1 //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements semantic analysis for declarations.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "TypeLocBuilder.h"
14 #include "clang/AST/ASTConsumer.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTLambda.h"
17 #include "clang/AST/CXXInheritance.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/AST/CommentDiagnostic.h"
20 #include "clang/AST/Decl.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclTemplate.h"
24 #include "clang/AST/EvaluatedExprVisitor.h"
25 #include "clang/AST/Expr.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/NonTrivialTypeVisitor.h"
28 #include "clang/AST/Randstruct.h"
29 #include "clang/AST/StmtCXX.h"
30 #include "clang/AST/Type.h"
31 #include "clang/Basic/Builtins.h"
32 #include "clang/Basic/HLSLRuntime.h"
33 #include "clang/Basic/PartialDiagnostic.h"
34 #include "clang/Basic/SourceManager.h"
35 #include "clang/Basic/TargetInfo.h"
36 #include "clang/Lex/HeaderSearch.h" // TODO: Sema shouldn't depend on Lex
37 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
38 #include "clang/Lex/ModuleLoader.h" // TODO: Sema shouldn't depend on Lex
39 #include "clang/Lex/Preprocessor.h" // Included for isCodeCompletionEnabled()
40 #include "clang/Sema/CXXFieldCollector.h"
41 #include "clang/Sema/DeclSpec.h"
42 #include "clang/Sema/DelayedDiagnostic.h"
43 #include "clang/Sema/Initialization.h"
44 #include "clang/Sema/Lookup.h"
45 #include "clang/Sema/ParsedTemplate.h"
46 #include "clang/Sema/Scope.h"
47 #include "clang/Sema/ScopeInfo.h"
48 #include "clang/Sema/SemaInternal.h"
49 #include "clang/Sema/Template.h"
50 #include "llvm/ADT/SmallString.h"
51 #include "llvm/ADT/StringExtras.h"
52 #include "llvm/TargetParser/Triple.h"
53 #include <algorithm>
54 #include <cstring>
55 #include <functional>
56 #include <optional>
57 #include <unordered_map>
58
59 using namespace clang;
60 using namespace sema;
61
ConvertDeclToDeclGroup(Decl * Ptr,Decl * OwnedType)62 Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
63 if (OwnedType) {
64 Decl *Group[2] = { OwnedType, Ptr };
65 return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
66 }
67
68 return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
69 }
70
71 namespace {
72
73 class TypeNameValidatorCCC final : public CorrectionCandidateCallback {
74 public:
TypeNameValidatorCCC(bool AllowInvalid,bool WantClass=false,bool AllowTemplates=false,bool AllowNonTemplates=true)75 TypeNameValidatorCCC(bool AllowInvalid, bool WantClass = false,
76 bool AllowTemplates = false,
77 bool AllowNonTemplates = true)
78 : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass),
79 AllowTemplates(AllowTemplates), AllowNonTemplates(AllowNonTemplates) {
80 WantExpressionKeywords = false;
81 WantCXXNamedCasts = false;
82 WantRemainingKeywords = false;
83 }
84
ValidateCandidate(const TypoCorrection & candidate)85 bool ValidateCandidate(const TypoCorrection &candidate) override {
86 if (NamedDecl *ND = candidate.getCorrectionDecl()) {
87 if (!AllowInvalidDecl && ND->isInvalidDecl())
88 return false;
89
90 if (getAsTypeTemplateDecl(ND))
91 return AllowTemplates;
92
93 bool IsType = isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND);
94 if (!IsType)
95 return false;
96
97 if (AllowNonTemplates)
98 return true;
99
100 // An injected-class-name of a class template (specialization) is valid
101 // as a template or as a non-template.
102 if (AllowTemplates) {
103 auto *RD = dyn_cast<CXXRecordDecl>(ND);
104 if (!RD || !RD->isInjectedClassName())
105 return false;
106 RD = cast<CXXRecordDecl>(RD->getDeclContext());
107 return RD->getDescribedClassTemplate() ||
108 isa<ClassTemplateSpecializationDecl>(RD);
109 }
110
111 return false;
112 }
113
114 return !WantClassName && candidate.isKeyword();
115 }
116
clone()117 std::unique_ptr<CorrectionCandidateCallback> clone() override {
118 return std::make_unique<TypeNameValidatorCCC>(*this);
119 }
120
121 private:
122 bool AllowInvalidDecl;
123 bool WantClassName;
124 bool AllowTemplates;
125 bool AllowNonTemplates;
126 };
127
128 } // end anonymous namespace
129
130 /// Determine whether the token kind starts a simple-type-specifier.
isSimpleTypeSpecifier(tok::TokenKind Kind) const131 bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
132 switch (Kind) {
133 // FIXME: Take into account the current language when deciding whether a
134 // token kind is a valid type specifier
135 case tok::kw_short:
136 case tok::kw_long:
137 case tok::kw___int64:
138 case tok::kw___int128:
139 case tok::kw_signed:
140 case tok::kw_unsigned:
141 case tok::kw_void:
142 case tok::kw_char:
143 case tok::kw_int:
144 case tok::kw_half:
145 case tok::kw_float:
146 case tok::kw_double:
147 case tok::kw___bf16:
148 case tok::kw__Float16:
149 case tok::kw___float128:
150 case tok::kw___ibm128:
151 case tok::kw_wchar_t:
152 case tok::kw_bool:
153 case tok::kw__Accum:
154 case tok::kw__Fract:
155 case tok::kw__Sat:
156 #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) case tok::kw___##Trait:
157 #include "clang/Basic/TransformTypeTraits.def"
158 case tok::kw___auto_type:
159 return true;
160
161 case tok::annot_typename:
162 case tok::kw_char16_t:
163 case tok::kw_char32_t:
164 case tok::kw_typeof:
165 case tok::annot_decltype:
166 case tok::kw_decltype:
167 return getLangOpts().CPlusPlus;
168
169 case tok::kw_char8_t:
170 return getLangOpts().Char8;
171
172 default:
173 break;
174 }
175
176 return false;
177 }
178
179 namespace {
180 enum class UnqualifiedTypeNameLookupResult {
181 NotFound,
182 FoundNonType,
183 FoundType
184 };
185 } // end anonymous namespace
186
187 /// Tries to perform unqualified lookup of the type decls in bases for
188 /// dependent class.
189 /// \return \a NotFound if no any decls is found, \a FoundNotType if found not a
190 /// type decl, \a FoundType if only type decls are found.
191 static UnqualifiedTypeNameLookupResult
lookupUnqualifiedTypeNameInBase(Sema & S,const IdentifierInfo & II,SourceLocation NameLoc,const CXXRecordDecl * RD)192 lookupUnqualifiedTypeNameInBase(Sema &S, const IdentifierInfo &II,
193 SourceLocation NameLoc,
194 const CXXRecordDecl *RD) {
195 if (!RD->hasDefinition())
196 return UnqualifiedTypeNameLookupResult::NotFound;
197 // Look for type decls in base classes.
198 UnqualifiedTypeNameLookupResult FoundTypeDecl =
199 UnqualifiedTypeNameLookupResult::NotFound;
200 for (const auto &Base : RD->bases()) {
201 const CXXRecordDecl *BaseRD = nullptr;
202 if (auto *BaseTT = Base.getType()->getAs<TagType>())
203 BaseRD = BaseTT->getAsCXXRecordDecl();
204 else if (auto *TST = Base.getType()->getAs<TemplateSpecializationType>()) {
205 // Look for type decls in dependent base classes that have known primary
206 // templates.
207 if (!TST || !TST->isDependentType())
208 continue;
209 auto *TD = TST->getTemplateName().getAsTemplateDecl();
210 if (!TD)
211 continue;
212 if (auto *BasePrimaryTemplate =
213 dyn_cast_or_null<CXXRecordDecl>(TD->getTemplatedDecl())) {
214 if (BasePrimaryTemplate->getCanonicalDecl() != RD->getCanonicalDecl())
215 BaseRD = BasePrimaryTemplate;
216 else if (auto *CTD = dyn_cast<ClassTemplateDecl>(TD)) {
217 if (const ClassTemplatePartialSpecializationDecl *PS =
218 CTD->findPartialSpecialization(Base.getType()))
219 if (PS->getCanonicalDecl() != RD->getCanonicalDecl())
220 BaseRD = PS;
221 }
222 }
223 }
224 if (BaseRD) {
225 for (NamedDecl *ND : BaseRD->lookup(&II)) {
226 if (!isa<TypeDecl>(ND))
227 return UnqualifiedTypeNameLookupResult::FoundNonType;
228 FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
229 }
230 if (FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound) {
231 switch (lookupUnqualifiedTypeNameInBase(S, II, NameLoc, BaseRD)) {
232 case UnqualifiedTypeNameLookupResult::FoundNonType:
233 return UnqualifiedTypeNameLookupResult::FoundNonType;
234 case UnqualifiedTypeNameLookupResult::FoundType:
235 FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
236 break;
237 case UnqualifiedTypeNameLookupResult::NotFound:
238 break;
239 }
240 }
241 }
242 }
243
244 return FoundTypeDecl;
245 }
246
recoverFromTypeInKnownDependentBase(Sema & S,const IdentifierInfo & II,SourceLocation NameLoc)247 static ParsedType recoverFromTypeInKnownDependentBase(Sema &S,
248 const IdentifierInfo &II,
249 SourceLocation NameLoc) {
250 // Lookup in the parent class template context, if any.
251 const CXXRecordDecl *RD = nullptr;
252 UnqualifiedTypeNameLookupResult FoundTypeDecl =
253 UnqualifiedTypeNameLookupResult::NotFound;
254 for (DeclContext *DC = S.CurContext;
255 DC && FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound;
256 DC = DC->getParent()) {
257 // Look for type decls in dependent base classes that have known primary
258 // templates.
259 RD = dyn_cast<CXXRecordDecl>(DC);
260 if (RD && RD->getDescribedClassTemplate())
261 FoundTypeDecl = lookupUnqualifiedTypeNameInBase(S, II, NameLoc, RD);
262 }
263 if (FoundTypeDecl != UnqualifiedTypeNameLookupResult::FoundType)
264 return nullptr;
265
266 // We found some types in dependent base classes. Recover as if the user
267 // wrote 'typename MyClass::II' instead of 'II'. We'll fully resolve the
268 // lookup during template instantiation.
269 S.Diag(NameLoc, diag::ext_found_in_dependent_base) << &II;
270
271 ASTContext &Context = S.Context;
272 auto *NNS = NestedNameSpecifier::Create(Context, nullptr, false,
273 cast<Type>(Context.getRecordType(RD)));
274 QualType T =
275 Context.getDependentNameType(ElaboratedTypeKeyword::Typename, NNS, &II);
276
277 CXXScopeSpec SS;
278 SS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
279
280 TypeLocBuilder Builder;
281 DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
282 DepTL.setNameLoc(NameLoc);
283 DepTL.setElaboratedKeywordLoc(SourceLocation());
284 DepTL.setQualifierLoc(SS.getWithLocInContext(Context));
285 return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
286 }
287
288 /// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
buildNamedType(Sema & S,const CXXScopeSpec * SS,QualType T,SourceLocation NameLoc,bool WantNontrivialTypeSourceInfo=true)289 static ParsedType buildNamedType(Sema &S, const CXXScopeSpec *SS, QualType T,
290 SourceLocation NameLoc,
291 bool WantNontrivialTypeSourceInfo = true) {
292 switch (T->getTypeClass()) {
293 case Type::DeducedTemplateSpecialization:
294 case Type::Enum:
295 case Type::InjectedClassName:
296 case Type::Record:
297 case Type::Typedef:
298 case Type::UnresolvedUsing:
299 case Type::Using:
300 break;
301 // These can never be qualified so an ElaboratedType node
302 // would carry no additional meaning.
303 case Type::ObjCInterface:
304 case Type::ObjCTypeParam:
305 case Type::TemplateTypeParm:
306 return ParsedType::make(T);
307 default:
308 llvm_unreachable("Unexpected Type Class");
309 }
310
311 if (!SS || SS->isEmpty())
312 return ParsedType::make(S.Context.getElaboratedType(
313 ElaboratedTypeKeyword::None, nullptr, T, nullptr));
314
315 QualType ElTy = S.getElaboratedType(ElaboratedTypeKeyword::None, *SS, T);
316 if (!WantNontrivialTypeSourceInfo)
317 return ParsedType::make(ElTy);
318
319 TypeLocBuilder Builder;
320 Builder.pushTypeSpec(T).setNameLoc(NameLoc);
321 ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(ElTy);
322 ElabTL.setElaboratedKeywordLoc(SourceLocation());
323 ElabTL.setQualifierLoc(SS->getWithLocInContext(S.Context));
324 return S.CreateParsedType(ElTy, Builder.getTypeSourceInfo(S.Context, ElTy));
325 }
326
327 /// If the identifier refers to a type name within this scope,
328 /// return the declaration of that type.
329 ///
330 /// This routine performs ordinary name lookup of the identifier II
331 /// within the given scope, with optional C++ scope specifier SS, to
332 /// determine whether the name refers to a type. If so, returns an
333 /// opaque pointer (actually a QualType) corresponding to that
334 /// type. Otherwise, returns NULL.
getTypeName(const IdentifierInfo & II,SourceLocation NameLoc,Scope * S,CXXScopeSpec * SS,bool isClassName,bool HasTrailingDot,ParsedType ObjectTypePtr,bool IsCtorOrDtorName,bool WantNontrivialTypeSourceInfo,bool IsClassTemplateDeductionContext,ImplicitTypenameContext AllowImplicitTypename,IdentifierInfo ** CorrectedII)335 ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
336 Scope *S, CXXScopeSpec *SS, bool isClassName,
337 bool HasTrailingDot, ParsedType ObjectTypePtr,
338 bool IsCtorOrDtorName,
339 bool WantNontrivialTypeSourceInfo,
340 bool IsClassTemplateDeductionContext,
341 ImplicitTypenameContext AllowImplicitTypename,
342 IdentifierInfo **CorrectedII) {
343 // FIXME: Consider allowing this outside C++1z mode as an extension.
344 bool AllowDeducedTemplate = IsClassTemplateDeductionContext &&
345 getLangOpts().CPlusPlus17 && !IsCtorOrDtorName &&
346 !isClassName && !HasTrailingDot;
347
348 // Determine where we will perform name lookup.
349 DeclContext *LookupCtx = nullptr;
350 if (ObjectTypePtr) {
351 QualType ObjectType = ObjectTypePtr.get();
352 if (ObjectType->isRecordType())
353 LookupCtx = computeDeclContext(ObjectType);
354 } else if (SS && SS->isNotEmpty()) {
355 LookupCtx = computeDeclContext(*SS, false);
356
357 if (!LookupCtx) {
358 if (isDependentScopeSpecifier(*SS)) {
359 // C++ [temp.res]p3:
360 // A qualified-id that refers to a type and in which the
361 // nested-name-specifier depends on a template-parameter (14.6.2)
362 // shall be prefixed by the keyword typename to indicate that the
363 // qualified-id denotes a type, forming an
364 // elaborated-type-specifier (7.1.5.3).
365 //
366 // We therefore do not perform any name lookup if the result would
367 // refer to a member of an unknown specialization.
368 // In C++2a, in several contexts a 'typename' is not required. Also
369 // allow this as an extension.
370 if (AllowImplicitTypename == ImplicitTypenameContext::No &&
371 !isClassName && !IsCtorOrDtorName)
372 return nullptr;
373 bool IsImplicitTypename = !isClassName && !IsCtorOrDtorName;
374 if (IsImplicitTypename) {
375 SourceLocation QualifiedLoc = SS->getRange().getBegin();
376 if (getLangOpts().CPlusPlus20)
377 Diag(QualifiedLoc, diag::warn_cxx17_compat_implicit_typename);
378 else
379 Diag(QualifiedLoc, diag::ext_implicit_typename)
380 << SS->getScopeRep() << II.getName()
381 << FixItHint::CreateInsertion(QualifiedLoc, "typename ");
382 }
383
384 // We know from the grammar that this name refers to a type,
385 // so build a dependent node to describe the type.
386 if (WantNontrivialTypeSourceInfo)
387 return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc,
388 (ImplicitTypenameContext)IsImplicitTypename)
389 .get();
390
391 NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
392 QualType T = CheckTypenameType(
393 IsImplicitTypename ? ElaboratedTypeKeyword::Typename
394 : ElaboratedTypeKeyword::None,
395 SourceLocation(), QualifierLoc, II, NameLoc);
396 return ParsedType::make(T);
397 }
398
399 return nullptr;
400 }
401
402 if (!LookupCtx->isDependentContext() &&
403 RequireCompleteDeclContext(*SS, LookupCtx))
404 return nullptr;
405 }
406
407 // FIXME: LookupNestedNameSpecifierName isn't the right kind of
408 // lookup for class-names.
409 LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
410 LookupOrdinaryName;
411 LookupResult Result(*this, &II, NameLoc, Kind);
412 if (LookupCtx) {
413 // Perform "qualified" name lookup into the declaration context we
414 // computed, which is either the type of the base of a member access
415 // expression or the declaration context associated with a prior
416 // nested-name-specifier.
417 LookupQualifiedName(Result, LookupCtx);
418
419 if (ObjectTypePtr && Result.empty()) {
420 // C++ [basic.lookup.classref]p3:
421 // If the unqualified-id is ~type-name, the type-name is looked up
422 // in the context of the entire postfix-expression. If the type T of
423 // the object expression is of a class type C, the type-name is also
424 // looked up in the scope of class C. At least one of the lookups shall
425 // find a name that refers to (possibly cv-qualified) T.
426 LookupName(Result, S);
427 }
428 } else {
429 // Perform unqualified name lookup.
430 LookupName(Result, S);
431
432 // For unqualified lookup in a class template in MSVC mode, look into
433 // dependent base classes where the primary class template is known.
434 if (Result.empty() && getLangOpts().MSVCCompat && (!SS || SS->isEmpty())) {
435 if (ParsedType TypeInBase =
436 recoverFromTypeInKnownDependentBase(*this, II, NameLoc))
437 return TypeInBase;
438 }
439 }
440
441 NamedDecl *IIDecl = nullptr;
442 UsingShadowDecl *FoundUsingShadow = nullptr;
443 switch (Result.getResultKind()) {
444 case LookupResult::NotFound:
445 if (CorrectedII) {
446 TypeNameValidatorCCC CCC(/*AllowInvalid=*/true, isClassName,
447 AllowDeducedTemplate);
448 TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(), Kind,
449 S, SS, CCC, CTK_ErrorRecovery);
450 IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
451 TemplateTy Template;
452 bool MemberOfUnknownSpecialization;
453 UnqualifiedId TemplateName;
454 TemplateName.setIdentifier(NewII, NameLoc);
455 NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
456 CXXScopeSpec NewSS, *NewSSPtr = SS;
457 if (SS && NNS) {
458 NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
459 NewSSPtr = &NewSS;
460 }
461 if (Correction && (NNS || NewII != &II) &&
462 // Ignore a correction to a template type as the to-be-corrected
463 // identifier is not a template (typo correction for template names
464 // is handled elsewhere).
465 !(getLangOpts().CPlusPlus && NewSSPtr &&
466 isTemplateName(S, *NewSSPtr, false, TemplateName, nullptr, false,
467 Template, MemberOfUnknownSpecialization))) {
468 ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
469 isClassName, HasTrailingDot, ObjectTypePtr,
470 IsCtorOrDtorName,
471 WantNontrivialTypeSourceInfo,
472 IsClassTemplateDeductionContext);
473 if (Ty) {
474 diagnoseTypo(Correction,
475 PDiag(diag::err_unknown_type_or_class_name_suggest)
476 << Result.getLookupName() << isClassName);
477 if (SS && NNS)
478 SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
479 *CorrectedII = NewII;
480 return Ty;
481 }
482 }
483 }
484 Result.suppressDiagnostics();
485 return nullptr;
486 case LookupResult::NotFoundInCurrentInstantiation:
487 if (AllowImplicitTypename == ImplicitTypenameContext::Yes) {
488 QualType T = Context.getDependentNameType(ElaboratedTypeKeyword::None,
489 SS->getScopeRep(), &II);
490 TypeLocBuilder TLB;
491 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(T);
492 TL.setElaboratedKeywordLoc(SourceLocation());
493 TL.setQualifierLoc(SS->getWithLocInContext(Context));
494 TL.setNameLoc(NameLoc);
495 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
496 }
497 [[fallthrough]];
498 case LookupResult::FoundOverloaded:
499 case LookupResult::FoundUnresolvedValue:
500 Result.suppressDiagnostics();
501 return nullptr;
502
503 case LookupResult::Ambiguous:
504 // Recover from type-hiding ambiguities by hiding the type. We'll
505 // do the lookup again when looking for an object, and we can
506 // diagnose the error then. If we don't do this, then the error
507 // about hiding the type will be immediately followed by an error
508 // that only makes sense if the identifier was treated like a type.
509 if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
510 Result.suppressDiagnostics();
511 return nullptr;
512 }
513
514 // Look to see if we have a type anywhere in the list of results.
515 for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
516 Res != ResEnd; ++Res) {
517 NamedDecl *RealRes = (*Res)->getUnderlyingDecl();
518 if (isa<TypeDecl, ObjCInterfaceDecl, UnresolvedUsingIfExistsDecl>(
519 RealRes) ||
520 (AllowDeducedTemplate && getAsTypeTemplateDecl(RealRes))) {
521 if (!IIDecl ||
522 // Make the selection of the recovery decl deterministic.
523 RealRes->getLocation() < IIDecl->getLocation()) {
524 IIDecl = RealRes;
525 FoundUsingShadow = dyn_cast<UsingShadowDecl>(*Res);
526 }
527 }
528 }
529
530 if (!IIDecl) {
531 // None of the entities we found is a type, so there is no way
532 // to even assume that the result is a type. In this case, don't
533 // complain about the ambiguity. The parser will either try to
534 // perform this lookup again (e.g., as an object name), which
535 // will produce the ambiguity, or will complain that it expected
536 // a type name.
537 Result.suppressDiagnostics();
538 return nullptr;
539 }
540
541 // We found a type within the ambiguous lookup; diagnose the
542 // ambiguity and then return that type. This might be the right
543 // answer, or it might not be, but it suppresses any attempt to
544 // perform the name lookup again.
545 break;
546
547 case LookupResult::Found:
548 IIDecl = Result.getFoundDecl();
549 FoundUsingShadow = dyn_cast<UsingShadowDecl>(*Result.begin());
550 break;
551 }
552
553 assert(IIDecl && "Didn't find decl");
554
555 QualType T;
556 if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
557 // C++ [class.qual]p2: A lookup that would find the injected-class-name
558 // instead names the constructors of the class, except when naming a class.
559 // This is ill-formed when we're not actually forming a ctor or dtor name.
560 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx);
561 auto *FoundRD = dyn_cast<CXXRecordDecl>(TD);
562 if (!isClassName && !IsCtorOrDtorName && LookupRD && FoundRD &&
563 FoundRD->isInjectedClassName() &&
564 declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent())))
565 Diag(NameLoc, diag::err_out_of_line_qualified_id_type_names_constructor)
566 << &II << /*Type*/1;
567
568 DiagnoseUseOfDecl(IIDecl, NameLoc);
569
570 T = Context.getTypeDeclType(TD);
571 MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
572 } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
573 (void)DiagnoseUseOfDecl(IDecl, NameLoc);
574 if (!HasTrailingDot)
575 T = Context.getObjCInterfaceType(IDecl);
576 FoundUsingShadow = nullptr; // FIXME: Target must be a TypeDecl.
577 } else if (auto *UD = dyn_cast<UnresolvedUsingIfExistsDecl>(IIDecl)) {
578 (void)DiagnoseUseOfDecl(UD, NameLoc);
579 // Recover with 'int'
580 return ParsedType::make(Context.IntTy);
581 } else if (AllowDeducedTemplate) {
582 if (auto *TD = getAsTypeTemplateDecl(IIDecl)) {
583 assert(!FoundUsingShadow || FoundUsingShadow->getTargetDecl() == TD);
584 TemplateName Template =
585 FoundUsingShadow ? TemplateName(FoundUsingShadow) : TemplateName(TD);
586 T = Context.getDeducedTemplateSpecializationType(Template, QualType(),
587 false);
588 // Don't wrap in a further UsingType.
589 FoundUsingShadow = nullptr;
590 }
591 }
592
593 if (T.isNull()) {
594 // If it's not plausibly a type, suppress diagnostics.
595 Result.suppressDiagnostics();
596 return nullptr;
597 }
598
599 if (FoundUsingShadow)
600 T = Context.getUsingType(FoundUsingShadow, T);
601
602 return buildNamedType(*this, SS, T, NameLoc, WantNontrivialTypeSourceInfo);
603 }
604
605 // Builds a fake NNS for the given decl context.
606 static NestedNameSpecifier *
synthesizeCurrentNestedNameSpecifier(ASTContext & Context,DeclContext * DC)607 synthesizeCurrentNestedNameSpecifier(ASTContext &Context, DeclContext *DC) {
608 for (;; DC = DC->getLookupParent()) {
609 DC = DC->getPrimaryContext();
610 auto *ND = dyn_cast<NamespaceDecl>(DC);
611 if (ND && !ND->isInline() && !ND->isAnonymousNamespace())
612 return NestedNameSpecifier::Create(Context, nullptr, ND);
613 else if (auto *RD = dyn_cast<CXXRecordDecl>(DC))
614 return NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
615 RD->getTypeForDecl());
616 else if (isa<TranslationUnitDecl>(DC))
617 return NestedNameSpecifier::GlobalSpecifier(Context);
618 }
619 llvm_unreachable("something isn't in TU scope?");
620 }
621
622 /// Find the parent class with dependent bases of the innermost enclosing method
623 /// context. Do not look for enclosing CXXRecordDecls directly, or we will end
624 /// up allowing unqualified dependent type names at class-level, which MSVC
625 /// correctly rejects.
626 static const CXXRecordDecl *
findRecordWithDependentBasesOfEnclosingMethod(const DeclContext * DC)627 findRecordWithDependentBasesOfEnclosingMethod(const DeclContext *DC) {
628 for (; DC && DC->isDependentContext(); DC = DC->getLookupParent()) {
629 DC = DC->getPrimaryContext();
630 if (const auto *MD = dyn_cast<CXXMethodDecl>(DC))
631 if (MD->getParent()->hasAnyDependentBases())
632 return MD->getParent();
633 }
634 return nullptr;
635 }
636
ActOnMSVCUnknownTypeName(const IdentifierInfo & II,SourceLocation NameLoc,bool IsTemplateTypeArg)637 ParsedType Sema::ActOnMSVCUnknownTypeName(const IdentifierInfo &II,
638 SourceLocation NameLoc,
639 bool IsTemplateTypeArg) {
640 assert(getLangOpts().MSVCCompat && "shouldn't be called in non-MSVC mode");
641
642 NestedNameSpecifier *NNS = nullptr;
643 if (IsTemplateTypeArg && getCurScope()->isTemplateParamScope()) {
644 // If we weren't able to parse a default template argument, delay lookup
645 // until instantiation time by making a non-dependent DependentTypeName. We
646 // pretend we saw a NestedNameSpecifier referring to the current scope, and
647 // lookup is retried.
648 // FIXME: This hurts our diagnostic quality, since we get errors like "no
649 // type named 'Foo' in 'current_namespace'" when the user didn't write any
650 // name specifiers.
651 NNS = synthesizeCurrentNestedNameSpecifier(Context, CurContext);
652 Diag(NameLoc, diag::ext_ms_delayed_template_argument) << &II;
653 } else if (const CXXRecordDecl *RD =
654 findRecordWithDependentBasesOfEnclosingMethod(CurContext)) {
655 // Build a DependentNameType that will perform lookup into RD at
656 // instantiation time.
657 NNS = NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
658 RD->getTypeForDecl());
659
660 // Diagnose that this identifier was undeclared, and retry the lookup during
661 // template instantiation.
662 Diag(NameLoc, diag::ext_undeclared_unqual_id_with_dependent_base) << &II
663 << RD;
664 } else {
665 // This is not a situation that we should recover from.
666 return ParsedType();
667 }
668
669 QualType T =
670 Context.getDependentNameType(ElaboratedTypeKeyword::None, NNS, &II);
671
672 // Build type location information. We synthesized the qualifier, so we have
673 // to build a fake NestedNameSpecifierLoc.
674 NestedNameSpecifierLocBuilder NNSLocBuilder;
675 NNSLocBuilder.MakeTrivial(Context, NNS, SourceRange(NameLoc));
676 NestedNameSpecifierLoc QualifierLoc = NNSLocBuilder.getWithLocInContext(Context);
677
678 TypeLocBuilder Builder;
679 DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
680 DepTL.setNameLoc(NameLoc);
681 DepTL.setElaboratedKeywordLoc(SourceLocation());
682 DepTL.setQualifierLoc(QualifierLoc);
683 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
684 }
685
686 /// isTagName() - This method is called *for error recovery purposes only*
687 /// to determine if the specified name is a valid tag name ("struct foo"). If
688 /// so, this returns the TST for the tag corresponding to it (TST_enum,
689 /// TST_union, TST_struct, TST_interface, TST_class). This is used to diagnose
690 /// cases in C where the user forgot to specify the tag.
isTagName(IdentifierInfo & II,Scope * S)691 DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
692 // Do a tag name lookup in this scope.
693 LookupResult R(*this, &II, SourceLocation(), LookupTagName);
694 LookupName(R, S, false);
695 R.suppressDiagnostics();
696 if (R.getResultKind() == LookupResult::Found)
697 if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
698 switch (TD->getTagKind()) {
699 case TagTypeKind::Struct:
700 return DeclSpec::TST_struct;
701 case TagTypeKind::Interface:
702 return DeclSpec::TST_interface;
703 case TagTypeKind::Union:
704 return DeclSpec::TST_union;
705 case TagTypeKind::Class:
706 return DeclSpec::TST_class;
707 case TagTypeKind::Enum:
708 return DeclSpec::TST_enum;
709 }
710 }
711
712 return DeclSpec::TST_unspecified;
713 }
714
715 /// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
716 /// if a CXXScopeSpec's type is equal to the type of one of the base classes
717 /// then downgrade the missing typename error to a warning.
718 /// This is needed for MSVC compatibility; Example:
719 /// @code
720 /// template<class T> class A {
721 /// public:
722 /// typedef int TYPE;
723 /// };
724 /// template<class T> class B : public A<T> {
725 /// public:
726 /// A<T>::TYPE a; // no typename required because A<T> is a base class.
727 /// };
728 /// @endcode
isMicrosoftMissingTypename(const CXXScopeSpec * SS,Scope * S)729 bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
730 if (CurContext->isRecord()) {
731 if (SS->getScopeRep()->getKind() == NestedNameSpecifier::Super)
732 return true;
733
734 const Type *Ty = SS->getScopeRep()->getAsType();
735
736 CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
737 for (const auto &Base : RD->bases())
738 if (Ty && Context.hasSameUnqualifiedType(QualType(Ty, 1), Base.getType()))
739 return true;
740 return S->isFunctionPrototypeScope();
741 }
742 return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
743 }
744
DiagnoseUnknownTypeName(IdentifierInfo * & II,SourceLocation IILoc,Scope * S,CXXScopeSpec * SS,ParsedType & SuggestedType,bool IsTemplateName)745 void Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
746 SourceLocation IILoc,
747 Scope *S,
748 CXXScopeSpec *SS,
749 ParsedType &SuggestedType,
750 bool IsTemplateName) {
751 // Don't report typename errors for editor placeholders.
752 if (II->isEditorPlaceholder())
753 return;
754 // We don't have anything to suggest (yet).
755 SuggestedType = nullptr;
756
757 // There may have been a typo in the name of the type. Look up typo
758 // results, in case we have something that we can suggest.
759 TypeNameValidatorCCC CCC(/*AllowInvalid=*/false, /*WantClass=*/false,
760 /*AllowTemplates=*/IsTemplateName,
761 /*AllowNonTemplates=*/!IsTemplateName);
762 if (TypoCorrection Corrected =
763 CorrectTypo(DeclarationNameInfo(II, IILoc), LookupOrdinaryName, S, SS,
764 CCC, CTK_ErrorRecovery)) {
765 // FIXME: Support error recovery for the template-name case.
766 bool CanRecover = !IsTemplateName;
767 if (Corrected.isKeyword()) {
768 // We corrected to a keyword.
769 diagnoseTypo(Corrected,
770 PDiag(IsTemplateName ? diag::err_no_template_suggest
771 : diag::err_unknown_typename_suggest)
772 << II);
773 II = Corrected.getCorrectionAsIdentifierInfo();
774 } else {
775 // We found a similarly-named type or interface; suggest that.
776 if (!SS || !SS->isSet()) {
777 diagnoseTypo(Corrected,
778 PDiag(IsTemplateName ? diag::err_no_template_suggest
779 : diag::err_unknown_typename_suggest)
780 << II, CanRecover);
781 } else if (DeclContext *DC = computeDeclContext(*SS, false)) {
782 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
783 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
784 II->getName().equals(CorrectedStr);
785 diagnoseTypo(Corrected,
786 PDiag(IsTemplateName
787 ? diag::err_no_member_template_suggest
788 : diag::err_unknown_nested_typename_suggest)
789 << II << DC << DroppedSpecifier << SS->getRange(),
790 CanRecover);
791 } else {
792 llvm_unreachable("could not have corrected a typo here");
793 }
794
795 if (!CanRecover)
796 return;
797
798 CXXScopeSpec tmpSS;
799 if (Corrected.getCorrectionSpecifier())
800 tmpSS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
801 SourceRange(IILoc));
802 // FIXME: Support class template argument deduction here.
803 SuggestedType =
804 getTypeName(*Corrected.getCorrectionAsIdentifierInfo(), IILoc, S,
805 tmpSS.isSet() ? &tmpSS : SS, false, false, nullptr,
806 /*IsCtorOrDtorName=*/false,
807 /*WantNontrivialTypeSourceInfo=*/true);
808 }
809 return;
810 }
811
812 if (getLangOpts().CPlusPlus && !IsTemplateName) {
813 // See if II is a class template that the user forgot to pass arguments to.
814 UnqualifiedId Name;
815 Name.setIdentifier(II, IILoc);
816 CXXScopeSpec EmptySS;
817 TemplateTy TemplateResult;
818 bool MemberOfUnknownSpecialization;
819 if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
820 Name, nullptr, true, TemplateResult,
821 MemberOfUnknownSpecialization) == TNK_Type_template) {
822 diagnoseMissingTemplateArguments(TemplateResult.get(), IILoc);
823 return;
824 }
825 }
826
827 // FIXME: Should we move the logic that tries to recover from a missing tag
828 // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
829
830 if (!SS || (!SS->isSet() && !SS->isInvalid()))
831 Diag(IILoc, IsTemplateName ? diag::err_no_template
832 : diag::err_unknown_typename)
833 << II;
834 else if (DeclContext *DC = computeDeclContext(*SS, false))
835 Diag(IILoc, IsTemplateName ? diag::err_no_member_template
836 : diag::err_typename_nested_not_found)
837 << II << DC << SS->getRange();
838 else if (SS->isValid() && SS->getScopeRep()->containsErrors()) {
839 SuggestedType =
840 ActOnTypenameType(S, SourceLocation(), *SS, *II, IILoc).get();
841 } else if (isDependentScopeSpecifier(*SS)) {
842 unsigned DiagID = diag::err_typename_missing;
843 if (getLangOpts().MSVCCompat && isMicrosoftMissingTypename(SS, S))
844 DiagID = diag::ext_typename_missing;
845
846 Diag(SS->getRange().getBegin(), DiagID)
847 << SS->getScopeRep() << II->getName()
848 << SourceRange(SS->getRange().getBegin(), IILoc)
849 << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
850 SuggestedType = ActOnTypenameType(S, SourceLocation(),
851 *SS, *II, IILoc).get();
852 } else {
853 assert(SS && SS->isInvalid() &&
854 "Invalid scope specifier has already been diagnosed");
855 }
856 }
857
858 /// Determine whether the given result set contains either a type name
859 /// or
isResultTypeOrTemplate(LookupResult & R,const Token & NextToken)860 static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
861 bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
862 NextToken.is(tok::less);
863
864 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
865 if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
866 return true;
867
868 if (CheckTemplate && isa<TemplateDecl>(*I))
869 return true;
870 }
871
872 return false;
873 }
874
isTagTypeWithMissingTag(Sema & SemaRef,LookupResult & Result,Scope * S,CXXScopeSpec & SS,IdentifierInfo * & Name,SourceLocation NameLoc)875 static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
876 Scope *S, CXXScopeSpec &SS,
877 IdentifierInfo *&Name,
878 SourceLocation NameLoc) {
879 LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
880 SemaRef.LookupParsedName(R, S, &SS);
881 if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
882 StringRef FixItTagName;
883 switch (Tag->getTagKind()) {
884 case TagTypeKind::Class:
885 FixItTagName = "class ";
886 break;
887
888 case TagTypeKind::Enum:
889 FixItTagName = "enum ";
890 break;
891
892 case TagTypeKind::Struct:
893 FixItTagName = "struct ";
894 break;
895
896 case TagTypeKind::Interface:
897 FixItTagName = "__interface ";
898 break;
899
900 case TagTypeKind::Union:
901 FixItTagName = "union ";
902 break;
903 }
904
905 StringRef TagName = FixItTagName.drop_back();
906 SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
907 << Name << TagName << SemaRef.getLangOpts().CPlusPlus
908 << FixItHint::CreateInsertion(NameLoc, FixItTagName);
909
910 for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
911 I != IEnd; ++I)
912 SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
913 << Name << TagName;
914
915 // Replace lookup results with just the tag decl.
916 Result.clear(Sema::LookupTagName);
917 SemaRef.LookupParsedName(Result, S, &SS);
918 return true;
919 }
920
921 return false;
922 }
923
ClassifyName(Scope * S,CXXScopeSpec & SS,IdentifierInfo * & Name,SourceLocation NameLoc,const Token & NextToken,CorrectionCandidateCallback * CCC)924 Sema::NameClassification Sema::ClassifyName(Scope *S, CXXScopeSpec &SS,
925 IdentifierInfo *&Name,
926 SourceLocation NameLoc,
927 const Token &NextToken,
928 CorrectionCandidateCallback *CCC) {
929 DeclarationNameInfo NameInfo(Name, NameLoc);
930 ObjCMethodDecl *CurMethod = getCurMethodDecl();
931
932 assert(NextToken.isNot(tok::coloncolon) &&
933 "parse nested name specifiers before calling ClassifyName");
934 if (getLangOpts().CPlusPlus && SS.isSet() &&
935 isCurrentClassName(*Name, S, &SS)) {
936 // Per [class.qual]p2, this names the constructors of SS, not the
937 // injected-class-name. We don't have a classification for that.
938 // There's not much point caching this result, since the parser
939 // will reject it later.
940 return NameClassification::Unknown();
941 }
942
943 LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
944 LookupParsedName(Result, S, &SS, !CurMethod);
945
946 if (SS.isInvalid())
947 return NameClassification::Error();
948
949 // For unqualified lookup in a class template in MSVC mode, look into
950 // dependent base classes where the primary class template is known.
951 if (Result.empty() && SS.isEmpty() && getLangOpts().MSVCCompat) {
952 if (ParsedType TypeInBase =
953 recoverFromTypeInKnownDependentBase(*this, *Name, NameLoc))
954 return TypeInBase;
955 }
956
957 // Perform lookup for Objective-C instance variables (including automatically
958 // synthesized instance variables), if we're in an Objective-C method.
959 // FIXME: This lookup really, really needs to be folded in to the normal
960 // unqualified lookup mechanism.
961 if (SS.isEmpty() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
962 DeclResult Ivar = LookupIvarInObjCMethod(Result, S, Name);
963 if (Ivar.isInvalid())
964 return NameClassification::Error();
965 if (Ivar.isUsable())
966 return NameClassification::NonType(cast<NamedDecl>(Ivar.get()));
967
968 // We defer builtin creation until after ivar lookup inside ObjC methods.
969 if (Result.empty())
970 LookupBuiltin(Result);
971 }
972
973 bool SecondTry = false;
974 bool IsFilteredTemplateName = false;
975
976 Corrected:
977 switch (Result.getResultKind()) {
978 case LookupResult::NotFound:
979 // If an unqualified-id is followed by a '(', then we have a function
980 // call.
981 if (SS.isEmpty() && NextToken.is(tok::l_paren)) {
982 // In C++, this is an ADL-only call.
983 // FIXME: Reference?
984 if (getLangOpts().CPlusPlus)
985 return NameClassification::UndeclaredNonType();
986
987 // C90 6.3.2.2:
988 // If the expression that precedes the parenthesized argument list in a
989 // function call consists solely of an identifier, and if no
990 // declaration is visible for this identifier, the identifier is
991 // implicitly declared exactly as if, in the innermost block containing
992 // the function call, the declaration
993 //
994 // extern int identifier ();
995 //
996 // appeared.
997 //
998 // We also allow this in C99 as an extension. However, this is not
999 // allowed in all language modes as functions without prototypes may not
1000 // be supported.
1001 if (getLangOpts().implicitFunctionsAllowed()) {
1002 if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S))
1003 return NameClassification::NonType(D);
1004 }
1005 }
1006
1007 if (getLangOpts().CPlusPlus20 && SS.isEmpty() && NextToken.is(tok::less)) {
1008 // In C++20 onwards, this could be an ADL-only call to a function
1009 // template, and we're required to assume that this is a template name.
1010 //
1011 // FIXME: Find a way to still do typo correction in this case.
1012 TemplateName Template =
1013 Context.getAssumedTemplateName(NameInfo.getName());
1014 return NameClassification::UndeclaredTemplate(Template);
1015 }
1016
1017 // In C, we first see whether there is a tag type by the same name, in
1018 // which case it's likely that the user just forgot to write "enum",
1019 // "struct", or "union".
1020 if (!getLangOpts().CPlusPlus && !SecondTry &&
1021 isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
1022 break;
1023 }
1024
1025 // Perform typo correction to determine if there is another name that is
1026 // close to this name.
1027 if (!SecondTry && CCC) {
1028 SecondTry = true;
1029 if (TypoCorrection Corrected =
1030 CorrectTypo(Result.getLookupNameInfo(), Result.getLookupKind(), S,
1031 &SS, *CCC, CTK_ErrorRecovery)) {
1032 unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
1033 unsigned QualifiedDiag = diag::err_no_member_suggest;
1034
1035 NamedDecl *FirstDecl = Corrected.getFoundDecl();
1036 NamedDecl *UnderlyingFirstDecl = Corrected.getCorrectionDecl();
1037 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
1038 UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
1039 UnqualifiedDiag = diag::err_no_template_suggest;
1040 QualifiedDiag = diag::err_no_member_template_suggest;
1041 } else if (UnderlyingFirstDecl &&
1042 (isa<TypeDecl>(UnderlyingFirstDecl) ||
1043 isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
1044 isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
1045 UnqualifiedDiag = diag::err_unknown_typename_suggest;
1046 QualifiedDiag = diag::err_unknown_nested_typename_suggest;
1047 }
1048
1049 if (SS.isEmpty()) {
1050 diagnoseTypo(Corrected, PDiag(UnqualifiedDiag) << Name);
1051 } else {// FIXME: is this even reachable? Test it.
1052 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
1053 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
1054 Name->getName().equals(CorrectedStr);
1055 diagnoseTypo(Corrected, PDiag(QualifiedDiag)
1056 << Name << computeDeclContext(SS, false)
1057 << DroppedSpecifier << SS.getRange());
1058 }
1059
1060 // Update the name, so that the caller has the new name.
1061 Name = Corrected.getCorrectionAsIdentifierInfo();
1062
1063 // Typo correction corrected to a keyword.
1064 if (Corrected.isKeyword())
1065 return Name;
1066
1067 // Also update the LookupResult...
1068 // FIXME: This should probably go away at some point
1069 Result.clear();
1070 Result.setLookupName(Corrected.getCorrection());
1071 if (FirstDecl)
1072 Result.addDecl(FirstDecl);
1073
1074 // If we found an Objective-C instance variable, let
1075 // LookupInObjCMethod build the appropriate expression to
1076 // reference the ivar.
1077 // FIXME: This is a gross hack.
1078 if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
1079 DeclResult R =
1080 LookupIvarInObjCMethod(Result, S, Ivar->getIdentifier());
1081 if (R.isInvalid())
1082 return NameClassification::Error();
1083 if (R.isUsable())
1084 return NameClassification::NonType(Ivar);
1085 }
1086
1087 goto Corrected;
1088 }
1089 }
1090
1091 // We failed to correct; just fall through and let the parser deal with it.
1092 Result.suppressDiagnostics();
1093 return NameClassification::Unknown();
1094
1095 case LookupResult::NotFoundInCurrentInstantiation: {
1096 // We performed name lookup into the current instantiation, and there were
1097 // dependent bases, so we treat this result the same way as any other
1098 // dependent nested-name-specifier.
1099
1100 // C++ [temp.res]p2:
1101 // A name used in a template declaration or definition and that is
1102 // dependent on a template-parameter is assumed not to name a type
1103 // unless the applicable name lookup finds a type name or the name is
1104 // qualified by the keyword typename.
1105 //
1106 // FIXME: If the next token is '<', we might want to ask the parser to
1107 // perform some heroics to see if we actually have a
1108 // template-argument-list, which would indicate a missing 'template'
1109 // keyword here.
1110 return NameClassification::DependentNonType();
1111 }
1112
1113 case LookupResult::Found:
1114 case LookupResult::FoundOverloaded:
1115 case LookupResult::FoundUnresolvedValue:
1116 break;
1117
1118 case LookupResult::Ambiguous:
1119 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
1120 hasAnyAcceptableTemplateNames(Result, /*AllowFunctionTemplates=*/true,
1121 /*AllowDependent=*/false)) {
1122 // C++ [temp.local]p3:
1123 // A lookup that finds an injected-class-name (10.2) can result in an
1124 // ambiguity in certain cases (for example, if it is found in more than
1125 // one base class). If all of the injected-class-names that are found
1126 // refer to specializations of the same class template, and if the name
1127 // is followed by a template-argument-list, the reference refers to the
1128 // class template itself and not a specialization thereof, and is not
1129 // ambiguous.
1130 //
1131 // This filtering can make an ambiguous result into an unambiguous one,
1132 // so try again after filtering out template names.
1133 FilterAcceptableTemplateNames(Result);
1134 if (!Result.isAmbiguous()) {
1135 IsFilteredTemplateName = true;
1136 break;
1137 }
1138 }
1139
1140 // Diagnose the ambiguity and return an error.
1141 return NameClassification::Error();
1142 }
1143
1144 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
1145 (IsFilteredTemplateName ||
1146 hasAnyAcceptableTemplateNames(
1147 Result, /*AllowFunctionTemplates=*/true,
1148 /*AllowDependent=*/false,
1149 /*AllowNonTemplateFunctions*/ SS.isEmpty() &&
1150 getLangOpts().CPlusPlus20))) {
1151 // C++ [temp.names]p3:
1152 // After name lookup (3.4) finds that a name is a template-name or that
1153 // an operator-function-id or a literal- operator-id refers to a set of
1154 // overloaded functions any member of which is a function template if
1155 // this is followed by a <, the < is always taken as the delimiter of a
1156 // template-argument-list and never as the less-than operator.
1157 // C++2a [temp.names]p2:
1158 // A name is also considered to refer to a template if it is an
1159 // unqualified-id followed by a < and name lookup finds either one
1160 // or more functions or finds nothing.
1161 if (!IsFilteredTemplateName)
1162 FilterAcceptableTemplateNames(Result);
1163
1164 bool IsFunctionTemplate;
1165 bool IsVarTemplate;
1166 TemplateName Template;
1167 if (Result.end() - Result.begin() > 1) {
1168 IsFunctionTemplate = true;
1169 Template = Context.getOverloadedTemplateName(Result.begin(),
1170 Result.end());
1171 } else if (!Result.empty()) {
1172 auto *TD = cast<TemplateDecl>(getAsTemplateNameDecl(
1173 *Result.begin(), /*AllowFunctionTemplates=*/true,
1174 /*AllowDependent=*/false));
1175 IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
1176 IsVarTemplate = isa<VarTemplateDecl>(TD);
1177
1178 UsingShadowDecl *FoundUsingShadow =
1179 dyn_cast<UsingShadowDecl>(*Result.begin());
1180 assert(!FoundUsingShadow ||
1181 TD == cast<TemplateDecl>(FoundUsingShadow->getTargetDecl()));
1182 Template =
1183 FoundUsingShadow ? TemplateName(FoundUsingShadow) : TemplateName(TD);
1184 if (SS.isNotEmpty())
1185 Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
1186 /*TemplateKeyword=*/false,
1187 Template);
1188 } else {
1189 // All results were non-template functions. This is a function template
1190 // name.
1191 IsFunctionTemplate = true;
1192 Template = Context.getAssumedTemplateName(NameInfo.getName());
1193 }
1194
1195 if (IsFunctionTemplate) {
1196 // Function templates always go through overload resolution, at which
1197 // point we'll perform the various checks (e.g., accessibility) we need
1198 // to based on which function we selected.
1199 Result.suppressDiagnostics();
1200
1201 return NameClassification::FunctionTemplate(Template);
1202 }
1203
1204 return IsVarTemplate ? NameClassification::VarTemplate(Template)
1205 : NameClassification::TypeTemplate(Template);
1206 }
1207
1208 auto BuildTypeFor = [&](TypeDecl *Type, NamedDecl *Found) {
1209 QualType T = Context.getTypeDeclType(Type);
1210 if (const auto *USD = dyn_cast<UsingShadowDecl>(Found))
1211 T = Context.getUsingType(USD, T);
1212 return buildNamedType(*this, &SS, T, NameLoc);
1213 };
1214
1215 NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
1216 if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
1217 DiagnoseUseOfDecl(Type, NameLoc);
1218 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
1219 return BuildTypeFor(Type, *Result.begin());
1220 }
1221
1222 ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
1223 if (!Class) {
1224 // FIXME: It's unfortunate that we don't have a Type node for handling this.
1225 if (ObjCCompatibleAliasDecl *Alias =
1226 dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
1227 Class = Alias->getClassInterface();
1228 }
1229
1230 if (Class) {
1231 DiagnoseUseOfDecl(Class, NameLoc);
1232
1233 if (NextToken.is(tok::period)) {
1234 // Interface. <something> is parsed as a property reference expression.
1235 // Just return "unknown" as a fall-through for now.
1236 Result.suppressDiagnostics();
1237 return NameClassification::Unknown();
1238 }
1239
1240 QualType T = Context.getObjCInterfaceType(Class);
1241 return ParsedType::make(T);
1242 }
1243
1244 if (isa<ConceptDecl>(FirstDecl))
1245 return NameClassification::Concept(
1246 TemplateName(cast<TemplateDecl>(FirstDecl)));
1247
1248 if (auto *EmptyD = dyn_cast<UnresolvedUsingIfExistsDecl>(FirstDecl)) {
1249 (void)DiagnoseUseOfDecl(EmptyD, NameLoc);
1250 return NameClassification::Error();
1251 }
1252
1253 // We can have a type template here if we're classifying a template argument.
1254 if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl) &&
1255 !isa<VarTemplateDecl>(FirstDecl))
1256 return NameClassification::TypeTemplate(
1257 TemplateName(cast<TemplateDecl>(FirstDecl)));
1258
1259 // Check for a tag type hidden by a non-type decl in a few cases where it
1260 // seems likely a type is wanted instead of the non-type that was found.
1261 bool NextIsOp = NextToken.isOneOf(tok::amp, tok::star);
1262 if ((NextToken.is(tok::identifier) ||
1263 (NextIsOp &&
1264 FirstDecl->getUnderlyingDecl()->isFunctionOrFunctionTemplate())) &&
1265 isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
1266 TypeDecl *Type = Result.getAsSingle<TypeDecl>();
1267 DiagnoseUseOfDecl(Type, NameLoc);
1268 return BuildTypeFor(Type, *Result.begin());
1269 }
1270
1271 // If we already know which single declaration is referenced, just annotate
1272 // that declaration directly. Defer resolving even non-overloaded class
1273 // member accesses, as we need to defer certain access checks until we know
1274 // the context.
1275 bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
1276 if (Result.isSingleResult() && !ADL &&
1277 (!FirstDecl->isCXXClassMember() || isa<EnumConstantDecl>(FirstDecl)))
1278 return NameClassification::NonType(Result.getRepresentativeDecl());
1279
1280 // Otherwise, this is an overload set that we will need to resolve later.
1281 Result.suppressDiagnostics();
1282 return NameClassification::OverloadSet(UnresolvedLookupExpr::Create(
1283 Context, Result.getNamingClass(), SS.getWithLocInContext(Context),
1284 Result.getLookupNameInfo(), ADL, Result.isOverloadedResult(),
1285 Result.begin(), Result.end()));
1286 }
1287
1288 ExprResult
ActOnNameClassifiedAsUndeclaredNonType(IdentifierInfo * Name,SourceLocation NameLoc)1289 Sema::ActOnNameClassifiedAsUndeclaredNonType(IdentifierInfo *Name,
1290 SourceLocation NameLoc) {
1291 assert(getLangOpts().CPlusPlus && "ADL-only call in C?");
1292 CXXScopeSpec SS;
1293 LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
1294 return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
1295 }
1296
1297 ExprResult
ActOnNameClassifiedAsDependentNonType(const CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation NameLoc,bool IsAddressOfOperand)1298 Sema::ActOnNameClassifiedAsDependentNonType(const CXXScopeSpec &SS,
1299 IdentifierInfo *Name,
1300 SourceLocation NameLoc,
1301 bool IsAddressOfOperand) {
1302 DeclarationNameInfo NameInfo(Name, NameLoc);
1303 return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
1304 NameInfo, IsAddressOfOperand,
1305 /*TemplateArgs=*/nullptr);
1306 }
1307
ActOnNameClassifiedAsNonType(Scope * S,const CXXScopeSpec & SS,NamedDecl * Found,SourceLocation NameLoc,const Token & NextToken)1308 ExprResult Sema::ActOnNameClassifiedAsNonType(Scope *S, const CXXScopeSpec &SS,
1309 NamedDecl *Found,
1310 SourceLocation NameLoc,
1311 const Token &NextToken) {
1312 if (getCurMethodDecl() && SS.isEmpty())
1313 if (auto *Ivar = dyn_cast<ObjCIvarDecl>(Found->getUnderlyingDecl()))
1314 return BuildIvarRefExpr(S, NameLoc, Ivar);
1315
1316 // Reconstruct the lookup result.
1317 LookupResult Result(*this, Found->getDeclName(), NameLoc, LookupOrdinaryName);
1318 Result.addDecl(Found);
1319 Result.resolveKind();
1320
1321 bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
1322 return BuildDeclarationNameExpr(SS, Result, ADL, /*AcceptInvalidDecl=*/true);
1323 }
1324
ActOnNameClassifiedAsOverloadSet(Scope * S,Expr * E)1325 ExprResult Sema::ActOnNameClassifiedAsOverloadSet(Scope *S, Expr *E) {
1326 // For an implicit class member access, transform the result into a member
1327 // access expression if necessary.
1328 auto *ULE = cast<UnresolvedLookupExpr>(E);
1329 if ((*ULE->decls_begin())->isCXXClassMember()) {
1330 CXXScopeSpec SS;
1331 SS.Adopt(ULE->getQualifierLoc());
1332
1333 // Reconstruct the lookup result.
1334 LookupResult Result(*this, ULE->getName(), ULE->getNameLoc(),
1335 LookupOrdinaryName);
1336 Result.setNamingClass(ULE->getNamingClass());
1337 for (auto I = ULE->decls_begin(), E = ULE->decls_end(); I != E; ++I)
1338 Result.addDecl(*I, I.getAccess());
1339 Result.resolveKind();
1340 return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result,
1341 nullptr, S);
1342 }
1343
1344 // Otherwise, this is already in the form we needed, and no further checks
1345 // are necessary.
1346 return ULE;
1347 }
1348
1349 Sema::TemplateNameKindForDiagnostics
getTemplateNameKindForDiagnostics(TemplateName Name)1350 Sema::getTemplateNameKindForDiagnostics(TemplateName Name) {
1351 auto *TD = Name.getAsTemplateDecl();
1352 if (!TD)
1353 return TemplateNameKindForDiagnostics::DependentTemplate;
1354 if (isa<ClassTemplateDecl>(TD))
1355 return TemplateNameKindForDiagnostics::ClassTemplate;
1356 if (isa<FunctionTemplateDecl>(TD))
1357 return TemplateNameKindForDiagnostics::FunctionTemplate;
1358 if (isa<VarTemplateDecl>(TD))
1359 return TemplateNameKindForDiagnostics::VarTemplate;
1360 if (isa<TypeAliasTemplateDecl>(TD))
1361 return TemplateNameKindForDiagnostics::AliasTemplate;
1362 if (isa<TemplateTemplateParmDecl>(TD))
1363 return TemplateNameKindForDiagnostics::TemplateTemplateParam;
1364 if (isa<ConceptDecl>(TD))
1365 return TemplateNameKindForDiagnostics::Concept;
1366 return TemplateNameKindForDiagnostics::DependentTemplate;
1367 }
1368
PushDeclContext(Scope * S,DeclContext * DC)1369 void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
1370 assert(DC->getLexicalParent() == CurContext &&
1371 "The next DeclContext should be lexically contained in the current one.");
1372 CurContext = DC;
1373 S->setEntity(DC);
1374 }
1375
PopDeclContext()1376 void Sema::PopDeclContext() {
1377 assert(CurContext && "DeclContext imbalance!");
1378
1379 CurContext = CurContext->getLexicalParent();
1380 assert(CurContext && "Popped translation unit!");
1381 }
1382
ActOnTagStartSkippedDefinition(Scope * S,Decl * D)1383 Sema::SkippedDefinitionContext Sema::ActOnTagStartSkippedDefinition(Scope *S,
1384 Decl *D) {
1385 // Unlike PushDeclContext, the context to which we return is not necessarily
1386 // the containing DC of TD, because the new context will be some pre-existing
1387 // TagDecl definition instead of a fresh one.
1388 auto Result = static_cast<SkippedDefinitionContext>(CurContext);
1389 CurContext = cast<TagDecl>(D)->getDefinition();
1390 assert(CurContext && "skipping definition of undefined tag");
1391 // Start lookups from the parent of the current context; we don't want to look
1392 // into the pre-existing complete definition.
1393 S->setEntity(CurContext->getLookupParent());
1394 return Result;
1395 }
1396
ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context)1397 void Sema::ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context) {
1398 CurContext = static_cast<decltype(CurContext)>(Context);
1399 }
1400
1401 /// EnterDeclaratorContext - Used when we must lookup names in the context
1402 /// of a declarator's nested name specifier.
1403 ///
EnterDeclaratorContext(Scope * S,DeclContext * DC)1404 void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
1405 // C++0x [basic.lookup.unqual]p13:
1406 // A name used in the definition of a static data member of class
1407 // X (after the qualified-id of the static member) is looked up as
1408 // if the name was used in a member function of X.
1409 // C++0x [basic.lookup.unqual]p14:
1410 // If a variable member of a namespace is defined outside of the
1411 // scope of its namespace then any name used in the definition of
1412 // the variable member (after the declarator-id) is looked up as
1413 // if the definition of the variable member occurred in its
1414 // namespace.
1415 // Both of these imply that we should push a scope whose context
1416 // is the semantic context of the declaration. We can't use
1417 // PushDeclContext here because that context is not necessarily
1418 // lexically contained in the current context. Fortunately,
1419 // the containing scope should have the appropriate information.
1420
1421 assert(!S->getEntity() && "scope already has entity");
1422
1423 #ifndef NDEBUG
1424 Scope *Ancestor = S->getParent();
1425 while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1426 assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
1427 #endif
1428
1429 CurContext = DC;
1430 S->setEntity(DC);
1431
1432 if (S->getParent()->isTemplateParamScope()) {
1433 // Also set the corresponding entities for all immediately-enclosing
1434 // template parameter scopes.
1435 EnterTemplatedContext(S->getParent(), DC);
1436 }
1437 }
1438
ExitDeclaratorContext(Scope * S)1439 void Sema::ExitDeclaratorContext(Scope *S) {
1440 assert(S->getEntity() == CurContext && "Context imbalance!");
1441
1442 // Switch back to the lexical context. The safety of this is
1443 // enforced by an assert in EnterDeclaratorContext.
1444 Scope *Ancestor = S->getParent();
1445 while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1446 CurContext = Ancestor->getEntity();
1447
1448 // We don't need to do anything with the scope, which is going to
1449 // disappear.
1450 }
1451
EnterTemplatedContext(Scope * S,DeclContext * DC)1452 void Sema::EnterTemplatedContext(Scope *S, DeclContext *DC) {
1453 assert(S->isTemplateParamScope() &&
1454 "expected to be initializing a template parameter scope");
1455
1456 // C++20 [temp.local]p7:
1457 // In the definition of a member of a class template that appears outside
1458 // of the class template definition, the name of a member of the class
1459 // template hides the name of a template-parameter of any enclosing class
1460 // templates (but not a template-parameter of the member if the member is a
1461 // class or function template).
1462 // C++20 [temp.local]p9:
1463 // In the definition of a class template or in the definition of a member
1464 // of such a template that appears outside of the template definition, for
1465 // each non-dependent base class (13.8.2.1), if the name of the base class
1466 // or the name of a member of the base class is the same as the name of a
1467 // template-parameter, the base class name or member name hides the
1468 // template-parameter name (6.4.10).
1469 //
1470 // This means that a template parameter scope should be searched immediately
1471 // after searching the DeclContext for which it is a template parameter
1472 // scope. For example, for
1473 // template<typename T> template<typename U> template<typename V>
1474 // void N::A<T>::B<U>::f(...)
1475 // we search V then B<U> (and base classes) then U then A<T> (and base
1476 // classes) then T then N then ::.
1477 unsigned ScopeDepth = getTemplateDepth(S);
1478 for (; S && S->isTemplateParamScope(); S = S->getParent(), --ScopeDepth) {
1479 DeclContext *SearchDCAfterScope = DC;
1480 for (; DC; DC = DC->getLookupParent()) {
1481 if (const TemplateParameterList *TPL =
1482 cast<Decl>(DC)->getDescribedTemplateParams()) {
1483 unsigned DCDepth = TPL->getDepth() + 1;
1484 if (DCDepth > ScopeDepth)
1485 continue;
1486 if (ScopeDepth == DCDepth)
1487 SearchDCAfterScope = DC = DC->getLookupParent();
1488 break;
1489 }
1490 }
1491 S->setLookupEntity(SearchDCAfterScope);
1492 }
1493 }
1494
ActOnReenterFunctionContext(Scope * S,Decl * D)1495 void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
1496 // We assume that the caller has already called
1497 // ActOnReenterTemplateScope so getTemplatedDecl() works.
1498 FunctionDecl *FD = D->getAsFunction();
1499 if (!FD)
1500 return;
1501
1502 // Same implementation as PushDeclContext, but enters the context
1503 // from the lexical parent, rather than the top-level class.
1504 assert(CurContext == FD->getLexicalParent() &&
1505 "The next DeclContext should be lexically contained in the current one.");
1506 CurContext = FD;
1507 S->setEntity(CurContext);
1508
1509 for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
1510 ParmVarDecl *Param = FD->getParamDecl(P);
1511 // If the parameter has an identifier, then add it to the scope
1512 if (Param->getIdentifier()) {
1513 S->AddDecl(Param);
1514 IdResolver.AddDecl(Param);
1515 }
1516 }
1517 }
1518
ActOnExitFunctionContext()1519 void Sema::ActOnExitFunctionContext() {
1520 // Same implementation as PopDeclContext, but returns to the lexical parent,
1521 // rather than the top-level class.
1522 assert(CurContext && "DeclContext imbalance!");
1523 CurContext = CurContext->getLexicalParent();
1524 assert(CurContext && "Popped translation unit!");
1525 }
1526
1527 /// Determine whether overloading is allowed for a new function
1528 /// declaration considering prior declarations of the same name.
1529 ///
1530 /// This routine determines whether overloading is possible, not
1531 /// whether a new declaration actually overloads a previous one.
1532 /// It will return true in C++ (where overloads are alway permitted)
1533 /// or, as a C extension, when either the new declaration or a
1534 /// previous one is declared with the 'overloadable' attribute.
AllowOverloadingOfFunction(const LookupResult & Previous,ASTContext & Context,const FunctionDecl * New)1535 static bool AllowOverloadingOfFunction(const LookupResult &Previous,
1536 ASTContext &Context,
1537 const FunctionDecl *New) {
1538 if (Context.getLangOpts().CPlusPlus || New->hasAttr<OverloadableAttr>())
1539 return true;
1540
1541 // Multiversion function declarations are not overloads in the
1542 // usual sense of that term, but lookup will report that an
1543 // overload set was found if more than one multiversion function
1544 // declaration is present for the same name. It is therefore
1545 // inadequate to assume that some prior declaration(s) had
1546 // the overloadable attribute; checking is required. Since one
1547 // declaration is permitted to omit the attribute, it is necessary
1548 // to check at least two; hence the 'any_of' check below. Note that
1549 // the overloadable attribute is implicitly added to declarations
1550 // that were required to have it but did not.
1551 if (Previous.getResultKind() == LookupResult::FoundOverloaded) {
1552 return llvm::any_of(Previous, [](const NamedDecl *ND) {
1553 return ND->hasAttr<OverloadableAttr>();
1554 });
1555 } else if (Previous.getResultKind() == LookupResult::Found)
1556 return Previous.getFoundDecl()->hasAttr<OverloadableAttr>();
1557
1558 return false;
1559 }
1560
1561 /// Add this decl to the scope shadowed decl chains.
PushOnScopeChains(NamedDecl * D,Scope * S,bool AddToContext)1562 void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1563 // Move up the scope chain until we find the nearest enclosing
1564 // non-transparent context. The declaration will be introduced into this
1565 // scope.
1566 while (S->getEntity() && S->getEntity()->isTransparentContext())
1567 S = S->getParent();
1568
1569 // Add scoped declarations into their context, so that they can be
1570 // found later. Declarations without a context won't be inserted
1571 // into any context.
1572 if (AddToContext)
1573 CurContext->addDecl(D);
1574
1575 // Out-of-line definitions shouldn't be pushed into scope in C++, unless they
1576 // are function-local declarations.
1577 if (getLangOpts().CPlusPlus && D->isOutOfLine() && !S->getFnParent())
1578 return;
1579
1580 // Template instantiations should also not be pushed into scope.
1581 if (isa<FunctionDecl>(D) &&
1582 cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1583 return;
1584
1585 // If this replaces anything in the current scope,
1586 IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1587 IEnd = IdResolver.end();
1588 for (; I != IEnd; ++I) {
1589 if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1590 S->RemoveDecl(*I);
1591 IdResolver.RemoveDecl(*I);
1592
1593 // Should only need to replace one decl.
1594 break;
1595 }
1596 }
1597
1598 S->AddDecl(D);
1599
1600 if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1601 // Implicitly-generated labels may end up getting generated in an order that
1602 // isn't strictly lexical, which breaks name lookup. Be careful to insert
1603 // the label at the appropriate place in the identifier chain.
1604 for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1605 DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1606 if (IDC == CurContext) {
1607 if (!S->isDeclScope(*I))
1608 continue;
1609 } else if (IDC->Encloses(CurContext))
1610 break;
1611 }
1612
1613 IdResolver.InsertDeclAfter(I, D);
1614 } else {
1615 IdResolver.AddDecl(D);
1616 }
1617 warnOnReservedIdentifier(D);
1618 }
1619
isDeclInScope(NamedDecl * D,DeclContext * Ctx,Scope * S,bool AllowInlineNamespace) const1620 bool Sema::isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S,
1621 bool AllowInlineNamespace) const {
1622 return IdResolver.isDeclInScope(D, Ctx, S, AllowInlineNamespace);
1623 }
1624
getScopeForDeclContext(Scope * S,DeclContext * DC)1625 Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1626 DeclContext *TargetDC = DC->getPrimaryContext();
1627 do {
1628 if (DeclContext *ScopeDC = S->getEntity())
1629 if (ScopeDC->getPrimaryContext() == TargetDC)
1630 return S;
1631 } while ((S = S->getParent()));
1632
1633 return nullptr;
1634 }
1635
1636 static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1637 DeclContext*,
1638 ASTContext&);
1639
1640 /// Filters out lookup results that don't fall within the given scope
1641 /// as determined by isDeclInScope.
FilterLookupForScope(LookupResult & R,DeclContext * Ctx,Scope * S,bool ConsiderLinkage,bool AllowInlineNamespace)1642 void Sema::FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S,
1643 bool ConsiderLinkage,
1644 bool AllowInlineNamespace) {
1645 LookupResult::Filter F = R.makeFilter();
1646 while (F.hasNext()) {
1647 NamedDecl *D = F.next();
1648
1649 if (isDeclInScope(D, Ctx, S, AllowInlineNamespace))
1650 continue;
1651
1652 if (ConsiderLinkage && isOutOfScopePreviousDeclaration(D, Ctx, Context))
1653 continue;
1654
1655 F.erase();
1656 }
1657
1658 F.done();
1659 }
1660
1661 /// We've determined that \p New is a redeclaration of \p Old. Check that they
1662 /// have compatible owning modules.
CheckRedeclarationModuleOwnership(NamedDecl * New,NamedDecl * Old)1663 bool Sema::CheckRedeclarationModuleOwnership(NamedDecl *New, NamedDecl *Old) {
1664 // [module.interface]p7:
1665 // A declaration is attached to a module as follows:
1666 // - If the declaration is a non-dependent friend declaration that nominates a
1667 // function with a declarator-id that is a qualified-id or template-id or that
1668 // nominates a class other than with an elaborated-type-specifier with neither
1669 // a nested-name-specifier nor a simple-template-id, it is attached to the
1670 // module to which the friend is attached ([basic.link]).
1671 if (New->getFriendObjectKind() &&
1672 Old->getOwningModuleForLinkage() != New->getOwningModuleForLinkage()) {
1673 New->setLocalOwningModule(Old->getOwningModule());
1674 makeMergedDefinitionVisible(New);
1675 return false;
1676 }
1677
1678 Module *NewM = New->getOwningModule();
1679 Module *OldM = Old->getOwningModule();
1680
1681 if (NewM && NewM->isPrivateModule())
1682 NewM = NewM->Parent;
1683 if (OldM && OldM->isPrivateModule())
1684 OldM = OldM->Parent;
1685
1686 if (NewM == OldM)
1687 return false;
1688
1689 if (NewM && OldM) {
1690 // A module implementation unit has visibility of the decls in its
1691 // implicitly imported interface.
1692 if (NewM->isModuleImplementation() && OldM == ThePrimaryInterface)
1693 return false;
1694
1695 // Partitions are part of the module, but a partition could import another
1696 // module, so verify that the PMIs agree.
1697 if ((NewM->isModulePartition() || OldM->isModulePartition()) &&
1698 NewM->getPrimaryModuleInterfaceName() ==
1699 OldM->getPrimaryModuleInterfaceName())
1700 return false;
1701 }
1702
1703 bool NewIsModuleInterface = NewM && NewM->isNamedModule();
1704 bool OldIsModuleInterface = OldM && OldM->isNamedModule();
1705 if (NewIsModuleInterface || OldIsModuleInterface) {
1706 // C++ Modules TS [basic.def.odr] 6.2/6.7 [sic]:
1707 // if a declaration of D [...] appears in the purview of a module, all
1708 // other such declarations shall appear in the purview of the same module
1709 Diag(New->getLocation(), diag::err_mismatched_owning_module)
1710 << New
1711 << NewIsModuleInterface
1712 << (NewIsModuleInterface ? NewM->getFullModuleName() : "")
1713 << OldIsModuleInterface
1714 << (OldIsModuleInterface ? OldM->getFullModuleName() : "");
1715 Diag(Old->getLocation(), diag::note_previous_declaration);
1716 New->setInvalidDecl();
1717 return true;
1718 }
1719
1720 return false;
1721 }
1722
1723 // [module.interface]p6:
1724 // A redeclaration of an entity X is implicitly exported if X was introduced by
1725 // an exported declaration; otherwise it shall not be exported.
CheckRedeclarationExported(NamedDecl * New,NamedDecl * Old)1726 bool Sema::CheckRedeclarationExported(NamedDecl *New, NamedDecl *Old) {
1727 // [module.interface]p1:
1728 // An export-declaration shall inhabit a namespace scope.
1729 //
1730 // So it is meaningless to talk about redeclaration which is not at namespace
1731 // scope.
1732 if (!New->getLexicalDeclContext()
1733 ->getNonTransparentContext()
1734 ->isFileContext() ||
1735 !Old->getLexicalDeclContext()
1736 ->getNonTransparentContext()
1737 ->isFileContext())
1738 return false;
1739
1740 bool IsNewExported = New->isInExportDeclContext();
1741 bool IsOldExported = Old->isInExportDeclContext();
1742
1743 // It should be irrevelant if both of them are not exported.
1744 if (!IsNewExported && !IsOldExported)
1745 return false;
1746
1747 if (IsOldExported)
1748 return false;
1749
1750 assert(IsNewExported);
1751
1752 auto Lk = Old->getFormalLinkage();
1753 int S = 0;
1754 if (Lk == Linkage::Internal)
1755 S = 1;
1756 else if (Lk == Linkage::Module)
1757 S = 2;
1758 Diag(New->getLocation(), diag::err_redeclaration_non_exported) << New << S;
1759 Diag(Old->getLocation(), diag::note_previous_declaration);
1760 return true;
1761 }
1762
1763 // A wrapper function for checking the semantic restrictions of
1764 // a redeclaration within a module.
CheckRedeclarationInModule(NamedDecl * New,NamedDecl * Old)1765 bool Sema::CheckRedeclarationInModule(NamedDecl *New, NamedDecl *Old) {
1766 if (CheckRedeclarationModuleOwnership(New, Old))
1767 return true;
1768
1769 if (CheckRedeclarationExported(New, Old))
1770 return true;
1771
1772 return false;
1773 }
1774
1775 // Check the redefinition in C++20 Modules.
1776 //
1777 // [basic.def.odr]p14:
1778 // For any definable item D with definitions in multiple translation units,
1779 // - if D is a non-inline non-templated function or variable, or
1780 // - if the definitions in different translation units do not satisfy the
1781 // following requirements,
1782 // the program is ill-formed; a diagnostic is required only if the definable
1783 // item is attached to a named module and a prior definition is reachable at
1784 // the point where a later definition occurs.
1785 // - Each such definition shall not be attached to a named module
1786 // ([module.unit]).
1787 // - Each such definition shall consist of the same sequence of tokens, ...
1788 // ...
1789 //
1790 // Return true if the redefinition is not allowed. Return false otherwise.
IsRedefinitionInModule(const NamedDecl * New,const NamedDecl * Old) const1791 bool Sema::IsRedefinitionInModule(const NamedDecl *New,
1792 const NamedDecl *Old) const {
1793 assert(getASTContext().isSameEntity(New, Old) &&
1794 "New and Old are not the same definition, we should diagnostic it "
1795 "immediately instead of checking it.");
1796 assert(const_cast<Sema *>(this)->isReachable(New) &&
1797 const_cast<Sema *>(this)->isReachable(Old) &&
1798 "We shouldn't see unreachable definitions here.");
1799
1800 Module *NewM = New->getOwningModule();
1801 Module *OldM = Old->getOwningModule();
1802
1803 // We only checks for named modules here. The header like modules is skipped.
1804 // FIXME: This is not right if we import the header like modules in the module
1805 // purview.
1806 //
1807 // For example, assuming "header.h" provides definition for `D`.
1808 // ```C++
1809 // //--- M.cppm
1810 // export module M;
1811 // import "header.h"; // or #include "header.h" but import it by clang modules
1812 // actually.
1813 //
1814 // //--- Use.cpp
1815 // import M;
1816 // import "header.h"; // or uses clang modules.
1817 // ```
1818 //
1819 // In this case, `D` has multiple definitions in multiple TU (M.cppm and
1820 // Use.cpp) and `D` is attached to a named module `M`. The compiler should
1821 // reject it. But the current implementation couldn't detect the case since we
1822 // don't record the information about the importee modules.
1823 //
1824 // But this might not be painful in practice. Since the design of C++20 Named
1825 // Modules suggests us to use headers in global module fragment instead of
1826 // module purview.
1827 if (NewM && NewM->isHeaderLikeModule())
1828 NewM = nullptr;
1829 if (OldM && OldM->isHeaderLikeModule())
1830 OldM = nullptr;
1831
1832 if (!NewM && !OldM)
1833 return true;
1834
1835 // [basic.def.odr]p14.3
1836 // Each such definition shall not be attached to a named module
1837 // ([module.unit]).
1838 if ((NewM && NewM->isNamedModule()) || (OldM && OldM->isNamedModule()))
1839 return true;
1840
1841 // Then New and Old lives in the same TU if their share one same module unit.
1842 if (NewM)
1843 NewM = NewM->getTopLevelModule();
1844 if (OldM)
1845 OldM = OldM->getTopLevelModule();
1846 return OldM == NewM;
1847 }
1848
isUsingDeclNotAtClassScope(NamedDecl * D)1849 static bool isUsingDeclNotAtClassScope(NamedDecl *D) {
1850 if (D->getDeclContext()->isFileContext())
1851 return false;
1852
1853 return isa<UsingShadowDecl>(D) ||
1854 isa<UnresolvedUsingTypenameDecl>(D) ||
1855 isa<UnresolvedUsingValueDecl>(D);
1856 }
1857
1858 /// Removes using shadow declarations not at class scope from the lookup
1859 /// results.
RemoveUsingDecls(LookupResult & R)1860 static void RemoveUsingDecls(LookupResult &R) {
1861 LookupResult::Filter F = R.makeFilter();
1862 while (F.hasNext())
1863 if (isUsingDeclNotAtClassScope(F.next()))
1864 F.erase();
1865
1866 F.done();
1867 }
1868
1869 /// Check for this common pattern:
1870 /// @code
1871 /// class S {
1872 /// S(const S&); // DO NOT IMPLEMENT
1873 /// void operator=(const S&); // DO NOT IMPLEMENT
1874 /// };
1875 /// @endcode
IsDisallowedCopyOrAssign(const CXXMethodDecl * D)1876 static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1877 // FIXME: Should check for private access too but access is set after we get
1878 // the decl here.
1879 if (D->doesThisDeclarationHaveABody())
1880 return false;
1881
1882 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1883 return CD->isCopyConstructor();
1884 return D->isCopyAssignmentOperator();
1885 }
1886
1887 // We need this to handle
1888 //
1889 // typedef struct {
1890 // void *foo() { return 0; }
1891 // } A;
1892 //
1893 // When we see foo we don't know if after the typedef we will get 'A' or '*A'
1894 // for example. If 'A', foo will have external linkage. If we have '*A',
1895 // foo will have no linkage. Since we can't know until we get to the end
1896 // of the typedef, this function finds out if D might have non-external linkage.
1897 // Callers should verify at the end of the TU if it D has external linkage or
1898 // not.
mightHaveNonExternalLinkage(const DeclaratorDecl * D)1899 bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) {
1900 const DeclContext *DC = D->getDeclContext();
1901 while (!DC->isTranslationUnit()) {
1902 if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){
1903 if (!RD->hasNameForLinkage())
1904 return true;
1905 }
1906 DC = DC->getParent();
1907 }
1908
1909 return !D->isExternallyVisible();
1910 }
1911
1912 // FIXME: This needs to be refactored; some other isInMainFile users want
1913 // these semantics.
isMainFileLoc(const Sema & S,SourceLocation Loc)1914 static bool isMainFileLoc(const Sema &S, SourceLocation Loc) {
1915 if (S.TUKind != TU_Complete || S.getLangOpts().IsHeaderFile)
1916 return false;
1917 return S.SourceMgr.isInMainFile(Loc);
1918 }
1919
ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl * D) const1920 bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1921 assert(D);
1922
1923 if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1924 return false;
1925
1926 // Ignore all entities declared within templates, and out-of-line definitions
1927 // of members of class templates.
1928 if (D->getDeclContext()->isDependentContext() ||
1929 D->getLexicalDeclContext()->isDependentContext())
1930 return false;
1931
1932 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1933 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1934 return false;
1935 // A non-out-of-line declaration of a member specialization was implicitly
1936 // instantiated; it's the out-of-line declaration that we're interested in.
1937 if (FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
1938 FD->getMemberSpecializationInfo() && !FD->isOutOfLine())
1939 return false;
1940
1941 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1942 if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1943 return false;
1944 } else {
1945 // 'static inline' functions are defined in headers; don't warn.
1946 if (FD->isInlined() && !isMainFileLoc(*this, FD->getLocation()))
1947 return false;
1948 }
1949
1950 if (FD->doesThisDeclarationHaveABody() &&
1951 Context.DeclMustBeEmitted(FD))
1952 return false;
1953 } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1954 // Constants and utility variables are defined in headers with internal
1955 // linkage; don't warn. (Unlike functions, there isn't a convenient marker
1956 // like "inline".)
1957 if (!isMainFileLoc(*this, VD->getLocation()))
1958 return false;
1959
1960 if (Context.DeclMustBeEmitted(VD))
1961 return false;
1962
1963 if (VD->isStaticDataMember() &&
1964 VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1965 return false;
1966 if (VD->isStaticDataMember() &&
1967 VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
1968 VD->getMemberSpecializationInfo() && !VD->isOutOfLine())
1969 return false;
1970
1971 if (VD->isInline() && !isMainFileLoc(*this, VD->getLocation()))
1972 return false;
1973 } else {
1974 return false;
1975 }
1976
1977 // Only warn for unused decls internal to the translation unit.
1978 // FIXME: This seems like a bogus check; it suppresses -Wunused-function
1979 // for inline functions defined in the main source file, for instance.
1980 return mightHaveNonExternalLinkage(D);
1981 }
1982
MarkUnusedFileScopedDecl(const DeclaratorDecl * D)1983 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1984 if (!D)
1985 return;
1986
1987 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1988 const FunctionDecl *First = FD->getFirstDecl();
1989 if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1990 return; // First should already be in the vector.
1991 }
1992
1993 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1994 const VarDecl *First = VD->getFirstDecl();
1995 if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1996 return; // First should already be in the vector.
1997 }
1998
1999 if (ShouldWarnIfUnusedFileScopedDecl(D))
2000 UnusedFileScopedDecls.push_back(D);
2001 }
2002
ShouldDiagnoseUnusedDecl(const LangOptions & LangOpts,const NamedDecl * D)2003 static bool ShouldDiagnoseUnusedDecl(const LangOptions &LangOpts,
2004 const NamedDecl *D) {
2005 if (D->isInvalidDecl())
2006 return false;
2007
2008 if (const auto *DD = dyn_cast<DecompositionDecl>(D)) {
2009 // For a decomposition declaration, warn if none of the bindings are
2010 // referenced, instead of if the variable itself is referenced (which
2011 // it is, by the bindings' expressions).
2012 bool IsAllPlaceholders = true;
2013 for (const auto *BD : DD->bindings()) {
2014 if (BD->isReferenced())
2015 return false;
2016 IsAllPlaceholders = IsAllPlaceholders && BD->isPlaceholderVar(LangOpts);
2017 }
2018 if (IsAllPlaceholders)
2019 return false;
2020 } else if (!D->getDeclName()) {
2021 return false;
2022 } else if (D->isReferenced() || D->isUsed()) {
2023 return false;
2024 }
2025
2026 if (D->isPlaceholderVar(LangOpts))
2027 return false;
2028
2029 if (D->hasAttr<UnusedAttr>() || D->hasAttr<ObjCPreciseLifetimeAttr>() ||
2030 D->hasAttr<CleanupAttr>())
2031 return false;
2032
2033 if (isa<LabelDecl>(D))
2034 return true;
2035
2036 // Except for labels, we only care about unused decls that are local to
2037 // functions.
2038 bool WithinFunction = D->getDeclContext()->isFunctionOrMethod();
2039 if (const auto *R = dyn_cast<CXXRecordDecl>(D->getDeclContext()))
2040 // For dependent types, the diagnostic is deferred.
2041 WithinFunction =
2042 WithinFunction || (R->isLocalClass() && !R->isDependentType());
2043 if (!WithinFunction)
2044 return false;
2045
2046 if (isa<TypedefNameDecl>(D))
2047 return true;
2048
2049 // White-list anything that isn't a local variable.
2050 if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D))
2051 return false;
2052
2053 // Types of valid local variables should be complete, so this should succeed.
2054 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2055
2056 const Expr *Init = VD->getInit();
2057 if (const auto *Cleanups = dyn_cast_if_present<ExprWithCleanups>(Init))
2058 Init = Cleanups->getSubExpr();
2059
2060 const auto *Ty = VD->getType().getTypePtr();
2061
2062 // Only look at the outermost level of typedef.
2063 if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
2064 // Allow anything marked with __attribute__((unused)).
2065 if (TT->getDecl()->hasAttr<UnusedAttr>())
2066 return false;
2067 }
2068
2069 // Warn for reference variables whose initializtion performs lifetime
2070 // extension.
2071 if (const auto *MTE = dyn_cast_if_present<MaterializeTemporaryExpr>(Init);
2072 MTE && MTE->getExtendingDecl()) {
2073 Ty = VD->getType().getNonReferenceType().getTypePtr();
2074 Init = MTE->getSubExpr()->IgnoreImplicitAsWritten();
2075 }
2076
2077 // If we failed to complete the type for some reason, or if the type is
2078 // dependent, don't diagnose the variable.
2079 if (Ty->isIncompleteType() || Ty->isDependentType())
2080 return false;
2081
2082 // Look at the element type to ensure that the warning behaviour is
2083 // consistent for both scalars and arrays.
2084 Ty = Ty->getBaseElementTypeUnsafe();
2085
2086 if (const TagType *TT = Ty->getAs<TagType>()) {
2087 const TagDecl *Tag = TT->getDecl();
2088 if (Tag->hasAttr<UnusedAttr>())
2089 return false;
2090
2091 if (const auto *RD = dyn_cast<CXXRecordDecl>(Tag)) {
2092 if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>())
2093 return false;
2094
2095 if (Init) {
2096 const auto *Construct = dyn_cast<CXXConstructExpr>(Init);
2097 if (Construct && !Construct->isElidable()) {
2098 const CXXConstructorDecl *CD = Construct->getConstructor();
2099 if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>() &&
2100 (VD->getInit()->isValueDependent() || !VD->evaluateValue()))
2101 return false;
2102 }
2103
2104 // Suppress the warning if we don't know how this is constructed, and
2105 // it could possibly be non-trivial constructor.
2106 if (Init->isTypeDependent()) {
2107 for (const CXXConstructorDecl *Ctor : RD->ctors())
2108 if (!Ctor->isTrivial())
2109 return false;
2110 }
2111
2112 // Suppress the warning if the constructor is unresolved because
2113 // its arguments are dependent.
2114 if (isa<CXXUnresolvedConstructExpr>(Init))
2115 return false;
2116 }
2117 }
2118 }
2119
2120 // TODO: __attribute__((unused)) templates?
2121 }
2122
2123 return true;
2124 }
2125
GenerateFixForUnusedDecl(const NamedDecl * D,ASTContext & Ctx,FixItHint & Hint)2126 static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
2127 FixItHint &Hint) {
2128 if (isa<LabelDecl>(D)) {
2129 SourceLocation AfterColon = Lexer::findLocationAfterToken(
2130 D->getEndLoc(), tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(),
2131 /*SkipTrailingWhitespaceAndNewline=*/false);
2132 if (AfterColon.isInvalid())
2133 return;
2134 Hint = FixItHint::CreateRemoval(
2135 CharSourceRange::getCharRange(D->getBeginLoc(), AfterColon));
2136 }
2137 }
2138
DiagnoseUnusedNestedTypedefs(const RecordDecl * D)2139 void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl *D) {
2140 DiagnoseUnusedNestedTypedefs(
2141 D, [this](SourceLocation Loc, PartialDiagnostic PD) { Diag(Loc, PD); });
2142 }
2143
DiagnoseUnusedNestedTypedefs(const RecordDecl * D,DiagReceiverTy DiagReceiver)2144 void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl *D,
2145 DiagReceiverTy DiagReceiver) {
2146 if (D->getTypeForDecl()->isDependentType())
2147 return;
2148
2149 for (auto *TmpD : D->decls()) {
2150 if (const auto *T = dyn_cast<TypedefNameDecl>(TmpD))
2151 DiagnoseUnusedDecl(T, DiagReceiver);
2152 else if(const auto *R = dyn_cast<RecordDecl>(TmpD))
2153 DiagnoseUnusedNestedTypedefs(R, DiagReceiver);
2154 }
2155 }
2156
DiagnoseUnusedDecl(const NamedDecl * D)2157 void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
2158 DiagnoseUnusedDecl(
2159 D, [this](SourceLocation Loc, PartialDiagnostic PD) { Diag(Loc, PD); });
2160 }
2161
2162 /// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
2163 /// unless they are marked attr(unused).
DiagnoseUnusedDecl(const NamedDecl * D,DiagReceiverTy DiagReceiver)2164 void Sema::DiagnoseUnusedDecl(const NamedDecl *D, DiagReceiverTy DiagReceiver) {
2165 if (!ShouldDiagnoseUnusedDecl(getLangOpts(), D))
2166 return;
2167
2168 if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
2169 // typedefs can be referenced later on, so the diagnostics are emitted
2170 // at end-of-translation-unit.
2171 UnusedLocalTypedefNameCandidates.insert(TD);
2172 return;
2173 }
2174
2175 FixItHint Hint;
2176 GenerateFixForUnusedDecl(D, Context, Hint);
2177
2178 unsigned DiagID;
2179 if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
2180 DiagID = diag::warn_unused_exception_param;
2181 else if (isa<LabelDecl>(D))
2182 DiagID = diag::warn_unused_label;
2183 else
2184 DiagID = diag::warn_unused_variable;
2185
2186 SourceLocation DiagLoc = D->getLocation();
2187 DiagReceiver(DiagLoc, PDiag(DiagID) << D << Hint << SourceRange(DiagLoc));
2188 }
2189
DiagnoseUnusedButSetDecl(const VarDecl * VD,DiagReceiverTy DiagReceiver)2190 void Sema::DiagnoseUnusedButSetDecl(const VarDecl *VD,
2191 DiagReceiverTy DiagReceiver) {
2192 // If it's not referenced, it can't be set. If it has the Cleanup attribute,
2193 // it's not really unused.
2194 if (!VD->isReferenced() || !VD->getDeclName() || VD->hasAttr<CleanupAttr>())
2195 return;
2196
2197 // In C++, `_` variables behave as if they were maybe_unused
2198 if (VD->hasAttr<UnusedAttr>() || VD->isPlaceholderVar(getLangOpts()))
2199 return;
2200
2201 const auto *Ty = VD->getType().getTypePtr()->getBaseElementTypeUnsafe();
2202
2203 if (Ty->isReferenceType() || Ty->isDependentType())
2204 return;
2205
2206 if (const TagType *TT = Ty->getAs<TagType>()) {
2207 const TagDecl *Tag = TT->getDecl();
2208 if (Tag->hasAttr<UnusedAttr>())
2209 return;
2210 // In C++, don't warn for record types that don't have WarnUnusedAttr, to
2211 // mimic gcc's behavior.
2212 if (const auto *RD = dyn_cast<CXXRecordDecl>(Tag);
2213 RD && !RD->hasAttr<WarnUnusedAttr>())
2214 return;
2215 }
2216
2217 // Don't warn about __block Objective-C pointer variables, as they might
2218 // be assigned in the block but not used elsewhere for the purpose of lifetime
2219 // extension.
2220 if (VD->hasAttr<BlocksAttr>() && Ty->isObjCObjectPointerType())
2221 return;
2222
2223 // Don't warn about Objective-C pointer variables with precise lifetime
2224 // semantics; they can be used to ensure ARC releases the object at a known
2225 // time, which may mean assignment but no other references.
2226 if (VD->hasAttr<ObjCPreciseLifetimeAttr>() && Ty->isObjCObjectPointerType())
2227 return;
2228
2229 auto iter = RefsMinusAssignments.find(VD);
2230 if (iter == RefsMinusAssignments.end())
2231 return;
2232
2233 assert(iter->getSecond() >= 0 &&
2234 "Found a negative number of references to a VarDecl");
2235 if (iter->getSecond() != 0)
2236 return;
2237 unsigned DiagID = isa<ParmVarDecl>(VD) ? diag::warn_unused_but_set_parameter
2238 : diag::warn_unused_but_set_variable;
2239 DiagReceiver(VD->getLocation(), PDiag(DiagID) << VD);
2240 }
2241
CheckPoppedLabel(LabelDecl * L,Sema & S,Sema::DiagReceiverTy DiagReceiver)2242 static void CheckPoppedLabel(LabelDecl *L, Sema &S,
2243 Sema::DiagReceiverTy DiagReceiver) {
2244 // Verify that we have no forward references left. If so, there was a goto
2245 // or address of a label taken, but no definition of it. Label fwd
2246 // definitions are indicated with a null substmt which is also not a resolved
2247 // MS inline assembly label name.
2248 bool Diagnose = false;
2249 if (L->isMSAsmLabel())
2250 Diagnose = !L->isResolvedMSAsmLabel();
2251 else
2252 Diagnose = L->getStmt() == nullptr;
2253 if (Diagnose)
2254 DiagReceiver(L->getLocation(), S.PDiag(diag::err_undeclared_label_use)
2255 << L);
2256 }
2257
ActOnPopScope(SourceLocation Loc,Scope * S)2258 void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
2259 S->applyNRVO();
2260
2261 if (S->decl_empty()) return;
2262 assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
2263 "Scope shouldn't contain decls!");
2264
2265 /// We visit the decls in non-deterministic order, but we want diagnostics
2266 /// emitted in deterministic order. Collect any diagnostic that may be emitted
2267 /// and sort the diagnostics before emitting them, after we visited all decls.
2268 struct LocAndDiag {
2269 SourceLocation Loc;
2270 std::optional<SourceLocation> PreviousDeclLoc;
2271 PartialDiagnostic PD;
2272 };
2273 SmallVector<LocAndDiag, 16> DeclDiags;
2274 auto addDiag = [&DeclDiags](SourceLocation Loc, PartialDiagnostic PD) {
2275 DeclDiags.push_back(LocAndDiag{Loc, std::nullopt, std::move(PD)});
2276 };
2277 auto addDiagWithPrev = [&DeclDiags](SourceLocation Loc,
2278 SourceLocation PreviousDeclLoc,
2279 PartialDiagnostic PD) {
2280 DeclDiags.push_back(LocAndDiag{Loc, PreviousDeclLoc, std::move(PD)});
2281 };
2282
2283 for (auto *TmpD : S->decls()) {
2284 assert(TmpD && "This decl didn't get pushed??");
2285
2286 assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
2287 NamedDecl *D = cast<NamedDecl>(TmpD);
2288
2289 // Diagnose unused variables in this scope.
2290 if (!S->hasUnrecoverableErrorOccurred()) {
2291 DiagnoseUnusedDecl(D, addDiag);
2292 if (const auto *RD = dyn_cast<RecordDecl>(D))
2293 DiagnoseUnusedNestedTypedefs(RD, addDiag);
2294 if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
2295 DiagnoseUnusedButSetDecl(VD, addDiag);
2296 RefsMinusAssignments.erase(VD);
2297 }
2298 }
2299
2300 if (!D->getDeclName()) continue;
2301
2302 // If this was a forward reference to a label, verify it was defined.
2303 if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
2304 CheckPoppedLabel(LD, *this, addDiag);
2305
2306 // Remove this name from our lexical scope, and warn on it if we haven't
2307 // already.
2308 IdResolver.RemoveDecl(D);
2309 auto ShadowI = ShadowingDecls.find(D);
2310 if (ShadowI != ShadowingDecls.end()) {
2311 if (const auto *FD = dyn_cast<FieldDecl>(ShadowI->second)) {
2312 addDiagWithPrev(D->getLocation(), FD->getLocation(),
2313 PDiag(diag::warn_ctor_parm_shadows_field)
2314 << D << FD << FD->getParent());
2315 }
2316 ShadowingDecls.erase(ShadowI);
2317 }
2318
2319 if (!getLangOpts().CPlusPlus && S->isClassScope()) {
2320 if (auto *FD = dyn_cast<FieldDecl>(TmpD);
2321 FD && FD->hasAttr<CountedByAttr>())
2322 CheckCountedByAttr(S, FD);
2323 }
2324 }
2325
2326 llvm::sort(DeclDiags,
2327 [](const LocAndDiag &LHS, const LocAndDiag &RHS) -> bool {
2328 // The particular order for diagnostics is not important, as long
2329 // as the order is deterministic. Using the raw location is going
2330 // to generally be in source order unless there are macro
2331 // expansions involved.
2332 return LHS.Loc.getRawEncoding() < RHS.Loc.getRawEncoding();
2333 });
2334 for (const LocAndDiag &D : DeclDiags) {
2335 Diag(D.Loc, D.PD);
2336 if (D.PreviousDeclLoc)
2337 Diag(*D.PreviousDeclLoc, diag::note_previous_declaration);
2338 }
2339 }
2340
2341 /// Look for an Objective-C class in the translation unit.
2342 ///
2343 /// \param Id The name of the Objective-C class we're looking for. If
2344 /// typo-correction fixes this name, the Id will be updated
2345 /// to the fixed name.
2346 ///
2347 /// \param IdLoc The location of the name in the translation unit.
2348 ///
2349 /// \param DoTypoCorrection If true, this routine will attempt typo correction
2350 /// if there is no class with the given name.
2351 ///
2352 /// \returns The declaration of the named Objective-C class, or NULL if the
2353 /// class could not be found.
getObjCInterfaceDecl(IdentifierInfo * & Id,SourceLocation IdLoc,bool DoTypoCorrection)2354 ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
2355 SourceLocation IdLoc,
2356 bool DoTypoCorrection) {
2357 // The third "scope" argument is 0 since we aren't enabling lazy built-in
2358 // creation from this context.
2359 NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
2360
2361 if (!IDecl && DoTypoCorrection) {
2362 // Perform typo correction at the given location, but only if we
2363 // find an Objective-C class name.
2364 DeclFilterCCC<ObjCInterfaceDecl> CCC{};
2365 if (TypoCorrection C =
2366 CorrectTypo(DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName,
2367 TUScope, nullptr, CCC, CTK_ErrorRecovery)) {
2368 diagnoseTypo(C, PDiag(diag::err_undef_interface_suggest) << Id);
2369 IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
2370 Id = IDecl->getIdentifier();
2371 }
2372 }
2373 ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
2374 // This routine must always return a class definition, if any.
2375 if (Def && Def->getDefinition())
2376 Def = Def->getDefinition();
2377 return Def;
2378 }
2379
2380 /// getNonFieldDeclScope - Retrieves the innermost scope, starting
2381 /// from S, where a non-field would be declared. This routine copes
2382 /// with the difference between C and C++ scoping rules in structs and
2383 /// unions. For example, the following code is well-formed in C but
2384 /// ill-formed in C++:
2385 /// @code
2386 /// struct S6 {
2387 /// enum { BAR } e;
2388 /// };
2389 ///
2390 /// void test_S6() {
2391 /// struct S6 a;
2392 /// a.e = BAR;
2393 /// }
2394 /// @endcode
2395 /// For the declaration of BAR, this routine will return a different
2396 /// scope. The scope S will be the scope of the unnamed enumeration
2397 /// within S6. In C++, this routine will return the scope associated
2398 /// with S6, because the enumeration's scope is a transparent
2399 /// context but structures can contain non-field names. In C, this
2400 /// routine will return the translation unit scope, since the
2401 /// enumeration's scope is a transparent context and structures cannot
2402 /// contain non-field names.
getNonFieldDeclScope(Scope * S)2403 Scope *Sema::getNonFieldDeclScope(Scope *S) {
2404 while (((S->getFlags() & Scope::DeclScope) == 0) ||
2405 (S->getEntity() && S->getEntity()->isTransparentContext()) ||
2406 (S->isClassScope() && !getLangOpts().CPlusPlus))
2407 S = S->getParent();
2408 return S;
2409 }
2410
getHeaderName(Builtin::Context & BuiltinInfo,unsigned ID,ASTContext::GetBuiltinTypeError Error)2411 static StringRef getHeaderName(Builtin::Context &BuiltinInfo, unsigned ID,
2412 ASTContext::GetBuiltinTypeError Error) {
2413 switch (Error) {
2414 case ASTContext::GE_None:
2415 return "";
2416 case ASTContext::GE_Missing_type:
2417 return BuiltinInfo.getHeaderName(ID);
2418 case ASTContext::GE_Missing_stdio:
2419 return "stdio.h";
2420 case ASTContext::GE_Missing_setjmp:
2421 return "setjmp.h";
2422 case ASTContext::GE_Missing_ucontext:
2423 return "ucontext.h";
2424 }
2425 llvm_unreachable("unhandled error kind");
2426 }
2427
CreateBuiltin(IdentifierInfo * II,QualType Type,unsigned ID,SourceLocation Loc)2428 FunctionDecl *Sema::CreateBuiltin(IdentifierInfo *II, QualType Type,
2429 unsigned ID, SourceLocation Loc) {
2430 DeclContext *Parent = Context.getTranslationUnitDecl();
2431
2432 if (getLangOpts().CPlusPlus) {
2433 LinkageSpecDecl *CLinkageDecl = LinkageSpecDecl::Create(
2434 Context, Parent, Loc, Loc, LinkageSpecLanguageIDs::C, false);
2435 CLinkageDecl->setImplicit();
2436 Parent->addDecl(CLinkageDecl);
2437 Parent = CLinkageDecl;
2438 }
2439
2440 FunctionDecl *New = FunctionDecl::Create(Context, Parent, Loc, Loc, II, Type,
2441 /*TInfo=*/nullptr, SC_Extern,
2442 getCurFPFeatures().isFPConstrained(),
2443 false, Type->isFunctionProtoType());
2444 New->setImplicit();
2445 New->addAttr(BuiltinAttr::CreateImplicit(Context, ID));
2446
2447 // Create Decl objects for each parameter, adding them to the
2448 // FunctionDecl.
2449 if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(Type)) {
2450 SmallVector<ParmVarDecl *, 16> Params;
2451 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
2452 ParmVarDecl *parm = ParmVarDecl::Create(
2453 Context, New, SourceLocation(), SourceLocation(), nullptr,
2454 FT->getParamType(i), /*TInfo=*/nullptr, SC_None, nullptr);
2455 parm->setScopeInfo(0, i);
2456 Params.push_back(parm);
2457 }
2458 New->setParams(Params);
2459 }
2460
2461 AddKnownFunctionAttributes(New);
2462 return New;
2463 }
2464
2465 /// LazilyCreateBuiltin - The specified Builtin-ID was first used at
2466 /// file scope. lazily create a decl for it. ForRedeclaration is true
2467 /// if we're creating this built-in in anticipation of redeclaring the
2468 /// built-in.
LazilyCreateBuiltin(IdentifierInfo * II,unsigned ID,Scope * S,bool ForRedeclaration,SourceLocation Loc)2469 NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID,
2470 Scope *S, bool ForRedeclaration,
2471 SourceLocation Loc) {
2472 LookupNecessaryTypesForBuiltin(S, ID);
2473
2474 ASTContext::GetBuiltinTypeError Error;
2475 QualType R = Context.GetBuiltinType(ID, Error);
2476 if (Error) {
2477 if (!ForRedeclaration)
2478 return nullptr;
2479
2480 // If we have a builtin without an associated type we should not emit a
2481 // warning when we were not able to find a type for it.
2482 if (Error == ASTContext::GE_Missing_type ||
2483 Context.BuiltinInfo.allowTypeMismatch(ID))
2484 return nullptr;
2485
2486 // If we could not find a type for setjmp it is because the jmp_buf type was
2487 // not defined prior to the setjmp declaration.
2488 if (Error == ASTContext::GE_Missing_setjmp) {
2489 Diag(Loc, diag::warn_implicit_decl_no_jmp_buf)
2490 << Context.BuiltinInfo.getName(ID);
2491 return nullptr;
2492 }
2493
2494 // Generally, we emit a warning that the declaration requires the
2495 // appropriate header.
2496 Diag(Loc, diag::warn_implicit_decl_requires_sysheader)
2497 << getHeaderName(Context.BuiltinInfo, ID, Error)
2498 << Context.BuiltinInfo.getName(ID);
2499 return nullptr;
2500 }
2501
2502 if (!ForRedeclaration &&
2503 (Context.BuiltinInfo.isPredefinedLibFunction(ID) ||
2504 Context.BuiltinInfo.isHeaderDependentFunction(ID))) {
2505 Diag(Loc, LangOpts.C99 ? diag::ext_implicit_lib_function_decl_c99
2506 : diag::ext_implicit_lib_function_decl)
2507 << Context.BuiltinInfo.getName(ID) << R;
2508 if (const char *Header = Context.BuiltinInfo.getHeaderName(ID))
2509 Diag(Loc, diag::note_include_header_or_declare)
2510 << Header << Context.BuiltinInfo.getName(ID);
2511 }
2512
2513 if (R.isNull())
2514 return nullptr;
2515
2516 FunctionDecl *New = CreateBuiltin(II, R, ID, Loc);
2517 RegisterLocallyScopedExternCDecl(New, S);
2518
2519 // TUScope is the translation-unit scope to insert this function into.
2520 // FIXME: This is hideous. We need to teach PushOnScopeChains to
2521 // relate Scopes to DeclContexts, and probably eliminate CurContext
2522 // entirely, but we're not there yet.
2523 DeclContext *SavedContext = CurContext;
2524 CurContext = New->getDeclContext();
2525 PushOnScopeChains(New, TUScope);
2526 CurContext = SavedContext;
2527 return New;
2528 }
2529
2530 /// Typedef declarations don't have linkage, but they still denote the same
2531 /// entity if their types are the same.
2532 /// FIXME: This is notionally doing the same thing as ASTReaderDecl's
2533 /// isSameEntity.
filterNonConflictingPreviousTypedefDecls(Sema & S,TypedefNameDecl * Decl,LookupResult & Previous)2534 static void filterNonConflictingPreviousTypedefDecls(Sema &S,
2535 TypedefNameDecl *Decl,
2536 LookupResult &Previous) {
2537 // This is only interesting when modules are enabled.
2538 if (!S.getLangOpts().Modules && !S.getLangOpts().ModulesLocalVisibility)
2539 return;
2540
2541 // Empty sets are uninteresting.
2542 if (Previous.empty())
2543 return;
2544
2545 LookupResult::Filter Filter = Previous.makeFilter();
2546 while (Filter.hasNext()) {
2547 NamedDecl *Old = Filter.next();
2548
2549 // Non-hidden declarations are never ignored.
2550 if (S.isVisible(Old))
2551 continue;
2552
2553 // Declarations of the same entity are not ignored, even if they have
2554 // different linkages.
2555 if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
2556 if (S.Context.hasSameType(OldTD->getUnderlyingType(),
2557 Decl->getUnderlyingType()))
2558 continue;
2559
2560 // If both declarations give a tag declaration a typedef name for linkage
2561 // purposes, then they declare the same entity.
2562 if (OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true) &&
2563 Decl->getAnonDeclWithTypedefName())
2564 continue;
2565 }
2566
2567 Filter.erase();
2568 }
2569
2570 Filter.done();
2571 }
2572
isIncompatibleTypedef(TypeDecl * Old,TypedefNameDecl * New)2573 bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
2574 QualType OldType;
2575 if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
2576 OldType = OldTypedef->getUnderlyingType();
2577 else
2578 OldType = Context.getTypeDeclType(Old);
2579 QualType NewType = New->getUnderlyingType();
2580
2581 if (NewType->isVariablyModifiedType()) {
2582 // Must not redefine a typedef with a variably-modified type.
2583 int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
2584 Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
2585 << Kind << NewType;
2586 if (Old->getLocation().isValid())
2587 notePreviousDefinition(Old, New->getLocation());
2588 New->setInvalidDecl();
2589 return true;
2590 }
2591
2592 if (OldType != NewType &&
2593 !OldType->isDependentType() &&
2594 !NewType->isDependentType() &&
2595 !Context.hasSameType(OldType, NewType)) {
2596 int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
2597 Diag(New->getLocation(), diag::err_redefinition_different_typedef)
2598 << Kind << NewType << OldType;
2599 if (Old->getLocation().isValid())
2600 notePreviousDefinition(Old, New->getLocation());
2601 New->setInvalidDecl();
2602 return true;
2603 }
2604 return false;
2605 }
2606
2607 /// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
2608 /// same name and scope as a previous declaration 'Old'. Figure out
2609 /// how to resolve this situation, merging decls or emitting
2610 /// diagnostics as appropriate. If there was an error, set New to be invalid.
2611 ///
MergeTypedefNameDecl(Scope * S,TypedefNameDecl * New,LookupResult & OldDecls)2612 void Sema::MergeTypedefNameDecl(Scope *S, TypedefNameDecl *New,
2613 LookupResult &OldDecls) {
2614 // If the new decl is known invalid already, don't bother doing any
2615 // merging checks.
2616 if (New->isInvalidDecl()) return;
2617
2618 // Allow multiple definitions for ObjC built-in typedefs.
2619 // FIXME: Verify the underlying types are equivalent!
2620 if (getLangOpts().ObjC) {
2621 const IdentifierInfo *TypeID = New->getIdentifier();
2622 switch (TypeID->getLength()) {
2623 default: break;
2624 case 2:
2625 {
2626 if (!TypeID->isStr("id"))
2627 break;
2628 QualType T = New->getUnderlyingType();
2629 if (!T->isPointerType())
2630 break;
2631 if (!T->isVoidPointerType()) {
2632 QualType PT = T->castAs<PointerType>()->getPointeeType();
2633 if (!PT->isStructureType())
2634 break;
2635 }
2636 Context.setObjCIdRedefinitionType(T);
2637 // Install the built-in type for 'id', ignoring the current definition.
2638 New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
2639 return;
2640 }
2641 case 5:
2642 if (!TypeID->isStr("Class"))
2643 break;
2644 Context.setObjCClassRedefinitionType(New->getUnderlyingType());
2645 // Install the built-in type for 'Class', ignoring the current definition.
2646 New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
2647 return;
2648 case 3:
2649 if (!TypeID->isStr("SEL"))
2650 break;
2651 Context.setObjCSelRedefinitionType(New->getUnderlyingType());
2652 // Install the built-in type for 'SEL', ignoring the current definition.
2653 New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
2654 return;
2655 }
2656 // Fall through - the typedef name was not a builtin type.
2657 }
2658
2659 // Verify the old decl was also a type.
2660 TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
2661 if (!Old) {
2662 Diag(New->getLocation(), diag::err_redefinition_different_kind)
2663 << New->getDeclName();
2664
2665 NamedDecl *OldD = OldDecls.getRepresentativeDecl();
2666 if (OldD->getLocation().isValid())
2667 notePreviousDefinition(OldD, New->getLocation());
2668
2669 return New->setInvalidDecl();
2670 }
2671
2672 // If the old declaration is invalid, just give up here.
2673 if (Old->isInvalidDecl())
2674 return New->setInvalidDecl();
2675
2676 if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
2677 auto *OldTag = OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true);
2678 auto *NewTag = New->getAnonDeclWithTypedefName();
2679 NamedDecl *Hidden = nullptr;
2680 if (OldTag && NewTag &&
2681 OldTag->getCanonicalDecl() != NewTag->getCanonicalDecl() &&
2682 !hasVisibleDefinition(OldTag, &Hidden)) {
2683 // There is a definition of this tag, but it is not visible. Use it
2684 // instead of our tag.
