1 //===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements semantic analysis for expressions.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "TreeTransform.h"
14 #include "UsedDeclVisitor.h"
15 #include "clang/AST/ASTConsumer.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/ASTMutationListener.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/EvaluatedExprVisitor.h"
23 #include "clang/AST/Expr.h"
24 #include "clang/AST/ExprCXX.h"
25 #include "clang/AST/ExprObjC.h"
26 #include "clang/AST/ExprOpenMP.h"
27 #include "clang/AST/OperationKinds.h"
28 #include "clang/AST/ParentMapContext.h"
29 #include "clang/AST/RecursiveASTVisitor.h"
30 #include "clang/AST/Type.h"
31 #include "clang/AST/TypeLoc.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/DiagnosticSema.h"
34 #include "clang/Basic/PartialDiagnostic.h"
35 #include "clang/Basic/SourceManager.h"
36 #include "clang/Basic/Specifiers.h"
37 #include "clang/Basic/TargetInfo.h"
38 #include "clang/Lex/LiteralSupport.h"
39 #include "clang/Lex/Preprocessor.h"
40 #include "clang/Sema/AnalysisBasedWarnings.h"
41 #include "clang/Sema/DeclSpec.h"
42 #include "clang/Sema/DelayedDiagnostic.h"
43 #include "clang/Sema/Designator.h"
44 #include "clang/Sema/Initialization.h"
45 #include "clang/Sema/Lookup.h"
46 #include "clang/Sema/Overload.h"
47 #include "clang/Sema/ParsedTemplate.h"
48 #include "clang/Sema/Scope.h"
49 #include "clang/Sema/ScopeInfo.h"
50 #include "clang/Sema/SemaFixItUtils.h"
51 #include "clang/Sema/SemaInternal.h"
52 #include "clang/Sema/Template.h"
53 #include "llvm/ADT/STLExtras.h"
54 #include "llvm/ADT/StringExtras.h"
55 #include "llvm/Support/Casting.h"
56 #include "llvm/Support/ConvertUTF.h"
57 #include "llvm/Support/SaveAndRestore.h"
58 #include "llvm/Support/TypeSize.h"
59
60 using namespace clang;
61 using namespace sema;
62
63 /// Determine whether the use of this declaration is valid, without
64 /// emitting diagnostics.
CanUseDecl(NamedDecl * D,bool TreatUnavailableAsInvalid)65 bool Sema::CanUseDecl(NamedDecl *D, bool TreatUnavailableAsInvalid) {
66 // See if this is an auto-typed variable whose initializer we are parsing.
67 if (ParsingInitForAutoVars.count(D))
68 return false;
69
70 // See if this is a deleted function.
71 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
72 if (FD->isDeleted())
73 return false;
74
75 // If the function has a deduced return type, and we can't deduce it,
76 // then we can't use it either.
77 if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
78 DeduceReturnType(FD, SourceLocation(), /*Diagnose*/ false))
79 return false;
80
81 // See if this is an aligned allocation/deallocation function that is
82 // unavailable.
83 if (TreatUnavailableAsInvalid &&
84 isUnavailableAlignedAllocationFunction(*FD))
85 return false;
86 }
87
88 // See if this function is unavailable.
89 if (TreatUnavailableAsInvalid && D->getAvailability() == AR_Unavailable &&
90 cast<Decl>(CurContext)->getAvailability() != AR_Unavailable)
91 return false;
92
93 if (isa<UnresolvedUsingIfExistsDecl>(D))
94 return false;
95
96 return true;
97 }
98
DiagnoseUnusedOfDecl(Sema & S,NamedDecl * D,SourceLocation Loc)99 static void DiagnoseUnusedOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc) {
100 // Warn if this is used but marked unused.
101 if (const auto *A = D->getAttr<UnusedAttr>()) {
102 // [[maybe_unused]] should not diagnose uses, but __attribute__((unused))
103 // should diagnose them.
104 if (A->getSemanticSpelling() != UnusedAttr::CXX11_maybe_unused &&
105 A->getSemanticSpelling() != UnusedAttr::C2x_maybe_unused) {
106 const Decl *DC = cast_or_null<Decl>(S.getCurObjCLexicalContext());
107 if (DC && !DC->hasAttr<UnusedAttr>())
108 S.Diag(Loc, diag::warn_used_but_marked_unused) << D;
109 }
110 }
111 }
112
113 /// Emit a note explaining that this function is deleted.
NoteDeletedFunction(FunctionDecl * Decl)114 void Sema::NoteDeletedFunction(FunctionDecl *Decl) {
115 assert(Decl && Decl->isDeleted());
116
117 if (Decl->isDefaulted()) {
118 // If the method was explicitly defaulted, point at that declaration.
119 if (!Decl->isImplicit())
120 Diag(Decl->getLocation(), diag::note_implicitly_deleted);
121
122 // Try to diagnose why this special member function was implicitly
123 // deleted. This might fail, if that reason no longer applies.
124 DiagnoseDeletedDefaultedFunction(Decl);
125 return;
126 }
127
128 auto *Ctor = dyn_cast<CXXConstructorDecl>(Decl);
129 if (Ctor && Ctor->isInheritingConstructor())
130 return NoteDeletedInheritingConstructor(Ctor);
131
132 Diag(Decl->getLocation(), diag::note_availability_specified_here)
133 << Decl << 1;
134 }
135
136 /// Determine whether a FunctionDecl was ever declared with an
137 /// explicit storage class.
hasAnyExplicitStorageClass(const FunctionDecl * D)138 static bool hasAnyExplicitStorageClass(const FunctionDecl *D) {
139 for (auto I : D->redecls()) {
140 if (I->getStorageClass() != SC_None)
141 return true;
142 }
143 return false;
144 }
145
146 /// Check whether we're in an extern inline function and referring to a
147 /// variable or function with internal linkage (C11 6.7.4p3).
148 ///
149 /// This is only a warning because we used to silently accept this code, but
150 /// in many cases it will not behave correctly. This is not enabled in C++ mode
151 /// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6)
152 /// and so while there may still be user mistakes, most of the time we can't
153 /// prove that there are errors.
diagnoseUseOfInternalDeclInInlineFunction(Sema & S,const NamedDecl * D,SourceLocation Loc)154 static void diagnoseUseOfInternalDeclInInlineFunction(Sema &S,
155 const NamedDecl *D,
156 SourceLocation Loc) {
157 // This is disabled under C++; there are too many ways for this to fire in
158 // contexts where the warning is a false positive, or where it is technically
159 // correct but benign.
160 if (S.getLangOpts().CPlusPlus)
161 return;
162
163 // Check if this is an inlined function or method.
164 FunctionDecl *Current = S.getCurFunctionDecl();
165 if (!Current)
166 return;
167 if (!Current->isInlined())
168 return;
169 if (!Current->isExternallyVisible())
170 return;
171
172 // Check if the decl has internal linkage.
173 if (D->getFormalLinkage() != InternalLinkage)
174 return;
175
176 // Downgrade from ExtWarn to Extension if
177 // (1) the supposedly external inline function is in the main file,
178 // and probably won't be included anywhere else.
179 // (2) the thing we're referencing is a pure function.
180 // (3) the thing we're referencing is another inline function.
181 // This last can give us false negatives, but it's better than warning on
182 // wrappers for simple C library functions.
183 const FunctionDecl *UsedFn = dyn_cast<FunctionDecl>(D);
184 bool DowngradeWarning = S.getSourceManager().isInMainFile(Loc);
185 if (!DowngradeWarning && UsedFn)
186 DowngradeWarning = UsedFn->isInlined() || UsedFn->hasAttr<ConstAttr>();
187
188 S.Diag(Loc, DowngradeWarning ? diag::ext_internal_in_extern_inline_quiet
189 : diag::ext_internal_in_extern_inline)
190 << /*IsVar=*/!UsedFn << D;
191
192 S.MaybeSuggestAddingStaticToDecl(Current);
193
194 S.Diag(D->getCanonicalDecl()->getLocation(), diag::note_entity_declared_at)
195 << D;
196 }
197
MaybeSuggestAddingStaticToDecl(const FunctionDecl * Cur)198 void Sema::MaybeSuggestAddingStaticToDecl(const FunctionDecl *Cur) {
199 const FunctionDecl *First = Cur->getFirstDecl();
200
201 // Suggest "static" on the function, if possible.
202 if (!hasAnyExplicitStorageClass(First)) {
203 SourceLocation DeclBegin = First->getSourceRange().getBegin();
204 Diag(DeclBegin, diag::note_convert_inline_to_static)
205 << Cur << FixItHint::CreateInsertion(DeclBegin, "static ");
206 }
207 }
208
209 /// Determine whether the use of this declaration is valid, and
210 /// emit any corresponding diagnostics.
211 ///
212 /// This routine diagnoses various problems with referencing
213 /// declarations that can occur when using a declaration. For example,
214 /// it might warn if a deprecated or unavailable declaration is being
215 /// used, or produce an error (and return true) if a C++0x deleted
216 /// function is being used.
217 ///
218 /// \returns true if there was an error (this declaration cannot be
219 /// referenced), false otherwise.
220 ///
DiagnoseUseOfDecl(NamedDecl * D,ArrayRef<SourceLocation> Locs,const ObjCInterfaceDecl * UnknownObjCClass,bool ObjCPropertyAccess,bool AvoidPartialAvailabilityChecks,ObjCInterfaceDecl * ClassReceiver)221 bool Sema::DiagnoseUseOfDecl(NamedDecl *D, ArrayRef<SourceLocation> Locs,
222 const ObjCInterfaceDecl *UnknownObjCClass,
223 bool ObjCPropertyAccess,
224 bool AvoidPartialAvailabilityChecks,
225 ObjCInterfaceDecl *ClassReceiver) {
226 SourceLocation Loc = Locs.front();
227 if (getLangOpts().CPlusPlus && isa<FunctionDecl>(D)) {
228 // If there were any diagnostics suppressed by template argument deduction,
229 // emit them now.
230 auto Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
231 if (Pos != SuppressedDiagnostics.end()) {
232 for (const PartialDiagnosticAt &Suppressed : Pos->second)
233 Diag(Suppressed.first, Suppressed.second);
234
235 // Clear out the list of suppressed diagnostics, so that we don't emit
236 // them again for this specialization. However, we don't obsolete this
237 // entry from the table, because we want to avoid ever emitting these
238 // diagnostics again.
239 Pos->second.clear();
240 }
241
242 // C++ [basic.start.main]p3:
243 // The function 'main' shall not be used within a program.
244 if (cast<FunctionDecl>(D)->isMain())
245 Diag(Loc, diag::ext_main_used);
246
247 diagnoseUnavailableAlignedAllocation(*cast<FunctionDecl>(D), Loc);
248 }
249
250 // See if this is an auto-typed variable whose initializer we are parsing.
251 if (ParsingInitForAutoVars.count(D)) {
252 if (isa<BindingDecl>(D)) {
253 Diag(Loc, diag::err_binding_cannot_appear_in_own_initializer)
254 << D->getDeclName();
255 } else {
256 Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
257 << D->getDeclName() << cast<VarDecl>(D)->getType();
258 }
259 return true;
260 }
261
262 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
263 // See if this is a deleted function.
264 if (FD->isDeleted()) {
265 auto *Ctor = dyn_cast<CXXConstructorDecl>(FD);
266 if (Ctor && Ctor->isInheritingConstructor())
267 Diag(Loc, diag::err_deleted_inherited_ctor_use)
268 << Ctor->getParent()
269 << Ctor->getInheritedConstructor().getConstructor()->getParent();
270 else
271 Diag(Loc, diag::err_deleted_function_use);
272 NoteDeletedFunction(FD);
273 return true;
274 }
275
276 // [expr.prim.id]p4
277 // A program that refers explicitly or implicitly to a function with a
278 // trailing requires-clause whose constraint-expression is not satisfied,
279 // other than to declare it, is ill-formed. [...]
280 //
281 // See if this is a function with constraints that need to be satisfied.
282 // Check this before deducing the return type, as it might instantiate the
283 // definition.
284 if (FD->getTrailingRequiresClause()) {
285 ConstraintSatisfaction Satisfaction;
286 if (CheckFunctionConstraints(FD, Satisfaction, Loc))
287 // A diagnostic will have already been generated (non-constant
288 // constraint expression, for example)
289 return true;
290 if (!Satisfaction.IsSatisfied) {
291 Diag(Loc,
292 diag::err_reference_to_function_with_unsatisfied_constraints)
293 << D;
294 DiagnoseUnsatisfiedConstraint(Satisfaction);
295 return true;
296 }
297 }
298
299 // If the function has a deduced return type, and we can't deduce it,
300 // then we can't use it either.
301 if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
302 DeduceReturnType(FD, Loc))
303 return true;
304
305 if (getLangOpts().CUDA && !CheckCUDACall(Loc, FD))
306 return true;
307
308 if (getLangOpts().SYCLIsDevice && !checkSYCLDeviceFunction(Loc, FD))
309 return true;
310 }
311
312 if (auto *MD = dyn_cast<CXXMethodDecl>(D)) {
313 // Lambdas are only default-constructible or assignable in C++2a onwards.
314 if (MD->getParent()->isLambda() &&
315 ((isa<CXXConstructorDecl>(MD) &&
316 cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) ||
317 MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator())) {
318 Diag(Loc, diag::warn_cxx17_compat_lambda_def_ctor_assign)
319 << !isa<CXXConstructorDecl>(MD);
320 }
321 }
322
323 auto getReferencedObjCProp = [](const NamedDecl *D) ->
324 const ObjCPropertyDecl * {
325 if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
326 return MD->findPropertyDecl();
327 return nullptr;
328 };
329 if (const ObjCPropertyDecl *ObjCPDecl = getReferencedObjCProp(D)) {
330 if (diagnoseArgIndependentDiagnoseIfAttrs(ObjCPDecl, Loc))
331 return true;
332 } else if (diagnoseArgIndependentDiagnoseIfAttrs(D, Loc)) {
333 return true;
334 }
335
336 // [OpenMP 4.0], 2.15 declare reduction Directive, Restrictions
337 // Only the variables omp_in and omp_out are allowed in the combiner.
338 // Only the variables omp_priv and omp_orig are allowed in the
339 // initializer-clause.
340 auto *DRD = dyn_cast<OMPDeclareReductionDecl>(CurContext);
341 if (LangOpts.OpenMP && DRD && !CurContext->containsDecl(D) &&
342 isa<VarDecl>(D)) {
343 Diag(Loc, diag::err_omp_wrong_var_in_declare_reduction)
344 << getCurFunction()->HasOMPDeclareReductionCombiner;
345 Diag(D->getLocation(), diag::note_entity_declared_at) << D;
346 return true;
347 }
348
349 // [OpenMP 5.0], 2.19.7.3. declare mapper Directive, Restrictions
350 // List-items in map clauses on this construct may only refer to the declared
351 // variable var and entities that could be referenced by a procedure defined
352 // at the same location
353 if (LangOpts.OpenMP && isa<VarDecl>(D) &&
354 !isOpenMPDeclareMapperVarDeclAllowed(cast<VarDecl>(D))) {
355 Diag(Loc, diag::err_omp_declare_mapper_wrong_var)
356 << getOpenMPDeclareMapperVarName();
357 Diag(D->getLocation(), diag::note_entity_declared_at) << D;
358 return true;
359 }
360
361 if (const auto *EmptyD = dyn_cast<UnresolvedUsingIfExistsDecl>(D)) {
362 Diag(Loc, diag::err_use_of_empty_using_if_exists);
363 Diag(EmptyD->getLocation(), diag::note_empty_using_if_exists_here);
364 return true;
365 }
366
367 DiagnoseAvailabilityOfDecl(D, Locs, UnknownObjCClass, ObjCPropertyAccess,
368 AvoidPartialAvailabilityChecks, ClassReceiver);
369
370 DiagnoseUnusedOfDecl(*this, D, Loc);
371
372 diagnoseUseOfInternalDeclInInlineFunction(*this, D, Loc);
373
374 if (auto *VD = dyn_cast<ValueDecl>(D))
375 checkTypeSupport(VD->getType(), Loc, VD);
376
377 if (LangOpts.SYCLIsDevice || (LangOpts.OpenMP && LangOpts.OpenMPIsDevice)) {
378 if (!Context.getTargetInfo().isTLSSupported())
379 if (const auto *VD = dyn_cast<VarDecl>(D))
380 if (VD->getTLSKind() != VarDecl::TLS_None)
381 targetDiag(*Locs.begin(), diag::err_thread_unsupported);
382 }
383
384 if (isa<ParmVarDecl>(D) && isa<RequiresExprBodyDecl>(D->getDeclContext()) &&
385 !isUnevaluatedContext()) {
386 // C++ [expr.prim.req.nested] p3
387 // A local parameter shall only appear as an unevaluated operand
388 // (Clause 8) within the constraint-expression.
389 Diag(Loc, diag::err_requires_expr_parameter_referenced_in_evaluated_context)
390 << D;
391 Diag(D->getLocation(), diag::note_entity_declared_at) << D;
392 return true;
393 }
394
395 return false;
396 }
397
398 /// DiagnoseSentinelCalls - This routine checks whether a call or
399 /// message-send is to a declaration with the sentinel attribute, and
400 /// if so, it checks that the requirements of the sentinel are
401 /// satisfied.
DiagnoseSentinelCalls(NamedDecl * D,SourceLocation Loc,ArrayRef<Expr * > Args)402 void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
403 ArrayRef<Expr *> Args) {
404 const SentinelAttr *attr = D->getAttr<SentinelAttr>();
405 if (!attr)
406 return;
407
408 // The number of formal parameters of the declaration.
409 unsigned numFormalParams;
410
411 // The kind of declaration. This is also an index into a %select in
412 // the diagnostic.
413 enum CalleeType { CT_Function, CT_Method, CT_Block } calleeType;
414
415 if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
416 numFormalParams = MD->param_size();
417 calleeType = CT_Method;
418 } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
419 numFormalParams = FD->param_size();
420 calleeType = CT_Function;
421 } else if (isa<VarDecl>(D)) {
422 QualType type = cast<ValueDecl>(D)->getType();
423 const FunctionType *fn = nullptr;
424 if (const PointerType *ptr = type->getAs<PointerType>()) {
425 fn = ptr->getPointeeType()->getAs<FunctionType>();
426 if (!fn) return;
427 calleeType = CT_Function;
428 } else if (const BlockPointerType *ptr = type->getAs<BlockPointerType>()) {
429 fn = ptr->getPointeeType()->castAs<FunctionType>();
430 calleeType = CT_Block;
431 } else {
432 return;
433 }
434
435 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fn)) {
436 numFormalParams = proto->getNumParams();
437 } else {
438 numFormalParams = 0;
439 }
440 } else {
441 return;
442 }
443
444 // "nullPos" is the number of formal parameters at the end which
445 // effectively count as part of the variadic arguments. This is
446 // useful if you would prefer to not have *any* formal parameters,
447 // but the language forces you to have at least one.
448 unsigned nullPos = attr->getNullPos();
449 assert((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel");
450 numFormalParams = (nullPos > numFormalParams ? 0 : numFormalParams - nullPos);
451
452 // The number of arguments which should follow the sentinel.
453 unsigned numArgsAfterSentinel = attr->getSentinel();
454
455 // If there aren't enough arguments for all the formal parameters,
456 // the sentinel, and the args after the sentinel, complain.
457 if (Args.size() < numFormalParams + numArgsAfterSentinel + 1) {
458 Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
459 Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
460 return;
461 }
462
463 // Otherwise, find the sentinel expression.
464 Expr *sentinelExpr = Args[Args.size() - numArgsAfterSentinel - 1];
465 if (!sentinelExpr) return;
466 if (sentinelExpr->isValueDependent()) return;
467 if (Context.isSentinelNullExpr(sentinelExpr)) return;
468
469 // Pick a reasonable string to insert. Optimistically use 'nil', 'nullptr',
470 // or 'NULL' if those are actually defined in the context. Only use
471 // 'nil' for ObjC methods, where it's much more likely that the
472 // variadic arguments form a list of object pointers.
473 SourceLocation MissingNilLoc = getLocForEndOfToken(sentinelExpr->getEndLoc());
474 std::string NullValue;
475 if (calleeType == CT_Method && PP.isMacroDefined("nil"))
476 NullValue = "nil";
477 else if (getLangOpts().CPlusPlus11)
478 NullValue = "nullptr";
479 else if (PP.isMacroDefined("NULL"))
480 NullValue = "NULL";
481 else
482 NullValue = "(void*) 0";
483
484 if (MissingNilLoc.isInvalid())
485 Diag(Loc, diag::warn_missing_sentinel) << int(calleeType);
486 else
487 Diag(MissingNilLoc, diag::warn_missing_sentinel)
488 << int(calleeType)
489 << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue);
490 Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
491 }
492
getExprRange(Expr * E) const493 SourceRange Sema::getExprRange(Expr *E) const {
494 return E ? E->getSourceRange() : SourceRange();
495 }
496
497 //===----------------------------------------------------------------------===//
498 // Standard Promotions and Conversions
499 //===----------------------------------------------------------------------===//
500
501 /// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
DefaultFunctionArrayConversion(Expr * E,bool Diagnose)502 ExprResult Sema::DefaultFunctionArrayConversion(Expr *E, bool Diagnose) {
503 // Handle any placeholder expressions which made it here.
504 if (E->hasPlaceholderType()) {
505 ExprResult result = CheckPlaceholderExpr(E);
506 if (result.isInvalid()) return ExprError();
507 E = result.get();
508 }
509
510 QualType Ty = E->getType();
511 assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
512
513 if (Ty->isFunctionType()) {
514 if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts()))
515 if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()))
516 if (!checkAddressOfFunctionIsAvailable(FD, Diagnose, E->getExprLoc()))
517 return ExprError();
518
519 E = ImpCastExprToType(E, Context.getPointerType(Ty),
520 CK_FunctionToPointerDecay).get();
521 } else if (Ty->isArrayType()) {
522 // In C90 mode, arrays only promote to pointers if the array expression is
523 // an lvalue. The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
524 // type 'array of type' is converted to an expression that has type 'pointer
525 // to type'...". In C99 this was changed to: C99 6.3.2.1p3: "an expression
526 // that has type 'array of type' ...". The relevant change is "an lvalue"
527 // (C90) to "an expression" (C99).
528 //
529 // C++ 4.2p1:
530 // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
531 // T" can be converted to an rvalue of type "pointer to T".
532 //
533 if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue()) {
534 ExprResult Res = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
535 CK_ArrayToPointerDecay);
536 if (Res.isInvalid())
537 return ExprError();
538 E = Res.get();
539 }
540 }
541 return E;
542 }
543
CheckForNullPointerDereference(Sema & S,Expr * E)544 static void CheckForNullPointerDereference(Sema &S, Expr *E) {
545 // Check to see if we are dereferencing a null pointer. If so,
546 // and if not volatile-qualified, this is undefined behavior that the
547 // optimizer will delete, so warn about it. People sometimes try to use this
548 // to get a deterministic trap and are surprised by clang's behavior. This
549 // only handles the pattern "*null", which is a very syntactic check.
550 const auto *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts());
551 if (UO && UO->getOpcode() == UO_Deref &&
552 UO->getSubExpr()->getType()->isPointerType()) {
553 const LangAS AS =
554 UO->getSubExpr()->getType()->getPointeeType().getAddressSpace();
555 if ((!isTargetAddressSpace(AS) ||
556 (isTargetAddressSpace(AS) && toTargetAddressSpace(AS) == 0)) &&
557 UO->getSubExpr()->IgnoreParenCasts()->isNullPointerConstant(
558 S.Context, Expr::NPC_ValueDependentIsNotNull) &&
559 !UO->getType().isVolatileQualified()) {
560 S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
561 S.PDiag(diag::warn_indirection_through_null)
562 << UO->getSubExpr()->getSourceRange());
563 S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
564 S.PDiag(diag::note_indirection_through_null));
565 }
566 }
567 }
568
DiagnoseDirectIsaAccess(Sema & S,const ObjCIvarRefExpr * OIRE,SourceLocation AssignLoc,const Expr * RHS)569 static void DiagnoseDirectIsaAccess(Sema &S, const ObjCIvarRefExpr *OIRE,
570 SourceLocation AssignLoc,
571 const Expr* RHS) {
572 const ObjCIvarDecl *IV = OIRE->getDecl();
573 if (!IV)
574 return;
575
576 DeclarationName MemberName = IV->getDeclName();
577 IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
578 if (!Member || !Member->isStr("isa"))
579 return;
580
581 const Expr *Base = OIRE->getBase();
582 QualType BaseType = Base->getType();
583 if (OIRE->isArrow())
584 BaseType = BaseType->getPointeeType();
585 if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>())
586 if (ObjCInterfaceDecl *IDecl = OTy->getInterface()) {
587 ObjCInterfaceDecl *ClassDeclared = nullptr;
588 ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
589 if (!ClassDeclared->getSuperClass()
590 && (*ClassDeclared->ivar_begin()) == IV) {
591 if (RHS) {
592 NamedDecl *ObjectSetClass =
593 S.LookupSingleName(S.TUScope,
594 &S.Context.Idents.get("object_setClass"),
595 SourceLocation(), S.LookupOrdinaryName);
596 if (ObjectSetClass) {
597 SourceLocation RHSLocEnd = S.getLocForEndOfToken(RHS->getEndLoc());
598 S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_assign)
599 << FixItHint::CreateInsertion(OIRE->getBeginLoc(),
600 "object_setClass(")
601 << FixItHint::CreateReplacement(
602 SourceRange(OIRE->getOpLoc(), AssignLoc), ",")
603 << FixItHint::CreateInsertion(RHSLocEnd, ")");
604 }
605 else
606 S.Diag(OIRE->getLocation(), diag::warn_objc_isa_assign);
607 } else {
608 NamedDecl *ObjectGetClass =
609 S.LookupSingleName(S.TUScope,
610 &S.Context.Idents.get("object_getClass"),
611 SourceLocation(), S.LookupOrdinaryName);
612 if (ObjectGetClass)
613 S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_use)
614 << FixItHint::CreateInsertion(OIRE->getBeginLoc(),
615 "object_getClass(")
616 << FixItHint::CreateReplacement(
617 SourceRange(OIRE->getOpLoc(), OIRE->getEndLoc()), ")");
618 else
619 S.Diag(OIRE->getLocation(), diag::warn_objc_isa_use);
620 }
621 S.Diag(IV->getLocation(), diag::note_ivar_decl);
622 }
623 }
624 }
625
DefaultLvalueConversion(Expr * E)626 ExprResult Sema::DefaultLvalueConversion(Expr *E) {
627 // Handle any placeholder expressions which made it here.
628 if (E->hasPlaceholderType()) {
629 ExprResult result = CheckPlaceholderExpr(E);
630 if (result.isInvalid()) return ExprError();
631 E = result.get();
632 }
633
634 // C++ [conv.lval]p1:
635 // A glvalue of a non-function, non-array type T can be
636 // converted to a prvalue.
637 if (!E->isGLValue()) return E;
638
639 QualType T = E->getType();
640 assert(!T.isNull() && "r-value conversion on typeless expression?");
641
642 // lvalue-to-rvalue conversion cannot be applied to function or array types.
643 if (T->isFunctionType() || T->isArrayType())
644 return E;
645
646 // We don't want to throw lvalue-to-rvalue casts on top of
647 // expressions of certain types in C++.
648 if (getLangOpts().CPlusPlus &&
649 (E->getType() == Context.OverloadTy ||
650 T->isDependentType() ||
651 T->isRecordType()))
652 return E;
653
654 // The C standard is actually really unclear on this point, and
655 // DR106 tells us what the result should be but not why. It's
656 // generally best to say that void types just doesn't undergo
657 // lvalue-to-rvalue at all. Note that expressions of unqualified
658 // 'void' type are never l-values, but qualified void can be.
659 if (T->isVoidType())
660 return E;
661
662 // OpenCL usually rejects direct accesses to values of 'half' type.
663 if (getLangOpts().OpenCL &&
664 !getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()) &&
665 T->isHalfType()) {
666 Diag(E->getExprLoc(), diag::err_opencl_half_load_store)
667 << 0 << T;
668 return ExprError();
669 }
670
671 CheckForNullPointerDereference(*this, E);
672 if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(E->IgnoreParenCasts())) {
673 NamedDecl *ObjectGetClass = LookupSingleName(TUScope,
674 &Context.Idents.get("object_getClass"),
675 SourceLocation(), LookupOrdinaryName);
676 if (ObjectGetClass)
677 Diag(E->getExprLoc(), diag::warn_objc_isa_use)
678 << FixItHint::CreateInsertion(OISA->getBeginLoc(), "object_getClass(")
679 << FixItHint::CreateReplacement(
680 SourceRange(OISA->getOpLoc(), OISA->getIsaMemberLoc()), ")");
681 else
682 Diag(E->getExprLoc(), diag::warn_objc_isa_use);
683 }
684 else if (const ObjCIvarRefExpr *OIRE =
685 dyn_cast<ObjCIvarRefExpr>(E->IgnoreParenCasts()))
686 DiagnoseDirectIsaAccess(*this, OIRE, SourceLocation(), /* Expr*/nullptr);
687
688 // C++ [conv.lval]p1:
689 // [...] If T is a non-class type, the type of the prvalue is the
690 // cv-unqualified version of T. Otherwise, the type of the
691 // rvalue is T.
692 //
693 // C99 6.3.2.1p2:
694 // If the lvalue has qualified type, the value has the unqualified
695 // version of the type of the lvalue; otherwise, the value has the
696 // type of the lvalue.
697 if (T.hasQualifiers())
698 T = T.getUnqualifiedType();
699
700 // Under the MS ABI, lock down the inheritance model now.
701 if (T->isMemberPointerType() &&
702 Context.getTargetInfo().getCXXABI().isMicrosoft())
703 (void)isCompleteType(E->getExprLoc(), T);
704
705 ExprResult Res = CheckLValueToRValueConversionOperand(E);
706 if (Res.isInvalid())
707 return Res;
708 E = Res.get();
709
710 // Loading a __weak object implicitly retains the value, so we need a cleanup to
711 // balance that.
712 if (E->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
713 Cleanup.setExprNeedsCleanups(true);
714
715 if (E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
716 Cleanup.setExprNeedsCleanups(true);
717
718 // C++ [conv.lval]p3:
719 // If T is cv std::nullptr_t, the result is a null pointer constant.
720 CastKind CK = T->isNullPtrType() ? CK_NullToPointer : CK_LValueToRValue;
721 Res = ImplicitCastExpr::Create(Context, T, CK, E, nullptr, VK_PRValue,
722 CurFPFeatureOverrides());
723
724 // C11 6.3.2.1p2:
725 // ... if the lvalue has atomic type, the value has the non-atomic version
726 // of the type of the lvalue ...
727 if (const AtomicType *Atomic = T->getAs<AtomicType>()) {
728 T = Atomic->getValueType().getUnqualifiedType();
729 Res = ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic, Res.get(),
730 nullptr, VK_PRValue, FPOptionsOverride());
731 }
732
733 return Res;
734 }
735
DefaultFunctionArrayLvalueConversion(Expr * E,bool Diagnose)736 ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E, bool Diagnose) {
737 ExprResult Res = DefaultFunctionArrayConversion(E, Diagnose);
738 if (Res.isInvalid())
739 return ExprError();
740 Res = DefaultLvalueConversion(Res.get());
741 if (Res.isInvalid())
742 return ExprError();
743 return Res;
744 }
745
746 /// CallExprUnaryConversions - a special case of an unary conversion
747 /// performed on a function designator of a call expression.
CallExprUnaryConversions(Expr * E)748 ExprResult Sema::CallExprUnaryConversions(Expr *E) {
749 QualType Ty = E->getType();
750 ExprResult Res = E;
751 // Only do implicit cast for a function type, but not for a pointer
752 // to function type.
753 if (Ty->isFunctionType()) {
754 Res = ImpCastExprToType(E, Context.getPointerType(Ty),
755 CK_FunctionToPointerDecay);
756 if (Res.isInvalid())
757 return ExprError();
758 }
759 Res = DefaultLvalueConversion(Res.get());
760 if (Res.isInvalid())
761 return ExprError();
762 return Res.get();
763 }
764
765 /// UsualUnaryConversions - Performs various conversions that are common to most
766 /// operators (C99 6.3). The conversions of array and function types are
767 /// sometimes suppressed. For example, the array->pointer conversion doesn't
768 /// apply if the array is an argument to the sizeof or address (&) operators.
769 /// In these instances, this routine should *not* be called.
UsualUnaryConversions(Expr * E)770 ExprResult Sema::UsualUnaryConversions(Expr *E) {
771 // First, convert to an r-value.
772 ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
773 if (Res.isInvalid())
774 return ExprError();
775 E = Res.get();
776
777 QualType Ty = E->getType();
778 assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
779
780 LangOptions::FPEvalMethodKind EvalMethod = CurFPFeatures.getFPEvalMethod();
781 if (EvalMethod != LangOptions::FEM_Source && Ty->isFloatingType() &&
782 (getLangOpts().getFPEvalMethod() !=
783 LangOptions::FPEvalMethodKind::FEM_UnsetOnCommandLine ||
784 PP.getLastFPEvalPragmaLocation().isValid())) {
785 switch (EvalMethod) {
786 default:
787 llvm_unreachable("Unrecognized float evaluation method");
788 break;
789 case LangOptions::FEM_UnsetOnCommandLine:
790 llvm_unreachable("Float evaluation method should be set by now");
791 break;
792 case LangOptions::FEM_Double:
793 if (Context.getFloatingTypeOrder(Context.DoubleTy, Ty) > 0)
794 // Widen the expression to double.
795 return Ty->isComplexType()
796 ? ImpCastExprToType(E,
797 Context.getComplexType(Context.DoubleTy),
798 CK_FloatingComplexCast)
799 : ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast);
800 break;
801 case LangOptions::FEM_Extended:
802 if (Context.getFloatingTypeOrder(Context.LongDoubleTy, Ty) > 0)
803 // Widen the expression to long double.
804 return Ty->isComplexType()
805 ? ImpCastExprToType(
806 E, Context.getComplexType(Context.LongDoubleTy),
807 CK_FloatingComplexCast)
808 : ImpCastExprToType(E, Context.LongDoubleTy,
809 CK_FloatingCast);
810 break;
811 }
812 }
813
814 // Half FP have to be promoted to float unless it is natively supported
815 if (Ty->isHalfType() && !getLangOpts().NativeHalfType)
816 return ImpCastExprToType(Res.get(), Context.FloatTy, CK_FloatingCast);
817
818 // Try to perform integral promotions if the object has a theoretically
819 // promotable type.
820 if (Ty->isIntegralOrUnscopedEnumerationType()) {
821 // C99 6.3.1.1p2:
822 //
823 // The following may be used in an expression wherever an int or
824 // unsigned int may be used:
825 // - an object or expression with an integer type whose integer
826 // conversion rank is less than or equal to the rank of int
827 // and unsigned int.
828 // - A bit-field of type _Bool, int, signed int, or unsigned int.
829 //
830 // If an int can represent all values of the original type, the
831 // value is converted to an int; otherwise, it is converted to an
832 // unsigned int. These are called the integer promotions. All
833 // other types are unchanged by the integer promotions.
834
835 QualType PTy = Context.isPromotableBitField(E);
836 if (!PTy.isNull()) {
837 E = ImpCastExprToType(E, PTy, CK_IntegralCast).get();
838 return E;
839 }
840 if (Ty->isPromotableIntegerType()) {
841 QualType PT = Context.getPromotedIntegerType(Ty);
842 E = ImpCastExprToType(E, PT, CK_IntegralCast).get();
843 return E;
844 }
845 }
846 return E;
847 }
848
849 /// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
850 /// do not have a prototype. Arguments that have type float or __fp16
851 /// are promoted to double. All other argument types are converted by
852 /// UsualUnaryConversions().
DefaultArgumentPromotion(Expr * E)853 ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
854 QualType Ty = E->getType();
855 assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
856
857 ExprResult Res = UsualUnaryConversions(E);
858 if (Res.isInvalid())
859 return ExprError();
860 E = Res.get();
861
862 // If this is a 'float' or '__fp16' (CVR qualified or typedef)
863 // promote to double.
864 // Note that default argument promotion applies only to float (and
865 // half/fp16); it does not apply to _Float16.
866 const BuiltinType *BTy = Ty->getAs<BuiltinType>();
867 if (BTy && (BTy->getKind() == BuiltinType::Half ||
868 BTy->getKind() == BuiltinType::Float)) {
869 if (getLangOpts().OpenCL &&
870 !getOpenCLOptions().isAvailableOption("cl_khr_fp64", getLangOpts())) {
871 if (BTy->getKind() == BuiltinType::Half) {
872 E = ImpCastExprToType(E, Context.FloatTy, CK_FloatingCast).get();
873 }
874 } else {
875 E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).get();
876 }
877 }
878 if (BTy &&
879 getLangOpts().getExtendIntArgs() ==
880 LangOptions::ExtendArgsKind::ExtendTo64 &&
881 Context.getTargetInfo().supportsExtendIntArgs() && Ty->isIntegerType() &&
882 Context.getTypeSizeInChars(BTy) <
883 Context.getTypeSizeInChars(Context.LongLongTy)) {
884 E = (Ty->isUnsignedIntegerType())
885 ? ImpCastExprToType(E, Context.UnsignedLongLongTy, CK_IntegralCast)
886 .get()
887 : ImpCastExprToType(E, Context.LongLongTy, CK_IntegralCast).get();
888 assert(8 == Context.getTypeSizeInChars(Context.LongLongTy).getQuantity() &&
889 "Unexpected typesize for LongLongTy");
890 }
891
892 // C++ performs lvalue-to-rvalue conversion as a default argument
893 // promotion, even on class types, but note:
894 // C++11 [conv.lval]p2:
895 // When an lvalue-to-rvalue conversion occurs in an unevaluated
896 // operand or a subexpression thereof the value contained in the
897 // referenced object is not accessed. Otherwise, if the glvalue
898 // has a class type, the conversion copy-initializes a temporary
899 // of type T from the glvalue and the result of the conversion
900 // is a prvalue for the temporary.
901 // FIXME: add some way to gate this entire thing for correctness in
902 // potentially potentially evaluated contexts.
903 if (getLangOpts().CPlusPlus && E->isGLValue() && !isUnevaluatedContext()) {
904 ExprResult Temp = PerformCopyInitialization(
905 InitializedEntity::InitializeTemporary(E->getType()),
906 E->getExprLoc(), E);
907 if (Temp.isInvalid())
908 return ExprError();
909 E = Temp.get();
910 }
911
912 return E;
913 }
914
915 /// Determine the degree of POD-ness for an expression.
916 /// Incomplete types are considered POD, since this check can be performed
917 /// when we're in an unevaluated context.
isValidVarArgType(const QualType & Ty)918 Sema::VarArgKind Sema::isValidVarArgType(const QualType &Ty) {
919 if (Ty->isIncompleteType()) {
920 // C++11 [expr.call]p7:
921 // After these conversions, if the argument does not have arithmetic,
922 // enumeration, pointer, pointer to member, or class type, the program
923 // is ill-formed.
924 //
925 // Since we've already performed array-to-pointer and function-to-pointer
926 // decay, the only such type in C++ is cv void. This also handles
927 // initializer lists as variadic arguments.
928 if (Ty->isVoidType())
929 return VAK_Invalid;
930
931 if (Ty->isObjCObjectType())
932 return VAK_Invalid;
933 return VAK_Valid;
934 }
935
936 if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct)
937 return VAK_Invalid;
938
939 if (Ty.isCXX98PODType(Context))
940 return VAK_Valid;
941
942 // C++11 [expr.call]p7:
943 // Passing a potentially-evaluated argument of class type (Clause 9)
944 // having a non-trivial copy constructor, a non-trivial move constructor,
945 // or a non-trivial destructor, with no corresponding parameter,
946 // is conditionally-supported with implementation-defined semantics.
947 if (getLangOpts().CPlusPlus11 && !Ty->isDependentType())
948 if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl())
949 if (!Record->hasNonTrivialCopyConstructor() &&
950 !Record->hasNonTrivialMoveConstructor() &&
951 !Record->hasNonTrivialDestructor())
952 return VAK_ValidInCXX11;
953
954 if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType())
955 return VAK_Valid;
956
957 if (Ty->isObjCObjectType())
958 return VAK_Invalid;
959
960 if (getLangOpts().MSVCCompat)
961 return VAK_MSVCUndefined;
962
963 // FIXME: In C++11, these cases are conditionally-supported, meaning we're
964 // permitted to reject them. We should consider doing so.
965 return VAK_Undefined;
966 }
967
checkVariadicArgument(const Expr * E,VariadicCallType CT)968 void Sema::checkVariadicArgument(const Expr *E, VariadicCallType CT) {
969 // Don't allow one to pass an Objective-C interface to a vararg.
970 const QualType &Ty = E->getType();
971 VarArgKind VAK = isValidVarArgType(Ty);
972
973 // Complain about passing non-POD types through varargs.
974 switch (VAK) {
975 case VAK_ValidInCXX11:
976 DiagRuntimeBehavior(
977 E->getBeginLoc(), nullptr,
978 PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg) << Ty << CT);
979 LLVM_FALLTHROUGH;
980 case VAK_Valid:
981 if (Ty->isRecordType()) {
982 // This is unlikely to be what the user intended. If the class has a
983 // 'c_str' member function, the user probably meant to call that.
984 DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
985 PDiag(diag::warn_pass_class_arg_to_vararg)
986 << Ty << CT << hasCStrMethod(E) << ".c_str()");
987 }
988 break;
989
990 case VAK_Undefined:
991 case VAK_MSVCUndefined:
992 DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
993 PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
994 << getLangOpts().CPlusPlus11 << Ty << CT);
995 break;
996
997 case VAK_Invalid:
998 if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct)
999 Diag(E->getBeginLoc(),
1000 diag::err_cannot_pass_non_trivial_c_struct_to_vararg)
1001 << Ty << CT;
1002 else if (Ty->isObjCObjectType())
1003 DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
1004 PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
1005 << Ty << CT);
1006 else
1007 Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg)
1008 << isa<InitListExpr>(E) << Ty << CT;
1009 break;
1010 }
1011 }
1012
1013 /// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
1014 /// will create a trap if the resulting type is not a POD type.
DefaultVariadicArgumentPromotion(Expr * E,VariadicCallType CT,FunctionDecl * FDecl)1015 ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
1016 FunctionDecl *FDecl) {
1017 if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) {
1018 // Strip the unbridged-cast placeholder expression off, if applicable.
1019 if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast &&
1020 (CT == VariadicMethod ||
1021 (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) {
1022 E = stripARCUnbridgedCast(E);
1023
1024 // Otherwise, do normal placeholder checking.
1025 } else {
1026 ExprResult ExprRes = CheckPlaceholderExpr(E);
1027 if (ExprRes.isInvalid())
1028 return ExprError();
1029 E = ExprRes.get();
1030 }
1031 }
1032
1033 ExprResult ExprRes = DefaultArgumentPromotion(E);
1034 if (ExprRes.isInvalid())
1035 return ExprError();
1036
1037 // Copy blocks to the heap.
1038 if (ExprRes.get()->getType()->isBlockPointerType())
1039 maybeExtendBlockObject(ExprRes);
1040
1041 E = ExprRes.get();
1042
1043 // Diagnostics regarding non-POD argument types are
1044 // emitted along with format string checking in Sema::CheckFunctionCall().
1045 if (isValidVarArgType(E->getType()) == VAK_Undefined) {
1046 // Turn this into a trap.
1047 CXXScopeSpec SS;
1048 SourceLocation TemplateKWLoc;
1049 UnqualifiedId Name;
1050 Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
1051 E->getBeginLoc());
1052 ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc, Name,
1053 /*HasTrailingLParen=*/true,
1054 /*IsAddressOfOperand=*/false);
1055 if (TrapFn.isInvalid())
1056 return ExprError();
1057
1058 ExprResult Call = BuildCallExpr(TUScope, TrapFn.get(), E->getBeginLoc(),
1059 None, E->getEndLoc());
1060 if (Call.isInvalid())
1061 return ExprError();
1062
1063 ExprResult Comma =
1064 ActOnBinOp(TUScope, E->getBeginLoc(), tok::comma, Call.get(), E);
1065 if (Comma.isInvalid())
1066 return ExprError();
1067 return Comma.get();
1068 }
1069
1070 if (!getLangOpts().CPlusPlus &&
1071 RequireCompleteType(E->getExprLoc(), E->getType(),
1072 diag::err_call_incomplete_argument))
1073 return ExprError();
1074
1075 return E;
1076 }
1077
1078 /// Converts an integer to complex float type. Helper function of
1079 /// UsualArithmeticConversions()
1080 ///
1081 /// \return false if the integer expression is an integer type and is
1082 /// successfully converted to the complex type.
handleIntegerToComplexFloatConversion(Sema & S,ExprResult & IntExpr,ExprResult & ComplexExpr,QualType IntTy,QualType ComplexTy,bool SkipCast)1083 static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr,
1084 ExprResult &ComplexExpr,
1085 QualType IntTy,
1086 QualType ComplexTy,
1087 bool SkipCast) {
1088 if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true;
1089 if (SkipCast) return false;
1090 if (IntTy->isIntegerType()) {
1091 QualType fpTy = cast<ComplexType>(ComplexTy)->getElementType();
1092 IntExpr = S.ImpCastExprToType(IntExpr.get(), fpTy, CK_IntegralToFloating);
1093 IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
1094 CK_FloatingRealToComplex);
1095 } else {
1096 assert(IntTy->isComplexIntegerType());
1097 IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
1098 CK_IntegralComplexToFloatingComplex);
1099 }
1100 return false;
1101 }
1102
1103 /// Handle arithmetic conversion with complex types. Helper function of
1104 /// UsualArithmeticConversions()
handleComplexFloatConversion(Sema & S,ExprResult & LHS,ExprResult & RHS,QualType LHSType,QualType RHSType,bool IsCompAssign)1105 static QualType handleComplexFloatConversion(Sema &S, ExprResult &LHS,
1106 ExprResult &RHS, QualType LHSType,
1107 QualType RHSType,
1108 bool IsCompAssign) {
1109 // if we have an integer operand, the result is the complex type.
1110 if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType,
1111 /*skipCast*/false))
1112 return LHSType;
1113 if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType,
1114 /*skipCast*/IsCompAssign))
1115 return RHSType;
1116
1117 // This handles complex/complex, complex/float, or float/complex.
1118 // When both operands are complex, the shorter operand is converted to the
1119 // type of the longer, and that is the type of the result. This corresponds
1120 // to what is done when combining two real floating-point operands.
1121 // The fun begins when size promotion occur across type domains.
1122 // From H&S 6.3.4: When one operand is complex and the other is a real
1123 // floating-point type, the less precise type is converted, within it's
1124 // real or complex domain, to the precision of the other type. For example,
1125 // when combining a "long double" with a "double _Complex", the
1126 // "double _Complex" is promoted to "long double _Complex".
1127
1128 // Compute the rank of the two types, regardless of whether they are complex.
1129 int Order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
1130
1131 auto *LHSComplexType = dyn_cast<ComplexType>(LHSType);
1132 auto *RHSComplexType = dyn_cast<ComplexType>(RHSType);
1133 QualType LHSElementType =
1134 LHSComplexType ? LHSComplexType->getElementType() : LHSType;
1135 QualType RHSElementType =
1136 RHSComplexType ? RHSComplexType->getElementType() : RHSType;
1137
1138 QualType ResultType = S.Context.getComplexType(LHSElementType);
1139 if (Order < 0) {
1140 // Promote the precision of the LHS if not an assignment.
1141 ResultType = S.Context.getComplexType(RHSElementType);
1142 if (!IsCompAssign) {
1143 if (LHSComplexType)
1144 LHS =
1145 S.ImpCastExprToType(LHS.get(), ResultType, CK_FloatingComplexCast);
1146 else
1147 LHS = S.ImpCastExprToType(LHS.get(), RHSElementType, CK_FloatingCast);
1148 }
1149 } else if (Order > 0) {
1150 // Promote the precision of the RHS.
1151 if (RHSComplexType)
1152 RHS = S.ImpCastExprToType(RHS.get(), ResultType, CK_FloatingComplexCast);
1153 else
1154 RHS = S.ImpCastExprToType(RHS.get(), LHSElementType, CK_FloatingCast);
1155 }
1156 return ResultType;
1157 }
1158
1159 /// Handle arithmetic conversion from integer to float. Helper function
1160 /// of UsualArithmeticConversions()
handleIntToFloatConversion(Sema & S,ExprResult & FloatExpr,ExprResult & IntExpr,QualType FloatTy,QualType IntTy,bool ConvertFloat,bool ConvertInt)1161 static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr,
1162 ExprResult &IntExpr,
1163 QualType FloatTy, QualType IntTy,
1164 bool ConvertFloat, bool ConvertInt) {
1165 if (IntTy->isIntegerType()) {
1166 if (ConvertInt)
1167 // Convert intExpr to the lhs floating point type.
1168 IntExpr = S.ImpCastExprToType(IntExpr.get(), FloatTy,
1169 CK_IntegralToFloating);
1170 return FloatTy;
1171 }
1172
1173 // Convert both sides to the appropriate complex float.
1174 assert(IntTy->isComplexIntegerType());
1175 QualType result = S.Context.getComplexType(FloatTy);
1176
1177 // _Complex int -> _Complex float
1178 if (ConvertInt)
1179 IntExpr = S.ImpCastExprToType(IntExpr.get(), result,
1180 CK_IntegralComplexToFloatingComplex);
1181
1182 // float -> _Complex float
1183 if (ConvertFloat)
1184 FloatExpr = S.ImpCastExprToType(FloatExpr.get(), result,
1185 CK_FloatingRealToComplex);
1186
1187 return result;
1188 }
1189
1190 /// Handle arithmethic conversion with floating point types. Helper
1191 /// function of UsualArithmeticConversions()
handleFloatConversion(Sema & S,ExprResult & LHS,ExprResult & RHS,QualType LHSType,QualType RHSType,bool IsCompAssign)1192 static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
1193 ExprResult &RHS, QualType LHSType,
1194 QualType RHSType, bool IsCompAssign) {
1195 bool LHSFloat = LHSType->isRealFloatingType();
1196 bool RHSFloat = RHSType->isRealFloatingType();
1197
1198 // N1169 4.1.4: If one of the operands has a floating type and the other
1199 // operand has a fixed-point type, the fixed-point operand
1200 // is converted to the floating type [...]
1201 if (LHSType->isFixedPointType() || RHSType->isFixedPointType()) {
1202 if (LHSFloat)
1203 RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FixedPointToFloating);
1204 else if (!IsCompAssign)
1205 LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FixedPointToFloating);
1206 return LHSFloat ? LHSType : RHSType;
1207 }
1208
1209 // If we have two real floating types, convert the smaller operand
1210 // to the bigger result.
1211 if (LHSFloat && RHSFloat) {
1212 int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
1213 if (order > 0) {
1214 RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FloatingCast);
1215 return LHSType;
1216 }
1217
1218 assert(order < 0 && "illegal float comparison");
1219 if (!IsCompAssign)
1220 LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FloatingCast);
1221 return RHSType;
1222 }
1223
1224 if (LHSFloat) {
1225 // Half FP has to be promoted to float unless it is natively supported
1226 if (LHSType->isHalfType() && !S.getLangOpts().NativeHalfType)
1227 LHSType = S.Context.FloatTy;
1228
1229 return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType,
1230 /*ConvertFloat=*/!IsCompAssign,
1231 /*ConvertInt=*/ true);
1232 }
1233 assert(RHSFloat);
1234 return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType,
1235 /*ConvertFloat=*/ true,
1236 /*ConvertInt=*/!IsCompAssign);
1237 }
1238
1239 /// Diagnose attempts to convert between __float128, __ibm128 and
1240 /// long double if there is no support for such conversion.
1241 /// Helper function of UsualArithmeticConversions().
unsupportedTypeConversion(const Sema & S,QualType LHSType,QualType RHSType)1242 static bool unsupportedTypeConversion(const Sema &S, QualType LHSType,
1243 QualType RHSType) {
1244 // No issue if either is not a floating point type.
1245 if (!LHSType->isFloatingType() || !RHSType->isFloatingType())
1246 return false;
1247
1248 // No issue if both have the same 128-bit float semantics.
1249 auto *LHSComplex = LHSType->getAs<ComplexType>();
1250 auto *RHSComplex = RHSType->getAs<ComplexType>();
1251
1252 QualType LHSElem = LHSComplex ? LHSComplex->getElementType() : LHSType;
1253 QualType RHSElem = RHSComplex ? RHSComplex->getElementType() : RHSType;
1254
1255 const llvm::fltSemantics &LHSSem = S.Context.getFloatTypeSemantics(LHSElem);
1256 const llvm::fltSemantics &RHSSem = S.Context.getFloatTypeSemantics(RHSElem);
1257
1258 if ((&LHSSem != &llvm::APFloat::PPCDoubleDouble() ||
1259 &RHSSem != &llvm::APFloat::IEEEquad()) &&
1260 (&LHSSem != &llvm::APFloat::IEEEquad() ||
1261 &RHSSem != &llvm::APFloat::PPCDoubleDouble()))
1262 return false;
1263
1264 return true;
1265 }
1266
1267 typedef ExprResult PerformCastFn(Sema &S, Expr *operand, QualType toType);
1268
1269 namespace {
1270 /// These helper callbacks are placed in an anonymous namespace to
1271 /// permit their use as function template parameters.
doIntegralCast(Sema & S,Expr * op,QualType toType)1272 ExprResult doIntegralCast(Sema &S, Expr *op, QualType toType) {
1273 return S.ImpCastExprToType(op, toType, CK_IntegralCast);
1274 }
1275
doComplexIntegralCast(Sema & S,Expr * op,QualType toType)1276 ExprResult doComplexIntegralCast(Sema &S, Expr *op, QualType toType) {
1277 return S.ImpCastExprToType(op, S.Context.getComplexType(toType),
1278 CK_IntegralComplexCast);
1279 }
1280 }
1281
1282 /// Handle integer arithmetic conversions. Helper function of
1283 /// UsualArithmeticConversions()
1284 template <PerformCastFn doLHSCast, PerformCastFn doRHSCast>
handleIntegerConversion(Sema & S,ExprResult & LHS,ExprResult & RHS,QualType LHSType,QualType RHSType,bool IsCompAssign)1285 static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
1286 ExprResult &RHS, QualType LHSType,
1287 QualType RHSType, bool IsCompAssign) {
1288 // The rules for this case are in C99 6.3.1.8
1289 int order = S.Context.getIntegerTypeOrder(LHSType, RHSType);
1290 bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
1291 bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
1292 if (LHSSigned == RHSSigned) {
1293 // Same signedness; use the higher-ranked type
1294 if (order >= 0) {
1295 RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1296 return LHSType;
1297 } else if (!IsCompAssign)
1298 LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1299 return RHSType;
1300 } else if (order != (LHSSigned ? 1 : -1)) {
1301 // The unsigned type has greater than or equal rank to the
1302 // signed type, so use the unsigned type
1303 if (RHSSigned) {
1304 RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1305 return LHSType;
1306 } else if (!IsCompAssign)
1307 LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1308 return RHSType;
1309 } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) {
1310 // The two types are different widths; if we are here, that
1311 // means the signed type is larger than the unsigned type, so
1312 // use the signed type.
1313 if (LHSSigned) {
1314 RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1315 return LHSType;
1316 } else if (!IsCompAssign)
1317 LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1318 return RHSType;
1319 } else {
1320 // The signed type is higher-ranked than the unsigned type,
1321 // but isn't actually any bigger (like unsigned int and long
1322 // on most 32-bit systems). Use the unsigned type corresponding
1323 // to the signed type.
1324 QualType result =
1325 S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType);
1326 RHS = (*doRHSCast)(S, RHS.get(), result);
1327 if (!IsCompAssign)
1328 LHS = (*doLHSCast)(S, LHS.get(), result);
1329 return result;
1330 }
1331 }
1332
1333 /// Handle conversions with GCC complex int extension. Helper function
1334 /// of UsualArithmeticConversions()
handleComplexIntConversion(Sema & S,ExprResult & LHS,ExprResult & RHS,QualType LHSType,QualType RHSType,bool IsCompAssign)1335 static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
1336 ExprResult &RHS, QualType LHSType,
1337 QualType RHSType,
1338 bool IsCompAssign) {
1339 const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
1340 const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();
1341
1342 if (LHSComplexInt && RHSComplexInt) {
1343 QualType LHSEltType = LHSComplexInt->getElementType();
1344 QualType RHSEltType = RHSComplexInt->getElementType();
1345 QualType ScalarType =
1346 handleIntegerConversion<doComplexIntegralCast, doComplexIntegralCast>
1347 (S, LHS, RHS, LHSEltType, RHSEltType, IsCompAssign);
1348
1349 return S.Context.getComplexType(ScalarType);
1350 }
1351
1352 if (LHSComplexInt) {
1353 QualType LHSEltType = LHSComplexInt->getElementType();
1354 QualType ScalarType =
1355 handleIntegerConversion<doComplexIntegralCast, doIntegralCast>
1356 (S, LHS, RHS, LHSEltType, RHSType, IsCompAssign);
1357 QualType ComplexType = S.Context.getComplexType(ScalarType);
1358 RHS = S.ImpCastExprToType(RHS.get(), ComplexType,
1359 CK_IntegralRealToComplex);
1360
1361 return ComplexType;
1362 }
1363
1364 assert(RHSComplexInt);
1365
1366 QualType RHSEltType = RHSComplexInt->getElementType();
1367 QualType ScalarType =
1368 handleIntegerConversion<doIntegralCast, doComplexIntegralCast>
1369 (S, LHS, RHS, LHSType, RHSEltType, IsCompAssign);
1370 QualType ComplexType = S.Context.getComplexType(ScalarType);
1371
1372 if (!IsCompAssign)
1373 LHS = S.ImpCastExprToType(LHS.get(), ComplexType,
1374 CK_IntegralRealToComplex);
1375 return ComplexType;
1376 }
1377
1378 /// Return the rank of a given fixed point or integer type. The value itself
1379 /// doesn't matter, but the values must be increasing with proper increasing
1380 /// rank as described in N1169 4.1.1.
GetFixedPointRank(QualType Ty)1381 static unsigned GetFixedPointRank(QualType Ty) {
1382 const auto *BTy = Ty->getAs<BuiltinType>();
1383 assert(BTy && "Expected a builtin type.");
1384
1385 switch (BTy->getKind()) {
1386 case BuiltinType::ShortFract:
1387 case BuiltinType::UShortFract:
1388 case BuiltinType::SatShortFract:
1389 case BuiltinType::SatUShortFract:
1390 return 1;
1391 case BuiltinType::Fract:
1392 case BuiltinType::UFract:
1393 case BuiltinType::SatFract:
1394 case BuiltinType::SatUFract:
1395 return 2;
1396 case BuiltinType::LongFract:
1397 case BuiltinType::ULongFract:
1398 case BuiltinType::SatLongFract:
1399 case BuiltinType::SatULongFract:
1400 return 3;
1401 case BuiltinType::ShortAccum:
1402 case BuiltinType::UShortAccum:
1403 case BuiltinType::SatShortAccum:
1404 case BuiltinType::SatUShortAccum:
1405 return 4;
1406 case BuiltinType::Accum:
1407 case BuiltinType::UAccum:
1408 case BuiltinType::SatAccum:
1409 case BuiltinType::SatUAccum:
1410 return 5;
1411 case BuiltinType::LongAccum:
1412 case BuiltinType::ULongAccum:
1413 case BuiltinType::SatLongAccum:
1414 case BuiltinType::SatULongAccum:
1415 return 6;
1416 default:
1417 if (BTy->isInteger())
1418 return 0;
1419 llvm_unreachable("Unexpected fixed point or integer type");
1420 }
1421 }
1422
1423 /// handleFixedPointConversion - Fixed point operations between fixed
1424 /// point types and integers or other fixed point types do not fall under
1425 /// usual arithmetic conversion since these conversions could result in loss
1426 /// of precsision (N1169 4.1.4). These operations should be calculated with
1427 /// the full precision of their result type (N1169 4.1.6.2.1).
handleFixedPointConversion(Sema & S,QualType LHSTy,QualType RHSTy)1428 static QualType handleFixedPointConversion(Sema &S, QualType LHSTy,
1429 QualType RHSTy) {
1430 assert((LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) &&
1431 "Expected at least one of the operands to be a fixed point type");
1432 assert((LHSTy->isFixedPointOrIntegerType() ||
1433 RHSTy->isFixedPointOrIntegerType()) &&
1434 "Special fixed point arithmetic operation conversions are only "
1435 "applied to ints or other fixed point types");
1436
1437 // If one operand has signed fixed-point type and the other operand has
1438 // unsigned fixed-point type, then the unsigned fixed-point operand is
1439 // converted to its corresponding signed fixed-point type and the resulting
1440 // type is the type of the converted operand.
1441 if (RHSTy->isSignedFixedPointType() && LHSTy->isUnsignedFixedPointType())
1442 LHSTy = S.Context.getCorrespondingSignedFixedPointType(LHSTy);
1443 else if (RHSTy->isUnsignedFixedPointType() && LHSTy->isSignedFixedPointType())
1444 RHSTy = S.Context.getCorrespondingSignedFixedPointType(RHSTy);
1445
1446 // The result type is the type with the highest rank, whereby a fixed-point
1447 // conversion rank is always greater than an integer conversion rank; if the
1448 // type of either of the operands is a saturating fixedpoint type, the result
1449 // type shall be the saturating fixed-point type corresponding to the type
1450 // with the highest rank; the resulting value is converted (taking into
1451 // account rounding and overflow) to the precision of the resulting type.
1452 // Same ranks between signed and unsigned types are resolved earlier, so both
1453 // types are either signed or both unsigned at this point.
1454 unsigned LHSTyRank = GetFixedPointRank(LHSTy);
1455 unsigned RHSTyRank = GetFixedPointRank(RHSTy);
1456
1457 QualType ResultTy = LHSTyRank > RHSTyRank ? LHSTy : RHSTy;
1458
1459 if (LHSTy->isSaturatedFixedPointType() || RHSTy->isSaturatedFixedPointType())
1460 ResultTy = S.Context.getCorrespondingSaturatedType(ResultTy);
1461
1462 return ResultTy;
1463 }
1464
1465 /// Check that the usual arithmetic conversions can be performed on this pair of
1466 /// expressions that might be of enumeration type.
checkEnumArithmeticConversions(Sema & S,Expr * LHS,Expr * RHS,SourceLocation Loc,Sema::ArithConvKind ACK)1467 static void checkEnumArithmeticConversions(Sema &S, Expr *LHS, Expr *RHS,
1468 SourceLocation Loc,
1469 Sema::ArithConvKind ACK) {
1470 // C++2a [expr.arith.conv]p1:
1471 // If one operand is of enumeration type and the other operand is of a
1472 // different enumeration type or a floating-point type, this behavior is
1473 // deprecated ([depr.arith.conv.enum]).
1474 //
1475 // Warn on this in all language modes. Produce a deprecation warning in C++20.
1476 // Eventually we will presumably reject these cases (in C++23 onwards?).
1477 QualType L = LHS->getType(), R = RHS->getType();
1478 bool LEnum = L->isUnscopedEnumerationType(),
1479 REnum = R->isUnscopedEnumerationType();
1480 bool IsCompAssign = ACK == Sema::ACK_CompAssign;
1481 if ((!IsCompAssign && LEnum && R->isFloatingType()) ||
1482 (REnum && L->isFloatingType())) {
1483 S.Diag(Loc, S.getLangOpts().CPlusPlus20
1484 ? diag::warn_arith_conv_enum_float_cxx20
1485 : diag::warn_arith_conv_enum_float)
1486 << LHS->getSourceRange() << RHS->getSourceRange()
1487 << (int)ACK << LEnum << L << R;
1488 } else if (!IsCompAssign && LEnum && REnum &&
1489 !S.Context.hasSameUnqualifiedType(L, R)) {
1490 unsigned DiagID;
1491 if (!L->castAs<EnumType>()->getDecl()->hasNameForLinkage() ||
1492 !R->castAs<EnumType>()->getDecl()->hasNameForLinkage()) {
1493 // If either enumeration type is unnamed, it's less likely that the
1494 // user cares about this, but this situation is still deprecated in
1495 // C++2a. Use a different warning group.
1496 DiagID = S.getLangOpts().CPlusPlus20
1497 ? diag::warn_arith_conv_mixed_anon_enum_types_cxx20
1498 : diag::warn_arith_conv_mixed_anon_enum_types;
1499 } else if (ACK == Sema::ACK_Conditional) {
1500 // Conditional expressions are separated out because they have
1501 // historically had a different warning flag.
1502 DiagID = S.getLangOpts().CPlusPlus20
1503 ? diag::warn_conditional_mixed_enum_types_cxx20
1504 : diag::warn_conditional_mixed_enum_types;
1505 } else if (ACK == Sema::ACK_Comparison) {
1506 // Comparison expressions are separated out because they have
1507 // historically had a different warning flag.
1508 DiagID = S.getLangOpts().CPlusPlus20
1509 ? diag::warn_comparison_mixed_enum_types_cxx20
1510 : diag::warn_comparison_mixed_enum_types;
1511 } else {
1512 DiagID = S.getLangOpts().CPlusPlus20
1513 ? diag::warn_arith_conv_mixed_enum_types_cxx20
1514 : diag::warn_arith_conv_mixed_enum_types;
1515 }
1516 S.Diag(Loc, DiagID) << LHS->getSourceRange() << RHS->getSourceRange()
1517 << (int)ACK << L << R;
1518 }
1519 }
1520
1521 /// UsualArithmeticConversions - Performs various conversions that are common to
1522 /// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
1523 /// routine returns the first non-arithmetic type found. The client is
1524 /// responsible for emitting appropriate error diagnostics.
UsualArithmeticConversions(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,ArithConvKind ACK)1525 QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
1526 SourceLocation Loc,
1527 ArithConvKind ACK) {
1528 checkEnumArithmeticConversions(*this, LHS.get(), RHS.get(), Loc, ACK);
1529
1530 if (ACK != ACK_CompAssign) {
1531 LHS = UsualUnaryConversions(LHS.get());
1532 if (LHS.isInvalid())
1533 return QualType();
1534 }
1535
1536 RHS = UsualUnaryConversions(RHS.get());
1537 if (RHS.isInvalid())
1538 return QualType();
1539
1540 // For conversion purposes, we ignore any qualifiers.
1541 // For example, "const float" and "float" are equivalent.
1542 QualType LHSType =
1543 Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
1544 QualType RHSType =
1545 Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
1546
1547 // For conversion purposes, we ignore any atomic qualifier on the LHS.
1548 if (const AtomicType *AtomicLHS = LHSType->getAs<AtomicType>())
1549 LHSType = AtomicLHS->getValueType();
1550
1551 // If both types are identical, no conversion is needed.
1552 if (LHSType == RHSType)
1553 return LHSType;
1554
1555 // If either side is a non-arithmetic type (e.g. a pointer), we are done.
1556 // The caller can deal with this (e.g. pointer + int).
1557 if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
1558 return QualType();
1559
1560 // Apply unary and bitfield promotions to the LHS's type.
1561 QualType LHSUnpromotedType = LHSType;
1562 if (LHSType->isPromotableIntegerType())
1563 LHSType = Context.getPromotedIntegerType(LHSType);
1564 QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get());
1565 if (!LHSBitfieldPromoteTy.isNull())
1566 LHSType = LHSBitfieldPromoteTy;
1567 if (LHSType != LHSUnpromotedType && ACK != ACK_CompAssign)
1568 LHS = ImpCastExprToType(LHS.get(), LHSType, CK_IntegralCast);
1569
1570 // If both types are identical, no conversion is needed.
1571 if (LHSType == RHSType)
1572 return LHSType;
1573
1574 // At this point, we have two different arithmetic types.
1575
1576 // Diagnose attempts to convert between __ibm128, __float128 and long double
1577 // where such conversions currently can't be handled.
1578 if (unsupportedTypeConversion(*this, LHSType, RHSType))
1579 return QualType();
1580
1581 // Handle complex types first (C99 6.3.1.8p1).
1582 if (LHSType->isComplexType() || RHSType->isComplexType())
1583 return handleComplexFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1584 ACK == ACK_CompAssign);
1585
1586 // Now handle "real" floating types (i.e. float, double, long double).
1587 if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
1588 return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1589 ACK == ACK_CompAssign);
1590
1591 // Handle GCC complex int extension.
1592 if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
1593 return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType,
1594 ACK == ACK_CompAssign);
1595
1596 if (LHSType->isFixedPointType() || RHSType->isFixedPointType())
1597 return handleFixedPointConversion(*this, LHSType, RHSType);
1598
1599 // Finally, we have two differing integer types.
1600 return handleIntegerConversion<doIntegralCast, doIntegralCast>
1601 (*this, LHS, RHS, LHSType, RHSType, ACK == ACK_CompAssign);
1602 }
1603
1604 //===----------------------------------------------------------------------===//
1605 // Semantic Analysis for various Expression Types
1606 //===----------------------------------------------------------------------===//
1607
1608
1609 ExprResult
ActOnGenericSelectionExpr(SourceLocation KeyLoc,SourceLocation DefaultLoc,SourceLocation RParenLoc,Expr * ControllingExpr,ArrayRef<ParsedType> ArgTypes,ArrayRef<Expr * > ArgExprs)1610 Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc,
1611 SourceLocation DefaultLoc,
1612 SourceLocation RParenLoc,
1613 Expr *ControllingExpr,
1614 ArrayRef<ParsedType> ArgTypes,
1615 ArrayRef<Expr *> ArgExprs) {
1616 unsigned NumAssocs = ArgTypes.size();
1617 assert(NumAssocs == ArgExprs.size());
1618
1619 TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
1620 for (unsigned i = 0; i < NumAssocs; ++i) {
1621 if (ArgTypes[i])
1622 (void) GetTypeFromParser(ArgTypes[i], &Types[i]);
1623 else
1624 Types[i] = nullptr;
1625 }
1626
1627 ExprResult ER = CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
1628 ControllingExpr,
1629 llvm::makeArrayRef(Types, NumAssocs),
1630 ArgExprs);
1631 delete [] Types;
1632 return ER;
1633 }
1634
1635 ExprResult
CreateGenericSelectionExpr(SourceLocation KeyLoc,SourceLocation DefaultLoc,SourceLocation RParenLoc,Expr * ControllingExpr,ArrayRef<TypeSourceInfo * > Types,ArrayRef<Expr * > Exprs)1636 Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc,
1637 SourceLocation DefaultLoc,
1638 SourceLocation RParenLoc,
1639 Expr *ControllingExpr,
1640 ArrayRef<TypeSourceInfo *> Types,
1641 ArrayRef<Expr *> Exprs) {
1642 unsigned NumAssocs = Types.size();
1643 assert(NumAssocs == Exprs.size());
1644
1645 // Decay and strip qualifiers for the controlling expression type, and handle
1646 // placeholder type replacement. See committee discussion from WG14 DR423.
1647 {
1648 EnterExpressionEvaluationContext Unevaluated(
1649 *this, Sema::ExpressionEvaluationContext::Unevaluated);
1650 ExprResult R = DefaultFunctionArrayLvalueConversion(ControllingExpr);
1651 if (R.isInvalid())
1652 return ExprError();
1653 ControllingExpr = R.get();
1654 }
1655
1656 bool TypeErrorFound = false,
1657 IsResultDependent = ControllingExpr->isTypeDependent(),
1658 ContainsUnexpandedParameterPack
1659 = ControllingExpr->containsUnexpandedParameterPack();
1660
1661 // The controlling expression is an unevaluated operand, so side effects are
1662 // likely unintended.
1663 if (!inTemplateInstantiation() && !IsResultDependent &&
1664 ControllingExpr->HasSideEffects(Context, false))
1665 Diag(ControllingExpr->getExprLoc(),
1666 diag::warn_side_effects_unevaluated_context);
1667
1668 for (unsigned i = 0; i < NumAssocs; ++i) {
1669 if (Exprs[i]->containsUnexpandedParameterPack())
1670 ContainsUnexpandedParameterPack = true;
1671
1672 if (Types[i]) {
1673 if (Types[i]->getType()->containsUnexpandedParameterPack())
1674 ContainsUnexpandedParameterPack = true;
1675
1676 if (Types[i]->getType()->isDependentType()) {
1677 IsResultDependent = true;
1678 } else {
1679 // C11 6.5.1.1p2 "The type name in a generic association shall specify a
1680 // complete object type other than a variably modified type."
1681 unsigned D = 0;
1682 if (Types[i]->getType()->isIncompleteType())
1683 D = diag::err_assoc_type_incomplete;
1684 else if (!Types[i]->getType()->isObjectType())
1685 D = diag::err_assoc_type_nonobject;
1686 else if (Types[i]->getType()->isVariablyModifiedType())
1687 D = diag::err_assoc_type_variably_modified;
1688 else {
1689 // Because the controlling expression undergoes lvalue conversion,
1690 // array conversion, and function conversion, an association which is
1691 // of array type, function type, or is qualified can never be
1692 // reached. We will warn about this so users are less surprised by
1693 // the unreachable association. However, we don't have to handle
1694 // function types; that's not an object type, so it's handled above.
1695 //
1696 // The logic is somewhat different for C++ because C++ has different
1697 // lvalue to rvalue conversion rules than C. [conv.lvalue]p1 says,
1698 // If T is a non-class type, the type of the prvalue is the cv-
1699 // unqualified version of T. Otherwise, the type of the prvalue is T.
1700 // The result of these rules is that all qualified types in an
1701 // association in C are unreachable, and in C++, only qualified non-
1702 // class types are unreachable.
1703 unsigned Reason = 0;
1704 QualType QT = Types[i]->getType();
1705 if (QT->isArrayType())
1706 Reason = 1;
1707 else if (QT.hasQualifiers() &&
1708 (!LangOpts.CPlusPlus || !QT->isRecordType()))
1709 Reason = 2;
1710
1711 if (Reason)
1712 Diag(Types[i]->getTypeLoc().getBeginLoc(),
1713 diag::warn_unreachable_association)
1714 << QT << (Reason - 1);
1715 }
1716
1717 if (D != 0) {
1718 Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
1719 << Types[i]->getTypeLoc().getSourceRange()
1720 << Types[i]->getType();
1721 TypeErrorFound = true;
1722 }
1723
1724 // C11 6.5.1.1p2 "No two generic associations in the same generic
1725 // selection shall specify compatible types."
1726 for (unsigned j = i+1; j < NumAssocs; ++j)
1727 if (Types[j] && !Types[j]->getType()->isDependentType() &&
1728 Context.typesAreCompatible(Types[i]->getType(),
1729 Types[j]->getType())) {
1730 Diag(Types[j]->getTypeLoc().getBeginLoc(),
1731 diag::err_assoc_compatible_types)
1732 << Types[j]->getTypeLoc().getSourceRange()
1733 << Types[j]->getType()
1734 << Types[i]->getType();
1735 Diag(Types[i]->getTypeLoc().getBeginLoc(),
1736 diag::note_compat_assoc)
1737 << Types[i]->getTypeLoc().getSourceRange()
1738 << Types[i]->getType();
1739 TypeErrorFound = true;
1740 }
1741 }
1742 }
1743 }
1744 if (TypeErrorFound)
1745 return ExprError();
1746
1747 // If we determined that the generic selection is result-dependent, don't
1748 // try to compute the result expression.
1749 if (IsResultDependent)
1750 return GenericSelectionExpr::Create(Context, KeyLoc, ControllingExpr, Types,
1751 Exprs, DefaultLoc, RParenLoc,
1752 ContainsUnexpandedParameterPack);
1753
1754 SmallVector<unsigned, 1> CompatIndices;
1755 unsigned DefaultIndex = -1U;
1756 // Look at the canonical type of the controlling expression in case it was a
1757 // deduced type like __auto_type. However, when issuing diagnostics, use the
1758 // type the user wrote in source rather than the canonical one.
1759 for (unsigned i = 0; i < NumAssocs; ++i) {
1760 if (!Types[i])
1761 DefaultIndex = i;
1762 else if (Context.typesAreCompatible(
1763 ControllingExpr->getType().getCanonicalType(),
1764 Types[i]->getType()))
1765 CompatIndices.push_back(i);
1766 }
1767
1768 // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have
1769 // type compatible with at most one of the types named in its generic
1770 // association list."
1771 if (CompatIndices.size() > 1) {
1772 // We strip parens here because the controlling expression is typically
1773 // parenthesized in macro definitions.
1774 ControllingExpr = ControllingExpr->IgnoreParens();
1775 Diag(ControllingExpr->getBeginLoc(), diag::err_generic_sel_multi_match)
1776 << ControllingExpr->getSourceRange() << ControllingExpr->getType()
1777 << (unsigned)CompatIndices.size();
1778 for (unsigned I : CompatIndices) {
1779 Diag(Types[I]->getTypeLoc().getBeginLoc(),
1780 diag::note_compat_assoc)
1781 << Types[I]->getTypeLoc().getSourceRange()
1782 << Types[I]->getType();
1783 }
1784 return ExprError();
1785 }
1786
1787 // C11 6.5.1.1p2 "If a generic selection has no default generic association,
1788 // its controlling expression shall have type compatible with exactly one of
1789 // the types named in its generic association list."
1790 if (DefaultIndex == -1U && CompatIndices.size() == 0) {
1791 // We strip parens here because the controlling expression is typically
1792 // parenthesized in macro definitions.
1793 ControllingExpr = ControllingExpr->IgnoreParens();
1794 Diag(ControllingExpr->getBeginLoc(), diag::err_generic_sel_no_match)
1795 << ControllingExpr->getSourceRange() << ControllingExpr->getType();
1796 return ExprError();
1797 }
1798
1799 // C11 6.5.1.1p3 "If a generic selection has a generic association with a
1800 // type name that is compatible with the type of the controlling expression,
1801 // then the result expression of the generic selection is the expression
1802 // in that generic association. Otherwise, the result expression of the
1803 // generic selection is the expression in the default generic association."
1804 unsigned ResultIndex =
1805 CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
1806
1807 return GenericSelectionExpr::Create(
1808 Context, KeyLoc, ControllingExpr, Types, Exprs, DefaultLoc, RParenLoc,
1809 ContainsUnexpandedParameterPack, ResultIndex);
1810 }
1811
1812 /// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the
1813 /// location of the token and the offset of the ud-suffix within it.
getUDSuffixLoc(Sema & S,SourceLocation TokLoc,unsigned Offset)1814 static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc,
1815 unsigned Offset) {
1816 return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(),
1817 S.getLangOpts());
1818 }
1819
1820 /// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up
1821 /// the corresponding cooked (non-raw) literal operator, and build a call to it.
BuildCookedLiteralOperatorCall(Sema & S,Scope * Scope,IdentifierInfo * UDSuffix,SourceLocation UDSuffixLoc,ArrayRef<Expr * > Args,SourceLocation LitEndLoc)1822 static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope,
1823 IdentifierInfo *UDSuffix,
1824 SourceLocation UDSuffixLoc,
1825 ArrayRef<Expr*> Args,
1826 SourceLocation LitEndLoc) {
1827 assert(Args.size() <= 2 && "too many arguments for literal operator");
1828
1829 QualType ArgTy[2];
1830 for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
1831 ArgTy[ArgIdx] = Args[ArgIdx]->getType();
1832 if (ArgTy[ArgIdx]->isArrayType())
1833 ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]);
1834 }
1835
1836 DeclarationName OpName =
1837 S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
1838 DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1839 OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1840
1841 LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName);
1842 if (S.LookupLiteralOperator(Scope, R, llvm::makeArrayRef(ArgTy, Args.size()),
1843 /*AllowRaw*/ false, /*AllowTemplate*/ false,
1844 /*AllowStringTemplatePack*/ false,
1845 /*DiagnoseMissing*/ true) == Sema::LOLR_Error)
1846 return ExprError();
1847
1848 return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc);
1849 }
1850
1851 /// ActOnStringLiteral - The specified tokens were lexed as pasted string
1852 /// fragments (e.g. "foo" "bar" L"baz"). The result string has to handle string
1853 /// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
1854 /// multiple tokens. However, the common case is that StringToks points to one
1855 /// string.
1856 ///
1857 ExprResult
ActOnStringLiteral(ArrayRef<Token> StringToks,Scope * UDLScope)1858 Sema::ActOnStringLiteral(ArrayRef<Token> StringToks, Scope *UDLScope) {
1859 assert(!StringToks.empty() && "Must have at least one string!");
1860
1861 StringLiteralParser Literal(StringToks, PP);
1862 if (Literal.hadError)
1863 return ExprError();
1864
1865 SmallVector<SourceLocation, 4> StringTokLocs;
1866 for (const Token &Tok : StringToks)
1867 StringTokLocs.push_back(Tok.getLocation());
1868
1869 QualType CharTy = Context.CharTy;
1870 StringLiteral::StringKind Kind = StringLiteral::Ordinary;
1871 if (Literal.isWide()) {
1872 CharTy = Context.getWideCharType();
1873 Kind = StringLiteral::Wide;
1874 } else if (Literal.isUTF8()) {
1875 if (getLangOpts().Char8)
1876 CharTy = Context.Char8Ty;
1877 Kind = StringLiteral::UTF8;
1878 } else if (Literal.isUTF16()) {
1879 CharTy = Context.Char16Ty;
1880 Kind = StringLiteral::UTF16;
1881 } else if (Literal.isUTF32()) {
1882 CharTy = Context.Char32Ty;
1883 Kind = StringLiteral::UTF32;
1884 } else if (Literal.isPascal()) {
1885 CharTy = Context.UnsignedCharTy;
1886 }
1887
1888 // Warn on initializing an array of char from a u8 string literal; this
1889 // becomes ill-formed in C++2a.
1890 if (getLangOpts().CPlusPlus && !getLangOpts().CPlusPlus20 &&
1891 !getLangOpts().Char8 && Kind == StringLiteral::UTF8) {
1892 Diag(StringTokLocs.front(), diag::warn_cxx20_compat_utf8_string);
1893
1894 // Create removals for all 'u8' prefixes in the string literal(s). This
1895 // ensures C++2a compatibility (but may change the program behavior when
1896 // built by non-Clang compilers for which the execution character set is
1897 // not always UTF-8).
1898 auto RemovalDiag = PDiag(diag::note_cxx20_compat_utf8_string_remove_u8);
1899 SourceLocation RemovalDiagLoc;
1900 for (const Token &Tok : StringToks) {
1901 if (Tok.getKind() == tok::utf8_string_literal) {
1902 if (RemovalDiagLoc.isInvalid())
1903 RemovalDiagLoc = Tok.getLocation();
1904 RemovalDiag << FixItHint::CreateRemoval(CharSourceRange::getCharRange(
1905 Tok.getLocation(),
1906 Lexer::AdvanceToTokenCharacter(Tok.getLocation(), 2,
1907 getSourceManager(), getLangOpts())));
1908 }
1909 }
1910 Diag(RemovalDiagLoc, RemovalDiag);
1911 }
1912
1913 QualType StrTy =
1914 Context.getStringLiteralArrayType(CharTy, Literal.GetNumStringChars());
1915
1916 // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
1917 StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(),
1918 Kind, Literal.Pascal, StrTy,
1919 &StringTokLocs[0],
1920 StringTokLocs.size());
1921 if (Literal.getUDSuffix().empty())
1922 return Lit;
1923
1924 // We're building a user-defined literal.
1925 IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
1926 SourceLocation UDSuffixLoc =
1927 getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
1928 Literal.getUDSuffixOffset());
1929
1930 // Make sure we're allowed user-defined literals here.
1931 if (!UDLScope)
1932 return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
1933
1934 // C++11 [lex.ext]p5: The literal L is treated as a call of the form
1935 // operator "" X (str, len)
1936 QualType SizeType = Context.getSizeType();
1937
1938 DeclarationName OpName =
1939 Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
1940 DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1941 OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1942
1943 QualType ArgTy[] = {
1944 Context.getArrayDecayedType(StrTy), SizeType
1945 };
1946
1947 LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
1948 switch (LookupLiteralOperator(UDLScope, R, ArgTy,
1949 /*AllowRaw*/ false, /*AllowTemplate*/ true,
1950 /*AllowStringTemplatePack*/ true,
1951 /*DiagnoseMissing*/ true, Lit)) {
1952
1953 case LOLR_Cooked: {
1954 llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars());
1955 IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType,
1956 StringTokLocs[0]);
1957 Expr *Args[] = { Lit, LenArg };
1958
1959 return BuildLiteralOperatorCall(R, OpNameInfo, Args, StringTokLocs.back());
1960 }
1961
1962 case LOLR_Template: {
1963 TemplateArgumentListInfo ExplicitArgs;
1964 TemplateArgument Arg(Lit);
1965 TemplateArgumentLocInfo ArgInfo(Lit);
1966 ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
1967 return BuildLiteralOperatorCall(R, OpNameInfo, None, StringTokLocs.back(),
1968 &ExplicitArgs);
1969 }
1970
1971 case LOLR_StringTemplatePack: {
1972 TemplateArgumentListInfo ExplicitArgs;
1973
1974 unsigned CharBits = Context.getIntWidth(CharTy);
1975 bool CharIsUnsigned = CharTy->isUnsignedIntegerType();
1976 llvm::APSInt Value(CharBits, CharIsUnsigned);
1977
1978 TemplateArgument TypeArg(CharTy);
1979 TemplateArgumentLocInfo TypeArgInfo(Context.getTrivialTypeSourceInfo(CharTy));
1980 ExplicitArgs.addArgument(TemplateArgumentLoc(TypeArg, TypeArgInfo));
1981
1982 for (unsigned I = 0, N = Lit->getLength(); I != N; ++I) {
1983 Value = Lit->getCodeUnit(I);
1984 TemplateArgument Arg(Context, Value, CharTy);
1985 TemplateArgumentLocInfo ArgInfo;
1986 ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
1987 }
1988 return BuildLiteralOperatorCall(R, OpNameInfo, None, StringTokLocs.back(),
1989 &ExplicitArgs);
1990 }
1991 case LOLR_Raw:
1992 case LOLR_ErrorNoDiagnostic:
1993 llvm_unreachable("unexpected literal operator lookup result");
1994 case LOLR_Error:
1995 return ExprError();
1996 }
1997 llvm_unreachable("unexpected literal operator lookup result");
1998 }
1999
2000 DeclRefExpr *
BuildDeclRefExpr(ValueDecl * D,QualType Ty,ExprValueKind VK,SourceLocation Loc,const CXXScopeSpec * SS)2001 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
2002 SourceLocation Loc,
2003 const CXXScopeSpec *SS) {
2004 DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
2005 return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
2006 }
2007
2008 DeclRefExpr *
BuildDeclRefExpr(ValueDecl * D,QualType Ty,ExprValueKind VK,const DeclarationNameInfo & NameInfo,const CXXScopeSpec * SS,NamedDecl * FoundD,SourceLocation TemplateKWLoc,const TemplateArgumentListInfo * TemplateArgs)2009 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
2010 const DeclarationNameInfo &NameInfo,
2011 const CXXScopeSpec *SS, NamedDecl *FoundD,
2012 SourceLocation TemplateKWLoc,
2013 const TemplateArgumentListInfo *TemplateArgs) {
2014 NestedNameSpecifierLoc NNS =
2015 SS ? SS->getWithLocInContext(Context) : NestedNameSpecifierLoc();
2016 return BuildDeclRefExpr(D, Ty, VK, NameInfo, NNS, FoundD, TemplateKWLoc,
2017 TemplateArgs);
2018 }
2019
2020 // CUDA/HIP: Check whether a captured reference variable is referencing a
2021 // host variable in a device or host device lambda.
isCapturingReferenceToHostVarInCUDADeviceLambda(const Sema & S,VarDecl * VD)2022 static bool isCapturingReferenceToHostVarInCUDADeviceLambda(const Sema &S,
2023 VarDecl *VD) {
2024 if (!S.getLangOpts().CUDA || !VD->hasInit())
2025 return false;
2026 assert(VD->getType()->isReferenceType());
2027
2028 // Check whether the reference variable is referencing a host variable.
2029 auto *DRE = dyn_cast<DeclRefExpr>(VD->getInit());
2030 if (!DRE)
2031 return false;
2032 auto *Referee = dyn_cast<VarDecl>(DRE->getDecl());
2033 if (!Referee || !Referee->hasGlobalStorage() ||
2034 Referee->hasAttr<CUDADeviceAttr>())
2035 return false;
2036
2037 // Check whether the current function is a device or host device lambda.
2038 // Check whether the reference variable is a capture by getDeclContext()
2039 // since refersToEnclosingVariableOrCapture() is not ready at this point.
2040 auto *MD = dyn_cast_or_null<CXXMethodDecl>(S.CurContext);
2041 if (MD && MD->getParent()->isLambda() &&
2042 MD->getOverloadedOperator() == OO_Call && MD->hasAttr<CUDADeviceAttr>() &&
2043 VD->getDeclContext() != MD)
2044 return true;
2045
2046 return false;
2047 }
2048
getNonOdrUseReasonInCurrentContext(ValueDecl * D)2049 NonOdrUseReason Sema::getNonOdrUseReasonInCurrentContext(ValueDecl *D) {
2050 // A declaration named in an unevaluated operand never constitutes an odr-use.
2051 if (isUnevaluatedContext())
2052 return NOUR_Unevaluated;
2053
2054 // C++2a [basic.def.odr]p4:
2055 // A variable x whose name appears as a potentially-evaluated expression e
2056 // is odr-used by e unless [...] x is a reference that is usable in
2057 // constant expressions.
2058 // CUDA/HIP:
2059 // If a reference variable referencing a host variable is captured in a
2060 // device or host device lambda, the value of the referee must be copied
2061 // to the capture and the reference variable must be treated as odr-use
2062 // since the value of the referee is not known at compile time and must
2063 // be loaded from the captured.
2064 if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
2065 if (VD->getType()->isReferenceType() &&
2066 !(getLangOpts().OpenMP && isOpenMPCapturedDecl(D)) &&
2067 !isCapturingReferenceToHostVarInCUDADeviceLambda(*this, VD) &&
2068 VD->isUsableInConstantExpressions(Context))
2069 return NOUR_Constant;
2070 }
2071
2072 // All remaining non-variable cases constitute an odr-use. For variables, we
2073 // need to wait and see how the expression is used.
2074 return NOUR_None;
2075 }
2076
2077 /// BuildDeclRefExpr - Build an expression that references a
2078 /// declaration that does not require a closure capture.
2079 DeclRefExpr *
BuildDeclRefExpr(ValueDecl * D,QualType Ty,ExprValueKind VK,const DeclarationNameInfo & NameInfo,NestedNameSpecifierLoc NNS,NamedDecl * FoundD,SourceLocation TemplateKWLoc,const TemplateArgumentListInfo * TemplateArgs)2080 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
2081 const DeclarationNameInfo &NameInfo,
2082 NestedNameSpecifierLoc NNS, NamedDecl *FoundD,
2083 SourceLocation TemplateKWLoc,
2084 const TemplateArgumentListInfo *TemplateArgs) {
2085 bool RefersToCapturedVariable =
2086 isa<VarDecl>(D) &&
2087 NeedToCaptureVariable(cast<VarDecl>(D), NameInfo.getLoc());
2088
2089 DeclRefExpr *E = DeclRefExpr::Create(
2090 Context, NNS, TemplateKWLoc, D, RefersToCapturedVariable, NameInfo, Ty,
2091 VK, FoundD, TemplateArgs, getNonOdrUseReasonInCurrentContext(D));
2092 MarkDeclRefReferenced(E);
2093
2094 // C++ [except.spec]p17:
2095 // An exception-specification is considered to be needed when:
2096 // - in an expression, the function is the unique lookup result or
2097 // the selected member of a set of overloaded functions.
2098 //
2099 // We delay doing this until after we've built the function reference and
2100 // marked it as used so that:
2101 // a) if the function is defaulted, we get errors from defining it before /
2102 // instead of errors from computing its exception specification, and
2103 // b) if the function is a defaulted comparison, we can use the body we
2104 // build when defining it as input to the exception specification
2105 // computation rather than computing a new body.
2106 if (auto *FPT = Ty->getAs<FunctionProtoType>()) {
2107 if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) {
2108 if (auto *NewFPT = ResolveExceptionSpec(NameInfo.getLoc(), FPT))
2109 E->setType(Context.getQualifiedType(NewFPT, Ty.getQualifiers()));
2110 }
2111 }
2112
2113 if (getLangOpts().ObjCWeak && isa<VarDecl>(D) &&
2114 Ty.getObjCLifetime() == Qualifiers::OCL_Weak && !isUnevaluatedContext() &&
2115 !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, E->getBeginLoc()))
2116 getCurFunction()->recordUseOfWeak(E);
2117
2118 FieldDecl *FD = dyn_cast<FieldDecl>(D);
2119 if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(D))
2120 FD = IFD->getAnonField();
2121 if (FD) {
2122 UnusedPrivateFields.remove(FD);
2123 // Just in case we're building an illegal pointer-to-member.
2124 if (FD->isBitField())
2125 E->setObjectKind(OK_BitField);
2126 }
2127
2128 // C++ [expr.prim]/8: The expression [...] is a bit-field if the identifier
2129 // designates a bit-field.
2130 if (auto *BD = dyn_cast<BindingDecl>(D))
2131 if (auto *BE = BD->getBinding())
2132 E->setObjectKind(BE->getObjectKind());
2133
2134 return E;
2135 }
2136
2137 /// Decomposes the given name into a DeclarationNameInfo, its location, and
2138 /// possibly a list of template arguments.
2139 ///
2140 /// If this produces template arguments, it is permitted to call
2141 /// DecomposeTemplateName.
2142 ///
2143 /// This actually loses a lot of source location information for
2144 /// non-standard name kinds; we should consider preserving that in
2145 /// some way.
2146 void
DecomposeUnqualifiedId(const UnqualifiedId & Id,TemplateArgumentListInfo & Buffer,DeclarationNameInfo & NameInfo,const TemplateArgumentListInfo * & TemplateArgs)2147 Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
2148 TemplateArgumentListInfo &Buffer,
2149 DeclarationNameInfo &NameInfo,
2150 const TemplateArgumentListInfo *&TemplateArgs) {
2151 if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId) {
2152 Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
2153 Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
2154
2155 ASTTemplateArgsPtr TemplateArgsPtr(Id.TemplateId->getTemplateArgs(),
2156 Id.TemplateId->NumArgs);
2157 translateTemplateArguments(TemplateArgsPtr, Buffer);
2158
2159 TemplateName TName = Id.TemplateId->Template.get();
2160 SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
2161 NameInfo = Context.getNameForTemplate(TName, TNameLoc);
2162 TemplateArgs = &Buffer;
2163 } else {
2164 NameInfo = GetNameFromUnqualifiedId(Id);
2165 TemplateArgs = nullptr;
2166 }
2167 }
2168
emitEmptyLookupTypoDiagnostic(const TypoCorrection & TC,Sema & SemaRef,const CXXScopeSpec & SS,DeclarationName Typo,SourceLocation TypoLoc,ArrayRef<Expr * > Args,unsigned DiagnosticID,unsigned DiagnosticSuggestID)2169 static void emitEmptyLookupTypoDiagnostic(
2170 const TypoCorrection &TC, Sema &SemaRef, const CXXScopeSpec &SS,
2171 DeclarationName Typo, SourceLocation TypoLoc, ArrayRef<Expr *> Args,
2172 unsigned DiagnosticID, unsigned DiagnosticSuggestID) {
2173 DeclContext *Ctx =
2174 SS.isEmpty() ? nullptr : SemaRef.computeDeclContext(SS, false);
2175 if (!TC) {
2176 // Emit a special diagnostic for failed member lookups.
2177 // FIXME: computing the declaration context might fail here (?)
2178 if (Ctx)
2179 SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << Ctx
2180 << SS.getRange();
2181 else
2182 SemaRef.Diag(TypoLoc, DiagnosticID) << Typo;
2183 return;
2184 }
2185
2186 std::string CorrectedStr = TC.getAsString(SemaRef.getLangOpts());
2187 bool DroppedSpecifier =
2188 TC.WillReplaceSpecifier() && Typo.getAsString() == CorrectedStr;
2189 unsigned NoteID = TC.getCorrectionDeclAs<ImplicitParamDecl>()
2190 ? diag::note_implicit_param_decl
2191 : diag::note_previous_decl;
2192 if (!Ctx)
2193 SemaRef.diagnoseTypo(TC, SemaRef.PDiag(DiagnosticSuggestID) << Typo,
2194 SemaRef.PDiag(NoteID));
2195 else
2196 SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest)
2197 << Typo << Ctx << DroppedSpecifier
2198 << SS.getRange(),
2199 SemaRef.PDiag(NoteID));
2200 }
2201
2202 /// Diagnose a lookup that found results in an enclosing class during error
2203 /// recovery. This usually indicates that the results were found in a dependent
2204 /// base class that could not be searched as part of a template definition.
2205 /// Always issues a diagnostic (though this may be only a warning in MS
2206 /// compatibility mode).
2207 ///
2208 /// Return \c true if the error is unrecoverable, or \c false if the caller
2209 /// should attempt to recover using these lookup results.
DiagnoseDependentMemberLookup(LookupResult & R)2210 bool Sema::DiagnoseDependentMemberLookup(LookupResult &R) {
2211 // During a default argument instantiation the CurContext points
2212 // to a CXXMethodDecl; but we can't apply a this-> fixit inside a
2213 // function parameter list, hence add an explicit check.
2214 bool isDefaultArgument =
2215 !CodeSynthesisContexts.empty() &&
2216 CodeSynthesisContexts.back().Kind ==
2217 CodeSynthesisContext::DefaultFunctionArgumentInstantiation;
2218 CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
2219 bool isInstance = CurMethod && CurMethod->isInstance() &&
2220 R.getNamingClass() == CurMethod->getParent() &&
2221 !isDefaultArgument;
2222
2223 // There are two ways we can find a class-scope declaration during template
2224 // instantiation that we did not find in the template definition: if it is a
2225 // member of a dependent base class, or if it is declared after the point of
2226 // use in the same class. Distinguish these by comparing the class in which
2227 // the member was found to the naming class of the lookup.
2228 unsigned DiagID = diag::err_found_in_dependent_base;
2229 unsigned NoteID = diag::note_member_declared_at;
2230 if (R.getRepresentativeDecl()->getDeclContext()->Equals(R.getNamingClass())) {
2231 DiagID = getLangOpts().MSVCCompat ? diag::ext_found_later_in_class
2232 : diag::err_found_later_in_class;
2233 } else if (getLangOpts().MSVCCompat) {
2234 DiagID = diag::ext_found_in_dependent_base;
2235 NoteID = diag::note_dependent_member_use;
2236 }
2237
2238 if (isInstance) {
2239 // Give a code modification hint to insert 'this->'.
2240 Diag(R.getNameLoc(), DiagID)
2241 << R.getLookupName()
2242 << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
2243 CheckCXXThisCapture(R.getNameLoc());
2244 } else {
2245 // FIXME: Add a FixItHint to insert 'Base::' or 'Derived::' (assuming
2246 // they're not shadowed).
2247 Diag(R.getNameLoc(), DiagID) << R.getLookupName();
2248 }
2249
2250 for (NamedDecl *D : R)
2251 Diag(D->getLocation(), NoteID);
2252
2253 // Return true if we are inside a default argument instantiation
2254 // and the found name refers to an instance member function, otherwise
2255 // the caller will try to create an implicit member call and this is wrong
2256 // for default arguments.
2257 //
2258 // FIXME: Is this special case necessary? We could allow the caller to
2259 // diagnose this.
2260 if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) {
2261 Diag(R.getNameLoc(), diag::err_member_call_without_object);
2262 return true;
2263 }
2264
2265 // Tell the callee to try to recover.
2266 return false;
2267 }
2268
2269 /// Diagnose an empty lookup.
2270 ///
2271 /// \return false if new lookup candidates were found
DiagnoseEmptyLookup(Scope * S,CXXScopeSpec & SS,LookupResult & R,CorrectionCandidateCallback & CCC,TemplateArgumentListInfo * ExplicitTemplateArgs,ArrayRef<Expr * > Args,TypoExpr ** Out)2272 bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
2273 CorrectionCandidateCallback &CCC,
2274 TemplateArgumentListInfo *ExplicitTemplateArgs,
2275 ArrayRef<Expr *> Args, TypoExpr **Out) {
2276 DeclarationName Name = R.getLookupName();
2277
2278 unsigned diagnostic = diag::err_undeclared_var_use;
2279 unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
2280 if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
2281 Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
2282 Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
2283 diagnostic = diag::err_undeclared_use;
2284 diagnostic_suggest = diag::err_undeclared_use_suggest;
2285 }
2286
2287 // If the original lookup was an unqualified lookup, fake an
2288 // unqualified lookup. This is useful when (for example) the
2289 // original lookup would not have found something because it was a
2290 // dependent name.
2291 DeclContext *DC = SS.isEmpty() ? CurContext : nullptr;
2292 while (DC) {
2293 if (isa<CXXRecordDecl>(DC)) {
2294 LookupQualifiedName(R, DC);
2295
2296 if (!R.empty()) {
2297 // Don't give errors about ambiguities in this lookup.
2298 R.suppressDiagnostics();
2299
2300 // If there's a best viable function among the results, only mention
2301 // that one in the notes.
2302 OverloadCandidateSet Candidates(R.getNameLoc(),
2303 OverloadCandidateSet::CSK_Normal);
2304 AddOverloadedCallCandidates(R, ExplicitTemplateArgs, Args, Candidates);
2305 OverloadCandidateSet::iterator Best;
2306 if (Candidates.BestViableFunction(*this, R.getNameLoc(), Best) ==
2307 OR_Success) {
2308 R.clear();
2309 R.addDecl(Best->FoundDecl.getDecl(), Best->FoundDecl.getAccess());
2310 R.resolveKind();
2311 }
2312
2313 return DiagnoseDependentMemberLookup(R);
2314 }
2315
2316 R.clear();
2317 }
2318
2319 DC = DC->getLookupParent();
2320 }
2321
2322 // We didn't find anything, so try to correct for a typo.
2323 TypoCorrection Corrected;
2324 if (S && Out) {
2325 SourceLocation TypoLoc = R.getNameLoc();
2326 assert(!ExplicitTemplateArgs &&
2327 "Diagnosing an empty lookup with explicit template args!");
2328 *Out = CorrectTypoDelayed(
2329 R.getLookupNameInfo(), R.getLookupKind(), S, &SS, CCC,
2330 [=](const TypoCorrection &TC) {
2331 emitEmptyLookupTypoDiagnostic(TC, *this, SS, Name, TypoLoc, Args,
2332 diagnostic, diagnostic_suggest);
2333 },
2334 nullptr, CTK_ErrorRecovery);
2335 if (*Out)
2336 return true;
2337 } else if (S &&
2338 (Corrected = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(),
2339 S, &SS, CCC, CTK_ErrorRecovery))) {
2340 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
2341 bool DroppedSpecifier =
2342 Corrected.WillReplaceSpecifier() && Name.getAsString() == CorrectedStr;
2343 R.setLookupName(Corrected.getCorrection());
2344
2345 bool AcceptableWithRecovery = false;
2346 bool AcceptableWithoutRecovery = false;
2347 NamedDecl *ND = Corrected.getFoundDecl();
2348 if (ND) {
2349 if (Corrected.isOverloaded()) {
2350 OverloadCandidateSet OCS(R.getNameLoc(),
2351 OverloadCandidateSet::CSK_Normal);
2352 OverloadCandidateSet::iterator Best;
2353 for (NamedDecl *CD : Corrected) {
2354 if (FunctionTemplateDecl *FTD =
2355 dyn_cast<FunctionTemplateDecl>(CD))
2356 AddTemplateOverloadCandidate(
2357 FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs,
2358 Args, OCS);
2359 else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
2360 if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
2361 AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none),
2362 Args, OCS);
2363 }
2364 switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) {
2365 case OR_Success:
2366 ND = Best->FoundDecl;
2367 Corrected.setCorrectionDecl(ND);
2368 break;
2369 default:
2370 // FIXME: Arbitrarily pick the first declaration for the note.
2371 Corrected.setCorrectionDecl(ND);
2372 break;
2373 }
2374 }
2375 R.addDecl(ND);
2376 if (getLangOpts().CPlusPlus && ND->isCXXClassMember()) {
2377 CXXRecordDecl *Record = nullptr;
2378 if (Corrected.getCorrectionSpecifier()) {
2379 const Type *Ty = Corrected.getCorrectionSpecifier()->getAsType();
2380 Record = Ty->getAsCXXRecordDecl();
2381 }
2382 if (!Record)
2383 Record = cast<CXXRecordDecl>(
2384 ND->getDeclContext()->getRedeclContext());
2385 R.setNamingClass(Record);
2386 }
2387
2388 auto *UnderlyingND = ND->getUnderlyingDecl();
2389 AcceptableWithRecovery = isa<ValueDecl>(UnderlyingND) ||
2390 isa<FunctionTemplateDecl>(UnderlyingND);
2391 // FIXME: If we ended up with a typo for a type name or
2392 // Objective-C class name, we're in trouble because the parser
2393 // is in the wrong place to recover. Suggest the typo
2394 // correction, but don't make it a fix-it since we're not going
2395 // to recover well anyway.
2396 AcceptableWithoutRecovery = isa<TypeDecl>(UnderlyingND) ||
2397 getAsTypeTemplateDecl(UnderlyingND) ||
2398 isa<ObjCInterfaceDecl>(UnderlyingND);
2399 } else {
2400 // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
2401 // because we aren't able to recover.
2402 AcceptableWithoutRecovery = true;
2403 }
2404
2405 if (AcceptableWithRecovery || AcceptableWithoutRecovery) {
2406 unsigned NoteID = Corrected.getCorrectionDeclAs<ImplicitParamDecl>()
2407 ? diag::note_implicit_param_decl
2408 : diag::note_previous_decl;
2409 if (SS.isEmpty())
2410 diagnoseTypo(Corrected, PDiag(diagnostic_suggest) << Name,
2411 PDiag(NoteID), AcceptableWithRecovery);
2412 else
2413 diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
2414 << Name << computeDeclContext(SS, false)
2415 << DroppedSpecifier << SS.getRange(),
2416 PDiag(NoteID), AcceptableWithRecovery);
2417
2418 // Tell the callee whether to try to recover.
2419 return !AcceptableWithRecovery;
2420 }
2421 }
2422 R.clear();
2423
2424 // Emit a special diagnostic for failed member lookups.
2425 // FIXME: computing the declaration context might fail here (?)
2426 if (!SS.isEmpty()) {
2427 Diag(R.getNameLoc(), diag::err_no_member)
2428 << Name << computeDeclContext(SS, false)
2429 << SS.getRange();
2430 return true;
2431 }
2432
2433 // Give up, we can't recover.
2434 Diag(R.getNameLoc(), diagnostic) << Name;
2435 return true;
2436 }
2437
2438 /// In Microsoft mode, if we are inside a template class whose parent class has
2439 /// dependent base classes, and we can't resolve an unqualified identifier, then
2440 /// assume the identifier is a member of a dependent base class. We can only
2441 /// recover successfully in static methods, instance methods, and other contexts
2442 /// where 'this' is available. This doesn't precisely match MSVC's
2443 /// instantiation model, but it's close enough.
2444 static Expr *
recoverFromMSUnqualifiedLookup(Sema & S,ASTContext & Context,DeclarationNameInfo & NameInfo,SourceLocation TemplateKWLoc,const TemplateArgumentListInfo * TemplateArgs)2445 recoverFromMSUnqualifiedLookup(Sema &S, ASTContext &Context,
2446 DeclarationNameInfo &NameInfo,
2447 SourceLocation TemplateKWLoc,
2448 const TemplateArgumentListInfo *TemplateArgs) {
2449 // Only try to recover from lookup into dependent bases in static methods or
2450 // contexts where 'this' is available.
2451 QualType ThisType = S.getCurrentThisType();
2452 const CXXRecordDecl *RD = nullptr;
2453 if (!ThisType.isNull())
2454 RD = ThisType->getPointeeType()->getAsCXXRecordDecl();
2455 else if (auto *MD = dyn_cast<CXXMethodDecl>(S.CurContext))
2456 RD = MD->getParent();
2457 if (!RD || !RD->hasAnyDependentBases())
2458 return nullptr;
2459
2460 // Diagnose this as unqualified lookup into a dependent base class. If 'this'
2461 // is available, suggest inserting 'this->' as a fixit.
2462 SourceLocation Loc = NameInfo.getLoc();
2463 auto DB = S.Diag(Loc, diag::ext_undeclared_unqual_id_with_dependent_base);
2464 DB << NameInfo.getName() << RD;
2465
2466 if (!ThisType.isNull()) {
2467 DB << FixItHint::CreateInsertion(Loc, "this->");
2468 return CXXDependentScopeMemberExpr::Create(
2469 Context, /*This=*/nullptr, ThisType, /*IsArrow=*/true,
2470 /*Op=*/SourceLocation(), NestedNameSpecifierLoc(), TemplateKWLoc,
2471 /*FirstQualifierFoundInScope=*/nullptr, NameInfo, TemplateArgs);
2472 }
2473
2474 // Synthesize a fake NNS that points to the derived class. This will
2475 // perform name lookup during template instantiation.
2476 CXXScopeSpec SS;
2477 auto *NNS =
2478 NestedNameSpecifier::Create(Context, nullptr, true, RD->getTypeForDecl());
2479 SS.MakeTrivial(Context, NNS, SourceRange(Loc, Loc));
2480 return DependentScopeDeclRefExpr::Create(
2481 Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
2482 TemplateArgs);
2483 }
2484
2485 ExprResult
ActOnIdExpression(Scope * S,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,UnqualifiedId & Id,bool HasTrailingLParen,bool IsAddressOfOperand,CorrectionCandidateCallback * CCC,bool IsInlineAsmIdentifier,Token * KeywordReplacement)2486 Sema::ActOnIdExpression(Scope *S, CXXScopeSpec &SS,
2487 SourceLocation TemplateKWLoc, UnqualifiedId &Id,
2488 bool HasTrailingLParen, bool IsAddressOfOperand,
2489 CorrectionCandidateCallback *CCC,
2490 bool IsInlineAsmIdentifier, Token *KeywordReplacement) {
2491 assert(!(IsAddressOfOperand && HasTrailingLParen) &&
2492 "cannot be direct & operand and have a trailing lparen");
2493 if (SS.isInvalid())
2494 return ExprError();
2495
2496 TemplateArgumentListInfo TemplateArgsBuffer;
2497
2498 // Decompose the UnqualifiedId into the following data.
2499 DeclarationNameInfo NameInfo;
2500 const TemplateArgumentListInfo *TemplateArgs;
2501 DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
2502
2503 DeclarationName Name = NameInfo.getName();
2504 IdentifierInfo *II = Name.getAsIdentifierInfo();
2505 SourceLocation NameLoc = NameInfo.getLoc();
2506
2507 if (II && II->isEditorPlaceholder()) {
2508 // FIXME: When typed placeholders are supported we can create a typed
2509 // placeholder expression node.
2510 return ExprError();
2511 }
2512
2513 // C++ [temp.dep.expr]p3:
2514 // An id-expression is type-dependent if it contains:
2515 // -- an identifier that was declared with a dependent type,
2516 // (note: handled after lookup)
2517 // -- a template-id that is dependent,
2518 // (note: handled in BuildTemplateIdExpr)
2519 // -- a conversion-function-id that specifies a dependent type,
2520 // -- a nested-name-specifier that contains a class-name that
2521 // names a dependent type.
2522 // Determine whether this is a member of an unknown specialization;
2523 // we need to handle these differently.
2524 bool DependentID = false;
2525 if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
2526 Name.getCXXNameType()->isDependentType()) {
2527 DependentID = true;
2528 } else if (SS.isSet()) {
2529 if (DeclContext *DC = computeDeclContext(SS, false)) {
2530 if (RequireCompleteDeclContext(SS, DC))
2531 return ExprError();
2532 } else {
2533 DependentID = true;
2534 }
2535 }
2536
2537 if (DependentID)
2538 return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2539 IsAddressOfOperand, TemplateArgs);
2540
2541 // Perform the required lookup.
2542 LookupResult R(*this, NameInfo,
2543 (Id.getKind() == UnqualifiedIdKind::IK_ImplicitSelfParam)
2544 ? LookupObjCImplicitSelfParam
2545 : LookupOrdinaryName);
2546 if (TemplateKWLoc.isValid() || TemplateArgs) {
2547 // Lookup the template name again to correctly establish the context in
2548 // which it was found. This is really unfortunate as we already did the
2549 // lookup to determine that it was a template name in the first place. If
2550 // this becomes a performance hit, we can work harder to preserve those
2551 // results until we get here but it's likely not worth it.
2552 bool MemberOfUnknownSpecialization;
2553 AssumedTemplateKind AssumedTemplate;
2554 if (LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
2555 MemberOfUnknownSpecialization, TemplateKWLoc,
2556 &AssumedTemplate))
2557 return ExprError();
2558
2559 if (MemberOfUnknownSpecialization ||
2560 (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
2561 return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2562 IsAddressOfOperand, TemplateArgs);
2563 } else {
2564 bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl();
2565 LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
2566
2567 // If the result might be in a dependent base class, this is a dependent
2568 // id-expression.
2569 if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
2570 return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2571 IsAddressOfOperand, TemplateArgs);
2572
2573 // If this reference is in an Objective-C method, then we need to do
2574 // some special Objective-C lookup, too.
2575 if (IvarLookupFollowUp) {
2576 ExprResult E(LookupInObjCMethod(R, S, II, true));
2577 if (E.isInvalid())
2578 return ExprError();
2579
2580 if (Expr *Ex = E.getAs<Expr>())
2581 return Ex;
2582 }
2583 }
2584
2585 if (R.isAmbiguous())
2586 return ExprError();
2587
2588 // This could be an implicitly declared function reference if the language
2589 // mode allows it as a feature.
2590 if (R.empty() && HasTrailingLParen && II &&
2591 getLangOpts().implicitFunctionsAllowed()) {
2592 NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
2593 if (D) R.addDecl(D);
2594 }
2595
2596 // Determine whether this name might be a candidate for
2597 // argument-dependent lookup.
2598 bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
2599
2600 if (R.empty() && !ADL) {
2601 if (SS.isEmpty() && getLangOpts().MSVCCompat) {
2602 if (Expr *E = recoverFromMSUnqualifiedLookup(*this, Context, NameInfo,
2603 TemplateKWLoc, TemplateArgs))
2604 return E;
2605 }
2606
2607 // Don't diagnose an empty lookup for inline assembly.
2608 if (IsInlineAsmIdentifier)
2609 return ExprError();
2610
2611 // If this name wasn't predeclared and if this is not a function
2612 // call, diagnose the problem.
2613 TypoExpr *TE = nullptr;
2614 DefaultFilterCCC DefaultValidator(II, SS.isValid() ? SS.getScopeRep()
2615 : nullptr);
2616 DefaultValidator.IsAddressOfOperand = IsAddressOfOperand;
2617 assert((!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) &&
2618 "Typo correction callback misconfigured");
2619 if (CCC) {
2620 // Make sure the callback knows what the typo being diagnosed is.
2621 CCC->setTypoName(II);
2622 if (SS.isValid())
2623 CCC->setTypoNNS(SS.getScopeRep());
2624 }
2625 // FIXME: DiagnoseEmptyLookup produces bad diagnostics if we're looking for
2626 // a template name, but we happen to have always already looked up the name
2627 // before we get here if it must be a template name.
2628 if (DiagnoseEmptyLookup(S, SS, R, CCC ? *CCC : DefaultValidator, nullptr,
2629 None, &TE)) {
2630 if (TE && KeywordReplacement) {
2631 auto &State = getTypoExprState(TE);
2632 auto BestTC = State.Consumer->getNextCorrection();
2633 if (BestTC.isKeyword()) {
2634 auto *II = BestTC.getCorrectionAsIdentifierInfo();
2635 if (State.DiagHandler)
2636 State.DiagHandler(BestTC);
2637 KeywordReplacement->startToken();
2638 KeywordReplacement->setKind(II->getTokenID());
2639 KeywordReplacement->setIdentifierInfo(II);
2640 KeywordReplacement->setLocation(BestTC.getCorrectionRange().getBegin());
2641 // Clean up the state associated with the TypoExpr, since it has
2642 // now been diagnosed (without a call to CorrectDelayedTyposInExpr).
2643 clearDelayedTypo(TE);
2644 // Signal that a correction to a keyword was performed by returning a
2645 // valid-but-null ExprResult.
