xref: /sqlite-3.40.0/tool/lemon.c (revision db08a6d1)
1 /*
2 ** This file contains all sources (including headers) to the LEMON
3 ** LALR(1) parser generator.  The sources have been combined into a
4 ** single file to make it easy to include LEMON in the source tree
5 ** and Makefile of another program.
6 **
7 ** The author of this program disclaims copyright.
8 */
9 #include <stdio.h>
10 #include <stdarg.h>
11 #include <string.h>
12 #include <ctype.h>
13 #include <stdlib.h>
14 #include <assert.h>
15 
16 #define ISSPACE(X) isspace((unsigned char)(X))
17 #define ISDIGIT(X) isdigit((unsigned char)(X))
18 #define ISALNUM(X) isalnum((unsigned char)(X))
19 #define ISALPHA(X) isalpha((unsigned char)(X))
20 #define ISUPPER(X) isupper((unsigned char)(X))
21 #define ISLOWER(X) islower((unsigned char)(X))
22 
23 
24 #ifndef __WIN32__
25 #   if defined(_WIN32) || defined(WIN32)
26 #       define __WIN32__
27 #   endif
28 #endif
29 
30 #ifdef __WIN32__
31 #ifdef __cplusplus
32 extern "C" {
33 #endif
34 extern int access(const char *path, int mode);
35 #ifdef __cplusplus
36 }
37 #endif
38 #else
39 #include <unistd.h>
40 #endif
41 
42 /* #define PRIVATE static */
43 #define PRIVATE
44 
45 #ifdef TEST
46 #define MAXRHS 5       /* Set low to exercise exception code */
47 #else
48 #define MAXRHS 1000
49 #endif
50 
51 extern void memory_error();
52 static int showPrecedenceConflict = 0;
53 static char *msort(char*,char**,int(*)(const char*,const char*));
54 
55 /*
56 ** Compilers are getting increasingly pedantic about type conversions
57 ** as C evolves ever closer to Ada....  To work around the latest problems
58 ** we have to define the following variant of strlen().
59 */
60 #define lemonStrlen(X)   ((int)strlen(X))
61 
62 /*
63 ** Compilers are starting to complain about the use of sprintf() and strcpy(),
64 ** saying they are unsafe.  So we define our own versions of those routines too.
65 **
66 ** There are three routines here:  lemon_sprintf(), lemon_vsprintf(), and
67 ** lemon_addtext(). The first two are replacements for sprintf() and vsprintf().
68 ** The third is a helper routine for vsnprintf() that adds texts to the end of a
69 ** buffer, making sure the buffer is always zero-terminated.
70 **
71 ** The string formatter is a minimal subset of stdlib sprintf() supporting only
72 ** a few simply conversions:
73 **
74 **   %d
75 **   %s
76 **   %.*s
77 **
78 */
lemon_addtext(char * zBuf,int * pnUsed,const char * zIn,int nIn,int iWidth)79 static void lemon_addtext(
80   char *zBuf,           /* The buffer to which text is added */
81   int *pnUsed,          /* Slots of the buffer used so far */
82   const char *zIn,      /* Text to add */
83   int nIn,              /* Bytes of text to add.  -1 to use strlen() */
84   int iWidth            /* Field width.  Negative to left justify */
85 ){
86   if( nIn<0 ) for(nIn=0; zIn[nIn]; nIn++){}
87   while( iWidth>nIn ){ zBuf[(*pnUsed)++] = ' '; iWidth--; }
88   if( nIn==0 ) return;
89   memcpy(&zBuf[*pnUsed], zIn, nIn);
90   *pnUsed += nIn;
91   while( (-iWidth)>nIn ){ zBuf[(*pnUsed)++] = ' '; iWidth++; }
92   zBuf[*pnUsed] = 0;
93 }
lemon_vsprintf(char * str,const char * zFormat,va_list ap)94 static int lemon_vsprintf(char *str, const char *zFormat, va_list ap){
95   int i, j, k, c;
96   int nUsed = 0;
97   const char *z;
98   char zTemp[50];
99   str[0] = 0;
100   for(i=j=0; (c = zFormat[i])!=0; i++){
101     if( c=='%' ){
102       int iWidth = 0;
103       lemon_addtext(str, &nUsed, &zFormat[j], i-j, 0);
104       c = zFormat[++i];
105       if( ISDIGIT(c) || (c=='-' && ISDIGIT(zFormat[i+1])) ){
106         if( c=='-' ) i++;
107         while( ISDIGIT(zFormat[i]) ) iWidth = iWidth*10 + zFormat[i++] - '0';
108         if( c=='-' ) iWidth = -iWidth;
109         c = zFormat[i];
110       }
111       if( c=='d' ){
112         int v = va_arg(ap, int);
113         if( v<0 ){
114           lemon_addtext(str, &nUsed, "-", 1, iWidth);
115           v = -v;
116         }else if( v==0 ){
117           lemon_addtext(str, &nUsed, "0", 1, iWidth);
118         }
119         k = 0;
120         while( v>0 ){
121           k++;
122           zTemp[sizeof(zTemp)-k] = (v%10) + '0';
123           v /= 10;
124         }
125         lemon_addtext(str, &nUsed, &zTemp[sizeof(zTemp)-k], k, iWidth);
126       }else if( c=='s' ){
127         z = va_arg(ap, const char*);
128         lemon_addtext(str, &nUsed, z, -1, iWidth);
129       }else if( c=='.' && memcmp(&zFormat[i], ".*s", 3)==0 ){
130         i += 2;
131         k = va_arg(ap, int);
132         z = va_arg(ap, const char*);
133         lemon_addtext(str, &nUsed, z, k, iWidth);
134       }else if( c=='%' ){
135         lemon_addtext(str, &nUsed, "%", 1, 0);
136       }else{
137         fprintf(stderr, "illegal format\n");
138         exit(1);
139       }
140       j = i+1;
141     }
142   }
143   lemon_addtext(str, &nUsed, &zFormat[j], i-j, 0);
144   return nUsed;
145 }
lemon_sprintf(char * str,const char * format,...)146 static int lemon_sprintf(char *str, const char *format, ...){
147   va_list ap;
148   int rc;
149   va_start(ap, format);
150   rc = lemon_vsprintf(str, format, ap);
151   va_end(ap);
152   return rc;
153 }
lemon_strcpy(char * dest,const char * src)154 static void lemon_strcpy(char *dest, const char *src){
155   while( (*(dest++) = *(src++))!=0 ){}
156 }
lemon_strcat(char * dest,const char * src)157 static void lemon_strcat(char *dest, const char *src){
158   while( *dest ) dest++;
159   lemon_strcpy(dest, src);
160 }
161 
162 
163 /* a few forward declarations... */
164 struct rule;
165 struct lemon;
166 struct action;
167 
168 static struct action *Action_new(void);
169 static struct action *Action_sort(struct action *);
170 
171 /********** From the file "build.h" ************************************/
172 void FindRulePrecedences(struct lemon*);
173 void FindFirstSets(struct lemon*);
174 void FindStates(struct lemon*);
175 void FindLinks(struct lemon*);
176 void FindFollowSets(struct lemon*);
177 void FindActions(struct lemon*);
178 
179 /********* From the file "configlist.h" *********************************/
180 void Configlist_init(void);
181 struct config *Configlist_add(struct rule *, int);
182 struct config *Configlist_addbasis(struct rule *, int);
183 void Configlist_closure(struct lemon *);
184 void Configlist_sort(void);
185 void Configlist_sortbasis(void);
186 struct config *Configlist_return(void);
187 struct config *Configlist_basis(void);
188 void Configlist_eat(struct config *);
189 void Configlist_reset(void);
190 
191 /********* From the file "error.h" ***************************************/
192 void ErrorMsg(const char *, int,const char *, ...);
193 
194 /****** From the file "option.h" ******************************************/
195 enum option_type { OPT_FLAG=1,  OPT_INT,  OPT_DBL,  OPT_STR,
196          OPT_FFLAG, OPT_FINT, OPT_FDBL, OPT_FSTR};
197 struct s_options {
198   enum option_type type;
199   const char *label;
200   char *arg;
201   const char *message;
202 };
203 int    OptInit(char**,struct s_options*,FILE*);
204 int    OptNArgs(void);
205 char  *OptArg(int);
206 void   OptErr(int);
207 void   OptPrint(void);
208 
209 /******** From the file "parse.h" *****************************************/
210 void Parse(struct lemon *lemp);
211 
212 /********* From the file "plink.h" ***************************************/
213 struct plink *Plink_new(void);
214 void Plink_add(struct plink **, struct config *);
215 void Plink_copy(struct plink **, struct plink *);
216 void Plink_delete(struct plink *);
217 
218 /********** From the file "report.h" *************************************/
219 void Reprint(struct lemon *);
220 void ReportOutput(struct lemon *);
221 void ReportTable(struct lemon *, int, int);
222 void ReportHeader(struct lemon *);
223 void CompressTables(struct lemon *);
224 void ResortStates(struct lemon *);
225 
226 /********** From the file "set.h" ****************************************/
227 void  SetSize(int);             /* All sets will be of size N */
228 char *SetNew(void);               /* A new set for element 0..N */
229 void  SetFree(char*);             /* Deallocate a set */
230 int SetAdd(char*,int);            /* Add element to a set */
231 int SetUnion(char *,char *);    /* A <- A U B, thru element N */
232 #define SetFind(X,Y) (X[Y])       /* True if Y is in set X */
233 
234 /********** From the file "struct.h" *************************************/
235 /*
236 ** Principal data structures for the LEMON parser generator.
237 */
238 
239 typedef enum {LEMON_FALSE=0, LEMON_TRUE} Boolean;
240 
241 /* Symbols (terminals and nonterminals) of the grammar are stored
242 ** in the following: */
243 enum symbol_type {
244   TERMINAL,
245   NONTERMINAL,
246   MULTITERMINAL
247 };
248 enum e_assoc {
249     LEFT,
250     RIGHT,
251     NONE,
252     UNK
253 };
254 struct symbol {
255   const char *name;        /* Name of the symbol */
256   int index;               /* Index number for this symbol */
257   enum symbol_type type;   /* Symbols are all either TERMINALS or NTs */
258   struct rule *rule;       /* Linked list of rules of this (if an NT) */
259   struct symbol *fallback; /* fallback token in case this token doesn't parse */
260   int prec;                /* Precedence if defined (-1 otherwise) */
261   enum e_assoc assoc;      /* Associativity if precedence is defined */
262   char *firstset;          /* First-set for all rules of this symbol */
263   Boolean lambda;          /* True if NT and can generate an empty string */
264   int useCnt;              /* Number of times used */
265   char *destructor;        /* Code which executes whenever this symbol is
266                            ** popped from the stack during error processing */
267   int destLineno;          /* Line number for start of destructor.  Set to
268                            ** -1 for duplicate destructors. */
269   char *datatype;          /* The data type of information held by this
270                            ** object. Only used if type==NONTERMINAL */
271   int dtnum;               /* The data type number.  In the parser, the value
272                            ** stack is a union.  The .yy%d element of this
273                            ** union is the correct data type for this object */
274   int bContent;            /* True if this symbol ever carries content - if
275                            ** it is ever more than just syntax */
276   /* The following fields are used by MULTITERMINALs only */
277   int nsubsym;             /* Number of constituent symbols in the MULTI */
278   struct symbol **subsym;  /* Array of constituent symbols */
279 };
280 
281 /* Each production rule in the grammar is stored in the following
282 ** structure.  */
283 struct rule {
284   struct symbol *lhs;      /* Left-hand side of the rule */
285   const char *lhsalias;    /* Alias for the LHS (NULL if none) */
286   int lhsStart;            /* True if left-hand side is the start symbol */
287   int ruleline;            /* Line number for the rule */
288   int nrhs;                /* Number of RHS symbols */
289   struct symbol **rhs;     /* The RHS symbols */
290   const char **rhsalias;   /* An alias for each RHS symbol (NULL if none) */
291   int line;                /* Line number at which code begins */
292   const char *code;        /* The code executed when this rule is reduced */
293   const char *codePrefix;  /* Setup code before code[] above */
294   const char *codeSuffix;  /* Breakdown code after code[] above */
295   struct symbol *precsym;  /* Precedence symbol for this rule */
296   int index;               /* An index number for this rule */
297   int iRule;               /* Rule number as used in the generated tables */
298   Boolean noCode;          /* True if this rule has no associated C code */
299   Boolean codeEmitted;     /* True if the code has been emitted already */
300   Boolean canReduce;       /* True if this rule is ever reduced */
301   Boolean doesReduce;      /* Reduce actions occur after optimization */
302   Boolean neverReduce;     /* Reduce is theoretically possible, but prevented
303                            ** by actions or other outside implementation */
304   struct rule *nextlhs;    /* Next rule with the same LHS */
305   struct rule *next;       /* Next rule in the global list */
306 };
307 
308 /* A configuration is a production rule of the grammar together with
309 ** a mark (dot) showing how much of that rule has been processed so far.
310 ** Configurations also contain a follow-set which is a list of terminal
311 ** symbols which are allowed to immediately follow the end of the rule.
312 ** Every configuration is recorded as an instance of the following: */
313 enum cfgstatus {
314   COMPLETE,
315   INCOMPLETE
316 };
317 struct config {
318   struct rule *rp;         /* The rule upon which the configuration is based */
319   int dot;                 /* The parse point */
320   char *fws;               /* Follow-set for this configuration only */
321   struct plink *fplp;      /* Follow-set forward propagation links */
322   struct plink *bplp;      /* Follow-set backwards propagation links */
323   struct state *stp;       /* Pointer to state which contains this */
324   enum cfgstatus status;   /* used during followset and shift computations */
325   struct config *next;     /* Next configuration in the state */
326   struct config *bp;       /* The next basis configuration */
327 };
328 
329 enum e_action {
330   SHIFT,
331   ACCEPT,
332   REDUCE,
333   ERROR,
334   SSCONFLICT,              /* A shift/shift conflict */
335   SRCONFLICT,              /* Was a reduce, but part of a conflict */
336   RRCONFLICT,              /* Was a reduce, but part of a conflict */
337   SH_RESOLVED,             /* Was a shift.  Precedence resolved conflict */
338   RD_RESOLVED,             /* Was reduce.  Precedence resolved conflict */
339   NOT_USED,                /* Deleted by compression */
340   SHIFTREDUCE              /* Shift first, then reduce */
341 };
342 
343 /* Every shift or reduce operation is stored as one of the following */
344 struct action {
345   struct symbol *sp;       /* The look-ahead symbol */
346   enum e_action type;
347   union {
348     struct state *stp;     /* The new state, if a shift */
349     struct rule *rp;       /* The rule, if a reduce */
350   } x;
351   struct symbol *spOpt;    /* SHIFTREDUCE optimization to this symbol */
352   struct action *next;     /* Next action for this state */
353   struct action *collide;  /* Next action with the same hash */
354 };
355 
356 /* Each state of the generated parser's finite state machine
357 ** is encoded as an instance of the following structure. */
358 struct state {
359   struct config *bp;       /* The basis configurations for this state */
360   struct config *cfp;      /* All configurations in this set */
361   int statenum;            /* Sequential number for this state */
362   struct action *ap;       /* List of actions for this state */
363   int nTknAct, nNtAct;     /* Number of actions on terminals and nonterminals */
364   int iTknOfst, iNtOfst;   /* yy_action[] offset for terminals and nonterms */
365   int iDfltReduce;         /* Default action is to REDUCE by this rule */
366   struct rule *pDfltReduce;/* The default REDUCE rule. */
367   int autoReduce;          /* True if this is an auto-reduce state */
368 };
369 #define NO_OFFSET (-2147483647)
370 
371 /* A followset propagation link indicates that the contents of one
372 ** configuration followset should be propagated to another whenever
373 ** the first changes. */
374 struct plink {
375   struct config *cfp;      /* The configuration to which linked */
376   struct plink *next;      /* The next propagate link */
377 };
378 
379 /* The state vector for the entire parser generator is recorded as
380 ** follows.  (LEMON uses no global variables and makes little use of
381 ** static variables.  Fields in the following structure can be thought
382 ** of as begin global variables in the program.) */
383 struct lemon {
384   struct state **sorted;   /* Table of states sorted by state number */
385   struct rule *rule;       /* List of all rules */
386   struct rule *startRule;  /* First rule */
387   int nstate;              /* Number of states */
388   int nxstate;             /* nstate with tail degenerate states removed */
389   int nrule;               /* Number of rules */
390   int nruleWithAction;     /* Number of rules with actions */
391   int nsymbol;             /* Number of terminal and nonterminal symbols */
392   int nterminal;           /* Number of terminal symbols */
393   int minShiftReduce;      /* Minimum shift-reduce action value */
394   int errAction;           /* Error action value */
395   int accAction;           /* Accept action value */
396   int noAction;            /* No-op action value */
397   int minReduce;           /* Minimum reduce action */
398   int maxAction;           /* Maximum action value of any kind */
399   struct symbol **symbols; /* Sorted array of pointers to symbols */
400   int errorcnt;            /* Number of errors */
401   struct symbol *errsym;   /* The error symbol */
402   struct symbol *wildcard; /* Token that matches anything */
403   char *name;              /* Name of the generated parser */
404   char *arg;               /* Declaration of the 3rd argument to parser */
405   char *ctx;               /* Declaration of 2nd argument to constructor */
406   char *tokentype;         /* Type of terminal symbols in the parser stack */
407   char *vartype;           /* The default type of non-terminal symbols */
408   char *start;             /* Name of the start symbol for the grammar */
409   char *stacksize;         /* Size of the parser stack */
410   char *include;           /* Code to put at the start of the C file */
411   char *error;             /* Code to execute when an error is seen */
412   char *overflow;          /* Code to execute on a stack overflow */
413   char *failure;           /* Code to execute on parser failure */
414   char *accept;            /* Code to execute when the parser excepts */
415   char *extracode;         /* Code appended to the generated file */
416   char *tokendest;         /* Code to execute to destroy token data */
417   char *vardest;           /* Code for the default non-terminal destructor */
418   char *filename;          /* Name of the input file */
419   char *outname;           /* Name of the current output file */
420   char *tokenprefix;       /* A prefix added to token names in the .h file */
421   int nconflict;           /* Number of parsing conflicts */
422   int nactiontab;          /* Number of entries in the yy_action[] table */
423   int nlookaheadtab;       /* Number of entries in yy_lookahead[] */
424   int tablesize;           /* Total table size of all tables in bytes */
425   int basisflag;           /* Print only basis configurations */
426   int printPreprocessed;   /* Show preprocessor output on stdout */
427   int has_fallback;        /* True if any %fallback is seen in the grammar */
428   int nolinenosflag;       /* True if #line statements should not be printed */
429   char *argv0;             /* Name of the program */
430 };
431 
432 #define MemoryCheck(X) if((X)==0){ \
433   extern void memory_error(); \
434   memory_error(); \
435 }
436 
437 /**************** From the file "table.h" *********************************/
438 /*
439 ** All code in this file has been automatically generated
440 ** from a specification in the file
441 **              "table.q"
442 ** by the associative array code building program "aagen".
443 ** Do not edit this file!  Instead, edit the specification
444 ** file, then rerun aagen.
445 */
446 /*
447 ** Code for processing tables in the LEMON parser generator.
448 */
449 /* Routines for handling a strings */
450 
451 const char *Strsafe(const char *);
452 
453 void Strsafe_init(void);
454 int Strsafe_insert(const char *);
455 const char *Strsafe_find(const char *);
456 
457 /* Routines for handling symbols of the grammar */
458 
459 struct symbol *Symbol_new(const char *);
460 int Symbolcmpp(const void *, const void *);
461 void Symbol_init(void);
462 int Symbol_insert(struct symbol *, const char *);
463 struct symbol *Symbol_find(const char *);
464 struct symbol *Symbol_Nth(int);
465 int Symbol_count(void);
466 struct symbol **Symbol_arrayof(void);
467 
468 /* Routines to manage the state table */
469 
470 int Configcmp(const char *, const char *);
471 struct state *State_new(void);
472 void State_init(void);
473 int State_insert(struct state *, struct config *);
474 struct state *State_find(struct config *);
475 struct state **State_arrayof(void);
476 
477 /* Routines used for efficiency in Configlist_add */
478 
479 void Configtable_init(void);
480 int Configtable_insert(struct config *);
481 struct config *Configtable_find(struct config *);
482 void Configtable_clear(int(*)(struct config *));
483 
484 /****************** From the file "action.c" *******************************/
485 /*
486 ** Routines processing parser actions in the LEMON parser generator.
487 */
488 
489 /* Allocate a new parser action */
Action_new(void)490 static struct action *Action_new(void){
491   static struct action *actionfreelist = 0;
492   struct action *newaction;
493 
494   if( actionfreelist==0 ){
495     int i;
496     int amt = 100;
497     actionfreelist = (struct action *)calloc(amt, sizeof(struct action));
498     if( actionfreelist==0 ){
499       fprintf(stderr,"Unable to allocate memory for a new parser action.");
500       exit(1);
501     }
502     for(i=0; i<amt-1; i++) actionfreelist[i].next = &actionfreelist[i+1];
503     actionfreelist[amt-1].next = 0;
504   }
505   newaction = actionfreelist;
506   actionfreelist = actionfreelist->next;
507   return newaction;
508 }
509 
510 /* Compare two actions for sorting purposes.  Return negative, zero, or
511 ** positive if the first action is less than, equal to, or greater than
512 ** the first
513 */
actioncmp(struct action * ap1,struct action * ap2)514 static int actioncmp(
515   struct action *ap1,
516   struct action *ap2
517 ){
518   int rc;
519   rc = ap1->sp->index - ap2->sp->index;
520   if( rc==0 ){
521     rc = (int)ap1->type - (int)ap2->type;
522   }
523   if( rc==0 && (ap1->type==REDUCE || ap1->type==SHIFTREDUCE) ){
524     rc = ap1->x.rp->index - ap2->x.rp->index;
525   }
526   if( rc==0 ){
527     rc = (int) (ap2 - ap1);
528   }
529   return rc;
530 }
531 
532 /* Sort parser actions */
Action_sort(struct action * ap)533 static struct action *Action_sort(
534   struct action *ap
535 ){
536   ap = (struct action *)msort((char *)ap,(char **)&ap->next,
537                               (int(*)(const char*,const char*))actioncmp);
538   return ap;
539 }
540 
Action_add(struct action ** app,enum e_action type,struct symbol * sp,char * arg)541 void Action_add(
542   struct action **app,
543   enum e_action type,
544   struct symbol *sp,
545   char *arg
546 ){
547   struct action *newaction;
548   newaction = Action_new();
549   newaction->next = *app;
550   *app = newaction;
551   newaction->type = type;
552   newaction->sp = sp;
553   newaction->spOpt = 0;
554   if( type==SHIFT ){
555     newaction->x.stp = (struct state *)arg;
556   }else{
557     newaction->x.rp = (struct rule *)arg;
558   }
559 }
560 /********************** New code to implement the "acttab" module ***********/
561 /*
562 ** This module implements routines use to construct the yy_action[] table.
563 */
564 
565 /*
566 ** The state of the yy_action table under construction is an instance of
567 ** the following structure.
568 **
569 ** The yy_action table maps the pair (state_number, lookahead) into an
570 ** action_number.  The table is an array of integers pairs.  The state_number
571 ** determines an initial offset into the yy_action array.  The lookahead
572 ** value is then added to this initial offset to get an index X into the
573 ** yy_action array. If the aAction[X].lookahead equals the value of the
574 ** of the lookahead input, then the value of the action_number output is
575 ** aAction[X].action.  If the lookaheads do not match then the
576 ** default action for the state_number is returned.
577 **
578 ** All actions associated with a single state_number are first entered
579 ** into aLookahead[] using multiple calls to acttab_action().  Then the
580 ** actions for that single state_number are placed into the aAction[]
581 ** array with a single call to acttab_insert().  The acttab_insert() call
582 ** also resets the aLookahead[] array in preparation for the next
583 ** state number.
584 */
585 struct lookahead_action {
586   int lookahead;             /* Value of the lookahead token */
587   int action;                /* Action to take on the given lookahead */
588 };
589 typedef struct acttab acttab;
590 struct acttab {
591   int nAction;                 /* Number of used slots in aAction[] */
592   int nActionAlloc;            /* Slots allocated for aAction[] */
593   struct lookahead_action
594     *aAction,                  /* The yy_action[] table under construction */
595     *aLookahead;               /* A single new transaction set */
596   int mnLookahead;             /* Minimum aLookahead[].lookahead */
597   int mnAction;                /* Action associated with mnLookahead */
598   int mxLookahead;             /* Maximum aLookahead[].lookahead */
599   int nLookahead;              /* Used slots in aLookahead[] */
600   int nLookaheadAlloc;         /* Slots allocated in aLookahead[] */
601   int nterminal;               /* Number of terminal symbols */
602   int nsymbol;                 /* total number of symbols */
603 };
604 
605 /* Return the number of entries in the yy_action table */
606 #define acttab_lookahead_size(X) ((X)->nAction)
607 
608 /* The value for the N-th entry in yy_action */
609 #define acttab_yyaction(X,N)  ((X)->aAction[N].action)
610 
611 /* The value for the N-th entry in yy_lookahead */
612 #define acttab_yylookahead(X,N)  ((X)->aAction[N].lookahead)
613 
614 /* Free all memory associated with the given acttab */
acttab_free(acttab * p)615 void acttab_free(acttab *p){
616   free( p->aAction );
617   free( p->aLookahead );
618   free( p );
619 }
620 
621 /* Allocate a new acttab structure */
acttab_alloc(int nsymbol,int nterminal)622 acttab *acttab_alloc(int nsymbol, int nterminal){
623   acttab *p = (acttab *) calloc( 1, sizeof(*p) );
624   if( p==0 ){
625     fprintf(stderr,"Unable to allocate memory for a new acttab.");
626     exit(1);
627   }
628   memset(p, 0, sizeof(*p));
629   p->nsymbol = nsymbol;
630   p->nterminal = nterminal;
631   return p;
632 }
633 
634 /* Add a new action to the current transaction set.
635 **
636 ** This routine is called once for each lookahead for a particular
637 ** state.