2685 New->setTypeForDecl(OldTD->getTypeForDecl());
2686 if (OldTD->isModed())
2687 New->setModedTypeSourceInfo(OldTD->getTypeSourceInfo(),
2688 OldTD->getUnderlyingType());
2689 else
2690 New->setTypeSourceInfo(OldTD->getTypeSourceInfo());
2691
2692 // Make the old tag definition visible.
2693 makeMergedDefinitionVisible(Hidden);
2694
2695 // If this was an unscoped enumeration, yank all of its enumerators
2696 // out of the scope.
2697 if (isa<EnumDecl>(NewTag)) {
2698 Scope *EnumScope = getNonFieldDeclScope(S);
2699 for (auto *D : NewTag->decls()) {
2700 auto *ED = cast<EnumConstantDecl>(D);
2701 assert(EnumScope->isDeclScope(ED));
2702 EnumScope->RemoveDecl(ED);
2703 IdResolver.RemoveDecl(ED);
2704 ED->getLexicalDeclContext()->removeDecl(ED);
2705 }
2706 }
2707 }
2708 }
2709
2710 // If the typedef types are not identical, reject them in all languages and
2711 // with any extensions enabled.
2712 if (isIncompatibleTypedef(Old, New))
2713 return;
2714
2715 // The types match. Link up the redeclaration chain and merge attributes if
2716 // the old declaration was a typedef.
2717 if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old)) {
2718 New->setPreviousDecl(Typedef);
2719 mergeDeclAttributes(New, Old);
2720 }
2721
2722 if (getLangOpts().MicrosoftExt)
2723 return;
2724
2725 if (getLangOpts().CPlusPlus) {
2726 // C++ [dcl.typedef]p2:
2727 // In a given non-class scope, a typedef specifier can be used to
2728 // redefine the name of any type declared in that scope to refer
2729 // to the type to which it already refers.
2730 if (!isa<CXXRecordDecl>(CurContext))
2731 return;
2732
2733 // C++0x [dcl.typedef]p4:
2734 // In a given class scope, a typedef specifier can be used to redefine
2735 // any class-name declared in that scope that is not also a typedef-name
2736 // to refer to the type to which it already refers.
2737 //
2738 // This wording came in via DR424, which was a correction to the
2739 // wording in DR56, which accidentally banned code like:
2740 //
2741 // struct S {
2742 // typedef struct A { } A;
2743 // };
2744 //
2745 // in the C++03 standard. We implement the C++0x semantics, which
2746 // allow the above but disallow
2747 //
2748 // struct S {
2749 // typedef int I;
2750 // typedef int I;
2751 // };
2752 //
2753 // since that was the intent of DR56.
2754 if (!isa<TypedefNameDecl>(Old))
2755 return;
2756
2757 Diag(New->getLocation(), diag::err_redefinition)
2758 << New->getDeclName();
2759 notePreviousDefinition(Old, New->getLocation());
2760 return New->setInvalidDecl();
2761 }
2762
2763 // Modules always permit redefinition of typedefs, as does C11.
2764 if (getLangOpts().Modules || getLangOpts().C11)
2765 return;
2766
2767 // If we have a redefinition of a typedef in C, emit a warning. This warning
2768 // is normally mapped to an error, but can be controlled with
2769 // -Wtypedef-redefinition. If either the original or the redefinition is
2770 // in a system header, don't emit this for compatibility with GCC.
2771 if (getDiagnostics().getSuppressSystemWarnings() &&
2772 // Some standard types are defined implicitly in Clang (e.g. OpenCL).
2773 (Old->isImplicit() ||
2774 Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
2775 Context.getSourceManager().isInSystemHeader(New->getLocation())))
2776 return;
2777
2778 Diag(New->getLocation(), diag::ext_redefinition_of_typedef)
2779 << New->getDeclName();
2780 notePreviousDefinition(Old, New->getLocation());
2781 }
2782
2783 /// DeclhasAttr - returns true if decl Declaration already has the target
2784 /// attribute.
DeclHasAttr(const Decl * D,const Attr * A)2785 static bool DeclHasAttr(const Decl *D, const Attr *A) {
2786 const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
2787 const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
2788 for (const auto *i : D->attrs())
2789 if (i->getKind() == A->getKind()) {
2790 if (Ann) {
2791 if (Ann->getAnnotation() == cast<AnnotateAttr>(i)->getAnnotation())
2792 return true;
2793 continue;
2794 }
2795 // FIXME: Don't hardcode this check
2796 if (OA && isa<OwnershipAttr>(i))
2797 return OA->getOwnKind() == cast<OwnershipAttr>(i)->getOwnKind();
2798 return true;
2799 }
2800
2801 return false;
2802 }
2803
isAttributeTargetADefinition(Decl * D)2804 static bool isAttributeTargetADefinition(Decl *D) {
2805 if (VarDecl *VD = dyn_cast<VarDecl>(D))
2806 return VD->isThisDeclarationADefinition();
2807 if (TagDecl *TD = dyn_cast<TagDecl>(D))
2808 return TD->isCompleteDefinition() || TD->isBeingDefined();
2809 return true;
2810 }
2811
2812 /// Merge alignment attributes from \p Old to \p New, taking into account the
2813 /// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
2814 ///
2815 /// \return \c true if any attributes were added to \p New.
mergeAlignedAttrs(Sema & S,NamedDecl * New,Decl * Old)2816 static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) {
2817 // Look for alignas attributes on Old, and pick out whichever attribute
2818 // specifies the strictest alignment requirement.
2819 AlignedAttr *OldAlignasAttr = nullptr;
2820 AlignedAttr *OldStrictestAlignAttr = nullptr;
2821 unsigned OldAlign = 0;
2822 for (auto *I : Old->specific_attrs<AlignedAttr>()) {
2823 // FIXME: We have no way of representing inherited dependent alignments
2824 // in a case like:
2825 // template<int A, int B> struct alignas(A) X;
2826 // template<int A, int B> struct alignas(B) X {};
2827 // For now, we just ignore any alignas attributes which are not on the
2828 // definition in such a case.
2829 if (I->isAlignmentDependent())
2830 return false;
2831
2832 if (I->isAlignas())
2833 OldAlignasAttr = I;
2834
2835 unsigned Align = I->getAlignment(S.Context);
2836 if (Align > OldAlign) {
2837 OldAlign = Align;
2838 OldStrictestAlignAttr = I;
2839 }
2840 }
2841
2842 // Look for alignas attributes on New.
2843 AlignedAttr *NewAlignasAttr = nullptr;
2844 unsigned NewAlign = 0;
2845 for (auto *I : New->specific_attrs<AlignedAttr>()) {
2846 if (I->isAlignmentDependent())
2847 return false;
2848
2849 if (I->isAlignas())
2850 NewAlignasAttr = I;
2851
2852 unsigned Align = I->getAlignment(S.Context);
2853 if (Align > NewAlign)
2854 NewAlign = Align;
2855 }
2856
2857 if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) {
2858 // Both declarations have 'alignas' attributes. We require them to match.
2859 // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
2860 // fall short. (If two declarations both have alignas, they must both match
2861 // every definition, and so must match each other if there is a definition.)
2862
2863 // If either declaration only contains 'alignas(0)' specifiers, then it
2864 // specifies the natural alignment for the type.
2865 if (OldAlign == 0 || NewAlign == 0) {
2866 QualType Ty;
2867 if (ValueDecl *VD = dyn_cast<ValueDecl>(New))
2868 Ty = VD->getType();
2869 else
2870 Ty = S.Context.getTagDeclType(cast<TagDecl>(New));
2871
2872 if (OldAlign == 0)
2873 OldAlign = S.Context.getTypeAlign(Ty);
2874 if (NewAlign == 0)
2875 NewAlign = S.Context.getTypeAlign(Ty);
2876 }
2877
2878 if (OldAlign != NewAlign) {
2879 S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch)
2880 << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity()
2881 << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity();
2882 S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration);
2883 }
2884 }
2885
2886 if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) {
2887 // C++11 [dcl.align]p6:
2888 // if any declaration of an entity has an alignment-specifier,
2889 // every defining declaration of that entity shall specify an
2890 // equivalent alignment.
2891 // C11 6.7.5/7:
2892 // If the definition of an object does not have an alignment
2893 // specifier, any other declaration of that object shall also
2894 // have no alignment specifier.
2895 S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition)
2896 << OldAlignasAttr;
2897 S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration)
2898 << OldAlignasAttr;
2899 }
2900
2901 bool AnyAdded = false;
2902
2903 // Ensure we have an attribute representing the strictest alignment.
2904 if (OldAlign > NewAlign) {
2905 AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context);
2906 Clone->setInherited(true);
2907 New->addAttr(Clone);
2908 AnyAdded = true;
2909 }
2910
2911 // Ensure we have an alignas attribute if the old declaration had one.
2912 if (OldAlignasAttr && !NewAlignasAttr &&
2913 !(AnyAdded && OldStrictestAlignAttr->isAlignas())) {
2914 AlignedAttr *Clone = OldAlignasAttr->clone(S.Context);
2915 Clone->setInherited(true);
2916 New->addAttr(Clone);
2917 AnyAdded = true;
2918 }
2919
2920 return AnyAdded;
2921 }
2922
2923 #define WANT_DECL_MERGE_LOGIC
2924 #include "clang/Sema/AttrParsedAttrImpl.inc"
2925 #undef WANT_DECL_MERGE_LOGIC
2926
mergeDeclAttribute(Sema & S,NamedDecl * D,const InheritableAttr * Attr,Sema::AvailabilityMergeKind AMK)2927 static bool mergeDeclAttribute(Sema &S, NamedDecl *D,
2928 const InheritableAttr *Attr,
2929 Sema::AvailabilityMergeKind AMK) {
2930 // Diagnose any mutual exclusions between the attribute that we want to add
2931 // and attributes that already exist on the declaration.
2932 if (!DiagnoseMutualExclusions(S, D, Attr))
2933 return false;
2934
2935 // This function copies an attribute Attr from a previous declaration to the
2936 // new declaration D if the new declaration doesn't itself have that attribute
2937 // yet or if that attribute allows duplicates.
2938 // If you're adding a new attribute that requires logic different from
2939 // "use explicit attribute on decl if present, else use attribute from
2940 // previous decl", for example if the attribute needs to be consistent
2941 // between redeclarations, you need to call a custom merge function here.
2942 InheritableAttr *NewAttr = nullptr;
2943 if (const auto *AA = dyn_cast<AvailabilityAttr>(Attr))
2944 NewAttr = S.mergeAvailabilityAttr(
2945 D, *AA, AA->getPlatform(), AA->isImplicit(), AA->getIntroduced(),
2946 AA->getDeprecated(), AA->getObsoleted(), AA->getUnavailable(),
2947 AA->getMessage(), AA->getStrict(), AA->getReplacement(), AMK,
2948 AA->getPriority());
2949 else if (const auto *VA = dyn_cast<VisibilityAttr>(Attr))
2950 NewAttr = S.mergeVisibilityAttr(D, *VA, VA->getVisibility());
2951 else if (const auto *VA = dyn_cast<TypeVisibilityAttr>(Attr))
2952 NewAttr = S.mergeTypeVisibilityAttr(D, *VA, VA->getVisibility());
2953 else if (const auto *ImportA = dyn_cast<DLLImportAttr>(Attr))
2954 NewAttr = S.mergeDLLImportAttr(D, *ImportA);
2955 else if (const auto *ExportA = dyn_cast<DLLExportAttr>(Attr))
2956 NewAttr = S.mergeDLLExportAttr(D, *ExportA);
2957 else if (const auto *EA = dyn_cast<ErrorAttr>(Attr))
2958 NewAttr = S.mergeErrorAttr(D, *EA, EA->getUserDiagnostic());
2959 else if (const auto *FA = dyn_cast<FormatAttr>(Attr))
2960 NewAttr = S.mergeFormatAttr(D, *FA, FA->getType(), FA->getFormatIdx(),
2961 FA->getFirstArg());
2962 else if (const auto *SA = dyn_cast<SectionAttr>(Attr))
2963 NewAttr = S.mergeSectionAttr(D, *SA, SA->getName());
2964 else if (const auto *CSA = dyn_cast<CodeSegAttr>(Attr))
2965 NewAttr = S.mergeCodeSegAttr(D, *CSA, CSA->getName());
2966 else if (const auto *IA = dyn_cast<MSInheritanceAttr>(Attr))
2967 NewAttr = S.mergeMSInheritanceAttr(D, *IA, IA->getBestCase(),
2968 IA->getInheritanceModel());
2969 else if (const auto *AA = dyn_cast<AlwaysInlineAttr>(Attr))
2970 NewAttr = S.mergeAlwaysInlineAttr(D, *AA,
2971 &S.Context.Idents.get(AA->getSpelling()));
2972 else if (S.getLangOpts().CUDA && isa<FunctionDecl>(D) &&
2973 (isa<CUDAHostAttr>(Attr) || isa<CUDADeviceAttr>(Attr) ||
2974 isa<CUDAGlobalAttr>(Attr))) {
2975 // CUDA target attributes are part of function signature for
2976 // overloading purposes and must not be merged.
2977 return false;
2978 } else if (const auto *MA = dyn_cast<MinSizeAttr>(Attr))
2979 NewAttr = S.mergeMinSizeAttr(D, *MA);
2980 else if (const auto *SNA = dyn_cast<SwiftNameAttr>(Attr))
2981 NewAttr = S.mergeSwiftNameAttr(D, *SNA, SNA->getName());
2982 else if (const auto *OA = dyn_cast<OptimizeNoneAttr>(Attr))
2983 NewAttr = S.mergeOptimizeNoneAttr(D, *OA);
2984 else if (const auto *InternalLinkageA = dyn_cast<InternalLinkageAttr>(Attr))
2985 NewAttr = S.mergeInternalLinkageAttr(D, *InternalLinkageA);
2986 else if (isa<AlignedAttr>(Attr))
2987 // AlignedAttrs are handled separately, because we need to handle all
2988 // such attributes on a declaration at the same time.
2989 NewAttr = nullptr;
2990 else if ((isa<DeprecatedAttr>(Attr) || isa<UnavailableAttr>(Attr)) &&
2991 (AMK == Sema::AMK_Override ||
2992 AMK == Sema::AMK_ProtocolImplementation ||
2993 AMK == Sema::AMK_OptionalProtocolImplementation))
2994 NewAttr = nullptr;
2995 else if (const auto *UA = dyn_cast<UuidAttr>(Attr))
2996 NewAttr = S.mergeUuidAttr(D, *UA, UA->getGuid(), UA->getGuidDecl());
2997 else if (const auto *IMA = dyn_cast<WebAssemblyImportModuleAttr>(Attr))
2998 NewAttr = S.mergeImportModuleAttr(D, *IMA);
2999 else if (const auto *INA = dyn_cast<WebAssemblyImportNameAttr>(Attr))
3000 NewAttr = S.mergeImportNameAttr(D, *INA);
3001 else if (const auto *TCBA = dyn_cast<EnforceTCBAttr>(Attr))
3002 NewAttr = S.mergeEnforceTCBAttr(D, *TCBA);
3003 else if (const auto *TCBLA = dyn_cast<EnforceTCBLeafAttr>(Attr))
3004 NewAttr = S.mergeEnforceTCBLeafAttr(D, *TCBLA);
3005 else if (const auto *BTFA = dyn_cast<BTFDeclTagAttr>(Attr))
3006 NewAttr = S.mergeBTFDeclTagAttr(D, *BTFA);
3007 else if (const auto *NT = dyn_cast<HLSLNumThreadsAttr>(Attr))
3008 NewAttr =
3009 S.mergeHLSLNumThreadsAttr(D, *NT, NT->getX(), NT->getY(), NT->getZ());
3010 else if (const auto *SA = dyn_cast<HLSLShaderAttr>(Attr))
3011 NewAttr = S.mergeHLSLShaderAttr(D, *SA, SA->getType());
3012 else if (Attr->shouldInheritEvenIfAlreadyPresent() || !DeclHasAttr(D, Attr))
3013 NewAttr = cast<InheritableAttr>(Attr->clone(S.Context));
3014
3015 if (NewAttr) {
3016 NewAttr->setInherited(true);
3017 D->addAttr(NewAttr);
3018 if (isa<MSInheritanceAttr>(NewAttr))
3019 S.Consumer.AssignInheritanceModel(cast<CXXRecordDecl>(D));
3020 return true;
3021 }
3022
3023 return false;
3024 }
3025
getDefinition(const Decl * D)3026 static const NamedDecl *getDefinition(const Decl *D) {
3027 if (const TagDecl *TD = dyn_cast<TagDecl>(D))
3028 return TD->getDefinition();
3029 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
3030 const VarDecl *Def = VD->getDefinition();
3031 if (Def)
3032 return Def;
3033 return VD->getActingDefinition();
3034 }
3035 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
3036 const FunctionDecl *Def = nullptr;
3037 if (FD->isDefined(Def, true))
3038 return Def;
3039 }
3040 return nullptr;
3041 }
3042
hasAttribute(const Decl * D,attr::Kind Kind)3043 static bool hasAttribute(const Decl *D, attr::Kind Kind) {
3044 for (const auto *Attribute : D->attrs())
3045 if (Attribute->getKind() == Kind)
3046 return true;
3047 return false;
3048 }
3049
3050 /// checkNewAttributesAfterDef - If we already have a definition, check that
3051 /// there are no new attributes in this declaration.
checkNewAttributesAfterDef(Sema & S,Decl * New,const Decl * Old)3052 static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
3053 if (!New->hasAttrs())
3054 return;
3055
3056 const NamedDecl *Def = getDefinition(Old);
3057 if (!Def || Def == New)
3058 return;
3059
3060 AttrVec &NewAttributes = New->getAttrs();
3061 for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
3062 const Attr *NewAttribute = NewAttributes[I];
3063
3064 if (isa<AliasAttr>(NewAttribute) || isa<IFuncAttr>(NewAttribute)) {
3065 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(New)) {
3066 Sema::SkipBodyInfo SkipBody;
3067 S.CheckForFunctionRedefinition(FD, cast<FunctionDecl>(Def), &SkipBody);
3068
3069 // If we're skipping this definition, drop the "alias" attribute.
3070 if (SkipBody.ShouldSkip) {
3071 NewAttributes.erase(NewAttributes.begin() + I);
3072 --E;
3073 continue;
3074 }
3075 } else {
3076 VarDecl *VD = cast<VarDecl>(New);
3077 unsigned Diag = cast<VarDecl>(Def)->isThisDeclarationADefinition() ==
3078 VarDecl::TentativeDefinition
3079 ? diag::err_alias_after_tentative
3080 : diag::err_redefinition;
3081 S.Diag(VD->getLocation(), Diag) << VD->getDeclName();
3082 if (Diag == diag::err_redefinition)
3083 S.notePreviousDefinition(Def, VD->getLocation());
3084 else
3085 S.Diag(Def->getLocation(), diag::note_previous_definition);
3086 VD->setInvalidDecl();
3087 }
3088 ++I;
3089 continue;
3090 }
3091
3092 if (const VarDecl *VD = dyn_cast<VarDecl>(Def)) {
3093 // Tentative definitions are only interesting for the alias check above.
3094 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) {
3095 ++I;
3096 continue;
3097 }
3098 }
3099
3100 if (hasAttribute(Def, NewAttribute->getKind())) {
3101 ++I;
3102 continue; // regular attr merging will take care of validating this.
3103 }
3104
3105 if (isa<C11NoReturnAttr>(NewAttribute)) {
3106 // C's _Noreturn is allowed to be added to a function after it is defined.
3107 ++I;
3108 continue;
3109 } else if (isa<UuidAttr>(NewAttribute)) {
3110 // msvc will allow a subsequent definition to add an uuid to a class
3111 ++I;
3112 continue;
3113 } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) {
3114 if (AA->isAlignas()) {
3115 // C++11 [dcl.align]p6:
3116 // if any declaration of an entity has an alignment-specifier,
3117 // every defining declaration of that entity shall specify an
3118 // equivalent alignment.
3119 // C11 6.7.5/7:
3120 // If the definition of an object does not have an alignment
3121 // specifier, any other declaration of that object shall also
3122 // have no alignment specifier.
3123 S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition)
3124 << AA;
3125 S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration)
3126 << AA;
3127 NewAttributes.erase(NewAttributes.begin() + I);
3128 --E;
3129 continue;
3130 }
3131 } else if (isa<LoaderUninitializedAttr>(NewAttribute)) {
3132 // If there is a C definition followed by a redeclaration with this
3133 // attribute then there are two different definitions. In C++, prefer the
3134 // standard diagnostics.
3135 if (!S.getLangOpts().CPlusPlus) {
3136 S.Diag(NewAttribute->getLocation(),
3137 diag::err_loader_uninitialized_redeclaration);
3138 S.Diag(Def->getLocation(), diag::note_previous_definition);
3139 NewAttributes.erase(NewAttributes.begin() + I);
3140 --E;
3141 continue;
3142 }
3143 } else if (isa<SelectAnyAttr>(NewAttribute) &&
3144 cast<VarDecl>(New)->isInline() &&
3145 !cast<VarDecl>(New)->isInlineSpecified()) {
3146 // Don't warn about applying selectany to implicitly inline variables.
3147 // Older compilers and language modes would require the use of selectany
3148 // to make such variables inline, and it would have no effect if we
3149 // honored it.
3150 ++I;
3151 continue;
3152 } else if (isa<OMPDeclareVariantAttr>(NewAttribute)) {
3153 // We allow to add OMP[Begin]DeclareVariantAttr to be added to
3154 // declarations after definitions.
3155 ++I;
3156 continue;
3157 }
3158
3159 S.Diag(NewAttribute->getLocation(),
3160 diag::warn_attribute_precede_definition);
3161 S.Diag(Def->getLocation(), diag::note_previous_definition);
3162 NewAttributes.erase(NewAttributes.begin() + I);
3163 --E;
3164 }
3165 }
3166
diagnoseMissingConstinit(Sema & S,const VarDecl * InitDecl,const ConstInitAttr * CIAttr,bool AttrBeforeInit)3167 static void diagnoseMissingConstinit(Sema &S, const VarDecl *InitDecl,
3168 const ConstInitAttr *CIAttr,
3169 bool AttrBeforeInit) {
3170 SourceLocation InsertLoc = InitDecl->getInnerLocStart();
3171
3172 // Figure out a good way to write this specifier on the old declaration.
3173 // FIXME: We should just use the spelling of CIAttr, but we don't preserve
3174 // enough of the attribute list spelling information to extract that without
3175 // heroics.
3176 std::string SuitableSpelling;
3177 if (S.getLangOpts().CPlusPlus20)
3178 SuitableSpelling = std::string(
3179 S.PP.getLastMacroWithSpelling(InsertLoc, {tok::kw_constinit}));
3180 if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus11)
3181 SuitableSpelling = std::string(S.PP.getLastMacroWithSpelling(
3182 InsertLoc, {tok::l_square, tok::l_square,
3183 S.PP.getIdentifierInfo("clang"), tok::coloncolon,
3184 S.PP.getIdentifierInfo("require_constant_initialization"),
3185 tok::r_square, tok::r_square}));
3186 if (SuitableSpelling.empty())
3187 SuitableSpelling = std::string(S.PP.getLastMacroWithSpelling(
3188 InsertLoc, {tok::kw___attribute, tok::l_paren, tok::r_paren,
3189 S.PP.getIdentifierInfo("require_constant_initialization"),
3190 tok::r_paren, tok::r_paren}));
3191 if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus20)
3192 SuitableSpelling = "constinit";
3193 if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus11)
3194 SuitableSpelling = "[[clang::require_constant_initialization]]";
3195 if (SuitableSpelling.empty())
3196 SuitableSpelling = "__attribute__((require_constant_initialization))";
3197 SuitableSpelling += " ";
3198
3199 if (AttrBeforeInit) {
3200 // extern constinit int a;
3201 // int a = 0; // error (missing 'constinit'), accepted as extension
3202 assert(CIAttr->isConstinit() && "should not diagnose this for attribute");
3203 S.Diag(InitDecl->getLocation(), diag::ext_constinit_missing)
3204 << InitDecl << FixItHint::CreateInsertion(InsertLoc, SuitableSpelling);
3205 S.Diag(CIAttr->getLocation(), diag::note_constinit_specified_here);
3206 } else {
3207 // int a = 0;
3208 // constinit extern int a; // error (missing 'constinit')
3209 S.Diag(CIAttr->getLocation(),
3210 CIAttr->isConstinit() ? diag::err_constinit_added_too_late
3211 : diag::warn_require_const_init_added_too_late)
3212 << FixItHint::CreateRemoval(SourceRange(CIAttr->getLocation()));
3213 S.Diag(InitDecl->getLocation(), diag::note_constinit_missing_here)
3214 << CIAttr->isConstinit()
3215 << FixItHint::CreateInsertion(InsertLoc, SuitableSpelling);
3216 }
3217 }
3218
3219 /// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
mergeDeclAttributes(NamedDecl * New,Decl * Old,AvailabilityMergeKind AMK)3220 void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
3221 AvailabilityMergeKind AMK) {
3222 if (UsedAttr *OldAttr = Old->getMostRecentDecl()->getAttr<UsedAttr>()) {
3223 UsedAttr *NewAttr = OldAttr->clone(Context);
3224 NewAttr->setInherited(true);
3225 New->addAttr(NewAttr);
3226 }
3227 if (RetainAttr *OldAttr = Old->getMostRecentDecl()->getAttr<RetainAttr>()) {
3228 RetainAttr *NewAttr = OldAttr->clone(Context);
3229 NewAttr->setInherited(true);
3230 New->addAttr(NewAttr);
3231 }
3232
3233 if (!Old->hasAttrs() && !New->hasAttrs())
3234 return;
3235
3236 // [dcl.constinit]p1:
3237 // If the [constinit] specifier is applied to any declaration of a
3238 // variable, it shall be applied to the initializing declaration.
3239 const auto *OldConstInit = Old->getAttr<ConstInitAttr>();
3240 const auto *NewConstInit = New->getAttr<ConstInitAttr>();
3241 if (bool(OldConstInit) != bool(NewConstInit)) {
3242 const auto *OldVD = cast<VarDecl>(Old);
3243 auto *NewVD = cast<VarDecl>(New);
3244
3245 // Find the initializing declaration. Note that we might not have linked
3246 // the new declaration into the redeclaration chain yet.
3247 const VarDecl *InitDecl = OldVD->getInitializingDeclaration();
3248 if (!InitDecl &&
3249 (NewVD->hasInit() || NewVD->isThisDeclarationADefinition()))
3250 InitDecl = NewVD;
3251
3252 if (InitDecl == NewVD) {
3253 // This is the initializing declaration. If it would inherit 'constinit',
3254 // that's ill-formed. (Note that we do not apply this to the attribute
3255 // form).
3256 if (OldConstInit && OldConstInit->isConstinit())
3257 diagnoseMissingConstinit(*this, NewVD, OldConstInit,
3258 /*AttrBeforeInit=*/true);
3259 } else if (NewConstInit) {
3260 // This is the first time we've been told that this declaration should
3261 // have a constant initializer. If we already saw the initializing
3262 // declaration, this is too late.
3263 if (InitDecl && InitDecl != NewVD) {
3264 diagnoseMissingConstinit(*this, InitDecl, NewConstInit,
3265 /*AttrBeforeInit=*/false);
3266 NewVD->dropAttr<ConstInitAttr>();
3267 }
3268 }
3269 }
3270
3271 // Attributes declared post-definition are currently ignored.
3272 checkNewAttributesAfterDef(*this, New, Old);
3273
3274 if (AsmLabelAttr *NewA = New->getAttr<AsmLabelAttr>()) {
3275 if (AsmLabelAttr *OldA = Old->getAttr<AsmLabelAttr>()) {
3276 if (!OldA->isEquivalent(NewA)) {
3277 // This redeclaration changes __asm__ label.
3278 Diag(New->getLocation(), diag::err_different_asm_label);
3279 Diag(OldA->getLocation(), diag::note_previous_declaration);
3280 }
3281 } else if (Old->isUsed()) {
3282 // This redeclaration adds an __asm__ label to a declaration that has
3283 // already been ODR-used.
3284 Diag(New->getLocation(), diag::err_late_asm_label_name)
3285 << isa<FunctionDecl>(Old) << New->getAttr<AsmLabelAttr>()->getRange();
3286 }
3287 }
3288
3289 // Re-declaration cannot add abi_tag's.
3290 if (const auto *NewAbiTagAttr = New->getAttr<AbiTagAttr>()) {
3291 if (const auto *OldAbiTagAttr = Old->getAttr<AbiTagAttr>()) {
3292 for (const auto &NewTag : NewAbiTagAttr->tags()) {
3293 if (!llvm::is_contained(OldAbiTagAttr->tags(), NewTag)) {
3294 Diag(NewAbiTagAttr->getLocation(),
3295 diag::err_new_abi_tag_on_redeclaration)
3296 << NewTag;
3297 Diag(OldAbiTagAttr->getLocation(), diag::note_previous_declaration);
3298 }
3299 }
3300 } else {
3301 Diag(NewAbiTagAttr->getLocation(), diag::err_abi_tag_on_redeclaration);
3302 Diag(Old->getLocation(), diag::note_previous_declaration);
3303 }
3304 }
3305
3306 // This redeclaration adds a section attribute.
3307 if (New->hasAttr<SectionAttr>() && !Old->hasAttr<SectionAttr>()) {
3308 if (auto *VD = dyn_cast<VarDecl>(New)) {
3309 if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly) {
3310 Diag(New->getLocation(), diag::warn_attribute_section_on_redeclaration);
3311 Diag(Old->getLocation(), diag::note_previous_declaration);
3312 }
3313 }
3314 }
3315
3316 // Redeclaration adds code-seg attribute.
3317 const auto *NewCSA = New->getAttr<CodeSegAttr>();
3318 if (NewCSA && !Old->hasAttr<CodeSegAttr>() &&
3319 !NewCSA->isImplicit() && isa<CXXMethodDecl>(New)) {
3320 Diag(New->getLocation(), diag::warn_mismatched_section)
3321 << 0 /*codeseg*/;
3322 Diag(Old->getLocation(), diag::note_previous_declaration);
3323 }
3324
3325 if (!Old->hasAttrs())
3326 return;
3327
3328 bool foundAny = New->hasAttrs();
3329
3330 // Ensure that any moving of objects within the allocated map is done before
3331 // we process them.
3332 if (!foundAny) New->setAttrs(AttrVec());
3333
3334 for (auto *I : Old->specific_attrs<InheritableAttr>()) {
3335 // Ignore deprecated/unavailable/availability attributes if requested.
3336 AvailabilityMergeKind LocalAMK = AMK_None;
3337 if (isa<DeprecatedAttr>(I) ||
3338 isa<UnavailableAttr>(I) ||
3339 isa<AvailabilityAttr>(I)) {
3340 switch (AMK) {
3341 case AMK_None:
3342 continue;
3343
3344 case AMK_Redeclaration:
3345 case AMK_Override:
3346 case AMK_ProtocolImplementation:
3347 case AMK_OptionalProtocolImplementation:
3348 LocalAMK = AMK;
3349 break;
3350 }
3351 }
3352
3353 // Already handled.
3354 if (isa<UsedAttr>(I) || isa<RetainAttr>(I))
3355 continue;
3356
3357 if (mergeDeclAttribute(*this, New, I, LocalAMK))
3358 foundAny = true;
3359 }
3360
3361 if (mergeAlignedAttrs(*this, New, Old))
3362 foundAny = true;
3363
3364 if (!foundAny) New->dropAttrs();
3365 }
3366
3367 /// mergeParamDeclAttributes - Copy attributes from the old parameter
3368 /// to the new one.
mergeParamDeclAttributes(ParmVarDecl * newDecl,const ParmVarDecl * oldDecl,Sema & S)3369 static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
3370 const ParmVarDecl *oldDecl,
3371 Sema &S) {
3372 // C++11 [dcl.attr.depend]p2:
3373 // The first declaration of a function shall specify the
3374 // carries_dependency attribute for its declarator-id if any declaration
3375 // of the function specifies the carries_dependency attribute.
3376 const CarriesDependencyAttr *CDA = newDecl->getAttr<CarriesDependencyAttr>();
3377 if (CDA && !oldDecl->hasAttr<CarriesDependencyAttr>()) {
3378 S.Diag(CDA->getLocation(),
3379 diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
3380 // Find the first declaration of the parameter.
3381 // FIXME: Should we build redeclaration chains for function parameters?
3382 const FunctionDecl *FirstFD =
3383 cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDecl();
3384 const ParmVarDecl *FirstVD =
3385 FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
3386 S.Diag(FirstVD->getLocation(),
3387 diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
3388 }
3389
3390 // HLSL parameter declarations for inout and out must match between
3391 // declarations. In HLSL inout and out are ambiguous at the call site, but
3392 // have different calling behavior, so you cannot overload a method based on a
3393 // difference between inout and out annotations.
3394 if (S.getLangOpts().HLSL) {
3395 const auto *NDAttr = newDecl->getAttr<HLSLParamModifierAttr>();
3396 const auto *ODAttr = oldDecl->getAttr<HLSLParamModifierAttr>();
3397 // We don't need to cover the case where one declaration doesn't have an
3398 // attribute. The only possible case there is if one declaration has an `in`
3399 // attribute and the other declaration has no attribute. This case is
3400 // allowed since parameters are `in` by default.
3401 if (NDAttr && ODAttr &&
3402 NDAttr->getSpellingListIndex() != ODAttr->getSpellingListIndex()) {
3403 S.Diag(newDecl->getLocation(), diag::err_hlsl_param_qualifier_mismatch)
3404 << NDAttr << newDecl;
3405 S.Diag(oldDecl->getLocation(), diag::note_previous_declaration_as)
3406 << ODAttr;
3407 }
3408 }
3409
3410 if (!oldDecl->hasAttrs())
3411 return;
3412
3413 bool foundAny = newDecl->hasAttrs();
3414
3415 // Ensure that any moving of objects within the allocated map is
3416 // done before we process them.
3417 if (!foundAny) newDecl->setAttrs(AttrVec());
3418
3419 for (const auto *I : oldDecl->specific_attrs<InheritableParamAttr>()) {
3420 if (!DeclHasAttr(newDecl, I)) {
3421 InheritableAttr *newAttr =
3422 cast<InheritableParamAttr>(I->clone(S.Context));
3423 newAttr->setInherited(true);
3424 newDecl->addAttr(newAttr);
3425 foundAny = true;
3426 }
3427 }
3428
3429 if (!foundAny) newDecl->dropAttrs();
3430 }
3431
EquivalentArrayTypes(QualType Old,QualType New,const ASTContext & Ctx)3432 static bool EquivalentArrayTypes(QualType Old, QualType New,
3433 const ASTContext &Ctx) {
3434
3435 auto NoSizeInfo = [&Ctx](QualType Ty) {
3436 if (Ty->isIncompleteArrayType() || Ty->isPointerType())
3437 return true;
3438 if (const auto *VAT = Ctx.getAsVariableArrayType(Ty))
3439 return VAT->getSizeModifier() == ArraySizeModifier::Star;
3440 return false;
3441 };
3442
3443 // `type[]` is equivalent to `type *` and `type[*]`.
3444 if (NoSizeInfo(Old) && NoSizeInfo(New))
3445 return true;
3446
3447 // Don't try to compare VLA sizes, unless one of them has the star modifier.
3448 if (Old->isVariableArrayType() && New->isVariableArrayType()) {
3449 const auto *OldVAT = Ctx.getAsVariableArrayType(Old);
3450 const auto *NewVAT = Ctx.getAsVariableArrayType(New);
3451 if ((OldVAT->getSizeModifier() == ArraySizeModifier::Star) ^
3452 (NewVAT->getSizeModifier() == ArraySizeModifier::Star))
3453 return false;
3454 return true;
3455 }
3456
3457 // Only compare size, ignore Size modifiers and CVR.
3458 if (Old->isConstantArrayType() && New->isConstantArrayType()) {
3459 return Ctx.getAsConstantArrayType(Old)->getSize() ==
3460 Ctx.getAsConstantArrayType(New)->getSize();
3461 }
3462
3463 // Don't try to compare dependent sized array
3464 if (Old->isDependentSizedArrayType() && New->isDependentSizedArrayType()) {
3465 return true;
3466 }
3467
3468 return Old == New;
3469 }
3470
mergeParamDeclTypes(ParmVarDecl * NewParam,const ParmVarDecl * OldParam,Sema & S)3471 static void mergeParamDeclTypes(ParmVarDecl *NewParam,
3472 const ParmVarDecl *OldParam,
3473 Sema &S) {
3474 if (auto Oldnullability = OldParam->getType()->getNullability()) {
3475 if (auto Newnullability = NewParam->getType()->getNullability()) {
3476 if (*Oldnullability != *Newnullability) {
3477 S.Diag(NewParam->getLocation(), diag::warn_mismatched_nullability_attr)
3478 << DiagNullabilityKind(
3479 *Newnullability,
3480 ((NewParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
3481 != 0))
3482 << DiagNullabilityKind(
3483 *Oldnullability,
3484 ((OldParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
3485 != 0));
3486 S.Diag(OldParam->getLocation(), diag::note_previous_declaration);
3487 }
3488 } else {
3489 QualType NewT = NewParam->getType();
3490 NewT = S.Context.getAttributedType(
3491 AttributedType::getNullabilityAttrKind(*Oldnullability),
3492 NewT, NewT);
3493 NewParam->setType(NewT);
3494 }
3495 }
3496 const auto *OldParamDT = dyn_cast<DecayedType>(OldParam->getType());
3497 const auto *NewParamDT = dyn_cast<DecayedType>(NewParam->getType());
3498 if (OldParamDT && NewParamDT &&
3499 OldParamDT->getPointeeType() == NewParamDT->getPointeeType()) {
3500 QualType OldParamOT = OldParamDT->getOriginalType();
3501 QualType NewParamOT = NewParamDT->getOriginalType();
3502 if (!EquivalentArrayTypes(OldParamOT, NewParamOT, S.getASTContext())) {
3503 S.Diag(NewParam->getLocation(), diag::warn_inconsistent_array_form)
3504 << NewParam << NewParamOT;
3505 S.Diag(OldParam->getLocation(), diag::note_previous_declaration_as)
3506 << OldParamOT;
3507 }
3508 }
3509 }
3510
3511 namespace {
3512
3513 /// Used in MergeFunctionDecl to keep track of function parameters in
3514 /// C.
3515 struct GNUCompatibleParamWarning {
3516 ParmVarDecl *OldParm;
3517 ParmVarDecl *NewParm;
3518 QualType PromotedType;
3519 };
3520
3521 } // end anonymous namespace
3522
3523 // Determine whether the previous declaration was a definition, implicit
3524 // declaration, or a declaration.
3525 template <typename T>
3526 static std::pair<diag::kind, SourceLocation>
getNoteDiagForInvalidRedeclaration(const T * Old,const T * New)3527 getNoteDiagForInvalidRedeclaration(const T *Old, const T *New) {
3528 diag::kind PrevDiag;
3529 SourceLocation OldLocation = Old->getLocation();
3530 if (Old->isThisDeclarationADefinition())
3531 PrevDiag = diag::note_previous_definition;
3532 else if (Old->isImplicit()) {
3533 PrevDiag = diag::note_previous_implicit_declaration;
3534 if (const auto *FD = dyn_cast<FunctionDecl>(Old)) {
3535 if (FD->getBuiltinID())
3536 PrevDiag = diag::note_previous_builtin_declaration;
3537 }
3538 if (OldLocation.isInvalid())
3539 OldLocation = New->getLocation();
3540 } else
3541 PrevDiag = diag::note_previous_declaration;
3542 return std::make_pair(PrevDiag, OldLocation);
3543 }
3544
3545 /// canRedefineFunction - checks if a function can be redefined. Currently,
3546 /// only extern inline functions can be redefined, and even then only in
3547 /// GNU89 mode.
canRedefineFunction(const FunctionDecl * FD,const LangOptions & LangOpts)3548 static bool canRedefineFunction(const FunctionDecl *FD,
3549 const LangOptions& LangOpts) {
3550 return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
3551 !LangOpts.CPlusPlus &&
3552 FD->isInlineSpecified() &&
3553 FD->getStorageClass() == SC_Extern);
3554 }
3555
getCallingConvAttributedType(QualType T) const3556 const AttributedType *Sema::getCallingConvAttributedType(QualType T) const {
3557 const AttributedType *AT = T->getAs<AttributedType>();
3558 while (AT && !AT->isCallingConv())
3559 AT = AT->getModifiedType()->getAs<AttributedType>();
3560 return AT;
3561 }
3562
3563 template <typename T>
haveIncompatibleLanguageLinkages(const T * Old,const T * New)3564 static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) {
3565 const DeclContext *DC = Old->getDeclContext();
3566 if (DC->isRecord())
3567 return false;
3568
3569 LanguageLinkage OldLinkage = Old->getLanguageLinkage();
3570 if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext())
3571 return true;
3572 if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext())
3573 return true;
3574 return false;
3575 }
3576
isExternC(T * D)3577 template<typename T> static bool isExternC(T *D) { return D->isExternC(); }
isExternC(VarTemplateDecl *)3578 static bool isExternC(VarTemplateDecl *) { return false; }
isExternC(FunctionTemplateDecl *)3579 static bool isExternC(FunctionTemplateDecl *) { return false; }
3580
3581 /// Check whether a redeclaration of an entity introduced by a
3582 /// using-declaration is valid, given that we know it's not an overload
3583 /// (nor a hidden tag declaration).
3584 template<typename ExpectedDecl>
checkUsingShadowRedecl(Sema & S,UsingShadowDecl * OldS,ExpectedDecl * New)3585 static bool checkUsingShadowRedecl(Sema &S, UsingShadowDecl *OldS,
3586 ExpectedDecl *New) {
3587 // C++11 [basic.scope.declarative]p4:
3588 // Given a set of declarations in a single declarative region, each of
3589 // which specifies the same unqualified name,
3590 // -- they shall all refer to the same entity, or all refer to functions
3591 // and function templates; or
3592 // -- exactly one declaration shall declare a class name or enumeration
3593 // name that is not a typedef name and the other declarations shall all
3594 // refer to the same variable or enumerator, or all refer to functions
3595 // and function templates; in this case the class name or enumeration
3596 // name is hidden (3.3.10).
3597
3598 // C++11 [namespace.udecl]p14:
3599 // If a function declaration in namespace scope or block scope has the
3600 // same name and the same parameter-type-list as a function introduced
3601 // by a using-declaration, and the declarations do not declare the same
3602 // function, the program is ill-formed.
3603
3604 auto *Old = dyn_cast<ExpectedDecl>(OldS->getTargetDecl());
3605 if (Old &&
3606 !Old->getDeclContext()->getRedeclContext()->Equals(
3607 New->getDeclContext()->getRedeclContext()) &&
3608 !(isExternC(Old) && isExternC(New)))
3609 Old = nullptr;
3610
3611 if (!Old) {
3612 S.Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
3613 S.Diag(OldS->getTargetDecl()->getLocation(), diag::note_using_decl_target);
3614 S.Diag(OldS->getIntroducer()->getLocation(), diag::note_using_decl) << 0;
3615 return true;
3616 }
3617 return false;
3618 }
3619
hasIdenticalPassObjectSizeAttrs(const FunctionDecl * A,const FunctionDecl * B)3620 static bool hasIdenticalPassObjectSizeAttrs(const FunctionDecl *A,
3621 const FunctionDecl *B) {
3622 assert(A->getNumParams() == B->getNumParams());
3623
3624 auto AttrEq = [](const ParmVarDecl *A, const ParmVarDecl *B) {
3625 const auto *AttrA = A->getAttr<PassObjectSizeAttr>();
3626 const auto *AttrB = B->getAttr<PassObjectSizeAttr>();
3627 if (AttrA == AttrB)
3628 return true;
3629 return AttrA && AttrB && AttrA->getType() == AttrB->getType() &&
3630 AttrA->isDynamic() == AttrB->isDynamic();
3631 };
3632
3633 return std::equal(A->param_begin(), A->param_end(), B->param_begin(), AttrEq);
3634 }
3635
3636 /// If necessary, adjust the semantic declaration context for a qualified
3637 /// declaration to name the correct inline namespace within the qualifier.
adjustDeclContextForDeclaratorDecl(DeclaratorDecl * NewD,DeclaratorDecl * OldD)3638 static void adjustDeclContextForDeclaratorDecl(DeclaratorDecl *NewD,
3639 DeclaratorDecl *OldD) {
3640 // The only case where we need to update the DeclContext is when
3641 // redeclaration lookup for a qualified name finds a declaration
3642 // in an inline namespace within the context named by the qualifier:
3643 //
3644 // inline namespace N { int f(); }
3645 // int ::f(); // Sema DC needs adjusting from :: to N::.
3646 //
3647 // For unqualified declarations, the semantic context *can* change
3648 // along the redeclaration chain (for local extern declarations,
3649 // extern "C" declarations, and friend declarations in particular).
3650 if (!NewD->getQualifier())
3651 return;
3652
3653 // NewD is probably already in the right context.
3654 auto *NamedDC = NewD->getDeclContext()->getRedeclContext();
3655 auto *SemaDC = OldD->getDeclContext()->getRedeclContext();
3656 if (NamedDC->Equals(SemaDC))
3657 return;
3658
3659 assert((NamedDC->InEnclosingNamespaceSetOf(SemaDC) ||
3660 NewD->isInvalidDecl() || OldD->isInvalidDecl()) &&
3661 "unexpected context for redeclaration");
3662
3663 auto *LexDC = NewD->getLexicalDeclContext();
3664 auto FixSemaDC = [=](NamedDecl *D) {
3665 if (!D)
3666 return;
3667 D->setDeclContext(SemaDC);
3668 D->setLexicalDeclContext(LexDC);
3669 };
3670
3671 FixSemaDC(NewD);
3672 if (auto *FD = dyn_cast<FunctionDecl>(NewD))
3673 FixSemaDC(FD->getDescribedFunctionTemplate());
3674 else if (auto *VD = dyn_cast<VarDecl>(NewD))
3675 FixSemaDC(VD->getDescribedVarTemplate());
3676 }
3677
3678 /// MergeFunctionDecl - We just parsed a function 'New' from
3679 /// declarator D which has the same name and scope as a previous
3680 /// declaration 'Old'. Figure out how to resolve this situation,
3681 /// merging decls or emitting diagnostics as appropriate.
3682 ///
3683 /// In C++, New and Old must be declarations that are not
3684 /// overloaded. Use IsOverload to determine whether New and Old are
3685 /// overloaded, and to select the Old declaration that New should be
3686 /// merged with.
3687 ///
3688 /// Returns true if there was an error, false otherwise.
MergeFunctionDecl(FunctionDecl * New,NamedDecl * & OldD,Scope * S,bool MergeTypeWithOld,bool NewDeclIsDefn)3689 bool Sema::MergeFunctionDecl(FunctionDecl *New, NamedDecl *&OldD, Scope *S,
3690 bool MergeTypeWithOld, bool NewDeclIsDefn) {
3691 // Verify the old decl was also a function.
3692 FunctionDecl *Old = OldD->getAsFunction();
3693 if (!Old) {
3694 if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
3695 if (New->getFriendObjectKind()) {
3696 Diag(New->getLocation(), diag::err_using_decl_friend);
3697 Diag(Shadow->getTargetDecl()->getLocation(),
3698 diag::note_using_decl_target);
3699 Diag(Shadow->getIntroducer()->getLocation(), diag::note_using_decl)
3700 << 0;
3701 return true;
3702 }
3703
3704 // Check whether the two declarations might declare the same function or
3705 // function template.
3706 if (FunctionTemplateDecl *NewTemplate =
3707 New->getDescribedFunctionTemplate()) {
3708 if (checkUsingShadowRedecl<FunctionTemplateDecl>(*this, Shadow,
3709 NewTemplate))
3710 return true;
3711 OldD = Old = cast<FunctionTemplateDecl>(Shadow->getTargetDecl())
3712 ->getAsFunction();
3713 } else {
3714 if (checkUsingShadowRedecl<FunctionDecl>(*this, Shadow, New))
3715 return true;
3716 OldD = Old = cast<FunctionDecl>(Shadow->getTargetDecl());
3717 }
3718 } else {
3719 Diag(New->getLocation(), diag::err_redefinition_different_kind)
3720 << New->getDeclName();
3721 notePreviousDefinition(OldD, New->getLocation());
3722 return true;
3723 }
3724 }
3725
3726 // If the old declaration was found in an inline namespace and the new
3727 // declaration was qualified, update the DeclContext to match.
3728 adjustDeclContextForDeclaratorDecl(New, Old);
3729
3730 // If the old declaration is invalid, just give up here.
3731 if (Old->isInvalidDecl())
3732 return true;
3733
3734 // Disallow redeclaration of some builtins.
3735 if (!getASTContext().canBuiltinBeRedeclared(Old)) {
3736 Diag(New->getLocation(), diag::err_builtin_redeclare) << Old->getDeclName();
3737 Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
3738 << Old << Old->getType();
3739 return true;
3740 }
3741
3742 diag::kind PrevDiag;
3743 SourceLocation OldLocation;
3744 std::tie(PrevDiag, OldLocation) =
3745 getNoteDiagForInvalidRedeclaration(Old, New);
3746
3747 // Don't complain about this if we're in GNU89 mode and the old function
3748 // is an extern inline function.
3749 // Don't complain about specializations. They are not supposed to have
3750 // storage classes.
3751 if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
3752 New->getStorageClass() == SC_Static &&
3753 Old->hasExternalFormalLinkage() &&
3754 !New->getTemplateSpecializationInfo() &&
3755 !canRedefineFunction(Old, getLangOpts())) {
3756 if (getLangOpts().MicrosoftExt) {
3757 Diag(New->getLocation(), diag::ext_static_non_static) << New;
3758 Diag(OldLocation, PrevDiag) << Old << Old->getType();
3759 } else {
3760 Diag(New->getLocation(), diag::err_static_non_static) << New;
3761 Diag(OldLocation, PrevDiag) << Old << Old->getType();
3762 return true;
3763 }
3764 }
3765
3766 if (const auto *ILA = New->getAttr<InternalLinkageAttr>())
3767 if (!Old->hasAttr<InternalLinkageAttr>()) {
3768 Diag(New->getLocation(), diag::err_attribute_missing_on_first_decl)
3769 << ILA;
3770 Diag(Old->getLocation(), diag::note_previous_declaration);
3771 New->dropAttr<InternalLinkageAttr>();
3772 }
3773
3774 if (auto *EA = New->getAttr<ErrorAttr>()) {
3775 if (!Old->hasAttr<ErrorAttr>()) {
3776 Diag(EA->getLocation(), diag::err_attribute_missing_on_first_decl) << EA;
3777 Diag(Old->getLocation(), diag::note_previous_declaration);
3778 New->dropAttr<ErrorAttr>();
3779 }
3780 }
3781
3782 if (CheckRedeclarationInModule(New, Old))
3783 return true;
3784
3785 if (!getLangOpts().CPlusPlus) {
3786 bool OldOvl = Old->hasAttr<OverloadableAttr>();
3787 if (OldOvl != New->hasAttr<OverloadableAttr>() && !Old->isImplicit()) {
3788 Diag(New->getLocation(), diag::err_attribute_overloadable_mismatch)
3789 << New << OldOvl;
3790
3791 // Try our best to find a decl that actually has the overloadable
3792 // attribute for the note. In most cases (e.g. programs with only one
3793 // broken declaration/definition), this won't matter.
3794 //
3795 // FIXME: We could do this if we juggled some extra state in
3796 // OverloadableAttr, rather than just removing it.
3797 const Decl *DiagOld = Old;
3798 if (OldOvl) {
3799 auto OldIter = llvm::find_if(Old->redecls(), [](const Decl *D) {
3800 const auto *A = D->getAttr<OverloadableAttr>();
3801 return A && !A->isImplicit();
3802 });
3803 // If we've implicitly added *all* of the overloadable attrs to this
3804 // chain, emitting a "previous redecl" note is pointless.
3805 DiagOld = OldIter == Old->redecls_end() ? nullptr : *OldIter;
3806 }
3807
3808 if (DiagOld)
3809 Diag(DiagOld->getLocation(),
3810 diag::note_attribute_overloadable_prev_overload)
3811 << OldOvl;
3812
3813 if (OldOvl)
3814 New->addAttr(OverloadableAttr::CreateImplicit(Context));
3815 else
3816 New->dropAttr<OverloadableAttr>();
3817 }
3818 }
3819
3820 // It is not permitted to redeclare an SME function with different SME
3821 // attributes.
3822 if (IsInvalidSMECallConversion(Old->getType(), New->getType())) {
3823 Diag(New->getLocation(), diag::err_sme_attr_mismatch)
3824 << New->getType() << Old->getType();
3825 Diag(OldLocation, diag::note_previous_declaration);
3826 return true;
3827 }
3828
3829 // If a function is first declared with a calling convention, but is later
3830 // declared or defined without one, all following decls assume the calling
3831 // convention of the first.
3832 //
3833 // It's OK if a function is first declared without a calling convention,
3834 // but is later declared or defined with the default calling convention.
3835 //
3836 // To test if either decl has an explicit calling convention, we look for
3837 // AttributedType sugar nodes on the type as written. If they are missing or
3838 // were canonicalized away, we assume the calling convention was implicit.
3839 //
3840 // Note also that we DO NOT return at this point, because we still have
3841 // other tests to run.
3842 QualType OldQType = Context.getCanonicalType(Old->getType());
3843 QualType NewQType = Context.getCanonicalType(New->getType());
3844 const FunctionType *OldType = cast<FunctionType>(OldQType);
3845 const FunctionType *NewType = cast<FunctionType>(NewQType);
3846 FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
3847 FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
3848 bool RequiresAdjustment = false;
3849
3850 if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) {
3851 FunctionDecl *First = Old->getFirstDecl();
3852 const FunctionType *FT =
3853 First->getType().getCanonicalType()->castAs<FunctionType>();
3854 FunctionType::ExtInfo FI = FT->getExtInfo();
3855 bool NewCCExplicit = getCallingConvAttributedType(New->getType());
3856 if (!NewCCExplicit) {
3857 // Inherit the CC from the previous declaration if it was specified
3858 // there but not here.
3859 NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
3860 RequiresAdjustment = true;
3861 } else if (Old->getBuiltinID()) {
3862 // Builtin attribute isn't propagated to the new one yet at this point,
3863 // so we check if the old one is a builtin.
3864
3865 // Calling Conventions on a Builtin aren't really useful and setting a
3866 // default calling convention and cdecl'ing some builtin redeclarations is
3867 // common, so warn and ignore the calling convention on the redeclaration.
3868 Diag(New->getLocation(), diag::warn_cconv_unsupported)
3869 << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
3870 << (int)CallingConventionIgnoredReason::BuiltinFunction;
3871 NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
3872 RequiresAdjustment = true;
3873 } else {
3874 // Calling conventions aren't compatible, so complain.
3875 bool FirstCCExplicit = getCallingConvAttributedType(First->getType());
3876 Diag(New->getLocation(), diag::err_cconv_change)
3877 << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
3878 << !FirstCCExplicit
3879 << (!FirstCCExplicit ? "" :
3880 FunctionType::getNameForCallConv(FI.getCC()));
3881
3882 // Put the note on the first decl, since it is the one that matters.
3883 Diag(First->getLocation(), diag::note_previous_declaration);
3884 return true;
3885 }
3886 }
3887
3888 // FIXME: diagnose the other way around?
3889 if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
3890 NewTypeInfo = NewTypeInfo.withNoReturn(true);
3891 RequiresAdjustment = true;
3892 }
3893
3894 // Merge regparm attribute.
3895 if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
3896 OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
3897 if (NewTypeInfo.getHasRegParm()) {
3898 Diag(New->getLocation(), diag::err_regparm_mismatch)
3899 << NewType->getRegParmType()
3900 << OldType->getRegParmType();
3901 Diag(OldLocation, diag::note_previous_declaration);
3902 return true;
3903 }
3904
3905 NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
3906 RequiresAdjustment = true;
3907 }
3908
3909 // Merge ns_returns_retained attribute.
3910 if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
3911 if (NewTypeInfo.getProducesResult()) {
3912 Diag(New->getLocation(), diag::err_function_attribute_mismatch)
3913 << "'ns_returns_retained'";
3914 Diag(OldLocation, diag::note_previous_declaration);
3915 return true;
3916 }
3917
3918 NewTypeInfo = NewTypeInfo.withProducesResult(true);
3919 RequiresAdjustment = true;
3920 }
3921
3922 if (OldTypeInfo.getNoCallerSavedRegs() !=
3923 NewTypeInfo.getNoCallerSavedRegs()) {
3924 if (NewTypeInfo.getNoCallerSavedRegs()) {
3925 AnyX86NoCallerSavedRegistersAttr *Attr =
3926 New->getAttr<AnyX86NoCallerSavedRegistersAttr>();
3927 Diag(New->getLocation(), diag::err_function_attribute_mismatch) << Attr;
3928 Diag(OldLocation, diag::note_previous_declaration);
3929 return true;
3930 }
3931
3932 NewTypeInfo = NewTypeInfo.withNoCallerSavedRegs(true);
3933 RequiresAdjustment = true;
3934 }
3935
3936 if (RequiresAdjustment) {
3937 const FunctionType *AdjustedType = New->getType()->getAs<FunctionType>();
3938 AdjustedType = Context.adjustFunctionType(AdjustedType, NewTypeInfo);
3939 New->setType(QualType(AdjustedType, 0));
3940 NewQType = Context.getCanonicalType(New->getType());
3941 }
3942
3943 // If this redeclaration makes the function inline, we may need to add it to
3944 // UndefinedButUsed.
3945 if (!Old->isInlined() && New->isInlined() &&
3946 !New->hasAttr<GNUInlineAttr>() &&
3947 !getLangOpts().GNUInline &&
3948 Old->isUsed(false) &&
3949 !Old->isDefined() && !New->isThisDeclarationADefinition())
3950 UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
3951 SourceLocation()));
3952
3953 // If this redeclaration makes it newly gnu_inline, we don't want to warn
3954 // about it.
3955 if (New->hasAttr<GNUInlineAttr>() &&
3956 Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) {
3957 UndefinedButUsed.erase(Old->getCanonicalDecl());
3958 }
3959
3960 // If pass_object_size params don't match up perfectly, this isn't a valid
3961 // redeclaration.
3962 if (Old->getNumParams() > 0 && Old->getNumParams() == New->getNumParams() &&
3963 !hasIdenticalPassObjectSizeAttrs(Old, New)) {
3964 Diag(New->getLocation(), diag::err_different_pass_object_size_params)
3965 << New->getDeclName();
3966 Diag(OldLocation, PrevDiag) << Old << Old->getType();
3967 return true;
3968 }
3969
3970 if (getLangOpts().CPlusPlus) {
3971 OldQType = Context.getCanonicalType(Old->getType());
3972 NewQType = Context.getCanonicalType(New->getType());
3973
3974 // Go back to the type source info to compare the declared return types,
3975 // per C++1y [dcl.type.auto]p13:
3976 // Redeclarations or specializations of a function or function template
3977 // with a declared return type that uses a placeholder type shall also
3978 // use that placeholder, not a deduced type.
3979 QualType OldDeclaredReturnType = Old->getDeclaredReturnType();
3980 QualType NewDeclaredReturnType = New->getDeclaredReturnType();
3981 if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType) &&
3982 canFullyTypeCheckRedeclaration(New, Old, NewDeclaredReturnType,
3983 OldDeclaredReturnType)) {
3984 QualType ResQT;
3985 if (NewDeclaredReturnType->isObjCObjectPointerType() &&
3986 OldDeclaredReturnType->isObjCObjectPointerType())
3987 // FIXME: This does the wrong thing for a deduced return type.
3988 ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
3989 if (ResQT.isNull()) {
3990 if (New->isCXXClassMember() && New->isOutOfLine())
3991 Diag(New->getLocation(), diag::err_member_def_does_not_match_ret_type)
3992 << New << New->getReturnTypeSourceRange();
3993 else
3994 Diag(New->getLocation(), diag::err_ovl_diff_return_type)
3995 << New->getReturnTypeSourceRange();
3996 Diag(OldLocation, PrevDiag) << Old << Old->getType()
3997 << Old->getReturnTypeSourceRange();
3998 return true;
3999 }
4000 else
4001 NewQType = ResQT;
4002 }
4003
4004 QualType OldReturnType = OldType->getReturnType();
4005 QualType NewReturnType = cast<FunctionType>(NewQType)->getReturnType();
4006 if (OldReturnType != NewReturnType) {
4007 // If this function has a deduced return type and has already been
4008 // defined, copy the deduced value from the old declaration.
4009 AutoType *OldAT = Old->getReturnType()->getContainedAutoType();
4010 if (OldAT && OldAT->isDeduced()) {
4011 QualType DT = OldAT->getDeducedType();
4012 if (DT.isNull()) {
4013 New->setType(SubstAutoTypeDependent(New->getType()));
4014 NewQType = Context.getCanonicalType(SubstAutoTypeDependent(NewQType));
4015 } else {
4016 New->setType(SubstAutoType(New->getType(), DT));
4017 NewQType = Context.getCanonicalType(SubstAutoType(NewQType, DT));
4018 }
4019 }
4020 }
4021
4022 const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
4023 CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
4024 if (OldMethod && NewMethod) {
4025 // Preserve triviality.
4026 NewMethod->setTrivial(OldMethod->isTrivial());
4027
4028 // MSVC allows explicit template specialization at class scope:
4029 // 2 CXXMethodDecls referring to the same function will be injected.
4030 // We don't want a redeclaration error.
4031 bool IsClassScopeExplicitSpecialization =
4032 OldMethod->isFunctionTemplateSpecialization() &&
4033 NewMethod->isFunctionTemplateSpecialization();
4034 bool isFriend = NewMethod->getFriendObjectKind();
4035
4036 if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
4037 !IsClassScopeExplicitSpecialization) {
4038 // -- Member function declarations with the same name and the
4039 // same parameter types cannot be overloaded if any of them
4040 // is a static member function declaration.
4041 if (OldMethod->isStatic() != NewMethod->isStatic()) {
4042 Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
4043 Diag(OldLocation, PrevDiag) << Old << Old->getType();
4044 return true;
4045 }
4046
4047 // C++ [class.mem]p1:
4048 // [...] A member shall not be declared twice in the
4049 // member-specification, except that a nested class or member
4050 // class template can be declared and then later defined.
4051 if (!inTemplateInstantiation()) {
4052 unsigned NewDiag;
4053 if (isa<CXXConstructorDecl>(OldMethod))
4054 NewDiag = diag::err_constructor_redeclared;
4055 else if (isa<CXXDestructorDecl>(NewMethod))
4056 NewDiag = diag::err_destructor_redeclared;
4057 else if (isa<CXXConversionDecl>(NewMethod))
4058 NewDiag = diag::err_conv_function_redeclared;
4059 else
4060 NewDiag = diag::err_member_redeclared;
4061
4062 Diag(New->getLocation(), NewDiag);
4063 } else {
4064 Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
4065 << New << New->getType();
4066 }
4067 Diag(OldLocation, PrevDiag) << Old << Old->getType();
4068 return true;
4069
4070 // Complain if this is an explicit declaration of a special
4071 // member that was initially declared implicitly.
4072 //
4073 // As an exception, it's okay to befriend such methods in order
4074 // to permit the implicit constructor/destructor/operator calls.
4075 } else if (OldMethod->isImplicit()) {
4076 if (isFriend) {
4077 NewMethod->setImplicit();
4078 } else {
4079 Diag(NewMethod->getLocation(),
4080 diag::err_definition_of_implicitly_declared_member)
4081 << New << getSpecialMember(OldMethod);
4082 return true;
4083 }
4084 } else if (OldMethod->getFirstDecl()->isExplicitlyDefaulted() && !isFriend) {
4085 Diag(NewMethod->getLocation(),
4086 diag::err_definition_of_explicitly_defaulted_member)
4087 << getSpecialMember(OldMethod);
4088 return true;
4089 }
4090 }
4091
4092 // C++1z [over.load]p2
4093 // Certain function declarations cannot be overloaded:
4094 // -- Function declarations that differ only in the return type,
4095 // the exception specification, or both cannot be overloaded.
4096
4097 // Check the exception specifications match. This may recompute the type of
4098 // both Old and New if it resolved exception specifications, so grab the
4099 // types again after this. Because this updates the type, we do this before
4100 // any of the other checks below, which may update the "de facto" NewQType
4101 // but do not necessarily update the type of New.
4102 if (CheckEquivalentExceptionSpec(Old, New))
4103 return true;
4104
4105 // C++11 [dcl.attr.noreturn]p1:
4106 // The first declaration of a function shall specify the noreturn
4107 // attribute if any declaration of that function specifies the noreturn
4108 // attribute.
4109 if (const auto *NRA = New->getAttr<CXX11NoReturnAttr>())
4110 if (!Old->hasAttr<CXX11NoReturnAttr>()) {
4111 Diag(NRA->getLocation(), diag::err_attribute_missing_on_first_decl)
4112 << NRA;
4113 Diag(Old->getLocation(), diag::note_previous_declaration);
4114 }
4115
4116 // C++11 [dcl.attr.depend]p2:
4117 // The first declaration of a function shall specify the
4118 // carries_dependency attribute for its declarator-id if any declaration
4119 // of the function specifies the carries_dependency attribute.
4120 const CarriesDependencyAttr *CDA = New->getAttr<CarriesDependencyAttr>();
4121 if (CDA && !Old->hasAttr<CarriesDependencyAttr>()) {
4122 Diag(CDA->getLocation(),
4123 diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
4124 Diag(Old->getFirstDecl()->getLocation(),
4125 diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
4126 }
4127
4128 // (C++98 8.3.5p3):
4129 // All declarations for a function shall agree exactly in both the
4130 // return type and the parameter-type-list.
4131 // We also want to respect all the extended bits except noreturn.
4132
4133 // noreturn should now match unless the old type info didn't have it.
4134 QualType OldQTypeForComparison = OldQType;
4135 if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
4136 auto *OldType = OldQType->castAs<FunctionProtoType>();
4137 const FunctionType *OldTypeForComparison
4138 = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
4139 OldQTypeForComparison = QualType(OldTypeForComparison, 0);
4140 assert(OldQTypeForComparison.isCanonical());
4141 }
4142
4143 if (haveIncompatibleLanguageLinkages(Old, New)) {
4144 // As a special case, retain the language linkage from previous
4145 // declarations of a friend function as an extension.
4146 //
4147 // This liberal interpretation of C++ [class.friend]p3 matches GCC/MSVC
4148 // and is useful because there's otherwise no way to specify language
4149 // linkage within class scope.
4150 //
4151 // Check cautiously as the friend object kind isn't yet complete.
4152 if (New->getFriendObjectKind() != Decl::FOK_None) {
4153 Diag(New->getLocation(), diag::ext_retained_language_linkage) << New;
4154 Diag(OldLocation, PrevDiag);
4155 } else {
4156 Diag(New->getLocation(), diag::err_different_language_linkage) << New;
4157 Diag(OldLocation, PrevDiag);
4158 return true;
4159 }
4160 }
4161
4162 // If the function types are compatible, merge the declarations. Ignore the
4163 // exception specifier because it was already checked above in
4164 // CheckEquivalentExceptionSpec, and we don't want follow-on diagnostics
4165 // about incompatible types under -fms-compatibility.
4166 if (Context.hasSameFunctionTypeIgnoringExceptionSpec(OldQTypeForComparison,
4167 NewQType))
4168 return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
4169
4170 // If the types are imprecise (due to dependent constructs in friends or
4171 // local extern declarations), it's OK if they differ. We'll check again
4172 // during instantiation.
4173 if (!canFullyTypeCheckRedeclaration(New, Old, NewQType, OldQType))
4174 return false;
4175
4176 // Fall through for conflicting redeclarations and redefinitions.
4177 }
4178
4179 // C: Function types need to be compatible, not identical. This handles
4180 // duplicate function decls like "void f(int); void f(enum X);" properly.
4181 if (!getLangOpts().CPlusPlus) {
4182 // C99 6.7.5.3p15: ...If one type has a parameter type list and the other
4183 // type is specified by a function definition that contains a (possibly
4184 // empty) identifier list, both shall agree in the number of parameters
4185 // and the type of each parameter shall be compatible with the type that
4186 // results from the application of default argument promotions to the
4187 // type of the corresponding identifier. ...
4188 // This cannot be handled by ASTContext::typesAreCompatible() because that
4189 // doesn't know whether the function type is for a definition or not when
4190 // eventually calling ASTContext::mergeFunctionTypes(). The only situation
4191 // we need to cover here is that the number of arguments agree as the
4192 // default argument promotion rules were already checked by
4193 // ASTContext::typesAreCompatible().
4194 if (Old->hasPrototype() && !New->hasWrittenPrototype() && NewDeclIsDefn &&
4195 Old->getNumParams() != New->getNumParams() && !Old->isImplicit()) {
4196 if (Old->hasInheritedPrototype())
4197 Old = Old->getCanonicalDecl();
4198 Diag(New->getLocation(), diag::err_conflicting_types) << New;
4199 Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
4200 return true;
4201 }
4202
4203 // If we are merging two functions where only one of them has a prototype,
4204 // we may have enough information to decide to issue a diagnostic that the
4205 // function without a protoype will change behavior in C23. This handles
4206 // cases like:
4207 // void i(); void i(int j);
4208 // void i(int j); void i();
4209 // void i(); void i(int j) {}
4210 // See ActOnFinishFunctionBody() for other cases of the behavior change
4211 // diagnostic. See GetFullTypeForDeclarator() for handling of a function
4212 // type without a prototype.
4213 if (New->hasWrittenPrototype() != Old->hasWrittenPrototype() &&
4214 !New->isImplicit() && !Old->isImplicit()) {
4215 const FunctionDecl *WithProto, *WithoutProto;
4216 if (New->hasWrittenPrototype()) {
4217 WithProto = New;
4218 WithoutProto = Old;
4219 } else {
4220 WithProto = Old;
4221 WithoutProto = New;
4222 }
4223
4224 if (WithProto->getNumParams() != 0) {
4225 if (WithoutProto->getBuiltinID() == 0 && !WithoutProto->isImplicit()) {
4226 // The one without the prototype will be changing behavior in C23, so
4227 // warn about that one so long as it's a user-visible declaration.
4228 bool IsWithoutProtoADef = false, IsWithProtoADef = false;
4229 if (WithoutProto == New)
4230 IsWithoutProtoADef = NewDeclIsDefn;
4231 else
4232 IsWithProtoADef = NewDeclIsDefn;
4233 Diag(WithoutProto->getLocation(),
4234 diag::warn_non_prototype_changes_behavior)
4235 << IsWithoutProtoADef << (WithoutProto->getNumParams() ? 0 : 1)
4236 << (WithoutProto == Old) << IsWithProtoADef;
4237
4238 // The reason the one without the prototype will be changing behavior
4239 // is because of the one with the prototype, so note that so long as
4240 // it's a user-visible declaration. There is one exception to this:
4241 // when the new declaration is a definition without a prototype, the
4242 // old declaration with a prototype is not the cause of the issue,
4243 // and that does not need to be noted because the one with a
4244 // prototype will not change behavior in C23.
4245 if (WithProto->getBuiltinID() == 0 && !WithProto->isImplicit() &&
4246 !IsWithoutProtoADef)
4247 Diag(WithProto->getLocation(), diag::note_conflicting_prototype);
4248 }
4249 }
4250 }
4251
4252 if (Context.typesAreCompatible(OldQType, NewQType)) {
4253 const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
4254 const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
4255 const FunctionProtoType *OldProto = nullptr;
4256 if (MergeTypeWithOld && isa<FunctionNoProtoType>(NewFuncType) &&
4257 (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
4258 // The old declaration provided a function prototype, but the
4259 // new declaration does not. Merge in the prototype.
4260 assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
4261 NewQType = Context.getFunctionType(NewFuncType->getReturnType(),
4262 OldProto->getParamTypes(),
4263 OldProto->getExtProtoInfo());
4264 New->setType(NewQType);
4265 New->setHasInheritedPrototype();
4266
4267 // Synthesize parameters with the same types.
4268 SmallVector<ParmVarDecl *, 16> Params;
4269 for (const auto &ParamType : OldProto->param_types()) {
4270 ParmVarDecl *Param = ParmVarDecl::Create(
4271 Context, New, SourceLocation(), SourceLocation(), nullptr,
4272 ParamType, /*TInfo=*/nullptr, SC_None, nullptr);
4273 Param->setScopeInfo(0, Params.size());
4274 Param->setImplicit();
4275 Params.push_back(Param);
4276 }
4277
4278 New->setParams(Params);
4279 }
4280
4281 return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
4282 }
4283 }
4284
4285 // Check if the function types are compatible when pointer size address
4286 // spaces are ignored.
4287 if (Context.hasSameFunctionTypeIgnoringPtrSizes(OldQType, NewQType))
4288 return false;
4289
4290 // GNU C permits a K&R definition to follow a prototype declaration
4291 // if the declared types of the parameters in the K&R definition
4292 // match the types in the prototype declaration, even when the
4293 // promoted types of the parameters from the K&R definition differ
4294 // from the types in the prototype. GCC then keeps the types from
4295 // the prototype.
4296 //
4297 // If a variadic prototype is followed by a non-variadic K&R definition,
4298 // the K&R definition becomes variadic. This is sort of an edge case, but
4299 // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
4300 // C99 6.9.1p8.
4301 if (!getLangOpts().CPlusPlus &&
4302 Old->hasPrototype() && !New->hasPrototype() &&
4303 New->getType()->getAs<FunctionProtoType>() &&
4304 Old->getNumParams() == New->getNumParams()) {
4305 SmallVector<QualType, 16> ArgTypes;
4306 SmallVector<GNUCompatibleParamWarning, 16> Warnings;
4307 const FunctionProtoType *OldProto
4308 = Old->getType()->getAs<FunctionProtoType>();
4309 const FunctionProtoType *NewProto
4310 = New->getType()->getAs<FunctionProtoType>();
4311
4312 // Determine whether this is the GNU C extension.
4313 QualType MergedReturn = Context.mergeTypes(OldProto->getReturnType(),
4314 NewProto->getReturnType());
4315 bool LooseCompatible = !MergedReturn.isNull();
4316 for (unsigned Idx = 0, End = Old->getNumParams();
4317 LooseCompatible && Idx != End; ++Idx) {
4318 ParmVarDecl *OldParm = Old->getParamDecl(Idx);
4319 ParmVarDecl *NewParm = New->getParamDecl(Idx);
4320 if (Context.typesAreCompatible(OldParm->getType(),
4321 NewProto->getParamType(Idx))) {
4322 ArgTypes.push_back(NewParm->getType());
4323 } else if (Context.typesAreCompatible(OldParm->getType(),
4324 NewParm->getType(),
4325 /*CompareUnqualified=*/true)) {
4326 GNUCompatibleParamWarning Warn = { OldParm, NewParm,
4327 NewProto->getParamType(Idx) };
4328 Warnings.push_back(Warn);
4329 ArgTypes.push_back(NewParm->getType());
4330 } else
4331 LooseCompatible = false;
4332 }
4333
4334 if (LooseCompatible) {
4335 for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
4336 Diag(Warnings[Warn].NewParm->getLocation(),
4337 diag::ext_param_promoted_not_compatible_with_prototype)
4338 << Warnings[Warn].PromotedType
4339 << Warnings[Warn].OldParm->getType();
4340 if (Warnings[Warn].OldParm->getLocation().isValid())
4341 Diag(Warnings[Warn].OldParm->getLocation(),
4342 diag::note_previous_declaration);
4343 }
4344
4345 if (MergeTypeWithOld)
4346 New->setType(Context.getFunctionType(MergedReturn, ArgTypes,
4347 OldProto->getExtProtoInfo()));
4348 return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
4349 }
4350
4351 // Fall through to diagnose conflicting types.
4352 }
4353
4354 // A function that has already been declared has been redeclared or
4355 // defined with a different type; show an appropriate diagnostic.
4356
4357 // If the previous declaration was an implicitly-generated builtin
4358 // declaration, then at the very least we should use a specialized note.
4359 unsigned BuiltinID;
4360 if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) {
4361 // If it's actually a library-defined builtin function like 'malloc'
4362 // or 'printf', just warn about the incompatible redeclaration.
4363 if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
4364 Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
4365 Diag(OldLocation, diag::note_previous_builtin_declaration)
4366 << Old << Old->getType();
4367 return false;
4368 }
4369
4370 PrevDiag = diag::note_previous_builtin_declaration;
4371 }
4372
4373 Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
4374 Diag(OldLocation, PrevDiag) << Old << Old->getType();
4375 return true;
4376 }
4377
4378 /// Completes the merge of two function declarations that are
4379 /// known to be compatible.
4380 ///
4381 /// This routine handles the merging of attributes and other
4382 /// properties of function declarations from the old declaration to
4383 /// the new declaration, once we know that New is in fact a
4384 /// redeclaration of Old.
4385 ///
4386 /// \returns false
MergeCompatibleFunctionDecls(FunctionDecl * New,FunctionDecl * Old,Scope * S,bool MergeTypeWithOld)4387 bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
4388 Scope *S, bool MergeTypeWithOld) {
4389 // Merge the attributes
4390 mergeDeclAttributes(New, Old);
4391
4392 // Merge "pure" flag.
4393 if (Old->isPureVirtual())
4394 New->setIsPureVirtual();
4395
4396 // Merge "used" flag.
4397 if (Old->getMostRecentDecl()->isUsed(false))
4398 New->setIsUsed();
4399
4400 // Merge attributes from the parameters. These can mismatch with K&R
4401 // declarations.
4402 if (New->getNumParams() == Old->getNumParams())
4403 for (unsigned i = 0, e = New->getNumParams(); i != e; ++i) {
4404 ParmVarDecl *NewParam = New->getParamDecl(i);
4405 ParmVarDecl *OldParam = Old->getParamDecl(i);
4406 mergeParamDeclAttributes(NewParam, OldParam, *this);
4407 mergeParamDeclTypes(NewParam, OldParam, *this);
4408 }
4409
4410 if (getLangOpts().CPlusPlus)
4411 return MergeCXXFunctionDecl(New, Old, S);
4412
4413 // Merge the function types so the we get the composite types for the return
4414 // and argument types. Per C11 6.2.7/4, only update the type if the old decl
4415 // was visible.
4416 QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
4417 if (!Merged.isNull() && MergeTypeWithOld)
4418 New->setType(Merged);
4419
4420 return false;
4421 }
4422
mergeObjCMethodDecls(ObjCMethodDecl * newMethod,ObjCMethodDecl * oldMethod)4423 void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
4424 ObjCMethodDecl *oldMethod) {
4425 // Merge the attributes, including deprecated/unavailable
4426 AvailabilityMergeKind MergeKind =
4427 isa<ObjCProtocolDecl>(oldMethod->getDeclContext())
4428 ? (oldMethod->isOptional() ? AMK_OptionalProtocolImplementation
4429 : AMK_ProtocolImplementation)
4430 : isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration
4431 : AMK_Override;
4432
4433 mergeDeclAttributes(newMethod, oldMethod, MergeKind);
4434
4435 // Merge attributes from the parameters.
4436 ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
4437 oe = oldMethod->param_end();
4438 for (ObjCMethodDecl::param_iterator
4439 ni = newMethod->param_begin(), ne = newMethod->param_end();
4440 ni != ne && oi != oe; ++ni, ++oi)
4441 mergeParamDeclAttributes(*ni, *oi, *this);
4442
4443 CheckObjCMethodOverride(newMethod, oldMethod);
4444 }
4445
diagnoseVarDeclTypeMismatch(Sema & S,VarDecl * New,VarDecl * Old)4446 static void diagnoseVarDeclTypeMismatch(Sema &S, VarDecl *New, VarDecl* Old) {
4447 assert(!S.Context.hasSameType(New->getType(), Old->getType()));
4448
4449 S.Diag(New->getLocation(), New->isThisDeclarationADefinition()
4450 ? diag::err_redefinition_different_type
4451 : diag::err_redeclaration_different_type)
4452 << New->getDeclName() << New->getType() << Old->getType();
4453
4454 diag::kind PrevDiag;
4455 SourceLocation OldLocation;
4456 std::tie(PrevDiag, OldLocation)
4457 = getNoteDiagForInvalidRedeclaration(Old, New);
4458 S.Diag(OldLocation, PrevDiag) << Old << Old->getType();
4459 New->setInvalidDecl();
4460 }
4461
4462 /// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
4463 /// scope as a previous declaration 'Old'. Figure out how to merge their types,
4464 /// emitting diagnostics as appropriate.
4465 ///
4466 /// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
4467 /// to here in AddInitializerToDecl. We can't check them before the initializer
4468 /// is attached.
MergeVarDeclTypes(VarDecl * New,VarDecl * Old,bool MergeTypeWithOld)4469 void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old,
4470 bool MergeTypeWithOld) {
4471 if (New->isInvalidDecl() || Old->isInvalidDecl() || New->getType()->containsErrors() || Old->getType()->containsErrors())
4472 return;
4473
4474 QualType MergedT;
4475 if (getLangOpts().CPlusPlus) {
4476 if (New->getType()->isUndeducedType()) {
4477 // We don't know what the new type is until the initializer is attached.
4478 return;
4479 } else if (Context.hasSameType(New->getType(), Old->getType())) {
4480 // These could still be something that needs exception specs checked.
4481 return MergeVarDeclExceptionSpecs(New, Old);
4482 }
4483 // C++ [basic.link]p10:
4484 // [...] the types specified by all declarations referring to a given
4485 // object or function shall be identical, except that declarations for an
4486 // array object can specify array types that differ by the presence or
4487 // absence of a major array bound (8.3.4).
4488 else if (Old->getType()->isArrayType() && New->getType()->isArrayType()) {
4489 const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
4490 const ArrayType *NewArray = Context.getAsArrayType(New->getType());
4491
4492 // We are merging a variable declaration New into Old. If it has an array
4493 // bound, and that bound differs from Old's bound, we should diagnose the
4494 // mismatch.
4495 if (!NewArray->isIncompleteArrayType() && !NewArray->isDependentType()) {
4496 for (VarDecl *PrevVD = Old->getMostRecentDecl(); PrevVD;
4497 PrevVD = PrevVD->getPreviousDecl()) {
4498 QualType PrevVDTy = PrevVD->getType();
4499 if (PrevVDTy->isIncompleteArrayType() || PrevVDTy->isDependentType())
4500 continue;
4501
4502 if (!Context.hasSameType(New->getType(), PrevVDTy))
4503 return diagnoseVarDeclTypeMismatch(*this, New, PrevVD);
4504 }
4505 }
4506
4507 if (OldArray->isIncompleteArrayType() && NewArray->isArrayType()) {
4508 if (Context.hasSameType(OldArray->getElementType(),
4509 NewArray->getElementType()))
4510 MergedT = New->getType();
4511 }
4512 // FIXME: Check visibility. New is hidden but has a complete type. If New
4513 // has no array bound, it should not inherit one from Old, if Old is not
4514 // visible.
4515 else if (OldArray->isArrayType() && NewArray->isIncompleteArrayType()) {
4516 if (Context.hasSameType(OldArray->getElementType(),
4517 NewArray->getElementType()))
4518 MergedT = Old->getType();
4519 }
4520 }
4521 else if (New->getType()->isObjCObjectPointerType() &&
4522 Old->getType()->isObjCObjectPointerType()) {
4523 MergedT = Context.mergeObjCGCQualifiers(New->getType(),
4524 Old->getType());
4525 }
4526 } else {
4527 // C 6.2.7p2:
4528 // All declarations that refer to the same object or function shall have
4529 // compatible type.
4530 MergedT = Context.mergeTypes(New->getType(), Old->getType());
4531 }
4532 if (MergedT.isNull()) {
4533 // It's OK if we couldn't merge types if either type is dependent, for a
4534 // block-scope variable. In other cases (static data members of class
4535 // templates, variable templates, ...), we require the types to be
4536 // equivalent.
4537 // FIXME: The C++ standard doesn't say anything about this.
4538 if ((New->getType()->isDependentType() ||
4539 Old->getType()->isDependentType()) && New->isLocalVarDecl()) {
4540 // If the old type was dependent, we can't merge with it, so the new type
4541 // becomes dependent for now. We'll reproduce the original type when we
4542 // instantiate the TypeSourceInfo for the variable.
4543 if (!New->getType()->isDependentType() && MergeTypeWithOld)
4544 New->setType(Context.DependentTy);
4545 return;
4546 }
4547 return diagnoseVarDeclTypeMismatch(*this, New, Old);
4548 }
4549
4550 // Don't actually update the type on the new declaration if the old
4551 // declaration was an extern declaration in a different scope.
4552 if (MergeTypeWithOld)
4553 New->setType(MergedT);
4554 }
4555
mergeTypeWithPrevious(Sema & S,VarDecl * NewVD,VarDecl * OldVD,LookupResult & Previous)4556 static bool mergeTypeWithPrevious(Sema &S, VarDecl *NewVD, VarDecl *OldVD,
4557 LookupResult &Previous) {
4558 // C11 6.2.7p4:
4559 // For an identifier with internal or external linkage declared
4560 // in a scope in which a prior declaration of that identifier is
4561 // visible, if the prior declaration specifies internal or
4562 // external linkage, the type of the identifier at the later
4563 // declaration becomes the composite type.
4564 //
4565 // If the variable isn't visible, we do not merge with its type.
4566 if (Previous.isShadowed())
4567 return false;
4568
4569 if (S.getLangOpts().CPlusPlus) {
4570 // C++11 [dcl.array]p3:
4571 // If there is a preceding declaration of the entity in the same
4572 // scope in which the bound was specified, an omitted array bound
4573 // is taken to be the same as in that earlier declaration.
4574 return NewVD->isPreviousDeclInSameBlockScope() ||
4575 (!OldVD->getLexicalDeclContext()->isFunctionOrMethod() &&
4576 !NewVD->getLexicalDeclContext()->isFunctionOrMethod());
4577 } else {
4578 // If the old declaration was function-local, don't merge with its
4579 // type unless we're in the same function.
4580 return !OldVD->getLexicalDeclContext()->isFunctionOrMethod() ||
4581 OldVD->getLexicalDeclContext() == NewVD->getLexicalDeclContext();
4582 }
4583 }
4584
4585 /// MergeVarDecl - We just parsed a variable 'New' which has the same name
4586 /// and scope as a previous declaration 'Old'. Figure out how to resolve this
4587 /// situation, merging decls or emitting diagnostics as appropriate.
4588 ///
4589 /// Tentative definition rules (C99 6.9.2p2) are checked by
4590 /// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
4591 /// definitions here, since the initializer hasn't been attached.
4592 ///
MergeVarDecl(VarDecl * New,LookupResult & Previous)4593 void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
4594 // If the new decl is already invalid, don't do any other checking.
4595 if (New->isInvalidDecl())
4596 return;
4597
4598 if (!shouldLinkPossiblyHiddenDecl(Previous, New))
4599 return;
4600
4601 VarTemplateDecl *NewTemplate = New->getDescribedVarTemplate();
4602
4603 // Verify the old decl was also a variable or variable template.
4604 VarDecl *Old = nullptr;
4605 VarTemplateDecl *OldTemplate = nullptr;
4606 if (Previous.isSingleResult()) {
4607 if (NewTemplate) {
4608 OldTemplate = dyn_cast<VarTemplateDecl>(Previous.getFoundDecl());
4609 Old = OldTemplate ? OldTemplate->getTemplatedDecl() : nullptr;
4610
4611 if (auto *Shadow =
4612 dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
4613 if (checkUsingShadowRedecl<VarTemplateDecl>(*this, Shadow, NewTemplate))
4614 return New->setInvalidDecl();
4615 } else {
4616 Old = dyn_cast<VarDecl>(Previous.getFoundDecl());
4617
4618 if (auto *Shadow =
4619 dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
4620 if (checkUsingShadowRedecl<VarDecl>(*this, Shadow, New))
4621 return New->setInvalidDecl();
4622 }
4623 }
4624 if (!Old) {
4625 Diag(New->getLocation(), diag::err_redefinition_different_kind)
4626 << New->getDeclName();
4627 notePreviousDefinition(Previous.getRepresentativeDecl(),
4628 New->getLocation());
4629 return New->setInvalidDecl();
4630 }
4631
4632 // If the old declaration was found in an inline namespace and the new
4633 // declaration was qualified, update the DeclContext to match.
4634 adjustDeclContextForDeclaratorDecl(New, Old);
4635
4636 // Ensure the template parameters are compatible.
4637 if (NewTemplate &&
4638 !TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
4639 OldTemplate->getTemplateParameters(),
4640 /*Complain=*/true, TPL_TemplateMatch))
4641 return New->setInvalidDecl();
4642
4643 // C++ [class.mem]p1:
4644 // A member shall not be declared twice in the member-specification [...]
4645 //
4646 // Here, we need only consider static data members.
4647 if (Old->isStaticDataMember() && !New->isOutOfLine()) {
4648 Diag(New->getLocation(), diag::err_duplicate_member)
4649 << New->getIdentifier();
4650 Diag(Old->getLocation(), diag::note_previous_declaration);
4651 New->setInvalidDecl();
4652 }
4653
4654 mergeDeclAttributes(New, Old);
4655 // Warn if an already-declared variable is made a weak_import in a subsequent
4656 // declaration
4657 if (New->hasAttr<WeakImportAttr>() &&
4658 Old->getStorageClass() == SC_None &&
4659 !Old->hasAttr<WeakImportAttr>()) {
4660 Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
4661 Diag(Old->getLocation(), diag::note_previous_declaration);
4662 // Remove weak_import attribute on new declaration.
4663 New->dropAttr<WeakImportAttr>();
4664 }
4665
4666 if (const auto *ILA = New->getAttr<InternalLinkageAttr>())
4667 if (!Old->hasAttr<InternalLinkageAttr>()) {
4668 Diag(New->getLocation(), diag::err_attribute_missing_on_first_decl)
4669 << ILA;
4670 Diag(Old->getLocation(), diag::note_previous_declaration);
4671 New->dropAttr<InternalLinkageAttr>();
4672 }
4673
4674 // Merge the types.
4675 VarDecl *MostRecent = Old->getMostRecentDecl();
4676 if (MostRecent != Old) {
4677 MergeVarDeclTypes(New, MostRecent,
4678 mergeTypeWithPrevious(*this, New, MostRecent, Previous));
4679 if (New->isInvalidDecl())
4680 return;
4681 }
4682
4683 MergeVarDeclTypes(New, Old, mergeTypeWithPrevious(*this, New, Old, Previous));
4684 if (New->isInvalidDecl())
4685 return;
4686
4687 diag::kind PrevDiag;
4688 SourceLocation OldLocation;
4689 std::tie(PrevDiag, OldLocation) =
4690 getNoteDiagForInvalidRedeclaration(Old, New);
4691
4692 // [dcl.stc]p8: Check if we have a non-static decl followed by a static.
4693 if (New->getStorageClass() == SC_Static &&
4694 !New->isStaticDataMember() &&
4695 Old->hasExternalFormalLinkage()) {
4696 if (getLangOpts().MicrosoftExt) {
4697 Diag(New->getLocation(), diag::ext_static_non_static)
4698 << New->getDeclName();
4699 Diag(OldLocation, PrevDiag);
4700 } else {
4701 Diag(New->getLocation(), diag::err_static_non_static)
4702 << New->getDeclName();
4703 Diag(OldLocation, PrevDiag);
4704 return New->setInvalidDecl();
4705 }
4706 }
4707 // C99 6.2.2p4:
4708 // For an identifier declared with the storage-class specifier
4709 // extern in a scope in which a prior declaration of that
4710 // identifier is visible,23) if the prior declaration specifies
4711 // internal or external linkage, the linkage of the identifier at
4712 // the later declaration is the same as the linkage specified at
4713 // the prior declaration. If no prior declaration is visible, or
4714 // if the prior declaration specifies no linkage, then the
4715 // identifier has external linkage.
4716 if (New->hasExternalStorage() && Old->hasLinkage())
4717 /* Okay */;
4718 else if (New->getCanonicalDecl()->getStorageClass() != SC_Static &&
4719 !New->isStaticDataMember() &&
4720 Old->getCanonicalDecl()->getStorageClass() == SC_Static) {
4721 Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
4722 Diag(OldLocation, PrevDiag);
4723 return New->setInvalidDecl();
4724 }
4725
4726 // Check if extern is followed by non-extern and vice-versa.
4727 if (New->hasExternalStorage() &&
4728 !Old->hasLinkage() && Old->isLocalVarDeclOrParm()) {
4729 Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
4730 Diag(OldLocation, PrevDiag);
4731 return New->setInvalidDecl();
4732 }
4733 if (Old->hasLinkage() && New->isLocalVarDeclOrParm() &&
4734 !New->hasExternalStorage()) {
4735 Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
4736 Diag(OldLocation, PrevDiag);
4737 return New->setInvalidDecl();
4738 }
4739
4740 if (CheckRedeclarationInModule(New, Old))
4741 return;
4742
4743 // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
4744
4745 // FIXME: The test for external storage here seems wrong? We still
4746 // need to check for mismatches.
4747 if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
4748 // Don't complain about out-of-line definitions of static members.
4749 !(Old->getLexicalDeclContext()->isRecord() &&
4750 !New->getLexicalDeclContext()->isRecord())) {
4751 Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
4752 Diag(OldLocation, PrevDiag);
4753 return New->setInvalidDecl();
4754 }
4755
4756 if (New->isInline() && !Old->getMostRecentDecl()->isInline()) {
4757 if (VarDecl *Def = Old->getDefinition()) {
4758 // C++1z [dcl.fcn.spec]p4:
4759 // If the definition of a variable appears in a translation unit before
4760 // its first declaration as inline, the program is ill-formed.
4761 Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New;
4762 Diag(Def->getLocation(), diag::note_previous_definition);
4763 }
4764 }
4765
4766 // If this redeclaration makes the variable inline, we may need to add it to
4767 // UndefinedButUsed.
4768 if (!Old->isInline() && New->isInline() && Old->isUsed(false) &&
4769 !Old->getDefinition() && !New->isThisDeclarationADefinition())
4770 UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
4771 SourceLocation()));
4772
4773 if (New->getTLSKind() != Old->getTLSKind()) {
4774 if (!Old->getTLSKind()) {
4775 Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
4776 Diag(OldLocation, PrevDiag);
4777 } else if (!New->getTLSKind()) {
4778 Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
4779 Diag(OldLocation, PrevDiag);
4780 } else {
4781 // Do not allow redeclaration to change the variable between requiring
4782 // static and dynamic initialization.
4783 // FIXME: GCC allows this, but uses the TLS keyword on the first
4784 // declaration to determine the kind. Do we need to be compatible here?
4785 Diag(New->getLocation(), diag::err_thread_thread_different_kind)
4786 << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic);
4787 Diag(OldLocation, PrevDiag);
4788 }
4789 }
4790
4791 // C++ doesn't have tentative definitions, so go right ahead and check here.
4792 if (getLangOpts().CPlusPlus) {
4793 if (Old->isStaticDataMember() && Old->getCanonicalDecl()->isInline() &&
4794 Old->getCanonicalDecl()->isConstexpr()) {
4795 // This definition won't be a definition any more once it's been merged.
4796 Diag(New->getLocation(),
4797 diag::warn_deprecated_redundant_constexpr_static_def);
4798 } else if (New->isThisDeclarationADefinition() == VarDecl::Definition) {
4799 VarDecl *Def = Old->getDefinition();
4800 if (Def && checkVarDeclRedefinition(Def, New))
4801 return;
4802 }
4803 }
4804
4805 if (haveIncompatibleLanguageLinkages(Old, New)) {
4806 Diag(New->getLocation(), diag::err_different_language_linkage) << New;
4807 Diag(OldLocation, PrevDiag);
4808 New->setInvalidDecl();
4809 return;
4810 }
4811
4812 // Merge "used" flag.
4813 if (Old->getMostRecentDecl()->isUsed(false))
4814 New->setIsUsed();
4815
4816 // Keep a chain of previous declarations.
4817 New->setPreviousDecl(Old);
4818 if (NewTemplate)
4819 NewTemplate->setPreviousDecl(OldTemplate);
4820
4821 // Inherit access appropriately.
4822 New->setAccess(Old->getAccess());
4823 if (NewTemplate)
4824 NewTemplate->setAccess(New->getAccess());
4825
4826 if (Old->isInline())
4827 New->setImplicitlyInline();
4828 }
4829
notePreviousDefinition(const NamedDecl * Old,SourceLocation New)4830 void Sema::notePreviousDefinition(const NamedDecl *Old, SourceLocation New) {
4831 SourceManager &SrcMgr = getSourceManager();
4832 auto FNewDecLoc = SrcMgr.getDecomposedLoc(New);
4833 auto FOldDecLoc = SrcMgr.getDecomposedLoc(Old->getLocation());
4834 auto *FNew = SrcMgr.getFileEntryForID(FNewDecLoc.first);
4835 auto FOld = SrcMgr.getFileEntryRefForID(FOldDecLoc.first);
4836 auto &HSI = PP.getHeaderSearchInfo();
4837 StringRef HdrFilename =
4838 SrcMgr.getFilename(SrcMgr.getSpellingLoc(Old->getLocation()));
4839
4840 auto noteFromModuleOrInclude = [&](Module *Mod,
4841 SourceLocation IncLoc) -> bool {
4842 // Redefinition errors with modules are common with non modular mapped
4843 // headers, example: a non-modular header H in module A that also gets
4844 // included directly in a TU. Pointing twice to the same header/definition
4845 // is confusing, try to get better diagnostics when modules is on.
4846 if (IncLoc.isValid()) {
4847 if (Mod) {
4848 Diag(IncLoc, diag::note_redefinition_modules_same_file)
4849 << HdrFilename.str() << Mod->getFullModuleName();
4850 if (!Mod->DefinitionLoc.isInvalid())
4851 Diag(Mod->DefinitionLoc, diag::note_defined_here)
4852 << Mod->getFullModuleName();
4853 } else {
4854 Diag(IncLoc, diag::note_redefinition_include_same_file)
4855 << HdrFilename.str();
4856 }
4857 return true;
4858 }
4859
4860 return false;
4861 };
4862
4863 // Is it the same file and same offset? Provide more information on why
4864 // this leads to a redefinition error.
4865 if (FNew == FOld && FNewDecLoc.second == FOldDecLoc.second) {
4866 SourceLocation OldIncLoc = SrcMgr.getIncludeLoc(FOldDecLoc.first);
4867 SourceLocation NewIncLoc = SrcMgr.getIncludeLoc(FNewDecLoc.first);
4868 bool EmittedDiag =
4869 noteFromModuleOrInclude(Old->getOwningModule(), OldIncLoc);
4870 EmittedDiag |= noteFromModuleOrInclude(getCurrentModule(), NewIncLoc);
4871
4872 // If the header has no guards, emit a note suggesting one.
4873 if (FOld && !HSI.isFileMultipleIncludeGuarded(*FOld))
4874 Diag(Old->getLocation(), diag::note_use_ifdef_guards);
4875
4876 if (EmittedDiag)
4877 return;
4878 }
4879
4880 // Redefinition coming from different files or couldn't do better above.
4881 if (Old->getLocation().isValid())
4882 Diag(Old->getLocation(), diag::note_previous_definition);
4883 }
4884
4885 /// We've just determined that \p Old and \p New both appear to be definitions
4886 /// of the same variable. Either diagnose or fix the problem.
checkVarDeclRedefinition(VarDecl * Old,VarDecl * New)4887 bool Sema::checkVarDeclRedefinition(VarDecl *Old, VarDecl *New) {
4888 if (!hasVisibleDefinition(Old) &&
4889 (New->getFormalLinkage() == Linkage::Internal || New->isInline() ||
4890 isa<VarTemplateSpecializationDecl>(New) ||
4891 New->getDescribedVarTemplate() || New->getNumTemplateParameterLists() ||
4892 New->getDeclContext()->isDependentContext())) {
4893 // The previous definition is hidden, and multiple definitions are
4894 // permitted (in separate TUs). Demote this to a declaration.
4895 New->demoteThisDefinitionToDeclaration();
4896
4897 // Make the canonical definition visible.
4898 if (auto *OldTD = Old->getDescribedVarTemplate())
4899 makeMergedDefinitionVisible(OldTD);
4900 makeMergedDefinitionVisible(Old);
4901 return false;
4902 } else {
4903 Diag(New->getLocation(), diag::err_redefinition) << New;
4904 notePreviousDefinition(Old, New->getLocation());
4905 New->setInvalidDecl();
4906 return true;
4907 }
4908 }
4909
4910 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
4911 /// no declarator (e.g. "struct foo;") is parsed.
ParsedFreeStandingDeclSpec(Scope * S,AccessSpecifier AS,DeclSpec & DS,const ParsedAttributesView & DeclAttrs,RecordDecl * & AnonRecord)4912 Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
4913 DeclSpec &DS,
4914 const ParsedAttributesView &DeclAttrs,
4915 RecordDecl *&AnonRecord) {
4916 return ParsedFreeStandingDeclSpec(
4917 S, AS, DS, DeclAttrs, MultiTemplateParamsArg(), false, AnonRecord);
4918 }
4919
4920 // The MS ABI changed between VS2013 and VS2015 with regard to numbers used to
4921 // disambiguate entities defined in different scopes.
4922 // While the VS2015 ABI fixes potential miscompiles, it is also breaks
4923 // compatibility.
4924 // We will pick our mangling number depending on which version of MSVC is being
4925 // targeted.
getMSManglingNumber(const LangOptions & LO,Scope * S)4926 static unsigned getMSManglingNumber(const LangOptions &LO, Scope *S) {
4927 return LO.isCompatibleWithMSVC(LangOptions::MSVC2015)
4928 ? S->getMSCurManglingNumber()
4929 : S->getMSLastManglingNumber();
4930 }
4931
handleTagNumbering(const TagDecl * Tag,Scope * TagScope)4932 void Sema::handleTagNumbering(const TagDecl *Tag, Scope *TagScope) {
4933 if (!Context.getLangOpts().CPlusPlus)
4934 return;
4935
4936 if (isa<CXXRecordDecl>(Tag->getParent())) {
4937 // If this tag is the direct child of a class, number it if
4938 // it is anonymous.
4939 if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl())
4940 return;
4941 MangleNumberingContext &MCtx =
4942 Context.getManglingNumberContext(Tag->getParent());
4943 Context.setManglingNumber(
4944 Tag, MCtx.getManglingNumber(
4945 Tag, getMSManglingNumber(getLangOpts(), TagScope)));
4946 return;
4947 }
4948
4949 // If this tag isn't a direct child of a class, number it if it is local.
4950 MangleNumberingContext *MCtx;
4951 Decl *ManglingContextDecl;
4952 std::tie(MCtx, ManglingContextDecl) =
4953 getCurrentMangleNumberContext(Tag->getDeclContext());
4954 if (MCtx) {
4955 Context.setManglingNumber(
4956 Tag, MCtx->getManglingNumber(
4957 Tag, getMSManglingNumber(getLangOpts(), TagScope)));
4958 }
4959 }
4960
4961 namespace {
4962 struct NonCLikeKind {
4963 enum {
4964 None,
4965 BaseClass,
4966 DefaultMemberInit,
4967 Lambda,
4968 Friend,
4969 OtherMember,
4970 Invalid,
4971 } Kind = None;
4972 SourceRange Range;
4973
operator bool__anon7daf71031011::NonCLikeKind4974 explicit operator bool() { return Kind != None; }
4975 };
4976 }
4977
4978 /// Determine whether a class is C-like, according to the rules of C++
4979 /// [dcl.typedef] for anonymous classes with typedef names for linkage.
getNonCLikeKindForAnonymousStruct(const CXXRecordDecl * RD)4980 static NonCLikeKind getNonCLikeKindForAnonymousStruct(const CXXRecordDecl *RD) {
4981 if (RD->isInvalidDecl())
4982 return {NonCLikeKind::Invalid, {}};
4983
4984 // C++ [dcl.typedef]p9: [P1766R1]
4985 // An unnamed class with a typedef name for linkage purposes shall not
4986 //
4987 // -- have any base classes
4988 if (RD->getNumBases())
4989 return {NonCLikeKind::BaseClass,
4990 SourceRange(RD->bases_begin()->getBeginLoc(),
4991 RD->bases_end()[-1].getEndLoc())};
4992 bool Invalid = false;
4993 for (Decl *D : RD->decls()) {
4994 // Don't complain about things we already diagnosed.
4995 if (D->isInvalidDecl()) {
4996 Invalid = true;
4997 continue;
4998 }
4999
5000 // -- have any [...] default member initializers
5001 if (auto *FD = dyn_cast<FieldDecl>(D)) {
5002 if (FD->hasInClassInitializer()) {
5003 auto *Init = FD->getInClassInitializer();
5004 return {NonCLikeKind::DefaultMemberInit,
5005 Init ? Init->getSourceRange() : D->getSourceRange()};
5006 }
5007 continue;
5008 }
5009
5010 // FIXME: We don't allow friend declarations. This violates the wording of
5011 // P1766, but not the intent.
5012 if (isa<FriendDecl>(D))
5013 return {NonCLikeKind::Friend, D->getSourceRange()};
5014
5015 // -- declare any members other than non-static data members, member
5016 // enumerations, or member classes,
5017 if (isa<StaticAssertDecl>(D) || isa<IndirectFieldDecl>(D) ||
5018 isa<EnumDecl>(D))
5019 continue;
5020 auto *MemberRD = dyn_cast<CXXRecordDecl>(D);
5021 if (!MemberRD) {
5022 if (D->isImplicit())
5023 continue;
5024 return {NonCLikeKind::OtherMember, D->getSourceRange()};
5025 }
5026
5027 // -- contain a lambda-expression,
5028 if (MemberRD->isLambda())
5029 return {NonCLikeKind::Lambda, MemberRD->getSourceRange()};
5030
5031 // and all member classes shall also satisfy these requirements
5032 // (recursively).
5033 if (MemberRD->isThisDeclarationADefinition()) {
5034 if (auto Kind = getNonCLikeKindForAnonymousStruct(MemberRD))
5035 return Kind;
5036 }
5037 }
5038
5039 return {Invalid ? NonCLikeKind::Invalid : NonCLikeKind::None, {}};
5040 }
5041
setTagNameForLinkagePurposes(TagDecl * TagFromDeclSpec,TypedefNameDecl * NewTD)5042 void Sema::setTagNameForLinkagePurposes(TagDecl *TagFromDeclSpec,
5043 TypedefNameDecl *NewTD) {
5044 if (TagFromDeclSpec->isInvalidDecl())
5045 return;
5046
5047 // Do nothing if the tag already has a name for linkage purposes.
5048 if (TagFromDeclSpec->hasNameForLinkage())
5049 return;
5050
5051 // A well-formed anonymous tag must always be a TUK_Definition.
5052 assert(TagFromDeclSpec->isThisDeclarationADefinition());
5053
5054 // The type must match the tag exactly; no qualifiers allowed.
5055 if (!Context.hasSameType(NewTD->getUnderlyingType(),
5056 Context.getTagDeclType(TagFromDeclSpec))) {
5057 if (getLangOpts().CPlusPlus)
5058 Context.addTypedefNameForUnnamedTagDecl(TagFromDeclSpec, NewTD);
5059 return;
5060 }
5061
5062 // C++ [dcl.typedef]p9: [P1766R1, applied as DR]
5063 // An unnamed class with a typedef name for linkage purposes shall [be
5064 // C-like].
5065 //
5066 // FIXME: Also diagnose if we've already computed the linkage. That ideally
5067 // shouldn't happen, but there are constructs that the language rule doesn't
5068 // disallow for which we can't reasonably avoid computing linkage early.
5069 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TagFromDeclSpec);
5070 NonCLikeKind NonCLike = RD ? getNonCLikeKindForAnonymousStruct(RD)
5071 : NonCLikeKind();
5072 bool ChangesLinkage = TagFromDeclSpec->hasLinkageBeenComputed();
5073 if (NonCLike || ChangesLinkage) {
5074 if (NonCLike.Kind == NonCLikeKind::Invalid)
5075 return;
5076
5077 unsigned DiagID = diag::ext_non_c_like_anon_struct_in_typedef;
5078 if (ChangesLinkage) {
5079 // If the linkage changes, we can't accept this as an extension.
5080 if (NonCLike.Kind == NonCLikeKind::None)
5081 DiagID = diag::err_typedef_changes_linkage;
5082 else
5083 DiagID = diag::err_non_c_like_anon_struct_in_typedef;
5084 }
5085
5086 SourceLocation FixitLoc =
5087 getLocForEndOfToken(TagFromDeclSpec->getInnerLocStart());
5088 llvm::SmallString<40> TextToInsert;
5089 TextToInsert += ' ';
5090 TextToInsert += NewTD->getIdentifier()->getName();
5091
5092 Diag(FixitLoc, DiagID)
5093 << isa<TypeAliasDecl>(NewTD)
5094 << FixItHint::CreateInsertion(FixitLoc, TextToInsert);
5095 if (NonCLike.Kind != NonCLikeKind::None) {
5096 Diag(NonCLike.Range.getBegin(), diag::note_non_c_like_anon_struct)
5097 << NonCLike.Kind - 1 << NonCLike.Range;
5098 }
5099 Diag(NewTD->getLocation(), diag::note_typedef_for_linkage_here)
5100 << NewTD << isa<TypeAliasDecl>(NewTD);
5101
5102 if (ChangesLinkage)
5103 return;
5104 }
5105
5106 // Otherwise, set this as the anon-decl typedef for the tag.
5107 TagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
5108 }
5109
GetDiagnosticTypeSpecifierID(const DeclSpec & DS)5110 static unsigned GetDiagnosticTypeSpecifierID(const DeclSpec &DS) {
5111 DeclSpec::TST T = DS.getTypeSpecType();
5112 switch (T) {
5113 case DeclSpec::TST_class:
5114 return 0;
5115 case DeclSpec::TST_struct:
5116 return 1;
5117 case DeclSpec::TST_interface:
5118 return 2;
5119 case DeclSpec::TST_union:
5120 return 3;
5121 case DeclSpec::TST_enum:
5122 if (const auto *ED = dyn_cast<EnumDecl>(DS.getRepAsDecl())) {
5123 if (ED->isScopedUsingClassTag())
5124 return 5;
5125 if (ED->isScoped())
5126 return 6;
5127 }
5128 return 4;
5129 default:
5130 llvm_unreachable("unexpected type specifier");
5131 }
5132 }
5133 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
5134 /// no declarator (e.g. "struct foo;") is parsed. It also accepts template
5135 /// parameters to cope with template friend declarations.
ParsedFreeStandingDeclSpec(Scope * S,AccessSpecifier AS,DeclSpec & DS,const ParsedAttributesView & DeclAttrs,MultiTemplateParamsArg TemplateParams,bool IsExplicitInstantiation,RecordDecl * & AnonRecord)5136 Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
5137 DeclSpec &DS,
5138 const ParsedAttributesView &DeclAttrs,
5139 MultiTemplateParamsArg TemplateParams,
5140 bool IsExplicitInstantiation,
5141 RecordDecl *&AnonRecord) {
5142 Decl *TagD = nullptr;
5143 TagDecl *Tag = nullptr;
5144 if (DS.getTypeSpecType() == DeclSpec::TST_class ||
5145 DS.getTypeSpecType() == DeclSpec::TST_struct ||
5146 DS.getTypeSpecType() == DeclSpec::TST_interface ||
5147 DS.getTypeSpecType() == DeclSpec::TST_union ||
5148 DS.getTypeSpecType() == DeclSpec::TST_enum) {
5149 TagD = DS.getRepAsDecl();
5150
5151 if (!TagD) // We probably had an error
5152 return nullptr;
5153
5154 // Note that the above type specs guarantee that the
5155 // type rep is a Decl, whereas in many of the others
5156 // it's a Type.
