1 //===- Cloning.h - Clone various parts of LLVM programs ---------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines various functions that are used to clone chunks of LLVM
10 // code for various purposes.  This varies from copying whole modules into new
11 // modules, to cloning functions with different arguments, to inlining
12 // functions, to copying basic blocks to support loop unrolling or superblock
13 // formation, etc.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #ifndef LLVM_TRANSFORMS_UTILS_CLONING_H
18 #define LLVM_TRANSFORMS_UTILS_CLONING_H
19 
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Twine.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/InlineCost.h"
24 #include "llvm/IR/ValueHandle.h"
25 #include "llvm/Transforms/Utils/ValueMapper.h"
26 #include <functional>
27 #include <memory>
28 #include <vector>
29 
30 namespace llvm {
31 
32 class AAResults;
33 class AllocaInst;
34 class BasicBlock;
35 class BlockFrequencyInfo;
36 class CallInst;
37 class CallGraph;
38 class DebugInfoFinder;
39 class DominatorTree;
40 class Function;
41 class Instruction;
42 class InvokeInst;
43 class Loop;
44 class LoopInfo;
45 class Module;
46 class ProfileSummaryInfo;
47 class ReturnInst;
48 class DomTreeUpdater;
49 
50 /// Return an exact copy of the specified module
51 std::unique_ptr<Module> CloneModule(const Module &M);
52 std::unique_ptr<Module> CloneModule(const Module &M, ValueToValueMapTy &VMap);
53 
54 /// Return a copy of the specified module. The ShouldCloneDefinition function
55 /// controls whether a specific GlobalValue's definition is cloned. If the
56 /// function returns false, the module copy will contain an external reference
57 /// in place of the global definition.
58 std::unique_ptr<Module>
59 CloneModule(const Module &M, ValueToValueMapTy &VMap,
60             function_ref<bool(const GlobalValue *)> ShouldCloneDefinition);
61 
62 /// This struct can be used to capture information about code
63 /// being cloned, while it is being cloned.
64 struct ClonedCodeInfo {
65   /// This is set to true if the cloned code contains a normal call instruction.
66   bool ContainsCalls = false;
67 
68   /// This is set to true if the cloned code contains a 'dynamic' alloca.
69   /// Dynamic allocas are allocas that are either not in the entry block or they
70   /// are in the entry block but are not a constant size.
71   bool ContainsDynamicAllocas = false;
72 
73   /// All cloned call sites that have operand bundles attached are appended to
74   /// this vector.  This vector may contain nulls or undefs if some of the
75   /// originally inserted callsites were DCE'ed after they were cloned.
76   std::vector<WeakTrackingVH> OperandBundleCallSites;
77 
78   /// Like VMap, but maps only unsimplified instructions. Values in the map
79   /// may be dangling, it is only intended to be used via isSimplified(), to
80   /// check whether the main VMap mapping involves simplification or not.
81   DenseMap<const Value *, const Value *> OrigVMap;
82 
83   ClonedCodeInfo() = default;
84 
isSimplifiedClonedCodeInfo85   bool isSimplified(const Value *From, const Value *To) const {
86     return OrigVMap.lookup(From) != To;
87   }
88 };
89 
90 /// Return a copy of the specified basic block, but without
91 /// embedding the block into a particular function.  The block returned is an
92 /// exact copy of the specified basic block, without any remapping having been
93 /// performed.  Because of this, this is only suitable for applications where
94 /// the basic block will be inserted into the same function that it was cloned
95 /// from (loop unrolling would use this, for example).
96 ///
97 /// Also, note that this function makes a direct copy of the basic block, and
98 /// can thus produce illegal LLVM code.  In particular, it will copy any PHI
99 /// nodes from the original block, even though there are no predecessors for the
100 /// newly cloned block (thus, phi nodes will have to be updated).  Also, this
101 /// block will branch to the old successors of the original block: these
102 /// successors will have to have any PHI nodes updated to account for the new
103 /// incoming edges.
104 ///
105 /// The correlation between instructions in the source and result basic blocks
106 /// is recorded in the VMap map.
