1 //===- Cloning.h - Clone various parts of LLVM programs ---------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines various functions that are used to clone chunks of LLVM 10 // code for various purposes. This varies from copying whole modules into new 11 // modules, to cloning functions with different arguments, to inlining 12 // functions, to copying basic blocks to support loop unrolling or superblock 13 // formation, etc. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #ifndef LLVM_TRANSFORMS_UTILS_CLONING_H 18 #define LLVM_TRANSFORMS_UTILS_CLONING_H 19 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Twine.h" 22 #include "llvm/Analysis/AssumptionCache.h" 23 #include "llvm/Analysis/InlineCost.h" 24 #include "llvm/IR/ValueHandle.h" 25 #include "llvm/Transforms/Utils/ValueMapper.h" 26 #include <functional> 27 #include <memory> 28 #include <vector> 29 30 namespace llvm { 31 32 class AAResults; 33 class AllocaInst; 34 class BasicBlock; 35 class BlockFrequencyInfo; 36 class CallInst; 37 class CallGraph; 38 class DebugInfoFinder; 39 class DominatorTree; 40 class Function; 41 class Instruction; 42 class InvokeInst; 43 class Loop; 44 class LoopInfo; 45 class Module; 46 class ProfileSummaryInfo; 47 class ReturnInst; 48 class DomTreeUpdater; 49 50 /// Return an exact copy of the specified module 51 std::unique_ptr<Module> CloneModule(const Module &M); 52 std::unique_ptr<Module> CloneModule(const Module &M, ValueToValueMapTy &VMap); 53 54 /// Return a copy of the specified module. The ShouldCloneDefinition function 55 /// controls whether a specific GlobalValue's definition is cloned. If the 56 /// function returns false, the module copy will contain an external reference 57 /// in place of the global definition. 58 std::unique_ptr<Module> 59 CloneModule(const Module &M, ValueToValueMapTy &VMap, 60 function_ref<bool(const GlobalValue *)> ShouldCloneDefinition); 61 62 /// This struct can be used to capture information about code 63 /// being cloned, while it is being cloned. 64 struct ClonedCodeInfo { 65 /// This is set to true if the cloned code contains a normal call instruction. 66 bool ContainsCalls = false; 67 68 /// This is set to true if the cloned code contains a 'dynamic' alloca. 69 /// Dynamic allocas are allocas that are either not in the entry block or they 70 /// are in the entry block but are not a constant size. 71 bool ContainsDynamicAllocas = false; 72 73 /// All cloned call sites that have operand bundles attached are appended to 74 /// this vector. This vector may contain nulls or undefs if some of the 75 /// originally inserted callsites were DCE'ed after they were cloned. 76 std::vector<WeakTrackingVH> OperandBundleCallSites; 77 78 /// Like VMap, but maps only unsimplified instructions. Values in the map 79 /// may be dangling, it is only intended to be used via isSimplified(), to 80 /// check whether the main VMap mapping involves simplification or not. 81 DenseMap<const Value *, const Value *> OrigVMap; 82 83 ClonedCodeInfo() = default; 84 isSimplifiedClonedCodeInfo85 bool isSimplified(const Value *From, const Value *To) const { 86 return OrigVMap.lookup(From) != To; 87 } 88 }; 89 90 /// Return a copy of the specified basic block, but without 91 /// embedding the block into a particular function. The block returned is an 92 /// exact copy of the specified basic block, without any remapping having been 93 /// performed. Because of this, this is only suitable for applications where 94 /// the basic block will be inserted into the same function that it was cloned 95 /// from (loop unrolling would use this, for example). 96 /// 97 /// Also, note that this function makes a direct copy of the basic block, and 98 /// can thus produce illegal LLVM code. In particular, it will copy any PHI 99 /// nodes from the original block, even though there are no predecessors for the 100 /// newly cloned block (thus, phi nodes will have to be updated). Also, this 101 /// block will branch to the old successors of the original block: these 102 /// successors will have to have any PHI nodes updated to account for the new 103 /// incoming edges. 