638 */
acttab_action(acttab * p,int lookahead,int action)639 void acttab_action(acttab *p, int lookahead, int action){
640   if( p->nLookahead>=p->nLookaheadAlloc ){
641     p->nLookaheadAlloc += 25;
642     p->aLookahead = (struct lookahead_action *) realloc( p->aLookahead,
643                              sizeof(p->aLookahead[0])*p->nLookaheadAlloc );
644     if( p->aLookahead==0 ){
645       fprintf(stderr,"malloc failed\n");
646       exit(1);
647     }
648   }
649   if( p->nLookahead==0 ){
650     p->mxLookahead = lookahead;
651     p->mnLookahead = lookahead;
652     p->mnAction = action;
653   }else{
654     if( p->mxLookahead<lookahead ) p->mxLookahead = lookahead;
655     if( p->mnLookahead>lookahead ){
656       p->mnLookahead = lookahead;
657       p->mnAction = action;
658     }
659   }
660   p->aLookahead[p->nLookahead].lookahead = lookahead;
661   p->aLookahead[p->nLookahead].action = action;
662   p->nLookahead++;
663 }
664 
665 /*
666 ** Add the transaction set built up with prior calls to acttab_action()
667 ** into the current action table.  Then reset the transaction set back
668 ** to an empty set in preparation for a new round of acttab_action() calls.
669 **
670 ** Return the offset into the action table of the new transaction.
671 **
672 ** If the makeItSafe parameter is true, then the offset is chosen so that
673 ** it is impossible to overread the yy_lookaside[] table regardless of
674 ** the lookaside token.  This is done for the terminal symbols, as they
675 ** come from external inputs and can contain syntax errors.  When makeItSafe
676 ** is false, there is more flexibility in selecting offsets, resulting in
677 ** a smaller table.  For non-terminal symbols, which are never syntax errors,
678 ** makeItSafe can be false.
679 */
acttab_insert(acttab * p,int makeItSafe)680 int acttab_insert(acttab *p, int makeItSafe){
681   int i, j, k, n, end;
682   assert( p->nLookahead>0 );
683 
684   /* Make sure we have enough space to hold the expanded action table
685   ** in the worst case.  The worst case occurs if the transaction set
686   ** must be appended to the current action table
687   */
688   n = p->nsymbol + 1;
689   if( p->nAction + n >= p->nActionAlloc ){
690     int oldAlloc = p->nActionAlloc;
691     p->nActionAlloc = p->nAction + n + p->nActionAlloc + 20;
692     p->aAction = (struct lookahead_action *) realloc( p->aAction,
693                           sizeof(p->aAction[0])*p->nActionAlloc);
694     if( p->aAction==0 ){
695       fprintf(stderr,"malloc failed\n");
696       exit(1);
697     }
698     for(i=oldAlloc; i<p->nActionAlloc; i++){
699       p->aAction[i].lookahead = -1;
700       p->aAction[i].action = -1;
701     }
702   }
703 
704   /* Scan the existing action table looking for an offset that is a
705   ** duplicate of the current transaction set.  Fall out of the loop
706   ** if and when the duplicate is found.
707   **
708   ** i is the index in p->aAction[] where p->mnLookahead is inserted.
709   */
710   end = makeItSafe ? p->mnLookahead : 0;
711   for(i=p->nAction-1; i>=end; i--){
712     if( p->aAction[i].lookahead==p->mnLookahead ){
713       /* All lookaheads and actions in the aLookahead[] transaction
714       ** must match against the candidate aAction[i] entry. */
715       if( p->aAction[i].action!=p->mnAction ) continue;
716       for(j=0; j<p->nLookahead; j++){
717         k = p->aLookahead[j].lookahead - p->mnLookahead + i;
718         if( k<0 || k>=p->nAction ) break;
719         if( p->aLookahead[j].lookahead!=p->aAction[k].lookahead ) break;
720         if( p->aLookahead[j].action!=p->aAction[k].action ) break;
721       }
722       if( j<p->nLookahead ) continue;
723 
724       /* No possible lookahead value that is not in the aLookahead[]
725       ** transaction is allowed to match aAction[i] */
726       n = 0;
727       for(j=0; j<p->nAction; j++){
728         if( p->aAction[j].lookahead<0 ) continue;
729         if( p->aAction[j].lookahead==j+p->mnLookahead-i ) n++;
730       }
731       if( n==p->nLookahead ){
732         break;  /* An exact match is found at offset i */
733       }
734     }
735   }
736 
737   /* If no existing offsets exactly match the current transaction, find an
738   ** an empty offset in the aAction[] table in which we can add the
739   ** aLookahead[] transaction.
740   */
741   if( i<end ){
742     /* Look for holes in the aAction[] table that fit the current
743     ** aLookahead[] transaction.  Leave i set to the offset of the hole.
744     ** If no holes are found, i is left at p->nAction, which means the
745     ** transaction will be appended. */
746     i = makeItSafe ? p->mnLookahead : 0;
747     for(; i<p->nActionAlloc - p->mxLookahead; i++){
748       if( p->aAction[i].lookahead<0 ){
749         for(j=0; j<p->nLookahead; j++){
750           k = p->aLookahead[j].lookahead - p->mnLookahead + i;
751           if( k<0 ) break;
752           if( p->aAction[k].lookahead>=0 ) break;
753         }
754         if( j<p->nLookahead ) continue;
755         for(j=0; j<p->nAction; j++){
756           if( p->aAction[j].lookahead==j+p->mnLookahead-i ) break;
757         }
758         if( j==p->nAction ){
759           break;  /* Fits in empty slots */
760         }
761       }
762     }
763   }
764   /* Insert transaction set at index i. */
765 #if 0
766   printf("Acttab:");
767   for(j=0; j<p->nLookahead; j++){
768     printf(" %d", p->aLookahead[j].lookahead);
769   }
770   printf(" inserted at %d\n", i);
771 #endif
772   for(j=0; j<p->nLookahead; j++){
773     k = p->aLookahead[j].lookahead - p->mnLookahead + i;
774     p->aAction[k] = p->aLookahead[j];
775     if( k>=p->nAction ) p->nAction = k+1;
776   }
777   if( makeItSafe && i+p->nterminal>=p->nAction ) p->nAction = i+p->nterminal+1;
778   p->nLookahead = 0;
779 
780   /* Return the offset that is added to the lookahead in order to get the
781   ** index into yy_action of the action */
782   return i - p->mnLookahead;
783 }
784 
785 /*
786 ** Return the size of the action table without the trailing syntax error
787 ** entries.
788 */
acttab_action_size(acttab * p)789 int acttab_action_size(acttab *p){
790   int n = p->nAction;
791   while( n>0 && p->aAction[n-1].lookahead<0 ){ n--; }
792   return n;
793 }
794 
795 /********************** From the file "build.c" *****************************/
796 /*
797 ** Routines to construction the finite state machine for the LEMON
798 ** parser generator.
799 */
800 
801 /* Find a precedence symbol of every rule in the grammar.
802 **
803 ** Those rules which have a precedence symbol coded in the input
804 ** grammar using the "[symbol]" construct will already have the
805 ** rp->precsym field filled.  Other rules take as their precedence
806 ** symbol the first RHS symbol with a defined precedence.  If there
807 ** are not RHS symbols with a defined precedence, the precedence
808 ** symbol field is left blank.
809 */
FindRulePrecedences(struct lemon * xp)810 void FindRulePrecedences(struct lemon *xp)
811 {
812   struct rule *rp;
813   for(rp=xp->rule; rp; rp=rp->next){
814     if( rp->precsym==0 ){
815       int i, j;
816       for(i=0; i<rp->nrhs && rp->precsym==0; i++){
817         struct symbol *sp = rp->rhs[i];
818         if( sp->type==MULTITERMINAL ){
819           for(j=0; j<sp->nsubsym; j++){
820             if( sp->subsym[j]->prec>=0 ){
821               rp->precsym = sp->subsym[j];
822               break;
823             }
824           }
825         }else if( sp->prec>=0 ){
826           rp->precsym = rp->rhs[i];
827         }
828       }
829     }
830   }
831   return;
832 }
833 
834 /* Find all nonterminals which will generate the empty string.
835 ** Then go back and compute the first sets of every nonterminal.
836 ** The first set is the set of all terminal symbols which can begin
837 ** a string generated by that nonterminal.
838 */
FindFirstSets(struct lemon * lemp)839 void FindFirstSets(struct lemon *lemp)
840 {
841   int i, j;
842   struct rule *rp;
843   int progress;
844 
845   for(i=0; i<lemp->nsymbol; i++){
846     lemp->symbols[i]->lambda = LEMON_FALSE;
847   }
848   for(i=lemp->nterminal; i<lemp->nsymbol; i++){
849     lemp->symbols[i]->firstset = SetNew();
850   }
851 
852   /* First compute all lambdas */
853   do{
854     progress = 0;
855     for(rp=lemp->rule; rp; rp=rp->next){
856       if( rp->lhs->lambda ) continue;
857       for(i=0; i<rp->nrhs; i++){
858         struct symbol *sp = rp->rhs[i];
859         assert( sp->type==NONTERMINAL || sp->lambda==LEMON_FALSE );
860         if( sp->lambda==LEMON_FALSE ) break;
861       }
862       if( i==rp->nrhs ){
863         rp->lhs->lambda = LEMON_TRUE;
864         progress = 1;
865       }
866     }
867   }while( progress );
868 
869   /* Now compute all first sets */
870   do{
871     struct symbol *s1, *s2;
872     progress = 0;
873     for(rp=lemp->rule; rp; rp=rp->next){
874       s1 = rp->lhs;
875       for(i=0; i<rp->nrhs; i++){
876         s2 = rp->rhs[i];
877         if( s2->type==TERMINAL ){
878           progress += SetAdd(s1->firstset,s2->index);
879           break;
880         }else if( s2->type==MULTITERMINAL ){
881           for(j=0; j<s2->nsubsym; j++){
882             progress += SetAdd(s1->firstset,s2->subsym[j]->index);
883           }
884           break;
885         }else if( s1==s2 ){
886           if( s1->lambda==LEMON_FALSE ) break;
887         }else{
888           progress += SetUnion(s1->firstset,s2->firstset);
889           if( s2->lambda==LEMON_FALSE ) break;
890         }
891       }
892     }
893   }while( progress );
894   return;
895 }
896 
897 /* Compute all LR(0) states for the grammar.  Links
898 ** are added to between some states so that the LR(1) follow sets
899 ** can be computed later.
900 */
901 PRIVATE struct state *getstate(struct lemon *);  /* forward reference */
FindStates(struct lemon * lemp)902 void FindStates(struct lemon *lemp)
903 {
904   struct symbol *sp;
905   struct rule *rp;
906 
907   Configlist_init();
908 
909   /* Find the start symbol */
910   if( lemp->start ){
911     sp = Symbol_find(lemp->start);
912     if( sp==0 ){
913       ErrorMsg(lemp->filename,0,
914         "The specified start symbol \"%s\" is not "
915         "in a nonterminal of the grammar.  \"%s\" will be used as the start "
916         "symbol instead.",lemp->start,lemp->startRule->lhs->name);
917       lemp->errorcnt++;
918       sp = lemp->startRule->lhs;
919     }
920   }else if( lemp->startRule ){
921     sp = lemp->startRule->lhs;
922   }else{
923     ErrorMsg(lemp->filename,0,"Internal error - no start rule\n");
924     exit(1);
925   }
926 
927   /* Make sure the start symbol doesn't occur on the right-hand side of
928   ** any rule.  Report an error if it does.  (YACC would generate a new
929   ** start symbol in this case.) */
930   for(rp=lemp->rule; rp; rp=rp->next){
931     int i;
932     for(i=0; i<rp->nrhs; i++){
933       if( rp->rhs[i]==sp ){   /* FIX ME:  Deal with multiterminals */
934         ErrorMsg(lemp->filename,0,
935           "The start symbol \"%s\" occurs on the "
936           "right-hand side of a rule. This will result in a parser which "
937           "does not work properly.",sp->name);
938         lemp->errorcnt++;
939       }
940     }
941   }
942 
943   /* The basis configuration set for the first state
944   ** is all rules which have the start symbol as their
945   ** left-hand side */
946   for(rp=sp->rule; rp; rp=rp->nextlhs){
947     struct config *newcfp;
948     rp->lhsStart = 1;
949     newcfp = Configlist_addbasis(rp,0);
950     SetAdd(newcfp->fws,0);
951   }
952 
953   /* Compute the first state.  All other states will be
954   ** computed automatically during the computation of the first one.
955   ** The returned pointer to the first state is not used. */
956   (void)getstate(lemp);
957   return;
958 }
959 
960 /* Return a pointer to a state which is described by the configuration
961 ** list which has been built from calls to Configlist_add.
962 */
963 PRIVATE void buildshifts(struct lemon *, struct state *); /* Forwd ref */
getstate(struct lemon * lemp)964 PRIVATE struct state *getstate(struct lemon *lemp)
965 {
966   struct config *cfp, *bp;
967   struct state *stp;
968 
969   /* Extract the sorted basis of the new state.  The basis was constructed
970   ** by prior calls to "Configlist_addbasis()". */
971   Configlist_sortbasis();
972   bp = Configlist_basis();
973 
974   /* Get a state with the same basis */
975   stp = State_find(bp);
976   if( stp ){
977     /* A state with the same basis already exists!  Copy all the follow-set
978     ** propagation links from the state under construction into the
979     ** preexisting state, then return a pointer to the preexisting state */
980     struct config *x, *y;
981     for(x=bp, y=stp->bp; x && y; x=x->bp, y=y->bp){
982       Plink_copy(&y->bplp,x->bplp);
983       Plink_delete(x->fplp);
984       x->fplp = x->bplp = 0;
985     }
986     cfp = Configlist_return();
987     Configlist_eat(cfp);
988   }else{
989     /* This really is a new state.  Construct all the details */
990     Configlist_closure(lemp);    /* Compute the configuration closure */
991     Configlist_sort();           /* Sort the configuration closure */
992     cfp = Configlist_return();   /* Get a pointer to the config list */
993     stp = State_new();           /* A new state structure */
994     MemoryCheck(stp);
995     stp->bp = bp;                /* Remember the configuration basis */
996     stp->cfp = cfp;              /* Remember the configuration closure */
997     stp->statenum = lemp->nstate++; /* Every state gets a sequence number */
998     stp->ap = 0;                 /* No actions, yet. */
999     State_insert(stp,stp->bp);   /* Add to the state table */
1000     buildshifts(lemp,stp);       /* Recursively compute successor states */
1001   }
1002   return stp;
1003 }
1004 
1005 /*
1006 ** Return true if two symbols are the same.
1007 */
same_symbol(struct symbol * a,struct symbol * b)1008 int same_symbol(struct symbol *a, struct symbol *b)
1009 {
1010   int i;
1011   if( a==b ) return 1;
1012   if( a->type!=MULTITERMINAL ) return 0;
1013   if( b->type!=MULTITERMINAL ) return 0;
1014   if( a->nsubsym!=b->nsubsym ) return 0;
1015   for(i=0; i<a->nsubsym; i++){
1016     if( a->subsym[i]!=b->subsym[i] ) return 0;
1017   }
1018   return 1;
1019 }
1020 
1021 /* Construct all successor states to the given state.  A "successor"
1022 ** state is any state which can be reached by a shift action.
1023 */
buildshifts(struct lemon * lemp,struct state * stp)1024 PRIVATE void buildshifts(struct lemon *lemp, struct state *stp)
1025 {
1026   struct config *cfp;  /* For looping thru the config closure of "stp" */
1027   struct config *bcfp; /* For the inner loop on config closure of "stp" */
1028   struct config *newcfg;  /* */
1029   struct symbol *sp;   /* Symbol following the dot in configuration "cfp" */
1030   struct symbol *bsp;  /* Symbol following the dot in configuration "bcfp" */
1031   struct state *newstp; /* A pointer to a successor state */
1032 
1033   /* Each configuration becomes complete after it contributes to a successor
1034   ** state.  Initially, all configurations are incomplete */
1035   for(cfp=stp->cfp; cfp; cfp=cfp->next) cfp->status = INCOMPLETE;
1036 
1037   /* Loop through all configurations of the state "stp" */
1038   for(cfp=stp->cfp; cfp; cfp=cfp->next){
1039     if( cfp->status==COMPLETE ) continue;    /* Already used by inner loop */
1040     if( cfp->dot>=cfp->rp->nrhs ) continue;  /* Can't shift this config */
1041     Configlist_reset();                      /* Reset the new config set */
1042     sp = cfp->rp->rhs[cfp->dot];             /* Symbol after the dot */
1043 
1044     /* For every configuration in the state "stp" which has the symbol "sp"
1045     ** following its dot, add the same configuration to the basis set under
1046     ** construction but with the dot shifted one symbol to the right. */
1047     for(bcfp=cfp; bcfp; bcfp=bcfp->next){
1048       if( bcfp->status==COMPLETE ) continue;    /* Already used */
1049       if( bcfp->dot>=bcfp->rp->nrhs ) continue; /* Can't shift this one */
1050       bsp = bcfp->rp->rhs[bcfp->dot];           /* Get symbol after dot */
1051       if( !same_symbol(bsp,sp) ) continue;      /* Must be same as for "cfp" */
1052       bcfp->status = COMPLETE;                  /* Mark this config as used */
1053       newcfg = Configlist_addbasis(bcfp->rp,bcfp->dot+1);
1054       Plink_add(&newcfg->bplp,bcfp);
1055     }
1056 
1057     /* Get a pointer to the state described by the basis configuration set
1058     ** constructed in the preceding loop */
1059     newstp = getstate(lemp);
1060 
1061     /* The state "newstp" is reached from the state "stp" by a shift action
1062     ** on the symbol "sp" */
1063     if( sp->type==MULTITERMINAL ){
1064       int i;
1065       for(i=0; i<sp->nsubsym; i++){
1066         Action_add(&stp->ap,SHIFT,sp->subsym[i],(char*)newstp);
1067       }
1068     }else{
1069       Action_add(&stp->ap,SHIFT,sp,(char *)newstp);
1070     }
1071   }
1072 }
1073 
1074 /*
1075 ** Construct the propagation links
1076 */
FindLinks(struct lemon * lemp)1077 void FindLinks(struct lemon *lemp)
1078 {
1079   int i;
1080   struct config *cfp, *other;
1081   struct state *stp;
1082   struct plink *plp;
1083 
1084   /* Housekeeping detail:
1085   ** Add to every propagate link a pointer back to the state to
1086   ** which the link is attached. */
1087   for(i=0; i<lemp->nstate; i++){
1088     stp = lemp->sorted[i];
1089     for(cfp=stp?stp->cfp:0; cfp; cfp=cfp->next){
1090       cfp->stp = stp;
1091     }
1092   }
1093 
1094   /* Convert all backlinks into forward links.  Only the forward
1095   ** links are used in the follow-set computation. */
1096   for(i=0; i<lemp->nstate; i++){
1097     stp = lemp->sorted[i];
1098     for(cfp=stp?stp->cfp:0; cfp; cfp=cfp->next){
1099       for(plp=cfp->bplp; plp; plp=plp->next){
1100         other = plp->cfp;
1101         Plink_add(&other->fplp,cfp);
1102       }
1103     }
1104   }
1105 }
1106 
1107 /* Compute all followsets.
1108 **
1109 ** A followset is the set of all symbols which can come immediately
1110 ** after a configuration.
1111 */
FindFollowSets(struct lemon * lemp)1112 void FindFollowSets(struct lemon *lemp)
1113 {
1114   int i;
1115   struct config *cfp;
1116   struct plink *plp;
1117   int progress;
1118   int change;
1119 
1120   for(i=0; i<lemp->nstate; i++){
1121     assert( lemp->sorted[i]!=0 );
1122     for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){
1123       cfp->status = INCOMPLETE;
1124     }
1125   }
1126 
1127   do{
1128     progress = 0;
1129     for(i=0; i<lemp->nstate; i++){
1130       assert( lemp->sorted[i]!=0 );
1131       for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){
1132         if( cfp->status==COMPLETE ) continue;
1133         for(plp=cfp->fplp; plp; plp=plp->next){
1134           change = SetUnion(plp->cfp->fws,cfp->fws);
1135           if( change ){
1136             plp->cfp->status = INCOMPLETE;
1137             progress = 1;
1138           }
1139         }
1140         cfp->status = COMPLETE;
1141       }
1142     }
1143   }while( progress );
1144 }
1145 
1146 static int resolve_conflict(struct action *,struct action *);
1147 
1148 /* Compute the reduce actions, and resolve conflicts.
1149 */
FindActions(struct lemon * lemp)1150 void FindActions(struct lemon *lemp)
1151 {
1152   int i,j;
1153   struct config *cfp;
1154   struct state *stp;
1155   struct symbol *sp;
1156   struct rule *rp;
1157 
1158   /* Add all of the reduce actions
1159   ** A reduce action is added for each element of the followset of
1160   ** a configuration which has its dot at the extreme right.
1161   */
1162   for(i=0; i<lemp->nstate; i++){   /* Loop over all states */
1163     stp = lemp->sorted[i];
1164     for(cfp=stp->cfp; cfp; cfp=cfp->next){  /* Loop over all configurations */
1165       if( cfp->rp->nrhs==cfp->dot ){        /* Is dot at extreme right? */
1166         for(j=0; j<lemp->nterminal; j++){
1167           if( SetFind(cfp->fws,j) ){
1168             /* Add a reduce action to the state "stp" which will reduce by the
1169             ** rule "cfp->rp" if the lookahead symbol is "lemp->symbols[j]" */
1170             Action_add(&stp->ap,REDUCE,lemp->symbols[j],(char *)cfp->rp);
1171           }
1172         }
1173       }
1174     }
1175   }
1176 
1177   /* Add the accepting token */
1178   if( lemp->start ){
1179     sp = Symbol_find(lemp->start);
1180     if( sp==0 ){
1181       if( lemp->startRule==0 ){
1182         fprintf(stderr, "internal error on source line %d: no start rule\n",
1183                 __LINE__);
1184         exit(1);
1185       }
1186       sp = lemp->startRule->lhs;
1187     }
1188   }else{
1189     sp = lemp->startRule->lhs;
1190   }
1191   /* Add to the first state (which is always the starting state of the
1192   ** finite state machine) an action to ACCEPT if the lookahead is the
1193   ** start nonterminal.  */
1194   Action_add(&lemp->sorted[0]->ap,ACCEPT,sp,0);
1195 
1196   /* Resolve conflicts */
1197   for(i=0; i<lemp->nstate; i++){
1198     struct action *ap, *nap;
1199     stp = lemp->sorted[i];
1200     /* assert( stp->ap ); */
1201     stp->ap = Action_sort(stp->ap);
1202     for(ap=stp->ap; ap && ap->next; ap=ap->next){
1203       for(nap=ap->next; nap && nap->sp==ap->sp; nap=nap->next){
1204          /* The two actions "ap" and "nap" have the same lookahead.
1205          ** Figure out which one should be used */
1206          lemp->nconflict += resolve_conflict(ap,nap);
1207       }
1208     }
1209   }
1210 
1211   /* Report an error for each rule that can never be reduced. */
1212   for(rp=lemp->rule; rp; rp=rp->next) rp->canReduce = LEMON_FALSE;
1213   for(i=0; i<lemp->nstate; i++){
1214     struct action *ap;
1215     for(ap=lemp->sorted[i]->ap; ap; ap=ap->next){
1216       if( ap->type==REDUCE ) ap->x.rp->canReduce = LEMON_TRUE;
1217     }
1218   }
1219   for(rp=lemp->rule; rp; rp=rp->next){
1220     if( rp->canReduce ) continue;
1221     ErrorMsg(lemp->filename,rp->ruleline,"This rule can not be reduced.\n");
1222     lemp->errorcnt++;
1223   }
1224 }
1225 
1226 /* Resolve a conflict between the two given actions.  If the
1227 ** conflict can't be resolved, return non-zero.
1228 **
1229 ** NO LONGER TRUE:
1230 **   To resolve a conflict, first look to see if either action
1231 **   is on an error rule.  In that case, take the action which
1232 **   is not associated with the error rule.  If neither or both
1233 **   actions are associated with an error rule, then try to
1234 **   use precedence to resolve the conflict.
1235 **
1236 ** If either action is a SHIFT, then it must be apx.  This
1237 ** function won't work if apx->type==REDUCE and apy->type==SHIFT.
1238 */
resolve_conflict(struct action * apx,struct action * apy)1239 static int resolve_conflict(
1240   struct action *apx,
1241   struct action *apy
1242 ){
1243   struct symbol *spx, *spy;
1244   int errcnt = 0;
1245   assert( apx->sp==apy->sp );  /* Otherwise there would be no conflict */
1246   if( apx->type==SHIFT && apy->type==SHIFT ){
1247     apy->type = SSCONFLICT;
1248     errcnt++;
1249   }
1250   if( apx->type==SHIFT && apy->type==REDUCE ){
1251     spx = apx->sp;
1252     spy = apy->x.rp->precsym;
1253     if( spy==0 || spx->prec<0 || spy->prec<0 ){
1254       /* Not enough precedence information. */
1255       apy->type = SRCONFLICT;
1256       errcnt++;
1257     }else if( spx->prec>spy->prec ){    /* higher precedence wins */
1258       apy->type = RD_RESOLVED;
1259     }else if( spx->prec<spy->prec ){
1260       apx->type = SH_RESOLVED;
1261     }else if( spx->prec==spy->prec && spx->assoc==RIGHT ){ /* Use operator */
1262       apy->type = RD_RESOLVED;                             /* associativity */
1263     }else if( spx->prec==spy->prec && spx->assoc==LEFT ){  /* to break tie */
1264       apx->type = SH_RESOLVED;
1265     }else{
1266       assert( spx->prec==spy->prec && spx->assoc==NONE );
1267       apx->type = ERROR;
1268     }
1269   }else if( apx->type==REDUCE && apy->type==REDUCE ){
1270     spx = apx->x.rp->precsym;
1271     spy = apy->x.rp->precsym;
1272     if( spx==0 || spy==0 || spx->prec<0 ||
1273     spy->prec<0 || spx->prec==spy->prec ){
1274       apy->type = RRCONFLICT;
1275       errcnt++;
1276     }else if( spx->prec>spy->prec ){
1277       apy->type = RD_RESOLVED;
1278     }else if( spx->prec<spy->prec ){
1279       apx->type = RD_RESOLVED;
1280     }
1281   }else{
1282     assert(
1283       apx->type==SH_RESOLVED ||
1284       apx->type==RD_RESOLVED ||
1285       apx->type==SSCONFLICT ||
1286       apx->type==SRCONFLICT ||
1287       apx->type==RRCONFLICT ||
1288       apy->type==SH_RESOLVED ||
1289       apy->type==RD_RESOLVED ||
1290       apy->type==SSCONFLICT ||
1291       apy->type==SRCONFLICT ||
1292       apy->type==RRCONFLICT
1293     );
1294     /* The REDUCE/SHIFT case cannot happen because SHIFTs come before
1295     ** REDUCEs on the list.  If we reach this point it must be because
1296     ** the parser conflict had already been resolved. */
1297   }
1298   return errcnt;
1299 }
1300 /********************* From the file "configlist.c" *************************/
1301 /*
1302 ** Routines to processing a configuration list and building a state
1303 ** in the LEMON parser generator.