107 ///
108 /// If you have a particular suffix you'd like to use to add to any cloned
109 /// names, specify it as the optional third parameter.
110 ///
111 /// If you would like the basic block to be auto-inserted into the end of a
112 /// function, you can specify it as the optional fourth parameter.
113 ///
114 /// If you would like to collect additional information about the cloned
115 /// function, you can specify a ClonedCodeInfo object with the optional fifth
116 /// parameter.
117 BasicBlock *CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap,
118                             const Twine &NameSuffix = "", Function *F = nullptr,
119                             ClonedCodeInfo *CodeInfo = nullptr,
120                             DebugInfoFinder *DIFinder = nullptr);
121 
122 /// Return a copy of the specified function and add it to that
123 /// function's module.  Also, any references specified in the VMap are changed
124 /// to refer to their mapped value instead of the original one.  If any of the
125 /// arguments to the function are in the VMap, the arguments are deleted from
126 /// the resultant function.  The VMap is updated to include mappings from all of
127 /// the instructions and basicblocks in the function from their old to new
128 /// values.  The final argument captures information about the cloned code if
129 /// non-null.
130 ///
131 /// \pre VMap contains no non-identity GlobalValue mappings.
132 ///
133 Function *CloneFunction(Function *F, ValueToValueMapTy &VMap,
134                         ClonedCodeInfo *CodeInfo = nullptr);
135 
136 enum class CloneFunctionChangeType {
137   LocalChangesOnly,
138   GlobalChanges,
139   DifferentModule,
140   ClonedModule,
141 };
142 
143 /// Clone OldFunc into NewFunc, transforming the old arguments into references
144 /// to VMap values.  Note that if NewFunc already has basic blocks, the ones
145 /// cloned into it will be added to the end of the function.  This function
146 /// fills in a list of return instructions, and can optionally remap types
147 /// and/or append the specified suffix to all values cloned.
148 ///
149 /// If \p Changes is \a CloneFunctionChangeType::LocalChangesOnly, VMap is
150 /// required to contain no non-identity GlobalValue mappings. Otherwise,
151 /// referenced metadata will be cloned.
152 ///
153 /// If \p Changes is less than \a CloneFunctionChangeType::DifferentModule
154 /// indicating cloning into the same module (even if it's LocalChangesOnly), if
155 /// debug info metadata transitively references a \a DISubprogram, it will be
156 /// cloned, effectively upgrading \p Changes to GlobalChanges while suppressing
157 /// cloning of types and compile units.
158 ///
159 /// If \p Changes is \a CloneFunctionChangeType::DifferentModule, the new
160 /// module's \c !llvm.dbg.cu will get updated with any newly created compile
161 /// units. (\a CloneFunctionChangeType::ClonedModule leaves that work for the
162 /// caller.)
163 ///
164 /// FIXME: Consider simplifying this function by splitting out \a
165 /// CloneFunctionMetadataInto() and expecting / updating callers to call it
166 /// first when / how it's needed.
167 void CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
168                        ValueToValueMapTy &VMap, CloneFunctionChangeType Changes,
169                        SmallVectorImpl<ReturnInst *> &Returns,
170                        const char *NameSuffix = "",
171                        ClonedCodeInfo *CodeInfo = nullptr,
172                        ValueMapTypeRemapper *TypeMapper = nullptr,
173                        ValueMaterializer *Materializer = nullptr);
174 
175 void CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,
176                                const Instruction *StartingInst,
177                                ValueToValueMapTy &VMap, bool ModuleLevelChanges,
178                                SmallVectorImpl<ReturnInst *> &Returns,
179                                const char *NameSuffix = "",
180                                ClonedCodeInfo *CodeInfo = nullptr);
181 
182 /// This works exactly like CloneFunctionInto,
183 /// except that it does some simple constant prop and DCE on the fly.  The
184 /// effect of this is to copy significantly less code in cases where (for
185 /// example) a function call with constant arguments is inlined, and those
186 /// constant arguments cause a significant amount of code in the callee to be
187 /// dead.  Since this doesn't produce an exactly copy of the input, it can't be
188 /// used for things like CloneFunction or CloneModule.