2646 return (Expr*)nullptr;
2647 }
2648 State.Consumer->resetCorrectionStream();
2649 }
2650 return TE ? TE : ExprError();
2651 }
2652
2653 assert(!R.empty() &&
2654 "DiagnoseEmptyLookup returned false but added no results");
2655
2656 // If we found an Objective-C instance variable, let
2657 // LookupInObjCMethod build the appropriate expression to
2658 // reference the ivar.
2659 if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
2660 R.clear();
2661 ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
2662 // In a hopelessly buggy code, Objective-C instance variable
2663 // lookup fails and no expression will be built to reference it.
2664 if (!E.isInvalid() && !E.get())
2665 return ExprError();
2666 return E;
2667 }
2668 }
2669
2670 // This is guaranteed from this point on.
2671 assert(!R.empty() || ADL);
2672
2673 // Check whether this might be a C++ implicit instance member access.
2674 // C++ [class.mfct.non-static]p3:
2675 // When an id-expression that is not part of a class member access
2676 // syntax and not used to form a pointer to member is used in the
2677 // body of a non-static member function of class X, if name lookup
2678 // resolves the name in the id-expression to a non-static non-type
2679 // member of some class C, the id-expression is transformed into a
2680 // class member access expression using (*this) as the
2681 // postfix-expression to the left of the . operator.
2682 //
2683 // But we don't actually need to do this for '&' operands if R
2684 // resolved to a function or overloaded function set, because the
2685 // expression is ill-formed if it actually works out to be a
2686 // non-static member function:
2687 //
2688 // C++ [expr.ref]p4:
2689 // Otherwise, if E1.E2 refers to a non-static member function. . .
2690 // [t]he expression can be used only as the left-hand operand of a
2691 // member function call.
2692 //
2693 // There are other safeguards against such uses, but it's important
2694 // to get this right here so that we don't end up making a
2695 // spuriously dependent expression if we're inside a dependent
2696 // instance method.
2697 if (!R.empty() && (*R.begin())->isCXXClassMember()) {
2698 bool MightBeImplicitMember;
2699 if (!IsAddressOfOperand)
2700 MightBeImplicitMember = true;
2701 else if (!SS.isEmpty())
2702 MightBeImplicitMember = false;
2703 else if (R.isOverloadedResult())
2704 MightBeImplicitMember = false;
2705 else if (R.isUnresolvableResult())
2706 MightBeImplicitMember = true;
2707 else
2708 MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
2709 isa<IndirectFieldDecl>(R.getFoundDecl()) ||
2710 isa<MSPropertyDecl>(R.getFoundDecl());
2711
2712 if (MightBeImplicitMember)
2713 return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
2714 R, TemplateArgs, S);
2715 }
2716
2717 if (TemplateArgs || TemplateKWLoc.isValid()) {
2718
2719 // In C++1y, if this is a variable template id, then check it
2720 // in BuildTemplateIdExpr().
2721 // The single lookup result must be a variable template declaration.
2722 if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId && Id.TemplateId &&
2723 Id.TemplateId->Kind == TNK_Var_template) {
2724 assert(R.getAsSingle<VarTemplateDecl>() &&
2725 "There should only be one declaration found.");
2726 }
2727
2728 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs);
2729 }
2730
2731 return BuildDeclarationNameExpr(SS, R, ADL);
2732 }
2733
2734 /// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
2735 /// declaration name, generally during template instantiation.
2736 /// There's a large number of things which don't need to be done along
2737 /// this path.
BuildQualifiedDeclarationNameExpr(CXXScopeSpec & SS,const DeclarationNameInfo & NameInfo,bool IsAddressOfOperand,const Scope * S,TypeSourceInfo ** RecoveryTSI)2738 ExprResult Sema::BuildQualifiedDeclarationNameExpr(
2739 CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo,
2740 bool IsAddressOfOperand, const Scope *S, TypeSourceInfo **RecoveryTSI) {
2741 DeclContext *DC = computeDeclContext(SS, false);
2742 if (!DC)
2743 return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2744 NameInfo, /*TemplateArgs=*/nullptr);
2745
2746 if (RequireCompleteDeclContext(SS, DC))
2747 return ExprError();
2748
2749 LookupResult R(*this, NameInfo, LookupOrdinaryName);
2750 LookupQualifiedName(R, DC);
2751
2752 if (R.isAmbiguous())
2753 return ExprError();
2754
2755 if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
2756 return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2757 NameInfo, /*TemplateArgs=*/nullptr);
2758
2759 if (R.empty()) {
2760 // Don't diagnose problems with invalid record decl, the secondary no_member
2761 // diagnostic during template instantiation is likely bogus, e.g. if a class
2762 // is invalid because it's derived from an invalid base class, then missing
2763 // members were likely supposed to be inherited.
2764 if (const auto *CD = dyn_cast<CXXRecordDecl>(DC))
2765 if (CD->isInvalidDecl())
2766 return ExprError();
2767 Diag(NameInfo.getLoc(), diag::err_no_member)
2768 << NameInfo.getName() << DC << SS.getRange();
2769 return ExprError();
2770 }
2771
2772 if (const TypeDecl *TD = R.getAsSingle<TypeDecl>()) {
2773 // Diagnose a missing typename if this resolved unambiguously to a type in
2774 // a dependent context. If we can recover with a type, downgrade this to
2775 // a warning in Microsoft compatibility mode.
2776 unsigned DiagID = diag::err_typename_missing;
2777 if (RecoveryTSI && getLangOpts().MSVCCompat)
2778 DiagID = diag::ext_typename_missing;
2779 SourceLocation Loc = SS.getBeginLoc();
2780 auto D = Diag(Loc, DiagID);
2781 D << SS.getScopeRep() << NameInfo.getName().getAsString()
2782 << SourceRange(Loc, NameInfo.getEndLoc());
2783
2784 // Don't recover if the caller isn't expecting us to or if we're in a SFINAE
2785 // context.
2786 if (!RecoveryTSI)
2787 return ExprError();
2788
2789 // Only issue the fixit if we're prepared to recover.
2790 D << FixItHint::CreateInsertion(Loc, "typename ");
2791
2792 // Recover by pretending this was an elaborated type.
2793 QualType Ty = Context.getTypeDeclType(TD);
2794 TypeLocBuilder TLB;
2795 TLB.pushTypeSpec(Ty).setNameLoc(NameInfo.getLoc());
2796
2797 QualType ET = getElaboratedType(ETK_None, SS, Ty);
2798 ElaboratedTypeLoc QTL = TLB.push<ElaboratedTypeLoc>(ET);
2799 QTL.setElaboratedKeywordLoc(SourceLocation());
2800 QTL.setQualifierLoc(SS.getWithLocInContext(Context));
2801
2802 *RecoveryTSI = TLB.getTypeSourceInfo(Context, ET);
2803
2804 return ExprEmpty();
2805 }
2806
2807 // Defend against this resolving to an implicit member access. We usually
2808 // won't get here if this might be a legitimate a class member (we end up in
2809 // BuildMemberReferenceExpr instead), but this can be valid if we're forming
2810 // a pointer-to-member or in an unevaluated context in C++11.
2811 if (!R.empty() && (*R.begin())->isCXXClassMember() && !IsAddressOfOperand)
2812 return BuildPossibleImplicitMemberExpr(SS,
2813 /*TemplateKWLoc=*/SourceLocation(),
2814 R, /*TemplateArgs=*/nullptr, S);
2815
2816 return BuildDeclarationNameExpr(SS, R, /* ADL */ false);
2817 }
2818
2819 /// The parser has read a name in, and Sema has detected that we're currently
2820 /// inside an ObjC method. Perform some additional checks and determine if we
2821 /// should form a reference to an ivar.
2822 ///
2823 /// Ideally, most of this would be done by lookup, but there's
2824 /// actually quite a lot of extra work involved.
LookupIvarInObjCMethod(LookupResult & Lookup,Scope * S,IdentifierInfo * II)2825 DeclResult Sema::LookupIvarInObjCMethod(LookupResult &Lookup, Scope *S,
2826 IdentifierInfo *II) {
2827 SourceLocation Loc = Lookup.getNameLoc();
2828 ObjCMethodDecl *CurMethod = getCurMethodDecl();
2829
2830 // Check for error condition which is already reported.
2831 if (!CurMethod)
2832 return DeclResult(true);
2833
2834 // There are two cases to handle here. 1) scoped lookup could have failed,
2835 // in which case we should look for an ivar. 2) scoped lookup could have
2836 // found a decl, but that decl is outside the current instance method (i.e.
2837 // a global variable). In these two cases, we do a lookup for an ivar with
2838 // this name, if the lookup sucedes, we replace it our current decl.
2839
2840 // If we're in a class method, we don't normally want to look for
2841 // ivars. But if we don't find anything else, and there's an
2842 // ivar, that's an error.
2843 bool IsClassMethod = CurMethod->isClassMethod();
2844
2845 bool LookForIvars;
2846 if (Lookup.empty())
2847 LookForIvars = true;
2848 else if (IsClassMethod)
2849 LookForIvars = false;
2850 else
2851 LookForIvars = (Lookup.isSingleResult() &&
2852 Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
2853 ObjCInterfaceDecl *IFace = nullptr;
2854 if (LookForIvars) {
2855 IFace = CurMethod->getClassInterface();
2856 ObjCInterfaceDecl *ClassDeclared;
2857 ObjCIvarDecl *IV = nullptr;
2858 if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) {
2859 // Diagnose using an ivar in a class method.
2860 if (IsClassMethod) {
2861 Diag(Loc, diag::err_ivar_use_in_class_method) << IV->getDeclName();
2862 return DeclResult(true);
2863 }
2864
2865 // Diagnose the use of an ivar outside of the declaring class.
2866 if (IV->getAccessControl() == ObjCIvarDecl::Private &&
2867 !declaresSameEntity(ClassDeclared, IFace) &&
2868 !getLangOpts().DebuggerSupport)
2869 Diag(Loc, diag::err_private_ivar_access) << IV->getDeclName();
2870
2871 // Success.
2872 return IV;
2873 }
2874 } else if (CurMethod->isInstanceMethod()) {
2875 // We should warn if a local variable hides an ivar.
2876 if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) {
2877 ObjCInterfaceDecl *ClassDeclared;
2878 if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
2879 if (IV->getAccessControl() != ObjCIvarDecl::Private ||
2880 declaresSameEntity(IFace, ClassDeclared))
2881 Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
2882 }
2883 }
2884 } else if (Lookup.isSingleResult() &&
2885 Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) {
2886 // If accessing a stand-alone ivar in a class method, this is an error.
2887 if (const ObjCIvarDecl *IV =
2888 dyn_cast<ObjCIvarDecl>(Lookup.getFoundDecl())) {
2889 Diag(Loc, diag::err_ivar_use_in_class_method) << IV->getDeclName();
2890 return DeclResult(true);
2891 }
2892 }
2893
2894 // Didn't encounter an error, didn't find an ivar.
2895 return DeclResult(false);
2896 }
2897
BuildIvarRefExpr(Scope * S,SourceLocation Loc,ObjCIvarDecl * IV)2898 ExprResult Sema::BuildIvarRefExpr(Scope *S, SourceLocation Loc,
2899 ObjCIvarDecl *IV) {
2900 ObjCMethodDecl *CurMethod = getCurMethodDecl();
2901 assert(CurMethod && CurMethod->isInstanceMethod() &&
2902 "should not reference ivar from this context");
2903
2904 ObjCInterfaceDecl *IFace = CurMethod->getClassInterface();
2905 assert(IFace && "should not reference ivar from this context");
2906
2907 // If we're referencing an invalid decl, just return this as a silent
2908 // error node. The error diagnostic was already emitted on the decl.
2909 if (IV->isInvalidDecl())
2910 return ExprError();
2911
2912 // Check if referencing a field with __attribute__((deprecated)).
2913 if (DiagnoseUseOfDecl(IV, Loc))
2914 return ExprError();
2915
2916 // FIXME: This should use a new expr for a direct reference, don't
2917 // turn this into Self->ivar, just return a BareIVarExpr or something.
2918 IdentifierInfo &II = Context.Idents.get("self");
2919 UnqualifiedId SelfName;
2920 SelfName.setImplicitSelfParam(&II);
2921 CXXScopeSpec SelfScopeSpec;
2922 SourceLocation TemplateKWLoc;
2923 ExprResult SelfExpr =
2924 ActOnIdExpression(S, SelfScopeSpec, TemplateKWLoc, SelfName,
2925 /*HasTrailingLParen=*/false,
2926 /*IsAddressOfOperand=*/false);
2927 if (SelfExpr.isInvalid())
2928 return ExprError();
2929
2930 SelfExpr = DefaultLvalueConversion(SelfExpr.get());
2931 if (SelfExpr.isInvalid())
2932 return ExprError();
2933
2934 MarkAnyDeclReferenced(Loc, IV, true);
2935
2936 ObjCMethodFamily MF = CurMethod->getMethodFamily();
2937 if (MF != OMF_init && MF != OMF_dealloc && MF != OMF_finalize &&
2938 !IvarBacksCurrentMethodAccessor(IFace, CurMethod, IV))
2939 Diag(Loc, diag::warn_direct_ivar_access) << IV->getDeclName();
2940
2941 ObjCIvarRefExpr *Result = new (Context)
2942 ObjCIvarRefExpr(IV, IV->getUsageType(SelfExpr.get()->getType()), Loc,
2943 IV->getLocation(), SelfExpr.get(), true, true);
2944
2945 if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
2946 if (!isUnevaluatedContext() &&
2947 !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
2948 getCurFunction()->recordUseOfWeak(Result);
2949 }
2950 if (getLangOpts().ObjCAutoRefCount)
2951 if (const BlockDecl *BD = CurContext->getInnermostBlockDecl())
2952 ImplicitlyRetainedSelfLocs.push_back({Loc, BD});
2953
2954 return Result;
2955 }
2956
2957 /// The parser has read a name in, and Sema has detected that we're currently
2958 /// inside an ObjC method. Perform some additional checks and determine if we
2959 /// should form a reference to an ivar. If so, build an expression referencing
2960 /// that ivar.
2961 ExprResult
LookupInObjCMethod(LookupResult & Lookup,Scope * S,IdentifierInfo * II,bool AllowBuiltinCreation)2962 Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
2963 IdentifierInfo *II, bool AllowBuiltinCreation) {
2964 // FIXME: Integrate this lookup step into LookupParsedName.
2965 DeclResult Ivar = LookupIvarInObjCMethod(Lookup, S, II);
2966 if (Ivar.isInvalid())
2967 return ExprError();
2968 if (Ivar.isUsable())
2969 return BuildIvarRefExpr(S, Lookup.getNameLoc(),
2970 cast<ObjCIvarDecl>(Ivar.get()));
2971
2972 if (Lookup.empty() && II && AllowBuiltinCreation)
2973 LookupBuiltin(Lookup);
2974
2975 // Sentinel value saying that we didn't do anything special.
2976 return ExprResult(false);
2977 }
2978
2979 /// Cast a base object to a member's actual type.
2980 ///
2981 /// There are two relevant checks:
2982 ///
2983 /// C++ [class.access.base]p7:
2984 ///
2985 /// If a class member access operator [...] is used to access a non-static
2986 /// data member or non-static member function, the reference is ill-formed if
2987 /// the left operand [...] cannot be implicitly converted to a pointer to the
2988 /// naming class of the right operand.
2989 ///
2990 /// C++ [expr.ref]p7:
2991 ///
2992 /// If E2 is a non-static data member or a non-static member function, the
2993 /// program is ill-formed if the class of which E2 is directly a member is an
2994 /// ambiguous base (11.8) of the naming class (11.9.3) of E2.
2995 ///
2996 /// Note that the latter check does not consider access; the access of the
2997 /// "real" base class is checked as appropriate when checking the access of the
2998 /// member name.
2999 ExprResult
PerformObjectMemberConversion(Expr * From,NestedNameSpecifier * Qualifier,NamedDecl * FoundDecl,NamedDecl * Member)3000 Sema::PerformObjectMemberConversion(Expr *From,
3001 NestedNameSpecifier *Qualifier,
3002 NamedDecl *FoundDecl,
3003 NamedDecl *Member) {
3004 CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
3005 if (!RD)
3006 return From;
3007
3008 QualType DestRecordType;
3009 QualType DestType;
3010 QualType FromRecordType;
3011 QualType FromType = From->getType();
3012 bool PointerConversions = false;
3013 if (isa<FieldDecl>(Member)) {
3014 DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
3015 auto FromPtrType = FromType->getAs<PointerType>();
3016 DestRecordType = Context.getAddrSpaceQualType(
3017 DestRecordType, FromPtrType
3018 ? FromType->getPointeeType().getAddressSpace()
3019 : FromType.getAddressSpace());
3020
3021 if (FromPtrType) {
3022 DestType = Context.getPointerType(DestRecordType);
3023 FromRecordType = FromPtrType->getPointeeType();
3024 PointerConversions = true;
3025 } else {
3026 DestType = DestRecordType;
3027 FromRecordType = FromType;
3028 }
3029 } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
3030 if (Method->isStatic())
3031 return From;
3032
3033 DestType = Method->getThisType();
3034 DestRecordType = DestType->getPointeeType();
3035
3036 if (FromType->getAs<PointerType>()) {
3037 FromRecordType = FromType->getPointeeType();
3038 PointerConversions = true;
3039 } else {
3040 FromRecordType = FromType;
3041 DestType = DestRecordType;
3042 }
3043
3044 LangAS FromAS = FromRecordType.getAddressSpace();
3045 LangAS DestAS = DestRecordType.getAddressSpace();
3046 if (FromAS != DestAS) {
3047 QualType FromRecordTypeWithoutAS =
3048 Context.removeAddrSpaceQualType(FromRecordType);
3049 QualType FromTypeWithDestAS =
3050 Context.getAddrSpaceQualType(FromRecordTypeWithoutAS, DestAS);
3051 if (PointerConversions)
3052 FromTypeWithDestAS = Context.getPointerType(FromTypeWithDestAS);
3053 From = ImpCastExprToType(From, FromTypeWithDestAS,
3054 CK_AddressSpaceConversion, From->getValueKind())
3055 .get();
3056 }
3057 } else {
3058 // No conversion necessary.
3059 return From;
3060 }
3061
3062 if (DestType->isDependentType() || FromType->isDependentType())
3063 return From;
3064
3065 // If the unqualified types are the same, no conversion is necessary.
3066 if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
3067 return From;
3068
3069 SourceRange FromRange = From->getSourceRange();
3070 SourceLocation FromLoc = FromRange.getBegin();
3071
3072 ExprValueKind VK = From->getValueKind();
3073
3074 // C++ [class.member.lookup]p8:
3075 // [...] Ambiguities can often be resolved by qualifying a name with its
3076 // class name.
3077 //
3078 // If the member was a qualified name and the qualified referred to a
3079 // specific base subobject type, we'll cast to that intermediate type
3080 // first and then to the object in which the member is declared. That allows
3081 // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
3082 //
3083 // class Base { public: int x; };
3084 // class Derived1 : public Base { };
3085 // class Derived2 : public Base { };
3086 // class VeryDerived : public Derived1, public Derived2 { void f(); };
3087 //
3088 // void VeryDerived::f() {
3089 // x = 17; // error: ambiguous base subobjects
3090 // Derived1::x = 17; // okay, pick the Base subobject of Derived1
3091 // }
3092 if (Qualifier && Qualifier->getAsType()) {
3093 QualType QType = QualType(Qualifier->getAsType(), 0);
3094 assert(QType->isRecordType() && "lookup done with non-record type");
3095
3096 QualType QRecordType = QualType(QType->castAs<RecordType>(), 0);
3097
3098 // In C++98, the qualifier type doesn't actually have to be a base
3099 // type of the object type, in which case we just ignore it.
3100 // Otherwise build the appropriate casts.
3101 if (IsDerivedFrom(FromLoc, FromRecordType, QRecordType)) {
3102 CXXCastPath BasePath;
3103 if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
3104 FromLoc, FromRange, &BasePath))
3105 return ExprError();
3106
3107 if (PointerConversions)
3108 QType = Context.getPointerType(QType);
3109 From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
3110 VK, &BasePath).get();
3111
3112 FromType = QType;
3113 FromRecordType = QRecordType;
3114
3115 // If the qualifier type was the same as the destination type,
3116 // we're done.
3117 if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
3118 return From;
3119 }
3120 }
3121
3122 CXXCastPath BasePath;
3123 if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
3124 FromLoc, FromRange, &BasePath,
3125 /*IgnoreAccess=*/true))
3126 return ExprError();
3127
3128 return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
3129 VK, &BasePath);
3130 }
3131
UseArgumentDependentLookup(const CXXScopeSpec & SS,const LookupResult & R,bool HasTrailingLParen)3132 bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
3133 const LookupResult &R,
3134 bool HasTrailingLParen) {
3135 // Only when used directly as the postfix-expression of a call.
3136 if (!HasTrailingLParen)
3137 return false;
3138
3139 // Never if a scope specifier was provided.
3140 if (SS.isSet())
3141 return false;
3142
3143 // Only in C++ or ObjC++.
3144 if (!getLangOpts().CPlusPlus)
3145 return false;
3146
3147 // Turn off ADL when we find certain kinds of declarations during
3148 // normal lookup:
3149 for (NamedDecl *D : R) {
3150 // C++0x [basic.lookup.argdep]p3:
3151 // -- a declaration of a class member
3152 // Since using decls preserve this property, we check this on the
3153 // original decl.
3154 if (D->isCXXClassMember())
3155 return false;
3156
3157 // C++0x [basic.lookup.argdep]p3:
3158 // -- a block-scope function declaration that is not a
3159 // using-declaration
3160 // NOTE: we also trigger this for function templates (in fact, we
3161 // don't check the decl type at all, since all other decl types
3162 // turn off ADL anyway).
3163 if (isa<UsingShadowDecl>(D))
3164 D = cast<UsingShadowDecl>(D)->getTargetDecl();
3165 else if (D->getLexicalDeclContext()->isFunctionOrMethod())
3166 return false;
3167
3168 // C++0x [basic.lookup.argdep]p3:
3169 // -- a declaration that is neither a function or a function
3170 // template
3171 // And also for builtin functions.
3172 if (isa<FunctionDecl>(D)) {
3173 FunctionDecl *FDecl = cast<FunctionDecl>(D);
3174
3175 // But also builtin functions.
3176 if (FDecl->getBuiltinID() && FDecl->isImplicit())
3177 return false;
3178 } else if (!isa<FunctionTemplateDecl>(D))
3179 return false;
3180 }
3181
3182 return true;
3183 }
3184
3185
3186 /// Diagnoses obvious problems with the use of the given declaration
3187 /// as an expression. This is only actually called for lookups that
3188 /// were not overloaded, and it doesn't promise that the declaration
3189 /// will in fact be used.
CheckDeclInExpr(Sema & S,SourceLocation Loc,NamedDecl * D)3190 static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
3191 if (D->isInvalidDecl())
3192 return true;
3193
3194 if (isa<TypedefNameDecl>(D)) {
3195 S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
3196 return true;
3197 }
3198
3199 if (isa<ObjCInterfaceDecl>(D)) {
3200 S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
3201 return true;
3202 }
3203
3204 if (isa<NamespaceDecl>(D)) {
3205 S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
3206 return true;
3207 }
3208
3209 return false;
3210 }
3211
3212 // Certain multiversion types should be treated as overloaded even when there is
3213 // only one result.
ShouldLookupResultBeMultiVersionOverload(const LookupResult & R)3214 static bool ShouldLookupResultBeMultiVersionOverload(const LookupResult &R) {
3215 assert(R.isSingleResult() && "Expected only a single result");
3216 const auto *FD = dyn_cast<FunctionDecl>(R.getFoundDecl());
3217 return FD &&
3218 (FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion());
3219 }
3220
BuildDeclarationNameExpr(const CXXScopeSpec & SS,LookupResult & R,bool NeedsADL,bool AcceptInvalidDecl)3221 ExprResult Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
3222 LookupResult &R, bool NeedsADL,
3223 bool AcceptInvalidDecl) {
3224 // If this is a single, fully-resolved result and we don't need ADL,
3225 // just build an ordinary singleton decl ref.
3226 if (!NeedsADL && R.isSingleResult() &&
3227 !R.getAsSingle<FunctionTemplateDecl>() &&
3228 !ShouldLookupResultBeMultiVersionOverload(R))
3229 return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), R.getFoundDecl(),
3230 R.getRepresentativeDecl(), nullptr,
3231 AcceptInvalidDecl);
3232
3233 // We only need to check the declaration if there's exactly one
3234 // result, because in the overloaded case the results can only be
3235 // functions and function templates.
3236 if (R.isSingleResult() && !ShouldLookupResultBeMultiVersionOverload(R) &&
3237 CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
3238 return ExprError();
3239
3240 // Otherwise, just build an unresolved lookup expression. Suppress
3241 // any lookup-related diagnostics; we'll hash these out later, when
3242 // we've picked a target.
3243 R.suppressDiagnostics();
3244
3245 UnresolvedLookupExpr *ULE
3246 = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
3247 SS.getWithLocInContext(Context),
3248 R.getLookupNameInfo(),
3249 NeedsADL, R.isOverloadedResult(),
3250 R.begin(), R.end());
3251
3252 return ULE;
3253 }
3254
3255 static void diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
3256 ValueDecl *var);
3257
3258 /// Complete semantic analysis for a reference to the given declaration.
BuildDeclarationNameExpr(const CXXScopeSpec & SS,const DeclarationNameInfo & NameInfo,NamedDecl * D,NamedDecl * FoundD,const TemplateArgumentListInfo * TemplateArgs,bool AcceptInvalidDecl)3259 ExprResult Sema::BuildDeclarationNameExpr(
3260 const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D,
3261 NamedDecl *FoundD, const TemplateArgumentListInfo *TemplateArgs,
3262 bool AcceptInvalidDecl) {
3263 assert(D && "Cannot refer to a NULL declaration");
3264 assert(!isa<FunctionTemplateDecl>(D) &&
3265 "Cannot refer unambiguously to a function template");
3266
3267 SourceLocation Loc = NameInfo.getLoc();
3268 if (CheckDeclInExpr(*this, Loc, D)) {
3269 // Recovery from invalid cases (e.g. D is an invalid Decl).
3270 // We use the dependent type for the RecoveryExpr to prevent bogus follow-up
3271 // diagnostics, as invalid decls use int as a fallback type.
3272 return CreateRecoveryExpr(NameInfo.getBeginLoc(), NameInfo.getEndLoc(), {});
3273 }
3274
3275 if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
3276 // Specifically diagnose references to class templates that are missing
3277 // a template argument list.
3278 diagnoseMissingTemplateArguments(TemplateName(Template), Loc);
3279 return ExprError();
3280 }
3281
3282 // Make sure that we're referring to a value.
3283 if (!isa<ValueDecl, UnresolvedUsingIfExistsDecl>(D)) {
3284 Diag(Loc, diag::err_ref_non_value) << D << SS.getRange();
3285 Diag(D->getLocation(), diag::note_declared_at);
3286 return ExprError();
3287 }
3288
3289 // Check whether this declaration can be used. Note that we suppress
3290 // this check when we're going to perform argument-dependent lookup
3291 // on this function name, because this might not be the function
3292 // that overload resolution actually selects.
3293 if (DiagnoseUseOfDecl(D, Loc))
3294 return ExprError();
3295
3296 auto *VD = cast<ValueDecl>(D);
3297
3298 // Only create DeclRefExpr's for valid Decl's.
3299 if (VD->isInvalidDecl() && !AcceptInvalidDecl)
3300 return ExprError();
3301
3302 // Handle members of anonymous structs and unions. If we got here,
3303 // and the reference is to a class member indirect field, then this
3304 // must be the subject of a pointer-to-member expression.
3305 if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD))
3306 if (!indirectField->isCXXClassMember())
3307 return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
3308 indirectField);
3309
3310 QualType type = VD->getType();
3311 if (type.isNull())
3312 return ExprError();
3313 ExprValueKind valueKind = VK_PRValue;
3314
3315 // In 'T ...V;', the type of the declaration 'V' is 'T...', but the type of
3316 // a reference to 'V' is simply (unexpanded) 'T'. The type, like the value,
3317 // is expanded by some outer '...' in the context of the use.
3318 type = type.getNonPackExpansionType();
3319
3320 switch (D->getKind()) {
3321 // Ignore all the non-ValueDecl kinds.
3322 #define ABSTRACT_DECL(kind)
3323 #define VALUE(type, base)
3324 #define DECL(type, base) case Decl::type:
3325 #include "clang/AST/DeclNodes.inc"
3326 llvm_unreachable("invalid value decl kind");
3327
3328 // These shouldn't make it here.
3329 case Decl::ObjCAtDefsField:
3330 llvm_unreachable("forming non-member reference to ivar?");
3331
3332 // Enum constants are always r-values and never references.
3333 // Unresolved using declarations are dependent.
3334 case Decl::EnumConstant:
3335 case Decl::UnresolvedUsingValue:
3336 case Decl::OMPDeclareReduction:
3337 case Decl::OMPDeclareMapper:
3338 valueKind = VK_PRValue;
3339 break;
3340
3341 // Fields and indirect fields that got here must be for
3342 // pointer-to-member expressions; we just call them l-values for
3343 // internal consistency, because this subexpression doesn't really
3344 // exist in the high-level semantics.
3345 case Decl::Field:
3346 case Decl::IndirectField:
3347 case Decl::ObjCIvar:
3348 assert(getLangOpts().CPlusPlus && "building reference to field in C?");
3349
3350 // These can't have reference type in well-formed programs, but
3351 // for internal consistency we do this anyway.
3352 type = type.getNonReferenceType();
3353 valueKind = VK_LValue;
3354 break;
3355
3356 // Non-type template parameters are either l-values or r-values
3357 // depending on the type.
3358 case Decl::NonTypeTemplateParm: {
3359 if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
3360 type = reftype->getPointeeType();
3361 valueKind = VK_LValue; // even if the parameter is an r-value reference
3362 break;
3363 }
3364
3365 // [expr.prim.id.unqual]p2:
3366 // If the entity is a template parameter object for a template
3367 // parameter of type T, the type of the expression is const T.
3368 // [...] The expression is an lvalue if the entity is a [...] template
3369 // parameter object.
3370 if (type->isRecordType()) {
3371 type = type.getUnqualifiedType().withConst();
3372 valueKind = VK_LValue;
3373 break;
3374 }
3375
3376 // For non-references, we need to strip qualifiers just in case
3377 // the template parameter was declared as 'const int' or whatever.
3378 valueKind = VK_PRValue;
3379 type = type.getUnqualifiedType();
3380 break;
3381 }
3382
3383 case Decl::Var:
3384 case Decl::VarTemplateSpecialization:
3385 case Decl::VarTemplatePartialSpecialization:
3386 case Decl::Decomposition:
3387 case Decl::OMPCapturedExpr:
3388 // In C, "extern void blah;" is valid and is an r-value.
3389 if (!getLangOpts().CPlusPlus && !type.hasQualifiers() &&
3390 type->isVoidType()) {
3391 valueKind = VK_PRValue;
3392 break;
3393 }
3394 LLVM_FALLTHROUGH;
3395
3396 case Decl::ImplicitParam:
3397 case Decl::ParmVar: {
3398 // These are always l-values.
3399 valueKind = VK_LValue;
3400 type = type.getNonReferenceType();
3401
3402 // FIXME: Does the addition of const really only apply in
3403 // potentially-evaluated contexts? Since the variable isn't actually
3404 // captured in an unevaluated context, it seems that the answer is no.
3405 if (!isUnevaluatedContext()) {
3406 QualType CapturedType = getCapturedDeclRefType(cast<VarDecl>(VD), Loc);
3407 if (!CapturedType.isNull())
3408 type = CapturedType;
3409 }
3410
3411 break;
3412 }
3413
3414 case Decl::Binding: {
3415 // These are always lvalues.
3416 valueKind = VK_LValue;
3417 type = type.getNonReferenceType();
3418 // FIXME: Support lambda-capture of BindingDecls, once CWG actually
3419 // decides how that's supposed to work.
3420 auto *BD = cast<BindingDecl>(VD);
3421 if (BD->getDeclContext() != CurContext) {
3422 auto *DD = dyn_cast_or_null<VarDecl>(BD->getDecomposedDecl());
3423 if (DD && DD->hasLocalStorage())
3424 diagnoseUncapturableValueReference(*this, Loc, BD);
3425 }
3426 break;
3427 }
3428
3429 case Decl::Function: {
3430 if (unsigned BID = cast<FunctionDecl>(VD)->getBuiltinID()) {
3431 if (!Context.BuiltinInfo.isDirectlyAddressable(BID)) {
3432 type = Context.BuiltinFnTy;
3433 valueKind = VK_PRValue;
3434 break;
3435 }
3436 }
3437
3438 const FunctionType *fty = type->castAs<FunctionType>();
3439
3440 // If we're referring to a function with an __unknown_anytype
3441 // result type, make the entire expression __unknown_anytype.
3442 if (fty->getReturnType() == Context.UnknownAnyTy) {
3443 type = Context.UnknownAnyTy;
3444 valueKind = VK_PRValue;
3445 break;
3446 }
3447
3448 // Functions are l-values in C++.
3449 if (getLangOpts().CPlusPlus) {
3450 valueKind = VK_LValue;
3451 break;
3452 }
3453
3454 // C99 DR 316 says that, if a function type comes from a
3455 // function definition (without a prototype), that type is only
3456 // used for checking compatibility. Therefore, when referencing
3457 // the function, we pretend that we don't have the full function
3458 // type.
3459 if (!cast<FunctionDecl>(VD)->hasPrototype() && isa<FunctionProtoType>(fty))
3460 type = Context.getFunctionNoProtoType(fty->getReturnType(),
3461 fty->getExtInfo());
3462
3463 // Functions are r-values in C.
3464 valueKind = VK_PRValue;
3465 break;
3466 }
3467
3468 case Decl::CXXDeductionGuide:
3469 llvm_unreachable("building reference to deduction guide");
3470
3471 case Decl::MSProperty:
3472 case Decl::MSGuid:
3473 case Decl::TemplateParamObject:
3474 // FIXME: Should MSGuidDecl and template parameter objects be subject to
3475 // capture in OpenMP, or duplicated between host and device?
3476 valueKind = VK_LValue;
3477 break;
3478
3479 case Decl::UnnamedGlobalConstant:
3480 valueKind = VK_LValue;
3481 break;
3482
3483 case Decl::CXXMethod:
3484 // If we're referring to a method with an __unknown_anytype
3485 // result type, make the entire expression __unknown_anytype.
3486 // This should only be possible with a type written directly.
3487 if (const FunctionProtoType *proto =
3488 dyn_cast<FunctionProtoType>(VD->getType()))
3489 if (proto->getReturnType() == Context.UnknownAnyTy) {
3490 type = Context.UnknownAnyTy;
3491 valueKind = VK_PRValue;
3492 break;
3493 }
3494
3495 // C++ methods are l-values if static, r-values if non-static.
3496 if (cast<CXXMethodDecl>(VD)->isStatic()) {
3497 valueKind = VK_LValue;
3498 break;
3499 }
3500 LLVM_FALLTHROUGH;
3501
3502 case Decl::CXXConversion:
3503 case Decl::CXXDestructor:
3504 case Decl::CXXConstructor:
3505 valueKind = VK_PRValue;
3506 break;
3507 }
3508
3509 return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS, FoundD,
3510 /*FIXME: TemplateKWLoc*/ SourceLocation(),
3511 TemplateArgs);
3512 }
3513
ConvertUTF8ToWideString(unsigned CharByteWidth,StringRef Source,SmallString<32> & Target)3514 static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
3515 SmallString<32> &Target) {
3516 Target.resize(CharByteWidth * (Source.size() + 1));
3517 char *ResultPtr = &Target[0];
3518 const llvm::UTF8 *ErrorPtr;
3519 bool success =
3520 llvm::ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
3521 (void)success;
3522 assert(success);
3523 Target.resize(ResultPtr - &Target[0]);
3524 }
3525
BuildPredefinedExpr(SourceLocation Loc,PredefinedExpr::IdentKind IK)3526 ExprResult Sema::BuildPredefinedExpr(SourceLocation Loc,
3527 PredefinedExpr::IdentKind IK) {
3528 // Pick the current block, lambda, captured statement or function.
3529 Decl *currentDecl = nullptr;
3530 if (const BlockScopeInfo *BSI = getCurBlock())
3531 currentDecl = BSI->TheDecl;
3532 else if (const LambdaScopeInfo *LSI = getCurLambda())
3533 currentDecl = LSI->CallOperator;
3534 else if (const CapturedRegionScopeInfo *CSI = getCurCapturedRegion())
3535 currentDecl = CSI->TheCapturedDecl;
3536 else
3537 currentDecl = getCurFunctionOrMethodDecl();
3538
3539 if (!currentDecl) {
3540 Diag(Loc, diag::ext_predef_outside_function);
3541 currentDecl = Context.getTranslationUnitDecl();
3542 }
3543
3544 QualType ResTy;
3545 StringLiteral *SL = nullptr;
3546 if (cast<DeclContext>(currentDecl)->isDependentContext())
3547 ResTy = Context.DependentTy;
3548 else {
3549 // Pre-defined identifiers are of type char[x], where x is the length of
3550 // the string.
3551 auto Str = PredefinedExpr::ComputeName(IK, currentDecl);
3552 unsigned Length = Str.length();
3553
3554 llvm::APInt LengthI(32, Length + 1);
3555 if (IK == PredefinedExpr::LFunction || IK == PredefinedExpr::LFuncSig) {
3556 ResTy =
3557 Context.adjustStringLiteralBaseType(Context.WideCharTy.withConst());
3558 SmallString<32> RawChars;
3559 ConvertUTF8ToWideString(Context.getTypeSizeInChars(ResTy).getQuantity(),
3560 Str, RawChars);
3561 ResTy = Context.getConstantArrayType(ResTy, LengthI, nullptr,
3562 ArrayType::Normal,
3563 /*IndexTypeQuals*/ 0);
3564 SL = StringLiteral::Create(Context, RawChars, StringLiteral::Wide,
3565 /*Pascal*/ false, ResTy, Loc);
3566 } else {
3567 ResTy = Context.adjustStringLiteralBaseType(Context.CharTy.withConst());
3568 ResTy = Context.getConstantArrayType(ResTy, LengthI, nullptr,
3569 ArrayType::Normal,
3570 /*IndexTypeQuals*/ 0);
3571 SL = StringLiteral::Create(Context, Str, StringLiteral::Ordinary,
3572 /*Pascal*/ false, ResTy, Loc);
3573 }
3574 }
3575
3576 return PredefinedExpr::Create(Context, Loc, ResTy, IK, SL);
3577 }
3578
BuildSYCLUniqueStableNameExpr(SourceLocation OpLoc,SourceLocation LParen,SourceLocation RParen,TypeSourceInfo * TSI)3579 ExprResult Sema::BuildSYCLUniqueStableNameExpr(SourceLocation OpLoc,
3580 SourceLocation LParen,
3581 SourceLocation RParen,
3582 TypeSourceInfo *TSI) {
3583 return SYCLUniqueStableNameExpr::Create(Context, OpLoc, LParen, RParen, TSI);
3584 }
3585
ActOnSYCLUniqueStableNameExpr(SourceLocation OpLoc,SourceLocation LParen,SourceLocation RParen,ParsedType ParsedTy)3586 ExprResult Sema::ActOnSYCLUniqueStableNameExpr(SourceLocation OpLoc,
3587 SourceLocation LParen,
3588 SourceLocation RParen,
3589 ParsedType ParsedTy) {
3590 TypeSourceInfo *TSI = nullptr;
3591 QualType Ty = GetTypeFromParser(ParsedTy, &TSI);
3592
3593 if (Ty.isNull())
3594 return ExprError();
3595 if (!TSI)
3596 TSI = Context.getTrivialTypeSourceInfo(Ty, LParen);
3597
3598 return BuildSYCLUniqueStableNameExpr(OpLoc, LParen, RParen, TSI);
3599 }
3600
ActOnPredefinedExpr(SourceLocation Loc,tok::TokenKind Kind)3601 ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
3602 PredefinedExpr::IdentKind IK;
3603
3604 switch (Kind) {
3605 default: llvm_unreachable("Unknown simple primary expr!");
3606 case tok::kw___func__: IK = PredefinedExpr::Func; break; // [C99 6.4.2.2]
3607 case tok::kw___FUNCTION__: IK = PredefinedExpr::Function; break;
3608 case tok::kw___FUNCDNAME__: IK = PredefinedExpr::FuncDName; break; // [MS]
3609 case tok::kw___FUNCSIG__: IK = PredefinedExpr::FuncSig; break; // [MS]
3610 case tok::kw_L__FUNCTION__: IK = PredefinedExpr::LFunction; break; // [MS]
3611 case tok::kw_L__FUNCSIG__: IK = PredefinedExpr::LFuncSig; break; // [MS]
3612 case tok::kw___PRETTY_FUNCTION__: IK = PredefinedExpr::PrettyFunction; break;
3613 }
3614
3615 return BuildPredefinedExpr(Loc, IK);
3616 }
3617
ActOnCharacterConstant(const Token & Tok,Scope * UDLScope)3618 ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) {
3619 SmallString<16> CharBuffer;
3620 bool Invalid = false;
3621 StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
3622 if (Invalid)
3623 return ExprError();
3624
3625 CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
3626 PP, Tok.getKind());
3627 if (Literal.hadError())
3628 return ExprError();
3629
3630 QualType Ty;
3631 if (Literal.isWide())
3632 Ty = Context.WideCharTy; // L'x' -> wchar_t in C and C++.
3633 else if (Literal.isUTF8() && getLangOpts().C2x)
3634 Ty = Context.UnsignedCharTy; // u8'x' -> unsigned char in C2x
3635 else if (Literal.isUTF8() && getLangOpts().Char8)
3636 Ty = Context.Char8Ty; // u8'x' -> char8_t when it exists.
3637 else if (Literal.isUTF16())
3638 Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11.
3639 else if (Literal.isUTF32())
3640 Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11.
3641 else if (!getLangOpts().CPlusPlus || Literal.isMultiChar())
3642 Ty = Context.IntTy; // 'x' -> int in C, 'wxyz' -> int in C++.
3643 else
3644 Ty = Context.CharTy; // 'x' -> char in C++;
3645 // u8'x' -> char in C11-C17 and in C++ without char8_t.
3646
3647 CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii;
3648 if (Literal.isWide())
3649 Kind = CharacterLiteral::Wide;
3650 else if (Literal.isUTF16())
3651 Kind = CharacterLiteral::UTF16;
3652 else if (Literal.isUTF32())
3653 Kind = CharacterLiteral::UTF32;
3654 else if (Literal.isUTF8())
3655 Kind = CharacterLiteral::UTF8;
3656
3657 Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
3658 Tok.getLocation());
3659
3660 if (Literal.getUDSuffix().empty())
3661 return Lit;
3662
3663 // We're building a user-defined literal.
3664 IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
3665 SourceLocation UDSuffixLoc =
3666 getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
3667
3668 // Make sure we're allowed user-defined literals here.
3669 if (!UDLScope)
3670 return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl));
3671
3672 // C++11 [lex.ext]p6: The literal L is treated as a call of the form
3673 // operator "" X (ch)
3674 return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
3675 Lit, Tok.getLocation());
3676 }
3677
ActOnIntegerConstant(SourceLocation Loc,uint64_t Val)3678 ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) {
3679 unsigned IntSize = Context.getTargetInfo().getIntWidth();
3680 return IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val),
3681 Context.IntTy, Loc);
3682 }
3683
BuildFloatingLiteral(Sema & S,NumericLiteralParser & Literal,QualType Ty,SourceLocation Loc)3684 static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal,
3685 QualType Ty, SourceLocation Loc) {
3686 const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty);
3687
3688 using llvm::APFloat;
3689 APFloat Val(Format);
3690
3691 APFloat::opStatus result = Literal.GetFloatValue(Val);
3692
3693 // Overflow is always an error, but underflow is only an error if
3694 // we underflowed to zero (APFloat reports denormals as underflow).
3695 if ((result & APFloat::opOverflow) ||
3696 ((result & APFloat::opUnderflow) && Val.isZero())) {
3697 unsigned diagnostic;
3698 SmallString<20> buffer;
3699 if (result & APFloat::opOverflow) {
3700 diagnostic = diag::warn_float_overflow;
3701 APFloat::getLargest(Format).toString(buffer);
3702 } else {
3703 diagnostic = diag::warn_float_underflow;
3704 APFloat::getSmallest(Format).toString(buffer);
3705 }
3706
3707 S.Diag(Loc, diagnostic)
3708 << Ty
3709 << StringRef(buffer.data(), buffer.size());
3710 }
3711
3712 bool isExact = (result == APFloat::opOK);
3713 return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc);
3714 }
3715
CheckLoopHintExpr(Expr * E,SourceLocation Loc)3716 bool Sema::CheckLoopHintExpr(Expr *E, SourceLocation Loc) {
3717 assert(E && "Invalid expression");
3718
3719 if (E->isValueDependent())
3720 return false;
3721
3722 QualType QT = E->getType();
3723 if (!QT->isIntegerType() || QT->isBooleanType() || QT->isCharType()) {
3724 Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_type) << QT;
3725 return true;
3726 }
3727
3728 llvm::APSInt ValueAPS;
3729 ExprResult R = VerifyIntegerConstantExpression(E, &ValueAPS);
3730
3731 if (R.isInvalid())
3732 return true;
3733
3734 bool ValueIsPositive = ValueAPS.isStrictlyPositive();
3735 if (!ValueIsPositive || ValueAPS.getActiveBits() > 31) {
3736 Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_value)
3737 << toString(ValueAPS, 10) << ValueIsPositive;
3738 return true;
3739 }
3740
3741 return false;
3742 }
3743
ActOnNumericConstant(const Token & Tok,Scope * UDLScope)3744 ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) {
3745 // Fast path for a single digit (which is quite common). A single digit
3746 // cannot have a trigraph, escaped newline, radix prefix, or suffix.
3747 if (Tok.getLength() == 1) {
3748 const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
3749 return ActOnIntegerConstant(Tok.getLocation(), Val-'0');
3750 }
3751
3752 SmallString<128> SpellingBuffer;
3753 // NumericLiteralParser wants to overread by one character. Add padding to
3754 // the buffer in case the token is copied to the buffer. If getSpelling()
3755 // returns a StringRef to the memory buffer, it should have a null char at
3756 // the EOF, so it is also safe.
3757 SpellingBuffer.resize(Tok.getLength() + 1);
3758
3759 // Get the spelling of the token, which eliminates trigraphs, etc.
3760 bool Invalid = false;
3761 StringRef TokSpelling = PP.getSpelling(Tok, SpellingBuffer, &Invalid);
3762 if (Invalid)
3763 return ExprError();
3764
3765 NumericLiteralParser Literal(TokSpelling, Tok.getLocation(),
3766 PP.getSourceManager(), PP.getLangOpts(),
3767 PP.getTargetInfo(), PP.getDiagnostics());
3768 if (Literal.hadError)
3769 return ExprError();
3770
3771 if (Literal.hasUDSuffix()) {
3772 // We're building a user-defined literal.
3773 IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
3774 SourceLocation UDSuffixLoc =
3775 getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
3776
3777 // Make sure we're allowed user-defined literals here.
3778 if (!UDLScope)
3779 return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl));
3780
3781 QualType CookedTy;
3782 if (Literal.isFloatingLiteral()) {
3783 // C++11 [lex.ext]p4: If S contains a literal operator with parameter type
3784 // long double, the literal is treated as a call of the form
3785 // operator "" X (f L)
3786 CookedTy = Context.LongDoubleTy;
3787 } else {
3788 // C++11 [lex.ext]p3: If S contains a literal operator with parameter type
3789 // unsigned long long, the literal is treated as a call of the form
3790 // operator "" X (n ULL)
3791 CookedTy = Context.UnsignedLongLongTy;
3792 }
3793
3794 DeclarationName OpName =
3795 Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
3796 DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
3797 OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
3798
3799 SourceLocation TokLoc = Tok.getLocation();
3800
3801 // Perform literal operator lookup to determine if we're building a raw
3802 // literal or a cooked one.
3803 LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
3804 switch (LookupLiteralOperator(UDLScope, R, CookedTy,
3805 /*AllowRaw*/ true, /*AllowTemplate*/ true,
3806 /*AllowStringTemplatePack*/ false,
3807 /*DiagnoseMissing*/ !Literal.isImaginary)) {
3808 case LOLR_ErrorNoDiagnostic:
3809 // Lookup failure for imaginary constants isn't fatal, there's still the
3810 // GNU extension producing _Complex types.
3811 break;
3812 case LOLR_Error:
3813 return ExprError();
3814 case LOLR_Cooked: {
3815 Expr *Lit;
3816 if (Literal.isFloatingLiteral()) {
3817 Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation());
3818 } else {
3819 llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0);
3820 if (Literal.GetIntegerValue(ResultVal))
3821 Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
3822 << /* Unsigned */ 1;
3823 Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy,
3824 Tok.getLocation());
3825 }
3826 return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
3827 }
3828
3829 case LOLR_Raw: {
3830 // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the
3831 // literal is treated as a call of the form
3832 // operator "" X ("n")
3833 unsigned Length = Literal.getUDSuffixOffset();
3834 QualType StrTy = Context.getConstantArrayType(
3835 Context.adjustStringLiteralBaseType(Context.CharTy.withConst()),
3836 llvm::APInt(32, Length + 1), nullptr, ArrayType::Normal, 0);
3837 Expr *Lit =
3838 StringLiteral::Create(Context, StringRef(TokSpelling.data(), Length),
3839 StringLiteral::Ordinary,
3840 /*Pascal*/ false, StrTy, &TokLoc, 1);
3841 return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
3842 }
3843
3844 case LOLR_Template: {
3845 // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator
3846 // template), L is treated as a call fo the form
3847 // operator "" X <'c1', 'c2', ... 'ck'>()
3848 // where n is the source character sequence c1 c2 ... ck.
3849 TemplateArgumentListInfo ExplicitArgs;
3850 unsigned CharBits = Context.getIntWidth(Context.CharTy);
3851 bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType();
3852 llvm::APSInt Value(CharBits, CharIsUnsigned);
3853 for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) {
3854 Value = TokSpelling[I];
3855 TemplateArgument Arg(Context, Value, Context.CharTy);
3856 TemplateArgumentLocInfo ArgInfo;
3857 ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
3858 }
3859 return BuildLiteralOperatorCall(R, OpNameInfo, None, TokLoc,
3860 &ExplicitArgs);
3861 }
3862 case LOLR_StringTemplatePack:
3863 llvm_unreachable("unexpected literal operator lookup result");
3864 }
3865 }
3866
3867 Expr *Res;
3868
3869 if (Literal.isFixedPointLiteral()) {
3870 QualType Ty;
3871
3872 if (Literal.isAccum) {
3873 if (Literal.isHalf) {
3874 Ty = Context.ShortAccumTy;
3875 } else if (Literal.isLong) {
3876 Ty = Context.LongAccumTy;
3877 } else {
3878 Ty = Context.AccumTy;
3879 }
3880 } else if (Literal.isFract) {
3881 if (Literal.isHalf) {
3882 Ty = Context.ShortFractTy;
3883 } else if (Literal.isLong) {
3884 Ty = Context.LongFractTy;
3885 } else {
3886 Ty = Context.FractTy;
3887 }
3888 }
3889
3890 if (Literal.isUnsigned) Ty = Context.getCorrespondingUnsignedType(Ty);
3891
3892 bool isSigned = !Literal.isUnsigned;
3893 unsigned scale = Context.getFixedPointScale(Ty);
3894 unsigned bit_width = Context.getTypeInfo(Ty).Width;
3895
3896 llvm::APInt Val(bit_width, 0, isSigned);
3897 bool Overflowed = Literal.GetFixedPointValue(Val, scale);
3898 bool ValIsZero = Val.isZero() && !Overflowed;
3899
3900 auto MaxVal = Context.getFixedPointMax(Ty).getValue();
3901 if (Literal.isFract && Val == MaxVal + 1 && !ValIsZero)
3902 // Clause 6.4.4 - The value of a constant shall be in the range of
3903 // representable values for its type, with exception for constants of a
3904 // fract type with a value of exactly 1; such a constant shall denote
3905 // the maximal value for the type.
3906 --Val;
3907 else if (Val.ugt(MaxVal) || Overflowed)
3908 Diag(Tok.getLocation(), diag::err_too_large_for_fixed_point);
3909
3910 Res = FixedPointLiteral::CreateFromRawInt(Context, Val, Ty,
3911 Tok.getLocation(), scale);
3912 } else if (Literal.isFloatingLiteral()) {
3913 QualType Ty;
3914 if (Literal.isHalf){
3915 if (getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()))
3916 Ty = Context.HalfTy;
3917 else {
3918 Diag(Tok.getLocation(), diag::err_half_const_requires_fp16);
3919 return ExprError();
3920 }
3921 } else if (Literal.isFloat)
3922 Ty = Context.FloatTy;
3923 else if (Literal.isLong)
3924 Ty = Context.LongDoubleTy;
3925 else if (Literal.isFloat16)
3926 Ty = Context.Float16Ty;
3927 else if (Literal.isFloat128)
3928 Ty = Context.Float128Ty;
3929 else
3930 Ty = Context.DoubleTy;
3931
3932 Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation());
3933
3934 if (Ty == Context.DoubleTy) {
3935 if (getLangOpts().SinglePrecisionConstants) {
3936 if (Ty->castAs<BuiltinType>()->getKind() != BuiltinType::Float) {
3937 Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
3938 }
3939 } else if (getLangOpts().OpenCL && !getOpenCLOptions().isAvailableOption(
3940 "cl_khr_fp64", getLangOpts())) {
3941 // Impose single-precision float type when cl_khr_fp64 is not enabled.
3942 Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64)
3943 << (getLangOpts().getOpenCLCompatibleVersion() >= 300);
3944 Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
3945 }
3946 }
3947 } else if (!Literal.isIntegerLiteral()) {
3948 return ExprError();
3949 } else {
3950 QualType Ty;
3951
3952 // 'long long' is a C99 or C++11 feature.
3953 if (!getLangOpts().C99 && Literal.isLongLong) {
3954 if (getLangOpts().CPlusPlus)
3955 Diag(Tok.getLocation(),
3956 getLangOpts().CPlusPlus11 ?
3957 diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
3958 else
3959 Diag(Tok.getLocation(), diag::ext_c99_longlong);
3960 }
3961
3962 // 'z/uz' literals are a C++2b feature.
3963 if (Literal.isSizeT)
3964 Diag(Tok.getLocation(), getLangOpts().CPlusPlus
3965 ? getLangOpts().CPlusPlus2b
3966 ? diag::warn_cxx20_compat_size_t_suffix
3967 : diag::ext_cxx2b_size_t_suffix
3968 : diag::err_cxx2b_size_t_suffix);
3969
3970 // 'wb/uwb' literals are a C2x feature. We support _BitInt as a type in C++,
3971 // but we do not currently support the suffix in C++ mode because it's not
3972 // entirely clear whether WG21 will prefer this suffix to return a library
3973 // type such as std::bit_int instead of returning a _BitInt.
3974 if (Literal.isBitInt && !getLangOpts().CPlusPlus)
3975 PP.Diag(Tok.getLocation(), getLangOpts().C2x
3976 ? diag::warn_c2x_compat_bitint_suffix
3977 : diag::ext_c2x_bitint_suffix);
3978
3979 // Get the value in the widest-possible width. What is "widest" depends on
3980 // whether the literal is a bit-precise integer or not. For a bit-precise
3981 // integer type, try to scan the source to determine how many bits are
3982 // needed to represent the value. This may seem a bit expensive, but trying
3983 // to get the integer value from an overly-wide APInt is *extremely*
3984 // expensive, so the naive approach of assuming
3985 // llvm::IntegerType::MAX_INT_BITS is a big performance hit.
3986 unsigned BitsNeeded =
3987 Literal.isBitInt ? llvm::APInt::getSufficientBitsNeeded(
3988 Literal.getLiteralDigits(), Literal.getRadix())
3989 : Context.getTargetInfo().getIntMaxTWidth();
3990 llvm::APInt ResultVal(BitsNeeded, 0);
3991
3992 if (Literal.GetIntegerValue(ResultVal)) {
3993 // If this value didn't fit into uintmax_t, error and force to ull.
3994 Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
3995 << /* Unsigned */ 1;
3996 Ty = Context.UnsignedLongLongTy;
3997 assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
3998 "long long is not intmax_t?");
3999 } else {
4000 // If this value fits into a ULL, try to figure out what else it fits into
4001 // according to the rules of C99 6.4.4.1p5.
4002
4003 // Octal, Hexadecimal, and integers with a U suffix are allowed to
4004 // be an unsigned int.
4005 bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
4006
4007 // Check from smallest to largest, picking the smallest type we can.
4008 unsigned Width = 0;
4009
4010 // Microsoft specific integer suffixes are explicitly sized.
4011 if (Literal.MicrosoftInteger) {
4012 if (Literal.MicrosoftInteger == 8 && !Literal.isUnsigned) {
4013 Width = 8;
4014 Ty = Context.CharTy;
4015 } else {
4016 Width = Literal.MicrosoftInteger;
4017 Ty = Context.getIntTypeForBitwidth(Width,
4018 /*Signed=*/!Literal.isUnsigned);
4019 }
4020 }
4021
4022 // Bit-precise integer literals are automagically-sized based on the
4023 // width required by the literal.
4024 if (Literal.isBitInt) {
4025 // The signed version has one more bit for the sign value. There are no
4026 // zero-width bit-precise integers, even if the literal value is 0.
4027 Width = std::max(ResultVal.getActiveBits(), 1u) +
4028 (Literal.isUnsigned ? 0u : 1u);
4029
4030 // Diagnose if the width of the constant is larger than BITINT_MAXWIDTH,
4031 // and reset the type to the largest supported width.
4032 unsigned int MaxBitIntWidth =
4033 Context.getTargetInfo().getMaxBitIntWidth();
4034 if (Width > MaxBitIntWidth) {
4035 Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
4036 << Literal.isUnsigned;
4037 Width = MaxBitIntWidth;
4038 }
4039
4040 // Reset the result value to the smaller APInt and select the correct
4041 // type to be used. Note, we zext even for signed values because the
4042 // literal itself is always an unsigned value (a preceeding - is a
4043 // unary operator, not part of the literal).
4044 ResultVal = ResultVal.zextOrTrunc(Width);
4045 Ty = Context.getBitIntType(Literal.isUnsigned, Width);
4046 }
4047
4048 // Check C++2b size_t literals.
4049 if (Literal.isSizeT) {
4050 assert(!Literal.MicrosoftInteger &&
4051 "size_t literals can't be Microsoft literals");
4052 unsigned SizeTSize = Context.getTargetInfo().getTypeWidth(
4053 Context.getTargetInfo().getSizeType());
4054
4055 // Does it fit in size_t?
4056 if (ResultVal.isIntN(SizeTSize)) {
4057 // Does it fit in ssize_t?
4058 if (!Literal.isUnsigned && ResultVal[SizeTSize - 1] == 0)
4059 Ty = Context.getSignedSizeType();
4060 else if (AllowUnsigned)
4061 Ty = Context.getSizeType();
4062 Width = SizeTSize;
4063 }
4064 }
4065
4066 if (Ty.isNull() && !Literal.isLong && !Literal.isLongLong &&
4067 !Literal.isSizeT) {
4068 // Are int/unsigned possibilities?
4069 unsigned IntSize = Context.getTargetInfo().getIntWidth();
4070
4071 // Does it fit in a unsigned int?
4072 if (ResultVal.isIntN(IntSize)) {
4073 // Does it fit in a signed int?
4074 if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
4075 Ty = Context.IntTy;
4076 else if (AllowUnsigned)
4077 Ty = Context.UnsignedIntTy;
4078 Width = IntSize;
4079 }
4080 }
4081
4082 // Are long/unsigned long possibilities?
4083 if (Ty.isNull() && !Literal.isLongLong && !Literal.isSizeT) {
4084 unsigned LongSize = Context.getTargetInfo().getLongWidth();
4085
4086 // Does it fit in a unsigned long?
4087 if (ResultVal.isIntN(LongSize)) {
4088 // Does it fit in a signed long?
4089 if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
4090 Ty = Context.LongTy;
4091 else if (AllowUnsigned)
4092 Ty = Context.UnsignedLongTy;
4093 // Check according to the rules of C90 6.1.3.2p5. C++03 [lex.icon]p2
4094 // is compatible.
4095 else if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11) {
4096 const unsigned LongLongSize =
4097 Context.getTargetInfo().getLongLongWidth();
4098 Diag(Tok.getLocation(),
4099 getLangOpts().CPlusPlus
4100 ? Literal.isLong
4101 ? diag::warn_old_implicitly_unsigned_long_cxx
4102 : /*C++98 UB*/ diag::
4103 ext_old_implicitly_unsigned_long_cxx
4104 : diag::warn_old_implicitly_unsigned_long)
4105 << (LongLongSize > LongSize ? /*will have type 'long long'*/ 0
4106 : /*will be ill-formed*/ 1);
4107 Ty = Context.UnsignedLongTy;
4108 }
4109 Width = LongSize;
4110 }
4111 }
4112
4113 // Check long long if needed.
4114 if (Ty.isNull() && !Literal.isSizeT) {
4115 unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();
4116
4117 // Does it fit in a unsigned long long?
4118 if (ResultVal.isIntN(LongLongSize)) {
4119 // Does it fit in a signed long long?
4120 // To be compatible with MSVC, hex integer literals ending with the
4121 // LL or i64 suffix are always signed in Microsoft mode.
4122 if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
4123 (getLangOpts().MSVCCompat && Literal.isLongLong)))
4124 Ty = Context.LongLongTy;
4125 else if (AllowUnsigned)
4126 Ty = Context.UnsignedLongLongTy;
4127 Width = LongLongSize;
4128 }
4129 }
4130
4131 // If we still couldn't decide a type, we either have 'size_t' literal
4132 // that is out of range, or a decimal literal that does not fit in a
4133 // signed long long and has no U suffix.
4134 if (Ty.isNull()) {
4135 if (Literal.isSizeT)
4136 Diag(Tok.getLocation(), diag::err_size_t_literal_too_large)
4137 << Literal.isUnsigned;
4138 else
4139 Diag(Tok.getLocation(),
4140 diag::ext_integer_literal_too_large_for_signed);
4141 Ty = Context.UnsignedLongLongTy;
4142 Width = Context.getTargetInfo().getLongLongWidth();
4143 }
4144
4145 if (ResultVal.getBitWidth() != Width)
4146 ResultVal = ResultVal.trunc(Width);
4147 }
4148 Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
4149 }
4150
4151 // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
4152 if (Literal.isImaginary) {
4153 Res = new (Context) ImaginaryLiteral(Res,
4154 Context.getComplexType(Res->getType()));
4155
4156 Diag(Tok.getLocation(), diag::ext_imaginary_constant);
4157 }
4158 return Res;
4159 }
4160
ActOnParenExpr(SourceLocation L,SourceLocation R,Expr * E)4161 ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) {
4162 assert(E && "ActOnParenExpr() missing expr");
4163 QualType ExprTy = E->getType();
4164 if (getLangOpts().ProtectParens && CurFPFeatures.getAllowFPReassociate() &&
4165 !E->isLValue() && ExprTy->hasFloatingRepresentation())
4166 return BuildBuiltinCallExpr(R, Builtin::BI__arithmetic_fence, E);
4167 return new (Context) ParenExpr(L, R, E);
4168 }
4169
CheckVecStepTraitOperandType(Sema & S,QualType T,SourceLocation Loc,SourceRange ArgRange)4170 static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
4171 SourceLocation Loc,
4172 SourceRange ArgRange) {
4173 // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
4174 // scalar or vector data type argument..."
4175 // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
4176 // type (C99 6.2.5p18) or void.
4177 if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
4178 S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
4179 << T << ArgRange;
4180 return true;
4181 }
4182
4183 assert((T->isVoidType() || !T->isIncompleteType()) &&
4184 "Scalar types should always be complete");
4185 return false;
4186 }
4187
CheckExtensionTraitOperandType(Sema & S,QualType T,SourceLocation Loc,SourceRange ArgRange,UnaryExprOrTypeTrait TraitKind)4188 static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
4189 SourceLocation Loc,
4190 SourceRange ArgRange,
4191 UnaryExprOrTypeTrait TraitKind) {
4192 // Invalid types must be hard errors for SFINAE in C++.
4193 if (S.LangOpts.CPlusPlus)
4194 return true;
4195
4196 // C99 6.5.3.4p1:
4197 if (T->isFunctionType() &&
4198 (TraitKind == UETT_SizeOf || TraitKind == UETT_AlignOf ||
4199 TraitKind == UETT_PreferredAlignOf)) {
4200 // sizeof(function)/alignof(function) is allowed as an extension.
4201 S.Diag(Loc, diag::ext_sizeof_alignof_function_type)
4202 << getTraitSpelling(TraitKind) << ArgRange;
4203 return false;
4204 }
4205
4206 // Allow sizeof(void)/alignof(void) as an extension, unless in OpenCL where
4207 // this is an error (OpenCL v1.1 s6.3.k)
4208 if (T->isVoidType()) {
4209 unsigned DiagID = S.LangOpts.OpenCL ? diag::err_opencl_sizeof_alignof_type
4210 : diag::ext_sizeof_alignof_void_type;
4211 S.Diag(Loc, DiagID) << getTraitSpelling(TraitKind) << ArgRange;
4212 return false;
4213 }
4214
4215 return true;
4216 }
4217
CheckObjCTraitOperandConstraints(Sema & S,QualType T,SourceLocation Loc,SourceRange ArgRange,UnaryExprOrTypeTrait TraitKind)4218 static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
4219 SourceLocation Loc,
4220 SourceRange ArgRange,
4221 UnaryExprOrTypeTrait TraitKind) {
4222 // Reject sizeof(interface) and sizeof(interface<proto>) if the
4223 // runtime doesn't allow it.
4224 if (!S.LangOpts.ObjCRuntime.allowsSizeofAlignof() && T->isObjCObjectType()) {
4225 S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
4226 << T << (TraitKind == UETT_SizeOf)
4227 << ArgRange;
4228 return true;
4229 }
4230
4231 return false;
4232 }
4233
4234 /// Check whether E is a pointer from a decayed array type (the decayed
4235 /// pointer type is equal to T) and emit a warning if it is.
warnOnSizeofOnArrayDecay(Sema & S,SourceLocation Loc,QualType T,Expr * E)4236 static void warnOnSizeofOnArrayDecay(Sema &S, SourceLocation Loc, QualType T,
4237 Expr *E) {
4238 // Don't warn if the operation changed the type.
4239 if (T != E->getType())
4240 return;
4241
4242 // Now look for array decays.
4243 ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E);
4244 if (!ICE || ICE->getCastKind() != CK_ArrayToPointerDecay)
4245 return;
4246
4247 S.Diag(Loc, diag::warn_sizeof_array_decay) << ICE->getSourceRange()
4248 << ICE->getType()
4249 << ICE->getSubExpr()->getType();
4250 }
4251
4252 /// Check the constraints on expression operands to unary type expression
4253 /// and type traits.
4254 ///
4255 /// Completes any types necessary and validates the constraints on the operand
4256 /// expression. The logic mostly mirrors the type-based overload, but may modify
4257 /// the expression as it completes the type for that expression through template
4258 /// instantiation, etc.
CheckUnaryExprOrTypeTraitOperand(Expr * E,UnaryExprOrTypeTrait ExprKind)4259 bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E,
4260 UnaryExprOrTypeTrait ExprKind) {
4261 QualType ExprTy = E->getType();
4262 assert(!ExprTy->isReferenceType());
4263
4264 bool IsUnevaluatedOperand =
4265 (ExprKind == UETT_SizeOf || ExprKind == UETT_AlignOf ||
4266 ExprKind == UETT_PreferredAlignOf || ExprKind == UETT_VecStep);
4267 if (IsUnevaluatedOperand) {
4268 ExprResult Result = CheckUnevaluatedOperand(E);
4269 if (Result.isInvalid())
4270 return true;
4271 E = Result.get();
4272 }
4273
4274 // The operand for sizeof and alignof is in an unevaluated expression context,
4275 // so side effects could result in unintended consequences.
4276 // Exclude instantiation-dependent expressions, because 'sizeof' is sometimes
4277 // used to build SFINAE gadgets.
4278 // FIXME: Should we consider instantiation-dependent operands to 'alignof'?
4279 if (IsUnevaluatedOperand && !inTemplateInstantiation() &&
4280 !E->isInstantiationDependent() &&
4281 !E->getType()->isVariableArrayType() &&
4282 E->HasSideEffects(Context, false))
4283 Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
4284
4285 if (ExprKind == UETT_VecStep)
4286 return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(),
4287 E->getSourceRange());
4288
4289 // Explicitly list some types as extensions.
4290 if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(),
4291 E->getSourceRange(), ExprKind))
4292 return false;
4293
4294 // 'alignof' applied to an expression only requires the base element type of
4295 // the expression to be complete. 'sizeof' requires the expression's type to
4296 // be complete (and will attempt to complete it if it's an array of unknown
4297 // bound).
4298 if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
4299 if (RequireCompleteSizedType(
4300 E->getExprLoc(), Context.getBaseElementType(E->getType()),
4301 diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4302 getTraitSpelling(ExprKind), E->getSourceRange()))
4303 return true;
4304 } else {
4305 if (RequireCompleteSizedExprType(
4306 E, diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4307 getTraitSpelling(ExprKind), E->getSourceRange()))
4308 return true;
4309 }
4310
4311 // Completing the expression's type may have changed it.
4312 ExprTy = E->getType();
4313 assert(!ExprTy->isReferenceType());
4314
4315 if (ExprTy->isFunctionType()) {
4316 Diag(E->getExprLoc(), diag::err_sizeof_alignof_function_type)
4317 << getTraitSpelling(ExprKind) << E->getSourceRange();
4318 return true;
4319 }
4320
4321 if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(),
4322 E->getSourceRange(), ExprKind))
4323 return true;
4324
4325 if (ExprKind == UETT_SizeOf) {
4326 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
4327 if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
4328 QualType OType = PVD->getOriginalType();
4329 QualType Type = PVD->getType();
4330 if (Type->isPointerType() && OType->isArrayType()) {
4331 Diag(E->getExprLoc(), diag::warn_sizeof_array_param)
4332 << Type << OType;
4333 Diag(PVD->getLocation(), diag::note_declared_at);
4334 }
4335 }
4336 }
4337
4338 // Warn on "sizeof(array op x)" and "sizeof(x op array)", where the array
4339 // decays into a pointer and returns an unintended result. This is most
4340 // likely a typo for "sizeof(array) op x".
4341 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E->IgnoreParens())) {
4342 warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
4343 BO->getLHS());
4344 warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
4345 BO->getRHS());
4346 }
4347 }
4348
4349 return false;
4350 }
4351
4352 /// Check the constraints on operands to unary expression and type
4353 /// traits.
4354 ///
4355 /// This will complete any types necessary, and validate the various constraints
4356 /// on those operands.
4357 ///
4358 /// The UsualUnaryConversions() function is *not* called by this routine.
4359 /// C99 6.3.2.1p[2-4] all state:
4360 /// Except when it is the operand of the sizeof operator ...
4361 ///
4362 /// C++ [expr.sizeof]p4
4363 /// The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
4364 /// standard conversions are not applied to the operand of sizeof.
4365 ///
4366 /// This policy is followed for all of the unary trait expressions.
CheckUnaryExprOrTypeTraitOperand(QualType ExprType,SourceLocation OpLoc,SourceRange ExprRange,UnaryExprOrTypeTrait ExprKind)4367 bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType,
4368 SourceLocation OpLoc,
4369 SourceRange ExprRange,
4370 UnaryExprOrTypeTrait ExprKind) {
4371 if (ExprType->isDependentType())
4372 return false;
4373
4374 // C++ [expr.sizeof]p2:
4375 // When applied to a reference or a reference type, the result
4376 // is the size of the referenced type.
4377 // C++11 [expr.alignof]p3:
4378 // When alignof is applied to a reference type, the result
4379 // shall be the alignment of the referenced type.
4380 if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>())
4381 ExprType = Ref->getPointeeType();
4382
4383 // C11 6.5.3.4/3, C++11 [expr.alignof]p3:
4384 // When alignof or _Alignof is applied to an array type, the result
4385 // is the alignment of the element type.
4386 if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf ||
4387 ExprKind == UETT_OpenMPRequiredSimdAlign)
4388 ExprType = Context.getBaseElementType(ExprType);
4389
4390 if (ExprKind == UETT_VecStep)
4391 return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange);
4392
4393 // Explicitly list some types as extensions.
4394 if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange,
4395 ExprKind))
4396 return false;
4397
4398 if (RequireCompleteSizedType(
4399 OpLoc, ExprType, diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4400 getTraitSpelling(ExprKind), ExprRange))
4401 return true;
4402
4403 if (ExprType->isFunctionType()) {
4404 Diag(OpLoc, diag::err_sizeof_alignof_function_type)
4405 << getTraitSpelling(ExprKind) << ExprRange;
4406 return true;
4407 }
4408
4409 if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange,
4410 ExprKind))
4411 return true;
4412
4413 return false;
4414 }
4415
CheckAlignOfExpr(Sema & S,Expr * E,UnaryExprOrTypeTrait ExprKind)4416 static bool CheckAlignOfExpr(Sema &S, Expr *E, UnaryExprOrTypeTrait ExprKind) {
4417 // Cannot know anything else if the expression is dependent.
4418 if (E->isTypeDependent())
4419 return false;
4420
4421 if (E->getObjectKind() == OK_BitField) {
4422 S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield)
4423 << 1 << E->getSourceRange();
4424 return true;
4425 }
4426
4427 ValueDecl *D = nullptr;
4428 Expr *Inner = E->IgnoreParens();
4429 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Inner)) {
4430 D = DRE->getDecl();
4431 } else if (MemberExpr *ME = dyn_cast<MemberExpr>(Inner)) {
4432 D = ME->getMemberDecl();
4433 }
4434
4435 // If it's a field, require the containing struct to have a
4436 // complete definition so that we can compute the layout.
4437 //
4438 // This can happen in C++11 onwards, either by naming the member
4439 // in a way that is not transformed into a member access expression
4440 // (in an unevaluated operand, for instance), or by naming the member
4441 // in a trailing-return-type.
4442 //
4443 // For the record, since __alignof__ on expressions is a GCC
4444 // extension, GCC seems to permit this but always gives the
4445 // nonsensical answer 0.
4446 //
4447 // We don't really need the layout here --- we could instead just
4448 // directly check for all the appropriate alignment-lowing
4449 // attributes --- but that would require duplicating a lot of
4450 // logic that just isn't worth duplicating for such a marginal
4451 // use-case.
4452 if (FieldDecl *FD = dyn_cast_or_null<FieldDecl>(D)) {
4453 // Fast path this check, since we at least know the record has a
4454 // definition if we can find a member of it.
4455 if (!FD->getParent()->isCompleteDefinition()) {
4456 S.Diag(E->getExprLoc(), diag::err_alignof_member_of_incomplete_type)
4457 << E->getSourceRange();
4458 return true;
4459 }
4460
4461 // Otherwise, if it's a field, and the field doesn't have
4462 // reference type, then it must have a complete type (or be a
4463 // flexible array member, which we explicitly want to
4464 // white-list anyway), which makes the following checks trivial.
4465 if (!FD->getType()->isReferenceType())
4466 return false;
4467 }
4468
4469 return S.CheckUnaryExprOrTypeTraitOperand(E, ExprKind);
4470 }
4471
CheckVecStepExpr(Expr * E)4472 bool Sema::CheckVecStepExpr(Expr *E) {
4473 E = E->IgnoreParens();
4474
4475 // Cannot know anything else if the expression is dependent.
4476 if (E->isTypeDependent())
4477 return false;
4478
4479 return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
4480 }
4481
captureVariablyModifiedType(ASTContext & Context,QualType T,CapturingScopeInfo * CSI)4482 static void captureVariablyModifiedType(ASTContext &Context, QualType T,
4483 CapturingScopeInfo *CSI) {
4484 assert(T->isVariablyModifiedType());
4485 assert(CSI != nullptr);
4486
4487 // We're going to walk down into the type and look for VLA expressions.
4488 do {
4489 const Type *Ty = T.getTypePtr();
4490 switch (Ty->getTypeClass()) {
4491 #define TYPE(Class, Base)
4492 #define ABSTRACT_TYPE(Class, Base)
4493 #define NON_CANONICAL_TYPE(Class, Base)
4494 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
4495 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
4496 #include "clang/AST/TypeNodes.inc"
4497 T = QualType();
4498 break;
4499 // These types are never variably-modified.
4500 case Type::Builtin:
4501 case Type::Complex:
4502 case Type::Vector:
4503 case Type::ExtVector:
4504 case Type::ConstantMatrix:
4505 case Type::Record:
4506 case Type::Enum:
4507 case Type::Elaborated:
4508 case Type::TemplateSpecialization:
4509 case Type::ObjCObject:
4510 case Type::ObjCInterface:
4511 case Type::ObjCObjectPointer:
4512 case Type::ObjCTypeParam:
4513 case Type::Pipe:
4514 case Type::BitInt:
4515 llvm_unreachable("type class is never variably-modified!");
4516 case Type::Adjusted:
4517 T = cast<AdjustedType>(Ty)->getOriginalType();
4518 break;
4519 case Type::Decayed:
4520 T = cast<DecayedType>(Ty)->getPointeeType();
4521 break;
4522 case Type::Pointer:
4523 T = cast<PointerType>(Ty)->getPointeeType();
4524 break;
4525 case Type::BlockPointer:
4526 T = cast<BlockPointerType>(Ty)->getPointeeType();
4527 break;
4528 case Type::LValueReference:
4529 case Type::RValueReference:
4530 T = cast<ReferenceType>(Ty)->getPointeeType();
4531 break;
4532 case Type::MemberPointer:
4533 T = cast<MemberPointerType>(Ty)->getPointeeType();
4534 break;
4535 case Type::ConstantArray:
4536 case Type::IncompleteArray:
4537 // Losing element qualification here is fine.
4538 T = cast<ArrayType>(Ty)->getElementType();
4539 break;
4540 case Type::VariableArray: {
4541 // Losing element qualification here is fine.
4542 const VariableArrayType *VAT = cast<VariableArrayType>(Ty);
4543
4544 // Unknown size indication requires no size computation.
4545 // Otherwise, evaluate and record it.
4546 auto Size = VAT->getSizeExpr();
4547 if (Size && !CSI->isVLATypeCaptured(VAT) &&
4548 (isa<CapturedRegionScopeInfo>(CSI) || isa<LambdaScopeInfo>(CSI)))
4549 CSI->addVLATypeCapture(Size->getExprLoc(), VAT, Context.getSizeType());
4550
4551 T = VAT->getElementType();
4552 break;
4553 }
4554 case Type::FunctionProto:
4555 case Type::FunctionNoProto:
4556 T = cast<FunctionType>(Ty)->getReturnType();
4557 break;
4558 case Type::Paren:
4559 case Type::TypeOf:
4560 case Type::UnaryTransform:
4561 case Type::Attributed:
4562 case Type::BTFTagAttributed:
4563 case Type::SubstTemplateTypeParm:
4564 case Type::MacroQualified:
4565 // Keep walking after single level desugaring.
4566 T = T.getSingleStepDesugaredType(Context);
4567 break;
4568 case Type::Typedef:
4569 T = cast<TypedefType>(Ty)->desugar();
4570 break;
4571 case Type::Decltype:
4572 T = cast<DecltypeType>(Ty)->desugar();
4573 break;
4574 case Type::Using:
4575 T = cast<UsingType>(Ty)->desugar();
4576 break;
4577 case Type::Auto:
4578 case Type::DeducedTemplateSpecialization:
4579 T = cast<DeducedType>(Ty)->getDeducedType();
4580 break;
4581 case Type::TypeOfExpr:
4582 T = cast<TypeOfExprType>(Ty)->getUnderlyingExpr()->getType();
4583 break;
4584 case Type::Atomic:
4585 T = cast<AtomicType>(Ty)->getValueType();
4586 break;
4587 }
4588 } while (!T.isNull() && T->isVariablyModifiedType());
4589 }
4590
4591 /// Build a sizeof or alignof expression given a type operand.
4592 ExprResult
CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo * TInfo,SourceLocation OpLoc,UnaryExprOrTypeTrait ExprKind,SourceRange R)4593 Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
4594 SourceLocation OpLoc,
4595 UnaryExprOrTypeTrait ExprKind,
4596 SourceRange R) {
4597 if (!TInfo)
4598 return ExprError();
4599
4600 QualType T = TInfo->getType();
4601
4602 if (!T->isDependentType() &&
4603 CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind))
4604 return ExprError();
4605
4606 if (T->isVariablyModifiedType() && FunctionScopes.size() > 1) {
4607 if (auto *TT = T->getAs<TypedefType>()) {
4608 for (auto I = FunctionScopes.rbegin(),
4609 E = std::prev(FunctionScopes.rend());
4610 I != E; ++I) {
4611 auto *CSI = dyn_cast<CapturingScopeInfo>(*I);
4612 if (CSI == nullptr)
4613 break;
4614 DeclContext *DC = nullptr;
4615 if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI))
4616 DC = LSI->CallOperator;
4617 else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI))
4618 DC = CRSI->TheCapturedDecl;
4619 else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI))
4620 DC = BSI->TheDecl;
4621 if (DC) {
4622 if (DC->containsDecl(TT->getDecl()))
4623 break;
4624 captureVariablyModifiedType(Context, T, CSI);
4625 }
4626 }
4627 }
4628 }
4629
4630 // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
4631 if (isUnevaluatedContext() && ExprKind == UETT_SizeOf &&
4632 TInfo->getType()->isVariablyModifiedType())
4633 TInfo = TransformToPotentiallyEvaluated(TInfo);
4634
4635 return new (Context) UnaryExprOrTypeTraitExpr(
4636 ExprKind, TInfo, Context.getSizeType(), OpLoc, R.getEnd());
4637 }
4638
4639 /// Build a sizeof or alignof expression given an expression
4640 /// operand.
4641 ExprResult
CreateUnaryExprOrTypeTraitExpr(Expr * E,SourceLocation OpLoc,UnaryExprOrTypeTrait ExprKind)4642 Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
4643 UnaryExprOrTypeTrait ExprKind) {
4644 ExprResult PE = CheckPlaceholderExpr(E);
4645 if (PE.isInvalid())
4646 return ExprError();
4647
4648 E = PE.get();
4649
4650 // Verify that the operand is valid.
4651 bool isInvalid = false;
4652 if (E->isTypeDependent()) {
4653 // Delay type-checking for type-dependent expressions.
4654 } else if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
4655 isInvalid = CheckAlignOfExpr(*this, E, ExprKind);
4656 } else if (ExprKind == UETT_VecStep) {
4657 isInvalid = CheckVecStepExpr(E);
4658 } else if (ExprKind == UETT_OpenMPRequiredSimdAlign) {
4659 Diag(E->getExprLoc(), diag::err_openmp_default_simd_align_expr);
4660 isInvalid = true;
4661 } else if (E->refersToBitField()) { // C99 6.5.3.4p1.
4662 Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) << 0;
4663 isInvalid = true;
4664 } else {
4665 isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
4666 }
4667
4668 if (isInvalid)
4669 return ExprError();
4670
4671 if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) {
4672 PE = TransformToPotentiallyEvaluated(E);
4673 if (PE.isInvalid()) return ExprError();
4674 E = PE.get();
4675 }
4676
4677 // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
4678 return new (Context) UnaryExprOrTypeTraitExpr(
4679 ExprKind, E, Context.getSizeType(), OpLoc, E->getSourceRange().getEnd());
4680 }
4681
4682 /// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
4683 /// expr and the same for @c alignof and @c __alignof
4684 /// Note that the ArgRange is invalid if isType is false.
4685 ExprResult
ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,UnaryExprOrTypeTrait ExprKind,bool IsType,void * TyOrEx,SourceRange ArgRange)4686 Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
4687 UnaryExprOrTypeTrait ExprKind, bool IsType,
4688 void *TyOrEx, SourceRange ArgRange) {
4689 // If error parsing type, ignore.
4690 if (!TyOrEx) return ExprError();
4691
4692 if (IsType) {
4693 TypeSourceInfo *TInfo;
4694 (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
4695 return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
4696 }
4697
4698 Expr *ArgEx = (Expr *)TyOrEx;
4699 ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
4700 return Result;
4701 }
4702
CheckRealImagOperand(Sema & S,ExprResult & V,SourceLocation Loc,bool IsReal)4703 static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
4704 bool IsReal) {
4705 if (V.get()->isTypeDependent())
4706 return S.Context.DependentTy;
4707
4708 // _Real and _Imag are only l-values for normal l-values.
4709 if (V.get()->getObjectKind() != OK_Ordinary) {
4710 V = S.DefaultLvalueConversion(V.get());
4711 if (V.isInvalid())
4712 return QualType();
4713 }
4714
4715 // These operators return the element type of a complex type.
4716 if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
4717 return CT->getElementType();
4718
4719 // Otherwise they pass through real integer and floating point types here.
4720 if (V.get()->getType()->isArithmeticType())
4721 return V.get()->getType();
4722
4723 // Test for placeholders.
4724 ExprResult PR = S.CheckPlaceholderExpr(V.get());
4725 if (PR.isInvalid()) return QualType();
4726 if (PR.get() != V.get()) {
4727 V = PR;
4728 return CheckRealImagOperand(S, V, Loc, IsReal);
4729 }
4730
4731 // Reject anything else.
4732 S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
4733 << (IsReal ? "__real" : "__imag");
4734 return QualType();
4735 }
4736
4737
4738
4739 ExprResult
ActOnPostfixUnaryOp(Scope * S,SourceLocation OpLoc,tok::TokenKind Kind,Expr * Input)4740 Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
4741 tok::TokenKind Kind, Expr *Input) {
4742 UnaryOperatorKind Opc;
4743 switch (Kind) {
4744 default: llvm_unreachable("Unknown unary op!");
4745 case tok::plusplus: Opc = UO_PostInc; break;
4746 case tok::minusminus: Opc = UO_PostDec; break;
4747 }
4748
4749 // Since this might is a postfix expression, get rid of ParenListExprs.
4750 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input);
4751 if (Result.isInvalid()) return ExprError();
4752 Input = Result.get();
4753
4754 return BuildUnaryOp(S, OpLoc, Opc, Input);
4755 }
4756
4757 /// Diagnose if arithmetic on the given ObjC pointer is illegal.
4758 ///
4759 /// \return true on error
checkArithmeticOnObjCPointer(Sema & S,SourceLocation opLoc,Expr * op)4760 static bool checkArithmeticOnObjCPointer(Sema &S,
4761 SourceLocation opLoc,
4762 Expr *op) {
4763 assert(op->getType()->isObjCObjectPointerType());
4764 if (S.LangOpts.ObjCRuntime.allowsPointerArithmetic() &&
4765 !S.LangOpts.ObjCSubscriptingLegacyRuntime)
4766 return false;
4767
4768 S.Diag(opLoc, diag::err_arithmetic_nonfragile_interface)
4769 << op->getType()->castAs<ObjCObjectPointerType>()->getPointeeType()
4770 << op->getSourceRange();
4771 return true;
4772 }
4773
isMSPropertySubscriptExpr(Sema & S,Expr * Base)4774 static bool isMSPropertySubscriptExpr(Sema &S, Expr *Base) {
4775 auto *BaseNoParens = Base->IgnoreParens();
4776 if (auto *MSProp = dyn_cast<MSPropertyRefExpr>(BaseNoParens))
4777 return MSProp->getPropertyDecl()->getType()->isArrayType();
4778 return isa<MSPropertySubscriptExpr>(BaseNoParens);
4779 }
4780
4781 // Returns the type used for LHS[RHS], given one of LHS, RHS is type-dependent.
4782 // Typically this is DependentTy, but can sometimes be more precise.
4783 //
4784 // There are cases when we could determine a non-dependent type:
4785 // - LHS and RHS may have non-dependent types despite being type-dependent
4786 // (e.g. unbounded array static members of the current instantiation)
4787 // - one may be a dependent-sized array with known element type
4788 // - one may be a dependent-typed valid index (enum in current instantiation)
4789 //
4790 // We *always* return a dependent type, in such cases it is DependentTy.
4791 // This avoids creating type-dependent expressions with non-dependent types.
4792 // FIXME: is this important to avoid? See https://reviews.llvm.org/D107275
getDependentArraySubscriptType(Expr * LHS,Expr * RHS,const ASTContext & Ctx)4793 static QualType getDependentArraySubscriptType(Expr *LHS, Expr *RHS,
4794 const ASTContext &Ctx) {
4795 assert(LHS->isTypeDependent() || RHS->isTypeDependent());
4796 QualType LTy = LHS->getType(), RTy = RHS->getType();
4797 QualType Result = Ctx.DependentTy;
4798 if (RTy->isIntegralOrUnscopedEnumerationType()) {
4799 if (const PointerType *PT = LTy->getAs<PointerType>())
4800 Result = PT->getPointeeType();
4801 else if (const ArrayType *AT = LTy->getAsArrayTypeUnsafe())
4802 Result = AT->getElementType();
4803 } else if (LTy->isIntegralOrUnscopedEnumerationType()) {
4804 if (const PointerType *PT = RTy->getAs<PointerType>())
4805 Result = PT->getPointeeType();
4806 else if (const ArrayType *AT = RTy->getAsArrayTypeUnsafe())
4807 Result = AT->getElementType();
4808 }
4809 // Ensure we return a dependent type.
4810 return Result->isDependentType() ? Result : Ctx.DependentTy;
4811 }
4812
4813 static bool checkArgsForPlaceholders(Sema &S, MultiExprArg args);
4814
ActOnArraySubscriptExpr(Scope * S,Expr * base,SourceLocation lbLoc,MultiExprArg ArgExprs,SourceLocation rbLoc)4815 ExprResult Sema::ActOnArraySubscriptExpr(Scope *S, Expr *base,
4816 SourceLocation lbLoc,
4817 MultiExprArg ArgExprs,
4818 SourceLocation rbLoc) {
4819
4820 if (base && !base->getType().isNull() &&
4821 base->hasPlaceholderType(BuiltinType::OMPArraySection))
4822 return ActOnOMPArraySectionExpr(base, lbLoc, ArgExprs.front(), SourceLocation(),
4823 SourceLocation(), /*Length*/ nullptr,
4824 /*Stride=*/nullptr, rbLoc);
4825
4826 // Since this might be a postfix expression, get rid of ParenListExprs.
4827 if (isa<ParenListExpr>(base)) {
4828 ExprResult result = MaybeConvertParenListExprToParenExpr(S, base);
4829 if (result.isInvalid())
4830 return ExprError();
4831 base = result.get();
4832 }
4833
4834 // Check if base and idx form a MatrixSubscriptExpr.
4835 //
4836 // Helper to check for comma expressions, which are not allowed as indices for
4837 // matrix subscript expressions.
4838 auto CheckAndReportCommaError = [this, base, rbLoc](Expr *E) {
4839 if (isa<BinaryOperator>(E) && cast<BinaryOperator>(E)->isCommaOp()) {
4840 Diag(E->getExprLoc(), diag::err_matrix_subscript_comma)
4841 << SourceRange(base->getBeginLoc(), rbLoc);
4842 return true;
4843 }
4844 return false;
4845 };
4846 // The matrix subscript operator ([][])is considered a single operator.
4847 // Separating the index expressions by parenthesis is not allowed.
4848 if (base->hasPlaceholderType(BuiltinType::IncompleteMatrixIdx) &&
4849 !isa<MatrixSubscriptExpr>(base)) {
4850 Diag(base->getExprLoc(), diag::err_matrix_separate_incomplete_index)
4851 << SourceRange(base->getBeginLoc(), rbLoc);
4852 return ExprError();
4853 }
4854 // If the base is a MatrixSubscriptExpr, try to create a new
4855 // MatrixSubscriptExpr.
4856 auto *matSubscriptE = dyn_cast<MatrixSubscriptExpr>(base);
4857 if (matSubscriptE) {
4858 assert(ArgExprs.size() == 1);
4859 if (CheckAndReportCommaError(ArgExprs.front()))
4860 return ExprError();
4861
4862 assert(matSubscriptE->isIncomplete() &&
4863 "base has to be an incomplete matrix subscript");
4864 return CreateBuiltinMatrixSubscriptExpr(matSubscriptE->getBase(),
4865 matSubscriptE->getRowIdx(),
4866 ArgExprs.front(), rbLoc);
4867 }
4868
4869 // Handle any non-overload placeholder types in the base and index
4870 // expressions. We can't handle overloads here because the other
4871 // operand might be an overloadable type, in which case the overload
4872 // resolution for the operator overload should get the first crack
4873 // at the overload.
4874 bool IsMSPropertySubscript = false;
4875 if (base->getType()->isNonOverloadPlaceholderType()) {
4876 IsMSPropertySubscript = isMSPropertySubscriptExpr(*this, base);
4877 if (!IsMSPropertySubscript) {
4878 ExprResult result = CheckPlaceholderExpr(base);
4879 if (result.isInvalid())
4880 return ExprError();
4881 base = result.get();
4882 }
4883 }
4884
4885 // If the base is a matrix type, try to create a new MatrixSubscriptExpr.
4886 if (base->getType()->isMatrixType()) {
4887 assert(ArgExprs.size() == 1);
4888 if (CheckAndReportCommaError(ArgExprs.front()))
4889 return ExprError();
4890
4891 return CreateBuiltinMatrixSubscriptExpr(base, ArgExprs.front(), nullptr,
4892 rbLoc);
4893 }
4894
4895 if (ArgExprs.size() == 1 && getLangOpts().CPlusPlus20) {
4896 Expr *idx = ArgExprs[0];
4897 if ((isa<BinaryOperator>(idx) && cast<BinaryOperator>(idx)->isCommaOp()) ||
4898 (isa<CXXOperatorCallExpr>(idx) &&
4899 cast<CXXOperatorCallExpr>(idx)->getOperator() == OO_Comma)) {
4900 Diag(idx->getExprLoc(), diag::warn_deprecated_comma_subscript)
4901 << SourceRange(base->getBeginLoc(), rbLoc);
4902 }
4903 }
4904
4905 if (ArgExprs.size() == 1 &&
4906 ArgExprs[0]->getType()->isNonOverloadPlaceholderType()) {
4907 ExprResult result = CheckPlaceholderExpr(ArgExprs[0]);
4908 if (result.isInvalid())
4909 return ExprError();
4910 ArgExprs[0] = result.get();
4911 } else {
4912 if (checkArgsForPlaceholders(*this, ArgExprs))
4913 return ExprError();
4914 }
4915
4916 // Build an unanalyzed expression if either operand is type-dependent.
4917 if (getLangOpts().CPlusPlus && ArgExprs.size() == 1 &&
4918 (base->isTypeDependent() ||
4919 Expr::hasAnyTypeDependentArguments(ArgExprs))) {
4920 return new (Context) ArraySubscriptExpr(
4921 base, ArgExprs.front(),
4922 getDependentArraySubscriptType(base, ArgExprs.front(), getASTContext()),
4923 VK_LValue, OK_Ordinary, rbLoc);
4924 }
4925
4926 // MSDN, property (C++)
4927 // https://msdn.microsoft.com/en-us/library/yhfk0thd(v=vs.120).aspx
4928 // This attribute can also be used in the declaration of an empty array in a
4929 // class or structure definition. For example:
4930 // __declspec(property(get=GetX, put=PutX)) int x[];
4931 // The above statement indicates that x[] can be used with one or more array
4932 // indices. In this case, i=p->x[a][b] will be turned into i=p->GetX(a, b),
4933 // and p->x[a][b] = i will be turned into p->PutX(a, b, i);
4934 if (IsMSPropertySubscript) {
4935 assert(ArgExprs.size() == 1);
4936 // Build MS property subscript expression if base is MS property reference
4937 // or MS property subscript.
4938 return new (Context)
4939 MSPropertySubscriptExpr(base, ArgExprs.front(), Context.PseudoObjectTy,
4940 VK_LValue, OK_Ordinary, rbLoc);
4941 }
4942
4943 // Use C++ overloaded-operator rules if either operand has record
4944 // type. The spec says to do this if either type is *overloadable*,
4945 // but enum types can't declare subscript operators or conversion
4946 // operators, so there's nothing interesting for overload resolution
4947 // to do if there aren't any record types involved.
4948 //
4949 // ObjC pointers have their own subscripting logic that is not tied
4950 // to overload resolution and so should not take this path.
4951 if (getLangOpts().CPlusPlus && !base->getType()->isObjCObjectPointerType() &&
4952 ((base->getType()->isRecordType() ||
4953 (ArgExprs.size() != 1 || ArgExprs[0]->getType()->isRecordType())))) {
4954 return CreateOverloadedArraySubscriptExpr(lbLoc, rbLoc, base, ArgExprs);
4955 }
4956
4957 ExprResult Res =
4958 CreateBuiltinArraySubscriptExpr(base, lbLoc, ArgExprs.front(), rbLoc);
4959
4960 if (!Res.isInvalid() && isa<ArraySubscriptExpr>(Res.get()))
4961 CheckSubscriptAccessOfNoDeref(cast<ArraySubscriptExpr>(Res.get()));
4962
4963 return Res;
4964 }
4965
tryConvertExprToType(Expr * E,QualType Ty)4966 ExprResult Sema::tryConvertExprToType(Expr *E, QualType Ty) {
4967 InitializedEntity Entity = InitializedEntity::InitializeTemporary(Ty);
4968 InitializationKind Kind =
4969 InitializationKind::CreateCopy(E->getBeginLoc(), SourceLocation());
4970 InitializationSequence InitSeq(*this, Entity, Kind, E);
4971 return InitSeq.Perform(*this, Entity, Kind, E);
4972 }
4973
CreateBuiltinMatrixSubscriptExpr(Expr * Base,Expr * RowIdx,Expr * ColumnIdx,SourceLocation RBLoc)4974 ExprResult Sema::CreateBuiltinMatrixSubscriptExpr(Expr *Base, Expr *RowIdx,
4975 Expr *ColumnIdx,
4976 SourceLocation RBLoc) {
4977 ExprResult BaseR = CheckPlaceholderExpr(Base);
4978 if (BaseR.isInvalid())
4979 return BaseR;
4980 Base = BaseR.get();
4981
4982 ExprResult RowR = CheckPlaceholderExpr(RowIdx);
4983 if (RowR.isInvalid())
4984 return RowR;
4985 RowIdx = RowR.get();
4986
4987 if (!ColumnIdx)
4988 return new (Context) MatrixSubscriptExpr(
4989 Base, RowIdx, ColumnIdx, Context.IncompleteMatrixIdxTy, RBLoc);
4990
4991 // Build an unanalyzed expression if any of the operands is type-dependent.
4992 if (Base->isTypeDependent() || RowIdx->isTypeDependent() ||
4993 ColumnIdx->isTypeDependent())
4994 return new (Context) MatrixSubscriptExpr(Base, RowIdx, ColumnIdx,
4995 Context.DependentTy, RBLoc);
4996
4997 ExprResult ColumnR = CheckPlaceholderExpr(ColumnIdx);
4998 if (ColumnR.isInvalid())
4999 return ColumnR;
5000 ColumnIdx = ColumnR.get();
5001
5002 // Check that IndexExpr is an integer expression. If it is a constant
5003 // expression, check that it is less than Dim (= the number of elements in the
5004 // corresponding dimension).
5005 auto IsIndexValid = [&](Expr *IndexExpr, unsigned Dim,
5006 bool IsColumnIdx) -> Expr * {
5007 if (!IndexExpr->getType()->isIntegerType() &&
5008 !IndexExpr->isTypeDependent()) {
5009 Diag(IndexExpr->getBeginLoc(), diag::err_matrix_index_not_integer)
5010 << IsColumnIdx;
5011 return nullptr;
5012 }
5013
5014 if (Optional<llvm::APSInt> Idx =
5015 IndexExpr->getIntegerConstantExpr(Context)) {
5016 if ((*Idx < 0 || *Idx >= Dim)) {
5017 Diag(IndexExpr->getBeginLoc(), diag::err_matrix_index_outside_range)
5018 << IsColumnIdx << Dim;
5019 return nullptr;
5020 }
5021 }
5022
5023 ExprResult ConvExpr =
5024 tryConvertExprToType(IndexExpr, Context.getSizeType());
5025 assert(!ConvExpr.isInvalid() &&
5026 "should be able to convert any integer type to size type");
5027 return ConvExpr.get();
5028 };
5029
5030 auto *MTy = Base->getType()->getAs<ConstantMatrixType>();
5031 RowIdx = IsIndexValid(RowIdx, MTy->getNumRows(), false);
5032 ColumnIdx = IsIndexValid(ColumnIdx, MTy->getNumColumns(), true);
5033 if (!RowIdx || !ColumnIdx)
5034 return ExprError();
5035
5036 return new (Context) MatrixSubscriptExpr(Base, RowIdx, ColumnIdx,
5037 MTy->getElementType(), RBLoc);
5038 }
5039
CheckAddressOfNoDeref(const Expr * E)5040 void Sema::CheckAddressOfNoDeref(const Expr *E) {
5041 ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back();
5042 const Expr *StrippedExpr = E->IgnoreParenImpCasts();
5043
5044 // For expressions like `&(*s).b`, the base is recorded and what should be
5045 // checked.
5046 const MemberExpr *Member = nullptr;
5047 while ((Member = dyn_cast<MemberExpr>(StrippedExpr)) && !Member->isArrow())
5048 StrippedExpr = Member->getBase()->IgnoreParenImpCasts();
5049
5050 LastRecord.PossibleDerefs.erase(StrippedExpr);
5051 }
5052
CheckSubscriptAccessOfNoDeref(const ArraySubscriptExpr * E)5053 void Sema::CheckSubscriptAccessOfNoDeref(const ArraySubscriptExpr *E) {
5054 if (isUnevaluatedContext())
5055 return;
5056
5057 QualType ResultTy = E->getType();
5058 ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back();
5059
5060 // Bail if the element is an array since it is not memory access.
5061 if (isa<ArrayType>(ResultTy))
5062 return;
5063
5064 if (ResultTy->hasAttr(attr::NoDeref)) {
5065 LastRecord.PossibleDerefs.insert(E);
5066 return;
5067 }
5068
5069 // Check if the base type is a pointer to a member access of a struct
5070 // marked with noderef.
5071 const Expr *Base = E->getBase();
5072 QualType BaseTy = Base->getType();
5073 if (!(isa<ArrayType>(BaseTy) || isa<PointerType>(BaseTy)))
5074 // Not a pointer access
5075 return;
5076
5077 const MemberExpr *Member = nullptr;
5078 while ((Member = dyn_cast<MemberExpr>(Base->IgnoreParenCasts())) &&
5079 Member->isArrow())
5080 Base = Member->getBase();
5081
5082 if (const auto *Ptr = dyn_cast<PointerType>(Base->getType())) {
5083 if (Ptr->getPointeeType()->hasAttr(attr::NoDeref))
5084 LastRecord.PossibleDerefs.insert(E);
5085 }
5086 }
5087
ActOnOMPArraySectionExpr(Expr * Base,SourceLocation LBLoc,Expr * LowerBound,SourceLocation ColonLocFirst,SourceLocation ColonLocSecond,Expr * Length,Expr * Stride,SourceLocation RBLoc)5088 ExprResult Sema::ActOnOMPArraySectionExpr(Expr *Base, SourceLocation LBLoc,
5089 Expr *LowerBound,
5090 SourceLocation ColonLocFirst,
5091 SourceLocation ColonLocSecond,
5092 Expr *Length, Expr *Stride,
5093 SourceLocation RBLoc) {
5094 if (Base->hasPlaceholderType() &&
5095 !Base->hasPlaceholderType(BuiltinType::OMPArraySection)) {
5096 ExprResult Result = CheckPlaceholderExpr(Base);
5097 if (Result.isInvalid())
5098 return ExprError();
5099 Base = Result.get();
5100 }
5101 if (LowerBound && LowerBound->getType()->isNonOverloadPlaceholderType()) {
5102 ExprResult Result = CheckPlaceholderExpr(LowerBound);
5103 if (Result.isInvalid())
5104 return ExprError();
5105 Result = DefaultLvalueConversion(Result.get());
5106 if (Result.isInvalid())
5107 return ExprError();
5108 LowerBound = Result.get();
5109 }
5110 if (Length && Length->getType()->isNonOverloadPlaceholderType()) {
5111 ExprResult Result = CheckPlaceholderExpr(Length);
5112 if (Result.isInvalid())
5113 return ExprError();
5114 Result = DefaultLvalueConversion(Result.get());
5115 if (Result.isInvalid())
5116 return ExprError();
5117 Length = Result.get();
5118 }
5119 if (Stride && Stride->getType()->isNonOverloadPlaceholderType()) {
5120 ExprResult Result = CheckPlaceholderExpr(Stride);
5121 if (Result.isInvalid())
5122 return ExprError();
5123 Result = DefaultLvalueConversion(Result.get());
5124 if (Result.isInvalid())
5125 return ExprError();
5126 Stride = Result.get();
5127 }
5128
5129 // Build an unanalyzed expression if either operand is type-dependent.
5130 if (Base->isTypeDependent() ||
5131 (LowerBound &&
5132 (LowerBound->isTypeDependent() || LowerBound->isValueDependent())) ||
5133 (Length && (Length->isTypeDependent() || Length->isValueDependent())) ||
5134 (Stride && (Stride->isTypeDependent() || Stride->isValueDependent()))) {
5135 return new (Context) OMPArraySectionExpr(
5136 Base, LowerBound, Length, Stride, Context.DependentTy, VK_LValue,
5137 OK_Ordinary, ColonLocFirst, ColonLocSecond, RBLoc);
5138 }
5139
5140 // Perform default conversions.
5141 QualType OriginalTy = OMPArraySectionExpr::getBaseOriginalType(Base);
5142 QualType ResultTy;
5143 if (OriginalTy->isAnyPointerType()) {
5144 ResultTy = OriginalTy->getPointeeType();
5145 } else if (OriginalTy->isArrayType()) {
5146 ResultTy = OriginalTy->getAsArrayTypeUnsafe()->getElementType();
5147 } else {
5148 return ExprError(
5149 Diag(Base->getExprLoc(), diag::err_omp_typecheck_section_value)
5150 << Base->getSourceRange());
5151 }
5152 // C99 6.5.2.1p1
5153 if (LowerBound) {
5154 auto Res = PerformOpenMPImplicitIntegerConversion(LowerBound->getExprLoc(),
5155 LowerBound);
5156 if (Res.isInvalid())
5157 return ExprError(Diag(LowerBound->getExprLoc(),
5158 diag::err_omp_typecheck_section_not_integer)
5159 << 0 << LowerBound->getSourceRange());
5160 LowerBound = Res.get();
5161
5162 if (LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
5163 LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
5164 Diag(LowerBound->getExprLoc(), diag::warn_omp_section_is_char)
5165 << 0 << LowerBound->getSourceRange();
5166 }
5167 if (Length) {
5168 auto Res =
5169 PerformOpenMPImplicitIntegerConversion(Length->getExprLoc(), Length);
5170 if (Res.isInvalid())
5171 return ExprError(Diag(Length->getExprLoc(),
5172 diag::err_omp_typecheck_section_not_integer)
5173 << 1 << Length->getSourceRange());
5174 Length = Res.get();
5175
5176 if (Length->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
5177 Length->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
5178 Diag(Length->getExprLoc(), diag::warn_omp_section_is_char)
5179 << 1 << Length->getSourceRange();
5180 }
5181 if (Stride) {
5182 ExprResult Res =
5183 PerformOpenMPImplicitIntegerConversion(Stride->getExprLoc(), Stride);
5184 if (Res.isInvalid())
5185 return ExprError(Diag(Stride->getExprLoc(),
5186 diag::err_omp_typecheck_section_not_integer)
5187 << 1 << Stride->getSourceRange());
5188 Stride = Res.get();
5189
5190 if (Stride->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
5191 Stride->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
5192 Diag(Stride->getExprLoc(), diag::warn_omp_section_is_char)
5193 << 1 << Stride->getSourceRange();
5194 }
5195
5196 // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
5197 // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
5198 // type. Note that functions are not objects, and that (in C99 parlance)
5199 // incomplete types are not object types.
5200 if (ResultTy->isFunctionType()) {
5201 Diag(Base->getExprLoc(), diag::err_omp_section_function_type)
5202 << ResultTy << Base->getSourceRange();
5203 return ExprError();
5204 }
5205
5206 if (RequireCompleteType(Base->getExprLoc(), ResultTy,
5207 diag::err_omp_section_incomplete_type, Base))
5208 return ExprError();
5209
5210 if (LowerBound && !OriginalTy->isAnyPointerType()) {
5211 Expr::EvalResult Result;
5212 if (LowerBound->EvaluateAsInt(Result, Context)) {
5213 // OpenMP 5.0, [2.1.5 Array Sections]
5214 // The array section must be a subset of the original array.
5215 llvm::APSInt LowerBoundValue = Result.Val.getInt();
5216 if (LowerBoundValue.isNegative()) {
5217 Diag(LowerBound->getExprLoc(), diag::err_omp_section_not_subset_of_array)
5218 << LowerBound->getSourceRange();
5219 return ExprError();
5220 }
5221 }
5222 }
5223
5224 if (Length) {
5225 Expr::EvalResult Result;
5226 if (Length->EvaluateAsInt(Result, Context)) {
5227 // OpenMP 5.0, [2.1.5 Array Sections]
5228 // The length must evaluate to non-negative integers.
5229 llvm::APSInt LengthValue = Result.Val.getInt();
5230 if (LengthValue.isNegative()) {
5231 Diag(Length->getExprLoc(), diag::err_omp_section_length_negative)
5232 << toString(LengthValue, /*Radix=*/10, /*Signed=*/true)
5233 << Length->getSourceRange();
5234 return ExprError();
5235 }
5236 }
5237 } else if (ColonLocFirst.isValid() &&
5238 (OriginalTy.isNull() || (!OriginalTy->isConstantArrayType() &&
5239 !OriginalTy->isVariableArrayType()))) {
5240 // OpenMP 5.0, [2.1.5 Array Sections]
5241 // When the size of the array dimension is not known, the length must be
5242 // specified explicitly.
5243 Diag(ColonLocFirst, diag::err_omp_section_length_undefined)
5244 << (!OriginalTy.isNull() && OriginalTy->isArrayType());
5245 return ExprError();
5246 }
5247
5248 if (Stride) {
5249 Expr::EvalResult Result;
5250 if (Stride->EvaluateAsInt(Result, Context)) {
5251 // OpenMP 5.0, [2.1.5 Array Sections]
5252 // The stride must evaluate to a positive integer.
5253 llvm::APSInt StrideValue = Result.Val.getInt();
5254 if (!StrideValue.isStrictlyPositive()) {
5255 Diag(Stride->getExprLoc(), diag::err_omp_section_stride_non_positive)
5256 << toString(StrideValue, /*Radix=*/10, /*Signed=*/true)
5257 << Stride->getSourceRange();
5258 return ExprError();
5259 }
5260 }
5261 }
5262
5263 if (!Base->hasPlaceholderType(BuiltinType::OMPArraySection)) {
5264 ExprResult Result = DefaultFunctionArrayLvalueConversion(Base);
5265 if (Result.isInvalid())
5266 return ExprError();
5267 Base = Result.get();
5268 }
5269 return new (Context) OMPArraySectionExpr(
5270 Base, LowerBound, Length, Stride, Context.OMPArraySectionTy, VK_LValue,
5271 OK_Ordinary, ColonLocFirst, ColonLocSecond, RBLoc);
5272 }
5273
ActOnOMPArrayShapingExpr(Expr * Base,SourceLocation LParenLoc,SourceLocation RParenLoc,ArrayRef<Expr * > Dims,ArrayRef<SourceRange> Brackets)5274 ExprResult Sema::ActOnOMPArrayShapingExpr(Expr *Base, SourceLocation LParenLoc,
5275 SourceLocation RParenLoc,
5276 ArrayRef<Expr *> Dims,
5277 ArrayRef<SourceRange> Brackets) {
5278 if (Base->hasPlaceholderType()) {
5279 ExprResult Result = CheckPlaceholderExpr(Base);
5280 if (Result.isInvalid())
5281 return ExprError();
5282 Result = DefaultLvalueConversion(Result.get());
5283 if (Result.isInvalid())
5284 return ExprError();
5285 Base = Result.get();
5286 }
5287 QualType BaseTy = Base->getType();
5288 // Delay analysis of the types/expressions if instantiation/specialization is
5289 // required.
5290 if (!BaseTy->isPointerType() && Base->isTypeDependent())
5291 return OMPArrayShapingExpr::Create(Context, Context.DependentTy, Base,
5292 LParenLoc, RParenLoc, Dims, Brackets);
5293 if (!BaseTy->isPointerType() ||
5294 (!Base->isTypeDependent() &&
5295 BaseTy->getPointeeType()->isIncompleteType()))
5296 return ExprError(Diag(Base->getExprLoc(),
5297 diag::err_omp_non_pointer_type_array_shaping_base)
5298 << Base->getSourceRange());
5299
5300 SmallVector<Expr *, 4> NewDims;
5301 bool ErrorFound = false;
5302 for (Expr *Dim : Dims) {
5303 if (Dim->hasPlaceholderType()) {
5304 ExprResult Result = CheckPlaceholderExpr(Dim);
5305 if (Result.isInvalid()) {
5306 ErrorFound = true;
5307 continue;
5308 }
5309 Result = DefaultLvalueConversion(Result.get());
5310 if (Result.isInvalid()) {
5311 ErrorFound = true;
5312 continue;
5313 }
5314 Dim = Result.get();
5315 }
5316 if (!Dim->isTypeDependent()) {
5317 ExprResult Result =
5318 PerformOpenMPImplicitIntegerConversion(Dim->getExprLoc(), Dim);
5319 if (Result.isInvalid()) {
5320 ErrorFound = true;
5321 Diag(Dim->getExprLoc(), diag::err_omp_typecheck_shaping_not_integer)
5322 << Dim->getSourceRange();
5323 continue;
5324 }
5325 Dim = Result.get();
5326 Expr::EvalResult EvResult;
5327 if (!Dim->isValueDependent() && Dim->EvaluateAsInt(EvResult, Context)) {
5328 // OpenMP 5.0, [2.1.4 Array Shaping]
5329 // Each si is an integral type expression that must evaluate to a
5330 // positive integer.
5331 llvm::APSInt Value = EvResult.Val.getInt();
5332 if (!Value.isStrictlyPositive()) {
5333 Diag(Dim->getExprLoc(), diag::err_omp_shaping_dimension_not_positive)
5334 << toString(Value, /*Radix=*/10, /*Signed=*/true)
5335 << Dim->getSourceRange();
5336 ErrorFound = true;
5337 continue;
5338 }
5339 }
5340 }
5341 NewDims.push_back(Dim);
5342 }
5343 if (ErrorFound)
5344 return ExprError();
5345 return OMPArrayShapingExpr::Create(Context, Context.OMPArrayShapingTy, Base,
5346 LParenLoc, RParenLoc, NewDims, Brackets);
5347 }
5348
ActOnOMPIteratorExpr(Scope * S,SourceLocation IteratorKwLoc,SourceLocation LLoc,SourceLocation RLoc,ArrayRef<OMPIteratorData> Data)5349 ExprResult Sema::ActOnOMPIteratorExpr(Scope *S, SourceLocation IteratorKwLoc,
5350 SourceLocation LLoc, SourceLocation RLoc,
5351 ArrayRef<OMPIteratorData> Data) {
5352 SmallVector<OMPIteratorExpr::IteratorDefinition, 4> ID;
5353 bool IsCorrect = true;
5354 for (const OMPIteratorData &D : Data) {
5355 TypeSourceInfo *TInfo = nullptr;
5356 SourceLocation StartLoc;
5357 QualType DeclTy;
5358 if (!D.Type.getAsOpaquePtr()) {
5359 // OpenMP 5.0, 2.1.6 Iterators
5360 // In an iterator-specifier, if the iterator-type is not specified then
5361 // the type of that iterator is of int type.
5362 DeclTy = Context.IntTy;
5363 StartLoc = D.DeclIdentLoc;
5364 } else {
5365 DeclTy = GetTypeFromParser(D.Type, &TInfo);
5366 StartLoc = TInfo->getTypeLoc().getBeginLoc();
5367 }
5368
5369 bool IsDeclTyDependent = DeclTy->isDependentType() ||
5370 DeclTy->containsUnexpandedParameterPack() ||
5371 DeclTy->isInstantiationDependentType();
5372 if (!IsDeclTyDependent) {
5373 if (!DeclTy->isIntegralType(Context) && !DeclTy->isAnyPointerType()) {
5374 // OpenMP 5.0, 2.1.6 Iterators, Restrictions, C/C++
5375 // The iterator-type must be an integral or pointer type.
