1 //===--- SemaOverload.cpp - C++ Overloading -------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides Sema routines for C++ overloading.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "clang/AST/ASTContext.h"
14 #include "clang/AST/CXXInheritance.h"
15 #include "clang/AST/DeclObjC.h"
16 #include "clang/AST/DependenceFlags.h"
17 #include "clang/AST/Expr.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/ExprObjC.h"
20 #include "clang/AST/TypeOrdering.h"
21 #include "clang/Basic/Diagnostic.h"
22 #include "clang/Basic/DiagnosticOptions.h"
23 #include "clang/Basic/PartialDiagnostic.h"
24 #include "clang/Basic/SourceManager.h"
25 #include "clang/Basic/TargetInfo.h"
26 #include "clang/Sema/Initialization.h"
27 #include "clang/Sema/Lookup.h"
28 #include "clang/Sema/Overload.h"
29 #include "clang/Sema/SemaInternal.h"
30 #include "clang/Sema/Template.h"
31 #include "clang/Sema/TemplateDeduction.h"
32 #include "llvm/ADT/DenseSet.h"
33 #include "llvm/ADT/Optional.h"
34 #include "llvm/ADT/STLExtras.h"
35 #include "llvm/ADT/SmallPtrSet.h"
36 #include "llvm/ADT/SmallString.h"
37 #include <algorithm>
38 #include <cstdlib>
39
40 using namespace clang;
41 using namespace sema;
42
43 using AllowedExplicit = Sema::AllowedExplicit;
44
functionHasPassObjectSizeParams(const FunctionDecl * FD)45 static bool functionHasPassObjectSizeParams(const FunctionDecl *FD) {
46 return llvm::any_of(FD->parameters(), [](const ParmVarDecl *P) {
47 return P->hasAttr<PassObjectSizeAttr>();
48 });
49 }
50
51 /// A convenience routine for creating a decayed reference to a function.
CreateFunctionRefExpr(Sema & S,FunctionDecl * Fn,NamedDecl * FoundDecl,const Expr * Base,bool HadMultipleCandidates,SourceLocation Loc=SourceLocation (),const DeclarationNameLoc & LocInfo=DeclarationNameLoc ())52 static ExprResult CreateFunctionRefExpr(
53 Sema &S, FunctionDecl *Fn, NamedDecl *FoundDecl, const Expr *Base,
54 bool HadMultipleCandidates, SourceLocation Loc = SourceLocation(),
55 const DeclarationNameLoc &LocInfo = DeclarationNameLoc()) {
56 if (S.DiagnoseUseOfDecl(FoundDecl, Loc))
57 return ExprError();
58 // If FoundDecl is different from Fn (such as if one is a template
59 // and the other a specialization), make sure DiagnoseUseOfDecl is
60 // called on both.
61 // FIXME: This would be more comprehensively addressed by modifying
62 // DiagnoseUseOfDecl to accept both the FoundDecl and the decl
63 // being used.
64 if (FoundDecl != Fn && S.DiagnoseUseOfDecl(Fn, Loc))
65 return ExprError();
66 DeclRefExpr *DRE = new (S.Context)
67 DeclRefExpr(S.Context, Fn, false, Fn->getType(), VK_LValue, Loc, LocInfo);
68 if (HadMultipleCandidates)
69 DRE->setHadMultipleCandidates(true);
70
71 S.MarkDeclRefReferenced(DRE, Base);
72 if (auto *FPT = DRE->getType()->getAs<FunctionProtoType>()) {
73 if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) {
74 S.ResolveExceptionSpec(Loc, FPT);
75 DRE->setType(Fn->getType());
76 }
77 }
78 return S.ImpCastExprToType(DRE, S.Context.getPointerType(DRE->getType()),
79 CK_FunctionToPointerDecay);
80 }
81
82 static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
83 bool InOverloadResolution,
84 StandardConversionSequence &SCS,
85 bool CStyle,
86 bool AllowObjCWritebackConversion);
87
88 static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From,
89 QualType &ToType,
90 bool InOverloadResolution,
91 StandardConversionSequence &SCS,
92 bool CStyle);
93 static OverloadingResult
94 IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
95 UserDefinedConversionSequence& User,
96 OverloadCandidateSet& Conversions,
97 AllowedExplicit AllowExplicit,
98 bool AllowObjCConversionOnExplicit);
99
100 static ImplicitConversionSequence::CompareKind
101 CompareStandardConversionSequences(Sema &S, SourceLocation Loc,
102 const StandardConversionSequence& SCS1,
103 const StandardConversionSequence& SCS2);
104
105 static ImplicitConversionSequence::CompareKind
106 CompareQualificationConversions(Sema &S,
107 const StandardConversionSequence& SCS1,
108 const StandardConversionSequence& SCS2);
109
110 static ImplicitConversionSequence::CompareKind
111 CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc,
112 const StandardConversionSequence& SCS1,
113 const StandardConversionSequence& SCS2);
114
115 /// GetConversionRank - Retrieve the implicit conversion rank
116 /// corresponding to the given implicit conversion kind.
GetConversionRank(ImplicitConversionKind Kind)117 ImplicitConversionRank clang::GetConversionRank(ImplicitConversionKind Kind) {
118 static const ImplicitConversionRank
119 Rank[(int)ICK_Num_Conversion_Kinds] = {
120 ICR_Exact_Match,
121 ICR_Exact_Match,
122 ICR_Exact_Match,
123 ICR_Exact_Match,
124 ICR_Exact_Match,
125 ICR_Exact_Match,
126 ICR_Promotion,
127 ICR_Promotion,
128 ICR_Promotion,
129 ICR_Conversion,
130 ICR_Conversion,
131 ICR_Conversion,
132 ICR_Conversion,
133 ICR_Conversion,
134 ICR_Conversion,
135 ICR_Conversion,
136 ICR_Conversion,
137 ICR_Conversion,
138 ICR_Conversion,
139 ICR_Conversion,
140 ICR_OCL_Scalar_Widening,
141 ICR_Complex_Real_Conversion,
142 ICR_Conversion,
143 ICR_Conversion,
144 ICR_Writeback_Conversion,
145 ICR_Exact_Match, // NOTE(gbiv): This may not be completely right --
146 // it was omitted by the patch that added
147 // ICK_Zero_Event_Conversion
148 ICR_C_Conversion,
149 ICR_C_Conversion_Extension
150 };
151 return Rank[(int)Kind];
152 }
153
154 /// GetImplicitConversionName - Return the name of this kind of
155 /// implicit conversion.
GetImplicitConversionName(ImplicitConversionKind Kind)156 static const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
157 static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
158 "No conversion",
159 "Lvalue-to-rvalue",
160 "Array-to-pointer",
161 "Function-to-pointer",
162 "Function pointer conversion",
163 "Qualification",
164 "Integral promotion",
165 "Floating point promotion",
166 "Complex promotion",
167 "Integral conversion",
168 "Floating conversion",
169 "Complex conversion",
170 "Floating-integral conversion",
171 "Pointer conversion",
172 "Pointer-to-member conversion",
173 "Boolean conversion",
174 "Compatible-types conversion",
175 "Derived-to-base conversion",
176 "Vector conversion",
177 "SVE Vector conversion",
178 "Vector splat",
179 "Complex-real conversion",
180 "Block Pointer conversion",
181 "Transparent Union Conversion",
182 "Writeback conversion",
183 "OpenCL Zero Event Conversion",
184 "C specific type conversion",
185 "Incompatible pointer conversion"
186 };
187 return Name[Kind];
188 }
189
190 /// StandardConversionSequence - Set the standard conversion
191 /// sequence to the identity conversion.
setAsIdentityConversion()192 void StandardConversionSequence::setAsIdentityConversion() {
193 First = ICK_Identity;
194 Second = ICK_Identity;
195 Third = ICK_Identity;
196 DeprecatedStringLiteralToCharPtr = false;
197 QualificationIncludesObjCLifetime = false;
198 ReferenceBinding = false;
199 DirectBinding = false;
200 IsLvalueReference = true;
201 BindsToFunctionLvalue = false;
202 BindsToRvalue = false;
203 BindsImplicitObjectArgumentWithoutRefQualifier = false;
204 ObjCLifetimeConversionBinding = false;
205 CopyConstructor = nullptr;
206 }
207
208 /// getRank - Retrieve the rank of this standard conversion sequence
209 /// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
210 /// implicit conversions.
getRank() const211 ImplicitConversionRank StandardConversionSequence::getRank() const {
212 ImplicitConversionRank Rank = ICR_Exact_Match;
213 if (GetConversionRank(First) > Rank)
214 Rank = GetConversionRank(First);
215 if (GetConversionRank(Second) > Rank)
216 Rank = GetConversionRank(Second);
217 if (GetConversionRank(Third) > Rank)
218 Rank = GetConversionRank(Third);
219 return Rank;
220 }
221
222 /// isPointerConversionToBool - Determines whether this conversion is
223 /// a conversion of a pointer or pointer-to-member to bool. This is
224 /// used as part of the ranking of standard conversion sequences
225 /// (C++ 13.3.3.2p4).
isPointerConversionToBool() const226 bool StandardConversionSequence::isPointerConversionToBool() const {
227 // Note that FromType has not necessarily been transformed by the
228 // array-to-pointer or function-to-pointer implicit conversions, so
229 // check for their presence as well as checking whether FromType is
230 // a pointer.
231 if (getToType(1)->isBooleanType() &&
232 (getFromType()->isPointerType() ||
233 getFromType()->isMemberPointerType() ||
234 getFromType()->isObjCObjectPointerType() ||
235 getFromType()->isBlockPointerType() ||
236 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
237 return true;
238
239 return false;
240 }
241
242 /// isPointerConversionToVoidPointer - Determines whether this
243 /// conversion is a conversion of a pointer to a void pointer. This is
244 /// used as part of the ranking of standard conversion sequences (C++
245 /// 13.3.3.2p4).
246 bool
247 StandardConversionSequence::
isPointerConversionToVoidPointer(ASTContext & Context) const248 isPointerConversionToVoidPointer(ASTContext& Context) const {
249 QualType FromType = getFromType();
250 QualType ToType = getToType(1);
251
252 // Note that FromType has not necessarily been transformed by the
253 // array-to-pointer implicit conversion, so check for its presence
254 // and redo the conversion to get a pointer.
255 if (First == ICK_Array_To_Pointer)
256 FromType = Context.getArrayDecayedType(FromType);
257
258 if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType())
259 if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
260 return ToPtrType->getPointeeType()->isVoidType();
261
262 return false;
263 }
264
265 /// Skip any implicit casts which could be either part of a narrowing conversion
266 /// or after one in an implicit conversion.
IgnoreNarrowingConversion(ASTContext & Ctx,const Expr * Converted)267 static const Expr *IgnoreNarrowingConversion(ASTContext &Ctx,
268 const Expr *Converted) {
269 // We can have cleanups wrapping the converted expression; these need to be
270 // preserved so that destructors run if necessary.
271 if (auto *EWC = dyn_cast<ExprWithCleanups>(Converted)) {
272 Expr *Inner =
273 const_cast<Expr *>(IgnoreNarrowingConversion(Ctx, EWC->getSubExpr()));
274 return ExprWithCleanups::Create(Ctx, Inner, EWC->cleanupsHaveSideEffects(),
275 EWC->getObjects());
276 }
277
278 while (auto *ICE = dyn_cast<ImplicitCastExpr>(Converted)) {
279 switch (ICE->getCastKind()) {
280 case CK_NoOp:
281 case CK_IntegralCast:
282 case CK_IntegralToBoolean:
283 case CK_IntegralToFloating:
284 case CK_BooleanToSignedIntegral:
285 case CK_FloatingToIntegral:
286 case CK_FloatingToBoolean:
287 case CK_FloatingCast:
288 Converted = ICE->getSubExpr();
289 continue;
290
291 default:
292 return Converted;
293 }
294 }
295
296 return Converted;
297 }
298
299 /// Check if this standard conversion sequence represents a narrowing
300 /// conversion, according to C++11 [dcl.init.list]p7.
301 ///
302 /// \param Ctx The AST context.
303 /// \param Converted The result of applying this standard conversion sequence.
304 /// \param ConstantValue If this is an NK_Constant_Narrowing conversion, the
305 /// value of the expression prior to the narrowing conversion.
306 /// \param ConstantType If this is an NK_Constant_Narrowing conversion, the
307 /// type of the expression prior to the narrowing conversion.
308 /// \param IgnoreFloatToIntegralConversion If true type-narrowing conversions
309 /// from floating point types to integral types should be ignored.
getNarrowingKind(ASTContext & Ctx,const Expr * Converted,APValue & ConstantValue,QualType & ConstantType,bool IgnoreFloatToIntegralConversion) const310 NarrowingKind StandardConversionSequence::getNarrowingKind(
311 ASTContext &Ctx, const Expr *Converted, APValue &ConstantValue,
312 QualType &ConstantType, bool IgnoreFloatToIntegralConversion) const {
313 assert(Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++");
314
315 // C++11 [dcl.init.list]p7:
316 // A narrowing conversion is an implicit conversion ...
317 QualType FromType = getToType(0);
318 QualType ToType = getToType(1);
319
320 // A conversion to an enumeration type is narrowing if the conversion to
321 // the underlying type is narrowing. This only arises for expressions of
322 // the form 'Enum{init}'.
323 if (auto *ET = ToType->getAs<EnumType>())
324 ToType = ET->getDecl()->getIntegerType();
325
326 switch (Second) {
327 // 'bool' is an integral type; dispatch to the right place to handle it.
328 case ICK_Boolean_Conversion:
329 if (FromType->isRealFloatingType())
330 goto FloatingIntegralConversion;
331 if (FromType->isIntegralOrUnscopedEnumerationType())
332 goto IntegralConversion;
333 // -- from a pointer type or pointer-to-member type to bool, or
334 return NK_Type_Narrowing;
335
336 // -- from a floating-point type to an integer type, or
337 //
338 // -- from an integer type or unscoped enumeration type to a floating-point
339 // type, except where the source is a constant expression and the actual
340 // value after conversion will fit into the target type and will produce
341 // the original value when converted back to the original type, or
342 case ICK_Floating_Integral:
343 FloatingIntegralConversion:
344 if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) {
345 return NK_Type_Narrowing;
346 } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
347 ToType->isRealFloatingType()) {
348 if (IgnoreFloatToIntegralConversion)
349 return NK_Not_Narrowing;
350 const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted);
351 assert(Initializer && "Unknown conversion expression");
352
353 // If it's value-dependent, we can't tell whether it's narrowing.
354 if (Initializer->isValueDependent())
355 return NK_Dependent_Narrowing;
356
357 if (Optional<llvm::APSInt> IntConstantValue =
358 Initializer->getIntegerConstantExpr(Ctx)) {
359 // Convert the integer to the floating type.
360 llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType));
361 Result.convertFromAPInt(*IntConstantValue, IntConstantValue->isSigned(),
362 llvm::APFloat::rmNearestTiesToEven);
363 // And back.
364 llvm::APSInt ConvertedValue = *IntConstantValue;
365 bool ignored;
366 Result.convertToInteger(ConvertedValue,
367 llvm::APFloat::rmTowardZero, &ignored);
368 // If the resulting value is different, this was a narrowing conversion.
369 if (*IntConstantValue != ConvertedValue) {
370 ConstantValue = APValue(*IntConstantValue);
371 ConstantType = Initializer->getType();
372 return NK_Constant_Narrowing;
373 }
374 } else {
375 // Variables are always narrowings.
376 return NK_Variable_Narrowing;
377 }
378 }
379 return NK_Not_Narrowing;
380
381 // -- from long double to double or float, or from double to float, except
382 // where the source is a constant expression and the actual value after
383 // conversion is within the range of values that can be represented (even
384 // if it cannot be represented exactly), or
385 case ICK_Floating_Conversion:
386 if (FromType->isRealFloatingType() && ToType->isRealFloatingType() &&
387 Ctx.getFloatingTypeOrder(FromType, ToType) == 1) {
388 // FromType is larger than ToType.
389 const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted);
390
391 // If it's value-dependent, we can't tell whether it's narrowing.
392 if (Initializer->isValueDependent())
393 return NK_Dependent_Narrowing;
394
395 if (Initializer->isCXX11ConstantExpr(Ctx, &ConstantValue)) {
396 // Constant!
397 assert(ConstantValue.isFloat());
398 llvm::APFloat FloatVal = ConstantValue.getFloat();
399 // Convert the source value into the target type.
400 bool ignored;
401 llvm::APFloat::opStatus ConvertStatus = FloatVal.convert(
402 Ctx.getFloatTypeSemantics(ToType),
403 llvm::APFloat::rmNearestTiesToEven, &ignored);
404 // If there was no overflow, the source value is within the range of
405 // values that can be represented.
406 if (ConvertStatus & llvm::APFloat::opOverflow) {
407 ConstantType = Initializer->getType();
408 return NK_Constant_Narrowing;
409 }
410 } else {
411 return NK_Variable_Narrowing;
412 }
413 }
414 return NK_Not_Narrowing;
415
416 // -- from an integer type or unscoped enumeration type to an integer type
417 // that cannot represent all the values of the original type, except where
418 // the source is a constant expression and the actual value after
419 // conversion will fit into the target type and will produce the original
420 // value when converted back to the original type.
421 case ICK_Integral_Conversion:
422 IntegralConversion: {
423 assert(FromType->isIntegralOrUnscopedEnumerationType());
424 assert(ToType->isIntegralOrUnscopedEnumerationType());
425 const bool FromSigned = FromType->isSignedIntegerOrEnumerationType();
426 const unsigned FromWidth = Ctx.getIntWidth(FromType);
427 const bool ToSigned = ToType->isSignedIntegerOrEnumerationType();
428 const unsigned ToWidth = Ctx.getIntWidth(ToType);
429
430 if (FromWidth > ToWidth ||
431 (FromWidth == ToWidth && FromSigned != ToSigned) ||
432 (FromSigned && !ToSigned)) {
433 // Not all values of FromType can be represented in ToType.
434 const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted);
435
436 // If it's value-dependent, we can't tell whether it's narrowing.
437 if (Initializer->isValueDependent())
438 return NK_Dependent_Narrowing;
439
440 Optional<llvm::APSInt> OptInitializerValue;
441 if (!(OptInitializerValue = Initializer->getIntegerConstantExpr(Ctx))) {
442 // Such conversions on variables are always narrowing.
443 return NK_Variable_Narrowing;
444 }
445 llvm::APSInt &InitializerValue = *OptInitializerValue;
446 bool Narrowing = false;
447 if (FromWidth < ToWidth) {
448 // Negative -> unsigned is narrowing. Otherwise, more bits is never
449 // narrowing.
450 if (InitializerValue.isSigned() && InitializerValue.isNegative())
451 Narrowing = true;
452 } else {
453 // Add a bit to the InitializerValue so we don't have to worry about
454 // signed vs. unsigned comparisons.
455 InitializerValue = InitializerValue.extend(
456 InitializerValue.getBitWidth() + 1);
457 // Convert the initializer to and from the target width and signed-ness.
458 llvm::APSInt ConvertedValue = InitializerValue;
459 ConvertedValue = ConvertedValue.trunc(ToWidth);
460 ConvertedValue.setIsSigned(ToSigned);
461 ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth());
462 ConvertedValue.setIsSigned(InitializerValue.isSigned());
463 // If the result is different, this was a narrowing conversion.
464 if (ConvertedValue != InitializerValue)
465 Narrowing = true;
466 }
467 if (Narrowing) {
468 ConstantType = Initializer->getType();
469 ConstantValue = APValue(InitializerValue);
470 return NK_Constant_Narrowing;
471 }
472 }
473 return NK_Not_Narrowing;
474 }
475
476 default:
477 // Other kinds of conversions are not narrowings.
478 return NK_Not_Narrowing;
479 }
480 }
481
482 /// dump - Print this standard conversion sequence to standard
483 /// error. Useful for debugging overloading issues.
dump() const484 LLVM_DUMP_METHOD void StandardConversionSequence::dump() const {
485 raw_ostream &OS = llvm::errs();
486 bool PrintedSomething = false;
487 if (First != ICK_Identity) {
488 OS << GetImplicitConversionName(First);
489 PrintedSomething = true;
490 }
491
492 if (Second != ICK_Identity) {
493 if (PrintedSomething) {
494 OS << " -> ";
495 }
496 OS << GetImplicitConversionName(Second);
497
498 if (CopyConstructor) {
499 OS << " (by copy constructor)";
500 } else if (DirectBinding) {
501 OS << " (direct reference binding)";
502 } else if (ReferenceBinding) {
503 OS << " (reference binding)";
504 }
505 PrintedSomething = true;
506 }
507
508 if (Third != ICK_Identity) {
509 if (PrintedSomething) {
510 OS << " -> ";
511 }
512 OS << GetImplicitConversionName(Third);
513 PrintedSomething = true;
514 }
515
516 if (!PrintedSomething) {
517 OS << "No conversions required";
518 }
519 }
520
521 /// dump - Print this user-defined conversion sequence to standard
522 /// error. Useful for debugging overloading issues.
dump() const523 void UserDefinedConversionSequence::dump() const {
524 raw_ostream &OS = llvm::errs();
525 if (Before.First || Before.Second || Before.Third) {
526 Before.dump();
527 OS << " -> ";
528 }
529 if (ConversionFunction)
530 OS << '\'' << *ConversionFunction << '\'';
531 else
532 OS << "aggregate initialization";
533 if (After.First || After.Second || After.Third) {
534 OS << " -> ";
535 After.dump();
536 }
537 }
538
539 /// dump - Print this implicit conversion sequence to standard
540 /// error. Useful for debugging overloading issues.
dump() const541 void ImplicitConversionSequence::dump() const {
542 raw_ostream &OS = llvm::errs();
543 if (hasInitializerListContainerType())
544 OS << "Worst list element conversion: ";
545 switch (ConversionKind) {
546 case StandardConversion:
547 OS << "Standard conversion: ";
548 Standard.dump();
549 break;
550 case UserDefinedConversion:
551 OS << "User-defined conversion: ";
552 UserDefined.dump();
553 break;
554 case EllipsisConversion:
555 OS << "Ellipsis conversion";
556 break;
557 case AmbiguousConversion:
558 OS << "Ambiguous conversion";
559 break;
560 case BadConversion:
561 OS << "Bad conversion";
562 break;
563 }
564
565 OS << "\n";
566 }
567
construct()568 void AmbiguousConversionSequence::construct() {
569 new (&conversions()) ConversionSet();
570 }
571
destruct()572 void AmbiguousConversionSequence::destruct() {
573 conversions().~ConversionSet();
574 }
575
576 void
copyFrom(const AmbiguousConversionSequence & O)577 AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
578 FromTypePtr = O.FromTypePtr;
579 ToTypePtr = O.ToTypePtr;
580 new (&conversions()) ConversionSet(O.conversions());
581 }
582
583 namespace {
584 // Structure used by DeductionFailureInfo to store
585 // template argument information.
586 struct DFIArguments {
587 TemplateArgument FirstArg;
588 TemplateArgument SecondArg;
589 };
590 // Structure used by DeductionFailureInfo to store
591 // template parameter and template argument information.
592 struct DFIParamWithArguments : DFIArguments {
593 TemplateParameter Param;
594 };
595 // Structure used by DeductionFailureInfo to store template argument
596 // information and the index of the problematic call argument.
597 struct DFIDeducedMismatchArgs : DFIArguments {
598 TemplateArgumentList *TemplateArgs;
599 unsigned CallArgIndex;
600 };
601 // Structure used by DeductionFailureInfo to store information about
602 // unsatisfied constraints.
603 struct CNSInfo {
604 TemplateArgumentList *TemplateArgs;
605 ConstraintSatisfaction Satisfaction;
606 };
607 }
608
609 /// Convert from Sema's representation of template deduction information
610 /// to the form used in overload-candidate information.
611 DeductionFailureInfo
MakeDeductionFailureInfo(ASTContext & Context,Sema::TemplateDeductionResult TDK,TemplateDeductionInfo & Info)612 clang::MakeDeductionFailureInfo(ASTContext &Context,
613 Sema::TemplateDeductionResult TDK,
614 TemplateDeductionInfo &Info) {
615 DeductionFailureInfo Result;
616 Result.Result = static_cast<unsigned>(TDK);
617 Result.HasDiagnostic = false;
618 switch (TDK) {
619 case Sema::TDK_Invalid:
620 case Sema::TDK_InstantiationDepth:
621 case Sema::TDK_TooManyArguments:
622 case Sema::TDK_TooFewArguments:
623 case Sema::TDK_MiscellaneousDeductionFailure:
624 case Sema::TDK_CUDATargetMismatch:
625 Result.Data = nullptr;
626 break;
627
628 case Sema::TDK_Incomplete:
629 case Sema::TDK_InvalidExplicitArguments:
630 Result.Data = Info.Param.getOpaqueValue();
631 break;
632
633 case Sema::TDK_DeducedMismatch:
634 case Sema::TDK_DeducedMismatchNested: {
635 // FIXME: Should allocate from normal heap so that we can free this later.
636 auto *Saved = new (Context) DFIDeducedMismatchArgs;
637 Saved->FirstArg = Info.FirstArg;
638 Saved->SecondArg = Info.SecondArg;
639 Saved->TemplateArgs = Info.take();
640 Saved->CallArgIndex = Info.CallArgIndex;
641 Result.Data = Saved;
642 break;
643 }
644
645 case Sema::TDK_NonDeducedMismatch: {
646 // FIXME: Should allocate from normal heap so that we can free this later.
647 DFIArguments *Saved = new (Context) DFIArguments;
648 Saved->FirstArg = Info.FirstArg;
649 Saved->SecondArg = Info.SecondArg;
650 Result.Data = Saved;
651 break;
652 }
653
654 case Sema::TDK_IncompletePack:
655 // FIXME: It's slightly wasteful to allocate two TemplateArguments for this.
656 case Sema::TDK_Inconsistent:
657 case Sema::TDK_Underqualified: {
658 // FIXME: Should allocate from normal heap so that we can free this later.
659 DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments;
660 Saved->Param = Info.Param;
661 Saved->FirstArg = Info.FirstArg;
662 Saved->SecondArg = Info.SecondArg;
663 Result.Data = Saved;
664 break;
665 }
666
667 case Sema::TDK_SubstitutionFailure:
668 Result.Data = Info.take();
669 if (Info.hasSFINAEDiagnostic()) {
670 PartialDiagnosticAt *Diag = new (Result.Diagnostic) PartialDiagnosticAt(
671 SourceLocation(), PartialDiagnostic::NullDiagnostic());
672 Info.takeSFINAEDiagnostic(*Diag);
673 Result.HasDiagnostic = true;
674 }
675 break;
676
677 case Sema::TDK_ConstraintsNotSatisfied: {
678 CNSInfo *Saved = new (Context) CNSInfo;
679 Saved->TemplateArgs = Info.take();
680 Saved->Satisfaction = Info.AssociatedConstraintsSatisfaction;
681 Result.Data = Saved;
682 break;
683 }
684
685 case Sema::TDK_Success:
686 case Sema::TDK_NonDependentConversionFailure:
687 llvm_unreachable("not a deduction failure");
688 }
689
690 return Result;
691 }
692
Destroy()693 void DeductionFailureInfo::Destroy() {
694 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
695 case Sema::TDK_Success:
696 case Sema::TDK_Invalid:
697 case Sema::TDK_InstantiationDepth:
698 case Sema::TDK_Incomplete:
699 case Sema::TDK_TooManyArguments:
700 case Sema::TDK_TooFewArguments:
701 case Sema::TDK_InvalidExplicitArguments:
702 case Sema::TDK_CUDATargetMismatch:
703 case Sema::TDK_NonDependentConversionFailure:
704 break;
705
706 case Sema::TDK_IncompletePack:
707 case Sema::TDK_Inconsistent:
708 case Sema::TDK_Underqualified:
709 case Sema::TDK_DeducedMismatch:
710 case Sema::TDK_DeducedMismatchNested:
711 case Sema::TDK_NonDeducedMismatch:
712 // FIXME: Destroy the data?
713 Data = nullptr;
714 break;
715
716 case Sema::TDK_SubstitutionFailure:
717 // FIXME: Destroy the template argument list?
718 Data = nullptr;
719 if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) {
720 Diag->~PartialDiagnosticAt();
721 HasDiagnostic = false;
722 }
723 break;
724
725 case Sema::TDK_ConstraintsNotSatisfied:
726 // FIXME: Destroy the template argument list?
727 Data = nullptr;
728 if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) {
729 Diag->~PartialDiagnosticAt();
730 HasDiagnostic = false;
731 }
732 break;
733
734 // Unhandled
735 case Sema::TDK_MiscellaneousDeductionFailure:
736 break;
737 }
738 }
739
getSFINAEDiagnostic()740 PartialDiagnosticAt *DeductionFailureInfo::getSFINAEDiagnostic() {
741 if (HasDiagnostic)
742 return static_cast<PartialDiagnosticAt*>(static_cast<void*>(Diagnostic));
743 return nullptr;
744 }
745
getTemplateParameter()746 TemplateParameter DeductionFailureInfo::getTemplateParameter() {
747 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
748 case Sema::TDK_Success:
749 case Sema::TDK_Invalid:
750 case Sema::TDK_InstantiationDepth:
751 case Sema::TDK_TooManyArguments:
752 case Sema::TDK_TooFewArguments:
753 case Sema::TDK_SubstitutionFailure:
754 case Sema::TDK_DeducedMismatch:
755 case Sema::TDK_DeducedMismatchNested:
756 case Sema::TDK_NonDeducedMismatch:
757 case Sema::TDK_CUDATargetMismatch:
758 case Sema::TDK_NonDependentConversionFailure:
759 case Sema::TDK_ConstraintsNotSatisfied:
760 return TemplateParameter();
761
762 case Sema::TDK_Incomplete:
763 case Sema::TDK_InvalidExplicitArguments:
764 return TemplateParameter::getFromOpaqueValue(Data);
765
766 case Sema::TDK_IncompletePack:
767 case Sema::TDK_Inconsistent:
768 case Sema::TDK_Underqualified:
769 return static_cast<DFIParamWithArguments*>(Data)->Param;
770
771 // Unhandled
772 case Sema::TDK_MiscellaneousDeductionFailure:
773 break;
774 }
775
776 return TemplateParameter();
777 }
778
getTemplateArgumentList()779 TemplateArgumentList *DeductionFailureInfo::getTemplateArgumentList() {
780 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
781 case Sema::TDK_Success:
782 case Sema::TDK_Invalid:
783 case Sema::TDK_InstantiationDepth:
784 case Sema::TDK_TooManyArguments:
785 case Sema::TDK_TooFewArguments:
786 case Sema::TDK_Incomplete:
787 case Sema::TDK_IncompletePack:
788 case Sema::TDK_InvalidExplicitArguments:
789 case Sema::TDK_Inconsistent:
790 case Sema::TDK_Underqualified:
791 case Sema::TDK_NonDeducedMismatch:
792 case Sema::TDK_CUDATargetMismatch:
793 case Sema::TDK_NonDependentConversionFailure:
794 return nullptr;
795
796 case Sema::TDK_DeducedMismatch:
797 case Sema::TDK_DeducedMismatchNested:
798 return static_cast<DFIDeducedMismatchArgs*>(Data)->TemplateArgs;
799
800 case Sema::TDK_SubstitutionFailure:
801 return static_cast<TemplateArgumentList*>(Data);
802
803 case Sema::TDK_ConstraintsNotSatisfied:
804 return static_cast<CNSInfo*>(Data)->TemplateArgs;
805
806 // Unhandled
807 case Sema::TDK_MiscellaneousDeductionFailure:
808 break;
809 }
810
811 return nullptr;
812 }
813
getFirstArg()814 const TemplateArgument *DeductionFailureInfo::getFirstArg() {
815 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
816 case Sema::TDK_Success:
817 case Sema::TDK_Invalid:
818 case Sema::TDK_InstantiationDepth:
819 case Sema::TDK_Incomplete:
820 case Sema::TDK_TooManyArguments:
821 case Sema::TDK_TooFewArguments:
822 case Sema::TDK_InvalidExplicitArguments:
823 case Sema::TDK_SubstitutionFailure:
824 case Sema::TDK_CUDATargetMismatch:
825 case Sema::TDK_NonDependentConversionFailure:
826 case Sema::TDK_ConstraintsNotSatisfied:
827 return nullptr;
828
829 case Sema::TDK_IncompletePack:
830 case Sema::TDK_Inconsistent:
831 case Sema::TDK_Underqualified:
832 case Sema::TDK_DeducedMismatch:
833 case Sema::TDK_DeducedMismatchNested:
834 case Sema::TDK_NonDeducedMismatch:
835 return &static_cast<DFIArguments*>(Data)->FirstArg;
836
837 // Unhandled
838 case Sema::TDK_MiscellaneousDeductionFailure:
839 break;
840 }
841
842 return nullptr;
843 }
844
getSecondArg()845 const TemplateArgument *DeductionFailureInfo::getSecondArg() {
846 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
847 case Sema::TDK_Success:
848 case Sema::TDK_Invalid:
849 case Sema::TDK_InstantiationDepth:
850 case Sema::TDK_Incomplete:
851 case Sema::TDK_IncompletePack:
852 case Sema::TDK_TooManyArguments:
853 case Sema::TDK_TooFewArguments:
854 case Sema::TDK_InvalidExplicitArguments:
855 case Sema::TDK_SubstitutionFailure:
856 case Sema::TDK_CUDATargetMismatch:
857 case Sema::TDK_NonDependentConversionFailure:
858 case Sema::TDK_ConstraintsNotSatisfied:
859 return nullptr;
860
861 case Sema::TDK_Inconsistent:
862 case Sema::TDK_Underqualified:
863 case Sema::TDK_DeducedMismatch:
864 case Sema::TDK_DeducedMismatchNested:
865 case Sema::TDK_NonDeducedMismatch:
866 return &static_cast<DFIArguments*>(Data)->SecondArg;
867
868 // Unhandled
869 case Sema::TDK_MiscellaneousDeductionFailure:
870 break;
871 }
872
873 return nullptr;
874 }
875
getCallArgIndex()876 llvm::Optional<unsigned> DeductionFailureInfo::getCallArgIndex() {
877 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
878 case Sema::TDK_DeducedMismatch:
879 case Sema::TDK_DeducedMismatchNested:
880 return static_cast<DFIDeducedMismatchArgs*>(Data)->CallArgIndex;
881
882 default:
883 return llvm::None;
884 }
885 }
886
shouldAddReversed(OverloadedOperatorKind Op)887 bool OverloadCandidateSet::OperatorRewriteInfo::shouldAddReversed(
888 OverloadedOperatorKind Op) {
889 if (!AllowRewrittenCandidates)
890 return false;
891 return Op == OO_EqualEqual || Op == OO_Spaceship;
892 }
893
shouldAddReversed(ASTContext & Ctx,const FunctionDecl * FD)894 bool OverloadCandidateSet::OperatorRewriteInfo::shouldAddReversed(
895 ASTContext &Ctx, const FunctionDecl *FD) {
896 if (!shouldAddReversed(FD->getDeclName().getCXXOverloadedOperator()))
897 return false;
898 // Don't bother adding a reversed candidate that can never be a better
899 // match than the non-reversed version.
900 return FD->getNumParams() != 2 ||
901 !Ctx.hasSameUnqualifiedType(FD->getParamDecl(0)->getType(),
902 FD->getParamDecl(1)->getType()) ||
903 FD->hasAttr<EnableIfAttr>();
904 }
905
destroyCandidates()906 void OverloadCandidateSet::destroyCandidates() {
907 for (iterator i = begin(), e = end(); i != e; ++i) {
908 for (auto &C : i->Conversions)
909 C.~ImplicitConversionSequence();
910 if (!i->Viable && i->FailureKind == ovl_fail_bad_deduction)
911 i->DeductionFailure.Destroy();
912 }
913 }
914
clear(CandidateSetKind CSK)915 void OverloadCandidateSet::clear(CandidateSetKind CSK) {
916 destroyCandidates();
917 SlabAllocator.Reset();
918 NumInlineBytesUsed = 0;
919 Candidates.clear();
920 Functions.clear();
921 Kind = CSK;
922 }
923
924 namespace {
925 class UnbridgedCastsSet {
926 struct Entry {
927 Expr **Addr;
928 Expr *Saved;
929 };
930 SmallVector<Entry, 2> Entries;
931
932 public:
save(Sema & S,Expr * & E)933 void save(Sema &S, Expr *&E) {
934 assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast));
935 Entry entry = { &E, E };
936 Entries.push_back(entry);
937 E = S.stripARCUnbridgedCast(E);
938 }
939
restore()940 void restore() {
941 for (SmallVectorImpl<Entry>::iterator
942 i = Entries.begin(), e = Entries.end(); i != e; ++i)
943 *i->Addr = i->Saved;
944 }
945 };
946 }
947
948 /// checkPlaceholderForOverload - Do any interesting placeholder-like
949 /// preprocessing on the given expression.
950 ///
951 /// \param unbridgedCasts a collection to which to add unbridged casts;
952 /// without this, they will be immediately diagnosed as errors
953 ///
954 /// Return true on unrecoverable error.
955 static bool
checkPlaceholderForOverload(Sema & S,Expr * & E,UnbridgedCastsSet * unbridgedCasts=nullptr)956 checkPlaceholderForOverload(Sema &S, Expr *&E,
957 UnbridgedCastsSet *unbridgedCasts = nullptr) {
958 if (const BuiltinType *placeholder = E->getType()->getAsPlaceholderType()) {
959 // We can't handle overloaded expressions here because overload
960 // resolution might reasonably tweak them.
961 if (placeholder->getKind() == BuiltinType::Overload) return false;
962
963 // If the context potentially accepts unbridged ARC casts, strip
964 // the unbridged cast and add it to the collection for later restoration.
965 if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast &&
966 unbridgedCasts) {
967 unbridgedCasts->save(S, E);
968 return false;
969 }
970
971 // Go ahead and check everything else.
972 ExprResult result = S.CheckPlaceholderExpr(E);
973 if (result.isInvalid())
974 return true;
975
976 E = result.get();
977 return false;
978 }
979
980 // Nothing to do.
981 return false;
982 }
983
984 /// checkArgPlaceholdersForOverload - Check a set of call operands for
985 /// placeholders.
checkArgPlaceholdersForOverload(Sema & S,MultiExprArg Args,UnbridgedCastsSet & unbridged)986 static bool checkArgPlaceholdersForOverload(Sema &S, MultiExprArg Args,
987 UnbridgedCastsSet &unbridged) {
988 for (unsigned i = 0, e = Args.size(); i != e; ++i)
989 if (checkPlaceholderForOverload(S, Args[i], &unbridged))
990 return true;
991
992 return false;
993 }
994
995 /// Determine whether the given New declaration is an overload of the
996 /// declarations in Old. This routine returns Ovl_Match or Ovl_NonFunction if
997 /// New and Old cannot be overloaded, e.g., if New has the same signature as
998 /// some function in Old (C++ 1.3.10) or if the Old declarations aren't
999 /// functions (or function templates) at all. When it does return Ovl_Match or
1000 /// Ovl_NonFunction, MatchedDecl will point to the decl that New cannot be
1001 /// overloaded with. This decl may be a UsingShadowDecl on top of the underlying
1002 /// declaration.
1003 ///
1004 /// Example: Given the following input:
1005 ///
1006 /// void f(int, float); // #1
1007 /// void f(int, int); // #2
1008 /// int f(int, int); // #3
1009 ///
1010 /// When we process #1, there is no previous declaration of "f", so IsOverload
1011 /// will not be used.
1012 ///
1013 /// When we process #2, Old contains only the FunctionDecl for #1. By comparing
1014 /// the parameter types, we see that #1 and #2 are overloaded (since they have
1015 /// different signatures), so this routine returns Ovl_Overload; MatchedDecl is
1016 /// unchanged.
1017 ///
1018 /// When we process #3, Old is an overload set containing #1 and #2. We compare
1019 /// the signatures of #3 to #1 (they're overloaded, so we do nothing) and then
1020 /// #3 to #2. Since the signatures of #3 and #2 are identical (return types of
1021 /// functions are not part of the signature), IsOverload returns Ovl_Match and
1022 /// MatchedDecl will be set to point to the FunctionDecl for #2.
1023 ///
1024 /// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced into a class
1025 /// by a using declaration. The rules for whether to hide shadow declarations
1026 /// ignore some properties which otherwise figure into a function template's
1027 /// signature.
1028 Sema::OverloadKind
CheckOverload(Scope * S,FunctionDecl * New,const LookupResult & Old,NamedDecl * & Match,bool NewIsUsingDecl)1029 Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old,
1030 NamedDecl *&Match, bool NewIsUsingDecl) {
1031 for (LookupResult::iterator I = Old.begin(), E = Old.end();
1032 I != E; ++I) {
1033 NamedDecl *OldD = *I;
1034
1035 bool OldIsUsingDecl = false;
1036 if (isa<UsingShadowDecl>(OldD)) {
1037 OldIsUsingDecl = true;
1038
1039 // We can always introduce two using declarations into the same
1040 // context, even if they have identical signatures.
1041 if (NewIsUsingDecl) continue;
1042
1043 OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl();
1044 }
1045
1046 // A using-declaration does not conflict with another declaration
1047 // if one of them is hidden.
1048 if ((OldIsUsingDecl || NewIsUsingDecl) && !isVisible(*I))
1049 continue;
1050
1051 // If either declaration was introduced by a using declaration,
1052 // we'll need to use slightly different rules for matching.
1053 // Essentially, these rules are the normal rules, except that
1054 // function templates hide function templates with different
1055 // return types or template parameter lists.
1056 bool UseMemberUsingDeclRules =
1057 (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord() &&
1058 !New->getFriendObjectKind();
1059
1060 if (FunctionDecl *OldF = OldD->getAsFunction()) {
1061 if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) {
1062 if (UseMemberUsingDeclRules && OldIsUsingDecl) {
1063 HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
1064 continue;
1065 }
1066
1067 if (!isa<FunctionTemplateDecl>(OldD) &&
1068 !shouldLinkPossiblyHiddenDecl(*I, New))
1069 continue;
1070
1071 Match = *I;
1072 return Ovl_Match;
1073 }
1074
1075 // Builtins that have custom typechecking or have a reference should
1076 // not be overloadable or redeclarable.
1077 if (!getASTContext().canBuiltinBeRedeclared(OldF)) {
1078 Match = *I;
1079 return Ovl_NonFunction;
1080 }
1081 } else if (isa<UsingDecl>(OldD) || isa<UsingPackDecl>(OldD)) {
1082 // We can overload with these, which can show up when doing
1083 // redeclaration checks for UsingDecls.
1084 assert(Old.getLookupKind() == LookupUsingDeclName);
1085 } else if (isa<TagDecl>(OldD)) {
1086 // We can always overload with tags by hiding them.
1087 } else if (auto *UUD = dyn_cast<UnresolvedUsingValueDecl>(OldD)) {
1088 // Optimistically assume that an unresolved using decl will
1089 // overload; if it doesn't, we'll have to diagnose during
1090 // template instantiation.
1091 //
1092 // Exception: if the scope is dependent and this is not a class
1093 // member, the using declaration can only introduce an enumerator.
1094 if (UUD->getQualifier()->isDependent() && !UUD->isCXXClassMember()) {
1095 Match = *I;
1096 return Ovl_NonFunction;
1097 }
1098 } else {
1099 // (C++ 13p1):
1100 // Only function declarations can be overloaded; object and type
1101 // declarations cannot be overloaded.
1102 Match = *I;
1103 return Ovl_NonFunction;
1104 }
1105 }
1106
1107 // C++ [temp.friend]p1:
1108 // For a friend function declaration that is not a template declaration:
1109 // -- if the name of the friend is a qualified or unqualified template-id,
1110 // [...], otherwise
1111 // -- if the name of the friend is a qualified-id and a matching
1112 // non-template function is found in the specified class or namespace,
1113 // the friend declaration refers to that function, otherwise,
1114 // -- if the name of the friend is a qualified-id and a matching function
1115 // template is found in the specified class or namespace, the friend
1116 // declaration refers to the deduced specialization of that function
1117 // template, otherwise
1118 // -- the name shall be an unqualified-id [...]
1119 // If we get here for a qualified friend declaration, we've just reached the
1120 // third bullet. If the type of the friend is dependent, skip this lookup
1121 // until instantiation.
1122 if (New->getFriendObjectKind() && New->getQualifier() &&
1123 !New->getDescribedFunctionTemplate() &&
1124 !New->getDependentSpecializationInfo() &&
1125 !New->getType()->isDependentType()) {
1126 LookupResult TemplateSpecResult(LookupResult::Temporary, Old);
1127 TemplateSpecResult.addAllDecls(Old);
1128 if (CheckFunctionTemplateSpecialization(New, nullptr, TemplateSpecResult,
1129 /*QualifiedFriend*/true)) {
1130 New->setInvalidDecl();
1131 return Ovl_Overload;
1132 }
1133
1134 Match = TemplateSpecResult.getAsSingle<FunctionDecl>();
1135 return Ovl_Match;
1136 }
1137
1138 return Ovl_Overload;
1139 }
1140
IsOverload(FunctionDecl * New,FunctionDecl * Old,bool UseMemberUsingDeclRules,bool ConsiderCudaAttrs,bool ConsiderRequiresClauses)1141 bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old,
1142 bool UseMemberUsingDeclRules, bool ConsiderCudaAttrs,
1143 bool ConsiderRequiresClauses) {
1144 // C++ [basic.start.main]p2: This function shall not be overloaded.
1145 if (New->isMain())
1146 return false;
1147
1148 // MSVCRT user defined entry points cannot be overloaded.
1149 if (New->isMSVCRTEntryPoint())
1150 return false;
1151
1152 FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
1153 FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
1154
1155 // C++ [temp.fct]p2:
1156 // A function template can be overloaded with other function templates
1157 // and with normal (non-template) functions.
1158 if ((OldTemplate == nullptr) != (NewTemplate == nullptr))
1159 return true;
1160
1161 // Is the function New an overload of the function Old?
1162 QualType OldQType = Context.getCanonicalType(Old->getType());
1163 QualType NewQType = Context.getCanonicalType(New->getType());
1164
1165 // Compare the signatures (C++ 1.3.10) of the two functions to
1166 // determine whether they are overloads. If we find any mismatch
1167 // in the signature, they are overloads.
1168
1169 // If either of these functions is a K&R-style function (no
1170 // prototype), then we consider them to have matching signatures.
1171 if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
1172 isa<FunctionNoProtoType>(NewQType.getTypePtr()))
1173 return false;
1174
1175 const FunctionProtoType *OldType = cast<FunctionProtoType>(OldQType);
1176 const FunctionProtoType *NewType = cast<FunctionProtoType>(NewQType);
1177
1178 // The signature of a function includes the types of its
1179 // parameters (C++ 1.3.10), which includes the presence or absence
1180 // of the ellipsis; see C++ DR 357).
1181 if (OldQType != NewQType &&
1182 (OldType->getNumParams() != NewType->getNumParams() ||
1183 OldType->isVariadic() != NewType->isVariadic() ||
1184 !FunctionParamTypesAreEqual(OldType, NewType)))
1185 return true;
1186
1187 // C++ [temp.over.link]p4:
1188 // The signature of a function template consists of its function
1189 // signature, its return type and its template parameter list. The names
1190 // of the template parameters are significant only for establishing the
1191 // relationship between the template parameters and the rest of the
1192 // signature.
1193 //
1194 // We check the return type and template parameter lists for function
1195 // templates first; the remaining checks follow.
1196 //
1197 // However, we don't consider either of these when deciding whether
1198 // a member introduced by a shadow declaration is hidden.
1199 if (!UseMemberUsingDeclRules && NewTemplate &&
1200 (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
1201 OldTemplate->getTemplateParameters(),
1202 false, TPL_TemplateMatch) ||
1203 !Context.hasSameType(Old->getDeclaredReturnType(),
1204 New->getDeclaredReturnType())))
1205 return true;
1206
1207 // If the function is a class member, its signature includes the
1208 // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself.
1209 //
1210 // As part of this, also check whether one of the member functions
1211 // is static, in which case they are not overloads (C++
1212 // 13.1p2). While not part of the definition of the signature,
1213 // this check is important to determine whether these functions
1214 // can be overloaded.
1215 CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
1216 CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
1217 if (OldMethod && NewMethod &&
1218 !OldMethod->isStatic() && !NewMethod->isStatic()) {
1219 if (OldMethod->getRefQualifier() != NewMethod->getRefQualifier()) {
1220 if (!UseMemberUsingDeclRules &&
1221 (OldMethod->getRefQualifier() == RQ_None ||
1222 NewMethod->getRefQualifier() == RQ_None)) {
1223 // C++0x [over.load]p2:
1224 // - Member function declarations with the same name and the same
1225 // parameter-type-list as well as member function template
1226 // declarations with the same name, the same parameter-type-list, and
1227 // the same template parameter lists cannot be overloaded if any of
1228 // them, but not all, have a ref-qualifier (8.3.5).
1229 Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload)
1230 << NewMethod->getRefQualifier() << OldMethod->getRefQualifier();
1231 Diag(OldMethod->getLocation(), diag::note_previous_declaration);
1232 }
1233 return true;
1234 }
1235
1236 // We may not have applied the implicit const for a constexpr member
1237 // function yet (because we haven't yet resolved whether this is a static
1238 // or non-static member function). Add it now, on the assumption that this
1239 // is a redeclaration of OldMethod.
1240 auto OldQuals = OldMethod->getMethodQualifiers();
1241 auto NewQuals = NewMethod->getMethodQualifiers();
1242 if (!getLangOpts().CPlusPlus14 && NewMethod->isConstexpr() &&
1243 !isa<CXXConstructorDecl>(NewMethod))
1244 NewQuals.addConst();
1245 // We do not allow overloading based off of '__restrict'.
1246 OldQuals.removeRestrict();
1247 NewQuals.removeRestrict();
1248 if (OldQuals != NewQuals)
1249 return true;
1250 }
1251
1252 // Though pass_object_size is placed on parameters and takes an argument, we
1253 // consider it to be a function-level modifier for the sake of function
1254 // identity. Either the function has one or more parameters with
1255 // pass_object_size or it doesn't.
1256 if (functionHasPassObjectSizeParams(New) !=
1257 functionHasPassObjectSizeParams(Old))
1258 return true;
1259
1260 // enable_if attributes are an order-sensitive part of the signature.
1261 for (specific_attr_iterator<EnableIfAttr>
1262 NewI = New->specific_attr_begin<EnableIfAttr>(),
1263 NewE = New->specific_attr_end<EnableIfAttr>(),
1264 OldI = Old->specific_attr_begin<EnableIfAttr>(),
1265 OldE = Old->specific_attr_end<EnableIfAttr>();
1266 NewI != NewE || OldI != OldE; ++NewI, ++OldI) {
1267 if (NewI == NewE || OldI == OldE)
1268 return true;
1269 llvm::FoldingSetNodeID NewID, OldID;
1270 NewI->getCond()->Profile(NewID, Context, true);
1271 OldI->getCond()->Profile(OldID, Context, true);
1272 if (NewID != OldID)
1273 return true;
1274 }
1275
1276 if (getLangOpts().CUDA && ConsiderCudaAttrs) {
1277 // Don't allow overloading of destructors. (In theory we could, but it
1278 // would be a giant change to clang.)
1279 if (!isa<CXXDestructorDecl>(New)) {
1280 CUDAFunctionTarget NewTarget = IdentifyCUDATarget(New),
1281 OldTarget = IdentifyCUDATarget(Old);
1282 if (NewTarget != CFT_InvalidTarget) {
1283 assert((OldTarget != CFT_InvalidTarget) &&
1284 "Unexpected invalid target.");
1285
1286 // Allow overloading of functions with same signature and different CUDA
1287 // target attributes.
1288 if (NewTarget != OldTarget)
1289 return true;
1290 }
1291 }
1292 }
1293
1294 if (ConsiderRequiresClauses) {
1295 Expr *NewRC = New->getTrailingRequiresClause(),
1296 *OldRC = Old->getTrailingRequiresClause();
1297 if ((NewRC != nullptr) != (OldRC != nullptr))
1298 // RC are most certainly different - these are overloads.
1299 return true;
1300
1301 if (NewRC) {
1302 llvm::FoldingSetNodeID NewID, OldID;
1303 NewRC->Profile(NewID, Context, /*Canonical=*/true);
1304 OldRC->Profile(OldID, Context, /*Canonical=*/true);
1305 if (NewID != OldID)
1306 // RCs are not equivalent - these are overloads.
1307 return true;
1308 }
1309 }
1310
1311 // The signatures match; this is not an overload.
1312 return false;
1313 }
1314
1315 /// Tries a user-defined conversion from From to ToType.
1316 ///
1317 /// Produces an implicit conversion sequence for when a standard conversion
1318 /// is not an option. See TryImplicitConversion for more information.
1319 static ImplicitConversionSequence
TryUserDefinedConversion(Sema & S,Expr * From,QualType ToType,bool SuppressUserConversions,AllowedExplicit AllowExplicit,bool InOverloadResolution,bool CStyle,bool AllowObjCWritebackConversion,bool AllowObjCConversionOnExplicit)1320 TryUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
1321 bool SuppressUserConversions,
1322 AllowedExplicit AllowExplicit,
1323 bool InOverloadResolution,
1324 bool CStyle,
1325 bool AllowObjCWritebackConversion,
1326 bool AllowObjCConversionOnExplicit) {
1327 ImplicitConversionSequence ICS;
1328
1329 if (SuppressUserConversions) {
1330 // We're not in the case above, so there is no conversion that
1331 // we can perform.
1332 ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1333 return ICS;
1334 }
1335
1336 // Attempt user-defined conversion.
1337 OverloadCandidateSet Conversions(From->getExprLoc(),
1338 OverloadCandidateSet::CSK_Normal);
1339 switch (IsUserDefinedConversion(S, From, ToType, ICS.UserDefined,
1340 Conversions, AllowExplicit,
1341 AllowObjCConversionOnExplicit)) {
1342 case OR_Success:
1343 case OR_Deleted:
1344 ICS.setUserDefined();
1345 // C++ [over.ics.user]p4:
1346 // A conversion of an expression of class type to the same class
1347 // type is given Exact Match rank, and a conversion of an
1348 // expression of class type to a base class of that type is
1349 // given Conversion rank, in spite of the fact that a copy
1350 // constructor (i.e., a user-defined conversion function) is
1351 // called for those cases.
1352 if (CXXConstructorDecl *Constructor
1353 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
1354 QualType FromCanon
1355 = S.Context.getCanonicalType(From->getType().getUnqualifiedType());
1356 QualType ToCanon
1357 = S.Context.getCanonicalType(ToType).getUnqualifiedType();
1358 if (Constructor->isCopyConstructor() &&
1359 (FromCanon == ToCanon ||
1360 S.IsDerivedFrom(From->getBeginLoc(), FromCanon, ToCanon))) {
1361 // Turn this into a "standard" conversion sequence, so that it
1362 // gets ranked with standard conversion sequences.
1363 DeclAccessPair Found = ICS.UserDefined.FoundConversionFunction;
1364 ICS.setStandard();
1365 ICS.Standard.setAsIdentityConversion();
1366 ICS.Standard.setFromType(From->getType());
1367 ICS.Standard.setAllToTypes(ToType);
1368 ICS.Standard.CopyConstructor = Constructor;
1369 ICS.Standard.FoundCopyConstructor = Found;
1370 if (ToCanon != FromCanon)
1371 ICS.Standard.Second = ICK_Derived_To_Base;
1372 }
1373 }
1374 break;
1375
1376 case OR_Ambiguous:
1377 ICS.setAmbiguous();
1378 ICS.Ambiguous.setFromType(From->getType());
1379 ICS.Ambiguous.setToType(ToType);
1380 for (OverloadCandidateSet::iterator Cand = Conversions.begin();
1381 Cand != Conversions.end(); ++Cand)
1382 if (Cand->Best)
1383 ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function);
1384 break;
1385
1386 // Fall through.
1387 case OR_No_Viable_Function:
1388 ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1389 break;
1390 }
1391
1392 return ICS;
1393 }
1394
1395 /// TryImplicitConversion - Attempt to perform an implicit conversion
1396 /// from the given expression (Expr) to the given type (ToType). This
1397 /// function returns an implicit conversion sequence that can be used
1398 /// to perform the initialization. Given
1399 ///
1400 /// void f(float f);
1401 /// void g(int i) { f(i); }
1402 ///
1403 /// this routine would produce an implicit conversion sequence to
1404 /// describe the initialization of f from i, which will be a standard
1405 /// conversion sequence containing an lvalue-to-rvalue conversion (C++
1406 /// 4.1) followed by a floating-integral conversion (C++ 4.9).
1407 //
1408 /// Note that this routine only determines how the conversion can be
1409 /// performed; it does not actually perform the conversion. As such,
1410 /// it will not produce any diagnostics if no conversion is available,
1411 /// but will instead return an implicit conversion sequence of kind
1412 /// "BadConversion".
1413 ///
1414 /// If @p SuppressUserConversions, then user-defined conversions are
1415 /// not permitted.
1416 /// If @p AllowExplicit, then explicit user-defined conversions are
1417 /// permitted.
1418 ///
1419 /// \param AllowObjCWritebackConversion Whether we allow the Objective-C
1420 /// writeback conversion, which allows __autoreleasing id* parameters to
1421 /// be initialized with __strong id* or __weak id* arguments.
1422 static ImplicitConversionSequence
TryImplicitConversion(Sema & S,Expr * From,QualType ToType,bool SuppressUserConversions,AllowedExplicit AllowExplicit,bool InOverloadResolution,bool CStyle,bool AllowObjCWritebackConversion,bool AllowObjCConversionOnExplicit)1423 TryImplicitConversion(Sema &S, Expr *From, QualType ToType,
1424 bool SuppressUserConversions,
1425 AllowedExplicit AllowExplicit,
1426 bool InOverloadResolution,
1427 bool CStyle,
1428 bool AllowObjCWritebackConversion,
1429 bool AllowObjCConversionOnExplicit) {
1430 ImplicitConversionSequence ICS;
1431 if (IsStandardConversion(S, From, ToType, InOverloadResolution,
1432 ICS.Standard, CStyle, AllowObjCWritebackConversion)){
1433 ICS.setStandard();
1434 return ICS;
1435 }
1436
1437 if (!S.getLangOpts().CPlusPlus) {
1438 ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1439 return ICS;
1440 }
1441
1442 // C++ [over.ics.user]p4:
1443 // A conversion of an expression of class type to the same class
1444 // type is given Exact Match rank, and a conversion of an
1445 // expression of class type to a base class of that type is
1446 // given Conversion rank, in spite of the fact that a copy/move
1447 // constructor (i.e., a user-defined conversion function) is
1448 // called for those cases.
1449 QualType FromType = From->getType();
1450 if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() &&
1451 (S.Context.hasSameUnqualifiedType(FromType, ToType) ||
1452 S.IsDerivedFrom(From->getBeginLoc(), FromType, ToType))) {
1453 ICS.setStandard();
1454 ICS.Standard.setAsIdentityConversion();
1455 ICS.Standard.setFromType(FromType);
1456 ICS.Standard.setAllToTypes(ToType);
1457
1458 // We don't actually check at this point whether there is a valid
1459 // copy/move constructor, since overloading just assumes that it
1460 // exists. When we actually perform initialization, we'll find the
1461 // appropriate constructor to copy the returned object, if needed.
1462 ICS.Standard.CopyConstructor = nullptr;
1463
1464 // Determine whether this is considered a derived-to-base conversion.
1465 if (!S.Context.hasSameUnqualifiedType(FromType, ToType))
1466 ICS.Standard.Second = ICK_Derived_To_Base;
1467
1468 return ICS;
1469 }
1470
1471 return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
1472 AllowExplicit, InOverloadResolution, CStyle,
1473 AllowObjCWritebackConversion,
1474 AllowObjCConversionOnExplicit);
1475 }
1476
1477 ImplicitConversionSequence
TryImplicitConversion(Expr * From,QualType ToType,bool SuppressUserConversions,AllowedExplicit AllowExplicit,bool InOverloadResolution,bool CStyle,bool AllowObjCWritebackConversion)1478 Sema::TryImplicitConversion(Expr *From, QualType ToType,
1479 bool SuppressUserConversions,
1480 AllowedExplicit AllowExplicit,
1481 bool InOverloadResolution,
1482 bool CStyle,
1483 bool AllowObjCWritebackConversion) {
1484 return ::TryImplicitConversion(*this, From, ToType, SuppressUserConversions,
1485 AllowExplicit, InOverloadResolution, CStyle,
1486 AllowObjCWritebackConversion,
1487 /*AllowObjCConversionOnExplicit=*/false);
1488 }
1489
1490 /// PerformImplicitConversion - Perform an implicit conversion of the
1491 /// expression From to the type ToType. Returns the
1492 /// converted expression. Flavor is the kind of conversion we're
1493 /// performing, used in the error message. If @p AllowExplicit,
1494 /// explicit user-defined conversions are permitted.
PerformImplicitConversion(Expr * From,QualType ToType,AssignmentAction Action,bool AllowExplicit)1495 ExprResult Sema::PerformImplicitConversion(Expr *From, QualType ToType,
1496 AssignmentAction Action,
1497 bool AllowExplicit) {
1498 if (checkPlaceholderForOverload(*this, From))
1499 return ExprError();
1500
1501 // Objective-C ARC: Determine whether we will allow the writeback conversion.
1502 bool AllowObjCWritebackConversion
1503 = getLangOpts().ObjCAutoRefCount &&
1504 (Action == AA_Passing || Action == AA_Sending);
1505 if (getLangOpts().ObjC)
1506 CheckObjCBridgeRelatedConversions(From->getBeginLoc(), ToType,
1507 From->getType(), From);
1508 ImplicitConversionSequence ICS = ::TryImplicitConversion(
1509 *this, From, ToType,
1510 /*SuppressUserConversions=*/false,
1511 AllowExplicit ? AllowedExplicit::All : AllowedExplicit::None,
1512 /*InOverloadResolution=*/false,
1513 /*CStyle=*/false, AllowObjCWritebackConversion,
1514 /*AllowObjCConversionOnExplicit=*/false);
1515 return PerformImplicitConversion(From, ToType, ICS, Action);
1516 }
1517
1518 /// Determine whether the conversion from FromType to ToType is a valid
1519 /// conversion that strips "noexcept" or "noreturn" off the nested function
1520 /// type.
IsFunctionConversion(QualType FromType,QualType ToType,QualType & ResultTy)1521 bool Sema::IsFunctionConversion(QualType FromType, QualType ToType,
1522 QualType &ResultTy) {
1523 if (Context.hasSameUnqualifiedType(FromType, ToType))
1524 return false;
1525
1526 // Permit the conversion F(t __attribute__((noreturn))) -> F(t)
1527 // or F(t noexcept) -> F(t)
1528 // where F adds one of the following at most once:
1529 // - a pointer
1530 // - a member pointer
1531 // - a block pointer
1532 // Changes here need matching changes in FindCompositePointerType.
1533 CanQualType CanTo = Context.getCanonicalType(ToType);
1534 CanQualType CanFrom = Context.getCanonicalType(FromType);
1535 Type::TypeClass TyClass = CanTo->getTypeClass();
1536 if (TyClass != CanFrom->getTypeClass()) return false;
1537 if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) {
1538 if (TyClass == Type::Pointer) {
1539 CanTo = CanTo.castAs<PointerType>()->getPointeeType();
1540 CanFrom = CanFrom.castAs<PointerType>()->getPointeeType();
1541 } else if (TyClass == Type::BlockPointer) {
1542 CanTo = CanTo.castAs<BlockPointerType>()->getPointeeType();
1543 CanFrom = CanFrom.castAs<BlockPointerType>()->getPointeeType();
1544 } else if (TyClass == Type::MemberPointer) {
1545 auto ToMPT = CanTo.castAs<MemberPointerType>();
1546 auto FromMPT = CanFrom.castAs<MemberPointerType>();
1547 // A function pointer conversion cannot change the class of the function.
1548 if (ToMPT->getClass() != FromMPT->getClass())
1549 return false;
1550 CanTo = ToMPT->getPointeeType();
1551 CanFrom = FromMPT->getPointeeType();
1552 } else {
1553 return false;
1554 }
1555
1556 TyClass = CanTo->getTypeClass();
1557 if (TyClass != CanFrom->getTypeClass()) return false;
1558 if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto)
1559 return false;
1560 }
1561
1562 const auto *FromFn = cast<FunctionType>(CanFrom);
1563 FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo();
1564
1565 const auto *ToFn = cast<FunctionType>(CanTo);
1566 FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo();
1567
1568 bool Changed = false;
1569
1570 // Drop 'noreturn' if not present in target type.
1571 if (FromEInfo.getNoReturn() && !ToEInfo.getNoReturn()) {
1572 FromFn = Context.adjustFunctionType(FromFn, FromEInfo.withNoReturn(false));
1573 Changed = true;
1574 }
1575
1576 // Drop 'noexcept' if not present in target type.
1577 if (const auto *FromFPT = dyn_cast<FunctionProtoType>(FromFn)) {
1578 const auto *ToFPT = cast<FunctionProtoType>(ToFn);
1579 if (FromFPT->isNothrow() && !ToFPT->isNothrow()) {
1580 FromFn = cast<FunctionType>(
1581 Context.getFunctionTypeWithExceptionSpec(QualType(FromFPT, 0),
1582 EST_None)
1583 .getTypePtr());
1584 Changed = true;
1585 }
1586
1587 // Convert FromFPT's ExtParameterInfo if necessary. The conversion is valid
1588 // only if the ExtParameterInfo lists of the two function prototypes can be
1589 // merged and the merged list is identical to ToFPT's ExtParameterInfo list.
1590 SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos;
1591 bool CanUseToFPT, CanUseFromFPT;
1592 if (Context.mergeExtParameterInfo(ToFPT, FromFPT, CanUseToFPT,
1593 CanUseFromFPT, NewParamInfos) &&
1594 CanUseToFPT && !CanUseFromFPT) {
1595 FunctionProtoType::ExtProtoInfo ExtInfo = FromFPT->getExtProtoInfo();
1596 ExtInfo.ExtParameterInfos =
1597 NewParamInfos.empty() ? nullptr : NewParamInfos.data();
1598 QualType QT = Context.getFunctionType(FromFPT->getReturnType(),
1599 FromFPT->getParamTypes(), ExtInfo);
1600 FromFn = QT->getAs<FunctionType>();
1601 Changed = true;
1602 }
1603 }
1604
1605 if (!Changed)
1606 return false;
1607
1608 assert(QualType(FromFn, 0).isCanonical());
1609 if (QualType(FromFn, 0) != CanTo) return false;
1610
1611 ResultTy = ToType;
1612 return true;
1613 }
1614
1615 /// Determine whether the conversion from FromType to ToType is a valid
1616 /// vector conversion.
1617 ///
1618 /// \param ICK Will be set to the vector conversion kind, if this is a vector
1619 /// conversion.
IsVectorConversion(Sema & S,QualType FromType,QualType ToType,ImplicitConversionKind & ICK,Expr * From,bool InOverloadResolution)1620 static bool IsVectorConversion(Sema &S, QualType FromType, QualType ToType,
1621 ImplicitConversionKind &ICK, Expr *From,
1622 bool InOverloadResolution) {
1623 // We need at least one of these types to be a vector type to have a vector
1624 // conversion.
1625 if (!ToType->isVectorType() && !FromType->isVectorType())
1626 return false;
1627
1628 // Identical types require no conversions.
1629 if (S.Context.hasSameUnqualifiedType(FromType, ToType))
1630 return false;
1631
1632 // There are no conversions between extended vector types, only identity.
1633 if (ToType->isExtVectorType()) {
1634 // There are no conversions between extended vector types other than the
1635 // identity conversion.
1636 if (FromType->isExtVectorType())
1637 return false;
1638
1639 // Vector splat from any arithmetic type to a vector.
1640 if (FromType->isArithmeticType()) {
1641 ICK = ICK_Vector_Splat;
1642 return true;
1643 }
1644 }
1645
1646 if (ToType->isSizelessBuiltinType() || FromType->isSizelessBuiltinType())
1647 if (S.Context.areCompatibleSveTypes(FromType, ToType) ||
1648 S.Context.areLaxCompatibleSveTypes(FromType, ToType)) {
1649 ICK = ICK_SVE_Vector_Conversion;
1650 return true;
1651 }
1652
1653 // We can perform the conversion between vector types in the following cases:
1654 // 1)vector types are equivalent AltiVec and GCC vector types
1655 // 2)lax vector conversions are permitted and the vector types are of the
1656 // same size
1657 // 3)the destination type does not have the ARM MVE strict-polymorphism
1658 // attribute, which inhibits lax vector conversion for overload resolution
1659 // only
1660 if (ToType->isVectorType() && FromType->isVectorType()) {
1661 if (S.Context.areCompatibleVectorTypes(FromType, ToType) ||
1662 (S.isLaxVectorConversion(FromType, ToType) &&
1663 !ToType->hasAttr(attr::ArmMveStrictPolymorphism))) {
1664 if (S.isLaxVectorConversion(FromType, ToType) &&
1665 S.anyAltivecTypes(FromType, ToType) &&
1666 !S.areSameVectorElemTypes(FromType, ToType) &&
1667 !InOverloadResolution) {
1668 S.Diag(From->getBeginLoc(), diag::warn_deprecated_lax_vec_conv_all)
1669 << FromType << ToType;
1670 }
1671 ICK = ICK_Vector_Conversion;
1672 return true;
1673 }
1674 }
1675
1676 return false;
1677 }
1678
1679 static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
1680 bool InOverloadResolution,
1681 StandardConversionSequence &SCS,
1682 bool CStyle);
1683
1684 /// IsStandardConversion - Determines whether there is a standard
1685 /// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
1686 /// expression From to the type ToType. Standard conversion sequences
1687 /// only consider non-class types; for conversions that involve class
1688 /// types, use TryImplicitConversion. If a conversion exists, SCS will
1689 /// contain the standard conversion sequence required to perform this
1690 /// conversion and this routine will return true. Otherwise, this
1691 /// routine will return false and the value of SCS is unspecified.
IsStandardConversion(Sema & S,Expr * From,QualType ToType,bool InOverloadResolution,StandardConversionSequence & SCS,bool CStyle,bool AllowObjCWritebackConversion)1692 static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
1693 bool InOverloadResolution,
1694 StandardConversionSequence &SCS,
1695 bool CStyle,
1696 bool AllowObjCWritebackConversion) {
1697 QualType FromType = From->getType();
1698
1699 // Standard conversions (C++ [conv])
1700 SCS.setAsIdentityConversion();
1701 SCS.IncompatibleObjC = false;
1702 SCS.setFromType(FromType);
1703 SCS.CopyConstructor = nullptr;
1704
1705 // There are no standard conversions for class types in C++, so
1706 // abort early. When overloading in C, however, we do permit them.
1707 if (S.getLangOpts().CPlusPlus &&
1708 (FromType->isRecordType() || ToType->isRecordType()))
1709 return false;
1710
1711 // The first conversion can be an lvalue-to-rvalue conversion,
1712 // array-to-pointer conversion, or function-to-pointer conversion
1713 // (C++ 4p1).
1714
1715 if (FromType == S.Context.OverloadTy) {
1716 DeclAccessPair AccessPair;
1717 if (FunctionDecl *Fn
1718 = S.ResolveAddressOfOverloadedFunction(From, ToType, false,
1719 AccessPair)) {
1720 // We were able to resolve the address of the overloaded function,
1721 // so we can convert to the type of that function.
1722 FromType = Fn->getType();
1723 SCS.setFromType(FromType);
1724
1725 // we can sometimes resolve &foo<int> regardless of ToType, so check
1726 // if the type matches (identity) or we are converting to bool
1727 if (!S.Context.hasSameUnqualifiedType(
1728 S.ExtractUnqualifiedFunctionType(ToType), FromType)) {
1729 QualType resultTy;
1730 // if the function type matches except for [[noreturn]], it's ok
1731 if (!S.IsFunctionConversion(FromType,
1732 S.ExtractUnqualifiedFunctionType(ToType), resultTy))
1733 // otherwise, only a boolean conversion is standard
1734 if (!ToType->isBooleanType())
1735 return false;
1736 }
1737
1738 // Check if the "from" expression is taking the address of an overloaded
1739 // function and recompute the FromType accordingly. Take advantage of the
1740 // fact that non-static member functions *must* have such an address-of
1741 // expression.
1742 CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn);
1743 if (Method && !Method->isStatic()) {
1744 assert(isa<UnaryOperator>(From->IgnoreParens()) &&
1745 "Non-unary operator on non-static member address");
1746 assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode()
1747 == UO_AddrOf &&
1748 "Non-address-of operator on non-static member address");
1749 const Type *ClassType
1750 = S.Context.getTypeDeclType(Method->getParent()).getTypePtr();
1751 FromType = S.Context.getMemberPointerType(FromType, ClassType);
1752 } else if (isa<UnaryOperator>(From->IgnoreParens())) {
1753 assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() ==
1754 UO_AddrOf &&
1755 "Non-address-of operator for overloaded function expression");
1756 FromType = S.Context.getPointerType(FromType);
1757 }
1758 } else {
1759 return false;
1760 }
1761 }
1762 // Lvalue-to-rvalue conversion (C++11 4.1):
1763 // A glvalue (3.10) of a non-function, non-array type T can
1764 // be converted to a prvalue.
1765 bool argIsLValue = From->isGLValue();
1766 if (argIsLValue &&
1767 !FromType->isFunctionType() && !FromType->isArrayType() &&
1768 S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) {
1769 SCS.First = ICK_Lvalue_To_Rvalue;
1770
1771 // C11 6.3.2.1p2:
1772 // ... if the lvalue has atomic type, the value has the non-atomic version
1773 // of the type of the lvalue ...
1774 if (const AtomicType *Atomic = FromType->getAs<AtomicType>())
1775 FromType = Atomic->getValueType();
1776
1777 // If T is a non-class type, the type of the rvalue is the
1778 // cv-unqualified version of T. Otherwise, the type of the rvalue
1779 // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
1780 // just strip the qualifiers because they don't matter.
1781 FromType = FromType.getUnqualifiedType();
1782 } else if (FromType->isArrayType()) {
1783 // Array-to-pointer conversion (C++ 4.2)
1784 SCS.First = ICK_Array_To_Pointer;
1785
1786 // An lvalue or rvalue of type "array of N T" or "array of unknown
1787 // bound of T" can be converted to an rvalue of type "pointer to
1788 // T" (C++ 4.2p1).
1789 FromType = S.Context.getArrayDecayedType(FromType);
1790
1791 if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) {
1792 // This conversion is deprecated in C++03 (D.4)
1793 SCS.DeprecatedStringLiteralToCharPtr = true;
1794
1795 // For the purpose of ranking in overload resolution
1796 // (13.3.3.1.1), this conversion is considered an
1797 // array-to-pointer conversion followed by a qualification
1798 // conversion (4.4). (C++ 4.2p2)
1799 SCS.Second = ICK_Identity;
1800 SCS.Third = ICK_Qualification;
1801 SCS.QualificationIncludesObjCLifetime = false;
1802 SCS.setAllToTypes(FromType);
1803 return true;
1804 }
1805 } else if (FromType->isFunctionType() && argIsLValue) {
1806 // Function-to-pointer conversion (C++ 4.3).
1807 SCS.First = ICK_Function_To_Pointer;
1808
1809 if (auto *DRE = dyn_cast<DeclRefExpr>(From->IgnoreParenCasts()))
1810 if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()))
1811 if (!S.checkAddressOfFunctionIsAvailable(FD))
1812 return false;
1813
1814 // An lvalue of function type T can be converted to an rvalue of
1815 // type "pointer to T." The result is a pointer to the
1816 // function. (C++ 4.3p1).
1817 FromType = S.Context.getPointerType(FromType);
1818 } else {
1819 // We don't require any conversions for the first step.
1820 SCS.First = ICK_Identity;
1821 }
1822 SCS.setToType(0, FromType);
1823
1824 // The second conversion can be an integral promotion, floating
1825 // point promotion, integral conversion, floating point conversion,
1826 // floating-integral conversion, pointer conversion,
1827 // pointer-to-member conversion, or boolean conversion (C++ 4p1).
1828 // For overloading in C, this can also be a "compatible-type"
1829 // conversion.
1830 bool IncompatibleObjC = false;
1831 ImplicitConversionKind SecondICK = ICK_Identity;
1832 if (S.Context.hasSameUnqualifiedType(FromType, ToType)) {
1833 // The unqualified versions of the types are the same: there's no
1834 // conversion to do.
1835 SCS.Second = ICK_Identity;
1836 } else if (S.IsIntegralPromotion(From, FromType, ToType)) {
1837 // Integral promotion (C++ 4.5).
1838 SCS.Second = ICK_Integral_Promotion;
1839 FromType = ToType.getUnqualifiedType();
1840 } else if (S.IsFloatingPointPromotion(FromType, ToType)) {
1841 // Floating point promotion (C++ 4.6).
1842 SCS.Second = ICK_Floating_Promotion;
1843 FromType = ToType.getUnqualifiedType();
1844 } else if (S.IsComplexPromotion(FromType, ToType)) {
1845 // Complex promotion (Clang extension)
1846 SCS.Second = ICK_Complex_Promotion;
1847 FromType = ToType.getUnqualifiedType();
1848 } else if (ToType->isBooleanType() &&
1849 (FromType->isArithmeticType() ||
1850 FromType->isAnyPointerType() ||
1851 FromType->isBlockPointerType() ||
1852 FromType->isMemberPointerType())) {
1853 // Boolean conversions (C++ 4.12).
1854 SCS.Second = ICK_Boolean_Conversion;
1855 FromType = S.Context.BoolTy;
1856 } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
1857 ToType->isIntegralType(S.Context)) {
1858 // Integral conversions (C++ 4.7).
1859 SCS.Second = ICK_Integral_Conversion;
1860 FromType = ToType.getUnqualifiedType();
1861 } else if (FromType->isAnyComplexType() && ToType->isAnyComplexType()) {
1862 // Complex conversions (C99 6.3.1.6)
1863 SCS.Second = ICK_Complex_Conversion;
1864 FromType = ToType.getUnqualifiedType();
1865 } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) ||
1866 (ToType->isAnyComplexType() && FromType->isArithmeticType())) {
1867 // Complex-real conversions (C99 6.3.1.7)
1868 SCS.Second = ICK_Complex_Real;
1869 FromType = ToType.getUnqualifiedType();
1870 } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) {
1871 // FIXME: disable conversions between long double, __ibm128 and __float128
1872 // if their representation is different until there is back end support
1873 // We of course allow this conversion if long double is really double.
1874
1875 // Conversions between bfloat and other floats are not permitted.
1876 if (FromType == S.Context.BFloat16Ty || ToType == S.Context.BFloat16Ty)
1877 return false;
1878
1879 // Conversions between IEEE-quad and IBM-extended semantics are not
1880 // permitted.
1881 const llvm::fltSemantics &FromSem =
1882 S.Context.getFloatTypeSemantics(FromType);
1883 const llvm::fltSemantics &ToSem = S.Context.getFloatTypeSemantics(ToType);
1884 if ((&FromSem == &llvm::APFloat::PPCDoubleDouble() &&
1885 &ToSem == &llvm::APFloat::IEEEquad()) ||
1886 (&FromSem == &llvm::APFloat::IEEEquad() &&
1887 &ToSem == &llvm::APFloat::PPCDoubleDouble()))
1888 return false;
1889
1890 // Floating point conversions (C++ 4.8).
1891 SCS.Second = ICK_Floating_Conversion;
1892 FromType = ToType.getUnqualifiedType();
1893 } else if ((FromType->isRealFloatingType() &&
1894 ToType->isIntegralType(S.Context)) ||
1895 (FromType->isIntegralOrUnscopedEnumerationType() &&
1896 ToType->isRealFloatingType())) {
1897 // Conversions between bfloat and int are not permitted.
1898 if (FromType->isBFloat16Type() || ToType->isBFloat16Type())
1899 return false;
1900
1901 // Floating-integral conversions (C++ 4.9).
1902 SCS.Second = ICK_Floating_Integral;
1903 FromType = ToType.getUnqualifiedType();
1904 } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) {
1905 SCS.Second = ICK_Block_Pointer_Conversion;
1906 } else if (AllowObjCWritebackConversion &&
1907 S.isObjCWritebackConversion(FromType, ToType, FromType)) {
1908 SCS.Second = ICK_Writeback_Conversion;
1909 } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution,
1910 FromType, IncompatibleObjC)) {
1911 // Pointer conversions (C++ 4.10).
1912 SCS.Second = ICK_Pointer_Conversion;
1913 SCS.IncompatibleObjC = IncompatibleObjC;
1914 FromType = FromType.getUnqualifiedType();
1915 } else if (S.IsMemberPointerConversion(From, FromType, ToType,
1916 InOverloadResolution, FromType)) {
1917 // Pointer to member conversions (4.11).
1918 SCS.Second = ICK_Pointer_Member;
1919 } else if (IsVectorConversion(S, FromType, ToType, SecondICK, From,
1920 InOverloadResolution)) {
1921 SCS.Second = SecondICK;
1922 FromType = ToType.getUnqualifiedType();
1923 } else if (!S.getLangOpts().CPlusPlus &&
1924 S.Context.typesAreCompatible(ToType, FromType)) {
1925 // Compatible conversions (Clang extension for C function overloading)
1926 SCS.Second = ICK_Compatible_Conversion;
1927 FromType = ToType.getUnqualifiedType();
1928 } else if (IsTransparentUnionStandardConversion(S, From, ToType,
1929 InOverloadResolution,
1930 SCS, CStyle)) {
1931 SCS.Second = ICK_TransparentUnionConversion;
1932 FromType = ToType;
1933 } else if (tryAtomicConversion(S, From, ToType, InOverloadResolution, SCS,
1934 CStyle)) {
1935 // tryAtomicConversion has updated the standard conversion sequence
1936 // appropriately.
1937 return true;
1938 } else if (ToType->isEventT() &&
1939 From->isIntegerConstantExpr(S.getASTContext()) &&
1940 From->EvaluateKnownConstInt(S.getASTContext()) == 0) {
1941 SCS.Second = ICK_Zero_Event_Conversion;
1942 FromType = ToType;
1943 } else if (ToType->isQueueT() &&
1944 From->isIntegerConstantExpr(S.getASTContext()) &&
1945 (From->EvaluateKnownConstInt(S.getASTContext()) == 0)) {
1946 SCS.Second = ICK_Zero_Queue_Conversion;
1947 FromType = ToType;
1948 } else if (ToType->isSamplerT() &&
1949 From->isIntegerConstantExpr(S.getASTContext())) {
1950 SCS.Second = ICK_Compatible_Conversion;
1951 FromType = ToType;
1952 } else {
1953 // No second conversion required.
1954 SCS.Second = ICK_Identity;
1955 }
1956 SCS.setToType(1, FromType);
1957
1958 // The third conversion can be a function pointer conversion or a
1959 // qualification conversion (C++ [conv.fctptr], [conv.qual]).
1960 bool ObjCLifetimeConversion;
1961 if (S.IsFunctionConversion(FromType, ToType, FromType)) {
1962 // Function pointer conversions (removing 'noexcept') including removal of
1963 // 'noreturn' (Clang extension).
1964 SCS.Third = ICK_Function_Conversion;
1965 } else if (S.IsQualificationConversion(FromType, ToType, CStyle,
1966 ObjCLifetimeConversion)) {
1967 SCS.Third = ICK_Qualification;
1968 SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion;
1969 FromType = ToType;
1970 } else {
1971 // No conversion required
1972 SCS.Third = ICK_Identity;
1973 }
1974
1975 // C++ [over.best.ics]p6:
1976 // [...] Any difference in top-level cv-qualification is
1977 // subsumed by the initialization itself and does not constitute
1978 // a conversion. [...]
1979 QualType CanonFrom = S.Context.getCanonicalType(FromType);
1980 QualType CanonTo = S.Context.getCanonicalType(ToType);
1981 if (CanonFrom.getLocalUnqualifiedType()
1982 == CanonTo.getLocalUnqualifiedType() &&
1983 CanonFrom.getLocalQualifiers() != CanonTo.getLocalQualifiers()) {
1984 FromType = ToType;
1985 CanonFrom = CanonTo;
1986 }
1987
1988 SCS.setToType(2, FromType);
1989
1990 if (CanonFrom == CanonTo)
1991 return true;
1992
1993 // If we have not converted the argument type to the parameter type,
1994 // this is a bad conversion sequence, unless we're resolving an overload in C.