1304 */
1305 
1306 static struct config *freelist = 0;      /* List of free configurations */
1307 static struct config *current = 0;       /* Top of list of configurations */
1308 static struct config **currentend = 0;   /* Last on list of configs */
1309 static struct config *basis = 0;         /* Top of list of basis configs */
1310 static struct config **basisend = 0;     /* End of list of basis configs */
1311 
1312 /* Return a pointer to a new configuration */
newconfig(void)1313 PRIVATE struct config *newconfig(void){
1314   return (struct config*)calloc(1, sizeof(struct config));
1315 }
1316 
1317 /* The configuration "old" is no longer used */
deleteconfig(struct config * old)1318 PRIVATE void deleteconfig(struct config *old)
1319 {
1320   old->next = freelist;
1321   freelist = old;
1322 }
1323 
1324 /* Initialized the configuration list builder */
Configlist_init(void)1325 void Configlist_init(void){
1326   current = 0;
1327   currentend = &current;
1328   basis = 0;
1329   basisend = &basis;
1330   Configtable_init();
1331   return;
1332 }
1333 
1334 /* Initialized the configuration list builder */
Configlist_reset(void)1335 void Configlist_reset(void){
1336   current = 0;
1337   currentend = &current;
1338   basis = 0;
1339   basisend = &basis;
1340   Configtable_clear(0);
1341   return;
1342 }
1343 
1344 /* Add another configuration to the configuration list */
Configlist_add(struct rule * rp,int dot)1345 struct config *Configlist_add(
1346   struct rule *rp,    /* The rule */
1347   int dot             /* Index into the RHS of the rule where the dot goes */
1348 ){
1349   struct config *cfp, model;
1350 
1351   assert( currentend!=0 );
1352   model.rp = rp;
1353   model.dot = dot;
1354   cfp = Configtable_find(&model);
1355   if( cfp==0 ){
1356     cfp = newconfig();
1357     cfp->rp = rp;
1358     cfp->dot = dot;
1359     cfp->fws = SetNew();
1360     cfp->stp = 0;
1361     cfp->fplp = cfp->bplp = 0;
1362     cfp->next = 0;
1363     cfp->bp = 0;
1364     *currentend = cfp;
1365     currentend = &cfp->next;
1366     Configtable_insert(cfp);
1367   }
1368   return cfp;
1369 }
1370 
1371 /* Add a basis configuration to the configuration list */
Configlist_addbasis(struct rule * rp,int dot)1372 struct config *Configlist_addbasis(struct rule *rp, int dot)
1373 {
1374   struct config *cfp, model;
1375 
1376   assert( basisend!=0 );
1377   assert( currentend!=0 );
1378   model.rp = rp;
1379   model.dot = dot;
1380   cfp = Configtable_find(&model);
1381   if( cfp==0 ){
1382     cfp = newconfig();
1383     cfp->rp = rp;
1384     cfp->dot = dot;
1385     cfp->fws = SetNew();
1386     cfp->stp = 0;
1387     cfp->fplp = cfp->bplp = 0;
1388     cfp->next = 0;
1389     cfp->bp = 0;
1390     *currentend = cfp;
1391     currentend = &cfp->next;
1392     *basisend = cfp;
1393     basisend = &cfp->bp;
1394     Configtable_insert(cfp);
1395   }
1396   return cfp;
1397 }
1398 
1399 /* Compute the closure of the configuration list */
Configlist_closure(struct lemon * lemp)1400 void Configlist_closure(struct lemon *lemp)
1401 {
1402   struct config *cfp, *newcfp;
1403   struct rule *rp, *newrp;
1404   struct symbol *sp, *xsp;
1405   int i, dot;
1406 
1407   assert( currentend!=0 );
1408   for(cfp=current; cfp; cfp=cfp->next){
1409     rp = cfp->rp;
1410     dot = cfp->dot;
1411     if( dot>=rp->nrhs ) continue;
1412     sp = rp->rhs[dot];
1413     if( sp->type==NONTERMINAL ){
1414       if( sp->rule==0 && sp!=lemp->errsym ){
1415         ErrorMsg(lemp->filename,rp->line,"Nonterminal \"%s\" has no rules.",
1416           sp->name);
1417         lemp->errorcnt++;
1418       }
1419       for(newrp=sp->rule; newrp; newrp=newrp->nextlhs){
1420         newcfp = Configlist_add(newrp,0);
1421         for(i=dot+1; i<rp->nrhs; i++){
1422           xsp = rp->rhs[i];
1423           if( xsp->type==TERMINAL ){
1424             SetAdd(newcfp->fws,xsp->index);
1425             break;
1426           }else if( xsp->type==MULTITERMINAL ){
1427             int k;
1428             for(k=0; k<xsp->nsubsym; k++){
1429               SetAdd(newcfp->fws, xsp->subsym[k]->index);
1430             }
1431             break;
1432           }else{
1433             SetUnion(newcfp->fws,xsp->firstset);
1434             if( xsp->lambda==LEMON_FALSE ) break;
1435           }
1436         }
1437         if( i==rp->nrhs ) Plink_add(&cfp->fplp,newcfp);
1438       }
1439     }
1440   }
1441   return;
1442 }
1443 
1444 /* Sort the configuration list */
Configlist_sort(void)1445 void Configlist_sort(void){
1446   current = (struct config*)msort((char*)current,(char**)&(current->next),
1447                                   Configcmp);
1448   currentend = 0;
1449   return;
1450 }
1451 
1452 /* Sort the basis configuration list */
Configlist_sortbasis(void)1453 void Configlist_sortbasis(void){
1454   basis = (struct config*)msort((char*)current,(char**)&(current->bp),
1455                                 Configcmp);
1456   basisend = 0;
1457   return;
1458 }
1459 
1460 /* Return a pointer to the head of the configuration list and
1461 ** reset the list */
Configlist_return(void)1462 struct config *Configlist_return(void){
1463   struct config *old;
1464   old = current;
1465   current = 0;
1466   currentend = 0;
1467   return old;
1468 }
1469 
1470 /* Return a pointer to the head of the configuration list and
1471 ** reset the list */
Configlist_basis(void)1472 struct config *Configlist_basis(void){
1473   struct config *old;
1474   old = basis;
1475   basis = 0;
1476   basisend = 0;
1477   return old;
1478 }
1479 
1480 /* Free all elements of the given configuration list */
Configlist_eat(struct config * cfp)1481 void Configlist_eat(struct config *cfp)
1482 {
1483   struct config *nextcfp;
1484   for(; cfp; cfp=nextcfp){
1485     nextcfp = cfp->next;
1486     assert( cfp->fplp==0 );
1487     assert( cfp->bplp==0 );
1488     if( cfp->fws ) SetFree(cfp->fws);
1489     deleteconfig(cfp);
1490   }
1491   return;
1492 }
1493 /***************** From the file "error.c" *********************************/
1494 /*
1495 ** Code for printing error message.
1496 */
1497 
ErrorMsg(const char * filename,int lineno,const char * format,...)1498 void ErrorMsg(const char *filename, int lineno, const char *format, ...){
1499   va_list ap;
1500   fprintf(stderr, "%s:%d: ", filename, lineno);
1501   va_start(ap, format);
1502   vfprintf(stderr,format,ap);
1503   va_end(ap);
1504   fprintf(stderr, "\n");
1505 }
1506 /**************** From the file "main.c" ************************************/
1507 /*
1508 ** Main program file for the LEMON parser generator.
1509 */
1510 
1511 /* Report an out-of-memory condition and abort.  This function
1512 ** is used mostly by the "MemoryCheck" macro in struct.h
1513 */
memory_error(void)1514 void memory_error(void){
1515   fprintf(stderr,"Out of memory.  Aborting...\n");
1516   exit(1);
1517 }
1518 
1519 static int nDefine = 0;      /* Number of -D options on the command line */
1520 static char **azDefine = 0;  /* Name of the -D macros */
1521 
1522 /* This routine is called with the argument to each -D command-line option.
1523 ** Add the macro defined to the azDefine array.
1524 */
handle_D_option(char * z)1525 static void handle_D_option(char *z){
1526   char **paz;
1527   nDefine++;
1528   azDefine = (char **) realloc(azDefine, sizeof(azDefine[0])*nDefine);
1529   if( azDefine==0 ){
1530     fprintf(stderr,"out of memory\n");
1531     exit(1);
1532   }
1533   paz = &azDefine[nDefine-1];
1534   *paz = (char *) malloc( lemonStrlen(z)+1 );
1535   if( *paz==0 ){
1536     fprintf(stderr,"out of memory\n");
1537     exit(1);
1538   }
1539   lemon_strcpy(*paz, z);
1540   for(z=*paz; *z && *z!='='; z++){}
1541   *z = 0;
1542 }
1543 
1544 /* Rember the name of the output directory
1545 */
1546 static char *outputDir = NULL;
handle_d_option(char * z)1547 static void handle_d_option(char *z){
1548   outputDir = (char *) malloc( lemonStrlen(z)+1 );
1549   if( outputDir==0 ){
1550     fprintf(stderr,"out of memory\n");
1551     exit(1);
1552   }
1553   lemon_strcpy(outputDir, z);
1554 }
1555 
1556 static char *user_templatename = NULL;
handle_T_option(char * z)1557 static void handle_T_option(char *z){
1558   user_templatename = (char *) malloc( lemonStrlen(z)+1 );
1559   if( user_templatename==0 ){
1560     memory_error();
1561   }
1562   lemon_strcpy(user_templatename, z);
1563 }
1564 
1565 /* Merge together to lists of rules ordered by rule.iRule */
Rule_merge(struct rule * pA,struct rule * pB)1566 static struct rule *Rule_merge(struct rule *pA, struct rule *pB){
1567   struct rule *pFirst = 0;
1568   struct rule **ppPrev = &pFirst;
1569   while( pA && pB ){
1570     if( pA->iRule<pB->iRule ){
1571       *ppPrev = pA;
1572       ppPrev = &pA->next;
1573       pA = pA->next;
1574     }else{
1575       *ppPrev = pB;
1576       ppPrev = &pB->next;
1577       pB = pB->next;
1578     }
1579   }
1580   if( pA ){
1581     *ppPrev = pA;
1582   }else{
1583     *ppPrev = pB;
1584   }
1585   return pFirst;
1586 }
1587 
1588 /*
1589 ** Sort a list of rules in order of increasing iRule value
1590 */
Rule_sort(struct rule * rp)1591 static struct rule *Rule_sort(struct rule *rp){
1592   unsigned int i;
1593   struct rule *pNext;
1594   struct rule *x[32];
1595   memset(x, 0, sizeof(x));
1596   while( rp ){
1597     pNext = rp->next;
1598     rp->next = 0;
1599     for(i=0; i<sizeof(x)/sizeof(x[0])-1 && x[i]; i++){
1600       rp = Rule_merge(x[i], rp);
1601       x[i] = 0;
1602     }
1603     x[i] = rp;
1604     rp = pNext;
1605   }
1606   rp = 0;
1607   for(i=0; i<sizeof(x)/sizeof(x[0]); i++){
1608     rp = Rule_merge(x[i], rp);
1609   }
1610   return rp;
1611 }
1612 
1613 /* forward reference */
1614 static const char *minimum_size_type(int lwr, int upr, int *pnByte);
1615 
1616 /* Print a single line of the "Parser Stats" output
1617 */
stats_line(const char * zLabel,int iValue)1618 static void stats_line(const char *zLabel, int iValue){
1619   int nLabel = lemonStrlen(zLabel);
1620   printf("  %s%.*s %5d\n", zLabel,
1621          35-nLabel, "................................",
1622          iValue);
1623 }
1624 
1625 /* The main program.  Parse the command line and do it... */
main(int argc,char ** argv)1626 int main(int argc, char **argv){
1627   static int version = 0;
1628   static int rpflag = 0;
1629   static int basisflag = 0;
1630   static int compress = 0;
1631   static int quiet = 0;
1632   static int statistics = 0;
1633   static int mhflag = 0;
1634   static int nolinenosflag = 0;
1635   static int noResort = 0;
1636   static int sqlFlag = 0;
1637   static int printPP = 0;
1638 
1639   static struct s_options options[] = {
1640     {OPT_FLAG, "b", (char*)&basisflag, "Print only the basis in report."},
1641     {OPT_FLAG, "c", (char*)&compress, "Don't compress the action table."},
1642     {OPT_FSTR, "d", (char*)&handle_d_option, "Output directory.  Default '.'"},
1643     {OPT_FSTR, "D", (char*)handle_D_option, "Define an %ifdef macro."},
1644     {OPT_FLAG, "E", (char*)&printPP, "Print input file after preprocessing."},
1645     {OPT_FSTR, "f", 0, "Ignored.  (Placeholder for -f compiler options.)"},
1646     {OPT_FLAG, "g", (char*)&rpflag, "Print grammar without actions."},
1647     {OPT_FSTR, "I", 0, "Ignored.  (Placeholder for '-I' compiler options.)"},
1648     {OPT_FLAG, "m", (char*)&mhflag, "Output a makeheaders compatible file."},
1649     {OPT_FLAG, "l", (char*)&nolinenosflag, "Do not print #line statements."},
1650     {OPT_FSTR, "O", 0, "Ignored.  (Placeholder for '-O' compiler options.)"},
1651     {OPT_FLAG, "p", (char*)&showPrecedenceConflict,
1652                     "Show conflicts resolved by precedence rules"},
1653     {OPT_FLAG, "q", (char*)&quiet, "(Quiet) Don't print the report file."},
1654     {OPT_FLAG, "r", (char*)&noResort, "Do not sort or renumber states"},
1655     {OPT_FLAG, "s", (char*)&statistics,
1656                                    "Print parser stats to standard output."},
1657     {OPT_FLAG, "S", (char*)&sqlFlag,
1658                     "Generate the *.sql file describing the parser tables."},
1659     {OPT_FLAG, "x", (char*)&version, "Print the version number."},
1660     {OPT_FSTR, "T", (char*)handle_T_option, "Specify a template file."},
1661     {OPT_FSTR, "W", 0, "Ignored.  (Placeholder for '-W' compiler options.)"},
1662     {OPT_FLAG,0,0,0}
1663   };
1664   int i;
1665   int exitcode;
1666   struct lemon lem;
1667   struct rule *rp;
1668 
1669   (void)argc;
1670   OptInit(argv,options,stderr);
1671   if( version ){
1672      printf("Lemon version 1.0\n");
1673      exit(0);
1674   }
1675   if( OptNArgs()!=1 ){
1676     fprintf(stderr,"Exactly one filename argument is required.\n");
1677     exit(1);
1678   }
1679   memset(&lem, 0, sizeof(lem));
1680   lem.errorcnt = 0;
1681 
1682   /* Initialize the machine */
1683   Strsafe_init();
1684   Symbol_init();
1685   State_init();
1686   lem.argv0 = argv[0];
1687   lem.filename = OptArg(0);
1688   lem.basisflag = basisflag;
1689   lem.nolinenosflag = nolinenosflag;
1690   lem.printPreprocessed = printPP;
1691   Symbol_new("$");
1692 
1693   /* Parse the input file */
1694   Parse(&lem);
1695   if( lem.printPreprocessed || lem.errorcnt ) exit(lem.errorcnt);
1696   if( lem.nrule==0 ){
1697     fprintf(stderr,"Empty grammar.\n");
1698     exit(1);
1699   }
1700   lem.errsym = Symbol_find("error");
1701 
1702   /* Count and index the symbols of the grammar */
1703   Symbol_new("{default}");
1704   lem.nsymbol = Symbol_count();
1705   lem.symbols = Symbol_arrayof();
1706   for(i=0; i<lem.nsymbol; i++) lem.symbols[i]->index = i;
1707   qsort(lem.symbols,lem.nsymbol,sizeof(struct symbol*), Symbolcmpp);
1708   for(i=0; i<lem.nsymbol; i++) lem.symbols[i]->index = i;
1709   while( lem.symbols[i-1]->type==MULTITERMINAL ){ i--; }
1710   assert( strcmp(lem.symbols[i-1]->name,"{default}")==0 );
1711   lem.nsymbol = i - 1;
1712   for(i=1; ISUPPER(lem.symbols[i]->name[0]); i++);
1713   lem.nterminal = i;
1714 
1715   /* Assign sequential rule numbers.  Start with 0.  Put rules that have no
1716   ** reduce action C-code associated with them last, so that the switch()
1717   ** statement that selects reduction actions will have a smaller jump table.
1718   */
1719   for(i=0, rp=lem.rule; rp; rp=rp->next){
1720     rp->iRule = rp->code ? i++ : -1;
1721   }
1722   lem.nruleWithAction = i;
1723   for(rp=lem.rule; rp; rp=rp->next){
1724     if( rp->iRule<0 ) rp->iRule = i++;
1725   }
1726   lem.startRule = lem.rule;
1727   lem.rule = Rule_sort(lem.rule);
1728 
1729   /* Generate a reprint of the grammar, if requested on the command line */
1730   if( rpflag ){
1731     Reprint(&lem);
1732   }else{
1733     /* Initialize the size for all follow and first sets */
1734     SetSize(lem.nterminal+1);
1735 
1736     /* Find the precedence for every production rule (that has one) */
1737     FindRulePrecedences(&lem);
1738 
1739     /* Compute the lambda-nonterminals and the first-sets for every
1740     ** nonterminal */
1741     FindFirstSets(&lem);
1742 
1743     /* Compute all LR(0) states.  Also record follow-set propagation
1744     ** links so that the follow-set can be computed later */
1745     lem.nstate = 0;
1746     FindStates(&lem);
1747     lem.sorted = State_arrayof();
1748 
1749     /* Tie up loose ends on the propagation links */
1750     FindLinks(&lem);
1751 
1752     /* Compute the follow set of every reducible configuration */
1753     FindFollowSets(&lem);
1754 
1755     /* Compute the action tables */
1756     FindActions(&lem);
1757 
1758     /* Compress the action tables */
1759     if( compress==0 ) CompressTables(&lem);
1760 
1761     /* Reorder and renumber the states so that states with fewer choices
1762     ** occur at the end.  This is an optimization that helps make the
1763     ** generated parser tables smaller. */
1764     if( noResort==0 ) ResortStates(&lem);
1765 
1766     /* Generate a report of the parser generated.  (the "y.output" file) */
1767     if( !quiet ) ReportOutput(&lem);
1768 
1769     /* Generate the source code for the parser */
1770     ReportTable(&lem, mhflag, sqlFlag);
1771 
1772     /* Produce a header file for use by the scanner.  (This step is
1773     ** omitted if the "-m" option is used because makeheaders will
1774     ** generate the file for us.) */
1775     if( !mhflag ) ReportHeader(&lem);
1776   }
1777   if( statistics ){
1778     printf("Parser statistics:\n");
1779     stats_line("terminal symbols", lem.nterminal);
1780     stats_line("non-terminal symbols", lem.nsymbol - lem.nterminal);
1781     stats_line("total symbols", lem.nsymbol);
1782     stats_line("rules", lem.nrule);
1783     stats_line("states", lem.nxstate);
1784     stats_line("conflicts", lem.nconflict);
1785     stats_line("action table entries", lem.nactiontab);
1786     stats_line("lookahead table entries", lem.nlookaheadtab);
1787     stats_line("total table size (bytes)", lem.tablesize);
1788   }
1789   if( lem.nconflict > 0 ){
1790     fprintf(stderr,"%d parsing conflicts.\n",lem.nconflict);
1791   }
1792 
1793   /* return 0 on success, 1 on failure. */
1794   exitcode = ((lem.errorcnt > 0) || (lem.nconflict > 0)) ? 1 : 0;
1795   exit(exitcode);
1796   return (exitcode);
1797 }
1798 /******************** From the file "msort.c" *******************************/
1799 /*
1800 ** A generic merge-sort program.
1801 **
1802 ** USAGE:
1803 ** Let "ptr" be a pointer to some structure which is at the head of
1804 ** a null-terminated list.  Then to sort the list call:
1805 **
1806 **     ptr = msort(ptr,&(ptr->next),cmpfnc);
1807 **
1808 ** In the above, "cmpfnc" is a pointer to a function which compares
1809 ** two instances of the structure and returns an integer, as in
1810 ** strcmp.  The second argument is a pointer to the pointer to the
1811 ** second element of the linked list.  This address is used to compute
1812 ** the offset to the "next" field within the structure.  The offset to
1813 ** the "next" field must be constant for all structures in the list.
1814 **
1815 ** The function returns a new pointer which is the head of the list
1816 ** after sorting.
1817 **
1818 ** ALGORITHM:
1819 ** Merge-sort.
1820 */
1821 
1822 /*
1823 ** Return a pointer to the next structure in the linked list.
1824 */
1825 #define NEXT(A) (*(char**)(((char*)A)+offset))
1826 
1827 /*
1828 ** Inputs:
1829 **   a:       A sorted, null-terminated linked list.  (May be null).
1830 **   b:       A sorted, null-terminated linked list.  (May be null).
1831 **   cmp:     A pointer to the comparison function.
1832 **   offset:  Offset in the structure to the "next" field.
1833 **
1834 ** Return Value:
1835 **   A pointer to the head of a sorted list containing the elements
1836 **   of both a and b.
1837 **
1838 ** Side effects:
1839 **   The "next" pointers for elements in the lists a and b are
1840 **   changed.
1841 */
merge(char * a,char * b,int (* cmp)(const char *,const char *),int offset)1842 static char *merge(
1843   char *a,
1844   char *b,
1845   int (*cmp)(const char*,const char*),
1846   int offset
1847 ){
1848   char *ptr, *head;
1849 
1850   if( a==0 ){
1851     head = b;
1852   }else if( b==0 ){
1853     head = a;
1854   }else{
1855     if( (*cmp)(a,b)<=0 ){
1856       ptr = a;
1857       a = NEXT(a);
1858     }else{
1859       ptr = b;
1860       b = NEXT(b);
1861     }
1862     head = ptr;
1863     while( a && b ){
1864       if( (*cmp)(a,b)<=0 ){
1865         NEXT(ptr) = a;
1866         ptr = a;
1867         a = NEXT(a);
1868       }else{
1869         NEXT(ptr) = b;
1870         ptr = b;
1871         b = NEXT(b);
1872       }
1873     }
1874     if( a ) NEXT(ptr) = a;
1875     else    NEXT(ptr) = b;
1876   }
1877   return head;
1878 }
1879 
1880 /*
1881 ** Inputs:
1882 **   list:      Pointer to a singly-linked list of structures.
1883 **   next:      Pointer to pointer to the second element of the list.
1884 **   cmp:       A comparison function.
1885 **
1886 ** Return Value:
1887 **   A pointer to the head of a sorted list containing the elements
1888 **   originally in list.
1889 **
1890 ** Side effects:
1891 **   The "next" pointers for elements in list are changed.
1892 */
1893 #define LISTSIZE 30
msort(char * list,char ** next,int (* cmp)(const char *,const char *))1894 static char *msort(
1895   char *list,
1896   char **next,
1897   int (*cmp)(const char*,const char*)
1898 ){
1899   unsigned long offset;
1900   char *ep;
1901   char *set[LISTSIZE];
1902   int i;
1903   offset = (unsigned long)((char*)next - (char*)list);
1904   for(i=0; i<LISTSIZE; i++) set[i] = 0;
1905   while( list ){
1906     ep = list;
1907     list = NEXT(list);
1908     NEXT(ep) = 0;
1909     for(i=0; i<LISTSIZE-1 && set[i]!=0; i++){
1910       ep = merge(ep,set[i],cmp,offset);
1911       set[i] = 0;
1912     }
1913     set[i] = ep;
1914   }
1915   ep = 0;
1916   for(i=0; i<LISTSIZE; i++) if( set[i] ) ep = merge(set[i],ep,cmp,offset);
1917   return ep;
1918 }
1919 /************************ From the file "option.c" **************************/
1920 static char **g_argv;
1921 static struct s_options *op;
1922 static FILE *errstream;
1923 
1924 #define ISOPT(X) ((X)[0]=='-'||(X)[0]=='+'||strchr((X),'=')!=0)
1925 
1926 /*
1927 ** Print the command line with a carrot pointing to the k-th character
1928 ** of the n-th field.
1929 */
errline(int n,int k,FILE * err)1930 static void errline(int n, int k, FILE *err)
1931 {
1932   int spcnt, i;
1933   if( g_argv[0] ){
1934     fprintf(err,"%s",g_argv[0]);
1935     spcnt = lemonStrlen(g_argv[0]) + 1;
1936   }else{
1937     spcnt = 0;
1938   }
1939   for(i=1; i<n && g_argv[i]; i++){
1940     fprintf(err," %s",g_argv[i]);
1941     spcnt += lemonStrlen(g_argv[i])+1;
1942   }
1943   spcnt += k;
1944   for(; g_argv[i]; i++) fprintf(err," %s",g_argv[i]);
1945   if( spcnt<20 ){
1946     fprintf(err,"\n%*s^-- here\n",spcnt,"");
1947   }else{
1948     fprintf(err,"\n%*shere --^\n",spcnt-7,"");
1949   }
1950 }
1951 
1952 /*
1953 ** Return the index of the N-th non-switch argument.  Return -1
1954 ** if N is out of range.
1955 */
argindex(int n)1956 static int argindex(int n)
1957 {
1958   int i;
1959   int dashdash = 0;
1960   if( g_argv!=0 && *g_argv!=0 ){
1961     for(i=1; g_argv[i]; i++){
1962       if( dashdash || !ISOPT(g_argv[i]) ){
1963         if( n==0 ) return i;
1964         n--;
1965       }
1966       if( strcmp(g_argv[i],"--")==0 ) dashdash = 1;
1967     }
1968   }
1969   return -1;
1970 }
1971 
1972 static char emsg[] = "Command line syntax error: ";
1973 
1974 /*
1975 ** Process a flag command line argument.