5157 if (isa<TagDecl>(TagD))
5158 Tag = cast<TagDecl>(TagD);
5159 else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
5160 Tag = CTD->getTemplatedDecl();
5161 }
5162
5163 if (Tag) {
5164 handleTagNumbering(Tag, S);
5165 Tag->setFreeStanding();
5166 if (Tag->isInvalidDecl())
5167 return Tag;
5168 }
5169
5170 if (unsigned TypeQuals = DS.getTypeQualifiers()) {
5171 // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
5172 // or incomplete types shall not be restrict-qualified."
5173 if (TypeQuals & DeclSpec::TQ_restrict)
5174 Diag(DS.getRestrictSpecLoc(),
5175 diag::err_typecheck_invalid_restrict_not_pointer_noarg)
5176 << DS.getSourceRange();
5177 }
5178
5179 if (DS.isInlineSpecified())
5180 Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
5181 << getLangOpts().CPlusPlus17;
5182
5183 if (DS.hasConstexprSpecifier()) {
5184 // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
5185 // and definitions of functions and variables.
5186 // C++2a [dcl.constexpr]p1: The consteval specifier shall be applied only to
5187 // the declaration of a function or function template
5188 if (Tag)
5189 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
5190 << GetDiagnosticTypeSpecifierID(DS)
5191 << static_cast<int>(DS.getConstexprSpecifier());
5192 else
5193 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_wrong_decl_kind)
5194 << static_cast<int>(DS.getConstexprSpecifier());
5195 // Don't emit warnings after this error.
5196 return TagD;
5197 }
5198
5199 DiagnoseFunctionSpecifiers(DS);
5200
5201 if (DS.isFriendSpecified()) {
5202 // If we're dealing with a decl but not a TagDecl, assume that
5203 // whatever routines created it handled the friendship aspect.
5204 if (TagD && !Tag)
5205 return nullptr;
5206 return ActOnFriendTypeDecl(S, DS, TemplateParams);
5207 }
5208
5209 const CXXScopeSpec &SS = DS.getTypeSpecScope();
5210 bool IsExplicitSpecialization =
5211 !TemplateParams.empty() && TemplateParams.back()->size() == 0;
5212 if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() &&
5213 !IsExplicitInstantiation && !IsExplicitSpecialization &&
5214 !isa<ClassTemplatePartialSpecializationDecl>(Tag)) {
5215 // Per C++ [dcl.type.elab]p1, a class declaration cannot have a
5216 // nested-name-specifier unless it is an explicit instantiation
5217 // or an explicit specialization.
5218 //
5219 // FIXME: We allow class template partial specializations here too, per the
5220 // obvious intent of DR1819.
5221 //
5222 // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either.
5223 Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier)
5224 << GetDiagnosticTypeSpecifierID(DS) << SS.getRange();
5225 return nullptr;
5226 }
5227
5228 // Track whether this decl-specifier declares anything.
5229 bool DeclaresAnything = true;
5230
5231 // Handle anonymous struct definitions.
5232 if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
5233 if (!Record->getDeclName() && Record->isCompleteDefinition() &&
5234 DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
5235 if (getLangOpts().CPlusPlus ||
5236 Record->getDeclContext()->isRecord()) {
5237 // If CurContext is a DeclContext that can contain statements,
5238 // RecursiveASTVisitor won't visit the decls that
5239 // BuildAnonymousStructOrUnion() will put into CurContext.
5240 // Also store them here so that they can be part of the
5241 // DeclStmt that gets created in this case.
5242 // FIXME: Also return the IndirectFieldDecls created by
5243 // BuildAnonymousStructOr union, for the same reason?
5244 if (CurContext->isFunctionOrMethod())
5245 AnonRecord = Record;
5246 return BuildAnonymousStructOrUnion(S, DS, AS, Record,
5247 Context.getPrintingPolicy());
5248 }
5249
5250 DeclaresAnything = false;
5251 }
5252 }
5253
5254 // C11 6.7.2.1p2:
5255 // A struct-declaration that does not declare an anonymous structure or
5256 // anonymous union shall contain a struct-declarator-list.
5257 //
5258 // This rule also existed in C89 and C99; the grammar for struct-declaration
5259 // did not permit a struct-declaration without a struct-declarator-list.
5260 if (!getLangOpts().CPlusPlus && CurContext->isRecord() &&
5261 DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
5262 // Check for Microsoft C extension: anonymous struct/union member.
5263 // Handle 2 kinds of anonymous struct/union:
5264 // struct STRUCT;
5265 // union UNION;
5266 // and
5267 // STRUCT_TYPE; <- where STRUCT_TYPE is a typedef struct.
5268 // UNION_TYPE; <- where UNION_TYPE is a typedef union.
5269 if ((Tag && Tag->getDeclName()) ||
5270 DS.getTypeSpecType() == DeclSpec::TST_typename) {
5271 RecordDecl *Record = nullptr;
5272 if (Tag)
5273 Record = dyn_cast<RecordDecl>(Tag);
5274 else if (const RecordType *RT =
5275 DS.getRepAsType().get()->getAsStructureType())
5276 Record = RT->getDecl();
5277 else if (const RecordType *UT = DS.getRepAsType().get()->getAsUnionType())
5278 Record = UT->getDecl();
5279
5280 if (Record && getLangOpts().MicrosoftExt) {
5281 Diag(DS.getBeginLoc(), diag::ext_ms_anonymous_record)
5282 << Record->isUnion() << DS.getSourceRange();
5283 return BuildMicrosoftCAnonymousStruct(S, DS, Record);
5284 }
5285
5286 DeclaresAnything = false;
5287 }
5288 }
5289
5290 // Skip all the checks below if we have a type error.
5291 if (DS.getTypeSpecType() == DeclSpec::TST_error ||
5292 (TagD && TagD->isInvalidDecl()))
5293 return TagD;
5294
5295 if (getLangOpts().CPlusPlus &&
5296 DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
5297 if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
5298 if (Enum->enumerator_begin() == Enum->enumerator_end() &&
5299 !Enum->getIdentifier() && !Enum->isInvalidDecl())
5300 DeclaresAnything = false;
5301
5302 if (!DS.isMissingDeclaratorOk()) {
5303 // Customize diagnostic for a typedef missing a name.
5304 if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
5305 Diag(DS.getBeginLoc(), diag::ext_typedef_without_a_name)
5306 << DS.getSourceRange();
5307 else
5308 DeclaresAnything = false;
5309 }
5310
5311 if (DS.isModulePrivateSpecified() &&
5312 Tag && Tag->getDeclContext()->isFunctionOrMethod())
5313 Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
5314 << llvm::to_underlying(Tag->getTagKind())
5315 << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
5316
5317 ActOnDocumentableDecl(TagD);
5318
5319 // C 6.7/2:
5320 // A declaration [...] shall declare at least a declarator [...], a tag,
5321 // or the members of an enumeration.
5322 // C++ [dcl.dcl]p3:
5323 // [If there are no declarators], and except for the declaration of an
5324 // unnamed bit-field, the decl-specifier-seq shall introduce one or more
5325 // names into the program, or shall redeclare a name introduced by a
5326 // previous declaration.
5327 if (!DeclaresAnything) {
5328 // In C, we allow this as a (popular) extension / bug. Don't bother
5329 // producing further diagnostics for redundant qualifiers after this.
5330 Diag(DS.getBeginLoc(), (IsExplicitInstantiation || !TemplateParams.empty())
5331 ? diag::err_no_declarators
5332 : diag::ext_no_declarators)
5333 << DS.getSourceRange();
5334 return TagD;
5335 }
5336
5337 // C++ [dcl.stc]p1:
5338 // If a storage-class-specifier appears in a decl-specifier-seq, [...] the
5339 // init-declarator-list of the declaration shall not be empty.
5340 // C++ [dcl.fct.spec]p1:
5341 // If a cv-qualifier appears in a decl-specifier-seq, the
5342 // init-declarator-list of the declaration shall not be empty.
5343 //
5344 // Spurious qualifiers here appear to be valid in C.
5345 unsigned DiagID = diag::warn_standalone_specifier;
5346 if (getLangOpts().CPlusPlus)
5347 DiagID = diag::ext_standalone_specifier;
5348
5349 // Note that a linkage-specification sets a storage class, but
5350 // 'extern "C" struct foo;' is actually valid and not theoretically
5351 // useless.
5352 if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
5353 if (SCS == DeclSpec::SCS_mutable)
5354 // Since mutable is not a viable storage class specifier in C, there is
5355 // no reason to treat it as an extension. Instead, diagnose as an error.
5356 Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_nonmember);
5357 else if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef)
5358 Diag(DS.getStorageClassSpecLoc(), DiagID)
5359 << DeclSpec::getSpecifierName(SCS);
5360 }
5361
5362 if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
5363 Diag(DS.getThreadStorageClassSpecLoc(), DiagID)
5364 << DeclSpec::getSpecifierName(TSCS);
5365 if (DS.getTypeQualifiers()) {
5366 if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
5367 Diag(DS.getConstSpecLoc(), DiagID) << "const";
5368 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
5369 Diag(DS.getConstSpecLoc(), DiagID) << "volatile";
5370 // Restrict is covered above.
5371 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
5372 Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic";
5373 if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
5374 Diag(DS.getUnalignedSpecLoc(), DiagID) << "__unaligned";
5375 }
5376
5377 // Warn about ignored type attributes, for example:
5378 // __attribute__((aligned)) struct A;
5379 // Attributes should be placed after tag to apply to type declaration.
5380 if (!DS.getAttributes().empty() || !DeclAttrs.empty()) {
5381 DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
5382 if (TypeSpecType == DeclSpec::TST_class ||
5383 TypeSpecType == DeclSpec::TST_struct ||
5384 TypeSpecType == DeclSpec::TST_interface ||
5385 TypeSpecType == DeclSpec::TST_union ||
5386 TypeSpecType == DeclSpec::TST_enum) {
5387
5388 auto EmitAttributeDiagnostic = [this, &DS](const ParsedAttr &AL) {
5389 unsigned DiagnosticId = diag::warn_declspec_attribute_ignored;
5390 if (AL.isAlignas() && !getLangOpts().CPlusPlus)
5391 DiagnosticId = diag::warn_attribute_ignored;
5392 else if (AL.isRegularKeywordAttribute())
5393 DiagnosticId = diag::err_declspec_keyword_has_no_effect;
5394 else
5395 DiagnosticId = diag::warn_declspec_attribute_ignored;
5396 Diag(AL.getLoc(), DiagnosticId)
5397 << AL << GetDiagnosticTypeSpecifierID(DS);
5398 };
5399
5400 llvm::for_each(DS.getAttributes(), EmitAttributeDiagnostic);
5401 llvm::for_each(DeclAttrs, EmitAttributeDiagnostic);
5402 }
5403 }
5404
5405 return TagD;
5406 }
5407
5408 /// We are trying to inject an anonymous member into the given scope;
5409 /// check if there's an existing declaration that can't be overloaded.
5410 ///
5411 /// \return true if this is a forbidden redeclaration
CheckAnonMemberRedeclaration(Sema & SemaRef,Scope * S,DeclContext * Owner,DeclarationName Name,SourceLocation NameLoc,bool IsUnion,StorageClass SC)5412 static bool CheckAnonMemberRedeclaration(Sema &SemaRef, Scope *S,
5413 DeclContext *Owner,
5414 DeclarationName Name,
5415 SourceLocation NameLoc, bool IsUnion,
5416 StorageClass SC) {
5417 LookupResult R(SemaRef, Name, NameLoc,
5418 Owner->isRecord() ? Sema::LookupMemberName
5419 : Sema::LookupOrdinaryName,
5420 Sema::ForVisibleRedeclaration);
5421 if (!SemaRef.LookupName(R, S)) return false;
5422
5423 // Pick a representative declaration.
5424 NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
5425 assert(PrevDecl && "Expected a non-null Decl");
5426
5427 if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
5428 return false;
5429
5430 if (SC == StorageClass::SC_None &&
5431 PrevDecl->isPlaceholderVar(SemaRef.getLangOpts()) &&
5432 (Owner->isFunctionOrMethod() || Owner->isRecord())) {
5433 if (!Owner->isRecord())
5434 SemaRef.DiagPlaceholderVariableDefinition(NameLoc);
5435 return false;
5436 }
5437
5438 SemaRef.Diag(NameLoc, diag::err_anonymous_record_member_redecl)
5439 << IsUnion << Name;
5440 SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5441
5442 return true;
5443 }
5444
ActOnDefinedDeclarationSpecifier(Decl * D)5445 void Sema::ActOnDefinedDeclarationSpecifier(Decl *D) {
5446 if (auto *RD = dyn_cast_if_present<RecordDecl>(D))
5447 DiagPlaceholderFieldDeclDefinitions(RD);
5448 }
5449
5450 /// Emit diagnostic warnings for placeholder members.
5451 /// We can only do that after the class is fully constructed,
5452 /// as anonymous union/structs can insert placeholders
5453 /// in their parent scope (which might be a Record).
DiagPlaceholderFieldDeclDefinitions(RecordDecl * Record)5454 void Sema::DiagPlaceholderFieldDeclDefinitions(RecordDecl *Record) {
5455 if (!getLangOpts().CPlusPlus)
5456 return;
5457
5458 // This function can be parsed before we have validated the
5459 // structure as an anonymous struct
5460 if (Record->isAnonymousStructOrUnion())
5461 return;
5462
5463 const NamedDecl *First = 0;
5464 for (const Decl *D : Record->decls()) {
5465 const NamedDecl *ND = dyn_cast<NamedDecl>(D);
5466 if (!ND || !ND->isPlaceholderVar(getLangOpts()))
5467 continue;
5468 if (!First)
5469 First = ND;
5470 else
5471 DiagPlaceholderVariableDefinition(ND->getLocation());
5472 }
5473 }
5474
5475 /// InjectAnonymousStructOrUnionMembers - Inject the members of the
5476 /// anonymous struct or union AnonRecord into the owning context Owner
5477 /// and scope S. This routine will be invoked just after we realize
5478 /// that an unnamed union or struct is actually an anonymous union or
5479 /// struct, e.g.,
5480 ///
5481 /// @code
5482 /// union {
5483 /// int i;
5484 /// float f;
5485 /// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
5486 /// // f into the surrounding scope.x
5487 /// @endcode
5488 ///
5489 /// This routine is recursive, injecting the names of nested anonymous
5490 /// structs/unions into the owning context and scope as well.
5491 static bool
InjectAnonymousStructOrUnionMembers(Sema & SemaRef,Scope * S,DeclContext * Owner,RecordDecl * AnonRecord,AccessSpecifier AS,StorageClass SC,SmallVectorImpl<NamedDecl * > & Chaining)5492 InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S, DeclContext *Owner,
5493 RecordDecl *AnonRecord, AccessSpecifier AS,
5494 StorageClass SC,
5495 SmallVectorImpl<NamedDecl *> &Chaining) {
5496 bool Invalid = false;
5497
5498 // Look every FieldDecl and IndirectFieldDecl with a name.
5499 for (auto *D : AnonRecord->decls()) {
5500 if ((isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) &&
5501 cast<NamedDecl>(D)->getDeclName()) {
5502 ValueDecl *VD = cast<ValueDecl>(D);
5503 if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
5504 VD->getLocation(), AnonRecord->isUnion(),
5505 SC)) {
5506 // C++ [class.union]p2:
5507 // The names of the members of an anonymous union shall be
5508 // distinct from the names of any other entity in the
5509 // scope in which the anonymous union is declared.
5510 Invalid = true;
5511 } else {
5512 // C++ [class.union]p2:
5513 // For the purpose of name lookup, after the anonymous union
5514 // definition, the members of the anonymous union are
5515 // considered to have been defined in the scope in which the
5516 // anonymous union is declared.
5517 unsigned OldChainingSize = Chaining.size();
5518 if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
5519 Chaining.append(IF->chain_begin(), IF->chain_end());
5520 else
5521 Chaining.push_back(VD);
5522
5523 assert(Chaining.size() >= 2);
5524 NamedDecl **NamedChain =
5525 new (SemaRef.Context)NamedDecl*[Chaining.size()];
5526 for (unsigned i = 0; i < Chaining.size(); i++)
5527 NamedChain[i] = Chaining[i];
5528
5529 IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create(
5530 SemaRef.Context, Owner, VD->getLocation(), VD->getIdentifier(),
5531 VD->getType(), {NamedChain, Chaining.size()});
5532
5533 for (const auto *Attr : VD->attrs())
5534 IndirectField->addAttr(Attr->clone(SemaRef.Context));
5535
5536 IndirectField->setAccess(AS);
5537 IndirectField->setImplicit();
5538 SemaRef.PushOnScopeChains(IndirectField, S);
5539
5540 // That includes picking up the appropriate access specifier.
5541 if (AS != AS_none) IndirectField->setAccess(AS);
5542
5543 Chaining.resize(OldChainingSize);
5544 }
5545 }
5546 }
5547
5548 return Invalid;
5549 }
5550
5551 /// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
5552 /// a VarDecl::StorageClass. Any error reporting is up to the caller:
5553 /// illegal input values are mapped to SC_None.
5554 static StorageClass
StorageClassSpecToVarDeclStorageClass(const DeclSpec & DS)5555 StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) {
5556 DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec();
5557 assert(StorageClassSpec != DeclSpec::SCS_typedef &&
5558 "Parser allowed 'typedef' as storage class VarDecl.");
5559 switch (StorageClassSpec) {
5560 case DeclSpec::SCS_unspecified: return SC_None;
5561 case DeclSpec::SCS_extern:
5562 if (DS.isExternInLinkageSpec())
5563 return SC_None;
5564 return SC_Extern;
5565 case DeclSpec::SCS_static: return SC_Static;
5566 case DeclSpec::SCS_auto: return SC_Auto;
5567 case DeclSpec::SCS_register: return SC_Register;
5568 case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
5569 // Illegal SCSs map to None: error reporting is up to the caller.
5570 case DeclSpec::SCS_mutable: // Fall through.
5571 case DeclSpec::SCS_typedef: return SC_None;
5572 }
5573 llvm_unreachable("unknown storage class specifier");
5574 }
5575
findDefaultInitializer(const CXXRecordDecl * Record)5576 static SourceLocation findDefaultInitializer(const CXXRecordDecl *Record) {
5577 assert(Record->hasInClassInitializer());
5578
5579 for (const auto *I : Record->decls()) {
5580 const auto *FD = dyn_cast<FieldDecl>(I);
5581 if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
5582 FD = IFD->getAnonField();
5583 if (FD && FD->hasInClassInitializer())
5584 return FD->getLocation();
5585 }
5586
5587 llvm_unreachable("couldn't find in-class initializer");
5588 }
5589
checkDuplicateDefaultInit(Sema & S,CXXRecordDecl * Parent,SourceLocation DefaultInitLoc)5590 static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
5591 SourceLocation DefaultInitLoc) {
5592 if (!Parent->isUnion() || !Parent->hasInClassInitializer())
5593 return;
5594
5595 S.Diag(DefaultInitLoc, diag::err_multiple_mem_union_initialization);
5596 S.Diag(findDefaultInitializer(Parent), diag::note_previous_initializer) << 0;
5597 }
5598
checkDuplicateDefaultInit(Sema & S,CXXRecordDecl * Parent,CXXRecordDecl * AnonUnion)5599 static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
5600 CXXRecordDecl *AnonUnion) {
5601 if (!Parent->isUnion() || !Parent->hasInClassInitializer())
5602 return;
5603
5604 checkDuplicateDefaultInit(S, Parent, findDefaultInitializer(AnonUnion));
5605 }
5606
5607 /// BuildAnonymousStructOrUnion - Handle the declaration of an
5608 /// anonymous structure or union. Anonymous unions are a C++ feature
5609 /// (C++ [class.union]) and a C11 feature; anonymous structures
5610 /// are a C11 feature and GNU C++ extension.
BuildAnonymousStructOrUnion(Scope * S,DeclSpec & DS,AccessSpecifier AS,RecordDecl * Record,const PrintingPolicy & Policy)5611 Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
5612 AccessSpecifier AS,
5613 RecordDecl *Record,
5614 const PrintingPolicy &Policy) {
5615 DeclContext *Owner = Record->getDeclContext();
5616
5617 // Diagnose whether this anonymous struct/union is an extension.
5618 if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
5619 Diag(Record->getLocation(), diag::ext_anonymous_union);
5620 else if (!Record->isUnion() && getLangOpts().CPlusPlus)
5621 Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
5622 else if (!Record->isUnion() && !getLangOpts().C11)
5623 Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
5624
5625 // C and C++ require different kinds of checks for anonymous
5626 // structs/unions.
5627 bool Invalid = false;
5628 if (getLangOpts().CPlusPlus) {
5629 const char *PrevSpec = nullptr;
5630 if (Record->isUnion()) {
5631 // C++ [class.union]p6:
5632 // C++17 [class.union.anon]p2:
5633 // Anonymous unions declared in a named namespace or in the
5634 // global namespace shall be declared static.
5635 unsigned DiagID;
5636 DeclContext *OwnerScope = Owner->getRedeclContext();
5637 if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
5638 (OwnerScope->isTranslationUnit() ||
5639 (OwnerScope->isNamespace() &&
5640 !cast<NamespaceDecl>(OwnerScope)->isAnonymousNamespace()))) {
5641 Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
5642 << FixItHint::CreateInsertion(Record->getLocation(), "static ");
5643
5644 // Recover by adding 'static'.
5645 DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
5646 PrevSpec, DiagID, Policy);
5647 }
5648 // C++ [class.union]p6:
5649 // A storage class is not allowed in a declaration of an
5650 // anonymous union in a class scope.
5651 else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
5652 isa<RecordDecl>(Owner)) {
5653 Diag(DS.getStorageClassSpecLoc(),
5654 diag::err_anonymous_union_with_storage_spec)
5655 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
5656
5657 // Recover by removing the storage specifier.
5658 DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
5659 SourceLocation(),
5660 PrevSpec, DiagID, Context.getPrintingPolicy());
5661 }
5662 }
5663
5664 // Ignore const/volatile/restrict qualifiers.
5665 if (DS.getTypeQualifiers()) {
5666 if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
5667 Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
5668 << Record->isUnion() << "const"
5669 << FixItHint::CreateRemoval(DS.getConstSpecLoc());
5670 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
5671 Diag(DS.getVolatileSpecLoc(),
5672 diag::ext_anonymous_struct_union_qualified)
5673 << Record->isUnion() << "volatile"
5674 << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
5675 if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
5676 Diag(DS.getRestrictSpecLoc(),
5677 diag::ext_anonymous_struct_union_qualified)
5678 << Record->isUnion() << "restrict"
5679 << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
5680 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
5681 Diag(DS.getAtomicSpecLoc(),
5682 diag::ext_anonymous_struct_union_qualified)
5683 << Record->isUnion() << "_Atomic"
5684 << FixItHint::CreateRemoval(DS.getAtomicSpecLoc());
5685 if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
5686 Diag(DS.getUnalignedSpecLoc(),
5687 diag::ext_anonymous_struct_union_qualified)
5688 << Record->isUnion() << "__unaligned"
5689 << FixItHint::CreateRemoval(DS.getUnalignedSpecLoc());
5690
5691 DS.ClearTypeQualifiers();
5692 }
5693
5694 // C++ [class.union]p2:
5695 // The member-specification of an anonymous union shall only
5696 // define non-static data members. [Note: nested types and
5697 // functions cannot be declared within an anonymous union. ]
5698 for (auto *Mem : Record->decls()) {
5699 // Ignore invalid declarations; we already diagnosed them.
5700 if (Mem->isInvalidDecl())
5701 continue;
5702
5703 if (auto *FD = dyn_cast<FieldDecl>(Mem)) {
5704 // C++ [class.union]p3:
5705 // An anonymous union shall not have private or protected
5706 // members (clause 11).
5707 assert(FD->getAccess() != AS_none);
5708 if (FD->getAccess() != AS_public) {
5709 Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
5710 << Record->isUnion() << (FD->getAccess() == AS_protected);
5711 Invalid = true;
5712 }
5713
5714 // C++ [class.union]p1
5715 // An object of a class with a non-trivial constructor, a non-trivial
5716 // copy constructor, a non-trivial destructor, or a non-trivial copy
5717 // assignment operator cannot be a member of a union, nor can an
5718 // array of such objects.
5719 if (CheckNontrivialField(FD))
5720 Invalid = true;
5721 } else if (Mem->isImplicit()) {
5722 // Any implicit members are fine.
5723 } else if (isa<TagDecl>(Mem) && Mem->getDeclContext() != Record) {
5724 // This is a type that showed up in an
5725 // elaborated-type-specifier inside the anonymous struct or
5726 // union, but which actually declares a type outside of the
5727 // anonymous struct or union. It's okay.
5728 } else if (auto *MemRecord = dyn_cast<RecordDecl>(Mem)) {
5729 if (!MemRecord->isAnonymousStructOrUnion() &&
5730 MemRecord->getDeclName()) {
5731 // Visual C++ allows type definition in anonymous struct or union.
5732 if (getLangOpts().MicrosoftExt)
5733 Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
5734 << Record->isUnion();
5735 else {
5736 // This is a nested type declaration.
5737 Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
5738 << Record->isUnion();
5739 Invalid = true;
5740 }
5741 } else {
5742 // This is an anonymous type definition within another anonymous type.
5743 // This is a popular extension, provided by Plan9, MSVC and GCC, but
5744 // not part of standard C++.
5745 Diag(MemRecord->getLocation(),
5746 diag::ext_anonymous_record_with_anonymous_type)
5747 << Record->isUnion();
5748 }
5749 } else if (isa<AccessSpecDecl>(Mem)) {
5750 // Any access specifier is fine.
5751 } else if (isa<StaticAssertDecl>(Mem)) {
5752 // In C++1z, static_assert declarations are also fine.
5753 } else {
5754 // We have something that isn't a non-static data
5755 // member. Complain about it.
5756 unsigned DK = diag::err_anonymous_record_bad_member;
5757 if (isa<TypeDecl>(Mem))
5758 DK = diag::err_anonymous_record_with_type;
5759 else if (isa<FunctionDecl>(Mem))
5760 DK = diag::err_anonymous_record_with_function;
5761 else if (isa<VarDecl>(Mem))
5762 DK = diag::err_anonymous_record_with_static;
5763
5764 // Visual C++ allows type definition in anonymous struct or union.
5765 if (getLangOpts().MicrosoftExt &&
5766 DK == diag::err_anonymous_record_with_type)
5767 Diag(Mem->getLocation(), diag::ext_anonymous_record_with_type)
5768 << Record->isUnion();
5769 else {
5770 Diag(Mem->getLocation(), DK) << Record->isUnion();
5771 Invalid = true;
5772 }
5773 }
5774 }
5775
5776 // C++11 [class.union]p8 (DR1460):
5777 // At most one variant member of a union may have a
5778 // brace-or-equal-initializer.
5779 if (cast<CXXRecordDecl>(Record)->hasInClassInitializer() &&
5780 Owner->isRecord())
5781 checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Owner),
5782 cast<CXXRecordDecl>(Record));
5783 }
5784
5785 if (!Record->isUnion() && !Owner->isRecord()) {
5786 Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
5787 << getLangOpts().CPlusPlus;
5788 Invalid = true;
5789 }
5790
5791 // C++ [dcl.dcl]p3:
5792 // [If there are no declarators], and except for the declaration of an
5793 // unnamed bit-field, the decl-specifier-seq shall introduce one or more
5794 // names into the program
5795 // C++ [class.mem]p2:
5796 // each such member-declaration shall either declare at least one member
5797 // name of the class or declare at least one unnamed bit-field
5798 //
5799 // For C this is an error even for a named struct, and is diagnosed elsewhere.
5800 if (getLangOpts().CPlusPlus && Record->field_empty())
5801 Diag(DS.getBeginLoc(), diag::ext_no_declarators) << DS.getSourceRange();
5802
5803 // Mock up a declarator.
5804 Declarator Dc(DS, ParsedAttributesView::none(), DeclaratorContext::Member);
5805 StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS);
5806 TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc);
5807 assert(TInfo && "couldn't build declarator info for anonymous struct/union");
5808
5809 // Create a declaration for this anonymous struct/union.
5810 NamedDecl *Anon = nullptr;
5811 if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
5812 Anon = FieldDecl::Create(
5813 Context, OwningClass, DS.getBeginLoc(), Record->getLocation(),
5814 /*IdentifierInfo=*/nullptr, Context.getTypeDeclType(Record), TInfo,
5815 /*BitWidth=*/nullptr, /*Mutable=*/false,
5816 /*InitStyle=*/ICIS_NoInit);
5817 Anon->setAccess(AS);
5818 ProcessDeclAttributes(S, Anon, Dc);
5819
5820 if (getLangOpts().CPlusPlus)
5821 FieldCollector->Add(cast<FieldDecl>(Anon));
5822 } else {
5823 DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
5824 if (SCSpec == DeclSpec::SCS_mutable) {
5825 // mutable can only appear on non-static class members, so it's always
5826 // an error here
5827 Diag(Record->getLocation(), diag::err_mutable_nonmember);
5828 Invalid = true;
5829 SC = SC_None;
5830 }
5831
5832 Anon = VarDecl::Create(Context, Owner, DS.getBeginLoc(),
5833 Record->getLocation(), /*IdentifierInfo=*/nullptr,
5834 Context.getTypeDeclType(Record), TInfo, SC);
5835 ProcessDeclAttributes(S, Anon, Dc);
5836
5837 // Default-initialize the implicit variable. This initialization will be
5838 // trivial in almost all cases, except if a union member has an in-class
5839 // initializer:
5840 // union { int n = 0; };
5841 ActOnUninitializedDecl(Anon);
5842 }
5843 Anon->setImplicit();
5844
5845 // Mark this as an anonymous struct/union type.
5846 Record->setAnonymousStructOrUnion(true);
5847
5848 // Add the anonymous struct/union object to the current
5849 // context. We'll be referencing this object when we refer to one of
5850 // its members.
5851 Owner->addDecl(Anon);
5852
5853 // Inject the members of the anonymous struct/union into the owning
5854 // context and into the identifier resolver chain for name lookup
5855 // purposes.
5856 SmallVector<NamedDecl*, 2> Chain;
5857 Chain.push_back(Anon);
5858
5859 if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS, SC,
5860 Chain))
5861 Invalid = true;
5862
5863 if (VarDecl *NewVD = dyn_cast<VarDecl>(Anon)) {
5864 if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
5865 MangleNumberingContext *MCtx;
5866 Decl *ManglingContextDecl;
5867 std::tie(MCtx, ManglingContextDecl) =
5868 getCurrentMangleNumberContext(NewVD->getDeclContext());
5869 if (MCtx) {
5870 Context.setManglingNumber(
5871 NewVD, MCtx->getManglingNumber(
5872 NewVD, getMSManglingNumber(getLangOpts(), S)));
5873 Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
5874 }
5875 }
5876 }
5877
5878 if (Invalid)
5879 Anon->setInvalidDecl();
5880
5881 return Anon;
5882 }
5883
5884 /// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
5885 /// Microsoft C anonymous structure.
5886 /// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
5887 /// Example:
5888 ///
5889 /// struct A { int a; };
5890 /// struct B { struct A; int b; };
5891 ///
5892 /// void foo() {
5893 /// B var;
5894 /// var.a = 3;
5895 /// }
5896 ///
BuildMicrosoftCAnonymousStruct(Scope * S,DeclSpec & DS,RecordDecl * Record)5897 Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
5898 RecordDecl *Record) {
5899 assert(Record && "expected a record!");
5900
5901 // Mock up a declarator.
5902 Declarator Dc(DS, ParsedAttributesView::none(), DeclaratorContext::TypeName);
5903 TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc);
5904 assert(TInfo && "couldn't build declarator info for anonymous struct");
5905
5906 auto *ParentDecl = cast<RecordDecl>(CurContext);
5907 QualType RecTy = Context.getTypeDeclType(Record);
5908
5909 // Create a declaration for this anonymous struct.
5910 NamedDecl *Anon =
5911 FieldDecl::Create(Context, ParentDecl, DS.getBeginLoc(), DS.getBeginLoc(),
5912 /*IdentifierInfo=*/nullptr, RecTy, TInfo,
5913 /*BitWidth=*/nullptr, /*Mutable=*/false,
5914 /*InitStyle=*/ICIS_NoInit);
5915 Anon->setImplicit();
5916
5917 // Add the anonymous struct object to the current context.
5918 CurContext->addDecl(Anon);
5919
5920 // Inject the members of the anonymous struct into the current
5921 // context and into the identifier resolver chain for name lookup
5922 // purposes.
5923 SmallVector<NamedDecl*, 2> Chain;
5924 Chain.push_back(Anon);
5925
5926 RecordDecl *RecordDef = Record->getDefinition();
5927 if (RequireCompleteSizedType(Anon->getLocation(), RecTy,
5928 diag::err_field_incomplete_or_sizeless) ||
5929 InjectAnonymousStructOrUnionMembers(
5930 *this, S, CurContext, RecordDef, AS_none,
5931 StorageClassSpecToVarDeclStorageClass(DS), Chain)) {
5932 Anon->setInvalidDecl();
5933 ParentDecl->setInvalidDecl();
5934 }
5935
5936 return Anon;
5937 }
5938
5939 /// GetNameForDeclarator - Determine the full declaration name for the
5940 /// given Declarator.
GetNameForDeclarator(Declarator & D)5941 DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
5942 return GetNameFromUnqualifiedId(D.getName());
5943 }
5944
5945 /// Retrieves the declaration name from a parsed unqualified-id.
5946 DeclarationNameInfo
GetNameFromUnqualifiedId(const UnqualifiedId & Name)5947 Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
5948 DeclarationNameInfo NameInfo;
5949 NameInfo.setLoc(Name.StartLocation);
5950
5951 switch (Name.getKind()) {
5952
5953 case UnqualifiedIdKind::IK_ImplicitSelfParam:
5954 case UnqualifiedIdKind::IK_Identifier:
5955 NameInfo.setName(Name.Identifier);
5956 return NameInfo;
5957
5958 case UnqualifiedIdKind::IK_DeductionGuideName: {
5959 // C++ [temp.deduct.guide]p3:
5960 // The simple-template-id shall name a class template specialization.
5961 // The template-name shall be the same identifier as the template-name
5962 // of the simple-template-id.
5963 // These together intend to imply that the template-name shall name a
5964 // class template.
5965 // FIXME: template<typename T> struct X {};
5966 // template<typename T> using Y = X<T>;
5967 // Y(int) -> Y<int>;
5968 // satisfies these rules but does not name a class template.
5969 TemplateName TN = Name.TemplateName.get().get();
5970 auto *Template = TN.getAsTemplateDecl();
5971 if (!Template || !isa<ClassTemplateDecl>(Template)) {
5972 Diag(Name.StartLocation,
5973 diag::err_deduction_guide_name_not_class_template)
5974 << (int)getTemplateNameKindForDiagnostics(TN) << TN;
5975 if (Template)
5976 NoteTemplateLocation(*Template);
5977 return DeclarationNameInfo();
5978 }
5979
5980 NameInfo.setName(
5981 Context.DeclarationNames.getCXXDeductionGuideName(Template));
5982 return NameInfo;
5983 }
5984
5985 case UnqualifiedIdKind::IK_OperatorFunctionId:
5986 NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
5987 Name.OperatorFunctionId.Operator));
5988 NameInfo.setCXXOperatorNameRange(SourceRange(
5989 Name.OperatorFunctionId.SymbolLocations[0], Name.EndLocation));
5990 return NameInfo;
5991
5992 case UnqualifiedIdKind::IK_LiteralOperatorId:
5993 NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
5994 Name.Identifier));
5995 NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
5996 return NameInfo;
5997
5998 case UnqualifiedIdKind::IK_ConversionFunctionId: {
5999 TypeSourceInfo *TInfo;
6000 QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
6001 if (Ty.isNull())
6002 return DeclarationNameInfo();
6003 NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
6004 Context.getCanonicalType(Ty)));
6005 NameInfo.setNamedTypeInfo(TInfo);
6006 return NameInfo;
6007 }
6008
6009 case UnqualifiedIdKind::IK_ConstructorName: {
6010 TypeSourceInfo *TInfo;
6011 QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
6012 if (Ty.isNull())
6013 return DeclarationNameInfo();
6014 NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
6015 Context.getCanonicalType(Ty)));
6016 NameInfo.setNamedTypeInfo(TInfo);
6017 return NameInfo;
6018 }
6019
6020 case UnqualifiedIdKind::IK_ConstructorTemplateId: {
6021 // In well-formed code, we can only have a constructor
6022 // template-id that refers to the current context, so go there
6023 // to find the actual type being constructed.
6024 CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
6025 if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
6026 return DeclarationNameInfo();
6027
6028 // Determine the type of the class being constructed.
6029 QualType CurClassType = Context.getTypeDeclType(CurClass);
6030
6031 // FIXME: Check two things: that the template-id names the same type as
6032 // CurClassType, and that the template-id does not occur when the name
6033 // was qualified.
6034
6035 NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
6036 Context.getCanonicalType(CurClassType)));
6037 // FIXME: should we retrieve TypeSourceInfo?
6038 NameInfo.setNamedTypeInfo(nullptr);
6039 return NameInfo;
6040 }
6041
6042 case UnqualifiedIdKind::IK_DestructorName: {
6043 TypeSourceInfo *TInfo;
6044 QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
6045 if (Ty.isNull())
6046 return DeclarationNameInfo();
6047 NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
6048 Context.getCanonicalType(Ty)));
6049 NameInfo.setNamedTypeInfo(TInfo);
6050 return NameInfo;
6051 }
6052
6053 case UnqualifiedIdKind::IK_TemplateId: {
6054 TemplateName TName = Name.TemplateId->Template.get();
6055 SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
6056 return Context.getNameForTemplate(TName, TNameLoc);
6057 }
6058
6059 } // switch (Name.getKind())
6060
6061 llvm_unreachable("Unknown name kind");
6062 }
6063
getCoreType(QualType Ty)6064 static QualType getCoreType(QualType Ty) {
6065 do {
6066 if (Ty->isPointerType() || Ty->isReferenceType())
6067 Ty = Ty->getPointeeType();
6068 else if (Ty->isArrayType())
6069 Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
6070 else
6071 return Ty.withoutLocalFastQualifiers();
6072 } while (true);
6073 }
6074
6075 /// hasSimilarParameters - Determine whether the C++ functions Declaration
6076 /// and Definition have "nearly" matching parameters. This heuristic is
6077 /// used to improve diagnostics in the case where an out-of-line function
6078 /// definition doesn't match any declaration within the class or namespace.
6079 /// Also sets Params to the list of indices to the parameters that differ
6080 /// between the declaration and the definition. If hasSimilarParameters
6081 /// returns true and Params is empty, then all of the parameters match.
hasSimilarParameters(ASTContext & Context,FunctionDecl * Declaration,FunctionDecl * Definition,SmallVectorImpl<unsigned> & Params)6082 static bool hasSimilarParameters(ASTContext &Context,
6083 FunctionDecl *Declaration,
6084 FunctionDecl *Definition,
6085 SmallVectorImpl<unsigned> &Params) {
6086 Params.clear();
6087 if (Declaration->param_size() != Definition->param_size())
6088 return false;
6089 for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
6090 QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
6091 QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
6092
6093 // The parameter types are identical
6094 if (Context.hasSameUnqualifiedType(DefParamTy, DeclParamTy))
6095 continue;
6096
6097 QualType DeclParamBaseTy = getCoreType(DeclParamTy);
6098 QualType DefParamBaseTy = getCoreType(DefParamTy);
6099 const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
6100 const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
6101
6102 if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
6103 (DeclTyName && DeclTyName == DefTyName))
6104 Params.push_back(Idx);
6105 else // The two parameters aren't even close
6106 return false;
6107 }
6108
6109 return true;
6110 }
6111
6112 /// RebuildDeclaratorInCurrentInstantiation - Checks whether the given
6113 /// declarator needs to be rebuilt in the current instantiation.
6114 /// Any bits of declarator which appear before the name are valid for
6115 /// consideration here. That's specifically the type in the decl spec
6116 /// and the base type in any member-pointer chunks.
RebuildDeclaratorInCurrentInstantiation(Sema & S,Declarator & D,DeclarationName Name)6117 static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
6118 DeclarationName Name) {
6119 // The types we specifically need to rebuild are:
6120 // - typenames, typeofs, and decltypes
6121 // - types which will become injected class names
6122 // Of course, we also need to rebuild any type referencing such a
6123 // type. It's safest to just say "dependent", but we call out a
6124 // few cases here.
6125
6126 DeclSpec &DS = D.getMutableDeclSpec();
6127 switch (DS.getTypeSpecType()) {
6128 case DeclSpec::TST_typename:
6129 case DeclSpec::TST_typeofType:
6130 case DeclSpec::TST_typeof_unqualType:
6131 #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) case DeclSpec::TST_##Trait:
6132 #include "clang/Basic/TransformTypeTraits.def"
6133 case DeclSpec::TST_atomic: {
6134 // Grab the type from the parser.
6135 TypeSourceInfo *TSI = nullptr;
6136 QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
6137 if (T.isNull() || !T->isInstantiationDependentType()) break;
6138
6139 // Make sure there's a type source info. This isn't really much
6140 // of a waste; most dependent types should have type source info
6141 // attached already.
6142 if (!TSI)
6143 TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
6144
6145 // Rebuild the type in the current instantiation.
6146 TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
6147 if (!TSI) return true;
6148
6149 // Store the new type back in the decl spec.
6150 ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
6151 DS.UpdateTypeRep(LocType);
6152 break;
6153 }
6154
6155 case DeclSpec::TST_decltype:
6156 case DeclSpec::TST_typeof_unqualExpr:
6157 case DeclSpec::TST_typeofExpr: {
6158 Expr *E = DS.getRepAsExpr();
6159 ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
6160 if (Result.isInvalid()) return true;
6161 DS.UpdateExprRep(Result.get());
6162 break;
6163 }
6164
6165 default:
6166 // Nothing to do for these decl specs.
6167 break;
6168 }
6169
6170 // It doesn't matter what order we do this in.
6171 for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
6172 DeclaratorChunk &Chunk = D.getTypeObject(I);
6173
6174 // The only type information in the declarator which can come
6175 // before the declaration name is the base type of a member
6176 // pointer.
6177 if (Chunk.Kind != DeclaratorChunk::MemberPointer)
6178 continue;
6179
6180 // Rebuild the scope specifier in-place.
6181 CXXScopeSpec &SS = Chunk.Mem.Scope();
6182 if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
6183 return true;
6184 }
6185
6186 return false;
6187 }
6188
6189 /// Returns true if the declaration is declared in a system header or from a
6190 /// system macro.
isFromSystemHeader(SourceManager & SM,const Decl * D)6191 static bool isFromSystemHeader(SourceManager &SM, const Decl *D) {
6192 return SM.isInSystemHeader(D->getLocation()) ||
6193 SM.isInSystemMacro(D->getLocation());
6194 }
6195
warnOnReservedIdentifier(const NamedDecl * D)6196 void Sema::warnOnReservedIdentifier(const NamedDecl *D) {
6197 // Avoid warning twice on the same identifier, and don't warn on redeclaration
6198 // of system decl.
6199 if (D->getPreviousDecl() || D->isImplicit())
6200 return;
6201 ReservedIdentifierStatus Status = D->isReserved(getLangOpts());
6202 if (Status != ReservedIdentifierStatus::NotReserved &&
6203 !isFromSystemHeader(Context.getSourceManager(), D)) {
6204 Diag(D->getLocation(), diag::warn_reserved_extern_symbol)
6205 << D << static_cast<int>(Status);
6206 }
6207 }
6208
ActOnDeclarator(Scope * S,Declarator & D)6209 Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
6210 D.setFunctionDefinitionKind(FunctionDefinitionKind::Declaration);
6211
6212 // Check if we are in an `omp begin/end declare variant` scope. Handle this
6213 // declaration only if the `bind_to_declaration` extension is set.
6214 SmallVector<FunctionDecl *, 4> Bases;
6215 if (LangOpts.OpenMP && isInOpenMPDeclareVariantScope())
6216 if (getOMPTraitInfoForSurroundingScope()->isExtensionActive(llvm::omp::TraitProperty::
6217 implementation_extension_bind_to_declaration))
6218 ActOnStartOfFunctionDefinitionInOpenMPDeclareVariantScope(
6219 S, D, MultiTemplateParamsArg(), Bases);
6220
6221 Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
6222
6223 if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
6224 Dcl && Dcl->getDeclContext()->isFileContext())
6225 Dcl->setTopLevelDeclInObjCContainer();
6226
6227 if (!Bases.empty())
6228 ActOnFinishedFunctionDefinitionInOpenMPDeclareVariantScope(Dcl, Bases);
6229
6230 return Dcl;
6231 }
6232
6233 /// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
6234 /// If T is the name of a class, then each of the following shall have a
6235 /// name different from T:
6236 /// - every static data member of class T;
6237 /// - every member function of class T
6238 /// - every member of class T that is itself a type;
6239 /// \returns true if the declaration name violates these rules.
DiagnoseClassNameShadow(DeclContext * DC,DeclarationNameInfo NameInfo)6240 bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
6241 DeclarationNameInfo NameInfo) {
6242 DeclarationName Name = NameInfo.getName();
6243
6244 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC);
6245 while (Record && Record->isAnonymousStructOrUnion())
6246 Record = dyn_cast<CXXRecordDecl>(Record->getParent());
6247 if (Record && Record->getIdentifier() && Record->getDeclName() == Name) {
6248 Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
6249 return true;
6250 }
6251
6252 return false;
6253 }
6254
6255 /// Diagnose a declaration whose declarator-id has the given
6256 /// nested-name-specifier.
6257 ///
6258 /// \param SS The nested-name-specifier of the declarator-id.
6259 ///
6260 /// \param DC The declaration context to which the nested-name-specifier
6261 /// resolves.
6262 ///
6263 /// \param Name The name of the entity being declared.
6264 ///
6265 /// \param Loc The location of the name of the entity being declared.
6266 ///
6267 /// \param IsTemplateId Whether the name is a (simple-)template-id, and thus
6268 /// we're declaring an explicit / partial specialization / instantiation.
6269 ///
6270 /// \returns true if we cannot safely recover from this error, false otherwise.
diagnoseQualifiedDeclaration(CXXScopeSpec & SS,DeclContext * DC,DeclarationName Name,SourceLocation Loc,bool IsTemplateId)6271 bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
6272 DeclarationName Name,
6273 SourceLocation Loc, bool IsTemplateId) {
6274 DeclContext *Cur = CurContext;
6275 while (isa<LinkageSpecDecl>(Cur) || isa<CapturedDecl>(Cur))
6276 Cur = Cur->getParent();
6277
6278 // If the user provided a superfluous scope specifier that refers back to the
6279 // class in which the entity is already declared, diagnose and ignore it.
6280 //
6281 // class X {
6282 // void X::f();
6283 // };
6284 //
6285 // Note, it was once ill-formed to give redundant qualification in all
6286 // contexts, but that rule was removed by DR482.
6287 if (Cur->Equals(DC)) {
6288 if (Cur->isRecord()) {
6289 Diag(Loc, LangOpts.MicrosoftExt ? diag::warn_member_extra_qualification
6290 : diag::err_member_extra_qualification)
6291 << Name << FixItHint::CreateRemoval(SS.getRange());
6292 SS.clear();
6293 } else {
6294 Diag(Loc, diag::warn_namespace_member_extra_qualification) << Name;
6295 }
6296 return false;
6297 }
6298
6299 // Check whether the qualifying scope encloses the scope of the original
6300 // declaration. For a template-id, we perform the checks in
6301 // CheckTemplateSpecializationScope.
6302 if (!Cur->Encloses(DC) && !IsTemplateId) {
6303 if (Cur->isRecord())
6304 Diag(Loc, diag::err_member_qualification)
6305 << Name << SS.getRange();
6306 else if (isa<TranslationUnitDecl>(DC))
6307 Diag(Loc, diag::err_invalid_declarator_global_scope)
6308 << Name << SS.getRange();
6309 else if (isa<FunctionDecl>(Cur))
6310 Diag(Loc, diag::err_invalid_declarator_in_function)
6311 << Name << SS.getRange();
6312 else if (isa<BlockDecl>(Cur))
6313 Diag(Loc, diag::err_invalid_declarator_in_block)
6314 << Name << SS.getRange();
6315 else if (isa<ExportDecl>(Cur)) {
6316 if (!isa<NamespaceDecl>(DC))
6317 Diag(Loc, diag::err_export_non_namespace_scope_name)
6318 << Name << SS.getRange();
6319 else
6320 // The cases that DC is not NamespaceDecl should be handled in
6321 // CheckRedeclarationExported.
6322 return false;
6323 } else
6324 Diag(Loc, diag::err_invalid_declarator_scope)
6325 << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
6326
6327 return true;
6328 }
6329
6330 if (Cur->isRecord()) {
6331 // Cannot qualify members within a class.
6332 Diag(Loc, diag::err_member_qualification)
6333 << Name << SS.getRange();
6334 SS.clear();
6335
6336 // C++ constructors and destructors with incorrect scopes can break
6337 // our AST invariants by having the wrong underlying types. If
6338 // that's the case, then drop this declaration entirely.
6339 if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
6340 Name.getNameKind() == DeclarationName::CXXDestructorName) &&
6341 !Context.hasSameType(Name.getCXXNameType(),
6342 Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
6343 return true;
6344
6345 return false;
6346 }
6347
6348 // C++11 [dcl.meaning]p1:
6349 // [...] "The nested-name-specifier of the qualified declarator-id shall
6350 // not begin with a decltype-specifer"
6351 NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
6352 while (SpecLoc.getPrefix())
6353 SpecLoc = SpecLoc.getPrefix();
6354 if (isa_and_nonnull<DecltypeType>(
6355 SpecLoc.getNestedNameSpecifier()->getAsType()))
6356 Diag(Loc, diag::err_decltype_in_declarator)
6357 << SpecLoc.getTypeLoc().getSourceRange();
6358
6359 return false;
6360 }
6361
HandleDeclarator(Scope * S,Declarator & D,MultiTemplateParamsArg TemplateParamLists)6362 NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
6363 MultiTemplateParamsArg TemplateParamLists) {
6364 // TODO: consider using NameInfo for diagnostic.
6365 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
6366 DeclarationName Name = NameInfo.getName();
6367
6368 // All of these full declarators require an identifier. If it doesn't have
6369 // one, the ParsedFreeStandingDeclSpec action should be used.
6370 if (D.isDecompositionDeclarator()) {
6371 return ActOnDecompositionDeclarator(S, D, TemplateParamLists);
6372 } else if (!Name) {
6373 if (!D.isInvalidType()) // Reject this if we think it is valid.
6374 Diag(D.getDeclSpec().getBeginLoc(), diag::err_declarator_need_ident)
6375 << D.getDeclSpec().getSourceRange() << D.getSourceRange();
6376 return nullptr;
6377 } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
6378 return nullptr;
6379
6380 // The scope passed in may not be a decl scope. Zip up the scope tree until
6381 // we find one that is.
6382 while ((S->getFlags() & Scope::DeclScope) == 0 ||
6383 (S->getFlags() & Scope::TemplateParamScope) != 0)
6384 S = S->getParent();
6385
6386 DeclContext *DC = CurContext;
6387 if (D.getCXXScopeSpec().isInvalid())
6388 D.setInvalidType();
6389 else if (D.getCXXScopeSpec().isSet()) {
6390 if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
6391 UPPC_DeclarationQualifier))
6392 return nullptr;
6393
6394 bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
6395 DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
6396 if (!DC || isa<EnumDecl>(DC)) {
6397 // If we could not compute the declaration context, it's because the
6398 // declaration context is dependent but does not refer to a class,
6399 // class template, or class template partial specialization. Complain
6400 // and return early, to avoid the coming semantic disaster.
6401 Diag(D.getIdentifierLoc(),
6402 diag::err_template_qualified_declarator_no_match)
6403 << D.getCXXScopeSpec().getScopeRep()
6404 << D.getCXXScopeSpec().getRange();
6405 return nullptr;
6406 }
6407 bool IsDependentContext = DC->isDependentContext();
6408
6409 if (!IsDependentContext &&
6410 RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
6411 return nullptr;
6412
6413 // If a class is incomplete, do not parse entities inside it.
6414 if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
6415 Diag(D.getIdentifierLoc(),
6416 diag::err_member_def_undefined_record)
6417 << Name << DC << D.getCXXScopeSpec().getRange();
6418 return nullptr;
6419 }
6420 if (!D.getDeclSpec().isFriendSpecified()) {
6421 if (diagnoseQualifiedDeclaration(
6422 D.getCXXScopeSpec(), DC, Name, D.getIdentifierLoc(),
6423 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId)) {
6424 if (DC->isRecord())
6425 return nullptr;
6426
6427 D.setInvalidType();
6428 }
6429 }
6430
6431 // Check whether we need to rebuild the type of the given
6432 // declaration in the current instantiation.
6433 if (EnteringContext && IsDependentContext &&
6434 TemplateParamLists.size() != 0) {
6435 ContextRAII SavedContext(*this, DC);
6436 if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
6437 D.setInvalidType();
6438 }
6439 }
6440
6441 TypeSourceInfo *TInfo = GetTypeForDeclarator(D);
6442 QualType R = TInfo->getType();
6443
6444 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
6445 UPPC_DeclarationType))
6446 D.setInvalidType();
6447
6448 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
6449 forRedeclarationInCurContext());
6450
6451 // See if this is a redefinition of a variable in the same scope.
6452 if (!D.getCXXScopeSpec().isSet()) {
6453 bool IsLinkageLookup = false;
6454 bool CreateBuiltins = false;
6455
6456 // If the declaration we're planning to build will be a function
6457 // or object with linkage, then look for another declaration with
6458 // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
6459 //
6460 // If the declaration we're planning to build will be declared with
6461 // external linkage in the translation unit, create any builtin with
6462 // the same name.
6463 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
6464 /* Do nothing*/;
6465 else if (CurContext->isFunctionOrMethod() &&
6466 (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern ||
6467 R->isFunctionType())) {
6468 IsLinkageLookup = true;
6469 CreateBuiltins =
6470 CurContext->getEnclosingNamespaceContext()->isTranslationUnit();
6471 } else if (CurContext->getRedeclContext()->isTranslationUnit() &&
6472 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
6473 CreateBuiltins = true;
6474
6475 if (IsLinkageLookup) {
6476 Previous.clear(LookupRedeclarationWithLinkage);
6477 Previous.setRedeclarationKind(ForExternalRedeclaration);
6478 }
6479
6480 LookupName(Previous, S, CreateBuiltins);
6481 } else { // Something like "int foo::x;"
6482 LookupQualifiedName(Previous, DC);
6483
6484 // C++ [dcl.meaning]p1:
6485 // When the declarator-id is qualified, the declaration shall refer to a
6486 // previously declared member of the class or namespace to which the
6487 // qualifier refers (or, in the case of a namespace, of an element of the
6488 // inline namespace set of that namespace (7.3.1)) or to a specialization
6489 // thereof; [...]
6490 //
6491 // Note that we already checked the context above, and that we do not have
6492 // enough information to make sure that Previous contains the declaration
6493 // we want to match. For example, given:
6494 //
6495 // class X {
6496 // void f();
6497 // void f(float);
6498 // };
6499 //
6500 // void X::f(int) { } // ill-formed
6501 //
6502 // In this case, Previous will point to the overload set
6503 // containing the two f's declared in X, but neither of them
6504 // matches.
6505
6506 RemoveUsingDecls(Previous);
6507 }
6508
6509 if (Previous.isSingleResult() &&
6510 Previous.getFoundDecl()->isTemplateParameter()) {
6511 // Maybe we will complain about the shadowed template parameter.
6512 if (!D.isInvalidType())
6513 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
6514 Previous.getFoundDecl());
6515
6516 // Just pretend that we didn't see the previous declaration.
6517 Previous.clear();
6518 }
6519
6520 if (!R->isFunctionType() && DiagnoseClassNameShadow(DC, NameInfo))
6521 // Forget that the previous declaration is the injected-class-name.
6522 Previous.clear();
6523
6524 // In C++, the previous declaration we find might be a tag type
6525 // (class or enum). In this case, the new declaration will hide the
6526 // tag type. Note that this applies to functions, function templates, and
6527 // variables, but not to typedefs (C++ [dcl.typedef]p4) or variable templates.
6528 if (Previous.isSingleTagDecl() &&
6529 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
6530 (TemplateParamLists.size() == 0 || R->isFunctionType()))
6531 Previous.clear();
6532
6533 // Check that there are no default arguments other than in the parameters
6534 // of a function declaration (C++ only).
6535 if (getLangOpts().CPlusPlus)
6536 CheckExtraCXXDefaultArguments(D);
6537
6538 NamedDecl *New;
6539
6540 bool AddToScope = true;
6541 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
6542 if (TemplateParamLists.size()) {
6543 Diag(D.getIdentifierLoc(), diag::err_template_typedef);
6544 return nullptr;
6545 }
6546
6547 New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
6548 } else if (R->isFunctionType()) {
6549 New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
6550 TemplateParamLists,
6551 AddToScope);
6552 } else {
6553 New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous, TemplateParamLists,
6554 AddToScope);
6555 }
6556
6557 if (!New)
6558 return nullptr;
6559
6560 // If this has an identifier and is not a function template specialization,
6561 // add it to the scope stack.
6562 if (New->getDeclName() && AddToScope)
6563 PushOnScopeChains(New, S);
6564
6565 if (isInOpenMPDeclareTargetContext())
6566 checkDeclIsAllowedInOpenMPTarget(nullptr, New);
6567
6568 return New;
6569 }
6570
6571 /// Helper method to turn variable array types into constant array
6572 /// types in certain situations which would otherwise be errors (for
6573 /// GCC compatibility).
TryToFixInvalidVariablyModifiedType(QualType T,ASTContext & Context,bool & SizeIsNegative,llvm::APSInt & Oversized)6574 static QualType TryToFixInvalidVariablyModifiedType(QualType T,
6575 ASTContext &Context,
6576 bool &SizeIsNegative,
6577 llvm::APSInt &Oversized) {
6578 // This method tries to turn a variable array into a constant
6579 // array even when the size isn't an ICE. This is necessary
6580 // for compatibility with code that depends on gcc's buggy
6581 // constant expression folding, like struct {char x[(int)(char*)2];}
6582 SizeIsNegative = false;
6583 Oversized = 0;
6584
6585 if (T->isDependentType())
6586 return QualType();
6587
6588 QualifierCollector Qs;
6589 const Type *Ty = Qs.strip(T);
6590
6591 if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
6592 QualType Pointee = PTy->getPointeeType();
6593 QualType FixedType =
6594 TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
6595 Oversized);
6596 if (FixedType.isNull()) return FixedType;
6597 FixedType = Context.getPointerType(FixedType);
6598 return Qs.apply(Context, FixedType);
6599 }
6600 if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
6601 QualType Inner = PTy->getInnerType();
6602 QualType FixedType =
6603 TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
6604 Oversized);
6605 if (FixedType.isNull()) return FixedType;
6606 FixedType = Context.getParenType(FixedType);
6607 return Qs.apply(Context, FixedType);
6608 }
6609
6610 const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
6611 if (!VLATy)
6612 return QualType();
6613
6614 QualType ElemTy = VLATy->getElementType();
6615 if (ElemTy->isVariablyModifiedType()) {
6616 ElemTy = TryToFixInvalidVariablyModifiedType(ElemTy, Context,
6617 SizeIsNegative, Oversized);
6618 if (ElemTy.isNull())
6619 return QualType();
6620 }
6621
6622 Expr::EvalResult Result;
6623 if (!VLATy->getSizeExpr() ||
6624 !VLATy->getSizeExpr()->EvaluateAsInt(Result, Context))
6625 return QualType();
6626
6627 llvm::APSInt Res = Result.Val.getInt();
6628
6629 // Check whether the array size is negative.
6630 if (Res.isSigned() && Res.isNegative()) {
6631 SizeIsNegative = true;
6632 return QualType();
6633 }
6634
6635 // Check whether the array is too large to be addressed.
6636 unsigned ActiveSizeBits =
6637 (!ElemTy->isDependentType() && !ElemTy->isVariablyModifiedType() &&
6638 !ElemTy->isIncompleteType() && !ElemTy->isUndeducedType())
6639 ? ConstantArrayType::getNumAddressingBits(Context, ElemTy, Res)
6640 : Res.getActiveBits();
6641 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
6642 Oversized = Res;
6643 return QualType();
6644 }
6645
6646 QualType FoldedArrayType = Context.getConstantArrayType(
6647 ElemTy, Res, VLATy->getSizeExpr(), ArraySizeModifier::Normal, 0);
6648 return Qs.apply(Context, FoldedArrayType);
6649 }
6650
6651 static void
FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL,TypeLoc DstTL)6652 FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
6653 SrcTL = SrcTL.getUnqualifiedLoc();
6654 DstTL = DstTL.getUnqualifiedLoc();
6655 if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) {
6656 PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>();
6657 FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(),
6658 DstPTL.getPointeeLoc());
6659 DstPTL.setStarLoc(SrcPTL.getStarLoc());
6660 return;
6661 }
6662 if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) {
6663 ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>();
6664 FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(),
6665 DstPTL.getInnerLoc());
6666 DstPTL.setLParenLoc(SrcPTL.getLParenLoc());
6667 DstPTL.setRParenLoc(SrcPTL.getRParenLoc());
6668 return;
6669 }
6670 ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>();
6671 ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>();
6672 TypeLoc SrcElemTL = SrcATL.getElementLoc();
6673 TypeLoc DstElemTL = DstATL.getElementLoc();
6674 if (VariableArrayTypeLoc SrcElemATL =
6675 SrcElemTL.getAs<VariableArrayTypeLoc>()) {
6676 ConstantArrayTypeLoc DstElemATL = DstElemTL.castAs<ConstantArrayTypeLoc>();
6677 FixInvalidVariablyModifiedTypeLoc(SrcElemATL, DstElemATL);
6678 } else {
6679 DstElemTL.initializeFullCopy(SrcElemTL);
6680 }
6681 DstATL.setLBracketLoc(SrcATL.getLBracketLoc());
6682 DstATL.setSizeExpr(SrcATL.getSizeExpr());
6683 DstATL.setRBracketLoc(SrcATL.getRBracketLoc());
6684 }
6685
6686 /// Helper method to turn variable array types into constant array
6687 /// types in certain situations which would otherwise be errors (for
6688 /// GCC compatibility).
6689 static TypeSourceInfo*
TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo * TInfo,ASTContext & Context,bool & SizeIsNegative,llvm::APSInt & Oversized)6690 TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
6691 ASTContext &Context,
6692 bool &SizeIsNegative,
6693 llvm::APSInt &Oversized) {
6694 QualType FixedTy
6695 = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
6696 SizeIsNegative, Oversized);
6697 if (FixedTy.isNull())
6698 return nullptr;
6699 TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
6700 FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
6701 FixedTInfo->getTypeLoc());
6702 return FixedTInfo;
6703 }
6704
6705 /// Attempt to fold a variable-sized type to a constant-sized type, returning
6706 /// true if we were successful.
tryToFixVariablyModifiedVarType(TypeSourceInfo * & TInfo,QualType & T,SourceLocation Loc,unsigned FailedFoldDiagID)6707 bool Sema::tryToFixVariablyModifiedVarType(TypeSourceInfo *&TInfo,
6708 QualType &T, SourceLocation Loc,
6709 unsigned FailedFoldDiagID) {
6710 bool SizeIsNegative;
6711 llvm::APSInt Oversized;
6712 TypeSourceInfo *FixedTInfo = TryToFixInvalidVariablyModifiedTypeSourceInfo(
6713 TInfo, Context, SizeIsNegative, Oversized);
6714 if (FixedTInfo) {
6715 Diag(Loc, diag::ext_vla_folded_to_constant);
6716 TInfo = FixedTInfo;
6717 T = FixedTInfo->getType();
6718 return true;
6719 }
6720
6721 if (SizeIsNegative)
6722 Diag(Loc, diag::err_typecheck_negative_array_size);
6723 else if (Oversized.getBoolValue())
6724 Diag(Loc, diag::err_array_too_large) << toString(Oversized, 10);
6725 else if (FailedFoldDiagID)
6726 Diag(Loc, FailedFoldDiagID);
6727 return false;
6728 }
6729
6730 /// Register the given locally-scoped extern "C" declaration so
6731 /// that it can be found later for redeclarations. We include any extern "C"
6732 /// declaration that is not visible in the translation unit here, not just
6733 /// function-scope declarations.
6734 void
RegisterLocallyScopedExternCDecl(NamedDecl * ND,Scope * S)6735 Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S) {
6736 if (!getLangOpts().CPlusPlus &&
6737 ND->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit())
6738 // Don't need to track declarations in the TU in C.
6739 return;
6740
6741 // Note that we have a locally-scoped external with this name.
6742 Context.getExternCContextDecl()->makeDeclVisibleInContext(ND);
6743 }
6744
findLocallyScopedExternCDecl(DeclarationName Name)6745 NamedDecl *Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
6746 // FIXME: We can have multiple results via __attribute__((overloadable)).
6747 auto Result = Context.getExternCContextDecl()->lookup(Name);
6748 return Result.empty() ? nullptr : *Result.begin();
6749 }
6750
6751 /// Diagnose function specifiers on a declaration of an identifier that
6752 /// does not identify a function.
DiagnoseFunctionSpecifiers(const DeclSpec & DS)6753 void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) {
6754 // FIXME: We should probably indicate the identifier in question to avoid
6755 // confusion for constructs like "virtual int a(), b;"
6756 if (DS.isVirtualSpecified())
6757 Diag(DS.getVirtualSpecLoc(),
6758 diag::err_virtual_non_function);
6759
6760 if (DS.hasExplicitSpecifier())
6761 Diag(DS.getExplicitSpecLoc(),
6762 diag::err_explicit_non_function);
6763
6764 if (DS.isNoreturnSpecified())
6765 Diag(DS.getNoreturnSpecLoc(),
6766 diag::err_noreturn_non_function);
6767 }
6768
6769 NamedDecl*
ActOnTypedefDeclarator(Scope * S,Declarator & D,DeclContext * DC,TypeSourceInfo * TInfo,LookupResult & Previous)6770 Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
6771 TypeSourceInfo *TInfo, LookupResult &Previous) {
6772 // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
6773 if (D.getCXXScopeSpec().isSet()) {
6774 Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
6775 << D.getCXXScopeSpec().getRange();
6776 D.setInvalidType();
6777 // Pretend we didn't see the scope specifier.
6778 DC = CurContext;
6779 Previous.clear();
6780 }
6781
6782 DiagnoseFunctionSpecifiers(D.getDeclSpec());
6783
6784 if (D.getDeclSpec().isInlineSpecified())
6785 Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
6786 << getLangOpts().CPlusPlus17;
6787 if (D.getDeclSpec().hasConstexprSpecifier())
6788 Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
6789 << 1 << static_cast<int>(D.getDeclSpec().getConstexprSpecifier());
6790
6791 if (D.getName().getKind() != UnqualifiedIdKind::IK_Identifier) {
6792 if (D.getName().getKind() == UnqualifiedIdKind::IK_DeductionGuideName)
6793 Diag(D.getName().StartLocation,
6794 diag::err_deduction_guide_invalid_specifier)
6795 << "typedef";
6796 else
6797 Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
6798 << D.getName().getSourceRange();
6799 return nullptr;
6800 }
6801
6802 TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
6803 if (!NewTD) return nullptr;
6804
6805 // Handle attributes prior to checking for duplicates in MergeVarDecl
6806 ProcessDeclAttributes(S, NewTD, D);
6807
6808 CheckTypedefForVariablyModifiedType(S, NewTD);
6809
6810 bool Redeclaration = D.isRedeclaration();
6811 NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
6812 D.setRedeclaration(Redeclaration);
6813 return ND;
6814 }
6815
6816 void
CheckTypedefForVariablyModifiedType(Scope * S,TypedefNameDecl * NewTD)6817 Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
6818 // C99 6.7.7p2: If a typedef name specifies a variably modified type
6819 // then it shall have block scope.
6820 // Note that variably modified types must be fixed before merging the decl so
6821 // that redeclarations will match.
6822 TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
6823 QualType T = TInfo->getType();
6824 if (T->isVariablyModifiedType()) {
6825 setFunctionHasBranchProtectedScope();
6826
6827 if (S->getFnParent() == nullptr) {
6828 bool SizeIsNegative;
6829 llvm::APSInt Oversized;
6830 TypeSourceInfo *FixedTInfo =
6831 TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
6832 SizeIsNegative,
6833 Oversized);
6834 if (FixedTInfo) {
6835 Diag(NewTD->getLocation(), diag::ext_vla_folded_to_constant);
6836 NewTD->setTypeSourceInfo(FixedTInfo);
6837 } else {
6838 if (SizeIsNegative)
6839 Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
6840 else if (T->isVariableArrayType())
6841 Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
6842 else if (Oversized.getBoolValue())
6843 Diag(NewTD->getLocation(), diag::err_array_too_large)
6844 << toString(Oversized, 10);
6845 else
6846 Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
6847 NewTD->setInvalidDecl();
6848 }
6849 }
6850 }
6851 }
6852
6853 /// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
6854 /// declares a typedef-name, either using the 'typedef' type specifier or via
6855 /// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
6856 NamedDecl*
ActOnTypedefNameDecl(Scope * S,DeclContext * DC,TypedefNameDecl * NewTD,LookupResult & Previous,bool & Redeclaration)6857 Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
6858 LookupResult &Previous, bool &Redeclaration) {
6859
6860 // Find the shadowed declaration before filtering for scope.
6861 NamedDecl *ShadowedDecl = getShadowedDeclaration(NewTD, Previous);
6862
6863 // Merge the decl with the existing one if appropriate. If the decl is
6864 // in an outer scope, it isn't the same thing.
6865 FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/false,
6866 /*AllowInlineNamespace*/false);
6867 filterNonConflictingPreviousTypedefDecls(*this, NewTD, Previous);
6868 if (!Previous.empty()) {
6869 Redeclaration = true;
6870 MergeTypedefNameDecl(S, NewTD, Previous);
6871 } else {
6872 inferGslPointerAttribute(NewTD);
6873 }
6874
6875 if (ShadowedDecl && !Redeclaration)
6876 CheckShadow(NewTD, ShadowedDecl, Previous);
6877
6878 // If this is the C FILE type, notify the AST context.
6879 if (IdentifierInfo *II = NewTD->getIdentifier())
6880 if (!NewTD->isInvalidDecl() &&
6881 NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
6882 switch (II->getInterestingIdentifierID()) {
6883 case tok::InterestingIdentifierKind::FILE:
6884 Context.setFILEDecl(NewTD);
6885 break;
6886 case tok::InterestingIdentifierKind::jmp_buf:
6887 Context.setjmp_bufDecl(NewTD);
6888 break;
6889 case tok::InterestingIdentifierKind::sigjmp_buf:
6890 Context.setsigjmp_bufDecl(NewTD);
6891 break;
6892 case tok::InterestingIdentifierKind::ucontext_t:
6893 Context.setucontext_tDecl(NewTD);
6894 break;
6895 case tok::InterestingIdentifierKind::float_t:
6896 case tok::InterestingIdentifierKind::double_t:
6897 NewTD->addAttr(AvailableOnlyInDefaultEvalMethodAttr::Create(Context));
6898 break;
6899 default:
6900 break;
6901 }
6902 }
6903
6904 return NewTD;
6905 }
6906
6907 /// Determines whether the given declaration is an out-of-scope
6908 /// previous declaration.
6909 ///
6910 /// This routine should be invoked when name lookup has found a
6911 /// previous declaration (PrevDecl) that is not in the scope where a
6912 /// new declaration by the same name is being introduced. If the new
6913 /// declaration occurs in a local scope, previous declarations with
6914 /// linkage may still be considered previous declarations (C99
6915 /// 6.2.2p4-5, C++ [basic.link]p6).
6916 ///
6917 /// \param PrevDecl the previous declaration found by name
6918 /// lookup
6919 ///
6920 /// \param DC the context in which the new declaration is being
6921 /// declared.
6922 ///
6923 /// \returns true if PrevDecl is an out-of-scope previous declaration
6924 /// for a new delcaration with the same name.
6925 static bool
isOutOfScopePreviousDeclaration(NamedDecl * PrevDecl,DeclContext * DC,ASTContext & Context)6926 isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
6927 ASTContext &Context) {
6928 if (!PrevDecl)
6929 return false;
6930
6931 if (!PrevDecl->hasLinkage())
6932 return false;
6933
6934 if (Context.getLangOpts().CPlusPlus) {
6935 // C++ [basic.link]p6:
6936 // If there is a visible declaration of an entity with linkage
6937 // having the same name and type, ignoring entities declared
6938 // outside the innermost enclosing namespace scope, the block
6939 // scope declaration declares that same entity and receives the
6940 // linkage of the previous declaration.
6941 DeclContext *OuterContext = DC->getRedeclContext();
6942 if (!OuterContext->isFunctionOrMethod())
6943 // This rule only applies to block-scope declarations.
6944 return false;
6945
6946 DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
6947 if (PrevOuterContext->isRecord())
6948 // We found a member function: ignore it.
6949 return false;
6950
6951 // Find the innermost enclosing namespace for the new and
6952 // previous declarations.
6953 OuterContext = OuterContext->getEnclosingNamespaceContext();
6954 PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
6955
6956 // The previous declaration is in a different namespace, so it
6957 // isn't the same function.
6958 if (!OuterContext->Equals(PrevOuterContext))
6959 return false;
6960 }
6961
6962 return true;
6963 }
6964
SetNestedNameSpecifier(Sema & S,DeclaratorDecl * DD,Declarator & D)6965 static void SetNestedNameSpecifier(Sema &S, DeclaratorDecl *DD, Declarator &D) {
6966 CXXScopeSpec &SS = D.getCXXScopeSpec();
6967 if (!SS.isSet()) return;
6968 DD->setQualifierInfo(SS.getWithLocInContext(S.Context));
6969 }
6970
inferObjCARCLifetime(ValueDecl * decl)6971 bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
6972 QualType type = decl->getType();
6973 Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
6974 if (lifetime == Qualifiers::OCL_Autoreleasing) {
6975 // Various kinds of declaration aren't allowed to be __autoreleasing.
6976 unsigned kind = -1U;
6977 if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
6978 if (var->hasAttr<BlocksAttr>())
6979 kind = 0; // __block
6980 else if (!var->hasLocalStorage())
6981 kind = 1; // global
6982 } else if (isa<ObjCIvarDecl>(decl)) {
6983 kind = 3; // ivar
6984 } else if (isa<FieldDecl>(decl)) {
6985 kind = 2; // field
6986 }
6987
6988 if (kind != -1U) {
6989 Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
6990 << kind;
6991 }
6992 } else if (lifetime == Qualifiers::OCL_None) {
6993 // Try to infer lifetime.
6994 if (!type->isObjCLifetimeType())
6995 return false;
6996
6997 lifetime = type->getObjCARCImplicitLifetime();
6998 type = Context.getLifetimeQualifiedType(type, lifetime);
6999 decl->setType(type);
7000 }
7001
7002 if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
7003 // Thread-local variables cannot have lifetime.
7004 if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
7005 var->getTLSKind()) {
7006 Diag(var->getLocation(), diag::err_arc_thread_ownership)
7007 << var->getType();
7008 return true;
7009 }
7010 }
7011
7012 return false;
7013 }
7014
deduceOpenCLAddressSpace(ValueDecl * Decl)7015 void Sema::deduceOpenCLAddressSpace(ValueDecl *Decl) {
7016 if (Decl->getType().hasAddressSpace())
7017 return;
7018 if (Decl->getType()->isDependentType())
7019 return;
7020 if (VarDecl *Var = dyn_cast<VarDecl>(Decl)) {
7021 QualType Type = Var->getType();
7022 if (Type->isSamplerT() || Type->isVoidType())
7023 return;
7024 LangAS ImplAS = LangAS::opencl_private;
7025 // OpenCL C v3.0 s6.7.8 - For OpenCL C 2.0 or with the
7026 // __opencl_c_program_scope_global_variables feature, the address space
7027 // for a variable at program scope or a static or extern variable inside
7028 // a function are inferred to be __global.
7029 if (getOpenCLOptions().areProgramScopeVariablesSupported(getLangOpts()) &&
7030 Var->hasGlobalStorage())
7031 ImplAS = LangAS::opencl_global;
7032 // If the original type from a decayed type is an array type and that array
7033 // type has no address space yet, deduce it now.
7034 if (auto DT = dyn_cast<DecayedType>(Type)) {
7035 auto OrigTy = DT->getOriginalType();
7036 if (!OrigTy.hasAddressSpace() && OrigTy->isArrayType()) {
7037 // Add the address space to the original array type and then propagate
7038 // that to the element type through `getAsArrayType`.
7039 OrigTy = Context.getAddrSpaceQualType(OrigTy, ImplAS);
7040 OrigTy = QualType(Context.getAsArrayType(OrigTy), 0);
7041 // Re-generate the decayed type.
7042 Type = Context.getDecayedType(OrigTy);
7043 }
7044 }
7045 Type = Context.getAddrSpaceQualType(Type, ImplAS);
7046 // Apply any qualifiers (including address space) from the array type to
7047 // the element type. This implements C99 6.7.3p8: "If the specification of
7048 // an array type includes any type qualifiers, the element type is so
7049 // qualified, not the array type."
7050 if (Type->isArrayType())
7051 Type = QualType(Context.getAsArrayType(Type), 0);
7052 Decl->setType(Type);
7053 }
7054 }
7055
checkAttributesAfterMerging(Sema & S,NamedDecl & ND)7056 static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) {
7057 // Ensure that an auto decl is deduced otherwise the checks below might cache
7058 // the wrong linkage.
7059 assert(S.ParsingInitForAutoVars.count(&ND) == 0);
7060
7061 // 'weak' only applies to declarations with external linkage.
7062 if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
7063 if (!ND.isExternallyVisible()) {
7064 S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
7065 ND.dropAttr<WeakAttr>();
7066 }
7067 }
7068 if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
7069 if (ND.isExternallyVisible()) {
7070 S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
7071 ND.dropAttrs<WeakRefAttr, AliasAttr>();
7072 }
7073 }
7074
7075 if (auto *VD = dyn_cast<VarDecl>(&ND)) {
7076 if (VD->hasInit()) {
7077 if (const auto *Attr = VD->getAttr<AliasAttr>()) {
7078 assert(VD->isThisDeclarationADefinition() &&
7079 !VD->isExternallyVisible() && "Broken AliasAttr handled late!");
7080 S.Diag(Attr->getLocation(), diag::err_alias_is_definition) << VD << 0;
7081 VD->dropAttr<AliasAttr>();
7082 }
7083 }
7084 }
7085
7086 // 'selectany' only applies to externally visible variable declarations.
7087 // It does not apply to functions.
7088 if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) {
7089 if (isa<FunctionDecl>(ND) || !ND.isExternallyVisible()) {
7090 S.Diag(Attr->getLocation(),
7091 diag::err_attribute_selectany_non_extern_data);
7092 ND.dropAttr<SelectAnyAttr>();
7093 }
7094 }
7095
7096 if (const InheritableAttr *Attr = getDLLAttr(&ND)) {
7097 auto *VD = dyn_cast<VarDecl>(&ND);
7098 bool IsAnonymousNS = false;
7099 bool IsMicrosoft = S.Context.getTargetInfo().getCXXABI().isMicrosoft();
7100 if (VD) {
7101 const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(VD->getDeclContext());
7102 while (NS && !IsAnonymousNS) {
7103 IsAnonymousNS = NS->isAnonymousNamespace();
7104 NS = dyn_cast<NamespaceDecl>(NS->getParent());
7105 }
7106 }
7107 // dll attributes require external linkage. Static locals may have external
7108 // linkage but still cannot be explicitly imported or exported.
7109 // In Microsoft mode, a variable defined in anonymous namespace must have
7110 // external linkage in order to be exported.
7111 bool AnonNSInMicrosoftMode = IsAnonymousNS && IsMicrosoft;
7112 if ((ND.isExternallyVisible() && AnonNSInMicrosoftMode) ||
7113 (!AnonNSInMicrosoftMode &&
7114 (!ND.isExternallyVisible() || (VD && VD->isStaticLocal())))) {
7115 S.Diag(ND.getLocation(), diag::err_attribute_dll_not_extern)
7116 << &ND << Attr;
7117 ND.setInvalidDecl();
7118 }
7119 }
7120
7121 // Check the attributes on the function type, if any.
7122 if (const auto *FD = dyn_cast<FunctionDecl>(&ND)) {
7123 // Don't declare this variable in the second operand of the for-statement;
7124 // GCC miscompiles that by ending its lifetime before evaluating the
7125 // third operand. See gcc.gnu.org/PR86769.
7126 AttributedTypeLoc ATL;
7127 for (TypeLoc TL = FD->getTypeSourceInfo()->getTypeLoc();
7128 (ATL = TL.getAsAdjusted<AttributedTypeLoc>());
7129 TL = ATL.getModifiedLoc()) {
7130 // The [[lifetimebound]] attribute can be applied to the implicit object
7131 // parameter of a non-static member function (other than a ctor or dtor)
7132 // by applying it to the function type.
7133 if (const auto *A = ATL.getAttrAs<LifetimeBoundAttr>()) {
7134 const auto *MD = dyn_cast<CXXMethodDecl>(FD);
7135 if (!MD || MD->isStatic()) {
7136 S.Diag(A->getLocation(), diag::err_lifetimebound_no_object_param)
7137 << !MD << A->getRange();
7138 } else if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)) {
7139 S.Diag(A->getLocation(), diag::err_lifetimebound_ctor_dtor)
7140 << isa<CXXDestructorDecl>(MD) << A->getRange();
7141 }
7142 }
7143 }
7144 }
7145 }
7146
checkDLLAttributeRedeclaration(Sema & S,NamedDecl * OldDecl,NamedDecl * NewDecl,bool IsSpecialization,bool IsDefinition)7147 static void checkDLLAttributeRedeclaration(Sema &S, NamedDecl *OldDecl,
7148 NamedDecl *NewDecl,
7149 bool IsSpecialization,
7150 bool IsDefinition) {
7151 if (OldDecl->isInvalidDecl() || NewDecl->isInvalidDecl())
7152 return;
7153
7154 bool IsTemplate = false;
7155 if (TemplateDecl *OldTD = dyn_cast<TemplateDecl>(OldDecl)) {
7156 OldDecl = OldTD->getTemplatedDecl();
7157 IsTemplate = true;
7158 if (!IsSpecialization)
7159 IsDefinition = false;
7160 }
7161 if (TemplateDecl *NewTD = dyn_cast<TemplateDecl>(NewDecl)) {
7162 NewDecl = NewTD->getTemplatedDecl();
7163 IsTemplate = true;
7164 }
7165
7166 if (!OldDecl || !NewDecl)
7167 return;
7168
7169 const DLLImportAttr *OldImportAttr = OldDecl->getAttr<DLLImportAttr>();
7170 const DLLExportAttr *OldExportAttr = OldDecl->getAttr<DLLExportAttr>();
7171 const DLLImportAttr *NewImportAttr = NewDecl->getAttr<DLLImportAttr>();
7172 const DLLExportAttr *NewExportAttr = NewDecl->getAttr<DLLExportAttr>();
7173
7174 // dllimport and dllexport are inheritable attributes so we have to exclude
7175 // inherited attribute instances.
7176 bool HasNewAttr = (NewImportAttr && !NewImportAttr->isInherited()) ||
7177 (NewExportAttr && !NewExportAttr->isInherited());
7178
7179 // A redeclaration is not allowed to add a dllimport or dllexport attribute,
7180 // the only exception being explicit specializations.
7181 // Implicitly generated declarations are also excluded for now because there
7182 // is no other way to switch these to use dllimport or dllexport.
7183 bool AddsAttr = !(OldImportAttr || OldExportAttr) && HasNewAttr;
7184
7185 if (AddsAttr && !IsSpecialization && !OldDecl->isImplicit()) {
7186 // Allow with a warning for free functions and global variables.
7187 bool JustWarn = false;
7188 if (!OldDecl->isCXXClassMember()) {
7189 auto *VD = dyn_cast<VarDecl>(OldDecl);
7190 if (VD && !VD->getDescribedVarTemplate())
7191 JustWarn = true;
7192 auto *FD = dyn_cast<FunctionDecl>(OldDecl);
7193 if (FD && FD->getTemplatedKind() == FunctionDecl::TK_NonTemplate)
7194 JustWarn = true;
7195 }
7196
7197 // We cannot change a declaration that's been used because IR has already
7198 // been emitted. Dllimported functions will still work though (modulo
7199 // address equality) as they can use the thunk.
7200 if (OldDecl->isUsed())
7201 if (!isa<FunctionDecl>(OldDecl) || !NewImportAttr)
7202 JustWarn = false;
7203
7204 unsigned DiagID = JustWarn ? diag::warn_attribute_dll_redeclaration
7205 : diag::err_attribute_dll_redeclaration;
7206 S.Diag(NewDecl->getLocation(), DiagID)
7207 << NewDecl
7208 << (NewImportAttr ? (const Attr *)NewImportAttr : NewExportAttr);
7209 S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
7210 if (!JustWarn) {
7211 NewDecl->setInvalidDecl();
7212 return;
7213 }
7214 }
7215
7216 // A redeclaration is not allowed to drop a dllimport attribute, the only
7217 // exceptions being inline function definitions (except for function
7218 // templates), local extern declarations, qualified friend declarations or
7219 // special MSVC extension: in the last case, the declaration is treated as if
7220 // it were marked dllexport.
7221 bool IsInline = false, IsStaticDataMember = false, IsQualifiedFriend = false;
7222 bool IsMicrosoftABI = S.Context.getTargetInfo().shouldDLLImportComdatSymbols();
7223 if (const auto *VD = dyn_cast<VarDecl>(NewDecl)) {
7224 // Ignore static data because out-of-line definitions are diagnosed
7225 // separately.
7226 IsStaticDataMember = VD->isStaticDataMember();
7227 IsDefinition = VD->isThisDeclarationADefinition(S.Context) !=
7228 VarDecl::DeclarationOnly;
7229 } else if (const auto *FD = dyn_cast<FunctionDecl>(NewDecl)) {
7230 IsInline = FD->isInlined();
7231 IsQualifiedFriend = FD->getQualifier() &&
7232 FD->getFriendObjectKind() == Decl::FOK_Declared;
7233 }
7234
7235 if (OldImportAttr && !HasNewAttr &&
7236 (!IsInline || (IsMicrosoftABI && IsTemplate)) && !IsStaticDataMember &&
7237 !NewDecl->isLocalExternDecl() && !IsQualifiedFriend) {
7238 if (IsMicrosoftABI && IsDefinition) {
7239 if (IsSpecialization) {
7240 S.Diag(
7241 NewDecl->getLocation(),
7242 diag::err_attribute_dllimport_function_specialization_definition);
7243 S.Diag(OldImportAttr->getLocation(), diag::note_attribute);
7244 NewDecl->dropAttr<DLLImportAttr>();
7245 } else {
7246 S.Diag(NewDecl->getLocation(),
7247 diag::warn_redeclaration_without_import_attribute)
7248 << NewDecl;
7249 S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
7250 NewDecl->dropAttr<DLLImportAttr>();
7251 NewDecl->addAttr(DLLExportAttr::CreateImplicit(
7252 S.Context, NewImportAttr->getRange()));
7253 }
7254 } else if (IsMicrosoftABI && IsSpecialization) {
7255 assert(!IsDefinition);
7256 // MSVC allows this. Keep the inherited attribute.
7257 } else {
7258 S.Diag(NewDecl->getLocation(),
7259 diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
7260 << NewDecl << OldImportAttr;
7261 S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
7262 S.Diag(OldImportAttr->getLocation(), diag::note_previous_attribute);
7263 OldDecl->dropAttr<DLLImportAttr>();
7264 NewDecl->dropAttr<DLLImportAttr>();
7265 }
7266 } else if (IsInline && OldImportAttr && !IsMicrosoftABI) {
7267 // In MinGW, seeing a function declared inline drops the dllimport
7268 // attribute.
7269 OldDecl->dropAttr<DLLImportAttr>();
7270 NewDecl->dropAttr<DLLImportAttr>();
7271 S.Diag(NewDecl->getLocation(),
7272 diag::warn_dllimport_dropped_from_inline_function)
7273 << NewDecl << OldImportAttr;
7274 }
7275
7276 // A specialization of a class template member function is processed here
7277 // since it's a redeclaration. If the parent class is dllexport, the
7278 // specialization inherits that attribute. This doesn't happen automatically
7279 // since the parent class isn't instantiated until later.
7280 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDecl)) {
7281 if (MD->getTemplatedKind() == FunctionDecl::TK_MemberSpecialization &&
7282 !NewImportAttr && !NewExportAttr) {
7283 if (const DLLExportAttr *ParentExportAttr =
7284 MD->getParent()->getAttr<DLLExportAttr>()) {
7285 DLLExportAttr *NewAttr = ParentExportAttr->clone(S.Context);
7286 NewAttr->setInherited(true);
7287 NewDecl->addAttr(NewAttr);
7288 }
7289 }
7290 }
7291 }
7292
7293 /// Given that we are within the definition of the given function,
7294 /// will that definition behave like C99's 'inline', where the
7295 /// definition is discarded except for optimization purposes?
isFunctionDefinitionDiscarded(Sema & S,FunctionDecl * FD)7296 static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) {
7297 // Try to avoid calling GetGVALinkageForFunction.
7298
7299 // All cases of this require the 'inline' keyword.
7300 if (!FD->isInlined()) return false;
7301
7302 // This is only possible in C++ with the gnu_inline attribute.
7303 if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>())
7304 return false;
7305
7306 // Okay, go ahead and call the relatively-more-expensive function.
7307 return S.Context.GetGVALinkageForFunction(FD) == GVA_AvailableExternally;
7308 }
7309
7310 /// Determine whether a variable is extern "C" prior to attaching
7311 /// an initializer. We can't just call isExternC() here, because that
7312 /// will also compute and cache whether the declaration is externally
7313 /// visible, which might change when we attach the initializer.
7314 ///
7315 /// This can only be used if the declaration is known to not be a
7316 /// redeclaration of an internal linkage declaration.
7317 ///
7318 /// For instance:
7319 ///
7320 /// auto x = []{};
7321 ///
7322 /// Attaching the initializer here makes this declaration not externally
7323 /// visible, because its type has internal linkage.
7324 ///
7325 /// FIXME: This is a hack.
7326 template<typename T>
isIncompleteDeclExternC(Sema & S,const T * D)7327 static bool isIncompleteDeclExternC(Sema &S, const T *D) {
7328 if (S.getLangOpts().CPlusPlus) {
7329 // In C++, the overloadable attribute negates the effects of extern "C".
7330 if (!D->isInExternCContext() || D->template hasAttr<OverloadableAttr>())
7331 return false;
7332
7333 // So do CUDA's host/device attributes.
7334 if (S.getLangOpts().CUDA && (D->template hasAttr<CUDADeviceAttr>() ||
7335 D->template hasAttr<CUDAHostAttr>()))
7336 return false;
7337 }
7338 return D->isExternC();
7339 }
7340
shouldConsiderLinkage(const VarDecl * VD)7341 static bool shouldConsiderLinkage(const VarDecl *VD) {
7342 const DeclContext *DC = VD->getDeclContext()->getRedeclContext();
7343 if (DC->isFunctionOrMethod() || isa<OMPDeclareReductionDecl>(DC) ||
7344 isa<OMPDeclareMapperDecl>(DC))
7345 return VD->hasExternalStorage();
7346 if (DC->isFileContext())
7347 return true;
7348 if (DC->isRecord())
7349 return false;
7350 if (DC->getDeclKind() == Decl::HLSLBuffer)
7351 return false;
7352
7353 if (isa<RequiresExprBodyDecl>(DC))
7354 return false;
7355 llvm_unreachable("Unexpected context");
7356 }
7357
shouldConsiderLinkage(const FunctionDecl * FD)7358 static bool shouldConsiderLinkage(const FunctionDecl *FD) {
7359 const DeclContext *DC = FD->getDeclContext()->getRedeclContext();
7360 if (DC->isFileContext() || DC->isFunctionOrMethod() ||
7361 isa<OMPDeclareReductionDecl>(DC) || isa<OMPDeclareMapperDecl>(DC))
7362 return true;
7363 if (DC->isRecord())
7364 return false;
7365 llvm_unreachable("Unexpected context");
7366 }
7367
hasParsedAttr(Scope * S,const Declarator & PD,ParsedAttr::Kind Kind)7368 static bool hasParsedAttr(Scope *S, const Declarator &PD,
7369 ParsedAttr::Kind Kind) {
7370 // Check decl attributes on the DeclSpec.
7371 if (PD.getDeclSpec().getAttributes().hasAttribute(Kind))
7372 return true;
7373
7374 // Walk the declarator structure, checking decl attributes that were in a type
7375 // position to the decl itself.
7376 for (unsigned I = 0, E = PD.getNumTypeObjects(); I != E; ++I) {
7377 if (PD.getTypeObject(I).getAttrs().hasAttribute(Kind))
7378 return true;
7379 }
7380
7381 // Finally, check attributes on the decl itself.
7382 return PD.getAttributes().hasAttribute(Kind) ||
7383 PD.getDeclarationAttributes().hasAttribute(Kind);
7384 }
7385
7386 /// Adjust the \c DeclContext for a function or variable that might be a
7387 /// function-local external declaration.
adjustContextForLocalExternDecl(DeclContext * & DC)7388 bool Sema::adjustContextForLocalExternDecl(DeclContext *&DC) {
7389 if (!DC->isFunctionOrMethod())
7390 return false;
7391
7392 // If this is a local extern function or variable declared within a function
7393 // template, don't add it into the enclosing namespace scope until it is
7394 // instantiated; it might have a dependent type right now.
7395 if (DC->isDependentContext())
7396 return true;
7397
7398 // C++11 [basic.link]p7:
7399 // When a block scope declaration of an entity with linkage is not found to
7400 // refer to some other declaration, then that entity is a member of the
7401 // innermost enclosing namespace.
7402 //
7403 // Per C++11 [namespace.def]p6, the innermost enclosing namespace is a
7404 // semantically-enclosing namespace, not a lexically-enclosing one.
7405 while (!DC->isFileContext() && !isa<LinkageSpecDecl>(DC))
7406 DC = DC->getParent();
7407 return true;
7408 }
7409
7410 /// Returns true if given declaration has external C language linkage.
isDeclExternC(const Decl * D)7411 static bool isDeclExternC(const Decl *D) {
7412 if (const auto *FD = dyn_cast<FunctionDecl>(D))
7413 return FD->isExternC();
7414 if (const auto *VD = dyn_cast<VarDecl>(D))
7415 return VD->isExternC();
7416
7417 llvm_unreachable("Unknown type of decl!");
7418 }
7419
7420 /// Returns true if there hasn't been any invalid type diagnosed.
diagnoseOpenCLTypes(Sema & Se,VarDecl * NewVD)7421 static bool diagnoseOpenCLTypes(Sema &Se, VarDecl *NewVD) {
7422 DeclContext *DC = NewVD->getDeclContext();
7423 QualType R = NewVD->getType();
7424
7425 // OpenCL v2.0 s6.9.b - Image type can only be used as a function argument.
7426 // OpenCL v2.0 s6.13.16.1 - Pipe type can only be used as a function
7427 // argument.
7428 if (R->isImageType() || R->isPipeType()) {
7429 Se.Diag(NewVD->getLocation(),
7430 diag::err_opencl_type_can_only_be_used_as_function_parameter)
7431 << R;
7432 NewVD->setInvalidDecl();
7433 return false;
7434 }
7435
7436 // OpenCL v1.2 s6.9.r:
7437 // The event type cannot be used to declare a program scope variable.
7438 // OpenCL v2.0 s6.9.q:
7439 // The clk_event_t and reserve_id_t types cannot be declared in program
7440 // scope.
7441 if (NewVD->hasGlobalStorage() && !NewVD->isStaticLocal()) {
7442 if (R->isReserveIDT() || R->isClkEventT() || R->isEventT()) {
7443 Se.Diag(NewVD->getLocation(),
7444 diag::err_invalid_type_for_program_scope_var)
7445 << R;
7446 NewVD->setInvalidDecl();
7447 return false;
7448 }
7449 }
7450
7451 // OpenCL v1.0 s6.8.a.3: Pointers to functions are not allowed.
7452 if (!Se.getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers",
7453 Se.getLangOpts())) {
7454 QualType NR = R.getCanonicalType();
7455 while (NR->isPointerType() || NR->isMemberFunctionPointerType() ||
7456 NR->isReferenceType()) {
7457 if (NR->isFunctionPointerType() || NR->isMemberFunctionPointerType() ||
7458 NR->isFunctionReferenceType()) {
7459 Se.Diag(NewVD->getLocation(), diag::err_opencl_function_pointer)
7460 << NR->isReferenceType();
7461 NewVD->setInvalidDecl();
7462 return false;
7463 }
7464 NR = NR->getPointeeType();
7465 }
7466 }
7467
7468 if (!Se.getOpenCLOptions().isAvailableOption("cl_khr_fp16",
7469 Se.getLangOpts())) {
7470 // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
7471 // half array type (unless the cl_khr_fp16 extension is enabled).
7472 if (Se.Context.getBaseElementType(R)->isHalfType()) {
7473 Se.Diag(NewVD->getLocation(), diag::err_opencl_half_declaration) << R;
7474 NewVD->setInvalidDecl();
7475 return false;
7476 }
7477 }
7478
7479 // OpenCL v1.2 s6.9.r:
7480 // The event type cannot be used with the __local, __constant and __global
7481 // address space qualifiers.
7482 if (R->isEventT()) {
7483 if (R.getAddressSpace() != LangAS::opencl_private) {
7484 Se.Diag(NewVD->getBeginLoc(), diag::err_event_t_addr_space_qual);
7485 NewVD->setInvalidDecl();
7486 return false;
7487 }
7488 }
7489
7490 if (R->isSamplerT()) {
7491 // OpenCL v1.2 s6.9.b p4:
7492 // The sampler type cannot be used with the __local and __global address
7493 // space qualifiers.
7494 if (R.getAddressSpace() == LangAS::opencl_local ||
7495 R.getAddressSpace() == LangAS::opencl_global) {
7496 Se.Diag(NewVD->getLocation(), diag::err_wrong_sampler_addressspace);
7497 NewVD->setInvalidDecl();
7498 }
7499
7500 // OpenCL v1.2 s6.12.14.1:
7501 // A global sampler must be declared with either the constant address
7502 // space qualifier or with the const qualifier.
7503 if (DC->isTranslationUnit() &&
7504 !(R.getAddressSpace() == LangAS::opencl_constant ||
7505 R.isConstQualified())) {
7506 Se.Diag(NewVD->getLocation(), diag::err_opencl_nonconst_global_sampler);
7507 NewVD->setInvalidDecl();
7508 }
7509 if (NewVD->isInvalidDecl())
7510 return false;
7511 }
7512
7513 return true;
7514 }
7515
7516 template <typename AttrTy>
copyAttrFromTypedefToDecl(Sema & S,Decl * D,const TypedefType * TT)7517 static void copyAttrFromTypedefToDecl(Sema &S, Decl *D, const TypedefType *TT) {
7518 const TypedefNameDecl *TND = TT->getDecl();
7519 if (const auto *Attribute = TND->getAttr<AttrTy>()) {
7520 AttrTy *Clone = Attribute->clone(S.Context);
7521 Clone->setInherited(true);
7522 D->addAttr(Clone);
7523 }
7524 }
7525
7526 // This function emits warning and a corresponding note based on the
7527 // ReadOnlyPlacementAttr attribute. The warning checks that all global variable
7528 // declarations of an annotated type must be const qualified.
emitReadOnlyPlacementAttrWarning(Sema & S,const VarDecl * VD)7529 void emitReadOnlyPlacementAttrWarning(Sema &S, const VarDecl *VD) {
7530 QualType VarType = VD->getType().getCanonicalType();
7531
7532 // Ignore local declarations (for now) and those with const qualification.
7533 // TODO: Local variables should not be allowed if their type declaration has
7534 // ReadOnlyPlacementAttr attribute. To be handled in follow-up patch.
7535 if (!VD || VD->hasLocalStorage() || VD->getType().isConstQualified())
7536 return;
7537
7538 if (VarType->isArrayType()) {
7539 // Retrieve element type for array declarations.
7540 VarType = S.getASTContext().getBaseElementType(VarType);
7541 }
7542
7543 const RecordDecl *RD = VarType->getAsRecordDecl();
7544
7545 // Check if the record declaration is present and if it has any attributes.
7546 if (RD == nullptr)
7547 return;
7548
7549 if (const auto *ConstDecl = RD->getAttr<ReadOnlyPlacementAttr>()) {
7550 S.Diag(VD->getLocation(), diag::warn_var_decl_not_read_only) << RD;
7551 S.Diag(ConstDecl->getLocation(), diag::note_enforce_read_only_placement);
7552 return;
7553 }
7554 }
7555
ActOnVariableDeclarator(Scope * S,Declarator & D,DeclContext * DC,TypeSourceInfo * TInfo,LookupResult & Previous,MultiTemplateParamsArg TemplateParamLists,bool & AddToScope,ArrayRef<BindingDecl * > Bindings)7556 NamedDecl *Sema::ActOnVariableDeclarator(
7557 Scope *S, Declarator &D, DeclContext *DC, TypeSourceInfo *TInfo,
7558 LookupResult &Previous, MultiTemplateParamsArg TemplateParamLists,
7559 bool &AddToScope, ArrayRef<BindingDecl *> Bindings) {
7560 QualType R = TInfo->getType();
7561 DeclarationName Name = GetNameForDeclarator(D).getName();
7562
7563 IdentifierInfo *II = Name.getAsIdentifierInfo();
7564 bool IsPlaceholderVariable = false;
7565
7566 if (D.isDecompositionDeclarator()) {
7567 // Take the name of the first declarator as our name for diagnostic
7568 // purposes.
7569 auto &Decomp = D.getDecompositionDeclarator();
7570 if (!Decomp.bindings().empty()) {
7571 II = Decomp.bindings()[0].Name;
7572 Name = II;
7573 }
7574 } else if (!II) {
7575 Diag(D.getIdentifierLoc(), diag::err_bad_variable_name) << Name;
7576 return nullptr;
7577 }
7578
7579
7580 DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
7581 StorageClass SC = StorageClassSpecToVarDeclStorageClass(D.getDeclSpec());
7582
7583 if (LangOpts.CPlusPlus && (DC->isClosure() || DC->isFunctionOrMethod()) &&
7584 SC != SC_Static && SC != SC_Extern && II && II->isPlaceholder()) {
7585 IsPlaceholderVariable = true;
7586 if (!Previous.empty()) {
7587 NamedDecl *PrevDecl = *Previous.begin();
7588 bool SameDC = PrevDecl->getDeclContext()->getRedeclContext()->Equals(
7589 DC->getRedeclContext());
7590 if (SameDC && isDeclInScope(PrevDecl, CurContext, S, false))
7591 DiagPlaceholderVariableDefinition(D.getIdentifierLoc());
7592 }
7593 }
7594
7595 // dllimport globals without explicit storage class are treated as extern. We
7596 // have to change the storage class this early to get the right DeclContext.
7597 if (SC == SC_None && !DC->isRecord() &&
7598 hasParsedAttr(S, D, ParsedAttr::AT_DLLImport) &&
7599 !hasParsedAttr(S, D, ParsedAttr::AT_DLLExport))
7600 SC = SC_Extern;
7601
7602 DeclContext *OriginalDC = DC;
7603 bool IsLocalExternDecl = SC == SC_Extern &&
7604 adjustContextForLocalExternDecl(DC);
7605
7606 if (SCSpec == DeclSpec::SCS_mutable) {
7607 // mutable can only appear on non-static class members, so it's always
7608 // an error here
7609 Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
7610 D.setInvalidType();
7611 SC = SC_None;
7612 }
7613
7614 if (getLangOpts().CPlusPlus11 && SCSpec == DeclSpec::SCS_register &&
7615 !D.getAsmLabel() && !getSourceManager().isInSystemMacro(
7616 D.getDeclSpec().getStorageClassSpecLoc())) {
7617 // In C++11, the 'register' storage class specifier is deprecated.
7618 // Suppress the warning in system macros, it's used in macros in some
7619 // popular C system headers, such as in glibc's htonl() macro.
7620 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7621 getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class
7622 : diag::warn_deprecated_register)
7623 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
7624 }
7625
7626 DiagnoseFunctionSpecifiers(D.getDeclSpec());
7627
7628 if (!DC->isRecord() && S->getFnParent() == nullptr) {
7629 // C99 6.9p2: The storage-class specifiers auto and register shall not
7630 // appear in the declaration specifiers in an external declaration.
7631 // Global Register+Asm is a GNU extension we support.
7632 if (SC == SC_Auto || (SC == SC_Register && !D.getAsmLabel())) {
7633 Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
7634 D.setInvalidType();
7635 }
7636 }
7637
7638 // If this variable has a VLA type and an initializer, try to
7639 // fold to a constant-sized type. This is otherwise invalid.
7640 if (D.hasInitializer() && R->isVariableArrayType())
7641 tryToFixVariablyModifiedVarType(TInfo, R, D.getIdentifierLoc(),
7642 /*DiagID=*/0);
7643
7644 bool IsMemberSpecialization = false;
7645 bool IsVariableTemplateSpecialization = false;
7646 bool IsPartialSpecialization = false;
7647 bool IsVariableTemplate = false;
7648 VarDecl *NewVD = nullptr;
7649 VarTemplateDecl *NewTemplate = nullptr;
7650 TemplateParameterList *TemplateParams = nullptr;
7651 if (!getLangOpts().CPlusPlus) {
7652 NewVD = VarDecl::Create(Context, DC, D.getBeginLoc(), D.getIdentifierLoc(),
7653 II, R, TInfo, SC);
7654
7655 if (R->getContainedDeducedType())
7656 ParsingInitForAutoVars.insert(NewVD);
7657
7658 if (D.isInvalidType())
7659 NewVD->setInvalidDecl();
7660
7661 if (NewVD->getType().hasNonTrivialToPrimitiveDestructCUnion() &&
7662 NewVD->hasLocalStorage())
7663 checkNonTrivialCUnion(NewVD->getType(), NewVD->getLocation(),
7664 NTCUC_AutoVar, NTCUK_Destruct);
7665 } else {
7666 bool Invalid = false;
7667
7668 if (DC->isRecord() && !CurContext->isRecord()) {
7669 // This is an out-of-line definition of a static data member.
7670 switch (SC) {
7671 case SC_None:
7672 break;
7673 case SC_Static:
7674 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7675 diag::err_static_out_of_line)
7676 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
7677 break;
7678 case SC_Auto:
7679 case SC_Register:
7680 case SC_Extern:
7681 // [dcl.stc] p2: The auto or register specifiers shall be applied only
7682 // to names of variables declared in a block or to function parameters.
7683 // [dcl.stc] p6: The extern specifier cannot be used in the declaration
7684 // of class members
7685
7686 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7687 diag::err_storage_class_for_static_member)
7688 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
7689 break;
7690 case SC_PrivateExtern:
7691 llvm_unreachable("C storage class in c++!");
7692 }
7693 }
7694
7695 if (SC == SC_Static && CurContext->isRecord()) {
7696 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
7697 // Walk up the enclosing DeclContexts to check for any that are
7698 // incompatible with static data members.
7699 const DeclContext *FunctionOrMethod = nullptr;
7700 const CXXRecordDecl *AnonStruct = nullptr;
7701 for (DeclContext *Ctxt = DC; Ctxt; Ctxt = Ctxt->getParent()) {
7702 if (Ctxt->isFunctionOrMethod()) {
7703 FunctionOrMethod = Ctxt;
7704 break;
7705 }
7706 const CXXRecordDecl *ParentDecl = dyn_cast<CXXRecordDecl>(Ctxt);
7707 if (ParentDecl && !ParentDecl->getDeclName()) {
7708 AnonStruct = ParentDecl;
7709 break;
7710 }
7711 }
7712 if (FunctionOrMethod) {
7713 // C++ [class.static.data]p5: A local class shall not have static data
7714 // members.
7715 Diag(D.getIdentifierLoc(),
7716 diag::err_static_data_member_not_allowed_in_local_class)
7717 << Name << RD->getDeclName()
7718 << llvm::to_underlying(RD->getTagKind());
7719 } else if (AnonStruct) {
7720 // C++ [class.static.data]p4: Unnamed classes and classes contained
7721 // directly or indirectly within unnamed classes shall not contain
7722 // static data members.
7723 Diag(D.getIdentifierLoc(),
7724 diag::err_static_data_member_not_allowed_in_anon_struct)
7725 << Name << llvm::to_underlying(AnonStruct->getTagKind());
7726 Invalid = true;
7727 } else if (RD->isUnion()) {
7728 // C++98 [class.union]p1: If a union contains a static data member,
7729 // the program is ill-formed. C++11 drops this restriction.
7730 Diag(D.getIdentifierLoc(),
7731 getLangOpts().CPlusPlus11
7732 ? diag::warn_cxx98_compat_static_data_member_in_union
7733 : diag::ext_static_data_member_in_union) << Name;
7734 }
7735 }
7736 }
7737
7738 // Match up the template parameter lists with the scope specifier, then
7739 // determine whether we have a template or a template specialization.
7740 bool InvalidScope = false;
7741 TemplateParams = MatchTemplateParametersToScopeSpecifier(
7742 D.getDeclSpec().getBeginLoc(), D.getIdentifierLoc(),
7743 D.getCXXScopeSpec(),
7744 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
7745 ? D.getName().TemplateId
7746 : nullptr,
7747 TemplateParamLists,
7748 /*never a friend*/ false, IsMemberSpecialization, InvalidScope);
7749 Invalid |= InvalidScope;
7750
7751 if (TemplateParams) {
7752 if (!TemplateParams->size() &&
7753 D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
7754 // There is an extraneous 'template<>' for this variable. Complain
7755 // about it, but allow the declaration of the variable.
7756 Diag(TemplateParams->getTemplateLoc(),
7757 diag::err_template_variable_noparams)
7758 << II
7759 << SourceRange(TemplateParams->getTemplateLoc(),
7760 TemplateParams->getRAngleLoc());
7761 TemplateParams = nullptr;
7762 } else {
7763 // Check that we can declare a template here.
7764 if (CheckTemplateDeclScope(S, TemplateParams))
7765 return nullptr;
7766
7767 if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
7768 // This is an explicit specialization or a partial specialization.
7769 IsVariableTemplateSpecialization = true;
7770 IsPartialSpecialization = TemplateParams->size() > 0;
7771 } else { // if (TemplateParams->size() > 0)
7772 // This is a template declaration.
7773 IsVariableTemplate = true;
7774
7775 // Only C++1y supports variable templates (N3651).
7776 Diag(D.getIdentifierLoc(),
7777 getLangOpts().CPlusPlus14
7778 ? diag::warn_cxx11_compat_variable_template
7779 : diag::ext_variable_template);
7780 }
7781 }
7782 } else {
7783 // Check that we can declare a member specialization here.