189 ///
190 /// If ModuleLevelChanges is false, VMap contains no non-identity GlobalValue
191 /// mappings.
192 ///
193 void CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
194                                ValueToValueMapTy &VMap, bool ModuleLevelChanges,
195                                SmallVectorImpl<ReturnInst*> &Returns,
196                                const char *NameSuffix = "",
197                                ClonedCodeInfo *CodeInfo = nullptr);
198 
199 /// This class captures the data input to the InlineFunction call, and records
200 /// the auxiliary results produced by it.
201 class InlineFunctionInfo {
202 public:
203   explicit InlineFunctionInfo(
204       CallGraph *cg = nullptr,
205       function_ref<AssumptionCache &(Function &)> GetAssumptionCache = nullptr,
206       ProfileSummaryInfo *PSI = nullptr,
207       BlockFrequencyInfo *CallerBFI = nullptr,
208       BlockFrequencyInfo *CalleeBFI = nullptr, bool UpdateProfile = true)
CG(cg)209       : CG(cg), GetAssumptionCache(GetAssumptionCache), PSI(PSI),
210         CallerBFI(CallerBFI), CalleeBFI(CalleeBFI),
211         UpdateProfile(UpdateProfile) {}
212 
213   /// If non-null, InlineFunction will update the callgraph to reflect the
214   /// changes it makes.
215   CallGraph *CG;
216   function_ref<AssumptionCache &(Function &)> GetAssumptionCache;
217   ProfileSummaryInfo *PSI;
218   BlockFrequencyInfo *CallerBFI, *CalleeBFI;
219 
220   /// InlineFunction fills this in with all static allocas that get copied into
221   /// the caller.
222   SmallVector<AllocaInst *, 4> StaticAllocas;
223 
224   /// InlineFunction fills this in with callsites that were inlined from the
225   /// callee. This is only filled in if CG is non-null.
226   SmallVector<WeakTrackingVH, 8> InlinedCalls;
227 
228   /// All of the new call sites inlined into the caller.
229   ///
230   /// 'InlineFunction' fills this in by scanning the inlined instructions, and
231   /// only if CG is null. If CG is non-null, instead the value handle
232   /// `InlinedCalls` above is used.
233   SmallVector<CallBase *, 8> InlinedCallSites;
234 
235   /// Update profile for callee as well as cloned version. We need to do this
236   /// for regular inlining, but not for inlining from sample profile loader.
237   bool UpdateProfile;
238 
reset()239   void reset() {
240     StaticAllocas.clear();
241     InlinedCalls.clear();
242     InlinedCallSites.clear();
243   }
244 };
245 
246 /// This function inlines the called function into the basic
247 /// block of the caller.  This returns false if it is not possible to inline
248 /// this call.  The program is still in a well defined state if this occurs
249 /// though.
250 ///
251 /// Note that this only does one level of inlining.  For example, if the
252 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
253 /// exists in the instruction stream.  Similarly this will inline a recursive
254 /// function by one level.
255 ///
256 /// Note that while this routine is allowed to cleanup and optimize the
257 /// *inlined* code to minimize the actual inserted code, it must not delete
258 /// code in the caller as users of this routine may have pointers to
259 /// instructions in the caller that need to remain stable.
260 ///
261 /// If ForwardVarArgsTo is passed, inlining a function with varargs is allowed
262 /// and all varargs at the callsite will be passed to any calls to
263 /// ForwardVarArgsTo. The caller of InlineFunction has to make sure any varargs
264 /// are only used by ForwardVarArgsTo.
265 InlineResult InlineFunction(CallBase &CB, InlineFunctionInfo &IFI,
266                             AAResults *CalleeAAR = nullptr,
267                             bool InsertLifetime = true,
268                             Function *ForwardVarArgsTo = nullptr);
269 
270 /// Clones a loop \p OrigLoop.  Returns the loop and the blocks in \p
271 /// Blocks.
272 ///
273 /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block
274 /// \p LoopDomBB.  Insert the new blocks before block specified in \p Before.
275 /// Note: Only innermost loops are supported.