1976 */
handleflags(int i,FILE * err)1977 static int handleflags(int i, FILE *err)
1978 {
1979   int v;
1980   int errcnt = 0;
1981   int j;
1982   for(j=0; op[j].label; j++){
1983     if( strncmp(&g_argv[i][1],op[j].label,lemonStrlen(op[j].label))==0 ) break;
1984   }
1985   v = g_argv[i][0]=='-' ? 1 : 0;
1986   if( op[j].label==0 ){
1987     if( err ){
1988       fprintf(err,"%sundefined option.\n",emsg);
1989       errline(i,1,err);
1990     }
1991     errcnt++;
1992   }else if( op[j].arg==0 ){
1993     /* Ignore this option */
1994   }else if( op[j].type==OPT_FLAG ){
1995     *((int*)op[j].arg) = v;
1996   }else if( op[j].type==OPT_FFLAG ){
1997     (*(void(*)(int))(op[j].arg))(v);
1998   }else if( op[j].type==OPT_FSTR ){
1999     (*(void(*)(char *))(op[j].arg))(&g_argv[i][2]);
2000   }else{
2001     if( err ){
2002       fprintf(err,"%smissing argument on switch.\n",emsg);
2003       errline(i,1,err);
2004     }
2005     errcnt++;
2006   }
2007   return errcnt;
2008 }
2009 
2010 /*
2011 ** Process a command line switch which has an argument.
2012 */
handleswitch(int i,FILE * err)2013 static int handleswitch(int i, FILE *err)
2014 {
2015   int lv = 0;
2016   double dv = 0.0;
2017   char *sv = 0, *end;
2018   char *cp;
2019   int j;
2020   int errcnt = 0;
2021   cp = strchr(g_argv[i],'=');
2022   assert( cp!=0 );
2023   *cp = 0;
2024   for(j=0; op[j].label; j++){
2025     if( strcmp(g_argv[i],op[j].label)==0 ) break;
2026   }
2027   *cp = '=';
2028   if( op[j].label==0 ){
2029     if( err ){
2030       fprintf(err,"%sundefined option.\n",emsg);
2031       errline(i,0,err);
2032     }
2033     errcnt++;
2034   }else{
2035     cp++;
2036     switch( op[j].type ){
2037       case OPT_FLAG:
2038       case OPT_FFLAG:
2039         if( err ){
2040           fprintf(err,"%soption requires an argument.\n",emsg);
2041           errline(i,0,err);
2042         }
2043         errcnt++;
2044         break;
2045       case OPT_DBL:
2046       case OPT_FDBL:
2047         dv = strtod(cp,&end);
2048         if( *end ){
2049           if( err ){
2050             fprintf(err,
2051                "%sillegal character in floating-point argument.\n",emsg);
2052             errline(i,(int)((char*)end-(char*)g_argv[i]),err);
2053           }
2054           errcnt++;
2055         }
2056         break;
2057       case OPT_INT:
2058       case OPT_FINT:
2059         lv = strtol(cp,&end,0);
2060         if( *end ){
2061           if( err ){
2062             fprintf(err,"%sillegal character in integer argument.\n",emsg);
2063             errline(i,(int)((char*)end-(char*)g_argv[i]),err);
2064           }
2065           errcnt++;
2066         }
2067         break;
2068       case OPT_STR:
2069       case OPT_FSTR:
2070         sv = cp;
2071         break;
2072     }
2073     switch( op[j].type ){
2074       case OPT_FLAG:
2075       case OPT_FFLAG:
2076         break;
2077       case OPT_DBL:
2078         *(double*)(op[j].arg) = dv;
2079         break;
2080       case OPT_FDBL:
2081         (*(void(*)(double))(op[j].arg))(dv);
2082         break;
2083       case OPT_INT:
2084         *(int*)(op[j].arg) = lv;
2085         break;
2086       case OPT_FINT:
2087         (*(void(*)(int))(op[j].arg))((int)lv);
2088         break;
2089       case OPT_STR:
2090         *(char**)(op[j].arg) = sv;
2091         break;
2092       case OPT_FSTR:
2093         (*(void(*)(char *))(op[j].arg))(sv);
2094         break;
2095     }
2096   }
2097   return errcnt;
2098 }
2099 
OptInit(char ** a,struct s_options * o,FILE * err)2100 int OptInit(char **a, struct s_options *o, FILE *err)
2101 {
2102   int errcnt = 0;
2103   g_argv = a;
2104   op = o;
2105   errstream = err;
2106   if( g_argv && *g_argv && op ){
2107     int i;
2108     for(i=1; g_argv[i]; i++){
2109       if( g_argv[i][0]=='+' || g_argv[i][0]=='-' ){
2110         errcnt += handleflags(i,err);
2111       }else if( strchr(g_argv[i],'=') ){
2112         errcnt += handleswitch(i,err);
2113       }
2114     }
2115   }
2116   if( errcnt>0 ){
2117     fprintf(err,"Valid command line options for \"%s\" are:\n",*a);
2118     OptPrint();
2119     exit(1);
2120   }
2121   return 0;
2122 }
2123 
OptNArgs(void)2124 int OptNArgs(void){
2125   int cnt = 0;
2126   int dashdash = 0;
2127   int i;
2128   if( g_argv!=0 && g_argv[0]!=0 ){
2129     for(i=1; g_argv[i]; i++){
2130       if( dashdash || !ISOPT(g_argv[i]) ) cnt++;
2131       if( strcmp(g_argv[i],"--")==0 ) dashdash = 1;
2132     }
2133   }
2134   return cnt;
2135 }
2136 
OptArg(int n)2137 char *OptArg(int n)
2138 {
2139   int i;
2140   i = argindex(n);
2141   return i>=0 ? g_argv[i] : 0;
2142 }
2143 
OptErr(int n)2144 void OptErr(int n)
2145 {
2146   int i;
2147   i = argindex(n);
2148   if( i>=0 ) errline(i,0,errstream);
2149 }
2150 
OptPrint(void)2151 void OptPrint(void){
2152   int i;
2153   int max, len;
2154   max = 0;
2155   for(i=0; op[i].label; i++){
2156     len = lemonStrlen(op[i].label) + 1;
2157     switch( op[i].type ){
2158       case OPT_FLAG:
2159       case OPT_FFLAG:
2160         break;
2161       case OPT_INT:
2162       case OPT_FINT:
2163         len += 9;       /* length of "<integer>" */
2164         break;
2165       case OPT_DBL:
2166       case OPT_FDBL:
2167         len += 6;       /* length of "<real>" */
2168         break;
2169       case OPT_STR:
2170       case OPT_FSTR:
2171         len += 8;       /* length of "<string>" */
2172         break;
2173     }
2174     if( len>max ) max = len;
2175   }
2176   for(i=0; op[i].label; i++){
2177     switch( op[i].type ){
2178       case OPT_FLAG:
2179       case OPT_FFLAG:
2180         fprintf(errstream,"  -%-*s  %s\n",max,op[i].label,op[i].message);
2181         break;
2182       case OPT_INT:
2183       case OPT_FINT:
2184         fprintf(errstream,"  -%s<integer>%*s  %s\n",op[i].label,
2185           (int)(max-lemonStrlen(op[i].label)-9),"",op[i].message);
2186         break;
2187       case OPT_DBL:
2188       case OPT_FDBL:
2189         fprintf(errstream,"  -%s<real>%*s  %s\n",op[i].label,
2190           (int)(max-lemonStrlen(op[i].label)-6),"",op[i].message);
2191         break;
2192       case OPT_STR:
2193       case OPT_FSTR:
2194         fprintf(errstream,"  -%s<string>%*s  %s\n",op[i].label,
2195           (int)(max-lemonStrlen(op[i].label)-8),"",op[i].message);
2196         break;
2197     }
2198   }
2199 }
2200 /*********************** From the file "parse.c" ****************************/
2201 /*
2202 ** Input file parser for the LEMON parser generator.
2203 */
2204 
2205 /* The state of the parser */
2206 enum e_state {
2207   INITIALIZE,
2208   WAITING_FOR_DECL_OR_RULE,
2209   WAITING_FOR_DECL_KEYWORD,
2210   WAITING_FOR_DECL_ARG,
2211   WAITING_FOR_PRECEDENCE_SYMBOL,
2212   WAITING_FOR_ARROW,
2213   IN_RHS,
2214   LHS_ALIAS_1,
2215   LHS_ALIAS_2,
2216   LHS_ALIAS_3,
2217   RHS_ALIAS_1,
2218   RHS_ALIAS_2,
2219   PRECEDENCE_MARK_1,
2220   PRECEDENCE_MARK_2,
2221   RESYNC_AFTER_RULE_ERROR,
2222   RESYNC_AFTER_DECL_ERROR,
2223   WAITING_FOR_DESTRUCTOR_SYMBOL,
2224   WAITING_FOR_DATATYPE_SYMBOL,
2225   WAITING_FOR_FALLBACK_ID,
2226   WAITING_FOR_WILDCARD_ID,
2227   WAITING_FOR_CLASS_ID,
2228   WAITING_FOR_CLASS_TOKEN,
2229   WAITING_FOR_TOKEN_NAME
2230 };
2231 struct pstate {
2232   char *filename;       /* Name of the input file */
2233   int tokenlineno;      /* Linenumber at which current token starts */
2234   int errorcnt;         /* Number of errors so far */
2235   char *tokenstart;     /* Text of current token */
2236   struct lemon *gp;     /* Global state vector */
2237   enum e_state state;        /* The state of the parser */
2238   struct symbol *fallback;   /* The fallback token */
2239   struct symbol *tkclass;    /* Token class symbol */
2240   struct symbol *lhs;        /* Left-hand side of current rule */
2241   const char *lhsalias;      /* Alias for the LHS */
2242   int nrhs;                  /* Number of right-hand side symbols seen */
2243   struct symbol *rhs[MAXRHS];  /* RHS symbols */
2244   const char *alias[MAXRHS]; /* Aliases for each RHS symbol (or NULL) */
2245   struct rule *prevrule;     /* Previous rule parsed */
2246   const char *declkeyword;   /* Keyword of a declaration */
2247   char **declargslot;        /* Where the declaration argument should be put */
2248   int insertLineMacro;       /* Add #line before declaration insert */
2249   int *decllinenoslot;       /* Where to write declaration line number */
2250   enum e_assoc declassoc;    /* Assign this association to decl arguments */
2251   int preccounter;           /* Assign this precedence to decl arguments */
2252   struct rule *firstrule;    /* Pointer to first rule in the grammar */
2253   struct rule *lastrule;     /* Pointer to the most recently parsed rule */
2254 };
2255 
2256 /* Parse a single token */
parseonetoken(struct pstate * psp)2257 static void parseonetoken(struct pstate *psp)
2258 {
2259   const char *x;
2260   x = Strsafe(psp->tokenstart);     /* Save the token permanently */
2261 #if 0
2262   printf("%s:%d: Token=[%s] state=%d\n",psp->filename,psp->tokenlineno,
2263     x,psp->state);
2264 #endif
2265   switch( psp->state ){
2266     case INITIALIZE:
2267       psp->prevrule = 0;
2268       psp->preccounter = 0;
2269       psp->firstrule = psp->lastrule = 0;
2270       psp->gp->nrule = 0;
2271       /* fall through */
2272     case WAITING_FOR_DECL_OR_RULE:
2273       if( x[0]=='%' ){
2274         psp->state = WAITING_FOR_DECL_KEYWORD;
2275       }else if( ISLOWER(x[0]) ){
2276         psp->lhs = Symbol_new(x);
2277         psp->nrhs = 0;
2278         psp->lhsalias = 0;
2279         psp->state = WAITING_FOR_ARROW;
2280       }else if( x[0]=='{' ){
2281         if( psp->prevrule==0 ){
2282           ErrorMsg(psp->filename,psp->tokenlineno,
2283             "There is no prior rule upon which to attach the code "
2284             "fragment which begins on this line.");
2285           psp->errorcnt++;
2286         }else if( psp->prevrule->code!=0 ){
2287           ErrorMsg(psp->filename,psp->tokenlineno,
2288             "Code fragment beginning on this line is not the first "
2289             "to follow the previous rule.");
2290           psp->errorcnt++;
2291         }else if( strcmp(x, "{NEVER-REDUCE")==0 ){
2292           psp->prevrule->neverReduce = 1;
2293         }else{
2294           psp->prevrule->line = psp->tokenlineno;
2295           psp->prevrule->code = &x[1];
2296           psp->prevrule->noCode = 0;
2297         }
2298       }else if( x[0]=='[' ){
2299         psp->state = PRECEDENCE_MARK_1;
2300       }else{
2301         ErrorMsg(psp->filename,psp->tokenlineno,
2302           "Token \"%s\" should be either \"%%\" or a nonterminal name.",
2303           x);
2304         psp->errorcnt++;
2305       }
2306       break;
2307     case PRECEDENCE_MARK_1:
2308       if( !ISUPPER(x[0]) ){
2309         ErrorMsg(psp->filename,psp->tokenlineno,
2310           "The precedence symbol must be a terminal.");
2311         psp->errorcnt++;
2312       }else if( psp->prevrule==0 ){
2313         ErrorMsg(psp->filename,psp->tokenlineno,
2314           "There is no prior rule to assign precedence \"[%s]\".",x);
2315         psp->errorcnt++;
2316       }else if( psp->prevrule->precsym!=0 ){
2317         ErrorMsg(psp->filename,psp->tokenlineno,
2318           "Precedence mark on this line is not the first "
2319           "to follow the previous rule.");
2320         psp->errorcnt++;
2321       }else{
2322         psp->prevrule->precsym = Symbol_new(x);
2323       }
2324       psp->state = PRECEDENCE_MARK_2;
2325       break;
2326     case PRECEDENCE_MARK_2:
2327       if( x[0]!=']' ){
2328         ErrorMsg(psp->filename,psp->tokenlineno,
2329           "Missing \"]\" on precedence mark.");
2330         psp->errorcnt++;
2331       }
2332       psp->state = WAITING_FOR_DECL_OR_RULE;
2333       break;
2334     case WAITING_FOR_ARROW:
2335       if( x[0]==':' && x[1]==':' && x[2]=='=' ){
2336         psp->state = IN_RHS;
2337       }else if( x[0]=='(' ){
2338         psp->state = LHS_ALIAS_1;
2339       }else{
2340         ErrorMsg(psp->filename,psp->tokenlineno,
2341           "Expected to see a \":\" following the LHS symbol \"%s\".",
2342           psp->lhs->name);
2343         psp->errorcnt++;
2344         psp->state = RESYNC_AFTER_RULE_ERROR;
2345       }
2346       break;
2347     case LHS_ALIAS_1:
2348       if( ISALPHA(x[0]) ){
2349         psp->lhsalias = x;
2350         psp->state = LHS_ALIAS_2;
2351       }else{
2352         ErrorMsg(psp->filename,psp->tokenlineno,
2353           "\"%s\" is not a valid alias for the LHS \"%s\"\n",
2354           x,psp->lhs->name);
2355         psp->errorcnt++;
2356         psp->state = RESYNC_AFTER_RULE_ERROR;
2357       }
2358       break;
2359     case LHS_ALIAS_2:
2360       if( x[0]==')' ){
2361         psp->state = LHS_ALIAS_3;
2362       }else{
2363         ErrorMsg(psp->filename,psp->tokenlineno,
2364           "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias);
2365         psp->errorcnt++;
2366         psp->state = RESYNC_AFTER_RULE_ERROR;
2367       }
2368       break;
2369     case LHS_ALIAS_3:
2370       if( x[0]==':' && x[1]==':' && x[2]=='=' ){
2371         psp->state = IN_RHS;
2372       }else{
2373         ErrorMsg(psp->filename,psp->tokenlineno,
2374           "Missing \"->\" following: \"%s(%s)\".",
2375            psp->lhs->name,psp->lhsalias);
2376         psp->errorcnt++;
2377         psp->state = RESYNC_AFTER_RULE_ERROR;
2378       }
2379       break;
2380     case IN_RHS:
2381       if( x[0]=='.' ){
2382         struct rule *rp;
2383         rp = (struct rule *)calloc( sizeof(struct rule) +
2384              sizeof(struct symbol*)*psp->nrhs + sizeof(char*)*psp->nrhs, 1);
2385         if( rp==0 ){
2386           ErrorMsg(psp->filename,psp->tokenlineno,
2387             "Can't allocate enough memory for this rule.");
2388           psp->errorcnt++;
2389           psp->prevrule = 0;
2390         }else{
2391           int i;
2392           rp->ruleline = psp->tokenlineno;
2393           rp->rhs = (struct symbol**)&rp[1];
2394           rp->rhsalias = (const char**)&(rp->rhs[psp->nrhs]);
2395           for(i=0; i<psp->nrhs; i++){
2396             rp->rhs[i] = psp->rhs[i];
2397             rp->rhsalias[i] = psp->alias[i];
2398             if( rp->rhsalias[i]!=0 ){ rp->rhs[i]->bContent = 1; }
2399           }
2400           rp->lhs = psp->lhs;
2401           rp->lhsalias = psp->lhsalias;
2402           rp->nrhs = psp->nrhs;
2403           rp->code = 0;
2404           rp->noCode = 1;
2405           rp->precsym = 0;
2406           rp->index = psp->gp->nrule++;
2407           rp->nextlhs = rp->lhs->rule;
2408           rp->lhs->rule = rp;
2409           rp->next = 0;
2410           if( psp->firstrule==0 ){
2411             psp->firstrule = psp->lastrule = rp;
2412           }else{
2413             psp->lastrule->next = rp;
2414             psp->lastrule = rp;
2415           }
2416           psp->prevrule = rp;
2417         }
2418         psp->state = WAITING_FOR_DECL_OR_RULE;
2419       }else if( ISALPHA(x[0]) ){
2420         if( psp->nrhs>=MAXRHS ){
2421           ErrorMsg(psp->filename,psp->tokenlineno,
2422             "Too many symbols on RHS of rule beginning at \"%s\".",
2423             x);
2424           psp->errorcnt++;
2425           psp->state = RESYNC_AFTER_RULE_ERROR;
2426         }else{
2427           psp->rhs[psp->nrhs] = Symbol_new(x);
2428           psp->alias[psp->nrhs] = 0;
2429           psp->nrhs++;
2430         }
2431       }else if( (x[0]=='|' || x[0]=='/') && psp->nrhs>0 && ISUPPER(x[1]) ){
2432         struct symbol *msp = psp->rhs[psp->nrhs-1];
2433         if( msp->type!=MULTITERMINAL ){
2434           struct symbol *origsp = msp;
2435           msp = (struct symbol *) calloc(1,sizeof(*msp));
2436           memset(msp, 0, sizeof(*msp));
2437           msp->type = MULTITERMINAL;
2438           msp->nsubsym = 1;
2439           msp->subsym = (struct symbol **) calloc(1,sizeof(struct symbol*));
2440           msp->subsym[0] = origsp;
2441           msp->name = origsp->name;
2442           psp->rhs[psp->nrhs-1] = msp;
2443         }
2444         msp->nsubsym++;
2445         msp->subsym = (struct symbol **) realloc(msp->subsym,
2446           sizeof(struct symbol*)*msp->nsubsym);
2447         msp->subsym[msp->nsubsym-1] = Symbol_new(&x[1]);
2448         if( ISLOWER(x[1]) || ISLOWER(msp->subsym[0]->name[0]) ){
2449           ErrorMsg(psp->filename,psp->tokenlineno,
2450             "Cannot form a compound containing a non-terminal");
2451           psp->errorcnt++;
2452         }
2453       }else if( x[0]=='(' && psp->nrhs>0 ){
2454         psp->state = RHS_ALIAS_1;
2455       }else{
2456         ErrorMsg(psp->filename,psp->tokenlineno,
2457           "Illegal character on RHS of rule: \"%s\".",x);
2458         psp->errorcnt++;
2459         psp->state = RESYNC_AFTER_RULE_ERROR;
2460       }
2461       break;
2462     case RHS_ALIAS_1:
2463       if( ISALPHA(x[0]) ){
2464         psp->alias[psp->nrhs-1] = x;
2465         psp->state = RHS_ALIAS_2;
2466       }else{
2467         ErrorMsg(psp->filename,psp->tokenlineno,
2468           "\"%s\" is not a valid alias for the RHS symbol \"%s\"\n",
2469           x,psp->rhs[psp->nrhs-1]->name);
2470         psp->errorcnt++;
2471         psp->state = RESYNC_AFTER_RULE_ERROR;
2472       }
2473       break;
2474     case RHS_ALIAS_2:
2475       if( x[0]==')' ){
2476         psp->state = IN_RHS;
2477       }else{
2478         ErrorMsg(psp->filename,psp->tokenlineno,
2479           "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias);
2480         psp->errorcnt++;
2481         psp->state = RESYNC_AFTER_RULE_ERROR;
2482       }
2483       break;
2484     case WAITING_FOR_DECL_KEYWORD:
2485       if( ISALPHA(x[0]) ){
2486         psp->declkeyword = x;
2487         psp->declargslot = 0;
2488         psp->decllinenoslot = 0;
2489         psp->insertLineMacro = 1;
2490         psp->state = WAITING_FOR_DECL_ARG;
2491         if( strcmp(x,"name")==0 ){
2492           psp->declargslot = &(psp->gp->name);
2493           psp->insertLineMacro = 0;
2494         }else if( strcmp(x,"include")==0 ){
2495           psp->declargslot = &(psp->gp->include);
2496         }else if( strcmp(x,"code")==0 ){
2497           psp->declargslot = &(psp->gp->extracode);
2498         }else if( strcmp(x,"token_destructor")==0 ){
2499           psp->declargslot = &psp->gp->tokendest;
2500         }else if( strcmp(x,"default_destructor")==0 ){
2501           psp->declargslot = &psp->gp->vardest;
2502         }else if( strcmp(x,"token_prefix")==0 ){
2503           psp->declargslot = &psp->gp->tokenprefix;
2504           psp->insertLineMacro = 0;
2505         }else if( strcmp(x,"syntax_error")==0 ){
2506           psp->declargslot = &(psp->gp->error);
2507         }else if( strcmp(x,"parse_accept")==0 ){
2508           psp->declargslot = &(psp->gp->accept);
2509         }else if( strcmp(x,"parse_failure")==0 ){
2510           psp->declargslot = &(psp->gp->failure);
2511         }else if( strcmp(x,"stack_overflow")==0 ){
2512           psp->declargslot = &(psp->gp->overflow);
2513         }else if( strcmp(x,"extra_argument")==0 ){
2514           psp->declargslot = &(psp->gp->arg);
2515           psp->insertLineMacro = 0;
2516         }else if( strcmp(x,"extra_context")==0 ){
2517           psp->declargslot = &(psp->gp->ctx);
2518           psp->insertLineMacro = 0;
2519         }else if( strcmp(x,"token_type")==0 ){
2520           psp->declargslot = &(psp->gp->tokentype);
2521           psp->insertLineMacro = 0;
2522         }else if( strcmp(x,"default_type")==0 ){
2523           psp->declargslot = &(psp->gp->vartype);
2524           psp->insertLineMacro = 0;
2525         }else if( strcmp(x,"stack_size")==0 ){
2526           psp->declargslot = &(psp->gp->stacksize);
2527           psp->insertLineMacro = 0;
2528         }else if( strcmp(x,"start_symbol")==0 ){
2529           psp->declargslot = &(psp->gp->start);
2530           psp->insertLineMacro = 0;
2531         }else if( strcmp(x,"left")==0 ){
2532           psp->preccounter++;
2533           psp->declassoc = LEFT;
2534           psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
2535         }else if( strcmp(x,"right")==0 ){
2536           psp->preccounter++;
2537           psp->declassoc = RIGHT;
2538           psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
2539         }else if( strcmp(x,"nonassoc")==0 ){
2540           psp->preccounter++;
2541           psp->declassoc = NONE;
2542           psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
2543         }else if( strcmp(x,"destructor")==0 ){
2544           psp->state = WAITING_FOR_DESTRUCTOR_SYMBOL;
2545         }else if( strcmp(x,"type")==0 ){
2546           psp->state = WAITING_FOR_DATATYPE_SYMBOL;
2547         }else if( strcmp(x,"fallback")==0 ){
2548           psp->fallback = 0;
2549           psp->state = WAITING_FOR_FALLBACK_ID;
2550         }else if( strcmp(x,"token")==0 ){
2551           psp->state = WAITING_FOR_TOKEN_NAME;
2552         }else if( strcmp(x,"wildcard")==0 ){
2553           psp->state = WAITING_FOR_WILDCARD_ID;
2554         }else if( strcmp(x,"token_class")==0 ){
2555           psp->state = WAITING_FOR_CLASS_ID;
2556         }else{
2557           ErrorMsg(psp->filename,psp->tokenlineno,
2558             "Unknown declaration keyword: \"%%%s\".",x);
2559           psp->errorcnt++;
2560           psp->state = RESYNC_AFTER_DECL_ERROR;
2561         }
2562       }else{
2563         ErrorMsg(psp->filename,psp->tokenlineno,
2564           "Illegal declaration keyword: \"%s\".",x);
2565         psp->errorcnt++;
2566         psp->state = RESYNC_AFTER_DECL_ERROR;
2567       }
2568       break;
2569     case WAITING_FOR_DESTRUCTOR_SYMBOL:
2570       if( !ISALPHA(x[0]) ){
2571         ErrorMsg(psp->filename,psp->tokenlineno,
2572           "Symbol name missing after %%destructor keyword");
2573         psp->errorcnt++;
2574         psp->state = RESYNC_AFTER_DECL_ERROR;
2575       }else{
2576         struct symbol *sp = Symbol_new(x);
2577         psp->declargslot = &sp->destructor;
2578         psp->decllinenoslot = &sp->destLineno;
2579         psp->insertLineMacro = 1;
2580         psp->state = WAITING_FOR_DECL_ARG;
2581       }
2582       break;
2583     case WAITING_FOR_DATATYPE_SYMBOL:
2584       if( !ISALPHA(x[0]) ){
2585         ErrorMsg(psp->filename,psp->tokenlineno,
2586           "Symbol name missing after %%type keyword");
2587         psp->errorcnt++;
2588         psp->state = RESYNC_AFTER_DECL_ERROR;
2589       }else{
2590         struct symbol *sp = Symbol_find(x);
2591         if((sp) && (sp->datatype)){
2592           ErrorMsg(psp->filename,psp->tokenlineno,
2593             "Symbol %%type \"%s\" already defined", x);
2594           psp->errorcnt++;
2595           psp->state = RESYNC_AFTER_DECL_ERROR;
2596         }else{
2597           if (!sp){
2598             sp = Symbol_new(x);
2599           }
2600           psp->declargslot = &sp->datatype;
2601           psp->insertLineMacro = 0;
2602           psp->state = WAITING_FOR_DECL_ARG;
2603         }
2604       }
2605       break;
2606     case WAITING_FOR_PRECEDENCE_SYMBOL:
2607       if( x[0]=='.' ){
2608         psp->state = WAITING_FOR_DECL_OR_RULE;
2609       }else if( ISUPPER(x[0]) ){
2610         struct symbol *sp;
2611         sp = Symbol_new(x);
2612         if( sp->prec>=0 ){
2613           ErrorMsg(psp->filename,psp->tokenlineno,
2614             "Symbol \"%s\" has already be given a precedence.",x);
2615           psp->errorcnt++;
2616         }else{
2617           sp->prec = psp->preccounter;
2618           sp->assoc = psp->declassoc;
2619         }
2620       }else{
2621         ErrorMsg(psp->filename,psp->tokenlineno,
2622           "Can't assign a precedence to \"%s\".",x);
2623         psp->errorcnt++;
2624       }
2625       break;
2626     case WAITING_FOR_DECL_ARG:
2627       if( x[0]=='{' || x[0]=='\"' || ISALNUM(x[0]) ){
2628         const char *zOld, *zNew;
2629         char *zBuf, *z;
2630         int nOld, n, nLine = 0, nNew, nBack;
2631         int addLineMacro;
2632         char zLine[50];
2633         zNew = x;
2634         if( zNew[0]=='"' || zNew[0]=='{' ) zNew++;
2635         nNew = lemonStrlen(zNew);
2636         if( *psp->declargslot ){
2637           zOld = *psp->declargslot;
2638         }else{
2639           zOld = "";
2640         }
2641         nOld = lemonStrlen(zOld);
2642         n = nOld + nNew + 20;
2643         addLineMacro = !psp->gp->nolinenosflag
2644                        && psp->insertLineMacro
2645                        && psp->tokenlineno>1
2646                        && (psp->decllinenoslot==0 || psp->decllinenoslot[0]!=0);
2647         if( addLineMacro ){
2648           for(z=psp->filename, nBack=0; *z; z++){
2649             if( *z=='\\' ) nBack++;
2650           }
2651           lemon_sprintf(zLine, "#line %d ", psp->tokenlineno);
2652           nLine = lemonStrlen(zLine);
2653           n += nLine + lemonStrlen(psp->filename) + nBack;
2654         }
2655         *psp->declargslot = (char *) realloc(*psp->declargslot, n);
2656         zBuf = *psp->declargslot + nOld;
2657         if( addLineMacro ){
2658           if( nOld && zBuf[-1]!='\n' ){
2659             *(zBuf++) = '\n';
2660           }
2661           memcpy(zBuf, zLine, nLine);
2662           zBuf += nLine;
2663           *(zBuf++) = '"';
2664           for(z=psp->filename; *z; z++){
2665             if( *z=='\\' ){
2666               *(zBuf++) = '\\';
2667             }
2668             *(zBuf++) = *z;
2669           }
2670           *(zBuf++) = '"';
2671           *(zBuf++) = '\n';
2672         }
2673         if( psp->decllinenoslot && psp->decllinenoslot[0]==0 ){
2674           psp->decllinenoslot[0] = psp->tokenlineno;
2675         }
2676         memcpy(zBuf, zNew, nNew);
2677         zBuf += nNew;
2678         *zBuf = 0;
2679         psp->state = WAITING_FOR_DECL_OR_RULE;
2680       }else{
2681         ErrorMsg(psp->filename,psp->tokenlineno,
2682           "Illegal argument to %%%s: %s",psp->declkeyword,x);
2683         psp->errorcnt++;
2684         psp->state = RESYNC_AFTER_DECL_ERROR;
2685       }
2686       break;
2687     case WAITING_FOR_FALLBACK_ID:
2688       if( x[0]=='.' ){
2689         psp->state = WAITING_FOR_DECL_OR_RULE;
2690       }else if( !ISUPPER(x[0]) ){
2691         ErrorMsg(psp->filename, psp->tokenlineno,
2692           "%%fallback argument \"%s\" should be a token", x);
2693         psp->errorcnt++;
2694       }else{
2695         struct symbol *sp = Symbol_new(x);
2696         if( psp->fallback==0 ){
2697           psp->fallback = sp;
2698         }else if( sp->fallback ){
2699           ErrorMsg(psp->filename, psp->tokenlineno,
2700             "More than one fallback assigned to token %s", x);
2701           psp->errorcnt++;
2702         }else{
2703           sp->fallback = psp->fallback;
2704           psp->gp->has_fallback = 1;
2705         }
2706       }
2707       break;
2708     case WAITING_FOR_TOKEN_NAME:
2709       /* Tokens do not have to be declared before use.  But they can be
2710       ** in order to control their assigned integer number.  The number for
2711       ** each token is assigned when it is first seen.  So by including
2712       **
2713       **     %token ONE TWO THREE.