7784 if (!TemplateParamLists.empty() && IsMemberSpecialization &&
7785 CheckTemplateDeclScope(S, TemplateParamLists.back()))
7786 return nullptr;
7787 assert((Invalid ||
7788 D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) &&
7789 "should have a 'template<>' for this decl");
7790 }
7791
7792 if (IsVariableTemplateSpecialization) {
7793 SourceLocation TemplateKWLoc =
7794 TemplateParamLists.size() > 0
7795 ? TemplateParamLists[0]->getTemplateLoc()
7796 : SourceLocation();
7797 DeclResult Res = ActOnVarTemplateSpecialization(
7798 S, D, TInfo, TemplateKWLoc, TemplateParams, SC,
7799 IsPartialSpecialization);
7800 if (Res.isInvalid())
7801 return nullptr;
7802 NewVD = cast<VarDecl>(Res.get());
7803 AddToScope = false;
7804 } else if (D.isDecompositionDeclarator()) {
7805 NewVD = DecompositionDecl::Create(Context, DC, D.getBeginLoc(),
7806 D.getIdentifierLoc(), R, TInfo, SC,
7807 Bindings);
7808 } else
7809 NewVD = VarDecl::Create(Context, DC, D.getBeginLoc(),
7810 D.getIdentifierLoc(), II, R, TInfo, SC);
7811
7812 // If this is supposed to be a variable template, create it as such.
7813 if (IsVariableTemplate) {
7814 NewTemplate =
7815 VarTemplateDecl::Create(Context, DC, D.getIdentifierLoc(), Name,
7816 TemplateParams, NewVD);
7817 NewVD->setDescribedVarTemplate(NewTemplate);
7818 }
7819
7820 // If this decl has an auto type in need of deduction, make a note of the
7821 // Decl so we can diagnose uses of it in its own initializer.
7822 if (R->getContainedDeducedType())
7823 ParsingInitForAutoVars.insert(NewVD);
7824
7825 if (D.isInvalidType() || Invalid) {
7826 NewVD->setInvalidDecl();
7827 if (NewTemplate)
7828 NewTemplate->setInvalidDecl();
7829 }
7830
7831 SetNestedNameSpecifier(*this, NewVD, D);
7832
7833 // If we have any template parameter lists that don't directly belong to
7834 // the variable (matching the scope specifier), store them.
7835 // An explicit variable template specialization does not own any template
7836 // parameter lists.
7837 bool IsExplicitSpecialization =
7838 IsVariableTemplateSpecialization && !IsPartialSpecialization;
7839 unsigned VDTemplateParamLists =
7840 (TemplateParams && !IsExplicitSpecialization) ? 1 : 0;
7841 if (TemplateParamLists.size() > VDTemplateParamLists)
7842 NewVD->setTemplateParameterListsInfo(
7843 Context, TemplateParamLists.drop_back(VDTemplateParamLists));
7844 }
7845
7846 if (D.getDeclSpec().isInlineSpecified()) {
7847 if (!getLangOpts().CPlusPlus) {
7848 Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
7849 << 0;
7850 } else if (CurContext->isFunctionOrMethod()) {
7851 // 'inline' is not allowed on block scope variable declaration.
7852 Diag(D.getDeclSpec().getInlineSpecLoc(),
7853 diag::err_inline_declaration_block_scope) << Name
7854 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
7855 } else {
7856 Diag(D.getDeclSpec().getInlineSpecLoc(),
7857 getLangOpts().CPlusPlus17 ? diag::warn_cxx14_compat_inline_variable
7858 : diag::ext_inline_variable);
7859 NewVD->setInlineSpecified();
7860 }
7861 }
7862
7863 // Set the lexical context. If the declarator has a C++ scope specifier, the
7864 // lexical context will be different from the semantic context.
7865 NewVD->setLexicalDeclContext(CurContext);
7866 if (NewTemplate)
7867 NewTemplate->setLexicalDeclContext(CurContext);
7868
7869 if (IsLocalExternDecl) {
7870 if (D.isDecompositionDeclarator())
7871 for (auto *B : Bindings)
7872 B->setLocalExternDecl();
7873 else
7874 NewVD->setLocalExternDecl();
7875 }
7876
7877 bool EmitTLSUnsupportedError = false;
7878 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) {
7879 // C++11 [dcl.stc]p4:
7880 // When thread_local is applied to a variable of block scope the
7881 // storage-class-specifier static is implied if it does not appear
7882 // explicitly.
7883 // Core issue: 'static' is not implied if the variable is declared
7884 // 'extern'.
7885 if (NewVD->hasLocalStorage() &&
7886 (SCSpec != DeclSpec::SCS_unspecified ||
7887 TSCS != DeclSpec::TSCS_thread_local ||
7888 !DC->isFunctionOrMethod()))
7889 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
7890 diag::err_thread_non_global)
7891 << DeclSpec::getSpecifierName(TSCS);
7892 else if (!Context.getTargetInfo().isTLSSupported()) {
7893 if (getLangOpts().CUDA || getLangOpts().OpenMPIsTargetDevice ||
7894 getLangOpts().SYCLIsDevice) {
7895 // Postpone error emission until we've collected attributes required to
7896 // figure out whether it's a host or device variable and whether the
7897 // error should be ignored.
7898 EmitTLSUnsupportedError = true;
7899 // We still need to mark the variable as TLS so it shows up in AST with
7900 // proper storage class for other tools to use even if we're not going
7901 // to emit any code for it.
7902 NewVD->setTSCSpec(TSCS);
7903 } else
7904 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
7905 diag::err_thread_unsupported);
7906 } else
7907 NewVD->setTSCSpec(TSCS);
7908 }
7909
7910 switch (D.getDeclSpec().getConstexprSpecifier()) {
7911 case ConstexprSpecKind::Unspecified:
7912 break;
7913
7914 case ConstexprSpecKind::Consteval:
7915 Diag(D.getDeclSpec().getConstexprSpecLoc(),
7916 diag::err_constexpr_wrong_decl_kind)
7917 << static_cast<int>(D.getDeclSpec().getConstexprSpecifier());
7918 [[fallthrough]];
7919
7920 case ConstexprSpecKind::Constexpr:
7921 NewVD->setConstexpr(true);
7922 // C++1z [dcl.spec.constexpr]p1:
7923 // A static data member declared with the constexpr specifier is
7924 // implicitly an inline variable.
7925 if (NewVD->isStaticDataMember() &&
7926 (getLangOpts().CPlusPlus17 ||
7927 Context.getTargetInfo().getCXXABI().isMicrosoft()))
7928 NewVD->setImplicitlyInline();
7929 break;
7930
7931 case ConstexprSpecKind::Constinit:
7932 if (!NewVD->hasGlobalStorage())
7933 Diag(D.getDeclSpec().getConstexprSpecLoc(),
7934 diag::err_constinit_local_variable);
7935 else
7936 NewVD->addAttr(
7937 ConstInitAttr::Create(Context, D.getDeclSpec().getConstexprSpecLoc(),
7938 ConstInitAttr::Keyword_constinit));
7939 break;
7940 }
7941
7942 // C99 6.7.4p3
7943 // An inline definition of a function with external linkage shall
7944 // not contain a definition of a modifiable object with static or
7945 // thread storage duration...
7946 // We only apply this when the function is required to be defined
7947 // elsewhere, i.e. when the function is not 'extern inline'. Note
7948 // that a local variable with thread storage duration still has to
7949 // be marked 'static'. Also note that it's possible to get these
7950 // semantics in C++ using __attribute__((gnu_inline)).
7951 if (SC == SC_Static && S->getFnParent() != nullptr &&
7952 !NewVD->getType().isConstQualified()) {
7953 FunctionDecl *CurFD = getCurFunctionDecl();
7954 if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) {
7955 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7956 diag::warn_static_local_in_extern_inline);
7957 MaybeSuggestAddingStaticToDecl(CurFD);
7958 }
7959 }
7960
7961 if (D.getDeclSpec().isModulePrivateSpecified()) {
7962 if (IsVariableTemplateSpecialization)
7963 Diag(NewVD->getLocation(), diag::err_module_private_specialization)
7964 << (IsPartialSpecialization ? 1 : 0)
7965 << FixItHint::CreateRemoval(
7966 D.getDeclSpec().getModulePrivateSpecLoc());
7967 else if (IsMemberSpecialization)
7968 Diag(NewVD->getLocation(), diag::err_module_private_specialization)
7969 << 2
7970 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7971 else if (NewVD->hasLocalStorage())
7972 Diag(NewVD->getLocation(), diag::err_module_private_local)
7973 << 0 << NewVD
7974 << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7975 << FixItHint::CreateRemoval(
7976 D.getDeclSpec().getModulePrivateSpecLoc());
7977 else {
7978 NewVD->setModulePrivate();
7979 if (NewTemplate)
7980 NewTemplate->setModulePrivate();
7981 for (auto *B : Bindings)
7982 B->setModulePrivate();
7983 }
7984 }
7985
7986 if (getLangOpts().OpenCL) {
7987 deduceOpenCLAddressSpace(NewVD);
7988
7989 DeclSpec::TSCS TSC = D.getDeclSpec().getThreadStorageClassSpec();
7990 if (TSC != TSCS_unspecified) {
7991 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
7992 diag::err_opencl_unknown_type_specifier)
7993 << getLangOpts().getOpenCLVersionString()
7994 << DeclSpec::getSpecifierName(TSC) << 1;
7995 NewVD->setInvalidDecl();
7996 }
7997 }
7998
7999 // WebAssembly tables are always in address space 1 (wasm_var). Don't apply
8000 // address space if the table has local storage (semantic checks elsewhere
8001 // will produce an error anyway).
8002 if (const auto *ATy = dyn_cast<ArrayType>(NewVD->getType())) {
8003 if (ATy && ATy->getElementType().isWebAssemblyReferenceType() &&
8004 !NewVD->hasLocalStorage()) {
8005 QualType Type = Context.getAddrSpaceQualType(
8006 NewVD->getType(), Context.getLangASForBuiltinAddressSpace(1));
8007 NewVD->setType(Type);
8008 }
8009 }
8010
8011 // Handle attributes prior to checking for duplicates in MergeVarDecl
8012 ProcessDeclAttributes(S, NewVD, D);
8013
8014 // FIXME: This is probably the wrong location to be doing this and we should
8015 // probably be doing this for more attributes (especially for function
8016 // pointer attributes such as format, warn_unused_result, etc.). Ideally
8017 // the code to copy attributes would be generated by TableGen.
8018 if (R->isFunctionPointerType())
8019 if (const auto *TT = R->getAs<TypedefType>())
8020 copyAttrFromTypedefToDecl<AllocSizeAttr>(*this, NewVD, TT);
8021
8022 if (getLangOpts().CUDA || getLangOpts().OpenMPIsTargetDevice ||
8023 getLangOpts().SYCLIsDevice) {
8024 if (EmitTLSUnsupportedError &&
8025 ((getLangOpts().CUDA && DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) ||
8026 (getLangOpts().OpenMPIsTargetDevice &&
8027 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(NewVD))))
8028 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
8029 diag::err_thread_unsupported);
8030
8031 if (EmitTLSUnsupportedError &&
8032 (LangOpts.SYCLIsDevice ||
8033 (LangOpts.OpenMP && LangOpts.OpenMPIsTargetDevice)))
8034 targetDiag(D.getIdentifierLoc(), diag::err_thread_unsupported);
8035 // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
8036 // storage [duration]."
8037 if (SC == SC_None && S->getFnParent() != nullptr &&
8038 (NewVD->hasAttr<CUDASharedAttr>() ||
8039 NewVD->hasAttr<CUDAConstantAttr>())) {
8040 NewVD->setStorageClass(SC_Static);
8041 }
8042 }
8043
8044 // Ensure that dllimport globals without explicit storage class are treated as
8045 // extern. The storage class is set above using parsed attributes. Now we can
8046 // check the VarDecl itself.
8047 assert(!NewVD->hasAttr<DLLImportAttr>() ||
8048 NewVD->getAttr<DLLImportAttr>()->isInherited() ||
8049 NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None);
8050
8051 // In auto-retain/release, infer strong retension for variables of
8052 // retainable type.
8053 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
8054 NewVD->setInvalidDecl();
8055
8056 // Handle GNU asm-label extension (encoded as an attribute).
8057 if (Expr *E = (Expr*)D.getAsmLabel()) {
8058 // The parser guarantees this is a string.
8059 StringLiteral *SE = cast<StringLiteral>(E);
8060 StringRef Label = SE->getString();
8061 if (S->getFnParent() != nullptr) {
8062 switch (SC) {
8063 case SC_None:
8064 case SC_Auto:
8065 Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
8066 break;
8067 case SC_Register:
8068 // Local Named register
8069 if (!Context.getTargetInfo().isValidGCCRegisterName(Label) &&
8070 DeclAttrsMatchCUDAMode(getLangOpts(), getCurFunctionDecl()))
8071 Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
8072 break;
8073 case SC_Static:
8074 case SC_Extern:
8075 case SC_PrivateExtern:
8076 break;
8077 }
8078 } else if (SC == SC_Register) {
8079 // Global Named register
8080 if (DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) {
8081 const auto &TI = Context.getTargetInfo();
8082 bool HasSizeMismatch;
8083
8084 if (!TI.isValidGCCRegisterName(Label))
8085 Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
8086 else if (!TI.validateGlobalRegisterVariable(Label,
8087 Context.getTypeSize(R),
8088 HasSizeMismatch))
8089 Diag(E->getExprLoc(), diag::err_asm_invalid_global_var_reg) << Label;
8090 else if (HasSizeMismatch)
8091 Diag(E->getExprLoc(), diag::err_asm_register_size_mismatch) << Label;
8092 }
8093
8094 if (!R->isIntegralType(Context) && !R->isPointerType()) {
8095 Diag(D.getBeginLoc(), diag::err_asm_bad_register_type);
8096 NewVD->setInvalidDecl(true);
8097 }
8098 }
8099
8100 NewVD->addAttr(AsmLabelAttr::Create(Context, Label,
8101 /*IsLiteralLabel=*/true,
8102 SE->getStrTokenLoc(0)));
8103 } else if (!ExtnameUndeclaredIdentifiers.empty()) {
8104 llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
8105 ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
8106 if (I != ExtnameUndeclaredIdentifiers.end()) {
8107 if (isDeclExternC(NewVD)) {
8108 NewVD->addAttr(I->second);
8109 ExtnameUndeclaredIdentifiers.erase(I);
8110 } else
8111 Diag(NewVD->getLocation(), diag::warn_redefine_extname_not_applied)
8112 << /*Variable*/1 << NewVD;
8113 }
8114 }
8115
8116 // Find the shadowed declaration before filtering for scope.
8117 NamedDecl *ShadowedDecl = D.getCXXScopeSpec().isEmpty()
8118 ? getShadowedDeclaration(NewVD, Previous)
8119 : nullptr;
8120
8121 // Don't consider existing declarations that are in a different
8122 // scope and are out-of-semantic-context declarations (if the new
8123 // declaration has linkage).
8124 FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewVD),
8125 D.getCXXScopeSpec().isNotEmpty() ||
8126 IsMemberSpecialization ||
8127 IsVariableTemplateSpecialization);
8128
8129 // Check whether the previous declaration is in the same block scope. This
8130 // affects whether we merge types with it, per C++11 [dcl.array]p3.
8131 if (getLangOpts().CPlusPlus &&
8132 NewVD->isLocalVarDecl() && NewVD->hasExternalStorage())
8133 NewVD->setPreviousDeclInSameBlockScope(
8134 Previous.isSingleResult() && !Previous.isShadowed() &&
8135 isDeclInScope(Previous.getFoundDecl(), OriginalDC, S, false));
8136
8137 if (!getLangOpts().CPlusPlus) {
8138 D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
8139 } else {
8140 // If this is an explicit specialization of a static data member, check it.
8141 if (IsMemberSpecialization && !NewVD->isInvalidDecl() &&
8142 CheckMemberSpecialization(NewVD, Previous))
8143 NewVD->setInvalidDecl();
8144
8145 // Merge the decl with the existing one if appropriate.
8146 if (!Previous.empty()) {
8147 if (Previous.isSingleResult() &&
8148 isa<FieldDecl>(Previous.getFoundDecl()) &&
8149 D.getCXXScopeSpec().isSet()) {
8150 // The user tried to define a non-static data member
8151 // out-of-line (C++ [dcl.meaning]p1).
8152 Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
8153 << D.getCXXScopeSpec().getRange();
8154 Previous.clear();
8155 NewVD->setInvalidDecl();
8156 }
8157 } else if (D.getCXXScopeSpec().isSet()) {
8158 // No previous declaration in the qualifying scope.
8159 Diag(D.getIdentifierLoc(), diag::err_no_member)
8160 << Name << computeDeclContext(D.getCXXScopeSpec(), true)
8161 << D.getCXXScopeSpec().getRange();
8162 NewVD->setInvalidDecl();
8163 }
8164
8165 if (!IsVariableTemplateSpecialization && !IsPlaceholderVariable)
8166 D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
8167
8168 // CheckVariableDeclaration will set NewVD as invalid if something is in
8169 // error like WebAssembly tables being declared as arrays with a non-zero
8170 // size, but then parsing continues and emits further errors on that line.
8171 // To avoid that we check here if it happened and return nullptr.
8172 if (NewVD->getType()->isWebAssemblyTableType() && NewVD->isInvalidDecl())
8173 return nullptr;
8174
8175 if (NewTemplate) {
8176 VarTemplateDecl *PrevVarTemplate =
8177 NewVD->getPreviousDecl()
8178 ? NewVD->getPreviousDecl()->getDescribedVarTemplate()
8179 : nullptr;
8180
8181 // Check the template parameter list of this declaration, possibly
8182 // merging in the template parameter list from the previous variable
8183 // template declaration.
8184 if (CheckTemplateParameterList(
8185 TemplateParams,
8186 PrevVarTemplate ? PrevVarTemplate->getTemplateParameters()
8187 : nullptr,
8188 (D.getCXXScopeSpec().isSet() && DC && DC->isRecord() &&
8189 DC->isDependentContext())
8190 ? TPC_ClassTemplateMember
8191 : TPC_VarTemplate))
8192 NewVD->setInvalidDecl();
8193
8194 // If we are providing an explicit specialization of a static variable
8195 // template, make a note of that.
8196 if (PrevVarTemplate &&
8197 PrevVarTemplate->getInstantiatedFromMemberTemplate())
8198 PrevVarTemplate->setMemberSpecialization();
8199 }
8200 }
8201
8202 // Diagnose shadowed variables iff this isn't a redeclaration.
8203 if (!IsPlaceholderVariable && ShadowedDecl && !D.isRedeclaration())
8204 CheckShadow(NewVD, ShadowedDecl, Previous);
8205
8206 ProcessPragmaWeak(S, NewVD);
8207
8208 // If this is the first declaration of an extern C variable, update
8209 // the map of such variables.
8210 if (NewVD->isFirstDecl() && !NewVD->isInvalidDecl() &&
8211 isIncompleteDeclExternC(*this, NewVD))
8212 RegisterLocallyScopedExternCDecl(NewVD, S);
8213
8214 if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
8215 MangleNumberingContext *MCtx;
8216 Decl *ManglingContextDecl;
8217 std::tie(MCtx, ManglingContextDecl) =
8218 getCurrentMangleNumberContext(NewVD->getDeclContext());
8219 if (MCtx) {
8220 Context.setManglingNumber(
8221 NewVD, MCtx->getManglingNumber(
8222 NewVD, getMSManglingNumber(getLangOpts(), S)));
8223 Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
8224 }
8225 }
8226
8227 // Special handling of variable named 'main'.
8228 if (Name.getAsIdentifierInfo() && Name.getAsIdentifierInfo()->isStr("main") &&
8229 NewVD->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
8230 !getLangOpts().Freestanding && !NewVD->getDescribedVarTemplate()) {
8231
8232 // C++ [basic.start.main]p3
8233 // A program that declares a variable main at global scope is ill-formed.
8234 if (getLangOpts().CPlusPlus)
8235 Diag(D.getBeginLoc(), diag::err_main_global_variable);
8236
8237 // In C, and external-linkage variable named main results in undefined
8238 // behavior.
8239 else if (NewVD->hasExternalFormalLinkage())
8240 Diag(D.getBeginLoc(), diag::warn_main_redefined);
8241 }
8242
8243 if (D.isRedeclaration() && !Previous.empty()) {
8244 NamedDecl *Prev = Previous.getRepresentativeDecl();
8245 checkDLLAttributeRedeclaration(*this, Prev, NewVD, IsMemberSpecialization,
8246 D.isFunctionDefinition());
8247 }
8248
8249 if (NewTemplate) {
8250 if (NewVD->isInvalidDecl())
8251 NewTemplate->setInvalidDecl();
8252 ActOnDocumentableDecl(NewTemplate);
8253 return NewTemplate;
8254 }
8255
8256 if (IsMemberSpecialization && !NewVD->isInvalidDecl())
8257 CompleteMemberSpecialization(NewVD, Previous);
8258
8259 emitReadOnlyPlacementAttrWarning(*this, NewVD);
8260
8261 return NewVD;
8262 }
8263
8264 /// Enum describing the %select options in diag::warn_decl_shadow.
8265 enum ShadowedDeclKind {
8266 SDK_Local,
8267 SDK_Global,
8268 SDK_StaticMember,
8269 SDK_Field,
8270 SDK_Typedef,
8271 SDK_Using,
8272 SDK_StructuredBinding
8273 };
8274
8275 /// Determine what kind of declaration we're shadowing.
computeShadowedDeclKind(const NamedDecl * ShadowedDecl,const DeclContext * OldDC)8276 static ShadowedDeclKind computeShadowedDeclKind(const NamedDecl *ShadowedDecl,
8277 const DeclContext *OldDC) {
8278 if (isa<TypeAliasDecl>(ShadowedDecl))
8279 return SDK_Using;
8280 else if (isa<TypedefDecl>(ShadowedDecl))
8281 return SDK_Typedef;
8282 else if (isa<BindingDecl>(ShadowedDecl))
8283 return SDK_StructuredBinding;
8284 else if (isa<RecordDecl>(OldDC))
8285 return isa<FieldDecl>(ShadowedDecl) ? SDK_Field : SDK_StaticMember;
8286
8287 return OldDC->isFileContext() ? SDK_Global : SDK_Local;
8288 }
8289
8290 /// Return the location of the capture if the given lambda captures the given
8291 /// variable \p VD, or an invalid source location otherwise.
getCaptureLocation(const LambdaScopeInfo * LSI,const VarDecl * VD)8292 static SourceLocation getCaptureLocation(const LambdaScopeInfo *LSI,
8293 const VarDecl *VD) {
8294 for (const Capture &Capture : LSI->Captures) {
8295 if (Capture.isVariableCapture() && Capture.getVariable() == VD)
8296 return Capture.getLocation();
8297 }
8298 return SourceLocation();
8299 }
8300
shouldWarnIfShadowedDecl(const DiagnosticsEngine & Diags,const LookupResult & R)8301 static bool shouldWarnIfShadowedDecl(const DiagnosticsEngine &Diags,
8302 const LookupResult &R) {
8303 // Only diagnose if we're shadowing an unambiguous field or variable.
8304 if (R.getResultKind() != LookupResult::Found)
8305 return false;
8306
8307 // Return false if warning is ignored.
8308 return !Diags.isIgnored(diag::warn_decl_shadow, R.getNameLoc());
8309 }
8310
8311 /// Return the declaration shadowed by the given variable \p D, or null
8312 /// if it doesn't shadow any declaration or shadowing warnings are disabled.
getShadowedDeclaration(const VarDecl * D,const LookupResult & R)8313 NamedDecl *Sema::getShadowedDeclaration(const VarDecl *D,
8314 const LookupResult &R) {
8315 if (!shouldWarnIfShadowedDecl(Diags, R))
8316 return nullptr;
8317
8318 // Don't diagnose declarations at file scope.
8319 if (D->hasGlobalStorage() && !D->isStaticLocal())
8320 return nullptr;
8321
8322 NamedDecl *ShadowedDecl = R.getFoundDecl();
8323 return isa<VarDecl, FieldDecl, BindingDecl>(ShadowedDecl) ? ShadowedDecl
8324 : nullptr;
8325 }
8326
8327 /// Return the declaration shadowed by the given typedef \p D, or null
8328 /// if it doesn't shadow any declaration or shadowing warnings are disabled.
getShadowedDeclaration(const TypedefNameDecl * D,const LookupResult & R)8329 NamedDecl *Sema::getShadowedDeclaration(const TypedefNameDecl *D,
8330 const LookupResult &R) {
8331 // Don't warn if typedef declaration is part of a class
8332 if (D->getDeclContext()->isRecord())
8333 return nullptr;
8334
8335 if (!shouldWarnIfShadowedDecl(Diags, R))
8336 return nullptr;
8337
8338 NamedDecl *ShadowedDecl = R.getFoundDecl();
8339 return isa<TypedefNameDecl>(ShadowedDecl) ? ShadowedDecl : nullptr;
8340 }
8341
8342 /// Return the declaration shadowed by the given variable \p D, or null
8343 /// if it doesn't shadow any declaration or shadowing warnings are disabled.
getShadowedDeclaration(const BindingDecl * D,const LookupResult & R)8344 NamedDecl *Sema::getShadowedDeclaration(const BindingDecl *D,
8345 const LookupResult &R) {
8346 if (!shouldWarnIfShadowedDecl(Diags, R))
8347 return nullptr;
8348
8349 NamedDecl *ShadowedDecl = R.getFoundDecl();
8350 return isa<VarDecl, FieldDecl, BindingDecl>(ShadowedDecl) ? ShadowedDecl
8351 : nullptr;
8352 }
8353
8354 /// Diagnose variable or built-in function shadowing. Implements
8355 /// -Wshadow.
8356 ///
8357 /// This method is called whenever a VarDecl is added to a "useful"
8358 /// scope.
8359 ///
8360 /// \param ShadowedDecl the declaration that is shadowed by the given variable
8361 /// \param R the lookup of the name
8362 ///
CheckShadow(NamedDecl * D,NamedDecl * ShadowedDecl,const LookupResult & R)8363 void Sema::CheckShadow(NamedDecl *D, NamedDecl *ShadowedDecl,
8364 const LookupResult &R) {
8365 DeclContext *NewDC = D->getDeclContext();
8366
8367 if (FieldDecl *FD = dyn_cast<FieldDecl>(ShadowedDecl)) {
8368 // Fields are not shadowed by variables in C++ static methods.
8369 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
8370 if (MD->isStatic())
8371 return;
8372
8373 // Fields shadowed by constructor parameters are a special case. Usually
8374 // the constructor initializes the field with the parameter.
8375 if (isa<CXXConstructorDecl>(NewDC))
8376 if (const auto PVD = dyn_cast<ParmVarDecl>(D)) {
8377 // Remember that this was shadowed so we can either warn about its
8378 // modification or its existence depending on warning settings.
8379 ShadowingDecls.insert({PVD->getCanonicalDecl(), FD});
8380 return;
8381 }
8382 }
8383
8384 if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
8385 if (shadowedVar->isExternC()) {
8386 // For shadowing external vars, make sure that we point to the global
8387 // declaration, not a locally scoped extern declaration.
8388 for (auto *I : shadowedVar->redecls())
8389 if (I->isFileVarDecl()) {
8390 ShadowedDecl = I;
8391 break;
8392 }
8393 }
8394
8395 DeclContext *OldDC = ShadowedDecl->getDeclContext()->getRedeclContext();
8396
8397 unsigned WarningDiag = diag::warn_decl_shadow;
8398 SourceLocation CaptureLoc;
8399 if (isa<VarDecl>(D) && NewDC && isa<CXXMethodDecl>(NewDC)) {
8400 if (const auto *RD = dyn_cast<CXXRecordDecl>(NewDC->getParent())) {
8401 if (RD->isLambda() && OldDC->Encloses(NewDC->getLexicalParent())) {
8402 if (const auto *VD = dyn_cast<VarDecl>(ShadowedDecl)) {
8403 const auto *LSI = cast<LambdaScopeInfo>(getCurFunction());
8404 if (RD->getLambdaCaptureDefault() == LCD_None) {
8405 // Try to avoid warnings for lambdas with an explicit capture
8406 // list. Warn only when the lambda captures the shadowed decl
8407 // explicitly.
8408 CaptureLoc = getCaptureLocation(LSI, VD);
8409 if (CaptureLoc.isInvalid())
8410 WarningDiag = diag::warn_decl_shadow_uncaptured_local;
8411 } else {
8412 // Remember that this was shadowed so we can avoid the warning if
8413 // the shadowed decl isn't captured and the warning settings allow
8414 // it.
8415 cast<LambdaScopeInfo>(getCurFunction())
8416 ->ShadowingDecls.push_back({D, VD});
8417 return;
8418 }
8419 }
8420 if (isa<FieldDecl>(ShadowedDecl)) {
8421 // If lambda can capture this, then emit default shadowing warning,
8422 // Otherwise it is not really a shadowing case since field is not
8423 // available in lambda's body.
8424 // At this point we don't know that lambda can capture this, so
8425 // remember that this was shadowed and delay until we know.
8426 cast<LambdaScopeInfo>(getCurFunction())
8427 ->ShadowingDecls.push_back({D, ShadowedDecl});
8428 return;
8429 }
8430 }
8431 if (const auto *VD = dyn_cast<VarDecl>(ShadowedDecl);
8432 VD && VD->hasLocalStorage()) {
8433 // A variable can't shadow a local variable in an enclosing scope, if
8434 // they are separated by a non-capturing declaration context.
8435 for (DeclContext *ParentDC = NewDC;
8436 ParentDC && !ParentDC->Equals(OldDC);
8437 ParentDC = getLambdaAwareParentOfDeclContext(ParentDC)) {
8438 // Only block literals, captured statements, and lambda expressions
8439 // can capture; other scopes don't.
8440 if (!isa<BlockDecl>(ParentDC) && !isa<CapturedDecl>(ParentDC) &&
8441 !isLambdaCallOperator(ParentDC)) {
8442 return;
8443 }
8444 }
8445 }
8446 }
8447 }
8448
8449 // Never warn about shadowing a placeholder variable.
8450 if (ShadowedDecl->isPlaceholderVar(getLangOpts()))
8451 return;
8452
8453 // Only warn about certain kinds of shadowing for class members.
8454 if (NewDC && NewDC->isRecord()) {
8455 // In particular, don't warn about shadowing non-class members.
8456 if (!OldDC->isRecord())
8457 return;
8458
8459 // TODO: should we warn about static data members shadowing
8460 // static data members from base classes?
8461
8462 // TODO: don't diagnose for inaccessible shadowed members.
8463 // This is hard to do perfectly because we might friend the
8464 // shadowing context, but that's just a false negative.
8465 }
8466
8467
8468 DeclarationName Name = R.getLookupName();
8469
8470 // Emit warning and note.
8471 ShadowedDeclKind Kind = computeShadowedDeclKind(ShadowedDecl, OldDC);
8472 Diag(R.getNameLoc(), WarningDiag) << Name << Kind << OldDC;
8473 if (!CaptureLoc.isInvalid())
8474 Diag(CaptureLoc, diag::note_var_explicitly_captured_here)
8475 << Name << /*explicitly*/ 1;
8476 Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
8477 }
8478
8479 /// Diagnose shadowing for variables shadowed in the lambda record \p LambdaRD
8480 /// when these variables are captured by the lambda.
DiagnoseShadowingLambdaDecls(const LambdaScopeInfo * LSI)8481 void Sema::DiagnoseShadowingLambdaDecls(const LambdaScopeInfo *LSI) {
8482 for (const auto &Shadow : LSI->ShadowingDecls) {
8483 const NamedDecl *ShadowedDecl = Shadow.ShadowedDecl;
8484 // Try to avoid the warning when the shadowed decl isn't captured.
8485 const DeclContext *OldDC = ShadowedDecl->getDeclContext();
8486 if (const auto *VD = dyn_cast<VarDecl>(ShadowedDecl)) {
8487 SourceLocation CaptureLoc = getCaptureLocation(LSI, VD);
8488 Diag(Shadow.VD->getLocation(),
8489 CaptureLoc.isInvalid() ? diag::warn_decl_shadow_uncaptured_local
8490 : diag::warn_decl_shadow)
8491 << Shadow.VD->getDeclName()
8492 << computeShadowedDeclKind(ShadowedDecl, OldDC) << OldDC;
8493 if (CaptureLoc.isValid())
8494 Diag(CaptureLoc, diag::note_var_explicitly_captured_here)
8495 << Shadow.VD->getDeclName() << /*explicitly*/ 0;
8496 Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
8497 } else if (isa<FieldDecl>(ShadowedDecl)) {
8498 Diag(Shadow.VD->getLocation(),
8499 LSI->isCXXThisCaptured() ? diag::warn_decl_shadow
8500 : diag::warn_decl_shadow_uncaptured_local)
8501 << Shadow.VD->getDeclName()
8502 << computeShadowedDeclKind(ShadowedDecl, OldDC) << OldDC;
8503 Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
8504 }
8505 }
8506 }
8507
8508 /// Check -Wshadow without the advantage of a previous lookup.
CheckShadow(Scope * S,VarDecl * D)8509 void Sema::CheckShadow(Scope *S, VarDecl *D) {
8510 if (Diags.isIgnored(diag::warn_decl_shadow, D->getLocation()))
8511 return;
8512
8513 LookupResult R(*this, D->getDeclName(), D->getLocation(),
8514 Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration);
8515 LookupName(R, S);
8516 if (NamedDecl *ShadowedDecl = getShadowedDeclaration(D, R))
8517 CheckShadow(D, ShadowedDecl, R);
8518 }
8519
8520 /// Check if 'E', which is an expression that is about to be modified, refers
8521 /// to a constructor parameter that shadows a field.
CheckShadowingDeclModification(Expr * E,SourceLocation Loc)8522 void Sema::CheckShadowingDeclModification(Expr *E, SourceLocation Loc) {
8523 // Quickly ignore expressions that can't be shadowing ctor parameters.
8524 if (!getLangOpts().CPlusPlus || ShadowingDecls.empty())
8525 return;
8526 E = E->IgnoreParenImpCasts();
8527 auto *DRE = dyn_cast<DeclRefExpr>(E);
8528 if (!DRE)
8529 return;
8530 const NamedDecl *D = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl());
8531 auto I = ShadowingDecls.find(D);
8532 if (I == ShadowingDecls.end())
8533 return;
8534 const NamedDecl *ShadowedDecl = I->second;
8535 const DeclContext *OldDC = ShadowedDecl->getDeclContext();
8536 Diag(Loc, diag::warn_modifying_shadowing_decl) << D << OldDC;
8537 Diag(D->getLocation(), diag::note_var_declared_here) << D;
8538 Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
8539
8540 // Avoid issuing multiple warnings about the same decl.
8541 ShadowingDecls.erase(I);
8542 }
8543
8544 /// Check for conflict between this global or extern "C" declaration and
8545 /// previous global or extern "C" declarations. This is only used in C++.
8546 template<typename T>
checkGlobalOrExternCConflict(Sema & S,const T * ND,bool IsGlobal,LookupResult & Previous)8547 static bool checkGlobalOrExternCConflict(
8548 Sema &S, const T *ND, bool IsGlobal, LookupResult &Previous) {
8549 assert(S.getLangOpts().CPlusPlus && "only C++ has extern \"C\"");
8550 NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName());
8551
8552 if (!Prev && IsGlobal && !isIncompleteDeclExternC(S, ND)) {
8553 // The common case: this global doesn't conflict with any extern "C"
8554 // declaration.
8555 return false;
8556 }
8557
8558 if (Prev) {
8559 if (!IsGlobal || isIncompleteDeclExternC(S, ND)) {
8560 // Both the old and new declarations have C language linkage. This is a
8561 // redeclaration.
8562 Previous.clear();
8563 Previous.addDecl(Prev);
8564 return true;
8565 }
8566
8567 // This is a global, non-extern "C" declaration, and there is a previous
8568 // non-global extern "C" declaration. Diagnose if this is a variable
8569 // declaration.
8570 if (!isa<VarDecl>(ND))
8571 return false;
8572 } else {
8573 // The declaration is extern "C". Check for any declaration in the
8574 // translation unit which might conflict.
8575 if (IsGlobal) {
8576 // We have already performed the lookup into the translation unit.
8577 IsGlobal = false;
8578 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
8579 I != E; ++I) {
8580 if (isa<VarDecl>(*I)) {
8581 Prev = *I;
8582 break;
8583 }
8584 }
8585 } else {
8586 DeclContext::lookup_result R =
8587 S.Context.getTranslationUnitDecl()->lookup(ND->getDeclName());
8588 for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end();
8589 I != E; ++I) {
8590 if (isa<VarDecl>(*I)) {
8591 Prev = *I;
8592 break;
8593 }
8594 // FIXME: If we have any other entity with this name in global scope,
8595 // the declaration is ill-formed, but that is a defect: it breaks the
8596 // 'stat' hack, for instance. Only variables can have mangled name
8597 // clashes with extern "C" declarations, so only they deserve a
8598 // diagnostic.
8599 }
8600 }
8601
8602 if (!Prev)
8603 return false;
8604 }
8605
8606 // Use the first declaration's location to ensure we point at something which
8607 // is lexically inside an extern "C" linkage-spec.
8608 assert(Prev && "should have found a previous declaration to diagnose");
8609 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Prev))
8610 Prev = FD->getFirstDecl();
8611 else
8612 Prev = cast<VarDecl>(Prev)->getFirstDecl();
8613
8614 S.Diag(ND->getLocation(), diag::err_extern_c_global_conflict)
8615 << IsGlobal << ND;
8616 S.Diag(Prev->getLocation(), diag::note_extern_c_global_conflict)
8617 << IsGlobal;
8618 return false;
8619 }
8620
8621 /// Apply special rules for handling extern "C" declarations. Returns \c true
8622 /// if we have found that this is a redeclaration of some prior entity.
8623 ///
8624 /// Per C++ [dcl.link]p6:
8625 /// Two declarations [for a function or variable] with C language linkage
8626 /// with the same name that appear in different scopes refer to the same
8627 /// [entity]. An entity with C language linkage shall not be declared with
8628 /// the same name as an entity in global scope.
8629 template<typename T>
checkForConflictWithNonVisibleExternC(Sema & S,const T * ND,LookupResult & Previous)8630 static bool checkForConflictWithNonVisibleExternC(Sema &S, const T *ND,
8631 LookupResult &Previous) {
8632 if (!S.getLangOpts().CPlusPlus) {
8633 // In C, when declaring a global variable, look for a corresponding 'extern'
8634 // variable declared in function scope. We don't need this in C++, because
8635 // we find local extern decls in the surrounding file-scope DeclContext.
8636 if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
8637 if (NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName())) {
8638 Previous.clear();
8639 Previous.addDecl(Prev);
8640 return true;
8641 }
8642 }
8643 return false;
8644 }
8645
8646 // A declaration in the translation unit can conflict with an extern "C"
8647 // declaration.
8648 if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit())
8649 return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/true, Previous);
8650
8651 // An extern "C" declaration can conflict with a declaration in the
8652 // translation unit or can be a redeclaration of an extern "C" declaration
8653 // in another scope.
8654 if (isIncompleteDeclExternC(S,ND))
8655 return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/false, Previous);
8656
8657 // Neither global nor extern "C": nothing to do.
8658 return false;
8659 }
8660
CheckVariableDeclarationType(VarDecl * NewVD)8661 void Sema::CheckVariableDeclarationType(VarDecl *NewVD) {
8662 // If the decl is already known invalid, don't check it.
8663 if (NewVD->isInvalidDecl())
8664 return;
8665
8666 QualType T = NewVD->getType();
8667
8668 // Defer checking an 'auto' type until its initializer is attached.
8669 if (T->isUndeducedType())
8670 return;
8671
8672 if (NewVD->hasAttrs())
8673 CheckAlignasUnderalignment(NewVD);
8674
8675 if (T->isObjCObjectType()) {
8676 Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
8677 << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
8678 T = Context.getObjCObjectPointerType(T);
8679 NewVD->setType(T);
8680 }
8681
8682 // Emit an error if an address space was applied to decl with local storage.
8683 // This includes arrays of objects with address space qualifiers, but not
8684 // automatic variables that point to other address spaces.
8685 // ISO/IEC TR 18037 S5.1.2
8686 if (!getLangOpts().OpenCL && NewVD->hasLocalStorage() &&
8687 T.getAddressSpace() != LangAS::Default) {
8688 Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 0;
8689 NewVD->setInvalidDecl();
8690 return;
8691 }
8692
8693 // OpenCL v1.2 s6.8 - The static qualifier is valid only in program
8694 // scope.
8695 if (getLangOpts().OpenCLVersion == 120 &&
8696 !getOpenCLOptions().isAvailableOption("cl_clang_storage_class_specifiers",
8697 getLangOpts()) &&
8698 NewVD->isStaticLocal()) {
8699 Diag(NewVD->getLocation(), diag::err_static_function_scope);
8700 NewVD->setInvalidDecl();
8701 return;
8702 }
8703
8704 if (getLangOpts().OpenCL) {
8705 if (!diagnoseOpenCLTypes(*this, NewVD))
8706 return;
8707
8708 // OpenCL v2.0 s6.12.5 - The __block storage type is not supported.
8709 if (NewVD->hasAttr<BlocksAttr>()) {
8710 Diag(NewVD->getLocation(), diag::err_opencl_block_storage_type);
8711 return;
8712 }
8713
8714 if (T->isBlockPointerType()) {
8715 // OpenCL v2.0 s6.12.5 - Any block declaration must be const qualified and
8716 // can't use 'extern' storage class.
8717 if (!T.isConstQualified()) {
8718 Diag(NewVD->getLocation(), diag::err_opencl_invalid_block_declaration)
8719 << 0 /*const*/;
8720 NewVD->setInvalidDecl();
8721 return;
8722 }
8723 if (NewVD->hasExternalStorage()) {
8724 Diag(NewVD->getLocation(), diag::err_opencl_extern_block_declaration);
8725 NewVD->setInvalidDecl();
8726 return;
8727 }
8728 }
8729
8730 // FIXME: Adding local AS in C++ for OpenCL might make sense.
8731 if (NewVD->isFileVarDecl() || NewVD->isStaticLocal() ||
8732 NewVD->hasExternalStorage()) {
8733 if (!T->isSamplerT() && !T->isDependentType() &&
8734 !(T.getAddressSpace() == LangAS::opencl_constant ||
8735 (T.getAddressSpace() == LangAS::opencl_global &&
8736 getOpenCLOptions().areProgramScopeVariablesSupported(
8737 getLangOpts())))) {
8738 int Scope = NewVD->isStaticLocal() | NewVD->hasExternalStorage() << 1;
8739 if (getOpenCLOptions().areProgramScopeVariablesSupported(getLangOpts()))
8740 Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
8741 << Scope << "global or constant";
8742 else
8743 Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
8744 << Scope << "constant";
8745 NewVD->setInvalidDecl();
8746 return;
8747 }
8748 } else {
8749 if (T.getAddressSpace() == LangAS::opencl_global) {
8750 Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
8751 << 1 /*is any function*/ << "global";
8752 NewVD->setInvalidDecl();
8753 return;
8754 }
8755 if (T.getAddressSpace() == LangAS::opencl_constant ||
8756 T.getAddressSpace() == LangAS::opencl_local) {
8757 FunctionDecl *FD = getCurFunctionDecl();
8758 // OpenCL v1.1 s6.5.2 and s6.5.3: no local or constant variables
8759 // in functions.
8760 if (FD && !FD->hasAttr<OpenCLKernelAttr>()) {
8761 if (T.getAddressSpace() == LangAS::opencl_constant)
8762 Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
8763 << 0 /*non-kernel only*/ << "constant";
8764 else
8765 Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
8766 << 0 /*non-kernel only*/ << "local";
8767 NewVD->setInvalidDecl();
8768 return;
8769 }
8770 // OpenCL v2.0 s6.5.2 and s6.5.3: local and constant variables must be
8771 // in the outermost scope of a kernel function.
8772 if (FD && FD->hasAttr<OpenCLKernelAttr>()) {
8773 if (!getCurScope()->isFunctionScope()) {
8774 if (T.getAddressSpace() == LangAS::opencl_constant)
8775 Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope)
8776 << "constant";
8777 else
8778 Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope)
8779 << "local";
8780 NewVD->setInvalidDecl();
8781 return;
8782 }
8783 }
8784 } else if (T.getAddressSpace() != LangAS::opencl_private &&
8785 // If we are parsing a template we didn't deduce an addr
8786 // space yet.
8787 T.getAddressSpace() != LangAS::Default) {
8788 // Do not allow other address spaces on automatic variable.
8789 Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 1;
8790 NewVD->setInvalidDecl();
8791 return;
8792 }
8793 }
8794 }
8795
8796 if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
8797 && !NewVD->hasAttr<BlocksAttr>()) {
8798 if (getLangOpts().getGC() != LangOptions::NonGC)
8799 Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
8800 else {
8801 assert(!getLangOpts().ObjCAutoRefCount);
8802 Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
8803 }
8804 }
8805
8806 // WebAssembly tables must be static with a zero length and can't be
8807 // declared within functions.
8808 if (T->isWebAssemblyTableType()) {
8809 if (getCurScope()->getParent()) { // Parent is null at top-level
8810 Diag(NewVD->getLocation(), diag::err_wasm_table_in_function);
8811 NewVD->setInvalidDecl();
8812 return;
8813 }
8814 if (NewVD->getStorageClass() != SC_Static) {
8815 Diag(NewVD->getLocation(), diag::err_wasm_table_must_be_static);
8816 NewVD->setInvalidDecl();
8817 return;
8818 }
8819 const auto *ATy = dyn_cast<ConstantArrayType>(T.getTypePtr());
8820 if (!ATy || ATy->getSize().getSExtValue() != 0) {
8821 Diag(NewVD->getLocation(),
8822 diag::err_typecheck_wasm_table_must_have_zero_length);
8823 NewVD->setInvalidDecl();
8824 return;
8825 }
8826 }
8827
8828 bool isVM = T->isVariablyModifiedType();
8829 if (isVM || NewVD->hasAttr<CleanupAttr>() ||
8830 NewVD->hasAttr<BlocksAttr>())
8831 setFunctionHasBranchProtectedScope();
8832
8833 if ((isVM && NewVD->hasLinkage()) ||
8834 (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
8835 bool SizeIsNegative;
8836 llvm::APSInt Oversized;
8837 TypeSourceInfo *FixedTInfo = TryToFixInvalidVariablyModifiedTypeSourceInfo(
8838 NewVD->getTypeSourceInfo(), Context, SizeIsNegative, Oversized);
8839 QualType FixedT;
8840 if (FixedTInfo && T == NewVD->getTypeSourceInfo()->getType())
8841 FixedT = FixedTInfo->getType();
8842 else if (FixedTInfo) {
8843 // Type and type-as-written are canonically different. We need to fix up
8844 // both types separately.
8845 FixedT = TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
8846 Oversized);
8847 }
8848 if ((!FixedTInfo || FixedT.isNull()) && T->isVariableArrayType()) {
8849 const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
8850 // FIXME: This won't give the correct result for
8851 // int a[10][n];
8852 SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
8853
8854 if (NewVD->isFileVarDecl())
8855 Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
8856 << SizeRange;
8857 else if (NewVD->isStaticLocal())
8858 Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
8859 << SizeRange;
8860 else
8861 Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
8862 << SizeRange;
8863 NewVD->setInvalidDecl();
8864 return;
8865 }
8866
8867 if (!FixedTInfo) {
8868 if (NewVD->isFileVarDecl())
8869 Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
8870 else
8871 Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
8872 NewVD->setInvalidDecl();
8873 return;
8874 }
8875
8876 Diag(NewVD->getLocation(), diag::ext_vla_folded_to_constant);
8877 NewVD->setType(FixedT);
8878 NewVD->setTypeSourceInfo(FixedTInfo);
8879 }
8880
8881 if (T->isVoidType()) {
8882 // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names
8883 // of objects and functions.
8884 if (NewVD->isThisDeclarationADefinition() || getLangOpts().CPlusPlus) {
8885 Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
8886 << T;
8887 NewVD->setInvalidDecl();
8888 return;
8889 }
8890 }
8891
8892 if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
8893 Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
8894 NewVD->setInvalidDecl();
8895 return;
8896 }
8897
8898 if (!NewVD->hasLocalStorage() && T->isSizelessType() &&
8899 !T.isWebAssemblyReferenceType()) {
8900 Diag(NewVD->getLocation(), diag::err_sizeless_nonlocal) << T;
8901 NewVD->setInvalidDecl();
8902 return;
8903 }
8904
8905 if (isVM && NewVD->hasAttr<BlocksAttr>()) {
8906 Diag(NewVD->getLocation(), diag::err_block_on_vm);
8907 NewVD->setInvalidDecl();
8908 return;
8909 }
8910
8911 if (NewVD->isConstexpr() && !T->isDependentType() &&
8912 RequireLiteralType(NewVD->getLocation(), T,
8913 diag::err_constexpr_var_non_literal)) {
8914 NewVD->setInvalidDecl();
8915 return;
8916 }
8917
8918 // PPC MMA non-pointer types are not allowed as non-local variable types.
8919 if (Context.getTargetInfo().getTriple().isPPC64() &&
8920 !NewVD->isLocalVarDecl() &&
8921 CheckPPCMMAType(T, NewVD->getLocation())) {
8922 NewVD->setInvalidDecl();
8923 return;
8924 }
8925
8926 // Check that SVE types are only used in functions with SVE available.
8927 if (T->isSVESizelessBuiltinType() && isa<FunctionDecl>(CurContext)) {
8928 const FunctionDecl *FD = cast<FunctionDecl>(CurContext);
8929 llvm::StringMap<bool> CallerFeatureMap;
8930 Context.getFunctionFeatureMap(CallerFeatureMap, FD);
8931 if (!Builtin::evaluateRequiredTargetFeatures(
8932 "sve", CallerFeatureMap)) {
8933 Diag(NewVD->getLocation(), diag::err_sve_vector_in_non_sve_target) << T;
8934 NewVD->setInvalidDecl();
8935 return;
8936 }
8937 }
8938
8939 if (T->isRVVSizelessBuiltinType())
8940 checkRVVTypeSupport(T, NewVD->getLocation(), cast<Decl>(CurContext));
8941 }
8942
8943 /// Perform semantic checking on a newly-created variable
8944 /// declaration.
8945 ///
8946 /// This routine performs all of the type-checking required for a
8947 /// variable declaration once it has been built. It is used both to
8948 /// check variables after they have been parsed and their declarators
8949 /// have been translated into a declaration, and to check variables
8950 /// that have been instantiated from a template.
8951 ///
8952 /// Sets NewVD->isInvalidDecl() if an error was encountered.
8953 ///
8954 /// Returns true if the variable declaration is a redeclaration.
CheckVariableDeclaration(VarDecl * NewVD,LookupResult & Previous)8955 bool Sema::CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous) {
8956 CheckVariableDeclarationType(NewVD);
8957
8958 // If the decl is already known invalid, don't check it.
8959 if (NewVD->isInvalidDecl())
8960 return false;
8961
8962 // If we did not find anything by this name, look for a non-visible
8963 // extern "C" declaration with the same name.
8964 if (Previous.empty() &&
8965 checkForConflictWithNonVisibleExternC(*this, NewVD, Previous))
8966 Previous.setShadowed();
8967
8968 if (!Previous.empty()) {
8969 MergeVarDecl(NewVD, Previous);
8970 return true;
8971 }
8972 return false;
8973 }
8974
8975 /// AddOverriddenMethods - See if a method overrides any in the base classes,
8976 /// and if so, check that it's a valid override and remember it.
AddOverriddenMethods(CXXRecordDecl * DC,CXXMethodDecl * MD)8977 bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
8978 llvm::SmallPtrSet<const CXXMethodDecl*, 4> Overridden;
8979
8980 // Look for methods in base classes that this method might override.
8981 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
8982 /*DetectVirtual=*/false);
8983 auto VisitBase = [&] (const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
8984 CXXRecordDecl *BaseRecord = Specifier->getType()->getAsCXXRecordDecl();
8985 DeclarationName Name = MD->getDeclName();
8986
8987 if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
8988 // We really want to find the base class destructor here.
8989 QualType T = Context.getTypeDeclType(BaseRecord);
8990 CanQualType CT = Context.getCanonicalType(T);
8991 Name = Context.DeclarationNames.getCXXDestructorName(CT);
8992 }
8993
8994 for (NamedDecl *BaseND : BaseRecord->lookup(Name)) {
8995 CXXMethodDecl *BaseMD =
8996 dyn_cast<CXXMethodDecl>(BaseND->getCanonicalDecl());
8997 if (!BaseMD || !BaseMD->isVirtual() ||
8998 IsOverride(MD, BaseMD, /*UseMemberUsingDeclRules=*/false,
8999 /*ConsiderCudaAttrs=*/true))
9000 continue;
9001 if (!CheckExplicitObjectOverride(MD, BaseMD))
9002 continue;
9003 if (Overridden.insert(BaseMD).second) {
9004 MD->addOverriddenMethod(BaseMD);
9005 CheckOverridingFunctionReturnType(MD, BaseMD);
9006 CheckOverridingFunctionAttributes(MD, BaseMD);
9007 CheckOverridingFunctionExceptionSpec(MD, BaseMD);
9008 CheckIfOverriddenFunctionIsMarkedFinal(MD, BaseMD);
9009 }
9010
9011 // A method can only override one function from each base class. We
9012 // don't track indirectly overridden methods from bases of bases.
9013 return true;
9014 }
9015
9016 return false;
9017 };
9018
9019 DC->lookupInBases(VisitBase, Paths);
9020 return !Overridden.empty();
9021 }
9022
9023 namespace {
9024 // Struct for holding all of the extra arguments needed by
9025 // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
9026 struct ActOnFDArgs {
9027 Scope *S;
9028 Declarator &D;
9029 MultiTemplateParamsArg TemplateParamLists;
9030 bool AddToScope;
9031 };
9032 } // end anonymous namespace
9033
9034 namespace {
9035
9036 // Callback to only accept typo corrections that have a non-zero edit distance.
9037 // Also only accept corrections that have the same parent decl.
9038 class DifferentNameValidatorCCC final : public CorrectionCandidateCallback {
9039 public:
DifferentNameValidatorCCC(ASTContext & Context,FunctionDecl * TypoFD,CXXRecordDecl * Parent)9040 DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
9041 CXXRecordDecl *Parent)
9042 : Context(Context), OriginalFD(TypoFD),
9043 ExpectedParent(Parent ? Parent->getCanonicalDecl() : nullptr) {}
9044
ValidateCandidate(const TypoCorrection & candidate)9045 bool ValidateCandidate(const TypoCorrection &candidate) override {
9046 if (candidate.getEditDistance() == 0)
9047 return false;
9048
9049 SmallVector<unsigned, 1> MismatchedParams;
9050 for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
9051 CDeclEnd = candidate.end();
9052 CDecl != CDeclEnd; ++CDecl) {
9053 FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
9054
9055 if (FD && !FD->hasBody() &&
9056 hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
9057 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
9058 CXXRecordDecl *Parent = MD->getParent();
9059 if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
9060 return true;
9061 } else if (!ExpectedParent) {
9062 return true;
9063 }
9064 }
9065 }
9066
9067 return false;
9068 }
9069
clone()9070 std::unique_ptr<CorrectionCandidateCallback> clone() override {
9071 return std::make_unique<DifferentNameValidatorCCC>(*this);
9072 }
9073
9074 private:
9075 ASTContext &Context;
9076 FunctionDecl *OriginalFD;
9077 CXXRecordDecl *ExpectedParent;
9078 };
9079
9080 } // end anonymous namespace
9081
MarkTypoCorrectedFunctionDefinition(const NamedDecl * F)9082 void Sema::MarkTypoCorrectedFunctionDefinition(const NamedDecl *F) {
9083 TypoCorrectedFunctionDefinitions.insert(F);
9084 }
9085
9086 /// Generate diagnostics for an invalid function redeclaration.
9087 ///
9088 /// This routine handles generating the diagnostic messages for an invalid
9089 /// function redeclaration, including finding possible similar declarations
9090 /// or performing typo correction if there are no previous declarations with
9091 /// the same name.
9092 ///
9093 /// Returns a NamedDecl iff typo correction was performed and substituting in
9094 /// the new declaration name does not cause new errors.
DiagnoseInvalidRedeclaration(Sema & SemaRef,LookupResult & Previous,FunctionDecl * NewFD,ActOnFDArgs & ExtraArgs,bool IsLocalFriend,Scope * S)9095 static NamedDecl *DiagnoseInvalidRedeclaration(
9096 Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
9097 ActOnFDArgs &ExtraArgs, bool IsLocalFriend, Scope *S) {
9098 DeclarationName Name = NewFD->getDeclName();
9099 DeclContext *NewDC = NewFD->getDeclContext();
9100 SmallVector<unsigned, 1> MismatchedParams;
9101 SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches;
9102 TypoCorrection Correction;
9103 bool IsDefinition = ExtraArgs.D.isFunctionDefinition();
9104 unsigned DiagMsg =
9105 IsLocalFriend ? diag::err_no_matching_local_friend :
9106 NewFD->getFriendObjectKind() ? diag::err_qualified_friend_no_match :
9107 diag::err_member_decl_does_not_match;
9108 LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
9109 IsLocalFriend ? Sema::LookupLocalFriendName
9110 : Sema::LookupOrdinaryName,
9111 Sema::ForVisibleRedeclaration);
9112
9113 NewFD->setInvalidDecl();
9114 if (IsLocalFriend)
9115 SemaRef.LookupName(Prev, S);
9116 else
9117 SemaRef.LookupQualifiedName(Prev, NewDC);
9118 assert(!Prev.isAmbiguous() &&
9119 "Cannot have an ambiguity in previous-declaration lookup");
9120 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
9121 DifferentNameValidatorCCC CCC(SemaRef.Context, NewFD,
9122 MD ? MD->getParent() : nullptr);
9123 if (!Prev.empty()) {
9124 for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
9125 Func != FuncEnd; ++Func) {
9126 FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
9127 if (FD &&
9128 hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
9129 // Add 1 to the index so that 0 can mean the mismatch didn't
9130 // involve a parameter
9131 unsigned ParamNum =
9132 MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
9133 NearMatches.push_back(std::make_pair(FD, ParamNum));
9134 }
9135 }
9136 // If the qualified name lookup yielded nothing, try typo correction
9137 } else if ((Correction = SemaRef.CorrectTypo(
9138 Prev.getLookupNameInfo(), Prev.getLookupKind(), S,
9139 &ExtraArgs.D.getCXXScopeSpec(), CCC, Sema::CTK_ErrorRecovery,
9140 IsLocalFriend ? nullptr : NewDC))) {
9141 // Set up everything for the call to ActOnFunctionDeclarator
9142 ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
9143 ExtraArgs.D.getIdentifierLoc());
9144 Previous.clear();
9145 Previous.setLookupName(Correction.getCorrection());
9146 for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
9147 CDeclEnd = Correction.end();
9148 CDecl != CDeclEnd; ++CDecl) {
9149 FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
9150 if (FD && !FD->hasBody() &&
9151 hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
9152 Previous.addDecl(FD);
9153 }
9154 }
9155 bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
9156
9157 NamedDecl *Result;
9158 // Retry building the function declaration with the new previous
9159 // declarations, and with errors suppressed.
9160 {
9161 // Trap errors.
9162 Sema::SFINAETrap Trap(SemaRef);
9163
9164 // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
9165 // pieces need to verify the typo-corrected C++ declaration and hopefully
9166 // eliminate the need for the parameter pack ExtraArgs.
9167 Result = SemaRef.ActOnFunctionDeclarator(
9168 ExtraArgs.S, ExtraArgs.D,
9169 Correction.getCorrectionDecl()->getDeclContext(),
9170 NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
9171 ExtraArgs.AddToScope);
9172
9173 if (Trap.hasErrorOccurred())
9174 Result = nullptr;
9175 }
9176
9177 if (Result) {
9178 // Determine which correction we picked.
9179 Decl *Canonical = Result->getCanonicalDecl();
9180 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
9181 I != E; ++I)
9182 if ((*I)->getCanonicalDecl() == Canonical)
9183 Correction.setCorrectionDecl(*I);
9184
9185 // Let Sema know about the correction.
9186 SemaRef.MarkTypoCorrectedFunctionDefinition(Result);
9187 SemaRef.diagnoseTypo(
9188 Correction,
9189 SemaRef.PDiag(IsLocalFriend
9190 ? diag::err_no_matching_local_friend_suggest
9191 : diag::err_member_decl_does_not_match_suggest)
9192 << Name << NewDC << IsDefinition);
9193 return Result;
9194 }
9195
9196 // Pretend the typo correction never occurred
9197 ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
9198 ExtraArgs.D.getIdentifierLoc());
9199 ExtraArgs.D.setRedeclaration(wasRedeclaration);
9200 Previous.clear();
9201 Previous.setLookupName(Name);
9202 }
9203
9204 SemaRef.Diag(NewFD->getLocation(), DiagMsg)
9205 << Name << NewDC << IsDefinition << NewFD->getLocation();
9206
9207 bool NewFDisConst = false;
9208 if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
9209 NewFDisConst = NewMD->isConst();
9210
9211 for (SmallVectorImpl<std::pair<FunctionDecl *, unsigned> >::iterator
9212 NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
9213 NearMatch != NearMatchEnd; ++NearMatch) {
9214 FunctionDecl *FD = NearMatch->first;
9215 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
9216 bool FDisConst = MD && MD->isConst();
9217 bool IsMember = MD || !IsLocalFriend;
9218
9219 // FIXME: These notes are poorly worded for the local friend case.
9220 if (unsigned Idx = NearMatch->second) {
9221 ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
9222 SourceLocation Loc = FDParam->getTypeSpecStartLoc();
9223 if (Loc.isInvalid()) Loc = FD->getLocation();
9224 SemaRef.Diag(Loc, IsMember ? diag::note_member_def_close_param_match
9225 : diag::note_local_decl_close_param_match)
9226 << Idx << FDParam->getType()
9227 << NewFD->getParamDecl(Idx - 1)->getType();
9228 } else if (FDisConst != NewFDisConst) {
9229 SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
9230 << NewFDisConst << FD->getSourceRange().getEnd()
9231 << (NewFDisConst
9232 ? FixItHint::CreateRemoval(ExtraArgs.D.getFunctionTypeInfo()
9233 .getConstQualifierLoc())
9234 : FixItHint::CreateInsertion(ExtraArgs.D.getFunctionTypeInfo()
9235 .getRParenLoc()
9236 .getLocWithOffset(1),
9237 " const"));
9238 } else
9239 SemaRef.Diag(FD->getLocation(),
9240 IsMember ? diag::note_member_def_close_match
9241 : diag::note_local_decl_close_match);
9242 }
9243 return nullptr;
9244 }
9245
getFunctionStorageClass(Sema & SemaRef,Declarator & D)9246 static StorageClass getFunctionStorageClass(Sema &SemaRef, Declarator &D) {
9247 switch (D.getDeclSpec().getStorageClassSpec()) {
9248 default: llvm_unreachable("Unknown storage class!");
9249 case DeclSpec::SCS_auto:
9250 case DeclSpec::SCS_register:
9251 case DeclSpec::SCS_mutable:
9252 SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
9253 diag::err_typecheck_sclass_func);
9254 D.getMutableDeclSpec().ClearStorageClassSpecs();
9255 D.setInvalidType();
9256 break;
9257 case DeclSpec::SCS_unspecified: break;
9258 case DeclSpec::SCS_extern:
9259 if (D.getDeclSpec().isExternInLinkageSpec())
9260 return SC_None;
9261 return SC_Extern;
9262 case DeclSpec::SCS_static: {
9263 if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
9264 // C99 6.7.1p5:
9265 // The declaration of an identifier for a function that has
9266 // block scope shall have no explicit storage-class specifier
9267 // other than extern
9268 // See also (C++ [dcl.stc]p4).
9269 SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
9270 diag::err_static_block_func);
9271 break;
9272 } else
9273 return SC_Static;
9274 }
9275 case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
9276 }
9277
9278 // No explicit storage class has already been returned
9279 return SC_None;
9280 }
9281
CreateNewFunctionDecl(Sema & SemaRef,Declarator & D,DeclContext * DC,QualType & R,TypeSourceInfo * TInfo,StorageClass SC,bool & IsVirtualOkay)9282 static FunctionDecl *CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
9283 DeclContext *DC, QualType &R,
9284 TypeSourceInfo *TInfo,
9285 StorageClass SC,
9286 bool &IsVirtualOkay) {
9287 DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
9288 DeclarationName Name = NameInfo.getName();
9289
9290 FunctionDecl *NewFD = nullptr;
9291 bool isInline = D.getDeclSpec().isInlineSpecified();
9292
9293 if (!SemaRef.getLangOpts().CPlusPlus) {
9294 // Determine whether the function was written with a prototype. This is
9295 // true when:
9296 // - there is a prototype in the declarator, or
9297 // - the type R of the function is some kind of typedef or other non-
9298 // attributed reference to a type name (which eventually refers to a
9299 // function type). Note, we can't always look at the adjusted type to
9300 // check this case because attributes may cause a non-function
9301 // declarator to still have a function type. e.g.,
9302 // typedef void func(int a);
9303 // __attribute__((noreturn)) func other_func; // This has a prototype
9304 bool HasPrototype =
9305 (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
9306 (D.getDeclSpec().isTypeRep() &&
9307 SemaRef.GetTypeFromParser(D.getDeclSpec().getRepAsType(), nullptr)
9308 ->isFunctionProtoType()) ||
9309 (!R->getAsAdjusted<FunctionType>() && R->isFunctionProtoType());
9310 assert(
9311 (HasPrototype || !SemaRef.getLangOpts().requiresStrictPrototypes()) &&
9312 "Strict prototypes are required");
9313
9314 NewFD = FunctionDecl::Create(
9315 SemaRef.Context, DC, D.getBeginLoc(), NameInfo, R, TInfo, SC,
9316 SemaRef.getCurFPFeatures().isFPConstrained(), isInline, HasPrototype,
9317 ConstexprSpecKind::Unspecified,
9318 /*TrailingRequiresClause=*/nullptr);
9319 if (D.isInvalidType())
9320 NewFD->setInvalidDecl();
9321
9322 return NewFD;
9323 }
9324
9325 ExplicitSpecifier ExplicitSpecifier = D.getDeclSpec().getExplicitSpecifier();
9326
9327 ConstexprSpecKind ConstexprKind = D.getDeclSpec().getConstexprSpecifier();
9328 if (ConstexprKind == ConstexprSpecKind::Constinit) {
9329 SemaRef.Diag(D.getDeclSpec().getConstexprSpecLoc(),
9330 diag::err_constexpr_wrong_decl_kind)
9331 << static_cast<int>(ConstexprKind);
9332 ConstexprKind = ConstexprSpecKind::Unspecified;
9333 D.getMutableDeclSpec().ClearConstexprSpec();
9334 }
9335 Expr *TrailingRequiresClause = D.getTrailingRequiresClause();
9336
9337 SemaRef.CheckExplicitObjectMemberFunction(DC, D, Name, R);
9338
9339 if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
9340 // This is a C++ constructor declaration.
9341 assert(DC->isRecord() &&
9342 "Constructors can only be declared in a member context");
9343
9344 R = SemaRef.CheckConstructorDeclarator(D, R, SC);
9345 return CXXConstructorDecl::Create(
9346 SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
9347 TInfo, ExplicitSpecifier, SemaRef.getCurFPFeatures().isFPConstrained(),
9348 isInline, /*isImplicitlyDeclared=*/false, ConstexprKind,
9349 InheritedConstructor(), TrailingRequiresClause);
9350
9351 } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
9352 // This is a C++ destructor declaration.
9353 if (DC->isRecord()) {
9354 R = SemaRef.CheckDestructorDeclarator(D, R, SC);
9355 CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
9356 CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
9357 SemaRef.Context, Record, D.getBeginLoc(), NameInfo, R, TInfo,
9358 SemaRef.getCurFPFeatures().isFPConstrained(), isInline,
9359 /*isImplicitlyDeclared=*/false, ConstexprKind,
9360 TrailingRequiresClause);
9361 // User defined destructors start as not selected if the class definition is still
9362 // not done.
9363 if (Record->isBeingDefined())
9364 NewDD->setIneligibleOrNotSelected(true);
9365
9366 // If the destructor needs an implicit exception specification, set it
9367 // now. FIXME: It'd be nice to be able to create the right type to start
9368 // with, but the type needs to reference the destructor declaration.
9369 if (SemaRef.getLangOpts().CPlusPlus11)
9370 SemaRef.AdjustDestructorExceptionSpec(NewDD);
9371
9372 IsVirtualOkay = true;
9373 return NewDD;
9374
9375 } else {
9376 SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
9377 D.setInvalidType();
9378
9379 // Create a FunctionDecl to satisfy the function definition parsing
9380 // code path.
9381 return FunctionDecl::Create(
9382 SemaRef.Context, DC, D.getBeginLoc(), D.getIdentifierLoc(), Name, R,
9383 TInfo, SC, SemaRef.getCurFPFeatures().isFPConstrained(), isInline,
9384 /*hasPrototype=*/true, ConstexprKind, TrailingRequiresClause);
9385 }
9386
9387 } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
9388 if (!DC->isRecord()) {
9389 SemaRef.Diag(D.getIdentifierLoc(),
9390 diag::err_conv_function_not_member);
9391 return nullptr;
9392 }
9393
9394 SemaRef.CheckConversionDeclarator(D, R, SC);
9395 if (D.isInvalidType())
9396 return nullptr;
9397
9398 IsVirtualOkay = true;
9399 return CXXConversionDecl::Create(
9400 SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
9401 TInfo, SemaRef.getCurFPFeatures().isFPConstrained(), isInline,
9402 ExplicitSpecifier, ConstexprKind, SourceLocation(),
9403 TrailingRequiresClause);
9404
9405 } else if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) {
9406 if (TrailingRequiresClause)
9407 SemaRef.Diag(TrailingRequiresClause->getBeginLoc(),
9408 diag::err_trailing_requires_clause_on_deduction_guide)
9409 << TrailingRequiresClause->getSourceRange();
9410 if (SemaRef.CheckDeductionGuideDeclarator(D, R, SC))
9411 return nullptr;
9412 return CXXDeductionGuideDecl::Create(SemaRef.Context, DC, D.getBeginLoc(),
9413 ExplicitSpecifier, NameInfo, R, TInfo,
9414 D.getEndLoc());
9415 } else if (DC->isRecord()) {
9416 // If the name of the function is the same as the name of the record,
9417 // then this must be an invalid constructor that has a return type.
9418 // (The parser checks for a return type and makes the declarator a
9419 // constructor if it has no return type).
9420 if (Name.getAsIdentifierInfo() &&
9421 Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
9422 SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
9423 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
9424 << SourceRange(D.getIdentifierLoc());
9425 return nullptr;
9426 }
9427
9428 // This is a C++ method declaration.
9429 CXXMethodDecl *Ret = CXXMethodDecl::Create(
9430 SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
9431 TInfo, SC, SemaRef.getCurFPFeatures().isFPConstrained(), isInline,
9432 ConstexprKind, SourceLocation(), TrailingRequiresClause);
9433 IsVirtualOkay = !Ret->isStatic();
9434 return Ret;
9435 } else {
9436 bool isFriend =
9437 SemaRef.getLangOpts().CPlusPlus && D.getDeclSpec().isFriendSpecified();
9438 if (!isFriend && SemaRef.CurContext->isRecord())
9439 return nullptr;
9440
9441 // Determine whether the function was written with a
9442 // prototype. This true when:
9443 // - we're in C++ (where every function has a prototype),
9444 return FunctionDecl::Create(
9445 SemaRef.Context, DC, D.getBeginLoc(), NameInfo, R, TInfo, SC,
9446 SemaRef.getCurFPFeatures().isFPConstrained(), isInline,
9447 true /*HasPrototype*/, ConstexprKind, TrailingRequiresClause);
9448 }
9449 }
9450
9451 enum OpenCLParamType {
9452 ValidKernelParam,
9453 PtrPtrKernelParam,
9454 PtrKernelParam,
9455 InvalidAddrSpacePtrKernelParam,
9456 InvalidKernelParam,
9457 RecordKernelParam
9458 };
9459
isOpenCLSizeDependentType(ASTContext & C,QualType Ty)9460 static bool isOpenCLSizeDependentType(ASTContext &C, QualType Ty) {
9461 // Size dependent types are just typedefs to normal integer types
9462 // (e.g. unsigned long), so we cannot distinguish them from other typedefs to
9463 // integers other than by their names.
9464 StringRef SizeTypeNames[] = {"size_t", "intptr_t", "uintptr_t", "ptrdiff_t"};
9465
9466 // Remove typedefs one by one until we reach a typedef
9467 // for a size dependent type.
9468 QualType DesugaredTy = Ty;
9469 do {
9470 ArrayRef<StringRef> Names(SizeTypeNames);
9471 auto Match = llvm::find(Names, DesugaredTy.getUnqualifiedType().getAsString());
9472 if (Names.end() != Match)
9473 return true;
9474
9475 Ty = DesugaredTy;
9476 DesugaredTy = Ty.getSingleStepDesugaredType(C);
9477 } while (DesugaredTy != Ty);
9478
9479 return false;
9480 }
9481
getOpenCLKernelParameterType(Sema & S,QualType PT)9482 static OpenCLParamType getOpenCLKernelParameterType(Sema &S, QualType PT) {
9483 if (PT->isDependentType())
9484 return InvalidKernelParam;
9485
9486 if (PT->isPointerType() || PT->isReferenceType()) {
9487 QualType PointeeType = PT->getPointeeType();
9488 if (PointeeType.getAddressSpace() == LangAS::opencl_generic ||
9489 PointeeType.getAddressSpace() == LangAS::opencl_private ||
9490 PointeeType.getAddressSpace() == LangAS::Default)
9491 return InvalidAddrSpacePtrKernelParam;
9492
9493 if (PointeeType->isPointerType()) {
9494 // This is a pointer to pointer parameter.
9495 // Recursively check inner type.
9496 OpenCLParamType ParamKind = getOpenCLKernelParameterType(S, PointeeType);
9497 if (ParamKind == InvalidAddrSpacePtrKernelParam ||
9498 ParamKind == InvalidKernelParam)
9499 return ParamKind;
9500
9501 // OpenCL v3.0 s6.11.a:
9502 // A restriction to pass pointers to pointers only applies to OpenCL C
9503 // v1.2 or below.
9504 if (S.getLangOpts().getOpenCLCompatibleVersion() > 120)
9505 return ValidKernelParam;
9506
9507 return PtrPtrKernelParam;
9508 }
9509
9510 // C++ for OpenCL v1.0 s2.4:
9511 // Moreover the types used in parameters of the kernel functions must be:
9512 // Standard layout types for pointer parameters. The same applies to
9513 // reference if an implementation supports them in kernel parameters.
9514 if (S.getLangOpts().OpenCLCPlusPlus &&
9515 !S.getOpenCLOptions().isAvailableOption(
9516 "__cl_clang_non_portable_kernel_param_types", S.getLangOpts())) {
9517 auto CXXRec = PointeeType.getCanonicalType()->getAsCXXRecordDecl();
9518 bool IsStandardLayoutType = true;
9519 if (CXXRec) {
9520 // If template type is not ODR-used its definition is only available
9521 // in the template definition not its instantiation.
9522 // FIXME: This logic doesn't work for types that depend on template
9523 // parameter (PR58590).
9524 if (!CXXRec->hasDefinition())
9525 CXXRec = CXXRec->getTemplateInstantiationPattern();
9526 if (!CXXRec || !CXXRec->hasDefinition() || !CXXRec->isStandardLayout())
9527 IsStandardLayoutType = false;
9528 }
9529 if (!PointeeType->isAtomicType() && !PointeeType->isVoidType() &&
9530 !IsStandardLayoutType)
9531 return InvalidKernelParam;
9532 }
9533
9534 // OpenCL v1.2 s6.9.p:
9535 // A restriction to pass pointers only applies to OpenCL C v1.2 or below.
9536 if (S.getLangOpts().getOpenCLCompatibleVersion() > 120)
9537 return ValidKernelParam;
9538
9539 return PtrKernelParam;
9540 }
9541
9542 // OpenCL v1.2 s6.9.k:
9543 // Arguments to kernel functions in a program cannot be declared with the
9544 // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
9545 // uintptr_t or a struct and/or union that contain fields declared to be one
9546 // of these built-in scalar types.
9547 if (isOpenCLSizeDependentType(S.getASTContext(), PT))
9548 return InvalidKernelParam;
9549
9550 if (PT->isImageType())
9551 return PtrKernelParam;
9552
9553 if (PT->isBooleanType() || PT->isEventT() || PT->isReserveIDT())
9554 return InvalidKernelParam;
9555
9556 // OpenCL extension spec v1.2 s9.5:
9557 // This extension adds support for half scalar and vector types as built-in
9558 // types that can be used for arithmetic operations, conversions etc.
9559 if (!S.getOpenCLOptions().isAvailableOption("cl_khr_fp16", S.getLangOpts()) &&
9560 PT->isHalfType())
9561 return InvalidKernelParam;
9562
9563 // Look into an array argument to check if it has a forbidden type.
9564 if (PT->isArrayType()) {
9565 const Type *UnderlyingTy = PT->getPointeeOrArrayElementType();
9566 // Call ourself to check an underlying type of an array. Since the
9567 // getPointeeOrArrayElementType returns an innermost type which is not an
9568 // array, this recursive call only happens once.
9569 return getOpenCLKernelParameterType(S, QualType(UnderlyingTy, 0));
9570 }
9571
9572 // C++ for OpenCL v1.0 s2.4:
9573 // Moreover the types used in parameters of the kernel functions must be:
9574 // Trivial and standard-layout types C++17 [basic.types] (plain old data
9575 // types) for parameters passed by value;
9576 if (S.getLangOpts().OpenCLCPlusPlus &&
9577 !S.getOpenCLOptions().isAvailableOption(
9578 "__cl_clang_non_portable_kernel_param_types", S.getLangOpts()) &&
9579 !PT->isOpenCLSpecificType() && !PT.isPODType(S.Context))
9580 return InvalidKernelParam;
9581
9582 if (PT->isRecordType())
9583 return RecordKernelParam;
9584
9585 return ValidKernelParam;
9586 }
9587
checkIsValidOpenCLKernelParameter(Sema & S,Declarator & D,ParmVarDecl * Param,llvm::SmallPtrSetImpl<const Type * > & ValidTypes)9588 static void checkIsValidOpenCLKernelParameter(
9589 Sema &S,
9590 Declarator &D,
9591 ParmVarDecl *Param,
9592 llvm::SmallPtrSetImpl<const Type *> &ValidTypes) {
9593 QualType PT = Param->getType();
9594
9595 // Cache the valid types we encounter to avoid rechecking structs that are
9596 // used again
9597 if (ValidTypes.count(PT.getTypePtr()))
9598 return;
9599
9600 switch (getOpenCLKernelParameterType(S, PT)) {
9601 case PtrPtrKernelParam:
9602 // OpenCL v3.0 s6.11.a:
9603 // A kernel function argument cannot be declared as a pointer to a pointer
9604 // type. [...] This restriction only applies to OpenCL C 1.2 or below.
9605 S.Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_param);
9606 D.setInvalidType();
9607 return;
9608
9609 case InvalidAddrSpacePtrKernelParam:
9610 // OpenCL v1.0 s6.5:
9611 // __kernel function arguments declared to be a pointer of a type can point
9612 // to one of the following address spaces only : __global, __local or
9613 // __constant.
9614 S.Diag(Param->getLocation(), diag::err_kernel_arg_address_space);
9615 D.setInvalidType();
9616 return;
9617
9618 // OpenCL v1.2 s6.9.k:
9619 // Arguments to kernel functions in a program cannot be declared with the
9620 // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
9621 // uintptr_t or a struct and/or union that contain fields declared to be
9622 // one of these built-in scalar types.
9623
9624 case InvalidKernelParam:
9625 // OpenCL v1.2 s6.8 n:
9626 // A kernel function argument cannot be declared
9627 // of event_t type.
9628 // Do not diagnose half type since it is diagnosed as invalid argument
9629 // type for any function elsewhere.
9630 if (!PT->isHalfType()) {
9631 S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
9632
9633 // Explain what typedefs are involved.
9634 const TypedefType *Typedef = nullptr;
9635 while ((Typedef = PT->getAs<TypedefType>())) {
9636 SourceLocation Loc = Typedef->getDecl()->getLocation();
9637 // SourceLocation may be invalid for a built-in type.
9638 if (Loc.isValid())
9639 S.Diag(Loc, diag::note_entity_declared_at) << PT;
9640 PT = Typedef->desugar();
9641 }
9642 }
9643
9644 D.setInvalidType();
9645 return;
9646
9647 case PtrKernelParam:
9648 case ValidKernelParam:
9649 ValidTypes.insert(PT.getTypePtr());
9650 return;
9651
9652 case RecordKernelParam:
9653 break;
9654 }
9655
9656 // Track nested structs we will inspect
9657 SmallVector<const Decl *, 4> VisitStack;
9658
9659 // Track where we are in the nested structs. Items will migrate from
9660 // VisitStack to HistoryStack as we do the DFS for bad field.
9661 SmallVector<const FieldDecl *, 4> HistoryStack;
9662 HistoryStack.push_back(nullptr);
9663
9664 // At this point we already handled everything except of a RecordType or
9665 // an ArrayType of a RecordType.
9666 assert((PT->isArrayType() || PT->isRecordType()) && "Unexpected type.");
9667 const RecordType *RecTy =
9668 PT->getPointeeOrArrayElementType()->getAs<RecordType>();
9669 const RecordDecl *OrigRecDecl = RecTy->getDecl();
9670
9671 VisitStack.push_back(RecTy->getDecl());
9672 assert(VisitStack.back() && "First decl null?");
9673
9674 do {
9675 const Decl *Next = VisitStack.pop_back_val();
9676 if (!Next) {
9677 assert(!HistoryStack.empty());
9678 // Found a marker, we have gone up a level
9679 if (const FieldDecl *Hist = HistoryStack.pop_back_val())
9680 ValidTypes.insert(Hist->getType().getTypePtr());
9681
9682 continue;
9683 }
9684
9685 // Adds everything except the original parameter declaration (which is not a
9686 // field itself) to the history stack.
9687 const RecordDecl *RD;
9688 if (const FieldDecl *Field = dyn_cast<FieldDecl>(Next)) {
9689 HistoryStack.push_back(Field);
9690
9691 QualType FieldTy = Field->getType();
9692 // Other field types (known to be valid or invalid) are handled while we
9693 // walk around RecordDecl::fields().
9694 assert((FieldTy->isArrayType() || FieldTy->isRecordType()) &&
9695 "Unexpected type.");
9696 const Type *FieldRecTy = FieldTy->getPointeeOrArrayElementType();
9697
9698 RD = FieldRecTy->castAs<RecordType>()->getDecl();
9699 } else {
9700 RD = cast<RecordDecl>(Next);
9701 }
9702
9703 // Add a null marker so we know when we've gone back up a level
9704 VisitStack.push_back(nullptr);
9705
9706 for (const auto *FD : RD->fields()) {
9707 QualType QT = FD->getType();
9708
9709 if (ValidTypes.count(QT.getTypePtr()))
9710 continue;
9711
9712 OpenCLParamType ParamType = getOpenCLKernelParameterType(S, QT);
9713 if (ParamType == ValidKernelParam)
9714 continue;
9715
9716 if (ParamType == RecordKernelParam) {
9717 VisitStack.push_back(FD);
9718 continue;
9719 }
9720
9721 // OpenCL v1.2 s6.9.p:
9722 // Arguments to kernel functions that are declared to be a struct or union
9723 // do not allow OpenCL objects to be passed as elements of the struct or
9724 // union. This restriction was lifted in OpenCL v2.0 with the introduction
9725 // of SVM.
9726 if (ParamType == PtrKernelParam || ParamType == PtrPtrKernelParam ||
9727 ParamType == InvalidAddrSpacePtrKernelParam) {
9728 S.Diag(Param->getLocation(),
9729 diag::err_record_with_pointers_kernel_param)
9730 << PT->isUnionType()
9731 << PT;
9732 } else {
9733 S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
9734 }
9735
9736 S.Diag(OrigRecDecl->getLocation(), diag::note_within_field_of_type)
9737 << OrigRecDecl->getDeclName();
9738
9739 // We have an error, now let's go back up through history and show where
9740 // the offending field came from
9741 for (ArrayRef<const FieldDecl *>::const_iterator
9742 I = HistoryStack.begin() + 1,
9743 E = HistoryStack.end();
9744 I != E; ++I) {
9745 const FieldDecl *OuterField = *I;
9746 S.Diag(OuterField->getLocation(), diag::note_within_field_of_type)
9747 << OuterField->getType();
9748 }
9749
9750 S.Diag(FD->getLocation(), diag::note_illegal_field_declared_here)
9751 << QT->isPointerType()
9752 << QT;
9753 D.setInvalidType();
9754 return;
9755 }
9756 } while (!VisitStack.empty());
9757 }
9758
9759 /// Find the DeclContext in which a tag is implicitly declared if we see an
9760 /// elaborated type specifier in the specified context, and lookup finds
9761 /// nothing.
getTagInjectionContext(DeclContext * DC)9762 static DeclContext *getTagInjectionContext(DeclContext *DC) {
9763 while (!DC->isFileContext() && !DC->isFunctionOrMethod())
9764 DC = DC->getParent();
9765 return DC;
9766 }
9767
9768 /// Find the Scope in which a tag is implicitly declared if we see an
9769 /// elaborated type specifier in the specified context, and lookup finds
9770 /// nothing.
getTagInjectionScope(Scope * S,const LangOptions & LangOpts)9771 static Scope *getTagInjectionScope(Scope *S, const LangOptions &LangOpts) {
9772 while (S->isClassScope() ||
9773 (LangOpts.CPlusPlus &&
9774 S->isFunctionPrototypeScope()) ||
9775 ((S->getFlags() & Scope::DeclScope) == 0) ||
9776 (S->getEntity() && S->getEntity()->isTransparentContext()))
9777 S = S->getParent();
9778 return S;
9779 }
9780
9781 /// Determine whether a declaration matches a known function in namespace std.
isStdBuiltin(ASTContext & Ctx,FunctionDecl * FD,unsigned BuiltinID)9782 static bool isStdBuiltin(ASTContext &Ctx, FunctionDecl *FD,
9783 unsigned BuiltinID) {
9784 switch (BuiltinID) {
9785 case Builtin::BI__GetExceptionInfo:
9786 // No type checking whatsoever.
9787 return Ctx.getTargetInfo().getCXXABI().isMicrosoft();
9788
9789 case Builtin::BIaddressof:
9790 case Builtin::BI__addressof:
9791 case Builtin::BIforward:
9792 case Builtin::BIforward_like:
9793 case Builtin::BImove:
9794 case Builtin::BImove_if_noexcept:
9795 case Builtin::BIas_const: {
9796 // Ensure that we don't treat the algorithm
9797 // OutputIt std::move(InputIt, InputIt, OutputIt)
9798 // as the builtin std::move.
9799 const auto *FPT = FD->getType()->castAs<FunctionProtoType>();
9800 return FPT->getNumParams() == 1 && !FPT->isVariadic();
9801 }
9802
9803 default:
9804 return false;
9805 }
9806 }
9807
9808 NamedDecl*
ActOnFunctionDeclarator(Scope * S,Declarator & D,DeclContext * DC,TypeSourceInfo * TInfo,LookupResult & Previous,MultiTemplateParamsArg TemplateParamListsRef,bool & AddToScope)9809 Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
9810 TypeSourceInfo *TInfo, LookupResult &Previous,
9811 MultiTemplateParamsArg TemplateParamListsRef,
9812 bool &AddToScope) {
9813 QualType R = TInfo->getType();
9814
9815 assert(R->isFunctionType());
9816 if (R.getCanonicalType()->castAs<FunctionType>()->getCmseNSCallAttr())
9817 Diag(D.getIdentifierLoc(), diag::err_function_decl_cmse_ns_call);
9818
9819 SmallVector<TemplateParameterList *, 4> TemplateParamLists;
9820 llvm::append_range(TemplateParamLists, TemplateParamListsRef);
9821 if (TemplateParameterList *Invented = D.getInventedTemplateParameterList()) {
9822 if (!TemplateParamLists.empty() &&
9823 Invented->getDepth() == TemplateParamLists.back()->getDepth())
9824 TemplateParamLists.back() = Invented;
9825 else
9826 TemplateParamLists.push_back(Invented);
9827 }
9828
9829 // TODO: consider using NameInfo for diagnostic.
9830 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
9831 DeclarationName Name = NameInfo.getName();
9832 StorageClass SC = getFunctionStorageClass(*this, D);
9833
9834 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
9835 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
9836 diag::err_invalid_thread)
9837 << DeclSpec::getSpecifierName(TSCS);
9838
9839 if (D.isFirstDeclarationOfMember())
9840 adjustMemberFunctionCC(
9841 R, !(D.isStaticMember() || D.isExplicitObjectMemberFunction()),
9842 D.isCtorOrDtor(), D.getIdentifierLoc());
9843
9844 bool isFriend = false;
9845 FunctionTemplateDecl *FunctionTemplate = nullptr;
9846 bool isMemberSpecialization = false;
9847 bool isFunctionTemplateSpecialization = false;
9848
9849 bool HasExplicitTemplateArgs = false;
9850 TemplateArgumentListInfo TemplateArgs;
9851
9852 bool isVirtualOkay = false;
9853
9854 DeclContext *OriginalDC = DC;
9855 bool IsLocalExternDecl = adjustContextForLocalExternDecl(DC);
9856
9857 FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
9858 isVirtualOkay);
9859 if (!NewFD) return nullptr;
9860
9861 if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
9862 NewFD->setTopLevelDeclInObjCContainer();
9863
9864 // Set the lexical context. If this is a function-scope declaration, or has a
9865 // C++ scope specifier, or is the object of a friend declaration, the lexical
9866 // context will be different from the semantic context.
9867 NewFD->setLexicalDeclContext(CurContext);
9868
9869 if (IsLocalExternDecl)
9870 NewFD->setLocalExternDecl();
9871
9872 if (getLangOpts().CPlusPlus) {
9873 // The rules for implicit inlines changed in C++20 for methods and friends
9874 // with an in-class definition (when such a definition is not attached to
9875 // the global module). User-specified 'inline' overrides this (set when
9876 // the function decl is created above).
9877 // FIXME: We need a better way to separate C++ standard and clang modules.
9878 bool ImplicitInlineCXX20 = !getLangOpts().CPlusPlusModules ||
9879 !NewFD->getOwningModule() ||
9880 NewFD->getOwningModule()->isGlobalModule() ||
9881 NewFD->getOwningModule()->isHeaderLikeModule();
9882 bool isInline = D.getDeclSpec().isInlineSpecified();
9883 bool isVirtual = D.getDeclSpec().isVirtualSpecified();
9884 bool hasExplicit = D.getDeclSpec().hasExplicitSpecifier();
9885 isFriend = D.getDeclSpec().isFriendSpecified();
9886 if (isFriend && !isInline && D.isFunctionDefinition()) {
9887 // Pre-C++20 [class.friend]p5
9888 // A function can be defined in a friend declaration of a
9889 // class . . . . Such a function is implicitly inline.
9890 // Post C++20 [class.friend]p7
9891 // Such a function is implicitly an inline function if it is attached
9892 // to the global module.
9893 NewFD->setImplicitlyInline(ImplicitInlineCXX20);
9894 }
9895
9896 // If this is a method defined in an __interface, and is not a constructor
9897 // or an overloaded operator, then set the pure flag (isVirtual will already
9898 // return true).
9899 if (const CXXRecordDecl *Parent =
9900 dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
9901 if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
9902 NewFD->setIsPureVirtual(true);
9903
9904 // C++ [class.union]p2
9905 // A union can have member functions, but not virtual functions.
9906 if (isVirtual && Parent->isUnion()) {
9907 Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_in_union);
9908 NewFD->setInvalidDecl();
9909 }
9910 if ((Parent->isClass() || Parent->isStruct()) &&
9911 Parent->hasAttr<SYCLSpecialClassAttr>() &&
9912 NewFD->getKind() == Decl::Kind::CXXMethod && NewFD->getIdentifier() &&
9913 NewFD->getName() == "__init" && D.isFunctionDefinition()) {
9914 if (auto *Def = Parent->getDefinition())
9915 Def->setInitMethod(true);
9916 }
9917 }
9918
9919 SetNestedNameSpecifier(*this, NewFD, D);
9920 isMemberSpecialization = false;
9921 isFunctionTemplateSpecialization = false;
9922 if (D.isInvalidType())
9923 NewFD->setInvalidDecl();
9924
9925 // Match up the template parameter lists with the scope specifier, then
9926 // determine whether we have a template or a template specialization.
9927 bool Invalid = false;
9928 TemplateIdAnnotation *TemplateId =
9929 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
9930 ? D.getName().TemplateId
9931 : nullptr;
9932 TemplateParameterList *TemplateParams =
9933 MatchTemplateParametersToScopeSpecifier(
9934 D.getDeclSpec().getBeginLoc(), D.getIdentifierLoc(),
9935 D.getCXXScopeSpec(), TemplateId, TemplateParamLists, isFriend,
9936 isMemberSpecialization, Invalid);
9937 if (TemplateParams) {
9938 // Check that we can declare a template here.
9939 if (CheckTemplateDeclScope(S, TemplateParams))
9940 NewFD->setInvalidDecl();
9941
9942 if (TemplateParams->size() > 0) {
9943 // This is a function template
9944
9945 // A destructor cannot be a template.
9946 if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
9947 Diag(NewFD->getLocation(), diag::err_destructor_template);
9948 NewFD->setInvalidDecl();
9949 // Function template with explicit template arguments.
9950 } else if (TemplateId) {
9951 Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
9952 << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
9953 NewFD->setInvalidDecl();
9954 }
9955
9956 // If we're adding a template to a dependent context, we may need to
9957 // rebuilding some of the types used within the template parameter list,
9958 // now that we know what the current instantiation is.
9959 if (DC->isDependentContext()) {
9960 ContextRAII SavedContext(*this, DC);
9961 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
9962 Invalid = true;
9963 }
9964
9965 FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
9966 NewFD->getLocation(),
9967 Name, TemplateParams,
9968 NewFD);
9969 FunctionTemplate->setLexicalDeclContext(CurContext);
9970 NewFD->setDescribedFunctionTemplate(FunctionTemplate);
9971
9972 // For source fidelity, store the other template param lists.
9973 if (TemplateParamLists.size() > 1) {
9974 NewFD->setTemplateParameterListsInfo(Context,
9975 ArrayRef<TemplateParameterList *>(TemplateParamLists)
9976 .drop_back(1));
9977 }
9978 } else {
9979 // This is a function template specialization.
9980 isFunctionTemplateSpecialization = true;
9981 // For source fidelity, store all the template param lists.
9982 if (TemplateParamLists.size() > 0)
9983 NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists);
9984
9985 // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
9986 if (isFriend) {
9987 // We want to remove the "template<>", found here.
9988 SourceRange RemoveRange = TemplateParams->getSourceRange();
9989
9990 // If we remove the template<> and the name is not a
9991 // template-id, we're actually silently creating a problem:
9992 // the friend declaration will refer to an untemplated decl,
9993 // and clearly the user wants a template specialization. So
9994 // we need to insert '<>' after the name.
9995 SourceLocation InsertLoc;
9996 if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
9997 InsertLoc = D.getName().getSourceRange().getEnd();
9998 InsertLoc = getLocForEndOfToken(InsertLoc);
9999 }
10000
10001 Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
10002 << Name << RemoveRange
10003 << FixItHint::CreateRemoval(RemoveRange)
10004 << FixItHint::CreateInsertion(InsertLoc, "<>");
10005 Invalid = true;
10006
10007 // Recover by faking up an empty template argument list.
10008 HasExplicitTemplateArgs = true;
10009 TemplateArgs.setLAngleLoc(InsertLoc);
10010 TemplateArgs.setRAngleLoc(InsertLoc);
10011 }
10012 }
10013 } else {
10014 // Check that we can declare a template here.
10015 if (!TemplateParamLists.empty() && isMemberSpecialization &&
10016 CheckTemplateDeclScope(S, TemplateParamLists.back()))
10017 NewFD->setInvalidDecl();
10018
10019 // All template param lists were matched against the scope specifier:
10020 // this is NOT (an explicit specialization of) a template.
10021 if (TemplateParamLists.size() > 0)
10022 // For source fidelity, store all the template param lists.
10023 NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists);
10024
10025 // "friend void foo<>(int);" is an implicit specialization decl.
10026 if (isFriend && TemplateId)
10027 isFunctionTemplateSpecialization = true;
10028 }
10029
10030 // If this is a function template specialization and the unqualified-id of
10031 // the declarator-id is a template-id, convert the template argument list
10032 // into our AST format and check for unexpanded packs.
10033 if (isFunctionTemplateSpecialization && TemplateId) {
10034 HasExplicitTemplateArgs = true;
10035
10036 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
10037 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
10038 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
10039 TemplateId->NumArgs);
10040 translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
10041
10042 // FIXME: Should we check for unexpanded packs if this was an (invalid)
10043 // declaration of a function template partial specialization? Should we
10044 // consider the unexpanded pack context to be a partial specialization?
10045 for (const TemplateArgumentLoc &ArgLoc : TemplateArgs.arguments()) {
10046 if (DiagnoseUnexpandedParameterPack(
10047 ArgLoc, isFriend ? UPPC_FriendDeclaration
10048 : UPPC_ExplicitSpecialization))
10049 NewFD->setInvalidDecl();
10050 }
10051 }
10052
10053 if (Invalid) {
10054 NewFD->setInvalidDecl();
10055 if (FunctionTemplate)
10056 FunctionTemplate->setInvalidDecl();
10057 }
10058
10059 // C++ [dcl.fct.spec]p5:
10060 // The virtual specifier shall only be used in declarations of
10061 // nonstatic class member functions that appear within a
10062 // member-specification of a class declaration; see 10.3.
10063 //
10064 if (isVirtual && !NewFD->isInvalidDecl()) {
10065 if (!isVirtualOkay) {
10066 Diag(D.getDeclSpec().getVirtualSpecLoc(),
10067 diag::err_virtual_non_function);
10068 } else if (!CurContext->isRecord()) {
10069 // 'virtual' was specified outside of the class.
10070 Diag(D.getDeclSpec().getVirtualSpecLoc(),
10071 diag::err_virtual_out_of_class)
10072 << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
10073 } else if (NewFD->getDescribedFunctionTemplate()) {
10074 // C++ [temp.mem]p3:
10075 // A member function template shall not be virtual.
10076 Diag(D.getDeclSpec().getVirtualSpecLoc(),
10077 diag::err_virtual_member_function_template)
10078 << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
10079 } else {
10080 // Okay: Add virtual to the method.
10081 NewFD->setVirtualAsWritten(true);
10082 }
10083
10084 if (getLangOpts().CPlusPlus14 &&
10085 NewFD->getReturnType()->isUndeducedType())
10086 Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual);
10087 }
10088
10089 if (getLangOpts().CPlusPlus14 &&
10090 (NewFD->isDependentContext() ||
10091 (isFriend && CurContext->isDependentContext())) &&
10092 NewFD->getReturnType()->isUndeducedType()) {
10093 // If the function template is referenced directly (for instance, as a
10094 // member of the current instantiation), pretend it has a dependent type.
10095 // This is not really justified by the standard, but is the only sane
10096 // thing to do.
10097 // FIXME: For a friend function, we have not marked the function as being
10098 // a friend yet, so 'isDependentContext' on the FD doesn't work.
10099 const FunctionProtoType *FPT =
10100 NewFD->getType()->castAs<FunctionProtoType>();
10101 QualType Result = SubstAutoTypeDependent(FPT->getReturnType());
10102 NewFD->setType(Context.getFunctionType(Result, FPT->getParamTypes(),
10103 FPT->getExtProtoInfo()));
10104 }
10105
10106 // C++ [dcl.fct.spec]p3:
10107 // The inline specifier shall not appear on a block scope function
10108 // declaration.
10109 if (isInline && !NewFD->isInvalidDecl()) {
10110 if (CurContext->isFunctionOrMethod()) {
10111 // 'inline' is not allowed on block scope function declaration.
10112 Diag(D.getDeclSpec().getInlineSpecLoc(),
10113 diag::err_inline_declaration_block_scope) << Name
10114 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
10115 }
10116 }
10117
10118 // C++ [dcl.fct.spec]p6:
10119 // The explicit specifier shall be used only in the declaration of a
10120 // constructor or conversion function within its class definition;
10121 // see 12.3.1 and 12.3.2.
10122 if (hasExplicit && !NewFD->isInvalidDecl() &&
10123 !isa<CXXDeductionGuideDecl>(NewFD)) {
10124 if (!CurContext->isRecord()) {
10125 // 'explicit' was specified outside of the class.
10126 Diag(D.getDeclSpec().getExplicitSpecLoc(),
10127 diag::err_explicit_out_of_class)
10128 << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecRange());
10129 } else if (!isa<CXXConstructorDecl>(NewFD) &&
10130 !isa<CXXConversionDecl>(NewFD)) {
10131 // 'explicit' was specified on a function that wasn't a constructor
10132 // or conversion function.
10133 Diag(D.getDeclSpec().getExplicitSpecLoc(),
10134 diag::err_explicit_non_ctor_or_conv_function)
10135 << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecRange());
10136 }
10137 }
10138
10139 ConstexprSpecKind ConstexprKind = D.getDeclSpec().getConstexprSpecifier();
10140 if (ConstexprKind != ConstexprSpecKind::Unspecified) {
10141 // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
10142 // are implicitly inline.
10143 NewFD->setImplicitlyInline();
10144
10145 // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
10146 // be either constructors or to return a literal type. Therefore,
10147 // destructors cannot be declared constexpr.
10148 if (isa<CXXDestructorDecl>(NewFD) &&
10149 (!getLangOpts().CPlusPlus20 ||
10150 ConstexprKind == ConstexprSpecKind::Consteval)) {
10151 Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor)
10152 << static_cast<int>(ConstexprKind);
10153 NewFD->setConstexprKind(getLangOpts().CPlusPlus20
10154 ? ConstexprSpecKind::Unspecified
10155 : ConstexprSpecKind::Constexpr);
10156 }
10157 // C++20 [dcl.constexpr]p2: An allocation function, or a
10158 // deallocation function shall not be declared with the consteval
10159 // specifier.
10160 if (ConstexprKind == ConstexprSpecKind::Consteval &&
10161 (NewFD->getOverloadedOperator() == OO_New ||
10162 NewFD->getOverloadedOperator() == OO_Array_New ||
10163 NewFD->getOverloadedOperator() == OO_Delete ||
10164 NewFD->getOverloadedOperator() == OO_Array_Delete)) {
10165 Diag(D.getDeclSpec().getConstexprSpecLoc(),
10166 diag::err_invalid_consteval_decl_kind)
10167 << NewFD;
10168 NewFD->setConstexprKind(ConstexprSpecKind::Constexpr);
10169 }
10170 }
10171
10172 // If __module_private__ was specified, mark the function accordingly.
10173 if (D.getDeclSpec().isModulePrivateSpecified()) {
10174 if (isFunctionTemplateSpecialization) {
10175 SourceLocation ModulePrivateLoc
10176 = D.getDeclSpec().getModulePrivateSpecLoc();
10177 Diag(ModulePrivateLoc, diag::err_module_private_specialization)
10178 << 0
10179 << FixItHint::CreateRemoval(ModulePrivateLoc);
10180 } else {
10181 NewFD->setModulePrivate();
10182 if (FunctionTemplate)
10183 FunctionTemplate->setModulePrivate();
10184 }
10185 }
10186
10187 if (isFriend) {
10188 if (FunctionTemplate) {
10189 FunctionTemplate->setObjectOfFriendDecl();
10190 FunctionTemplate->setAccess(AS_public);
10191 }
10192 NewFD->setObjectOfFriendDecl();
10193 NewFD->setAccess(AS_public);
10194 }
10195
10196 // If a function is defined as defaulted or deleted, mark it as such now.
10197 // We'll do the relevant checks on defaulted / deleted functions later.
10198 switch (D.getFunctionDefinitionKind()) {
10199 case FunctionDefinitionKind::Declaration:
10200 case FunctionDefinitionKind::Definition:
10201 break;
10202
10203 case FunctionDefinitionKind::Defaulted:
10204 NewFD->setDefaulted();
10205 break;
10206
10207 case FunctionDefinitionKind::Deleted:
10208 NewFD->setDeletedAsWritten();
10209 break;
10210 }
10211
10212 if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
10213 D.isFunctionDefinition() && !isInline) {
10214 // Pre C++20 [class.mfct]p2:
10215 // A member function may be defined (8.4) in its class definition, in
10216 // which case it is an inline member function (7.1.2)
10217 // Post C++20 [class.mfct]p1:
10218 // If a member function is attached to the global module and is defined
10219 // in its class definition, it is inline.
10220 NewFD->setImplicitlyInline(ImplicitInlineCXX20);
10221 }
10222
10223 if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
10224 !CurContext->isRecord()) {
10225 // C++ [class.static]p1:
10226 // A data or function member of a class may be declared static
10227 // in a class definition, in which case it is a static member of
10228 // the class.
10229
10230 // Complain about the 'static' specifier if it's on an out-of-line
10231 // member function definition.
10232
10233 // MSVC permits the use of a 'static' storage specifier on an out-of-line
10234 // member function template declaration and class member template
10235 // declaration (MSVC versions before 2015), warn about this.
10236 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
10237 ((!getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) &&
10238 cast<CXXRecordDecl>(DC)->getDescribedClassTemplate()) ||
10239 (getLangOpts().MSVCCompat && NewFD->getDescribedFunctionTemplate()))
10240 ? diag::ext_static_out_of_line : diag::err_static_out_of_line)
10241 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
10242 }
10243
10244 // C++11 [except.spec]p15:
10245 // A deallocation function with no exception-specification is treated
10246 // as if it were specified with noexcept(true).
10247 const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
10248 if ((Name.getCXXOverloadedOperator() == OO_Delete ||
10249 Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
10250 getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec())
10251 NewFD->setType(Context.getFunctionType(
10252 FPT->getReturnType(), FPT->getParamTypes(),
10253 FPT->getExtProtoInfo().withExceptionSpec(EST_BasicNoexcept)));
10254
10255 // C++20 [dcl.inline]/7
10256 // If an inline function or variable that is attached to a named module
10257 // is declared in a definition domain, it shall be defined in that
10258 // domain.
10259 // So, if the current declaration does not have a definition, we must
10260 // check at the end of the TU (or when the PMF starts) to see that we
10261 // have a definition at that point.
10262 if (isInline && !D.isFunctionDefinition() && getLangOpts().CPlusPlus20 &&
10263 NewFD->hasOwningModule() && NewFD->getOwningModule()->isNamedModule()) {
10264 PendingInlineFuncDecls.insert(NewFD);
10265 }
10266 }
10267
10268 // Filter out previous declarations that don't match the scope.
10269 FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewFD),
10270 D.getCXXScopeSpec().isNotEmpty() ||
10271 isMemberSpecialization ||
10272 isFunctionTemplateSpecialization);
10273
10274 // Handle GNU asm-label extension (encoded as an attribute).
10275 if (Expr *E = (Expr*) D.getAsmLabel()) {
10276 // The parser guarantees this is a string.
10277 StringLiteral *SE = cast<StringLiteral>(E);
10278 NewFD->addAttr(AsmLabelAttr::Create(Context, SE->getString(),
10279 /*IsLiteralLabel=*/true,
10280 SE->getStrTokenLoc(0)));
10281 } else if (!ExtnameUndeclaredIdentifiers.empty()) {
10282 llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
10283 ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
10284 if (I != ExtnameUndeclaredIdentifiers.end()) {
10285 if (isDeclExternC(NewFD)) {
10286 NewFD->addAttr(I->second);
10287 ExtnameUndeclaredIdentifiers.erase(I);
10288 } else
10289 Diag(NewFD->getLocation(), diag::warn_redefine_extname_not_applied)
10290 << /*Variable*/0 << NewFD;
10291 }
10292 }
10293
10294 // Copy the parameter declarations from the declarator D to the function
10295 // declaration NewFD, if they are available. First scavenge them into Params.
10296 SmallVector<ParmVarDecl*, 16> Params;
10297 unsigned FTIIdx;
10298 if (D.isFunctionDeclarator(FTIIdx)) {
10299 DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(FTIIdx).Fun;
10300
10301 // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
10302 // function that takes no arguments, not a function that takes a
10303 // single void argument.
10304 // We let through "const void" here because Sema::GetTypeForDeclarator
10305 // already checks for that case.
10306 if (FTIHasNonVoidParameters(FTI) && FTI.Params[0].Param) {
10307 for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
10308 ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
10309 assert(Param->getDeclContext() != NewFD && "Was set before ?");
10310 Param->setDeclContext(NewFD);
10311 Params.push_back(Param);
10312
10313 if (Param->isInvalidDecl())
10314 NewFD->setInvalidDecl();
10315 }
10316 }
10317
10318 if (!getLangOpts().CPlusPlus) {
10319 // In C, find all the tag declarations from the prototype and move them
10320 // into the function DeclContext. Remove them from the surrounding tag
10321 // injection context of the function, which is typically but not always
10322 // the TU.
10323 DeclContext *PrototypeTagContext =
10324 getTagInjectionContext(NewFD->getLexicalDeclContext());
10325 for (NamedDecl *NonParmDecl : FTI.getDeclsInPrototype()) {
10326 auto *TD = dyn_cast<TagDecl>(NonParmDecl);
10327
10328 // We don't want to reparent enumerators. Look at their parent enum
10329 // instead.
10330 if (!TD) {
10331 if (auto *ECD = dyn_cast<EnumConstantDecl>(NonParmDecl))
10332 TD = cast<EnumDecl>(ECD->getDeclContext());
10333 }
10334 if (!TD)
10335 continue;
10336 DeclContext *TagDC = TD->getLexicalDeclContext();
10337 if (!TagDC->containsDecl(TD))
10338 continue;
10339 TagDC->removeDecl(TD);
10340 TD->setDeclContext(NewFD);
10341 NewFD->addDecl(TD);
10342
10343 // Preserve the lexical DeclContext if it is not the surrounding tag
10344 // injection context of the FD. In this example, the semantic context of
10345 // E will be f and the lexical context will be S, while both the
10346 // semantic and lexical contexts of S will be f:
10347 // void f(struct S { enum E { a } f; } s);
10348 if (TagDC != PrototypeTagContext)
10349 TD->setLexicalDeclContext(TagDC);
10350 }
10351 }
10352 } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
10353 // When we're declaring a function with a typedef, typeof, etc as in the
10354 // following example, we'll need to synthesize (unnamed)
10355 // parameters for use in the declaration.
10356 //
10357 // @code
10358 // typedef void fn(int);
10359 // fn f;
10360 // @endcode
10361
10362 // Synthesize a parameter for each argument type.
10363 for (const auto &AI : FT->param_types()) {
10364 ParmVarDecl *Param =
10365 BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), AI);
10366 Param->setScopeInfo(0, Params.size());
10367 Params.push_back(Param);
10368 }
10369 } else {
10370 assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
10371 "Should not need args for typedef of non-prototype fn");
10372 }
10373
10374 // Finally, we know we have the right number of parameters, install them.
