmap_extract_and_hold KVA");
770 		pc->pc_pmap_eh_ptep = (char *)vtopte(pc->pc_pmap_eh_va);
771 
772 		/*
773 		 * Skip if the mappings have already been initialized,
774 		 * i.e. this is the BSP.
775 		 */
776 		if (pc->pc_cmap_addr1 != 0)
777 			continue;
778 
779 		mtx_init(&pc->pc_cmap_lock, "SYSMAPS", NULL, MTX_DEF);
780 		pages = kva_alloc(PAGE_SIZE * 3);
781 		if (pages == 0)
782 			panic("unable to allocate CMAP KVA");
783 		pc->pc_cmap_pte1 = vtopte(pages);
784 		pc->pc_cmap_pte2 = vtopte(pages + PAGE_SIZE);
785 		pc->pc_cmap_addr1 = (caddr_t)pages;
786 		pc->pc_cmap_addr2 = (caddr_t)(pages + PAGE_SIZE);
787 		pc->pc_qmap_addr = pages + ptoa(2);
788 	}
789 }
790 
791 SYSINIT(rpages_init, SI_SUB_CPU, SI_ORDER_ANY, pmap_init_reserved_pages, NULL);
792 
793 /*
794  * Setup the PAT MSR.
795  */
796 static void
__CONCAT(PMTYPE,init_pat)797 __CONCAT(PMTYPE, init_pat)(void)
798 {
799 	int pat_table[PAT_INDEX_SIZE];
800 	uint64_t pat_msr;
801 	u_long cr0, cr4;
802 	int i;
803 
804 	/* Set default PAT index table. */
805 	for (i = 0; i < PAT_INDEX_SIZE; i++)
806 		pat_table[i] = -1;
807 	pat_table[PAT_WRITE_BACK] = 0;
808 	pat_table[PAT_WRITE_THROUGH] = 1;
809 	pat_table[PAT_UNCACHEABLE] = 3;
810 	pat_table[PAT_WRITE_COMBINING] = 3;
811 	pat_table[PAT_WRITE_PROTECTED] = 3;
812 	pat_table[PAT_UNCACHED] = 3;
813 
814 	/*
815 	 * Bail if this CPU doesn't implement PAT.
816 	 * We assume that PAT support implies PGE.
817 	 */
818 	if ((cpu_feature & CPUID_PAT) == 0) {
819 		for (i = 0; i < PAT_INDEX_SIZE; i++)
820 			pat_index[i] = pat_table[i];
821 		pat_works = 0;
822 		return;
823 	}
824 
825 	/*
826 	 * Due to some Intel errata, we can only safely use the lower 4
827 	 * PAT entries.
828 	 *
829 	 *   Intel Pentium III Processor Specification Update
830 	 * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
831 	 * or Mode C Paging)
832 	 *
833 	 *   Intel Pentium IV  Processor Specification Update
834 	 * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
835 	 */
836 	if (cpu_vendor_id == CPU_VENDOR_INTEL &&
837 	    !(CPUID_TO_FAMILY(cpu_id) == 6 && CPUID_TO_MODEL(cpu_id) >= 0xe))
838 		pat_works = 0;
839 
840 	/* Initialize default PAT entries. */
841 	pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) |
842 	    PAT_VALUE(1, PAT_WRITE_THROUGH) |
843 	    PAT_VALUE(2, PAT_UNCACHED) |
844 	    PAT_VALUE(3, PAT_UNCACHEABLE) |
845 	    PAT_VALUE(4, PAT_WRITE_BACK) |
846 	    PAT_VALUE(5, PAT_WRITE_THROUGH) |
847 	    PAT_VALUE(6, PAT_UNCACHED) |
848 	    PAT_VALUE(7, PAT_UNCACHEABLE);
849 
850 	if (pat_works) {
851 		/*
852 		 * Leave the indices 0-3 at the default of WB, WT, UC-, and UC.
853 		 * Program 5 and 6 as WP and WC.
854 		 * Leave 4 and 7 as WB and UC.
855 		 */
856 		pat_msr &= ~(PAT_MASK(5) | PAT_MASK(6));
857 		pat_msr |= PAT_VALUE(5, PAT_WRITE_PROTECTED) |
858 		    PAT_VALUE(6, PAT_WRITE_COMBINING);
859 		pat_table[PAT_UNCACHED] = 2;
860 		pat_table[PAT_WRITE_PROTECTED] = 5;
861 		pat_table[PAT_WRITE_COMBINING] = 6;
862 	} else {
863 		/*
864 		 * Just replace PAT Index 2 with WC instead of UC-.
865 		 */
866 		pat_msr &= ~PAT_MASK(2);
867 		pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
868 		pat_table[PAT_WRITE_COMBINING] = 2;
869 	}
870 
871 	/* Disable PGE. */
872 	cr4 = rcr4();
873 	load_cr4(cr4 & ~CR4_PGE);
874 
875 	/* Disable caches (CD = 1, NW = 0). */
876 	cr0 = rcr0();
877 	load_cr0((cr0 & ~CR0_NW) | CR0_CD);
878 
879 	/* Flushes caches and TLBs. */
880 	wbinvd();
881 	invltlb();
882 
883 	/* Update PAT and index table. */
884 	wrmsr(MSR_PAT, pat_msr);
885 	for (i = 0; i < PAT_INDEX_SIZE; i++)
886 		pat_index[i] = pat_table[i];
887 
888 	/* Flush caches and TLBs again. */
889 	wbinvd();
890 	invltlb();
891 
892 	/* Restore caches and PGE. */
893 	load_cr0(cr0);
894 	load_cr4(cr4);
895 }
896 
897 #ifdef PMAP_PAE_COMP
898 static void *
pmap_pdpt_allocf(uma_zone_t zone,vm_size_t bytes,int domain,uint8_t * flags,int wait)899 pmap_pdpt_allocf(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags,
900     int wait)
901 {
902 
903 	/* Inform UMA that this allocator uses kernel_map/object. */
904 	*flags = UMA_SLAB_KERNEL;
905 	return ((void *)kmem_alloc_contig_domainset(DOMAINSET_FIXED(domain),
906 	    bytes, wait, 0x0ULL, 0xffffffffULL, 1, 0, VM_MEMATTR_DEFAULT));
907 }
908 #endif
909 
910 /*
911  * Abuse the pte nodes for unmapped kva to thread a kva freelist through.
912  * Requirements:
913  *  - Must deal with pages in order to ensure that none of the PG_* bits
914  *    are ever set, PG_V in particular.
915  *  - Assumes we can write to ptes without pte_store() atomic ops, even
916  *    on PAE systems.  This should be ok.
917  *  - Assumes nothing will ever test these addresses for 0 to indicate
918  *    no mapping instead of correctly checking PG_V.
919  *  - Assumes a vm_offset_t will fit in a pte (true for i386).
920  * Because PG_V is never set, there can be no mappings to invalidate.
921  */
922 static vm_offset_t
pmap_ptelist_alloc(vm_offset_t * head)923 pmap_ptelist_alloc(vm_offset_t *head)
924 {
925 	pt_entry_t *pte;
926 	vm_offset_t va;
927 
928 	va = *head;
929 	if (va == 0)
930 		panic("pmap_ptelist_alloc: exhausted ptelist KVA");
931 	pte = vtopte(va);
932 	*head = *pte;
933 	if (*head & PG_V)
934 		panic("pmap_ptelist_alloc: va with PG_V set!");
935 	*pte = 0;
936 	return (va);
937 }
938 
939 static void
pmap_ptelist_free(vm_offset_t * head,vm_offset_t va)940 pmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
941 {
942 	pt_entry_t *pte;
943 
944 	if (va & PG_V)
945 		panic("pmap_ptelist_free: freeing va with PG_V set!");
946 	pte = vtopte(va);
947 	*pte = *head;		/* virtual! PG_V is 0 though */
948 	*head = va;
949 }
950 
951 static void
pmap_ptelist_init(vm_offset_t * head,void * base,int npages)952 pmap_ptelist_init(vm_offset_t *head, void *base, int npages)
953 {
954 	int i;
955 	vm_offset_t va;
956 
957 	*head = 0;
958 	for (i = npages - 1; i >= 0; i--) {
959 		va = (vm_offset_t)base + i * PAGE_SIZE;
960 		pmap_ptelist_free(head, va);
961 	}
962 }
963 
964 /*
965  *	Initialize the pmap module.
966  *	Called by vm_init, to initialize any structures that the pmap
967  *	system needs to map virtual memory.
968  */
969 static void
__CONCAT(PMTYPE,init)970 __CONCAT(PMTYPE, init)(void)
971 {
972 	struct pmap_preinit_mapping *ppim;
973 	vm_page_t mpte;
974 	vm_size_t s;
975 	int i, pv_npg;
976 
977 	/*
978 	 * Initialize the vm page array entries for the kernel pmap's
979 	 * page table pages.
980 	 */
981 	PMAP_LOCK(kernel_pmap);
982 	for (i = 0; i < NKPT; i++) {
983 		mpte = PHYS_TO_VM_PAGE(KPTphys + ptoa(i));
984 		KASSERT(mpte >= vm_page_array &&
985 		    mpte < &vm_page_array[vm_page_array_size],
986 		    ("pmap_init: page table page is out of range"));
987 		mpte->pindex = i + KPTDI;
988 		mpte->phys_addr = KPTphys + ptoa(i);
989 		mpte->ref_count = 1;
990 
991 		/*
992 		 * Collect the page table pages that were replaced by a 2/4MB
993 		 * page.  They are filled with equivalent 4KB page mappings.
994 		 */
995 		if (pseflag != 0 &&
996 		    KERNBASE <= i << PDRSHIFT && i << PDRSHIFT < KERNend &&
997 		    pmap_insert_pt_page(kernel_pmap, mpte, true))
998 			panic("pmap_init: pmap_insert_pt_page failed");
999 	}
1000 	PMAP_UNLOCK(kernel_pmap);
1001 	vm_wire_add(NKPT);
1002 
1003 	/*
1004 	 * Initialize the address space (zone) for the pv entries.  Set a
1005 	 * high water mark so that the system can recover from excessive
1006 	 * numbers of pv entries.
1007 	 */
1008 	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1009 	pv_entry_max = shpgperproc * maxproc + vm_cnt.v_page_count;
1010 	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
1011 	pv_entry_max = roundup(pv_entry_max, _NPCPV);
1012 	pv_entry_high_water = 9 * (pv_entry_max / 10);
1013 
1014 	/*
1015 	 * If the kernel is running on a virtual machine, then it must assume
1016 	 * that MCA is enabled by the hypervisor.  Moreover, the kernel must
1017 	 * be prepared for the hypervisor changing the vendor and family that
1018 	 * are reported by CPUID.  Consequently, the workaround for AMD Family
1019 	 * 10h Erratum 383 is enabled if the processor's feature set does not
1020 	 * include at least one feature that is only supported by older Intel
1021 	 * or newer AMD processors.
1022 	 */
1023 	if (vm_guest != VM_GUEST_NO && (cpu_feature & CPUID_SS) == 0 &&
1024 	    (cpu_feature2 & (CPUID2_SSSE3 | CPUID2_SSE41 | CPUID2_AESNI |
1025 	    CPUID2_AVX | CPUID2_XSAVE)) == 0 && (amd_feature2 & (AMDID2_XOP |
1026 	    AMDID2_FMA4)) == 0)
1027 		workaround_erratum383 = 1;
1028 
1029 	/*
1030 	 * Are large page mappings supported and enabled?
1031 	 */
1032 	TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
1033 	if (pseflag == 0)
1034 		pg_ps_enabled = 0;
1035 	else if (pg_ps_enabled) {
1036 		KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
1037 		    ("pmap_init: can't assign to pagesizes[1]"));
1038 		pagesizes[1] = NBPDR;
1039 	}
1040 
1041 	/*
1042 	 * Calculate the size of the pv head table for superpages.
1043 	 * Handle the possibility that "vm_phys_segs[...].end" is zero.
1044 	 */
1045 	pv_npg = trunc_4mpage(vm_phys_segs[vm_phys_nsegs - 1].end -
1046 	    PAGE_SIZE) / NBPDR + 1;
1047 
1048 	/*
1049 	 * Allocate memory for the pv head table for superpages.
1050 	 */
1051 	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
1052 	s = round_page(s);
1053 	pv_table = (struct md_page *)kmem_malloc(s, M_WAITOK | M_ZERO);
1054 	for (i = 0; i < pv_npg; i++)
1055 		TAILQ_INIT(&pv_table[i].pv_list);
1056 
1057 	pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
1058 	pv_chunkbase = (struct pv_chunk *)kva_alloc(PAGE_SIZE * pv_maxchunks);
1059 	if (pv_chunkbase == NULL)
1060 		panic("pmap_init: not enough kvm for pv chunks");
1061 	pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
1062 #ifdef PMAP_PAE_COMP
1063 	pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
1064 	    NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1,
1065 	    UMA_ZONE_CONTIG | UMA_ZONE_VM | UMA_ZONE_NOFREE);
1066 	uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
1067 #endif
1068 
1069 	pmap_initialized = 1;
1070 	pmap_init_trm();
1071 
1072 	if (!bootverbose)
1073 		return;
1074 	for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
1075 		ppim = pmap_preinit_mapping + i;
1076 		if (ppim->va == 0)
1077 			continue;
1078 		printf("PPIM %u: PA=%#jx, VA=%#x, size=%#x, mode=%#x\n", i,
1079 		    (uintmax_t)ppim->pa, ppim->va, ppim->sz, ppim->mode);
1080 	}
1081 
1082 }
1083 
1084 extern u_long pmap_pde_demotions;
1085 extern u_long pmap_pde_mappings;
1086 extern u_long pmap_pde_p_failures;
1087 extern u_long pmap_pde_promotions;
1088 
1089 /***************************************************
1090  * Low level helper routines.....
1091  ***************************************************/
1092 
1093 static boolean_t
__CONCAT(PMTYPE,is_valid_memattr)1094 __CONCAT(PMTYPE, is_valid_memattr)(pmap_t pmap __unused, vm_memattr_t mode)
1095 {
1096 
1097 	return (mode >= 0 && mode < PAT_INDEX_SIZE &&
1098 	    pat_index[(int)mode] >= 0);
1099 }
1100 
1101 /*
1102  * Determine the appropriate bits to set in a PTE or PDE for a specified
1103  * caching mode.
1104  */
1105 static int
__CONCAT(PMTYPE,cache_bits)1106 __CONCAT(PMTYPE, cache_bits)(pmap_t pmap, int mode, boolean_t is_pde)
1107 {
1108 	int cache_bits, pat_flag, pat_idx;
1109 
1110 	if (!pmap_is_valid_memattr(pmap, mode))
1111 		panic("Unknown caching mode %d\n", mode);
1112 
1113 	/* The PAT bit is different for PTE's and PDE's. */
1114 	pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
1115 
1116 	/* Map the caching mode to a PAT index. */
1117 	pat_idx = pat_index[mode];
1118 
1119 	/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
1120 	cache_bits = 0;
1121 	if (pat_idx & 0x4)
1122 		cache_bits |= pat_flag;
1123 	if (pat_idx & 0x2)
1124 		cache_bits |= PG_NC_PCD;
1125 	if (pat_idx & 0x1)
1126 		cache_bits |= PG_NC_PWT;
1127 	return (cache_bits);
1128 }
1129 
1130 static int
pmap_pat_index(pmap_t pmap,pt_entry_t pte,bool is_pde)1131 pmap_pat_index(pmap_t pmap, pt_entry_t pte, bool is_pde)
1132 {
1133 	int pat_flag, pat_idx;
1134 
1135 	if ((cpu_feature & CPUID_PAT) == 0)
1136 		return (0);
1137 
1138 	pat_idx = 0;
1139 	/* The PAT bit is different for PTE's and PDE's. */
1140 	pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
1141 
1142 	if ((pte & pat_flag) != 0)
1143 		pat_idx |= 0x4;
1144 	if ((pte & PG_NC_PCD) != 0)
1145 		pat_idx |= 0x2;
1146 	if ((pte & PG_NC_PWT) != 0)
1147 		pat_idx |= 0x1;
1148 
1149 	/* See pmap_init_pat(). */
1150 	if (pat_works) {
1151 		if (pat_idx == 4)
1152 			pat_idx = 0;
1153 		if (pat_idx == 7)
1154 			pat_idx = 3;
1155 	} else {
1156 		/* XXXKIB */
1157 	}
1158 
1159 	return (pat_idx);
1160 }
1161 
1162 static bool
__CONCAT(PMTYPE,ps_enabled)1163 __CONCAT(PMTYPE, ps_enabled)(pmap_t pmap __unused)
1164 {
1165 
1166 	return (pg_ps_enabled);
1167 }
1168 
1169 /*
1170  * The caller is responsible for maintaining TLB consistency.
1171  */
1172 static void
pmap_kenter_pde(vm_offset_t va,pd_entry_t newpde)1173 pmap_kenter_pde(vm_offset_t va, pd_entry_t newpde)
1174 {
1175 	pd_entry_t *pde;
1176 
1177 	pde = pmap_pde(kernel_pmap, va);
1178 	pde_store(pde, newpde);
1179 }
1180 
1181 /*
1182  * After changing the page size for the specified virtual address in the page
1183  * table, flush the corresponding entries from the processor's TLB.  Only the
1184  * calling processor's TLB is affected.
1185  *
1186  * The calling thread must be pinned to a processor.
1187  */
1188 static void
pmap_update_pde_invalidate(vm_offset_t va,pd_entry_t newpde)1189 pmap_update_pde_invalidate(vm_offset_t va, pd_entry_t newpde)
1190 {
1191 
1192 	if ((newpde & PG_PS) == 0)
1193 		/* Demotion: flush a specific 2MB page mapping. */
1194 		invlpg(va);
1195 	else /* if ((newpde & PG_G) == 0) */
1196 		/*
1197 		 * Promotion: flush every 4KB page mapping from the TLB
1198 		 * because there are too many to flush individually.
1199 		 */
1200 		invltlb();
1201 }
1202 
1203 #ifdef SMP
1204 
1205 static void
pmap_curcpu_cb_dummy(pmap_t pmap __unused,vm_offset_t addr1 __unused,vm_offset_t addr2 __unused)1206 pmap_curcpu_cb_dummy(pmap_t pmap __unused, vm_offset_t addr1 __unused,
1207     vm_offset_t addr2 __unused)
1208 {
1209 }
1210 
1211 /*
1212  * For SMP, these functions have to use the IPI mechanism for coherence.
1213  *
1214  * N.B.: Before calling any of the following TLB invalidation functions,
1215  * the calling processor must ensure that all stores updating a non-
1216  * kernel page table are globally performed.  Otherwise, another
1217  * processor could cache an old, pre-update entry without being
1218  * invalidated.  This can happen one of two ways: (1) The pmap becomes
1219  * active on another processor after its pm_active field is checked by
1220  * one of the following functions but before a store updating the page
1221  * table is globally performed. (2) The pmap becomes active on another
1222  * processor before its pm_active field is checked but due to
1223  * speculative loads one of the following functions stills reads the
1224  * pmap as inactive on the other processor.
1225  *
1226  * The kernel page table is exempt because its pm_active field is
1227  * immutable.  The kernel page table is always active on every
1228  * processor.
1229  */
1230 static void
pmap_invalidate_page_int(pmap_t pmap,vm_offset_t va)1231 pmap_invalidate_page_int(pmap_t pmap, vm_offset_t va)
1232 {
1233 	cpuset_t *mask, other_cpus;
1234 	u_int cpuid;
1235 
1236 	sched_pin();
1237 	if (pmap == kernel_pmap) {
1238 		invlpg(va);
1239 		mask = &all_cpus;
1240 	} else if (!CPU_CMP(&pmap->pm_active, &all_cpus)) {
1241 		mask = &all_cpus;
1242 	} else {
1243 		cpuid = PCPU_GET(cpuid);
1244 		other_cpus = all_cpus;
1245 		CPU_CLR(cpuid, &other_cpus);
1246 		CPU_AND(&other_cpus, &pmap->pm_active);
1247 		mask = &other_cpus;
1248 	}
1249 	smp_masked_invlpg(*mask, va, pmap, pmap_curcpu_cb_dummy);
1250 	sched_unpin();
1251 }
1252 
1253 /* 4k PTEs -- Chosen to exceed the total size of Broadwell L2 TLB */
1254 #define	PMAP_INVLPG_THRESHOLD	(4 * 1024 * PAGE_SIZE)
1255 
1256 static void
pmap_invalidate_range_int(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)1257 pmap_invalidate_range_int(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1258 {
1259 	cpuset_t *mask, other_cpus;
1260 	vm_offset_t addr;
1261 	u_int cpuid;
1262 
1263 	if (eva - sva >= PMAP_INVLPG_THRESHOLD) {
1264 		pmap_invalidate_all_int(pmap);
1265 		return;
1266 	}
1267 
1268 	sched_pin();
1269 	if (pmap == kernel_pmap) {
1270 		for (addr = sva; addr < eva; addr += PAGE_SIZE)
1271 			invlpg(addr);
1272 		mask = &all_cpus;
1273 	} else  if (!CPU_CMP(&pmap->pm_active, &all_cpus)) {
1274 		mask = &all_cpus;
1275 	} else {
1276 		cpuid = PCPU_GET(cpuid);
1277 		other_cpus = all_cpus;
1278 		CPU_CLR(cpuid, &other_cpus);
1279 		CPU_AND(&other_cpus, &pmap->pm_active);
1280 		mask = &other_cpus;
1281 	}
1282 	smp_masked_invlpg_range(*mask, sva, eva, pmap, pmap_curcpu_cb_dummy);
1283 	sched_unpin();
1284 }
1285 
1286 static void
pmap_invalidate_all_int(pmap_t pmap)1287 pmap_invalidate_all_int(pmap_t pmap)
1288 {
1289 	cpuset_t *mask, other_cpus;
1290 	u_int cpuid;
1291 
1292 	sched_pin();
1293 	if (pmap == kernel_pmap) {
1294 		invltlb();
1295 		mask = &all_cpus;
1296 	} else if (!CPU_CMP(&pmap->pm_active, &all_cpus)) {
1297 		mask = &all_cpus;
1298 	} else {
1299 		cpuid = PCPU_GET(cpuid);
1300 		other_cpus = all_cpus;
1301 		CPU_CLR(cpuid, &other_cpus);
1302 		CPU_AND(&other_cpus, &pmap->pm_active);
1303 		mask = &other_cpus;
1304 	}
1305 	smp_masked_invltlb(*mask, pmap, pmap_curcpu_cb_dummy);
1306 	sched_unpin();
1307 }
1308 
1309 static void
pmap_invalidate_cache_curcpu_cb(pmap_t pmap __unused,vm_offset_t addr1 __unused,vm_offset_t addr2 __unused)1310 pmap_invalidate_cache_curcpu_cb(pmap_t pmap __unused,
1311     vm_offset_t addr1 __unused, vm_offset_t addr2 __unused)
1312 {
1313 	wbinvd();
1314 }
1315 
1316 static void
__CONCAT(PMTYPE,invalidate_cache)1317 __CONCAT(PMTYPE, invalidate_cache)(void)
1318 {
1319 	smp_cache_flush(pmap_invalidate_cache_curcpu_cb);
1320 }
1321 
1322 struct pde_action {
1323 	cpuset_t invalidate;	/* processors that invalidate their TLB */
1324 	vm_offset_t va;
1325 	pd_entry_t *pde;
1326 	pd_entry_t newpde;
1327 	u_int store;		/* processor that updates the PDE */
1328 };
1329 
1330 static void
pmap_update_pde_kernel(void * arg)1331 pmap_update_pde_kernel(void *arg)
1332 {
1333 	struct pde_action *act = arg;
1334 	pd_entry_t *pde;
1335 
1336 	if (act->store == PCPU_GET(cpuid)) {
1337 		pde = pmap_pde(kernel_pmap, act->va);
1338 		pde_store(pde, act->newpde);
1339 	}
1340 }
1341 
1342 static void
pmap_update_pde_user(void * arg)1343 pmap_update_pde_user(void *arg)
1344 {
1345 	struct pde_action *act = arg;
1346 
1347 	if (act->store == PCPU_GET(cpuid))
1348 		pde_store(act->pde, act->newpde);
1349 }
1350 
1351 static void
pmap_update_pde_teardown(void * arg)1352 pmap_update_pde_teardown(void *arg)
1353 {
1354 	struct pde_action *act = arg;
1355 
1356 	if (CPU_ISSET(PCPU_GET(cpuid), &act->invalidate))
1357 		pmap_update_pde_invalidate(act->va, act->newpde);
1358 }
1359 
1360 /*
1361  * Change the page size for the specified virtual address in a way that
1362  * prevents any possibility of the TLB ever having two entries that map the
1363  * same virtual address using different page sizes.  This is the recommended
1364  * workaround for Erratum 383 on AMD Family 10h processors.  It prevents a
1365  * machine check exception for a TLB state that is improperly diagnosed as a
1366  * hardware error.
1367  */
1368 static void
pmap_update_pde(pmap_t pmap,vm_offset_t va,pd_entry_t * pde,pd_entry_t newpde)1369 pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
1370 {
1371 	struct pde_action act;
1372 	cpuset_t active, other_cpus;
1373 	u_int cpuid;
1374 
1375 	sched_pin();
1376 	cpuid = PCPU_GET(cpuid);
1377 	other_cpus = all_cpus;
1378 	CPU_CLR(cpuid, &other_cpus);
1379 	if (pmap == kernel_pmap)
1380 		active = all_cpus;
1381 	else
1382 		active = pmap->pm_active;
1383 	if (CPU_OVERLAP(&active, &other_cpus)) {
1384 		act.store = cpuid;
1385 		act.invalidate = active;
1386 		act.va = va;
1387 		act.pde = pde;
1388 		act.newpde = newpde;
1389 		CPU_SET(cpuid, &active);
1390 		smp_rendezvous_cpus(active,
1391 		    smp_no_rendezvous_barrier, pmap == kernel_pmap ?
1392 		    pmap_update_pde_kernel : pmap_update_pde_user,
1393 		    pmap_update_pde_teardown, &act);
1394 	} else {
1395 		if (pmap == kernel_pmap)
1396 			pmap_kenter_pde(va, newpde);
1397 		else
1398 			pde_store(pde, newpde);
1399 		if (CPU_ISSET(cpuid, &active))
1400 			pmap_update_pde_invalidate(va, newpde);
1401 	}
1402 	sched_unpin();
1403 }
1404 #else /* !SMP */
1405 /*
1406  * Normal, non-SMP, 486+ invalidation functions.
1407  * We inline these within pmap.c for speed.
1408  */
1409 static void
pmap_invalidate_page_int(pmap_t pmap,vm_offset_t va)1410 pmap_invalidate_page_int(pmap_t pmap, vm_offset_t va)
1411 {
1412 
1413 	if (pmap == kernel_pmap)
1414 		invlpg(va);
1415 }
1416 
1417 static void
pmap_invalidate_range_int(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)1418 pmap_invalidate_range_int(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1419 {
1420 	vm_offset_t addr;
1421 
1422 	if (pmap == kernel_pmap)
1423 		for (addr = sva; addr < eva; addr += PAGE_SIZE)
1424 			invlpg(addr);
1425 }
1426 
1427 static void
pmap_invalidate_all_int(pmap_t pmap)1428 pmap_invalidate_all_int(pmap_t pmap)
1429 {
1430 
1431 	if (pmap == kernel_pmap)
1432 		invltlb();
1433 }
1434 
1435 static void
__CONCAT(PMTYPE,invalidate_cache)1436 __CONCAT(PMTYPE, invalidate_cache)(void)
1437 {
1438 
1439 	wbinvd();
1440 }
1441 
1442 static void
pmap_update_pde(pmap_t pmap,vm_offset_t va,pd_entry_t * pde,pd_entry_t newpde)1443 pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
1444 {
1445 
1446 	if (pmap == kernel_pmap)
1447 		pmap_kenter_pde(va, newpde);
1448 	else
1449 		pde_store(pde, newpde);
1450 	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
1451 		pmap_update_pde_invalidate(va, newpde);
1452 }
1453 #endif /* !SMP */
1454 
1455 static void
__CONCAT(PMTYPE,invalidate_page)1456 __CONCAT(PMTYPE, invalidate_page)(pmap_t pmap, vm_offset_t va)
1457 {
1458 
1459 	pmap_invalidate_page_int(pmap, va);
1460 }
1461 
1462 static void
__CONCAT(PMTYPE,invalidate_range)1463 __CONCAT(PMTYPE, invalidate_range)(pmap_t pmap, vm_offset_t sva,
1464     vm_offset_t eva)
1465 {
1466 
1467 	pmap_invalidate_range_int(pmap, sva, eva);
1468 }
1469 
1470 static void
__CONCAT(PMTYPE,invalidate_all)1471 __CONCAT(PMTYPE, invalidate_all)(pmap_t pmap)
1472 {
1473 
1474 	pmap_invalidate_all_int(pmap);
1475 }
1476 
1477 static void
pmap_invalidate_pde_page(pmap_t pmap,vm_offset_t va,pd_entry_t pde)1478 pmap_invalidate_pde_page(pmap_t pmap, vm_offset_t va, pd_entry_t pde)
1479 {
1480 
1481 	/*
1482 	 * When the PDE has PG_PROMOTED set, the 2- or 4MB page mapping was
1483 	 * created by a promotion that did not invalidate the 512 or 1024 4KB
1484 	 * page mappings that might exist in the TLB.  Consequently, at this
1485 	 * point, the TLB may hold both 4KB and 2- or 4MB page mappings for
1486 	 * the address range [va, va + NBPDR).  Therefore, the entire range
1487 	 * must be invalidated here.  In contrast, when PG_PROMOTED is clear,
1488 	 * the TLB will not hold any 4KB page mappings for the address range
1489 	 * [va, va + NBPDR), and so a single INVLPG suffices to invalidate the
1490 	 * 2- or 4MB page mapping from the TLB.