2714       **
2715       ** early in the grammar file, that assigns small consecutive values
2716       ** to each of the tokens ONE TWO and THREE.
2717       */
2718       if( x[0]=='.' ){
2719         psp->state = WAITING_FOR_DECL_OR_RULE;
2720       }else if( !ISUPPER(x[0]) ){
2721         ErrorMsg(psp->filename, psp->tokenlineno,
2722           "%%token argument \"%s\" should be a token", x);
2723         psp->errorcnt++;
2724       }else{
2725         (void)Symbol_new(x);
2726       }
2727       break;
2728     case WAITING_FOR_WILDCARD_ID:
2729       if( x[0]=='.' ){
2730         psp->state = WAITING_FOR_DECL_OR_RULE;
2731       }else if( !ISUPPER(x[0]) ){
2732         ErrorMsg(psp->filename, psp->tokenlineno,
2733           "%%wildcard argument \"%s\" should be a token", x);
2734         psp->errorcnt++;
2735       }else{
2736         struct symbol *sp = Symbol_new(x);
2737         if( psp->gp->wildcard==0 ){
2738           psp->gp->wildcard = sp;
2739         }else{
2740           ErrorMsg(psp->filename, psp->tokenlineno,
2741             "Extra wildcard to token: %s", x);
2742           psp->errorcnt++;
2743         }
2744       }
2745       break;
2746     case WAITING_FOR_CLASS_ID:
2747       if( !ISLOWER(x[0]) ){
2748         ErrorMsg(psp->filename, psp->tokenlineno,
2749           "%%token_class must be followed by an identifier: %s", x);
2750         psp->errorcnt++;
2751         psp->state = RESYNC_AFTER_DECL_ERROR;
2752      }else if( Symbol_find(x) ){
2753         ErrorMsg(psp->filename, psp->tokenlineno,
2754           "Symbol \"%s\" already used", x);
2755         psp->errorcnt++;
2756         psp->state = RESYNC_AFTER_DECL_ERROR;
2757       }else{
2758         psp->tkclass = Symbol_new(x);
2759         psp->tkclass->type = MULTITERMINAL;
2760         psp->state = WAITING_FOR_CLASS_TOKEN;
2761       }
2762       break;
2763     case WAITING_FOR_CLASS_TOKEN:
2764       if( x[0]=='.' ){
2765         psp->state = WAITING_FOR_DECL_OR_RULE;
2766       }else if( ISUPPER(x[0]) || ((x[0]=='|' || x[0]=='/') && ISUPPER(x[1])) ){
2767         struct symbol *msp = psp->tkclass;
2768         msp->nsubsym++;
2769         msp->subsym = (struct symbol **) realloc(msp->subsym,
2770           sizeof(struct symbol*)*msp->nsubsym);
2771         if( !ISUPPER(x[0]) ) x++;
2772         msp->subsym[msp->nsubsym-1] = Symbol_new(x);
2773       }else{
2774         ErrorMsg(psp->filename, psp->tokenlineno,
2775           "%%token_class argument \"%s\" should be a token", x);
2776         psp->errorcnt++;
2777         psp->state = RESYNC_AFTER_DECL_ERROR;
2778       }
2779       break;
2780     case RESYNC_AFTER_RULE_ERROR:
2781 /*      if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE;
2782 **      break; */
2783     case RESYNC_AFTER_DECL_ERROR:
2784       if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE;
2785       if( x[0]=='%' ) psp->state = WAITING_FOR_DECL_KEYWORD;
2786       break;
2787   }
2788 }
2789 
2790 /* The text in the input is part of the argument to an %ifdef or %ifndef.
2791 ** Evaluate the text as a boolean expression.  Return true or false.
2792 */
eval_preprocessor_boolean(char * z,int lineno)2793 static int eval_preprocessor_boolean(char *z, int lineno){
2794   int neg = 0;
2795   int res = 0;
2796   int okTerm = 1;
2797   int i;
2798   for(i=0; z[i]!=0; i++){
2799     if( ISSPACE(z[i]) ) continue;
2800     if( z[i]=='!' ){
2801       if( !okTerm ) goto pp_syntax_error;
2802       neg = !neg;
2803       continue;
2804     }
2805     if( z[i]=='|' && z[i+1]=='|' ){
2806       if( okTerm ) goto pp_syntax_error;
2807       if( res ) return 1;
2808       i++;
2809       okTerm = 1;
2810       continue;
2811     }
2812     if( z[i]=='&' && z[i+1]=='&' ){
2813       if( okTerm ) goto pp_syntax_error;
2814       if( !res ) return 0;
2815       i++;
2816       okTerm = 1;
2817       continue;
2818     }
2819     if( z[i]=='(' ){
2820       int k;
2821       int n = 1;
2822       if( !okTerm ) goto pp_syntax_error;
2823       for(k=i+1; z[k]; k++){
2824         if( z[k]==')' ){
2825           n--;
2826           if( n==0 ){
2827             z[k] = 0;
2828             res = eval_preprocessor_boolean(&z[i+1], -1);
2829             z[k] = ')';
2830             if( res<0 ){
2831               i = i-res;
2832               goto pp_syntax_error;
2833             }
2834             i = k;
2835             break;
2836           }
2837         }else if( z[k]=='(' ){
2838           n++;
2839         }else if( z[k]==0 ){
2840           i = k;
2841           goto pp_syntax_error;
2842         }
2843       }
2844       if( neg ){
2845         res = !res;
2846         neg = 0;
2847       }
2848       okTerm = 0;
2849       continue;
2850     }
2851     if( ISALPHA(z[i]) ){
2852       int j, k, n;
2853       if( !okTerm ) goto pp_syntax_error;
2854       for(k=i+1; ISALNUM(z[k]) || z[k]=='_'; k++){}
2855       n = k - i;
2856       res = 0;
2857       for(j=0; j<nDefine; j++){
2858         if( strncmp(azDefine[j],&z[i],n)==0 && azDefine[j][n]==0 ){
2859           res = 1;
2860           break;
2861         }
2862       }
2863       i = k-1;
2864       if( neg ){
2865         res = !res;
2866         neg = 0;
2867       }
2868       okTerm = 0;
2869       continue;
2870     }
2871     goto pp_syntax_error;
2872   }
2873   return res;
2874 
2875 pp_syntax_error:
2876   if( lineno>0 ){
2877     fprintf(stderr, "%%if syntax error on line %d.\n", lineno);
2878     fprintf(stderr, "  %.*s <-- syntax error here\n", i+1, z);
2879     exit(1);
2880   }else{
2881     return -(i+1);
2882   }
2883 }
2884 
2885 /* Run the preprocessor over the input file text.  The global variables
2886 ** azDefine[0] through azDefine[nDefine-1] contains the names of all defined
2887 ** macros.  This routine looks for "%ifdef" and "%ifndef" and "%endif" and
2888 ** comments them out.  Text in between is also commented out as appropriate.
2889 */
preprocess_input(char * z)2890 static void preprocess_input(char *z){
2891   int i, j, k;
2892   int exclude = 0;
2893   int start = 0;
2894   int lineno = 1;
2895   int start_lineno = 1;
2896   for(i=0; z[i]; i++){
2897     if( z[i]=='\n' ) lineno++;
2898     if( z[i]!='%' || (i>0 && z[i-1]!='\n') ) continue;
2899     if( strncmp(&z[i],"%endif",6)==0 && ISSPACE(z[i+6]) ){
2900       if( exclude ){
2901         exclude--;
2902         if( exclude==0 ){
2903           for(j=start; j<i; j++) if( z[j]!='\n' ) z[j] = ' ';
2904         }
2905       }
2906       for(j=i; z[j] && z[j]!='\n'; j++) z[j] = ' ';
2907     }else if( strncmp(&z[i],"%else",5)==0 && ISSPACE(z[i+5]) ){
2908       if( exclude==1){
2909         exclude = 0;
2910         for(j=start; j<i; j++) if( z[j]!='\n' ) z[j] = ' ';
2911       }else if( exclude==0 ){
2912         exclude = 1;
2913         start = i;
2914         start_lineno = lineno;
2915       }
2916       for(j=i; z[j] && z[j]!='\n'; j++) z[j] = ' ';
2917     }else if( strncmp(&z[i],"%ifdef ",7)==0
2918           || strncmp(&z[i],"%if ",4)==0
2919           || strncmp(&z[i],"%ifndef ",8)==0 ){
2920       if( exclude ){
2921         exclude++;
2922       }else{
2923         int isNot;
2924         int iBool;
2925         for(j=i; z[j] && !ISSPACE(z[j]); j++){}
2926         iBool = j;
2927         isNot = (j==i+7);
2928         while( z[j] && z[j]!='\n' ){ j++; }
2929         k = z[j];
2930         z[j] = 0;
2931         exclude = eval_preprocessor_boolean(&z[iBool], lineno);
2932         z[j] = k;
2933         if( !isNot ) exclude = !exclude;
2934         if( exclude ){
2935           start = i;
2936           start_lineno = lineno;
2937         }
2938       }
2939       for(j=i; z[j] && z[j]!='\n'; j++) z[j] = ' ';
2940     }
2941   }
2942   if( exclude ){
2943     fprintf(stderr,"unterminated %%ifdef starting on line %d\n", start_lineno);
2944     exit(1);
2945   }
2946 }
2947 
2948 /* In spite of its name, this function is really a scanner.  It read
2949 ** in the entire input file (all at once) then tokenizes it.  Each
2950 ** token is passed to the function "parseonetoken" which builds all
2951 ** the appropriate data structures in the global state vector "gp".
2952 */
Parse(struct lemon * gp)2953 void Parse(struct lemon *gp)
2954 {
2955   struct pstate ps;
2956   FILE *fp;
2957   char *filebuf;
2958   unsigned int filesize;
2959   int lineno;
2960   int c;
2961   char *cp, *nextcp;
2962   int startline = 0;
2963 
2964   memset(&ps, '\0', sizeof(ps));
2965   ps.gp = gp;
2966   ps.filename = gp->filename;
2967   ps.errorcnt = 0;
2968   ps.state = INITIALIZE;
2969 
2970   /* Begin by reading the input file */
2971   fp = fopen(ps.filename,"rb");
2972   if( fp==0 ){
2973     ErrorMsg(ps.filename,0,"Can't open this file for reading.");
2974     gp->errorcnt++;
2975     return;
2976   }
2977   fseek(fp,0,2);
2978   filesize = ftell(fp);
2979   rewind(fp);
2980   filebuf = (char *)malloc( filesize+1 );
2981   if( filesize>100000000 || filebuf==0 ){
2982     ErrorMsg(ps.filename,0,"Input file too large.");
2983     free(filebuf);
2984     gp->errorcnt++;
2985     fclose(fp);
2986     return;
2987   }
2988   if( fread(filebuf,1,filesize,fp)!=filesize ){
2989     ErrorMsg(ps.filename,0,"Can't read in all %d bytes of this file.",
2990       filesize);
2991     free(filebuf);
2992     gp->errorcnt++;
2993     fclose(fp);
2994     return;
2995   }
2996   fclose(fp);
2997   filebuf[filesize] = 0;
2998 
2999   /* Make an initial pass through the file to handle %ifdef and %ifndef */
3000   preprocess_input(filebuf);
3001   if( gp->printPreprocessed ){
3002     printf("%s\n", filebuf);
3003     return;
3004   }
3005 
3006   /* Now scan the text of the input file */
3007   lineno = 1;
3008   for(cp=filebuf; (c= *cp)!=0; ){
3009     if( c=='\n' ) lineno++;              /* Keep track of the line number */
3010     if( ISSPACE(c) ){ cp++; continue; }  /* Skip all white space */
3011     if( c=='/' && cp[1]=='/' ){          /* Skip C++ style comments */
3012       cp+=2;
3013       while( (c= *cp)!=0 && c!='\n' ) cp++;
3014       continue;
3015     }
3016     if( c=='/' && cp[1]=='*' ){          /* Skip C style comments */
3017       cp+=2;
3018       if( (*cp)=='/' ) cp++;
3019       while( (c= *cp)!=0 && (c!='/' || cp[-1]!='*') ){
3020         if( c=='\n' ) lineno++;
3021         cp++;
3022       }
3023       if( c ) cp++;
3024       continue;
3025     }
3026     ps.tokenstart = cp;                /* Mark the beginning of the token */
3027     ps.tokenlineno = lineno;           /* Linenumber on which token begins */
3028     if( c=='\"' ){                     /* String literals */
3029       cp++;
3030       while( (c= *cp)!=0 && c!='\"' ){
3031         if( c=='\n' ) lineno++;
3032         cp++;
3033       }
3034       if( c==0 ){
3035         ErrorMsg(ps.filename,startline,
3036             "String starting on this line is not terminated before "
3037             "the end of the file.");
3038         ps.errorcnt++;
3039         nextcp = cp;
3040       }else{
3041         nextcp = cp+1;
3042       }
3043     }else if( c=='{' ){               /* A block of C code */
3044       int level;
3045       cp++;
3046       for(level=1; (c= *cp)!=0 && (level>1 || c!='}'); cp++){
3047         if( c=='\n' ) lineno++;
3048         else if( c=='{' ) level++;
3049         else if( c=='}' ) level--;
3050         else if( c=='/' && cp[1]=='*' ){  /* Skip comments */
3051           int prevc;
3052           cp = &cp[2];
3053           prevc = 0;
3054           while( (c= *cp)!=0 && (c!='/' || prevc!='*') ){
3055             if( c=='\n' ) lineno++;
3056             prevc = c;
3057             cp++;
3058           }
3059         }else if( c=='/' && cp[1]=='/' ){  /* Skip C++ style comments too */
3060           cp = &cp[2];
3061           while( (c= *cp)!=0 && c!='\n' ) cp++;
3062           if( c ) lineno++;
3063         }else if( c=='\'' || c=='\"' ){    /* String a character literals */
3064           int startchar, prevc;
3065           startchar = c;
3066           prevc = 0;
3067           for(cp++; (c= *cp)!=0 && (c!=startchar || prevc=='\\'); cp++){
3068             if( c=='\n' ) lineno++;
3069             if( prevc=='\\' ) prevc = 0;
3070             else              prevc = c;
3071           }
3072         }
3073       }
3074       if( c==0 ){
3075         ErrorMsg(ps.filename,ps.tokenlineno,
3076           "C code starting on this line is not terminated before "
3077           "the end of the file.");
3078         ps.errorcnt++;
3079         nextcp = cp;
3080       }else{
3081         nextcp = cp+1;
3082       }
3083     }else if( ISALNUM(c) ){          /* Identifiers */
3084       while( (c= *cp)!=0 && (ISALNUM(c) || c=='_') ) cp++;
3085       nextcp = cp;
3086     }else if( c==':' && cp[1]==':' && cp[2]=='=' ){ /* The operator "::=" */
3087       cp += 3;
3088       nextcp = cp;
3089     }else if( (c=='/' || c=='|') && ISALPHA(cp[1]) ){
3090       cp += 2;
3091       while( (c = *cp)!=0 && (ISALNUM(c) || c=='_') ) cp++;
3092       nextcp = cp;
3093     }else{                          /* All other (one character) operators */
3094       cp++;
3095       nextcp = cp;
3096     }
3097     c = *cp;
3098     *cp = 0;                        /* Null terminate the token */
3099     parseonetoken(&ps);             /* Parse the token */
3100     *cp = (char)c;                  /* Restore the buffer */
3101     cp = nextcp;
3102   }
3103   free(filebuf);                    /* Release the buffer after parsing */
3104   gp->rule = ps.firstrule;
3105   gp->errorcnt = ps.errorcnt;
3106 }
3107 /*************************** From the file "plink.c" *********************/
3108 /*
3109 ** Routines processing configuration follow-set propagation links
3110 ** in the LEMON parser generator.
3111 */
3112 static struct plink *plink_freelist = 0;
3113 
3114 /* Allocate a new plink */
Plink_new(void)3115 struct plink *Plink_new(void){
3116   struct plink *newlink;
3117 
3118   if( plink_freelist==0 ){
3119     int i;
3120     int amt = 100;
3121     plink_freelist = (struct plink *)calloc( amt, sizeof(struct plink) );
3122     if( plink_freelist==0 ){
3123       fprintf(stderr,
3124       "Unable to allocate memory for a new follow-set propagation link.\n");
3125       exit(1);
3126     }
3127     for(i=0; i<amt-1; i++) plink_freelist[i].next = &plink_freelist[i+1];
3128     plink_freelist[amt-1].next = 0;
3129   }
3130   newlink = plink_freelist;
3131   plink_freelist = plink_freelist->next;
3132   return newlink;
3133 }
3134 
3135 /* Add a plink to a plink list */
Plink_add(struct plink ** plpp,struct config * cfp)3136 void Plink_add(struct plink **plpp, struct config *cfp)
3137 {
3138   struct plink *newlink;
3139   newlink = Plink_new();
3140   newlink->next = *plpp;
3141   *plpp = newlink;
3142   newlink->cfp = cfp;
3143 }
3144 
3145 /* Transfer every plink on the list "from" to the list "to" */
Plink_copy(struct plink ** to,struct plink * from)3146 void Plink_copy(struct plink **to, struct plink *from)
3147 {
3148   struct plink *nextpl;
3149   while( from ){
3150     nextpl = from->next;
3151     from->next = *to;
3152     *to = from;
3153     from = nextpl;
3154   }
3155 }
3156 
3157 /* Delete every plink on the list */
Plink_delete(struct plink * plp)3158 void Plink_delete(struct plink *plp)
3159 {
3160   struct plink *nextpl;
3161 
3162   while( plp ){
3163     nextpl = plp->next;
3164     plp->next = plink_freelist;
3165     plink_freelist = plp;
3166     plp = nextpl;
3167   }
3168 }
3169 /*********************** From the file "report.c" **************************/
3170 /*
3171 ** Procedures for generating reports and tables in the LEMON parser generator.
3172 */
3173 
3174 /* Generate a filename with the given suffix.  Space to hold the
3175 ** name comes from malloc() and must be freed by the calling
3176 ** function.
3177 */
file_makename(struct lemon * lemp,const char * suffix)3178 PRIVATE char *file_makename(struct lemon *lemp, const char *suffix)
3179 {
3180   char *name;
3181   char *cp;
3182   char *filename = lemp->filename;
3183   int sz;
3184 
3185   if( outputDir ){
3186     cp = strrchr(filename, '/');
3187     if( cp ) filename = cp + 1;
3188   }
3189   sz = lemonStrlen(filename);
3190   sz += lemonStrlen(suffix);
3191   if( outputDir ) sz += lemonStrlen(outputDir) + 1;
3192   sz += 5;
3193   name = (char*)malloc( sz );
3194   if( name==0 ){
3195     fprintf(stderr,"Can't allocate space for a filename.\n");
3196     exit(1);
3197   }
3198   name[0] = 0;
3199   if( outputDir ){
3200     lemon_strcpy(name, outputDir);
3201     lemon_strcat(name, "/");
3202   }
3203   lemon_strcat(name,filename);
3204   cp = strrchr(name,'.');
3205   if( cp ) *cp = 0;
3206   lemon_strcat(name,suffix);
3207   return name;
3208 }
3209 
3210 /* Open a file with a name based on the name of the input file,
3211 ** but with a different (specified) suffix, and return a pointer
3212 ** to the stream */
file_open(struct lemon * lemp,const char * suffix,const char * mode)3213 PRIVATE FILE *file_open(
3214   struct lemon *lemp,
3215   const char *suffix,
3216   const char *mode
3217 ){
3218   FILE *fp;
3219 
3220   if( lemp->outname ) free(lemp->outname);
3221   lemp->outname = file_makename(lemp, suffix);
3222   fp = fopen(lemp->outname,mode);
3223   if( fp==0 && *mode=='w' ){
3224     fprintf(stderr,"Can't open file \"%s\".\n",lemp->outname);
3225     lemp->errorcnt++;
3226     return 0;
3227   }
3228   return fp;
3229 }
3230 
3231 /* Print the text of a rule
3232 */
rule_print(FILE * out,struct rule * rp)3233 void rule_print(FILE *out, struct rule *rp){
3234   int i, j;
3235   fprintf(out, "%s",rp->lhs->name);
3236   /*    if( rp->lhsalias ) fprintf(out,"(%s)",rp->lhsalias); */
3237   fprintf(out," ::=");
3238   for(i=0; i<rp->nrhs; i++){
3239     struct symbol *sp = rp->rhs[i];
3240     if( sp->type==MULTITERMINAL ){
3241       fprintf(out," %s", sp->subsym[0]->name);
3242       for(j=1; j<sp->nsubsym; j++){
3243         fprintf(out,"|%s", sp->subsym[j]->name);
3244       }
3245     }else{
3246       fprintf(out," %s", sp->name);
3247     }
3248     /* if( rp->rhsalias[i] ) fprintf(out,"(%s)",rp->rhsalias[i]); */
3249   }
3250 }
3251 
3252 /* Duplicate the input file without comments and without actions
3253 ** on rules */
Reprint(struct lemon * lemp)3254 void Reprint(struct lemon *lemp)
3255 {
3256   struct rule *rp;
3257   struct symbol *sp;
3258   int i, j, maxlen, len, ncolumns, skip;
3259   printf("// Reprint of input file \"%s\".\n// Symbols:\n",lemp->filename);
3260   maxlen = 10;
3261   for(i=0; i<lemp->nsymbol; i++){
3262     sp = lemp->symbols[i];
3263     len = lemonStrlen(sp->name);
3264     if( len>maxlen ) maxlen = len;
3265   }
3266   ncolumns = 76/(maxlen+5);
3267   if( ncolumns<1 ) ncolumns = 1;
3268   skip = (lemp->nsymbol + ncolumns - 1)/ncolumns;
3269   for(i=0; i<skip; i++){
3270     printf("//");
3271     for(j=i; j<lemp->nsymbol; j+=skip){
3272       sp = lemp->symbols[j];
3273       assert( sp->index==j );
3274       printf(" %3d %-*.*s",j,maxlen,maxlen,sp->name);
3275     }
3276     printf("\n");
3277   }
3278   for(rp=lemp->rule; rp; rp=rp->next){
3279     rule_print(stdout, rp);
3280     printf(".");
3281     if( rp->precsym ) printf(" [%s]",rp->precsym->name);
3282     /* if( rp->code ) printf("\n    %s",rp->code); */
3283     printf("\n");
3284   }
3285 }
3286 
3287 /* Print a single rule.