104 /// 105 /// The correlation between instructions in the source and result basic blocks 106 /// is recorded in the VMap map. 107 /// 108 /// If you have a particular suffix you'd like to use to add to any cloned 109 /// names, specify it as the optional third parameter. 110 /// 111 /// If you would like the basic block to be auto-inserted into the end of a 112 /// function, you can specify it as the optional fourth parameter. 113 /// 114 /// If you would like to collect additional information about the cloned 115 /// function, you can specify a ClonedCodeInfo object with the optional fifth 116 /// parameter. 117 BasicBlock *CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap, 118 const Twine &NameSuffix = "", Function *F = nullptr, 119 ClonedCodeInfo *CodeInfo = nullptr, 120 DebugInfoFinder *DIFinder = nullptr); 121 122 /// Return a copy of the specified function and add it to that 123 /// function's module. Also, any references specified in the VMap are changed 124 /// to refer to their mapped value instead of the original one. If any of the 125 /// arguments to the function are in the VMap, the arguments are deleted from 126 /// the resultant function. The VMap is updated to include mappings from all of 127 /// the instructions and basicblocks in the function from their old to new 128 /// values. The final argument captures information about the cloned code if 129 /// non-null. 130 /// 131 /// \pre VMap contains no non-identity GlobalValue mappings. 132 /// 133 Function *CloneFunction(Function *F, ValueToValueMapTy &VMap, 134 ClonedCodeInfo *CodeInfo = nullptr); 135 136 enum class CloneFunctionChangeType { 137 LocalChangesOnly, 138 GlobalChanges, 139 DifferentModule, 140 ClonedModule, 141 }; 142 143 /// Clone OldFunc into NewFunc, transforming the old arguments into references 144 /// to VMap values. Note that if NewFunc already has basic blocks, the ones 145 /// cloned into it will be added to the end of the function. This function 146 /// fills in a list of return instructions, and can optionally remap types 147 /// and/or append the specified suffix to all values cloned. 148 /// 149 /// If \p Changes is \a CloneFunctionChangeType::LocalChangesOnly, VMap is 150 /// required to contain no non-identity GlobalValue mappings. Otherwise, 151 /// referenced metadata will be cloned. 152 /// 153 /// If \p Changes is less than \a CloneFunctionChangeType::DifferentModule 154 /// indicating cloning into the same module (even if it's LocalChangesOnly), if 155 /// debug info metadata transitively references a \a DISubprogram, it will be 156 /// cloned, effectively upgrading \p Changes to GlobalChanges while suppressing 157 /// cloning of types and compile units. 158 /// 159 /// If \p Changes is \a CloneFunctionChangeType::DifferentModule, the new 160 /// module's \c !llvm.dbg.cu will get updated with any newly created compile 161 /// units. (\a CloneFunctionChangeType::ClonedModule leaves that work for the 162 /// caller.) 163 /// 164 /// FIXME: Consider simplifying this function by splitting out \a 165 /// CloneFunctionMetadataInto() and expecting / updating callers to call it 166 /// first when / how it's needed. 167 void CloneFunctionInto(Function *NewFunc, const Function *OldFunc, 168 ValueToValueMapTy &VMap, CloneFunctionChangeType Changes, 169 SmallVectorImpl<ReturnInst *> &Returns, 170 const char *NameSuffix = "", 171 ClonedCodeInfo *CodeInfo = nullptr, 172 ValueMapTypeRemapper *TypeMapper = nullptr, 173 ValueMaterializer *Materializer = nullptr); 174 175 void CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc, 176 const Instruction *StartingInst, 177 ValueToValueMapTy &VMap, bool ModuleLevelChanges, 178 SmallVectorImpl<ReturnInst *> &Returns, 179 const char *NameSuffix = "", 180 ClonedCodeInfo *CodeInfo = nullptr); 181 182 /// This works exactly like CloneFunctionInto, 183 /// except that it does some simple constant prop and DCE on the fly. The 184 /// effect of this is to copy significantly less code in cases where (for 185 /// example) a function call with constant arguments is inlined, and those 186 /// constant arguments cause a significant amount of code in the callee to be 187 /// dead. Since this doesn't produce an exactly copy of the input, it can't be 188 /// used for things like CloneFunction or CloneModule. 