1491 	 */
1492 	if ((pde & PG_PROMOTED) != 0)
1493 		pmap_invalidate_range_int(pmap, va, va + NBPDR - 1);
1494 	else
1495 		pmap_invalidate_page_int(pmap, va);
1496 }
1497 
1498 /*
1499  * Are we current address space or kernel?
1500  */
1501 static __inline int
pmap_is_current(pmap_t pmap)1502 pmap_is_current(pmap_t pmap)
1503 {
1504 
1505 	return (pmap == kernel_pmap);
1506 }
1507 
1508 /*
1509  * If the given pmap is not the current or kernel pmap, the returned pte must
1510  * be released by passing it to pmap_pte_release().
1511  */
1512 static pt_entry_t *
__CONCAT(PMTYPE,pte)1513 __CONCAT(PMTYPE, pte)(pmap_t pmap, vm_offset_t va)
1514 {
1515 	pd_entry_t newpf;
1516 	pd_entry_t *pde;
1517 
1518 	pde = pmap_pde(pmap, va);
1519 	if (*pde & PG_PS)
1520 		return (pde);
1521 	if (*pde != 0) {
1522 		/* are we current address space or kernel? */
1523 		if (pmap_is_current(pmap))
1524 			return (vtopte(va));
1525 		mtx_lock(&PMAP2mutex);
1526 		newpf = *pde & PG_FRAME;
1527 		if ((*PMAP2 & PG_FRAME) != newpf) {
1528 			*PMAP2 = newpf | PG_RW | PG_V | PG_A | PG_M;
1529 			pmap_invalidate_page_int(kernel_pmap,
1530 			    (vm_offset_t)PADDR2);
1531 		}
1532 		return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
1533 	}
1534 	return (NULL);
1535 }
1536 
1537 /*
1538  * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
1539  * being NULL.
1540  */
1541 static __inline void
pmap_pte_release(pt_entry_t * pte)1542 pmap_pte_release(pt_entry_t *pte)
1543 {
1544 
1545 	if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2)
1546 		mtx_unlock(&PMAP2mutex);
1547 }
1548 
1549 /*
1550  * NB:  The sequence of updating a page table followed by accesses to the
1551  * corresponding pages is subject to the situation described in the "AMD64
1552  * Architecture Programmer's Manual Volume 2: System Programming" rev. 3.23,
1553  * "7.3.1 Special Coherency Considerations".  Therefore, issuing the INVLPG
1554  * right after modifying the PTE bits is crucial.
1555  */
1556 static __inline void
invlcaddr(void * caddr)1557 invlcaddr(void *caddr)
1558 {
1559 
1560 	invlpg((u_int)caddr);
1561 }
1562 
1563 /*
1564  * Super fast pmap_pte routine best used when scanning
1565  * the pv lists.  This eliminates many coarse-grained
1566  * invltlb calls.  Note that many of the pv list
1567  * scans are across different pmaps.  It is very wasteful
1568  * to do an entire invltlb for checking a single mapping.
1569  *
1570  * If the given pmap is not the current pmap, pvh_global_lock
1571  * must be held and curthread pinned to a CPU.
1572  */
1573 static pt_entry_t *
pmap_pte_quick(pmap_t pmap,vm_offset_t va)1574 pmap_pte_quick(pmap_t pmap, vm_offset_t va)
1575 {
1576 	pd_entry_t newpf;
1577 	pd_entry_t *pde;
1578 
1579 	pde = pmap_pde(pmap, va);
1580 	if (*pde & PG_PS)
1581 		return (pde);
1582 	if (*pde != 0) {
1583 		/* are we current address space or kernel? */
1584 		if (pmap_is_current(pmap))
1585 			return (vtopte(va));
1586 		rw_assert(&pvh_global_lock, RA_WLOCKED);
1587 		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1588 		newpf = *pde & PG_FRAME;
1589 		if ((*PMAP1 & PG_FRAME) != newpf) {
1590 			*PMAP1 = newpf | PG_RW | PG_V | PG_A | PG_M;
1591 #ifdef SMP
1592 			PMAP1cpu = PCPU_GET(cpuid);
1593 #endif
1594 			invlcaddr(PADDR1);
1595 			PMAP1changed++;
1596 		} else
1597 #ifdef SMP
1598 		if (PMAP1cpu != PCPU_GET(cpuid)) {
1599 			PMAP1cpu = PCPU_GET(cpuid);
1600 			invlcaddr(PADDR1);
1601 			PMAP1changedcpu++;
1602 		} else
1603 #endif
1604 			PMAP1unchanged++;
1605 		return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
1606 	}
1607 	return (0);
1608 }
1609 
1610 static pt_entry_t *
pmap_pte_quick3(pmap_t pmap,vm_offset_t va)1611 pmap_pte_quick3(pmap_t pmap, vm_offset_t va)
1612 {
1613 	pd_entry_t newpf;
1614 	pd_entry_t *pde;
1615 
1616 	pde = pmap_pde(pmap, va);
1617 	if (*pde & PG_PS)
1618 		return (pde);
1619 	if (*pde != 0) {
1620 		rw_assert(&pvh_global_lock, RA_WLOCKED);
1621 		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1622 		newpf = *pde & PG_FRAME;
1623 		if ((*PMAP3 & PG_FRAME) != newpf) {
1624 			*PMAP3 = newpf | PG_RW | PG_V | PG_A | PG_M;
1625 #ifdef SMP
1626 			PMAP3cpu = PCPU_GET(cpuid);
1627 #endif
1628 			invlcaddr(PADDR3);
1629 			PMAP1changed++;
1630 		} else
1631 #ifdef SMP
1632 		if (PMAP3cpu != PCPU_GET(cpuid)) {
1633 			PMAP3cpu = PCPU_GET(cpuid);
1634 			invlcaddr(PADDR3);
1635 			PMAP1changedcpu++;
1636 		} else
1637 #endif
1638 			PMAP1unchanged++;
1639 		return (PADDR3 + (i386_btop(va) & (NPTEPG - 1)));
1640 	}
1641 	return (0);
1642 }
1643 
1644 static pt_entry_t
pmap_pte_ufast(pmap_t pmap,vm_offset_t va,pd_entry_t pde)1645 pmap_pte_ufast(pmap_t pmap, vm_offset_t va, pd_entry_t pde)
1646 {
1647 	pt_entry_t *eh_ptep, pte, *ptep;
1648 
1649 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1650 	pde &= PG_FRAME;
1651 	critical_enter();
1652 	eh_ptep = (pt_entry_t *)PCPU_GET(pmap_eh_ptep);
1653 	if ((*eh_ptep & PG_FRAME) != pde) {
1654 		*eh_ptep = pde | PG_RW | PG_V | PG_A | PG_M;
1655 		invlcaddr((void *)PCPU_GET(pmap_eh_va));
1656 	}
1657 	ptep = (pt_entry_t *)PCPU_GET(pmap_eh_va) + (i386_btop(va) &
1658 	    (NPTEPG - 1));
1659 	pte = *ptep;
1660 	critical_exit();
1661 	return (pte);
1662 }
1663 
1664 /*
1665  * Extract from the kernel page table the physical address that is mapped by
1666  * the given virtual address "va".
1667  *
1668  * This function may be used before pmap_bootstrap() is called.
1669  */
1670 static vm_paddr_t
__CONCAT(PMTYPE,kextract)1671 __CONCAT(PMTYPE, kextract)(vm_offset_t va)
1672 {
1673 	vm_paddr_t pa;
1674 
1675 	if ((pa = pte_load(&PTD[va >> PDRSHIFT])) & PG_PS) {
1676 		pa = (pa & PG_PS_FRAME) | (va & PDRMASK);
1677 	} else {
1678 		/*
1679 		 * Beware of a concurrent promotion that changes the PDE at
1680 		 * this point!  For example, vtopte() must not be used to
1681 		 * access the PTE because it would use the new PDE.  It is,
1682 		 * however, safe to use the old PDE because the page table
1683 		 * page is preserved by the promotion.
1684 		 */
1685 		pa = KPTmap[i386_btop(va)];
1686 		pa = (pa & PG_FRAME) | (va & PAGE_MASK);
1687 	}
1688 	return (pa);
1689 }
1690 
1691 /*
1692  *	Routine:	pmap_extract
1693  *	Function:
1694  *		Extract the physical page address associated
1695  *		with the given map/virtual_address pair.
1696  */
1697 static vm_paddr_t
__CONCAT(PMTYPE,extract)1698 __CONCAT(PMTYPE, extract)(pmap_t pmap, vm_offset_t va)
1699 {
1700 	vm_paddr_t rtval;
1701 	pt_entry_t pte;
1702 	pd_entry_t pde;
1703 
1704 	rtval = 0;
1705 	PMAP_LOCK(pmap);
1706 	pde = pmap->pm_pdir[va >> PDRSHIFT];
1707 	if (pde != 0) {
1708 		if ((pde & PG_PS) != 0)
1709 			rtval = (pde & PG_PS_FRAME) | (va & PDRMASK);
1710 		else {
1711 			pte = pmap_pte_ufast(pmap, va, pde);
1712 			rtval = (pte & PG_FRAME) | (va & PAGE_MASK);
1713 		}
1714 	}
1715 	PMAP_UNLOCK(pmap);
1716 	return (rtval);
1717 }
1718 
1719 /*
1720  *	Routine:	pmap_extract_and_hold
1721  *	Function:
1722  *		Atomically extract and hold the physical page
1723  *		with the given pmap and virtual address pair
1724  *		if that mapping permits the given protection.
1725  */
1726 static vm_page_t
__CONCAT(PMTYPE,extract_and_hold)1727 __CONCAT(PMTYPE, extract_and_hold)(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1728 {
1729 	pd_entry_t pde;
1730 	pt_entry_t pte;
1731 	vm_page_t m;
1732 
1733 	m = NULL;
1734 	PMAP_LOCK(pmap);
1735 	pde = *pmap_pde(pmap, va);
1736 	if (pde != 0) {
1737 		if (pde & PG_PS) {
1738 			if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0)
1739 				m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
1740 				    (va & PDRMASK));
1741 		} else {
1742 			pte = pmap_pte_ufast(pmap, va, pde);
1743 			if (pte != 0 &&
1744 			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0))
1745 				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
1746 		}
1747 		if (m != NULL && !vm_page_wire_mapped(m))
1748 			m = NULL;
1749 	}
1750 	PMAP_UNLOCK(pmap);
1751 	return (m);
1752 }
1753 
1754 /***************************************************
1755  * Low level mapping routines.....
1756  ***************************************************/
1757 
1758 /*
1759  * Add a wired page to the kva.
1760  * Note: not SMP coherent.
1761  *
1762  * This function may be used before pmap_bootstrap() is called.
1763  */
1764 static void
__CONCAT(PMTYPE,kenter)1765 __CONCAT(PMTYPE, kenter)(vm_offset_t va, vm_paddr_t pa)
1766 {
1767 	pt_entry_t *pte;
1768 
1769 	pte = vtopte(va);
1770 	pte_store(pte, pa | PG_RW | PG_V);
1771 }
1772 
1773 static __inline void
pmap_kenter_attr(vm_offset_t va,vm_paddr_t pa,int mode)1774 pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
1775 {
1776 	pt_entry_t *pte;
1777 
1778 	pte = vtopte(va);
1779 	pte_store(pte, pa | PG_RW | PG_V | pmap_cache_bits(kernel_pmap,
1780 	    mode, 0));
1781 }
1782 
1783 /*
1784  * Remove a page from the kernel pagetables.
1785  * Note: not SMP coherent.
1786  *
1787  * This function may be used before pmap_bootstrap() is called.
1788  */
1789 static void
__CONCAT(PMTYPE,kremove)1790 __CONCAT(PMTYPE, kremove)(vm_offset_t va)
1791 {
1792 	pt_entry_t *pte;
1793 
1794 	pte = vtopte(va);
1795 	pte_clear(pte);
1796 }
1797 
1798 /*
1799  *	Used to map a range of physical addresses into kernel
1800  *	virtual address space.
1801  *
1802  *	The value passed in '*virt' is a suggested virtual address for
1803  *	the mapping. Architectures which can support a direct-mapped
1804  *	physical to virtual region can return the appropriate address
1805  *	within that region, leaving '*virt' unchanged. Other
1806  *	architectures should map the pages starting at '*virt' and
1807  *	update '*virt' with the first usable address after the mapped
1808  *	region.
1809  */
1810 static vm_offset_t
__CONCAT(PMTYPE,map)1811 __CONCAT(PMTYPE, map)(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end,
1812     int prot)
1813 {
1814 	vm_offset_t va, sva;
1815 	vm_paddr_t superpage_offset;
1816 	pd_entry_t newpde;
1817 
1818 	va = *virt;
1819 	/*
1820 	 * Does the physical address range's size and alignment permit at
1821 	 * least one superpage mapping to be created?
1822 	 */
1823 	superpage_offset = start & PDRMASK;
1824 	if ((end - start) - ((NBPDR - superpage_offset) & PDRMASK) >= NBPDR) {
1825 		/*
1826 		 * Increase the starting virtual address so that its alignment
1827 		 * does not preclude the use of superpage mappings.
1828 		 */
1829 		if ((va & PDRMASK) < superpage_offset)
1830 			va = (va & ~PDRMASK) + superpage_offset;
1831 		else if ((va & PDRMASK) > superpage_offset)
1832 			va = ((va + PDRMASK) & ~PDRMASK) + superpage_offset;
1833 	}
1834 	sva = va;
1835 	while (start < end) {
1836 		if ((start & PDRMASK) == 0 && end - start >= NBPDR &&
1837 		    pseflag != 0) {
1838 			KASSERT((va & PDRMASK) == 0,
1839 			    ("pmap_map: misaligned va %#x", va));
1840 			newpde = start | PG_PS | PG_RW | PG_V;
1841 			pmap_kenter_pde(va, newpde);
1842 			va += NBPDR;
1843 			start += NBPDR;
1844 		} else {
1845 			pmap_kenter(va, start);
1846 			va += PAGE_SIZE;
1847 			start += PAGE_SIZE;
1848 		}
1849 	}
1850 	pmap_invalidate_range_int(kernel_pmap, sva, va);
1851 	*virt = va;
1852 	return (sva);
1853 }
1854 
1855 /*
1856  * Add a list of wired pages to the kva
1857  * this routine is only used for temporary
1858  * kernel mappings that do not need to have
1859  * page modification or references recorded.
1860  * Note that old mappings are simply written
1861  * over.  The page *must* be wired.
1862  * Note: SMP coherent.  Uses a ranged shootdown IPI.
1863  */
1864 static void
__CONCAT(PMTYPE,qenter)1865 __CONCAT(PMTYPE, qenter)(vm_offset_t sva, vm_page_t *ma, int count)
1866 {
1867 	pt_entry_t *endpte, oldpte, pa, *pte;
1868 	vm_page_t m;
1869 
1870 	oldpte = 0;
1871 	pte = vtopte(sva);
1872 	endpte = pte + count;
1873 	while (pte < endpte) {
1874 		m = *ma++;
1875 		pa = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(kernel_pmap,
1876 		    m->md.pat_mode, 0);
1877 		if ((*pte & (PG_FRAME | PG_PTE_CACHE)) != pa) {
1878 			oldpte |= *pte;
1879 			pte_store(pte, pa | pg_nx | PG_RW | PG_V);
1880 		}
1881 		pte++;
1882 	}
1883 	if (__predict_false((oldpte & PG_V) != 0))
1884 		pmap_invalidate_range_int(kernel_pmap, sva, sva + count *
1885 		    PAGE_SIZE);
1886 }
1887 
1888 /*
1889  * This routine tears out page mappings from the
1890  * kernel -- it is meant only for temporary mappings.
1891  * Note: SMP coherent.  Uses a ranged shootdown IPI.
1892  */
1893 static void
__CONCAT(PMTYPE,qremove)1894 __CONCAT(PMTYPE, qremove)(vm_offset_t sva, int count)
1895 {
1896 	vm_offset_t va;
1897 
1898 	va = sva;
1899 	while (count-- > 0) {
1900 		pmap_kremove(va);
1901 		va += PAGE_SIZE;
1902 	}
1903 	pmap_invalidate_range_int(kernel_pmap, sva, va);
1904 }
1905 
1906 /***************************************************
1907  * Page table page management routines.....
1908  ***************************************************/
1909 /*
1910  * Schedule the specified unused page table page to be freed.  Specifically,
1911  * add the page to the specified list of pages that will be released to the
1912  * physical memory manager after the TLB has been updated.
1913  */
1914 static __inline void
pmap_add_delayed_free_list(vm_page_t m,struct spglist * free,boolean_t set_PG_ZERO)1915 pmap_add_delayed_free_list(vm_page_t m, struct spglist *free,
1916     boolean_t set_PG_ZERO)
1917 {
1918 
1919 	if (set_PG_ZERO)
1920 		m->flags |= PG_ZERO;
1921 	else
1922 		m->flags &= ~PG_ZERO;
1923 	SLIST_INSERT_HEAD(free, m, plinks.s.ss);
1924 }
1925 
1926 /*
1927  * Inserts the specified page table page into the specified pmap's collection
1928  * of idle page table pages.  Each of a pmap's page table pages is responsible
1929  * for mapping a distinct range of virtual addresses.  The pmap's collection is
1930  * ordered by this virtual address range.
1931  *
1932  * If "promoted" is false, then the page table page "mpte" must be zero filled.
1933  */
1934 static __inline int
pmap_insert_pt_page(pmap_t pmap,vm_page_t mpte,bool promoted)1935 pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte, bool promoted)
1936 {
1937 
1938 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1939 	mpte->valid = promoted ? VM_PAGE_BITS_ALL : 0;
1940 	return (vm_radix_insert(&pmap->pm_root, mpte));
1941 }
1942 
1943 /*
1944  * Removes the page table page mapping the specified virtual address from the
1945  * specified pmap's collection of idle page table pages, and returns it.
1946  * Otherwise, returns NULL if there is no page table page corresponding to the
1947  * specified virtual address.
1948  */
1949 static __inline vm_page_t
pmap_remove_pt_page(pmap_t pmap,vm_offset_t va)1950 pmap_remove_pt_page(pmap_t pmap, vm_offset_t va)
1951 {
1952 
1953 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1954 	return (vm_radix_remove(&pmap->pm_root, va >> PDRSHIFT));
1955 }
1956 
1957 /*
1958  * Decrements a page table page's reference count, which is used to record the
1959  * number of valid page table entries within the page.  If the reference count
1960  * drops to zero, then the page table page is unmapped.  Returns TRUE if the
1961  * page table page was unmapped and FALSE otherwise.
1962  */
1963 static inline boolean_t
pmap_unwire_ptp(pmap_t pmap,vm_page_t m,struct spglist * free)1964 pmap_unwire_ptp(pmap_t pmap, vm_page_t m, struct spglist *free)
1965 {
1966 
1967 	--m->ref_count;
1968 	if (m->ref_count == 0) {
1969 		_pmap_unwire_ptp(pmap, m, free);
1970 		return (TRUE);
1971 	} else
1972 		return (FALSE);
1973 }
1974 
1975 static void
_pmap_unwire_ptp(pmap_t pmap,vm_page_t m,struct spglist * free)1976 _pmap_unwire_ptp(pmap_t pmap, vm_page_t m, struct spglist *free)
1977 {
1978 
1979 	/*
1980 	 * unmap the page table page
1981 	 */
1982 	pmap->pm_pdir[m->pindex] = 0;
1983 	--pmap->pm_stats.resident_count;
1984 
1985 	/*
1986 	 * There is not need to invalidate the recursive mapping since
1987 	 * we never instantiate such mapping for the usermode pmaps,
1988 	 * and never remove page table pages from the kernel pmap.
1989 	 * Put page on a list so that it is released since all TLB
1990 	 * shootdown is done.
1991 	 */
1992 	MPASS(pmap != kernel_pmap);
1993 	pmap_add_delayed_free_list(m, free, TRUE);
1994 }
1995 
1996 /*
1997  * After removing a page table entry, this routine is used to
1998  * conditionally free the page, and manage the reference count.
1999  */
2000 static int
pmap_unuse_pt(pmap_t pmap,vm_offset_t va,struct spglist * free)2001 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, struct spglist *free)
2002 {
2003 	pd_entry_t ptepde;
2004 	vm_page_t mpte;
2005 
2006 	if (pmap == kernel_pmap)
2007 		return (0);
2008 	ptepde = *pmap_pde(pmap, va);
2009 	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
2010 	return (pmap_unwire_ptp(pmap, mpte, free));
2011 }
2012 
2013 /*
2014  * Release a page table page reference after a failed attempt to create a
2015  * mapping.
2016  */
2017 static void
pmap_abort_ptp(pmap_t pmap,vm_offset_t va,vm_page_t mpte)2018 pmap_abort_ptp(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
2019 {
2020 	struct spglist free;
2021 
2022 	SLIST_INIT(&free);
2023 	if (pmap_unwire_ptp(pmap, mpte, &free)) {
2024 		/*
2025 		 * Although "va" was never mapped, paging-structure caches
2026 		 * could nonetheless have entries that refer to the freed
2027 		 * page table pages.  Invalidate those entries.
2028 		 */
2029 		pmap_invalidate_page_int(pmap, va);
2030 		vm_page_free_pages_toq(&free, true);
2031 	}
2032 }
2033 
2034 /*
2035  * Initialize the pmap for the swapper process.
2036  */
2037 static void
__CONCAT(PMTYPE,pinit0)2038 __CONCAT(PMTYPE, pinit0)(pmap_t pmap)
2039 {
2040 
2041 	PMAP_LOCK_INIT(pmap);
2042 	pmap->pm_pdir = IdlePTD;
2043 #ifdef PMAP_PAE_COMP
2044 	pmap->pm_pdpt = IdlePDPT;
2045 #endif
2046 	pmap->pm_root.rt_root = 0;
2047 	CPU_ZERO(&pmap->pm_active);
2048 	TAILQ_INIT(&pmap->pm_pvchunk);
2049 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
2050 	pmap_activate_boot(pmap);
2051 }
2052 
2053 /*
2054  * Initialize a preallocated and zeroed pmap structure,
2055  * such as one in a vmspace structure.
2056  */
2057 static int
__CONCAT(PMTYPE,pinit)2058 __CONCAT(PMTYPE, pinit)(pmap_t pmap)
2059 {
2060 	vm_page_t m;
2061 	int i;
2062 
2063 	/*
2064 	 * No need to allocate page table space yet but we do need a valid
2065 	 * page directory table.
2066 	 */
2067 	if (pmap->pm_pdir == NULL) {
2068 		pmap->pm_pdir = (pd_entry_t *)kva_alloc(NBPTD);
2069 		if (pmap->pm_pdir == NULL)
2070 			return (0);
2071 #ifdef PMAP_PAE_COMP
2072 		pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
2073 		KASSERT(((vm_offset_t)pmap->pm_pdpt &
2074 		    ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
2075 		    ("pmap_pinit: pdpt misaligned"));
2076 		KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
2077 		    ("pmap_pinit: pdpt above 4g"));
2078 #endif
2079 		pmap->pm_root.rt_root = 0;
2080 	}
2081 	KASSERT(vm_radix_is_empty(&pmap->pm_root),
2082 	    ("pmap_pinit: pmap has reserved page table page(s)"));
2083 
2084 	/*
2085 	 * allocate the page directory page(s)
2086 	 */
2087 	for (i = 0; i < NPGPTD; i++) {
2088 		m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
2089 		    VM_ALLOC_WIRED | VM_ALLOC_ZERO | VM_ALLOC_WAITOK);
2090 		pmap->pm_ptdpg[i] = m;
2091 #ifdef PMAP_PAE_COMP
2092 		pmap->pm_pdpt[i] = VM_PAGE_TO_PHYS(m) | PG_V;
2093 #endif
2094 	}
2095 
2096 	pmap_qenter((vm_offset_t)pmap->pm_pdir, pmap->pm_ptdpg, NPGPTD);
2097 #ifdef PMAP_PAE_COMP
2098 	if ((cpu_feature & CPUID_PAT) == 0) {
2099 		pmap_invalidate_cache_range(
2100 		    trunc_page((vm_offset_t)pmap->pm_pdpt),
2101 		    round_page((vm_offset_t)pmap->pm_pdpt +
2102 		    NPGPTD * sizeof(pdpt_entry_t)));
2103 	}
2104 #endif
2105 
2106 	for (i = 0; i < NPGPTD; i++)
2107 		if ((pmap->pm_ptdpg[i]->flags & PG_ZERO) == 0)
2108 			pagezero(pmap->pm_pdir + (i * NPDEPG));
2109 
2110 	/* Install the trampoline mapping. */
2111 	pmap->pm_pdir[TRPTDI] = PTD[TRPTDI];
2112 
2113 	CPU_ZERO(&pmap->pm_active);
2114 	TAILQ_INIT(&pmap->pm_pvchunk);
2115 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
2116 
2117 	return (1);
2118 }
2119 
2120 /*
2121  * this routine is called if the page table page is not
2122  * mapped correctly.
2123  */
2124 static vm_page_t
_pmap_allocpte(pmap_t pmap,u_int ptepindex,u_int flags)2125 _pmap_allocpte(pmap_t pmap, u_int ptepindex, u_int flags)
2126 {
2127 	vm_paddr_t ptepa;
2128 	vm_page_t m;
2129 
2130 	/*
2131 	 * Allocate a page table page.
2132 	 */
2133 	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
2134 	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
2135 		if ((flags & PMAP_ENTER_NOSLEEP) == 0) {
2136 			PMAP_UNLOCK(pmap);
2137 			rw_wunlock(&pvh_global_lock);
2138 			vm_wait(NULL);
2139 			rw_wlock(&pvh_global_lock);
2140 			PMAP_LOCK(pmap);
2141 		}
2142 
2143 		/*
2144 		 * Indicate the need to retry.  While waiting, the page table
2145 		 * page may have been allocated.
2146 		 */
2147 		return (NULL);
2148 	}
2149 	if ((m->flags & PG_ZERO) == 0)
2150 		pmap_zero_page(m);
2151 
2152 	/*
2153 	 * Map the pagetable page into the process address space, if
2154 	 * it isn't already there.
2155 	 */
2156 
2157 	pmap->pm_stats.resident_count++;
2158 
2159 	ptepa = VM_PAGE_TO_PHYS(m);
2160 	pmap->pm_pdir[ptepindex] =
2161 		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
2162 
2163 	return (m);
2164 }
2165 
2166 static vm_page_t
pmap_allocpte(pmap_t pmap,vm_offset_t va,u_int flags)2167 pmap_allocpte(pmap_t pmap, vm_offset_t va, u_int flags)
2168 {
2169 	u_int ptepindex;
2170 	pd_entry_t ptepa;
2171 	vm_page_t m;
2172 
2173 	/*
2174 	 * Calculate pagetable page index
2175 	 */
2176 	ptepindex = va >> PDRSHIFT;
2177 retry:
2178 	/*
2179 	 * Get the page directory entry
2180 	 */
2181 	ptepa = pmap->pm_pdir[ptepindex];
2182 
2183 	/*
2184 	 * This supports switching from a 4MB page to a
2185 	 * normal 4K page.