5376 Diag(StartLoc, diag::err_omp_iterator_not_integral_or_pointer)
5377 << DeclTy;
5378 IsCorrect = false;
5379 continue;
5380 }
5381 if (DeclTy.isConstant(Context)) {
5382 // OpenMP 5.0, 2.1.6 Iterators, Restrictions, C/C++
5383 // The iterator-type must not be const qualified.
5384 Diag(StartLoc, diag::err_omp_iterator_not_integral_or_pointer)
5385 << DeclTy;
5386 IsCorrect = false;
5387 continue;
5388 }
5389 }
5390
5391 // Iterator declaration.
5392 assert(D.DeclIdent && "Identifier expected.");
5393 // Always try to create iterator declarator to avoid extra error messages
5394 // about unknown declarations use.
5395 auto *VD = VarDecl::Create(Context, CurContext, StartLoc, D.DeclIdentLoc,
5396 D.DeclIdent, DeclTy, TInfo, SC_None);
5397 VD->setImplicit();
5398 if (S) {
5399 // Check for conflicting previous declaration.
5400 DeclarationNameInfo NameInfo(VD->getDeclName(), D.DeclIdentLoc);
5401 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
5402 ForVisibleRedeclaration);
5403 Previous.suppressDiagnostics();
5404 LookupName(Previous, S);
5405
5406 FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage=*/false,
5407 /*AllowInlineNamespace=*/false);
5408 if (!Previous.empty()) {
5409 NamedDecl *Old = Previous.getRepresentativeDecl();
5410 Diag(D.DeclIdentLoc, diag::err_redefinition) << VD->getDeclName();
5411 Diag(Old->getLocation(), diag::note_previous_definition);
5412 } else {
5413 PushOnScopeChains(VD, S);
5414 }
5415 } else {
5416 CurContext->addDecl(VD);
5417 }
5418 Expr *Begin = D.Range.Begin;
5419 if (!IsDeclTyDependent && Begin && !Begin->isTypeDependent()) {
5420 ExprResult BeginRes =
5421 PerformImplicitConversion(Begin, DeclTy, AA_Converting);
5422 Begin = BeginRes.get();
5423 }
5424 Expr *End = D.Range.End;
5425 if (!IsDeclTyDependent && End && !End->isTypeDependent()) {
5426 ExprResult EndRes = PerformImplicitConversion(End, DeclTy, AA_Converting);
5427 End = EndRes.get();
5428 }
5429 Expr *Step = D.Range.Step;
5430 if (!IsDeclTyDependent && Step && !Step->isTypeDependent()) {
5431 if (!Step->getType()->isIntegralType(Context)) {
5432 Diag(Step->getExprLoc(), diag::err_omp_iterator_step_not_integral)
5433 << Step << Step->getSourceRange();
5434 IsCorrect = false;
5435 continue;
5436 }
5437 Optional<llvm::APSInt> Result = Step->getIntegerConstantExpr(Context);
5438 // OpenMP 5.0, 2.1.6 Iterators, Restrictions
5439 // If the step expression of a range-specification equals zero, the
5440 // behavior is unspecified.
5441 if (Result && Result->isZero()) {
5442 Diag(Step->getExprLoc(), diag::err_omp_iterator_step_constant_zero)
5443 << Step << Step->getSourceRange();
5444 IsCorrect = false;
5445 continue;
5446 }
5447 }
5448 if (!Begin || !End || !IsCorrect) {
5449 IsCorrect = false;
5450 continue;
5451 }
5452 OMPIteratorExpr::IteratorDefinition &IDElem = ID.emplace_back();
5453 IDElem.IteratorDecl = VD;
5454 IDElem.AssignmentLoc = D.AssignLoc;
5455 IDElem.Range.Begin = Begin;
5456 IDElem.Range.End = End;
5457 IDElem.Range.Step = Step;
5458 IDElem.ColonLoc = D.ColonLoc;
5459 IDElem.SecondColonLoc = D.SecColonLoc;
5460 }
5461 if (!IsCorrect) {
5462 // Invalidate all created iterator declarations if error is found.
5463 for (const OMPIteratorExpr::IteratorDefinition &D : ID) {
5464 if (Decl *ID = D.IteratorDecl)
5465 ID->setInvalidDecl();
5466 }
5467 return ExprError();
5468 }
5469 SmallVector<OMPIteratorHelperData, 4> Helpers;
5470 if (!CurContext->isDependentContext()) {
5471 // Build number of ityeration for each iteration range.
5472 // Ni = ((Stepi > 0) ? ((Endi + Stepi -1 - Begini)/Stepi) :
5473 // ((Begini-Stepi-1-Endi) / -Stepi);
5474 for (OMPIteratorExpr::IteratorDefinition &D : ID) {
5475 // (Endi - Begini)
5476 ExprResult Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, D.Range.End,
5477 D.Range.Begin);
5478 if(!Res.isUsable()) {
5479 IsCorrect = false;
5480 continue;
5481 }
5482 ExprResult St, St1;
5483 if (D.Range.Step) {
5484 St = D.Range.Step;
5485 // (Endi - Begini) + Stepi
5486 Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, Res.get(), St.get());
5487 if (!Res.isUsable()) {
5488 IsCorrect = false;
5489 continue;
5490 }
5491 // (Endi - Begini) + Stepi - 1
5492 Res =
5493 CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, Res.get(),
5494 ActOnIntegerConstant(D.AssignmentLoc, 1).get());
5495 if (!Res.isUsable()) {
5496 IsCorrect = false;
5497 continue;
5498 }
5499 // ((Endi - Begini) + Stepi - 1) / Stepi
5500 Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Div, Res.get(), St.get());
5501 if (!Res.isUsable()) {
5502 IsCorrect = false;
5503 continue;
5504 }
5505 St1 = CreateBuiltinUnaryOp(D.AssignmentLoc, UO_Minus, D.Range.Step);
5506 // (Begini - Endi)
5507 ExprResult Res1 = CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub,
5508 D.Range.Begin, D.Range.End);
5509 if (!Res1.isUsable()) {
5510 IsCorrect = false;
5511 continue;
5512 }
5513 // (Begini - Endi) - Stepi
5514 Res1 =
5515 CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, Res1.get(), St1.get());
5516 if (!Res1.isUsable()) {
5517 IsCorrect = false;
5518 continue;
5519 }
5520 // (Begini - Endi) - Stepi - 1
5521 Res1 =
5522 CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, Res1.get(),
5523 ActOnIntegerConstant(D.AssignmentLoc, 1).get());
5524 if (!Res1.isUsable()) {
5525 IsCorrect = false;
5526 continue;
5527 }
5528 // ((Begini - Endi) - Stepi - 1) / (-Stepi)
5529 Res1 =
5530 CreateBuiltinBinOp(D.AssignmentLoc, BO_Div, Res1.get(), St1.get());
5531 if (!Res1.isUsable()) {
5532 IsCorrect = false;
5533 continue;
5534 }
5535 // Stepi > 0.
5536 ExprResult CmpRes =
5537 CreateBuiltinBinOp(D.AssignmentLoc, BO_GT, D.Range.Step,
5538 ActOnIntegerConstant(D.AssignmentLoc, 0).get());
5539 if (!CmpRes.isUsable()) {
5540 IsCorrect = false;
5541 continue;
5542 }
5543 Res = ActOnConditionalOp(D.AssignmentLoc, D.AssignmentLoc, CmpRes.get(),
5544 Res.get(), Res1.get());
5545 if (!Res.isUsable()) {
5546 IsCorrect = false;
5547 continue;
5548 }
5549 }
5550 Res = ActOnFinishFullExpr(Res.get(), /*DiscardedValue=*/false);
5551 if (!Res.isUsable()) {
5552 IsCorrect = false;
5553 continue;
5554 }
5555
5556 // Build counter update.
5557 // Build counter.
5558 auto *CounterVD =
5559 VarDecl::Create(Context, CurContext, D.IteratorDecl->getBeginLoc(),
5560 D.IteratorDecl->getBeginLoc(), nullptr,
5561 Res.get()->getType(), nullptr, SC_None);
5562 CounterVD->setImplicit();
5563 ExprResult RefRes =
5564 BuildDeclRefExpr(CounterVD, CounterVD->getType(), VK_LValue,
5565 D.IteratorDecl->getBeginLoc());
5566 // Build counter update.
5567 // I = Begini + counter * Stepi;
5568 ExprResult UpdateRes;
5569 if (D.Range.Step) {
5570 UpdateRes = CreateBuiltinBinOp(
5571 D.AssignmentLoc, BO_Mul,
5572 DefaultLvalueConversion(RefRes.get()).get(), St.get());
5573 } else {
5574 UpdateRes = DefaultLvalueConversion(RefRes.get());
5575 }
5576 if (!UpdateRes.isUsable()) {
5577 IsCorrect = false;
5578 continue;
5579 }
5580 UpdateRes = CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, D.Range.Begin,
5581 UpdateRes.get());
5582 if (!UpdateRes.isUsable()) {
5583 IsCorrect = false;
5584 continue;
5585 }
5586 ExprResult VDRes =
5587 BuildDeclRefExpr(cast<VarDecl>(D.IteratorDecl),
5588 cast<VarDecl>(D.IteratorDecl)->getType(), VK_LValue,
5589 D.IteratorDecl->getBeginLoc());
5590 UpdateRes = CreateBuiltinBinOp(D.AssignmentLoc, BO_Assign, VDRes.get(),
5591 UpdateRes.get());
5592 if (!UpdateRes.isUsable()) {
5593 IsCorrect = false;
5594 continue;
5595 }
5596 UpdateRes =
5597 ActOnFinishFullExpr(UpdateRes.get(), /*DiscardedValue=*/true);
5598 if (!UpdateRes.isUsable()) {
5599 IsCorrect = false;
5600 continue;
5601 }
5602 ExprResult CounterUpdateRes =
5603 CreateBuiltinUnaryOp(D.AssignmentLoc, UO_PreInc, RefRes.get());
5604 if (!CounterUpdateRes.isUsable()) {
5605 IsCorrect = false;
5606 continue;
5607 }
5608 CounterUpdateRes =
5609 ActOnFinishFullExpr(CounterUpdateRes.get(), /*DiscardedValue=*/true);
5610 if (!CounterUpdateRes.isUsable()) {
5611 IsCorrect = false;
5612 continue;
5613 }
5614 OMPIteratorHelperData &HD = Helpers.emplace_back();
5615 HD.CounterVD = CounterVD;
5616 HD.Upper = Res.get();
5617 HD.Update = UpdateRes.get();
5618 HD.CounterUpdate = CounterUpdateRes.get();
5619 }
5620 } else {
5621 Helpers.assign(ID.size(), {});
5622 }
5623 if (!IsCorrect) {
5624 // Invalidate all created iterator declarations if error is found.
5625 for (const OMPIteratorExpr::IteratorDefinition &D : ID) {
5626 if (Decl *ID = D.IteratorDecl)
5627 ID->setInvalidDecl();
5628 }
5629 return ExprError();
5630 }
5631 return OMPIteratorExpr::Create(Context, Context.OMPIteratorTy, IteratorKwLoc,
5632 LLoc, RLoc, ID, Helpers);
5633 }
5634
5635 ExprResult
CreateBuiltinArraySubscriptExpr(Expr * Base,SourceLocation LLoc,Expr * Idx,SourceLocation RLoc)5636 Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
5637 Expr *Idx, SourceLocation RLoc) {
5638 Expr *LHSExp = Base;
5639 Expr *RHSExp = Idx;
5640
5641 ExprValueKind VK = VK_LValue;
5642 ExprObjectKind OK = OK_Ordinary;
5643
5644 // Per C++ core issue 1213, the result is an xvalue if either operand is
5645 // a non-lvalue array, and an lvalue otherwise.
5646 if (getLangOpts().CPlusPlus11) {
5647 for (auto *Op : {LHSExp, RHSExp}) {
5648 Op = Op->IgnoreImplicit();
5649 if (Op->getType()->isArrayType() && !Op->isLValue())
5650 VK = VK_XValue;
5651 }
5652 }
5653
5654 // Perform default conversions.
5655 if (!LHSExp->getType()->getAs<VectorType>()) {
5656 ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
5657 if (Result.isInvalid())
5658 return ExprError();
5659 LHSExp = Result.get();
5660 }
5661 ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
5662 if (Result.isInvalid())
5663 return ExprError();
5664 RHSExp = Result.get();
5665
5666 QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
5667
5668 // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
5669 // to the expression *((e1)+(e2)). This means the array "Base" may actually be
5670 // in the subscript position. As a result, we need to derive the array base
5671 // and index from the expression types.
5672 Expr *BaseExpr, *IndexExpr;
5673 QualType ResultType;
5674 if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
5675 BaseExpr = LHSExp;
5676 IndexExpr = RHSExp;
5677 ResultType =
5678 getDependentArraySubscriptType(LHSExp, RHSExp, getASTContext());
5679 } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
5680 BaseExpr = LHSExp;
5681 IndexExpr = RHSExp;
5682 ResultType = PTy->getPointeeType();
5683 } else if (const ObjCObjectPointerType *PTy =
5684 LHSTy->getAs<ObjCObjectPointerType>()) {
5685 BaseExpr = LHSExp;
5686 IndexExpr = RHSExp;
5687
5688 // Use custom logic if this should be the pseudo-object subscript
5689 // expression.
5690 if (!LangOpts.isSubscriptPointerArithmetic())
5691 return BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr, nullptr,
5692 nullptr);
5693
5694 ResultType = PTy->getPointeeType();
5695 } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
5696 // Handle the uncommon case of "123[Ptr]".
5697 BaseExpr = RHSExp;
5698 IndexExpr = LHSExp;
5699 ResultType = PTy->getPointeeType();
5700 } else if (const ObjCObjectPointerType *PTy =
5701 RHSTy->getAs<ObjCObjectPointerType>()) {
5702 // Handle the uncommon case of "123[Ptr]".
5703 BaseExpr = RHSExp;
5704 IndexExpr = LHSExp;
5705 ResultType = PTy->getPointeeType();
5706 if (!LangOpts.isSubscriptPointerArithmetic()) {
5707 Diag(LLoc, diag::err_subscript_nonfragile_interface)
5708 << ResultType << BaseExpr->getSourceRange();
5709 return ExprError();
5710 }
5711 } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
5712 BaseExpr = LHSExp; // vectors: V[123]
5713 IndexExpr = RHSExp;
5714 // We apply C++ DR1213 to vector subscripting too.
5715 if (getLangOpts().CPlusPlus11 && LHSExp->isPRValue()) {
5716 ExprResult Materialized = TemporaryMaterializationConversion(LHSExp);
5717 if (Materialized.isInvalid())
5718 return ExprError();
5719 LHSExp = Materialized.get();
5720 }
5721 VK = LHSExp->getValueKind();
5722 if (VK != VK_PRValue)
5723 OK = OK_VectorComponent;
5724
5725 ResultType = VTy->getElementType();
5726 QualType BaseType = BaseExpr->getType();
5727 Qualifiers BaseQuals = BaseType.getQualifiers();
5728 Qualifiers MemberQuals = ResultType.getQualifiers();
5729 Qualifiers Combined = BaseQuals + MemberQuals;
5730 if (Combined != MemberQuals)
5731 ResultType = Context.getQualifiedType(ResultType, Combined);
5732 } else if (LHSTy->isBuiltinType() &&
5733 LHSTy->getAs<BuiltinType>()->isVLSTBuiltinType()) {
5734 const BuiltinType *BTy = LHSTy->getAs<BuiltinType>();
5735 if (BTy->isSVEBool())
5736 return ExprError(Diag(LLoc, diag::err_subscript_svbool_t)
5737 << LHSExp->getSourceRange() << RHSExp->getSourceRange());
5738
5739 BaseExpr = LHSExp;
5740 IndexExpr = RHSExp;
5741 if (getLangOpts().CPlusPlus11 && LHSExp->isPRValue()) {
5742 ExprResult Materialized = TemporaryMaterializationConversion(LHSExp);
5743 if (Materialized.isInvalid())
5744 return ExprError();
5745 LHSExp = Materialized.get();
5746 }
5747 VK = LHSExp->getValueKind();
5748 if (VK != VK_PRValue)
5749 OK = OK_VectorComponent;
5750
5751 ResultType = BTy->getSveEltType(Context);
5752
5753 QualType BaseType = BaseExpr->getType();
5754 Qualifiers BaseQuals = BaseType.getQualifiers();
5755 Qualifiers MemberQuals = ResultType.getQualifiers();
5756 Qualifiers Combined = BaseQuals + MemberQuals;
5757 if (Combined != MemberQuals)
5758 ResultType = Context.getQualifiedType(ResultType, Combined);
5759 } else if (LHSTy->isArrayType()) {
5760 // If we see an array that wasn't promoted by
5761 // DefaultFunctionArrayLvalueConversion, it must be an array that
5762 // wasn't promoted because of the C90 rule that doesn't
5763 // allow promoting non-lvalue arrays. Warn, then
5764 // force the promotion here.
5765 Diag(LHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue)
5766 << LHSExp->getSourceRange();
5767 LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
5768 CK_ArrayToPointerDecay).get();
5769 LHSTy = LHSExp->getType();
5770
5771 BaseExpr = LHSExp;
5772 IndexExpr = RHSExp;
5773 ResultType = LHSTy->castAs<PointerType>()->getPointeeType();
5774 } else if (RHSTy->isArrayType()) {
5775 // Same as previous, except for 123[f().a] case
5776 Diag(RHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue)
5777 << RHSExp->getSourceRange();
5778 RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
5779 CK_ArrayToPointerDecay).get();
5780 RHSTy = RHSExp->getType();
5781
5782 BaseExpr = RHSExp;
5783 IndexExpr = LHSExp;
5784 ResultType = RHSTy->castAs<PointerType>()->getPointeeType();
5785 } else {
5786 return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
5787 << LHSExp->getSourceRange() << RHSExp->getSourceRange());
5788 }
5789 // C99 6.5.2.1p1
5790 if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
5791 return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
5792 << IndexExpr->getSourceRange());
5793
5794 if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
5795 IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
5796 && !IndexExpr->isTypeDependent())
5797 Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
5798
5799 // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
5800 // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
5801 // type. Note that Functions are not objects, and that (in C99 parlance)
5802 // incomplete types are not object types.
5803 if (ResultType->isFunctionType()) {
5804 Diag(BaseExpr->getBeginLoc(), diag::err_subscript_function_type)
5805 << ResultType << BaseExpr->getSourceRange();
5806 return ExprError();
5807 }
5808
5809 if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) {
5810 // GNU extension: subscripting on pointer to void
5811 Diag(LLoc, diag::ext_gnu_subscript_void_type)
5812 << BaseExpr->getSourceRange();
5813
5814 // C forbids expressions of unqualified void type from being l-values.
5815 // See IsCForbiddenLValueType.
5816 if (!ResultType.hasQualifiers())
5817 VK = VK_PRValue;
5818 } else if (!ResultType->isDependentType() &&
5819 RequireCompleteSizedType(
5820 LLoc, ResultType,
5821 diag::err_subscript_incomplete_or_sizeless_type, BaseExpr))
5822 return ExprError();
5823
5824 assert(VK == VK_PRValue || LangOpts.CPlusPlus ||
5825 !ResultType.isCForbiddenLValueType());
5826
5827 if (LHSExp->IgnoreParenImpCasts()->getType()->isVariablyModifiedType() &&
5828 FunctionScopes.size() > 1) {
5829 if (auto *TT =
5830 LHSExp->IgnoreParenImpCasts()->getType()->getAs<TypedefType>()) {
5831 for (auto I = FunctionScopes.rbegin(),
5832 E = std::prev(FunctionScopes.rend());
5833 I != E; ++I) {
5834 auto *CSI = dyn_cast<CapturingScopeInfo>(*I);
5835 if (CSI == nullptr)
5836 break;
5837 DeclContext *DC = nullptr;
5838 if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI))
5839 DC = LSI->CallOperator;
5840 else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI))
5841 DC = CRSI->TheCapturedDecl;
5842 else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI))
5843 DC = BSI->TheDecl;
5844 if (DC) {
5845 if (DC->containsDecl(TT->getDecl()))
5846 break;
5847 captureVariablyModifiedType(
5848 Context, LHSExp->IgnoreParenImpCasts()->getType(), CSI);
5849 }
5850 }
5851 }
5852 }
5853
5854 return new (Context)
5855 ArraySubscriptExpr(LHSExp, RHSExp, ResultType, VK, OK, RLoc);
5856 }
5857
CheckCXXDefaultArgExpr(SourceLocation CallLoc,FunctionDecl * FD,ParmVarDecl * Param)5858 bool Sema::CheckCXXDefaultArgExpr(SourceLocation CallLoc, FunctionDecl *FD,
5859 ParmVarDecl *Param) {
5860 if (Param->hasUnparsedDefaultArg()) {
5861 // If we've already cleared out the location for the default argument,
5862 // that means we're parsing it right now.
5863 if (!UnparsedDefaultArgLocs.count(Param)) {
5864 Diag(Param->getBeginLoc(), diag::err_recursive_default_argument) << FD;
5865 Diag(CallLoc, diag::note_recursive_default_argument_used_here);
5866 Param->setInvalidDecl();
5867 return true;
5868 }
5869
5870 Diag(CallLoc, diag::err_use_of_default_argument_to_function_declared_later)
5871 << FD << cast<CXXRecordDecl>(FD->getDeclContext());
5872 Diag(UnparsedDefaultArgLocs[Param],
5873 diag::note_default_argument_declared_here);
5874 return true;
5875 }
5876
5877 if (Param->hasUninstantiatedDefaultArg() &&
5878 InstantiateDefaultArgument(CallLoc, FD, Param))
5879 return true;
5880
5881 assert(Param->hasInit() && "default argument but no initializer?");
5882
5883 // If the default expression creates temporaries, we need to
5884 // push them to the current stack of expression temporaries so they'll
5885 // be properly destroyed.
5886 // FIXME: We should really be rebuilding the default argument with new
5887 // bound temporaries; see the comment in PR5810.
5888 // We don't need to do that with block decls, though, because
5889 // blocks in default argument expression can never capture anything.
5890 if (auto Init = dyn_cast<ExprWithCleanups>(Param->getInit())) {
5891 // Set the "needs cleanups" bit regardless of whether there are
5892 // any explicit objects.
5893 Cleanup.setExprNeedsCleanups(Init->cleanupsHaveSideEffects());
5894
5895 // Append all the objects to the cleanup list. Right now, this
5896 // should always be a no-op, because blocks in default argument
5897 // expressions should never be able to capture anything.
5898 assert(!Init->getNumObjects() &&
5899 "default argument expression has capturing blocks?");
5900 }
5901
5902 // We already type-checked the argument, so we know it works.
5903 // Just mark all of the declarations in this potentially-evaluated expression
5904 // as being "referenced".
5905 EnterExpressionEvaluationContext EvalContext(
5906 *this, ExpressionEvaluationContext::PotentiallyEvaluated, Param);
5907 MarkDeclarationsReferencedInExpr(Param->getDefaultArg(),
5908 /*SkipLocalVariables=*/true);
5909 return false;
5910 }
5911
BuildCXXDefaultArgExpr(SourceLocation CallLoc,FunctionDecl * FD,ParmVarDecl * Param)5912 ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
5913 FunctionDecl *FD, ParmVarDecl *Param) {
5914 assert(Param->hasDefaultArg() && "can't build nonexistent default arg");
5915 if (CheckCXXDefaultArgExpr(CallLoc, FD, Param))
5916 return ExprError();
5917 return CXXDefaultArgExpr::Create(Context, CallLoc, Param, CurContext);
5918 }
5919
5920 Sema::VariadicCallType
getVariadicCallType(FunctionDecl * FDecl,const FunctionProtoType * Proto,Expr * Fn)5921 Sema::getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto,
5922 Expr *Fn) {
5923 if (Proto && Proto->isVariadic()) {
5924 if (isa_and_nonnull<CXXConstructorDecl>(FDecl))
5925 return VariadicConstructor;
5926 else if (Fn && Fn->getType()->isBlockPointerType())
5927 return VariadicBlock;
5928 else if (FDecl) {
5929 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
5930 if (Method->isInstance())
5931 return VariadicMethod;
5932 } else if (Fn && Fn->getType() == Context.BoundMemberTy)
5933 return VariadicMethod;
5934 return VariadicFunction;
5935 }
5936 return VariadicDoesNotApply;
5937 }
5938
5939 namespace {
5940 class FunctionCallCCC final : public FunctionCallFilterCCC {
5941 public:
FunctionCallCCC(Sema & SemaRef,const IdentifierInfo * FuncName,unsigned NumArgs,MemberExpr * ME)5942 FunctionCallCCC(Sema &SemaRef, const IdentifierInfo *FuncName,
5943 unsigned NumArgs, MemberExpr *ME)
5944 : FunctionCallFilterCCC(SemaRef, NumArgs, false, ME),
5945 FunctionName(FuncName) {}
5946
ValidateCandidate(const TypoCorrection & candidate)5947 bool ValidateCandidate(const TypoCorrection &candidate) override {
5948 if (!candidate.getCorrectionSpecifier() ||
5949 candidate.getCorrectionAsIdentifierInfo() != FunctionName) {
5950 return false;
5951 }
5952
5953 return FunctionCallFilterCCC::ValidateCandidate(candidate);
5954 }
5955
clone()5956 std::unique_ptr<CorrectionCandidateCallback> clone() override {
5957 return std::make_unique<FunctionCallCCC>(*this);
5958 }
5959
5960 private:
5961 const IdentifierInfo *const FunctionName;
5962 };
5963 }
5964
TryTypoCorrectionForCall(Sema & S,Expr * Fn,FunctionDecl * FDecl,ArrayRef<Expr * > Args)5965 static TypoCorrection TryTypoCorrectionForCall(Sema &S, Expr *Fn,
5966 FunctionDecl *FDecl,
5967 ArrayRef<Expr *> Args) {
5968 MemberExpr *ME = dyn_cast<MemberExpr>(Fn);
5969 DeclarationName FuncName = FDecl->getDeclName();
5970 SourceLocation NameLoc = ME ? ME->getMemberLoc() : Fn->getBeginLoc();
5971
5972 FunctionCallCCC CCC(S, FuncName.getAsIdentifierInfo(), Args.size(), ME);
5973 if (TypoCorrection Corrected = S.CorrectTypo(
5974 DeclarationNameInfo(FuncName, NameLoc), Sema::LookupOrdinaryName,
5975 S.getScopeForContext(S.CurContext), nullptr, CCC,
5976 Sema::CTK_ErrorRecovery)) {
5977 if (NamedDecl *ND = Corrected.getFoundDecl()) {
5978 if (Corrected.isOverloaded()) {
5979 OverloadCandidateSet OCS(NameLoc, OverloadCandidateSet::CSK_Normal);
5980 OverloadCandidateSet::iterator Best;
5981 for (NamedDecl *CD : Corrected) {
5982 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
5983 S.AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none), Args,
5984 OCS);
5985 }
5986 switch (OCS.BestViableFunction(S, NameLoc, Best)) {
5987 case OR_Success:
5988 ND = Best->FoundDecl;
5989 Corrected.setCorrectionDecl(ND);
5990 break;
5991 default:
5992 break;
5993 }
5994 }
5995 ND = ND->getUnderlyingDecl();
5996 if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND))
5997 return Corrected;
5998 }
5999 }
6000 return TypoCorrection();
6001 }
6002
6003 /// ConvertArgumentsForCall - Converts the arguments specified in
6004 /// Args/NumArgs to the parameter types of the function FDecl with
6005 /// function prototype Proto. Call is the call expression itself, and
6006 /// Fn is the function expression. For a C++ member function, this
6007 /// routine does not attempt to convert the object argument. Returns
6008 /// true if the call is ill-formed.
6009 bool
ConvertArgumentsForCall(CallExpr * Call,Expr * Fn,FunctionDecl * FDecl,const FunctionProtoType * Proto,ArrayRef<Expr * > Args,SourceLocation RParenLoc,bool IsExecConfig)6010 Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
6011 FunctionDecl *FDecl,
6012 const FunctionProtoType *Proto,
6013 ArrayRef<Expr *> Args,
6014 SourceLocation RParenLoc,
6015 bool IsExecConfig) {
6016 // Bail out early if calling a builtin with custom typechecking.
6017 if (FDecl)
6018 if (unsigned ID = FDecl->getBuiltinID())
6019 if (Context.BuiltinInfo.hasCustomTypechecking(ID))
6020 return false;
6021
6022 // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
6023 // assignment, to the types of the corresponding parameter, ...
6024 unsigned NumParams = Proto->getNumParams();
6025 bool Invalid = false;
6026 unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumParams;
6027 unsigned FnKind = Fn->getType()->isBlockPointerType()
6028 ? 1 /* block */
6029 : (IsExecConfig ? 3 /* kernel function (exec config) */
6030 : 0 /* function */);
6031
6032 // If too few arguments are available (and we don't have default
6033 // arguments for the remaining parameters), don't make the call.
6034 if (Args.size() < NumParams) {
6035 if (Args.size() < MinArgs) {
6036 TypoCorrection TC;
6037 if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
6038 unsigned diag_id =
6039 MinArgs == NumParams && !Proto->isVariadic()
6040 ? diag::err_typecheck_call_too_few_args_suggest
6041 : diag::err_typecheck_call_too_few_args_at_least_suggest;
6042 diagnoseTypo(TC, PDiag(diag_id) << FnKind << MinArgs
6043 << static_cast<unsigned>(Args.size())
6044 << TC.getCorrectionRange());
6045 } else if (MinArgs == 1 && FDecl && FDecl->getParamDecl(0)->getDeclName())
6046 Diag(RParenLoc,
6047 MinArgs == NumParams && !Proto->isVariadic()
6048 ? diag::err_typecheck_call_too_few_args_one
6049 : diag::err_typecheck_call_too_few_args_at_least_one)
6050 << FnKind << FDecl->getParamDecl(0) << Fn->getSourceRange();
6051 else
6052 Diag(RParenLoc, MinArgs == NumParams && !Proto->isVariadic()
6053 ? diag::err_typecheck_call_too_few_args
6054 : diag::err_typecheck_call_too_few_args_at_least)
6055 << FnKind << MinArgs << static_cast<unsigned>(Args.size())
6056 << Fn->getSourceRange();
6057
6058 // Emit the location of the prototype.
6059 if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
6060 Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl;
6061
6062 return true;
6063 }
6064 // We reserve space for the default arguments when we create
6065 // the call expression, before calling ConvertArgumentsForCall.
6066 assert((Call->getNumArgs() == NumParams) &&
6067 "We should have reserved space for the default arguments before!");
6068 }
6069
6070 // If too many are passed and not variadic, error on the extras and drop
6071 // them.
6072 if (Args.size() > NumParams) {
6073 if (!Proto->isVariadic()) {
6074 TypoCorrection TC;
6075 if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
6076 unsigned diag_id =
6077 MinArgs == NumParams && !Proto->isVariadic()
6078 ? diag::err_typecheck_call_too_many_args_suggest
6079 : diag::err_typecheck_call_too_many_args_at_most_suggest;
6080 diagnoseTypo(TC, PDiag(diag_id) << FnKind << NumParams
6081 << static_cast<unsigned>(Args.size())
6082 << TC.getCorrectionRange());
6083 } else if (NumParams == 1 && FDecl &&
6084 FDecl->getParamDecl(0)->getDeclName())
6085 Diag(Args[NumParams]->getBeginLoc(),
6086 MinArgs == NumParams
6087 ? diag::err_typecheck_call_too_many_args_one
6088 : diag::err_typecheck_call_too_many_args_at_most_one)
6089 << FnKind << FDecl->getParamDecl(0)
6090 << static_cast<unsigned>(Args.size()) << Fn->getSourceRange()
6091 << SourceRange(Args[NumParams]->getBeginLoc(),
6092 Args.back()->getEndLoc());
6093 else
6094 Diag(Args[NumParams]->getBeginLoc(),
6095 MinArgs == NumParams
6096 ? diag::err_typecheck_call_too_many_args
6097 : diag::err_typecheck_call_too_many_args_at_most)
6098 << FnKind << NumParams << static_cast<unsigned>(Args.size())
6099 << Fn->getSourceRange()
6100 << SourceRange(Args[NumParams]->getBeginLoc(),
6101 Args.back()->getEndLoc());
6102
6103 // Emit the location of the prototype.
6104 if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
6105 Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl;
6106
6107 // This deletes the extra arguments.
6108 Call->shrinkNumArgs(NumParams);
6109 return true;
6110 }
6111 }
6112 SmallVector<Expr *, 8> AllArgs;
6113 VariadicCallType CallType = getVariadicCallType(FDecl, Proto, Fn);
6114
6115 Invalid = GatherArgumentsForCall(Call->getBeginLoc(), FDecl, Proto, 0, Args,
6116 AllArgs, CallType);
6117 if (Invalid)
6118 return true;
6119 unsigned TotalNumArgs = AllArgs.size();
6120 for (unsigned i = 0; i < TotalNumArgs; ++i)
6121 Call->setArg(i, AllArgs[i]);
6122
6123 Call->computeDependence();
6124 return false;
6125 }
6126
GatherArgumentsForCall(SourceLocation CallLoc,FunctionDecl * FDecl,const FunctionProtoType * Proto,unsigned FirstParam,ArrayRef<Expr * > Args,SmallVectorImpl<Expr * > & AllArgs,VariadicCallType CallType,bool AllowExplicit,bool IsListInitialization)6127 bool Sema::GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl,
6128 const FunctionProtoType *Proto,
6129 unsigned FirstParam, ArrayRef<Expr *> Args,
6130 SmallVectorImpl<Expr *> &AllArgs,
6131 VariadicCallType CallType, bool AllowExplicit,
6132 bool IsListInitialization) {
6133 unsigned NumParams = Proto->getNumParams();
6134 bool Invalid = false;
6135 size_t ArgIx = 0;
6136 // Continue to check argument types (even if we have too few/many args).
6137 for (unsigned i = FirstParam; i < NumParams; i++) {
6138 QualType ProtoArgType = Proto->getParamType(i);
6139
6140 Expr *Arg;
6141 ParmVarDecl *Param = FDecl ? FDecl->getParamDecl(i) : nullptr;
6142 if (ArgIx < Args.size()) {
6143 Arg = Args[ArgIx++];
6144
6145 if (RequireCompleteType(Arg->getBeginLoc(), ProtoArgType,
6146 diag::err_call_incomplete_argument, Arg))
6147 return true;
6148
6149 // Strip the unbridged-cast placeholder expression off, if applicable.
6150 bool CFAudited = false;
6151 if (Arg->getType() == Context.ARCUnbridgedCastTy &&
6152 FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
6153 (!Param || !Param->hasAttr<CFConsumedAttr>()))
6154 Arg = stripARCUnbridgedCast(Arg);
6155 else if (getLangOpts().ObjCAutoRefCount &&
6156 FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
6157 (!Param || !Param->hasAttr<CFConsumedAttr>()))
6158 CFAudited = true;
6159
6160 if (Proto->getExtParameterInfo(i).isNoEscape() &&
6161 ProtoArgType->isBlockPointerType())
6162 if (auto *BE = dyn_cast<BlockExpr>(Arg->IgnoreParenNoopCasts(Context)))
6163 BE->getBlockDecl()->setDoesNotEscape();
6164
6165 InitializedEntity Entity =
6166 Param ? InitializedEntity::InitializeParameter(Context, Param,
6167 ProtoArgType)
6168 : InitializedEntity::InitializeParameter(
6169 Context, ProtoArgType, Proto->isParamConsumed(i));
6170
6171 // Remember that parameter belongs to a CF audited API.
6172 if (CFAudited)
6173 Entity.setParameterCFAudited();
6174
6175 ExprResult ArgE = PerformCopyInitialization(
6176 Entity, SourceLocation(), Arg, IsListInitialization, AllowExplicit);
6177 if (ArgE.isInvalid())
6178 return true;
6179
6180 Arg = ArgE.getAs<Expr>();
6181 } else {
6182 assert(Param && "can't use default arguments without a known callee");
6183
6184 ExprResult ArgExpr = BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
6185 if (ArgExpr.isInvalid())
6186 return true;
6187
6188 Arg = ArgExpr.getAs<Expr>();
6189 }
6190
6191 // Check for array bounds violations for each argument to the call. This
6192 // check only triggers warnings when the argument isn't a more complex Expr
6193 // with its own checking, such as a BinaryOperator.
6194 CheckArrayAccess(Arg);
6195
6196 // Check for violations of C99 static array rules (C99 6.7.5.3p7).
6197 CheckStaticArrayArgument(CallLoc, Param, Arg);
6198
6199 AllArgs.push_back(Arg);
6200 }
6201
6202 // If this is a variadic call, handle args passed through "...".
6203 if (CallType != VariadicDoesNotApply) {
6204 // Assume that extern "C" functions with variadic arguments that
6205 // return __unknown_anytype aren't *really* variadic.
6206 if (Proto->getReturnType() == Context.UnknownAnyTy && FDecl &&
6207 FDecl->isExternC()) {
6208 for (Expr *A : Args.slice(ArgIx)) {
6209 QualType paramType; // ignored
6210 ExprResult arg = checkUnknownAnyArg(CallLoc, A, paramType);
6211 Invalid |= arg.isInvalid();
6212 AllArgs.push_back(arg.get());
6213 }
6214
6215 // Otherwise do argument promotion, (C99 6.5.2.2p7).
6216 } else {
6217 for (Expr *A : Args.slice(ArgIx)) {
6218 ExprResult Arg = DefaultVariadicArgumentPromotion(A, CallType, FDecl);
6219 Invalid |= Arg.isInvalid();
6220 AllArgs.push_back(Arg.get());
6221 }
6222 }
6223
6224 // Check for array bounds violations.
6225 for (Expr *A : Args.slice(ArgIx))
6226 CheckArrayAccess(A);
6227 }
6228 return Invalid;
6229 }
6230
DiagnoseCalleeStaticArrayParam(Sema & S,ParmVarDecl * PVD)6231 static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) {
6232 TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc();
6233 if (DecayedTypeLoc DTL = TL.getAs<DecayedTypeLoc>())
6234 TL = DTL.getOriginalLoc();
6235 if (ArrayTypeLoc ATL = TL.getAs<ArrayTypeLoc>())
6236 S.Diag(PVD->getLocation(), diag::note_callee_static_array)
6237 << ATL.getLocalSourceRange();
6238 }
6239
6240 /// CheckStaticArrayArgument - If the given argument corresponds to a static
6241 /// array parameter, check that it is non-null, and that if it is formed by
6242 /// array-to-pointer decay, the underlying array is sufficiently large.
6243 ///
6244 /// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the
6245 /// array type derivation, then for each call to the function, the value of the
6246 /// corresponding actual argument shall provide access to the first element of
6247 /// an array with at least as many elements as specified by the size expression.
6248 void
CheckStaticArrayArgument(SourceLocation CallLoc,ParmVarDecl * Param,const Expr * ArgExpr)6249 Sema::CheckStaticArrayArgument(SourceLocation CallLoc,
6250 ParmVarDecl *Param,
6251 const Expr *ArgExpr) {
6252 // Static array parameters are not supported in C++.
6253 if (!Param || getLangOpts().CPlusPlus)
6254 return;
6255
6256 QualType OrigTy = Param->getOriginalType();
6257
6258 const ArrayType *AT = Context.getAsArrayType(OrigTy);
6259 if (!AT || AT->getSizeModifier() != ArrayType::Static)
6260 return;
6261
6262 if (ArgExpr->isNullPointerConstant(Context,
6263 Expr::NPC_NeverValueDependent)) {
6264 Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
6265 DiagnoseCalleeStaticArrayParam(*this, Param);
6266 return;
6267 }
6268
6269 const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT);
6270 if (!CAT)
6271 return;
6272
6273 const ConstantArrayType *ArgCAT =
6274 Context.getAsConstantArrayType(ArgExpr->IgnoreParenCasts()->getType());
6275 if (!ArgCAT)
6276 return;
6277
6278 if (getASTContext().hasSameUnqualifiedType(CAT->getElementType(),
6279 ArgCAT->getElementType())) {
6280 if (ArgCAT->getSize().ult(CAT->getSize())) {
6281 Diag(CallLoc, diag::warn_static_array_too_small)
6282 << ArgExpr->getSourceRange()
6283 << (unsigned)ArgCAT->getSize().getZExtValue()
6284 << (unsigned)CAT->getSize().getZExtValue() << 0;
6285 DiagnoseCalleeStaticArrayParam(*this, Param);
6286 }
6287 return;
6288 }
6289
6290 Optional<CharUnits> ArgSize =
6291 getASTContext().getTypeSizeInCharsIfKnown(ArgCAT);
6292 Optional<CharUnits> ParmSize = getASTContext().getTypeSizeInCharsIfKnown(CAT);
6293 if (ArgSize && ParmSize && *ArgSize < *ParmSize) {
6294 Diag(CallLoc, diag::warn_static_array_too_small)
6295 << ArgExpr->getSourceRange() << (unsigned)ArgSize->getQuantity()
6296 << (unsigned)ParmSize->getQuantity() << 1;
6297 DiagnoseCalleeStaticArrayParam(*this, Param);
6298 }
6299 }
6300
6301 /// Given a function expression of unknown-any type, try to rebuild it
6302 /// to have a function type.
6303 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
6304
6305 /// Is the given type a placeholder that we need to lower out
6306 /// immediately during argument processing?
isPlaceholderToRemoveAsArg(QualType type)6307 static bool isPlaceholderToRemoveAsArg(QualType type) {
6308 // Placeholders are never sugared.
6309 const BuiltinType *placeholder = dyn_cast<BuiltinType>(type);
6310 if (!placeholder) return false;
6311
6312 switch (placeholder->getKind()) {
6313 // Ignore all the non-placeholder types.
6314 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
6315 case BuiltinType::Id:
6316 #include "clang/Basic/OpenCLImageTypes.def"
6317 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
6318 case BuiltinType::Id:
6319 #include "clang/Basic/OpenCLExtensionTypes.def"
6320 // In practice we'll never use this, since all SVE types are sugared
6321 // via TypedefTypes rather than exposed directly as BuiltinTypes.
6322 #define SVE_TYPE(Name, Id, SingletonId) \
6323 case BuiltinType::Id:
6324 #include "clang/Basic/AArch64SVEACLETypes.def"
6325 #define PPC_VECTOR_TYPE(Name, Id, Size) \
6326 case BuiltinType::Id:
6327 #include "clang/Basic/PPCTypes.def"
6328 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
6329 #include "clang/Basic/RISCVVTypes.def"
6330 #define PLACEHOLDER_TYPE(ID, SINGLETON_ID)
6331 #define BUILTIN_TYPE(ID, SINGLETON_ID) case BuiltinType::ID:
6332 #include "clang/AST/BuiltinTypes.def"
6333 return false;
6334
6335 // We cannot lower out overload sets; they might validly be resolved
6336 // by the call machinery.
6337 case BuiltinType::Overload:
6338 return false;
6339
6340 // Unbridged casts in ARC can be handled in some call positions and
6341 // should be left in place.
6342 case BuiltinType::ARCUnbridgedCast:
6343 return false;
6344
6345 // Pseudo-objects should be converted as soon as possible.
6346 case BuiltinType::PseudoObject:
6347 return true;
6348
6349 // The debugger mode could theoretically but currently does not try
6350 // to resolve unknown-typed arguments based on known parameter types.
6351 case BuiltinType::UnknownAny:
6352 return true;
6353
6354 // These are always invalid as call arguments and should be reported.
6355 case BuiltinType::BoundMember:
6356 case BuiltinType::BuiltinFn:
6357 case BuiltinType::IncompleteMatrixIdx:
6358 case BuiltinType::OMPArraySection:
6359 case BuiltinType::OMPArrayShaping:
6360 case BuiltinType::OMPIterator:
6361 return true;
6362
6363 }
6364 llvm_unreachable("bad builtin type kind");
6365 }
6366
6367 /// Check an argument list for placeholders that we won't try to
6368 /// handle later.
checkArgsForPlaceholders(Sema & S,MultiExprArg args)6369 static bool checkArgsForPlaceholders(Sema &S, MultiExprArg args) {
6370 // Apply this processing to all the arguments at once instead of
6371 // dying at the first failure.
6372 bool hasInvalid = false;
6373 for (size_t i = 0, e = args.size(); i != e; i++) {
6374 if (isPlaceholderToRemoveAsArg(args[i]->getType())) {
6375 ExprResult result = S.CheckPlaceholderExpr(args[i]);
6376 if (result.isInvalid()) hasInvalid = true;
6377 else args[i] = result.get();
6378 }
6379 }
6380 return hasInvalid;
6381 }
6382
6383 /// If a builtin function has a pointer argument with no explicit address
6384 /// space, then it should be able to accept a pointer to any address
6385 /// space as input. In order to do this, we need to replace the
6386 /// standard builtin declaration with one that uses the same address space
6387 /// as the call.
6388 ///
6389 /// \returns nullptr If this builtin is not a candidate for a rewrite i.e.
6390 /// it does not contain any pointer arguments without
6391 /// an address space qualifer. Otherwise the rewritten
6392 /// FunctionDecl is returned.
6393 /// TODO: Handle pointer return types.
rewriteBuiltinFunctionDecl(Sema * Sema,ASTContext & Context,FunctionDecl * FDecl,MultiExprArg ArgExprs)6394 static FunctionDecl *rewriteBuiltinFunctionDecl(Sema *Sema, ASTContext &Context,
6395 FunctionDecl *FDecl,
6396 MultiExprArg ArgExprs) {
6397
6398 QualType DeclType = FDecl->getType();
6399 const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(DeclType);
6400
6401 if (!Context.BuiltinInfo.hasPtrArgsOrResult(FDecl->getBuiltinID()) || !FT ||
6402 ArgExprs.size() < FT->getNumParams())
6403 return nullptr;
6404
6405 bool NeedsNewDecl = false;
6406 unsigned i = 0;
6407 SmallVector<QualType, 8> OverloadParams;
6408
6409 for (QualType ParamType : FT->param_types()) {
6410
6411 // Convert array arguments to pointer to simplify type lookup.
6412 ExprResult ArgRes =
6413 Sema->DefaultFunctionArrayLvalueConversion(ArgExprs[i++]);
6414 if (ArgRes.isInvalid())
6415 return nullptr;
6416 Expr *Arg = ArgRes.get();
6417 QualType ArgType = Arg->getType();
6418 if (!ParamType->isPointerType() ||
6419 ParamType.hasAddressSpace() ||
6420 !ArgType->isPointerType() ||
6421 !ArgType->getPointeeType().hasAddressSpace()) {
6422 OverloadParams.push_back(ParamType);
6423 continue;
6424 }
6425
6426 QualType PointeeType = ParamType->getPointeeType();
6427 if (PointeeType.hasAddressSpace())
6428 continue;
6429
6430 NeedsNewDecl = true;
6431 LangAS AS = ArgType->getPointeeType().getAddressSpace();
6432
6433 PointeeType = Context.getAddrSpaceQualType(PointeeType, AS);
6434 OverloadParams.push_back(Context.getPointerType(PointeeType));
6435 }
6436
6437 if (!NeedsNewDecl)
6438 return nullptr;
6439
6440 FunctionProtoType::ExtProtoInfo EPI;
6441 EPI.Variadic = FT->isVariadic();
6442 QualType OverloadTy = Context.getFunctionType(FT->getReturnType(),
6443 OverloadParams, EPI);
6444 DeclContext *Parent = FDecl->getParent();
6445 FunctionDecl *OverloadDecl = FunctionDecl::Create(
6446 Context, Parent, FDecl->getLocation(), FDecl->getLocation(),
6447 FDecl->getIdentifier(), OverloadTy,
6448 /*TInfo=*/nullptr, SC_Extern, Sema->getCurFPFeatures().isFPConstrained(),
6449 false,
6450 /*hasPrototype=*/true);
6451 SmallVector<ParmVarDecl*, 16> Params;
6452 FT = cast<FunctionProtoType>(OverloadTy);
6453 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
6454 QualType ParamType = FT->getParamType(i);
6455 ParmVarDecl *Parm =
6456 ParmVarDecl::Create(Context, OverloadDecl, SourceLocation(),
6457 SourceLocation(), nullptr, ParamType,
6458 /*TInfo=*/nullptr, SC_None, nullptr);
6459 Parm->setScopeInfo(0, i);
6460 Params.push_back(Parm);
6461 }
6462 OverloadDecl->setParams(Params);
6463 Sema->mergeDeclAttributes(OverloadDecl, FDecl);
6464 return OverloadDecl;
6465 }
6466
checkDirectCallValidity(Sema & S,const Expr * Fn,FunctionDecl * Callee,MultiExprArg ArgExprs)6467 static void checkDirectCallValidity(Sema &S, const Expr *Fn,
6468 FunctionDecl *Callee,
6469 MultiExprArg ArgExprs) {
6470 // `Callee` (when called with ArgExprs) may be ill-formed. enable_if (and
6471 // similar attributes) really don't like it when functions are called with an
6472 // invalid number of args.
6473 if (S.TooManyArguments(Callee->getNumParams(), ArgExprs.size(),
6474 /*PartialOverloading=*/false) &&
6475 !Callee->isVariadic())
6476 return;
6477 if (Callee->getMinRequiredArguments() > ArgExprs.size())
6478 return;
6479
6480 if (const EnableIfAttr *Attr =
6481 S.CheckEnableIf(Callee, Fn->getBeginLoc(), ArgExprs, true)) {
6482 S.Diag(Fn->getBeginLoc(),
6483 isa<CXXMethodDecl>(Callee)
6484 ? diag::err_ovl_no_viable_member_function_in_call
6485 : diag::err_ovl_no_viable_function_in_call)
6486 << Callee << Callee->getSourceRange();
6487 S.Diag(Callee->getLocation(),
6488 diag::note_ovl_candidate_disabled_by_function_cond_attr)
6489 << Attr->getCond()->getSourceRange() << Attr->getMessage();
6490 return;
6491 }
6492 }
6493
enclosingClassIsRelatedToClassInWhichMembersWereFound(const UnresolvedMemberExpr * const UME,Sema & S)6494 static bool enclosingClassIsRelatedToClassInWhichMembersWereFound(
6495 const UnresolvedMemberExpr *const UME, Sema &S) {
6496
6497 const auto GetFunctionLevelDCIfCXXClass =
6498 [](Sema &S) -> const CXXRecordDecl * {
6499 const DeclContext *const DC = S.getFunctionLevelDeclContext();
6500 if (!DC || !DC->getParent())
6501 return nullptr;
6502
6503 // If the call to some member function was made from within a member
6504 // function body 'M' return return 'M's parent.
6505 if (const auto *MD = dyn_cast<CXXMethodDecl>(DC))
6506 return MD->getParent()->getCanonicalDecl();
6507 // else the call was made from within a default member initializer of a
6508 // class, so return the class.
6509 if (const auto *RD = dyn_cast<CXXRecordDecl>(DC))
6510 return RD->getCanonicalDecl();
6511 return nullptr;
6512 };
6513 // If our DeclContext is neither a member function nor a class (in the
6514 // case of a lambda in a default member initializer), we can't have an
6515 // enclosing 'this'.
6516
6517 const CXXRecordDecl *const CurParentClass = GetFunctionLevelDCIfCXXClass(S);
6518 if (!CurParentClass)
6519 return false;
6520
6521 // The naming class for implicit member functions call is the class in which
6522 // name lookup starts.
6523 const CXXRecordDecl *const NamingClass =
6524 UME->getNamingClass()->getCanonicalDecl();
6525 assert(NamingClass && "Must have naming class even for implicit access");
6526
6527 // If the unresolved member functions were found in a 'naming class' that is
6528 // related (either the same or derived from) to the class that contains the
6529 // member function that itself contained the implicit member access.
6530
6531 return CurParentClass == NamingClass ||
6532 CurParentClass->isDerivedFrom(NamingClass);
6533 }
6534
6535 static void
tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(Sema & S,const UnresolvedMemberExpr * const UME,SourceLocation CallLoc)6536 tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(
6537 Sema &S, const UnresolvedMemberExpr *const UME, SourceLocation CallLoc) {
6538
6539 if (!UME)
6540 return;
6541
6542 LambdaScopeInfo *const CurLSI = S.getCurLambda();
6543 // Only try and implicitly capture 'this' within a C++ Lambda if it hasn't
6544 // already been captured, or if this is an implicit member function call (if
6545 // it isn't, an attempt to capture 'this' should already have been made).
6546 if (!CurLSI || CurLSI->ImpCaptureStyle == CurLSI->ImpCap_None ||
6547 !UME->isImplicitAccess() || CurLSI->isCXXThisCaptured())
6548 return;
6549
6550 // Check if the naming class in which the unresolved members were found is
6551 // related (same as or is a base of) to the enclosing class.
6552
6553 if (!enclosingClassIsRelatedToClassInWhichMembersWereFound(UME, S))
6554 return;
6555
6556
6557 DeclContext *EnclosingFunctionCtx = S.CurContext->getParent()->getParent();
6558 // If the enclosing function is not dependent, then this lambda is
6559 // capture ready, so if we can capture this, do so.
6560 if (!EnclosingFunctionCtx->isDependentContext()) {
6561 // If the current lambda and all enclosing lambdas can capture 'this' -
6562 // then go ahead and capture 'this' (since our unresolved overload set
6563 // contains at least one non-static member function).
6564 if (!S.CheckCXXThisCapture(CallLoc, /*Explcit*/ false, /*Diagnose*/ false))
6565 S.CheckCXXThisCapture(CallLoc);
6566 } else if (S.CurContext->isDependentContext()) {
6567 // ... since this is an implicit member reference, that might potentially
6568 // involve a 'this' capture, mark 'this' for potential capture in
6569 // enclosing lambdas.
6570 if (CurLSI->ImpCaptureStyle != CurLSI->ImpCap_None)
6571 CurLSI->addPotentialThisCapture(CallLoc);
6572 }
6573 }
6574
6575 // Once a call is fully resolved, warn for unqualified calls to specific
6576 // C++ standard functions, like move and forward.
DiagnosedUnqualifiedCallsToStdFunctions(Sema & S,CallExpr * Call)6577 static void DiagnosedUnqualifiedCallsToStdFunctions(Sema &S, CallExpr *Call) {
6578 // We are only checking unary move and forward so exit early here.
6579 if (Call->getNumArgs() != 1)
6580 return;
6581
6582 Expr *E = Call->getCallee()->IgnoreParenImpCasts();
6583 if (!E || isa<UnresolvedLookupExpr>(E))
6584 return;
6585 DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(E);
6586 if (!DRE || !DRE->getLocation().isValid())
6587 return;
6588
6589 if (DRE->getQualifier())
6590 return;
6591
6592 const FunctionDecl *FD = Call->getDirectCallee();
6593 if (!FD)
6594 return;
6595
6596 // Only warn for some functions deemed more frequent or problematic.
6597 unsigned BuiltinID = FD->getBuiltinID();
6598 if (BuiltinID != Builtin::BImove && BuiltinID != Builtin::BIforward)
6599 return;
6600
6601 S.Diag(DRE->getLocation(), diag::warn_unqualified_call_to_std_cast_function)
6602 << FD->getQualifiedNameAsString()
6603 << FixItHint::CreateInsertion(DRE->getLocation(), "std::");
6604 }
6605
ActOnCallExpr(Scope * Scope,Expr * Fn,SourceLocation LParenLoc,MultiExprArg ArgExprs,SourceLocation RParenLoc,Expr * ExecConfig)6606 ExprResult Sema::ActOnCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
6607 MultiExprArg ArgExprs, SourceLocation RParenLoc,
6608 Expr *ExecConfig) {
6609 ExprResult Call =
6610 BuildCallExpr(Scope, Fn, LParenLoc, ArgExprs, RParenLoc, ExecConfig,
6611 /*IsExecConfig=*/false, /*AllowRecovery=*/true);
6612 if (Call.isInvalid())
6613 return Call;
6614
6615 // Diagnose uses of the C++20 "ADL-only template-id call" feature in earlier
6616 // language modes.
6617 if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(Fn)) {
6618 if (ULE->hasExplicitTemplateArgs() &&
6619 ULE->decls_begin() == ULE->decls_end()) {
6620 Diag(Fn->getExprLoc(), getLangOpts().CPlusPlus20
6621 ? diag::warn_cxx17_compat_adl_only_template_id
6622 : diag::ext_adl_only_template_id)
6623 << ULE->getName();
6624 }
6625 }
6626
6627 if (LangOpts.OpenMP)
6628 Call = ActOnOpenMPCall(Call, Scope, LParenLoc, ArgExprs, RParenLoc,
6629 ExecConfig);
6630 if (LangOpts.CPlusPlus) {
6631 CallExpr *CE = dyn_cast<CallExpr>(Call.get());
6632 if (CE)
6633 DiagnosedUnqualifiedCallsToStdFunctions(*this, CE);
6634 }
6635 return Call;
6636 }
6637
6638 /// BuildCallExpr - Handle a call to Fn with the specified array of arguments.
6639 /// This provides the location of the left/right parens and a list of comma
6640 /// locations.
BuildCallExpr(Scope * Scope,Expr * Fn,SourceLocation LParenLoc,MultiExprArg ArgExprs,SourceLocation RParenLoc,Expr * ExecConfig,bool IsExecConfig,bool AllowRecovery)6641 ExprResult Sema::BuildCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
6642 MultiExprArg ArgExprs, SourceLocation RParenLoc,
6643 Expr *ExecConfig, bool IsExecConfig,
6644 bool AllowRecovery) {
6645 // Since this might be a postfix expression, get rid of ParenListExprs.
6646 ExprResult Result = MaybeConvertParenListExprToParenExpr(Scope, Fn);
6647 if (Result.isInvalid()) return ExprError();
6648 Fn = Result.get();
6649
6650 if (checkArgsForPlaceholders(*this, ArgExprs))
6651 return ExprError();
6652
6653 if (getLangOpts().CPlusPlus) {
6654 // If this is a pseudo-destructor expression, build the call immediately.
6655 if (isa<CXXPseudoDestructorExpr>(Fn)) {
6656 if (!ArgExprs.empty()) {
6657 // Pseudo-destructor calls should not have any arguments.
6658 Diag(Fn->getBeginLoc(), diag::err_pseudo_dtor_call_with_args)
6659 << FixItHint::CreateRemoval(
6660 SourceRange(ArgExprs.front()->getBeginLoc(),
6661 ArgExprs.back()->getEndLoc()));
6662 }
6663
6664 return CallExpr::Create(Context, Fn, /*Args=*/{}, Context.VoidTy,
6665 VK_PRValue, RParenLoc, CurFPFeatureOverrides());
6666 }
6667 if (Fn->getType() == Context.PseudoObjectTy) {
6668 ExprResult result = CheckPlaceholderExpr(Fn);
6669 if (result.isInvalid()) return ExprError();
6670 Fn = result.get();
6671 }
6672
6673 // Determine whether this is a dependent call inside a C++ template,
6674 // in which case we won't do any semantic analysis now.
6675 if (Fn->isTypeDependent() || Expr::hasAnyTypeDependentArguments(ArgExprs)) {
6676 if (ExecConfig) {
6677 return CUDAKernelCallExpr::Create(Context, Fn,
6678 cast<CallExpr>(ExecConfig), ArgExprs,
6679 Context.DependentTy, VK_PRValue,
6680 RParenLoc, CurFPFeatureOverrides());
6681 } else {
6682
6683 tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(
6684 *this, dyn_cast<UnresolvedMemberExpr>(Fn->IgnoreParens()),
6685 Fn->getBeginLoc());
6686
6687 return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
6688 VK_PRValue, RParenLoc, CurFPFeatureOverrides());
6689 }
6690 }
6691
6692 // Determine whether this is a call to an object (C++ [over.call.object]).
6693 if (Fn->getType()->isRecordType())
6694 return BuildCallToObjectOfClassType(Scope, Fn, LParenLoc, ArgExprs,
6695 RParenLoc);
6696
6697 if (Fn->getType() == Context.UnknownAnyTy) {
6698 ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
6699 if (result.isInvalid()) return ExprError();
6700 Fn = result.get();
6701 }
6702
6703 if (Fn->getType() == Context.BoundMemberTy) {
6704 return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs,
6705 RParenLoc, ExecConfig, IsExecConfig,
6706 AllowRecovery);
6707 }
6708 }
6709
6710 // Check for overloaded calls. This can happen even in C due to extensions.
6711 if (Fn->getType() == Context.OverloadTy) {
6712 OverloadExpr::FindResult find = OverloadExpr::find(Fn);
6713
6714 // We aren't supposed to apply this logic if there's an '&' involved.
6715 if (!find.HasFormOfMemberPointer) {
6716 if (Expr::hasAnyTypeDependentArguments(ArgExprs))
6717 return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
6718 VK_PRValue, RParenLoc, CurFPFeatureOverrides());
6719 OverloadExpr *ovl = find.Expression;
6720 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(ovl))
6721 return BuildOverloadedCallExpr(
6722 Scope, Fn, ULE, LParenLoc, ArgExprs, RParenLoc, ExecConfig,
6723 /*AllowTypoCorrection=*/true, find.IsAddressOfOperand);
6724 return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs,
6725 RParenLoc, ExecConfig, IsExecConfig,
6726 AllowRecovery);
6727 }
6728 }
6729
6730 // If we're directly calling a function, get the appropriate declaration.
6731 if (Fn->getType() == Context.UnknownAnyTy) {
6732 ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
6733 if (result.isInvalid()) return ExprError();
6734 Fn = result.get();
6735 }
6736
6737 Expr *NakedFn = Fn->IgnoreParens();
6738
6739 bool CallingNDeclIndirectly = false;
6740 NamedDecl *NDecl = nullptr;
6741 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn)) {
6742 if (UnOp->getOpcode() == UO_AddrOf) {
6743 CallingNDeclIndirectly = true;
6744 NakedFn = UnOp->getSubExpr()->IgnoreParens();
6745 }
6746 }
6747
6748 if (auto *DRE = dyn_cast<DeclRefExpr>(NakedFn)) {
6749 NDecl = DRE->getDecl();
6750
6751 FunctionDecl *FDecl = dyn_cast<FunctionDecl>(NDecl);
6752 if (FDecl && FDecl->getBuiltinID()) {
6753 // Rewrite the function decl for this builtin by replacing parameters
6754 // with no explicit address space with the address space of the arguments
6755 // in ArgExprs.
6756 if ((FDecl =
6757 rewriteBuiltinFunctionDecl(this, Context, FDecl, ArgExprs))) {
6758 NDecl = FDecl;
6759 Fn = DeclRefExpr::Create(
6760 Context, FDecl->getQualifierLoc(), SourceLocation(), FDecl, false,
6761 SourceLocation(), FDecl->getType(), Fn->getValueKind(), FDecl,
6762 nullptr, DRE->isNonOdrUse());
6763 }
6764 }
6765 } else if (isa<MemberExpr>(NakedFn))
6766 NDecl = cast<MemberExpr>(NakedFn)->getMemberDecl();
6767
6768 if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(NDecl)) {
6769 if (CallingNDeclIndirectly && !checkAddressOfFunctionIsAvailable(
6770 FD, /*Complain=*/true, Fn->getBeginLoc()))
6771 return ExprError();
6772
6773 checkDirectCallValidity(*this, Fn, FD, ArgExprs);
6774
6775 // If this expression is a call to a builtin function in HIP device
6776 // compilation, allow a pointer-type argument to default address space to be
6777 // passed as a pointer-type parameter to a non-default address space.
6778 // If Arg is declared in the default address space and Param is declared
6779 // in a non-default address space, perform an implicit address space cast to
6780 // the parameter type.
6781 if (getLangOpts().HIP && getLangOpts().CUDAIsDevice && FD &&
6782 FD->getBuiltinID()) {
6783 for (unsigned Idx = 0; Idx < FD->param_size(); ++Idx) {
6784 ParmVarDecl *Param = FD->getParamDecl(Idx);
6785 if (!ArgExprs[Idx] || !Param || !Param->getType()->isPointerType() ||
6786 !ArgExprs[Idx]->getType()->isPointerType())
6787 continue;
6788
6789 auto ParamAS = Param->getType()->getPointeeType().getAddressSpace();
6790 auto ArgTy = ArgExprs[Idx]->getType();
6791 auto ArgPtTy = ArgTy->getPointeeType();
6792 auto ArgAS = ArgPtTy.getAddressSpace();
6793
6794 // Add address space cast if target address spaces are different
6795 bool NeedImplicitASC =
6796 ParamAS != LangAS::Default && // Pointer params in generic AS don't need special handling.
6797 ( ArgAS == LangAS::Default || // We do allow implicit conversion from generic AS
6798 // or from specific AS which has target AS matching that of Param.
6799 getASTContext().getTargetAddressSpace(ArgAS) == getASTContext().getTargetAddressSpace(ParamAS));
6800 if (!NeedImplicitASC)
6801 continue;
6802
6803 // First, ensure that the Arg is an RValue.
6804 if (ArgExprs[Idx]->isGLValue()) {
6805 ArgExprs[Idx] = ImplicitCastExpr::Create(
6806 Context, ArgExprs[Idx]->getType(), CK_NoOp, ArgExprs[Idx],
6807 nullptr, VK_PRValue, FPOptionsOverride());
6808 }
6809
6810 // Construct a new arg type with address space of Param
6811 Qualifiers ArgPtQuals = ArgPtTy.getQualifiers();
6812 ArgPtQuals.setAddressSpace(ParamAS);
6813 auto NewArgPtTy =
6814 Context.getQualifiedType(ArgPtTy.getUnqualifiedType(), ArgPtQuals);
6815 auto NewArgTy =
6816 Context.getQualifiedType(Context.getPointerType(NewArgPtTy),
6817 ArgTy.getQualifiers());
6818
6819 // Finally perform an implicit address space cast
6820 ArgExprs[Idx] = ImpCastExprToType(ArgExprs[Idx], NewArgTy,
6821 CK_AddressSpaceConversion)
6822 .get();
6823 }
6824 }
6825 }
6826
6827 if (Context.isDependenceAllowed() &&
6828 (Fn->isTypeDependent() || Expr::hasAnyTypeDependentArguments(ArgExprs))) {
6829 assert(!getLangOpts().CPlusPlus);
6830 assert((Fn->containsErrors() ||
6831 llvm::any_of(ArgExprs,
6832 [](clang::Expr *E) { return E->containsErrors(); })) &&
6833 "should only occur in error-recovery path.");
6834 QualType ReturnType =
6835 llvm::isa_and_nonnull<FunctionDecl>(NDecl)
6836 ? cast<FunctionDecl>(NDecl)->getCallResultType()
6837 : Context.DependentTy;
6838 return CallExpr::Create(Context, Fn, ArgExprs, ReturnType,
6839 Expr::getValueKindForType(ReturnType), RParenLoc,
6840 CurFPFeatureOverrides());
6841 }
6842 return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, ArgExprs, RParenLoc,
6843 ExecConfig, IsExecConfig);
6844 }
6845
6846 /// BuildBuiltinCallExpr - Create a call to a builtin function specified by Id
6847 // with the specified CallArgs
BuildBuiltinCallExpr(SourceLocation Loc,Builtin::ID Id,MultiExprArg CallArgs)6848 Expr *Sema::BuildBuiltinCallExpr(SourceLocation Loc, Builtin::ID Id,
6849 MultiExprArg CallArgs) {
6850 StringRef Name = Context.BuiltinInfo.getName(Id);
6851 LookupResult R(*this, &Context.Idents.get(Name), Loc,
6852 Sema::LookupOrdinaryName);
6853 LookupName(R, TUScope, /*AllowBuiltinCreation=*/true);
6854
6855 auto *BuiltInDecl = R.getAsSingle<FunctionDecl>();
6856 assert(BuiltInDecl && "failed to find builtin declaration");
6857
6858 ExprResult DeclRef =
6859 BuildDeclRefExpr(BuiltInDecl, BuiltInDecl->getType(), VK_LValue, Loc);
6860 assert(DeclRef.isUsable() && "Builtin reference cannot fail");
6861
6862 ExprResult Call =
6863 BuildCallExpr(/*Scope=*/nullptr, DeclRef.get(), Loc, CallArgs, Loc);
6864
6865 assert(!Call.isInvalid() && "Call to builtin cannot fail!");
6866 return Call.get();
6867 }
6868
6869 /// Parse a __builtin_astype expression.
6870 ///
6871 /// __builtin_astype( value, dst type )
6872 ///
ActOnAsTypeExpr(Expr * E,ParsedType ParsedDestTy,SourceLocation BuiltinLoc,SourceLocation RParenLoc)6873 ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
6874 SourceLocation BuiltinLoc,
6875 SourceLocation RParenLoc) {
6876 QualType DstTy = GetTypeFromParser(ParsedDestTy);
6877 return BuildAsTypeExpr(E, DstTy, BuiltinLoc, RParenLoc);
6878 }
6879
6880 /// Create a new AsTypeExpr node (bitcast) from the arguments.
BuildAsTypeExpr(Expr * E,QualType DestTy,SourceLocation BuiltinLoc,SourceLocation RParenLoc)6881 ExprResult Sema::BuildAsTypeExpr(Expr *E, QualType DestTy,
6882 SourceLocation BuiltinLoc,
6883 SourceLocation RParenLoc) {
6884 ExprValueKind VK = VK_PRValue;
6885 ExprObjectKind OK = OK_Ordinary;
6886 QualType SrcTy = E->getType();
6887 if (!SrcTy->isDependentType() &&
6888 Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy))
6889 return ExprError(
6890 Diag(BuiltinLoc, diag::err_invalid_astype_of_different_size)
6891 << DestTy << SrcTy << E->getSourceRange());
6892 return new (Context) AsTypeExpr(E, DestTy, VK, OK, BuiltinLoc, RParenLoc);
6893 }
6894
6895 /// ActOnConvertVectorExpr - create a new convert-vector expression from the
6896 /// provided arguments.
6897 ///
6898 /// __builtin_convertvector( value, dst type )
6899 ///
ActOnConvertVectorExpr(Expr * E,ParsedType ParsedDestTy,SourceLocation BuiltinLoc,SourceLocation RParenLoc)6900 ExprResult Sema::ActOnConvertVectorExpr(Expr *E, ParsedType ParsedDestTy,
6901 SourceLocation BuiltinLoc,
6902 SourceLocation RParenLoc) {
6903 TypeSourceInfo *TInfo;
6904 GetTypeFromParser(ParsedDestTy, &TInfo);
6905 return SemaConvertVectorExpr(E, TInfo, BuiltinLoc, RParenLoc);
6906 }
6907
6908 /// BuildResolvedCallExpr - Build a call to a resolved expression,
6909 /// i.e. an expression not of \p OverloadTy. The expression should
6910 /// unary-convert to an expression of function-pointer or
6911 /// block-pointer type.
6912 ///
6913 /// \param NDecl the declaration being called, if available
BuildResolvedCallExpr(Expr * Fn,NamedDecl * NDecl,SourceLocation LParenLoc,ArrayRef<Expr * > Args,SourceLocation RParenLoc,Expr * Config,bool IsExecConfig,ADLCallKind UsesADL)6914 ExprResult Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
6915 SourceLocation LParenLoc,
6916 ArrayRef<Expr *> Args,
6917 SourceLocation RParenLoc, Expr *Config,
6918 bool IsExecConfig, ADLCallKind UsesADL) {
6919 FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
6920 unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
6921
6922 // Functions with 'interrupt' attribute cannot be called directly.
6923 if (FDecl && FDecl->hasAttr<AnyX86InterruptAttr>()) {
6924 Diag(Fn->getExprLoc(), diag::err_anyx86_interrupt_called);
6925 return ExprError();
6926 }
6927
6928 // Interrupt handlers don't save off the VFP regs automatically on ARM,
6929 // so there's some risk when calling out to non-interrupt handler functions
6930 // that the callee might not preserve them. This is easy to diagnose here,
6931 // but can be very challenging to debug.
6932 // Likewise, X86 interrupt handlers may only call routines with attribute
6933 // no_caller_saved_registers since there is no efficient way to
6934 // save and restore the non-GPR state.
6935 if (auto *Caller = getCurFunctionDecl()) {
6936 if (Caller->hasAttr<ARMInterruptAttr>()) {
6937 bool VFP = Context.getTargetInfo().hasFeature("vfp");
6938 if (VFP && (!FDecl || !FDecl->hasAttr<ARMInterruptAttr>())) {
6939 Diag(Fn->getExprLoc(), diag::warn_arm_interrupt_calling_convention);
6940 if (FDecl)
6941 Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl;
6942 }
6943 }
6944 if (Caller->hasAttr<AnyX86InterruptAttr>() &&
6945 ((!FDecl || !FDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>()))) {
6946 Diag(Fn->getExprLoc(), diag::warn_anyx86_interrupt_regsave);
6947 if (FDecl)
6948 Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl;
6949 }
6950 }
6951
6952 // Promote the function operand.
6953 // We special-case function promotion here because we only allow promoting
6954 // builtin functions to function pointers in the callee of a call.
6955 ExprResult Result;
6956 QualType ResultTy;
6957 if (BuiltinID &&
6958 Fn->getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn)) {
6959 // Extract the return type from the (builtin) function pointer type.
6960 // FIXME Several builtins still have setType in
6961 // Sema::CheckBuiltinFunctionCall. One should review their definitions in
6962 // Builtins.def to ensure they are correct before removing setType calls.
6963 QualType FnPtrTy = Context.getPointerType(FDecl->getType());
6964 Result = ImpCastExprToType(Fn, FnPtrTy, CK_BuiltinFnToFnPtr).get();
6965 ResultTy = FDecl->getCallResultType();
6966 } else {
6967 Result = CallExprUnaryConversions(Fn);
6968 ResultTy = Context.BoolTy;
6969 }
6970 if (Result.isInvalid())
6971 return ExprError();
6972 Fn = Result.get();
6973
6974 // Check for a valid function type, but only if it is not a builtin which
6975 // requires custom type checking. These will be handled by
6976 // CheckBuiltinFunctionCall below just after creation of the call expression.
6977 const FunctionType *FuncT = nullptr;
6978 if (!BuiltinID || !Context.BuiltinInfo.hasCustomTypechecking(BuiltinID)) {
6979 retry:
6980 if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
6981 // C99 6.5.2.2p1 - "The expression that denotes the called function shall
6982 // have type pointer to function".
6983 FuncT = PT->getPointeeType()->getAs<FunctionType>();
6984 if (!FuncT)
6985 return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
6986 << Fn->getType() << Fn->getSourceRange());
6987 } else if (const BlockPointerType *BPT =
6988 Fn->getType()->getAs<BlockPointerType>()) {
6989 FuncT = BPT->getPointeeType()->castAs<FunctionType>();
6990 } else {
6991 // Handle calls to expressions of unknown-any type.
6992 if (Fn->getType() == Context.UnknownAnyTy) {
6993 ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn);
6994 if (rewrite.isInvalid())
6995 return ExprError();
6996 Fn = rewrite.get();
6997 goto retry;
6998 }
6999
7000 return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
7001 << Fn->getType() << Fn->getSourceRange());
7002 }
7003 }
7004
7005 // Get the number of parameters in the function prototype, if any.
7006 // We will allocate space for max(Args.size(), NumParams) arguments
7007 // in the call expression.
7008 const auto *Proto = dyn_cast_or_null<FunctionProtoType>(FuncT);
7009 unsigned NumParams = Proto ? Proto->getNumParams() : 0;
7010
7011 CallExpr *TheCall;
7012 if (Config) {
7013 assert(UsesADL == ADLCallKind::NotADL &&
7014 "CUDAKernelCallExpr should not use ADL");
7015 TheCall = CUDAKernelCallExpr::Create(Context, Fn, cast<CallExpr>(Config),
7016 Args, ResultTy, VK_PRValue, RParenLoc,
7017 CurFPFeatureOverrides(), NumParams);
7018 } else {
7019 TheCall =
7020 CallExpr::Create(Context, Fn, Args, ResultTy, VK_PRValue, RParenLoc,
7021 CurFPFeatureOverrides(), NumParams, UsesADL);
7022 }
7023
7024 if (!Context.isDependenceAllowed()) {
7025 // Forget about the nulled arguments since typo correction
7026 // do not handle them well.
7027 TheCall->shrinkNumArgs(Args.size());
7028 // C cannot always handle TypoExpr nodes in builtin calls and direct
7029 // function calls as their argument checking don't necessarily handle
7030 // dependent types properly, so make sure any TypoExprs have been
7031 // dealt with.
7032 ExprResult Result = CorrectDelayedTyposInExpr(TheCall);
7033 if (!Result.isUsable()) return ExprError();
7034 CallExpr *TheOldCall = TheCall;
7035 TheCall = dyn_cast<CallExpr>(Result.get());
7036 bool CorrectedTypos = TheCall != TheOldCall;
7037 if (!TheCall) return Result;
7038 Args = llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs());
7039
7040 // A new call expression node was created if some typos were corrected.
7041 // However it may not have been constructed with enough storage. In this
7042 // case, rebuild the node with enough storage. The waste of space is
7043 // immaterial since this only happens when some typos were corrected.
7044 if (CorrectedTypos && Args.size() < NumParams) {
7045 if (Config)
7046 TheCall = CUDAKernelCallExpr::Create(
7047 Context, Fn, cast<CallExpr>(Config), Args, ResultTy, VK_PRValue,
7048 RParenLoc, CurFPFeatureOverrides(), NumParams);
7049 else
7050 TheCall =
7051 CallExpr::Create(Context, Fn, Args, ResultTy, VK_PRValue, RParenLoc,
7052 CurFPFeatureOverrides(), NumParams, UsesADL);
7053 }
7054 // We can now handle the nulled arguments for the default arguments.
7055 TheCall->setNumArgsUnsafe(std::max<unsigned>(Args.size(), NumParams));
7056 }
7057
7058 // Bail out early if calling a builtin with custom type checking.
7059 if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID))
7060 return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
7061
7062 if (getLangOpts().CUDA) {
7063 if (Config) {
7064 // CUDA: Kernel calls must be to global functions
7065 if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
7066 return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
7067 << FDecl << Fn->getSourceRange());
7068
7069 // CUDA: Kernel function must have 'void' return type
7070 if (!FuncT->getReturnType()->isVoidType() &&
7071 !FuncT->getReturnType()->getAs<AutoType>() &&
7072 !FuncT->getReturnType()->isInstantiationDependentType())
7073 return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
7074 << Fn->getType() << Fn->getSourceRange());
7075 } else {
7076 // CUDA: Calls to global functions must be configured
7077 if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>())
7078 return ExprError(Diag(LParenLoc, diag::err_global_call_not_config)
7079 << FDecl << Fn->getSourceRange());
7080 }
7081 }
7082
7083 // Check for a valid return type
7084 if (CheckCallReturnType(FuncT->getReturnType(), Fn->getBeginLoc(), TheCall,
7085 FDecl))
7086 return ExprError();
7087
7088 // We know the result type of the call, set it.
7089 TheCall->setType(FuncT->getCallResultType(Context));
7090 TheCall->setValueKind(Expr::getValueKindForType(FuncT->getReturnType()));
7091
7092 if (Proto) {
7093 if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, RParenLoc,
7094 IsExecConfig))
7095 return ExprError();
7096 } else {
7097 assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
7098
7099 if (FDecl) {
7100 // Check if we have too few/too many template arguments, based
7101 // on our knowledge of the function definition.
7102 const FunctionDecl *Def = nullptr;
7103 if (FDecl->hasBody(Def) && Args.size() != Def->param_size()) {
7104 Proto = Def->getType()->getAs<FunctionProtoType>();
7105 if (!Proto || !(Proto->isVariadic() && Args.size() >= Def->param_size()))
7106 Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
7107 << (Args.size() > Def->param_size()) << FDecl << Fn->getSourceRange();
7108 }
7109
7110 // If the function we're calling isn't a function prototype, but we have
7111 // a function prototype from a prior declaratiom, use that prototype.
7112 if (!FDecl->hasPrototype())
7113 Proto = FDecl->getType()->getAs<FunctionProtoType>();
7114 }
7115
7116 // If we still haven't found a prototype to use but there are arguments to
7117 // the call, diagnose this as calling a function without a prototype.
7118 // However, if we found a function declaration, check to see if
7119 // -Wdeprecated-non-prototype was disabled where the function was declared.
7120 // If so, we will silence the diagnostic here on the assumption that this
7121 // interface is intentional and the user knows what they're doing. We will
7122 // also silence the diagnostic if there is a function declaration but it
7123 // was implicitly defined (the user already gets diagnostics about the
7124 // creation of the implicit function declaration, so the additional warning
7125 // is not helpful).
7126 if (!Proto && !Args.empty() &&
7127 (!FDecl || (!FDecl->isImplicit() &&
7128 !Diags.isIgnored(diag::warn_strict_uses_without_prototype,
7129 FDecl->getLocation()))))
7130 Diag(LParenLoc, diag::warn_strict_uses_without_prototype)
7131 << (FDecl != nullptr) << FDecl;
7132
7133 // Promote the arguments (C99 6.5.2.2p6).
7134 for (unsigned i = 0, e = Args.size(); i != e; i++) {
7135 Expr *Arg = Args[i];
7136
7137 if (Proto && i < Proto->getNumParams()) {
7138 InitializedEntity Entity = InitializedEntity::InitializeParameter(
7139 Context, Proto->getParamType(i), Proto->isParamConsumed(i));
7140 ExprResult ArgE =
7141 PerformCopyInitialization(Entity, SourceLocation(), Arg);
7142 if (ArgE.isInvalid())
7143 return true;
7144
7145 Arg = ArgE.getAs<Expr>();
7146
7147 } else {
7148 ExprResult ArgE = DefaultArgumentPromotion(Arg);
7149
7150 if (ArgE.isInvalid())
7151 return true;
7152
7153 Arg = ArgE.getAs<Expr>();
7154 }
7155
7156 if (RequireCompleteType(Arg->getBeginLoc(), Arg->getType(),
7157 diag::err_call_incomplete_argument, Arg))
7158 return ExprError();
7159
7160 TheCall->setArg(i, Arg);
7161 }
7162 TheCall->computeDependence();
7163 }
7164
7165 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
7166 if (!Method->isStatic())
7167 return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
7168 << Fn->getSourceRange());
7169
7170 // Check for sentinels
7171 if (NDecl)
7172 DiagnoseSentinelCalls(NDecl, LParenLoc, Args);
7173
7174 // Warn for unions passing across security boundary (CMSE).
7175 if (FuncT != nullptr && FuncT->getCmseNSCallAttr()) {
7176 for (unsigned i = 0, e = Args.size(); i != e; i++) {
7177 if (const auto *RT =
7178 dyn_cast<RecordType>(Args[i]->getType().getCanonicalType())) {
7179 if (RT->getDecl()->isOrContainsUnion())
7180 Diag(Args[i]->getBeginLoc(), diag::warn_cmse_nonsecure_union)
7181 << 0 << i;
7182 }
7183 }
7184 }
7185
7186 // Do special checking on direct calls to functions.
7187 if (FDecl) {
7188 if (CheckFunctionCall(FDecl, TheCall, Proto))
7189 return ExprError();
7190
7191 checkFortifiedBuiltinMemoryFunction(FDecl, TheCall);
7192
7193 if (BuiltinID)
7194 return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
7195 } else if (NDecl) {
7196 if (CheckPointerCall(NDecl, TheCall, Proto))
7197 return ExprError();
7198 } else {
7199 if (CheckOtherCall(TheCall, Proto))
7200 return ExprError();
7201 }
7202
7203 return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), FDecl);
7204 }
7205
7206 ExprResult
ActOnCompoundLiteral(SourceLocation LParenLoc,ParsedType Ty,SourceLocation RParenLoc,Expr * InitExpr)7207 Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
7208 SourceLocation RParenLoc, Expr *InitExpr) {
7209 assert(Ty && "ActOnCompoundLiteral(): missing type");
7210 assert(InitExpr && "ActOnCompoundLiteral(): missing expression");
7211
7212 TypeSourceInfo *TInfo;
7213 QualType literalType = GetTypeFromParser(Ty, &TInfo);
7214 if (!TInfo)
7215 TInfo = Context.getTrivialTypeSourceInfo(literalType);
7216
7217 return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
7218 }
7219
7220 ExprResult
BuildCompoundLiteralExpr(SourceLocation LParenLoc,TypeSourceInfo * TInfo,SourceLocation RParenLoc,Expr * LiteralExpr)7221 Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
7222 SourceLocation RParenLoc, Expr *LiteralExpr) {
7223 QualType literalType = TInfo->getType();
7224
7225 if (literalType->isArrayType()) {
7226 if (RequireCompleteSizedType(
7227 LParenLoc, Context.getBaseElementType(literalType),
7228 diag::err_array_incomplete_or_sizeless_type,
7229 SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
7230 return ExprError();
7231 if (literalType->isVariableArrayType()) {
7232 if (!tryToFixVariablyModifiedVarType(TInfo, literalType, LParenLoc,
7233 diag::err_variable_object_no_init)) {
7234 return ExprError();
7235 }
7236 }
7237 } else if (!literalType->isDependentType() &&
7238 RequireCompleteType(LParenLoc, literalType,
7239 diag::err_typecheck_decl_incomplete_type,
7240 SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
7241 return ExprError();
7242
7243 InitializedEntity Entity
7244 = InitializedEntity::InitializeCompoundLiteralInit(TInfo);
7245 InitializationKind Kind
7246 = InitializationKind::CreateCStyleCast(LParenLoc,
7247 SourceRange(LParenLoc, RParenLoc),
7248 /*InitList=*/true);
7249 InitializationSequence InitSeq(*this, Entity, Kind, LiteralExpr);
7250 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, LiteralExpr,
7251 &literalType);
7252 if (Result.isInvalid())
7253 return ExprError();
7254 LiteralExpr = Result.get();
7255
7256 bool isFileScope = !CurContext->isFunctionOrMethod();
7257
7258 // In C, compound literals are l-values for some reason.
7259 // For GCC compatibility, in C++, file-scope array compound literals with
7260 // constant initializers are also l-values, and compound literals are
7261 // otherwise prvalues.
7262 //
7263 // (GCC also treats C++ list-initialized file-scope array prvalues with
7264 // constant initializers as l-values, but that's non-conforming, so we don't
7265 // follow it there.)
7266 //
7267 // FIXME: It would be better to handle the lvalue cases as materializing and
7268 // lifetime-extending a temporary object, but our materialized temporaries
7269 // representation only supports lifetime extension from a variable, not "out
7270 // of thin air".
7271 // FIXME: For C++, we might want to instead lifetime-extend only if a pointer
7272 // is bound to the result of applying array-to-pointer decay to the compound
7273 // literal.
7274 // FIXME: GCC supports compound literals of reference type, which should
7275 // obviously have a value kind derived from the kind of reference involved.
7276 ExprValueKind VK =
7277 (getLangOpts().CPlusPlus && !(isFileScope && literalType->isArrayType()))
7278 ? VK_PRValue
7279 : VK_LValue;
7280
7281 if (isFileScope)
7282 if (auto ILE = dyn_cast<InitListExpr>(LiteralExpr))
7283 for (unsigned i = 0, j = ILE->getNumInits(); i != j; i++) {
7284 Expr *Init = ILE->getInit(i);
7285 ILE->setInit(i, ConstantExpr::Create(Context, Init));
7286 }
7287
7288 auto *E = new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
7289 VK, LiteralExpr, isFileScope);
7290 if (isFileScope) {
7291 if (!LiteralExpr->isTypeDependent() &&
7292 !LiteralExpr->isValueDependent() &&
7293 !literalType->isDependentType()) // C99 6.5.2.5p3
7294 if (CheckForConstantInitializer(LiteralExpr, literalType))
7295 return ExprError();
7296 } else if (literalType.getAddressSpace() != LangAS::opencl_private &&
7297 literalType.getAddressSpace() != LangAS::Default) {
7298 // Embedded-C extensions to C99 6.5.2.5:
7299 // "If the compound literal occurs inside the body of a function, the
7300 // type name shall not be qualified by an address-space qualifier."
7301 Diag(LParenLoc, diag::err_compound_literal_with_address_space)
7302 << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd());
7303 return ExprError();
7304 }
7305
7306 if (!isFileScope && !getLangOpts().CPlusPlus) {
7307 // Compound literals that have automatic storage duration are destroyed at
7308 // the end of the scope in C; in C++, they're just temporaries.
7309
7310 // Emit diagnostics if it is or contains a C union type that is non-trivial
7311 // to destruct.
7312 if (E->getType().hasNonTrivialToPrimitiveDestructCUnion())
7313 checkNonTrivialCUnion(E->getType(), E->getExprLoc(),
7314 NTCUC_CompoundLiteral, NTCUK_Destruct);
7315
7316 // Diagnose jumps that enter or exit the lifetime of the compound literal.
7317 if (literalType.isDestructedType()) {
7318 Cleanup.setExprNeedsCleanups(true);
7319 ExprCleanupObjects.push_back(E);
7320 getCurFunction()->setHasBranchProtectedScope();
7321 }
7322 }
7323
7324 if (E->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
7325 E->getType().hasNonTrivialToPrimitiveCopyCUnion())
7326 checkNonTrivialCUnionInInitializer(E->getInitializer(),
7327 E->getInitializer()->getExprLoc());
7328
7329 return MaybeBindToTemporary(E);
7330 }
7331
7332 ExprResult
ActOnInitList(SourceLocation LBraceLoc,MultiExprArg InitArgList,SourceLocation RBraceLoc)7333 Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
7334 SourceLocation RBraceLoc) {
7335 // Only produce each kind of designated initialization diagnostic once.
7336 SourceLocation FirstDesignator;
7337 bool DiagnosedArrayDesignator = false;
7338 bool DiagnosedNestedDesignator = false;
7339 bool DiagnosedMixedDesignator = false;
7340
7341 // Check that any designated initializers are syntactically valid in the
7342 // current language mode.
7343 for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
7344 if (auto *DIE = dyn_cast<DesignatedInitExpr>(InitArgList[I])) {
7345 if (FirstDesignator.isInvalid())
7346 FirstDesignator = DIE->getBeginLoc();
7347
7348 if (!getLangOpts().CPlusPlus)
7349 break;
7350
7351 if (!DiagnosedNestedDesignator && DIE->size() > 1) {
7352 DiagnosedNestedDesignator = true;
7353 Diag(DIE->getBeginLoc(), diag::ext_designated_init_nested)
7354 << DIE->getDesignatorsSourceRange();
7355 }
7356
7357 for (auto &Desig : DIE->designators()) {
7358 if (!Desig.isFieldDesignator() && !DiagnosedArrayDesignator) {
7359 DiagnosedArrayDesignator = true;
7360 Diag(Desig.getBeginLoc(), diag::ext_designated_init_array)
7361 << Desig.getSourceRange();
7362 }
7363 }
7364
7365 if (!DiagnosedMixedDesignator &&
7366 !isa<DesignatedInitExpr>(InitArgList[0])) {
7367 DiagnosedMixedDesignator = true;
7368 Diag(DIE->getBeginLoc(), diag::ext_designated_init_mixed)
7369 << DIE->getSourceRange();
7370 Diag(InitArgList[0]->getBeginLoc(), diag::note_designated_init_mixed)
7371 << InitArgList[0]->getSourceRange();
7372 }
7373 } else if (getLangOpts().CPlusPlus && !DiagnosedMixedDesignator &&
7374 isa<DesignatedInitExpr>(InitArgList[0])) {
7375 DiagnosedMixedDesignator = true;
7376 auto *DIE = cast<DesignatedInitExpr>(InitArgList[0]);
7377 Diag(DIE->getBeginLoc(), diag::ext_designated_init_mixed)
7378 << DIE->getSourceRange();
7379 Diag(InitArgList[I]->getBeginLoc(), diag::note_designated_init_mixed)
7380 << InitArgList[I]->getSourceRange();
7381 }
7382 }
7383
7384 if (FirstDesignator.isValid()) {
7385 // Only diagnose designated initiaization as a C++20 extension if we didn't
7386 // already diagnose use of (non-C++20) C99 designator syntax.
7387 if (getLangOpts().CPlusPlus && !DiagnosedArrayDesignator &&
7388 !DiagnosedNestedDesignator && !DiagnosedMixedDesignator) {
7389 Diag(FirstDesignator, getLangOpts().CPlusPlus20
7390 ? diag::warn_cxx17_compat_designated_init
7391 : diag::ext_cxx_designated_init);
7392 } else if (!getLangOpts().CPlusPlus && !getLangOpts().C99) {
7393 Diag(FirstDesignator, diag::ext_designated_init);
7394 }
7395 }
7396
7397 return BuildInitList(LBraceLoc, InitArgList, RBraceLoc);
7398 }
7399
7400 ExprResult
BuildInitList(SourceLocation LBraceLoc,MultiExprArg InitArgList,SourceLocation RBraceLoc)7401 Sema::BuildInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
7402 SourceLocation RBraceLoc) {
7403 // Semantic analysis for initializers is done by ActOnDeclarator() and
7404 // CheckInitializer() - it requires knowledge of the object being initialized.
7405
7406 // Immediately handle non-overload placeholders. Overloads can be
7407 // resolved contextually, but everything else here can't.
7408 for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
7409 if (InitArgList[I]->getType()->isNonOverloadPlaceholderType()) {
7410 ExprResult result = CheckPlaceholderExpr(InitArgList[I]);
7411
7412 // Ignore failures; dropping the entire initializer list because
7413 // of one failure would be terrible for indexing/etc.
7414 if (result.isInvalid()) continue;
7415
7416 InitArgList[I] = result.get();
7417 }
7418 }
7419
7420 InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitArgList,
7421 RBraceLoc);
7422 E->setType(Context.VoidTy); // FIXME: just a place holder for now.
7423 return E;
7424 }
7425
7426 /// Do an explicit extend of the given block pointer if we're in ARC.
maybeExtendBlockObject(ExprResult & E)7427 void Sema::maybeExtendBlockObject(ExprResult &E) {
7428 assert(E.get()->getType()->isBlockPointerType());
7429 assert(E.get()->isPRValue());
7430
7431 // Only do this in an r-value context.
7432 if (!getLangOpts().ObjCAutoRefCount) return;
7433
7434 E = ImplicitCastExpr::Create(
7435 Context, E.get()->getType(), CK_ARCExtendBlockObject, E.get(),
7436 /*base path*/ nullptr, VK_PRValue, FPOptionsOverride());
7437 Cleanup.setExprNeedsCleanups(true);
7438 }
7439
7440 /// Prepare a conversion of the given expression to an ObjC object
7441 /// pointer type.
PrepareCastToObjCObjectPointer(ExprResult & E)7442 CastKind Sema::PrepareCastToObjCObjectPointer(ExprResult &E) {
7443 QualType type = E.get()->getType();
7444 if (type->isObjCObjectPointerType()) {
7445 return CK_BitCast;
7446 } else if (type->isBlockPointerType()) {
7447 maybeExtendBlockObject(E);
7448 return CK_BlockPointerToObjCPointerCast;
7449 } else {
7450 assert(type->isPointerType());
7451 return CK_CPointerToObjCPointerCast;
7452 }
7453 }
7454
7455 /// Prepares for a scalar cast, performing all the necessary stages
7456 /// except the final cast and returning the kind required.
PrepareScalarCast(ExprResult & Src,QualType DestTy)7457 CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) {
7458 // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
7459 // Also, callers should have filtered out the invalid cases with
7460 // pointers. Everything else should be possible.
7461
7462 QualType SrcTy = Src.get()->getType();
7463 if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
7464 return CK_NoOp;
7465
7466 switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) {
7467 case Type::STK_MemberPointer:
7468 llvm_unreachable("member pointer type in C");
7469
7470 case Type::STK_CPointer:
7471 case Type::STK_BlockPointer:
7472 case Type::STK_ObjCObjectPointer:
7473 switch (DestTy->getScalarTypeKind()) {
7474 case Type::STK_CPointer: {
7475 LangAS SrcAS = SrcTy->getPointeeType().getAddressSpace();
7476 LangAS DestAS = DestTy->getPointeeType().getAddressSpace();
7477 if (SrcAS != DestAS)
7478 return CK_AddressSpaceConversion;
7479 if (Context.hasCvrSimilarType(SrcTy, DestTy))
7480 return CK_NoOp;
7481 return CK_BitCast;
7482 }
7483 case Type::STK_BlockPointer:
7484 return (SrcKind == Type::STK_BlockPointer
7485 ? CK_BitCast : CK_AnyPointerToBlockPointerCast);
7486 case Type::STK_ObjCObjectPointer:
7487 if (SrcKind == Type::STK_ObjCObjectPointer)
7488 return CK_BitCast;
7489 if (SrcKind == Type::STK_CPointer)
7490 return CK_CPointerToObjCPointerCast;
7491 maybeExtendBlockObject(Src);
7492 return CK_BlockPointerToObjCPointerCast;
7493 case Type::STK_Bool:
7494 return CK_PointerToBoolean;
7495 case Type::STK_Integral:
7496 return CK_PointerToIntegral;
7497 case Type::STK_Floating:
7498 case Type::STK_FloatingComplex:
7499 case Type::STK_IntegralComplex:
7500 case Type::STK_MemberPointer:
7501 case Type::STK_FixedPoint:
7502 llvm_unreachable("illegal cast from pointer");
7503 }
7504 llvm_unreachable("Should have returned before this");
7505
7506 case Type::STK_FixedPoint:
7507 switch (DestTy->getScalarTypeKind()) {
7508 case Type::STK_FixedPoint:
7509 return CK_FixedPointCast;
7510 case Type::STK_Bool:
7511 return CK_FixedPointToBoolean;
7512 case Type::STK_Integral:
7513 return CK_FixedPointToIntegral;
7514 case Type::STK_Floating:
7515 return CK_FixedPointToFloating;
7516 case Type::STK_IntegralComplex:
7517 case Type::STK_FloatingComplex:
7518 Diag(Src.get()->getExprLoc(),
7519 diag::err_unimplemented_conversion_with_fixed_point_type)
7520 << DestTy;
7521 return CK_IntegralCast;
7522 case Type::STK_CPointer:
7523 case Type::STK_ObjCObjectPointer:
7524 case Type::STK_BlockPointer:
7525 case Type::STK_MemberPointer:
7526 llvm_unreachable("illegal cast to pointer type");
7527 }
7528 llvm_unreachable("Should have returned before this");
7529
7530 case Type::STK_Bool: // casting from bool is like casting from an integer
7531 case Type::STK_Integral:
7532 switch (DestTy->getScalarTypeKind()) {
7533 case Type::STK_CPointer:
7534 case Type::STK_ObjCObjectPointer:
7535 case Type::STK_BlockPointer:
7536 if (Src.get()->isNullPointerConstant(Context,
7537 Expr::NPC_ValueDependentIsNull))
7538 return CK_NullToPointer;
7539 return CK_IntegralToPointer;
7540 case Type::STK_Bool:
7541 return CK_IntegralToBoolean;
7542 case Type::STK_Integral:
7543 return CK_IntegralCast;
7544 case Type::STK_Floating:
7545 return CK_IntegralToFloating;
7546 case Type::STK_IntegralComplex:
7547 Src = ImpCastExprToType(Src.get(),
7548 DestTy->castAs<ComplexType>()->getElementType(),
7549 CK_IntegralCast);
7550 return CK_IntegralRealToComplex;
7551 case Type::STK_FloatingComplex:
7552 Src = ImpCastExprToType(Src.get(),
7553 DestTy->castAs<ComplexType>()->getElementType(),
7554 CK_IntegralToFloating);
7555 return CK_FloatingRealToComplex;
7556 case Type::STK_MemberPointer:
7557 llvm_unreachable("member pointer type in C");
7558 case Type::STK_FixedPoint:
7559 return CK_IntegralToFixedPoint;
7560 }
7561 llvm_unreachable("Should have returned before this");
7562
7563 case Type::STK_Floating:
7564 switch (DestTy->getScalarTypeKind()) {
7565 case Type::STK_Floating:
7566 return CK_FloatingCast;
7567 case Type::STK_Bool:
7568 return CK_FloatingToBoolean;
7569 case Type::STK_Integral:
7570 return CK_FloatingToIntegral;
7571 case Type::STK_FloatingComplex:
7572 Src = ImpCastExprToType(Src.get(),
7573 DestTy->castAs<ComplexType>()->getElementType(),
7574 CK_FloatingCast);
7575 return CK_FloatingRealToComplex;
7576 case Type::STK_IntegralComplex:
7577 Src = ImpCastExprToType(Src.get(),
7578 DestTy->castAs<ComplexType>()->getElementType(),
7579 CK_FloatingToIntegral);
7580 return CK_IntegralRealToComplex;
7581 case Type::STK_CPointer:
7582 case Type::STK_ObjCObjectPointer:
7583 case Type::STK_BlockPointer:
7584 llvm_unreachable("valid float->pointer cast?");
7585 case Type::STK_MemberPointer:
7586 llvm_unreachable("member pointer type in C");
7587 case Type::STK_FixedPoint:
7588 return CK_FloatingToFixedPoint;
7589 }
7590 llvm_unreachable("Should have returned before this");
7591
7592 case Type::STK_FloatingComplex:
7593 switch (DestTy->getScalarTypeKind()) {
7594 case Type::STK_FloatingComplex:
7595 return CK_FloatingComplexCast;
7596 case Type::STK_IntegralComplex:
7597 return CK_FloatingComplexToIntegralComplex;
7598 case Type::STK_Floating: {
7599 QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
7600 if (Context.hasSameType(ET, DestTy))
7601 return CK_FloatingComplexToReal;
7602 Src = ImpCastExprToType(Src.get(), ET, CK_FloatingComplexToReal);
7603 return CK_FloatingCast;
7604 }
7605 case Type::STK_Bool:
7606 return CK_FloatingComplexToBoolean;
7607 case Type::STK_Integral:
7608 Src = ImpCastExprToType(Src.get(),
7609 SrcTy->castAs<ComplexType>()->getElementType(),
7610 CK_FloatingComplexToReal);
7611 return CK_FloatingToIntegral;
7612 case Type::STK_CPointer:
7613 case Type::STK_ObjCObjectPointer:
7614 case Type::STK_BlockPointer:
7615 llvm_unreachable("valid complex float->pointer cast?");
7616 case Type::STK_MemberPointer:
7617 llvm_unreachable("member pointer type in C");
7618 case Type::STK_FixedPoint:
7619 Diag(Src.get()->getExprLoc(),
7620 diag::err_unimplemented_conversion_with_fixed_point_type)
7621 << SrcTy;
7622 return CK_IntegralCast;
7623 }
7624 llvm_unreachable("Should have returned before this");
7625
7626 case Type::STK_IntegralComplex:
7627 switch (DestTy->getScalarTypeKind()) {
7628 case Type::STK_FloatingComplex:
7629 return CK_IntegralComplexToFloatingComplex;
7630 case Type::STK_IntegralComplex:
7631 return CK_IntegralComplexCast;
7632 case Type::STK_Integral: {
7633 QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
7634 if (Context.hasSameType(ET, DestTy))
7635 return CK_IntegralComplexToReal;
7636 Src = ImpCastExprToType(Src.get(), ET, CK_IntegralComplexToReal);
7637 return CK_IntegralCast;
7638 }
7639 case Type::STK_Bool:
7640 return CK_IntegralComplexToBoolean;
7641 case Type::STK_Floating:
7642 Src = ImpCastExprToType(Src.get(),
7643 SrcTy->castAs<ComplexType>()->getElementType(),
7644 CK_IntegralComplexToReal);
7645 return CK_IntegralToFloating;
7646 case Type::STK_CPointer:
7647 case Type::STK_ObjCObjectPointer:
7648 case Type::STK_BlockPointer:
7649 llvm_unreachable("valid complex int->pointer cast?");
7650 case Type::STK_MemberPointer:
7651 llvm_unreachable("member pointer type in C");
7652 case Type::STK_FixedPoint:
7653 Diag(Src.get()->getExprLoc(),
7654 diag::err_unimplemented_conversion_with_fixed_point_type)
7655 << SrcTy;
7656 return CK_IntegralCast;
7657 }
7658 llvm_unreachable("Should have returned before this");
7659 }
7660
7661 llvm_unreachable("Unhandled scalar cast");
7662 }
7663
breakDownVectorType(QualType type,uint64_t & len,QualType & eltType)7664 static bool breakDownVectorType(QualType type, uint64_t &len,
7665 QualType &eltType) {
7666 // Vectors are simple.
7667 if (const VectorType *vecType = type->getAs<VectorType>()) {
7668 len = vecType->getNumElements();
7669 eltType = vecType->getElementType();
7670 assert(eltType->isScalarType());
7671 return true;
7672 }
7673
7674 // We allow lax conversion to and from non-vector types, but only if
7675 // they're real types (i.e. non-complex, non-pointer scalar types).
7676 if (!type->isRealType()) return false;
7677
7678 len = 1;
7679 eltType = type;
7680 return true;
7681 }
7682
7683 /// Are the two types SVE-bitcast-compatible types? I.e. is bitcasting from the
7684 /// first SVE type (e.g. an SVE VLAT) to the second type (e.g. an SVE VLST)
7685 /// allowed?
7686 ///
7687 /// This will also return false if the two given types do not make sense from
7688 /// the perspective of SVE bitcasts.
isValidSveBitcast(QualType srcTy,QualType destTy)7689 bool Sema::isValidSveBitcast(QualType srcTy, QualType destTy) {
7690 assert(srcTy->isVectorType() || destTy->isVectorType());
7691
7692 auto ValidScalableConversion = [](QualType FirstType, QualType SecondType) {
7693 if (!FirstType->isSizelessBuiltinType())
7694 return false;
7695
7696 const auto *VecTy = SecondType->getAs<VectorType>();
7697 return VecTy &&
7698 VecTy->getVectorKind() == VectorType::SveFixedLengthDataVector;
7699 };
7700
7701 return ValidScalableConversion(srcTy, destTy) ||
7702 ValidScalableConversion(destTy, srcTy);
7703 }
7704
7705 /// Are the two types matrix types and do they have the same dimensions i.e.
7706 /// do they have the same number of rows and the same number of columns?
areMatrixTypesOfTheSameDimension(QualType srcTy,QualType destTy)7707 bool Sema::areMatrixTypesOfTheSameDimension(QualType srcTy, QualType destTy) {
7708 if (!destTy->isMatrixType() || !srcTy->isMatrixType())
7709 return false;
7710
7711 const ConstantMatrixType *matSrcType = srcTy->getAs<ConstantMatrixType>();
7712 const ConstantMatrixType *matDestType = destTy->getAs<ConstantMatrixType>();
7713
7714 return matSrcType->getNumRows() == matDestType->getNumRows() &&
7715 matSrcType->getNumColumns() == matDestType->getNumColumns();
7716 }
7717
areVectorTypesSameSize(QualType SrcTy,QualType DestTy)7718 bool Sema::areVectorTypesSameSize(QualType SrcTy, QualType DestTy) {
7719 assert(DestTy->isVectorType() || SrcTy->isVectorType());
7720
7721 uint64_t SrcLen, DestLen;
7722 QualType SrcEltTy, DestEltTy;
7723 if (!breakDownVectorType(SrcTy, SrcLen, SrcEltTy))
7724 return false;
7725 if (!breakDownVectorType(DestTy, DestLen, DestEltTy))
7726 return false;
7727
7728 // ASTContext::getTypeSize will return the size rounded up to a
7729 // power of 2, so instead of using that, we need to use the raw
7730 // element size multiplied by the element count.
7731 uint64_t SrcEltSize = Context.getTypeSize(SrcEltTy);
7732 uint64_t DestEltSize = Context.getTypeSize(DestEltTy);
7733
7734 return (SrcLen * SrcEltSize == DestLen * DestEltSize);
7735 }
7736
7737 // This returns true if at least one of the types is an altivec vector.
anyAltivecTypes(QualType SrcTy,QualType DestTy)7738 bool Sema::anyAltivecTypes(QualType SrcTy, QualType DestTy) {
7739 assert((DestTy->isVectorType() || SrcTy->isVectorType()) &&
7740 "expected at least one type to be a vector here");
7741
7742 bool IsSrcTyAltivec =
7743 SrcTy->isVectorType() && (SrcTy->castAs<VectorType>()->getVectorKind() ==
7744 VectorType::AltiVecVector);
7745 bool IsDestTyAltivec = DestTy->isVectorType() &&
7746 (DestTy->castAs<VectorType>()->getVectorKind() ==
7747 VectorType::AltiVecVector);
7748
7749 return (IsSrcTyAltivec || IsDestTyAltivec);
7750 }
7751
7752 // This returns true if both vectors have the same element type.
areSameVectorElemTypes(QualType SrcTy,QualType DestTy)7753 bool Sema::areSameVectorElemTypes(QualType SrcTy, QualType DestTy) {
7754 assert((DestTy->isVectorType() || SrcTy->isVectorType()) &&
7755 "expected at least one type to be a vector here");
7756
7757 uint64_t SrcLen, DestLen;
7758 QualType SrcEltTy, DestEltTy;
7759 if (!breakDownVectorType(SrcTy, SrcLen, SrcEltTy))
7760 return false;
7761 if (!breakDownVectorType(DestTy, DestLen, DestEltTy))
7762 return false;
7763
7764 return (SrcEltTy == DestEltTy);
7765 }
7766
7767 /// Are the two types lax-compatible vector types? That is, given
7768 /// that one of them is a vector, do they have equal storage sizes,
7769 /// where the storage size is the number of elements times the element
7770 /// size?
7771 ///
7772 /// This will also return false if either of the types is neither a
7773 /// vector nor a real type.
areLaxCompatibleVectorTypes(QualType srcTy,QualType destTy)7774 bool Sema::areLaxCompatibleVectorTypes(QualType srcTy, QualType destTy) {
7775 assert(destTy->isVectorType() || srcTy->isVectorType());
7776
7777 // Disallow lax conversions between scalars and ExtVectors (these
7778 // conversions are allowed for other vector types because common headers
7779 // depend on them). Most scalar OP ExtVector cases are handled by the
7780 // splat path anyway, which does what we want (convert, not bitcast).
7781 // What this rules out for ExtVectors is crazy things like char4*float.
7782 if (srcTy->isScalarType() && destTy->isExtVectorType()) return false;
7783 if (destTy->isScalarType() && srcTy->isExtVectorType()) return false;
7784
7785 return areVectorTypesSameSize(srcTy, destTy);
7786 }
7787
7788 /// Is this a legal conversion between two types, one of which is
7789 /// known to be a vector type?
isLaxVectorConversion(QualType srcTy,QualType destTy)7790 bool Sema::isLaxVectorConversion(QualType srcTy, QualType destTy) {
7791 assert(destTy->isVectorType() || srcTy->isVectorType());
7792
7793 switch (Context.getLangOpts().getLaxVectorConversions()) {
7794 case LangOptions::LaxVectorConversionKind::None:
7795 return false;
7796
7797 case LangOptions::LaxVectorConversionKind::Integer:
7798 if (!srcTy->isIntegralOrEnumerationType()) {
7799 auto *Vec = srcTy->getAs<VectorType>();
7800 if (!Vec || !Vec->getElementType()->isIntegralOrEnumerationType())
7801 return false;
7802 }
7803 if (!destTy->isIntegralOrEnumerationType()) {
7804 auto *Vec = destTy->getAs<VectorType>();
7805 if (!Vec || !Vec->getElementType()->isIntegralOrEnumerationType())
7806 return false;
7807 }
7808 // OK, integer (vector) -> integer (vector) bitcast.
7809 break;
7810
7811 case LangOptions::LaxVectorConversionKind::All:
7812 break;
7813 }
7814
7815 return areLaxCompatibleVectorTypes(srcTy, destTy);
7816 }
7817
CheckMatrixCast(SourceRange R,QualType DestTy,QualType SrcTy,CastKind & Kind)7818 bool Sema::CheckMatrixCast(SourceRange R, QualType DestTy, QualType SrcTy,
7819 CastKind &Kind) {
7820 if (SrcTy->isMatrixType() && DestTy->isMatrixType()) {
7821 if (!areMatrixTypesOfTheSameDimension(SrcTy, DestTy)) {
7822 return Diag(R.getBegin(), diag::err_invalid_conversion_between_matrixes)
7823 << DestTy << SrcTy << R;
7824 }
7825 } else if (SrcTy->isMatrixType()) {
7826 return Diag(R.getBegin(),
7827 diag::err_invalid_conversion_between_matrix_and_type)
7828 << SrcTy << DestTy << R;
7829 } else if (DestTy->isMatrixType()) {
7830 return Diag(R.getBegin(),
7831 diag::err_invalid_conversion_between_matrix_and_type)
7832 << DestTy << SrcTy << R;
7833 }
7834
7835 Kind = CK_MatrixCast;
7836 return false;
7837 }
7838
CheckVectorCast(SourceRange R,QualType VectorTy,QualType Ty,CastKind & Kind)7839 bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
7840 CastKind &Kind) {
7841 assert(VectorTy->isVectorType() && "Not a vector type!");
7842
7843 if (Ty->isVectorType() || Ty->isIntegralType(Context)) {
7844 if (!areLaxCompatibleVectorTypes(Ty, VectorTy))
7845 return Diag(R.getBegin(),
7846 Ty->isVectorType() ?
7847 diag::err_invalid_conversion_between_vectors :
7848 diag::err_invalid_conversion_between_vector_and_integer)
7849 << VectorTy << Ty << R;
7850 } else
7851 return Diag(R.getBegin(),
7852 diag::err_invalid_conversion_between_vector_and_scalar)
7853 << VectorTy << Ty << R;
7854
7855 Kind = CK_BitCast;
7856 return false;
7857 }
7858
prepareVectorSplat(QualType VectorTy,Expr * SplattedExpr)7859 ExprResult Sema::prepareVectorSplat(QualType VectorTy, Expr *SplattedExpr) {
7860 QualType DestElemTy = VectorTy->castAs<VectorType>()->getElementType();
7861
7862 if (DestElemTy == SplattedExpr->getType())
7863 return SplattedExpr;
7864
7865 assert(DestElemTy->isFloatingType() ||
7866 DestElemTy->isIntegralOrEnumerationType());
7867
7868 CastKind CK;
7869 if (VectorTy->isExtVectorType() && SplattedExpr->getType()->isBooleanType()) {
7870 // OpenCL requires that we convert `true` boolean expressions to -1, but
7871 // only when splatting vectors.
7872 if (DestElemTy->isFloatingType()) {
7873 // To avoid having to have a CK_BooleanToSignedFloating cast kind, we cast
7874 // in two steps: boolean to signed integral, then to floating.
7875 ExprResult CastExprRes = ImpCastExprToType(SplattedExpr, Context.IntTy,
7876 CK_BooleanToSignedIntegral);
7877 SplattedExpr = CastExprRes.get();
7878 CK = CK_IntegralToFloating;
7879 } else {
7880 CK = CK_BooleanToSignedIntegral;
7881 }
7882 } else {
7883 ExprResult CastExprRes = SplattedExpr;
7884 CK = PrepareScalarCast(CastExprRes, DestElemTy);
7885 if (CastExprRes.isInvalid())
7886 return ExprError();
7887 SplattedExpr = CastExprRes.get();
7888 }
7889 return ImpCastExprToType(SplattedExpr, DestElemTy, CK);
7890 }
7891
CheckExtVectorCast(SourceRange R,QualType DestTy,Expr * CastExpr,CastKind & Kind)7892 ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
7893 Expr *CastExpr, CastKind &Kind) {
7894 assert(DestTy->isExtVectorType() && "Not an extended vector type!");
7895
7896 QualType SrcTy = CastExpr->getType();
7897
7898 // If SrcTy is a VectorType, the total size must match to explicitly cast to
7899 // an ExtVectorType.
7900 // In OpenCL, casts between vectors of different types are not allowed.
7901 // (See OpenCL 6.2).
7902 if (SrcTy->isVectorType()) {
7903 if (!areLaxCompatibleVectorTypes(SrcTy, DestTy) ||
7904 (getLangOpts().OpenCL &&
7905 !Context.hasSameUnqualifiedType(DestTy, SrcTy))) {
7906 Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
7907 << DestTy << SrcTy << R;
7908 return ExprError();
7909 }
7910 Kind = CK_BitCast;
7911 return CastExpr;
7912 }
7913
7914 // All non-pointer scalars can be cast to ExtVector type. The appropriate
7915 // conversion will take place first from scalar to elt type, and then
7916 // splat from elt type to vector.