10375 NewFD->setParams(Params);
10376
10377 if (D.getDeclSpec().isNoreturnSpecified())
10378 NewFD->addAttr(
10379 C11NoReturnAttr::Create(Context, D.getDeclSpec().getNoreturnSpecLoc()));
10380
10381 // Functions returning a variably modified type violate C99 6.7.5.2p2
10382 // because all functions have linkage.
10383 if (!NewFD->isInvalidDecl() &&
10384 NewFD->getReturnType()->isVariablyModifiedType()) {
10385 Diag(NewFD->getLocation(), diag::err_vm_func_decl);
10386 NewFD->setInvalidDecl();
10387 }
10388
10389 // Apply an implicit SectionAttr if '#pragma clang section text' is active
10390 if (PragmaClangTextSection.Valid && D.isFunctionDefinition() &&
10391 !NewFD->hasAttr<SectionAttr>())
10392 NewFD->addAttr(PragmaClangTextSectionAttr::CreateImplicit(
10393 Context, PragmaClangTextSection.SectionName,
10394 PragmaClangTextSection.PragmaLocation));
10395
10396 // Apply an implicit SectionAttr if #pragma code_seg is active.
10397 if (CodeSegStack.CurrentValue && D.isFunctionDefinition() &&
10398 !NewFD->hasAttr<SectionAttr>()) {
10399 NewFD->addAttr(SectionAttr::CreateImplicit(
10400 Context, CodeSegStack.CurrentValue->getString(),
10401 CodeSegStack.CurrentPragmaLocation, SectionAttr::Declspec_allocate));
10402 if (UnifySection(CodeSegStack.CurrentValue->getString(),
10403 ASTContext::PSF_Implicit | ASTContext::PSF_Execute |
10404 ASTContext::PSF_Read,
10405 NewFD))
10406 NewFD->dropAttr<SectionAttr>();
10407 }
10408
10409 // Apply an implicit StrictGuardStackCheckAttr if #pragma strict_gs_check is
10410 // active.
10411 if (StrictGuardStackCheckStack.CurrentValue && D.isFunctionDefinition() &&
10412 !NewFD->hasAttr<StrictGuardStackCheckAttr>())
10413 NewFD->addAttr(StrictGuardStackCheckAttr::CreateImplicit(
10414 Context, PragmaClangTextSection.PragmaLocation));
10415
10416 // Apply an implicit CodeSegAttr from class declspec or
10417 // apply an implicit SectionAttr from #pragma code_seg if active.
10418 if (!NewFD->hasAttr<CodeSegAttr>()) {
10419 if (Attr *SAttr = getImplicitCodeSegOrSectionAttrForFunction(NewFD,
10420 D.isFunctionDefinition())) {
10421 NewFD->addAttr(SAttr);
10422 }
10423 }
10424
10425 // Handle attributes.
10426 ProcessDeclAttributes(S, NewFD, D);
10427 const auto *NewTVA = NewFD->getAttr<TargetVersionAttr>();
10428 if (NewTVA && !NewTVA->isDefaultVersion() &&
10429 !Context.getTargetInfo().hasFeature("fmv")) {
10430 // Don't add to scope fmv functions declarations if fmv disabled
10431 AddToScope = false;
10432 return NewFD;
10433 }
10434
10435 if (getLangOpts().OpenCL || getLangOpts().HLSL) {
10436 // Neither OpenCL nor HLSL allow an address space qualifyer on a return
10437 // type.
10438 //
10439 // OpenCL v1.1 s6.5: Using an address space qualifier in a function return
10440 // type declaration will generate a compilation error.
10441 LangAS AddressSpace = NewFD->getReturnType().getAddressSpace();
10442 if (AddressSpace != LangAS::Default) {
10443 Diag(NewFD->getLocation(), diag::err_return_value_with_address_space);
10444 NewFD->setInvalidDecl();
10445 }
10446 }
10447
10448 if (!getLangOpts().CPlusPlus) {
10449 // Perform semantic checking on the function declaration.
10450 if (!NewFD->isInvalidDecl() && NewFD->isMain())
10451 CheckMain(NewFD, D.getDeclSpec());
10452
10453 if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
10454 CheckMSVCRTEntryPoint(NewFD);
10455
10456 if (!NewFD->isInvalidDecl())
10457 D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
10458 isMemberSpecialization,
10459 D.isFunctionDefinition()));
10460 else if (!Previous.empty())
10461 // Recover gracefully from an invalid redeclaration.
10462 D.setRedeclaration(true);
10463 assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
10464 Previous.getResultKind() != LookupResult::FoundOverloaded) &&
10465 "previous declaration set still overloaded");
10466
10467 // Diagnose no-prototype function declarations with calling conventions that
10468 // don't support variadic calls. Only do this in C and do it after merging
10469 // possibly prototyped redeclarations.
10470 const FunctionType *FT = NewFD->getType()->castAs<FunctionType>();
10471 if (isa<FunctionNoProtoType>(FT) && !D.isFunctionDefinition()) {
10472 CallingConv CC = FT->getExtInfo().getCC();
10473 if (!supportsVariadicCall(CC)) {
10474 // Windows system headers sometimes accidentally use stdcall without
10475 // (void) parameters, so we relax this to a warning.
10476 int DiagID =
10477 CC == CC_X86StdCall ? diag::warn_cconv_knr : diag::err_cconv_knr;
10478 Diag(NewFD->getLocation(), DiagID)
10479 << FunctionType::getNameForCallConv(CC);
10480 }
10481 }
10482
10483 if (NewFD->getReturnType().hasNonTrivialToPrimitiveDestructCUnion() ||
10484 NewFD->getReturnType().hasNonTrivialToPrimitiveCopyCUnion())
10485 checkNonTrivialCUnion(NewFD->getReturnType(),
10486 NewFD->getReturnTypeSourceRange().getBegin(),
10487 NTCUC_FunctionReturn, NTCUK_Destruct|NTCUK_Copy);
10488 } else {
10489 // C++11 [replacement.functions]p3:
10490 // The program's definitions shall not be specified as inline.
10491 //
10492 // N.B. We diagnose declarations instead of definitions per LWG issue 2340.
10493 //
10494 // Suppress the diagnostic if the function is __attribute__((used)), since
10495 // that forces an external definition to be emitted.
10496 if (D.getDeclSpec().isInlineSpecified() &&
10497 NewFD->isReplaceableGlobalAllocationFunction() &&
10498 !NewFD->hasAttr<UsedAttr>())
10499 Diag(D.getDeclSpec().getInlineSpecLoc(),
10500 diag::ext_operator_new_delete_declared_inline)
10501 << NewFD->getDeclName();
10502
10503 // We do not add HD attributes to specializations here because
10504 // they may have different constexpr-ness compared to their
10505 // templates and, after maybeAddCUDAHostDeviceAttrs() is applied,
10506 // may end up with different effective targets. Instead, a
10507 // specialization inherits its target attributes from its template
10508 // in the CheckFunctionTemplateSpecialization() call below.
10509 if (getLangOpts().CUDA && !isFunctionTemplateSpecialization)
10510 maybeAddCUDAHostDeviceAttrs(NewFD, Previous);
10511
10512 // Handle explict specializations of function templates
10513 // and friend function declarations with an explicit
10514 // template argument list.
10515 if (isFunctionTemplateSpecialization) {
10516 bool isDependentSpecialization = false;
10517 if (isFriend) {
10518 // For friend function specializations, this is a dependent
10519 // specialization if its semantic context is dependent, its
10520 // type is dependent, or if its template-id is dependent.
10521 isDependentSpecialization =
10522 DC->isDependentContext() || NewFD->getType()->isDependentType() ||
10523 (HasExplicitTemplateArgs &&
10524 TemplateSpecializationType::
10525 anyInstantiationDependentTemplateArguments(
10526 TemplateArgs.arguments()));
10527 assert((!isDependentSpecialization ||
10528 (HasExplicitTemplateArgs == isDependentSpecialization)) &&
10529 "dependent friend function specialization without template "
10530 "args");
10531 } else {
10532 // For class-scope explicit specializations of function templates,
10533 // if the lexical context is dependent, then the specialization
10534 // is dependent.
10535 isDependentSpecialization =
10536 CurContext->isRecord() && CurContext->isDependentContext();
10537 }
10538
10539 TemplateArgumentListInfo *ExplicitTemplateArgs =
10540 HasExplicitTemplateArgs ? &TemplateArgs : nullptr;
10541 if (isDependentSpecialization) {
10542 // If it's a dependent specialization, it may not be possible
10543 // to determine the primary template (for explicit specializations)
10544 // or befriended declaration (for friends) until the enclosing
10545 // template is instantiated. In such cases, we store the declarations
10546 // found by name lookup and defer resolution until instantiation.
10547 if (CheckDependentFunctionTemplateSpecialization(
10548 NewFD, ExplicitTemplateArgs, Previous))
10549 NewFD->setInvalidDecl();
10550 } else if (!NewFD->isInvalidDecl()) {
10551 if (CheckFunctionTemplateSpecialization(NewFD, ExplicitTemplateArgs,
10552 Previous))
10553 NewFD->setInvalidDecl();
10554 }
10555
10556 // C++ [dcl.stc]p1:
10557 // A storage-class-specifier shall not be specified in an explicit
10558 // specialization (14.7.3)
10559 // FIXME: We should be checking this for dependent specializations.
10560 FunctionTemplateSpecializationInfo *Info =
10561 NewFD->getTemplateSpecializationInfo();
10562 if (Info && SC != SC_None) {
10563 if (SC != Info->getTemplate()->getTemplatedDecl()->getStorageClass())
10564 Diag(NewFD->getLocation(),
10565 diag::err_explicit_specialization_inconsistent_storage_class)
10566 << SC
10567 << FixItHint::CreateRemoval(
10568 D.getDeclSpec().getStorageClassSpecLoc());
10569
10570 else
10571 Diag(NewFD->getLocation(),
10572 diag::ext_explicit_specialization_storage_class)
10573 << FixItHint::CreateRemoval(
10574 D.getDeclSpec().getStorageClassSpecLoc());
10575 }
10576 } else if (isMemberSpecialization && isa<CXXMethodDecl>(NewFD)) {
10577 if (CheckMemberSpecialization(NewFD, Previous))
10578 NewFD->setInvalidDecl();
10579 }
10580
10581 // Perform semantic checking on the function declaration.
10582 if (!NewFD->isInvalidDecl() && NewFD->isMain())
10583 CheckMain(NewFD, D.getDeclSpec());
10584
10585 if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
10586 CheckMSVCRTEntryPoint(NewFD);
10587
10588 if (!NewFD->isInvalidDecl())
10589 D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
10590 isMemberSpecialization,
10591 D.isFunctionDefinition()));
10592 else if (!Previous.empty())
10593 // Recover gracefully from an invalid redeclaration.
10594 D.setRedeclaration(true);
10595
10596 assert((NewFD->isInvalidDecl() || NewFD->isMultiVersion() ||
10597 !D.isRedeclaration() ||
10598 Previous.getResultKind() != LookupResult::FoundOverloaded) &&
10599 "previous declaration set still overloaded");
10600
10601 NamedDecl *PrincipalDecl = (FunctionTemplate
10602 ? cast<NamedDecl>(FunctionTemplate)
10603 : NewFD);
10604
10605 if (isFriend && NewFD->getPreviousDecl()) {
10606 AccessSpecifier Access = AS_public;
10607 if (!NewFD->isInvalidDecl())
10608 Access = NewFD->getPreviousDecl()->getAccess();
10609
10610 NewFD->setAccess(Access);
10611 if (FunctionTemplate) FunctionTemplate->setAccess(Access);
10612 }
10613
10614 if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
10615 PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
10616 PrincipalDecl->setNonMemberOperator();
10617
10618 // If we have a function template, check the template parameter
10619 // list. This will check and merge default template arguments.
10620 if (FunctionTemplate) {
10621 FunctionTemplateDecl *PrevTemplate =
10622 FunctionTemplate->getPreviousDecl();
10623 CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
10624 PrevTemplate ? PrevTemplate->getTemplateParameters()
10625 : nullptr,
10626 D.getDeclSpec().isFriendSpecified()
10627 ? (D.isFunctionDefinition()
10628 ? TPC_FriendFunctionTemplateDefinition
10629 : TPC_FriendFunctionTemplate)
10630 : (D.getCXXScopeSpec().isSet() &&
10631 DC && DC->isRecord() &&
10632 DC->isDependentContext())
10633 ? TPC_ClassTemplateMember
10634 : TPC_FunctionTemplate);
10635 }
10636
10637 if (NewFD->isInvalidDecl()) {
10638 // Ignore all the rest of this.
10639 } else if (!D.isRedeclaration()) {
10640 struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
10641 AddToScope };
10642 // Fake up an access specifier if it's supposed to be a class member.
10643 if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
10644 NewFD->setAccess(AS_public);
10645
10646 // Qualified decls generally require a previous declaration.
10647 if (D.getCXXScopeSpec().isSet()) {
10648 // ...with the major exception of templated-scope or
10649 // dependent-scope friend declarations.
10650
10651 // TODO: we currently also suppress this check in dependent
10652 // contexts because (1) the parameter depth will be off when
10653 // matching friend templates and (2) we might actually be
10654 // selecting a friend based on a dependent factor. But there
10655 // are situations where these conditions don't apply and we
10656 // can actually do this check immediately.
10657 //
10658 // Unless the scope is dependent, it's always an error if qualified
10659 // redeclaration lookup found nothing at all. Diagnose that now;
10660 // nothing will diagnose that error later.
10661 if (isFriend &&
10662 (D.getCXXScopeSpec().getScopeRep()->isDependent() ||
10663 (!Previous.empty() && CurContext->isDependentContext()))) {
10664 // ignore these
10665 } else if (NewFD->isCPUDispatchMultiVersion() ||
10666 NewFD->isCPUSpecificMultiVersion()) {
10667 // ignore this, we allow the redeclaration behavior here to create new
10668 // versions of the function.
10669 } else {
10670 // The user tried to provide an out-of-line definition for a
10671 // function that is a member of a class or namespace, but there
10672 // was no such member function declared (C++ [class.mfct]p2,
10673 // C++ [namespace.memdef]p2). For example:
10674 //
10675 // class X {
10676 // void f() const;
10677 // };
10678 //
10679 // void X::f() { } // ill-formed
10680 //
10681 // Complain about this problem, and attempt to suggest close
10682 // matches (e.g., those that differ only in cv-qualifiers and
10683 // whether the parameter types are references).
10684
10685 if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
10686 *this, Previous, NewFD, ExtraArgs, false, nullptr)) {
10687 AddToScope = ExtraArgs.AddToScope;
10688 return Result;
10689 }
10690 }
10691
10692 // Unqualified local friend declarations are required to resolve
10693 // to something.
10694 } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
10695 if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
10696 *this, Previous, NewFD, ExtraArgs, true, S)) {
10697 AddToScope = ExtraArgs.AddToScope;
10698 return Result;
10699 }
10700 }
10701 } else if (!D.isFunctionDefinition() &&
10702 isa<CXXMethodDecl>(NewFD) && NewFD->isOutOfLine() &&
10703 !isFriend && !isFunctionTemplateSpecialization &&
10704 !isMemberSpecialization) {
10705 // An out-of-line member function declaration must also be a
10706 // definition (C++ [class.mfct]p2).
10707 // Note that this is not the case for explicit specializations of
10708 // function templates or member functions of class templates, per
10709 // C++ [temp.expl.spec]p2. We also allow these declarations as an
10710 // extension for compatibility with old SWIG code which likes to
10711 // generate them.
10712 Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
10713 << D.getCXXScopeSpec().getRange();
10714 }
10715 }
10716
10717 if (getLangOpts().HLSL && D.isFunctionDefinition()) {
10718 // Any top level function could potentially be specified as an entry.
10719 if (!NewFD->isInvalidDecl() && S->getDepth() == 0 && Name.isIdentifier())
10720 ActOnHLSLTopLevelFunction(NewFD);
10721
10722 if (NewFD->hasAttr<HLSLShaderAttr>())
10723 CheckHLSLEntryPoint(NewFD);
10724 }
10725
10726 // If this is the first declaration of a library builtin function, add
10727 // attributes as appropriate.
10728 if (!D.isRedeclaration()) {
10729 if (IdentifierInfo *II = Previous.getLookupName().getAsIdentifierInfo()) {
10730 if (unsigned BuiltinID = II->getBuiltinID()) {
10731 bool InStdNamespace = Context.BuiltinInfo.isInStdNamespace(BuiltinID);
10732 if (!InStdNamespace &&
10733 NewFD->getDeclContext()->getRedeclContext()->isFileContext()) {
10734 if (NewFD->getLanguageLinkage() == CLanguageLinkage) {
10735 // Validate the type matches unless this builtin is specified as
10736 // matching regardless of its declared type.
10737 if (Context.BuiltinInfo.allowTypeMismatch(BuiltinID)) {
10738 NewFD->addAttr(BuiltinAttr::CreateImplicit(Context, BuiltinID));
10739 } else {
10740 ASTContext::GetBuiltinTypeError Error;
10741 LookupNecessaryTypesForBuiltin(S, BuiltinID);
10742 QualType BuiltinType = Context.GetBuiltinType(BuiltinID, Error);
10743
10744 if (!Error && !BuiltinType.isNull() &&
10745 Context.hasSameFunctionTypeIgnoringExceptionSpec(
10746 NewFD->getType(), BuiltinType))
10747 NewFD->addAttr(BuiltinAttr::CreateImplicit(Context, BuiltinID));
10748 }
10749 }
10750 } else if (InStdNamespace && NewFD->isInStdNamespace() &&
10751 isStdBuiltin(Context, NewFD, BuiltinID)) {
10752 NewFD->addAttr(BuiltinAttr::CreateImplicit(Context, BuiltinID));
10753 }
10754 }
10755 }
10756 }
10757
10758 ProcessPragmaWeak(S, NewFD);
10759 checkAttributesAfterMerging(*this, *NewFD);
10760
10761 AddKnownFunctionAttributes(NewFD);
10762
10763 if (NewFD->hasAttr<OverloadableAttr>() &&
10764 !NewFD->getType()->getAs<FunctionProtoType>()) {
10765 Diag(NewFD->getLocation(),
10766 diag::err_attribute_overloadable_no_prototype)
10767 << NewFD;
10768 NewFD->dropAttr<OverloadableAttr>();
10769 }
10770
10771 // If there's a #pragma GCC visibility in scope, and this isn't a class
10772 // member, set the visibility of this function.
10773 if (!DC->isRecord() && NewFD->isExternallyVisible())
10774 AddPushedVisibilityAttribute(NewFD);
10775
10776 // If there's a #pragma clang arc_cf_code_audited in scope, consider
10777 // marking the function.
10778 AddCFAuditedAttribute(NewFD);
10779
10780 // If this is a function definition, check if we have to apply any
10781 // attributes (i.e. optnone and no_builtin) due to a pragma.
10782 if (D.isFunctionDefinition()) {
10783 AddRangeBasedOptnone(NewFD);
10784 AddImplicitMSFunctionNoBuiltinAttr(NewFD);
10785 AddSectionMSAllocText(NewFD);
10786 ModifyFnAttributesMSPragmaOptimize(NewFD);
10787 }
10788
10789 // If this is the first declaration of an extern C variable, update
10790 // the map of such variables.
10791 if (NewFD->isFirstDecl() && !NewFD->isInvalidDecl() &&
10792 isIncompleteDeclExternC(*this, NewFD))
10793 RegisterLocallyScopedExternCDecl(NewFD, S);
10794
10795 // Set this FunctionDecl's range up to the right paren.
10796 NewFD->setRangeEnd(D.getSourceRange().getEnd());
10797
10798 if (D.isRedeclaration() && !Previous.empty()) {
10799 NamedDecl *Prev = Previous.getRepresentativeDecl();
10800 checkDLLAttributeRedeclaration(*this, Prev, NewFD,
10801 isMemberSpecialization ||
10802 isFunctionTemplateSpecialization,
10803 D.isFunctionDefinition());
10804 }
10805
10806 if (getLangOpts().CUDA) {
10807 IdentifierInfo *II = NewFD->getIdentifier();
10808 if (II && II->isStr(getCudaConfigureFuncName()) &&
10809 !NewFD->isInvalidDecl() &&
10810 NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
10811 if (!R->castAs<FunctionType>()->getReturnType()->isScalarType())
10812 Diag(NewFD->getLocation(), diag::err_config_scalar_return)
10813 << getCudaConfigureFuncName();
10814 Context.setcudaConfigureCallDecl(NewFD);
10815 }
10816
10817 // Variadic functions, other than a *declaration* of printf, are not allowed
10818 // in device-side CUDA code, unless someone passed
10819 // -fcuda-allow-variadic-functions.
10820 if (!getLangOpts().CUDAAllowVariadicFunctions && NewFD->isVariadic() &&
10821 (NewFD->hasAttr<CUDADeviceAttr>() ||
10822 NewFD->hasAttr<CUDAGlobalAttr>()) &&
10823 !(II && II->isStr("printf") && NewFD->isExternC() &&
10824 !D.isFunctionDefinition())) {
10825 Diag(NewFD->getLocation(), diag::err_variadic_device_fn);
10826 }
10827 }
10828
10829 MarkUnusedFileScopedDecl(NewFD);
10830
10831
10832
10833 if (getLangOpts().OpenCL && NewFD->hasAttr<OpenCLKernelAttr>()) {
10834 // OpenCL v1.2 s6.8 static is invalid for kernel functions.
10835 if (SC == SC_Static) {
10836 Diag(D.getIdentifierLoc(), diag::err_static_kernel);
10837 D.setInvalidType();
10838 }
10839
10840 // OpenCL v1.2, s6.9 -- Kernels can only have return type void.
10841 if (!NewFD->getReturnType()->isVoidType()) {
10842 SourceRange RTRange = NewFD->getReturnTypeSourceRange();
10843 Diag(D.getIdentifierLoc(), diag::err_expected_kernel_void_return_type)
10844 << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void")
10845 : FixItHint());
10846 D.setInvalidType();
10847 }
10848
10849 llvm::SmallPtrSet<const Type *, 16> ValidTypes;
10850 for (auto *Param : NewFD->parameters())
10851 checkIsValidOpenCLKernelParameter(*this, D, Param, ValidTypes);
10852
10853 if (getLangOpts().OpenCLCPlusPlus) {
10854 if (DC->isRecord()) {
10855 Diag(D.getIdentifierLoc(), diag::err_method_kernel);
10856 D.setInvalidType();
10857 }
10858 if (FunctionTemplate) {
10859 Diag(D.getIdentifierLoc(), diag::err_template_kernel);
10860 D.setInvalidType();
10861 }
10862 }
10863 }
10864
10865 if (getLangOpts().CPlusPlus) {
10866 // Precalculate whether this is a friend function template with a constraint
10867 // that depends on an enclosing template, per [temp.friend]p9.
10868 if (isFriend && FunctionTemplate &&
10869 FriendConstraintsDependOnEnclosingTemplate(NewFD)) {
10870 NewFD->setFriendConstraintRefersToEnclosingTemplate(true);
10871
10872 // C++ [temp.friend]p9:
10873 // A friend function template with a constraint that depends on a
10874 // template parameter from an enclosing template shall be a definition.
10875 if (!D.isFunctionDefinition()) {
10876 Diag(NewFD->getBeginLoc(),
10877 diag::err_friend_decl_with_enclosing_temp_constraint_must_be_def);
10878 NewFD->setInvalidDecl();
10879 }
10880 }
10881
10882 if (FunctionTemplate) {
10883 if (NewFD->isInvalidDecl())
10884 FunctionTemplate->setInvalidDecl();
10885 return FunctionTemplate;
10886 }
10887
10888 if (isMemberSpecialization && !NewFD->isInvalidDecl())
10889 CompleteMemberSpecialization(NewFD, Previous);
10890 }
10891
10892 for (const ParmVarDecl *Param : NewFD->parameters()) {
10893 QualType PT = Param->getType();
10894
10895 // OpenCL 2.0 pipe restrictions forbids pipe packet types to be non-value
10896 // types.
10897 if (getLangOpts().getOpenCLCompatibleVersion() >= 200) {
10898 if(const PipeType *PipeTy = PT->getAs<PipeType>()) {
10899 QualType ElemTy = PipeTy->getElementType();
10900 if (ElemTy->isReferenceType() || ElemTy->isPointerType()) {
10901 Diag(Param->getTypeSpecStartLoc(), diag::err_reference_pipe_type );
10902 D.setInvalidType();
10903 }
10904 }
10905 }
10906 // WebAssembly tables can't be used as function parameters.
10907 if (Context.getTargetInfo().getTriple().isWasm()) {
10908 if (PT->getUnqualifiedDesugaredType()->isWebAssemblyTableType()) {
10909 Diag(Param->getTypeSpecStartLoc(),
10910 diag::err_wasm_table_as_function_parameter);
10911 D.setInvalidType();
10912 }
10913 }
10914 }
10915
10916 // Diagnose availability attributes. Availability cannot be used on functions
10917 // that are run during load/unload.
10918 if (const auto *attr = NewFD->getAttr<AvailabilityAttr>()) {
10919 if (NewFD->hasAttr<ConstructorAttr>()) {
10920 Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
10921 << 1;
10922 NewFD->dropAttr<AvailabilityAttr>();
10923 }
10924 if (NewFD->hasAttr<DestructorAttr>()) {
10925 Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
10926 << 2;
10927 NewFD->dropAttr<AvailabilityAttr>();
10928 }
10929 }
10930
10931 // Diagnose no_builtin attribute on function declaration that are not a
10932 // definition.
10933 // FIXME: We should really be doing this in
10934 // SemaDeclAttr.cpp::handleNoBuiltinAttr, unfortunately we only have access to
10935 // the FunctionDecl and at this point of the code
10936 // FunctionDecl::isThisDeclarationADefinition() which always returns `false`
10937 // because Sema::ActOnStartOfFunctionDef has not been called yet.
10938 if (const auto *NBA = NewFD->getAttr<NoBuiltinAttr>())
10939 switch (D.getFunctionDefinitionKind()) {
10940 case FunctionDefinitionKind::Defaulted:
10941 case FunctionDefinitionKind::Deleted:
10942 Diag(NBA->getLocation(),
10943 diag::err_attribute_no_builtin_on_defaulted_deleted_function)
10944 << NBA->getSpelling();
10945 break;
10946 case FunctionDefinitionKind::Declaration:
10947 Diag(NBA->getLocation(), diag::err_attribute_no_builtin_on_non_definition)
10948 << NBA->getSpelling();
10949 break;
10950 case FunctionDefinitionKind::Definition:
10951 break;
10952 }
10953
10954 return NewFD;
10955 }
10956
10957 /// Return a CodeSegAttr from a containing class. The Microsoft docs say
10958 /// when __declspec(code_seg) "is applied to a class, all member functions of
10959 /// the class and nested classes -- this includes compiler-generated special
10960 /// member functions -- are put in the specified segment."
10961 /// The actual behavior is a little more complicated. The Microsoft compiler
10962 /// won't check outer classes if there is an active value from #pragma code_seg.
10963 /// The CodeSeg is always applied from the direct parent but only from outer
10964 /// classes when the #pragma code_seg stack is empty. See:
10965 /// https://reviews.llvm.org/D22931, the Microsoft feedback page is no longer
10966 /// available since MS has removed the page.
getImplicitCodeSegAttrFromClass(Sema & S,const FunctionDecl * FD)10967 static Attr *getImplicitCodeSegAttrFromClass(Sema &S, const FunctionDecl *FD) {
10968 const auto *Method = dyn_cast<CXXMethodDecl>(FD);
10969 if (!Method)
10970 return nullptr;
10971 const CXXRecordDecl *Parent = Method->getParent();
10972 if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) {
10973 Attr *NewAttr = SAttr->clone(S.getASTContext());
10974 NewAttr->setImplicit(true);
10975 return NewAttr;
10976 }
10977
10978 // The Microsoft compiler won't check outer classes for the CodeSeg
10979 // when the #pragma code_seg stack is active.
10980 if (S.CodeSegStack.CurrentValue)
10981 return nullptr;
10982
10983 while ((Parent = dyn_cast<CXXRecordDecl>(Parent->getParent()))) {
10984 if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) {
10985 Attr *NewAttr = SAttr->clone(S.getASTContext());
10986 NewAttr->setImplicit(true);
10987 return NewAttr;
10988 }
10989 }
10990 return nullptr;
10991 }
10992
10993 /// Returns an implicit CodeSegAttr if a __declspec(code_seg) is found on a
10994 /// containing class. Otherwise it will return implicit SectionAttr if the
10995 /// function is a definition and there is an active value on CodeSegStack
10996 /// (from the current #pragma code-seg value).
10997 ///
10998 /// \param FD Function being declared.
10999 /// \param IsDefinition Whether it is a definition or just a declaration.
11000 /// \returns A CodeSegAttr or SectionAttr to apply to the function or
11001 /// nullptr if no attribute should be added.
getImplicitCodeSegOrSectionAttrForFunction(const FunctionDecl * FD,bool IsDefinition)11002 Attr *Sema::getImplicitCodeSegOrSectionAttrForFunction(const FunctionDecl *FD,
11003 bool IsDefinition) {
11004 if (Attr *A = getImplicitCodeSegAttrFromClass(*this, FD))
11005 return A;
11006 if (!FD->hasAttr<SectionAttr>() && IsDefinition &&
11007 CodeSegStack.CurrentValue)
11008 return SectionAttr::CreateImplicit(
11009 getASTContext(), CodeSegStack.CurrentValue->getString(),
11010 CodeSegStack.CurrentPragmaLocation, SectionAttr::Declspec_allocate);
11011 return nullptr;
11012 }
11013
11014 /// Determines if we can perform a correct type check for \p D as a
11015 /// redeclaration of \p PrevDecl. If not, we can generally still perform a
11016 /// best-effort check.
11017 ///
11018 /// \param NewD The new declaration.
11019 /// \param OldD The old declaration.
11020 /// \param NewT The portion of the type of the new declaration to check.
11021 /// \param OldT The portion of the type of the old declaration to check.
canFullyTypeCheckRedeclaration(ValueDecl * NewD,ValueDecl * OldD,QualType NewT,QualType OldT)11022 bool Sema::canFullyTypeCheckRedeclaration(ValueDecl *NewD, ValueDecl *OldD,
11023 QualType NewT, QualType OldT) {
11024 if (!NewD->getLexicalDeclContext()->isDependentContext())
11025 return true;
11026
11027 // For dependently-typed local extern declarations and friends, we can't
11028 // perform a correct type check in general until instantiation:
11029 //
11030 // int f();
11031 // template<typename T> void g() { T f(); }
11032 //
11033 // (valid if g() is only instantiated with T = int).
11034 if (NewT->isDependentType() &&
11035 (NewD->isLocalExternDecl() || NewD->getFriendObjectKind()))
11036 return false;
11037
11038 // Similarly, if the previous declaration was a dependent local extern
11039 // declaration, we don't really know its type yet.
11040 if (OldT->isDependentType() && OldD->isLocalExternDecl())
11041 return false;
11042
11043 return true;
11044 }
11045
11046 /// Checks if the new declaration declared in dependent context must be
11047 /// put in the same redeclaration chain as the specified declaration.
11048 ///
11049 /// \param D Declaration that is checked.
11050 /// \param PrevDecl Previous declaration found with proper lookup method for the
11051 /// same declaration name.
11052 /// \returns True if D must be added to the redeclaration chain which PrevDecl
11053 /// belongs to.
11054 ///
shouldLinkDependentDeclWithPrevious(Decl * D,Decl * PrevDecl)11055 bool Sema::shouldLinkDependentDeclWithPrevious(Decl *D, Decl *PrevDecl) {
11056 if (!D->getLexicalDeclContext()->isDependentContext())
11057 return true;
11058
11059 // Don't chain dependent friend function definitions until instantiation, to
11060 // permit cases like
11061 //
11062 // void func();
11063 // template<typename T> class C1 { friend void func() {} };
11064 // template<typename T> class C2 { friend void func() {} };
11065 //
11066 // ... which is valid if only one of C1 and C2 is ever instantiated.
11067 //
11068 // FIXME: This need only apply to function definitions. For now, we proxy
11069 // this by checking for a file-scope function. We do not want this to apply
11070 // to friend declarations nominating member functions, because that gets in
11071 // the way of access checks.
11072 if (D->getFriendObjectKind() && D->getDeclContext()->isFileContext())
11073 return false;
11074
11075 auto *VD = dyn_cast<ValueDecl>(D);
11076 auto *PrevVD = dyn_cast<ValueDecl>(PrevDecl);
11077 return !VD || !PrevVD ||
11078 canFullyTypeCheckRedeclaration(VD, PrevVD, VD->getType(),
11079 PrevVD->getType());
11080 }
11081
11082 /// Check the target or target_version attribute of the function for
11083 /// MultiVersion validity.
11084 ///
11085 /// Returns true if there was an error, false otherwise.
CheckMultiVersionValue(Sema & S,const FunctionDecl * FD)11086 static bool CheckMultiVersionValue(Sema &S, const FunctionDecl *FD) {
11087 const auto *TA = FD->getAttr<TargetAttr>();
11088 const auto *TVA = FD->getAttr<TargetVersionAttr>();
11089 assert(
11090 (TA || TVA) &&
11091 "MultiVersion candidate requires a target or target_version attribute");
11092 const TargetInfo &TargetInfo = S.Context.getTargetInfo();
11093 enum ErrType { Feature = 0, Architecture = 1 };
11094
11095 if (TA) {
11096 ParsedTargetAttr ParseInfo =
11097 S.getASTContext().getTargetInfo().parseTargetAttr(TA->getFeaturesStr());
11098 if (!ParseInfo.CPU.empty() && !TargetInfo.validateCpuIs(ParseInfo.CPU)) {
11099 S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
11100 << Architecture << ParseInfo.CPU;
11101 return true;
11102 }
11103 for (const auto &Feat : ParseInfo.Features) {
11104 auto BareFeat = StringRef{Feat}.substr(1);
11105 if (Feat[0] == '-') {
11106 S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
11107 << Feature << ("no-" + BareFeat).str();
11108 return true;
11109 }
11110
11111 if (!TargetInfo.validateCpuSupports(BareFeat) ||
11112 !TargetInfo.isValidFeatureName(BareFeat)) {
11113 S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
11114 << Feature << BareFeat;
11115 return true;
11116 }
11117 }
11118 }
11119
11120 if (TVA) {
11121 llvm::SmallVector<StringRef, 8> Feats;
11122 TVA->getFeatures(Feats);
11123 for (const auto &Feat : Feats) {
11124 if (!TargetInfo.validateCpuSupports(Feat)) {
11125 S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
11126 << Feature << Feat;
11127 return true;
11128 }
11129 }
11130 }
11131 return false;
11132 }
11133
11134 // Provide a white-list of attributes that are allowed to be combined with
11135 // multiversion functions.
AttrCompatibleWithMultiVersion(attr::Kind Kind,MultiVersionKind MVKind)11136 static bool AttrCompatibleWithMultiVersion(attr::Kind Kind,
11137 MultiVersionKind MVKind) {
11138 // Note: this list/diagnosis must match the list in
11139 // checkMultiversionAttributesAllSame.
11140 switch (Kind) {
11141 default:
11142 return false;
11143 case attr::Used:
11144 return MVKind == MultiVersionKind::Target;
11145 case attr::NonNull:
11146 case attr::NoThrow:
11147 return true;
11148 }
11149 }
11150
checkNonMultiVersionCompatAttributes(Sema & S,const FunctionDecl * FD,const FunctionDecl * CausedFD,MultiVersionKind MVKind)11151 static bool checkNonMultiVersionCompatAttributes(Sema &S,
11152 const FunctionDecl *FD,
11153 const FunctionDecl *CausedFD,
11154 MultiVersionKind MVKind) {
11155 const auto Diagnose = [FD, CausedFD, MVKind](Sema &S, const Attr *A) {
11156 S.Diag(FD->getLocation(), diag::err_multiversion_disallowed_other_attr)
11157 << static_cast<unsigned>(MVKind) << A;
11158 if (CausedFD)
11159 S.Diag(CausedFD->getLocation(), diag::note_multiversioning_caused_here);
11160 return true;
11161 };
11162
11163 for (const Attr *A : FD->attrs()) {
11164 switch (A->getKind()) {
11165 case attr::CPUDispatch:
11166 case attr::CPUSpecific:
11167 if (MVKind != MultiVersionKind::CPUDispatch &&
11168 MVKind != MultiVersionKind::CPUSpecific)
11169 return Diagnose(S, A);
11170 break;
11171 case attr::Target:
11172 if (MVKind != MultiVersionKind::Target)
11173 return Diagnose(S, A);
11174 break;
11175 case attr::TargetVersion:
11176 if (MVKind != MultiVersionKind::TargetVersion)
11177 return Diagnose(S, A);
11178 break;
11179 case attr::TargetClones:
11180 if (MVKind != MultiVersionKind::TargetClones)
11181 return Diagnose(S, A);
11182 break;
11183 default:
11184 if (!AttrCompatibleWithMultiVersion(A->getKind(), MVKind))
11185 return Diagnose(S, A);
11186 break;
11187 }
11188 }
11189 return false;
11190 }
11191
areMultiversionVariantFunctionsCompatible(const FunctionDecl * OldFD,const FunctionDecl * NewFD,const PartialDiagnostic & NoProtoDiagID,const PartialDiagnosticAt & NoteCausedDiagIDAt,const PartialDiagnosticAt & NoSupportDiagIDAt,const PartialDiagnosticAt & DiffDiagIDAt,bool TemplatesSupported,bool ConstexprSupported,bool CLinkageMayDiffer)11192 bool Sema::areMultiversionVariantFunctionsCompatible(
11193 const FunctionDecl *OldFD, const FunctionDecl *NewFD,
11194 const PartialDiagnostic &NoProtoDiagID,
11195 const PartialDiagnosticAt &NoteCausedDiagIDAt,
11196 const PartialDiagnosticAt &NoSupportDiagIDAt,
11197 const PartialDiagnosticAt &DiffDiagIDAt, bool TemplatesSupported,
11198 bool ConstexprSupported, bool CLinkageMayDiffer) {
11199 enum DoesntSupport {
11200 FuncTemplates = 0,
11201 VirtFuncs = 1,
11202 DeducedReturn = 2,
11203 Constructors = 3,
11204 Destructors = 4,
11205 DeletedFuncs = 5,
11206 DefaultedFuncs = 6,
11207 ConstexprFuncs = 7,
11208 ConstevalFuncs = 8,
11209 Lambda = 9,
11210 };
11211 enum Different {
11212 CallingConv = 0,
11213 ReturnType = 1,
11214 ConstexprSpec = 2,
11215 InlineSpec = 3,
11216 Linkage = 4,
11217 LanguageLinkage = 5,
11218 };
11219
11220 if (NoProtoDiagID.getDiagID() != 0 && OldFD &&
11221 !OldFD->getType()->getAs<FunctionProtoType>()) {
11222 Diag(OldFD->getLocation(), NoProtoDiagID);
11223 Diag(NoteCausedDiagIDAt.first, NoteCausedDiagIDAt.second);
11224 return true;
11225 }
11226
11227 if (NoProtoDiagID.getDiagID() != 0 &&
11228 !NewFD->getType()->getAs<FunctionProtoType>())
11229 return Diag(NewFD->getLocation(), NoProtoDiagID);
11230
11231 if (!TemplatesSupported &&
11232 NewFD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
11233 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
11234 << FuncTemplates;
11235
11236 if (const auto *NewCXXFD = dyn_cast<CXXMethodDecl>(NewFD)) {
11237 if (NewCXXFD->isVirtual())
11238 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
11239 << VirtFuncs;
11240
11241 if (isa<CXXConstructorDecl>(NewCXXFD))
11242 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
11243 << Constructors;
11244
11245 if (isa<CXXDestructorDecl>(NewCXXFD))
11246 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
11247 << Destructors;
11248 }
11249
11250 if (NewFD->isDeleted())
11251 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
11252 << DeletedFuncs;
11253
11254 if (NewFD->isDefaulted())
11255 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
11256 << DefaultedFuncs;
11257
11258 if (!ConstexprSupported && NewFD->isConstexpr())
11259 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
11260 << (NewFD->isConsteval() ? ConstevalFuncs : ConstexprFuncs);
11261
11262 QualType NewQType = Context.getCanonicalType(NewFD->getType());
11263 const auto *NewType = cast<FunctionType>(NewQType);
11264 QualType NewReturnType = NewType->getReturnType();
11265
11266 if (NewReturnType->isUndeducedType())
11267 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
11268 << DeducedReturn;
11269
11270 // Ensure the return type is identical.
11271 if (OldFD) {
11272 QualType OldQType = Context.getCanonicalType(OldFD->getType());
11273 const auto *OldType = cast<FunctionType>(OldQType);
11274 FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
11275 FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
11276
11277 if (OldTypeInfo.getCC() != NewTypeInfo.getCC())
11278 return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << CallingConv;
11279
11280 QualType OldReturnType = OldType->getReturnType();
11281
11282 if (OldReturnType != NewReturnType)
11283 return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << ReturnType;
11284
11285 if (OldFD->getConstexprKind() != NewFD->getConstexprKind())
11286 return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << ConstexprSpec;
11287
11288 if (OldFD->isInlineSpecified() != NewFD->isInlineSpecified())
11289 return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << InlineSpec;
11290
11291 if (OldFD->getFormalLinkage() != NewFD->getFormalLinkage())
11292 return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << Linkage;
11293
11294 if (!CLinkageMayDiffer && OldFD->isExternC() != NewFD->isExternC())
11295 return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << LanguageLinkage;
11296
11297 if (CheckEquivalentExceptionSpec(
11298 OldFD->getType()->getAs<FunctionProtoType>(), OldFD->getLocation(),
11299 NewFD->getType()->getAs<FunctionProtoType>(), NewFD->getLocation()))
11300 return true;
11301 }
11302 return false;
11303 }
11304
CheckMultiVersionAdditionalRules(Sema & S,const FunctionDecl * OldFD,const FunctionDecl * NewFD,bool CausesMV,MultiVersionKind MVKind)11305 static bool CheckMultiVersionAdditionalRules(Sema &S, const FunctionDecl *OldFD,
11306 const FunctionDecl *NewFD,
11307 bool CausesMV,
11308 MultiVersionKind MVKind) {
11309 if (!S.getASTContext().getTargetInfo().supportsMultiVersioning()) {
11310 S.Diag(NewFD->getLocation(), diag::err_multiversion_not_supported);
11311 if (OldFD)
11312 S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
11313 return true;
11314 }
11315
11316 bool IsCPUSpecificCPUDispatchMVKind =
11317 MVKind == MultiVersionKind::CPUDispatch ||
11318 MVKind == MultiVersionKind::CPUSpecific;
11319
11320 if (CausesMV && OldFD &&
11321 checkNonMultiVersionCompatAttributes(S, OldFD, NewFD, MVKind))
11322 return true;
11323
11324 if (checkNonMultiVersionCompatAttributes(S, NewFD, nullptr, MVKind))
11325 return true;
11326
11327 // Only allow transition to MultiVersion if it hasn't been used.
11328 if (OldFD && CausesMV && OldFD->isUsed(false))
11329 return S.Diag(NewFD->getLocation(), diag::err_multiversion_after_used);
11330
11331 return S.areMultiversionVariantFunctionsCompatible(
11332 OldFD, NewFD, S.PDiag(diag::err_multiversion_noproto),
11333 PartialDiagnosticAt(NewFD->getLocation(),
11334 S.PDiag(diag::note_multiversioning_caused_here)),
11335 PartialDiagnosticAt(NewFD->getLocation(),
11336 S.PDiag(diag::err_multiversion_doesnt_support)
11337 << static_cast<unsigned>(MVKind)),
11338 PartialDiagnosticAt(NewFD->getLocation(),
11339 S.PDiag(diag::err_multiversion_diff)),
11340 /*TemplatesSupported=*/false,
11341 /*ConstexprSupported=*/!IsCPUSpecificCPUDispatchMVKind,
11342 /*CLinkageMayDiffer=*/false);
11343 }
11344
11345 /// Check the validity of a multiversion function declaration that is the
11346 /// first of its kind. Also sets the multiversion'ness' of the function itself.
11347 ///
11348 /// This sets NewFD->isInvalidDecl() to true if there was an error.
11349 ///
11350 /// Returns true if there was an error, false otherwise.
CheckMultiVersionFirstFunction(Sema & S,FunctionDecl * FD)11351 static bool CheckMultiVersionFirstFunction(Sema &S, FunctionDecl *FD) {
11352 MultiVersionKind MVKind = FD->getMultiVersionKind();
11353 assert(MVKind != MultiVersionKind::None &&
11354 "Function lacks multiversion attribute");
11355 const auto *TA = FD->getAttr<TargetAttr>();
11356 const auto *TVA = FD->getAttr<TargetVersionAttr>();
11357 // Target and target_version only causes MV if it is default, otherwise this
11358 // is a normal function.
11359 if ((TA && !TA->isDefaultVersion()) || (TVA && !TVA->isDefaultVersion()))
11360 return false;
11361
11362 if ((TA || TVA) && CheckMultiVersionValue(S, FD)) {
11363 FD->setInvalidDecl();
11364 return true;
11365 }
11366
11367 if (CheckMultiVersionAdditionalRules(S, nullptr, FD, true, MVKind)) {
11368 FD->setInvalidDecl();
11369 return true;
11370 }
11371
11372 FD->setIsMultiVersion();
11373 return false;
11374 }
11375
PreviousDeclsHaveMultiVersionAttribute(const FunctionDecl * FD)11376 static bool PreviousDeclsHaveMultiVersionAttribute(const FunctionDecl *FD) {
11377 for (const Decl *D = FD->getPreviousDecl(); D; D = D->getPreviousDecl()) {
11378 if (D->getAsFunction()->getMultiVersionKind() != MultiVersionKind::None)
11379 return true;
11380 }
11381
11382 return false;
11383 }
11384
CheckTargetCausesMultiVersioning(Sema & S,FunctionDecl * OldFD,FunctionDecl * NewFD,bool & Redeclaration,NamedDecl * & OldDecl,LookupResult & Previous)11385 static bool CheckTargetCausesMultiVersioning(Sema &S, FunctionDecl *OldFD,
11386 FunctionDecl *NewFD,
11387 bool &Redeclaration,
11388 NamedDecl *&OldDecl,
11389 LookupResult &Previous) {
11390 const auto *NewTA = NewFD->getAttr<TargetAttr>();
11391 const auto *NewTVA = NewFD->getAttr<TargetVersionAttr>();
11392 const auto *OldTA = OldFD->getAttr<TargetAttr>();
11393 const auto *OldTVA = OldFD->getAttr<TargetVersionAttr>();
11394 // If the old decl is NOT MultiVersioned yet, and we don't cause that
11395 // to change, this is a simple redeclaration.
11396 if ((NewTA && !NewTA->isDefaultVersion() &&
11397 (!OldTA || OldTA->getFeaturesStr() == NewTA->getFeaturesStr())) ||
11398 (NewTVA && !NewTVA->isDefaultVersion() &&
11399 (!OldTVA || OldTVA->getName() == NewTVA->getName())))
11400 return false;
11401
11402 // Otherwise, this decl causes MultiVersioning.
11403 if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD, true,
11404 NewTVA ? MultiVersionKind::TargetVersion
11405 : MultiVersionKind::Target)) {
11406 NewFD->setInvalidDecl();
11407 return true;
11408 }
11409
11410 if (CheckMultiVersionValue(S, NewFD)) {
11411 NewFD->setInvalidDecl();
11412 return true;
11413 }
11414
11415 // If this is 'default', permit the forward declaration.
11416 if (!OldFD->isMultiVersion() &&
11417 ((NewTA && NewTA->isDefaultVersion() && !OldTA) ||
11418 (NewTVA && NewTVA->isDefaultVersion() && !OldTVA))) {
11419 Redeclaration = true;
11420 OldDecl = OldFD;
11421 OldFD->setIsMultiVersion();
11422 NewFD->setIsMultiVersion();
11423 return false;
11424 }
11425
11426 if (CheckMultiVersionValue(S, OldFD)) {
11427 S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
11428 NewFD->setInvalidDecl();
11429 return true;
11430 }
11431
11432 if (NewTA) {
11433 ParsedTargetAttr OldParsed =
11434 S.getASTContext().getTargetInfo().parseTargetAttr(
11435 OldTA->getFeaturesStr());
11436 llvm::sort(OldParsed.Features);
11437 ParsedTargetAttr NewParsed =
11438 S.getASTContext().getTargetInfo().parseTargetAttr(
11439 NewTA->getFeaturesStr());
11440 // Sort order doesn't matter, it just needs to be consistent.
11441 llvm::sort(NewParsed.Features);
11442 if (OldParsed == NewParsed) {
11443 S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate);
11444 S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
11445 NewFD->setInvalidDecl();
11446 return true;
11447 }
11448 }
11449
11450 if (NewTVA) {
11451 llvm::SmallVector<StringRef, 8> Feats;
11452 OldTVA->getFeatures(Feats);
11453 llvm::sort(Feats);
11454 llvm::SmallVector<StringRef, 8> NewFeats;
11455 NewTVA->getFeatures(NewFeats);
11456 llvm::sort(NewFeats);
11457
11458 if (Feats == NewFeats) {
11459 S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate);
11460 S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
11461 NewFD->setInvalidDecl();
11462 return true;
11463 }
11464 }
11465
11466 for (const auto *FD : OldFD->redecls()) {
11467 const auto *CurTA = FD->getAttr<TargetAttr>();
11468 const auto *CurTVA = FD->getAttr<TargetVersionAttr>();
11469 // We allow forward declarations before ANY multiversioning attributes, but
11470 // nothing after the fact.
11471 if (PreviousDeclsHaveMultiVersionAttribute(FD) &&
11472 ((NewTA && (!CurTA || CurTA->isInherited())) ||
11473 (NewTVA && (!CurTVA || CurTVA->isInherited())))) {
11474 S.Diag(FD->getLocation(), diag::err_multiversion_required_in_redecl)
11475 << (NewTA ? 0 : 2);
11476 S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
11477 NewFD->setInvalidDecl();
11478 return true;
11479 }
11480 }
11481
11482 OldFD->setIsMultiVersion();
11483 NewFD->setIsMultiVersion();
11484 Redeclaration = false;
11485 OldDecl = nullptr;
11486 Previous.clear();
11487 return false;
11488 }
11489
MultiVersionTypesCompatible(MultiVersionKind Old,MultiVersionKind New)11490 static bool MultiVersionTypesCompatible(MultiVersionKind Old,
11491 MultiVersionKind New) {
11492 if (Old == New || Old == MultiVersionKind::None ||
11493 New == MultiVersionKind::None)
11494 return true;
11495
11496 return (Old == MultiVersionKind::CPUDispatch &&
11497 New == MultiVersionKind::CPUSpecific) ||
11498 (Old == MultiVersionKind::CPUSpecific &&
11499 New == MultiVersionKind::CPUDispatch);
11500 }
11501
11502 /// Check the validity of a new function declaration being added to an existing
11503 /// multiversioned declaration collection.
CheckMultiVersionAdditionalDecl(Sema & S,FunctionDecl * OldFD,FunctionDecl * NewFD,MultiVersionKind NewMVKind,const CPUDispatchAttr * NewCPUDisp,const CPUSpecificAttr * NewCPUSpec,const TargetClonesAttr * NewClones,bool & Redeclaration,NamedDecl * & OldDecl,LookupResult & Previous)11504 static bool CheckMultiVersionAdditionalDecl(
11505 Sema &S, FunctionDecl *OldFD, FunctionDecl *NewFD,
11506 MultiVersionKind NewMVKind, const CPUDispatchAttr *NewCPUDisp,
11507 const CPUSpecificAttr *NewCPUSpec, const TargetClonesAttr *NewClones,
11508 bool &Redeclaration, NamedDecl *&OldDecl, LookupResult &Previous) {
11509 const auto *NewTA = NewFD->getAttr<TargetAttr>();
11510 const auto *NewTVA = NewFD->getAttr<TargetVersionAttr>();
11511 MultiVersionKind OldMVKind = OldFD->getMultiVersionKind();
11512 // Disallow mixing of multiversioning types.
11513 if (!MultiVersionTypesCompatible(OldMVKind, NewMVKind)) {
11514 S.Diag(NewFD->getLocation(), diag::err_multiversion_types_mixed);
11515 S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
11516 NewFD->setInvalidDecl();
11517 return true;
11518 }
11519
11520 ParsedTargetAttr NewParsed;
11521 if (NewTA) {
11522 NewParsed = S.getASTContext().getTargetInfo().parseTargetAttr(
11523 NewTA->getFeaturesStr());
11524 llvm::sort(NewParsed.Features);
11525 }
11526 llvm::SmallVector<StringRef, 8> NewFeats;
11527 if (NewTVA) {
11528 NewTVA->getFeatures(NewFeats);
11529 llvm::sort(NewFeats);
11530 }
11531
11532 bool UseMemberUsingDeclRules =
11533 S.CurContext->isRecord() && !NewFD->getFriendObjectKind();
11534
11535 bool MayNeedOverloadableChecks =
11536 AllowOverloadingOfFunction(Previous, S.Context, NewFD);
11537
11538 // Next, check ALL non-invalid non-overloads to see if this is a redeclaration
11539 // of a previous member of the MultiVersion set.
11540 for (NamedDecl *ND : Previous) {
11541 FunctionDecl *CurFD = ND->getAsFunction();
11542 if (!CurFD || CurFD->isInvalidDecl())
11543 continue;
11544 if (MayNeedOverloadableChecks &&
11545 S.IsOverload(NewFD, CurFD, UseMemberUsingDeclRules))
11546 continue;
11547
11548 if (NewMVKind == MultiVersionKind::None &&
11549 OldMVKind == MultiVersionKind::TargetVersion) {
11550 NewFD->addAttr(TargetVersionAttr::CreateImplicit(
11551 S.Context, "default", NewFD->getSourceRange()));
11552 NewFD->setIsMultiVersion();
11553 NewMVKind = MultiVersionKind::TargetVersion;
11554 if (!NewTVA) {
11555 NewTVA = NewFD->getAttr<TargetVersionAttr>();
11556 NewTVA->getFeatures(NewFeats);
11557 llvm::sort(NewFeats);
11558 }
11559 }
11560
11561 switch (NewMVKind) {
11562 case MultiVersionKind::None:
11563 assert(OldMVKind == MultiVersionKind::TargetClones &&
11564 "Only target_clones can be omitted in subsequent declarations");
11565 break;
11566 case MultiVersionKind::Target: {
11567 const auto *CurTA = CurFD->getAttr<TargetAttr>();
11568 if (CurTA->getFeaturesStr() == NewTA->getFeaturesStr()) {
11569 NewFD->setIsMultiVersion();
11570 Redeclaration = true;
11571 OldDecl = ND;
11572 return false;
11573 }
11574
11575 ParsedTargetAttr CurParsed =
11576 S.getASTContext().getTargetInfo().parseTargetAttr(
11577 CurTA->getFeaturesStr());
11578 llvm::sort(CurParsed.Features);
11579 if (CurParsed == NewParsed) {
11580 S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate);
11581 S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
11582 NewFD->setInvalidDecl();
11583 return true;
11584 }
11585 break;
11586 }
11587 case MultiVersionKind::TargetVersion: {
11588 const auto *CurTVA = CurFD->getAttr<TargetVersionAttr>();
11589 if (CurTVA->getName() == NewTVA->getName()) {
11590 NewFD->setIsMultiVersion();
11591 Redeclaration = true;
11592 OldDecl = ND;
11593 return false;
11594 }
11595 llvm::SmallVector<StringRef, 8> CurFeats;
11596 if (CurTVA) {
11597 CurTVA->getFeatures(CurFeats);
11598 llvm::sort(CurFeats);
11599 }
11600 if (CurFeats == NewFeats) {
11601 S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate);
11602 S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
11603 NewFD->setInvalidDecl();
11604 return true;
11605 }
11606 break;
11607 }
11608 case MultiVersionKind::TargetClones: {
11609 const auto *CurClones = CurFD->getAttr<TargetClonesAttr>();
11610 Redeclaration = true;
11611 OldDecl = CurFD;
11612 NewFD->setIsMultiVersion();
11613
11614 if (CurClones && NewClones &&
11615 (CurClones->featuresStrs_size() != NewClones->featuresStrs_size() ||
11616 !std::equal(CurClones->featuresStrs_begin(),
11617 CurClones->featuresStrs_end(),
11618 NewClones->featuresStrs_begin()))) {
11619 S.Diag(NewFD->getLocation(), diag::err_target_clone_doesnt_match);
11620 S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
11621 NewFD->setInvalidDecl();
11622 return true;
11623 }
11624
11625 return false;
11626 }
11627 case MultiVersionKind::CPUSpecific:
11628 case MultiVersionKind::CPUDispatch: {
11629 const auto *CurCPUSpec = CurFD->getAttr<CPUSpecificAttr>();
11630 const auto *CurCPUDisp = CurFD->getAttr<CPUDispatchAttr>();
11631 // Handle CPUDispatch/CPUSpecific versions.
11632 // Only 1 CPUDispatch function is allowed, this will make it go through
11633 // the redeclaration errors.
11634 if (NewMVKind == MultiVersionKind::CPUDispatch &&
11635 CurFD->hasAttr<CPUDispatchAttr>()) {
11636 if (CurCPUDisp->cpus_size() == NewCPUDisp->cpus_size() &&
11637 std::equal(
11638 CurCPUDisp->cpus_begin(), CurCPUDisp->cpus_end(),
11639 NewCPUDisp->cpus_begin(),
11640 [](const IdentifierInfo *Cur, const IdentifierInfo *New) {
11641 return Cur->getName() == New->getName();
11642 })) {
11643 NewFD->setIsMultiVersion();
11644 Redeclaration = true;
11645 OldDecl = ND;
11646 return false;
11647 }
11648
11649 // If the declarations don't match, this is an error condition.
11650 S.Diag(NewFD->getLocation(), diag::err_cpu_dispatch_mismatch);
11651 S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
11652 NewFD->setInvalidDecl();
11653 return true;
11654 }
11655 if (NewMVKind == MultiVersionKind::CPUSpecific && CurCPUSpec) {
11656 if (CurCPUSpec->cpus_size() == NewCPUSpec->cpus_size() &&
11657 std::equal(
11658 CurCPUSpec->cpus_begin(), CurCPUSpec->cpus_end(),
11659 NewCPUSpec->cpus_begin(),
11660 [](const IdentifierInfo *Cur, const IdentifierInfo *New) {
11661 return Cur->getName() == New->getName();
11662 })) {
11663 NewFD->setIsMultiVersion();
11664 Redeclaration = true;
11665 OldDecl = ND;
11666 return false;
11667 }
11668
11669 // Only 1 version of CPUSpecific is allowed for each CPU.
11670 for (const IdentifierInfo *CurII : CurCPUSpec->cpus()) {
11671 for (const IdentifierInfo *NewII : NewCPUSpec->cpus()) {
11672 if (CurII == NewII) {
11673 S.Diag(NewFD->getLocation(), diag::err_cpu_specific_multiple_defs)
11674 << NewII;
11675 S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
11676 NewFD->setInvalidDecl();
11677 return true;
11678 }
11679 }
11680 }
11681 }
11682 break;
11683 }
11684 }
11685 }
11686
11687 // Else, this is simply a non-redecl case. Checking the 'value' is only
11688 // necessary in the Target case, since The CPUSpecific/Dispatch cases are
11689 // handled in the attribute adding step.
11690 if ((NewMVKind == MultiVersionKind::TargetVersion ||
11691 NewMVKind == MultiVersionKind::Target) &&
11692 CheckMultiVersionValue(S, NewFD)) {
11693 NewFD->setInvalidDecl();
11694 return true;
11695 }
11696
11697 if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD,
11698 !OldFD->isMultiVersion(), NewMVKind)) {
11699 NewFD->setInvalidDecl();
11700 return true;
11701 }
11702
11703 // Permit forward declarations in the case where these two are compatible.
11704 if (!OldFD->isMultiVersion()) {
11705 OldFD->setIsMultiVersion();
11706 NewFD->setIsMultiVersion();
11707 Redeclaration = true;
11708 OldDecl = OldFD;
11709 return false;
11710 }
11711
11712 NewFD->setIsMultiVersion();
11713 Redeclaration = false;
11714 OldDecl = nullptr;
11715 Previous.clear();
11716 return false;
11717 }
11718
11719 /// Check the validity of a mulitversion function declaration.
11720 /// Also sets the multiversion'ness' of the function itself.
11721 ///
11722 /// This sets NewFD->isInvalidDecl() to true if there was an error.
11723 ///
11724 /// Returns true if there was an error, false otherwise.
CheckMultiVersionFunction(Sema & S,FunctionDecl * NewFD,bool & Redeclaration,NamedDecl * & OldDecl,LookupResult & Previous)11725 static bool CheckMultiVersionFunction(Sema &S, FunctionDecl *NewFD,
11726 bool &Redeclaration, NamedDecl *&OldDecl,
11727 LookupResult &Previous) {
11728 const auto *NewTA = NewFD->getAttr<TargetAttr>();
11729 const auto *NewTVA = NewFD->getAttr<TargetVersionAttr>();
11730 const auto *NewCPUDisp = NewFD->getAttr<CPUDispatchAttr>();
11731 const auto *NewCPUSpec = NewFD->getAttr<CPUSpecificAttr>();
11732 const auto *NewClones = NewFD->getAttr<TargetClonesAttr>();
11733 MultiVersionKind MVKind = NewFD->getMultiVersionKind();
11734
11735 // Main isn't allowed to become a multiversion function, however it IS
11736 // permitted to have 'main' be marked with the 'target' optimization hint,
11737 // for 'target_version' only default is allowed.
11738 if (NewFD->isMain()) {
11739 if (MVKind != MultiVersionKind::None &&
11740 !(MVKind == MultiVersionKind::Target && !NewTA->isDefaultVersion()) &&
11741 !(MVKind == MultiVersionKind::TargetVersion &&
11742 NewTVA->isDefaultVersion())) {
11743 S.Diag(NewFD->getLocation(), diag::err_multiversion_not_allowed_on_main);
11744 NewFD->setInvalidDecl();
11745 return true;
11746 }
11747 return false;
11748 }
11749
11750 // Target attribute on AArch64 is not used for multiversioning
11751 if (NewTA && S.getASTContext().getTargetInfo().getTriple().isAArch64())
11752 return false;
11753
11754 if (!OldDecl || !OldDecl->getAsFunction() ||
11755 OldDecl->getDeclContext()->getRedeclContext() !=
11756 NewFD->getDeclContext()->getRedeclContext()) {
11757 // If there's no previous declaration, AND this isn't attempting to cause
11758 // multiversioning, this isn't an error condition.
11759 if (MVKind == MultiVersionKind::None)
11760 return false;
11761 return CheckMultiVersionFirstFunction(S, NewFD);
11762 }
11763
11764 FunctionDecl *OldFD = OldDecl->getAsFunction();
11765
11766 if (!OldFD->isMultiVersion() && MVKind == MultiVersionKind::None) {
11767 if (NewTVA || !OldFD->getAttr<TargetVersionAttr>())
11768 return false;
11769 if (!NewFD->getType()->getAs<FunctionProtoType>()) {
11770 // Multiversion declaration doesn't have prototype.
11771 S.Diag(NewFD->getLocation(), diag::err_multiversion_noproto);
11772 NewFD->setInvalidDecl();
11773 } else {
11774 // No "target_version" attribute is equivalent to "default" attribute.
11775 NewFD->addAttr(TargetVersionAttr::CreateImplicit(
11776 S.Context, "default", NewFD->getSourceRange()));
11777 NewFD->setIsMultiVersion();
11778 OldFD->setIsMultiVersion();
11779 OldDecl = OldFD;
11780 Redeclaration = true;
11781 }
11782 return true;
11783 }
11784
11785 // Multiversioned redeclarations aren't allowed to omit the attribute, except
11786 // for target_clones and target_version.
11787 if (OldFD->isMultiVersion() && MVKind == MultiVersionKind::None &&
11788 OldFD->getMultiVersionKind() != MultiVersionKind::TargetClones &&
11789 OldFD->getMultiVersionKind() != MultiVersionKind::TargetVersion) {
11790 S.Diag(NewFD->getLocation(), diag::err_multiversion_required_in_redecl)
11791 << (OldFD->getMultiVersionKind() != MultiVersionKind::Target);
11792 NewFD->setInvalidDecl();
11793 return true;
11794 }
11795
11796 if (!OldFD->isMultiVersion()) {
11797 switch (MVKind) {
11798 case MultiVersionKind::Target:
11799 case MultiVersionKind::TargetVersion:
11800 return CheckTargetCausesMultiVersioning(S, OldFD, NewFD, Redeclaration,
11801 OldDecl, Previous);
11802 case MultiVersionKind::TargetClones:
11803 if (OldFD->isUsed(false)) {
11804 NewFD->setInvalidDecl();
11805 return S.Diag(NewFD->getLocation(), diag::err_multiversion_after_used);
11806 }
11807 OldFD->setIsMultiVersion();
11808 break;
11809
11810 case MultiVersionKind::CPUDispatch:
11811 case MultiVersionKind::CPUSpecific:
11812 case MultiVersionKind::None:
11813 break;
11814 }
11815 }
11816
11817 // At this point, we have a multiversion function decl (in OldFD) AND an
11818 // appropriate attribute in the current function decl. Resolve that these are
11819 // still compatible with previous declarations.
11820 return CheckMultiVersionAdditionalDecl(S, OldFD, NewFD, MVKind, NewCPUDisp,
11821 NewCPUSpec, NewClones, Redeclaration,
11822 OldDecl, Previous);
11823 }
11824
CheckConstPureAttributesUsage(Sema & S,FunctionDecl * NewFD)11825 static void CheckConstPureAttributesUsage(Sema &S, FunctionDecl *NewFD) {
11826 bool IsPure = NewFD->hasAttr<PureAttr>();
11827 bool IsConst = NewFD->hasAttr<ConstAttr>();
11828
11829 // If there are no pure or const attributes, there's nothing to check.
11830 if (!IsPure && !IsConst)
11831 return;
11832
11833 // If the function is marked both pure and const, we retain the const
11834 // attribute because it makes stronger guarantees than the pure attribute, and
11835 // we drop the pure attribute explicitly to prevent later confusion about
11836 // semantics.
11837 if (IsPure && IsConst) {
11838 S.Diag(NewFD->getLocation(), diag::warn_const_attr_with_pure_attr);
11839 NewFD->dropAttrs<PureAttr>();
11840 }
11841
11842 // Constructors and destructors are functions which return void, so are
11843 // handled here as well.
11844 if (NewFD->getReturnType()->isVoidType()) {
11845 S.Diag(NewFD->getLocation(), diag::warn_pure_function_returns_void)
11846 << IsConst;
11847 NewFD->dropAttrs<PureAttr, ConstAttr>();
11848 }
11849 }
11850
11851 /// Perform semantic checking of a new function declaration.
11852 ///
11853 /// Performs semantic analysis of the new function declaration
11854 /// NewFD. This routine performs all semantic checking that does not
11855 /// require the actual declarator involved in the declaration, and is
11856 /// used both for the declaration of functions as they are parsed
11857 /// (called via ActOnDeclarator) and for the declaration of functions
11858 /// that have been instantiated via C++ template instantiation (called
11859 /// via InstantiateDecl).
11860 ///
11861 /// \param IsMemberSpecialization whether this new function declaration is
11862 /// a member specialization (that replaces any definition provided by the
11863 /// previous declaration).
11864 ///
11865 /// This sets NewFD->isInvalidDecl() to true if there was an error.
11866 ///
11867 /// \returns true if the function declaration is a redeclaration.
CheckFunctionDeclaration(Scope * S,FunctionDecl * NewFD,LookupResult & Previous,bool IsMemberSpecialization,bool DeclIsDefn)11868 bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
11869 LookupResult &Previous,
11870 bool IsMemberSpecialization,
11871 bool DeclIsDefn) {
11872 assert(!NewFD->getReturnType()->isVariablyModifiedType() &&
11873 "Variably modified return types are not handled here");
11874
11875 // Determine whether the type of this function should be merged with
11876 // a previous visible declaration. This never happens for functions in C++,
11877 // and always happens in C if the previous declaration was visible.
11878 bool MergeTypeWithPrevious = !getLangOpts().CPlusPlus &&
11879 !Previous.isShadowed();
11880
11881 bool Redeclaration = false;
11882 NamedDecl *OldDecl = nullptr;
11883 bool MayNeedOverloadableChecks = false;
11884
11885 // Merge or overload the declaration with an existing declaration of
11886 // the same name, if appropriate.
11887 if (!Previous.empty()) {
11888 // Determine whether NewFD is an overload of PrevDecl or
11889 // a declaration that requires merging. If it's an overload,
11890 // there's no more work to do here; we'll just add the new
11891 // function to the scope.
11892 if (!AllowOverloadingOfFunction(Previous, Context, NewFD)) {
11893 NamedDecl *Candidate = Previous.getRepresentativeDecl();
11894 if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) {
11895 Redeclaration = true;
11896 OldDecl = Candidate;
11897 }
11898 } else {
11899 MayNeedOverloadableChecks = true;
11900 switch (CheckOverload(S, NewFD, Previous, OldDecl,
11901 /*NewIsUsingDecl*/ false)) {
11902 case Ovl_Match:
11903 Redeclaration = true;
11904 break;
11905
11906 case Ovl_NonFunction:
11907 Redeclaration = true;
11908 break;
11909
11910 case Ovl_Overload:
11911 Redeclaration = false;
11912 break;
11913 }
11914 }
11915 }
11916
11917 // Check for a previous extern "C" declaration with this name.
11918 if (!Redeclaration &&
11919 checkForConflictWithNonVisibleExternC(*this, NewFD, Previous)) {
11920 if (!Previous.empty()) {
11921 // This is an extern "C" declaration with the same name as a previous
11922 // declaration, and thus redeclares that entity...
11923 Redeclaration = true;
11924 OldDecl = Previous.getFoundDecl();
11925 MergeTypeWithPrevious = false;
11926
11927 // ... except in the presence of __attribute__((overloadable)).
11928 if (OldDecl->hasAttr<OverloadableAttr>() ||
11929 NewFD->hasAttr<OverloadableAttr>()) {
11930 if (IsOverload(NewFD, cast<FunctionDecl>(OldDecl), false)) {
11931 MayNeedOverloadableChecks = true;
11932 Redeclaration = false;
11933 OldDecl = nullptr;
11934 }
11935 }
11936 }
11937 }
11938
11939 if (CheckMultiVersionFunction(*this, NewFD, Redeclaration, OldDecl, Previous))
11940 return Redeclaration;
11941
11942 // PPC MMA non-pointer types are not allowed as function return types.
11943 if (Context.getTargetInfo().getTriple().isPPC64() &&
11944 CheckPPCMMAType(NewFD->getReturnType(), NewFD->getLocation())) {
11945 NewFD->setInvalidDecl();
11946 }
11947
11948 CheckConstPureAttributesUsage(*this, NewFD);
11949
11950 // C++11 [dcl.constexpr]p8:
11951 // A constexpr specifier for a non-static member function that is not
11952 // a constructor declares that member function to be const.
11953 //
11954 // This needs to be delayed until we know whether this is an out-of-line
11955 // definition of a static member function.
11956 //
11957 // This rule is not present in C++1y, so we produce a backwards
11958 // compatibility warning whenever it happens in C++11.
11959 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
11960 if (!getLangOpts().CPlusPlus14 && MD && MD->isConstexpr() &&
11961 !MD->isStatic() && !isa<CXXConstructorDecl>(MD) &&
11962 !isa<CXXDestructorDecl>(MD) && !MD->getMethodQualifiers().hasConst()) {
11963 CXXMethodDecl *OldMD = nullptr;
11964 if (OldDecl)
11965 OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl->getAsFunction());
11966 if (!OldMD || !OldMD->isStatic()) {
11967 const FunctionProtoType *FPT =
11968 MD->getType()->castAs<FunctionProtoType>();
11969 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
11970 EPI.TypeQuals.addConst();
11971 MD->setType(Context.getFunctionType(FPT->getReturnType(),
11972 FPT->getParamTypes(), EPI));
11973
11974 // Warn that we did this, if we're not performing template instantiation.
11975 // In that case, we'll have warned already when the template was defined.
11976 if (!inTemplateInstantiation()) {
11977 SourceLocation AddConstLoc;
11978 if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc()
11979 .IgnoreParens().getAs<FunctionTypeLoc>())
11980 AddConstLoc = getLocForEndOfToken(FTL.getRParenLoc());
11981
11982 Diag(MD->getLocation(), diag::warn_cxx14_compat_constexpr_not_const)
11983 << FixItHint::CreateInsertion(AddConstLoc, " const");
11984 }
11985 }
11986 }
11987
11988 if (Redeclaration) {
11989 // NewFD and OldDecl represent declarations that need to be
11990 // merged.
11991 if (MergeFunctionDecl(NewFD, OldDecl, S, MergeTypeWithPrevious,
11992 DeclIsDefn)) {
11993 NewFD->setInvalidDecl();
11994 return Redeclaration;
11995 }
11996
11997 Previous.clear();
11998 Previous.addDecl(OldDecl);
11999
12000 if (FunctionTemplateDecl *OldTemplateDecl =
12001 dyn_cast<FunctionTemplateDecl>(OldDecl)) {
12002 auto *OldFD = OldTemplateDecl->getTemplatedDecl();
12003 FunctionTemplateDecl *NewTemplateDecl
12004 = NewFD->getDescribedFunctionTemplate();
12005 assert(NewTemplateDecl && "Template/non-template mismatch");
12006
12007 // The call to MergeFunctionDecl above may have created some state in
12008 // NewTemplateDecl that needs to be merged with OldTemplateDecl before we
12009 // can add it as a redeclaration.
12010 NewTemplateDecl->mergePrevDecl(OldTemplateDecl);
12011
12012 NewFD->setPreviousDeclaration(OldFD);
12013 if (NewFD->isCXXClassMember()) {
12014 NewFD->setAccess(OldTemplateDecl->getAccess());
12015 NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
12016 }
12017
12018 // If this is an explicit specialization of a member that is a function
12019 // template, mark it as a member specialization.
12020 if (IsMemberSpecialization &&
12021 NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
12022 NewTemplateDecl->setMemberSpecialization();
12023 assert(OldTemplateDecl->isMemberSpecialization());
12024 // Explicit specializations of a member template do not inherit deleted
12025 // status from the parent member template that they are specializing.
12026 if (OldFD->isDeleted()) {
12027 // FIXME: This assert will not hold in the presence of modules.
12028 assert(OldFD->getCanonicalDecl() == OldFD);
12029 // FIXME: We need an update record for this AST mutation.
12030 OldFD->setDeletedAsWritten(false);
12031 }
12032 }
12033
12034 } else {
12035 if (shouldLinkDependentDeclWithPrevious(NewFD, OldDecl)) {
12036 auto *OldFD = cast<FunctionDecl>(OldDecl);
12037 // This needs to happen first so that 'inline' propagates.
12038 NewFD->setPreviousDeclaration(OldFD);
12039 if (NewFD->isCXXClassMember())
12040 NewFD->setAccess(OldFD->getAccess());
12041 }
12042 }
12043 } else if (!getLangOpts().CPlusPlus && MayNeedOverloadableChecks &&
12044 !NewFD->getAttr<OverloadableAttr>()) {
12045 assert((Previous.empty() ||
12046 llvm::any_of(Previous,
12047 [](const NamedDecl *ND) {
12048 return ND->hasAttr<OverloadableAttr>();
12049 })) &&
12050 "Non-redecls shouldn't happen without overloadable present");
12051
12052 auto OtherUnmarkedIter = llvm::find_if(Previous, [](const NamedDecl *ND) {
12053 const auto *FD = dyn_cast<FunctionDecl>(ND);
12054 return FD && !FD->hasAttr<OverloadableAttr>();
12055 });
12056
12057 if (OtherUnmarkedIter != Previous.end()) {
12058 Diag(NewFD->getLocation(),
12059 diag::err_attribute_overloadable_multiple_unmarked_overloads);
12060 Diag((*OtherUnmarkedIter)->getLocation(),
12061 diag::note_attribute_overloadable_prev_overload)
12062 << false;
12063
12064 NewFD->addAttr(OverloadableAttr::CreateImplicit(Context));
12065 }
12066 }
12067
12068 if (LangOpts.OpenMP)
12069 ActOnFinishedFunctionDefinitionInOpenMPAssumeScope(NewFD);
12070
12071 // Semantic checking for this function declaration (in isolation).
12072
12073 if (getLangOpts().CPlusPlus) {
12074 // C++-specific checks.
12075 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
12076 CheckConstructor(Constructor);
12077 } else if (CXXDestructorDecl *Destructor =
12078 dyn_cast<CXXDestructorDecl>(NewFD)) {
12079 // We check here for invalid destructor names.
12080 // If we have a friend destructor declaration that is dependent, we can't
12081 // diagnose right away because cases like this are still valid:
12082 // template <class T> struct A { friend T::X::~Y(); };
12083 // struct B { struct Y { ~Y(); }; using X = Y; };
12084 // template struct A<B>;
12085 if (NewFD->getFriendObjectKind() == Decl::FriendObjectKind::FOK_None ||
12086 !Destructor->getFunctionObjectParameterType()->isDependentType()) {
12087 CXXRecordDecl *Record = Destructor->getParent();
12088 QualType ClassType = Context.getTypeDeclType(Record);
12089
12090 DeclarationName Name = Context.DeclarationNames.getCXXDestructorName(
12091 Context.getCanonicalType(ClassType));
12092 if (NewFD->getDeclName() != Name) {
12093 Diag(NewFD->getLocation(), diag::err_destructor_name);
12094 NewFD->setInvalidDecl();
12095 return Redeclaration;
12096 }
12097 }
12098 } else if (auto *Guide = dyn_cast<CXXDeductionGuideDecl>(NewFD)) {
12099 if (auto *TD = Guide->getDescribedFunctionTemplate())
12100 CheckDeductionGuideTemplate(TD);
12101
12102 // A deduction guide is not on the list of entities that can be
12103 // explicitly specialized.
12104 if (Guide->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
12105 Diag(Guide->getBeginLoc(), diag::err_deduction_guide_specialized)
12106 << /*explicit specialization*/ 1;
12107 }
12108
12109 // Find any virtual functions that this function overrides.
12110 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
12111 if (!Method->isFunctionTemplateSpecialization() &&
12112 !Method->getDescribedFunctionTemplate() &&
12113 Method->isCanonicalDecl()) {
12114 AddOverriddenMethods(Method->getParent(), Method);
12115 }
12116 if (Method->isVirtual() && NewFD->getTrailingRequiresClause())
12117 // C++2a [class.virtual]p6
12118 // A virtual method shall not have a requires-clause.
12119 Diag(NewFD->getTrailingRequiresClause()->getBeginLoc(),
12120 diag::err_constrained_virtual_method);
12121
12122 if (Method->isStatic())
12123 checkThisInStaticMemberFunctionType(Method);
12124 }
12125
12126 if (Expr *TRC = NewFD->getTrailingRequiresClause()) {
12127 // C++20: dcl.decl.general p4:
12128 // The optional requires-clause ([temp.pre]) in an init-declarator or
12129 // member-declarator shall be present only if the declarator declares a
12130 // templated function ([dcl.fct]).
12131 //
12132 // [temp.pre]/8:
12133 // An entity is templated if it is
12134 // - a template,
12135 // - an entity defined ([basic.def]) or created ([class.temporary]) in a
12136 // templated entity,
12137 // - a member of a templated entity,
12138 // - an enumerator for an enumeration that is a templated entity, or
12139 // - the closure type of a lambda-expression ([expr.prim.lambda.closure])
12140 // appearing in the declaration of a templated entity. [Note 6: A local
12141 // class, a local or block variable, or a friend function defined in a
12142 // templated entity is a templated entity. — end note]
12143 //
12144 // A templated function is a function template or a function that is
12145 // templated. A templated class is a class template or a class that is
12146 // templated. A templated variable is a variable template or a variable
12147 // that is templated.
12148
12149 bool IsTemplate = NewFD->getDescribedFunctionTemplate();
12150 bool IsFriend = NewFD->getFriendObjectKind();
12151 if (!IsTemplate && // -a template
12152 // defined... in a templated entity
12153 !(DeclIsDefn && NewFD->isTemplated()) &&
12154 // a member of a templated entity
12155 !(isa<CXXMethodDecl>(NewFD) && NewFD->isTemplated()) &&
12156 // Don't complain about instantiations, they've already had these
12157 // rules + others enforced.
12158 !NewFD->isTemplateInstantiation() &&
12159 // If the function violates [temp.friend]p9 because it is missing
12160 // a definition, and adding a definition would make it templated,
12161 // then let that error take precedence.
12162 !(!DeclIsDefn && IsFriend && NewFD->isTemplated())) {
12163 Diag(TRC->getBeginLoc(), diag::err_constrained_non_templated_function);
12164 } else if (!DeclIsDefn && !IsTemplate && IsFriend &&
12165 !NewFD->isTemplateInstantiation()) {
12166 // C++ [temp.friend]p9:
12167 // A non-template friend declaration with a requires-clause shall be a
12168 // definition.
12169 Diag(NewFD->getBeginLoc(),
12170 diag::err_non_temp_friend_decl_with_requires_clause_must_be_def);
12171 NewFD->setInvalidDecl();
12172 }
12173 }
12174
12175 if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(NewFD))
12176 ActOnConversionDeclarator(Conversion);
12177
12178 // Extra checking for C++ overloaded operators (C++ [over.oper]).
12179 if (NewFD->isOverloadedOperator() &&
12180 CheckOverloadedOperatorDeclaration(NewFD)) {
12181 NewFD->setInvalidDecl();
12182 return Redeclaration;
12183 }
12184
12185 // Extra checking for C++0x literal operators (C++0x [over.literal]).
12186 if (NewFD->getLiteralIdentifier() &&
12187 CheckLiteralOperatorDeclaration(NewFD)) {
12188 NewFD->setInvalidDecl();
12189 return Redeclaration;
12190 }
12191
12192 // In C++, check default arguments now that we have merged decls. Unless
12193 // the lexical context is the class, because in this case this is done
12194 // during delayed parsing anyway.
12195 if (!CurContext->isRecord())
12196 CheckCXXDefaultArguments(NewFD);
12197
12198 // If this function is declared as being extern "C", then check to see if
12199 // the function returns a UDT (class, struct, or union type) that is not C
12200 // compatible, and if it does, warn the user.
12201 // But, issue any diagnostic on the first declaration only.
12202 if (Previous.empty() && NewFD->isExternC()) {
12203 QualType R = NewFD->getReturnType();
12204 if (R->isIncompleteType() && !R->isVoidType())
12205 Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
12206 << NewFD << R;
12207 else if (!R.isPODType(Context) && !R->isVoidType() &&
12208 !R->isObjCObjectPointerType())
12209 Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
12210 }
12211
12212 // C++1z [dcl.fct]p6:
12213 // [...] whether the function has a non-throwing exception-specification
12214 // [is] part of the function type
12215 //
12216 // This results in an ABI break between C++14 and C++17 for functions whose
12217 // declared type includes an exception-specification in a parameter or
12218 // return type. (Exception specifications on the function itself are OK in
12219 // most cases, and exception specifications are not permitted in most other
12220 // contexts where they could make it into a mangling.)
12221 if (!getLangOpts().CPlusPlus17 && !NewFD->getPrimaryTemplate()) {
12222 auto HasNoexcept = [&](QualType T) -> bool {
12223 // Strip off declarator chunks that could be between us and a function
12224 // type. We don't need to look far, exception specifications are very
12225 // restricted prior to C++17.
12226 if (auto *RT = T->getAs<ReferenceType>())
12227 T = RT->getPointeeType();
12228 else if (T->isAnyPointerType())
12229 T = T->getPointeeType();
12230 else if (auto *MPT = T->getAs<MemberPointerType>())
12231 T = MPT->getPointeeType();
12232 if (auto *FPT = T->getAs<FunctionProtoType>())
12233 if (FPT->isNothrow())
12234 return true;
12235 return false;
12236 };
12237
12238 auto *FPT = NewFD->getType()->castAs<FunctionProtoType>();
12239 bool AnyNoexcept = HasNoexcept(FPT->getReturnType());
12240 for (QualType T : FPT->param_types())
12241 AnyNoexcept |= HasNoexcept(T);
12242 if (AnyNoexcept)
12243 Diag(NewFD->getLocation(),
12244 diag::warn_cxx17_compat_exception_spec_in_signature)
12245 << NewFD;
12246 }
12247
12248 if (!Redeclaration && LangOpts.CUDA)
12249 checkCUDATargetOverload(NewFD, Previous);
12250 }
12251
12252 // Check if the function definition uses any AArch64 SME features without
12253 // having the '+sme' feature enabled.
12254 if (DeclIsDefn) {
12255 const auto *Attr = NewFD->getAttr<ArmNewAttr>();
12256 bool UsesSM = NewFD->hasAttr<ArmLocallyStreamingAttr>();
12257 bool UsesZA = Attr && Attr->isNewZA();
12258 bool UsesZT0 = Attr && Attr->isNewZT0();
12259 if (const auto *FPT = NewFD->getType()->getAs<FunctionProtoType>()) {
12260 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
12261 UsesSM |=
12262 EPI.AArch64SMEAttributes & FunctionType::SME_PStateSMEnabledMask;
12263 UsesZA |= FunctionType::getArmZAState(EPI.AArch64SMEAttributes) !=
12264 FunctionType::ARM_None;
12265 UsesZT0 |= FunctionType::getArmZT0State(EPI.AArch64SMEAttributes) !=
12266 FunctionType::ARM_None;
12267 }
12268
12269 if (UsesSM || UsesZA) {
12270 llvm::StringMap<bool> FeatureMap;
12271 Context.getFunctionFeatureMap(FeatureMap, NewFD);
12272 if (!FeatureMap.contains("sme")) {
12273 if (UsesSM)
12274 Diag(NewFD->getLocation(),
12275 diag::err_sme_definition_using_sm_in_non_sme_target);
12276 else
12277 Diag(NewFD->getLocation(),
12278 diag::err_sme_definition_using_za_in_non_sme_target);
12279 }
12280 }
12281 if (UsesZT0) {
12282 llvm::StringMap<bool> FeatureMap;
12283 Context.getFunctionFeatureMap(FeatureMap, NewFD);
12284 if (!FeatureMap.contains("sme2")) {
12285 Diag(NewFD->getLocation(),
12286 diag::err_sme_definition_using_zt0_in_non_sme2_target);
12287 }
12288 }
12289 }
12290
12291 return Redeclaration;
12292 }
12293
CheckMain(FunctionDecl * FD,const DeclSpec & DS)12294 void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
12295 // C++11 [basic.start.main]p3:
12296 // A program that [...] declares main to be inline, static or
12297 // constexpr is ill-formed.
12298 // C11 6.7.4p4: In a hosted environment, no function specifier(s) shall
12299 // appear in a declaration of main.
12300 // static main is not an error under C99, but we should warn about it.
12301 // We accept _Noreturn main as an extension.
12302 if (FD->getStorageClass() == SC_Static)
12303 Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
12304 ? diag::err_static_main : diag::warn_static_main)
12305 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
12306 if (FD->isInlineSpecified())
12307 Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
12308 << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
12309 if (DS.isNoreturnSpecified()) {
12310 SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc();
12311 SourceRange NoreturnRange(NoreturnLoc, getLocForEndOfToken(NoreturnLoc));
12312 Diag(NoreturnLoc, diag::ext_noreturn_main);
12313 Diag(NoreturnLoc, diag::note_main_remove_noreturn)
12314 << FixItHint::CreateRemoval(NoreturnRange);
12315 }
12316 if (FD->isConstexpr()) {
12317 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
12318 << FD->isConsteval()
12319 << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
12320 FD->setConstexprKind(ConstexprSpecKind::Unspecified);
12321 }
12322
12323 if (getLangOpts().OpenCL) {
12324 Diag(FD->getLocation(), diag::err_opencl_no_main)
12325 << FD->hasAttr<OpenCLKernelAttr>();
12326 FD->setInvalidDecl();
12327 return;
12328 }
12329
12330 // Functions named main in hlsl are default entries, but don't have specific
12331 // signatures they are required to conform to.
12332 if (getLangOpts().HLSL)
12333 return;
12334
12335 QualType T = FD->getType();
12336 assert(T->isFunctionType() && "function decl is not of function type");
12337 const FunctionType* FT = T->castAs<FunctionType>();
12338
12339 // Set default calling convention for main()
12340 if (FT->getCallConv() != CC_C) {
12341 FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(CC_C));
12342 FD->setType(QualType(FT, 0));
12343 T = Context.getCanonicalType(FD->getType());
12344 }
12345
12346 if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
12347 // In C with GNU extensions we allow main() to have non-integer return
12348 // type, but we should warn about the extension, and we disable the
12349 // implicit-return-zero rule.
12350
12351 // GCC in C mode accepts qualified 'int'.
12352 if (Context.hasSameUnqualifiedType(FT->getReturnType(), Context.IntTy))
12353 FD->setHasImplicitReturnZero(true);
12354 else {
12355 Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
12356 SourceRange RTRange = FD->getReturnTypeSourceRange();
12357 if (RTRange.isValid())
12358 Diag(RTRange.getBegin(), diag::note_main_change_return_type)
12359 << FixItHint::CreateReplacement(RTRange, "int");
12360 }
12361 } else {
12362 // In C and C++, main magically returns 0 if you fall off the end;
12363 // set the flag which tells us that.
12364 // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
12365
12366 // All the standards say that main() should return 'int'.
12367 if (Context.hasSameType(FT->getReturnType(), Context.IntTy))
12368 FD->setHasImplicitReturnZero(true);
12369 else {
12370 // Otherwise, this is just a flat-out error.
12371 SourceRange RTRange = FD->getReturnTypeSourceRange();
12372 Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint)
12373 << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "int")
12374 : FixItHint());
12375 FD->setInvalidDecl(true);
12376 }
12377 }
12378
12379 // Treat protoless main() as nullary.
12380 if (isa<FunctionNoProtoType>(FT)) return;
12381
12382 const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
12383 unsigned nparams = FTP->getNumParams();
12384 assert(FD->getNumParams() == nparams);
12385
12386 bool HasExtraParameters = (nparams > 3);
12387
12388 if (FTP->isVariadic()) {
12389 Diag(FD->getLocation(), diag::ext_variadic_main);
12390 // FIXME: if we had information about the location of the ellipsis, we
12391 // could add a FixIt hint to remove it as a parameter.
12392 }
12393
12394 // Darwin passes an undocumented fourth argument of type char**. If
12395 // other platforms start sprouting these, the logic below will start
12396 // getting shifty.
12397 if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
12398 HasExtraParameters = false;
12399
12400 if (HasExtraParameters) {
12401 Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
12402 FD->setInvalidDecl(true);
12403 nparams = 3;
12404 }
12405
12406 // FIXME: a lot of the following diagnostics would be improved
12407 // if we had some location information about types.
12408
12409 QualType CharPP =
12410 Context.getPointerType(Context.getPointerType(Context.CharTy));
12411 QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
12412
12413 for (unsigned i = 0; i < nparams; ++i) {
12414 QualType AT = FTP->getParamType(i);
12415
12416 bool mismatch = true;
12417
12418 if (Context.hasSameUnqualifiedType(AT, Expected[i]))
12419 mismatch = false;
12420 else if (Expected[i] == CharPP) {
12421 // As an extension, the following forms are okay:
12422 // char const **
12423 // char const * const *
12424 // char * const *
12425
12426 QualifierCollector qs;
12427 const PointerType* PT;
12428 if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
12429 (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
12430 Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0),
12431 Context.CharTy)) {
12432 qs.removeConst();
12433 mismatch = !qs.empty();
12434 }
12435 }
12436
12437 if (mismatch) {
12438 Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
12439 // TODO: suggest replacing given type with expected type
12440 FD->setInvalidDecl(true);
12441 }
12442 }
12443
12444 if (nparams == 1 && !FD->isInvalidDecl()) {
12445 Diag(FD->getLocation(), diag::warn_main_one_arg);
12446 }
12447
12448 if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
12449 Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
12450 FD->setInvalidDecl();
12451 }
12452 }
12453
isDefaultStdCall(FunctionDecl * FD,Sema & S)12454 static bool isDefaultStdCall(FunctionDecl *FD, Sema &S) {
12455
12456 // Default calling convention for main and wmain is __cdecl
12457 if (FD->getName() == "main" || FD->getName() == "wmain")
12458 return false;
12459
12460 // Default calling convention for MinGW is __cdecl
12461 const llvm::Triple &T = S.Context.getTargetInfo().getTriple();
12462 if (T.isWindowsGNUEnvironment())
12463 return false;
12464
12465 // Default calling convention for WinMain, wWinMain and DllMain
12466 // is __stdcall on 32 bit Windows
12467 if (T.isOSWindows() && T.getArch() == llvm::Triple::x86)
12468 return true;
12469
12470 return false;
12471 }
12472
CheckMSVCRTEntryPoint(FunctionDecl * FD)12473 void Sema::CheckMSVCRTEntryPoint(FunctionDecl *FD) {
12474 QualType T = FD->getType();
12475 assert(T->isFunctionType() && "function decl is not of function type");
12476 const FunctionType *FT = T->castAs<FunctionType>();
12477
12478 // Set an implicit return of 'zero' if the function can return some integral,
12479 // enumeration, pointer or nullptr type.
12480 if (FT->getReturnType()->isIntegralOrEnumerationType() ||
12481 FT->getReturnType()->isAnyPointerType() ||
12482 FT->getReturnType()->isNullPtrType())
12483 // DllMain is exempt because a return value of zero means it failed.
12484 if (FD->getName() != "DllMain")
12485 FD->setHasImplicitReturnZero(true);
12486
12487 // Explicity specified calling conventions are applied to MSVC entry points
12488 if (!hasExplicitCallingConv(T)) {
12489 if (isDefaultStdCall(FD, *this)) {
12490 if (FT->getCallConv() != CC_X86StdCall) {
12491 FT = Context.adjustFunctionType(
12492 FT, FT->getExtInfo().withCallingConv(CC_X86StdCall));
12493 FD->setType(QualType(FT, 0));
12494 }
12495 } else if (FT->getCallConv() != CC_C) {
12496 FT = Context.adjustFunctionType(FT,
12497 FT->getExtInfo().withCallingConv(CC_C));
12498 FD->setType(QualType(FT, 0));
12499 }
12500 }
12501
12502 if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
12503 Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
12504 FD->setInvalidDecl();
12505 }
12506 }
12507
ActOnHLSLTopLevelFunction(FunctionDecl * FD)12508 void Sema::ActOnHLSLTopLevelFunction(FunctionDecl *FD) {
12509 auto &TargetInfo = getASTContext().getTargetInfo();
12510
12511 if (FD->getName() != TargetInfo.getTargetOpts().HLSLEntry)
12512 return;
12513
12514 StringRef Env = TargetInfo.getTriple().getEnvironmentName();
12515 HLSLShaderAttr::ShaderType ShaderType;
12516 if (HLSLShaderAttr::ConvertStrToShaderType(Env, ShaderType)) {
12517 if (const auto *Shader = FD->getAttr<HLSLShaderAttr>()) {
12518 // The entry point is already annotated - check that it matches the
12519 // triple.
12520 if (Shader->getType() != ShaderType) {
12521 Diag(Shader->getLocation(), diag::err_hlsl_entry_shader_attr_mismatch)
12522 << Shader;
12523 FD->setInvalidDecl();
12524 }
12525 } else {
12526 // Implicitly add the shader attribute if the entry function isn't
12527 // explicitly annotated.
12528 FD->addAttr(HLSLShaderAttr::CreateImplicit(Context, ShaderType,
12529 FD->getBeginLoc()));
12530 }
12531 } else {
12532 switch (TargetInfo.getTriple().getEnvironment()) {
12533 case llvm::Triple::UnknownEnvironment:
12534 case llvm::Triple::Library:
12535 break;
12536 default:
12537 llvm_unreachable("Unhandled environment in triple");
12538 }
12539 }
12540 }
12541
CheckHLSLEntryPoint(FunctionDecl * FD)12542 void Sema::CheckHLSLEntryPoint(FunctionDecl *FD) {
12543 const auto *ShaderAttr = FD->getAttr<HLSLShaderAttr>();
12544 assert(ShaderAttr && "Entry point has no shader attribute");
12545 HLSLShaderAttr::ShaderType ST = ShaderAttr->getType();
12546
12547 switch (ST) {
12548 case HLSLShaderAttr::Pixel:
12549 case HLSLShaderAttr::Vertex:
12550 case HLSLShaderAttr::Geometry:
12551 case HLSLShaderAttr::Hull:
12552 case HLSLShaderAttr::Domain:
12553 case HLSLShaderAttr::RayGeneration:
12554 case HLSLShaderAttr::Intersection:
12555 case HLSLShaderAttr::AnyHit:
12556 case HLSLShaderAttr::ClosestHit:
12557 case HLSLShaderAttr::Miss:
12558 case HLSLShaderAttr::Callable:
12559 if (const auto *NT = FD->getAttr<HLSLNumThreadsAttr>()) {
12560 DiagnoseHLSLAttrStageMismatch(NT, ST,
12561 {HLSLShaderAttr::Compute,
12562 HLSLShaderAttr::Amplification,
12563 HLSLShaderAttr::Mesh});
12564 FD->setInvalidDecl();
12565 }
12566 break;
12567
12568 case HLSLShaderAttr::Compute:
12569 case HLSLShaderAttr::Amplification:
12570 case HLSLShaderAttr::Mesh:
12571 if (!FD->hasAttr<HLSLNumThreadsAttr>()) {
12572 Diag(FD->getLocation(), diag::err_hlsl_missing_numthreads)
12573 << HLSLShaderAttr::ConvertShaderTypeToStr(ST);
12574 FD->setInvalidDecl();
12575 }
12576 break;
12577 }
12578
12579 for (ParmVarDecl *Param : FD->parameters()) {
12580 if (const auto *AnnotationAttr = Param->getAttr<HLSLAnnotationAttr>()) {
12581 CheckHLSLSemanticAnnotation(FD, Param, AnnotationAttr);
12582 } else {
12583 // FIXME: Handle struct parameters where annotations are on struct fields.
12584 // See: https://github.com/llvm/llvm-project/issues/57875
12585 Diag(FD->getLocation(), diag::err_hlsl_missing_semantic_annotation);
12586 Diag(Param->getLocation(), diag::note_previous_decl) << Param;
12587 FD->setInvalidDecl();
12588 }
12589 }
12590 // FIXME: Verify return type semantic annotation.
12591 }
12592
CheckHLSLSemanticAnnotation(FunctionDecl * EntryPoint,const Decl * Param,const HLSLAnnotationAttr * AnnotationAttr)12593 void Sema::CheckHLSLSemanticAnnotation(
12594 FunctionDecl *EntryPoint, const Decl *Param,
12595 const HLSLAnnotationAttr *AnnotationAttr) {
12596 auto *ShaderAttr = EntryPoint->getAttr<HLSLShaderAttr>();
12597 assert(ShaderAttr && "Entry point has no shader attribute");
12598 HLSLShaderAttr::ShaderType ST = ShaderAttr->getType();
12599
12600 switch (AnnotationAttr->getKind()) {
12601 case attr::HLSLSV_DispatchThreadID:
12602 case attr::HLSLSV_GroupIndex:
12603 if (ST == HLSLShaderAttr::Compute)
12604 return;
12605 DiagnoseHLSLAttrStageMismatch(AnnotationAttr, ST,
12606 {HLSLShaderAttr::Compute});
12607 break;
12608 default:
12609 llvm_unreachable("Unknown HLSLAnnotationAttr");
12610 }
12611 }
12612
DiagnoseHLSLAttrStageMismatch(const Attr * A,HLSLShaderAttr::ShaderType Stage,std::initializer_list<HLSLShaderAttr::ShaderType> AllowedStages)12613 void Sema::DiagnoseHLSLAttrStageMismatch(
12614 const Attr *A, HLSLShaderAttr::ShaderType Stage,
12615 std::initializer_list<HLSLShaderAttr::ShaderType> AllowedStages) {
12616 SmallVector<StringRef, 8> StageStrings;
12617 llvm::transform(AllowedStages, std::back_inserter(StageStrings),
12618 [](HLSLShaderAttr::ShaderType ST) {
12619 return StringRef(
12620 HLSLShaderAttr::ConvertShaderTypeToStr(ST));
12621 });
12622 Diag(A->getLoc(), diag::err_hlsl_attr_unsupported_in_stage)
12623 << A << HLSLShaderAttr::ConvertShaderTypeToStr(Stage)
12624 << (AllowedStages.size() != 1) << join(StageStrings, ", ");
12625 }
12626
CheckForConstantInitializer(Expr * Init,QualType DclT)12627 bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
12628 // FIXME: Need strict checking. In C89, we need to check for
12629 // any assignment, increment, decrement, function-calls, or
12630 // commas outside of a sizeof. In C99, it's the same list,
12631 // except that the aforementioned are allowed in unevaluated
12632 // expressions. Everything else falls under the
12633 // "may accept other forms of constant expressions" exception.
12634 //
12635 // Regular C++ code will not end up here (exceptions: language extensions,
12636 // OpenCL C++ etc), so the constant expression rules there don't matter.
12637 if (Init->isValueDependent()) {
12638 assert(Init->containsErrors() &&
12639 "Dependent code should only occur in error-recovery path.");
12640 return true;
12641 }
12642 const Expr *Culprit;
12643 if (Init->isConstantInitializer(Context, false, &Culprit))
12644 return false;
12645 Diag(Culprit->getExprLoc(), diag::err_init_element_not_constant)
12646 << Culprit->getSourceRange();
12647 return true;
12648 }
12649
12650 namespace {
12651 // Visits an initialization expression to see if OrigDecl is evaluated in
12652 // its own initialization and throws a warning if it does.
12653 class SelfReferenceChecker
12654 : public EvaluatedExprVisitor<SelfReferenceChecker> {
12655 Sema &S;
12656 Decl *OrigDecl;
12657 bool isRecordType;
12658 bool isPODType;
12659 bool isReferenceType;
12660
12661 bool isInitList;
12662 llvm::SmallVector<unsigned, 4> InitFieldIndex;
12663
12664 public:
12665 typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
12666
SelfReferenceChecker(Sema & S,Decl * OrigDecl)12667 SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
12668 S(S), OrigDecl(OrigDecl) {
12669 isPODType = false;
12670 isRecordType = false;
12671 isReferenceType = false;
12672 isInitList = false;
12673 if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
12674 isPODType = VD->getType().isPODType(S.Context);
12675 isRecordType = VD->getType()->isRecordType();
12676 isReferenceType = VD->getType()->isReferenceType();
12677 }
12678 }
12679
12680 // For most expressions, just call the visitor. For initializer lists,
12681 // track the index of the field being initialized since fields are
12682 // initialized in order allowing use of previously initialized fields.
CheckExpr(Expr * E)12683 void CheckExpr(Expr *E) {
12684 InitListExpr *InitList = dyn_cast<InitListExpr>(E);
12685 if (!InitList) {
12686 Visit(E);
12687 return;
12688 }
12689
12690 // Track and increment the index here.
12691 isInitList = true;
12692 InitFieldIndex.push_back(0);
12693 for (auto *Child : InitList->children()) {
12694 CheckExpr(cast<Expr>(Child));
12695 ++InitFieldIndex.back();
12696 }
12697 InitFieldIndex.pop_back();
12698 }
12699
12700 // Returns true if MemberExpr is checked and no further checking is needed.
12701 // Returns false if additional checking is required.
CheckInitListMemberExpr(MemberExpr * E,bool CheckReference)12702 bool CheckInitListMemberExpr(MemberExpr *E, bool CheckReference) {
12703 llvm::SmallVector<FieldDecl*, 4> Fields;
12704 Expr *Base = E;
12705 bool ReferenceField = false;
12706
12707 // Get the field members used.
12708 while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
12709 FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
12710 if (!FD)
12711 return false;
12712 Fields.push_back(FD);
12713 if (FD->getType()->isReferenceType())
12714 ReferenceField = true;
12715 Base = ME->getBase()->IgnoreParenImpCasts();
12716 }
12717
12718 // Keep checking only if the base Decl is the same.
12719 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base);
12720 if (!DRE || DRE->getDecl() != OrigDecl)
12721 return false;
12722
12723 // A reference field can be bound to an unininitialized field.
12724 if (CheckReference && !ReferenceField)
12725 return true;
12726
12727 // Convert FieldDecls to their index number.
12728 llvm::SmallVector<unsigned, 4> UsedFieldIndex;
12729 for (const FieldDecl *I : llvm::reverse(Fields))
12730 UsedFieldIndex.push_back(I->getFieldIndex());
12731
12732 // See if a warning is needed by checking the first difference in index
12733 // numbers. If field being used has index less than the field being
12734 // initialized, then the use is safe.
12735 for (auto UsedIter = UsedFieldIndex.begin(),
12736 UsedEnd = UsedFieldIndex.end(),
12737 OrigIter = InitFieldIndex.begin(),
12738 OrigEnd = InitFieldIndex.end();
12739 UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) {
12740 if (*UsedIter < *OrigIter)
12741 return true;
12742 if (*UsedIter > *OrigIter)
12743 break;
12744 }
12745
12746 // TODO: Add a different warning which will print the field names.
12747 HandleDeclRefExpr(DRE);
12748 return true;
12749 }
12750
12751 // For most expressions, the cast is directly above the DeclRefExpr.
12752 // For conditional operators, the cast can be outside the conditional
12753 // operator if both expressions are DeclRefExpr's.
HandleValue(Expr * E)12754 void HandleValue(Expr *E) {
12755 E = E->IgnoreParens();
12756 if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
12757 HandleDeclRefExpr(DRE);
12758 return;
12759 }
12760
12761 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
12762 Visit(CO->getCond());
12763 HandleValue(CO->getTrueExpr());
12764 HandleValue(CO->getFalseExpr());
12765 return;
12766 }
12767
12768 if (BinaryConditionalOperator *BCO =
12769 dyn_cast<BinaryConditionalOperator>(E)) {
12770 Visit(BCO->getCond());
12771 HandleValue(BCO->getFalseExpr());
12772 return;
12773 }
12774
12775 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
12776 if (Expr *SE = OVE->getSourceExpr())
12777 HandleValue(SE);
12778 return;
12779 }
12780
12781 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
12782 if (BO->getOpcode() == BO_Comma) {
12783 Visit(BO->getLHS());
12784 HandleValue(BO->getRHS());
12785 return;
12786 }
12787 }
12788
12789 if (isa<MemberExpr>(E)) {
12790 if (isInitList) {
12791 if (CheckInitListMemberExpr(cast<MemberExpr>(E),
12792 false /*CheckReference*/))
12793 return;
12794 }
12795
12796 Expr *Base = E->IgnoreParenImpCasts();
12797 while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
12798 // Check for static member variables and don't warn on them.
12799 if (!isa<FieldDecl>(ME->getMemberDecl()))
12800 return;
12801 Base = ME->getBase()->IgnoreParenImpCasts();
12802 }
12803 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
12804 HandleDeclRefExpr(DRE);
12805 return;
12806 }
12807
12808 Visit(E);
12809 }
12810
12811 // Reference types not handled in HandleValue are handled here since all
12812 // uses of references are bad, not just r-value uses.
VisitDeclRefExpr(DeclRefExpr * E)12813 void VisitDeclRefExpr(DeclRefExpr *E) {
12814 if (isReferenceType)
12815 HandleDeclRefExpr(E);
12816 }
12817
VisitImplicitCastExpr(ImplicitCastExpr * E)12818 void VisitImplicitCastExpr(ImplicitCastExpr *E) {
12819 if (E->getCastKind() == CK_LValueToRValue) {
12820 HandleValue(E->getSubExpr());
12821 return;
12822 }
12823
12824 Inherited::VisitImplicitCastExpr(E);
12825 }
12826
VisitMemberExpr(MemberExpr * E)12827 void VisitMemberExpr(MemberExpr *E) {
12828 if (isInitList) {
12829 if (CheckInitListMemberExpr(E, true /*CheckReference*/))
12830 return;
12831 }
12832
12833 // Don't warn on arrays since they can be treated as pointers.
12834 if (E->getType()->canDecayToPointerType()) return;
12835
12836 // Warn when a non-static method call is followed by non-static member
12837 // field accesses, which is followed by a DeclRefExpr.
12838 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
12839 bool Warn = (MD && !MD->isStatic());
12840 Expr *Base = E->getBase()->IgnoreParenImpCasts();
12841 while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
12842 if (!isa<FieldDecl>(ME->getMemberDecl()))
12843 Warn = false;
12844 Base = ME->getBase()->IgnoreParenImpCasts();
12845 }
12846
12847 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
12848 if (Warn)
12849 HandleDeclRefExpr(DRE);
12850 return;
12851 }
12852
12853 // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
12854 // Visit that expression.
12855 Visit(Base);
12856 }
12857
VisitCXXOperatorCallExpr(CXXOperatorCallExpr * E)12858 void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
12859 Expr *Callee = E->getCallee();
12860
12861 if (isa<UnresolvedLookupExpr>(Callee))
12862 return Inherited::VisitCXXOperatorCallExpr(E);
12863
12864 Visit(Callee);
12865 for (auto Arg: E->arguments())
12866 HandleValue(Arg->IgnoreParenImpCasts());
12867 }
12868
VisitUnaryOperator(UnaryOperator * E)12869 void VisitUnaryOperator(UnaryOperator *E) {
12870 // For POD record types, addresses of its own members are well-defined.
12871 if (E->getOpcode() == UO_AddrOf && isRecordType &&
12872 isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
12873 if (!isPODType)
12874 HandleValue(E->getSubExpr());
12875 return;
12876 }
12877
12878 if (E->isIncrementDecrementOp()) {
12879 HandleValue(E->getSubExpr());
12880 return;
12881 }
12882
12883 Inherited::VisitUnaryOperator(E);
12884 }
12885
VisitObjCMessageExpr(ObjCMessageExpr * E)12886 void VisitObjCMessageExpr(ObjCMessageExpr *E) {}
12887
VisitCXXConstructExpr(CXXConstructExpr * E)12888 void VisitCXXConstructExpr(CXXConstructExpr *E) {
12889 if (E->getConstructor()->isCopyConstructor()) {
12890 Expr *ArgExpr = E->getArg(0);
12891 if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr))
12892 if (ILE->getNumInits() == 1)
12893 ArgExpr = ILE->getInit(0);
12894 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
12895 if (ICE->getCastKind() == CK_NoOp)
12896 ArgExpr = ICE->getSubExpr();
12897 HandleValue(ArgExpr);
12898 return;
12899 }
12900 Inherited::VisitCXXConstructExpr(E);
12901 }
12902
VisitCallExpr(CallExpr * E)12903 void VisitCallExpr(CallExpr *E) {
12904 // Treat std::move as a use.
12905 if (E->isCallToStdMove()) {
12906 HandleValue(E->getArg(0));
12907 return;
12908 }
12909
12910 Inherited::VisitCallExpr(E);
12911 }
12912
VisitBinaryOperator(BinaryOperator * E)12913 void VisitBinaryOperator(BinaryOperator *E) {
12914 if (E->isCompoundAssignmentOp()) {
12915 HandleValue(E->getLHS());
12916 Visit(E->getRHS());
12917 return;
12918 }
12919
12920 Inherited::VisitBinaryOperator(E);
12921 }
12922
12923 // A custom visitor for BinaryConditionalOperator is needed because the
12924 // regular visitor would check the condition and true expression separately
12925 // but both point to the same place giving duplicate diagnostics.