2186 	 */
2187 	if (ptepa & PG_PS) {
2188 		(void)pmap_demote_pde(pmap, &pmap->pm_pdir[ptepindex], va);
2189 		ptepa = pmap->pm_pdir[ptepindex];
2190 	}
2191 
2192 	/*
2193 	 * If the page table page is mapped, we just increment the
2194 	 * hold count, and activate it.
2195 	 */
2196 	if (ptepa) {
2197 		m = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
2198 		m->ref_count++;
2199 	} else {
2200 		/*
2201 		 * Here if the pte page isn't mapped, or if it has
2202 		 * been deallocated.
2203 		 */
2204 		m = _pmap_allocpte(pmap, ptepindex, flags);
2205 		if (m == NULL && (flags & PMAP_ENTER_NOSLEEP) == 0)
2206 			goto retry;
2207 	}
2208 	return (m);
2209 }
2210 
2211 /***************************************************
2212 * Pmap allocation/deallocation routines.
2213  ***************************************************/
2214 
2215 /*
2216  * Release any resources held by the given physical map.
2217  * Called when a pmap initialized by pmap_pinit is being released.
2218  * Should only be called if the map contains no valid mappings.
2219  */
2220 static void
__CONCAT(PMTYPE,release)2221 __CONCAT(PMTYPE, release)(pmap_t pmap)
2222 {
2223 	vm_page_t m;
2224 	int i;
2225 
2226 	KASSERT(pmap->pm_stats.resident_count == 0,
2227 	    ("pmap_release: pmap resident count %ld != 0",
2228 	    pmap->pm_stats.resident_count));
2229 	KASSERT(vm_radix_is_empty(&pmap->pm_root),
2230 	    ("pmap_release: pmap has reserved page table page(s)"));
2231 	KASSERT(CPU_EMPTY(&pmap->pm_active),
2232 	    ("releasing active pmap %p", pmap));
2233 
2234 	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
2235 
2236 	for (i = 0; i < NPGPTD; i++) {
2237 		m = pmap->pm_ptdpg[i];
2238 #ifdef PMAP_PAE_COMP
2239 		KASSERT(VM_PAGE_TO_PHYS(m) == (pmap->pm_pdpt[i] & PG_FRAME),
2240 		    ("pmap_release: got wrong ptd page"));
2241 #endif
2242 		vm_page_unwire_noq(m);
2243 		vm_page_free(m);
2244 	}
2245 }
2246 
2247 /*
2248  * grow the number of kernel page table entries, if needed
2249  */
2250 static void
__CONCAT(PMTYPE,growkernel)2251 __CONCAT(PMTYPE, growkernel)(vm_offset_t addr)
2252 {
2253 	vm_paddr_t ptppaddr;
2254 	vm_page_t nkpg;
2255 	pd_entry_t newpdir;
2256 
2257 	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
2258 	addr = roundup2(addr, NBPDR);
2259 	if (addr - 1 >= vm_map_max(kernel_map))
2260 		addr = vm_map_max(kernel_map);
2261 	while (kernel_vm_end < addr) {
2262 		if (pdir_pde(PTD, kernel_vm_end)) {
2263 			kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
2264 			if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
2265 				kernel_vm_end = vm_map_max(kernel_map);
2266 				break;
2267 			}
2268 			continue;
2269 		}
2270 
2271 		nkpg = vm_page_alloc(NULL, kernel_vm_end >> PDRSHIFT,
2272 		    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
2273 		    VM_ALLOC_ZERO);
2274 		if (nkpg == NULL)
2275 			panic("pmap_growkernel: no memory to grow kernel");
2276 
2277 		nkpt++;
2278 
2279 		if ((nkpg->flags & PG_ZERO) == 0)
2280 			pmap_zero_page(nkpg);
2281 		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
2282 		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
2283 		pdir_pde(KPTD, kernel_vm_end) = newpdir;
2284 
2285 		pmap_kenter_pde(kernel_vm_end, newpdir);
2286 		kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
2287 		if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
2288 			kernel_vm_end = vm_map_max(kernel_map);
2289 			break;
2290 		}
2291 	}
2292 }
2293 
2294 /***************************************************
2295  * page management routines.
2296  ***************************************************/
2297 
2298 CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
2299 CTASSERT(_NPCM == 11);
2300 CTASSERT(_NPCPV == 336);
2301 
2302 static __inline struct pv_chunk *
pv_to_chunk(pv_entry_t pv)2303 pv_to_chunk(pv_entry_t pv)
2304 {
2305 
2306 	return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
2307 }
2308 
2309 #define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
2310 
2311 #define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
2312 #define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
2313 
2314 static const uint32_t pc_freemask[_NPCM] = {
2315 	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2316 	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2317 	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2318 	PC_FREE0_9, PC_FREE10
2319 };
2320 
2321 #ifdef PV_STATS
2322 extern int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
2323 extern long pv_entry_frees, pv_entry_allocs;
2324 extern int pv_entry_spare;
2325 #endif
2326 
2327 /*
2328  * We are in a serious low memory condition.  Resort to
2329  * drastic measures to free some pages so we can allocate
2330  * another pv entry chunk.
2331  */
2332 static vm_page_t
pmap_pv_reclaim(pmap_t locked_pmap)2333 pmap_pv_reclaim(pmap_t locked_pmap)
2334 {
2335 	struct pch newtail;
2336 	struct pv_chunk *pc;
2337 	struct md_page *pvh;
2338 	pd_entry_t *pde;
2339 	pmap_t pmap;
2340 	pt_entry_t *pte, tpte;
2341 	pv_entry_t pv;
2342 	vm_offset_t va;
2343 	vm_page_t m, m_pc;
2344 	struct spglist free;
2345 	uint32_t inuse;
2346 	int bit, field, freed;
2347 
2348 	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
2349 	pmap = NULL;
2350 	m_pc = NULL;
2351 	SLIST_INIT(&free);
2352 	TAILQ_INIT(&newtail);
2353 	while ((pc = TAILQ_FIRST(&pv_chunks)) != NULL && (pv_vafree == 0 ||
2354 	    SLIST_EMPTY(&free))) {
2355 		TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2356 		if (pmap != pc->pc_pmap) {
2357 			if (pmap != NULL) {
2358 				pmap_invalidate_all_int(pmap);
2359 				if (pmap != locked_pmap)
2360 					PMAP_UNLOCK(pmap);
2361 			}
2362 			pmap = pc->pc_pmap;
2363 			/* Avoid deadlock and lock recursion. */
2364 			if (pmap > locked_pmap)
2365 				PMAP_LOCK(pmap);
2366 			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap)) {
2367 				pmap = NULL;
2368 				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2369 				continue;
2370 			}
2371 		}
2372 
2373 		/*
2374 		 * Destroy every non-wired, 4 KB page mapping in the chunk.
2375 		 */
2376 		freed = 0;
2377 		for (field = 0; field < _NPCM; field++) {
2378 			for (inuse = ~pc->pc_map[field] & pc_freemask[field];
2379 			    inuse != 0; inuse &= ~(1UL << bit)) {
2380 				bit = bsfl(inuse);
2381 				pv = &pc->pc_pventry[field * 32 + bit];
2382 				va = pv->pv_va;
2383 				pde = pmap_pde(pmap, va);
2384 				if ((*pde & PG_PS) != 0)
2385 					continue;
2386 				pte = __CONCAT(PMTYPE, pte)(pmap, va);
2387 				tpte = *pte;
2388 				if ((tpte & PG_W) == 0)
2389 					tpte = pte_load_clear(pte);
2390 				pmap_pte_release(pte);
2391 				if ((tpte & PG_W) != 0)
2392 					continue;
2393 				KASSERT(tpte != 0,
2394 				    ("pmap_pv_reclaim: pmap %p va %x zero pte",
2395 				    pmap, va));
2396 				if ((tpte & PG_G) != 0)
2397 					pmap_invalidate_page_int(pmap, va);
2398 				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
2399 				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2400 					vm_page_dirty(m);
2401 				if ((tpte & PG_A) != 0)
2402 					vm_page_aflag_set(m, PGA_REFERENCED);
2403 				TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
2404 				if (TAILQ_EMPTY(&m->md.pv_list) &&
2405 				    (m->flags & PG_FICTITIOUS) == 0) {
2406 					pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2407 					if (TAILQ_EMPTY(&pvh->pv_list)) {
2408 						vm_page_aflag_clear(m,
2409 						    PGA_WRITEABLE);
2410 					}
2411 				}
2412 				pc->pc_map[field] |= 1UL << bit;
2413 				pmap_unuse_pt(pmap, va, &free);
2414 				freed++;
2415 			}
2416 		}
2417 		if (freed == 0) {
2418 			TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2419 			continue;
2420 		}
2421 		/* Every freed mapping is for a 4 KB page. */
2422 		pmap->pm_stats.resident_count -= freed;
2423 		PV_STAT(pv_entry_frees += freed);
2424 		PV_STAT(pv_entry_spare += freed);
2425 		pv_entry_count -= freed;
2426 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2427 		for (field = 0; field < _NPCM; field++)
2428 			if (pc->pc_map[field] != pc_freemask[field]) {
2429 				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
2430 				    pc_list);
2431 				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2432 
2433 				/*
2434 				 * One freed pv entry in locked_pmap is
2435 				 * sufficient.
2436 				 */
2437 				if (pmap == locked_pmap)
2438 					goto out;
2439 				break;
2440 			}
2441 		if (field == _NPCM) {
2442 			PV_STAT(pv_entry_spare -= _NPCPV);
2443 			PV_STAT(pc_chunk_count--);
2444 			PV_STAT(pc_chunk_frees++);
2445 			/* Entire chunk is free; return it. */
2446 			m_pc = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2447 			pmap_qremove((vm_offset_t)pc, 1);
2448 			pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2449 			break;
2450 		}
2451 	}
2452 out:
2453 	TAILQ_CONCAT(&pv_chunks, &newtail, pc_lru);
2454 	if (pmap != NULL) {
2455 		pmap_invalidate_all_int(pmap);
2456 		if (pmap != locked_pmap)
2457 			PMAP_UNLOCK(pmap);
2458 	}
2459 	if (m_pc == NULL && pv_vafree != 0 && SLIST_EMPTY(&free)) {
2460 		m_pc = SLIST_FIRST(&free);
2461 		SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2462 		/* Recycle a freed page table page. */
2463 		m_pc->ref_count = 1;
2464 	}
2465 	vm_page_free_pages_toq(&free, true);
2466 	return (m_pc);
2467 }
2468 
2469 /*
2470  * free the pv_entry back to the free list
2471  */
2472 static void
free_pv_entry(pmap_t pmap,pv_entry_t pv)2473 free_pv_entry(pmap_t pmap, pv_entry_t pv)
2474 {
2475 	struct pv_chunk *pc;
2476 	int idx, field, bit;
2477 
2478 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2479 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2480 	PV_STAT(pv_entry_frees++);
2481 	PV_STAT(pv_entry_spare++);
2482 	pv_entry_count--;
2483 	pc = pv_to_chunk(pv);
2484 	idx = pv - &pc->pc_pventry[0];
2485 	field = idx / 32;
2486 	bit = idx % 32;
2487 	pc->pc_map[field] |= 1ul << bit;
2488 	for (idx = 0; idx < _NPCM; idx++)
2489 		if (pc->pc_map[idx] != pc_freemask[idx]) {
2490 			/*
2491 			 * 98% of the time, pc is already at the head of the
2492 			 * list.  If it isn't already, move it to the head.
2493 			 */
2494 			if (__predict_false(TAILQ_FIRST(&pmap->pm_pvchunk) !=
2495 			    pc)) {
2496 				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2497 				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
2498 				    pc_list);
2499 			}
2500 			return;
2501 		}
2502 	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2503 	free_pv_chunk(pc);
2504 }
2505 
2506 static void
free_pv_chunk(struct pv_chunk * pc)2507 free_pv_chunk(struct pv_chunk *pc)
2508 {
2509 	vm_page_t m;
2510 
2511  	TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2512 	PV_STAT(pv_entry_spare -= _NPCPV);
2513 	PV_STAT(pc_chunk_count--);
2514 	PV_STAT(pc_chunk_frees++);
2515 	/* entire chunk is free, return it */
2516 	m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2517 	pmap_qremove((vm_offset_t)pc, 1);
2518 	vm_page_unwire_noq(m);
2519 	vm_page_free(m);
2520 	pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2521 }
2522 
2523 /*
2524  * get a new pv_entry, allocating a block from the system
2525  * when needed.
2526  */
2527 static pv_entry_t
get_pv_entry(pmap_t pmap,boolean_t try)2528 get_pv_entry(pmap_t pmap, boolean_t try)
2529 {
2530 	static const struct timeval printinterval = { 60, 0 };
2531 	static struct timeval lastprint;
2532 	int bit, field;
2533 	pv_entry_t pv;
2534 	struct pv_chunk *pc;
2535 	vm_page_t m;
2536 
2537 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2538 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2539 	PV_STAT(pv_entry_allocs++);
2540 	pv_entry_count++;
2541 	if (pv_entry_count > pv_entry_high_water)
2542 		if (ratecheck(&lastprint, &printinterval))
2543 			printf("Approaching the limit on PV entries, consider "
2544 			    "increasing either the vm.pmap.shpgperproc or the "
2545 			    "vm.pmap.pv_entries tunable.\n");
2546 retry:
2547 	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2548 	if (pc != NULL) {
2549 		for (field = 0; field < _NPCM; field++) {
2550 			if (pc->pc_map[field]) {
2551 				bit = bsfl(pc->pc_map[field]);
2552 				break;
2553 			}
2554 		}
2555 		if (field < _NPCM) {
2556 			pv = &pc->pc_pventry[field * 32 + bit];
2557 			pc->pc_map[field] &= ~(1ul << bit);
2558 			/* If this was the last item, move it to tail */
2559 			for (field = 0; field < _NPCM; field++)
2560 				if (pc->pc_map[field] != 0) {
2561 					PV_STAT(pv_entry_spare--);
2562 					return (pv);	/* not full, return */
2563 				}
2564 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2565 			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2566 			PV_STAT(pv_entry_spare--);
2567 			return (pv);
2568 		}
2569 	}
2570 	/*
2571 	 * Access to the ptelist "pv_vafree" is synchronized by the pvh
2572 	 * global lock.  If "pv_vafree" is currently non-empty, it will
2573 	 * remain non-empty until pmap_ptelist_alloc() completes.
2574 	 */
2575 	if (pv_vafree == 0 || (m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
2576 	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
2577 		if (try) {
2578 			pv_entry_count--;
2579 			PV_STAT(pc_chunk_tryfail++);
2580 			return (NULL);
2581 		}
2582 		m = pmap_pv_reclaim(pmap);
2583 		if (m == NULL)
2584 			goto retry;
2585 	}
2586 	PV_STAT(pc_chunk_count++);
2587 	PV_STAT(pc_chunk_allocs++);
2588 	pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
2589 	pmap_qenter((vm_offset_t)pc, &m, 1);
2590 	pc->pc_pmap = pmap;
2591 	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
2592 	for (field = 1; field < _NPCM; field++)
2593 		pc->pc_map[field] = pc_freemask[field];
2594 	TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
2595 	pv = &pc->pc_pventry[0];
2596 	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2597 	PV_STAT(pv_entry_spare += _NPCPV - 1);
2598 	return (pv);
2599 }
2600 
2601 static __inline pv_entry_t
pmap_pvh_remove(struct md_page * pvh,pmap_t pmap,vm_offset_t va)2602 pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2603 {
2604 	pv_entry_t pv;
2605 
2606 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2607 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
2608 		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
2609 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
2610 			break;
2611 		}
2612 	}
2613 	return (pv);
2614 }
2615 
2616 static void
pmap_pv_demote_pde(pmap_t pmap,vm_offset_t va,vm_paddr_t pa)2617 pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2618 {
2619 	struct md_page *pvh;
2620 	pv_entry_t pv;
2621 	vm_offset_t va_last;
2622 	vm_page_t m;
2623 
2624 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2625 	KASSERT((pa & PDRMASK) == 0,
2626 	    ("pmap_pv_demote_pde: pa is not 4mpage aligned"));
2627 
2628 	/*
2629 	 * Transfer the 4mpage's pv entry for this mapping to the first
2630 	 * page's pv list.
2631 	 */
2632 	pvh = pa_to_pvh(pa);
2633 	va = trunc_4mpage(va);
2634 	pv = pmap_pvh_remove(pvh, pmap, va);
2635 	KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
2636 	m = PHYS_TO_VM_PAGE(pa);
2637 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2638 	/* Instantiate the remaining NPTEPG - 1 pv entries. */
2639 	va_last = va + NBPDR - PAGE_SIZE;
2640 	do {
2641 		m++;
2642 		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2643 		    ("pmap_pv_demote_pde: page %p is not managed", m));
2644 		va += PAGE_SIZE;
2645 		pmap_insert_entry(pmap, va, m);
2646 	} while (va < va_last);
2647 }
2648 
2649 #if VM_NRESERVLEVEL > 0
2650 static void
pmap_pv_promote_pde(pmap_t pmap,vm_offset_t va,vm_paddr_t pa)2651 pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2652 {
2653 	struct md_page *pvh;
2654 	pv_entry_t pv;
2655 	vm_offset_t va_last;
2656 	vm_page_t m;
2657 
2658 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2659 	KASSERT((pa & PDRMASK) == 0,
2660 	    ("pmap_pv_promote_pde: pa is not 4mpage aligned"));
2661 
2662 	/*
2663 	 * Transfer the first page's pv entry for this mapping to the
2664 	 * 4mpage's pv list.  Aside from avoiding the cost of a call
2665 	 * to get_pv_entry(), a transfer avoids the possibility that
2666 	 * get_pv_entry() calls pmap_collect() and that pmap_collect()
2667 	 * removes one of the mappings that is being promoted.
2668 	 */
2669 	m = PHYS_TO_VM_PAGE(pa);
2670 	va = trunc_4mpage(va);
2671 	pv = pmap_pvh_remove(&m->md, pmap, va);
2672 	KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
2673 	pvh = pa_to_pvh(pa);
2674 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
2675 	/* Free the remaining NPTEPG - 1 pv entries. */
2676 	va_last = va + NBPDR - PAGE_SIZE;
2677 	do {
2678 		m++;
2679 		va += PAGE_SIZE;
2680 		pmap_pvh_free(&m->md, pmap, va);
2681 	} while (va < va_last);
2682 }
2683 #endif /* VM_NRESERVLEVEL > 0 */
2684 
2685 static void
pmap_pvh_free(struct md_page * pvh,pmap_t pmap,vm_offset_t va)2686 pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2687 {
2688 	pv_entry_t pv;
2689 
2690 	pv = pmap_pvh_remove(pvh, pmap, va);
2691 	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
2692 	free_pv_entry(pmap, pv);
2693 }
2694 
2695 static void
pmap_remove_entry(pmap_t pmap,vm_page_t m,vm_offset_t va)2696 pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
2697 {
2698 	struct md_page *pvh;
2699 
2700 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2701 	pmap_pvh_free(&m->md, pmap, va);
2702 	if (TAILQ_EMPTY(&m->md.pv_list) && (m->flags & PG_FICTITIOUS) == 0) {
2703 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2704 		if (TAILQ_EMPTY(&pvh->pv_list))
2705 			vm_page_aflag_clear(m, PGA_WRITEABLE);
2706 	}
2707 }
2708 
2709 /*
2710  * Create a pv entry for page at pa for
2711  * (pmap, va).
2712  */
2713 static void
pmap_insert_entry(pmap_t pmap,vm_offset_t va,vm_page_t m)2714 pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2715 {
2716 	pv_entry_t pv;
2717 
2718 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2719 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2720 	pv = get_pv_entry(pmap, FALSE);
2721 	pv->pv_va = va;
2722 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2723 }
2724 
2725 /*
2726  * Conditionally create a pv entry.
2727  */
2728 static boolean_t
pmap_try_insert_pv_entry(pmap_t pmap,vm_offset_t va,vm_page_t m)2729 pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2730 {
2731 	pv_entry_t pv;
2732 
2733 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2734 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2735 	if (pv_entry_count < pv_entry_high_water &&
2736 	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2737 		pv->pv_va = va;
2738 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2739 		return (TRUE);
2740 	} else
2741 		return (FALSE);
2742 }
2743 
2744 /*
2745  * Create the pv entries for each of the pages within a superpage.
2746  */
2747 static bool
pmap_pv_insert_pde(pmap_t pmap,vm_offset_t va,pd_entry_t pde,u_int flags)2748 pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, pd_entry_t pde, u_int flags)
2749 {
2750 	struct md_page *pvh;
2751 	pv_entry_t pv;
2752 	bool noreclaim;
2753 
2754 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2755 	noreclaim = (flags & PMAP_ENTER_NORECLAIM) != 0;
2756 	if ((noreclaim && pv_entry_count >= pv_entry_high_water) ||
2757 	    (pv = get_pv_entry(pmap, noreclaim)) == NULL)
2758 		return (false);
2759 	pv->pv_va = va;
2760 	pvh = pa_to_pvh(pde & PG_PS_FRAME);
2761 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
2762 	return (true);
2763 }
2764 
2765 /*
2766  * Fills a page table page with mappings to consecutive physical pages.
2767  */
2768 static void
pmap_fill_ptp(pt_entry_t * firstpte,pt_entry_t newpte)2769 pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte)
2770 {
2771 	pt_entry_t *pte;
2772 
2773 	for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
2774 		*pte = newpte;
2775 		newpte += PAGE_SIZE;
2776 	}
2777 }
2778 
2779 /*
2780  * Tries to demote a 2- or 4MB page mapping.  If demotion fails, the
2781  * 2- or 4MB page mapping is invalidated.
2782  */
2783 static boolean_t
pmap_demote_pde(pmap_t pmap,pd_entry_t * pde,vm_offset_t va)2784 pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
2785 {
2786 	pd_entry_t newpde, oldpde;
2787 	pt_entry_t *firstpte, newpte;
2788 	vm_paddr_t mptepa;
2789 	vm_page_t mpte;
2790 	struct spglist free;
2791 	vm_offset_t sva;
2792 
2793 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2794 	oldpde = *pde;
2795 	KASSERT((oldpde & (PG_PS | PG_V)) == (PG_PS | PG_V),
2796 	    ("pmap_demote_pde: oldpde is missing PG_PS and/or PG_V"));
2797 	if ((oldpde & PG_A) == 0 || (mpte = pmap_remove_pt_page(pmap, va)) ==
2798 	    NULL) {
2799 		KASSERT((oldpde & PG_W) == 0,
2800 		    ("pmap_demote_pde: page table page for a wired mapping"
2801 		    " is missing"));
2802 
2803 		/*
2804 		 * Invalidate the 2- or 4MB page mapping and return
2805 		 * "failure" if the mapping was never accessed or the
2806 		 * allocation of the new page table page fails.
2807 		 */
2808 		if ((oldpde & PG_A) == 0 || (mpte = vm_page_alloc(NULL,
2809 		    va >> PDRSHIFT, VM_ALLOC_NOOBJ | VM_ALLOC_NORMAL |
2810 		    VM_ALLOC_WIRED)) == NULL) {
2811 			SLIST_INIT(&free);
2812 			sva = trunc_4mpage(va);
2813 			pmap_remove_pde(pmap, pde, sva, &free);
2814 			if ((oldpde & PG_G) == 0)
2815 				pmap_invalidate_pde_page(pmap, sva, oldpde);
2816 			vm_page_free_pages_toq(&free, true);
2817 			CTR2(KTR_PMAP, "pmap_demote_pde: failure for va %#x"
2818 			    " in pmap %p", va, pmap);
2819 			return (FALSE);
2820 		}
2821 		if (pmap != kernel_pmap) {
2822 			mpte->ref_count = NPTEPG;
2823 			pmap->pm_stats.resident_count++;
2824 		}
2825 	}
2826 	mptepa = VM_PAGE_TO_PHYS(mpte);
2827 
2828 	/*
2829 	 * If the page mapping is in the kernel's address space, then the
2830 	 * KPTmap can provide access to the page table page.  Otherwise,
2831 	 * temporarily map the page table page (mpte) into the kernel's
2832 	 * address space at either PADDR1 or PADDR2.
2833 	 */
2834 	if (pmap == kernel_pmap)
2835 		firstpte = &KPTmap[i386_btop(trunc_4mpage(va))];
2836 	else if (curthread->td_pinned > 0 && rw_wowned(&pvh_global_lock)) {
2837 		if ((*PMAP1 & PG_FRAME) != mptepa) {
2838 			*PMAP1 = mptepa | PG_RW | PG_V | PG_A | PG_M;
2839 #ifdef SMP
2840 			PMAP1cpu = PCPU_GET(cpuid);
2841 #endif
2842 			invlcaddr(PADDR1);
2843 			PMAP1changed++;
2844 		} else
2845 #ifdef SMP
2846 		if (PMAP1cpu != PCPU_GET(cpuid)) {
2847 			PMAP1cpu = PCPU_GET(cpuid);
2848 			invlcaddr(PADDR1);
2849 			PMAP1changedcpu++;
2850 		} else
2851 #endif
2852 			PMAP1unchanged++;
2853 		firstpte = PADDR1;
2854 	} else {
2855 		mtx_lock(&PMAP2mutex);
2856 		if ((*PMAP2 & PG_FRAME) != mptepa) {
2857 			*PMAP2 = mptepa | PG_RW | PG_V | PG_A | PG_M;
2858 			pmap_invalidate_page_int(kernel_pmap,
2859 			    (vm_offset_t)PADDR2);
2860 		}
2861 		firstpte = PADDR2;
2862 	}
2863 	newpde = mptepa | PG_M | PG_A | (oldpde & PG_U) | PG_RW | PG_V;
2864 	KASSERT((oldpde & PG_A) != 0,
2865 	    ("pmap_demote_pde: oldpde is missing PG_A"));
2866 	KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
2867 	    ("pmap_demote_pde: oldpde is missing PG_M"));
2868 	newpte = oldpde & ~PG_PS;
2869 	if ((newpte & PG_PDE_PAT) != 0)
2870 		newpte ^= PG_PDE_PAT | PG_PTE_PAT;
2871 
2872 	/*
2873 	 * If the page table page is not leftover from an earlier promotion,
2874 	 * initialize it.
2875 	 */
2876 	if (mpte->valid == 0)
2877 		pmap_fill_ptp(firstpte, newpte);
2878 
2879 	KASSERT((*firstpte & PG_FRAME) == (newpte & PG_FRAME),
2880 	    ("pmap_demote_pde: firstpte and newpte map different physical"
2881 	    " addresses"));
2882 
2883 	/*
2884 	 * If the mapping has changed attributes, update the page table
2885 	 * entries.
2886 	 */
2887 	if ((*firstpte & PG_PTE_PROMOTE) != (newpte & PG_PTE_PROMOTE))
2888 		pmap_fill_ptp(firstpte, newpte);
2889 
2890 	/*
2891 	 * Demote the mapping.  This pmap is locked.  The old PDE has
2892 	 * PG_A set.  If the old PDE has PG_RW set, it also has PG_M
2893 	 * set.  Thus, there is no danger of a race with another
2894 	 * processor changing the setting of PG_A and/or PG_M between
2895 	 * the read above and the store below.
2896 	 */
2897 	if (workaround_erratum383)
2898 		pmap_update_pde(pmap, va, pde, newpde);
2899 	else if (pmap == kernel_pmap)
2900 		pmap_kenter_pde(va, newpde);
2901 	else
2902 		pde_store(pde, newpde);
2903 	if (firstpte == PADDR2)
2904 		mtx_unlock(&PMAP2mutex);
2905 
2906 	/*
2907 	 * Invalidate the recursive mapping of the page table page.
2908 	 */
2909 	pmap_invalidate_page_int(pmap, (vm_offset_t)vtopte(va));
2910 
2911 	/*
2912 	 * Demote the pv entry.  This depends on the earlier demotion
2913 	 * of the mapping.  Specifically, the (re)creation of a per-
2914 	 * page pv entry might trigger the execution of pmap_collect(),
2915 	 * which might reclaim a newly (re)created per-page pv entry
2916 	 * and destroy the associated mapping.  In order to destroy
2917 	 * the mapping, the PDE must have already changed from mapping
2918 	 * the 2mpage to referencing the page table page.