3288 */
RulePrint(FILE * fp,struct rule * rp,int iCursor)3289 void RulePrint(FILE *fp, struct rule *rp, int iCursor){
3290   struct symbol *sp;
3291   int i, j;
3292   fprintf(fp,"%s ::=",rp->lhs->name);
3293   for(i=0; i<=rp->nrhs; i++){
3294     if( i==iCursor ) fprintf(fp," *");
3295     if( i==rp->nrhs ) break;
3296     sp = rp->rhs[i];
3297     if( sp->type==MULTITERMINAL ){
3298       fprintf(fp," %s", sp->subsym[0]->name);
3299       for(j=1; j<sp->nsubsym; j++){
3300         fprintf(fp,"|%s",sp->subsym[j]->name);
3301       }
3302     }else{
3303       fprintf(fp," %s", sp->name);
3304     }
3305   }
3306 }
3307 
3308 /* Print the rule for a configuration.
3309 */
ConfigPrint(FILE * fp,struct config * cfp)3310 void ConfigPrint(FILE *fp, struct config *cfp){
3311   RulePrint(fp, cfp->rp, cfp->dot);
3312 }
3313 
3314 /* #define TEST */
3315 #if 0
3316 /* Print a set */
3317 PRIVATE void SetPrint(out,set,lemp)
3318 FILE *out;
3319 char *set;
3320 struct lemon *lemp;
3321 {
3322   int i;
3323   char *spacer;
3324   spacer = "";
3325   fprintf(out,"%12s[","");
3326   for(i=0; i<lemp->nterminal; i++){
3327     if( SetFind(set,i) ){
3328       fprintf(out,"%s%s",spacer,lemp->symbols[i]->name);
3329       spacer = " ";
3330     }
3331   }
3332   fprintf(out,"]\n");
3333 }
3334 
3335 /* Print a plink chain */
3336 PRIVATE void PlinkPrint(out,plp,tag)
3337 FILE *out;
3338 struct plink *plp;
3339 char *tag;
3340 {
3341   while( plp ){
3342     fprintf(out,"%12s%s (state %2d) ","",tag,plp->cfp->stp->statenum);
3343     ConfigPrint(out,plp->cfp);
3344     fprintf(out,"\n");
3345     plp = plp->next;
3346   }
3347 }
3348 #endif
3349 
3350 /* Print an action to the given file descriptor.  Return FALSE if
3351 ** nothing was actually printed.
3352 */
PrintAction(struct action * ap,FILE * fp,int indent)3353 int PrintAction(
3354   struct action *ap,          /* The action to print */
3355   FILE *fp,                   /* Print the action here */
3356   int indent                  /* Indent by this amount */
3357 ){
3358   int result = 1;
3359   switch( ap->type ){
3360     case SHIFT: {
3361       struct state *stp = ap->x.stp;
3362       fprintf(fp,"%*s shift        %-7d",indent,ap->sp->name,stp->statenum);
3363       break;
3364     }
3365     case REDUCE: {
3366       struct rule *rp = ap->x.rp;
3367       fprintf(fp,"%*s reduce       %-7d",indent,ap->sp->name,rp->iRule);
3368       RulePrint(fp, rp, -1);
3369       break;
3370     }
3371     case SHIFTREDUCE: {
3372       struct rule *rp = ap->x.rp;
3373       fprintf(fp,"%*s shift-reduce %-7d",indent,ap->sp->name,rp->iRule);
3374       RulePrint(fp, rp, -1);
3375       break;
3376     }
3377     case ACCEPT:
3378       fprintf(fp,"%*s accept",indent,ap->sp->name);
3379       break;
3380     case ERROR:
3381       fprintf(fp,"%*s error",indent,ap->sp->name);
3382       break;
3383     case SRCONFLICT:
3384     case RRCONFLICT:
3385       fprintf(fp,"%*s reduce       %-7d ** Parsing conflict **",
3386         indent,ap->sp->name,ap->x.rp->iRule);
3387       break;
3388     case SSCONFLICT:
3389       fprintf(fp,"%*s shift        %-7d ** Parsing conflict **",
3390         indent,ap->sp->name,ap->x.stp->statenum);
3391       break;
3392     case SH_RESOLVED:
3393       if( showPrecedenceConflict ){
3394         fprintf(fp,"%*s shift        %-7d -- dropped by precedence",
3395                 indent,ap->sp->name,ap->x.stp->statenum);
3396       }else{
3397         result = 0;
3398       }
3399       break;
3400     case RD_RESOLVED:
3401       if( showPrecedenceConflict ){
3402         fprintf(fp,"%*s reduce %-7d -- dropped by precedence",
3403                 indent,ap->sp->name,ap->x.rp->iRule);
3404       }else{
3405         result = 0;
3406       }
3407       break;
3408     case NOT_USED:
3409       result = 0;
3410       break;
3411   }
3412   if( result && ap->spOpt ){
3413     fprintf(fp,"  /* because %s==%s */", ap->sp->name, ap->spOpt->name);
3414   }
3415   return result;
3416 }
3417 
3418 /* Generate the "*.out" log file */
ReportOutput(struct lemon * lemp)3419 void ReportOutput(struct lemon *lemp)
3420 {
3421   int i, n;
3422   struct state *stp;
3423   struct config *cfp;
3424   struct action *ap;
3425   struct rule *rp;
3426   FILE *fp;
3427 
3428   fp = file_open(lemp,".out","wb");
3429   if( fp==0 ) return;
3430   for(i=0; i<lemp->nxstate; i++){
3431     stp = lemp->sorted[i];
3432     fprintf(fp,"State %d:\n",stp->statenum);
3433     if( lemp->basisflag ) cfp=stp->bp;
3434     else                  cfp=stp->cfp;
3435     while( cfp ){
3436       char buf[20];
3437       if( cfp->dot==cfp->rp->nrhs ){
3438         lemon_sprintf(buf,"(%d)",cfp->rp->iRule);
3439         fprintf(fp,"    %5s ",buf);
3440       }else{
3441         fprintf(fp,"          ");
3442       }
3443       ConfigPrint(fp,cfp);
3444       fprintf(fp,"\n");
3445 #if 0
3446       SetPrint(fp,cfp->fws,lemp);
3447       PlinkPrint(fp,cfp->fplp,"To  ");
3448       PlinkPrint(fp,cfp->bplp,"From");
3449 #endif
3450       if( lemp->basisflag ) cfp=cfp->bp;
3451       else                  cfp=cfp->next;
3452     }
3453     fprintf(fp,"\n");
3454     for(ap=stp->ap; ap; ap=ap->next){
3455       if( PrintAction(ap,fp,30) ) fprintf(fp,"\n");
3456     }
3457     fprintf(fp,"\n");
3458   }
3459   fprintf(fp, "----------------------------------------------------\n");
3460   fprintf(fp, "Symbols:\n");
3461   fprintf(fp, "The first-set of non-terminals is shown after the name.\n\n");
3462   for(i=0; i<lemp->nsymbol; i++){
3463     int j;
3464     struct symbol *sp;
3465 
3466     sp = lemp->symbols[i];
3467     fprintf(fp, "  %3d: %s", i, sp->name);
3468     if( sp->type==NONTERMINAL ){
3469       fprintf(fp, ":");
3470       if( sp->lambda ){
3471         fprintf(fp, " <lambda>");
3472       }
3473       for(j=0; j<lemp->nterminal; j++){
3474         if( sp->firstset && SetFind(sp->firstset, j) ){
3475           fprintf(fp, " %s", lemp->symbols[j]->name);
3476         }
3477       }
3478     }
3479     if( sp->prec>=0 ) fprintf(fp," (precedence=%d)", sp->prec);
3480     fprintf(fp, "\n");
3481   }
3482   fprintf(fp, "----------------------------------------------------\n");
3483   fprintf(fp, "Syntax-only Symbols:\n");
3484   fprintf(fp, "The following symbols never carry semantic content.\n\n");
3485   for(i=n=0; i<lemp->nsymbol; i++){
3486     int w;
3487     struct symbol *sp = lemp->symbols[i];
3488     if( sp->bContent ) continue;
3489     w = (int)strlen(sp->name);
3490     if( n>0 && n+w>75 ){
3491       fprintf(fp,"\n");
3492       n = 0;
3493     }
3494     if( n>0 ){
3495       fprintf(fp, " ");
3496       n++;
3497     }
3498     fprintf(fp, "%s", sp->name);
3499     n += w;
3500   }
3501   if( n>0 ) fprintf(fp, "\n");
3502   fprintf(fp, "----------------------------------------------------\n");
3503   fprintf(fp, "Rules:\n");
3504   for(rp=lemp->rule; rp; rp=rp->next){
3505     fprintf(fp, "%4d: ", rp->iRule);
3506     rule_print(fp, rp);
3507     fprintf(fp,".");
3508     if( rp->precsym ){
3509       fprintf(fp," [%s precedence=%d]",
3510               rp->precsym->name, rp->precsym->prec);
3511     }
3512     fprintf(fp,"\n");
3513   }
3514   fclose(fp);
3515   return;
3516 }
3517 
3518 /* Search for the file "name" which is in the same directory as
3519 ** the executable */
pathsearch(char * argv0,char * name,int modemask)3520 PRIVATE char *pathsearch(char *argv0, char *name, int modemask)
3521 {
3522   const char *pathlist;
3523   char *pathbufptr = 0;
3524   char *pathbuf = 0;
3525   char *path,*cp;
3526   char c;
3527 
3528 #ifdef __WIN32__
3529   cp = strrchr(argv0,'\\');
3530 #else
3531   cp = strrchr(argv0,'/');
3532 #endif
3533   if( cp ){
3534     c = *cp;
3535     *cp = 0;
3536     path = (char *)malloc( lemonStrlen(argv0) + lemonStrlen(name) + 2 );
3537     if( path ) lemon_sprintf(path,"%s/%s",argv0,name);
3538     *cp = c;
3539   }else{
3540     pathlist = getenv("PATH");
3541     if( pathlist==0 ) pathlist = ".:/bin:/usr/bin";
3542     pathbuf = (char *) malloc( lemonStrlen(pathlist) + 1 );
3543     path = (char *)malloc( lemonStrlen(pathlist)+lemonStrlen(name)+2 );
3544     if( (pathbuf != 0) && (path!=0) ){
3545       pathbufptr = pathbuf;
3546       lemon_strcpy(pathbuf, pathlist);
3547       while( *pathbuf ){
3548         cp = strchr(pathbuf,':');
3549         if( cp==0 ) cp = &pathbuf[lemonStrlen(pathbuf)];
3550         c = *cp;
3551         *cp = 0;
3552         lemon_sprintf(path,"%s/%s",pathbuf,name);
3553         *cp = c;
3554         if( c==0 ) pathbuf[0] = 0;
3555         else pathbuf = &cp[1];
3556         if( access(path,modemask)==0 ) break;
3557       }
3558     }
3559     free(pathbufptr);
3560   }
3561   return path;
3562 }
3563 
3564 /* Given an action, compute the integer value for that action
3565 ** which is to be put in the action table of the generated machine.
3566 ** Return negative if no action should be generated.
3567 */
compute_action(struct lemon * lemp,struct action * ap)3568 PRIVATE int compute_action(struct lemon *lemp, struct action *ap)
3569 {
3570   int act;
3571   switch( ap->type ){
3572     case SHIFT:  act = ap->x.stp->statenum;                        break;
3573     case SHIFTREDUCE: {
3574       /* Since a SHIFT is inherient after a prior REDUCE, convert any
3575       ** SHIFTREDUCE action with a nonterminal on the LHS into a simple
3576       ** REDUCE action: */
3577       if( ap->sp->index>=lemp->nterminal
3578        && (lemp->errsym==0 || ap->sp->index!=lemp->errsym->index)
3579       ){
3580         act = lemp->minReduce + ap->x.rp->iRule;
3581       }else{
3582         act = lemp->minShiftReduce + ap->x.rp->iRule;
3583       }
3584       break;
3585     }
3586     case REDUCE: act = lemp->minReduce + ap->x.rp->iRule;          break;
3587     case ERROR:  act = lemp->errAction;                            break;
3588     case ACCEPT: act = lemp->accAction;                            break;
3589     default:     act = -1; break;
3590   }
3591   return act;
3592 }
3593 
3594 #define LINESIZE 1000
3595 /* The next cluster of routines are for reading the template file
3596 ** and writing the results to the generated parser */
3597 /* The first function transfers data from "in" to "out" until
3598 ** a line is seen which begins with "%%".  The line number is
3599 ** tracked.
3600 **
3601 ** if name!=0, then any word that begin with "Parse" is changed to
3602 ** begin with *name instead.
3603 */
tplt_xfer(char * name,FILE * in,FILE * out,int * lineno)3604 PRIVATE void tplt_xfer(char *name, FILE *in, FILE *out, int *lineno)
3605 {
3606   int i, iStart;
3607   char line[LINESIZE];
3608   while( fgets(line,LINESIZE,in) && (line[0]!='%' || line[1]!='%') ){
3609     (*lineno)++;
3610     iStart = 0;
3611     if( name ){
3612       for(i=0; line[i]; i++){
3613         if( line[i]=='P' && strncmp(&line[i],"Parse",5)==0
3614           && (i==0 || !ISALPHA(line[i-1]))
3615         ){
3616           if( i>iStart ) fprintf(out,"%.*s",i-iStart,&line[iStart]);
3617           fprintf(out,"%s",name);
3618           i += 4;
3619           iStart = i+1;
3620         }
3621       }
3622     }
3623     fprintf(out,"%s",&line[iStart]);
3624   }
3625 }
3626 
3627 /* Skip forward past the header of the template file to the first "%%"
3628 */
tplt_skip_header(FILE * in,int * lineno)3629 PRIVATE void tplt_skip_header(FILE *in, int *lineno)
3630 {
3631   char line[LINESIZE];
3632   while( fgets(line,LINESIZE,in) && (line[0]!='%' || line[1]!='%') ){
3633     (*lineno)++;
3634   }
3635 }
3636 
3637 /* The next function finds the template file and opens it, returning
3638 ** a pointer to the opened file. */
tplt_open(struct lemon * lemp)3639 PRIVATE FILE *tplt_open(struct lemon *lemp)
3640 {
3641   static char templatename[] = "lempar.c";
3642   char buf[1000];
3643   FILE *in;
3644   char *tpltname;
3645   char *toFree = 0;
3646   char *cp;
3647 
3648   /* first, see if user specified a template filename on the command line. */
3649   if (user_templatename != 0) {
3650     if( access(user_templatename,004)==-1 ){
3651       fprintf(stderr,"Can't find the parser driver template file \"%s\".\n",
3652         user_templatename);
3653       lemp->errorcnt++;
3654       return 0;
3655     }
3656     in = fopen(user_templatename,"rb");
3657     if( in==0 ){
3658       fprintf(stderr,"Can't open the template file \"%s\".\n",
3659               user_templatename);
3660       lemp->errorcnt++;
3661       return 0;
3662     }
3663     return in;
3664   }
3665 
3666   cp = strrchr(lemp->filename,'.');
3667   if( cp ){
3668     lemon_sprintf(buf,"%.*s.lt",(int)(cp-lemp->filename),lemp->filename);
3669   }else{
3670     lemon_sprintf(buf,"%s.lt",lemp->filename);
3671   }
3672   if( access(buf,004)==0 ){
3673     tpltname = buf;
3674   }else if( access(templatename,004)==0 ){
3675     tpltname = templatename;
3676   }else{
3677     toFree = tpltname = pathsearch(lemp->argv0,templatename,0);
3678   }
3679   if( tpltname==0 ){
3680     fprintf(stderr,"Can't find the parser driver template file \"%s\".\n",
3681     templatename);
3682     lemp->errorcnt++;
3683     return 0;
3684   }
3685   in = fopen(tpltname,"rb");
3686   if( in==0 ){
3687     fprintf(stderr,"Can't open the template file \"%s\".\n",tpltname);
3688     lemp->errorcnt++;
3689   }
3690   free(toFree);
3691   return in;
3692 }
3693 
3694 /* Print a #line directive line to the output file. */
tplt_linedir(FILE * out,int lineno,char * filename)3695 PRIVATE void tplt_linedir(FILE *out, int lineno, char *filename)
3696 {
3697   fprintf(out,"#line %d \"",lineno);
3698   while( *filename ){
3699     if( *filename == '\\' ) putc('\\',out);
3700     putc(*filename,out);
3701     filename++;
3702   }
3703   fprintf(out,"\"\n");
3704 }
3705 
3706 /* Print a string to the file and keep the linenumber up to date */
tplt_print(FILE * out,struct lemon * lemp,char * str,int * lineno)3707 PRIVATE void tplt_print(FILE *out, struct lemon *lemp, char *str, int *lineno)
3708 {
3709   if( str==0 ) return;
3710   while( *str ){
3711     putc(*str,out);
3712     if( *str=='\n' ) (*lineno)++;
3713     str++;
3714   }
3715   if( str[-1]!='\n' ){
3716     putc('\n',out);
3717     (*lineno)++;
3718   }
3719   if (!lemp->nolinenosflag) {
3720     (*lineno)++; tplt_linedir(out,*lineno,lemp->outname);
3721   }
3722   return;
3723 }
3724 
3725 /*
3726 ** The following routine emits code for the destructor for the
3727 ** symbol sp
3728 */
emit_destructor_code(FILE * out,struct symbol * sp,struct lemon * lemp,int * lineno)3729 void emit_destructor_code(
3730   FILE *out,
3731   struct symbol *sp,
3732   struct lemon *lemp,
3733   int *lineno
3734 ){
3735  char *cp = 0;
3736 
3737  if( sp->type==TERMINAL ){
3738    cp = lemp->tokendest;
3739    if( cp==0 ) return;
3740    fprintf(out,"{\n"); (*lineno)++;
3741  }else if( sp->destructor ){
3742    cp = sp->destructor;
3743    fprintf(out,"{\n"); (*lineno)++;
3744    if( !lemp->nolinenosflag ){
3745      (*lineno)++;
3746      tplt_linedir(out,sp->destLineno,lemp->filename);
3747    }
3748  }else if( lemp->vardest ){
3749    cp = lemp->vardest;
3750    if( cp==0 ) return;
3751    fprintf(out,"{\n"); (*lineno)++;
3752  }else{
3753    assert( 0 );  /* Cannot happen */
3754  }
3755  for(; *cp; cp++){
3756    if( *cp=='$' && cp[1]=='$' ){
3757      fprintf(out,"(yypminor->yy%d)",sp->dtnum);
3758      cp++;
3759      continue;
3760    }
3761    if( *cp=='\n' ) (*lineno)++;
3762    fputc(*cp,out);
3763  }
3764  fprintf(out,"\n"); (*lineno)++;
3765  if (!lemp->nolinenosflag) {
3766    (*lineno)++; tplt_linedir(out,*lineno,lemp->outname);
3767  }
3768  fprintf(out,"}\n"); (*lineno)++;
3769  return;
3770 }
3771 
3772 /*
3773 ** Return TRUE (non-zero) if the given symbol has a destructor.
3774 */
has_destructor(struct symbol * sp,struct lemon * lemp)3775 int has_destructor(struct symbol *sp, struct lemon *lemp)
3776 {
3777   int ret;
3778   if( sp->type==TERMINAL ){
3779     ret = lemp->tokendest!=0;
3780   }else{
3781     ret = lemp->vardest!=0 || sp->destructor!=0;
3782   }
3783   return ret;
3784 }
3785 
3786 /*
3787 ** Append text to a dynamically allocated string.  If zText is 0 then
3788 ** reset the string to be empty again.  Always return the complete text
3789 ** of the string (which is overwritten with each call).
3790 **
3791 ** n bytes of zText are stored.  If n==0 then all of zText up to the first
3792 ** \000 terminator is stored.  zText can contain up to two instances of
3793 ** %d.  The values of p1 and p2 are written into the first and second
3794 ** %d.
3795 **
3796 ** If n==-1, then the previous character is overwritten.
3797 */
append_str(const char * zText,int n,int p1,int p2)3798 PRIVATE char *append_str(const char *zText, int n, int p1, int p2){
3799   static char empty[1] = { 0 };
3800   static char *z = 0;
3801   static int alloced = 0;
3802   static int used = 0;
3803   int c;
3804   char zInt[40];
3805   if( zText==0 ){
3806     if( used==0 && z!=0 ) z[0] = 0;
3807     used = 0;
3808     return z;
3809   }
3810   if( n<=0 ){
3811     if( n<0 ){
3812       used += n;
3813       assert( used>=0 );
3814     }
3815     n = lemonStrlen(zText);
3816   }
3817   if( (int) (n+sizeof(zInt)*2+used) >= alloced ){
3818     alloced = n + sizeof(zInt)*2 + used + 200;
3819     z = (char *) realloc(z,  alloced);
3820   }
3821   if( z==0 ) return empty;
3822   while( n-- > 0 ){
3823     c = *(zText++);
3824     if( c=='%' && n>0 && zText[0]=='d' ){
3825       lemon_sprintf(zInt, "%d", p1);
3826       p1 = p2;
3827       lemon_strcpy(&z[used], zInt);
3828       used += lemonStrlen(&z[used]);
3829       zText++;
3830       n--;
3831     }else{
3832       z[used++] = (char)c;
3833     }
3834   }
3835   z[used] = 0;
3836   return z;
3837 }
3838 
3839 /*
3840 ** Write and transform the rp->code string so that symbols are expanded.
3841 ** Populate the rp->codePrefix and rp->codeSuffix strings, as appropriate.
3842 **
3843 ** Return 1 if the expanded code requires that "yylhsminor" local variable
3844 ** to be defined.
3845 */
translate_code(struct lemon * lemp,struct rule * rp)3846 PRIVATE int translate_code(struct lemon *lemp, struct rule *rp){
3847   char *cp, *xp;
3848   int i;
3849   int rc = 0;            /* True if yylhsminor is used */
3850   int dontUseRhs0 = 0;   /* If true, use of left-most RHS label is illegal */
3851   const char *zSkip = 0; /* The zOvwrt comment within rp->code, or NULL */
3852   char lhsused = 0;      /* True if the LHS element has been used */
3853   char lhsdirect;        /* True if LHS writes directly into stack */
3854   char used[MAXRHS];     /* True for each RHS element which is used */
3855   char zLhs[50];         /* Convert the LHS symbol into this string */
3856   char zOvwrt[900];      /* Comment that to allow LHS to overwrite RHS */
3857 
3858   for(i=0; i<rp->nrhs; i++) used[i] = 0;
3859   lhsused = 0;
3860 
3861   if( rp->code==0 ){
3862     static char newlinestr[2] = { '\n', '\0' };
3863     rp->code = newlinestr;
3864     rp->line = rp->ruleline;
3865     rp->noCode = 1;
3866   }else{
3867     rp->noCode = 0;
3868   }
3869 
3870 
3871   if( rp->nrhs==0 ){
3872     /* If there are no RHS symbols, then writing directly to the LHS is ok */
3873     lhsdirect = 1;
3874   }else if( rp->rhsalias[0]==0 ){
3875     /* The left-most RHS symbol has no value.  LHS direct is ok.  But
3876     ** we have to call the destructor on the RHS symbol first. */
3877     lhsdirect = 1;
3878     if( has_destructor(rp->rhs[0],lemp) ){
3879       append_str(0,0,0,0);
3880       append_str("  yy_destructor(yypParser,%d,&yymsp[%d].minor);\n", 0,
3881                  rp->rhs[0]->index,1-rp->nrhs);
3882       rp->codePrefix = Strsafe(append_str(0,0,0,0));
3883       rp->noCode = 0;
3884     }
3885   }else if( rp->lhsalias==0 ){
3886     /* There is no LHS value symbol. */
3887     lhsdirect = 1;
3888   }else if( strcmp(rp->lhsalias,rp->rhsalias[0])==0 ){
3889     /* The LHS symbol and the left-most RHS symbol are the same, so
3890     ** direct writing is allowed */
3891     lhsdirect = 1;
3892     lhsused = 1;
3893     used[0] = 1;
3894     if( rp->lhs->dtnum!=rp->rhs[0]->dtnum ){
3895       ErrorMsg(lemp->filename,rp->ruleline,
3896         "%s(%s) and %s(%s) share the same label but have "
3897         "different datatypes.",
3898         rp->lhs->name, rp->lhsalias, rp->rhs[0]->name, rp->rhsalias[0]);
3899       lemp->errorcnt++;
3900     }
3901   }else{
3902     lemon_sprintf(zOvwrt, "/*%s-overwrites-%s*/",
3903                   rp->lhsalias, rp->rhsalias[0]);
3904     zSkip = strstr(rp->code, zOvwrt);
3905     if( zSkip!=0 ){
3906       /* The code contains a special comment that indicates that it is safe
3907       ** for the LHS label to overwrite left-most RHS label. */
3908       lhsdirect = 1;
3909     }else{
3910       lhsdirect = 0;
3911     }
3912   }
3913   if( lhsdirect ){
3914     sprintf(zLhs, "yymsp[%d].minor.yy%d",1-rp->nrhs,rp->lhs->dtnum);
3915   }else{
3916     rc = 1;
3917     sprintf(zLhs, "yylhsminor.yy%d",rp->lhs->dtnum);
3918   }
3919 
3920   append_str(0,0,0,0);
3921 
3922   /* This const cast is wrong but harmless, if we're careful. */
3923   for(cp=(char *)rp->code; *cp; cp++){
3924     if( cp==zSkip ){
3925       append_str(zOvwrt,0,0,0);
3926       cp += lemonStrlen(zOvwrt)-1;
3927       dontUseRhs0 = 1;
3928       continue;
3929     }
3930     if( ISALPHA(*cp) && (cp==rp->code || (!ISALNUM(cp[-1]) && cp[-1]!='_')) ){
3931       char saved;
3932       for(xp= &cp[1]; ISALNUM(*xp) || *xp=='_'; xp++);
3933       saved = *xp;
3934       *xp = 0;
3935       if( rp->lhsalias && strcmp(cp,rp->lhsalias)==0 ){
3936         append_str(zLhs,0,0,0);
3937         cp = xp;
3938         lhsused = 1;
3939       }else{
3940         for(i=0; i<rp->nrhs; i++){
3941           if( rp->rhsalias[i] && strcmp(cp,rp->rhsalias[i])==0 ){
3942             if( i==0 && dontUseRhs0 ){
3943               ErrorMsg(lemp->filename,rp->ruleline,
3944                  "Label %s used after '%s'.",
3945                  rp->rhsalias[0], zOvwrt);
3946               lemp->errorcnt++;
3947             }else if( cp!=rp->code && cp[-1]=='@' ){
3948               /* If the argument is of the form @X then substituted
3949               ** the token number of X, not the value of X */
3950               append_str("yymsp[%d].major",-1,i-rp->nrhs+1,0);
3951             }else{
3952               struct symbol *sp = rp->rhs[i];
3953               int dtnum;
3954               if( sp->type==MULTITERMINAL ){
3955                 dtnum = sp->subsym[0]->dtnum;
3956               }else{
3957                 dtnum = sp->dtnum;
3958               }
3959               append_str("yymsp[%d].minor.yy%d",0,i-rp->nrhs+1, dtnum);
3960             }
3961             cp = xp;
3962             used[i] = 1;
3963             break;
3964           }
3965         }
3966       }
3967       *xp = saved;
3968     }
3969     append_str(cp, 1, 0, 0);
3970   } /* End loop */
3971 
3972   /* Main code generation completed */
3973   cp = append_str(0,0,0,0);
3974   if( cp && cp[0] ) rp->code = Strsafe(cp);
3975   append_str(0,0,0,0);
3976 
3977   /* Check to make sure the LHS has been used */
3978   if( rp->lhsalias && !lhsused ){
3979     ErrorMsg(lemp->filename,rp->ruleline,
3980       "Label \"%s\" for \"%s(%s)\" is never used.",
3981         rp->lhsalias,rp->lhs->name,rp->lhsalias);
3982     lemp->errorcnt++;
3983   }
3984 
3985   /* Generate destructor code for RHS minor values which are not referenced.