7917 if (SrcTy->isPointerType())
7918 return Diag(R.getBegin(),
7919 diag::err_invalid_conversion_between_vector_and_scalar)
7920 << DestTy << SrcTy << R;
7921
7922 Kind = CK_VectorSplat;
7923 return prepareVectorSplat(DestTy, CastExpr);
7924 }
7925
7926 ExprResult
ActOnCastExpr(Scope * S,SourceLocation LParenLoc,Declarator & D,ParsedType & Ty,SourceLocation RParenLoc,Expr * CastExpr)7927 Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
7928 Declarator &D, ParsedType &Ty,
7929 SourceLocation RParenLoc, Expr *CastExpr) {
7930 assert(!D.isInvalidType() && (CastExpr != nullptr) &&
7931 "ActOnCastExpr(): missing type or expr");
7932
7933 TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, CastExpr->getType());
7934 if (D.isInvalidType())
7935 return ExprError();
7936
7937 if (getLangOpts().CPlusPlus) {
7938 // Check that there are no default arguments (C++ only).
7939 CheckExtraCXXDefaultArguments(D);
7940 } else {
7941 // Make sure any TypoExprs have been dealt with.
7942 ExprResult Res = CorrectDelayedTyposInExpr(CastExpr);
7943 if (!Res.isUsable())
7944 return ExprError();
7945 CastExpr = Res.get();
7946 }
7947
7948 checkUnusedDeclAttributes(D);
7949
7950 QualType castType = castTInfo->getType();
7951 Ty = CreateParsedType(castType, castTInfo);
7952
7953 bool isVectorLiteral = false;
7954
7955 // Check for an altivec or OpenCL literal,
7956 // i.e. all the elements are integer constants.
7957 ParenExpr *PE = dyn_cast<ParenExpr>(CastExpr);
7958 ParenListExpr *PLE = dyn_cast<ParenListExpr>(CastExpr);
7959 if ((getLangOpts().AltiVec || getLangOpts().ZVector || getLangOpts().OpenCL)
7960 && castType->isVectorType() && (PE || PLE)) {
7961 if (PLE && PLE->getNumExprs() == 0) {
7962 Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer);
7963 return ExprError();
7964 }
7965 if (PE || PLE->getNumExprs() == 1) {
7966 Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0));
7967 if (!E->isTypeDependent() && !E->getType()->isVectorType())
7968 isVectorLiteral = true;
7969 }
7970 else
7971 isVectorLiteral = true;
7972 }
7973
7974 // If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
7975 // then handle it as such.
7976 if (isVectorLiteral)
7977 return BuildVectorLiteral(LParenLoc, RParenLoc, CastExpr, castTInfo);
7978
7979 // If the Expr being casted is a ParenListExpr, handle it specially.
7980 // This is not an AltiVec-style cast, so turn the ParenListExpr into a
7981 // sequence of BinOp comma operators.
7982 if (isa<ParenListExpr>(CastExpr)) {
7983 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, CastExpr);
7984 if (Result.isInvalid()) return ExprError();
7985 CastExpr = Result.get();
7986 }
7987
7988 if (getLangOpts().CPlusPlus && !castType->isVoidType())
7989 Diag(LParenLoc, diag::warn_old_style_cast) << CastExpr->getSourceRange();
7990
7991 CheckTollFreeBridgeCast(castType, CastExpr);
7992
7993 CheckObjCBridgeRelatedCast(castType, CastExpr);
7994
7995 DiscardMisalignedMemberAddress(castType.getTypePtr(), CastExpr);
7996
7997 return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, CastExpr);
7998 }
7999
BuildVectorLiteral(SourceLocation LParenLoc,SourceLocation RParenLoc,Expr * E,TypeSourceInfo * TInfo)8000 ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
8001 SourceLocation RParenLoc, Expr *E,
8002 TypeSourceInfo *TInfo) {
8003 assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&
8004 "Expected paren or paren list expression");
8005
8006 Expr **exprs;
8007 unsigned numExprs;
8008 Expr *subExpr;
8009 SourceLocation LiteralLParenLoc, LiteralRParenLoc;
8010 if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) {
8011 LiteralLParenLoc = PE->getLParenLoc();
8012 LiteralRParenLoc = PE->getRParenLoc();
8013 exprs = PE->getExprs();
8014 numExprs = PE->getNumExprs();
8015 } else { // isa<ParenExpr> by assertion at function entrance
8016 LiteralLParenLoc = cast<ParenExpr>(E)->getLParen();
8017 LiteralRParenLoc = cast<ParenExpr>(E)->getRParen();
8018 subExpr = cast<ParenExpr>(E)->getSubExpr();
8019 exprs = &subExpr;
8020 numExprs = 1;
8021 }
8022
8023 QualType Ty = TInfo->getType();
8024 assert(Ty->isVectorType() && "Expected vector type");
8025
8026 SmallVector<Expr *, 8> initExprs;
8027 const VectorType *VTy = Ty->castAs<VectorType>();
8028 unsigned numElems = VTy->getNumElements();
8029
8030 // '(...)' form of vector initialization in AltiVec: the number of
8031 // initializers must be one or must match the size of the vector.
8032 // If a single value is specified in the initializer then it will be
8033 // replicated to all the components of the vector
8034 if (CheckAltivecInitFromScalar(E->getSourceRange(), Ty,
8035 VTy->getElementType()))
8036 return ExprError();
8037 if (ShouldSplatAltivecScalarInCast(VTy)) {
8038 // The number of initializers must be one or must match the size of the
8039 // vector. If a single value is specified in the initializer then it will
8040 // be replicated to all the components of the vector
8041 if (numExprs == 1) {
8042 QualType ElemTy = VTy->getElementType();
8043 ExprResult Literal = DefaultLvalueConversion(exprs[0]);
8044 if (Literal.isInvalid())
8045 return ExprError();
8046 Literal = ImpCastExprToType(Literal.get(), ElemTy,
8047 PrepareScalarCast(Literal, ElemTy));
8048 return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
8049 }
8050 else if (numExprs < numElems) {
8051 Diag(E->getExprLoc(),
8052 diag::err_incorrect_number_of_vector_initializers);
8053 return ExprError();
8054 }
8055 else
8056 initExprs.append(exprs, exprs + numExprs);
8057 }
8058 else {
8059 // For OpenCL, when the number of initializers is a single value,
8060 // it will be replicated to all components of the vector.
8061 if (getLangOpts().OpenCL &&
8062 VTy->getVectorKind() == VectorType::GenericVector &&
8063 numExprs == 1) {
8064 QualType ElemTy = VTy->getElementType();
8065 ExprResult Literal = DefaultLvalueConversion(exprs[0]);
8066 if (Literal.isInvalid())
8067 return ExprError();
8068 Literal = ImpCastExprToType(Literal.get(), ElemTy,
8069 PrepareScalarCast(Literal, ElemTy));
8070 return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
8071 }
8072
8073 initExprs.append(exprs, exprs + numExprs);
8074 }
8075 // FIXME: This means that pretty-printing the final AST will produce curly
8076 // braces instead of the original commas.
8077 InitListExpr *initE = new (Context) InitListExpr(Context, LiteralLParenLoc,
8078 initExprs, LiteralRParenLoc);
8079 initE->setType(Ty);
8080 return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE);
8081 }
8082
8083 /// This is not an AltiVec-style cast or or C++ direct-initialization, so turn
8084 /// the ParenListExpr into a sequence of comma binary operators.
8085 ExprResult
MaybeConvertParenListExprToParenExpr(Scope * S,Expr * OrigExpr)8086 Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) {
8087 ParenListExpr *E = dyn_cast<ParenListExpr>(OrigExpr);
8088 if (!E)
8089 return OrigExpr;
8090
8091 ExprResult Result(E->getExpr(0));
8092
8093 for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
8094 Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
8095 E->getExpr(i));
8096
8097 if (Result.isInvalid()) return ExprError();
8098
8099 return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
8100 }
8101
ActOnParenListExpr(SourceLocation L,SourceLocation R,MultiExprArg Val)8102 ExprResult Sema::ActOnParenListExpr(SourceLocation L,
8103 SourceLocation R,
8104 MultiExprArg Val) {
8105 return ParenListExpr::Create(Context, L, Val, R);
8106 }
8107
8108 /// Emit a specialized diagnostic when one expression is a null pointer
8109 /// constant and the other is not a pointer. Returns true if a diagnostic is
8110 /// emitted.
DiagnoseConditionalForNull(Expr * LHSExpr,Expr * RHSExpr,SourceLocation QuestionLoc)8111 bool Sema::DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr,
8112 SourceLocation QuestionLoc) {
8113 Expr *NullExpr = LHSExpr;
8114 Expr *NonPointerExpr = RHSExpr;
8115 Expr::NullPointerConstantKind NullKind =
8116 NullExpr->isNullPointerConstant(Context,
8117 Expr::NPC_ValueDependentIsNotNull);
8118
8119 if (NullKind == Expr::NPCK_NotNull) {
8120 NullExpr = RHSExpr;
8121 NonPointerExpr = LHSExpr;
8122 NullKind =
8123 NullExpr->isNullPointerConstant(Context,
8124 Expr::NPC_ValueDependentIsNotNull);
8125 }
8126
8127 if (NullKind == Expr::NPCK_NotNull)
8128 return false;
8129
8130 if (NullKind == Expr::NPCK_ZeroExpression)
8131 return false;
8132
8133 if (NullKind == Expr::NPCK_ZeroLiteral) {
8134 // In this case, check to make sure that we got here from a "NULL"
8135 // string in the source code.
8136 NullExpr = NullExpr->IgnoreParenImpCasts();
8137 SourceLocation loc = NullExpr->getExprLoc();
8138 if (!findMacroSpelling(loc, "NULL"))
8139 return false;
8140 }
8141
8142 int DiagType = (NullKind == Expr::NPCK_CXX11_nullptr);
8143 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
8144 << NonPointerExpr->getType() << DiagType
8145 << NonPointerExpr->getSourceRange();
8146 return true;
8147 }
8148
8149 /// Return false if the condition expression is valid, true otherwise.
checkCondition(Sema & S,Expr * Cond,SourceLocation QuestionLoc)8150 static bool checkCondition(Sema &S, Expr *Cond, SourceLocation QuestionLoc) {
8151 QualType CondTy = Cond->getType();
8152
8153 // OpenCL v1.1 s6.3.i says the condition cannot be a floating point type.
8154 if (S.getLangOpts().OpenCL && CondTy->isFloatingType()) {
8155 S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
8156 << CondTy << Cond->getSourceRange();
8157 return true;
8158 }
8159
8160 // C99 6.5.15p2
8161 if (CondTy->isScalarType()) return false;
8162
8163 S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_scalar)
8164 << CondTy << Cond->getSourceRange();
8165 return true;
8166 }
8167
8168 /// Handle when one or both operands are void type.
checkConditionalVoidType(Sema & S,ExprResult & LHS,ExprResult & RHS)8169 static QualType checkConditionalVoidType(Sema &S, ExprResult &LHS,
8170 ExprResult &RHS) {
8171 Expr *LHSExpr = LHS.get();
8172 Expr *RHSExpr = RHS.get();
8173
8174 if (!LHSExpr->getType()->isVoidType())
8175 S.Diag(RHSExpr->getBeginLoc(), diag::ext_typecheck_cond_one_void)
8176 << RHSExpr->getSourceRange();
8177 if (!RHSExpr->getType()->isVoidType())
8178 S.Diag(LHSExpr->getBeginLoc(), diag::ext_typecheck_cond_one_void)
8179 << LHSExpr->getSourceRange();
8180 LHS = S.ImpCastExprToType(LHS.get(), S.Context.VoidTy, CK_ToVoid);
8181 RHS = S.ImpCastExprToType(RHS.get(), S.Context.VoidTy, CK_ToVoid);
8182 return S.Context.VoidTy;
8183 }
8184
8185 /// Return false if the NullExpr can be promoted to PointerTy,
8186 /// true otherwise.
checkConditionalNullPointer(Sema & S,ExprResult & NullExpr,QualType PointerTy)8187 static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr,
8188 QualType PointerTy) {
8189 if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) ||
8190 !NullExpr.get()->isNullPointerConstant(S.Context,
8191 Expr::NPC_ValueDependentIsNull))
8192 return true;
8193
8194 NullExpr = S.ImpCastExprToType(NullExpr.get(), PointerTy, CK_NullToPointer);
8195 return false;
8196 }
8197
8198 /// Checks compatibility between two pointers and return the resulting
8199 /// type.
checkConditionalPointerCompatibility(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc)8200 static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS,
8201 ExprResult &RHS,
8202 SourceLocation Loc) {
8203 QualType LHSTy = LHS.get()->getType();
8204 QualType RHSTy = RHS.get()->getType();
8205
8206 if (S.Context.hasSameType(LHSTy, RHSTy)) {
8207 // Two identical pointers types are always compatible.
8208 return LHSTy;
8209 }
8210
8211 QualType lhptee, rhptee;
8212
8213 // Get the pointee types.
8214 bool IsBlockPointer = false;
8215 if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) {
8216 lhptee = LHSBTy->getPointeeType();
8217 rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType();
8218 IsBlockPointer = true;
8219 } else {
8220 lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
8221 rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
8222 }
8223
8224 // C99 6.5.15p6: If both operands are pointers to compatible types or to
8225 // differently qualified versions of compatible types, the result type is
8226 // a pointer to an appropriately qualified version of the composite
8227 // type.
8228
8229 // Only CVR-qualifiers exist in the standard, and the differently-qualified
8230 // clause doesn't make sense for our extensions. E.g. address space 2 should
8231 // be incompatible with address space 3: they may live on different devices or
8232 // anything.
8233 Qualifiers lhQual = lhptee.getQualifiers();
8234 Qualifiers rhQual = rhptee.getQualifiers();
8235
8236 LangAS ResultAddrSpace = LangAS::Default;
8237 LangAS LAddrSpace = lhQual.getAddressSpace();
8238 LangAS RAddrSpace = rhQual.getAddressSpace();
8239
8240 // OpenCL v1.1 s6.5 - Conversion between pointers to distinct address
8241 // spaces is disallowed.
8242 if (lhQual.isAddressSpaceSupersetOf(rhQual))
8243 ResultAddrSpace = LAddrSpace;
8244 else if (rhQual.isAddressSpaceSupersetOf(lhQual))
8245 ResultAddrSpace = RAddrSpace;
8246 else {
8247 S.Diag(Loc, diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
8248 << LHSTy << RHSTy << 2 << LHS.get()->getSourceRange()
8249 << RHS.get()->getSourceRange();
8250 return QualType();
8251 }
8252
8253 unsigned MergedCVRQual = lhQual.getCVRQualifiers() | rhQual.getCVRQualifiers();
8254 auto LHSCastKind = CK_BitCast, RHSCastKind = CK_BitCast;
8255 lhQual.removeCVRQualifiers();
8256 rhQual.removeCVRQualifiers();
8257
8258 // OpenCL v2.0 specification doesn't extend compatibility of type qualifiers
8259 // (C99 6.7.3) for address spaces. We assume that the check should behave in
8260 // the same manner as it's defined for CVR qualifiers, so for OpenCL two
8261 // qual types are compatible iff
8262 // * corresponded types are compatible
8263 // * CVR qualifiers are equal
8264 // * address spaces are equal
8265 // Thus for conditional operator we merge CVR and address space unqualified
8266 // pointees and if there is a composite type we return a pointer to it with
8267 // merged qualifiers.
8268 LHSCastKind =
8269 LAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion;
8270 RHSCastKind =
8271 RAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion;
8272 lhQual.removeAddressSpace();
8273 rhQual.removeAddressSpace();
8274
8275 lhptee = S.Context.getQualifiedType(lhptee.getUnqualifiedType(), lhQual);
8276 rhptee = S.Context.getQualifiedType(rhptee.getUnqualifiedType(), rhQual);
8277
8278 QualType CompositeTy = S.Context.mergeTypes(lhptee, rhptee);
8279
8280 if (CompositeTy.isNull()) {
8281 // In this situation, we assume void* type. No especially good
8282 // reason, but this is what gcc does, and we do have to pick
8283 // to get a consistent AST.
8284 QualType incompatTy;
8285 incompatTy = S.Context.getPointerType(
8286 S.Context.getAddrSpaceQualType(S.Context.VoidTy, ResultAddrSpace));
8287 LHS = S.ImpCastExprToType(LHS.get(), incompatTy, LHSCastKind);
8288 RHS = S.ImpCastExprToType(RHS.get(), incompatTy, RHSCastKind);
8289
8290 // FIXME: For OpenCL the warning emission and cast to void* leaves a room
8291 // for casts between types with incompatible address space qualifiers.
8292 // For the following code the compiler produces casts between global and
8293 // local address spaces of the corresponded innermost pointees:
8294 // local int *global *a;
8295 // global int *global *b;
8296 // a = (0 ? a : b); // see C99 6.5.16.1.p1.
8297 S.Diag(Loc, diag::ext_typecheck_cond_incompatible_pointers)
8298 << LHSTy << RHSTy << LHS.get()->getSourceRange()
8299 << RHS.get()->getSourceRange();
8300
8301 return incompatTy;
8302 }
8303
8304 // The pointer types are compatible.
8305 // In case of OpenCL ResultTy should have the address space qualifier
8306 // which is a superset of address spaces of both the 2nd and the 3rd
8307 // operands of the conditional operator.
8308 QualType ResultTy = [&, ResultAddrSpace]() {
8309 if (S.getLangOpts().OpenCL) {
8310 Qualifiers CompositeQuals = CompositeTy.getQualifiers();
8311 CompositeQuals.setAddressSpace(ResultAddrSpace);
8312 return S.Context
8313 .getQualifiedType(CompositeTy.getUnqualifiedType(), CompositeQuals)
8314 .withCVRQualifiers(MergedCVRQual);
8315 }
8316 return CompositeTy.withCVRQualifiers(MergedCVRQual);
8317 }();
8318 if (IsBlockPointer)
8319 ResultTy = S.Context.getBlockPointerType(ResultTy);
8320 else
8321 ResultTy = S.Context.getPointerType(ResultTy);
8322
8323 LHS = S.ImpCastExprToType(LHS.get(), ResultTy, LHSCastKind);
8324 RHS = S.ImpCastExprToType(RHS.get(), ResultTy, RHSCastKind);
8325 return ResultTy;
8326 }
8327
8328 /// Return the resulting type when the operands are both block pointers.
checkConditionalBlockPointerCompatibility(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc)8329 static QualType checkConditionalBlockPointerCompatibility(Sema &S,
8330 ExprResult &LHS,
8331 ExprResult &RHS,
8332 SourceLocation Loc) {
8333 QualType LHSTy = LHS.get()->getType();
8334 QualType RHSTy = RHS.get()->getType();
8335
8336 if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
8337 if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
8338 QualType destType = S.Context.getPointerType(S.Context.VoidTy);
8339 LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
8340 RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
8341 return destType;
8342 }
8343 S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
8344 << LHSTy << RHSTy << LHS.get()->getSourceRange()
8345 << RHS.get()->getSourceRange();
8346 return QualType();
8347 }
8348
8349 // We have 2 block pointer types.
8350 return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
8351 }
8352
8353 /// Return the resulting type when the operands are both pointers.
8354 static QualType
checkConditionalObjectPointersCompatibility(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc)8355 checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS,
8356 ExprResult &RHS,
8357 SourceLocation Loc) {
8358 // get the pointer types
8359 QualType LHSTy = LHS.get()->getType();
8360 QualType RHSTy = RHS.get()->getType();
8361
8362 // get the "pointed to" types
8363 QualType lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
8364 QualType rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
8365
8366 // ignore qualifiers on void (C99 6.5.15p3, clause 6)
8367 if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
8368 // Figure out necessary qualifiers (C99 6.5.15p6)
8369 QualType destPointee
8370 = S.Context.getQualifiedType(lhptee, rhptee.getQualifiers());
8371 QualType destType = S.Context.getPointerType(destPointee);
8372 // Add qualifiers if necessary.
8373 LHS = S.ImpCastExprToType(LHS.get(), destType, CK_NoOp);
8374 // Promote to void*.
8375 RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
8376 return destType;
8377 }
8378 if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
8379 QualType destPointee
8380 = S.Context.getQualifiedType(rhptee, lhptee.getQualifiers());
8381 QualType destType = S.Context.getPointerType(destPointee);
8382 // Add qualifiers if necessary.
8383 RHS = S.ImpCastExprToType(RHS.get(), destType, CK_NoOp);
8384 // Promote to void*.
8385 LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
8386 return destType;
8387 }
8388
8389 return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
8390 }
8391
8392 /// Return false if the first expression is not an integer and the second
8393 /// expression is not a pointer, true otherwise.
checkPointerIntegerMismatch(Sema & S,ExprResult & Int,Expr * PointerExpr,SourceLocation Loc,bool IsIntFirstExpr)8394 static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int,
8395 Expr* PointerExpr, SourceLocation Loc,
8396 bool IsIntFirstExpr) {
8397 if (!PointerExpr->getType()->isPointerType() ||
8398 !Int.get()->getType()->isIntegerType())
8399 return false;
8400
8401 Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr;
8402 Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get();
8403
8404 S.Diag(Loc, diag::ext_typecheck_cond_pointer_integer_mismatch)
8405 << Expr1->getType() << Expr2->getType()
8406 << Expr1->getSourceRange() << Expr2->getSourceRange();
8407 Int = S.ImpCastExprToType(Int.get(), PointerExpr->getType(),
8408 CK_IntegralToPointer);
8409 return true;
8410 }
8411
8412 /// Simple conversion between integer and floating point types.
8413 ///
8414 /// Used when handling the OpenCL conditional operator where the
8415 /// condition is a vector while the other operands are scalar.
8416 ///
8417 /// OpenCL v1.1 s6.3.i and s6.11.6 together require that the scalar
8418 /// types are either integer or floating type. Between the two
8419 /// operands, the type with the higher rank is defined as the "result
8420 /// type". The other operand needs to be promoted to the same type. No
8421 /// other type promotion is allowed. We cannot use
8422 /// UsualArithmeticConversions() for this purpose, since it always
8423 /// promotes promotable types.
OpenCLArithmeticConversions(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation QuestionLoc)8424 static QualType OpenCLArithmeticConversions(Sema &S, ExprResult &LHS,
8425 ExprResult &RHS,
8426 SourceLocation QuestionLoc) {
8427 LHS = S.DefaultFunctionArrayLvalueConversion(LHS.get());
8428 if (LHS.isInvalid())
8429 return QualType();
8430 RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
8431 if (RHS.isInvalid())
8432 return QualType();
8433
8434 // For conversion purposes, we ignore any qualifiers.
8435 // For example, "const float" and "float" are equivalent.
8436 QualType LHSType =
8437 S.Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
8438 QualType RHSType =
8439 S.Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
8440
8441 if (!LHSType->isIntegerType() && !LHSType->isRealFloatingType()) {
8442 S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
8443 << LHSType << LHS.get()->getSourceRange();
8444 return QualType();
8445 }
8446
8447 if (!RHSType->isIntegerType() && !RHSType->isRealFloatingType()) {
8448 S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
8449 << RHSType << RHS.get()->getSourceRange();
8450 return QualType();
8451 }
8452
8453 // If both types are identical, no conversion is needed.
8454 if (LHSType == RHSType)
8455 return LHSType;
8456
8457 // Now handle "real" floating types (i.e. float, double, long double).
8458 if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
8459 return handleFloatConversion(S, LHS, RHS, LHSType, RHSType,
8460 /*IsCompAssign = */ false);
8461
8462 // Finally, we have two differing integer types.
8463 return handleIntegerConversion<doIntegralCast, doIntegralCast>
8464 (S, LHS, RHS, LHSType, RHSType, /*IsCompAssign = */ false);
8465 }
8466
8467 /// Convert scalar operands to a vector that matches the
8468 /// condition in length.
8469 ///
8470 /// Used when handling the OpenCL conditional operator where the
8471 /// condition is a vector while the other operands are scalar.
8472 ///
8473 /// We first compute the "result type" for the scalar operands
8474 /// according to OpenCL v1.1 s6.3.i. Both operands are then converted
8475 /// into a vector of that type where the length matches the condition
8476 /// vector type. s6.11.6 requires that the element types of the result
8477 /// and the condition must have the same number of bits.
8478 static QualType
OpenCLConvertScalarsToVectors(Sema & S,ExprResult & LHS,ExprResult & RHS,QualType CondTy,SourceLocation QuestionLoc)8479 OpenCLConvertScalarsToVectors(Sema &S, ExprResult &LHS, ExprResult &RHS,
8480 QualType CondTy, SourceLocation QuestionLoc) {
8481 QualType ResTy = OpenCLArithmeticConversions(S, LHS, RHS, QuestionLoc);
8482 if (ResTy.isNull()) return QualType();
8483
8484 const VectorType *CV = CondTy->getAs<VectorType>();
8485 assert(CV);
8486
8487 // Determine the vector result type
8488 unsigned NumElements = CV->getNumElements();
8489 QualType VectorTy = S.Context.getExtVectorType(ResTy, NumElements);
8490
8491 // Ensure that all types have the same number of bits
8492 if (S.Context.getTypeSize(CV->getElementType())
8493 != S.Context.getTypeSize(ResTy)) {
8494 // Since VectorTy is created internally, it does not pretty print
8495 // with an OpenCL name. Instead, we just print a description.
8496 std::string EleTyName = ResTy.getUnqualifiedType().getAsString();
8497 SmallString<64> Str;
8498 llvm::raw_svector_ostream OS(Str);
8499 OS << "(vector of " << NumElements << " '" << EleTyName << "' values)";
8500 S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
8501 << CondTy << OS.str();
8502 return QualType();
8503 }
8504
8505 // Convert operands to the vector result type
8506 LHS = S.ImpCastExprToType(LHS.get(), VectorTy, CK_VectorSplat);
8507 RHS = S.ImpCastExprToType(RHS.get(), VectorTy, CK_VectorSplat);
8508
8509 return VectorTy;
8510 }
8511
8512 /// Return false if this is a valid OpenCL condition vector
checkOpenCLConditionVector(Sema & S,Expr * Cond,SourceLocation QuestionLoc)8513 static bool checkOpenCLConditionVector(Sema &S, Expr *Cond,
8514 SourceLocation QuestionLoc) {
8515 // OpenCL v1.1 s6.11.6 says the elements of the vector must be of
8516 // integral type.
8517 const VectorType *CondTy = Cond->getType()->getAs<VectorType>();
8518 assert(CondTy);
8519 QualType EleTy = CondTy->getElementType();
8520 if (EleTy->isIntegerType()) return false;
8521
8522 S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
8523 << Cond->getType() << Cond->getSourceRange();
8524 return true;
8525 }
8526
8527 /// Return false if the vector condition type and the vector
8528 /// result type are compatible.
8529 ///
8530 /// OpenCL v1.1 s6.11.6 requires that both vector types have the same
8531 /// number of elements, and their element types have the same number
8532 /// of bits.
checkVectorResult(Sema & S,QualType CondTy,QualType VecResTy,SourceLocation QuestionLoc)8533 static bool checkVectorResult(Sema &S, QualType CondTy, QualType VecResTy,
8534 SourceLocation QuestionLoc) {
8535 const VectorType *CV = CondTy->getAs<VectorType>();
8536 const VectorType *RV = VecResTy->getAs<VectorType>();
8537 assert(CV && RV);
8538
8539 if (CV->getNumElements() != RV->getNumElements()) {
8540 S.Diag(QuestionLoc, diag::err_conditional_vector_size)
8541 << CondTy << VecResTy;
8542 return true;
8543 }
8544
8545 QualType CVE = CV->getElementType();
8546 QualType RVE = RV->getElementType();
8547
8548 if (S.Context.getTypeSize(CVE) != S.Context.getTypeSize(RVE)) {
8549 S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
8550 << CondTy << VecResTy;
8551 return true;
8552 }
8553
8554 return false;
8555 }
8556
8557 /// Return the resulting type for the conditional operator in
8558 /// OpenCL (aka "ternary selection operator", OpenCL v1.1
8559 /// s6.3.i) when the condition is a vector type.
8560 static QualType
OpenCLCheckVectorConditional(Sema & S,ExprResult & Cond,ExprResult & LHS,ExprResult & RHS,SourceLocation QuestionLoc)8561 OpenCLCheckVectorConditional(Sema &S, ExprResult &Cond,
8562 ExprResult &LHS, ExprResult &RHS,
8563 SourceLocation QuestionLoc) {
8564 Cond = S.DefaultFunctionArrayLvalueConversion(Cond.get());
8565 if (Cond.isInvalid())
8566 return QualType();
8567 QualType CondTy = Cond.get()->getType();
8568
8569 if (checkOpenCLConditionVector(S, Cond.get(), QuestionLoc))
8570 return QualType();
8571
8572 // If either operand is a vector then find the vector type of the
8573 // result as specified in OpenCL v1.1 s6.3.i.
8574 if (LHS.get()->getType()->isVectorType() ||
8575 RHS.get()->getType()->isVectorType()) {
8576 bool IsBoolVecLang =
8577 !S.getLangOpts().OpenCL && !S.getLangOpts().OpenCLCPlusPlus;
8578 QualType VecResTy =
8579 S.CheckVectorOperands(LHS, RHS, QuestionLoc,
8580 /*isCompAssign*/ false,
8581 /*AllowBothBool*/ true,
8582 /*AllowBoolConversions*/ false,
8583 /*AllowBooleanOperation*/ IsBoolVecLang,
8584 /*ReportInvalid*/ true);
8585 if (VecResTy.isNull())
8586 return QualType();
8587 // The result type must match the condition type as specified in
8588 // OpenCL v1.1 s6.11.6.
8589 if (checkVectorResult(S, CondTy, VecResTy, QuestionLoc))
8590 return QualType();
8591 return VecResTy;
8592 }
8593
8594 // Both operands are scalar.
8595 return OpenCLConvertScalarsToVectors(S, LHS, RHS, CondTy, QuestionLoc);
8596 }
8597
8598 /// Return true if the Expr is block type
checkBlockType(Sema & S,const Expr * E)8599 static bool checkBlockType(Sema &S, const Expr *E) {
8600 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
8601 QualType Ty = CE->getCallee()->getType();
8602 if (Ty->isBlockPointerType()) {
8603 S.Diag(E->getExprLoc(), diag::err_opencl_ternary_with_block);
8604 return true;
8605 }
8606 }
8607 return false;
8608 }
8609
8610 /// Note that LHS is not null here, even if this is the gnu "x ?: y" extension.
8611 /// In that case, LHS = cond.
8612 /// C99 6.5.15
CheckConditionalOperands(ExprResult & Cond,ExprResult & LHS,ExprResult & RHS,ExprValueKind & VK,ExprObjectKind & OK,SourceLocation QuestionLoc)8613 QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
8614 ExprResult &RHS, ExprValueKind &VK,
8615 ExprObjectKind &OK,
8616 SourceLocation QuestionLoc) {
8617
8618 ExprResult LHSResult = CheckPlaceholderExpr(LHS.get());
8619 if (!LHSResult.isUsable()) return QualType();
8620 LHS = LHSResult;
8621
8622 ExprResult RHSResult = CheckPlaceholderExpr(RHS.get());
8623 if (!RHSResult.isUsable()) return QualType();
8624 RHS = RHSResult;
8625
8626 // C++ is sufficiently different to merit its own checker.
8627 if (getLangOpts().CPlusPlus)
8628 return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);
8629
8630 VK = VK_PRValue;
8631 OK = OK_Ordinary;
8632
8633 if (Context.isDependenceAllowed() &&
8634 (Cond.get()->isTypeDependent() || LHS.get()->isTypeDependent() ||
8635 RHS.get()->isTypeDependent())) {
8636 assert(!getLangOpts().CPlusPlus);
8637 assert((Cond.get()->containsErrors() || LHS.get()->containsErrors() ||
8638 RHS.get()->containsErrors()) &&
8639 "should only occur in error-recovery path.");
8640 return Context.DependentTy;
8641 }
8642
8643 // The OpenCL operator with a vector condition is sufficiently
8644 // different to merit its own checker.
8645 if ((getLangOpts().OpenCL && Cond.get()->getType()->isVectorType()) ||
8646 Cond.get()->getType()->isExtVectorType())
8647 return OpenCLCheckVectorConditional(*this, Cond, LHS, RHS, QuestionLoc);
8648
8649 // First, check the condition.
8650 Cond = UsualUnaryConversions(Cond.get());
8651 if (Cond.isInvalid())
8652 return QualType();
8653 if (checkCondition(*this, Cond.get(), QuestionLoc))
8654 return QualType();
8655
8656 // Now check the two expressions.
8657 if (LHS.get()->getType()->isVectorType() ||
8658 RHS.get()->getType()->isVectorType())
8659 return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/ false,
8660 /*AllowBothBool*/ true,
8661 /*AllowBoolConversions*/ false,
8662 /*AllowBooleanOperation*/ false,
8663 /*ReportInvalid*/ true);
8664
8665 QualType ResTy =
8666 UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional);
8667 if (LHS.isInvalid() || RHS.isInvalid())
8668 return QualType();
8669
8670 QualType LHSTy = LHS.get()->getType();
8671 QualType RHSTy = RHS.get()->getType();
8672
8673 // Diagnose attempts to convert between __ibm128, __float128 and long double
8674 // where such conversions currently can't be handled.
8675 if (unsupportedTypeConversion(*this, LHSTy, RHSTy)) {
8676 Diag(QuestionLoc,
8677 diag::err_typecheck_cond_incompatible_operands) << LHSTy << RHSTy
8678 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8679 return QualType();
8680 }
8681
8682 // OpenCL v2.0 s6.12.5 - Blocks cannot be used as expressions of the ternary
8683 // selection operator (?:).
8684 if (getLangOpts().OpenCL &&
8685 ((int)checkBlockType(*this, LHS.get()) | (int)checkBlockType(*this, RHS.get()))) {
8686 return QualType();
8687 }
8688
8689 // If both operands have arithmetic type, do the usual arithmetic conversions
8690 // to find a common type: C99 6.5.15p3,5.
8691 if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
8692 // Disallow invalid arithmetic conversions, such as those between bit-
8693 // precise integers types of different sizes, or between a bit-precise
8694 // integer and another type.
8695 if (ResTy.isNull() && (LHSTy->isBitIntType() || RHSTy->isBitIntType())) {
8696 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
8697 << LHSTy << RHSTy << LHS.get()->getSourceRange()
8698 << RHS.get()->getSourceRange();
8699 return QualType();
8700 }
8701
8702 LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
8703 RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
8704
8705 return ResTy;
8706 }
8707
8708 // And if they're both bfloat (which isn't arithmetic), that's fine too.
8709 if (LHSTy->isBFloat16Type() && RHSTy->isBFloat16Type()) {
8710 return LHSTy;
8711 }
8712
8713 // If both operands are the same structure or union type, the result is that
8714 // type.
8715 if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) { // C99 6.5.15p3
8716 if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
8717 if (LHSRT->getDecl() == RHSRT->getDecl())
8718 // "If both the operands have structure or union type, the result has
8719 // that type." This implies that CV qualifiers are dropped.
8720 return LHSTy.getUnqualifiedType();
8721 // FIXME: Type of conditional expression must be complete in C mode.
8722 }
8723
8724 // C99 6.5.15p5: "If both operands have void type, the result has void type."
8725 // The following || allows only one side to be void (a GCC-ism).
8726 if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
8727 return checkConditionalVoidType(*this, LHS, RHS);
8728 }
8729
8730 // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
8731 // the type of the other operand."
8732 if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy;
8733 if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy;
8734
8735 // All objective-c pointer type analysis is done here.
8736 QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
8737 QuestionLoc);
8738 if (LHS.isInvalid() || RHS.isInvalid())
8739 return QualType();
8740 if (!compositeType.isNull())
8741 return compositeType;
8742
8743
8744 // Handle block pointer types.
8745 if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType())
8746 return checkConditionalBlockPointerCompatibility(*this, LHS, RHS,
8747 QuestionLoc);
8748
8749 // Check constraints for C object pointers types (C99 6.5.15p3,6).
8750 if (LHSTy->isPointerType() && RHSTy->isPointerType())
8751 return checkConditionalObjectPointersCompatibility(*this, LHS, RHS,
8752 QuestionLoc);
8753
8754 // GCC compatibility: soften pointer/integer mismatch. Note that
8755 // null pointers have been filtered out by this point.
8756 if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc,
8757 /*IsIntFirstExpr=*/true))
8758 return RHSTy;
8759 if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc,
8760 /*IsIntFirstExpr=*/false))
8761 return LHSTy;
8762
8763 // Allow ?: operations in which both operands have the same
8764 // built-in sizeless type.
8765 if (LHSTy->isSizelessBuiltinType() && Context.hasSameType(LHSTy, RHSTy))
8766 return LHSTy;
8767
8768 // Emit a better diagnostic if one of the expressions is a null pointer
8769 // constant and the other is not a pointer type. In this case, the user most
8770 // likely forgot to take the address of the other expression.
8771 if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
8772 return QualType();
8773
8774 // Otherwise, the operands are not compatible.
8775 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
8776 << LHSTy << RHSTy << LHS.get()->getSourceRange()
8777 << RHS.get()->getSourceRange();
8778 return QualType();
8779 }
8780
8781 /// FindCompositeObjCPointerType - Helper method to find composite type of
8782 /// two objective-c pointer types of the two input expressions.
FindCompositeObjCPointerType(ExprResult & LHS,ExprResult & RHS,SourceLocation QuestionLoc)8783 QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
8784 SourceLocation QuestionLoc) {
8785 QualType LHSTy = LHS.get()->getType();
8786 QualType RHSTy = RHS.get()->getType();
8787
8788 // Handle things like Class and struct objc_class*. Here we case the result
8789 // to the pseudo-builtin, because that will be implicitly cast back to the
8790 // redefinition type if an attempt is made to access its fields.
8791 if (LHSTy->isObjCClassType() &&
8792 (Context.hasSameType(RHSTy, Context.getObjCClassRedefinitionType()))) {
8793 RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
8794 return LHSTy;
8795 }
8796 if (RHSTy->isObjCClassType() &&
8797 (Context.hasSameType(LHSTy, Context.getObjCClassRedefinitionType()))) {
8798 LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
8799 return RHSTy;
8800 }
8801 // And the same for struct objc_object* / id
8802 if (LHSTy->isObjCIdType() &&
8803 (Context.hasSameType(RHSTy, Context.getObjCIdRedefinitionType()))) {
8804 RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
8805 return LHSTy;
8806 }
8807 if (RHSTy->isObjCIdType() &&
8808 (Context.hasSameType(LHSTy, Context.getObjCIdRedefinitionType()))) {
8809 LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
8810 return RHSTy;
8811 }
8812 // And the same for struct objc_selector* / SEL
8813 if (Context.isObjCSelType(LHSTy) &&
8814 (Context.hasSameType(RHSTy, Context.getObjCSelRedefinitionType()))) {
8815 RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_BitCast);
8816 return LHSTy;
8817 }
8818 if (Context.isObjCSelType(RHSTy) &&
8819 (Context.hasSameType(LHSTy, Context.getObjCSelRedefinitionType()))) {
8820 LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_BitCast);
8821 return RHSTy;
8822 }
8823 // Check constraints for Objective-C object pointers types.
8824 if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
8825
8826 if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
8827 // Two identical object pointer types are always compatible.
8828 return LHSTy;
8829 }
8830 const ObjCObjectPointerType *LHSOPT = LHSTy->castAs<ObjCObjectPointerType>();
8831 const ObjCObjectPointerType *RHSOPT = RHSTy->castAs<ObjCObjectPointerType>();
8832 QualType compositeType = LHSTy;
8833
8834 // If both operands are interfaces and either operand can be
8835 // assigned to the other, use that type as the composite
8836 // type. This allows
8837 // xxx ? (A*) a : (B*) b
8838 // where B is a subclass of A.
8839 //
8840 // Additionally, as for assignment, if either type is 'id'
8841 // allow silent coercion. Finally, if the types are
8842 // incompatible then make sure to use 'id' as the composite
8843 // type so the result is acceptable for sending messages to.
8844
8845 // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
8846 // It could return the composite type.
8847 if (!(compositeType =
8848 Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull()) {
8849 // Nothing more to do.
8850 } else if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
8851 compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
8852 } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
8853 compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
8854 } else if ((LHSOPT->isObjCQualifiedIdType() ||
8855 RHSOPT->isObjCQualifiedIdType()) &&
8856 Context.ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT,
8857 true)) {
8858 // Need to handle "id<xx>" explicitly.
8859 // GCC allows qualified id and any Objective-C type to devolve to
8860 // id. Currently localizing to here until clear this should be
8861 // part of ObjCQualifiedIdTypesAreCompatible.
8862 compositeType = Context.getObjCIdType();
8863 } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
8864 compositeType = Context.getObjCIdType();
8865 } else {
8866 Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
8867 << LHSTy << RHSTy
8868 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8869 QualType incompatTy = Context.getObjCIdType();
8870 LHS = ImpCastExprToType(LHS.get(), incompatTy, CK_BitCast);
8871 RHS = ImpCastExprToType(RHS.get(), incompatTy, CK_BitCast);
8872 return incompatTy;
8873 }
8874 // The object pointer types are compatible.
8875 LHS = ImpCastExprToType(LHS.get(), compositeType, CK_BitCast);
8876 RHS = ImpCastExprToType(RHS.get(), compositeType, CK_BitCast);
8877 return compositeType;
8878 }
8879 // Check Objective-C object pointer types and 'void *'
8880 if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
8881 if (getLangOpts().ObjCAutoRefCount) {
8882 // ARC forbids the implicit conversion of object pointers to 'void *',
8883 // so these types are not compatible.
8884 Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
8885 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8886 LHS = RHS = true;
8887 return QualType();
8888 }
8889 QualType lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
8890 QualType rhptee = RHSTy->castAs<ObjCObjectPointerType>()->getPointeeType();
8891 QualType destPointee
8892 = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
8893 QualType destType = Context.getPointerType(destPointee);
8894 // Add qualifiers if necessary.
8895 LHS = ImpCastExprToType(LHS.get(), destType, CK_NoOp);
8896 // Promote to void*.
8897 RHS = ImpCastExprToType(RHS.get(), destType, CK_BitCast);
8898 return destType;
8899 }
8900 if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
8901 if (getLangOpts().ObjCAutoRefCount) {
8902 // ARC forbids the implicit conversion of object pointers to 'void *',
8903 // so these types are not compatible.
8904 Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
8905 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8906 LHS = RHS = true;
8907 return QualType();
8908 }
8909 QualType lhptee = LHSTy->castAs<ObjCObjectPointerType>()->getPointeeType();
8910 QualType rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
8911 QualType destPointee
8912 = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
8913 QualType destType = Context.getPointerType(destPointee);
8914 // Add qualifiers if necessary.
8915 RHS = ImpCastExprToType(RHS.get(), destType, CK_NoOp);
8916 // Promote to void*.
8917 LHS = ImpCastExprToType(LHS.get(), destType, CK_BitCast);
8918 return destType;
8919 }
8920 return QualType();
8921 }
8922
8923 /// SuggestParentheses - Emit a note with a fixit hint that wraps
8924 /// ParenRange in parentheses.
SuggestParentheses(Sema & Self,SourceLocation Loc,const PartialDiagnostic & Note,SourceRange ParenRange)8925 static void SuggestParentheses(Sema &Self, SourceLocation Loc,
8926 const PartialDiagnostic &Note,
8927 SourceRange ParenRange) {
8928 SourceLocation EndLoc = Self.getLocForEndOfToken(ParenRange.getEnd());
8929 if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() &&
8930 EndLoc.isValid()) {
8931 Self.Diag(Loc, Note)
8932 << FixItHint::CreateInsertion(ParenRange.getBegin(), "(")
8933 << FixItHint::CreateInsertion(EndLoc, ")");
8934 } else {
8935 // We can't display the parentheses, so just show the bare note.
8936 Self.Diag(Loc, Note) << ParenRange;
8937 }
8938 }
8939
IsArithmeticOp(BinaryOperatorKind Opc)8940 static bool IsArithmeticOp(BinaryOperatorKind Opc) {
8941 return BinaryOperator::isAdditiveOp(Opc) ||
8942 BinaryOperator::isMultiplicativeOp(Opc) ||
8943 BinaryOperator::isShiftOp(Opc) || Opc == BO_And || Opc == BO_Or;
8944 // This only checks for bitwise-or and bitwise-and, but not bitwise-xor and
8945 // not any of the logical operators. Bitwise-xor is commonly used as a
8946 // logical-xor because there is no logical-xor operator. The logical
8947 // operators, including uses of xor, have a high false positive rate for
8948 // precedence warnings.
8949 }
8950
8951 /// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
8952 /// expression, either using a built-in or overloaded operator,
8953 /// and sets *OpCode to the opcode and *RHSExprs to the right-hand side
8954 /// expression.
IsArithmeticBinaryExpr(Expr * E,BinaryOperatorKind * Opcode,Expr ** RHSExprs)8955 static bool IsArithmeticBinaryExpr(Expr *E, BinaryOperatorKind *Opcode,
8956 Expr **RHSExprs) {
8957 // Don't strip parenthesis: we should not warn if E is in parenthesis.
8958 E = E->IgnoreImpCasts();
8959 E = E->IgnoreConversionOperatorSingleStep();
8960 E = E->IgnoreImpCasts();
8961 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) {
8962 E = MTE->getSubExpr();
8963 E = E->IgnoreImpCasts();
8964 }
8965
8966 // Built-in binary operator.
8967 if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) {
8968 if (IsArithmeticOp(OP->getOpcode())) {
8969 *Opcode = OP->getOpcode();
8970 *RHSExprs = OP->getRHS();
8971 return true;
8972 }
8973 }
8974
8975 // Overloaded operator.
8976 if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(E)) {
8977 if (Call->getNumArgs() != 2)
8978 return false;
8979
8980 // Make sure this is really a binary operator that is safe to pass into
8981 // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
8982 OverloadedOperatorKind OO = Call->getOperator();
8983 if (OO < OO_Plus || OO > OO_Arrow ||
8984 OO == OO_PlusPlus || OO == OO_MinusMinus)
8985 return false;
8986
8987 BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO);
8988 if (IsArithmeticOp(OpKind)) {
8989 *Opcode = OpKind;
8990 *RHSExprs = Call->getArg(1);
8991 return true;
8992 }
8993 }
8994
8995 return false;
8996 }
8997
8998 /// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
8999 /// or is a logical expression such as (x==y) which has int type, but is
9000 /// commonly interpreted as boolean.
ExprLooksBoolean(Expr * E)9001 static bool ExprLooksBoolean(Expr *E) {
9002 E = E->IgnoreParenImpCasts();
9003
9004 if (E->getType()->isBooleanType())
9005 return true;
9006 if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E))
9007 return OP->isComparisonOp() || OP->isLogicalOp();
9008 if (UnaryOperator *OP = dyn_cast<UnaryOperator>(E))
9009 return OP->getOpcode() == UO_LNot;
9010 if (E->getType()->isPointerType())
9011 return true;
9012 // FIXME: What about overloaded operator calls returning "unspecified boolean
9013 // type"s (commonly pointer-to-members)?
9014
9015 return false;
9016 }
9017
9018 /// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
9019 /// and binary operator are mixed in a way that suggests the programmer assumed
9020 /// the conditional operator has higher precedence, for example:
9021 /// "int x = a + someBinaryCondition ? 1 : 2".
DiagnoseConditionalPrecedence(Sema & Self,SourceLocation OpLoc,Expr * Condition,Expr * LHSExpr,Expr * RHSExpr)9022 static void DiagnoseConditionalPrecedence(Sema &Self,
9023 SourceLocation OpLoc,
9024 Expr *Condition,
9025 Expr *LHSExpr,
9026 Expr *RHSExpr) {
9027 BinaryOperatorKind CondOpcode;
9028 Expr *CondRHS;
9029
9030 if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS))
9031 return;
9032 if (!ExprLooksBoolean(CondRHS))
9033 return;
9034
9035 // The condition is an arithmetic binary expression, with a right-
9036 // hand side that looks boolean, so warn.
9037
9038 unsigned DiagID = BinaryOperator::isBitwiseOp(CondOpcode)
9039 ? diag::warn_precedence_bitwise_conditional
9040 : diag::warn_precedence_conditional;
9041
9042 Self.Diag(OpLoc, DiagID)
9043 << Condition->getSourceRange()
9044 << BinaryOperator::getOpcodeStr(CondOpcode);
9045
9046 SuggestParentheses(
9047 Self, OpLoc,
9048 Self.PDiag(diag::note_precedence_silence)
9049 << BinaryOperator::getOpcodeStr(CondOpcode),
9050 SourceRange(Condition->getBeginLoc(), Condition->getEndLoc()));
9051
9052 SuggestParentheses(Self, OpLoc,
9053 Self.PDiag(diag::note_precedence_conditional_first),
9054 SourceRange(CondRHS->getBeginLoc(), RHSExpr->getEndLoc()));
9055 }
9056
9057 /// Compute the nullability of a conditional expression.
computeConditionalNullability(QualType ResTy,bool IsBin,QualType LHSTy,QualType RHSTy,ASTContext & Ctx)9058 static QualType computeConditionalNullability(QualType ResTy, bool IsBin,
9059 QualType LHSTy, QualType RHSTy,
9060 ASTContext &Ctx) {
9061 if (!ResTy->isAnyPointerType())
9062 return ResTy;
9063
9064 auto GetNullability = [&Ctx](QualType Ty) {
9065 Optional<NullabilityKind> Kind = Ty->getNullability(Ctx);
9066 if (Kind) {
9067 // For our purposes, treat _Nullable_result as _Nullable.
9068 if (*Kind == NullabilityKind::NullableResult)
9069 return NullabilityKind::Nullable;
9070 return *Kind;
9071 }
9072 return NullabilityKind::Unspecified;
9073 };
9074
9075 auto LHSKind = GetNullability(LHSTy), RHSKind = GetNullability(RHSTy);
9076 NullabilityKind MergedKind;
9077
9078 // Compute nullability of a binary conditional expression.
9079 if (IsBin) {
9080 if (LHSKind == NullabilityKind::NonNull)
9081 MergedKind = NullabilityKind::NonNull;
9082 else
9083 MergedKind = RHSKind;
9084 // Compute nullability of a normal conditional expression.
9085 } else {
9086 if (LHSKind == NullabilityKind::Nullable ||
9087 RHSKind == NullabilityKind::Nullable)
9088 MergedKind = NullabilityKind::Nullable;
9089 else if (LHSKind == NullabilityKind::NonNull)
9090 MergedKind = RHSKind;
9091 else if (RHSKind == NullabilityKind::NonNull)
9092 MergedKind = LHSKind;
9093 else
9094 MergedKind = NullabilityKind::Unspecified;
9095 }
9096
9097 // Return if ResTy already has the correct nullability.
9098 if (GetNullability(ResTy) == MergedKind)
9099 return ResTy;
9100
9101 // Strip all nullability from ResTy.
9102 while (ResTy->getNullability(Ctx))
9103 ResTy = ResTy.getSingleStepDesugaredType(Ctx);
9104
9105 // Create a new AttributedType with the new nullability kind.
9106 auto NewAttr = AttributedType::getNullabilityAttrKind(MergedKind);
9107 return Ctx.getAttributedType(NewAttr, ResTy, ResTy);
9108 }
9109
9110 /// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null
9111 /// in the case of a the GNU conditional expr extension.
ActOnConditionalOp(SourceLocation QuestionLoc,SourceLocation ColonLoc,Expr * CondExpr,Expr * LHSExpr,Expr * RHSExpr)9112 ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
9113 SourceLocation ColonLoc,
9114 Expr *CondExpr, Expr *LHSExpr,
9115 Expr *RHSExpr) {
9116 if (!Context.isDependenceAllowed()) {
9117 // C cannot handle TypoExpr nodes in the condition because it
9118 // doesn't handle dependent types properly, so make sure any TypoExprs have
9119 // been dealt with before checking the operands.
9120 ExprResult CondResult = CorrectDelayedTyposInExpr(CondExpr);
9121 ExprResult LHSResult = CorrectDelayedTyposInExpr(LHSExpr);
9122 ExprResult RHSResult = CorrectDelayedTyposInExpr(RHSExpr);
9123
9124 if (!CondResult.isUsable())
9125 return ExprError();
9126
9127 if (LHSExpr) {
9128 if (!LHSResult.isUsable())
9129 return ExprError();
9130 }
9131
9132 if (!RHSResult.isUsable())
9133 return ExprError();
9134
9135 CondExpr = CondResult.get();
9136 LHSExpr = LHSResult.get();
9137 RHSExpr = RHSResult.get();
9138 }
9139
9140 // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
9141 // was the condition.
9142 OpaqueValueExpr *opaqueValue = nullptr;
9143 Expr *commonExpr = nullptr;
9144 if (!LHSExpr) {
9145 commonExpr = CondExpr;
9146 // Lower out placeholder types first. This is important so that we don't
9147 // try to capture a placeholder. This happens in few cases in C++; such
9148 // as Objective-C++'s dictionary subscripting syntax.
9149 if (commonExpr->hasPlaceholderType()) {
9150 ExprResult result = CheckPlaceholderExpr(commonExpr);
9151 if (!result.isUsable()) return ExprError();
9152 commonExpr = result.get();
9153 }
9154 // We usually want to apply unary conversions *before* saving, except
9155 // in the special case of a C++ l-value conditional.
9156 if (!(getLangOpts().CPlusPlus
9157 && !commonExpr->isTypeDependent()
9158 && commonExpr->getValueKind() == RHSExpr->getValueKind()
9159 && commonExpr->isGLValue()
9160 && commonExpr->isOrdinaryOrBitFieldObject()
9161 && RHSExpr->isOrdinaryOrBitFieldObject()
9162 && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) {
9163 ExprResult commonRes = UsualUnaryConversions(commonExpr);
9164 if (commonRes.isInvalid())
9165 return ExprError();
9166 commonExpr = commonRes.get();
9167 }
9168
9169 // If the common expression is a class or array prvalue, materialize it
9170 // so that we can safely refer to it multiple times.
9171 if (commonExpr->isPRValue() && (commonExpr->getType()->isRecordType() ||
9172 commonExpr->getType()->isArrayType())) {
9173 ExprResult MatExpr = TemporaryMaterializationConversion(commonExpr);
9174 if (MatExpr.isInvalid())
9175 return ExprError();
9176 commonExpr = MatExpr.get();
9177 }
9178
9179 opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
9180 commonExpr->getType(),
9181 commonExpr->getValueKind(),
9182 commonExpr->getObjectKind(),
9183 commonExpr);
9184 LHSExpr = CondExpr = opaqueValue;
9185 }
9186
9187 QualType LHSTy = LHSExpr->getType(), RHSTy = RHSExpr->getType();
9188 ExprValueKind VK = VK_PRValue;
9189 ExprObjectKind OK = OK_Ordinary;
9190 ExprResult Cond = CondExpr, LHS = LHSExpr, RHS = RHSExpr;
9191 QualType result = CheckConditionalOperands(Cond, LHS, RHS,
9192 VK, OK, QuestionLoc);
9193 if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
9194 RHS.isInvalid())
9195 return ExprError();
9196
9197 DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(),
9198 RHS.get());
9199
9200 CheckBoolLikeConversion(Cond.get(), QuestionLoc);
9201
9202 result = computeConditionalNullability(result, commonExpr, LHSTy, RHSTy,
9203 Context);
9204
9205 if (!commonExpr)
9206 return new (Context)
9207 ConditionalOperator(Cond.get(), QuestionLoc, LHS.get(), ColonLoc,
9208 RHS.get(), result, VK, OK);
9209
9210 return new (Context) BinaryConditionalOperator(
9211 commonExpr, opaqueValue, Cond.get(), LHS.get(), RHS.get(), QuestionLoc,
9212 ColonLoc, result, VK, OK);
9213 }
9214
9215 // Check if we have a conversion between incompatible cmse function pointer
9216 // types, that is, a conversion between a function pointer with the
9217 // cmse_nonsecure_call attribute and one without.
IsInvalidCmseNSCallConversion(Sema & S,QualType FromType,QualType ToType)9218 static bool IsInvalidCmseNSCallConversion(Sema &S, QualType FromType,
9219 QualType ToType) {
9220 if (const auto *ToFn =
9221 dyn_cast<FunctionType>(S.Context.getCanonicalType(ToType))) {
9222 if (const auto *FromFn =
9223 dyn_cast<FunctionType>(S.Context.getCanonicalType(FromType))) {
9224 FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo();
9225 FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo();
9226
9227 return ToEInfo.getCmseNSCall() != FromEInfo.getCmseNSCall();
9228 }
9229 }
9230 return false;
9231 }
9232
9233 // checkPointerTypesForAssignment - This is a very tricky routine (despite
9234 // being closely modeled after the C99 spec:-). The odd characteristic of this
9235 // routine is it effectively iqnores the qualifiers on the top level pointee.
9236 // This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
9237 // FIXME: add a couple examples in this comment.
9238 static Sema::AssignConvertType
checkPointerTypesForAssignment(Sema & S,QualType LHSType,QualType RHSType)9239 checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType) {
9240 assert(LHSType.isCanonical() && "LHS not canonicalized!");
9241 assert(RHSType.isCanonical() && "RHS not canonicalized!");
9242
9243 // get the "pointed to" type (ignoring qualifiers at the top level)
9244 const Type *lhptee, *rhptee;
9245 Qualifiers lhq, rhq;
9246 std::tie(lhptee, lhq) =
9247 cast<PointerType>(LHSType)->getPointeeType().split().asPair();
9248 std::tie(rhptee, rhq) =
9249 cast<PointerType>(RHSType)->getPointeeType().split().asPair();
9250
9251 Sema::AssignConvertType ConvTy = Sema::Compatible;
9252
9253 // C99 6.5.16.1p1: This following citation is common to constraints
9254 // 3 & 4 (below). ...and the type *pointed to* by the left has all the
9255 // qualifiers of the type *pointed to* by the right;
9256
9257 // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay.
9258 if (lhq.getObjCLifetime() != rhq.getObjCLifetime() &&
9259 lhq.compatiblyIncludesObjCLifetime(rhq)) {
9260 // Ignore lifetime for further calculation.
9261 lhq.removeObjCLifetime();
9262 rhq.removeObjCLifetime();
9263 }
9264
9265 if (!lhq.compatiblyIncludes(rhq)) {
9266 // Treat address-space mismatches as fatal.
9267 if (!lhq.isAddressSpaceSupersetOf(rhq))
9268 return Sema::IncompatiblePointerDiscardsQualifiers;
9269
9270 // It's okay to add or remove GC or lifetime qualifiers when converting to
9271 // and from void*.
9272 else if (lhq.withoutObjCGCAttr().withoutObjCLifetime()
9273 .compatiblyIncludes(
9274 rhq.withoutObjCGCAttr().withoutObjCLifetime())
9275 && (lhptee->isVoidType() || rhptee->isVoidType()))
9276 ; // keep old
9277
9278 // Treat lifetime mismatches as fatal.
9279 else if (lhq.getObjCLifetime() != rhq.getObjCLifetime())
9280 ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
9281
9282 // For GCC/MS compatibility, other qualifier mismatches are treated
9283 // as still compatible in C.
9284 else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
9285 }
9286
9287 // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
9288 // incomplete type and the other is a pointer to a qualified or unqualified
9289 // version of void...
9290 if (lhptee->isVoidType()) {
9291 if (rhptee->isIncompleteOrObjectType())
9292 return ConvTy;
9293
9294 // As an extension, we allow cast to/from void* to function pointer.
9295 assert(rhptee->isFunctionType());
9296 return Sema::FunctionVoidPointer;
9297 }
9298
9299 if (rhptee->isVoidType()) {
9300 if (lhptee->isIncompleteOrObjectType())
9301 return ConvTy;
9302
9303 // As an extension, we allow cast to/from void* to function pointer.
9304 assert(lhptee->isFunctionType());
9305 return Sema::FunctionVoidPointer;
9306 }
9307
9308 // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
9309 // unqualified versions of compatible types, ...
9310 QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
9311 if (!S.Context.typesAreCompatible(ltrans, rtrans)) {
9312 // Check if the pointee types are compatible ignoring the sign.
9313 // We explicitly check for char so that we catch "char" vs
9314 // "unsigned char" on systems where "char" is unsigned.
9315 if (lhptee->isCharType())
9316 ltrans = S.Context.UnsignedCharTy;
9317 else if (lhptee->hasSignedIntegerRepresentation())
9318 ltrans = S.Context.getCorrespondingUnsignedType(ltrans);
9319
9320 if (rhptee->isCharType())
9321 rtrans = S.Context.UnsignedCharTy;
9322 else if (rhptee->hasSignedIntegerRepresentation())
9323 rtrans = S.Context.getCorrespondingUnsignedType(rtrans);
9324
9325 if (ltrans == rtrans) {
9326 // Types are compatible ignoring the sign. Qualifier incompatibility
9327 // takes priority over sign incompatibility because the sign
9328 // warning can be disabled.
9329 if (ConvTy != Sema::Compatible)
9330 return ConvTy;
9331
9332 return Sema::IncompatiblePointerSign;
9333 }
9334
9335 // If we are a multi-level pointer, it's possible that our issue is simply
9336 // one of qualification - e.g. char ** -> const char ** is not allowed. If
9337 // the eventual target type is the same and the pointers have the same
9338 // level of indirection, this must be the issue.
9339 if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) {
9340 do {
9341 std::tie(lhptee, lhq) =
9342 cast<PointerType>(lhptee)->getPointeeType().split().asPair();
9343 std::tie(rhptee, rhq) =
9344 cast<PointerType>(rhptee)->getPointeeType().split().asPair();
9345
9346 // Inconsistent address spaces at this point is invalid, even if the
9347 // address spaces would be compatible.
9348 // FIXME: This doesn't catch address space mismatches for pointers of
9349 // different nesting levels, like:
9350 // __local int *** a;
9351 // int ** b = a;
9352 // It's not clear how to actually determine when such pointers are
9353 // invalidly incompatible.
9354 if (lhq.getAddressSpace() != rhq.getAddressSpace())
9355 return Sema::IncompatibleNestedPointerAddressSpaceMismatch;
9356
9357 } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee));
9358
9359 if (lhptee == rhptee)
9360 return Sema::IncompatibleNestedPointerQualifiers;
9361 }
9362
9363 // General pointer incompatibility takes priority over qualifiers.
9364 if (RHSType->isFunctionPointerType() && LHSType->isFunctionPointerType())
9365 return Sema::IncompatibleFunctionPointer;
9366 return Sema::IncompatiblePointer;
9367 }
9368 if (!S.getLangOpts().CPlusPlus &&
9369 S.IsFunctionConversion(ltrans, rtrans, ltrans))
9370 return Sema::IncompatibleFunctionPointer;
9371 if (IsInvalidCmseNSCallConversion(S, ltrans, rtrans))
9372 return Sema::IncompatibleFunctionPointer;
9373 return ConvTy;
9374 }
9375
9376 /// checkBlockPointerTypesForAssignment - This routine determines whether two
9377 /// block pointer types are compatible or whether a block and normal pointer
9378 /// are compatible. It is more restrict than comparing two function pointer
9379 // types.
9380 static Sema::AssignConvertType
checkBlockPointerTypesForAssignment(Sema & S,QualType LHSType,QualType RHSType)9381 checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType,
9382 QualType RHSType) {
9383 assert(LHSType.isCanonical() && "LHS not canonicalized!");
9384 assert(RHSType.isCanonical() && "RHS not canonicalized!");
9385
9386 QualType lhptee, rhptee;
9387
9388 // get the "pointed to" type (ignoring qualifiers at the top level)
9389 lhptee = cast<BlockPointerType>(LHSType)->getPointeeType();
9390 rhptee = cast<BlockPointerType>(RHSType)->getPointeeType();
9391
9392 // In C++, the types have to match exactly.
9393 if (S.getLangOpts().CPlusPlus)
9394 return Sema::IncompatibleBlockPointer;
9395
9396 Sema::AssignConvertType ConvTy = Sema::Compatible;
9397
9398 // For blocks we enforce that qualifiers are identical.
9399 Qualifiers LQuals = lhptee.getLocalQualifiers();
9400 Qualifiers RQuals = rhptee.getLocalQualifiers();
9401 if (S.getLangOpts().OpenCL) {
9402 LQuals.removeAddressSpace();
9403 RQuals.removeAddressSpace();
9404 }
9405 if (LQuals != RQuals)
9406 ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
9407
9408 // FIXME: OpenCL doesn't define the exact compile time semantics for a block
9409 // assignment.
9410 // The current behavior is similar to C++ lambdas. A block might be
9411 // assigned to a variable iff its return type and parameters are compatible
9412 // (C99 6.2.7) with the corresponding return type and parameters of the LHS of
9413 // an assignment. Presumably it should behave in way that a function pointer
9414 // assignment does in C, so for each parameter and return type:
9415 // * CVR and address space of LHS should be a superset of CVR and address
9416 // space of RHS.
9417 // * unqualified types should be compatible.
9418 if (S.getLangOpts().OpenCL) {
9419 if (!S.Context.typesAreBlockPointerCompatible(
9420 S.Context.getQualifiedType(LHSType.getUnqualifiedType(), LQuals),
9421 S.Context.getQualifiedType(RHSType.getUnqualifiedType(), RQuals)))
9422 return Sema::IncompatibleBlockPointer;
9423 } else if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType))
9424 return Sema::IncompatibleBlockPointer;
9425
9426 return ConvTy;
9427 }
9428
9429 /// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
9430 /// for assignment compatibility.
9431 static Sema::AssignConvertType
checkObjCPointerTypesForAssignment(Sema & S,QualType LHSType,QualType RHSType)9432 checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType,
9433 QualType RHSType) {
9434 assert(LHSType.isCanonical() && "LHS was not canonicalized!");
9435 assert(RHSType.isCanonical() && "RHS was not canonicalized!");
9436
9437 if (LHSType->isObjCBuiltinType()) {
9438 // Class is not compatible with ObjC object pointers.
9439 if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() &&
9440 !RHSType->isObjCQualifiedClassType())
9441 return Sema::IncompatiblePointer;
9442 return Sema::Compatible;
9443 }
9444 if (RHSType->isObjCBuiltinType()) {
9445 if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() &&
9446 !LHSType->isObjCQualifiedClassType())
9447 return Sema::IncompatiblePointer;
9448 return Sema::Compatible;
9449 }
9450 QualType lhptee = LHSType->castAs<ObjCObjectPointerType>()->getPointeeType();
9451 QualType rhptee = RHSType->castAs<ObjCObjectPointerType>()->getPointeeType();
9452
9453 if (!lhptee.isAtLeastAsQualifiedAs(rhptee) &&
9454 // make an exception for id<P>
9455 !LHSType->isObjCQualifiedIdType())
9456 return Sema::CompatiblePointerDiscardsQualifiers;
9457
9458 if (S.Context.typesAreCompatible(LHSType, RHSType))
9459 return Sema::Compatible;
9460 if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType())
9461 return Sema::IncompatibleObjCQualifiedId;
9462 return Sema::IncompatiblePointer;
9463 }
9464
9465 Sema::AssignConvertType
CheckAssignmentConstraints(SourceLocation Loc,QualType LHSType,QualType RHSType)9466 Sema::CheckAssignmentConstraints(SourceLocation Loc,
9467 QualType LHSType, QualType RHSType) {
9468 // Fake up an opaque expression. We don't actually care about what
9469 // cast operations are required, so if CheckAssignmentConstraints
9470 // adds casts to this they'll be wasted, but fortunately that doesn't
9471 // usually happen on valid code.
9472 OpaqueValueExpr RHSExpr(Loc, RHSType, VK_PRValue);
9473 ExprResult RHSPtr = &RHSExpr;
9474 CastKind K;
9475
9476 return CheckAssignmentConstraints(LHSType, RHSPtr, K, /*ConvertRHS=*/false);
9477 }
9478
9479 /// This helper function returns true if QT is a vector type that has element
9480 /// type ElementType.
isVector(QualType QT,QualType ElementType)9481 static bool isVector(QualType QT, QualType ElementType) {
9482 if (const VectorType *VT = QT->getAs<VectorType>())
9483 return VT->getElementType().getCanonicalType() == ElementType;
9484 return false;
9485 }
9486
9487 /// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
9488 /// has code to accommodate several GCC extensions when type checking
9489 /// pointers. Here are some objectionable examples that GCC considers warnings:
9490 ///
9491 /// int a, *pint;
9492 /// short *pshort;
9493 /// struct foo *pfoo;
9494 ///
9495 /// pint = pshort; // warning: assignment from incompatible pointer type
9496 /// a = pint; // warning: assignment makes integer from pointer without a cast
9497 /// pint = a; // warning: assignment makes pointer from integer without a cast
9498 /// pint = pfoo; // warning: assignment from incompatible pointer type
9499 ///
9500 /// As a result, the code for dealing with pointers is more complex than the
9501 /// C99 spec dictates.
9502 ///
9503 /// Sets 'Kind' for any result kind except Incompatible.
9504 Sema::AssignConvertType
CheckAssignmentConstraints(QualType LHSType,ExprResult & RHS,CastKind & Kind,bool ConvertRHS)9505 Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS,
9506 CastKind &Kind, bool ConvertRHS) {
9507 QualType RHSType = RHS.get()->getType();
9508 QualType OrigLHSType = LHSType;
9509
9510 // Get canonical types. We're not formatting these types, just comparing
9511 // them.
9512 LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType();
9513 RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType();
9514
9515 // Common case: no conversion required.
9516 if (LHSType == RHSType) {
9517 Kind = CK_NoOp;
9518 return Compatible;
9519 }
9520
9521 // If the LHS has an __auto_type, there are no additional type constraints
9522 // to be worried about.
9523 if (const auto *AT = dyn_cast<AutoType>(LHSType)) {
9524 if (AT->isGNUAutoType()) {
9525 Kind = CK_NoOp;
9526 return Compatible;
9527 }
9528 }
9529
9530 // If we have an atomic type, try a non-atomic assignment, then just add an
9531 // atomic qualification step.
9532 if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(LHSType)) {
9533 Sema::AssignConvertType result =
9534 CheckAssignmentConstraints(AtomicTy->getValueType(), RHS, Kind);
9535 if (result != Compatible)
9536 return result;
9537 if (Kind != CK_NoOp && ConvertRHS)
9538 RHS = ImpCastExprToType(RHS.get(), AtomicTy->getValueType(), Kind);
9539 Kind = CK_NonAtomicToAtomic;
9540 return Compatible;
9541 }
9542
9543 // If the left-hand side is a reference type, then we are in a
9544 // (rare!) case where we've allowed the use of references in C,
9545 // e.g., as a parameter type in a built-in function. In this case,
9546 // just make sure that the type referenced is compatible with the
9547 // right-hand side type. The caller is responsible for adjusting
9548 // LHSType so that the resulting expression does not have reference
9549 // type.
9550 if (const ReferenceType *LHSTypeRef = LHSType->getAs<ReferenceType>()) {
9551 if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) {
9552 Kind = CK_LValueBitCast;
9553 return Compatible;
9554 }
9555 return Incompatible;
9556 }
9557
9558 // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
9559 // to the same ExtVector type.
9560 if (LHSType->isExtVectorType()) {
9561 if (RHSType->isExtVectorType())
9562 return Incompatible;
9563 if (RHSType->isArithmeticType()) {
9564 // CK_VectorSplat does T -> vector T, so first cast to the element type.
9565 if (ConvertRHS)
9566 RHS = prepareVectorSplat(LHSType, RHS.get());
9567 Kind = CK_VectorSplat;
9568 return Compatible;
9569 }
9570 }
9571
9572 // Conversions to or from vector type.
9573 if (LHSType->isVectorType() || RHSType->isVectorType()) {
9574 if (LHSType->isVectorType() && RHSType->isVectorType()) {
9575 // Allow assignments of an AltiVec vector type to an equivalent GCC
9576 // vector type and vice versa
9577 if (Context.areCompatibleVectorTypes(LHSType, RHSType)) {
9578 Kind = CK_BitCast;
9579 return Compatible;
9580 }
9581
9582 // If we are allowing lax vector conversions, and LHS and RHS are both
9583 // vectors, the total size only needs to be the same. This is a bitcast;
9584 // no bits are changed but the result type is different.
9585 if (isLaxVectorConversion(RHSType, LHSType)) {
9586 // The default for lax vector conversions with Altivec vectors will
9587 // change, so if we are converting between vector types where
9588 // at least one is an Altivec vector, emit a warning.
9589 if (anyAltivecTypes(RHSType, LHSType) &&
9590 !areSameVectorElemTypes(RHSType, LHSType))
9591 Diag(RHS.get()->getExprLoc(), diag::warn_deprecated_lax_vec_conv_all)
9592 << RHSType << LHSType;
9593 Kind = CK_BitCast;
9594 return IncompatibleVectors;
9595 }
9596 }
9597
9598 // When the RHS comes from another lax conversion (e.g. binops between
9599 // scalars and vectors) the result is canonicalized as a vector. When the
9600 // LHS is also a vector, the lax is allowed by the condition above. Handle
9601 // the case where LHS is a scalar.
9602 if (LHSType->isScalarType()) {
9603 const VectorType *VecType = RHSType->getAs<VectorType>();
9604 if (VecType && VecType->getNumElements() == 1 &&
9605 isLaxVectorConversion(RHSType, LHSType)) {
9606 if (VecType->getVectorKind() == VectorType::AltiVecVector)
9607 Diag(RHS.get()->getExprLoc(), diag::warn_deprecated_lax_vec_conv_all)
9608 << RHSType << LHSType;
9609 ExprResult *VecExpr = &RHS;
9610 *VecExpr = ImpCastExprToType(VecExpr->get(), LHSType, CK_BitCast);
9611 Kind = CK_BitCast;
9612 return Compatible;
9613 }
9614 }
9615
9616 // Allow assignments between fixed-length and sizeless SVE vectors.
9617 if ((LHSType->isSizelessBuiltinType() && RHSType->isVectorType()) ||
9618 (LHSType->isVectorType() && RHSType->isSizelessBuiltinType()))
9619 if (Context.areCompatibleSveTypes(LHSType, RHSType) ||
9620 Context.areLaxCompatibleSveTypes(LHSType, RHSType)) {
9621 Kind = CK_BitCast;
9622 return Compatible;
9623 }
9624
9625 return Incompatible;
9626 }
9627
9628 // Diagnose attempts to convert between __ibm128, __float128 and long double
9629 // where such conversions currently can't be handled.
9630 if (unsupportedTypeConversion(*this, LHSType, RHSType))
9631 return Incompatible;
9632
9633 // Disallow assigning a _Complex to a real type in C++ mode since it simply
9634 // discards the imaginary part.
9635 if (getLangOpts().CPlusPlus && RHSType->getAs<ComplexType>() &&
9636 !LHSType->getAs<ComplexType>())
9637 return Incompatible;
9638
9639 // Arithmetic conversions.
9640 if (LHSType->isArithmeticType() && RHSType->isArithmeticType() &&
9641 !(getLangOpts().CPlusPlus && LHSType->isEnumeralType())) {
9642 if (ConvertRHS)
9643 Kind = PrepareScalarCast(RHS, LHSType);
9644 return Compatible;
9645 }
9646
9647 // Conversions to normal pointers.
9648 if (const PointerType *LHSPointer = dyn_cast<PointerType>(LHSType)) {
9649 // U* -> T*
9650 if (isa<PointerType>(RHSType)) {
9651 LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
9652 LangAS AddrSpaceR = RHSType->getPointeeType().getAddressSpace();
9653 if (AddrSpaceL != AddrSpaceR)
9654 Kind = CK_AddressSpaceConversion;
9655 else if (Context.hasCvrSimilarType(RHSType, LHSType))
9656 Kind = CK_NoOp;
9657 else
9658 Kind = CK_BitCast;
9659 return checkPointerTypesForAssignment(*this, LHSType, RHSType);
9660 }
9661
9662 // int -> T*
9663 if (RHSType->isIntegerType()) {
9664 Kind = CK_IntegralToPointer; // FIXME: null?
9665 return IntToPointer;
9666 }
9667
9668 // C pointers are not compatible with ObjC object pointers,
9669 // with two exceptions:
9670 if (isa<ObjCObjectPointerType>(RHSType)) {
9671 // - conversions to void*
9672 if (LHSPointer->getPointeeType()->isVoidType()) {
9673 Kind = CK_BitCast;
9674 return Compatible;
9675 }
9676
9677 // - conversions from 'Class' to the redefinition type
9678 if (RHSType->isObjCClassType() &&
9679 Context.hasSameType(LHSType,
9680 Context.getObjCClassRedefinitionType())) {
9681 Kind = CK_BitCast;
9682 return Compatible;
9683 }
9684
9685 Kind = CK_BitCast;
9686 return IncompatiblePointer;
9687 }
9688
9689 // U^ -> void*
9690 if (RHSType->getAs<BlockPointerType>()) {
9691 if (LHSPointer->getPointeeType()->isVoidType()) {
9692 LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
9693 LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>()
9694 ->getPointeeType()
9695 .getAddressSpace();
9696 Kind =
9697 AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
9698 return Compatible;
9699 }
9700 }
9701
9702 return Incompatible;
9703 }
9704
9705 // Conversions to block pointers.
9706 if (isa<BlockPointerType>(LHSType)) {
9707 // U^ -> T^
9708 if (RHSType->isBlockPointerType()) {
9709 LangAS AddrSpaceL = LHSType->getAs<BlockPointerType>()
9710 ->getPointeeType()
9711 .getAddressSpace();
9712 LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>()
9713 ->getPointeeType()
9714 .getAddressSpace();
9715 Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
9716 return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType);
9717 }
9718
9719 // int or null -> T^
9720 if (RHSType->isIntegerType()) {
9721 Kind = CK_IntegralToPointer; // FIXME: null
9722 return IntToBlockPointer;
9723 }
9724
9725 // id -> T^
9726 if (getLangOpts().ObjC && RHSType->isObjCIdType()) {
9727 Kind = CK_AnyPointerToBlockPointerCast;
9728 return Compatible;
9729 }
9730
9731 // void* -> T^
9732 if (const PointerType *RHSPT = RHSType->getAs<PointerType>())
9733 if (RHSPT->getPointeeType()->isVoidType()) {
9734 Kind = CK_AnyPointerToBlockPointerCast;
9735 return Compatible;
9736 }
9737
9738 return Incompatible;
9739 }
9740
9741 // Conversions to Objective-C pointers.
9742 if (isa<ObjCObjectPointerType>(LHSType)) {
9743 // A* -> B*
9744 if (RHSType->isObjCObjectPointerType()) {
9745 Kind = CK_BitCast;
9746 Sema::AssignConvertType result =
9747 checkObjCPointerTypesForAssignment(*this, LHSType, RHSType);
9748 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
9749 result == Compatible &&
9750 !CheckObjCARCUnavailableWeakConversion(OrigLHSType, RHSType))
9751 result = IncompatibleObjCWeakRef;
9752 return result;
9753 }
9754
9755 // int or null -> A*
9756 if (RHSType->isIntegerType()) {
9757 Kind = CK_IntegralToPointer; // FIXME: null
9758 return IntToPointer;
9759 }
9760
9761 // In general, C pointers are not compatible with ObjC object pointers,
9762 // with two exceptions:
9763 if (isa<PointerType>(RHSType)) {
9764 Kind = CK_CPointerToObjCPointerCast;
9765
9766 // - conversions from 'void*'
9767 if (RHSType->isVoidPointerType()) {
9768 return Compatible;
9769 }
9770
9771 // - conversions to 'Class' from its redefinition type
9772 if (LHSType->isObjCClassType() &&
9773 Context.hasSameType(RHSType,
9774 Context.getObjCClassRedefinitionType())) {
9775 return Compatible;
9776 }
9777
9778 return IncompatiblePointer;
9779 }
9780
9781 // Only under strict condition T^ is compatible with an Objective-C pointer.
9782 if (RHSType->isBlockPointerType() &&
9783 LHSType->isBlockCompatibleObjCPointerType(Context)) {
9784 if (ConvertRHS)
9785 maybeExtendBlockObject(RHS);
9786 Kind = CK_BlockPointerToObjCPointerCast;
9787 return Compatible;
9788 }
9789
9790 return Incompatible;
9791 }
9792
9793 // Conversions from pointers that are not covered by the above.
9794 if (isa<PointerType>(RHSType)) {
9795 // T* -> _Bool
9796 if (LHSType == Context.BoolTy) {
9797 Kind = CK_PointerToBoolean;
9798 return Compatible;
9799 }
9800
9801 // T* -> int
9802 if (LHSType->isIntegerType()) {
9803 Kind = CK_PointerToIntegral;
9804 return PointerToInt;
9805 }
9806
9807 return Incompatible;
9808 }
9809
9810 // Conversions from Objective-C pointers that are not covered by the above.
9811 if (isa<ObjCObjectPointerType>(RHSType)) {
9812 // T* -> _Bool
9813 if (LHSType == Context.BoolTy) {
9814 Kind = CK_PointerToBoolean;
9815 return Compatible;
9816 }
9817
9818 // T* -> int
9819 if (LHSType->isIntegerType()) {
9820 Kind = CK_PointerToIntegral;
9821 return PointerToInt;
9822 }
9823
9824 return Incompatible;
9825 }
9826
9827 // struct A -> struct B
9828 if (isa<TagType>(LHSType) && isa<TagType>(RHSType)) {
9829 if (Context.typesAreCompatible(LHSType, RHSType)) {
9830 Kind = CK_NoOp;
9831 return Compatible;
9832 }
9833 }
9834
9835 if (LHSType->isSamplerT() && RHSType->isIntegerType()) {
9836 Kind = CK_IntToOCLSampler;
9837 return Compatible;
9838 }
9839
9840 return Incompatible;
9841 }
9842
9843 /// Constructs a transparent union from an expression that is
9844 /// used to initialize the transparent union.
ConstructTransparentUnion(Sema & S,ASTContext & C,ExprResult & EResult,QualType UnionType,FieldDecl * Field)9845 static void ConstructTransparentUnion(Sema &S, ASTContext &C,
9846 ExprResult &EResult, QualType UnionType,
9847 FieldDecl *Field) {
9848 // Build an initializer list that designates the appropriate member
9849 // of the transparent union.
9850 Expr *E = EResult.get();
9851 InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
9852 E, SourceLocation());
9853 Initializer->setType(UnionType);
9854 Initializer->setInitializedFieldInUnion(Field);
9855
9856 // Build a compound literal constructing a value of the transparent
9857 // union type from this initializer list.
9858 TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
9859 EResult = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
9860 VK_PRValue, Initializer, false);
9861 }
9862
9863 Sema::AssignConvertType
CheckTransparentUnionArgumentConstraints(QualType ArgType,ExprResult & RHS)9864 Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType,
9865 ExprResult &RHS) {
9866 QualType RHSType = RHS.get()->getType();
9867
9868 // If the ArgType is a Union type, we want to handle a potential
9869 // transparent_union GCC extension.
9870 const RecordType *UT = ArgType->getAsUnionType();
9871 if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
9872 return Incompatible;
9873
9874 // The field to initialize within the transparent union.
9875 RecordDecl *UD = UT->getDecl();
9876 FieldDecl *InitField = nullptr;
9877 // It's compatible if the expression matches any of the fields.
9878 for (auto *it : UD->fields()) {
9879 if (it->getType()->isPointerType()) {
9880 // If the transparent union contains a pointer type, we allow:
9881 // 1) void pointer
9882 // 2) null pointer constant
9883 if (RHSType->isPointerType())
9884 if (RHSType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
9885 RHS = ImpCastExprToType(RHS.get(), it->getType(), CK_BitCast);
9886 InitField = it;
9887 break;
9888 }
9889
9890 if (RHS.get()->isNullPointerConstant(Context,
9891 Expr::NPC_ValueDependentIsNull)) {
9892 RHS = ImpCastExprToType(RHS.get(), it->getType(),
9893 CK_NullToPointer);
9894 InitField = it;
9895 break;
9896 }
9897 }
9898
9899 CastKind Kind;
9900 if (CheckAssignmentConstraints(it->getType(), RHS, Kind)
9901 == Compatible) {
9902 RHS = ImpCastExprToType(RHS.get(), it->getType(), Kind);
9903 InitField = it;
9904 break;
9905 }
9906 }
9907
9908 if (!InitField)
9909 return Incompatible;
9910
9911 ConstructTransparentUnion(*this, Context, RHS, ArgType, InitField);
9912 return Compatible;
9913 }
9914
9915 Sema::AssignConvertType
CheckSingleAssignmentConstraints(QualType LHSType,ExprResult & CallerRHS,bool Diagnose,bool DiagnoseCFAudited,bool ConvertRHS)9916 Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &CallerRHS,
9917 bool Diagnose,
9918 bool DiagnoseCFAudited,
9919 bool ConvertRHS) {
9920 // We need to be able to tell the caller whether we diagnosed a problem, if
9921 // they ask us to issue diagnostics.
9922 assert((ConvertRHS || !Diagnose) && "can't indicate whether we diagnosed");
9923
9924 // If ConvertRHS is false, we want to leave the caller's RHS untouched. Sadly,
9925 // we can't avoid *all* modifications at the moment, so we need some somewhere
9926 // to put the updated value.
9927 ExprResult LocalRHS = CallerRHS;
9928 ExprResult &RHS = ConvertRHS ? CallerRHS : LocalRHS;
9929
9930 if (const auto *LHSPtrType = LHSType->getAs<PointerType>()) {
9931 if (const auto *RHSPtrType = RHS.get()->getType()->getAs<PointerType>()) {
9932 if (RHSPtrType->getPointeeType()->hasAttr(attr::NoDeref) &&
9933 !LHSPtrType->getPointeeType()->hasAttr(attr::NoDeref)) {
9934 Diag(RHS.get()->getExprLoc(),
9935 diag::warn_noderef_to_dereferenceable_pointer)
9936 << RHS.get()->getSourceRange();
9937 }
9938 }
9939 }
9940
9941 if (getLangOpts().CPlusPlus) {
9942 if (!LHSType->isRecordType() && !LHSType->isAtomicType()) {
9943 // C++ 5.17p3: If the left operand is not of class type, the
9944 // expression is implicitly converted (C++ 4) to the
9945 // cv-unqualified type of the left operand.
9946 QualType RHSType = RHS.get()->getType();
9947 if (Diagnose) {
9948 RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
9949 AA_Assigning);
9950 } else {
9951 ImplicitConversionSequence ICS =
9952 TryImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
9953 /*SuppressUserConversions=*/false,
9954 AllowedExplicit::None,
9955 /*InOverloadResolution=*/false,
9956 /*CStyle=*/false,
9957 /*AllowObjCWritebackConversion=*/false);
9958 if (ICS.isFailure())
9959 return Incompatible;
9960 RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
9961 ICS, AA_Assigning);
9962 }
9963 if (RHS.isInvalid())
9964 return Incompatible;
9965 Sema::AssignConvertType result = Compatible;
9966 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
9967 !CheckObjCARCUnavailableWeakConversion(LHSType, RHSType))
9968 result = IncompatibleObjCWeakRef;
9969 return result;
9970 }
9971
9972 // FIXME: Currently, we fall through and treat C++ classes like C
9973 // structures.
9974 // FIXME: We also fall through for atomics; not sure what should
9975 // happen there, though.
9976 } else if (RHS.get()->getType() == Context.OverloadTy) {
9977 // As a set of extensions to C, we support overloading on functions. These
9978 // functions need to be resolved here.
9979 DeclAccessPair DAP;
9980 if (FunctionDecl *FD = ResolveAddressOfOverloadedFunction(
9981 RHS.get(), LHSType, /*Complain=*/false, DAP))
9982 RHS = FixOverloadedFunctionReference(RHS.get(), DAP, FD);
9983 else
9984 return Incompatible;
9985 }
9986
9987 // C99 6.5.16.1p1: the left operand is a pointer and the right is
9988 // a null pointer constant.
9989 if ((LHSType->isPointerType() || LHSType->isObjCObjectPointerType() ||
9990 LHSType->isBlockPointerType()) &&
9991 RHS.get()->isNullPointerConstant(Context,
9992 Expr::NPC_ValueDependentIsNull)) {
9993 if (Diagnose || ConvertRHS) {
9994 CastKind Kind;
9995 CXXCastPath Path;
9996 CheckPointerConversion(RHS.get(), LHSType, Kind, Path,
9997 /*IgnoreBaseAccess=*/false, Diagnose);
9998 if (ConvertRHS)
9999 RHS = ImpCastExprToType(RHS.get(), LHSType, Kind, VK_PRValue, &Path);
10000 }
10001 return Compatible;
10002 }
10003
10004 // OpenCL queue_t type assignment.
10005 if (LHSType->isQueueT() && RHS.get()->isNullPointerConstant(
10006 Context, Expr::NPC_ValueDependentIsNull)) {
10007 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
10008 return Compatible;
10009 }
10010
10011 // This check seems unnatural, however it is necessary to ensure the proper
10012 // conversion of functions/arrays. If the conversion were done for all
10013 // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
10014 // expressions that suppress this implicit conversion (&, sizeof).
10015 //
10016 // Suppress this for references: C++ 8.5.3p5.
10017 if (!LHSType->isReferenceType()) {
10018 // FIXME: We potentially allocate here even if ConvertRHS is false.
10019 RHS = DefaultFunctionArrayLvalueConversion(RHS.get(), Diagnose);
10020 if (RHS.isInvalid())
10021 return Incompatible;
10022 }
10023 CastKind Kind;
10024 Sema::AssignConvertType result =
10025 CheckAssignmentConstraints(LHSType, RHS, Kind, ConvertRHS);
10026
10027 // C99 6.5.16.1p2: The value of the right operand is converted to the
10028 // type of the assignment expression.
10029 // CheckAssignmentConstraints allows the left-hand side to be a reference,
10030 // so that we can use references in built-in functions even in C.
10031 // The getNonReferenceType() call makes sure that the resulting expression
10032 // does not have reference type.
10033 if (result != Incompatible && RHS.get()->getType() != LHSType) {
10034 QualType Ty = LHSType.getNonLValueExprType(Context);
10035 Expr *E = RHS.get();
10036
10037 // Check for various Objective-C errors. If we are not reporting
10038 // diagnostics and just checking for errors, e.g., during overload
10039 // resolution, return Incompatible to indicate the failure.
10040 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
10041 CheckObjCConversion(SourceRange(), Ty, E, CCK_ImplicitConversion,
10042 Diagnose, DiagnoseCFAudited) != ACR_okay) {
10043 if (!Diagnose)
10044 return Incompatible;
10045 }
10046 if (getLangOpts().ObjC &&
10047 (CheckObjCBridgeRelatedConversions(E->getBeginLoc(), LHSType,
10048 E->getType(), E, Diagnose) ||
10049 CheckConversionToObjCLiteral(LHSType, E, Diagnose))) {
10050 if (!Diagnose)
10051 return Incompatible;
10052 // Replace the expression with a corrected version and continue so we
10053 // can find further errors.
10054 RHS = E;
10055 return Compatible;
10056 }
10057
10058 if (ConvertRHS)
10059 RHS = ImpCastExprToType(E, Ty, Kind);
10060 }
10061
10062 return result;
10063 }
10064
10065 namespace {
10066 /// The original operand to an operator, prior to the application of the usual
10067 /// arithmetic conversions and converting the arguments of a builtin operator
10068 /// candidate.
10069 struct OriginalOperand {
OriginalOperand__anon060bf1640c11::OriginalOperand10070 explicit OriginalOperand(Expr *Op) : Orig(Op), Conversion(nullptr) {
10071 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Op))
10072 Op = MTE->getSubExpr();
10073 if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(Op))
10074 Op = BTE->getSubExpr();
10075 if (auto *ICE = dyn_cast<ImplicitCastExpr>(Op)) {
10076 Orig = ICE->getSubExprAsWritten();
10077 Conversion = ICE->getConversionFunction();
10078 }
10079 }
10080
getType__anon060bf1640c11::OriginalOperand10081 QualType getType() const { return Orig->getType(); }
10082
10083 Expr *Orig;
10084 NamedDecl *Conversion;
10085 };
10086 }
10087
InvalidOperands(SourceLocation Loc,ExprResult & LHS,ExprResult & RHS)10088 QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS,
10089 ExprResult &RHS) {
10090 OriginalOperand OrigLHS(LHS.get()), OrigRHS(RHS.get());
10091
10092 Diag(Loc, diag::err_typecheck_invalid_operands)
10093 << OrigLHS.getType() << OrigRHS.getType()
10094 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10095
10096 // If a user-defined conversion was applied to either of the operands prior
10097 // to applying the built-in operator rules, tell the user about it.
10098 if (OrigLHS.Conversion) {
10099 Diag(OrigLHS.Conversion->getLocation(),
10100 diag::note_typecheck_invalid_operands_converted)
10101 << 0 << LHS.get()->getType();
10102 }
10103 if (OrigRHS.Conversion) {
10104 Diag(OrigRHS.Conversion->getLocation(),
10105 diag::note_typecheck_invalid_operands_converted)
10106 << 1 << RHS.get()->getType();
10107 }
10108
10109 return QualType();
10110 }
10111
10112 // Diagnose cases where a scalar was implicitly converted to a vector and
10113 // diagnose the underlying types. Otherwise, diagnose the error
10114 // as invalid vector logical operands for non-C++ cases.
InvalidLogicalVectorOperands(SourceLocation Loc,ExprResult & LHS,ExprResult & RHS)10115 QualType Sema::InvalidLogicalVectorOperands(SourceLocation Loc, ExprResult &LHS,
10116 ExprResult &RHS) {
10117 QualType LHSType = LHS.get()->IgnoreImpCasts()->getType();
10118 QualType RHSType = RHS.get()->IgnoreImpCasts()->getType();
10119
10120 bool LHSNatVec = LHSType->isVectorType();
10121 bool RHSNatVec = RHSType->isVectorType();
10122
10123 if (!(LHSNatVec && RHSNatVec)) {
10124 Expr *Vector = LHSNatVec ? LHS.get() : RHS.get();
10125 Expr *NonVector = !LHSNatVec ? LHS.get() : RHS.get();
10126 Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict)
10127 << 0 << Vector->getType() << NonVector->IgnoreImpCasts()->getType()
10128 << Vector->getSourceRange();
10129 return QualType();
10130 }
10131
10132 Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict)
10133 << 1 << LHSType << RHSType << LHS.get()->getSourceRange()
10134 << RHS.get()->getSourceRange();
10135
10136 return QualType();
10137 }
10138
10139 /// Try to convert a value of non-vector type to a vector type by converting
10140 /// the type to the element type of the vector and then performing a splat.
10141 /// If the language is OpenCL, we only use conversions that promote scalar
10142 /// rank; for C, Obj-C, and C++ we allow any real scalar conversion except
10143 /// for float->int.
10144 ///
10145 /// OpenCL V2.0 6.2.6.p2:
10146 /// An error shall occur if any scalar operand type has greater rank
10147 /// than the type of the vector element.
10148 ///
10149 /// \param scalar - if non-null, actually perform the conversions
10150 /// \return true if the operation fails (but without diagnosing the failure)
tryVectorConvertAndSplat(Sema & S,ExprResult * scalar,QualType scalarTy,QualType vectorEltTy,QualType vectorTy,unsigned & DiagID)10151 static bool tryVectorConvertAndSplat(Sema &S, ExprResult *scalar,
10152 QualType scalarTy,
10153 QualType vectorEltTy,
10154 QualType vectorTy,
10155 unsigned &DiagID) {
10156 // The conversion to apply to the scalar before splatting it,
10157 // if necessary.
10158 CastKind scalarCast = CK_NoOp;
10159
10160 if (vectorEltTy->isIntegralType(S.Context)) {
10161 if (S.getLangOpts().OpenCL && (scalarTy->isRealFloatingType() ||
10162 (scalarTy->isIntegerType() &&
10163 S.Context.getIntegerTypeOrder(vectorEltTy, scalarTy) < 0))) {
10164 DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type;
10165 return true;
10166 }
10167 if (!scalarTy->isIntegralType(S.Context))
10168 return true;
10169 scalarCast = CK_IntegralCast;
10170 } else if (vectorEltTy->isRealFloatingType()) {
10171 if (scalarTy->isRealFloatingType()) {
10172 if (S.getLangOpts().OpenCL &&
10173 S.Context.getFloatingTypeOrder(vectorEltTy, scalarTy) < 0) {
10174 DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type;
10175 return true;
10176 }
10177 scalarCast = CK_FloatingCast;
10178 }
10179 else if (scalarTy->isIntegralType(S.Context))
10180 scalarCast = CK_IntegralToFloating;
10181 else
10182 return true;
10183 } else {
10184 return true;
10185 }
10186
10187 // Adjust scalar if desired.
10188 if (scalar) {
10189 if (scalarCast != CK_NoOp)
10190 *scalar = S.ImpCastExprToType(scalar->get(), vectorEltTy, scalarCast);
10191 *scalar = S.ImpCastExprToType(scalar->get(), vectorTy, CK_VectorSplat);
10192 }
10193 return false;
10194 }
10195
10196 /// Convert vector E to a vector with the same number of elements but different
10197 /// element type.
convertVector(Expr * E,QualType ElementType,Sema & S)10198 static ExprResult convertVector(Expr *E, QualType ElementType, Sema &S) {
10199 const auto *VecTy = E->getType()->getAs<VectorType>();
10200 assert(VecTy && "Expression E must be a vector");
10201 QualType NewVecTy =
10202 VecTy->isExtVectorType()
10203 ? S.Context.getExtVectorType(ElementType, VecTy->getNumElements())
10204 : S.Context.getVectorType(ElementType, VecTy->getNumElements(),
10205 VecTy->getVectorKind());
10206
10207 // Look through the implicit cast. Return the subexpression if its type is
10208 // NewVecTy.
10209 if (auto *ICE = dyn_cast<ImplicitCastExpr>(E))
10210 if (ICE->getSubExpr()->getType() == NewVecTy)
10211 return ICE->getSubExpr();
10212
10213 auto Cast = ElementType->isIntegerType() ? CK_IntegralCast : CK_FloatingCast;
10214 return S.ImpCastExprToType(E, NewVecTy, Cast);
10215 }
10216
10217 /// Test if a (constant) integer Int can be casted to another integer type
10218 /// IntTy without losing precision.
canConvertIntToOtherIntTy(Sema & S,ExprResult * Int,QualType OtherIntTy)10219 static bool canConvertIntToOtherIntTy(Sema &S, ExprResult *Int,
10220 QualType OtherIntTy) {
10221 QualType IntTy = Int->get()->getType().getUnqualifiedType();
10222
10223 // Reject cases where the value of the Int is unknown as that would
10224 // possibly cause truncation, but accept cases where the scalar can be
10225 // demoted without loss of precision.
10226 Expr::EvalResult EVResult;
10227 bool CstInt = Int->get()->EvaluateAsInt(EVResult, S.Context);
10228 int Order = S.Context.getIntegerTypeOrder(OtherIntTy, IntTy);
10229 bool IntSigned = IntTy->hasSignedIntegerRepresentation();
10230 bool OtherIntSigned = OtherIntTy->hasSignedIntegerRepresentation();
10231
10232 if (CstInt) {
10233 // If the scalar is constant and is of a higher order and has more active
10234 // bits that the vector element type, reject it.
10235 llvm::APSInt Result = EVResult.Val.getInt();
10236 unsigned NumBits = IntSigned
10237 ? (Result.isNegative() ? Result.getMinSignedBits()
10238 : Result.getActiveBits())
10239 : Result.getActiveBits();
10240 if (Order < 0 && S.Context.getIntWidth(OtherIntTy) < NumBits)
10241 return true;
10242
10243 // If the signedness of the scalar type and the vector element type
10244 // differs and the number of bits is greater than that of the vector
10245 // element reject it.
10246 return (IntSigned != OtherIntSigned &&
10247 NumBits > S.Context.getIntWidth(OtherIntTy));
10248 }
10249
10250 // Reject cases where the value of the scalar is not constant and it's
10251 // order is greater than that of the vector element type.
10252 return (Order < 0);
10253 }
10254
10255 /// Test if a (constant) integer Int can be casted to floating point type
10256 /// FloatTy without losing precision.
canConvertIntTyToFloatTy(Sema & S,ExprResult * Int,QualType FloatTy)10257 static bool canConvertIntTyToFloatTy(Sema &S, ExprResult *Int,
10258 QualType FloatTy) {
10259 QualType IntTy = Int->get()->getType().getUnqualifiedType();
10260
10261 // Determine if the integer constant can be expressed as a floating point
10262 // number of the appropriate type.
10263 Expr::EvalResult EVResult;
10264 bool CstInt = Int->get()->EvaluateAsInt(EVResult, S.Context);
10265
10266 uint64_t Bits = 0;
10267 if (CstInt) {
10268 // Reject constants that would be truncated if they were converted to
10269 // the floating point type. Test by simple to/from conversion.
10270 // FIXME: Ideally the conversion to an APFloat and from an APFloat
10271 // could be avoided if there was a convertFromAPInt method
10272 // which could signal back if implicit truncation occurred.
10273 llvm::APSInt Result = EVResult.Val.getInt();
10274 llvm::APFloat Float(S.Context.getFloatTypeSemantics(FloatTy));
10275 Float.convertFromAPInt(Result, IntTy->hasSignedIntegerRepresentation(),
10276 llvm::APFloat::rmTowardZero);
10277 llvm::APSInt ConvertBack(S.Context.getIntWidth(IntTy),
10278 !IntTy->hasSignedIntegerRepresentation());
10279 bool Ignored = false;
10280 Float.convertToInteger(ConvertBack, llvm::APFloat::rmNearestTiesToEven,
10281 &Ignored);
10282 if (Result != ConvertBack)
10283 return true;
10284 } else {
10285 // Reject types that cannot be fully encoded into the mantissa of
10286 // the float.
10287 Bits = S.Context.getTypeSize(IntTy);
10288 unsigned FloatPrec = llvm::APFloat::semanticsPrecision(
10289 S.Context.getFloatTypeSemantics(FloatTy));
10290 if (Bits > FloatPrec)
10291 return true;
10292 }
10293
10294 return false;
10295 }
10296
10297 /// Attempt to convert and splat Scalar into a vector whose types matches
10298 /// Vector following GCC conversion rules. The rule is that implicit
10299 /// conversion can occur when Scalar can be casted to match Vector's element
10300 /// type without causing truncation of Scalar.
tryGCCVectorConvertAndSplat(Sema & S,ExprResult * Scalar,ExprResult * Vector)10301 static bool tryGCCVectorConvertAndSplat(Sema &S, ExprResult *Scalar,
10302 ExprResult *Vector) {
10303 QualType ScalarTy = Scalar->get()->getType().getUnqualifiedType();
10304 QualType VectorTy = Vector->get()->getType().getUnqualifiedType();
10305 QualType VectorEltTy;
10306
10307 if (const auto *VT = VectorTy->getAs<VectorType>()) {
10308 assert(!isa<ExtVectorType>(VT) &&
10309 "ExtVectorTypes should not be handled here!");
10310 VectorEltTy = VT->getElementType();
10311 } else if (VectorTy->isVLSTBuiltinType()) {
10312 VectorEltTy =
10313 VectorTy->castAs<BuiltinType>()->getSveEltType(S.getASTContext());
10314 } else {
10315 llvm_unreachable("Only Fixed-Length and SVE Vector types are handled here");
10316 }
10317
10318 // Reject cases where the vector element type or the scalar element type are
10319 // not integral or floating point types.
10320 if (!VectorEltTy->isArithmeticType() || !ScalarTy->isArithmeticType())
10321 return true;
10322
10323 // The conversion to apply to the scalar before splatting it,
10324 // if necessary.
10325 CastKind ScalarCast = CK_NoOp;
10326
10327 // Accept cases where the vector elements are integers and the scalar is
10328 // an integer.
10329 // FIXME: Notionally if the scalar was a floating point value with a precise
10330 // integral representation, we could cast it to an appropriate integer
10331 // type and then perform the rest of the checks here. GCC will perform
10332 // this conversion in some cases as determined by the input language.
10333 // We should accept it on a language independent basis.
10334 if (VectorEltTy->isIntegralType(S.Context) &&
10335 ScalarTy->isIntegralType(S.Context) &&
10336 S.Context.getIntegerTypeOrder(VectorEltTy, ScalarTy)) {
10337
10338 if (canConvertIntToOtherIntTy(S, Scalar, VectorEltTy))
10339 return true;
10340
10341 ScalarCast = CK_IntegralCast;
10342 } else if (VectorEltTy->isIntegralType(S.Context) &&
10343 ScalarTy->isRealFloatingType()) {
10344 if (S.Context.getTypeSize(VectorEltTy) == S.Context.getTypeSize(ScalarTy))
10345 ScalarCast = CK_FloatingToIntegral;
10346 else
10347 return true;
10348 } else if (VectorEltTy->isRealFloatingType()) {
10349 if (ScalarTy->isRealFloatingType()) {
10350
10351 // Reject cases where the scalar type is not a constant and has a higher
10352 // Order than the vector element type.
10353 llvm::APFloat Result(0.0);
10354
10355 // Determine whether this is a constant scalar. In the event that the
10356 // value is dependent (and thus cannot be evaluated by the constant
10357 // evaluator), skip the evaluation. This will then diagnose once the
10358 // expression is instantiated.
10359 bool CstScalar = Scalar->get()->isValueDependent() ||
10360 Scalar->get()->EvaluateAsFloat(Result, S.Context);
10361 int Order = S.Context.getFloatingTypeOrder(VectorEltTy, ScalarTy);
10362 if (!CstScalar && Order < 0)
10363 return true;
10364
10365 // If the scalar cannot be safely casted to the vector element type,
10366 // reject it.
10367 if (CstScalar) {
10368 bool Truncated = false;
10369 Result.convert(S.Context.getFloatTypeSemantics(VectorEltTy),
10370 llvm::APFloat::rmNearestTiesToEven, &Truncated);
10371 if (Truncated)
10372 return true;
10373 }
10374
10375 ScalarCast = CK_FloatingCast;
10376 } else if (ScalarTy->isIntegralType(S.Context)) {
10377 if (canConvertIntTyToFloatTy(S, Scalar, VectorEltTy))
10378 return true;
10379
10380 ScalarCast = CK_IntegralToFloating;
10381 } else
10382 return true;
10383 } else if (ScalarTy->isEnumeralType())
10384 return true;
10385
10386 // Adjust scalar if desired.
10387 if (Scalar) {
10388 if (ScalarCast != CK_NoOp)
10389 *Scalar = S.ImpCastExprToType(Scalar->get(), VectorEltTy, ScalarCast);
10390 *Scalar = S.ImpCastExprToType(Scalar->get(), VectorTy, CK_VectorSplat);
10391 }
10392 return false;
10393 }
10394
CheckVectorOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompAssign,bool AllowBothBool,bool AllowBoolConversions,bool AllowBoolOperation,bool ReportInvalid)10395 QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
10396 SourceLocation Loc, bool IsCompAssign,
10397 bool AllowBothBool,
10398 bool AllowBoolConversions,
10399 bool AllowBoolOperation,
10400 bool ReportInvalid) {
10401 if (!IsCompAssign) {
10402 LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
10403 if (LHS.isInvalid())
10404 return QualType();
10405 }
10406 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
10407 if (RHS.isInvalid())
10408 return QualType();
10409
10410 // For conversion purposes, we ignore any qualifiers.
10411 // For example, "const float" and "float" are equivalent.
10412 QualType LHSType = LHS.get()->getType().getUnqualifiedType();
10413 QualType RHSType = RHS.get()->getType().getUnqualifiedType();
10414
10415 const VectorType *LHSVecType = LHSType->getAs<VectorType>();
10416 const VectorType *RHSVecType = RHSType->getAs<VectorType>();
10417 assert(LHSVecType || RHSVecType);
10418
10419 if ((LHSVecType && LHSVecType->getElementType()->isBFloat16Type()) ||
10420 (RHSVecType && RHSVecType->getElementType()->isBFloat16Type()))
10421 return ReportInvalid ? InvalidOperands(Loc, LHS, RHS) : QualType();
10422
10423 // AltiVec-style "vector bool op vector bool" combinations are allowed
10424 // for some operators but not others.
10425 if (!AllowBothBool &&
10426 LHSVecType && LHSVecType->getVectorKind() == VectorType::AltiVecBool &&
10427 RHSVecType && RHSVecType->getVectorKind() == VectorType::AltiVecBool)
10428 return ReportInvalid ? InvalidOperands(Loc, LHS, RHS) : QualType();
10429
10430 // This operation may not be performed on boolean vectors.
10431 if (!AllowBoolOperation &&
10432 (LHSType->isExtVectorBoolType() || RHSType->isExtVectorBoolType()))
10433 return ReportInvalid ? InvalidOperands(Loc, LHS, RHS) : QualType();
10434
10435 // If the vector types are identical, return.
10436 if (Context.hasSameType(LHSType, RHSType))
10437 return LHSType;
10438
10439 // If we have compatible AltiVec and GCC vector types, use the AltiVec type.
10440 if (LHSVecType && RHSVecType &&
10441 Context.areCompatibleVectorTypes(LHSType, RHSType)) {
10442 if (isa<ExtVectorType>(LHSVecType)) {
10443 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
10444 return LHSType;
10445 }
10446
10447 if (!IsCompAssign)
10448 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
10449 return RHSType;
10450 }
10451
10452 // AllowBoolConversions says that bool and non-bool AltiVec vectors
10453 // can be mixed, with the result being the non-bool type. The non-bool
10454 // operand must have integer element type.
10455 if (AllowBoolConversions && LHSVecType && RHSVecType &&
10456 LHSVecType->getNumElements() == RHSVecType->getNumElements() &&
10457 (Context.getTypeSize(LHSVecType->getElementType()) ==
10458 Context.getTypeSize(RHSVecType->getElementType()))) {
10459 if (LHSVecType->getVectorKind() == VectorType::AltiVecVector &&
10460 LHSVecType->getElementType()->isIntegerType() &&
10461 RHSVecType->getVectorKind() == VectorType::AltiVecBool) {
10462 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
10463 return LHSType;
10464 }
10465 if (!IsCompAssign &&
10466 LHSVecType->getVectorKind() == VectorType::AltiVecBool &&
10467 RHSVecType->getVectorKind() == VectorType::AltiVecVector &&
10468 RHSVecType->getElementType()->isIntegerType()) {
10469 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
10470 return RHSType;
10471 }
10472 }
10473
10474 // Expressions containing fixed-length and sizeless SVE vectors are invalid
10475 // since the ambiguity can affect the ABI.
10476 auto IsSveConversion = [](QualType FirstType, QualType SecondType) {
10477 const VectorType *VecType = SecondType->getAs<VectorType>();
10478 return FirstType->isSizelessBuiltinType() && VecType &&
10479 (VecType->getVectorKind() == VectorType::SveFixedLengthDataVector ||
10480 VecType->getVectorKind() ==
10481 VectorType::SveFixedLengthPredicateVector);
10482 };
10483
10484 if (IsSveConversion(LHSType, RHSType) || IsSveConversion(RHSType, LHSType)) {
10485 Diag(Loc, diag::err_typecheck_sve_ambiguous) << LHSType << RHSType;
10486 return QualType();
10487 }
10488
10489 // Expressions containing GNU and SVE (fixed or sizeless) vectors are invalid
10490 // since the ambiguity can affect the ABI.
10491 auto IsSveGnuConversion = [](QualType FirstType, QualType SecondType) {
10492 const VectorType *FirstVecType = FirstType->getAs<VectorType>();
10493 const VectorType *SecondVecType = SecondType->getAs<VectorType>();
10494
10495 if (FirstVecType && SecondVecType)
10496 return FirstVecType->getVectorKind() == VectorType::GenericVector &&
10497 (SecondVecType->getVectorKind() ==
10498 VectorType::SveFixedLengthDataVector ||
10499 SecondVecType->getVectorKind() ==
10500 VectorType::SveFixedLengthPredicateVector);
10501
10502 return FirstType->isSizelessBuiltinType() && SecondVecType &&
10503 SecondVecType->getVectorKind() == VectorType::GenericVector;
10504 };
10505
10506 if (IsSveGnuConversion(LHSType, RHSType) ||
10507 IsSveGnuConversion(RHSType, LHSType)) {
10508 Diag(Loc, diag::err_typecheck_sve_gnu_ambiguous) << LHSType << RHSType;
10509 return QualType();
10510 }
10511
10512 // If there's a vector type and a scalar, try to convert the scalar to
10513 // the vector element type and splat.
10514 unsigned DiagID = diag::err_typecheck_vector_not_convertable;
10515 if (!RHSVecType) {
10516 if (isa<ExtVectorType>(LHSVecType)) {
10517 if (!tryVectorConvertAndSplat(*this, &RHS, RHSType,
10518 LHSVecType->getElementType(), LHSType,
10519 DiagID))
10520 return LHSType;
10521 } else {
10522 if (!tryGCCVectorConvertAndSplat(*this, &RHS, &LHS))
10523 return LHSType;
10524 }
10525 }
10526 if (!LHSVecType) {
10527 if (isa<ExtVectorType>(RHSVecType)) {
10528 if (!tryVectorConvertAndSplat(*this, (IsCompAssign ? nullptr : &LHS),
10529 LHSType, RHSVecType->getElementType(),
10530 RHSType, DiagID))
10531 return RHSType;
10532 } else {
10533 if (LHS.get()->isLValue() ||
10534 !tryGCCVectorConvertAndSplat(*this, &LHS, &RHS))
10535 return RHSType;
10536 }
10537 }
10538
10539 // FIXME: The code below also handles conversion between vectors and
10540 // non-scalars, we should break this down into fine grained specific checks
10541 // and emit proper diagnostics.
10542 QualType VecType = LHSVecType ? LHSType : RHSType;
10543 const VectorType *VT = LHSVecType ? LHSVecType : RHSVecType;
10544 QualType OtherType = LHSVecType ? RHSType : LHSType;
10545 ExprResult *OtherExpr = LHSVecType ? &RHS : &LHS;
10546 if (isLaxVectorConversion(OtherType, VecType)) {
10547 if (anyAltivecTypes(RHSType, LHSType) &&
10548 !areSameVectorElemTypes(RHSType, LHSType))
10549 Diag(Loc, diag::warn_deprecated_lax_vec_conv_all) << RHSType << LHSType;
10550 // If we're allowing lax vector conversions, only the total (data) size
10551 // needs to be the same. For non compound assignment, if one of the types is
10552 // scalar, the result is always the vector type.
10553 if (!IsCompAssign) {
10554 *OtherExpr = ImpCastExprToType(OtherExpr->get(), VecType, CK_BitCast);
10555 return VecType;
10556 // In a compound assignment, lhs += rhs, 'lhs' is a lvalue src, forbidding
10557 // any implicit cast. Here, the 'rhs' should be implicit casted to 'lhs'
10558 // type. Note that this is already done by non-compound assignments in
10559 // CheckAssignmentConstraints. If it's a scalar type, only bitcast for
10560 // <1 x T> -> T. The result is also a vector type.
10561 } else if (OtherType->isExtVectorType() || OtherType->isVectorType() ||
10562 (OtherType->isScalarType() && VT->getNumElements() == 1)) {
10563 ExprResult *RHSExpr = &RHS;
10564 *RHSExpr = ImpCastExprToType(RHSExpr->get(), LHSType, CK_BitCast);
10565 return VecType;
10566 }
10567 }
10568
10569 // Okay, the expression is invalid.
10570
10571 // If there's a non-vector, non-real operand, diagnose that.
10572 if ((!RHSVecType && !RHSType->isRealType()) ||
10573 (!LHSVecType && !LHSType->isRealType())) {
10574 Diag(Loc, diag::err_typecheck_vector_not_convertable_non_scalar)
10575 << LHSType << RHSType
10576 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10577 return QualType();
10578 }
10579
10580 // OpenCL V1.1 6.2.6.p1:
10581 // If the operands are of more than one vector type, then an error shall
10582 // occur. Implicit conversions between vector types are not permitted, per
10583 // section 6.2.1.
10584 if (getLangOpts().OpenCL &&
10585 RHSVecType && isa<ExtVectorType>(RHSVecType) &&
10586 LHSVecType && isa<ExtVectorType>(LHSVecType)) {
10587 Diag(Loc, diag::err_opencl_implicit_vector_conversion) << LHSType
10588 << RHSType;
10589 return QualType();
10590 }
10591
10592
10593 // If there is a vector type that is not a ExtVector and a scalar, we reach
10594 // this point if scalar could not be converted to the vector's element type
10595 // without truncation.