1995 if (S.getLangOpts().CPlusPlus || !InOverloadResolution)
1996 return false;
1997
1998 ExprResult ER = ExprResult{From};
1999 Sema::AssignConvertType Conv =
2000 S.CheckSingleAssignmentConstraints(ToType, ER,
2001 /*Diagnose=*/false,
2002 /*DiagnoseCFAudited=*/false,
2003 /*ConvertRHS=*/false);
2004 ImplicitConversionKind SecondConv;
2005 switch (Conv) {
2006 case Sema::Compatible:
2007 SecondConv = ICK_C_Only_Conversion;
2008 break;
2009 // For our purposes, discarding qualifiers is just as bad as using an
2010 // incompatible pointer. Note that an IncompatiblePointer conversion can drop
2011 // qualifiers, as well.
2012 case Sema::CompatiblePointerDiscardsQualifiers:
2013 case Sema::IncompatiblePointer:
2014 case Sema::IncompatiblePointerSign:
2015 SecondConv = ICK_Incompatible_Pointer_Conversion;
2016 break;
2017 default:
2018 return false;
2019 }
2020
2021 // First can only be an lvalue conversion, so we pretend that this was the
2022 // second conversion. First should already be valid from earlier in the
2023 // function.
2024 SCS.Second = SecondConv;
2025 SCS.setToType(1, ToType);
2026
2027 // Third is Identity, because Second should rank us worse than any other
2028 // conversion. This could also be ICK_Qualification, but it's simpler to just
2029 // lump everything in with the second conversion, and we don't gain anything
2030 // from making this ICK_Qualification.
2031 SCS.Third = ICK_Identity;
2032 SCS.setToType(2, ToType);
2033 return true;
2034 }
2035
2036 static bool
IsTransparentUnionStandardConversion(Sema & S,Expr * From,QualType & ToType,bool InOverloadResolution,StandardConversionSequence & SCS,bool CStyle)2037 IsTransparentUnionStandardConversion(Sema &S, Expr* From,
2038 QualType &ToType,
2039 bool InOverloadResolution,
2040 StandardConversionSequence &SCS,
2041 bool CStyle) {
2042
2043 const RecordType *UT = ToType->getAsUnionType();
2044 if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
2045 return false;
2046 // The field to initialize within the transparent union.
2047 RecordDecl *UD = UT->getDecl();
2048 // It's compatible if the expression matches any of the fields.
2049 for (const auto *it : UD->fields()) {
2050 if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS,
2051 CStyle, /*AllowObjCWritebackConversion=*/false)) {
2052 ToType = it->getType();
2053 return true;
2054 }
2055 }
2056 return false;
2057 }
2058
2059 /// IsIntegralPromotion - Determines whether the conversion from the
2060 /// expression From (whose potentially-adjusted type is FromType) to
2061 /// ToType is an integral promotion (C++ 4.5). If so, returns true and
2062 /// sets PromotedType to the promoted type.
IsIntegralPromotion(Expr * From,QualType FromType,QualType ToType)2063 bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
2064 const BuiltinType *To = ToType->getAs<BuiltinType>();
2065 // All integers are built-in.
2066 if (!To) {
2067 return false;
2068 }
2069
2070 // An rvalue of type char, signed char, unsigned char, short int, or
2071 // unsigned short int can be converted to an rvalue of type int if
2072 // int can represent all the values of the source type; otherwise,
2073 // the source rvalue can be converted to an rvalue of type unsigned
2074 // int (C++ 4.5p1).
2075 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
2076 !FromType->isEnumeralType()) {
2077 if (// We can promote any signed, promotable integer type to an int
2078 (FromType->isSignedIntegerType() ||
2079 // We can promote any unsigned integer type whose size is
2080 // less than int to an int.
2081 Context.getTypeSize(FromType) < Context.getTypeSize(ToType))) {
2082 return To->getKind() == BuiltinType::Int;
2083 }
2084
2085 return To->getKind() == BuiltinType::UInt;
2086 }
2087
2088 // C++11 [conv.prom]p3:
2089 // A prvalue of an unscoped enumeration type whose underlying type is not
2090 // fixed (7.2) can be converted to an rvalue a prvalue of the first of the
2091 // following types that can represent all the values of the enumeration
2092 // (i.e., the values in the range bmin to bmax as described in 7.2): int,
2093 // unsigned int, long int, unsigned long int, long long int, or unsigned
2094 // long long int. If none of the types in that list can represent all the
2095 // values of the enumeration, an rvalue a prvalue of an unscoped enumeration
2096 // type can be converted to an rvalue a prvalue of the extended integer type
2097 // with lowest integer conversion rank (4.13) greater than the rank of long
2098 // long in which all the values of the enumeration can be represented. If
2099 // there are two such extended types, the signed one is chosen.
2100 // C++11 [conv.prom]p4:
2101 // A prvalue of an unscoped enumeration type whose underlying type is fixed
2102 // can be converted to a prvalue of its underlying type. Moreover, if
2103 // integral promotion can be applied to its underlying type, a prvalue of an
2104 // unscoped enumeration type whose underlying type is fixed can also be
2105 // converted to a prvalue of the promoted underlying type.
2106 if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) {
2107 // C++0x 7.2p9: Note that this implicit enum to int conversion is not
2108 // provided for a scoped enumeration.
2109 if (FromEnumType->getDecl()->isScoped())
2110 return false;
2111
2112 // We can perform an integral promotion to the underlying type of the enum,
2113 // even if that's not the promoted type. Note that the check for promoting
2114 // the underlying type is based on the type alone, and does not consider
2115 // the bitfield-ness of the actual source expression.
2116 if (FromEnumType->getDecl()->isFixed()) {
2117 QualType Underlying = FromEnumType->getDecl()->getIntegerType();
2118 return Context.hasSameUnqualifiedType(Underlying, ToType) ||
2119 IsIntegralPromotion(nullptr, Underlying, ToType);
2120 }
2121
2122 // We have already pre-calculated the promotion type, so this is trivial.
2123 if (ToType->isIntegerType() &&
2124 isCompleteType(From->getBeginLoc(), FromType))
2125 return Context.hasSameUnqualifiedType(
2126 ToType, FromEnumType->getDecl()->getPromotionType());
2127
2128 // C++ [conv.prom]p5:
2129 // If the bit-field has an enumerated type, it is treated as any other
2130 // value of that type for promotion purposes.
2131 //
2132 // ... so do not fall through into the bit-field checks below in C++.
2133 if (getLangOpts().CPlusPlus)
2134 return false;
2135 }
2136
2137 // C++0x [conv.prom]p2:
2138 // A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted
2139 // to an rvalue a prvalue of the first of the following types that can
2140 // represent all the values of its underlying type: int, unsigned int,
2141 // long int, unsigned long int, long long int, or unsigned long long int.
2142 // If none of the types in that list can represent all the values of its
2143 // underlying type, an rvalue a prvalue of type char16_t, char32_t,
2144 // or wchar_t can be converted to an rvalue a prvalue of its underlying
2145 // type.
2146 if (FromType->isAnyCharacterType() && !FromType->isCharType() &&
2147 ToType->isIntegerType()) {
2148 // Determine whether the type we're converting from is signed or
2149 // unsigned.
2150 bool FromIsSigned = FromType->isSignedIntegerType();
2151 uint64_t FromSize = Context.getTypeSize(FromType);
2152
2153 // The types we'll try to promote to, in the appropriate
2154 // order. Try each of these types.
2155 QualType PromoteTypes[6] = {
2156 Context.IntTy, Context.UnsignedIntTy,
2157 Context.LongTy, Context.UnsignedLongTy ,
2158 Context.LongLongTy, Context.UnsignedLongLongTy
2159 };
2160 for (int Idx = 0; Idx < 6; ++Idx) {
2161 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
2162 if (FromSize < ToSize ||
2163 (FromSize == ToSize &&
2164 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
2165 // We found the type that we can promote to. If this is the
2166 // type we wanted, we have a promotion. Otherwise, no
2167 // promotion.
2168 return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
2169 }
2170 }
2171 }
2172
2173 // An rvalue for an integral bit-field (9.6) can be converted to an
2174 // rvalue of type int if int can represent all the values of the
2175 // bit-field; otherwise, it can be converted to unsigned int if
2176 // unsigned int can represent all the values of the bit-field. If
2177 // the bit-field is larger yet, no integral promotion applies to
2178 // it. If the bit-field has an enumerated type, it is treated as any
2179 // other value of that type for promotion purposes (C++ 4.5p3).
2180 // FIXME: We should delay checking of bit-fields until we actually perform the
2181 // conversion.
2182 //
2183 // FIXME: In C, only bit-fields of types _Bool, int, or unsigned int may be
2184 // promoted, per C11 6.3.1.1/2. We promote all bit-fields (including enum
2185 // bit-fields and those whose underlying type is larger than int) for GCC
2186 // compatibility.
2187 if (From) {
2188 if (FieldDecl *MemberDecl = From->getSourceBitField()) {
2189 Optional<llvm::APSInt> BitWidth;
2190 if (FromType->isIntegralType(Context) &&
2191 (BitWidth =
2192 MemberDecl->getBitWidth()->getIntegerConstantExpr(Context))) {
2193 llvm::APSInt ToSize(BitWidth->getBitWidth(), BitWidth->isUnsigned());
2194 ToSize = Context.getTypeSize(ToType);
2195
2196 // Are we promoting to an int from a bitfield that fits in an int?
2197 if (*BitWidth < ToSize ||
2198 (FromType->isSignedIntegerType() && *BitWidth <= ToSize)) {
2199 return To->getKind() == BuiltinType::Int;
2200 }
2201
2202 // Are we promoting to an unsigned int from an unsigned bitfield
2203 // that fits into an unsigned int?
2204 if (FromType->isUnsignedIntegerType() && *BitWidth <= ToSize) {
2205 return To->getKind() == BuiltinType::UInt;
2206 }
2207
2208 return false;
2209 }
2210 }
2211 }
2212
2213 // An rvalue of type bool can be converted to an rvalue of type int,
2214 // with false becoming zero and true becoming one (C++ 4.5p4).
2215 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
2216 return true;
2217 }
2218
2219 return false;
2220 }
2221
2222 /// IsFloatingPointPromotion - Determines whether the conversion from
2223 /// FromType to ToType is a floating point promotion (C++ 4.6). If so,
2224 /// returns true and sets PromotedType to the promoted type.
IsFloatingPointPromotion(QualType FromType,QualType ToType)2225 bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
2226 if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
2227 if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
2228 /// An rvalue of type float can be converted to an rvalue of type
2229 /// double. (C++ 4.6p1).
2230 if (FromBuiltin->getKind() == BuiltinType::Float &&
2231 ToBuiltin->getKind() == BuiltinType::Double)
2232 return true;
2233
2234 // C99 6.3.1.5p1:
2235 // When a float is promoted to double or long double, or a
2236 // double is promoted to long double [...].
2237 if (!getLangOpts().CPlusPlus &&
2238 (FromBuiltin->getKind() == BuiltinType::Float ||
2239 FromBuiltin->getKind() == BuiltinType::Double) &&
2240 (ToBuiltin->getKind() == BuiltinType::LongDouble ||
2241 ToBuiltin->getKind() == BuiltinType::Float128 ||
2242 ToBuiltin->getKind() == BuiltinType::Ibm128))
2243 return true;
2244
2245 // Half can be promoted to float.
2246 if (!getLangOpts().NativeHalfType &&
2247 FromBuiltin->getKind() == BuiltinType::Half &&
2248 ToBuiltin->getKind() == BuiltinType::Float)
2249 return true;
2250 }
2251
2252 return false;
2253 }
2254
2255 /// Determine if a conversion is a complex promotion.
2256 ///
2257 /// A complex promotion is defined as a complex -> complex conversion
2258 /// where the conversion between the underlying real types is a
2259 /// floating-point or integral promotion.
IsComplexPromotion(QualType FromType,QualType ToType)2260 bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
2261 const ComplexType *FromComplex = FromType->getAs<ComplexType>();
2262 if (!FromComplex)
2263 return false;
2264
2265 const ComplexType *ToComplex = ToType->getAs<ComplexType>();
2266 if (!ToComplex)
2267 return false;
2268
2269 return IsFloatingPointPromotion(FromComplex->getElementType(),
2270 ToComplex->getElementType()) ||
2271 IsIntegralPromotion(nullptr, FromComplex->getElementType(),
2272 ToComplex->getElementType());
2273 }
2274
2275 /// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
2276 /// the pointer type FromPtr to a pointer to type ToPointee, with the
2277 /// same type qualifiers as FromPtr has on its pointee type. ToType,
2278 /// if non-empty, will be a pointer to ToType that may or may not have
2279 /// the right set of qualifiers on its pointee.
2280 ///
2281 static QualType
BuildSimilarlyQualifiedPointerType(const Type * FromPtr,QualType ToPointee,QualType ToType,ASTContext & Context,bool StripObjCLifetime=false)2282 BuildSimilarlyQualifiedPointerType(const Type *FromPtr,
2283 QualType ToPointee, QualType ToType,
2284 ASTContext &Context,
2285 bool StripObjCLifetime = false) {
2286 assert((FromPtr->getTypeClass() == Type::Pointer ||
2287 FromPtr->getTypeClass() == Type::ObjCObjectPointer) &&
2288 "Invalid similarly-qualified pointer type");
2289
2290 /// Conversions to 'id' subsume cv-qualifier conversions.
2291 if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType())
2292 return ToType.getUnqualifiedType();
2293
2294 QualType CanonFromPointee
2295 = Context.getCanonicalType(FromPtr->getPointeeType());
2296 QualType CanonToPointee = Context.getCanonicalType(ToPointee);
2297 Qualifiers Quals = CanonFromPointee.getQualifiers();
2298
2299 if (StripObjCLifetime)
2300 Quals.removeObjCLifetime();
2301
2302 // Exact qualifier match -> return the pointer type we're converting to.
2303 if (CanonToPointee.getLocalQualifiers() == Quals) {
2304 // ToType is exactly what we need. Return it.
2305 if (!ToType.isNull())
2306 return ToType.getUnqualifiedType();
2307
2308 // Build a pointer to ToPointee. It has the right qualifiers
2309 // already.
2310 if (isa<ObjCObjectPointerType>(ToType))
2311 return Context.getObjCObjectPointerType(ToPointee);
2312 return Context.getPointerType(ToPointee);
2313 }
2314
2315 // Just build a canonical type that has the right qualifiers.
2316 QualType QualifiedCanonToPointee
2317 = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals);
2318
2319 if (isa<ObjCObjectPointerType>(ToType))
2320 return Context.getObjCObjectPointerType(QualifiedCanonToPointee);
2321 return Context.getPointerType(QualifiedCanonToPointee);
2322 }
2323
isNullPointerConstantForConversion(Expr * Expr,bool InOverloadResolution,ASTContext & Context)2324 static bool isNullPointerConstantForConversion(Expr *Expr,
2325 bool InOverloadResolution,
2326 ASTContext &Context) {
2327 // Handle value-dependent integral null pointer constants correctly.
2328 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
2329 if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
2330 Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType())
2331 return !InOverloadResolution;
2332
2333 return Expr->isNullPointerConstant(Context,
2334 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
2335 : Expr::NPC_ValueDependentIsNull);
2336 }
2337
2338 /// IsPointerConversion - Determines whether the conversion of the
2339 /// expression From, which has the (possibly adjusted) type FromType,
2340 /// can be converted to the type ToType via a pointer conversion (C++
2341 /// 4.10). If so, returns true and places the converted type (that
2342 /// might differ from ToType in its cv-qualifiers at some level) into
2343 /// ConvertedType.
2344 ///
2345 /// This routine also supports conversions to and from block pointers
2346 /// and conversions with Objective-C's 'id', 'id<protocols...>', and
2347 /// pointers to interfaces. FIXME: Once we've determined the
2348 /// appropriate overloading rules for Objective-C, we may want to
2349 /// split the Objective-C checks into a different routine; however,
2350 /// GCC seems to consider all of these conversions to be pointer
2351 /// conversions, so for now they live here. IncompatibleObjC will be
2352 /// set if the conversion is an allowed Objective-C conversion that
2353 /// should result in a warning.
IsPointerConversion(Expr * From,QualType FromType,QualType ToType,bool InOverloadResolution,QualType & ConvertedType,bool & IncompatibleObjC)2354 bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
2355 bool InOverloadResolution,
2356 QualType& ConvertedType,
2357 bool &IncompatibleObjC) {
2358 IncompatibleObjC = false;
2359 if (isObjCPointerConversion(FromType, ToType, ConvertedType,
2360 IncompatibleObjC))
2361 return true;
2362
2363 // Conversion from a null pointer constant to any Objective-C pointer type.
2364 if (ToType->isObjCObjectPointerType() &&
2365 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2366 ConvertedType = ToType;
2367 return true;
2368 }
2369
2370 // Blocks: Block pointers can be converted to void*.
2371 if (FromType->isBlockPointerType() && ToType->isPointerType() &&
2372 ToType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
2373 ConvertedType = ToType;
2374 return true;
2375 }
2376 // Blocks: A null pointer constant can be converted to a block
2377 // pointer type.
2378 if (ToType->isBlockPointerType() &&
2379 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2380 ConvertedType = ToType;
2381 return true;
2382 }
2383
2384 // If the left-hand-side is nullptr_t, the right side can be a null
2385 // pointer constant.
2386 if (ToType->isNullPtrType() &&
2387 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2388 ConvertedType = ToType;
2389 return true;
2390 }
2391
2392 const PointerType* ToTypePtr = ToType->getAs<PointerType>();
2393 if (!ToTypePtr)
2394 return false;
2395
2396 // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
2397 if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2398 ConvertedType = ToType;
2399 return true;
2400 }
2401
2402 // Beyond this point, both types need to be pointers
2403 // , including objective-c pointers.
2404 QualType ToPointeeType = ToTypePtr->getPointeeType();
2405 if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() &&
2406 !getLangOpts().ObjCAutoRefCount) {
2407 ConvertedType = BuildSimilarlyQualifiedPointerType(
2408 FromType->castAs<ObjCObjectPointerType>(), ToPointeeType, ToType,
2409 Context);
2410 return true;
2411 }
2412 const PointerType *FromTypePtr = FromType->getAs<PointerType>();
2413 if (!FromTypePtr)
2414 return false;
2415
2416 QualType FromPointeeType = FromTypePtr->getPointeeType();
2417
2418 // If the unqualified pointee types are the same, this can't be a
2419 // pointer conversion, so don't do all of the work below.
2420 if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType))
2421 return false;
2422
2423 // An rvalue of type "pointer to cv T," where T is an object type,
2424 // can be converted to an rvalue of type "pointer to cv void" (C++
2425 // 4.10p2).
2426 if (FromPointeeType->isIncompleteOrObjectType() &&
2427 ToPointeeType->isVoidType()) {
2428 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2429 ToPointeeType,
2430 ToType, Context,
2431 /*StripObjCLifetime=*/true);
2432 return true;
2433 }
2434
2435 // MSVC allows implicit function to void* type conversion.
2436 if (getLangOpts().MSVCCompat && FromPointeeType->isFunctionType() &&
2437 ToPointeeType->isVoidType()) {
2438 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2439 ToPointeeType,
2440 ToType, Context);
2441 return true;
2442 }
2443
2444 // When we're overloading in C, we allow a special kind of pointer
2445 // conversion for compatible-but-not-identical pointee types.
2446 if (!getLangOpts().CPlusPlus &&
2447 Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
2448 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2449 ToPointeeType,
2450 ToType, Context);
2451 return true;
2452 }
2453
2454 // C++ [conv.ptr]p3:
2455 //
2456 // An rvalue of type "pointer to cv D," where D is a class type,
2457 // can be converted to an rvalue of type "pointer to cv B," where
2458 // B is a base class (clause 10) of D. If B is an inaccessible
2459 // (clause 11) or ambiguous (10.2) base class of D, a program that
2460 // necessitates this conversion is ill-formed. The result of the
2461 // conversion is a pointer to the base class sub-object of the
2462 // derived class object. The null pointer value is converted to
2463 // the null pointer value of the destination type.
2464 //
2465 // Note that we do not check for ambiguity or inaccessibility
2466 // here. That is handled by CheckPointerConversion.
2467 if (getLangOpts().CPlusPlus && FromPointeeType->isRecordType() &&
2468 ToPointeeType->isRecordType() &&
2469 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
2470 IsDerivedFrom(From->getBeginLoc(), FromPointeeType, ToPointeeType)) {
2471 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2472 ToPointeeType,
2473 ToType, Context);
2474 return true;
2475 }
2476
2477 if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() &&
2478 Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) {
2479 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2480 ToPointeeType,
2481 ToType, Context);
2482 return true;
2483 }
2484
2485 return false;
2486 }
2487
2488 /// Adopt the given qualifiers for the given type.
AdoptQualifiers(ASTContext & Context,QualType T,Qualifiers Qs)2489 static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){
2490 Qualifiers TQs = T.getQualifiers();
2491
2492 // Check whether qualifiers already match.
2493 if (TQs == Qs)
2494 return T;
2495
2496 if (Qs.compatiblyIncludes(TQs))
2497 return Context.getQualifiedType(T, Qs);
2498
2499 return Context.getQualifiedType(T.getUnqualifiedType(), Qs);
2500 }
2501
2502 /// isObjCPointerConversion - Determines whether this is an
2503 /// Objective-C pointer conversion. Subroutine of IsPointerConversion,
2504 /// with the same arguments and return values.
isObjCPointerConversion(QualType FromType,QualType ToType,QualType & ConvertedType,bool & IncompatibleObjC)2505 bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
2506 QualType& ConvertedType,
2507 bool &IncompatibleObjC) {
2508 if (!getLangOpts().ObjC)
2509 return false;
2510
2511 // The set of qualifiers on the type we're converting from.
2512 Qualifiers FromQualifiers = FromType.getQualifiers();
2513
2514 // First, we handle all conversions on ObjC object pointer types.
2515 const ObjCObjectPointerType* ToObjCPtr =
2516 ToType->getAs<ObjCObjectPointerType>();
2517 const ObjCObjectPointerType *FromObjCPtr =
2518 FromType->getAs<ObjCObjectPointerType>();
2519
2520 if (ToObjCPtr && FromObjCPtr) {
2521 // If the pointee types are the same (ignoring qualifications),
2522 // then this is not a pointer conversion.
2523 if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(),
2524 FromObjCPtr->getPointeeType()))
2525 return false;
2526
2527 // Conversion between Objective-C pointers.
2528 if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
2529 const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
2530 const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
2531 if (getLangOpts().CPlusPlus && LHS && RHS &&
2532 !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
2533 FromObjCPtr->getPointeeType()))
2534 return false;
2535 ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2536 ToObjCPtr->getPointeeType(),
2537 ToType, Context);
2538 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2539 return true;
2540 }
2541
2542 if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
2543 // Okay: this is some kind of implicit downcast of Objective-C
2544 // interfaces, which is permitted. However, we're going to
2545 // complain about it.
2546 IncompatibleObjC = true;
2547 ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2548 ToObjCPtr->getPointeeType(),
2549 ToType, Context);
2550 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2551 return true;
2552 }
2553 }
2554 // Beyond this point, both types need to be C pointers or block pointers.
2555 QualType ToPointeeType;
2556 if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
2557 ToPointeeType = ToCPtr->getPointeeType();
2558 else if (const BlockPointerType *ToBlockPtr =
2559 ToType->getAs<BlockPointerType>()) {
2560 // Objective C++: We're able to convert from a pointer to any object
2561 // to a block pointer type.
2562 if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
2563 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2564 return true;
2565 }
2566 ToPointeeType = ToBlockPtr->getPointeeType();
2567 }
2568 else if (FromType->getAs<BlockPointerType>() &&
2569 ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
2570 // Objective C++: We're able to convert from a block pointer type to a
2571 // pointer to any object.
2572 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2573 return true;
2574 }
2575 else
2576 return false;
2577
2578 QualType FromPointeeType;
2579 if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
2580 FromPointeeType = FromCPtr->getPointeeType();
2581 else if (const BlockPointerType *FromBlockPtr =
2582 FromType->getAs<BlockPointerType>())
2583 FromPointeeType = FromBlockPtr->getPointeeType();
2584 else
2585 return false;
2586
2587 // If we have pointers to pointers, recursively check whether this
2588 // is an Objective-C conversion.
2589 if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
2590 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2591 IncompatibleObjC)) {
2592 // We always complain about this conversion.
2593 IncompatibleObjC = true;
2594 ConvertedType = Context.getPointerType(ConvertedType);
2595 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2596 return true;
2597 }
2598 // Allow conversion of pointee being objective-c pointer to another one;
2599 // as in I* to id.
2600 if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
2601 ToPointeeType->getAs<ObjCObjectPointerType>() &&
2602 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2603 IncompatibleObjC)) {
2604
2605 ConvertedType = Context.getPointerType(ConvertedType);
2606 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2607 return true;
2608 }
2609
2610 // If we have pointers to functions or blocks, check whether the only
2611 // differences in the argument and result types are in Objective-C
2612 // pointer conversions. If so, we permit the conversion (but
2613 // complain about it).
2614 const FunctionProtoType *FromFunctionType
2615 = FromPointeeType->getAs<FunctionProtoType>();
2616 const FunctionProtoType *ToFunctionType
2617 = ToPointeeType->getAs<FunctionProtoType>();
2618 if (FromFunctionType && ToFunctionType) {
2619 // If the function types are exactly the same, this isn't an
2620 // Objective-C pointer conversion.
2621 if (Context.getCanonicalType(FromPointeeType)
2622 == Context.getCanonicalType(ToPointeeType))
2623 return false;
2624
2625 // Perform the quick checks that will tell us whether these
2626 // function types are obviously different.
2627 if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() ||
2628 FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
2629 FromFunctionType->getMethodQuals() != ToFunctionType->getMethodQuals())
2630 return false;
2631
2632 bool HasObjCConversion = false;
2633 if (Context.getCanonicalType(FromFunctionType->getReturnType()) ==
2634 Context.getCanonicalType(ToFunctionType->getReturnType())) {
2635 // Okay, the types match exactly. Nothing to do.
2636 } else if (isObjCPointerConversion(FromFunctionType->getReturnType(),
2637 ToFunctionType->getReturnType(),
2638 ConvertedType, IncompatibleObjC)) {
2639 // Okay, we have an Objective-C pointer conversion.
2640 HasObjCConversion = true;
2641 } else {
2642 // Function types are too different. Abort.
2643 return false;
2644 }
2645
2646 // Check argument types.
2647 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams();
2648 ArgIdx != NumArgs; ++ArgIdx) {
2649 QualType FromArgType = FromFunctionType->getParamType(ArgIdx);
2650 QualType ToArgType = ToFunctionType->getParamType(ArgIdx);
2651 if (Context.getCanonicalType(FromArgType)
2652 == Context.getCanonicalType(ToArgType)) {
2653 // Okay, the types match exactly. Nothing to do.
2654 } else if (isObjCPointerConversion(FromArgType, ToArgType,
2655 ConvertedType, IncompatibleObjC)) {
2656 // Okay, we have an Objective-C pointer conversion.
2657 HasObjCConversion = true;
2658 } else {
2659 // Argument types are too different. Abort.
2660 return false;
2661 }
2662 }
2663
2664 if (HasObjCConversion) {
2665 // We had an Objective-C conversion. Allow this pointer
2666 // conversion, but complain about it.
2667 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2668 IncompatibleObjC = true;
2669 return true;
2670 }
2671 }
2672
2673 return false;
2674 }
2675
2676 /// Determine whether this is an Objective-C writeback conversion,
2677 /// used for parameter passing when performing automatic reference counting.
2678 ///
2679 /// \param FromType The type we're converting form.
2680 ///
2681 /// \param ToType The type we're converting to.
2682 ///
2683 /// \param ConvertedType The type that will be produced after applying
2684 /// this conversion.
isObjCWritebackConversion(QualType FromType,QualType ToType,QualType & ConvertedType)2685 bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType,
2686 QualType &ConvertedType) {
2687 if (!getLangOpts().ObjCAutoRefCount ||
2688 Context.hasSameUnqualifiedType(FromType, ToType))
2689 return false;
2690
2691 // Parameter must be a pointer to __autoreleasing (with no other qualifiers).
2692 QualType ToPointee;
2693 if (const PointerType *ToPointer = ToType->getAs<PointerType>())
2694 ToPointee = ToPointer->getPointeeType();
2695 else
2696 return false;
2697
2698 Qualifiers ToQuals = ToPointee.getQualifiers();
2699 if (!ToPointee->isObjCLifetimeType() ||
2700 ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing ||
2701 !ToQuals.withoutObjCLifetime().empty())
2702 return false;
2703
2704 // Argument must be a pointer to __strong to __weak.
2705 QualType FromPointee;
2706 if (const PointerType *FromPointer = FromType->getAs<PointerType>())
2707 FromPointee = FromPointer->getPointeeType();
2708 else
2709 return false;
2710
2711 Qualifiers FromQuals = FromPointee.getQualifiers();
2712 if (!FromPointee->isObjCLifetimeType() ||
2713 (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong &&
2714 FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak))
2715 return false;
2716
2717 // Make sure that we have compatible qualifiers.
2718 FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing);
2719 if (!ToQuals.compatiblyIncludes(FromQuals))
2720 return false;
2721
2722 // Remove qualifiers from the pointee type we're converting from; they
2723 // aren't used in the compatibility check belong, and we'll be adding back
2724 // qualifiers (with __autoreleasing) if the compatibility check succeeds.
2725 FromPointee = FromPointee.getUnqualifiedType();
2726
2727 // The unqualified form of the pointee types must be compatible.
2728 ToPointee = ToPointee.getUnqualifiedType();
2729 bool IncompatibleObjC;
2730 if (Context.typesAreCompatible(FromPointee, ToPointee))
2731 FromPointee = ToPointee;
2732 else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee,
2733 IncompatibleObjC))
2734 return false;
2735
2736 /// Construct the type we're converting to, which is a pointer to
2737 /// __autoreleasing pointee.
2738 FromPointee = Context.getQualifiedType(FromPointee, FromQuals);
2739 ConvertedType = Context.getPointerType(FromPointee);
2740 return true;
2741 }
2742
IsBlockPointerConversion(QualType FromType,QualType ToType,QualType & ConvertedType)2743 bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType,
2744 QualType& ConvertedType) {
2745 QualType ToPointeeType;
2746 if (const BlockPointerType *ToBlockPtr =
2747 ToType->getAs<BlockPointerType>())
2748 ToPointeeType = ToBlockPtr->getPointeeType();
2749 else
2750 return false;
2751
2752 QualType FromPointeeType;
2753 if (const BlockPointerType *FromBlockPtr =
2754 FromType->getAs<BlockPointerType>())
2755 FromPointeeType = FromBlockPtr->getPointeeType();
2756 else
2757 return false;
2758 // We have pointer to blocks, check whether the only
2759 // differences in the argument and result types are in Objective-C
2760 // pointer conversions. If so, we permit the conversion.
2761
2762 const FunctionProtoType *FromFunctionType
2763 = FromPointeeType->getAs<FunctionProtoType>();
2764 const FunctionProtoType *ToFunctionType
2765 = ToPointeeType->getAs<FunctionProtoType>();
2766
2767 if (!FromFunctionType || !ToFunctionType)
2768 return false;
2769
2770 if (Context.hasSameType(FromPointeeType, ToPointeeType))
2771 return true;
2772
2773 // Perform the quick checks that will tell us whether these
2774 // function types are obviously different.
2775 if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() ||
2776 FromFunctionType->isVariadic() != ToFunctionType->isVariadic())
2777 return false;
2778
2779 FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo();
2780 FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo();
2781 if (FromEInfo != ToEInfo)
2782 return false;
2783
2784 bool IncompatibleObjC = false;
2785 if (Context.hasSameType(FromFunctionType->getReturnType(),
2786 ToFunctionType->getReturnType())) {
2787 // Okay, the types match exactly. Nothing to do.
2788 } else {
2789 QualType RHS = FromFunctionType->getReturnType();
2790 QualType LHS = ToFunctionType->getReturnType();
2791 if ((!getLangOpts().CPlusPlus || !RHS->isRecordType()) &&
2792 !RHS.hasQualifiers() && LHS.hasQualifiers())
2793 LHS = LHS.getUnqualifiedType();
2794
2795 if (Context.hasSameType(RHS,LHS)) {
2796 // OK exact match.
2797 } else if (isObjCPointerConversion(RHS, LHS,
2798 ConvertedType, IncompatibleObjC)) {
2799 if (IncompatibleObjC)
2800 return false;
2801 // Okay, we have an Objective-C pointer conversion.
2802 }
2803 else
2804 return false;
2805 }
2806
2807 // Check argument types.
2808 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams();
2809 ArgIdx != NumArgs; ++ArgIdx) {
2810 IncompatibleObjC = false;
2811 QualType FromArgType = FromFunctionType->getParamType(ArgIdx);
2812 QualType ToArgType = ToFunctionType->getParamType(ArgIdx);
2813 if (Context.hasSameType(FromArgType, ToArgType)) {
2814 // Okay, the types match exactly. Nothing to do.
2815 } else if (isObjCPointerConversion(ToArgType, FromArgType,
2816 ConvertedType, IncompatibleObjC)) {
2817 if (IncompatibleObjC)
2818 return false;
2819 // Okay, we have an Objective-C pointer conversion.
2820 } else
2821 // Argument types are too different. Abort.
2822 return false;
2823 }
2824
2825 SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos;
2826 bool CanUseToFPT, CanUseFromFPT;
2827 if (!Context.mergeExtParameterInfo(ToFunctionType, FromFunctionType,
2828 CanUseToFPT, CanUseFromFPT,
2829 NewParamInfos))
2830 return false;
2831
2832 ConvertedType = ToType;
2833 return true;
2834 }
2835
2836 enum {
2837 ft_default,
2838 ft_different_class,
2839 ft_parameter_arity,
2840 ft_parameter_mismatch,
2841 ft_return_type,
2842 ft_qualifer_mismatch,
2843 ft_noexcept
2844 };
2845
2846 /// Attempts to get the FunctionProtoType from a Type. Handles
2847 /// MemberFunctionPointers properly.
tryGetFunctionProtoType(QualType FromType)2848 static const FunctionProtoType *tryGetFunctionProtoType(QualType FromType) {
2849 if (auto *FPT = FromType->getAs<FunctionProtoType>())
2850 return FPT;
2851
2852 if (auto *MPT = FromType->getAs<MemberPointerType>())
2853 return MPT->getPointeeType()->getAs<FunctionProtoType>();
2854
2855 return nullptr;
2856 }
2857
2858 /// HandleFunctionTypeMismatch - Gives diagnostic information for differeing
2859 /// function types. Catches different number of parameter, mismatch in
2860 /// parameter types, and different return types.
HandleFunctionTypeMismatch(PartialDiagnostic & PDiag,QualType FromType,QualType ToType)2861 void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag,
2862 QualType FromType, QualType ToType) {
2863 // If either type is not valid, include no extra info.
2864 if (FromType.isNull() || ToType.isNull()) {
2865 PDiag << ft_default;
2866 return;
2867 }
2868
2869 // Get the function type from the pointers.
2870 if (FromType->isMemberPointerType() && ToType->isMemberPointerType()) {
2871 const auto *FromMember = FromType->castAs<MemberPointerType>(),
2872 *ToMember = ToType->castAs<MemberPointerType>();
2873 if (!Context.hasSameType(FromMember->getClass(), ToMember->getClass())) {
2874 PDiag << ft_different_class << QualType(ToMember->getClass(), 0)
2875 << QualType(FromMember->getClass(), 0);
2876 return;
2877 }
2878 FromType = FromMember->getPointeeType();
2879 ToType = ToMember->getPointeeType();
2880 }
2881
2882 if (FromType->isPointerType())
2883 FromType = FromType->getPointeeType();
2884 if (ToType->isPointerType())
2885 ToType = ToType->getPointeeType();
2886
2887 // Remove references.
2888 FromType = FromType.getNonReferenceType();
2889 ToType = ToType.getNonReferenceType();
2890
2891 // Don't print extra info for non-specialized template functions.
2892 if (FromType->isInstantiationDependentType() &&
2893 !FromType->getAs<TemplateSpecializationType>()) {
2894 PDiag << ft_default;
2895 return;
2896 }
2897
2898 // No extra info for same types.
2899 if (Context.hasSameType(FromType, ToType)) {
2900 PDiag << ft_default;
2901 return;
2902 }
2903
2904 const FunctionProtoType *FromFunction = tryGetFunctionProtoType(FromType),
2905 *ToFunction = tryGetFunctionProtoType(ToType);
2906
2907 // Both types need to be function types.
2908 if (!FromFunction || !ToFunction) {
2909 PDiag << ft_default;
2910 return;
2911 }
2912
2913 if (FromFunction->getNumParams() != ToFunction->getNumParams()) {
2914 PDiag << ft_parameter_arity << ToFunction->getNumParams()
2915 << FromFunction->getNumParams();
2916 return;
2917 }
2918
2919 // Handle different parameter types.
2920 unsigned ArgPos;
2921 if (!FunctionParamTypesAreEqual(FromFunction, ToFunction, &ArgPos)) {
2922 PDiag << ft_parameter_mismatch << ArgPos + 1
2923 << ToFunction->getParamType(ArgPos)
2924 << FromFunction->getParamType(ArgPos);
2925 return;
2926 }
2927
2928 // Handle different return type.
2929 if (!Context.hasSameType(FromFunction->getReturnType(),
2930 ToFunction->getReturnType())) {
2931 PDiag << ft_return_type << ToFunction->getReturnType()
2932 << FromFunction->getReturnType();
2933 return;
2934 }
2935
2936 if (FromFunction->getMethodQuals() != ToFunction->getMethodQuals()) {
2937 PDiag << ft_qualifer_mismatch << ToFunction->getMethodQuals()
2938 << FromFunction->getMethodQuals();
2939 return;
2940 }
2941
2942 // Handle exception specification differences on canonical type (in C++17
2943 // onwards).
2944 if (cast<FunctionProtoType>(FromFunction->getCanonicalTypeUnqualified())
2945 ->isNothrow() !=
2946 cast<FunctionProtoType>(ToFunction->getCanonicalTypeUnqualified())
2947 ->isNothrow()) {
2948 PDiag << ft_noexcept;
2949 return;
2950 }
2951
2952 // Unable to find a difference, so add no extra info.
2953 PDiag << ft_default;
2954 }
2955
2956 /// FunctionParamTypesAreEqual - This routine checks two function proto types
2957 /// for equality of their parameter types. Caller has already checked that
2958 /// they have same number of parameters. If the parameters are different,
2959 /// ArgPos will have the parameter index of the first different parameter.
2960 /// If `Reversed` is true, the parameters of `NewType` will be compared in
2961 /// reverse order. That's useful if one of the functions is being used as a C++20
2962 /// synthesized operator overload with a reversed parameter order.
FunctionParamTypesAreEqual(const FunctionProtoType * OldType,const FunctionProtoType * NewType,unsigned * ArgPos,bool Reversed)2963 bool Sema::FunctionParamTypesAreEqual(const FunctionProtoType *OldType,
2964 const FunctionProtoType *NewType,
2965 unsigned *ArgPos, bool Reversed) {
2966 assert(OldType->getNumParams() == NewType->getNumParams() &&
2967 "Can't compare parameters of functions with different number of "
2968 "parameters!");
2969 for (size_t I = 0; I < OldType->getNumParams(); I++) {
2970 // Reverse iterate over the parameters of `OldType` if `Reversed` is true.
2971 size_t J = Reversed ? (OldType->getNumParams() - I - 1) : I;
2972
2973 // Ignore address spaces in pointee type. This is to disallow overloading
2974 // on __ptr32/__ptr64 address spaces.
2975 QualType Old = Context.removePtrSizeAddrSpace(OldType->getParamType(I).getUnqualifiedType());
2976 QualType New = Context.removePtrSizeAddrSpace(NewType->getParamType(J).getUnqualifiedType());
2977
2978 if (!Context.hasSameType(Old, New)) {
2979 if (ArgPos)
2980 *ArgPos = I;
2981 return false;
2982 }
2983 }
2984 return true;
2985 }
2986
2987 /// CheckPointerConversion - Check the pointer conversion from the
2988 /// expression From to the type ToType. This routine checks for
2989 /// ambiguous or inaccessible derived-to-base pointer
2990 /// conversions for which IsPointerConversion has already returned
2991 /// true. It returns true and produces a diagnostic if there was an
2992 /// error, or returns false otherwise.
CheckPointerConversion(Expr * From,QualType ToType,CastKind & Kind,CXXCastPath & BasePath,bool IgnoreBaseAccess,bool Diagnose)2993 bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
2994 CastKind &Kind,
2995 CXXCastPath& BasePath,
2996 bool IgnoreBaseAccess,
2997 bool Diagnose) {
2998 QualType FromType = From->getType();
2999 bool IsCStyleOrFunctionalCast = IgnoreBaseAccess;
3000
3001 Kind = CK_BitCast;
3002
3003 if (Diagnose && !IsCStyleOrFunctionalCast && !FromType->isAnyPointerType() &&
3004 From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) ==
3005 Expr::NPCK_ZeroExpression) {
3006 if (Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy))
3007 DiagRuntimeBehavior(From->getExprLoc(), From,
3008 PDiag(diag::warn_impcast_bool_to_null_pointer)
3009 << ToType << From->getSourceRange());
3010 else if (!isUnevaluatedContext())
3011 Diag(From->getExprLoc(), diag::warn_non_literal_null_pointer)
3012 << ToType << From->getSourceRange();
3013 }
3014 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
3015 if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) {
3016 QualType FromPointeeType = FromPtrType->getPointeeType(),
3017 ToPointeeType = ToPtrType->getPointeeType();
3018
3019 if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
3020 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
3021 // We must have a derived-to-base conversion. Check an
3022 // ambiguous or inaccessible conversion.
3023 unsigned InaccessibleID = 0;
3024 unsigned AmbiguousID = 0;
3025 if (Diagnose) {
3026 InaccessibleID = diag::err_upcast_to_inaccessible_base;
3027 AmbiguousID = diag::err_ambiguous_derived_to_base_conv;
3028 }
3029 if (CheckDerivedToBaseConversion(
3030 FromPointeeType, ToPointeeType, InaccessibleID, AmbiguousID,
3031 From->getExprLoc(), From->getSourceRange(), DeclarationName(),
3032 &BasePath, IgnoreBaseAccess))
3033 return true;
3034
3035 // The conversion was successful.
3036 Kind = CK_DerivedToBase;
3037 }
3038
3039 if (Diagnose && !IsCStyleOrFunctionalCast &&
3040 FromPointeeType->isFunctionType() && ToPointeeType->isVoidType()) {
3041 assert(getLangOpts().MSVCCompat &&
3042 "this should only be possible with MSVCCompat!");
3043 Diag(From->getExprLoc(), diag::ext_ms_impcast_fn_obj)
3044 << From->getSourceRange();
3045 }
3046 }
3047 } else if (const ObjCObjectPointerType *ToPtrType =
3048 ToType->getAs<ObjCObjectPointerType>()) {
3049 if (const ObjCObjectPointerType *FromPtrType =
3050 FromType->getAs<ObjCObjectPointerType>()) {
3051 // Objective-C++ conversions are always okay.
3052 // FIXME: We should have a different class of conversions for the
3053 // Objective-C++ implicit conversions.
3054 if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
3055 return false;
3056 } else if (FromType->isBlockPointerType()) {
3057 Kind = CK_BlockPointerToObjCPointerCast;
3058 } else {
3059 Kind = CK_CPointerToObjCPointerCast;
3060 }
3061 } else if (ToType->isBlockPointerType()) {
3062 if (!FromType->isBlockPointerType())
3063 Kind = CK_AnyPointerToBlockPointerCast;
3064 }
3065
3066 // We shouldn't fall into this case unless it's valid for other
3067 // reasons.
3068 if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
3069 Kind = CK_NullToPointer;
3070
3071 return false;
3072 }
3073
3074 /// IsMemberPointerConversion - Determines whether the conversion of the
3075 /// expression From, which has the (possibly adjusted) type FromType, can be
3076 /// converted to the type ToType via a member pointer conversion (C++ 4.11).
3077 /// If so, returns true and places the converted type (that might differ from
3078 /// ToType in its cv-qualifiers at some level) into ConvertedType.
IsMemberPointerConversion(Expr * From,QualType FromType,QualType ToType,bool InOverloadResolution,QualType & ConvertedType)3079 bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
3080 QualType ToType,
3081 bool InOverloadResolution,
3082 QualType &ConvertedType) {
3083 const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
3084 if (!ToTypePtr)
3085 return false;
3086
3087 // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
3088 if (From->isNullPointerConstant(Context,
3089 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
3090 : Expr::NPC_ValueDependentIsNull)) {
3091 ConvertedType = ToType;
3092 return true;
3093 }
3094
3095 // Otherwise, both types have to be member pointers.
3096 const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
3097 if (!FromTypePtr)
3098 return false;
3099
3100 // A pointer to member of B can be converted to a pointer to member of D,
3101 // where D is derived from B (C++ 4.11p2).
3102 QualType FromClass(FromTypePtr->getClass(), 0);
3103 QualType ToClass(ToTypePtr->getClass(), 0);
3104
3105 if (!Context.hasSameUnqualifiedType(FromClass, ToClass) &&
3106 IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass)) {
3107 ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
3108 ToClass.getTypePtr());
3109 return true;
3110 }
3111
3112 return false;
3113 }
3114
3115 /// CheckMemberPointerConversion - Check the member pointer conversion from the
3116 /// expression From to the type ToType. This routine checks for ambiguous or
3117 /// virtual or inaccessible base-to-derived member pointer conversions
3118 /// for which IsMemberPointerConversion has already returned true. It returns
3119 /// true and produces a diagnostic if there was an error, or returns false
3120 /// otherwise.
CheckMemberPointerConversion(Expr * From,QualType ToType,CastKind & Kind,CXXCastPath & BasePath,bool IgnoreBaseAccess)3121 bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
3122 CastKind &Kind,
3123 CXXCastPath &BasePath,
3124 bool IgnoreBaseAccess) {
3125 QualType FromType = From->getType();
3126 const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
3127 if (!FromPtrType) {
3128 // This must be a null pointer to member pointer conversion
3129 assert(From->isNullPointerConstant(Context,
3130 Expr::NPC_ValueDependentIsNull) &&
3131 "Expr must be null pointer constant!");
3132 Kind = CK_NullToMemberPointer;
3133 return false;
3134 }
3135
3136 const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
3137 assert(ToPtrType && "No member pointer cast has a target type "
3138 "that is not a member pointer.");
3139
3140 QualType FromClass = QualType(FromPtrType->getClass(), 0);
3141 QualType ToClass = QualType(ToPtrType->getClass(), 0);
3142
3143 // FIXME: What about dependent types?
3144 assert(FromClass->isRecordType() && "Pointer into non-class.");
3145 assert(ToClass->isRecordType() && "Pointer into non-class.");
3146
3147 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
3148 /*DetectVirtual=*/true);
3149 bool DerivationOkay =
3150 IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass, Paths);
3151 assert(DerivationOkay &&
3152 "Should not have been called if derivation isn't OK.");
3153 (void)DerivationOkay;
3154
3155 if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
3156 getUnqualifiedType())) {
3157 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
3158 Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
3159 << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
3160 return true;
3161 }
3162
3163 if (const RecordType *VBase = Paths.getDetectedVirtual()) {
3164 Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
3165 << FromClass << ToClass << QualType(VBase, 0)
3166 << From->getSourceRange();
3167 return true;
3168 }
3169
3170 if (!IgnoreBaseAccess)
3171 CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
3172 Paths.front(),
3173 diag::err_downcast_from_inaccessible_base);
3174
3175 // Must be a base to derived member conversion.
3176 BuildBasePathArray(Paths, BasePath);
3177 Kind = CK_BaseToDerivedMemberPointer;
3178 return false;
3179 }
3180
3181 /// Determine whether the lifetime conversion between the two given
3182 /// qualifiers sets is nontrivial.
isNonTrivialObjCLifetimeConversion(Qualifiers FromQuals,Qualifiers ToQuals)3183 static bool isNonTrivialObjCLifetimeConversion(Qualifiers FromQuals,
3184 Qualifiers ToQuals) {
3185 // Converting anything to const __unsafe_unretained is trivial.
3186 if (ToQuals.hasConst() &&
3187 ToQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone)
3188 return false;
3189
3190 return true;
3191 }
3192
3193 /// Perform a single iteration of the loop for checking if a qualification
3194 /// conversion is valid.
3195 ///
3196 /// Specifically, check whether any change between the qualifiers of \p
3197 /// FromType and \p ToType is permissible, given knowledge about whether every
3198 /// outer layer is const-qualified.
isQualificationConversionStep(QualType FromType,QualType ToType,bool CStyle,bool IsTopLevel,bool & PreviousToQualsIncludeConst,bool & ObjCLifetimeConversion)3199 static bool isQualificationConversionStep(QualType FromType, QualType ToType,
3200 bool CStyle, bool IsTopLevel,
3201 bool &PreviousToQualsIncludeConst,
3202 bool &ObjCLifetimeConversion) {
3203 Qualifiers FromQuals = FromType.getQualifiers();
3204 Qualifiers ToQuals = ToType.getQualifiers();
3205
3206 // Ignore __unaligned qualifier.
3207 FromQuals.removeUnaligned();
3208
3209 // Objective-C ARC:
3210 // Check Objective-C lifetime conversions.
3211 if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime()) {
3212 if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) {
3213 if (isNonTrivialObjCLifetimeConversion(FromQuals, ToQuals))
3214 ObjCLifetimeConversion = true;
3215 FromQuals.removeObjCLifetime();
3216 ToQuals.removeObjCLifetime();
3217 } else {
3218 // Qualification conversions cannot cast between different
3219 // Objective-C lifetime qualifiers.
3220 return false;
3221 }
3222 }
3223
3224 // Allow addition/removal of GC attributes but not changing GC attributes.
3225 if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() &&
3226 (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) {
3227 FromQuals.removeObjCGCAttr();
3228 ToQuals.removeObjCGCAttr();
3229 }
3230
3231 // -- for every j > 0, if const is in cv 1,j then const is in cv
3232 // 2,j, and similarly for volatile.
3233 if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals))
3234 return false;
3235
3236 // If address spaces mismatch:
3237 // - in top level it is only valid to convert to addr space that is a
3238 // superset in all cases apart from C-style casts where we allow
3239 // conversions between overlapping address spaces.
3240 // - in non-top levels it is not a valid conversion.
3241 if (ToQuals.getAddressSpace() != FromQuals.getAddressSpace() &&
3242 (!IsTopLevel ||
3243 !(ToQuals.isAddressSpaceSupersetOf(FromQuals) ||
3244 (CStyle && FromQuals.isAddressSpaceSupersetOf(ToQuals)))))
3245 return false;
3246
3247 // -- if the cv 1,j and cv 2,j are different, then const is in
3248 // every cv for 0 < k < j.
3249 if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers() &&
3250 !PreviousToQualsIncludeConst)
3251 return false;
3252
3253 // The following wording is from C++20, where the result of the conversion
3254 // is T3, not T2.
3255 // -- if [...] P1,i [...] is "array of unknown bound of", P3,i is
3256 // "array of unknown bound of"
3257 if (FromType->isIncompleteArrayType() && !ToType->isIncompleteArrayType())
3258 return false;
3259
3260 // -- if the resulting P3,i is different from P1,i [...], then const is
3261 // added to every cv 3_k for 0 < k < i.
3262 if (!CStyle && FromType->isConstantArrayType() &&
3263 ToType->isIncompleteArrayType() && !PreviousToQualsIncludeConst)
3264 return false;
3265
3266 // Keep track of whether all prior cv-qualifiers in the "to" type
3267 // include const.
3268 PreviousToQualsIncludeConst =
3269 PreviousToQualsIncludeConst && ToQuals.hasConst();
3270 return true;
3271 }
3272
3273 /// IsQualificationConversion - Determines whether the conversion from
3274 /// an rvalue of type FromType to ToType is a qualification conversion
3275 /// (C++ 4.4).
3276 ///
3277 /// \param ObjCLifetimeConversion Output parameter that will be set to indicate
3278 /// when the qualification conversion involves a change in the Objective-C
3279 /// object lifetime.
3280 bool
IsQualificationConversion(QualType FromType,QualType ToType,bool CStyle,bool & ObjCLifetimeConversion)3281 Sema::IsQualificationConversion(QualType FromType, QualType ToType,
3282 bool CStyle, bool &ObjCLifetimeConversion) {
3283 FromType = Context.getCanonicalType(FromType);
3284 ToType = Context.getCanonicalType(ToType);
3285 ObjCLifetimeConversion = false;
3286
3287 // If FromType and ToType are the same type, this is not a
3288 // qualification conversion.
3289 if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
3290 return false;
3291
3292 // (C++ 4.4p4):
3293 // A conversion can add cv-qualifiers at levels other than the first
3294 // in multi-level pointers, subject to the following rules: [...]
3295 bool PreviousToQualsIncludeConst = true;
3296 bool UnwrappedAnyPointer = false;
3297 while (Context.UnwrapSimilarTypes(FromType, ToType)) {
3298 if (!isQualificationConversionStep(
3299 FromType, ToType, CStyle, !UnwrappedAnyPointer,
3300 PreviousToQualsIncludeConst, ObjCLifetimeConversion))
3301 return false;
3302 UnwrappedAnyPointer = true;
3303 }
3304
3305 // We are left with FromType and ToType being the pointee types
3306 // after unwrapping the original FromType and ToType the same number
3307 // of times. If we unwrapped any pointers, and if FromType and
3308 // ToType have the same unqualified type (since we checked
3309 // qualifiers above), then this is a qualification conversion.
3310 return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
3311 }
3312
3313 /// - Determine whether this is a conversion from a scalar type to an
3314 /// atomic type.
3315 ///
3316 /// If successful, updates \c SCS's second and third steps in the conversion
3317 /// sequence to finish the conversion.
tryAtomicConversion(Sema & S,Expr * From,QualType ToType,bool InOverloadResolution,StandardConversionSequence & SCS,bool CStyle)3318 static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
3319 bool InOverloadResolution,
3320 StandardConversionSequence &SCS,
3321 bool CStyle) {
3322 const AtomicType *ToAtomic = ToType->getAs<AtomicType>();
3323 if (!ToAtomic)
3324 return false;
3325
3326 StandardConversionSequence InnerSCS;
3327 if (!IsStandardConversion(S, From, ToAtomic->getValueType(),
3328 InOverloadResolution, InnerSCS,
3329 CStyle, /*AllowObjCWritebackConversion=*/false))
3330 return false;
3331
3332 SCS.Second = InnerSCS.Second;
3333 SCS.setToType(1, InnerSCS.getToType(1));
3334 SCS.Third = InnerSCS.Third;
3335 SCS.QualificationIncludesObjCLifetime
3336 = InnerSCS.QualificationIncludesObjCLifetime;
3337 SCS.setToType(2, InnerSCS.getToType(2));
3338 return true;
3339 }
3340
isFirstArgumentCompatibleWithType(ASTContext & Context,CXXConstructorDecl * Constructor,QualType Type)3341 static bool isFirstArgumentCompatibleWithType(ASTContext &Context,
3342 CXXConstructorDecl *Constructor,
3343 QualType Type) {
3344 const auto *CtorType = Constructor->getType()->castAs<FunctionProtoType>();
3345 if (CtorType->getNumParams() > 0) {
3346 QualType FirstArg = CtorType->getParamType(0);
3347 if (Context.hasSameUnqualifiedType(Type, FirstArg.getNonReferenceType()))
3348 return true;
3349 }
3350 return false;
3351 }
3352
3353 static OverloadingResult
IsInitializerListConstructorConversion(Sema & S,Expr * From,QualType ToType,CXXRecordDecl * To,UserDefinedConversionSequence & User,OverloadCandidateSet & CandidateSet,bool AllowExplicit)3354 IsInitializerListConstructorConversion(Sema &S, Expr *From, QualType ToType,
3355 CXXRecordDecl *To,
3356 UserDefinedConversionSequence &User,
3357 OverloadCandidateSet &CandidateSet,
3358 bool AllowExplicit) {
3359 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
3360 for (auto *D : S.LookupConstructors(To)) {
3361 auto Info = getConstructorInfo(D);
3362 if (!Info)
3363 continue;
3364
3365 bool Usable = !Info.Constructor->isInvalidDecl() &&
3366 S.isInitListConstructor(Info.Constructor);
3367 if (Usable) {
3368 bool SuppressUserConversions = false;
3369 if (Info.ConstructorTmpl)
3370 S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
3371 /*ExplicitArgs*/ nullptr, From,
3372 CandidateSet, SuppressUserConversions,
3373 /*PartialOverloading*/ false,
3374 AllowExplicit);
3375 else
3376 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, From,
3377 CandidateSet, SuppressUserConversions,
3378 /*PartialOverloading*/ false, AllowExplicit);
3379 }
3380 }
3381
3382 bool HadMultipleCandidates = (CandidateSet.size() > 1);
3383
3384 OverloadCandidateSet::iterator Best;
3385 switch (auto Result =
3386 CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) {
3387 case OR_Deleted:
3388 case OR_Success: {
3389 // Record the standard conversion we used and the conversion function.
3390 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
3391 QualType ThisType = Constructor->getThisType();
3392 // Initializer lists don't have conversions as such.
3393 User.Before.setAsIdentityConversion();
3394 User.HadMultipleCandidates = HadMultipleCandidates;
3395 User.ConversionFunction = Constructor;
3396 User.FoundConversionFunction = Best->FoundDecl;
3397 User.After.setAsIdentityConversion();
3398 User.After.setFromType(ThisType->castAs<PointerType>()->getPointeeType());
3399 User.After.setAllToTypes(ToType);
3400 return Result;
3401 }
3402
3403 case OR_No_Viable_Function:
3404 return OR_No_Viable_Function;
3405 case OR_Ambiguous:
3406 return OR_Ambiguous;
3407 }
3408
3409 llvm_unreachable("Invalid OverloadResult!");
3410 }
3411
3412 /// Determines whether there is a user-defined conversion sequence
3413 /// (C++ [over.ics.user]) that converts expression From to the type
3414 /// ToType. If such a conversion exists, User will contain the
3415 /// user-defined conversion sequence that performs such a conversion
3416 /// and this routine will return true. Otherwise, this routine returns
3417 /// false and User is unspecified.
3418 ///
3419 /// \param AllowExplicit true if the conversion should consider C++0x
3420 /// "explicit" conversion functions as well as non-explicit conversion
3421 /// functions (C++0x [class.conv.fct]p2).
3422 ///
3423 /// \param AllowObjCConversionOnExplicit true if the conversion should
3424 /// allow an extra Objective-C pointer conversion on uses of explicit
3425 /// constructors. Requires \c AllowExplicit to also be set.
3426 static OverloadingResult
IsUserDefinedConversion(Sema & S,Expr * From,QualType ToType,UserDefinedConversionSequence & User,OverloadCandidateSet & CandidateSet,AllowedExplicit AllowExplicit,bool AllowObjCConversionOnExplicit)3427 IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
3428 UserDefinedConversionSequence &User,
3429 OverloadCandidateSet &CandidateSet,
3430 AllowedExplicit AllowExplicit,
3431 bool AllowObjCConversionOnExplicit) {
3432 assert(AllowExplicit != AllowedExplicit::None ||
3433 !AllowObjCConversionOnExplicit);
3434 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
3435
3436 // Whether we will only visit constructors.
3437 bool ConstructorsOnly = false;
3438
3439 // If the type we are conversion to is a class type, enumerate its
3440 // constructors.
3441 if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
3442 // C++ [over.match.ctor]p1:
3443 // When objects of class type are direct-initialized (8.5), or
3444 // copy-initialized from an expression of the same or a
3445 // derived class type (8.5), overload resolution selects the
3446 // constructor. [...] For copy-initialization, the candidate
3447 // functions are all the converting constructors (12.3.1) of
3448 // that class. The argument list is the expression-list within
3449 // the parentheses of the initializer.
3450 if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) ||
3451 (From->getType()->getAs<RecordType>() &&
3452 S.IsDerivedFrom(From->getBeginLoc(), From->getType(), ToType)))
3453 ConstructorsOnly = true;
3454
3455 if (!S.isCompleteType(From->getExprLoc(), ToType)) {
3456 // We're not going to find any constructors.
3457 } else if (CXXRecordDecl *ToRecordDecl
3458 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
3459
3460 Expr **Args = &From;
3461 unsigned NumArgs = 1;
3462 bool ListInitializing = false;
3463 if (InitListExpr *InitList = dyn_cast<InitListExpr>(From)) {
3464 // But first, see if there is an init-list-constructor that will work.
3465 OverloadingResult Result = IsInitializerListConstructorConversion(
3466 S, From, ToType, ToRecordDecl, User, CandidateSet,
3467 AllowExplicit == AllowedExplicit::All);
3468 if (Result != OR_No_Viable_Function)
3469 return Result;
3470 // Never mind.
3471 CandidateSet.clear(
3472 OverloadCandidateSet::CSK_InitByUserDefinedConversion);
3473
3474 // If we're list-initializing, we pass the individual elements as
3475 // arguments, not the entire list.
3476 Args = InitList->getInits();
3477 NumArgs = InitList->getNumInits();
3478 ListInitializing = true;
3479 }
3480
3481 for (auto *D : S.LookupConstructors(ToRecordDecl)) {
3482 auto Info = getConstructorInfo(D);
3483 if (!Info)
3484 continue;
3485
3486 bool Usable = !Info.Constructor->isInvalidDecl();
3487 if (!ListInitializing)
3488 Usable = Usable && Info.Constructor->isConvertingConstructor(
3489 /*AllowExplicit*/ true);
3490 if (Usable) {
3491 bool SuppressUserConversions = !ConstructorsOnly;
3492 // C++20 [over.best.ics.general]/4.5:
3493 // if the target is the first parameter of a constructor [of class
3494 // X] and the constructor [...] is a candidate by [...] the second
3495 // phase of [over.match.list] when the initializer list has exactly
3496 // one element that is itself an initializer list, [...] and the
3497 // conversion is to X or reference to cv X, user-defined conversion
3498 // sequences are not cnosidered.
3499 if (SuppressUserConversions && ListInitializing) {
3500 SuppressUserConversions =
3501 NumArgs == 1 && isa<InitListExpr>(Args[0]) &&
3502 isFirstArgumentCompatibleWithType(S.Context, Info.Constructor,
3503 ToType);
3504 }
3505 if (Info.ConstructorTmpl)
3506 S.AddTemplateOverloadCandidate(
3507 Info.ConstructorTmpl, Info.FoundDecl,
3508 /*ExplicitArgs*/ nullptr, llvm::makeArrayRef(Args, NumArgs),
3509 CandidateSet, SuppressUserConversions,
3510 /*PartialOverloading*/ false,
3511 AllowExplicit == AllowedExplicit::All);
3512 else
3513 // Allow one user-defined conversion when user specifies a
3514 // From->ToType conversion via an static cast (c-style, etc).
3515 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
3516 llvm::makeArrayRef(Args, NumArgs),
3517 CandidateSet, SuppressUserConversions,
3518 /*PartialOverloading*/ false,
3519 AllowExplicit == AllowedExplicit::All);
3520 }
3521 }
3522 }
3523 }
3524
3525 // Enumerate conversion functions, if we're allowed to.
3526 if (ConstructorsOnly || isa<InitListExpr>(From)) {
3527 } else if (!S.isCompleteType(From->getBeginLoc(), From->getType())) {
3528 // No conversion functions from incomplete types.
3529 } else if (const RecordType *FromRecordType =
3530 From->getType()->getAs<RecordType>()) {
3531 if (CXXRecordDecl *FromRecordDecl
3532 = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
3533 // Add all of the conversion functions as candidates.
3534 const auto &Conversions = FromRecordDecl->getVisibleConversionFunctions();
3535 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
3536 DeclAccessPair FoundDecl = I.getPair();
3537 NamedDecl *D = FoundDecl.getDecl();
3538 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
3539 if (isa<UsingShadowDecl>(D))
3540 D = cast<UsingShadowDecl>(D)->getTargetDecl();
3541
3542 CXXConversionDecl *Conv;
3543 FunctionTemplateDecl *ConvTemplate;
3544 if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
3545 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3546 else
3547 Conv = cast<CXXConversionDecl>(D);
3548
3549 if (ConvTemplate)
3550 S.AddTemplateConversionCandidate(
3551 ConvTemplate, FoundDecl, ActingContext, From, ToType,
3552 CandidateSet, AllowObjCConversionOnExplicit,
3553 AllowExplicit != AllowedExplicit::None);
3554 else
3555 S.AddConversionCandidate(Conv, FoundDecl, ActingContext, From, ToType,
3556 CandidateSet, AllowObjCConversionOnExplicit,
3557 AllowExplicit != AllowedExplicit::None);
3558 }
3559 }
3560 }
3561
3562 bool HadMultipleCandidates = (CandidateSet.size() > 1);
3563
3564 OverloadCandidateSet::iterator Best;
3565 switch (auto Result =
3566 CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) {
3567 case OR_Success:
3568 case OR_Deleted:
3569 // Record the standard conversion we used and the conversion function.
3570 if (CXXConstructorDecl *Constructor
3571 = dyn_cast<CXXConstructorDecl>(Best->Function)) {
3572 // C++ [over.ics.user]p1:
3573 // If the user-defined conversion is specified by a
3574 // constructor (12.3.1), the initial standard conversion
3575 // sequence converts the source type to the type required by
3576 // the argument of the constructor.
3577 //
3578 QualType ThisType = Constructor->getThisType();
3579 if (isa<InitListExpr>(From)) {
3580 // Initializer lists don't have conversions as such.
3581 User.Before.setAsIdentityConversion();
3582 } else {
3583 if (Best->Conversions[0].isEllipsis())
3584 User.EllipsisConversion = true;
3585 else {
3586 User.Before = Best->Conversions[0].Standard;
3587 User.EllipsisConversion = false;
3588 }
3589 }
3590 User.HadMultipleCandidates = HadMultipleCandidates;
3591 User.ConversionFunction = Constructor;
3592 User.FoundConversionFunction = Best->FoundDecl;
3593 User.After.setAsIdentityConversion();
3594 User.After.setFromType(ThisType->castAs<PointerType>()->getPointeeType());
3595 User.After.setAllToTypes(ToType);
3596 return Result;
3597 }
3598 if (CXXConversionDecl *Conversion
3599 = dyn_cast<CXXConversionDecl>(Best->Function)) {
3600 // C++ [over.ics.user]p1:
3601 //
3602 // [...] If the user-defined conversion is specified by a
3603 // conversion function (12.3.2), the initial standard
3604 // conversion sequence converts the source type to the
3605 // implicit object parameter of the conversion function.
3606 User.Before = Best->Conversions[0].Standard;
3607 User.HadMultipleCandidates = HadMultipleCandidates;
3608 User.ConversionFunction = Conversion;
3609 User.FoundConversionFunction = Best->FoundDecl;
3610 User.EllipsisConversion = false;
3611
3612 // C++ [over.ics.user]p2:
3613 // The second standard conversion sequence converts the
3614 // result of the user-defined conversion to the target type
3615 // for the sequence. Since an implicit conversion sequence
3616 // is an initialization, the special rules for
3617 // initialization by user-defined conversion apply when
3618 // selecting the best user-defined conversion for a
3619 // user-defined conversion sequence (see 13.3.3 and
3620 // 13.3.3.1).
3621 User.After = Best->FinalConversion;
3622 return Result;
3623 }
3624 llvm_unreachable("Not a constructor or conversion function?");
3625
3626 case OR_No_Viable_Function:
3627 return OR_No_Viable_Function;
3628
3629 case OR_Ambiguous:
3630 return OR_Ambiguous;
3631 }
3632
3633 llvm_unreachable("Invalid OverloadResult!");
3634 }
3635
3636 bool
DiagnoseMultipleUserDefinedConversion(Expr * From,QualType ToType)3637 Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
3638 ImplicitConversionSequence ICS;
3639 OverloadCandidateSet CandidateSet(From->getExprLoc(),
3640 OverloadCandidateSet::CSK_Normal);
3641 OverloadingResult OvResult =
3642 IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined,
3643 CandidateSet, AllowedExplicit::None, false);
3644
3645 if (!(OvResult == OR_Ambiguous ||
3646 (OvResult == OR_No_Viable_Function && !CandidateSet.empty())))
3647 return false;
3648
3649 auto Cands = CandidateSet.CompleteCandidates(
3650 *this,
3651 OvResult == OR_Ambiguous ? OCD_AmbiguousCandidates : OCD_AllCandidates,
3652 From);
3653 if (OvResult == OR_Ambiguous)
3654 Diag(From->getBeginLoc(), diag::err_typecheck_ambiguous_condition)
3655 << From->getType() << ToType << From->getSourceRange();
3656 else { // OR_No_Viable_Function && !CandidateSet.empty()
3657 if (!RequireCompleteType(From->getBeginLoc(), ToType,
3658 diag::err_typecheck_nonviable_condition_incomplete,
3659 From->getType(), From->getSourceRange()))
3660 Diag(From->getBeginLoc(), diag::err_typecheck_nonviable_condition)
3661 << false << From->getType() << From->getSourceRange() << ToType;
3662 }
3663
3664 CandidateSet.NoteCandidates(
3665 *this, From, Cands);
3666 return true;
3667 }
3668
3669 // Helper for compareConversionFunctions that gets the FunctionType that the
3670 // conversion-operator return value 'points' to, or nullptr.
3671 static const FunctionType *
getConversionOpReturnTyAsFunction(CXXConversionDecl * Conv)3672 getConversionOpReturnTyAsFunction(CXXConversionDecl *Conv) {
3673 const FunctionType *ConvFuncTy = Conv->getType()->castAs<FunctionType>();
3674 const PointerType *RetPtrTy =
3675 ConvFuncTy->getReturnType()->getAs<PointerType>();
3676
3677 if (!RetPtrTy)
3678 return nullptr;
3679
3680 return RetPtrTy->getPointeeType()->getAs<FunctionType>();
3681 }
3682
3683 /// Compare the user-defined conversion functions or constructors
3684 /// of two user-defined conversion sequences to determine whether any ordering
3685 /// is possible.
3686 static ImplicitConversionSequence::CompareKind
compareConversionFunctions(Sema & S,FunctionDecl * Function1,FunctionDecl * Function2)3687 compareConversionFunctions(Sema &S, FunctionDecl *Function1,
3688 FunctionDecl *Function2) {
3689 CXXConversionDecl *Conv1 = dyn_cast_or_null<CXXConversionDecl>(Function1);
3690 CXXConversionDecl *Conv2 = dyn_cast_or_null<CXXConversionDecl>(Function2);
3691 if (!Conv1 || !Conv2)
3692 return ImplicitConversionSequence::Indistinguishable;
3693
3694 if (!Conv1->getParent()->isLambda() || !Conv2->getParent()->isLambda())
3695 return ImplicitConversionSequence::Indistinguishable;
3696
3697 // Objective-C++:
3698 // If both conversion functions are implicitly-declared conversions from
3699 // a lambda closure type to a function pointer and a block pointer,
3700 // respectively, always prefer the conversion to a function pointer,
3701 // because the function pointer is more lightweight and is more likely
3702 // to keep code working.
3703 if (S.getLangOpts().ObjC && S.getLangOpts().CPlusPlus11) {
3704 bool Block1 = Conv1->getConversionType()->isBlockPointerType();
3705 bool Block2 = Conv2->getConversionType()->isBlockPointerType();
3706 if (Block1 != Block2)
3707 return Block1 ? ImplicitConversionSequence::Worse
3708 : ImplicitConversionSequence::Better;
3709 }
3710
3711 // In order to support multiple calling conventions for the lambda conversion
3712 // operator (such as when the free and member function calling convention is
3713 // different), prefer the 'free' mechanism, followed by the calling-convention
3714 // of operator(). The latter is in place to support the MSVC-like solution of
3715 // defining ALL of the possible conversions in regards to calling-convention.
3716 const FunctionType *Conv1FuncRet = getConversionOpReturnTyAsFunction(Conv1);
3717 const FunctionType *Conv2FuncRet = getConversionOpReturnTyAsFunction(Conv2);
3718
3719 if (Conv1FuncRet && Conv2FuncRet &&
3720 Conv1FuncRet->getCallConv() != Conv2FuncRet->getCallConv()) {
3721 CallingConv Conv1CC = Conv1FuncRet->getCallConv();
3722 CallingConv Conv2CC = Conv2FuncRet->getCallConv();
3723
3724 CXXMethodDecl *CallOp = Conv2->getParent()->getLambdaCallOperator();
3725 const auto *CallOpProto = CallOp->getType()->castAs<FunctionProtoType>();
3726
3727 CallingConv CallOpCC =
3728 CallOp->getType()->castAs<FunctionType>()->getCallConv();
3729 CallingConv DefaultFree = S.Context.getDefaultCallingConvention(
3730 CallOpProto->isVariadic(), /*IsCXXMethod=*/false);
3731 CallingConv DefaultMember = S.Context.getDefaultCallingConvention(
3732 CallOpProto->isVariadic(), /*IsCXXMethod=*/true);
3733
3734 CallingConv PrefOrder[] = {DefaultFree, DefaultMember, CallOpCC};
3735 for (CallingConv CC : PrefOrder) {
3736 if (Conv1CC == CC)
3737 return ImplicitConversionSequence::Better;
3738 if (Conv2CC == CC)
3739 return ImplicitConversionSequence::Worse;
3740 }
3741 }
3742
3743 return ImplicitConversionSequence::Indistinguishable;
3744 }
3745
hasDeprecatedStringLiteralToCharPtrConversion(const ImplicitConversionSequence & ICS)3746 static bool hasDeprecatedStringLiteralToCharPtrConversion(
3747 const ImplicitConversionSequence &ICS) {
3748 return (ICS.isStandard() && ICS.Standard.DeprecatedStringLiteralToCharPtr) ||
3749 (ICS.isUserDefined() &&
3750 ICS.UserDefined.Before.DeprecatedStringLiteralToCharPtr);
3751 }
3752
3753 /// CompareImplicitConversionSequences - Compare two implicit
3754 /// conversion sequences to determine whether one is better than the
3755 /// other or if they are indistinguishable (C++ 13.3.3.2).
3756 static ImplicitConversionSequence::CompareKind
CompareImplicitConversionSequences(Sema & S,SourceLocation Loc,const ImplicitConversionSequence & ICS1,const ImplicitConversionSequence & ICS2)3757 CompareImplicitConversionSequences(Sema &S, SourceLocation Loc,
3758 const ImplicitConversionSequence& ICS1,
3759 const ImplicitConversionSequence& ICS2)
3760 {
3761 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
3762 // conversion sequences (as defined in 13.3.3.1)
3763 // -- a standard conversion sequence (13.3.3.1.1) is a better
3764 // conversion sequence than a user-defined conversion sequence or
3765 // an ellipsis conversion sequence, and
3766 // -- a user-defined conversion sequence (13.3.3.1.2) is a better
3767 // conversion sequence than an ellipsis conversion sequence
3768 // (13.3.3.1.3).
3769 //
3770 // C++0x [over.best.ics]p10:
3771 // For the purpose of ranking implicit conversion sequences as
3772 // described in 13.3.3.2, the ambiguous conversion sequence is
3773 // treated as a user-defined sequence that is indistinguishable
3774 // from any other user-defined conversion sequence.
3775
3776 // String literal to 'char *' conversion has been deprecated in C++03. It has
3777 // been removed from C++11. We still accept this conversion, if it happens at
3778 // the best viable function. Otherwise, this conversion is considered worse
3779 // than ellipsis conversion. Consider this as an extension; this is not in the
3780 // standard. For example:
3781 //
3782 // int &f(...); // #1
3783 // void f(char*); // #2
3784 // void g() { int &r = f("foo"); }
3785 //
3786 // In C++03, we pick #2 as the best viable function.
3787 // In C++11, we pick #1 as the best viable function, because ellipsis
3788 // conversion is better than string-literal to char* conversion (since there
3789 // is no such conversion in C++11). If there was no #1 at all or #1 couldn't
3790 // convert arguments, #2 would be the best viable function in C++11.
3791 // If the best viable function has this conversion, a warning will be issued
3792 // in C++03, or an ExtWarn (+SFINAE failure) will be issued in C++11.
3793
3794 if (S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings &&
3795 hasDeprecatedStringLiteralToCharPtrConversion(ICS1) !=
3796 hasDeprecatedStringLiteralToCharPtrConversion(ICS2) &&
3797 // Ill-formedness must not differ
3798 ICS1.isBad() == ICS2.isBad())
3799 return hasDeprecatedStringLiteralToCharPtrConversion(ICS1)
3800 ? ImplicitConversionSequence::Worse
3801 : ImplicitConversionSequence::Better;
3802
3803 if (ICS1.getKindRank() < ICS2.getKindRank())
3804 return ImplicitConversionSequence::Better;
3805 if (ICS2.getKindRank() < ICS1.getKindRank())
3806 return ImplicitConversionSequence::Worse;
3807
3808 // The following checks require both conversion sequences to be of
3809 // the same kind.
3810 if (ICS1.getKind() != ICS2.getKind())
3811 return ImplicitConversionSequence::Indistinguishable;
3812
3813 ImplicitConversionSequence::CompareKind Result =
3814 ImplicitConversionSequence::Indistinguishable;
3815
3816 // Two implicit conversion sequences of the same form are
3817 // indistinguishable conversion sequences unless one of the
3818 // following rules apply: (C++ 13.3.3.2p3):
3819
3820 // List-initialization sequence L1 is a better conversion sequence than
3821 // list-initialization sequence L2 if:
3822 // - L1 converts to std::initializer_list<X> for some X and L2 does not, or,
3823 // if not that,
3824 // — L1 and L2 convert to arrays of the same element type, and either the
3825 // number of elements n_1 initialized by L1 is less than the number of
3826 // elements n_2 initialized by L2, or (C++20) n_1 = n_2 and L2 converts to
3827 // an array of unknown bound and L1 does not,
3828 // even if one of the other rules in this paragraph would otherwise apply.
3829 if (!ICS1.isBad()) {
3830 bool StdInit1 = false, StdInit2 = false;
3831 if (ICS1.hasInitializerListContainerType())
3832 StdInit1 = S.isStdInitializerList(ICS1.getInitializerListContainerType(),
3833 nullptr);
3834 if (ICS2.hasInitializerListContainerType())
3835 StdInit2 = S.isStdInitializerList(ICS2.getInitializerListContainerType(),
3836 nullptr);
3837 if (StdInit1 != StdInit2)
3838 return StdInit1 ? ImplicitConversionSequence::Better
3839 : ImplicitConversionSequence::Worse;
3840
3841 if (ICS1.hasInitializerListContainerType() &&
3842 ICS2.hasInitializerListContainerType())
3843 if (auto *CAT1 = S.Context.getAsConstantArrayType(
3844 ICS1.getInitializerListContainerType()))
3845 if (auto *CAT2 = S.Context.getAsConstantArrayType(
3846 ICS2.getInitializerListContainerType())) {
3847 if (S.Context.hasSameUnqualifiedType(CAT1->getElementType(),
3848 CAT2->getElementType())) {
3849 // Both to arrays of the same element type
3850 if (CAT1->getSize() != CAT2->getSize())
3851 // Different sized, the smaller wins
3852 return CAT1->getSize().ult(CAT2->getSize())
3853 ? ImplicitConversionSequence::Better
3854 : ImplicitConversionSequence::Worse;
3855 if (ICS1.isInitializerListOfIncompleteArray() !=
3856 ICS2.isInitializerListOfIncompleteArray())
3857 // One is incomplete, it loses
3858 return ICS2.isInitializerListOfIncompleteArray()
3859 ? ImplicitConversionSequence::Better
3860 : ImplicitConversionSequence::Worse;
3861 }
3862 }
3863 }
3864
3865 if (ICS1.isStandard())
3866 // Standard conversion sequence S1 is a better conversion sequence than
3867 // standard conversion sequence S2 if [...]
3868 Result = CompareStandardConversionSequences(S, Loc,
3869 ICS1.Standard, ICS2.Standard);
3870 else if (ICS1.isUserDefined()) {
3871 // User-defined conversion sequence U1 is a better conversion
3872 // sequence than another user-defined conversion sequence U2 if
3873 // they contain the same user-defined conversion function or
3874 // constructor and if the second standard conversion sequence of
3875 // U1 is better than the second standard conversion sequence of
3876 // U2 (C++ 13.3.3.2p3).
3877 if (ICS1.UserDefined.ConversionFunction ==
3878 ICS2.UserDefined.ConversionFunction)
3879 Result = CompareStandardConversionSequences(S, Loc,
3880 ICS1.UserDefined.After,
3881 ICS2.UserDefined.After);
3882 else
3883 Result = compareConversionFunctions(S,
3884 ICS1.UserDefined.ConversionFunction,
3885 ICS2.UserDefined.ConversionFunction);
3886 }
3887
3888 return Result;
3889 }
3890
3891 // Per 13.3.3.2p3, compare the given standard conversion sequences to
3892 // determine if one is a proper subset of the other.
3893 static ImplicitConversionSequence::CompareKind
compareStandardConversionSubsets(ASTContext & Context,const StandardConversionSequence & SCS1,const StandardConversionSequence & SCS2)3894 compareStandardConversionSubsets(ASTContext &Context,
3895 const StandardConversionSequence& SCS1,
3896 const StandardConversionSequence& SCS2) {
3897 ImplicitConversionSequence::CompareKind Result
3898 = ImplicitConversionSequence::Indistinguishable;
3899
3900 // the identity conversion sequence is considered to be a subsequence of
3901 // any non-identity conversion sequence
3902 if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion())
3903 return ImplicitConversionSequence::Better;
3904 else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion())
3905 return ImplicitConversionSequence::Worse;
3906
3907 if (SCS1.Second != SCS2.Second) {
3908 if (SCS1.Second == ICK_Identity)
3909 Result = ImplicitConversionSequence::Better;
3910 else if (SCS2.Second == ICK_Identity)
3911 Result = ImplicitConversionSequence::Worse;
3912 else
3913 return ImplicitConversionSequence::Indistinguishable;
3914 } else if (!Context.hasSimilarType(SCS1.getToType(1), SCS2.getToType(1)))
3915 return ImplicitConversionSequence::Indistinguishable;
3916
3917 if (SCS1.Third == SCS2.Third) {
3918 return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
3919 : ImplicitConversionSequence::Indistinguishable;
3920 }
3921
3922 if (SCS1.Third == ICK_Identity)
3923 return Result == ImplicitConversionSequence::Worse
3924 ? ImplicitConversionSequence::Indistinguishable
3925 : ImplicitConversionSequence::Better;
3926
3927 if (SCS2.Third == ICK_Identity)
3928 return Result == ImplicitConversionSequence::Better
3929 ? ImplicitConversionSequence::Indistinguishable
3930 : ImplicitConversionSequence::Worse;
3931
3932 return ImplicitConversionSequence::Indistinguishable;
3933 }
3934
3935 /// Determine whether one of the given reference bindings is better
3936 /// than the other based on what kind of bindings they are.
3937 static bool
isBetterReferenceBindingKind(const StandardConversionSequence & SCS1,const StandardConversionSequence & SCS2)3938 isBetterReferenceBindingKind(const StandardConversionSequence &SCS1,
3939 const StandardConversionSequence &SCS2) {
3940 // C++0x [over.ics.rank]p3b4:
3941 // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
3942 // implicit object parameter of a non-static member function declared
3943 // without a ref-qualifier, and *either* S1 binds an rvalue reference
3944 // to an rvalue and S2 binds an lvalue reference *or S1 binds an
3945 // lvalue reference to a function lvalue and S2 binds an rvalue
3946 // reference*.
3947 //
3948 // FIXME: Rvalue references. We're going rogue with the above edits,
3949 // because the semantics in the current C++0x working paper (N3225 at the
3950 // time of this writing) break the standard definition of std::forward
3951 // and std::reference_wrapper when dealing with references to functions.
3952 // Proposed wording changes submitted to CWG for consideration.
3953 if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier ||
3954 SCS2.BindsImplicitObjectArgumentWithoutRefQualifier)
3955 return false;
3956
3957 return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue &&
3958 SCS2.IsLvalueReference) ||
3959 (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue &&
3960 !SCS2.IsLvalueReference && SCS2.BindsToFunctionLvalue);
3961 }
3962
3963 enum class FixedEnumPromotion {
3964 None,
3965 ToUnderlyingType,
3966 ToPromotedUnderlyingType
3967 };
3968
3969 /// Returns kind of fixed enum promotion the \a SCS uses.