189 /// 190 /// If ModuleLevelChanges is false, VMap contains no non-identity GlobalValue 191 /// mappings. 192 /// 193 void CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc, 194 ValueToValueMapTy &VMap, bool ModuleLevelChanges, 195 SmallVectorImpl<ReturnInst*> &Returns, 196 const char *NameSuffix = "", 197 ClonedCodeInfo *CodeInfo = nullptr); 198 199 /// This class captures the data input to the InlineFunction call, and records 200 /// the auxiliary results produced by it. 201 class InlineFunctionInfo { 202 public: 203 explicit InlineFunctionInfo( 204 CallGraph *cg = nullptr, 205 function_ref<AssumptionCache &(Function &)> GetAssumptionCache = nullptr, 206 ProfileSummaryInfo *PSI = nullptr, 207 BlockFrequencyInfo *CallerBFI = nullptr, 208 BlockFrequencyInfo *CalleeBFI = nullptr, bool UpdateProfile = true) CG(cg)209 : CG(cg), GetAssumptionCache(GetAssumptionCache), PSI(PSI), 210 CallerBFI(CallerBFI), CalleeBFI(CalleeBFI), 211 UpdateProfile(UpdateProfile) {} 212 213 /// If non-null, InlineFunction will update the callgraph to reflect the 214 /// changes it makes. 215 CallGraph *CG; 216 function_ref<AssumptionCache &(Function &)> GetAssumptionCache; 217 ProfileSummaryInfo *PSI; 218 BlockFrequencyInfo *CallerBFI, *CalleeBFI; 219 220 /// InlineFunction fills this in with all static allocas that get copied into 221 /// the caller. 222 SmallVector<AllocaInst *, 4> StaticAllocas; 223 224 /// InlineFunction fills this in with callsites that were inlined from the 225 /// callee. This is only filled in if CG is non-null. 226 SmallVector<WeakTrackingVH, 8> InlinedCalls; 227 228 /// All of the new call sites inlined into the caller. 229 /// 230 /// 'InlineFunction' fills this in by scanning the inlined instructions, and 231 /// only if CG is null. If CG is non-null, instead the value handle 232 /// `InlinedCalls` above is used. 233 SmallVector<CallBase *, 8> InlinedCallSites; 234 235 /// Update profile for callee as well as cloned version. We need to do this 236 /// for regular inlining, but not for inlining from sample profile loader. 237 bool UpdateProfile; 238 reset()239 void reset() { 240 StaticAllocas.clear(); 241 InlinedCalls.clear(); 242 InlinedCallSites.clear(); 243 } 244 }; 245 246 /// This function inlines the called function into the basic 247 /// block of the caller. This returns false if it is not possible to inline 248 /// this call. The program is still in a well defined state if this occurs 249 /// though. 250 /// 251 /// Note that this only does one level of inlining. For example, if the 252 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now 253 /// exists in the instruction stream. Similarly this will inline a recursive 254 /// function by one level. 255 /// 256 /// Note that while this routine is allowed to cleanup and optimize the 257 /// *inlined* code to minimize the actual inserted code, it must not delete 258 /// code in the caller as users of this routine may have pointers to 259 /// instructions in the caller that need to remain stable. 260 /// 261 /// If ForwardVarArgsTo is passed, inlining a function with varargs is allowed 262 /// and all varargs at the callsite will be passed to any calls to 263 /// ForwardVarArgsTo. The caller of InlineFunction has to make sure any varargs 264 /// are only used by ForwardVarArgsTo. 265 InlineResult InlineFunction(CallBase &CB, InlineFunctionInfo &IFI, 266 AAResults *CalleeAAR = nullptr, 267 bool InsertLifetime = true, 268 Function *ForwardVarArgsTo = nullptr); 269 270 /// Clones a loop \p OrigLoop. Returns the loop and the blocks in \p 271 /// Blocks. 