276 Loop *cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB,
277                              Loop *OrigLoop, ValueToValueMapTy &VMap,
278                              const Twine &NameSuffix, LoopInfo *LI,
279                              DominatorTree *DT,
280                              SmallVectorImpl<BasicBlock *> &Blocks);
281 
282 /// Remaps instructions in \p Blocks using the mapping in \p VMap.
283 void remapInstructionsInBlocks(const SmallVectorImpl<BasicBlock *> &Blocks,
284                                ValueToValueMapTy &VMap);
285 
286 /// Split edge between BB and PredBB and duplicate all non-Phi instructions
287 /// from BB between its beginning and the StopAt instruction into the split
288 /// block. Phi nodes are not duplicated, but their uses are handled correctly:
289 /// we replace them with the uses of corresponding Phi inputs. ValueMapping
290 /// is used to map the original instructions from BB to their newly-created
291 /// copies. Returns the split block.
292 BasicBlock *DuplicateInstructionsInSplitBetween(BasicBlock *BB,
293                                                 BasicBlock *PredBB,
294                                                 Instruction *StopAt,
295                                                 ValueToValueMapTy &ValueMapping,
296                                                 DomTreeUpdater &DTU);
297 
298 /// Updates profile information by adjusting the entry count by adding
299 /// entryDelta then scaling callsite information by the new count divided by the
300 /// old count. VMap is used during inlinng to also update the new clone
301 void updateProfileCallee(
302     Function *Callee, int64_t entryDelta,
303     const ValueMap<const Value *, WeakTrackingVH> *VMap = nullptr);
304 
305 /// Find the 'llvm.experimental.noalias.scope.decl' intrinsics in the specified
306 /// basic blocks and extract their scope. These are candidates for duplication
307 /// when cloning.
308 void identifyNoAliasScopesToClone(
309     ArrayRef<BasicBlock *> BBs, SmallVectorImpl<MDNode *> &NoAliasDeclScopes);
310 
311 /// Find the 'llvm.experimental.noalias.scope.decl' intrinsics in the specified
312 /// instruction range and extract their scope. These are candidates for
313 /// duplication when cloning.
314 void identifyNoAliasScopesToClone(
315     BasicBlock::iterator Start, BasicBlock::iterator End,
316     SmallVectorImpl<MDNode *> &NoAliasDeclScopes);
317 
318 /// Duplicate the specified list of noalias decl scopes.
319 /// The 'Ext' string is added as an extension to the name.
320 /// Afterwards, the ClonedScopes contains the mapping of the original scope
321 /// MDNode onto the cloned scope.
322 /// Be aware that the cloned scopes are still part of the original scope domain.
323 void cloneNoAliasScopes(
324     ArrayRef<MDNode *> NoAliasDeclScopes,
325     DenseMap<MDNode *, MDNode *> &ClonedScopes,
326     StringRef Ext, LLVMContext &Context);
327 
328 /// Adapt the metadata for the specified instruction according to the
329 /// provided mapping. This is normally used after cloning an instruction, when
330 /// some noalias scopes needed to be cloned.
331 void adaptNoAliasScopes(
332     llvm::Instruction *I, const DenseMap<MDNode *, MDNode *> &ClonedScopes,
333     LLVMContext &Context);
334 
335 /// Clone the specified noalias decl scopes. Then adapt all instructions in the
336 /// NewBlocks basicblocks to the cloned versions.
337 /// 'Ext' will be added to the duplicate scope names.
338 void cloneAndAdaptNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes,
339                                 ArrayRef<BasicBlock *> NewBlocks,
340                                 LLVMContext &Context, StringRef Ext);
341 
342 /// Clone the specified noalias decl scopes. Then adapt all instructions in the
343 /// [IStart, IEnd] (IEnd included !) range to the cloned versions. 'Ext' will be
344 /// added to the duplicate scope names.
345 void cloneAndAdaptNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes,
346                                 Instruction *IStart, Instruction *IEnd,
347                                 LLVMContext &Context, StringRef Ext);
348 } // end namespace llvm
349 
350 #endif // LLVM_TRANSFORMS_UTILS_CLONING_H
351