3970 static FixedEnumPromotion
getFixedEnumPromtion(Sema & S,const StandardConversionSequence & SCS)3971 getFixedEnumPromtion(Sema &S, const StandardConversionSequence &SCS) {
3972
3973 if (SCS.Second != ICK_Integral_Promotion)
3974 return FixedEnumPromotion::None;
3975
3976 QualType FromType = SCS.getFromType();
3977 if (!FromType->isEnumeralType())
3978 return FixedEnumPromotion::None;
3979
3980 EnumDecl *Enum = FromType->castAs<EnumType>()->getDecl();
3981 if (!Enum->isFixed())
3982 return FixedEnumPromotion::None;
3983
3984 QualType UnderlyingType = Enum->getIntegerType();
3985 if (S.Context.hasSameType(SCS.getToType(1), UnderlyingType))
3986 return FixedEnumPromotion::ToUnderlyingType;
3987
3988 return FixedEnumPromotion::ToPromotedUnderlyingType;
3989 }
3990
3991 /// CompareStandardConversionSequences - Compare two standard
3992 /// conversion sequences to determine whether one is better than the
3993 /// other or if they are indistinguishable (C++ 13.3.3.2p3).
3994 static ImplicitConversionSequence::CompareKind
CompareStandardConversionSequences(Sema & S,SourceLocation Loc,const StandardConversionSequence & SCS1,const StandardConversionSequence & SCS2)3995 CompareStandardConversionSequences(Sema &S, SourceLocation Loc,
3996 const StandardConversionSequence& SCS1,
3997 const StandardConversionSequence& SCS2)
3998 {
3999 // Standard conversion sequence S1 is a better conversion sequence
4000 // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
4001
4002 // -- S1 is a proper subsequence of S2 (comparing the conversion
4003 // sequences in the canonical form defined by 13.3.3.1.1,
4004 // excluding any Lvalue Transformation; the identity conversion
4005 // sequence is considered to be a subsequence of any
4006 // non-identity conversion sequence) or, if not that,
4007 if (ImplicitConversionSequence::CompareKind CK
4008 = compareStandardConversionSubsets(S.Context, SCS1, SCS2))
4009 return CK;
4010
4011 // -- the rank of S1 is better than the rank of S2 (by the rules
4012 // defined below), or, if not that,
4013 ImplicitConversionRank Rank1 = SCS1.getRank();
4014 ImplicitConversionRank Rank2 = SCS2.getRank();
4015 if (Rank1 < Rank2)
4016 return ImplicitConversionSequence::Better;
4017 else if (Rank2 < Rank1)
4018 return ImplicitConversionSequence::Worse;
4019
4020 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
4021 // are indistinguishable unless one of the following rules
4022 // applies:
4023
4024 // A conversion that is not a conversion of a pointer, or
4025 // pointer to member, to bool is better than another conversion
4026 // that is such a conversion.
4027 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
4028 return SCS2.isPointerConversionToBool()
4029 ? ImplicitConversionSequence::Better
4030 : ImplicitConversionSequence::Worse;
4031
4032 // C++14 [over.ics.rank]p4b2:
4033 // This is retroactively applied to C++11 by CWG 1601.
4034 //
4035 // A conversion that promotes an enumeration whose underlying type is fixed
4036 // to its underlying type is better than one that promotes to the promoted
4037 // underlying type, if the two are different.
4038 FixedEnumPromotion FEP1 = getFixedEnumPromtion(S, SCS1);
4039 FixedEnumPromotion FEP2 = getFixedEnumPromtion(S, SCS2);
4040 if (FEP1 != FixedEnumPromotion::None && FEP2 != FixedEnumPromotion::None &&
4041 FEP1 != FEP2)
4042 return FEP1 == FixedEnumPromotion::ToUnderlyingType
4043 ? ImplicitConversionSequence::Better
4044 : ImplicitConversionSequence::Worse;
4045
4046 // C++ [over.ics.rank]p4b2:
4047 //
4048 // If class B is derived directly or indirectly from class A,
4049 // conversion of B* to A* is better than conversion of B* to
4050 // void*, and conversion of A* to void* is better than conversion
4051 // of B* to void*.
4052 bool SCS1ConvertsToVoid
4053 = SCS1.isPointerConversionToVoidPointer(S.Context);
4054 bool SCS2ConvertsToVoid
4055 = SCS2.isPointerConversionToVoidPointer(S.Context);
4056 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
4057 // Exactly one of the conversion sequences is a conversion to
4058 // a void pointer; it's the worse conversion.
4059 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
4060 : ImplicitConversionSequence::Worse;
4061 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
4062 // Neither conversion sequence converts to a void pointer; compare
4063 // their derived-to-base conversions.
4064 if (ImplicitConversionSequence::CompareKind DerivedCK
4065 = CompareDerivedToBaseConversions(S, Loc, SCS1, SCS2))
4066 return DerivedCK;
4067 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid &&
4068 !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) {
4069 // Both conversion sequences are conversions to void
4070 // pointers. Compare the source types to determine if there's an
4071 // inheritance relationship in their sources.
4072 QualType FromType1 = SCS1.getFromType();
4073 QualType FromType2 = SCS2.getFromType();
4074
4075 // Adjust the types we're converting from via the array-to-pointer
4076 // conversion, if we need to.
4077 if (SCS1.First == ICK_Array_To_Pointer)
4078 FromType1 = S.Context.getArrayDecayedType(FromType1);
4079 if (SCS2.First == ICK_Array_To_Pointer)
4080 FromType2 = S.Context.getArrayDecayedType(FromType2);
4081
4082 QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType();
4083 QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType();
4084
4085 if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
4086 return ImplicitConversionSequence::Better;
4087 else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
4088 return ImplicitConversionSequence::Worse;
4089
4090 // Objective-C++: If one interface is more specific than the
4091 // other, it is the better one.
4092 const ObjCObjectPointerType* FromObjCPtr1
4093 = FromType1->getAs<ObjCObjectPointerType>();
4094 const ObjCObjectPointerType* FromObjCPtr2
4095 = FromType2->getAs<ObjCObjectPointerType>();
4096 if (FromObjCPtr1 && FromObjCPtr2) {
4097 bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1,
4098 FromObjCPtr2);
4099 bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2,
4100 FromObjCPtr1);
4101 if (AssignLeft != AssignRight) {
4102 return AssignLeft? ImplicitConversionSequence::Better
4103 : ImplicitConversionSequence::Worse;
4104 }
4105 }
4106 }
4107
4108 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
4109 // Check for a better reference binding based on the kind of bindings.
4110 if (isBetterReferenceBindingKind(SCS1, SCS2))
4111 return ImplicitConversionSequence::Better;
4112 else if (isBetterReferenceBindingKind(SCS2, SCS1))
4113 return ImplicitConversionSequence::Worse;
4114 }
4115
4116 // Compare based on qualification conversions (C++ 13.3.3.2p3,
4117 // bullet 3).
4118 if (ImplicitConversionSequence::CompareKind QualCK
4119 = CompareQualificationConversions(S, SCS1, SCS2))
4120 return QualCK;
4121
4122 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
4123 // C++ [over.ics.rank]p3b4:
4124 // -- S1 and S2 are reference bindings (8.5.3), and the types to
4125 // which the references refer are the same type except for
4126 // top-level cv-qualifiers, and the type to which the reference
4127 // initialized by S2 refers is more cv-qualified than the type
4128 // to which the reference initialized by S1 refers.
4129 QualType T1 = SCS1.getToType(2);
4130 QualType T2 = SCS2.getToType(2);
4131 T1 = S.Context.getCanonicalType(T1);
4132 T2 = S.Context.getCanonicalType(T2);
4133 Qualifiers T1Quals, T2Quals;
4134 QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
4135 QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
4136 if (UnqualT1 == UnqualT2) {
4137 // Objective-C++ ARC: If the references refer to objects with different
4138 // lifetimes, prefer bindings that don't change lifetime.
4139 if (SCS1.ObjCLifetimeConversionBinding !=
4140 SCS2.ObjCLifetimeConversionBinding) {
4141 return SCS1.ObjCLifetimeConversionBinding
4142 ? ImplicitConversionSequence::Worse
4143 : ImplicitConversionSequence::Better;
4144 }
4145
4146 // If the type is an array type, promote the element qualifiers to the
4147 // type for comparison.
4148 if (isa<ArrayType>(T1) && T1Quals)
4149 T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
4150 if (isa<ArrayType>(T2) && T2Quals)
4151 T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
4152 if (T2.isMoreQualifiedThan(T1))
4153 return ImplicitConversionSequence::Better;
4154 if (T1.isMoreQualifiedThan(T2))
4155 return ImplicitConversionSequence::Worse;
4156 }
4157 }
4158
4159 // In Microsoft mode (below 19.28), prefer an integral conversion to a
4160 // floating-to-integral conversion if the integral conversion
4161 // is between types of the same size.
4162 // For example:
4163 // void f(float);
4164 // void f(int);
4165 // int main {
4166 // long a;
4167 // f(a);
4168 // }
4169 // Here, MSVC will call f(int) instead of generating a compile error
4170 // as clang will do in standard mode.
4171 if (S.getLangOpts().MSVCCompat &&
4172 !S.getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2019_8) &&
4173 SCS1.Second == ICK_Integral_Conversion &&
4174 SCS2.Second == ICK_Floating_Integral &&
4175 S.Context.getTypeSize(SCS1.getFromType()) ==
4176 S.Context.getTypeSize(SCS1.getToType(2)))
4177 return ImplicitConversionSequence::Better;
4178
4179 // Prefer a compatible vector conversion over a lax vector conversion
4180 // For example:
4181 //
4182 // typedef float __v4sf __attribute__((__vector_size__(16)));
4183 // void f(vector float);
4184 // void f(vector signed int);
4185 // int main() {
4186 // __v4sf a;
4187 // f(a);
4188 // }
4189 // Here, we'd like to choose f(vector float) and not
4190 // report an ambiguous call error
4191 if (SCS1.Second == ICK_Vector_Conversion &&
4192 SCS2.Second == ICK_Vector_Conversion) {
4193 bool SCS1IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes(
4194 SCS1.getFromType(), SCS1.getToType(2));
4195 bool SCS2IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes(
4196 SCS2.getFromType(), SCS2.getToType(2));
4197
4198 if (SCS1IsCompatibleVectorConversion != SCS2IsCompatibleVectorConversion)
4199 return SCS1IsCompatibleVectorConversion
4200 ? ImplicitConversionSequence::Better
4201 : ImplicitConversionSequence::Worse;
4202 }
4203
4204 if (SCS1.Second == ICK_SVE_Vector_Conversion &&
4205 SCS2.Second == ICK_SVE_Vector_Conversion) {
4206 bool SCS1IsCompatibleSVEVectorConversion =
4207 S.Context.areCompatibleSveTypes(SCS1.getFromType(), SCS1.getToType(2));
4208 bool SCS2IsCompatibleSVEVectorConversion =
4209 S.Context.areCompatibleSveTypes(SCS2.getFromType(), SCS2.getToType(2));
4210
4211 if (SCS1IsCompatibleSVEVectorConversion !=
4212 SCS2IsCompatibleSVEVectorConversion)
4213 return SCS1IsCompatibleSVEVectorConversion
4214 ? ImplicitConversionSequence::Better
4215 : ImplicitConversionSequence::Worse;
4216 }
4217
4218 return ImplicitConversionSequence::Indistinguishable;
4219 }
4220
4221 /// CompareQualificationConversions - Compares two standard conversion
4222 /// sequences to determine whether they can be ranked based on their
4223 /// qualification conversions (C++ 13.3.3.2p3 bullet 3).
4224 static ImplicitConversionSequence::CompareKind
CompareQualificationConversions(Sema & S,const StandardConversionSequence & SCS1,const StandardConversionSequence & SCS2)4225 CompareQualificationConversions(Sema &S,
4226 const StandardConversionSequence& SCS1,
4227 const StandardConversionSequence& SCS2) {
4228 // C++ [over.ics.rank]p3:
4229 // -- S1 and S2 differ only in their qualification conversion and
4230 // yield similar types T1 and T2 (C++ 4.4), respectively, [...]
4231 // [C++98]
4232 // [...] and the cv-qualification signature of type T1 is a proper subset
4233 // of the cv-qualification signature of type T2, and S1 is not the
4234 // deprecated string literal array-to-pointer conversion (4.2).
4235 // [C++2a]
4236 // [...] where T1 can be converted to T2 by a qualification conversion.
4237 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
4238 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
4239 return ImplicitConversionSequence::Indistinguishable;
4240
4241 // FIXME: the example in the standard doesn't use a qualification
4242 // conversion (!)
4243 QualType T1 = SCS1.getToType(2);
4244 QualType T2 = SCS2.getToType(2);
4245 T1 = S.Context.getCanonicalType(T1);
4246 T2 = S.Context.getCanonicalType(T2);
4247 assert(!T1->isReferenceType() && !T2->isReferenceType());
4248 Qualifiers T1Quals, T2Quals;
4249 QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
4250 QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
4251
4252 // If the types are the same, we won't learn anything by unwrapping
4253 // them.
4254 if (UnqualT1 == UnqualT2)
4255 return ImplicitConversionSequence::Indistinguishable;
4256
4257 // Don't ever prefer a standard conversion sequence that uses the deprecated
4258 // string literal array to pointer conversion.
4259 bool CanPick1 = !SCS1.DeprecatedStringLiteralToCharPtr;
4260 bool CanPick2 = !SCS2.DeprecatedStringLiteralToCharPtr;
4261
4262 // Objective-C++ ARC:
4263 // Prefer qualification conversions not involving a change in lifetime
4264 // to qualification conversions that do change lifetime.
4265 if (SCS1.QualificationIncludesObjCLifetime &&
4266 !SCS2.QualificationIncludesObjCLifetime)
4267 CanPick1 = false;
4268 if (SCS2.QualificationIncludesObjCLifetime &&
4269 !SCS1.QualificationIncludesObjCLifetime)
4270 CanPick2 = false;
4271
4272 bool ObjCLifetimeConversion;
4273 if (CanPick1 &&
4274 !S.IsQualificationConversion(T1, T2, false, ObjCLifetimeConversion))
4275 CanPick1 = false;
4276 // FIXME: In Objective-C ARC, we can have qualification conversions in both
4277 // directions, so we can't short-cut this second check in general.
4278 if (CanPick2 &&
4279 !S.IsQualificationConversion(T2, T1, false, ObjCLifetimeConversion))
4280 CanPick2 = false;
4281
4282 if (CanPick1 != CanPick2)
4283 return CanPick1 ? ImplicitConversionSequence::Better
4284 : ImplicitConversionSequence::Worse;
4285 return ImplicitConversionSequence::Indistinguishable;
4286 }
4287
4288 /// CompareDerivedToBaseConversions - Compares two standard conversion
4289 /// sequences to determine whether they can be ranked based on their
4290 /// various kinds of derived-to-base conversions (C++
4291 /// [over.ics.rank]p4b3). As part of these checks, we also look at
4292 /// conversions between Objective-C interface types.
4293 static ImplicitConversionSequence::CompareKind
CompareDerivedToBaseConversions(Sema & S,SourceLocation Loc,const StandardConversionSequence & SCS1,const StandardConversionSequence & SCS2)4294 CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc,
4295 const StandardConversionSequence& SCS1,
4296 const StandardConversionSequence& SCS2) {
4297 QualType FromType1 = SCS1.getFromType();
4298 QualType ToType1 = SCS1.getToType(1);
4299 QualType FromType2 = SCS2.getFromType();
4300 QualType ToType2 = SCS2.getToType(1);
4301
4302 // Adjust the types we're converting from via the array-to-pointer
4303 // conversion, if we need to.
4304 if (SCS1.First == ICK_Array_To_Pointer)
4305 FromType1 = S.Context.getArrayDecayedType(FromType1);
4306 if (SCS2.First == ICK_Array_To_Pointer)
4307 FromType2 = S.Context.getArrayDecayedType(FromType2);
4308
4309 // Canonicalize all of the types.
4310 FromType1 = S.Context.getCanonicalType(FromType1);
4311 ToType1 = S.Context.getCanonicalType(ToType1);
4312 FromType2 = S.Context.getCanonicalType(FromType2);
4313 ToType2 = S.Context.getCanonicalType(ToType2);
4314
4315 // C++ [over.ics.rank]p4b3:
4316 //
4317 // If class B is derived directly or indirectly from class A and
4318 // class C is derived directly or indirectly from B,
4319 //
4320 // Compare based on pointer conversions.
4321 if (SCS1.Second == ICK_Pointer_Conversion &&
4322 SCS2.Second == ICK_Pointer_Conversion &&
4323 /*FIXME: Remove if Objective-C id conversions get their own rank*/
4324 FromType1->isPointerType() && FromType2->isPointerType() &&
4325 ToType1->isPointerType() && ToType2->isPointerType()) {
4326 QualType FromPointee1 =
4327 FromType1->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
4328 QualType ToPointee1 =
4329 ToType1->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
4330 QualType FromPointee2 =
4331 FromType2->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
4332 QualType ToPointee2 =
4333 ToType2->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
4334
4335 // -- conversion of C* to B* is better than conversion of C* to A*,
4336 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
4337 if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2))
4338 return ImplicitConversionSequence::Better;
4339 else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1))
4340 return ImplicitConversionSequence::Worse;
4341 }
4342
4343 // -- conversion of B* to A* is better than conversion of C* to A*,
4344 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
4345 if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
4346 return ImplicitConversionSequence::Better;
4347 else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
4348 return ImplicitConversionSequence::Worse;
4349 }
4350 } else if (SCS1.Second == ICK_Pointer_Conversion &&
4351 SCS2.Second == ICK_Pointer_Conversion) {
4352 const ObjCObjectPointerType *FromPtr1
4353 = FromType1->getAs<ObjCObjectPointerType>();
4354 const ObjCObjectPointerType *FromPtr2
4355 = FromType2->getAs<ObjCObjectPointerType>();
4356 const ObjCObjectPointerType *ToPtr1
4357 = ToType1->getAs<ObjCObjectPointerType>();
4358 const ObjCObjectPointerType *ToPtr2
4359 = ToType2->getAs<ObjCObjectPointerType>();
4360
4361 if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) {
4362 // Apply the same conversion ranking rules for Objective-C pointer types
4363 // that we do for C++ pointers to class types. However, we employ the
4364 // Objective-C pseudo-subtyping relationship used for assignment of
4365 // Objective-C pointer types.
4366 bool FromAssignLeft
4367 = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2);
4368 bool FromAssignRight
4369 = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1);
4370 bool ToAssignLeft
4371 = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2);
4372 bool ToAssignRight
4373 = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1);
4374
4375 // A conversion to an a non-id object pointer type or qualified 'id'
4376 // type is better than a conversion to 'id'.
4377 if (ToPtr1->isObjCIdType() &&
4378 (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl()))
4379 return ImplicitConversionSequence::Worse;
4380 if (ToPtr2->isObjCIdType() &&
4381 (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl()))
4382 return ImplicitConversionSequence::Better;
4383
4384 // A conversion to a non-id object pointer type is better than a
4385 // conversion to a qualified 'id' type
4386 if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl())
4387 return ImplicitConversionSequence::Worse;
4388 if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl())
4389 return ImplicitConversionSequence::Better;
4390
4391 // A conversion to an a non-Class object pointer type or qualified 'Class'
4392 // type is better than a conversion to 'Class'.
4393 if (ToPtr1->isObjCClassType() &&
4394 (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl()))
4395 return ImplicitConversionSequence::Worse;
4396 if (ToPtr2->isObjCClassType() &&
4397 (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl()))
4398 return ImplicitConversionSequence::Better;
4399
4400 // A conversion to a non-Class object pointer type is better than a
4401 // conversion to a qualified 'Class' type.
4402 if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl())
4403 return ImplicitConversionSequence::Worse;
4404 if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl())
4405 return ImplicitConversionSequence::Better;
4406
4407 // -- "conversion of C* to B* is better than conversion of C* to A*,"
4408 if (S.Context.hasSameType(FromType1, FromType2) &&
4409 !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() &&
4410 (ToAssignLeft != ToAssignRight)) {
4411 if (FromPtr1->isSpecialized()) {
4412 // "conversion of B<A> * to B * is better than conversion of B * to
4413 // C *.
4414 bool IsFirstSame =
4415 FromPtr1->getInterfaceDecl() == ToPtr1->getInterfaceDecl();
4416 bool IsSecondSame =
4417 FromPtr1->getInterfaceDecl() == ToPtr2->getInterfaceDecl();
4418 if (IsFirstSame) {
4419 if (!IsSecondSame)
4420 return ImplicitConversionSequence::Better;
4421 } else if (IsSecondSame)
4422 return ImplicitConversionSequence::Worse;
4423 }
4424 return ToAssignLeft? ImplicitConversionSequence::Worse
4425 : ImplicitConversionSequence::Better;
4426 }
4427
4428 // -- "conversion of B* to A* is better than conversion of C* to A*,"
4429 if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) &&
4430 (FromAssignLeft != FromAssignRight))
4431 return FromAssignLeft? ImplicitConversionSequence::Better
4432 : ImplicitConversionSequence::Worse;
4433 }
4434 }
4435
4436 // Ranking of member-pointer types.
4437 if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
4438 FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
4439 ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
4440 const auto *FromMemPointer1 = FromType1->castAs<MemberPointerType>();
4441 const auto *ToMemPointer1 = ToType1->castAs<MemberPointerType>();
4442 const auto *FromMemPointer2 = FromType2->castAs<MemberPointerType>();
4443 const auto *ToMemPointer2 = ToType2->castAs<MemberPointerType>();
4444 const Type *FromPointeeType1 = FromMemPointer1->getClass();
4445 const Type *ToPointeeType1 = ToMemPointer1->getClass();
4446 const Type *FromPointeeType2 = FromMemPointer2->getClass();
4447 const Type *ToPointeeType2 = ToMemPointer2->getClass();
4448 QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
4449 QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
4450 QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
4451 QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
4452 // conversion of A::* to B::* is better than conversion of A::* to C::*,
4453 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
4454 if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2))
4455 return ImplicitConversionSequence::Worse;
4456 else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1))
4457 return ImplicitConversionSequence::Better;
4458 }
4459 // conversion of B::* to C::* is better than conversion of A::* to C::*
4460 if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
4461 if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
4462 return ImplicitConversionSequence::Better;
4463 else if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
4464 return ImplicitConversionSequence::Worse;
4465 }
4466 }
4467
4468 if (SCS1.Second == ICK_Derived_To_Base) {
4469 // -- conversion of C to B is better than conversion of C to A,
4470 // -- binding of an expression of type C to a reference of type
4471 // B& is better than binding an expression of type C to a
4472 // reference of type A&,
4473 if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
4474 !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
4475 if (S.IsDerivedFrom(Loc, ToType1, ToType2))
4476 return ImplicitConversionSequence::Better;
4477 else if (S.IsDerivedFrom(Loc, ToType2, ToType1))
4478 return ImplicitConversionSequence::Worse;
4479 }
4480
4481 // -- conversion of B to A is better than conversion of C to A.
4482 // -- binding of an expression of type B to a reference of type
4483 // A& is better than binding an expression of type C to a
4484 // reference of type A&,
4485 if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
4486 S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
4487 if (S.IsDerivedFrom(Loc, FromType2, FromType1))
4488 return ImplicitConversionSequence::Better;
4489 else if (S.IsDerivedFrom(Loc, FromType1, FromType2))
4490 return ImplicitConversionSequence::Worse;
4491 }
4492 }
4493
4494 return ImplicitConversionSequence::Indistinguishable;
4495 }
4496
4497 /// Determine whether the given type is valid, e.g., it is not an invalid
4498 /// C++ class.
isTypeValid(QualType T)4499 static bool isTypeValid(QualType T) {
4500 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
4501 return !Record->isInvalidDecl();
4502
4503 return true;
4504 }
4505
withoutUnaligned(ASTContext & Ctx,QualType T)4506 static QualType withoutUnaligned(ASTContext &Ctx, QualType T) {
4507 if (!T.getQualifiers().hasUnaligned())
4508 return T;
4509
4510 Qualifiers Q;
4511 T = Ctx.getUnqualifiedArrayType(T, Q);
4512 Q.removeUnaligned();
4513 return Ctx.getQualifiedType(T, Q);
4514 }
4515
4516 /// CompareReferenceRelationship - Compare the two types T1 and T2 to
4517 /// determine whether they are reference-compatible,
4518 /// reference-related, or incompatible, for use in C++ initialization by
4519 /// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
4520 /// type, and the first type (T1) is the pointee type of the reference
4521 /// type being initialized.
4522 Sema::ReferenceCompareResult
CompareReferenceRelationship(SourceLocation Loc,QualType OrigT1,QualType OrigT2,ReferenceConversions * ConvOut)4523 Sema::CompareReferenceRelationship(SourceLocation Loc,
4524 QualType OrigT1, QualType OrigT2,
4525 ReferenceConversions *ConvOut) {
4526 assert(!OrigT1->isReferenceType() &&
4527 "T1 must be the pointee type of the reference type");
4528 assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
4529
4530 QualType T1 = Context.getCanonicalType(OrigT1);
4531 QualType T2 = Context.getCanonicalType(OrigT2);
4532 Qualifiers T1Quals, T2Quals;
4533 QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
4534 QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
4535
4536 ReferenceConversions ConvTmp;
4537 ReferenceConversions &Conv = ConvOut ? *ConvOut : ConvTmp;
4538 Conv = ReferenceConversions();
4539
4540 // C++2a [dcl.init.ref]p4:
4541 // Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
4542 // reference-related to "cv2 T2" if T1 is similar to T2, or
4543 // T1 is a base class of T2.
4544 // "cv1 T1" is reference-compatible with "cv2 T2" if
4545 // a prvalue of type "pointer to cv2 T2" can be converted to the type
4546 // "pointer to cv1 T1" via a standard conversion sequence.
4547
4548 // Check for standard conversions we can apply to pointers: derived-to-base
4549 // conversions, ObjC pointer conversions, and function pointer conversions.
4550 // (Qualification conversions are checked last.)
4551 QualType ConvertedT2;
4552 if (UnqualT1 == UnqualT2) {
4553 // Nothing to do.
4554 } else if (isCompleteType(Loc, OrigT2) &&
4555 isTypeValid(UnqualT1) && isTypeValid(UnqualT2) &&
4556 IsDerivedFrom(Loc, UnqualT2, UnqualT1))
4557 Conv |= ReferenceConversions::DerivedToBase;
4558 else if (UnqualT1->isObjCObjectOrInterfaceType() &&
4559 UnqualT2->isObjCObjectOrInterfaceType() &&
4560 Context.canBindObjCObjectType(UnqualT1, UnqualT2))
4561 Conv |= ReferenceConversions::ObjC;
4562 else if (UnqualT2->isFunctionType() &&
4563 IsFunctionConversion(UnqualT2, UnqualT1, ConvertedT2)) {
4564 Conv |= ReferenceConversions::Function;
4565 // No need to check qualifiers; function types don't have them.
4566 return Ref_Compatible;
4567 }
4568 bool ConvertedReferent = Conv != 0;
4569
4570 // We can have a qualification conversion. Compute whether the types are
4571 // similar at the same time.
4572 bool PreviousToQualsIncludeConst = true;
4573 bool TopLevel = true;
4574 do {
4575 if (T1 == T2)
4576 break;
4577
4578 // We will need a qualification conversion.
4579 Conv |= ReferenceConversions::Qualification;
4580
4581 // Track whether we performed a qualification conversion anywhere other
4582 // than the top level. This matters for ranking reference bindings in
4583 // overload resolution.
4584 if (!TopLevel)
4585 Conv |= ReferenceConversions::NestedQualification;
4586
4587 // MS compiler ignores __unaligned qualifier for references; do the same.
4588 T1 = withoutUnaligned(Context, T1);
4589 T2 = withoutUnaligned(Context, T2);
4590
4591 // If we find a qualifier mismatch, the types are not reference-compatible,
4592 // but are still be reference-related if they're similar.
4593 bool ObjCLifetimeConversion = false;
4594 if (!isQualificationConversionStep(T2, T1, /*CStyle=*/false, TopLevel,
4595 PreviousToQualsIncludeConst,
4596 ObjCLifetimeConversion))
4597 return (ConvertedReferent || Context.hasSimilarType(T1, T2))
4598 ? Ref_Related
4599 : Ref_Incompatible;
4600
4601 // FIXME: Should we track this for any level other than the first?
4602 if (ObjCLifetimeConversion)
4603 Conv |= ReferenceConversions::ObjCLifetime;
4604
4605 TopLevel = false;
4606 } while (Context.UnwrapSimilarTypes(T1, T2));
4607
4608 // At this point, if the types are reference-related, we must either have the
4609 // same inner type (ignoring qualifiers), or must have already worked out how
4610 // to convert the referent.
4611 return (ConvertedReferent || Context.hasSameUnqualifiedType(T1, T2))
4612 ? Ref_Compatible
4613 : Ref_Incompatible;
4614 }
4615
4616 /// Look for a user-defined conversion to a value reference-compatible
4617 /// with DeclType. Return true if something definite is found.
4618 static bool
FindConversionForRefInit(Sema & S,ImplicitConversionSequence & ICS,QualType DeclType,SourceLocation DeclLoc,Expr * Init,QualType T2,bool AllowRvalues,bool AllowExplicit)4619 FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS,
4620 QualType DeclType, SourceLocation DeclLoc,
4621 Expr *Init, QualType T2, bool AllowRvalues,
4622 bool AllowExplicit) {
4623 assert(T2->isRecordType() && "Can only find conversions of record types.");
4624 auto *T2RecordDecl = cast<CXXRecordDecl>(T2->castAs<RecordType>()->getDecl());
4625
4626 OverloadCandidateSet CandidateSet(
4627 DeclLoc, OverloadCandidateSet::CSK_InitByUserDefinedConversion);
4628 const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
4629 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4630 NamedDecl *D = *I;
4631 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4632 if (isa<UsingShadowDecl>(D))
4633 D = cast<UsingShadowDecl>(D)->getTargetDecl();
4634
4635 FunctionTemplateDecl *ConvTemplate
4636 = dyn_cast<FunctionTemplateDecl>(D);
4637 CXXConversionDecl *Conv;
4638 if (ConvTemplate)
4639 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4640 else
4641 Conv = cast<CXXConversionDecl>(D);
4642
4643 if (AllowRvalues) {
4644 // If we are initializing an rvalue reference, don't permit conversion
4645 // functions that return lvalues.
4646 if (!ConvTemplate && DeclType->isRValueReferenceType()) {
4647 const ReferenceType *RefType
4648 = Conv->getConversionType()->getAs<LValueReferenceType>();
4649 if (RefType && !RefType->getPointeeType()->isFunctionType())
4650 continue;
4651 }
4652
4653 if (!ConvTemplate &&
4654 S.CompareReferenceRelationship(
4655 DeclLoc,
4656 Conv->getConversionType()
4657 .getNonReferenceType()
4658 .getUnqualifiedType(),
4659 DeclType.getNonReferenceType().getUnqualifiedType()) ==
4660 Sema::Ref_Incompatible)
4661 continue;
4662 } else {
4663 // If the conversion function doesn't return a reference type,
4664 // it can't be considered for this conversion. An rvalue reference
4665 // is only acceptable if its referencee is a function type.
4666
4667 const ReferenceType *RefType =
4668 Conv->getConversionType()->getAs<ReferenceType>();
4669 if (!RefType ||
4670 (!RefType->isLValueReferenceType() &&
4671 !RefType->getPointeeType()->isFunctionType()))
4672 continue;
4673 }
4674
4675 if (ConvTemplate)
4676 S.AddTemplateConversionCandidate(
4677 ConvTemplate, I.getPair(), ActingDC, Init, DeclType, CandidateSet,
4678 /*AllowObjCConversionOnExplicit=*/false, AllowExplicit);
4679 else
4680 S.AddConversionCandidate(
4681 Conv, I.getPair(), ActingDC, Init, DeclType, CandidateSet,
4682 /*AllowObjCConversionOnExplicit=*/false, AllowExplicit);
4683 }
4684
4685 bool HadMultipleCandidates = (CandidateSet.size() > 1);
4686
4687 OverloadCandidateSet::iterator Best;
4688 switch (CandidateSet.BestViableFunction(S, DeclLoc, Best)) {
4689 case OR_Success:
4690 // C++ [over.ics.ref]p1:
4691 //
4692 // [...] If the parameter binds directly to the result of
4693 // applying a conversion function to the argument
4694 // expression, the implicit conversion sequence is a
4695 // user-defined conversion sequence (13.3.3.1.2), with the
4696 // second standard conversion sequence either an identity
4697 // conversion or, if the conversion function returns an
4698 // entity of a type that is a derived class of the parameter
4699 // type, a derived-to-base Conversion.
4700 if (!Best->FinalConversion.DirectBinding)
4701 return false;
4702
4703 ICS.setUserDefined();
4704 ICS.UserDefined.Before = Best->Conversions[0].Standard;
4705 ICS.UserDefined.After = Best->FinalConversion;
4706 ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates;
4707 ICS.UserDefined.ConversionFunction = Best->Function;
4708 ICS.UserDefined.FoundConversionFunction = Best->FoundDecl;
4709 ICS.UserDefined.EllipsisConversion = false;
4710 assert(ICS.UserDefined.After.ReferenceBinding &&
4711 ICS.UserDefined.After.DirectBinding &&
4712 "Expected a direct reference binding!");
4713 return true;
4714
4715 case OR_Ambiguous:
4716 ICS.setAmbiguous();
4717 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4718 Cand != CandidateSet.end(); ++Cand)
4719 if (Cand->Best)
4720 ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function);
4721 return true;
4722
4723 case OR_No_Viable_Function:
4724 case OR_Deleted:
4725 // There was no suitable conversion, or we found a deleted
4726 // conversion; continue with other checks.
4727 return false;
4728 }
4729
4730 llvm_unreachable("Invalid OverloadResult!");
4731 }
4732
4733 /// Compute an implicit conversion sequence for reference
4734 /// initialization.
4735 static ImplicitConversionSequence
TryReferenceInit(Sema & S,Expr * Init,QualType DeclType,SourceLocation DeclLoc,bool SuppressUserConversions,bool AllowExplicit)4736 TryReferenceInit(Sema &S, Expr *Init, QualType DeclType,
4737 SourceLocation DeclLoc,
4738 bool SuppressUserConversions,
4739 bool AllowExplicit) {
4740 assert(DeclType->isReferenceType() && "Reference init needs a reference");
4741
4742 // Most paths end in a failed conversion.
4743 ImplicitConversionSequence ICS;
4744 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4745
4746 QualType T1 = DeclType->castAs<ReferenceType>()->getPointeeType();
4747 QualType T2 = Init->getType();
4748
4749 // If the initializer is the address of an overloaded function, try
4750 // to resolve the overloaded function. If all goes well, T2 is the
4751 // type of the resulting function.
4752 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
4753 DeclAccessPair Found;
4754 if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
4755 false, Found))
4756 T2 = Fn->getType();
4757 }
4758
4759 // Compute some basic properties of the types and the initializer.
4760 bool isRValRef = DeclType->isRValueReferenceType();
4761 Expr::Classification InitCategory = Init->Classify(S.Context);
4762
4763 Sema::ReferenceConversions RefConv;
4764 Sema::ReferenceCompareResult RefRelationship =
4765 S.CompareReferenceRelationship(DeclLoc, T1, T2, &RefConv);
4766
4767 auto SetAsReferenceBinding = [&](bool BindsDirectly) {
4768 ICS.setStandard();
4769 ICS.Standard.First = ICK_Identity;
4770 // FIXME: A reference binding can be a function conversion too. We should
4771 // consider that when ordering reference-to-function bindings.
4772 ICS.Standard.Second = (RefConv & Sema::ReferenceConversions::DerivedToBase)
4773 ? ICK_Derived_To_Base
4774 : (RefConv & Sema::ReferenceConversions::ObjC)
4775 ? ICK_Compatible_Conversion
4776 : ICK_Identity;
4777 // FIXME: As a speculative fix to a defect introduced by CWG2352, we rank
4778 // a reference binding that performs a non-top-level qualification
4779 // conversion as a qualification conversion, not as an identity conversion.
4780 ICS.Standard.Third = (RefConv &
4781 Sema::ReferenceConversions::NestedQualification)
4782 ? ICK_Qualification
4783 : ICK_Identity;
4784 ICS.Standard.setFromType(T2);
4785 ICS.Standard.setToType(0, T2);
4786 ICS.Standard.setToType(1, T1);
4787 ICS.Standard.setToType(2, T1);
4788 ICS.Standard.ReferenceBinding = true;
4789 ICS.Standard.DirectBinding = BindsDirectly;
4790 ICS.Standard.IsLvalueReference = !isRValRef;
4791 ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
4792 ICS.Standard.BindsToRvalue = InitCategory.isRValue();
4793 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4794 ICS.Standard.ObjCLifetimeConversionBinding =
4795 (RefConv & Sema::ReferenceConversions::ObjCLifetime) != 0;
4796 ICS.Standard.CopyConstructor = nullptr;
4797 ICS.Standard.DeprecatedStringLiteralToCharPtr = false;
4798 };
4799
4800 // C++0x [dcl.init.ref]p5:
4801 // A reference to type "cv1 T1" is initialized by an expression
4802 // of type "cv2 T2" as follows:
4803
4804 // -- If reference is an lvalue reference and the initializer expression
4805 if (!isRValRef) {
4806 // -- is an lvalue (but is not a bit-field), and "cv1 T1" is
4807 // reference-compatible with "cv2 T2," or
4808 //
4809 // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
4810 if (InitCategory.isLValue() && RefRelationship == Sema::Ref_Compatible) {
4811 // C++ [over.ics.ref]p1:
4812 // When a parameter of reference type binds directly (8.5.3)
4813 // to an argument expression, the implicit conversion sequence
4814 // is the identity conversion, unless the argument expression
4815 // has a type that is a derived class of the parameter type,
4816 // in which case the implicit conversion sequence is a
4817 // derived-to-base Conversion (13.3.3.1).
4818 SetAsReferenceBinding(/*BindsDirectly=*/true);
4819
4820 // Nothing more to do: the inaccessibility/ambiguity check for
4821 // derived-to-base conversions is suppressed when we're
4822 // computing the implicit conversion sequence (C++
4823 // [over.best.ics]p2).
4824 return ICS;
4825 }
4826
4827 // -- has a class type (i.e., T2 is a class type), where T1 is
4828 // not reference-related to T2, and can be implicitly
4829 // converted to an lvalue of type "cv3 T3," where "cv1 T1"
4830 // is reference-compatible with "cv3 T3" 92) (this
4831 // conversion is selected by enumerating the applicable
4832 // conversion functions (13.3.1.6) and choosing the best
4833 // one through overload resolution (13.3)),
4834 if (!SuppressUserConversions && T2->isRecordType() &&
4835 S.isCompleteType(DeclLoc, T2) &&
4836 RefRelationship == Sema::Ref_Incompatible) {
4837 if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
4838 Init, T2, /*AllowRvalues=*/false,
4839 AllowExplicit))
4840 return ICS;
4841 }
4842 }
4843
4844 // -- Otherwise, the reference shall be an lvalue reference to a
4845 // non-volatile const type (i.e., cv1 shall be const), or the reference
4846 // shall be an rvalue reference.
4847 if (!isRValRef && (!T1.isConstQualified() || T1.isVolatileQualified())) {
4848 if (InitCategory.isRValue() && RefRelationship != Sema::Ref_Incompatible)
4849 ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init, DeclType);
4850 return ICS;
4851 }
4852
4853 // -- If the initializer expression
4854 //
4855 // -- is an xvalue, class prvalue, array prvalue or function
4856 // lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or
4857 if (RefRelationship == Sema::Ref_Compatible &&
4858 (InitCategory.isXValue() ||
4859 (InitCategory.isPRValue() &&
4860 (T2->isRecordType() || T2->isArrayType())) ||
4861 (InitCategory.isLValue() && T2->isFunctionType()))) {
4862 // In C++11, this is always a direct binding. In C++98/03, it's a direct
4863 // binding unless we're binding to a class prvalue.
4864 // Note: Although xvalues wouldn't normally show up in C++98/03 code, we
4865 // allow the use of rvalue references in C++98/03 for the benefit of
4866 // standard library implementors; therefore, we need the xvalue check here.
4867 SetAsReferenceBinding(/*BindsDirectly=*/S.getLangOpts().CPlusPlus11 ||
4868 !(InitCategory.isPRValue() || T2->isRecordType()));
4869 return ICS;
4870 }
4871
4872 // -- has a class type (i.e., T2 is a class type), where T1 is not
4873 // reference-related to T2, and can be implicitly converted to
4874 // an xvalue, class prvalue, or function lvalue of type
4875 // "cv3 T3", where "cv1 T1" is reference-compatible with
4876 // "cv3 T3",
4877 //
4878 // then the reference is bound to the value of the initializer
4879 // expression in the first case and to the result of the conversion
4880 // in the second case (or, in either case, to an appropriate base
4881 // class subobject).
4882 if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
4883 T2->isRecordType() && S.isCompleteType(DeclLoc, T2) &&
4884 FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
4885 Init, T2, /*AllowRvalues=*/true,
4886 AllowExplicit)) {
4887 // In the second case, if the reference is an rvalue reference
4888 // and the second standard conversion sequence of the
4889 // user-defined conversion sequence includes an lvalue-to-rvalue
4890 // conversion, the program is ill-formed.
4891 if (ICS.isUserDefined() && isRValRef &&
4892 ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue)
4893 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4894
4895 return ICS;
4896 }
4897
4898 // A temporary of function type cannot be created; don't even try.
4899 if (T1->isFunctionType())
4900 return ICS;
4901
4902 // -- Otherwise, a temporary of type "cv1 T1" is created and
4903 // initialized from the initializer expression using the
4904 // rules for a non-reference copy initialization (8.5). The
4905 // reference is then bound to the temporary. If T1 is
4906 // reference-related to T2, cv1 must be the same
4907 // cv-qualification as, or greater cv-qualification than,
4908 // cv2; otherwise, the program is ill-formed.
4909 if (RefRelationship == Sema::Ref_Related) {
4910 // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
4911 // we would be reference-compatible or reference-compatible with
4912 // added qualification. But that wasn't the case, so the reference
4913 // initialization fails.
4914 //
4915 // Note that we only want to check address spaces and cvr-qualifiers here.
4916 // ObjC GC, lifetime and unaligned qualifiers aren't important.
4917 Qualifiers T1Quals = T1.getQualifiers();
4918 Qualifiers T2Quals = T2.getQualifiers();
4919 T1Quals.removeObjCGCAttr();
4920 T1Quals.removeObjCLifetime();
4921 T2Quals.removeObjCGCAttr();
4922 T2Quals.removeObjCLifetime();
4923 // MS compiler ignores __unaligned qualifier for references; do the same.
4924 T1Quals.removeUnaligned();
4925 T2Quals.removeUnaligned();
4926 if (!T1Quals.compatiblyIncludes(T2Quals))
4927 return ICS;
4928 }
4929
4930 // If at least one of the types is a class type, the types are not
4931 // related, and we aren't allowed any user conversions, the
4932 // reference binding fails. This case is important for breaking
4933 // recursion, since TryImplicitConversion below will attempt to
4934 // create a temporary through the use of a copy constructor.
4935 if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
4936 (T1->isRecordType() || T2->isRecordType()))
4937 return ICS;
4938
4939 // If T1 is reference-related to T2 and the reference is an rvalue
4940 // reference, the initializer expression shall not be an lvalue.
4941 if (RefRelationship >= Sema::Ref_Related && isRValRef &&
4942 Init->Classify(S.Context).isLValue()) {
4943 ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, Init, DeclType);
4944 return ICS;
4945 }
4946
4947 // C++ [over.ics.ref]p2:
4948 // When a parameter of reference type is not bound directly to
4949 // an argument expression, the conversion sequence is the one
4950 // required to convert the argument expression to the
4951 // underlying type of the reference according to
4952 // 13.3.3.1. Conceptually, this conversion sequence corresponds
4953 // to copy-initializing a temporary of the underlying type with
4954 // the argument expression. Any difference in top-level
4955 // cv-qualification is subsumed by the initialization itself
4956 // and does not constitute a conversion.
4957 ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions,
4958 AllowedExplicit::None,
4959 /*InOverloadResolution=*/false,
4960 /*CStyle=*/false,
4961 /*AllowObjCWritebackConversion=*/false,
4962 /*AllowObjCConversionOnExplicit=*/false);
4963
4964 // Of course, that's still a reference binding.
4965 if (ICS.isStandard()) {
4966 ICS.Standard.ReferenceBinding = true;
4967 ICS.Standard.IsLvalueReference = !isRValRef;
4968 ICS.Standard.BindsToFunctionLvalue = false;
4969 ICS.Standard.BindsToRvalue = true;
4970 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4971 ICS.Standard.ObjCLifetimeConversionBinding = false;
4972 } else if (ICS.isUserDefined()) {
4973 const ReferenceType *LValRefType =
4974 ICS.UserDefined.ConversionFunction->getReturnType()
4975 ->getAs<LValueReferenceType>();
4976
4977 // C++ [over.ics.ref]p3:
4978 // Except for an implicit object parameter, for which see 13.3.1, a
4979 // standard conversion sequence cannot be formed if it requires [...]
4980 // binding an rvalue reference to an lvalue other than a function
4981 // lvalue.
4982 // Note that the function case is not possible here.
4983 if (isRValRef && LValRefType) {
4984 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4985 return ICS;
4986 }
4987
4988 ICS.UserDefined.After.ReferenceBinding = true;
4989 ICS.UserDefined.After.IsLvalueReference = !isRValRef;
4990 ICS.UserDefined.After.BindsToFunctionLvalue = false;
4991 ICS.UserDefined.After.BindsToRvalue = !LValRefType;
4992 ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4993 ICS.UserDefined.After.ObjCLifetimeConversionBinding = false;
4994 }
4995
4996 return ICS;
4997 }
4998
4999 static ImplicitConversionSequence
5000 TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
5001 bool SuppressUserConversions,
5002 bool InOverloadResolution,
5003 bool AllowObjCWritebackConversion,
5004 bool AllowExplicit = false);
5005
5006 /// TryListConversion - Try to copy-initialize a value of type ToType from the
5007 /// initializer list From.
5008 static ImplicitConversionSequence
TryListConversion(Sema & S,InitListExpr * From,QualType ToType,bool SuppressUserConversions,bool InOverloadResolution,bool AllowObjCWritebackConversion)5009 TryListConversion(Sema &S, InitListExpr *From, QualType ToType,
5010 bool SuppressUserConversions,
5011 bool InOverloadResolution,
5012 bool AllowObjCWritebackConversion) {
5013 // C++11 [over.ics.list]p1:
5014 // When an argument is an initializer list, it is not an expression and
5015 // special rules apply for converting it to a parameter type.
5016
5017 ImplicitConversionSequence Result;
5018 Result.setBad(BadConversionSequence::no_conversion, From, ToType);
5019
5020 // We need a complete type for what follows. With one C++20 exception,
5021 // incomplete types can never be initialized from init lists.
5022 QualType InitTy = ToType;
5023 const ArrayType *AT = S.Context.getAsArrayType(ToType);
5024 if (AT && S.getLangOpts().CPlusPlus20)
5025 if (const auto *IAT = dyn_cast<IncompleteArrayType>(AT))
5026 // C++20 allows list initialization of an incomplete array type.
5027 InitTy = IAT->getElementType();
5028 if (!S.isCompleteType(From->getBeginLoc(), InitTy))
5029 return Result;
5030
5031 // Per DR1467:
5032 // If the parameter type is a class X and the initializer list has a single
5033 // element of type cv U, where U is X or a class derived from X, the
5034 // implicit conversion sequence is the one required to convert the element
5035 // to the parameter type.
5036 //
5037 // Otherwise, if the parameter type is a character array [... ]
5038 // and the initializer list has a single element that is an
5039 // appropriately-typed string literal (8.5.2 [dcl.init.string]), the
5040 // implicit conversion sequence is the identity conversion.
5041 if (From->getNumInits() == 1) {
5042 if (ToType->isRecordType()) {
5043 QualType InitType = From->getInit(0)->getType();
5044 if (S.Context.hasSameUnqualifiedType(InitType, ToType) ||
5045 S.IsDerivedFrom(From->getBeginLoc(), InitType, ToType))
5046 return TryCopyInitialization(S, From->getInit(0), ToType,
5047 SuppressUserConversions,
5048 InOverloadResolution,
5049 AllowObjCWritebackConversion);
5050 }
5051
5052 if (AT && S.IsStringInit(From->getInit(0), AT)) {
5053 InitializedEntity Entity =
5054 InitializedEntity::InitializeParameter(S.Context, ToType,
5055 /*Consumed=*/false);
5056 if (S.CanPerformCopyInitialization(Entity, From)) {
5057 Result.setStandard();
5058 Result.Standard.setAsIdentityConversion();
5059 Result.Standard.setFromType(ToType);
5060 Result.Standard.setAllToTypes(ToType);
5061 return Result;
5062 }
5063 }
5064 }
5065
5066 // C++14 [over.ics.list]p2: Otherwise, if the parameter type [...] (below).
5067 // C++11 [over.ics.list]p2:
5068 // If the parameter type is std::initializer_list<X> or "array of X" and
5069 // all the elements can be implicitly converted to X, the implicit
5070 // conversion sequence is the worst conversion necessary to convert an
5071 // element of the list to X.
5072 //
5073 // C++14 [over.ics.list]p3:
5074 // Otherwise, if the parameter type is "array of N X", if the initializer
5075 // list has exactly N elements or if it has fewer than N elements and X is
5076 // default-constructible, and if all the elements of the initializer list
5077 // can be implicitly converted to X, the implicit conversion sequence is
5078 // the worst conversion necessary to convert an element of the list to X.
5079 if (AT || S.isStdInitializerList(ToType, &InitTy)) {
5080 unsigned e = From->getNumInits();
5081 ImplicitConversionSequence DfltElt;
5082 DfltElt.setBad(BadConversionSequence::no_conversion, QualType(),
5083 QualType());
5084 QualType ContTy = ToType;
5085 bool IsUnbounded = false;
5086 if (AT) {
5087 InitTy = AT->getElementType();
5088 if (ConstantArrayType const *CT = dyn_cast<ConstantArrayType>(AT)) {
5089 if (CT->getSize().ult(e)) {
5090 // Too many inits, fatally bad
5091 Result.setBad(BadConversionSequence::too_many_initializers, From,
5092 ToType);
5093 Result.setInitializerListContainerType(ContTy, IsUnbounded);
5094 return Result;
5095 }
5096 if (CT->getSize().ugt(e)) {
5097 // Need an init from empty {}, is there one?
5098 InitListExpr EmptyList(S.Context, From->getEndLoc(), None,
5099 From->getEndLoc());
5100 EmptyList.setType(S.Context.VoidTy);
5101 DfltElt = TryListConversion(
5102 S, &EmptyList, InitTy, SuppressUserConversions,
5103 InOverloadResolution, AllowObjCWritebackConversion);
5104 if (DfltElt.isBad()) {
5105 // No {} init, fatally bad
5106 Result.setBad(BadConversionSequence::too_few_initializers, From,
5107 ToType);
5108 Result.setInitializerListContainerType(ContTy, IsUnbounded);
5109 return Result;
5110 }
5111 }
5112 } else {
5113 assert(isa<IncompleteArrayType>(AT) && "Expected incomplete array");
5114 IsUnbounded = true;
5115 if (!e) {
5116 // Cannot convert to zero-sized.
5117 Result.setBad(BadConversionSequence::too_few_initializers, From,
5118 ToType);
5119 Result.setInitializerListContainerType(ContTy, IsUnbounded);
5120 return Result;
5121 }
5122 llvm::APInt Size(S.Context.getTypeSize(S.Context.getSizeType()), e);
5123 ContTy = S.Context.getConstantArrayType(InitTy, Size, nullptr,
5124 ArrayType::Normal, 0);
5125 }
5126 }
5127
5128 Result.setStandard();
5129 Result.Standard.setAsIdentityConversion();
5130 Result.Standard.setFromType(InitTy);
5131 Result.Standard.setAllToTypes(InitTy);
5132 for (unsigned i = 0; i < e; ++i) {
5133 Expr *Init = From->getInit(i);
5134 ImplicitConversionSequence ICS = TryCopyInitialization(
5135 S, Init, InitTy, SuppressUserConversions, InOverloadResolution,
5136 AllowObjCWritebackConversion);
5137
5138 // Keep the worse conversion seen so far.
5139 // FIXME: Sequences are not totally ordered, so 'worse' can be
5140 // ambiguous. CWG has been informed.
5141 if (CompareImplicitConversionSequences(S, From->getBeginLoc(), ICS,
5142 Result) ==
5143 ImplicitConversionSequence::Worse) {
5144 Result = ICS;
5145 // Bail as soon as we find something unconvertible.
5146 if (Result.isBad()) {
5147 Result.setInitializerListContainerType(ContTy, IsUnbounded);
5148 return Result;
5149 }
5150 }
5151 }
5152
5153 // If we needed any implicit {} initialization, compare that now.
5154 // over.ics.list/6 indicates we should compare that conversion. Again CWG
5155 // has been informed that this might not be the best thing.
5156 if (!DfltElt.isBad() && CompareImplicitConversionSequences(
5157 S, From->getEndLoc(), DfltElt, Result) ==
5158 ImplicitConversionSequence::Worse)
5159 Result = DfltElt;
5160 // Record the type being initialized so that we may compare sequences
5161 Result.setInitializerListContainerType(ContTy, IsUnbounded);
5162 return Result;
5163 }
5164
5165 // C++14 [over.ics.list]p4:
5166 // C++11 [over.ics.list]p3:
5167 // Otherwise, if the parameter is a non-aggregate class X and overload
5168 // resolution chooses a single best constructor [...] the implicit
5169 // conversion sequence is a user-defined conversion sequence. If multiple
5170 // constructors are viable but none is better than the others, the
5171 // implicit conversion sequence is a user-defined conversion sequence.
5172 if (ToType->isRecordType() && !ToType->isAggregateType()) {
5173 // This function can deal with initializer lists.
5174 return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
5175 AllowedExplicit::None,
5176 InOverloadResolution, /*CStyle=*/false,
5177 AllowObjCWritebackConversion,
5178 /*AllowObjCConversionOnExplicit=*/false);
5179 }
5180
5181 // C++14 [over.ics.list]p5:
5182 // C++11 [over.ics.list]p4:
5183 // Otherwise, if the parameter has an aggregate type which can be
5184 // initialized from the initializer list [...] the implicit conversion
5185 // sequence is a user-defined conversion sequence.
5186 if (ToType->isAggregateType()) {
5187 // Type is an aggregate, argument is an init list. At this point it comes
5188 // down to checking whether the initialization works.
5189 // FIXME: Find out whether this parameter is consumed or not.
5190 InitializedEntity Entity =
5191 InitializedEntity::InitializeParameter(S.Context, ToType,
5192 /*Consumed=*/false);
5193 if (S.CanPerformAggregateInitializationForOverloadResolution(Entity,
5194 From)) {
5195 Result.setUserDefined();
5196 Result.UserDefined.Before.setAsIdentityConversion();
5197 // Initializer lists don't have a type.
5198 Result.UserDefined.Before.setFromType(QualType());
5199 Result.UserDefined.Before.setAllToTypes(QualType());
5200
5201 Result.UserDefined.After.setAsIdentityConversion();
5202 Result.UserDefined.After.setFromType(ToType);
5203 Result.UserDefined.After.setAllToTypes(ToType);
5204 Result.UserDefined.ConversionFunction = nullptr;
5205 }
5206 return Result;
5207 }
5208
5209 // C++14 [over.ics.list]p6:
5210 // C++11 [over.ics.list]p5:
5211 // Otherwise, if the parameter is a reference, see 13.3.3.1.4.
5212 if (ToType->isReferenceType()) {
5213 // The standard is notoriously unclear here, since 13.3.3.1.4 doesn't
5214 // mention initializer lists in any way. So we go by what list-
5215 // initialization would do and try to extrapolate from that.
5216
5217 QualType T1 = ToType->castAs<ReferenceType>()->getPointeeType();
5218
5219 // If the initializer list has a single element that is reference-related
5220 // to the parameter type, we initialize the reference from that.
5221 if (From->getNumInits() == 1) {
5222 Expr *Init = From->getInit(0);
5223
5224 QualType T2 = Init->getType();
5225
5226 // If the initializer is the address of an overloaded function, try
5227 // to resolve the overloaded function. If all goes well, T2 is the
5228 // type of the resulting function.
5229 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
5230 DeclAccessPair Found;
5231 if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(
5232 Init, ToType, false, Found))
5233 T2 = Fn->getType();
5234 }
5235
5236 // Compute some basic properties of the types and the initializer.
5237 Sema::ReferenceCompareResult RefRelationship =
5238 S.CompareReferenceRelationship(From->getBeginLoc(), T1, T2);
5239
5240 if (RefRelationship >= Sema::Ref_Related) {
5241 return TryReferenceInit(S, Init, ToType, /*FIXME*/ From->getBeginLoc(),
5242 SuppressUserConversions,
5243 /*AllowExplicit=*/false);
5244 }
5245 }
5246
5247 // Otherwise, we bind the reference to a temporary created from the
5248 // initializer list.
5249 Result = TryListConversion(S, From, T1, SuppressUserConversions,
5250 InOverloadResolution,
5251 AllowObjCWritebackConversion);
5252 if (Result.isFailure())
5253 return Result;
5254 assert(!Result.isEllipsis() &&
5255 "Sub-initialization cannot result in ellipsis conversion.");
5256
5257 // Can we even bind to a temporary?
5258 if (ToType->isRValueReferenceType() ||
5259 (T1.isConstQualified() && !T1.isVolatileQualified())) {
5260 StandardConversionSequence &SCS = Result.isStandard() ? Result.Standard :
5261 Result.UserDefined.After;
5262 SCS.ReferenceBinding = true;
5263 SCS.IsLvalueReference = ToType->isLValueReferenceType();
5264 SCS.BindsToRvalue = true;
5265 SCS.BindsToFunctionLvalue = false;
5266 SCS.BindsImplicitObjectArgumentWithoutRefQualifier = false;
5267 SCS.ObjCLifetimeConversionBinding = false;
5268 } else
5269 Result.setBad(BadConversionSequence::lvalue_ref_to_rvalue,
5270 From, ToType);
5271 return Result;
5272 }
5273
5274 // C++14 [over.ics.list]p7:
5275 // C++11 [over.ics.list]p6:
5276 // Otherwise, if the parameter type is not a class:
5277 if (!ToType->isRecordType()) {
5278 // - if the initializer list has one element that is not itself an
5279 // initializer list, the implicit conversion sequence is the one
5280 // required to convert the element to the parameter type.
5281 unsigned NumInits = From->getNumInits();
5282 if (NumInits == 1 && !isa<InitListExpr>(From->getInit(0)))
5283 Result = TryCopyInitialization(S, From->getInit(0), ToType,
5284 SuppressUserConversions,
5285 InOverloadResolution,
5286 AllowObjCWritebackConversion);
5287 // - if the initializer list has no elements, the implicit conversion
5288 // sequence is the identity conversion.
5289 else if (NumInits == 0) {
5290 Result.setStandard();
5291 Result.Standard.setAsIdentityConversion();
5292 Result.Standard.setFromType(ToType);
5293 Result.Standard.setAllToTypes(ToType);
5294 }
5295 return Result;
5296 }
5297
5298 // C++14 [over.ics.list]p8:
5299 // C++11 [over.ics.list]p7:
5300 // In all cases other than those enumerated above, no conversion is possible
5301 return Result;
5302 }
5303
5304 /// TryCopyInitialization - Try to copy-initialize a value of type
5305 /// ToType from the expression From. Return the implicit conversion
5306 /// sequence required to pass this argument, which may be a bad
5307 /// conversion sequence (meaning that the argument cannot be passed to
5308 /// a parameter of this type). If @p SuppressUserConversions, then we
5309 /// do not permit any user-defined conversion sequences.
5310 static ImplicitConversionSequence
TryCopyInitialization(Sema & S,Expr * From,QualType ToType,bool SuppressUserConversions,bool InOverloadResolution,bool AllowObjCWritebackConversion,bool AllowExplicit)5311 TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
5312 bool SuppressUserConversions,
5313 bool InOverloadResolution,
5314 bool AllowObjCWritebackConversion,
5315 bool AllowExplicit) {
5316 if (InitListExpr *FromInitList = dyn_cast<InitListExpr>(From))
5317 return TryListConversion(S, FromInitList, ToType, SuppressUserConversions,
5318 InOverloadResolution,AllowObjCWritebackConversion);
5319
5320 if (ToType->isReferenceType())
5321 return TryReferenceInit(S, From, ToType,
5322 /*FIXME:*/ From->getBeginLoc(),
5323 SuppressUserConversions, AllowExplicit);
5324
5325 return TryImplicitConversion(S, From, ToType,
5326 SuppressUserConversions,
5327 AllowedExplicit::None,
5328 InOverloadResolution,
5329 /*CStyle=*/false,
5330 AllowObjCWritebackConversion,
5331 /*AllowObjCConversionOnExplicit=*/false);
5332 }
5333
TryCopyInitialization(const CanQualType FromQTy,const CanQualType ToQTy,Sema & S,SourceLocation Loc,ExprValueKind FromVK)5334 static bool TryCopyInitialization(const CanQualType FromQTy,
5335 const CanQualType ToQTy,
5336 Sema &S,
5337 SourceLocation Loc,
5338 ExprValueKind FromVK) {
5339 OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK);
5340 ImplicitConversionSequence ICS =
5341 TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false);
5342
5343 return !ICS.isBad();
5344 }
5345
5346 /// TryObjectArgumentInitialization - Try to initialize the object
5347 /// parameter of the given member function (@c Method) from the
5348 /// expression @p From.
5349 static ImplicitConversionSequence
TryObjectArgumentInitialization(Sema & S,SourceLocation Loc,QualType FromType,Expr::Classification FromClassification,CXXMethodDecl * Method,CXXRecordDecl * ActingContext)5350 TryObjectArgumentInitialization(Sema &S, SourceLocation Loc, QualType FromType,
5351 Expr::Classification FromClassification,
5352 CXXMethodDecl *Method,
5353 CXXRecordDecl *ActingContext) {
5354 QualType ClassType = S.Context.getTypeDeclType(ActingContext);
5355 // [class.dtor]p2: A destructor can be invoked for a const, volatile or
5356 // const volatile object.
5357 Qualifiers Quals = Method->getMethodQualifiers();
5358 if (isa<CXXDestructorDecl>(Method)) {
5359 Quals.addConst();
5360 Quals.addVolatile();
5361 }
5362
5363 QualType ImplicitParamType = S.Context.getQualifiedType(ClassType, Quals);
5364
5365 // Set up the conversion sequence as a "bad" conversion, to allow us
5366 // to exit early.
5367 ImplicitConversionSequence ICS;
5368
5369 // We need to have an object of class type.
5370 if (const PointerType *PT = FromType->getAs<PointerType>()) {
5371 FromType = PT->getPointeeType();
5372
5373 // When we had a pointer, it's implicitly dereferenced, so we
5374 // better have an lvalue.
5375 assert(FromClassification.isLValue());
5376 }
5377
5378 assert(FromType->isRecordType());
5379
5380 // C++0x [over.match.funcs]p4:
5381 // For non-static member functions, the type of the implicit object
5382 // parameter is
5383 //
5384 // - "lvalue reference to cv X" for functions declared without a
5385 // ref-qualifier or with the & ref-qualifier
5386 // - "rvalue reference to cv X" for functions declared with the &&
5387 // ref-qualifier
5388 //
5389 // where X is the class of which the function is a member and cv is the
5390 // cv-qualification on the member function declaration.
5391 //
5392 // However, when finding an implicit conversion sequence for the argument, we
5393 // are not allowed to perform user-defined conversions
5394 // (C++ [over.match.funcs]p5). We perform a simplified version of
5395 // reference binding here, that allows class rvalues to bind to
5396 // non-constant references.
5397
5398 // First check the qualifiers.
5399 QualType FromTypeCanon = S.Context.getCanonicalType(FromType);
5400 if (ImplicitParamType.getCVRQualifiers()
5401 != FromTypeCanon.getLocalCVRQualifiers() &&
5402 !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
5403 ICS.setBad(BadConversionSequence::bad_qualifiers,
5404 FromType, ImplicitParamType);
5405 return ICS;
5406 }
5407
5408 if (FromTypeCanon.hasAddressSpace()) {
5409 Qualifiers QualsImplicitParamType = ImplicitParamType.getQualifiers();
5410 Qualifiers QualsFromType = FromTypeCanon.getQualifiers();
5411 if (!QualsImplicitParamType.isAddressSpaceSupersetOf(QualsFromType)) {
5412 ICS.setBad(BadConversionSequence::bad_qualifiers,
5413 FromType, ImplicitParamType);
5414 return ICS;
5415 }
5416 }
5417
5418 // Check that we have either the same type or a derived type. It
5419 // affects the conversion rank.
5420 QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType);
5421 ImplicitConversionKind SecondKind;
5422 if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
5423 SecondKind = ICK_Identity;
5424 } else if (S.IsDerivedFrom(Loc, FromType, ClassType))
5425 SecondKind = ICK_Derived_To_Base;
5426 else {
5427 ICS.setBad(BadConversionSequence::unrelated_class,
5428 FromType, ImplicitParamType);
5429 return ICS;
5430 }
5431
5432 // Check the ref-qualifier.
5433 switch (Method->getRefQualifier()) {
5434 case RQ_None:
5435 // Do nothing; we don't care about lvalueness or rvalueness.
5436 break;
5437
5438 case RQ_LValue:
5439 if (!FromClassification.isLValue() && !Quals.hasOnlyConst()) {
5440 // non-const lvalue reference cannot bind to an rvalue
5441 ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType,
5442 ImplicitParamType);
5443 return ICS;
5444 }
5445 break;
5446
5447 case RQ_RValue:
5448 if (!FromClassification.isRValue()) {
5449 // rvalue reference cannot bind to an lvalue
5450 ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType,
5451 ImplicitParamType);
5452 return ICS;
5453 }
5454 break;
5455 }
5456
5457 // Success. Mark this as a reference binding.
5458 ICS.setStandard();
5459 ICS.Standard.setAsIdentityConversion();
5460 ICS.Standard.Second = SecondKind;
5461 ICS.Standard.setFromType(FromType);
5462 ICS.Standard.setAllToTypes(ImplicitParamType);
5463 ICS.Standard.ReferenceBinding = true;
5464 ICS.Standard.DirectBinding = true;
5465 ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue;
5466 ICS.Standard.BindsToFunctionLvalue = false;
5467 ICS.Standard.BindsToRvalue = FromClassification.isRValue();
5468 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier
5469 = (Method->getRefQualifier() == RQ_None);
5470 return ICS;
5471 }
5472
5473 /// PerformObjectArgumentInitialization - Perform initialization of
5474 /// the implicit object parameter for the given Method with the given
5475 /// expression.
5476 ExprResult
PerformObjectArgumentInitialization(Expr * From,NestedNameSpecifier * Qualifier,NamedDecl * FoundDecl,CXXMethodDecl * Method)5477 Sema::PerformObjectArgumentInitialization(Expr *From,
5478 NestedNameSpecifier *Qualifier,
5479 NamedDecl *FoundDecl,
5480 CXXMethodDecl *Method) {
5481 QualType FromRecordType, DestType;
5482 QualType ImplicitParamRecordType =
5483 Method->getThisType()->castAs<PointerType>()->getPointeeType();
5484
5485 Expr::Classification FromClassification;
5486 if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
5487 FromRecordType = PT->getPointeeType();
5488 DestType = Method->getThisType();
5489 FromClassification = Expr::Classification::makeSimpleLValue();
5490 } else {
5491 FromRecordType = From->getType();
5492 DestType = ImplicitParamRecordType;
5493 FromClassification = From->Classify(Context);
5494
5495 // When performing member access on a prvalue, materialize a temporary.
5496 if (From->isPRValue()) {
5497 From = CreateMaterializeTemporaryExpr(FromRecordType, From,
5498 Method->getRefQualifier() !=
5499 RefQualifierKind::RQ_RValue);
5500 }
5501 }
5502
5503 // Note that we always use the true parent context when performing
5504 // the actual argument initialization.
5505 ImplicitConversionSequence ICS = TryObjectArgumentInitialization(
5506 *this, From->getBeginLoc(), From->getType(), FromClassification, Method,
5507 Method->getParent());
5508 if (ICS.isBad()) {
5509 switch (ICS.Bad.Kind) {
5510 case BadConversionSequence::bad_qualifiers: {
5511 Qualifiers FromQs = FromRecordType.getQualifiers();
5512 Qualifiers ToQs = DestType.getQualifiers();
5513 unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
5514 if (CVR) {
5515 Diag(From->getBeginLoc(), diag::err_member_function_call_bad_cvr)
5516 << Method->getDeclName() << FromRecordType << (CVR - 1)
5517 << From->getSourceRange();
5518 Diag(Method->getLocation(), diag::note_previous_decl)
5519 << Method->getDeclName();
5520 return ExprError();
5521 }
5522 break;
5523 }
5524
5525 case BadConversionSequence::lvalue_ref_to_rvalue:
5526 case BadConversionSequence::rvalue_ref_to_lvalue: {
5527 bool IsRValueQualified =
5528 Method->getRefQualifier() == RefQualifierKind::RQ_RValue;
5529 Diag(From->getBeginLoc(), diag::err_member_function_call_bad_ref)
5530 << Method->getDeclName() << FromClassification.isRValue()
5531 << IsRValueQualified;
5532 Diag(Method->getLocation(), diag::note_previous_decl)
5533 << Method->getDeclName();
5534 return ExprError();
5535 }
5536
5537 case BadConversionSequence::no_conversion:
5538 case BadConversionSequence::unrelated_class:
5539 break;
5540
5541 case BadConversionSequence::too_few_initializers:
5542 case BadConversionSequence::too_many_initializers:
5543 llvm_unreachable("Lists are not objects");
5544 }
5545
5546 return Diag(From->getBeginLoc(), diag::err_member_function_call_bad_type)
5547 << ImplicitParamRecordType << FromRecordType
5548 << From->getSourceRange();
5549 }
5550
5551 if (ICS.Standard.Second == ICK_Derived_To_Base) {
5552 ExprResult FromRes =
5553 PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
5554 if (FromRes.isInvalid())
5555 return ExprError();
5556 From = FromRes.get();
5557 }
5558
5559 if (!Context.hasSameType(From->getType(), DestType)) {
5560 CastKind CK;
5561 QualType PteeTy = DestType->getPointeeType();
5562 LangAS DestAS =
5563 PteeTy.isNull() ? DestType.getAddressSpace() : PteeTy.getAddressSpace();
5564 if (FromRecordType.getAddressSpace() != DestAS)
5565 CK = CK_AddressSpaceConversion;
5566 else
5567 CK = CK_NoOp;
5568 From = ImpCastExprToType(From, DestType, CK, From->getValueKind()).get();
5569 }
5570 return From;
5571 }
5572
5573 /// TryContextuallyConvertToBool - Attempt to contextually convert the
5574 /// expression From to bool (C++0x [conv]p3).
5575 static ImplicitConversionSequence
TryContextuallyConvertToBool(Sema & S,Expr * From)5576 TryContextuallyConvertToBool(Sema &S, Expr *From) {
5577 // C++ [dcl.init]/17.8:
5578 // - Otherwise, if the initialization is direct-initialization, the source
5579 // type is std::nullptr_t, and the destination type is bool, the initial
5580 // value of the object being initialized is false.
5581 if (From->getType()->isNullPtrType())
5582 return ImplicitConversionSequence::getNullptrToBool(From->getType(),
5583 S.Context.BoolTy,
5584 From->isGLValue());
5585
5586 // All other direct-initialization of bool is equivalent to an implicit
5587 // conversion to bool in which explicit conversions are permitted.
5588 return TryImplicitConversion(S, From, S.Context.BoolTy,
5589 /*SuppressUserConversions=*/false,
5590 AllowedExplicit::Conversions,
5591 /*InOverloadResolution=*/false,
5592 /*CStyle=*/false,
5593 /*AllowObjCWritebackConversion=*/false,
5594 /*AllowObjCConversionOnExplicit=*/false);
5595 }
5596
5597 /// PerformContextuallyConvertToBool - Perform a contextual conversion
5598 /// of the expression From to bool (C++0x [conv]p3).
PerformContextuallyConvertToBool(Expr * From)5599 ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) {
5600 if (checkPlaceholderForOverload(*this, From))
5601 return ExprError();
5602
5603 ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From);
5604 if (!ICS.isBad())
5605 return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
5606
5607 if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
5608 return Diag(From->getBeginLoc(), diag::err_typecheck_bool_condition)
5609 << From->getType() << From->getSourceRange();
5610 return ExprError();
5611 }
5612
5613 /// Check that the specified conversion is permitted in a converted constant
5614 /// expression, according to C++11 [expr.const]p3. Return true if the conversion
5615 /// is acceptable.
CheckConvertedConstantConversions(Sema & S,StandardConversionSequence & SCS)5616 static bool CheckConvertedConstantConversions(Sema &S,
5617 StandardConversionSequence &SCS) {
5618 // Since we know that the target type is an integral or unscoped enumeration
5619 // type, most conversion kinds are impossible. All possible First and Third
5620 // conversions are fine.
5621 switch (SCS.Second) {
5622 case ICK_Identity:
5623 case ICK_Integral_Promotion:
5624 case ICK_Integral_Conversion: // Narrowing conversions are checked elsewhere.
5625 case ICK_Zero_Queue_Conversion:
5626 return true;
5627
5628 case ICK_Boolean_Conversion:
5629 // Conversion from an integral or unscoped enumeration type to bool is
5630 // classified as ICK_Boolean_Conversion, but it's also arguably an integral
5631 // conversion, so we allow it in a converted constant expression.
5632 //
5633 // FIXME: Per core issue 1407, we should not allow this, but that breaks
5634 // a lot of popular code. We should at least add a warning for this
5635 // (non-conforming) extension.
5636 return SCS.getFromType()->isIntegralOrUnscopedEnumerationType() &&
5637 SCS.getToType(2)->isBooleanType();
5638
5639 case ICK_Pointer_Conversion:
5640 case ICK_Pointer_Member:
5641 // C++1z: null pointer conversions and null member pointer conversions are
5642 // only permitted if the source type is std::nullptr_t.
5643 return SCS.getFromType()->isNullPtrType();
5644
5645 case ICK_Floating_Promotion:
5646 case ICK_Complex_Promotion:
5647 case ICK_Floating_Conversion:
5648 case ICK_Complex_Conversion:
5649 case ICK_Floating_Integral:
5650 case ICK_Compatible_Conversion:
5651 case ICK_Derived_To_Base:
5652 case ICK_Vector_Conversion:
5653 case ICK_SVE_Vector_Conversion:
5654 case ICK_Vector_Splat:
5655 case ICK_Complex_Real:
5656 case ICK_Block_Pointer_Conversion:
5657 case ICK_TransparentUnionConversion:
5658 case ICK_Writeback_Conversion:
5659 case ICK_Zero_Event_Conversion:
5660 case ICK_C_Only_Conversion:
5661 case ICK_Incompatible_Pointer_Conversion:
5662 return false;
5663
5664 case ICK_Lvalue_To_Rvalue:
5665 case ICK_Array_To_Pointer:
5666 case ICK_Function_To_Pointer:
5667 llvm_unreachable("found a first conversion kind in Second");
5668
5669 case ICK_Function_Conversion:
5670 case ICK_Qualification:
5671 llvm_unreachable("found a third conversion kind in Second");
5672
5673 case ICK_Num_Conversion_Kinds:
5674 break;
5675 }
5676
5677 llvm_unreachable("unknown conversion kind");
5678 }
5679
5680 /// CheckConvertedConstantExpression - Check that the expression From is a
5681 /// converted constant expression of type T, perform the conversion and produce
5682 /// the converted expression, per C++11 [expr.const]p3.
CheckConvertedConstantExpression(Sema & S,Expr * From,QualType T,APValue & Value,Sema::CCEKind CCE,bool RequireInt,NamedDecl * Dest)5683 static ExprResult CheckConvertedConstantExpression(Sema &S, Expr *From,
5684 QualType T, APValue &Value,
5685 Sema::CCEKind CCE,
5686 bool RequireInt,
5687 NamedDecl *Dest) {
5688 assert(S.getLangOpts().CPlusPlus11 &&
5689 "converted constant expression outside C++11");
5690
5691 if (checkPlaceholderForOverload(S, From))
5692 return ExprError();
5693
5694 // C++1z [expr.const]p3:
5695 // A converted constant expression of type T is an expression,
5696 // implicitly converted to type T, where the converted
5697 // expression is a constant expression and the implicit conversion
5698 // sequence contains only [... list of conversions ...].
5699 ImplicitConversionSequence ICS =
5700 (CCE == Sema::CCEK_ExplicitBool || CCE == Sema::CCEK_Noexcept)
5701 ? TryContextuallyConvertToBool(S, From)
5702 : TryCopyInitialization(S, From, T,
5703 /*SuppressUserConversions=*/false,
5704 /*InOverloadResolution=*/false,
5705 /*AllowObjCWritebackConversion=*/false,
5706 /*AllowExplicit=*/false);
5707 StandardConversionSequence *SCS = nullptr;
5708 switch (ICS.getKind()) {
5709 case ImplicitConversionSequence::StandardConversion:
5710 SCS = &ICS.Standard;
5711 break;
5712 case ImplicitConversionSequence::UserDefinedConversion:
5713 if (T->isRecordType())
5714 SCS = &ICS.UserDefined.Before;
5715 else
5716 SCS = &ICS.UserDefined.After;
5717 break;
5718 case ImplicitConversionSequence::AmbiguousConversion:
5719 case ImplicitConversionSequence::BadConversion:
5720 if (!S.DiagnoseMultipleUserDefinedConversion(From, T))
5721 return S.Diag(From->getBeginLoc(),
5722 diag::err_typecheck_converted_constant_expression)
5723 << From->getType() << From->getSourceRange() << T;
5724 return ExprError();
5725
5726 case ImplicitConversionSequence::EllipsisConversion:
5727 llvm_unreachable("ellipsis conversion in converted constant expression");
5728 }
5729
5730 // Check that we would only use permitted conversions.
5731 if (!CheckConvertedConstantConversions(S, *SCS)) {
5732 return S.Diag(From->getBeginLoc(),
5733 diag::err_typecheck_converted_constant_expression_disallowed)
5734 << From->getType() << From->getSourceRange() << T;
5735 }
5736 // [...] and where the reference binding (if any) binds directly.
5737 if (SCS->ReferenceBinding && !SCS->DirectBinding) {
5738 return S.Diag(From->getBeginLoc(),
5739 diag::err_typecheck_converted_constant_expression_indirect)
5740 << From->getType() << From->getSourceRange() << T;
5741 }
5742
5743 // Usually we can simply apply the ImplicitConversionSequence we formed
5744 // earlier, but that's not guaranteed to work when initializing an object of
5745 // class type.
5746 ExprResult Result;
5747 if (T->isRecordType()) {
5748 assert(CCE == Sema::CCEK_TemplateArg &&
5749 "unexpected class type converted constant expr");
5750 Result = S.PerformCopyInitialization(
5751 InitializedEntity::InitializeTemplateParameter(
5752 T, cast<NonTypeTemplateParmDecl>(Dest)),
5753 SourceLocation(), From);
5754 } else {
5755 Result = S.PerformImplicitConversion(From, T, ICS, Sema::AA_Converting);
5756 }
5757 if (Result.isInvalid())
5758 return Result;
5759
5760 // C++2a [intro.execution]p5:
5761 // A full-expression is [...] a constant-expression [...]
5762 Result =
5763 S.ActOnFinishFullExpr(Result.get(), From->getExprLoc(),
5764 /*DiscardedValue=*/false, /*IsConstexpr=*/true);
5765 if (Result.isInvalid())
5766 return Result;
5767
5768 // Check for a narrowing implicit conversion.
5769 bool ReturnPreNarrowingValue = false;
5770 APValue PreNarrowingValue;
5771 QualType PreNarrowingType;
5772 switch (SCS->getNarrowingKind(S.Context, Result.get(), PreNarrowingValue,
5773 PreNarrowingType)) {
5774 case NK_Dependent_Narrowing:
5775 // Implicit conversion to a narrower type, but the expression is
5776 // value-dependent so we can't tell whether it's actually narrowing.
5777 case NK_Variable_Narrowing:
5778 // Implicit conversion to a narrower type, and the value is not a constant
5779 // expression. We'll diagnose this in a moment.
5780 case NK_Not_Narrowing:
5781 break;
5782
5783 case NK_Constant_Narrowing:
5784 if (CCE == Sema::CCEK_ArrayBound &&
5785 PreNarrowingType->isIntegralOrEnumerationType() &&
5786 PreNarrowingValue.isInt()) {
5787 // Don't diagnose array bound narrowing here; we produce more precise
5788 // errors by allowing the un-narrowed value through.
5789 ReturnPreNarrowingValue = true;
5790 break;
5791 }
5792 S.Diag(From->getBeginLoc(), diag::ext_cce_narrowing)
5793 << CCE << /*Constant*/ 1
5794 << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << T;
5795 break;
5796
5797 case NK_Type_Narrowing:
5798 // FIXME: It would be better to diagnose that the expression is not a
5799 // constant expression.
5800 S.Diag(From->getBeginLoc(), diag::ext_cce_narrowing)
5801 << CCE << /*Constant*/ 0 << From->getType() << T;
5802 break;
5803 }
5804
5805 if (Result.get()->isValueDependent()) {
5806 Value = APValue();
5807 return Result;
5808 }
5809
5810 // Check the expression is a constant expression.
5811 SmallVector<PartialDiagnosticAt, 8> Notes;
5812 Expr::EvalResult Eval;
5813 Eval.Diag = &Notes;
5814
5815 ConstantExprKind Kind;
5816 if (CCE == Sema::CCEK_TemplateArg && T->isRecordType())
5817 Kind = ConstantExprKind::ClassTemplateArgument;
5818 else if (CCE == Sema::CCEK_TemplateArg)
5819 Kind = ConstantExprKind::NonClassTemplateArgument;
5820 else
5821 Kind = ConstantExprKind::Normal;
5822
5823 if (!Result.get()->EvaluateAsConstantExpr(Eval, S.Context, Kind) ||
5824 (RequireInt && !Eval.Val.isInt())) {
5825 // The expression can't be folded, so we can't keep it at this position in
5826 // the AST.
5827 Result = ExprError();
5828 } else {
5829 Value = Eval.Val;
5830
5831 if (Notes.empty()) {
5832 // It's a constant expression.
5833 Expr *E = ConstantExpr::Create(S.Context, Result.get(), Value);
5834 if (ReturnPreNarrowingValue)
5835 Value = std::move(PreNarrowingValue);
5836 return E;
5837 }
5838 }
5839
5840 // It's not a constant expression. Produce an appropriate diagnostic.
5841 if (Notes.size() == 1 &&
5842 Notes[0].second.getDiagID() == diag::note_invalid_subexpr_in_const_expr) {
5843 S.Diag(Notes[0].first, diag::err_expr_not_cce) << CCE;
5844 } else if (!Notes.empty() && Notes[0].second.getDiagID() ==
5845 diag::note_constexpr_invalid_template_arg) {
5846 Notes[0].second.setDiagID(diag::err_constexpr_invalid_template_arg);
5847 for (unsigned I = 0; I < Notes.size(); ++I)
5848 S.Diag(Notes[I].first, Notes[I].second);
5849 } else {
5850 S.Diag(From->getBeginLoc(), diag::err_expr_not_cce)
5851 << CCE << From->getSourceRange();
5852 for (unsigned I = 0; I < Notes.size(); ++I)
5853 S.Diag(Notes[I].first, Notes[I].second);
5854 }
5855 return ExprError();
5856 }
5857
CheckConvertedConstantExpression(Expr * From,QualType T,APValue & Value,CCEKind CCE,NamedDecl * Dest)5858 ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
5859 APValue &Value, CCEKind CCE,
5860 NamedDecl *Dest) {
5861 return ::CheckConvertedConstantExpression(*this, From, T, Value, CCE, false,
5862 Dest);
5863 }
5864
CheckConvertedConstantExpression(Expr * From,QualType T,llvm::APSInt & Value,CCEKind CCE)5865 ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
5866 llvm::APSInt &Value,
5867 CCEKind CCE) {
5868 assert(T->isIntegralOrEnumerationType() && "unexpected converted const type");
5869
5870 APValue V;
5871 auto R = ::CheckConvertedConstantExpression(*this, From, T, V, CCE, true,
5872 /*Dest=*/nullptr);
5873 if (!R.isInvalid() && !R.get()->isValueDependent())
5874 Value = V.getInt();
5875 return R;
5876 }
5877
5878
5879 /// dropPointerConversions - If the given standard conversion sequence
5880 /// involves any pointer conversions, remove them. This may change
5881 /// the result type of the conversion sequence.
dropPointerConversion(StandardConversionSequence & SCS)5882 static void dropPointerConversion(StandardConversionSequence &SCS) {
5883 if (SCS.Second == ICK_Pointer_Conversion) {
5884 SCS.Second = ICK_Identity;
5885 SCS.Third = ICK_Identity;
5886 SCS.ToTypePtrs[2] = SCS.ToTypePtrs[1] = SCS.ToTypePtrs[0];
5887 }
5888 }
5889
5890 /// TryContextuallyConvertToObjCPointer - Attempt to contextually
5891 /// convert the expression From to an Objective-C pointer type.