10596 if ((RHSVecType && !isa<ExtVectorType>(RHSVecType)) ||
10597 (LHSVecType && !isa<ExtVectorType>(LHSVecType))) {
10598 QualType Scalar = LHSVecType ? RHSType : LHSType;
10599 QualType Vector = LHSVecType ? LHSType : RHSType;
10600 unsigned ScalarOrVector = LHSVecType && RHSVecType ? 1 : 0;
10601 Diag(Loc,
10602 diag::err_typecheck_vector_not_convertable_implict_truncation)
10603 << ScalarOrVector << Scalar << Vector;
10604
10605 return QualType();
10606 }
10607
10608 // Otherwise, use the generic diagnostic.
10609 Diag(Loc, DiagID)
10610 << LHSType << RHSType
10611 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10612 return QualType();
10613 }
10614
CheckSizelessVectorOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompAssign,ArithConvKind OperationKind)10615 QualType Sema::CheckSizelessVectorOperands(ExprResult &LHS, ExprResult &RHS,
10616 SourceLocation Loc,
10617 bool IsCompAssign,
10618 ArithConvKind OperationKind) {
10619 if (!IsCompAssign) {
10620 LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
10621 if (LHS.isInvalid())
10622 return QualType();
10623 }
10624 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
10625 if (RHS.isInvalid())
10626 return QualType();
10627
10628 QualType LHSType = LHS.get()->getType().getUnqualifiedType();
10629 QualType RHSType = RHS.get()->getType().getUnqualifiedType();
10630
10631 const BuiltinType *LHSBuiltinTy = LHSType->getAs<BuiltinType>();
10632 const BuiltinType *RHSBuiltinTy = RHSType->getAs<BuiltinType>();
10633
10634 unsigned DiagID = diag::err_typecheck_invalid_operands;
10635 if ((OperationKind == ACK_Arithmetic) &&
10636 ((LHSBuiltinTy && LHSBuiltinTy->isSVEBool()) ||
10637 (RHSBuiltinTy && RHSBuiltinTy->isSVEBool()))) {
10638 Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange()
10639 << RHS.get()->getSourceRange();
10640 return QualType();
10641 }
10642
10643 if (Context.hasSameType(LHSType, RHSType))
10644 return LHSType;
10645
10646 if (LHSType->isVLSTBuiltinType() && !RHSType->isVLSTBuiltinType()) {
10647 if (!tryGCCVectorConvertAndSplat(*this, &RHS, &LHS))
10648 return LHSType;
10649 }
10650 if (RHSType->isVLSTBuiltinType() && !LHSType->isVLSTBuiltinType()) {
10651 if (LHS.get()->isLValue() ||
10652 !tryGCCVectorConvertAndSplat(*this, &LHS, &RHS))
10653 return RHSType;
10654 }
10655
10656 if ((!LHSType->isVLSTBuiltinType() && !LHSType->isRealType()) ||
10657 (!RHSType->isVLSTBuiltinType() && !RHSType->isRealType())) {
10658 Diag(Loc, diag::err_typecheck_vector_not_convertable_non_scalar)
10659 << LHSType << RHSType << LHS.get()->getSourceRange()
10660 << RHS.get()->getSourceRange();
10661 return QualType();
10662 }
10663
10664 if (LHSType->isVLSTBuiltinType() && RHSType->isVLSTBuiltinType() &&
10665 Context.getBuiltinVectorTypeInfo(LHSBuiltinTy).EC !=
10666 Context.getBuiltinVectorTypeInfo(RHSBuiltinTy).EC) {
10667 Diag(Loc, diag::err_typecheck_vector_lengths_not_equal)
10668 << LHSType << RHSType << LHS.get()->getSourceRange()
10669 << RHS.get()->getSourceRange();
10670 return QualType();
10671 }
10672
10673 if (LHSType->isVLSTBuiltinType() || RHSType->isVLSTBuiltinType()) {
10674 QualType Scalar = LHSType->isVLSTBuiltinType() ? RHSType : LHSType;
10675 QualType Vector = LHSType->isVLSTBuiltinType() ? LHSType : RHSType;
10676 bool ScalarOrVector =
10677 LHSType->isVLSTBuiltinType() && RHSType->isVLSTBuiltinType();
10678
10679 Diag(Loc, diag::err_typecheck_vector_not_convertable_implict_truncation)
10680 << ScalarOrVector << Scalar << Vector;
10681
10682 return QualType();
10683 }
10684
10685 Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange()
10686 << RHS.get()->getSourceRange();
10687 return QualType();
10688 }
10689
10690 // checkArithmeticNull - Detect when a NULL constant is used improperly in an
10691 // expression. These are mainly cases where the null pointer is used as an
10692 // integer instead of a pointer.
checkArithmeticNull(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompare)10693 static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS,
10694 SourceLocation Loc, bool IsCompare) {
10695 // The canonical way to check for a GNU null is with isNullPointerConstant,
10696 // but we use a bit of a hack here for speed; this is a relatively
10697 // hot path, and isNullPointerConstant is slow.
10698 bool LHSNull = isa<GNUNullExpr>(LHS.get()->IgnoreParenImpCasts());
10699 bool RHSNull = isa<GNUNullExpr>(RHS.get()->IgnoreParenImpCasts());
10700
10701 QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType();
10702
10703 // Avoid analyzing cases where the result will either be invalid (and
10704 // diagnosed as such) or entirely valid and not something to warn about.
10705 if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() ||
10706 NonNullType->isMemberPointerType() || NonNullType->isFunctionType())
10707 return;
10708
10709 // Comparison operations would not make sense with a null pointer no matter
10710 // what the other expression is.
10711 if (!IsCompare) {
10712 S.Diag(Loc, diag::warn_null_in_arithmetic_operation)
10713 << (LHSNull ? LHS.get()->getSourceRange() : SourceRange())
10714 << (RHSNull ? RHS.get()->getSourceRange() : SourceRange());
10715 return;
10716 }
10717
10718 // The rest of the operations only make sense with a null pointer
10719 // if the other expression is a pointer.
10720 if (LHSNull == RHSNull || NonNullType->isAnyPointerType() ||
10721 NonNullType->canDecayToPointerType())
10722 return;
10723
10724 S.Diag(Loc, diag::warn_null_in_comparison_operation)
10725 << LHSNull /* LHS is NULL */ << NonNullType
10726 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10727 }
10728
DiagnoseDivisionSizeofPointerOrArray(Sema & S,Expr * LHS,Expr * RHS,SourceLocation Loc)10729 static void DiagnoseDivisionSizeofPointerOrArray(Sema &S, Expr *LHS, Expr *RHS,
10730 SourceLocation Loc) {
10731 const auto *LUE = dyn_cast<UnaryExprOrTypeTraitExpr>(LHS);
10732 const auto *RUE = dyn_cast<UnaryExprOrTypeTraitExpr>(RHS);
10733 if (!LUE || !RUE)
10734 return;
10735 if (LUE->getKind() != UETT_SizeOf || LUE->isArgumentType() ||
10736 RUE->getKind() != UETT_SizeOf)
10737 return;
10738
10739 const Expr *LHSArg = LUE->getArgumentExpr()->IgnoreParens();
10740 QualType LHSTy = LHSArg->getType();
10741 QualType RHSTy;
10742
10743 if (RUE->isArgumentType())
10744 RHSTy = RUE->getArgumentType().getNonReferenceType();
10745 else
10746 RHSTy = RUE->getArgumentExpr()->IgnoreParens()->getType();
10747
10748 if (LHSTy->isPointerType() && !RHSTy->isPointerType()) {
10749 if (!S.Context.hasSameUnqualifiedType(LHSTy->getPointeeType(), RHSTy))
10750 return;
10751
10752 S.Diag(Loc, diag::warn_division_sizeof_ptr) << LHS << LHS->getSourceRange();
10753 if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSArg)) {
10754 if (const ValueDecl *LHSArgDecl = DRE->getDecl())
10755 S.Diag(LHSArgDecl->getLocation(), diag::note_pointer_declared_here)
10756 << LHSArgDecl;
10757 }
10758 } else if (const auto *ArrayTy = S.Context.getAsArrayType(LHSTy)) {
10759 QualType ArrayElemTy = ArrayTy->getElementType();
10760 if (ArrayElemTy != S.Context.getBaseElementType(ArrayTy) ||
10761 ArrayElemTy->isDependentType() || RHSTy->isDependentType() ||
10762 RHSTy->isReferenceType() || ArrayElemTy->isCharType() ||
10763 S.Context.getTypeSize(ArrayElemTy) == S.Context.getTypeSize(RHSTy))
10764 return;
10765 S.Diag(Loc, diag::warn_division_sizeof_array)
10766 << LHSArg->getSourceRange() << ArrayElemTy << RHSTy;
10767 if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSArg)) {
10768 if (const ValueDecl *LHSArgDecl = DRE->getDecl())
10769 S.Diag(LHSArgDecl->getLocation(), diag::note_array_declared_here)
10770 << LHSArgDecl;
10771 }
10772
10773 S.Diag(Loc, diag::note_precedence_silence) << RHS;
10774 }
10775 }
10776
DiagnoseBadDivideOrRemainderValues(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsDiv)10777 static void DiagnoseBadDivideOrRemainderValues(Sema& S, ExprResult &LHS,
10778 ExprResult &RHS,
10779 SourceLocation Loc, bool IsDiv) {
10780 // Check for division/remainder by zero.
10781 Expr::EvalResult RHSValue;
10782 if (!RHS.get()->isValueDependent() &&
10783 RHS.get()->EvaluateAsInt(RHSValue, S.Context) &&
10784 RHSValue.Val.getInt() == 0)
10785 S.DiagRuntimeBehavior(Loc, RHS.get(),
10786 S.PDiag(diag::warn_remainder_division_by_zero)
10787 << IsDiv << RHS.get()->getSourceRange());
10788 }
10789
CheckMultiplyDivideOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompAssign,bool IsDiv)10790 QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS,
10791 SourceLocation Loc,
10792 bool IsCompAssign, bool IsDiv) {
10793 checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
10794
10795 QualType LHSTy = LHS.get()->getType();
10796 QualType RHSTy = RHS.get()->getType();
10797 if (LHSTy->isVectorType() || RHSTy->isVectorType())
10798 return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
10799 /*AllowBothBool*/ getLangOpts().AltiVec,
10800 /*AllowBoolConversions*/ false,
10801 /*AllowBooleanOperation*/ false,
10802 /*ReportInvalid*/ true);
10803 if (LHSTy->isVLSTBuiltinType() || RHSTy->isVLSTBuiltinType())
10804 return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign,
10805 ACK_Arithmetic);
10806 if (!IsDiv &&
10807 (LHSTy->isConstantMatrixType() || RHSTy->isConstantMatrixType()))
10808 return CheckMatrixMultiplyOperands(LHS, RHS, Loc, IsCompAssign);
10809 // For division, only matrix-by-scalar is supported. Other combinations with
10810 // matrix types are invalid.
10811 if (IsDiv && LHSTy->isConstantMatrixType() && RHSTy->isArithmeticType())
10812 return CheckMatrixElementwiseOperands(LHS, RHS, Loc, IsCompAssign);
10813
10814 QualType compType = UsualArithmeticConversions(
10815 LHS, RHS, Loc, IsCompAssign ? ACK_CompAssign : ACK_Arithmetic);
10816 if (LHS.isInvalid() || RHS.isInvalid())
10817 return QualType();
10818
10819
10820 if (compType.isNull() || !compType->isArithmeticType())
10821 return InvalidOperands(Loc, LHS, RHS);
10822 if (IsDiv) {
10823 DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, IsDiv);
10824 DiagnoseDivisionSizeofPointerOrArray(*this, LHS.get(), RHS.get(), Loc);
10825 }
10826 return compType;
10827 }
10828
CheckRemainderOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompAssign)10829 QualType Sema::CheckRemainderOperands(
10830 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
10831 checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
10832
10833 if (LHS.get()->getType()->isVectorType() ||
10834 RHS.get()->getType()->isVectorType()) {
10835 if (LHS.get()->getType()->hasIntegerRepresentation() &&
10836 RHS.get()->getType()->hasIntegerRepresentation())
10837 return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
10838 /*AllowBothBool*/ getLangOpts().AltiVec,
10839 /*AllowBoolConversions*/ false,
10840 /*AllowBooleanOperation*/ false,
10841 /*ReportInvalid*/ true);
10842 return InvalidOperands(Loc, LHS, RHS);
10843 }
10844
10845 if (LHS.get()->getType()->isVLSTBuiltinType() ||
10846 RHS.get()->getType()->isVLSTBuiltinType()) {
10847 if (LHS.get()->getType()->hasIntegerRepresentation() &&
10848 RHS.get()->getType()->hasIntegerRepresentation())
10849 return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign,
10850 ACK_Arithmetic);
10851
10852 return InvalidOperands(Loc, LHS, RHS);
10853 }
10854
10855 QualType compType = UsualArithmeticConversions(
10856 LHS, RHS, Loc, IsCompAssign ? ACK_CompAssign : ACK_Arithmetic);
10857 if (LHS.isInvalid() || RHS.isInvalid())
10858 return QualType();
10859
10860 if (compType.isNull() || !compType->isIntegerType())
10861 return InvalidOperands(Loc, LHS, RHS);
10862 DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, false /* IsDiv */);
10863 return compType;
10864 }
10865
10866 /// Diagnose invalid arithmetic on two void pointers.
diagnoseArithmeticOnTwoVoidPointers(Sema & S,SourceLocation Loc,Expr * LHSExpr,Expr * RHSExpr)10867 static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc,
10868 Expr *LHSExpr, Expr *RHSExpr) {
10869 S.Diag(Loc, S.getLangOpts().CPlusPlus
10870 ? diag::err_typecheck_pointer_arith_void_type
10871 : diag::ext_gnu_void_ptr)
10872 << 1 /* two pointers */ << LHSExpr->getSourceRange()
10873 << RHSExpr->getSourceRange();
10874 }
10875
10876 /// Diagnose invalid arithmetic on a void pointer.
diagnoseArithmeticOnVoidPointer(Sema & S,SourceLocation Loc,Expr * Pointer)10877 static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc,
10878 Expr *Pointer) {
10879 S.Diag(Loc, S.getLangOpts().CPlusPlus
10880 ? diag::err_typecheck_pointer_arith_void_type
10881 : diag::ext_gnu_void_ptr)
10882 << 0 /* one pointer */ << Pointer->getSourceRange();
10883 }
10884
10885 /// Diagnose invalid arithmetic on a null pointer.
10886 ///
10887 /// If \p IsGNUIdiom is true, the operation is using the 'p = (i8*)nullptr + n'
10888 /// idiom, which we recognize as a GNU extension.
10889 ///
diagnoseArithmeticOnNullPointer(Sema & S,SourceLocation Loc,Expr * Pointer,bool IsGNUIdiom)10890 static void diagnoseArithmeticOnNullPointer(Sema &S, SourceLocation Loc,
10891 Expr *Pointer, bool IsGNUIdiom) {
10892 if (IsGNUIdiom)
10893 S.Diag(Loc, diag::warn_gnu_null_ptr_arith)
10894 << Pointer->getSourceRange();
10895 else
10896 S.Diag(Loc, diag::warn_pointer_arith_null_ptr)
10897 << S.getLangOpts().CPlusPlus << Pointer->getSourceRange();
10898 }
10899
10900 /// Diagnose invalid subraction on a null pointer.
10901 ///
diagnoseSubtractionOnNullPointer(Sema & S,SourceLocation Loc,Expr * Pointer,bool BothNull)10902 static void diagnoseSubtractionOnNullPointer(Sema &S, SourceLocation Loc,
10903 Expr *Pointer, bool BothNull) {
10904 // Null - null is valid in C++ [expr.add]p7
10905 if (BothNull && S.getLangOpts().CPlusPlus)
10906 return;
10907
10908 // Is this s a macro from a system header?
10909 if (S.Diags.getSuppressSystemWarnings() && S.SourceMgr.isInSystemMacro(Loc))
10910 return;
10911
10912 S.DiagRuntimeBehavior(Loc, Pointer,
10913 S.PDiag(diag::warn_pointer_sub_null_ptr)
10914 << S.getLangOpts().CPlusPlus
10915 << Pointer->getSourceRange());
10916 }
10917
10918 /// Diagnose invalid arithmetic on two function pointers.
diagnoseArithmeticOnTwoFunctionPointers(Sema & S,SourceLocation Loc,Expr * LHS,Expr * RHS)10919 static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc,
10920 Expr *LHS, Expr *RHS) {
10921 assert(LHS->getType()->isAnyPointerType());
10922 assert(RHS->getType()->isAnyPointerType());
10923 S.Diag(Loc, S.getLangOpts().CPlusPlus
10924 ? diag::err_typecheck_pointer_arith_function_type
10925 : diag::ext_gnu_ptr_func_arith)
10926 << 1 /* two pointers */ << LHS->getType()->getPointeeType()
10927 // We only show the second type if it differs from the first.
10928 << (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(),
10929 RHS->getType())
10930 << RHS->getType()->getPointeeType()
10931 << LHS->getSourceRange() << RHS->getSourceRange();
10932 }
10933
10934 /// Diagnose invalid arithmetic on a function pointer.
diagnoseArithmeticOnFunctionPointer(Sema & S,SourceLocation Loc,Expr * Pointer)10935 static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc,
10936 Expr *Pointer) {
10937 assert(Pointer->getType()->isAnyPointerType());
10938 S.Diag(Loc, S.getLangOpts().CPlusPlus
10939 ? diag::err_typecheck_pointer_arith_function_type
10940 : diag::ext_gnu_ptr_func_arith)
10941 << 0 /* one pointer */ << Pointer->getType()->getPointeeType()
10942 << 0 /* one pointer, so only one type */
10943 << Pointer->getSourceRange();
10944 }
10945
10946 /// Emit error if Operand is incomplete pointer type
10947 ///
10948 /// \returns True if pointer has incomplete type
checkArithmeticIncompletePointerType(Sema & S,SourceLocation Loc,Expr * Operand)10949 static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc,
10950 Expr *Operand) {
10951 QualType ResType = Operand->getType();
10952 if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
10953 ResType = ResAtomicType->getValueType();
10954
10955 assert(ResType->isAnyPointerType() && !ResType->isDependentType());
10956 QualType PointeeTy = ResType->getPointeeType();
10957 return S.RequireCompleteSizedType(
10958 Loc, PointeeTy,
10959 diag::err_typecheck_arithmetic_incomplete_or_sizeless_type,
10960 Operand->getSourceRange());
10961 }
10962
10963 /// Check the validity of an arithmetic pointer operand.
10964 ///
10965 /// If the operand has pointer type, this code will check for pointer types
10966 /// which are invalid in arithmetic operations. These will be diagnosed
10967 /// appropriately, including whether or not the use is supported as an
10968 /// extension.
10969 ///
10970 /// \returns True when the operand is valid to use (even if as an extension).
checkArithmeticOpPointerOperand(Sema & S,SourceLocation Loc,Expr * Operand)10971 static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc,
10972 Expr *Operand) {
10973 QualType ResType = Operand->getType();
10974 if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
10975 ResType = ResAtomicType->getValueType();
10976
10977 if (!ResType->isAnyPointerType()) return true;
10978
10979 QualType PointeeTy = ResType->getPointeeType();
10980 if (PointeeTy->isVoidType()) {
10981 diagnoseArithmeticOnVoidPointer(S, Loc, Operand);
10982 return !S.getLangOpts().CPlusPlus;
10983 }
10984 if (PointeeTy->isFunctionType()) {
10985 diagnoseArithmeticOnFunctionPointer(S, Loc, Operand);
10986 return !S.getLangOpts().CPlusPlus;
10987 }
10988
10989 if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false;
10990
10991 return true;
10992 }
10993
10994 /// Check the validity of a binary arithmetic operation w.r.t. pointer
10995 /// operands.
10996 ///
10997 /// This routine will diagnose any invalid arithmetic on pointer operands much
10998 /// like \see checkArithmeticOpPointerOperand. However, it has special logic
10999 /// for emitting a single diagnostic even for operations where both LHS and RHS
11000 /// are (potentially problematic) pointers.
11001 ///
11002 /// \returns True when the operand is valid to use (even if as an extension).
checkArithmeticBinOpPointerOperands(Sema & S,SourceLocation Loc,Expr * LHSExpr,Expr * RHSExpr)11003 static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc,
11004 Expr *LHSExpr, Expr *RHSExpr) {
11005 bool isLHSPointer = LHSExpr->getType()->isAnyPointerType();
11006 bool isRHSPointer = RHSExpr->getType()->isAnyPointerType();
11007 if (!isLHSPointer && !isRHSPointer) return true;
11008
11009 QualType LHSPointeeTy, RHSPointeeTy;
11010 if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType();
11011 if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType();
11012
11013 // if both are pointers check if operation is valid wrt address spaces
11014 if (isLHSPointer && isRHSPointer) {
11015 if (!LHSPointeeTy.isAddressSpaceOverlapping(RHSPointeeTy)) {
11016 S.Diag(Loc,
11017 diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
11018 << LHSExpr->getType() << RHSExpr->getType() << 1 /*arithmetic op*/
11019 << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
11020 return false;
11021 }
11022 }
11023
11024 // Check for arithmetic on pointers to incomplete types.
11025 bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType();
11026 bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType();
11027 if (isLHSVoidPtr || isRHSVoidPtr) {
11028 if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHSExpr);
11029 else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHSExpr);
11030 else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr);
11031
11032 return !S.getLangOpts().CPlusPlus;
11033 }
11034
11035 bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType();
11036 bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType();
11037 if (isLHSFuncPtr || isRHSFuncPtr) {
11038 if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHSExpr);
11039 else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc,
11040 RHSExpr);
11041 else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHSExpr, RHSExpr);
11042
11043 return !S.getLangOpts().CPlusPlus;
11044 }
11045
11046 if (isLHSPointer && checkArithmeticIncompletePointerType(S, Loc, LHSExpr))
11047 return false;
11048 if (isRHSPointer && checkArithmeticIncompletePointerType(S, Loc, RHSExpr))
11049 return false;
11050
11051 return true;
11052 }
11053
11054 /// diagnoseStringPlusInt - Emit a warning when adding an integer to a string
11055 /// literal.
diagnoseStringPlusInt(Sema & Self,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)11056 static void diagnoseStringPlusInt(Sema &Self, SourceLocation OpLoc,
11057 Expr *LHSExpr, Expr *RHSExpr) {
11058 StringLiteral* StrExpr = dyn_cast<StringLiteral>(LHSExpr->IgnoreImpCasts());
11059 Expr* IndexExpr = RHSExpr;
11060 if (!StrExpr) {
11061 StrExpr = dyn_cast<StringLiteral>(RHSExpr->IgnoreImpCasts());
11062 IndexExpr = LHSExpr;
11063 }
11064
11065 bool IsStringPlusInt = StrExpr &&
11066 IndexExpr->getType()->isIntegralOrUnscopedEnumerationType();
11067 if (!IsStringPlusInt || IndexExpr->isValueDependent())
11068 return;
11069
11070 SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
11071 Self.Diag(OpLoc, diag::warn_string_plus_int)
11072 << DiagRange << IndexExpr->IgnoreImpCasts()->getType();
11073
11074 // Only print a fixit for "str" + int, not for int + "str".
11075 if (IndexExpr == RHSExpr) {
11076 SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getEndLoc());
11077 Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
11078 << FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&")
11079 << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
11080 << FixItHint::CreateInsertion(EndLoc, "]");
11081 } else
11082 Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
11083 }
11084
11085 /// Emit a warning when adding a char literal to a string.
diagnoseStringPlusChar(Sema & Self,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)11086 static void diagnoseStringPlusChar(Sema &Self, SourceLocation OpLoc,
11087 Expr *LHSExpr, Expr *RHSExpr) {
11088 const Expr *StringRefExpr = LHSExpr;
11089 const CharacterLiteral *CharExpr =
11090 dyn_cast<CharacterLiteral>(RHSExpr->IgnoreImpCasts());
11091
11092 if (!CharExpr) {
11093 CharExpr = dyn_cast<CharacterLiteral>(LHSExpr->IgnoreImpCasts());
11094 StringRefExpr = RHSExpr;
11095 }
11096
11097 if (!CharExpr || !StringRefExpr)
11098 return;
11099
11100 const QualType StringType = StringRefExpr->getType();
11101
11102 // Return if not a PointerType.
11103 if (!StringType->isAnyPointerType())
11104 return;
11105
11106 // Return if not a CharacterType.
11107 if (!StringType->getPointeeType()->isAnyCharacterType())
11108 return;
11109
11110 ASTContext &Ctx = Self.getASTContext();
11111 SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
11112
11113 const QualType CharType = CharExpr->getType();
11114 if (!CharType->isAnyCharacterType() &&
11115 CharType->isIntegerType() &&
11116 llvm::isUIntN(Ctx.getCharWidth(), CharExpr->getValue())) {
11117 Self.Diag(OpLoc, diag::warn_string_plus_char)
11118 << DiagRange << Ctx.CharTy;
11119 } else {
11120 Self.Diag(OpLoc, diag::warn_string_plus_char)
11121 << DiagRange << CharExpr->getType();
11122 }
11123
11124 // Only print a fixit for str + char, not for char + str.
11125 if (isa<CharacterLiteral>(RHSExpr->IgnoreImpCasts())) {
11126 SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getEndLoc());
11127 Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
11128 << FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&")
11129 << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
11130 << FixItHint::CreateInsertion(EndLoc, "]");
11131 } else {
11132 Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
11133 }
11134 }
11135
11136 /// Emit error when two pointers are incompatible.
diagnosePointerIncompatibility(Sema & S,SourceLocation Loc,Expr * LHSExpr,Expr * RHSExpr)11137 static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc,
11138 Expr *LHSExpr, Expr *RHSExpr) {
11139 assert(LHSExpr->getType()->isAnyPointerType());
11140 assert(RHSExpr->getType()->isAnyPointerType());
11141 S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
11142 << LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange()
11143 << RHSExpr->getSourceRange();
11144 }
11145
11146 // C99 6.5.6
CheckAdditionOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,BinaryOperatorKind Opc,QualType * CompLHSTy)11147 QualType Sema::CheckAdditionOperands(ExprResult &LHS, ExprResult &RHS,
11148 SourceLocation Loc, BinaryOperatorKind Opc,
11149 QualType* CompLHSTy) {
11150 checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
11151
11152 if (LHS.get()->getType()->isVectorType() ||
11153 RHS.get()->getType()->isVectorType()) {
11154 QualType compType =
11155 CheckVectorOperands(LHS, RHS, Loc, CompLHSTy,
11156 /*AllowBothBool*/ getLangOpts().AltiVec,
11157 /*AllowBoolConversions*/ getLangOpts().ZVector,
11158 /*AllowBooleanOperation*/ false,
11159 /*ReportInvalid*/ true);
11160 if (CompLHSTy) *CompLHSTy = compType;
11161 return compType;
11162 }
11163
11164 if (LHS.get()->getType()->isVLSTBuiltinType() ||
11165 RHS.get()->getType()->isVLSTBuiltinType()) {
11166 QualType compType =
11167 CheckSizelessVectorOperands(LHS, RHS, Loc, CompLHSTy, ACK_Arithmetic);
11168 if (CompLHSTy)
11169 *CompLHSTy = compType;
11170 return compType;
11171 }
11172
11173 if (LHS.get()->getType()->isConstantMatrixType() ||
11174 RHS.get()->getType()->isConstantMatrixType()) {
11175 QualType compType =
11176 CheckMatrixElementwiseOperands(LHS, RHS, Loc, CompLHSTy);
11177 if (CompLHSTy)
11178 *CompLHSTy = compType;
11179 return compType;
11180 }
11181
11182 QualType compType = UsualArithmeticConversions(
11183 LHS, RHS, Loc, CompLHSTy ? ACK_CompAssign : ACK_Arithmetic);
11184 if (LHS.isInvalid() || RHS.isInvalid())
11185 return QualType();
11186
11187 // Diagnose "string literal" '+' int and string '+' "char literal".
11188 if (Opc == BO_Add) {
11189 diagnoseStringPlusInt(*this, Loc, LHS.get(), RHS.get());
11190 diagnoseStringPlusChar(*this, Loc, LHS.get(), RHS.get());
11191 }
11192
11193 // handle the common case first (both operands are arithmetic).
11194 if (!compType.isNull() && compType->isArithmeticType()) {
11195 if (CompLHSTy) *CompLHSTy = compType;
11196 return compType;
11197 }
11198
11199 // Type-checking. Ultimately the pointer's going to be in PExp;
11200 // note that we bias towards the LHS being the pointer.
11201 Expr *PExp = LHS.get(), *IExp = RHS.get();
11202
11203 bool isObjCPointer;
11204 if (PExp->getType()->isPointerType()) {
11205 isObjCPointer = false;
11206 } else if (PExp->getType()->isObjCObjectPointerType()) {
11207 isObjCPointer = true;
11208 } else {
11209 std::swap(PExp, IExp);
11210 if (PExp->getType()->isPointerType()) {
11211 isObjCPointer = false;
11212 } else if (PExp->getType()->isObjCObjectPointerType()) {
11213 isObjCPointer = true;
11214 } else {
11215 return InvalidOperands(Loc, LHS, RHS);
11216 }
11217 }
11218 assert(PExp->getType()->isAnyPointerType());
11219
11220 if (!IExp->getType()->isIntegerType())
11221 return InvalidOperands(Loc, LHS, RHS);
11222
11223 // Adding to a null pointer results in undefined behavior.
11224 if (PExp->IgnoreParenCasts()->isNullPointerConstant(
11225 Context, Expr::NPC_ValueDependentIsNotNull)) {
11226 // In C++ adding zero to a null pointer is defined.
11227 Expr::EvalResult KnownVal;
11228 if (!getLangOpts().CPlusPlus ||
11229 (!IExp->isValueDependent() &&
11230 (!IExp->EvaluateAsInt(KnownVal, Context) ||
11231 KnownVal.Val.getInt() != 0))) {
11232 // Check the conditions to see if this is the 'p = nullptr + n' idiom.
11233 bool IsGNUIdiom = BinaryOperator::isNullPointerArithmeticExtension(
11234 Context, BO_Add, PExp, IExp);
11235 diagnoseArithmeticOnNullPointer(*this, Loc, PExp, IsGNUIdiom);
11236 }
11237 }
11238
11239 if (!checkArithmeticOpPointerOperand(*this, Loc, PExp))
11240 return QualType();
11241
11242 if (isObjCPointer && checkArithmeticOnObjCPointer(*this, Loc, PExp))
11243 return QualType();
11244
11245 // Check array bounds for pointer arithemtic
11246 CheckArrayAccess(PExp, IExp);
11247
11248 if (CompLHSTy) {
11249 QualType LHSTy = Context.isPromotableBitField(LHS.get());
11250 if (LHSTy.isNull()) {
11251 LHSTy = LHS.get()->getType();
11252 if (LHSTy->isPromotableIntegerType())
11253 LHSTy = Context.getPromotedIntegerType(LHSTy);
11254 }
11255 *CompLHSTy = LHSTy;
11256 }
11257
11258 return PExp->getType();
11259 }
11260
11261 // C99 6.5.6
CheckSubtractionOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,QualType * CompLHSTy)11262 QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS,
11263 SourceLocation Loc,
11264 QualType* CompLHSTy) {
11265 checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
11266
11267 if (LHS.get()->getType()->isVectorType() ||
11268 RHS.get()->getType()->isVectorType()) {
11269 QualType compType =
11270 CheckVectorOperands(LHS, RHS, Loc, CompLHSTy,
11271 /*AllowBothBool*/ getLangOpts().AltiVec,
11272 /*AllowBoolConversions*/ getLangOpts().ZVector,
11273 /*AllowBooleanOperation*/ false,
11274 /*ReportInvalid*/ true);
11275 if (CompLHSTy) *CompLHSTy = compType;
11276 return compType;
11277 }
11278
11279 if (LHS.get()->getType()->isVLSTBuiltinType() ||
11280 RHS.get()->getType()->isVLSTBuiltinType()) {
11281 QualType compType =
11282 CheckSizelessVectorOperands(LHS, RHS, Loc, CompLHSTy, ACK_Arithmetic);
11283 if (CompLHSTy)
11284 *CompLHSTy = compType;
11285 return compType;
11286 }
11287
11288 if (LHS.get()->getType()->isConstantMatrixType() ||
11289 RHS.get()->getType()->isConstantMatrixType()) {
11290 QualType compType =
11291 CheckMatrixElementwiseOperands(LHS, RHS, Loc, CompLHSTy);
11292 if (CompLHSTy)
11293 *CompLHSTy = compType;
11294 return compType;
11295 }
11296
11297 QualType compType = UsualArithmeticConversions(
11298 LHS, RHS, Loc, CompLHSTy ? ACK_CompAssign : ACK_Arithmetic);
11299 if (LHS.isInvalid() || RHS.isInvalid())
11300 return QualType();
11301
11302 // Enforce type constraints: C99 6.5.6p3.
11303
11304 // Handle the common case first (both operands are arithmetic).
11305 if (!compType.isNull() && compType->isArithmeticType()) {
11306 if (CompLHSTy) *CompLHSTy = compType;
11307 return compType;
11308 }
11309
11310 // Either ptr - int or ptr - ptr.
11311 if (LHS.get()->getType()->isAnyPointerType()) {
11312 QualType lpointee = LHS.get()->getType()->getPointeeType();
11313
11314 // Diagnose bad cases where we step over interface counts.
11315 if (LHS.get()->getType()->isObjCObjectPointerType() &&
11316 checkArithmeticOnObjCPointer(*this, Loc, LHS.get()))
11317 return QualType();
11318
11319 // The result type of a pointer-int computation is the pointer type.
11320 if (RHS.get()->getType()->isIntegerType()) {
11321 // Subtracting from a null pointer should produce a warning.
11322 // The last argument to the diagnose call says this doesn't match the
11323 // GNU int-to-pointer idiom.
11324 if (LHS.get()->IgnoreParenCasts()->isNullPointerConstant(Context,
11325 Expr::NPC_ValueDependentIsNotNull)) {
11326 // In C++ adding zero to a null pointer is defined.
11327 Expr::EvalResult KnownVal;
11328 if (!getLangOpts().CPlusPlus ||
11329 (!RHS.get()->isValueDependent() &&
11330 (!RHS.get()->EvaluateAsInt(KnownVal, Context) ||
11331 KnownVal.Val.getInt() != 0))) {
11332 diagnoseArithmeticOnNullPointer(*this, Loc, LHS.get(), false);
11333 }
11334 }
11335
11336 if (!checkArithmeticOpPointerOperand(*this, Loc, LHS.get()))
11337 return QualType();
11338
11339 // Check array bounds for pointer arithemtic
11340 CheckArrayAccess(LHS.get(), RHS.get(), /*ArraySubscriptExpr*/nullptr,
11341 /*AllowOnePastEnd*/true, /*IndexNegated*/true);
11342
11343 if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
11344 return LHS.get()->getType();
11345 }
11346
11347 // Handle pointer-pointer subtractions.
11348 if (const PointerType *RHSPTy
11349 = RHS.get()->getType()->getAs<PointerType>()) {
11350 QualType rpointee = RHSPTy->getPointeeType();
11351
11352 if (getLangOpts().CPlusPlus) {
11353 // Pointee types must be the same: C++ [expr.add]
11354 if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
11355 diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
11356 }
11357 } else {
11358 // Pointee types must be compatible C99 6.5.6p3
11359 if (!Context.typesAreCompatible(
11360 Context.getCanonicalType(lpointee).getUnqualifiedType(),
11361 Context.getCanonicalType(rpointee).getUnqualifiedType())) {
11362 diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
11363 return QualType();
11364 }
11365 }
11366
11367 if (!checkArithmeticBinOpPointerOperands(*this, Loc,
11368 LHS.get(), RHS.get()))
11369 return QualType();
11370
11371 bool LHSIsNullPtr = LHS.get()->IgnoreParenCasts()->isNullPointerConstant(
11372 Context, Expr::NPC_ValueDependentIsNotNull);
11373 bool RHSIsNullPtr = RHS.get()->IgnoreParenCasts()->isNullPointerConstant(
11374 Context, Expr::NPC_ValueDependentIsNotNull);
11375
11376 // Subtracting nullptr or from nullptr is suspect
11377 if (LHSIsNullPtr)
11378 diagnoseSubtractionOnNullPointer(*this, Loc, LHS.get(), RHSIsNullPtr);
11379 if (RHSIsNullPtr)
11380 diagnoseSubtractionOnNullPointer(*this, Loc, RHS.get(), LHSIsNullPtr);
11381
11382 // The pointee type may have zero size. As an extension, a structure or
11383 // union may have zero size or an array may have zero length. In this
11384 // case subtraction does not make sense.
11385 if (!rpointee->isVoidType() && !rpointee->isFunctionType()) {
11386 CharUnits ElementSize = Context.getTypeSizeInChars(rpointee);
11387 if (ElementSize.isZero()) {
11388 Diag(Loc,diag::warn_sub_ptr_zero_size_types)
11389 << rpointee.getUnqualifiedType()
11390 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11391 }
11392 }
11393
11394 if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
11395 return Context.getPointerDiffType();
11396 }
11397 }
11398
11399 return InvalidOperands(Loc, LHS, RHS);
11400 }
11401
isScopedEnumerationType(QualType T)11402 static bool isScopedEnumerationType(QualType T) {
11403 if (const EnumType *ET = T->getAs<EnumType>())
11404 return ET->getDecl()->isScoped();
11405 return false;
11406 }
11407
DiagnoseBadShiftValues(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,BinaryOperatorKind Opc,QualType LHSType)11408 static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS,
11409 SourceLocation Loc, BinaryOperatorKind Opc,
11410 QualType LHSType) {
11411 // OpenCL 6.3j: shift values are effectively % word size of LHS (more defined),
11412 // so skip remaining warnings as we don't want to modify values within Sema.
11413 if (S.getLangOpts().OpenCL)
11414 return;
11415
11416 // Check right/shifter operand
11417 Expr::EvalResult RHSResult;
11418 if (RHS.get()->isValueDependent() ||
11419 !RHS.get()->EvaluateAsInt(RHSResult, S.Context))
11420 return;
11421 llvm::APSInt Right = RHSResult.Val.getInt();
11422
11423 if (Right.isNegative()) {
11424 S.DiagRuntimeBehavior(Loc, RHS.get(),
11425 S.PDiag(diag::warn_shift_negative)
11426 << RHS.get()->getSourceRange());
11427 return;
11428 }
11429
11430 QualType LHSExprType = LHS.get()->getType();
11431 uint64_t LeftSize = S.Context.getTypeSize(LHSExprType);
11432 if (LHSExprType->isBitIntType())
11433 LeftSize = S.Context.getIntWidth(LHSExprType);
11434 else if (LHSExprType->isFixedPointType()) {
11435 auto FXSema = S.Context.getFixedPointSemantics(LHSExprType);
11436 LeftSize = FXSema.getWidth() - (unsigned)FXSema.hasUnsignedPadding();
11437 }
11438 llvm::APInt LeftBits(Right.getBitWidth(), LeftSize);
11439 if (Right.uge(LeftBits)) {
11440 S.DiagRuntimeBehavior(Loc, RHS.get(),
11441 S.PDiag(diag::warn_shift_gt_typewidth)
11442 << RHS.get()->getSourceRange());
11443 return;
11444 }
11445
11446 // FIXME: We probably need to handle fixed point types specially here.
11447 if (Opc != BO_Shl || LHSExprType->isFixedPointType())
11448 return;
11449
11450 // When left shifting an ICE which is signed, we can check for overflow which
11451 // according to C++ standards prior to C++2a has undefined behavior
11452 // ([expr.shift] 5.8/2). Unsigned integers have defined behavior modulo one
11453 // more than the maximum value representable in the result type, so never
11454 // warn for those. (FIXME: Unsigned left-shift overflow in a constant
11455 // expression is still probably a bug.)
11456 Expr::EvalResult LHSResult;
11457 if (LHS.get()->isValueDependent() ||
11458 LHSType->hasUnsignedIntegerRepresentation() ||
11459 !LHS.get()->EvaluateAsInt(LHSResult, S.Context))
11460 return;
11461 llvm::APSInt Left = LHSResult.Val.getInt();
11462
11463 // Don't warn if signed overflow is defined, then all the rest of the
11464 // diagnostics will not be triggered because the behavior is defined.
11465 // Also don't warn in C++20 mode (and newer), as signed left shifts
11466 // always wrap and never overflow.
11467 if (S.getLangOpts().isSignedOverflowDefined() || S.getLangOpts().CPlusPlus20)
11468 return;
11469
11470 // If LHS does not have a non-negative value then, the
11471 // behavior is undefined before C++2a. Warn about it.
11472 if (Left.isNegative()) {
11473 S.DiagRuntimeBehavior(Loc, LHS.get(),
11474 S.PDiag(diag::warn_shift_lhs_negative)
11475 << LHS.get()->getSourceRange());
11476 return;
11477 }
11478
11479 llvm::APInt ResultBits =
11480 static_cast<llvm::APInt&>(Right) + Left.getMinSignedBits();
11481 if (LeftBits.uge(ResultBits))
11482 return;
11483 llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue());
11484 Result = Result.shl(Right);
11485
11486 // Print the bit representation of the signed integer as an unsigned
11487 // hexadecimal number.
11488 SmallString<40> HexResult;
11489 Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true);
11490
11491 // If we are only missing a sign bit, this is less likely to result in actual
11492 // bugs -- if the result is cast back to an unsigned type, it will have the
11493 // expected value. Thus we place this behind a different warning that can be
11494 // turned off separately if needed.
11495 if (LeftBits == ResultBits - 1) {
11496 S.Diag(Loc, diag::warn_shift_result_sets_sign_bit)
11497 << HexResult << LHSType
11498 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11499 return;
11500 }
11501
11502 S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
11503 << HexResult.str() << Result.getMinSignedBits() << LHSType
11504 << Left.getBitWidth() << LHS.get()->getSourceRange()
11505 << RHS.get()->getSourceRange();
11506 }
11507
11508 /// Return the resulting type when a vector is shifted
11509 /// by a scalar or vector shift amount.
checkVectorShift(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompAssign)11510 static QualType checkVectorShift(Sema &S, ExprResult &LHS, ExprResult &RHS,
11511 SourceLocation Loc, bool IsCompAssign) {
11512 // OpenCL v1.1 s6.3.j says RHS can be a vector only if LHS is a vector.
11513 if ((S.LangOpts.OpenCL || S.LangOpts.ZVector) &&
11514 !LHS.get()->getType()->isVectorType()) {
11515 S.Diag(Loc, diag::err_shift_rhs_only_vector)
11516 << RHS.get()->getType() << LHS.get()->getType()
11517 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11518 return QualType();
11519 }
11520
11521 if (!IsCompAssign) {
11522 LHS = S.UsualUnaryConversions(LHS.get());
11523 if (LHS.isInvalid()) return QualType();
11524 }
11525
11526 RHS = S.UsualUnaryConversions(RHS.get());
11527 if (RHS.isInvalid()) return QualType();
11528
11529 QualType LHSType = LHS.get()->getType();
11530 // Note that LHS might be a scalar because the routine calls not only in
11531 // OpenCL case.
11532 const VectorType *LHSVecTy = LHSType->getAs<VectorType>();
11533 QualType LHSEleType = LHSVecTy ? LHSVecTy->getElementType() : LHSType;
11534
11535 // Note that RHS might not be a vector.
11536 QualType RHSType = RHS.get()->getType();
11537 const VectorType *RHSVecTy = RHSType->getAs<VectorType>();
11538 QualType RHSEleType = RHSVecTy ? RHSVecTy->getElementType() : RHSType;
11539
11540 // Do not allow shifts for boolean vectors.
11541 if ((LHSVecTy && LHSVecTy->isExtVectorBoolType()) ||
11542 (RHSVecTy && RHSVecTy->isExtVectorBoolType())) {
11543 S.Diag(Loc, diag::err_typecheck_invalid_operands)
11544 << LHS.get()->getType() << RHS.get()->getType()
11545 << LHS.get()->getSourceRange();
11546 return QualType();
11547 }
11548
11549 // The operands need to be integers.
11550 if (!LHSEleType->isIntegerType()) {
11551 S.Diag(Loc, diag::err_typecheck_expect_int)
11552 << LHS.get()->getType() << LHS.get()->getSourceRange();
11553 return QualType();
11554 }
11555
11556 if (!RHSEleType->isIntegerType()) {
11557 S.Diag(Loc, diag::err_typecheck_expect_int)
11558 << RHS.get()->getType() << RHS.get()->getSourceRange();
11559 return QualType();
11560 }
11561
11562 if (!LHSVecTy) {
11563 assert(RHSVecTy);
11564 if (IsCompAssign)
11565 return RHSType;
11566 if (LHSEleType != RHSEleType) {
11567 LHS = S.ImpCastExprToType(LHS.get(),RHSEleType, CK_IntegralCast);
11568 LHSEleType = RHSEleType;
11569 }
11570 QualType VecTy =
11571 S.Context.getExtVectorType(LHSEleType, RHSVecTy->getNumElements());
11572 LHS = S.ImpCastExprToType(LHS.get(), VecTy, CK_VectorSplat);
11573 LHSType = VecTy;
11574 } else if (RHSVecTy) {
11575 // OpenCL v1.1 s6.3.j says that for vector types, the operators
11576 // are applied component-wise. So if RHS is a vector, then ensure
11577 // that the number of elements is the same as LHS...
11578 if (RHSVecTy->getNumElements() != LHSVecTy->getNumElements()) {
11579 S.Diag(Loc, diag::err_typecheck_vector_lengths_not_equal)
11580 << LHS.get()->getType() << RHS.get()->getType()
11581 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11582 return QualType();
11583 }
11584 if (!S.LangOpts.OpenCL && !S.LangOpts.ZVector) {
11585 const BuiltinType *LHSBT = LHSEleType->getAs<clang::BuiltinType>();
11586 const BuiltinType *RHSBT = RHSEleType->getAs<clang::BuiltinType>();
11587 if (LHSBT != RHSBT &&
11588 S.Context.getTypeSize(LHSBT) != S.Context.getTypeSize(RHSBT)) {
11589 S.Diag(Loc, diag::warn_typecheck_vector_element_sizes_not_equal)
11590 << LHS.get()->getType() << RHS.get()->getType()
11591 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11592 }
11593 }
11594 } else {
11595 // ...else expand RHS to match the number of elements in LHS.
11596 QualType VecTy =
11597 S.Context.getExtVectorType(RHSEleType, LHSVecTy->getNumElements());
11598 RHS = S.ImpCastExprToType(RHS.get(), VecTy, CK_VectorSplat);
11599 }
11600
11601 return LHSType;
11602 }
11603
checkSizelessVectorShift(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompAssign)11604 static QualType checkSizelessVectorShift(Sema &S, ExprResult &LHS,
11605 ExprResult &RHS, SourceLocation Loc,
11606 bool IsCompAssign) {
11607 if (!IsCompAssign) {
11608 LHS = S.UsualUnaryConversions(LHS.get());
11609 if (LHS.isInvalid())
11610 return QualType();
11611 }
11612
11613 RHS = S.UsualUnaryConversions(RHS.get());
11614 if (RHS.isInvalid())
11615 return QualType();
11616
11617 QualType LHSType = LHS.get()->getType();
11618 const BuiltinType *LHSBuiltinTy = LHSType->getAs<BuiltinType>();
11619 QualType LHSEleType = LHSType->isVLSTBuiltinType()
11620 ? LHSBuiltinTy->getSveEltType(S.getASTContext())
11621 : LHSType;
11622
11623 // Note that RHS might not be a vector
11624 QualType RHSType = RHS.get()->getType();
11625 const BuiltinType *RHSBuiltinTy = RHSType->getAs<BuiltinType>();
11626 QualType RHSEleType = RHSType->isVLSTBuiltinType()
11627 ? RHSBuiltinTy->getSveEltType(S.getASTContext())
11628 : RHSType;
11629
11630 if ((LHSBuiltinTy && LHSBuiltinTy->isSVEBool()) ||
11631 (RHSBuiltinTy && RHSBuiltinTy->isSVEBool())) {
11632 S.Diag(Loc, diag::err_typecheck_invalid_operands)
11633 << LHSType << RHSType << LHS.get()->getSourceRange();
11634 return QualType();
11635 }
11636
11637 if (!LHSEleType->isIntegerType()) {
11638 S.Diag(Loc, diag::err_typecheck_expect_int)
11639 << LHS.get()->getType() << LHS.get()->getSourceRange();
11640 return QualType();
11641 }
11642
11643 if (!RHSEleType->isIntegerType()) {
11644 S.Diag(Loc, diag::err_typecheck_expect_int)
11645 << RHS.get()->getType() << RHS.get()->getSourceRange();
11646 return QualType();
11647 }
11648
11649 if (LHSType->isVLSTBuiltinType() && RHSType->isVLSTBuiltinType() &&
11650 (S.Context.getBuiltinVectorTypeInfo(LHSBuiltinTy).EC !=
11651 S.Context.getBuiltinVectorTypeInfo(RHSBuiltinTy).EC)) {
11652 S.Diag(Loc, diag::err_typecheck_invalid_operands)
11653 << LHSType << RHSType << LHS.get()->getSourceRange()
11654 << RHS.get()->getSourceRange();
11655 return QualType();
11656 }
11657
11658 if (!LHSType->isVLSTBuiltinType()) {
11659 assert(RHSType->isVLSTBuiltinType());
11660 if (IsCompAssign)
11661 return RHSType;
11662 if (LHSEleType != RHSEleType) {
11663 LHS = S.ImpCastExprToType(LHS.get(), RHSEleType, clang::CK_IntegralCast);
11664 LHSEleType = RHSEleType;
11665 }
11666 const llvm::ElementCount VecSize =
11667 S.Context.getBuiltinVectorTypeInfo(RHSBuiltinTy).EC;
11668 QualType VecTy =
11669 S.Context.getScalableVectorType(LHSEleType, VecSize.getKnownMinValue());
11670 LHS = S.ImpCastExprToType(LHS.get(), VecTy, clang::CK_VectorSplat);
11671 LHSType = VecTy;
11672 } else if (RHSBuiltinTy && RHSBuiltinTy->isVLSTBuiltinType()) {
11673 if (S.Context.getTypeSize(RHSBuiltinTy) !=
11674 S.Context.getTypeSize(LHSBuiltinTy)) {
11675 S.Diag(Loc, diag::err_typecheck_vector_lengths_not_equal)
11676 << LHSType << RHSType << LHS.get()->getSourceRange()
11677 << RHS.get()->getSourceRange();
11678 return QualType();
11679 }
11680 } else {
11681 const llvm::ElementCount VecSize =
11682 S.Context.getBuiltinVectorTypeInfo(LHSBuiltinTy).EC;
11683 if (LHSEleType != RHSEleType) {
11684 RHS = S.ImpCastExprToType(RHS.get(), LHSEleType, clang::CK_IntegralCast);
11685 RHSEleType = LHSEleType;
11686 }
11687 QualType VecTy =
11688 S.Context.getScalableVectorType(RHSEleType, VecSize.getKnownMinValue());
11689 RHS = S.ImpCastExprToType(RHS.get(), VecTy, CK_VectorSplat);
11690 }
11691
11692 return LHSType;
11693 }
11694
11695 // C99 6.5.7
CheckShiftOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,BinaryOperatorKind Opc,bool IsCompAssign)11696 QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS,
11697 SourceLocation Loc, BinaryOperatorKind Opc,
11698 bool IsCompAssign) {
11699 checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
11700
11701 // Vector shifts promote their scalar inputs to vector type.
11702 if (LHS.get()->getType()->isVectorType() ||
11703 RHS.get()->getType()->isVectorType()) {
11704 if (LangOpts.ZVector) {
11705 // The shift operators for the z vector extensions work basically
11706 // like general shifts, except that neither the LHS nor the RHS is
11707 // allowed to be a "vector bool".
11708 if (auto LHSVecType = LHS.get()->getType()->getAs<VectorType>())
11709 if (LHSVecType->getVectorKind() == VectorType::AltiVecBool)
11710 return InvalidOperands(Loc, LHS, RHS);
11711 if (auto RHSVecType = RHS.get()->getType()->getAs<VectorType>())
11712 if (RHSVecType->getVectorKind() == VectorType::AltiVecBool)
11713 return InvalidOperands(Loc, LHS, RHS);
11714 }
11715 return checkVectorShift(*this, LHS, RHS, Loc, IsCompAssign);
11716 }
11717
11718 if (LHS.get()->getType()->isVLSTBuiltinType() ||
11719 RHS.get()->getType()->isVLSTBuiltinType())
11720 return checkSizelessVectorShift(*this, LHS, RHS, Loc, IsCompAssign);
11721
11722 // Shifts don't perform usual arithmetic conversions, they just do integer
11723 // promotions on each operand. C99 6.5.7p3
11724
11725 // For the LHS, do usual unary conversions, but then reset them away
11726 // if this is a compound assignment.
11727 ExprResult OldLHS = LHS;
11728 LHS = UsualUnaryConversions(LHS.get());
11729 if (LHS.isInvalid())
11730 return QualType();
11731 QualType LHSType = LHS.get()->getType();
11732 if (IsCompAssign) LHS = OldLHS;
11733
11734 // The RHS is simpler.
11735 RHS = UsualUnaryConversions(RHS.get());
11736 if (RHS.isInvalid())
11737 return QualType();
11738 QualType RHSType = RHS.get()->getType();
11739
11740 // C99 6.5.7p2: Each of the operands shall have integer type.
11741 // Embedded-C 4.1.6.2.2: The LHS may also be fixed-point.
11742 if ((!LHSType->isFixedPointOrIntegerType() &&
11743 !LHSType->hasIntegerRepresentation()) ||
11744 !RHSType->hasIntegerRepresentation())
11745 return InvalidOperands(Loc, LHS, RHS);
11746
11747 // C++0x: Don't allow scoped enums. FIXME: Use something better than
11748 // hasIntegerRepresentation() above instead of this.
11749 if (isScopedEnumerationType(LHSType) ||
11750 isScopedEnumerationType(RHSType)) {
11751 return InvalidOperands(Loc, LHS, RHS);
11752 }
11753 DiagnoseBadShiftValues(*this, LHS, RHS, Loc, Opc, LHSType);
11754
11755 // "The type of the result is that of the promoted left operand."
11756 return LHSType;
11757 }
11758
11759 /// Diagnose bad pointer comparisons.
diagnoseDistinctPointerComparison(Sema & S,SourceLocation Loc,ExprResult & LHS,ExprResult & RHS,bool IsError)11760 static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc,
11761 ExprResult &LHS, ExprResult &RHS,
11762 bool IsError) {
11763 S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_distinct_pointers
11764 : diag::ext_typecheck_comparison_of_distinct_pointers)
11765 << LHS.get()->getType() << RHS.get()->getType()
11766 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11767 }
11768
11769 /// Returns false if the pointers are converted to a composite type,
11770 /// true otherwise.
convertPointersToCompositeType(Sema & S,SourceLocation Loc,ExprResult & LHS,ExprResult & RHS)11771 static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc,
11772 ExprResult &LHS, ExprResult &RHS) {
11773 // C++ [expr.rel]p2:
11774 // [...] Pointer conversions (4.10) and qualification
11775 // conversions (4.4) are performed on pointer operands (or on
11776 // a pointer operand and a null pointer constant) to bring
11777 // them to their composite pointer type. [...]
11778 //
11779 // C++ [expr.eq]p1 uses the same notion for (in)equality
11780 // comparisons of pointers.
11781
11782 QualType LHSType = LHS.get()->getType();
11783 QualType RHSType = RHS.get()->getType();
11784 assert(LHSType->isPointerType() || RHSType->isPointerType() ||
11785 LHSType->isMemberPointerType() || RHSType->isMemberPointerType());
11786
11787 QualType T = S.FindCompositePointerType(Loc, LHS, RHS);
11788 if (T.isNull()) {
11789 if ((LHSType->isAnyPointerType() || LHSType->isMemberPointerType()) &&
11790 (RHSType->isAnyPointerType() || RHSType->isMemberPointerType()))
11791 diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/true);
11792 else
11793 S.InvalidOperands(Loc, LHS, RHS);
11794 return true;
11795 }
11796
11797 return false;
11798 }
11799
diagnoseFunctionPointerToVoidComparison(Sema & S,SourceLocation Loc,ExprResult & LHS,ExprResult & RHS,bool IsError)11800 static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc,
11801 ExprResult &LHS,
11802 ExprResult &RHS,
11803 bool IsError) {
11804 S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_fptr_to_void
11805 : diag::ext_typecheck_comparison_of_fptr_to_void)
11806 << LHS.get()->getType() << RHS.get()->getType()
11807 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11808 }
11809
isObjCObjectLiteral(ExprResult & E)11810 static bool isObjCObjectLiteral(ExprResult &E) {
11811 switch (E.get()->IgnoreParenImpCasts()->getStmtClass()) {
11812 case Stmt::ObjCArrayLiteralClass:
11813 case Stmt::ObjCDictionaryLiteralClass:
11814 case Stmt::ObjCStringLiteralClass:
11815 case Stmt::ObjCBoxedExprClass:
11816 return true;
11817 default:
11818 // Note that ObjCBoolLiteral is NOT an object literal!
11819 return false;
11820 }
11821 }
11822
hasIsEqualMethod(Sema & S,const Expr * LHS,const Expr * RHS)11823 static bool hasIsEqualMethod(Sema &S, const Expr *LHS, const Expr *RHS) {
11824 const ObjCObjectPointerType *Type =
11825 LHS->getType()->getAs<ObjCObjectPointerType>();
11826
11827 // If this is not actually an Objective-C object, bail out.
11828 if (!Type)
11829 return false;
11830
11831 // Get the LHS object's interface type.
11832 QualType InterfaceType = Type->getPointeeType();
11833
11834 // If the RHS isn't an Objective-C object, bail out.
11835 if (!RHS->getType()->isObjCObjectPointerType())
11836 return false;
11837
11838 // Try to find the -isEqual: method.
11839 Selector IsEqualSel = S.NSAPIObj->getIsEqualSelector();
11840 ObjCMethodDecl *Method = S.LookupMethodInObjectType(IsEqualSel,
11841 InterfaceType,
11842 /*IsInstance=*/true);
11843 if (!Method) {
11844 if (Type->isObjCIdType()) {
11845 // For 'id', just check the global pool.
11846 Method = S.LookupInstanceMethodInGlobalPool(IsEqualSel, SourceRange(),
11847 /*receiverId=*/true);
11848 } else {
11849 // Check protocols.
11850 Method = S.LookupMethodInQualifiedType(IsEqualSel, Type,
11851 /*IsInstance=*/true);
11852 }
11853 }
11854
11855 if (!Method)
11856 return false;
11857
11858 QualType T = Method->parameters()[0]->getType();
11859 if (!T->isObjCObjectPointerType())
11860 return false;
11861
11862 QualType R = Method->getReturnType();
11863 if (!R->isScalarType())
11864 return false;
11865
11866 return true;
11867 }
11868
CheckLiteralKind(Expr * FromE)11869 Sema::ObjCLiteralKind Sema::CheckLiteralKind(Expr *FromE) {
11870 FromE = FromE->IgnoreParenImpCasts();
11871 switch (FromE->getStmtClass()) {
11872 default:
11873 break;
11874 case Stmt::ObjCStringLiteralClass:
11875 // "string literal"
11876 return LK_String;
11877 case Stmt::ObjCArrayLiteralClass:
11878 // "array literal"
11879 return LK_Array;
11880 case Stmt::ObjCDictionaryLiteralClass:
11881 // "dictionary literal"
11882 return LK_Dictionary;
11883 case Stmt::BlockExprClass:
11884 return LK_Block;
11885 case Stmt::ObjCBoxedExprClass: {
11886 Expr *Inner = cast<ObjCBoxedExpr>(FromE)->getSubExpr()->IgnoreParens();
11887 switch (Inner->getStmtClass()) {
11888 case Stmt::IntegerLiteralClass:
11889 case Stmt::FloatingLiteralClass:
11890 case Stmt::CharacterLiteralClass:
11891 case Stmt::ObjCBoolLiteralExprClass:
11892 case Stmt::CXXBoolLiteralExprClass:
11893 // "numeric literal"
11894 return LK_Numeric;
11895 case Stmt::ImplicitCastExprClass: {
11896 CastKind CK = cast<CastExpr>(Inner)->getCastKind();
11897 // Boolean literals can be represented by implicit casts.
11898 if (CK == CK_IntegralToBoolean || CK == CK_IntegralCast)
11899 return LK_Numeric;
11900 break;
11901 }
11902 default:
11903 break;
11904 }
11905 return LK_Boxed;
11906 }
11907 }
11908 return LK_None;
11909 }
11910
diagnoseObjCLiteralComparison(Sema & S,SourceLocation Loc,ExprResult & LHS,ExprResult & RHS,BinaryOperator::Opcode Opc)11911 static void diagnoseObjCLiteralComparison(Sema &S, SourceLocation Loc,
11912 ExprResult &LHS, ExprResult &RHS,
11913 BinaryOperator::Opcode Opc){
11914 Expr *Literal;
11915 Expr *Other;
11916 if (isObjCObjectLiteral(LHS)) {
11917 Literal = LHS.get();
11918 Other = RHS.get();
11919 } else {
11920 Literal = RHS.get();
11921 Other = LHS.get();
11922 }
11923
11924 // Don't warn on comparisons against nil.
11925 Other = Other->IgnoreParenCasts();
11926 if (Other->isNullPointerConstant(S.getASTContext(),
11927 Expr::NPC_ValueDependentIsNotNull))
11928 return;
11929
11930 // This should be kept in sync with warn_objc_literal_comparison.
11931 // LK_String should always be after the other literals, since it has its own
11932 // warning flag.
11933 Sema::ObjCLiteralKind LiteralKind = S.CheckLiteralKind(Literal);
11934 assert(LiteralKind != Sema::LK_Block);
11935 if (LiteralKind == Sema::LK_None) {
11936 llvm_unreachable("Unknown Objective-C object literal kind");
11937 }
11938
11939 if (LiteralKind == Sema::LK_String)
11940 S.Diag(Loc, diag::warn_objc_string_literal_comparison)
11941 << Literal->getSourceRange();
11942 else
11943 S.Diag(Loc, diag::warn_objc_literal_comparison)
11944 << LiteralKind << Literal->getSourceRange();
11945
11946 if (BinaryOperator::isEqualityOp(Opc) &&
11947 hasIsEqualMethod(S, LHS.get(), RHS.get())) {
11948 SourceLocation Start = LHS.get()->getBeginLoc();
11949 SourceLocation End = S.getLocForEndOfToken(RHS.get()->getEndLoc());
11950 CharSourceRange OpRange =
11951 CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc));
11952
11953 S.Diag(Loc, diag::note_objc_literal_comparison_isequal)
11954 << FixItHint::CreateInsertion(Start, Opc == BO_EQ ? "[" : "![")
11955 << FixItHint::CreateReplacement(OpRange, " isEqual:")
11956 << FixItHint::CreateInsertion(End, "]");
11957 }
11958 }
11959
11960 /// Warns on !x < y, !x & y where !(x < y), !(x & y) was probably intended.
diagnoseLogicalNotOnLHSofCheck(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,BinaryOperatorKind Opc)11961 static void diagnoseLogicalNotOnLHSofCheck(Sema &S, ExprResult &LHS,
11962 ExprResult &RHS, SourceLocation Loc,
11963 BinaryOperatorKind Opc) {
11964 // Check that left hand side is !something.
11965 UnaryOperator *UO = dyn_cast<UnaryOperator>(LHS.get()->IgnoreImpCasts());
11966 if (!UO || UO->getOpcode() != UO_LNot) return;
11967
11968 // Only check if the right hand side is non-bool arithmetic type.
11969 if (RHS.get()->isKnownToHaveBooleanValue()) return;
11970
11971 // Make sure that the something in !something is not bool.
11972 Expr *SubExpr = UO->getSubExpr()->IgnoreImpCasts();
11973 if (SubExpr->isKnownToHaveBooleanValue()) return;
11974
11975 // Emit warning.
11976 bool IsBitwiseOp = Opc == BO_And || Opc == BO_Or || Opc == BO_Xor;
11977 S.Diag(UO->getOperatorLoc(), diag::warn_logical_not_on_lhs_of_check)
11978 << Loc << IsBitwiseOp;
11979
11980 // First note suggest !(x < y)
11981 SourceLocation FirstOpen = SubExpr->getBeginLoc();
11982 SourceLocation FirstClose = RHS.get()->getEndLoc();
11983 FirstClose = S.getLocForEndOfToken(FirstClose);
11984 if (FirstClose.isInvalid())
11985 FirstOpen = SourceLocation();
11986 S.Diag(UO->getOperatorLoc(), diag::note_logical_not_fix)
11987 << IsBitwiseOp
11988 << FixItHint::CreateInsertion(FirstOpen, "(")
11989 << FixItHint::CreateInsertion(FirstClose, ")");
11990
11991 // Second note suggests (!x) < y
11992 SourceLocation SecondOpen = LHS.get()->getBeginLoc();
11993 SourceLocation SecondClose = LHS.get()->getEndLoc();
11994 SecondClose = S.getLocForEndOfToken(SecondClose);
11995 if (SecondClose.isInvalid())
11996 SecondOpen = SourceLocation();
11997 S.Diag(UO->getOperatorLoc(), diag::note_logical_not_silence_with_parens)
11998 << FixItHint::CreateInsertion(SecondOpen, "(")
11999 << FixItHint::CreateInsertion(SecondClose, ")");
12000 }
12001
12002 // Returns true if E refers to a non-weak array.
checkForArray(const Expr * E)12003 static bool checkForArray(const Expr *E) {
12004 const ValueDecl *D = nullptr;
12005 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
12006 D = DR->getDecl();
12007 } else if (const MemberExpr *Mem = dyn_cast<MemberExpr>(E)) {
12008 if (Mem->isImplicitAccess())
12009 D = Mem->getMemberDecl();
12010 }
12011 if (!D)
12012 return false;
12013 return D->getType()->isArrayType() && !D->isWeak();
12014 }
12015
12016 /// Diagnose some forms of syntactically-obvious tautological comparison.
diagnoseTautologicalComparison(Sema & S,SourceLocation Loc,Expr * LHS,Expr * RHS,BinaryOperatorKind Opc)12017 static void diagnoseTautologicalComparison(Sema &S, SourceLocation Loc,
12018 Expr *LHS, Expr *RHS,
12019 BinaryOperatorKind Opc) {
12020 Expr *LHSStripped = LHS->IgnoreParenImpCasts();
12021 Expr *RHSStripped = RHS->IgnoreParenImpCasts();
12022
12023 QualType LHSType = LHS->getType();
12024 QualType RHSType = RHS->getType();
12025 if (LHSType->hasFloatingRepresentation() ||
12026 (LHSType->isBlockPointerType() && !BinaryOperator::isEqualityOp(Opc)) ||
12027 S.inTemplateInstantiation())
12028 return;
12029
12030 // Comparisons between two array types are ill-formed for operator<=>, so
12031 // we shouldn't emit any additional warnings about it.
12032 if (Opc == BO_Cmp && LHSType->isArrayType() && RHSType->isArrayType())
12033 return;
12034
12035 // For non-floating point types, check for self-comparisons of the form
12036 // x == x, x != x, x < x, etc. These always evaluate to a constant, and
12037 // often indicate logic errors in the program.
12038 //
12039 // NOTE: Don't warn about comparison expressions resulting from macro
12040 // expansion. Also don't warn about comparisons which are only self
12041 // comparisons within a template instantiation. The warnings should catch
12042 // obvious cases in the definition of the template anyways. The idea is to
12043 // warn when the typed comparison operator will always evaluate to the same
12044 // result.
12045
12046 // Used for indexing into %select in warn_comparison_always
12047 enum {
12048 AlwaysConstant,
12049 AlwaysTrue,
12050 AlwaysFalse,
12051 AlwaysEqual, // std::strong_ordering::equal from operator<=>
12052 };
12053
12054 // C++2a [depr.array.comp]:
12055 // Equality and relational comparisons ([expr.eq], [expr.rel]) between two
12056 // operands of array type are deprecated.
12057 if (S.getLangOpts().CPlusPlus20 && LHSStripped->getType()->isArrayType() &&
12058 RHSStripped->getType()->isArrayType()) {
12059 S.Diag(Loc, diag::warn_depr_array_comparison)
12060 << LHS->getSourceRange() << RHS->getSourceRange()
12061 << LHSStripped->getType() << RHSStripped->getType();
12062 // Carry on to produce the tautological comparison warning, if this
12063 // expression is potentially-evaluated, we can resolve the array to a
12064 // non-weak declaration, and so on.
12065 }
12066
12067 if (!LHS->getBeginLoc().isMacroID() && !RHS->getBeginLoc().isMacroID()) {
12068 if (Expr::isSameComparisonOperand(LHS, RHS)) {
12069 unsigned Result;
12070 switch (Opc) {
12071 case BO_EQ:
12072 case BO_LE:
12073 case BO_GE:
12074 Result = AlwaysTrue;
12075 break;
12076 case BO_NE:
12077 case BO_LT:
12078 case BO_GT:
12079 Result = AlwaysFalse;
12080 break;
12081 case BO_Cmp:
12082 Result = AlwaysEqual;
12083 break;
12084 default:
12085 Result = AlwaysConstant;
12086 break;
12087 }
12088 S.DiagRuntimeBehavior(Loc, nullptr,
12089 S.PDiag(diag::warn_comparison_always)
12090 << 0 /*self-comparison*/
12091 << Result);
12092 } else if (checkForArray(LHSStripped) && checkForArray(RHSStripped)) {
12093 // What is it always going to evaluate to?
12094 unsigned Result;
12095 switch (Opc) {
12096 case BO_EQ: // e.g. array1 == array2
12097 Result = AlwaysFalse;
12098 break;
12099 case BO_NE: // e.g. array1 != array2
12100 Result = AlwaysTrue;
12101 break;
12102 default: // e.g. array1 <= array2
12103 // The best we can say is 'a constant'
12104 Result = AlwaysConstant;
12105 break;
12106 }
12107 S.DiagRuntimeBehavior(Loc, nullptr,
12108 S.PDiag(diag::warn_comparison_always)
12109 << 1 /*array comparison*/
12110 << Result);
12111 }
12112 }
12113
12114 if (isa<CastExpr>(LHSStripped))
12115 LHSStripped = LHSStripped->IgnoreParenCasts();
12116 if (isa<CastExpr>(RHSStripped))
12117 RHSStripped = RHSStripped->IgnoreParenCasts();
12118
12119 // Warn about comparisons against a string constant (unless the other
12120 // operand is null); the user probably wants string comparison function.
12121 Expr *LiteralString = nullptr;
12122 Expr *LiteralStringStripped = nullptr;
12123 if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
12124 !RHSStripped->isNullPointerConstant(S.Context,
12125 Expr::NPC_ValueDependentIsNull)) {
12126 LiteralString = LHS;
12127 LiteralStringStripped = LHSStripped;
12128 } else if ((isa<StringLiteral>(RHSStripped) ||
12129 isa<ObjCEncodeExpr>(RHSStripped)) &&
12130 !LHSStripped->isNullPointerConstant(S.Context,
12131 Expr::NPC_ValueDependentIsNull)) {
12132 LiteralString = RHS;
12133 LiteralStringStripped = RHSStripped;
12134 }
12135
12136 if (LiteralString) {
12137 S.DiagRuntimeBehavior(Loc, nullptr,
12138 S.PDiag(diag::warn_stringcompare)
12139 << isa<ObjCEncodeExpr>(LiteralStringStripped)
12140 << LiteralString->getSourceRange());
12141 }
12142 }
12143
castKindToImplicitConversionKind(CastKind CK)12144 static ImplicitConversionKind castKindToImplicitConversionKind(CastKind CK) {
12145 switch (CK) {
12146 default: {
12147 #ifndef NDEBUG
12148 llvm::errs() << "unhandled cast kind: " << CastExpr::getCastKindName(CK)
12149 << "\n";
12150 #endif
12151 llvm_unreachable("unhandled cast kind");
12152 }
12153 case CK_UserDefinedConversion:
12154 return ICK_Identity;
12155 case CK_LValueToRValue:
12156 return ICK_Lvalue_To_Rvalue;
12157 case CK_ArrayToPointerDecay:
12158 return ICK_Array_To_Pointer;
12159 case CK_FunctionToPointerDecay:
12160 return ICK_Function_To_Pointer;
12161 case CK_IntegralCast:
12162 return ICK_Integral_Conversion;
12163 case CK_FloatingCast:
12164 return ICK_Floating_Conversion;
12165 case CK_IntegralToFloating:
12166 case CK_FloatingToIntegral:
12167 return ICK_Floating_Integral;
12168 case CK_IntegralComplexCast:
12169 case CK_FloatingComplexCast:
12170 case CK_FloatingComplexToIntegralComplex:
12171 case CK_IntegralComplexToFloatingComplex:
12172 return ICK_Complex_Conversion;
12173 case CK_FloatingComplexToReal:
12174 case CK_FloatingRealToComplex:
12175 case CK_IntegralComplexToReal:
12176 case CK_IntegralRealToComplex:
12177 return ICK_Complex_Real;
12178 }
12179 }
12180
checkThreeWayNarrowingConversion(Sema & S,QualType ToType,Expr * E,QualType FromType,SourceLocation Loc)12181 static bool checkThreeWayNarrowingConversion(Sema &S, QualType ToType, Expr *E,
12182 QualType FromType,
12183 SourceLocation Loc) {
12184 // Check for a narrowing implicit conversion.
12185 StandardConversionSequence SCS;
12186 SCS.setAsIdentityConversion();
12187 SCS.setToType(0, FromType);
12188 SCS.setToType(1, ToType);
12189 if (const auto *ICE = dyn_cast<ImplicitCastExpr>(E))
12190 SCS.Second = castKindToImplicitConversionKind(ICE->getCastKind());
12191
12192 APValue PreNarrowingValue;
12193 QualType PreNarrowingType;
12194 switch (SCS.getNarrowingKind(S.Context, E, PreNarrowingValue,
12195 PreNarrowingType,
12196 /*IgnoreFloatToIntegralConversion*/ true)) {
12197 case NK_Dependent_Narrowing:
12198 // Implicit conversion to a narrower type, but the expression is
12199 // value-dependent so we can't tell whether it's actually narrowing.
12200 case NK_Not_Narrowing:
12201 return false;
12202
12203 case NK_Constant_Narrowing:
12204 // Implicit conversion to a narrower type, and the value is not a constant
12205 // expression.
12206 S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing)
12207 << /*Constant*/ 1
12208 << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << ToType;
12209 return true;
12210
12211 case NK_Variable_Narrowing:
12212 // Implicit conversion to a narrower type, and the value is not a constant
12213 // expression.
12214 case NK_Type_Narrowing:
12215 S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing)
12216 << /*Constant*/ 0 << FromType << ToType;
12217 // TODO: It's not a constant expression, but what if the user intended it
12218 // to be? Can we produce notes to help them figure out why it isn't?
12219 return true;
12220 }
12221 llvm_unreachable("unhandled case in switch");
12222 }
12223
checkArithmeticOrEnumeralThreeWayCompare(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc)12224 static QualType checkArithmeticOrEnumeralThreeWayCompare(Sema &S,
12225 ExprResult &LHS,
12226 ExprResult &RHS,
12227 SourceLocation Loc) {
12228 QualType LHSType = LHS.get()->getType();
12229 QualType RHSType = RHS.get()->getType();
12230 // Dig out the original argument type and expression before implicit casts
12231 // were applied. These are the types/expressions we need to check the
12232 // [expr.spaceship] requirements against.
12233 ExprResult LHSStripped = LHS.get()->IgnoreParenImpCasts();
12234 ExprResult RHSStripped = RHS.get()->IgnoreParenImpCasts();
12235 QualType LHSStrippedType = LHSStripped.get()->getType();
12236 QualType RHSStrippedType = RHSStripped.get()->getType();
12237
12238 // C++2a [expr.spaceship]p3: If one of the operands is of type bool and the
12239 // other is not, the program is ill-formed.
12240 if (LHSStrippedType->isBooleanType() != RHSStrippedType->isBooleanType()) {
12241 S.InvalidOperands(Loc, LHSStripped, RHSStripped);
12242 return QualType();
12243 }
12244
12245 // FIXME: Consider combining this with checkEnumArithmeticConversions.
12246 int NumEnumArgs = (int)LHSStrippedType->isEnumeralType() +
12247 RHSStrippedType->isEnumeralType();
12248 if (NumEnumArgs == 1) {
12249 bool LHSIsEnum = LHSStrippedType->isEnumeralType();
12250 QualType OtherTy = LHSIsEnum ? RHSStrippedType : LHSStrippedType;
12251 if (OtherTy->hasFloatingRepresentation()) {
12252 S.InvalidOperands(Loc, LHSStripped, RHSStripped);
12253 return QualType();
12254 }
12255 }
12256 if (NumEnumArgs == 2) {
12257 // C++2a [expr.spaceship]p5: If both operands have the same enumeration
12258 // type E, the operator yields the result of converting the operands
12259 // to the underlying type of E and applying <=> to the converted operands.
12260 if (!S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType)) {
12261 S.InvalidOperands(Loc, LHS, RHS);
12262 return QualType();
12263 }
12264 QualType IntType =
12265 LHSStrippedType->castAs<EnumType>()->getDecl()->getIntegerType();
12266 assert(IntType->isArithmeticType());
12267
12268 // We can't use `CK_IntegralCast` when the underlying type is 'bool', so we
12269 // promote the boolean type, and all other promotable integer types, to
12270 // avoid this.
12271 if (IntType->isPromotableIntegerType())
12272 IntType = S.Context.getPromotedIntegerType(IntType);
12273
12274 LHS = S.ImpCastExprToType(LHS.get(), IntType, CK_IntegralCast);
12275 RHS = S.ImpCastExprToType(RHS.get(), IntType, CK_IntegralCast);
12276 LHSType = RHSType = IntType;
12277 }
12278
12279 // C++2a [expr.spaceship]p4: If both operands have arithmetic types, the
12280 // usual arithmetic conversions are applied to the operands.
12281 QualType Type =
12282 S.UsualArithmeticConversions(LHS, RHS, Loc, Sema::ACK_Comparison);
12283 if (LHS.isInvalid() || RHS.isInvalid())
12284 return QualType();
12285 if (Type.isNull())
12286 return S.InvalidOperands(Loc, LHS, RHS);
12287
12288 Optional<ComparisonCategoryType> CCT =
12289 getComparisonCategoryForBuiltinCmp(Type);
12290 if (!CCT)
12291 return S.InvalidOperands(Loc, LHS, RHS);
12292
12293 bool HasNarrowing = checkThreeWayNarrowingConversion(
12294 S, Type, LHS.get(), LHSType, LHS.get()->getBeginLoc());
12295 HasNarrowing |= checkThreeWayNarrowingConversion(S, Type, RHS.get(), RHSType,
12296 RHS.get()->getBeginLoc());
12297 if (HasNarrowing)
12298 return QualType();
12299
12300 assert(!Type.isNull() && "composite type for <=> has not been set");
12301
12302 return S.CheckComparisonCategoryType(
12303 *CCT, Loc, Sema::ComparisonCategoryUsage::OperatorInExpression);
12304 }
12305
checkArithmeticOrEnumeralCompare(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,BinaryOperatorKind Opc)12306 static QualType checkArithmeticOrEnumeralCompare(Sema &S, ExprResult &LHS,
12307 ExprResult &RHS,
12308 SourceLocation Loc,
12309 BinaryOperatorKind Opc) {
12310 if (Opc == BO_Cmp)
12311 return checkArithmeticOrEnumeralThreeWayCompare(S, LHS, RHS, Loc);
12312
12313 // C99 6.5.8p3 / C99 6.5.9p4
12314 QualType Type =
12315 S.UsualArithmeticConversions(LHS, RHS, Loc, Sema::ACK_Comparison);
12316 if (LHS.isInvalid() || RHS.isInvalid())
12317 return QualType();
12318 if (Type.isNull())
12319 return S.InvalidOperands(Loc, LHS, RHS);
12320 assert(Type->isArithmeticType() || Type->isEnumeralType());
12321
12322 if (Type->isAnyComplexType() && BinaryOperator::isRelationalOp(Opc))
12323 return S.InvalidOperands(Loc, LHS, RHS);
12324
12325 // Check for comparisons of floating point operands using != and ==.
12326 if (Type->hasFloatingRepresentation())
12327 S.CheckFloatComparison(Loc, LHS.get(), RHS.get(), Opc);
12328
12329 // The result of comparisons is 'bool' in C++, 'int' in C.
12330 return S.Context.getLogicalOperationType();
12331 }
12332
CheckPtrComparisonWithNullChar(ExprResult & E,ExprResult & NullE)12333 void Sema::CheckPtrComparisonWithNullChar(ExprResult &E, ExprResult &NullE) {
12334 if (!NullE.get()->getType()->isAnyPointerType())
12335 return;
12336 int NullValue = PP.isMacroDefined("NULL") ? 0 : 1;
12337 if (!E.get()->getType()->isAnyPointerType() &&
12338 E.get()->isNullPointerConstant(Context,
12339 Expr::NPC_ValueDependentIsNotNull) ==
12340 Expr::NPCK_ZeroExpression) {
12341 if (const auto *CL = dyn_cast<CharacterLiteral>(E.get())) {
12342 if (CL->getValue() == 0)
12343 Diag(E.get()->getExprLoc(), diag::warn_pointer_compare)
12344 << NullValue
12345 << FixItHint::CreateReplacement(E.get()->getExprLoc(),
12346 NullValue ? "NULL" : "(void *)0");
12347 } else if (const auto *CE = dyn_cast<CStyleCastExpr>(E.get())) {
12348 TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
12349 QualType T = Context.getCanonicalType(TI->getType()).getUnqualifiedType();
12350 if (T == Context.CharTy)
12351 Diag(E.get()->getExprLoc(), diag::warn_pointer_compare)
12352 << NullValue
12353 << FixItHint::CreateReplacement(E.get()->getExprLoc(),
12354 NullValue ? "NULL" : "(void *)0");
12355 }
12356 }
12357 }
12358
12359 // C99 6.5.8, C++ [expr.rel]
CheckCompareOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,BinaryOperatorKind Opc)12360 QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS,
12361 SourceLocation Loc,
12362 BinaryOperatorKind Opc) {
12363 bool IsRelational = BinaryOperator::isRelationalOp(Opc);
12364 bool IsThreeWay = Opc == BO_Cmp;
12365 bool IsOrdered = IsRelational || IsThreeWay;
12366 auto IsAnyPointerType = [](ExprResult E) {
12367 QualType Ty = E.get()->getType();
12368 return Ty->isPointerType() || Ty->isMemberPointerType();
12369 };
12370
12371 // C++2a [expr.spaceship]p6: If at least one of the operands is of pointer
12372 // type, array-to-pointer, ..., conversions are performed on both operands to
12373 // bring them to their composite type.
12374 // Otherwise, all comparisons expect an rvalue, so convert to rvalue before
12375 // any type-related checks.
12376 if (!IsThreeWay || IsAnyPointerType(LHS) || IsAnyPointerType(RHS)) {
12377 LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
12378 if (LHS.isInvalid())
12379 return QualType();
12380 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
12381 if (RHS.isInvalid())
12382 return QualType();
12383 } else {
12384 LHS = DefaultLvalueConversion(LHS.get());
12385 if (LHS.isInvalid())
12386 return QualType();
12387 RHS = DefaultLvalueConversion(RHS.get());
12388 if (RHS.isInvalid())
12389 return QualType();
12390 }
12391
12392 checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/true);
12393 if (!getLangOpts().CPlusPlus && BinaryOperator::isEqualityOp(Opc)) {
12394 CheckPtrComparisonWithNullChar(LHS, RHS);
12395 CheckPtrComparisonWithNullChar(RHS, LHS);
12396 }
12397
12398 // Handle vector comparisons separately.
12399 if (LHS.get()->getType()->isVectorType() ||
12400 RHS.get()->getType()->isVectorType())
12401 return CheckVectorCompareOperands(LHS, RHS, Loc, Opc);
12402
12403 if (LHS.get()->getType()->isVLSTBuiltinType() ||
12404 RHS.get()->getType()->isVLSTBuiltinType())
12405 return CheckSizelessVectorCompareOperands(LHS, RHS, Loc, Opc);
12406
12407 diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc);
12408 diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
12409
12410 QualType LHSType = LHS.get()->getType();
12411 QualType RHSType = RHS.get()->getType();
12412 if ((LHSType->isArithmeticType() || LHSType->isEnumeralType()) &&
12413 (RHSType->isArithmeticType() || RHSType->isEnumeralType()))
12414 return checkArithmeticOrEnumeralCompare(*this, LHS, RHS, Loc, Opc);
12415
12416 const Expr::NullPointerConstantKind LHSNullKind =
12417 LHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
12418 const Expr::NullPointerConstantKind RHSNullKind =
12419 RHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
12420 bool LHSIsNull = LHSNullKind != Expr::NPCK_NotNull;
12421 bool RHSIsNull = RHSNullKind != Expr::NPCK_NotNull;
12422
12423 auto computeResultTy = [&]() {
12424 if (Opc != BO_Cmp)
12425 return Context.getLogicalOperationType();
12426 assert(getLangOpts().CPlusPlus);
12427 assert(Context.hasSameType(LHS.get()->getType(), RHS.get()->getType()));
12428
12429 QualType CompositeTy = LHS.get()->getType();
12430 assert(!CompositeTy->isReferenceType());
12431
12432 Optional<ComparisonCategoryType> CCT =
12433 getComparisonCategoryForBuiltinCmp(CompositeTy);
12434 if (!CCT)
12435 return InvalidOperands(Loc, LHS, RHS);
12436
12437 if (CompositeTy->isPointerType() && LHSIsNull != RHSIsNull) {
12438 // P0946R0: Comparisons between a null pointer constant and an object
12439 // pointer result in std::strong_equality, which is ill-formed under
12440 // P1959R0.
12441 Diag(Loc, diag::err_typecheck_three_way_comparison_of_pointer_and_zero)
12442 << (LHSIsNull ? LHS.get()->getSourceRange()
12443 : RHS.get()->getSourceRange());
12444 return QualType();
12445 }
12446
12447 return CheckComparisonCategoryType(
12448 *CCT, Loc, ComparisonCategoryUsage::OperatorInExpression);
12449 };
12450
12451 if (!IsOrdered && LHSIsNull != RHSIsNull) {
12452 bool IsEquality = Opc == BO_EQ;
12453 if (RHSIsNull)
12454 DiagnoseAlwaysNonNullPointer(LHS.get(), RHSNullKind, IsEquality,
12455 RHS.get()->getSourceRange());
12456 else
12457 DiagnoseAlwaysNonNullPointer(RHS.get(), LHSNullKind, IsEquality,
12458 LHS.get()->getSourceRange());
12459 }
12460
12461 if (IsOrdered && LHSType->isFunctionPointerType() &&
12462 RHSType->isFunctionPointerType()) {
12463 // Valid unless a relational comparison of function pointers
12464 bool IsError = Opc == BO_Cmp;
12465 auto DiagID =
12466 IsError ? diag::err_typecheck_ordered_comparison_of_function_pointers
12467 : getLangOpts().CPlusPlus
12468 ? diag::warn_typecheck_ordered_comparison_of_function_pointers
12469 : diag::ext_typecheck_ordered_comparison_of_function_pointers;
12470 Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange()
12471 << RHS.get()->getSourceRange();
12472 if (IsError)
12473 return QualType();
12474 }
12475
12476 if ((LHSType->isIntegerType() && !LHSIsNull) ||
12477 (RHSType->isIntegerType() && !RHSIsNull)) {
12478 // Skip normal pointer conversion checks in this case; we have better
12479 // diagnostics for this below.
12480 } else if (getLangOpts().CPlusPlus) {
12481 // Equality comparison of a function pointer to a void pointer is invalid,
12482 // but we allow it as an extension.
12483 // FIXME: If we really want to allow this, should it be part of composite
12484 // pointer type computation so it works in conditionals too?
12485 if (!IsOrdered &&
12486 ((LHSType->isFunctionPointerType() && RHSType->isVoidPointerType()) ||
12487 (RHSType->isFunctionPointerType() && LHSType->isVoidPointerType()))) {
12488 // This is a gcc extension compatibility comparison.
12489 // In a SFINAE context, we treat this as a hard error to maintain
12490 // conformance with the C++ standard.
12491 diagnoseFunctionPointerToVoidComparison(
12492 *this, Loc, LHS, RHS, /*isError*/ (bool)isSFINAEContext());
12493
12494 if (isSFINAEContext())
12495 return QualType();
12496
12497 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
12498 return computeResultTy();
12499 }
12500
12501 // C++ [expr.eq]p2:
12502 // If at least one operand is a pointer [...] bring them to their
12503 // composite pointer type.
12504 // C++ [expr.spaceship]p6
12505 // If at least one of the operands is of pointer type, [...] bring them
12506 // to their composite pointer type.
12507 // C++ [expr.rel]p2:
12508 // If both operands are pointers, [...] bring them to their composite
12509 // pointer type.
12510 // For <=>, the only valid non-pointer types are arrays and functions, and
12511 // we already decayed those, so this is really the same as the relational
12512 // comparison rule.
12513 if ((int)LHSType->isPointerType() + (int)RHSType->isPointerType() >=
12514 (IsOrdered ? 2 : 1) &&
12515 (!LangOpts.ObjCAutoRefCount || !(LHSType->isObjCObjectPointerType() ||
12516 RHSType->isObjCObjectPointerType()))) {
12517 if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
12518 return QualType();
12519 return computeResultTy();
12520 }
12521 } else if (LHSType->isPointerType() &&
12522 RHSType->isPointerType()) { // C99 6.5.8p2
12523 // All of the following pointer-related warnings are GCC extensions, except
12524 // when handling null pointer constants.
12525 QualType LCanPointeeTy =
12526 LHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
12527 QualType RCanPointeeTy =
12528 RHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
12529
12530 // C99 6.5.9p2 and C99 6.5.8p2
12531 if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
12532 RCanPointeeTy.getUnqualifiedType())) {
12533 if (IsRelational) {
12534 // Pointers both need to point to complete or incomplete types
12535 if ((LCanPointeeTy->isIncompleteType() !=
12536 RCanPointeeTy->isIncompleteType()) &&
12537 !getLangOpts().C11) {
12538 Diag(Loc, diag::ext_typecheck_compare_complete_incomplete_pointers)
12539 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange()
12540 << LHSType << RHSType << LCanPointeeTy->isIncompleteType()
12541 << RCanPointeeTy->isIncompleteType();
12542 }
12543 }
12544 } else if (!IsRelational &&
12545 (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
12546 // Valid unless comparison between non-null pointer and function pointer
12547 if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
12548 && !LHSIsNull && !RHSIsNull)
12549 diagnoseFunctionPointerToVoidComparison(*this, Loc, LHS, RHS,
12550 /*isError*/false);
12551 } else {
12552 // Invalid
12553 diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false);
12554 }
12555 if (LCanPointeeTy != RCanPointeeTy) {
12556 // Treat NULL constant as a special case in OpenCL.
12557 if (getLangOpts().OpenCL && !LHSIsNull && !RHSIsNull) {
12558 if (!LCanPointeeTy.isAddressSpaceOverlapping(RCanPointeeTy)) {
12559 Diag(Loc,
12560 diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
12561 << LHSType << RHSType << 0 /* comparison */
12562 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
12563 }
12564 }
12565 LangAS AddrSpaceL = LCanPointeeTy.getAddressSpace();
12566 LangAS AddrSpaceR = RCanPointeeTy.getAddressSpace();
12567 CastKind Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion
12568 : CK_BitCast;
12569 if (LHSIsNull && !RHSIsNull)
12570 LHS = ImpCastExprToType(LHS.get(), RHSType, Kind);
12571 else
12572 RHS = ImpCastExprToType(RHS.get(), LHSType, Kind);
12573 }
12574 return computeResultTy();
12575 }
12576
12577 if (getLangOpts().CPlusPlus) {
12578 // C++ [expr.eq]p4:
12579 // Two operands of type std::nullptr_t or one operand of type
12580 // std::nullptr_t and the other a null pointer constant compare equal.
12581 if (!IsOrdered && LHSIsNull && RHSIsNull) {
12582 if (LHSType->isNullPtrType()) {
12583 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
12584 return computeResultTy();
12585 }
12586 if (RHSType->isNullPtrType()) {
12587 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
12588 return computeResultTy();
12589 }
12590 }
12591
12592 // Comparison of Objective-C pointers and block pointers against nullptr_t.
12593 // These aren't covered by the composite pointer type rules.
12594 if (!IsOrdered && RHSType->isNullPtrType() &&
12595 (LHSType->isObjCObjectPointerType() || LHSType->isBlockPointerType())) {
12596 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
12597 return computeResultTy();
12598 }
12599 if (!IsOrdered && LHSType->isNullPtrType() &&
12600 (RHSType->isObjCObjectPointerType() || RHSType->isBlockPointerType())) {
12601 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
12602 return computeResultTy();
12603 }
12604
12605 if (IsRelational &&
12606 ((LHSType->isNullPtrType() && RHSType->isPointerType()) ||
12607 (RHSType->isNullPtrType() && LHSType->isPointerType()))) {
12608 // HACK: Relational comparison of nullptr_t against a pointer type is
12609 // invalid per DR583, but we allow it within std::less<> and friends,
12610 // since otherwise common uses of it break.
12611 // FIXME: Consider removing this hack once LWG fixes std::less<> and
12612 // friends to have std::nullptr_t overload candidates.
12613 DeclContext *DC = CurContext;
12614 if (isa<FunctionDecl>(DC))
12615 DC = DC->getParent();
12616 if (auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
12617 if (CTSD->isInStdNamespace() &&
12618 llvm::StringSwitch<bool>(CTSD->getName())
12619 .Cases("less", "less_equal", "greater", "greater_equal", true)
12620 .Default(false)) {
12621 if (RHSType->isNullPtrType())
12622 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
12623 else
12624 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
12625 return computeResultTy();
12626 }
12627 }
12628 }
12629
12630 // C++ [expr.eq]p2:
12631 // If at least one operand is a pointer to member, [...] bring them to
12632 // their composite pointer type.
12633 if (!IsOrdered &&
12634 (LHSType->isMemberPointerType() || RHSType->isMemberPointerType())) {
12635 if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
12636 return QualType();
12637 else
12638 return computeResultTy();
12639 }
12640 }
12641
12642 // Handle block pointer types.
12643 if (!IsOrdered && LHSType->isBlockPointerType() &&
12644 RHSType->isBlockPointerType()) {
12645 QualType lpointee = LHSType->castAs<BlockPointerType>()->getPointeeType();
12646 QualType rpointee = RHSType->castAs<BlockPointerType>()->getPointeeType();
12647
12648 if (!LHSIsNull && !RHSIsNull &&
12649 !Context.typesAreCompatible(lpointee, rpointee)) {
12650 Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
12651 << LHSType << RHSType << LHS.get()->getSourceRange()
12652 << RHS.get()->getSourceRange();
12653 }
12654 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
12655 return computeResultTy();
12656 }
12657
12658 // Allow block pointers to be compared with null pointer constants.
12659 if (!IsOrdered
12660 && ((LHSType->isBlockPointerType() && RHSType->isPointerType())
12661 || (LHSType->isPointerType() && RHSType->isBlockPointerType()))) {
12662 if (!LHSIsNull && !RHSIsNull) {
12663 if (!((RHSType->isPointerType() && RHSType->castAs<PointerType>()
12664 ->getPointeeType()->isVoidType())
12665 || (LHSType->isPointerType() && LHSType->castAs<PointerType>()
12666 ->getPointeeType()->isVoidType())))
12667 Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
12668 << LHSType << RHSType << LHS.get()->getSourceRange()
12669 << RHS.get()->getSourceRange();
12670 }
12671 if (LHSIsNull && !RHSIsNull)
12672 LHS = ImpCastExprToType(LHS.get(), RHSType,
12673 RHSType->isPointerType() ? CK_BitCast
12674 : CK_AnyPointerToBlockPointerCast);
12675 else
12676 RHS = ImpCastExprToType(RHS.get(), LHSType,
12677 LHSType->isPointerType() ? CK_BitCast
12678 : CK_AnyPointerToBlockPointerCast);
12679 return computeResultTy();
12680 }
12681
12682 if (LHSType->isObjCObjectPointerType() ||
12683 RHSType->isObjCObjectPointerType()) {
12684 const PointerType *LPT = LHSType->getAs<PointerType>();
12685 const PointerType *RPT = RHSType->getAs<PointerType>();
12686 if (LPT || RPT) {
12687 bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
12688 bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
12689
12690 if (!LPtrToVoid && !RPtrToVoid &&
12691 !Context.typesAreCompatible(LHSType, RHSType)) {
12692 diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
12693 /*isError*/false);
12694 }
12695 // FIXME: If LPtrToVoid, we should presumably convert the LHS rather than
12696 // the RHS, but we have test coverage for this behavior.
12697 // FIXME: Consider using convertPointersToCompositeType in C++.
12698 if (LHSIsNull && !RHSIsNull) {
12699 Expr *E = LHS.get();
12700 if (getLangOpts().ObjCAutoRefCount)
12701 CheckObjCConversion(SourceRange(), RHSType, E,
12702 CCK_ImplicitConversion);
12703 LHS = ImpCastExprToType(E, RHSType,
12704 RPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
12705 }
12706 else {
12707 Expr *E = RHS.get();
12708 if (getLangOpts().ObjCAutoRefCount)
12709 CheckObjCConversion(SourceRange(), LHSType, E, CCK_ImplicitConversion,
12710 /*Diagnose=*/true,
12711 /*DiagnoseCFAudited=*/false, Opc);
12712 RHS = ImpCastExprToType(E, LHSType,
12713 LPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
12714 }
12715 return computeResultTy();
12716 }
12717 if (LHSType->isObjCObjectPointerType() &&
12718 RHSType->isObjCObjectPointerType()) {
12719 if (!Context.areComparableObjCPointerTypes(LHSType, RHSType))
12720 diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
12721 /*isError*/false);
12722 if (isObjCObjectLiteral(LHS) || isObjCObjectLiteral(RHS))
12723 diagnoseObjCLiteralComparison(*this, Loc, LHS, RHS, Opc);
12724
12725 if (LHSIsNull && !RHSIsNull)
12726 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
12727 else
12728 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
12729 return computeResultTy();
12730 }
12731
12732 if (!IsOrdered && LHSType->isBlockPointerType() &&
12733 RHSType->isBlockCompatibleObjCPointerType(Context)) {
12734 LHS = ImpCastExprToType(LHS.get(), RHSType,
12735 CK_BlockPointerToObjCPointerCast);
12736 return computeResultTy();
12737 } else if (!IsOrdered &&
12738 LHSType->isBlockCompatibleObjCPointerType(Context) &&
12739 RHSType->isBlockPointerType()) {
12740 RHS = ImpCastExprToType(RHS.get(), LHSType,
12741 CK_BlockPointerToObjCPointerCast);
12742 return computeResultTy();
12743 }
12744 }
12745 if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) ||
12746 (LHSType->isIntegerType() && RHSType->isAnyPointerType())) {
12747 unsigned DiagID = 0;
12748 bool isError = false;
12749 if (LangOpts.DebuggerSupport) {
12750 // Under a debugger, allow the comparison of pointers to integers,
12751 // since users tend to want to compare addresses.
12752 } else if ((LHSIsNull && LHSType->isIntegerType()) ||
12753 (RHSIsNull && RHSType->isIntegerType())) {
12754 if (IsOrdered) {
12755 isError = getLangOpts().CPlusPlus;
12756 DiagID =
12757 isError ? diag::err_typecheck_ordered_comparison_of_pointer_and_zero
12758 : diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
12759 }
12760 } else if (getLangOpts().CPlusPlus) {
12761 DiagID = diag::err_typecheck_comparison_of_pointer_integer;
12762 isError = true;
12763 } else if (IsOrdered)
12764 DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
12765 else
12766 DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
12767
12768 if (DiagID) {
12769 Diag(Loc, DiagID)
12770 << LHSType << RHSType << LHS.get()->getSourceRange()
12771 << RHS.get()->getSourceRange();
12772 if (isError)
12773 return QualType();
12774 }
12775
12776 if (LHSType->isIntegerType())
12777 LHS = ImpCastExprToType(LHS.get(), RHSType,
12778 LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
12779 else
12780 RHS = ImpCastExprToType(RHS.get(), LHSType,
12781 RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
12782 return computeResultTy();
12783 }
12784
12785 // Handle block pointers.
12786 if (!IsOrdered && RHSIsNull
12787 && LHSType->isBlockPointerType() && RHSType->isIntegerType()) {
12788 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
12789 return computeResultTy();
12790 }
12791 if (!IsOrdered && LHSIsNull
12792 && LHSType->isIntegerType() && RHSType->isBlockPointerType()) {
12793 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
12794 return computeResultTy();
12795 }
12796
12797 if (getLangOpts().getOpenCLCompatibleVersion() >= 200) {
12798 if (LHSType->isClkEventT() && RHSType->isClkEventT()) {
12799 return computeResultTy();
12800 }
12801
12802 if (LHSType->isQueueT() && RHSType->isQueueT()) {
12803 return computeResultTy();
12804 }
12805
12806 if (LHSIsNull && RHSType->isQueueT()) {
12807 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
12808 return computeResultTy();
12809 }
12810
12811 if (LHSType->isQueueT() && RHSIsNull) {
12812 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
12813 return computeResultTy();
12814 }
12815 }
12816
12817 return InvalidOperands(Loc, LHS, RHS);
12818 }
12819
12820 // Return a signed ext_vector_type that is of identical size and number of
12821 // elements. For floating point vectors, return an integer type of identical
12822 // size and number of elements. In the non ext_vector_type case, search from
12823 // the largest type to the smallest type to avoid cases where long long == long,
12824 // where long gets picked over long long.
GetSignedVectorType(QualType V)12825 QualType Sema::GetSignedVectorType(QualType V) {
12826 const VectorType *VTy = V->castAs<VectorType>();
12827 unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
12828
12829 if (isa<ExtVectorType>(VTy)) {
12830 if (VTy->isExtVectorBoolType())
12831 return Context.getExtVectorType(Context.BoolTy, VTy->getNumElements());
12832 if (TypeSize == Context.getTypeSize(Context.CharTy))
12833 return Context.getExtVectorType(Context.CharTy, VTy->getNumElements());
12834 if (TypeSize == Context.getTypeSize(Context.ShortTy))
12835 return Context.getExtVectorType(Context.ShortTy, VTy->getNumElements());
12836 if (TypeSize == Context.getTypeSize(Context.IntTy))
12837 return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
12838 if (TypeSize == Context.getTypeSize(Context.Int128Ty))
12839 return Context.getExtVectorType(Context.Int128Ty, VTy->getNumElements());
12840 if (TypeSize == Context.getTypeSize(Context.LongTy))
12841 return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
12842 assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
12843 "Unhandled vector element size in vector compare");
12844 return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
12845 }
12846
12847 if (TypeSize == Context.getTypeSize(Context.Int128Ty))
12848 return Context.getVectorType(Context.Int128Ty, VTy->getNumElements(),
12849 VectorType::GenericVector);
12850 if (TypeSize == Context.getTypeSize(Context.LongLongTy))
12851 return Context.getVectorType(Context.LongLongTy, VTy->getNumElements(),
12852 VectorType::GenericVector);
12853 if (TypeSize == Context.getTypeSize(Context.LongTy))
12854 return Context.getVectorType(Context.LongTy, VTy->getNumElements(),
12855 VectorType::GenericVector);
12856 if (TypeSize == Context.getTypeSize(Context.IntTy))
12857 return Context.getVectorType(Context.IntTy, VTy->getNumElements(),
12858 VectorType::GenericVector);
12859 if (TypeSize == Context.getTypeSize(Context.ShortTy))
12860 return Context.getVectorType(Context.ShortTy, VTy->getNumElements(),
12861 VectorType::GenericVector);
12862 assert(TypeSize == Context.getTypeSize(Context.CharTy) &&
12863 "Unhandled vector element size in vector compare");
12864 return Context.getVectorType(Context.CharTy, VTy->getNumElements(),
12865 VectorType::GenericVector);
12866 }
12867
GetSignedSizelessVectorType(QualType V)12868 QualType Sema::GetSignedSizelessVectorType(QualType V) {
12869 const BuiltinType *VTy = V->castAs<BuiltinType>();
12870 assert(VTy->isSizelessBuiltinType() && "expected sizeless type");
12871
12872 const QualType ETy = V->getSveEltType(Context);
12873 const auto TypeSize = Context.getTypeSize(ETy);
12874
12875 const QualType IntTy = Context.getIntTypeForBitwidth(TypeSize, true);
12876 const llvm::ElementCount VecSize = Context.getBuiltinVectorTypeInfo(VTy).EC;
12877 return Context.getScalableVectorType(IntTy, VecSize.getKnownMinValue());
12878 }
12879
12880 /// CheckVectorCompareOperands - vector comparisons are a clang extension that
12881 /// operates on extended vector types. Instead of producing an IntTy result,
12882 /// like a scalar comparison, a vector comparison produces a vector of integer
12883 /// types.
CheckVectorCompareOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,BinaryOperatorKind Opc)12884 QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
12885 SourceLocation Loc,
12886 BinaryOperatorKind Opc) {
12887 if (Opc == BO_Cmp) {
12888 Diag(Loc, diag::err_three_way_vector_comparison);
12889 return QualType();
12890 }
12891
12892 // Check to make sure we're operating on vectors of the same type and width,
12893 // Allowing one side to be a scalar of element type.
12894 QualType vType =
12895 CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/ false,
12896 /*AllowBothBool*/ true,
12897 /*AllowBoolConversions*/ getLangOpts().ZVector,
12898 /*AllowBooleanOperation*/ true,
12899 /*ReportInvalid*/ true);
12900 if (vType.isNull())
12901 return vType;
12902
12903 QualType LHSType = LHS.get()->getType();
12904
12905 // Determine the return type of a vector compare. By default clang will return
12906 // a scalar for all vector compares except vector bool and vector pixel.
12907 // With the gcc compiler we will always return a vector type and with the xl
12908 // compiler we will always return a scalar type. This switch allows choosing
12909 // which behavior is prefered.
12910 if (getLangOpts().AltiVec) {
12911 switch (getLangOpts().getAltivecSrcCompat()) {
12912 case LangOptions::AltivecSrcCompatKind::Mixed:
12913 // If AltiVec, the comparison results in a numeric type, i.e.
12914 // bool for C++, int for C
12915 if (vType->castAs<VectorType>()->getVectorKind() ==
12916 VectorType::AltiVecVector)
12917 return Context.getLogicalOperationType();
12918 else
12919 Diag(Loc, diag::warn_deprecated_altivec_src_compat);
12920 break;
12921 case LangOptions::AltivecSrcCompatKind::GCC:
12922 // For GCC we always return the vector type.
12923 break;
12924 case LangOptions::AltivecSrcCompatKind::XL:
12925 return Context.getLogicalOperationType();
12926 break;
12927 }
12928 }
12929
12930 // For non-floating point types, check for self-comparisons of the form
12931 // x == x, x != x, x < x, etc. These always evaluate to a constant, and
12932 // often indicate logic errors in the program.
12933 diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
12934
12935 // Check for comparisons of floating point operands using != and ==.
12936 if (LHSType->hasFloatingRepresentation()) {
12937 assert(RHS.get()->getType()->hasFloatingRepresentation());
12938 CheckFloatComparison(Loc, LHS.get(), RHS.get(), Opc);
12939 }
12940
12941 // Return a signed type for the vector.
12942 return GetSignedVectorType(vType);
12943 }
12944
CheckSizelessVectorCompareOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,BinaryOperatorKind Opc)12945 QualType Sema::CheckSizelessVectorCompareOperands(ExprResult &LHS,
12946 ExprResult &RHS,
12947 SourceLocation Loc,
12948 BinaryOperatorKind Opc) {
12949 if (Opc == BO_Cmp) {
12950 Diag(Loc, diag::err_three_way_vector_comparison);
12951 return QualType();
12952 }
12953
12954 // Check to make sure we're operating on vectors of the same type and width,
12955 // Allowing one side to be a scalar of element type.
12956 QualType vType = CheckSizelessVectorOperands(
12957 LHS, RHS, Loc, /*isCompAssign*/ false, ACK_Comparison);
12958
12959 if (vType.isNull())
12960 return vType;
12961
12962 QualType LHSType = LHS.get()->getType();
12963
12964 // For non-floating point types, check for self-comparisons of the form
12965 // x == x, x != x, x < x, etc. These always evaluate to a constant, and
12966 // often indicate logic errors in the program.
12967 diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
12968
12969 // Check for comparisons of floating point operands using != and ==.
12970 if (LHSType->hasFloatingRepresentation()) {
12971 assert(RHS.get()->getType()->hasFloatingRepresentation());
12972 CheckFloatComparison(Loc, LHS.get(), RHS.get(), Opc);
12973 }
12974
12975 const BuiltinType *LHSBuiltinTy = LHSType->getAs<BuiltinType>();
12976 const BuiltinType *RHSBuiltinTy = RHS.get()->getType()->getAs<BuiltinType>();
12977
12978 if (LHSBuiltinTy && RHSBuiltinTy && LHSBuiltinTy->isSVEBool() &&
12979 RHSBuiltinTy->isSVEBool())
12980 return LHSType;
12981
12982 // Return a signed type for the vector.
12983 return GetSignedSizelessVectorType(vType);
12984 }
12985
diagnoseXorMisusedAsPow(Sema & S,const ExprResult & XorLHS,const ExprResult & XorRHS,const SourceLocation Loc)12986 static void diagnoseXorMisusedAsPow(Sema &S, const ExprResult &XorLHS,
12987 const ExprResult &XorRHS,
12988 const SourceLocation Loc) {
12989 // Do not diagnose macros.
12990 if (Loc.isMacroID())
12991 return;
12992
12993 // Do not diagnose if both LHS and RHS are macros.
12994 if (XorLHS.get()->getExprLoc().isMacroID() &&
12995 XorRHS.get()->getExprLoc().isMacroID())
12996 return;
12997
12998 bool Negative = false;
12999 bool ExplicitPlus = false;
13000 const auto *LHSInt = dyn_cast<IntegerLiteral>(XorLHS.get());
13001 const auto *RHSInt = dyn_cast<IntegerLiteral>(XorRHS.get());
13002
13003 if (!LHSInt)
13004 return;
13005 if (!RHSInt) {
13006 // Check negative literals.
13007 if (const auto *UO = dyn_cast<UnaryOperator>(XorRHS.get())) {
13008 UnaryOperatorKind Opc = UO->getOpcode();
13009 if (Opc != UO_Minus && Opc != UO_Plus)
13010 return;
13011 RHSInt = dyn_cast<IntegerLiteral>(UO->getSubExpr());
13012 if (!RHSInt)
13013 return;
13014 Negative = (Opc == UO_Minus);
13015 ExplicitPlus = !Negative;
13016 } else {
13017 return;
13018 }
13019 }
13020
13021 const llvm::APInt &LeftSideValue = LHSInt->getValue();
13022 llvm::APInt RightSideValue = RHSInt->getValue();
13023 if (LeftSideValue != 2 && LeftSideValue != 10)
13024 return;
13025
13026 if (LeftSideValue.getBitWidth() != RightSideValue.getBitWidth())
13027 return;
13028
13029 CharSourceRange ExprRange = CharSourceRange::getCharRange(
13030 LHSInt->getBeginLoc(), S.getLocForEndOfToken(RHSInt->getLocation()));
13031 llvm::StringRef ExprStr =
13032 Lexer::getSourceText(ExprRange, S.getSourceManager(), S.getLangOpts());
13033
13034 CharSourceRange XorRange =
13035 CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc));
13036 llvm::StringRef XorStr =
13037 Lexer::getSourceText(XorRange, S.getSourceManager(), S.getLangOpts());
13038 // Do not diagnose if xor keyword/macro is used.
13039 if (XorStr == "xor")
13040 return;
13041
13042 std::string LHSStr = std::string(Lexer::getSourceText(
13043 CharSourceRange::getTokenRange(LHSInt->getSourceRange()),
13044 S.getSourceManager(), S.getLangOpts()));
13045 std::string RHSStr = std::string(Lexer::getSourceText(
13046 CharSourceRange::getTokenRange(RHSInt->getSourceRange()),
13047 S.getSourceManager(), S.getLangOpts()));
13048
13049 if (Negative) {
13050 RightSideValue = -RightSideValue;
13051 RHSStr = "-" + RHSStr;
13052 } else if (ExplicitPlus) {
13053 RHSStr = "+" + RHSStr;
13054 }
13055
13056 StringRef LHSStrRef = LHSStr;
13057 StringRef RHSStrRef = RHSStr;
13058 // Do not diagnose literals with digit separators, binary, hexadecimal, octal
13059 // literals.
13060 if (LHSStrRef.startswith("0b") || LHSStrRef.startswith("0B") ||
13061 RHSStrRef.startswith("0b") || RHSStrRef.startswith("0B") ||
13062 LHSStrRef.startswith("0x") || LHSStrRef.startswith("0X") ||
13063 RHSStrRef.startswith("0x") || RHSStrRef.startswith("0X") ||
13064 (LHSStrRef.size() > 1 && LHSStrRef.startswith("0")) ||
13065 (RHSStrRef.size() > 1 && RHSStrRef.startswith("0")) ||
13066 LHSStrRef.contains('\'') || RHSStrRef.contains('\''))
13067 return;
13068
13069 bool SuggestXor =
13070 S.getLangOpts().CPlusPlus || S.getPreprocessor().isMacroDefined("xor");
13071 const llvm::APInt XorValue = LeftSideValue ^ RightSideValue;
13072 int64_t RightSideIntValue = RightSideValue.getSExtValue();
13073 if (LeftSideValue == 2 && RightSideIntValue >= 0) {
13074 std::string SuggestedExpr = "1 << " + RHSStr;
13075 bool Overflow = false;
13076 llvm::APInt One = (LeftSideValue - 1);
13077 llvm::APInt PowValue = One.sshl_ov(RightSideValue, Overflow);
13078 if (Overflow) {
13079 if (RightSideIntValue < 64)
13080 S.Diag(Loc, diag::warn_xor_used_as_pow_base)
13081 << ExprStr << toString(XorValue, 10, true) << ("1LL << " + RHSStr)
13082 << FixItHint::CreateReplacement(ExprRange, "1LL << " + RHSStr);
13083 else if (RightSideIntValue == 64)
13084 S.Diag(Loc, diag::warn_xor_used_as_pow)
13085 << ExprStr << toString(XorValue, 10, true);
13086 else
13087 return;
13088 } else {
13089 S.Diag(Loc, diag::warn_xor_used_as_pow_base_extra)
13090 << ExprStr << toString(XorValue, 10, true) << SuggestedExpr
13091 << toString(PowValue, 10, true)
13092 << FixItHint::CreateReplacement(
13093 ExprRange, (RightSideIntValue == 0) ? "1" : SuggestedExpr);
13094 }
13095
13096 S.Diag(Loc, diag::note_xor_used_as_pow_silence)
13097 << ("0x2 ^ " + RHSStr) << SuggestXor;
13098 } else if (LeftSideValue == 10) {
13099 std::string SuggestedValue = "1e" + std::to_string(RightSideIntValue);
13100 S.Diag(Loc, diag::warn_xor_used_as_pow_base)
13101 << ExprStr << toString(XorValue, 10, true) << SuggestedValue
13102 << FixItHint::CreateReplacement(ExprRange, SuggestedValue);
13103 S.Diag(Loc, diag::note_xor_used_as_pow_silence)
13104 << ("0xA ^ " + RHSStr) << SuggestXor;
13105 }
13106 }
13107
CheckVectorLogicalOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc)13108 QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
13109 SourceLocation Loc) {
13110 // Ensure that either both operands are of the same vector type, or
13111 // one operand is of a vector type and the other is of its element type.
13112 QualType vType = CheckVectorOperands(LHS, RHS, Loc, false,
13113 /*AllowBothBool*/ true,
13114 /*AllowBoolConversions*/ false,
13115 /*AllowBooleanOperation*/ false,
13116 /*ReportInvalid*/ false);
13117 if (vType.isNull())
13118 return InvalidOperands(Loc, LHS, RHS);
13119 if (getLangOpts().OpenCL &&
13120 getLangOpts().getOpenCLCompatibleVersion() < 120 &&
13121 vType->hasFloatingRepresentation())
13122 return InvalidOperands(Loc, LHS, RHS);
13123 // FIXME: The check for C++ here is for GCC compatibility. GCC rejects the
13124 // usage of the logical operators && and || with vectors in C. This
13125 // check could be notionally dropped.