2919 	 */
2920 	if ((oldpde & PG_MANAGED) != 0)
2921 		pmap_pv_demote_pde(pmap, va, oldpde & PG_PS_FRAME);
2922 
2923 	pmap_pde_demotions++;
2924 	CTR2(KTR_PMAP, "pmap_demote_pde: success for va %#x"
2925 	    " in pmap %p", va, pmap);
2926 	return (TRUE);
2927 }
2928 
2929 /*
2930  * Removes a 2- or 4MB page mapping from the kernel pmap.
2931  */
2932 static void
pmap_remove_kernel_pde(pmap_t pmap,pd_entry_t * pde,vm_offset_t va)2933 pmap_remove_kernel_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
2934 {
2935 	pd_entry_t newpde;
2936 	vm_paddr_t mptepa;
2937 	vm_page_t mpte;
2938 
2939 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2940 	mpte = pmap_remove_pt_page(pmap, va);
2941 	if (mpte == NULL)
2942 		panic("pmap_remove_kernel_pde: Missing pt page.");
2943 
2944 	mptepa = VM_PAGE_TO_PHYS(mpte);
2945 	newpde = mptepa | PG_M | PG_A | PG_RW | PG_V;
2946 
2947 	/*
2948 	 * If this page table page was unmapped by a promotion, then it
2949 	 * contains valid mappings.  Zero it to invalidate those mappings.
2950 	 */
2951 	if (mpte->valid != 0)
2952 		pagezero((void *)&KPTmap[i386_btop(trunc_4mpage(va))]);
2953 
2954 	/*
2955 	 * Remove the mapping.
2956 	 */
2957 	if (workaround_erratum383)
2958 		pmap_update_pde(pmap, va, pde, newpde);
2959 	else
2960 		pmap_kenter_pde(va, newpde);
2961 
2962 	/*
2963 	 * Invalidate the recursive mapping of the page table page.
2964 	 */
2965 	pmap_invalidate_page_int(pmap, (vm_offset_t)vtopte(va));
2966 }
2967 
2968 /*
2969  * pmap_remove_pde: do the things to unmap a superpage in a process
2970  */
2971 static void
pmap_remove_pde(pmap_t pmap,pd_entry_t * pdq,vm_offset_t sva,struct spglist * free)2972 pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
2973     struct spglist *free)
2974 {
2975 	struct md_page *pvh;
2976 	pd_entry_t oldpde;
2977 	vm_offset_t eva, va;
2978 	vm_page_t m, mpte;
2979 
2980 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2981 	KASSERT((sva & PDRMASK) == 0,
2982 	    ("pmap_remove_pde: sva is not 4mpage aligned"));
2983 	oldpde = pte_load_clear(pdq);
2984 	if (oldpde & PG_W)
2985 		pmap->pm_stats.wired_count -= NBPDR / PAGE_SIZE;
2986 
2987 	/*
2988 	 * Machines that don't support invlpg, also don't support
2989 	 * PG_G.
2990 	 */
2991 	if ((oldpde & PG_G) != 0)
2992 		pmap_invalidate_pde_page(kernel_pmap, sva, oldpde);
2993 
2994 	pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2995 	if (oldpde & PG_MANAGED) {
2996 		pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
2997 		pmap_pvh_free(pvh, pmap, sva);
2998 		eva = sva + NBPDR;
2999 		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
3000 		    va < eva; va += PAGE_SIZE, m++) {
3001 			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
3002 				vm_page_dirty(m);
3003 			if (oldpde & PG_A)
3004 				vm_page_aflag_set(m, PGA_REFERENCED);
3005 			if (TAILQ_EMPTY(&m->md.pv_list) &&
3006 			    TAILQ_EMPTY(&pvh->pv_list))
3007 				vm_page_aflag_clear(m, PGA_WRITEABLE);
3008 		}
3009 	}
3010 	if (pmap == kernel_pmap) {
3011 		pmap_remove_kernel_pde(pmap, pdq, sva);
3012 	} else {
3013 		mpte = pmap_remove_pt_page(pmap, sva);
3014 		if (mpte != NULL) {
3015 			KASSERT(mpte->valid == VM_PAGE_BITS_ALL,
3016 			    ("pmap_remove_pde: pte page not promoted"));
3017 			pmap->pm_stats.resident_count--;
3018 			KASSERT(mpte->ref_count == NPTEPG,
3019 			    ("pmap_remove_pde: pte page ref count error"));
3020 			mpte->ref_count = 0;
3021 			pmap_add_delayed_free_list(mpte, free, FALSE);
3022 		}
3023 	}
3024 }
3025 
3026 /*
3027  * pmap_remove_pte: do the things to unmap a page in a process
3028  */
3029 static int
pmap_remove_pte(pmap_t pmap,pt_entry_t * ptq,vm_offset_t va,struct spglist * free)3030 pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va,
3031     struct spglist *free)
3032 {
3033 	pt_entry_t oldpte;
3034 	vm_page_t m;
3035 
3036 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3037 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3038 	oldpte = pte_load_clear(ptq);
3039 	KASSERT(oldpte != 0,
3040 	    ("pmap_remove_pte: pmap %p va %x zero pte", pmap, va));
3041 	if (oldpte & PG_W)
3042 		pmap->pm_stats.wired_count -= 1;
3043 	/*
3044 	 * Machines that don't support invlpg, also don't support
3045 	 * PG_G.
3046 	 */
3047 	if (oldpte & PG_G)
3048 		pmap_invalidate_page_int(kernel_pmap, va);
3049 	pmap->pm_stats.resident_count -= 1;
3050 	if (oldpte & PG_MANAGED) {
3051 		m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
3052 		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
3053 			vm_page_dirty(m);
3054 		if (oldpte & PG_A)
3055 			vm_page_aflag_set(m, PGA_REFERENCED);
3056 		pmap_remove_entry(pmap, m, va);
3057 	}
3058 	return (pmap_unuse_pt(pmap, va, free));
3059 }
3060 
3061 /*
3062  * Remove a single page from a process address space
3063  */
3064 static void
pmap_remove_page(pmap_t pmap,vm_offset_t va,struct spglist * free)3065 pmap_remove_page(pmap_t pmap, vm_offset_t va, struct spglist *free)
3066 {
3067 	pt_entry_t *pte;
3068 
3069 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3070 	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
3071 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3072 	if ((pte = pmap_pte_quick(pmap, va)) == NULL || *pte == 0)
3073 		return;
3074 	pmap_remove_pte(pmap, pte, va, free);
3075 	pmap_invalidate_page_int(pmap, va);
3076 }
3077 
3078 /*
3079  * Removes the specified range of addresses from the page table page.
3080  */
3081 static bool
pmap_remove_ptes(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,struct spglist * free)3082 pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
3083     struct spglist *free)
3084 {
3085 	pt_entry_t *pte;
3086 	bool anyvalid;
3087 
3088 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3089 	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
3090 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3091 	anyvalid = false;
3092 	for (pte = pmap_pte_quick(pmap, sva); sva != eva; pte++,
3093 	    sva += PAGE_SIZE) {
3094 		if (*pte == 0)
3095 			continue;
3096 
3097 		/*
3098 		 * The TLB entry for a PG_G mapping is invalidated by
3099 		 * pmap_remove_pte().
3100 		 */
3101 		if ((*pte & PG_G) == 0)
3102 			anyvalid = true;
3103 
3104 		if (pmap_remove_pte(pmap, pte, sva, free))
3105 			break;
3106 	}
3107 	return (anyvalid);
3108 }
3109 
3110 /*
3111  *	Remove the given range of addresses from the specified map.
3112  *
3113  *	It is assumed that the start and end are properly
3114  *	rounded to the page size.
3115  */
3116 static void
__CONCAT(PMTYPE,remove)3117 __CONCAT(PMTYPE, remove)(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3118 {
3119 	vm_offset_t pdnxt;
3120 	pd_entry_t ptpaddr;
3121 	struct spglist free;
3122 	int anyvalid;
3123 
3124 	/*
3125 	 * Perform an unsynchronized read.  This is, however, safe.
3126 	 */
3127 	if (pmap->pm_stats.resident_count == 0)
3128 		return;
3129 
3130 	anyvalid = 0;
3131 	SLIST_INIT(&free);
3132 
3133 	rw_wlock(&pvh_global_lock);
3134 	sched_pin();
3135 	PMAP_LOCK(pmap);
3136 
3137 	/*
3138 	 * special handling of removing one page.  a very
3139 	 * common operation and easy to short circuit some
3140 	 * code.
3141 	 */
3142 	if ((sva + PAGE_SIZE == eva) &&
3143 	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
3144 		pmap_remove_page(pmap, sva, &free);
3145 		goto out;
3146 	}
3147 
3148 	for (; sva < eva; sva = pdnxt) {
3149 		u_int pdirindex;
3150 
3151 		/*
3152 		 * Calculate index for next page table.
3153 		 */
3154 		pdnxt = (sva + NBPDR) & ~PDRMASK;
3155 		if (pdnxt < sva)
3156 			pdnxt = eva;
3157 		if (pmap->pm_stats.resident_count == 0)
3158 			break;
3159 
3160 		pdirindex = sva >> PDRSHIFT;
3161 		ptpaddr = pmap->pm_pdir[pdirindex];
3162 
3163 		/*
3164 		 * Weed out invalid mappings. Note: we assume that the page
3165 		 * directory table is always allocated, and in kernel virtual.
3166 		 */
3167 		if (ptpaddr == 0)
3168 			continue;
3169 
3170 		/*
3171 		 * Check for large page.
3172 		 */
3173 		if ((ptpaddr & PG_PS) != 0) {
3174 			/*
3175 			 * Are we removing the entire large page?  If not,
3176 			 * demote the mapping and fall through.
3177 			 */
3178 			if (sva + NBPDR == pdnxt && eva >= pdnxt) {
3179 				/*
3180 				 * The TLB entry for a PG_G mapping is
3181 				 * invalidated by pmap_remove_pde().
3182 				 */
3183 				if ((ptpaddr & PG_G) == 0)
3184 					anyvalid = 1;
3185 				pmap_remove_pde(pmap,
3186 				    &pmap->pm_pdir[pdirindex], sva, &free);
3187 				continue;
3188 			} else if (!pmap_demote_pde(pmap,
3189 			    &pmap->pm_pdir[pdirindex], sva)) {
3190 				/* The large page mapping was destroyed. */
3191 				continue;
3192 			}
3193 		}
3194 
3195 		/*
3196 		 * Limit our scan to either the end of the va represented
3197 		 * by the current page table page, or to the end of the
3198 		 * range being removed.
3199 		 */
3200 		if (pdnxt > eva)
3201 			pdnxt = eva;
3202 
3203 		if (pmap_remove_ptes(pmap, sva, pdnxt, &free))
3204 			anyvalid = 1;
3205 	}
3206 out:
3207 	sched_unpin();
3208 	if (anyvalid)
3209 		pmap_invalidate_all_int(pmap);
3210 	rw_wunlock(&pvh_global_lock);
3211 	PMAP_UNLOCK(pmap);
3212 	vm_page_free_pages_toq(&free, true);
3213 }
3214 
3215 /*
3216  *	Routine:	pmap_remove_all
3217  *	Function:
3218  *		Removes this physical page from
3219  *		all physical maps in which it resides.
3220  *		Reflects back modify bits to the pager.
3221  *
3222  *	Notes:
3223  *		Original versions of this routine were very
3224  *		inefficient because they iteratively called
3225  *		pmap_remove (slow...)
3226  */
3227 
3228 static void
__CONCAT(PMTYPE,remove_all)3229 __CONCAT(PMTYPE, remove_all)(vm_page_t m)
3230 {
3231 	struct md_page *pvh;
3232 	pv_entry_t pv;
3233 	pmap_t pmap;
3234 	pt_entry_t *pte, tpte;
3235 	pd_entry_t *pde;
3236 	vm_offset_t va;
3237 	struct spglist free;
3238 
3239 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3240 	    ("pmap_remove_all: page %p is not managed", m));
3241 	SLIST_INIT(&free);
3242 	rw_wlock(&pvh_global_lock);
3243 	sched_pin();
3244 	if ((m->flags & PG_FICTITIOUS) != 0)
3245 		goto small_mappings;
3246 	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3247 	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
3248 		va = pv->pv_va;
3249 		pmap = PV_PMAP(pv);
3250 		PMAP_LOCK(pmap);
3251 		pde = pmap_pde(pmap, va);
3252 		(void)pmap_demote_pde(pmap, pde, va);
3253 		PMAP_UNLOCK(pmap);
3254 	}
3255 small_mappings:
3256 	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3257 		pmap = PV_PMAP(pv);
3258 		PMAP_LOCK(pmap);
3259 		pmap->pm_stats.resident_count--;
3260 		pde = pmap_pde(pmap, pv->pv_va);
3261 		KASSERT((*pde & PG_PS) == 0, ("pmap_remove_all: found"
3262 		    " a 4mpage in page %p's pv list", m));
3263 		pte = pmap_pte_quick(pmap, pv->pv_va);
3264 		tpte = pte_load_clear(pte);
3265 		KASSERT(tpte != 0, ("pmap_remove_all: pmap %p va %x zero pte",
3266 		    pmap, pv->pv_va));
3267 		if (tpte & PG_W)
3268 			pmap->pm_stats.wired_count--;
3269 		if (tpte & PG_A)
3270 			vm_page_aflag_set(m, PGA_REFERENCED);
3271 
3272 		/*
3273 		 * Update the vm_page_t clean and reference bits.
3274 		 */
3275 		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
3276 			vm_page_dirty(m);
3277 		pmap_unuse_pt(pmap, pv->pv_va, &free);
3278 		pmap_invalidate_page_int(pmap, pv->pv_va);
3279 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
3280 		free_pv_entry(pmap, pv);
3281 		PMAP_UNLOCK(pmap);
3282 	}
3283 	vm_page_aflag_clear(m, PGA_WRITEABLE);
3284 	sched_unpin();
3285 	rw_wunlock(&pvh_global_lock);
3286 	vm_page_free_pages_toq(&free, true);
3287 }
3288 
3289 /*
3290  * pmap_protect_pde: do the things to protect a 4mpage in a process
3291  */
3292 static boolean_t
pmap_protect_pde(pmap_t pmap,pd_entry_t * pde,vm_offset_t sva,vm_prot_t prot)3293 pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva, vm_prot_t prot)
3294 {
3295 	pd_entry_t newpde, oldpde;
3296 	vm_page_t m, mt;
3297 	boolean_t anychanged;
3298 
3299 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3300 	KASSERT((sva & PDRMASK) == 0,
3301 	    ("pmap_protect_pde: sva is not 4mpage aligned"));
3302 	anychanged = FALSE;
3303 retry:
3304 	oldpde = newpde = *pde;
3305 	if ((prot & VM_PROT_WRITE) == 0) {
3306 		if ((oldpde & (PG_MANAGED | PG_M | PG_RW)) ==
3307 		    (PG_MANAGED | PG_M | PG_RW)) {
3308 			m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
3309 			for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
3310 				vm_page_dirty(mt);
3311 		}
3312 		newpde &= ~(PG_RW | PG_M);
3313 	}
3314 #ifdef PMAP_PAE_COMP
3315 	if ((prot & VM_PROT_EXECUTE) == 0 && !i386_read_exec)
3316 		newpde |= pg_nx;
3317 #endif
3318 	if (newpde != oldpde) {
3319 		/*
3320 		 * As an optimization to future operations on this PDE, clear
3321 		 * PG_PROMOTED.  The impending invalidation will remove any
3322 		 * lingering 4KB page mappings from the TLB.
3323 		 */
3324 		if (!pde_cmpset(pde, oldpde, newpde & ~PG_PROMOTED))
3325 			goto retry;
3326 		if ((oldpde & PG_G) != 0)
3327 			pmap_invalidate_pde_page(kernel_pmap, sva, oldpde);
3328 		else
3329 			anychanged = TRUE;
3330 	}
3331 	return (anychanged);
3332 }
3333 
3334 /*
3335  *	Set the physical protection on the
3336  *	specified range of this map as requested.
3337  */
3338 static void
__CONCAT(PMTYPE,protect)3339 __CONCAT(PMTYPE, protect)(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
3340     vm_prot_t prot)
3341 {
3342 	vm_offset_t pdnxt;
3343 	pd_entry_t ptpaddr;
3344 	pt_entry_t *pte;
3345 	boolean_t anychanged, pv_lists_locked;
3346 
3347 	KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
3348 	if (prot == VM_PROT_NONE) {
3349 		pmap_remove(pmap, sva, eva);
3350 		return;
3351 	}
3352 
3353 #ifdef PMAP_PAE_COMP
3354 	if ((prot & (VM_PROT_WRITE | VM_PROT_EXECUTE)) ==
3355 	    (VM_PROT_WRITE | VM_PROT_EXECUTE))
3356 		return;
3357 #else
3358 	if (prot & VM_PROT_WRITE)
3359 		return;
3360 #endif
3361 
3362 	if (pmap_is_current(pmap))
3363 		pv_lists_locked = FALSE;
3364 	else {
3365 		pv_lists_locked = TRUE;
3366 resume:
3367 		rw_wlock(&pvh_global_lock);
3368 		sched_pin();
3369 	}
3370 	anychanged = FALSE;
3371 
3372 	PMAP_LOCK(pmap);
3373 	for (; sva < eva; sva = pdnxt) {
3374 		pt_entry_t obits, pbits;
3375 		u_int pdirindex;
3376 
3377 		pdnxt = (sva + NBPDR) & ~PDRMASK;
3378 		if (pdnxt < sva)
3379 			pdnxt = eva;
3380 
3381 		pdirindex = sva >> PDRSHIFT;
3382 		ptpaddr = pmap->pm_pdir[pdirindex];
3383 
3384 		/*
3385 		 * Weed out invalid mappings. Note: we assume that the page
3386 		 * directory table is always allocated, and in kernel virtual.
3387 		 */
3388 		if (ptpaddr == 0)
3389 			continue;
3390 
3391 		/*
3392 		 * Check for large page.
3393 		 */
3394 		if ((ptpaddr & PG_PS) != 0) {
3395 			/*
3396 			 * Are we protecting the entire large page?  If not,
3397 			 * demote the mapping and fall through.
3398 			 */
3399 			if (sva + NBPDR == pdnxt && eva >= pdnxt) {
3400 				/*
3401 				 * The TLB entry for a PG_G mapping is
3402 				 * invalidated by pmap_protect_pde().
3403 				 */
3404 				if (pmap_protect_pde(pmap,
3405 				    &pmap->pm_pdir[pdirindex], sva, prot))
3406 					anychanged = TRUE;
3407 				continue;
3408 			} else {
3409 				if (!pv_lists_locked) {
3410 					pv_lists_locked = TRUE;
3411 					if (!rw_try_wlock(&pvh_global_lock)) {
3412 						if (anychanged)
3413 							pmap_invalidate_all_int(
3414 							    pmap);
3415 						PMAP_UNLOCK(pmap);
3416 						goto resume;
3417 					}
3418 					sched_pin();
3419 				}
3420 				if (!pmap_demote_pde(pmap,
3421 				    &pmap->pm_pdir[pdirindex], sva)) {
3422 					/*
3423 					 * The large page mapping was
3424 					 * destroyed.
3425 					 */
3426 					continue;
3427 				}
3428 			}
3429 		}
3430 
3431 		if (pdnxt > eva)
3432 			pdnxt = eva;
3433 
3434 		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
3435 		    sva += PAGE_SIZE) {
3436 			vm_page_t m;
3437 
3438 retry:
3439 			/*
3440 			 * Regardless of whether a pte is 32 or 64 bits in
3441 			 * size, PG_RW, PG_A, and PG_M are among the least
3442 			 * significant 32 bits.
3443 			 */
3444 			obits = pbits = *pte;
3445 			if ((pbits & PG_V) == 0)
3446 				continue;
3447 
3448 			if ((prot & VM_PROT_WRITE) == 0) {
3449 				if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
3450 				    (PG_MANAGED | PG_M | PG_RW)) {
3451 					m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
3452 					vm_page_dirty(m);
3453 				}
3454 				pbits &= ~(PG_RW | PG_M);
3455 			}
3456 #ifdef PMAP_PAE_COMP
3457 			if ((prot & VM_PROT_EXECUTE) == 0 && !i386_read_exec)
3458 				pbits |= pg_nx;
3459 #endif
3460 
3461 			if (pbits != obits) {
3462 #ifdef PMAP_PAE_COMP
3463 				if (!atomic_cmpset_64(pte, obits, pbits))
3464 					goto retry;
3465 #else
3466 				if (!atomic_cmpset_int((u_int *)pte, obits,
3467 				    pbits))
3468 					goto retry;
3469 #endif
3470 				if (obits & PG_G)
3471 					pmap_invalidate_page_int(pmap, sva);
3472 				else
3473 					anychanged = TRUE;
3474 			}
3475 		}
3476 	}
3477 	if (anychanged)
3478 		pmap_invalidate_all_int(pmap);
3479 	if (pv_lists_locked) {
3480 		sched_unpin();
3481 		rw_wunlock(&pvh_global_lock);
3482 	}
3483 	PMAP_UNLOCK(pmap);
3484 }
3485 
3486 #if VM_NRESERVLEVEL > 0
3487 /*
3488  * Tries to promote the 512 or 1024, contiguous 4KB page mappings that are
3489  * within a single page table page (PTP) to a single 2- or 4MB page mapping.
3490  * For promotion to occur, two conditions must be met: (1) the 4KB page
3491  * mappings must map aligned, contiguous physical memory and (2) the 4KB page
3492  * mappings must have identical characteristics.
3493  *
3494  * Managed (PG_MANAGED) mappings within the kernel address space are not
3495  * promoted.  The reason is that kernel PDEs are replicated in each pmap but
3496  * pmap_clear_ptes() and pmap_ts_referenced() only read the PDE from the kernel
3497  * pmap.
3498  */
3499 static void
pmap_promote_pde(pmap_t pmap,pd_entry_t * pde,vm_offset_t va)3500 pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
3501 {
3502 	pd_entry_t newpde;
3503 	pt_entry_t *firstpte, oldpte, pa, *pte;
3504 	vm_offset_t oldpteva;
3505 	vm_page_t mpte;
3506 
3507 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3508 
3509 	/*
3510 	 * Examine the first PTE in the specified PTP.  Abort if this PTE is
3511 	 * either invalid, unused, or does not map the first 4KB physical page
3512 	 * within a 2- or 4MB page.
3513 	 */
3514 	firstpte = pmap_pte_quick(pmap, trunc_4mpage(va));
3515 setpde:
3516 	newpde = *firstpte;
3517 	if ((newpde & ((PG_FRAME & PDRMASK) | PG_A | PG_V)) != (PG_A | PG_V)) {
3518 		pmap_pde_p_failures++;
3519 		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3520 		    " in pmap %p", va, pmap);
3521 		return;
3522 	}
3523 	if ((*firstpte & PG_MANAGED) != 0 && pmap == kernel_pmap) {
3524 		pmap_pde_p_failures++;
3525 		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3526 		    " in pmap %p", va, pmap);
3527 		return;
3528 	}
3529 	if ((newpde & (PG_M | PG_RW)) == PG_RW) {
3530 		/*
3531 		 * When PG_M is already clear, PG_RW can be cleared without
3532 		 * a TLB invalidation.
3533 		 */
3534 		if (!atomic_cmpset_int((u_int *)firstpte, newpde, newpde &
3535 		    ~PG_RW))
3536 			goto setpde;
3537 		newpde &= ~PG_RW;
3538 	}
3539 
3540 	/*
3541 	 * Examine each of the other PTEs in the specified PTP.  Abort if this
3542 	 * PTE maps an unexpected 4KB physical page or does not have identical
3543 	 * characteristics to the first PTE.
3544 	 */
3545 	pa = (newpde & (PG_PS_FRAME | PG_A | PG_V)) + NBPDR - PAGE_SIZE;
3546 	for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
3547 setpte:
3548 		oldpte = *pte;
3549 		if ((oldpte & (PG_FRAME | PG_A | PG_V)) != pa) {
3550 			pmap_pde_p_failures++;
3551 			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3552 			    " in pmap %p", va, pmap);
3553 			return;
3554 		}
3555 		if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
3556 			/*
3557 			 * When PG_M is already clear, PG_RW can be cleared
3558 			 * without a TLB invalidation.
3559 			 */
3560 			if (!atomic_cmpset_int((u_int *)pte, oldpte,
3561 			    oldpte & ~PG_RW))
3562 				goto setpte;
3563 			oldpte &= ~PG_RW;
3564 			oldpteva = (oldpte & PG_FRAME & PDRMASK) |
3565 			    (va & ~PDRMASK);
3566 			CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#x"
3567 			    " in pmap %p", oldpteva, pmap);
3568 		}
3569 		if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
3570 			pmap_pde_p_failures++;
3571 			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3572 			    " in pmap %p", va, pmap);
3573 			return;
3574 		}
3575 		pa -= PAGE_SIZE;
3576 	}
3577 
3578 	/*
3579 	 * Save the page table page in its current state until the PDE
3580 	 * mapping the superpage is demoted by pmap_demote_pde() or
3581 	 * destroyed by pmap_remove_pde().
3582 	 */
3583 	mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
3584 	KASSERT(mpte >= vm_page_array &&
3585 	    mpte < &vm_page_array[vm_page_array_size],
3586 	    ("pmap_promote_pde: page table page is out of range"));
3587 	KASSERT(mpte->pindex == va >> PDRSHIFT,
3588 	    ("pmap_promote_pde: page table page's pindex is wrong"));
3589 	if (pmap_insert_pt_page(pmap, mpte, true)) {
3590 		pmap_pde_p_failures++;
3591 		CTR2(KTR_PMAP,
3592 		    "pmap_promote_pde: failure for va %#x in pmap %p", va,
3593 		    pmap);
3594 		return;
3595 	}
3596 
3597 	/*
3598 	 * Promote the pv entries.
3599 	 */
3600 	if ((newpde & PG_MANAGED) != 0)
3601 		pmap_pv_promote_pde(pmap, va, newpde & PG_PS_FRAME);
3602 
3603 	/*
3604 	 * Propagate the PAT index to its proper position.
3605 	 */
3606 	if ((newpde & PG_PTE_PAT) != 0)
3607 		newpde ^= PG_PDE_PAT | PG_PTE_PAT;
3608 
3609 	/*
3610 	 * Map the superpage.
3611 	 */
3612 	if (workaround_erratum383)
3613 		pmap_update_pde(pmap, va, pde, PG_PS | newpde);
3614 	else if (pmap == kernel_pmap)
3615 		pmap_kenter_pde(va, PG_PROMOTED | PG_PS | newpde);
3616 	else
3617 		pde_store(pde, PG_PROMOTED | PG_PS | newpde);
3618 
3619 	pmap_pde_promotions++;
3620 	CTR2(KTR_PMAP, "pmap_promote_pde: success for va %#x"
3621 	    " in pmap %p", va, pmap);
3622 }
3623 #endif /* VM_NRESERVLEVEL > 0 */
3624 
3625 /*
3626  *	Insert the given physical page (p) at
3627  *	the specified virtual address (v) in the
3628  *	target physical map with the protection requested.
3629  *
3630  *	If specified, the page will be wired down, meaning
3631  *	that the related pte can not be reclaimed.
3632  *
3633  *	NB:  This is the only routine which MAY NOT lazy-evaluate
3634  *	or lose information.  That is, this routine must actually
3635  *	insert this page into the given map NOW.