5892 static ImplicitConversionSequence
TryContextuallyConvertToObjCPointer(Sema & S,Expr * From)5893 TryContextuallyConvertToObjCPointer(Sema &S, Expr *From) {
5894 // Do an implicit conversion to 'id'.
5895 QualType Ty = S.Context.getObjCIdType();
5896 ImplicitConversionSequence ICS
5897 = TryImplicitConversion(S, From, Ty,
5898 // FIXME: Are these flags correct?
5899 /*SuppressUserConversions=*/false,
5900 AllowedExplicit::Conversions,
5901 /*InOverloadResolution=*/false,
5902 /*CStyle=*/false,
5903 /*AllowObjCWritebackConversion=*/false,
5904 /*AllowObjCConversionOnExplicit=*/true);
5905
5906 // Strip off any final conversions to 'id'.
5907 switch (ICS.getKind()) {
5908 case ImplicitConversionSequence::BadConversion:
5909 case ImplicitConversionSequence::AmbiguousConversion:
5910 case ImplicitConversionSequence::EllipsisConversion:
5911 break;
5912
5913 case ImplicitConversionSequence::UserDefinedConversion:
5914 dropPointerConversion(ICS.UserDefined.After);
5915 break;
5916
5917 case ImplicitConversionSequence::StandardConversion:
5918 dropPointerConversion(ICS.Standard);
5919 break;
5920 }
5921
5922 return ICS;
5923 }
5924
5925 /// PerformContextuallyConvertToObjCPointer - Perform a contextual
5926 /// conversion of the expression From to an Objective-C pointer type.
5927 /// Returns a valid but null ExprResult if no conversion sequence exists.
PerformContextuallyConvertToObjCPointer(Expr * From)5928 ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) {
5929 if (checkPlaceholderForOverload(*this, From))
5930 return ExprError();
5931
5932 QualType Ty = Context.getObjCIdType();
5933 ImplicitConversionSequence ICS =
5934 TryContextuallyConvertToObjCPointer(*this, From);
5935 if (!ICS.isBad())
5936 return PerformImplicitConversion(From, Ty, ICS, AA_Converting);
5937 return ExprResult();
5938 }
5939
5940 /// Determine whether the provided type is an integral type, or an enumeration
5941 /// type of a permitted flavor.
match(QualType T)5942 bool Sema::ICEConvertDiagnoser::match(QualType T) {
5943 return AllowScopedEnumerations ? T->isIntegralOrEnumerationType()
5944 : T->isIntegralOrUnscopedEnumerationType();
5945 }
5946
5947 static ExprResult
diagnoseAmbiguousConversion(Sema & SemaRef,SourceLocation Loc,Expr * From,Sema::ContextualImplicitConverter & Converter,QualType T,UnresolvedSetImpl & ViableConversions)5948 diagnoseAmbiguousConversion(Sema &SemaRef, SourceLocation Loc, Expr *From,
5949 Sema::ContextualImplicitConverter &Converter,
5950 QualType T, UnresolvedSetImpl &ViableConversions) {
5951
5952 if (Converter.Suppress)
5953 return ExprError();
5954
5955 Converter.diagnoseAmbiguous(SemaRef, Loc, T) << From->getSourceRange();
5956 for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
5957 CXXConversionDecl *Conv =
5958 cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl());
5959 QualType ConvTy = Conv->getConversionType().getNonReferenceType();
5960 Converter.noteAmbiguous(SemaRef, Conv, ConvTy);
5961 }
5962 return From;
5963 }
5964
5965 static bool
diagnoseNoViableConversion(Sema & SemaRef,SourceLocation Loc,Expr * & From,Sema::ContextualImplicitConverter & Converter,QualType T,bool HadMultipleCandidates,UnresolvedSetImpl & ExplicitConversions)5966 diagnoseNoViableConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From,
5967 Sema::ContextualImplicitConverter &Converter,
5968 QualType T, bool HadMultipleCandidates,
5969 UnresolvedSetImpl &ExplicitConversions) {
5970 if (ExplicitConversions.size() == 1 && !Converter.Suppress) {
5971 DeclAccessPair Found = ExplicitConversions[0];
5972 CXXConversionDecl *Conversion =
5973 cast<CXXConversionDecl>(Found->getUnderlyingDecl());
5974
5975 // The user probably meant to invoke the given explicit
5976 // conversion; use it.
5977 QualType ConvTy = Conversion->getConversionType().getNonReferenceType();
5978 std::string TypeStr;
5979 ConvTy.getAsStringInternal(TypeStr, SemaRef.getPrintingPolicy());
5980
5981 Converter.diagnoseExplicitConv(SemaRef, Loc, T, ConvTy)
5982 << FixItHint::CreateInsertion(From->getBeginLoc(),
5983 "static_cast<" + TypeStr + ">(")
5984 << FixItHint::CreateInsertion(
5985 SemaRef.getLocForEndOfToken(From->getEndLoc()), ")");
5986 Converter.noteExplicitConv(SemaRef, Conversion, ConvTy);
5987
5988 // If we aren't in a SFINAE context, build a call to the
5989 // explicit conversion function.
5990 if (SemaRef.isSFINAEContext())
5991 return true;
5992
5993 SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found);
5994 ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion,
5995 HadMultipleCandidates);
5996 if (Result.isInvalid())
5997 return true;
5998 // Record usage of conversion in an implicit cast.
5999 From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(),
6000 CK_UserDefinedConversion, Result.get(),
6001 nullptr, Result.get()->getValueKind(),
6002 SemaRef.CurFPFeatureOverrides());
6003 }
6004 return false;
6005 }
6006
recordConversion(Sema & SemaRef,SourceLocation Loc,Expr * & From,Sema::ContextualImplicitConverter & Converter,QualType T,bool HadMultipleCandidates,DeclAccessPair & Found)6007 static bool recordConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From,
6008 Sema::ContextualImplicitConverter &Converter,
6009 QualType T, bool HadMultipleCandidates,
6010 DeclAccessPair &Found) {
6011 CXXConversionDecl *Conversion =
6012 cast<CXXConversionDecl>(Found->getUnderlyingDecl());
6013 SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found);
6014
6015 QualType ToType = Conversion->getConversionType().getNonReferenceType();
6016 if (!Converter.SuppressConversion) {
6017 if (SemaRef.isSFINAEContext())
6018 return true;
6019
6020 Converter.diagnoseConversion(SemaRef, Loc, T, ToType)
6021 << From->getSourceRange();
6022 }
6023
6024 ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion,
6025 HadMultipleCandidates);
6026 if (Result.isInvalid())
6027 return true;
6028 // Record usage of conversion in an implicit cast.
6029 From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(),
6030 CK_UserDefinedConversion, Result.get(),
6031 nullptr, Result.get()->getValueKind(),
6032 SemaRef.CurFPFeatureOverrides());
6033 return false;
6034 }
6035
finishContextualImplicitConversion(Sema & SemaRef,SourceLocation Loc,Expr * From,Sema::ContextualImplicitConverter & Converter)6036 static ExprResult finishContextualImplicitConversion(
6037 Sema &SemaRef, SourceLocation Loc, Expr *From,
6038 Sema::ContextualImplicitConverter &Converter) {
6039 if (!Converter.match(From->getType()) && !Converter.Suppress)
6040 Converter.diagnoseNoMatch(SemaRef, Loc, From->getType())
6041 << From->getSourceRange();
6042
6043 return SemaRef.DefaultLvalueConversion(From);
6044 }
6045
6046 static void
collectViableConversionCandidates(Sema & SemaRef,Expr * From,QualType ToType,UnresolvedSetImpl & ViableConversions,OverloadCandidateSet & CandidateSet)6047 collectViableConversionCandidates(Sema &SemaRef, Expr *From, QualType ToType,
6048 UnresolvedSetImpl &ViableConversions,
6049 OverloadCandidateSet &CandidateSet) {
6050 for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
6051 DeclAccessPair FoundDecl = ViableConversions[I];
6052 NamedDecl *D = FoundDecl.getDecl();
6053 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
6054 if (isa<UsingShadowDecl>(D))
6055 D = cast<UsingShadowDecl>(D)->getTargetDecl();
6056
6057 CXXConversionDecl *Conv;
6058 FunctionTemplateDecl *ConvTemplate;
6059 if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
6060 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
6061 else
6062 Conv = cast<CXXConversionDecl>(D);
6063
6064 if (ConvTemplate)
6065 SemaRef.AddTemplateConversionCandidate(
6066 ConvTemplate, FoundDecl, ActingContext, From, ToType, CandidateSet,
6067 /*AllowObjCConversionOnExplicit=*/false, /*AllowExplicit*/ true);
6068 else
6069 SemaRef.AddConversionCandidate(Conv, FoundDecl, ActingContext, From,
6070 ToType, CandidateSet,
6071 /*AllowObjCConversionOnExplicit=*/false,
6072 /*AllowExplicit*/ true);
6073 }
6074 }
6075
6076 /// Attempt to convert the given expression to a type which is accepted
6077 /// by the given converter.
6078 ///
6079 /// This routine will attempt to convert an expression of class type to a
6080 /// type accepted by the specified converter. In C++11 and before, the class
6081 /// must have a single non-explicit conversion function converting to a matching
6082 /// type. In C++1y, there can be multiple such conversion functions, but only
6083 /// one target type.
6084 ///
6085 /// \param Loc The source location of the construct that requires the
6086 /// conversion.
6087 ///
6088 /// \param From The expression we're converting from.
6089 ///
6090 /// \param Converter Used to control and diagnose the conversion process.
6091 ///
6092 /// \returns The expression, converted to an integral or enumeration type if
6093 /// successful.
PerformContextualImplicitConversion(SourceLocation Loc,Expr * From,ContextualImplicitConverter & Converter)6094 ExprResult Sema::PerformContextualImplicitConversion(
6095 SourceLocation Loc, Expr *From, ContextualImplicitConverter &Converter) {
6096 // We can't perform any more checking for type-dependent expressions.
6097 if (From->isTypeDependent())
6098 return From;
6099
6100 // Process placeholders immediately.
6101 if (From->hasPlaceholderType()) {
6102 ExprResult result = CheckPlaceholderExpr(From);
6103 if (result.isInvalid())
6104 return result;
6105 From = result.get();
6106 }
6107
6108 // If the expression already has a matching type, we're golden.
6109 QualType T = From->getType();
6110 if (Converter.match(T))
6111 return DefaultLvalueConversion(From);
6112
6113 // FIXME: Check for missing '()' if T is a function type?
6114
6115 // We can only perform contextual implicit conversions on objects of class
6116 // type.
6117 const RecordType *RecordTy = T->getAs<RecordType>();
6118 if (!RecordTy || !getLangOpts().CPlusPlus) {
6119 if (!Converter.Suppress)
6120 Converter.diagnoseNoMatch(*this, Loc, T) << From->getSourceRange();
6121 return From;
6122 }
6123
6124 // We must have a complete class type.
6125 struct TypeDiagnoserPartialDiag : TypeDiagnoser {
6126 ContextualImplicitConverter &Converter;
6127 Expr *From;
6128
6129 TypeDiagnoserPartialDiag(ContextualImplicitConverter &Converter, Expr *From)
6130 : Converter(Converter), From(From) {}
6131
6132 void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
6133 Converter.diagnoseIncomplete(S, Loc, T) << From->getSourceRange();
6134 }
6135 } IncompleteDiagnoser(Converter, From);
6136
6137 if (Converter.Suppress ? !isCompleteType(Loc, T)
6138 : RequireCompleteType(Loc, T, IncompleteDiagnoser))
6139 return From;
6140
6141 // Look for a conversion to an integral or enumeration type.
6142 UnresolvedSet<4>
6143 ViableConversions; // These are *potentially* viable in C++1y.
6144 UnresolvedSet<4> ExplicitConversions;
6145 const auto &Conversions =
6146 cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions();
6147
6148 bool HadMultipleCandidates =
6149 (std::distance(Conversions.begin(), Conversions.end()) > 1);
6150
6151 // To check that there is only one target type, in C++1y:
6152 QualType ToType;
6153 bool HasUniqueTargetType = true;
6154
6155 // Collect explicit or viable (potentially in C++1y) conversions.
6156 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
6157 NamedDecl *D = (*I)->getUnderlyingDecl();
6158 CXXConversionDecl *Conversion;
6159 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
6160 if (ConvTemplate) {
6161 if (getLangOpts().CPlusPlus14)
6162 Conversion = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
6163 else
6164 continue; // C++11 does not consider conversion operator templates(?).
6165 } else
6166 Conversion = cast<CXXConversionDecl>(D);
6167
6168 assert((!ConvTemplate || getLangOpts().CPlusPlus14) &&
6169 "Conversion operator templates are considered potentially "
6170 "viable in C++1y");
6171
6172 QualType CurToType = Conversion->getConversionType().getNonReferenceType();
6173 if (Converter.match(CurToType) || ConvTemplate) {
6174
6175 if (Conversion->isExplicit()) {
6176 // FIXME: For C++1y, do we need this restriction?
6177 // cf. diagnoseNoViableConversion()
6178 if (!ConvTemplate)
6179 ExplicitConversions.addDecl(I.getDecl(), I.getAccess());
6180 } else {
6181 if (!ConvTemplate && getLangOpts().CPlusPlus14) {
6182 if (ToType.isNull())
6183 ToType = CurToType.getUnqualifiedType();
6184 else if (HasUniqueTargetType &&
6185 (CurToType.getUnqualifiedType() != ToType))
6186 HasUniqueTargetType = false;
6187 }
6188 ViableConversions.addDecl(I.getDecl(), I.getAccess());
6189 }
6190 }
6191 }
6192
6193 if (getLangOpts().CPlusPlus14) {
6194 // C++1y [conv]p6:
6195 // ... An expression e of class type E appearing in such a context
6196 // is said to be contextually implicitly converted to a specified
6197 // type T and is well-formed if and only if e can be implicitly
6198 // converted to a type T that is determined as follows: E is searched
6199 // for conversion functions whose return type is cv T or reference to
6200 // cv T such that T is allowed by the context. There shall be
6201 // exactly one such T.
6202
6203 // If no unique T is found:
6204 if (ToType.isNull()) {
6205 if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
6206 HadMultipleCandidates,
6207 ExplicitConversions))
6208 return ExprError();
6209 return finishContextualImplicitConversion(*this, Loc, From, Converter);
6210 }
6211
6212 // If more than one unique Ts are found:
6213 if (!HasUniqueTargetType)
6214 return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
6215 ViableConversions);
6216
6217 // If one unique T is found:
6218 // First, build a candidate set from the previously recorded
6219 // potentially viable conversions.
6220 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
6221 collectViableConversionCandidates(*this, From, ToType, ViableConversions,
6222 CandidateSet);
6223
6224 // Then, perform overload resolution over the candidate set.
6225 OverloadCandidateSet::iterator Best;
6226 switch (CandidateSet.BestViableFunction(*this, Loc, Best)) {
6227 case OR_Success: {
6228 // Apply this conversion.
6229 DeclAccessPair Found =
6230 DeclAccessPair::make(Best->Function, Best->FoundDecl.getAccess());
6231 if (recordConversion(*this, Loc, From, Converter, T,
6232 HadMultipleCandidates, Found))
6233 return ExprError();
6234 break;
6235 }
6236 case OR_Ambiguous:
6237 return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
6238 ViableConversions);
6239 case OR_No_Viable_Function:
6240 if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
6241 HadMultipleCandidates,
6242 ExplicitConversions))
6243 return ExprError();
6244 LLVM_FALLTHROUGH;
6245 case OR_Deleted:
6246 // We'll complain below about a non-integral condition type.
6247 break;
6248 }
6249 } else {
6250 switch (ViableConversions.size()) {
6251 case 0: {
6252 if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
6253 HadMultipleCandidates,
6254 ExplicitConversions))
6255 return ExprError();
6256
6257 // We'll complain below about a non-integral condition type.
6258 break;
6259 }
6260 case 1: {
6261 // Apply this conversion.
6262 DeclAccessPair Found = ViableConversions[0];
6263 if (recordConversion(*this, Loc, From, Converter, T,
6264 HadMultipleCandidates, Found))
6265 return ExprError();
6266 break;
6267 }
6268 default:
6269 return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
6270 ViableConversions);
6271 }
6272 }
6273
6274 return finishContextualImplicitConversion(*this, Loc, From, Converter);
6275 }
6276
6277 /// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
6278 /// an acceptable non-member overloaded operator for a call whose
6279 /// arguments have types T1 (and, if non-empty, T2). This routine
6280 /// implements the check in C++ [over.match.oper]p3b2 concerning
6281 /// enumeration types.
IsAcceptableNonMemberOperatorCandidate(ASTContext & Context,FunctionDecl * Fn,ArrayRef<Expr * > Args)6282 static bool IsAcceptableNonMemberOperatorCandidate(ASTContext &Context,
6283 FunctionDecl *Fn,
6284 ArrayRef<Expr *> Args) {
6285 QualType T1 = Args[0]->getType();
6286 QualType T2 = Args.size() > 1 ? Args[1]->getType() : QualType();
6287
6288 if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType()))
6289 return true;
6290
6291 if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
6292 return true;
6293
6294 const auto *Proto = Fn->getType()->castAs<FunctionProtoType>();
6295 if (Proto->getNumParams() < 1)
6296 return false;
6297
6298 if (T1->isEnumeralType()) {
6299 QualType ArgType = Proto->getParamType(0).getNonReferenceType();
6300 if (Context.hasSameUnqualifiedType(T1, ArgType))
6301 return true;
6302 }
6303
6304 if (Proto->getNumParams() < 2)
6305 return false;
6306
6307 if (!T2.isNull() && T2->isEnumeralType()) {
6308 QualType ArgType = Proto->getParamType(1).getNonReferenceType();
6309 if (Context.hasSameUnqualifiedType(T2, ArgType))
6310 return true;
6311 }
6312
6313 return false;
6314 }
6315
6316 /// AddOverloadCandidate - Adds the given function to the set of
6317 /// candidate functions, using the given function call arguments. If
6318 /// @p SuppressUserConversions, then don't allow user-defined
6319 /// conversions via constructors or conversion operators.
6320 ///
6321 /// \param PartialOverloading true if we are performing "partial" overloading
6322 /// based on an incomplete set of function arguments. This feature is used by
6323 /// code completion.
AddOverloadCandidate(FunctionDecl * Function,DeclAccessPair FoundDecl,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet,bool SuppressUserConversions,bool PartialOverloading,bool AllowExplicit,bool AllowExplicitConversions,ADLCallKind IsADLCandidate,ConversionSequenceList EarlyConversions,OverloadCandidateParamOrder PO)6324 void Sema::AddOverloadCandidate(
6325 FunctionDecl *Function, DeclAccessPair FoundDecl, ArrayRef<Expr *> Args,
6326 OverloadCandidateSet &CandidateSet, bool SuppressUserConversions,
6327 bool PartialOverloading, bool AllowExplicit, bool AllowExplicitConversions,
6328 ADLCallKind IsADLCandidate, ConversionSequenceList EarlyConversions,
6329 OverloadCandidateParamOrder PO) {
6330 const FunctionProtoType *Proto
6331 = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
6332 assert(Proto && "Functions without a prototype cannot be overloaded");
6333 assert(!Function->getDescribedFunctionTemplate() &&
6334 "Use AddTemplateOverloadCandidate for function templates");
6335
6336 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
6337 if (!isa<CXXConstructorDecl>(Method)) {
6338 // If we get here, it's because we're calling a member function
6339 // that is named without a member access expression (e.g.,
6340 // "this->f") that was either written explicitly or created
6341 // implicitly. This can happen with a qualified call to a member
6342 // function, e.g., X::f(). We use an empty type for the implied
6343 // object argument (C++ [over.call.func]p3), and the acting context
6344 // is irrelevant.
6345 AddMethodCandidate(Method, FoundDecl, Method->getParent(), QualType(),
6346 Expr::Classification::makeSimpleLValue(), Args,
6347 CandidateSet, SuppressUserConversions,
6348 PartialOverloading, EarlyConversions, PO);
6349 return;
6350 }
6351 // We treat a constructor like a non-member function, since its object
6352 // argument doesn't participate in overload resolution.
6353 }
6354
6355 if (!CandidateSet.isNewCandidate(Function, PO))
6356 return;
6357
6358 // C++11 [class.copy]p11: [DR1402]
6359 // A defaulted move constructor that is defined as deleted is ignored by
6360 // overload resolution.
6361 CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function);
6362 if (Constructor && Constructor->isDefaulted() && Constructor->isDeleted() &&
6363 Constructor->isMoveConstructor())
6364 return;
6365
6366 // Overload resolution is always an unevaluated context.
6367 EnterExpressionEvaluationContext Unevaluated(
6368 *this, Sema::ExpressionEvaluationContext::Unevaluated);
6369
6370 // C++ [over.match.oper]p3:
6371 // if no operand has a class type, only those non-member functions in the
6372 // lookup set that have a first parameter of type T1 or "reference to
6373 // (possibly cv-qualified) T1", when T1 is an enumeration type, or (if there
6374 // is a right operand) a second parameter of type T2 or "reference to
6375 // (possibly cv-qualified) T2", when T2 is an enumeration type, are
6376 // candidate functions.
6377 if (CandidateSet.getKind() == OverloadCandidateSet::CSK_Operator &&
6378 !IsAcceptableNonMemberOperatorCandidate(Context, Function, Args))
6379 return;
6380
6381 // Add this candidate
6382 OverloadCandidate &Candidate =
6383 CandidateSet.addCandidate(Args.size(), EarlyConversions);
6384 Candidate.FoundDecl = FoundDecl;
6385 Candidate.Function = Function;
6386 Candidate.Viable = true;
6387 Candidate.RewriteKind =
6388 CandidateSet.getRewriteInfo().getRewriteKind(Function, PO);
6389 Candidate.IsSurrogate = false;
6390 Candidate.IsADLCandidate = IsADLCandidate;
6391 Candidate.IgnoreObjectArgument = false;
6392 Candidate.ExplicitCallArguments = Args.size();
6393
6394 // Explicit functions are not actually candidates at all if we're not
6395 // allowing them in this context, but keep them around so we can point
6396 // to them in diagnostics.
6397 if (!AllowExplicit && ExplicitSpecifier::getFromDecl(Function).isExplicit()) {
6398 Candidate.Viable = false;
6399 Candidate.FailureKind = ovl_fail_explicit;
6400 return;
6401 }
6402
6403 // Functions with internal linkage are only viable in the same module unit.
6404 if (auto *MF = Function->getOwningModule()) {
6405 if (getLangOpts().CPlusPlusModules && !MF->isModuleMapModule() &&
6406 !isModuleUnitOfCurrentTU(MF)) {
6407 /// FIXME: Currently, the semantics of linkage in clang is slightly
6408 /// different from the semantics in C++ spec. In C++ spec, only names
6409 /// have linkage. So that all entities of the same should share one
6410 /// linkage. But in clang, different entities of the same could have
6411 /// different linkage.
6412 NamedDecl *ND = Function;
6413 if (auto *SpecInfo = Function->getTemplateSpecializationInfo())
6414 ND = SpecInfo->getTemplate();
6415
6416 if (ND->getFormalLinkage() == Linkage::InternalLinkage) {
6417 Candidate.Viable = false;
6418 Candidate.FailureKind = ovl_fail_module_mismatched;
6419 return;
6420 }
6421 }
6422 }
6423
6424 if (Function->isMultiVersion() && Function->hasAttr<TargetAttr>() &&
6425 !Function->getAttr<TargetAttr>()->isDefaultVersion()) {
6426 Candidate.Viable = false;
6427 Candidate.FailureKind = ovl_non_default_multiversion_function;
6428 return;
6429 }
6430
6431 if (Constructor) {
6432 // C++ [class.copy]p3:
6433 // A member function template is never instantiated to perform the copy
6434 // of a class object to an object of its class type.
6435 QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
6436 if (Args.size() == 1 && Constructor->isSpecializationCopyingObject() &&
6437 (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
6438 IsDerivedFrom(Args[0]->getBeginLoc(), Args[0]->getType(),
6439 ClassType))) {
6440 Candidate.Viable = false;
6441 Candidate.FailureKind = ovl_fail_illegal_constructor;
6442 return;
6443 }
6444
6445 // C++ [over.match.funcs]p8: (proposed DR resolution)
6446 // A constructor inherited from class type C that has a first parameter
6447 // of type "reference to P" (including such a constructor instantiated
6448 // from a template) is excluded from the set of candidate functions when
6449 // constructing an object of type cv D if the argument list has exactly
6450 // one argument and D is reference-related to P and P is reference-related
6451 // to C.
6452 auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl.getDecl());
6453 if (Shadow && Args.size() == 1 && Constructor->getNumParams() >= 1 &&
6454 Constructor->getParamDecl(0)->getType()->isReferenceType()) {
6455 QualType P = Constructor->getParamDecl(0)->getType()->getPointeeType();
6456 QualType C = Context.getRecordType(Constructor->getParent());
6457 QualType D = Context.getRecordType(Shadow->getParent());
6458 SourceLocation Loc = Args.front()->getExprLoc();
6459 if ((Context.hasSameUnqualifiedType(P, C) || IsDerivedFrom(Loc, P, C)) &&
6460 (Context.hasSameUnqualifiedType(D, P) || IsDerivedFrom(Loc, D, P))) {
6461 Candidate.Viable = false;
6462 Candidate.FailureKind = ovl_fail_inhctor_slice;
6463 return;
6464 }
6465 }
6466
6467 // Check that the constructor is capable of constructing an object in the
6468 // destination address space.
6469 if (!Qualifiers::isAddressSpaceSupersetOf(
6470 Constructor->getMethodQualifiers().getAddressSpace(),
6471 CandidateSet.getDestAS())) {
6472 Candidate.Viable = false;
6473 Candidate.FailureKind = ovl_fail_object_addrspace_mismatch;
6474 }
6475 }
6476
6477 unsigned NumParams = Proto->getNumParams();
6478
6479 // (C++ 13.3.2p2): A candidate function having fewer than m
6480 // parameters is viable only if it has an ellipsis in its parameter
6481 // list (8.3.5).
6482 if (TooManyArguments(NumParams, Args.size(), PartialOverloading) &&
6483 !Proto->isVariadic() &&
6484 shouldEnforceArgLimit(PartialOverloading, Function)) {
6485 Candidate.Viable = false;
6486 Candidate.FailureKind = ovl_fail_too_many_arguments;
6487 return;
6488 }
6489
6490 // (C++ 13.3.2p2): A candidate function having more than m parameters
6491 // is viable only if the (m+1)st parameter has a default argument
6492 // (8.3.6). For the purposes of overload resolution, the
6493 // parameter list is truncated on the right, so that there are
6494 // exactly m parameters.
6495 unsigned MinRequiredArgs = Function->getMinRequiredArguments();
6496 if (Args.size() < MinRequiredArgs && !PartialOverloading) {
6497 // Not enough arguments.
6498 Candidate.Viable = false;
6499 Candidate.FailureKind = ovl_fail_too_few_arguments;
6500 return;
6501 }
6502
6503 // (CUDA B.1): Check for invalid calls between targets.
6504 if (getLangOpts().CUDA)
6505 if (const FunctionDecl *Caller = getCurFunctionDecl(/*AllowLambda=*/true))
6506 // Skip the check for callers that are implicit members, because in this
6507 // case we may not yet know what the member's target is; the target is
6508 // inferred for the member automatically, based on the bases and fields of
6509 // the class.
6510 if (!Caller->isImplicit() && !IsAllowedCUDACall(Caller, Function)) {
6511 Candidate.Viable = false;
6512 Candidate.FailureKind = ovl_fail_bad_target;
6513 return;
6514 }
6515
6516 if (Function->getTrailingRequiresClause()) {
6517 ConstraintSatisfaction Satisfaction;
6518 if (CheckFunctionConstraints(Function, Satisfaction) ||
6519 !Satisfaction.IsSatisfied) {
6520 Candidate.Viable = false;
6521 Candidate.FailureKind = ovl_fail_constraints_not_satisfied;
6522 return;
6523 }
6524 }
6525
6526 // Determine the implicit conversion sequences for each of the
6527 // arguments.
6528 for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
6529 unsigned ConvIdx =
6530 PO == OverloadCandidateParamOrder::Reversed ? 1 - ArgIdx : ArgIdx;
6531 if (Candidate.Conversions[ConvIdx].isInitialized()) {
6532 // We already formed a conversion sequence for this parameter during
6533 // template argument deduction.
6534 } else if (ArgIdx < NumParams) {
6535 // (C++ 13.3.2p3): for F to be a viable function, there shall
6536 // exist for each argument an implicit conversion sequence
6537 // (13.3.3.1) that converts that argument to the corresponding
6538 // parameter of F.
6539 QualType ParamType = Proto->getParamType(ArgIdx);
6540 Candidate.Conversions[ConvIdx] = TryCopyInitialization(
6541 *this, Args[ArgIdx], ParamType, SuppressUserConversions,
6542 /*InOverloadResolution=*/true,
6543 /*AllowObjCWritebackConversion=*/
6544 getLangOpts().ObjCAutoRefCount, AllowExplicitConversions);
6545 if (Candidate.Conversions[ConvIdx].isBad()) {
6546 Candidate.Viable = false;
6547 Candidate.FailureKind = ovl_fail_bad_conversion;
6548 return;
6549 }
6550 } else {
6551 // (C++ 13.3.2p2): For the purposes of overload resolution, any
6552 // argument for which there is no corresponding parameter is
6553 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
6554 Candidate.Conversions[ConvIdx].setEllipsis();
6555 }
6556 }
6557
6558 if (EnableIfAttr *FailedAttr =
6559 CheckEnableIf(Function, CandidateSet.getLocation(), Args)) {
6560 Candidate.Viable = false;
6561 Candidate.FailureKind = ovl_fail_enable_if;
6562 Candidate.DeductionFailure.Data = FailedAttr;
6563 return;
6564 }
6565 }
6566
6567 ObjCMethodDecl *
SelectBestMethod(Selector Sel,MultiExprArg Args,bool IsInstance,SmallVectorImpl<ObjCMethodDecl * > & Methods)6568 Sema::SelectBestMethod(Selector Sel, MultiExprArg Args, bool IsInstance,
6569 SmallVectorImpl<ObjCMethodDecl *> &Methods) {
6570 if (Methods.size() <= 1)
6571 return nullptr;
6572
6573 for (unsigned b = 0, e = Methods.size(); b < e; b++) {
6574 bool Match = true;
6575 ObjCMethodDecl *Method = Methods[b];
6576 unsigned NumNamedArgs = Sel.getNumArgs();
6577 // Method might have more arguments than selector indicates. This is due
6578 // to addition of c-style arguments in method.
6579 if (Method->param_size() > NumNamedArgs)
6580 NumNamedArgs = Method->param_size();
6581 if (Args.size() < NumNamedArgs)
6582 continue;
6583
6584 for (unsigned i = 0; i < NumNamedArgs; i++) {
6585 // We can't do any type-checking on a type-dependent argument.
6586 if (Args[i]->isTypeDependent()) {
6587 Match = false;
6588 break;
6589 }
6590
6591 ParmVarDecl *param = Method->parameters()[i];
6592 Expr *argExpr = Args[i];
6593 assert(argExpr && "SelectBestMethod(): missing expression");
6594
6595 // Strip the unbridged-cast placeholder expression off unless it's
6596 // a consumed argument.
6597 if (argExpr->hasPlaceholderType(BuiltinType::ARCUnbridgedCast) &&
6598 !param->hasAttr<CFConsumedAttr>())
6599 argExpr = stripARCUnbridgedCast(argExpr);
6600
6601 // If the parameter is __unknown_anytype, move on to the next method.
6602 if (param->getType() == Context.UnknownAnyTy) {
6603 Match = false;
6604 break;
6605 }
6606
6607 ImplicitConversionSequence ConversionState
6608 = TryCopyInitialization(*this, argExpr, param->getType(),
6609 /*SuppressUserConversions*/false,
6610 /*InOverloadResolution=*/true,
6611 /*AllowObjCWritebackConversion=*/
6612 getLangOpts().ObjCAutoRefCount,
6613 /*AllowExplicit*/false);
6614 // This function looks for a reasonably-exact match, so we consider
6615 // incompatible pointer conversions to be a failure here.
6616 if (ConversionState.isBad() ||
6617 (ConversionState.isStandard() &&
6618 ConversionState.Standard.Second ==
6619 ICK_Incompatible_Pointer_Conversion)) {
6620 Match = false;
6621 break;
6622 }
6623 }
6624 // Promote additional arguments to variadic methods.
6625 if (Match && Method->isVariadic()) {
6626 for (unsigned i = NumNamedArgs, e = Args.size(); i < e; ++i) {
6627 if (Args[i]->isTypeDependent()) {
6628 Match = false;
6629 break;
6630 }
6631 ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod,
6632 nullptr);
6633 if (Arg.isInvalid()) {
6634 Match = false;
6635 break;
6636 }
6637 }
6638 } else {
6639 // Check for extra arguments to non-variadic methods.
6640 if (Args.size() != NumNamedArgs)
6641 Match = false;
6642 else if (Match && NumNamedArgs == 0 && Methods.size() > 1) {
6643 // Special case when selectors have no argument. In this case, select
6644 // one with the most general result type of 'id'.
6645 for (unsigned b = 0, e = Methods.size(); b < e; b++) {
6646 QualType ReturnT = Methods[b]->getReturnType();
6647 if (ReturnT->isObjCIdType())
6648 return Methods[b];
6649 }
6650 }
6651 }
6652
6653 if (Match)
6654 return Method;
6655 }
6656 return nullptr;
6657 }
6658
convertArgsForAvailabilityChecks(Sema & S,FunctionDecl * Function,Expr * ThisArg,SourceLocation CallLoc,ArrayRef<Expr * > Args,Sema::SFINAETrap & Trap,bool MissingImplicitThis,Expr * & ConvertedThis,SmallVectorImpl<Expr * > & ConvertedArgs)6659 static bool convertArgsForAvailabilityChecks(
6660 Sema &S, FunctionDecl *Function, Expr *ThisArg, SourceLocation CallLoc,
6661 ArrayRef<Expr *> Args, Sema::SFINAETrap &Trap, bool MissingImplicitThis,
6662 Expr *&ConvertedThis, SmallVectorImpl<Expr *> &ConvertedArgs) {
6663 if (ThisArg) {
6664 CXXMethodDecl *Method = cast<CXXMethodDecl>(Function);
6665 assert(!isa<CXXConstructorDecl>(Method) &&
6666 "Shouldn't have `this` for ctors!");
6667 assert(!Method->isStatic() && "Shouldn't have `this` for static methods!");
6668 ExprResult R = S.PerformObjectArgumentInitialization(
6669 ThisArg, /*Qualifier=*/nullptr, Method, Method);
6670 if (R.isInvalid())
6671 return false;
6672 ConvertedThis = R.get();
6673 } else {
6674 if (auto *MD = dyn_cast<CXXMethodDecl>(Function)) {
6675 (void)MD;
6676 assert((MissingImplicitThis || MD->isStatic() ||
6677 isa<CXXConstructorDecl>(MD)) &&
6678 "Expected `this` for non-ctor instance methods");
6679 }
6680 ConvertedThis = nullptr;
6681 }
6682
6683 // Ignore any variadic arguments. Converting them is pointless, since the
6684 // user can't refer to them in the function condition.
6685 unsigned ArgSizeNoVarargs = std::min(Function->param_size(), Args.size());
6686
6687 // Convert the arguments.
6688 for (unsigned I = 0; I != ArgSizeNoVarargs; ++I) {
6689 ExprResult R;
6690 R = S.PerformCopyInitialization(InitializedEntity::InitializeParameter(
6691 S.Context, Function->getParamDecl(I)),
6692 SourceLocation(), Args[I]);
6693
6694 if (R.isInvalid())
6695 return false;
6696
6697 ConvertedArgs.push_back(R.get());
6698 }
6699
6700 if (Trap.hasErrorOccurred())
6701 return false;
6702
6703 // Push default arguments if needed.
6704 if (!Function->isVariadic() && Args.size() < Function->getNumParams()) {
6705 for (unsigned i = Args.size(), e = Function->getNumParams(); i != e; ++i) {
6706 ParmVarDecl *P = Function->getParamDecl(i);
6707 if (!P->hasDefaultArg())
6708 return false;
6709 ExprResult R = S.BuildCXXDefaultArgExpr(CallLoc, Function, P);
6710 if (R.isInvalid())
6711 return false;
6712 ConvertedArgs.push_back(R.get());
6713 }
6714
6715 if (Trap.hasErrorOccurred())
6716 return false;
6717 }
6718 return true;
6719 }
6720
CheckEnableIf(FunctionDecl * Function,SourceLocation CallLoc,ArrayRef<Expr * > Args,bool MissingImplicitThis)6721 EnableIfAttr *Sema::CheckEnableIf(FunctionDecl *Function,
6722 SourceLocation CallLoc,
6723 ArrayRef<Expr *> Args,
6724 bool MissingImplicitThis) {
6725 auto EnableIfAttrs = Function->specific_attrs<EnableIfAttr>();
6726 if (EnableIfAttrs.begin() == EnableIfAttrs.end())
6727 return nullptr;
6728
6729 SFINAETrap Trap(*this);
6730 SmallVector<Expr *, 16> ConvertedArgs;
6731 // FIXME: We should look into making enable_if late-parsed.
6732 Expr *DiscardedThis;
6733 if (!convertArgsForAvailabilityChecks(
6734 *this, Function, /*ThisArg=*/nullptr, CallLoc, Args, Trap,
6735 /*MissingImplicitThis=*/true, DiscardedThis, ConvertedArgs))
6736 return *EnableIfAttrs.begin();
6737
6738 for (auto *EIA : EnableIfAttrs) {
6739 APValue Result;
6740 // FIXME: This doesn't consider value-dependent cases, because doing so is
6741 // very difficult. Ideally, we should handle them more gracefully.
6742 if (EIA->getCond()->isValueDependent() ||
6743 !EIA->getCond()->EvaluateWithSubstitution(
6744 Result, Context, Function, llvm::makeArrayRef(ConvertedArgs)))
6745 return EIA;
6746
6747 if (!Result.isInt() || !Result.getInt().getBoolValue())
6748 return EIA;
6749 }
6750 return nullptr;
6751 }
6752
6753 template <typename CheckFn>
diagnoseDiagnoseIfAttrsWith(Sema & S,const NamedDecl * ND,bool ArgDependent,SourceLocation Loc,CheckFn && IsSuccessful)6754 static bool diagnoseDiagnoseIfAttrsWith(Sema &S, const NamedDecl *ND,
6755 bool ArgDependent, SourceLocation Loc,
6756 CheckFn &&IsSuccessful) {
6757 SmallVector<const DiagnoseIfAttr *, 8> Attrs;
6758 for (const auto *DIA : ND->specific_attrs<DiagnoseIfAttr>()) {
6759 if (ArgDependent == DIA->getArgDependent())
6760 Attrs.push_back(DIA);
6761 }
6762
6763 // Common case: No diagnose_if attributes, so we can quit early.
6764 if (Attrs.empty())
6765 return false;
6766
6767 auto WarningBegin = std::stable_partition(
6768 Attrs.begin(), Attrs.end(),
6769 [](const DiagnoseIfAttr *DIA) { return DIA->isError(); });
6770
6771 // Note that diagnose_if attributes are late-parsed, so they appear in the
6772 // correct order (unlike enable_if attributes).
6773 auto ErrAttr = llvm::find_if(llvm::make_range(Attrs.begin(), WarningBegin),
6774 IsSuccessful);
6775 if (ErrAttr != WarningBegin) {
6776 const DiagnoseIfAttr *DIA = *ErrAttr;
6777 S.Diag(Loc, diag::err_diagnose_if_succeeded) << DIA->getMessage();
6778 S.Diag(DIA->getLocation(), diag::note_from_diagnose_if)
6779 << DIA->getParent() << DIA->getCond()->getSourceRange();
6780 return true;
6781 }
6782
6783 for (const auto *DIA : llvm::make_range(WarningBegin, Attrs.end()))
6784 if (IsSuccessful(DIA)) {
6785 S.Diag(Loc, diag::warn_diagnose_if_succeeded) << DIA->getMessage();
6786 S.Diag(DIA->getLocation(), diag::note_from_diagnose_if)
6787 << DIA->getParent() << DIA->getCond()->getSourceRange();
6788 }
6789
6790 return false;
6791 }
6792
diagnoseArgDependentDiagnoseIfAttrs(const FunctionDecl * Function,const Expr * ThisArg,ArrayRef<const Expr * > Args,SourceLocation Loc)6793 bool Sema::diagnoseArgDependentDiagnoseIfAttrs(const FunctionDecl *Function,
6794 const Expr *ThisArg,
6795 ArrayRef<const Expr *> Args,
6796 SourceLocation Loc) {
6797 return diagnoseDiagnoseIfAttrsWith(
6798 *this, Function, /*ArgDependent=*/true, Loc,
6799 [&](const DiagnoseIfAttr *DIA) {
6800 APValue Result;
6801 // It's sane to use the same Args for any redecl of this function, since
6802 // EvaluateWithSubstitution only cares about the position of each
6803 // argument in the arg list, not the ParmVarDecl* it maps to.
6804 if (!DIA->getCond()->EvaluateWithSubstitution(
6805 Result, Context, cast<FunctionDecl>(DIA->getParent()), Args, ThisArg))
6806 return false;
6807 return Result.isInt() && Result.getInt().getBoolValue();
6808 });
6809 }
6810
diagnoseArgIndependentDiagnoseIfAttrs(const NamedDecl * ND,SourceLocation Loc)6811 bool Sema::diagnoseArgIndependentDiagnoseIfAttrs(const NamedDecl *ND,
6812 SourceLocation Loc) {
6813 return diagnoseDiagnoseIfAttrsWith(
6814 *this, ND, /*ArgDependent=*/false, Loc,
6815 [&](const DiagnoseIfAttr *DIA) {
6816 bool Result;
6817 return DIA->getCond()->EvaluateAsBooleanCondition(Result, Context) &&
6818 Result;
6819 });
6820 }
6821
6822 /// Add all of the function declarations in the given function set to
6823 /// the overload candidate set.
AddFunctionCandidates(const UnresolvedSetImpl & Fns,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet,TemplateArgumentListInfo * ExplicitTemplateArgs,bool SuppressUserConversions,bool PartialOverloading,bool FirstArgumentIsBase)6824 void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
6825 ArrayRef<Expr *> Args,
6826 OverloadCandidateSet &CandidateSet,
6827 TemplateArgumentListInfo *ExplicitTemplateArgs,
6828 bool SuppressUserConversions,
6829 bool PartialOverloading,
6830 bool FirstArgumentIsBase) {
6831 for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
6832 NamedDecl *D = F.getDecl()->getUnderlyingDecl();
6833 ArrayRef<Expr *> FunctionArgs = Args;
6834
6835 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D);
6836 FunctionDecl *FD =
6837 FunTmpl ? FunTmpl->getTemplatedDecl() : cast<FunctionDecl>(D);
6838
6839 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) {
6840 QualType ObjectType;
6841 Expr::Classification ObjectClassification;
6842 if (Args.size() > 0) {
6843 if (Expr *E = Args[0]) {
6844 // Use the explicit base to restrict the lookup:
6845 ObjectType = E->getType();
6846 // Pointers in the object arguments are implicitly dereferenced, so we
6847 // always classify them as l-values.
6848 if (!ObjectType.isNull() && ObjectType->isPointerType())
6849 ObjectClassification = Expr::Classification::makeSimpleLValue();
6850 else
6851 ObjectClassification = E->Classify(Context);
6852 } // .. else there is an implicit base.
6853 FunctionArgs = Args.slice(1);
6854 }
6855 if (FunTmpl) {
6856 AddMethodTemplateCandidate(
6857 FunTmpl, F.getPair(),
6858 cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
6859 ExplicitTemplateArgs, ObjectType, ObjectClassification,
6860 FunctionArgs, CandidateSet, SuppressUserConversions,
6861 PartialOverloading);
6862 } else {
6863 AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
6864 cast<CXXMethodDecl>(FD)->getParent(), ObjectType,
6865 ObjectClassification, FunctionArgs, CandidateSet,
6866 SuppressUserConversions, PartialOverloading);
6867 }
6868 } else {
6869 // This branch handles both standalone functions and static methods.
6870
6871 // Slice the first argument (which is the base) when we access
6872 // static method as non-static.
6873 if (Args.size() > 0 &&
6874 (!Args[0] || (FirstArgumentIsBase && isa<CXXMethodDecl>(FD) &&
6875 !isa<CXXConstructorDecl>(FD)))) {
6876 assert(cast<CXXMethodDecl>(FD)->isStatic());
6877 FunctionArgs = Args.slice(1);
6878 }
6879 if (FunTmpl) {
6880 AddTemplateOverloadCandidate(FunTmpl, F.getPair(),
6881 ExplicitTemplateArgs, FunctionArgs,
6882 CandidateSet, SuppressUserConversions,
6883 PartialOverloading);
6884 } else {
6885 AddOverloadCandidate(FD, F.getPair(), FunctionArgs, CandidateSet,
6886 SuppressUserConversions, PartialOverloading);
6887 }
6888 }
6889 }
6890 }
6891
6892 /// AddMethodCandidate - Adds a named decl (which is some kind of
6893 /// method) as a method candidate to the given overload set.
AddMethodCandidate(DeclAccessPair FoundDecl,QualType ObjectType,Expr::Classification ObjectClassification,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet,bool SuppressUserConversions,OverloadCandidateParamOrder PO)6894 void Sema::AddMethodCandidate(DeclAccessPair FoundDecl, QualType ObjectType,
6895 Expr::Classification ObjectClassification,
6896 ArrayRef<Expr *> Args,
6897 OverloadCandidateSet &CandidateSet,
6898 bool SuppressUserConversions,
6899 OverloadCandidateParamOrder PO) {
6900 NamedDecl *Decl = FoundDecl.getDecl();
6901 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
6902
6903 if (isa<UsingShadowDecl>(Decl))
6904 Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
6905
6906 if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
6907 assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
6908 "Expected a member function template");
6909 AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
6910 /*ExplicitArgs*/ nullptr, ObjectType,
6911 ObjectClassification, Args, CandidateSet,
6912 SuppressUserConversions, false, PO);
6913 } else {
6914 AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
6915 ObjectType, ObjectClassification, Args, CandidateSet,
6916 SuppressUserConversions, false, None, PO);
6917 }
6918 }
6919
6920 /// AddMethodCandidate - Adds the given C++ member function to the set
6921 /// of candidate functions, using the given function call arguments
6922 /// and the object argument (@c Object). For example, in a call
6923 /// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
6924 /// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
6925 /// allow user-defined conversions via constructors or conversion
6926 /// operators.
6927 void
AddMethodCandidate(CXXMethodDecl * Method,DeclAccessPair FoundDecl,CXXRecordDecl * ActingContext,QualType ObjectType,Expr::Classification ObjectClassification,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet,bool SuppressUserConversions,bool PartialOverloading,ConversionSequenceList EarlyConversions,OverloadCandidateParamOrder PO)6928 Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
6929 CXXRecordDecl *ActingContext, QualType ObjectType,
6930 Expr::Classification ObjectClassification,
6931 ArrayRef<Expr *> Args,
6932 OverloadCandidateSet &CandidateSet,
6933 bool SuppressUserConversions,
6934 bool PartialOverloading,
6935 ConversionSequenceList EarlyConversions,
6936 OverloadCandidateParamOrder PO) {
6937 const FunctionProtoType *Proto
6938 = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
6939 assert(Proto && "Methods without a prototype cannot be overloaded");
6940 assert(!isa<CXXConstructorDecl>(Method) &&
6941 "Use AddOverloadCandidate for constructors");
6942
6943 if (!CandidateSet.isNewCandidate(Method, PO))
6944 return;
6945
6946 // C++11 [class.copy]p23: [DR1402]
6947 // A defaulted move assignment operator that is defined as deleted is
6948 // ignored by overload resolution.
6949 if (Method->isDefaulted() && Method->isDeleted() &&
6950 Method->isMoveAssignmentOperator())
6951 return;
6952
6953 // Overload resolution is always an unevaluated context.
6954 EnterExpressionEvaluationContext Unevaluated(
6955 *this, Sema::ExpressionEvaluationContext::Unevaluated);
6956
6957 // Add this candidate
6958 OverloadCandidate &Candidate =
6959 CandidateSet.addCandidate(Args.size() + 1, EarlyConversions);
6960 Candidate.FoundDecl = FoundDecl;
6961 Candidate.Function = Method;
6962 Candidate.RewriteKind =
6963 CandidateSet.getRewriteInfo().getRewriteKind(Method, PO);
6964 Candidate.IsSurrogate = false;
6965 Candidate.IgnoreObjectArgument = false;
6966 Candidate.ExplicitCallArguments = Args.size();
6967
6968 unsigned NumParams = Proto->getNumParams();
6969
6970 // (C++ 13.3.2p2): A candidate function having fewer than m
6971 // parameters is viable only if it has an ellipsis in its parameter
6972 // list (8.3.5).
6973 if (TooManyArguments(NumParams, Args.size(), PartialOverloading) &&
6974 !Proto->isVariadic() &&
6975 shouldEnforceArgLimit(PartialOverloading, Method)) {
6976 Candidate.Viable = false;
6977 Candidate.FailureKind = ovl_fail_too_many_arguments;
6978 return;
6979 }
6980
6981 // (C++ 13.3.2p2): A candidate function having more than m parameters
6982 // is viable only if the (m+1)st parameter has a default argument
6983 // (8.3.6). For the purposes of overload resolution, the
6984 // parameter list is truncated on the right, so that there are
6985 // exactly m parameters.
6986 unsigned MinRequiredArgs = Method->getMinRequiredArguments();
6987 if (Args.size() < MinRequiredArgs && !PartialOverloading) {
6988 // Not enough arguments.
6989 Candidate.Viable = false;
6990 Candidate.FailureKind = ovl_fail_too_few_arguments;
6991 return;
6992 }
6993
6994 Candidate.Viable = true;
6995
6996 if (Method->isStatic() || ObjectType.isNull())
6997 // The implicit object argument is ignored.
6998 Candidate.IgnoreObjectArgument = true;
6999 else {
7000 unsigned ConvIdx = PO == OverloadCandidateParamOrder::Reversed ? 1 : 0;
7001 // Determine the implicit conversion sequence for the object
7002 // parameter.
7003 Candidate.Conversions[ConvIdx] = TryObjectArgumentInitialization(
7004 *this, CandidateSet.getLocation(), ObjectType, ObjectClassification,
7005 Method, ActingContext);
7006 if (Candidate.Conversions[ConvIdx].isBad()) {
7007 Candidate.Viable = false;
7008 Candidate.FailureKind = ovl_fail_bad_conversion;
7009 return;
7010 }
7011 }
7012
7013 // (CUDA B.1): Check for invalid calls between targets.
7014 if (getLangOpts().CUDA)
7015 if (const FunctionDecl *Caller = getCurFunctionDecl(/*AllowLambda=*/true))
7016 if (!IsAllowedCUDACall(Caller, Method)) {
7017 Candidate.Viable = false;
7018 Candidate.FailureKind = ovl_fail_bad_target;
7019 return;
7020 }
7021
7022 if (Method->getTrailingRequiresClause()) {
7023 ConstraintSatisfaction Satisfaction;
7024 if (CheckFunctionConstraints(Method, Satisfaction) ||
7025 !Satisfaction.IsSatisfied) {
7026 Candidate.Viable = false;
7027 Candidate.FailureKind = ovl_fail_constraints_not_satisfied;
7028 return;
7029 }
7030 }
7031
7032 // Determine the implicit conversion sequences for each of the
7033 // arguments.
7034 for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
7035 unsigned ConvIdx =
7036 PO == OverloadCandidateParamOrder::Reversed ? 0 : (ArgIdx + 1);
7037 if (Candidate.Conversions[ConvIdx].isInitialized()) {
7038 // We already formed a conversion sequence for this parameter during
7039 // template argument deduction.
7040 } else if (ArgIdx < NumParams) {
7041 // (C++ 13.3.2p3): for F to be a viable function, there shall
7042 // exist for each argument an implicit conversion sequence
7043 // (13.3.3.1) that converts that argument to the corresponding
7044 // parameter of F.
7045 QualType ParamType = Proto->getParamType(ArgIdx);
7046 Candidate.Conversions[ConvIdx]
7047 = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
7048 SuppressUserConversions,
7049 /*InOverloadResolution=*/true,
7050 /*AllowObjCWritebackConversion=*/
7051 getLangOpts().ObjCAutoRefCount);
7052 if (Candidate.Conversions[ConvIdx].isBad()) {
7053 Candidate.Viable = false;
7054 Candidate.FailureKind = ovl_fail_bad_conversion;
7055 return;
7056 }
7057 } else {
7058 // (C++ 13.3.2p2): For the purposes of overload resolution, any
7059 // argument for which there is no corresponding parameter is
7060 // considered to "match the ellipsis" (C+ 13.3.3.1.3).
7061 Candidate.Conversions[ConvIdx].setEllipsis();
7062 }
7063 }
7064
7065 if (EnableIfAttr *FailedAttr =
7066 CheckEnableIf(Method, CandidateSet.getLocation(), Args, true)) {
7067 Candidate.Viable = false;
7068 Candidate.FailureKind = ovl_fail_enable_if;
7069 Candidate.DeductionFailure.Data = FailedAttr;
7070 return;
7071 }
7072
7073 if (Method->isMultiVersion() && Method->hasAttr<TargetAttr>() &&
7074 !Method->getAttr<TargetAttr>()->isDefaultVersion()) {
7075 Candidate.Viable = false;
7076 Candidate.FailureKind = ovl_non_default_multiversion_function;
7077 }
7078 }
7079
7080 /// Add a C++ member function template as a candidate to the candidate
7081 /// set, using template argument deduction to produce an appropriate member
7082 /// function template specialization.
AddMethodTemplateCandidate(FunctionTemplateDecl * MethodTmpl,DeclAccessPair FoundDecl,CXXRecordDecl * ActingContext,TemplateArgumentListInfo * ExplicitTemplateArgs,QualType ObjectType,Expr::Classification ObjectClassification,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet,bool SuppressUserConversions,bool PartialOverloading,OverloadCandidateParamOrder PO)7083 void Sema::AddMethodTemplateCandidate(
7084 FunctionTemplateDecl *MethodTmpl, DeclAccessPair FoundDecl,
7085 CXXRecordDecl *ActingContext,
7086 TemplateArgumentListInfo *ExplicitTemplateArgs, QualType ObjectType,
7087 Expr::Classification ObjectClassification, ArrayRef<Expr *> Args,
7088 OverloadCandidateSet &CandidateSet, bool SuppressUserConversions,
7089 bool PartialOverloading, OverloadCandidateParamOrder PO) {
7090 if (!CandidateSet.isNewCandidate(MethodTmpl, PO))
7091 return;
7092
7093 // C++ [over.match.funcs]p7:
7094 // In each case where a candidate is a function template, candidate
7095 // function template specializations are generated using template argument
7096 // deduction (14.8.3, 14.8.2). Those candidates are then handled as
7097 // candidate functions in the usual way.113) A given name can refer to one
7098 // or more function templates and also to a set of overloaded non-template
7099 // functions. In such a case, the candidate functions generated from each
7100 // function template are combined with the set of non-template candidate
7101 // functions.
7102 TemplateDeductionInfo Info(CandidateSet.getLocation());
7103 FunctionDecl *Specialization = nullptr;
7104 ConversionSequenceList Conversions;
7105 if (TemplateDeductionResult Result = DeduceTemplateArguments(
7106 MethodTmpl, ExplicitTemplateArgs, Args, Specialization, Info,
7107 PartialOverloading, [&](ArrayRef<QualType> ParamTypes) {
7108 return CheckNonDependentConversions(
7109 MethodTmpl, ParamTypes, Args, CandidateSet, Conversions,
7110 SuppressUserConversions, ActingContext, ObjectType,
7111 ObjectClassification, PO);
7112 })) {
7113 OverloadCandidate &Candidate =
7114 CandidateSet.addCandidate(Conversions.size(), Conversions);
7115 Candidate.FoundDecl = FoundDecl;
7116 Candidate.Function = MethodTmpl->getTemplatedDecl();
7117 Candidate.Viable = false;
7118 Candidate.RewriteKind =
7119 CandidateSet.getRewriteInfo().getRewriteKind(Candidate.Function, PO);
7120 Candidate.IsSurrogate = false;
7121 Candidate.IgnoreObjectArgument =
7122 cast<CXXMethodDecl>(Candidate.Function)->isStatic() ||
7123 ObjectType.isNull();
7124 Candidate.ExplicitCallArguments = Args.size();
7125 if (Result == TDK_NonDependentConversionFailure)
7126 Candidate.FailureKind = ovl_fail_bad_conversion;
7127 else {
7128 Candidate.FailureKind = ovl_fail_bad_deduction;
7129 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
7130 Info);
7131 }
7132 return;
7133 }
7134
7135 // Add the function template specialization produced by template argument
7136 // deduction as a candidate.
7137 assert(Specialization && "Missing member function template specialization?");
7138 assert(isa<CXXMethodDecl>(Specialization) &&
7139 "Specialization is not a member function?");
7140 AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
7141 ActingContext, ObjectType, ObjectClassification, Args,
7142 CandidateSet, SuppressUserConversions, PartialOverloading,
7143 Conversions, PO);
7144 }
7145
7146 /// Determine whether a given function template has a simple explicit specifier
7147 /// or a non-value-dependent explicit-specification that evaluates to true.
isNonDependentlyExplicit(FunctionTemplateDecl * FTD)7148 static bool isNonDependentlyExplicit(FunctionTemplateDecl *FTD) {
7149 return ExplicitSpecifier::getFromDecl(FTD->getTemplatedDecl()).isExplicit();
7150 }
7151
7152 /// Add a C++ function template specialization as a candidate
7153 /// in the candidate set, using template argument deduction to produce
7154 /// an appropriate function template specialization.
AddTemplateOverloadCandidate(FunctionTemplateDecl * FunctionTemplate,DeclAccessPair FoundDecl,TemplateArgumentListInfo * ExplicitTemplateArgs,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet,bool SuppressUserConversions,bool PartialOverloading,bool AllowExplicit,ADLCallKind IsADLCandidate,OverloadCandidateParamOrder PO)7155 void Sema::AddTemplateOverloadCandidate(
7156 FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl,
7157 TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args,
7158 OverloadCandidateSet &CandidateSet, bool SuppressUserConversions,
7159 bool PartialOverloading, bool AllowExplicit, ADLCallKind IsADLCandidate,
7160 OverloadCandidateParamOrder PO) {
7161 if (!CandidateSet.isNewCandidate(FunctionTemplate, PO))
7162 return;
7163
7164 // If the function template has a non-dependent explicit specification,
7165 // exclude it now if appropriate; we are not permitted to perform deduction
7166 // and substitution in this case.
7167 if (!AllowExplicit && isNonDependentlyExplicit(FunctionTemplate)) {
7168 OverloadCandidate &Candidate = CandidateSet.addCandidate();
7169 Candidate.FoundDecl = FoundDecl;
7170 Candidate.Function = FunctionTemplate->getTemplatedDecl();
7171 Candidate.Viable = false;
7172 Candidate.FailureKind = ovl_fail_explicit;
7173 return;
7174 }
7175
7176 // C++ [over.match.funcs]p7:
7177 // In each case where a candidate is a function template, candidate
7178 // function template specializations are generated using template argument
7179 // deduction (14.8.3, 14.8.2). Those candidates are then handled as
7180 // candidate functions in the usual way.113) A given name can refer to one
7181 // or more function templates and also to a set of overloaded non-template
7182 // functions. In such a case, the candidate functions generated from each
7183 // function template are combined with the set of non-template candidate
7184 // functions.
7185 TemplateDeductionInfo Info(CandidateSet.getLocation());
7186 FunctionDecl *Specialization = nullptr;
7187 ConversionSequenceList Conversions;
7188 if (TemplateDeductionResult Result = DeduceTemplateArguments(
7189 FunctionTemplate, ExplicitTemplateArgs, Args, Specialization, Info,
7190 PartialOverloading, [&](ArrayRef<QualType> ParamTypes) {
7191 return CheckNonDependentConversions(
7192 FunctionTemplate, ParamTypes, Args, CandidateSet, Conversions,
7193 SuppressUserConversions, nullptr, QualType(), {}, PO);
7194 })) {
7195 OverloadCandidate &Candidate =
7196 CandidateSet.addCandidate(Conversions.size(), Conversions);
7197 Candidate.FoundDecl = FoundDecl;
7198 Candidate.Function = FunctionTemplate->getTemplatedDecl();
7199 Candidate.Viable = false;
7200 Candidate.RewriteKind =
7201 CandidateSet.getRewriteInfo().getRewriteKind(Candidate.Function, PO);
7202 Candidate.IsSurrogate = false;
7203 Candidate.IsADLCandidate = IsADLCandidate;
7204 // Ignore the object argument if there is one, since we don't have an object
7205 // type.
7206 Candidate.IgnoreObjectArgument =
7207 isa<CXXMethodDecl>(Candidate.Function) &&
7208 !isa<CXXConstructorDecl>(Candidate.Function);
7209 Candidate.ExplicitCallArguments = Args.size();
7210 if (Result == TDK_NonDependentConversionFailure)
7211 Candidate.FailureKind = ovl_fail_bad_conversion;
7212 else {
7213 Candidate.FailureKind = ovl_fail_bad_deduction;
7214 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
7215 Info);
7216 }
7217 return;
7218 }
7219
7220 // Add the function template specialization produced by template argument
7221 // deduction as a candidate.
7222 assert(Specialization && "Missing function template specialization?");
7223 AddOverloadCandidate(
7224 Specialization, FoundDecl, Args, CandidateSet, SuppressUserConversions,
7225 PartialOverloading, AllowExplicit,
7226 /*AllowExplicitConversions*/ false, IsADLCandidate, Conversions, PO);
7227 }
7228
7229 /// Check that implicit conversion sequences can be formed for each argument
7230 /// whose corresponding parameter has a non-dependent type, per DR1391's
7231 /// [temp.deduct.call]p10.
CheckNonDependentConversions(FunctionTemplateDecl * FunctionTemplate,ArrayRef<QualType> ParamTypes,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet,ConversionSequenceList & Conversions,bool SuppressUserConversions,CXXRecordDecl * ActingContext,QualType ObjectType,Expr::Classification ObjectClassification,OverloadCandidateParamOrder PO)7232 bool Sema::CheckNonDependentConversions(
7233 FunctionTemplateDecl *FunctionTemplate, ArrayRef<QualType> ParamTypes,
7234 ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet,
7235 ConversionSequenceList &Conversions, bool SuppressUserConversions,
7236 CXXRecordDecl *ActingContext, QualType ObjectType,
7237 Expr::Classification ObjectClassification, OverloadCandidateParamOrder PO) {
7238 // FIXME: The cases in which we allow explicit conversions for constructor
7239 // arguments never consider calling a constructor template. It's not clear
7240 // that is correct.
7241 const bool AllowExplicit = false;
7242
7243 auto *FD = FunctionTemplate->getTemplatedDecl();
7244 auto *Method = dyn_cast<CXXMethodDecl>(FD);
7245 bool HasThisConversion = Method && !isa<CXXConstructorDecl>(Method);
7246 unsigned ThisConversions = HasThisConversion ? 1 : 0;
7247
7248 Conversions =
7249 CandidateSet.allocateConversionSequences(ThisConversions + Args.size());
7250
7251 // Overload resolution is always an unevaluated context.
7252 EnterExpressionEvaluationContext Unevaluated(
7253 *this, Sema::ExpressionEvaluationContext::Unevaluated);
7254
7255 // For a method call, check the 'this' conversion here too. DR1391 doesn't
7256 // require that, but this check should never result in a hard error, and
7257 // overload resolution is permitted to sidestep instantiations.
7258 if (HasThisConversion && !cast<CXXMethodDecl>(FD)->isStatic() &&
7259 !ObjectType.isNull()) {
7260 unsigned ConvIdx = PO == OverloadCandidateParamOrder::Reversed ? 1 : 0;
7261 Conversions[ConvIdx] = TryObjectArgumentInitialization(
7262 *this, CandidateSet.getLocation(), ObjectType, ObjectClassification,
7263 Method, ActingContext);
7264 if (Conversions[ConvIdx].isBad())
7265 return true;
7266 }
7267
7268 for (unsigned I = 0, N = std::min(ParamTypes.size(), Args.size()); I != N;
7269 ++I) {
7270 QualType ParamType = ParamTypes[I];
7271 if (!ParamType->isDependentType()) {
7272 unsigned ConvIdx = PO == OverloadCandidateParamOrder::Reversed
7273 ? 0
7274 : (ThisConversions + I);
7275 Conversions[ConvIdx]
7276 = TryCopyInitialization(*this, Args[I], ParamType,
7277 SuppressUserConversions,
7278 /*InOverloadResolution=*/true,
7279 /*AllowObjCWritebackConversion=*/
7280 getLangOpts().ObjCAutoRefCount,
7281 AllowExplicit);
7282 if (Conversions[ConvIdx].isBad())
7283 return true;
7284 }
7285 }
7286
7287 return false;
7288 }
7289
7290 /// Determine whether this is an allowable conversion from the result
7291 /// of an explicit conversion operator to the expected type, per C++
7292 /// [over.match.conv]p1 and [over.match.ref]p1.
7293 ///
7294 /// \param ConvType The return type of the conversion function.
7295 ///
7296 /// \param ToType The type we are converting to.
7297 ///
7298 /// \param AllowObjCPointerConversion Allow a conversion from one
7299 /// Objective-C pointer to another.
7300 ///
7301 /// \returns true if the conversion is allowable, false otherwise.
isAllowableExplicitConversion(Sema & S,QualType ConvType,QualType ToType,bool AllowObjCPointerConversion)7302 static bool isAllowableExplicitConversion(Sema &S,
7303 QualType ConvType, QualType ToType,
7304 bool AllowObjCPointerConversion) {
7305 QualType ToNonRefType = ToType.getNonReferenceType();
7306
7307 // Easy case: the types are the same.
7308 if (S.Context.hasSameUnqualifiedType(ConvType, ToNonRefType))
7309 return true;
7310
7311 // Allow qualification conversions.
7312 bool ObjCLifetimeConversion;
7313 if (S.IsQualificationConversion(ConvType, ToNonRefType, /*CStyle*/false,
7314 ObjCLifetimeConversion))
7315 return true;
7316
7317 // If we're not allowed to consider Objective-C pointer conversions,
7318 // we're done.
7319 if (!AllowObjCPointerConversion)
7320 return false;
7321
7322 // Is this an Objective-C pointer conversion?
7323 bool IncompatibleObjC = false;
7324 QualType ConvertedType;
7325 return S.isObjCPointerConversion(ConvType, ToNonRefType, ConvertedType,
7326 IncompatibleObjC);
7327 }
7328
7329 /// AddConversionCandidate - Add a C++ conversion function as a
7330 /// candidate in the candidate set (C++ [over.match.conv],
7331 /// C++ [over.match.copy]). From is the expression we're converting from,
7332 /// and ToType is the type that we're eventually trying to convert to
7333 /// (which may or may not be the same type as the type that the
7334 /// conversion function produces).
AddConversionCandidate(CXXConversionDecl * Conversion,DeclAccessPair FoundDecl,CXXRecordDecl * ActingContext,Expr * From,QualType ToType,OverloadCandidateSet & CandidateSet,bool AllowObjCConversionOnExplicit,bool AllowExplicit,bool AllowResultConversion)7335 void Sema::AddConversionCandidate(
7336 CXXConversionDecl *Conversion, DeclAccessPair FoundDecl,
7337 CXXRecordDecl *ActingContext, Expr *From, QualType ToType,
7338 OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit,
7339 bool AllowExplicit, bool AllowResultConversion) {
7340 assert(!Conversion->getDescribedFunctionTemplate() &&
7341 "Conversion function templates use AddTemplateConversionCandidate");
7342 QualType ConvType = Conversion->getConversionType().getNonReferenceType();
7343 if (!CandidateSet.isNewCandidate(Conversion))
7344 return;
7345
7346 // If the conversion function has an undeduced return type, trigger its
7347 // deduction now.
7348 if (getLangOpts().CPlusPlus14 && ConvType->isUndeducedType()) {
7349 if (DeduceReturnType(Conversion, From->getExprLoc()))
7350 return;
7351 ConvType = Conversion->getConversionType().getNonReferenceType();
7352 }
7353
7354 // If we don't allow any conversion of the result type, ignore conversion
7355 // functions that don't convert to exactly (possibly cv-qualified) T.
7356 if (!AllowResultConversion &&
7357 !Context.hasSameUnqualifiedType(Conversion->getConversionType(), ToType))
7358 return;
7359
7360 // Per C++ [over.match.conv]p1, [over.match.ref]p1, an explicit conversion
7361 // operator is only a candidate if its return type is the target type or
7362 // can be converted to the target type with a qualification conversion.
7363 //
7364 // FIXME: Include such functions in the candidate list and explain why we
7365 // can't select them.
7366 if (Conversion->isExplicit() &&
7367 !isAllowableExplicitConversion(*this, ConvType, ToType,
7368 AllowObjCConversionOnExplicit))
7369 return;
7370
7371 // Overload resolution is always an unevaluated context.
7372 EnterExpressionEvaluationContext Unevaluated(
7373 *this, Sema::ExpressionEvaluationContext::Unevaluated);
7374
7375 // Add this candidate
7376 OverloadCandidate &Candidate = CandidateSet.addCandidate(1);
7377 Candidate.FoundDecl = FoundDecl;
7378 Candidate.Function = Conversion;
7379 Candidate.IsSurrogate = false;
7380 Candidate.IgnoreObjectArgument = false;
7381 Candidate.FinalConversion.setAsIdentityConversion();
7382 Candidate.FinalConversion.setFromType(ConvType);
7383 Candidate.FinalConversion.setAllToTypes(ToType);
7384 Candidate.Viable = true;
7385 Candidate.ExplicitCallArguments = 1;
7386
7387 // Explicit functions are not actually candidates at all if we're not
7388 // allowing them in this context, but keep them around so we can point
7389 // to them in diagnostics.
7390 if (!AllowExplicit && Conversion->isExplicit()) {
7391 Candidate.Viable = false;
7392 Candidate.FailureKind = ovl_fail_explicit;
7393 return;
7394 }
7395
7396 // C++ [over.match.funcs]p4:
7397 // For conversion functions, the function is considered to be a member of
7398 // the class of the implicit implied object argument for the purpose of
7399 // defining the type of the implicit object parameter.
7400 //
7401 // Determine the implicit conversion sequence for the implicit
7402 // object parameter.
7403 QualType ImplicitParamType = From->getType();
7404 if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>())
7405 ImplicitParamType = FromPtrType->getPointeeType();
7406 CXXRecordDecl *ConversionContext
7407 = cast<CXXRecordDecl>(ImplicitParamType->castAs<RecordType>()->getDecl());
7408
7409 Candidate.Conversions[0] = TryObjectArgumentInitialization(
7410 *this, CandidateSet.getLocation(), From->getType(),
7411 From->Classify(Context), Conversion, ConversionContext);
7412
7413 if (Candidate.Conversions[0].isBad()) {
7414 Candidate.Viable = false;
7415 Candidate.FailureKind = ovl_fail_bad_conversion;
7416 return;
7417 }
7418
7419 if (Conversion->getTrailingRequiresClause()) {
7420 ConstraintSatisfaction Satisfaction;
7421 if (CheckFunctionConstraints(Conversion, Satisfaction) ||
7422 !Satisfaction.IsSatisfied) {
7423 Candidate.Viable = false;
7424 Candidate.FailureKind = ovl_fail_constraints_not_satisfied;
7425 return;
7426 }
7427 }
7428
7429 // We won't go through a user-defined type conversion function to convert a
7430 // derived to base as such conversions are given Conversion Rank. They only
7431 // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
7432 QualType FromCanon
7433 = Context.getCanonicalType(From->getType().getUnqualifiedType());
7434 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
7435 if (FromCanon == ToCanon ||
7436 IsDerivedFrom(CandidateSet.getLocation(), FromCanon, ToCanon)) {
7437 Candidate.Viable = false;
7438 Candidate.FailureKind = ovl_fail_trivial_conversion;
7439 return;
7440 }
7441
7442 // To determine what the conversion from the result of calling the
7443 // conversion function to the type we're eventually trying to
7444 // convert to (ToType), we need to synthesize a call to the
7445 // conversion function and attempt copy initialization from it. This
7446 // makes sure that we get the right semantics with respect to
7447 // lvalues/rvalues and the type. Fortunately, we can allocate this
7448 // call on the stack and we don't need its arguments to be
7449 // well-formed.
7450 DeclRefExpr ConversionRef(Context, Conversion, false, Conversion->getType(),
7451 VK_LValue, From->getBeginLoc());
7452 ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack,
7453 Context.getPointerType(Conversion->getType()),
7454 CK_FunctionToPointerDecay, &ConversionRef,
7455 VK_PRValue, FPOptionsOverride());
7456
7457 QualType ConversionType = Conversion->getConversionType();
7458 if (!isCompleteType(From->getBeginLoc(), ConversionType)) {
7459 Candidate.Viable = false;
7460 Candidate.FailureKind = ovl_fail_bad_final_conversion;
7461 return;
7462 }
7463
7464 ExprValueKind VK = Expr::getValueKindForType(ConversionType);
7465
7466 // Note that it is safe to allocate CallExpr on the stack here because
7467 // there are 0 arguments (i.e., nothing is allocated using ASTContext's
7468 // allocator).
7469 QualType CallResultType = ConversionType.getNonLValueExprType(Context);
7470
7471 alignas(CallExpr) char Buffer[sizeof(CallExpr) + sizeof(Stmt *)];
7472 CallExpr *TheTemporaryCall = CallExpr::CreateTemporary(
7473 Buffer, &ConversionFn, CallResultType, VK, From->getBeginLoc());
7474
7475 ImplicitConversionSequence ICS =
7476 TryCopyInitialization(*this, TheTemporaryCall, ToType,
7477 /*SuppressUserConversions=*/true,
7478 /*InOverloadResolution=*/false,
7479 /*AllowObjCWritebackConversion=*/false);
7480
7481 switch (ICS.getKind()) {
7482 case ImplicitConversionSequence::StandardConversion:
7483 Candidate.FinalConversion = ICS.Standard;
7484
7485 // C++ [over.ics.user]p3:
7486 // If the user-defined conversion is specified by a specialization of a
7487 // conversion function template, the second standard conversion sequence
7488 // shall have exact match rank.
7489 if (Conversion->getPrimaryTemplate() &&
7490 GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) {
7491 Candidate.Viable = false;
7492 Candidate.FailureKind = ovl_fail_final_conversion_not_exact;
7493 return;
7494 }
7495
7496 // C++0x [dcl.init.ref]p5:
7497 // In the second case, if the reference is an rvalue reference and
7498 // the second standard conversion sequence of the user-defined
7499 // conversion sequence includes an lvalue-to-rvalue conversion, the
7500 // program is ill-formed.
7501 if (ToType->isRValueReferenceType() &&
7502 ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
7503 Candidate.Viable = false;
7504 Candidate.FailureKind = ovl_fail_bad_final_conversion;
7505 return;
7506 }
7507 break;
7508
7509 case ImplicitConversionSequence::BadConversion:
7510 Candidate.Viable = false;
7511 Candidate.FailureKind = ovl_fail_bad_final_conversion;
7512 return;
7513
7514 default:
7515 llvm_unreachable(
7516 "Can only end up with a standard conversion sequence or failure");
7517 }
7518
7519 if (EnableIfAttr *FailedAttr =
7520 CheckEnableIf(Conversion, CandidateSet.getLocation(), None)) {
7521 Candidate.Viable = false;
7522 Candidate.FailureKind = ovl_fail_enable_if;
7523 Candidate.DeductionFailure.Data = FailedAttr;
7524 return;
7525 }
7526
7527 if (Conversion->isMultiVersion() && Conversion->hasAttr<TargetAttr>() &&
7528 !Conversion->getAttr<TargetAttr>()->isDefaultVersion()) {
7529 Candidate.Viable = false;
7530 Candidate.FailureKind = ovl_non_default_multiversion_function;
7531 }
7532 }
7533
7534 /// Adds a conversion function template specialization
7535 /// candidate to the overload set, using template argument deduction
7536 /// to deduce the template arguments of the conversion function
7537 /// template from the type that we are converting to (C++
7538 /// [temp.deduct.conv]).
AddTemplateConversionCandidate(FunctionTemplateDecl * FunctionTemplate,DeclAccessPair FoundDecl,CXXRecordDecl * ActingDC,Expr * From,QualType ToType,OverloadCandidateSet & CandidateSet,bool AllowObjCConversionOnExplicit,bool AllowExplicit,bool AllowResultConversion)7539 void Sema::AddTemplateConversionCandidate(
7540 FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl,
7541 CXXRecordDecl *ActingDC, Expr *From, QualType ToType,
7542 OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit,
7543 bool AllowExplicit, bool AllowResultConversion) {
7544 assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
7545 "Only conversion function templates permitted here");
7546
7547 if (!CandidateSet.isNewCandidate(FunctionTemplate))
7548 return;
7549
7550 // If the function template has a non-dependent explicit specification,
7551 // exclude it now if appropriate; we are not permitted to perform deduction
7552 // and substitution in this case.
7553 if (!AllowExplicit && isNonDependentlyExplicit(FunctionTemplate)) {
7554 OverloadCandidate &Candidate = CandidateSet.addCandidate();
7555 Candidate.FoundDecl = FoundDecl;
7556 Candidate.Function = FunctionTemplate->getTemplatedDecl();
7557 Candidate.Viable = false;
7558 Candidate.FailureKind = ovl_fail_explicit;
7559 return;
7560 }
7561
7562 TemplateDeductionInfo Info(CandidateSet.getLocation());
7563 CXXConversionDecl *Specialization = nullptr;
7564 if (TemplateDeductionResult Result
7565 = DeduceTemplateArguments(FunctionTemplate, ToType,
7566 Specialization, Info)) {
7567 OverloadCandidate &Candidate = CandidateSet.addCandidate();
7568 Candidate.FoundDecl = FoundDecl;
7569 Candidate.Function = FunctionTemplate->getTemplatedDecl();
7570 Candidate.Viable = false;
7571 Candidate.FailureKind = ovl_fail_bad_deduction;
7572 Candidate.IsSurrogate = false;
7573 Candidate.IgnoreObjectArgument = false;
7574 Candidate.ExplicitCallArguments = 1;
7575 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
7576 Info);
7577 return;
7578 }
7579
7580 // Add the conversion function template specialization produced by
7581 // template argument deduction as a candidate.
7582 assert(Specialization && "Missing function template specialization?");
7583 AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
7584 CandidateSet, AllowObjCConversionOnExplicit,
7585 AllowExplicit, AllowResultConversion);
7586 }
7587
7588 /// AddSurrogateCandidate - Adds a "surrogate" candidate function that
7589 /// converts the given @c Object to a function pointer via the
7590 /// conversion function @c Conversion, and then attempts to call it
7591 /// with the given arguments (C++ [over.call.object]p2-4). Proto is
7592 /// the type of function that we'll eventually be calling.
AddSurrogateCandidate(CXXConversionDecl * Conversion,DeclAccessPair FoundDecl,CXXRecordDecl * ActingContext,const FunctionProtoType * Proto,Expr * Object,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet)7593 void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
7594 DeclAccessPair FoundDecl,
7595 CXXRecordDecl *ActingContext,
7596 const FunctionProtoType *Proto,
7597 Expr *Object,
7598 ArrayRef<Expr *> Args,
7599 OverloadCandidateSet& CandidateSet) {
7600 if (!CandidateSet.isNewCandidate(Conversion))
7601 return;
7602
7603 // Overload resolution is always an unevaluated context.
7604 EnterExpressionEvaluationContext Unevaluated(
7605 *this, Sema::ExpressionEvaluationContext::Unevaluated);
7606
7607 OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1);
7608 Candidate.FoundDecl = FoundDecl;
7609 Candidate.Function = nullptr;
7610 Candidate.Surrogate = Conversion;
7611 Candidate.Viable = true;
7612 Candidate.IsSurrogate = true;
7613 Candidate.IgnoreObjectArgument = false;
7614 Candidate.ExplicitCallArguments = Args.size();
7615
7616 // Determine the implicit conversion sequence for the implicit
7617 // object parameter.
7618 ImplicitConversionSequence ObjectInit = TryObjectArgumentInitialization(
7619 *this, CandidateSet.getLocation(), Object->getType(),
7620 Object->Classify(Context), Conversion, ActingContext);
7621 if (ObjectInit.isBad()) {
7622 Candidate.Viable = false;
7623 Candidate.FailureKind = ovl_fail_bad_conversion;
7624 Candidate.Conversions[0] = ObjectInit;
7625 return;
7626 }
7627
7628 // The first conversion is actually a user-defined conversion whose
7629 // first conversion is ObjectInit's standard conversion (which is
7630 // effectively a reference binding). Record it as such.
7631 Candidate.Conversions[0].setUserDefined();
7632 Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
7633 Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
7634 Candidate.Conversions[0].UserDefined.HadMultipleCandidates = false;
7635 Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
7636 Candidate.Conversions[0].UserDefined.FoundConversionFunction = FoundDecl;
7637 Candidate.Conversions[0].UserDefined.After
7638 = Candidate.Conversions[0].UserDefined.Before;
7639 Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
7640
7641 // Find the
7642 unsigned NumParams = Proto->getNumParams();
7643
7644 // (C++ 13.3.2p2): A candidate function having fewer than m
7645 // parameters is viable only if it has an ellipsis in its parameter
7646 // list (8.3.5).
7647 if (Args.size() > NumParams && !Proto->isVariadic()) {
7648 Candidate.Viable = false;
7649 Candidate.FailureKind = ovl_fail_too_many_arguments;
7650 return;
7651 }
7652
7653 // Function types don't have any default arguments, so just check if
7654 // we have enough arguments.
7655 if (Args.size() < NumParams) {
7656 // Not enough arguments.
7657 Candidate.Viable = false;
7658 Candidate.FailureKind = ovl_fail_too_few_arguments;
7659 return;
7660 }
7661
7662 // Determine the implicit conversion sequences for each of the
7663 // arguments.
7664 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
7665 if (ArgIdx < NumParams) {
7666 // (C++ 13.3.2p3): for F to be a viable function, there shall
7667 // exist for each argument an implicit conversion sequence
7668 // (13.3.3.1) that converts that argument to the corresponding
7669 // parameter of F.
7670 QualType ParamType = Proto->getParamType(ArgIdx);
7671 Candidate.Conversions[ArgIdx + 1]
7672 = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
7673 /*SuppressUserConversions=*/false,
7674 /*InOverloadResolution=*/false,
7675 /*AllowObjCWritebackConversion=*/
7676 getLangOpts().ObjCAutoRefCount);
7677 if (Candidate.Conversions[ArgIdx + 1].isBad()) {
7678 Candidate.Viable = false;
7679 Candidate.FailureKind = ovl_fail_bad_conversion;
7680 return;
7681 }
7682 } else {
7683 // (C++ 13.3.2p2): For the purposes of overload resolution, any
7684 // argument for which there is no corresponding parameter is
7685 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
7686 Candidate.Conversions[ArgIdx + 1].setEllipsis();
7687 }
7688 }
7689
7690 if (EnableIfAttr *FailedAttr =
7691 CheckEnableIf(Conversion, CandidateSet.getLocation(), None)) {
7692 Candidate.Viable = false;
7693 Candidate.FailureKind = ovl_fail_enable_if;
7694 Candidate.DeductionFailure.Data = FailedAttr;
7695 return;
7696 }
7697 }
7698
7699 /// Add all of the non-member operator function declarations in the given
7700 /// function set to the overload candidate set.
AddNonMemberOperatorCandidates(const UnresolvedSetImpl & Fns,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet,TemplateArgumentListInfo * ExplicitTemplateArgs)7701 void Sema::AddNonMemberOperatorCandidates(
7702 const UnresolvedSetImpl &Fns, ArrayRef<Expr *> Args,
7703 OverloadCandidateSet &CandidateSet,
7704 TemplateArgumentListInfo *ExplicitTemplateArgs) {
7705 for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
7706 NamedDecl *D = F.getDecl()->getUnderlyingDecl();
7707 ArrayRef<Expr *> FunctionArgs = Args;
7708
7709 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D);
7710 FunctionDecl *FD =
7711 FunTmpl ? FunTmpl->getTemplatedDecl() : cast<FunctionDecl>(D);
7712
7713 // Don't consider rewritten functions if we're not rewriting.