13126 if (!getLangOpts().CPlusPlus &&
13127 !(isa<ExtVectorType>(vType->getAs<VectorType>())))
13128 return InvalidLogicalVectorOperands(Loc, LHS, RHS);
13129
13130 return GetSignedVectorType(LHS.get()->getType());
13131 }
13132
CheckMatrixElementwiseOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompAssign)13133 QualType Sema::CheckMatrixElementwiseOperands(ExprResult &LHS, ExprResult &RHS,
13134 SourceLocation Loc,
13135 bool IsCompAssign) {
13136 if (!IsCompAssign) {
13137 LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
13138 if (LHS.isInvalid())
13139 return QualType();
13140 }
13141 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
13142 if (RHS.isInvalid())
13143 return QualType();
13144
13145 // For conversion purposes, we ignore any qualifiers.
13146 // For example, "const float" and "float" are equivalent.
13147 QualType LHSType = LHS.get()->getType().getUnqualifiedType();
13148 QualType RHSType = RHS.get()->getType().getUnqualifiedType();
13149
13150 const MatrixType *LHSMatType = LHSType->getAs<MatrixType>();
13151 const MatrixType *RHSMatType = RHSType->getAs<MatrixType>();
13152 assert((LHSMatType || RHSMatType) && "At least one operand must be a matrix");
13153
13154 if (Context.hasSameType(LHSType, RHSType))
13155 return LHSType;
13156
13157 // Type conversion may change LHS/RHS. Keep copies to the original results, in
13158 // case we have to return InvalidOperands.
13159 ExprResult OriginalLHS = LHS;
13160 ExprResult OriginalRHS = RHS;
13161 if (LHSMatType && !RHSMatType) {
13162 RHS = tryConvertExprToType(RHS.get(), LHSMatType->getElementType());
13163 if (!RHS.isInvalid())
13164 return LHSType;
13165
13166 return InvalidOperands(Loc, OriginalLHS, OriginalRHS);
13167 }
13168
13169 if (!LHSMatType && RHSMatType) {
13170 LHS = tryConvertExprToType(LHS.get(), RHSMatType->getElementType());
13171 if (!LHS.isInvalid())
13172 return RHSType;
13173 return InvalidOperands(Loc, OriginalLHS, OriginalRHS);
13174 }
13175
13176 return InvalidOperands(Loc, LHS, RHS);
13177 }
13178
CheckMatrixMultiplyOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompAssign)13179 QualType Sema::CheckMatrixMultiplyOperands(ExprResult &LHS, ExprResult &RHS,
13180 SourceLocation Loc,
13181 bool IsCompAssign) {
13182 if (!IsCompAssign) {
13183 LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
13184 if (LHS.isInvalid())
13185 return QualType();
13186 }
13187 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
13188 if (RHS.isInvalid())
13189 return QualType();
13190
13191 auto *LHSMatType = LHS.get()->getType()->getAs<ConstantMatrixType>();
13192 auto *RHSMatType = RHS.get()->getType()->getAs<ConstantMatrixType>();
13193 assert((LHSMatType || RHSMatType) && "At least one operand must be a matrix");
13194
13195 if (LHSMatType && RHSMatType) {
13196 if (LHSMatType->getNumColumns() != RHSMatType->getNumRows())
13197 return InvalidOperands(Loc, LHS, RHS);
13198
13199 if (!Context.hasSameType(LHSMatType->getElementType(),
13200 RHSMatType->getElementType()))
13201 return InvalidOperands(Loc, LHS, RHS);
13202
13203 return Context.getConstantMatrixType(LHSMatType->getElementType(),
13204 LHSMatType->getNumRows(),
13205 RHSMatType->getNumColumns());
13206 }
13207 return CheckMatrixElementwiseOperands(LHS, RHS, Loc, IsCompAssign);
13208 }
13209
isLegalBoolVectorBinaryOp(BinaryOperatorKind Opc)13210 static bool isLegalBoolVectorBinaryOp(BinaryOperatorKind Opc) {
13211 switch (Opc) {
13212 default:
13213 return false;
13214 case BO_And:
13215 case BO_AndAssign:
13216 case BO_Or:
13217 case BO_OrAssign:
13218 case BO_Xor:
13219 case BO_XorAssign:
13220 return true;
13221 }
13222 }
13223
CheckBitwiseOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,BinaryOperatorKind Opc)13224 inline QualType Sema::CheckBitwiseOperands(ExprResult &LHS, ExprResult &RHS,
13225 SourceLocation Loc,
13226 BinaryOperatorKind Opc) {
13227 checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
13228
13229 bool IsCompAssign =
13230 Opc == BO_AndAssign || Opc == BO_OrAssign || Opc == BO_XorAssign;
13231
13232 bool LegalBoolVecOperator = isLegalBoolVectorBinaryOp(Opc);
13233
13234 if (LHS.get()->getType()->isVectorType() ||
13235 RHS.get()->getType()->isVectorType()) {
13236 if (LHS.get()->getType()->hasIntegerRepresentation() &&
13237 RHS.get()->getType()->hasIntegerRepresentation())
13238 return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
13239 /*AllowBothBool*/ true,
13240 /*AllowBoolConversions*/ getLangOpts().ZVector,
13241 /*AllowBooleanOperation*/ LegalBoolVecOperator,
13242 /*ReportInvalid*/ true);
13243 return InvalidOperands(Loc, LHS, RHS);
13244 }
13245
13246 if (LHS.get()->getType()->isVLSTBuiltinType() ||
13247 RHS.get()->getType()->isVLSTBuiltinType()) {
13248 if (LHS.get()->getType()->hasIntegerRepresentation() &&
13249 RHS.get()->getType()->hasIntegerRepresentation())
13250 return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign,
13251 ACK_BitwiseOp);
13252 return InvalidOperands(Loc, LHS, RHS);
13253 }
13254
13255 if (LHS.get()->getType()->isVLSTBuiltinType() ||
13256 RHS.get()->getType()->isVLSTBuiltinType()) {
13257 if (LHS.get()->getType()->hasIntegerRepresentation() &&
13258 RHS.get()->getType()->hasIntegerRepresentation())
13259 return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign,
13260 ACK_BitwiseOp);
13261 return InvalidOperands(Loc, LHS, RHS);
13262 }
13263
13264 if (Opc == BO_And)
13265 diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc);
13266
13267 if (LHS.get()->getType()->hasFloatingRepresentation() ||
13268 RHS.get()->getType()->hasFloatingRepresentation())
13269 return InvalidOperands(Loc, LHS, RHS);
13270
13271 ExprResult LHSResult = LHS, RHSResult = RHS;
13272 QualType compType = UsualArithmeticConversions(
13273 LHSResult, RHSResult, Loc, IsCompAssign ? ACK_CompAssign : ACK_BitwiseOp);
13274 if (LHSResult.isInvalid() || RHSResult.isInvalid())
13275 return QualType();
13276 LHS = LHSResult.get();
13277 RHS = RHSResult.get();
13278
13279 if (Opc == BO_Xor)
13280 diagnoseXorMisusedAsPow(*this, LHS, RHS, Loc);
13281
13282 if (!compType.isNull() && compType->isIntegralOrUnscopedEnumerationType())
13283 return compType;
13284 return InvalidOperands(Loc, LHS, RHS);
13285 }
13286
13287 // C99 6.5.[13,14]
CheckLogicalOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,BinaryOperatorKind Opc)13288 inline QualType Sema::CheckLogicalOperands(ExprResult &LHS, ExprResult &RHS,
13289 SourceLocation Loc,
13290 BinaryOperatorKind Opc) {
13291 // Check vector operands differently.
13292 if (LHS.get()->getType()->isVectorType() ||
13293 RHS.get()->getType()->isVectorType())
13294 return CheckVectorLogicalOperands(LHS, RHS, Loc);
13295
13296 bool EnumConstantInBoolContext = false;
13297 for (const ExprResult &HS : {LHS, RHS}) {
13298 if (const auto *DREHS = dyn_cast<DeclRefExpr>(HS.get())) {
13299 const auto *ECDHS = dyn_cast<EnumConstantDecl>(DREHS->getDecl());
13300 if (ECDHS && ECDHS->getInitVal() != 0 && ECDHS->getInitVal() != 1)
13301 EnumConstantInBoolContext = true;
13302 }
13303 }
13304
13305 if (EnumConstantInBoolContext)
13306 Diag(Loc, diag::warn_enum_constant_in_bool_context);
13307
13308 // Diagnose cases where the user write a logical and/or but probably meant a
13309 // bitwise one. We do this when the LHS is a non-bool integer and the RHS
13310 // is a constant.
13311 if (!EnumConstantInBoolContext && LHS.get()->getType()->isIntegerType() &&
13312 !LHS.get()->getType()->isBooleanType() &&
13313 RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() &&
13314 // Don't warn in macros or template instantiations.
13315 !Loc.isMacroID() && !inTemplateInstantiation()) {
13316 // If the RHS can be constant folded, and if it constant folds to something
13317 // that isn't 0 or 1 (which indicate a potential logical operation that
13318 // happened to fold to true/false) then warn.
13319 // Parens on the RHS are ignored.
13320 Expr::EvalResult EVResult;
13321 if (RHS.get()->EvaluateAsInt(EVResult, Context)) {
13322 llvm::APSInt Result = EVResult.Val.getInt();
13323 if ((getLangOpts().Bool && !RHS.get()->getType()->isBooleanType() &&
13324 !RHS.get()->getExprLoc().isMacroID()) ||
13325 (Result != 0 && Result != 1)) {
13326 Diag(Loc, diag::warn_logical_instead_of_bitwise)
13327 << RHS.get()->getSourceRange() << (Opc == BO_LAnd ? "&&" : "||");
13328 // Suggest replacing the logical operator with the bitwise version
13329 Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator)
13330 << (Opc == BO_LAnd ? "&" : "|")
13331 << FixItHint::CreateReplacement(
13332 SourceRange(Loc, getLocForEndOfToken(Loc)),
13333 Opc == BO_LAnd ? "&" : "|");
13334 if (Opc == BO_LAnd)
13335 // Suggest replacing "Foo() && kNonZero" with "Foo()"
13336 Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant)
13337 << FixItHint::CreateRemoval(
13338 SourceRange(getLocForEndOfToken(LHS.get()->getEndLoc()),
13339 RHS.get()->getEndLoc()));
13340 }
13341 }
13342 }
13343
13344 if (!Context.getLangOpts().CPlusPlus) {
13345 // OpenCL v1.1 s6.3.g: The logical operators and (&&), or (||) do
13346 // not operate on the built-in scalar and vector float types.
13347 if (Context.getLangOpts().OpenCL &&
13348 Context.getLangOpts().OpenCLVersion < 120) {
13349 if (LHS.get()->getType()->isFloatingType() ||
13350 RHS.get()->getType()->isFloatingType())
13351 return InvalidOperands(Loc, LHS, RHS);
13352 }
13353
13354 LHS = UsualUnaryConversions(LHS.get());
13355 if (LHS.isInvalid())
13356 return QualType();
13357
13358 RHS = UsualUnaryConversions(RHS.get());
13359 if (RHS.isInvalid())
13360 return QualType();
13361
13362 if (!LHS.get()->getType()->isScalarType() ||
13363 !RHS.get()->getType()->isScalarType())
13364 return InvalidOperands(Loc, LHS, RHS);
13365
13366 return Context.IntTy;
13367 }
13368
13369 // The following is safe because we only use this method for
13370 // non-overloadable operands.
13371
13372 // C++ [expr.log.and]p1
13373 // C++ [expr.log.or]p1
13374 // The operands are both contextually converted to type bool.
13375 ExprResult LHSRes = PerformContextuallyConvertToBool(LHS.get());
13376 if (LHSRes.isInvalid())
13377 return InvalidOperands(Loc, LHS, RHS);
13378 LHS = LHSRes;
13379
13380 ExprResult RHSRes = PerformContextuallyConvertToBool(RHS.get());
13381 if (RHSRes.isInvalid())
13382 return InvalidOperands(Loc, LHS, RHS);
13383 RHS = RHSRes;
13384
13385 // C++ [expr.log.and]p2
13386 // C++ [expr.log.or]p2
13387 // The result is a bool.
13388 return Context.BoolTy;
13389 }
13390
IsReadonlyMessage(Expr * E,Sema & S)13391 static bool IsReadonlyMessage(Expr *E, Sema &S) {
13392 const MemberExpr *ME = dyn_cast<MemberExpr>(E);
13393 if (!ME) return false;
13394 if (!isa<FieldDecl>(ME->getMemberDecl())) return false;
13395 ObjCMessageExpr *Base = dyn_cast<ObjCMessageExpr>(
13396 ME->getBase()->IgnoreImplicit()->IgnoreParenImpCasts());
13397 if (!Base) return false;
13398 return Base->getMethodDecl() != nullptr;
13399 }
13400
13401 /// Is the given expression (which must be 'const') a reference to a
13402 /// variable which was originally non-const, but which has become
13403 /// 'const' due to being captured within a block?
13404 enum NonConstCaptureKind { NCCK_None, NCCK_Block, NCCK_Lambda };
isReferenceToNonConstCapture(Sema & S,Expr * E)13405 static NonConstCaptureKind isReferenceToNonConstCapture(Sema &S, Expr *E) {
13406 assert(E->isLValue() && E->getType().isConstQualified());
13407 E = E->IgnoreParens();
13408
13409 // Must be a reference to a declaration from an enclosing scope.
13410 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
13411 if (!DRE) return NCCK_None;
13412 if (!DRE->refersToEnclosingVariableOrCapture()) return NCCK_None;
13413
13414 // The declaration must be a variable which is not declared 'const'.
13415 VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
13416 if (!var) return NCCK_None;
13417 if (var->getType().isConstQualified()) return NCCK_None;
13418 assert(var->hasLocalStorage() && "capture added 'const' to non-local?");
13419
13420 // Decide whether the first capture was for a block or a lambda.
13421 DeclContext *DC = S.CurContext, *Prev = nullptr;
13422 // Decide whether the first capture was for a block or a lambda.
13423 while (DC) {
13424 // For init-capture, it is possible that the variable belongs to the
13425 // template pattern of the current context.
13426 if (auto *FD = dyn_cast<FunctionDecl>(DC))
13427 if (var->isInitCapture() &&
13428 FD->getTemplateInstantiationPattern() == var->getDeclContext())
13429 break;
13430 if (DC == var->getDeclContext())
13431 break;
13432 Prev = DC;
13433 DC = DC->getParent();
13434 }
13435 // Unless we have an init-capture, we've gone one step too far.
13436 if (!var->isInitCapture())
13437 DC = Prev;
13438 return (isa<BlockDecl>(DC) ? NCCK_Block : NCCK_Lambda);
13439 }
13440
IsTypeModifiable(QualType Ty,bool IsDereference)13441 static bool IsTypeModifiable(QualType Ty, bool IsDereference) {
13442 Ty = Ty.getNonReferenceType();
13443 if (IsDereference && Ty->isPointerType())
13444 Ty = Ty->getPointeeType();
13445 return !Ty.isConstQualified();
13446 }
13447
13448 // Update err_typecheck_assign_const and note_typecheck_assign_const
13449 // when this enum is changed.
13450 enum {
13451 ConstFunction,
13452 ConstVariable,
13453 ConstMember,
13454 ConstMethod,
13455 NestedConstMember,
13456 ConstUnknown, // Keep as last element
13457 };
13458
13459 /// Emit the "read-only variable not assignable" error and print notes to give
13460 /// more information about why the variable is not assignable, such as pointing
13461 /// to the declaration of a const variable, showing that a method is const, or
13462 /// that the function is returning a const reference.
DiagnoseConstAssignment(Sema & S,const Expr * E,SourceLocation Loc)13463 static void DiagnoseConstAssignment(Sema &S, const Expr *E,
13464 SourceLocation Loc) {
13465 SourceRange ExprRange = E->getSourceRange();
13466
13467 // Only emit one error on the first const found. All other consts will emit
13468 // a note to the error.
13469 bool DiagnosticEmitted = false;
13470
13471 // Track if the current expression is the result of a dereference, and if the
13472 // next checked expression is the result of a dereference.
13473 bool IsDereference = false;
13474 bool NextIsDereference = false;
13475
13476 // Loop to process MemberExpr chains.
13477 while (true) {
13478 IsDereference = NextIsDereference;
13479
13480 E = E->IgnoreImplicit()->IgnoreParenImpCasts();
13481 if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
13482 NextIsDereference = ME->isArrow();
13483 const ValueDecl *VD = ME->getMemberDecl();
13484 if (const FieldDecl *Field = dyn_cast<FieldDecl>(VD)) {
13485 // Mutable fields can be modified even if the class is const.
13486 if (Field->isMutable()) {
13487 assert(DiagnosticEmitted && "Expected diagnostic not emitted.");
13488 break;
13489 }
13490
13491 if (!IsTypeModifiable(Field->getType(), IsDereference)) {
13492 if (!DiagnosticEmitted) {
13493 S.Diag(Loc, diag::err_typecheck_assign_const)
13494 << ExprRange << ConstMember << false /*static*/ << Field
13495 << Field->getType();
13496 DiagnosticEmitted = true;
13497 }
13498 S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
13499 << ConstMember << false /*static*/ << Field << Field->getType()
13500 << Field->getSourceRange();
13501 }
13502 E = ME->getBase();
13503 continue;
13504 } else if (const VarDecl *VDecl = dyn_cast<VarDecl>(VD)) {
13505 if (VDecl->getType().isConstQualified()) {
13506 if (!DiagnosticEmitted) {
13507 S.Diag(Loc, diag::err_typecheck_assign_const)
13508 << ExprRange << ConstMember << true /*static*/ << VDecl
13509 << VDecl->getType();
13510 DiagnosticEmitted = true;
13511 }
13512 S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
13513 << ConstMember << true /*static*/ << VDecl << VDecl->getType()
13514 << VDecl->getSourceRange();
13515 }
13516 // Static fields do not inherit constness from parents.
13517 break;
13518 }
13519 break; // End MemberExpr
13520 } else if (const ArraySubscriptExpr *ASE =
13521 dyn_cast<ArraySubscriptExpr>(E)) {
13522 E = ASE->getBase()->IgnoreParenImpCasts();
13523 continue;
13524 } else if (const ExtVectorElementExpr *EVE =
13525 dyn_cast<ExtVectorElementExpr>(E)) {
13526 E = EVE->getBase()->IgnoreParenImpCasts();
13527 continue;
13528 }
13529 break;
13530 }
13531
13532 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
13533 // Function calls
13534 const FunctionDecl *FD = CE->getDirectCallee();
13535 if (FD && !IsTypeModifiable(FD->getReturnType(), IsDereference)) {
13536 if (!DiagnosticEmitted) {
13537 S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
13538 << ConstFunction << FD;
13539 DiagnosticEmitted = true;
13540 }
13541 S.Diag(FD->getReturnTypeSourceRange().getBegin(),
13542 diag::note_typecheck_assign_const)
13543 << ConstFunction << FD << FD->getReturnType()
13544 << FD->getReturnTypeSourceRange();
13545 }
13546 } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
13547 // Point to variable declaration.
13548 if (const ValueDecl *VD = DRE->getDecl()) {
13549 if (!IsTypeModifiable(VD->getType(), IsDereference)) {
13550 if (!DiagnosticEmitted) {
13551 S.Diag(Loc, diag::err_typecheck_assign_const)
13552 << ExprRange << ConstVariable << VD << VD->getType();
13553 DiagnosticEmitted = true;
13554 }
13555 S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
13556 << ConstVariable << VD << VD->getType() << VD->getSourceRange();
13557 }
13558 }
13559 } else if (isa<CXXThisExpr>(E)) {
13560 if (const DeclContext *DC = S.getFunctionLevelDeclContext()) {
13561 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
13562 if (MD->isConst()) {
13563 if (!DiagnosticEmitted) {
13564 S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
13565 << ConstMethod << MD;
13566 DiagnosticEmitted = true;
13567 }
13568 S.Diag(MD->getLocation(), diag::note_typecheck_assign_const)
13569 << ConstMethod << MD << MD->getSourceRange();
13570 }
13571 }
13572 }
13573 }
13574
13575 if (DiagnosticEmitted)
13576 return;
13577
13578 // Can't determine a more specific message, so display the generic error.
13579 S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange << ConstUnknown;
13580 }
13581
13582 enum OriginalExprKind {
13583 OEK_Variable,
13584 OEK_Member,
13585 OEK_LValue
13586 };
13587
DiagnoseRecursiveConstFields(Sema & S,const ValueDecl * VD,const RecordType * Ty,SourceLocation Loc,SourceRange Range,OriginalExprKind OEK,bool & DiagnosticEmitted)13588 static void DiagnoseRecursiveConstFields(Sema &S, const ValueDecl *VD,
13589 const RecordType *Ty,
13590 SourceLocation Loc, SourceRange Range,
13591 OriginalExprKind OEK,
13592 bool &DiagnosticEmitted) {
13593 std::vector<const RecordType *> RecordTypeList;
13594 RecordTypeList.push_back(Ty);
13595 unsigned NextToCheckIndex = 0;
13596 // We walk the record hierarchy breadth-first to ensure that we print
13597 // diagnostics in field nesting order.
13598 while (RecordTypeList.size() > NextToCheckIndex) {
13599 bool IsNested = NextToCheckIndex > 0;
13600 for (const FieldDecl *Field :
13601 RecordTypeList[NextToCheckIndex]->getDecl()->fields()) {
13602 // First, check every field for constness.
13603 QualType FieldTy = Field->getType();
13604 if (FieldTy.isConstQualified()) {
13605 if (!DiagnosticEmitted) {
13606 S.Diag(Loc, diag::err_typecheck_assign_const)
13607 << Range << NestedConstMember << OEK << VD
13608 << IsNested << Field;
13609 DiagnosticEmitted = true;
13610 }
13611 S.Diag(Field->getLocation(), diag::note_typecheck_assign_const)
13612 << NestedConstMember << IsNested << Field
13613 << FieldTy << Field->getSourceRange();
13614 }
13615
13616 // Then we append it to the list to check next in order.
13617 FieldTy = FieldTy.getCanonicalType();
13618 if (const auto *FieldRecTy = FieldTy->getAs<RecordType>()) {
13619 if (!llvm::is_contained(RecordTypeList, FieldRecTy))
13620 RecordTypeList.push_back(FieldRecTy);
13621 }
13622 }
13623 ++NextToCheckIndex;
13624 }
13625 }
13626
13627 /// Emit an error for the case where a record we are trying to assign to has a
13628 /// const-qualified field somewhere in its hierarchy.
DiagnoseRecursiveConstFields(Sema & S,const Expr * E,SourceLocation Loc)13629 static void DiagnoseRecursiveConstFields(Sema &S, const Expr *E,
13630 SourceLocation Loc) {
13631 QualType Ty = E->getType();
13632 assert(Ty->isRecordType() && "lvalue was not record?");
13633 SourceRange Range = E->getSourceRange();
13634 const RecordType *RTy = Ty.getCanonicalType()->getAs<RecordType>();
13635 bool DiagEmitted = false;
13636
13637 if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
13638 DiagnoseRecursiveConstFields(S, ME->getMemberDecl(), RTy, Loc,
13639 Range, OEK_Member, DiagEmitted);
13640 else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
13641 DiagnoseRecursiveConstFields(S, DRE->getDecl(), RTy, Loc,
13642 Range, OEK_Variable, DiagEmitted);
13643 else
13644 DiagnoseRecursiveConstFields(S, nullptr, RTy, Loc,
13645 Range, OEK_LValue, DiagEmitted);
13646 if (!DiagEmitted)
13647 DiagnoseConstAssignment(S, E, Loc);
13648 }
13649
13650 /// CheckForModifiableLvalue - Verify that E is a modifiable lvalue. If not,
13651 /// emit an error and return true. If so, return false.
CheckForModifiableLvalue(Expr * E,SourceLocation Loc,Sema & S)13652 static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
13653 assert(!E->hasPlaceholderType(BuiltinType::PseudoObject));
13654
13655 S.CheckShadowingDeclModification(E, Loc);
13656
13657 SourceLocation OrigLoc = Loc;
13658 Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
13659 &Loc);
13660 if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
13661 IsLV = Expr::MLV_InvalidMessageExpression;
13662 if (IsLV == Expr::MLV_Valid)
13663 return false;
13664
13665 unsigned DiagID = 0;
13666 bool NeedType = false;
13667 switch (IsLV) { // C99 6.5.16p2
13668 case Expr::MLV_ConstQualified:
13669 // Use a specialized diagnostic when we're assigning to an object
13670 // from an enclosing function or block.
13671 if (NonConstCaptureKind NCCK = isReferenceToNonConstCapture(S, E)) {
13672 if (NCCK == NCCK_Block)
13673 DiagID = diag::err_block_decl_ref_not_modifiable_lvalue;
13674 else
13675 DiagID = diag::err_lambda_decl_ref_not_modifiable_lvalue;
13676 break;
13677 }
13678
13679 // In ARC, use some specialized diagnostics for occasions where we
13680 // infer 'const'. These are always pseudo-strong variables.
13681 if (S.getLangOpts().ObjCAutoRefCount) {
13682 DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts());
13683 if (declRef && isa<VarDecl>(declRef->getDecl())) {
13684 VarDecl *var = cast<VarDecl>(declRef->getDecl());
13685
13686 // Use the normal diagnostic if it's pseudo-__strong but the
13687 // user actually wrote 'const'.
13688 if (var->isARCPseudoStrong() &&
13689 (!var->getTypeSourceInfo() ||
13690 !var->getTypeSourceInfo()->getType().isConstQualified())) {
13691 // There are three pseudo-strong cases:
13692 // - self
13693 ObjCMethodDecl *method = S.getCurMethodDecl();
13694 if (method && var == method->getSelfDecl()) {
13695 DiagID = method->isClassMethod()
13696 ? diag::err_typecheck_arc_assign_self_class_method
13697 : diag::err_typecheck_arc_assign_self;
13698
13699 // - Objective-C externally_retained attribute.
13700 } else if (var->hasAttr<ObjCExternallyRetainedAttr>() ||
13701 isa<ParmVarDecl>(var)) {
13702 DiagID = diag::err_typecheck_arc_assign_externally_retained;
13703
13704 // - fast enumeration variables
13705 } else {
13706 DiagID = diag::err_typecheck_arr_assign_enumeration;
13707 }
13708
13709 SourceRange Assign;
13710 if (Loc != OrigLoc)
13711 Assign = SourceRange(OrigLoc, OrigLoc);
13712 S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
13713 // We need to preserve the AST regardless, so migration tool
13714 // can do its job.
13715 return false;
13716 }
13717 }
13718 }
13719
13720 // If none of the special cases above are triggered, then this is a
13721 // simple const assignment.
13722 if (DiagID == 0) {
13723 DiagnoseConstAssignment(S, E, Loc);
13724 return true;
13725 }
13726
13727 break;
13728 case Expr::MLV_ConstAddrSpace:
13729 DiagnoseConstAssignment(S, E, Loc);
13730 return true;
13731 case Expr::MLV_ConstQualifiedField:
13732 DiagnoseRecursiveConstFields(S, E, Loc);
13733 return true;
13734 case Expr::MLV_ArrayType:
13735 case Expr::MLV_ArrayTemporary:
13736 DiagID = diag::err_typecheck_array_not_modifiable_lvalue;
13737 NeedType = true;
13738 break;
13739 case Expr::MLV_NotObjectType:
13740 DiagID = diag::err_typecheck_non_object_not_modifiable_lvalue;
13741 NeedType = true;
13742 break;
13743 case Expr::MLV_LValueCast:
13744 DiagID = diag::err_typecheck_lvalue_casts_not_supported;
13745 break;
13746 case Expr::MLV_Valid:
13747 llvm_unreachable("did not take early return for MLV_Valid");
13748 case Expr::MLV_InvalidExpression:
13749 case Expr::MLV_MemberFunction:
13750 case Expr::MLV_ClassTemporary:
13751 DiagID = diag::err_typecheck_expression_not_modifiable_lvalue;
13752 break;
13753 case Expr::MLV_IncompleteType:
13754 case Expr::MLV_IncompleteVoidType:
13755 return S.RequireCompleteType(Loc, E->getType(),
13756 diag::err_typecheck_incomplete_type_not_modifiable_lvalue, E);
13757 case Expr::MLV_DuplicateVectorComponents:
13758 DiagID = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
13759 break;
13760 case Expr::MLV_NoSetterProperty:
13761 llvm_unreachable("readonly properties should be processed differently");
13762 case Expr::MLV_InvalidMessageExpression:
13763 DiagID = diag::err_readonly_message_assignment;
13764 break;
13765 case Expr::MLV_SubObjCPropertySetting:
13766 DiagID = diag::err_no_subobject_property_setting;
13767 break;
13768 }
13769
13770 SourceRange Assign;
13771 if (Loc != OrigLoc)
13772 Assign = SourceRange(OrigLoc, OrigLoc);
13773 if (NeedType)
13774 S.Diag(Loc, DiagID) << E->getType() << E->getSourceRange() << Assign;
13775 else
13776 S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
13777 return true;
13778 }
13779
CheckIdentityFieldAssignment(Expr * LHSExpr,Expr * RHSExpr,SourceLocation Loc,Sema & Sema)13780 static void CheckIdentityFieldAssignment(Expr *LHSExpr, Expr *RHSExpr,
13781 SourceLocation Loc,
13782 Sema &Sema) {
13783 if (Sema.inTemplateInstantiation())
13784 return;
13785 if (Sema.isUnevaluatedContext())
13786 return;
13787 if (Loc.isInvalid() || Loc.isMacroID())
13788 return;
13789 if (LHSExpr->getExprLoc().isMacroID() || RHSExpr->getExprLoc().isMacroID())
13790 return;
13791
13792 // C / C++ fields
13793 MemberExpr *ML = dyn_cast<MemberExpr>(LHSExpr);
13794 MemberExpr *MR = dyn_cast<MemberExpr>(RHSExpr);
13795 if (ML && MR) {
13796 if (!(isa<CXXThisExpr>(ML->getBase()) && isa<CXXThisExpr>(MR->getBase())))
13797 return;
13798 const ValueDecl *LHSDecl =
13799 cast<ValueDecl>(ML->getMemberDecl()->getCanonicalDecl());
13800 const ValueDecl *RHSDecl =
13801 cast<ValueDecl>(MR->getMemberDecl()->getCanonicalDecl());
13802 if (LHSDecl != RHSDecl)
13803 return;
13804 if (LHSDecl->getType().isVolatileQualified())
13805 return;
13806 if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
13807 if (RefTy->getPointeeType().isVolatileQualified())
13808 return;
13809
13810 Sema.Diag(Loc, diag::warn_identity_field_assign) << 0;
13811 }
13812
13813 // Objective-C instance variables
13814 ObjCIvarRefExpr *OL = dyn_cast<ObjCIvarRefExpr>(LHSExpr);
13815 ObjCIvarRefExpr *OR = dyn_cast<ObjCIvarRefExpr>(RHSExpr);
13816 if (OL && OR && OL->getDecl() == OR->getDecl()) {
13817 DeclRefExpr *RL = dyn_cast<DeclRefExpr>(OL->getBase()->IgnoreImpCasts());
13818 DeclRefExpr *RR = dyn_cast<DeclRefExpr>(OR->getBase()->IgnoreImpCasts());
13819 if (RL && RR && RL->getDecl() == RR->getDecl())
13820 Sema.Diag(Loc, diag::warn_identity_field_assign) << 1;
13821 }
13822 }
13823
13824 // C99 6.5.16.1
CheckAssignmentOperands(Expr * LHSExpr,ExprResult & RHS,SourceLocation Loc,QualType CompoundType,BinaryOperatorKind Opc)13825 QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS,
13826 SourceLocation Loc,
13827 QualType CompoundType,
13828 BinaryOperatorKind Opc) {
13829 assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject));
13830
13831 // Verify that LHS is a modifiable lvalue, and emit error if not.
13832 if (CheckForModifiableLvalue(LHSExpr, Loc, *this))
13833 return QualType();
13834
13835 QualType LHSType = LHSExpr->getType();
13836 QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() :
13837 CompoundType;
13838 // OpenCL v1.2 s6.1.1.1 p2:
13839 // The half data type can only be used to declare a pointer to a buffer that
13840 // contains half values
13841 if (getLangOpts().OpenCL &&
13842 !getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()) &&
13843 LHSType->isHalfType()) {
13844 Diag(Loc, diag::err_opencl_half_load_store) << 1
13845 << LHSType.getUnqualifiedType();
13846 return QualType();
13847 }
13848
13849 AssignConvertType ConvTy;
13850 if (CompoundType.isNull()) {
13851 Expr *RHSCheck = RHS.get();
13852
13853 CheckIdentityFieldAssignment(LHSExpr, RHSCheck, Loc, *this);
13854
13855 QualType LHSTy(LHSType);
13856 ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
13857 if (RHS.isInvalid())
13858 return QualType();
13859 // Special case of NSObject attributes on c-style pointer types.
13860 if (ConvTy == IncompatiblePointer &&
13861 ((Context.isObjCNSObjectType(LHSType) &&
13862 RHSType->isObjCObjectPointerType()) ||
13863 (Context.isObjCNSObjectType(RHSType) &&
13864 LHSType->isObjCObjectPointerType())))
13865 ConvTy = Compatible;
13866
13867 if (ConvTy == Compatible &&
13868 LHSType->isObjCObjectType())
13869 Diag(Loc, diag::err_objc_object_assignment)
13870 << LHSType;
13871
13872 // If the RHS is a unary plus or minus, check to see if they = and + are
13873 // right next to each other. If so, the user may have typo'd "x =+ 4"
13874 // instead of "x += 4".
13875 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
13876 RHSCheck = ICE->getSubExpr();
13877 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
13878 if ((UO->getOpcode() == UO_Plus || UO->getOpcode() == UO_Minus) &&
13879 Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
13880 // Only if the two operators are exactly adjacent.
13881 Loc.getLocWithOffset(1) == UO->getOperatorLoc() &&
13882 // And there is a space or other character before the subexpr of the
13883 // unary +/-. We don't want to warn on "x=-1".
13884 Loc.getLocWithOffset(2) != UO->getSubExpr()->getBeginLoc() &&
13885 UO->getSubExpr()->getBeginLoc().isFileID()) {
13886 Diag(Loc, diag::warn_not_compound_assign)
13887 << (UO->getOpcode() == UO_Plus ? "+" : "-")
13888 << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
13889 }
13890 }
13891
13892 if (ConvTy == Compatible) {
13893 if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong) {
13894 // Warn about retain cycles where a block captures the LHS, but
13895 // not if the LHS is a simple variable into which the block is
13896 // being stored...unless that variable can be captured by reference!
13897 const Expr *InnerLHS = LHSExpr->IgnoreParenCasts();
13898 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InnerLHS);
13899 if (!DRE || DRE->getDecl()->hasAttr<BlocksAttr>())
13900 checkRetainCycles(LHSExpr, RHS.get());
13901 }
13902
13903 if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong ||
13904 LHSType.isNonWeakInMRRWithObjCWeak(Context)) {
13905 // It is safe to assign a weak reference into a strong variable.
13906 // Although this code can still have problems:
13907 // id x = self.weakProp;
13908 // id y = self.weakProp;
13909 // we do not warn to warn spuriously when 'x' and 'y' are on separate
13910 // paths through the function. This should be revisited if
13911 // -Wrepeated-use-of-weak is made flow-sensitive.
13912 // For ObjCWeak only, we do not warn if the assign is to a non-weak
13913 // variable, which will be valid for the current autorelease scope.
13914 if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
13915 RHS.get()->getBeginLoc()))
13916 getCurFunction()->markSafeWeakUse(RHS.get());
13917
13918 } else if (getLangOpts().ObjCAutoRefCount || getLangOpts().ObjCWeak) {
13919 checkUnsafeExprAssigns(Loc, LHSExpr, RHS.get());
13920 }
13921 }
13922 } else {
13923 // Compound assignment "x += y"
13924 ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
13925 }
13926
13927 if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
13928 RHS.get(), AA_Assigning))
13929 return QualType();
13930
13931 CheckForNullPointerDereference(*this, LHSExpr);
13932
13933 if (getLangOpts().CPlusPlus20 && LHSType.isVolatileQualified()) {
13934 if (CompoundType.isNull()) {
13935 // C++2a [expr.ass]p5:
13936 // A simple-assignment whose left operand is of a volatile-qualified
13937 // type is deprecated unless the assignment is either a discarded-value
13938 // expression or an unevaluated operand
13939 ExprEvalContexts.back().VolatileAssignmentLHSs.push_back(LHSExpr);
13940 } else {
13941 // C++20 [expr.ass]p6:
13942 // [Compound-assignment] expressions are deprecated if E1 has
13943 // volatile-qualified type and op is not one of the bitwise
13944 // operators |, &, ˆ.
13945 switch (Opc) {
13946 case BO_OrAssign:
13947 case BO_AndAssign:
13948 case BO_XorAssign:
13949 break;
13950 default:
13951 Diag(Loc, diag::warn_deprecated_compound_assign_volatile) << LHSType;
13952 }
13953 }
13954 }
13955
13956 // C11 6.5.16p3: The type of an assignment expression is the type of the
13957 // left operand would have after lvalue conversion.
13958 // C11 6.3.2.1p2: ...this is called lvalue conversion. If the lvalue has
13959 // qualified type, the value has the unqualified version of the type of the
13960 // lvalue; additionally, if the lvalue has atomic type, the value has the
13961 // non-atomic version of the type of the lvalue.
13962 // C++ 5.17p1: the type of the assignment expression is that of its left
13963 // operand.
13964 return getLangOpts().CPlusPlus ? LHSType : LHSType.getAtomicUnqualifiedType();
13965 }
13966
13967 // Only ignore explicit casts to void.
IgnoreCommaOperand(const Expr * E)13968 static bool IgnoreCommaOperand(const Expr *E) {
13969 E = E->IgnoreParens();
13970
13971 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
13972 if (CE->getCastKind() == CK_ToVoid) {
13973 return true;
13974 }
13975
13976 // static_cast<void> on a dependent type will not show up as CK_ToVoid.
13977 if (CE->getCastKind() == CK_Dependent && E->getType()->isVoidType() &&
13978 CE->getSubExpr()->getType()->isDependentType()) {
13979 return true;
13980 }
13981 }
13982
13983 return false;
13984 }
13985
13986 // Look for instances where it is likely the comma operator is confused with
13987 // another operator. There is an explicit list of acceptable expressions for
13988 // the left hand side of the comma operator, otherwise emit a warning.
DiagnoseCommaOperator(const Expr * LHS,SourceLocation Loc)13989 void Sema::DiagnoseCommaOperator(const Expr *LHS, SourceLocation Loc) {
13990 // No warnings in macros
13991 if (Loc.isMacroID())
13992 return;
13993
13994 // Don't warn in template instantiations.
13995 if (inTemplateInstantiation())
13996 return;
13997
13998 // Scope isn't fine-grained enough to explicitly list the specific cases, so
13999 // instead, skip more than needed, then call back into here with the
14000 // CommaVisitor in SemaStmt.cpp.
14001 // The listed locations are the initialization and increment portions
14002 // of a for loop. The additional checks are on the condition of
14003 // if statements, do/while loops, and for loops.
14004 // Differences in scope flags for C89 mode requires the extra logic.
14005 const unsigned ForIncrementFlags =
14006 getLangOpts().C99 || getLangOpts().CPlusPlus
14007 ? Scope::ControlScope | Scope::ContinueScope | Scope::BreakScope
14008 : Scope::ContinueScope | Scope::BreakScope;
14009 const unsigned ForInitFlags = Scope::ControlScope | Scope::DeclScope;
14010 const unsigned ScopeFlags = getCurScope()->getFlags();
14011 if ((ScopeFlags & ForIncrementFlags) == ForIncrementFlags ||
14012 (ScopeFlags & ForInitFlags) == ForInitFlags)
14013 return;
14014
14015 // If there are multiple comma operators used together, get the RHS of the
14016 // of the comma operator as the LHS.
14017 while (const BinaryOperator *BO = dyn_cast<BinaryOperator>(LHS)) {
14018 if (BO->getOpcode() != BO_Comma)
14019 break;
14020 LHS = BO->getRHS();
14021 }
14022
14023 // Only allow some expressions on LHS to not warn.
14024 if (IgnoreCommaOperand(LHS))
14025 return;
14026
14027 Diag(Loc, diag::warn_comma_operator);
14028 Diag(LHS->getBeginLoc(), diag::note_cast_to_void)
14029 << LHS->getSourceRange()
14030 << FixItHint::CreateInsertion(LHS->getBeginLoc(),
14031 LangOpts.CPlusPlus ? "static_cast<void>("
14032 : "(void)(")
14033 << FixItHint::CreateInsertion(PP.getLocForEndOfToken(LHS->getEndLoc()),
14034 ")");
14035 }
14036
14037 // C99 6.5.17
CheckCommaOperands(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc)14038 static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
14039 SourceLocation Loc) {
14040 LHS = S.CheckPlaceholderExpr(LHS.get());
14041 RHS = S.CheckPlaceholderExpr(RHS.get());
14042 if (LHS.isInvalid() || RHS.isInvalid())
14043 return QualType();
14044
14045 // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
14046 // operands, but not unary promotions.
14047 // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
14048
14049 // So we treat the LHS as a ignored value, and in C++ we allow the
14050 // containing site to determine what should be done with the RHS.
14051 LHS = S.IgnoredValueConversions(LHS.get());
14052 if (LHS.isInvalid())
14053 return QualType();
14054
14055 S.DiagnoseUnusedExprResult(LHS.get(), diag::warn_unused_comma_left_operand);
14056
14057 if (!S.getLangOpts().CPlusPlus) {
14058 RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
14059 if (RHS.isInvalid())
14060 return QualType();
14061 if (!RHS.get()->getType()->isVoidType())
14062 S.RequireCompleteType(Loc, RHS.get()->getType(),
14063 diag::err_incomplete_type);
14064 }
14065
14066 if (!S.getDiagnostics().isIgnored(diag::warn_comma_operator, Loc))
14067 S.DiagnoseCommaOperator(LHS.get(), Loc);
14068
14069 return RHS.get()->getType();
14070 }
14071
14072 /// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
14073 /// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
CheckIncrementDecrementOperand(Sema & S,Expr * Op,ExprValueKind & VK,ExprObjectKind & OK,SourceLocation OpLoc,bool IsInc,bool IsPrefix)14074 static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
14075 ExprValueKind &VK,
14076 ExprObjectKind &OK,
14077 SourceLocation OpLoc,
14078 bool IsInc, bool IsPrefix) {
14079 if (Op->isTypeDependent())
14080 return S.Context.DependentTy;
14081
14082 QualType ResType = Op->getType();
14083 // Atomic types can be used for increment / decrement where the non-atomic
14084 // versions can, so ignore the _Atomic() specifier for the purpose of
14085 // checking.
14086 if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
14087 ResType = ResAtomicType->getValueType();
14088
14089 assert(!ResType.isNull() && "no type for increment/decrement expression");
14090
14091 if (S.getLangOpts().CPlusPlus && ResType->isBooleanType()) {
14092 // Decrement of bool is not allowed.
14093 if (!IsInc) {
14094 S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
14095 return QualType();
14096 }
14097 // Increment of bool sets it to true, but is deprecated.
14098 S.Diag(OpLoc, S.getLangOpts().CPlusPlus17 ? diag::ext_increment_bool
14099 : diag::warn_increment_bool)
14100 << Op->getSourceRange();
14101 } else if (S.getLangOpts().CPlusPlus && ResType->isEnumeralType()) {
14102 // Error on enum increments and decrements in C++ mode
14103 S.Diag(OpLoc, diag::err_increment_decrement_enum) << IsInc << ResType;
14104 return QualType();
14105 } else if (ResType->isRealType()) {
14106 // OK!
14107 } else if (ResType->isPointerType()) {
14108 // C99 6.5.2.4p2, 6.5.6p2
14109 if (!checkArithmeticOpPointerOperand(S, OpLoc, Op))
14110 return QualType();
14111 } else if (ResType->isObjCObjectPointerType()) {
14112 // On modern runtimes, ObjC pointer arithmetic is forbidden.
14113 // Otherwise, we just need a complete type.
14114 if (checkArithmeticIncompletePointerType(S, OpLoc, Op) ||
14115 checkArithmeticOnObjCPointer(S, OpLoc, Op))
14116 return QualType();
14117 } else if (ResType->isAnyComplexType()) {
14118 // C99 does not support ++/-- on complex types, we allow as an extension.
14119 S.Diag(OpLoc, diag::ext_integer_increment_complex)
14120 << ResType << Op->getSourceRange();
14121 } else if (ResType->isPlaceholderType()) {
14122 ExprResult PR = S.CheckPlaceholderExpr(Op);
14123 if (PR.isInvalid()) return QualType();
14124 return CheckIncrementDecrementOperand(S, PR.get(), VK, OK, OpLoc,
14125 IsInc, IsPrefix);
14126 } else if (S.getLangOpts().AltiVec && ResType->isVectorType()) {
14127 // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
14128 } else if (S.getLangOpts().ZVector && ResType->isVectorType() &&
14129 (ResType->castAs<VectorType>()->getVectorKind() !=
14130 VectorType::AltiVecBool)) {
14131 // The z vector extensions allow ++ and -- for non-bool vectors.
14132 } else if(S.getLangOpts().OpenCL && ResType->isVectorType() &&
14133 ResType->castAs<VectorType>()->getElementType()->isIntegerType()) {
14134 // OpenCL V1.2 6.3 says dec/inc ops operate on integer vector types.
14135 } else {
14136 S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
14137 << ResType << int(IsInc) << Op->getSourceRange();
14138 return QualType();
14139 }
14140 // At this point, we know we have a real, complex or pointer type.
14141 // Now make sure the operand is a modifiable lvalue.
14142 if (CheckForModifiableLvalue(Op, OpLoc, S))
14143 return QualType();
14144 if (S.getLangOpts().CPlusPlus20 && ResType.isVolatileQualified()) {
14145 // C++2a [expr.pre.inc]p1, [expr.post.inc]p1:
14146 // An operand with volatile-qualified type is deprecated
14147 S.Diag(OpLoc, diag::warn_deprecated_increment_decrement_volatile)
14148 << IsInc << ResType;
14149 }
14150 // In C++, a prefix increment is the same type as the operand. Otherwise
14151 // (in C or with postfix), the increment is the unqualified type of the
14152 // operand.
14153 if (IsPrefix && S.getLangOpts().CPlusPlus) {
14154 VK = VK_LValue;
14155 OK = Op->getObjectKind();
14156 return ResType;
14157 } else {
14158 VK = VK_PRValue;
14159 return ResType.getUnqualifiedType();
14160 }
14161 }
14162
14163
14164 /// getPrimaryDecl - Helper function for CheckAddressOfOperand().
14165 /// This routine allows us to typecheck complex/recursive expressions
14166 /// where the declaration is needed for type checking. We only need to
14167 /// handle cases when the expression references a function designator
14168 /// or is an lvalue. Here are some examples:
14169 /// - &(x) => x
14170 /// - &*****f => f for f a function designator.
14171 /// - &s.xx => s
14172 /// - &s.zz[1].yy -> s, if zz is an array
14173 /// - *(x + 1) -> x, if x is an array
14174 /// - &"123"[2] -> 0
14175 /// - & __real__ x -> x
14176 ///
14177 /// FIXME: We don't recurse to the RHS of a comma, nor handle pointers to
14178 /// members.
getPrimaryDecl(Expr * E)14179 static ValueDecl *getPrimaryDecl(Expr *E) {
14180 switch (E->getStmtClass()) {
14181 case Stmt::DeclRefExprClass:
14182 return cast<DeclRefExpr>(E)->getDecl();
14183 case Stmt::MemberExprClass:
14184 // If this is an arrow operator, the address is an offset from
14185 // the base's value, so the object the base refers to is
14186 // irrelevant.
14187 if (cast<MemberExpr>(E)->isArrow())
14188 return nullptr;
14189 // Otherwise, the expression refers to a part of the base
14190 return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
14191 case Stmt::ArraySubscriptExprClass: {
14192 // FIXME: This code shouldn't be necessary! We should catch the implicit
14193 // promotion of register arrays earlier.
14194 Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
14195 if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
14196 if (ICE->getSubExpr()->getType()->isArrayType())
14197 return getPrimaryDecl(ICE->getSubExpr());
14198 }
14199 return nullptr;
14200 }
14201 case Stmt::UnaryOperatorClass: {
14202 UnaryOperator *UO = cast<UnaryOperator>(E);
14203
14204 switch(UO->getOpcode()) {
14205 case UO_Real:
14206 case UO_Imag:
14207 case UO_Extension:
14208 return getPrimaryDecl(UO->getSubExpr());
14209 default:
14210 return nullptr;
14211 }
14212 }
14213 case Stmt::ParenExprClass:
14214 return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
14215 case Stmt::ImplicitCastExprClass:
14216 // If the result of an implicit cast is an l-value, we care about
14217 // the sub-expression; otherwise, the result here doesn't matter.
14218 return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
14219 case Stmt::CXXUuidofExprClass:
14220 return cast<CXXUuidofExpr>(E)->getGuidDecl();
14221 default:
14222 return nullptr;
14223 }
14224 }
14225
14226 namespace {
14227 enum {
14228 AO_Bit_Field = 0,
14229 AO_Vector_Element = 1,
14230 AO_Property_Expansion = 2,
14231 AO_Register_Variable = 3,
14232 AO_Matrix_Element = 4,
14233 AO_No_Error = 5
14234 };
14235 }
14236 /// Diagnose invalid operand for address of operations.
14237 ///
14238 /// \param Type The type of operand which cannot have its address taken.
diagnoseAddressOfInvalidType(Sema & S,SourceLocation Loc,Expr * E,unsigned Type)14239 static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc,
14240 Expr *E, unsigned Type) {
14241 S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange();
14242 }
14243
14244 /// CheckAddressOfOperand - The operand of & must be either a function
14245 /// designator or an lvalue designating an object. If it is an lvalue, the
14246 /// object cannot be declared with storage class register or be a bit field.
14247 /// Note: The usual conversions are *not* applied to the operand of the &
14248 /// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
14249 /// In C++, the operand might be an overloaded function name, in which case
14250 /// we allow the '&' but retain the overloaded-function type.
CheckAddressOfOperand(ExprResult & OrigOp,SourceLocation OpLoc)14251 QualType Sema::CheckAddressOfOperand(ExprResult &OrigOp, SourceLocation OpLoc) {
14252 if (const BuiltinType *PTy = OrigOp.get()->getType()->getAsPlaceholderType()){
14253 if (PTy->getKind() == BuiltinType::Overload) {
14254 Expr *E = OrigOp.get()->IgnoreParens();
14255 if (!isa<OverloadExpr>(E)) {
14256 assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
14257 Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof_addrof_function)
14258 << OrigOp.get()->getSourceRange();
14259 return QualType();
14260 }
14261
14262 OverloadExpr *Ovl = cast<OverloadExpr>(E);
14263 if (isa<UnresolvedMemberExpr>(Ovl))
14264 if (!ResolveSingleFunctionTemplateSpecialization(Ovl)) {
14265 Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
14266 << OrigOp.get()->getSourceRange();
14267 return QualType();
14268 }
14269
14270 return Context.OverloadTy;
14271 }
14272
14273 if (PTy->getKind() == BuiltinType::UnknownAny)
14274 return Context.UnknownAnyTy;
14275
14276 if (PTy->getKind() == BuiltinType::BoundMember) {
14277 Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
14278 << OrigOp.get()->getSourceRange();
14279 return QualType();
14280 }
14281
14282 OrigOp = CheckPlaceholderExpr(OrigOp.get());
14283 if (OrigOp.isInvalid()) return QualType();
14284 }
14285
14286 if (OrigOp.get()->isTypeDependent())
14287 return Context.DependentTy;
14288
14289 assert(!OrigOp.get()->hasPlaceholderType());
14290
14291 // Make sure to ignore parentheses in subsequent checks
14292 Expr *op = OrigOp.get()->IgnoreParens();
14293
14294 // In OpenCL captures for blocks called as lambda functions
14295 // are located in the private address space. Blocks used in
14296 // enqueue_kernel can be located in a different address space
14297 // depending on a vendor implementation. Thus preventing
14298 // taking an address of the capture to avoid invalid AS casts.
14299 if (LangOpts.OpenCL) {
14300 auto* VarRef = dyn_cast<DeclRefExpr>(op);
14301 if (VarRef && VarRef->refersToEnclosingVariableOrCapture()) {
14302 Diag(op->getExprLoc(), diag::err_opencl_taking_address_capture);
14303 return QualType();
14304 }
14305 }
14306
14307 if (getLangOpts().C99) {
14308 // Implement C99-only parts of addressof rules.
14309 if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
14310 if (uOp->getOpcode() == UO_Deref)
14311 // Per C99 6.5.3.2, the address of a deref always returns a valid result
14312 // (assuming the deref expression is valid).
14313 return uOp->getSubExpr()->getType();
14314 }
14315 // Technically, there should be a check for array subscript
14316 // expressions here, but the result of one is always an lvalue anyway.
14317 }
14318 ValueDecl *dcl = getPrimaryDecl(op);
14319
14320 if (auto *FD = dyn_cast_or_null<FunctionDecl>(dcl))
14321 if (!checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
14322 op->getBeginLoc()))
14323 return QualType();
14324
14325 Expr::LValueClassification lval = op->ClassifyLValue(Context);
14326 unsigned AddressOfError = AO_No_Error;
14327
14328 if (lval == Expr::LV_ClassTemporary || lval == Expr::LV_ArrayTemporary) {
14329 bool sfinae = (bool)isSFINAEContext();
14330 Diag(OpLoc, isSFINAEContext() ? diag::err_typecheck_addrof_temporary
14331 : diag::ext_typecheck_addrof_temporary)
14332 << op->getType() << op->getSourceRange();
14333 if (sfinae)
14334 return QualType();
14335 // Materialize the temporary as an lvalue so that we can take its address.
14336 OrigOp = op =
14337 CreateMaterializeTemporaryExpr(op->getType(), OrigOp.get(), true);
14338 } else if (isa<ObjCSelectorExpr>(op)) {
14339 return Context.getPointerType(op->getType());
14340 } else if (lval == Expr::LV_MemberFunction) {
14341 // If it's an instance method, make a member pointer.
14342 // The expression must have exactly the form &A::foo.
14343
14344 // If the underlying expression isn't a decl ref, give up.
14345 if (!isa<DeclRefExpr>(op)) {
14346 Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
14347 << OrigOp.get()->getSourceRange();
14348 return QualType();
14349 }
14350 DeclRefExpr *DRE = cast<DeclRefExpr>(op);
14351 CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
14352
14353 // The id-expression was parenthesized.
14354 if (OrigOp.get() != DRE) {
14355 Diag(OpLoc, diag::err_parens_pointer_member_function)
14356 << OrigOp.get()->getSourceRange();
14357
14358 // The method was named without a qualifier.
14359 } else if (!DRE->getQualifier()) {
14360 if (MD->getParent()->getName().empty())
14361 Diag(OpLoc, diag::err_unqualified_pointer_member_function)
14362 << op->getSourceRange();
14363 else {
14364 SmallString<32> Str;
14365 StringRef Qual = (MD->getParent()->getName() + "::").toStringRef(Str);
14366 Diag(OpLoc, diag::err_unqualified_pointer_member_function)
14367 << op->getSourceRange()
14368 << FixItHint::CreateInsertion(op->getSourceRange().getBegin(), Qual);
14369 }
14370 }
14371
14372 // Taking the address of a dtor is illegal per C++ [class.dtor]p2.
14373 if (isa<CXXDestructorDecl>(MD))
14374 Diag(OpLoc, diag::err_typecheck_addrof_dtor) << op->getSourceRange();
14375
14376 QualType MPTy = Context.getMemberPointerType(
14377 op->getType(), Context.getTypeDeclType(MD->getParent()).getTypePtr());
14378 // Under the MS ABI, lock down the inheritance model now.
14379 if (Context.getTargetInfo().getCXXABI().isMicrosoft())
14380 (void)isCompleteType(OpLoc, MPTy);
14381 return MPTy;
14382 } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
14383 // C99 6.5.3.2p1
14384 // The operand must be either an l-value or a function designator
14385 if (!op->getType()->isFunctionType()) {
14386 // Use a special diagnostic for loads from property references.
14387 if (isa<PseudoObjectExpr>(op)) {
14388 AddressOfError = AO_Property_Expansion;
14389 } else {
14390 Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
14391 << op->getType() << op->getSourceRange();
14392 return QualType();
14393 }
14394 }
14395 } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
14396 // The operand cannot be a bit-field
14397 AddressOfError = AO_Bit_Field;
14398 } else if (op->getObjectKind() == OK_VectorComponent) {
14399 // The operand cannot be an element of a vector
14400 AddressOfError = AO_Vector_Element;
14401 } else if (op->getObjectKind() == OK_MatrixComponent) {
14402 // The operand cannot be an element of a matrix.
14403 AddressOfError = AO_Matrix_Element;
14404 } else if (dcl) { // C99 6.5.3.2p1
14405 // We have an lvalue with a decl. Make sure the decl is not declared
14406 // with the register storage-class specifier.
14407 if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
14408 // in C++ it is not error to take address of a register
14409 // variable (c++03 7.1.1P3)
14410 if (vd->getStorageClass() == SC_Register &&
14411 !getLangOpts().CPlusPlus) {
14412 AddressOfError = AO_Register_Variable;
14413 }
14414 } else if (isa<MSPropertyDecl>(dcl)) {
14415 AddressOfError = AO_Property_Expansion;
14416 } else if (isa<FunctionTemplateDecl>(dcl)) {
14417 return Context.OverloadTy;
14418 } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) {
14419 // Okay: we can take the address of a field.
14420 // Could be a pointer to member, though, if there is an explicit
14421 // scope qualifier for the class.
14422 if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
14423 DeclContext *Ctx = dcl->getDeclContext();
14424 if (Ctx && Ctx->isRecord()) {
14425 if (dcl->getType()->isReferenceType()) {
14426 Diag(OpLoc,
14427 diag::err_cannot_form_pointer_to_member_of_reference_type)
14428 << dcl->getDeclName() << dcl->getType();
14429 return QualType();
14430 }
14431
14432 while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
14433 Ctx = Ctx->getParent();
14434
14435 QualType MPTy = Context.getMemberPointerType(
14436 op->getType(),
14437 Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
14438 // Under the MS ABI, lock down the inheritance model now.
14439 if (Context.getTargetInfo().getCXXABI().isMicrosoft())
14440 (void)isCompleteType(OpLoc, MPTy);
14441 return MPTy;
14442 }
14443 }
14444 } else if (!isa<FunctionDecl, NonTypeTemplateParmDecl, BindingDecl,
14445 MSGuidDecl, UnnamedGlobalConstantDecl>(dcl))
14446 llvm_unreachable("Unknown/unexpected decl type");
14447 }
14448
14449 if (AddressOfError != AO_No_Error) {
14450 diagnoseAddressOfInvalidType(*this, OpLoc, op, AddressOfError);
14451 return QualType();
14452 }
14453
14454 if (lval == Expr::LV_IncompleteVoidType) {
14455 // Taking the address of a void variable is technically illegal, but we
14456 // allow it in cases which are otherwise valid.
14457 // Example: "extern void x; void* y = &x;".
14458 Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
14459 }
14460
14461 // If the operand has type "type", the result has type "pointer to type".
14462 if (op->getType()->isObjCObjectType())
14463 return Context.getObjCObjectPointerType(op->getType());
14464
14465 CheckAddressOfPackedMember(op);
14466
14467 return Context.getPointerType(op->getType());
14468 }
14469
RecordModifiableNonNullParam(Sema & S,const Expr * Exp)14470 static void RecordModifiableNonNullParam(Sema &S, const Expr *Exp) {
14471 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp);
14472 if (!DRE)
14473 return;
14474 const Decl *D = DRE->getDecl();
14475 if (!D)
14476 return;
14477 const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D);
14478 if (!Param)
14479 return;
14480 if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(Param->getDeclContext()))
14481 if (!FD->hasAttr<NonNullAttr>() && !Param->hasAttr<NonNullAttr>())
14482 return;
14483 if (FunctionScopeInfo *FD = S.getCurFunction())
14484 FD->ModifiedNonNullParams.insert(Param);
14485 }
14486
14487 /// CheckIndirectionOperand - Type check unary indirection (prefix '*').
CheckIndirectionOperand(Sema & S,Expr * Op,ExprValueKind & VK,SourceLocation OpLoc)14488 static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
14489 SourceLocation OpLoc) {
14490 if (Op->isTypeDependent())
14491 return S.Context.DependentTy;
14492
14493 ExprResult ConvResult = S.UsualUnaryConversions(Op);
14494 if (ConvResult.isInvalid())
14495 return QualType();
14496 Op = ConvResult.get();
14497 QualType OpTy = Op->getType();
14498 QualType Result;
14499
14500 if (isa<CXXReinterpretCastExpr>(Op)) {
14501 QualType OpOrigType = Op->IgnoreParenCasts()->getType();
14502 S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true,
14503 Op->getSourceRange());
14504 }
14505
14506 if (const PointerType *PT = OpTy->getAs<PointerType>())
14507 {
14508 Result = PT->getPointeeType();
14509 }
14510 else if (const ObjCObjectPointerType *OPT =
14511 OpTy->getAs<ObjCObjectPointerType>())
14512 Result = OPT->getPointeeType();
14513 else {
14514 ExprResult PR = S.CheckPlaceholderExpr(Op);
14515 if (PR.isInvalid()) return QualType();
14516 if (PR.get() != Op)
14517 return CheckIndirectionOperand(S, PR.get(), VK, OpLoc);
14518 }
14519
14520 if (Result.isNull()) {
14521 S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
14522 << OpTy << Op->getSourceRange();
14523 return QualType();
14524 }
14525
14526 // Note that per both C89 and C99, indirection is always legal, even if Result
14527 // is an incomplete type or void. It would be possible to warn about
14528 // dereferencing a void pointer, but it's completely well-defined, and such a
14529 // warning is unlikely to catch any mistakes. In C++, indirection is not valid
14530 // for pointers to 'void' but is fine for any other pointer type:
14531 //
14532 // C++ [expr.unary.op]p1:
14533 // [...] the expression to which [the unary * operator] is applied shall
14534 // be a pointer to an object type, or a pointer to a function type
14535 if (S.getLangOpts().CPlusPlus && Result->isVoidType())
14536 S.Diag(OpLoc, diag::ext_typecheck_indirection_through_void_pointer)
14537 << OpTy << Op->getSourceRange();
14538
14539 // Dereferences are usually l-values...
14540 VK = VK_LValue;
14541
14542 // ...except that certain expressions are never l-values in C.
14543 if (!S.getLangOpts().CPlusPlus && Result.isCForbiddenLValueType())
14544 VK = VK_PRValue;
14545
14546 return Result;
14547 }
14548
ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind)14549 BinaryOperatorKind Sema::ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind) {
14550 BinaryOperatorKind Opc;
14551 switch (Kind) {
14552 default: llvm_unreachable("Unknown binop!");
14553 case tok::periodstar: Opc = BO_PtrMemD; break;
14554 case tok::arrowstar: Opc = BO_PtrMemI; break;
14555 case tok::star: Opc = BO_Mul; break;
14556 case tok::slash: Opc = BO_Div; break;
14557 case tok::percent: Opc = BO_Rem; break;
14558 case tok::plus: Opc = BO_Add; break;
14559 case tok::minus: Opc = BO_Sub; break;
14560 case tok::lessless: Opc = BO_Shl; break;
14561 case tok::greatergreater: Opc = BO_Shr; break;
14562 case tok::lessequal: Opc = BO_LE; break;
14563 case tok::less: Opc = BO_LT; break;
14564 case tok::greaterequal: Opc = BO_GE; break;
14565 case tok::greater: Opc = BO_GT; break;
14566 case tok::exclaimequal: Opc = BO_NE; break;
14567 case tok::equalequal: Opc = BO_EQ; break;
14568 case tok::spaceship: Opc = BO_Cmp; break;
14569 case tok::amp: Opc = BO_And; break;
14570 case tok::caret: Opc = BO_Xor; break;
14571 case tok::pipe: Opc = BO_Or; break;
14572 case tok::ampamp: Opc = BO_LAnd; break;
14573 case tok::pipepipe: Opc = BO_LOr; break;
14574 case tok::equal: Opc = BO_Assign; break;
14575 case tok::starequal: Opc = BO_MulAssign; break;
14576 case tok::slashequal: Opc = BO_DivAssign; break;
14577 case tok::percentequal: Opc = BO_RemAssign; break;
14578 case tok::plusequal: Opc = BO_AddAssign; break;
14579 case tok::minusequal: Opc = BO_SubAssign; break;
14580 case tok::lesslessequal: Opc = BO_ShlAssign; break;
14581 case tok::greatergreaterequal: Opc = BO_ShrAssign; break;
14582 case tok::ampequal: Opc = BO_AndAssign; break;
14583 case tok::caretequal: Opc = BO_XorAssign; break;
14584 case tok::pipeequal: Opc = BO_OrAssign; break;
14585 case tok::comma: Opc = BO_Comma; break;
14586 }
14587 return Opc;
14588 }
14589
ConvertTokenKindToUnaryOpcode(tok::TokenKind Kind)14590 static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
14591 tok::TokenKind Kind) {
14592 UnaryOperatorKind Opc;
14593 switch (Kind) {
14594 default: llvm_unreachable("Unknown unary op!");
14595 case tok::plusplus: Opc = UO_PreInc; break;
14596 case tok::minusminus: Opc = UO_PreDec; break;
14597 case tok::amp: Opc = UO_AddrOf; break;
14598 case tok::star: Opc = UO_Deref; break;
14599 case tok::plus: Opc = UO_Plus; break;
14600 case tok::minus: Opc = UO_Minus; break;
14601 case tok::tilde: Opc = UO_Not; break;
14602 case tok::exclaim: Opc = UO_LNot; break;
14603 case tok::kw___real: Opc = UO_Real; break;
14604 case tok::kw___imag: Opc = UO_Imag; break;
14605 case tok::kw___extension__: Opc = UO_Extension; break;
14606 }
14607 return Opc;
14608 }
14609
14610 const FieldDecl *
getSelfAssignmentClassMemberCandidate(const ValueDecl * SelfAssigned)14611 Sema::getSelfAssignmentClassMemberCandidate(const ValueDecl *SelfAssigned) {
14612 // Explore the case for adding 'this->' to the LHS of a self assignment, very
14613 // common for setters.
14614 // struct A {
14615 // int X;
14616 // -void setX(int X) { X = X; }
14617 // +void setX(int X) { this->X = X; }
14618 // };
14619
14620 // Only consider parameters for self assignment fixes.
14621 if (!isa<ParmVarDecl>(SelfAssigned))
14622 return nullptr;
14623 const auto *Method =
14624 dyn_cast_or_null<CXXMethodDecl>(getCurFunctionDecl(true));
14625 if (!Method)
14626 return nullptr;
14627
14628 const CXXRecordDecl *Parent = Method->getParent();
14629 // In theory this is fixable if the lambda explicitly captures this, but
14630 // that's added complexity that's rarely going to be used.
14631 if (Parent->isLambda())
14632 return nullptr;
14633
14634 // FIXME: Use an actual Lookup operation instead of just traversing fields
14635 // in order to get base class fields.
14636 auto Field =
14637 llvm::find_if(Parent->fields(),
14638 [Name(SelfAssigned->getDeclName())](const FieldDecl *F) {
14639 return F->getDeclName() == Name;
14640 });
14641 return (Field != Parent->field_end()) ? *Field : nullptr;
14642 }
14643
14644 /// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
14645 /// This warning suppressed in the event of macro expansions.
DiagnoseSelfAssignment(Sema & S,Expr * LHSExpr,Expr * RHSExpr,SourceLocation OpLoc,bool IsBuiltin)14646 static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr,
14647 SourceLocation OpLoc, bool IsBuiltin) {
14648 if (S.inTemplateInstantiation())
14649 return;
14650 if (S.isUnevaluatedContext())
14651 return;
14652 if (OpLoc.isInvalid() || OpLoc.isMacroID())
14653 return;
14654 LHSExpr = LHSExpr->IgnoreParenImpCasts();
14655 RHSExpr = RHSExpr->IgnoreParenImpCasts();
14656 const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
14657 const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
14658 if (!LHSDeclRef || !RHSDeclRef ||
14659 LHSDeclRef->getLocation().isMacroID() ||
14660 RHSDeclRef->getLocation().isMacroID())
14661 return;
14662 const ValueDecl *LHSDecl =
14663 cast<ValueDecl>(LHSDeclRef->getDecl()->getCanonicalDecl());
14664 const ValueDecl *RHSDecl =
14665 cast<ValueDecl>(RHSDeclRef->getDecl()->getCanonicalDecl());
14666 if (LHSDecl != RHSDecl)
14667 return;
14668 if (LHSDecl->getType().isVolatileQualified())
14669 return;
14670 if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
14671 if (RefTy->getPointeeType().isVolatileQualified())
14672 return;
14673
14674 auto Diag = S.Diag(OpLoc, IsBuiltin ? diag::warn_self_assignment_builtin
14675 : diag::warn_self_assignment_overloaded)
14676 << LHSDeclRef->getType() << LHSExpr->getSourceRange()
14677 << RHSExpr->getSourceRange();
14678 if (const FieldDecl *SelfAssignField =
14679 S.getSelfAssignmentClassMemberCandidate(RHSDecl))
14680 Diag << 1 << SelfAssignField
14681 << FixItHint::CreateInsertion(LHSDeclRef->getBeginLoc(), "this->");
14682 else
14683 Diag << 0;
14684 }
14685
14686 /// Check if a bitwise-& is performed on an Objective-C pointer. This
14687 /// is usually indicative of introspection within the Objective-C pointer.
checkObjCPointerIntrospection(Sema & S,ExprResult & L,ExprResult & R,SourceLocation OpLoc)14688 static void checkObjCPointerIntrospection(Sema &S, ExprResult &L, ExprResult &R,
14689 SourceLocation OpLoc) {
14690 if (!S.getLangOpts().ObjC)
14691 return;
14692
14693 const Expr *ObjCPointerExpr = nullptr, *OtherExpr = nullptr;
14694 const Expr *LHS = L.get();
14695 const Expr *RHS = R.get();
14696
14697 if (LHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
14698 ObjCPointerExpr = LHS;
14699 OtherExpr = RHS;
14700 }
14701 else if (RHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
14702 ObjCPointerExpr = RHS;
14703 OtherExpr = LHS;
14704 }
14705
14706 // This warning is deliberately made very specific to reduce false
14707 // positives with logic that uses '&' for hashing. This logic mainly
14708 // looks for code trying to introspect into tagged pointers, which
14709 // code should generally never do.
14710 if (ObjCPointerExpr && isa<IntegerLiteral>(OtherExpr->IgnoreParenCasts())) {
14711 unsigned Diag = diag::warn_objc_pointer_masking;
14712 // Determine if we are introspecting the result of performSelectorXXX.
14713 const Expr *Ex = ObjCPointerExpr->IgnoreParenCasts();
14714 // Special case messages to -performSelector and friends, which
14715 // can return non-pointer values boxed in a pointer value.
14716 // Some clients may wish to silence warnings in this subcase.
14717 if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(Ex)) {
14718 Selector S = ME->getSelector();
14719 StringRef SelArg0 = S.getNameForSlot(0);
14720 if (SelArg0.startswith("performSelector"))
14721 Diag = diag::warn_objc_pointer_masking_performSelector;
14722 }
14723
14724 S.Diag(OpLoc, Diag)
14725 << ObjCPointerExpr->getSourceRange();
14726 }
14727 }
14728
getDeclFromExpr(Expr * E)14729 static NamedDecl *getDeclFromExpr(Expr *E) {
14730 if (!E)
14731 return nullptr;
14732 if (auto *DRE = dyn_cast<DeclRefExpr>(E))
14733 return DRE->getDecl();
14734 if (auto *ME = dyn_cast<MemberExpr>(E))
14735 return ME->getMemberDecl();
14736 if (auto *IRE = dyn_cast<ObjCIvarRefExpr>(E))
14737 return IRE->getDecl();
14738 return nullptr;
14739 }
14740
14741 // This helper function promotes a binary operator's operands (which are of a
14742 // half vector type) to a vector of floats and then truncates the result to
14743 // a vector of either half or short.
convertHalfVecBinOp(Sema & S,ExprResult LHS,ExprResult RHS,BinaryOperatorKind Opc,QualType ResultTy,ExprValueKind VK,ExprObjectKind OK,bool IsCompAssign,SourceLocation OpLoc,FPOptionsOverride FPFeatures)14744 static ExprResult convertHalfVecBinOp(Sema &S, ExprResult LHS, ExprResult RHS,
14745 BinaryOperatorKind Opc, QualType ResultTy,
14746 ExprValueKind VK, ExprObjectKind OK,
14747 bool IsCompAssign, SourceLocation OpLoc,
14748 FPOptionsOverride FPFeatures) {
14749 auto &Context = S.getASTContext();
14750 assert((isVector(ResultTy, Context.HalfTy) ||
14751 isVector(ResultTy, Context.ShortTy)) &&
14752 "Result must be a vector of half or short");
14753 assert(isVector(LHS.get()->getType(), Context.HalfTy) &&
14754 isVector(RHS.get()->getType(), Context.HalfTy) &&
14755 "both operands expected to be a half vector");
14756
14757 RHS = convertVector(RHS.get(), Context.FloatTy, S);
14758 QualType BinOpResTy = RHS.get()->getType();
14759
14760 // If Opc is a comparison, ResultType is a vector of shorts. In that case,
14761 // change BinOpResTy to a vector of ints.
14762 if (isVector(ResultTy, Context.ShortTy))
14763 BinOpResTy = S.GetSignedVectorType(BinOpResTy);
14764
14765 if (IsCompAssign)
14766 return CompoundAssignOperator::Create(Context, LHS.get(), RHS.get(), Opc,
14767 ResultTy, VK, OK, OpLoc, FPFeatures,
14768 BinOpResTy, BinOpResTy);
14769
14770 LHS = convertVector(LHS.get(), Context.FloatTy, S);
14771 auto *BO = BinaryOperator::Create(Context, LHS.get(), RHS.get(), Opc,
14772 BinOpResTy, VK, OK, OpLoc, FPFeatures);
14773 return convertVector(BO, ResultTy->castAs<VectorType>()->getElementType(), S);
14774 }
14775
14776 static std::pair<ExprResult, ExprResult>
CorrectDelayedTyposInBinOp(Sema & S,BinaryOperatorKind Opc,Expr * LHSExpr,Expr * RHSExpr)14777 CorrectDelayedTyposInBinOp(Sema &S, BinaryOperatorKind Opc, Expr *LHSExpr,
14778 Expr *RHSExpr) {
14779 ExprResult LHS = LHSExpr, RHS = RHSExpr;
14780 if (!S.Context.isDependenceAllowed()) {
14781 // C cannot handle TypoExpr nodes on either side of a binop because it
14782 // doesn't handle dependent types properly, so make sure any TypoExprs have
14783 // been dealt with before checking the operands.
14784 LHS = S.CorrectDelayedTyposInExpr(LHS);
14785 RHS = S.CorrectDelayedTyposInExpr(
14786 RHS, /*InitDecl=*/nullptr, /*RecoverUncorrectedTypos=*/false,
14787 [Opc, LHS](Expr *E) {
14788 if (Opc != BO_Assign)
14789 return ExprResult(E);
14790 // Avoid correcting the RHS to the same Expr as the LHS.
14791 Decl *D = getDeclFromExpr(E);
14792 return (D && D == getDeclFromExpr(LHS.get())) ? ExprError() : E;
14793 });
14794 }
14795 return std::make_pair(LHS, RHS);
14796 }
14797
14798 /// Returns true if conversion between vectors of halfs and vectors of floats
14799 /// is needed.
needsConversionOfHalfVec(bool OpRequiresConversion,ASTContext & Ctx,Expr * E0,Expr * E1=nullptr)14800 static bool needsConversionOfHalfVec(bool OpRequiresConversion, ASTContext &Ctx,
14801 Expr *E0, Expr *E1 = nullptr) {
14802 if (!OpRequiresConversion || Ctx.getLangOpts().NativeHalfType ||
14803 Ctx.getTargetInfo().useFP16ConversionIntrinsics())
14804 return false;
14805
14806 auto HasVectorOfHalfType = [&Ctx](Expr *E) {
14807 QualType Ty = E->IgnoreImplicit()->getType();
14808
14809 // Don't promote half precision neon vectors like float16x4_t in arm_neon.h
14810 // to vectors of floats. Although the element type of the vectors is __fp16,
14811 // the vectors shouldn't be treated as storage-only types. See the
14812 // discussion here: https://reviews.llvm.org/rG825235c140e7
14813 if (const VectorType *VT = Ty->getAs<VectorType>()) {
14814 if (VT->getVectorKind() == VectorType::NeonVector)
14815 return false;
14816 return VT->getElementType().getCanonicalType() == Ctx.HalfTy;
14817 }
14818 return false;
14819 };
14820
14821 return HasVectorOfHalfType(E0) && (!E1 || HasVectorOfHalfType(E1));
14822 }
14823
14824 /// CreateBuiltinBinOp - Creates a new built-in binary operation with
14825 /// operator @p Opc at location @c TokLoc. This routine only supports
14826 /// built-in operations; ActOnBinOp handles overloaded operators.
CreateBuiltinBinOp(SourceLocation OpLoc,BinaryOperatorKind Opc,Expr * LHSExpr,Expr * RHSExpr)14827 ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
14828 BinaryOperatorKind Opc,
14829 Expr *LHSExpr, Expr *RHSExpr) {
14830 if (getLangOpts().CPlusPlus11 && isa<InitListExpr>(RHSExpr)) {
14831 // The syntax only allows initializer lists on the RHS of assignment,
14832 // so we don't need to worry about accepting invalid code for
14833 // non-assignment operators.
14834 // C++11 5.17p9:
14835 // The meaning of x = {v} [...] is that of x = T(v) [...]. The meaning
14836 // of x = {} is x = T().
14837 InitializationKind Kind = InitializationKind::CreateDirectList(
14838 RHSExpr->getBeginLoc(), RHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
14839 InitializedEntity Entity =
14840 InitializedEntity::InitializeTemporary(LHSExpr->getType());
14841 InitializationSequence InitSeq(*this, Entity, Kind, RHSExpr);
14842 ExprResult Init = InitSeq.Perform(*this, Entity, Kind, RHSExpr);
14843 if (Init.isInvalid())
14844 return Init;
14845 RHSExpr = Init.get();
14846 }
14847
14848 ExprResult LHS = LHSExpr, RHS = RHSExpr;
14849 QualType ResultTy; // Result type of the binary operator.
14850 // The following two variables are used for compound assignment operators
14851 QualType CompLHSTy; // Type of LHS after promotions for computation
14852 QualType CompResultTy; // Type of computation result
14853 ExprValueKind VK = VK_PRValue;
14854 ExprObjectKind OK = OK_Ordinary;
14855 bool ConvertHalfVec = false;
14856
14857 std::tie(LHS, RHS) = CorrectDelayedTyposInBinOp(*this, Opc, LHSExpr, RHSExpr);
14858 if (!LHS.isUsable() || !RHS.isUsable())
14859 return ExprError();
14860
14861 if (getLangOpts().OpenCL) {
14862 QualType LHSTy = LHSExpr->getType();
14863 QualType RHSTy = RHSExpr->getType();
14864 // OpenCLC v2.0 s6.13.11.1 allows atomic variables to be initialized by
14865 // the ATOMIC_VAR_INIT macro.
14866 if (LHSTy->isAtomicType() || RHSTy->isAtomicType()) {
14867 SourceRange SR(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
14868 if (BO_Assign == Opc)
14869 Diag(OpLoc, diag::err_opencl_atomic_init) << 0 << SR;
14870 else
14871 ResultTy = InvalidOperands(OpLoc, LHS, RHS);
14872 return ExprError();
14873 }
14874
14875 // OpenCL special types - image, sampler, pipe, and blocks are to be used
14876 // only with a builtin functions and therefore should be disallowed here.
14877 if (LHSTy->isImageType() || RHSTy->isImageType() ||
14878 LHSTy->isSamplerT() || RHSTy->isSamplerT() ||
14879 LHSTy->isPipeType() || RHSTy->isPipeType() ||
14880 LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
14881 ResultTy = InvalidOperands(OpLoc, LHS, RHS);
14882 return ExprError();
14883 }
14884 }
14885
14886 checkTypeSupport(LHSExpr->getType(), OpLoc, /*ValueDecl*/ nullptr);
14887 checkTypeSupport(RHSExpr->getType(), OpLoc, /*ValueDecl*/ nullptr);
14888
14889 switch (Opc) {
14890 case BO_Assign:
14891 ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, QualType(), Opc);
14892 if (getLangOpts().CPlusPlus &&
14893 LHS.get()->getObjectKind() != OK_ObjCProperty) {
14894 VK = LHS.get()->getValueKind();
14895 OK = LHS.get()->getObjectKind();
14896 }
14897 if (!ResultTy.isNull()) {
14898 DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc, true);
14899 DiagnoseSelfMove(LHS.get(), RHS.get(), OpLoc);
14900
14901 // Avoid copying a block to the heap if the block is assigned to a local
14902 // auto variable that is declared in the same scope as the block. This
14903 // optimization is unsafe if the local variable is declared in an outer
14904 // scope. For example:
14905 //
14906 // BlockTy b;
14907 // {
14908 // b = ^{...};
14909 // }
14910 // // It is unsafe to invoke the block here if it wasn't copied to the
14911 // // heap.
14912 // b();
14913
14914 if (auto *BE = dyn_cast<BlockExpr>(RHS.get()->IgnoreParens()))
14915 if (auto *DRE = dyn_cast<DeclRefExpr>(LHS.get()->IgnoreParens()))
14916 if (auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
14917 if (VD->hasLocalStorage() && getCurScope()->isDeclScope(VD))
14918 BE->getBlockDecl()->setCanAvoidCopyToHeap();
14919
14920 if (LHS.get()->getType().hasNonTrivialToPrimitiveCopyCUnion())
14921 checkNonTrivialCUnion(LHS.get()->getType(), LHS.get()->getExprLoc(),
14922 NTCUC_Assignment, NTCUK_Copy);
14923 }
14924 RecordModifiableNonNullParam(*this, LHS.get());
14925 break;
14926 case BO_PtrMemD:
14927 case BO_PtrMemI:
14928 ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc,
14929 Opc == BO_PtrMemI);
14930 break;
14931 case BO_Mul:
14932 case BO_Div:
14933 ConvertHalfVec = true;
14934 ResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, false,
14935 Opc == BO_Div);
14936 break;
14937 case BO_Rem:
14938 ResultTy = CheckRemainderOperands(LHS, RHS, OpLoc);
14939 break;
14940 case BO_Add:
14941 ConvertHalfVec = true;
14942 ResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc);
14943 break;
14944 case BO_Sub:
14945 ConvertHalfVec = true;
14946 ResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc);
14947 break;
14948 case BO_Shl:
14949 case BO_Shr:
14950 ResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc);
14951 break;
14952 case BO_LE:
14953 case BO_LT:
14954 case BO_GE:
14955 case BO_GT:
14956 ConvertHalfVec = true;
14957 ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
14958 break;
14959 case BO_EQ:
14960 case BO_NE:
14961 ConvertHalfVec = true;
14962 ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
14963 break;
14964 case BO_Cmp:
14965 ConvertHalfVec = true;
14966 ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
14967 assert(ResultTy.isNull() || ResultTy->getAsCXXRecordDecl());
14968 break;
14969 case BO_And:
14970 checkObjCPointerIntrospection(*this, LHS, RHS, OpLoc);
14971 LLVM_FALLTHROUGH;
14972 case BO_Xor:
14973 case BO_Or:
14974 ResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, Opc);
14975 break;
14976 case BO_LAnd:
14977 case BO_LOr:
14978 ConvertHalfVec = true;
14979 ResultTy = CheckLogicalOperands(LHS, RHS, OpLoc, Opc);
14980 break;
14981 case BO_MulAssign:
14982 case BO_DivAssign:
14983 ConvertHalfVec = true;
14984 CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, true,
14985 Opc == BO_DivAssign);
14986 CompLHSTy = CompResultTy;
14987 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
14988 ResultTy =
14989 CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
14990 break;
14991 case BO_RemAssign:
14992 CompResultTy = CheckRemainderOperands(LHS, RHS, OpLoc, true);
14993 CompLHSTy = CompResultTy;
14994 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
14995 ResultTy =
14996 CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
14997 break;
14998 case BO_AddAssign:
14999 ConvertHalfVec = true;
15000 CompResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc, &CompLHSTy);
15001 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15002 ResultTy =
15003 CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
15004 break;
15005 case BO_SubAssign:
15006 ConvertHalfVec = true;
15007 CompResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc, &CompLHSTy);
15008 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15009 ResultTy =
15010 CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
15011 break;
15012 case BO_ShlAssign:
15013 case BO_ShrAssign:
15014 CompResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc, true);
15015 CompLHSTy = CompResultTy;
15016 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15017 ResultTy =
15018 CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
15019 break;
15020 case BO_AndAssign:
15021 case BO_OrAssign: // fallthrough
15022 DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc, true);
15023 LLVM_FALLTHROUGH;
15024 case BO_XorAssign:
15025 CompResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, Opc);
15026 CompLHSTy = CompResultTy;
15027 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15028 ResultTy =
15029 CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
15030 break;
15031 case BO_Comma:
15032 ResultTy = CheckCommaOperands(*this, LHS, RHS, OpLoc);
15033 if (getLangOpts().CPlusPlus && !RHS.isInvalid()) {
15034 VK = RHS.get()->getValueKind();
15035 OK = RHS.get()->getObjectKind();
15036 }
15037 break;
15038 }
15039 if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid())
15040 return ExprError();
15041
15042 // Some of the binary operations require promoting operands of half vector to
15043 // float vectors and truncating the result back to half vector. For now, we do
15044 // this only when HalfArgsAndReturn is set (that is, when the target is arm or
15045 // arm64).
15046 assert(
15047 (Opc == BO_Comma || isVector(RHS.get()->getType(), Context.HalfTy) ==
15048 isVector(LHS.get()->getType(), Context.HalfTy)) &&
15049 "both sides are half vectors or neither sides are");
15050 ConvertHalfVec =
15051 needsConversionOfHalfVec(ConvertHalfVec, Context, LHS.get(), RHS.get());
15052
15053 // Check for array bounds violations for both sides of the BinaryOperator
15054 CheckArrayAccess(LHS.get());
15055 CheckArrayAccess(RHS.get());
15056
15057 if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(LHS.get()->IgnoreParenCasts())) {
15058 NamedDecl *ObjectSetClass = LookupSingleName(TUScope,
15059 &Context.Idents.get("object_setClass"),
15060 SourceLocation(), LookupOrdinaryName);
15061 if (ObjectSetClass && isa<ObjCIsaExpr>(LHS.get())) {
15062 SourceLocation RHSLocEnd = getLocForEndOfToken(RHS.get()->getEndLoc());
15063 Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign)
15064 << FixItHint::CreateInsertion(LHS.get()->getBeginLoc(),
15065 "object_setClass(")
15066 << FixItHint::CreateReplacement(SourceRange(OISA->getOpLoc(), OpLoc),
15067 ",")
15068 << FixItHint::CreateInsertion(RHSLocEnd, ")");
15069 }
15070 else
15071 Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign);
15072 }
15073 else if (const ObjCIvarRefExpr *OIRE =
15074 dyn_cast<ObjCIvarRefExpr>(LHS.get()->IgnoreParenCasts()))
15075 DiagnoseDirectIsaAccess(*this, OIRE, OpLoc, RHS.get());
15076
15077 // Opc is not a compound assignment if CompResultTy is null.
15078 if (CompResultTy.isNull()) {
15079 if (ConvertHalfVec)
15080 return convertHalfVecBinOp(*this, LHS, RHS, Opc, ResultTy, VK, OK, false,
15081 OpLoc, CurFPFeatureOverrides());
15082 return BinaryOperator::Create(Context, LHS.get(), RHS.get(), Opc, ResultTy,
15083 VK, OK, OpLoc, CurFPFeatureOverrides());
15084 }
15085
15086 // Handle compound assignments.
15087 if (getLangOpts().CPlusPlus && LHS.get()->getObjectKind() !=
15088 OK_ObjCProperty) {
15089 VK = VK_LValue;
15090 OK = LHS.get()->getObjectKind();
15091 }
15092
15093 // The LHS is not converted to the result type for fixed-point compound
15094 // assignment as the common type is computed on demand. Reset the CompLHSTy
15095 // to the LHS type we would have gotten after unary conversions.
15096 if (CompResultTy->isFixedPointType())
15097 CompLHSTy = UsualUnaryConversions(LHS.get()).get()->getType();
15098
15099 if (ConvertHalfVec)
15100 return convertHalfVecBinOp(*this, LHS, RHS, Opc, ResultTy, VK, OK, true,
15101 OpLoc, CurFPFeatureOverrides());
15102
15103 return CompoundAssignOperator::Create(
15104 Context, LHS.get(), RHS.get(), Opc, ResultTy, VK, OK, OpLoc,
15105 CurFPFeatureOverrides(), CompLHSTy, CompResultTy);
15106 }
15107
15108 /// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
15109 /// operators are mixed in a way that suggests that the programmer forgot that
15110 /// comparison operators have higher precedence. The most typical example of
15111 /// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
DiagnoseBitwisePrecedence(Sema & Self,BinaryOperatorKind Opc,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)15112 static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
15113 SourceLocation OpLoc, Expr *LHSExpr,
15114 Expr *RHSExpr) {
15115 BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHSExpr);
15116 BinaryOperator *RHSBO = dyn_cast<BinaryOperator>(RHSExpr);
15117
15118 // Check that one of the sides is a comparison operator and the other isn't.
15119 bool isLeftComp = LHSBO && LHSBO->isComparisonOp();
15120 bool isRightComp = RHSBO && RHSBO->isComparisonOp();
15121 if (isLeftComp == isRightComp)
15122 return;
15123
15124 // Bitwise operations are sometimes used as eager logical ops.
15125 // Don't diagnose this.
15126 bool isLeftBitwise = LHSBO && LHSBO->isBitwiseOp();
15127 bool isRightBitwise = RHSBO && RHSBO->isBitwiseOp();
15128 if (isLeftBitwise || isRightBitwise)
15129 return;
15130
15131 SourceRange DiagRange = isLeftComp
15132 ? SourceRange(LHSExpr->getBeginLoc(), OpLoc)
15133 : SourceRange(OpLoc, RHSExpr->getEndLoc());
15134 StringRef OpStr = isLeftComp ? LHSBO->getOpcodeStr() : RHSBO->getOpcodeStr();
15135 SourceRange ParensRange =
15136 isLeftComp
15137 ? SourceRange(LHSBO->getRHS()->getBeginLoc(), RHSExpr->getEndLoc())
15138 : SourceRange(LHSExpr->getBeginLoc(), RHSBO->getLHS()->getEndLoc());
15139
15140 Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
15141 << DiagRange << BinaryOperator::getOpcodeStr(Opc) << OpStr;
15142 SuggestParentheses(Self, OpLoc,
15143 Self.PDiag(diag::note_precedence_silence) << OpStr,
15144 (isLeftComp ? LHSExpr : RHSExpr)->getSourceRange());
15145 SuggestParentheses(Self, OpLoc,
15146 Self.PDiag(diag::note_precedence_bitwise_first)
15147 << BinaryOperator::getOpcodeStr(Opc),
15148 ParensRange);
15149 }
15150
15151 /// It accepts a '&&' expr that is inside a '||' one.
15152 /// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
15153 /// in parentheses.
15154 static void
EmitDiagnosticForLogicalAndInLogicalOr(Sema & Self,SourceLocation OpLoc,BinaryOperator * Bop)15155 EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
15156 BinaryOperator *Bop) {
15157 assert(Bop->getOpcode() == BO_LAnd);
15158 Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or)
15159 << Bop->getSourceRange() << OpLoc;
15160 SuggestParentheses(Self, Bop->getOperatorLoc(),
15161 Self.PDiag(diag::note_precedence_silence)
15162 << Bop->getOpcodeStr(),
15163 Bop->getSourceRange());
15164 }
15165
15166 /// Returns true if the given expression can be evaluated as a constant
15167 /// 'true'.
EvaluatesAsTrue(Sema & S,Expr * E)15168 static bool EvaluatesAsTrue(Sema &S, Expr *E) {
15169 bool Res;
15170 return !E->isValueDependent() &&
15171 E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && Res;
15172 }
15173
15174 /// Returns true if the given expression can be evaluated as a constant
15175 /// 'false'.
EvaluatesAsFalse(Sema & S,Expr * E)15176 static bool EvaluatesAsFalse(Sema &S, Expr *E) {
15177 bool Res;
15178 return !E->isValueDependent() &&
15179 E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && !Res;
15180 }
15181
15182 /// Look for '&&' in the left hand of a '||' expr.
DiagnoseLogicalAndInLogicalOrLHS(Sema & S,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)15183 static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
15184 Expr *LHSExpr, Expr *RHSExpr) {
15185 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(LHSExpr)) {
15186 if (Bop->getOpcode() == BO_LAnd) {
15187 // If it's "a && b || 0" don't warn since the precedence doesn't matter.
15188 if (EvaluatesAsFalse(S, RHSExpr))
15189 return;
15190 // If it's "1 && a || b" don't warn since the precedence doesn't matter.
15191 if (!EvaluatesAsTrue(S, Bop->getLHS()))
15192 return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
15193 } else if (Bop->getOpcode() == BO_LOr) {
15194 if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
15195 // If it's "a || b && 1 || c" we didn't warn earlier for
15196 // "a || b && 1", but warn now.
15197 if (RBop->getOpcode() == BO_LAnd && EvaluatesAsTrue(S, RBop->getRHS()))
15198 return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
15199 }
15200 }
15201 }
15202 }
15203
15204 /// Look for '&&' in the right hand of a '||' expr.
DiagnoseLogicalAndInLogicalOrRHS(Sema & S,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)15205 static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
15206 Expr *LHSExpr, Expr *RHSExpr) {
15207 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(RHSExpr)) {
15208 if (Bop->getOpcode() == BO_LAnd) {
15209 // If it's "0 || a && b" don't warn since the precedence doesn't matter.
15210 if (EvaluatesAsFalse(S, LHSExpr))
15211 return;
15212 // If it's "a || b && 1" don't warn since the precedence doesn't matter.
15213 if (!EvaluatesAsTrue(S, Bop->getRHS()))
15214 return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
15215 }
15216 }
15217 }
15218
15219 /// Look for bitwise op in the left or right hand of a bitwise op with
15220 /// lower precedence and emit a diagnostic together with a fixit hint that wraps
15221 /// the '&' expression in parentheses.
DiagnoseBitwiseOpInBitwiseOp(Sema & S,BinaryOperatorKind Opc,SourceLocation OpLoc,Expr * SubExpr)15222 static void DiagnoseBitwiseOpInBitwiseOp(Sema &S, BinaryOperatorKind Opc,
15223 SourceLocation OpLoc, Expr *SubExpr) {
15224 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
15225 if (Bop->isBitwiseOp() && Bop->getOpcode() < Opc) {
15226 S.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_op_in_bitwise_op)
15227 << Bop->getOpcodeStr() << BinaryOperator::getOpcodeStr(Opc)
15228 << Bop->getSourceRange() << OpLoc;
15229 SuggestParentheses(S, Bop->getOperatorLoc(),
15230 S.PDiag(diag::note_precedence_silence)
15231 << Bop->getOpcodeStr(),
15232 Bop->getSourceRange());
15233 }
15234 }
15235 }
15236
DiagnoseAdditionInShift(Sema & S,SourceLocation OpLoc,Expr * SubExpr,StringRef Shift)15237 static void DiagnoseAdditionInShift(Sema &S, SourceLocation OpLoc,
15238 Expr *SubExpr, StringRef Shift) {
15239 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
15240 if (Bop->getOpcode() == BO_Add || Bop->getOpcode() == BO_Sub) {
15241 StringRef Op = Bop->getOpcodeStr();
15242 S.Diag(Bop->getOperatorLoc(), diag::warn_addition_in_bitshift)
15243 << Bop->getSourceRange() << OpLoc << Shift << Op;
15244 SuggestParentheses(S, Bop->getOperatorLoc(),
15245 S.PDiag(diag::note_precedence_silence) << Op,
15246 Bop->getSourceRange());
15247 }
15248 }
15249 }
15250
DiagnoseShiftCompare(Sema & S,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)15251 static void DiagnoseShiftCompare(Sema &S, SourceLocation OpLoc,
15252 Expr *LHSExpr, Expr *RHSExpr) {
15253 CXXOperatorCallExpr *OCE = dyn_cast<CXXOperatorCallExpr>(LHSExpr);
15254 if (!OCE)
15255 return;
15256
15257 FunctionDecl *FD = OCE->getDirectCallee();
15258 if (!FD || !FD->isOverloadedOperator())
15259 return;
15260
15261 OverloadedOperatorKind Kind = FD->getOverloadedOperator();
15262 if (Kind != OO_LessLess && Kind != OO_GreaterGreater)
15263 return;
15264
15265 S.Diag(OpLoc, diag::warn_overloaded_shift_in_comparison)
15266 << LHSExpr->getSourceRange() << RHSExpr->getSourceRange()
15267 << (Kind == OO_LessLess);
15268 SuggestParentheses(S, OCE->getOperatorLoc(),
15269 S.PDiag(diag::note_precedence_silence)
15270 << (Kind == OO_LessLess ? "<<" : ">>"),
15271 OCE->getSourceRange());
15272 SuggestParentheses(
15273 S, OpLoc, S.PDiag(diag::note_evaluate_comparison_first),
15274 SourceRange(OCE->getArg(1)->getBeginLoc(), RHSExpr->getEndLoc()));
15275 }
15276
15277 /// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
15278 /// precedence.
DiagnoseBinOpPrecedence(Sema & Self,BinaryOperatorKind Opc,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)15279 static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
15280 SourceLocation OpLoc, Expr *LHSExpr,
15281 Expr *RHSExpr){
15282 // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
15283 if (BinaryOperator::isBitwiseOp(Opc))
15284 DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr);
15285
15286 // Diagnose "arg1 & arg2 | arg3"
15287 if ((Opc == BO_Or || Opc == BO_Xor) &&
15288 !OpLoc.isMacroID()/* Don't warn in macros. */) {
15289 DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, LHSExpr);
15290 DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, RHSExpr);
15291 }
15292
15293 // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
15294 // We don't warn for 'assert(a || b && "bad")' since this is safe.
15295 if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
15296 DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, LHSExpr, RHSExpr);
15297 DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, LHSExpr, RHSExpr);
15298 }
15299
15300 if ((Opc == BO_Shl && LHSExpr->getType()->isIntegralType(Self.getASTContext()))
15301 || Opc == BO_Shr) {
15302 StringRef Shift = BinaryOperator::getOpcodeStr(Opc);
15303 DiagnoseAdditionInShift(Self, OpLoc, LHSExpr, Shift);
15304 DiagnoseAdditionInShift(Self, OpLoc, RHSExpr, Shift);
15305 }
15306
15307 // Warn on overloaded shift operators and comparisons, such as:
15308 // cout << 5 == 4;
15309 if (BinaryOperator::isComparisonOp(Opc))
15310 DiagnoseShiftCompare(Self, OpLoc, LHSExpr, RHSExpr);
15311 }
15312
15313 // Binary Operators. 'Tok' is the token for the operator.
ActOnBinOp(Scope * S,SourceLocation TokLoc,tok::TokenKind Kind,Expr * LHSExpr,Expr * RHSExpr)15314 ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
15315 tok::TokenKind Kind,
15316 Expr *LHSExpr, Expr *RHSExpr) {
15317 BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
15318 assert(LHSExpr && "ActOnBinOp(): missing left expression");
15319 assert(RHSExpr && "ActOnBinOp(): missing right expression");
15320
15321 // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
15322 DiagnoseBinOpPrecedence(*this, Opc, TokLoc, LHSExpr, RHSExpr);
15323
15324 return BuildBinOp(S, TokLoc, Opc, LHSExpr, RHSExpr);
15325 }
15326
LookupBinOp(Scope * S,SourceLocation OpLoc,BinaryOperatorKind Opc,UnresolvedSetImpl & Functions)15327 void Sema::LookupBinOp(Scope *S, SourceLocation OpLoc, BinaryOperatorKind Opc,
15328 UnresolvedSetImpl &Functions) {
15329 OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc);
15330 if (OverOp != OO_None && OverOp != OO_Equal)
15331 LookupOverloadedOperatorName(OverOp, S, Functions);
15332
15333 // In C++20 onwards, we may have a second operator to look up.
15334 if (getLangOpts().CPlusPlus20) {
15335 if (OverloadedOperatorKind ExtraOp = getRewrittenOverloadedOperator(OverOp))
15336 LookupOverloadedOperatorName(ExtraOp, S, Functions);
15337 }
15338 }
15339
15340 /// Build an overloaded binary operator expression in the given scope.
BuildOverloadedBinOp(Sema & S,Scope * Sc,SourceLocation OpLoc,BinaryOperatorKind Opc,Expr * LHS,Expr * RHS)15341 static ExprResult BuildOverloadedBinOp(Sema &S, Scope *Sc, SourceLocation OpLoc,
15342 BinaryOperatorKind Opc,
15343 Expr *LHS, Expr *RHS) {
15344 switch (Opc) {
15345 case BO_Assign:
15346 case BO_DivAssign:
15347 case BO_RemAssign:
15348 case BO_SubAssign:
15349 case BO_AndAssign:
15350 case BO_OrAssign:
15351 case BO_XorAssign:
15352 DiagnoseSelfAssignment(S, LHS, RHS, OpLoc, false);
15353 CheckIdentityFieldAssignment(LHS, RHS, OpLoc, S);
15354 break;
15355 default:
15356 break;
15357 }
15358
15359 // Find all of the overloaded operators visible from this point.
15360 UnresolvedSet<16> Functions;
15361 S.LookupBinOp(Sc, OpLoc, Opc, Functions);
15362
15363 // Build the (potentially-overloaded, potentially-dependent)
15364 // binary operation.
15365 return S.CreateOverloadedBinOp(OpLoc, Opc, Functions, LHS, RHS);
15366 }
15367
BuildBinOp(Scope * S,SourceLocation OpLoc,BinaryOperatorKind Opc,Expr * LHSExpr,Expr * RHSExpr)15368 ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
15369 BinaryOperatorKind Opc,
15370 Expr *LHSExpr, Expr *RHSExpr) {
15371 ExprResult LHS, RHS;
15372 std::tie(LHS, RHS) = CorrectDelayedTyposInBinOp(*this, Opc, LHSExpr, RHSExpr);
15373 if (!LHS.isUsable() || !RHS.isUsable())
15374 return ExprError();
15375 LHSExpr = LHS.get();
15376 RHSExpr = RHS.get();
15377
15378 // We want to end up calling one of checkPseudoObjectAssignment
15379 // (if the LHS is a pseudo-object), BuildOverloadedBinOp (if
15380 // both expressions are overloadable or either is type-dependent),
15381 // or CreateBuiltinBinOp (in any other case). We also want to get
15382 // any placeholder types out of the way.
15383
15384 // Handle pseudo-objects in the LHS.
15385 if (const BuiltinType *pty = LHSExpr->getType()->getAsPlaceholderType()) {
15386 // Assignments with a pseudo-object l-value need special analysis.
15387 if (pty->getKind() == BuiltinType::PseudoObject &&
15388 BinaryOperator::isAssignmentOp(Opc))
15389 return checkPseudoObjectAssignment(S, OpLoc, Opc, LHSExpr, RHSExpr);
15390
15391 // Don't resolve overloads if the other type is overloadable.
15392 if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload) {
15393 // We can't actually test that if we still have a placeholder,
15394 // though. Fortunately, none of the exceptions we see in that
15395 // code below are valid when the LHS is an overload set. Note
15396 // that an overload set can be dependently-typed, but it never
15397 // instantiates to having an overloadable type.
15398 ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
15399 if (resolvedRHS.isInvalid()) return ExprError();
15400 RHSExpr = resolvedRHS.get();
15401
15402 if (RHSExpr->isTypeDependent() ||
15403 RHSExpr->getType()->isOverloadableType())
15404 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
15405 }
15406
15407 // If we're instantiating "a.x < b" or "A::x < b" and 'x' names a function
15408 // template, diagnose the missing 'template' keyword instead of diagnosing
15409 // an invalid use of a bound member function.
15410 //
15411 // Note that "A::x < b" might be valid if 'b' has an overloadable type due
15412 // to C++1z [over.over]/1.4, but we already checked for that case above.
15413 if (Opc == BO_LT && inTemplateInstantiation() &&
15414 (pty->getKind() == BuiltinType::BoundMember ||
15415 pty->getKind() == BuiltinType::Overload)) {
15416 auto *OE = dyn_cast<OverloadExpr>(LHSExpr);
15417 if (OE && !OE->hasTemplateKeyword() && !OE->hasExplicitTemplateArgs() &&
15418 llvm::any_of(OE->decls(), [](NamedDecl *ND) {
15419 return isa<FunctionTemplateDecl>(ND);
15420 })) {
15421 Diag(OE->getQualifier() ? OE->getQualifierLoc().getBeginLoc()
15422 : OE->getNameLoc(),
15423 diag::err_template_kw_missing)
15424 << OE->getName().getAsString() << "";
15425 return ExprError();
15426 }
15427 }
15428
15429 ExprResult LHS = CheckPlaceholderExpr(LHSExpr);
15430 if (LHS.isInvalid()) return ExprError();
15431 LHSExpr = LHS.get();
15432 }
15433
15434 // Handle pseudo-objects in the RHS.
15435 if (const BuiltinType *pty = RHSExpr->getType()->getAsPlaceholderType()) {
15436 // An overload in the RHS can potentially be resolved by the type
15437 // being assigned to.
15438 if (Opc == BO_Assign && pty->getKind() == BuiltinType::Overload) {
15439 if (getLangOpts().CPlusPlus &&
15440 (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent() ||
15441 LHSExpr->getType()->isOverloadableType()))
15442 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
15443
15444 return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
15445 }
15446
15447 // Don't resolve overloads if the other type is overloadable.
15448 if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload &&
15449 LHSExpr->getType()->isOverloadableType())
15450 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
15451
15452 ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
15453 if (!resolvedRHS.isUsable()) return ExprError();
15454 RHSExpr = resolvedRHS.get();
15455 }
15456
15457 if (getLangOpts().CPlusPlus) {
15458 // If either expression is type-dependent, always build an
15459 // overloaded op.
15460 if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
15461 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
15462
15463 // Otherwise, build an overloaded op if either expression has an
15464 // overloadable type.
15465 if (LHSExpr->getType()->isOverloadableType() ||
15466 RHSExpr->getType()->isOverloadableType())
15467 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
15468 }
15469
15470 if (getLangOpts().RecoveryAST &&
15471 (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())) {
15472 assert(!getLangOpts().CPlusPlus);
15473 assert((LHSExpr->containsErrors() || RHSExpr->containsErrors()) &&
15474 "Should only occur in error-recovery path.");
15475 if (BinaryOperator::isCompoundAssignmentOp(Opc))
15476 // C [6.15.16] p3:
15477 // An assignment expression has the value of the left operand after the
15478 // assignment, but is not an lvalue.
15479 return CompoundAssignOperator::Create(
15480 Context, LHSExpr, RHSExpr, Opc,
15481 LHSExpr->getType().getUnqualifiedType(), VK_PRValue, OK_Ordinary,
15482 OpLoc, CurFPFeatureOverrides());
15483 QualType ResultType;
15484 switch (Opc) {
15485 case BO_Assign:
15486 ResultType = LHSExpr->getType().getUnqualifiedType();
15487 break;
15488 case BO_LT:
15489 case BO_GT:
15490 case BO_LE:
15491 case BO_GE:
15492 case BO_EQ:
15493 case BO_NE:
15494 case BO_LAnd:
15495 case BO_LOr:
15496 // These operators have a fixed result type regardless of operands.
15497 ResultType = Context.IntTy;
15498 break;
15499 case BO_Comma:
15500 ResultType = RHSExpr->getType();
15501 break;
15502 default:
15503 ResultType = Context.DependentTy;
15504 break;
15505 }
15506 return BinaryOperator::Create(Context, LHSExpr, RHSExpr, Opc, ResultType,
15507 VK_PRValue, OK_Ordinary, OpLoc,
15508 CurFPFeatureOverrides());
15509 }
15510
15511 // Build a built-in binary operation.
15512 return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
15513 }
15514
isOverflowingIntegerType(ASTContext & Ctx,QualType T)15515 static bool isOverflowingIntegerType(ASTContext &Ctx, QualType T) {
15516 if (T.isNull() || T->isDependentType())
15517 return false;
15518
15519 if (!T->isPromotableIntegerType())
15520 return true;
15521
15522 return Ctx.getIntWidth(T) >= Ctx.getIntWidth(Ctx.IntTy);
15523 }
15524
CreateBuiltinUnaryOp(SourceLocation OpLoc,UnaryOperatorKind Opc,Expr * InputExpr)15525 ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
15526 UnaryOperatorKind Opc,
15527 Expr *InputExpr) {
15528 ExprResult Input = InputExpr;
15529 ExprValueKind VK = VK_PRValue;
15530 ExprObjectKind OK = OK_Ordinary;
15531 QualType resultType;
15532 bool CanOverflow = false;
15533
15534 bool ConvertHalfVec = false;
15535 if (getLangOpts().OpenCL) {
15536 QualType Ty = InputExpr->getType();
15537 // The only legal unary operation for atomics is '&'.
15538 if ((Opc != UO_AddrOf && Ty->isAtomicType()) ||
15539 // OpenCL special types - image, sampler, pipe, and blocks are to be used
15540 // only with a builtin functions and therefore should be disallowed here.
15541 (Ty->isImageType() || Ty->isSamplerT() || Ty->isPipeType()
15542 || Ty->isBlockPointerType())) {
15543 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15544 << InputExpr->getType()
15545 << Input.get()->getSourceRange());
15546 }
15547 }
15548
15549 if (getLangOpts().HLSL) {
15550 if (Opc == UO_AddrOf)
15551 return ExprError(Diag(OpLoc, diag::err_hlsl_operator_unsupported) << 0);
15552 if (Opc == UO_Deref)
15553 return ExprError(Diag(OpLoc, diag::err_hlsl_operator_unsupported) << 1);
15554 }
15555
15556 switch (Opc) {
15557 case UO_PreInc:
15558 case UO_PreDec:
15559 case UO_PostInc:
15560 case UO_PostDec:
15561 resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OK,
15562 OpLoc,
15563 Opc == UO_PreInc ||
15564 Opc == UO_PostInc,
15565 Opc == UO_PreInc ||
15566 Opc == UO_PreDec);
15567 CanOverflow = isOverflowingIntegerType(Context, resultType);
15568 break;
15569 case UO_AddrOf:
15570 resultType = CheckAddressOfOperand(Input, OpLoc);
15571 CheckAddressOfNoDeref(InputExpr);
15572 RecordModifiableNonNullParam(*this, InputExpr);
15573 break;
15574 case UO_Deref: {
15575 Input = DefaultFunctionArrayLvalueConversion(Input.get());
15576 if (Input.isInvalid()) return ExprError();
15577 resultType = CheckIndirectionOperand(*this, Input.get(), VK, OpLoc);
15578 break;
15579 }
15580 case UO_Plus:
15581 case UO_Minus:
15582 CanOverflow = Opc == UO_Minus &&
15583 isOverflowingIntegerType(Context, Input.get()->getType());
15584 Input = UsualUnaryConversions(Input.get());
15585 if (Input.isInvalid()) return ExprError();
15586 // Unary plus and minus require promoting an operand of half vector to a
15587 // float vector and truncating the result back to a half vector. For now, we
15588 // do this only when HalfArgsAndReturns is set (that is, when the target is
15589 // arm or arm64).
15590 ConvertHalfVec = needsConversionOfHalfVec(true, Context, Input.get());
15591
15592 // If the operand is a half vector, promote it to a float vector.
15593 if (ConvertHalfVec)
15594 Input = convertVector(Input.get(), Context.FloatTy, *this);
15595 resultType = Input.get()->getType();
15596 if (resultType->isDependentType())
15597 break;
15598 if (resultType->isArithmeticType()) // C99 6.5.3.3p1
15599 break;
15600 else if (resultType->isVectorType() &&
15601 // The z vector extensions don't allow + or - with bool vectors.
15602 (!Context.getLangOpts().ZVector ||
15603 resultType->castAs<VectorType>()->getVectorKind() !=
15604 VectorType::AltiVecBool))
15605 break;
15606 else if (resultType->isVLSTBuiltinType()) // SVE vectors allow + and -
15607 break;
15608 else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6
15609 Opc == UO_Plus &&
15610 resultType->isPointerType())
15611 break;
15612
15613 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15614 << resultType << Input.get()->getSourceRange());
15615
15616 case UO_Not: // bitwise complement
15617 Input = UsualUnaryConversions(Input.get());
15618 if (Input.isInvalid())
15619 return ExprError();
15620 resultType = Input.get()->getType();
15621 if (resultType->isDependentType())
15622 break;
15623 // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
15624 if (resultType->isComplexType() || resultType->isComplexIntegerType())
15625 // C99 does not support '~' for complex conjugation.
15626 Diag(OpLoc, diag::ext_integer_complement_complex)
15627 << resultType << Input.get()->getSourceRange();
15628 else if (resultType->hasIntegerRepresentation())
15629 break;
15630 else if (resultType->isExtVectorType() && Context.getLangOpts().OpenCL) {
15631 // OpenCL v1.1 s6.3.f: The bitwise operator not (~) does not operate
15632 // on vector float types.
15633 QualType T = resultType->castAs<ExtVectorType>()->getElementType();
15634 if (!T->isIntegerType())
15635 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15636 << resultType << Input.get()->getSourceRange());
15637 } else {
15638 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15639 << resultType << Input.get()->getSourceRange());
15640 }
15641 break;
15642
15643 case UO_LNot: // logical negation
15644 // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
15645 Input = DefaultFunctionArrayLvalueConversion(Input.get());
15646 if (Input.isInvalid()) return ExprError();
15647 resultType = Input.get()->getType();
15648
15649 // Though we still have to promote half FP to float...
15650 if (resultType->isHalfType() && !Context.getLangOpts().NativeHalfType) {
15651 Input = ImpCastExprToType(Input.get(), Context.FloatTy, CK_FloatingCast).get();
15652 resultType = Context.FloatTy;
15653 }
15654
15655 if (resultType->isDependentType())
15656 break;
15657 if (resultType->isScalarType() && !isScopedEnumerationType(resultType)) {
15658 // C99 6.5.3.3p1: ok, fallthrough;
15659 if (Context.getLangOpts().CPlusPlus) {
15660 // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
15661 // operand contextually converted to bool.
15662 Input = ImpCastExprToType(Input.get(), Context.BoolTy,
15663 ScalarTypeToBooleanCastKind(resultType));
15664 } else if (Context.getLangOpts().OpenCL &&
15665 Context.getLangOpts().OpenCLVersion < 120) {
15666 // OpenCL v1.1 6.3.h: The logical operator not (!) does not
15667 // operate on scalar float types.
15668 if (!resultType->isIntegerType() && !resultType->isPointerType())
15669 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15670 << resultType << Input.get()->getSourceRange());
15671 }
15672 } else if (resultType->isExtVectorType()) {
15673 if (Context.getLangOpts().OpenCL &&
15674 Context.getLangOpts().getOpenCLCompatibleVersion() < 120) {
15675 // OpenCL v1.1 6.3.h: The logical operator not (!) does not
15676 // operate on vector float types.
15677 QualType T = resultType->castAs<ExtVectorType>()->getElementType();
15678 if (!T->isIntegerType())
15679 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15680 << resultType << Input.get()->getSourceRange());
15681 }
15682 // Vector logical not returns the signed variant of the operand type.
15683 resultType = GetSignedVectorType(resultType);
15684 break;
15685 } else if (Context.getLangOpts().CPlusPlus && resultType->isVectorType()) {
15686 const VectorType *VTy = resultType->castAs<VectorType>();
15687 if (VTy->getVectorKind() != VectorType::GenericVector)
15688 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15689 << resultType << Input.get()->getSourceRange());
15690
15691 // Vector logical not returns the signed variant of the operand type.