VisitBinaryConditionalOperator(BinaryConditionalOperator * E)12926 void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
12927 Visit(E->getCond());
12928 Visit(E->getFalseExpr());
12929 }
12930
HandleDeclRefExpr(DeclRefExpr * DRE)12931 void HandleDeclRefExpr(DeclRefExpr *DRE) {
12932 Decl* ReferenceDecl = DRE->getDecl();
12933 if (OrigDecl != ReferenceDecl) return;
12934 unsigned diag;
12935 if (isReferenceType) {
12936 diag = diag::warn_uninit_self_reference_in_reference_init;
12937 } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) {
12938 diag = diag::warn_static_self_reference_in_init;
12939 } else if (isa<TranslationUnitDecl>(OrigDecl->getDeclContext()) ||
12940 isa<NamespaceDecl>(OrigDecl->getDeclContext()) ||
12941 DRE->getDecl()->getType()->isRecordType()) {
12942 diag = diag::warn_uninit_self_reference_in_init;
12943 } else {
12944 // Local variables will be handled by the CFG analysis.
12945 return;
12946 }
12947
12948 S.DiagRuntimeBehavior(DRE->getBeginLoc(), DRE,
12949 S.PDiag(diag)
12950 << DRE->getDecl() << OrigDecl->getLocation()
12951 << DRE->getSourceRange());
12952 }
12953 };
12954
12955 /// CheckSelfReference - Warns if OrigDecl is used in expression E.
CheckSelfReference(Sema & S,Decl * OrigDecl,Expr * E,bool DirectInit)12956 static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
12957 bool DirectInit) {
12958 // Parameters arguments are occassionially constructed with itself,
12959 // for instance, in recursive functions. Skip them.
12960 if (isa<ParmVarDecl>(OrigDecl))
12961 return;
12962
12963 E = E->IgnoreParens();
12964
12965 // Skip checking T a = a where T is not a record or reference type.
12966 // Doing so is a way to silence uninitialized warnings.
12967 if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
12968 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
12969 if (ICE->getCastKind() == CK_LValueToRValue)
12970 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
12971 if (DRE->getDecl() == OrigDecl)
12972 return;
12973
12974 SelfReferenceChecker(S, OrigDecl).CheckExpr(E);
12975 }
12976 } // end anonymous namespace
12977
12978 namespace {
12979 // Simple wrapper to add the name of a variable or (if no variable is
12980 // available) a DeclarationName into a diagnostic.
12981 struct VarDeclOrName {
12982 VarDecl *VDecl;
12983 DeclarationName Name;
12984
12985 friend const Sema::SemaDiagnosticBuilder &
operator <<(const Sema::SemaDiagnosticBuilder & Diag,VarDeclOrName VN)12986 operator<<(const Sema::SemaDiagnosticBuilder &Diag, VarDeclOrName VN) {
12987 return VN.VDecl ? Diag << VN.VDecl : Diag << VN.Name;
12988 }
12989 };
12990 } // end anonymous namespace
12991
deduceVarTypeFromInitializer(VarDecl * VDecl,DeclarationName Name,QualType Type,TypeSourceInfo * TSI,SourceRange Range,bool DirectInit,Expr * Init)12992 QualType Sema::deduceVarTypeFromInitializer(VarDecl *VDecl,
12993 DeclarationName Name, QualType Type,
12994 TypeSourceInfo *TSI,
12995 SourceRange Range, bool DirectInit,
12996 Expr *Init) {
12997 bool IsInitCapture = !VDecl;
12998 assert((!VDecl || !VDecl->isInitCapture()) &&
12999 "init captures are expected to be deduced prior to initialization");
13000
13001 VarDeclOrName VN{VDecl, Name};
13002
13003 DeducedType *Deduced = Type->getContainedDeducedType();
13004 assert(Deduced && "deduceVarTypeFromInitializer for non-deduced type");
13005
13006 // Diagnose auto array declarations in C23, unless it's a supported extension.
13007 if (getLangOpts().C23 && Type->isArrayType() &&
13008 !isa_and_present<StringLiteral, InitListExpr>(Init)) {
13009 Diag(Range.getBegin(), diag::err_auto_not_allowed)
13010 << (int)Deduced->getContainedAutoType()->getKeyword()
13011 << /*in array decl*/ 23 << Range;
13012 return QualType();
13013 }
13014
13015 // C++11 [dcl.spec.auto]p3
13016 if (!Init) {
13017 assert(VDecl && "no init for init capture deduction?");
13018
13019 // Except for class argument deduction, and then for an initializing
13020 // declaration only, i.e. no static at class scope or extern.
13021 if (!isa<DeducedTemplateSpecializationType>(Deduced) ||
13022 VDecl->hasExternalStorage() ||
13023 VDecl->isStaticDataMember()) {
13024 Diag(VDecl->getLocation(), diag::err_auto_var_requires_init)
13025 << VDecl->getDeclName() << Type;
13026 return QualType();
13027 }
13028 }
13029
13030 ArrayRef<Expr*> DeduceInits;
13031 if (Init)
13032 DeduceInits = Init;
13033
13034 auto *PL = dyn_cast_if_present<ParenListExpr>(Init);
13035 if (DirectInit && PL)
13036 DeduceInits = PL->exprs();
13037
13038 if (isa<DeducedTemplateSpecializationType>(Deduced)) {
13039 assert(VDecl && "non-auto type for init capture deduction?");
13040 InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
13041 InitializationKind Kind = InitializationKind::CreateForInit(
13042 VDecl->getLocation(), DirectInit, Init);
13043 // FIXME: Initialization should not be taking a mutable list of inits.
13044 SmallVector<Expr*, 8> InitsCopy(DeduceInits.begin(), DeduceInits.end());
13045 return DeduceTemplateSpecializationFromInitializer(TSI, Entity, Kind,
13046 InitsCopy);
13047 }
13048
13049 if (DirectInit) {
13050 if (auto *IL = dyn_cast<InitListExpr>(Init))
13051 DeduceInits = IL->inits();
13052 }
13053
13054 // Deduction only works if we have exactly one source expression.
13055 if (DeduceInits.empty()) {
13056 // It isn't possible to write this directly, but it is possible to
13057 // end up in this situation with "auto x(some_pack...);"
13058 Diag(Init->getBeginLoc(), IsInitCapture
13059 ? diag::err_init_capture_no_expression
13060 : diag::err_auto_var_init_no_expression)
13061 << VN << Type << Range;
13062 return QualType();
13063 }
13064
13065 if (DeduceInits.size() > 1) {
13066 Diag(DeduceInits[1]->getBeginLoc(),
13067 IsInitCapture ? diag::err_init_capture_multiple_expressions
13068 : diag::err_auto_var_init_multiple_expressions)
13069 << VN << Type << Range;
13070 return QualType();
13071 }
13072
13073 Expr *DeduceInit = DeduceInits[0];
13074 if (DirectInit && isa<InitListExpr>(DeduceInit)) {
13075 Diag(Init->getBeginLoc(), IsInitCapture
13076 ? diag::err_init_capture_paren_braces
13077 : diag::err_auto_var_init_paren_braces)
13078 << isa<InitListExpr>(Init) << VN << Type << Range;
13079 return QualType();
13080 }
13081
13082 // Expressions default to 'id' when we're in a debugger.
13083 bool DefaultedAnyToId = false;
13084 if (getLangOpts().DebuggerCastResultToId &&
13085 Init->getType() == Context.UnknownAnyTy && !IsInitCapture) {
13086 ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
13087 if (Result.isInvalid()) {
13088 return QualType();
13089 }
13090 Init = Result.get();
13091 DefaultedAnyToId = true;
13092 }
13093
13094 // C++ [dcl.decomp]p1:
13095 // If the assignment-expression [...] has array type A and no ref-qualifier
13096 // is present, e has type cv A
13097 if (VDecl && isa<DecompositionDecl>(VDecl) &&
13098 Context.hasSameUnqualifiedType(Type, Context.getAutoDeductType()) &&
13099 DeduceInit->getType()->isConstantArrayType())
13100 return Context.getQualifiedType(DeduceInit->getType(),
13101 Type.getQualifiers());
13102
13103 QualType DeducedType;
13104 TemplateDeductionInfo Info(DeduceInit->getExprLoc());
13105 TemplateDeductionResult Result =
13106 DeduceAutoType(TSI->getTypeLoc(), DeduceInit, DeducedType, Info);
13107 if (Result != TDK_Success && Result != TDK_AlreadyDiagnosed) {
13108 if (!IsInitCapture)
13109 DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
13110 else if (isa<InitListExpr>(Init))
13111 Diag(Range.getBegin(),
13112 diag::err_init_capture_deduction_failure_from_init_list)
13113 << VN
13114 << (DeduceInit->getType().isNull() ? TSI->getType()
13115 : DeduceInit->getType())
13116 << DeduceInit->getSourceRange();
13117 else
13118 Diag(Range.getBegin(), diag::err_init_capture_deduction_failure)
13119 << VN << TSI->getType()
13120 << (DeduceInit->getType().isNull() ? TSI->getType()
13121 : DeduceInit->getType())
13122 << DeduceInit->getSourceRange();
13123 }
13124
13125 // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
13126 // 'id' instead of a specific object type prevents most of our usual
13127 // checks.
13128 // We only want to warn outside of template instantiations, though:
13129 // inside a template, the 'id' could have come from a parameter.
13130 if (!inTemplateInstantiation() && !DefaultedAnyToId && !IsInitCapture &&
13131 !DeducedType.isNull() && DeducedType->isObjCIdType()) {
13132 SourceLocation Loc = TSI->getTypeLoc().getBeginLoc();
13133 Diag(Loc, diag::warn_auto_var_is_id) << VN << Range;
13134 }
13135
13136 return DeducedType;
13137 }
13138
DeduceVariableDeclarationType(VarDecl * VDecl,bool DirectInit,Expr * Init)13139 bool Sema::DeduceVariableDeclarationType(VarDecl *VDecl, bool DirectInit,
13140 Expr *Init) {
13141 assert(!Init || !Init->containsErrors());
13142 QualType DeducedType = deduceVarTypeFromInitializer(
13143 VDecl, VDecl->getDeclName(), VDecl->getType(), VDecl->getTypeSourceInfo(),
13144 VDecl->getSourceRange(), DirectInit, Init);
13145 if (DeducedType.isNull()) {
13146 VDecl->setInvalidDecl();
13147 return true;
13148 }
13149
13150 VDecl->setType(DeducedType);
13151 assert(VDecl->isLinkageValid());
13152
13153 // In ARC, infer lifetime.
13154 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
13155 VDecl->setInvalidDecl();
13156
13157 if (getLangOpts().OpenCL)
13158 deduceOpenCLAddressSpace(VDecl);
13159
13160 // If this is a redeclaration, check that the type we just deduced matches
13161 // the previously declared type.
13162 if (VarDecl *Old = VDecl->getPreviousDecl()) {
13163 // We never need to merge the type, because we cannot form an incomplete
13164 // array of auto, nor deduce such a type.
13165 MergeVarDeclTypes(VDecl, Old, /*MergeTypeWithPrevious*/ false);
13166 }
13167
13168 // Check the deduced type is valid for a variable declaration.
13169 CheckVariableDeclarationType(VDecl);
13170 return VDecl->isInvalidDecl();
13171 }
13172
checkNonTrivialCUnionInInitializer(const Expr * Init,SourceLocation Loc)13173 void Sema::checkNonTrivialCUnionInInitializer(const Expr *Init,
13174 SourceLocation Loc) {
13175 if (auto *EWC = dyn_cast<ExprWithCleanups>(Init))
13176 Init = EWC->getSubExpr();
13177
13178 if (auto *CE = dyn_cast<ConstantExpr>(Init))
13179 Init = CE->getSubExpr();
13180
13181 QualType InitType = Init->getType();
13182 assert((InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
13183 InitType.hasNonTrivialToPrimitiveCopyCUnion()) &&
13184 "shouldn't be called if type doesn't have a non-trivial C struct");
13185 if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
13186 for (auto *I : ILE->inits()) {
13187 if (!I->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion() &&
13188 !I->getType().hasNonTrivialToPrimitiveCopyCUnion())
13189 continue;
13190 SourceLocation SL = I->getExprLoc();
13191 checkNonTrivialCUnionInInitializer(I, SL.isValid() ? SL : Loc);
13192 }
13193 return;
13194 }
13195
13196 if (isa<ImplicitValueInitExpr>(Init)) {
13197 if (InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion())
13198 checkNonTrivialCUnion(InitType, Loc, NTCUC_DefaultInitializedObject,
13199 NTCUK_Init);
13200 } else {
13201 // Assume all other explicit initializers involving copying some existing
13202 // object.
13203 // TODO: ignore any explicit initializers where we can guarantee
13204 // copy-elision.
13205 if (InitType.hasNonTrivialToPrimitiveCopyCUnion())
13206 checkNonTrivialCUnion(InitType, Loc, NTCUC_CopyInit, NTCUK_Copy);
13207 }
13208 }
13209
13210 namespace {
13211
shouldIgnoreForRecordTriviality(const FieldDecl * FD)13212 bool shouldIgnoreForRecordTriviality(const FieldDecl *FD) {
13213 // Ignore unavailable fields. A field can be marked as unavailable explicitly
13214 // in the source code or implicitly by the compiler if it is in a union
13215 // defined in a system header and has non-trivial ObjC ownership
13216 // qualifications. We don't want those fields to participate in determining
13217 // whether the containing union is non-trivial.
13218 return FD->hasAttr<UnavailableAttr>();
13219 }
13220
13221 struct DiagNonTrivalCUnionDefaultInitializeVisitor
13222 : DefaultInitializedTypeVisitor<DiagNonTrivalCUnionDefaultInitializeVisitor,
13223 void> {
13224 using Super =
13225 DefaultInitializedTypeVisitor<DiagNonTrivalCUnionDefaultInitializeVisitor,
13226 void>;
13227
DiagNonTrivalCUnionDefaultInitializeVisitor__anon7daf71031f11::DiagNonTrivalCUnionDefaultInitializeVisitor13228 DiagNonTrivalCUnionDefaultInitializeVisitor(
13229 QualType OrigTy, SourceLocation OrigLoc,
13230 Sema::NonTrivialCUnionContext UseContext, Sema &S)
13231 : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {}
13232
visitWithKind__anon7daf71031f11::DiagNonTrivalCUnionDefaultInitializeVisitor13233 void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType QT,
13234 const FieldDecl *FD, bool InNonTrivialUnion) {
13235 if (const auto *AT = S.Context.getAsArrayType(QT))
13236 return this->asDerived().visit(S.Context.getBaseElementType(AT), FD,
13237 InNonTrivialUnion);
13238 return Super::visitWithKind(PDIK, QT, FD, InNonTrivialUnion);
13239 }
13240
visitARCStrong__anon7daf71031f11::DiagNonTrivalCUnionDefaultInitializeVisitor13241 void visitARCStrong(QualType QT, const FieldDecl *FD,
13242 bool InNonTrivialUnion) {
13243 if (InNonTrivialUnion)
13244 S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
13245 << 1 << 0 << QT << FD->getName();
13246 }
13247
visitARCWeak__anon7daf71031f11::DiagNonTrivalCUnionDefaultInitializeVisitor13248 void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
13249 if (InNonTrivialUnion)
13250 S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
13251 << 1 << 0 << QT << FD->getName();
13252 }
13253
visitStruct__anon7daf71031f11::DiagNonTrivalCUnionDefaultInitializeVisitor13254 void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
13255 const RecordDecl *RD = QT->castAs<RecordType>()->getDecl();
13256 if (RD->isUnion()) {
13257 if (OrigLoc.isValid()) {
13258 bool IsUnion = false;
13259 if (auto *OrigRD = OrigTy->getAsRecordDecl())
13260 IsUnion = OrigRD->isUnion();
13261 S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context)
13262 << 0 << OrigTy << IsUnion << UseContext;
13263 // Reset OrigLoc so that this diagnostic is emitted only once.
13264 OrigLoc = SourceLocation();
13265 }
13266 InNonTrivialUnion = true;
13267 }
13268
13269 if (InNonTrivialUnion)
13270 S.Diag(RD->getLocation(), diag::note_non_trivial_c_union)
13271 << 0 << 0 << QT.getUnqualifiedType() << "";
13272
13273 for (const FieldDecl *FD : RD->fields())
13274 if (!shouldIgnoreForRecordTriviality(FD))
13275 asDerived().visit(FD->getType(), FD, InNonTrivialUnion);
13276 }
13277
visitTrivial__anon7daf71031f11::DiagNonTrivalCUnionDefaultInitializeVisitor13278 void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {}
13279
13280 // The non-trivial C union type or the struct/union type that contains a
13281 // non-trivial C union.
13282 QualType OrigTy;
13283 SourceLocation OrigLoc;
13284 Sema::NonTrivialCUnionContext UseContext;
13285 Sema &S;
13286 };
13287
13288 struct DiagNonTrivalCUnionDestructedTypeVisitor
13289 : DestructedTypeVisitor<DiagNonTrivalCUnionDestructedTypeVisitor, void> {
13290 using Super =
13291 DestructedTypeVisitor<DiagNonTrivalCUnionDestructedTypeVisitor, void>;
13292
DiagNonTrivalCUnionDestructedTypeVisitor__anon7daf71031f11::DiagNonTrivalCUnionDestructedTypeVisitor13293 DiagNonTrivalCUnionDestructedTypeVisitor(
13294 QualType OrigTy, SourceLocation OrigLoc,
13295 Sema::NonTrivialCUnionContext UseContext, Sema &S)
13296 : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {}
13297
visitWithKind__anon7daf71031f11::DiagNonTrivalCUnionDestructedTypeVisitor13298 void visitWithKind(QualType::DestructionKind DK, QualType QT,
13299 const FieldDecl *FD, bool InNonTrivialUnion) {
13300 if (const auto *AT = S.Context.getAsArrayType(QT))
13301 return this->asDerived().visit(S.Context.getBaseElementType(AT), FD,
13302 InNonTrivialUnion);
13303 return Super::visitWithKind(DK, QT, FD, InNonTrivialUnion);
13304 }
13305
visitARCStrong__anon7daf71031f11::DiagNonTrivalCUnionDestructedTypeVisitor13306 void visitARCStrong(QualType QT, const FieldDecl *FD,
13307 bool InNonTrivialUnion) {
13308 if (InNonTrivialUnion)
13309 S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
13310 << 1 << 1 << QT << FD->getName();
13311 }
13312
visitARCWeak__anon7daf71031f11::DiagNonTrivalCUnionDestructedTypeVisitor13313 void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
13314 if (InNonTrivialUnion)
13315 S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
13316 << 1 << 1 << QT << FD->getName();
13317 }
13318
visitStruct__anon7daf71031f11::DiagNonTrivalCUnionDestructedTypeVisitor13319 void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
13320 const RecordDecl *RD = QT->castAs<RecordType>()->getDecl();
13321 if (RD->isUnion()) {
13322 if (OrigLoc.isValid()) {
13323 bool IsUnion = false;
13324 if (auto *OrigRD = OrigTy->getAsRecordDecl())
13325 IsUnion = OrigRD->isUnion();
13326 S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context)
13327 << 1 << OrigTy << IsUnion << UseContext;
13328 // Reset OrigLoc so that this diagnostic is emitted only once.
13329 OrigLoc = SourceLocation();
13330 }
13331 InNonTrivialUnion = true;
13332 }
13333
13334 if (InNonTrivialUnion)
13335 S.Diag(RD->getLocation(), diag::note_non_trivial_c_union)
13336 << 0 << 1 << QT.getUnqualifiedType() << "";
13337
13338 for (const FieldDecl *FD : RD->fields())
13339 if (!shouldIgnoreForRecordTriviality(FD))
13340 asDerived().visit(FD->getType(), FD, InNonTrivialUnion);
13341 }
13342
visitTrivial__anon7daf71031f11::DiagNonTrivalCUnionDestructedTypeVisitor13343 void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {}
visitCXXDestructor__anon7daf71031f11::DiagNonTrivalCUnionDestructedTypeVisitor13344 void visitCXXDestructor(QualType QT, const FieldDecl *FD,
13345 bool InNonTrivialUnion) {}
13346
13347 // The non-trivial C union type or the struct/union type that contains a
13348 // non-trivial C union.
13349 QualType OrigTy;
13350 SourceLocation OrigLoc;
13351 Sema::NonTrivialCUnionContext UseContext;
13352 Sema &S;
13353 };
13354
13355 struct DiagNonTrivalCUnionCopyVisitor
13356 : CopiedTypeVisitor<DiagNonTrivalCUnionCopyVisitor, false, void> {
13357 using Super = CopiedTypeVisitor<DiagNonTrivalCUnionCopyVisitor, false, void>;
13358
DiagNonTrivalCUnionCopyVisitor__anon7daf71031f11::DiagNonTrivalCUnionCopyVisitor13359 DiagNonTrivalCUnionCopyVisitor(QualType OrigTy, SourceLocation OrigLoc,
13360 Sema::NonTrivialCUnionContext UseContext,
13361 Sema &S)
13362 : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {}
13363
visitWithKind__anon7daf71031f11::DiagNonTrivalCUnionCopyVisitor13364 void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType QT,
13365 const FieldDecl *FD, bool InNonTrivialUnion) {
13366 if (const auto *AT = S.Context.getAsArrayType(QT))
13367 return this->asDerived().visit(S.Context.getBaseElementType(AT), FD,
13368 InNonTrivialUnion);
13369 return Super::visitWithKind(PCK, QT, FD, InNonTrivialUnion);
13370 }
13371
visitARCStrong__anon7daf71031f11::DiagNonTrivalCUnionCopyVisitor13372 void visitARCStrong(QualType QT, const FieldDecl *FD,
13373 bool InNonTrivialUnion) {
13374 if (InNonTrivialUnion)
13375 S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
13376 << 1 << 2 << QT << FD->getName();
13377 }
13378
visitARCWeak__anon7daf71031f11::DiagNonTrivalCUnionCopyVisitor13379 void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
13380 if (InNonTrivialUnion)
13381 S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
13382 << 1 << 2 << QT << FD->getName();
13383 }
13384
visitStruct__anon7daf71031f11::DiagNonTrivalCUnionCopyVisitor13385 void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
13386 const RecordDecl *RD = QT->castAs<RecordType>()->getDecl();
13387 if (RD->isUnion()) {
13388 if (OrigLoc.isValid()) {
13389 bool IsUnion = false;
13390 if (auto *OrigRD = OrigTy->getAsRecordDecl())
13391 IsUnion = OrigRD->isUnion();
13392 S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context)
13393 << 2 << OrigTy << IsUnion << UseContext;
13394 // Reset OrigLoc so that this diagnostic is emitted only once.
13395 OrigLoc = SourceLocation();
13396 }
13397 InNonTrivialUnion = true;
13398 }
13399
13400 if (InNonTrivialUnion)
13401 S.Diag(RD->getLocation(), diag::note_non_trivial_c_union)
13402 << 0 << 2 << QT.getUnqualifiedType() << "";
13403
13404 for (const FieldDecl *FD : RD->fields())
13405 if (!shouldIgnoreForRecordTriviality(FD))
13406 asDerived().visit(FD->getType(), FD, InNonTrivialUnion);
13407 }
13408
preVisit__anon7daf71031f11::DiagNonTrivalCUnionCopyVisitor13409 void preVisit(QualType::PrimitiveCopyKind PCK, QualType QT,
13410 const FieldDecl *FD, bool InNonTrivialUnion) {}
visitTrivial__anon7daf71031f11::DiagNonTrivalCUnionCopyVisitor13411 void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {}
visitVolatileTrivial__anon7daf71031f11::DiagNonTrivalCUnionCopyVisitor13412 void visitVolatileTrivial(QualType QT, const FieldDecl *FD,
13413 bool InNonTrivialUnion) {}
13414
13415 // The non-trivial C union type or the struct/union type that contains a
13416 // non-trivial C union.
13417 QualType OrigTy;
13418 SourceLocation OrigLoc;
13419 Sema::NonTrivialCUnionContext UseContext;
13420 Sema &S;
13421 };
13422
13423 } // namespace
13424
checkNonTrivialCUnion(QualType QT,SourceLocation Loc,NonTrivialCUnionContext UseContext,unsigned NonTrivialKind)13425 void Sema::checkNonTrivialCUnion(QualType QT, SourceLocation Loc,
13426 NonTrivialCUnionContext UseContext,
13427 unsigned NonTrivialKind) {
13428 assert((QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
13429 QT.hasNonTrivialToPrimitiveDestructCUnion() ||
13430 QT.hasNonTrivialToPrimitiveCopyCUnion()) &&
13431 "shouldn't be called if type doesn't have a non-trivial C union");
13432
13433 if ((NonTrivialKind & NTCUK_Init) &&
13434 QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion())
13435 DiagNonTrivalCUnionDefaultInitializeVisitor(QT, Loc, UseContext, *this)
13436 .visit(QT, nullptr, false);
13437 if ((NonTrivialKind & NTCUK_Destruct) &&
13438 QT.hasNonTrivialToPrimitiveDestructCUnion())
13439 DiagNonTrivalCUnionDestructedTypeVisitor(QT, Loc, UseContext, *this)
13440 .visit(QT, nullptr, false);
13441 if ((NonTrivialKind & NTCUK_Copy) && QT.hasNonTrivialToPrimitiveCopyCUnion())
13442 DiagNonTrivalCUnionCopyVisitor(QT, Loc, UseContext, *this)
13443 .visit(QT, nullptr, false);
13444 }
13445
13446 /// AddInitializerToDecl - Adds the initializer Init to the
13447 /// declaration dcl. If DirectInit is true, this is C++ direct
13448 /// initialization rather than copy initialization.
AddInitializerToDecl(Decl * RealDecl,Expr * Init,bool DirectInit)13449 void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, bool DirectInit) {
13450 // If there is no declaration, there was an error parsing it. Just ignore
13451 // the initializer.
13452 if (!RealDecl || RealDecl->isInvalidDecl()) {
13453 CorrectDelayedTyposInExpr(Init, dyn_cast_or_null<VarDecl>(RealDecl));
13454 return;
13455 }
13456
13457 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
13458 // Pure-specifiers are handled in ActOnPureSpecifier.
13459 Diag(Method->getLocation(), diag::err_member_function_initialization)
13460 << Method->getDeclName() << Init->getSourceRange();
13461 Method->setInvalidDecl();
13462 return;
13463 }
13464
13465 VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
13466 if (!VDecl) {
13467 assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
13468 Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
13469 RealDecl->setInvalidDecl();
13470 return;
13471 }
13472
13473 // WebAssembly tables can't be used to initialise a variable.
13474 if (Init && !Init->getType().isNull() &&
13475 Init->getType()->isWebAssemblyTableType()) {
13476 Diag(Init->getExprLoc(), diag::err_wasm_table_art) << 0;
13477 VDecl->setInvalidDecl();
13478 return;
13479 }
13480
13481 // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
13482 if (VDecl->getType()->isUndeducedType()) {
13483 // Attempt typo correction early so that the type of the init expression can
13484 // be deduced based on the chosen correction if the original init contains a
13485 // TypoExpr.
13486 ExprResult Res = CorrectDelayedTyposInExpr(Init, VDecl);
13487 if (!Res.isUsable()) {
13488 // There are unresolved typos in Init, just drop them.
13489 // FIXME: improve the recovery strategy to preserve the Init.
13490 RealDecl->setInvalidDecl();
13491 return;
13492 }
13493 if (Res.get()->containsErrors()) {
13494 // Invalidate the decl as we don't know the type for recovery-expr yet.
13495 RealDecl->setInvalidDecl();
13496 VDecl->setInit(Res.get());
13497 return;
13498 }
13499 Init = Res.get();
13500
13501 if (DeduceVariableDeclarationType(VDecl, DirectInit, Init))
13502 return;
13503 }
13504
13505 // dllimport cannot be used on variable definitions.
13506 if (VDecl->hasAttr<DLLImportAttr>() && !VDecl->isStaticDataMember()) {
13507 Diag(VDecl->getLocation(), diag::err_attribute_dllimport_data_definition);
13508 VDecl->setInvalidDecl();
13509 return;
13510 }
13511
13512 // C99 6.7.8p5. If the declaration of an identifier has block scope, and
13513 // the identifier has external or internal linkage, the declaration shall
13514 // have no initializer for the identifier.
13515 // C++14 [dcl.init]p5 is the same restriction for C++.
13516 if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
13517 Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
13518 VDecl->setInvalidDecl();
13519 return;
13520 }
13521
13522 if (!VDecl->getType()->isDependentType()) {
13523 // A definition must end up with a complete type, which means it must be
13524 // complete with the restriction that an array type might be completed by
13525 // the initializer; note that later code assumes this restriction.
13526 QualType BaseDeclType = VDecl->getType();
13527 if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
13528 BaseDeclType = Array->getElementType();
13529 if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
13530 diag::err_typecheck_decl_incomplete_type)) {
13531 RealDecl->setInvalidDecl();
13532 return;
13533 }
13534
13535 // The variable can not have an abstract class type.
13536 if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
13537 diag::err_abstract_type_in_decl,
13538 AbstractVariableType))
13539 VDecl->setInvalidDecl();
13540 }
13541
13542 // C++ [module.import/6] external definitions are not permitted in header
13543 // units.
13544 if (getLangOpts().CPlusPlusModules && currentModuleIsHeaderUnit() &&
13545 !VDecl->isInvalidDecl() && VDecl->isThisDeclarationADefinition() &&
13546 VDecl->getFormalLinkage() == Linkage::External && !VDecl->isInline() &&
13547 !VDecl->isTemplated() && !isa<VarTemplateSpecializationDecl>(VDecl)) {
13548 Diag(VDecl->getLocation(), diag::err_extern_def_in_header_unit);
13549 VDecl->setInvalidDecl();
13550 }
13551
13552 // If adding the initializer will turn this declaration into a definition,
13553 // and we already have a definition for this variable, diagnose or otherwise
13554 // handle the situation.
13555 if (VarDecl *Def = VDecl->getDefinition())
13556 if (Def != VDecl &&
13557 (!VDecl->isStaticDataMember() || VDecl->isOutOfLine()) &&
13558 !VDecl->isThisDeclarationADemotedDefinition() &&
13559 checkVarDeclRedefinition(Def, VDecl))
13560 return;
13561
13562 if (getLangOpts().CPlusPlus) {
13563 // C++ [class.static.data]p4
13564 // If a static data member is of const integral or const
13565 // enumeration type, its declaration in the class definition can
13566 // specify a constant-initializer which shall be an integral
13567 // constant expression (5.19). In that case, the member can appear
13568 // in integral constant expressions. The member shall still be
13569 // defined in a namespace scope if it is used in the program and the
13570 // namespace scope definition shall not contain an initializer.
13571 //
13572 // We already performed a redefinition check above, but for static
13573 // data members we also need to check whether there was an in-class
13574 // declaration with an initializer.
13575 if (VDecl->isStaticDataMember() && VDecl->getCanonicalDecl()->hasInit()) {
13576 Diag(Init->getExprLoc(), diag::err_static_data_member_reinitialization)
13577 << VDecl->getDeclName();
13578 Diag(VDecl->getCanonicalDecl()->getInit()->getExprLoc(),
13579 diag::note_previous_initializer)
13580 << 0;
13581 return;
13582 }
13583
13584 if (VDecl->hasLocalStorage())
13585 setFunctionHasBranchProtectedScope();
13586
13587 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
13588 VDecl->setInvalidDecl();
13589 return;
13590 }
13591 }
13592
13593 // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
13594 // a kernel function cannot be initialized."
13595 if (VDecl->getType().getAddressSpace() == LangAS::opencl_local) {
13596 Diag(VDecl->getLocation(), diag::err_local_cant_init);
13597 VDecl->setInvalidDecl();
13598 return;
13599 }
13600
13601 // The LoaderUninitialized attribute acts as a definition (of undef).
13602 if (VDecl->hasAttr<LoaderUninitializedAttr>()) {
13603 Diag(VDecl->getLocation(), diag::err_loader_uninitialized_cant_init);
13604 VDecl->setInvalidDecl();
13605 return;
13606 }
13607
13608 // Get the decls type and save a reference for later, since
13609 // CheckInitializerTypes may change it.
13610 QualType DclT = VDecl->getType(), SavT = DclT;
13611
13612 // Expressions default to 'id' when we're in a debugger
13613 // and we are assigning it to a variable of Objective-C pointer type.
13614 if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() &&
13615 Init->getType() == Context.UnknownAnyTy) {
13616 ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
13617 if (Result.isInvalid()) {
13618 VDecl->setInvalidDecl();
13619 return;
13620 }
13621 Init = Result.get();
13622 }
13623
13624 // Perform the initialization.
13625 ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
13626 bool IsParenListInit = false;
13627 if (!VDecl->isInvalidDecl()) {
13628 InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
13629 InitializationKind Kind = InitializationKind::CreateForInit(
13630 VDecl->getLocation(), DirectInit, Init);
13631
13632 MultiExprArg Args = Init;
13633 if (CXXDirectInit)
13634 Args = MultiExprArg(CXXDirectInit->getExprs(),
13635 CXXDirectInit->getNumExprs());
13636
13637 // Try to correct any TypoExprs in the initialization arguments.
13638 for (size_t Idx = 0; Idx < Args.size(); ++Idx) {
13639 ExprResult Res = CorrectDelayedTyposInExpr(
13640 Args[Idx], VDecl, /*RecoverUncorrectedTypos=*/true,
13641 [this, Entity, Kind](Expr *E) {
13642 InitializationSequence Init(*this, Entity, Kind, MultiExprArg(E));
13643 return Init.Failed() ? ExprError() : E;
13644 });
13645 if (Res.isInvalid()) {
13646 VDecl->setInvalidDecl();
13647 } else if (Res.get() != Args[Idx]) {
13648 Args[Idx] = Res.get();
13649 }
13650 }
13651 if (VDecl->isInvalidDecl())
13652 return;
13653
13654 InitializationSequence InitSeq(*this, Entity, Kind, Args,
13655 /*TopLevelOfInitList=*/false,
13656 /*TreatUnavailableAsInvalid=*/false);
13657 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
13658 if (Result.isInvalid()) {
13659 // If the provided initializer fails to initialize the var decl,
13660 // we attach a recovery expr for better recovery.
13661 auto RecoveryExpr =
13662 CreateRecoveryExpr(Init->getBeginLoc(), Init->getEndLoc(), Args);
13663 if (RecoveryExpr.get())
13664 VDecl->setInit(RecoveryExpr.get());
13665 // In general, for error recovery purposes, the initalizer doesn't play
13666 // part in the valid bit of the declaration. There are a few exceptions:
13667 // 1) if the var decl has a deduced auto type, and the type cannot be
13668 // deduced by an invalid initializer;
13669 // 2) if the var decl is decompsition decl with a non-deduced type, and
13670 // the initialization fails (e.g. `int [a] = {1, 2};`);
13671 // Case 1) was already handled elsewhere.
13672 if (isa<DecompositionDecl>(VDecl)) // Case 2)
13673 VDecl->setInvalidDecl();
13674 return;
13675 }
13676
13677 Init = Result.getAs<Expr>();
13678 IsParenListInit = !InitSeq.steps().empty() &&
13679 InitSeq.step_begin()->Kind ==
13680 InitializationSequence::SK_ParenthesizedListInit;
13681 QualType VDeclType = VDecl->getType();
13682 if (Init && !Init->getType().isNull() &&
13683 !Init->getType()->isDependentType() && !VDeclType->isDependentType() &&
13684 Context.getAsIncompleteArrayType(VDeclType) &&
13685 Context.getAsIncompleteArrayType(Init->getType())) {
13686 // Bail out if it is not possible to deduce array size from the
13687 // initializer.
13688 Diag(VDecl->getLocation(), diag::err_typecheck_decl_incomplete_type)
13689 << VDeclType;
13690 VDecl->setInvalidDecl();
13691 return;
13692 }
13693 }
13694
13695 // Check for self-references within variable initializers.
13696 // Variables declared within a function/method body (except for references)
13697 // are handled by a dataflow analysis.
13698 // This is undefined behavior in C++, but valid in C.
13699 if (getLangOpts().CPlusPlus)
13700 if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
13701 VDecl->getType()->isReferenceType())
13702 CheckSelfReference(*this, RealDecl, Init, DirectInit);
13703
13704 // If the type changed, it means we had an incomplete type that was
13705 // completed by the initializer. For example:
13706 // int ary[] = { 1, 3, 5 };
13707 // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
13708 if (!VDecl->isInvalidDecl() && (DclT != SavT))
13709 VDecl->setType(DclT);
13710
13711 if (!VDecl->isInvalidDecl()) {
13712 checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
13713
13714 if (VDecl->hasAttr<BlocksAttr>())
13715 checkRetainCycles(VDecl, Init);
13716
13717 // It is safe to assign a weak reference into a strong variable.
13718 // Although this code can still have problems:
13719 // id x = self.weakProp;
13720 // id y = self.weakProp;
13721 // we do not warn to warn spuriously when 'x' and 'y' are on separate
13722 // paths through the function. This should be revisited if
13723 // -Wrepeated-use-of-weak is made flow-sensitive.
13724 if (FunctionScopeInfo *FSI = getCurFunction())
13725 if ((VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong ||
13726 VDecl->getType().isNonWeakInMRRWithObjCWeak(Context)) &&
13727 !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
13728 Init->getBeginLoc()))
13729 FSI->markSafeWeakUse(Init);
13730 }
13731
13732 // The initialization is usually a full-expression.
13733 //
13734 // FIXME: If this is a braced initialization of an aggregate, it is not
13735 // an expression, and each individual field initializer is a separate
13736 // full-expression. For instance, in:
13737 //
13738 // struct Temp { ~Temp(); };
13739 // struct S { S(Temp); };
13740 // struct T { S a, b; } t = { Temp(), Temp() }
13741 //
13742 // we should destroy the first Temp before constructing the second.
13743 ExprResult Result =
13744 ActOnFinishFullExpr(Init, VDecl->getLocation(),
13745 /*DiscardedValue*/ false, VDecl->isConstexpr());
13746 if (Result.isInvalid()) {
13747 VDecl->setInvalidDecl();
13748 return;
13749 }
13750 Init = Result.get();
13751
13752 // Attach the initializer to the decl.
13753 VDecl->setInit(Init);
13754
13755 if (VDecl->isLocalVarDecl()) {
13756 // Don't check the initializer if the declaration is malformed.
13757 if (VDecl->isInvalidDecl()) {
13758 // do nothing
13759
13760 // OpenCL v1.2 s6.5.3: __constant locals must be constant-initialized.
13761 // This is true even in C++ for OpenCL.
13762 } else if (VDecl->getType().getAddressSpace() == LangAS::opencl_constant) {
13763 CheckForConstantInitializer(Init, DclT);
13764
13765 // Otherwise, C++ does not restrict the initializer.
13766 } else if (getLangOpts().CPlusPlus) {
13767 // do nothing
13768
13769 // C99 6.7.8p4: All the expressions in an initializer for an object that has
13770 // static storage duration shall be constant expressions or string literals.
13771 } else if (VDecl->getStorageClass() == SC_Static) {
13772 CheckForConstantInitializer(Init, DclT);
13773
13774 // C89 is stricter than C99 for aggregate initializers.
13775 // C89 6.5.7p3: All the expressions [...] in an initializer list
13776 // for an object that has aggregate or union type shall be
13777 // constant expressions.
13778 } else if (!getLangOpts().C99 && VDecl->getType()->isAggregateType() &&
13779 isa<InitListExpr>(Init)) {
13780 const Expr *Culprit;
13781 if (!Init->isConstantInitializer(Context, false, &Culprit)) {
13782 Diag(Culprit->getExprLoc(),
13783 diag::ext_aggregate_init_not_constant)
13784 << Culprit->getSourceRange();
13785 }
13786 }
13787
13788 if (auto *E = dyn_cast<ExprWithCleanups>(Init))
13789 if (auto *BE = dyn_cast<BlockExpr>(E->getSubExpr()->IgnoreParens()))
13790 if (VDecl->hasLocalStorage())
13791 BE->getBlockDecl()->setCanAvoidCopyToHeap();
13792 } else if (VDecl->isStaticDataMember() && !VDecl->isInline() &&
13793 VDecl->getLexicalDeclContext()->isRecord()) {
13794 // This is an in-class initialization for a static data member, e.g.,
13795 //
13796 // struct S {
13797 // static const int value = 17;
13798 // };
13799
13800 // C++ [class.mem]p4:
13801 // A member-declarator can contain a constant-initializer only
13802 // if it declares a static member (9.4) of const integral or
13803 // const enumeration type, see 9.4.2.
13804 //
13805 // C++11 [class.static.data]p3:
13806 // If a non-volatile non-inline const static data member is of integral
13807 // or enumeration type, its declaration in the class definition can
13808 // specify a brace-or-equal-initializer in which every initializer-clause
13809 // that is an assignment-expression is a constant expression. A static
13810 // data member of literal type can be declared in the class definition
13811 // with the constexpr specifier; if so, its declaration shall specify a
13812 // brace-or-equal-initializer in which every initializer-clause that is
13813 // an assignment-expression is a constant expression.
13814
13815 // Do nothing on dependent types.
13816 if (DclT->isDependentType()) {
13817
13818 // Allow any 'static constexpr' members, whether or not they are of literal
13819 // type. We separately check that every constexpr variable is of literal
13820 // type.
13821 } else if (VDecl->isConstexpr()) {
13822
13823 // Require constness.
13824 } else if (!DclT.isConstQualified()) {
13825 Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
13826 << Init->getSourceRange();
13827 VDecl->setInvalidDecl();
13828
13829 // We allow integer constant expressions in all cases.
13830 } else if (DclT->isIntegralOrEnumerationType()) {
13831 // Check whether the expression is a constant expression.
13832 SourceLocation Loc;
13833 if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
13834 // In C++11, a non-constexpr const static data member with an
13835 // in-class initializer cannot be volatile.
13836 Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
13837 else if (Init->isValueDependent())
13838 ; // Nothing to check.
13839 else if (Init->isIntegerConstantExpr(Context, &Loc))
13840 ; // Ok, it's an ICE!
13841 else if (Init->getType()->isScopedEnumeralType() &&
13842 Init->isCXX11ConstantExpr(Context))
13843 ; // Ok, it is a scoped-enum constant expression.
13844 else if (Init->isEvaluatable(Context)) {
13845 // If we can constant fold the initializer through heroics, accept it,
13846 // but report this as a use of an extension for -pedantic.
13847 Diag(Loc, diag::ext_in_class_initializer_non_constant)
13848 << Init->getSourceRange();
13849 } else {
13850 // Otherwise, this is some crazy unknown case. Report the issue at the
13851 // location provided by the isIntegerConstantExpr failed check.
13852 Diag(Loc, diag::err_in_class_initializer_non_constant)
13853 << Init->getSourceRange();
13854 VDecl->setInvalidDecl();
13855 }
13856
13857 // We allow foldable floating-point constants as an extension.
13858 } else if (DclT->isFloatingType()) { // also permits complex, which is ok
13859 // In C++98, this is a GNU extension. In C++11, it is not, but we support
13860 // it anyway and provide a fixit to add the 'constexpr'.
13861 if (getLangOpts().CPlusPlus11) {
13862 Diag(VDecl->getLocation(),
13863 diag::ext_in_class_initializer_float_type_cxx11)
13864 << DclT << Init->getSourceRange();
13865 Diag(VDecl->getBeginLoc(),
13866 diag::note_in_class_initializer_float_type_cxx11)
13867 << FixItHint::CreateInsertion(VDecl->getBeginLoc(), "constexpr ");
13868 } else {
13869 Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
13870 << DclT << Init->getSourceRange();
13871
13872 if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
13873 Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
13874 << Init->getSourceRange();
13875 VDecl->setInvalidDecl();
13876 }
13877 }
13878
13879 // Suggest adding 'constexpr' in C++11 for literal types.
13880 } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) {
13881 Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
13882 << DclT << Init->getSourceRange()
13883 << FixItHint::CreateInsertion(VDecl->getBeginLoc(), "constexpr ");
13884 VDecl->setConstexpr(true);
13885
13886 } else {
13887 Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
13888 << DclT << Init->getSourceRange();
13889 VDecl->setInvalidDecl();
13890 }
13891 } else if (VDecl->isFileVarDecl()) {
13892 // In C, extern is typically used to avoid tentative definitions when
13893 // declaring variables in headers, but adding an intializer makes it a
13894 // definition. This is somewhat confusing, so GCC and Clang both warn on it.
13895 // In C++, extern is often used to give implictly static const variables
13896 // external linkage, so don't warn in that case. If selectany is present,
13897 // this might be header code intended for C and C++ inclusion, so apply the
13898 // C++ rules.
13899 if (VDecl->getStorageClass() == SC_Extern &&
13900 ((!getLangOpts().CPlusPlus && !VDecl->hasAttr<SelectAnyAttr>()) ||
13901 !Context.getBaseElementType(VDecl->getType()).isConstQualified()) &&
13902 !(getLangOpts().CPlusPlus && VDecl->isExternC()) &&
13903 !isTemplateInstantiation(VDecl->getTemplateSpecializationKind()))
13904 Diag(VDecl->getLocation(), diag::warn_extern_init);
13905
13906 // In Microsoft C++ mode, a const variable defined in namespace scope has
13907 // external linkage by default if the variable is declared with
13908 // __declspec(dllexport).
13909 if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
13910 getLangOpts().CPlusPlus && VDecl->getType().isConstQualified() &&
13911 VDecl->hasAttr<DLLExportAttr>() && VDecl->getDefinition())
13912 VDecl->setStorageClass(SC_Extern);
13913
13914 // C99 6.7.8p4. All file scoped initializers need to be constant.
13915 if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
13916 CheckForConstantInitializer(Init, DclT);
13917 }
13918
13919 QualType InitType = Init->getType();
13920 if (!InitType.isNull() &&
13921 (InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
13922 InitType.hasNonTrivialToPrimitiveCopyCUnion()))
13923 checkNonTrivialCUnionInInitializer(Init, Init->getExprLoc());
13924
13925 // We will represent direct-initialization similarly to copy-initialization:
13926 // int x(1); -as-> int x = 1;
13927 // ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
13928 //
13929 // Clients that want to distinguish between the two forms, can check for
13930 // direct initializer using VarDecl::getInitStyle().
13931 // A major benefit is that clients that don't particularly care about which
13932 // exactly form was it (like the CodeGen) can handle both cases without
13933 // special case code.
13934
13935 // C++ 8.5p11:
13936 // The form of initialization (using parentheses or '=') is generally
13937 // insignificant, but does matter when the entity being initialized has a
13938 // class type.
13939 if (CXXDirectInit) {
13940 assert(DirectInit && "Call-style initializer must be direct init.");
13941 VDecl->setInitStyle(IsParenListInit ? VarDecl::ParenListInit
13942 : VarDecl::CallInit);
13943 } else if (DirectInit) {
13944 // This must be list-initialization. No other way is direct-initialization.
13945 VDecl->setInitStyle(VarDecl::ListInit);
13946 }
13947
13948 if (LangOpts.OpenMP &&
13949 (LangOpts.OpenMPIsTargetDevice || !LangOpts.OMPTargetTriples.empty()) &&
13950 VDecl->isFileVarDecl())
13951 DeclsToCheckForDeferredDiags.insert(VDecl);
13952 CheckCompleteVariableDeclaration(VDecl);
13953 }
13954
13955 /// ActOnInitializerError - Given that there was an error parsing an
13956 /// initializer for the given declaration, try to at least re-establish
13957 /// invariants such as whether a variable's type is either dependent or
13958 /// complete.
ActOnInitializerError(Decl * D)13959 void Sema::ActOnInitializerError(Decl *D) {
13960 // Our main concern here is re-establishing invariants like "a
13961 // variable's type is either dependent or complete".
13962 if (!D || D->isInvalidDecl()) return;
13963
13964 VarDecl *VD = dyn_cast<VarDecl>(D);
13965 if (!VD) return;
13966
13967 // Bindings are not usable if we can't make sense of the initializer.
13968 if (auto *DD = dyn_cast<DecompositionDecl>(D))
13969 for (auto *BD : DD->bindings())
13970 BD->setInvalidDecl();
13971
13972 // Auto types are meaningless if we can't make sense of the initializer.
13973 if (VD->getType()->isUndeducedType()) {
13974 D->setInvalidDecl();
13975 return;
13976 }
13977
13978 QualType Ty = VD->getType();
13979 if (Ty->isDependentType()) return;
13980
13981 // Require a complete type.
13982 if (RequireCompleteType(VD->getLocation(),
13983 Context.getBaseElementType(Ty),
13984 diag::err_typecheck_decl_incomplete_type)) {
13985 VD->setInvalidDecl();
13986 return;
13987 }
13988
13989 // Require a non-abstract type.
13990 if (RequireNonAbstractType(VD->getLocation(), Ty,
13991 diag::err_abstract_type_in_decl,
13992 AbstractVariableType)) {
13993 VD->setInvalidDecl();
13994 return;
13995 }
13996
13997 // Don't bother complaining about constructors or destructors,
13998 // though.
13999 }
14000
ActOnUninitializedDecl(Decl * RealDecl)14001 void Sema::ActOnUninitializedDecl(Decl *RealDecl) {
14002 // If there is no declaration, there was an error parsing it. Just ignore it.
14003 if (!RealDecl)
14004 return;
14005
14006 if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
14007 QualType Type = Var->getType();
14008
14009 // C++1z [dcl.dcl]p1 grammar implies that an initializer is mandatory.
14010 if (isa<DecompositionDecl>(RealDecl)) {
14011 Diag(Var->getLocation(), diag::err_decomp_decl_requires_init) << Var;
14012 Var->setInvalidDecl();
14013 return;
14014 }
14015
14016 if (Type->isUndeducedType() &&
14017 DeduceVariableDeclarationType(Var, false, nullptr))
14018 return;
14019
14020 // C++11 [class.static.data]p3: A static data member can be declared with
14021 // the constexpr specifier; if so, its declaration shall specify
14022 // a brace-or-equal-initializer.
14023 // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
14024 // the definition of a variable [...] or the declaration of a static data
14025 // member.
14026 if (Var->isConstexpr() && !Var->isThisDeclarationADefinition() &&
14027 !Var->isThisDeclarationADemotedDefinition()) {
14028 if (Var->isStaticDataMember()) {
14029 // C++1z removes the relevant rule; the in-class declaration is always
14030 // a definition there.
14031 if (!getLangOpts().CPlusPlus17 &&
14032 !Context.getTargetInfo().getCXXABI().isMicrosoft()) {
14033 Diag(Var->getLocation(),
14034 diag::err_constexpr_static_mem_var_requires_init)
14035 << Var;
14036 Var->setInvalidDecl();
14037 return;
14038 }
14039 } else {
14040 Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
14041 Var->setInvalidDecl();
14042 return;
14043 }
14044 }
14045
14046 // OpenCL v1.1 s6.5.3: variables declared in the constant address space must
14047 // be initialized.
14048 if (!Var->isInvalidDecl() &&
14049 Var->getType().getAddressSpace() == LangAS::opencl_constant &&
14050 Var->getStorageClass() != SC_Extern && !Var->getInit()) {
14051 bool HasConstExprDefaultConstructor = false;
14052 if (CXXRecordDecl *RD = Var->getType()->getAsCXXRecordDecl()) {
14053 for (auto *Ctor : RD->ctors()) {
14054 if (Ctor->isConstexpr() && Ctor->getNumParams() == 0 &&
14055 Ctor->getMethodQualifiers().getAddressSpace() ==
14056 LangAS::opencl_constant) {
14057 HasConstExprDefaultConstructor = true;
14058 }
14059 }
14060 }
14061 if (!HasConstExprDefaultConstructor) {
14062 Diag(Var->getLocation(), diag::err_opencl_constant_no_init);
14063 Var->setInvalidDecl();
14064 return;
14065 }
14066 }
14067
14068 if (!Var->isInvalidDecl() && RealDecl->hasAttr<LoaderUninitializedAttr>()) {
14069 if (Var->getStorageClass() == SC_Extern) {
14070 Diag(Var->getLocation(), diag::err_loader_uninitialized_extern_decl)
14071 << Var;
14072 Var->setInvalidDecl();
14073 return;
14074 }
14075 if (RequireCompleteType(Var->getLocation(), Var->getType(),
14076 diag::err_typecheck_decl_incomplete_type)) {
14077 Var->setInvalidDecl();
14078 return;
14079 }
14080 if (CXXRecordDecl *RD = Var->getType()->getAsCXXRecordDecl()) {
14081 if (!RD->hasTrivialDefaultConstructor()) {
14082 Diag(Var->getLocation(), diag::err_loader_uninitialized_trivial_ctor);
14083 Var->setInvalidDecl();
14084 return;
14085 }
14086 }
14087 // The declaration is unitialized, no need for further checks.
14088 return;
14089 }
14090
14091 VarDecl::DefinitionKind DefKind = Var->isThisDeclarationADefinition();
14092 if (!Var->isInvalidDecl() && DefKind != VarDecl::DeclarationOnly &&
14093 Var->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion())
14094 checkNonTrivialCUnion(Var->getType(), Var->getLocation(),
14095 NTCUC_DefaultInitializedObject, NTCUK_Init);
14096
14097
14098 switch (DefKind) {
14099 case VarDecl::Definition:
14100 if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
14101 break;
14102
14103 // We have an out-of-line definition of a static data member
14104 // that has an in-class initializer, so we type-check this like
14105 // a declaration.
14106 //
14107 [[fallthrough]];
14108
14109 case VarDecl::DeclarationOnly:
14110 // It's only a declaration.
14111
14112 // Block scope. C99 6.7p7: If an identifier for an object is
14113 // declared with no linkage (C99 6.2.2p6), the type for the
14114 // object shall be complete.
14115 if (!Type->isDependentType() && Var->isLocalVarDecl() &&
14116 !Var->hasLinkage() && !Var->isInvalidDecl() &&
14117 RequireCompleteType(Var->getLocation(), Type,
14118 diag::err_typecheck_decl_incomplete_type))
14119 Var->setInvalidDecl();
14120
14121 // Make sure that the type is not abstract.
14122 if (!Type->isDependentType() && !Var->isInvalidDecl() &&
14123 RequireNonAbstractType(Var->getLocation(), Type,
14124 diag::err_abstract_type_in_decl,
14125 AbstractVariableType))
14126 Var->setInvalidDecl();
14127 if (!Type->isDependentType() && !Var->isInvalidDecl() &&
14128 Var->getStorageClass() == SC_PrivateExtern) {
14129 Diag(Var->getLocation(), diag::warn_private_extern);
14130 Diag(Var->getLocation(), diag::note_private_extern);
14131 }
14132
14133 if (Context.getTargetInfo().allowDebugInfoForExternalRef() &&
14134 !Var->isInvalidDecl())
14135 ExternalDeclarations.push_back(Var);
14136
14137 return;
14138
14139 case VarDecl::TentativeDefinition:
14140 // File scope. C99 6.9.2p2: A declaration of an identifier for an
14141 // object that has file scope without an initializer, and without a
14142 // storage-class specifier or with the storage-class specifier "static",
14143 // constitutes a tentative definition. Note: A tentative definition with
14144 // external linkage is valid (C99 6.2.2p5).
14145 if (!Var->isInvalidDecl()) {
14146 if (const IncompleteArrayType *ArrayT
14147 = Context.getAsIncompleteArrayType(Type)) {
14148 if (RequireCompleteSizedType(
14149 Var->getLocation(), ArrayT->getElementType(),
14150 diag::err_array_incomplete_or_sizeless_type))
14151 Var->setInvalidDecl();
14152 } else if (Var->getStorageClass() == SC_Static) {
14153 // C99 6.9.2p3: If the declaration of an identifier for an object is
14154 // a tentative definition and has internal linkage (C99 6.2.2p3), the
14155 // declared type shall not be an incomplete type.
14156 // NOTE: code such as the following
14157 // static struct s;
14158 // struct s { int a; };
14159 // is accepted by gcc. Hence here we issue a warning instead of
14160 // an error and we do not invalidate the static declaration.
14161 // NOTE: to avoid multiple warnings, only check the first declaration.
14162 if (Var->isFirstDecl())
14163 RequireCompleteType(Var->getLocation(), Type,
14164 diag::ext_typecheck_decl_incomplete_type);
14165 }
14166 }
14167
14168 // Record the tentative definition; we're done.
14169 if (!Var->isInvalidDecl())
14170 TentativeDefinitions.push_back(Var);
14171 return;
14172 }
14173
14174 // Provide a specific diagnostic for uninitialized variable
14175 // definitions with incomplete array type.
14176 if (Type->isIncompleteArrayType()) {
14177 if (Var->isConstexpr())
14178 Diag(Var->getLocation(), diag::err_constexpr_var_requires_const_init)
14179 << Var;
14180 else
14181 Diag(Var->getLocation(),
14182 diag::err_typecheck_incomplete_array_needs_initializer);
14183 Var->setInvalidDecl();
14184 return;
14185 }
14186
14187 // Provide a specific diagnostic for uninitialized variable
14188 // definitions with reference type.
14189 if (Type->isReferenceType()) {
14190 Diag(Var->getLocation(), diag::err_reference_var_requires_init)
14191 << Var << SourceRange(Var->getLocation(), Var->getLocation());
14192 return;
14193 }
14194
14195 // Do not attempt to type-check the default initializer for a
14196 // variable with dependent type.
14197 if (Type->isDependentType())
14198 return;
14199
14200 if (Var->isInvalidDecl())
14201 return;
14202
14203 if (!Var->hasAttr<AliasAttr>()) {
14204 if (RequireCompleteType(Var->getLocation(),
14205 Context.getBaseElementType(Type),
14206 diag::err_typecheck_decl_incomplete_type)) {
14207 Var->setInvalidDecl();
14208 return;
14209 }
14210 } else {
14211 return;
14212 }
14213
14214 // The variable can not have an abstract class type.
14215 if (RequireNonAbstractType(Var->getLocation(), Type,
14216 diag::err_abstract_type_in_decl,
14217 AbstractVariableType)) {
14218 Var->setInvalidDecl();
14219 return;
14220 }
14221
14222 // Check for jumps past the implicit initializer. C++0x
14223 // clarifies that this applies to a "variable with automatic
14224 // storage duration", not a "local variable".
14225 // C++11 [stmt.dcl]p3
14226 // A program that jumps from a point where a variable with automatic
14227 // storage duration is not in scope to a point where it is in scope is
14228 // ill-formed unless the variable has scalar type, class type with a
14229 // trivial default constructor and a trivial destructor, a cv-qualified
14230 // version of one of these types, or an array of one of the preceding
14231 // types and is declared without an initializer.
14232 if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
14233 if (const RecordType *Record
14234 = Context.getBaseElementType(Type)->getAs<RecordType>()) {
14235 CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
14236 // Mark the function (if we're in one) for further checking even if the
14237 // looser rules of C++11 do not require such checks, so that we can
14238 // diagnose incompatibilities with C++98.
14239 if (!CXXRecord->isPOD())
14240 setFunctionHasBranchProtectedScope();
14241 }
14242 }
14243 // In OpenCL, we can't initialize objects in the __local address space,
14244 // even implicitly, so don't synthesize an implicit initializer.
14245 if (getLangOpts().OpenCL &&
14246 Var->getType().getAddressSpace() == LangAS::opencl_local)
14247 return;
14248 // C++03 [dcl.init]p9:
14249 // If no initializer is specified for an object, and the
14250 // object is of (possibly cv-qualified) non-POD class type (or
14251 // array thereof), the object shall be default-initialized; if
14252 // the object is of const-qualified type, the underlying class
14253 // type shall have a user-declared default
14254 // constructor. Otherwise, if no initializer is specified for
14255 // a non- static object, the object and its subobjects, if
14256 // any, have an indeterminate initial value); if the object
14257 // or any of its subobjects are of const-qualified type, the
14258 // program is ill-formed.
14259 // C++0x [dcl.init]p11:
14260 // If no initializer is specified for an object, the object is
14261 // default-initialized; [...].
14262 InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
14263 InitializationKind Kind
14264 = InitializationKind::CreateDefault(Var->getLocation());
14265
14266 InitializationSequence InitSeq(*this, Entity, Kind, std::nullopt);
14267 ExprResult Init = InitSeq.Perform(*this, Entity, Kind, std::nullopt);
14268
14269 if (Init.get()) {
14270 Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
14271 // This is important for template substitution.
14272 Var->setInitStyle(VarDecl::CallInit);
14273 } else if (Init.isInvalid()) {
14274 // If default-init fails, attach a recovery-expr initializer to track
14275 // that initialization was attempted and failed.
14276 auto RecoveryExpr =
14277 CreateRecoveryExpr(Var->getLocation(), Var->getLocation(), {});
14278 if (RecoveryExpr.get())
14279 Var->setInit(RecoveryExpr.get());
14280 }
14281
14282 CheckCompleteVariableDeclaration(Var);
14283 }
14284 }
14285
ActOnCXXForRangeDecl(Decl * D)14286 void Sema::ActOnCXXForRangeDecl(Decl *D) {
14287 // If there is no declaration, there was an error parsing it. Ignore it.
14288 if (!D)
14289 return;
14290
14291 VarDecl *VD = dyn_cast<VarDecl>(D);
14292 if (!VD) {
14293 Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
14294 D->setInvalidDecl();
14295 return;
14296 }
14297
14298 VD->setCXXForRangeDecl(true);
14299
14300 // for-range-declaration cannot be given a storage class specifier.
14301 int Error = -1;
14302 switch (VD->getStorageClass()) {
14303 case SC_None:
14304 break;
14305 case SC_Extern:
14306 Error = 0;
14307 break;
14308 case SC_Static:
14309 Error = 1;
14310 break;
14311 case SC_PrivateExtern:
14312 Error = 2;
14313 break;
14314 case SC_Auto:
14315 Error = 3;
14316 break;
14317 case SC_Register:
14318 Error = 4;
14319 break;
14320 }
14321
14322 // for-range-declaration cannot be given a storage class specifier con't.
14323 switch (VD->getTSCSpec()) {
14324 case TSCS_thread_local:
14325 Error = 6;
14326 break;
14327 case TSCS___thread:
14328 case TSCS__Thread_local:
14329 case TSCS_unspecified:
14330 break;
14331 }
14332
14333 if (Error != -1) {
14334 Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
14335 << VD << Error;
14336 D->setInvalidDecl();
14337 }
14338 }
14339
ActOnCXXForRangeIdentifier(Scope * S,SourceLocation IdentLoc,IdentifierInfo * Ident,ParsedAttributes & Attrs)14340 StmtResult Sema::ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc,
14341 IdentifierInfo *Ident,
14342 ParsedAttributes &Attrs) {
14343 // C++1y [stmt.iter]p1:
14344 // A range-based for statement of the form
14345 // for ( for-range-identifier : for-range-initializer ) statement
14346 // is equivalent to
14347 // for ( auto&& for-range-identifier : for-range-initializer ) statement
14348 DeclSpec DS(Attrs.getPool().getFactory());
14349
14350 const char *PrevSpec;
14351 unsigned DiagID;
14352 DS.SetTypeSpecType(DeclSpec::TST_auto, IdentLoc, PrevSpec, DiagID,
14353 getPrintingPolicy());
14354
14355 Declarator D(DS, ParsedAttributesView::none(), DeclaratorContext::ForInit);
14356 D.SetIdentifier(Ident, IdentLoc);
14357 D.takeAttributes(Attrs);
14358
14359 D.AddTypeInfo(DeclaratorChunk::getReference(0, IdentLoc, /*lvalue*/ false),
14360 IdentLoc);
14361 Decl *Var = ActOnDeclarator(S, D);
14362 cast<VarDecl>(Var)->setCXXForRangeDecl(true);
14363 FinalizeDeclaration(Var);
14364 return ActOnDeclStmt(FinalizeDeclaratorGroup(S, DS, Var), IdentLoc,
14365 Attrs.Range.getEnd().isValid() ? Attrs.Range.getEnd()
14366 : IdentLoc);
14367 }
14368
CheckCompleteVariableDeclaration(VarDecl * var)14369 void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
14370 if (var->isInvalidDecl()) return;
14371
14372 MaybeAddCUDAConstantAttr(var);
14373
14374 if (getLangOpts().OpenCL) {
14375 // OpenCL v2.0 s6.12.5 - Every block variable declaration must have an
14376 // initialiser
14377 if (var->getTypeSourceInfo()->getType()->isBlockPointerType() &&
14378 !var->hasInit()) {
14379 Diag(var->getLocation(), diag::err_opencl_invalid_block_declaration)
14380 << 1 /*Init*/;
14381 var->setInvalidDecl();
14382 return;
14383 }
14384 }
14385
14386 // In Objective-C, don't allow jumps past the implicit initialization of a
14387 // local retaining variable.
14388 if (getLangOpts().ObjC &&
14389 var->hasLocalStorage()) {
14390 switch (var->getType().getObjCLifetime()) {
14391 case Qualifiers::OCL_None:
14392 case Qualifiers::OCL_ExplicitNone:
14393 case Qualifiers::OCL_Autoreleasing:
14394 break;
14395
14396 case Qualifiers::OCL_Weak:
14397 case Qualifiers::OCL_Strong:
14398 setFunctionHasBranchProtectedScope();
14399 break;
14400 }
14401 }
14402
14403 if (var->hasLocalStorage() &&
14404 var->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
14405 setFunctionHasBranchProtectedScope();
14406
14407 // Warn about externally-visible variables being defined without a
14408 // prior declaration. We only want to do this for global
14409 // declarations, but we also specifically need to avoid doing it for
14410 // class members because the linkage of an anonymous class can
14411 // change if it's later given a typedef name.
14412 if (var->isThisDeclarationADefinition() &&
14413 var->getDeclContext()->getRedeclContext()->isFileContext() &&
14414 var->isExternallyVisible() && var->hasLinkage() &&
14415 !var->isInline() && !var->getDescribedVarTemplate() &&
14416 var->getStorageClass() != SC_Register &&
14417 !isa<VarTemplatePartialSpecializationDecl>(var) &&
14418 !isTemplateInstantiation(var->getTemplateSpecializationKind()) &&
14419 !getDiagnostics().isIgnored(diag::warn_missing_variable_declarations,
14420 var->getLocation())) {
14421 // Find a previous declaration that's not a definition.
14422 VarDecl *prev = var->getPreviousDecl();
14423 while (prev && prev->isThisDeclarationADefinition())
14424 prev = prev->getPreviousDecl();
14425
14426 if (!prev) {
14427 Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
14428 Diag(var->getTypeSpecStartLoc(), diag::note_static_for_internal_linkage)
14429 << /* variable */ 0;
14430 }
14431 }
14432
14433 // Cache the result of checking for constant initialization.
14434 std::optional<bool> CacheHasConstInit;
14435 const Expr *CacheCulprit = nullptr;
14436 auto checkConstInit = [&]() mutable {
14437 if (!CacheHasConstInit)
14438 CacheHasConstInit = var->getInit()->isConstantInitializer(
14439 Context, var->getType()->isReferenceType(), &CacheCulprit);
14440 return *CacheHasConstInit;
14441 };
14442
14443 if (var->getTLSKind() == VarDecl::TLS_Static) {
14444 if (var->getType().isDestructedType()) {
14445 // GNU C++98 edits for __thread, [basic.start.term]p3:
14446 // The type of an object with thread storage duration shall not
14447 // have a non-trivial destructor.
14448 Diag(var->getLocation(), diag::err_thread_nontrivial_dtor);
14449 if (getLangOpts().CPlusPlus11)
14450 Diag(var->getLocation(), diag::note_use_thread_local);
14451 } else if (getLangOpts().CPlusPlus && var->hasInit()) {
14452 if (!checkConstInit()) {
14453 // GNU C++98 edits for __thread, [basic.start.init]p4:
14454 // An object of thread storage duration shall not require dynamic
14455 // initialization.
14456 // FIXME: Need strict checking here.
14457 Diag(CacheCulprit->getExprLoc(), diag::err_thread_dynamic_init)
14458 << CacheCulprit->getSourceRange();
14459 if (getLangOpts().CPlusPlus11)
14460 Diag(var->getLocation(), diag::note_use_thread_local);
14461 }
14462 }
14463 }
14464
14465
14466 if (!var->getType()->isStructureType() && var->hasInit() &&
14467 isa<InitListExpr>(var->getInit())) {
14468 const auto *ILE = cast<InitListExpr>(var->getInit());
14469 unsigned NumInits = ILE->getNumInits();
14470 if (NumInits > 2)
14471 for (unsigned I = 0; I < NumInits; ++I) {
14472 const auto *Init = ILE->getInit(I);
14473 if (!Init)
14474 break;
14475 const auto *SL = dyn_cast<StringLiteral>(Init->IgnoreImpCasts());
14476 if (!SL)
14477 break;
14478
14479 unsigned NumConcat = SL->getNumConcatenated();
14480 // Diagnose missing comma in string array initialization.
14481 // Do not warn when all the elements in the initializer are concatenated
14482 // together. Do not warn for macros too.
14483 if (NumConcat == 2 && !SL->getBeginLoc().isMacroID()) {
14484 bool OnlyOneMissingComma = true;
14485 for (unsigned J = I + 1; J < NumInits; ++J) {
14486 const auto *Init = ILE->getInit(J);
14487 if (!Init)
14488 break;
14489 const auto *SLJ = dyn_cast<StringLiteral>(Init->IgnoreImpCasts());
14490 if (!SLJ || SLJ->getNumConcatenated() > 1) {
14491 OnlyOneMissingComma = false;
14492 break;
14493 }
14494 }
14495
14496 if (OnlyOneMissingComma) {
14497 SmallVector<FixItHint, 1> Hints;
14498 for (unsigned i = 0; i < NumConcat - 1; ++i)
14499 Hints.push_back(FixItHint::CreateInsertion(
14500 PP.getLocForEndOfToken(SL->getStrTokenLoc(i)), ","));
14501
14502 Diag(SL->getStrTokenLoc(1),
14503 diag::warn_concatenated_literal_array_init)
14504 << Hints;
14505 Diag(SL->getBeginLoc(),
14506 diag::note_concatenated_string_literal_silence);
14507 }
14508 // In any case, stop now.
14509 break;
14510 }
14511 }
14512 }
14513
14514
14515 QualType type = var->getType();
14516
14517 if (var->hasAttr<BlocksAttr>())
14518 getCurFunction()->addByrefBlockVar(var);
14519
14520 Expr *Init = var->getInit();
14521 bool GlobalStorage = var->hasGlobalStorage();
14522 bool IsGlobal = GlobalStorage && !var->isStaticLocal();
14523 QualType baseType = Context.getBaseElementType(type);
14524 bool HasConstInit = true;
14525
14526 // Check whether the initializer is sufficiently constant.
14527 if (getLangOpts().CPlusPlus && !type->isDependentType() && Init &&
14528 !Init->isValueDependent() &&
14529 (GlobalStorage || var->isConstexpr() ||
14530 var->mightBeUsableInConstantExpressions(Context))) {
14531 // If this variable might have a constant initializer or might be usable in
14532 // constant expressions, check whether or not it actually is now. We can't
14533 // do this lazily, because the result might depend on things that change
14534 // later, such as which constexpr functions happen to be defined.
14535 SmallVector<PartialDiagnosticAt, 8> Notes;
14536 if (!getLangOpts().CPlusPlus11) {
14537 // Prior to C++11, in contexts where a constant initializer is required,
14538 // the set of valid constant initializers is described by syntactic rules
14539 // in [expr.const]p2-6.
14540 // FIXME: Stricter checking for these rules would be useful for constinit /
14541 // -Wglobal-constructors.
14542 HasConstInit = checkConstInit();
14543
14544 // Compute and cache the constant value, and remember that we have a
14545 // constant initializer.
14546 if (HasConstInit) {
14547 (void)var->checkForConstantInitialization(Notes);
14548 Notes.clear();
14549 } else if (CacheCulprit) {
14550 Notes.emplace_back(CacheCulprit->getExprLoc(),
14551 PDiag(diag::note_invalid_subexpr_in_const_expr));
14552 Notes.back().second << CacheCulprit->getSourceRange();
14553 }
14554 } else {
14555 // Evaluate the initializer to see if it's a constant initializer.
14556 HasConstInit = var->checkForConstantInitialization(Notes);
14557 }
14558
14559 if (HasConstInit) {
14560 // FIXME: Consider replacing the initializer with a ConstantExpr.
14561 } else if (var->isConstexpr()) {
14562 SourceLocation DiagLoc = var->getLocation();
14563 // If the note doesn't add any useful information other than a source
14564 // location, fold it into the primary diagnostic.
14565 if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
14566 diag::note_invalid_subexpr_in_const_expr) {
14567 DiagLoc = Notes[0].first;
14568 Notes.clear();
14569 }
14570 Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
14571 << var << Init->getSourceRange();
14572 for (unsigned I = 0, N = Notes.size(); I != N; ++I)
14573 Diag(Notes[I].first, Notes[I].second);
14574 } else if (GlobalStorage && var->hasAttr<ConstInitAttr>()) {
14575 auto *Attr = var->getAttr<ConstInitAttr>();
14576 Diag(var->getLocation(), diag::err_require_constant_init_failed)
14577 << Init->getSourceRange();
14578 Diag(Attr->getLocation(), diag::note_declared_required_constant_init_here)
14579 << Attr->getRange() << Attr->isConstinit();
14580 for (auto &it : Notes)
14581 Diag(it.first, it.second);
14582 } else if (IsGlobal &&
14583 !getDiagnostics().isIgnored(diag::warn_global_constructor,
14584 var->getLocation())) {
14585 // Warn about globals which don't have a constant initializer. Don't
14586 // warn about globals with a non-trivial destructor because we already
14587 // warned about them.
14588 CXXRecordDecl *RD = baseType->getAsCXXRecordDecl();
14589 if (!(RD && !RD->hasTrivialDestructor())) {
14590 // checkConstInit() here permits trivial default initialization even in
14591 // C++11 onwards, where such an initializer is not a constant initializer
14592 // but nonetheless doesn't require a global constructor.
14593 if (!checkConstInit())
14594 Diag(var->getLocation(), diag::warn_global_constructor)
14595 << Init->getSourceRange();
14596 }
14597 }
14598 }
14599
14600 // Apply section attributes and pragmas to global variables.
14601 if (GlobalStorage && var->isThisDeclarationADefinition() &&
14602 !inTemplateInstantiation()) {
14603 PragmaStack<StringLiteral *> *Stack = nullptr;
14604 int SectionFlags = ASTContext::PSF_Read;
14605 bool MSVCEnv =
14606 Context.getTargetInfo().getTriple().isWindowsMSVCEnvironment();
14607 std::optional<QualType::NonConstantStorageReason> Reason;
14608 if (HasConstInit &&
14609 !(Reason = var->getType().isNonConstantStorage(Context, true, false))) {
14610 Stack = &ConstSegStack;
14611 } else {
14612 SectionFlags |= ASTContext::PSF_Write;
14613 Stack = var->hasInit() && HasConstInit ? &DataSegStack : &BSSSegStack;
14614 }
14615 if (const SectionAttr *SA = var->getAttr<SectionAttr>()) {
14616 if (SA->getSyntax() == AttributeCommonInfo::AS_Declspec)
14617 SectionFlags |= ASTContext::PSF_Implicit;
14618 UnifySection(SA->getName(), SectionFlags, var);
14619 } else if (Stack->CurrentValue) {
14620 if (Stack != &ConstSegStack && MSVCEnv &&
14621 ConstSegStack.CurrentValue != ConstSegStack.DefaultValue &&
14622 var->getType().isConstQualified()) {
14623 assert((!Reason || Reason != QualType::NonConstantStorageReason::
14624 NonConstNonReferenceType) &&
14625 "This case should've already been handled elsewhere");
14626 Diag(var->getLocation(), diag::warn_section_msvc_compat)
14627 << var << ConstSegStack.CurrentValue << (int)(!HasConstInit
14628 ? QualType::NonConstantStorageReason::NonTrivialCtor
14629 : *Reason);
14630 }
14631 SectionFlags |= ASTContext::PSF_Implicit;
14632 auto SectionName = Stack->CurrentValue->getString();
14633 var->addAttr(SectionAttr::CreateImplicit(Context, SectionName,
14634 Stack->CurrentPragmaLocation,
14635 SectionAttr::Declspec_allocate));
14636 if (UnifySection(SectionName, SectionFlags, var))
14637 var->dropAttr<SectionAttr>();
14638 }
14639
14640 // Apply the init_seg attribute if this has an initializer. If the
14641 // initializer turns out to not be dynamic, we'll end up ignoring this
14642 // attribute.
14643 if (CurInitSeg && var->getInit())
14644 var->addAttr(InitSegAttr::CreateImplicit(Context, CurInitSeg->getString(),
14645 CurInitSegLoc));
14646 }
14647
14648 // All the following checks are C++ only.
14649 if (!getLangOpts().CPlusPlus) {
14650 // If this variable must be emitted, add it as an initializer for the
14651 // current module.
14652 if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty())
14653 Context.addModuleInitializer(ModuleScopes.back().Module, var);
14654 return;
14655 }
14656
14657 // Require the destructor.
14658 if (!type->isDependentType())
14659 if (const RecordType *recordType = baseType->getAs<RecordType>())
14660 FinalizeVarWithDestructor(var, recordType);
14661
14662 // If this variable must be emitted, add it as an initializer for the current
14663 // module.
14664 if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty())
14665 Context.addModuleInitializer(ModuleScopes.back().Module, var);
14666
14667 // Build the bindings if this is a structured binding declaration.
14668 if (auto *DD = dyn_cast<DecompositionDecl>(var))
14669 CheckCompleteDecompositionDeclaration(DD);
14670 }
14671
14672 /// Check if VD needs to be dllexport/dllimport due to being in a
14673 /// dllexport/import function.
CheckStaticLocalForDllExport(VarDecl * VD)14674 void Sema::CheckStaticLocalForDllExport(VarDecl *VD) {
14675 assert(VD->isStaticLocal());
14676
14677 auto *FD = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod());
14678
14679 // Find outermost function when VD is in lambda function.
14680 while (FD && !getDLLAttr(FD) &&
14681 !FD->hasAttr<DLLExportStaticLocalAttr>() &&
14682 !FD->hasAttr<DLLImportStaticLocalAttr>()) {
14683 FD = dyn_cast_or_null<FunctionDecl>(FD->getParentFunctionOrMethod());
14684 }
14685
14686 if (!FD)
14687 return;
14688
14689 // Static locals inherit dll attributes from their function.
14690 if (Attr *A = getDLLAttr(FD)) {
14691 auto *NewAttr = cast<InheritableAttr>(A->clone(getASTContext()));
14692 NewAttr->setInherited(true);
14693 VD->addAttr(NewAttr);
14694 } else if (Attr *A = FD->getAttr<DLLExportStaticLocalAttr>()) {
14695 auto *NewAttr = DLLExportAttr::CreateImplicit(getASTContext(), *A);
14696 NewAttr->setInherited(true);
14697 VD->addAttr(NewAttr);
14698
14699 // Export this function to enforce exporting this static variable even
14700 // if it is not used in this compilation unit.
14701 if (!FD->hasAttr<DLLExportAttr>())
14702 FD->addAttr(NewAttr);
14703
14704 } else if (Attr *A = FD->getAttr<DLLImportStaticLocalAttr>()) {
14705 auto *NewAttr = DLLImportAttr::CreateImplicit(getASTContext(), *A);
14706 NewAttr->setInherited(true);
14707 VD->addAttr(NewAttr);
14708 }
14709 }
14710
CheckThreadLocalForLargeAlignment(VarDecl * VD)14711 void Sema::CheckThreadLocalForLargeAlignment(VarDecl *VD) {
14712 assert(VD->getTLSKind());
14713
14714 // Perform TLS alignment check here after attributes attached to the variable
14715 // which may affect the alignment have been processed. Only perform the check
14716 // if the target has a maximum TLS alignment (zero means no constraints).
14717 if (unsigned MaxAlign = Context.getTargetInfo().getMaxTLSAlign()) {
14718 // Protect the check so that it's not performed on dependent types and
14719 // dependent alignments (we can't determine the alignment in that case).
14720 if (!VD->hasDependentAlignment()) {
14721 CharUnits MaxAlignChars = Context.toCharUnitsFromBits(MaxAlign);
14722 if (Context.getDeclAlign(VD) > MaxAlignChars) {
14723 Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum)
14724 << (unsigned)Context.getDeclAlign(VD).getQuantity() << VD
14725 << (unsigned)MaxAlignChars.getQuantity();
14726 }
14727 }
14728 }
14729 }
14730
14731 /// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
14732 /// any semantic actions necessary after any initializer has been attached.
FinalizeDeclaration(Decl * ThisDecl)14733 void Sema::FinalizeDeclaration(Decl *ThisDecl) {
14734 // Note that we are no longer parsing the initializer for this declaration.
14735 ParsingInitForAutoVars.erase(ThisDecl);
14736
14737 VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
14738 if (!VD)
14739 return;
14740
14741 // Apply an implicit SectionAttr if '#pragma clang section bss|data|rodata' is active
14742 if (VD->hasGlobalStorage() && VD->isThisDeclarationADefinition() &&
14743 !inTemplateInstantiation() && !VD->hasAttr<SectionAttr>()) {
14744 if (PragmaClangBSSSection.Valid)
14745 VD->addAttr(PragmaClangBSSSectionAttr::CreateImplicit(
14746 Context, PragmaClangBSSSection.SectionName,
14747 PragmaClangBSSSection.PragmaLocation));
14748 if (PragmaClangDataSection.Valid)
14749 VD->addAttr(PragmaClangDataSectionAttr::CreateImplicit(
14750 Context, PragmaClangDataSection.SectionName,
14751 PragmaClangDataSection.PragmaLocation));
14752 if (PragmaClangRodataSection.Valid)
14753 VD->addAttr(PragmaClangRodataSectionAttr::CreateImplicit(
14754 Context, PragmaClangRodataSection.SectionName,
14755 PragmaClangRodataSection.PragmaLocation));
14756 if (PragmaClangRelroSection.Valid)
14757 VD->addAttr(PragmaClangRelroSectionAttr::CreateImplicit(
14758 Context, PragmaClangRelroSection.SectionName,
14759 PragmaClangRelroSection.PragmaLocation));
14760 }
14761
14762 if (auto *DD = dyn_cast<DecompositionDecl>(ThisDecl)) {
14763 for (auto *BD : DD->bindings()) {
14764 FinalizeDeclaration(BD);
14765 }
14766 }
14767
14768 checkAttributesAfterMerging(*this, *VD);
14769
14770 if (VD->isStaticLocal())
14771 CheckStaticLocalForDllExport(VD);
14772
14773 if (VD->getTLSKind())
14774 CheckThreadLocalForLargeAlignment(VD);
14775
14776 // Perform check for initializers of device-side global variables.
14777 // CUDA allows empty constructors as initializers (see E.2.3.1, CUDA
14778 // 7.5). We must also apply the same checks to all __shared__
14779 // variables whether they are local or not. CUDA also allows
14780 // constant initializers for __constant__ and __device__ variables.
14781 if (getLangOpts().CUDA)
14782 checkAllowedCUDAInitializer(VD);
14783
14784 // Grab the dllimport or dllexport attribute off of the VarDecl.
14785 const InheritableAttr *DLLAttr = getDLLAttr(VD);
14786
14787 // Imported static data members cannot be defined out-of-line.
14788 if (const auto *IA = dyn_cast_or_null<DLLImportAttr>(DLLAttr)) {
14789 if (VD->isStaticDataMember() && VD->isOutOfLine() &&
14790 VD->isThisDeclarationADefinition()) {
14791 // We allow definitions of dllimport class template static data members
14792 // with a warning.
14793 CXXRecordDecl *Context =
14794 cast<CXXRecordDecl>(VD->getFirstDecl()->getDeclContext());
14795 bool IsClassTemplateMember =
14796 isa<ClassTemplatePartialSpecializationDecl>(Context) ||
14797 Context->getDescribedClassTemplate();
14798
14799 Diag(VD->getLocation(),
14800 IsClassTemplateMember
14801 ? diag::warn_attribute_dllimport_static_field_definition
14802 : diag::err_attribute_dllimport_static_field_definition);
14803 Diag(IA->getLocation(), diag::note_attribute);
14804 if (!IsClassTemplateMember)
14805 VD->setInvalidDecl();
14806 }
14807 }
14808
14809 // dllimport/dllexport variables cannot be thread local, their TLS index
14810 // isn't exported with the variable.
14811 if (DLLAttr && VD->getTLSKind()) {
14812 auto *F = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod());
14813 if (F && getDLLAttr(F)) {
14814 assert(VD->isStaticLocal());
14815 // But if this is a static local in a dlimport/dllexport function, the
14816 // function will never be inlined, which means the var would never be
14817 // imported, so having it marked import/export is safe.
14818 } else {
14819 Diag(VD->getLocation(), diag::err_attribute_dll_thread_local) << VD
14820 << DLLAttr;
14821 VD->setInvalidDecl();
14822 }
14823 }
14824
14825 if (UsedAttr *Attr = VD->getAttr<UsedAttr>()) {
14826 if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) {
14827 Diag(Attr->getLocation(), diag::warn_attribute_ignored_on_non_definition)
14828 << Attr;
14829 VD->dropAttr<UsedAttr>();
14830 }
14831 }
14832 if (RetainAttr *Attr = VD->getAttr<RetainAttr>()) {
14833 if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) {
14834 Diag(Attr->getLocation(), diag::warn_attribute_ignored_on_non_definition)
14835 << Attr;
14836 VD->dropAttr<RetainAttr>();
14837 }
14838 }
14839
14840 const DeclContext *DC = VD->getDeclContext();
14841 // If there's a #pragma GCC visibility in scope, and this isn't a class
14842 // member, set the visibility of this variable.
14843 if (DC->getRedeclContext()->isFileContext() && VD->isExternallyVisible())
14844 AddPushedVisibilityAttribute(VD);
14845
14846 // FIXME: Warn on unused var template partial specializations.
14847 if (VD->isFileVarDecl() && !isa<VarTemplatePartialSpecializationDecl>(VD))
14848 MarkUnusedFileScopedDecl(VD);
14849
14850 // Now we have parsed the initializer and can update the table of magic
14851 // tag values.
14852 if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
14853 !VD->getType()->isIntegralOrEnumerationType())
14854 return;
14855
14856 for (const auto *I : ThisDecl->specific_attrs<TypeTagForDatatypeAttr>()) {
14857 const Expr *MagicValueExpr = VD->getInit();
14858 if (!MagicValueExpr) {
14859 continue;
14860 }
14861 std::optional<llvm::APSInt> MagicValueInt;
14862 if (!(MagicValueInt = MagicValueExpr->getIntegerConstantExpr(Context))) {
14863 Diag(I->getRange().getBegin(),
14864 diag::err_type_tag_for_datatype_not_ice)
14865 << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
14866 continue;
14867 }
14868 if (MagicValueInt->getActiveBits() > 64) {
14869 Diag(I->getRange().getBegin(),
14870 diag::err_type_tag_for_datatype_too_large)
14871 << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
14872 continue;
14873 }
14874 uint64_t MagicValue = MagicValueInt->getZExtValue();
14875 RegisterTypeTagForDatatype(I->getArgumentKind(),
14876 MagicValue,
14877 I->getMatchingCType(),
14878 I->getLayoutCompatible(),
14879 I->getMustBeNull());
14880 }
14881 }
14882
hasDeducedAuto(DeclaratorDecl * DD)14883 static bool hasDeducedAuto(DeclaratorDecl *DD) {
14884 auto *VD = dyn_cast<VarDecl>(DD);
14885 return VD && !VD->getType()->hasAutoForTrailingReturnType();
14886 }
14887
FinalizeDeclaratorGroup(Scope * S,const DeclSpec & DS,ArrayRef<Decl * > Group)14888 Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
14889 ArrayRef<Decl *> Group) {
14890 SmallVector<Decl*, 8> Decls;
14891
14892 if (DS.isTypeSpecOwned())
14893 Decls.push_back(DS.getRepAsDecl());
14894
14895 DeclaratorDecl *FirstDeclaratorInGroup = nullptr;
14896 DecompositionDecl *FirstDecompDeclaratorInGroup = nullptr;
14897 bool DiagnosedMultipleDecomps = false;
14898 DeclaratorDecl *FirstNonDeducedAutoInGroup = nullptr;
14899 bool DiagnosedNonDeducedAuto = false;
14900
14901 for (unsigned i = 0, e = Group.size(); i != e; ++i) {
14902 if (Decl *D = Group[i]) {
14903 // Check if the Decl has been declared in '#pragma omp declare target'
14904 // directive and has static storage duration.
14905 if (auto *VD = dyn_cast<VarDecl>(D);
14906 LangOpts.OpenMP && VD && VD->hasAttr<OMPDeclareTargetDeclAttr>() &&
14907 VD->hasGlobalStorage())
14908 ActOnOpenMPDeclareTargetInitializer(D);
14909 // For declarators, there are some additional syntactic-ish checks we need
14910 // to perform.
14911 if (auto *DD = dyn_cast<DeclaratorDecl>(D)) {
14912 if (!FirstDeclaratorInGroup)
14913 FirstDeclaratorInGroup = DD;
14914 if (!FirstDecompDeclaratorInGroup)
14915 FirstDecompDeclaratorInGroup = dyn_cast<DecompositionDecl>(D);
14916 if (!FirstNonDeducedAutoInGroup && DS.hasAutoTypeSpec() &&
14917 !hasDeducedAuto(DD))
14918 FirstNonDeducedAutoInGroup = DD;
14919
14920 if (FirstDeclaratorInGroup != DD) {
14921 // A decomposition declaration cannot be combined with any other
14922 // declaration in the same group.
14923 if (FirstDecompDeclaratorInGroup && !DiagnosedMultipleDecomps) {
14924 Diag(FirstDecompDeclaratorInGroup->getLocation(),
14925 diag::err_decomp_decl_not_alone)
14926 << FirstDeclaratorInGroup->getSourceRange()
14927 << DD->getSourceRange();
14928 DiagnosedMultipleDecomps = true;
14929 }
14930
14931 // A declarator that uses 'auto' in any way other than to declare a
14932 // variable with a deduced type cannot be combined with any other
14933 // declarator in the same group.
14934 if (FirstNonDeducedAutoInGroup && !DiagnosedNonDeducedAuto) {
14935 Diag(FirstNonDeducedAutoInGroup->getLocation(),
14936 diag::err_auto_non_deduced_not_alone)
14937 << FirstNonDeducedAutoInGroup->getType()
14938 ->hasAutoForTrailingReturnType()
14939 << FirstDeclaratorInGroup->getSourceRange()
14940 << DD->getSourceRange();
14941 DiagnosedNonDeducedAuto = true;
14942 }
14943 }
14944 }
14945
14946 Decls.push_back(D);
14947 }
14948 }
14949
14950 if (DeclSpec::isDeclRep(DS.getTypeSpecType())) {
14951 if (TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl())) {
14952 handleTagNumbering(Tag, S);
14953 if (FirstDeclaratorInGroup && !Tag->hasNameForLinkage() &&
14954 getLangOpts().CPlusPlus)
14955 Context.addDeclaratorForUnnamedTagDecl(Tag, FirstDeclaratorInGroup);
14956 }
14957 }
14958
14959 return BuildDeclaratorGroup(Decls);
14960 }
14961
14962 /// BuildDeclaratorGroup - convert a list of declarations into a declaration
14963 /// group, performing any necessary semantic checking.
14964 Sema::DeclGroupPtrTy
BuildDeclaratorGroup(MutableArrayRef<Decl * > Group)14965 Sema::BuildDeclaratorGroup(MutableArrayRef<Decl *> Group) {
14966 // C++14 [dcl.spec.auto]p7: (DR1347)
14967 // If the type that replaces the placeholder type is not the same in each
14968 // deduction, the program is ill-formed.
14969 if (Group.size() > 1) {
14970 QualType Deduced;
14971 VarDecl *DeducedDecl = nullptr;
14972 for (unsigned i = 0, e = Group.size(); i != e; ++i) {
14973 VarDecl *D = dyn_cast<VarDecl>(Group[i]);
14974 if (!D || D->isInvalidDecl())
14975 break;
14976 DeducedType *DT = D->getType()->getContainedDeducedType();
14977 if (!DT || DT->getDeducedType().isNull())
14978 continue;
14979 if (Deduced.isNull()) {
14980 Deduced = DT->getDeducedType();
14981 DeducedDecl = D;
14982 } else if (!Context.hasSameType(DT->getDeducedType(), Deduced)) {
14983 auto *AT = dyn_cast<AutoType>(DT);
14984 auto Dia = Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
14985 diag::err_auto_different_deductions)
14986 << (AT ? (unsigned)AT->getKeyword() : 3) << Deduced
14987 << DeducedDecl->getDeclName() << DT->getDeducedType()
14988 << D->getDeclName();
14989 if (DeducedDecl->hasInit())
14990 Dia << DeducedDecl->getInit()->getSourceRange();
14991 if (D->getInit())
14992 Dia << D->getInit()->getSourceRange();
14993 D->setInvalidDecl();
14994 break;
14995 }
14996 }
14997 }
14998
14999 ActOnDocumentableDecls(Group);
15000
15001 return DeclGroupPtrTy::make(
15002 DeclGroupRef::Create(Context, Group.data(), Group.size()));
15003 }
15004
ActOnDocumentableDecl(Decl * D)15005 void Sema::ActOnDocumentableDecl(Decl *D) {
15006 ActOnDocumentableDecls(D);
15007 }
15008
ActOnDocumentableDecls(ArrayRef<Decl * > Group)15009 void Sema::ActOnDocumentableDecls(ArrayRef<Decl *> Group) {
15010 // Don't parse the comment if Doxygen diagnostics are ignored.
15011 if (Group.empty() || !Group[0])
15012 return;
15013
15014 if (Diags.isIgnored(diag::warn_doc_param_not_found,
15015 Group[0]->getLocation()) &&
15016 Diags.isIgnored(diag::warn_unknown_comment_command_name,
15017 Group[0]->getLocation()))
15018 return;
15019
15020 if (Group.size() >= 2) {
15021 // This is a decl group. Normally it will contain only declarations
15022 // produced from declarator list. But in case we have any definitions or
15023 // additional declaration references:
15024 // 'typedef struct S {} S;'
15025 // 'typedef struct S *S;'
15026 // 'struct S *pS;'
15027 // FinalizeDeclaratorGroup adds these as separate declarations.
15028 Decl *MaybeTagDecl = Group[0];
15029 if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
15030 Group = Group.slice(1);
15031 }
15032 }
15033
15034 // FIMXE: We assume every Decl in the group is in the same file.
15035 // This is false when preprocessor constructs the group from decls in
15036 // different files (e. g. macros or #include).
15037 Context.attachCommentsToJustParsedDecls(Group, &getPreprocessor());
15038 }
15039
15040 /// Common checks for a parameter-declaration that should apply to both function
15041 /// parameters and non-type template parameters.
CheckFunctionOrTemplateParamDeclarator(Scope * S,Declarator & D)15042 void Sema::CheckFunctionOrTemplateParamDeclarator(Scope *S, Declarator &D) {
15043 // Check that there are no default arguments inside the type of this
15044 // parameter.
15045 if (getLangOpts().CPlusPlus)
15046 CheckExtraCXXDefaultArguments(D);
15047
15048 // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
15049 if (D.getCXXScopeSpec().isSet()) {
15050 Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
15051 << D.getCXXScopeSpec().getRange();
15052 }
15053
15054 // [dcl.meaning]p1: An unqualified-id occurring in a declarator-id shall be a
15055 // simple identifier except [...irrelevant cases...].
15056 switch (D.getName().getKind()) {
15057 case UnqualifiedIdKind::IK_Identifier:
15058 break;
15059
15060 case UnqualifiedIdKind::IK_OperatorFunctionId:
15061 case UnqualifiedIdKind::IK_ConversionFunctionId:
15062 case UnqualifiedIdKind::IK_LiteralOperatorId:
15063 case UnqualifiedIdKind::IK_ConstructorName:
15064 case UnqualifiedIdKind::IK_DestructorName:
15065 case UnqualifiedIdKind::IK_ImplicitSelfParam:
15066 case UnqualifiedIdKind::IK_DeductionGuideName:
15067 Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
15068 << GetNameForDeclarator(D).getName();
15069 break;
15070
15071 case UnqualifiedIdKind::IK_TemplateId:
15072 case UnqualifiedIdKind::IK_ConstructorTemplateId:
15073 // GetNameForDeclarator would not produce a useful name in this case.
15074 Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name_template_id);
15075 break;
15076 }
15077 }
15078
CheckExplicitObjectParameter(Sema & S,ParmVarDecl * P,SourceLocation ExplicitThisLoc)15079 static void CheckExplicitObjectParameter(Sema &S, ParmVarDecl *P,
15080 SourceLocation ExplicitThisLoc) {
15081 if (!ExplicitThisLoc.isValid())
15082 return;
15083 assert(S.getLangOpts().CPlusPlus &&
15084 "explicit parameter in non-cplusplus mode");
15085 if (!S.getLangOpts().CPlusPlus23)
15086 S.Diag(ExplicitThisLoc, diag::err_cxx20_deducing_this)
15087 << P->getSourceRange();
15088
15089 // C++2b [dcl.fct/7] An explicit object parameter shall not be a function
15090 // parameter pack.
15091 if (P->isParameterPack()) {
15092 S.Diag(P->getBeginLoc(), diag::err_explicit_object_parameter_pack)
15093 << P->getSourceRange();
15094 return;
15095 }
15096 P->setExplicitObjectParameterLoc(ExplicitThisLoc);
15097 if (LambdaScopeInfo *LSI = S.getCurLambda())
15098 LSI->ExplicitObjectParameter = P;
15099 }
15100
15101 /// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
15102 /// to introduce parameters into function prototype scope.
ActOnParamDeclarator(Scope * S,Declarator & D,SourceLocation ExplicitThisLoc)15103 Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D,
15104 SourceLocation ExplicitThisLoc) {
15105 const DeclSpec &DS = D.getDeclSpec();
15106
15107 // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
15108
15109 // C++03 [dcl.stc]p2 also permits 'auto'.
15110 StorageClass SC = SC_None;
15111 if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
15112 SC = SC_Register;
15113 // In C++11, the 'register' storage class specifier is deprecated.
15114 // In C++17, it is not allowed, but we tolerate it as an extension.
15115 if (getLangOpts().CPlusPlus11) {
15116 Diag(DS.getStorageClassSpecLoc(),
15117 getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class
15118 : diag::warn_deprecated_register)
15119 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
15120 }
15121 } else if (getLangOpts().CPlusPlus &&
15122 DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
15123 SC = SC_Auto;
15124 } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
15125 Diag(DS.getStorageClassSpecLoc(),
15126 diag::err_invalid_storage_class_in_func_decl);
15127 D.getMutableDeclSpec().ClearStorageClassSpecs();
15128 }
15129
15130 if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
15131 Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread)
15132 << DeclSpec::getSpecifierName(TSCS);
15133 if (DS.isInlineSpecified())
15134 Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
15135 << getLangOpts().CPlusPlus17;
15136 if (DS.hasConstexprSpecifier())
15137 Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr)
15138 << 0 << static_cast<int>(D.getDeclSpec().getConstexprSpecifier());
15139
15140 DiagnoseFunctionSpecifiers(DS);
15141
15142 CheckFunctionOrTemplateParamDeclarator(S, D);
15143
15144 TypeSourceInfo *TInfo = GetTypeForDeclarator(D);
15145 QualType parmDeclType = TInfo->getType();
15146
15147 // Check for redeclaration of parameters, e.g. int foo(int x, int x);
15148 IdentifierInfo *II = D.getIdentifier();
15149 if (II) {
15150 LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
15151 ForVisibleRedeclaration);
15152 LookupName(R, S);
15153 if (!R.empty()) {
15154 NamedDecl *PrevDecl = *R.begin();
15155 if (R.isSingleResult() && PrevDecl->isTemplateParameter()) {
15156 // Maybe we will complain about the shadowed template parameter.
15157 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
15158 // Just pretend that we didn't see the previous declaration.
15159 PrevDecl = nullptr;
15160 }
15161 if (PrevDecl && S->isDeclScope(PrevDecl)) {
15162 Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
15163 Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
15164 // Recover by removing the name
15165 II = nullptr;
15166 D.SetIdentifier(nullptr, D.getIdentifierLoc());
15167 D.setInvalidType(true);
15168 }
15169 }
15170 }
15171
15172 // Temporarily put parameter variables in the translation unit, not
15173 // the enclosing context. This prevents them from accidentally
15174 // looking like class members in C++.
15175 ParmVarDecl *New =
15176 CheckParameter(Context.getTranslationUnitDecl(), D.getBeginLoc(),
15177 D.getIdentifierLoc(), II, parmDeclType, TInfo, SC);
15178
15179 if (D.isInvalidType())
15180 New->setInvalidDecl();
15181
15182 CheckExplicitObjectParameter(*this, New, ExplicitThisLoc);
15183
15184 assert(S->isFunctionPrototypeScope());
15185 assert(S->getFunctionPrototypeDepth() >= 1);
15186 New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
15187 S->getNextFunctionPrototypeIndex());
15188
15189 // Add the parameter declaration into this scope.
15190 S->AddDecl(New);
15191 if (II)
15192 IdResolver.AddDecl(New);
15193
15194 ProcessDeclAttributes(S, New, D);
15195
15196 if (D.getDeclSpec().isModulePrivateSpecified())
15197 Diag(New->getLocation(), diag::err_module_private_local)
15198 << 1 << New << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
15199 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
15200
15201 if (New->hasAttr<BlocksAttr>()) {
15202 Diag(New->getLocation(), diag::err_block_on_nonlocal);
15203 }
15204
15205 if (getLangOpts().OpenCL)
15206 deduceOpenCLAddressSpace(New);
15207
15208 return New;
15209 }
15210
15211 /// Synthesizes a variable for a parameter arising from a
15212 /// typedef.
BuildParmVarDeclForTypedef(DeclContext * DC,SourceLocation Loc,QualType T)15213 ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
15214 SourceLocation Loc,
15215 QualType T) {
15216 /* FIXME: setting StartLoc == Loc.
15217 Would it be worth to modify callers so as to provide proper source
15218 location for the unnamed parameters, embedding the parameter's type? */
15219 ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, nullptr,
15220 T, Context.getTrivialTypeSourceInfo(T, Loc),
15221 SC_None, nullptr);
15222 Param->setImplicit();
15223 return Param;
15224 }
15225
DiagnoseUnusedParameters(ArrayRef<ParmVarDecl * > Parameters)15226 void Sema::DiagnoseUnusedParameters(ArrayRef<ParmVarDecl *> Parameters) {
15227 // Don't diagnose unused-parameter errors in template instantiations; we
15228 // will already have done so in the template itself.
15229 if (inTemplateInstantiation())
15230 return;
15231
15232 for (const ParmVarDecl *Parameter : Parameters) {
15233 if (!Parameter->isReferenced() && Parameter->getDeclName() &&
15234 !Parameter->hasAttr<UnusedAttr>() &&
15235 !Parameter->getIdentifier()->isPlaceholder()) {
15236 Diag(Parameter->getLocation(), diag::warn_unused_parameter)
15237 << Parameter->getDeclName();
15238 }
15239 }
15240 }
15241
DiagnoseSizeOfParametersAndReturnValue(ArrayRef<ParmVarDecl * > Parameters,QualType ReturnTy,NamedDecl * D)15242 void Sema::DiagnoseSizeOfParametersAndReturnValue(
15243 ArrayRef<ParmVarDecl *> Parameters, QualType ReturnTy, NamedDecl *D) {
15244 if (LangOpts.NumLargeByValueCopy == 0) // No check.
15245 return;
15246
15247 // Warn if the return value is pass-by-value and larger than the specified
15248 // threshold.
15249 if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
15250 unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
15251 if (Size > LangOpts.NumLargeByValueCopy)
15252 Diag(D->getLocation(), diag::warn_return_value_size) << D << Size;
15253 }
15254
15255 // Warn if any parameter is pass-by-value and larger than the specified
15256 // threshold.
15257 for (const ParmVarDecl *Parameter : Parameters) {
15258 QualType T = Parameter->getType();
15259 if (T->isDependentType() || !T.isPODType(Context))
15260 continue;
15261 unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
15262 if (Size > LangOpts.NumLargeByValueCopy)
15263 Diag(Parameter->getLocation(), diag::warn_parameter_size)
15264 << Parameter << Size;
15265 }
15266 }
15267
AdjustParameterTypeForObjCAutoRefCount(QualType T,SourceLocation NameLoc,TypeSourceInfo * TSInfo)15268 QualType Sema::AdjustParameterTypeForObjCAutoRefCount(QualType T,
15269 SourceLocation NameLoc,
15270 TypeSourceInfo *TSInfo) {
15271 // In ARC, infer a lifetime qualifier for appropriate parameter types.
15272 if (!getLangOpts().ObjCAutoRefCount ||
15273 T.getObjCLifetime() != Qualifiers::OCL_None || !T->isObjCLifetimeType())
15274 return T;
15275
15276 Qualifiers::ObjCLifetime Lifetime;
15277
15278 // Special cases for arrays:
15279 // - if it's const, use __unsafe_unretained
15280 // - otherwise, it's an error
15281 if (T->isArrayType()) {
15282 if (!T.isConstQualified()) {
15283 if (DelayedDiagnostics.shouldDelayDiagnostics())
15284 DelayedDiagnostics.add(sema::DelayedDiagnostic::makeForbiddenType(
15285 NameLoc, diag::err_arc_array_param_no_ownership, T, false));
15286 else
15287 Diag(NameLoc, diag::err_arc_array_param_no_ownership)
15288 << TSInfo->getTypeLoc().getSourceRange();
15289 }
15290 Lifetime = Qualifiers::OCL_ExplicitNone;
15291 } else {
15292 Lifetime = T->getObjCARCImplicitLifetime();
15293 }
15294 T = Context.getLifetimeQualifiedType(T, Lifetime);
15295
15296 return T;
15297 }
15298
CheckParameter(DeclContext * DC,SourceLocation StartLoc,SourceLocation NameLoc,IdentifierInfo * Name,QualType T,TypeSourceInfo * TSInfo,StorageClass SC)15299 ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
15300 SourceLocation NameLoc, IdentifierInfo *Name,
15301 QualType T, TypeSourceInfo *TSInfo,
15302 StorageClass SC) {
15303 // In ARC, infer a lifetime qualifier for appropriate parameter types.
15304 if (getLangOpts().ObjCAutoRefCount &&
15305 T.getObjCLifetime() == Qualifiers::OCL_None &&
15306 T->isObjCLifetimeType()) {
15307
15308 Qualifiers::ObjCLifetime lifetime;
15309
15310 // Special cases for arrays:
15311 // - if it's const, use __unsafe_unretained
15312 // - otherwise, it's an error
15313 if (T->isArrayType()) {
15314 if (!T.isConstQualified()) {
15315 if (DelayedDiagnostics.shouldDelayDiagnostics())
15316 DelayedDiagnostics.add(
15317 sema::DelayedDiagnostic::makeForbiddenType(
15318 NameLoc, diag::err_arc_array_param_no_ownership, T, false));
15319 else
15320 Diag(NameLoc, diag::err_arc_array_param_no_ownership)
15321 << TSInfo->getTypeLoc().getSourceRange();
15322 }
15323 lifetime = Qualifiers::OCL_ExplicitNone;
15324 } else {
15325 lifetime = T->getObjCARCImplicitLifetime();
15326 }
15327 T = Context.getLifetimeQualifiedType(T, lifetime);
15328 }
15329
15330 ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
15331 Context.getAdjustedParameterType(T),
15332 TSInfo, SC, nullptr);
15333
15334 // Make a note if we created a new pack in the scope of a lambda, so that
15335 // we know that references to that pack must also be expanded within the
15336 // lambda scope.
15337 if (New->isParameterPack())
15338 if (auto *LSI = getEnclosingLambda())
15339 LSI->LocalPacks.push_back(New);
15340
15341 if (New->getType().hasNonTrivialToPrimitiveDestructCUnion() ||
15342 New->getType().hasNonTrivialToPrimitiveCopyCUnion())
15343 checkNonTrivialCUnion(New->getType(), New->getLocation(),
15344 NTCUC_FunctionParam, NTCUK_Destruct|NTCUK_Copy);
15345
15346 // Parameter declarators cannot be interface types. All ObjC objects are
15347 // passed by reference.
15348 if (T->isObjCObjectType()) {
15349 SourceLocation TypeEndLoc =
15350 getLocForEndOfToken(TSInfo->getTypeLoc().getEndLoc());
15351 Diag(NameLoc,
15352 diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
15353 << FixItHint::CreateInsertion(TypeEndLoc, "*");
15354 T = Context.getObjCObjectPointerType(T);
15355 New->setType(T);
15356 }
15357
15358 // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
15359 // duration shall not be qualified by an address-space qualifier."
15360 // Since all parameters have automatic store duration, they can not have
15361 // an address space.
15362 if (T.getAddressSpace() != LangAS::Default &&
15363 // OpenCL allows function arguments declared to be an array of a type
15364 // to be qualified with an address space.
15365 !(getLangOpts().OpenCL &&
15366 (T->isArrayType() || T.getAddressSpace() == LangAS::opencl_private)) &&
15367 // WebAssembly allows reference types as parameters. Funcref in particular
15368 // lives in a different address space.
15369 !(T->isFunctionPointerType() &&
15370 T.getAddressSpace() == LangAS::wasm_funcref)) {
15371 Diag(NameLoc, diag::err_arg_with_address_space);
15372 New->setInvalidDecl();
15373 }
15374
15375 // PPC MMA non-pointer types are not allowed as function argument types.
15376 if (Context.getTargetInfo().getTriple().isPPC64() &&
15377 CheckPPCMMAType(New->getOriginalType(), New->getLocation())) {
15378 New->setInvalidDecl();
15379 }
15380
15381 return New;
15382 }
15383
ActOnFinishKNRParamDeclarations(Scope * S,Declarator & D,SourceLocation LocAfterDecls)15384 void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
15385 SourceLocation LocAfterDecls) {
15386 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
15387
15388 // C99 6.9.1p6 "If a declarator includes an identifier list, each declaration
15389 // in the declaration list shall have at least one declarator, those
15390 // declarators shall only declare identifiers from the identifier list, and
15391 // every identifier in the identifier list shall be declared.
15392 //
15393 // C89 3.7.1p5 "If a declarator includes an identifier list, only the
15394 // identifiers it names shall be declared in the declaration list."
15395 //
15396 // This is why we only diagnose in C99 and later. Note, the other conditions
15397 // listed are checked elsewhere.
15398 if (!FTI.hasPrototype) {
15399 for (int i = FTI.NumParams; i != 0; /* decrement in loop */) {
15400 --i;
15401 if (FTI.Params[i].Param == nullptr) {
15402 if (getLangOpts().C99) {
15403 SmallString<256> Code;
15404 llvm::raw_svector_ostream(Code)
15405 << " int " << FTI.Params[i].Ident->getName() << ";\n";
15406 Diag(FTI.Params[i].IdentLoc, diag::ext_param_not_declared)
15407 << FTI.Params[i].Ident
15408 << FixItHint::CreateInsertion(LocAfterDecls, Code);
15409 }
15410
15411 // Implicitly declare the argument as type 'int' for lack of a better
15412 // type.