272 /// 273 /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block 274 /// \p LoopDomBB. Insert the new blocks before block specified in \p Before. 275 /// Note: Only innermost loops are supported. 276 Loop *cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB, 277 Loop *OrigLoop, ValueToValueMapTy &VMap, 278 const Twine &NameSuffix, LoopInfo *LI, 279 DominatorTree *DT, 280 SmallVectorImpl<BasicBlock *> &Blocks); 281 282 /// Remaps instructions in \p Blocks using the mapping in \p VMap. 283 void remapInstructionsInBlocks(const SmallVectorImpl<BasicBlock *> &Blocks, 284 ValueToValueMapTy &VMap); 285 286 /// Split edge between BB and PredBB and duplicate all non-Phi instructions 287 /// from BB between its beginning and the StopAt instruction into the split 288 /// block. Phi nodes are not duplicated, but their uses are handled correctly: 289 /// we replace them with the uses of corresponding Phi inputs. ValueMapping 290 /// is used to map the original instructions from BB to their newly-created 291 /// copies. Returns the split block. 292 BasicBlock *DuplicateInstructionsInSplitBetween(BasicBlock *BB, 293 BasicBlock *PredBB, 294 Instruction *StopAt, 295 ValueToValueMapTy &ValueMapping, 296 DomTreeUpdater &DTU); 297 298 /// Updates profile information by adjusting the entry count by adding 299 /// entryDelta then scaling callsite information by the new count divided by the 300 /// old count. VMap is used during inlinng to also update the new clone 301 void updateProfileCallee( 302 Function *Callee, int64_t entryDelta, 303 const ValueMap<const Value *, WeakTrackingVH> *VMap = nullptr); 304 305 /// Find the 'llvm.experimental.noalias.scope.decl' intrinsics in the specified 306 /// basic blocks and extract their scope. These are candidates for duplication 307 /// when cloning. 308 void identifyNoAliasScopesToClone( 309 ArrayRef<BasicBlock *> BBs, SmallVectorImpl<MDNode *> &NoAliasDeclScopes); 310 311 /// Find the 'llvm.experimental.noalias.scope.decl' intrinsics in the specified 312 /// instruction range and extract their scope. These are candidates for 313 /// duplication when cloning. 314 void identifyNoAliasScopesToClone( 315 BasicBlock::iterator Start, BasicBlock::iterator End, 316 SmallVectorImpl<MDNode *> &NoAliasDeclScopes); 317 318 /// Duplicate the specified list of noalias decl scopes. 319 /// The 'Ext' string is added as an extension to the name. 320 /// Afterwards, the ClonedScopes contains the mapping of the original scope 321 /// MDNode onto the cloned scope. 322 /// Be aware that the cloned scopes are still part of the original scope domain. 323 void cloneNoAliasScopes( 324 ArrayRef<MDNode *> NoAliasDeclScopes, 325 DenseMap<MDNode *, MDNode *> &ClonedScopes, 326 StringRef Ext, LLVMContext &Context); 327 328 /// Adapt the metadata for the specified instruction according to the 329 /// provided mapping. This is normally used after cloning an instruction, when 330 /// some noalias scopes needed to be cloned. 331 void adaptNoAliasScopes( 332 llvm::Instruction *I, const DenseMap<MDNode *, MDNode *> &ClonedScopes, 333 LLVMContext &Context); 334 335 /// Clone the specified noalias decl scopes. Then adapt all instructions in the 336 /// NewBlocks basicblocks to the cloned versions. 337 /// 'Ext' will be added to the duplicate scope names. 338 void cloneAndAdaptNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes, 339 ArrayRef<BasicBlock *> NewBlocks, 340 LLVMContext &Context, StringRef Ext); 341 342 /// Clone the specified noalias decl scopes. Then adapt all instructions in the 343 /// [IStart, IEnd] (IEnd included !) range to the cloned versions. 'Ext' will be 344 /// added to the duplicate scope names. 345 void cloneAndAdaptNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes, 346 Instruction *IStart, Instruction *IEnd, 347 LLVMContext &Context, StringRef Ext); 348 } // end namespace llvm 349 350 #endif // LLVM_TRANSFORMS_UTILS_CLONING_H 351