15692 resultType = GetSignedVectorType(resultType);
15693 break;
15694 } else {
15695 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15696 << resultType << Input.get()->getSourceRange());
15697 }
15698
15699 // LNot always has type int. C99 6.5.3.3p5.
15700 // In C++, it's bool. C++ 5.3.1p8
15701 resultType = Context.getLogicalOperationType();
15702 break;
15703 case UO_Real:
15704 case UO_Imag:
15705 resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
15706 // _Real maps ordinary l-values into ordinary l-values. _Imag maps ordinary
15707 // complex l-values to ordinary l-values and all other values to r-values.
15708 if (Input.isInvalid()) return ExprError();
15709 if (Opc == UO_Real || Input.get()->getType()->isAnyComplexType()) {
15710 if (Input.get()->isGLValue() &&
15711 Input.get()->getObjectKind() == OK_Ordinary)
15712 VK = Input.get()->getValueKind();
15713 } else if (!getLangOpts().CPlusPlus) {
15714 // In C, a volatile scalar is read by __imag. In C++, it is not.
15715 Input = DefaultLvalueConversion(Input.get());
15716 }
15717 break;
15718 case UO_Extension:
15719 resultType = Input.get()->getType();
15720 VK = Input.get()->getValueKind();
15721 OK = Input.get()->getObjectKind();
15722 break;
15723 case UO_Coawait:
15724 // It's unnecessary to represent the pass-through operator co_await in the
15725 // AST; just return the input expression instead.
15726 assert(!Input.get()->getType()->isDependentType() &&
15727 "the co_await expression must be non-dependant before "
15728 "building operator co_await");
15729 return Input;
15730 }
15731 if (resultType.isNull() || Input.isInvalid())
15732 return ExprError();
15733
15734 // Check for array bounds violations in the operand of the UnaryOperator,
15735 // except for the '*' and '&' operators that have to be handled specially
15736 // by CheckArrayAccess (as there are special cases like &array[arraysize]
15737 // that are explicitly defined as valid by the standard).
15738 if (Opc != UO_AddrOf && Opc != UO_Deref)
15739 CheckArrayAccess(Input.get());
15740
15741 auto *UO =
15742 UnaryOperator::Create(Context, Input.get(), Opc, resultType, VK, OK,
15743 OpLoc, CanOverflow, CurFPFeatureOverrides());
15744
15745 if (Opc == UO_Deref && UO->getType()->hasAttr(attr::NoDeref) &&
15746 !isa<ArrayType>(UO->getType().getDesugaredType(Context)) &&
15747 !isUnevaluatedContext())
15748 ExprEvalContexts.back().PossibleDerefs.insert(UO);
15749
15750 // Convert the result back to a half vector.
15751 if (ConvertHalfVec)
15752 return convertVector(UO, Context.HalfTy, *this);
15753 return UO;
15754 }
15755
15756 /// Determine whether the given expression is a qualified member
15757 /// access expression, of a form that could be turned into a pointer to member
15758 /// with the address-of operator.
isQualifiedMemberAccess(Expr * E)15759 bool Sema::isQualifiedMemberAccess(Expr *E) {
15760 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
15761 if (!DRE->getQualifier())
15762 return false;
15763
15764 ValueDecl *VD = DRE->getDecl();
15765 if (!VD->isCXXClassMember())
15766 return false;
15767
15768 if (isa<FieldDecl>(VD) || isa<IndirectFieldDecl>(VD))
15769 return true;
15770 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(VD))
15771 return Method->isInstance();
15772
15773 return false;
15774 }
15775
15776 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
15777 if (!ULE->getQualifier())
15778 return false;
15779
15780 for (NamedDecl *D : ULE->decls()) {
15781 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
15782 if (Method->isInstance())
15783 return true;
15784 } else {
15785 // Overload set does not contain methods.
15786 break;
15787 }
15788 }
15789
15790 return false;
15791 }
15792
15793 return false;
15794 }
15795
BuildUnaryOp(Scope * S,SourceLocation OpLoc,UnaryOperatorKind Opc,Expr * Input)15796 ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
15797 UnaryOperatorKind Opc, Expr *Input) {
15798 // First things first: handle placeholders so that the
15799 // overloaded-operator check considers the right type.
15800 if (const BuiltinType *pty = Input->getType()->getAsPlaceholderType()) {
15801 // Increment and decrement of pseudo-object references.
15802 if (pty->getKind() == BuiltinType::PseudoObject &&
15803 UnaryOperator::isIncrementDecrementOp(Opc))
15804 return checkPseudoObjectIncDec(S, OpLoc, Opc, Input);
15805
15806 // extension is always a builtin operator.
15807 if (Opc == UO_Extension)
15808 return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
15809
15810 // & gets special logic for several kinds of placeholder.
15811 // The builtin code knows what to do.
15812 if (Opc == UO_AddrOf &&
15813 (pty->getKind() == BuiltinType::Overload ||
15814 pty->getKind() == BuiltinType::UnknownAny ||
15815 pty->getKind() == BuiltinType::BoundMember))
15816 return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
15817
15818 // Anything else needs to be handled now.
15819 ExprResult Result = CheckPlaceholderExpr(Input);
15820 if (Result.isInvalid()) return ExprError();
15821 Input = Result.get();
15822 }
15823
15824 if (getLangOpts().CPlusPlus && Input->getType()->isOverloadableType() &&
15825 UnaryOperator::getOverloadedOperator(Opc) != OO_None &&
15826 !(Opc == UO_AddrOf && isQualifiedMemberAccess(Input))) {
15827 // Find all of the overloaded operators visible from this point.
15828 UnresolvedSet<16> Functions;
15829 OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
15830 if (S && OverOp != OO_None)
15831 LookupOverloadedOperatorName(OverOp, S, Functions);
15832
15833 return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
15834 }
15835
15836 return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
15837 }
15838
15839 // Unary Operators. 'Tok' is the token for the operator.
ActOnUnaryOp(Scope * S,SourceLocation OpLoc,tok::TokenKind Op,Expr * Input)15840 ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
15841 tok::TokenKind Op, Expr *Input) {
15842 return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input);
15843 }
15844
15845 /// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
ActOnAddrLabel(SourceLocation OpLoc,SourceLocation LabLoc,LabelDecl * TheDecl)15846 ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
15847 LabelDecl *TheDecl) {
15848 TheDecl->markUsed(Context);
15849 // Create the AST node. The address of a label always has type 'void*'.
15850 return new (Context) AddrLabelExpr(OpLoc, LabLoc, TheDecl,
15851 Context.getPointerType(Context.VoidTy));
15852 }
15853
ActOnStartStmtExpr()15854 void Sema::ActOnStartStmtExpr() {
15855 PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
15856 }
15857
ActOnStmtExprError()15858 void Sema::ActOnStmtExprError() {
15859 // Note that function is also called by TreeTransform when leaving a
15860 // StmtExpr scope without rebuilding anything.
15861
15862 DiscardCleanupsInEvaluationContext();
15863 PopExpressionEvaluationContext();
15864 }
15865
ActOnStmtExpr(Scope * S,SourceLocation LPLoc,Stmt * SubStmt,SourceLocation RPLoc)15866 ExprResult Sema::ActOnStmtExpr(Scope *S, SourceLocation LPLoc, Stmt *SubStmt,
15867 SourceLocation RPLoc) {
15868 return BuildStmtExpr(LPLoc, SubStmt, RPLoc, getTemplateDepth(S));
15869 }
15870
BuildStmtExpr(SourceLocation LPLoc,Stmt * SubStmt,SourceLocation RPLoc,unsigned TemplateDepth)15871 ExprResult Sema::BuildStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
15872 SourceLocation RPLoc, unsigned TemplateDepth) {
15873 assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
15874 CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
15875
15876 if (hasAnyUnrecoverableErrorsInThisFunction())
15877 DiscardCleanupsInEvaluationContext();
15878 assert(!Cleanup.exprNeedsCleanups() &&
15879 "cleanups within StmtExpr not correctly bound!");
15880 PopExpressionEvaluationContext();
15881
15882 // FIXME: there are a variety of strange constraints to enforce here, for
15883 // example, it is not possible to goto into a stmt expression apparently.
15884 // More semantic analysis is needed.
15885
15886 // If there are sub-stmts in the compound stmt, take the type of the last one
15887 // as the type of the stmtexpr.
15888 QualType Ty = Context.VoidTy;
15889 bool StmtExprMayBindToTemp = false;
15890 if (!Compound->body_empty()) {
15891 // For GCC compatibility we get the last Stmt excluding trailing NullStmts.
15892 if (const auto *LastStmt =
15893 dyn_cast<ValueStmt>(Compound->getStmtExprResult())) {
15894 if (const Expr *Value = LastStmt->getExprStmt()) {
15895 StmtExprMayBindToTemp = true;
15896 Ty = Value->getType();
15897 }
15898 }
15899 }
15900
15901 // FIXME: Check that expression type is complete/non-abstract; statement
15902 // expressions are not lvalues.
15903 Expr *ResStmtExpr =
15904 new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc, TemplateDepth);
15905 if (StmtExprMayBindToTemp)
15906 return MaybeBindToTemporary(ResStmtExpr);
15907 return ResStmtExpr;
15908 }
15909
ActOnStmtExprResult(ExprResult ER)15910 ExprResult Sema::ActOnStmtExprResult(ExprResult ER) {
15911 if (ER.isInvalid())
15912 return ExprError();
15913
15914 // Do function/array conversion on the last expression, but not
15915 // lvalue-to-rvalue. However, initialize an unqualified type.
15916 ER = DefaultFunctionArrayConversion(ER.get());
15917 if (ER.isInvalid())
15918 return ExprError();
15919 Expr *E = ER.get();
15920
15921 if (E->isTypeDependent())
15922 return E;
15923
15924 // In ARC, if the final expression ends in a consume, splice
15925 // the consume out and bind it later. In the alternate case
15926 // (when dealing with a retainable type), the result
15927 // initialization will create a produce. In both cases the
15928 // result will be +1, and we'll need to balance that out with
15929 // a bind.
15930 auto *Cast = dyn_cast<ImplicitCastExpr>(E);
15931 if (Cast && Cast->getCastKind() == CK_ARCConsumeObject)
15932 return Cast->getSubExpr();
15933
15934 // FIXME: Provide a better location for the initialization.
15935 return PerformCopyInitialization(
15936 InitializedEntity::InitializeStmtExprResult(
15937 E->getBeginLoc(), E->getType().getUnqualifiedType()),
15938 SourceLocation(), E);
15939 }
15940
BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,TypeSourceInfo * TInfo,ArrayRef<OffsetOfComponent> Components,SourceLocation RParenLoc)15941 ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
15942 TypeSourceInfo *TInfo,
15943 ArrayRef<OffsetOfComponent> Components,
15944 SourceLocation RParenLoc) {
15945 QualType ArgTy = TInfo->getType();
15946 bool Dependent = ArgTy->isDependentType();
15947 SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
15948
15949 // We must have at least one component that refers to the type, and the first
15950 // one is known to be a field designator. Verify that the ArgTy represents
15951 // a struct/union/class.
15952 if (!Dependent && !ArgTy->isRecordType())
15953 return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
15954 << ArgTy << TypeRange);
15955
15956 // Type must be complete per C99 7.17p3 because a declaring a variable
15957 // with an incomplete type would be ill-formed.
15958 if (!Dependent
15959 && RequireCompleteType(BuiltinLoc, ArgTy,
15960 diag::err_offsetof_incomplete_type, TypeRange))
15961 return ExprError();
15962
15963 bool DidWarnAboutNonPOD = false;
15964 QualType CurrentType = ArgTy;
15965 SmallVector<OffsetOfNode, 4> Comps;
15966 SmallVector<Expr*, 4> Exprs;
15967 for (const OffsetOfComponent &OC : Components) {
15968 if (OC.isBrackets) {
15969 // Offset of an array sub-field. TODO: Should we allow vector elements?
15970 if (!CurrentType->isDependentType()) {
15971 const ArrayType *AT = Context.getAsArrayType(CurrentType);
15972 if(!AT)
15973 return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
15974 << CurrentType);
15975 CurrentType = AT->getElementType();
15976 } else
15977 CurrentType = Context.DependentTy;
15978
15979 ExprResult IdxRval = DefaultLvalueConversion(static_cast<Expr*>(OC.U.E));
15980 if (IdxRval.isInvalid())
15981 return ExprError();
15982 Expr *Idx = IdxRval.get();
15983
15984 // The expression must be an integral expression.
15985 // FIXME: An integral constant expression?
15986 if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
15987 !Idx->getType()->isIntegerType())
15988 return ExprError(
15989 Diag(Idx->getBeginLoc(), diag::err_typecheck_subscript_not_integer)
15990 << Idx->getSourceRange());
15991
15992 // Record this array index.
15993 Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
15994 Exprs.push_back(Idx);
15995 continue;
15996 }
15997
15998 // Offset of a field.
15999 if (CurrentType->isDependentType()) {
16000 // We have the offset of a field, but we can't look into the dependent
16001 // type. Just record the identifier of the field.
16002 Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
16003 CurrentType = Context.DependentTy;
16004 continue;
16005 }
16006
16007 // We need to have a complete type to look into.
16008 if (RequireCompleteType(OC.LocStart, CurrentType,
16009 diag::err_offsetof_incomplete_type))
16010 return ExprError();
16011
16012 // Look for the designated field.
16013 const RecordType *RC = CurrentType->getAs<RecordType>();
16014 if (!RC)
16015 return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
16016 << CurrentType);
16017 RecordDecl *RD = RC->getDecl();
16018
16019 // C++ [lib.support.types]p5:
16020 // The macro offsetof accepts a restricted set of type arguments in this
16021 // International Standard. type shall be a POD structure or a POD union
16022 // (clause 9).
16023 // C++11 [support.types]p4:
16024 // If type is not a standard-layout class (Clause 9), the results are
16025 // undefined.
16026 if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
16027 bool IsSafe = LangOpts.CPlusPlus11? CRD->isStandardLayout() : CRD->isPOD();
16028 unsigned DiagID =
16029 LangOpts.CPlusPlus11? diag::ext_offsetof_non_standardlayout_type
16030 : diag::ext_offsetof_non_pod_type;
16031
16032 if (!IsSafe && !DidWarnAboutNonPOD &&
16033 DiagRuntimeBehavior(BuiltinLoc, nullptr,
16034 PDiag(DiagID)
16035 << SourceRange(Components[0].LocStart, OC.LocEnd)
16036 << CurrentType))
16037 DidWarnAboutNonPOD = true;
16038 }
16039
16040 // Look for the field.
16041 LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
16042 LookupQualifiedName(R, RD);
16043 FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
16044 IndirectFieldDecl *IndirectMemberDecl = nullptr;
16045 if (!MemberDecl) {
16046 if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
16047 MemberDecl = IndirectMemberDecl->getAnonField();
16048 }
16049
16050 if (!MemberDecl)
16051 return ExprError(Diag(BuiltinLoc, diag::err_no_member)
16052 << OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
16053 OC.LocEnd));
16054
16055 // C99 7.17p3:
16056 // (If the specified member is a bit-field, the behavior is undefined.)
16057 //
16058 // We diagnose this as an error.
16059 if (MemberDecl->isBitField()) {
16060 Diag(OC.LocEnd, diag::err_offsetof_bitfield)
16061 << MemberDecl->getDeclName()
16062 << SourceRange(BuiltinLoc, RParenLoc);
16063 Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
16064 return ExprError();
16065 }
16066
16067 RecordDecl *Parent = MemberDecl->getParent();
16068 if (IndirectMemberDecl)
16069 Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
16070
16071 // If the member was found in a base class, introduce OffsetOfNodes for
16072 // the base class indirections.
16073 CXXBasePaths Paths;
16074 if (IsDerivedFrom(OC.LocStart, CurrentType, Context.getTypeDeclType(Parent),
16075 Paths)) {
16076 if (Paths.getDetectedVirtual()) {
16077 Diag(OC.LocEnd, diag::err_offsetof_field_of_virtual_base)
16078 << MemberDecl->getDeclName()
16079 << SourceRange(BuiltinLoc, RParenLoc);
16080 return ExprError();
16081 }
16082
16083 CXXBasePath &Path = Paths.front();
16084 for (const CXXBasePathElement &B : Path)
16085 Comps.push_back(OffsetOfNode(B.Base));
16086 }
16087
16088 if (IndirectMemberDecl) {
16089 for (auto *FI : IndirectMemberDecl->chain()) {
16090 assert(isa<FieldDecl>(FI));
16091 Comps.push_back(OffsetOfNode(OC.LocStart,
16092 cast<FieldDecl>(FI), OC.LocEnd));
16093 }
16094 } else
16095 Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
16096
16097 CurrentType = MemberDecl->getType().getNonReferenceType();
16098 }
16099
16100 return OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc, TInfo,
16101 Comps, Exprs, RParenLoc);
16102 }
16103
ActOnBuiltinOffsetOf(Scope * S,SourceLocation BuiltinLoc,SourceLocation TypeLoc,ParsedType ParsedArgTy,ArrayRef<OffsetOfComponent> Components,SourceLocation RParenLoc)16104 ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
16105 SourceLocation BuiltinLoc,
16106 SourceLocation TypeLoc,
16107 ParsedType ParsedArgTy,
16108 ArrayRef<OffsetOfComponent> Components,
16109 SourceLocation RParenLoc) {
16110
16111 TypeSourceInfo *ArgTInfo;
16112 QualType ArgTy = GetTypeFromParser(ParsedArgTy, &ArgTInfo);
16113 if (ArgTy.isNull())
16114 return ExprError();
16115
16116 if (!ArgTInfo)
16117 ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
16118
16119 return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, Components, RParenLoc);
16120 }
16121
16122
ActOnChooseExpr(SourceLocation BuiltinLoc,Expr * CondExpr,Expr * LHSExpr,Expr * RHSExpr,SourceLocation RPLoc)16123 ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
16124 Expr *CondExpr,
16125 Expr *LHSExpr, Expr *RHSExpr,
16126 SourceLocation RPLoc) {
16127 assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
16128
16129 ExprValueKind VK = VK_PRValue;
16130 ExprObjectKind OK = OK_Ordinary;
16131 QualType resType;
16132 bool CondIsTrue = false;
16133 if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
16134 resType = Context.DependentTy;
16135 } else {
16136 // The conditional expression is required to be a constant expression.
16137 llvm::APSInt condEval(32);
16138 ExprResult CondICE = VerifyIntegerConstantExpression(
16139 CondExpr, &condEval, diag::err_typecheck_choose_expr_requires_constant);
16140 if (CondICE.isInvalid())
16141 return ExprError();
16142 CondExpr = CondICE.get();
16143 CondIsTrue = condEval.getZExtValue();
16144
16145 // If the condition is > zero, then the AST type is the same as the LHSExpr.
16146 Expr *ActiveExpr = CondIsTrue ? LHSExpr : RHSExpr;
16147
16148 resType = ActiveExpr->getType();
16149 VK = ActiveExpr->getValueKind();
16150 OK = ActiveExpr->getObjectKind();
16151 }
16152
16153 return new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
16154 resType, VK, OK, RPLoc, CondIsTrue);
16155 }
16156
16157 //===----------------------------------------------------------------------===//
16158 // Clang Extensions.
16159 //===----------------------------------------------------------------------===//
16160
16161 /// ActOnBlockStart - This callback is invoked when a block literal is started.
ActOnBlockStart(SourceLocation CaretLoc,Scope * CurScope)16162 void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) {
16163 BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
16164
16165 if (LangOpts.CPlusPlus) {
16166 MangleNumberingContext *MCtx;
16167 Decl *ManglingContextDecl;
16168 std::tie(MCtx, ManglingContextDecl) =
16169 getCurrentMangleNumberContext(Block->getDeclContext());
16170 if (MCtx) {
16171 unsigned ManglingNumber = MCtx->getManglingNumber(Block);
16172 Block->setBlockMangling(ManglingNumber, ManglingContextDecl);
16173 }
16174 }
16175
16176 PushBlockScope(CurScope, Block);
16177 CurContext->addDecl(Block);
16178 if (CurScope)
16179 PushDeclContext(CurScope, Block);
16180 else
16181 CurContext = Block;
16182
16183 getCurBlock()->HasImplicitReturnType = true;
16184
16185 // Enter a new evaluation context to insulate the block from any
16186 // cleanups from the enclosing full-expression.
16187 PushExpressionEvaluationContext(
16188 ExpressionEvaluationContext::PotentiallyEvaluated);
16189 }
16190
ActOnBlockArguments(SourceLocation CaretLoc,Declarator & ParamInfo,Scope * CurScope)16191 void Sema::ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo,
16192 Scope *CurScope) {
16193 assert(ParamInfo.getIdentifier() == nullptr &&
16194 "block-id should have no identifier!");
16195 assert(ParamInfo.getContext() == DeclaratorContext::BlockLiteral);
16196 BlockScopeInfo *CurBlock = getCurBlock();
16197
16198 TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
16199 QualType T = Sig->getType();
16200
16201 // FIXME: We should allow unexpanded parameter packs here, but that would,
16202 // in turn, make the block expression contain unexpanded parameter packs.
16203 if (DiagnoseUnexpandedParameterPack(CaretLoc, Sig, UPPC_Block)) {
16204 // Drop the parameters.
16205 FunctionProtoType::ExtProtoInfo EPI;
16206 EPI.HasTrailingReturn = false;
16207 EPI.TypeQuals.addConst();
16208 T = Context.getFunctionType(Context.DependentTy, None, EPI);
16209 Sig = Context.getTrivialTypeSourceInfo(T);
16210 }
16211
16212 // GetTypeForDeclarator always produces a function type for a block
16213 // literal signature. Furthermore, it is always a FunctionProtoType
16214 // unless the function was written with a typedef.
16215 assert(T->isFunctionType() &&
16216 "GetTypeForDeclarator made a non-function block signature");
16217
16218 // Look for an explicit signature in that function type.
16219 FunctionProtoTypeLoc ExplicitSignature;
16220
16221 if ((ExplicitSignature = Sig->getTypeLoc()
16222 .getAsAdjusted<FunctionProtoTypeLoc>())) {
16223
16224 // Check whether that explicit signature was synthesized by
16225 // GetTypeForDeclarator. If so, don't save that as part of the
16226 // written signature.
16227 if (ExplicitSignature.getLocalRangeBegin() ==
16228 ExplicitSignature.getLocalRangeEnd()) {
16229 // This would be much cheaper if we stored TypeLocs instead of
16230 // TypeSourceInfos.
16231 TypeLoc Result = ExplicitSignature.getReturnLoc();
16232 unsigned Size = Result.getFullDataSize();
16233 Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
16234 Sig->getTypeLoc().initializeFullCopy(Result, Size);
16235
16236 ExplicitSignature = FunctionProtoTypeLoc();
16237 }
16238 }
16239
16240 CurBlock->TheDecl->setSignatureAsWritten(Sig);
16241 CurBlock->FunctionType = T;
16242
16243 const auto *Fn = T->castAs<FunctionType>();
16244 QualType RetTy = Fn->getReturnType();
16245 bool isVariadic =
16246 (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
16247
16248 CurBlock->TheDecl->setIsVariadic(isVariadic);
16249
16250 // Context.DependentTy is used as a placeholder for a missing block
16251 // return type. TODO: what should we do with declarators like:
16252 // ^ * { ... }
16253 // If the answer is "apply template argument deduction"....
16254 if (RetTy != Context.DependentTy) {
16255 CurBlock->ReturnType = RetTy;
16256 CurBlock->TheDecl->setBlockMissingReturnType(false);
16257 CurBlock->HasImplicitReturnType = false;
16258 }
16259
16260 // Push block parameters from the declarator if we had them.
16261 SmallVector<ParmVarDecl*, 8> Params;
16262 if (ExplicitSignature) {
16263 for (unsigned I = 0, E = ExplicitSignature.getNumParams(); I != E; ++I) {
16264 ParmVarDecl *Param = ExplicitSignature.getParam(I);
16265 if (Param->getIdentifier() == nullptr && !Param->isImplicit() &&
16266 !Param->isInvalidDecl() && !getLangOpts().CPlusPlus) {
16267 // Diagnose this as an extension in C17 and earlier.
16268 if (!getLangOpts().C2x)
16269 Diag(Param->getLocation(), diag::ext_parameter_name_omitted_c2x);
16270 }
16271 Params.push_back(Param);
16272 }
16273
16274 // Fake up parameter variables if we have a typedef, like
16275 // ^ fntype { ... }
16276 } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
16277 for (const auto &I : Fn->param_types()) {
16278 ParmVarDecl *Param = BuildParmVarDeclForTypedef(
16279 CurBlock->TheDecl, ParamInfo.getBeginLoc(), I);
16280 Params.push_back(Param);
16281 }
16282 }
16283
16284 // Set the parameters on the block decl.
16285 if (!Params.empty()) {
16286 CurBlock->TheDecl->setParams(Params);
16287 CheckParmsForFunctionDef(CurBlock->TheDecl->parameters(),
16288 /*CheckParameterNames=*/false);
16289 }
16290
16291 // Finally we can process decl attributes.
16292 ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
16293
16294 // Put the parameter variables in scope.
16295 for (auto AI : CurBlock->TheDecl->parameters()) {
16296 AI->setOwningFunction(CurBlock->TheDecl);
16297
16298 // If this has an identifier, add it to the scope stack.
16299 if (AI->getIdentifier()) {
16300 CheckShadow(CurBlock->TheScope, AI);
16301
16302 PushOnScopeChains(AI, CurBlock->TheScope);
16303 }
16304 }
16305 }
16306
16307 /// ActOnBlockError - If there is an error parsing a block, this callback
16308 /// is invoked to pop the information about the block from the action impl.
ActOnBlockError(SourceLocation CaretLoc,Scope * CurScope)16309 void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
16310 // Leave the expression-evaluation context.
16311 DiscardCleanupsInEvaluationContext();
16312 PopExpressionEvaluationContext();
16313
16314 // Pop off CurBlock, handle nested blocks.
16315 PopDeclContext();
16316 PopFunctionScopeInfo();
16317 }
16318
16319 /// ActOnBlockStmtExpr - This is called when the body of a block statement
16320 /// literal was successfully completed. ^(int x){...}
ActOnBlockStmtExpr(SourceLocation CaretLoc,Stmt * Body,Scope * CurScope)16321 ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
16322 Stmt *Body, Scope *CurScope) {
16323 // If blocks are disabled, emit an error.
16324 if (!LangOpts.Blocks)
16325 Diag(CaretLoc, diag::err_blocks_disable) << LangOpts.OpenCL;
16326
16327 // Leave the expression-evaluation context.
16328 if (hasAnyUnrecoverableErrorsInThisFunction())
16329 DiscardCleanupsInEvaluationContext();
16330 assert(!Cleanup.exprNeedsCleanups() &&
16331 "cleanups within block not correctly bound!");
16332 PopExpressionEvaluationContext();
16333
16334 BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
16335 BlockDecl *BD = BSI->TheDecl;
16336
16337 if (BSI->HasImplicitReturnType)
16338 deduceClosureReturnType(*BSI);
16339
16340 QualType RetTy = Context.VoidTy;
16341 if (!BSI->ReturnType.isNull())
16342 RetTy = BSI->ReturnType;
16343
16344 bool NoReturn = BD->hasAttr<NoReturnAttr>();
16345 QualType BlockTy;
16346
16347 // If the user wrote a function type in some form, try to use that.
16348 if (!BSI->FunctionType.isNull()) {
16349 const FunctionType *FTy = BSI->FunctionType->castAs<FunctionType>();
16350
16351 FunctionType::ExtInfo Ext = FTy->getExtInfo();
16352 if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
16353
16354 // Turn protoless block types into nullary block types.
16355 if (isa<FunctionNoProtoType>(FTy)) {
16356 FunctionProtoType::ExtProtoInfo EPI;
16357 EPI.ExtInfo = Ext;
16358 BlockTy = Context.getFunctionType(RetTy, None, EPI);
16359
16360 // Otherwise, if we don't need to change anything about the function type,
16361 // preserve its sugar structure.
16362 } else if (FTy->getReturnType() == RetTy &&
16363 (!NoReturn || FTy->getNoReturnAttr())) {
16364 BlockTy = BSI->FunctionType;
16365
16366 // Otherwise, make the minimal modifications to the function type.
16367 } else {
16368 const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
16369 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
16370 EPI.TypeQuals = Qualifiers();
16371 EPI.ExtInfo = Ext;
16372 BlockTy = Context.getFunctionType(RetTy, FPT->getParamTypes(), EPI);
16373 }
16374
16375 // If we don't have a function type, just build one from nothing.
16376 } else {
16377 FunctionProtoType::ExtProtoInfo EPI;
16378 EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn);
16379 BlockTy = Context.getFunctionType(RetTy, None, EPI);
16380 }
16381
16382 DiagnoseUnusedParameters(BD->parameters());
16383 BlockTy = Context.getBlockPointerType(BlockTy);
16384
16385 // If needed, diagnose invalid gotos and switches in the block.
16386 if (getCurFunction()->NeedsScopeChecking() &&
16387 !PP.isCodeCompletionEnabled())
16388 DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
16389
16390 BD->setBody(cast<CompoundStmt>(Body));
16391
16392 if (Body && getCurFunction()->HasPotentialAvailabilityViolations)
16393 DiagnoseUnguardedAvailabilityViolations(BD);
16394
16395 // Try to apply the named return value optimization. We have to check again
16396 // if we can do this, though, because blocks keep return statements around
16397 // to deduce an implicit return type.
16398 if (getLangOpts().CPlusPlus && RetTy->isRecordType() &&
16399 !BD->isDependentContext())
16400 computeNRVO(Body, BSI);
16401
16402 if (RetTy.hasNonTrivialToPrimitiveDestructCUnion() ||
16403 RetTy.hasNonTrivialToPrimitiveCopyCUnion())
16404 checkNonTrivialCUnion(RetTy, BD->getCaretLocation(), NTCUC_FunctionReturn,
16405 NTCUK_Destruct|NTCUK_Copy);
16406
16407 PopDeclContext();
16408
16409 // Set the captured variables on the block.
16410 SmallVector<BlockDecl::Capture, 4> Captures;
16411 for (Capture &Cap : BSI->Captures) {
16412 if (Cap.isInvalid() || Cap.isThisCapture())
16413 continue;
16414
16415 VarDecl *Var = Cap.getVariable();
16416 Expr *CopyExpr = nullptr;
16417 if (getLangOpts().CPlusPlus && Cap.isCopyCapture()) {
16418 if (const RecordType *Record =
16419 Cap.getCaptureType()->getAs<RecordType>()) {
16420 // The capture logic needs the destructor, so make sure we mark it.
16421 // Usually this is unnecessary because most local variables have
16422 // their destructors marked at declaration time, but parameters are
16423 // an exception because it's technically only the call site that
16424 // actually requires the destructor.
16425 if (isa<ParmVarDecl>(Var))
16426 FinalizeVarWithDestructor(Var, Record);
16427
16428 // Enter a separate potentially-evaluated context while building block
16429 // initializers to isolate their cleanups from those of the block
16430 // itself.
16431 // FIXME: Is this appropriate even when the block itself occurs in an
16432 // unevaluated operand?
16433 EnterExpressionEvaluationContext EvalContext(
16434 *this, ExpressionEvaluationContext::PotentiallyEvaluated);
16435
16436 SourceLocation Loc = Cap.getLocation();
16437
16438 ExprResult Result = BuildDeclarationNameExpr(
16439 CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var);
16440
16441 // According to the blocks spec, the capture of a variable from
16442 // the stack requires a const copy constructor. This is not true
16443 // of the copy/move done to move a __block variable to the heap.
16444 if (!Result.isInvalid() &&
16445 !Result.get()->getType().isConstQualified()) {
16446 Result = ImpCastExprToType(Result.get(),
16447 Result.get()->getType().withConst(),
16448 CK_NoOp, VK_LValue);
16449 }
16450
16451 if (!Result.isInvalid()) {
16452 Result = PerformCopyInitialization(
16453 InitializedEntity::InitializeBlock(Var->getLocation(),
16454 Cap.getCaptureType()),
16455 Loc, Result.get());
16456 }
16457
16458 // Build a full-expression copy expression if initialization
16459 // succeeded and used a non-trivial constructor. Recover from
16460 // errors by pretending that the copy isn't necessary.
16461 if (!Result.isInvalid() &&
16462 !cast<CXXConstructExpr>(Result.get())->getConstructor()
16463 ->isTrivial()) {
16464 Result = MaybeCreateExprWithCleanups(Result);
16465 CopyExpr = Result.get();
16466 }
16467 }
16468 }
16469
16470 BlockDecl::Capture NewCap(Var, Cap.isBlockCapture(), Cap.isNested(),
16471 CopyExpr);
16472 Captures.push_back(NewCap);
16473 }
16474 BD->setCaptures(Context, Captures, BSI->CXXThisCaptureIndex != 0);
16475
16476 // Pop the block scope now but keep it alive to the end of this function.
16477 AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
16478 PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo(&WP, BD, BlockTy);
16479
16480 BlockExpr *Result = new (Context) BlockExpr(BD, BlockTy);
16481
16482 // If the block isn't obviously global, i.e. it captures anything at
16483 // all, then we need to do a few things in the surrounding context:
16484 if (Result->getBlockDecl()->hasCaptures()) {
16485 // First, this expression has a new cleanup object.
16486 ExprCleanupObjects.push_back(Result->getBlockDecl());
16487 Cleanup.setExprNeedsCleanups(true);
16488
16489 // It also gets a branch-protected scope if any of the captured
16490 // variables needs destruction.
16491 for (const auto &CI : Result->getBlockDecl()->captures()) {
16492 const VarDecl *var = CI.getVariable();
16493 if (var->getType().isDestructedType() != QualType::DK_none) {
16494 setFunctionHasBranchProtectedScope();
16495 break;
16496 }
16497 }
16498 }
16499
16500 if (getCurFunction())
16501 getCurFunction()->addBlock(BD);
16502
16503 return Result;
16504 }
16505
ActOnVAArg(SourceLocation BuiltinLoc,Expr * E,ParsedType Ty,SourceLocation RPLoc)16506 ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc, Expr *E, ParsedType Ty,
16507 SourceLocation RPLoc) {
16508 TypeSourceInfo *TInfo;
16509 GetTypeFromParser(Ty, &TInfo);
16510 return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc);
16511 }
16512
BuildVAArgExpr(SourceLocation BuiltinLoc,Expr * E,TypeSourceInfo * TInfo,SourceLocation RPLoc)16513 ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
16514 Expr *E, TypeSourceInfo *TInfo,
16515 SourceLocation RPLoc) {
16516 Expr *OrigExpr = E;
16517 bool IsMS = false;
16518
16519 // CUDA device code does not support varargs.
16520 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
16521 if (const FunctionDecl *F = dyn_cast<FunctionDecl>(CurContext)) {
16522 CUDAFunctionTarget T = IdentifyCUDATarget(F);
16523 if (T == CFT_Global || T == CFT_Device || T == CFT_HostDevice)
16524 return ExprError(Diag(E->getBeginLoc(), diag::err_va_arg_in_device));
16525 }
16526 }
16527
16528 // NVPTX does not support va_arg expression.
16529 if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
16530 Context.getTargetInfo().getTriple().isNVPTX())
16531 targetDiag(E->getBeginLoc(), diag::err_va_arg_in_device);
16532
16533 // It might be a __builtin_ms_va_list. (But don't ever mark a va_arg()
16534 // as Microsoft ABI on an actual Microsoft platform, where
16535 // __builtin_ms_va_list and __builtin_va_list are the same.)
16536 if (!E->isTypeDependent() && Context.getTargetInfo().hasBuiltinMSVaList() &&
16537 Context.getTargetInfo().getBuiltinVaListKind() != TargetInfo::CharPtrBuiltinVaList) {
16538 QualType MSVaListType = Context.getBuiltinMSVaListType();
16539 if (Context.hasSameType(MSVaListType, E->getType())) {
16540 if (CheckForModifiableLvalue(E, BuiltinLoc, *this))
16541 return ExprError();
16542 IsMS = true;
16543 }
16544 }
16545
16546 // Get the va_list type
16547 QualType VaListType = Context.getBuiltinVaListType();
16548 if (!IsMS) {
16549 if (VaListType->isArrayType()) {
16550 // Deal with implicit array decay; for example, on x86-64,
16551 // va_list is an array, but it's supposed to decay to
16552 // a pointer for va_arg.
16553 VaListType = Context.getArrayDecayedType(VaListType);
16554 // Make sure the input expression also decays appropriately.
16555 ExprResult Result = UsualUnaryConversions(E);
16556 if (Result.isInvalid())
16557 return ExprError();
16558 E = Result.get();
16559 } else if (VaListType->isRecordType() && getLangOpts().CPlusPlus) {
16560 // If va_list is a record type and we are compiling in C++ mode,
16561 // check the argument using reference binding.
16562 InitializedEntity Entity = InitializedEntity::InitializeParameter(
16563 Context, Context.getLValueReferenceType(VaListType), false);
16564 ExprResult Init = PerformCopyInitialization(Entity, SourceLocation(), E);
16565 if (Init.isInvalid())
16566 return ExprError();
16567 E = Init.getAs<Expr>();
16568 } else {
16569 // Otherwise, the va_list argument must be an l-value because
16570 // it is modified by va_arg.
16571 if (!E->isTypeDependent() &&
16572 CheckForModifiableLvalue(E, BuiltinLoc, *this))
16573 return ExprError();
16574 }
16575 }
16576
16577 if (!IsMS && !E->isTypeDependent() &&
16578 !Context.hasSameType(VaListType, E->getType()))
16579 return ExprError(
16580 Diag(E->getBeginLoc(),
16581 diag::err_first_argument_to_va_arg_not_of_type_va_list)
16582 << OrigExpr->getType() << E->getSourceRange());
16583
16584 if (!TInfo->getType()->isDependentType()) {
16585 if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(),
16586 diag::err_second_parameter_to_va_arg_incomplete,
16587 TInfo->getTypeLoc()))
16588 return ExprError();
16589
16590 if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(),
16591 TInfo->getType(),
16592 diag::err_second_parameter_to_va_arg_abstract,
16593 TInfo->getTypeLoc()))
16594 return ExprError();
16595
16596 if (!TInfo->getType().isPODType(Context)) {
16597 Diag(TInfo->getTypeLoc().getBeginLoc(),
16598 TInfo->getType()->isObjCLifetimeType()
16599 ? diag::warn_second_parameter_to_va_arg_ownership_qualified
16600 : diag::warn_second_parameter_to_va_arg_not_pod)
16601 << TInfo->getType()
16602 << TInfo->getTypeLoc().getSourceRange();
16603 }
16604
16605 // Check for va_arg where arguments of the given type will be promoted
16606 // (i.e. this va_arg is guaranteed to have undefined behavior).
16607 QualType PromoteType;
16608 if (TInfo->getType()->isPromotableIntegerType()) {
16609 PromoteType = Context.getPromotedIntegerType(TInfo->getType());
16610 // [cstdarg.syn]p1 defers the C++ behavior to what the C standard says,
16611 // and C2x 7.16.1.1p2 says, in part:
16612 // If type is not compatible with the type of the actual next argument
16613 // (as promoted according to the default argument promotions), the
16614 // behavior is undefined, except for the following cases:
16615 // - both types are pointers to qualified or unqualified versions of
16616 // compatible types;
16617 // - one type is a signed integer type, the other type is the
16618 // corresponding unsigned integer type, and the value is
16619 // representable in both types;
16620 // - one type is pointer to qualified or unqualified void and the
16621 // other is a pointer to a qualified or unqualified character type.
16622 // Given that type compatibility is the primary requirement (ignoring
16623 // qualifications), you would think we could call typesAreCompatible()
16624 // directly to test this. However, in C++, that checks for *same type*,
16625 // which causes false positives when passing an enumeration type to
16626 // va_arg. Instead, get the underlying type of the enumeration and pass
16627 // that.
16628 QualType UnderlyingType = TInfo->getType();
16629 if (const auto *ET = UnderlyingType->getAs<EnumType>())
16630 UnderlyingType = ET->getDecl()->getIntegerType();
16631 if (Context.typesAreCompatible(PromoteType, UnderlyingType,
16632 /*CompareUnqualified*/ true))
16633 PromoteType = QualType();
16634
16635 // If the types are still not compatible, we need to test whether the
16636 // promoted type and the underlying type are the same except for
16637 // signedness. Ask the AST for the correctly corresponding type and see
16638 // if that's compatible.
16639 if (!PromoteType.isNull() && !UnderlyingType->isBooleanType() &&
16640 PromoteType->isUnsignedIntegerType() !=
16641 UnderlyingType->isUnsignedIntegerType()) {
16642 UnderlyingType =
16643 UnderlyingType->isUnsignedIntegerType()
16644 ? Context.getCorrespondingSignedType(UnderlyingType)
16645 : Context.getCorrespondingUnsignedType(UnderlyingType);
16646 if (Context.typesAreCompatible(PromoteType, UnderlyingType,
16647 /*CompareUnqualified*/ true))
16648 PromoteType = QualType();
16649 }
16650 }
16651 if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float))
16652 PromoteType = Context.DoubleTy;
16653 if (!PromoteType.isNull())
16654 DiagRuntimeBehavior(TInfo->getTypeLoc().getBeginLoc(), E,
16655 PDiag(diag::warn_second_parameter_to_va_arg_never_compatible)
16656 << TInfo->getType()
16657 << PromoteType
16658 << TInfo->getTypeLoc().getSourceRange());
16659 }
16660
16661 QualType T = TInfo->getType().getNonLValueExprType(Context);
16662 return new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T, IsMS);
16663 }
16664
ActOnGNUNullExpr(SourceLocation TokenLoc)16665 ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
16666 // The type of __null will be int or long, depending on the size of
16667 // pointers on the target.
16668 QualType Ty;
16669 unsigned pw = Context.getTargetInfo().getPointerWidth(0);
16670 if (pw == Context.getTargetInfo().getIntWidth())
16671 Ty = Context.IntTy;
16672 else if (pw == Context.getTargetInfo().getLongWidth())
16673 Ty = Context.LongTy;
16674 else if (pw == Context.getTargetInfo().getLongLongWidth())
16675 Ty = Context.LongLongTy;
16676 else {
16677 llvm_unreachable("I don't know size of pointer!");
16678 }
16679
16680 return new (Context) GNUNullExpr(Ty, TokenLoc);
16681 }
16682
LookupStdSourceLocationImpl(Sema & S,SourceLocation Loc)16683 static CXXRecordDecl *LookupStdSourceLocationImpl(Sema &S, SourceLocation Loc) {
16684 CXXRecordDecl *ImplDecl = nullptr;
16685
16686 // Fetch the std::source_location::__impl decl.
16687 if (NamespaceDecl *Std = S.getStdNamespace()) {
16688 LookupResult ResultSL(S, &S.PP.getIdentifierTable().get("source_location"),
16689 Loc, Sema::LookupOrdinaryName);
16690 if (S.LookupQualifiedName(ResultSL, Std)) {
16691 if (auto *SLDecl = ResultSL.getAsSingle<RecordDecl>()) {
16692 LookupResult ResultImpl(S, &S.PP.getIdentifierTable().get("__impl"),
16693 Loc, Sema::LookupOrdinaryName);
16694 if ((SLDecl->isCompleteDefinition() || SLDecl->isBeingDefined()) &&
16695 S.LookupQualifiedName(ResultImpl, SLDecl)) {
16696 ImplDecl = ResultImpl.getAsSingle<CXXRecordDecl>();
16697 }
16698 }
16699 }
16700 }
16701
16702 if (!ImplDecl || !ImplDecl->isCompleteDefinition()) {
16703 S.Diag(Loc, diag::err_std_source_location_impl_not_found);
16704 return nullptr;
16705 }
16706
16707 // Verify that __impl is a trivial struct type, with no base classes, and with
16708 // only the four expected fields.
16709 if (ImplDecl->isUnion() || !ImplDecl->isStandardLayout() ||
16710 ImplDecl->getNumBases() != 0) {
16711 S.Diag(Loc, diag::err_std_source_location_impl_malformed);
16712 return nullptr;
16713 }
16714
16715 unsigned Count = 0;
16716 for (FieldDecl *F : ImplDecl->fields()) {
16717 StringRef Name = F->getName();
16718
16719 if (Name == "_M_file_name") {
16720 if (F->getType() !=
16721 S.Context.getPointerType(S.Context.CharTy.withConst()))
16722 break;
16723 Count++;
16724 } else if (Name == "_M_function_name") {
16725 if (F->getType() !=
16726 S.Context.getPointerType(S.Context.CharTy.withConst()))
16727 break;
16728 Count++;
16729 } else if (Name == "_M_line") {
16730 if (!F->getType()->isIntegerType())
16731 break;
16732 Count++;
16733 } else if (Name == "_M_column") {
16734 if (!F->getType()->isIntegerType())
16735 break;
16736 Count++;
16737 } else {
16738 Count = 100; // invalid
16739 break;
16740 }
16741 }
16742 if (Count != 4) {
16743 S.Diag(Loc, diag::err_std_source_location_impl_malformed);
16744 return nullptr;
16745 }
16746
16747 return ImplDecl;
16748 }
16749
ActOnSourceLocExpr(SourceLocExpr::IdentKind Kind,SourceLocation BuiltinLoc,SourceLocation RPLoc)16750 ExprResult Sema::ActOnSourceLocExpr(SourceLocExpr::IdentKind Kind,
16751 SourceLocation BuiltinLoc,
16752 SourceLocation RPLoc) {
16753 QualType ResultTy;
16754 switch (Kind) {
16755 case SourceLocExpr::File:
16756 case SourceLocExpr::Function: {
16757 QualType ArrTy = Context.getStringLiteralArrayType(Context.CharTy, 0);
16758 ResultTy =
16759 Context.getPointerType(ArrTy->getAsArrayTypeUnsafe()->getElementType());
16760 break;
16761 }
16762 case SourceLocExpr::Line:
16763 case SourceLocExpr::Column:
16764 ResultTy = Context.UnsignedIntTy;
16765 break;
16766 case SourceLocExpr::SourceLocStruct:
16767 if (!StdSourceLocationImplDecl) {
16768 StdSourceLocationImplDecl =
16769 LookupStdSourceLocationImpl(*this, BuiltinLoc);
16770 if (!StdSourceLocationImplDecl)
16771 return ExprError();
16772 }
16773 ResultTy = Context.getPointerType(
16774 Context.getRecordType(StdSourceLocationImplDecl).withConst());
16775 break;
16776 }
16777
16778 return BuildSourceLocExpr(Kind, ResultTy, BuiltinLoc, RPLoc, CurContext);
16779 }
16780
BuildSourceLocExpr(SourceLocExpr::IdentKind Kind,QualType ResultTy,SourceLocation BuiltinLoc,SourceLocation RPLoc,DeclContext * ParentContext)16781 ExprResult Sema::BuildSourceLocExpr(SourceLocExpr::IdentKind Kind,
16782 QualType ResultTy,
16783 SourceLocation BuiltinLoc,
16784 SourceLocation RPLoc,
16785 DeclContext *ParentContext) {
16786 return new (Context)
16787 SourceLocExpr(Context, Kind, ResultTy, BuiltinLoc, RPLoc, ParentContext);
16788 }
16789
CheckConversionToObjCLiteral(QualType DstType,Expr * & Exp,bool Diagnose)16790 bool Sema::CheckConversionToObjCLiteral(QualType DstType, Expr *&Exp,
16791 bool Diagnose) {
16792 if (!getLangOpts().ObjC)
16793 return false;
16794
16795 const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
16796 if (!PT)
16797 return false;
16798 const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
16799
16800 // Ignore any parens, implicit casts (should only be
16801 // array-to-pointer decays), and not-so-opaque values. The last is
16802 // important for making this trigger for property assignments.
16803 Expr *SrcExpr = Exp->IgnoreParenImpCasts();
16804 if (OpaqueValueExpr *OV = dyn_cast<OpaqueValueExpr>(SrcExpr))
16805 if (OV->getSourceExpr())
16806 SrcExpr = OV->getSourceExpr()->IgnoreParenImpCasts();
16807
16808 if (auto *SL = dyn_cast<StringLiteral>(SrcExpr)) {
16809 if (!PT->isObjCIdType() &&
16810 !(ID && ID->getIdentifier()->isStr("NSString")))
16811 return false;
16812 if (!SL->isOrdinary())
16813 return false;
16814
16815 if (Diagnose) {
16816 Diag(SL->getBeginLoc(), diag::err_missing_atsign_prefix)
16817 << /*string*/0 << FixItHint::CreateInsertion(SL->getBeginLoc(), "@");
16818 Exp = BuildObjCStringLiteral(SL->getBeginLoc(), SL).get();
16819 }
16820 return true;
16821 }
16822
16823 if ((isa<IntegerLiteral>(SrcExpr) || isa<CharacterLiteral>(SrcExpr) ||
16824 isa<FloatingLiteral>(SrcExpr) || isa<ObjCBoolLiteralExpr>(SrcExpr) ||
16825 isa<CXXBoolLiteralExpr>(SrcExpr)) &&
16826 !SrcExpr->isNullPointerConstant(
16827 getASTContext(), Expr::NPC_NeverValueDependent)) {
16828 if (!ID || !ID->getIdentifier()->isStr("NSNumber"))
16829 return false;
16830 if (Diagnose) {
16831 Diag(SrcExpr->getBeginLoc(), diag::err_missing_atsign_prefix)
16832 << /*number*/1
16833 << FixItHint::CreateInsertion(SrcExpr->getBeginLoc(), "@");
16834 Expr *NumLit =
16835 BuildObjCNumericLiteral(SrcExpr->getBeginLoc(), SrcExpr).get();
16836 if (NumLit)
16837 Exp = NumLit;
16838 }
16839 return true;
16840 }
16841
16842 return false;
16843 }
16844
maybeDiagnoseAssignmentToFunction(Sema & S,QualType DstType,const Expr * SrcExpr)16845 static bool maybeDiagnoseAssignmentToFunction(Sema &S, QualType DstType,
16846 const Expr *SrcExpr) {
16847 if (!DstType->isFunctionPointerType() ||
16848 !SrcExpr->getType()->isFunctionType())
16849 return false;
16850
16851 auto *DRE = dyn_cast<DeclRefExpr>(SrcExpr->IgnoreParenImpCasts());
16852 if (!DRE)
16853 return false;
16854
16855 auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl());
16856 if (!FD)
16857 return false;
16858
16859 return !S.checkAddressOfFunctionIsAvailable(FD,
16860 /*Complain=*/true,
16861 SrcExpr->getBeginLoc());
16862 }
16863
DiagnoseAssignmentResult(AssignConvertType ConvTy,SourceLocation Loc,QualType DstType,QualType SrcType,Expr * SrcExpr,AssignmentAction Action,bool * Complained)16864 bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
16865 SourceLocation Loc,
16866 QualType DstType, QualType SrcType,
16867 Expr *SrcExpr, AssignmentAction Action,
16868 bool *Complained) {
16869 if (Complained)
16870 *Complained = false;
16871
16872 // Decode the result (notice that AST's are still created for extensions).
16873 bool CheckInferredResultType = false;
16874 bool isInvalid = false;
16875 unsigned DiagKind = 0;
16876 ConversionFixItGenerator ConvHints;
16877 bool MayHaveConvFixit = false;
16878 bool MayHaveFunctionDiff = false;
16879 const ObjCInterfaceDecl *IFace = nullptr;
16880 const ObjCProtocolDecl *PDecl = nullptr;
16881
16882 switch (ConvTy) {
16883 case Compatible:
16884 DiagnoseAssignmentEnum(DstType, SrcType, SrcExpr);
16885 return false;
16886
16887 case PointerToInt:
16888 if (getLangOpts().CPlusPlus) {
16889 DiagKind = diag::err_typecheck_convert_pointer_int;
16890 isInvalid = true;
16891 } else {
16892 DiagKind = diag::ext_typecheck_convert_pointer_int;
16893 }
16894 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
16895 MayHaveConvFixit = true;
16896 break;
16897 case IntToPointer:
16898 if (getLangOpts().CPlusPlus) {
16899 DiagKind = diag::err_typecheck_convert_int_pointer;
16900 isInvalid = true;
16901 } else {
16902 DiagKind = diag::ext_typecheck_convert_int_pointer;
16903 }
16904 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
16905 MayHaveConvFixit = true;
16906 break;
16907 case IncompatibleFunctionPointer:
16908 if (getLangOpts().CPlusPlus) {
16909 DiagKind = diag::err_typecheck_convert_incompatible_function_pointer;
16910 isInvalid = true;
16911 } else {
16912 DiagKind = diag::ext_typecheck_convert_incompatible_function_pointer;
16913 }
16914 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
16915 MayHaveConvFixit = true;
16916 break;
16917 case IncompatiblePointer:
16918 if (Action == AA_Passing_CFAudited) {
16919 DiagKind = diag::err_arc_typecheck_convert_incompatible_pointer;
16920 } else if (getLangOpts().CPlusPlus) {
16921 DiagKind = diag::err_typecheck_convert_incompatible_pointer;
16922 isInvalid = true;
16923 } else {
16924 DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
16925 }
16926 CheckInferredResultType = DstType->isObjCObjectPointerType() &&
16927 SrcType->isObjCObjectPointerType();
16928 if (!CheckInferredResultType) {
16929 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
16930 } else if (CheckInferredResultType) {
16931 SrcType = SrcType.getUnqualifiedType();
16932 DstType = DstType.getUnqualifiedType();
16933 }
16934 MayHaveConvFixit = true;
16935 break;
16936 case IncompatiblePointerSign:
16937 if (getLangOpts().CPlusPlus) {
16938 DiagKind = diag::err_typecheck_convert_incompatible_pointer_sign;
16939 isInvalid = true;
16940 } else {
16941 DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
16942 }
16943 break;
16944 case FunctionVoidPointer:
16945 if (getLangOpts().CPlusPlus) {
16946 DiagKind = diag::err_typecheck_convert_pointer_void_func;
16947 isInvalid = true;
16948 } else {
16949 DiagKind = diag::ext_typecheck_convert_pointer_void_func;
16950 }
16951 break;
16952 case IncompatiblePointerDiscardsQualifiers: {
16953 // Perform array-to-pointer decay if necessary.
16954 if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType);
16955
16956 isInvalid = true;
16957
16958 Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
16959 Qualifiers rhq = DstType->getPointeeType().getQualifiers();
16960 if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
16961 DiagKind = diag::err_typecheck_incompatible_address_space;
16962 break;
16963
16964 } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) {
16965 DiagKind = diag::err_typecheck_incompatible_ownership;
16966 break;
16967 }
16968
16969 llvm_unreachable("unknown error case for discarding qualifiers!");
16970 // fallthrough
16971 }
16972 case CompatiblePointerDiscardsQualifiers:
16973 // If the qualifiers lost were because we were applying the
16974 // (deprecated) C++ conversion from a string literal to a char*
16975 // (or wchar_t*), then there was no error (C++ 4.2p2). FIXME:
16976 // Ideally, this check would be performed in
16977 // checkPointerTypesForAssignment. However, that would require a
16978 // bit of refactoring (so that the second argument is an
16979 // expression, rather than a type), which should be done as part
16980 // of a larger effort to fix checkPointerTypesForAssignment for
16981 // C++ semantics.
16982 if (getLangOpts().CPlusPlus &&
16983 IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
16984 return false;
16985 if (getLangOpts().CPlusPlus) {
16986 DiagKind = diag::err_typecheck_convert_discards_qualifiers;
16987 isInvalid = true;
16988 } else {
16989 DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
16990 }
16991
16992 break;
16993 case IncompatibleNestedPointerQualifiers:
16994 if (getLangOpts().CPlusPlus) {
16995 isInvalid = true;
16996 DiagKind = diag::err_nested_pointer_qualifier_mismatch;
16997 } else {
16998 DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
16999 }
17000 break;
17001 case IncompatibleNestedPointerAddressSpaceMismatch:
17002 DiagKind = diag::err_typecheck_incompatible_nested_address_space;
17003 isInvalid = true;
17004 break;
17005 case IntToBlockPointer:
17006 DiagKind = diag::err_int_to_block_pointer;
17007 isInvalid = true;
17008 break;
17009 case IncompatibleBlockPointer:
17010 DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
17011 isInvalid = true;
17012 break;
17013 case IncompatibleObjCQualifiedId: {
17014 if (SrcType->isObjCQualifiedIdType()) {
17015 const ObjCObjectPointerType *srcOPT =
17016 SrcType->castAs<ObjCObjectPointerType>();
17017 for (auto *srcProto : srcOPT->quals()) {
17018 PDecl = srcProto;
17019 break;
17020 }
17021 if (const ObjCInterfaceType *IFaceT =
17022 DstType->castAs<ObjCObjectPointerType>()->getInterfaceType())
17023 IFace = IFaceT->getDecl();
17024 }
17025 else if (DstType->isObjCQualifiedIdType()) {
17026 const ObjCObjectPointerType *dstOPT =
17027 DstType->castAs<ObjCObjectPointerType>();
17028 for (auto *dstProto : dstOPT->quals()) {
17029 PDecl = dstProto;
17030 break;
17031 }
17032 if (const ObjCInterfaceType *IFaceT =
17033 SrcType->castAs<ObjCObjectPointerType>()->getInterfaceType())
17034 IFace = IFaceT->getDecl();
17035 }
17036 if (getLangOpts().CPlusPlus) {
17037 DiagKind = diag::err_incompatible_qualified_id;
17038 isInvalid = true;
17039 } else {
17040 DiagKind = diag::warn_incompatible_qualified_id;
17041 }
17042 break;
17043 }
17044 case IncompatibleVectors:
17045 if (getLangOpts().CPlusPlus) {
17046 DiagKind = diag::err_incompatible_vectors;
17047 isInvalid = true;
17048 } else {
17049 DiagKind = diag::warn_incompatible_vectors;
17050 }
17051 break;
17052 case IncompatibleObjCWeakRef:
17053 DiagKind = diag::err_arc_weak_unavailable_assign;
17054 isInvalid = true;
17055 break;
17056 case Incompatible:
17057 if (maybeDiagnoseAssignmentToFunction(*this, DstType, SrcExpr)) {
17058 if (Complained)
17059 *Complained = true;
17060 return true;
17061 }
17062
17063 DiagKind = diag::err_typecheck_convert_incompatible;
17064 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
17065 MayHaveConvFixit = true;
17066 isInvalid = true;
17067 MayHaveFunctionDiff = true;
17068 break;
17069 }
17070
17071 QualType FirstType, SecondType;
17072 switch (Action) {
17073 case AA_Assigning:
17074 case AA_Initializing:
17075 // The destination type comes first.
17076 FirstType = DstType;
17077 SecondType = SrcType;
17078 break;
17079
17080 case AA_Returning:
17081 case AA_Passing:
17082 case AA_Passing_CFAudited:
17083 case AA_Converting:
17084 case AA_Sending:
17085 case AA_Casting:
17086 // The source type comes first.
17087 FirstType = SrcType;
17088 SecondType = DstType;
17089 break;
17090 }
17091
17092 PartialDiagnostic FDiag = PDiag(DiagKind);
17093 AssignmentAction ActionForDiag = Action;
17094 if (Action == AA_Passing_CFAudited)
17095 ActionForDiag = AA_Passing;
17096
17097 FDiag << FirstType << SecondType << ActionForDiag
17098 << SrcExpr->getSourceRange();
17099
17100 if (DiagKind == diag::ext_typecheck_convert_incompatible_pointer_sign ||
17101 DiagKind == diag::err_typecheck_convert_incompatible_pointer_sign) {
17102 auto isPlainChar = [](const clang::Type *Type) {
17103 return Type->isSpecificBuiltinType(BuiltinType::Char_S) ||
17104 Type->isSpecificBuiltinType(BuiltinType::Char_U);
17105 };
17106 FDiag << (isPlainChar(FirstType->getPointeeOrArrayElementType()) ||
17107 isPlainChar(SecondType->getPointeeOrArrayElementType()));
17108 }
17109
17110 // If we can fix the conversion, suggest the FixIts.
17111 if (!ConvHints.isNull()) {
17112 for (FixItHint &H : ConvHints.Hints)
17113 FDiag << H;
17114 }
17115
17116 if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); }
17117
17118 if (MayHaveFunctionDiff)
17119 HandleFunctionTypeMismatch(FDiag, SecondType, FirstType);
17120
17121 Diag(Loc, FDiag);
17122 if ((DiagKind == diag::warn_incompatible_qualified_id ||
17123 DiagKind == diag::err_incompatible_qualified_id) &&
17124 PDecl && IFace && !IFace->hasDefinition())
17125 Diag(IFace->getLocation(), diag::note_incomplete_class_and_qualified_id)
17126 << IFace << PDecl;
17127
17128 if (SecondType == Context.OverloadTy)
17129 NoteAllOverloadCandidates(OverloadExpr::find(SrcExpr).Expression,
17130 FirstType, /*TakingAddress=*/true);
17131
17132 if (CheckInferredResultType)
17133 EmitRelatedResultTypeNote(SrcExpr);
17134
17135 if (Action == AA_Returning && ConvTy == IncompatiblePointer)
17136 EmitRelatedResultTypeNoteForReturn(DstType);
17137
17138 if (Complained)
17139 *Complained = true;
17140 return isInvalid;
17141 }
17142
VerifyIntegerConstantExpression(Expr * E,llvm::APSInt * Result,AllowFoldKind CanFold)17143 ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
17144 llvm::APSInt *Result,
17145 AllowFoldKind CanFold) {
17146 class SimpleICEDiagnoser : public VerifyICEDiagnoser {
17147 public:
17148 SemaDiagnosticBuilder diagnoseNotICEType(Sema &S, SourceLocation Loc,
17149 QualType T) override {
17150 return S.Diag(Loc, diag::err_ice_not_integral)
17151 << T << S.LangOpts.CPlusPlus;
17152 }
17153 SemaDiagnosticBuilder diagnoseNotICE(Sema &S, SourceLocation Loc) override {
17154 return S.Diag(Loc, diag::err_expr_not_ice) << S.LangOpts.CPlusPlus;
17155 }
17156 } Diagnoser;
17157
17158 return VerifyIntegerConstantExpression(E, Result, Diagnoser, CanFold);
17159 }
17160
VerifyIntegerConstantExpression(Expr * E,llvm::APSInt * Result,unsigned DiagID,AllowFoldKind CanFold)17161 ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
17162 llvm::APSInt *Result,
17163 unsigned DiagID,
17164 AllowFoldKind CanFold) {
17165 class IDDiagnoser : public VerifyICEDiagnoser {
17166 unsigned DiagID;
17167
17168 public:
17169 IDDiagnoser(unsigned DiagID)
17170 : VerifyICEDiagnoser(DiagID == 0), DiagID(DiagID) { }
17171
17172 SemaDiagnosticBuilder diagnoseNotICE(Sema &S, SourceLocation Loc) override {
17173 return S.Diag(Loc, DiagID);
17174 }
17175 } Diagnoser(DiagID);
17176
17177 return VerifyIntegerConstantExpression(E, Result, Diagnoser, CanFold);
17178 }
17179
17180 Sema::SemaDiagnosticBuilder
diagnoseNotICEType(Sema & S,SourceLocation Loc,QualType T)17181 Sema::VerifyICEDiagnoser::diagnoseNotICEType(Sema &S, SourceLocation Loc,
17182 QualType T) {
17183 return diagnoseNotICE(S, Loc);
17184 }
17185
17186 Sema::SemaDiagnosticBuilder
diagnoseFold(Sema & S,SourceLocation Loc)17187 Sema::VerifyICEDiagnoser::diagnoseFold(Sema &S, SourceLocation Loc) {
17188 return S.Diag(Loc, diag::ext_expr_not_ice) << S.LangOpts.CPlusPlus;
17189 }
17190
17191 ExprResult
VerifyIntegerConstantExpression(Expr * E,llvm::APSInt * Result,VerifyICEDiagnoser & Diagnoser,AllowFoldKind CanFold)17192 Sema::VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
17193 VerifyICEDiagnoser &Diagnoser,
17194 AllowFoldKind CanFold) {
17195 SourceLocation DiagLoc = E->getBeginLoc();
17196
17197 if (getLangOpts().CPlusPlus11) {
17198 // C++11 [expr.const]p5:
17199 // If an expression of literal class type is used in a context where an
17200 // integral constant expression is required, then that class type shall
17201 // have a single non-explicit conversion function to an integral or
17202 // unscoped enumeration type
17203 ExprResult Converted;
17204 class CXX11ConvertDiagnoser : public ICEConvertDiagnoser {
17205 VerifyICEDiagnoser &BaseDiagnoser;
17206 public:
17207 CXX11ConvertDiagnoser(VerifyICEDiagnoser &BaseDiagnoser)
17208 : ICEConvertDiagnoser(/*AllowScopedEnumerations*/ false,
17209 BaseDiagnoser.Suppress, true),
17210 BaseDiagnoser(BaseDiagnoser) {}
17211
17212 SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
17213 QualType T) override {
17214 return BaseDiagnoser.diagnoseNotICEType(S, Loc, T);
17215 }
17216
17217 SemaDiagnosticBuilder diagnoseIncomplete(
17218 Sema &S, SourceLocation Loc, QualType T) override {
17219 return S.Diag(Loc, diag::err_ice_incomplete_type) << T;
17220 }
17221
17222 SemaDiagnosticBuilder diagnoseExplicitConv(
17223 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
17224 return S.Diag(Loc, diag::err_ice_explicit_conversion) << T << ConvTy;
17225 }
17226
17227 SemaDiagnosticBuilder noteExplicitConv(
17228 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
17229 return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
17230 << ConvTy->isEnumeralType() << ConvTy;
17231 }
17232
17233 SemaDiagnosticBuilder diagnoseAmbiguous(
17234 Sema &S, SourceLocation Loc, QualType T) override {
17235 return S.Diag(Loc, diag::err_ice_ambiguous_conversion) << T;
17236 }
17237
17238 SemaDiagnosticBuilder noteAmbiguous(
17239 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
17240 return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
17241 << ConvTy->isEnumeralType() << ConvTy;
17242 }
17243
17244 SemaDiagnosticBuilder diagnoseConversion(
17245 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
17246 llvm_unreachable("conversion functions are permitted");
17247 }
17248 } ConvertDiagnoser(Diagnoser);
17249
17250 Converted = PerformContextualImplicitConversion(DiagLoc, E,
17251 ConvertDiagnoser);
17252 if (Converted.isInvalid())
17253 return Converted;
17254 E = Converted.get();
17255 if (!E->getType()->isIntegralOrUnscopedEnumerationType())
17256 return ExprError();
17257 } else if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
17258 // An ICE must be of integral or unscoped enumeration type.
17259 if (!Diagnoser.Suppress)
17260 Diagnoser.diagnoseNotICEType(*this, DiagLoc, E->getType())
17261 << E->getSourceRange();
17262 return ExprError();
17263 }
17264
17265 ExprResult RValueExpr = DefaultLvalueConversion(E);
17266 if (RValueExpr.isInvalid())
17267 return ExprError();
17268
17269 E = RValueExpr.get();
17270
17271 // Circumvent ICE checking in C++11 to avoid evaluating the expression twice
17272 // in the non-ICE case.
17273 if (!getLangOpts().CPlusPlus11 && E->isIntegerConstantExpr(Context)) {
17274 if (Result)
17275 *Result = E->EvaluateKnownConstIntCheckOverflow(Context);
17276 if (!isa<ConstantExpr>(E))
17277 E = Result ? ConstantExpr::Create(Context, E, APValue(*Result))
17278 : ConstantExpr::Create(Context, E);
17279 return E;
17280 }
17281
17282 Expr::EvalResult EvalResult;
17283 SmallVector<PartialDiagnosticAt, 8> Notes;
17284 EvalResult.Diag = &Notes;
17285
17286 // Try to evaluate the expression, and produce diagnostics explaining why it's
17287 // not a constant expression as a side-effect.
17288 bool Folded =
17289 E->EvaluateAsRValue(EvalResult, Context, /*isConstantContext*/ true) &&
17290 EvalResult.Val.isInt() && !EvalResult.HasSideEffects;
17291
17292 if (!isa<ConstantExpr>(E))
17293 E = ConstantExpr::Create(Context, E, EvalResult.Val);
17294
17295 // In C++11, we can rely on diagnostics being produced for any expression
17296 // which is not a constant expression. If no diagnostics were produced, then
17297 // this is a constant expression.
17298 if (Folded && getLangOpts().CPlusPlus11 && Notes.empty()) {
17299 if (Result)
17300 *Result = EvalResult.Val.getInt();
17301 return E;
17302 }
17303
17304 // If our only note is the usual "invalid subexpression" note, just point
17305 // the caret at its location rather than producing an essentially
17306 // redundant note.
17307 if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
17308 diag::note_invalid_subexpr_in_const_expr) {
17309 DiagLoc = Notes[0].first;
17310 Notes.clear();
17311 }
17312
17313 if (!Folded || !CanFold) {
17314 if (!Diagnoser.Suppress) {
17315 Diagnoser.diagnoseNotICE(*this, DiagLoc) << E->getSourceRange();
17316 for (const PartialDiagnosticAt &Note : Notes)
17317 Diag(Note.first, Note.second);
17318 }
17319
17320 return ExprError();
17321 }
17322
17323 Diagnoser.diagnoseFold(*this, DiagLoc) << E->getSourceRange();
17324 for (const PartialDiagnosticAt &Note : Notes)
17325 Diag(Note.first, Note.second);
17326
17327 if (Result)
17328 *Result = EvalResult.Val.getInt();
17329 return E;
17330 }
17331
17332 namespace {
17333 // Handle the case where we conclude a expression which we speculatively
17334 // considered to be unevaluated is actually evaluated.
17335 class TransformToPE : public TreeTransform<TransformToPE> {
17336 typedef TreeTransform<TransformToPE> BaseTransform;
17337
17338 public:
TransformToPE(Sema & SemaRef)17339 TransformToPE(Sema &SemaRef) : BaseTransform(SemaRef) { }
17340
17341 // Make sure we redo semantic analysis
AlwaysRebuild()17342 bool AlwaysRebuild() { return true; }
ReplacingOriginal()17343 bool ReplacingOriginal() { return true; }
17344
17345 // We need to special-case DeclRefExprs referring to FieldDecls which
17346 // are not part of a member pointer formation; normal TreeTransforming
17347 // doesn't catch this case because of the way we represent them in the AST.
17348 // FIXME: This is a bit ugly; is it really the best way to handle this
17349 // case?
17350 //
17351 // Error on DeclRefExprs referring to FieldDecls.
TransformDeclRefExpr(DeclRefExpr * E)17352 ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
17353 if (isa<FieldDecl>(E->getDecl()) &&
17354 !SemaRef.isUnevaluatedContext())
17355 return SemaRef.Diag(E->getLocation(),
17356 diag::err_invalid_non_static_member_use)
17357 << E->getDecl() << E->getSourceRange();
17358
17359 return BaseTransform::TransformDeclRefExpr(E);
17360 }
17361
17362 // Exception: filter out member pointer formation
TransformUnaryOperator(UnaryOperator * E)17363 ExprResult TransformUnaryOperator(UnaryOperator *E) {
17364 if (E->getOpcode() == UO_AddrOf && E->getType()->isMemberPointerType())
17365 return E;
17366
17367 return BaseTransform::TransformUnaryOperator(E);
17368 }
17369
17370 // The body of a lambda-expression is in a separate expression evaluation
17371 // context so never needs to be transformed.
17372 // FIXME: Ideally we wouldn't transform the closure type either, and would
17373 // just recreate the capture expressions and lambda expression.
TransformLambdaBody(LambdaExpr * E,Stmt * Body)17374 StmtResult TransformLambdaBody(LambdaExpr *E, Stmt *Body) {
17375 return SkipLambdaBody(E, Body);
17376 }
17377 };
17378 }
17379
TransformToPotentiallyEvaluated(Expr * E)17380 ExprResult Sema::TransformToPotentiallyEvaluated(Expr *E) {
17381 assert(isUnevaluatedContext() &&
17382 "Should only transform unevaluated expressions");
17383 ExprEvalContexts.back().Context =
17384 ExprEvalContexts[ExprEvalContexts.size()-2].Context;
17385 if (isUnevaluatedContext())
17386 return E;
17387 return TransformToPE(*this).TransformExpr(E);
17388 }
17389
TransformToPotentiallyEvaluated(TypeSourceInfo * TInfo)17390 TypeSourceInfo *Sema::TransformToPotentiallyEvaluated(TypeSourceInfo *TInfo) {
17391 assert(isUnevaluatedContext() &&
17392 "Should only transform unevaluated expressions");
17393 ExprEvalContexts.back().Context =
17394 ExprEvalContexts[ExprEvalContexts.size() - 2].Context;
17395 if (isUnevaluatedContext())
17396 return TInfo;
17397 return TransformToPE(*this).TransformType(TInfo);
17398 }
17399
17400 void
PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,Decl * LambdaContextDecl,ExpressionEvaluationContextRecord::ExpressionKind ExprContext)17401 Sema::PushExpressionEvaluationContext(
17402 ExpressionEvaluationContext NewContext, Decl *LambdaContextDecl,
17403 ExpressionEvaluationContextRecord::ExpressionKind ExprContext) {
17404 ExprEvalContexts.emplace_back(NewContext, ExprCleanupObjects.size(), Cleanup,
17405 LambdaContextDecl, ExprContext);
17406
17407 // Discarded statements and immediate contexts nested in other
17408 // discarded statements or immediate context are themselves
17409 // a discarded statement or an immediate context, respectively.
17410 ExprEvalContexts.back().InDiscardedStatement =
17411 ExprEvalContexts[ExprEvalContexts.size() - 2]
17412 .isDiscardedStatementContext();
17413 ExprEvalContexts.back().InImmediateFunctionContext =
17414 ExprEvalContexts[ExprEvalContexts.size() - 2]
17415 .isImmediateFunctionContext();
17416
17417 Cleanup.reset();
17418 if (!MaybeODRUseExprs.empty())
17419 std::swap(MaybeODRUseExprs, ExprEvalContexts.back().SavedMaybeODRUseExprs);
17420 }
17421
17422 void
PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,ReuseLambdaContextDecl_t,ExpressionEvaluationContextRecord::ExpressionKind ExprContext)17423 Sema::PushExpressionEvaluationContext(
17424 ExpressionEvaluationContext NewContext, ReuseLambdaContextDecl_t,
17425 ExpressionEvaluationContextRecord::ExpressionKind ExprContext) {
17426 Decl *ClosureContextDecl = ExprEvalContexts.back().ManglingContextDecl;
17427 PushExpressionEvaluationContext(NewContext, ClosureContextDecl, ExprContext);
17428 }
17429
17430 namespace {
17431
CheckPossibleDeref(Sema & S,const Expr * PossibleDeref)17432 const DeclRefExpr *CheckPossibleDeref(Sema &S, const Expr *PossibleDeref) {
17433 PossibleDeref = PossibleDeref->IgnoreParenImpCasts();
17434 if (const auto *E = dyn_cast<UnaryOperator>(PossibleDeref)) {
17435 if (E->getOpcode() == UO_Deref)
17436 return CheckPossibleDeref(S, E->getSubExpr());
17437 } else if (const auto *E = dyn_cast<ArraySubscriptExpr>(PossibleDeref)) {
17438 return CheckPossibleDeref(S, E->getBase());
17439 } else if (const auto *E = dyn_cast<MemberExpr>(PossibleDeref)) {
17440 return CheckPossibleDeref(S, E->getBase());
17441 } else if (const auto E = dyn_cast<DeclRefExpr>(PossibleDeref)) {
17442 QualType Inner;
17443 QualType Ty = E->getType();
17444 if (const auto *Ptr = Ty->getAs<PointerType>())
17445 Inner = Ptr->getPointeeType();
17446 else if (const auto *Arr = S.Context.getAsArrayType(Ty))
17447 Inner = Arr->getElementType();
17448 else
17449 return nullptr;
17450
17451 if (Inner->hasAttr(attr::NoDeref))
17452 return E;
17453 }
17454 return nullptr;
17455 }
17456
17457 } // namespace
17458
WarnOnPendingNoDerefs(ExpressionEvaluationContextRecord & Rec)17459 void Sema::WarnOnPendingNoDerefs(ExpressionEvaluationContextRecord &Rec) {
17460 for (const Expr *E : Rec.PossibleDerefs) {
17461 const DeclRefExpr *DeclRef = CheckPossibleDeref(*this, E);
17462 if (DeclRef) {
17463 const ValueDecl *Decl = DeclRef->getDecl();
17464 Diag(E->getExprLoc(), diag::warn_dereference_of_noderef_type)
17465 << Decl->getName() << E->getSourceRange();
17466 Diag(Decl->getLocation(), diag::note_previous_decl) << Decl->getName();
17467 } else {
17468 Diag(E->getExprLoc(), diag::warn_dereference_of_noderef_type_no_decl)
17469 << E->getSourceRange();
17470 }
17471 }
17472 Rec.PossibleDerefs.clear();
17473 }
17474
17475 /// Check whether E, which is either a discarded-value expression or an
17476 /// unevaluated operand, is a simple-assignment to a volatlie-qualified lvalue,
17477 /// and if so, remove it from the list of volatile-qualified assignments that
17478 /// we are going to warn are deprecated.
CheckUnusedVolatileAssignment(Expr * E)17479 void Sema::CheckUnusedVolatileAssignment(Expr *E) {
17480 if (!E->getType().isVolatileQualified() || !getLangOpts().CPlusPlus20)
17481 return;
17482
17483 // Note: ignoring parens here is not justified by the standard rules, but
17484 // ignoring parentheses seems like a more reasonable approach, and this only
17485 // drives a deprecation warning so doesn't affect conformance.
17486 if (auto *BO = dyn_cast<BinaryOperator>(E->IgnoreParenImpCasts())) {
17487 if (BO->getOpcode() == BO_Assign) {
17488 auto &LHSs = ExprEvalContexts.back().VolatileAssignmentLHSs;
17489 llvm::erase_value(LHSs, BO->getLHS());
17490 }
17491 }
17492 }
17493
CheckForImmediateInvocation(ExprResult E,FunctionDecl * Decl)17494 ExprResult Sema::CheckForImmediateInvocation(ExprResult E, FunctionDecl *Decl) {
17495 if (isUnevaluatedContext() || !E.isUsable() || !Decl ||
17496 !Decl->isConsteval() || isConstantEvaluated() ||
17497 RebuildingImmediateInvocation || isImmediateFunctionContext())
17498 return E;
17499
17500 /// Opportunistically remove the callee from ReferencesToConsteval if we can.
17501 /// It's OK if this fails; we'll also remove this in
17502 /// HandleImmediateInvocations, but catching it here allows us to avoid
17503 /// walking the AST looking for it in simple cases.
17504 if (auto *Call = dyn_cast<CallExpr>(E.get()->IgnoreImplicit()))
17505 if (auto *DeclRef =
17506 dyn_cast<DeclRefExpr>(Call->getCallee()->IgnoreImplicit()))
17507 ExprEvalContexts.back().ReferenceToConsteval.erase(DeclRef);
17508
17509 E = MaybeCreateExprWithCleanups(E);
17510
17511 ConstantExpr *Res = ConstantExpr::Create(
17512 getASTContext(), E.get(),
17513 ConstantExpr::getStorageKind(Decl->getReturnType().getTypePtr(),
17514 getASTContext()),
17515 /*IsImmediateInvocation*/ true);
17516 /// Value-dependent constant expressions should not be immediately
17517 /// evaluated until they are instantiated.
17518 if (!Res->isValueDependent())
17519 ExprEvalContexts.back().ImmediateInvocationCandidates.emplace_back(Res, 0);
17520 return Res;
17521 }
17522
EvaluateAndDiagnoseImmediateInvocation(Sema & SemaRef,Sema::ImmediateInvocationCandidate Candidate)17523 static void EvaluateAndDiagnoseImmediateInvocation(
17524 Sema &SemaRef, Sema::ImmediateInvocationCandidate Candidate) {
17525 llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
17526 Expr::EvalResult Eval;
17527 Eval.Diag = &Notes;
17528 ConstantExpr *CE = Candidate.getPointer();
17529 bool Result = CE->EvaluateAsConstantExpr(
17530 Eval, SemaRef.getASTContext(), ConstantExprKind::ImmediateInvocation);
17531 if (!Result || !Notes.empty()) {
17532 Expr *InnerExpr = CE->getSubExpr()->IgnoreImplicit();
17533 if (auto *FunctionalCast = dyn_cast<CXXFunctionalCastExpr>(InnerExpr))
17534 InnerExpr = FunctionalCast->getSubExpr();
17535 FunctionDecl *FD = nullptr;
17536 if (auto *Call = dyn_cast<CallExpr>(InnerExpr))
17537 FD = cast<FunctionDecl>(Call->getCalleeDecl());
17538 else if (auto *Call = dyn_cast<CXXConstructExpr>(InnerExpr))
17539 FD = Call->getConstructor();
17540 else
17541 llvm_unreachable("unhandled decl kind");
17542 assert(FD->isConsteval());
17543 SemaRef.Diag(CE->getBeginLoc(), diag::err_invalid_consteval_call) << FD;
17544 for (auto &Note : Notes)
17545 SemaRef.Diag(Note.first, Note.second);
17546 return;
17547 }
17548 CE->MoveIntoResult(Eval.Val, SemaRef.getASTContext());
17549 }
17550
RemoveNestedImmediateInvocation(Sema & SemaRef,Sema::ExpressionEvaluationContextRecord & Rec,SmallVector<Sema::ImmediateInvocationCandidate,4>::reverse_iterator It)17551 static void RemoveNestedImmediateInvocation(
17552 Sema &SemaRef, Sema::ExpressionEvaluationContextRecord &Rec,
17553 SmallVector<Sema::ImmediateInvocationCandidate, 4>::reverse_iterator It) {
17554 struct ComplexRemove : TreeTransform<ComplexRemove> {
17555 using Base = TreeTransform<ComplexRemove>;
17556 llvm::SmallPtrSetImpl<DeclRefExpr *> &DRSet;
17557 SmallVector<Sema::ImmediateInvocationCandidate, 4> &IISet;
17558 SmallVector<Sema::ImmediateInvocationCandidate, 4>::reverse_iterator
17559 CurrentII;
17560 ComplexRemove(Sema &SemaRef, llvm::SmallPtrSetImpl<DeclRefExpr *> &DR,
17561 SmallVector<Sema::ImmediateInvocationCandidate, 4> &II,
17562 SmallVector<Sema::ImmediateInvocationCandidate,
17563 4>::reverse_iterator Current)
17564 : Base(SemaRef), DRSet(DR), IISet(II), CurrentII(Current) {}
17565 void RemoveImmediateInvocation(ConstantExpr* E) {
17566 auto It = std::find_if(CurrentII, IISet.rend(),
17567 [E](Sema::ImmediateInvocationCandidate Elem) {
17568 return Elem.getPointer() == E;
17569 });
17570 assert(It != IISet.rend() &&
17571 "ConstantExpr marked IsImmediateInvocation should "
17572 "be present");
17573 It->setInt(1); // Mark as deleted
17574 }
17575 ExprResult TransformConstantExpr(ConstantExpr *E) {
17576 if (!E->isImmediateInvocation())
17577 return Base::TransformConstantExpr(E);
17578 RemoveImmediateInvocation(E);
17579 return Base::TransformExpr(E->getSubExpr());
17580 }
17581 /// Base::TransfromCXXOperatorCallExpr doesn't traverse the callee so
17582 /// we need to remove its DeclRefExpr from the DRSet.
17583 ExprResult TransformCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
17584 DRSet.erase(cast<DeclRefExpr>(E->getCallee()->IgnoreImplicit()));
17585 return Base::TransformCXXOperatorCallExpr(E);
17586 }
17587 /// Base::TransformInitializer skip ConstantExpr so we need to visit them
17588 /// here.
17589 ExprResult TransformInitializer(Expr *Init, bool NotCopyInit) {
17590 if (!Init)
17591 return Init;
17592 /// ConstantExpr are the first layer of implicit node to be removed so if
17593 /// Init isn't a ConstantExpr, no ConstantExpr will be skipped.
17594 if (auto *CE = dyn_cast<ConstantExpr>(Init))
17595 if (CE->isImmediateInvocation())
17596 RemoveImmediateInvocation(CE);
17597 return Base::TransformInitializer(Init, NotCopyInit);
17598 }
17599 ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
17600 DRSet.erase(E);
17601 return E;
17602 }
17603 ExprResult TransformLambdaExpr(LambdaExpr *E) {
17604 // Do not rebuild lambdas to avoid creating a new type.
17605 // Lambdas have already been processed inside their eval context.
17606 return E;
17607 }
17608 bool AlwaysRebuild() { return false; }
17609 bool ReplacingOriginal() { return true; }
17610 bool AllowSkippingCXXConstructExpr() {
17611 bool Res = AllowSkippingFirstCXXConstructExpr;
17612 AllowSkippingFirstCXXConstructExpr = true;
17613 return Res;
17614 }
17615 bool AllowSkippingFirstCXXConstructExpr = true;
17616 } Transformer(SemaRef, Rec.ReferenceToConsteval,
17617 Rec.ImmediateInvocationCandidates, It);
17618
17619 /// CXXConstructExpr with a single argument are getting skipped by
17620 /// TreeTransform in some situtation because they could be implicit. This
17621 /// can only occur for the top-level CXXConstructExpr because it is used
17622 /// nowhere in the expression being transformed therefore will not be rebuilt.
17623 /// Setting AllowSkippingFirstCXXConstructExpr to false will prevent from
17624 /// skipping the first CXXConstructExpr.
17625 if (isa<CXXConstructExpr>(It->getPointer()->IgnoreImplicit()))
17626 Transformer.AllowSkippingFirstCXXConstructExpr = false;
17627
17628 ExprResult Res = Transformer.TransformExpr(It->getPointer()->getSubExpr());
17629 assert(Res.isUsable());
17630 Res = SemaRef.MaybeCreateExprWithCleanups(Res);
17631 It->getPointer()->setSubExpr(Res.get());
17632 }
17633
17634 static void
HandleImmediateInvocations(Sema & SemaRef,Sema::ExpressionEvaluationContextRecord & Rec)17635 HandleImmediateInvocations(Sema &SemaRef,
17636 Sema::ExpressionEvaluationContextRecord &Rec) {
17637 if ((Rec.ImmediateInvocationCandidates.size() == 0 &&
17638 Rec.ReferenceToConsteval.size() == 0) ||
17639 SemaRef.RebuildingImmediateInvocation)
17640 return;
17641
17642 /// When we have more then 1 ImmediateInvocationCandidates we need to check
17643 /// for nested ImmediateInvocationCandidates. when we have only 1 we only
17644 /// need to remove ReferenceToConsteval in the immediate invocation.
17645 if (Rec.ImmediateInvocationCandidates.size() > 1) {
17646
17647 /// Prevent sema calls during the tree transform from adding pointers that
17648 /// are already in the sets.
17649 llvm::SaveAndRestore<bool> DisableIITracking(
17650 SemaRef.RebuildingImmediateInvocation, true);
17651
17652 /// Prevent diagnostic during tree transfrom as they are duplicates
17653 Sema::TentativeAnalysisScope DisableDiag(SemaRef);
17654
17655 for (auto It = Rec.ImmediateInvocationCandidates.rbegin();
17656 It != Rec.ImmediateInvocationCandidates.rend(); It++)
17657 if (!It->getInt())
17658 RemoveNestedImmediateInvocation(SemaRef, Rec, It);
17659 } else if (Rec.ImmediateInvocationCandidates.size() == 1 &&
17660 Rec.ReferenceToConsteval.size()) {
17661 struct SimpleRemove : RecursiveASTVisitor<SimpleRemove> {
17662 llvm::SmallPtrSetImpl<DeclRefExpr *> &DRSet;
17663 SimpleRemove(llvm::SmallPtrSetImpl<DeclRefExpr *> &S) : DRSet(S) {}
17664 bool VisitDeclRefExpr(DeclRefExpr *E) {
17665 DRSet.erase(E);
17666 return DRSet.size();
17667 }
17668 } Visitor(Rec.ReferenceToConsteval);
17669 Visitor.TraverseStmt(
17670 Rec.ImmediateInvocationCandidates.front().getPointer()->getSubExpr());
17671 }
17672 for (auto CE : Rec.ImmediateInvocationCandidates)
17673 if (!CE.getInt())
17674 EvaluateAndDiagnoseImmediateInvocation(SemaRef, CE);
17675 for (auto DR : Rec.ReferenceToConsteval) {
17676 auto *FD = cast<FunctionDecl>(DR->getDecl());
17677 SemaRef.Diag(DR->getBeginLoc(), diag::err_invalid_consteval_take_address)
17678 << FD;
17679 SemaRef.Diag(FD->getLocation(), diag::note_declared_at);
17680 }
17681 }
17682
PopExpressionEvaluationContext()17683 void Sema::PopExpressionEvaluationContext() {
17684 ExpressionEvaluationContextRecord& Rec = ExprEvalContexts.back();
17685 unsigned NumTypos = Rec.NumTypos;
17686
17687 if (!Rec.Lambdas.empty()) {
17688 using ExpressionKind = ExpressionEvaluationContextRecord::ExpressionKind;
17689 if (!getLangOpts().CPlusPlus20 &&
17690 (Rec.ExprContext == ExpressionKind::EK_TemplateArgument ||
17691 Rec.isUnevaluated() ||
17692 (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17))) {
17693 unsigned D;
17694 if (Rec.isUnevaluated()) {
17695 // C++11 [expr.prim.lambda]p2:
17696 // A lambda-expression shall not appear in an unevaluated operand
17697 // (Clause 5).
17698 D = diag::err_lambda_unevaluated_operand;
17699 } else if (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17) {
17700 // C++1y [expr.const]p2:
17701 // A conditional-expression e is a core constant expression unless the
17702 // evaluation of e, following the rules of the abstract machine, would
17703 // evaluate [...] a lambda-expression.
17704 D = diag::err_lambda_in_constant_expression;
17705 } else if (Rec.ExprContext == ExpressionKind::EK_TemplateArgument) {
17706 // C++17 [expr.prim.lamda]p2:
17707 // A lambda-expression shall not appear [...] in a template-argument.
17708 D = diag::err_lambda_in_invalid_context;
17709 } else
17710 llvm_unreachable("Couldn't infer lambda error message.");
17711
17712 for (const auto *L : Rec.Lambdas)
17713 Diag(L->getBeginLoc(), D);
17714 }
17715 }
17716
17717 WarnOnPendingNoDerefs(Rec);
17718 HandleImmediateInvocations(*this, Rec);
17719
17720 // Warn on any volatile-qualified simple-assignments that are not discarded-
17721 // value expressions nor unevaluated operands (those cases get removed from
17722 // this list by CheckUnusedVolatileAssignment).
17723 for (auto *BO : Rec.VolatileAssignmentLHSs)
17724 Diag(BO->getBeginLoc(), diag::warn_deprecated_simple_assign_volatile)
17725 << BO->getType();
17726
17727 // When are coming out of an unevaluated context, clear out any
17728 // temporaries that we may have created as part of the evaluation of
17729 // the expression in that context: they aren't relevant because they
17730 // will never be constructed.
17731 if (Rec.isUnevaluated() || Rec.isConstantEvaluated()) {
17732 ExprCleanupObjects.erase(ExprCleanupObjects.begin() + Rec.NumCleanupObjects,
17733 ExprCleanupObjects.end());
17734 Cleanup = Rec.ParentCleanup;
17735 CleanupVarDeclMarking();
17736 std::swap(MaybeODRUseExprs, Rec.SavedMaybeODRUseExprs);
17737 // Otherwise, merge the contexts together.
17738 } else {
17739 Cleanup.mergeFrom(Rec.ParentCleanup);
17740 MaybeODRUseExprs.insert(Rec.SavedMaybeODRUseExprs.begin(),
17741 Rec.SavedMaybeODRUseExprs.end());
17742 }
17743
17744 // Pop the current expression evaluation context off the stack.
17745 ExprEvalContexts.pop_back();
17746
17747 // The global expression evaluation context record is never popped.
17748 ExprEvalContexts.back().NumTypos += NumTypos;
17749 }
17750
DiscardCleanupsInEvaluationContext()17751 void Sema::DiscardCleanupsInEvaluationContext() {
17752 ExprCleanupObjects.erase(
17753 ExprCleanupObjects.begin() + ExprEvalContexts.back().NumCleanupObjects,
17754 ExprCleanupObjects.end());
17755 Cleanup.reset();
17756 MaybeODRUseExprs.clear();
17757 }
17758
HandleExprEvaluationContextForTypeof(Expr * E)17759 ExprResult Sema::HandleExprEvaluationContextForTypeof(Expr *E) {
17760 ExprResult Result = CheckPlaceholderExpr(E);
17761 if (Result.isInvalid())
17762 return ExprError();
17763 E = Result.get();
17764 if (!E->getType()->isVariablyModifiedType())
17765 return E;
17766 return TransformToPotentiallyEvaluated(E);
17767 }
17768
17769 /// Are we in a context that is potentially constant evaluated per C++20
17770 /// [expr.const]p12?
isPotentiallyConstantEvaluatedContext(Sema & SemaRef)17771 static bool isPotentiallyConstantEvaluatedContext(Sema &SemaRef) {
17772 /// C++2a [expr.const]p12:
17773 // An expression or conversion is potentially constant evaluated if it is
17774 switch (SemaRef.ExprEvalContexts.back().Context) {
17775 case Sema::ExpressionEvaluationContext::ConstantEvaluated:
17776 case Sema::ExpressionEvaluationContext::ImmediateFunctionContext:
17777
17778 // -- a manifestly constant-evaluated expression,
17779 case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
17780 case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
17781 case Sema::ExpressionEvaluationContext::DiscardedStatement:
17782 // -- a potentially-evaluated expression,
17783 case Sema::ExpressionEvaluationContext::UnevaluatedList:
17784 // -- an immediate subexpression of a braced-init-list,
17785
17786 // -- [FIXME] an expression of the form & cast-expression that occurs
17787 // within a templated entity
17788 // -- a subexpression of one of the above that is not a subexpression of
17789 // a nested unevaluated operand.
17790 return true;
17791
17792 case Sema::ExpressionEvaluationContext::Unevaluated:
17793 case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
17794 // Expressions in this context are never evaluated.
17795 return false;
17796 }
17797 llvm_unreachable("Invalid context");
17798 }
17799
17800 /// Return true if this function has a calling convention that requires mangling
17801 /// in the size of the parameter pack.
funcHasParameterSizeMangling(Sema & S,FunctionDecl * FD)17802 static bool funcHasParameterSizeMangling(Sema &S, FunctionDecl *FD) {
17803 // These manglings don't do anything on non-Windows or non-x86 platforms, so
17804 // we don't need parameter type sizes.
17805 const llvm::Triple &TT = S.Context.getTargetInfo().getTriple();
17806 if (!TT.isOSWindows() || !TT.isX86())
17807 return false;
17808
17809 // If this is C++ and this isn't an extern "C" function, parameters do not
17810 // need to be complete. In this case, C++ mangling will apply, which doesn't
17811 // use the size of the parameters.
17812 if (S.getLangOpts().CPlusPlus && !FD->isExternC())
17813 return false;
17814
17815 // Stdcall, fastcall, and vectorcall need this special treatment.
17816 CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv();
17817 switch (CC) {
17818 case CC_X86StdCall:
17819 case CC_X86FastCall:
17820 case CC_X86VectorCall:
17821 return true;
17822 default:
17823 break;
17824 }
17825 return false;
17826 }
17827
17828 /// Require that all of the parameter types of function be complete. Normally,
17829 /// parameter types are only required to be complete when a function is called
17830 /// or defined, but to mangle functions with certain calling conventions, the
17831 /// mangler needs to know the size of the parameter list. In this situation,
17832 /// MSVC doesn't emit an error or instantiate templates. Instead, MSVC mangles
17833 /// the function as _foo@0, i.e. zero bytes of parameters, which will usually
17834 /// result in a linker error. Clang doesn't implement this behavior, and instead
17835 /// attempts to error at compile time.
CheckCompleteParameterTypesForMangler(Sema & S,FunctionDecl * FD,SourceLocation Loc)17836 static void CheckCompleteParameterTypesForMangler(Sema &S, FunctionDecl *FD,
17837 SourceLocation Loc) {
17838 class ParamIncompleteTypeDiagnoser : public Sema::TypeDiagnoser {
17839 FunctionDecl *FD;
17840 ParmVarDecl *Param;
17841
17842 public:
17843 ParamIncompleteTypeDiagnoser(FunctionDecl *FD, ParmVarDecl *Param)
17844 : FD(FD), Param(Param) {}
17845
17846 void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
17847 CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv();
17848 StringRef CCName;
17849 switch (CC) {
17850 case CC_X86StdCall:
17851 CCName = "stdcall";
17852 break;
17853 case CC_X86FastCall:
17854 CCName = "fastcall";
17855 break;
17856 case CC_X86VectorCall:
17857 CCName = "vectorcall";
17858 break;
17859 default:
17860 llvm_unreachable("CC does not need mangling");
17861 }
17862
17863 S.Diag(Loc, diag::err_cconv_incomplete_param_type)
17864 << Param->getDeclName() << FD->getDeclName() << CCName;
17865 }
17866 };
17867
17868 for (ParmVarDecl *Param : FD->parameters()) {
17869 ParamIncompleteTypeDiagnoser Diagnoser(FD, Param);
17870 S.RequireCompleteType(Loc, Param->getType(), Diagnoser);
17871 }
17872 }
17873
17874 namespace {
17875 enum class OdrUseContext {
17876 /// Declarations in this context are not odr-used.
17877 None,
17878 /// Declarations in this context are formally odr-used, but this is a
17879 /// dependent context.
17880 Dependent,
17881 /// Declarations in this context are odr-used but not actually used (yet).
17882 FormallyOdrUsed,
17883 /// Declarations in this context are used.
17884 Used
17885 };
17886 }
17887
17888 /// Are we within a context in which references to resolved functions or to
17889 /// variables result in odr-use?
isOdrUseContext(Sema & SemaRef)17890 static OdrUseContext isOdrUseContext(Sema &SemaRef) {
17891 OdrUseContext Result;
17892
17893 switch (SemaRef.ExprEvalContexts.back().Context) {
17894 case Sema::ExpressionEvaluationContext::Unevaluated:
17895 case Sema::ExpressionEvaluationContext::UnevaluatedList:
17896 case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
17897 return OdrUseContext::None;
17898
17899 case Sema::ExpressionEvaluationContext::ConstantEvaluated:
17900 case Sema::ExpressionEvaluationContext::ImmediateFunctionContext:
17901 case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
17902 Result = OdrUseContext::Used;
17903 break;
17904
17905 case Sema::ExpressionEvaluationContext::DiscardedStatement:
17906 Result = OdrUseContext::FormallyOdrUsed;
17907 break;
17908
17909 case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
17910 // A default argument formally results in odr-use, but doesn't actually
17911 // result in a use in any real sense until it itself is used.
17912 Result = OdrUseContext::FormallyOdrUsed;
17913 break;
17914 }
17915
17916 if (SemaRef.CurContext->isDependentContext())
17917 return OdrUseContext::Dependent;
17918
17919 return Result;
17920 }
17921
isImplicitlyDefinableConstexprFunction(FunctionDecl * Func)17922 static bool isImplicitlyDefinableConstexprFunction(FunctionDecl *Func) {
17923 if (!Func->isConstexpr())
17924 return false;
17925
17926 if (Func->isImplicitlyInstantiable() || !Func->isUserProvided())
17927 return true;
17928 auto *CCD = dyn_cast<CXXConstructorDecl>(Func);
17929 return CCD && CCD->getInheritedConstructor();
17930 }
17931
17932 /// Mark a function referenced, and check whether it is odr-used
17933 /// (C++ [basic.def.odr]p2, C99 6.9p3)
MarkFunctionReferenced(SourceLocation Loc,FunctionDecl * Func,bool MightBeOdrUse)17934 void Sema::MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func,
17935 bool MightBeOdrUse) {
17936 assert(Func && "No function?");
17937
17938 Func->setReferenced();
17939
17940 // Recursive functions aren't really used until they're used from some other
17941 // context.
17942 bool IsRecursiveCall = CurContext == Func;
17943
17944 // C++11 [basic.def.odr]p3:
17945 // A function whose name appears as a potentially-evaluated expression is
17946 // odr-used if it is the unique lookup result or the selected member of a
17947 // set of overloaded functions [...].
17948 //
17949 // We (incorrectly) mark overload resolution as an unevaluated context, so we
17950 // can just check that here.
17951 OdrUseContext OdrUse =
17952 MightBeOdrUse ? isOdrUseContext(*this) : OdrUseContext::None;
17953 if (IsRecursiveCall && OdrUse == OdrUseContext::Used)
17954 OdrUse = OdrUseContext::FormallyOdrUsed;
17955
17956 // Trivial default constructors and destructors are never actually used.
17957 // FIXME: What about other special members?
17958 if (Func->isTrivial() && !Func->hasAttr<DLLExportAttr>() &&
17959 OdrUse == OdrUseContext::Used) {
17960 if (auto *Constructor = dyn_cast<CXXConstructorDecl>(Func))
17961 if (Constructor->isDefaultConstructor())
17962 OdrUse = OdrUseContext::FormallyOdrUsed;
17963 if (isa<CXXDestructorDecl>(Func))
17964 OdrUse = OdrUseContext::FormallyOdrUsed;
17965 }
17966
17967 // C++20 [expr.const]p12:
17968 // A function [...] is needed for constant evaluation if it is [...] a
17969 // constexpr function that is named by an expression that is potentially
17970 // constant evaluated
17971 bool NeededForConstantEvaluation =
17972 isPotentiallyConstantEvaluatedContext(*this) &&
17973 isImplicitlyDefinableConstexprFunction(Func);
17974
17975 // Determine whether we require a function definition to exist, per
17976 // C++11 [temp.inst]p3:
17977 // Unless a function template specialization has been explicitly
17978 // instantiated or explicitly specialized, the function template
17979 // specialization is implicitly instantiated when the specialization is
17980 // referenced in a context that requires a function definition to exist.
17981 // C++20 [temp.inst]p7:
17982 // The existence of a definition of a [...] function is considered to
17983 // affect the semantics of the program if the [...] function is needed for
17984 // constant evaluation by an expression
17985 // C++20 [basic.def.odr]p10:
17986 // Every program shall contain exactly one definition of every non-inline
17987 // function or variable that is odr-used in that program outside of a
17988 // discarded statement
17989 // C++20 [special]p1:
17990 // The implementation will implicitly define [defaulted special members]
17991 // if they are odr-used or needed for constant evaluation.
17992 //
17993 // Note that we skip the implicit instantiation of templates that are only
17994 // used in unused default arguments or by recursive calls to themselves.
17995 // This is formally non-conforming, but seems reasonable in practice.
17996 bool NeedDefinition = !IsRecursiveCall && (OdrUse == OdrUseContext::Used ||
17997 NeededForConstantEvaluation);
17998
17999 // C++14 [temp.expl.spec]p6:
18000 // If a template [...] is explicitly specialized then that specialization
18001 // shall be declared before the first use of that specialization that would
18002 // cause an implicit instantiation to take place, in every translation unit
18003 // in which such a use occurs
18004 if (NeedDefinition &&
18005 (Func->getTemplateSpecializationKind() != TSK_Undeclared ||
18006 Func->getMemberSpecializationInfo()))
18007 checkSpecializationReachability(Loc, Func);
18008
18009 if (getLangOpts().CUDA)
18010 CheckCUDACall(Loc, Func);
18011
18012 if (getLangOpts().SYCLIsDevice)
18013 checkSYCLDeviceFunction(Loc, Func);
18014
18015 // If we need a definition, try to create one.
18016 if (NeedDefinition && !Func->getBody()) {
18017 runWithSufficientStackSpace(Loc, [&] {
18018 if (CXXConstructorDecl *Constructor =
18019 dyn_cast<CXXConstructorDecl>(Func)) {
18020 Constructor = cast<CXXConstructorDecl>(Constructor->getFirstDecl());
18021 if (Constructor->isDefaulted() && !Constructor->isDeleted()) {
18022 if (Constructor->isDefaultConstructor()) {
18023 if (Constructor->isTrivial() &&
18024 !Constructor->hasAttr<DLLExportAttr>())
18025 return;
18026 DefineImplicitDefaultConstructor(Loc, Constructor);
18027 } else if (Constructor->isCopyConstructor()) {
18028 DefineImplicitCopyConstructor(Loc, Constructor);
18029 } else if (Constructor->isMoveConstructor()) {
18030 DefineImplicitMoveConstructor(Loc, Constructor);
18031 }
18032 } else if (Constructor->getInheritedConstructor()) {
18033 DefineInheritingConstructor(Loc, Constructor);
18034 }
18035 } else if (CXXDestructorDecl *Destructor =
18036 dyn_cast<CXXDestructorDecl>(Func)) {
18037 Destructor = cast<CXXDestructorDecl>(Destructor->getFirstDecl());
18038 if (Destructor->isDefaulted() && !Destructor->isDeleted()) {
18039 if (Destructor->isTrivial() && !Destructor->hasAttr<DLLExportAttr>())
18040 return;
18041 DefineImplicitDestructor(Loc, Destructor);
18042 }
18043 if (Destructor->isVirtual() && getLangOpts().AppleKext)
18044 MarkVTableUsed(Loc, Destructor->getParent());
18045 } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(Func)) {
18046 if (MethodDecl->isOverloadedOperator() &&
18047 MethodDecl->getOverloadedOperator() == OO_Equal) {
18048 MethodDecl = cast<CXXMethodDecl>(MethodDecl->getFirstDecl());
18049 if (MethodDecl->isDefaulted() && !MethodDecl->isDeleted()) {
18050 if (MethodDecl->isCopyAssignmentOperator())
18051 DefineImplicitCopyAssignment(Loc, MethodDecl);
18052 else if (MethodDecl->isMoveAssignmentOperator())
18053 DefineImplicitMoveAssignment(Loc, MethodDecl);
18054 }
18055 } else if (isa<CXXConversionDecl>(MethodDecl) &&
18056 MethodDecl->getParent()->isLambda()) {
18057 CXXConversionDecl *Conversion =
18058 cast<CXXConversionDecl>(MethodDecl->getFirstDecl());
18059 if (Conversion->isLambdaToBlockPointerConversion())
18060 DefineImplicitLambdaToBlockPointerConversion(Loc, Conversion);
18061 else
18062 DefineImplicitLambdaToFunctionPointerConversion(Loc, Conversion);
18063 } else if (MethodDecl->isVirtual() && getLangOpts().AppleKext)
18064 MarkVTableUsed(Loc, MethodDecl->getParent());
18065 }
18066
18067 if (Func->isDefaulted() && !Func->isDeleted()) {
18068 DefaultedComparisonKind DCK = getDefaultedComparisonKind(Func);
18069 if (DCK != DefaultedComparisonKind::None)
18070 DefineDefaultedComparison(Loc, Func, DCK);
18071 }
18072
18073 // Implicit instantiation of function templates and member functions of
18074 // class templates.
18075 if (Func->isImplicitlyInstantiable()) {
18076 TemplateSpecializationKind TSK =
18077 Func->getTemplateSpecializationKindForInstantiation();
18078 SourceLocation PointOfInstantiation = Func->getPointOfInstantiation();
18079 bool FirstInstantiation = PointOfInstantiation.isInvalid();
18080 if (FirstInstantiation) {
18081 PointOfInstantiation = Loc;
18082 if (auto *MSI = Func->getMemberSpecializationInfo())
18083 MSI->setPointOfInstantiation(Loc);
18084 // FIXME: Notify listener.
18085 else
18086 Func->setTemplateSpecializationKind(TSK, PointOfInstantiation);
18087 } else if (TSK != TSK_ImplicitInstantiation) {
18088 // Use the point of use as the point of instantiation, instead of the
18089 // point of explicit instantiation (which we track as the actual point
18090 // of instantiation). This gives better backtraces in diagnostics.
18091 PointOfInstantiation = Loc;
18092 }
18093
18094 if (FirstInstantiation || TSK != TSK_ImplicitInstantiation ||
18095 Func->isConstexpr()) {
18096 if (isa<CXXRecordDecl>(Func->getDeclContext()) &&
18097 cast<CXXRecordDecl>(Func->getDeclContext())->isLocalClass() &&
18098 CodeSynthesisContexts.size())
18099 PendingLocalImplicitInstantiations.push_back(
18100 std::make_pair(Func, PointOfInstantiation));
18101 else if (Func->isConstexpr())
18102 // Do not defer instantiations of constexpr functions, to avoid the
18103 // expression evaluator needing to call back into Sema if it sees a
18104 // call to such a function.
18105 InstantiateFunctionDefinition(PointOfInstantiation, Func);
18106 else {
18107 Func->setInstantiationIsPending(true);
18108 PendingInstantiations.push_back(
18109 std::make_pair(Func, PointOfInstantiation));
18110 // Notify the consumer that a function was implicitly instantiated.
18111 Consumer.HandleCXXImplicitFunctionInstantiation(Func);
18112 }
18113 }
18114 } else {
18115 // Walk redefinitions, as some of them may be instantiable.
18116 for (auto i : Func->redecls()) {
18117 if (!i->isUsed(false) && i->isImplicitlyInstantiable())
18118 MarkFunctionReferenced(Loc, i, MightBeOdrUse);
18119 }
18120 }
18121 });
18122 }
18123
18124 // C++14 [except.spec]p17:
18125 // An exception-specification is considered to be needed when:
18126 // - the function is odr-used or, if it appears in an unevaluated operand,
18127 // would be odr-used if the expression were potentially-evaluated;
18128 //
18129 // Note, we do this even if MightBeOdrUse is false. That indicates that the
18130 // function is a pure virtual function we're calling, and in that case the
18131 // function was selected by overload resolution and we need to resolve its
18132 // exception specification for a different reason.
18133 const FunctionProtoType *FPT = Func->getType()->getAs<FunctionProtoType>();
18134 if (FPT && isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
18135 ResolveExceptionSpec(Loc, FPT);
18136
18137 // If this is the first "real" use, act on that.
18138 if (OdrUse == OdrUseContext::Used && !Func->isUsed(/*CheckUsedAttr=*/false)) {
18139 // Keep track of used but undefined functions.
18140 if (!Func->isDefined()) {
18141 if (mightHaveNonExternalLinkage(Func))
18142 UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
18143 else if (Func->getMostRecentDecl()->isInlined() &&
18144 !LangOpts.GNUInline &&
18145 !Func->getMostRecentDecl()->hasAttr<GNUInlineAttr>())
18146 UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
18147 else if (isExternalWithNoLinkageType(Func))
18148 UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
18149 }
18150
18151 // Some x86 Windows calling conventions mangle the size of the parameter
18152 // pack into the name. Computing the size of the parameters requires the
18153 // parameter types to be complete. Check that now.
18154 if (funcHasParameterSizeMangling(*this, Func))
18155 CheckCompleteParameterTypesForMangler(*this, Func, Loc);
18156
18157 // In the MS C++ ABI, the compiler emits destructor variants where they are
18158 // used. If the destructor is used here but defined elsewhere, mark the
18159 // virtual base destructors referenced. If those virtual base destructors
18160 // are inline, this will ensure they are defined when emitting the complete
18161 // destructor variant. This checking may be redundant if the destructor is
18162 // provided later in this TU.
18163 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
18164 if (auto *Dtor = dyn_cast<CXXDestructorDecl>(Func)) {
18165 CXXRecordDecl *Parent = Dtor->getParent();
18166 if (Parent->getNumVBases() > 0 && !Dtor->getBody())
18167 CheckCompleteDestructorVariant(Loc, Dtor);
18168 }
18169 }
18170
18171 Func->markUsed(Context);
18172 }
18173 }
18174
18175 /// Directly mark a variable odr-used. Given a choice, prefer to use
18176 /// MarkVariableReferenced since it does additional checks and then
18177 /// calls MarkVarDeclODRUsed.
18178 /// If the variable must be captured:
18179 /// - if FunctionScopeIndexToStopAt is null, capture it in the CurContext
18180 /// - else capture it in the DeclContext that maps to the
18181 /// *FunctionScopeIndexToStopAt on the FunctionScopeInfo stack.
18182 static void
MarkVarDeclODRUsed(VarDecl * Var,SourceLocation Loc,Sema & SemaRef,const unsigned * const FunctionScopeIndexToStopAt=nullptr)18183 MarkVarDeclODRUsed(VarDecl *Var, SourceLocation Loc, Sema &SemaRef,
18184 const unsigned *const FunctionScopeIndexToStopAt = nullptr) {
18185 // Keep track of used but undefined variables.
18186 // FIXME: We shouldn't suppress this warning for static data members.
18187 if (Var->hasDefinition(SemaRef.Context) == VarDecl::DeclarationOnly &&
18188 (!Var->isExternallyVisible() || Var->isInline() ||
18189 SemaRef.isExternalWithNoLinkageType(Var)) &&
18190 !(Var->isStaticDataMember() && Var->hasInit())) {
18191 SourceLocation &old = SemaRef.UndefinedButUsed[Var->getCanonicalDecl()];
18192 if (old.isInvalid())
18193 old = Loc;
18194 }
18195 QualType CaptureType, DeclRefType;
18196 if (SemaRef.LangOpts.OpenMP)
18197 SemaRef.tryCaptureOpenMPLambdas(Var);
18198 SemaRef.tryCaptureVariable(Var, Loc, Sema::TryCapture_Implicit,
18199 /*EllipsisLoc*/ SourceLocation(),
18200 /*BuildAndDiagnose*/ true,
18201 CaptureType, DeclRefType,
18202 FunctionScopeIndexToStopAt);
18203
18204 if (SemaRef.LangOpts.CUDA && Var->hasGlobalStorage()) {
18205 auto *FD = dyn_cast_or_null<FunctionDecl>(SemaRef.CurContext);
18206 auto VarTarget = SemaRef.IdentifyCUDATarget(Var);
18207 auto UserTarget = SemaRef.IdentifyCUDATarget(FD);
18208 if (VarTarget == Sema::CVT_Host &&
18209 (UserTarget == Sema::CFT_Device || UserTarget == Sema::CFT_HostDevice ||
18210 UserTarget == Sema::CFT_Global)) {
18211 // Diagnose ODR-use of host global variables in device functions.
18212 // Reference of device global variables in host functions is allowed
18213 // through shadow variables therefore it is not diagnosed.
18214 if (SemaRef.LangOpts.CUDAIsDevice) {
18215 SemaRef.targetDiag(Loc, diag::err_ref_bad_target)
18216 << /*host*/ 2 << /*variable*/ 1 << Var << UserTarget;
18217 SemaRef.targetDiag(Var->getLocation(),
18218 Var->getType().isConstQualified()
18219 ? diag::note_cuda_const_var_unpromoted
18220 : diag::note_cuda_host_var);
18221 }
18222 } else if (VarTarget == Sema::CVT_Device &&
18223 (UserTarget == Sema::CFT_Host ||
18224 UserTarget == Sema::CFT_HostDevice)) {
18225 // Record a CUDA/HIP device side variable if it is ODR-used
18226 // by host code. This is done conservatively, when the variable is
18227 // referenced in any of the following contexts:
18228 // - a non-function context
18229 // - a host function
18230 // - a host device function
18231 // This makes the ODR-use of the device side variable by host code to
18232 // be visible in the device compilation for the compiler to be able to
18233 // emit template variables instantiated by host code only and to
18234 // externalize the static device side variable ODR-used by host code.
18235 if (!Var->hasExternalStorage())
18236 SemaRef.getASTContext().CUDADeviceVarODRUsedByHost.insert(Var);
18237 else if (SemaRef.LangOpts.GPURelocatableDeviceCode)
18238 SemaRef.getASTContext().CUDAExternalDeviceDeclODRUsedByHost.insert(Var);
18239 }
18240 }
18241
18242 Var->markUsed(SemaRef.Context);
18243 }
18244
MarkCaptureUsedInEnclosingContext(VarDecl * Capture,SourceLocation Loc,unsigned CapturingScopeIndex)18245 void Sema::MarkCaptureUsedInEnclosingContext(VarDecl *Capture,
18246 SourceLocation Loc,
18247 unsigned CapturingScopeIndex) {
18248 MarkVarDeclODRUsed(Capture, Loc, *this, &CapturingScopeIndex);
18249 }
18250
diagnoseUncapturableValueReference(Sema & S,SourceLocation loc,ValueDecl * var)18251 static void diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
18252 ValueDecl *var) {
18253 DeclContext *VarDC = var->getDeclContext();
18254
18255 // If the parameter still belongs to the translation unit, then
18256 // we're actually just using one parameter in the declaration of
18257 // the next.