7714 if (!CandidateSet.getRewriteInfo().isAcceptableCandidate(FD))
7715 continue;
7716
7717 assert(!isa<CXXMethodDecl>(FD) &&
7718 "unqualified operator lookup found a member function");
7719
7720 if (FunTmpl) {
7721 AddTemplateOverloadCandidate(FunTmpl, F.getPair(), ExplicitTemplateArgs,
7722 FunctionArgs, CandidateSet);
7723 if (CandidateSet.getRewriteInfo().shouldAddReversed(Context, FD))
7724 AddTemplateOverloadCandidate(
7725 FunTmpl, F.getPair(), ExplicitTemplateArgs,
7726 {FunctionArgs[1], FunctionArgs[0]}, CandidateSet, false, false,
7727 true, ADLCallKind::NotADL, OverloadCandidateParamOrder::Reversed);
7728 } else {
7729 if (ExplicitTemplateArgs)
7730 continue;
7731 AddOverloadCandidate(FD, F.getPair(), FunctionArgs, CandidateSet);
7732 if (CandidateSet.getRewriteInfo().shouldAddReversed(Context, FD))
7733 AddOverloadCandidate(FD, F.getPair(),
7734 {FunctionArgs[1], FunctionArgs[0]}, CandidateSet,
7735 false, false, true, false, ADLCallKind::NotADL,
7736 None, OverloadCandidateParamOrder::Reversed);
7737 }
7738 }
7739 }
7740
7741 /// Add overload candidates for overloaded operators that are
7742 /// member functions.
7743 ///
7744 /// Add the overloaded operator candidates that are member functions
7745 /// for the operator Op that was used in an operator expression such
7746 /// as "x Op y". , Args/NumArgs provides the operator arguments, and
7747 /// CandidateSet will store the added overload candidates. (C++
7748 /// [over.match.oper]).
AddMemberOperatorCandidates(OverloadedOperatorKind Op,SourceLocation OpLoc,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet,OverloadCandidateParamOrder PO)7749 void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
7750 SourceLocation OpLoc,
7751 ArrayRef<Expr *> Args,
7752 OverloadCandidateSet &CandidateSet,
7753 OverloadCandidateParamOrder PO) {
7754 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
7755
7756 // C++ [over.match.oper]p3:
7757 // For a unary operator @ with an operand of a type whose
7758 // cv-unqualified version is T1, and for a binary operator @ with
7759 // a left operand of a type whose cv-unqualified version is T1 and
7760 // a right operand of a type whose cv-unqualified version is T2,
7761 // three sets of candidate functions, designated member
7762 // candidates, non-member candidates and built-in candidates, are
7763 // constructed as follows:
7764 QualType T1 = Args[0]->getType();
7765
7766 // -- If T1 is a complete class type or a class currently being
7767 // defined, the set of member candidates is the result of the
7768 // qualified lookup of T1::operator@ (13.3.1.1.1); otherwise,
7769 // the set of member candidates is empty.
7770 if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
7771 // Complete the type if it can be completed.
7772 if (!isCompleteType(OpLoc, T1) && !T1Rec->isBeingDefined())
7773 return;
7774 // If the type is neither complete nor being defined, bail out now.
7775 if (!T1Rec->getDecl()->getDefinition())
7776 return;
7777
7778 LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
7779 LookupQualifiedName(Operators, T1Rec->getDecl());
7780 Operators.suppressDiagnostics();
7781
7782 for (LookupResult::iterator Oper = Operators.begin(),
7783 OperEnd = Operators.end();
7784 Oper != OperEnd;
7785 ++Oper)
7786 AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
7787 Args[0]->Classify(Context), Args.slice(1),
7788 CandidateSet, /*SuppressUserConversion=*/false, PO);
7789 }
7790 }
7791
7792 /// AddBuiltinCandidate - Add a candidate for a built-in
7793 /// operator. ResultTy and ParamTys are the result and parameter types
7794 /// of the built-in candidate, respectively. Args and NumArgs are the
7795 /// arguments being passed to the candidate. IsAssignmentOperator
7796 /// should be true when this built-in candidate is an assignment
7797 /// operator. NumContextualBoolArguments is the number of arguments
7798 /// (at the beginning of the argument list) that will be contextually
7799 /// converted to bool.
AddBuiltinCandidate(QualType * ParamTys,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet,bool IsAssignmentOperator,unsigned NumContextualBoolArguments)7800 void Sema::AddBuiltinCandidate(QualType *ParamTys, ArrayRef<Expr *> Args,
7801 OverloadCandidateSet& CandidateSet,
7802 bool IsAssignmentOperator,
7803 unsigned NumContextualBoolArguments) {
7804 // Overload resolution is always an unevaluated context.
7805 EnterExpressionEvaluationContext Unevaluated(
7806 *this, Sema::ExpressionEvaluationContext::Unevaluated);
7807
7808 // Add this candidate
7809 OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size());
7810 Candidate.FoundDecl = DeclAccessPair::make(nullptr, AS_none);
7811 Candidate.Function = nullptr;
7812 Candidate.IsSurrogate = false;
7813 Candidate.IgnoreObjectArgument = false;
7814 std::copy(ParamTys, ParamTys + Args.size(), Candidate.BuiltinParamTypes);
7815
7816 // Determine the implicit conversion sequences for each of the
7817 // arguments.
7818 Candidate.Viable = true;
7819 Candidate.ExplicitCallArguments = Args.size();
7820 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
7821 // C++ [over.match.oper]p4:
7822 // For the built-in assignment operators, conversions of the
7823 // left operand are restricted as follows:
7824 // -- no temporaries are introduced to hold the left operand, and
7825 // -- no user-defined conversions are applied to the left
7826 // operand to achieve a type match with the left-most
7827 // parameter of a built-in candidate.
7828 //
7829 // We block these conversions by turning off user-defined
7830 // conversions, since that is the only way that initialization of
7831 // a reference to a non-class type can occur from something that
7832 // is not of the same type.
7833 if (ArgIdx < NumContextualBoolArguments) {
7834 assert(ParamTys[ArgIdx] == Context.BoolTy &&
7835 "Contextual conversion to bool requires bool type");
7836 Candidate.Conversions[ArgIdx]
7837 = TryContextuallyConvertToBool(*this, Args[ArgIdx]);
7838 } else {
7839 Candidate.Conversions[ArgIdx]
7840 = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx],
7841 ArgIdx == 0 && IsAssignmentOperator,
7842 /*InOverloadResolution=*/false,
7843 /*AllowObjCWritebackConversion=*/
7844 getLangOpts().ObjCAutoRefCount);
7845 }
7846 if (Candidate.Conversions[ArgIdx].isBad()) {
7847 Candidate.Viable = false;
7848 Candidate.FailureKind = ovl_fail_bad_conversion;
7849 break;
7850 }
7851 }
7852 }
7853
7854 namespace {
7855
7856 /// BuiltinCandidateTypeSet - A set of types that will be used for the
7857 /// candidate operator functions for built-in operators (C++
7858 /// [over.built]). The types are separated into pointer types and
7859 /// enumeration types.
7860 class BuiltinCandidateTypeSet {
7861 /// TypeSet - A set of types.
7862 typedef llvm::SetVector<QualType, SmallVector<QualType, 8>,
7863 llvm::SmallPtrSet<QualType, 8>> TypeSet;
7864
7865 /// PointerTypes - The set of pointer types that will be used in the
7866 /// built-in candidates.
7867 TypeSet PointerTypes;
7868
7869 /// MemberPointerTypes - The set of member pointer types that will be
7870 /// used in the built-in candidates.
7871 TypeSet MemberPointerTypes;
7872
7873 /// EnumerationTypes - The set of enumeration types that will be
7874 /// used in the built-in candidates.
7875 TypeSet EnumerationTypes;
7876
7877 /// The set of vector types that will be used in the built-in
7878 /// candidates.
7879 TypeSet VectorTypes;
7880
7881 /// The set of matrix types that will be used in the built-in
7882 /// candidates.
7883 TypeSet MatrixTypes;
7884
7885 /// A flag indicating non-record types are viable candidates
7886 bool HasNonRecordTypes;
7887
7888 /// A flag indicating whether either arithmetic or enumeration types
7889 /// were present in the candidate set.
7890 bool HasArithmeticOrEnumeralTypes;
7891
7892 /// A flag indicating whether the nullptr type was present in the
7893 /// candidate set.
7894 bool HasNullPtrType;
7895
7896 /// Sema - The semantic analysis instance where we are building the
7897 /// candidate type set.
7898 Sema &SemaRef;
7899
7900 /// Context - The AST context in which we will build the type sets.
7901 ASTContext &Context;
7902
7903 bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
7904 const Qualifiers &VisibleQuals);
7905 bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
7906
7907 public:
7908 /// iterator - Iterates through the types that are part of the set.
7909 typedef TypeSet::iterator iterator;
7910
BuiltinCandidateTypeSet(Sema & SemaRef)7911 BuiltinCandidateTypeSet(Sema &SemaRef)
7912 : HasNonRecordTypes(false),
7913 HasArithmeticOrEnumeralTypes(false),
7914 HasNullPtrType(false),
7915 SemaRef(SemaRef),
7916 Context(SemaRef.Context) { }
7917
7918 void AddTypesConvertedFrom(QualType Ty,
7919 SourceLocation Loc,
7920 bool AllowUserConversions,
7921 bool AllowExplicitConversions,
7922 const Qualifiers &VisibleTypeConversionsQuals);
7923
pointer_types()7924 llvm::iterator_range<iterator> pointer_types() { return PointerTypes; }
member_pointer_types()7925 llvm::iterator_range<iterator> member_pointer_types() {
7926 return MemberPointerTypes;
7927 }
enumeration_types()7928 llvm::iterator_range<iterator> enumeration_types() {
7929 return EnumerationTypes;
7930 }
vector_types()7931 llvm::iterator_range<iterator> vector_types() { return VectorTypes; }
matrix_types()7932 llvm::iterator_range<iterator> matrix_types() { return MatrixTypes; }
7933
containsMatrixType(QualType Ty) const7934 bool containsMatrixType(QualType Ty) const { return MatrixTypes.count(Ty); }
hasNonRecordTypes()7935 bool hasNonRecordTypes() { return HasNonRecordTypes; }
hasArithmeticOrEnumeralTypes()7936 bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; }
hasNullPtrType() const7937 bool hasNullPtrType() const { return HasNullPtrType; }
7938 };
7939
7940 } // end anonymous namespace
7941
7942 /// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
7943 /// the set of pointer types along with any more-qualified variants of
7944 /// that type. For example, if @p Ty is "int const *", this routine
7945 /// will add "int const *", "int const volatile *", "int const
7946 /// restrict *", and "int const volatile restrict *" to the set of
7947 /// pointer types. Returns true if the add of @p Ty itself succeeded,
7948 /// false otherwise.
7949 ///
7950 /// FIXME: what to do about extended qualifiers?
7951 bool
AddPointerWithMoreQualifiedTypeVariants(QualType Ty,const Qualifiers & VisibleQuals)7952 BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
7953 const Qualifiers &VisibleQuals) {
7954
7955 // Insert this type.
7956 if (!PointerTypes.insert(Ty))
7957 return false;
7958
7959 QualType PointeeTy;
7960 const PointerType *PointerTy = Ty->getAs<PointerType>();
7961 bool buildObjCPtr = false;
7962 if (!PointerTy) {
7963 const ObjCObjectPointerType *PTy = Ty->castAs<ObjCObjectPointerType>();
7964 PointeeTy = PTy->getPointeeType();
7965 buildObjCPtr = true;
7966 } else {
7967 PointeeTy = PointerTy->getPointeeType();
7968 }
7969
7970 // Don't add qualified variants of arrays. For one, they're not allowed
7971 // (the qualifier would sink to the element type), and for another, the
7972 // only overload situation where it matters is subscript or pointer +- int,
7973 // and those shouldn't have qualifier variants anyway.
7974 if (PointeeTy->isArrayType())
7975 return true;
7976
7977 unsigned BaseCVR = PointeeTy.getCVRQualifiers();
7978 bool hasVolatile = VisibleQuals.hasVolatile();
7979 bool hasRestrict = VisibleQuals.hasRestrict();
7980
7981 // Iterate through all strict supersets of BaseCVR.
7982 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
7983 if ((CVR | BaseCVR) != CVR) continue;
7984 // Skip over volatile if no volatile found anywhere in the types.
7985 if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
7986
7987 // Skip over restrict if no restrict found anywhere in the types, or if
7988 // the type cannot be restrict-qualified.
7989 if ((CVR & Qualifiers::Restrict) &&
7990 (!hasRestrict ||
7991 (!(PointeeTy->isAnyPointerType() || PointeeTy->isReferenceType()))))
7992 continue;
7993
7994 // Build qualified pointee type.
7995 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
7996
7997 // Build qualified pointer type.
7998 QualType QPointerTy;
7999 if (!buildObjCPtr)
8000 QPointerTy = Context.getPointerType(QPointeeTy);
8001 else
8002 QPointerTy = Context.getObjCObjectPointerType(QPointeeTy);
8003
8004 // Insert qualified pointer type.
8005 PointerTypes.insert(QPointerTy);
8006 }
8007
8008 return true;
8009 }
8010
8011 /// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
8012 /// to the set of pointer types along with any more-qualified variants of
8013 /// that type. For example, if @p Ty is "int const *", this routine
8014 /// will add "int const *", "int const volatile *", "int const
8015 /// restrict *", and "int const volatile restrict *" to the set of
8016 /// pointer types. Returns true if the add of @p Ty itself succeeded,
8017 /// false otherwise.
8018 ///
8019 /// FIXME: what to do about extended qualifiers?
8020 bool
AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty)8021 BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
8022 QualType Ty) {
8023 // Insert this type.
8024 if (!MemberPointerTypes.insert(Ty))
8025 return false;
8026
8027 const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
8028 assert(PointerTy && "type was not a member pointer type!");
8029
8030 QualType PointeeTy = PointerTy->getPointeeType();
8031 // Don't add qualified variants of arrays. For one, they're not allowed
8032 // (the qualifier would sink to the element type), and for another, the
8033 // only overload situation where it matters is subscript or pointer +- int,
8034 // and those shouldn't have qualifier variants anyway.
8035 if (PointeeTy->isArrayType())
8036 return true;
8037 const Type *ClassTy = PointerTy->getClass();
8038
8039 // Iterate through all strict supersets of the pointee type's CVR
8040 // qualifiers.
8041 unsigned BaseCVR = PointeeTy.getCVRQualifiers();
8042 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
8043 if ((CVR | BaseCVR) != CVR) continue;
8044
8045 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
8046 MemberPointerTypes.insert(
8047 Context.getMemberPointerType(QPointeeTy, ClassTy));
8048 }
8049
8050 return true;
8051 }
8052
8053 /// AddTypesConvertedFrom - Add each of the types to which the type @p
8054 /// Ty can be implicit converted to the given set of @p Types. We're
8055 /// primarily interested in pointer types and enumeration types. We also
8056 /// take member pointer types, for the conditional operator.
8057 /// AllowUserConversions is true if we should look at the conversion
8058 /// functions of a class type, and AllowExplicitConversions if we
8059 /// should also include the explicit conversion functions of a class
8060 /// type.
8061 void
AddTypesConvertedFrom(QualType Ty,SourceLocation Loc,bool AllowUserConversions,bool AllowExplicitConversions,const Qualifiers & VisibleQuals)8062 BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
8063 SourceLocation Loc,
8064 bool AllowUserConversions,
8065 bool AllowExplicitConversions,
8066 const Qualifiers &VisibleQuals) {
8067 // Only deal with canonical types.
8068 Ty = Context.getCanonicalType(Ty);
8069
8070 // Look through reference types; they aren't part of the type of an
8071 // expression for the purposes of conversions.
8072 if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
8073 Ty = RefTy->getPointeeType();
8074
8075 // If we're dealing with an array type, decay to the pointer.
8076 if (Ty->isArrayType())
8077 Ty = SemaRef.Context.getArrayDecayedType(Ty);
8078
8079 // Otherwise, we don't care about qualifiers on the type.
8080 Ty = Ty.getLocalUnqualifiedType();
8081
8082 // Flag if we ever add a non-record type.
8083 const RecordType *TyRec = Ty->getAs<RecordType>();
8084 HasNonRecordTypes = HasNonRecordTypes || !TyRec;
8085
8086 // Flag if we encounter an arithmetic type.
8087 HasArithmeticOrEnumeralTypes =
8088 HasArithmeticOrEnumeralTypes || Ty->isArithmeticType();
8089
8090 if (Ty->isObjCIdType() || Ty->isObjCClassType())
8091 PointerTypes.insert(Ty);
8092 else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) {
8093 // Insert our type, and its more-qualified variants, into the set
8094 // of types.
8095 if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
8096 return;
8097 } else if (Ty->isMemberPointerType()) {
8098 // Member pointers are far easier, since the pointee can't be converted.
8099 if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
8100 return;
8101 } else if (Ty->isEnumeralType()) {
8102 HasArithmeticOrEnumeralTypes = true;
8103 EnumerationTypes.insert(Ty);
8104 } else if (Ty->isVectorType()) {
8105 // We treat vector types as arithmetic types in many contexts as an
8106 // extension.
8107 HasArithmeticOrEnumeralTypes = true;
8108 VectorTypes.insert(Ty);
8109 } else if (Ty->isMatrixType()) {
8110 // Similar to vector types, we treat vector types as arithmetic types in
8111 // many contexts as an extension.
8112 HasArithmeticOrEnumeralTypes = true;
8113 MatrixTypes.insert(Ty);
8114 } else if (Ty->isNullPtrType()) {
8115 HasNullPtrType = true;
8116 } else if (AllowUserConversions && TyRec) {
8117 // No conversion functions in incomplete types.
8118 if (!SemaRef.isCompleteType(Loc, Ty))
8119 return;
8120
8121 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
8122 for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) {
8123 if (isa<UsingShadowDecl>(D))
8124 D = cast<UsingShadowDecl>(D)->getTargetDecl();
8125
8126 // Skip conversion function templates; they don't tell us anything
8127 // about which builtin types we can convert to.
8128 if (isa<FunctionTemplateDecl>(D))
8129 continue;
8130
8131 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
8132 if (AllowExplicitConversions || !Conv->isExplicit()) {
8133 AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
8134 VisibleQuals);
8135 }
8136 }
8137 }
8138 }
8139 /// Helper function for adjusting address spaces for the pointer or reference
8140 /// operands of builtin operators depending on the argument.
AdjustAddressSpaceForBuiltinOperandType(Sema & S,QualType T,Expr * Arg)8141 static QualType AdjustAddressSpaceForBuiltinOperandType(Sema &S, QualType T,
8142 Expr *Arg) {
8143 return S.Context.getAddrSpaceQualType(T, Arg->getType().getAddressSpace());
8144 }
8145
8146 /// Helper function for AddBuiltinOperatorCandidates() that adds
8147 /// the volatile- and non-volatile-qualified assignment operators for the
8148 /// given type to the candidate set.
AddBuiltinAssignmentOperatorCandidates(Sema & S,QualType T,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet)8149 static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
8150 QualType T,
8151 ArrayRef<Expr *> Args,
8152 OverloadCandidateSet &CandidateSet) {
8153 QualType ParamTypes[2];
8154
8155 // T& operator=(T&, T)
8156 ParamTypes[0] = S.Context.getLValueReferenceType(
8157 AdjustAddressSpaceForBuiltinOperandType(S, T, Args[0]));
8158 ParamTypes[1] = T;
8159 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8160 /*IsAssignmentOperator=*/true);
8161
8162 if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
8163 // volatile T& operator=(volatile T&, T)
8164 ParamTypes[0] = S.Context.getLValueReferenceType(
8165 AdjustAddressSpaceForBuiltinOperandType(S, S.Context.getVolatileType(T),
8166 Args[0]));
8167 ParamTypes[1] = T;
8168 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8169 /*IsAssignmentOperator=*/true);
8170 }
8171 }
8172
8173 /// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
8174 /// if any, found in visible type conversion functions found in ArgExpr's type.
CollectVRQualifiers(ASTContext & Context,Expr * ArgExpr)8175 static Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
8176 Qualifiers VRQuals;
8177 const RecordType *TyRec;
8178 if (const MemberPointerType *RHSMPType =
8179 ArgExpr->getType()->getAs<MemberPointerType>())
8180 TyRec = RHSMPType->getClass()->getAs<RecordType>();
8181 else
8182 TyRec = ArgExpr->getType()->getAs<RecordType>();
8183 if (!TyRec) {
8184 // Just to be safe, assume the worst case.
8185 VRQuals.addVolatile();
8186 VRQuals.addRestrict();
8187 return VRQuals;
8188 }
8189
8190 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
8191 if (!ClassDecl->hasDefinition())
8192 return VRQuals;
8193
8194 for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) {
8195 if (isa<UsingShadowDecl>(D))
8196 D = cast<UsingShadowDecl>(D)->getTargetDecl();
8197 if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) {
8198 QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
8199 if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
8200 CanTy = ResTypeRef->getPointeeType();
8201 // Need to go down the pointer/mempointer chain and add qualifiers
8202 // as see them.
8203 bool done = false;
8204 while (!done) {
8205 if (CanTy.isRestrictQualified())
8206 VRQuals.addRestrict();
8207 if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
8208 CanTy = ResTypePtr->getPointeeType();
8209 else if (const MemberPointerType *ResTypeMPtr =
8210 CanTy->getAs<MemberPointerType>())
8211 CanTy = ResTypeMPtr->getPointeeType();
8212 else
8213 done = true;
8214 if (CanTy.isVolatileQualified())
8215 VRQuals.addVolatile();
8216 if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
8217 return VRQuals;
8218 }
8219 }
8220 }
8221 return VRQuals;
8222 }
8223
8224 // Note: We're currently only handling qualifiers that are meaningful for the
8225 // LHS of compound assignment overloading.
forAllQualifierCombinationsImpl(QualifiersAndAtomic Available,QualifiersAndAtomic Applied,llvm::function_ref<void (QualifiersAndAtomic)> Callback)8226 static void forAllQualifierCombinationsImpl(
8227 QualifiersAndAtomic Available, QualifiersAndAtomic Applied,
8228 llvm::function_ref<void(QualifiersAndAtomic)> Callback) {
8229 // _Atomic
8230 if (Available.hasAtomic()) {
8231 Available.removeAtomic();
8232 forAllQualifierCombinationsImpl(Available, Applied.withAtomic(), Callback);
8233 forAllQualifierCombinationsImpl(Available, Applied, Callback);
8234 return;
8235 }
8236
8237 // volatile
8238 if (Available.hasVolatile()) {
8239 Available.removeVolatile();
8240 assert(!Applied.hasVolatile());
8241 forAllQualifierCombinationsImpl(Available, Applied.withVolatile(),
8242 Callback);
8243 forAllQualifierCombinationsImpl(Available, Applied, Callback);
8244 return;
8245 }
8246
8247 Callback(Applied);
8248 }
8249
forAllQualifierCombinations(QualifiersAndAtomic Quals,llvm::function_ref<void (QualifiersAndAtomic)> Callback)8250 static void forAllQualifierCombinations(
8251 QualifiersAndAtomic Quals,
8252 llvm::function_ref<void(QualifiersAndAtomic)> Callback) {
8253 return forAllQualifierCombinationsImpl(Quals, QualifiersAndAtomic(),
8254 Callback);
8255 }
8256
makeQualifiedLValueReferenceType(QualType Base,QualifiersAndAtomic Quals,Sema & S)8257 static QualType makeQualifiedLValueReferenceType(QualType Base,
8258 QualifiersAndAtomic Quals,
8259 Sema &S) {
8260 if (Quals.hasAtomic())
8261 Base = S.Context.getAtomicType(Base);
8262 if (Quals.hasVolatile())
8263 Base = S.Context.getVolatileType(Base);
8264 return S.Context.getLValueReferenceType(Base);
8265 }
8266
8267 namespace {
8268
8269 /// Helper class to manage the addition of builtin operator overload
8270 /// candidates. It provides shared state and utility methods used throughout
8271 /// the process, as well as a helper method to add each group of builtin
8272 /// operator overloads from the standard to a candidate set.
8273 class BuiltinOperatorOverloadBuilder {
8274 // Common instance state available to all overload candidate addition methods.
8275 Sema &S;
8276 ArrayRef<Expr *> Args;
8277 QualifiersAndAtomic VisibleTypeConversionsQuals;
8278 bool HasArithmeticOrEnumeralCandidateType;
8279 SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes;
8280 OverloadCandidateSet &CandidateSet;
8281
8282 static constexpr int ArithmeticTypesCap = 24;
8283 SmallVector<CanQualType, ArithmeticTypesCap> ArithmeticTypes;
8284
8285 // Define some indices used to iterate over the arithmetic types in
8286 // ArithmeticTypes. The "promoted arithmetic types" are the arithmetic
8287 // types are that preserved by promotion (C++ [over.built]p2).
8288 unsigned FirstIntegralType,
8289 LastIntegralType;
8290 unsigned FirstPromotedIntegralType,
8291 LastPromotedIntegralType;
8292 unsigned FirstPromotedArithmeticType,
8293 LastPromotedArithmeticType;
8294 unsigned NumArithmeticTypes;
8295
InitArithmeticTypes()8296 void InitArithmeticTypes() {
8297 // Start of promoted types.
8298 FirstPromotedArithmeticType = 0;
8299 ArithmeticTypes.push_back(S.Context.FloatTy);
8300 ArithmeticTypes.push_back(S.Context.DoubleTy);
8301 ArithmeticTypes.push_back(S.Context.LongDoubleTy);
8302 if (S.Context.getTargetInfo().hasFloat128Type())
8303 ArithmeticTypes.push_back(S.Context.Float128Ty);
8304 if (S.Context.getTargetInfo().hasIbm128Type())
8305 ArithmeticTypes.push_back(S.Context.Ibm128Ty);
8306
8307 // Start of integral types.
8308 FirstIntegralType = ArithmeticTypes.size();
8309 FirstPromotedIntegralType = ArithmeticTypes.size();
8310 ArithmeticTypes.push_back(S.Context.IntTy);
8311 ArithmeticTypes.push_back(S.Context.LongTy);
8312 ArithmeticTypes.push_back(S.Context.LongLongTy);
8313 if (S.Context.getTargetInfo().hasInt128Type() ||
8314 (S.Context.getAuxTargetInfo() &&
8315 S.Context.getAuxTargetInfo()->hasInt128Type()))
8316 ArithmeticTypes.push_back(S.Context.Int128Ty);
8317 ArithmeticTypes.push_back(S.Context.UnsignedIntTy);
8318 ArithmeticTypes.push_back(S.Context.UnsignedLongTy);
8319 ArithmeticTypes.push_back(S.Context.UnsignedLongLongTy);
8320 if (S.Context.getTargetInfo().hasInt128Type() ||
8321 (S.Context.getAuxTargetInfo() &&
8322 S.Context.getAuxTargetInfo()->hasInt128Type()))
8323 ArithmeticTypes.push_back(S.Context.UnsignedInt128Ty);
8324 LastPromotedIntegralType = ArithmeticTypes.size();
8325 LastPromotedArithmeticType = ArithmeticTypes.size();
8326 // End of promoted types.
8327
8328 ArithmeticTypes.push_back(S.Context.BoolTy);
8329 ArithmeticTypes.push_back(S.Context.CharTy);
8330 ArithmeticTypes.push_back(S.Context.WCharTy);
8331 if (S.Context.getLangOpts().Char8)
8332 ArithmeticTypes.push_back(S.Context.Char8Ty);
8333 ArithmeticTypes.push_back(S.Context.Char16Ty);
8334 ArithmeticTypes.push_back(S.Context.Char32Ty);
8335 ArithmeticTypes.push_back(S.Context.SignedCharTy);
8336 ArithmeticTypes.push_back(S.Context.ShortTy);
8337 ArithmeticTypes.push_back(S.Context.UnsignedCharTy);
8338 ArithmeticTypes.push_back(S.Context.UnsignedShortTy);
8339 LastIntegralType = ArithmeticTypes.size();
8340 NumArithmeticTypes = ArithmeticTypes.size();
8341 // End of integral types.
8342 // FIXME: What about complex? What about half?
8343
8344 assert(ArithmeticTypes.size() <= ArithmeticTypesCap &&
8345 "Enough inline storage for all arithmetic types.");
8346 }
8347
8348 /// Helper method to factor out the common pattern of adding overloads
8349 /// for '++' and '--' builtin operators.
addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy,bool HasVolatile,bool HasRestrict)8350 void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy,
8351 bool HasVolatile,
8352 bool HasRestrict) {
8353 QualType ParamTypes[2] = {
8354 S.Context.getLValueReferenceType(CandidateTy),
8355 S.Context.IntTy
8356 };
8357
8358 // Non-volatile version.
8359 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8360
8361 // Use a heuristic to reduce number of builtin candidates in the set:
8362 // add volatile version only if there are conversions to a volatile type.
8363 if (HasVolatile) {
8364 ParamTypes[0] =
8365 S.Context.getLValueReferenceType(
8366 S.Context.getVolatileType(CandidateTy));
8367 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8368 }
8369
8370 // Add restrict version only if there are conversions to a restrict type
8371 // and our candidate type is a non-restrict-qualified pointer.
8372 if (HasRestrict && CandidateTy->isAnyPointerType() &&
8373 !CandidateTy.isRestrictQualified()) {
8374 ParamTypes[0]
8375 = S.Context.getLValueReferenceType(
8376 S.Context.getCVRQualifiedType(CandidateTy, Qualifiers::Restrict));
8377 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8378
8379 if (HasVolatile) {
8380 ParamTypes[0]
8381 = S.Context.getLValueReferenceType(
8382 S.Context.getCVRQualifiedType(CandidateTy,
8383 (Qualifiers::Volatile |
8384 Qualifiers::Restrict)));
8385 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8386 }
8387 }
8388
8389 }
8390
8391 /// Helper to add an overload candidate for a binary builtin with types \p L
8392 /// and \p R.
AddCandidate(QualType L,QualType R)8393 void AddCandidate(QualType L, QualType R) {
8394 QualType LandR[2] = {L, R};
8395 S.AddBuiltinCandidate(LandR, Args, CandidateSet);
8396 }
8397
8398 public:
BuiltinOperatorOverloadBuilder(Sema & S,ArrayRef<Expr * > Args,QualifiersAndAtomic VisibleTypeConversionsQuals,bool HasArithmeticOrEnumeralCandidateType,SmallVectorImpl<BuiltinCandidateTypeSet> & CandidateTypes,OverloadCandidateSet & CandidateSet)8399 BuiltinOperatorOverloadBuilder(
8400 Sema &S, ArrayRef<Expr *> Args,
8401 QualifiersAndAtomic VisibleTypeConversionsQuals,
8402 bool HasArithmeticOrEnumeralCandidateType,
8403 SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes,
8404 OverloadCandidateSet &CandidateSet)
8405 : S(S), Args(Args),
8406 VisibleTypeConversionsQuals(VisibleTypeConversionsQuals),
8407 HasArithmeticOrEnumeralCandidateType(
8408 HasArithmeticOrEnumeralCandidateType),
8409 CandidateTypes(CandidateTypes),
8410 CandidateSet(CandidateSet) {
8411
8412 InitArithmeticTypes();
8413 }
8414
8415 // Increment is deprecated for bool since C++17.
8416 //
8417 // C++ [over.built]p3:
8418 //
8419 // For every pair (T, VQ), where T is an arithmetic type other
8420 // than bool, and VQ is either volatile or empty, there exist
8421 // candidate operator functions of the form
8422 //
8423 // VQ T& operator++(VQ T&);
8424 // T operator++(VQ T&, int);
8425 //
8426 // C++ [over.built]p4:
8427 //
8428 // For every pair (T, VQ), where T is an arithmetic type other
8429 // than bool, and VQ is either volatile or empty, there exist
8430 // candidate operator functions of the form
8431 //
8432 // VQ T& operator--(VQ T&);
8433 // T operator--(VQ T&, int);
addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op)8434 void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) {
8435 if (!HasArithmeticOrEnumeralCandidateType)
8436 return;
8437
8438 for (unsigned Arith = 0; Arith < NumArithmeticTypes; ++Arith) {
8439 const auto TypeOfT = ArithmeticTypes[Arith];
8440 if (TypeOfT == S.Context.BoolTy) {
8441 if (Op == OO_MinusMinus)
8442 continue;
8443 if (Op == OO_PlusPlus && S.getLangOpts().CPlusPlus17)
8444 continue;
8445 }
8446 addPlusPlusMinusMinusStyleOverloads(
8447 TypeOfT,
8448 VisibleTypeConversionsQuals.hasVolatile(),
8449 VisibleTypeConversionsQuals.hasRestrict());
8450 }
8451 }
8452
8453 // C++ [over.built]p5:
8454 //
8455 // For every pair (T, VQ), where T is a cv-qualified or
8456 // cv-unqualified object type, and VQ is either volatile or
8457 // empty, there exist candidate operator functions of the form
8458 //
8459 // T*VQ& operator++(T*VQ&);
8460 // T*VQ& operator--(T*VQ&);
8461 // T* operator++(T*VQ&, int);
8462 // T* operator--(T*VQ&, int);
addPlusPlusMinusMinusPointerOverloads()8463 void addPlusPlusMinusMinusPointerOverloads() {
8464 for (QualType PtrTy : CandidateTypes[0].pointer_types()) {
8465 // Skip pointer types that aren't pointers to object types.
8466 if (!PtrTy->getPointeeType()->isObjectType())
8467 continue;
8468
8469 addPlusPlusMinusMinusStyleOverloads(
8470 PtrTy,
8471 (!PtrTy.isVolatileQualified() &&
8472 VisibleTypeConversionsQuals.hasVolatile()),
8473 (!PtrTy.isRestrictQualified() &&
8474 VisibleTypeConversionsQuals.hasRestrict()));
8475 }
8476 }
8477
8478 // C++ [over.built]p6:
8479 // For every cv-qualified or cv-unqualified object type T, there
8480 // exist candidate operator functions of the form
8481 //
8482 // T& operator*(T*);
8483 //
8484 // C++ [over.built]p7:
8485 // For every function type T that does not have cv-qualifiers or a
8486 // ref-qualifier, there exist candidate operator functions of the form
8487 // T& operator*(T*);
addUnaryStarPointerOverloads()8488 void addUnaryStarPointerOverloads() {
8489 for (QualType ParamTy : CandidateTypes[0].pointer_types()) {
8490 QualType PointeeTy = ParamTy->getPointeeType();
8491 if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType())
8492 continue;
8493
8494 if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>())
8495 if (Proto->getMethodQuals() || Proto->getRefQualifier())
8496 continue;
8497
8498 S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet);
8499 }
8500 }
8501
8502 // C++ [over.built]p9:
8503 // For every promoted arithmetic type T, there exist candidate
8504 // operator functions of the form
8505 //
8506 // T operator+(T);
8507 // T operator-(T);
addUnaryPlusOrMinusArithmeticOverloads()8508 void addUnaryPlusOrMinusArithmeticOverloads() {
8509 if (!HasArithmeticOrEnumeralCandidateType)
8510 return;
8511
8512 for (unsigned Arith = FirstPromotedArithmeticType;
8513 Arith < LastPromotedArithmeticType; ++Arith) {
8514 QualType ArithTy = ArithmeticTypes[Arith];
8515 S.AddBuiltinCandidate(&ArithTy, Args, CandidateSet);
8516 }
8517
8518 // Extension: We also add these operators for vector types.
8519 for (QualType VecTy : CandidateTypes[0].vector_types())
8520 S.AddBuiltinCandidate(&VecTy, Args, CandidateSet);
8521 }
8522
8523 // C++ [over.built]p8:
8524 // For every type T, there exist candidate operator functions of
8525 // the form
8526 //
8527 // T* operator+(T*);
addUnaryPlusPointerOverloads()8528 void addUnaryPlusPointerOverloads() {
8529 for (QualType ParamTy : CandidateTypes[0].pointer_types())
8530 S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet);
8531 }
8532
8533 // C++ [over.built]p10:
8534 // For every promoted integral type T, there exist candidate
8535 // operator functions of the form
8536 //
8537 // T operator~(T);
addUnaryTildePromotedIntegralOverloads()8538 void addUnaryTildePromotedIntegralOverloads() {
8539 if (!HasArithmeticOrEnumeralCandidateType)
8540 return;
8541
8542 for (unsigned Int = FirstPromotedIntegralType;
8543 Int < LastPromotedIntegralType; ++Int) {
8544 QualType IntTy = ArithmeticTypes[Int];
8545 S.AddBuiltinCandidate(&IntTy, Args, CandidateSet);
8546 }
8547
8548 // Extension: We also add this operator for vector types.
8549 for (QualType VecTy : CandidateTypes[0].vector_types())
8550 S.AddBuiltinCandidate(&VecTy, Args, CandidateSet);
8551 }
8552
8553 // C++ [over.match.oper]p16:
8554 // For every pointer to member type T or type std::nullptr_t, there
8555 // exist candidate operator functions of the form
8556 //
8557 // bool operator==(T,T);
8558 // bool operator!=(T,T);
addEqualEqualOrNotEqualMemberPointerOrNullptrOverloads()8559 void addEqualEqualOrNotEqualMemberPointerOrNullptrOverloads() {
8560 /// Set of (canonical) types that we've already handled.
8561 llvm::SmallPtrSet<QualType, 8> AddedTypes;
8562
8563 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
8564 for (QualType MemPtrTy : CandidateTypes[ArgIdx].member_pointer_types()) {
8565 // Don't add the same builtin candidate twice.
8566 if (!AddedTypes.insert(S.Context.getCanonicalType(MemPtrTy)).second)
8567 continue;
8568
8569 QualType ParamTypes[2] = {MemPtrTy, MemPtrTy};
8570 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8571 }
8572
8573 if (CandidateTypes[ArgIdx].hasNullPtrType()) {
8574 CanQualType NullPtrTy = S.Context.getCanonicalType(S.Context.NullPtrTy);
8575 if (AddedTypes.insert(NullPtrTy).second) {
8576 QualType ParamTypes[2] = { NullPtrTy, NullPtrTy };
8577 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8578 }
8579 }
8580 }
8581 }
8582
8583 // C++ [over.built]p15:
8584 //
8585 // For every T, where T is an enumeration type or a pointer type,
8586 // there exist candidate operator functions of the form
8587 //
8588 // bool operator<(T, T);
8589 // bool operator>(T, T);
8590 // bool operator<=(T, T);
8591 // bool operator>=(T, T);
8592 // bool operator==(T, T);
8593 // bool operator!=(T, T);
8594 // R operator<=>(T, T)
addGenericBinaryPointerOrEnumeralOverloads(bool IsSpaceship)8595 void addGenericBinaryPointerOrEnumeralOverloads(bool IsSpaceship) {
8596 // C++ [over.match.oper]p3:
8597 // [...]the built-in candidates include all of the candidate operator
8598 // functions defined in 13.6 that, compared to the given operator, [...]
8599 // do not have the same parameter-type-list as any non-template non-member
8600 // candidate.
8601 //
8602 // Note that in practice, this only affects enumeration types because there
8603 // aren't any built-in candidates of record type, and a user-defined operator
8604 // must have an operand of record or enumeration type. Also, the only other
8605 // overloaded operator with enumeration arguments, operator=,
8606 // cannot be overloaded for enumeration types, so this is the only place
8607 // where we must suppress candidates like this.
8608 llvm::DenseSet<std::pair<CanQualType, CanQualType> >
8609 UserDefinedBinaryOperators;
8610
8611 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
8612 if (!CandidateTypes[ArgIdx].enumeration_types().empty()) {
8613 for (OverloadCandidateSet::iterator C = CandidateSet.begin(),
8614 CEnd = CandidateSet.end();
8615 C != CEnd; ++C) {
8616 if (!C->Viable || !C->Function || C->Function->getNumParams() != 2)
8617 continue;
8618
8619 if (C->Function->isFunctionTemplateSpecialization())
8620 continue;
8621
8622 // We interpret "same parameter-type-list" as applying to the
8623 // "synthesized candidate, with the order of the two parameters
8624 // reversed", not to the original function.
8625 bool Reversed = C->isReversed();
8626 QualType FirstParamType = C->Function->getParamDecl(Reversed ? 1 : 0)
8627 ->getType()
8628 .getUnqualifiedType();
8629 QualType SecondParamType = C->Function->getParamDecl(Reversed ? 0 : 1)
8630 ->getType()
8631 .getUnqualifiedType();
8632
8633 // Skip if either parameter isn't of enumeral type.
8634 if (!FirstParamType->isEnumeralType() ||
8635 !SecondParamType->isEnumeralType())
8636 continue;
8637
8638 // Add this operator to the set of known user-defined operators.
8639 UserDefinedBinaryOperators.insert(
8640 std::make_pair(S.Context.getCanonicalType(FirstParamType),
8641 S.Context.getCanonicalType(SecondParamType)));
8642 }
8643 }
8644 }
8645
8646 /// Set of (canonical) types that we've already handled.
8647 llvm::SmallPtrSet<QualType, 8> AddedTypes;
8648
8649 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
8650 for (QualType PtrTy : CandidateTypes[ArgIdx].pointer_types()) {
8651 // Don't add the same builtin candidate twice.
8652 if (!AddedTypes.insert(S.Context.getCanonicalType(PtrTy)).second)
8653 continue;
8654 if (IsSpaceship && PtrTy->isFunctionPointerType())
8655 continue;
8656
8657 QualType ParamTypes[2] = {PtrTy, PtrTy};
8658 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8659 }
8660 for (QualType EnumTy : CandidateTypes[ArgIdx].enumeration_types()) {
8661 CanQualType CanonType = S.Context.getCanonicalType(EnumTy);
8662
8663 // Don't add the same builtin candidate twice, or if a user defined
8664 // candidate exists.
8665 if (!AddedTypes.insert(CanonType).second ||
8666 UserDefinedBinaryOperators.count(std::make_pair(CanonType,
8667 CanonType)))
8668 continue;
8669 QualType ParamTypes[2] = {EnumTy, EnumTy};
8670 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8671 }
8672 }
8673 }
8674
8675 // C++ [over.built]p13:
8676 //
8677 // For every cv-qualified or cv-unqualified object type T
8678 // there exist candidate operator functions of the form
8679 //
8680 // T* operator+(T*, ptrdiff_t);
8681 // T& operator[](T*, ptrdiff_t); [BELOW]
8682 // T* operator-(T*, ptrdiff_t);
8683 // T* operator+(ptrdiff_t, T*);
8684 // T& operator[](ptrdiff_t, T*); [BELOW]
8685 //
8686 // C++ [over.built]p14:
8687 //
8688 // For every T, where T is a pointer to object type, there
8689 // exist candidate operator functions of the form
8690 //
8691 // ptrdiff_t operator-(T, T);
addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op)8692 void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) {
8693 /// Set of (canonical) types that we've already handled.
8694 llvm::SmallPtrSet<QualType, 8> AddedTypes;
8695
8696 for (int Arg = 0; Arg < 2; ++Arg) {
8697 QualType AsymmetricParamTypes[2] = {
8698 S.Context.getPointerDiffType(),
8699 S.Context.getPointerDiffType(),
8700 };
8701 for (QualType PtrTy : CandidateTypes[Arg].pointer_types()) {
8702 QualType PointeeTy = PtrTy->getPointeeType();
8703 if (!PointeeTy->isObjectType())
8704 continue;
8705
8706 AsymmetricParamTypes[Arg] = PtrTy;
8707 if (Arg == 0 || Op == OO_Plus) {
8708 // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
8709 // T* operator+(ptrdiff_t, T*);
8710 S.AddBuiltinCandidate(AsymmetricParamTypes, Args, CandidateSet);
8711 }
8712 if (Op == OO_Minus) {
8713 // ptrdiff_t operator-(T, T);
8714 if (!AddedTypes.insert(S.Context.getCanonicalType(PtrTy)).second)
8715 continue;
8716
8717 QualType ParamTypes[2] = {PtrTy, PtrTy};
8718 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8719 }
8720 }
8721 }
8722 }
8723
8724 // C++ [over.built]p12:
8725 //
8726 // For every pair of promoted arithmetic types L and R, there
8727 // exist candidate operator functions of the form
8728 //
8729 // LR operator*(L, R);
8730 // LR operator/(L, R);
8731 // LR operator+(L, R);
8732 // LR operator-(L, R);
8733 // bool operator<(L, R);
8734 // bool operator>(L, R);
8735 // bool operator<=(L, R);
8736 // bool operator>=(L, R);
8737 // bool operator==(L, R);
8738 // bool operator!=(L, R);
8739 //
8740 // where LR is the result of the usual arithmetic conversions
8741 // between types L and R.
8742 //
8743 // C++ [over.built]p24:
8744 //
8745 // For every pair of promoted arithmetic types L and R, there exist
8746 // candidate operator functions of the form
8747 //
8748 // LR operator?(bool, L, R);
8749 //
8750 // where LR is the result of the usual arithmetic conversions
8751 // between types L and R.
8752 // Our candidates ignore the first parameter.
addGenericBinaryArithmeticOverloads()8753 void addGenericBinaryArithmeticOverloads() {
8754 if (!HasArithmeticOrEnumeralCandidateType)
8755 return;
8756
8757 for (unsigned Left = FirstPromotedArithmeticType;
8758 Left < LastPromotedArithmeticType; ++Left) {
8759 for (unsigned Right = FirstPromotedArithmeticType;
8760 Right < LastPromotedArithmeticType; ++Right) {
8761 QualType LandR[2] = { ArithmeticTypes[Left],
8762 ArithmeticTypes[Right] };
8763 S.AddBuiltinCandidate(LandR, Args, CandidateSet);
8764 }
8765 }
8766
8767 // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the
8768 // conditional operator for vector types.
8769 for (QualType Vec1Ty : CandidateTypes[0].vector_types())
8770 for (QualType Vec2Ty : CandidateTypes[1].vector_types()) {
8771 QualType LandR[2] = {Vec1Ty, Vec2Ty};
8772 S.AddBuiltinCandidate(LandR, Args, CandidateSet);
8773 }
8774 }
8775
8776 /// Add binary operator overloads for each candidate matrix type M1, M2:
8777 /// * (M1, M1) -> M1
8778 /// * (M1, M1.getElementType()) -> M1
8779 /// * (M2.getElementType(), M2) -> M2
8780 /// * (M2, M2) -> M2 // Only if M2 is not part of CandidateTypes[0].
addMatrixBinaryArithmeticOverloads()8781 void addMatrixBinaryArithmeticOverloads() {
8782 if (!HasArithmeticOrEnumeralCandidateType)
8783 return;
8784
8785 for (QualType M1 : CandidateTypes[0].matrix_types()) {
8786 AddCandidate(M1, cast<MatrixType>(M1)->getElementType());
8787 AddCandidate(M1, M1);
8788 }
8789
8790 for (QualType M2 : CandidateTypes[1].matrix_types()) {
8791 AddCandidate(cast<MatrixType>(M2)->getElementType(), M2);
8792 if (!CandidateTypes[0].containsMatrixType(M2))
8793 AddCandidate(M2, M2);
8794 }
8795 }
8796
8797 // C++2a [over.built]p14:
8798 //
8799 // For every integral type T there exists a candidate operator function
8800 // of the form
8801 //
8802 // std::strong_ordering operator<=>(T, T)
8803 //
8804 // C++2a [over.built]p15:
8805 //
8806 // For every pair of floating-point types L and R, there exists a candidate
8807 // operator function of the form
8808 //
8809 // std::partial_ordering operator<=>(L, R);
8810 //
8811 // FIXME: The current specification for integral types doesn't play nice with
8812 // the direction of p0946r0, which allows mixed integral and unscoped-enum
8813 // comparisons. Under the current spec this can lead to ambiguity during
8814 // overload resolution. For example:
8815 //
8816 // enum A : int {a};
8817 // auto x = (a <=> (long)42);
8818 //
8819 // error: call is ambiguous for arguments 'A' and 'long'.
8820 // note: candidate operator<=>(int, int)
8821 // note: candidate operator<=>(long, long)
8822 //
8823 // To avoid this error, this function deviates from the specification and adds
8824 // the mixed overloads `operator<=>(L, R)` where L and R are promoted
8825 // arithmetic types (the same as the generic relational overloads).
8826 //
8827 // For now this function acts as a placeholder.
addThreeWayArithmeticOverloads()8828 void addThreeWayArithmeticOverloads() {
8829 addGenericBinaryArithmeticOverloads();
8830 }
8831
8832 // C++ [over.built]p17:
8833 //
8834 // For every pair of promoted integral types L and R, there
8835 // exist candidate operator functions of the form
8836 //
8837 // LR operator%(L, R);
8838 // LR operator&(L, R);
8839 // LR operator^(L, R);
8840 // LR operator|(L, R);
8841 // L operator<<(L, R);
8842 // L operator>>(L, R);
8843 //
8844 // where LR is the result of the usual arithmetic conversions
8845 // between types L and R.
addBinaryBitwiseArithmeticOverloads()8846 void addBinaryBitwiseArithmeticOverloads() {
8847 if (!HasArithmeticOrEnumeralCandidateType)
8848 return;
8849
8850 for (unsigned Left = FirstPromotedIntegralType;
8851 Left < LastPromotedIntegralType; ++Left) {
8852 for (unsigned Right = FirstPromotedIntegralType;
8853 Right < LastPromotedIntegralType; ++Right) {
8854 QualType LandR[2] = { ArithmeticTypes[Left],
8855 ArithmeticTypes[Right] };
8856 S.AddBuiltinCandidate(LandR, Args, CandidateSet);
8857 }
8858 }
8859 }
8860
8861 // C++ [over.built]p20:
8862 //
8863 // For every pair (T, VQ), where T is an enumeration or
8864 // pointer to member type and VQ is either volatile or
8865 // empty, there exist candidate operator functions of the form
8866 //
8867 // VQ T& operator=(VQ T&, T);
addAssignmentMemberPointerOrEnumeralOverloads()8868 void addAssignmentMemberPointerOrEnumeralOverloads() {
8869 /// Set of (canonical) types that we've already handled.
8870 llvm::SmallPtrSet<QualType, 8> AddedTypes;
8871
8872 for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
8873 for (QualType EnumTy : CandidateTypes[ArgIdx].enumeration_types()) {
8874 if (!AddedTypes.insert(S.Context.getCanonicalType(EnumTy)).second)
8875 continue;
8876
8877 AddBuiltinAssignmentOperatorCandidates(S, EnumTy, Args, CandidateSet);
8878 }
8879
8880 for (QualType MemPtrTy : CandidateTypes[ArgIdx].member_pointer_types()) {
8881 if (!AddedTypes.insert(S.Context.getCanonicalType(MemPtrTy)).second)
8882 continue;
8883
8884 AddBuiltinAssignmentOperatorCandidates(S, MemPtrTy, Args, CandidateSet);
8885 }
8886 }
8887 }
8888
8889 // C++ [over.built]p19:
8890 //
8891 // For every pair (T, VQ), where T is any type and VQ is either
8892 // volatile or empty, there exist candidate operator functions
8893 // of the form
8894 //
8895 // T*VQ& operator=(T*VQ&, T*);
8896 //
8897 // C++ [over.built]p21:
8898 //
8899 // For every pair (T, VQ), where T is a cv-qualified or
8900 // cv-unqualified object type and VQ is either volatile or
8901 // empty, there exist candidate operator functions of the form
8902 //
8903 // T*VQ& operator+=(T*VQ&, ptrdiff_t);
8904 // T*VQ& operator-=(T*VQ&, ptrdiff_t);
addAssignmentPointerOverloads(bool isEqualOp)8905 void addAssignmentPointerOverloads(bool isEqualOp) {
8906 /// Set of (canonical) types that we've already handled.
8907 llvm::SmallPtrSet<QualType, 8> AddedTypes;
8908
8909 for (QualType PtrTy : CandidateTypes[0].pointer_types()) {
8910 // If this is operator=, keep track of the builtin candidates we added.
8911 if (isEqualOp)
8912 AddedTypes.insert(S.Context.getCanonicalType(PtrTy));
8913 else if (!PtrTy->getPointeeType()->isObjectType())
8914 continue;
8915
8916 // non-volatile version
8917 QualType ParamTypes[2] = {
8918 S.Context.getLValueReferenceType(PtrTy),
8919 isEqualOp ? PtrTy : S.Context.getPointerDiffType(),
8920 };
8921 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8922 /*IsAssignmentOperator=*/ isEqualOp);
8923
8924 bool NeedVolatile = !PtrTy.isVolatileQualified() &&
8925 VisibleTypeConversionsQuals.hasVolatile();
8926 if (NeedVolatile) {
8927 // volatile version
8928 ParamTypes[0] =
8929 S.Context.getLValueReferenceType(S.Context.getVolatileType(PtrTy));
8930 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8931 /*IsAssignmentOperator=*/isEqualOp);
8932 }
8933
8934 if (!PtrTy.isRestrictQualified() &&
8935 VisibleTypeConversionsQuals.hasRestrict()) {
8936 // restrict version
8937 ParamTypes[0] =
8938 S.Context.getLValueReferenceType(S.Context.getRestrictType(PtrTy));
8939 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8940 /*IsAssignmentOperator=*/isEqualOp);
8941
8942 if (NeedVolatile) {
8943 // volatile restrict version
8944 ParamTypes[0] =
8945 S.Context.getLValueReferenceType(S.Context.getCVRQualifiedType(
8946 PtrTy, (Qualifiers::Volatile | Qualifiers::Restrict)));
8947 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8948 /*IsAssignmentOperator=*/isEqualOp);
8949 }
8950 }
8951 }
8952
8953 if (isEqualOp) {
8954 for (QualType PtrTy : CandidateTypes[1].pointer_types()) {
8955 // Make sure we don't add the same candidate twice.
8956 if (!AddedTypes.insert(S.Context.getCanonicalType(PtrTy)).second)
8957 continue;
8958
8959 QualType ParamTypes[2] = {
8960 S.Context.getLValueReferenceType(PtrTy),
8961 PtrTy,
8962 };
8963
8964 // non-volatile version
8965 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8966 /*IsAssignmentOperator=*/true);
8967
8968 bool NeedVolatile = !PtrTy.isVolatileQualified() &&
8969 VisibleTypeConversionsQuals.hasVolatile();
8970 if (NeedVolatile) {
8971 // volatile version
8972 ParamTypes[0] = S.Context.getLValueReferenceType(
8973 S.Context.getVolatileType(PtrTy));
8974 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8975 /*IsAssignmentOperator=*/true);
8976 }
8977
8978 if (!PtrTy.isRestrictQualified() &&
8979 VisibleTypeConversionsQuals.hasRestrict()) {
8980 // restrict version
8981 ParamTypes[0] = S.Context.getLValueReferenceType(
8982 S.Context.getRestrictType(PtrTy));
8983 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8984 /*IsAssignmentOperator=*/true);
8985
8986 if (NeedVolatile) {
8987 // volatile restrict version
8988 ParamTypes[0] =
8989 S.Context.getLValueReferenceType(S.Context.getCVRQualifiedType(
8990 PtrTy, (Qualifiers::Volatile | Qualifiers::Restrict)));
8991 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8992 /*IsAssignmentOperator=*/true);
8993 }
8994 }
8995 }
8996 }
8997 }
8998
8999 // C++ [over.built]p18:
9000 //
9001 // For every triple (L, VQ, R), where L is an arithmetic type,
9002 // VQ is either volatile or empty, and R is a promoted
9003 // arithmetic type, there exist candidate operator functions of
9004 // the form
9005 //
9006 // VQ L& operator=(VQ L&, R);
9007 // VQ L& operator*=(VQ L&, R);
9008 // VQ L& operator/=(VQ L&, R);
9009 // VQ L& operator+=(VQ L&, R);
9010 // VQ L& operator-=(VQ L&, R);
addAssignmentArithmeticOverloads(bool isEqualOp)9011 void addAssignmentArithmeticOverloads(bool isEqualOp) {
9012 if (!HasArithmeticOrEnumeralCandidateType)
9013 return;
9014
9015 for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
9016 for (unsigned Right = FirstPromotedArithmeticType;
9017 Right < LastPromotedArithmeticType; ++Right) {
9018 QualType ParamTypes[2];
9019 ParamTypes[1] = ArithmeticTypes[Right];
9020 auto LeftBaseTy = AdjustAddressSpaceForBuiltinOperandType(
9021 S, ArithmeticTypes[Left], Args[0]);
9022
9023 forAllQualifierCombinations(
9024 VisibleTypeConversionsQuals, [&](QualifiersAndAtomic Quals) {
9025 ParamTypes[0] =
9026 makeQualifiedLValueReferenceType(LeftBaseTy, Quals, S);
9027 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
9028 /*IsAssignmentOperator=*/isEqualOp);
9029 });
9030 }
9031 }
9032
9033 // Extension: Add the binary operators =, +=, -=, *=, /= for vector types.
9034 for (QualType Vec1Ty : CandidateTypes[0].vector_types())
9035 for (QualType Vec2Ty : CandidateTypes[0].vector_types()) {
9036 QualType ParamTypes[2];
9037 ParamTypes[1] = Vec2Ty;
9038 // Add this built-in operator as a candidate (VQ is empty).
9039 ParamTypes[0] = S.Context.getLValueReferenceType(Vec1Ty);
9040 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
9041 /*IsAssignmentOperator=*/isEqualOp);
9042
9043 // Add this built-in operator as a candidate (VQ is 'volatile').
9044 if (VisibleTypeConversionsQuals.hasVolatile()) {
9045 ParamTypes[0] = S.Context.getVolatileType(Vec1Ty);
9046 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
9047 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
9048 /*IsAssignmentOperator=*/isEqualOp);
9049 }
9050 }
9051 }
9052
9053 // C++ [over.built]p22:
9054 //
9055 // For every triple (L, VQ, R), where L is an integral type, VQ
9056 // is either volatile or empty, and R is a promoted integral
9057 // type, there exist candidate operator functions of the form
9058 //
9059 // VQ L& operator%=(VQ L&, R);
9060 // VQ L& operator<<=(VQ L&, R);
9061 // VQ L& operator>>=(VQ L&, R);
9062 // VQ L& operator&=(VQ L&, R);
9063 // VQ L& operator^=(VQ L&, R);
9064 // VQ L& operator|=(VQ L&, R);
addAssignmentIntegralOverloads()9065 void addAssignmentIntegralOverloads() {
9066 if (!HasArithmeticOrEnumeralCandidateType)
9067 return;
9068
9069 for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
9070 for (unsigned Right = FirstPromotedIntegralType;
9071 Right < LastPromotedIntegralType; ++Right) {
9072 QualType ParamTypes[2];
9073 ParamTypes[1] = ArithmeticTypes[Right];
9074 auto LeftBaseTy = AdjustAddressSpaceForBuiltinOperandType(
9075 S, ArithmeticTypes[Left], Args[0]);
9076
9077 forAllQualifierCombinations(
9078 VisibleTypeConversionsQuals, [&](QualifiersAndAtomic Quals) {
9079 ParamTypes[0] =
9080 makeQualifiedLValueReferenceType(LeftBaseTy, Quals, S);
9081 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
9082 });
9083 }
9084 }
9085 }
9086
9087 // C++ [over.operator]p23:
9088 //
9089 // There also exist candidate operator functions of the form
9090 //
9091 // bool operator!(bool);
9092 // bool operator&&(bool, bool);
9093 // bool operator||(bool, bool);
addExclaimOverload()9094 void addExclaimOverload() {
9095 QualType ParamTy = S.Context.BoolTy;
9096 S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet,
9097 /*IsAssignmentOperator=*/false,
9098 /*NumContextualBoolArguments=*/1);
9099 }
addAmpAmpOrPipePipeOverload()9100 void addAmpAmpOrPipePipeOverload() {
9101 QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy };
9102 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
9103 /*IsAssignmentOperator=*/false,
9104 /*NumContextualBoolArguments=*/2);
9105 }
9106
9107 // C++ [over.built]p13:
9108 //
9109 // For every cv-qualified or cv-unqualified object type T there
9110 // exist candidate operator functions of the form
9111 //
9112 // T* operator+(T*, ptrdiff_t); [ABOVE]
9113 // T& operator[](T*, ptrdiff_t);
9114 // T* operator-(T*, ptrdiff_t); [ABOVE]
9115 // T* operator+(ptrdiff_t, T*); [ABOVE]
9116 // T& operator[](ptrdiff_t, T*);
addSubscriptOverloads()9117 void addSubscriptOverloads() {
9118 for (QualType PtrTy : CandidateTypes[0].pointer_types()) {
9119 QualType ParamTypes[2] = {PtrTy, S.Context.getPointerDiffType()};
9120 QualType PointeeType = PtrTy->getPointeeType();
9121 if (!PointeeType->isObjectType())
9122 continue;
9123
9124 // T& operator[](T*, ptrdiff_t)
9125 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
9126 }
9127
9128 for (QualType PtrTy : CandidateTypes[1].pointer_types()) {
9129 QualType ParamTypes[2] = {S.Context.getPointerDiffType(), PtrTy};
9130 QualType PointeeType = PtrTy->getPointeeType();
9131 if (!PointeeType->isObjectType())
9132 continue;
9133
9134 // T& operator[](ptrdiff_t, T*)
9135 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
9136 }
9137 }
9138
9139 // C++ [over.built]p11:
9140 // For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
9141 // C1 is the same type as C2 or is a derived class of C2, T is an object
9142 // type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
9143 // there exist candidate operator functions of the form
9144 //
9145 // CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
9146 //
9147 // where CV12 is the union of CV1 and CV2.
addArrowStarOverloads()9148 void addArrowStarOverloads() {
9149 for (QualType PtrTy : CandidateTypes[0].pointer_types()) {
9150 QualType C1Ty = PtrTy;
9151 QualType C1;
9152 QualifierCollector Q1;
9153 C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0);
9154 if (!isa<RecordType>(C1))
9155 continue;
9156 // heuristic to reduce number of builtin candidates in the set.
9157 // Add volatile/restrict version only if there are conversions to a
9158 // volatile/restrict type.
9159 if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
9160 continue;
9161 if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
9162 continue;
9163 for (QualType MemPtrTy : CandidateTypes[1].member_pointer_types()) {
9164 const MemberPointerType *mptr = cast<MemberPointerType>(MemPtrTy);
9165 QualType C2 = QualType(mptr->getClass(), 0);
9166 C2 = C2.getUnqualifiedType();
9167 if (C1 != C2 && !S.IsDerivedFrom(CandidateSet.getLocation(), C1, C2))
9168 break;
9169 QualType ParamTypes[2] = {PtrTy, MemPtrTy};
9170 // build CV12 T&
9171 QualType T = mptr->getPointeeType();
9172 if (!VisibleTypeConversionsQuals.hasVolatile() &&
9173 T.isVolatileQualified())
9174 continue;
9175 if (!VisibleTypeConversionsQuals.hasRestrict() &&
9176 T.isRestrictQualified())
9177 continue;
9178 T = Q1.apply(S.Context, T);
9179 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
9180 }
9181 }
9182 }
9183
9184 // Note that we don't consider the first argument, since it has been
9185 // contextually converted to bool long ago. The candidates below are
9186 // therefore added as binary.
9187 //
9188 // C++ [over.built]p25:
9189 // For every type T, where T is a pointer, pointer-to-member, or scoped
9190 // enumeration type, there exist candidate operator functions of the form
9191 //
9192 // T operator?(bool, T, T);
9193 //
addConditionalOperatorOverloads()9194 void addConditionalOperatorOverloads() {
9195 /// Set of (canonical) types that we've already handled.
9196 llvm::SmallPtrSet<QualType, 8> AddedTypes;
9197
9198 for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
9199 for (QualType PtrTy : CandidateTypes[ArgIdx].pointer_types()) {
9200 if (!AddedTypes.insert(S.Context.getCanonicalType(PtrTy)).second)
9201 continue;
9202
9203 QualType ParamTypes[2] = {PtrTy, PtrTy};
9204 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
9205 }
9206
9207 for (QualType MemPtrTy : CandidateTypes[ArgIdx].member_pointer_types()) {
9208 if (!AddedTypes.insert(S.Context.getCanonicalType(MemPtrTy)).second)
9209 continue;
9210
9211 QualType ParamTypes[2] = {MemPtrTy, MemPtrTy};
9212 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
9213 }
9214
9215 if (S.getLangOpts().CPlusPlus11) {
9216 for (QualType EnumTy : CandidateTypes[ArgIdx].enumeration_types()) {
9217 if (!EnumTy->castAs<EnumType>()->getDecl()->isScoped())
9218 continue;
9219
9220 if (!AddedTypes.insert(S.Context.getCanonicalType(EnumTy)).second)
9221 continue;
9222
9223 QualType ParamTypes[2] = {EnumTy, EnumTy};
9224 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
9225 }
9226 }
9227 }
9228 }
9229 };
9230
9231 } // end anonymous namespace
9232
9233 /// AddBuiltinOperatorCandidates - Add the appropriate built-in
9234 /// operator overloads to the candidate set (C++ [over.built]), based
9235 /// on the operator @p Op and the arguments given. For example, if the
9236 /// operator is a binary '+', this routine might add "int
9237 /// operator+(int, int)" to cover integer addition.
AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,SourceLocation OpLoc,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet)9238 void Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
9239 SourceLocation OpLoc,
9240 ArrayRef<Expr *> Args,
9241 OverloadCandidateSet &CandidateSet) {
9242 // Find all of the types that the arguments can convert to, but only
9243 // if the operator we're looking at has built-in operator candidates
9244 // that make use of these types. Also record whether we encounter non-record
9245 // candidate types or either arithmetic or enumeral candidate types.
9246 QualifiersAndAtomic VisibleTypeConversionsQuals;
9247 VisibleTypeConversionsQuals.addConst();
9248 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
9249 VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
9250 if (Args[ArgIdx]->getType()->isAtomicType())
9251 VisibleTypeConversionsQuals.addAtomic();
9252 }
9253
9254 bool HasNonRecordCandidateType = false;
9255 bool HasArithmeticOrEnumeralCandidateType = false;
9256 SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes;
9257 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
9258 CandidateTypes.emplace_back(*this);
9259 CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(),
9260 OpLoc,
9261 true,
9262 (Op == OO_Exclaim ||
9263 Op == OO_AmpAmp ||
9264 Op == OO_PipePipe),
9265 VisibleTypeConversionsQuals);
9266 HasNonRecordCandidateType = HasNonRecordCandidateType ||
9267 CandidateTypes[ArgIdx].hasNonRecordTypes();
9268 HasArithmeticOrEnumeralCandidateType =
9269 HasArithmeticOrEnumeralCandidateType ||
9270 CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes();
9271 }
9272
9273 // Exit early when no non-record types have been added to the candidate set
9274 // for any of the arguments to the operator.
9275 //
9276 // We can't exit early for !, ||, or &&, since there we have always have
9277 // 'bool' overloads.
9278 if (!HasNonRecordCandidateType &&
9279 !(Op == OO_Exclaim || Op == OO_AmpAmp || Op == OO_PipePipe))
9280 return;
9281
9282 // Setup an object to manage the common state for building overloads.
9283 BuiltinOperatorOverloadBuilder OpBuilder(*this, Args,
9284 VisibleTypeConversionsQuals,
9285 HasArithmeticOrEnumeralCandidateType,
9286 CandidateTypes, CandidateSet);
9287
9288 // Dispatch over the operation to add in only those overloads which apply.
9289 switch (Op) {
9290 case OO_None:
9291 case NUM_OVERLOADED_OPERATORS:
9292 llvm_unreachable("Expected an overloaded operator");
9293
9294 case OO_New:
9295 case OO_Delete:
9296 case OO_Array_New:
9297 case OO_Array_Delete:
9298 case OO_Call:
9299 llvm_unreachable(
9300 "Special operators don't use AddBuiltinOperatorCandidates");
9301
9302 case OO_Comma:
9303 case OO_Arrow:
9304 case OO_Coawait:
9305 // C++ [over.match.oper]p3:
9306 // -- For the operator ',', the unary operator '&', the
9307 // operator '->', or the operator 'co_await', the
9308 // built-in candidates set is empty.
9309 break;
9310
9311 case OO_Plus: // '+' is either unary or binary
9312 if (Args.size() == 1)
9313 OpBuilder.addUnaryPlusPointerOverloads();
9314 LLVM_FALLTHROUGH;
9315
9316 case OO_Minus: // '-' is either unary or binary
9317 if (Args.size() == 1) {
9318 OpBuilder.addUnaryPlusOrMinusArithmeticOverloads();
9319 } else {
9320 OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op);
9321 OpBuilder.addGenericBinaryArithmeticOverloads();
9322 OpBuilder.addMatrixBinaryArithmeticOverloads();
9323 }
9324 break;
9325
9326 case OO_Star: // '*' is either unary or binary
9327 if (Args.size() == 1)
9328 OpBuilder.addUnaryStarPointerOverloads();
9329 else {
9330 OpBuilder.addGenericBinaryArithmeticOverloads();
9331 OpBuilder.addMatrixBinaryArithmeticOverloads();
9332 }
9333 break;
9334
9335 case OO_Slash:
9336 OpBuilder.addGenericBinaryArithmeticOverloads();
9337 break;
9338
9339 case OO_PlusPlus:
9340 case OO_MinusMinus:
9341 OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op);
9342 OpBuilder.addPlusPlusMinusMinusPointerOverloads();
9343 break;
9344
9345 case OO_EqualEqual:
9346 case OO_ExclaimEqual:
9347 OpBuilder.addEqualEqualOrNotEqualMemberPointerOrNullptrOverloads();
9348 OpBuilder.addGenericBinaryPointerOrEnumeralOverloads(/*IsSpaceship=*/false);
9349 OpBuilder.addGenericBinaryArithmeticOverloads();
9350 break;
9351
9352 case OO_Less:
9353 case OO_Greater:
9354 case OO_LessEqual:
9355 case OO_GreaterEqual:
9356 OpBuilder.addGenericBinaryPointerOrEnumeralOverloads(/*IsSpaceship=*/false);
9357 OpBuilder.addGenericBinaryArithmeticOverloads();
9358 break;
9359
9360 case OO_Spaceship:
9361 OpBuilder.addGenericBinaryPointerOrEnumeralOverloads(/*IsSpaceship=*/true);
9362 OpBuilder.addThreeWayArithmeticOverloads();
9363 break;
9364
9365 case OO_Percent:
9366 case OO_Caret:
9367 case OO_Pipe:
9368 case OO_LessLess:
9369 case OO_GreaterGreater:
9370 OpBuilder.addBinaryBitwiseArithmeticOverloads();
9371 break;
9372
9373 case OO_Amp: // '&' is either unary or binary
9374 if (Args.size() == 1)
9375 // C++ [over.match.oper]p3:
9376 // -- For the operator ',', the unary operator '&', or the
9377 // operator '->', the built-in candidates set is empty.
9378 break;
9379
9380 OpBuilder.addBinaryBitwiseArithmeticOverloads();
9381 break;
9382
9383 case OO_Tilde:
9384 OpBuilder.addUnaryTildePromotedIntegralOverloads();
9385 break;
9386
9387 case OO_Equal:
9388 OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads();
9389 LLVM_FALLTHROUGH;
9390
9391 case OO_PlusEqual:
9392 case OO_MinusEqual:
9393 OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal);
9394 LLVM_FALLTHROUGH;
9395
9396 case OO_StarEqual:
9397 case OO_SlashEqual:
9398 OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal);
9399 break;
9400
9401 case OO_PercentEqual:
9402 case OO_LessLessEqual:
9403 case OO_GreaterGreaterEqual:
9404 case OO_AmpEqual:
9405 case OO_CaretEqual:
9406 case OO_PipeEqual:
9407 OpBuilder.addAssignmentIntegralOverloads();
9408 break;
9409
9410 case OO_Exclaim:
9411 OpBuilder.addExclaimOverload();
9412 break;
9413
9414 case OO_AmpAmp:
9415 case OO_PipePipe:
9416 OpBuilder.addAmpAmpOrPipePipeOverload();
9417 break;
9418
9419 case OO_Subscript:
9420 if (Args.size() == 2)
9421 OpBuilder.addSubscriptOverloads();
9422 break;
9423
9424 case OO_ArrowStar:
9425 OpBuilder.addArrowStarOverloads();
9426 break;
9427
9428 case OO_Conditional:
9429 OpBuilder.addConditionalOperatorOverloads();
9430 OpBuilder.addGenericBinaryArithmeticOverloads();
9431 break;
9432 }
9433 }
9434
9435 /// Add function candidates found via argument-dependent lookup
9436 /// to the set of overloading candidates.
9437 ///
9438 /// This routine performs argument-dependent name lookup based on the
9439 /// given function name (which may also be an operator name) and adds
9440 /// all of the overload candidates found by ADL to the overload
9441 /// candidate set (C++ [basic.lookup.argdep]).
9442 void
AddArgumentDependentLookupCandidates(DeclarationName Name,SourceLocation Loc,ArrayRef<Expr * > Args,TemplateArgumentListInfo * ExplicitTemplateArgs,OverloadCandidateSet & CandidateSet,bool PartialOverloading)9443 Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
9444 SourceLocation Loc,
9445 ArrayRef<Expr *> Args,
9446 TemplateArgumentListInfo *ExplicitTemplateArgs,
9447 OverloadCandidateSet& CandidateSet,
9448 bool PartialOverloading) {
9449 ADLResult Fns;
9450
9451 // FIXME: This approach for uniquing ADL results (and removing
9452 // redundant candidates from the set) relies on pointer-equality,
9453 // which means we need to key off the canonical decl. However,
9454 // always going back to the canonical decl might not get us the
9455 // right set of default arguments. What default arguments are
9456 // we supposed to consider on ADL candidates, anyway?
9457
9458 // FIXME: Pass in the explicit template arguments?
9459 ArgumentDependentLookup(Name, Loc, Args, Fns);
9460
9461 // Erase all of the candidates we already knew about.
9462 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
9463 CandEnd = CandidateSet.end();
9464 Cand != CandEnd; ++Cand)
9465 if (Cand->Function) {
9466 Fns.erase(Cand->Function);
9467 if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
9468 Fns.erase(FunTmpl);
9469 }
9470
9471 // For each of the ADL candidates we found, add it to the overload
9472 // set.
9473 for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
9474 DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);
9475
9476 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
9477 if (ExplicitTemplateArgs)
9478 continue;
9479
9480 AddOverloadCandidate(
9481 FD, FoundDecl, Args, CandidateSet, /*SuppressUserConversions=*/false,
9482 PartialOverloading, /*AllowExplicit=*/true,
9483 /*AllowExplicitConversion=*/false, ADLCallKind::UsesADL);
9484 if (CandidateSet.getRewriteInfo().shouldAddReversed(Context, FD)) {
9485 AddOverloadCandidate(
9486 FD, FoundDecl, {Args[1], Args[0]}, CandidateSet,
9487 /*SuppressUserConversions=*/false, PartialOverloading,
9488 /*AllowExplicit=*/true, /*AllowExplicitConversion=*/false,
9489 ADLCallKind::UsesADL, None, OverloadCandidateParamOrder::Reversed);
9490 }
9491 } else {
9492 auto *FTD = cast<FunctionTemplateDecl>(*I);
9493 AddTemplateOverloadCandidate(
9494 FTD, FoundDecl, ExplicitTemplateArgs, Args, CandidateSet,
9495 /*SuppressUserConversions=*/false, PartialOverloading,
9496 /*AllowExplicit=*/true, ADLCallKind::UsesADL);
9497 if (CandidateSet.getRewriteInfo().shouldAddReversed(
9498 Context, FTD->getTemplatedDecl())) {
9499 AddTemplateOverloadCandidate(
9500 FTD, FoundDecl, ExplicitTemplateArgs, {Args[1], Args[0]},
9501 CandidateSet, /*SuppressUserConversions=*/false, PartialOverloading,
9502 /*AllowExplicit=*/true, ADLCallKind::UsesADL,
9503 OverloadCandidateParamOrder::Reversed);
9504 }
9505 }
9506 }
9507 }
9508
9509 namespace {
9510 enum class Comparison { Equal, Better, Worse };
9511 }
9512
9513 /// Compares the enable_if attributes of two FunctionDecls, for the purposes of
9514 /// overload resolution.
9515 ///
9516 /// Cand1's set of enable_if attributes are said to be "better" than Cand2's iff
9517 /// Cand1's first N enable_if attributes have precisely the same conditions as
9518 /// Cand2's first N enable_if attributes (where N = the number of enable_if
9519 /// attributes on Cand2), and Cand1 has more than N enable_if attributes.
9520 ///
9521 /// Note that you can have a pair of candidates such that Cand1's enable_if
9522 /// attributes are worse than Cand2's, and Cand2's enable_if attributes are
9523 /// worse than Cand1's.
compareEnableIfAttrs(const Sema & S,const FunctionDecl * Cand1,const FunctionDecl * Cand2)9524 static Comparison compareEnableIfAttrs(const Sema &S, const FunctionDecl *Cand1,
9525 const FunctionDecl *Cand2) {
9526 // Common case: One (or both) decls don't have enable_if attrs.
9527 bool Cand1Attr = Cand1->hasAttr<EnableIfAttr>();
9528 bool Cand2Attr = Cand2->hasAttr<EnableIfAttr>();
9529 if (!Cand1Attr || !Cand2Attr) {
9530 if (Cand1Attr == Cand2Attr)
9531 return Comparison::Equal;
9532 return Cand1Attr ? Comparison::Better : Comparison::Worse;
9533 }
9534
9535 auto Cand1Attrs = Cand1->specific_attrs<EnableIfAttr>();
9536 auto Cand2Attrs = Cand2->specific_attrs<EnableIfAttr>();
9537
9538 llvm::FoldingSetNodeID Cand1ID, Cand2ID;
9539 for (auto Pair : zip_longest(Cand1Attrs, Cand2Attrs)) {
9540 Optional<EnableIfAttr *> Cand1A = std::get<0>(Pair);
9541 Optional<EnableIfAttr *> Cand2A = std::get<1>(Pair);
9542
9543 // It's impossible for Cand1 to be better than (or equal to) Cand2 if Cand1
9544 // has fewer enable_if attributes than Cand2, and vice versa.
9545 if (!Cand1A)
9546 return Comparison::Worse;
9547 if (!Cand2A)
9548 return Comparison::Better;
9549
9550 Cand1ID.clear();
9551 Cand2ID.clear();
9552
9553 (*Cand1A)->getCond()->Profile(Cand1ID, S.getASTContext(), true);
9554 (*Cand2A)->getCond()->Profile(Cand2ID, S.getASTContext(), true);
9555 if (Cand1ID != Cand2ID)
9556 return Comparison::Worse;
9557 }
9558
9559 return Comparison::Equal;
9560 }
9561
9562 static Comparison
isBetterMultiversionCandidate(const OverloadCandidate & Cand1,const OverloadCandidate & Cand2)9563 isBetterMultiversionCandidate(const OverloadCandidate &Cand1,
9564 const OverloadCandidate &Cand2) {
9565 if (!Cand1.Function || !Cand1.Function->isMultiVersion() || !Cand2.Function ||
9566 !Cand2.Function->isMultiVersion())
9567 return Comparison::Equal;
9568
9569 // If both are invalid, they are equal. If one of them is invalid, the other
9570 // is better.
9571 if (Cand1.Function->isInvalidDecl()) {
9572 if (Cand2.Function->isInvalidDecl())
9573 return Comparison::Equal;
9574 return Comparison::Worse;
9575 }
9576 if (Cand2.Function->isInvalidDecl())
9577 return Comparison::Better;
9578
9579 // If this is a cpu_dispatch/cpu_specific multiversion situation, prefer
9580 // cpu_dispatch, else arbitrarily based on the identifiers.
9581 bool Cand1CPUDisp = Cand1.Function->hasAttr<CPUDispatchAttr>();
9582 bool Cand2CPUDisp = Cand2.Function->hasAttr<CPUDispatchAttr>();
9583 const auto *Cand1CPUSpec = Cand1.Function->getAttr<CPUSpecificAttr>();
9584 const auto *Cand2CPUSpec = Cand2.Function->getAttr<CPUSpecificAttr>();
9585
9586 if (!Cand1CPUDisp && !Cand2CPUDisp && !Cand1CPUSpec && !Cand2CPUSpec)
9587 return Comparison::Equal;
9588
9589 if (Cand1CPUDisp && !Cand2CPUDisp)
9590 return Comparison::Better;
9591 if (Cand2CPUDisp && !Cand1CPUDisp)
9592 return Comparison::Worse;
9593
9594 if (Cand1CPUSpec && Cand2CPUSpec) {
9595 if (Cand1CPUSpec->cpus_size() != Cand2CPUSpec->cpus_size())
9596 return Cand1CPUSpec->cpus_size() < Cand2CPUSpec->cpus_size()
9597 ? Comparison::Better
9598 : Comparison::Worse;
9599
9600 std::pair<CPUSpecificAttr::cpus_iterator, CPUSpecificAttr::cpus_iterator>
9601 FirstDiff = std::mismatch(
9602 Cand1CPUSpec->cpus_begin(), Cand1CPUSpec->cpus_end(),
9603 Cand2CPUSpec->cpus_begin(),
9604 [](const IdentifierInfo *LHS, const IdentifierInfo *RHS) {
9605 return LHS->getName() == RHS->getName();
9606 });
9607
9608 assert(FirstDiff.first != Cand1CPUSpec->cpus_end() &&
9609 "Two different cpu-specific versions should not have the same "
9610 "identifier list, otherwise they'd be the same decl!");
9611 return (*FirstDiff.first)->getName() < (*FirstDiff.second)->getName()
9612 ? Comparison::Better
9613 : Comparison::Worse;
9614 }
9615 llvm_unreachable("No way to get here unless both had cpu_dispatch");
9616 }
9617
9618 /// Compute the type of the implicit object parameter for the given function,
9619 /// if any. Returns None if there is no implicit object parameter, and a null
9620 /// QualType if there is a 'matches anything' implicit object parameter.
getImplicitObjectParamType(ASTContext & Context,const FunctionDecl * F)9621 static Optional<QualType> getImplicitObjectParamType(ASTContext &Context,
9622 const FunctionDecl *F) {
9623 if (!isa<CXXMethodDecl>(F) || isa<CXXConstructorDecl>(F))
9624 return llvm::None;
9625
9626 auto *M = cast<CXXMethodDecl>(F);
9627 // Static member functions' object parameters match all types.
9628 if (M->isStatic())
9629 return QualType();
9630
9631 QualType T = M->getThisObjectType();
9632 if (M->getRefQualifier() == RQ_RValue)
9633 return Context.getRValueReferenceType(T);
9634 return Context.getLValueReferenceType(T);
9635 }
9636
haveSameParameterTypes(ASTContext & Context,const FunctionDecl * F1,const FunctionDecl * F2,unsigned NumParams)9637 static bool haveSameParameterTypes(ASTContext &Context, const FunctionDecl *F1,
9638 const FunctionDecl *F2, unsigned NumParams) {
9639 if (declaresSameEntity(F1, F2))
9640 return true;
9641
9642 auto NextParam = [&](const FunctionDecl *F, unsigned &I, bool First) {
9643 if (First) {
9644 if (Optional<QualType> T = getImplicitObjectParamType(Context, F))
9645 return *T;
9646 }
9647 assert(I < F->getNumParams());
9648 return F->getParamDecl(I++)->getType();
9649 };
9650
9651 unsigned I1 = 0, I2 = 0;
9652 for (unsigned I = 0; I != NumParams; ++I) {
9653 QualType T1 = NextParam(F1, I1, I == 0);
9654 QualType T2 = NextParam(F2, I2, I == 0);
9655 assert(!T1.isNull() && !T2.isNull() && "Unexpected null param types");
9656 if (!Context.hasSameUnqualifiedType(T1, T2))
9657 return false;
9658 }
9659 return true;
9660 }
9661
9662 /// We're allowed to use constraints partial ordering only if the candidates
9663 /// have the same parameter types:
9664 /// [temp.func.order]p6.2.2 [...] or if the function parameters that
9665 /// positionally correspond between the two templates are not of the same type,
9666 /// neither template is more specialized than the other.
9667 /// [over.match.best]p2.6
9668 /// F1 and F2 are non-template functions with the same parameter-type-lists,
9669 /// and F1 is more constrained than F2 [...]
canCompareFunctionConstraints(Sema & S,const OverloadCandidate & Cand1,const OverloadCandidate & Cand2)9670 static bool canCompareFunctionConstraints(Sema &S,
9671 const OverloadCandidate &Cand1,
9672 const OverloadCandidate &Cand2) {
9673 // FIXME: Per P2113R0 we also need to compare the template parameter lists
9674 // when comparing template functions.