3986   ** Generate error messages for unused labels and duplicate labels.
3987   */
3988   for(i=0; i<rp->nrhs; i++){
3989     if( rp->rhsalias[i] ){
3990       if( i>0 ){
3991         int j;
3992         if( rp->lhsalias && strcmp(rp->lhsalias,rp->rhsalias[i])==0 ){
3993           ErrorMsg(lemp->filename,rp->ruleline,
3994             "%s(%s) has the same label as the LHS but is not the left-most "
3995             "symbol on the RHS.",
3996             rp->rhs[i]->name, rp->rhsalias[i]);
3997           lemp->errorcnt++;
3998         }
3999         for(j=0; j<i; j++){
4000           if( rp->rhsalias[j] && strcmp(rp->rhsalias[j],rp->rhsalias[i])==0 ){
4001             ErrorMsg(lemp->filename,rp->ruleline,
4002               "Label %s used for multiple symbols on the RHS of a rule.",
4003               rp->rhsalias[i]);
4004             lemp->errorcnt++;
4005             break;
4006           }
4007         }
4008       }
4009       if( !used[i] ){
4010         ErrorMsg(lemp->filename,rp->ruleline,
4011           "Label %s for \"%s(%s)\" is never used.",
4012           rp->rhsalias[i],rp->rhs[i]->name,rp->rhsalias[i]);
4013         lemp->errorcnt++;
4014       }
4015     }else if( i>0 && has_destructor(rp->rhs[i],lemp) ){
4016       append_str("  yy_destructor(yypParser,%d,&yymsp[%d].minor);\n", 0,
4017          rp->rhs[i]->index,i-rp->nrhs+1);
4018     }
4019   }
4020 
4021   /* If unable to write LHS values directly into the stack, write the
4022   ** saved LHS value now. */
4023   if( lhsdirect==0 ){
4024     append_str("  yymsp[%d].minor.yy%d = ", 0, 1-rp->nrhs, rp->lhs->dtnum);
4025     append_str(zLhs, 0, 0, 0);
4026     append_str(";\n", 0, 0, 0);
4027   }
4028 
4029   /* Suffix code generation complete */
4030   cp = append_str(0,0,0,0);
4031   if( cp && cp[0] ){
4032     rp->codeSuffix = Strsafe(cp);
4033     rp->noCode = 0;
4034   }
4035 
4036   return rc;
4037 }
4038 
4039 /*
4040 ** Generate code which executes when the rule "rp" is reduced.  Write
4041 ** the code to "out".  Make sure lineno stays up-to-date.
4042 */
emit_code(FILE * out,struct rule * rp,struct lemon * lemp,int * lineno)4043 PRIVATE void emit_code(
4044   FILE *out,
4045   struct rule *rp,
4046   struct lemon *lemp,
4047   int *lineno
4048 ){
4049  const char *cp;
4050 
4051  /* Setup code prior to the #line directive */
4052  if( rp->codePrefix && rp->codePrefix[0] ){
4053    fprintf(out, "{%s", rp->codePrefix);
4054    for(cp=rp->codePrefix; *cp; cp++){ if( *cp=='\n' ) (*lineno)++; }
4055  }
4056 
4057  /* Generate code to do the reduce action */
4058  if( rp->code ){
4059    if( !lemp->nolinenosflag ){
4060      (*lineno)++;
4061      tplt_linedir(out,rp->line,lemp->filename);
4062    }
4063    fprintf(out,"{%s",rp->code);
4064    for(cp=rp->code; *cp; cp++){ if( *cp=='\n' ) (*lineno)++; }
4065    fprintf(out,"}\n"); (*lineno)++;
4066    if( !lemp->nolinenosflag ){
4067      (*lineno)++;
4068      tplt_linedir(out,*lineno,lemp->outname);
4069    }
4070  }
4071 
4072  /* Generate breakdown code that occurs after the #line directive */
4073  if( rp->codeSuffix && rp->codeSuffix[0] ){
4074    fprintf(out, "%s", rp->codeSuffix);
4075    for(cp=rp->codeSuffix; *cp; cp++){ if( *cp=='\n' ) (*lineno)++; }
4076  }
4077 
4078  if( rp->codePrefix ){
4079    fprintf(out, "}\n"); (*lineno)++;
4080  }
4081 
4082  return;
4083 }
4084 
4085 /*
4086 ** Print the definition of the union used for the parser's data stack.
4087 ** This union contains fields for every possible data type for tokens
4088 ** and nonterminals.  In the process of computing and printing this
4089 ** union, also set the ".dtnum" field of every terminal and nonterminal
4090 ** symbol.
4091 */
print_stack_union(FILE * out,struct lemon * lemp,int * plineno,int mhflag)4092 void print_stack_union(
4093   FILE *out,                  /* The output stream */
4094   struct lemon *lemp,         /* The main info structure for this parser */
4095   int *plineno,               /* Pointer to the line number */
4096   int mhflag                  /* True if generating makeheaders output */
4097 ){
4098   int lineno;               /* The line number of the output */
4099   char **types;             /* A hash table of datatypes */
4100   int arraysize;            /* Size of the "types" array */
4101   int maxdtlength;          /* Maximum length of any ".datatype" field. */
4102   char *stddt;              /* Standardized name for a datatype */
4103   int i,j;                  /* Loop counters */
4104   unsigned hash;            /* For hashing the name of a type */
4105   const char *name;         /* Name of the parser */
4106 
4107   /* Allocate and initialize types[] and allocate stddt[] */
4108   arraysize = lemp->nsymbol * 2;
4109   types = (char**)calloc( arraysize, sizeof(char*) );
4110   if( types==0 ){
4111     fprintf(stderr,"Out of memory.\n");
4112     exit(1);
4113   }
4114   for(i=0; i<arraysize; i++) types[i] = 0;
4115   maxdtlength = 0;
4116   if( lemp->vartype ){
4117     maxdtlength = lemonStrlen(lemp->vartype);
4118   }
4119   for(i=0; i<lemp->nsymbol; i++){
4120     int len;
4121     struct symbol *sp = lemp->symbols[i];
4122     if( sp->datatype==0 ) continue;
4123     len = lemonStrlen(sp->datatype);
4124     if( len>maxdtlength ) maxdtlength = len;
4125   }
4126   stddt = (char*)malloc( maxdtlength*2 + 1 );
4127   if( stddt==0 ){
4128     fprintf(stderr,"Out of memory.\n");
4129     exit(1);
4130   }
4131 
4132   /* Build a hash table of datatypes. The ".dtnum" field of each symbol
4133   ** is filled in with the hash index plus 1.  A ".dtnum" value of 0 is
4134   ** used for terminal symbols.  If there is no %default_type defined then
4135   ** 0 is also used as the .dtnum value for nonterminals which do not specify
4136   ** a datatype using the %type directive.
4137   */
4138   for(i=0; i<lemp->nsymbol; i++){
4139     struct symbol *sp = lemp->symbols[i];
4140     char *cp;
4141     if( sp==lemp->errsym ){
4142       sp->dtnum = arraysize+1;
4143       continue;
4144     }
4145     if( sp->type!=NONTERMINAL || (sp->datatype==0 && lemp->vartype==0) ){
4146       sp->dtnum = 0;
4147       continue;
4148     }
4149     cp = sp->datatype;
4150     if( cp==0 ) cp = lemp->vartype;
4151     j = 0;
4152     while( ISSPACE(*cp) ) cp++;
4153     while( *cp ) stddt[j++] = *cp++;
4154     while( j>0 && ISSPACE(stddt[j-1]) ) j--;
4155     stddt[j] = 0;
4156     if( lemp->tokentype && strcmp(stddt, lemp->tokentype)==0 ){
4157       sp->dtnum = 0;
4158       continue;
4159     }
4160     hash = 0;
4161     for(j=0; stddt[j]; j++){
4162       hash = hash*53 + stddt[j];
4163     }
4164     hash = (hash & 0x7fffffff)%arraysize;
4165     while( types[hash] ){
4166       if( strcmp(types[hash],stddt)==0 ){
4167         sp->dtnum = hash + 1;
4168         break;
4169       }
4170       hash++;
4171       if( hash>=(unsigned)arraysize ) hash = 0;
4172     }
4173     if( types[hash]==0 ){
4174       sp->dtnum = hash + 1;
4175       types[hash] = (char*)malloc( lemonStrlen(stddt)+1 );
4176       if( types[hash]==0 ){
4177         fprintf(stderr,"Out of memory.\n");
4178         exit(1);
4179       }
4180       lemon_strcpy(types[hash],stddt);
4181     }
4182   }
4183 
4184   /* Print out the definition of YYTOKENTYPE and YYMINORTYPE */
4185   name = lemp->name ? lemp->name : "Parse";
4186   lineno = *plineno;
4187   if( mhflag ){ fprintf(out,"#if INTERFACE\n"); lineno++; }
4188   fprintf(out,"#define %sTOKENTYPE %s\n",name,
4189     lemp->tokentype?lemp->tokentype:"void*");  lineno++;
4190   if( mhflag ){ fprintf(out,"#endif\n"); lineno++; }
4191   fprintf(out,"typedef union {\n"); lineno++;
4192   fprintf(out,"  int yyinit;\n"); lineno++;
4193   fprintf(out,"  %sTOKENTYPE yy0;\n",name); lineno++;
4194   for(i=0; i<arraysize; i++){
4195     if( types[i]==0 ) continue;
4196     fprintf(out,"  %s yy%d;\n",types[i],i+1); lineno++;
4197     free(types[i]);
4198   }
4199   if( lemp->errsym && lemp->errsym->useCnt ){
4200     fprintf(out,"  int yy%d;\n",lemp->errsym->dtnum); lineno++;
4201   }
4202   free(stddt);
4203   free(types);
4204   fprintf(out,"} YYMINORTYPE;\n"); lineno++;
4205   *plineno = lineno;
4206 }
4207 
4208 /*
4209 ** Return the name of a C datatype able to represent values between
4210 ** lwr and upr, inclusive.  If pnByte!=NULL then also write the sizeof
4211 ** for that type (1, 2, or 4) into *pnByte.
4212 */
minimum_size_type(int lwr,int upr,int * pnByte)4213 static const char *minimum_size_type(int lwr, int upr, int *pnByte){
4214   const char *zType = "int";
4215   int nByte = 4;
4216   if( lwr>=0 ){
4217     if( upr<=255 ){
4218       zType = "unsigned char";
4219       nByte = 1;
4220     }else if( upr<65535 ){
4221       zType = "unsigned short int";
4222       nByte = 2;
4223     }else{
4224       zType = "unsigned int";
4225       nByte = 4;
4226     }
4227   }else if( lwr>=-127 && upr<=127 ){
4228     zType = "signed char";
4229     nByte = 1;
4230   }else if( lwr>=-32767 && upr<32767 ){
4231     zType = "short";
4232     nByte = 2;
4233   }
4234   if( pnByte ) *pnByte = nByte;
4235   return zType;
4236 }
4237 
4238 /*
4239 ** Each state contains a set of token transaction and a set of
4240 ** nonterminal transactions.  Each of these sets makes an instance
4241 ** of the following structure.  An array of these structures is used
4242 ** to order the creation of entries in the yy_action[] table.
4243 */
4244 struct axset {
4245   struct state *stp;   /* A pointer to a state */
4246   int isTkn;           /* True to use tokens.  False for non-terminals */
4247   int nAction;         /* Number of actions */
4248   int iOrder;          /* Original order of action sets */
4249 };
4250 
4251 /*
4252 ** Compare to axset structures for sorting purposes
4253 */
axset_compare(const void * a,const void * b)4254 static int axset_compare(const void *a, const void *b){
4255   struct axset *p1 = (struct axset*)a;
4256   struct axset *p2 = (struct axset*)b;
4257   int c;
4258   c = p2->nAction - p1->nAction;
4259   if( c==0 ){
4260     c = p1->iOrder - p2->iOrder;
4261   }
4262   assert( c!=0 || p1==p2 );
4263   return c;
4264 }
4265 
4266 /*
4267 ** Write text on "out" that describes the rule "rp".
4268 */
writeRuleText(FILE * out,struct rule * rp)4269 static void writeRuleText(FILE *out, struct rule *rp){
4270   int j;
4271   fprintf(out,"%s ::=", rp->lhs->name);
4272   for(j=0; j<rp->nrhs; j++){
4273     struct symbol *sp = rp->rhs[j];
4274     if( sp->type!=MULTITERMINAL ){
4275       fprintf(out," %s", sp->name);
4276     }else{
4277       int k;
4278       fprintf(out," %s", sp->subsym[0]->name);
4279       for(k=1; k<sp->nsubsym; k++){
4280         fprintf(out,"|%s",sp->subsym[k]->name);
4281       }
4282     }
4283   }
4284 }
4285 
4286 
4287 /* Generate C source code for the parser */
ReportTable(struct lemon * lemp,int mhflag,int sqlFlag)4288 void ReportTable(
4289   struct lemon *lemp,
4290   int mhflag,     /* Output in makeheaders format if true */
4291   int sqlFlag     /* Generate the *.sql file too */
4292 ){
4293   FILE *out, *in, *sql;
4294   int  lineno;
4295   struct state *stp;
4296   struct action *ap;
4297   struct rule *rp;
4298   struct acttab *pActtab;
4299   int i, j, n, sz;
4300   int nLookAhead;
4301   int szActionType;     /* sizeof(YYACTIONTYPE) */
4302   int szCodeType;       /* sizeof(YYCODETYPE)   */
4303   const char *name;
4304   int mnTknOfst, mxTknOfst;
4305   int mnNtOfst, mxNtOfst;
4306   struct axset *ax;
4307   char *prefix;
4308 
4309   lemp->minShiftReduce = lemp->nstate;
4310   lemp->errAction = lemp->minShiftReduce + lemp->nrule;
4311   lemp->accAction = lemp->errAction + 1;
4312   lemp->noAction = lemp->accAction + 1;
4313   lemp->minReduce = lemp->noAction + 1;
4314   lemp->maxAction = lemp->minReduce + lemp->nrule;
4315 
4316   in = tplt_open(lemp);
4317   if( in==0 ) return;
4318   out = file_open(lemp,".c","wb");
4319   if( out==0 ){
4320     fclose(in);
4321     return;
4322   }
4323   if( sqlFlag==0 ){
4324     sql = 0;
4325   }else{
4326     sql = file_open(lemp, ".sql", "wb");
4327     if( sql==0 ){
4328       fclose(in);
4329       fclose(out);
4330       return;
4331     }
4332     fprintf(sql,
4333        "BEGIN;\n"
4334        "CREATE TABLE symbol(\n"
4335        "  id INTEGER PRIMARY KEY,\n"
4336        "  name TEXT NOT NULL,\n"
4337        "  isTerminal BOOLEAN NOT NULL,\n"
4338        "  fallback INTEGER REFERENCES symbol"
4339                " DEFERRABLE INITIALLY DEFERRED\n"
4340        ");\n"
4341     );
4342     for(i=0; i<lemp->nsymbol; i++){
4343       fprintf(sql,
4344          "INSERT INTO symbol(id,name,isTerminal,fallback)"
4345          "VALUES(%d,'%s',%s",
4346          i, lemp->symbols[i]->name,
4347          i<lemp->nterminal ? "TRUE" : "FALSE"
4348       );
4349       if( lemp->symbols[i]->fallback ){
4350         fprintf(sql, ",%d);\n", lemp->symbols[i]->fallback->index);
4351       }else{
4352         fprintf(sql, ",NULL);\n");
4353       }
4354     }
4355     fprintf(sql,
4356       "CREATE TABLE rule(\n"
4357       "  ruleid INTEGER PRIMARY KEY,\n"
4358       "  lhs INTEGER REFERENCES symbol(id),\n"
4359       "  txt TEXT\n"
4360       ");\n"
4361       "CREATE TABLE rulerhs(\n"
4362       "  ruleid INTEGER REFERENCES rule(ruleid),\n"
4363       "  pos INTEGER,\n"
4364       "  sym INTEGER REFERENCES symbol(id)\n"
4365       ");\n"
4366     );
4367     for(i=0, rp=lemp->rule; rp; rp=rp->next, i++){
4368       assert( i==rp->iRule );
4369       fprintf(sql,
4370         "INSERT INTO rule(ruleid,lhs,txt)VALUES(%d,%d,'",
4371         rp->iRule, rp->lhs->index
4372       );
4373       writeRuleText(sql, rp);
4374       fprintf(sql,"');\n");
4375       for(j=0; j<rp->nrhs; j++){
4376         struct symbol *sp = rp->rhs[j];
4377         if( sp->type!=MULTITERMINAL ){
4378           fprintf(sql,
4379             "INSERT INTO rulerhs(ruleid,pos,sym)VALUES(%d,%d,%d);\n",
4380             i,j,sp->index
4381           );
4382         }else{
4383           int k;
4384           for(k=0; k<sp->nsubsym; k++){
4385             fprintf(sql,
4386               "INSERT INTO rulerhs(ruleid,pos,sym)VALUES(%d,%d,%d);\n",
4387               i,j,sp->subsym[k]->index
4388             );
4389           }
4390         }
4391       }
4392     }
4393     fprintf(sql, "COMMIT;\n");
4394   }
4395   lineno = 1;
4396 
4397   fprintf(out,
4398      "/* This file is automatically generated by Lemon from input grammar\n"
4399      "** source file \"%s\". */\n", lemp->filename); lineno += 2;
4400 
4401   /* The first %include directive begins with a C-language comment,
4402   ** then skip over the header comment of the template file
4403   */
4404   if( lemp->include==0 ) lemp->include = "";
4405   for(i=0; ISSPACE(lemp->include[i]); i++){
4406     if( lemp->include[i]=='\n' ){
4407       lemp->include += i+1;
4408       i = -1;
4409     }
4410   }
4411   if( lemp->include[0]=='/' ){
4412     tplt_skip_header(in,&lineno);
4413   }else{
4414     tplt_xfer(lemp->name,in,out,&lineno);
4415   }
4416 
4417   /* Generate the include code, if any */
4418   tplt_print(out,lemp,lemp->include,&lineno);
4419   if( mhflag ){
4420     char *incName = file_makename(lemp, ".h");
4421     fprintf(out,"#include \"%s\"\n", incName); lineno++;
4422     free(incName);
4423   }
4424   tplt_xfer(lemp->name,in,out,&lineno);
4425 
4426   /* Generate #defines for all tokens */
4427   if( lemp->tokenprefix ) prefix = lemp->tokenprefix;
4428   else                    prefix = "";
4429   if( mhflag ){
4430     fprintf(out,"#if INTERFACE\n"); lineno++;
4431   }else{
4432     fprintf(out,"#ifndef %s%s\n", prefix, lemp->symbols[1]->name);
4433   }
4434   for(i=1; i<lemp->nterminal; i++){
4435     fprintf(out,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i);
4436     lineno++;
4437   }
4438   fprintf(out,"#endif\n"); lineno++;
4439   tplt_xfer(lemp->name,in,out,&lineno);
4440 
4441   /* Generate the defines */
4442   fprintf(out,"#define YYCODETYPE %s\n",
4443     minimum_size_type(0, lemp->nsymbol, &szCodeType)); lineno++;
4444   fprintf(out,"#define YYNOCODE %d\n",lemp->nsymbol);  lineno++;
4445   fprintf(out,"#define YYACTIONTYPE %s\n",
4446     minimum_size_type(0,lemp->maxAction,&szActionType)); lineno++;
4447   if( lemp->wildcard ){
4448     fprintf(out,"#define YYWILDCARD %d\n",
4449        lemp->wildcard->index); lineno++;
4450   }
4451   print_stack_union(out,lemp,&lineno,mhflag);
4452   fprintf(out, "#ifndef YYSTACKDEPTH\n"); lineno++;
4453   if( lemp->stacksize ){
4454     fprintf(out,"#define YYSTACKDEPTH %s\n",lemp->stacksize);  lineno++;
4455   }else{
4456     fprintf(out,"#define YYSTACKDEPTH 100\n");  lineno++;
4457   }
4458   fprintf(out, "#endif\n"); lineno++;
4459   if( mhflag ){
4460     fprintf(out,"#if INTERFACE\n"); lineno++;
4461   }
4462   name = lemp->name ? lemp->name : "Parse";
4463   if( lemp->arg && lemp->arg[0] ){
4464     i = lemonStrlen(lemp->arg);
4465     while( i>=1 && ISSPACE(lemp->arg[i-1]) ) i--;
4466     while( i>=1 && (ISALNUM(lemp->arg[i-1]) || lemp->arg[i-1]=='_') ) i--;
4467     fprintf(out,"#define %sARG_SDECL %s;\n",name,lemp->arg);  lineno++;
4468     fprintf(out,"#define %sARG_PDECL ,%s\n",name,lemp->arg);  lineno++;
4469     fprintf(out,"#define %sARG_PARAM ,%s\n",name,&lemp->arg[i]);  lineno++;
4470     fprintf(out,"#define %sARG_FETCH %s=yypParser->%s;\n",
4471                  name,lemp->arg,&lemp->arg[i]);  lineno++;
4472     fprintf(out,"#define %sARG_STORE yypParser->%s=%s;\n",
4473                  name,&lemp->arg[i],&lemp->arg[i]);  lineno++;
4474   }else{
4475     fprintf(out,"#define %sARG_SDECL\n",name); lineno++;
4476     fprintf(out,"#define %sARG_PDECL\n",name); lineno++;
4477     fprintf(out,"#define %sARG_PARAM\n",name); lineno++;
4478     fprintf(out,"#define %sARG_FETCH\n",name); lineno++;
4479     fprintf(out,"#define %sARG_STORE\n",name); lineno++;
4480   }
4481   if( lemp->ctx && lemp->ctx[0] ){
4482     i = lemonStrlen(lemp->ctx);
4483     while( i>=1 && ISSPACE(lemp->ctx[i-1]) ) i--;
4484     while( i>=1 && (ISALNUM(lemp->ctx[i-1]) || lemp->ctx[i-1]=='_') ) i--;
4485     fprintf(out,"#define %sCTX_SDECL %s;\n",name,lemp->ctx);  lineno++;
4486     fprintf(out,"#define %sCTX_PDECL ,%s\n",name,lemp->ctx);  lineno++;
4487     fprintf(out,"#define %sCTX_PARAM ,%s\n",name,&lemp->ctx[i]);  lineno++;
4488     fprintf(out,"#define %sCTX_FETCH %s=yypParser->%s;\n",
4489                  name,lemp->ctx,&lemp->ctx[i]);  lineno++;
4490     fprintf(out,"#define %sCTX_STORE yypParser->%s=%s;\n",
4491                  name,&lemp->ctx[i],&lemp->ctx[i]);  lineno++;
4492   }else{
4493     fprintf(out,"#define %sCTX_SDECL\n",name); lineno++;
4494     fprintf(out,"#define %sCTX_PDECL\n",name); lineno++;
4495     fprintf(out,"#define %sCTX_PARAM\n",name); lineno++;
4496     fprintf(out,"#define %sCTX_FETCH\n",name); lineno++;
4497     fprintf(out,"#define %sCTX_STORE\n",name); lineno++;
4498   }
4499   if( mhflag ){
4500     fprintf(out,"#endif\n"); lineno++;
4501   }
4502   if( lemp->errsym && lemp->errsym->useCnt ){
4503     fprintf(out,"#define YYERRORSYMBOL %d\n",lemp->errsym->index); lineno++;
4504     fprintf(out,"#define YYERRSYMDT yy%d\n",lemp->errsym->dtnum); lineno++;
4505   }
4506   if( lemp->has_fallback ){
4507     fprintf(out,"#define YYFALLBACK 1\n");  lineno++;
4508   }
4509 
4510   /* Compute the action table, but do not output it yet.  The action
4511   ** table must be computed before generating the YYNSTATE macro because
4512   ** we need to know how many states can be eliminated.