18258 if (isa<ParmVarDecl>(var) &&
18259 isa<TranslationUnitDecl>(VarDC))
18260 return;
18261
18262 // For C code, don't diagnose about capture if we're not actually in code
18263 // right now; it's impossible to write a non-constant expression outside of
18264 // function context, so we'll get other (more useful) diagnostics later.
18265 //
18266 // For C++, things get a bit more nasty... it would be nice to suppress this
18267 // diagnostic for certain cases like using a local variable in an array bound
18268 // for a member of a local class, but the correct predicate is not obvious.
18269 if (!S.getLangOpts().CPlusPlus && !S.CurContext->isFunctionOrMethod())
18270 return;
18271
18272 unsigned ValueKind = isa<BindingDecl>(var) ? 1 : 0;
18273 unsigned ContextKind = 3; // unknown
18274 if (isa<CXXMethodDecl>(VarDC) &&
18275 cast<CXXRecordDecl>(VarDC->getParent())->isLambda()) {
18276 ContextKind = 2;
18277 } else if (isa<FunctionDecl>(VarDC)) {
18278 ContextKind = 0;
18279 } else if (isa<BlockDecl>(VarDC)) {
18280 ContextKind = 1;
18281 }
18282
18283 S.Diag(loc, diag::err_reference_to_local_in_enclosing_context)
18284 << var << ValueKind << ContextKind << VarDC;
18285 S.Diag(var->getLocation(), diag::note_entity_declared_at)
18286 << var;
18287
18288 // FIXME: Add additional diagnostic info about class etc. which prevents
18289 // capture.
18290 }
18291
18292
isVariableAlreadyCapturedInScopeInfo(CapturingScopeInfo * CSI,VarDecl * Var,bool & SubCapturesAreNested,QualType & CaptureType,QualType & DeclRefType)18293 static bool isVariableAlreadyCapturedInScopeInfo(CapturingScopeInfo *CSI, VarDecl *Var,
18294 bool &SubCapturesAreNested,
18295 QualType &CaptureType,
18296 QualType &DeclRefType) {
18297 // Check whether we've already captured it.
18298 if (CSI->CaptureMap.count(Var)) {
18299 // If we found a capture, any subcaptures are nested.
18300 SubCapturesAreNested = true;
18301
18302 // Retrieve the capture type for this variable.
18303 CaptureType = CSI->getCapture(Var).getCaptureType();
18304
18305 // Compute the type of an expression that refers to this variable.
18306 DeclRefType = CaptureType.getNonReferenceType();
18307
18308 // Similarly to mutable captures in lambda, all the OpenMP captures by copy
18309 // are mutable in the sense that user can change their value - they are
18310 // private instances of the captured declarations.
18311 const Capture &Cap = CSI->getCapture(Var);
18312 if (Cap.isCopyCapture() &&
18313 !(isa<LambdaScopeInfo>(CSI) && cast<LambdaScopeInfo>(CSI)->Mutable) &&
18314 !(isa<CapturedRegionScopeInfo>(CSI) &&
18315 cast<CapturedRegionScopeInfo>(CSI)->CapRegionKind == CR_OpenMP))
18316 DeclRefType.addConst();
18317 return true;
18318 }
18319 return false;
18320 }
18321
18322 // Only block literals, captured statements, and lambda expressions can
18323 // capture; other scopes don't work.
getParentOfCapturingContextOrNull(DeclContext * DC,VarDecl * Var,SourceLocation Loc,const bool Diagnose,Sema & S)18324 static DeclContext *getParentOfCapturingContextOrNull(DeclContext *DC, VarDecl *Var,
18325 SourceLocation Loc,
18326 const bool Diagnose, Sema &S) {
18327 if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC) || isLambdaCallOperator(DC))
18328 return getLambdaAwareParentOfDeclContext(DC);
18329 else if (Var->hasLocalStorage()) {
18330 if (Diagnose)
18331 diagnoseUncapturableValueReference(S, Loc, Var);
18332 }
18333 return nullptr;
18334 }
18335
18336 // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
18337 // certain types of variables (unnamed, variably modified types etc.)
18338 // so check for eligibility.
isVariableCapturable(CapturingScopeInfo * CSI,VarDecl * Var,SourceLocation Loc,const bool Diagnose,Sema & S)18339 static bool isVariableCapturable(CapturingScopeInfo *CSI, VarDecl *Var,
18340 SourceLocation Loc,
18341 const bool Diagnose, Sema &S) {
18342
18343 bool IsBlock = isa<BlockScopeInfo>(CSI);
18344 bool IsLambda = isa<LambdaScopeInfo>(CSI);
18345
18346 // Lambdas are not allowed to capture unnamed variables
18347 // (e.g. anonymous unions).
18348 // FIXME: The C++11 rule don't actually state this explicitly, but I'm
18349 // assuming that's the intent.
18350 if (IsLambda && !Var->getDeclName()) {
18351 if (Diagnose) {
18352 S.Diag(Loc, diag::err_lambda_capture_anonymous_var);
18353 S.Diag(Var->getLocation(), diag::note_declared_at);
18354 }
18355 return false;
18356 }
18357
18358 // Prohibit variably-modified types in blocks; they're difficult to deal with.
18359 if (Var->getType()->isVariablyModifiedType() && IsBlock) {
18360 if (Diagnose) {
18361 S.Diag(Loc, diag::err_ref_vm_type);
18362 S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
18363 }
18364 return false;
18365 }
18366 // Prohibit structs with flexible array members too.
18367 // We cannot capture what is in the tail end of the struct.
18368 if (const RecordType *VTTy = Var->getType()->getAs<RecordType>()) {
18369 if (VTTy->getDecl()->hasFlexibleArrayMember()) {
18370 if (Diagnose) {
18371 if (IsBlock)
18372 S.Diag(Loc, diag::err_ref_flexarray_type);
18373 else
18374 S.Diag(Loc, diag::err_lambda_capture_flexarray_type) << Var;
18375 S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
18376 }
18377 return false;
18378 }
18379 }
18380 const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
18381 // Lambdas and captured statements are not allowed to capture __block
18382 // variables; they don't support the expected semantics.
18383 if (HasBlocksAttr && (IsLambda || isa<CapturedRegionScopeInfo>(CSI))) {
18384 if (Diagnose) {
18385 S.Diag(Loc, diag::err_capture_block_variable) << Var << !IsLambda;
18386 S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
18387 }
18388 return false;
18389 }
18390 // OpenCL v2.0 s6.12.5: Blocks cannot reference/capture other blocks
18391 if (S.getLangOpts().OpenCL && IsBlock &&
18392 Var->getType()->isBlockPointerType()) {
18393 if (Diagnose)
18394 S.Diag(Loc, diag::err_opencl_block_ref_block);
18395 return false;
18396 }
18397
18398 return true;
18399 }
18400
18401 // Returns true if the capture by block was successful.
captureInBlock(BlockScopeInfo * BSI,VarDecl * Var,SourceLocation Loc,const bool BuildAndDiagnose,QualType & CaptureType,QualType & DeclRefType,const bool Nested,Sema & S,bool Invalid)18402 static bool captureInBlock(BlockScopeInfo *BSI, VarDecl *Var,
18403 SourceLocation Loc,
18404 const bool BuildAndDiagnose,
18405 QualType &CaptureType,
18406 QualType &DeclRefType,
18407 const bool Nested,
18408 Sema &S, bool Invalid) {
18409 bool ByRef = false;
18410
18411 // Blocks are not allowed to capture arrays, excepting OpenCL.
18412 // OpenCL v2.0 s1.12.5 (revision 40): arrays are captured by reference
18413 // (decayed to pointers).
18414 if (!Invalid && !S.getLangOpts().OpenCL && CaptureType->isArrayType()) {
18415 if (BuildAndDiagnose) {
18416 S.Diag(Loc, diag::err_ref_array_type);
18417 S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
18418 Invalid = true;
18419 } else {
18420 return false;
18421 }
18422 }
18423
18424 // Forbid the block-capture of autoreleasing variables.
18425 if (!Invalid &&
18426 CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
18427 if (BuildAndDiagnose) {
18428 S.Diag(Loc, diag::err_arc_autoreleasing_capture)
18429 << /*block*/ 0;
18430 S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
18431 Invalid = true;
18432 } else {
18433 return false;
18434 }
18435 }
18436
18437 // Warn about implicitly autoreleasing indirect parameters captured by blocks.
18438 if (const auto *PT = CaptureType->getAs<PointerType>()) {
18439 QualType PointeeTy = PT->getPointeeType();
18440
18441 if (!Invalid && PointeeTy->getAs<ObjCObjectPointerType>() &&
18442 PointeeTy.getObjCLifetime() == Qualifiers::OCL_Autoreleasing &&
18443 !S.Context.hasDirectOwnershipQualifier(PointeeTy)) {
18444 if (BuildAndDiagnose) {
18445 SourceLocation VarLoc = Var->getLocation();
18446 S.Diag(Loc, diag::warn_block_capture_autoreleasing);
18447 S.Diag(VarLoc, diag::note_declare_parameter_strong);
18448 }
18449 }
18450 }
18451
18452 const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
18453 if (HasBlocksAttr || CaptureType->isReferenceType() ||
18454 (S.getLangOpts().OpenMP && S.isOpenMPCapturedDecl(Var))) {
18455 // Block capture by reference does not change the capture or
18456 // declaration reference types.
18457 ByRef = true;
18458 } else {
18459 // Block capture by copy introduces 'const'.
18460 CaptureType = CaptureType.getNonReferenceType().withConst();
18461 DeclRefType = CaptureType;
18462 }
18463
18464 // Actually capture the variable.
18465 if (BuildAndDiagnose)
18466 BSI->addCapture(Var, HasBlocksAttr, ByRef, Nested, Loc, SourceLocation(),
18467 CaptureType, Invalid);
18468
18469 return !Invalid;
18470 }
18471
18472
18473 /// Capture the given variable in the captured region.
captureInCapturedRegion(CapturedRegionScopeInfo * RSI,VarDecl * Var,SourceLocation Loc,const bool BuildAndDiagnose,QualType & CaptureType,QualType & DeclRefType,const bool RefersToCapturedVariable,Sema::TryCaptureKind Kind,bool IsTopScope,Sema & S,bool Invalid)18474 static bool captureInCapturedRegion(
18475 CapturedRegionScopeInfo *RSI, VarDecl *Var, SourceLocation Loc,
18476 const bool BuildAndDiagnose, QualType &CaptureType, QualType &DeclRefType,
18477 const bool RefersToCapturedVariable, Sema::TryCaptureKind Kind,
18478 bool IsTopScope, Sema &S, bool Invalid) {
18479 // By default, capture variables by reference.
18480 bool ByRef = true;
18481 if (IsTopScope && Kind != Sema::TryCapture_Implicit) {
18482 ByRef = (Kind == Sema::TryCapture_ExplicitByRef);
18483 } else if (S.getLangOpts().OpenMP && RSI->CapRegionKind == CR_OpenMP) {
18484 // Using an LValue reference type is consistent with Lambdas (see below).
18485 if (S.isOpenMPCapturedDecl(Var)) {
18486 bool HasConst = DeclRefType.isConstQualified();
18487 DeclRefType = DeclRefType.getUnqualifiedType();
18488 // Don't lose diagnostics about assignments to const.
18489 if (HasConst)
18490 DeclRefType.addConst();
18491 }
18492 // Do not capture firstprivates in tasks.
18493 if (S.isOpenMPPrivateDecl(Var, RSI->OpenMPLevel, RSI->OpenMPCaptureLevel) !=
18494 OMPC_unknown)
18495 return true;
18496 ByRef = S.isOpenMPCapturedByRef(Var, RSI->OpenMPLevel,
18497 RSI->OpenMPCaptureLevel);
18498 }
18499
18500 if (ByRef)
18501 CaptureType = S.Context.getLValueReferenceType(DeclRefType);
18502 else
18503 CaptureType = DeclRefType;
18504
18505 // Actually capture the variable.
18506 if (BuildAndDiagnose)
18507 RSI->addCapture(Var, /*isBlock*/ false, ByRef, RefersToCapturedVariable,
18508 Loc, SourceLocation(), CaptureType, Invalid);
18509
18510 return !Invalid;
18511 }
18512
18513 /// Capture the given variable in the lambda.
captureInLambda(LambdaScopeInfo * LSI,VarDecl * Var,SourceLocation Loc,const bool BuildAndDiagnose,QualType & CaptureType,QualType & DeclRefType,const bool RefersToCapturedVariable,const Sema::TryCaptureKind Kind,SourceLocation EllipsisLoc,const bool IsTopScope,Sema & S,bool Invalid)18514 static bool captureInLambda(LambdaScopeInfo *LSI,
18515 VarDecl *Var,
18516 SourceLocation Loc,
18517 const bool BuildAndDiagnose,
18518 QualType &CaptureType,
18519 QualType &DeclRefType,
18520 const bool RefersToCapturedVariable,
18521 const Sema::TryCaptureKind Kind,
18522 SourceLocation EllipsisLoc,
18523 const bool IsTopScope,
18524 Sema &S, bool Invalid) {
18525 // Determine whether we are capturing by reference or by value.
18526 bool ByRef = false;
18527 if (IsTopScope && Kind != Sema::TryCapture_Implicit) {
18528 ByRef = (Kind == Sema::TryCapture_ExplicitByRef);
18529 } else {
18530 ByRef = (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByref);
18531 }
18532
18533 // Compute the type of the field that will capture this variable.
18534 if (ByRef) {
18535 // C++11 [expr.prim.lambda]p15:
18536 // An entity is captured by reference if it is implicitly or
18537 // explicitly captured but not captured by copy. It is
18538 // unspecified whether additional unnamed non-static data
18539 // members are declared in the closure type for entities
18540 // captured by reference.
18541 //
18542 // FIXME: It is not clear whether we want to build an lvalue reference
18543 // to the DeclRefType or to CaptureType.getNonReferenceType(). GCC appears
18544 // to do the former, while EDG does the latter. Core issue 1249 will
18545 // clarify, but for now we follow GCC because it's a more permissive and
18546 // easily defensible position.
18547 CaptureType = S.Context.getLValueReferenceType(DeclRefType);
18548 } else {
18549 // C++11 [expr.prim.lambda]p14:
18550 // For each entity captured by copy, an unnamed non-static
18551 // data member is declared in the closure type. The
18552 // declaration order of these members is unspecified. The type
18553 // of such a data member is the type of the corresponding
18554 // captured entity if the entity is not a reference to an
18555 // object, or the referenced type otherwise. [Note: If the
18556 // captured entity is a reference to a function, the
18557 // corresponding data member is also a reference to a
18558 // function. - end note ]
18559 if (const ReferenceType *RefType = CaptureType->getAs<ReferenceType>()){
18560 if (!RefType->getPointeeType()->isFunctionType())
18561 CaptureType = RefType->getPointeeType();
18562 }
18563
18564 // Forbid the lambda copy-capture of autoreleasing variables.
18565 if (!Invalid &&
18566 CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
18567 if (BuildAndDiagnose) {
18568 S.Diag(Loc, diag::err_arc_autoreleasing_capture) << /*lambda*/ 1;
18569 S.Diag(Var->getLocation(), diag::note_previous_decl)
18570 << Var->getDeclName();
18571 Invalid = true;
18572 } else {
18573 return false;
18574 }
18575 }
18576
18577 // Make sure that by-copy captures are of a complete and non-abstract type.
18578 if (!Invalid && BuildAndDiagnose) {
18579 if (!CaptureType->isDependentType() &&
18580 S.RequireCompleteSizedType(
18581 Loc, CaptureType,
18582 diag::err_capture_of_incomplete_or_sizeless_type,
18583 Var->getDeclName()))
18584 Invalid = true;
18585 else if (S.RequireNonAbstractType(Loc, CaptureType,
18586 diag::err_capture_of_abstract_type))
18587 Invalid = true;
18588 }
18589 }
18590
18591 // Compute the type of a reference to this captured variable.
18592 if (ByRef)
18593 DeclRefType = CaptureType.getNonReferenceType();
18594 else {
18595 // C++ [expr.prim.lambda]p5:
18596 // The closure type for a lambda-expression has a public inline
18597 // function call operator [...]. This function call operator is
18598 // declared const (9.3.1) if and only if the lambda-expression's
18599 // parameter-declaration-clause is not followed by mutable.
18600 DeclRefType = CaptureType.getNonReferenceType();
18601 if (!LSI->Mutable && !CaptureType->isReferenceType())
18602 DeclRefType.addConst();
18603 }
18604
18605 // Add the capture.
18606 if (BuildAndDiagnose)
18607 LSI->addCapture(Var, /*isBlock=*/false, ByRef, RefersToCapturedVariable,
18608 Loc, EllipsisLoc, CaptureType, Invalid);
18609
18610 return !Invalid;
18611 }
18612
canCaptureVariableByCopy(VarDecl * Var,const ASTContext & Context)18613 static bool canCaptureVariableByCopy(VarDecl *Var, const ASTContext &Context) {
18614 // Offer a Copy fix even if the type is dependent.
18615 if (Var->getType()->isDependentType())
18616 return true;
18617 QualType T = Var->getType().getNonReferenceType();
18618 if (T.isTriviallyCopyableType(Context))
18619 return true;
18620 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
18621
18622 if (!(RD = RD->getDefinition()))
18623 return false;
18624 if (RD->hasSimpleCopyConstructor())
18625 return true;
18626 if (RD->hasUserDeclaredCopyConstructor())
18627 for (CXXConstructorDecl *Ctor : RD->ctors())
18628 if (Ctor->isCopyConstructor())
18629 return !Ctor->isDeleted();
18630 }
18631 return false;
18632 }
18633
18634 /// Create up to 4 fix-its for explicit reference and value capture of \p Var or
18635 /// default capture. Fixes may be omitted if they aren't allowed by the
18636 /// standard, for example we can't emit a default copy capture fix-it if we
18637 /// already explicitly copy capture capture another variable.
buildLambdaCaptureFixit(Sema & Sema,LambdaScopeInfo * LSI,VarDecl * Var)18638 static void buildLambdaCaptureFixit(Sema &Sema, LambdaScopeInfo *LSI,
18639 VarDecl *Var) {
18640 assert(LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None);
18641 // Don't offer Capture by copy of default capture by copy fixes if Var is
18642 // known not to be copy constructible.
18643 bool ShouldOfferCopyFix = canCaptureVariableByCopy(Var, Sema.getASTContext());
18644
18645 SmallString<32> FixBuffer;
18646 StringRef Separator = LSI->NumExplicitCaptures > 0 ? ", " : "";
18647 if (Var->getDeclName().isIdentifier() && !Var->getName().empty()) {
18648 SourceLocation VarInsertLoc = LSI->IntroducerRange.getEnd();
18649 if (ShouldOfferCopyFix) {
18650 // Offer fixes to insert an explicit capture for the variable.
18651 // [] -> [VarName]
18652 // [OtherCapture] -> [OtherCapture, VarName]
18653 FixBuffer.assign({Separator, Var->getName()});
18654 Sema.Diag(VarInsertLoc, diag::note_lambda_variable_capture_fixit)
18655 << Var << /*value*/ 0
18656 << FixItHint::CreateInsertion(VarInsertLoc, FixBuffer);
18657 }
18658 // As above but capture by reference.
18659 FixBuffer.assign({Separator, "&", Var->getName()});
18660 Sema.Diag(VarInsertLoc, diag::note_lambda_variable_capture_fixit)
18661 << Var << /*reference*/ 1
18662 << FixItHint::CreateInsertion(VarInsertLoc, FixBuffer);
18663 }
18664
18665 // Only try to offer default capture if there are no captures excluding this
18666 // and init captures.
18667 // [this]: OK.
18668 // [X = Y]: OK.
18669 // [&A, &B]: Don't offer.
18670 // [A, B]: Don't offer.
18671 if (llvm::any_of(LSI->Captures, [](Capture &C) {
18672 return !C.isThisCapture() && !C.isInitCapture();
18673 }))
18674 return;
18675
18676 // The default capture specifiers, '=' or '&', must appear first in the
18677 // capture body.
18678 SourceLocation DefaultInsertLoc =
18679 LSI->IntroducerRange.getBegin().getLocWithOffset(1);
18680
18681 if (ShouldOfferCopyFix) {
18682 bool CanDefaultCopyCapture = true;
18683 // [=, *this] OK since c++17
18684 // [=, this] OK since c++20
18685 if (LSI->isCXXThisCaptured() && !Sema.getLangOpts().CPlusPlus20)
18686 CanDefaultCopyCapture = Sema.getLangOpts().CPlusPlus17
18687 ? LSI->getCXXThisCapture().isCopyCapture()
18688 : false;
18689 // We can't use default capture by copy if any captures already specified
18690 // capture by copy.
18691 if (CanDefaultCopyCapture && llvm::none_of(LSI->Captures, [](Capture &C) {
18692 return !C.isThisCapture() && !C.isInitCapture() && C.isCopyCapture();
18693 })) {
18694 FixBuffer.assign({"=", Separator});
18695 Sema.Diag(DefaultInsertLoc, diag::note_lambda_default_capture_fixit)
18696 << /*value*/ 0
18697 << FixItHint::CreateInsertion(DefaultInsertLoc, FixBuffer);
18698 }
18699 }
18700
18701 // We can't use default capture by reference if any captures already specified
18702 // capture by reference.
18703 if (llvm::none_of(LSI->Captures, [](Capture &C) {
18704 return !C.isInitCapture() && C.isReferenceCapture() &&
18705 !C.isThisCapture();
18706 })) {
18707 FixBuffer.assign({"&", Separator});
18708 Sema.Diag(DefaultInsertLoc, diag::note_lambda_default_capture_fixit)
18709 << /*reference*/ 1
18710 << FixItHint::CreateInsertion(DefaultInsertLoc, FixBuffer);
18711 }
18712 }
18713
tryCaptureVariable(VarDecl * Var,SourceLocation ExprLoc,TryCaptureKind Kind,SourceLocation EllipsisLoc,bool BuildAndDiagnose,QualType & CaptureType,QualType & DeclRefType,const unsigned * const FunctionScopeIndexToStopAt)18714 bool Sema::tryCaptureVariable(
18715 VarDecl *Var, SourceLocation ExprLoc, TryCaptureKind Kind,
18716 SourceLocation EllipsisLoc, bool BuildAndDiagnose, QualType &CaptureType,
18717 QualType &DeclRefType, const unsigned *const FunctionScopeIndexToStopAt) {
18718 // An init-capture is notionally from the context surrounding its
18719 // declaration, but its parent DC is the lambda class.
18720 DeclContext *VarDC = Var->getDeclContext();
18721 if (Var->isInitCapture())
18722 VarDC = VarDC->getParent();
18723
18724 DeclContext *DC = CurContext;
18725 const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
18726 ? *FunctionScopeIndexToStopAt : FunctionScopes.size() - 1;
18727 // We need to sync up the Declaration Context with the
18728 // FunctionScopeIndexToStopAt
18729 if (FunctionScopeIndexToStopAt) {
18730 unsigned FSIndex = FunctionScopes.size() - 1;
18731 while (FSIndex != MaxFunctionScopesIndex) {
18732 DC = getLambdaAwareParentOfDeclContext(DC);
18733 --FSIndex;
18734 }
18735 }
18736
18737
18738 // If the variable is declared in the current context, there is no need to
18739 // capture it.
18740 if (VarDC == DC) return true;
18741
18742 // Capture global variables if it is required to use private copy of this
18743 // variable.
18744 bool IsGlobal = !Var->hasLocalStorage();
18745 if (IsGlobal &&
18746 !(LangOpts.OpenMP && isOpenMPCapturedDecl(Var, /*CheckScopeInfo=*/true,
18747 MaxFunctionScopesIndex)))
18748 return true;
18749 Var = Var->getCanonicalDecl();
18750
18751 // Walk up the stack to determine whether we can capture the variable,
18752 // performing the "simple" checks that don't depend on type. We stop when
18753 // we've either hit the declared scope of the variable or find an existing
18754 // capture of that variable. We start from the innermost capturing-entity
18755 // (the DC) and ensure that all intervening capturing-entities
18756 // (blocks/lambdas etc.) between the innermost capturer and the variable`s
18757 // declcontext can either capture the variable or have already captured
18758 // the variable.
18759 CaptureType = Var->getType();
18760 DeclRefType = CaptureType.getNonReferenceType();
18761 bool Nested = false;
18762 bool Explicit = (Kind != TryCapture_Implicit);
18763 unsigned FunctionScopesIndex = MaxFunctionScopesIndex;
18764 do {
18765 // Only block literals, captured statements, and lambda expressions can
18766 // capture; other scopes don't work.
18767 DeclContext *ParentDC = getParentOfCapturingContextOrNull(DC, Var,
18768 ExprLoc,
18769 BuildAndDiagnose,
18770 *this);
18771 // We need to check for the parent *first* because, if we *have*
18772 // private-captured a global variable, we need to recursively capture it in
18773 // intermediate blocks, lambdas, etc.
18774 if (!ParentDC) {
18775 if (IsGlobal) {
18776 FunctionScopesIndex = MaxFunctionScopesIndex - 1;
18777 break;
18778 }
18779 return true;
18780 }
18781
18782 FunctionScopeInfo *FSI = FunctionScopes[FunctionScopesIndex];
18783 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FSI);
18784
18785
18786 // Check whether we've already captured it.
18787 if (isVariableAlreadyCapturedInScopeInfo(CSI, Var, Nested, CaptureType,
18788 DeclRefType)) {
18789 CSI->getCapture(Var).markUsed(BuildAndDiagnose);
18790 break;
18791 }
18792 // If we are instantiating a generic lambda call operator body,
18793 // we do not want to capture new variables. What was captured
18794 // during either a lambdas transformation or initial parsing
18795 // should be used.
18796 if (isGenericLambdaCallOperatorSpecialization(DC)) {
18797 if (BuildAndDiagnose) {
18798 LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
18799 if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None) {
18800 Diag(ExprLoc, diag::err_lambda_impcap) << Var;
18801 Diag(Var->getLocation(), diag::note_previous_decl) << Var;
18802 Diag(LSI->Lambda->getBeginLoc(), diag::note_lambda_decl);
18803 buildLambdaCaptureFixit(*this, LSI, Var);
18804 } else
18805 diagnoseUncapturableValueReference(*this, ExprLoc, Var);
18806 }
18807 return true;
18808 }
18809
18810 // Try to capture variable-length arrays types.
18811 if (Var->getType()->isVariablyModifiedType()) {
18812 // We're going to walk down into the type and look for VLA
18813 // expressions.
18814 QualType QTy = Var->getType();
18815 if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var))
18816 QTy = PVD->getOriginalType();
18817 captureVariablyModifiedType(Context, QTy, CSI);
18818 }
18819
18820 if (getLangOpts().OpenMP) {
18821 if (auto *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
18822 // OpenMP private variables should not be captured in outer scope, so
18823 // just break here. Similarly, global variables that are captured in a
18824 // target region should not be captured outside the scope of the region.
18825 if (RSI->CapRegionKind == CR_OpenMP) {
18826 OpenMPClauseKind IsOpenMPPrivateDecl = isOpenMPPrivateDecl(
18827 Var, RSI->OpenMPLevel, RSI->OpenMPCaptureLevel);
18828 // If the variable is private (i.e. not captured) and has variably
18829 // modified type, we still need to capture the type for correct
18830 // codegen in all regions, associated with the construct. Currently,
18831 // it is captured in the innermost captured region only.
18832 if (IsOpenMPPrivateDecl != OMPC_unknown &&
18833 Var->getType()->isVariablyModifiedType()) {
18834 QualType QTy = Var->getType();
18835 if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var))
18836 QTy = PVD->getOriginalType();
18837 for (int I = 1, E = getNumberOfConstructScopes(RSI->OpenMPLevel);
18838 I < E; ++I) {
18839 auto *OuterRSI = cast<CapturedRegionScopeInfo>(
18840 FunctionScopes[FunctionScopesIndex - I]);
18841 assert(RSI->OpenMPLevel == OuterRSI->OpenMPLevel &&
18842 "Wrong number of captured regions associated with the "
18843 "OpenMP construct.");
18844 captureVariablyModifiedType(Context, QTy, OuterRSI);
18845 }
18846 }
18847 bool IsTargetCap =
18848 IsOpenMPPrivateDecl != OMPC_private &&
18849 isOpenMPTargetCapturedDecl(Var, RSI->OpenMPLevel,
18850 RSI->OpenMPCaptureLevel);
18851 // Do not capture global if it is not privatized in outer regions.
18852 bool IsGlobalCap =
18853 IsGlobal && isOpenMPGlobalCapturedDecl(Var, RSI->OpenMPLevel,
18854 RSI->OpenMPCaptureLevel);
18855
18856 // When we detect target captures we are looking from inside the
18857 // target region, therefore we need to propagate the capture from the
18858 // enclosing region. Therefore, the capture is not initially nested.
18859 if (IsTargetCap)
18860 adjustOpenMPTargetScopeIndex(FunctionScopesIndex, RSI->OpenMPLevel);
18861
18862 if (IsTargetCap || IsOpenMPPrivateDecl == OMPC_private ||
18863 (IsGlobal && !IsGlobalCap)) {
18864 Nested = !IsTargetCap;
18865 bool HasConst = DeclRefType.isConstQualified();
18866 DeclRefType = DeclRefType.getUnqualifiedType();
18867 // Don't lose diagnostics about assignments to const.
18868 if (HasConst)
18869 DeclRefType.addConst();
18870 CaptureType = Context.getLValueReferenceType(DeclRefType);
18871 break;
18872 }
18873 }
18874 }
18875 }
18876 if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None && !Explicit) {
18877 // No capture-default, and this is not an explicit capture
18878 // so cannot capture this variable.
18879 if (BuildAndDiagnose) {
18880 Diag(ExprLoc, diag::err_lambda_impcap) << Var;
18881 Diag(Var->getLocation(), diag::note_previous_decl) << Var;
18882 auto *LSI = cast<LambdaScopeInfo>(CSI);
18883 if (LSI->Lambda) {
18884 Diag(LSI->Lambda->getBeginLoc(), diag::note_lambda_decl);
18885 buildLambdaCaptureFixit(*this, LSI, Var);
18886 }
18887 // FIXME: If we error out because an outer lambda can not implicitly
18888 // capture a variable that an inner lambda explicitly captures, we
18889 // should have the inner lambda do the explicit capture - because
18890 // it makes for cleaner diagnostics later. This would purely be done
18891 // so that the diagnostic does not misleadingly claim that a variable
18892 // can not be captured by a lambda implicitly even though it is captured
18893 // explicitly. Suggestion:
18894 // - create const bool VariableCaptureWasInitiallyExplicit = Explicit
18895 // at the function head
18896 // - cache the StartingDeclContext - this must be a lambda
18897 // - captureInLambda in the innermost lambda the variable.
18898 }
18899 return true;
18900 }
18901
18902 FunctionScopesIndex--;
18903 DC = ParentDC;
18904 Explicit = false;
18905 } while (!VarDC->Equals(DC));
18906
18907 // Walk back down the scope stack, (e.g. from outer lambda to inner lambda)
18908 // computing the type of the capture at each step, checking type-specific
18909 // requirements, and adding captures if requested.
18910 // If the variable had already been captured previously, we start capturing
18911 // at the lambda nested within that one.
18912 bool Invalid = false;
18913 for (unsigned I = ++FunctionScopesIndex, N = MaxFunctionScopesIndex + 1; I != N;
18914 ++I) {
18915 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[I]);
18916
18917 // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
18918 // certain types of variables (unnamed, variably modified types etc.)
18919 // so check for eligibility.
18920 if (!Invalid)
18921 Invalid =
18922 !isVariableCapturable(CSI, Var, ExprLoc, BuildAndDiagnose, *this);
18923
18924 // After encountering an error, if we're actually supposed to capture, keep
18925 // capturing in nested contexts to suppress any follow-on diagnostics.
18926 if (Invalid && !BuildAndDiagnose)
18927 return true;
18928
18929 if (BlockScopeInfo *BSI = dyn_cast<BlockScopeInfo>(CSI)) {
18930 Invalid = !captureInBlock(BSI, Var, ExprLoc, BuildAndDiagnose, CaptureType,
18931 DeclRefType, Nested, *this, Invalid);
18932 Nested = true;
18933 } else if (CapturedRegionScopeInfo *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
18934 Invalid = !captureInCapturedRegion(
18935 RSI, Var, ExprLoc, BuildAndDiagnose, CaptureType, DeclRefType, Nested,
18936 Kind, /*IsTopScope*/ I == N - 1, *this, Invalid);
18937 Nested = true;
18938 } else {
18939 LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
18940 Invalid =
18941 !captureInLambda(LSI, Var, ExprLoc, BuildAndDiagnose, CaptureType,
18942 DeclRefType, Nested, Kind, EllipsisLoc,
18943 /*IsTopScope*/ I == N - 1, *this, Invalid);
18944 Nested = true;
18945 }
18946
18947 if (Invalid && !BuildAndDiagnose)
18948 return true;
18949 }
18950 return Invalid;
18951 }
18952
tryCaptureVariable(VarDecl * Var,SourceLocation Loc,TryCaptureKind Kind,SourceLocation EllipsisLoc)18953 bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
18954 TryCaptureKind Kind, SourceLocation EllipsisLoc) {
18955 QualType CaptureType;
18956 QualType DeclRefType;
18957 return tryCaptureVariable(Var, Loc, Kind, EllipsisLoc,
18958 /*BuildAndDiagnose=*/true, CaptureType,
18959 DeclRefType, nullptr);
18960 }
18961
NeedToCaptureVariable(VarDecl * Var,SourceLocation Loc)18962 bool Sema::NeedToCaptureVariable(VarDecl *Var, SourceLocation Loc) {
18963 QualType CaptureType;
18964 QualType DeclRefType;
18965 return !tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
18966 /*BuildAndDiagnose=*/false, CaptureType,
18967 DeclRefType, nullptr);
18968 }
18969
getCapturedDeclRefType(VarDecl * Var,SourceLocation Loc)18970 QualType Sema::getCapturedDeclRefType(VarDecl *Var, SourceLocation Loc) {
18971 QualType CaptureType;
18972 QualType DeclRefType;
18973
18974 // Determine whether we can capture this variable.
18975 if (tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
18976 /*BuildAndDiagnose=*/false, CaptureType,
18977 DeclRefType, nullptr))
18978 return QualType();
18979
18980 return DeclRefType;
18981 }
18982
18983 namespace {
18984 // Helper to copy the template arguments from a DeclRefExpr or MemberExpr.
18985 // The produced TemplateArgumentListInfo* points to data stored within this
18986 // object, so should only be used in contexts where the pointer will not be
18987 // used after the CopiedTemplateArgs object is destroyed.
18988 class CopiedTemplateArgs {
18989 bool HasArgs;
18990 TemplateArgumentListInfo TemplateArgStorage;
18991 public:
18992 template<typename RefExpr>
CopiedTemplateArgs(RefExpr * E)18993 CopiedTemplateArgs(RefExpr *E) : HasArgs(E->hasExplicitTemplateArgs()) {
18994 if (HasArgs)
18995 E->copyTemplateArgumentsInto(TemplateArgStorage);
18996 }
operator TemplateArgumentListInfo*()18997 operator TemplateArgumentListInfo*()
18998 #ifdef __has_cpp_attribute
18999 #if __has_cpp_attribute(clang::lifetimebound)
19000 [[clang::lifetimebound]]
19001 #endif
19002 #endif
19003 {
19004 return HasArgs ? &TemplateArgStorage : nullptr;
19005 }
19006 };
19007 }
19008
19009 /// Walk the set of potential results of an expression and mark them all as
19010 /// non-odr-uses if they satisfy the side-conditions of the NonOdrUseReason.
19011 ///
19012 /// \return A new expression if we found any potential results, ExprEmpty() if
19013 /// not, and ExprError() if we diagnosed an error.
rebuildPotentialResultsAsNonOdrUsed(Sema & S,Expr * E,NonOdrUseReason NOUR)19014 static ExprResult rebuildPotentialResultsAsNonOdrUsed(Sema &S, Expr *E,
19015 NonOdrUseReason NOUR) {
19016 // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
19017 // an object that satisfies the requirements for appearing in a
19018 // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
19019 // is immediately applied." This function handles the lvalue-to-rvalue
19020 // conversion part.
19021 //
19022 // If we encounter a node that claims to be an odr-use but shouldn't be, we
19023 // transform it into the relevant kind of non-odr-use node and rebuild the
19024 // tree of nodes leading to it.
19025 //
19026 // This is a mini-TreeTransform that only transforms a restricted subset of
19027 // nodes (and only certain operands of them).
19028
19029 // Rebuild a subexpression.
19030 auto Rebuild = [&](Expr *Sub) {
19031 return rebuildPotentialResultsAsNonOdrUsed(S, Sub, NOUR);
19032 };
19033
19034 // Check whether a potential result satisfies the requirements of NOUR.
19035 auto IsPotentialResultOdrUsed = [&](NamedDecl *D) {
19036 // Any entity other than a VarDecl is always odr-used whenever it's named
19037 // in a potentially-evaluated expression.
19038 auto *VD = dyn_cast<VarDecl>(D);
19039 if (!VD)
19040 return true;
19041
19042 // C++2a [basic.def.odr]p4:
19043 // A variable x whose name appears as a potentially-evalauted expression
19044 // e is odr-used by e unless
19045 // -- x is a reference that is usable in constant expressions, or
19046 // -- x is a variable of non-reference type that is usable in constant
19047 // expressions and has no mutable subobjects, and e is an element of
19048 // the set of potential results of an expression of
19049 // non-volatile-qualified non-class type to which the lvalue-to-rvalue
19050 // conversion is applied, or
19051 // -- x is a variable of non-reference type, and e is an element of the
19052 // set of potential results of a discarded-value expression to which
19053 // the lvalue-to-rvalue conversion is not applied
19054 //
19055 // We check the first bullet and the "potentially-evaluated" condition in
19056 // BuildDeclRefExpr. We check the type requirements in the second bullet
19057 // in CheckLValueToRValueConversionOperand below.
19058 switch (NOUR) {
19059 case NOUR_None:
19060 case NOUR_Unevaluated:
19061 llvm_unreachable("unexpected non-odr-use-reason");
19062
19063 case NOUR_Constant:
19064 // Constant references were handled when they were built.
19065 if (VD->getType()->isReferenceType())
19066 return true;
19067 if (auto *RD = VD->getType()->getAsCXXRecordDecl())
19068 if (RD->hasMutableFields())
19069 return true;
19070 if (!VD->isUsableInConstantExpressions(S.Context))
19071 return true;
19072 break;
19073
19074 case NOUR_Discarded:
19075 if (VD->getType()->isReferenceType())
19076 return true;
19077 break;
19078 }
19079 return false;
19080 };
19081
19082 // Mark that this expression does not constitute an odr-use.
19083 auto MarkNotOdrUsed = [&] {
19084 S.MaybeODRUseExprs.remove(E);
19085 if (LambdaScopeInfo *LSI = S.getCurLambda())
19086 LSI->markVariableExprAsNonODRUsed(E);
19087 };
19088
19089 // C++2a [basic.def.odr]p2:
19090 // The set of potential results of an expression e is defined as follows:
19091 switch (E->getStmtClass()) {
19092 // -- If e is an id-expression, ...
19093 case Expr::DeclRefExprClass: {
19094 auto *DRE = cast<DeclRefExpr>(E);
19095 if (DRE->isNonOdrUse() || IsPotentialResultOdrUsed(DRE->getDecl()))
19096 break;
19097
19098 // Rebuild as a non-odr-use DeclRefExpr.
19099 MarkNotOdrUsed();
19100 return DeclRefExpr::Create(
19101 S.Context, DRE->getQualifierLoc(), DRE->getTemplateKeywordLoc(),
19102 DRE->getDecl(), DRE->refersToEnclosingVariableOrCapture(),
19103 DRE->getNameInfo(), DRE->getType(), DRE->getValueKind(),
19104 DRE->getFoundDecl(), CopiedTemplateArgs(DRE), NOUR);
19105 }
19106
19107 case Expr::FunctionParmPackExprClass: {
19108 auto *FPPE = cast<FunctionParmPackExpr>(E);
19109 // If any of the declarations in the pack is odr-used, then the expression
19110 // as a whole constitutes an odr-use.
19111 for (VarDecl *D : *FPPE)
19112 if (IsPotentialResultOdrUsed(D))
19113 return ExprEmpty();
19114
19115 // FIXME: Rebuild as a non-odr-use FunctionParmPackExpr? In practice,
19116 // nothing cares about whether we marked this as an odr-use, but it might
19117 // be useful for non-compiler tools.
19118 MarkNotOdrUsed();
19119 break;
19120 }
19121
19122 // -- If e is a subscripting operation with an array operand...
19123 case Expr::ArraySubscriptExprClass: {
19124 auto *ASE = cast<ArraySubscriptExpr>(E);
19125 Expr *OldBase = ASE->getBase()->IgnoreImplicit();
19126 if (!OldBase->getType()->isArrayType())
19127 break;
19128 ExprResult Base = Rebuild(OldBase);
19129 if (!Base.isUsable())
19130 return Base;
19131 Expr *LHS = ASE->getBase() == ASE->getLHS() ? Base.get() : ASE->getLHS();
19132 Expr *RHS = ASE->getBase() == ASE->getRHS() ? Base.get() : ASE->getRHS();
19133 SourceLocation LBracketLoc = ASE->getBeginLoc(); // FIXME: Not stored.
19134 return S.ActOnArraySubscriptExpr(nullptr, LHS, LBracketLoc, RHS,
19135 ASE->getRBracketLoc());
19136 }
19137
19138 case Expr::MemberExprClass: {
19139 auto *ME = cast<MemberExpr>(E);
19140 // -- If e is a class member access expression [...] naming a non-static
19141 // data member...
19142 if (isa<FieldDecl>(ME->getMemberDecl())) {
19143 ExprResult Base = Rebuild(ME->getBase());
19144 if (!Base.isUsable())
19145 return Base;
19146 return MemberExpr::Create(
19147 S.Context, Base.get(), ME->isArrow(), ME->getOperatorLoc(),
19148 ME->getQualifierLoc(), ME->getTemplateKeywordLoc(),
19149 ME->getMemberDecl(), ME->getFoundDecl(), ME->getMemberNameInfo(),
19150 CopiedTemplateArgs(ME), ME->getType(), ME->getValueKind(),
19151 ME->getObjectKind(), ME->isNonOdrUse());
19152 }
19153
19154 if (ME->getMemberDecl()->isCXXInstanceMember())
19155 break;
19156
19157 // -- If e is a class member access expression naming a static data member,
19158 // ...
19159 if (ME->isNonOdrUse() || IsPotentialResultOdrUsed(ME->getMemberDecl()))
19160 break;
19161
19162 // Rebuild as a non-odr-use MemberExpr.
19163 MarkNotOdrUsed();
19164 return MemberExpr::Create(
19165 S.Context, ME->getBase(), ME->isArrow(), ME->getOperatorLoc(),
19166 ME->getQualifierLoc(), ME->getTemplateKeywordLoc(), ME->getMemberDecl(),
19167 ME->getFoundDecl(), ME->getMemberNameInfo(), CopiedTemplateArgs(ME),
19168 ME->getType(), ME->getValueKind(), ME->getObjectKind(), NOUR);
19169 }
19170
19171 case Expr::BinaryOperatorClass: {
19172 auto *BO = cast<BinaryOperator>(E);
19173 Expr *LHS = BO->getLHS();
19174 Expr *RHS = BO->getRHS();
19175 // -- If e is a pointer-to-member expression of the form e1 .* e2 ...
19176 if (BO->getOpcode() == BO_PtrMemD) {
19177 ExprResult Sub = Rebuild(LHS);
19178 if (!Sub.isUsable())
19179 return Sub;
19180 LHS = Sub.get();
19181 // -- If e is a comma expression, ...
19182 } else if (BO->getOpcode() == BO_Comma) {
19183 ExprResult Sub = Rebuild(RHS);
19184 if (!Sub.isUsable())
19185 return Sub;
19186 RHS = Sub.get();
19187 } else {
19188 break;
19189 }
19190 return S.BuildBinOp(nullptr, BO->getOperatorLoc(), BO->getOpcode(),
19191 LHS, RHS);
19192 }
19193
19194 // -- If e has the form (e1)...
19195 case Expr::ParenExprClass: {
19196 auto *PE = cast<ParenExpr>(E);
19197 ExprResult Sub = Rebuild(PE->getSubExpr());
19198 if (!Sub.isUsable())
19199 return Sub;
19200 return S.ActOnParenExpr(PE->getLParen(), PE->getRParen(), Sub.get());
19201 }
19202
19203 // -- If e is a glvalue conditional expression, ...
19204 // We don't apply this to a binary conditional operator. FIXME: Should we?
19205 case Expr::ConditionalOperatorClass: {
19206 auto *CO = cast<ConditionalOperator>(E);
19207 ExprResult LHS = Rebuild(CO->getLHS());
19208 if (LHS.isInvalid())
19209 return ExprError();
19210 ExprResult RHS = Rebuild(CO->getRHS());
19211 if (RHS.isInvalid())
19212 return ExprError();
19213 if (!LHS.isUsable() && !RHS.isUsable())
19214 return ExprEmpty();
19215 if (!LHS.isUsable())
19216 LHS = CO->getLHS();
19217 if (!RHS.isUsable())
19218 RHS = CO->getRHS();
19219 return S.ActOnConditionalOp(CO->getQuestionLoc(), CO->getColonLoc(),
19220 CO->getCond(), LHS.get(), RHS.get());
19221 }
19222
19223 // [Clang extension]
19224 // -- If e has the form __extension__ e1...
19225 case Expr::UnaryOperatorClass: {
19226 auto *UO = cast<UnaryOperator>(E);
19227 if (UO->getOpcode() != UO_Extension)
19228 break;
19229 ExprResult Sub = Rebuild(UO->getSubExpr());
19230 if (!Sub.isUsable())
19231 return Sub;
19232 return S.BuildUnaryOp(nullptr, UO->getOperatorLoc(), UO_Extension,
19233 Sub.get());
19234 }
19235
19236 // [Clang extension]
19237 // -- If e has the form _Generic(...), the set of potential results is the
19238 // union of the sets of potential results of the associated expressions.
19239 case Expr::GenericSelectionExprClass: {
19240 auto *GSE = cast<GenericSelectionExpr>(E);
19241
19242 SmallVector<Expr *, 4> AssocExprs;
19243 bool AnyChanged = false;
19244 for (Expr *OrigAssocExpr : GSE->getAssocExprs()) {
19245 ExprResult AssocExpr = Rebuild(OrigAssocExpr);
19246 if (AssocExpr.isInvalid())
19247 return ExprError();
19248 if (AssocExpr.isUsable()) {
19249 AssocExprs.push_back(AssocExpr.get());
19250 AnyChanged = true;
19251 } else {
19252 AssocExprs.push_back(OrigAssocExpr);
19253 }
19254 }
19255
19256 return AnyChanged ? S.CreateGenericSelectionExpr(
19257 GSE->getGenericLoc(), GSE->getDefaultLoc(),
19258 GSE->getRParenLoc(), GSE->getControllingExpr(),
19259 GSE->getAssocTypeSourceInfos(), AssocExprs)
19260 : ExprEmpty();
19261 }
19262
19263 // [Clang extension]
19264 // -- If e has the form __builtin_choose_expr(...), the set of potential
19265 // results is the union of the sets of potential results of the
19266 // second and third subexpressions.
19267 case Expr::ChooseExprClass: {
19268 auto *CE = cast<ChooseExpr>(E);
19269
19270 ExprResult LHS = Rebuild(CE->getLHS());
19271 if (LHS.isInvalid())
19272 return ExprError();
19273
19274 ExprResult RHS = Rebuild(CE->getLHS());
19275 if (RHS.isInvalid())
19276 return ExprError();
19277
19278 if (!LHS.get() && !RHS.get())
19279 return ExprEmpty();
19280 if (!LHS.isUsable())
19281 LHS = CE->getLHS();
19282 if (!RHS.isUsable())
19283 RHS = CE->getRHS();
19284
19285 return S.ActOnChooseExpr(CE->getBuiltinLoc(), CE->getCond(), LHS.get(),
19286 RHS.get(), CE->getRParenLoc());
19287 }
19288
19289 // Step through non-syntactic nodes.
19290 case Expr::ConstantExprClass: {
19291 auto *CE = cast<ConstantExpr>(E);
19292 ExprResult Sub = Rebuild(CE->getSubExpr());
19293 if (!Sub.isUsable())
19294 return Sub;
19295 return ConstantExpr::Create(S.Context, Sub.get());
19296 }
19297
19298 // We could mostly rely on the recursive rebuilding to rebuild implicit
19299 // casts, but not at the top level, so rebuild them here.
19300 case Expr::ImplicitCastExprClass: {
19301 auto *ICE = cast<ImplicitCastExpr>(E);
19302 // Only step through the narrow set of cast kinds we expect to encounter.
19303 // Anything else suggests we've left the region in which potential results
19304 // can be found.
19305 switch (ICE->getCastKind()) {
19306 case CK_NoOp:
19307 case CK_DerivedToBase:
19308 case CK_UncheckedDerivedToBase: {
19309 ExprResult Sub = Rebuild(ICE->getSubExpr());
19310 if (!Sub.isUsable())
19311 return Sub;
19312 CXXCastPath Path(ICE->path());
19313 return S.ImpCastExprToType(Sub.get(), ICE->getType(), ICE->getCastKind(),
19314 ICE->getValueKind(), &Path);
19315 }
19316
19317 default:
19318 break;
19319 }
19320 break;
19321 }
19322
19323 default:
19324 break;
19325 }
19326
19327 // Can't traverse through this node. Nothing to do.
19328 return ExprEmpty();
19329 }
19330
CheckLValueToRValueConversionOperand(Expr * E)19331 ExprResult Sema::CheckLValueToRValueConversionOperand(Expr *E) {
19332 // Check whether the operand is or contains an object of non-trivial C union
19333 // type.
19334 if (E->getType().isVolatileQualified() &&
19335 (E->getType().hasNonTrivialToPrimitiveDestructCUnion() ||
19336 E->getType().hasNonTrivialToPrimitiveCopyCUnion()))
19337 checkNonTrivialCUnion(E->getType(), E->getExprLoc(),
19338 Sema::NTCUC_LValueToRValueVolatile,
19339 NTCUK_Destruct|NTCUK_Copy);
19340
19341 // C++2a [basic.def.odr]p4:
19342 // [...] an expression of non-volatile-qualified non-class type to which
19343 // the lvalue-to-rvalue conversion is applied [...]
19344 if (E->getType().isVolatileQualified() || E->getType()->getAs<RecordType>())
19345 return E;
19346
19347 ExprResult Result =
19348 rebuildPotentialResultsAsNonOdrUsed(*this, E, NOUR_Constant);
19349 if (Result.isInvalid())
19350 return ExprError();
19351 return Result.get() ? Result : E;
19352 }
19353
ActOnConstantExpression(ExprResult Res)19354 ExprResult Sema::ActOnConstantExpression(ExprResult Res) {
19355 Res = CorrectDelayedTyposInExpr(Res);
19356
19357 if (!Res.isUsable())
19358 return Res;
19359
19360 // If a constant-expression is a reference to a variable where we delay
19361 // deciding whether it is an odr-use, just assume we will apply the
19362 // lvalue-to-rvalue conversion. In the one case where this doesn't happen
19363 // (a non-type template argument), we have special handling anyway.
19364 return CheckLValueToRValueConversionOperand(Res.get());
19365 }
19366
CleanupVarDeclMarking()19367 void Sema::CleanupVarDeclMarking() {
19368 // Iterate through a local copy in case MarkVarDeclODRUsed makes a recursive
19369 // call.
19370 MaybeODRUseExprSet LocalMaybeODRUseExprs;
19371 std::swap(LocalMaybeODRUseExprs, MaybeODRUseExprs);
19372
19373 for (Expr *E : LocalMaybeODRUseExprs) {
19374 if (auto *DRE = dyn_cast<DeclRefExpr>(E)) {
19375 MarkVarDeclODRUsed(cast<VarDecl>(DRE->getDecl()),
19376 DRE->getLocation(), *this);
19377 } else if (auto *ME = dyn_cast<MemberExpr>(E)) {
19378 MarkVarDeclODRUsed(cast<VarDecl>(ME->getMemberDecl()), ME->getMemberLoc(),
19379 *this);
19380 } else if (auto *FP = dyn_cast<FunctionParmPackExpr>(E)) {
19381 for (VarDecl *VD : *FP)
19382 MarkVarDeclODRUsed(VD, FP->getParameterPackLocation(), *this);
19383 } else {
19384 llvm_unreachable("Unexpected expression");
19385 }
19386 }
19387
19388 assert(MaybeODRUseExprs.empty() &&
19389 "MarkVarDeclODRUsed failed to cleanup MaybeODRUseExprs?");
19390 }
19391
DoMarkVarDeclReferenced(Sema & SemaRef,SourceLocation Loc,VarDecl * Var,Expr * E,llvm::DenseMap<const VarDecl *,int> & RefsMinusAssignments)19392 static void DoMarkVarDeclReferenced(
19393 Sema &SemaRef, SourceLocation Loc, VarDecl *Var, Expr *E,
19394 llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) {
19395 assert((!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E) ||
19396 isa<FunctionParmPackExpr>(E)) &&
19397 "Invalid Expr argument to DoMarkVarDeclReferenced");
19398 Var->setReferenced();
19399
19400 if (Var->isInvalidDecl())
19401 return;
19402
19403 auto *MSI = Var->getMemberSpecializationInfo();
19404 TemplateSpecializationKind TSK = MSI ? MSI->getTemplateSpecializationKind()
19405 : Var->getTemplateSpecializationKind();
19406
19407 OdrUseContext OdrUse = isOdrUseContext(SemaRef);
19408 bool UsableInConstantExpr =
19409 Var->mightBeUsableInConstantExpressions(SemaRef.Context);
19410
19411 if (Var->isLocalVarDeclOrParm() && !Var->hasExternalStorage()) {
19412 RefsMinusAssignments.insert({Var, 0}).first->getSecond()++;
19413 }
19414
19415 // C++20 [expr.const]p12:
19416 // A variable [...] is needed for constant evaluation if it is [...] a
19417 // variable whose name appears as a potentially constant evaluated
19418 // expression that is either a contexpr variable or is of non-volatile
19419 // const-qualified integral type or of reference type
19420 bool NeededForConstantEvaluation =
19421 isPotentiallyConstantEvaluatedContext(SemaRef) && UsableInConstantExpr;
19422
19423 bool NeedDefinition =
19424 OdrUse == OdrUseContext::Used || NeededForConstantEvaluation;
19425
19426 assert(!isa<VarTemplatePartialSpecializationDecl>(Var) &&
19427 "Can't instantiate a partial template specialization.");
19428
19429 // If this might be a member specialization of a static data member, check
19430 // the specialization is visible. We already did the checks for variable
19431 // template specializations when we created them.
19432 if (NeedDefinition && TSK != TSK_Undeclared &&
19433 !isa<VarTemplateSpecializationDecl>(Var))
19434 SemaRef.checkSpecializationVisibility(Loc, Var);
19435
19436 // Perform implicit instantiation of static data members, static data member
19437 // templates of class templates, and variable template specializations. Delay
19438 // instantiations of variable templates, except for those that could be used
19439 // in a constant expression.
19440 if (NeedDefinition && isTemplateInstantiation(TSK)) {
19441 // Per C++17 [temp.explicit]p10, we may instantiate despite an explicit
19442 // instantiation declaration if a variable is usable in a constant
19443 // expression (among other cases).
19444 bool TryInstantiating =
19445 TSK == TSK_ImplicitInstantiation ||
19446 (TSK == TSK_ExplicitInstantiationDeclaration && UsableInConstantExpr);
19447
19448 if (TryInstantiating) {
19449 SourceLocation PointOfInstantiation =
19450 MSI ? MSI->getPointOfInstantiation() : Var->getPointOfInstantiation();
19451 bool FirstInstantiation = PointOfInstantiation.isInvalid();
19452 if (FirstInstantiation) {
19453 PointOfInstantiation = Loc;
19454 if (MSI)
19455 MSI->setPointOfInstantiation(PointOfInstantiation);
19456 // FIXME: Notify listener.
19457 else
19458 Var->setTemplateSpecializationKind(TSK, PointOfInstantiation);
19459 }
19460
19461 if (UsableInConstantExpr) {
19462 // Do not defer instantiations of variables that could be used in a
19463 // constant expression.
19464 SemaRef.runWithSufficientStackSpace(PointOfInstantiation, [&] {
19465 SemaRef.InstantiateVariableDefinition(PointOfInstantiation, Var);
19466 });
19467
19468 // Re-set the member to trigger a recomputation of the dependence bits
19469 // for the expression.
19470 if (auto *DRE = dyn_cast_or_null<DeclRefExpr>(E))
19471 DRE->setDecl(DRE->getDecl());
19472 else if (auto *ME = dyn_cast_or_null<MemberExpr>(E))
19473 ME->setMemberDecl(ME->getMemberDecl());
19474 } else if (FirstInstantiation ||
19475 isa<VarTemplateSpecializationDecl>(Var)) {
19476 // FIXME: For a specialization of a variable template, we don't
19477 // distinguish between "declaration and type implicitly instantiated"
19478 // and "implicit instantiation of definition requested", so we have
19479 // no direct way to avoid enqueueing the pending instantiation
19480 // multiple times.
19481 SemaRef.PendingInstantiations
19482 .push_back(std::make_pair(Var, PointOfInstantiation));
19483 }
19484 }
19485 }
19486
19487 // C++2a [basic.def.odr]p4:
19488 // A variable x whose name appears as a potentially-evaluated expression e
19489 // is odr-used by e unless
19490 // -- x is a reference that is usable in constant expressions
19491 // -- x is a variable of non-reference type that is usable in constant
19492 // expressions and has no mutable subobjects [FIXME], and e is an
19493 // element of the set of potential results of an expression of
19494 // non-volatile-qualified non-class type to which the lvalue-to-rvalue
19495 // conversion is applied
19496 // -- x is a variable of non-reference type, and e is an element of the set
19497 // of potential results of a discarded-value expression to which the
19498 // lvalue-to-rvalue conversion is not applied [FIXME]
19499 //
19500 // We check the first part of the second bullet here, and
19501 // Sema::CheckLValueToRValueConversionOperand deals with the second part.
19502 // FIXME: To get the third bullet right, we need to delay this even for
19503 // variables that are not usable in constant expressions.
19504
19505 // If we already know this isn't an odr-use, there's nothing more to do.
19506 if (DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(E))
19507 if (DRE->isNonOdrUse())
19508 return;
19509 if (MemberExpr *ME = dyn_cast_or_null<MemberExpr>(E))
19510 if (ME->isNonOdrUse())
19511 return;
19512
19513 switch (OdrUse) {
19514 case OdrUseContext::None:
19515 assert((!E || isa<FunctionParmPackExpr>(E)) &&
19516 "missing non-odr-use marking for unevaluated decl ref");
19517 break;
19518
19519 case OdrUseContext::FormallyOdrUsed:
19520 // FIXME: Ignoring formal odr-uses results in incorrect lambda capture
19521 // behavior.
19522 break;
19523
19524 case OdrUseContext::Used:
19525 // If we might later find that this expression isn't actually an odr-use,
19526 // delay the marking.
19527 if (E && Var->isUsableInConstantExpressions(SemaRef.Context))
19528 SemaRef.MaybeODRUseExprs.insert(E);
19529 else
19530 MarkVarDeclODRUsed(Var, Loc, SemaRef);
19531 break;
19532
19533 case OdrUseContext::Dependent:
19534 // If this is a dependent context, we don't need to mark variables as
19535 // odr-used, but we may still need to track them for lambda capture.
19536 // FIXME: Do we also need to do this inside dependent typeid expressions
19537 // (which are modeled as unevaluated at this point)?
19538 const bool RefersToEnclosingScope =
19539 (SemaRef.CurContext != Var->getDeclContext() &&
19540 Var->getDeclContext()->isFunctionOrMethod() && Var->hasLocalStorage());
19541 if (RefersToEnclosingScope) {
19542 LambdaScopeInfo *const LSI =
19543 SemaRef.getCurLambda(/*IgnoreNonLambdaCapturingScope=*/true);
19544 if (LSI && (!LSI->CallOperator ||
19545 !LSI->CallOperator->Encloses(Var->getDeclContext()))) {
19546 // If a variable could potentially be odr-used, defer marking it so
19547 // until we finish analyzing the full expression for any
19548 // lvalue-to-rvalue
19549 // or discarded value conversions that would obviate odr-use.
19550 // Add it to the list of potential captures that will be analyzed
19551 // later (ActOnFinishFullExpr) for eventual capture and odr-use marking
19552 // unless the variable is a reference that was initialized by a constant
19553 // expression (this will never need to be captured or odr-used).
19554 //
19555 // FIXME: We can simplify this a lot after implementing P0588R1.
19556 assert(E && "Capture variable should be used in an expression.");
19557 if (!Var->getType()->isReferenceType() ||
19558 !Var->isUsableInConstantExpressions(SemaRef.Context))
19559 LSI->addPotentialCapture(E->IgnoreParens());
19560 }
19561 }
19562 break;
19563 }
19564 }
19565
19566 /// Mark a variable referenced, and check whether it is odr-used
19567 /// (C++ [basic.def.odr]p2, C99 6.9p3). Note that this should not be
19568 /// used directly for normal expressions referring to VarDecl.
MarkVariableReferenced(SourceLocation Loc,VarDecl * Var)19569 void Sema::MarkVariableReferenced(SourceLocation Loc, VarDecl *Var) {
19570 DoMarkVarDeclReferenced(*this, Loc, Var, nullptr, RefsMinusAssignments);
19571 }
19572
19573 static void
MarkExprReferenced(Sema & SemaRef,SourceLocation Loc,Decl * D,Expr * E,bool MightBeOdrUse,llvm::DenseMap<const VarDecl *,int> & RefsMinusAssignments)19574 MarkExprReferenced(Sema &SemaRef, SourceLocation Loc, Decl *D, Expr *E,
19575 bool MightBeOdrUse,
19576 llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) {
19577 if (SemaRef.isInOpenMPDeclareTargetContext())
19578 SemaRef.checkDeclIsAllowedInOpenMPTarget(E, D);
19579
19580 if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
19581 DoMarkVarDeclReferenced(SemaRef, Loc, Var, E, RefsMinusAssignments);
19582 return;
19583 }
19584
19585 SemaRef.MarkAnyDeclReferenced(Loc, D, MightBeOdrUse);
19586
19587 // If this is a call to a method via a cast, also mark the method in the
19588 // derived class used in case codegen can devirtualize the call.
19589 const MemberExpr *ME = dyn_cast<MemberExpr>(E);
19590 if (!ME)
19591 return;
19592 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
19593 if (!MD)
19594 return;
19595 // Only attempt to devirtualize if this is truly a virtual call.
19596 bool IsVirtualCall = MD->isVirtual() &&
19597 ME->performsVirtualDispatch(SemaRef.getLangOpts());
19598 if (!IsVirtualCall)
19599 return;
19600
19601 // If it's possible to devirtualize the call, mark the called function
19602 // referenced.
19603 CXXMethodDecl *DM = MD->getDevirtualizedMethod(
19604 ME->getBase(), SemaRef.getLangOpts().AppleKext);
19605 if (DM)
19606 SemaRef.MarkAnyDeclReferenced(Loc, DM, MightBeOdrUse);
19607 }
19608
19609 /// Perform reference-marking and odr-use handling for a DeclRefExpr.
19610 ///
19611 /// Note, this may change the dependence of the DeclRefExpr, and so needs to be
19612 /// handled with care if the DeclRefExpr is not newly-created.
MarkDeclRefReferenced(DeclRefExpr * E,const Expr * Base)19613 void Sema::MarkDeclRefReferenced(DeclRefExpr *E, const Expr *Base) {
19614 // TODO: update this with DR# once a defect report is filed.
19615 // C++11 defect. The address of a pure member should not be an ODR use, even
19616 // if it's a qualified reference.
19617 bool OdrUse = true;
19618 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getDecl()))
19619 if (Method->isVirtual() &&
19620 !Method->getDevirtualizedMethod(Base, getLangOpts().AppleKext))
19621 OdrUse = false;
19622
19623 if (auto *FD = dyn_cast<FunctionDecl>(E->getDecl()))
19624 if (!isUnevaluatedContext() && !isConstantEvaluated() &&
19625 FD->isConsteval() && !RebuildingImmediateInvocation)
19626 ExprEvalContexts.back().ReferenceToConsteval.insert(E);
19627 MarkExprReferenced(*this, E->getLocation(), E->getDecl(), E, OdrUse,
19628 RefsMinusAssignments);
19629 }
19630
19631 /// Perform reference-marking and odr-use handling for a MemberExpr.
MarkMemberReferenced(MemberExpr * E)19632 void Sema::MarkMemberReferenced(MemberExpr *E) {
19633 // C++11 [basic.def.odr]p2:
19634 // A non-overloaded function whose name appears as a potentially-evaluated
19635 // expression or a member of a set of candidate functions, if selected by
19636 // overload resolution when referred to from a potentially-evaluated
19637 // expression, is odr-used, unless it is a pure virtual function and its
19638 // name is not explicitly qualified.
19639 bool MightBeOdrUse = true;
19640 if (E->performsVirtualDispatch(getLangOpts())) {
19641 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getMemberDecl()))
19642 if (Method->isPure())
19643 MightBeOdrUse = false;
19644 }
19645 SourceLocation Loc =
19646 E->getMemberLoc().isValid() ? E->getMemberLoc() : E->getBeginLoc();
19647 MarkExprReferenced(*this, Loc, E->getMemberDecl(), E, MightBeOdrUse,
19648 RefsMinusAssignments);
19649 }
19650
19651 /// Perform reference-marking and odr-use handling for a FunctionParmPackExpr.
MarkFunctionParmPackReferenced(FunctionParmPackExpr * E)19652 void Sema::MarkFunctionParmPackReferenced(FunctionParmPackExpr *E) {
19653 for (VarDecl *VD : *E)
19654 MarkExprReferenced(*this, E->getParameterPackLocation(), VD, E, true,
19655 RefsMinusAssignments);
19656 }
19657
19658 /// Perform marking for a reference to an arbitrary declaration. It
19659 /// marks the declaration referenced, and performs odr-use checking for
19660 /// functions and variables. This method should not be used when building a
19661 /// normal expression which refers to a variable.
MarkAnyDeclReferenced(SourceLocation Loc,Decl * D,bool MightBeOdrUse)19662 void Sema::MarkAnyDeclReferenced(SourceLocation Loc, Decl *D,
19663 bool MightBeOdrUse) {
19664 if (MightBeOdrUse) {
19665 if (auto *VD = dyn_cast<VarDecl>(D)) {
19666 MarkVariableReferenced(Loc, VD);
19667 return;
19668 }
19669 }
19670 if (auto *FD = dyn_cast<FunctionDecl>(D)) {
19671 MarkFunctionReferenced(Loc, FD, MightBeOdrUse);
19672 return;
19673 }
19674 D->setReferenced();
19675 }
19676
19677 namespace {
19678 // Mark all of the declarations used by a type as referenced.
19679 // FIXME: Not fully implemented yet! We need to have a better understanding
19680 // of when we're entering a context we should not recurse into.
19681 // FIXME: This is and EvaluatedExprMarker are more-or-less equivalent to
19682 // TreeTransforms rebuilding the type in a new context. Rather than
19683 // duplicating the TreeTransform logic, we should consider reusing it here.
19684 // Currently that causes problems when rebuilding LambdaExprs.
19685 class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
19686 Sema &S;
19687 SourceLocation Loc;
19688
19689 public:
19690 typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
19691
MarkReferencedDecls(Sema & S,SourceLocation Loc)19692 MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
19693
19694 bool TraverseTemplateArgument(const TemplateArgument &Arg);
19695 };
19696 }
19697
TraverseTemplateArgument(const TemplateArgument & Arg)19698 bool MarkReferencedDecls::TraverseTemplateArgument(
19699 const TemplateArgument &Arg) {
19700 {
19701 // A non-type template argument is a constant-evaluated context.
19702 EnterExpressionEvaluationContext Evaluated(
19703 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
19704 if (Arg.getKind() == TemplateArgument::Declaration) {
19705 if (Decl *D = Arg.getAsDecl())
19706 S.MarkAnyDeclReferenced(Loc, D, true);
19707 } else if (Arg.getKind() == TemplateArgument::Expression) {
19708 S.MarkDeclarationsReferencedInExpr(Arg.getAsExpr(), false);
19709 }
19710 }
19711
19712 return Inherited::TraverseTemplateArgument(Arg);
19713 }
19714
MarkDeclarationsReferencedInType(SourceLocation Loc,QualType T)19715 void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
19716 MarkReferencedDecls Marker(*this, Loc);
19717 Marker.TraverseType(T);
19718 }
19719
19720 namespace {
19721 /// Helper class that marks all of the declarations referenced by
19722 /// potentially-evaluated subexpressions as "referenced".
19723 class EvaluatedExprMarker : public UsedDeclVisitor<EvaluatedExprMarker> {
19724 public:
19725 typedef UsedDeclVisitor<EvaluatedExprMarker> Inherited;
19726 bool SkipLocalVariables;
19727 ArrayRef<const Expr *> StopAt;
19728
EvaluatedExprMarker(Sema & S,bool SkipLocalVariables,ArrayRef<const Expr * > StopAt)19729 EvaluatedExprMarker(Sema &S, bool SkipLocalVariables,
19730 ArrayRef<const Expr *> StopAt)
19731 : Inherited(S), SkipLocalVariables(SkipLocalVariables), StopAt(StopAt) {}
19732
visitUsedDecl(SourceLocation Loc,Decl * D)19733 void visitUsedDecl(SourceLocation Loc, Decl *D) {
19734 S.MarkFunctionReferenced(Loc, cast<FunctionDecl>(D));
19735 }
19736
Visit(Expr * E)19737 void Visit(Expr *E) {
19738 if (llvm::is_contained(StopAt, E))
19739 return;
19740 Inherited::Visit(E);
19741 }
19742
VisitConstantExpr(ConstantExpr * E)19743 void VisitConstantExpr(ConstantExpr *E) {
19744 // Don't mark declarations within a ConstantExpression, as this expression
19745 // will be evaluated and folded to a value.
19746 }
19747
VisitDeclRefExpr(DeclRefExpr * E)19748 void VisitDeclRefExpr(DeclRefExpr *E) {
19749 // If we were asked not to visit local variables, don't.
19750 if (SkipLocalVariables) {
19751 if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
19752 if (VD->hasLocalStorage())
19753 return;
19754 }
19755
19756 // FIXME: This can trigger the instantiation of the initializer of a
19757 // variable, which can cause the expression to become value-dependent
19758 // or error-dependent. Do we need to propagate the new dependence bits?
19759 S.MarkDeclRefReferenced(E);
19760 }
19761
VisitMemberExpr(MemberExpr * E)19762 void VisitMemberExpr(MemberExpr *E) {
19763 S.MarkMemberReferenced(E);
19764 Visit(E->getBase());
19765 }
19766 };
19767 } // namespace
19768
19769 /// Mark any declarations that appear within this expression or any
19770 /// potentially-evaluated subexpressions as "referenced".
19771 ///
19772 /// \param SkipLocalVariables If true, don't mark local variables as
19773 /// 'referenced'.
19774 /// \param StopAt Subexpressions that we shouldn't recurse into.
MarkDeclarationsReferencedInExpr(Expr * E,bool SkipLocalVariables,ArrayRef<const Expr * > StopAt)19775 void Sema::MarkDeclarationsReferencedInExpr(Expr *E,
19776 bool SkipLocalVariables,
19777 ArrayRef<const Expr*> StopAt) {
19778 EvaluatedExprMarker(*this, SkipLocalVariables, StopAt).Visit(E);
19779 }
19780
19781 /// Emit a diagnostic when statements are reachable.
19782 /// FIXME: check for reachability even in expressions for which we don't build a
19783 /// CFG (eg, in the initializer of a global or in a constant expression).
19784 /// For example,
19785 /// namespace { auto *p = new double[3][false ? (1, 2) : 3]; }
DiagIfReachable(SourceLocation Loc,ArrayRef<const Stmt * > Stmts,const PartialDiagnostic & PD)19786 bool Sema::DiagIfReachable(SourceLocation Loc, ArrayRef<const Stmt *> Stmts,
19787 const PartialDiagnostic &PD) {
19788 if (!Stmts.empty() && getCurFunctionOrMethodDecl()) {
19789 if (!FunctionScopes.empty())
19790 FunctionScopes.back()->PossiblyUnreachableDiags.push_back(
19791 sema::PossiblyUnreachableDiag(PD, Loc, Stmts));
19792 return true;
19793 }
19794
19795 // The initializer of a constexpr variable or of the first declaration of a
19796 // static data member is not syntactically a constant evaluated constant,
19797 // but nonetheless is always required to be a constant expression, so we
19798 // can skip diagnosing.
19799 // FIXME: Using the mangling context here is a hack.
19800 if (auto *VD = dyn_cast_or_null<VarDecl>(
19801 ExprEvalContexts.back().ManglingContextDecl)) {
19802 if (VD->isConstexpr() ||
19803 (VD->isStaticDataMember() && VD->isFirstDecl() && !VD->isInline()))
19804 return false;
19805 // FIXME: For any other kind of variable, we should build a CFG for its
19806 // initializer and check whether the context in question is reachable.
19807 }
19808
19809 Diag(Loc, PD);
19810 return true;
19811 }
19812
19813 /// Emit a diagnostic that describes an effect on the run-time behavior
19814 /// of the program being compiled.
19815 ///
19816 /// This routine emits the given diagnostic when the code currently being
19817 /// type-checked is "potentially evaluated", meaning that there is a
19818 /// possibility that the code will actually be executable. Code in sizeof()
19819 /// expressions, code used only during overload resolution, etc., are not
19820 /// potentially evaluated. This routine will suppress such diagnostics or,
19821 /// in the absolutely nutty case of potentially potentially evaluated
19822 /// expressions (C++ typeid), queue the diagnostic to potentially emit it
19823 /// later.
19824 ///
19825 /// This routine should be used for all diagnostics that describe the run-time
19826 /// behavior of a program, such as passing a non-POD value through an ellipsis.
19827 /// Failure to do so will likely result in spurious diagnostics or failures
19828 /// during overload resolution or within sizeof/alignof/typeof/typeid.
DiagRuntimeBehavior(SourceLocation Loc,ArrayRef<const Stmt * > Stmts,const PartialDiagnostic & PD)19829 bool Sema::DiagRuntimeBehavior(SourceLocation Loc, ArrayRef<const Stmt*> Stmts,
19830 const PartialDiagnostic &PD) {
19831
19832 if (ExprEvalContexts.back().isDiscardedStatementContext())
19833 return false;
19834
19835 switch (ExprEvalContexts.back().Context) {
19836 case ExpressionEvaluationContext::Unevaluated:
19837 case ExpressionEvaluationContext::UnevaluatedList:
19838 case ExpressionEvaluationContext::UnevaluatedAbstract:
19839 case ExpressionEvaluationContext::DiscardedStatement:
19840 // The argument will never be evaluated, so don't complain.
19841 break;
19842
19843 case ExpressionEvaluationContext::ConstantEvaluated:
19844 case ExpressionEvaluationContext::ImmediateFunctionContext:
19845 // Relevant diagnostics should be produced by constant evaluation.
19846 break;
19847
19848 case ExpressionEvaluationContext::PotentiallyEvaluated:
19849 case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
19850 return DiagIfReachable(Loc, Stmts, PD);
19851 }
19852
19853 return false;
19854 }
19855
DiagRuntimeBehavior(SourceLocation Loc,const Stmt * Statement,const PartialDiagnostic & PD)19856 bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
19857 const PartialDiagnostic &PD) {
19858 return DiagRuntimeBehavior(
19859 Loc, Statement ? llvm::makeArrayRef(Statement) : llvm::None, PD);
19860 }
19861
CheckCallReturnType(QualType ReturnType,SourceLocation Loc,CallExpr * CE,FunctionDecl * FD)19862 bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
19863 CallExpr *CE, FunctionDecl *FD) {
19864 if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
19865 return false;
19866
19867 // If we're inside a decltype's expression, don't check for a valid return
19868 // type or construct temporaries until we know whether this is the last call.
19869 if (ExprEvalContexts.back().ExprContext ==
19870 ExpressionEvaluationContextRecord::EK_Decltype) {
19871 ExprEvalContexts.back().DelayedDecltypeCalls.push_back(CE);
19872 return false;
19873 }
19874
19875 class CallReturnIncompleteDiagnoser : public TypeDiagnoser {
19876 FunctionDecl *FD;
19877 CallExpr *CE;
19878
19879 public:
19880 CallReturnIncompleteDiagnoser(FunctionDecl *FD, CallExpr *CE)
19881 : FD(FD), CE(CE) { }
19882
19883 void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
19884 if (!FD) {
19885 S.Diag(Loc, diag::err_call_incomplete_return)
19886 << T << CE->getSourceRange();
19887 return;
19888 }
19889
19890 S.Diag(Loc, diag::err_call_function_incomplete_return)
19891 << CE->getSourceRange() << FD << T;
19892 S.Diag(FD->getLocation(), diag::note_entity_declared_at)
19893 << FD->getDeclName();
19894 }
19895 } Diagnoser(FD, CE);
19896
19897 if (RequireCompleteType(Loc, ReturnType, Diagnoser))
19898 return true;
19899
19900 return false;
19901 }
19902
19903 // Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
19904 // will prevent this condition from triggering, which is what we want.
DiagnoseAssignmentAsCondition(Expr * E)19905 void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
19906 SourceLocation Loc;
19907
19908 unsigned diagnostic = diag::warn_condition_is_assignment;
19909 bool IsOrAssign = false;
19910
19911 if (BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
19912 if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
19913 return;
19914
19915 IsOrAssign = Op->getOpcode() == BO_OrAssign;
19916
19917 // Greylist some idioms by putting them into a warning subcategory.
19918 if (ObjCMessageExpr *ME
19919 = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
19920 Selector Sel = ME->getSelector();
19921
19922 // self = [<foo> init...]
19923 if (isSelfExpr(Op->getLHS()) && ME->getMethodFamily() == OMF_init)
19924 diagnostic = diag::warn_condition_is_idiomatic_assignment;
19925
19926 // <foo> = [<bar> nextObject]
19927 else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
19928 diagnostic = diag::warn_condition_is_idiomatic_assignment;
19929 }
19930
19931 Loc = Op->getOperatorLoc();
19932 } else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
19933 if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
19934 return;
19935
19936 IsOrAssign = Op->getOperator() == OO_PipeEqual;
19937 Loc = Op->getOperatorLoc();
19938 } else if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E))
19939 return DiagnoseAssignmentAsCondition(POE->getSyntacticForm());
19940 else {
19941 // Not an assignment.
19942 return;
19943 }
19944
19945 Diag(Loc, diagnostic) << E->getSourceRange();
19946
19947 SourceLocation Open = E->getBeginLoc();
19948 SourceLocation Close = getLocForEndOfToken(E->getSourceRange().getEnd());
19949 Diag(Loc, diag::note_condition_assign_silence)
19950 << FixItHint::CreateInsertion(Open, "(")
19951 << FixItHint::CreateInsertion(Close, ")");
19952
19953 if (IsOrAssign)
19954 Diag(Loc, diag::note_condition_or_assign_to_comparison)
19955 << FixItHint::CreateReplacement(Loc, "!=");
19956 else
19957 Diag(Loc, diag::note_condition_assign_to_comparison)
19958 << FixItHint::CreateReplacement(Loc, "==");
19959 }
19960
19961 /// Redundant parentheses over an equality comparison can indicate
19962 /// that the user intended an assignment used as condition.
DiagnoseEqualityWithExtraParens(ParenExpr * ParenE)19963 void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) {
19964 // Don't warn if the parens came from a macro.
19965 SourceLocation parenLoc = ParenE->getBeginLoc();
19966 if (parenLoc.isInvalid() || parenLoc.isMacroID())
19967 return;
19968 // Don't warn for dependent expressions.
19969 if (ParenE->isTypeDependent())
19970 return;
19971
19972 Expr *E = ParenE->IgnoreParens();
19973
19974 if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
19975 if (opE->getOpcode() == BO_EQ &&
19976 opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context)
19977 == Expr::MLV_Valid) {
19978 SourceLocation Loc = opE->getOperatorLoc();
19979
19980 Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
19981 SourceRange ParenERange = ParenE->getSourceRange();
19982 Diag(Loc, diag::note_equality_comparison_silence)
19983 << FixItHint::CreateRemoval(ParenERange.getBegin())
19984 << FixItHint::CreateRemoval(ParenERange.getEnd());
19985 Diag(Loc, diag::note_equality_comparison_to_assign)
19986 << FixItHint::CreateReplacement(Loc, "=");
19987 }
19988 }
19989
CheckBooleanCondition(SourceLocation Loc,Expr * E,bool IsConstexpr)19990 ExprResult Sema::CheckBooleanCondition(SourceLocation Loc, Expr *E,
19991 bool IsConstexpr) {
19992 DiagnoseAssignmentAsCondition(E);
19993 if (ParenExpr *parenE = dyn_cast<ParenExpr>(E))
19994 DiagnoseEqualityWithExtraParens(parenE);
19995
19996 ExprResult result = CheckPlaceholderExpr(E);
19997 if (result.isInvalid()) return ExprError();
19998 E = result.get();
19999
20000 if (!E->isTypeDependent()) {
20001 if (getLangOpts().CPlusPlus)
20002 return CheckCXXBooleanCondition(E, IsConstexpr); // C++ 6.4p4
20003
20004 ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
20005 if (ERes.isInvalid())
20006 return ExprError();
20007 E = ERes.get();
20008
20009 QualType T = E->getType();
20010 if (!T->isScalarType()) { // C99 6.8.4.1p1
20011 Diag(Loc, diag::err_typecheck_statement_requires_scalar)
20012 << T << E->getSourceRange();
20013 return ExprError();
20014 }
20015 CheckBoolLikeConversion(E, Loc);
20016 }
20017
20018 return E;
20019 }
20020
ActOnCondition(Scope * S,SourceLocation Loc,Expr * SubExpr,ConditionKind CK,bool MissingOK)20021 Sema::ConditionResult Sema::ActOnCondition(Scope *S, SourceLocation Loc,
20022 Expr *SubExpr, ConditionKind CK,
20023 bool MissingOK) {
20024 // MissingOK indicates whether having no condition expression is valid
20025 // (for loop) or invalid (e.g. while loop).
20026 if (!SubExpr)
20027 return MissingOK ? ConditionResult() : ConditionError();
20028
20029 ExprResult Cond;
20030 switch (CK) {
20031 case ConditionKind::Boolean:
20032 Cond = CheckBooleanCondition(Loc, SubExpr);
20033 break;
20034
20035 case ConditionKind::ConstexprIf:
20036 Cond = CheckBooleanCondition(Loc, SubExpr, true);
20037 break;
20038
20039 case ConditionKind::Switch:
20040 Cond = CheckSwitchCondition(Loc, SubExpr);
20041 break;
20042 }
20043 if (Cond.isInvalid()) {
20044 Cond = CreateRecoveryExpr(SubExpr->getBeginLoc(), SubExpr->getEndLoc(),
20045 {SubExpr}, PreferredConditionType(CK));
20046 if (!Cond.get())
20047 return ConditionError();
20048 }
20049 // FIXME: FullExprArg doesn't have an invalid bit, so check nullness instead.
20050 FullExprArg FullExpr = MakeFullExpr(Cond.get(), Loc);
20051 if (!FullExpr.get())
20052 return ConditionError();
20053
20054 return ConditionResult(*this, nullptr, FullExpr,
20055 CK == ConditionKind::ConstexprIf);
20056 }
20057
20058 namespace {
20059 /// A visitor for rebuilding a call to an __unknown_any expression
20060 /// to have an appropriate type.
20061 struct RebuildUnknownAnyFunction
20062 : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {
20063
20064 Sema &S;
20065
RebuildUnknownAnyFunction__anon060bf1642911::RebuildUnknownAnyFunction20066 RebuildUnknownAnyFunction(Sema &S) : S(S) {}
20067
VisitStmt__anon060bf1642911::RebuildUnknownAnyFunction20068 ExprResult VisitStmt(Stmt *S) {
20069 llvm_unreachable("unexpected statement!");
20070 }
20071
VisitExpr__anon060bf1642911::RebuildUnknownAnyFunction20072 ExprResult VisitExpr(Expr *E) {
20073 S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_call)
20074 << E->getSourceRange();
20075 return ExprError();
20076 }
20077
20078 /// Rebuild an expression which simply semantically wraps another
20079 /// expression which it shares the type and value kind of.
rebuildSugarExpr__anon060bf1642911::RebuildUnknownAnyFunction20080 template <class T> ExprResult rebuildSugarExpr(T *E) {
20081 ExprResult SubResult = Visit(E->getSubExpr());
20082 if (SubResult.isInvalid()) return ExprError();
20083
20084 Expr *SubExpr = SubResult.get();
20085 E->setSubExpr(SubExpr);
20086 E->setType(SubExpr->getType());
20087 E->setValueKind(SubExpr->getValueKind());
20088 assert(E->getObjectKind() == OK_Ordinary);
20089 return E;
20090 }
20091
VisitParenExpr__anon060bf1642911::RebuildUnknownAnyFunction20092 ExprResult VisitParenExpr(ParenExpr *E) {
20093 return rebuildSugarExpr(E);
20094 }
20095
VisitUnaryExtension__anon060bf1642911::RebuildUnknownAnyFunction20096 ExprResult VisitUnaryExtension(UnaryOperator *E) {
20097 return rebuildSugarExpr(E);
20098 }
20099
VisitUnaryAddrOf__anon060bf1642911::RebuildUnknownAnyFunction20100 ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
20101 ExprResult SubResult = Visit(E->getSubExpr());
20102 if (SubResult.isInvalid()) return ExprError();
20103
20104 Expr *SubExpr = SubResult.get();
20105 E->setSubExpr(SubExpr);
20106 E->setType(S.Context.getPointerType(SubExpr->getType()));
20107 assert(E->isPRValue());
20108 assert(E->getObjectKind() == OK_Ordinary);
20109 return E;
20110 }
20111
resolveDecl__anon060bf1642911::RebuildUnknownAnyFunction20112 ExprResult resolveDecl(Expr *E, ValueDecl *VD) {
20113 if (!isa<FunctionDecl>(VD)) return VisitExpr(E);
20114
20115 E->setType(VD->getType());
20116
20117 assert(E->isPRValue());
20118 if (S.getLangOpts().CPlusPlus &&
20119 !(isa<CXXMethodDecl>(VD) &&
20120 cast<CXXMethodDecl>(VD)->isInstance()))
20121 E->setValueKind(VK_LValue);
20122
20123 return E;
20124 }
20125
VisitMemberExpr__anon060bf1642911::RebuildUnknownAnyFunction20126 ExprResult VisitMemberExpr(MemberExpr *E) {
20127 return resolveDecl(E, E->getMemberDecl());
20128 }
20129
VisitDeclRefExpr__anon060bf1642911::RebuildUnknownAnyFunction20130 ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
20131 return resolveDecl(E, E->getDecl());
20132 }
20133 };
20134 }
20135
20136 /// Given a function expression of unknown-any type, try to rebuild it
20137 /// to have a function type.
rebuildUnknownAnyFunction(Sema & S,Expr * FunctionExpr)20138 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) {
20139 ExprResult Result = RebuildUnknownAnyFunction(S).Visit(FunctionExpr);
20140 if (Result.isInvalid()) return ExprError();
20141 return S.DefaultFunctionArrayConversion(Result.get());
20142 }
20143
20144 namespace {
20145 /// A visitor for rebuilding an expression of type __unknown_anytype
20146 /// into one which resolves the type directly on the referring
20147 /// expression. Strict preservation of the original source
20148 /// structure is not a goal.
20149 struct RebuildUnknownAnyExpr
20150 : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {
20151
20152 Sema &S;
20153
20154 /// The current destination type.
20155 QualType DestType;
20156
RebuildUnknownAnyExpr__anon060bf1642a11::RebuildUnknownAnyExpr20157 RebuildUnknownAnyExpr(Sema &S, QualType CastType)
20158 : S(S), DestType(CastType) {}
20159
VisitStmt__anon060bf1642a11::RebuildUnknownAnyExpr20160 ExprResult VisitStmt(Stmt *S) {
20161 llvm_unreachable("unexpected statement!");
20162 }
20163
VisitExpr__anon060bf1642a11::RebuildUnknownAnyExpr20164 ExprResult VisitExpr(Expr *E) {
20165 S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
20166 << E->getSourceRange();
20167 return ExprError();
20168 }
20169
20170 ExprResult VisitCallExpr(CallExpr *E);
20171 ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E);
20172
20173 /// Rebuild an expression which simply semantically wraps another
20174 /// expression which it shares the type and value kind of.
rebuildSugarExpr__anon060bf1642a11::RebuildUnknownAnyExpr20175 template <class T> ExprResult rebuildSugarExpr(T *E) {
20176 ExprResult SubResult = Visit(E->getSubExpr());
20177 if (SubResult.isInvalid()) return ExprError();
20178 Expr *SubExpr = SubResult.get();
20179 E->setSubExpr(SubExpr);
20180 E->setType(SubExpr->getType());
20181 E->setValueKind(SubExpr->getValueKind());
20182 assert(E->getObjectKind() == OK_Ordinary);
20183 return E;
20184 }
20185
VisitParenExpr__anon060bf1642a11::RebuildUnknownAnyExpr20186 ExprResult VisitParenExpr(ParenExpr *E) {
20187 return rebuildSugarExpr(E);
20188 }
20189
VisitUnaryExtension__anon060bf1642a11::RebuildUnknownAnyExpr20190 ExprResult VisitUnaryExtension(UnaryOperator *E) {
20191 return rebuildSugarExpr(E);
20192 }
20193
VisitUnaryAddrOf__anon060bf1642a11::RebuildUnknownAnyExpr20194 ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
20195 const PointerType *Ptr = DestType->getAs<PointerType>();
20196 if (!Ptr) {
20197 S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof)
20198 << E->getSourceRange();
20199 return ExprError();
20200 }
20201
20202 if (isa<CallExpr>(E->getSubExpr())) {
20203 S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof_call)
20204 << E->getSourceRange();
20205 return ExprError();
20206 }
20207
20208 assert(E->isPRValue());
20209 assert(E->getObjectKind() == OK_Ordinary);
20210 E->setType(DestType);
20211
20212 // Build the sub-expression as if it were an object of the pointee type.
20213 DestType = Ptr->getPointeeType();
20214 ExprResult SubResult = Visit(E->getSubExpr());
20215 if (SubResult.isInvalid()) return ExprError();
20216 E->setSubExpr(SubResult.get());
20217 return E;
20218 }
20219
20220 ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E);
20221
20222 ExprResult resolveDecl(Expr *E, ValueDecl *VD);
20223
VisitMemberExpr__anon060bf1642a11::RebuildUnknownAnyExpr20224 ExprResult VisitMemberExpr(MemberExpr *E) {
20225 return resolveDecl(E, E->getMemberDecl());
20226 }
20227
VisitDeclRefExpr__anon060bf1642a11::RebuildUnknownAnyExpr20228 ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
20229 return resolveDecl(E, E->getDecl());
20230 }
20231 };
20232 }
20233
20234 /// Rebuilds a call expression which yielded __unknown_anytype.
VisitCallExpr(CallExpr * E)20235 ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) {
20236 Expr *CalleeExpr = E->getCallee();
20237
20238 enum FnKind {
20239 FK_MemberFunction,
20240 FK_FunctionPointer,
20241 FK_BlockPointer
20242 };
20243
20244 FnKind Kind;
20245 QualType CalleeType = CalleeExpr->getType();
20246 if (CalleeType == S.Context.BoundMemberTy) {
20247 assert(isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E));
20248 Kind = FK_MemberFunction;
20249 CalleeType = Expr::findBoundMemberType(CalleeExpr);
20250 } else if (const PointerType *Ptr = CalleeType->getAs<PointerType>()) {
20251 CalleeType = Ptr->getPointeeType();
20252 Kind = FK_FunctionPointer;
20253 } else {
20254 CalleeType = CalleeType->castAs<BlockPointerType>()->getPointeeType();
20255 Kind = FK_BlockPointer;
20256 }
20257 const FunctionType *FnType = CalleeType->castAs<FunctionType>();
20258
20259 // Verify that this is a legal result type of a function.
20260 if (DestType->isArrayType() || DestType->isFunctionType()) {
20261 unsigned diagID = diag::err_func_returning_array_function;
20262 if (Kind == FK_BlockPointer)
20263 diagID = diag::err_block_returning_array_function;
20264
20265 S.Diag(E->getExprLoc(), diagID)
20266 << DestType->isFunctionType() << DestType;
20267 return ExprError();
20268 }
20269
20270 // Otherwise, go ahead and set DestType as the call's result.
20271 E->setType(DestType.getNonLValueExprType(S.Context));
20272 E->setValueKind(Expr::getValueKindForType(DestType));
20273 assert(E->getObjectKind() == OK_Ordinary);
20274
20275 // Rebuild the function type, replacing the result type with DestType.
20276 const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType);
20277 if (Proto) {
20278 // __unknown_anytype(...) is a special case used by the debugger when
20279 // it has no idea what a function's signature is.
20280 //
20281 // We want to build this call essentially under the K&R
20282 // unprototyped rules, but making a FunctionNoProtoType in C++
20283 // would foul up all sorts of assumptions. However, we cannot
20284 // simply pass all arguments as variadic arguments, nor can we
20285 // portably just call the function under a non-variadic type; see
20286 // the comment on IR-gen's TargetInfo::isNoProtoCallVariadic.
20287 // However, it turns out that in practice it is generally safe to
20288 // call a function declared as "A foo(B,C,D);" under the prototype
20289 // "A foo(B,C,D,...);". The only known exception is with the
20290 // Windows ABI, where any variadic function is implicitly cdecl
20291 // regardless of its normal CC. Therefore we change the parameter
20292 // types to match the types of the arguments.
20293 //
20294 // This is a hack, but it is far superior to moving the
20295 // corresponding target-specific code from IR-gen to Sema/AST.
20296
20297 ArrayRef<QualType> ParamTypes = Proto->getParamTypes();
20298 SmallVector<QualType, 8> ArgTypes;
20299 if (ParamTypes.empty() && Proto->isVariadic()) { // the special case
20300 ArgTypes.reserve(E->getNumArgs());
20301 for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
20302 ArgTypes.push_back(S.Context.getReferenceQualifiedType(E->getArg(i)));
20303 }
20304 ParamTypes = ArgTypes;
20305 }
20306 DestType = S.Context.getFunctionType(DestType, ParamTypes,
20307 Proto->getExtProtoInfo());
20308 } else {
20309 DestType = S.Context.getFunctionNoProtoType(DestType,
20310 FnType->getExtInfo());
20311 }
20312
20313 // Rebuild the appropriate pointer-to-function type.
20314 switch (Kind) {
20315 case FK_MemberFunction:
20316 // Nothing to do.
20317 break;
20318
20319 case FK_FunctionPointer:
20320 DestType = S.Context.getPointerType(DestType);
20321 break;
20322
20323 case FK_BlockPointer:
20324 DestType = S.Context.getBlockPointerType(DestType);
20325 break;
20326 }
20327
20328 // Finally, we can recurse.
20329 ExprResult CalleeResult = Visit(CalleeExpr);
20330 if (!CalleeResult.isUsable()) return ExprError();
20331 E->setCallee(CalleeResult.get());
20332
20333 // Bind a temporary if necessary.
20334 return S.MaybeBindToTemporary(E);
20335 }
20336
VisitObjCMessageExpr(ObjCMessageExpr * E)20337 ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) {
20338 // Verify that this is a legal result type of a call.
20339 if (DestType->isArrayType() || DestType->isFunctionType()) {
20340 S.Diag(E->getExprLoc(), diag::err_func_returning_array_function)
20341 << DestType->isFunctionType() << DestType;
20342 return ExprError();
20343 }
20344
20345 // Rewrite the method result type if available.
20346 if (ObjCMethodDecl *Method = E->getMethodDecl()) {
20347 assert(Method->getReturnType() == S.Context.UnknownAnyTy);
20348 Method->setReturnType(DestType);
20349 }
20350
20351 // Change the type of the message.
20352 E->setType(DestType.getNonReferenceType());
20353 E->setValueKind(Expr::getValueKindForType(DestType));
20354
20355 return S.MaybeBindToTemporary(E);
20356 }
20357
VisitImplicitCastExpr(ImplicitCastExpr * E)20358 ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) {
20359 // The only case we should ever see here is a function-to-pointer decay.
20360 if (E->getCastKind() == CK_FunctionToPointerDecay) {
20361 assert(E->isPRValue());
20362 assert(E->getObjectKind() == OK_Ordinary);
20363
20364 E->setType(DestType);
20365
20366 // Rebuild the sub-expression as the pointee (function) type.
20367 DestType = DestType->castAs<PointerType>()->getPointeeType();
20368
20369 ExprResult Result = Visit(E->getSubExpr());
20370 if (!Result.isUsable()) return ExprError();
20371
20372 E->setSubExpr(Result.get());
20373 return E;
20374 } else if (E->getCastKind() == CK_LValueToRValue) {
20375 assert(E->isPRValue());
20376 assert(E->getObjectKind() == OK_Ordinary);
20377
20378 assert(isa<BlockPointerType>(E->getType()));
20379
20380 E->setType(DestType);
20381
20382 // The sub-expression has to be a lvalue reference, so rebuild it as such.
20383 DestType = S.Context.getLValueReferenceType(DestType);
20384
20385 ExprResult Result = Visit(E->getSubExpr());
20386 if (!Result.isUsable()) return ExprError();
20387
20388 E->setSubExpr(Result.get());
20389 return E;
20390 } else {
20391 llvm_unreachable("Unhandled cast type!");
20392 }
20393 }
20394
resolveDecl(Expr * E,ValueDecl * VD)20395 ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) {
20396 ExprValueKind ValueKind = VK_LValue;
20397 QualType Type = DestType;
20398
20399 // We know how to make this work for certain kinds of decls:
20400
20401 // - functions
20402 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(VD)) {
20403 if (const PointerType *Ptr = Type->getAs<PointerType>()) {
20404 DestType = Ptr->getPointeeType();
20405 ExprResult Result = resolveDecl(E, VD);
20406 if (Result.isInvalid()) return ExprError();
20407 return S.ImpCastExprToType(Result.get(), Type, CK_FunctionToPointerDecay,
20408 VK_PRValue);
20409 }
20410
20411 if (!Type->isFunctionType()) {
20412 S.Diag(E->getExprLoc(), diag::err_unknown_any_function)
20413 << VD << E->getSourceRange();
20414 return ExprError();
20415 }
20416 if (const FunctionProtoType *FT = Type->getAs<FunctionProtoType>()) {
20417 // We must match the FunctionDecl's type to the hack introduced in
20418 // RebuildUnknownAnyExpr::VisitCallExpr to vararg functions of unknown
20419 // type. See the lengthy commentary in that routine.
20420 QualType FDT = FD->getType();
20421 const FunctionType *FnType = FDT->castAs<FunctionType>();
20422 const FunctionProtoType *Proto = dyn_cast_or_null<FunctionProtoType>(FnType);
20423 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
20424 if (DRE && Proto && Proto->getParamTypes().empty() && Proto->isVariadic()) {
20425 SourceLocation Loc = FD->getLocation();
20426 FunctionDecl *NewFD = FunctionDecl::Create(
20427 S.Context, FD->getDeclContext(), Loc, Loc,
20428 FD->getNameInfo().getName(), DestType, FD->getTypeSourceInfo(),
20429 SC_None, S.getCurFPFeatures().isFPConstrained(),
20430 false /*isInlineSpecified*/, FD->hasPrototype(),
20431 /*ConstexprKind*/ ConstexprSpecKind::Unspecified);
20432
20433 if (FD->getQualifier())
20434 NewFD->setQualifierInfo(FD->getQualifierLoc());
20435
20436 SmallVector<ParmVarDecl*, 16> Params;
20437 for (const auto &AI : FT->param_types()) {
20438 ParmVarDecl *Param =
20439 S.BuildParmVarDeclForTypedef(FD, Loc, AI);
20440 Param->setScopeInfo(0, Params.size());
20441 Params.push_back(Param);
20442 }
20443 NewFD->setParams(Params);
20444 DRE->setDecl(NewFD);
20445 VD = DRE->getDecl();
20446 }
20447 }
20448
20449 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
20450 if (MD->isInstance()) {
20451 ValueKind = VK_PRValue;
20452 Type = S.Context.BoundMemberTy;
20453 }
20454
20455 // Function references aren't l-values in C.
20456 if (!S.getLangOpts().CPlusPlus)
20457 ValueKind = VK_PRValue;
20458
20459 // - variables
20460 } else if (isa<VarDecl>(VD)) {
20461 if (const ReferenceType *RefTy = Type->getAs<ReferenceType>()) {
20462 Type = RefTy->getPointeeType();
20463 } else if (Type->isFunctionType()) {
20464 S.Diag(E->getExprLoc(), diag::err_unknown_any_var_function_type)
20465 << VD << E->getSourceRange();
20466 return ExprError();
20467 }
20468
20469 // - nothing else
20470 } else {
20471 S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_decl)
20472 << VD << E->getSourceRange();
20473 return ExprError();
20474 }
20475
20476 // Modifying the declaration like this is friendly to IR-gen but
20477 // also really dangerous.
20478 VD->setType(DestType);
20479 E->setType(Type);
20480 E->setValueKind(ValueKind);
20481 return E;
20482 }
20483
20484 /// Check a cast of an unknown-any type. We intentionally only
20485 /// trigger this for C-style casts.
checkUnknownAnyCast(SourceRange TypeRange,QualType CastType,Expr * CastExpr,CastKind & CastKind,ExprValueKind & VK,CXXCastPath & Path)20486 ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
20487 Expr *CastExpr, CastKind &CastKind,
20488 ExprValueKind &VK, CXXCastPath &Path) {
20489 // The type we're casting to must be either void or complete.
20490 if (!CastType->isVoidType() &&
20491 RequireCompleteType(TypeRange.getBegin(), CastType,
20492 diag::err_typecheck_cast_to_incomplete))
20493 return ExprError();
20494
20495 // Rewrite the casted expression from scratch.
20496 ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(CastExpr);
20497 if (!result.isUsable()) return ExprError();
20498
20499 CastExpr = result.get();
20500 VK = CastExpr->getValueKind();
20501 CastKind = CK_NoOp;
20502
20503 return CastExpr;
20504 }
20505
forceUnknownAnyToType(Expr * E,QualType ToType)20506 ExprResult Sema::forceUnknownAnyToType(Expr *E, QualType ToType) {
20507 return RebuildUnknownAnyExpr(*this, ToType).Visit(E);
20508 }
20509
checkUnknownAnyArg(SourceLocation callLoc,Expr * arg,QualType & paramType)20510 ExprResult Sema::checkUnknownAnyArg(SourceLocation callLoc,
20511 Expr *arg, QualType ¶mType) {
20512 // If the syntactic form of the argument is not an explicit cast of
20513 // any sort, just do default argument promotion.
20514 ExplicitCastExpr *castArg = dyn_cast<ExplicitCastExpr>(arg->IgnoreParens());
20515 if (!castArg) {
20516 ExprResult result = DefaultArgumentPromotion(arg);
20517 if (result.isInvalid()) return ExprError();
20518 paramType = result.get()->getType();
20519 return result;
20520 }
20521
20522 // Otherwise, use the type that was written in the explicit cast.
20523 assert(!arg->hasPlaceholderType());
20524 paramType = castArg->getTypeAsWritten();
20525
20526 // Copy-initialize a parameter of that type.
20527 InitializedEntity entity =
20528 InitializedEntity::InitializeParameter(Context, paramType,
20529 /*consumed*/ false);
20530 return PerformCopyInitialization(entity, callLoc, arg);
20531 }
20532
diagnoseUnknownAnyExpr(Sema & S,Expr * E)20533 static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) {
20534 Expr *orig = E;
20535 unsigned diagID = diag::err_uncasted_use_of_unknown_any;
20536 while (true) {
20537 E = E->IgnoreParenImpCasts();
20538 if (CallExpr *call = dyn_cast<CallExpr>(E)) {
20539 E = call->getCallee();
20540 diagID = diag::err_uncasted_call_of_unknown_any;
20541 } else {
20542 break;
20543 }
20544 }
20545
20546 SourceLocation loc;
20547 NamedDecl *d;
20548 if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(E)) {
20549 loc = ref->getLocation();
20550 d = ref->getDecl();
20551 } else if (MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
20552 loc = mem->getMemberLoc();
20553 d = mem->getMemberDecl();
20554 } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(E)) {
20555 diagID = diag::err_uncasted_call_of_unknown_any;
20556 loc = msg->getSelectorStartLoc();
20557 d = msg->getMethodDecl();
20558 if (!d) {
20559 S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method)
20560 << static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector()
20561 << orig->getSourceRange();
20562 return ExprError();
20563 }
20564 } else {
20565 S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
20566 << E->getSourceRange();
20567 return ExprError();
20568 }
20569
20570 S.Diag(loc, diagID) << d << orig->getSourceRange();
20571
20572 // Never recoverable.
20573 return ExprError();
20574 }
20575
20576 /// Check for operands with placeholder types and complain if found.
20577 /// Returns ExprError() if there was an error and no recovery was possible.
CheckPlaceholderExpr(Expr * E)20578 ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
20579 if (!Context.isDependenceAllowed()) {
20580 // C cannot handle TypoExpr nodes on either side of a binop because it
20581 // doesn't handle dependent types properly, so make sure any TypoExprs have
20582 // been dealt with before checking the operands.
20583 ExprResult Result = CorrectDelayedTyposInExpr(E);
20584 if (!Result.isUsable()) return ExprError();
20585 E = Result.get();
20586 }
20587
20588 const BuiltinType *placeholderType = E->getType()->getAsPlaceholderType();
20589 if (!placeholderType) return E;
20590
20591 switch (placeholderType->getKind()) {
20592
20593 // Overloaded expressions.
20594 case BuiltinType::Overload: {
20595 // Try to resolve a single function template specialization.
20596 // This is obligatory.
20597 ExprResult Result = E;
20598 if (ResolveAndFixSingleFunctionTemplateSpecialization(Result, false))
20599 return Result;
20600
20601 // No guarantees that ResolveAndFixSingleFunctionTemplateSpecialization
20602 // leaves Result unchanged on failure.
20603 Result = E;
20604 if (resolveAndFixAddressOfSingleOverloadCandidate(Result))
20605 return Result;
20606
20607 // If that failed, try to recover with a call.
20608 tryToRecoverWithCall(Result, PDiag(diag::err_ovl_unresolvable),
20609 /*complain*/ true);
20610 return Result;
20611 }
20612
20613 // Bound member functions.
20614 case BuiltinType::BoundMember: {
20615 ExprResult result = E;
20616 const Expr *BME = E->IgnoreParens();
20617 PartialDiagnostic PD = PDiag(diag::err_bound_member_function);
20618 // Try to give a nicer diagnostic if it is a bound member that we recognize.
20619 if (isa<CXXPseudoDestructorExpr>(BME)) {
20620 PD = PDiag(diag::err_dtor_expr_without_call) << /*pseudo-destructor*/ 1;
20621 } else if (const auto *ME = dyn_cast<MemberExpr>(BME)) {
20622 if (ME->getMemberNameInfo().getName().getNameKind() ==
20623 DeclarationName::CXXDestructorName)
20624 PD = PDiag(diag::err_dtor_expr_without_call) << /*destructor*/ 0;
20625 }
20626 tryToRecoverWithCall(result, PD,
20627 /*complain*/ true);
20628 return result;
20629 }
20630
20631 // ARC unbridged casts.
20632 case BuiltinType::ARCUnbridgedCast: {
20633 Expr *realCast = stripARCUnbridgedCast(E);
20634 diagnoseARCUnbridgedCast(realCast);
20635 return realCast;
20636 }
20637
20638 // Expressions of unknown type.
20639 case BuiltinType::UnknownAny:
20640 return diagnoseUnknownAnyExpr(*this, E);
20641
20642 // Pseudo-objects.
20643 case BuiltinType::PseudoObject:
20644 return checkPseudoObjectRValue(E);
20645
20646 case BuiltinType::BuiltinFn: {
20647 // Accept __noop without parens by implicitly converting it to a call expr.
20648 auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
20649 if (DRE) {
20650 auto *FD = cast<FunctionDecl>(DRE->getDecl());
20651 unsigned BuiltinID = FD->getBuiltinID();
20652 if (BuiltinID == Builtin::BI__noop) {
20653 E = ImpCastExprToType(E, Context.getPointerType(FD->getType()),
20654 CK_BuiltinFnToFnPtr)
20655 .get();
20656 return CallExpr::Create(Context, E, /*Args=*/{}, Context.IntTy,
20657 VK_PRValue, SourceLocation(),
20658 FPOptionsOverride());
20659 }
20660
20661 if (Context.BuiltinInfo.isInStdNamespace(BuiltinID)) {
20662 // Any use of these other than a direct call is ill-formed as of C++20,
20663 // because they are not addressable functions. In earlier language
20664 // modes, warn and force an instantiation of the real body.
20665 Diag(E->getBeginLoc(),
20666 getLangOpts().CPlusPlus20
20667 ? diag::err_use_of_unaddressable_function
20668 : diag::warn_cxx20_compat_use_of_unaddressable_function);
20669 if (FD->isImplicitlyInstantiable()) {
20670 // Require a definition here because a normal attempt at
20671 // instantiation for a builtin will be ignored, and we won't try
20672 // again later. We assume that the definition of the template
20673 // precedes this use.
20674 InstantiateFunctionDefinition(E->getBeginLoc(), FD,
20675 /*Recursive=*/false,
20676 /*DefinitionRequired=*/true,
20677 /*AtEndOfTU=*/false);
20678 }
20679 // Produce a properly-typed reference to the function.
20680 CXXScopeSpec SS;
20681 SS.Adopt(DRE->getQualifierLoc());
20682 TemplateArgumentListInfo TemplateArgs;
20683 DRE->copyTemplateArgumentsInto(TemplateArgs);
20684 return BuildDeclRefExpr(
20685 FD, FD->getType(), VK_LValue, DRE->getNameInfo(),
20686 DRE->hasQualifier() ? &SS : nullptr, DRE->getFoundDecl(),
20687 DRE->getTemplateKeywordLoc(),
20688 DRE->hasExplicitTemplateArgs() ? &TemplateArgs : nullptr);
20689 }
20690 }
20691
20692 Diag(E->getBeginLoc(), diag::err_builtin_fn_use);
20693 return ExprError();
20694 }
20695
20696 case BuiltinType::IncompleteMatrixIdx:
20697 Diag(cast<MatrixSubscriptExpr>(E->IgnoreParens())
20698 ->getRowIdx()
20699 ->getBeginLoc(),
20700 diag::err_matrix_incomplete_index);
20701 return ExprError();
20702
20703 // Expressions of unknown type.
20704 case BuiltinType::OMPArraySection:
20705 Diag(E->getBeginLoc(), diag::err_omp_array_section_use);
20706 return ExprError();
20707
20708 // Expressions of unknown type.
20709 case BuiltinType::OMPArrayShaping:
20710 return ExprError(Diag(E->getBeginLoc(), diag::err_omp_array_shaping_use));
20711
20712 case BuiltinType::OMPIterator:
20713 return ExprError(Diag(E->getBeginLoc(), diag::err_omp_iterator_use));
20714
20715 // Everything else should be impossible.
20716 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
20717 case BuiltinType::Id:
20718 #include "clang/Basic/OpenCLImageTypes.def"
20719 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
20720 case BuiltinType::Id:
20721 #include "clang/Basic/OpenCLExtensionTypes.def"
20722 #define SVE_TYPE(Name, Id, SingletonId) \
20723 case BuiltinType::Id:
20724 #include "clang/Basic/AArch64SVEACLETypes.def"
20725 #define PPC_VECTOR_TYPE(Name, Id, Size) \
20726 case BuiltinType::Id:
20727 #include "clang/Basic/PPCTypes.def"
20728 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
20729 #include "clang/Basic/RISCVVTypes.def"
20730 #define BUILTIN_TYPE(Id, SingletonId) case BuiltinType::Id:
20731 #define PLACEHOLDER_TYPE(Id, SingletonId)
20732 #include "clang/AST/BuiltinTypes.def"
20733 break;
20734 }
20735
20736 llvm_unreachable("invalid placeholder type!");
20737 }
20738
CheckCaseExpression(Expr * E)20739 bool Sema::CheckCaseExpression(Expr *E) {
20740 if (E->isTypeDependent())
20741 return true;
20742 if (E->isValueDependent() || E->isIntegerConstantExpr(Context))
20743 return E->getType()->isIntegralOrEnumerationType();
20744 return false;
20745 }
20746
20747 /// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals.
20748 ExprResult
ActOnObjCBoolLiteral(SourceLocation OpLoc,tok::TokenKind Kind)20749 Sema::ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
20750 assert((Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) &&
20751 "Unknown Objective-C Boolean value!");
20752 QualType BoolT = Context.ObjCBuiltinBoolTy;
20753 if (!Context.getBOOLDecl()) {
20754 LookupResult Result(*this, &Context.Idents.get("BOOL"), OpLoc,
20755 Sema::LookupOrdinaryName);
20756 if (LookupName(Result, getCurScope()) && Result.isSingleResult()) {
20757 NamedDecl *ND = Result.getFoundDecl();
20758 if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
20759 Context.setBOOLDecl(TD);
20760 }
20761 }
20762 if (Context.getBOOLDecl())
20763 BoolT = Context.getBOOLType();
20764 return new (Context)
20765 ObjCBoolLiteralExpr(Kind == tok::kw___objc_yes, BoolT, OpLoc);
20766 }
20767
ActOnObjCAvailabilityCheckExpr(llvm::ArrayRef<AvailabilitySpec> AvailSpecs,SourceLocation AtLoc,SourceLocation RParen)20768 ExprResult Sema::ActOnObjCAvailabilityCheckExpr(
20769 llvm::ArrayRef<AvailabilitySpec> AvailSpecs, SourceLocation AtLoc,
20770 SourceLocation RParen) {
20771 auto FindSpecVersion = [&](StringRef Platform) -> Optional<VersionTuple> {
20772 auto Spec = llvm::find_if(AvailSpecs, [&](const AvailabilitySpec &Spec) {
20773 return Spec.getPlatform() == Platform;
20774 });
20775 // Transcribe the "ios" availability check to "maccatalyst" when compiling
20776 // for "maccatalyst" if "maccatalyst" is not specified.
20777 if (Spec == AvailSpecs.end() && Platform == "maccatalyst") {
20778 Spec = llvm::find_if(AvailSpecs, [&](const AvailabilitySpec &Spec) {
20779 return Spec.getPlatform() == "ios";
20780 });
20781 }
20782 if (Spec == AvailSpecs.end())
20783 return None;
20784 return Spec->getVersion();
20785 };
20786
20787 VersionTuple Version;
20788 if (auto MaybeVersion =
20789 FindSpecVersion(Context.getTargetInfo().getPlatformName()))
20790 Version = *MaybeVersion;
20791
20792 // The use of `@available` in the enclosing context should be analyzed to
20793 // warn when it's used inappropriately (i.e. not if(@available)).
20794 if (FunctionScopeInfo *Context = getCurFunctionAvailabilityContext())
20795 Context->HasPotentialAvailabilityViolations = true;
20796
20797 return new (Context)
20798 ObjCAvailabilityCheckExpr(Version, AtLoc, RParen, Context.BoolTy);
20799 }
20800
CreateRecoveryExpr(SourceLocation Begin,SourceLocation End,ArrayRef<Expr * > SubExprs,QualType T)20801 ExprResult Sema::CreateRecoveryExpr(SourceLocation Begin, SourceLocation End,
20802 ArrayRef<Expr *> SubExprs, QualType T) {
20803 if (!Context.getLangOpts().RecoveryAST)
20804 return ExprError();
20805
20806 if (isSFINAEContext())
20807 return ExprError();
20808
20809 if (T.isNull() || T->isUndeducedType() ||
20810 !Context.getLangOpts().RecoveryASTType)
20811 // We don't know the concrete type, fallback to dependent type.
20812 T = Context.DependentTy;
20813
20814 return RecoveryExpr::Create(Context, T, Begin, End, SubExprs);
20815 }
20816