9675 if (Cand1.Function && Cand2.Function && Cand1.Function->hasPrototype() &&
9676 Cand2.Function->hasPrototype()) {
9677 auto *PT1 = cast<FunctionProtoType>(Cand1.Function->getFunctionType());
9678 auto *PT2 = cast<FunctionProtoType>(Cand2.Function->getFunctionType());
9679 if (PT1->getNumParams() == PT2->getNumParams() &&
9680 PT1->isVariadic() == PT2->isVariadic() &&
9681 S.FunctionParamTypesAreEqual(PT1, PT2, nullptr,
9682 Cand1.isReversed() ^ Cand2.isReversed()))
9683 return true;
9684 }
9685 return false;
9686 }
9687
9688 /// isBetterOverloadCandidate - Determines whether the first overload
9689 /// candidate is a better candidate than the second (C++ 13.3.3p1).
isBetterOverloadCandidate(Sema & S,const OverloadCandidate & Cand1,const OverloadCandidate & Cand2,SourceLocation Loc,OverloadCandidateSet::CandidateSetKind Kind)9690 bool clang::isBetterOverloadCandidate(
9691 Sema &S, const OverloadCandidate &Cand1, const OverloadCandidate &Cand2,
9692 SourceLocation Loc, OverloadCandidateSet::CandidateSetKind Kind) {
9693 // Define viable functions to be better candidates than non-viable
9694 // functions.
9695 if (!Cand2.Viable)
9696 return Cand1.Viable;
9697 else if (!Cand1.Viable)
9698 return false;
9699
9700 // [CUDA] A function with 'never' preference is marked not viable, therefore
9701 // is never shown up here. The worst preference shown up here is 'wrong side',
9702 // e.g. an H function called by a HD function in device compilation. This is
9703 // valid AST as long as the HD function is not emitted, e.g. it is an inline
9704 // function which is called only by an H function. A deferred diagnostic will
9705 // be triggered if it is emitted. However a wrong-sided function is still
9706 // a viable candidate here.
9707 //
9708 // If Cand1 can be emitted and Cand2 cannot be emitted in the current
9709 // context, Cand1 is better than Cand2. If Cand1 can not be emitted and Cand2
9710 // can be emitted, Cand1 is not better than Cand2. This rule should have
9711 // precedence over other rules.
9712 //
9713 // If both Cand1 and Cand2 can be emitted, or neither can be emitted, then
9714 // other rules should be used to determine which is better. This is because
9715 // host/device based overloading resolution is mostly for determining
9716 // viability of a function. If two functions are both viable, other factors
9717 // should take precedence in preference, e.g. the standard-defined preferences
9718 // like argument conversion ranks or enable_if partial-ordering. The
9719 // preference for pass-object-size parameters is probably most similar to a
9720 // type-based-overloading decision and so should take priority.
9721 //
9722 // If other rules cannot determine which is better, CUDA preference will be
9723 // used again to determine which is better.
9724 //
9725 // TODO: Currently IdentifyCUDAPreference does not return correct values
9726 // for functions called in global variable initializers due to missing
9727 // correct context about device/host. Therefore we can only enforce this
9728 // rule when there is a caller. We should enforce this rule for functions
9729 // in global variable initializers once proper context is added.
9730 //
9731 // TODO: We can only enable the hostness based overloading resolution when
9732 // -fgpu-exclude-wrong-side-overloads is on since this requires deferring
9733 // overloading resolution diagnostics.
9734 if (S.getLangOpts().CUDA && Cand1.Function && Cand2.Function &&
9735 S.getLangOpts().GPUExcludeWrongSideOverloads) {
9736 if (FunctionDecl *Caller = S.getCurFunctionDecl(/*AllowLambda=*/true)) {
9737 bool IsCallerImplicitHD = Sema::isCUDAImplicitHostDeviceFunction(Caller);
9738 bool IsCand1ImplicitHD =
9739 Sema::isCUDAImplicitHostDeviceFunction(Cand1.Function);
9740 bool IsCand2ImplicitHD =
9741 Sema::isCUDAImplicitHostDeviceFunction(Cand2.Function);
9742 auto P1 = S.IdentifyCUDAPreference(Caller, Cand1.Function);
9743 auto P2 = S.IdentifyCUDAPreference(Caller, Cand2.Function);
9744 assert(P1 != Sema::CFP_Never && P2 != Sema::CFP_Never);
9745 // The implicit HD function may be a function in a system header which
9746 // is forced by pragma. In device compilation, if we prefer HD candidates
9747 // over wrong-sided candidates, overloading resolution may change, which
9748 // may result in non-deferrable diagnostics. As a workaround, we let
9749 // implicit HD candidates take equal preference as wrong-sided candidates.
9750 // This will preserve the overloading resolution.
9751 // TODO: We still need special handling of implicit HD functions since
9752 // they may incur other diagnostics to be deferred. We should make all
9753 // host/device related diagnostics deferrable and remove special handling
9754 // of implicit HD functions.
9755 auto EmitThreshold =
9756 (S.getLangOpts().CUDAIsDevice && IsCallerImplicitHD &&
9757 (IsCand1ImplicitHD || IsCand2ImplicitHD))
9758 ? Sema::CFP_Never
9759 : Sema::CFP_WrongSide;
9760 auto Cand1Emittable = P1 > EmitThreshold;
9761 auto Cand2Emittable = P2 > EmitThreshold;
9762 if (Cand1Emittable && !Cand2Emittable)
9763 return true;
9764 if (!Cand1Emittable && Cand2Emittable)
9765 return false;
9766 }
9767 }
9768
9769 // C++ [over.match.best]p1:
9770 //
9771 // -- if F is a static member function, ICS1(F) is defined such
9772 // that ICS1(F) is neither better nor worse than ICS1(G) for
9773 // any function G, and, symmetrically, ICS1(G) is neither
9774 // better nor worse than ICS1(F).
9775 unsigned StartArg = 0;
9776 if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
9777 StartArg = 1;
9778
9779 auto IsIllFormedConversion = [&](const ImplicitConversionSequence &ICS) {
9780 // We don't allow incompatible pointer conversions in C++.
9781 if (!S.getLangOpts().CPlusPlus)
9782 return ICS.isStandard() &&
9783 ICS.Standard.Second == ICK_Incompatible_Pointer_Conversion;
9784
9785 // The only ill-formed conversion we allow in C++ is the string literal to
9786 // char* conversion, which is only considered ill-formed after C++11.
9787 return S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings &&
9788 hasDeprecatedStringLiteralToCharPtrConversion(ICS);
9789 };
9790
9791 // Define functions that don't require ill-formed conversions for a given
9792 // argument to be better candidates than functions that do.
9793 unsigned NumArgs = Cand1.Conversions.size();
9794 assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
9795 bool HasBetterConversion = false;
9796 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
9797 bool Cand1Bad = IsIllFormedConversion(Cand1.Conversions[ArgIdx]);
9798 bool Cand2Bad = IsIllFormedConversion(Cand2.Conversions[ArgIdx]);
9799 if (Cand1Bad != Cand2Bad) {
9800 if (Cand1Bad)
9801 return false;
9802 HasBetterConversion = true;
9803 }
9804 }
9805
9806 if (HasBetterConversion)
9807 return true;
9808
9809 // C++ [over.match.best]p1:
9810 // A viable function F1 is defined to be a better function than another
9811 // viable function F2 if for all arguments i, ICSi(F1) is not a worse
9812 // conversion sequence than ICSi(F2), and then...
9813 bool HasWorseConversion = false;
9814 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
9815 switch (CompareImplicitConversionSequences(S, Loc,
9816 Cand1.Conversions[ArgIdx],
9817 Cand2.Conversions[ArgIdx])) {
9818 case ImplicitConversionSequence::Better:
9819 // Cand1 has a better conversion sequence.
9820 HasBetterConversion = true;
9821 break;
9822
9823 case ImplicitConversionSequence::Worse:
9824 if (Cand1.Function && Cand2.Function &&
9825 Cand1.isReversed() != Cand2.isReversed() &&
9826 haveSameParameterTypes(S.Context, Cand1.Function, Cand2.Function,
9827 NumArgs)) {
9828 // Work around large-scale breakage caused by considering reversed
9829 // forms of operator== in C++20:
9830 //
9831 // When comparing a function against a reversed function with the same
9832 // parameter types, if we have a better conversion for one argument and
9833 // a worse conversion for the other, the implicit conversion sequences
9834 // are treated as being equally good.
9835 //
9836 // This prevents a comparison function from being considered ambiguous
9837 // with a reversed form that is written in the same way.
9838 //
9839 // We diagnose this as an extension from CreateOverloadedBinOp.
9840 HasWorseConversion = true;
9841 break;
9842 }
9843
9844 // Cand1 can't be better than Cand2.
9845 return false;
9846
9847 case ImplicitConversionSequence::Indistinguishable:
9848 // Do nothing.
9849 break;
9850 }
9851 }
9852
9853 // -- for some argument j, ICSj(F1) is a better conversion sequence than
9854 // ICSj(F2), or, if not that,
9855 if (HasBetterConversion && !HasWorseConversion)
9856 return true;
9857
9858 // -- the context is an initialization by user-defined conversion
9859 // (see 8.5, 13.3.1.5) and the standard conversion sequence
9860 // from the return type of F1 to the destination type (i.e.,
9861 // the type of the entity being initialized) is a better
9862 // conversion sequence than the standard conversion sequence
9863 // from the return type of F2 to the destination type.
9864 if (Kind == OverloadCandidateSet::CSK_InitByUserDefinedConversion &&
9865 Cand1.Function && Cand2.Function &&
9866 isa<CXXConversionDecl>(Cand1.Function) &&
9867 isa<CXXConversionDecl>(Cand2.Function)) {
9868 // First check whether we prefer one of the conversion functions over the
9869 // other. This only distinguishes the results in non-standard, extension
9870 // cases such as the conversion from a lambda closure type to a function
9871 // pointer or block.
9872 ImplicitConversionSequence::CompareKind Result =
9873 compareConversionFunctions(S, Cand1.Function, Cand2.Function);
9874 if (Result == ImplicitConversionSequence::Indistinguishable)
9875 Result = CompareStandardConversionSequences(S, Loc,
9876 Cand1.FinalConversion,
9877 Cand2.FinalConversion);
9878
9879 if (Result != ImplicitConversionSequence::Indistinguishable)
9880 return Result == ImplicitConversionSequence::Better;
9881
9882 // FIXME: Compare kind of reference binding if conversion functions
9883 // convert to a reference type used in direct reference binding, per
9884 // C++14 [over.match.best]p1 section 2 bullet 3.
9885 }
9886
9887 // FIXME: Work around a defect in the C++17 guaranteed copy elision wording,
9888 // as combined with the resolution to CWG issue 243.
9889 //
9890 // When the context is initialization by constructor ([over.match.ctor] or
9891 // either phase of [over.match.list]), a constructor is preferred over
9892 // a conversion function.
9893 if (Kind == OverloadCandidateSet::CSK_InitByConstructor && NumArgs == 1 &&
9894 Cand1.Function && Cand2.Function &&
9895 isa<CXXConstructorDecl>(Cand1.Function) !=
9896 isa<CXXConstructorDecl>(Cand2.Function))
9897 return isa<CXXConstructorDecl>(Cand1.Function);
9898
9899 // -- F1 is a non-template function and F2 is a function template
9900 // specialization, or, if not that,
9901 bool Cand1IsSpecialization = Cand1.Function &&
9902 Cand1.Function->getPrimaryTemplate();
9903 bool Cand2IsSpecialization = Cand2.Function &&
9904 Cand2.Function->getPrimaryTemplate();
9905 if (Cand1IsSpecialization != Cand2IsSpecialization)
9906 return Cand2IsSpecialization;
9907
9908 // -- F1 and F2 are function template specializations, and the function
9909 // template for F1 is more specialized than the template for F2
9910 // according to the partial ordering rules described in 14.5.5.2, or,
9911 // if not that,
9912 if (Cand1IsSpecialization && Cand2IsSpecialization) {
9913 if (FunctionTemplateDecl *BetterTemplate = S.getMoreSpecializedTemplate(
9914 Cand1.Function->getPrimaryTemplate(),
9915 Cand2.Function->getPrimaryTemplate(), Loc,
9916 isa<CXXConversionDecl>(Cand1.Function) ? TPOC_Conversion
9917 : TPOC_Call,
9918 Cand1.ExplicitCallArguments, Cand2.ExplicitCallArguments,
9919 Cand1.isReversed() ^ Cand2.isReversed(),
9920 canCompareFunctionConstraints(S, Cand1, Cand2)))
9921 return BetterTemplate == Cand1.Function->getPrimaryTemplate();
9922 }
9923
9924 // -— F1 and F2 are non-template functions with the same
9925 // parameter-type-lists, and F1 is more constrained than F2 [...],
9926 if (!Cand1IsSpecialization && !Cand2IsSpecialization &&
9927 canCompareFunctionConstraints(S, Cand1, Cand2)) {
9928 Expr *RC1 = Cand1.Function->getTrailingRequiresClause();
9929 Expr *RC2 = Cand2.Function->getTrailingRequiresClause();
9930 if (RC1 && RC2) {
9931 bool AtLeastAsConstrained1, AtLeastAsConstrained2;
9932 if (S.IsAtLeastAsConstrained(Cand1.Function, {RC1}, Cand2.Function, {RC2},
9933 AtLeastAsConstrained1) ||
9934 S.IsAtLeastAsConstrained(Cand2.Function, {RC2}, Cand1.Function, {RC1},
9935 AtLeastAsConstrained2))
9936 return false;
9937 if (AtLeastAsConstrained1 != AtLeastAsConstrained2)
9938 return AtLeastAsConstrained1;
9939 } else if (RC1 || RC2) {
9940 return RC1 != nullptr;
9941 }
9942 }
9943
9944 // -- F1 is a constructor for a class D, F2 is a constructor for a base
9945 // class B of D, and for all arguments the corresponding parameters of
9946 // F1 and F2 have the same type.
9947 // FIXME: Implement the "all parameters have the same type" check.
9948 bool Cand1IsInherited =
9949 isa_and_nonnull<ConstructorUsingShadowDecl>(Cand1.FoundDecl.getDecl());
9950 bool Cand2IsInherited =
9951 isa_and_nonnull<ConstructorUsingShadowDecl>(Cand2.FoundDecl.getDecl());
9952 if (Cand1IsInherited != Cand2IsInherited)
9953 return Cand2IsInherited;
9954 else if (Cand1IsInherited) {
9955 assert(Cand2IsInherited);
9956 auto *Cand1Class = cast<CXXRecordDecl>(Cand1.Function->getDeclContext());
9957 auto *Cand2Class = cast<CXXRecordDecl>(Cand2.Function->getDeclContext());
9958 if (Cand1Class->isDerivedFrom(Cand2Class))
9959 return true;
9960 if (Cand2Class->isDerivedFrom(Cand1Class))
9961 return false;
9962 // Inherited from sibling base classes: still ambiguous.
9963 }
9964
9965 // -- F2 is a rewritten candidate (12.4.1.2) and F1 is not
9966 // -- F1 and F2 are rewritten candidates, and F2 is a synthesized candidate
9967 // with reversed order of parameters and F1 is not
9968 //
9969 // We rank reversed + different operator as worse than just reversed, but
9970 // that comparison can never happen, because we only consider reversing for
9971 // the maximally-rewritten operator (== or <=>).
9972 if (Cand1.RewriteKind != Cand2.RewriteKind)
9973 return Cand1.RewriteKind < Cand2.RewriteKind;
9974
9975 // Check C++17 tie-breakers for deduction guides.
9976 {
9977 auto *Guide1 = dyn_cast_or_null<CXXDeductionGuideDecl>(Cand1.Function);
9978 auto *Guide2 = dyn_cast_or_null<CXXDeductionGuideDecl>(Cand2.Function);
9979 if (Guide1 && Guide2) {
9980 // -- F1 is generated from a deduction-guide and F2 is not
9981 if (Guide1->isImplicit() != Guide2->isImplicit())
9982 return Guide2->isImplicit();
9983
9984 // -- F1 is the copy deduction candidate(16.3.1.8) and F2 is not
9985 if (Guide1->isCopyDeductionCandidate())
9986 return true;
9987 }
9988 }
9989
9990 // Check for enable_if value-based overload resolution.
9991 if (Cand1.Function && Cand2.Function) {
9992 Comparison Cmp = compareEnableIfAttrs(S, Cand1.Function, Cand2.Function);
9993 if (Cmp != Comparison::Equal)
9994 return Cmp == Comparison::Better;
9995 }
9996
9997 bool HasPS1 = Cand1.Function != nullptr &&
9998 functionHasPassObjectSizeParams(Cand1.Function);
9999 bool HasPS2 = Cand2.Function != nullptr &&
10000 functionHasPassObjectSizeParams(Cand2.Function);
10001 if (HasPS1 != HasPS2 && HasPS1)
10002 return true;
10003
10004 auto MV = isBetterMultiversionCandidate(Cand1, Cand2);
10005 if (MV == Comparison::Better)
10006 return true;
10007 if (MV == Comparison::Worse)
10008 return false;
10009
10010 // If other rules cannot determine which is better, CUDA preference is used
10011 // to determine which is better.
10012 if (S.getLangOpts().CUDA && Cand1.Function && Cand2.Function) {
10013 FunctionDecl *Caller = S.getCurFunctionDecl(/*AllowLambda=*/true);
10014 return S.IdentifyCUDAPreference(Caller, Cand1.Function) >
10015 S.IdentifyCUDAPreference(Caller, Cand2.Function);
10016 }
10017
10018 // General member function overloading is handled above, so this only handles
10019 // constructors with address spaces.
10020 // This only handles address spaces since C++ has no other
10021 // qualifier that can be used with constructors.
10022 const auto *CD1 = dyn_cast_or_null<CXXConstructorDecl>(Cand1.Function);
10023 const auto *CD2 = dyn_cast_or_null<CXXConstructorDecl>(Cand2.Function);
10024 if (CD1 && CD2) {
10025 LangAS AS1 = CD1->getMethodQualifiers().getAddressSpace();
10026 LangAS AS2 = CD2->getMethodQualifiers().getAddressSpace();
10027 if (AS1 != AS2) {
10028 if (Qualifiers::isAddressSpaceSupersetOf(AS2, AS1))
10029 return true;
10030 if (Qualifiers::isAddressSpaceSupersetOf(AS2, AS1))
10031 return false;
10032 }
10033 }
10034
10035 return false;
10036 }
10037
10038 /// Determine whether two declarations are "equivalent" for the purposes of
10039 /// name lookup and overload resolution. This applies when the same internal/no
10040 /// linkage entity is defined by two modules (probably by textually including
10041 /// the same header). In such a case, we don't consider the declarations to
10042 /// declare the same entity, but we also don't want lookups with both
10043 /// declarations visible to be ambiguous in some cases (this happens when using
10044 /// a modularized libstdc++).
isEquivalentInternalLinkageDeclaration(const NamedDecl * A,const NamedDecl * B)10045 bool Sema::isEquivalentInternalLinkageDeclaration(const NamedDecl *A,
10046 const NamedDecl *B) {
10047 auto *VA = dyn_cast_or_null<ValueDecl>(A);
10048 auto *VB = dyn_cast_or_null<ValueDecl>(B);
10049 if (!VA || !VB)
10050 return false;
10051
10052 // The declarations must be declaring the same name as an internal linkage
10053 // entity in different modules.
10054 if (!VA->getDeclContext()->getRedeclContext()->Equals(
10055 VB->getDeclContext()->getRedeclContext()) ||
10056 getOwningModule(VA) == getOwningModule(VB) ||
10057 VA->isExternallyVisible() || VB->isExternallyVisible())
10058 return false;
10059
10060 // Check that the declarations appear to be equivalent.
10061 //
10062 // FIXME: Checking the type isn't really enough to resolve the ambiguity.
10063 // For constants and functions, we should check the initializer or body is
10064 // the same. For non-constant variables, we shouldn't allow it at all.
10065 if (Context.hasSameType(VA->getType(), VB->getType()))
10066 return true;
10067
10068 // Enum constants within unnamed enumerations will have different types, but
10069 // may still be similar enough to be interchangeable for our purposes.
10070 if (auto *EA = dyn_cast<EnumConstantDecl>(VA)) {
10071 if (auto *EB = dyn_cast<EnumConstantDecl>(VB)) {
10072 // Only handle anonymous enums. If the enumerations were named and
10073 // equivalent, they would have been merged to the same type.
10074 auto *EnumA = cast<EnumDecl>(EA->getDeclContext());
10075 auto *EnumB = cast<EnumDecl>(EB->getDeclContext());
10076 if (EnumA->hasNameForLinkage() || EnumB->hasNameForLinkage() ||
10077 !Context.hasSameType(EnumA->getIntegerType(),
10078 EnumB->getIntegerType()))
10079 return false;
10080 // Allow this only if the value is the same for both enumerators.
10081 return llvm::APSInt::isSameValue(EA->getInitVal(), EB->getInitVal());
10082 }
10083 }
10084
10085 // Nothing else is sufficiently similar.
10086 return false;
10087 }
10088
diagnoseEquivalentInternalLinkageDeclarations(SourceLocation Loc,const NamedDecl * D,ArrayRef<const NamedDecl * > Equiv)10089 void Sema::diagnoseEquivalentInternalLinkageDeclarations(
10090 SourceLocation Loc, const NamedDecl *D, ArrayRef<const NamedDecl *> Equiv) {
10091 assert(D && "Unknown declaration");
10092 Diag(Loc, diag::ext_equivalent_internal_linkage_decl_in_modules) << D;
10093
10094 Module *M = getOwningModule(D);
10095 Diag(D->getLocation(), diag::note_equivalent_internal_linkage_decl)
10096 << !M << (M ? M->getFullModuleName() : "");
10097
10098 for (auto *E : Equiv) {
10099 Module *M = getOwningModule(E);
10100 Diag(E->getLocation(), diag::note_equivalent_internal_linkage_decl)
10101 << !M << (M ? M->getFullModuleName() : "");
10102 }
10103 }
10104
10105 /// Computes the best viable function (C++ 13.3.3)
10106 /// within an overload candidate set.
10107 ///
10108 /// \param Loc The location of the function name (or operator symbol) for
10109 /// which overload resolution occurs.
10110 ///
10111 /// \param Best If overload resolution was successful or found a deleted
10112 /// function, \p Best points to the candidate function found.
10113 ///
10114 /// \returns The result of overload resolution.
10115 OverloadingResult
BestViableFunction(Sema & S,SourceLocation Loc,iterator & Best)10116 OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc,
10117 iterator &Best) {
10118 llvm::SmallVector<OverloadCandidate *, 16> Candidates;
10119 std::transform(begin(), end(), std::back_inserter(Candidates),
10120 [](OverloadCandidate &Cand) { return &Cand; });
10121
10122 // [CUDA] HD->H or HD->D calls are technically not allowed by CUDA but
10123 // are accepted by both clang and NVCC. However, during a particular
10124 // compilation mode only one call variant is viable. We need to
10125 // exclude non-viable overload candidates from consideration based
10126 // only on their host/device attributes. Specifically, if one
10127 // candidate call is WrongSide and the other is SameSide, we ignore
10128 // the WrongSide candidate.
10129 // We only need to remove wrong-sided candidates here if
10130 // -fgpu-exclude-wrong-side-overloads is off. When
10131 // -fgpu-exclude-wrong-side-overloads is on, all candidates are compared
10132 // uniformly in isBetterOverloadCandidate.
10133 if (S.getLangOpts().CUDA && !S.getLangOpts().GPUExcludeWrongSideOverloads) {
10134 const FunctionDecl *Caller = S.getCurFunctionDecl(/*AllowLambda=*/true);
10135 bool ContainsSameSideCandidate =
10136 llvm::any_of(Candidates, [&](OverloadCandidate *Cand) {
10137 // Check viable function only.
10138 return Cand->Viable && Cand->Function &&
10139 S.IdentifyCUDAPreference(Caller, Cand->Function) ==
10140 Sema::CFP_SameSide;
10141 });
10142 if (ContainsSameSideCandidate) {
10143 auto IsWrongSideCandidate = [&](OverloadCandidate *Cand) {
10144 // Check viable function only to avoid unnecessary data copying/moving.
10145 return Cand->Viable && Cand->Function &&
10146 S.IdentifyCUDAPreference(Caller, Cand->Function) ==
10147 Sema::CFP_WrongSide;
10148 };
10149 llvm::erase_if(Candidates, IsWrongSideCandidate);
10150 }
10151 }
10152
10153 // Find the best viable function.
10154 Best = end();
10155 for (auto *Cand : Candidates) {
10156 Cand->Best = false;
10157 if (Cand->Viable)
10158 if (Best == end() ||
10159 isBetterOverloadCandidate(S, *Cand, *Best, Loc, Kind))
10160 Best = Cand;
10161 }
10162
10163 // If we didn't find any viable functions, abort.
10164 if (Best == end())
10165 return OR_No_Viable_Function;
10166
10167 llvm::SmallVector<const NamedDecl *, 4> EquivalentCands;
10168
10169 llvm::SmallVector<OverloadCandidate*, 4> PendingBest;
10170 PendingBest.push_back(&*Best);
10171 Best->Best = true;
10172
10173 // Make sure that this function is better than every other viable
10174 // function. If not, we have an ambiguity.
10175 while (!PendingBest.empty()) {
10176 auto *Curr = PendingBest.pop_back_val();
10177 for (auto *Cand : Candidates) {
10178 if (Cand->Viable && !Cand->Best &&
10179 !isBetterOverloadCandidate(S, *Curr, *Cand, Loc, Kind)) {
10180 PendingBest.push_back(Cand);
10181 Cand->Best = true;
10182
10183 if (S.isEquivalentInternalLinkageDeclaration(Cand->Function,
10184 Curr->Function))
10185 EquivalentCands.push_back(Cand->Function);
10186 else
10187 Best = end();
10188 }
10189 }
10190 }
10191
10192 // If we found more than one best candidate, this is ambiguous.
10193 if (Best == end())
10194 return OR_Ambiguous;
10195
10196 // Best is the best viable function.
10197 if (Best->Function && Best->Function->isDeleted())
10198 return OR_Deleted;
10199
10200 if (!EquivalentCands.empty())
10201 S.diagnoseEquivalentInternalLinkageDeclarations(Loc, Best->Function,
10202 EquivalentCands);
10203
10204 return OR_Success;
10205 }
10206
10207 namespace {
10208
10209 enum OverloadCandidateKind {
10210 oc_function,
10211 oc_method,
10212 oc_reversed_binary_operator,
10213 oc_constructor,
10214 oc_implicit_default_constructor,
10215 oc_implicit_copy_constructor,
10216 oc_implicit_move_constructor,
10217 oc_implicit_copy_assignment,
10218 oc_implicit_move_assignment,
10219 oc_implicit_equality_comparison,
10220 oc_inherited_constructor
10221 };
10222
10223 enum OverloadCandidateSelect {
10224 ocs_non_template,
10225 ocs_template,
10226 ocs_described_template,
10227 };
10228
10229 static std::pair<OverloadCandidateKind, OverloadCandidateSelect>
ClassifyOverloadCandidate(Sema & S,NamedDecl * Found,FunctionDecl * Fn,OverloadCandidateRewriteKind CRK,std::string & Description)10230 ClassifyOverloadCandidate(Sema &S, NamedDecl *Found, FunctionDecl *Fn,
10231 OverloadCandidateRewriteKind CRK,
10232 std::string &Description) {
10233
10234 bool isTemplate = Fn->isTemplateDecl() || Found->isTemplateDecl();
10235 if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
10236 isTemplate = true;
10237 Description = S.getTemplateArgumentBindingsText(
10238 FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
10239 }
10240
10241 OverloadCandidateSelect Select = [&]() {
10242 if (!Description.empty())
10243 return ocs_described_template;
10244 return isTemplate ? ocs_template : ocs_non_template;
10245 }();
10246
10247 OverloadCandidateKind Kind = [&]() {
10248 if (Fn->isImplicit() && Fn->getOverloadedOperator() == OO_EqualEqual)
10249 return oc_implicit_equality_comparison;
10250
10251 if (CRK & CRK_Reversed)
10252 return oc_reversed_binary_operator;
10253
10254 if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
10255 if (!Ctor->isImplicit()) {
10256 if (isa<ConstructorUsingShadowDecl>(Found))
10257 return oc_inherited_constructor;
10258 else
10259 return oc_constructor;
10260 }
10261
10262 if (Ctor->isDefaultConstructor())
10263 return oc_implicit_default_constructor;
10264
10265 if (Ctor->isMoveConstructor())
10266 return oc_implicit_move_constructor;
10267
10268 assert(Ctor->isCopyConstructor() &&
10269 "unexpected sort of implicit constructor");
10270 return oc_implicit_copy_constructor;
10271 }
10272
10273 if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
10274 // This actually gets spelled 'candidate function' for now, but
10275 // it doesn't hurt to split it out.
10276 if (!Meth->isImplicit())
10277 return oc_method;
10278
10279 if (Meth->isMoveAssignmentOperator())
10280 return oc_implicit_move_assignment;
10281
10282 if (Meth->isCopyAssignmentOperator())
10283 return oc_implicit_copy_assignment;
10284
10285 assert(isa<CXXConversionDecl>(Meth) && "expected conversion");
10286 return oc_method;
10287 }
10288
10289 return oc_function;
10290 }();
10291
10292 return std::make_pair(Kind, Select);
10293 }
10294
MaybeEmitInheritedConstructorNote(Sema & S,Decl * FoundDecl)10295 void MaybeEmitInheritedConstructorNote(Sema &S, Decl *FoundDecl) {
10296 // FIXME: It'd be nice to only emit a note once per using-decl per overload
10297 // set.
10298 if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl))
10299 S.Diag(FoundDecl->getLocation(),
10300 diag::note_ovl_candidate_inherited_constructor)
10301 << Shadow->getNominatedBaseClass();
10302 }
10303
10304 } // end anonymous namespace
10305
isFunctionAlwaysEnabled(const ASTContext & Ctx,const FunctionDecl * FD)10306 static bool isFunctionAlwaysEnabled(const ASTContext &Ctx,
10307 const FunctionDecl *FD) {
10308 for (auto *EnableIf : FD->specific_attrs<EnableIfAttr>()) {
10309 bool AlwaysTrue;
10310 if (EnableIf->getCond()->isValueDependent() ||
10311 !EnableIf->getCond()->EvaluateAsBooleanCondition(AlwaysTrue, Ctx))
10312 return false;
10313 if (!AlwaysTrue)
10314 return false;
10315 }
10316 return true;
10317 }
10318
10319 /// Returns true if we can take the address of the function.
10320 ///
10321 /// \param Complain - If true, we'll emit a diagnostic
10322 /// \param InOverloadResolution - For the purposes of emitting a diagnostic, are
10323 /// we in overload resolution?
10324 /// \param Loc - The location of the statement we're complaining about. Ignored
10325 /// if we're not complaining, or if we're in overload resolution.
checkAddressOfFunctionIsAvailable(Sema & S,const FunctionDecl * FD,bool Complain,bool InOverloadResolution,SourceLocation Loc)10326 static bool checkAddressOfFunctionIsAvailable(Sema &S, const FunctionDecl *FD,
10327 bool Complain,
10328 bool InOverloadResolution,
10329 SourceLocation Loc) {
10330 if (!isFunctionAlwaysEnabled(S.Context, FD)) {
10331 if (Complain) {
10332 if (InOverloadResolution)
10333 S.Diag(FD->getBeginLoc(),
10334 diag::note_addrof_ovl_candidate_disabled_by_enable_if_attr);
10335 else
10336 S.Diag(Loc, diag::err_addrof_function_disabled_by_enable_if_attr) << FD;
10337 }
10338 return false;
10339 }
10340
10341 if (FD->getTrailingRequiresClause()) {
10342 ConstraintSatisfaction Satisfaction;
10343 if (S.CheckFunctionConstraints(FD, Satisfaction, Loc))
10344 return false;
10345 if (!Satisfaction.IsSatisfied) {
10346 if (Complain) {
10347 if (InOverloadResolution) {
10348 SmallString<128> TemplateArgString;
10349 if (FunctionTemplateDecl *FunTmpl = FD->getPrimaryTemplate()) {
10350 TemplateArgString += " ";
10351 TemplateArgString += S.getTemplateArgumentBindingsText(
10352 FunTmpl->getTemplateParameters(),
10353 *FD->getTemplateSpecializationArgs());
10354 }
10355
10356 S.Diag(FD->getBeginLoc(),
10357 diag::note_ovl_candidate_unsatisfied_constraints)
10358 << TemplateArgString;
10359 } else
10360 S.Diag(Loc, diag::err_addrof_function_constraints_not_satisfied)
10361 << FD;
10362 S.DiagnoseUnsatisfiedConstraint(Satisfaction);
10363 }
10364 return false;
10365 }
10366 }
10367
10368 auto I = llvm::find_if(FD->parameters(), [](const ParmVarDecl *P) {
10369 return P->hasAttr<PassObjectSizeAttr>();
10370 });
10371 if (I == FD->param_end())
10372 return true;
10373
10374 if (Complain) {
10375 // Add one to ParamNo because it's user-facing
10376 unsigned ParamNo = std::distance(FD->param_begin(), I) + 1;
10377 if (InOverloadResolution)
10378 S.Diag(FD->getLocation(),
10379 diag::note_ovl_candidate_has_pass_object_size_params)
10380 << ParamNo;
10381 else
10382 S.Diag(Loc, diag::err_address_of_function_with_pass_object_size_params)
10383 << FD << ParamNo;
10384 }
10385 return false;
10386 }
10387
checkAddressOfCandidateIsAvailable(Sema & S,const FunctionDecl * FD)10388 static bool checkAddressOfCandidateIsAvailable(Sema &S,
10389 const FunctionDecl *FD) {
10390 return checkAddressOfFunctionIsAvailable(S, FD, /*Complain=*/true,
10391 /*InOverloadResolution=*/true,
10392 /*Loc=*/SourceLocation());
10393 }
10394
checkAddressOfFunctionIsAvailable(const FunctionDecl * Function,bool Complain,SourceLocation Loc)10395 bool Sema::checkAddressOfFunctionIsAvailable(const FunctionDecl *Function,
10396 bool Complain,
10397 SourceLocation Loc) {
10398 return ::checkAddressOfFunctionIsAvailable(*this, Function, Complain,
10399 /*InOverloadResolution=*/false,
10400 Loc);
10401 }
10402
10403 // Don't print candidates other than the one that matches the calling
10404 // convention of the call operator, since that is guaranteed to exist.
shouldSkipNotingLambdaConversionDecl(FunctionDecl * Fn)10405 static bool shouldSkipNotingLambdaConversionDecl(FunctionDecl *Fn) {
10406 const auto *ConvD = dyn_cast<CXXConversionDecl>(Fn);
10407
10408 if (!ConvD)
10409 return false;
10410 const auto *RD = cast<CXXRecordDecl>(Fn->getParent());
10411 if (!RD->isLambda())
10412 return false;
10413
10414 CXXMethodDecl *CallOp = RD->getLambdaCallOperator();
10415 CallingConv CallOpCC =
10416 CallOp->getType()->castAs<FunctionType>()->getCallConv();
10417 QualType ConvRTy = ConvD->getType()->castAs<FunctionType>()->getReturnType();
10418 CallingConv ConvToCC =
10419 ConvRTy->getPointeeType()->castAs<FunctionType>()->getCallConv();
10420
10421 return ConvToCC != CallOpCC;
10422 }
10423
10424 // Notes the location of an overload candidate.
NoteOverloadCandidate(NamedDecl * Found,FunctionDecl * Fn,OverloadCandidateRewriteKind RewriteKind,QualType DestType,bool TakingAddress)10425 void Sema::NoteOverloadCandidate(NamedDecl *Found, FunctionDecl *Fn,
10426 OverloadCandidateRewriteKind RewriteKind,
10427 QualType DestType, bool TakingAddress) {
10428 if (TakingAddress && !checkAddressOfCandidateIsAvailable(*this, Fn))
10429 return;
10430 if (Fn->isMultiVersion() && Fn->hasAttr<TargetAttr>() &&
10431 !Fn->getAttr<TargetAttr>()->isDefaultVersion())
10432 return;
10433 if (shouldSkipNotingLambdaConversionDecl(Fn))
10434 return;
10435
10436 std::string FnDesc;
10437 std::pair<OverloadCandidateKind, OverloadCandidateSelect> KSPair =
10438 ClassifyOverloadCandidate(*this, Found, Fn, RewriteKind, FnDesc);
10439 PartialDiagnostic PD = PDiag(diag::note_ovl_candidate)
10440 << (unsigned)KSPair.first << (unsigned)KSPair.second
10441 << Fn << FnDesc;
10442
10443 HandleFunctionTypeMismatch(PD, Fn->getType(), DestType);
10444 Diag(Fn->getLocation(), PD);
10445 MaybeEmitInheritedConstructorNote(*this, Found);
10446 }
10447
10448 static void
MaybeDiagnoseAmbiguousConstraints(Sema & S,ArrayRef<OverloadCandidate> Cands)10449 MaybeDiagnoseAmbiguousConstraints(Sema &S, ArrayRef<OverloadCandidate> Cands) {
10450 // Perhaps the ambiguity was caused by two atomic constraints that are
10451 // 'identical' but not equivalent:
10452 //
10453 // void foo() requires (sizeof(T) > 4) { } // #1
10454 // void foo() requires (sizeof(T) > 4) && T::value { } // #2
10455 //
10456 // The 'sizeof(T) > 4' constraints are seemingly equivalent and should cause
10457 // #2 to subsume #1, but these constraint are not considered equivalent
10458 // according to the subsumption rules because they are not the same
10459 // source-level construct. This behavior is quite confusing and we should try
10460 // to help the user figure out what happened.
10461
10462 SmallVector<const Expr *, 3> FirstAC, SecondAC;
10463 FunctionDecl *FirstCand = nullptr, *SecondCand = nullptr;
10464 for (auto I = Cands.begin(), E = Cands.end(); I != E; ++I) {
10465 if (!I->Function)
10466 continue;
10467 SmallVector<const Expr *, 3> AC;
10468 if (auto *Template = I->Function->getPrimaryTemplate())
10469 Template->getAssociatedConstraints(AC);
10470 else
10471 I->Function->getAssociatedConstraints(AC);
10472 if (AC.empty())
10473 continue;
10474 if (FirstCand == nullptr) {
10475 FirstCand = I->Function;
10476 FirstAC = AC;
10477 } else if (SecondCand == nullptr) {
10478 SecondCand = I->Function;
10479 SecondAC = AC;
10480 } else {
10481 // We have more than one pair of constrained functions - this check is
10482 // expensive and we'd rather not try to diagnose it.
10483 return;
10484 }
10485 }
10486 if (!SecondCand)
10487 return;
10488 // The diagnostic can only happen if there are associated constraints on
10489 // both sides (there needs to be some identical atomic constraint).
10490 if (S.MaybeEmitAmbiguousAtomicConstraintsDiagnostic(FirstCand, FirstAC,
10491 SecondCand, SecondAC))
10492 // Just show the user one diagnostic, they'll probably figure it out
10493 // from here.
10494 return;
10495 }
10496
10497 // Notes the location of all overload candidates designated through
10498 // OverloadedExpr
NoteAllOverloadCandidates(Expr * OverloadedExpr,QualType DestType,bool TakingAddress)10499 void Sema::NoteAllOverloadCandidates(Expr *OverloadedExpr, QualType DestType,
10500 bool TakingAddress) {
10501 assert(OverloadedExpr->getType() == Context.OverloadTy);
10502
10503 OverloadExpr::FindResult Ovl = OverloadExpr::find(OverloadedExpr);
10504 OverloadExpr *OvlExpr = Ovl.Expression;
10505
10506 for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
10507 IEnd = OvlExpr->decls_end();
10508 I != IEnd; ++I) {
10509 if (FunctionTemplateDecl *FunTmpl =
10510 dyn_cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()) ) {
10511 NoteOverloadCandidate(*I, FunTmpl->getTemplatedDecl(), CRK_None, DestType,
10512 TakingAddress);
10513 } else if (FunctionDecl *Fun
10514 = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()) ) {
10515 NoteOverloadCandidate(*I, Fun, CRK_None, DestType, TakingAddress);
10516 }
10517 }
10518 }
10519
10520 /// Diagnoses an ambiguous conversion. The partial diagnostic is the
10521 /// "lead" diagnostic; it will be given two arguments, the source and
10522 /// target types of the conversion.
DiagnoseAmbiguousConversion(Sema & S,SourceLocation CaretLoc,const PartialDiagnostic & PDiag) const10523 void ImplicitConversionSequence::DiagnoseAmbiguousConversion(
10524 Sema &S,
10525 SourceLocation CaretLoc,
10526 const PartialDiagnostic &PDiag) const {
10527 S.Diag(CaretLoc, PDiag)
10528 << Ambiguous.getFromType() << Ambiguous.getToType();
10529 unsigned CandsShown = 0;
10530 AmbiguousConversionSequence::const_iterator I, E;
10531 for (I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) {
10532 if (CandsShown >= S.Diags.getNumOverloadCandidatesToShow())
10533 break;
10534 ++CandsShown;
10535 S.NoteOverloadCandidate(I->first, I->second);
10536 }
10537 S.Diags.overloadCandidatesShown(CandsShown);
10538 if (I != E)
10539 S.Diag(SourceLocation(), diag::note_ovl_too_many_candidates) << int(E - I);
10540 }
10541
DiagnoseBadConversion(Sema & S,OverloadCandidate * Cand,unsigned I,bool TakingCandidateAddress)10542 static void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand,
10543 unsigned I, bool TakingCandidateAddress) {
10544 const ImplicitConversionSequence &Conv = Cand->Conversions[I];
10545 assert(Conv.isBad());
10546 assert(Cand->Function && "for now, candidate must be a function");
10547 FunctionDecl *Fn = Cand->Function;
10548
10549 // There's a conversion slot for the object argument if this is a
10550 // non-constructor method. Note that 'I' corresponds the
10551 // conversion-slot index.
10552 bool isObjectArgument = false;
10553 if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
10554 if (I == 0)
10555 isObjectArgument = true;
10556 else
10557 I--;
10558 }
10559
10560 std::string FnDesc;
10561 std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
10562 ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn, Cand->getRewriteKind(),
10563 FnDesc);
10564
10565 Expr *FromExpr = Conv.Bad.FromExpr;
10566 QualType FromTy = Conv.Bad.getFromType();
10567 QualType ToTy = Conv.Bad.getToType();
10568
10569 if (FromTy == S.Context.OverloadTy) {
10570 assert(FromExpr && "overload set argument came from implicit argument?");
10571 Expr *E = FromExpr->IgnoreParens();
10572 if (isa<UnaryOperator>(E))
10573 E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
10574 DeclarationName Name = cast<OverloadExpr>(E)->getName();
10575
10576 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
10577 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10578 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << ToTy
10579 << Name << I + 1;
10580 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10581 return;
10582 }
10583
10584 // Do some hand-waving analysis to see if the non-viability is due
10585 // to a qualifier mismatch.
10586 CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
10587 CanQualType CToTy = S.Context.getCanonicalType(ToTy);
10588 if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
10589 CToTy = RT->getPointeeType();
10590 else {
10591 // TODO: detect and diagnose the full richness of const mismatches.
10592 if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
10593 if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>()) {
10594 CFromTy = FromPT->getPointeeType();
10595 CToTy = ToPT->getPointeeType();
10596 }
10597 }
10598
10599 if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
10600 !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
10601 Qualifiers FromQs = CFromTy.getQualifiers();
10602 Qualifiers ToQs = CToTy.getQualifiers();
10603
10604 if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
10605 if (isObjectArgument)
10606 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace_this)
10607 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
10608 << FnDesc << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
10609 << FromQs.getAddressSpace() << ToQs.getAddressSpace();
10610 else
10611 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
10612 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
10613 << FnDesc << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
10614 << FromQs.getAddressSpace() << ToQs.getAddressSpace()
10615 << ToTy->isReferenceType() << I + 1;
10616 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10617 return;
10618 }
10619
10620 if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
10621 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_ownership)
10622 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10623 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10624 << FromQs.getObjCLifetime() << ToQs.getObjCLifetime()
10625 << (unsigned)isObjectArgument << I + 1;
10626 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10627 return;
10628 }
10629
10630 if (FromQs.getObjCGCAttr() != ToQs.getObjCGCAttr()) {
10631 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_gc)
10632 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10633 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10634 << FromQs.getObjCGCAttr() << ToQs.getObjCGCAttr()
10635 << (unsigned)isObjectArgument << I + 1;
10636 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10637 return;
10638 }
10639
10640 if (FromQs.hasUnaligned() != ToQs.hasUnaligned()) {
10641 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_unaligned)
10642 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10643 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10644 << FromQs.hasUnaligned() << I + 1;
10645 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10646 return;
10647 }
10648
10649 unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
10650 assert(CVR && "expected qualifiers mismatch");
10651
10652 if (isObjectArgument) {
10653 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
10654 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10655 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10656 << (CVR - 1);
10657 } else {
10658 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
10659 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10660 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10661 << (CVR - 1) << I + 1;
10662 }
10663 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10664 return;
10665 }
10666
10667 if (Conv.Bad.Kind == BadConversionSequence::lvalue_ref_to_rvalue ||
10668 Conv.Bad.Kind == BadConversionSequence::rvalue_ref_to_lvalue) {
10669 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_value_category)
10670 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10671 << (unsigned)isObjectArgument << I + 1
10672 << (Conv.Bad.Kind == BadConversionSequence::rvalue_ref_to_lvalue)
10673 << (FromExpr ? FromExpr->getSourceRange() : SourceRange());
10674 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10675 return;
10676 }
10677
10678 // Special diagnostic for failure to convert an initializer list, since
10679 // telling the user that it has type void is not useful.
10680 if (FromExpr && isa<InitListExpr>(FromExpr)) {
10681 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_list_argument)
10682 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10683 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10684 << ToTy << (unsigned)isObjectArgument << I + 1
10685 << (Conv.Bad.Kind == BadConversionSequence::too_few_initializers ? 1
10686 : Conv.Bad.Kind == BadConversionSequence::too_many_initializers
10687 ? 2
10688 : 0);
10689 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10690 return;
10691 }
10692
10693 // Diagnose references or pointers to incomplete types differently,
10694 // since it's far from impossible that the incompleteness triggered
10695 // the failure.
10696 QualType TempFromTy = FromTy.getNonReferenceType();
10697 if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
10698 TempFromTy = PTy->getPointeeType();
10699 if (TempFromTy->isIncompleteType()) {
10700 // Emit the generic diagnostic and, optionally, add the hints to it.
10701 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
10702 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10703 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10704 << ToTy << (unsigned)isObjectArgument << I + 1
10705 << (unsigned)(Cand->Fix.Kind);
10706
10707 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10708 return;
10709 }
10710
10711 // Diagnose base -> derived pointer conversions.
10712 unsigned BaseToDerivedConversion = 0;
10713 if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) {
10714 if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) {
10715 if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
10716 FromPtrTy->getPointeeType()) &&
10717 !FromPtrTy->getPointeeType()->isIncompleteType() &&
10718 !ToPtrTy->getPointeeType()->isIncompleteType() &&
10719 S.IsDerivedFrom(SourceLocation(), ToPtrTy->getPointeeType(),
10720 FromPtrTy->getPointeeType()))
10721 BaseToDerivedConversion = 1;
10722 }
10723 } else if (const ObjCObjectPointerType *FromPtrTy
10724 = FromTy->getAs<ObjCObjectPointerType>()) {
10725 if (const ObjCObjectPointerType *ToPtrTy
10726 = ToTy->getAs<ObjCObjectPointerType>())
10727 if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl())
10728 if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl())
10729 if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
10730 FromPtrTy->getPointeeType()) &&
10731 FromIface->isSuperClassOf(ToIface))
10732 BaseToDerivedConversion = 2;
10733 } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) {
10734 if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) &&
10735 !FromTy->isIncompleteType() &&
10736 !ToRefTy->getPointeeType()->isIncompleteType() &&
10737 S.IsDerivedFrom(SourceLocation(), ToRefTy->getPointeeType(), FromTy)) {
10738 BaseToDerivedConversion = 3;
10739 }
10740 }
10741
10742 if (BaseToDerivedConversion) {
10743 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_base_to_derived_conv)
10744 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10745 << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
10746 << (BaseToDerivedConversion - 1) << FromTy << ToTy << I + 1;
10747 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10748 return;
10749 }
10750
10751 if (isa<ObjCObjectPointerType>(CFromTy) &&
10752 isa<PointerType>(CToTy)) {
10753 Qualifiers FromQs = CFromTy.getQualifiers();
10754 Qualifiers ToQs = CToTy.getQualifiers();
10755 if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
10756 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_arc_conv)
10757 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
10758 << FnDesc << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
10759 << FromTy << ToTy << (unsigned)isObjectArgument << I + 1;
10760 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10761 return;
10762 }
10763 }
10764
10765 if (TakingCandidateAddress &&
10766 !checkAddressOfCandidateIsAvailable(S, Cand->Function))
10767 return;
10768
10769 // Emit the generic diagnostic and, optionally, add the hints to it.
10770 PartialDiagnostic FDiag = S.PDiag(diag::note_ovl_candidate_bad_conv);
10771 FDiag << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10772 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10773 << ToTy << (unsigned)isObjectArgument << I + 1
10774 << (unsigned)(Cand->Fix.Kind);
10775
10776 // If we can fix the conversion, suggest the FixIts.
10777 for (std::vector<FixItHint>::iterator HI = Cand->Fix.Hints.begin(),
10778 HE = Cand->Fix.Hints.end(); HI != HE; ++HI)
10779 FDiag << *HI;
10780 S.Diag(Fn->getLocation(), FDiag);
10781
10782 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10783 }
10784
10785 /// Additional arity mismatch diagnosis specific to a function overload
10786 /// candidates. This is not covered by the more general DiagnoseArityMismatch()
10787 /// over a candidate in any candidate set.
CheckArityMismatch(Sema & S,OverloadCandidate * Cand,unsigned NumArgs)10788 static bool CheckArityMismatch(Sema &S, OverloadCandidate *Cand,
10789 unsigned NumArgs) {
10790 FunctionDecl *Fn = Cand->Function;
10791 unsigned MinParams = Fn->getMinRequiredArguments();
10792
10793 // With invalid overloaded operators, it's possible that we think we
10794 // have an arity mismatch when in fact it looks like we have the
10795 // right number of arguments, because only overloaded operators have
10796 // the weird behavior of overloading member and non-member functions.
10797 // Just don't report anything.
10798 if (Fn->isInvalidDecl() &&
10799 Fn->getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
10800 return true;
10801
10802 if (NumArgs < MinParams) {
10803 assert((Cand->FailureKind == ovl_fail_too_few_arguments) ||
10804 (Cand->FailureKind == ovl_fail_bad_deduction &&
10805 Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments));
10806 } else {
10807 assert((Cand->FailureKind == ovl_fail_too_many_arguments) ||
10808 (Cand->FailureKind == ovl_fail_bad_deduction &&
10809 Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments));
10810 }
10811
10812 return false;
10813 }
10814
10815 /// General arity mismatch diagnosis over a candidate in a candidate set.
DiagnoseArityMismatch(Sema & S,NamedDecl * Found,Decl * D,unsigned NumFormalArgs)10816 static void DiagnoseArityMismatch(Sema &S, NamedDecl *Found, Decl *D,
10817 unsigned NumFormalArgs) {
10818 assert(isa<FunctionDecl>(D) &&
10819 "The templated declaration should at least be a function"
10820 " when diagnosing bad template argument deduction due to too many"
10821 " or too few arguments");
10822
10823 FunctionDecl *Fn = cast<FunctionDecl>(D);
10824
10825 // TODO: treat calls to a missing default constructor as a special case
10826 const auto *FnTy = Fn->getType()->castAs<FunctionProtoType>();
10827 unsigned MinParams = Fn->getMinRequiredArguments();
10828
10829 // at least / at most / exactly
10830 unsigned mode, modeCount;
10831 if (NumFormalArgs < MinParams) {
10832 if (MinParams != FnTy->getNumParams() || FnTy->isVariadic() ||
10833 FnTy->isTemplateVariadic())
10834 mode = 0; // "at least"
10835 else
10836 mode = 2; // "exactly"
10837 modeCount = MinParams;
10838 } else {
10839 if (MinParams != FnTy->getNumParams())
10840 mode = 1; // "at most"
10841 else
10842 mode = 2; // "exactly"
10843 modeCount = FnTy->getNumParams();
10844 }
10845
10846 std::string Description;
10847 std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
10848 ClassifyOverloadCandidate(S, Found, Fn, CRK_None, Description);
10849
10850 if (modeCount == 1 && Fn->getParamDecl(0)->getDeclName())
10851 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity_one)
10852 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
10853 << Description << mode << Fn->getParamDecl(0) << NumFormalArgs;
10854 else
10855 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
10856 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
10857 << Description << mode << modeCount << NumFormalArgs;
10858
10859 MaybeEmitInheritedConstructorNote(S, Found);
10860 }
10861
10862 /// Arity mismatch diagnosis specific to a function overload candidate.
DiagnoseArityMismatch(Sema & S,OverloadCandidate * Cand,unsigned NumFormalArgs)10863 static void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
10864 unsigned NumFormalArgs) {
10865 if (!CheckArityMismatch(S, Cand, NumFormalArgs))
10866 DiagnoseArityMismatch(S, Cand->FoundDecl, Cand->Function, NumFormalArgs);
10867 }
10868
getDescribedTemplate(Decl * Templated)10869 static TemplateDecl *getDescribedTemplate(Decl *Templated) {
10870 if (TemplateDecl *TD = Templated->getDescribedTemplate())
10871 return TD;
10872 llvm_unreachable("Unsupported: Getting the described template declaration"
10873 " for bad deduction diagnosis");
10874 }
10875
10876 /// Diagnose a failed template-argument deduction.
DiagnoseBadDeduction(Sema & S,NamedDecl * Found,Decl * Templated,DeductionFailureInfo & DeductionFailure,unsigned NumArgs,bool TakingCandidateAddress)10877 static void DiagnoseBadDeduction(Sema &S, NamedDecl *Found, Decl *Templated,
10878 DeductionFailureInfo &DeductionFailure,
10879 unsigned NumArgs,
10880 bool TakingCandidateAddress) {
10881 TemplateParameter Param = DeductionFailure.getTemplateParameter();
10882 NamedDecl *ParamD;
10883 (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
10884 (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
10885 (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
10886 switch (DeductionFailure.Result) {
10887 case Sema::TDK_Success:
10888 llvm_unreachable("TDK_success while diagnosing bad deduction");
10889
10890 case Sema::TDK_Incomplete: {
10891 assert(ParamD && "no parameter found for incomplete deduction result");
10892 S.Diag(Templated->getLocation(),
10893 diag::note_ovl_candidate_incomplete_deduction)
10894 << ParamD->getDeclName();
10895 MaybeEmitInheritedConstructorNote(S, Found);
10896 return;
10897 }
10898
10899 case Sema::TDK_IncompletePack: {
10900 assert(ParamD && "no parameter found for incomplete deduction result");
10901 S.Diag(Templated->getLocation(),
10902 diag::note_ovl_candidate_incomplete_deduction_pack)
10903 << ParamD->getDeclName()
10904 << (DeductionFailure.getFirstArg()->pack_size() + 1)
10905 << *DeductionFailure.getFirstArg();
10906 MaybeEmitInheritedConstructorNote(S, Found);
10907 return;
10908 }
10909
10910 case Sema::TDK_Underqualified: {
10911 assert(ParamD && "no parameter found for bad qualifiers deduction result");
10912 TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD);
10913
10914 QualType Param = DeductionFailure.getFirstArg()->getAsType();
10915
10916 // Param will have been canonicalized, but it should just be a
10917 // qualified version of ParamD, so move the qualifiers to that.
10918 QualifierCollector Qs;
10919 Qs.strip(Param);
10920 QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl());
10921 assert(S.Context.hasSameType(Param, NonCanonParam));
10922
10923 // Arg has also been canonicalized, but there's nothing we can do
10924 // about that. It also doesn't matter as much, because it won't
10925 // have any template parameters in it (because deduction isn't
10926 // done on dependent types).
10927 QualType Arg = DeductionFailure.getSecondArg()->getAsType();
10928
10929 S.Diag(Templated->getLocation(), diag::note_ovl_candidate_underqualified)
10930 << ParamD->getDeclName() << Arg << NonCanonParam;
10931 MaybeEmitInheritedConstructorNote(S, Found);
10932 return;
10933 }
10934
10935 case Sema::TDK_Inconsistent: {
10936 assert(ParamD && "no parameter found for inconsistent deduction result");
10937 int which = 0;
10938 if (isa<TemplateTypeParmDecl>(ParamD))
10939 which = 0;
10940 else if (isa<NonTypeTemplateParmDecl>(ParamD)) {
10941 // Deduction might have failed because we deduced arguments of two
10942 // different types for a non-type template parameter.
10943 // FIXME: Use a different TDK value for this.
10944 QualType T1 =
10945 DeductionFailure.getFirstArg()->getNonTypeTemplateArgumentType();
10946 QualType T2 =
10947 DeductionFailure.getSecondArg()->getNonTypeTemplateArgumentType();
10948 if (!T1.isNull() && !T2.isNull() && !S.Context.hasSameType(T1, T2)) {
10949 S.Diag(Templated->getLocation(),
10950 diag::note_ovl_candidate_inconsistent_deduction_types)
10951 << ParamD->getDeclName() << *DeductionFailure.getFirstArg() << T1
10952 << *DeductionFailure.getSecondArg() << T2;
10953 MaybeEmitInheritedConstructorNote(S, Found);
10954 return;
10955 }
10956
10957 which = 1;
10958 } else {
10959 which = 2;
10960 }
10961
10962 // Tweak the diagnostic if the problem is that we deduced packs of
10963 // different arities. We'll print the actual packs anyway in case that
10964 // includes additional useful information.
10965 if (DeductionFailure.getFirstArg()->getKind() == TemplateArgument::Pack &&
10966 DeductionFailure.getSecondArg()->getKind() == TemplateArgument::Pack &&
10967 DeductionFailure.getFirstArg()->pack_size() !=
10968 DeductionFailure.getSecondArg()->pack_size()) {
10969 which = 3;
10970 }
10971
10972 S.Diag(Templated->getLocation(),
10973 diag::note_ovl_candidate_inconsistent_deduction)
10974 << which << ParamD->getDeclName() << *DeductionFailure.getFirstArg()
10975 << *DeductionFailure.getSecondArg();
10976 MaybeEmitInheritedConstructorNote(S, Found);
10977 return;
10978 }
10979
10980 case Sema::TDK_InvalidExplicitArguments:
10981 assert(ParamD && "no parameter found for invalid explicit arguments");
10982 if (ParamD->getDeclName())
10983 S.Diag(Templated->getLocation(),
10984 diag::note_ovl_candidate_explicit_arg_mismatch_named)
10985 << ParamD->getDeclName();
10986 else {
10987 int index = 0;
10988 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD))
10989 index = TTP->getIndex();
10990 else if (NonTypeTemplateParmDecl *NTTP
10991 = dyn_cast<NonTypeTemplateParmDecl>(ParamD))
10992 index = NTTP->getIndex();
10993 else
10994 index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex();
10995 S.Diag(Templated->getLocation(),
10996 diag::note_ovl_candidate_explicit_arg_mismatch_unnamed)
10997 << (index + 1);
10998 }
10999 MaybeEmitInheritedConstructorNote(S, Found);
11000 return;
11001
11002 case Sema::TDK_ConstraintsNotSatisfied: {
11003 // Format the template argument list into the argument string.
11004 SmallString<128> TemplateArgString;
11005 TemplateArgumentList *Args = DeductionFailure.getTemplateArgumentList();
11006 TemplateArgString = " ";
11007 TemplateArgString += S.getTemplateArgumentBindingsText(
11008 getDescribedTemplate(Templated)->getTemplateParameters(), *Args);
11009 if (TemplateArgString.size() == 1)
11010 TemplateArgString.clear();
11011 S.Diag(Templated->getLocation(),
11012 diag::note_ovl_candidate_unsatisfied_constraints)
11013 << TemplateArgString;
11014
11015 S.DiagnoseUnsatisfiedConstraint(
11016 static_cast<CNSInfo*>(DeductionFailure.Data)->Satisfaction);
11017 return;
11018 }
11019 case Sema::TDK_TooManyArguments:
11020 case Sema::TDK_TooFewArguments:
11021 DiagnoseArityMismatch(S, Found, Templated, NumArgs);
11022 return;
11023
11024 case Sema::TDK_InstantiationDepth:
11025 S.Diag(Templated->getLocation(),
11026 diag::note_ovl_candidate_instantiation_depth);
11027 MaybeEmitInheritedConstructorNote(S, Found);
11028 return;
11029
11030 case Sema::TDK_SubstitutionFailure: {
11031 // Format the template argument list into the argument string.
11032 SmallString<128> TemplateArgString;
11033 if (TemplateArgumentList *Args =
11034 DeductionFailure.getTemplateArgumentList()) {
11035 TemplateArgString = " ";
11036 TemplateArgString += S.getTemplateArgumentBindingsText(
11037 getDescribedTemplate(Templated)->getTemplateParameters(), *Args);
11038 if (TemplateArgString.size() == 1)
11039 TemplateArgString.clear();
11040 }
11041
11042 // If this candidate was disabled by enable_if, say so.
11043 PartialDiagnosticAt *PDiag = DeductionFailure.getSFINAEDiagnostic();
11044 if (PDiag && PDiag->second.getDiagID() ==
11045 diag::err_typename_nested_not_found_enable_if) {
11046 // FIXME: Use the source range of the condition, and the fully-qualified
11047 // name of the enable_if template. These are both present in PDiag.
11048 S.Diag(PDiag->first, diag::note_ovl_candidate_disabled_by_enable_if)
11049 << "'enable_if'" << TemplateArgString;
11050 return;
11051 }
11052
11053 // We found a specific requirement that disabled the enable_if.
11054 if (PDiag && PDiag->second.getDiagID() ==
11055 diag::err_typename_nested_not_found_requirement) {
11056 S.Diag(Templated->getLocation(),
11057 diag::note_ovl_candidate_disabled_by_requirement)
11058 << PDiag->second.getStringArg(0) << TemplateArgString;
11059 return;
11060 }
11061
11062 // Format the SFINAE diagnostic into the argument string.
11063 // FIXME: Add a general mechanism to include a PartialDiagnostic *'s
11064 // formatted message in another diagnostic.
11065 SmallString<128> SFINAEArgString;
11066 SourceRange R;
11067 if (PDiag) {
11068 SFINAEArgString = ": ";
11069 R = SourceRange(PDiag->first, PDiag->first);
11070 PDiag->second.EmitToString(S.getDiagnostics(), SFINAEArgString);
11071 }
11072
11073 S.Diag(Templated->getLocation(),
11074 diag::note_ovl_candidate_substitution_failure)
11075 << TemplateArgString << SFINAEArgString << R;
11076 MaybeEmitInheritedConstructorNote(S, Found);
11077 return;
11078 }
11079
11080 case Sema::TDK_DeducedMismatch:
11081 case Sema::TDK_DeducedMismatchNested: {
11082 // Format the template argument list into the argument string.
11083 SmallString<128> TemplateArgString;
11084 if (TemplateArgumentList *Args =
11085 DeductionFailure.getTemplateArgumentList()) {
11086 TemplateArgString = " ";
11087 TemplateArgString += S.getTemplateArgumentBindingsText(
11088 getDescribedTemplate(Templated)->getTemplateParameters(), *Args);
11089 if (TemplateArgString.size() == 1)
11090 TemplateArgString.clear();
11091 }
11092
11093 S.Diag(Templated->getLocation(), diag::note_ovl_candidate_deduced_mismatch)
11094 << (*DeductionFailure.getCallArgIndex() + 1)
11095 << *DeductionFailure.getFirstArg() << *DeductionFailure.getSecondArg()
11096 << TemplateArgString
11097 << (DeductionFailure.Result == Sema::TDK_DeducedMismatchNested);
11098 break;
11099 }
11100
11101 case Sema::TDK_NonDeducedMismatch: {
11102 // FIXME: Provide a source location to indicate what we couldn't match.
11103 TemplateArgument FirstTA = *DeductionFailure.getFirstArg();
11104 TemplateArgument SecondTA = *DeductionFailure.getSecondArg();
11105 if (FirstTA.getKind() == TemplateArgument::Template &&
11106 SecondTA.getKind() == TemplateArgument::Template) {
11107 TemplateName FirstTN = FirstTA.getAsTemplate();
11108 TemplateName SecondTN = SecondTA.getAsTemplate();
11109 if (FirstTN.getKind() == TemplateName::Template &&
11110 SecondTN.getKind() == TemplateName::Template) {
11111 if (FirstTN.getAsTemplateDecl()->getName() ==
11112 SecondTN.getAsTemplateDecl()->getName()) {
11113 // FIXME: This fixes a bad diagnostic where both templates are named
11114 // the same. This particular case is a bit difficult since:
11115 // 1) It is passed as a string to the diagnostic printer.
11116 // 2) The diagnostic printer only attempts to find a better
11117 // name for types, not decls.
11118 // Ideally, this should folded into the diagnostic printer.
11119 S.Diag(Templated->getLocation(),
11120 diag::note_ovl_candidate_non_deduced_mismatch_qualified)
11121 << FirstTN.getAsTemplateDecl() << SecondTN.getAsTemplateDecl();
11122 return;
11123 }
11124 }
11125 }
11126
11127 if (TakingCandidateAddress && isa<FunctionDecl>(Templated) &&
11128 !checkAddressOfCandidateIsAvailable(S, cast<FunctionDecl>(Templated)))
11129 return;
11130
11131 // FIXME: For generic lambda parameters, check if the function is a lambda
11132 // call operator, and if so, emit a prettier and more informative
11133 // diagnostic that mentions 'auto' and lambda in addition to
11134 // (or instead of?) the canonical template type parameters.
11135 S.Diag(Templated->getLocation(),
11136 diag::note_ovl_candidate_non_deduced_mismatch)
11137 << FirstTA << SecondTA;
11138 return;
11139 }
11140 // TODO: diagnose these individually, then kill off
11141 // note_ovl_candidate_bad_deduction, which is uselessly vague.
11142 case Sema::TDK_MiscellaneousDeductionFailure:
11143 S.Diag(Templated->getLocation(), diag::note_ovl_candidate_bad_deduction);
11144 MaybeEmitInheritedConstructorNote(S, Found);
11145 return;
11146 case Sema::TDK_CUDATargetMismatch:
11147 S.Diag(Templated->getLocation(),
11148 diag::note_cuda_ovl_candidate_target_mismatch);
11149 return;
11150 }
11151 }
11152
11153 /// Diagnose a failed template-argument deduction, for function calls.
DiagnoseBadDeduction(Sema & S,OverloadCandidate * Cand,unsigned NumArgs,bool TakingCandidateAddress)11154 static void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
11155 unsigned NumArgs,
11156 bool TakingCandidateAddress) {
11157 unsigned TDK = Cand->DeductionFailure.Result;
11158 if (TDK == Sema::TDK_TooFewArguments || TDK == Sema::TDK_TooManyArguments) {
11159 if (CheckArityMismatch(S, Cand, NumArgs))
11160 return;
11161 }
11162 DiagnoseBadDeduction(S, Cand->FoundDecl, Cand->Function, // pattern
11163 Cand->DeductionFailure, NumArgs, TakingCandidateAddress);
11164 }
11165
11166 /// CUDA: diagnose an invalid call across targets.
DiagnoseBadTarget(Sema & S,OverloadCandidate * Cand)11167 static void DiagnoseBadTarget(Sema &S, OverloadCandidate *Cand) {
11168 FunctionDecl *Caller = S.getCurFunctionDecl(/*AllowLambda=*/true);
11169 FunctionDecl *Callee = Cand->Function;
11170
11171 Sema::CUDAFunctionTarget CallerTarget = S.IdentifyCUDATarget(Caller),
11172 CalleeTarget = S.IdentifyCUDATarget(Callee);
11173
11174 std::string FnDesc;
11175 std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
11176 ClassifyOverloadCandidate(S, Cand->FoundDecl, Callee,
11177 Cand->getRewriteKind(), FnDesc);
11178
11179 S.Diag(Callee->getLocation(), diag::note_ovl_candidate_bad_target)
11180 << (unsigned)FnKindPair.first << (unsigned)ocs_non_template
11181 << FnDesc /* Ignored */
11182 << CalleeTarget << CallerTarget;
11183
11184 // This could be an implicit constructor for which we could not infer the
11185 // target due to a collsion. Diagnose that case.
11186 CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Callee);
11187 if (Meth != nullptr && Meth->isImplicit()) {
11188 CXXRecordDecl *ParentClass = Meth->getParent();
11189 Sema::CXXSpecialMember CSM;
11190
11191 switch (FnKindPair.first) {
11192 default:
11193 return;
11194 case oc_implicit_default_constructor:
11195 CSM = Sema::CXXDefaultConstructor;
11196 break;
11197 case oc_implicit_copy_constructor:
11198 CSM = Sema::CXXCopyConstructor;
11199 break;
11200 case oc_implicit_move_constructor:
11201 CSM = Sema::CXXMoveConstructor;
11202 break;
11203 case oc_implicit_copy_assignment:
11204 CSM = Sema::CXXCopyAssignment;
11205 break;
11206 case oc_implicit_move_assignment:
11207 CSM = Sema::CXXMoveAssignment;
11208 break;
11209 };
11210
11211 bool ConstRHS = false;
11212 if (Meth->getNumParams()) {
11213 if (const ReferenceType *RT =
11214 Meth->getParamDecl(0)->getType()->getAs<ReferenceType>()) {
11215 ConstRHS = RT->getPointeeType().isConstQualified();
11216 }
11217 }
11218
11219 S.inferCUDATargetForImplicitSpecialMember(ParentClass, CSM, Meth,
11220 /* ConstRHS */ ConstRHS,
11221 /* Diagnose */ true);
11222 }
11223 }
11224
DiagnoseFailedEnableIfAttr(Sema & S,OverloadCandidate * Cand)11225 static void DiagnoseFailedEnableIfAttr(Sema &S, OverloadCandidate *Cand) {
11226 FunctionDecl *Callee = Cand->Function;
11227 EnableIfAttr *Attr = static_cast<EnableIfAttr*>(Cand->DeductionFailure.Data);
11228
11229 S.Diag(Callee->getLocation(),
11230 diag::note_ovl_candidate_disabled_by_function_cond_attr)
11231 << Attr->getCond()->getSourceRange() << Attr->getMessage();
11232 }
11233
DiagnoseFailedExplicitSpec(Sema & S,OverloadCandidate * Cand)11234 static void DiagnoseFailedExplicitSpec(Sema &S, OverloadCandidate *Cand) {
11235 ExplicitSpecifier ES = ExplicitSpecifier::getFromDecl(Cand->Function);
11236 assert(ES.isExplicit() && "not an explicit candidate");
11237
11238 unsigned Kind;
11239 switch (Cand->Function->getDeclKind()) {
11240 case Decl::Kind::CXXConstructor:
11241 Kind = 0;
11242 break;
11243 case Decl::Kind::CXXConversion:
11244 Kind = 1;
11245 break;
11246 case Decl::Kind::CXXDeductionGuide:
11247 Kind = Cand->Function->isImplicit() ? 0 : 2;
11248 break;
11249 default:
11250 llvm_unreachable("invalid Decl");
11251 }
11252
11253 // Note the location of the first (in-class) declaration; a redeclaration
11254 // (particularly an out-of-class definition) will typically lack the
11255 // 'explicit' specifier.
11256 // FIXME: This is probably a good thing to do for all 'candidate' notes.
11257 FunctionDecl *First = Cand->Function->getFirstDecl();
11258 if (FunctionDecl *Pattern = First->getTemplateInstantiationPattern())
11259 First = Pattern->getFirstDecl();
11260
11261 S.Diag(First->getLocation(),
11262 diag::note_ovl_candidate_explicit)
11263 << Kind << (ES.getExpr() ? 1 : 0)
11264 << (ES.getExpr() ? ES.getExpr()->getSourceRange() : SourceRange());
11265 }
11266
11267 /// Generates a 'note' diagnostic for an overload candidate. We've
11268 /// already generated a primary error at the call site.
11269 ///
11270 /// It really does need to be a single diagnostic with its caret
11271 /// pointed at the candidate declaration. Yes, this creates some
11272 /// major challenges of technical writing. Yes, this makes pointing
11273 /// out problems with specific arguments quite awkward. It's still
11274 /// better than generating twenty screens of text for every failed
11275 /// overload.
11276 ///
11277 /// It would be great to be able to express per-candidate problems
11278 /// more richly for those diagnostic clients that cared, but we'd
11279 /// still have to be just as careful with the default diagnostics.
11280 /// \param CtorDestAS Addr space of object being constructed (for ctor
11281 /// candidates only).
NoteFunctionCandidate(Sema & S,OverloadCandidate * Cand,unsigned NumArgs,bool TakingCandidateAddress,LangAS CtorDestAS=LangAS::Default)11282 static void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
11283 unsigned NumArgs,
11284 bool TakingCandidateAddress,
11285 LangAS CtorDestAS = LangAS::Default) {
11286 FunctionDecl *Fn = Cand->Function;
11287 if (shouldSkipNotingLambdaConversionDecl(Fn))
11288 return;
11289
11290 // There is no physical candidate declaration to point to for OpenCL builtins.
11291 // Except for failed conversions, the notes are identical for each candidate,
11292 // so do not generate such notes.
11293 if (S.getLangOpts().OpenCL && Fn->isImplicit() &&
11294 Cand->FailureKind != ovl_fail_bad_conversion)
11295 return;
11296
11297 // Note deleted candidates, but only if they're viable.
11298 if (Cand->Viable) {
11299 if (Fn->isDeleted()) {
11300 std::string FnDesc;
11301 std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
11302 ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn,
11303 Cand->getRewriteKind(), FnDesc);
11304
11305 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
11306 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
11307 << (Fn->isDeleted() ? (Fn->isDeletedAsWritten() ? 1 : 2) : 0);
11308 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
11309 return;
11310 }
11311
11312 // We don't really have anything else to say about viable candidates.
11313 S.NoteOverloadCandidate(Cand->FoundDecl, Fn, Cand->getRewriteKind());
11314 return;
11315 }
11316
11317 switch (Cand->FailureKind) {
11318 case ovl_fail_too_many_arguments:
11319 case ovl_fail_too_few_arguments:
11320 return DiagnoseArityMismatch(S, Cand, NumArgs);
11321
11322 case ovl_fail_bad_deduction:
11323 return DiagnoseBadDeduction(S, Cand, NumArgs,
11324 TakingCandidateAddress);
11325
11326 case ovl_fail_illegal_constructor: {
11327 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_illegal_constructor)
11328 << (Fn->getPrimaryTemplate() ? 1 : 0);
11329 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
11330 return;
11331 }
11332
11333 case ovl_fail_object_addrspace_mismatch: {
11334 Qualifiers QualsForPrinting;
11335 QualsForPrinting.setAddressSpace(CtorDestAS);
11336 S.Diag(Fn->getLocation(),
11337 diag::note_ovl_candidate_illegal_constructor_adrspace_mismatch)
11338 << QualsForPrinting;
11339 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
11340 return;
11341 }
11342
11343 case ovl_fail_trivial_conversion:
11344 case ovl_fail_bad_final_conversion:
11345 case ovl_fail_final_conversion_not_exact:
11346 return S.NoteOverloadCandidate(Cand->FoundDecl, Fn, Cand->getRewriteKind());
11347
11348 case ovl_fail_bad_conversion: {
11349 unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
11350 for (unsigned N = Cand->Conversions.size(); I != N; ++I)
11351 if (Cand->Conversions[I].isBad())
11352 return DiagnoseBadConversion(S, Cand, I, TakingCandidateAddress);
11353
11354 // FIXME: this currently happens when we're called from SemaInit
11355 // when user-conversion overload fails. Figure out how to handle
11356 // those conditions and diagnose them well.
11357 return S.NoteOverloadCandidate(Cand->FoundDecl, Fn, Cand->getRewriteKind());
11358 }
11359
11360 case ovl_fail_bad_target:
11361 return DiagnoseBadTarget(S, Cand);
11362
11363 case ovl_fail_enable_if:
11364 return DiagnoseFailedEnableIfAttr(S, Cand);
11365
11366 case ovl_fail_explicit:
11367 return DiagnoseFailedExplicitSpec(S, Cand);
11368
11369 case ovl_fail_inhctor_slice:
11370 // It's generally not interesting to note copy/move constructors here.
11371 if (cast<CXXConstructorDecl>(Fn)->isCopyOrMoveConstructor())
11372 return;
11373 S.Diag(Fn->getLocation(),
11374 diag::note_ovl_candidate_inherited_constructor_slice)
11375 << (Fn->getPrimaryTemplate() ? 1 : 0)
11376 << Fn->getParamDecl(0)->getType()->isRValueReferenceType();
11377 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
11378 return;
11379
11380 case ovl_fail_addr_not_available: {
11381 bool Available = checkAddressOfCandidateIsAvailable(S, Cand->Function);
11382 (void)Available;
11383 assert(!Available);
11384 break;
11385 }
11386 case ovl_non_default_multiversion_function:
11387 // Do nothing, these should simply be ignored.
11388 break;
11389
11390 case ovl_fail_constraints_not_satisfied: {
11391 std::string FnDesc;
11392 std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
11393 ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn,
11394 Cand->getRewriteKind(), FnDesc);
11395
11396 S.Diag(Fn->getLocation(),
11397 diag::note_ovl_candidate_constraints_not_satisfied)
11398 << (unsigned)FnKindPair.first << (unsigned)ocs_non_template
11399 << FnDesc /* Ignored */;
11400 ConstraintSatisfaction Satisfaction;
11401 if (S.CheckFunctionConstraints(Fn, Satisfaction))
11402 break;
11403 S.DiagnoseUnsatisfiedConstraint(Satisfaction);
11404 }
11405 }
11406 }
11407
NoteSurrogateCandidate(Sema & S,OverloadCandidate * Cand)11408 static void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
11409 if (shouldSkipNotingLambdaConversionDecl(Cand->Surrogate))
11410 return;
11411
11412 // Desugar the type of the surrogate down to a function type,
11413 // retaining as many typedefs as possible while still showing
11414 // the function type (and, therefore, its parameter types).
11415 QualType FnType = Cand->Surrogate->getConversionType();
11416 bool isLValueReference = false;
11417 bool isRValueReference = false;
11418 bool isPointer = false;
11419 if (const LValueReferenceType *FnTypeRef =
11420 FnType->getAs<LValueReferenceType>()) {
11421 FnType = FnTypeRef->getPointeeType();
11422 isLValueReference = true;
11423 } else if (const RValueReferenceType *FnTypeRef =
11424 FnType->getAs<RValueReferenceType>()) {
11425 FnType = FnTypeRef->getPointeeType();
11426 isRValueReference = true;
11427 }
11428 if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
11429 FnType = FnTypePtr->getPointeeType();
11430 isPointer = true;
11431 }
11432 // Desugar down to a function type.
11433 FnType = QualType(FnType->getAs<FunctionType>(), 0);
11434 // Reconstruct the pointer/reference as appropriate.
11435 if (isPointer) FnType = S.Context.getPointerType(FnType);
11436 if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
11437 if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
11438
11439 S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
11440 << FnType;
11441 }
11442
NoteBuiltinOperatorCandidate(Sema & S,StringRef Opc,SourceLocation OpLoc,OverloadCandidate * Cand)11443 static void NoteBuiltinOperatorCandidate(Sema &S, StringRef Opc,
11444 SourceLocation OpLoc,
11445 OverloadCandidate *Cand) {
11446 assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary");
11447 std::string TypeStr("operator");
11448 TypeStr += Opc;
11449 TypeStr += "(";
11450 TypeStr += Cand->BuiltinParamTypes[0].getAsString();
11451 if (Cand->Conversions.size() == 1) {
11452 TypeStr += ")";
11453 S.Diag(OpLoc, diag::note_ovl_builtin_candidate) << TypeStr;
11454 } else {
11455 TypeStr += ", ";
11456 TypeStr += Cand->BuiltinParamTypes[1].getAsString();
11457 TypeStr += ")";
11458 S.Diag(OpLoc, diag::note_ovl_builtin_candidate) << TypeStr;
11459 }
11460 }
11461
NoteAmbiguousUserConversions(Sema & S,SourceLocation OpLoc,OverloadCandidate * Cand)11462 static void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
11463 OverloadCandidate *Cand) {
11464 for (const ImplicitConversionSequence &ICS : Cand->Conversions) {
11465 if (ICS.isBad()) break; // all meaningless after first invalid
11466 if (!ICS.isAmbiguous()) continue;
11467
11468 ICS.DiagnoseAmbiguousConversion(
11469 S, OpLoc, S.PDiag(diag::note_ambiguous_type_conversion));
11470 }
11471 }
11472
GetLocationForCandidate(const OverloadCandidate * Cand)11473 static SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
11474 if (Cand->Function)
11475 return Cand->Function->getLocation();
11476 if (Cand->IsSurrogate)
11477 return Cand->Surrogate->getLocation();
11478 return SourceLocation();
11479 }
11480
RankDeductionFailure(const DeductionFailureInfo & DFI)11481 static unsigned RankDeductionFailure(const DeductionFailureInfo &DFI) {
11482 switch ((Sema::TemplateDeductionResult)DFI.Result) {
11483 case Sema::TDK_Success:
11484 case Sema::TDK_NonDependentConversionFailure:
11485 llvm_unreachable("non-deduction failure while diagnosing bad deduction");
11486
11487 case Sema::TDK_Invalid:
11488 case Sema::TDK_Incomplete:
11489 case Sema::TDK_IncompletePack:
11490 return 1;
11491
11492 case Sema::TDK_Underqualified:
11493 case Sema::TDK_Inconsistent:
11494 return 2;
11495
11496 case Sema::TDK_SubstitutionFailure:
11497 case Sema::TDK_DeducedMismatch:
11498 case Sema::TDK_ConstraintsNotSatisfied:
11499 case Sema::TDK_DeducedMismatchNested:
11500 case Sema::TDK_NonDeducedMismatch:
11501 case Sema::TDK_MiscellaneousDeductionFailure:
11502 case Sema::TDK_CUDATargetMismatch:
11503 return 3;
11504
11505 case Sema::TDK_InstantiationDepth:
11506 return 4;
11507
11508 case Sema::TDK_InvalidExplicitArguments:
11509 return 5;
11510
11511 case Sema::TDK_TooManyArguments:
11512 case Sema::TDK_TooFewArguments:
11513 return 6;
11514 }
11515 llvm_unreachable("Unhandled deduction result");
11516 }
11517
11518 namespace {
11519 struct CompareOverloadCandidatesForDisplay {
11520 Sema &S;
11521 SourceLocation Loc;
11522 size_t NumArgs;
11523 OverloadCandidateSet::CandidateSetKind CSK;
11524
CompareOverloadCandidatesForDisplay__anon85f2cfc11a11::CompareOverloadCandidatesForDisplay11525 CompareOverloadCandidatesForDisplay(
11526 Sema &S, SourceLocation Loc, size_t NArgs,
11527 OverloadCandidateSet::CandidateSetKind CSK)
11528 : S(S), NumArgs(NArgs), CSK(CSK) {}
11529
EffectiveFailureKind__anon85f2cfc11a11::CompareOverloadCandidatesForDisplay11530 OverloadFailureKind EffectiveFailureKind(const OverloadCandidate *C) const {
11531 // If there are too many or too few arguments, that's the high-order bit we
11532 // want to sort by, even if the immediate failure kind was something else.
11533 if (C->FailureKind == ovl_fail_too_many_arguments ||
11534 C->FailureKind == ovl_fail_too_few_arguments)
11535 return static_cast<OverloadFailureKind>(C->FailureKind);
11536
11537 if (C->Function) {
11538 if (NumArgs > C->Function->getNumParams() && !C->Function->isVariadic())
11539 return ovl_fail_too_many_arguments;
11540 if (NumArgs < C->Function->getMinRequiredArguments())
11541 return ovl_fail_too_few_arguments;
11542 }
11543
11544 return static_cast<OverloadFailureKind>(C->FailureKind);
11545 }
11546
operator ()__anon85f2cfc11a11::CompareOverloadCandidatesForDisplay11547 bool operator()(const OverloadCandidate *L,
11548 const OverloadCandidate *R) {
11549 // Fast-path this check.
11550 if (L == R) return false;
11551
11552 // Order first by viability.
11553 if (L->Viable) {
11554 if (!R->Viable) return true;
11555
11556 // TODO: introduce a tri-valued comparison for overload
11557 // candidates. Would be more worthwhile if we had a sort
11558 // that could exploit it.