15413 AttributeFactory attrs;
15414 DeclSpec DS(attrs);
15415 const char* PrevSpec; // unused
15416 unsigned DiagID; // unused
15417 DS.SetTypeSpecType(DeclSpec::TST_int, FTI.Params[i].IdentLoc, PrevSpec,
15418 DiagID, Context.getPrintingPolicy());
15419 // Use the identifier location for the type source range.
15420 DS.SetRangeStart(FTI.Params[i].IdentLoc);
15421 DS.SetRangeEnd(FTI.Params[i].IdentLoc);
15422 Declarator ParamD(DS, ParsedAttributesView::none(),
15423 DeclaratorContext::KNRTypeList);
15424 ParamD.SetIdentifier(FTI.Params[i].Ident, FTI.Params[i].IdentLoc);
15425 FTI.Params[i].Param = ActOnParamDeclarator(S, ParamD);
15426 }
15427 }
15428 }
15429 }
15430
15431 Decl *
ActOnStartOfFunctionDef(Scope * FnBodyScope,Declarator & D,MultiTemplateParamsArg TemplateParameterLists,SkipBodyInfo * SkipBody,FnBodyKind BodyKind)15432 Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D,
15433 MultiTemplateParamsArg TemplateParameterLists,
15434 SkipBodyInfo *SkipBody, FnBodyKind BodyKind) {
15435 assert(getCurFunctionDecl() == nullptr && "Function parsing confused");
15436 assert(D.isFunctionDeclarator() && "Not a function declarator!");
15437 Scope *ParentScope = FnBodyScope->getParent();
15438
15439 // Check if we are in an `omp begin/end declare variant` scope. If we are, and
15440 // we define a non-templated function definition, we will create a declaration
15441 // instead (=BaseFD), and emit the definition with a mangled name afterwards.
15442 // The base function declaration will have the equivalent of an `omp declare
15443 // variant` annotation which specifies the mangled definition as a
15444 // specialization function under the OpenMP context defined as part of the
15445 // `omp begin declare variant`.
15446 SmallVector<FunctionDecl *, 4> Bases;
15447 if (LangOpts.OpenMP && isInOpenMPDeclareVariantScope())
15448 ActOnStartOfFunctionDefinitionInOpenMPDeclareVariantScope(
15449 ParentScope, D, TemplateParameterLists, Bases);
15450
15451 D.setFunctionDefinitionKind(FunctionDefinitionKind::Definition);
15452 Decl *DP = HandleDeclarator(ParentScope, D, TemplateParameterLists);
15453 Decl *Dcl = ActOnStartOfFunctionDef(FnBodyScope, DP, SkipBody, BodyKind);
15454
15455 if (!Bases.empty())
15456 ActOnFinishedFunctionDefinitionInOpenMPDeclareVariantScope(Dcl, Bases);
15457
15458 return Dcl;
15459 }
15460
ActOnFinishInlineFunctionDef(FunctionDecl * D)15461 void Sema::ActOnFinishInlineFunctionDef(FunctionDecl *D) {
15462 Consumer.HandleInlineFunctionDefinition(D);
15463 }
15464
FindPossiblePrototype(const FunctionDecl * FD,const FunctionDecl * & PossiblePrototype)15465 static bool FindPossiblePrototype(const FunctionDecl *FD,
15466 const FunctionDecl *&PossiblePrototype) {
15467 for (const FunctionDecl *Prev = FD->getPreviousDecl(); Prev;
15468 Prev = Prev->getPreviousDecl()) {
15469 // Ignore any declarations that occur in function or method
15470 // scope, because they aren't visible from the header.
15471 if (Prev->getLexicalDeclContext()->isFunctionOrMethod())
15472 continue;
15473
15474 PossiblePrototype = Prev;
15475 return Prev->getType()->isFunctionProtoType();
15476 }
15477 return false;
15478 }
15479
15480 static bool
ShouldWarnAboutMissingPrototype(const FunctionDecl * FD,const FunctionDecl * & PossiblePrototype)15481 ShouldWarnAboutMissingPrototype(const FunctionDecl *FD,
15482 const FunctionDecl *&PossiblePrototype) {
15483 // Don't warn about invalid declarations.
15484 if (FD->isInvalidDecl())
15485 return false;
15486
15487 // Or declarations that aren't global.
15488 if (!FD->isGlobal())
15489 return false;
15490
15491 // Don't warn about C++ member functions.
15492 if (isa<CXXMethodDecl>(FD))
15493 return false;
15494
15495 // Don't warn about 'main'.
15496 if (isa<TranslationUnitDecl>(FD->getDeclContext()->getRedeclContext()))
15497 if (IdentifierInfo *II = FD->getIdentifier())
15498 if (II->isStr("main") || II->isStr("efi_main"))
15499 return false;
15500
15501 // Don't warn about inline functions.
15502 if (FD->isInlined())
15503 return false;
15504
15505 // Don't warn about function templates.
15506 if (FD->getDescribedFunctionTemplate())
15507 return false;
15508
15509 // Don't warn about function template specializations.
15510 if (FD->isFunctionTemplateSpecialization())
15511 return false;
15512
15513 // Don't warn for OpenCL kernels.
15514 if (FD->hasAttr<OpenCLKernelAttr>())
15515 return false;
15516
15517 // Don't warn on explicitly deleted functions.
15518 if (FD->isDeleted())
15519 return false;
15520
15521 // Don't warn on implicitly local functions (such as having local-typed
15522 // parameters).
15523 if (!FD->isExternallyVisible())
15524 return false;
15525
15526 // If we were able to find a potential prototype, don't warn.
15527 if (FindPossiblePrototype(FD, PossiblePrototype))
15528 return false;
15529
15530 return true;
15531 }
15532
15533 void
CheckForFunctionRedefinition(FunctionDecl * FD,const FunctionDecl * EffectiveDefinition,SkipBodyInfo * SkipBody)15534 Sema::CheckForFunctionRedefinition(FunctionDecl *FD,
15535 const FunctionDecl *EffectiveDefinition,
15536 SkipBodyInfo *SkipBody) {
15537 const FunctionDecl *Definition = EffectiveDefinition;
15538 if (!Definition &&
15539 !FD->isDefined(Definition, /*CheckForPendingFriendDefinition*/ true))
15540 return;
15541
15542 if (Definition->getFriendObjectKind() != Decl::FOK_None) {
15543 if (FunctionDecl *OrigDef = Definition->getInstantiatedFromMemberFunction()) {
15544 if (FunctionDecl *OrigFD = FD->getInstantiatedFromMemberFunction()) {
15545 // A merged copy of the same function, instantiated as a member of
15546 // the same class, is OK.
15547 if (declaresSameEntity(OrigFD, OrigDef) &&
15548 declaresSameEntity(cast<Decl>(Definition->getLexicalDeclContext()),
15549 cast<Decl>(FD->getLexicalDeclContext())))
15550 return;
15551 }
15552 }
15553 }
15554
15555 if (canRedefineFunction(Definition, getLangOpts()))
15556 return;
15557
15558 // Don't emit an error when this is redefinition of a typo-corrected
15559 // definition.
15560 if (TypoCorrectedFunctionDefinitions.count(Definition))
15561 return;
15562
15563 // If we don't have a visible definition of the function, and it's inline or
15564 // a template, skip the new definition.
15565 if (SkipBody && !hasVisibleDefinition(Definition) &&
15566 (Definition->getFormalLinkage() == Linkage::Internal ||
15567 Definition->isInlined() || Definition->getDescribedFunctionTemplate() ||
15568 Definition->getNumTemplateParameterLists())) {
15569 SkipBody->ShouldSkip = true;
15570 SkipBody->Previous = const_cast<FunctionDecl*>(Definition);
15571 if (auto *TD = Definition->getDescribedFunctionTemplate())
15572 makeMergedDefinitionVisible(TD);
15573 makeMergedDefinitionVisible(const_cast<FunctionDecl*>(Definition));
15574 return;
15575 }
15576
15577 if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
15578 Definition->getStorageClass() == SC_Extern)
15579 Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
15580 << FD << getLangOpts().CPlusPlus;
15581 else
15582 Diag(FD->getLocation(), diag::err_redefinition) << FD;
15583
15584 Diag(Definition->getLocation(), diag::note_previous_definition);
15585 FD->setInvalidDecl();
15586 }
15587
RebuildLambdaScopeInfo(CXXMethodDecl * CallOperator)15588 LambdaScopeInfo *Sema::RebuildLambdaScopeInfo(CXXMethodDecl *CallOperator) {
15589 CXXRecordDecl *LambdaClass = CallOperator->getParent();
15590
15591 LambdaScopeInfo *LSI = PushLambdaScope();
15592 LSI->CallOperator = CallOperator;
15593 LSI->Lambda = LambdaClass;
15594 LSI->ReturnType = CallOperator->getReturnType();
15595 // This function in calls in situation where the context of the call operator
15596 // is not entered, so we set AfterParameterList to false, so that
15597 // `tryCaptureVariable` finds explicit captures in the appropriate context.
15598 LSI->AfterParameterList = false;
15599 const LambdaCaptureDefault LCD = LambdaClass->getLambdaCaptureDefault();
15600
15601 if (LCD == LCD_None)
15602 LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_None;
15603 else if (LCD == LCD_ByCopy)
15604 LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByval;
15605 else if (LCD == LCD_ByRef)
15606 LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByref;
15607 DeclarationNameInfo DNI = CallOperator->getNameInfo();
15608
15609 LSI->IntroducerRange = DNI.getCXXOperatorNameRange();
15610 LSI->Mutable = !CallOperator->isConst();
15611 if (CallOperator->isExplicitObjectMemberFunction())
15612 LSI->ExplicitObjectParameter = CallOperator->getParamDecl(0);
15613
15614 // Add the captures to the LSI so they can be noted as already
15615 // captured within tryCaptureVar.
15616 auto I = LambdaClass->field_begin();
15617 for (const auto &C : LambdaClass->captures()) {
15618 if (C.capturesVariable()) {
15619 ValueDecl *VD = C.getCapturedVar();
15620 if (VD->isInitCapture())
15621 CurrentInstantiationScope->InstantiatedLocal(VD, VD);
15622 const bool ByRef = C.getCaptureKind() == LCK_ByRef;
15623 LSI->addCapture(VD, /*IsBlock*/false, ByRef,
15624 /*RefersToEnclosingVariableOrCapture*/true, C.getLocation(),
15625 /*EllipsisLoc*/C.isPackExpansion()
15626 ? C.getEllipsisLoc() : SourceLocation(),
15627 I->getType(), /*Invalid*/false);
15628
15629 } else if (C.capturesThis()) {
15630 LSI->addThisCapture(/*Nested*/ false, C.getLocation(), I->getType(),
15631 C.getCaptureKind() == LCK_StarThis);
15632 } else {
15633 LSI->addVLATypeCapture(C.getLocation(), I->getCapturedVLAType(),
15634 I->getType());
15635 }
15636 ++I;
15637 }
15638 return LSI;
15639 }
15640
ActOnStartOfFunctionDef(Scope * FnBodyScope,Decl * D,SkipBodyInfo * SkipBody,FnBodyKind BodyKind)15641 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D,
15642 SkipBodyInfo *SkipBody,
15643 FnBodyKind BodyKind) {
15644 if (!D) {
15645 // Parsing the function declaration failed in some way. Push on a fake scope
15646 // anyway so we can try to parse the function body.
15647 PushFunctionScope();
15648 PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
15649 return D;
15650 }
15651
15652 FunctionDecl *FD = nullptr;
15653
15654 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
15655 FD = FunTmpl->getTemplatedDecl();
15656 else
15657 FD = cast<FunctionDecl>(D);
15658
15659 // Do not push if it is a lambda because one is already pushed when building
15660 // the lambda in ActOnStartOfLambdaDefinition().
15661 if (!isLambdaCallOperator(FD))
15662 // [expr.const]/p14.1
15663 // An expression or conversion is in an immediate function context if it is
15664 // potentially evaluated and either: its innermost enclosing non-block scope
15665 // is a function parameter scope of an immediate function.
15666 PushExpressionEvaluationContext(
15667 FD->isConsteval() ? ExpressionEvaluationContext::ImmediateFunctionContext
15668 : ExprEvalContexts.back().Context);
15669
15670 // Each ExpressionEvaluationContextRecord also keeps track of whether the
15671 // context is nested in an immediate function context, so smaller contexts
15672 // that appear inside immediate functions (like variable initializers) are
15673 // considered to be inside an immediate function context even though by
15674 // themselves they are not immediate function contexts. But when a new
15675 // function is entered, we need to reset this tracking, since the entered
15676 // function might be not an immediate function.
15677 ExprEvalContexts.back().InImmediateFunctionContext = FD->isConsteval();
15678 ExprEvalContexts.back().InImmediateEscalatingFunctionContext =
15679 getLangOpts().CPlusPlus20 && FD->isImmediateEscalating();
15680
15681 // Check for defining attributes before the check for redefinition.
15682 if (const auto *Attr = FD->getAttr<AliasAttr>()) {
15683 Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 0;
15684 FD->dropAttr<AliasAttr>();
15685 FD->setInvalidDecl();
15686 }
15687 if (const auto *Attr = FD->getAttr<IFuncAttr>()) {
15688 Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 1;
15689 FD->dropAttr<IFuncAttr>();
15690 FD->setInvalidDecl();
15691 }
15692 if (const auto *Attr = FD->getAttr<TargetVersionAttr>()) {
15693 if (!Context.getTargetInfo().hasFeature("fmv") &&
15694 !Attr->isDefaultVersion()) {
15695 // If function multi versioning disabled skip parsing function body
15696 // defined with non-default target_version attribute
15697 if (SkipBody)
15698 SkipBody->ShouldSkip = true;
15699 return nullptr;
15700 }
15701 }
15702
15703 if (auto *Ctor = dyn_cast<CXXConstructorDecl>(FD)) {
15704 if (Ctor->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
15705 Ctor->isDefaultConstructor() &&
15706 Context.getTargetInfo().getCXXABI().isMicrosoft()) {
15707 // If this is an MS ABI dllexport default constructor, instantiate any
15708 // default arguments.
15709 InstantiateDefaultCtorDefaultArgs(Ctor);
15710 }
15711 }
15712
15713 // See if this is a redefinition. If 'will have body' (or similar) is already
15714 // set, then these checks were already performed when it was set.
15715 if (!FD->willHaveBody() && !FD->isLateTemplateParsed() &&
15716 !FD->isThisDeclarationInstantiatedFromAFriendDefinition()) {
15717 CheckForFunctionRedefinition(FD, nullptr, SkipBody);
15718
15719 // If we're skipping the body, we're done. Don't enter the scope.
15720 if (SkipBody && SkipBody->ShouldSkip)
15721 return D;
15722 }
15723
15724 // Mark this function as "will have a body eventually". This lets users to
15725 // call e.g. isInlineDefinitionExternallyVisible while we're still parsing
15726 // this function.
15727 FD->setWillHaveBody();
15728
15729 // If we are instantiating a generic lambda call operator, push
15730 // a LambdaScopeInfo onto the function stack. But use the information
15731 // that's already been calculated (ActOnLambdaExpr) to prime the current
15732 // LambdaScopeInfo.
15733 // When the template operator is being specialized, the LambdaScopeInfo,
15734 // has to be properly restored so that tryCaptureVariable doesn't try
15735 // and capture any new variables. In addition when calculating potential
15736 // captures during transformation of nested lambdas, it is necessary to
15737 // have the LSI properly restored.
15738 if (isGenericLambdaCallOperatorSpecialization(FD)) {
15739 assert(inTemplateInstantiation() &&
15740 "There should be an active template instantiation on the stack "
15741 "when instantiating a generic lambda!");
15742 RebuildLambdaScopeInfo(cast<CXXMethodDecl>(D));
15743 } else {
15744 // Enter a new function scope
15745 PushFunctionScope();
15746 }
15747
15748 // Builtin functions cannot be defined.
15749 if (unsigned BuiltinID = FD->getBuiltinID()) {
15750 if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
15751 !Context.BuiltinInfo.isPredefinedRuntimeFunction(BuiltinID)) {
15752 Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
15753 FD->setInvalidDecl();
15754 }
15755 }
15756
15757 // The return type of a function definition must be complete (C99 6.9.1p3).
15758 // C++23 [dcl.fct.def.general]/p2
15759 // The type of [...] the return for a function definition
15760 // shall not be a (possibly cv-qualified) class type that is incomplete
15761 // or abstract within the function body unless the function is deleted.
15762 QualType ResultType = FD->getReturnType();
15763 if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
15764 !FD->isInvalidDecl() && BodyKind != FnBodyKind::Delete &&
15765 (RequireCompleteType(FD->getLocation(), ResultType,
15766 diag::err_func_def_incomplete_result) ||
15767 RequireNonAbstractType(FD->getLocation(), FD->getReturnType(),
15768 diag::err_abstract_type_in_decl,
15769 AbstractReturnType)))
15770 FD->setInvalidDecl();
15771
15772 if (FnBodyScope)
15773 PushDeclContext(FnBodyScope, FD);
15774
15775 // Check the validity of our function parameters
15776 if (BodyKind != FnBodyKind::Delete)
15777 CheckParmsForFunctionDef(FD->parameters(),
15778 /*CheckParameterNames=*/true);
15779
15780 // Add non-parameter declarations already in the function to the current
15781 // scope.
15782 if (FnBodyScope) {
15783 for (Decl *NPD : FD->decls()) {
15784 auto *NonParmDecl = dyn_cast<NamedDecl>(NPD);
15785 if (!NonParmDecl)
15786 continue;
15787 assert(!isa<ParmVarDecl>(NonParmDecl) &&
15788 "parameters should not be in newly created FD yet");
15789
15790 // If the decl has a name, make it accessible in the current scope.
15791 if (NonParmDecl->getDeclName())
15792 PushOnScopeChains(NonParmDecl, FnBodyScope, /*AddToContext=*/false);
15793
15794 // Similarly, dive into enums and fish their constants out, making them
15795 // accessible in this scope.
15796 if (auto *ED = dyn_cast<EnumDecl>(NonParmDecl)) {
15797 for (auto *EI : ED->enumerators())
15798 PushOnScopeChains(EI, FnBodyScope, /*AddToContext=*/false);
15799 }
15800 }
15801 }
15802
15803 // Introduce our parameters into the function scope
15804 for (auto *Param : FD->parameters()) {
15805 Param->setOwningFunction(FD);
15806
15807 // If this has an identifier, add it to the scope stack.
15808 if (Param->getIdentifier() && FnBodyScope) {
15809 CheckShadow(FnBodyScope, Param);
15810
15811 PushOnScopeChains(Param, FnBodyScope);
15812 }
15813 }
15814
15815 // C++ [module.import/6] external definitions are not permitted in header
15816 // units. Deleted and Defaulted functions are implicitly inline (but the
15817 // inline state is not set at this point, so check the BodyKind explicitly).
15818 // FIXME: Consider an alternate location for the test where the inlined()
15819 // state is complete.
15820 if (getLangOpts().CPlusPlusModules && currentModuleIsHeaderUnit() &&
15821 !FD->isInvalidDecl() && !FD->isInlined() &&
15822 BodyKind != FnBodyKind::Delete && BodyKind != FnBodyKind::Default &&
15823 FD->getFormalLinkage() == Linkage::External && !FD->isTemplated() &&
15824 !FD->isTemplateInstantiation()) {
15825 assert(FD->isThisDeclarationADefinition());
15826 Diag(FD->getLocation(), diag::err_extern_def_in_header_unit);
15827 FD->setInvalidDecl();
15828 }
15829
15830 // Ensure that the function's exception specification is instantiated.
15831 if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
15832 ResolveExceptionSpec(D->getLocation(), FPT);
15833
15834 // dllimport cannot be applied to non-inline function definitions.
15835 if (FD->hasAttr<DLLImportAttr>() && !FD->isInlined() &&
15836 !FD->isTemplateInstantiation()) {
15837 assert(!FD->hasAttr<DLLExportAttr>());
15838 Diag(FD->getLocation(), diag::err_attribute_dllimport_function_definition);
15839 FD->setInvalidDecl();
15840 return D;
15841 }
15842 // We want to attach documentation to original Decl (which might be
15843 // a function template).
15844 ActOnDocumentableDecl(D);
15845 if (getCurLexicalContext()->isObjCContainer() &&
15846 getCurLexicalContext()->getDeclKind() != Decl::ObjCCategoryImpl &&
15847 getCurLexicalContext()->getDeclKind() != Decl::ObjCImplementation)
15848 Diag(FD->getLocation(), diag::warn_function_def_in_objc_container);
15849
15850 return D;
15851 }
15852
15853 /// Given the set of return statements within a function body,
15854 /// compute the variables that are subject to the named return value
15855 /// optimization.
15856 ///
15857 /// Each of the variables that is subject to the named return value
15858 /// optimization will be marked as NRVO variables in the AST, and any
15859 /// return statement that has a marked NRVO variable as its NRVO candidate can
15860 /// use the named return value optimization.
15861 ///
15862 /// This function applies a very simplistic algorithm for NRVO: if every return
15863 /// statement in the scope of a variable has the same NRVO candidate, that
15864 /// candidate is an NRVO variable.
computeNRVO(Stmt * Body,FunctionScopeInfo * Scope)15865 void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
15866 ReturnStmt **Returns = Scope->Returns.data();
15867
15868 for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
15869 if (const VarDecl *NRVOCandidate = Returns[I]->getNRVOCandidate()) {
15870 if (!NRVOCandidate->isNRVOVariable())
15871 Returns[I]->setNRVOCandidate(nullptr);
15872 }
15873 }
15874 }
15875
canDelayFunctionBody(const Declarator & D)15876 bool Sema::canDelayFunctionBody(const Declarator &D) {
15877 // We can't delay parsing the body of a constexpr function template (yet).
15878 if (D.getDeclSpec().hasConstexprSpecifier())
15879 return false;
15880
15881 // We can't delay parsing the body of a function template with a deduced
15882 // return type (yet).
15883 if (D.getDeclSpec().hasAutoTypeSpec()) {
15884 // If the placeholder introduces a non-deduced trailing return type,
15885 // we can still delay parsing it.
15886 if (D.getNumTypeObjects()) {
15887 const auto &Outer = D.getTypeObject(D.getNumTypeObjects() - 1);
15888 if (Outer.Kind == DeclaratorChunk::Function &&
15889 Outer.Fun.hasTrailingReturnType()) {
15890 QualType Ty = GetTypeFromParser(Outer.Fun.getTrailingReturnType());
15891 return Ty.isNull() || !Ty->isUndeducedType();
15892 }
15893 }
15894 return false;
15895 }
15896
15897 return true;
15898 }
15899
canSkipFunctionBody(Decl * D)15900 bool Sema::canSkipFunctionBody(Decl *D) {
15901 // We cannot skip the body of a function (or function template) which is
15902 // constexpr, since we may need to evaluate its body in order to parse the
15903 // rest of the file.
15904 // We cannot skip the body of a function with an undeduced return type,
15905 // because any callers of that function need to know the type.
15906 if (const FunctionDecl *FD = D->getAsFunction()) {
15907 if (FD->isConstexpr())
15908 return false;
15909 // We can't simply call Type::isUndeducedType here, because inside template
15910 // auto can be deduced to a dependent type, which is not considered
15911 // "undeduced".
15912 if (FD->getReturnType()->getContainedDeducedType())
15913 return false;
15914 }
15915 return Consumer.shouldSkipFunctionBody(D);
15916 }
15917
ActOnSkippedFunctionBody(Decl * Decl)15918 Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) {
15919 if (!Decl)
15920 return nullptr;
15921 if (FunctionDecl *FD = Decl->getAsFunction())
15922 FD->setHasSkippedBody();
15923 else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(Decl))
15924 MD->setHasSkippedBody();
15925 return Decl;
15926 }
15927
ActOnFinishFunctionBody(Decl * D,Stmt * BodyArg)15928 Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
15929 return ActOnFinishFunctionBody(D, BodyArg, /*IsInstantiation=*/false);
15930 }
15931
15932 /// RAII object that pops an ExpressionEvaluationContext when exiting a function
15933 /// body.
15934 class ExitFunctionBodyRAII {
15935 public:
ExitFunctionBodyRAII(Sema & S,bool IsLambda)15936 ExitFunctionBodyRAII(Sema &S, bool IsLambda) : S(S), IsLambda(IsLambda) {}
~ExitFunctionBodyRAII()15937 ~ExitFunctionBodyRAII() {
15938 if (!IsLambda)
15939 S.PopExpressionEvaluationContext();
15940 }
15941
15942 private:
15943 Sema &S;
15944 bool IsLambda = false;
15945 };
15946
diagnoseImplicitlyRetainedSelf(Sema & S)15947 static void diagnoseImplicitlyRetainedSelf(Sema &S) {
15948 llvm::DenseMap<const BlockDecl *, bool> EscapeInfo;
15949
15950 auto IsOrNestedInEscapingBlock = [&](const BlockDecl *BD) {
15951 if (EscapeInfo.count(BD))
15952 return EscapeInfo[BD];
15953
15954 bool R = false;
15955 const BlockDecl *CurBD = BD;
15956
15957 do {
15958 R = !CurBD->doesNotEscape();
15959 if (R)
15960 break;
15961 CurBD = CurBD->getParent()->getInnermostBlockDecl();
15962 } while (CurBD);
15963
15964 return EscapeInfo[BD] = R;
15965 };
15966
15967 // If the location where 'self' is implicitly retained is inside a escaping
15968 // block, emit a diagnostic.
15969 for (const std::pair<SourceLocation, const BlockDecl *> &P :
15970 S.ImplicitlyRetainedSelfLocs)
15971 if (IsOrNestedInEscapingBlock(P.second))
15972 S.Diag(P.first, diag::warn_implicitly_retains_self)
15973 << FixItHint::CreateInsertion(P.first, "self->");
15974 }
15975
methodHasName(const FunctionDecl * FD,StringRef Name)15976 static bool methodHasName(const FunctionDecl *FD, StringRef Name) {
15977 return isa<CXXMethodDecl>(FD) && FD->param_empty() &&
15978 FD->getDeclName().isIdentifier() && FD->getName().equals(Name);
15979 }
15980
CanBeGetReturnObject(const FunctionDecl * FD)15981 bool Sema::CanBeGetReturnObject(const FunctionDecl *FD) {
15982 return methodHasName(FD, "get_return_object");
15983 }
15984
CanBeGetReturnTypeOnAllocFailure(const FunctionDecl * FD)15985 bool Sema::CanBeGetReturnTypeOnAllocFailure(const FunctionDecl *FD) {
15986 return FD->isStatic() &&
15987 methodHasName(FD, "get_return_object_on_allocation_failure");
15988 }
15989
CheckCoroutineWrapper(FunctionDecl * FD)15990 void Sema::CheckCoroutineWrapper(FunctionDecl *FD) {
15991 RecordDecl *RD = FD->getReturnType()->getAsRecordDecl();
15992 if (!RD || !RD->getUnderlyingDecl()->hasAttr<CoroReturnTypeAttr>())
15993 return;
15994 // Allow some_promise_type::get_return_object().
15995 if (CanBeGetReturnObject(FD) || CanBeGetReturnTypeOnAllocFailure(FD))
15996 return;
15997 if (!FD->hasAttr<CoroWrapperAttr>())
15998 Diag(FD->getLocation(), diag::err_coroutine_return_type) << RD;
15999 }
16000
ActOnFinishFunctionBody(Decl * dcl,Stmt * Body,bool IsInstantiation)16001 Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
16002 bool IsInstantiation) {
16003 FunctionScopeInfo *FSI = getCurFunction();
16004 FunctionDecl *FD = dcl ? dcl->getAsFunction() : nullptr;
16005
16006 if (FSI->UsesFPIntrin && FD && !FD->hasAttr<StrictFPAttr>())
16007 FD->addAttr(StrictFPAttr::CreateImplicit(Context));
16008
16009 sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
16010 sema::AnalysisBasedWarnings::Policy *ActivePolicy = nullptr;
16011
16012 // If we skip function body, we can't tell if a function is a coroutine.
16013 if (getLangOpts().Coroutines && FD && !FD->hasSkippedBody()) {
16014 if (FSI->isCoroutine())
16015 CheckCompletedCoroutineBody(FD, Body);
16016 else
16017 CheckCoroutineWrapper(FD);
16018 }
16019
16020 {
16021 // Do not call PopExpressionEvaluationContext() if it is a lambda because
16022 // one is already popped when finishing the lambda in BuildLambdaExpr().
16023 // This is meant to pop the context added in ActOnStartOfFunctionDef().
16024 ExitFunctionBodyRAII ExitRAII(*this, isLambdaCallOperator(FD));
16025 if (FD) {
16026 FD->setBody(Body);
16027 FD->setWillHaveBody(false);
16028 CheckImmediateEscalatingFunctionDefinition(FD, FSI);
16029
16030 if (getLangOpts().CPlusPlus14) {
16031 if (!FD->isInvalidDecl() && Body && !FD->isDependentContext() &&
16032 FD->getReturnType()->isUndeducedType()) {
16033 // For a function with a deduced result type to return void,
16034 // the result type as written must be 'auto' or 'decltype(auto)',
16035 // possibly cv-qualified or constrained, but not ref-qualified.
16036 if (!FD->getReturnType()->getAs<AutoType>()) {
16037 Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto)
16038 << FD->getReturnType();
16039 FD->setInvalidDecl();
16040 } else {
16041 // Falling off the end of the function is the same as 'return;'.
16042 Expr *Dummy = nullptr;
16043 if (DeduceFunctionTypeFromReturnExpr(
16044 FD, dcl->getLocation(), Dummy,
16045 FD->getReturnType()->getAs<AutoType>()))
16046 FD->setInvalidDecl();
16047 }
16048 }
16049 } else if (getLangOpts().CPlusPlus11 && isLambdaCallOperator(FD)) {
16050 // In C++11, we don't use 'auto' deduction rules for lambda call
16051 // operators because we don't support return type deduction.
16052 auto *LSI = getCurLambda();
16053 if (LSI->HasImplicitReturnType) {
16054 deduceClosureReturnType(*LSI);
16055
16056 // C++11 [expr.prim.lambda]p4:
16057 // [...] if there are no return statements in the compound-statement
16058 // [the deduced type is] the type void
16059 QualType RetType =
16060 LSI->ReturnType.isNull() ? Context.VoidTy : LSI->ReturnType;
16061
16062 // Update the return type to the deduced type.
16063 const auto *Proto = FD->getType()->castAs<FunctionProtoType>();
16064 FD->setType(Context.getFunctionType(RetType, Proto->getParamTypes(),
16065 Proto->getExtProtoInfo()));
16066 }
16067 }
16068
16069 // If the function implicitly returns zero (like 'main') or is naked,
16070 // don't complain about missing return statements.
16071 if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
16072 WP.disableCheckFallThrough();
16073
16074 // MSVC permits the use of pure specifier (=0) on function definition,
16075 // defined at class scope, warn about this non-standard construct.
16076 if (getLangOpts().MicrosoftExt && FD->isPureVirtual() &&
16077 !FD->isOutOfLine())
16078 Diag(FD->getLocation(), diag::ext_pure_function_definition);
16079
16080 if (!FD->isInvalidDecl()) {
16081 // Don't diagnose unused parameters of defaulted, deleted or naked
16082 // functions.
16083 if (!FD->isDeleted() && !FD->isDefaulted() && !FD->hasSkippedBody() &&
16084 !FD->hasAttr<NakedAttr>())
16085 DiagnoseUnusedParameters(FD->parameters());
16086 DiagnoseSizeOfParametersAndReturnValue(FD->parameters(),
16087 FD->getReturnType(), FD);
16088
16089 // If this is a structor, we need a vtable.
16090 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
16091 MarkVTableUsed(FD->getLocation(), Constructor->getParent());
16092 else if (CXXDestructorDecl *Destructor =
16093 dyn_cast<CXXDestructorDecl>(FD))
16094 MarkVTableUsed(FD->getLocation(), Destructor->getParent());
16095
16096 // Try to apply the named return value optimization. We have to check
16097 // if we can do this here because lambdas keep return statements around
16098 // to deduce an implicit return type.
16099 if (FD->getReturnType()->isRecordType() &&
16100 (!getLangOpts().CPlusPlus || !FD->isDependentContext()))
16101 computeNRVO(Body, FSI);
16102 }
16103
16104 // GNU warning -Wmissing-prototypes:
16105 // Warn if a global function is defined without a previous
16106 // prototype declaration. This warning is issued even if the
16107 // definition itself provides a prototype. The aim is to detect
16108 // global functions that fail to be declared in header files.
16109 const FunctionDecl *PossiblePrototype = nullptr;
16110 if (ShouldWarnAboutMissingPrototype(FD, PossiblePrototype)) {
16111 Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
16112
16113 if (PossiblePrototype) {
16114 // We found a declaration that is not a prototype,
16115 // but that could be a zero-parameter prototype
16116 if (TypeSourceInfo *TI = PossiblePrototype->getTypeSourceInfo()) {
16117 TypeLoc TL = TI->getTypeLoc();
16118 if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>())
16119 Diag(PossiblePrototype->getLocation(),
16120 diag::note_declaration_not_a_prototype)
16121 << (FD->getNumParams() != 0)
16122 << (FD->getNumParams() == 0 ? FixItHint::CreateInsertion(
16123 FTL.getRParenLoc(), "void")
16124 : FixItHint{});
16125 }
16126 } else {
16127 // Returns true if the token beginning at this Loc is `const`.
16128 auto isLocAtConst = [&](SourceLocation Loc, const SourceManager &SM,
16129 const LangOptions &LangOpts) {
16130 std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc);
16131 if (LocInfo.first.isInvalid())
16132 return false;
16133
16134 bool Invalid = false;
16135 StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
16136 if (Invalid)
16137 return false;
16138
16139 if (LocInfo.second > Buffer.size())
16140 return false;
16141
16142 const char *LexStart = Buffer.data() + LocInfo.second;
16143 StringRef StartTok(LexStart, Buffer.size() - LocInfo.second);
16144
16145 return StartTok.consume_front("const") &&
16146 (StartTok.empty() || isWhitespace(StartTok[0]) ||
16147 StartTok.starts_with("/*") || StartTok.starts_with("//"));
16148 };
16149
16150 auto findBeginLoc = [&]() {
16151 // If the return type has `const` qualifier, we want to insert
16152 // `static` before `const` (and not before the typename).
16153 if ((FD->getReturnType()->isAnyPointerType() &&
16154 FD->getReturnType()->getPointeeType().isConstQualified()) ||
16155 FD->getReturnType().isConstQualified()) {
16156 // But only do this if we can determine where the `const` is.
16157
16158 if (isLocAtConst(FD->getBeginLoc(), getSourceManager(),
16159 getLangOpts()))
16160
16161 return FD->getBeginLoc();
16162 }
16163 return FD->getTypeSpecStartLoc();
16164 };
16165 Diag(FD->getTypeSpecStartLoc(),
16166 diag::note_static_for_internal_linkage)
16167 << /* function */ 1
16168 << (FD->getStorageClass() == SC_None
16169 ? FixItHint::CreateInsertion(findBeginLoc(), "static ")
16170 : FixItHint{});
16171 }
16172 }
16173
16174 // We might not have found a prototype because we didn't wish to warn on
16175 // the lack of a missing prototype. Try again without the checks for
16176 // whether we want to warn on the missing prototype.
16177 if (!PossiblePrototype)
16178 (void)FindPossiblePrototype(FD, PossiblePrototype);
16179
16180 // If the function being defined does not have a prototype, then we may
16181 // need to diagnose it as changing behavior in C23 because we now know
16182 // whether the function accepts arguments or not. This only handles the
16183 // case where the definition has no prototype but does have parameters
16184 // and either there is no previous potential prototype, or the previous
16185 // potential prototype also has no actual prototype. This handles cases
16186 // like:
16187 // void f(); void f(a) int a; {}
16188 // void g(a) int a; {}
16189 // See MergeFunctionDecl() for other cases of the behavior change
16190 // diagnostic. See GetFullTypeForDeclarator() for handling of a function
16191 // type without a prototype.
16192 if (!FD->hasWrittenPrototype() && FD->getNumParams() != 0 &&
16193 (!PossiblePrototype || (!PossiblePrototype->hasWrittenPrototype() &&
16194 !PossiblePrototype->isImplicit()))) {
16195 // The function definition has parameters, so this will change behavior
16196 // in C23. If there is a possible prototype, it comes before the
16197 // function definition.
16198 // FIXME: The declaration may have already been diagnosed as being
16199 // deprecated in GetFullTypeForDeclarator() if it had no arguments, but
16200 // there's no way to test for the "changes behavior" condition in
16201 // SemaType.cpp when forming the declaration's function type. So, we do
16202 // this awkward dance instead.
16203 //
16204 // If we have a possible prototype and it declares a function with a
16205 // prototype, we don't want to diagnose it; if we have a possible
16206 // prototype and it has no prototype, it may have already been
16207 // diagnosed in SemaType.cpp as deprecated depending on whether
16208 // -Wstrict-prototypes is enabled. If we already warned about it being
16209 // deprecated, add a note that it also changes behavior. If we didn't
16210 // warn about it being deprecated (because the diagnostic is not
16211 // enabled), warn now that it is deprecated and changes behavior.
16212
16213 // This K&R C function definition definitely changes behavior in C23,
16214 // so diagnose it.
16215 Diag(FD->getLocation(), diag::warn_non_prototype_changes_behavior)
16216 << /*definition*/ 1 << /* not supported in C23 */ 0;
16217
16218 // If we have a possible prototype for the function which is a user-
16219 // visible declaration, we already tested that it has no prototype.
16220 // This will change behavior in C23. This gets a warning rather than a
16221 // note because it's the same behavior-changing problem as with the
16222 // definition.
16223 if (PossiblePrototype)
16224 Diag(PossiblePrototype->getLocation(),
16225 diag::warn_non_prototype_changes_behavior)
16226 << /*declaration*/ 0 << /* conflicting */ 1 << /*subsequent*/ 1
16227 << /*definition*/ 1;
16228 }
16229
16230 // Warn on CPUDispatch with an actual body.
16231 if (FD->isMultiVersion() && FD->hasAttr<CPUDispatchAttr>() && Body)
16232 if (const auto *CmpndBody = dyn_cast<CompoundStmt>(Body))
16233 if (!CmpndBody->body_empty())
16234 Diag(CmpndBody->body_front()->getBeginLoc(),
16235 diag::warn_dispatch_body_ignored);
16236
16237 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
16238 const CXXMethodDecl *KeyFunction;
16239 if (MD->isOutOfLine() && (MD = MD->getCanonicalDecl()) &&
16240 MD->isVirtual() &&
16241 (KeyFunction = Context.getCurrentKeyFunction(MD->getParent())) &&
16242 MD == KeyFunction->getCanonicalDecl()) {
16243 // Update the key-function state if necessary for this ABI.
16244 if (FD->isInlined() &&
16245 !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
16246 Context.setNonKeyFunction(MD);
16247
16248 // If the newly-chosen key function is already defined, then we
16249 // need to mark the vtable as used retroactively.
16250 KeyFunction = Context.getCurrentKeyFunction(MD->getParent());
16251 const FunctionDecl *Definition;
16252 if (KeyFunction && KeyFunction->isDefined(Definition))
16253 MarkVTableUsed(Definition->getLocation(), MD->getParent(), true);
16254 } else {
16255 // We just defined they key function; mark the vtable as used.
16256 MarkVTableUsed(FD->getLocation(), MD->getParent(), true);
16257 }
16258 }
16259 }
16260
16261 assert(
16262 (FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
16263 "Function parsing confused");
16264 } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
16265 assert(MD == getCurMethodDecl() && "Method parsing confused");
16266 MD->setBody(Body);
16267 if (!MD->isInvalidDecl()) {
16268 DiagnoseSizeOfParametersAndReturnValue(MD->parameters(),
16269 MD->getReturnType(), MD);
16270
16271 if (Body)
16272 computeNRVO(Body, FSI);
16273 }
16274 if (FSI->ObjCShouldCallSuper) {
16275 Diag(MD->getEndLoc(), diag::warn_objc_missing_super_call)
16276 << MD->getSelector().getAsString();
16277 FSI->ObjCShouldCallSuper = false;
16278 }
16279 if (FSI->ObjCWarnForNoDesignatedInitChain) {
16280 const ObjCMethodDecl *InitMethod = nullptr;
16281 bool isDesignated =
16282 MD->isDesignatedInitializerForTheInterface(&InitMethod);
16283 assert(isDesignated && InitMethod);
16284 (void)isDesignated;
16285
16286 auto superIsNSObject = [&](const ObjCMethodDecl *MD) {
16287 auto IFace = MD->getClassInterface();
16288 if (!IFace)
16289 return false;
16290 auto SuperD = IFace->getSuperClass();
16291 if (!SuperD)
16292 return false;
16293 return SuperD->getIdentifier() ==
16294 NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject);
16295 };
16296 // Don't issue this warning for unavailable inits or direct subclasses
16297 // of NSObject.
16298 if (!MD->isUnavailable() && !superIsNSObject(MD)) {
16299 Diag(MD->getLocation(),
16300 diag::warn_objc_designated_init_missing_super_call);
16301 Diag(InitMethod->getLocation(),
16302 diag::note_objc_designated_init_marked_here);
16303 }
16304 FSI->ObjCWarnForNoDesignatedInitChain = false;
16305 }
16306 if (FSI->ObjCWarnForNoInitDelegation) {
16307 // Don't issue this warning for unavaialable inits.
16308 if (!MD->isUnavailable())
16309 Diag(MD->getLocation(),
16310 diag::warn_objc_secondary_init_missing_init_call);
16311 FSI->ObjCWarnForNoInitDelegation = false;
16312 }
16313
16314 diagnoseImplicitlyRetainedSelf(*this);
16315 } else {
16316 // Parsing the function declaration failed in some way. Pop the fake scope
16317 // we pushed on.
16318 PopFunctionScopeInfo(ActivePolicy, dcl);
16319 return nullptr;
16320 }
16321
16322 if (Body && FSI->HasPotentialAvailabilityViolations)
16323 DiagnoseUnguardedAvailabilityViolations(dcl);
16324
16325 assert(!FSI->ObjCShouldCallSuper &&
16326 "This should only be set for ObjC methods, which should have been "
16327 "handled in the block above.");
16328
16329 // Verify and clean out per-function state.
16330 if (Body && (!FD || !FD->isDefaulted())) {
16331 // C++ constructors that have function-try-blocks can't have return
16332 // statements in the handlers of that block. (C++ [except.handle]p14)
16333 // Verify this.
16334 if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
16335 DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
16336
16337 // Verify that gotos and switch cases don't jump into scopes illegally.
16338 if (FSI->NeedsScopeChecking() && !PP.isCodeCompletionEnabled())
16339 DiagnoseInvalidJumps(Body);
16340
16341 if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
16342 if (!Destructor->getParent()->isDependentType())
16343 CheckDestructor(Destructor);
16344
16345 MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
16346 Destructor->getParent());
16347 }
16348
16349 // If any errors have occurred, clear out any temporaries that may have
16350 // been leftover. This ensures that these temporaries won't be picked up
16351 // for deletion in some later function.
16352 if (hasUncompilableErrorOccurred() ||
16353 hasAnyUnrecoverableErrorsInThisFunction() ||
16354 getDiagnostics().getSuppressAllDiagnostics()) {
16355 DiscardCleanupsInEvaluationContext();
16356 }
16357 if (!hasUncompilableErrorOccurred() && !isa<FunctionTemplateDecl>(dcl)) {
16358 // Since the body is valid, issue any analysis-based warnings that are
16359 // enabled.
16360 ActivePolicy = &WP;
16361 }
16362
16363 if (!IsInstantiation && FD &&
16364 (FD->isConstexpr() || FD->hasAttr<MSConstexprAttr>()) &&
16365 !FD->isInvalidDecl() &&
16366 !CheckConstexprFunctionDefinition(FD, CheckConstexprKind::Diagnose))
16367 FD->setInvalidDecl();
16368
16369 if (FD && FD->hasAttr<NakedAttr>()) {
16370 for (const Stmt *S : Body->children()) {
16371 // Allow local register variables without initializer as they don't
16372 // require prologue.
16373 bool RegisterVariables = false;
16374 if (auto *DS = dyn_cast<DeclStmt>(S)) {
16375 for (const auto *Decl : DS->decls()) {
16376 if (const auto *Var = dyn_cast<VarDecl>(Decl)) {
16377 RegisterVariables =
16378 Var->hasAttr<AsmLabelAttr>() && !Var->hasInit();
16379 if (!RegisterVariables)
16380 break;
16381 }
16382 }
16383 }
16384 if (RegisterVariables)
16385 continue;
16386 if (!isa<AsmStmt>(S) && !isa<NullStmt>(S)) {
16387 Diag(S->getBeginLoc(), diag::err_non_asm_stmt_in_naked_function);
16388 Diag(FD->getAttr<NakedAttr>()->getLocation(), diag::note_attribute);
16389 FD->setInvalidDecl();
16390 break;
16391 }
16392 }
16393 }
16394
16395 assert(ExprCleanupObjects.size() ==
16396 ExprEvalContexts.back().NumCleanupObjects &&
16397 "Leftover temporaries in function");
16398 assert(!Cleanup.exprNeedsCleanups() &&
16399 "Unaccounted cleanups in function");
16400 assert(MaybeODRUseExprs.empty() &&
16401 "Leftover expressions for odr-use checking");
16402 }
16403 } // Pops the ExitFunctionBodyRAII scope, which needs to happen before we pop
16404 // the declaration context below. Otherwise, we're unable to transform
16405 // 'this' expressions when transforming immediate context functions.
16406
16407 if (!IsInstantiation)
16408 PopDeclContext();
16409
16410 PopFunctionScopeInfo(ActivePolicy, dcl);
16411 // If any errors have occurred, clear out any temporaries that may have
16412 // been leftover. This ensures that these temporaries won't be picked up for
16413 // deletion in some later function.
16414 if (hasUncompilableErrorOccurred()) {
16415 DiscardCleanupsInEvaluationContext();
16416 }
16417
16418 if (FD && ((LangOpts.OpenMP && (LangOpts.OpenMPIsTargetDevice ||
16419 !LangOpts.OMPTargetTriples.empty())) ||
16420 LangOpts.CUDA || LangOpts.SYCLIsDevice)) {
16421 auto ES = getEmissionStatus(FD);
16422 if (ES == Sema::FunctionEmissionStatus::Emitted ||
16423 ES == Sema::FunctionEmissionStatus::Unknown)
16424 DeclsToCheckForDeferredDiags.insert(FD);
16425 }
16426
16427 if (FD && !FD->isDeleted())
16428 checkTypeSupport(FD->getType(), FD->getLocation(), FD);
16429
16430 return dcl;
16431 }
16432
16433 /// When we finish delayed parsing of an attribute, we must attach it to the
16434 /// relevant Decl.
ActOnFinishDelayedAttribute(Scope * S,Decl * D,ParsedAttributes & Attrs)16435 void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
16436 ParsedAttributes &Attrs) {
16437 // Always attach attributes to the underlying decl.
16438 if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
16439 D = TD->getTemplatedDecl();
16440 ProcessDeclAttributeList(S, D, Attrs);
16441
16442 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
16443 if (Method->isStatic())
16444 checkThisInStaticMemberFunctionAttributes(Method);
16445 }
16446
16447 /// ImplicitlyDefineFunction - An undeclared identifier was used in a function
16448 /// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
ImplicitlyDefineFunction(SourceLocation Loc,IdentifierInfo & II,Scope * S)16449 NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
16450 IdentifierInfo &II, Scope *S) {
16451 // It is not valid to implicitly define a function in C23.
16452 assert(LangOpts.implicitFunctionsAllowed() &&
16453 "Implicit function declarations aren't allowed in this language mode");
16454
16455 // Find the scope in which the identifier is injected and the corresponding
16456 // DeclContext.
16457 // FIXME: C89 does not say what happens if there is no enclosing block scope.
16458 // In that case, we inject the declaration into the translation unit scope
16459 // instead.
16460 Scope *BlockScope = S;
16461 while (!BlockScope->isCompoundStmtScope() && BlockScope->getParent())
16462 BlockScope = BlockScope->getParent();
16463
16464 // Loop until we find a DeclContext that is either a function/method or the
16465 // translation unit, which are the only two valid places to implicitly define
16466 // a function. This avoids accidentally defining the function within a tag
16467 // declaration, for example.
16468 Scope *ContextScope = BlockScope;
16469 while (!ContextScope->getEntity() ||
16470 (!ContextScope->getEntity()->isFunctionOrMethod() &&
16471 !ContextScope->getEntity()->isTranslationUnit()))
16472 ContextScope = ContextScope->getParent();
16473 ContextRAII SavedContext(*this, ContextScope->getEntity());
16474
16475 // Before we produce a declaration for an implicitly defined
16476 // function, see whether there was a locally-scoped declaration of
16477 // this name as a function or variable. If so, use that
16478 // (non-visible) declaration, and complain about it.
16479 NamedDecl *ExternCPrev = findLocallyScopedExternCDecl(&II);
16480 if (ExternCPrev) {
16481 // We still need to inject the function into the enclosing block scope so
16482 // that later (non-call) uses can see it.
16483 PushOnScopeChains(ExternCPrev, BlockScope, /*AddToContext*/false);
16484
16485 // C89 footnote 38:
16486 // If in fact it is not defined as having type "function returning int",
16487 // the behavior is undefined.
16488 if (!isa<FunctionDecl>(ExternCPrev) ||
16489 !Context.typesAreCompatible(
16490 cast<FunctionDecl>(ExternCPrev)->getType(),
16491 Context.getFunctionNoProtoType(Context.IntTy))) {
16492 Diag(Loc, diag::ext_use_out_of_scope_declaration)
16493 << ExternCPrev << !getLangOpts().C99;
16494 Diag(ExternCPrev->getLocation(), diag::note_previous_declaration);
16495 return ExternCPrev;
16496 }
16497 }
16498
16499 // Extension in C99 (defaults to error). Legal in C89, but warn about it.
16500 unsigned diag_id;
16501 if (II.getName().starts_with("__builtin_"))
16502 diag_id = diag::warn_builtin_unknown;
16503 // OpenCL v2.0 s6.9.u - Implicit function declaration is not supported.
16504 else if (getLangOpts().C99)
16505 diag_id = diag::ext_implicit_function_decl_c99;
16506 else
16507 diag_id = diag::warn_implicit_function_decl;
16508
16509 TypoCorrection Corrected;
16510 // Because typo correction is expensive, only do it if the implicit
16511 // function declaration is going to be treated as an error.
16512 //
16513 // Perform the correction before issuing the main diagnostic, as some
16514 // consumers use typo-correction callbacks to enhance the main diagnostic.
16515 if (S && !ExternCPrev &&
16516 (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error)) {
16517 DeclFilterCCC<FunctionDecl> CCC{};
16518 Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc), LookupOrdinaryName,
16519 S, nullptr, CCC, CTK_NonError);
16520 }
16521
16522 Diag(Loc, diag_id) << &II;
16523 if (Corrected) {
16524 // If the correction is going to suggest an implicitly defined function,
16525 // skip the correction as not being a particularly good idea.
16526 bool Diagnose = true;
16527 if (const auto *D = Corrected.getCorrectionDecl())
16528 Diagnose = !D->isImplicit();
16529 if (Diagnose)
16530 diagnoseTypo(Corrected, PDiag(diag::note_function_suggestion),
16531 /*ErrorRecovery*/ false);
16532 }
16533
16534 // If we found a prior declaration of this function, don't bother building
16535 // another one. We've already pushed that one into scope, so there's nothing
16536 // more to do.
16537 if (ExternCPrev)
16538 return ExternCPrev;
16539
16540 // Set a Declarator for the implicit definition: int foo();
16541 const char *Dummy;
16542 AttributeFactory attrFactory;
16543 DeclSpec DS(attrFactory);
16544 unsigned DiagID;
16545 bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID,
16546 Context.getPrintingPolicy());
16547 (void)Error; // Silence warning.
16548 assert(!Error && "Error setting up implicit decl!");
16549 SourceLocation NoLoc;
16550 Declarator D(DS, ParsedAttributesView::none(), DeclaratorContext::Block);
16551 D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
16552 /*IsAmbiguous=*/false,
16553 /*LParenLoc=*/NoLoc,
16554 /*Params=*/nullptr,
16555 /*NumParams=*/0,
16556 /*EllipsisLoc=*/NoLoc,
16557 /*RParenLoc=*/NoLoc,
16558 /*RefQualifierIsLvalueRef=*/true,
16559 /*RefQualifierLoc=*/NoLoc,
16560 /*MutableLoc=*/NoLoc, EST_None,
16561 /*ESpecRange=*/SourceRange(),
16562 /*Exceptions=*/nullptr,
16563 /*ExceptionRanges=*/nullptr,
16564 /*NumExceptions=*/0,
16565 /*NoexceptExpr=*/nullptr,
16566 /*ExceptionSpecTokens=*/nullptr,
16567 /*DeclsInPrototype=*/std::nullopt,
16568 Loc, Loc, D),
16569 std::move(DS.getAttributes()), SourceLocation());
16570 D.SetIdentifier(&II, Loc);
16571
16572 // Insert this function into the enclosing block scope.
16573 FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(BlockScope, D));
16574 FD->setImplicit();
16575
16576 AddKnownFunctionAttributes(FD);
16577
16578 return FD;
16579 }
16580
16581 /// If this function is a C++ replaceable global allocation function
16582 /// (C++2a [basic.stc.dynamic.allocation], C++2a [new.delete]),
16583 /// adds any function attributes that we know a priori based on the standard.
16584 ///
16585 /// We need to check for duplicate attributes both here and where user-written
16586 /// attributes are applied to declarations.
AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(FunctionDecl * FD)16587 void Sema::AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(
16588 FunctionDecl *FD) {
16589 if (FD->isInvalidDecl())
16590 return;
16591
16592 if (FD->getDeclName().getCXXOverloadedOperator() != OO_New &&
16593 FD->getDeclName().getCXXOverloadedOperator() != OO_Array_New)
16594 return;
16595
16596 std::optional<unsigned> AlignmentParam;
16597 bool IsNothrow = false;
16598 if (!FD->isReplaceableGlobalAllocationFunction(&AlignmentParam, &IsNothrow))
16599 return;
16600
16601 // C++2a [basic.stc.dynamic.allocation]p4:
16602 // An allocation function that has a non-throwing exception specification
16603 // indicates failure by returning a null pointer value. Any other allocation
16604 // function never returns a null pointer value and indicates failure only by
16605 // throwing an exception [...]
16606 //
16607 // However, -fcheck-new invalidates this possible assumption, so don't add
16608 // NonNull when that is enabled.
16609 if (!IsNothrow && !FD->hasAttr<ReturnsNonNullAttr>() &&
16610 !getLangOpts().CheckNew)
16611 FD->addAttr(ReturnsNonNullAttr::CreateImplicit(Context, FD->getLocation()));
16612
16613 // C++2a [basic.stc.dynamic.allocation]p2:
16614 // An allocation function attempts to allocate the requested amount of
16615 // storage. [...] If the request succeeds, the value returned by a
16616 // replaceable allocation function is a [...] pointer value p0 different
16617 // from any previously returned value p1 [...]
16618 //
16619 // However, this particular information is being added in codegen,
16620 // because there is an opt-out switch for it (-fno-assume-sane-operator-new)
16621
16622 // C++2a [basic.stc.dynamic.allocation]p2:
16623 // An allocation function attempts to allocate the requested amount of
16624 // storage. If it is successful, it returns the address of the start of a
16625 // block of storage whose length in bytes is at least as large as the
16626 // requested size.
16627 if (!FD->hasAttr<AllocSizeAttr>()) {
16628 FD->addAttr(AllocSizeAttr::CreateImplicit(
16629 Context, /*ElemSizeParam=*/ParamIdx(1, FD),
16630 /*NumElemsParam=*/ParamIdx(), FD->getLocation()));
16631 }
16632
16633 // C++2a [basic.stc.dynamic.allocation]p3:
16634 // For an allocation function [...], the pointer returned on a successful
16635 // call shall represent the address of storage that is aligned as follows:
16636 // (3.1) If the allocation function takes an argument of type
16637 // std::align_val_t, the storage will have the alignment
16638 // specified by the value of this argument.
16639 if (AlignmentParam && !FD->hasAttr<AllocAlignAttr>()) {
16640 FD->addAttr(AllocAlignAttr::CreateImplicit(
16641 Context, ParamIdx(*AlignmentParam, FD), FD->getLocation()));
16642 }
16643
16644 // FIXME:
16645 // C++2a [basic.stc.dynamic.allocation]p3:
16646 // For an allocation function [...], the pointer returned on a successful
16647 // call shall represent the address of storage that is aligned as follows:
16648 // (3.2) Otherwise, if the allocation function is named operator new[],
16649 // the storage is aligned for any object that does not have
16650 // new-extended alignment ([basic.align]) and is no larger than the
16651 // requested size.
16652 // (3.3) Otherwise, the storage is aligned for any object that does not
16653 // have new-extended alignment and is of the requested size.
16654 }
16655
16656 /// Adds any function attributes that we know a priori based on
16657 /// the declaration of this function.
16658 ///
16659 /// These attributes can apply both to implicitly-declared builtins
16660 /// (like __builtin___printf_chk) or to library-declared functions
16661 /// like NSLog or printf.
16662 ///
16663 /// We need to check for duplicate attributes both here and where user-written
16664 /// attributes are applied to declarations.
AddKnownFunctionAttributes(FunctionDecl * FD)16665 void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
16666 if (FD->isInvalidDecl())
16667 return;
16668
16669 // If this is a built-in function, map its builtin attributes to
16670 // actual attributes.
16671 if (unsigned BuiltinID = FD->getBuiltinID()) {
16672 // Handle printf-formatting attributes.
16673 unsigned FormatIdx;
16674 bool HasVAListArg;
16675 if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
16676 if (!FD->hasAttr<FormatAttr>()) {
16677 const char *fmt = "printf";
16678 unsigned int NumParams = FD->getNumParams();
16679 if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
16680 FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
16681 fmt = "NSString";
16682 FD->addAttr(FormatAttr::CreateImplicit(Context,
16683 &Context.Idents.get(fmt),
16684 FormatIdx+1,
16685 HasVAListArg ? 0 : FormatIdx+2,
16686 FD->getLocation()));
16687 }
16688 }
16689 if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
16690 HasVAListArg)) {
16691 if (!FD->hasAttr<FormatAttr>())
16692 FD->addAttr(FormatAttr::CreateImplicit(Context,
16693 &Context.Idents.get("scanf"),
16694 FormatIdx+1,
16695 HasVAListArg ? 0 : FormatIdx+2,
16696 FD->getLocation()));
16697 }
16698
16699 // Handle automatically recognized callbacks.
16700 SmallVector<int, 4> Encoding;
16701 if (!FD->hasAttr<CallbackAttr>() &&
16702 Context.BuiltinInfo.performsCallback(BuiltinID, Encoding))
16703 FD->addAttr(CallbackAttr::CreateImplicit(
16704 Context, Encoding.data(), Encoding.size(), FD->getLocation()));
16705
16706 // Mark const if we don't care about errno and/or floating point exceptions
16707 // that are the only thing preventing the function from being const. This
16708 // allows IRgen to use LLVM intrinsics for such functions.
16709 bool NoExceptions =
16710 getLangOpts().getDefaultExceptionMode() == LangOptions::FPE_Ignore;
16711 bool ConstWithoutErrnoAndExceptions =
16712 Context.BuiltinInfo.isConstWithoutErrnoAndExceptions(BuiltinID);
16713 bool ConstWithoutExceptions =
16714 Context.BuiltinInfo.isConstWithoutExceptions(BuiltinID);
16715 if (!FD->hasAttr<ConstAttr>() &&
16716 (ConstWithoutErrnoAndExceptions || ConstWithoutExceptions) &&
16717 (!ConstWithoutErrnoAndExceptions ||
16718 (!getLangOpts().MathErrno && NoExceptions)) &&
16719 (!ConstWithoutExceptions || NoExceptions))
16720 FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
16721
16722 // We make "fma" on GNU or Windows const because we know it does not set
16723 // errno in those environments even though it could set errno based on the
16724 // C standard.
16725 const llvm::Triple &Trip = Context.getTargetInfo().getTriple();
16726 if ((Trip.isGNUEnvironment() || Trip.isOSMSVCRT()) &&
16727 !FD->hasAttr<ConstAttr>()) {
16728 switch (BuiltinID) {
16729 case Builtin::BI__builtin_fma:
16730 case Builtin::BI__builtin_fmaf:
16731 case Builtin::BI__builtin_fmal:
16732 case Builtin::BIfma:
16733 case Builtin::BIfmaf:
16734 case Builtin::BIfmal:
16735 FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
16736 break;
16737 default:
16738 break;
16739 }
16740 }
16741
16742 if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
16743 !FD->hasAttr<ReturnsTwiceAttr>())
16744 FD->addAttr(ReturnsTwiceAttr::CreateImplicit(Context,
16745 FD->getLocation()));
16746 if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->hasAttr<NoThrowAttr>())
16747 FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
16748 if (Context.BuiltinInfo.isPure(BuiltinID) && !FD->hasAttr<PureAttr>())
16749 FD->addAttr(PureAttr::CreateImplicit(Context, FD->getLocation()));
16750 if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->hasAttr<ConstAttr>())
16751 FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
16752 if (getLangOpts().CUDA && Context.BuiltinInfo.isTSBuiltin(BuiltinID) &&
16753 !FD->hasAttr<CUDADeviceAttr>() && !FD->hasAttr<CUDAHostAttr>()) {
16754 // Add the appropriate attribute, depending on the CUDA compilation mode
16755 // and which target the builtin belongs to. For example, during host
16756 // compilation, aux builtins are __device__, while the rest are __host__.
16757 if (getLangOpts().CUDAIsDevice !=
16758 Context.BuiltinInfo.isAuxBuiltinID(BuiltinID))
16759 FD->addAttr(CUDADeviceAttr::CreateImplicit(Context, FD->getLocation()));
16760 else
16761 FD->addAttr(CUDAHostAttr::CreateImplicit(Context, FD->getLocation()));
16762 }
16763
16764 // Add known guaranteed alignment for allocation functions.
16765 switch (BuiltinID) {
16766 case Builtin::BImemalign:
16767 case Builtin::BIaligned_alloc:
16768 if (!FD->hasAttr<AllocAlignAttr>())
16769 FD->addAttr(AllocAlignAttr::CreateImplicit(Context, ParamIdx(1, FD),
16770 FD->getLocation()));
16771 break;
16772 default:
16773 break;
16774 }
16775
16776 // Add allocsize attribute for allocation functions.
16777 switch (BuiltinID) {
16778 case Builtin::BIcalloc:
16779 FD->addAttr(AllocSizeAttr::CreateImplicit(
16780 Context, ParamIdx(1, FD), ParamIdx(2, FD), FD->getLocation()));
16781 break;
16782 case Builtin::BImemalign:
16783 case Builtin::BIaligned_alloc:
16784 case Builtin::BIrealloc:
16785 FD->addAttr(AllocSizeAttr::CreateImplicit(Context, ParamIdx(2, FD),
16786 ParamIdx(), FD->getLocation()));
16787 break;
16788 case Builtin::BImalloc:
16789 FD->addAttr(AllocSizeAttr::CreateImplicit(Context, ParamIdx(1, FD),
16790 ParamIdx(), FD->getLocation()));
16791 break;
16792 default:
16793 break;
16794 }
16795
16796 // Add lifetime attribute to std::move, std::fowrard et al.
16797 switch (BuiltinID) {
16798 case Builtin::BIaddressof:
16799 case Builtin::BI__addressof:
16800 case Builtin::BI__builtin_addressof:
16801 case Builtin::BIas_const:
16802 case Builtin::BIforward:
16803 case Builtin::BIforward_like:
16804 case Builtin::BImove:
16805 case Builtin::BImove_if_noexcept:
16806 if (ParmVarDecl *P = FD->getParamDecl(0u);
16807 !P->hasAttr<LifetimeBoundAttr>())
16808 P->addAttr(
16809 LifetimeBoundAttr::CreateImplicit(Context, FD->getLocation()));
16810 break;
16811 default:
16812 break;
16813 }
16814 }
16815
16816 AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(FD);
16817
16818 // If C++ exceptions are enabled but we are told extern "C" functions cannot
16819 // throw, add an implicit nothrow attribute to any extern "C" function we come
16820 // across.
16821 if (getLangOpts().CXXExceptions && getLangOpts().ExternCNoUnwind &&
16822 FD->isExternC() && !FD->hasAttr<NoThrowAttr>()) {
16823 const auto *FPT = FD->getType()->getAs<FunctionProtoType>();
16824 if (!FPT || FPT->getExceptionSpecType() == EST_None)
16825 FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
16826 }
16827
16828 IdentifierInfo *Name = FD->getIdentifier();
16829 if (!Name)
16830 return;
16831 if ((!getLangOpts().CPlusPlus && FD->getDeclContext()->isTranslationUnit()) ||
16832 (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
16833 cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
16834 LinkageSpecLanguageIDs::C)) {
16835 // Okay: this could be a libc/libm/Objective-C function we know
16836 // about.
16837 } else
16838 return;
16839
16840 if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
16841 // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
16842 // target-specific builtins, perhaps?
16843 if (!FD->hasAttr<FormatAttr>())
16844 FD->addAttr(FormatAttr::CreateImplicit(Context,
16845 &Context.Idents.get("printf"), 2,
16846 Name->isStr("vasprintf") ? 0 : 3,
16847 FD->getLocation()));
16848 }
16849
16850 if (Name->isStr("__CFStringMakeConstantString")) {
16851 // We already have a __builtin___CFStringMakeConstantString,
16852 // but builds that use -fno-constant-cfstrings don't go through that.
16853 if (!FD->hasAttr<FormatArgAttr>())
16854 FD->addAttr(FormatArgAttr::CreateImplicit(Context, ParamIdx(1, FD),
16855 FD->getLocation()));
16856 }
16857 }
16858
ParseTypedefDecl(Scope * S,Declarator & D,QualType T,TypeSourceInfo * TInfo)16859 TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
16860 TypeSourceInfo *TInfo) {
16861 assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
16862 assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
16863
16864 if (!TInfo) {
16865 assert(D.isInvalidType() && "no declarator info for valid type");
16866 TInfo = Context.getTrivialTypeSourceInfo(T);
16867 }
16868
16869 // Scope manipulation handled by caller.
16870 TypedefDecl *NewTD =
16871 TypedefDecl::Create(Context, CurContext, D.getBeginLoc(),
16872 D.getIdentifierLoc(), D.getIdentifier(), TInfo);
16873
16874 // Bail out immediately if we have an invalid declaration.
16875 if (D.isInvalidType()) {
16876 NewTD->setInvalidDecl();
16877 return NewTD;
16878 }
16879
16880 if (D.getDeclSpec().isModulePrivateSpecified()) {
16881 if (CurContext->isFunctionOrMethod())
16882 Diag(NewTD->getLocation(), diag::err_module_private_local)
16883 << 2 << NewTD
16884 << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
16885 << FixItHint::CreateRemoval(
16886 D.getDeclSpec().getModulePrivateSpecLoc());
16887 else
16888 NewTD->setModulePrivate();
16889 }
16890
16891 // C++ [dcl.typedef]p8:
16892 // If the typedef declaration defines an unnamed class (or
16893 // enum), the first typedef-name declared by the declaration
16894 // to be that class type (or enum type) is used to denote the
16895 // class type (or enum type) for linkage purposes only.
16896 // We need to check whether the type was declared in the declaration.
16897 switch (D.getDeclSpec().getTypeSpecType()) {
16898 case TST_enum:
16899 case TST_struct:
16900 case TST_interface:
16901 case TST_union:
16902 case TST_class: {
16903 TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
16904 setTagNameForLinkagePurposes(tagFromDeclSpec, NewTD);
16905 break;
16906 }
16907
16908 default:
16909 break;
16910 }
16911
16912 return NewTD;
16913 }
16914
16915 /// Check that this is a valid underlying type for an enum declaration.
CheckEnumUnderlyingType(TypeSourceInfo * TI)16916 bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
16917 SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
16918 QualType T = TI->getType();
16919
16920 if (T->isDependentType())
16921 return false;
16922
16923 // This doesn't use 'isIntegralType' despite the error message mentioning
16924 // integral type because isIntegralType would also allow enum types in C.
16925 if (const BuiltinType *BT = T->getAs<BuiltinType>())
16926 if (BT->isInteger())
16927 return false;
16928
16929 return Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
16930 << T << T->isBitIntType();
16931 }
16932
16933 /// Check whether this is a valid redeclaration of a previous enumeration.
16934 /// \return true if the redeclaration was invalid.
CheckEnumRedeclaration(SourceLocation EnumLoc,bool IsScoped,QualType EnumUnderlyingTy,bool IsFixed,const EnumDecl * Prev)16935 bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
16936 QualType EnumUnderlyingTy, bool IsFixed,
16937 const EnumDecl *Prev) {
16938 if (IsScoped != Prev->isScoped()) {
16939 Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
16940 << Prev->isScoped();
16941 Diag(Prev->getLocation(), diag::note_previous_declaration);
16942 return true;
16943 }
16944
16945 if (IsFixed && Prev->isFixed()) {
16946 if (!EnumUnderlyingTy->isDependentType() &&
16947 !Prev->getIntegerType()->isDependentType() &&
16948 !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
16949 Prev->getIntegerType())) {
16950 // TODO: Highlight the underlying type of the redeclaration.
16951 Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
16952 << EnumUnderlyingTy << Prev->getIntegerType();
16953 Diag(Prev->getLocation(), diag::note_previous_declaration)
16954 << Prev->getIntegerTypeRange();
16955 return true;
16956 }
16957 } else if (IsFixed != Prev->isFixed()) {
16958 Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
16959 << Prev->isFixed();
16960 Diag(Prev->getLocation(), diag::note_previous_declaration);
16961 return true;
16962 }
16963
16964 return false;
16965 }
16966
16967 /// Get diagnostic %select index for tag kind for
16968 /// redeclaration diagnostic message.
16969 /// WARNING: Indexes apply to particular diagnostics only!
16970 ///
16971 /// \returns diagnostic %select index.
getRedeclDiagFromTagKind(TagTypeKind Tag)16972 static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
16973 switch (Tag) {
16974 case TagTypeKind::Struct:
16975 return 0;
16976 case TagTypeKind::Interface:
16977 return 1;
16978 case TagTypeKind::Class:
16979 return 2;
16980 default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
16981 }
16982 }
16983
16984 /// Determine if tag kind is a class-key compatible with
16985 /// class for redeclaration (class, struct, or __interface).
16986 ///
16987 /// \returns true iff the tag kind is compatible.
isClassCompatTagKind(TagTypeKind Tag)16988 static bool isClassCompatTagKind(TagTypeKind Tag)
16989 {
16990 return Tag == TagTypeKind::Struct || Tag == TagTypeKind::Class ||
16991 Tag == TagTypeKind::Interface;
16992 }
16993
getNonTagTypeDeclKind(const Decl * PrevDecl,TagTypeKind TTK)16994 Sema::NonTagKind Sema::getNonTagTypeDeclKind(const Decl *PrevDecl,
16995 TagTypeKind TTK) {
16996 if (isa<TypedefDecl>(PrevDecl))
16997 return NTK_Typedef;
16998 else if (isa<TypeAliasDecl>(PrevDecl))
16999 return NTK_TypeAlias;
17000 else if (isa<ClassTemplateDecl>(PrevDecl))
17001 return NTK_Template;
17002 else if (isa<TypeAliasTemplateDecl>(PrevDecl))
17003 return NTK_TypeAliasTemplate;
17004 else if (isa<TemplateTemplateParmDecl>(PrevDecl))
17005 return NTK_TemplateTemplateArgument;
17006 switch (TTK) {
17007 case TagTypeKind::Struct:
17008 case TagTypeKind::Interface:
17009 case TagTypeKind::Class:
17010 return getLangOpts().CPlusPlus ? NTK_NonClass : NTK_NonStruct;
17011 case TagTypeKind::Union:
17012 return NTK_NonUnion;
17013 case TagTypeKind::Enum:
17014 return NTK_NonEnum;
17015 }
17016 llvm_unreachable("invalid TTK");
17017 }
17018
17019 /// Determine whether a tag with a given kind is acceptable
17020 /// as a redeclaration of the given tag declaration.
17021 ///
17022 /// \returns true if the new tag kind is acceptable, false otherwise.
isAcceptableTagRedeclaration(const TagDecl * Previous,TagTypeKind NewTag,bool isDefinition,SourceLocation NewTagLoc,const IdentifierInfo * Name)17023 bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
17024 TagTypeKind NewTag, bool isDefinition,
17025 SourceLocation NewTagLoc,
17026 const IdentifierInfo *Name) {
17027 // C++ [dcl.type.elab]p3:
17028 // The class-key or enum keyword present in the
17029 // elaborated-type-specifier shall agree in kind with the
17030 // declaration to which the name in the elaborated-type-specifier
17031 // refers. This rule also applies to the form of
17032 // elaborated-type-specifier that declares a class-name or
17033 // friend class since it can be construed as referring to the
17034 // definition of the class. Thus, in any
17035 // elaborated-type-specifier, the enum keyword shall be used to
17036 // refer to an enumeration (7.2), the union class-key shall be
17037 // used to refer to a union (clause 9), and either the class or
17038 // struct class-key shall be used to refer to a class (clause 9)
17039 // declared using the class or struct class-key.
17040 TagTypeKind OldTag = Previous->getTagKind();
17041 if (OldTag != NewTag &&
17042 !(isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)))
17043 return false;
17044
17045 // Tags are compatible, but we might still want to warn on mismatched tags.
17046 // Non-class tags can't be mismatched at this point.
17047 if (!isClassCompatTagKind(NewTag))
17048 return true;
17049
17050 // Declarations for which -Wmismatched-tags is disabled are entirely ignored
17051 // by our warning analysis. We don't want to warn about mismatches with (eg)
17052 // declarations in system headers that are designed to be specialized, but if
17053 // a user asks us to warn, we should warn if their code contains mismatched
17054 // declarations.
17055 auto IsIgnoredLoc = [&](SourceLocation Loc) {
17056 return getDiagnostics().isIgnored(diag::warn_struct_class_tag_mismatch,
17057 Loc);
17058 };
17059 if (IsIgnoredLoc(NewTagLoc))
17060 return true;
17061
17062 auto IsIgnored = [&](const TagDecl *Tag) {
17063 return IsIgnoredLoc(Tag->getLocation());
17064 };
17065 while (IsIgnored(Previous)) {
17066 Previous = Previous->getPreviousDecl();
17067 if (!Previous)
17068 return true;
17069 OldTag = Previous->getTagKind();
17070 }
17071
17072 bool isTemplate = false;
17073 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
17074 isTemplate = Record->getDescribedClassTemplate();
17075
17076 if (inTemplateInstantiation()) {
17077 if (OldTag != NewTag) {
17078 // In a template instantiation, do not offer fix-its for tag mismatches
17079 // since they usually mess up the template instead of fixing the problem.
17080 Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
17081 << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
17082 << getRedeclDiagFromTagKind(OldTag);
17083 // FIXME: Note previous location?
17084 }
17085 return true;
17086 }
17087
17088 if (isDefinition) {
17089 // On definitions, check all previous tags and issue a fix-it for each
17090 // one that doesn't match the current tag.
17091 if (Previous->getDefinition()) {
17092 // Don't suggest fix-its for redefinitions.
17093 return true;
17094 }
17095
17096 bool previousMismatch = false;
17097 for (const TagDecl *I : Previous->redecls()) {
17098 if (I->getTagKind() != NewTag) {
17099 // Ignore previous declarations for which the warning was disabled.
17100 if (IsIgnored(I))
17101 continue;
17102
17103 if (!previousMismatch) {
17104 previousMismatch = true;
17105 Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
17106 << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
17107 << getRedeclDiagFromTagKind(I->getTagKind());
17108 }
17109 Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
17110 << getRedeclDiagFromTagKind(NewTag)
17111 << FixItHint::CreateReplacement(I->getInnerLocStart(),
17112 TypeWithKeyword::getTagTypeKindName(NewTag));
17113 }
17114 }
17115 return true;
17116 }
17117
17118 // Identify the prevailing tag kind: this is the kind of the definition (if
17119 // there is a non-ignored definition), or otherwise the kind of the prior
17120 // (non-ignored) declaration.
17121 const TagDecl *PrevDef = Previous->getDefinition();
17122 if (PrevDef && IsIgnored(PrevDef))
17123 PrevDef = nullptr;
17124 const TagDecl *Redecl = PrevDef ? PrevDef : Previous;
17125 if (Redecl->getTagKind() != NewTag) {
17126 Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
17127 << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
17128 << getRedeclDiagFromTagKind(OldTag);
17129 Diag(Redecl->getLocation(), diag::note_previous_use);
17130
17131 // If there is a previous definition, suggest a fix-it.
17132 if (PrevDef) {
17133 Diag(NewTagLoc, diag::note_struct_class_suggestion)
17134 << getRedeclDiagFromTagKind(Redecl->getTagKind())
17135 << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
17136 TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
17137 }
17138 }
17139
17140 return true;
17141 }
17142
17143 /// Add a minimal nested name specifier fixit hint to allow lookup of a tag name
17144 /// from an outer enclosing namespace or file scope inside a friend declaration.
17145 /// This should provide the commented out code in the following snippet:
17146 /// namespace N {
17147 /// struct X;
17148 /// namespace M {
17149 /// struct Y { friend struct /*N::*/ X; };
17150 /// }
17151 /// }
createFriendTagNNSFixIt(Sema & SemaRef,NamedDecl * ND,Scope * S,SourceLocation NameLoc)17152 static FixItHint createFriendTagNNSFixIt(Sema &SemaRef, NamedDecl *ND, Scope *S,
17153 SourceLocation NameLoc) {
17154 // While the decl is in a namespace, do repeated lookup of that name and see
17155 // if we get the same namespace back. If we do not, continue until
17156 // translation unit scope, at which point we have a fully qualified NNS.
17157 SmallVector<IdentifierInfo *, 4> Namespaces;
17158 DeclContext *DC = ND->getDeclContext()->getRedeclContext();
17159 for (; !DC->isTranslationUnit(); DC = DC->getParent()) {
17160 // This tag should be declared in a namespace, which can only be enclosed by
17161 // other namespaces. Bail if there's an anonymous namespace in the chain.
17162 NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(DC);
17163 if (!Namespace || Namespace->isAnonymousNamespace())
17164 return FixItHint();
17165 IdentifierInfo *II = Namespace->getIdentifier();
17166 Namespaces.push_back(II);
17167 NamedDecl *Lookup = SemaRef.LookupSingleName(
17168 S, II, NameLoc, Sema::LookupNestedNameSpecifierName);
17169 if (Lookup == Namespace)
17170 break;
17171 }
17172
17173 // Once we have all the namespaces, reverse them to go outermost first, and
17174 // build an NNS.
17175 SmallString<64> Insertion;
17176 llvm::raw_svector_ostream OS(Insertion);
17177 if (DC->isTranslationUnit())
17178 OS << "::";
17179 std::reverse(Namespaces.begin(), Namespaces.end());
17180 for (auto *II : Namespaces)
17181 OS << II->getName() << "::";
17182 return FixItHint::CreateInsertion(NameLoc, Insertion);
17183 }
17184
17185 /// Determine whether a tag originally declared in context \p OldDC can
17186 /// be redeclared with an unqualified name in \p NewDC (assuming name lookup
17187 /// found a declaration in \p OldDC as a previous decl, perhaps through a
17188 /// using-declaration).
isAcceptableTagRedeclContext(Sema & S,DeclContext * OldDC,DeclContext * NewDC)17189 static bool isAcceptableTagRedeclContext(Sema &S, DeclContext *OldDC,
17190 DeclContext *NewDC) {
17191 OldDC = OldDC->getRedeclContext();
17192 NewDC = NewDC->getRedeclContext();
17193
17194 if (OldDC->Equals(NewDC))
17195 return true;
17196
17197 // In MSVC mode, we allow a redeclaration if the contexts are related (either
17198 // encloses the other).
17199 if (S.getLangOpts().MSVCCompat &&
17200 (OldDC->Encloses(NewDC) || NewDC->Encloses(OldDC)))
17201 return true;
17202
17203 return false;
17204 }
17205
17206 /// This is invoked when we see 'struct foo' or 'struct {'. In the
17207 /// former case, Name will be non-null. In the later case, Name will be null.
17208 /// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
17209 /// reference/declaration/definition of a tag.
17210 ///
17211 /// \param IsTypeSpecifier \c true if this is a type-specifier (or
17212 /// trailing-type-specifier) other than one in an alias-declaration.
17213 ///
17214 /// \param SkipBody If non-null, will be set to indicate if the caller should
17215 /// skip the definition of this tag and treat it as if it were a declaration.
17216 DeclResult
ActOnTag(Scope * S,unsigned TagSpec,TagUseKind TUK,SourceLocation KWLoc,CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation NameLoc,const ParsedAttributesView & Attrs,AccessSpecifier AS,SourceLocation ModulePrivateLoc,MultiTemplateParamsArg TemplateParameterLists,bool & OwnedDecl,bool & IsDependent,SourceLocation ScopedEnumKWLoc,bool ScopedEnumUsesClassTag,TypeResult UnderlyingType,bool IsTypeSpecifier,bool IsTemplateParamOrArg,OffsetOfKind OOK,SkipBodyInfo * SkipBody)17217 Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc,
17218 CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc,
17219 const ParsedAttributesView &Attrs, AccessSpecifier AS,
17220 SourceLocation ModulePrivateLoc,
17221 MultiTemplateParamsArg TemplateParameterLists, bool &OwnedDecl,
17222 bool &IsDependent, SourceLocation ScopedEnumKWLoc,
17223 bool ScopedEnumUsesClassTag, TypeResult UnderlyingType,
17224 bool IsTypeSpecifier, bool IsTemplateParamOrArg,
17225 OffsetOfKind OOK, SkipBodyInfo *SkipBody) {
17226 // If this is not a definition, it must have a name.
17227 IdentifierInfo *OrigName = Name;
17228 assert((Name != nullptr || TUK == TUK_Definition) &&
17229 "Nameless record must be a definition!");
17230 assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
17231
17232 OwnedDecl = false;
17233 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
17234 bool ScopedEnum = ScopedEnumKWLoc.isValid();
17235
17236 // FIXME: Check member specializations more carefully.
17237 bool isMemberSpecialization = false;
17238 bool Invalid = false;
17239
17240 // We only need to do this matching if we have template parameters
17241 // or a scope specifier, which also conveniently avoids this work
17242 // for non-C++ cases.
17243 if (TemplateParameterLists.size() > 0 ||
17244 (SS.isNotEmpty() && TUK != TUK_Reference)) {
17245 if (TemplateParameterList *TemplateParams =
17246 MatchTemplateParametersToScopeSpecifier(
17247 KWLoc, NameLoc, SS, nullptr, TemplateParameterLists,
17248 TUK == TUK_Friend, isMemberSpecialization, Invalid)) {
17249 if (Kind == TagTypeKind::Enum) {
17250 Diag(KWLoc, diag::err_enum_template);
17251 return true;
17252 }
17253
17254 if (TemplateParams->size() > 0) {
17255 // This is a declaration or definition of a class template (which may
17256 // be a member of another template).
17257
17258 if (Invalid)
17259 return true;
17260
17261 OwnedDecl = false;
17262 DeclResult Result = CheckClassTemplate(
17263 S, TagSpec, TUK, KWLoc, SS, Name, NameLoc, Attrs, TemplateParams,
17264 AS, ModulePrivateLoc,
17265 /*FriendLoc*/ SourceLocation(), TemplateParameterLists.size() - 1,
17266 TemplateParameterLists.data(), SkipBody);
17267 return Result.get();
17268 } else {
17269 // The "template<>" header is extraneous.
17270 Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
17271 << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
17272 isMemberSpecialization = true;
17273 }
17274 }
17275
17276 if (!TemplateParameterLists.empty() && isMemberSpecialization &&
17277 CheckTemplateDeclScope(S, TemplateParameterLists.back()))
17278 return true;
17279 }
17280
17281 // Figure out the underlying type if this a enum declaration. We need to do
17282 // this early, because it's needed to detect if this is an incompatible
17283 // redeclaration.
17284 llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
17285 bool IsFixed = !UnderlyingType.isUnset() || ScopedEnum;
17286
17287 if (Kind == TagTypeKind::Enum) {
17288 if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum)) {
17289 // No underlying type explicitly specified, or we failed to parse the
17290 // type, default to int.
17291 EnumUnderlying = Context.IntTy.getTypePtr();
17292 } else if (UnderlyingType.get()) {
17293 // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
17294 // integral type; any cv-qualification is ignored.
17295 TypeSourceInfo *TI = nullptr;
17296 GetTypeFromParser(UnderlyingType.get(), &TI);
17297 EnumUnderlying = TI;
17298
17299 if (CheckEnumUnderlyingType(TI))
17300 // Recover by falling back to int.
17301 EnumUnderlying = Context.IntTy.getTypePtr();
17302
17303 if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
17304 UPPC_FixedUnderlyingType))
17305 EnumUnderlying = Context.IntTy.getTypePtr();
17306
17307 } else if (Context.getTargetInfo().getTriple().isWindowsMSVCEnvironment()) {
17308 // For MSVC ABI compatibility, unfixed enums must use an underlying type
17309 // of 'int'. However, if this is an unfixed forward declaration, don't set
17310 // the underlying type unless the user enables -fms-compatibility. This
17311 // makes unfixed forward declared enums incomplete and is more conforming.
17312 if (TUK == TUK_Definition || getLangOpts().MSVCCompat)
17313 EnumUnderlying = Context.IntTy.getTypePtr();
17314 }
17315 }
17316
17317 DeclContext *SearchDC = CurContext;
17318 DeclContext *DC = CurContext;
17319 bool isStdBadAlloc = false;
17320 bool isStdAlignValT = false;
17321
17322 RedeclarationKind Redecl = forRedeclarationInCurContext();
17323 if (TUK == TUK_Friend || TUK == TUK_Reference)
17324 Redecl = NotForRedeclaration;
17325
17326 /// Create a new tag decl in C/ObjC. Since the ODR-like semantics for ObjC/C
17327 /// implemented asks for structural equivalence checking, the returned decl
17328 /// here is passed back to the parser, allowing the tag body to be parsed.
17329 auto createTagFromNewDecl = [&]() -> TagDecl * {
17330 assert(!getLangOpts().CPlusPlus && "not meant for C++ usage");
17331 // If there is an identifier, use the location of the identifier as the
17332 // location of the decl, otherwise use the location of the struct/union
17333 // keyword.
17334 SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
17335 TagDecl *New = nullptr;
17336
17337 if (Kind == TagTypeKind::Enum) {
17338 New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name, nullptr,
17339 ScopedEnum, ScopedEnumUsesClassTag, IsFixed);
17340 // If this is an undefined enum, bail.
17341 if (TUK != TUK_Definition && !Invalid)
17342 return nullptr;
17343 if (EnumUnderlying) {
17344 EnumDecl *ED = cast<EnumDecl>(New);
17345 if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo *>())
17346 ED->setIntegerTypeSourceInfo(TI);
17347 else
17348 ED->setIntegerType(QualType(EnumUnderlying.get<const Type *>(), 0));
17349 QualType EnumTy = ED->getIntegerType();
17350 ED->setPromotionType(Context.isPromotableIntegerType(EnumTy)
17351 ? Context.getPromotedIntegerType(EnumTy)
17352 : EnumTy);
17353 }
17354 } else { // struct/union
17355 New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
17356 nullptr);
17357 }
17358
17359 if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
17360 // Add alignment attributes if necessary; these attributes are checked
17361 // when the ASTContext lays out the structure.
17362 //
17363 // It is important for implementing the correct semantics that this
17364 // happen here (in ActOnTag). The #pragma pack stack is
17365 // maintained as a result of parser callbacks which can occur at
17366 // many points during the parsing of a struct declaration (because
17367 // the #pragma tokens are effectively skipped over during the
17368 // parsing of the struct).
17369 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
17370 AddAlignmentAttributesForRecord(RD);
17371 AddMsStructLayoutForRecord(RD);
17372 }
17373 }
17374 New->setLexicalDeclContext(CurContext);
17375 return New;
17376 };
17377
17378 LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
17379 if (Name && SS.isNotEmpty()) {
17380 // We have a nested-name tag ('struct foo::bar').
17381
17382 // Check for invalid 'foo::'.
17383 if (SS.isInvalid()) {
17384 Name = nullptr;
17385 goto CreateNewDecl;
17386 }
17387
17388 // If this is a friend or a reference to a class in a dependent
17389 // context, don't try to make a decl for it.
17390 if (TUK == TUK_Friend || TUK == TUK_Reference) {
17391 DC = computeDeclContext(SS, false);
17392 if (!DC) {
17393 IsDependent = true;
17394 return true;
17395 }
17396 } else {
17397 DC = computeDeclContext(SS, true);
17398 if (!DC) {
17399 Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
17400 << SS.getRange();
17401 return true;
17402 }
17403 }
17404
17405 if (RequireCompleteDeclContext(SS, DC))
17406 return true;
17407
17408 SearchDC = DC;
17409 // Look-up name inside 'foo::'.
17410 LookupQualifiedName(Previous, DC);
17411
17412 if (Previous.isAmbiguous())
17413 return true;
17414
17415 if (Previous.empty()) {
17416 // Name lookup did not find anything. However, if the
17417 // nested-name-specifier refers to the current instantiation,
17418 // and that current instantiation has any dependent base
17419 // classes, we might find something at instantiation time: treat
17420 // this as a dependent elaborated-type-specifier.
17421 // But this only makes any sense for reference-like lookups.
17422 if (Previous.wasNotFoundInCurrentInstantiation() &&
17423 (TUK == TUK_Reference || TUK == TUK_Friend)) {
17424 IsDependent = true;
17425 return true;
17426 }
17427
17428 // A tag 'foo::bar' must already exist.
17429 Diag(NameLoc, diag::err_not_tag_in_scope)
17430 << llvm::to_underlying(Kind) << Name << DC << SS.getRange();
17431 Name = nullptr;
17432 Invalid = true;
17433 goto CreateNewDecl;
17434 }
17435 } else if (Name) {
17436 // C++14 [class.mem]p14:
17437 // If T is the name of a class, then each of the following shall have a
17438 // name different from T:
17439 // -- every member of class T that is itself a type
17440 if (TUK != TUK_Reference && TUK != TUK_Friend &&
17441 DiagnoseClassNameShadow(SearchDC, DeclarationNameInfo(Name, NameLoc)))
17442 return true;
17443
17444 // If this is a named struct, check to see if there was a previous forward
17445 // declaration or definition.
17446 // FIXME: We're looking into outer scopes here, even when we
17447 // shouldn't be. Doing so can result in ambiguities that we
17448 // shouldn't be diagnosing.
17449 LookupName(Previous, S);
17450
17451 // When declaring or defining a tag, ignore ambiguities introduced
17452 // by types using'ed into this scope.
17453 if (Previous.isAmbiguous() &&
17454 (TUK == TUK_Definition || TUK == TUK_Declaration)) {
17455 LookupResult::Filter F = Previous.makeFilter();
17456 while (F.hasNext()) {
17457 NamedDecl *ND = F.next();
17458 if (!ND->getDeclContext()->getRedeclContext()->Equals(
17459 SearchDC->getRedeclContext()))
17460 F.erase();
17461 }
17462 F.done();
17463 }
17464
17465 // C++11 [namespace.memdef]p3:
17466 // If the name in a friend declaration is neither qualified nor
17467 // a template-id and the declaration is a function or an
17468 // elaborated-type-specifier, the lookup to determine whether
17469 // the entity has been previously declared shall not consider
17470 // any scopes outside the innermost enclosing namespace.
17471 //
17472 // MSVC doesn't implement the above rule for types, so a friend tag
17473 // declaration may be a redeclaration of a type declared in an enclosing
17474 // scope. They do implement this rule for friend functions.
17475 //
17476 // Does it matter that this should be by scope instead of by
17477 // semantic context?
17478 if (!Previous.empty() && TUK == TUK_Friend) {
17479 DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext();
17480 LookupResult::Filter F = Previous.makeFilter();
17481 bool FriendSawTagOutsideEnclosingNamespace = false;
17482 while (F.hasNext()) {
17483 NamedDecl *ND = F.next();
17484 DeclContext *DC = ND->getDeclContext()->getRedeclContext();
17485 if (DC->isFileContext() &&
17486 !EnclosingNS->Encloses(ND->getDeclContext())) {
17487 if (getLangOpts().MSVCCompat)
17488 FriendSawTagOutsideEnclosingNamespace = true;
17489 else
17490 F.erase();
17491 }
17492 }
17493 F.done();
17494
17495 // Diagnose this MSVC extension in the easy case where lookup would have
17496 // unambiguously found something outside the enclosing namespace.
17497 if (Previous.isSingleResult() && FriendSawTagOutsideEnclosingNamespace) {
17498 NamedDecl *ND = Previous.getFoundDecl();
17499 Diag(NameLoc, diag::ext_friend_tag_redecl_outside_namespace)
17500 << createFriendTagNNSFixIt(*this, ND, S, NameLoc);
17501 }
17502 }
17503
17504 // Note: there used to be some attempt at recovery here.
17505 if (Previous.isAmbiguous())
17506 return true;
17507
17508 if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
17509 // FIXME: This makes sure that we ignore the contexts associated
17510 // with C structs, unions, and enums when looking for a matching
17511 // tag declaration or definition. See the similar lookup tweak
17512 // in Sema::LookupName; is there a better way to deal with this?
17513 while (isa<RecordDecl, EnumDecl, ObjCContainerDecl>(SearchDC))
17514 SearchDC = SearchDC->getParent();
17515 } else if (getLangOpts().CPlusPlus) {
17516 // Inside ObjCContainer want to keep it as a lexical decl context but go
17517 // past it (most often to TranslationUnit) to find the semantic decl
17518 // context.
17519 while (isa<ObjCContainerDecl>(SearchDC))
17520 SearchDC = SearchDC->getParent();
17521 }
17522 } else if (getLangOpts().CPlusPlus) {
17523 // Don't use ObjCContainerDecl as the semantic decl context for anonymous
17524 // TagDecl the same way as we skip it for named TagDecl.
17525 while (isa<ObjCContainerDecl>(SearchDC))
17526 SearchDC = SearchDC->getParent();
17527 }
17528
17529 if (Previous.isSingleResult() &&
17530 Previous.getFoundDecl()->isTemplateParameter()) {
17531 // Maybe we will complain about the shadowed template parameter.
17532 DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
17533 // Just pretend that we didn't see the previous declaration.
17534 Previous.clear();
17535 }
17536
17537 if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
17538 DC->Equals(getStdNamespace())) {
17539 if (Name->isStr("bad_alloc")) {
17540 // This is a declaration of or a reference to "std::bad_alloc".
17541 isStdBadAlloc = true;
17542
17543 // If std::bad_alloc has been implicitly declared (but made invisible to
17544 // name lookup), fill in this implicit declaration as the previous
17545 // declaration, so that the declarations get chained appropriately.
17546 if (Previous.empty() && StdBadAlloc)
17547 Previous.addDecl(getStdBadAlloc());
17548 } else if (Name->isStr("align_val_t")) {
17549 isStdAlignValT = true;
17550 if (Previous.empty() && StdAlignValT)
17551 Previous.addDecl(getStdAlignValT());
17552 }
17553 }
17554
17555 // If we didn't find a previous declaration, and this is a reference
17556 // (or friend reference), move to the correct scope. In C++, we
17557 // also need to do a redeclaration lookup there, just in case
17558 // there's a shadow friend decl.
17559 if (Name && Previous.empty() &&
17560 (TUK == TUK_Reference || TUK == TUK_Friend || IsTemplateParamOrArg)) {
17561 if (Invalid) goto CreateNewDecl;
17562 assert(SS.isEmpty());
17563
17564 if (TUK == TUK_Reference || IsTemplateParamOrArg) {
17565 // C++ [basic.scope.pdecl]p5:
17566 // -- for an elaborated-type-specifier of the form
17567 //
17568 // class-key identifier
17569 //
17570 // if the elaborated-type-specifier is used in the
17571 // decl-specifier-seq or parameter-declaration-clause of a
17572 // function defined in namespace scope, the identifier is
17573 // declared as a class-name in the namespace that contains
17574 // the declaration; otherwise, except as a friend
17575 // declaration, the identifier is declared in the smallest
17576 // non-class, non-function-prototype scope that contains the
17577 // declaration.
17578 //
17579 // C99 6.7.2.3p8 has a similar (but not identical!) provision for
17580 // C structs and unions.
17581 //
17582 // It is an error in C++ to declare (rather than define) an enum
17583 // type, including via an elaborated type specifier. We'll
17584 // diagnose that later; for now, declare the enum in the same
17585 // scope as we would have picked for any other tag type.
17586 //
17587 // GNU C also supports this behavior as part of its incomplete
17588 // enum types extension, while GNU C++ does not.
17589 //
17590 // Find the context where we'll be declaring the tag.
17591 // FIXME: We would like to maintain the current DeclContext as the
17592 // lexical context,
17593 SearchDC = getTagInjectionContext(SearchDC);
17594
17595 // Find the scope where we'll be declaring the tag.
17596 S = getTagInjectionScope(S, getLangOpts());
17597 } else {
17598 assert(TUK == TUK_Friend);
17599 CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(SearchDC);
17600
17601 // C++ [namespace.memdef]p3:
17602 // If a friend declaration in a non-local class first declares a
17603 // class or function, the friend class or function is a member of
17604 // the innermost enclosing namespace.
17605 SearchDC = RD->isLocalClass() ? RD->isLocalClass()
17606 : SearchDC->getEnclosingNamespaceContext();
17607 }
17608
17609 // In C++, we need to do a redeclaration lookup to properly
17610 // diagnose some problems.
17611 // FIXME: redeclaration lookup is also used (with and without C++) to find a
17612 // hidden declaration so that we don't get ambiguity errors when using a
17613 // type declared by an elaborated-type-specifier. In C that is not correct
17614 // and we should instead merge compatible types found by lookup.
17615 if (getLangOpts().CPlusPlus) {
17616 // FIXME: This can perform qualified lookups into function contexts,
17617 // which are meaningless.
17618 Previous.setRedeclarationKind(forRedeclarationInCurContext());
17619 LookupQualifiedName(Previous, SearchDC);
17620 } else {
17621 Previous.setRedeclarationKind(forRedeclarationInCurContext());
17622 LookupName(Previous, S);
17623 }
17624 }
17625
17626 // If we have a known previous declaration to use, then use it.
17627 if (Previous.empty() && SkipBody && SkipBody->Previous)
17628 Previous.addDecl(SkipBody->Previous);
17629
17630 if (!Previous.empty()) {
17631 NamedDecl *PrevDecl = Previous.getFoundDecl();
17632 NamedDecl *DirectPrevDecl = Previous.getRepresentativeDecl();
17633
17634 // It's okay to have a tag decl in the same scope as a typedef
17635 // which hides a tag decl in the same scope. Finding this
17636 // with a redeclaration lookup can only actually happen in C++.
17637 //
17638 // This is also okay for elaborated-type-specifiers, which is
17639 // technically forbidden by the current standard but which is
17640 // okay according to the likely resolution of an open issue;
17641 // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
17642 if (getLangOpts().CPlusPlus) {
17643 if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
17644 if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
17645 TagDecl *Tag = TT->getDecl();
17646 if (Tag->getDeclName() == Name &&
17647 Tag->getDeclContext()->getRedeclContext()
17648 ->Equals(TD->getDeclContext()->getRedeclContext())) {
17649 PrevDecl = Tag;
17650 Previous.clear();
17651 Previous.addDecl(Tag);
17652 Previous.resolveKind();
17653 }
17654 }
17655 }
17656 }
17657
17658 // If this is a redeclaration of a using shadow declaration, it must
17659 // declare a tag in the same context. In MSVC mode, we allow a
17660 // redefinition if either context is within the other.
17661 if (auto *Shadow = dyn_cast<UsingShadowDecl>(DirectPrevDecl)) {
17662 auto *OldTag = dyn_cast<TagDecl>(PrevDecl);
17663 if (SS.isEmpty() && TUK != TUK_Reference && TUK != TUK_Friend &&
17664 isDeclInScope(Shadow, SearchDC, S, isMemberSpecialization) &&
17665 !(OldTag && isAcceptableTagRedeclContext(
17666 *this, OldTag->getDeclContext(), SearchDC))) {
17667 Diag(KWLoc, diag::err_using_decl_conflict_reverse);
17668 Diag(Shadow->getTargetDecl()->getLocation(),
17669 diag::note_using_decl_target);
17670 Diag(Shadow->getIntroducer()->getLocation(), diag::note_using_decl)
17671 << 0;
17672 // Recover by ignoring the old declaration.
17673 Previous.clear();
17674 goto CreateNewDecl;
17675 }
17676 }
17677
17678 if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
17679 // If this is a use of a previous tag, or if the tag is already declared
17680 // in the same scope (so that the definition/declaration completes or
17681 // rementions the tag), reuse the decl.
17682 if (TUK == TUK_Reference || TUK == TUK_Friend ||
17683 isDeclInScope(DirectPrevDecl, SearchDC, S,
17684 SS.isNotEmpty() || isMemberSpecialization)) {
17685 // Make sure that this wasn't declared as an enum and now used as a
17686 // struct or something similar.
17687 if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
17688 TUK == TUK_Definition, KWLoc,
17689 Name)) {
17690 bool SafeToContinue =
17691 (PrevTagDecl->getTagKind() != TagTypeKind::Enum &&
17692 Kind != TagTypeKind::Enum);
17693 if (SafeToContinue)
17694 Diag(KWLoc, diag::err_use_with_wrong_tag)
17695 << Name
17696 << FixItHint::CreateReplacement(SourceRange(KWLoc),
17697 PrevTagDecl->getKindName());
17698 else
17699 Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
17700 Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
17701
17702 if (SafeToContinue)
17703 Kind = PrevTagDecl->getTagKind();
17704 else {
17705 // Recover by making this an anonymous redefinition.
17706 Name = nullptr;
17707 Previous.clear();
17708 Invalid = true;
17709 }
17710 }
17711
17712 if (Kind == TagTypeKind::Enum &&
17713 PrevTagDecl->getTagKind() == TagTypeKind::Enum) {
17714 const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
17715 if (TUK == TUK_Reference || TUK == TUK_Friend)
17716 return PrevTagDecl;
17717
17718 QualType EnumUnderlyingTy;
17719 if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
17720 EnumUnderlyingTy = TI->getType().getUnqualifiedType();
17721 else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
17722 EnumUnderlyingTy = QualType(T, 0);
17723
17724 // All conflicts with previous declarations are recovered by
17725 // returning the previous declaration, unless this is a definition,
17726 // in which case we want the caller to bail out.
17727 if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
17728 ScopedEnum, EnumUnderlyingTy,
17729 IsFixed, PrevEnum))
17730 return TUK == TUK_Declaration ? PrevTagDecl : nullptr;
17731 }
17732
17733 // C++11 [class.mem]p1:
17734 // A member shall not be declared twice in the member-specification,
17735 // except that a nested class or member class template can be declared
17736 // and then later defined.
17737 if (TUK == TUK_Declaration && PrevDecl->isCXXClassMember() &&
17738 S->isDeclScope(PrevDecl)) {
17739 Diag(NameLoc, diag::ext_member_redeclared);
17740 Diag(PrevTagDecl->getLocation(), diag::note_previous_declaration);
17741 }
17742
17743 if (!Invalid) {
17744 // If this is a use, just return the declaration we found, unless
17745 // we have attributes.
17746 if (TUK == TUK_Reference || TUK == TUK_Friend) {
17747 if (!Attrs.empty()) {
17748 // FIXME: Diagnose these attributes. For now, we create a new
17749 // declaration to hold them.
17750 } else if (TUK == TUK_Reference &&
17751 (PrevTagDecl->getFriendObjectKind() ==
17752 Decl::FOK_Undeclared ||
17753 PrevDecl->getOwningModule() != getCurrentModule()) &&
17754 SS.isEmpty()) {
17755 // This declaration is a reference to an existing entity, but
17756 // has different visibility from that entity: it either makes
17757 // a friend visible or it makes a type visible in a new module.
17758 // In either case, create a new declaration. We only do this if
17759 // the declaration would have meant the same thing if no prior
17760 // declaration were found, that is, if it was found in the same
17761 // scope where we would have injected a declaration.
17762 if (!getTagInjectionContext(CurContext)->getRedeclContext()
17763 ->Equals(PrevDecl->getDeclContext()->getRedeclContext()))
17764 return PrevTagDecl;
17765 // This is in the injected scope, create a new declaration in
17766 // that scope.
17767 S = getTagInjectionScope(S, getLangOpts());
17768 } else {
17769 return PrevTagDecl;
17770 }
17771 }
17772
17773 // Diagnose attempts to redefine a tag.
17774 if (TUK == TUK_Definition) {
17775 if (NamedDecl *Def = PrevTagDecl->getDefinition()) {
17776 // If we're defining a specialization and the previous definition
17777 // is from an implicit instantiation, don't emit an error
17778 // here; we'll catch this in the general case below.
17779 bool IsExplicitSpecializationAfterInstantiation = false;
17780 if (isMemberSpecialization) {
17781 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
17782 IsExplicitSpecializationAfterInstantiation =
17783 RD->getTemplateSpecializationKind() !=
17784 TSK_ExplicitSpecialization;
17785 else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
17786 IsExplicitSpecializationAfterInstantiation =
17787 ED->getTemplateSpecializationKind() !=
17788 TSK_ExplicitSpecialization;
17789 }
17790
17791 // Note that clang allows ODR-like semantics for ObjC/C, i.e., do
17792 // not keep more that one definition around (merge them). However,
17793 // ensure the decl passes the structural compatibility check in
17794 // C11 6.2.7/1 (or 6.1.2.6/1 in C89).
17795 NamedDecl *Hidden = nullptr;
17796 if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
17797 // There is a definition of this tag, but it is not visible. We
17798 // explicitly make use of C++'s one definition rule here, and
17799 // assume that this definition is identical to the hidden one
17800 // we already have. Make the existing definition visible and
17801 // use it in place of this one.
17802 if (!getLangOpts().CPlusPlus) {
17803 // Postpone making the old definition visible until after we
17804 // complete parsing the new one and do the structural
17805 // comparison.
17806 SkipBody->CheckSameAsPrevious = true;
17807 SkipBody->New = createTagFromNewDecl();
17808 SkipBody->Previous = Def;
17809 return Def;
17810 } else {
17811 SkipBody->ShouldSkip = true;
17812 SkipBody->Previous = Def;
17813 makeMergedDefinitionVisible(Hidden);
17814 // Carry on and handle it like a normal definition. We'll
17815 // skip starting the definitiion later.
17816 }
17817 } else if (!IsExplicitSpecializationAfterInstantiation) {
17818 // A redeclaration in function prototype scope in C isn't
17819 // visible elsewhere, so merely issue a warning.
17820 if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
17821 Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
17822 else
17823 Diag(NameLoc, diag::err_redefinition) << Name;
17824 notePreviousDefinition(Def,
17825 NameLoc.isValid() ? NameLoc : KWLoc);
17826 // If this is a redefinition, recover by making this
17827 // struct be anonymous, which will make any later
17828 // references get the previous definition.
17829 Name = nullptr;
17830 Previous.clear();
17831 Invalid = true;
17832 }
17833 } else {
17834 // If the type is currently being defined, complain
17835 // about a nested redefinition.
17836 auto *TD = Context.getTagDeclType(PrevTagDecl)->getAsTagDecl();
17837 if (TD->isBeingDefined()) {
17838 Diag(NameLoc, diag::err_nested_redefinition) << Name;
17839 Diag(PrevTagDecl->getLocation(),
17840 diag::note_previous_definition);
17841 Name = nullptr;
17842 Previous.clear();
17843 Invalid = true;
17844 }
17845 }
17846
17847 // Okay, this is definition of a previously declared or referenced
17848 // tag. We're going to create a new Decl for it.
17849 }
17850
17851 // Okay, we're going to make a redeclaration. If this is some kind
17852 // of reference, make sure we build the redeclaration in the same DC
17853 // as the original, and ignore the current access specifier.
17854 if (TUK == TUK_Friend || TUK == TUK_Reference) {
17855 SearchDC = PrevTagDecl->getDeclContext();
17856 AS = AS_none;
17857 }
17858 }
17859 // If we get here we have (another) forward declaration or we
17860 // have a definition. Just create a new decl.
17861
17862 } else {
17863 // If we get here, this is a definition of a new tag type in a nested
17864 // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
17865 // new decl/type. We set PrevDecl to NULL so that the entities
17866 // have distinct types.
17867 Previous.clear();
17868 }
17869 // If we get here, we're going to create a new Decl. If PrevDecl
17870 // is non-NULL, it's a definition of the tag declared by
17871 // PrevDecl. If it's NULL, we have a new definition.
17872
17873 // Otherwise, PrevDecl is not a tag, but was found with tag
17874 // lookup. This is only actually possible in C++, where a few
17875 // things like templates still live in the tag namespace.
17876 } else {
17877 // Use a better diagnostic if an elaborated-type-specifier
17878 // found the wrong kind of type on the first
17879 // (non-redeclaration) lookup.
17880 if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
17881 !Previous.isForRedeclaration()) {
17882 NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind);
17883 Diag(NameLoc, diag::err_tag_reference_non_tag)
17884 << PrevDecl << NTK << llvm::to_underlying(Kind);
17885 Diag(PrevDecl->getLocation(), diag::note_declared_at);
17886 Invalid = true;
17887
17888 // Otherwise, only diagnose if the declaration is in scope.
17889 } else if (!isDeclInScope(DirectPrevDecl, SearchDC, S,
17890 SS.isNotEmpty() || isMemberSpecialization)) {
17891 // do nothing
17892
17893 // Diagnose implicit declarations introduced by elaborated types.
17894 } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
17895 NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind);
17896 Diag(NameLoc, diag::err_tag_reference_conflict) << NTK;
17897 Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
17898 Invalid = true;
17899
17900 // Otherwise it's a declaration. Call out a particularly common
17901 // case here.
17902 } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
17903 unsigned Kind = 0;
17904 if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
17905 Diag(NameLoc, diag::err_tag_definition_of_typedef)
17906 << Name << Kind << TND->getUnderlyingType();
17907 Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
17908 Invalid = true;
17909
17910 // Otherwise, diagnose.
17911 } else {
17912 // The tag name clashes with something else in the target scope,
17913 // issue an error and recover by making this tag be anonymous.
17914 Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
17915 notePreviousDefinition(PrevDecl, NameLoc);
17916 Name = nullptr;
17917 Invalid = true;
17918 }
17919
17920 // The existing declaration isn't relevant to us; we're in a
17921 // new scope, so clear out the previous declaration.
17922 Previous.clear();
17923 }
17924 }
17925
17926 CreateNewDecl:
17927
17928 TagDecl *PrevDecl = nullptr;
17929 if (Previous.isSingleResult())
17930 PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
17931
17932 // If there is an identifier, use the location of the identifier as the
17933 // location of the decl, otherwise use the location of the struct/union
17934 // keyword.