3636  */
3637 static int
__CONCAT(PMTYPE,enter)3638 __CONCAT(PMTYPE, enter)(pmap_t pmap, vm_offset_t va, vm_page_t m,
3639     vm_prot_t prot, u_int flags, int8_t psind)
3640 {
3641 	pd_entry_t *pde;
3642 	pt_entry_t *pte;
3643 	pt_entry_t newpte, origpte;
3644 	pv_entry_t pv;
3645 	vm_paddr_t opa, pa;
3646 	vm_page_t mpte, om;
3647 	int rv;
3648 
3649 	va = trunc_page(va);
3650 	KASSERT((pmap == kernel_pmap && va < VM_MAX_KERNEL_ADDRESS) ||
3651 	    (pmap != kernel_pmap && va < VM_MAXUSER_ADDRESS),
3652 	    ("pmap_enter: toobig k%d %#x", pmap == kernel_pmap, va));
3653 	KASSERT(va < PMAP_TRM_MIN_ADDRESS,
3654 	    ("pmap_enter: invalid to pmap_enter into trampoline (va: 0x%x)",
3655 	    va));
3656 	KASSERT(pmap != kernel_pmap || (m->oflags & VPO_UNMANAGED) != 0 ||
3657 	    va < kmi.clean_sva || va >= kmi.clean_eva,
3658 	    ("pmap_enter: managed mapping within the clean submap"));
3659 	if ((m->oflags & VPO_UNMANAGED) == 0)
3660 		VM_PAGE_OBJECT_BUSY_ASSERT(m);
3661 	KASSERT((flags & PMAP_ENTER_RESERVED) == 0,
3662 	    ("pmap_enter: flags %u has reserved bits set", flags));
3663 	pa = VM_PAGE_TO_PHYS(m);
3664 	newpte = (pt_entry_t)(pa | PG_A | PG_V);
3665 	if ((flags & VM_PROT_WRITE) != 0)
3666 		newpte |= PG_M;
3667 	if ((prot & VM_PROT_WRITE) != 0)
3668 		newpte |= PG_RW;
3669 	KASSERT((newpte & (PG_M | PG_RW)) != PG_M,
3670 	    ("pmap_enter: flags includes VM_PROT_WRITE but prot doesn't"));
3671 #ifdef PMAP_PAE_COMP
3672 	if ((prot & VM_PROT_EXECUTE) == 0 && !i386_read_exec)
3673 		newpte |= pg_nx;
3674 #endif
3675 	if ((flags & PMAP_ENTER_WIRED) != 0)
3676 		newpte |= PG_W;
3677 	if (pmap != kernel_pmap)
3678 		newpte |= PG_U;
3679 	newpte |= pmap_cache_bits(pmap, m->md.pat_mode, psind > 0);
3680 	if ((m->oflags & VPO_UNMANAGED) == 0)
3681 		newpte |= PG_MANAGED;
3682 
3683 	rw_wlock(&pvh_global_lock);
3684 	PMAP_LOCK(pmap);
3685 	sched_pin();
3686 	if (psind == 1) {
3687 		/* Assert the required virtual and physical alignment. */
3688 		KASSERT((va & PDRMASK) == 0, ("pmap_enter: va unaligned"));
3689 		KASSERT(m->psind > 0, ("pmap_enter: m->psind < psind"));
3690 		rv = pmap_enter_pde(pmap, va, newpte | PG_PS, flags, m);
3691 		goto out;
3692 	}
3693 
3694 	pde = pmap_pde(pmap, va);
3695 	if (pmap != kernel_pmap) {
3696 		/*
3697 		 * va is for UVA.
3698 		 * In the case that a page table page is not resident,
3699 		 * we are creating it here.  pmap_allocpte() handles
3700 		 * demotion.
3701 		 */
3702 		mpte = pmap_allocpte(pmap, va, flags);
3703 		if (mpte == NULL) {
3704 			KASSERT((flags & PMAP_ENTER_NOSLEEP) != 0,
3705 			    ("pmap_allocpte failed with sleep allowed"));
3706 			rv = KERN_RESOURCE_SHORTAGE;
3707 			goto out;
3708 		}
3709 	} else {
3710 		/*
3711 		 * va is for KVA, so pmap_demote_pde() will never fail
3712 		 * to install a page table page.  PG_V is also
3713 		 * asserted by pmap_demote_pde().
3714 		 */
3715 		mpte = NULL;
3716 		KASSERT(pde != NULL && (*pde & PG_V) != 0,
3717 		    ("KVA %#x invalid pde pdir %#jx", va,
3718 		    (uintmax_t)pmap->pm_pdir[PTDPTDI]));
3719 		if ((*pde & PG_PS) != 0)
3720 			pmap_demote_pde(pmap, pde, va);
3721 	}
3722 	pte = pmap_pte_quick(pmap, va);
3723 
3724 	/*
3725 	 * Page Directory table entry is not valid, which should not
3726 	 * happen.  We should have either allocated the page table
3727 	 * page or demoted the existing mapping above.
3728 	 */
3729 	if (pte == NULL) {
3730 		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x",
3731 		    (uintmax_t)pmap->pm_pdir[PTDPTDI], va);
3732 	}
3733 
3734 	origpte = *pte;
3735 	pv = NULL;
3736 
3737 	/*
3738 	 * Is the specified virtual address already mapped?
3739 	 */
3740 	if ((origpte & PG_V) != 0) {
3741 		/*
3742 		 * Wiring change, just update stats. We don't worry about
3743 		 * wiring PT pages as they remain resident as long as there
3744 		 * are valid mappings in them. Hence, if a user page is wired,
3745 		 * the PT page will be also.
3746 		 */
3747 		if ((newpte & PG_W) != 0 && (origpte & PG_W) == 0)
3748 			pmap->pm_stats.wired_count++;
3749 		else if ((newpte & PG_W) == 0 && (origpte & PG_W) != 0)
3750 			pmap->pm_stats.wired_count--;
3751 
3752 		/*
3753 		 * Remove the extra PT page reference.
3754 		 */
3755 		if (mpte != NULL) {
3756 			mpte->ref_count--;
3757 			KASSERT(mpte->ref_count > 0,
3758 			    ("pmap_enter: missing reference to page table page,"
3759 			     " va: 0x%x", va));
3760 		}
3761 
3762 		/*
3763 		 * Has the physical page changed?
3764 		 */
3765 		opa = origpte & PG_FRAME;
3766 		if (opa == pa) {
3767 			/*
3768 			 * No, might be a protection or wiring change.
3769 			 */
3770 			if ((origpte & PG_MANAGED) != 0 &&
3771 			    (newpte & PG_RW) != 0)
3772 				vm_page_aflag_set(m, PGA_WRITEABLE);
3773 			if (((origpte ^ newpte) & ~(PG_M | PG_A)) == 0)
3774 				goto unchanged;
3775 			goto validate;
3776 		}
3777 
3778 		/*
3779 		 * The physical page has changed.  Temporarily invalidate
3780 		 * the mapping.  This ensures that all threads sharing the
3781 		 * pmap keep a consistent view of the mapping, which is
3782 		 * necessary for the correct handling of COW faults.  It
3783 		 * also permits reuse of the old mapping's PV entry,
3784 		 * avoiding an allocation.
3785 		 *
3786 		 * For consistency, handle unmanaged mappings the same way.
3787 		 */
3788 		origpte = pte_load_clear(pte);
3789 		KASSERT((origpte & PG_FRAME) == opa,
3790 		    ("pmap_enter: unexpected pa update for %#x", va));
3791 		if ((origpte & PG_MANAGED) != 0) {
3792 			om = PHYS_TO_VM_PAGE(opa);
3793 
3794 			/*
3795 			 * The pmap lock is sufficient to synchronize with
3796 			 * concurrent calls to pmap_page_test_mappings() and
3797 			 * pmap_ts_referenced().
3798 			 */
3799 			if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
3800 				vm_page_dirty(om);
3801 			if ((origpte & PG_A) != 0) {
3802 				pmap_invalidate_page_int(pmap, va);
3803 				vm_page_aflag_set(om, PGA_REFERENCED);
3804 			}
3805 			pv = pmap_pvh_remove(&om->md, pmap, va);
3806 			KASSERT(pv != NULL,
3807 			    ("pmap_enter: no PV entry for %#x", va));
3808 			if ((newpte & PG_MANAGED) == 0)
3809 				free_pv_entry(pmap, pv);
3810 			if ((om->a.flags & PGA_WRITEABLE) != 0 &&
3811 			    TAILQ_EMPTY(&om->md.pv_list) &&
3812 			    ((om->flags & PG_FICTITIOUS) != 0 ||
3813 			    TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
3814 				vm_page_aflag_clear(om, PGA_WRITEABLE);
3815 		} else {
3816 			/*
3817 			 * Since this mapping is unmanaged, assume that PG_A
3818 			 * is set.
3819 			 */
3820 			pmap_invalidate_page_int(pmap, va);
3821 		}
3822 		origpte = 0;
3823 	} else {
3824 		/*
3825 		 * Increment the counters.
3826 		 */
3827 		if ((newpte & PG_W) != 0)
3828 			pmap->pm_stats.wired_count++;
3829 		pmap->pm_stats.resident_count++;
3830 	}
3831 
3832 	/*
3833 	 * Enter on the PV list if part of our managed memory.
3834 	 */
3835 	if ((newpte & PG_MANAGED) != 0) {
3836 		if (pv == NULL) {
3837 			pv = get_pv_entry(pmap, FALSE);
3838 			pv->pv_va = va;
3839 		}
3840 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3841 		if ((newpte & PG_RW) != 0)
3842 			vm_page_aflag_set(m, PGA_WRITEABLE);
3843 	}
3844 
3845 	/*
3846 	 * Update the PTE.
3847 	 */
3848 	if ((origpte & PG_V) != 0) {
3849 validate:
3850 		origpte = pte_load_store(pte, newpte);
3851 		KASSERT((origpte & PG_FRAME) == pa,
3852 		    ("pmap_enter: unexpected pa update for %#x", va));
3853 		if ((newpte & PG_M) == 0 && (origpte & (PG_M | PG_RW)) ==
3854 		    (PG_M | PG_RW)) {
3855 			if ((origpte & PG_MANAGED) != 0)
3856 				vm_page_dirty(m);
3857 
3858 			/*
3859 			 * Although the PTE may still have PG_RW set, TLB
3860 			 * invalidation may nonetheless be required because
3861 			 * the PTE no longer has PG_M set.
3862 			 */
3863 		}
3864 #ifdef PMAP_PAE_COMP
3865 		else if ((origpte & PG_NX) != 0 || (newpte & PG_NX) == 0) {
3866 			/*
3867 			 * This PTE change does not require TLB invalidation.
3868 			 */
3869 			goto unchanged;
3870 		}
3871 #endif
3872 		if ((origpte & PG_A) != 0)
3873 			pmap_invalidate_page_int(pmap, va);
3874 	} else
3875 		pte_store_zero(pte, newpte);
3876 
3877 unchanged:
3878 
3879 #if VM_NRESERVLEVEL > 0
3880 	/*
3881 	 * If both the page table page and the reservation are fully
3882 	 * populated, then attempt promotion.
3883 	 */
3884 	if ((mpte == NULL || mpte->ref_count == NPTEPG) &&
3885 	    pg_ps_enabled && (m->flags & PG_FICTITIOUS) == 0 &&
3886 	    vm_reserv_level_iffullpop(m) == 0)
3887 		pmap_promote_pde(pmap, pde, va);
3888 #endif
3889 
3890 	rv = KERN_SUCCESS;
3891 out:
3892 	sched_unpin();
3893 	rw_wunlock(&pvh_global_lock);
3894 	PMAP_UNLOCK(pmap);
3895 	return (rv);
3896 }
3897 
3898 /*
3899  * Tries to create a read- and/or execute-only 2 or 4 MB page mapping.  Returns
3900  * true if successful.  Returns false if (1) a mapping already exists at the
3901  * specified virtual address or (2) a PV entry cannot be allocated without
3902  * reclaiming another PV entry.
3903  */
3904 static bool
pmap_enter_4mpage(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot)3905 pmap_enter_4mpage(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
3906 {
3907 	pd_entry_t newpde;
3908 
3909 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3910 	newpde = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(pmap, m->md.pat_mode, 1) |
3911 	    PG_PS | PG_V;
3912 	if ((m->oflags & VPO_UNMANAGED) == 0)
3913 		newpde |= PG_MANAGED;
3914 #ifdef PMAP_PAE_COMP
3915 	if ((prot & VM_PROT_EXECUTE) == 0 && !i386_read_exec)
3916 		newpde |= pg_nx;
3917 #endif
3918 	if (pmap != kernel_pmap)
3919 		newpde |= PG_U;
3920 	return (pmap_enter_pde(pmap, va, newpde, PMAP_ENTER_NOSLEEP |
3921 	    PMAP_ENTER_NOREPLACE | PMAP_ENTER_NORECLAIM, NULL) ==
3922 	    KERN_SUCCESS);
3923 }
3924 
3925 /*
3926  * Returns true if every page table entry in the page table page that maps
3927  * the specified kernel virtual address is zero.
3928  */
3929 static bool
pmap_every_pte_zero(vm_offset_t va)3930 pmap_every_pte_zero(vm_offset_t va)
3931 {
3932 	pt_entry_t *pt_end, *pte;
3933 
3934 	KASSERT((va & PDRMASK) == 0, ("va is misaligned"));
3935 	pte = vtopte(va);
3936 	for (pt_end = pte + NPTEPG; pte < pt_end; pte++) {
3937 		if (*pte != 0)
3938 			return (false);
3939 	}
3940 	return (true);
3941 }
3942 
3943 /*
3944  * Tries to create the specified 2 or 4 MB page mapping.  Returns KERN_SUCCESS
3945  * if the mapping was created, and either KERN_FAILURE or
3946  * KERN_RESOURCE_SHORTAGE otherwise.  Returns KERN_FAILURE if
3947  * PMAP_ENTER_NOREPLACE was specified and a mapping already exists at the
3948  * specified virtual address.  Returns KERN_RESOURCE_SHORTAGE if
3949  * PMAP_ENTER_NORECLAIM was specified and a PV entry allocation failed.
3950  *
3951  * The parameter "m" is only used when creating a managed, writeable mapping.
3952  */
3953 static int
pmap_enter_pde(pmap_t pmap,vm_offset_t va,pd_entry_t newpde,u_int flags,vm_page_t m)3954 pmap_enter_pde(pmap_t pmap, vm_offset_t va, pd_entry_t newpde, u_int flags,
3955     vm_page_t m)
3956 {
3957 	struct spglist free;
3958 	pd_entry_t oldpde, *pde;
3959 	vm_page_t mt;
3960 
3961 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3962 	KASSERT((newpde & (PG_M | PG_RW)) != PG_RW,
3963 	    ("pmap_enter_pde: newpde is missing PG_M"));
3964 	KASSERT(pmap == kernel_pmap || (newpde & PG_W) == 0,
3965 	    ("pmap_enter_pde: cannot create wired user mapping"));
3966 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3967 	pde = pmap_pde(pmap, va);
3968 	oldpde = *pde;
3969 	if ((oldpde & PG_V) != 0) {
3970 		if ((flags & PMAP_ENTER_NOREPLACE) != 0 && (pmap !=
3971 		    kernel_pmap || (oldpde & PG_PS) != 0 ||
3972 		    !pmap_every_pte_zero(va))) {
3973 			CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3974 			    " in pmap %p", va, pmap);
3975 			return (KERN_FAILURE);
3976 		}
3977 		/* Break the existing mapping(s). */
3978 		SLIST_INIT(&free);
3979 		if ((oldpde & PG_PS) != 0) {
3980 			/*
3981 			 * If the PDE resulted from a promotion, then a
3982 			 * reserved PT page could be freed.
3983 			 */
3984 			(void)pmap_remove_pde(pmap, pde, va, &free);
3985 			if ((oldpde & PG_G) == 0)
3986 				pmap_invalidate_pde_page(pmap, va, oldpde);
3987 		} else {
3988 			if (pmap_remove_ptes(pmap, va, va + NBPDR, &free))
3989 		               pmap_invalidate_all_int(pmap);
3990 		}
3991 		if (pmap != kernel_pmap) {
3992 			vm_page_free_pages_toq(&free, true);
3993 			KASSERT(*pde == 0, ("pmap_enter_pde: non-zero pde %p",
3994 			    pde));
3995 		} else {
3996 			KASSERT(SLIST_EMPTY(&free),
3997 			    ("pmap_enter_pde: freed kernel page table page"));
3998 
3999 			/*
4000 			 * Both pmap_remove_pde() and pmap_remove_ptes() will
4001 			 * leave the kernel page table page zero filled.
4002 			 */
4003 			mt = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
4004 			if (pmap_insert_pt_page(pmap, mt, false))
4005 				panic("pmap_enter_pde: trie insert failed");
4006 		}
4007 	}
4008 	if ((newpde & PG_MANAGED) != 0) {
4009 		/*
4010 		 * Abort this mapping if its PV entry could not be created.
4011 		 */
4012 		if (!pmap_pv_insert_pde(pmap, va, newpde, flags)) {
4013 			CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
4014 			    " in pmap %p", va, pmap);
4015 			return (KERN_RESOURCE_SHORTAGE);
4016 		}
4017 		if ((newpde & PG_RW) != 0) {
4018 			for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
4019 				vm_page_aflag_set(mt, PGA_WRITEABLE);
4020 		}
4021 	}
4022 
4023 	/*
4024 	 * Increment counters.
4025 	 */
4026 	if ((newpde & PG_W) != 0)
4027 		pmap->pm_stats.wired_count += NBPDR / PAGE_SIZE;
4028 	pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
4029 
4030 	/*
4031 	 * Map the superpage.  (This is not a promoted mapping; there will not
4032 	 * be any lingering 4KB page mappings in the TLB.)
4033 	 */
4034 	pde_store(pde, newpde);
4035 
4036 	pmap_pde_mappings++;
4037 	CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx in pmap %p",
4038 	    va, pmap);
4039 	return (KERN_SUCCESS);
4040 }
4041 
4042 /*
4043  * Maps a sequence of resident pages belonging to the same object.
4044  * The sequence begins with the given page m_start.  This page is
4045  * mapped at the given virtual address start.  Each subsequent page is
4046  * mapped at a virtual address that is offset from start by the same
4047  * amount as the page is offset from m_start within the object.  The
4048  * last page in the sequence is the page with the largest offset from
4049  * m_start that can be mapped at a virtual address less than the given
4050  * virtual address end.  Not every virtual page between start and end
4051  * is mapped; only those for which a resident page exists with the
4052  * corresponding offset from m_start are mapped.
4053  */
4054 static void
__CONCAT(PMTYPE,enter_object)4055 __CONCAT(PMTYPE, enter_object)(pmap_t pmap, vm_offset_t start, vm_offset_t end,
4056     vm_page_t m_start, vm_prot_t prot)
4057 {
4058 	vm_offset_t va;
4059 	vm_page_t m, mpte;
4060 	vm_pindex_t diff, psize;
4061 
4062 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
4063 
4064 	psize = atop(end - start);
4065 	mpte = NULL;
4066 	m = m_start;
4067 	rw_wlock(&pvh_global_lock);
4068 	PMAP_LOCK(pmap);
4069 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
4070 		va = start + ptoa(diff);
4071 		if ((va & PDRMASK) == 0 && va + NBPDR <= end &&
4072 		    m->psind == 1 && pg_ps_enabled &&
4073 		    pmap_enter_4mpage(pmap, va, m, prot))
4074 			m = &m[NBPDR / PAGE_SIZE - 1];
4075 		else
4076 			mpte = pmap_enter_quick_locked(pmap, va, m, prot,
4077 			    mpte);
4078 		m = TAILQ_NEXT(m, listq);
4079 	}
4080 	rw_wunlock(&pvh_global_lock);
4081 	PMAP_UNLOCK(pmap);
4082 }
4083 
4084 /*
4085  * this code makes some *MAJOR* assumptions:
4086  * 1. Current pmap & pmap exists.
4087  * 2. Not wired.
4088  * 3. Read access.
4089  * 4. No page table pages.
4090  * but is *MUCH* faster than pmap_enter...
4091  */
4092 
4093 static void
__CONCAT(PMTYPE,enter_quick)4094 __CONCAT(PMTYPE, enter_quick)(pmap_t pmap, vm_offset_t va, vm_page_t m,
4095     vm_prot_t prot)
4096 {
4097 
4098 	rw_wlock(&pvh_global_lock);
4099 	PMAP_LOCK(pmap);
4100 	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL);
4101 	rw_wunlock(&pvh_global_lock);
4102 	PMAP_UNLOCK(pmap);
4103 }
4104 
4105 static vm_page_t
pmap_enter_quick_locked(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot,vm_page_t mpte)4106 pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
4107     vm_prot_t prot, vm_page_t mpte)
4108 {
4109 	pt_entry_t newpte, *pte;
4110 
4111 	KASSERT(pmap != kernel_pmap || va < kmi.clean_sva ||
4112 	    va >= kmi.clean_eva || (m->oflags & VPO_UNMANAGED) != 0,
4113 	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
4114 	rw_assert(&pvh_global_lock, RA_WLOCKED);
4115 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4116 
4117 	/*
4118 	 * In the case that a page table page is not
4119 	 * resident, we are creating it here.
4120 	 */
4121 	if (pmap != kernel_pmap) {
4122 		u_int ptepindex;
4123 		pd_entry_t ptepa;
4124 
4125 		/*
4126 		 * Calculate pagetable page index
4127 		 */
4128 		ptepindex = va >> PDRSHIFT;
4129 		if (mpte && (mpte->pindex == ptepindex)) {
4130 			mpte->ref_count++;
4131 		} else {
4132 			/*
4133 			 * Get the page directory entry
4134 			 */
4135 			ptepa = pmap->pm_pdir[ptepindex];
4136 
4137 			/*
4138 			 * If the page table page is mapped, we just increment
4139 			 * the hold count, and activate it.
4140 			 */
4141 			if (ptepa) {
4142 				if (ptepa & PG_PS)
4143 					return (NULL);
4144 				mpte = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
4145 				mpte->ref_count++;
4146 			} else {
4147 				mpte = _pmap_allocpte(pmap, ptepindex,
4148 				    PMAP_ENTER_NOSLEEP);
4149 				if (mpte == NULL)
4150 					return (mpte);
4151 			}
4152 		}
4153 	} else {
4154 		mpte = NULL;
4155 	}
4156 
4157 	sched_pin();
4158 	pte = pmap_pte_quick(pmap, va);
4159 	if (*pte) {
4160 		if (mpte != NULL)
4161 			mpte->ref_count--;
4162 		sched_unpin();
4163 		return (NULL);
4164 	}
4165 
4166 	/*
4167 	 * Enter on the PV list if part of our managed memory.
4168 	 */
4169 	if ((m->oflags & VPO_UNMANAGED) == 0 &&
4170 	    !pmap_try_insert_pv_entry(pmap, va, m)) {
4171 		if (mpte != NULL)
4172 			pmap_abort_ptp(pmap, va, mpte);
4173 		sched_unpin();
4174 		return (NULL);
4175 	}
4176 
4177 	/*
4178 	 * Increment counters
4179 	 */
4180 	pmap->pm_stats.resident_count++;
4181 
4182 	newpte = VM_PAGE_TO_PHYS(m) | PG_V |
4183 	    pmap_cache_bits(pmap, m->md.pat_mode, 0);
4184 	if ((m->oflags & VPO_UNMANAGED) == 0)
4185 		newpte |= PG_MANAGED;
4186 #ifdef PMAP_PAE_COMP
4187 	if ((prot & VM_PROT_EXECUTE) == 0 && !i386_read_exec)
4188 		newpte |= pg_nx;
4189 #endif
4190 	if (pmap != kernel_pmap)
4191 		newpte |= PG_U;
4192 	pte_store_zero(pte, newpte);
4193 	sched_unpin();
4194 	return (mpte);
4195 }
4196 
4197 /*
4198  * Make a temporary mapping for a physical address.  This is only intended
4199  * to be used for panic dumps.
4200  */
4201 static void *
__CONCAT(PMTYPE,kenter_temporary)4202 __CONCAT(PMTYPE, kenter_temporary)(vm_paddr_t pa, int i)
4203 {
4204 	vm_offset_t va;
4205 
4206 	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
4207 	pmap_kenter(va, pa);
4208 	invlpg(va);
4209 	return ((void *)crashdumpmap);
4210 }
4211 
4212 /*
4213  * This code maps large physical mmap regions into the
4214  * processor address space.  Note that some shortcuts
4215  * are taken, but the code works.
4216  */
4217 static void
__CONCAT(PMTYPE,object_init_pt)4218 __CONCAT(PMTYPE, object_init_pt)(pmap_t pmap, vm_offset_t addr,
4219     vm_object_t object, vm_pindex_t pindex, vm_size_t size)
4220 {
4221 	pd_entry_t *pde;
4222 	vm_paddr_t pa, ptepa;
4223 	vm_page_t p;
4224 	int pat_mode;
4225 
4226 	VM_OBJECT_ASSERT_WLOCKED(object);
4227 	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
4228 	    ("pmap_object_init_pt: non-device object"));
4229 	if (pg_ps_enabled &&
4230 	    (addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
4231 		if (!vm_object_populate(object, pindex, pindex + atop(size)))
4232 			return;
4233 		p = vm_page_lookup(object, pindex);
4234 		KASSERT(p->valid == VM_PAGE_BITS_ALL,
4235 		    ("pmap_object_init_pt: invalid page %p", p));
4236 		pat_mode = p->md.pat_mode;
4237 
4238 		/*
4239 		 * Abort the mapping if the first page is not physically
4240 		 * aligned to a 2/4MB page boundary.
4241 		 */
4242 		ptepa = VM_PAGE_TO_PHYS(p);
4243 		if (ptepa & (NBPDR - 1))
4244 			return;
4245 
4246 		/*
4247 		 * Skip the first page.  Abort the mapping if the rest of
4248 		 * the pages are not physically contiguous or have differing
4249 		 * memory attributes.
4250 		 */
4251 		p = TAILQ_NEXT(p, listq);
4252 		for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
4253 		    pa += PAGE_SIZE) {
4254 			KASSERT(p->valid == VM_PAGE_BITS_ALL,
4255 			    ("pmap_object_init_pt: invalid page %p", p));
4256 			if (pa != VM_PAGE_TO_PHYS(p) ||
4257 			    pat_mode != p->md.pat_mode)
4258 				return;
4259 			p = TAILQ_NEXT(p, listq);
4260 		}
4261 
4262 		/*
4263 		 * Map using 2/4MB pages.  Since "ptepa" is 2/4M aligned and
4264 		 * "size" is a multiple of 2/4M, adding the PAT setting to
4265 		 * "pa" will not affect the termination of this loop.
4266 		 */
4267 		PMAP_LOCK(pmap);
4268 		for (pa = ptepa | pmap_cache_bits(pmap, pat_mode, 1);
4269 		    pa < ptepa + size; pa += NBPDR) {
4270 			pde = pmap_pde(pmap, addr);
4271 			if (*pde == 0) {
4272 				pde_store(pde, pa | PG_PS | PG_M | PG_A |
4273 				    PG_U | PG_RW | PG_V);
4274 				pmap->pm_stats.resident_count += NBPDR /
4275 				    PAGE_SIZE;
4276 				pmap_pde_mappings++;
4277 			}
4278 			/* Else continue on if the PDE is already valid. */
4279 			addr += NBPDR;
4280 		}
4281 		PMAP_UNLOCK(pmap);
4282 	}
4283 }
4284 
4285 /*
4286  *	Clear the wired attribute from the mappings for the specified range of
4287  *	addresses in the given pmap.  Every valid mapping within that range
4288  *	must have the wired attribute set.  In contrast, invalid mappings
4289  *	cannot have the wired attribute set, so they are ignored.
4290  *
4291  *	The wired attribute of the page table entry is not a hardware feature,
4292  *	so there is no need to invalidate any TLB entries.
4293  */
4294 static void
__CONCAT(PMTYPE,unwire)4295 __CONCAT(PMTYPE, unwire)(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
4296 {
4297 	vm_offset_t pdnxt;
4298 	pd_entry_t *pde;
4299 	pt_entry_t *pte;
4300 	boolean_t pv_lists_locked;
4301 
4302 	if (pmap_is_current(pmap))
4303 		pv_lists_locked = FALSE;
4304 	else {
4305 		pv_lists_locked = TRUE;
4306 resume:
4307 		rw_wlock(&pvh_global_lock);
4308 		sched_pin();
4309 	}
4310 	PMAP_LOCK(pmap);
4311 	for (; sva < eva; sva = pdnxt) {
4312 		pdnxt = (sva + NBPDR) & ~PDRMASK;
4313 		if (pdnxt < sva)
4314 			pdnxt = eva;
4315 		pde = pmap_pde(pmap, sva);
4316 		if ((*pde & PG_V) == 0)
4317 			continue;
4318 		if ((*pde & PG_PS) != 0) {
4319 			if ((*pde & PG_W) == 0)
4320 				panic("pmap_unwire: pde %#jx is missing PG_W",
4321 				    (uintmax_t)*pde);
4322 
4323 			/*
4324 			 * Are we unwiring the entire large page?  If not,
4325 			 * demote the mapping and fall through.