11559 if (isBetterOverloadCandidate(S, *L, *R, SourceLocation(), CSK))
11560 return true;
11561 if (isBetterOverloadCandidate(S, *R, *L, SourceLocation(), CSK))
11562 return false;
11563 } else if (R->Viable)
11564 return false;
11565
11566 assert(L->Viable == R->Viable);
11567
11568 // Criteria by which we can sort non-viable candidates:
11569 if (!L->Viable) {
11570 OverloadFailureKind LFailureKind = EffectiveFailureKind(L);
11571 OverloadFailureKind RFailureKind = EffectiveFailureKind(R);
11572
11573 // 1. Arity mismatches come after other candidates.
11574 if (LFailureKind == ovl_fail_too_many_arguments ||
11575 LFailureKind == ovl_fail_too_few_arguments) {
11576 if (RFailureKind == ovl_fail_too_many_arguments ||
11577 RFailureKind == ovl_fail_too_few_arguments) {
11578 int LDist = std::abs((int)L->getNumParams() - (int)NumArgs);
11579 int RDist = std::abs((int)R->getNumParams() - (int)NumArgs);
11580 if (LDist == RDist) {
11581 if (LFailureKind == RFailureKind)
11582 // Sort non-surrogates before surrogates.
11583 return !L->IsSurrogate && R->IsSurrogate;
11584 // Sort candidates requiring fewer parameters than there were
11585 // arguments given after candidates requiring more parameters
11586 // than there were arguments given.
11587 return LFailureKind == ovl_fail_too_many_arguments;
11588 }
11589 return LDist < RDist;
11590 }
11591 return false;
11592 }
11593 if (RFailureKind == ovl_fail_too_many_arguments ||
11594 RFailureKind == ovl_fail_too_few_arguments)
11595 return true;
11596
11597 // 2. Bad conversions come first and are ordered by the number
11598 // of bad conversions and quality of good conversions.
11599 if (LFailureKind == ovl_fail_bad_conversion) {
11600 if (RFailureKind != ovl_fail_bad_conversion)
11601 return true;
11602
11603 // The conversion that can be fixed with a smaller number of changes,
11604 // comes first.
11605 unsigned numLFixes = L->Fix.NumConversionsFixed;
11606 unsigned numRFixes = R->Fix.NumConversionsFixed;
11607 numLFixes = (numLFixes == 0) ? UINT_MAX : numLFixes;
11608 numRFixes = (numRFixes == 0) ? UINT_MAX : numRFixes;
11609 if (numLFixes != numRFixes) {
11610 return numLFixes < numRFixes;
11611 }
11612
11613 // If there's any ordering between the defined conversions...
11614 // FIXME: this might not be transitive.
11615 assert(L->Conversions.size() == R->Conversions.size());
11616
11617 int leftBetter = 0;
11618 unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
11619 for (unsigned E = L->Conversions.size(); I != E; ++I) {
11620 switch (CompareImplicitConversionSequences(S, Loc,
11621 L->Conversions[I],
11622 R->Conversions[I])) {
11623 case ImplicitConversionSequence::Better:
11624 leftBetter++;
11625 break;
11626
11627 case ImplicitConversionSequence::Worse:
11628 leftBetter--;
11629 break;
11630
11631 case ImplicitConversionSequence::Indistinguishable:
11632 break;
11633 }
11634 }
11635 if (leftBetter > 0) return true;
11636 if (leftBetter < 0) return false;
11637
11638 } else if (RFailureKind == ovl_fail_bad_conversion)
11639 return false;
11640
11641 if (LFailureKind == ovl_fail_bad_deduction) {
11642 if (RFailureKind != ovl_fail_bad_deduction)
11643 return true;
11644
11645 if (L->DeductionFailure.Result != R->DeductionFailure.Result)
11646 return RankDeductionFailure(L->DeductionFailure)
11647 < RankDeductionFailure(R->DeductionFailure);
11648 } else if (RFailureKind == ovl_fail_bad_deduction)
11649 return false;
11650
11651 // TODO: others?
11652 }
11653
11654 // Sort everything else by location.
11655 SourceLocation LLoc = GetLocationForCandidate(L);
11656 SourceLocation RLoc = GetLocationForCandidate(R);
11657
11658 // Put candidates without locations (e.g. builtins) at the end.
11659 if (LLoc.isInvalid()) return false;
11660 if (RLoc.isInvalid()) return true;
11661
11662 return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
11663 }
11664 };
11665 }
11666
11667 /// CompleteNonViableCandidate - Normally, overload resolution only
11668 /// computes up to the first bad conversion. Produces the FixIt set if
11669 /// possible.
11670 static void
CompleteNonViableCandidate(Sema & S,OverloadCandidate * Cand,ArrayRef<Expr * > Args,OverloadCandidateSet::CandidateSetKind CSK)11671 CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
11672 ArrayRef<Expr *> Args,
11673 OverloadCandidateSet::CandidateSetKind CSK) {
11674 assert(!Cand->Viable);
11675
11676 // Don't do anything on failures other than bad conversion.
11677 if (Cand->FailureKind != ovl_fail_bad_conversion)
11678 return;
11679
11680 // We only want the FixIts if all the arguments can be corrected.
11681 bool Unfixable = false;
11682 // Use a implicit copy initialization to check conversion fixes.
11683 Cand->Fix.setConversionChecker(TryCopyInitialization);
11684
11685 // Attempt to fix the bad conversion.
11686 unsigned ConvCount = Cand->Conversions.size();
11687 for (unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0); /**/;
11688 ++ConvIdx) {
11689 assert(ConvIdx != ConvCount && "no bad conversion in candidate");
11690 if (Cand->Conversions[ConvIdx].isInitialized() &&
11691 Cand->Conversions[ConvIdx].isBad()) {
11692 Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S);
11693 break;
11694 }
11695 }
11696
11697 // FIXME: this should probably be preserved from the overload
11698 // operation somehow.
11699 bool SuppressUserConversions = false;
11700
11701 unsigned ConvIdx = 0;
11702 unsigned ArgIdx = 0;
11703 ArrayRef<QualType> ParamTypes;
11704 bool Reversed = Cand->isReversed();
11705
11706 if (Cand->IsSurrogate) {
11707 QualType ConvType
11708 = Cand->Surrogate->getConversionType().getNonReferenceType();
11709 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
11710 ConvType = ConvPtrType->getPointeeType();
11711 ParamTypes = ConvType->castAs<FunctionProtoType>()->getParamTypes();
11712 // Conversion 0 is 'this', which doesn't have a corresponding parameter.
11713 ConvIdx = 1;
11714 } else if (Cand->Function) {
11715 ParamTypes =
11716 Cand->Function->getType()->castAs<FunctionProtoType>()->getParamTypes();
11717 if (isa<CXXMethodDecl>(Cand->Function) &&
11718 !isa<CXXConstructorDecl>(Cand->Function) && !Reversed) {
11719 // Conversion 0 is 'this', which doesn't have a corresponding parameter.
11720 ConvIdx = 1;
11721 if (CSK == OverloadCandidateSet::CSK_Operator &&
11722 Cand->Function->getDeclName().getCXXOverloadedOperator() != OO_Call &&
11723 Cand->Function->getDeclName().getCXXOverloadedOperator() !=
11724 OO_Subscript)
11725 // Argument 0 is 'this', which doesn't have a corresponding parameter.
11726 ArgIdx = 1;
11727 }
11728 } else {
11729 // Builtin operator.
11730 assert(ConvCount <= 3);
11731 ParamTypes = Cand->BuiltinParamTypes;
11732 }
11733
11734 // Fill in the rest of the conversions.
11735 for (unsigned ParamIdx = Reversed ? ParamTypes.size() - 1 : 0;
11736 ConvIdx != ConvCount;
11737 ++ConvIdx, ++ArgIdx, ParamIdx += (Reversed ? -1 : 1)) {
11738 assert(ArgIdx < Args.size() && "no argument for this arg conversion");
11739 if (Cand->Conversions[ConvIdx].isInitialized()) {
11740 // We've already checked this conversion.
11741 } else if (ParamIdx < ParamTypes.size()) {
11742 if (ParamTypes[ParamIdx]->isDependentType())
11743 Cand->Conversions[ConvIdx].setAsIdentityConversion(
11744 Args[ArgIdx]->getType());
11745 else {
11746 Cand->Conversions[ConvIdx] =
11747 TryCopyInitialization(S, Args[ArgIdx], ParamTypes[ParamIdx],
11748 SuppressUserConversions,
11749 /*InOverloadResolution=*/true,
11750 /*AllowObjCWritebackConversion=*/
11751 S.getLangOpts().ObjCAutoRefCount);
11752 // Store the FixIt in the candidate if it exists.
11753 if (!Unfixable && Cand->Conversions[ConvIdx].isBad())
11754 Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S);
11755 }
11756 } else
11757 Cand->Conversions[ConvIdx].setEllipsis();
11758 }
11759 }
11760
CompleteCandidates(Sema & S,OverloadCandidateDisplayKind OCD,ArrayRef<Expr * > Args,SourceLocation OpLoc,llvm::function_ref<bool (OverloadCandidate &)> Filter)11761 SmallVector<OverloadCandidate *, 32> OverloadCandidateSet::CompleteCandidates(
11762 Sema &S, OverloadCandidateDisplayKind OCD, ArrayRef<Expr *> Args,
11763 SourceLocation OpLoc,
11764 llvm::function_ref<bool(OverloadCandidate &)> Filter) {
11765 // Sort the candidates by viability and position. Sorting directly would
11766 // be prohibitive, so we make a set of pointers and sort those.
11767 SmallVector<OverloadCandidate*, 32> Cands;
11768 if (OCD == OCD_AllCandidates) Cands.reserve(size());
11769 for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
11770 if (!Filter(*Cand))
11771 continue;
11772 switch (OCD) {
11773 case OCD_AllCandidates:
11774 if (!Cand->Viable) {
11775 if (!Cand->Function && !Cand->IsSurrogate) {
11776 // This a non-viable builtin candidate. We do not, in general,
11777 // want to list every possible builtin candidate.
11778 continue;
11779 }
11780 CompleteNonViableCandidate(S, Cand, Args, Kind);
11781 }
11782 break;
11783
11784 case OCD_ViableCandidates:
11785 if (!Cand->Viable)
11786 continue;
11787 break;
11788
11789 case OCD_AmbiguousCandidates:
11790 if (!Cand->Best)
11791 continue;
11792 break;
11793 }
11794
11795 Cands.push_back(Cand);
11796 }
11797
11798 llvm::stable_sort(
11799 Cands, CompareOverloadCandidatesForDisplay(S, OpLoc, Args.size(), Kind));
11800
11801 return Cands;
11802 }
11803
shouldDeferDiags(Sema & S,ArrayRef<Expr * > Args,SourceLocation OpLoc)11804 bool OverloadCandidateSet::shouldDeferDiags(Sema &S, ArrayRef<Expr *> Args,
11805 SourceLocation OpLoc) {
11806 bool DeferHint = false;
11807 if (S.getLangOpts().CUDA && S.getLangOpts().GPUDeferDiag) {
11808 // Defer diagnostic for CUDA/HIP if there are wrong-sided candidates or
11809 // host device candidates.
11810 auto WrongSidedCands =
11811 CompleteCandidates(S, OCD_AllCandidates, Args, OpLoc, [](auto &Cand) {
11812 return (Cand.Viable == false &&
11813 Cand.FailureKind == ovl_fail_bad_target) ||
11814 (Cand.Function &&
11815 Cand.Function->template hasAttr<CUDAHostAttr>() &&
11816 Cand.Function->template hasAttr<CUDADeviceAttr>());
11817 });
11818 DeferHint = !WrongSidedCands.empty();
11819 }
11820 return DeferHint;
11821 }
11822
11823 /// When overload resolution fails, prints diagnostic messages containing the
11824 /// candidates in the candidate set.
NoteCandidates(PartialDiagnosticAt PD,Sema & S,OverloadCandidateDisplayKind OCD,ArrayRef<Expr * > Args,StringRef Opc,SourceLocation OpLoc,llvm::function_ref<bool (OverloadCandidate &)> Filter)11825 void OverloadCandidateSet::NoteCandidates(
11826 PartialDiagnosticAt PD, Sema &S, OverloadCandidateDisplayKind OCD,
11827 ArrayRef<Expr *> Args, StringRef Opc, SourceLocation OpLoc,
11828 llvm::function_ref<bool(OverloadCandidate &)> Filter) {
11829
11830 auto Cands = CompleteCandidates(S, OCD, Args, OpLoc, Filter);
11831
11832 S.Diag(PD.first, PD.second, shouldDeferDiags(S, Args, OpLoc));
11833
11834 NoteCandidates(S, Args, Cands, Opc, OpLoc);
11835
11836 if (OCD == OCD_AmbiguousCandidates)
11837 MaybeDiagnoseAmbiguousConstraints(S, {begin(), end()});
11838 }
11839
NoteCandidates(Sema & S,ArrayRef<Expr * > Args,ArrayRef<OverloadCandidate * > Cands,StringRef Opc,SourceLocation OpLoc)11840 void OverloadCandidateSet::NoteCandidates(Sema &S, ArrayRef<Expr *> Args,
11841 ArrayRef<OverloadCandidate *> Cands,
11842 StringRef Opc, SourceLocation OpLoc) {
11843 bool ReportedAmbiguousConversions = false;
11844
11845 const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
11846 unsigned CandsShown = 0;
11847 auto I = Cands.begin(), E = Cands.end();
11848 for (; I != E; ++I) {
11849 OverloadCandidate *Cand = *I;
11850
11851 if (CandsShown >= S.Diags.getNumOverloadCandidatesToShow() &&
11852 ShowOverloads == Ovl_Best) {
11853 break;
11854 }
11855 ++CandsShown;
11856
11857 if (Cand->Function)
11858 NoteFunctionCandidate(S, Cand, Args.size(),
11859 /*TakingCandidateAddress=*/false, DestAS);
11860 else if (Cand->IsSurrogate)
11861 NoteSurrogateCandidate(S, Cand);
11862 else {
11863 assert(Cand->Viable &&
11864 "Non-viable built-in candidates are not added to Cands.");
11865 // Generally we only see ambiguities including viable builtin
11866 // operators if overload resolution got screwed up by an
11867 // ambiguous user-defined conversion.
11868 //
11869 // FIXME: It's quite possible for different conversions to see
11870 // different ambiguities, though.
11871 if (!ReportedAmbiguousConversions) {
11872 NoteAmbiguousUserConversions(S, OpLoc, Cand);
11873 ReportedAmbiguousConversions = true;
11874 }
11875
11876 // If this is a viable builtin, print it.
11877 NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand);
11878 }
11879 }
11880
11881 // Inform S.Diags that we've shown an overload set with N elements. This may
11882 // inform the future value of S.Diags.getNumOverloadCandidatesToShow().
11883 S.Diags.overloadCandidatesShown(CandsShown);
11884
11885 if (I != E)
11886 S.Diag(OpLoc, diag::note_ovl_too_many_candidates,
11887 shouldDeferDiags(S, Args, OpLoc))
11888 << int(E - I);
11889 }
11890
11891 static SourceLocation
GetLocationForCandidate(const TemplateSpecCandidate * Cand)11892 GetLocationForCandidate(const TemplateSpecCandidate *Cand) {
11893 return Cand->Specialization ? Cand->Specialization->getLocation()
11894 : SourceLocation();
11895 }
11896
11897 namespace {
11898 struct CompareTemplateSpecCandidatesForDisplay {
11899 Sema &S;
CompareTemplateSpecCandidatesForDisplay__anon85f2cfc11c11::CompareTemplateSpecCandidatesForDisplay11900 CompareTemplateSpecCandidatesForDisplay(Sema &S) : S(S) {}
11901
operator ()__anon85f2cfc11c11::CompareTemplateSpecCandidatesForDisplay11902 bool operator()(const TemplateSpecCandidate *L,
11903 const TemplateSpecCandidate *R) {
11904 // Fast-path this check.
11905 if (L == R)
11906 return false;
11907
11908 // Assuming that both candidates are not matches...
11909
11910 // Sort by the ranking of deduction failures.
11911 if (L->DeductionFailure.Result != R->DeductionFailure.Result)
11912 return RankDeductionFailure(L->DeductionFailure) <
11913 RankDeductionFailure(R->DeductionFailure);
11914
11915 // Sort everything else by location.
11916 SourceLocation LLoc = GetLocationForCandidate(L);
11917 SourceLocation RLoc = GetLocationForCandidate(R);
11918
11919 // Put candidates without locations (e.g. builtins) at the end.
11920 if (LLoc.isInvalid())
11921 return false;
11922 if (RLoc.isInvalid())
11923 return true;
11924
11925 return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
11926 }
11927 };
11928 }
11929
11930 /// Diagnose a template argument deduction failure.
11931 /// We are treating these failures as overload failures due to bad
11932 /// deductions.
NoteDeductionFailure(Sema & S,bool ForTakingAddress)11933 void TemplateSpecCandidate::NoteDeductionFailure(Sema &S,
11934 bool ForTakingAddress) {
11935 DiagnoseBadDeduction(S, FoundDecl, Specialization, // pattern
11936 DeductionFailure, /*NumArgs=*/0, ForTakingAddress);
11937 }
11938
destroyCandidates()11939 void TemplateSpecCandidateSet::destroyCandidates() {
11940 for (iterator i = begin(), e = end(); i != e; ++i) {
11941 i->DeductionFailure.Destroy();
11942 }
11943 }
11944
clear()11945 void TemplateSpecCandidateSet::clear() {
11946 destroyCandidates();
11947 Candidates.clear();
11948 }
11949
11950 /// NoteCandidates - When no template specialization match is found, prints
11951 /// diagnostic messages containing the non-matching specializations that form
11952 /// the candidate set.
11953 /// This is analoguous to OverloadCandidateSet::NoteCandidates() with
11954 /// OCD == OCD_AllCandidates and Cand->Viable == false.
NoteCandidates(Sema & S,SourceLocation Loc)11955 void TemplateSpecCandidateSet::NoteCandidates(Sema &S, SourceLocation Loc) {
11956 // Sort the candidates by position (assuming no candidate is a match).
11957 // Sorting directly would be prohibitive, so we make a set of pointers
11958 // and sort those.
11959 SmallVector<TemplateSpecCandidate *, 32> Cands;
11960 Cands.reserve(size());
11961 for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
11962 if (Cand->Specialization)
11963 Cands.push_back(Cand);
11964 // Otherwise, this is a non-matching builtin candidate. We do not,
11965 // in general, want to list every possible builtin candidate.
11966 }
11967
11968 llvm::sort(Cands, CompareTemplateSpecCandidatesForDisplay(S));
11969
11970 // FIXME: Perhaps rename OverloadsShown and getShowOverloads()
11971 // for generalization purposes (?).
11972 const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
11973
11974 SmallVectorImpl<TemplateSpecCandidate *>::iterator I, E;
11975 unsigned CandsShown = 0;
11976 for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
11977 TemplateSpecCandidate *Cand = *I;
11978
11979 // Set an arbitrary limit on the number of candidates we'll spam
11980 // the user with. FIXME: This limit should depend on details of the
11981 // candidate list.
11982 if (CandsShown >= 4 && ShowOverloads == Ovl_Best)
11983 break;
11984 ++CandsShown;
11985
11986 assert(Cand->Specialization &&
11987 "Non-matching built-in candidates are not added to Cands.");
11988 Cand->NoteDeductionFailure(S, ForTakingAddress);
11989 }
11990
11991 if (I != E)
11992 S.Diag(Loc, diag::note_ovl_too_many_candidates) << int(E - I);
11993 }
11994
11995 // [PossiblyAFunctionType] --> [Return]
11996 // NonFunctionType --> NonFunctionType
11997 // R (A) --> R(A)
11998 // R (*)(A) --> R (A)
11999 // R (&)(A) --> R (A)
12000 // R (S::*)(A) --> R (A)
ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType)12001 QualType Sema::ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType) {
12002 QualType Ret = PossiblyAFunctionType;
12003 if (const PointerType *ToTypePtr =
12004 PossiblyAFunctionType->getAs<PointerType>())
12005 Ret = ToTypePtr->getPointeeType();
12006 else if (const ReferenceType *ToTypeRef =
12007 PossiblyAFunctionType->getAs<ReferenceType>())
12008 Ret = ToTypeRef->getPointeeType();
12009 else if (const MemberPointerType *MemTypePtr =
12010 PossiblyAFunctionType->getAs<MemberPointerType>())
12011 Ret = MemTypePtr->getPointeeType();
12012 Ret =
12013 Context.getCanonicalType(Ret).getUnqualifiedType();
12014 return Ret;
12015 }
12016
completeFunctionType(Sema & S,FunctionDecl * FD,SourceLocation Loc,bool Complain=true)12017 static bool completeFunctionType(Sema &S, FunctionDecl *FD, SourceLocation Loc,
12018 bool Complain = true) {
12019 if (S.getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
12020 S.DeduceReturnType(FD, Loc, Complain))
12021 return true;
12022
12023 auto *FPT = FD->getType()->castAs<FunctionProtoType>();
12024 if (S.getLangOpts().CPlusPlus17 &&
12025 isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
12026 !S.ResolveExceptionSpec(Loc, FPT))
12027 return true;
12028
12029 return false;
12030 }
12031
12032 namespace {
12033 // A helper class to help with address of function resolution
12034 // - allows us to avoid passing around all those ugly parameters
12035 class AddressOfFunctionResolver {
12036 Sema& S;
12037 Expr* SourceExpr;
12038 const QualType& TargetType;
12039 QualType TargetFunctionType; // Extracted function type from target type
12040
12041 bool Complain;
12042 //DeclAccessPair& ResultFunctionAccessPair;
12043 ASTContext& Context;
12044
12045 bool TargetTypeIsNonStaticMemberFunction;
12046 bool FoundNonTemplateFunction;
12047 bool StaticMemberFunctionFromBoundPointer;
12048 bool HasComplained;
12049
12050 OverloadExpr::FindResult OvlExprInfo;
12051 OverloadExpr *OvlExpr;
12052 TemplateArgumentListInfo OvlExplicitTemplateArgs;
12053 SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
12054 TemplateSpecCandidateSet FailedCandidates;
12055
12056 public:
AddressOfFunctionResolver(Sema & S,Expr * SourceExpr,const QualType & TargetType,bool Complain)12057 AddressOfFunctionResolver(Sema &S, Expr *SourceExpr,
12058 const QualType &TargetType, bool Complain)
12059 : S(S), SourceExpr(SourceExpr), TargetType(TargetType),
12060 Complain(Complain), Context(S.getASTContext()),
12061 TargetTypeIsNonStaticMemberFunction(
12062 !!TargetType->getAs<MemberPointerType>()),
12063 FoundNonTemplateFunction(false),
12064 StaticMemberFunctionFromBoundPointer(false),
12065 HasComplained(false),
12066 OvlExprInfo(OverloadExpr::find(SourceExpr)),
12067 OvlExpr(OvlExprInfo.Expression),
12068 FailedCandidates(OvlExpr->getNameLoc(), /*ForTakingAddress=*/true) {
12069 ExtractUnqualifiedFunctionTypeFromTargetType();
12070
12071 if (TargetFunctionType->isFunctionType()) {
12072 if (UnresolvedMemberExpr *UME = dyn_cast<UnresolvedMemberExpr>(OvlExpr))
12073 if (!UME->isImplicitAccess() &&
12074 !S.ResolveSingleFunctionTemplateSpecialization(UME))
12075 StaticMemberFunctionFromBoundPointer = true;
12076 } else if (OvlExpr->hasExplicitTemplateArgs()) {
12077 DeclAccessPair dap;
12078 if (FunctionDecl *Fn = S.ResolveSingleFunctionTemplateSpecialization(
12079 OvlExpr, false, &dap)) {
12080 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
12081 if (!Method->isStatic()) {
12082 // If the target type is a non-function type and the function found
12083 // is a non-static member function, pretend as if that was the
12084 // target, it's the only possible type to end up with.
12085 TargetTypeIsNonStaticMemberFunction = true;
12086
12087 // And skip adding the function if its not in the proper form.
12088 // We'll diagnose this due to an empty set of functions.
12089 if (!OvlExprInfo.HasFormOfMemberPointer)
12090 return;
12091 }
12092
12093 Matches.push_back(std::make_pair(dap, Fn));
12094 }
12095 return;
12096 }
12097
12098 if (OvlExpr->hasExplicitTemplateArgs())
12099 OvlExpr->copyTemplateArgumentsInto(OvlExplicitTemplateArgs);
12100
12101 if (FindAllFunctionsThatMatchTargetTypeExactly()) {
12102 // C++ [over.over]p4:
12103 // If more than one function is selected, [...]
12104 if (Matches.size() > 1 && !eliminiateSuboptimalOverloadCandidates()) {
12105 if (FoundNonTemplateFunction)
12106 EliminateAllTemplateMatches();
12107 else
12108 EliminateAllExceptMostSpecializedTemplate();
12109 }
12110 }
12111
12112 if (S.getLangOpts().CUDA && Matches.size() > 1)
12113 EliminateSuboptimalCudaMatches();
12114 }
12115
hasComplained() const12116 bool hasComplained() const { return HasComplained; }
12117
12118 private:
candidateHasExactlyCorrectType(const FunctionDecl * FD)12119 bool candidateHasExactlyCorrectType(const FunctionDecl *FD) {
12120 QualType Discard;
12121 return Context.hasSameUnqualifiedType(TargetFunctionType, FD->getType()) ||
12122 S.IsFunctionConversion(FD->getType(), TargetFunctionType, Discard);
12123 }
12124
12125 /// \return true if A is considered a better overload candidate for the
12126 /// desired type than B.
isBetterCandidate(const FunctionDecl * A,const FunctionDecl * B)12127 bool isBetterCandidate(const FunctionDecl *A, const FunctionDecl *B) {
12128 // If A doesn't have exactly the correct type, we don't want to classify it
12129 // as "better" than anything else. This way, the user is required to
12130 // disambiguate for us if there are multiple candidates and no exact match.
12131 return candidateHasExactlyCorrectType(A) &&
12132 (!candidateHasExactlyCorrectType(B) ||
12133 compareEnableIfAttrs(S, A, B) == Comparison::Better);
12134 }
12135
12136 /// \return true if we were able to eliminate all but one overload candidate,
12137 /// false otherwise.
eliminiateSuboptimalOverloadCandidates()12138 bool eliminiateSuboptimalOverloadCandidates() {
12139 // Same algorithm as overload resolution -- one pass to pick the "best",
12140 // another pass to be sure that nothing is better than the best.
12141 auto Best = Matches.begin();
12142 for (auto I = Matches.begin()+1, E = Matches.end(); I != E; ++I)
12143 if (isBetterCandidate(I->second, Best->second))
12144 Best = I;
12145
12146 const FunctionDecl *BestFn = Best->second;
12147 auto IsBestOrInferiorToBest = [this, BestFn](
12148 const std::pair<DeclAccessPair, FunctionDecl *> &Pair) {
12149 return BestFn == Pair.second || isBetterCandidate(BestFn, Pair.second);
12150 };
12151
12152 // Note: We explicitly leave Matches unmodified if there isn't a clear best
12153 // option, so we can potentially give the user a better error
12154 if (!llvm::all_of(Matches, IsBestOrInferiorToBest))
12155 return false;
12156 Matches[0] = *Best;
12157 Matches.resize(1);
12158 return true;
12159 }
12160
isTargetTypeAFunction() const12161 bool isTargetTypeAFunction() const {
12162 return TargetFunctionType->isFunctionType();
12163 }
12164
12165 // [ToType] [Return]
12166
12167 // R (*)(A) --> R (A), IsNonStaticMemberFunction = false
12168 // R (&)(A) --> R (A), IsNonStaticMemberFunction = false
12169 // R (S::*)(A) --> R (A), IsNonStaticMemberFunction = true
ExtractUnqualifiedFunctionTypeFromTargetType()12170 void inline ExtractUnqualifiedFunctionTypeFromTargetType() {
12171 TargetFunctionType = S.ExtractUnqualifiedFunctionType(TargetType);
12172 }
12173
12174 // return true if any matching specializations were found
AddMatchingTemplateFunction(FunctionTemplateDecl * FunctionTemplate,const DeclAccessPair & CurAccessFunPair)12175 bool AddMatchingTemplateFunction(FunctionTemplateDecl* FunctionTemplate,
12176 const DeclAccessPair& CurAccessFunPair) {
12177 if (CXXMethodDecl *Method
12178 = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
12179 // Skip non-static function templates when converting to pointer, and
12180 // static when converting to member pointer.
12181 if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
12182 return false;
12183 }
12184 else if (TargetTypeIsNonStaticMemberFunction)
12185 return false;
12186
12187 // C++ [over.over]p2:
12188 // If the name is a function template, template argument deduction is
12189 // done (14.8.2.2), and if the argument deduction succeeds, the
12190 // resulting template argument list is used to generate a single
12191 // function template specialization, which is added to the set of
12192 // overloaded functions considered.
12193 FunctionDecl *Specialization = nullptr;
12194 TemplateDeductionInfo Info(FailedCandidates.getLocation());
12195 if (Sema::TemplateDeductionResult Result
12196 = S.DeduceTemplateArguments(FunctionTemplate,
12197 &OvlExplicitTemplateArgs,
12198 TargetFunctionType, Specialization,
12199 Info, /*IsAddressOfFunction*/true)) {
12200 // Make a note of the failed deduction for diagnostics.
12201 FailedCandidates.addCandidate()
12202 .set(CurAccessFunPair, FunctionTemplate->getTemplatedDecl(),
12203 MakeDeductionFailureInfo(Context, Result, Info));
12204 return false;
12205 }
12206
12207 // Template argument deduction ensures that we have an exact match or
12208 // compatible pointer-to-function arguments that would be adjusted by ICS.
12209 // This function template specicalization works.
12210 assert(S.isSameOrCompatibleFunctionType(
12211 Context.getCanonicalType(Specialization->getType()),
12212 Context.getCanonicalType(TargetFunctionType)));
12213
12214 if (!S.checkAddressOfFunctionIsAvailable(Specialization))
12215 return false;
12216
12217 Matches.push_back(std::make_pair(CurAccessFunPair, Specialization));
12218 return true;
12219 }
12220
AddMatchingNonTemplateFunction(NamedDecl * Fn,const DeclAccessPair & CurAccessFunPair)12221 bool AddMatchingNonTemplateFunction(NamedDecl* Fn,
12222 const DeclAccessPair& CurAccessFunPair) {
12223 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
12224 // Skip non-static functions when converting to pointer, and static
12225 // when converting to member pointer.
12226 if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
12227 return false;
12228 }
12229 else if (TargetTypeIsNonStaticMemberFunction)
12230 return false;
12231
12232 if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
12233 if (S.getLangOpts().CUDA)
12234 if (FunctionDecl *Caller = S.getCurFunctionDecl(/*AllowLambda=*/true))
12235 if (!Caller->isImplicit() && !S.IsAllowedCUDACall(Caller, FunDecl))
12236 return false;
12237 if (FunDecl->isMultiVersion()) {
12238 const auto *TA = FunDecl->getAttr<TargetAttr>();
12239 if (TA && !TA->isDefaultVersion())
12240 return false;
12241 }
12242
12243 // If any candidate has a placeholder return type, trigger its deduction
12244 // now.
12245 if (completeFunctionType(S, FunDecl, SourceExpr->getBeginLoc(),
12246 Complain)) {
12247 HasComplained |= Complain;
12248 return false;
12249 }
12250
12251 if (!S.checkAddressOfFunctionIsAvailable(FunDecl))
12252 return false;
12253
12254 // If we're in C, we need to support types that aren't exactly identical.
12255 if (!S.getLangOpts().CPlusPlus ||
12256 candidateHasExactlyCorrectType(FunDecl)) {
12257 Matches.push_back(std::make_pair(
12258 CurAccessFunPair, cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
12259 FoundNonTemplateFunction = true;
12260 return true;
12261 }
12262 }
12263
12264 return false;
12265 }
12266
FindAllFunctionsThatMatchTargetTypeExactly()12267 bool FindAllFunctionsThatMatchTargetTypeExactly() {
12268 bool Ret = false;
12269
12270 // If the overload expression doesn't have the form of a pointer to
12271 // member, don't try to convert it to a pointer-to-member type.
12272 if (IsInvalidFormOfPointerToMemberFunction())
12273 return false;
12274
12275 for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
12276 E = OvlExpr->decls_end();
12277 I != E; ++I) {
12278 // Look through any using declarations to find the underlying function.
12279 NamedDecl *Fn = (*I)->getUnderlyingDecl();
12280
12281 // C++ [over.over]p3:
12282 // Non-member functions and static member functions match
12283 // targets of type "pointer-to-function" or "reference-to-function."
12284 // Nonstatic member functions match targets of
12285 // type "pointer-to-member-function."
12286 // Note that according to DR 247, the containing class does not matter.
12287 if (FunctionTemplateDecl *FunctionTemplate
12288 = dyn_cast<FunctionTemplateDecl>(Fn)) {
12289 if (AddMatchingTemplateFunction(FunctionTemplate, I.getPair()))
12290 Ret = true;
12291 }
12292 // If we have explicit template arguments supplied, skip non-templates.
12293 else if (!OvlExpr->hasExplicitTemplateArgs() &&
12294 AddMatchingNonTemplateFunction(Fn, I.getPair()))
12295 Ret = true;
12296 }
12297 assert(Ret || Matches.empty());
12298 return Ret;
12299 }
12300
EliminateAllExceptMostSpecializedTemplate()12301 void EliminateAllExceptMostSpecializedTemplate() {
12302 // [...] and any given function template specialization F1 is
12303 // eliminated if the set contains a second function template
12304 // specialization whose function template is more specialized
12305 // than the function template of F1 according to the partial
12306 // ordering rules of 14.5.5.2.
12307
12308 // The algorithm specified above is quadratic. We instead use a
12309 // two-pass algorithm (similar to the one used to identify the
12310 // best viable function in an overload set) that identifies the
12311 // best function template (if it exists).
12312
12313 UnresolvedSet<4> MatchesCopy; // TODO: avoid!
12314 for (unsigned I = 0, E = Matches.size(); I != E; ++I)
12315 MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());
12316
12317 // TODO: It looks like FailedCandidates does not serve much purpose
12318 // here, since the no_viable diagnostic has index 0.
12319 UnresolvedSetIterator Result = S.getMostSpecialized(
12320 MatchesCopy.begin(), MatchesCopy.end(), FailedCandidates,
12321 SourceExpr->getBeginLoc(), S.PDiag(),
12322 S.PDiag(diag::err_addr_ovl_ambiguous)
12323 << Matches[0].second->getDeclName(),
12324 S.PDiag(diag::note_ovl_candidate)
12325 << (unsigned)oc_function << (unsigned)ocs_described_template,
12326 Complain, TargetFunctionType);
12327
12328 if (Result != MatchesCopy.end()) {
12329 // Make it the first and only element
12330 Matches[0].first = Matches[Result - MatchesCopy.begin()].first;
12331 Matches[0].second = cast<FunctionDecl>(*Result);
12332 Matches.resize(1);
12333 } else
12334 HasComplained |= Complain;
12335 }
12336
EliminateAllTemplateMatches()12337 void EliminateAllTemplateMatches() {
12338 // [...] any function template specializations in the set are
12339 // eliminated if the set also contains a non-template function, [...]
12340 for (unsigned I = 0, N = Matches.size(); I != N; ) {
12341 if (Matches[I].second->getPrimaryTemplate() == nullptr)
12342 ++I;
12343 else {
12344 Matches[I] = Matches[--N];
12345 Matches.resize(N);
12346 }
12347 }
12348 }
12349
EliminateSuboptimalCudaMatches()12350 void EliminateSuboptimalCudaMatches() {
12351 S.EraseUnwantedCUDAMatches(S.getCurFunctionDecl(/*AllowLambda=*/true),
12352 Matches);
12353 }
12354
12355 public:
ComplainNoMatchesFound() const12356 void ComplainNoMatchesFound() const {
12357 assert(Matches.empty());
12358 S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_no_viable)
12359 << OvlExpr->getName() << TargetFunctionType
12360 << OvlExpr->getSourceRange();
12361 if (FailedCandidates.empty())
12362 S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType,
12363 /*TakingAddress=*/true);
12364 else {
12365 // We have some deduction failure messages. Use them to diagnose
12366 // the function templates, and diagnose the non-template candidates
12367 // normally.
12368 for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
12369 IEnd = OvlExpr->decls_end();
12370 I != IEnd; ++I)
12371 if (FunctionDecl *Fun =
12372 dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()))
12373 if (!functionHasPassObjectSizeParams(Fun))
12374 S.NoteOverloadCandidate(*I, Fun, CRK_None, TargetFunctionType,
12375 /*TakingAddress=*/true);
12376 FailedCandidates.NoteCandidates(S, OvlExpr->getBeginLoc());
12377 }
12378 }
12379
IsInvalidFormOfPointerToMemberFunction() const12380 bool IsInvalidFormOfPointerToMemberFunction() const {
12381 return TargetTypeIsNonStaticMemberFunction &&
12382 !OvlExprInfo.HasFormOfMemberPointer;
12383 }
12384
ComplainIsInvalidFormOfPointerToMemberFunction() const12385 void ComplainIsInvalidFormOfPointerToMemberFunction() const {
12386 // TODO: Should we condition this on whether any functions might
12387 // have matched, or is it more appropriate to do that in callers?
12388 // TODO: a fixit wouldn't hurt.
12389 S.Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier)
12390 << TargetType << OvlExpr->getSourceRange();
12391 }
12392
IsStaticMemberFunctionFromBoundPointer() const12393 bool IsStaticMemberFunctionFromBoundPointer() const {
12394 return StaticMemberFunctionFromBoundPointer;
12395 }
12396
ComplainIsStaticMemberFunctionFromBoundPointer() const12397 void ComplainIsStaticMemberFunctionFromBoundPointer() const {
12398 S.Diag(OvlExpr->getBeginLoc(),
12399 diag::err_invalid_form_pointer_member_function)
12400 << OvlExpr->getSourceRange();
12401 }
12402
ComplainOfInvalidConversion() const12403 void ComplainOfInvalidConversion() const {
12404 S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_not_func_ptrref)
12405 << OvlExpr->getName() << TargetType;
12406 }
12407
ComplainMultipleMatchesFound() const12408 void ComplainMultipleMatchesFound() const {
12409 assert(Matches.size() > 1);
12410 S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_ambiguous)
12411 << OvlExpr->getName() << OvlExpr->getSourceRange();
12412 S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType,
12413 /*TakingAddress=*/true);
12414 }
12415
hadMultipleCandidates() const12416 bool hadMultipleCandidates() const { return (OvlExpr->getNumDecls() > 1); }
12417
getNumMatches() const12418 int getNumMatches() const { return Matches.size(); }
12419
getMatchingFunctionDecl() const12420 FunctionDecl* getMatchingFunctionDecl() const {
12421 if (Matches.size() != 1) return nullptr;
12422 return Matches[0].second;
12423 }
12424
getMatchingFunctionAccessPair() const12425 const DeclAccessPair* getMatchingFunctionAccessPair() const {
12426 if (Matches.size() != 1) return nullptr;
12427 return &Matches[0].first;
12428 }
12429 };
12430 }
12431
12432 /// ResolveAddressOfOverloadedFunction - Try to resolve the address of
12433 /// an overloaded function (C++ [over.over]), where @p From is an
12434 /// expression with overloaded function type and @p ToType is the type
12435 /// we're trying to resolve to. For example:
12436 ///
12437 /// @code
12438 /// int f(double);
12439 /// int f(int);
12440 ///
12441 /// int (*pfd)(double) = f; // selects f(double)
12442 /// @endcode
12443 ///
12444 /// This routine returns the resulting FunctionDecl if it could be
12445 /// resolved, and NULL otherwise. When @p Complain is true, this
12446 /// routine will emit diagnostics if there is an error.
12447 FunctionDecl *
ResolveAddressOfOverloadedFunction(Expr * AddressOfExpr,QualType TargetType,bool Complain,DeclAccessPair & FoundResult,bool * pHadMultipleCandidates)12448 Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr,
12449 QualType TargetType,
12450 bool Complain,
12451 DeclAccessPair &FoundResult,
12452 bool *pHadMultipleCandidates) {
12453 assert(AddressOfExpr->getType() == Context.OverloadTy);
12454
12455 AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType,
12456 Complain);
12457 int NumMatches = Resolver.getNumMatches();
12458 FunctionDecl *Fn = nullptr;
12459 bool ShouldComplain = Complain && !Resolver.hasComplained();
12460 if (NumMatches == 0 && ShouldComplain) {
12461 if (Resolver.IsInvalidFormOfPointerToMemberFunction())
12462 Resolver.ComplainIsInvalidFormOfPointerToMemberFunction();
12463 else
12464 Resolver.ComplainNoMatchesFound();
12465 }
12466 else if (NumMatches > 1 && ShouldComplain)
12467 Resolver.ComplainMultipleMatchesFound();
12468 else if (NumMatches == 1) {
12469 Fn = Resolver.getMatchingFunctionDecl();
12470 assert(Fn);
12471 if (auto *FPT = Fn->getType()->getAs<FunctionProtoType>())
12472 ResolveExceptionSpec(AddressOfExpr->getExprLoc(), FPT);
12473 FoundResult = *Resolver.getMatchingFunctionAccessPair();
12474 if (Complain) {
12475 if (Resolver.IsStaticMemberFunctionFromBoundPointer())
12476 Resolver.ComplainIsStaticMemberFunctionFromBoundPointer();
12477 else
12478 CheckAddressOfMemberAccess(AddressOfExpr, FoundResult);
12479 }
12480 }
12481
12482 if (pHadMultipleCandidates)
12483 *pHadMultipleCandidates = Resolver.hadMultipleCandidates();
12484 return Fn;
12485 }
12486
12487 /// Given an expression that refers to an overloaded function, try to
12488 /// resolve that function to a single function that can have its address taken.
12489 /// This will modify `Pair` iff it returns non-null.
12490 ///
12491 /// This routine can only succeed if from all of the candidates in the overload
12492 /// set for SrcExpr that can have their addresses taken, there is one candidate
12493 /// that is more constrained than the rest.
12494 FunctionDecl *
resolveAddressOfSingleOverloadCandidate(Expr * E,DeclAccessPair & Pair)12495 Sema::resolveAddressOfSingleOverloadCandidate(Expr *E, DeclAccessPair &Pair) {
12496 OverloadExpr::FindResult R = OverloadExpr::find(E);
12497 OverloadExpr *Ovl = R.Expression;
12498 bool IsResultAmbiguous = false;
12499 FunctionDecl *Result = nullptr;
12500 DeclAccessPair DAP;
12501 SmallVector<FunctionDecl *, 2> AmbiguousDecls;
12502
12503 auto CheckMoreConstrained =
12504 [&] (FunctionDecl *FD1, FunctionDecl *FD2) -> Optional<bool> {
12505 SmallVector<const Expr *, 1> AC1, AC2;
12506 FD1->getAssociatedConstraints(AC1);
12507 FD2->getAssociatedConstraints(AC2);
12508 bool AtLeastAsConstrained1, AtLeastAsConstrained2;
12509 if (IsAtLeastAsConstrained(FD1, AC1, FD2, AC2, AtLeastAsConstrained1))
12510 return None;
12511 if (IsAtLeastAsConstrained(FD2, AC2, FD1, AC1, AtLeastAsConstrained2))
12512 return None;
12513 if (AtLeastAsConstrained1 == AtLeastAsConstrained2)
12514 return None;
12515 return AtLeastAsConstrained1;
12516 };
12517
12518 // Don't use the AddressOfResolver because we're specifically looking for
12519 // cases where we have one overload candidate that lacks
12520 // enable_if/pass_object_size/...
12521 for (auto I = Ovl->decls_begin(), E = Ovl->decls_end(); I != E; ++I) {
12522 auto *FD = dyn_cast<FunctionDecl>(I->getUnderlyingDecl());
12523 if (!FD)
12524 return nullptr;
12525
12526 if (!checkAddressOfFunctionIsAvailable(FD))
12527 continue;
12528
12529 // We have more than one result - see if it is more constrained than the
12530 // previous one.
12531 if (Result) {
12532 Optional<bool> MoreConstrainedThanPrevious = CheckMoreConstrained(FD,
12533 Result);
12534 if (!MoreConstrainedThanPrevious) {
12535 IsResultAmbiguous = true;
12536 AmbiguousDecls.push_back(FD);
12537 continue;
12538 }
12539 if (!*MoreConstrainedThanPrevious)
12540 continue;
12541 // FD is more constrained - replace Result with it.
12542 }
12543 IsResultAmbiguous = false;
12544 DAP = I.getPair();
12545 Result = FD;
12546 }
12547
12548 if (IsResultAmbiguous)
12549 return nullptr;
12550
12551 if (Result) {
12552 SmallVector<const Expr *, 1> ResultAC;
12553 // We skipped over some ambiguous declarations which might be ambiguous with
12554 // the selected result.
12555 for (FunctionDecl *Skipped : AmbiguousDecls)
12556 if (!CheckMoreConstrained(Skipped, Result))
12557 return nullptr;
12558 Pair = DAP;
12559 }
12560 return Result;
12561 }
12562
12563 /// Given an overloaded function, tries to turn it into a non-overloaded
12564 /// function reference using resolveAddressOfSingleOverloadCandidate. This
12565 /// will perform access checks, diagnose the use of the resultant decl, and, if
12566 /// requested, potentially perform a function-to-pointer decay.
12567 ///
12568 /// Returns false if resolveAddressOfSingleOverloadCandidate fails.
12569 /// Otherwise, returns true. This may emit diagnostics and return true.
resolveAndFixAddressOfSingleOverloadCandidate(ExprResult & SrcExpr,bool DoFunctionPointerConverion)12570 bool Sema::resolveAndFixAddressOfSingleOverloadCandidate(
12571 ExprResult &SrcExpr, bool DoFunctionPointerConverion) {
12572 Expr *E = SrcExpr.get();
12573 assert(E->getType() == Context.OverloadTy && "SrcExpr must be an overload");
12574
12575 DeclAccessPair DAP;
12576 FunctionDecl *Found = resolveAddressOfSingleOverloadCandidate(E, DAP);
12577 if (!Found || Found->isCPUDispatchMultiVersion() ||
12578 Found->isCPUSpecificMultiVersion())
12579 return false;
12580
12581 // Emitting multiple diagnostics for a function that is both inaccessible and
12582 // unavailable is consistent with our behavior elsewhere. So, always check
12583 // for both.
12584 DiagnoseUseOfDecl(Found, E->getExprLoc());
12585 CheckAddressOfMemberAccess(E, DAP);
12586 Expr *Fixed = FixOverloadedFunctionReference(E, DAP, Found);
12587 if (DoFunctionPointerConverion && Fixed->getType()->isFunctionType())
12588 SrcExpr = DefaultFunctionArrayConversion(Fixed, /*Diagnose=*/false);
12589 else
12590 SrcExpr = Fixed;
12591 return true;
12592 }
12593
12594 /// Given an expression that refers to an overloaded function, try to
12595 /// resolve that overloaded function expression down to a single function.
12596 ///
12597 /// This routine can only resolve template-ids that refer to a single function
12598 /// template, where that template-id refers to a single template whose template
12599 /// arguments are either provided by the template-id or have defaults,
12600 /// as described in C++0x [temp.arg.explicit]p3.
12601 ///
12602 /// If no template-ids are found, no diagnostics are emitted and NULL is
12603 /// returned.
12604 FunctionDecl *
ResolveSingleFunctionTemplateSpecialization(OverloadExpr * ovl,bool Complain,DeclAccessPair * FoundResult)12605 Sema::ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl,
12606 bool Complain,
12607 DeclAccessPair *FoundResult) {
12608 // C++ [over.over]p1:
12609 // [...] [Note: any redundant set of parentheses surrounding the
12610 // overloaded function name is ignored (5.1). ]
12611 // C++ [over.over]p1:
12612 // [...] The overloaded function name can be preceded by the &
12613 // operator.
12614
12615 // If we didn't actually find any template-ids, we're done.
12616 if (!ovl->hasExplicitTemplateArgs())
12617 return nullptr;
12618
12619 TemplateArgumentListInfo ExplicitTemplateArgs;
12620 ovl->copyTemplateArgumentsInto(ExplicitTemplateArgs);
12621 TemplateSpecCandidateSet FailedCandidates(ovl->getNameLoc());
12622
12623 // Look through all of the overloaded functions, searching for one
12624 // whose type matches exactly.
12625 FunctionDecl *Matched = nullptr;
12626 for (UnresolvedSetIterator I = ovl->decls_begin(),
12627 E = ovl->decls_end(); I != E; ++I) {
12628 // C++0x [temp.arg.explicit]p3:
12629 // [...] In contexts where deduction is done and fails, or in contexts
12630 // where deduction is not done, if a template argument list is
12631 // specified and it, along with any default template arguments,
12632 // identifies a single function template specialization, then the
12633 // template-id is an lvalue for the function template specialization.
12634 FunctionTemplateDecl *FunctionTemplate
12635 = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl());
12636
12637 // C++ [over.over]p2:
12638 // If the name is a function template, template argument deduction is
12639 // done (14.8.2.2), and if the argument deduction succeeds, the
12640 // resulting template argument list is used to generate a single
12641 // function template specialization, which is added to the set of
12642 // overloaded functions considered.
12643 FunctionDecl *Specialization = nullptr;
12644 TemplateDeductionInfo Info(FailedCandidates.getLocation());
12645 if (TemplateDeductionResult Result
12646 = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
12647 Specialization, Info,
12648 /*IsAddressOfFunction*/true)) {
12649 // Make a note of the failed deduction for diagnostics.
12650 // TODO: Actually use the failed-deduction info?
12651 FailedCandidates.addCandidate()
12652 .set(I.getPair(), FunctionTemplate->getTemplatedDecl(),
12653 MakeDeductionFailureInfo(Context, Result, Info));
12654 continue;
12655 }
12656
12657 assert(Specialization && "no specialization and no error?");
12658
12659 // Multiple matches; we can't resolve to a single declaration.
12660 if (Matched) {
12661 if (Complain) {
12662 Diag(ovl->getExprLoc(), diag::err_addr_ovl_ambiguous)
12663 << ovl->getName();
12664 NoteAllOverloadCandidates(ovl);
12665 }
12666 return nullptr;
12667 }
12668
12669 Matched = Specialization;
12670 if (FoundResult) *FoundResult = I.getPair();
12671 }
12672
12673 if (Matched &&
12674 completeFunctionType(*this, Matched, ovl->getExprLoc(), Complain))
12675 return nullptr;
12676
12677 return Matched;
12678 }
12679
12680 // Resolve and fix an overloaded expression that can be resolved
12681 // because it identifies a single function template specialization.
12682 //
12683 // Last three arguments should only be supplied if Complain = true
12684 //
12685 // Return true if it was logically possible to so resolve the
12686 // expression, regardless of whether or not it succeeded. Always
12687 // returns true if 'complain' is set.
ResolveAndFixSingleFunctionTemplateSpecialization(ExprResult & SrcExpr,bool doFunctionPointerConverion,bool complain,SourceRange OpRangeForComplaining,QualType DestTypeForComplaining,unsigned DiagIDForComplaining)12688 bool Sema::ResolveAndFixSingleFunctionTemplateSpecialization(
12689 ExprResult &SrcExpr, bool doFunctionPointerConverion,
12690 bool complain, SourceRange OpRangeForComplaining,
12691 QualType DestTypeForComplaining,
12692 unsigned DiagIDForComplaining) {
12693 assert(SrcExpr.get()->getType() == Context.OverloadTy);
12694
12695 OverloadExpr::FindResult ovl = OverloadExpr::find(SrcExpr.get());
12696
12697 DeclAccessPair found;
12698 ExprResult SingleFunctionExpression;
12699 if (FunctionDecl *fn = ResolveSingleFunctionTemplateSpecialization(
12700 ovl.Expression, /*complain*/ false, &found)) {
12701 if (DiagnoseUseOfDecl(fn, SrcExpr.get()->getBeginLoc())) {
12702 SrcExpr = ExprError();
12703 return true;
12704 }
12705
12706 // It is only correct to resolve to an instance method if we're
12707 // resolving a form that's permitted to be a pointer to member.
12708 // Otherwise we'll end up making a bound member expression, which
12709 // is illegal in all the contexts we resolve like this.
12710 if (!ovl.HasFormOfMemberPointer &&
12711 isa<CXXMethodDecl>(fn) &&
12712 cast<CXXMethodDecl>(fn)->isInstance()) {
12713 if (!complain) return false;
12714
12715 Diag(ovl.Expression->getExprLoc(),
12716 diag::err_bound_member_function)
12717 << 0 << ovl.Expression->getSourceRange();
12718
12719 // TODO: I believe we only end up here if there's a mix of
12720 // static and non-static candidates (otherwise the expression
12721 // would have 'bound member' type, not 'overload' type).
12722 // Ideally we would note which candidate was chosen and why
12723 // the static candidates were rejected.
12724 SrcExpr = ExprError();
12725 return true;
12726 }
12727
12728 // Fix the expression to refer to 'fn'.
12729 SingleFunctionExpression =
12730 FixOverloadedFunctionReference(SrcExpr.get(), found, fn);
12731
12732 // If desired, do function-to-pointer decay.
12733 if (doFunctionPointerConverion) {
12734 SingleFunctionExpression =
12735 DefaultFunctionArrayLvalueConversion(SingleFunctionExpression.get());
12736 if (SingleFunctionExpression.isInvalid()) {
12737 SrcExpr = ExprError();
12738 return true;
12739 }
12740 }
12741 }
12742
12743 if (!SingleFunctionExpression.isUsable()) {
12744 if (complain) {
12745 Diag(OpRangeForComplaining.getBegin(), DiagIDForComplaining)
12746 << ovl.Expression->getName()
12747 << DestTypeForComplaining
12748 << OpRangeForComplaining
12749 << ovl.Expression->getQualifierLoc().getSourceRange();
12750 NoteAllOverloadCandidates(SrcExpr.get());
12751
12752 SrcExpr = ExprError();
12753 return true;
12754 }
12755
12756 return false;
12757 }
12758
12759 SrcExpr = SingleFunctionExpression;
12760 return true;
12761 }
12762
12763 /// Add a single candidate to the overload set.
AddOverloadedCallCandidate(Sema & S,DeclAccessPair FoundDecl,TemplateArgumentListInfo * ExplicitTemplateArgs,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet,bool PartialOverloading,bool KnownValid)12764 static void AddOverloadedCallCandidate(Sema &S,
12765 DeclAccessPair FoundDecl,
12766 TemplateArgumentListInfo *ExplicitTemplateArgs,
12767 ArrayRef<Expr *> Args,
12768 OverloadCandidateSet &CandidateSet,
12769 bool PartialOverloading,
12770 bool KnownValid) {
12771 NamedDecl *Callee = FoundDecl.getDecl();
12772 if (isa<UsingShadowDecl>(Callee))
12773 Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
12774
12775 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
12776 if (ExplicitTemplateArgs) {
12777 assert(!KnownValid && "Explicit template arguments?");
12778 return;
12779 }
12780 // Prevent ill-formed function decls to be added as overload candidates.
12781 if (!isa<FunctionProtoType>(Func->getType()->getAs<FunctionType>()))
12782 return;
12783
12784 S.AddOverloadCandidate(Func, FoundDecl, Args, CandidateSet,
12785 /*SuppressUserConversions=*/false,
12786 PartialOverloading);
12787 return;
12788 }
12789
12790 if (FunctionTemplateDecl *FuncTemplate
12791 = dyn_cast<FunctionTemplateDecl>(Callee)) {
12792 S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
12793 ExplicitTemplateArgs, Args, CandidateSet,
12794 /*SuppressUserConversions=*/false,
12795 PartialOverloading);
12796 return;
12797 }
12798
12799 assert(!KnownValid && "unhandled case in overloaded call candidate");
12800 }
12801
12802 /// Add the overload candidates named by callee and/or found by argument
12803 /// dependent lookup to the given overload set.
AddOverloadedCallCandidates(UnresolvedLookupExpr * ULE,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet,bool PartialOverloading)12804 void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
12805 ArrayRef<Expr *> Args,
12806 OverloadCandidateSet &CandidateSet,
12807 bool PartialOverloading) {
12808
12809 #ifndef NDEBUG
12810 // Verify that ArgumentDependentLookup is consistent with the rules
12811 // in C++0x [basic.lookup.argdep]p3:
12812 //
12813 // Let X be the lookup set produced by unqualified lookup (3.4.1)
12814 // and let Y be the lookup set produced by argument dependent
12815 // lookup (defined as follows). If X contains
12816 //
12817 // -- a declaration of a class member, or
12818 //
12819 // -- a block-scope function declaration that is not a
12820 // using-declaration, or
12821 //
12822 // -- a declaration that is neither a function or a function
12823 // template
12824 //
12825 // then Y is empty.
12826
12827 if (ULE->requiresADL()) {
12828 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
12829 E = ULE->decls_end(); I != E; ++I) {
12830 assert(!(*I)->getDeclContext()->isRecord());
12831 assert(isa<UsingShadowDecl>(*I) ||
12832 !(*I)->getDeclContext()->isFunctionOrMethod());
12833 assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
12834 }
12835 }
12836 #endif
12837
12838 // It would be nice to avoid this copy.
12839 TemplateArgumentListInfo TABuffer;
12840 TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr;
12841 if (ULE->hasExplicitTemplateArgs()) {
12842 ULE->copyTemplateArgumentsInto(TABuffer);
12843 ExplicitTemplateArgs = &TABuffer;
12844 }
12845
12846 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
12847 E = ULE->decls_end(); I != E; ++I)
12848 AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args,
12849 CandidateSet, PartialOverloading,
12850 /*KnownValid*/ true);
12851
12852 if (ULE->requiresADL())
12853 AddArgumentDependentLookupCandidates(ULE->getName(), ULE->getExprLoc(),
12854 Args, ExplicitTemplateArgs,
12855 CandidateSet, PartialOverloading);
12856 }
12857
12858 /// Add the call candidates from the given set of lookup results to the given
12859 /// overload set. Non-function lookup results are ignored.
AddOverloadedCallCandidates(LookupResult & R,TemplateArgumentListInfo * ExplicitTemplateArgs,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet)12860 void Sema::AddOverloadedCallCandidates(
12861 LookupResult &R, TemplateArgumentListInfo *ExplicitTemplateArgs,
12862 ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet) {
12863 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
12864 AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args,
12865 CandidateSet, false, /*KnownValid*/ false);
12866 }
12867
12868 /// Determine whether a declaration with the specified name could be moved into
12869 /// a different namespace.
canBeDeclaredInNamespace(const DeclarationName & Name)12870 static bool canBeDeclaredInNamespace(const DeclarationName &Name) {
12871 switch (Name.getCXXOverloadedOperator()) {
12872 case OO_New: case OO_Array_New:
12873 case OO_Delete: case OO_Array_Delete:
12874 return false;
12875
12876 default:
12877 return true;
12878 }
12879 }
12880
12881 /// Attempt to recover from an ill-formed use of a non-dependent name in a
12882 /// template, where the non-dependent name was declared after the template
12883 /// was defined. This is common in code written for a compilers which do not
12884 /// correctly implement two-stage name lookup.
12885 ///
12886 /// Returns true if a viable candidate was found and a diagnostic was issued.
DiagnoseTwoPhaseLookup(Sema & SemaRef,SourceLocation FnLoc,const CXXScopeSpec & SS,LookupResult & R,OverloadCandidateSet::CandidateSetKind CSK,TemplateArgumentListInfo * ExplicitTemplateArgs,ArrayRef<Expr * > Args,CXXRecordDecl ** FoundInClass=nullptr)12887 static bool DiagnoseTwoPhaseLookup(
12888 Sema &SemaRef, SourceLocation FnLoc, const CXXScopeSpec &SS,
12889 LookupResult &R, OverloadCandidateSet::CandidateSetKind CSK,
12890 TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args,
12891 CXXRecordDecl **FoundInClass = nullptr) {
12892 if (!SemaRef.inTemplateInstantiation() || !SS.isEmpty())
12893 return false;
12894
12895 for (DeclContext *DC = SemaRef.CurContext; DC; DC = DC->getParent()) {
12896 if (DC->isTransparentContext())
12897 continue;
12898
12899 SemaRef.LookupQualifiedName(R, DC);
12900
12901 if (!R.empty()) {
12902 R.suppressDiagnostics();
12903
12904 OverloadCandidateSet Candidates(FnLoc, CSK);
12905 SemaRef.AddOverloadedCallCandidates(R, ExplicitTemplateArgs, Args,
12906 Candidates);
12907
12908 OverloadCandidateSet::iterator Best;
12909 OverloadingResult OR =
12910 Candidates.BestViableFunction(SemaRef, FnLoc, Best);
12911
12912 if (auto *RD = dyn_cast<CXXRecordDecl>(DC)) {
12913 // We either found non-function declarations or a best viable function
12914 // at class scope. A class-scope lookup result disables ADL. Don't
12915 // look past this, but let the caller know that we found something that
12916 // either is, or might be, usable in this class.
12917 if (FoundInClass) {
12918 *FoundInClass = RD;
12919 if (OR == OR_Success) {
12920 R.clear();
12921 R.addDecl(Best->FoundDecl.getDecl(), Best->FoundDecl.getAccess());
12922 R.resolveKind();
12923 }
12924 }
12925 return false;
12926 }
12927
12928 if (OR != OR_Success) {
12929 // There wasn't a unique best function or function template.
12930 return false;
12931 }
12932
12933 // Find the namespaces where ADL would have looked, and suggest
12934 // declaring the function there instead.
12935 Sema::AssociatedNamespaceSet AssociatedNamespaces;
12936 Sema::AssociatedClassSet AssociatedClasses;
12937 SemaRef.FindAssociatedClassesAndNamespaces(FnLoc, Args,
12938 AssociatedNamespaces,
12939 AssociatedClasses);
12940 Sema::AssociatedNamespaceSet SuggestedNamespaces;
12941 if (canBeDeclaredInNamespace(R.getLookupName())) {
12942 DeclContext *Std = SemaRef.getStdNamespace();
12943 for (Sema::AssociatedNamespaceSet::iterator
12944 it = AssociatedNamespaces.begin(),
12945 end = AssociatedNamespaces.end(); it != end; ++it) {
12946 // Never suggest declaring a function within namespace 'std'.
12947 if (Std && Std->Encloses(*it))
12948 continue;
12949
12950 // Never suggest declaring a function within a namespace with a
12951 // reserved name, like __gnu_cxx.
12952 NamespaceDecl *NS = dyn_cast<NamespaceDecl>(*it);
12953 if (NS &&
12954 NS->getQualifiedNameAsString().find("__") != std::string::npos)
12955 continue;
12956
12957 SuggestedNamespaces.insert(*it);
12958 }
12959 }
12960
12961 SemaRef.Diag(R.getNameLoc(), diag::err_not_found_by_two_phase_lookup)
12962 << R.getLookupName();
12963 if (SuggestedNamespaces.empty()) {
12964 SemaRef.Diag(Best->Function->getLocation(),
12965 diag::note_not_found_by_two_phase_lookup)
12966 << R.getLookupName() << 0;
12967 } else if (SuggestedNamespaces.size() == 1) {
12968 SemaRef.Diag(Best->Function->getLocation(),
12969 diag::note_not_found_by_two_phase_lookup)
12970 << R.getLookupName() << 1 << *SuggestedNamespaces.begin();
12971 } else {
12972 // FIXME: It would be useful to list the associated namespaces here,
12973 // but the diagnostics infrastructure doesn't provide a way to produce
12974 // a localized representation of a list of items.
12975 SemaRef.Diag(Best->Function->getLocation(),
12976 diag::note_not_found_by_two_phase_lookup)
12977 << R.getLookupName() << 2;
12978 }
12979
12980 // Try to recover by calling this function.
12981 return true;
12982 }
12983
12984 R.clear();
12985 }
12986
12987 return false;
12988 }
12989
12990 /// Attempt to recover from ill-formed use of a non-dependent operator in a
12991 /// template, where the non-dependent operator was declared after the template
12992 /// was defined.
12993 ///
12994 /// Returns true if a viable candidate was found and a diagnostic was issued.
12995 static bool
DiagnoseTwoPhaseOperatorLookup(Sema & SemaRef,OverloadedOperatorKind Op,SourceLocation OpLoc,ArrayRef<Expr * > Args)12996 DiagnoseTwoPhaseOperatorLookup(Sema &SemaRef, OverloadedOperatorKind Op,
12997 SourceLocation OpLoc,
12998 ArrayRef<Expr *> Args) {
12999 DeclarationName OpName =
13000 SemaRef.Context.DeclarationNames.getCXXOperatorName(Op);
13001 LookupResult R(SemaRef, OpName, OpLoc, Sema::LookupOperatorName);
13002 return DiagnoseTwoPhaseLookup(SemaRef, OpLoc, CXXScopeSpec(), R,
13003 OverloadCandidateSet::CSK_Operator,
13004 /*ExplicitTemplateArgs=*/nullptr, Args);
13005 }
13006
13007 namespace {
13008 class BuildRecoveryCallExprRAII {
13009 Sema &SemaRef;
13010 public:
BuildRecoveryCallExprRAII(Sema & S)13011 BuildRecoveryCallExprRAII(Sema &S) : SemaRef(S) {
13012 assert(SemaRef.IsBuildingRecoveryCallExpr == false);
13013 SemaRef.IsBuildingRecoveryCallExpr = true;
13014 }
13015
~BuildRecoveryCallExprRAII()13016 ~BuildRecoveryCallExprRAII() {
13017 SemaRef.IsBuildingRecoveryCallExpr = false;
13018 }
13019 };
13020
13021 }
13022
13023 /// Attempts to recover from a call where no functions were found.
13024 ///
13025 /// This function will do one of three things:
13026 /// * Diagnose, recover, and return a recovery expression.
13027 /// * Diagnose, fail to recover, and return ExprError().
13028 /// * Do not diagnose, do not recover, and return ExprResult(). The caller is
13029 /// expected to diagnose as appropriate.
13030 static ExprResult
BuildRecoveryCallExpr(Sema & SemaRef,Scope * S,Expr * Fn,UnresolvedLookupExpr * ULE,SourceLocation LParenLoc,MutableArrayRef<Expr * > Args,SourceLocation RParenLoc,bool EmptyLookup,bool AllowTypoCorrection)13031 BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
13032 UnresolvedLookupExpr *ULE,
13033 SourceLocation LParenLoc,
13034 MutableArrayRef<Expr *> Args,
13035 SourceLocation RParenLoc,
13036 bool EmptyLookup, bool AllowTypoCorrection) {
13037 // Do not try to recover if it is already building a recovery call.
13038 // This stops infinite loops for template instantiations like
13039 //
13040 // template <typename T> auto foo(T t) -> decltype(foo(t)) {}
13041 // template <typename T> auto foo(T t) -> decltype(foo(&t)) {}
13042 if (SemaRef.IsBuildingRecoveryCallExpr)
13043 return ExprResult();
13044 BuildRecoveryCallExprRAII RCE(SemaRef);
13045
13046 CXXScopeSpec SS;
13047 SS.Adopt(ULE->getQualifierLoc());
13048 SourceLocation TemplateKWLoc = ULE->getTemplateKeywordLoc();
13049
13050 TemplateArgumentListInfo TABuffer;
13051 TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr;
13052 if (ULE->hasExplicitTemplateArgs()) {
13053 ULE->copyTemplateArgumentsInto(TABuffer);
13054 ExplicitTemplateArgs = &TABuffer;
13055 }
13056
13057 LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
13058 Sema::LookupOrdinaryName);
13059 CXXRecordDecl *FoundInClass = nullptr;
13060 if (DiagnoseTwoPhaseLookup(SemaRef, Fn->getExprLoc(), SS, R,
13061 OverloadCandidateSet::CSK_Normal,
13062 ExplicitTemplateArgs, Args, &FoundInClass)) {
13063 // OK, diagnosed a two-phase lookup issue.
13064 } else if (EmptyLookup) {
13065 // Try to recover from an empty lookup with typo correction.
13066 R.clear();
13067 NoTypoCorrectionCCC NoTypoValidator{};
13068 FunctionCallFilterCCC FunctionCallValidator(SemaRef, Args.size(),
13069 ExplicitTemplateArgs != nullptr,
13070 dyn_cast<MemberExpr>(Fn));
13071 CorrectionCandidateCallback &Validator =
13072 AllowTypoCorrection
13073 ? static_cast<CorrectionCandidateCallback &>(FunctionCallValidator)
13074 : static_cast<CorrectionCandidateCallback &>(NoTypoValidator);
13075 if (SemaRef.DiagnoseEmptyLookup(S, SS, R, Validator, ExplicitTemplateArgs,
13076 Args))
13077 return ExprError();
13078 } else if (FoundInClass && SemaRef.getLangOpts().MSVCCompat) {
13079 // We found a usable declaration of the name in a dependent base of some
13080 // enclosing class.
13081 // FIXME: We should also explain why the candidates found by name lookup
13082 // were not viable.
13083 if (SemaRef.DiagnoseDependentMemberLookup(R))
13084 return ExprError();
13085 } else {
13086 // We had viable candidates and couldn't recover; let the caller diagnose
13087 // this.
13088 return ExprResult();
13089 }
13090
13091 // If we get here, we should have issued a diagnostic and formed a recovery
13092 // lookup result.
13093 assert(!R.empty() && "lookup results empty despite recovery");
13094
13095 // If recovery created an ambiguity, just bail out.
13096 if (R.isAmbiguous()) {
13097 R.suppressDiagnostics();
13098 return ExprError();
13099 }
13100
13101 // Build an implicit member call if appropriate. Just drop the
13102 // casts and such from the call, we don't really care.
13103 ExprResult NewFn = ExprError();
13104 if ((*R.begin())->isCXXClassMember())
13105 NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc, R,
13106 ExplicitTemplateArgs, S);
13107 else if (ExplicitTemplateArgs || TemplateKWLoc.isValid())
13108 NewFn = SemaRef.BuildTemplateIdExpr(SS, TemplateKWLoc, R, false,
13109 ExplicitTemplateArgs);
13110 else
13111 NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
13112
13113 if (NewFn.isInvalid())
13114 return ExprError();
13115
13116 // This shouldn't cause an infinite loop because we're giving it
13117 // an expression with viable lookup results, which should never
13118 // end up here.
13119 return SemaRef.BuildCallExpr(/*Scope*/ nullptr, NewFn.get(), LParenLoc,
13120 MultiExprArg(Args.data(), Args.size()),
13121 RParenLoc);
13122 }
13123
13124 /// Constructs and populates an OverloadedCandidateSet from
13125 /// the given function.
13126 /// \returns true when an the ExprResult output parameter has been set.
buildOverloadedCallSet(Scope * S,Expr * Fn,UnresolvedLookupExpr * ULE,MultiExprArg Args,SourceLocation RParenLoc,OverloadCandidateSet * CandidateSet,ExprResult * Result)13127 bool Sema::buildOverloadedCallSet(Scope *S, Expr *Fn,
13128 UnresolvedLookupExpr *ULE,
13129 MultiExprArg Args,
13130 SourceLocation RParenLoc,
13131 OverloadCandidateSet *CandidateSet,
13132 ExprResult *Result) {
13133 #ifndef NDEBUG
13134 if (ULE->requiresADL()) {
13135 // To do ADL, we must have found an unqualified name.
13136 assert(!ULE->getQualifier() && "qualified name with ADL");
13137
13138 // We don't perform ADL for implicit declarations of builtins.
13139 // Verify that this was correctly set up.
13140 FunctionDecl *F;
13141 if (ULE->decls_begin() != ULE->decls_end() &&
13142 ULE->decls_begin() + 1 == ULE->decls_end() &&
13143 (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
13144 F->getBuiltinID() && F->isImplicit())
13145 llvm_unreachable("performing ADL for builtin");
13146
13147 // We don't perform ADL in C.
13148 assert(getLangOpts().CPlusPlus && "ADL enabled in C");
13149 }
13150 #endif
13151
13152 UnbridgedCastsSet UnbridgedCasts;
13153 if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts)) {
13154 *Result = ExprError();
13155 return true;
13156 }
13157
13158 // Add the functions denoted by the callee to the set of candidate
13159 // functions, including those from argument-dependent lookup.
13160 AddOverloadedCallCandidates(ULE, Args, *CandidateSet);
13161
13162 if (getLangOpts().MSVCCompat &&
13163 CurContext->isDependentContext() && !isSFINAEContext() &&
13164 (isa<FunctionDecl>(CurContext) || isa<CXXRecordDecl>(CurContext))) {
13165
13166 OverloadCandidateSet::iterator Best;
13167 if (CandidateSet->empty() ||
13168 CandidateSet->BestViableFunction(*this, Fn->getBeginLoc(), Best) ==
13169 OR_No_Viable_Function) {
13170 // In Microsoft mode, if we are inside a template class member function
13171 // then create a type dependent CallExpr. The goal is to postpone name
13172 // lookup to instantiation time to be able to search into type dependent
13173 // base classes.
13174 CallExpr *CE =
13175 CallExpr::Create(Context, Fn, Args, Context.DependentTy, VK_PRValue,
13176 RParenLoc, CurFPFeatureOverrides());
13177 CE->markDependentForPostponedNameLookup();
13178 *Result = CE;
13179 return true;
13180 }
13181 }
13182
13183 if (CandidateSet->empty())
13184 return false;
13185
13186 UnbridgedCasts.restore();
13187 return false;
13188 }
13189
13190 // Guess at what the return type for an unresolvable overload should be.
chooseRecoveryType(OverloadCandidateSet & CS,OverloadCandidateSet::iterator * Best)13191 static QualType chooseRecoveryType(OverloadCandidateSet &CS,
13192 OverloadCandidateSet::iterator *Best) {
13193 llvm::Optional<QualType> Result;
13194 // Adjust Type after seeing a candidate.
13195 auto ConsiderCandidate = [&](const OverloadCandidate &Candidate) {
13196 if (!Candidate.Function)
13197 return;
13198 if (Candidate.Function->isInvalidDecl())
13199 return;
13200 QualType T = Candidate.Function->getReturnType();
13201 if (T.isNull())
13202 return;
13203 if (!Result)
13204 Result = T;
13205 else if (Result != T)
13206 Result = QualType();
13207 };
13208
13209 // Look for an unambiguous type from a progressively larger subset.
13210 // e.g. if types disagree, but all *viable* overloads return int, choose int.
13211 //
13212 // First, consider only the best candidate.
13213 if (Best && *Best != CS.end())
13214 ConsiderCandidate(**Best);
13215 // Next, consider only viable candidates.
13216 if (!Result)
13217 for (const auto &C : CS)
13218 if (C.Viable)
13219 ConsiderCandidate(C);
13220 // Finally, consider all candidates.
13221 if (!Result)
13222 for (const auto &C : CS)
13223 ConsiderCandidate(C);
13224
13225 if (!Result)
13226 return QualType();
13227 auto Value = *Result;
13228 if (Value.isNull() || Value->isUndeducedType())
13229 return QualType();
13230 return Value;
13231 }
13232
13233 /// FinishOverloadedCallExpr - given an OverloadCandidateSet, builds and returns
13234 /// the completed call expression. If overload resolution fails, emits
13235 /// diagnostics and returns ExprError()
FinishOverloadedCallExpr(Sema & SemaRef,Scope * S,Expr * Fn,UnresolvedLookupExpr * ULE,SourceLocation LParenLoc,MultiExprArg Args,SourceLocation RParenLoc,Expr * ExecConfig,OverloadCandidateSet * CandidateSet,OverloadCandidateSet::iterator * Best,OverloadingResult OverloadResult,bool AllowTypoCorrection)13236 static ExprResult FinishOverloadedCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
13237 UnresolvedLookupExpr *ULE,
13238 SourceLocation LParenLoc,
13239 MultiExprArg Args,
13240 SourceLocation RParenLoc,
13241 Expr *ExecConfig,
13242 OverloadCandidateSet *CandidateSet,
13243 OverloadCandidateSet::iterator *Best,
13244 OverloadingResult OverloadResult,
13245 bool AllowTypoCorrection) {
13246 switch (OverloadResult) {
13247 case OR_Success: {
13248 FunctionDecl *FDecl = (*Best)->Function;
13249 SemaRef.CheckUnresolvedLookupAccess(ULE, (*Best)->FoundDecl);
13250 if (SemaRef.DiagnoseUseOfDecl(FDecl, ULE->getNameLoc()))
13251 return ExprError();
13252 Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
13253 return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc,
13254 ExecConfig, /*IsExecConfig=*/false,
13255 (*Best)->IsADLCandidate);
13256 }
13257
13258 case OR_No_Viable_Function: {
13259 // Try to recover by looking for viable functions which the user might
13260 // have meant to call.
13261 ExprResult Recovery = BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc,
13262 Args, RParenLoc,
13263 CandidateSet->empty(),
13264 AllowTypoCorrection);
13265 if (Recovery.isInvalid() || Recovery.isUsable())
13266 return Recovery;
13267
13268 // If the user passes in a function that we can't take the address of, we
13269 // generally end up emitting really bad error messages. Here, we attempt to
13270 // emit better ones.
13271 for (const Expr *Arg : Args) {
13272 if (!Arg->getType()->isFunctionType())
13273 continue;
13274 if (auto *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts())) {
13275 auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl());
13276 if (FD &&
13277 !SemaRef.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
13278 Arg->getExprLoc()))
13279 return ExprError();
13280 }
13281 }
13282
13283 CandidateSet->NoteCandidates(
13284 PartialDiagnosticAt(
13285 Fn->getBeginLoc(),
13286 SemaRef.PDiag(diag::err_ovl_no_viable_function_in_call)
13287 << ULE->getName() << Fn->getSourceRange()),
13288 SemaRef, OCD_AllCandidates, Args);
13289 break;
13290 }
13291
13292 case OR_Ambiguous:
13293 CandidateSet->NoteCandidates(
13294 PartialDiagnosticAt(Fn->getBeginLoc(),
13295 SemaRef.PDiag(diag::err_ovl_ambiguous_call)
13296 << ULE->getName() << Fn->getSourceRange()),
13297 SemaRef, OCD_AmbiguousCandidates, Args);
13298 break;
13299
13300 case OR_Deleted: {
13301 CandidateSet->NoteCandidates(
13302 PartialDiagnosticAt(Fn->getBeginLoc(),
13303 SemaRef.PDiag(diag::err_ovl_deleted_call)
13304 << ULE->getName() << Fn->getSourceRange()),
13305 SemaRef, OCD_AllCandidates, Args);
13306
13307 // We emitted an error for the unavailable/deleted function call but keep
13308 // the call in the AST.
13309 FunctionDecl *FDecl = (*Best)->Function;
13310 Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
13311 return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc,
13312 ExecConfig, /*IsExecConfig=*/false,
13313 (*Best)->IsADLCandidate);
13314 }
13315 }
13316
13317 // Overload resolution failed, try to recover.
13318 SmallVector<Expr *, 8> SubExprs = {Fn};
13319 SubExprs.append(Args.begin(), Args.end());
13320 return SemaRef.CreateRecoveryExpr(Fn->getBeginLoc(), RParenLoc, SubExprs,
13321 chooseRecoveryType(*CandidateSet, Best));
13322 }
13323
markUnaddressableCandidatesUnviable(Sema & S,OverloadCandidateSet & CS)13324 static void markUnaddressableCandidatesUnviable(Sema &S,
13325 OverloadCandidateSet &CS) {
13326 for (auto I = CS.begin(), E = CS.end(); I != E; ++I) {
13327 if (I->Viable &&
13328 !S.checkAddressOfFunctionIsAvailable(I->Function, /*Complain=*/false)) {
13329 I->Viable = false;
13330 I->FailureKind = ovl_fail_addr_not_available;
13331 }
13332 }
13333 }
13334
13335 /// BuildOverloadedCallExpr - Given the call expression that calls Fn
13336 /// (which eventually refers to the declaration Func) and the call
13337 /// arguments Args/NumArgs, attempt to resolve the function call down
13338 /// to a specific function. If overload resolution succeeds, returns
13339 /// the call expression produced by overload resolution.
13340 /// Otherwise, emits diagnostics and returns ExprError.
BuildOverloadedCallExpr(Scope * S,Expr * Fn,UnresolvedLookupExpr * ULE,SourceLocation LParenLoc,MultiExprArg Args,SourceLocation RParenLoc,Expr * ExecConfig,bool AllowTypoCorrection,bool CalleesAddressIsTaken)13341 ExprResult Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn,
13342 UnresolvedLookupExpr *ULE,
13343 SourceLocation LParenLoc,
13344 MultiExprArg Args,
13345 SourceLocation RParenLoc,
13346 Expr *ExecConfig,
13347 bool AllowTypoCorrection,
13348 bool CalleesAddressIsTaken) {
13349 OverloadCandidateSet CandidateSet(Fn->getExprLoc(),
13350 OverloadCandidateSet::CSK_Normal);
13351 ExprResult result;
13352
13353 if (buildOverloadedCallSet(S, Fn, ULE, Args, LParenLoc, &CandidateSet,
13354 &result))
13355 return result;
13356
13357 // If the user handed us something like `(&Foo)(Bar)`, we need to ensure that
13358 // functions that aren't addressible are considered unviable.
13359 if (CalleesAddressIsTaken)
13360 markUnaddressableCandidatesUnviable(*this, CandidateSet);
13361
13362 OverloadCandidateSet::iterator Best;
13363 OverloadingResult OverloadResult =
13364 CandidateSet.BestViableFunction(*this, Fn->getBeginLoc(), Best);
13365
13366 return FinishOverloadedCallExpr(*this, S, Fn, ULE, LParenLoc, Args, RParenLoc,
13367 ExecConfig, &CandidateSet, &Best,
13368 OverloadResult, AllowTypoCorrection);
13369 }
13370
IsOverloaded(const UnresolvedSetImpl & Functions)13371 static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
13372 return Functions.size() > 1 ||
13373 (Functions.size() == 1 &&
13374 isa<FunctionTemplateDecl>((*Functions.begin())->getUnderlyingDecl()));
13375 }
13376
CreateUnresolvedLookupExpr(CXXRecordDecl * NamingClass,NestedNameSpecifierLoc NNSLoc,DeclarationNameInfo DNI,const UnresolvedSetImpl & Fns,bool PerformADL)13377 ExprResult Sema::CreateUnresolvedLookupExpr(CXXRecordDecl *NamingClass,
13378 NestedNameSpecifierLoc NNSLoc,
13379 DeclarationNameInfo DNI,
13380 const UnresolvedSetImpl &Fns,
13381 bool PerformADL) {
13382 return UnresolvedLookupExpr::Create(Context, NamingClass, NNSLoc, DNI,
13383 PerformADL, IsOverloaded(Fns),
13384 Fns.begin(), Fns.end());
13385 }
13386
13387 /// Create a unary operation that may resolve to an overloaded
13388 /// operator.
13389 ///
13390 /// \param OpLoc The location of the operator itself (e.g., '*').
13391 ///
13392 /// \param Opc The UnaryOperatorKind that describes this operator.
13393 ///
13394 /// \param Fns The set of non-member functions that will be
13395 /// considered by overload resolution. The caller needs to build this
13396 /// set based on the context using, e.g.,
13397 /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
13398 /// set should not contain any member functions; those will be added
13399 /// by CreateOverloadedUnaryOp().
13400 ///
13401 /// \param Input The input argument.
13402 ExprResult
CreateOverloadedUnaryOp(SourceLocation OpLoc,UnaryOperatorKind Opc,const UnresolvedSetImpl & Fns,Expr * Input,bool PerformADL)13403 Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, UnaryOperatorKind Opc,
13404 const UnresolvedSetImpl &Fns,
13405 Expr *Input, bool PerformADL) {
13406 OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
13407 assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
13408 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
13409 // TODO: provide better source location info.
13410 DeclarationNameInfo OpNameInfo(OpName, OpLoc);
13411
13412 if (checkPlaceholderForOverload(*this, Input))
13413 return ExprError();
13414
13415 Expr *Args[2] = { Input, nullptr };
13416 unsigned NumArgs = 1;
13417
13418 // For post-increment and post-decrement, add the implicit '0' as
13419 // the second argument, so that we know this is a post-increment or
13420 // post-decrement.
13421 if (Opc == UO_PostInc || Opc == UO_PostDec) {
13422 llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
13423 Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy,
13424 SourceLocation());
13425 NumArgs = 2;
13426 }
13427
13428 ArrayRef<Expr *> ArgsArray(Args, NumArgs);
13429
13430 if (Input->isTypeDependent()) {
13431 if (Fns.empty())
13432 return UnaryOperator::Create(Context, Input, Opc, Context.DependentTy,
13433 VK_PRValue, OK_Ordinary, OpLoc, false,
13434 CurFPFeatureOverrides());
13435
13436 CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
13437 ExprResult Fn = CreateUnresolvedLookupExpr(
13438 NamingClass, NestedNameSpecifierLoc(), OpNameInfo, Fns);
13439 if (Fn.isInvalid())
13440 return ExprError();
13441 return CXXOperatorCallExpr::Create(Context, Op, Fn.get(), ArgsArray,
13442 Context.DependentTy, VK_PRValue, OpLoc,
13443 CurFPFeatureOverrides());
13444 }
13445
13446 // Build an empty overload set.