17935 SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
17936
17937 // Otherwise, create a new declaration. If there is a previous
17938 // declaration of the same entity, the two will be linked via
17939 // PrevDecl.
17940 TagDecl *New;
17941
17942 if (Kind == TagTypeKind::Enum) {
17943 // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
17944 // enum X { A, B, C } D; D should chain to X.
17945 New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
17946 cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
17947 ScopedEnumUsesClassTag, IsFixed);
17948
17949 if (isStdAlignValT && (!StdAlignValT || getStdAlignValT()->isImplicit()))
17950 StdAlignValT = cast<EnumDecl>(New);
17951
17952 // If this is an undefined enum, warn.
17953 if (TUK != TUK_Definition && !Invalid) {
17954 TagDecl *Def;
17955 if (IsFixed && cast<EnumDecl>(New)->isFixed()) {
17956 // C++0x: 7.2p2: opaque-enum-declaration.
17957 // Conflicts are diagnosed above. Do nothing.
17958 }
17959 else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
17960 Diag(Loc, diag::ext_forward_ref_enum_def)
17961 << New;
17962 Diag(Def->getLocation(), diag::note_previous_definition);
17963 } else {
17964 unsigned DiagID = diag::ext_forward_ref_enum;
17965 if (getLangOpts().MSVCCompat)
17966 DiagID = diag::ext_ms_forward_ref_enum;
17967 else if (getLangOpts().CPlusPlus)
17968 DiagID = diag::err_forward_ref_enum;
17969 Diag(Loc, DiagID);
17970 }
17971 }
17972
17973 if (EnumUnderlying) {
17974 EnumDecl *ED = cast<EnumDecl>(New);
17975 if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
17976 ED->setIntegerTypeSourceInfo(TI);
17977 else
17978 ED->setIntegerType(QualType(EnumUnderlying.get<const Type *>(), 0));
17979 QualType EnumTy = ED->getIntegerType();
17980 ED->setPromotionType(Context.isPromotableIntegerType(EnumTy)
17981 ? Context.getPromotedIntegerType(EnumTy)
17982 : EnumTy);
17983 assert(ED->isComplete() && "enum with type should be complete");
17984 }
17985 } else {
17986 // struct/union/class
17987
17988 // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
17989 // struct X { int A; } D; D should chain to X.
17990 if (getLangOpts().CPlusPlus) {
17991 // FIXME: Look for a way to use RecordDecl for simple structs.
17992 New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
17993 cast_or_null<CXXRecordDecl>(PrevDecl));
17994
17995 if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
17996 StdBadAlloc = cast<CXXRecordDecl>(New);
17997 } else
17998 New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
17999 cast_or_null<RecordDecl>(PrevDecl));
18000 }
18001
18002 if (OOK != OOK_Outside && TUK == TUK_Definition && !getLangOpts().CPlusPlus)
18003 Diag(New->getLocation(), diag::ext_type_defined_in_offsetof)
18004 << (OOK == OOK_Macro) << New->getSourceRange();
18005
18006 // C++11 [dcl.type]p3:
18007 // A type-specifier-seq shall not define a class or enumeration [...].
18008 if (!Invalid && getLangOpts().CPlusPlus &&
18009 (IsTypeSpecifier || IsTemplateParamOrArg) && TUK == TUK_Definition) {
18010 Diag(New->getLocation(), diag::err_type_defined_in_type_specifier)
18011 << Context.getTagDeclType(New);
18012 Invalid = true;
18013 }
18014
18015 if (!Invalid && getLangOpts().CPlusPlus && TUK == TUK_Definition &&
18016 DC->getDeclKind() == Decl::Enum) {
18017 Diag(New->getLocation(), diag::err_type_defined_in_enum)
18018 << Context.getTagDeclType(New);
18019 Invalid = true;
18020 }
18021
18022 // Maybe add qualifier info.
18023 if (SS.isNotEmpty()) {
18024 if (SS.isSet()) {
18025 // If this is either a declaration or a definition, check the
18026 // nested-name-specifier against the current context.
18027 if ((TUK == TUK_Definition || TUK == TUK_Declaration) &&
18028 diagnoseQualifiedDeclaration(SS, DC, OrigName, Loc,
18029 isMemberSpecialization))
18030 Invalid = true;
18031
18032 New->setQualifierInfo(SS.getWithLocInContext(Context));
18033 if (TemplateParameterLists.size() > 0) {
18034 New->setTemplateParameterListsInfo(Context, TemplateParameterLists);
18035 }
18036 }
18037 else
18038 Invalid = true;
18039 }
18040
18041 if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
18042 // Add alignment attributes if necessary; these attributes are checked when
18043 // the ASTContext lays out the structure.
18044 //
18045 // It is important for implementing the correct semantics that this
18046 // happen here (in ActOnTag). The #pragma pack stack is
18047 // maintained as a result of parser callbacks which can occur at
18048 // many points during the parsing of a struct declaration (because
18049 // the #pragma tokens are effectively skipped over during the
18050 // parsing of the struct).
18051 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
18052 AddAlignmentAttributesForRecord(RD);
18053 AddMsStructLayoutForRecord(RD);
18054 }
18055 }
18056
18057 if (ModulePrivateLoc.isValid()) {
18058 if (isMemberSpecialization)
18059 Diag(New->getLocation(), diag::err_module_private_specialization)
18060 << 2
18061 << FixItHint::CreateRemoval(ModulePrivateLoc);
18062 // __module_private__ does not apply to local classes. However, we only
18063 // diagnose this as an error when the declaration specifiers are
18064 // freestanding. Here, we just ignore the __module_private__.
18065 else if (!SearchDC->isFunctionOrMethod())
18066 New->setModulePrivate();
18067 }
18068
18069 // If this is a specialization of a member class (of a class template),
18070 // check the specialization.
18071 if (isMemberSpecialization && CheckMemberSpecialization(New, Previous))
18072 Invalid = true;
18073
18074 // If we're declaring or defining a tag in function prototype scope in C,
18075 // note that this type can only be used within the function and add it to
18076 // the list of decls to inject into the function definition scope.
18077 if ((Name || Kind == TagTypeKind::Enum) &&
18078 getNonFieldDeclScope(S)->isFunctionPrototypeScope()) {
18079 if (getLangOpts().CPlusPlus) {
18080 // C++ [dcl.fct]p6:
18081 // Types shall not be defined in return or parameter types.
18082 if (TUK == TUK_Definition && !IsTypeSpecifier) {
18083 Diag(Loc, diag::err_type_defined_in_param_type)
18084 << Name;
18085 Invalid = true;
18086 }
18087 } else if (!PrevDecl) {
18088 Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
18089 }
18090 }
18091
18092 if (Invalid)
18093 New->setInvalidDecl();
18094
18095 // Set the lexical context. If the tag has a C++ scope specifier, the
18096 // lexical context will be different from the semantic context.
18097 New->setLexicalDeclContext(CurContext);
18098
18099 // Mark this as a friend decl if applicable.
18100 // In Microsoft mode, a friend declaration also acts as a forward
18101 // declaration so we always pass true to setObjectOfFriendDecl to make
18102 // the tag name visible.
18103 if (TUK == TUK_Friend)
18104 New->setObjectOfFriendDecl(getLangOpts().MSVCCompat);
18105
18106 // Set the access specifier.
18107 if (!Invalid && SearchDC->isRecord())
18108 SetMemberAccessSpecifier(New, PrevDecl, AS);
18109
18110 if (PrevDecl)
18111 CheckRedeclarationInModule(New, PrevDecl);
18112
18113 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip))
18114 New->startDefinition();
18115
18116 ProcessDeclAttributeList(S, New, Attrs);
18117 AddPragmaAttributes(S, New);
18118
18119 // If this has an identifier, add it to the scope stack.
18120 if (TUK == TUK_Friend) {
18121 // We might be replacing an existing declaration in the lookup tables;
18122 // if so, borrow its access specifier.
18123 if (PrevDecl)
18124 New->setAccess(PrevDecl->getAccess());
18125
18126 DeclContext *DC = New->getDeclContext()->getRedeclContext();
18127 DC->makeDeclVisibleInContext(New);
18128 if (Name) // can be null along some error paths
18129 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
18130 PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
18131 } else if (Name) {
18132 S = getNonFieldDeclScope(S);
18133 PushOnScopeChains(New, S, true);
18134 } else {
18135 CurContext->addDecl(New);
18136 }
18137
18138 // If this is the C FILE type, notify the AST context.
18139 if (IdentifierInfo *II = New->getIdentifier())
18140 if (!New->isInvalidDecl() &&
18141 New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
18142 II->isStr("FILE"))
18143 Context.setFILEDecl(New);
18144
18145 if (PrevDecl)
18146 mergeDeclAttributes(New, PrevDecl);
18147
18148 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(New))
18149 inferGslOwnerPointerAttribute(CXXRD);
18150
18151 // If there's a #pragma GCC visibility in scope, set the visibility of this
18152 // record.
18153 AddPushedVisibilityAttribute(New);
18154
18155 if (isMemberSpecialization && !New->isInvalidDecl())
18156 CompleteMemberSpecialization(New, Previous);
18157
18158 OwnedDecl = true;
18159 // In C++, don't return an invalid declaration. We can't recover well from
18160 // the cases where we make the type anonymous.
18161 if (Invalid && getLangOpts().CPlusPlus) {
18162 if (New->isBeingDefined())
18163 if (auto RD = dyn_cast<RecordDecl>(New))
18164 RD->completeDefinition();
18165 return true;
18166 } else if (SkipBody && SkipBody->ShouldSkip) {
18167 return SkipBody->Previous;
18168 } else {
18169 return New;
18170 }
18171 }
18172
ActOnTagStartDefinition(Scope * S,Decl * TagD)18173 void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
18174 AdjustDeclIfTemplate(TagD);
18175 TagDecl *Tag = cast<TagDecl>(TagD);
18176
18177 // Enter the tag context.
18178 PushDeclContext(S, Tag);
18179
18180 ActOnDocumentableDecl(TagD);
18181
18182 // If there's a #pragma GCC visibility in scope, set the visibility of this
18183 // record.
18184 AddPushedVisibilityAttribute(Tag);
18185 }
18186
ActOnDuplicateDefinition(Decl * Prev,SkipBodyInfo & SkipBody)18187 bool Sema::ActOnDuplicateDefinition(Decl *Prev, SkipBodyInfo &SkipBody) {
18188 if (!hasStructuralCompatLayout(Prev, SkipBody.New))
18189 return false;
18190
18191 // Make the previous decl visible.
18192 makeMergedDefinitionVisible(SkipBody.Previous);
18193 return true;
18194 }
18195
ActOnObjCContainerStartDefinition(ObjCContainerDecl * IDecl)18196 void Sema::ActOnObjCContainerStartDefinition(ObjCContainerDecl *IDecl) {
18197 assert(IDecl->getLexicalParent() == CurContext &&
18198 "The next DeclContext should be lexically contained in the current one.");
18199 CurContext = IDecl;
18200 }
18201
ActOnStartCXXMemberDeclarations(Scope * S,Decl * TagD,SourceLocation FinalLoc,bool IsFinalSpelledSealed,bool IsAbstract,SourceLocation LBraceLoc)18202 void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
18203 SourceLocation FinalLoc,
18204 bool IsFinalSpelledSealed,
18205 bool IsAbstract,
18206 SourceLocation LBraceLoc) {
18207 AdjustDeclIfTemplate(TagD);
18208 CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
18209
18210 FieldCollector->StartClass();
18211
18212 if (!Record->getIdentifier())
18213 return;
18214
18215 if (IsAbstract)
18216 Record->markAbstract();
18217
18218 if (FinalLoc.isValid()) {
18219 Record->addAttr(FinalAttr::Create(Context, FinalLoc,
18220 IsFinalSpelledSealed
18221 ? FinalAttr::Keyword_sealed
18222 : FinalAttr::Keyword_final));
18223 }
18224 // C++ [class]p2:
18225 // [...] The class-name is also inserted into the scope of the
18226 // class itself; this is known as the injected-class-name. For
18227 // purposes of access checking, the injected-class-name is treated
18228 // as if it were a public member name.
18229 CXXRecordDecl *InjectedClassName = CXXRecordDecl::Create(
18230 Context, Record->getTagKind(), CurContext, Record->getBeginLoc(),
18231 Record->getLocation(), Record->getIdentifier(),
18232 /*PrevDecl=*/nullptr,
18233 /*DelayTypeCreation=*/true);
18234 Context.getTypeDeclType(InjectedClassName, Record);
18235 InjectedClassName->setImplicit();
18236 InjectedClassName->setAccess(AS_public);
18237 if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
18238 InjectedClassName->setDescribedClassTemplate(Template);
18239 PushOnScopeChains(InjectedClassName, S);
18240 assert(InjectedClassName->isInjectedClassName() &&
18241 "Broken injected-class-name");
18242 }
18243
ActOnTagFinishDefinition(Scope * S,Decl * TagD,SourceRange BraceRange)18244 void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
18245 SourceRange BraceRange) {
18246 AdjustDeclIfTemplate(TagD);
18247 TagDecl *Tag = cast<TagDecl>(TagD);
18248 Tag->setBraceRange(BraceRange);
18249
18250 // Make sure we "complete" the definition even it is invalid.
18251 if (Tag->isBeingDefined()) {
18252 assert(Tag->isInvalidDecl() && "We should already have completed it");
18253 if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
18254 RD->completeDefinition();
18255 }
18256
18257 if (auto *RD = dyn_cast<CXXRecordDecl>(Tag)) {
18258 FieldCollector->FinishClass();
18259 if (RD->hasAttr<SYCLSpecialClassAttr>()) {
18260 auto *Def = RD->getDefinition();
18261 assert(Def && "The record is expected to have a completed definition");
18262 unsigned NumInitMethods = 0;
18263 for (auto *Method : Def->methods()) {
18264 if (!Method->getIdentifier())
18265 continue;
18266 if (Method->getName() == "__init")
18267 NumInitMethods++;
18268 }
18269 if (NumInitMethods > 1 || !Def->hasInitMethod())
18270 Diag(RD->getLocation(), diag::err_sycl_special_type_num_init_method);
18271 }
18272 }
18273
18274 // Exit this scope of this tag's definition.
18275 PopDeclContext();
18276
18277 if (getCurLexicalContext()->isObjCContainer() &&
18278 Tag->getDeclContext()->isFileContext())
18279 Tag->setTopLevelDeclInObjCContainer();
18280
18281 // Notify the consumer that we've defined a tag.
18282 if (!Tag->isInvalidDecl())
18283 Consumer.HandleTagDeclDefinition(Tag);
18284
18285 // Clangs implementation of #pragma align(packed) differs in bitfield layout
18286 // from XLs and instead matches the XL #pragma pack(1) behavior.
18287 if (Context.getTargetInfo().getTriple().isOSAIX() &&
18288 AlignPackStack.hasValue()) {
18289 AlignPackInfo APInfo = AlignPackStack.CurrentValue;
18290 // Only diagnose #pragma align(packed).
18291 if (!APInfo.IsAlignAttr() || APInfo.getAlignMode() != AlignPackInfo::Packed)
18292 return;
18293 const RecordDecl *RD = dyn_cast<RecordDecl>(Tag);
18294 if (!RD)
18295 return;
18296 // Only warn if there is at least 1 bitfield member.
18297 if (llvm::any_of(RD->fields(),
18298 [](const FieldDecl *FD) { return FD->isBitField(); }))
18299 Diag(BraceRange.getBegin(), diag::warn_pragma_align_not_xl_compatible);
18300 }
18301 }
18302
ActOnObjCContainerFinishDefinition()18303 void Sema::ActOnObjCContainerFinishDefinition() {
18304 // Exit this scope of this interface definition.
18305 PopDeclContext();
18306 }
18307
ActOnObjCTemporaryExitContainerContext(ObjCContainerDecl * ObjCCtx)18308 void Sema::ActOnObjCTemporaryExitContainerContext(ObjCContainerDecl *ObjCCtx) {
18309 assert(ObjCCtx == CurContext && "Mismatch of container contexts");
18310 OriginalLexicalContext = ObjCCtx;
18311 ActOnObjCContainerFinishDefinition();
18312 }
18313
ActOnObjCReenterContainerContext(ObjCContainerDecl * ObjCCtx)18314 void Sema::ActOnObjCReenterContainerContext(ObjCContainerDecl *ObjCCtx) {
18315 ActOnObjCContainerStartDefinition(ObjCCtx);
18316 OriginalLexicalContext = nullptr;
18317 }
18318
ActOnTagDefinitionError(Scope * S,Decl * TagD)18319 void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
18320 AdjustDeclIfTemplate(TagD);
18321 TagDecl *Tag = cast<TagDecl>(TagD);
18322 Tag->setInvalidDecl();
18323
18324 // Make sure we "complete" the definition even it is invalid.
18325 if (Tag->isBeingDefined()) {
18326 if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
18327 RD->completeDefinition();
18328 }
18329
18330 // We're undoing ActOnTagStartDefinition here, not
18331 // ActOnStartCXXMemberDeclarations, so we don't have to mess with
18332 // the FieldCollector.
18333
18334 PopDeclContext();
18335 }
18336
18337 // Note that FieldName may be null for anonymous bitfields.
VerifyBitField(SourceLocation FieldLoc,IdentifierInfo * FieldName,QualType FieldTy,bool IsMsStruct,Expr * BitWidth)18338 ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
18339 IdentifierInfo *FieldName, QualType FieldTy,
18340 bool IsMsStruct, Expr *BitWidth) {
18341 assert(BitWidth);
18342 if (BitWidth->containsErrors())
18343 return ExprError();
18344
18345 // C99 6.7.2.1p4 - verify the field type.
18346 // C++ 9.6p3: A bit-field shall have integral or enumeration type.
18347 if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
18348 // Handle incomplete and sizeless types with a specific error.
18349 if (RequireCompleteSizedType(FieldLoc, FieldTy,
18350 diag::err_field_incomplete_or_sizeless))
18351 return ExprError();
18352 if (FieldName)
18353 return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
18354 << FieldName << FieldTy << BitWidth->getSourceRange();
18355 return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
18356 << FieldTy << BitWidth->getSourceRange();
18357 } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
18358 UPPC_BitFieldWidth))
18359 return ExprError();
18360
18361 // If the bit-width is type- or value-dependent, don't try to check
18362 // it now.
18363 if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
18364 return BitWidth;
18365
18366 llvm::APSInt Value;
18367 ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value, AllowFold);
18368 if (ICE.isInvalid())
18369 return ICE;
18370 BitWidth = ICE.get();
18371
18372 // Zero-width bitfield is ok for anonymous field.
18373 if (Value == 0 && FieldName)
18374 return Diag(FieldLoc, diag::err_bitfield_has_zero_width)
18375 << FieldName << BitWidth->getSourceRange();
18376
18377 if (Value.isSigned() && Value.isNegative()) {
18378 if (FieldName)
18379 return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
18380 << FieldName << toString(Value, 10);
18381 return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
18382 << toString(Value, 10);
18383 }
18384
18385 // The size of the bit-field must not exceed our maximum permitted object
18386 // size.
18387 if (Value.getActiveBits() > ConstantArrayType::getMaxSizeBits(Context)) {
18388 return Diag(FieldLoc, diag::err_bitfield_too_wide)
18389 << !FieldName << FieldName << toString(Value, 10);
18390 }
18391
18392 if (!FieldTy->isDependentType()) {
18393 uint64_t TypeStorageSize = Context.getTypeSize(FieldTy);
18394 uint64_t TypeWidth = Context.getIntWidth(FieldTy);
18395 bool BitfieldIsOverwide = Value.ugt(TypeWidth);
18396
18397 // Over-wide bitfields are an error in C or when using the MSVC bitfield
18398 // ABI.
18399 bool CStdConstraintViolation =
18400 BitfieldIsOverwide && !getLangOpts().CPlusPlus;
18401 bool MSBitfieldViolation =
18402 Value.ugt(TypeStorageSize) &&
18403 (IsMsStruct || Context.getTargetInfo().getCXXABI().isMicrosoft());
18404 if (CStdConstraintViolation || MSBitfieldViolation) {
18405 unsigned DiagWidth =
18406 CStdConstraintViolation ? TypeWidth : TypeStorageSize;
18407 return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_width)
18408 << (bool)FieldName << FieldName << toString(Value, 10)
18409 << !CStdConstraintViolation << DiagWidth;
18410 }
18411
18412 // Warn on types where the user might conceivably expect to get all
18413 // specified bits as value bits: that's all integral types other than
18414 // 'bool'.
18415 if (BitfieldIsOverwide && !FieldTy->isBooleanType() && FieldName) {
18416 Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_width)
18417 << FieldName << toString(Value, 10)
18418 << (unsigned)TypeWidth;
18419 }
18420 }
18421
18422 return BitWidth;
18423 }
18424
18425 /// ActOnField - Each field of a C struct/union is passed into this in order
18426 /// to create a FieldDecl object for it.
ActOnField(Scope * S,Decl * TagD,SourceLocation DeclStart,Declarator & D,Expr * BitfieldWidth)18427 Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
18428 Declarator &D, Expr *BitfieldWidth) {
18429 FieldDecl *Res = HandleField(S, cast_if_present<RecordDecl>(TagD), DeclStart,
18430 D, BitfieldWidth,
18431 /*InitStyle=*/ICIS_NoInit, AS_public);
18432 return Res;
18433 }
18434
18435 /// HandleField - Analyze a field of a C struct or a C++ data member.
18436 ///
HandleField(Scope * S,RecordDecl * Record,SourceLocation DeclStart,Declarator & D,Expr * BitWidth,InClassInitStyle InitStyle,AccessSpecifier AS)18437 FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
18438 SourceLocation DeclStart,
18439 Declarator &D, Expr *BitWidth,
18440 InClassInitStyle InitStyle,
18441 AccessSpecifier AS) {
18442 if (D.isDecompositionDeclarator()) {
18443 const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator();
18444 Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context)
18445 << Decomp.getSourceRange();
18446 return nullptr;
18447 }
18448
18449 IdentifierInfo *II = D.getIdentifier();
18450 SourceLocation Loc = DeclStart;
18451 if (II) Loc = D.getIdentifierLoc();
18452
18453 TypeSourceInfo *TInfo = GetTypeForDeclarator(D);
18454 QualType T = TInfo->getType();
18455 if (getLangOpts().CPlusPlus) {
18456 CheckExtraCXXDefaultArguments(D);
18457
18458 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
18459 UPPC_DataMemberType)) {
18460 D.setInvalidType();
18461 T = Context.IntTy;
18462 TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
18463 }
18464 }
18465
18466 DiagnoseFunctionSpecifiers(D.getDeclSpec());
18467
18468 if (D.getDeclSpec().isInlineSpecified())
18469 Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
18470 << getLangOpts().CPlusPlus17;
18471 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
18472 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
18473 diag::err_invalid_thread)
18474 << DeclSpec::getSpecifierName(TSCS);
18475
18476 // Check to see if this name was declared as a member previously
18477 NamedDecl *PrevDecl = nullptr;
18478 LookupResult Previous(*this, II, Loc, LookupMemberName,
18479 ForVisibleRedeclaration);
18480 LookupName(Previous, S);
18481 switch (Previous.getResultKind()) {
18482 case LookupResult::Found:
18483 case LookupResult::FoundUnresolvedValue:
18484 PrevDecl = Previous.getAsSingle<NamedDecl>();
18485 break;
18486
18487 case LookupResult::FoundOverloaded:
18488 PrevDecl = Previous.getRepresentativeDecl();
18489 break;
18490
18491 case LookupResult::NotFound:
18492 case LookupResult::NotFoundInCurrentInstantiation:
18493 case LookupResult::Ambiguous:
18494 break;
18495 }
18496 Previous.suppressDiagnostics();
18497
18498 if (PrevDecl && PrevDecl->isTemplateParameter()) {
18499 // Maybe we will complain about the shadowed template parameter.
18500 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
18501 // Just pretend that we didn't see the previous declaration.
18502 PrevDecl = nullptr;
18503 }
18504
18505 if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
18506 PrevDecl = nullptr;
18507
18508 bool Mutable
18509 = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
18510 SourceLocation TSSL = D.getBeginLoc();
18511 FieldDecl *NewFD
18512 = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
18513 TSSL, AS, PrevDecl, &D);
18514
18515 if (NewFD->isInvalidDecl())
18516 Record->setInvalidDecl();
18517
18518 if (D.getDeclSpec().isModulePrivateSpecified())
18519 NewFD->setModulePrivate();
18520
18521 if (NewFD->isInvalidDecl() && PrevDecl) {
18522 // Don't introduce NewFD into scope; there's already something
18523 // with the same name in the same scope.
18524 } else if (II) {
18525 PushOnScopeChains(NewFD, S);
18526 } else
18527 Record->addDecl(NewFD);
18528
18529 return NewFD;
18530 }
18531
18532 /// Build a new FieldDecl and check its well-formedness.
18533 ///
18534 /// This routine builds a new FieldDecl given the fields name, type,
18535 /// record, etc. \p PrevDecl should refer to any previous declaration
18536 /// with the same name and in the same scope as the field to be
18537 /// created.
18538 ///
18539 /// \returns a new FieldDecl.
18540 ///
18541 /// \todo The Declarator argument is a hack. It will be removed once
CheckFieldDecl(DeclarationName Name,QualType T,TypeSourceInfo * TInfo,RecordDecl * Record,SourceLocation Loc,bool Mutable,Expr * BitWidth,InClassInitStyle InitStyle,SourceLocation TSSL,AccessSpecifier AS,NamedDecl * PrevDecl,Declarator * D)18542 FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
18543 TypeSourceInfo *TInfo,
18544 RecordDecl *Record, SourceLocation Loc,
18545 bool Mutable, Expr *BitWidth,
18546 InClassInitStyle InitStyle,
18547 SourceLocation TSSL,
18548 AccessSpecifier AS, NamedDecl *PrevDecl,
18549 Declarator *D) {
18550 IdentifierInfo *II = Name.getAsIdentifierInfo();
18551 bool InvalidDecl = false;
18552 if (D) InvalidDecl = D->isInvalidType();
18553
18554 // If we receive a broken type, recover by assuming 'int' and
18555 // marking this declaration as invalid.
18556 if (T.isNull() || T->containsErrors()) {
18557 InvalidDecl = true;
18558 T = Context.IntTy;
18559 }
18560
18561 QualType EltTy = Context.getBaseElementType(T);
18562 if (!EltTy->isDependentType() && !EltTy->containsErrors()) {
18563 if (RequireCompleteSizedType(Loc, EltTy,
18564 diag::err_field_incomplete_or_sizeless)) {
18565 // Fields of incomplete type force their record to be invalid.
18566 Record->setInvalidDecl();
18567 InvalidDecl = true;
18568 } else {
18569 NamedDecl *Def;
18570 EltTy->isIncompleteType(&Def);
18571 if (Def && Def->isInvalidDecl()) {
18572 Record->setInvalidDecl();
18573 InvalidDecl = true;
18574 }
18575 }
18576 }
18577
18578 // TR 18037 does not allow fields to be declared with address space
18579 if (T.hasAddressSpace() || T->isDependentAddressSpaceType() ||
18580 T->getBaseElementTypeUnsafe()->isDependentAddressSpaceType()) {
18581 Diag(Loc, diag::err_field_with_address_space);
18582 Record->setInvalidDecl();
18583 InvalidDecl = true;
18584 }
18585
18586 if (LangOpts.OpenCL) {
18587 // OpenCL v1.2 s6.9b,r & OpenCL v2.0 s6.12.5 - The following types cannot be
18588 // used as structure or union field: image, sampler, event or block types.
18589 if (T->isEventT() || T->isImageType() || T->isSamplerT() ||
18590 T->isBlockPointerType()) {
18591 Diag(Loc, diag::err_opencl_type_struct_or_union_field) << T;
18592 Record->setInvalidDecl();
18593 InvalidDecl = true;
18594 }
18595 // OpenCL v1.2 s6.9.c: bitfields are not supported, unless Clang extension
18596 // is enabled.
18597 if (BitWidth && !getOpenCLOptions().isAvailableOption(
18598 "__cl_clang_bitfields", LangOpts)) {
18599 Diag(Loc, diag::err_opencl_bitfields);
18600 InvalidDecl = true;
18601 }
18602 }
18603
18604 // Anonymous bit-fields cannot be cv-qualified (CWG 2229).
18605 if (!InvalidDecl && getLangOpts().CPlusPlus && !II && BitWidth &&
18606 T.hasQualifiers()) {
18607 InvalidDecl = true;
18608 Diag(Loc, diag::err_anon_bitfield_qualifiers);
18609 }
18610
18611 // C99 6.7.2.1p8: A member of a structure or union may have any type other
18612 // than a variably modified type.
18613 if (!InvalidDecl && T->isVariablyModifiedType()) {
18614 if (!tryToFixVariablyModifiedVarType(
18615 TInfo, T, Loc, diag::err_typecheck_field_variable_size))
18616 InvalidDecl = true;
18617 }
18618
18619 // Fields can not have abstract class types
18620 if (!InvalidDecl && RequireNonAbstractType(Loc, T,
18621 diag::err_abstract_type_in_decl,
18622 AbstractFieldType))
18623 InvalidDecl = true;
18624
18625 if (InvalidDecl)
18626 BitWidth = nullptr;
18627 // If this is declared as a bit-field, check the bit-field.
18628 if (BitWidth) {
18629 BitWidth =
18630 VerifyBitField(Loc, II, T, Record->isMsStruct(Context), BitWidth).get();
18631 if (!BitWidth) {
18632 InvalidDecl = true;
18633 BitWidth = nullptr;
18634 }
18635 }
18636
18637 // Check that 'mutable' is consistent with the type of the declaration.
18638 if (!InvalidDecl && Mutable) {
18639 unsigned DiagID = 0;
18640 if (T->isReferenceType())
18641 DiagID = getLangOpts().MSVCCompat ? diag::ext_mutable_reference
18642 : diag::err_mutable_reference;
18643 else if (T.isConstQualified())
18644 DiagID = diag::err_mutable_const;
18645
18646 if (DiagID) {
18647 SourceLocation ErrLoc = Loc;
18648 if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
18649 ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
18650 Diag(ErrLoc, DiagID);
18651 if (DiagID != diag::ext_mutable_reference) {
18652 Mutable = false;
18653 InvalidDecl = true;
18654 }
18655 }
18656 }
18657
18658 // C++11 [class.union]p8 (DR1460):
18659 // At most one variant member of a union may have a
18660 // brace-or-equal-initializer.
18661 if (InitStyle != ICIS_NoInit)
18662 checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Record), Loc);
18663
18664 FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
18665 BitWidth, Mutable, InitStyle);
18666 if (InvalidDecl)
18667 NewFD->setInvalidDecl();
18668
18669 if (PrevDecl && !isa<TagDecl>(PrevDecl) &&
18670 !PrevDecl->isPlaceholderVar(getLangOpts())) {
18671 Diag(Loc, diag::err_duplicate_member) << II;
18672 Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
18673 NewFD->setInvalidDecl();
18674 }
18675
18676 if (!InvalidDecl && getLangOpts().CPlusPlus) {
18677 if (Record->isUnion()) {
18678 if (const RecordType *RT = EltTy->getAs<RecordType>()) {
18679 CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
18680 if (RDecl->getDefinition()) {
18681 // C++ [class.union]p1: An object of a class with a non-trivial
18682 // constructor, a non-trivial copy constructor, a non-trivial
18683 // destructor, or a non-trivial copy assignment operator
18684 // cannot be a member of a union, nor can an array of such
18685 // objects.
18686 if (CheckNontrivialField(NewFD))
18687 NewFD->setInvalidDecl();
18688 }
18689 }
18690
18691 // C++ [class.union]p1: If a union contains a member of reference type,
18692 // the program is ill-formed, except when compiling with MSVC extensions
18693 // enabled.
18694 if (EltTy->isReferenceType()) {
18695 Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
18696 diag::ext_union_member_of_reference_type :
18697 diag::err_union_member_of_reference_type)
18698 << NewFD->getDeclName() << EltTy;
18699 if (!getLangOpts().MicrosoftExt)
18700 NewFD->setInvalidDecl();
18701 }
18702 }
18703 }
18704
18705 // FIXME: We need to pass in the attributes given an AST
18706 // representation, not a parser representation.
18707 if (D) {
18708 // FIXME: The current scope is almost... but not entirely... correct here.
18709 ProcessDeclAttributes(getCurScope(), NewFD, *D);
18710
18711 if (NewFD->hasAttrs())
18712 CheckAlignasUnderalignment(NewFD);
18713 }
18714
18715 // In auto-retain/release, infer strong retension for fields of
18716 // retainable type.
18717 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
18718 NewFD->setInvalidDecl();
18719
18720 if (T.isObjCGCWeak())
18721 Diag(Loc, diag::warn_attribute_weak_on_field);
18722
18723 // PPC MMA non-pointer types are not allowed as field types.
18724 if (Context.getTargetInfo().getTriple().isPPC64() &&
18725 CheckPPCMMAType(T, NewFD->getLocation()))
18726 NewFD->setInvalidDecl();
18727
18728 NewFD->setAccess(AS);
18729 return NewFD;
18730 }
18731
CheckNontrivialField(FieldDecl * FD)18732 bool Sema::CheckNontrivialField(FieldDecl *FD) {
18733 assert(FD);
18734 assert(getLangOpts().CPlusPlus && "valid check only for C++");
18735
18736 if (FD->isInvalidDecl() || FD->getType()->isDependentType())
18737 return false;
18738
18739 QualType EltTy = Context.getBaseElementType(FD->getType());
18740 if (const RecordType *RT = EltTy->getAs<RecordType>()) {
18741 CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
18742 if (RDecl->getDefinition()) {
18743 // We check for copy constructors before constructors
18744 // because otherwise we'll never get complaints about
18745 // copy constructors.
18746
18747 CXXSpecialMember member = CXXInvalid;
18748 // We're required to check for any non-trivial constructors. Since the
18749 // implicit default constructor is suppressed if there are any
18750 // user-declared constructors, we just need to check that there is a
18751 // trivial default constructor and a trivial copy constructor. (We don't
18752 // worry about move constructors here, since this is a C++98 check.)
18753 if (RDecl->hasNonTrivialCopyConstructor())
18754 member = CXXCopyConstructor;
18755 else if (!RDecl->hasTrivialDefaultConstructor())
18756 member = CXXDefaultConstructor;
18757 else if (RDecl->hasNonTrivialCopyAssignment())
18758 member = CXXCopyAssignment;
18759 else if (RDecl->hasNonTrivialDestructor())
18760 member = CXXDestructor;
18761
18762 if (member != CXXInvalid) {
18763 if (!getLangOpts().CPlusPlus11 &&
18764 getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
18765 // Objective-C++ ARC: it is an error to have a non-trivial field of
18766 // a union. However, system headers in Objective-C programs
18767 // occasionally have Objective-C lifetime objects within unions,
18768 // and rather than cause the program to fail, we make those
18769 // members unavailable.
18770 SourceLocation Loc = FD->getLocation();
18771 if (getSourceManager().isInSystemHeader(Loc)) {
18772 if (!FD->hasAttr<UnavailableAttr>())
18773 FD->addAttr(UnavailableAttr::CreateImplicit(Context, "",
18774 UnavailableAttr::IR_ARCFieldWithOwnership, Loc));
18775 return false;
18776 }
18777 }
18778
18779 Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ?
18780 diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
18781 diag::err_illegal_union_or_anon_struct_member)
18782 << FD->getParent()->isUnion() << FD->getDeclName() << member;
18783 DiagnoseNontrivial(RDecl, member);
18784 return !getLangOpts().CPlusPlus11;
18785 }
18786 }
18787 }
18788
18789 return false;
18790 }
18791
18792 /// TranslateIvarVisibility - Translate visibility from a token ID to an
18793 /// AST enum value.
18794 static ObjCIvarDecl::AccessControl
TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility)18795 TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
18796 switch (ivarVisibility) {
18797 default: llvm_unreachable("Unknown visitibility kind");
18798 case tok::objc_private: return ObjCIvarDecl::Private;
18799 case tok::objc_public: return ObjCIvarDecl::Public;
18800 case tok::objc_protected: return ObjCIvarDecl::Protected;
18801 case tok::objc_package: return ObjCIvarDecl::Package;
18802 }
18803 }
18804
18805 /// ActOnIvar - Each ivar field of an objective-c class is passed into this
18806 /// in order to create an IvarDecl object for it.
ActOnIvar(Scope * S,SourceLocation DeclStart,Declarator & D,Expr * BitWidth,tok::ObjCKeywordKind Visibility)18807 Decl *Sema::ActOnIvar(Scope *S, SourceLocation DeclStart, Declarator &D,
18808 Expr *BitWidth, tok::ObjCKeywordKind Visibility) {
18809
18810 IdentifierInfo *II = D.getIdentifier();
18811 SourceLocation Loc = DeclStart;
18812 if (II) Loc = D.getIdentifierLoc();
18813
18814 // FIXME: Unnamed fields can be handled in various different ways, for
18815 // example, unnamed unions inject all members into the struct namespace!
18816
18817 TypeSourceInfo *TInfo = GetTypeForDeclarator(D);
18818 QualType T = TInfo->getType();
18819
18820 if (BitWidth) {
18821 // 6.7.2.1p3, 6.7.2.1p4
18822 BitWidth = VerifyBitField(Loc, II, T, /*IsMsStruct*/false, BitWidth).get();
18823 if (!BitWidth)
18824 D.setInvalidType();
18825 } else {
18826 // Not a bitfield.
18827
18828 // validate II.
18829
18830 }
18831 if (T->isReferenceType()) {
18832 Diag(Loc, diag::err_ivar_reference_type);
18833 D.setInvalidType();
18834 }
18835 // C99 6.7.2.1p8: A member of a structure or union may have any type other
18836 // than a variably modified type.
18837 else if (T->isVariablyModifiedType()) {
18838 if (!tryToFixVariablyModifiedVarType(
18839 TInfo, T, Loc, diag::err_typecheck_ivar_variable_size))
18840 D.setInvalidType();
18841 }
18842
18843 // Get the visibility (access control) for this ivar.
18844 ObjCIvarDecl::AccessControl ac =
18845 Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
18846 : ObjCIvarDecl::None;
18847 // Must set ivar's DeclContext to its enclosing interface.
18848 ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
18849 if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
18850 return nullptr;
18851 ObjCContainerDecl *EnclosingContext;
18852 if (ObjCImplementationDecl *IMPDecl =
18853 dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
18854 if (LangOpts.ObjCRuntime.isFragile()) {
18855 // Case of ivar declared in an implementation. Context is that of its class.
18856 EnclosingContext = IMPDecl->getClassInterface();
18857 assert(EnclosingContext && "Implementation has no class interface!");
18858 }
18859 else
18860 EnclosingContext = EnclosingDecl;
18861 } else {
18862 if (ObjCCategoryDecl *CDecl =
18863 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
18864 if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
18865 Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
18866 return nullptr;
18867 }
18868 }
18869 EnclosingContext = EnclosingDecl;
18870 }
18871
18872 // Construct the decl.
18873 ObjCIvarDecl *NewID = ObjCIvarDecl::Create(
18874 Context, EnclosingContext, DeclStart, Loc, II, T, TInfo, ac, BitWidth);
18875
18876 if (T->containsErrors())
18877 NewID->setInvalidDecl();
18878
18879 if (II) {
18880 NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
18881 ForVisibleRedeclaration);
18882 if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
18883 && !isa<TagDecl>(PrevDecl)) {
18884 Diag(Loc, diag::err_duplicate_member) << II;
18885 Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
18886 NewID->setInvalidDecl();
18887 }
18888 }
18889
18890 // Process attributes attached to the ivar.
18891 ProcessDeclAttributes(S, NewID, D);
18892
18893 if (D.isInvalidType())
18894 NewID->setInvalidDecl();
18895
18896 // In ARC, infer 'retaining' for ivars of retainable type.
18897 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
18898 NewID->setInvalidDecl();
18899
18900 if (D.getDeclSpec().isModulePrivateSpecified())
18901 NewID->setModulePrivate();
18902
18903 if (II) {
18904 // FIXME: When interfaces are DeclContexts, we'll need to add
18905 // these to the interface.
18906 S->AddDecl(NewID);
18907 IdResolver.AddDecl(NewID);
18908 }
18909
18910 if (LangOpts.ObjCRuntime.isNonFragile() &&
18911 !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
18912 Diag(Loc, diag::warn_ivars_in_interface);
18913
18914 return NewID;
18915 }
18916
18917 /// ActOnLastBitfield - This routine handles synthesized bitfields rules for
18918 /// class and class extensions. For every class \@interface and class
18919 /// extension \@interface, if the last ivar is a bitfield of any type,
18920 /// then add an implicit `char :0` ivar to the end of that interface.
ActOnLastBitfield(SourceLocation DeclLoc,SmallVectorImpl<Decl * > & AllIvarDecls)18921 void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
18922 SmallVectorImpl<Decl *> &AllIvarDecls) {
18923 if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
18924 return;
18925
18926 Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
18927 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
18928
18929 if (!Ivar->isBitField() || Ivar->isZeroLengthBitField(Context))
18930 return;
18931 ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
18932 if (!ID) {
18933 if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
18934 if (!CD->IsClassExtension())
18935 return;
18936 }
18937 // No need to add this to end of @implementation.
18938 else
18939 return;
18940 }
18941 // All conditions are met. Add a new bitfield to the tail end of ivars.
18942 llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
18943 Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
18944
18945 Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
18946 DeclLoc, DeclLoc, nullptr,
18947 Context.CharTy,
18948 Context.getTrivialTypeSourceInfo(Context.CharTy,
18949 DeclLoc),
18950 ObjCIvarDecl::Private, BW,
18951 true);
18952 AllIvarDecls.push_back(Ivar);
18953 }
18954
18955 /// [class.dtor]p4:
18956 /// At the end of the definition of a class, overload resolution is
18957 /// performed among the prospective destructors declared in that class with
18958 /// an empty argument list to select the destructor for the class, also
18959 /// known as the selected destructor.
18960 ///
18961 /// We do the overload resolution here, then mark the selected constructor in the AST.
18962 /// Later CXXRecordDecl::getDestructor() will return the selected constructor.
ComputeSelectedDestructor(Sema & S,CXXRecordDecl * Record)18963 static void ComputeSelectedDestructor(Sema &S, CXXRecordDecl *Record) {
18964 if (!Record->hasUserDeclaredDestructor()) {
18965 return;
18966 }
18967
18968 SourceLocation Loc = Record->getLocation();
18969 OverloadCandidateSet OCS(Loc, OverloadCandidateSet::CSK_Normal);
18970
18971 for (auto *Decl : Record->decls()) {
18972 if (auto *DD = dyn_cast<CXXDestructorDecl>(Decl)) {
18973 if (DD->isInvalidDecl())
18974 continue;
18975 S.AddOverloadCandidate(DD, DeclAccessPair::make(DD, DD->getAccess()), {},
18976 OCS);
18977 assert(DD->isIneligibleOrNotSelected() && "Selecting a destructor but a destructor was already selected.");
18978 }
18979 }
18980
18981 if (OCS.empty()) {
18982 return;
18983 }
18984 OverloadCandidateSet::iterator Best;
18985 unsigned Msg = 0;
18986 OverloadCandidateDisplayKind DisplayKind;
18987
18988 switch (OCS.BestViableFunction(S, Loc, Best)) {
18989 case OR_Success:
18990 case OR_Deleted:
18991 Record->addedSelectedDestructor(dyn_cast<CXXDestructorDecl>(Best->Function));
18992 break;
18993
18994 case OR_Ambiguous:
18995 Msg = diag::err_ambiguous_destructor;
18996 DisplayKind = OCD_AmbiguousCandidates;
18997 break;
18998
18999 case OR_No_Viable_Function:
19000 Msg = diag::err_no_viable_destructor;
19001 DisplayKind = OCD_AllCandidates;
19002 break;
19003 }
19004
19005 if (Msg) {
19006 // OpenCL have got their own thing going with destructors. It's slightly broken,
19007 // but we allow it.
19008 if (!S.LangOpts.OpenCL) {
19009 PartialDiagnostic Diag = S.PDiag(Msg) << Record;
19010 OCS.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S, DisplayKind, {});
19011 Record->setInvalidDecl();
19012 }
19013 // It's a bit hacky: At this point we've raised an error but we want the
19014 // rest of the compiler to continue somehow working. However almost
19015 // everything we'll try to do with the class will depend on there being a
19016 // destructor. So let's pretend the first one is selected and hope for the
19017 // best.
19018 Record->addedSelectedDestructor(dyn_cast<CXXDestructorDecl>(OCS.begin()->Function));
19019 }
19020 }
19021
19022 /// [class.mem.special]p5
19023 /// Two special member functions are of the same kind if:
19024 /// - they are both default constructors,
19025 /// - they are both copy or move constructors with the same first parameter
19026 /// type, or
19027 /// - they are both copy or move assignment operators with the same first
19028 /// parameter type and the same cv-qualifiers and ref-qualifier, if any.
AreSpecialMemberFunctionsSameKind(ASTContext & Context,CXXMethodDecl * M1,CXXMethodDecl * M2,Sema::CXXSpecialMember CSM)19029 static bool AreSpecialMemberFunctionsSameKind(ASTContext &Context,
19030 CXXMethodDecl *M1,
19031 CXXMethodDecl *M2,
19032 Sema::CXXSpecialMember CSM) {
19033 // We don't want to compare templates to non-templates: See
19034 // https://github.com/llvm/llvm-project/issues/59206
19035 if (CSM == Sema::CXXDefaultConstructor)
19036 return bool(M1->getDescribedFunctionTemplate()) ==
19037 bool(M2->getDescribedFunctionTemplate());
19038 // FIXME: better resolve CWG
19039 // https://cplusplus.github.io/CWG/issues/2787.html
19040 if (!Context.hasSameType(M1->getNonObjectParameter(0)->getType(),
19041 M2->getNonObjectParameter(0)->getType()))
19042 return false;
19043 if (!Context.hasSameType(M1->getFunctionObjectParameterReferenceType(),
19044 M2->getFunctionObjectParameterReferenceType()))
19045 return false;
19046
19047 return true;
19048 }
19049
19050 /// [class.mem.special]p6:
19051 /// An eligible special member function is a special member function for which:
19052 /// - the function is not deleted,
19053 /// - the associated constraints, if any, are satisfied, and
19054 /// - no special member function of the same kind whose associated constraints
19055 /// [CWG2595], if any, are satisfied is more constrained.
SetEligibleMethods(Sema & S,CXXRecordDecl * Record,ArrayRef<CXXMethodDecl * > Methods,Sema::CXXSpecialMember CSM)19056 static void SetEligibleMethods(Sema &S, CXXRecordDecl *Record,
19057 ArrayRef<CXXMethodDecl *> Methods,
19058 Sema::CXXSpecialMember CSM) {
19059 SmallVector<bool, 4> SatisfactionStatus;
19060
19061 for (CXXMethodDecl *Method : Methods) {
19062 const Expr *Constraints = Method->getTrailingRequiresClause();
19063 if (!Constraints)
19064 SatisfactionStatus.push_back(true);
19065 else {
19066 ConstraintSatisfaction Satisfaction;
19067 if (S.CheckFunctionConstraints(Method, Satisfaction))
19068 SatisfactionStatus.push_back(false);
19069 else
19070 SatisfactionStatus.push_back(Satisfaction.IsSatisfied);
19071 }
19072 }
19073
19074 for (size_t i = 0; i < Methods.size(); i++) {
19075 if (!SatisfactionStatus[i])
19076 continue;
19077 CXXMethodDecl *Method = Methods[i];
19078 CXXMethodDecl *OrigMethod = Method;
19079 if (FunctionDecl *MF = OrigMethod->getInstantiatedFromMemberFunction())
19080 OrigMethod = cast<CXXMethodDecl>(MF);
19081
19082 const Expr *Constraints = OrigMethod->getTrailingRequiresClause();
19083 bool AnotherMethodIsMoreConstrained = false;
19084 for (size_t j = 0; j < Methods.size(); j++) {
19085 if (i == j || !SatisfactionStatus[j])
19086 continue;
19087 CXXMethodDecl *OtherMethod = Methods[j];
19088 if (FunctionDecl *MF = OtherMethod->getInstantiatedFromMemberFunction())
19089 OtherMethod = cast<CXXMethodDecl>(MF);
19090
19091 if (!AreSpecialMemberFunctionsSameKind(S.Context, OrigMethod, OtherMethod,
19092 CSM))
19093 continue;
19094
19095 const Expr *OtherConstraints = OtherMethod->getTrailingRequiresClause();
19096 if (!OtherConstraints)
19097 continue;
19098 if (!Constraints) {
19099 AnotherMethodIsMoreConstrained = true;
19100 break;
19101 }
19102 if (S.IsAtLeastAsConstrained(OtherMethod, {OtherConstraints}, OrigMethod,
19103 {Constraints},
19104 AnotherMethodIsMoreConstrained)) {
19105 // There was an error with the constraints comparison. Exit the loop
19106 // and don't consider this function eligible.
19107 AnotherMethodIsMoreConstrained = true;
19108 }
19109 if (AnotherMethodIsMoreConstrained)
19110 break;
19111 }
19112 // FIXME: Do not consider deleted methods as eligible after implementing
19113 // DR1734 and DR1496.
19114 if (!AnotherMethodIsMoreConstrained) {
19115 Method->setIneligibleOrNotSelected(false);
19116 Record->addedEligibleSpecialMemberFunction(Method, 1 << CSM);
19117 }
19118 }
19119 }
19120
ComputeSpecialMemberFunctionsEligiblity(Sema & S,CXXRecordDecl * Record)19121 static void ComputeSpecialMemberFunctionsEligiblity(Sema &S,
19122 CXXRecordDecl *Record) {
19123 SmallVector<CXXMethodDecl *, 4> DefaultConstructors;
19124 SmallVector<CXXMethodDecl *, 4> CopyConstructors;
19125 SmallVector<CXXMethodDecl *, 4> MoveConstructors;
19126 SmallVector<CXXMethodDecl *, 4> CopyAssignmentOperators;
19127 SmallVector<CXXMethodDecl *, 4> MoveAssignmentOperators;
19128
19129 for (auto *Decl : Record->decls()) {
19130 auto *MD = dyn_cast<CXXMethodDecl>(Decl);
19131 if (!MD) {
19132 auto *FTD = dyn_cast<FunctionTemplateDecl>(Decl);
19133 if (FTD)
19134 MD = dyn_cast<CXXMethodDecl>(FTD->getTemplatedDecl());
19135 }
19136 if (!MD)
19137 continue;
19138 if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
19139 if (CD->isInvalidDecl())
19140 continue;
19141 if (CD->isDefaultConstructor())
19142 DefaultConstructors.push_back(MD);
19143 else if (CD->isCopyConstructor())
19144 CopyConstructors.push_back(MD);
19145 else if (CD->isMoveConstructor())
19146 MoveConstructors.push_back(MD);
19147 } else if (MD->isCopyAssignmentOperator()) {
19148 CopyAssignmentOperators.push_back(MD);
19149 } else if (MD->isMoveAssignmentOperator()) {
19150 MoveAssignmentOperators.push_back(MD);
19151 }
19152 }
19153
19154 SetEligibleMethods(S, Record, DefaultConstructors,
19155 Sema::CXXDefaultConstructor);
19156 SetEligibleMethods(S, Record, CopyConstructors, Sema::CXXCopyConstructor);
19157 SetEligibleMethods(S, Record, MoveConstructors, Sema::CXXMoveConstructor);
19158 SetEligibleMethods(S, Record, CopyAssignmentOperators,
19159 Sema::CXXCopyAssignment);
19160 SetEligibleMethods(S, Record, MoveAssignmentOperators,
19161 Sema::CXXMoveAssignment);
19162 }
19163
ActOnFields(Scope * S,SourceLocation RecLoc,Decl * EnclosingDecl,ArrayRef<Decl * > Fields,SourceLocation LBrac,SourceLocation RBrac,const ParsedAttributesView & Attrs)19164 void Sema::ActOnFields(Scope *S, SourceLocation RecLoc, Decl *EnclosingDecl,
19165 ArrayRef<Decl *> Fields, SourceLocation LBrac,
19166 SourceLocation RBrac,
19167 const ParsedAttributesView &Attrs) {
19168 assert(EnclosingDecl && "missing record or interface decl");
19169
19170 // If this is an Objective-C @implementation or category and we have
19171 // new fields here we should reset the layout of the interface since
19172 // it will now change.
19173 if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
19174 ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
19175 switch (DC->getKind()) {
19176 default: break;
19177 case Decl::ObjCCategory:
19178 Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
19179 break;
19180 case Decl::ObjCImplementation:
19181 Context.
19182 ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
19183 break;
19184 }
19185 }
19186
19187 RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
19188 CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(EnclosingDecl);
19189
19190 // Start counting up the number of named members; make sure to include
19191 // members of anonymous structs and unions in the total.
19192 unsigned NumNamedMembers = 0;
19193 if (Record) {
19194 for (const auto *I : Record->decls()) {
19195 if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
19196 if (IFD->getDeclName())
19197 ++NumNamedMembers;
19198 }
19199 }
19200
19201 // Verify that all the fields are okay.
19202 SmallVector<FieldDecl*, 32> RecFields;
19203
19204 for (ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
19205 i != end; ++i) {
19206 FieldDecl *FD = cast<FieldDecl>(*i);
19207
19208 // Get the type for the field.
19209 const Type *FDTy = FD->getType().getTypePtr();
19210
19211 if (!FD->isAnonymousStructOrUnion()) {
19212 // Remember all fields written by the user.
19213 RecFields.push_back(FD);
19214 }
19215
19216 // If the field is already invalid for some reason, don't emit more
19217 // diagnostics about it.
19218 if (FD->isInvalidDecl()) {
19219 EnclosingDecl->setInvalidDecl();
19220 continue;
19221 }
19222
19223 // C99 6.7.2.1p2:
19224 // A structure or union shall not contain a member with
19225 // incomplete or function type (hence, a structure shall not
19226 // contain an instance of itself, but may contain a pointer to
19227 // an instance of itself), except that the last member of a
19228 // structure with more than one named member may have incomplete
19229 // array type; such a structure (and any union containing,
19230 // possibly recursively, a member that is such a structure)
19231 // shall not be a member of a structure or an element of an
19232 // array.
19233 bool IsLastField = (i + 1 == Fields.end());
19234 if (FDTy->isFunctionType()) {
19235 // Field declared as a function.
19236 Diag(FD->getLocation(), diag::err_field_declared_as_function)
19237 << FD->getDeclName();
19238 FD->setInvalidDecl();
19239 EnclosingDecl->setInvalidDecl();
19240 continue;
19241 } else if (FDTy->isIncompleteArrayType() &&
19242 (Record || isa<ObjCContainerDecl>(EnclosingDecl))) {
19243 if (Record) {
19244 // Flexible array member.
19245 // Microsoft and g++ is more permissive regarding flexible array.
19246 // It will accept flexible array in union and also
19247 // as the sole element of a struct/class.
19248 unsigned DiagID = 0;
19249 if (!Record->isUnion() && !IsLastField) {
19250 Diag(FD->getLocation(), diag::err_flexible_array_not_at_end)
19251 << FD->getDeclName() << FD->getType()
19252 << llvm::to_underlying(Record->getTagKind());
19253 Diag((*(i + 1))->getLocation(), diag::note_next_field_declaration);
19254 FD->setInvalidDecl();
19255 EnclosingDecl->setInvalidDecl();
19256 continue;
19257 } else if (Record->isUnion())
19258 DiagID = getLangOpts().MicrosoftExt
19259 ? diag::ext_flexible_array_union_ms
19260 : getLangOpts().CPlusPlus
19261 ? diag::ext_flexible_array_union_gnu
19262 : diag::err_flexible_array_union;
19263 else if (NumNamedMembers < 1)
19264 DiagID = getLangOpts().MicrosoftExt
19265 ? diag::ext_flexible_array_empty_aggregate_ms
19266 : getLangOpts().CPlusPlus
19267 ? diag::ext_flexible_array_empty_aggregate_gnu
19268 : diag::err_flexible_array_empty_aggregate;
19269
19270 if (DiagID)
19271 Diag(FD->getLocation(), DiagID)
19272 << FD->getDeclName() << llvm::to_underlying(Record->getTagKind());
19273 // While the layout of types that contain virtual bases is not specified
19274 // by the C++ standard, both the Itanium and Microsoft C++ ABIs place
19275 // virtual bases after the derived members. This would make a flexible
19276 // array member declared at the end of an object not adjacent to the end
19277 // of the type.
19278 if (CXXRecord && CXXRecord->getNumVBases() != 0)
19279 Diag(FD->getLocation(), diag::err_flexible_array_virtual_base)
19280 << FD->getDeclName() << llvm::to_underlying(Record->getTagKind());
19281 if (!getLangOpts().C99)
19282 Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
19283 << FD->getDeclName() << llvm::to_underlying(Record->getTagKind());
19284
19285 // If the element type has a non-trivial destructor, we would not
19286 // implicitly destroy the elements, so disallow it for now.
19287 //
19288 // FIXME: GCC allows this. We should probably either implicitly delete
19289 // the destructor of the containing class, or just allow this.
19290 QualType BaseElem = Context.getBaseElementType(FD->getType());
19291 if (!BaseElem->isDependentType() && BaseElem.isDestructedType()) {
19292 Diag(FD->getLocation(), diag::err_flexible_array_has_nontrivial_dtor)
19293 << FD->getDeclName() << FD->getType();
19294 FD->setInvalidDecl();
19295 EnclosingDecl->setInvalidDecl();
19296 continue;
19297 }
19298 // Okay, we have a legal flexible array member at the end of the struct.
19299 Record->setHasFlexibleArrayMember(true);
19300 } else {
19301 // In ObjCContainerDecl ivars with incomplete array type are accepted,
19302 // unless they are followed by another ivar. That check is done
19303 // elsewhere, after synthesized ivars are known.
19304 }
19305 } else if (!FDTy->isDependentType() &&
19306 RequireCompleteSizedType(
19307 FD->getLocation(), FD->getType(),
19308 diag::err_field_incomplete_or_sizeless)) {
19309 // Incomplete type
19310 FD->setInvalidDecl();
19311 EnclosingDecl->setInvalidDecl();
19312 continue;
19313 } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
19314 if (Record && FDTTy->getDecl()->hasFlexibleArrayMember()) {
19315 // A type which contains a flexible array member is considered to be a
19316 // flexible array member.
19317 Record->setHasFlexibleArrayMember(true);
19318 if (!Record->isUnion()) {
19319 // If this is a struct/class and this is not the last element, reject
19320 // it. Note that GCC supports variable sized arrays in the middle of
19321 // structures.
19322 if (!IsLastField)
19323 Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
19324 << FD->getDeclName() << FD->getType();
19325 else {
19326 // We support flexible arrays at the end of structs in
19327 // other structs as an extension.
19328 Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
19329 << FD->getDeclName();
19330 }
19331 }
19332 }
19333 if (isa<ObjCContainerDecl>(EnclosingDecl) &&
19334 RequireNonAbstractType(FD->getLocation(), FD->getType(),
19335 diag::err_abstract_type_in_decl,
19336 AbstractIvarType)) {
19337 // Ivars can not have abstract class types
19338 FD->setInvalidDecl();
19339 }
19340 if (Record && FDTTy->getDecl()->hasObjectMember())
19341 Record->setHasObjectMember(true);
19342 if (Record && FDTTy->getDecl()->hasVolatileMember())
19343 Record->setHasVolatileMember(true);
19344 } else if (FDTy->isObjCObjectType()) {
19345 /// A field cannot be an Objective-c object
19346 Diag(FD->getLocation(), diag::err_statically_allocated_object)
19347 << FixItHint::CreateInsertion(FD->getLocation(), "*");
19348 QualType T = Context.getObjCObjectPointerType(FD->getType());
19349 FD->setType(T);
19350 } else if (Record && Record->isUnion() &&
19351 FD->getType().hasNonTrivialObjCLifetime() &&
19352 getSourceManager().isInSystemHeader(FD->getLocation()) &&
19353 !getLangOpts().CPlusPlus && !FD->hasAttr<UnavailableAttr>() &&
19354 (FD->getType().getObjCLifetime() != Qualifiers::OCL_Strong ||
19355 !Context.hasDirectOwnershipQualifier(FD->getType()))) {
19356 // For backward compatibility, fields of C unions declared in system
19357 // headers that have non-trivial ObjC ownership qualifications are marked
19358 // as unavailable unless the qualifier is explicit and __strong. This can
19359 // break ABI compatibility between programs compiled with ARC and MRR, but
19360 // is a better option than rejecting programs using those unions under
19361 // ARC.
19362 FD->addAttr(UnavailableAttr::CreateImplicit(
19363 Context, "", UnavailableAttr::IR_ARCFieldWithOwnership,
19364 FD->getLocation()));
19365 } else if (getLangOpts().ObjC &&
19366 getLangOpts().getGC() != LangOptions::NonGC && Record &&
19367 !Record->hasObjectMember()) {
19368 if (FD->getType()->isObjCObjectPointerType() ||
19369 FD->getType().isObjCGCStrong())
19370 Record->setHasObjectMember(true);
19371 else if (Context.getAsArrayType(FD->getType())) {
19372 QualType BaseType = Context.getBaseElementType(FD->getType());
19373 if (BaseType->isRecordType() &&
19374 BaseType->castAs<RecordType>()->getDecl()->hasObjectMember())
19375 Record->setHasObjectMember(true);
19376 else if (BaseType->isObjCObjectPointerType() ||
19377 BaseType.isObjCGCStrong())
19378 Record->setHasObjectMember(true);
19379 }
19380 }
19381
19382 if (Record && !getLangOpts().CPlusPlus &&
19383 !shouldIgnoreForRecordTriviality(FD)) {
19384 QualType FT = FD->getType();
19385 if (FT.isNonTrivialToPrimitiveDefaultInitialize()) {
19386 Record->setNonTrivialToPrimitiveDefaultInitialize(true);
19387 if (FT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
19388 Record->isUnion())
19389 Record->setHasNonTrivialToPrimitiveDefaultInitializeCUnion(true);
19390 }
19391 QualType::PrimitiveCopyKind PCK = FT.isNonTrivialToPrimitiveCopy();
19392 if (PCK != QualType::PCK_Trivial && PCK != QualType::PCK_VolatileTrivial) {
19393 Record->setNonTrivialToPrimitiveCopy(true);
19394 if (FT.hasNonTrivialToPrimitiveCopyCUnion() || Record->isUnion())
19395 Record->setHasNonTrivialToPrimitiveCopyCUnion(true);
19396 }
19397 if (FT.isDestructedType()) {
19398 Record->setNonTrivialToPrimitiveDestroy(true);
19399 Record->setParamDestroyedInCallee(true);
19400 if (FT.hasNonTrivialToPrimitiveDestructCUnion() || Record->isUnion())
19401 Record->setHasNonTrivialToPrimitiveDestructCUnion(true);
19402 }
19403
19404 if (const auto *RT = FT->getAs<RecordType>()) {
19405 if (RT->getDecl()->getArgPassingRestrictions() ==
19406 RecordArgPassingKind::CanNeverPassInRegs)
19407 Record->setArgPassingRestrictions(
19408 RecordArgPassingKind::CanNeverPassInRegs);
19409 } else if (FT.getQualifiers().getObjCLifetime() == Qualifiers::OCL_Weak)
19410 Record->setArgPassingRestrictions(
19411 RecordArgPassingKind::CanNeverPassInRegs);
19412 }
19413
19414 if (Record && FD->getType().isVolatileQualified())
19415 Record->setHasVolatileMember(true);
19416 // Keep track of the number of named members.
19417 if (FD->getIdentifier())
19418 ++NumNamedMembers;
19419 }
19420
19421 // Okay, we successfully defined 'Record'.
19422 if (Record) {
19423 bool Completed = false;
19424 if (CXXRecord) {
19425 if (!CXXRecord->isInvalidDecl()) {
19426 // Set access bits correctly on the directly-declared conversions.
19427 for (CXXRecordDecl::conversion_iterator
19428 I = CXXRecord->conversion_begin(),
19429 E = CXXRecord->conversion_end(); I != E; ++I)
19430 I.setAccess((*I)->getAccess());
19431 }
19432
19433 // Add any implicitly-declared members to this class.
19434 AddImplicitlyDeclaredMembersToClass(CXXRecord);
19435
19436 if (!CXXRecord->isDependentType()) {
19437 if (!CXXRecord->isInvalidDecl()) {
19438 // If we have virtual base classes, we may end up finding multiple
19439 // final overriders for a given virtual function. Check for this
19440 // problem now.
19441 if (CXXRecord->getNumVBases()) {
19442 CXXFinalOverriderMap FinalOverriders;
19443 CXXRecord->getFinalOverriders(FinalOverriders);
19444
19445 for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
19446 MEnd = FinalOverriders.end();
19447 M != MEnd; ++M) {
19448 for (OverridingMethods::iterator SO = M->second.begin(),
19449 SOEnd = M->second.end();
19450 SO != SOEnd; ++SO) {
19451 assert(SO->second.size() > 0 &&
19452 "Virtual function without overriding functions?");
19453 if (SO->second.size() == 1)
19454 continue;
19455
19456 // C++ [class.virtual]p2:
19457 // In a derived class, if a virtual member function of a base
19458 // class subobject has more than one final overrider the
19459 // program is ill-formed.
19460 Diag(Record->getLocation(), diag::err_multiple_final_overriders)
19461 << (const NamedDecl *)M->first << Record;
19462 Diag(M->first->getLocation(),
19463 diag::note_overridden_virtual_function);
19464 for (OverridingMethods::overriding_iterator
19465 OM = SO->second.begin(),
19466 OMEnd = SO->second.end();
19467 OM != OMEnd; ++OM)
19468 Diag(OM->Method->getLocation(), diag::note_final_overrider)
19469 << (const NamedDecl *)M->first << OM->Method->getParent();
19470
19471 Record->setInvalidDecl();
19472 }
19473 }
19474 CXXRecord->completeDefinition(&FinalOverriders);
19475 Completed = true;
19476 }
19477 }
19478 ComputeSelectedDestructor(*this, CXXRecord);
19479 ComputeSpecialMemberFunctionsEligiblity(*this, CXXRecord);
19480 }
19481 }
19482
19483 if (!Completed)
19484 Record->completeDefinition();
19485
19486 // Handle attributes before checking the layout.
19487 ProcessDeclAttributeList(S, Record, Attrs);
19488
19489 // Check to see if a FieldDecl is a pointer to a function.
19490 auto IsFunctionPointerOrForwardDecl = [&](const Decl *D) {
19491 const FieldDecl *FD = dyn_cast<FieldDecl>(D);
19492 if (!FD) {
19493 // Check whether this is a forward declaration that was inserted by
19494 // Clang. This happens when a non-forward declared / defined type is
19495 // used, e.g.:
19496 //
19497 // struct foo {
19498 // struct bar *(*f)();
19499 // struct bar *(*g)();
19500 // };
19501 //
19502 // "struct bar" shows up in the decl AST as a "RecordDecl" with an
19503 // incomplete definition.
19504 if (const auto *TD = dyn_cast<TagDecl>(D))
19505 return !TD->isCompleteDefinition();
19506 return false;
19507 }
19508 QualType FieldType = FD->getType().getDesugaredType(Context);
19509 if (isa<PointerType>(FieldType)) {
19510 QualType PointeeType = cast<PointerType>(FieldType)->getPointeeType();
19511 return PointeeType.getDesugaredType(Context)->isFunctionType();
19512 }
19513 return false;
19514 };
19515
19516 // Maybe randomize the record's decls. We automatically randomize a record
19517 // of function pointers, unless it has the "no_randomize_layout" attribute.
19518 if (!getLangOpts().CPlusPlus &&
19519 (Record->hasAttr<RandomizeLayoutAttr>() ||
19520 (!Record->hasAttr<NoRandomizeLayoutAttr>() &&
19521 llvm::all_of(Record->decls(), IsFunctionPointerOrForwardDecl))) &&
19522 !Record->isUnion() && !getLangOpts().RandstructSeed.empty() &&
19523 !Record->isRandomized()) {
19524 SmallVector<Decl *, 32> NewDeclOrdering;
19525 if (randstruct::randomizeStructureLayout(Context, Record,
19526 NewDeclOrdering))
19527 Record->reorderDecls(NewDeclOrdering);
19528 }
19529
19530 // We may have deferred checking for a deleted destructor. Check now.
19531 if (CXXRecord) {
19532 auto *Dtor = CXXRecord->getDestructor();
19533 if (Dtor && Dtor->isImplicit() &&
19534 ShouldDeleteSpecialMember(Dtor, CXXDestructor)) {
19535 CXXRecord->setImplicitDestructorIsDeleted();
19536 SetDeclDeleted(Dtor, CXXRecord->getLocation());
19537 }
19538 }
19539
19540 if (Record->hasAttrs()) {
19541 CheckAlignasUnderalignment(Record);
19542
19543 if (const MSInheritanceAttr *IA = Record->getAttr<MSInheritanceAttr>())
19544 checkMSInheritanceAttrOnDefinition(cast<CXXRecordDecl>(Record),
19545 IA->getRange(), IA->getBestCase(),
19546 IA->getInheritanceModel());
19547 }
19548
19549 // Check if the structure/union declaration is a type that can have zero
19550 // size in C. For C this is a language extension, for C++ it may cause
19551 // compatibility problems.
19552 bool CheckForZeroSize;
19553 if (!getLangOpts().CPlusPlus) {
19554 CheckForZeroSize = true;
19555 } else {
19556 // For C++ filter out types that cannot be referenced in C code.
19557 CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
19558 CheckForZeroSize =
19559 CXXRecord->getLexicalDeclContext()->isExternCContext() &&
19560 !CXXRecord->isDependentType() && !inTemplateInstantiation() &&
19561 CXXRecord->isCLike();
19562 }
19563 if (CheckForZeroSize) {
19564 bool ZeroSize = true;
19565 bool IsEmpty = true;
19566 unsigned NonBitFields = 0;
19567 for (RecordDecl::field_iterator I = Record->field_begin(),
19568 E = Record->field_end();
19569 (NonBitFields == 0 || ZeroSize) && I != E; ++I) {
19570 IsEmpty = false;
19571 if (I->isUnnamedBitfield()) {
19572 if (!I->isZeroLengthBitField(Context))
19573 ZeroSize = false;
19574 } else {
19575 ++NonBitFields;
19576 QualType FieldType = I->getType();
19577 if (FieldType->isIncompleteType() ||
19578 !Context.getTypeSizeInChars(FieldType).isZero())
19579 ZeroSize = false;
19580 }
19581 }
19582
19583 // Empty structs are an extension in C (C99 6.7.2.1p7). They are
19584 // allowed in C++, but warn if its declaration is inside
19585 // extern "C" block.
19586 if (ZeroSize) {
19587 Diag(RecLoc, getLangOpts().CPlusPlus ?
19588 diag::warn_zero_size_struct_union_in_extern_c :
19589 diag::warn_zero_size_struct_union_compat)
19590 << IsEmpty << Record->isUnion() << (NonBitFields > 1);
19591 }
19592
19593 // Structs without named members are extension in C (C99 6.7.2.1p7),
19594 // but are accepted by GCC.
19595 if (NonBitFields == 0 && !getLangOpts().CPlusPlus) {
19596 Diag(RecLoc, IsEmpty ? diag::ext_empty_struct_union :
19597 diag::ext_no_named_members_in_struct_union)
19598 << Record->isUnion();
19599 }
19600 }
19601 } else {
19602 ObjCIvarDecl **ClsFields =
19603 reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
19604 if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
19605 ID->setEndOfDefinitionLoc(RBrac);
19606 // Add ivar's to class's DeclContext.
19607 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
19608 ClsFields[i]->setLexicalDeclContext(ID);
19609 ID->addDecl(ClsFields[i]);
19610 }
19611 // Must enforce the rule that ivars in the base classes may not be
19612 // duplicates.
19613 if (ID->getSuperClass())
19614 DiagnoseDuplicateIvars(ID, ID->getSuperClass());
19615 } else if (ObjCImplementationDecl *IMPDecl =
19616 dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
19617 assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
19618 for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
19619 // Ivar declared in @implementation never belongs to the implementation.
19620 // Only it is in implementation's lexical context.
19621 ClsFields[I]->setLexicalDeclContext(IMPDecl);
19622 CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
19623 IMPDecl->setIvarLBraceLoc(LBrac);
19624 IMPDecl->setIvarRBraceLoc(RBrac);
19625 } else if (ObjCCategoryDecl *CDecl =
19626 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
19627 // case of ivars in class extension; all other cases have been
19628 // reported as errors elsewhere.
19629 // FIXME. Class extension does not have a LocEnd field.
19630 // CDecl->setLocEnd(RBrac);
19631 // Add ivar's to class extension's DeclContext.
19632 // Diagnose redeclaration of private ivars.
19633 ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
19634 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
19635 if (IDecl) {
19636 if (const ObjCIvarDecl *ClsIvar =
19637 IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
19638 Diag(ClsFields[i]->getLocation(),
19639 diag::err_duplicate_ivar_declaration);
19640 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
19641 continue;
19642 }
19643 for (const auto *Ext : IDecl->known_extensions()) {
19644 if (const ObjCIvarDecl *ClsExtIvar
19645 = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) {
19646 Diag(ClsFields[i]->getLocation(),
19647 diag::err_duplicate_ivar_declaration);
19648 Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
19649 continue;
19650 }
19651 }
19652 }
19653 ClsFields[i]->setLexicalDeclContext(CDecl);
19654 CDecl->addDecl(ClsFields[i]);
19655 }
19656 CDecl->setIvarLBraceLoc(LBrac);
19657 CDecl->setIvarRBraceLoc(RBrac);
19658 }
19659 }
19660 }
19661
19662 /// Determine whether the given integral value is representable within
19663 /// the given type T.
isRepresentableIntegerValue(ASTContext & Context,llvm::APSInt & Value,QualType T)19664 static bool isRepresentableIntegerValue(ASTContext &Context,
19665 llvm::APSInt &Value,
19666 QualType T) {
19667 assert((T->isIntegralType(Context) || T->isEnumeralType()) &&
19668 "Integral type required!");
19669 unsigned BitWidth = Context.getIntWidth(T);
19670
19671 if (Value.isUnsigned() || Value.isNonNegative()) {
19672 if (T->isSignedIntegerOrEnumerationType())
19673 --BitWidth;
19674 return Value.getActiveBits() <= BitWidth;
19675 }
19676 return Value.getSignificantBits() <= BitWidth;
19677 }
19678
19679 // Given an integral type, return the next larger integral type
19680 // (or a NULL type of no such type exists).
getNextLargerIntegralType(ASTContext & Context,QualType T)19681 static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
19682 // FIXME: Int128/UInt128 support, which also needs to be introduced into
19683 // enum checking below.
19684 assert((T->isIntegralType(Context) ||
19685 T->isEnumeralType()) && "Integral type required!");
19686 const unsigned NumTypes = 4;
19687 QualType SignedIntegralTypes[NumTypes] = {
19688 Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
19689 };
19690 QualType UnsignedIntegralTypes[NumTypes] = {
19691 Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
19692 Context.UnsignedLongLongTy
19693 };
19694
19695 unsigned BitWidth = Context.getTypeSize(T);
19696 QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
19697 : UnsignedIntegralTypes;
19698 for (unsigned I = 0; I != NumTypes; ++I)
19699 if (Context.getTypeSize(Types[I]) > BitWidth)
19700 return Types[I];
19701
19702 return QualType();
19703 }
19704
CheckEnumConstant(EnumDecl * Enum,EnumConstantDecl * LastEnumConst,SourceLocation IdLoc,IdentifierInfo * Id,Expr * Val)19705 EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
19706 EnumConstantDecl *LastEnumConst,
19707 SourceLocation IdLoc,
19708 IdentifierInfo *Id,
19709 Expr *Val) {
19710 unsigned IntWidth = Context.getTargetInfo().getIntWidth();
19711 llvm::APSInt EnumVal(IntWidth);
19712 QualType EltTy;
19713
19714 if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
19715 Val = nullptr;
19716
19717 if (Val)
19718 Val = DefaultLvalueConversion(Val).get();
19719
19720 if (Val) {
19721 if (Enum->isDependentType() || Val->isTypeDependent() ||
19722 Val->containsErrors())
19723 EltTy = Context.DependentTy;
19724 else {
19725 // FIXME: We don't allow folding in C++11 mode for an enum with a fixed
19726 // underlying type, but do allow it in all other contexts.
19727 if (getLangOpts().CPlusPlus11 && Enum->isFixed()) {
19728 // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
19729 // constant-expression in the enumerator-definition shall be a converted
19730 // constant expression of the underlying type.
19731 EltTy = Enum->getIntegerType();
19732 ExprResult Converted =
19733 CheckConvertedConstantExpression(Val, EltTy, EnumVal,
19734 CCEK_Enumerator);
19735 if (Converted.isInvalid())
19736 Val = nullptr;
19737 else
19738 Val = Converted.get();
19739 } else if (!Val->isValueDependent() &&
19740 !(Val =
19741 VerifyIntegerConstantExpression(Val, &EnumVal, AllowFold)
19742 .get())) {
19743 // C99 6.7.2.2p2: Make sure we have an integer constant expression.
19744 } else {
19745 if (Enum->isComplete()) {
19746 EltTy = Enum->getIntegerType();
19747
19748 // In Obj-C and Microsoft mode, require the enumeration value to be
19749 // representable in the underlying type of the enumeration. In C++11,
19750 // we perform a non-narrowing conversion as part of converted constant
19751 // expression checking.
19752 if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
19753 if (Context.getTargetInfo()
19754 .getTriple()
19755 .isWindowsMSVCEnvironment()) {
19756 Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
19757 } else {
19758 Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
19759 }
19760 }
19761
19762 // Cast to the underlying type.
19763 Val = ImpCastExprToType(Val, EltTy,
19764 EltTy->isBooleanType() ? CK_IntegralToBoolean
19765 : CK_IntegralCast)
19766 .get();
19767 } else if (getLangOpts().CPlusPlus) {
19768 // C++11 [dcl.enum]p5:
19769 // If the underlying type is not fixed, the type of each enumerator
19770 // is the type of its initializing value:
19771 // - If an initializer is specified for an enumerator, the
19772 // initializing value has the same type as the expression.
19773 EltTy = Val->getType();
19774 } else {
19775 // C99 6.7.2.2p2:
19776 // The expression that defines the value of an enumeration constant
19777 // shall be an integer constant expression that has a value
19778 // representable as an int.
19779
19780 // Complain if the value is not representable in an int.
19781 if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
19782 Diag(IdLoc, diag::ext_enum_value_not_int)
19783 << toString(EnumVal, 10) << Val->getSourceRange()
19784 << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
19785 else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
19786 // Force the type of the expression to 'int'.
19787 Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).get();
19788 }
19789 EltTy = Val->getType();
19790 }
19791 }
19792 }
19793 }
19794
19795 if (!Val) {
19796 if (Enum->isDependentType())
19797 EltTy = Context.DependentTy;
19798 else if (!LastEnumConst) {
19799 // C++0x [dcl.enum]p5:
19800 // If the underlying type is not fixed, the type of each enumerator
19801 // is the type of its initializing value:
19802 // - If no initializer is specified for the first enumerator, the
19803 // initializing value has an unspecified integral type.
19804 //
19805 // GCC uses 'int' for its unspecified integral type, as does
19806 // C99 6.7.2.2p3.
19807 if (Enum->isFixed()) {
19808 EltTy = Enum->getIntegerType();
19809 }
19810 else {
19811 EltTy = Context.IntTy;
19812 }
19813 } else {
19814 // Assign the last value + 1.
19815 EnumVal = LastEnumConst->getInitVal();
19816 ++EnumVal;
19817 EltTy = LastEnumConst->getType();
19818
19819 // Check for overflow on increment.
19820 if (EnumVal < LastEnumConst->getInitVal()) {
19821 // C++0x [dcl.enum]p5:
19822 // If the underlying type is not fixed, the type of each enumerator
19823 // is the type of its initializing value:
19824 //
19825 // - Otherwise the type of the initializing value is the same as
19826 // the type of the initializing value of the preceding enumerator
19827 // unless the incremented value is not representable in that type,
19828 // in which case the type is an unspecified integral type
19829 // sufficient to contain the incremented value. If no such type
19830 // exists, the program is ill-formed.
19831 QualType T = getNextLargerIntegralType(Context, EltTy);
19832 if (T.isNull() || Enum->isFixed()) {
19833 // There is no integral type larger enough to represent this
19834 // value. Complain, then allow the value to wrap around.
19835 EnumVal = LastEnumConst->getInitVal();
19836 EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
19837 ++EnumVal;
19838 if (Enum->isFixed())
19839 // When the underlying type is fixed, this is ill-formed.
19840 Diag(IdLoc, diag::err_enumerator_wrapped)
19841 << toString(EnumVal, 10)
19842 << EltTy;
19843 else
19844 Diag(IdLoc, diag::ext_enumerator_increment_too_large)
19845 << toString(EnumVal, 10);
19846 } else {
19847 EltTy = T;
19848 }
19849
19850 // Retrieve the last enumerator's value, extent that type to the
19851 // type that is supposed to be large enough to represent the incremented
19852 // value, then increment.
19853 EnumVal = LastEnumConst->getInitVal();
19854 EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
19855 EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
19856 ++EnumVal;
19857
19858 // If we're not in C++, diagnose the overflow of enumerator values,
19859 // which in C99 means that the enumerator value is not representable in
19860 // an int (C99 6.7.2.2p2). However, we support GCC's extension that
19861 // permits enumerator values that are representable in some larger
19862 // integral type.
19863 if (!getLangOpts().CPlusPlus && !T.isNull())
19864 Diag(IdLoc, diag::warn_enum_value_overflow);
19865 } else if (!getLangOpts().CPlusPlus &&
19866 !EltTy->isDependentType() &&
19867 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
19868 // Enforce C99 6.7.2.2p2 even when we compute the next value.
19869 Diag(IdLoc, diag::ext_enum_value_not_int)
19870 << toString(EnumVal, 10) << 1;
19871 }
19872 }
19873 }
19874
19875 if (!EltTy->isDependentType()) {
19876 // Make the enumerator value match the signedness and size of the
19877 // enumerator's type.
19878 EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
19879 EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
19880 }
19881
19882 return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
19883 Val, EnumVal);
19884 }
19885
shouldSkipAnonEnumBody(Scope * S,IdentifierInfo * II,SourceLocation IILoc)19886 Sema::SkipBodyInfo Sema::shouldSkipAnonEnumBody(Scope *S, IdentifierInfo *II,
19887 SourceLocation IILoc) {
19888 if (!(getLangOpts().Modules || getLangOpts().ModulesLocalVisibility) ||
19889 !getLangOpts().CPlusPlus)
19890 return SkipBodyInfo();
19891
19892 // We have an anonymous enum definition. Look up the first enumerator to
19893 // determine if we should merge the definition with an existing one and
19894 // skip the body.
19895 NamedDecl *PrevDecl = LookupSingleName(S, II, IILoc, LookupOrdinaryName,
19896 forRedeclarationInCurContext());
19897 auto *PrevECD = dyn_cast_or_null<EnumConstantDecl>(PrevDecl);
19898 if (!PrevECD)
19899 return SkipBodyInfo();
19900
19901 EnumDecl *PrevED = cast<EnumDecl>(PrevECD->getDeclContext());
19902 NamedDecl *Hidden;
19903 if (!PrevED->getDeclName() && !hasVisibleDefinition(PrevED, &Hidden)) {
19904 SkipBodyInfo Skip;
19905 Skip.Previous = Hidden;
19906 return Skip;
19907 }
19908
19909 return SkipBodyInfo();
19910 }
19911
ActOnEnumConstant(Scope * S,Decl * theEnumDecl,Decl * lastEnumConst,SourceLocation IdLoc,IdentifierInfo * Id,const ParsedAttributesView & Attrs,SourceLocation EqualLoc,Expr * Val)19912 Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
19913 SourceLocation IdLoc, IdentifierInfo *Id,
19914 const ParsedAttributesView &Attrs,
19915 SourceLocation EqualLoc, Expr *Val) {
19916 EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
19917 EnumConstantDecl *LastEnumConst =
19918 cast_or_null<EnumConstantDecl>(lastEnumConst);
19919
19920 // The scope passed in may not be a decl scope. Zip up the scope tree until
19921 // we find one that is.
19922 S = getNonFieldDeclScope(S);
19923
19924 // Verify that there isn't already something declared with this name in this
19925 // scope.
19926 LookupResult R(*this, Id, IdLoc, LookupOrdinaryName, ForVisibleRedeclaration);
19927 LookupName(R, S);
19928 NamedDecl *PrevDecl = R.getAsSingle<NamedDecl>();
19929
19930 if (PrevDecl && PrevDecl->isTemplateParameter()) {
19931 // Maybe we will complain about the shadowed template parameter.
19932 DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
19933 // Just pretend that we didn't see the previous declaration.
19934 PrevDecl = nullptr;
19935 }
19936
19937 // C++ [class.mem]p15:
19938 // If T is the name of a class, then each of the following shall have a name
19939 // different from T:
19940 // - every enumerator of every member of class T that is an unscoped
19941 // enumerated type
19942 if (getLangOpts().CPlusPlus && !TheEnumDecl->isScoped())
19943 DiagnoseClassNameShadow(TheEnumDecl->getDeclContext(),
19944 DeclarationNameInfo(Id, IdLoc));
19945
19946 EnumConstantDecl *New =
19947 CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
19948 if (!New)
19949 return nullptr;
19950
19951 if (PrevDecl) {
19952 if (!TheEnumDecl->isScoped() && isa<ValueDecl>(PrevDecl)) {
19953 // Check for other kinds of shadowing not already handled.
19954 CheckShadow(New, PrevDecl, R);
19955 }
19956
19957 // When in C++, we may get a TagDecl with the same name; in this case the
19958 // enum constant will 'hide' the tag.
19959 assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
19960 "Received TagDecl when not in C++!");
19961 if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
19962 if (isa<EnumConstantDecl>(PrevDecl))
19963 Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
19964 else
19965 Diag(IdLoc, diag::err_redefinition) << Id;
19966 notePreviousDefinition(PrevDecl, IdLoc);
19967 return nullptr;
19968 }
19969 }
19970
19971 // Process attributes.
19972 ProcessDeclAttributeList(S, New, Attrs);
19973 AddPragmaAttributes(S, New);
19974
19975 // Register this decl in the current scope stack.
19976 New->setAccess(TheEnumDecl->getAccess());
19977 PushOnScopeChains(New, S);
19978
19979 ActOnDocumentableDecl(New);
19980
19981 return New;
19982 }
19983
19984 // Returns true when the enum initial expression does not trigger the
19985 // duplicate enum warning. A few common cases are exempted as follows:
19986 // Element2 = Element1
19987 // Element2 = Element1 + 1
19988 // Element2 = Element1 - 1
19989 // Where Element2 and Element1 are from the same enum.
ValidDuplicateEnum(EnumConstantDecl * ECD,EnumDecl * Enum)19990 static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
19991 Expr *InitExpr = ECD->getInitExpr();
19992 if (!InitExpr)
19993 return true;
19994 InitExpr = InitExpr->IgnoreImpCasts();
19995
19996 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
19997 if (!BO->isAdditiveOp())
19998 return true;
19999 IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
20000 if (!IL)
20001 return true;
20002 if (IL->getValue() != 1)
20003 return true;
20004
20005 InitExpr = BO->getLHS();
20006 }
20007
20008 // This checks if the elements are from the same enum.
20009 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
20010 if (!DRE)
20011 return true;
20012
20013 EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
20014 if (!EnumConstant)
20015 return true;
20016
20017 if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
20018 Enum)
20019 return true;
20020
20021 return false;
20022 }
20023
20024 // Emits a warning when an element is implicitly set a value that
20025 // a previous element has already been set to.
CheckForDuplicateEnumValues(Sema & S,ArrayRef<Decl * > Elements,EnumDecl * Enum,QualType EnumType)20026 static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements,
20027 EnumDecl *Enum, QualType EnumType) {
20028 // Avoid anonymous enums
20029 if (!Enum->getIdentifier())
20030 return;
20031
20032 // Only check for small enums.
20033 if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
20034 return;
20035
20036 if (S.Diags.isIgnored(diag::warn_duplicate_enum_values, Enum->getLocation()))
20037 return;
20038
20039 typedef SmallVector<EnumConstantDecl *, 3> ECDVector;
20040 typedef SmallVector<std::unique_ptr<ECDVector>, 3> DuplicatesVector;
20041
20042 typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
20043
20044 // DenseMaps cannot contain the all ones int64_t value, so use unordered_map.
20045 typedef std::unordered_map<int64_t, DeclOrVector> ValueToVectorMap;
20046
20047 // Use int64_t as a key to avoid needing special handling for map keys.
20048 auto EnumConstantToKey = [](const EnumConstantDecl *D) {
20049 llvm::APSInt Val = D->getInitVal();
20050 return Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue();
20051 };
20052
20053 DuplicatesVector DupVector;
20054 ValueToVectorMap EnumMap;
20055
20056 // Populate the EnumMap with all values represented by enum constants without
20057 // an initializer.
20058 for (auto *Element : Elements) {
20059 EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Element);
20060
20061 // Null EnumConstantDecl means a previous diagnostic has been emitted for
20062 // this constant. Skip this enum since it may be ill-formed.
20063 if (!ECD) {
20064 return;
20065 }
20066
20067 // Constants with initializers are handled in the next loop.
20068 if (ECD->getInitExpr())
20069 continue;
20070
20071 // Duplicate values are handled in the next loop.
20072 EnumMap.insert({EnumConstantToKey(ECD), ECD});
20073 }
20074
20075 if (EnumMap.size() == 0)
20076 return;
20077
20078 // Create vectors for any values that has duplicates.
20079 for (auto *Element : Elements) {
20080 // The last loop returned if any constant was null.
20081 EnumConstantDecl *ECD = cast<EnumConstantDecl>(Element);
20082 if (!ValidDuplicateEnum(ECD, Enum))
20083 continue;
20084
20085 auto Iter = EnumMap.find(EnumConstantToKey(ECD));
20086 if (Iter == EnumMap.end())
20087 continue;
20088
20089 DeclOrVector& Entry = Iter->second;
20090 if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
20091 // Ensure constants are different.
20092 if (D == ECD)
20093 continue;
20094
20095 // Create new vector and push values onto it.
20096 auto Vec = std::make_unique<ECDVector>();
20097 Vec->push_back(D);
20098 Vec->push_back(ECD);
20099
20100 // Update entry to point to the duplicates vector.
20101 Entry = Vec.get();
20102
20103 // Store the vector somewhere we can consult later for quick emission of
20104 // diagnostics.
20105 DupVector.emplace_back(std::move(Vec));
20106 continue;
20107 }
20108
20109 ECDVector *Vec = Entry.get<ECDVector*>();
20110 // Make sure constants are not added more than once.
20111 if (*Vec->begin() == ECD)
20112 continue;
20113
20114 Vec->push_back(ECD);
20115 }
20116
20117 // Emit diagnostics.
20118 for (const auto &Vec : DupVector) {
20119 assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.");
20120
20121 // Emit warning for one enum constant.
20122 auto *FirstECD = Vec->front();
20123 S.Diag(FirstECD->getLocation(), diag::warn_duplicate_enum_values)
20124 << FirstECD << toString(FirstECD->getInitVal(), 10)
20125 << FirstECD->getSourceRange();
20126
20127 // Emit one note for each of the remaining enum constants with
20128 // the same value.
20129 for (auto *ECD : llvm::drop_begin(*Vec))
20130 S.Diag(ECD->getLocation(), diag::note_duplicate_element)
20131 << ECD << toString(ECD->getInitVal(), 10)
20132 << ECD->getSourceRange();
20133 }
20134 }
20135
IsValueInFlagEnum(const EnumDecl * ED,const llvm::APInt & Val,bool AllowMask) const20136 bool Sema::IsValueInFlagEnum(const EnumDecl *ED, const llvm::APInt &Val,
20137 bool AllowMask) const {
20138 assert(ED->isClosedFlag() && "looking for value in non-flag or open enum");
20139 assert(ED->isCompleteDefinition() && "expected enum definition");
20140
20141 auto R = FlagBitsCache.insert(std::make_pair(ED, llvm::APInt()));
20142 llvm::APInt &FlagBits = R.first->second;
20143
20144 if (R.second) {
20145 for (auto *E : ED->enumerators()) {
20146 const auto &EVal = E->getInitVal();
20147 // Only single-bit enumerators introduce new flag values.
20148 if (EVal.isPowerOf2())
20149 FlagBits = FlagBits.zext(EVal.getBitWidth()) | EVal;
20150 }
20151 }
20152
20153 // A value is in a flag enum if either its bits are a subset of the enum's
20154 // flag bits (the first condition) or we are allowing masks and the same is
20155 // true of its complement (the second condition). When masks are allowed, we
20156 // allow the common idiom of ~(enum1 | enum2) to be a valid enum value.
20157 //
20158 // While it's true that any value could be used as a mask, the assumption is
20159 // that a mask will have all of the insignificant bits set. Anything else is
20160 // likely a logic error.
20161 llvm::APInt FlagMask = ~FlagBits.zextOrTrunc(Val.getBitWidth());
20162 return !(FlagMask & Val) || (AllowMask && !(FlagMask & ~Val));
20163 }
20164
ActOnEnumBody(SourceLocation EnumLoc,SourceRange BraceRange,Decl * EnumDeclX,ArrayRef<Decl * > Elements,Scope * S,const ParsedAttributesView & Attrs)20165 void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceRange BraceRange,
20166 Decl *EnumDeclX, ArrayRef<Decl *> Elements, Scope *S,
20167 const ParsedAttributesView &Attrs) {
20168 EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
20169 QualType EnumType = Context.getTypeDeclType(Enum);
20170
20171 ProcessDeclAttributeList(S, Enum, Attrs);
20172
20173 if (Enum->isDependentType()) {
20174 for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
20175 EnumConstantDecl *ECD =
20176 cast_or_null<EnumConstantDecl>(Elements[i]);
20177 if (!ECD) continue;
20178
20179 ECD->setType(EnumType);
20180 }
20181
20182 Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
20183 return;
20184 }
20185
20186 // TODO: If the result value doesn't fit in an int, it must be a long or long
20187 // long value. ISO C does not support this, but GCC does as an extension,
20188 // emit a warning.
20189 unsigned IntWidth = Context.getTargetInfo().getIntWidth();
20190 unsigned CharWidth = Context.getTargetInfo().getCharWidth();
20191 unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
20192
20193 // Verify that all the values are okay, compute the size of the values, and
20194 // reverse the list.
20195 unsigned NumNegativeBits = 0;
20196 unsigned NumPositiveBits = 0;
20197
20198 for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
20199 EnumConstantDecl *ECD =
20200 cast_or_null<EnumConstantDecl>(Elements[i]);
20201 if (!ECD) continue; // Already issued a diagnostic.
20202
20203 const llvm::APSInt &InitVal = ECD->getInitVal();
20204
20205 // Keep track of the size of positive and negative values.
20206 if (InitVal.isUnsigned() || InitVal.isNonNegative()) {
20207 // If the enumerator is zero that should still be counted as a positive
20208 // bit since we need a bit to store the value zero.
20209 unsigned ActiveBits = InitVal.getActiveBits();
20210 NumPositiveBits = std::max({NumPositiveBits, ActiveBits, 1u});
20211 } else {
20212 NumNegativeBits =
20213 std::max(NumNegativeBits, (unsigned)InitVal.getSignificantBits());
20214 }
20215 }
20216
20217 // If we have an empty set of enumerators we still need one bit.
20218 // From [dcl.enum]p8
20219 // If the enumerator-list is empty, the values of the enumeration are as if
20220 // the enumeration had a single enumerator with value 0
20221 if (!NumPositiveBits && !NumNegativeBits)
20222 NumPositiveBits = 1;
20223
20224 // Figure out the type that should be used for this enum.
20225 QualType BestType;
20226 unsigned BestWidth;
20227
20228 // C++0x N3000 [conv.prom]p3:
20229 // An rvalue of an unscoped enumeration type whose underlying
20230 // type is not fixed can be converted to an rvalue of the first
20231 // of the following types that can represent all the values of
20232 // the enumeration: int, unsigned int, long int, unsigned long
20233 // int, long long int, or unsigned long long int.
20234 // C99 6.4.4.3p2:
20235 // An identifier declared as an enumeration constant has type int.
20236 // The C99 rule is modified by a gcc extension
20237 QualType BestPromotionType;
20238
20239 bool Packed = Enum->hasAttr<PackedAttr>();
20240 // -fshort-enums is the equivalent to specifying the packed attribute on all
20241 // enum definitions.
20242 if (LangOpts.ShortEnums)
20243 Packed = true;
20244
20245 // If the enum already has a type because it is fixed or dictated by the
20246 // target, promote that type instead of analyzing the enumerators.
20247 if (Enum->isComplete()) {
20248 BestType = Enum->getIntegerType();
20249 if (Context.isPromotableIntegerType(BestType))
20250 BestPromotionType = Context.getPromotedIntegerType(BestType);
20251 else
20252 BestPromotionType = BestType;
20253
20254 BestWidth = Context.getIntWidth(BestType);
20255 }
20256 else if (NumNegativeBits) {
20257 // If there is a negative value, figure out the smallest integer type (of
20258 // int/long/longlong) that fits.
20259 // If it's packed, check also if it fits a char or a short.
20260 if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
20261 BestType = Context.SignedCharTy;
20262 BestWidth = CharWidth;
20263 } else if (Packed && NumNegativeBits <= ShortWidth &&
20264 NumPositiveBits < ShortWidth) {
20265 BestType = Context.ShortTy;
20266 BestWidth = ShortWidth;
20267 } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
20268 BestType = Context.IntTy;
20269 BestWidth = IntWidth;
20270 } else {
20271 BestWidth = Context.getTargetInfo().getLongWidth();
20272
20273 if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
20274 BestType = Context.LongTy;
20275 } else {
20276 BestWidth = Context.getTargetInfo().getLongLongWidth();
20277
20278 if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
20279 Diag(Enum->getLocation(), diag::ext_enum_too_large);
20280 BestType = Context.LongLongTy;
20281 }
20282 }
20283 BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
20284 } else {
20285 // If there is no negative value, figure out the smallest type that fits
20286 // all of the enumerator values.
20287 // If it's packed, check also if it fits a char or a short.
20288 if (Packed && NumPositiveBits <= CharWidth) {
20289 BestType = Context.UnsignedCharTy;
20290 BestPromotionType = Context.IntTy;
20291 BestWidth = CharWidth;
20292 } else if (Packed && NumPositiveBits <= ShortWidth) {
20293 BestType = Context.UnsignedShortTy;
20294 BestPromotionType = Context.IntTy;
20295 BestWidth = ShortWidth;
20296 } else if (NumPositiveBits <= IntWidth) {
20297 BestType = Context.UnsignedIntTy;
20298 BestWidth = IntWidth;
20299 BestPromotionType
20300 = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
20301 ? Context.UnsignedIntTy : Context.IntTy;
20302 } else if (NumPositiveBits <=
20303 (BestWidth = Context.getTargetInfo().getLongWidth())) {
20304 BestType = Context.UnsignedLongTy;
20305 BestPromotionType
20306 = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
20307 ? Context.UnsignedLongTy : Context.LongTy;
20308 } else {
20309 BestWidth = Context.getTargetInfo().getLongLongWidth();
20310 assert(NumPositiveBits <= BestWidth &&
20311 "How could an initializer get larger than ULL?");
20312 BestType = Context.UnsignedLongLongTy;
20313 BestPromotionType
20314 = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
20315 ? Context.UnsignedLongLongTy : Context.LongLongTy;
20316 }
20317 }
20318
20319 // Loop over all of the enumerator constants, changing their types to match
20320 // the type of the enum if needed.
20321 for (auto *D : Elements) {
20322 auto *ECD = cast_or_null<EnumConstantDecl>(D);
20323 if (!ECD) continue; // Already issued a diagnostic.
20324
20325 // Standard C says the enumerators have int type, but we allow, as an
20326 // extension, the enumerators to be larger than int size. If each
20327 // enumerator value fits in an int, type it as an int, otherwise type it the
20328 // same as the enumerator decl itself. This means that in "enum { X = 1U }"
20329 // that X has type 'int', not 'unsigned'.
20330
20331 // Determine whether the value fits into an int.
20332 llvm::APSInt InitVal = ECD->getInitVal();
20333
20334 // If it fits into an integer type, force it. Otherwise force it to match
20335 // the enum decl type.
20336 QualType NewTy;
20337 unsigned NewWidth;
20338 bool NewSign;
20339 if (!getLangOpts().CPlusPlus &&
20340 !Enum->isFixed() &&
20341 isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
20342 NewTy = Context.IntTy;
20343 NewWidth = IntWidth;
20344 NewSign = true;
20345 } else if (ECD->getType() == BestType) {
20346 // Already the right type!
20347 if (getLangOpts().CPlusPlus)
20348 // C++ [dcl.enum]p4: Following the closing brace of an
20349 // enum-specifier, each enumerator has the type of its
20350 // enumeration.
20351 ECD->setType(EnumType);
20352 continue;
20353 } else {
20354 NewTy = BestType;
20355 NewWidth = BestWidth;
20356 NewSign = BestType->isSignedIntegerOrEnumerationType();
20357 }
20358
20359 // Adjust the APSInt value.
20360 InitVal = InitVal.extOrTrunc(NewWidth);
20361 InitVal.setIsSigned(NewSign);
20362 ECD->setInitVal(Context, InitVal);
20363
20364 // Adjust the Expr initializer and type.
20365 if (ECD->getInitExpr() &&
20366 !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
20367 ECD->setInitExpr(ImplicitCastExpr::Create(
20368 Context, NewTy, CK_IntegralCast, ECD->getInitExpr(),
20369 /*base paths*/ nullptr, VK_PRValue, FPOptionsOverride()));
20370 if (getLangOpts().CPlusPlus)
20371 // C++ [dcl.enum]p4: Following the closing brace of an
20372 // enum-specifier, each enumerator has the type of its
20373 // enumeration.
20374 ECD->setType(EnumType);
20375 else
20376 ECD->setType(NewTy);
20377 }
20378
20379 Enum->completeDefinition(BestType, BestPromotionType,
20380 NumPositiveBits, NumNegativeBits);
20381
20382 CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType);
20383
20384 if (Enum->isClosedFlag()) {
20385 for (Decl *D : Elements) {
20386 EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(D);
20387 if (!ECD) continue; // Already issued a diagnostic.
20388
20389 llvm::APSInt InitVal = ECD->getInitVal();
20390 if (InitVal != 0 && !InitVal.isPowerOf2() &&
20391 !IsValueInFlagEnum(Enum, InitVal, true))
20392 Diag(ECD->getLocation(), diag::warn_flag_enum_constant_out_of_range)
20393 << ECD << Enum;
20394 }
20395 }
20396
20397 // Now that the enum type is defined, ensure it's not been underaligned.
20398 if (Enum->hasAttrs())
20399 CheckAlignasUnderalignment(Enum);
20400 }
20401
ActOnFileScopeAsmDecl(Expr * expr,SourceLocation StartLoc,SourceLocation EndLoc)20402 Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
20403 SourceLocation StartLoc,
20404 SourceLocation EndLoc) {
20405 StringLiteral *AsmString = cast<StringLiteral>(expr);
20406
20407 FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
20408 AsmString, StartLoc,
20409 EndLoc);
20410 CurContext->addDecl(New);
20411 return New;
20412 }
20413
ActOnTopLevelStmtDecl(Stmt * Statement)20414 Decl *Sema::ActOnTopLevelStmtDecl(Stmt *Statement) {
20415 auto *New = TopLevelStmtDecl::Create(Context, Statement);
20416 Context.getTranslationUnitDecl()->addDecl(New);
20417 return New;
20418 }
20419
ActOnPragmaRedefineExtname(IdentifierInfo * Name,IdentifierInfo * AliasName,SourceLocation PragmaLoc,SourceLocation NameLoc,SourceLocation AliasNameLoc)20420 void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
20421 IdentifierInfo* AliasName,
20422 SourceLocation PragmaLoc,
20423 SourceLocation NameLoc,
20424 SourceLocation AliasNameLoc) {
20425 NamedDecl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
20426 LookupOrdinaryName);
20427 AttributeCommonInfo Info(AliasName, SourceRange(AliasNameLoc),
20428 AttributeCommonInfo::Form::Pragma());
20429 AsmLabelAttr *Attr = AsmLabelAttr::CreateImplicit(
20430 Context, AliasName->getName(), /*IsLiteralLabel=*/true, Info);
20431
20432 // If a declaration that:
20433 // 1) declares a function or a variable
20434 // 2) has external linkage
20435 // already exists, add a label attribute to it.
20436 if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) {
20437 if (isDeclExternC(PrevDecl))
20438 PrevDecl->addAttr(Attr);
20439 else
20440 Diag(PrevDecl->getLocation(), diag::warn_redefine_extname_not_applied)
20441 << /*Variable*/(isa<FunctionDecl>(PrevDecl) ? 0 : 1) << PrevDecl;
20442 // Otherwise, add a label attribute to ExtnameUndeclaredIdentifiers.
20443 } else
20444 (void)ExtnameUndeclaredIdentifiers.insert(std::make_pair(Name, Attr));
20445 }
20446
ActOnPragmaWeakID(IdentifierInfo * Name,SourceLocation PragmaLoc,SourceLocation NameLoc)20447 void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
20448 SourceLocation PragmaLoc,
20449 SourceLocation NameLoc) {
20450 Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
20451
20452 if (PrevDecl) {
20453 PrevDecl->addAttr(WeakAttr::CreateImplicit(Context, PragmaLoc));
20454 } else {
20455 (void)WeakUndeclaredIdentifiers[Name].insert(WeakInfo(nullptr, NameLoc));
20456 }
20457 }
20458
ActOnPragmaWeakAlias(IdentifierInfo * Name,IdentifierInfo * AliasName,SourceLocation PragmaLoc,SourceLocation NameLoc,SourceLocation AliasNameLoc)20459 void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
20460 IdentifierInfo* AliasName,
20461 SourceLocation PragmaLoc,
20462 SourceLocation NameLoc,
20463 SourceLocation AliasNameLoc) {
20464 Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
20465 LookupOrdinaryName);
20466 WeakInfo W = WeakInfo(Name, NameLoc);
20467
20468 if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) {
20469 if (!PrevDecl->hasAttr<AliasAttr>())
20470 if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
20471 DeclApplyPragmaWeak(TUScope, ND, W);
20472 } else {
20473 (void)WeakUndeclaredIdentifiers[AliasName].insert(W);
20474 }
20475 }
20476
getObjCDeclContext() const20477 ObjCContainerDecl *Sema::getObjCDeclContext() const {
20478 return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
20479 }
20480
getEmissionStatus(const FunctionDecl * FD,bool Final)20481 Sema::FunctionEmissionStatus Sema::getEmissionStatus(const FunctionDecl *FD,
20482 bool Final) {
20483 assert(FD && "Expected non-null FunctionDecl");
20484
20485 // SYCL functions can be template, so we check if they have appropriate
20486 // attribute prior to checking if it is a template.
20487 if (LangOpts.SYCLIsDevice && FD->hasAttr<SYCLKernelAttr>())
20488 return FunctionEmissionStatus::Emitted;
20489
20490 // Templates are emitted when they're instantiated.
20491 if (FD->isDependentContext())
20492 return FunctionEmissionStatus::TemplateDiscarded;
20493
20494 // Check whether this function is an externally visible definition.
20495 auto IsEmittedForExternalSymbol = [this, FD]() {
20496 // We have to check the GVA linkage of the function's *definition* -- if we
20497 // only have a declaration, we don't know whether or not the function will
20498 // be emitted, because (say) the definition could include "inline".
20499 const FunctionDecl *Def = FD->getDefinition();
20500
20501 return Def && !isDiscardableGVALinkage(
20502 getASTContext().GetGVALinkageForFunction(Def));
20503 };
20504
20505 if (LangOpts.OpenMPIsTargetDevice) {
20506 // In OpenMP device mode we will not emit host only functions, or functions
20507 // we don't need due to their linkage.
20508 std::optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy =
20509 OMPDeclareTargetDeclAttr::getDeviceType(FD->getCanonicalDecl());
20510 // DevTy may be changed later by
20511 // #pragma omp declare target to(*) device_type(*).
20512 // Therefore DevTy having no value does not imply host. The emission status
20513 // will be checked again at the end of compilation unit with Final = true.
20514 if (DevTy)
20515 if (*DevTy == OMPDeclareTargetDeclAttr::DT_Host)
20516 return FunctionEmissionStatus::OMPDiscarded;
20517 // If we have an explicit value for the device type, or we are in a target
20518 // declare context, we need to emit all extern and used symbols.
20519 if (isInOpenMPDeclareTargetContext() || DevTy)
20520 if (IsEmittedForExternalSymbol())
20521 return FunctionEmissionStatus::Emitted;
20522 // Device mode only emits what it must, if it wasn't tagged yet and needed,
20523 // we'll omit it.
20524 if (Final)
20525 return FunctionEmissionStatus::OMPDiscarded;
20526 } else if (LangOpts.OpenMP > 45) {
20527 // In OpenMP host compilation prior to 5.0 everything was an emitted host
20528 // function. In 5.0, no_host was introduced which might cause a function to
20529 // be ommitted.
20530 std::optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy =
20531 OMPDeclareTargetDeclAttr::getDeviceType(FD->getCanonicalDecl());
20532 if (DevTy)
20533 if (*DevTy == OMPDeclareTargetDeclAttr::DT_NoHost)
20534 return FunctionEmissionStatus::OMPDiscarded;
20535 }
20536
20537 if (Final && LangOpts.OpenMP && !LangOpts.CUDA)
20538 return FunctionEmissionStatus::Emitted;
20539
20540 if (LangOpts.CUDA) {
20541 // When compiling for device, host functions are never emitted. Similarly,
20542 // when compiling for host, device and global functions are never emitted.
20543 // (Technically, we do emit a host-side stub for global functions, but this
20544 // doesn't count for our purposes here.)
20545 Sema::CUDAFunctionTarget T = IdentifyCUDATarget(FD);
20546 if (LangOpts.CUDAIsDevice && T == Sema::CFT_Host)
20547 return FunctionEmissionStatus::CUDADiscarded;
20548 if (!LangOpts.CUDAIsDevice &&
20549 (T == Sema::CFT_Device || T == Sema::CFT_Global))
20550 return FunctionEmissionStatus::CUDADiscarded;
20551
20552 if (IsEmittedForExternalSymbol())
20553 return FunctionEmissionStatus::Emitted;
20554 }
20555
20556 // Otherwise, the function is known-emitted if it's in our set of
20557 // known-emitted functions.
20558 return FunctionEmissionStatus::Unknown;
20559 }
20560
shouldIgnoreInHostDeviceCheck(FunctionDecl * Callee)20561 bool Sema::shouldIgnoreInHostDeviceCheck(FunctionDecl *Callee) {
20562 // Host-side references to a __global__ function refer to the stub, so the
20563 // function itself is never emitted and therefore should not be marked.
20564 // If we have host fn calls kernel fn calls host+device, the HD function
20565 // does not get instantiated on the host. We model this by omitting at the
20566 // call to the kernel from the callgraph. This ensures that, when compiling
20567 // for host, only HD functions actually called from the host get marked as
20568 // known-emitted.
20569 return LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
20570 IdentifyCUDATarget(Callee) == CFT_Global;
20571 }
20572