4326 			 */
4327 			if (sva + NBPDR == pdnxt && eva >= pdnxt) {
4328 				/*
4329 				 * Regardless of whether a pde (or pte) is 32
4330 				 * or 64 bits in size, PG_W is among the least
4331 				 * significant 32 bits.
4332 				 */
4333 				atomic_clear_int((u_int *)pde, PG_W);
4334 				pmap->pm_stats.wired_count -= NBPDR /
4335 				    PAGE_SIZE;
4336 				continue;
4337 			} else {
4338 				if (!pv_lists_locked) {
4339 					pv_lists_locked = TRUE;
4340 					if (!rw_try_wlock(&pvh_global_lock)) {
4341 						PMAP_UNLOCK(pmap);
4342 						/* Repeat sva. */
4343 						goto resume;
4344 					}
4345 					sched_pin();
4346 				}
4347 				if (!pmap_demote_pde(pmap, pde, sva))
4348 					panic("pmap_unwire: demotion failed");
4349 			}
4350 		}
4351 		if (pdnxt > eva)
4352 			pdnxt = eva;
4353 		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
4354 		    sva += PAGE_SIZE) {
4355 			if ((*pte & PG_V) == 0)
4356 				continue;
4357 			if ((*pte & PG_W) == 0)
4358 				panic("pmap_unwire: pte %#jx is missing PG_W",
4359 				    (uintmax_t)*pte);
4360 
4361 			/*
4362 			 * PG_W must be cleared atomically.  Although the pmap
4363 			 * lock synchronizes access to PG_W, another processor
4364 			 * could be setting PG_M and/or PG_A concurrently.
4365 			 *
4366 			 * PG_W is among the least significant 32 bits.
4367 			 */
4368 			atomic_clear_int((u_int *)pte, PG_W);
4369 			pmap->pm_stats.wired_count--;
4370 		}
4371 	}
4372 	if (pv_lists_locked) {
4373 		sched_unpin();
4374 		rw_wunlock(&pvh_global_lock);
4375 	}
4376 	PMAP_UNLOCK(pmap);
4377 }
4378 
4379 /*
4380  *	Copy the range specified by src_addr/len
4381  *	from the source map to the range dst_addr/len
4382  *	in the destination map.
4383  *
4384  *	This routine is only advisory and need not do anything.  Since
4385  *	current pmap is always the kernel pmap when executing in
4386  *	kernel, and we do not copy from the kernel pmap to a user
4387  *	pmap, this optimization is not usable in 4/4G full split i386
4388  *	world.
4389  */
4390 
4391 static void
__CONCAT(PMTYPE,copy)4392 __CONCAT(PMTYPE, copy)(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
4393     vm_size_t len, vm_offset_t src_addr)
4394 {
4395 	pt_entry_t *src_pte, *dst_pte, ptetemp;
4396 	pd_entry_t srcptepaddr;
4397 	vm_page_t dstmpte, srcmpte;
4398 	vm_offset_t addr, end_addr, pdnxt;
4399 	u_int ptepindex;
4400 
4401 	if (dst_addr != src_addr)
4402 		return;
4403 
4404 	end_addr = src_addr + len;
4405 
4406 	rw_wlock(&pvh_global_lock);
4407 	if (dst_pmap < src_pmap) {
4408 		PMAP_LOCK(dst_pmap);
4409 		PMAP_LOCK(src_pmap);
4410 	} else {
4411 		PMAP_LOCK(src_pmap);
4412 		PMAP_LOCK(dst_pmap);
4413 	}
4414 	sched_pin();
4415 	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
4416 		KASSERT(addr < PMAP_TRM_MIN_ADDRESS,
4417 		    ("pmap_copy: invalid to pmap_copy the trampoline"));
4418 
4419 		pdnxt = (addr + NBPDR) & ~PDRMASK;
4420 		if (pdnxt < addr)
4421 			pdnxt = end_addr;
4422 		ptepindex = addr >> PDRSHIFT;
4423 
4424 		srcptepaddr = src_pmap->pm_pdir[ptepindex];
4425 		if (srcptepaddr == 0)
4426 			continue;
4427 
4428 		if (srcptepaddr & PG_PS) {
4429 			if ((addr & PDRMASK) != 0 || addr + NBPDR > end_addr)
4430 				continue;
4431 			if (dst_pmap->pm_pdir[ptepindex] == 0 &&
4432 			    ((srcptepaddr & PG_MANAGED) == 0 ||
4433 			    pmap_pv_insert_pde(dst_pmap, addr, srcptepaddr,
4434 			    PMAP_ENTER_NORECLAIM))) {
4435 				dst_pmap->pm_pdir[ptepindex] = srcptepaddr &
4436 				    ~PG_W;
4437 				dst_pmap->pm_stats.resident_count +=
4438 				    NBPDR / PAGE_SIZE;
4439 				pmap_pde_mappings++;
4440 			}
4441 			continue;
4442 		}
4443 
4444 		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
4445 		KASSERT(srcmpte->ref_count > 0,
4446 		    ("pmap_copy: source page table page is unused"));
4447 
4448 		if (pdnxt > end_addr)
4449 			pdnxt = end_addr;
4450 
4451 		src_pte = pmap_pte_quick3(src_pmap, addr);
4452 		while (addr < pdnxt) {
4453 			ptetemp = *src_pte;
4454 			/*
4455 			 * we only virtual copy managed pages
4456 			 */
4457 			if ((ptetemp & PG_MANAGED) != 0) {
4458 				dstmpte = pmap_allocpte(dst_pmap, addr,
4459 				    PMAP_ENTER_NOSLEEP);
4460 				if (dstmpte == NULL)
4461 					goto out;
4462 				dst_pte = pmap_pte_quick(dst_pmap, addr);
4463 				if (*dst_pte == 0 &&
4464 				    pmap_try_insert_pv_entry(dst_pmap, addr,
4465 				    PHYS_TO_VM_PAGE(ptetemp & PG_FRAME))) {
4466 					/*
4467 					 * Clear the wired, modified, and
4468 					 * accessed (referenced) bits
4469 					 * during the copy.
4470 					 */
4471 					*dst_pte = ptetemp & ~(PG_W | PG_M |
4472 					    PG_A);
4473 					dst_pmap->pm_stats.resident_count++;
4474 				} else {
4475 					pmap_abort_ptp(dst_pmap, addr, dstmpte);
4476 					goto out;
4477 				}
4478 				if (dstmpte->ref_count >= srcmpte->ref_count)
4479 					break;
4480 			}
4481 			addr += PAGE_SIZE;
4482 			src_pte++;
4483 		}
4484 	}
4485 out:
4486 	sched_unpin();
4487 	rw_wunlock(&pvh_global_lock);
4488 	PMAP_UNLOCK(src_pmap);
4489 	PMAP_UNLOCK(dst_pmap);
4490 }
4491 
4492 /*
4493  * Zero 1 page of virtual memory mapped from a hardware page by the caller.
4494  */
4495 static __inline void
pagezero(void * page)4496 pagezero(void *page)
4497 {
4498 #if defined(I686_CPU)
4499 	if (cpu_class == CPUCLASS_686) {
4500 		if (cpu_feature & CPUID_SSE2)
4501 			sse2_pagezero(page);
4502 		else
4503 			i686_pagezero(page);
4504 	} else
4505 #endif
4506 		bzero(page, PAGE_SIZE);
4507 }
4508 
4509 /*
4510  * Zero the specified hardware page.
4511  */
4512 static void
__CONCAT(PMTYPE,zero_page)4513 __CONCAT(PMTYPE, zero_page)(vm_page_t m)
4514 {
4515 	pt_entry_t *cmap_pte2;
4516 	struct pcpu *pc;
4517 
4518 	sched_pin();
4519 	pc = get_pcpu();
4520 	cmap_pte2 = pc->pc_cmap_pte2;
4521 	mtx_lock(&pc->pc_cmap_lock);
4522 	if (*cmap_pte2)
4523 		panic("pmap_zero_page: CMAP2 busy");
4524 	*cmap_pte2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
4525 	    pmap_cache_bits(kernel_pmap, m->md.pat_mode, 0);
4526 	invlcaddr(pc->pc_cmap_addr2);
4527 	pagezero(pc->pc_cmap_addr2);
4528 	*cmap_pte2 = 0;
4529 
4530 	/*
4531 	 * Unpin the thread before releasing the lock.  Otherwise the thread
4532 	 * could be rescheduled while still bound to the current CPU, only
4533 	 * to unpin itself immediately upon resuming execution.
4534 	 */
4535 	sched_unpin();
4536 	mtx_unlock(&pc->pc_cmap_lock);
4537 }
4538 
4539 /*
4540  * Zero an an area within a single hardware page.  off and size must not
4541  * cover an area beyond a single hardware page.
4542  */
4543 static void
__CONCAT(PMTYPE,zero_page_area)4544 __CONCAT(PMTYPE, zero_page_area)(vm_page_t m, int off, int size)
4545 {
4546 	pt_entry_t *cmap_pte2;
4547 	struct pcpu *pc;
4548 
4549 	sched_pin();
4550 	pc = get_pcpu();
4551 	cmap_pte2 = pc->pc_cmap_pte2;
4552 	mtx_lock(&pc->pc_cmap_lock);
4553 	if (*cmap_pte2)
4554 		panic("pmap_zero_page_area: CMAP2 busy");
4555 	*cmap_pte2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
4556 	    pmap_cache_bits(kernel_pmap, m->md.pat_mode, 0);
4557 	invlcaddr(pc->pc_cmap_addr2);
4558 	if (off == 0 && size == PAGE_SIZE)
4559 		pagezero(pc->pc_cmap_addr2);
4560 	else
4561 		bzero(pc->pc_cmap_addr2 + off, size);
4562 	*cmap_pte2 = 0;
4563 	sched_unpin();
4564 	mtx_unlock(&pc->pc_cmap_lock);
4565 }
4566 
4567 /*
4568  * Copy 1 specified hardware page to another.
4569  */
4570 static void
__CONCAT(PMTYPE,copy_page)4571 __CONCAT(PMTYPE, copy_page)(vm_page_t src, vm_page_t dst)
4572 {
4573 	pt_entry_t *cmap_pte1, *cmap_pte2;
4574 	struct pcpu *pc;
4575 
4576 	sched_pin();
4577 	pc = get_pcpu();
4578 	cmap_pte1 = pc->pc_cmap_pte1;
4579 	cmap_pte2 = pc->pc_cmap_pte2;
4580 	mtx_lock(&pc->pc_cmap_lock);
4581 	if (*cmap_pte1)
4582 		panic("pmap_copy_page: CMAP1 busy");
4583 	if (*cmap_pte2)
4584 		panic("pmap_copy_page: CMAP2 busy");
4585 	*cmap_pte1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A |
4586 	    pmap_cache_bits(kernel_pmap, src->md.pat_mode, 0);
4587 	invlcaddr(pc->pc_cmap_addr1);
4588 	*cmap_pte2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M |
4589 	    pmap_cache_bits(kernel_pmap, dst->md.pat_mode, 0);
4590 	invlcaddr(pc->pc_cmap_addr2);
4591 	bcopy(pc->pc_cmap_addr1, pc->pc_cmap_addr2, PAGE_SIZE);
4592 	*cmap_pte1 = 0;
4593 	*cmap_pte2 = 0;
4594 	sched_unpin();
4595 	mtx_unlock(&pc->pc_cmap_lock);
4596 }
4597 
4598 static void
__CONCAT(PMTYPE,copy_pages)4599 __CONCAT(PMTYPE, copy_pages)(vm_page_t ma[], vm_offset_t a_offset,
4600     vm_page_t mb[], vm_offset_t b_offset, int xfersize)
4601 {
4602 	vm_page_t a_pg, b_pg;
4603 	char *a_cp, *b_cp;
4604 	vm_offset_t a_pg_offset, b_pg_offset;
4605 	pt_entry_t *cmap_pte1, *cmap_pte2;
4606 	struct pcpu *pc;
4607 	int cnt;
4608 
4609 	sched_pin();
4610 	pc = get_pcpu();
4611 	cmap_pte1 = pc->pc_cmap_pte1;
4612 	cmap_pte2 = pc->pc_cmap_pte2;
4613 	mtx_lock(&pc->pc_cmap_lock);
4614 	if (*cmap_pte1 != 0)
4615 		panic("pmap_copy_pages: CMAP1 busy");
4616 	if (*cmap_pte2 != 0)
4617 		panic("pmap_copy_pages: CMAP2 busy");
4618 	while (xfersize > 0) {
4619 		a_pg = ma[a_offset >> PAGE_SHIFT];
4620 		a_pg_offset = a_offset & PAGE_MASK;
4621 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
4622 		b_pg = mb[b_offset >> PAGE_SHIFT];
4623 		b_pg_offset = b_offset & PAGE_MASK;
4624 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
4625 		*cmap_pte1 = PG_V | VM_PAGE_TO_PHYS(a_pg) | PG_A |
4626 		    pmap_cache_bits(kernel_pmap, a_pg->md.pat_mode, 0);
4627 		invlcaddr(pc->pc_cmap_addr1);
4628 		*cmap_pte2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(b_pg) | PG_A |
4629 		    PG_M | pmap_cache_bits(kernel_pmap, b_pg->md.pat_mode, 0);
4630 		invlcaddr(pc->pc_cmap_addr2);
4631 		a_cp = pc->pc_cmap_addr1 + a_pg_offset;
4632 		b_cp = pc->pc_cmap_addr2 + b_pg_offset;
4633 		bcopy(a_cp, b_cp, cnt);
4634 		a_offset += cnt;
4635 		b_offset += cnt;
4636 		xfersize -= cnt;
4637 	}
4638 	*cmap_pte1 = 0;
4639 	*cmap_pte2 = 0;
4640 	sched_unpin();
4641 	mtx_unlock(&pc->pc_cmap_lock);
4642 }
4643 
4644 /*
4645  * Returns true if the pmap's pv is one of the first
4646  * 16 pvs linked to from this page.  This count may
4647  * be changed upwards or downwards in the future; it
4648  * is only necessary that true be returned for a small
4649  * subset of pmaps for proper page aging.
4650  */
4651 static boolean_t
__CONCAT(PMTYPE,page_exists_quick)4652 __CONCAT(PMTYPE, page_exists_quick)(pmap_t pmap, vm_page_t m)
4653 {
4654 	struct md_page *pvh;
4655 	pv_entry_t pv;
4656 	int loops = 0;
4657 	boolean_t rv;
4658 
4659 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4660 	    ("pmap_page_exists_quick: page %p is not managed", m));
4661 	rv = FALSE;
4662 	rw_wlock(&pvh_global_lock);
4663 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
4664 		if (PV_PMAP(pv) == pmap) {
4665 			rv = TRUE;
4666 			break;
4667 		}
4668 		loops++;
4669 		if (loops >= 16)
4670 			break;
4671 	}
4672 	if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
4673 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4674 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
4675 			if (PV_PMAP(pv) == pmap) {
4676 				rv = TRUE;
4677 				break;
4678 			}
4679 			loops++;
4680 			if (loops >= 16)
4681 				break;
4682 		}
4683 	}
4684 	rw_wunlock(&pvh_global_lock);
4685 	return (rv);
4686 }
4687 
4688 /*
4689  *	pmap_page_wired_mappings:
4690  *
4691  *	Return the number of managed mappings to the given physical page
4692  *	that are wired.
4693  */
4694 static int
__CONCAT(PMTYPE,page_wired_mappings)4695 __CONCAT(PMTYPE, page_wired_mappings)(vm_page_t m)
4696 {
4697 	int count;
4698 
4699 	count = 0;
4700 	if ((m->oflags & VPO_UNMANAGED) != 0)
4701 		return (count);
4702 	rw_wlock(&pvh_global_lock);
4703 	count = pmap_pvh_wired_mappings(&m->md, count);
4704 	if ((m->flags & PG_FICTITIOUS) == 0) {
4705 	    count = pmap_pvh_wired_mappings(pa_to_pvh(VM_PAGE_TO_PHYS(m)),
4706 	        count);
4707 	}
4708 	rw_wunlock(&pvh_global_lock);
4709 	return (count);
4710 }
4711 
4712 /*
4713  *	pmap_pvh_wired_mappings:
4714  *
4715  *	Return the updated number "count" of managed mappings that are wired.
4716  */
4717 static int
pmap_pvh_wired_mappings(struct md_page * pvh,int count)4718 pmap_pvh_wired_mappings(struct md_page *pvh, int count)
4719 {
4720 	pmap_t pmap;
4721 	pt_entry_t *pte;
4722 	pv_entry_t pv;
4723 
4724 	rw_assert(&pvh_global_lock, RA_WLOCKED);
4725 	sched_pin();
4726 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
4727 		pmap = PV_PMAP(pv);
4728 		PMAP_LOCK(pmap);
4729 		pte = pmap_pte_quick(pmap, pv->pv_va);
4730 		if ((*pte & PG_W) != 0)
4731 			count++;
4732 		PMAP_UNLOCK(pmap);
4733 	}
4734 	sched_unpin();
4735 	return (count);
4736 }
4737 
4738 /*
4739  * Returns TRUE if the given page is mapped individually or as part of
4740  * a 4mpage.  Otherwise, returns FALSE.
4741  */
4742 static boolean_t
__CONCAT(PMTYPE,page_is_mapped)4743 __CONCAT(PMTYPE, page_is_mapped)(vm_page_t m)
4744 {
4745 	boolean_t rv;
4746 
4747 	if ((m->oflags & VPO_UNMANAGED) != 0)
4748 		return (FALSE);
4749 	rw_wlock(&pvh_global_lock);
4750 	rv = !TAILQ_EMPTY(&m->md.pv_list) ||
4751 	    ((m->flags & PG_FICTITIOUS) == 0 &&
4752 	    !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
4753 	rw_wunlock(&pvh_global_lock);
4754 	return (rv);
4755 }
4756 
4757 /*
4758  * Remove all pages from specified address space
4759  * this aids process exit speeds.  Also, this code
4760  * is special cased for current process only, but
4761  * can have the more generic (and slightly slower)
4762  * mode enabled.  This is much faster than pmap_remove
4763  * in the case of running down an entire address space.
4764  */
4765 static void
__CONCAT(PMTYPE,remove_pages)4766 __CONCAT(PMTYPE, remove_pages)(pmap_t pmap)
4767 {
4768 	pt_entry_t *pte, tpte;
4769 	vm_page_t m, mpte, mt;
4770 	pv_entry_t pv;
4771 	struct md_page *pvh;
4772 	struct pv_chunk *pc, *npc;
4773 	struct spglist free;
4774 	int field, idx;
4775 	int32_t bit;
4776 	uint32_t inuse, bitmask;
4777 	int allfree;
4778 
4779 	if (pmap != PCPU_GET(curpmap)) {
4780 		printf("warning: pmap_remove_pages called with non-current pmap\n");
4781 		return;
4782 	}
4783 	SLIST_INIT(&free);
4784 	rw_wlock(&pvh_global_lock);
4785 	PMAP_LOCK(pmap);
4786 	sched_pin();
4787 	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
4788 		KASSERT(pc->pc_pmap == pmap, ("Wrong pmap %p %p", pmap,
4789 		    pc->pc_pmap));
4790 		allfree = 1;
4791 		for (field = 0; field < _NPCM; field++) {
4792 			inuse = ~pc->pc_map[field] & pc_freemask[field];
4793 			while (inuse != 0) {
4794 				bit = bsfl(inuse);
4795 				bitmask = 1UL << bit;
4796 				idx = field * 32 + bit;
4797 				pv = &pc->pc_pventry[idx];
4798 				inuse &= ~bitmask;
4799 
4800 				pte = pmap_pde(pmap, pv->pv_va);
4801 				tpte = *pte;
4802 				if ((tpte & PG_PS) == 0) {
4803 					pte = pmap_pte_quick(pmap, pv->pv_va);
4804 					tpte = *pte & ~PG_PTE_PAT;
4805 				}
4806 
4807 				if (tpte == 0) {
4808 					printf(
4809 					    "TPTE at %p  IS ZERO @ VA %08x\n",
4810 					    pte, pv->pv_va);
4811 					panic("bad pte");
4812 				}
4813 
4814 /*
4815  * We cannot remove wired pages from a process' mapping at this time
4816  */
4817 				if (tpte & PG_W) {
4818 					allfree = 0;
4819 					continue;
4820 				}
4821 
4822 				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
4823 				KASSERT(m->phys_addr == (tpte & PG_FRAME),
4824 				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
4825 				    m, (uintmax_t)m->phys_addr,
4826 				    (uintmax_t)tpte));
4827 
4828 				KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
4829 				    m < &vm_page_array[vm_page_array_size],
4830 				    ("pmap_remove_pages: bad tpte %#jx",
4831 				    (uintmax_t)tpte));
4832 
4833 				pte_clear(pte);
4834 
4835 				/*
4836 				 * Update the vm_page_t clean/reference bits.
4837 				 */
4838 				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
4839 					if ((tpte & PG_PS) != 0) {
4840 						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
4841 							vm_page_dirty(mt);
4842 					} else
4843 						vm_page_dirty(m);
4844 				}
4845 
4846 				/* Mark free */
4847 				PV_STAT(pv_entry_frees++);
4848 				PV_STAT(pv_entry_spare++);
4849 				pv_entry_count--;
4850 				pc->pc_map[field] |= bitmask;
4851 				if ((tpte & PG_PS) != 0) {
4852 					pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
4853 					pvh = pa_to_pvh(tpte & PG_PS_FRAME);
4854 					TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
4855 					if (TAILQ_EMPTY(&pvh->pv_list)) {
4856 						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
4857 							if (TAILQ_EMPTY(&mt->md.pv_list))
4858 								vm_page_aflag_clear(mt, PGA_WRITEABLE);
4859 					}
4860 					mpte = pmap_remove_pt_page(pmap, pv->pv_va);
4861 					if (mpte != NULL) {
4862 						KASSERT(mpte->valid == VM_PAGE_BITS_ALL,
4863 						    ("pmap_remove_pages: pte page not promoted"));
4864 						pmap->pm_stats.resident_count--;
4865 						KASSERT(mpte->ref_count == NPTEPG,
4866 						    ("pmap_remove_pages: pte page ref count error"));
4867 						mpte->ref_count = 0;
4868 						pmap_add_delayed_free_list(mpte, &free, FALSE);
4869 					}
4870 				} else {
4871 					pmap->pm_stats.resident_count--;
4872 					TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
4873 					if (TAILQ_EMPTY(&m->md.pv_list) &&
4874 					    (m->flags & PG_FICTITIOUS) == 0) {
4875 						pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4876 						if (TAILQ_EMPTY(&pvh->pv_list))
4877 							vm_page_aflag_clear(m, PGA_WRITEABLE);
4878 					}
4879 					pmap_unuse_pt(pmap, pv->pv_va, &free);
4880 				}
4881 			}
4882 		}
4883 		if (allfree) {
4884 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
4885 			free_pv_chunk(pc);
4886 		}
4887 	}
4888 	sched_unpin();
4889 	pmap_invalidate_all_int(pmap);
4890 	rw_wunlock(&pvh_global_lock);
4891 	PMAP_UNLOCK(pmap);
4892 	vm_page_free_pages_toq(&free, true);
4893 }
4894 
4895 /*
4896  *	pmap_is_modified:
4897  *
4898  *	Return whether or not the specified physical page was modified
4899  *	in any physical maps.
4900  */
4901 static boolean_t
__CONCAT(PMTYPE,is_modified)4902 __CONCAT(PMTYPE, is_modified)(vm_page_t m)
4903 {
4904 	boolean_t rv;
4905 
4906 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4907 	    ("pmap_is_modified: page %p is not managed", m));
4908 
4909 	/*
4910 	 * If the page is not busied then this check is racy.
4911 	 */
4912 	if (!pmap_page_is_write_mapped(m))
4913 		return (FALSE);
4914 	rw_wlock(&pvh_global_lock);
4915 	rv = pmap_is_modified_pvh(&m->md) ||
4916 	    ((m->flags & PG_FICTITIOUS) == 0 &&
4917 	    pmap_is_modified_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
4918 	rw_wunlock(&pvh_global_lock);
4919 	return (rv);
4920 }
4921 
4922 /*
4923  * Returns TRUE if any of the given mappings were used to modify
4924  * physical memory.  Otherwise, returns FALSE.  Both page and 2mpage
4925  * mappings are supported.
4926  */
4927 static boolean_t
pmap_is_modified_pvh(struct md_page * pvh)4928 pmap_is_modified_pvh(struct md_page *pvh)
4929 {
4930 	pv_entry_t pv;
4931 	pt_entry_t *pte;
4932 	pmap_t pmap;
4933 	boolean_t rv;
4934 
4935 	rw_assert(&pvh_global_lock, RA_WLOCKED);
4936 	rv = FALSE;
4937 	sched_pin();
4938 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
4939 		pmap = PV_PMAP(pv);
4940 		PMAP_LOCK(pmap);
4941 		pte = pmap_pte_quick(pmap, pv->pv_va);
4942 		rv = (*pte & (PG_M | PG_RW)) == (PG_M | PG_RW);
4943 		PMAP_UNLOCK(pmap);
4944 		if (rv)
4945 			break;
4946 	}
4947 	sched_unpin();
4948 	return (rv);
4949 }
4950 
4951 /*
4952  *	pmap_is_prefaultable:
4953  *
4954  *	Return whether or not the specified virtual address is elgible
4955  *	for prefault.
4956  */
4957 static boolean_t
__CONCAT(PMTYPE,is_prefaultable)4958 __CONCAT(PMTYPE, is_prefaultable)(pmap_t pmap, vm_offset_t addr)
4959 {
4960 	pd_entry_t pde;
4961 	boolean_t rv;
4962 
4963 	rv = FALSE;
4964 	PMAP_LOCK(pmap);
4965 	pde = *pmap_pde(pmap, addr);
4966 	if (pde != 0 && (pde & PG_PS) == 0)
4967 		rv = pmap_pte_ufast(pmap, addr, pde) == 0;
4968 	PMAP_UNLOCK(pmap);
4969 	return (rv);
4970 }
4971 
4972 /*
4973  *	pmap_is_referenced:
4974  *
4975  *	Return whether or not the specified physical page was referenced
4976  *	in any physical maps.
4977  */
4978 static boolean_t
__CONCAT(PMTYPE,is_referenced)4979 __CONCAT(PMTYPE, is_referenced)(vm_page_t m)
4980 {
4981 	boolean_t rv;
4982 
4983 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4984 	    ("pmap_is_referenced: page %p is not managed", m));
4985 	rw_wlock(&pvh_global_lock);
4986 	rv = pmap_is_referenced_pvh(&m->md) ||
4987 	    ((m->flags & PG_FICTITIOUS) == 0 &&
4988 	    pmap_is_referenced_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
4989 	rw_wunlock(&pvh_global_lock);
4990 	return (rv);
4991 }
4992 
4993 /*
4994  * Returns TRUE if any of the given mappings were referenced and FALSE
4995  * otherwise.  Both page and 4mpage mappings are supported.
4996  */
4997 static boolean_t
pmap_is_referenced_pvh(struct md_page * pvh)4998 pmap_is_referenced_pvh(struct md_page *pvh)
4999 {
5000 	pv_entry_t pv;
5001 	pt_entry_t *pte;
5002 	pmap_t pmap;
5003 	boolean_t rv;
5004 
5005 	rw_assert(&pvh_global_lock, RA_WLOCKED);
5006 	rv = FALSE;
5007 	sched_pin();
5008 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5009 		pmap = PV_PMAP(pv);
5010 		PMAP_LOCK(pmap);
5011 		pte = pmap_pte_quick(pmap, pv->pv_va);
5012 		rv = (*pte & (PG_A | PG_V)) == (PG_A | PG_V);
5013 		PMAP_UNLOCK(pmap);
5014 		if (rv)
5015 			break;
5016 	}
5017 	sched_unpin();
5018 	return (rv);
5019 }
5020 
5021 /*
5022  * Clear the write and modified bits in each of the given page's mappings.