13447 OverloadCandidateSet CandidateSet(OpLoc, OverloadCandidateSet::CSK_Operator);
13448
13449 // Add the candidates from the given function set.
13450 AddNonMemberOperatorCandidates(Fns, ArgsArray, CandidateSet);
13451
13452 // Add operator candidates that are member functions.
13453 AddMemberOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet);
13454
13455 // Add candidates from ADL.
13456 if (PerformADL) {
13457 AddArgumentDependentLookupCandidates(OpName, OpLoc, ArgsArray,
13458 /*ExplicitTemplateArgs*/nullptr,
13459 CandidateSet);
13460 }
13461
13462 // Add builtin operator candidates.
13463 AddBuiltinOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet);
13464
13465 bool HadMultipleCandidates = (CandidateSet.size() > 1);
13466
13467 // Perform overload resolution.
13468 OverloadCandidateSet::iterator Best;
13469 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
13470 case OR_Success: {
13471 // We found a built-in operator or an overloaded operator.
13472 FunctionDecl *FnDecl = Best->Function;
13473
13474 if (FnDecl) {
13475 Expr *Base = nullptr;
13476 // We matched an overloaded operator. Build a call to that
13477 // operator.
13478
13479 // Convert the arguments.
13480 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
13481 CheckMemberOperatorAccess(OpLoc, Args[0], nullptr, Best->FoundDecl);
13482
13483 ExprResult InputRes =
13484 PerformObjectArgumentInitialization(Input, /*Qualifier=*/nullptr,
13485 Best->FoundDecl, Method);
13486 if (InputRes.isInvalid())
13487 return ExprError();
13488 Base = Input = InputRes.get();
13489 } else {
13490 // Convert the arguments.
13491 ExprResult InputInit
13492 = PerformCopyInitialization(InitializedEntity::InitializeParameter(
13493 Context,
13494 FnDecl->getParamDecl(0)),
13495 SourceLocation(),
13496 Input);
13497 if (InputInit.isInvalid())
13498 return ExprError();
13499 Input = InputInit.get();
13500 }
13501
13502 // Build the actual expression node.
13503 ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, Best->FoundDecl,
13504 Base, HadMultipleCandidates,
13505 OpLoc);
13506 if (FnExpr.isInvalid())
13507 return ExprError();
13508
13509 // Determine the result type.
13510 QualType ResultTy = FnDecl->getReturnType();
13511 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
13512 ResultTy = ResultTy.getNonLValueExprType(Context);
13513
13514 Args[0] = Input;
13515 CallExpr *TheCall = CXXOperatorCallExpr::Create(
13516 Context, Op, FnExpr.get(), ArgsArray, ResultTy, VK, OpLoc,
13517 CurFPFeatureOverrides(), Best->IsADLCandidate);
13518
13519 if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall, FnDecl))
13520 return ExprError();
13521
13522 if (CheckFunctionCall(FnDecl, TheCall,
13523 FnDecl->getType()->castAs<FunctionProtoType>()))
13524 return ExprError();
13525 return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), FnDecl);
13526 } else {
13527 // We matched a built-in operator. Convert the arguments, then
13528 // break out so that we will build the appropriate built-in
13529 // operator node.
13530 ExprResult InputRes = PerformImplicitConversion(
13531 Input, Best->BuiltinParamTypes[0], Best->Conversions[0], AA_Passing,
13532 CCK_ForBuiltinOverloadedOp);
13533 if (InputRes.isInvalid())
13534 return ExprError();
13535 Input = InputRes.get();
13536 break;
13537 }
13538 }
13539
13540 case OR_No_Viable_Function:
13541 // This is an erroneous use of an operator which can be overloaded by
13542 // a non-member function. Check for non-member operators which were
13543 // defined too late to be candidates.
13544 if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, ArgsArray))
13545 // FIXME: Recover by calling the found function.
13546 return ExprError();
13547
13548 // No viable function; fall through to handling this as a
13549 // built-in operator, which will produce an error message for us.
13550 break;
13551
13552 case OR_Ambiguous:
13553 CandidateSet.NoteCandidates(
13554 PartialDiagnosticAt(OpLoc,
13555 PDiag(diag::err_ovl_ambiguous_oper_unary)
13556 << UnaryOperator::getOpcodeStr(Opc)
13557 << Input->getType() << Input->getSourceRange()),
13558 *this, OCD_AmbiguousCandidates, ArgsArray,
13559 UnaryOperator::getOpcodeStr(Opc), OpLoc);
13560 return ExprError();
13561
13562 case OR_Deleted:
13563 CandidateSet.NoteCandidates(
13564 PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_deleted_oper)
13565 << UnaryOperator::getOpcodeStr(Opc)
13566 << Input->getSourceRange()),
13567 *this, OCD_AllCandidates, ArgsArray, UnaryOperator::getOpcodeStr(Opc),
13568 OpLoc);
13569 return ExprError();
13570 }
13571
13572 // Either we found no viable overloaded operator or we matched a
13573 // built-in operator. In either case, fall through to trying to
13574 // build a built-in operation.
13575 return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
13576 }
13577
13578 /// Perform lookup for an overloaded binary operator.
LookupOverloadedBinOp(OverloadCandidateSet & CandidateSet,OverloadedOperatorKind Op,const UnresolvedSetImpl & Fns,ArrayRef<Expr * > Args,bool PerformADL)13579 void Sema::LookupOverloadedBinOp(OverloadCandidateSet &CandidateSet,
13580 OverloadedOperatorKind Op,
13581 const UnresolvedSetImpl &Fns,
13582 ArrayRef<Expr *> Args, bool PerformADL) {
13583 SourceLocation OpLoc = CandidateSet.getLocation();
13584
13585 OverloadedOperatorKind ExtraOp =
13586 CandidateSet.getRewriteInfo().AllowRewrittenCandidates
13587 ? getRewrittenOverloadedOperator(Op)
13588 : OO_None;
13589
13590 // Add the candidates from the given function set. This also adds the
13591 // rewritten candidates using these functions if necessary.
13592 AddNonMemberOperatorCandidates(Fns, Args, CandidateSet);
13593
13594 // Add operator candidates that are member functions.
13595 AddMemberOperatorCandidates(Op, OpLoc, Args, CandidateSet);
13596 if (CandidateSet.getRewriteInfo().shouldAddReversed(Op))
13597 AddMemberOperatorCandidates(Op, OpLoc, {Args[1], Args[0]}, CandidateSet,
13598 OverloadCandidateParamOrder::Reversed);
13599
13600 // In C++20, also add any rewritten member candidates.
13601 if (ExtraOp) {
13602 AddMemberOperatorCandidates(ExtraOp, OpLoc, Args, CandidateSet);
13603 if (CandidateSet.getRewriteInfo().shouldAddReversed(ExtraOp))
13604 AddMemberOperatorCandidates(ExtraOp, OpLoc, {Args[1], Args[0]},
13605 CandidateSet,
13606 OverloadCandidateParamOrder::Reversed);
13607 }
13608
13609 // Add candidates from ADL. Per [over.match.oper]p2, this lookup is not
13610 // performed for an assignment operator (nor for operator[] nor operator->,
13611 // which don't get here).
13612 if (Op != OO_Equal && PerformADL) {
13613 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
13614 AddArgumentDependentLookupCandidates(OpName, OpLoc, Args,
13615 /*ExplicitTemplateArgs*/ nullptr,
13616 CandidateSet);
13617 if (ExtraOp) {
13618 DeclarationName ExtraOpName =
13619 Context.DeclarationNames.getCXXOperatorName(ExtraOp);
13620 AddArgumentDependentLookupCandidates(ExtraOpName, OpLoc, Args,
13621 /*ExplicitTemplateArgs*/ nullptr,
13622 CandidateSet);
13623 }
13624 }
13625
13626 // Add builtin operator candidates.
13627 //
13628 // FIXME: We don't add any rewritten candidates here. This is strictly
13629 // incorrect; a builtin candidate could be hidden by a non-viable candidate,
13630 // resulting in our selecting a rewritten builtin candidate. For example:
13631 //
13632 // enum class E { e };
13633 // bool operator!=(E, E) requires false;
13634 // bool k = E::e != E::e;
13635 //
13636 // ... should select the rewritten builtin candidate 'operator==(E, E)'. But
13637 // it seems unreasonable to consider rewritten builtin candidates. A core
13638 // issue has been filed proposing to removed this requirement.
13639 AddBuiltinOperatorCandidates(Op, OpLoc, Args, CandidateSet);
13640 }
13641
13642 /// Create a binary operation that may resolve to an overloaded
13643 /// operator.
13644 ///
13645 /// \param OpLoc The location of the operator itself (e.g., '+').
13646 ///
13647 /// \param Opc The BinaryOperatorKind that describes this operator.
13648 ///
13649 /// \param Fns The set of non-member functions that will be
13650 /// considered by overload resolution. The caller needs to build this
13651 /// set based on the context using, e.g.,
13652 /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
13653 /// set should not contain any member functions; those will be added
13654 /// by CreateOverloadedBinOp().
13655 ///
13656 /// \param LHS Left-hand argument.
13657 /// \param RHS Right-hand argument.
13658 /// \param PerformADL Whether to consider operator candidates found by ADL.
13659 /// \param AllowRewrittenCandidates Whether to consider candidates found by
13660 /// C++20 operator rewrites.
13661 /// \param DefaultedFn If we are synthesizing a defaulted operator function,
13662 /// the function in question. Such a function is never a candidate in
13663 /// our overload resolution. This also enables synthesizing a three-way
13664 /// comparison from < and == as described in C++20 [class.spaceship]p1.
CreateOverloadedBinOp(SourceLocation OpLoc,BinaryOperatorKind Opc,const UnresolvedSetImpl & Fns,Expr * LHS,Expr * RHS,bool PerformADL,bool AllowRewrittenCandidates,FunctionDecl * DefaultedFn)13665 ExprResult Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
13666 BinaryOperatorKind Opc,
13667 const UnresolvedSetImpl &Fns, Expr *LHS,
13668 Expr *RHS, bool PerformADL,
13669 bool AllowRewrittenCandidates,
13670 FunctionDecl *DefaultedFn) {
13671 Expr *Args[2] = { LHS, RHS };
13672 LHS=RHS=nullptr; // Please use only Args instead of LHS/RHS couple
13673
13674 if (!getLangOpts().CPlusPlus20)
13675 AllowRewrittenCandidates = false;
13676
13677 OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
13678
13679 // If either side is type-dependent, create an appropriate dependent
13680 // expression.
13681 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
13682 if (Fns.empty()) {
13683 // If there are no functions to store, just build a dependent
13684 // BinaryOperator or CompoundAssignment.
13685 if (BinaryOperator::isCompoundAssignmentOp(Opc))
13686 return CompoundAssignOperator::Create(
13687 Context, Args[0], Args[1], Opc, Context.DependentTy, VK_LValue,
13688 OK_Ordinary, OpLoc, CurFPFeatureOverrides(), Context.DependentTy,
13689 Context.DependentTy);
13690 return BinaryOperator::Create(
13691 Context, Args[0], Args[1], Opc, Context.DependentTy, VK_PRValue,
13692 OK_Ordinary, OpLoc, CurFPFeatureOverrides());
13693 }
13694
13695 // FIXME: save results of ADL from here?
13696 CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
13697 // TODO: provide better source location info in DNLoc component.
13698 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
13699 DeclarationNameInfo OpNameInfo(OpName, OpLoc);
13700 ExprResult Fn = CreateUnresolvedLookupExpr(
13701 NamingClass, NestedNameSpecifierLoc(), OpNameInfo, Fns, PerformADL);
13702 if (Fn.isInvalid())
13703 return ExprError();
13704 return CXXOperatorCallExpr::Create(Context, Op, Fn.get(), Args,
13705 Context.DependentTy, VK_PRValue, OpLoc,
13706 CurFPFeatureOverrides());
13707 }
13708
13709 // Always do placeholder-like conversions on the RHS.
13710 if (checkPlaceholderForOverload(*this, Args[1]))
13711 return ExprError();
13712
13713 // Do placeholder-like conversion on the LHS; note that we should
13714 // not get here with a PseudoObject LHS.
13715 assert(Args[0]->getObjectKind() != OK_ObjCProperty);
13716 if (checkPlaceholderForOverload(*this, Args[0]))
13717 return ExprError();
13718
13719 // If this is the assignment operator, we only perform overload resolution
13720 // if the left-hand side is a class or enumeration type. This is actually
13721 // a hack. The standard requires that we do overload resolution between the
13722 // various built-in candidates, but as DR507 points out, this can lead to
13723 // problems. So we do it this way, which pretty much follows what GCC does.
13724 // Note that we go the traditional code path for compound assignment forms.
13725 if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType())
13726 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
13727
13728 // If this is the .* operator, which is not overloadable, just
13729 // create a built-in binary operator.
13730 if (Opc == BO_PtrMemD)
13731 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
13732
13733 // Build the overload set.
13734 OverloadCandidateSet CandidateSet(
13735 OpLoc, OverloadCandidateSet::CSK_Operator,
13736 OverloadCandidateSet::OperatorRewriteInfo(Op, AllowRewrittenCandidates));
13737 if (DefaultedFn)
13738 CandidateSet.exclude(DefaultedFn);
13739 LookupOverloadedBinOp(CandidateSet, Op, Fns, Args, PerformADL);
13740
13741 bool HadMultipleCandidates = (CandidateSet.size() > 1);
13742
13743 // Perform overload resolution.
13744 OverloadCandidateSet::iterator Best;
13745 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
13746 case OR_Success: {
13747 // We found a built-in operator or an overloaded operator.
13748 FunctionDecl *FnDecl = Best->Function;
13749
13750 bool IsReversed = Best->isReversed();
13751 if (IsReversed)
13752 std::swap(Args[0], Args[1]);
13753
13754 if (FnDecl) {
13755 Expr *Base = nullptr;
13756 // We matched an overloaded operator. Build a call to that
13757 // operator.
13758
13759 OverloadedOperatorKind ChosenOp =
13760 FnDecl->getDeclName().getCXXOverloadedOperator();
13761
13762 // C++2a [over.match.oper]p9:
13763 // If a rewritten operator== candidate is selected by overload
13764 // resolution for an operator@, its return type shall be cv bool
13765 if (Best->RewriteKind && ChosenOp == OO_EqualEqual &&
13766 !FnDecl->getReturnType()->isBooleanType()) {
13767 bool IsExtension =
13768 FnDecl->getReturnType()->isIntegralOrUnscopedEnumerationType();
13769 Diag(OpLoc, IsExtension ? diag::ext_ovl_rewrite_equalequal_not_bool
13770 : diag::err_ovl_rewrite_equalequal_not_bool)
13771 << FnDecl->getReturnType() << BinaryOperator::getOpcodeStr(Opc)
13772 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
13773 Diag(FnDecl->getLocation(), diag::note_declared_at);
13774 if (!IsExtension)
13775 return ExprError();
13776 }
13777
13778 if (AllowRewrittenCandidates && !IsReversed &&
13779 CandidateSet.getRewriteInfo().isReversible()) {
13780 // We could have reversed this operator, but didn't. Check if some
13781 // reversed form was a viable candidate, and if so, if it had a
13782 // better conversion for either parameter. If so, this call is
13783 // formally ambiguous, and allowing it is an extension.
13784 llvm::SmallVector<FunctionDecl*, 4> AmbiguousWith;
13785 for (OverloadCandidate &Cand : CandidateSet) {
13786 if (Cand.Viable && Cand.Function && Cand.isReversed() &&
13787 haveSameParameterTypes(Context, Cand.Function, FnDecl, 2)) {
13788 for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
13789 if (CompareImplicitConversionSequences(
13790 *this, OpLoc, Cand.Conversions[ArgIdx],
13791 Best->Conversions[ArgIdx]) ==
13792 ImplicitConversionSequence::Better) {
13793 AmbiguousWith.push_back(Cand.Function);
13794 break;
13795 }
13796 }
13797 }
13798 }
13799
13800 if (!AmbiguousWith.empty()) {
13801 bool AmbiguousWithSelf =
13802 AmbiguousWith.size() == 1 &&
13803 declaresSameEntity(AmbiguousWith.front(), FnDecl);
13804 Diag(OpLoc, diag::ext_ovl_ambiguous_oper_binary_reversed)
13805 << BinaryOperator::getOpcodeStr(Opc)
13806 << Args[0]->getType() << Args[1]->getType() << AmbiguousWithSelf
13807 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
13808 if (AmbiguousWithSelf) {
13809 Diag(FnDecl->getLocation(),
13810 diag::note_ovl_ambiguous_oper_binary_reversed_self);
13811 } else {
13812 Diag(FnDecl->getLocation(),
13813 diag::note_ovl_ambiguous_oper_binary_selected_candidate);
13814 for (auto *F : AmbiguousWith)
13815 Diag(F->getLocation(),
13816 diag::note_ovl_ambiguous_oper_binary_reversed_candidate);
13817 }
13818 }
13819 }
13820
13821 // Convert the arguments.
13822 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
13823 // Best->Access is only meaningful for class members.
13824 CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);
13825
13826 ExprResult Arg1 =
13827 PerformCopyInitialization(
13828 InitializedEntity::InitializeParameter(Context,
13829 FnDecl->getParamDecl(0)),
13830 SourceLocation(), Args[1]);
13831 if (Arg1.isInvalid())
13832 return ExprError();
13833
13834 ExprResult Arg0 =
13835 PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr,
13836 Best->FoundDecl, Method);
13837 if (Arg0.isInvalid())
13838 return ExprError();
13839 Base = Args[0] = Arg0.getAs<Expr>();
13840 Args[1] = RHS = Arg1.getAs<Expr>();
13841 } else {
13842 // Convert the arguments.
13843 ExprResult Arg0 = PerformCopyInitialization(
13844 InitializedEntity::InitializeParameter(Context,
13845 FnDecl->getParamDecl(0)),
13846 SourceLocation(), Args[0]);
13847 if (Arg0.isInvalid())
13848 return ExprError();
13849
13850 ExprResult Arg1 =
13851 PerformCopyInitialization(
13852 InitializedEntity::InitializeParameter(Context,
13853 FnDecl->getParamDecl(1)),
13854 SourceLocation(), Args[1]);
13855 if (Arg1.isInvalid())
13856 return ExprError();
13857 Args[0] = LHS = Arg0.getAs<Expr>();
13858 Args[1] = RHS = Arg1.getAs<Expr>();
13859 }
13860
13861 // Build the actual expression node.
13862 ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
13863 Best->FoundDecl, Base,
13864 HadMultipleCandidates, OpLoc);
13865 if (FnExpr.isInvalid())
13866 return ExprError();
13867
13868 // Determine the result type.
13869 QualType ResultTy = FnDecl->getReturnType();
13870 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
13871 ResultTy = ResultTy.getNonLValueExprType(Context);
13872
13873 CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create(
13874 Context, ChosenOp, FnExpr.get(), Args, ResultTy, VK, OpLoc,
13875 CurFPFeatureOverrides(), Best->IsADLCandidate);
13876
13877 if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall,
13878 FnDecl))
13879 return ExprError();
13880
13881 ArrayRef<const Expr *> ArgsArray(Args, 2);
13882 const Expr *ImplicitThis = nullptr;
13883 // Cut off the implicit 'this'.
13884 if (isa<CXXMethodDecl>(FnDecl)) {
13885 ImplicitThis = ArgsArray[0];
13886 ArgsArray = ArgsArray.slice(1);
13887 }
13888
13889 // Check for a self move.
13890 if (Op == OO_Equal)
13891 DiagnoseSelfMove(Args[0], Args[1], OpLoc);
13892
13893 if (ImplicitThis) {
13894 QualType ThisType = Context.getPointerType(ImplicitThis->getType());
13895 QualType ThisTypeFromDecl = Context.getPointerType(
13896 cast<CXXMethodDecl>(FnDecl)->getThisObjectType());
13897
13898 CheckArgAlignment(OpLoc, FnDecl, "'this'", ThisType,
13899 ThisTypeFromDecl);
13900 }
13901
13902 checkCall(FnDecl, nullptr, ImplicitThis, ArgsArray,
13903 isa<CXXMethodDecl>(FnDecl), OpLoc, TheCall->getSourceRange(),
13904 VariadicDoesNotApply);
13905
13906 ExprResult R = MaybeBindToTemporary(TheCall);
13907 if (R.isInvalid())
13908 return ExprError();
13909
13910 R = CheckForImmediateInvocation(R, FnDecl);
13911 if (R.isInvalid())
13912 return ExprError();
13913
13914 // For a rewritten candidate, we've already reversed the arguments
13915 // if needed. Perform the rest of the rewrite now.
13916 if ((Best->RewriteKind & CRK_DifferentOperator) ||
13917 (Op == OO_Spaceship && IsReversed)) {
13918 if (Op == OO_ExclaimEqual) {
13919 assert(ChosenOp == OO_EqualEqual && "unexpected operator name");
13920 R = CreateBuiltinUnaryOp(OpLoc, UO_LNot, R.get());
13921 } else {
13922 assert(ChosenOp == OO_Spaceship && "unexpected operator name");
13923 llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
13924 Expr *ZeroLiteral =
13925 IntegerLiteral::Create(Context, Zero, Context.IntTy, OpLoc);
13926
13927 Sema::CodeSynthesisContext Ctx;
13928 Ctx.Kind = Sema::CodeSynthesisContext::RewritingOperatorAsSpaceship;
13929 Ctx.Entity = FnDecl;
13930 pushCodeSynthesisContext(Ctx);
13931
13932 R = CreateOverloadedBinOp(
13933 OpLoc, Opc, Fns, IsReversed ? ZeroLiteral : R.get(),
13934 IsReversed ? R.get() : ZeroLiteral, PerformADL,
13935 /*AllowRewrittenCandidates=*/false);
13936
13937 popCodeSynthesisContext();
13938 }
13939 if (R.isInvalid())
13940 return ExprError();
13941 } else {
13942 assert(ChosenOp == Op && "unexpected operator name");
13943 }
13944
13945 // Make a note in the AST if we did any rewriting.
13946 if (Best->RewriteKind != CRK_None)
13947 R = new (Context) CXXRewrittenBinaryOperator(R.get(), IsReversed);
13948
13949 return R;
13950 } else {
13951 // We matched a built-in operator. Convert the arguments, then
13952 // break out so that we will build the appropriate built-in
13953 // operator node.
13954 ExprResult ArgsRes0 = PerformImplicitConversion(
13955 Args[0], Best->BuiltinParamTypes[0], Best->Conversions[0],
13956 AA_Passing, CCK_ForBuiltinOverloadedOp);
13957 if (ArgsRes0.isInvalid())
13958 return ExprError();
13959 Args[0] = ArgsRes0.get();
13960
13961 ExprResult ArgsRes1 = PerformImplicitConversion(
13962 Args[1], Best->BuiltinParamTypes[1], Best->Conversions[1],
13963 AA_Passing, CCK_ForBuiltinOverloadedOp);
13964 if (ArgsRes1.isInvalid())
13965 return ExprError();
13966 Args[1] = ArgsRes1.get();
13967 break;
13968 }
13969 }
13970
13971 case OR_No_Viable_Function: {
13972 // C++ [over.match.oper]p9:
13973 // If the operator is the operator , [...] and there are no
13974 // viable functions, then the operator is assumed to be the
13975 // built-in operator and interpreted according to clause 5.
13976 if (Opc == BO_Comma)
13977 break;
13978
13979 // When defaulting an 'operator<=>', we can try to synthesize a three-way
13980 // compare result using '==' and '<'.
13981 if (DefaultedFn && Opc == BO_Cmp) {
13982 ExprResult E = BuildSynthesizedThreeWayComparison(OpLoc, Fns, Args[0],
13983 Args[1], DefaultedFn);
13984 if (E.isInvalid() || E.isUsable())
13985 return E;
13986 }
13987
13988 // For class as left operand for assignment or compound assignment
13989 // operator do not fall through to handling in built-in, but report that
13990 // no overloaded assignment operator found
13991 ExprResult Result = ExprError();
13992 StringRef OpcStr = BinaryOperator::getOpcodeStr(Opc);
13993 auto Cands = CandidateSet.CompleteCandidates(*this, OCD_AllCandidates,
13994 Args, OpLoc);
13995 DeferDiagsRAII DDR(*this,
13996 CandidateSet.shouldDeferDiags(*this, Args, OpLoc));
13997 if (Args[0]->getType()->isRecordType() &&
13998 Opc >= BO_Assign && Opc <= BO_OrAssign) {
13999 Diag(OpLoc, diag::err_ovl_no_viable_oper)
14000 << BinaryOperator::getOpcodeStr(Opc)
14001 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
14002 if (Args[0]->getType()->isIncompleteType()) {
14003 Diag(OpLoc, diag::note_assign_lhs_incomplete)
14004 << Args[0]->getType()
14005 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
14006 }
14007 } else {
14008 // This is an erroneous use of an operator which can be overloaded by
14009 // a non-member function. Check for non-member operators which were
14010 // defined too late to be candidates.
14011 if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args))
14012 // FIXME: Recover by calling the found function.
14013 return ExprError();
14014
14015 // No viable function; try to create a built-in operation, which will
14016 // produce an error. Then, show the non-viable candidates.
14017 Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
14018 }
14019 assert(Result.isInvalid() &&
14020 "C++ binary operator overloading is missing candidates!");
14021 CandidateSet.NoteCandidates(*this, Args, Cands, OpcStr, OpLoc);
14022 return Result;
14023 }
14024
14025 case OR_Ambiguous:
14026 CandidateSet.NoteCandidates(
14027 PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_ambiguous_oper_binary)
14028 << BinaryOperator::getOpcodeStr(Opc)
14029 << Args[0]->getType()
14030 << Args[1]->getType()
14031 << Args[0]->getSourceRange()
14032 << Args[1]->getSourceRange()),
14033 *this, OCD_AmbiguousCandidates, Args, BinaryOperator::getOpcodeStr(Opc),
14034 OpLoc);
14035 return ExprError();
14036
14037 case OR_Deleted:
14038 if (isImplicitlyDeleted(Best->Function)) {
14039 FunctionDecl *DeletedFD = Best->Function;
14040 DefaultedFunctionKind DFK = getDefaultedFunctionKind(DeletedFD);
14041 if (DFK.isSpecialMember()) {
14042 Diag(OpLoc, diag::err_ovl_deleted_special_oper)
14043 << Args[0]->getType() << DFK.asSpecialMember();
14044 } else {
14045 assert(DFK.isComparison());
14046 Diag(OpLoc, diag::err_ovl_deleted_comparison)
14047 << Args[0]->getType() << DeletedFD;
14048 }
14049
14050 // The user probably meant to call this special member. Just
14051 // explain why it's deleted.
14052 NoteDeletedFunction(DeletedFD);
14053 return ExprError();
14054 }
14055 CandidateSet.NoteCandidates(
14056 PartialDiagnosticAt(
14057 OpLoc, PDiag(diag::err_ovl_deleted_oper)
14058 << getOperatorSpelling(Best->Function->getDeclName()
14059 .getCXXOverloadedOperator())
14060 << Args[0]->getSourceRange()
14061 << Args[1]->getSourceRange()),
14062 *this, OCD_AllCandidates, Args, BinaryOperator::getOpcodeStr(Opc),
14063 OpLoc);
14064 return ExprError();
14065 }
14066
14067 // We matched a built-in operator; build it.
14068 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
14069 }
14070
BuildSynthesizedThreeWayComparison(SourceLocation OpLoc,const UnresolvedSetImpl & Fns,Expr * LHS,Expr * RHS,FunctionDecl * DefaultedFn)14071 ExprResult Sema::BuildSynthesizedThreeWayComparison(
14072 SourceLocation OpLoc, const UnresolvedSetImpl &Fns, Expr *LHS, Expr *RHS,
14073 FunctionDecl *DefaultedFn) {
14074 const ComparisonCategoryInfo *Info =
14075 Context.CompCategories.lookupInfoForType(DefaultedFn->getReturnType());
14076 // If we're not producing a known comparison category type, we can't
14077 // synthesize a three-way comparison. Let the caller diagnose this.
14078 if (!Info)
14079 return ExprResult((Expr*)nullptr);
14080
14081 // If we ever want to perform this synthesis more generally, we will need to
14082 // apply the temporary materialization conversion to the operands.
14083 assert(LHS->isGLValue() && RHS->isGLValue() &&
14084 "cannot use prvalue expressions more than once");
14085 Expr *OrigLHS = LHS;
14086 Expr *OrigRHS = RHS;
14087
14088 // Replace the LHS and RHS with OpaqueValueExprs; we're going to refer to
14089 // each of them multiple times below.
14090 LHS = new (Context)
14091 OpaqueValueExpr(LHS->getExprLoc(), LHS->getType(), LHS->getValueKind(),
14092 LHS->getObjectKind(), LHS);
14093 RHS = new (Context)
14094 OpaqueValueExpr(RHS->getExprLoc(), RHS->getType(), RHS->getValueKind(),
14095 RHS->getObjectKind(), RHS);
14096
14097 ExprResult Eq = CreateOverloadedBinOp(OpLoc, BO_EQ, Fns, LHS, RHS, true, true,
14098 DefaultedFn);
14099 if (Eq.isInvalid())
14100 return ExprError();
14101
14102 ExprResult Less = CreateOverloadedBinOp(OpLoc, BO_LT, Fns, LHS, RHS, true,
14103 true, DefaultedFn);
14104 if (Less.isInvalid())
14105 return ExprError();
14106
14107 ExprResult Greater;
14108 if (Info->isPartial()) {
14109 Greater = CreateOverloadedBinOp(OpLoc, BO_LT, Fns, RHS, LHS, true, true,
14110 DefaultedFn);
14111 if (Greater.isInvalid())
14112 return ExprError();
14113 }
14114
14115 // Form the list of comparisons we're going to perform.
14116 struct Comparison {
14117 ExprResult Cmp;
14118 ComparisonCategoryResult Result;
14119 } Comparisons[4] =
14120 { {Eq, Info->isStrong() ? ComparisonCategoryResult::Equal
14121 : ComparisonCategoryResult::Equivalent},
14122 {Less, ComparisonCategoryResult::Less},
14123 {Greater, ComparisonCategoryResult::Greater},
14124 {ExprResult(), ComparisonCategoryResult::Unordered},
14125 };
14126
14127 int I = Info->isPartial() ? 3 : 2;
14128
14129 // Combine the comparisons with suitable conditional expressions.
14130 ExprResult Result;
14131 for (; I >= 0; --I) {
14132 // Build a reference to the comparison category constant.
14133 auto *VI = Info->lookupValueInfo(Comparisons[I].Result);
14134 // FIXME: Missing a constant for a comparison category. Diagnose this?
14135 if (!VI)
14136 return ExprResult((Expr*)nullptr);
14137 ExprResult ThisResult =
14138 BuildDeclarationNameExpr(CXXScopeSpec(), DeclarationNameInfo(), VI->VD);
14139 if (ThisResult.isInvalid())
14140 return ExprError();
14141
14142 // Build a conditional unless this is the final case.
14143 if (Result.get()) {
14144 Result = ActOnConditionalOp(OpLoc, OpLoc, Comparisons[I].Cmp.get(),
14145 ThisResult.get(), Result.get());
14146 if (Result.isInvalid())
14147 return ExprError();
14148 } else {
14149 Result = ThisResult;
14150 }
14151 }
14152
14153 // Build a PseudoObjectExpr to model the rewriting of an <=> operator, and to
14154 // bind the OpaqueValueExprs before they're (repeatedly) used.
14155 Expr *SyntacticForm = BinaryOperator::Create(
14156 Context, OrigLHS, OrigRHS, BO_Cmp, Result.get()->getType(),
14157 Result.get()->getValueKind(), Result.get()->getObjectKind(), OpLoc,
14158 CurFPFeatureOverrides());
14159 Expr *SemanticForm[] = {LHS, RHS, Result.get()};
14160 return PseudoObjectExpr::Create(Context, SyntacticForm, SemanticForm, 2);
14161 }
14162
PrepareArgumentsForCallToObjectOfClassType(Sema & S,SmallVectorImpl<Expr * > & MethodArgs,CXXMethodDecl * Method,MultiExprArg Args,SourceLocation LParenLoc)14163 static bool PrepareArgumentsForCallToObjectOfClassType(
14164 Sema &S, SmallVectorImpl<Expr *> &MethodArgs, CXXMethodDecl *Method,
14165 MultiExprArg Args, SourceLocation LParenLoc) {
14166
14167 const auto *Proto = Method->getType()->castAs<FunctionProtoType>();
14168 unsigned NumParams = Proto->getNumParams();
14169 unsigned NumArgsSlots =
14170 MethodArgs.size() + std::max<unsigned>(Args.size(), NumParams);
14171 // Build the full argument list for the method call (the implicit object
14172 // parameter is placed at the beginning of the list).
14173 MethodArgs.reserve(MethodArgs.size() + NumArgsSlots);
14174 bool IsError = false;
14175 // Initialize the implicit object parameter.
14176 // Check the argument types.
14177 for (unsigned i = 0; i != NumParams; i++) {
14178 Expr *Arg;
14179 if (i < Args.size()) {
14180 Arg = Args[i];
14181 ExprResult InputInit =
14182 S.PerformCopyInitialization(InitializedEntity::InitializeParameter(
14183 S.Context, Method->getParamDecl(i)),
14184 SourceLocation(), Arg);
14185 IsError |= InputInit.isInvalid();
14186 Arg = InputInit.getAs<Expr>();
14187 } else {
14188 ExprResult DefArg =
14189 S.BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
14190 if (DefArg.isInvalid()) {
14191 IsError = true;
14192 break;
14193 }
14194 Arg = DefArg.getAs<Expr>();
14195 }
14196
14197 MethodArgs.push_back(Arg);
14198 }
14199 return IsError;
14200 }
14201
CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,SourceLocation RLoc,Expr * Base,MultiExprArg ArgExpr)14202 ExprResult Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
14203 SourceLocation RLoc,
14204 Expr *Base,
14205 MultiExprArg ArgExpr) {
14206 SmallVector<Expr *, 2> Args;
14207 Args.push_back(Base);
14208 for (auto e : ArgExpr) {
14209 Args.push_back(e);
14210 }
14211 DeclarationName OpName =
14212 Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
14213
14214 SourceRange Range = ArgExpr.empty()
14215 ? SourceRange{}
14216 : SourceRange(ArgExpr.front()->getBeginLoc(),
14217 ArgExpr.back()->getEndLoc());
14218
14219 // If either side is type-dependent, create an appropriate dependent
14220 // expression.
14221 if (Expr::hasAnyTypeDependentArguments(Args)) {
14222
14223 CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
14224 // CHECKME: no 'operator' keyword?
14225 DeclarationNameInfo OpNameInfo(OpName, LLoc);
14226 OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
14227 ExprResult Fn = CreateUnresolvedLookupExpr(
14228 NamingClass, NestedNameSpecifierLoc(), OpNameInfo, UnresolvedSet<0>());
14229 if (Fn.isInvalid())
14230 return ExprError();
14231 // Can't add any actual overloads yet
14232
14233 return CXXOperatorCallExpr::Create(Context, OO_Subscript, Fn.get(), Args,
14234 Context.DependentTy, VK_PRValue, RLoc,
14235 CurFPFeatureOverrides());
14236 }
14237
14238 // Handle placeholders
14239 UnbridgedCastsSet UnbridgedCasts;
14240 if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts)) {
14241 return ExprError();
14242 }
14243 // Build an empty overload set.
14244 OverloadCandidateSet CandidateSet(LLoc, OverloadCandidateSet::CSK_Operator);
14245
14246 // Subscript can only be overloaded as a member function.
14247
14248 // Add operator candidates that are member functions.
14249 AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet);
14250
14251 // Add builtin operator candidates.
14252 if (Args.size() == 2)
14253 AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet);
14254
14255 bool HadMultipleCandidates = (CandidateSet.size() > 1);
14256
14257 // Perform overload resolution.
14258 OverloadCandidateSet::iterator Best;
14259 switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) {
14260 case OR_Success: {
14261 // We found a built-in operator or an overloaded operator.
14262 FunctionDecl *FnDecl = Best->Function;
14263
14264 if (FnDecl) {
14265 // We matched an overloaded operator. Build a call to that
14266 // operator.
14267
14268 CheckMemberOperatorAccess(LLoc, Args[0], ArgExpr, Best->FoundDecl);
14269
14270 // Convert the arguments.
14271 CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
14272 SmallVector<Expr *, 2> MethodArgs;
14273 ExprResult Arg0 = PerformObjectArgumentInitialization(
14274 Args[0], /*Qualifier=*/nullptr, Best->FoundDecl, Method);
14275 if (Arg0.isInvalid())
14276 return ExprError();
14277
14278 MethodArgs.push_back(Arg0.get());
14279 bool IsError = PrepareArgumentsForCallToObjectOfClassType(
14280 *this, MethodArgs, Method, ArgExpr, LLoc);
14281 if (IsError)
14282 return ExprError();
14283
14284 // Build the actual expression node.
14285 DeclarationNameInfo OpLocInfo(OpName, LLoc);
14286 OpLocInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
14287 ExprResult FnExpr = CreateFunctionRefExpr(
14288 *this, FnDecl, Best->FoundDecl, Base, HadMultipleCandidates,
14289 OpLocInfo.getLoc(), OpLocInfo.getInfo());
14290 if (FnExpr.isInvalid())
14291 return ExprError();
14292
14293 // Determine the result type
14294 QualType ResultTy = FnDecl->getReturnType();
14295 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
14296 ResultTy = ResultTy.getNonLValueExprType(Context);
14297
14298 CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create(
14299 Context, OO_Subscript, FnExpr.get(), MethodArgs, ResultTy, VK, RLoc,
14300 CurFPFeatureOverrides());
14301 if (CheckCallReturnType(FnDecl->getReturnType(), LLoc, TheCall, FnDecl))
14302 return ExprError();
14303
14304 if (CheckFunctionCall(Method, TheCall,
14305 Method->getType()->castAs<FunctionProtoType>()))
14306 return ExprError();
14307
14308 return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall),
14309 FnDecl);
14310 } else {
14311 // We matched a built-in operator. Convert the arguments, then
14312 // break out so that we will build the appropriate built-in
14313 // operator node.
14314 ExprResult ArgsRes0 = PerformImplicitConversion(
14315 Args[0], Best->BuiltinParamTypes[0], Best->Conversions[0],
14316 AA_Passing, CCK_ForBuiltinOverloadedOp);
14317 if (ArgsRes0.isInvalid())
14318 return ExprError();
14319 Args[0] = ArgsRes0.get();
14320
14321 ExprResult ArgsRes1 = PerformImplicitConversion(
14322 Args[1], Best->BuiltinParamTypes[1], Best->Conversions[1],
14323 AA_Passing, CCK_ForBuiltinOverloadedOp);
14324 if (ArgsRes1.isInvalid())
14325 return ExprError();
14326 Args[1] = ArgsRes1.get();
14327
14328 break;
14329 }
14330 }
14331
14332 case OR_No_Viable_Function: {
14333 PartialDiagnostic PD =
14334 CandidateSet.empty()
14335 ? (PDiag(diag::err_ovl_no_oper)
14336 << Args[0]->getType() << /*subscript*/ 0
14337 << Args[0]->getSourceRange() << Range)
14338 : (PDiag(diag::err_ovl_no_viable_subscript)
14339 << Args[0]->getType() << Args[0]->getSourceRange() << Range);
14340 CandidateSet.NoteCandidates(PartialDiagnosticAt(LLoc, PD), *this,
14341 OCD_AllCandidates, ArgExpr, "[]", LLoc);
14342 return ExprError();
14343 }
14344
14345 case OR_Ambiguous:
14346 if (Args.size() == 2) {
14347 CandidateSet.NoteCandidates(
14348 PartialDiagnosticAt(
14349 LLoc, PDiag(diag::err_ovl_ambiguous_oper_binary)
14350 << "[]" << Args[0]->getType() << Args[1]->getType()
14351 << Args[0]->getSourceRange() << Range),
14352 *this, OCD_AmbiguousCandidates, Args, "[]", LLoc);
14353 } else {
14354 CandidateSet.NoteCandidates(
14355 PartialDiagnosticAt(LLoc,
14356 PDiag(diag::err_ovl_ambiguous_subscript_call)
14357 << Args[0]->getType()
14358 << Args[0]->getSourceRange() << Range),
14359 *this, OCD_AmbiguousCandidates, Args, "[]", LLoc);
14360 }
14361 return ExprError();
14362
14363 case OR_Deleted:
14364 CandidateSet.NoteCandidates(
14365 PartialDiagnosticAt(LLoc, PDiag(diag::err_ovl_deleted_oper)
14366 << "[]" << Args[0]->getSourceRange()
14367 << Range),
14368 *this, OCD_AllCandidates, Args, "[]", LLoc);
14369 return ExprError();
14370 }
14371
14372 // We matched a built-in operator; build it.
14373 return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc);
14374 }
14375
14376 /// BuildCallToMemberFunction - Build a call to a member
14377 /// function. MemExpr is the expression that refers to the member
14378 /// function (and includes the object parameter), Args/NumArgs are the
14379 /// arguments to the function call (not including the object
14380 /// parameter). The caller needs to validate that the member
14381 /// expression refers to a non-static member function or an overloaded
14382 /// member function.
BuildCallToMemberFunction(Scope * S,Expr * MemExprE,SourceLocation LParenLoc,MultiExprArg Args,SourceLocation RParenLoc,Expr * ExecConfig,bool IsExecConfig,bool AllowRecovery)14383 ExprResult Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
14384 SourceLocation LParenLoc,
14385 MultiExprArg Args,
14386 SourceLocation RParenLoc,
14387 Expr *ExecConfig, bool IsExecConfig,
14388 bool AllowRecovery) {
14389 assert(MemExprE->getType() == Context.BoundMemberTy ||
14390 MemExprE->getType() == Context.OverloadTy);
14391
14392 // Dig out the member expression. This holds both the object
14393 // argument and the member function we're referring to.
14394 Expr *NakedMemExpr = MemExprE->IgnoreParens();
14395
14396 // Determine whether this is a call to a pointer-to-member function.
14397 if (BinaryOperator *op = dyn_cast<BinaryOperator>(NakedMemExpr)) {
14398 assert(op->getType() == Context.BoundMemberTy);
14399 assert(op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI);
14400
14401 QualType fnType =
14402 op->getRHS()->getType()->castAs<MemberPointerType>()->getPointeeType();
14403
14404 const FunctionProtoType *proto = fnType->castAs<FunctionProtoType>();
14405 QualType resultType = proto->getCallResultType(Context);
14406 ExprValueKind valueKind = Expr::getValueKindForType(proto->getReturnType());
14407
14408 // Check that the object type isn't more qualified than the
14409 // member function we're calling.
14410 Qualifiers funcQuals = proto->getMethodQuals();
14411
14412 QualType objectType = op->getLHS()->getType();
14413 if (op->getOpcode() == BO_PtrMemI)
14414 objectType = objectType->castAs<PointerType>()->getPointeeType();
14415 Qualifiers objectQuals = objectType.getQualifiers();
14416
14417 Qualifiers difference = objectQuals - funcQuals;
14418 difference.removeObjCGCAttr();
14419 difference.removeAddressSpace();
14420 if (difference) {
14421 std::string qualsString = difference.getAsString();
14422 Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals)
14423 << fnType.getUnqualifiedType()
14424 << qualsString
14425 << (qualsString.find(' ') == std::string::npos ? 1 : 2);
14426 }
14427
14428 CXXMemberCallExpr *call = CXXMemberCallExpr::Create(
14429 Context, MemExprE, Args, resultType, valueKind, RParenLoc,
14430 CurFPFeatureOverrides(), proto->getNumParams());
14431
14432 if (CheckCallReturnType(proto->getReturnType(), op->getRHS()->getBeginLoc(),
14433 call, nullptr))
14434 return ExprError();
14435
14436 if (ConvertArgumentsForCall(call, op, nullptr, proto, Args, RParenLoc))
14437 return ExprError();
14438
14439 if (CheckOtherCall(call, proto))
14440 return ExprError();
14441
14442 return MaybeBindToTemporary(call);
14443 }
14444
14445 // We only try to build a recovery expr at this level if we can preserve
14446 // the return type, otherwise we return ExprError() and let the caller
14447 // recover.
14448 auto BuildRecoveryExpr = [&](QualType Type) {
14449 if (!AllowRecovery)
14450 return ExprError();
14451 std::vector<Expr *> SubExprs = {MemExprE};
14452 llvm::append_range(SubExprs, Args);
14453 return CreateRecoveryExpr(MemExprE->getBeginLoc(), RParenLoc, SubExprs,
14454 Type);
14455 };
14456 if (isa<CXXPseudoDestructorExpr>(NakedMemExpr))
14457 return CallExpr::Create(Context, MemExprE, Args, Context.VoidTy, VK_PRValue,
14458 RParenLoc, CurFPFeatureOverrides());
14459
14460 UnbridgedCastsSet UnbridgedCasts;
14461 if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts))
14462 return ExprError();
14463
14464 MemberExpr *MemExpr;
14465 CXXMethodDecl *Method = nullptr;
14466 DeclAccessPair FoundDecl = DeclAccessPair::make(nullptr, AS_public);
14467 NestedNameSpecifier *Qualifier = nullptr;
14468 if (isa<MemberExpr>(NakedMemExpr)) {
14469 MemExpr = cast<MemberExpr>(NakedMemExpr);
14470 Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
14471 FoundDecl = MemExpr->getFoundDecl();
14472 Qualifier = MemExpr->getQualifier();
14473 UnbridgedCasts.restore();
14474 } else {
14475 UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
14476 Qualifier = UnresExpr->getQualifier();
14477
14478 QualType ObjectType = UnresExpr->getBaseType();
14479 Expr::Classification ObjectClassification
14480 = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue()
14481 : UnresExpr->getBase()->Classify(Context);
14482
14483 // Add overload candidates
14484 OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc(),
14485 OverloadCandidateSet::CSK_Normal);
14486
14487 // FIXME: avoid copy.
14488 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
14489 if (UnresExpr->hasExplicitTemplateArgs()) {
14490 UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
14491 TemplateArgs = &TemplateArgsBuffer;
14492 }
14493
14494 for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
14495 E = UnresExpr->decls_end(); I != E; ++I) {
14496
14497 NamedDecl *Func = *I;
14498 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
14499 if (isa<UsingShadowDecl>(Func))
14500 Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
14501
14502
14503 // Microsoft supports direct constructor calls.
14504 if (getLangOpts().MicrosoftExt && isa<CXXConstructorDecl>(Func)) {
14505 AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(), Args,
14506 CandidateSet,
14507 /*SuppressUserConversions*/ false);
14508 } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
14509 // If explicit template arguments were provided, we can't call a
14510 // non-template member function.
14511 if (TemplateArgs)
14512 continue;
14513
14514 AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
14515 ObjectClassification, Args, CandidateSet,
14516 /*SuppressUserConversions=*/false);
14517 } else {
14518 AddMethodTemplateCandidate(
14519 cast<FunctionTemplateDecl>(Func), I.getPair(), ActingDC,
14520 TemplateArgs, ObjectType, ObjectClassification, Args, CandidateSet,
14521 /*SuppressUserConversions=*/false);
14522 }
14523 }
14524
14525 DeclarationName DeclName = UnresExpr->getMemberName();
14526
14527 UnbridgedCasts.restore();
14528
14529 OverloadCandidateSet::iterator Best;
14530 bool Succeeded = false;
14531 switch (CandidateSet.BestViableFunction(*this, UnresExpr->getBeginLoc(),
14532 Best)) {
14533 case OR_Success:
14534 Method = cast<CXXMethodDecl>(Best->Function);
14535 FoundDecl = Best->FoundDecl;
14536 CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
14537 if (DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc()))
14538 break;
14539 // If FoundDecl is different from Method (such as if one is a template
14540 // and the other a specialization), make sure DiagnoseUseOfDecl is
14541 // called on both.
14542 // FIXME: This would be more comprehensively addressed by modifying
14543 // DiagnoseUseOfDecl to accept both the FoundDecl and the decl
14544 // being used.
14545 if (Method != FoundDecl.getDecl() &&
14546 DiagnoseUseOfDecl(Method, UnresExpr->getNameLoc()))
14547 break;
14548 Succeeded = true;
14549 break;
14550
14551 case OR_No_Viable_Function:
14552 CandidateSet.NoteCandidates(
14553 PartialDiagnosticAt(
14554 UnresExpr->getMemberLoc(),
14555 PDiag(diag::err_ovl_no_viable_member_function_in_call)
14556 << DeclName << MemExprE->getSourceRange()),
14557 *this, OCD_AllCandidates, Args);
14558 break;
14559 case OR_Ambiguous:
14560 CandidateSet.NoteCandidates(
14561 PartialDiagnosticAt(UnresExpr->getMemberLoc(),
14562 PDiag(diag::err_ovl_ambiguous_member_call)
14563 << DeclName << MemExprE->getSourceRange()),
14564 *this, OCD_AmbiguousCandidates, Args);
14565 break;
14566 case OR_Deleted:
14567 CandidateSet.NoteCandidates(
14568 PartialDiagnosticAt(UnresExpr->getMemberLoc(),
14569 PDiag(diag::err_ovl_deleted_member_call)
14570 << DeclName << MemExprE->getSourceRange()),
14571 *this, OCD_AllCandidates, Args);
14572 break;
14573 }
14574 // Overload resolution fails, try to recover.
14575 if (!Succeeded)
14576 return BuildRecoveryExpr(chooseRecoveryType(CandidateSet, &Best));
14577
14578 MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method);
14579
14580 // If overload resolution picked a static member, build a
14581 // non-member call based on that function.
14582 if (Method->isStatic()) {
14583 return BuildResolvedCallExpr(MemExprE, Method, LParenLoc, Args, RParenLoc,
14584 ExecConfig, IsExecConfig);
14585 }
14586
14587 MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
14588 }
14589
14590 QualType ResultType = Method->getReturnType();
14591 ExprValueKind VK = Expr::getValueKindForType(ResultType);
14592 ResultType = ResultType.getNonLValueExprType(Context);
14593
14594 assert(Method && "Member call to something that isn't a method?");
14595 const auto *Proto = Method->getType()->castAs<FunctionProtoType>();
14596 CXXMemberCallExpr *TheCall = CXXMemberCallExpr::Create(
14597 Context, MemExprE, Args, ResultType, VK, RParenLoc,
14598 CurFPFeatureOverrides(), Proto->getNumParams());
14599
14600 // Check for a valid return type.
14601 if (CheckCallReturnType(Method->getReturnType(), MemExpr->getMemberLoc(),
14602 TheCall, Method))
14603 return BuildRecoveryExpr(ResultType);
14604
14605 // Convert the object argument (for a non-static member function call).
14606 // We only need to do this if there was actually an overload; otherwise
14607 // it was done at lookup.
14608 if (!Method->isStatic()) {
14609 ExprResult ObjectArg =
14610 PerformObjectArgumentInitialization(MemExpr->getBase(), Qualifier,
14611 FoundDecl, Method);
14612 if (ObjectArg.isInvalid())
14613 return ExprError();
14614 MemExpr->setBase(ObjectArg.get());
14615 }
14616
14617 // Convert the rest of the arguments
14618 if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args,
14619 RParenLoc))
14620 return BuildRecoveryExpr(ResultType);
14621
14622 DiagnoseSentinelCalls(Method, LParenLoc, Args);
14623
14624 if (CheckFunctionCall(Method, TheCall, Proto))
14625 return ExprError();
14626
14627 // In the case the method to call was not selected by the overloading
14628 // resolution process, we still need to handle the enable_if attribute. Do
14629 // that here, so it will not hide previous -- and more relevant -- errors.
14630 if (auto *MemE = dyn_cast<MemberExpr>(NakedMemExpr)) {
14631 if (const EnableIfAttr *Attr =
14632 CheckEnableIf(Method, LParenLoc, Args, true)) {
14633 Diag(MemE->getMemberLoc(),
14634 diag::err_ovl_no_viable_member_function_in_call)
14635 << Method << Method->getSourceRange();
14636 Diag(Method->getLocation(),
14637 diag::note_ovl_candidate_disabled_by_function_cond_attr)
14638 << Attr->getCond()->getSourceRange() << Attr->getMessage();
14639 return ExprError();
14640 }
14641 }
14642
14643 if ((isa<CXXConstructorDecl>(CurContext) ||
14644 isa<CXXDestructorDecl>(CurContext)) &&
14645 TheCall->getMethodDecl()->isPure()) {
14646 const CXXMethodDecl *MD = TheCall->getMethodDecl();
14647
14648 if (isa<CXXThisExpr>(MemExpr->getBase()->IgnoreParenCasts()) &&
14649 MemExpr->performsVirtualDispatch(getLangOpts())) {
14650 Diag(MemExpr->getBeginLoc(),
14651 diag::warn_call_to_pure_virtual_member_function_from_ctor_dtor)
14652 << MD->getDeclName() << isa<CXXDestructorDecl>(CurContext)
14653 << MD->getParent();
14654
14655 Diag(MD->getBeginLoc(), diag::note_previous_decl) << MD->getDeclName();
14656 if (getLangOpts().AppleKext)
14657 Diag(MemExpr->getBeginLoc(), diag::note_pure_qualified_call_kext)
14658 << MD->getParent() << MD->getDeclName();
14659 }
14660 }
14661
14662 if (CXXDestructorDecl *DD =
14663 dyn_cast<CXXDestructorDecl>(TheCall->getMethodDecl())) {
14664 // a->A::f() doesn't go through the vtable, except in AppleKext mode.
14665 bool CallCanBeVirtual = !MemExpr->hasQualifier() || getLangOpts().AppleKext;
14666 CheckVirtualDtorCall(DD, MemExpr->getBeginLoc(), /*IsDelete=*/false,
14667 CallCanBeVirtual, /*WarnOnNonAbstractTypes=*/true,
14668 MemExpr->getMemberLoc());
14669 }
14670
14671 return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall),
14672 TheCall->getMethodDecl());
14673 }
14674
14675 /// BuildCallToObjectOfClassType - Build a call to an object of class
14676 /// type (C++ [over.call.object]), which can end up invoking an
14677 /// overloaded function call operator (@c operator()) or performing a
14678 /// user-defined conversion on the object argument.
14679 ExprResult
BuildCallToObjectOfClassType(Scope * S,Expr * Obj,SourceLocation LParenLoc,MultiExprArg Args,SourceLocation RParenLoc)14680 Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj,
14681 SourceLocation LParenLoc,
14682 MultiExprArg Args,
14683 SourceLocation RParenLoc) {
14684 if (checkPlaceholderForOverload(*this, Obj))
14685 return ExprError();
14686 ExprResult Object = Obj;
14687
14688 UnbridgedCastsSet UnbridgedCasts;
14689 if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts))
14690 return ExprError();
14691
14692 assert(Object.get()->getType()->isRecordType() &&
14693 "Requires object type argument");
14694
14695 // C++ [over.call.object]p1:
14696 // If the primary-expression E in the function call syntax
14697 // evaluates to a class object of type "cv T", then the set of
14698 // candidate functions includes at least the function call
14699 // operators of T. The function call operators of T are obtained by
14700 // ordinary lookup of the name operator() in the context of
14701 // (E).operator().
14702 OverloadCandidateSet CandidateSet(LParenLoc,
14703 OverloadCandidateSet::CSK_Operator);
14704 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
14705
14706 if (RequireCompleteType(LParenLoc, Object.get()->getType(),
14707 diag::err_incomplete_object_call, Object.get()))
14708 return true;
14709
14710 const auto *Record = Object.get()->getType()->castAs<RecordType>();
14711 LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
14712 LookupQualifiedName(R, Record->getDecl());
14713 R.suppressDiagnostics();
14714
14715 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
14716 Oper != OperEnd; ++Oper) {
14717 AddMethodCandidate(Oper.getPair(), Object.get()->getType(),
14718 Object.get()->Classify(Context), Args, CandidateSet,
14719 /*SuppressUserConversion=*/false);
14720 }
14721
14722 // C++ [over.call.object]p2:
14723 // In addition, for each (non-explicit in C++0x) conversion function
14724 // declared in T of the form
14725 //
14726 // operator conversion-type-id () cv-qualifier;
14727 //
14728 // where cv-qualifier is the same cv-qualification as, or a
14729 // greater cv-qualification than, cv, and where conversion-type-id
14730 // denotes the type "pointer to function of (P1,...,Pn) returning
14731 // R", or the type "reference to pointer to function of
14732 // (P1,...,Pn) returning R", or the type "reference to function
14733 // of (P1,...,Pn) returning R", a surrogate call function [...]
14734 // is also considered as a candidate function. Similarly,
14735 // surrogate call functions are added to the set of candidate
14736 // functions for each conversion function declared in an
14737 // accessible base class provided the function is not hidden
14738 // within T by another intervening declaration.
14739 const auto &Conversions =
14740 cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
14741 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
14742 NamedDecl *D = *I;
14743 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
14744 if (isa<UsingShadowDecl>(D))
14745 D = cast<UsingShadowDecl>(D)->getTargetDecl();
14746
14747 // Skip over templated conversion functions; they aren't
14748 // surrogates.
14749 if (isa<FunctionTemplateDecl>(D))
14750 continue;
14751
14752 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
14753 if (!Conv->isExplicit()) {
14754 // Strip the reference type (if any) and then the pointer type (if
14755 // any) to get down to what might be a function type.
14756 QualType ConvType = Conv->getConversionType().getNonReferenceType();
14757 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
14758 ConvType = ConvPtrType->getPointeeType();
14759
14760 if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
14761 {
14762 AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
14763 Object.get(), Args, CandidateSet);
14764 }
14765 }
14766 }
14767
14768 bool HadMultipleCandidates = (CandidateSet.size() > 1);
14769
14770 // Perform overload resolution.
14771 OverloadCandidateSet::iterator Best;
14772 switch (CandidateSet.BestViableFunction(*this, Object.get()->getBeginLoc(),
14773 Best)) {
14774 case OR_Success:
14775 // Overload resolution succeeded; we'll build the appropriate call
14776 // below.
14777 break;
14778
14779 case OR_No_Viable_Function: {
14780 PartialDiagnostic PD =
14781 CandidateSet.empty()
14782 ? (PDiag(diag::err_ovl_no_oper)
14783 << Object.get()->getType() << /*call*/ 1
14784 << Object.get()->getSourceRange())
14785 : (PDiag(diag::err_ovl_no_viable_object_call)
14786 << Object.get()->getType() << Object.get()->getSourceRange());
14787 CandidateSet.NoteCandidates(
14788 PartialDiagnosticAt(Object.get()->getBeginLoc(), PD), *this,
14789 OCD_AllCandidates, Args);
14790 break;
14791 }
14792 case OR_Ambiguous:
14793 CandidateSet.NoteCandidates(
14794 PartialDiagnosticAt(Object.get()->getBeginLoc(),
14795 PDiag(diag::err_ovl_ambiguous_object_call)
14796 << Object.get()->getType()
14797 << Object.get()->getSourceRange()),
14798 *this, OCD_AmbiguousCandidates, Args);
14799 break;
14800
14801 case OR_Deleted:
14802 CandidateSet.NoteCandidates(
14803 PartialDiagnosticAt(Object.get()->getBeginLoc(),
14804 PDiag(diag::err_ovl_deleted_object_call)
14805 << Object.get()->getType()
14806 << Object.get()->getSourceRange()),
14807 *this, OCD_AllCandidates, Args);
14808 break;
14809 }
14810
14811 if (Best == CandidateSet.end())
14812 return true;
14813
14814 UnbridgedCasts.restore();
14815
14816 if (Best->Function == nullptr) {
14817 // Since there is no function declaration, this is one of the
14818 // surrogate candidates. Dig out the conversion function.
14819 CXXConversionDecl *Conv
14820 = cast<CXXConversionDecl>(
14821 Best->Conversions[0].UserDefined.ConversionFunction);
14822
14823 CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr,
14824 Best->FoundDecl);
14825 if (DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc))
14826 return ExprError();
14827 assert(Conv == Best->FoundDecl.getDecl() &&
14828 "Found Decl & conversion-to-functionptr should be same, right?!");
14829 // We selected one of the surrogate functions that converts the
14830 // object parameter to a function pointer. Perform the conversion
14831 // on the object argument, then let BuildCallExpr finish the job.
14832
14833 // Create an implicit member expr to refer to the conversion operator.
14834 // and then call it.
14835 ExprResult Call = BuildCXXMemberCallExpr(Object.get(), Best->FoundDecl,
14836 Conv, HadMultipleCandidates);
14837 if (Call.isInvalid())
14838 return ExprError();
14839 // Record usage of conversion in an implicit cast.
14840 Call = ImplicitCastExpr::Create(
14841 Context, Call.get()->getType(), CK_UserDefinedConversion, Call.get(),
14842 nullptr, VK_PRValue, CurFPFeatureOverrides());
14843
14844 return BuildCallExpr(S, Call.get(), LParenLoc, Args, RParenLoc);
14845 }
14846
14847 CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr, Best->FoundDecl);
14848
14849 // We found an overloaded operator(). Build a CXXOperatorCallExpr
14850 // that calls this method, using Object for the implicit object
14851 // parameter and passing along the remaining arguments.
14852 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
14853
14854 // An error diagnostic has already been printed when parsing the declaration.
14855 if (Method->isInvalidDecl())
14856 return ExprError();
14857
14858 const auto *Proto = Method->getType()->castAs<FunctionProtoType>();
14859 unsigned NumParams = Proto->getNumParams();
14860
14861 DeclarationNameInfo OpLocInfo(
14862 Context.DeclarationNames.getCXXOperatorName(OO_Call), LParenLoc);
14863 OpLocInfo.setCXXOperatorNameRange(SourceRange(LParenLoc, RParenLoc));
14864 ExprResult NewFn = CreateFunctionRefExpr(*this, Method, Best->FoundDecl,
14865 Obj, HadMultipleCandidates,
14866 OpLocInfo.getLoc(),
14867 OpLocInfo.getInfo());
14868 if (NewFn.isInvalid())
14869 return true;
14870
14871 SmallVector<Expr *, 8> MethodArgs;
14872 MethodArgs.reserve(NumParams + 1);
14873
14874 bool IsError = false;
14875
14876 // Initialize the implicit object parameter.
14877 ExprResult ObjRes =
14878 PerformObjectArgumentInitialization(Object.get(), /*Qualifier=*/nullptr,
14879 Best->FoundDecl, Method);
14880 if (ObjRes.isInvalid())
14881 IsError = true;
14882 else
14883 Object = ObjRes;
14884 MethodArgs.push_back(Object.get());
14885
14886 IsError |= PrepareArgumentsForCallToObjectOfClassType(
14887 *this, MethodArgs, Method, Args, LParenLoc);
14888
14889 // If this is a variadic call, handle args passed through "...".
14890 if (Proto->isVariadic()) {
14891 // Promote the arguments (C99 6.5.2.2p7).
14892 for (unsigned i = NumParams, e = Args.size(); i < e; i++) {
14893 ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod,
14894 nullptr);
14895 IsError |= Arg.isInvalid();
14896 MethodArgs.push_back(Arg.get());
14897 }
14898 }
14899
14900 if (IsError)
14901 return true;
14902
14903 DiagnoseSentinelCalls(Method, LParenLoc, Args);
14904
14905 // Once we've built TheCall, all of the expressions are properly owned.
14906 QualType ResultTy = Method->getReturnType();
14907 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
14908 ResultTy = ResultTy.getNonLValueExprType(Context);
14909
14910 CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create(
14911 Context, OO_Call, NewFn.get(), MethodArgs, ResultTy, VK, RParenLoc,
14912 CurFPFeatureOverrides());
14913
14914 if (CheckCallReturnType(Method->getReturnType(), LParenLoc, TheCall, Method))
14915 return true;
14916
14917 if (CheckFunctionCall(Method, TheCall, Proto))
14918 return true;
14919
14920 return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), Method);
14921 }
14922
14923 /// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
14924 /// (if one exists), where @c Base is an expression of class type and
14925 /// @c Member is the name of the member we're trying to find.
14926 ExprResult
BuildOverloadedArrowExpr(Scope * S,Expr * Base,SourceLocation OpLoc,bool * NoArrowOperatorFound)14927 Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc,
14928 bool *NoArrowOperatorFound) {
14929 assert(Base->getType()->isRecordType() &&
14930 "left-hand side must have class type");
14931
14932 if (checkPlaceholderForOverload(*this, Base))
14933 return ExprError();
14934
14935 SourceLocation Loc = Base->getExprLoc();
14936
14937 // C++ [over.ref]p1:
14938 //
14939 // [...] An expression x->m is interpreted as (x.operator->())->m
14940 // for a class object x of type T if T::operator->() exists and if
14941 // the operator is selected as the best match function by the
14942 // overload resolution mechanism (13.3).
14943 DeclarationName OpName =
14944 Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
14945 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Operator);
14946
14947 if (RequireCompleteType(Loc, Base->getType(),
14948 diag::err_typecheck_incomplete_tag, Base))
14949 return ExprError();
14950
14951 LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
14952 LookupQualifiedName(R, Base->getType()->castAs<RecordType>()->getDecl());
14953 R.suppressDiagnostics();
14954
14955 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
14956 Oper != OperEnd; ++Oper) {
14957 AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context),
14958 None, CandidateSet, /*SuppressUserConversion=*/false);
14959 }
14960
14961 bool HadMultipleCandidates = (CandidateSet.size() > 1);
14962
14963 // Perform overload resolution.
14964 OverloadCandidateSet::iterator Best;
14965 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
14966 case OR_Success:
14967 // Overload resolution succeeded; we'll build the call below.
14968 break;
14969
14970 case OR_No_Viable_Function: {
14971 auto Cands = CandidateSet.CompleteCandidates(*this, OCD_AllCandidates, Base);
14972 if (CandidateSet.empty()) {
14973 QualType BaseType = Base->getType();
14974 if (NoArrowOperatorFound) {
14975 // Report this specific error to the caller instead of emitting a
14976 // diagnostic, as requested.
14977 *NoArrowOperatorFound = true;
14978 return ExprError();
14979 }
14980 Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
14981 << BaseType << Base->getSourceRange();
14982 if (BaseType->isRecordType() && !BaseType->isPointerType()) {
14983 Diag(OpLoc, diag::note_typecheck_member_reference_suggestion)
14984 << FixItHint::CreateReplacement(OpLoc, ".");
14985 }
14986 } else
14987 Diag(OpLoc, diag::err_ovl_no_viable_oper)
14988 << "operator->" << Base->getSourceRange();
14989 CandidateSet.NoteCandidates(*this, Base, Cands);
14990 return ExprError();
14991 }
14992 case OR_Ambiguous:
14993 CandidateSet.NoteCandidates(
14994 PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_ambiguous_oper_unary)
14995 << "->" << Base->getType()
14996 << Base->getSourceRange()),
14997 *this, OCD_AmbiguousCandidates, Base);
14998 return ExprError();
14999
15000 case OR_Deleted:
15001 CandidateSet.NoteCandidates(
15002 PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_deleted_oper)
15003 << "->" << Base->getSourceRange()),
15004 *this, OCD_AllCandidates, Base);
15005 return ExprError();
15006 }
15007
15008 CheckMemberOperatorAccess(OpLoc, Base, nullptr, Best->FoundDecl);
15009
15010 // Convert the object parameter.
15011 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
15012 ExprResult BaseResult =
15013 PerformObjectArgumentInitialization(Base, /*Qualifier=*/nullptr,
15014 Best->FoundDecl, Method);
15015 if (BaseResult.isInvalid())
15016 return ExprError();
15017 Base = BaseResult.get();
15018
15019 // Build the operator call.
15020 ExprResult FnExpr = CreateFunctionRefExpr(*this, Method, Best->FoundDecl,
15021 Base, HadMultipleCandidates, OpLoc);
15022 if (FnExpr.isInvalid())
15023 return ExprError();
15024
15025 QualType ResultTy = Method->getReturnType();
15026 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
15027 ResultTy = ResultTy.getNonLValueExprType(Context);
15028 CXXOperatorCallExpr *TheCall =
15029 CXXOperatorCallExpr::Create(Context, OO_Arrow, FnExpr.get(), Base,
15030 ResultTy, VK, OpLoc, CurFPFeatureOverrides());
15031
15032 if (CheckCallReturnType(Method->getReturnType(), OpLoc, TheCall, Method))
15033 return ExprError();
15034
15035 if (CheckFunctionCall(Method, TheCall,
15036 Method->getType()->castAs<FunctionProtoType>()))
15037 return ExprError();
15038
15039 return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), Method);
15040 }
15041
15042 /// BuildLiteralOperatorCall - Build a UserDefinedLiteral by creating a call to
15043 /// a literal operator described by the provided lookup results.
BuildLiteralOperatorCall(LookupResult & R,DeclarationNameInfo & SuffixInfo,ArrayRef<Expr * > Args,SourceLocation LitEndLoc,TemplateArgumentListInfo * TemplateArgs)15044 ExprResult Sema::BuildLiteralOperatorCall(LookupResult &R,
15045 DeclarationNameInfo &SuffixInfo,
15046 ArrayRef<Expr*> Args,
15047 SourceLocation LitEndLoc,
15048 TemplateArgumentListInfo *TemplateArgs) {
15049 SourceLocation UDSuffixLoc = SuffixInfo.getCXXLiteralOperatorNameLoc();
15050
15051 OverloadCandidateSet CandidateSet(UDSuffixLoc,
15052 OverloadCandidateSet::CSK_Normal);
15053 AddNonMemberOperatorCandidates(R.asUnresolvedSet(), Args, CandidateSet,
15054 TemplateArgs);
15055
15056 bool HadMultipleCandidates = (CandidateSet.size() > 1);
15057
15058 // Perform overload resolution. This will usually be trivial, but might need
15059 // to perform substitutions for a literal operator template.
15060 OverloadCandidateSet::iterator Best;
15061 switch (CandidateSet.BestViableFunction(*this, UDSuffixLoc, Best)) {
15062 case OR_Success:
15063 case OR_Deleted:
15064 break;
15065
15066 case OR_No_Viable_Function:
15067 CandidateSet.NoteCandidates(
15068 PartialDiagnosticAt(UDSuffixLoc,
15069 PDiag(diag::err_ovl_no_viable_function_in_call)
15070 << R.getLookupName()),
15071 *this, OCD_AllCandidates, Args);
15072 return ExprError();
15073
15074 case OR_Ambiguous:
15075 CandidateSet.NoteCandidates(
15076 PartialDiagnosticAt(R.getNameLoc(), PDiag(diag::err_ovl_ambiguous_call)
15077 << R.getLookupName()),
15078 *this, OCD_AmbiguousCandidates, Args);
15079 return ExprError();
15080 }
15081
15082 FunctionDecl *FD = Best->Function;
15083 ExprResult Fn = CreateFunctionRefExpr(*this, FD, Best->FoundDecl,
15084 nullptr, HadMultipleCandidates,
15085 SuffixInfo.getLoc(),
15086 SuffixInfo.getInfo());
15087 if (Fn.isInvalid())
15088 return true;
15089
15090 // Check the argument types. This should almost always be a no-op, except
15091 // that array-to-pointer decay is applied to string literals.
15092 Expr *ConvArgs[2];
15093 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
15094 ExprResult InputInit = PerformCopyInitialization(
15095 InitializedEntity::InitializeParameter(Context, FD->getParamDecl(ArgIdx)),
15096 SourceLocation(), Args[ArgIdx]);
15097 if (InputInit.isInvalid())
15098 return true;
15099 ConvArgs[ArgIdx] = InputInit.get();
15100 }
15101
15102 QualType ResultTy = FD->getReturnType();
15103 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
15104 ResultTy = ResultTy.getNonLValueExprType(Context);
15105
15106 UserDefinedLiteral *UDL = UserDefinedLiteral::Create(
15107 Context, Fn.get(), llvm::makeArrayRef(ConvArgs, Args.size()), ResultTy,
15108 VK, LitEndLoc, UDSuffixLoc, CurFPFeatureOverrides());
15109
15110 if (CheckCallReturnType(FD->getReturnType(), UDSuffixLoc, UDL, FD))
15111 return ExprError();
15112
15113 if (CheckFunctionCall(FD, UDL, nullptr))
15114 return ExprError();
15115
15116 return CheckForImmediateInvocation(MaybeBindToTemporary(UDL), FD);
15117 }
15118
15119 /// Build a call to 'begin' or 'end' for a C++11 for-range statement. If the
15120 /// given LookupResult is non-empty, it is assumed to describe a member which
15121 /// will be invoked. Otherwise, the function will be found via argument
15122 /// dependent lookup.
15123 /// CallExpr is set to a valid expression and FRS_Success returned on success,
15124 /// otherwise CallExpr is set to ExprError() and some non-success value
15125 /// is returned.
15126 Sema::ForRangeStatus
BuildForRangeBeginEndCall(SourceLocation Loc,SourceLocation RangeLoc,const DeclarationNameInfo & NameInfo,LookupResult & MemberLookup,OverloadCandidateSet * CandidateSet,Expr * Range,ExprResult * CallExpr)15127 Sema::BuildForRangeBeginEndCall(SourceLocation Loc,
15128 SourceLocation RangeLoc,
15129 const DeclarationNameInfo &NameInfo,
15130 LookupResult &MemberLookup,
15131 OverloadCandidateSet *CandidateSet,
15132 Expr *Range, ExprResult *CallExpr) {
15133 Scope *S = nullptr;
15134
15135 CandidateSet->clear(OverloadCandidateSet::CSK_Normal);
15136 if (!MemberLookup.empty()) {
15137 ExprResult MemberRef =
15138 BuildMemberReferenceExpr(Range, Range->getType(), Loc,
15139 /*IsPtr=*/false, CXXScopeSpec(),
15140 /*TemplateKWLoc=*/SourceLocation(),
15141 /*FirstQualifierInScope=*/nullptr,
15142 MemberLookup,
15143 /*TemplateArgs=*/nullptr, S);
15144 if (MemberRef.isInvalid()) {
15145 *CallExpr = ExprError();
15146 return FRS_DiagnosticIssued;
15147 }
15148 *CallExpr = BuildCallExpr(S, MemberRef.get(), Loc, None, Loc, nullptr);
15149 if (CallExpr->isInvalid()) {
15150 *CallExpr = ExprError();
15151 return FRS_DiagnosticIssued;
15152 }
15153 } else {
15154 ExprResult FnR = CreateUnresolvedLookupExpr(/*NamingClass=*/nullptr,
15155 NestedNameSpecifierLoc(),
15156 NameInfo, UnresolvedSet<0>());
15157 if (FnR.isInvalid())
15158 return FRS_DiagnosticIssued;
15159 UnresolvedLookupExpr *Fn = cast<UnresolvedLookupExpr>(FnR.get());
15160
15161 bool CandidateSetError = buildOverloadedCallSet(S, Fn, Fn, Range, Loc,
15162 CandidateSet, CallExpr);
15163 if (CandidateSet->empty() || CandidateSetError) {
15164 *CallExpr = ExprError();
15165 return FRS_NoViableFunction;
15166 }
15167 OverloadCandidateSet::iterator Best;
15168 OverloadingResult OverloadResult =
15169 CandidateSet->BestViableFunction(*this, Fn->getBeginLoc(), Best);
15170
15171 if (OverloadResult == OR_No_Viable_Function) {
15172 *CallExpr = ExprError();
15173 return FRS_NoViableFunction;
15174 }
15175 *CallExpr = FinishOverloadedCallExpr(*this, S, Fn, Fn, Loc, Range,
15176 Loc, nullptr, CandidateSet, &Best,
15177 OverloadResult,
15178 /*AllowTypoCorrection=*/false);
15179 if (CallExpr->isInvalid() || OverloadResult != OR_Success) {
15180 *CallExpr = ExprError();
15181 return FRS_DiagnosticIssued;
15182 }
15183 }
15184 return FRS_Success;
15185 }
15186
15187
15188 /// FixOverloadedFunctionReference - E is an expression that refers to
15189 /// a C++ overloaded function (possibly with some parentheses and
15190 /// perhaps a '&' around it). We have resolved the overloaded function
15191 /// to the function declaration Fn, so patch up the expression E to
15192 /// refer (possibly indirectly) to Fn. Returns the new expr.
FixOverloadedFunctionReference(Expr * E,DeclAccessPair Found,FunctionDecl * Fn)15193 Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
15194 FunctionDecl *Fn) {
15195 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
15196 Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(),
15197 Found, Fn);
15198 if (SubExpr == PE->getSubExpr())
15199 return PE;
15200
15201 return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
15202 }
15203
15204 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
15205 Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(),
15206 Found, Fn);
15207 assert(Context.hasSameType(ICE->getSubExpr()->getType(),
15208 SubExpr->getType()) &&
15209 "Implicit cast type cannot be determined from overload");
15210 assert(ICE->path_empty() && "fixing up hierarchy conversion?");
15211 if (SubExpr == ICE->getSubExpr())
15212 return ICE;
15213
15214 return ImplicitCastExpr::Create(Context, ICE->getType(), ICE->getCastKind(),
15215 SubExpr, nullptr, ICE->getValueKind(),
15216 CurFPFeatureOverrides());
15217 }
15218
15219 if (auto *GSE = dyn_cast<GenericSelectionExpr>(E)) {
15220 if (!GSE->isResultDependent()) {
15221 Expr *SubExpr =
15222 FixOverloadedFunctionReference(GSE->getResultExpr(), Found, Fn);
15223 if (SubExpr == GSE->getResultExpr())
15224 return GSE;
15225
15226 // Replace the resulting type information before rebuilding the generic
15227 // selection expression.
15228 ArrayRef<Expr *> A = GSE->getAssocExprs();
15229 SmallVector<Expr *, 4> AssocExprs(A.begin(), A.end());
15230 unsigned ResultIdx = GSE->getResultIndex();
15231 AssocExprs[ResultIdx] = SubExpr;
15232
15233 return GenericSelectionExpr::Create(
15234 Context, GSE->getGenericLoc(), GSE->getControllingExpr(),
15235 GSE->getAssocTypeSourceInfos(), AssocExprs, GSE->getDefaultLoc(),
15236 GSE->getRParenLoc(), GSE->containsUnexpandedParameterPack(),
15237 ResultIdx);
15238 }
15239 // Rather than fall through to the unreachable, return the original generic
15240 // selection expression.
15241 return GSE;
15242 }
15243
15244 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
15245 assert(UnOp->getOpcode() == UO_AddrOf &&
15246 "Can only take the address of an overloaded function");
15247 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
15248 if (Method->isStatic()) {
15249 // Do nothing: static member functions aren't any different
15250 // from non-member functions.
15251 } else {
15252 // Fix the subexpression, which really has to be an
15253 // UnresolvedLookupExpr holding an overloaded member function
15254 // or template.
15255 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
15256 Found, Fn);
15257 if (SubExpr == UnOp->getSubExpr())
15258 return UnOp;
15259
15260 assert(isa<DeclRefExpr>(SubExpr)
15261 && "fixed to something other than a decl ref");
15262 assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
15263 && "fixed to a member ref with no nested name qualifier");
15264
15265 // We have taken the address of a pointer to member
15266 // function. Perform the computation here so that we get the
15267 // appropriate pointer to member type.
15268 QualType ClassType
15269 = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
15270 QualType MemPtrType
15271 = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
15272 // Under the MS ABI, lock down the inheritance model now.
15273 if (Context.getTargetInfo().getCXXABI().isMicrosoft())
15274 (void)isCompleteType(UnOp->getOperatorLoc(), MemPtrType);
15275
15276 return UnaryOperator::Create(
15277 Context, SubExpr, UO_AddrOf, MemPtrType, VK_PRValue, OK_Ordinary,
15278 UnOp->getOperatorLoc(), false, CurFPFeatureOverrides());
15279 }
15280 }
15281 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
15282 Found, Fn);
15283 if (SubExpr == UnOp->getSubExpr())
15284 return UnOp;
15285
15286 // FIXME: This can't currently fail, but in principle it could.
15287 return CreateBuiltinUnaryOp(UnOp->getOperatorLoc(), UO_AddrOf, SubExpr)
15288 .get();
15289 }
15290
15291 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
15292 // FIXME: avoid copy.
15293 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
15294 if (ULE->hasExplicitTemplateArgs()) {
15295 ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
15296 TemplateArgs = &TemplateArgsBuffer;
15297 }
15298
15299 QualType Type = Fn->getType();
15300 ExprValueKind ValueKind = getLangOpts().CPlusPlus ? VK_LValue : VK_PRValue;
15301
15302 // FIXME: Duplicated from BuildDeclarationNameExpr.
15303 if (unsigned BID = Fn->getBuiltinID()) {
15304 if (!Context.BuiltinInfo.isDirectlyAddressable(BID)) {
15305 Type = Context.BuiltinFnTy;
15306 ValueKind = VK_PRValue;
15307 }
15308 }
15309
15310 DeclRefExpr *DRE = BuildDeclRefExpr(
15311 Fn, Type, ValueKind, ULE->getNameInfo(), ULE->getQualifierLoc(),
15312 Found.getDecl(), ULE->getTemplateKeywordLoc(), TemplateArgs);
15313 DRE->setHadMultipleCandidates(ULE->getNumDecls() > 1);
15314 return DRE;
15315 }
15316
15317 if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
15318 // FIXME: avoid copy.
15319 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
15320 if (MemExpr->hasExplicitTemplateArgs()) {
15321 MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
15322 TemplateArgs = &TemplateArgsBuffer;
15323 }
15324
15325 Expr *Base;
15326
15327 // If we're filling in a static method where we used to have an
15328 // implicit member access, rewrite to a simple decl ref.
15329 if (MemExpr->isImplicitAccess()) {
15330 if (cast<CXXMethodDecl>(Fn)->isStatic()) {
15331 DeclRefExpr *DRE = BuildDeclRefExpr(
15332 Fn, Fn->getType(), VK_LValue, MemExpr->getNameInfo(),
15333 MemExpr->getQualifierLoc(), Found.getDecl(),
15334 MemExpr->getTemplateKeywordLoc(), TemplateArgs);
15335 DRE->setHadMultipleCandidates(MemExpr->getNumDecls() > 1);
15336 return DRE;
15337 } else {
15338 SourceLocation Loc = MemExpr->getMemberLoc();
15339 if (MemExpr->getQualifier())
15340 Loc = MemExpr->getQualifierLoc().getBeginLoc();
15341 Base =
15342 BuildCXXThisExpr(Loc, MemExpr->getBaseType(), /*IsImplicit=*/true);
15343 }
15344 } else
15345 Base = MemExpr->getBase();
15346
15347 ExprValueKind valueKind;
15348 QualType type;
15349 if (cast<CXXMethodDecl>(Fn)->isStatic()) {
15350 valueKind = VK_LValue;
15351 type = Fn->getType();
15352 } else {
15353 valueKind = VK_PRValue;
15354 type = Context.BoundMemberTy;
15355 }
15356
15357 return BuildMemberExpr(
15358 Base, MemExpr->isArrow(), MemExpr->getOperatorLoc(),
15359 MemExpr->getQualifierLoc(), MemExpr->getTemplateKeywordLoc(), Fn, Found,
15360 /*HadMultipleCandidates=*/true, MemExpr->getMemberNameInfo(),
15361 type, valueKind, OK_Ordinary, TemplateArgs);
15362 }
15363
15364 llvm_unreachable("Invalid reference to overloaded function");
15365 }
15366
FixOverloadedFunctionReference(ExprResult E,DeclAccessPair Found,FunctionDecl * Fn)15367 ExprResult Sema::FixOverloadedFunctionReference(ExprResult E,
15368 DeclAccessPair Found,
15369 FunctionDecl *Fn) {
15370 return FixOverloadedFunctionReference(E.get(), Found, Fn);
15371 }
15372
shouldEnforceArgLimit(bool PartialOverloading,FunctionDecl * Function)15373 bool clang::shouldEnforceArgLimit(bool PartialOverloading,
15374 FunctionDecl *Function) {
15375 if (!PartialOverloading || !Function)
15376 return true;
15377 if (Function->isVariadic())
15378 return false;
15379 if (const auto *Proto =
15380 dyn_cast<FunctionProtoType>(Function->getFunctionType()))
15381 if (Proto->isTemplateVariadic())
15382 return false;
15383 if (auto *Pattern = Function->getTemplateInstantiationPattern())
15384 if (const auto *Proto =
15385 dyn_cast<FunctionProtoType>(Pattern->getFunctionType()))
15386 if (Proto->isTemplateVariadic())
15387 return false;
15388 return true;
15389 }
15390