5023  */
5024 static void
__CONCAT(PMTYPE,remove_write)5025 __CONCAT(PMTYPE, remove_write)(vm_page_t m)
5026 {
5027 	struct md_page *pvh;
5028 	pv_entry_t next_pv, pv;
5029 	pmap_t pmap;
5030 	pd_entry_t *pde;
5031 	pt_entry_t oldpte, *pte;
5032 	vm_offset_t va;
5033 
5034 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5035 	    ("pmap_remove_write: page %p is not managed", m));
5036 	vm_page_assert_busied(m);
5037 
5038 	if (!pmap_page_is_write_mapped(m))
5039 		return;
5040 	rw_wlock(&pvh_global_lock);
5041 	sched_pin();
5042 	if ((m->flags & PG_FICTITIOUS) != 0)
5043 		goto small_mappings;
5044 	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5045 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
5046 		va = pv->pv_va;
5047 		pmap = PV_PMAP(pv);
5048 		PMAP_LOCK(pmap);
5049 		pde = pmap_pde(pmap, va);
5050 		if ((*pde & PG_RW) != 0)
5051 			(void)pmap_demote_pde(pmap, pde, va);
5052 		PMAP_UNLOCK(pmap);
5053 	}
5054 small_mappings:
5055 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5056 		pmap = PV_PMAP(pv);
5057 		PMAP_LOCK(pmap);
5058 		pde = pmap_pde(pmap, pv->pv_va);
5059 		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_write: found"
5060 		    " a 4mpage in page %p's pv list", m));
5061 		pte = pmap_pte_quick(pmap, pv->pv_va);
5062 retry:
5063 		oldpte = *pte;
5064 		if ((oldpte & PG_RW) != 0) {
5065 			/*
5066 			 * Regardless of whether a pte is 32 or 64 bits
5067 			 * in size, PG_RW and PG_M are among the least
5068 			 * significant 32 bits.
5069 			 */
5070 			if (!atomic_cmpset_int((u_int *)pte, oldpte,
5071 			    oldpte & ~(PG_RW | PG_M)))
5072 				goto retry;
5073 			if ((oldpte & PG_M) != 0)
5074 				vm_page_dirty(m);
5075 			pmap_invalidate_page_int(pmap, pv->pv_va);
5076 		}
5077 		PMAP_UNLOCK(pmap);
5078 	}
5079 	vm_page_aflag_clear(m, PGA_WRITEABLE);
5080 	sched_unpin();
5081 	rw_wunlock(&pvh_global_lock);
5082 }
5083 
5084 /*
5085  *	pmap_ts_referenced:
5086  *
5087  *	Return a count of reference bits for a page, clearing those bits.
5088  *	It is not necessary for every reference bit to be cleared, but it
5089  *	is necessary that 0 only be returned when there are truly no
5090  *	reference bits set.
5091  *
5092  *	As an optimization, update the page's dirty field if a modified bit is
5093  *	found while counting reference bits.  This opportunistic update can be
5094  *	performed at low cost and can eliminate the need for some future calls
5095  *	to pmap_is_modified().  However, since this function stops after
5096  *	finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
5097  *	dirty pages.  Those dirty pages will only be detected by a future call
5098  *	to pmap_is_modified().
5099  */
5100 static int
__CONCAT(PMTYPE,ts_referenced)5101 __CONCAT(PMTYPE, ts_referenced)(vm_page_t m)
5102 {
5103 	struct md_page *pvh;
5104 	pv_entry_t pv, pvf;
5105 	pmap_t pmap;
5106 	pd_entry_t *pde;
5107 	pt_entry_t *pte;
5108 	vm_paddr_t pa;
5109 	int rtval = 0;
5110 
5111 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5112 	    ("pmap_ts_referenced: page %p is not managed", m));
5113 	pa = VM_PAGE_TO_PHYS(m);
5114 	pvh = pa_to_pvh(pa);
5115 	rw_wlock(&pvh_global_lock);
5116 	sched_pin();
5117 	if ((m->flags & PG_FICTITIOUS) != 0 ||
5118 	    (pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
5119 		goto small_mappings;
5120 	pv = pvf;
5121 	do {
5122 		pmap = PV_PMAP(pv);
5123 		PMAP_LOCK(pmap);
5124 		pde = pmap_pde(pmap, pv->pv_va);
5125 		if ((*pde & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
5126 			/*
5127 			 * Although "*pde" is mapping a 2/4MB page, because
5128 			 * this function is called at a 4KB page granularity,
5129 			 * we only update the 4KB page under test.
5130 			 */
5131 			vm_page_dirty(m);
5132 		}
5133 		if ((*pde & PG_A) != 0) {
5134 			/*
5135 			 * Since this reference bit is shared by either 1024
5136 			 * or 512 4KB pages, it should not be cleared every
5137 			 * time it is tested.  Apply a simple "hash" function
5138 			 * on the physical page number, the virtual superpage
5139 			 * number, and the pmap address to select one 4KB page
5140 			 * out of the 1024 or 512 on which testing the
5141 			 * reference bit will result in clearing that bit.
5142 			 * This function is designed to avoid the selection of
5143 			 * the same 4KB page for every 2- or 4MB page mapping.
5144 			 *
5145 			 * On demotion, a mapping that hasn't been referenced
5146 			 * is simply destroyed.  To avoid the possibility of a
5147 			 * subsequent page fault on a demoted wired mapping,
5148 			 * always leave its reference bit set.  Moreover,
5149 			 * since the superpage is wired, the current state of
5150 			 * its reference bit won't affect page replacement.
5151 			 */
5152 			if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> PDRSHIFT) ^
5153 			    (uintptr_t)pmap) & (NPTEPG - 1)) == 0 &&
5154 			    (*pde & PG_W) == 0) {
5155 				atomic_clear_int((u_int *)pde, PG_A);
5156 				pmap_invalidate_page_int(pmap, pv->pv_va);
5157 			}
5158 			rtval++;
5159 		}
5160 		PMAP_UNLOCK(pmap);
5161 		/* Rotate the PV list if it has more than one entry. */
5162 		if (TAILQ_NEXT(pv, pv_next) != NULL) {
5163 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
5164 			TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
5165 		}
5166 		if (rtval >= PMAP_TS_REFERENCED_MAX)
5167 			goto out;
5168 	} while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
5169 small_mappings:
5170 	if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
5171 		goto out;
5172 	pv = pvf;
5173 	do {
5174 		pmap = PV_PMAP(pv);
5175 		PMAP_LOCK(pmap);
5176 		pde = pmap_pde(pmap, pv->pv_va);
5177 		KASSERT((*pde & PG_PS) == 0,
5178 		    ("pmap_ts_referenced: found a 4mpage in page %p's pv list",
5179 		    m));
5180 		pte = pmap_pte_quick(pmap, pv->pv_va);
5181 		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5182 			vm_page_dirty(m);
5183 		if ((*pte & PG_A) != 0) {
5184 			atomic_clear_int((u_int *)pte, PG_A);
5185 			pmap_invalidate_page_int(pmap, pv->pv_va);
5186 			rtval++;
5187 		}
5188 		PMAP_UNLOCK(pmap);
5189 		/* Rotate the PV list if it has more than one entry. */
5190 		if (TAILQ_NEXT(pv, pv_next) != NULL) {
5191 			TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
5192 			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5193 		}
5194 	} while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && rtval <
5195 	    PMAP_TS_REFERENCED_MAX);
5196 out:
5197 	sched_unpin();
5198 	rw_wunlock(&pvh_global_lock);
5199 	return (rtval);
5200 }
5201 
5202 /*
5203  *	Apply the given advice to the specified range of addresses within the
5204  *	given pmap.  Depending on the advice, clear the referenced and/or
5205  *	modified flags in each mapping and set the mapped page's dirty field.
5206  */
5207 static void
__CONCAT(PMTYPE,advise)5208 __CONCAT(PMTYPE, advise)(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
5209     int advice)
5210 {
5211 	pd_entry_t oldpde, *pde;
5212 	pt_entry_t *pte;
5213 	vm_offset_t va, pdnxt;
5214 	vm_page_t m;
5215 	bool anychanged, pv_lists_locked;
5216 
5217 	if (advice != MADV_DONTNEED && advice != MADV_FREE)
5218 		return;
5219 	if (pmap_is_current(pmap))
5220 		pv_lists_locked = false;
5221 	else {
5222 		pv_lists_locked = true;
5223 resume:
5224 		rw_wlock(&pvh_global_lock);
5225 		sched_pin();
5226 	}
5227 	anychanged = false;
5228 	PMAP_LOCK(pmap);
5229 	for (; sva < eva; sva = pdnxt) {
5230 		pdnxt = (sva + NBPDR) & ~PDRMASK;
5231 		if (pdnxt < sva)
5232 			pdnxt = eva;
5233 		pde = pmap_pde(pmap, sva);
5234 		oldpde = *pde;
5235 		if ((oldpde & PG_V) == 0)
5236 			continue;
5237 		else if ((oldpde & PG_PS) != 0) {
5238 			if ((oldpde & PG_MANAGED) == 0)
5239 				continue;
5240 			if (!pv_lists_locked) {
5241 				pv_lists_locked = true;
5242 				if (!rw_try_wlock(&pvh_global_lock)) {
5243 					if (anychanged)
5244 						pmap_invalidate_all_int(pmap);
5245 					PMAP_UNLOCK(pmap);
5246 					goto resume;
5247 				}
5248 				sched_pin();
5249 			}
5250 			if (!pmap_demote_pde(pmap, pde, sva)) {
5251 				/*
5252 				 * The large page mapping was destroyed.
5253 				 */
5254 				continue;
5255 			}
5256 
5257 			/*
5258 			 * Unless the page mappings are wired, remove the
5259 			 * mapping to a single page so that a subsequent
5260 			 * access may repromote.  Choosing the last page
5261 			 * within the address range [sva, min(pdnxt, eva))
5262 			 * generally results in more repromotions.  Since the
5263 			 * underlying page table page is fully populated, this
5264 			 * removal never frees a page table page.
5265 			 */
5266 			if ((oldpde & PG_W) == 0) {
5267 				va = eva;
5268 				if (va > pdnxt)
5269 					va = pdnxt;
5270 				va -= PAGE_SIZE;
5271 				KASSERT(va >= sva,
5272 				    ("pmap_advise: no address gap"));
5273 				pte = pmap_pte_quick(pmap, va);
5274 				KASSERT((*pte & PG_V) != 0,
5275 				    ("pmap_advise: invalid PTE"));
5276 				pmap_remove_pte(pmap, pte, va, NULL);
5277 				anychanged = true;
5278 			}
5279 		}
5280 		if (pdnxt > eva)
5281 			pdnxt = eva;
5282 		va = pdnxt;
5283 		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
5284 		    sva += PAGE_SIZE) {
5285 			if ((*pte & (PG_MANAGED | PG_V)) != (PG_MANAGED | PG_V))
5286 				goto maybe_invlrng;
5287 			else if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
5288 				if (advice == MADV_DONTNEED) {
5289 					/*
5290 					 * Future calls to pmap_is_modified()
5291 					 * can be avoided by making the page
5292 					 * dirty now.
5293 					 */
5294 					m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
5295 					vm_page_dirty(m);
5296 				}
5297 				atomic_clear_int((u_int *)pte, PG_M | PG_A);
5298 			} else if ((*pte & PG_A) != 0)
5299 				atomic_clear_int((u_int *)pte, PG_A);
5300 			else
5301 				goto maybe_invlrng;
5302 			if ((*pte & PG_G) != 0) {
5303 				if (va == pdnxt)
5304 					va = sva;
5305 			} else
5306 				anychanged = true;
5307 			continue;
5308 maybe_invlrng:
5309 			if (va != pdnxt) {
5310 				pmap_invalidate_range_int(pmap, va, sva);
5311 				va = pdnxt;
5312 			}
5313 		}
5314 		if (va != pdnxt)
5315 			pmap_invalidate_range_int(pmap, va, sva);
5316 	}
5317 	if (anychanged)
5318 		pmap_invalidate_all_int(pmap);
5319 	if (pv_lists_locked) {
5320 		sched_unpin();
5321 		rw_wunlock(&pvh_global_lock);
5322 	}
5323 	PMAP_UNLOCK(pmap);
5324 }
5325 
5326 /*
5327  *	Clear the modify bits on the specified physical page.
5328  */
5329 static void
__CONCAT(PMTYPE,clear_modify)5330 __CONCAT(PMTYPE, clear_modify)(vm_page_t m)
5331 {
5332 	struct md_page *pvh;
5333 	pv_entry_t next_pv, pv;
5334 	pmap_t pmap;
5335 	pd_entry_t oldpde, *pde;
5336 	pt_entry_t *pte;
5337 	vm_offset_t va;
5338 
5339 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5340 	    ("pmap_clear_modify: page %p is not managed", m));
5341 	vm_page_assert_busied(m);
5342 
5343 	if (!pmap_page_is_write_mapped(m))
5344 		return;
5345 	rw_wlock(&pvh_global_lock);
5346 	sched_pin();
5347 	if ((m->flags & PG_FICTITIOUS) != 0)
5348 		goto small_mappings;
5349 	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5350 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
5351 		va = pv->pv_va;
5352 		pmap = PV_PMAP(pv);
5353 		PMAP_LOCK(pmap);
5354 		pde = pmap_pde(pmap, va);
5355 		oldpde = *pde;
5356 		/* If oldpde has PG_RW set, then it also has PG_M set. */
5357 		if ((oldpde & PG_RW) != 0 &&
5358 		    pmap_demote_pde(pmap, pde, va) &&
5359 		    (oldpde & PG_W) == 0) {
5360 			/*
5361 			 * Write protect the mapping to a single page so that
5362 			 * a subsequent write access may repromote.
5363 			 */
5364 			va += VM_PAGE_TO_PHYS(m) - (oldpde & PG_PS_FRAME);
5365 			pte = pmap_pte_quick(pmap, va);
5366 			/*
5367 			 * Regardless of whether a pte is 32 or 64 bits
5368 			 * in size, PG_RW and PG_M are among the least
5369 			 * significant 32 bits.
5370 			 */
5371 			atomic_clear_int((u_int *)pte, PG_M | PG_RW);
5372 			vm_page_dirty(m);
5373 			pmap_invalidate_page_int(pmap, va);
5374 		}
5375 		PMAP_UNLOCK(pmap);
5376 	}
5377 small_mappings:
5378 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5379 		pmap = PV_PMAP(pv);
5380 		PMAP_LOCK(pmap);
5381 		pde = pmap_pde(pmap, pv->pv_va);
5382 		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_modify: found"
5383 		    " a 4mpage in page %p's pv list", m));
5384 		pte = pmap_pte_quick(pmap, pv->pv_va);
5385 		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
5386 			/*
5387 			 * Regardless of whether a pte is 32 or 64 bits
5388 			 * in size, PG_M is among the least significant
5389 			 * 32 bits.
5390 			 */
5391 			atomic_clear_int((u_int *)pte, PG_M);
5392 			pmap_invalidate_page_int(pmap, pv->pv_va);
5393 		}
5394 		PMAP_UNLOCK(pmap);
5395 	}
5396 	sched_unpin();
5397 	rw_wunlock(&pvh_global_lock);
5398 }
5399 
5400 /*
5401  * Miscellaneous support routines follow
5402  */
5403 
5404 /* Adjust the cache mode for a 4KB page mapped via a PTE. */
5405 static __inline void
pmap_pte_attr(pt_entry_t * pte,int cache_bits)5406 pmap_pte_attr(pt_entry_t *pte, int cache_bits)
5407 {
5408 	u_int opte, npte;
5409 
5410 	/*
5411 	 * The cache mode bits are all in the low 32-bits of the
5412 	 * PTE, so we can just spin on updating the low 32-bits.
5413 	 */
5414 	do {
5415 		opte = *(u_int *)pte;
5416 		npte = opte & ~PG_PTE_CACHE;
5417 		npte |= cache_bits;
5418 	} while (npte != opte && !atomic_cmpset_int((u_int *)pte, opte, npte));
5419 }
5420 
5421 /* Adjust the cache mode for a 2/4MB page mapped via a PDE. */
5422 static __inline void
pmap_pde_attr(pd_entry_t * pde,int cache_bits)5423 pmap_pde_attr(pd_entry_t *pde, int cache_bits)
5424 {
5425 	u_int opde, npde;
5426 
5427 	/*
5428 	 * The cache mode bits are all in the low 32-bits of the
5429 	 * PDE, so we can just spin on updating the low 32-bits.
5430 	 */
5431 	do {
5432 		opde = *(u_int *)pde;
5433 		npde = opde & ~PG_PDE_CACHE;
5434 		npde |= cache_bits;
5435 	} while (npde != opde && !atomic_cmpset_int((u_int *)pde, opde, npde));
5436 }
5437 
5438 /*
5439  * Map a set of physical memory pages into the kernel virtual
5440  * address space. Return a pointer to where it is mapped. This
5441  * routine is intended to be used for mapping device memory,
5442  * NOT real memory.
5443  */
5444 static void *
__CONCAT(PMTYPE,mapdev_attr)5445 __CONCAT(PMTYPE, mapdev_attr)(vm_paddr_t pa, vm_size_t size, int mode,
5446     int flags)
5447 {
5448 	struct pmap_preinit_mapping *ppim;
5449 	vm_offset_t va, offset;
5450 	vm_page_t m;
5451 	vm_size_t tmpsize;
5452 	int i;
5453 
5454 	offset = pa & PAGE_MASK;
5455 	size = round_page(offset + size);
5456 	pa = pa & PG_FRAME;
5457 
5458 	if (pa < PMAP_MAP_LOW && pa + size <= PMAP_MAP_LOW) {
5459 		va = pa + PMAP_MAP_LOW;
5460 		if ((flags & MAPDEV_SETATTR) == 0)
5461 			return ((void *)(va + offset));
5462 	} else if (!pmap_initialized) {
5463 		va = 0;
5464 		for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
5465 			ppim = pmap_preinit_mapping + i;
5466 			if (ppim->va == 0) {
5467 				ppim->pa = pa;
5468 				ppim->sz = size;
5469 				ppim->mode = mode;
5470 				ppim->va = virtual_avail;
5471 				virtual_avail += size;
5472 				va = ppim->va;
5473 				break;
5474 			}
5475 		}
5476 		if (va == 0)
5477 			panic("%s: too many preinit mappings", __func__);
5478 	} else {
5479 		/*
5480 		 * If we have a preinit mapping, re-use it.
5481 		 */
5482 		for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
5483 			ppim = pmap_preinit_mapping + i;
5484 			if (ppim->pa == pa && ppim->sz == size &&
5485 			    (ppim->mode == mode ||
5486 			    (flags & MAPDEV_SETATTR) == 0))
5487 				return ((void *)(ppim->va + offset));
5488 		}
5489 		va = kva_alloc(size);
5490 		if (va == 0)
5491 			panic("%s: Couldn't allocate KVA", __func__);
5492 	}
5493 	for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE) {
5494 		if ((flags & MAPDEV_SETATTR) == 0 && pmap_initialized) {
5495 			m = PHYS_TO_VM_PAGE(pa);
5496 			if (m != NULL && VM_PAGE_TO_PHYS(m) == pa) {
5497 				pmap_kenter_attr(va + tmpsize, pa + tmpsize,
5498 				    m->md.pat_mode);
5499 				continue;
5500 			}
5501 		}
5502 		pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
5503 	}
5504 	pmap_invalidate_range_int(kernel_pmap, va, va + tmpsize);
5505 	pmap_invalidate_cache_range(va, va + size);
5506 	return ((void *)(va + offset));
5507 }
5508 
5509 static void
__CONCAT(PMTYPE,unmapdev)5510 __CONCAT(PMTYPE, unmapdev)(vm_offset_t va, vm_size_t size)
5511 {
5512 	struct pmap_preinit_mapping *ppim;
5513 	vm_offset_t offset;
5514 	int i;
5515 
5516 	if (va >= PMAP_MAP_LOW && va <= KERNBASE && va + size <= KERNBASE)
5517 		return;
5518 	offset = va & PAGE_MASK;
5519 	size = round_page(offset + size);
5520 	va = trunc_page(va);
5521 	for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
5522 		ppim = pmap_preinit_mapping + i;
5523 		if (ppim->va == va && ppim->sz == size) {
5524 			if (pmap_initialized)
5525 				return;
5526 			ppim->pa = 0;
5527 			ppim->va = 0;
5528 			ppim->sz = 0;
5529 			ppim->mode = 0;
5530 			if (va + size == virtual_avail)
5531 				virtual_avail = va;
5532 			return;
5533 		}
5534 	}
5535 	if (pmap_initialized) {
5536 		pmap_qremove(va, atop(size));
5537 		kva_free(va, size);
5538 	}
5539 }
5540 
5541 /*
5542  * Sets the memory attribute for the specified page.
5543  */
5544 static void
__CONCAT(PMTYPE,page_set_memattr)5545 __CONCAT(PMTYPE, page_set_memattr)(vm_page_t m, vm_memattr_t ma)
5546 {
5547 
5548 	m->md.pat_mode = ma;
5549 	if ((m->flags & PG_FICTITIOUS) != 0)
5550 		return;
5551 
5552 	/*
5553 	 * If "m" is a normal page, flush it from the cache.
5554 	 * See pmap_invalidate_cache_range().
5555 	 *
5556 	 * First, try to find an existing mapping of the page by sf
5557 	 * buffer. sf_buf_invalidate_cache() modifies mapping and
5558 	 * flushes the cache.
5559 	 */
5560 	if (sf_buf_invalidate_cache(m))
5561 		return;
5562 
5563 	/*
5564 	 * If page is not mapped by sf buffer, but CPU does not
5565 	 * support self snoop, map the page transient and do
5566 	 * invalidation. In the worst case, whole cache is flushed by
5567 	 * pmap_invalidate_cache_range().
5568 	 */
5569 	if ((cpu_feature & CPUID_SS) == 0)
5570 		pmap_flush_page(m);
5571 }
5572 
5573 static void
__CONCAT(PMTYPE,flush_page)5574 __CONCAT(PMTYPE, flush_page)(vm_page_t m)
5575 {
5576 	pt_entry_t *cmap_pte2;
5577 	struct pcpu *pc;
5578 	vm_offset_t sva, eva;
5579 	bool useclflushopt;
5580 
5581 	useclflushopt = (cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0;
5582 	if (useclflushopt || (cpu_feature & CPUID_CLFSH) != 0) {
5583 		sched_pin();
5584 		pc = get_pcpu();
5585 		cmap_pte2 = pc->pc_cmap_pte2;
5586 		mtx_lock(&pc->pc_cmap_lock);
5587 		if (*cmap_pte2)
5588 			panic("pmap_flush_page: CMAP2 busy");
5589 		*cmap_pte2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) |
5590 		    PG_A | PG_M | pmap_cache_bits(kernel_pmap, m->md.pat_mode,
5591 		    0);
5592 		invlcaddr(pc->pc_cmap_addr2);
5593 		sva = (vm_offset_t)pc->pc_cmap_addr2;
5594 		eva = sva + PAGE_SIZE;
5595 
5596 		/*
5597 		 * Use mfence or sfence despite the ordering implied by
5598 		 * mtx_{un,}lock() because clflush on non-Intel CPUs
5599 		 * and clflushopt are not guaranteed to be ordered by
5600 		 * any other instruction.
5601 		 */
5602 		if (useclflushopt)
5603 			sfence();
5604 		else if (cpu_vendor_id != CPU_VENDOR_INTEL)
5605 			mfence();
5606 		for (; sva < eva; sva += cpu_clflush_line_size) {
5607 			if (useclflushopt)
5608 				clflushopt(sva);
5609 			else
5610 				clflush(sva);
5611 		}
5612 		if (useclflushopt)
5613 			sfence();
5614 		else if (cpu_vendor_id != CPU_VENDOR_INTEL)
5615 			mfence();
5616 		*cmap_pte2 = 0;
5617 		sched_unpin();
5618 		mtx_unlock(&pc->pc_cmap_lock);
5619 	} else
5620 		pmap_invalidate_cache();
5621 }
5622 
5623 /*
5624  * Changes the specified virtual address range's memory type to that given by
5625  * the parameter "mode".  The specified virtual address range must be
5626  * completely contained within either the kernel map.
5627  *
5628  * Returns zero if the change completed successfully, and either EINVAL or
5629  * ENOMEM if the change failed.  Specifically, EINVAL is returned if some part
5630  * of the virtual address range was not mapped, and ENOMEM is returned if
5631  * there was insufficient memory available to complete the change.
5632  */
5633 static int
__CONCAT(PMTYPE,change_attr)5634 __CONCAT(PMTYPE, change_attr)(vm_offset_t va, vm_size_t size, int mode)
5635 {
5636 	vm_offset_t base, offset, tmpva;
5637 	pd_entry_t *pde;
5638 	pt_entry_t *pte;
5639 	int cache_bits_pte, cache_bits_pde;
5640 	boolean_t changed;
5641 
5642 	base = trunc_page(va);
5643 	offset = va & PAGE_MASK;
5644 	size = round_page(offset + size);
5645 
5646 	/*
5647 	 * Only supported on kernel virtual addresses above the recursive map.
5648 	 */
5649 	if (base < VM_MIN_KERNEL_ADDRESS)
5650 		return (EINVAL);
5651 
5652 	cache_bits_pde = pmap_cache_bits(kernel_pmap, mode, 1);
5653 	cache_bits_pte = pmap_cache_bits(kernel_pmap, mode, 0);
5654 	changed = FALSE;
5655 
5656 	/*
5657 	 * Pages that aren't mapped aren't supported.  Also break down
5658 	 * 2/4MB pages into 4KB pages if required.
5659 	 */
5660 	PMAP_LOCK(kernel_pmap);
5661 	for (tmpva = base; tmpva < base + size; ) {
5662 		pde = pmap_pde(kernel_pmap, tmpva);
5663 		if (*pde == 0) {
5664 			PMAP_UNLOCK(kernel_pmap);
5665 			return (EINVAL);
5666 		}
5667 		if (*pde & PG_PS) {
5668 			/*
5669 			 * If the current 2/4MB page already has
5670 			 * the required memory type, then we need not
5671 			 * demote this page.  Just increment tmpva to
5672 			 * the next 2/4MB page frame.
5673 			 */
5674 			if ((*pde & PG_PDE_CACHE) == cache_bits_pde) {
5675 				tmpva = trunc_4mpage(tmpva) + NBPDR;
5676 				continue;
5677 			}
5678 
5679 			/*
5680 			 * If the current offset aligns with a 2/4MB
5681 			 * page frame and there is at least 2/4MB left
5682 			 * within the range, then we need not break
5683 			 * down this page into 4KB pages.
5684 			 */
5685 			if ((tmpva & PDRMASK) == 0 &&
5686 			    tmpva + PDRMASK < base + size) {
5687 				tmpva += NBPDR;
5688 				continue;
5689 			}
5690 			if (!pmap_demote_pde(kernel_pmap, pde, tmpva)) {
5691 				PMAP_UNLOCK(kernel_pmap);
5692 				return (ENOMEM);
5693 			}
5694 		}
5695 		pte = vtopte(tmpva);
5696 		if (*pte == 0) {
5697 			PMAP_UNLOCK(kernel_pmap);
5698 			return (EINVAL);
5699 		}
5700 		tmpva += PAGE_SIZE;
5701 	}
5702 	PMAP_UNLOCK(kernel_pmap);
5703 
5704 	/*
5705 	 * Ok, all the pages exist, so run through them updating their
5706 	 * cache mode if required.
5707 	 */
5708 	for (tmpva = base; tmpva < base + size; ) {
5709 		pde = pmap_pde(kernel_pmap, tmpva);
5710 		if (*pde & PG_PS) {
5711 			if ((*pde & PG_PDE_CACHE) != cache_bits_pde) {
5712 				pmap_pde_attr(pde, cache_bits_pde);
5713 				changed = TRUE;
5714 			}
5715 			tmpva = trunc_4mpage(tmpva) + NBPDR;
5716 		} else {
5717 			pte = vtopte(tmpva);
5718 			if ((*pte & PG_PTE_CACHE) != cache_bits_pte) {
5719 				pmap_pte_attr(pte, cache_bits_pte);
5720 				changed = TRUE;
5721 			}
5722 			tmpva += PAGE_SIZE;
5723 		}
5724 	}
5725 
5726 	/*
5727 	 * Flush CPU caches to make sure any data isn't cached that
5728 	 * shouldn't be, etc.
5729 	 */
5730 	if (changed) {
5731 		pmap_invalidate_range_int(kernel_pmap, base, tmpva);
5732 		pmap_invalidate_cache_range(base, tmpva);
5733 	}
5734 	return (0);
5735 }
5736 
5737 /*
5738  * Perform the pmap work for mincore(2).  If the page is not both referenced and
5739  * modified by this pmap, returns its physical address so that the caller can
5740  * find other mappings.
5741  */
5742 static int
__CONCAT(PMTYPE,mincore)5743 __CONCAT(PMTYPE, mincore)(pmap_t pmap, vm_offset_t addr, vm_paddr_t *pap)
5744 {
5745 	pd_entry_t pde;
5746 	pt_entry_t pte;
5747 	vm_paddr_t pa;
5748 	int val;
5749 
5750 	PMAP_LOCK(pmap);
5751 	pde = *pmap_pde(pmap, addr);
5752 	if (pde != 0) {
5753 		if ((pde & PG_PS) != 0) {
5754 			pte = pde;
5755 			/* Compute the physical address of the 4KB page. */
5756 			pa = ((pde & PG_PS_FRAME) | (addr & PDRMASK)) &
5757 			    PG_FRAME;
5758 			val = MINCORE_PSIND(1);
5759 		} else {
5760 			pte = pmap_pte_ufast(pmap, addr, pde);
5761 			pa = pte & PG_FRAME;
5762 			val = 0;
5763 		}
5764 	} else {
5765 		pte = 0;
5766 		pa = 0;
5767 		val = 0;
5768 	}
5769 	if ((pte & PG_V) != 0) {
5770 		val |= MINCORE_INCORE;
5771 		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5772 			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
5773 		if ((pte & PG_A) != 0)
5774 			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
5775 	}
5776 	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
5777 	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
5778 	    (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
5779 		*pap = pa;
5780 	}
5781 	PMAP_UNLOCK(pmap);
5782 	return (val);
5783 }
5784 
5785 static void
__CONCAT(PMTYPE,activate)5786 __CONCAT(PMTYPE, activate)(struct thread *td)
5787 {
5788 	pmap_t	pmap, oldpmap;
5789 	u_int	cpuid;
5790 	u_int32_t  cr3;
5791 
5792 	critical_enter();
5793 	pmap = vmspace_pmap(td->td_proc->p_vmspace);
5794 	oldpmap = PCPU_GET(curpmap);
5795 	cpuid = PCPU_GET(cpuid);
5796 #if defined(SMP)
5797 	CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
5798 	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
5799 #else
5800 	CPU_CLR(cpuid, &oldpmap->pm_active);
5801 	CPU_SET(cpuid, &pmap->pm_active);
5802 #endif
5803 #ifdef PMAP_PAE_COMP
5804 	cr3 = vtophys(pmap->pm_pdpt);
5805 #else
5806 	cr3 = vtophys(pmap->pm_pdir);
5807 #endif
5808 	/*
5809 	 * pmap_activate is for the current thread on the current cpu
5810 	 */
5811 	td->td_pcb->pcb_cr3 = cr3;
5812 	PCPU_SET(curpmap, pmap);
5813 	critical_exit();
5814 }
5815 
5816 static void
__CONCAT(PMTYPE,activate_boot)5817 __CONCAT(PMTYPE, activate_boot)(pmap_t pmap)
5818 {
5819 	u_int cpuid;
5820 
5821 	cpuid = PCPU_GET(cpuid);
5822 #if defined(SMP)
5823 	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
5824 #else
5825 	CPU_SET(cpuid, &pmap->pm_active);
5826 #endif
5827 	PCPU_SET(curpmap, pmap);
5828 }
5829 
5830 /*
5831  *	Increase the starting virtual address of the given mapping if a
5832  *	different alignment might result in more superpage mappings.
5833  */
5834 static void
__CONCAT(PMTYPE,align_superpage)5835 __CONCAT(PMTYPE, align_superpage)(vm_object_t object, vm_ooffset_t offset,
5836     vm_offset_t *addr, vm_size_t size)
5837 {
5838 	vm_offset_t superpage_offset;
5839 
5840 	if (size < NBPDR)
5841 		return;
5842 	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
5843 		offset += ptoa(object->pg_color);
5844 	superpage_offset = offset & PDRMASK;
5845 	if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
5846 	    (*addr & PDRMASK) == superpage_offset)
5847 		return;
5848 	if ((*addr & PDRMASK) < superpage_offset)
5849 		*addr = (*addr & ~PDRMASK) + superpage_offset;
5850 	else
5851 		*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
5852 }
5853 
5854 static vm_offset_t
__CONCAT(PMTYPE,quick_enter_page)5855 __CONCAT(PMTYPE, quick_enter_page)(vm_page_t m)
5856 {
5857 	vm_offset_t qaddr;
5858 	pt_entry_t *pte;
5859 
5860 	critical_enter();
5861 	qaddr = PCPU_GET(qmap_addr);
5862 	pte = vtopte(qaddr);
5863 
5864 	KASSERT(*pte == 0,
5865 	    ("pmap_quick_enter_page: PTE busy %#jx", (uintmax_t)*pte));
5866 	*pte = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
5867 	    pmap_cache_bits(kernel_pmap, pmap_page_get_memattr(m), 0);
5868 	invlpg(qaddr);
5869 
5870 	return (qaddr);
5871 }
5872 
5873 static void
__CONCAT(PMTYPE,quick_remove_page)5874 __CONCAT(PMTYPE, quick_remove_page)(vm_offset_t addr)
5875 {
5876 	vm_offset_t qaddr;
5877 	pt_entry_t *pte;
5878 
5879 	qaddr = PCPU_GET(qmap_addr);
5880 	pte = vtopte(qaddr);
5881 
5882 	KASSERT(*pte != 0, ("pmap_quick_remove_page: PTE not in use"));
5883 	KASSERT(addr == qaddr, ("pmap_quick_remove_page: invalid address"));
5884 
5885 	*pte = 0;
5886 	critical_exit();
5887 }
5888 
5889 static vmem_t *pmap_trm_arena;
5890 static vmem_addr_t pmap_trm_arena_last = PMAP_TRM_MIN_ADDRESS;
5891 static int trm_guard = PAGE_SIZE;
5892 
5893 static int
pmap_trm_import(void * unused __unused,vmem_size_t size,int flags,vmem_addr_t * addrp)5894 pmap_trm_import(void *unused __unused, vmem_size_t size, int flags,
5895     vmem_addr_t *addrp)
5896 {
5897 	vm_page_t m;
5898 	vmem_addr_t af, addr, prev_addr;
5899 	pt_entry_t *trm_pte;
5900 
5901 	prev_addr = atomic_load_long(&pmap_trm_arena_last);
5902 	size = round_page(size) + trm_guard;
5903 	for (;;) {
5904 		if (prev_addr + size < prev_addr || prev_addr + size < size ||
5905 		    prev_addr + size > PMAP_TRM_MAX_ADDRESS)
5906 			return (ENOMEM);
5907 		addr = prev_addr + size;
5908 		if (atomic_fcmpset_int(&pmap_trm_arena_last, &prev_addr, addr))
5909 			break;
5910 	}
5911 	prev_addr += trm_guard;
5912 	trm_pte = PTmap + atop(prev_addr);
5913 	for (af = prev_addr; af < addr; af += PAGE_SIZE) {
5914 		m = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ | VM_ALLOC_NOBUSY |
5915 		    VM_ALLOC_NORMAL | VM_ALLOC_WIRED | VM_ALLOC_WAITOK);
5916 		pte_store(&trm_pte[atop(af - prev_addr)], VM_PAGE_TO_PHYS(m) |
5917 		    PG_M | PG_A | PG_RW | PG_V | pgeflag |
5918 		    pmap_cache_bits(kernel_pmap, VM_MEMATTR_DEFAULT, FALSE));
5919 	}
5920 	*addrp = prev_addr;
5921 	return (0);
5922 }
5923 
5924 void
pmap_init_trm(void)5925 pmap_init_trm(void)
5926 {
5927 	vm_page_t pd_m;
5928 
5929 	TUNABLE_INT_FETCH("machdep.trm_guard", &trm_guard);
5930 	if ((trm_guard & PAGE_MASK) != 0)
5931 		trm_guard = 0;
5932 	pmap_trm_arena = vmem_create("i386trampoline", 0, 0, 1, 0, M_WAITOK);
5933 	vmem_set_import(pmap_trm_arena, pmap_trm_import, NULL, NULL, PAGE_SIZE);
5934 	pd_m = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ | VM_ALLOC_NOBUSY |
5935 	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED | VM_ALLOC_WAITOK | VM_ALLOC_ZERO);
5936 	if ((pd_m->flags & PG_ZERO) == 0)
5937 		pmap_zero_page(pd_m);
5938 	PTD[TRPTDI] = VM_PAGE_TO_PHYS(pd_m) | PG_M | PG_A | PG_RW | PG_V |
5939 	    pmap_cache_bits(kernel_pmap, VM_MEMATTR_DEFAULT, TRUE);
5940 }
5941 
5942 static void *
__CONCAT(PMTYPE,trm_alloc)5943 __CONCAT(PMTYPE, trm_alloc)(size_t size, int flags)
5944 {
5945 	vmem_addr_t res;
5946 	int error;
5947 
5948 	MPASS((flags & ~(M_WAITOK | M_NOWAIT | M_ZERO)) == 0);
5949 	error = vmem_xalloc(pmap_trm_arena, roundup2(size, 4), sizeof(int),
5950 	    0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX, flags | M_FIRSTFIT, &res);
5951 	if (error != 0)
5952 		return (NULL);
5953 	if ((flags & M_ZERO) != 0)
5954 		bzero((void *)res, size);
5955 	return ((void *)res);
5956 }
5957 
5958 static void
__CONCAT(PMTYPE,trm_free)5959 __CONCAT(PMTYPE, trm_free)(void *addr, size_t size)
5960 {
5961 
5962 	vmem_free(pmap_trm_arena, (uintptr_t)addr, roundup2(size, 4));
5963 }
5964 
5965 static void
__CONCAT(PMTYPE,ksetrw)5966 __CONCAT(PMTYPE, ksetrw)(vm_offset_t va)
5967 {
5968 
5969 	*vtopte(va) |= PG_RW;
5970 }
5971 
5972 static void
__CONCAT(PMTYPE,remap_lowptdi)5973 __CONCAT(PMTYPE, remap_lowptdi)(bool enable)
5974 {
5975 
5976 	PTD[KPTDI] = enable ? PTD[LOWPTDI] : 0;
5977 	invltlb_glob();
5978 }
5979 
5980 static vm_offset_t
__CONCAT(PMTYPE,get_map_low)5981 __CONCAT(PMTYPE, get_map_low)(void)
5982 {
5983 
5984 	return (PMAP_MAP_LOW);
5985 }
5986 
5987 static vm_offset_t
__CONCAT(PMTYPE,get_vm_maxuser_address)5988 __CONCAT(PMTYPE, get_vm_maxuser_address)(void)
5989 {
5990 
5991 	return (VM_MAXUSER_ADDRESS);
5992 }
5993 
5994 static vm_paddr_t
__CONCAT(PMTYPE,pg_frame)5995 __CONCAT(PMTYPE, pg_frame)(vm_paddr_t pa)
5996 {
5997 
5998 	return (pa & PG_FRAME);
5999 }
6000 
6001 static void
__CONCAT(PMTYPE,sf_buf_map)6002 __CONCAT(PMTYPE, sf_buf_map)(struct sf_buf *sf)
6003 {
6004 	pt_entry_t opte, *ptep;
6005 
6006 	/*
6007 	 * Update the sf_buf's virtual-to-physical mapping, flushing the
6008 	 * virtual address from the TLB.  Since the reference count for
6009 	 * the sf_buf's old mapping was zero, that mapping is not
6010 	 * currently in use.  Consequently, there is no need to exchange
6011 	 * the old and new PTEs atomically, even under PAE.
6012 	 */
6013 	ptep = vtopte(sf->kva);
6014 	opte = *ptep;
6015 	*ptep = VM_PAGE_TO_PHYS(sf->m) | PG_RW | PG_V |
6016 	    pmap_cache_bits(kernel_pmap, sf->m->md.pat_mode, 0);
6017 
6018 	/*
6019 	 * Avoid unnecessary TLB invalidations: If the sf_buf's old
6020 	 * virtual-to-physical mapping was not used, then any processor
6021 	 * that has invalidated the sf_buf's virtual address from its TLB
6022 	 * since the last used mapping need not invalidate again.
6023 	 */
6024 #ifdef SMP
6025 	if ((opte & (PG_V | PG_A)) ==  (PG_V | PG_A))
6026 		CPU_ZERO(&sf->cpumask);
6027 #else
6028 	if ((opte & (PG_V | PG_A)) ==  (PG_V | PG_A))
6029 		pmap_invalidate_page_int(kernel_pmap, sf->kva);
6030 #endif
6031 }
6032 
6033 static void
__CONCAT(PMTYPE,cp_slow0_map)6034 __CONCAT(PMTYPE, cp_slow0_map)(vm_offset_t kaddr, int plen, vm_page_t *ma)
6035 {
6036 	pt_entry_t *pte;
6037 	int i;
6038 
6039 	for (i = 0, pte = vtopte(kaddr); i < plen; i++, pte++) {
6040 		*pte = PG_V | PG_RW | PG_A | PG_M | VM_PAGE_TO_PHYS(ma[i]) |
6041 		    pmap_cache_bits(kernel_pmap, pmap_page_get_memattr(ma[i]),
6042 		    FALSE);
6043 		invlpg(kaddr + ptoa(i));
6044 	}
6045 }
6046 
6047 static u_int
__CONCAT(PMTYPE,get_kcr3)6048 __CONCAT(PMTYPE, get_kcr3)(void)
6049 {
6050 
6051 #ifdef PMAP_PAE_COMP
6052 	return ((u_int)IdlePDPT);
6053 #else
6054 	return ((u_int)IdlePTD);
6055 #endif
6056 }
6057 
6058 static u_int
__CONCAT(PMTYPE,get_cr3)6059 __CONCAT(PMTYPE, get_cr3)(pmap_t pmap)
6060 {
6061 
6062 #ifdef PMAP_PAE_COMP
6063 	return ((u_int)vtophys(pmap->pm_pdpt));
6064 #else
6065 	return ((u_int)vtophys(pmap->pm_pdir));
6066 #endif
6067 }
6068 
6069 static caddr_t
__CONCAT(PMTYPE,cmap3)6070 __CONCAT(PMTYPE, cmap3)(vm_paddr_t pa, u_int pte_bits)
6071 {
6072 	pt_entry_t *pte;
6073 
6074 	pte = CMAP3;
6075 	*pte = pa | pte_bits;
6076 	invltlb();
6077 	return (CADDR3);
6078 }
6079 
6080 static void
__CONCAT(PMTYPE,basemem_setup)6081 __CONCAT(PMTYPE, basemem_setup)(u_int basemem)
6082 {
6083 	pt_entry_t *pte;
6084 	int i;
6085 
6086 	/*
6087 	 * Map pages between basemem and ISA_HOLE_START, if any, r/w into
6088 	 * the vm86 page table so that vm86 can scribble on them using
6089 	 * the vm86 map too.  XXX: why 2 ways for this and only 1 way for
6090 	 * page 0, at least as initialized here?
6091 	 */
6092 	pte = (pt_entry_t *)vm86paddr;
6093 	for (i = basemem / 4; i < 160; i++)
6094 		pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
6095 }
6096 
6097 struct bios16_pmap_handle {
6098 	pt_entry_t	*pte;
6099 	pd_entry_t	*ptd;
6100 	pt_entry_t	orig_ptd;
6101 };
6102 
6103 static void *
__CONCAT(PMTYPE,bios16_enter)6104 __CONCAT(PMTYPE, bios16_enter)(void)
6105 {
6106 	struct bios16_pmap_handle *h;
6107 
6108 	/*
6109 	 * no page table, so create one and install it.
6110 	 */
6111 	h = malloc(sizeof(struct bios16_pmap_handle), M_TEMP, M_WAITOK);
6112 	h->pte = (pt_entry_t *)malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
6113 	h->ptd = IdlePTD;
6114 	*h->pte = vm86phystk | PG_RW | PG_V;
6115 	h->orig_ptd = *h->ptd;
6116 	*h->ptd = vtophys(h->pte) | PG_RW | PG_V;
6117 	pmap_invalidate_all_int(kernel_pmap);	/* XXX insurance for now */
6118 	return (h);
6119 }
6120 
6121 static void
__CONCAT(PMTYPE,bios16_leave)6122 __CONCAT(PMTYPE, bios16_leave)(void *arg)
6123 {
6124 	struct bios16_pmap_handle *h;
6125 
6126 	h = arg;
6127 	*h->ptd = h->orig_ptd;		/* remove page table */
6128 	/*
6129 	 * XXX only needs to be invlpg(0) but that doesn't work on the 386
6130 	 */
6131 	pmap_invalidate_all_int(kernel_pmap);
6132 	free(h->pte, M_TEMP);		/* ... and free it */
6133 }
6134 
6135 struct pmap_kernel_map_range {
6136 	vm_offset_t sva;
6137 	pt_entry_t attrs;
6138 	int ptes;
6139 	int pdes;
6140 	int pdpes;
6141 };
6142 
6143 static void
sysctl_kmaps_dump(struct sbuf * sb,struct pmap_kernel_map_range * range,vm_offset_t eva)6144 sysctl_kmaps_dump(struct sbuf *sb, struct pmap_kernel_map_range *range,
6145     vm_offset_t eva)
6146 {
6147 	const char *mode;
6148 	int i, pat_idx;
6149 
6150 	if (eva <= range->sva)
6151 		return;
6152 
6153 	pat_idx = pmap_pat_index(kernel_pmap, range->attrs, true);
6154 	for (i = 0; i < PAT_INDEX_SIZE; i++)
6155 		if (pat_index[i] == pat_idx)
6156 			break;
6157 
6158 	switch (i) {
6159 	case PAT_WRITE_BACK:
6160 		mode = "WB";
6161 		break;
6162 	case PAT_WRITE_THROUGH:
6163 		mode = "WT";
6164 		break;
6165 	case PAT_UNCACHEABLE:
6166 		mode = "UC";
6167 		break;
6168 	case PAT_UNCACHED:
6169 		mode = "U-";
6170 		break;
6171 	case PAT_WRITE_PROTECTED:
6172 		mode = "WP";
6173 		break;
6174 	case PAT_WRITE_COMBINING:
6175 		mode = "WC";
6176 		break;
6177 	default:
6178 		printf("%s: unknown PAT mode %#x for range 0x%08x-0x%08x\n",
6179 		    __func__, pat_idx, range->sva, eva);
6180 		mode = "??";
6181 		break;
6182 	}
6183 
6184 	sbuf_printf(sb, "0x%08x-0x%08x r%c%c%c%c %s %d %d %d\n",
6185 	    range->sva, eva,
6186 	    (range->attrs & PG_RW) != 0 ? 'w' : '-',
6187 	    (range->attrs & pg_nx) != 0 ? '-' : 'x',
6188 	    (range->attrs & PG_U) != 0 ? 'u' : 's',
6189 	    (range->attrs & PG_G) != 0 ? 'g' : '-',
6190 	    mode, range->pdpes, range->pdes, range->ptes);
6191 
6192 	/* Reset to sentinel value. */
6193 	range->sva = 0xffffffff;
6194 }
6195 
6196 /*
6197  * Determine whether the attributes specified by a page table entry match those
6198  * being tracked by the current range.  This is not quite as simple as a direct
6199  * flag comparison since some PAT modes have multiple representations.
6200  */
6201 static bool
sysctl_kmaps_match(struct pmap_kernel_map_range * range,pt_entry_t attrs)6202 sysctl_kmaps_match(struct pmap_kernel_map_range *range, pt_entry_t attrs)
6203 {
6204 	pt_entry_t diff, mask;
6205 
6206 	mask = pg_nx | PG_G | PG_RW | PG_U | PG_PDE_CACHE;
6207 	diff = (range->attrs ^ attrs) & mask;
6208 	if (diff == 0)
6209 		return (true);
6210 	if ((diff & ~PG_PDE_PAT) == 0 &&
6211 	    pmap_pat_index(kernel_pmap, range->attrs, true) ==
6212 	    pmap_pat_index(kernel_pmap, attrs, true))
6213 		return (true);
6214 	return (false);
6215 }
6216 
6217 static void
sysctl_kmaps_reinit(struct pmap_kernel_map_range * range,vm_offset_t va,pt_entry_t attrs)6218 sysctl_kmaps_reinit(struct pmap_kernel_map_range *range, vm_offset_t va,
6219     pt_entry_t attrs)
6220 {
6221 
6222 	memset(range, 0, sizeof(*range));
6223 	range->sva = va;
6224 	range->attrs = attrs;
6225 }
6226 
6227 /*
6228  * Given a leaf PTE, derive the mapping's attributes.  If they do not match
6229  * those of the current run, dump the address range and its attributes, and
6230  * begin a new run.
6231  */
6232 static void
sysctl_kmaps_check(struct sbuf * sb,struct pmap_kernel_map_range * range,vm_offset_t va,pd_entry_t pde,pt_entry_t pte)6233 sysctl_kmaps_check(struct sbuf *sb, struct pmap_kernel_map_range *range,
6234     vm_offset_t va, pd_entry_t pde, pt_entry_t pte)
6235 {
6236 	pt_entry_t attrs;
6237 
6238 	attrs = pde & (PG_RW | PG_U | pg_nx);
6239 
6240 	if ((pde & PG_PS) != 0) {
6241 		attrs |= pde & (PG_G | PG_PDE_CACHE);
6242 	} else if (pte != 0) {
6243 		attrs |= pte & pg_nx;
6244 		attrs &= pg_nx | (pte & (PG_RW | PG_U));
6245 		attrs |= pte & (PG_G | PG_PTE_CACHE);
6246 
6247 		/* Canonicalize by always using the PDE PAT bit. */
6248 		if ((attrs & PG_PTE_PAT) != 0)
6249 			attrs ^= PG_PDE_PAT | PG_PTE_PAT;
6250 	}
6251 
6252 	if (range->sva > va || !sysctl_kmaps_match(range, attrs)) {
6253 		sysctl_kmaps_dump(sb, range, va);
6254 		sysctl_kmaps_reinit(range, va, attrs);
6255 	}
6256 }
6257 
6258 static int
__CONCAT(PMTYPE,sysctl_kmaps)6259 __CONCAT(PMTYPE, sysctl_kmaps)(SYSCTL_HANDLER_ARGS)
6260 {
6261 	struct pmap_kernel_map_range range;
6262 	struct sbuf sbuf, *sb;
6263 	pd_entry_t pde;
6264 	pt_entry_t *pt, pte;
6265 	vm_offset_t sva;
6266 	vm_paddr_t pa;
6267 	int error;
6268 	u_int i, k;
6269 
6270 	error = sysctl_wire_old_buffer(req, 0);
6271 	if (error != 0)
6272 		return (error);
6273 	sb = &sbuf;
6274 	sbuf_new_for_sysctl(sb, NULL, PAGE_SIZE, req);
6275 
6276 	/* Sentinel value. */
6277 	range.sva = 0xffffffff;
6278 
6279 	/*
6280 	 * Iterate over the kernel page tables without holding the
6281 	 * kernel pmap lock.  Kernel page table pages are never freed,
6282 	 * so at worst we will observe inconsistencies in the output.
6283 	 */
6284 	for (sva = 0, i = 0; i < NPTEPG * NPGPTD * NPDEPG ;) {
6285 		if (i == 0)
6286 			sbuf_printf(sb, "\nLow PDE:\n");
6287 		else if (i == LOWPTDI * NPTEPG)
6288 			sbuf_printf(sb, "Low PDE dup:\n");
6289 		else if (i == PTDPTDI * NPTEPG)
6290 			sbuf_printf(sb, "Recursive map:\n");
6291 		else if (i == KERNPTDI * NPTEPG)
6292 			sbuf_printf(sb, "Kernel base:\n");
6293 		else if (i == TRPTDI * NPTEPG)
6294 			sbuf_printf(sb, "Trampoline:\n");
6295 		pde = IdlePTD[sva >> PDRSHIFT];
6296 		if ((pde & PG_V) == 0) {
6297 			sva = rounddown2(sva, NBPDR);
6298 			sysctl_kmaps_dump(sb, &range, sva);
6299 			sva += NBPDR;
6300 			i += NPTEPG;
6301 			continue;
6302 		}
6303 		pa = pde & PG_FRAME;
6304 		if ((pde & PG_PS) != 0) {
6305 			sysctl_kmaps_check(sb, &range, sva, pde, 0);
6306 			range.pdes++;
6307 			sva += NBPDR;
6308 			i += NPTEPG;
6309 			continue;
6310 		}
6311 		for (pt = vtopte(sva), k = 0; k < NPTEPG; i++, k++, pt++,
6312 		    sva += PAGE_SIZE) {
6313 			pte = *pt;
6314 			if ((pte & PG_V) == 0) {
6315 				sysctl_kmaps_dump(sb, &range, sva);
6316 				continue;
6317 			}
6318 			sysctl_kmaps_check(sb, &range, sva, pde, pte);
6319 			range.ptes++;
6320 		}
6321 	}
6322 
6323 	error = sbuf_finish(sb);
6324 	sbuf_delete(sb);
6325 	return (error);
6326 }
6327 
6328 #define	PMM(a)					\
6329 	.pm_##a = __CONCAT(PMTYPE, a),
6330 
6331 struct pmap_methods __CONCAT(PMTYPE, methods) = {
6332 	PMM(ksetrw)
6333 	PMM(remap_lower)
6334 	PMM(remap_lowptdi)
6335 	PMM(align_superpage)
6336 	PMM(quick_enter_page)
6337 	PMM(quick_remove_page)
6338 	PMM(trm_alloc)
6339 	PMM(trm_free)
6340 	PMM(get_map_low)
6341 	PMM(get_vm_maxuser_address)
6342 	PMM(kextract)
6343 	PMM(pg_frame)
6344 	PMM(sf_buf_map)
6345 	PMM(cp_slow0_map)
6346 	PMM(get_kcr3)
6347 	PMM(get_cr3)
6348 	PMM(cmap3)
6349 	PMM(basemem_setup)
6350 	PMM(set_nx)
6351 	PMM(bios16_enter)
6352 	PMM(bios16_leave)
6353 	PMM(bootstrap)
6354 	PMM(is_valid_memattr)
6355 	PMM(cache_bits)
6356 	PMM(ps_enabled)
6357 	PMM(pinit0)
6358 	PMM(pinit)
6359 	PMM(activate)
6360 	PMM(activate_boot)
6361 	PMM(advise)
6362 	PMM(clear_modify)
6363 	PMM(change_attr)
6364 	PMM(mincore)
6365 	PMM(copy)
6366 	PMM(copy_page)
6367 	PMM(copy_pages)
6368 	PMM(zero_page)
6369 	PMM(zero_page_area)
6370 	PMM(enter)
6371 	PMM(enter_object)
6372 	PMM(enter_quick)
6373 	PMM(kenter_temporary)
6374 	PMM(object_init_pt)
6375 	PMM(unwire)
6376 	PMM(page_exists_quick)
6377 	PMM(page_wired_mappings)
6378 	PMM(page_is_mapped)
6379 	PMM(remove_pages)
6380 	PMM(is_modified)
6381 	PMM(is_prefaultable)
6382 	PMM(is_referenced)
6383 	PMM(remove_write)
6384 	PMM(ts_referenced)
6385 	PMM(mapdev_attr)
6386 	PMM(unmapdev)
6387 	PMM(page_set_memattr)
6388 	PMM(extract)
6389 	PMM(extract_and_hold)
6390 	PMM(map)
6391 	PMM(qenter)
6392 	PMM(qremove)
6393 	PMM(release)
6394 	PMM(remove)
6395 	PMM(protect)
6396 	PMM(remove_all)
6397 	PMM(init)
6398 	PMM(init_pat)
6399 	PMM(growkernel)
6400 	PMM(invalidate_page)
6401 	PMM(invalidate_range)
6402 	PMM(invalidate_all)
6403 	PMM(invalidate_cache)
6404 	PMM(flush_page)
6405 	PMM(kenter)
6406 	PMM(kremove)
6407 	PMM(sysctl_kmaps)
6408 };
6409