4513   */
4514   ax = (struct axset *) calloc(lemp->nxstate*2, sizeof(ax[0]));
4515   if( ax==0 ){
4516     fprintf(stderr,"malloc failed\n");
4517     exit(1);
4518   }
4519   for(i=0; i<lemp->nxstate; i++){
4520     stp = lemp->sorted[i];
4521     ax[i*2].stp = stp;
4522     ax[i*2].isTkn = 1;
4523     ax[i*2].nAction = stp->nTknAct;
4524     ax[i*2+1].stp = stp;
4525     ax[i*2+1].isTkn = 0;
4526     ax[i*2+1].nAction = stp->nNtAct;
4527   }
4528   mxTknOfst = mnTknOfst = 0;
4529   mxNtOfst = mnNtOfst = 0;
4530   /* In an effort to minimize the action table size, use the heuristic
4531   ** of placing the largest action sets first */
4532   for(i=0; i<lemp->nxstate*2; i++) ax[i].iOrder = i;
4533   qsort(ax, lemp->nxstate*2, sizeof(ax[0]), axset_compare);
4534   pActtab = acttab_alloc(lemp->nsymbol, lemp->nterminal);
4535   for(i=0; i<lemp->nxstate*2 && ax[i].nAction>0; i++){
4536     stp = ax[i].stp;
4537     if( ax[i].isTkn ){
4538       for(ap=stp->ap; ap; ap=ap->next){
4539         int action;
4540         if( ap->sp->index>=lemp->nterminal ) continue;
4541         action = compute_action(lemp, ap);
4542         if( action<0 ) continue;
4543         acttab_action(pActtab, ap->sp->index, action);
4544       }
4545       stp->iTknOfst = acttab_insert(pActtab, 1);
4546       if( stp->iTknOfst<mnTknOfst ) mnTknOfst = stp->iTknOfst;
4547       if( stp->iTknOfst>mxTknOfst ) mxTknOfst = stp->iTknOfst;
4548     }else{
4549       for(ap=stp->ap; ap; ap=ap->next){
4550         int action;
4551         if( ap->sp->index<lemp->nterminal ) continue;
4552         if( ap->sp->index==lemp->nsymbol ) continue;
4553         action = compute_action(lemp, ap);
4554         if( action<0 ) continue;
4555         acttab_action(pActtab, ap->sp->index, action);
4556       }
4557       stp->iNtOfst = acttab_insert(pActtab, 0);
4558       if( stp->iNtOfst<mnNtOfst ) mnNtOfst = stp->iNtOfst;
4559       if( stp->iNtOfst>mxNtOfst ) mxNtOfst = stp->iNtOfst;
4560     }
4561 #if 0  /* Uncomment for a trace of how the yy_action[] table fills out */
4562     { int jj, nn;
4563       for(jj=nn=0; jj<pActtab->nAction; jj++){
4564         if( pActtab->aAction[jj].action<0 ) nn++;
4565       }
4566       printf("%4d: State %3d %s n: %2d size: %5d freespace: %d\n",
4567              i, stp->statenum, ax[i].isTkn ? "Token" : "Var  ",
4568              ax[i].nAction, pActtab->nAction, nn);
4569     }
4570 #endif
4571   }
4572   free(ax);
4573 
4574   /* Mark rules that are actually used for reduce actions after all
4575   ** optimizations have been applied
4576   */
4577   for(rp=lemp->rule; rp; rp=rp->next) rp->doesReduce = LEMON_FALSE;
4578   for(i=0; i<lemp->nxstate; i++){
4579     for(ap=lemp->sorted[i]->ap; ap; ap=ap->next){
4580       if( ap->type==REDUCE || ap->type==SHIFTREDUCE ){
4581         ap->x.rp->doesReduce = 1;
4582       }
4583     }
4584   }
4585 
4586   /* Finish rendering the constants now that the action table has
4587   ** been computed */
4588   fprintf(out,"#define YYNSTATE             %d\n",lemp->nxstate);  lineno++;
4589   fprintf(out,"#define YYNRULE              %d\n",lemp->nrule);  lineno++;
4590   fprintf(out,"#define YYNRULE_WITH_ACTION  %d\n",lemp->nruleWithAction);
4591          lineno++;
4592   fprintf(out,"#define YYNTOKEN             %d\n",lemp->nterminal); lineno++;
4593   fprintf(out,"#define YY_MAX_SHIFT         %d\n",lemp->nxstate-1); lineno++;
4594   i = lemp->minShiftReduce;
4595   fprintf(out,"#define YY_MIN_SHIFTREDUCE   %d\n",i); lineno++;
4596   i += lemp->nrule;
4597   fprintf(out,"#define YY_MAX_SHIFTREDUCE   %d\n", i-1); lineno++;
4598   fprintf(out,"#define YY_ERROR_ACTION      %d\n", lemp->errAction); lineno++;
4599   fprintf(out,"#define YY_ACCEPT_ACTION     %d\n", lemp->accAction); lineno++;
4600   fprintf(out,"#define YY_NO_ACTION         %d\n", lemp->noAction); lineno++;
4601   fprintf(out,"#define YY_MIN_REDUCE        %d\n", lemp->minReduce); lineno++;
4602   i = lemp->minReduce + lemp->nrule;
4603   fprintf(out,"#define YY_MAX_REDUCE        %d\n", i-1); lineno++;
4604   tplt_xfer(lemp->name,in,out,&lineno);
4605 
4606   /* Now output the action table and its associates:
4607   **
4608   **  yy_action[]        A single table containing all actions.
4609   **  yy_lookahead[]     A table containing the lookahead for each entry in
4610   **                     yy_action.  Used to detect hash collisions.
4611   **  yy_shift_ofst[]    For each state, the offset into yy_action for
4612   **                     shifting terminals.
4613   **  yy_reduce_ofst[]   For each state, the offset into yy_action for
4614   **                     shifting non-terminals after a reduce.
4615   **  yy_default[]       Default action for each state.
4616   */
4617 
4618   /* Output the yy_action table */
4619   lemp->nactiontab = n = acttab_action_size(pActtab);
4620   lemp->tablesize += n*szActionType;
4621   fprintf(out,"#define YY_ACTTAB_COUNT (%d)\n", n); lineno++;
4622   fprintf(out,"static const YYACTIONTYPE yy_action[] = {\n"); lineno++;
4623   for(i=j=0; i<n; i++){
4624     int action = acttab_yyaction(pActtab, i);
4625     if( action<0 ) action = lemp->noAction;
4626     if( j==0 ) fprintf(out," /* %5d */ ", i);
4627     fprintf(out, " %4d,", action);
4628     if( j==9 || i==n-1 ){
4629       fprintf(out, "\n"); lineno++;
4630       j = 0;
4631     }else{
4632       j++;
4633     }
4634   }
4635   fprintf(out, "};\n"); lineno++;
4636 
4637   /* Output the yy_lookahead table */
4638   lemp->nlookaheadtab = n = acttab_lookahead_size(pActtab);
4639   lemp->tablesize += n*szCodeType;
4640   fprintf(out,"static const YYCODETYPE yy_lookahead[] = {\n"); lineno++;
4641   for(i=j=0; i<n; i++){
4642     int la = acttab_yylookahead(pActtab, i);
4643     if( la<0 ) la = lemp->nsymbol;
4644     if( j==0 ) fprintf(out," /* %5d */ ", i);
4645     fprintf(out, " %4d,", la);
4646     if( j==9 ){
4647       fprintf(out, "\n"); lineno++;
4648       j = 0;
4649     }else{
4650       j++;
4651     }
4652   }
4653   /* Add extra entries to the end of the yy_lookahead[] table so that
4654   ** yy_shift_ofst[]+iToken will always be a valid index into the array,
4655   ** even for the largest possible value of yy_shift_ofst[] and iToken. */
4656   nLookAhead = lemp->nterminal + lemp->nactiontab;
4657   while( i<nLookAhead ){
4658     if( j==0 ) fprintf(out," /* %5d */ ", i);
4659     fprintf(out, " %4d,", lemp->nterminal);
4660     if( j==9 ){
4661       fprintf(out, "\n"); lineno++;
4662       j = 0;
4663     }else{
4664       j++;
4665     }
4666     i++;
4667   }
4668   if( j>0 ){ fprintf(out, "\n"); lineno++; }
4669   fprintf(out, "};\n"); lineno++;
4670 
4671   /* Output the yy_shift_ofst[] table */
4672   n = lemp->nxstate;
4673   while( n>0 && lemp->sorted[n-1]->iTknOfst==NO_OFFSET ) n--;
4674   fprintf(out, "#define YY_SHIFT_COUNT    (%d)\n", n-1); lineno++;
4675   fprintf(out, "#define YY_SHIFT_MIN      (%d)\n", mnTknOfst); lineno++;
4676   fprintf(out, "#define YY_SHIFT_MAX      (%d)\n", mxTknOfst); lineno++;
4677   fprintf(out, "static const %s yy_shift_ofst[] = {\n",
4678        minimum_size_type(mnTknOfst, lemp->nterminal+lemp->nactiontab, &sz));
4679        lineno++;
4680   lemp->tablesize += n*sz;
4681   for(i=j=0; i<n; i++){
4682     int ofst;
4683     stp = lemp->sorted[i];
4684     ofst = stp->iTknOfst;
4685     if( ofst==NO_OFFSET ) ofst = lemp->nactiontab;
4686     if( j==0 ) fprintf(out," /* %5d */ ", i);
4687     fprintf(out, " %4d,", ofst);
4688     if( j==9 || i==n-1 ){
4689       fprintf(out, "\n"); lineno++;
4690       j = 0;
4691     }else{
4692       j++;
4693     }
4694   }
4695   fprintf(out, "};\n"); lineno++;
4696 
4697   /* Output the yy_reduce_ofst[] table */
4698   n = lemp->nxstate;
4699   while( n>0 && lemp->sorted[n-1]->iNtOfst==NO_OFFSET ) n--;
4700   fprintf(out, "#define YY_REDUCE_COUNT (%d)\n", n-1); lineno++;
4701   fprintf(out, "#define YY_REDUCE_MIN   (%d)\n", mnNtOfst); lineno++;
4702   fprintf(out, "#define YY_REDUCE_MAX   (%d)\n", mxNtOfst); lineno++;
4703   fprintf(out, "static const %s yy_reduce_ofst[] = {\n",
4704           minimum_size_type(mnNtOfst-1, mxNtOfst, &sz)); lineno++;
4705   lemp->tablesize += n*sz;
4706   for(i=j=0; i<n; i++){
4707     int ofst;
4708     stp = lemp->sorted[i];
4709     ofst = stp->iNtOfst;
4710     if( ofst==NO_OFFSET ) ofst = mnNtOfst - 1;
4711     if( j==0 ) fprintf(out," /* %5d */ ", i);
4712     fprintf(out, " %4d,", ofst);
4713     if( j==9 || i==n-1 ){
4714       fprintf(out, "\n"); lineno++;
4715       j = 0;
4716     }else{
4717       j++;
4718     }
4719   }
4720   fprintf(out, "};\n"); lineno++;
4721 
4722   /* Output the default action table */
4723   fprintf(out, "static const YYACTIONTYPE yy_default[] = {\n"); lineno++;
4724   n = lemp->nxstate;
4725   lemp->tablesize += n*szActionType;
4726   for(i=j=0; i<n; i++){
4727     stp = lemp->sorted[i];
4728     if( j==0 ) fprintf(out," /* %5d */ ", i);
4729     if( stp->iDfltReduce<0 ){
4730       fprintf(out, " %4d,", lemp->errAction);
4731     }else{
4732       fprintf(out, " %4d,", stp->iDfltReduce + lemp->minReduce);
4733     }
4734     if( j==9 || i==n-1 ){
4735       fprintf(out, "\n"); lineno++;
4736       j = 0;
4737     }else{
4738       j++;
4739     }
4740   }
4741   fprintf(out, "};\n"); lineno++;
4742   tplt_xfer(lemp->name,in,out,&lineno);
4743 
4744   /* Generate the table of fallback tokens.
4745   */
4746   if( lemp->has_fallback ){
4747     int mx = lemp->nterminal - 1;
4748     /* 2019-08-28:  Generate fallback entries for every token to avoid
4749     ** having to do a range check on the index */
4750     /* while( mx>0 && lemp->symbols[mx]->fallback==0 ){ mx--; } */
4751     lemp->tablesize += (mx+1)*szCodeType;
4752     for(i=0; i<=mx; i++){
4753       struct symbol *p = lemp->symbols[i];
4754       if( p->fallback==0 ){
4755         fprintf(out, "    0,  /* %10s => nothing */\n", p->name);
4756       }else{
4757         fprintf(out, "  %3d,  /* %10s => %s */\n", p->fallback->index,
4758           p->name, p->fallback->name);
4759       }
4760       lineno++;
4761     }
4762   }
4763   tplt_xfer(lemp->name, in, out, &lineno);
4764 
4765   /* Generate a table containing the symbolic name of every symbol
4766   */
4767   for(i=0; i<lemp->nsymbol; i++){
4768     fprintf(out,"  /* %4d */ \"%s\",\n",i, lemp->symbols[i]->name); lineno++;
4769   }
4770   tplt_xfer(lemp->name,in,out,&lineno);
4771 
4772   /* Generate a table containing a text string that describes every
4773   ** rule in the rule set of the grammar.  This information is used
4774   ** when tracing REDUCE actions.
4775   */
4776   for(i=0, rp=lemp->rule; rp; rp=rp->next, i++){
4777     assert( rp->iRule==i );
4778     fprintf(out," /* %3d */ \"", i);
4779     writeRuleText(out, rp);
4780     fprintf(out,"\",\n"); lineno++;
4781   }
4782   tplt_xfer(lemp->name,in,out,&lineno);
4783 
4784   /* Generate code which executes every time a symbol is popped from
4785   ** the stack while processing errors or while destroying the parser.
4786   ** (In other words, generate the %destructor actions)
4787   */
4788   if( lemp->tokendest ){
4789     int once = 1;
4790     for(i=0; i<lemp->nsymbol; i++){
4791       struct symbol *sp = lemp->symbols[i];
4792       if( sp==0 || sp->type!=TERMINAL ) continue;
4793       if( once ){
4794         fprintf(out, "      /* TERMINAL Destructor */\n"); lineno++;
4795         once = 0;
4796       }
4797       fprintf(out,"    case %d: /* %s */\n", sp->index, sp->name); lineno++;
4798     }
4799     for(i=0; i<lemp->nsymbol && lemp->symbols[i]->type!=TERMINAL; i++);
4800     if( i<lemp->nsymbol ){
4801       emit_destructor_code(out,lemp->symbols[i],lemp,&lineno);
4802       fprintf(out,"      break;\n"); lineno++;
4803     }
4804   }
4805   if( lemp->vardest ){
4806     struct symbol *dflt_sp = 0;
4807     int once = 1;
4808     for(i=0; i<lemp->nsymbol; i++){
4809       struct symbol *sp = lemp->symbols[i];
4810       if( sp==0 || sp->type==TERMINAL ||
4811           sp->index<=0 || sp->destructor!=0 ) continue;
4812       if( once ){
4813         fprintf(out, "      /* Default NON-TERMINAL Destructor */\n");lineno++;
4814         once = 0;
4815       }
4816       fprintf(out,"    case %d: /* %s */\n", sp->index, sp->name); lineno++;
4817       dflt_sp = sp;
4818     }
4819     if( dflt_sp!=0 ){
4820       emit_destructor_code(out,dflt_sp,lemp,&lineno);
4821     }
4822     fprintf(out,"      break;\n"); lineno++;
4823   }
4824   for(i=0; i<lemp->nsymbol; i++){
4825     struct symbol *sp = lemp->symbols[i];
4826     if( sp==0 || sp->type==TERMINAL || sp->destructor==0 ) continue;
4827     if( sp->destLineno<0 ) continue;  /* Already emitted */
4828     fprintf(out,"    case %d: /* %s */\n", sp->index, sp->name); lineno++;
4829 
4830     /* Combine duplicate destructors into a single case */
4831     for(j=i+1; j<lemp->nsymbol; j++){
4832       struct symbol *sp2 = lemp->symbols[j];
4833       if( sp2 && sp2->type!=TERMINAL && sp2->destructor
4834           && sp2->dtnum==sp->dtnum
4835           && strcmp(sp->destructor,sp2->destructor)==0 ){
4836          fprintf(out,"    case %d: /* %s */\n",
4837                  sp2->index, sp2->name); lineno++;
4838          sp2->destLineno = -1;  /* Avoid emitting this destructor again */
4839       }
4840     }
4841 
4842     emit_destructor_code(out,lemp->symbols[i],lemp,&lineno);
4843     fprintf(out,"      break;\n"); lineno++;
4844   }
4845   tplt_xfer(lemp->name,in,out,&lineno);
4846 
4847   /* Generate code which executes whenever the parser stack overflows */
4848   tplt_print(out,lemp,lemp->overflow,&lineno);
4849   tplt_xfer(lemp->name,in,out,&lineno);
4850 
4851   /* Generate the tables of rule information.  yyRuleInfoLhs[] and
4852   ** yyRuleInfoNRhs[].
4853   **
4854   ** Note: This code depends on the fact that rules are number
4855   ** sequentially beginning with 0.
4856   */
4857   for(i=0, rp=lemp->rule; rp; rp=rp->next, i++){
4858     fprintf(out,"  %4d,  /* (%d) ", rp->lhs->index, i);
4859      rule_print(out, rp);
4860     fprintf(out," */\n"); lineno++;
4861   }
4862   tplt_xfer(lemp->name,in,out,&lineno);
4863   for(i=0, rp=lemp->rule; rp; rp=rp->next, i++){
4864     fprintf(out,"  %3d,  /* (%d) ", -rp->nrhs, i);
4865     rule_print(out, rp);
4866     fprintf(out," */\n"); lineno++;
4867   }
4868   tplt_xfer(lemp->name,in,out,&lineno);
4869 
4870   /* Generate code which execution during each REDUCE action */
4871   i = 0;
4872   for(rp=lemp->rule; rp; rp=rp->next){
4873     i += translate_code(lemp, rp);
4874   }
4875   if( i ){
4876     fprintf(out,"        YYMINORTYPE yylhsminor;\n"); lineno++;
4877   }
4878   /* First output rules other than the default: rule */
4879   for(rp=lemp->rule; rp; rp=rp->next){
4880     struct rule *rp2;               /* Other rules with the same action */
4881     if( rp->codeEmitted ) continue;
4882     if( rp->noCode ){
4883       /* No C code actions, so this will be part of the "default:" rule */
4884       continue;
4885     }
4886     fprintf(out,"      case %d: /* ", rp->iRule);
4887     writeRuleText(out, rp);
4888     fprintf(out, " */\n"); lineno++;
4889     for(rp2=rp->next; rp2; rp2=rp2->next){
4890       if( rp2->code==rp->code && rp2->codePrefix==rp->codePrefix
4891              && rp2->codeSuffix==rp->codeSuffix ){
4892         fprintf(out,"      case %d: /* ", rp2->iRule);
4893         writeRuleText(out, rp2);
4894         fprintf(out," */ yytestcase(yyruleno==%d);\n", rp2->iRule); lineno++;
4895         rp2->codeEmitted = 1;
4896       }
4897     }
4898     emit_code(out,rp,lemp,&lineno);
4899     fprintf(out,"        break;\n"); lineno++;
4900     rp->codeEmitted = 1;
4901   }
4902   /* Finally, output the default: rule.  We choose as the default: all
4903   ** empty actions. */
4904   fprintf(out,"      default:\n"); lineno++;
4905   for(rp=lemp->rule; rp; rp=rp->next){
4906     if( rp->codeEmitted ) continue;
4907     assert( rp->noCode );
4908     fprintf(out,"      /* (%d) ", rp->iRule);
4909     writeRuleText(out, rp);
4910     if( rp->neverReduce ){
4911       fprintf(out, " (NEVER REDUCES) */ assert(yyruleno!=%d);\n",
4912               rp->iRule); lineno++;
4913     }else if( rp->doesReduce ){
4914       fprintf(out, " */ yytestcase(yyruleno==%d);\n", rp->iRule); lineno++;
4915     }else{
4916       fprintf(out, " (OPTIMIZED OUT) */ assert(yyruleno!=%d);\n",
4917               rp->iRule); lineno++;
4918     }
4919   }
4920   fprintf(out,"        break;\n"); lineno++;
4921   tplt_xfer(lemp->name,in,out,&lineno);
4922 
4923   /* Generate code which executes if a parse fails */
4924   tplt_print(out,lemp,lemp->failure,&lineno);
4925   tplt_xfer(lemp->name,in,out,&lineno);
4926 
4927   /* Generate code which executes when a syntax error occurs */
4928   tplt_print(out,lemp,lemp->error,&lineno);
4929   tplt_xfer(lemp->name,in,out,&lineno);
4930 
4931   /* Generate code which executes when the parser accepts its input */
4932   tplt_print(out,lemp,lemp->accept,&lineno);
4933   tplt_xfer(lemp->name,in,out,&lineno);
4934 
4935   /* Append any addition code the user desires */
4936   tplt_print(out,lemp,lemp->extracode,&lineno);
4937 
4938   acttab_free(pActtab);
4939   fclose(in);
4940   fclose(out);
4941   if( sql ) fclose(sql);
4942   return;
4943 }
4944 
4945 /* Generate a header file for the parser */
ReportHeader(struct lemon * lemp)4946 void ReportHeader(struct lemon *lemp)
4947 {
4948   FILE *out, *in;
4949   const char *prefix;
4950   char line[LINESIZE];
4951   char pattern[LINESIZE];
4952   int i;
4953 
4954   if( lemp->tokenprefix ) prefix = lemp->tokenprefix;
4955   else                    prefix = "";
4956   in = file_open(lemp,".h","rb");
4957   if( in ){
4958     int nextChar;
4959     for(i=1; i<lemp->nterminal && fgets(line,LINESIZE,in); i++){
4960       lemon_sprintf(pattern,"#define %s%-30s %3d\n",
4961                     prefix,lemp->symbols[i]->name,i);
4962       if( strcmp(line,pattern) ) break;
4963     }
4964     nextChar = fgetc(in);
4965     fclose(in);
4966     if( i==lemp->nterminal && nextChar==EOF ){
4967       /* No change in the file.  Don't rewrite it. */
4968       return;
4969     }
4970   }
4971   out = file_open(lemp,".h","wb");
4972   if( out ){
4973     for(i=1; i<lemp->nterminal; i++){
4974       fprintf(out,"#define %s%-30s %3d\n",prefix,lemp->symbols[i]->name,i);
4975     }
4976     fclose(out);
4977   }
4978   return;
4979 }
4980 
4981 /* Reduce the size of the action tables, if possible, by making use
4982 ** of defaults.
4983 **
4984 ** In this version, we take the most frequent REDUCE action and make
4985 ** it the default.  Except, there is no default if the wildcard token
4986 ** is a possible look-ahead.
4987 */
CompressTables(struct lemon * lemp)4988 void CompressTables(struct lemon *lemp)
4989 {
4990   struct state *stp;
4991   struct action *ap, *ap2, *nextap;
4992   struct rule *rp, *rp2, *rbest;
4993   int nbest, n;
4994   int i;
4995   int usesWildcard;
4996 
4997   for(i=0; i<lemp->nstate; i++){
4998     stp = lemp->sorted[i];
4999     nbest = 0;
5000     rbest = 0;
5001     usesWildcard = 0;
5002 
5003     for(ap=stp->ap; ap; ap=ap->next){
5004       if( ap->type==SHIFT && ap->sp==lemp->wildcard ){
5005         usesWildcard = 1;
5006       }
5007       if( ap->type!=REDUCE ) continue;
5008       rp = ap->x.rp;
5009       if( rp->lhsStart ) continue;
5010       if( rp==rbest ) continue;
5011       n = 1;
5012       for(ap2=ap->next; ap2; ap2=ap2->next){
5013         if( ap2->type!=REDUCE ) continue;
5014         rp2 = ap2->x.rp;
5015         if( rp2==rbest ) continue;
5016         if( rp2==rp ) n++;
5017       }
5018       if( n>nbest ){
5019         nbest = n;
5020         rbest = rp;
5021       }
5022     }
5023 
5024     /* Do not make a default if the number of rules to default
5025     ** is not at least 1 or if the wildcard token is a possible
5026     ** lookahead.
5027     */
5028     if( nbest<1 || usesWildcard ) continue;
5029 
5030 
5031     /* Combine matching REDUCE actions into a single default */
5032     for(ap=stp->ap; ap; ap=ap->next){
5033       if( ap->type==REDUCE && ap->x.rp==rbest ) break;
5034     }
5035     assert( ap );
5036     ap->sp = Symbol_new("{default}");
5037     for(ap=ap->next; ap; ap=ap->next){
5038       if( ap->type==REDUCE && ap->x.rp==rbest ) ap->type = NOT_USED;
5039     }
5040     stp->ap = Action_sort(stp->ap);
5041 
5042     for(ap=stp->ap; ap; ap=ap->next){
5043       if( ap->type==SHIFT ) break;
5044       if( ap->type==REDUCE && ap->x.rp!=rbest ) break;
5045     }
5046     if( ap==0 ){
5047       stp->autoReduce = 1;
5048       stp->pDfltReduce = rbest;
5049     }
5050   }
5051 
5052   /* Make a second pass over all states and actions.  Convert
5053   ** every action that is a SHIFT to an autoReduce state into
5054   ** a SHIFTREDUCE action.
5055   */
5056   for(i=0; i<lemp->nstate; i++){
5057     stp = lemp->sorted[i];
5058     for(ap=stp->ap; ap; ap=ap->next){
5059       struct state *pNextState;
5060       if( ap->type!=SHIFT ) continue;
5061       pNextState = ap->x.stp;
5062       if( pNextState->autoReduce && pNextState->pDfltReduce!=0 ){
5063         ap->type = SHIFTREDUCE;
5064         ap->x.rp = pNextState->pDfltReduce;
5065       }
5066     }
5067   }
5068 
5069   /* If a SHIFTREDUCE action specifies a rule that has a single RHS term
5070   ** (meaning that the SHIFTREDUCE will land back in the state where it
5071   ** started) and if there is no C-code associated with the reduce action,
5072   ** then we can go ahead and convert the action to be the same as the
5073   ** action for the RHS of the rule.
5074   */
5075   for(i=0; i<lemp->nstate; i++){
5076     stp = lemp->sorted[i];
5077     for(ap=stp->ap; ap; ap=nextap){
5078       nextap = ap->next;
5079       if( ap->type!=SHIFTREDUCE ) continue;
5080       rp = ap->x.rp;
5081       if( rp->noCode==0 ) continue;
5082       if( rp->nrhs!=1 ) continue;
5083 #if 1
5084       /* Only apply this optimization to non-terminals.  It would be OK to
5085       ** apply it to terminal symbols too, but that makes the parser tables
5086       ** larger. */
5087       if( ap->sp->index<lemp->nterminal ) continue;
5088 #endif
5089       /* If we reach this point, it means the optimization can be applied */
5090       nextap = ap;
5091       for(ap2=stp->ap; ap2 && (ap2==ap || ap2->sp!=rp->lhs); ap2=ap2->next){}
5092       assert( ap2!=0 );
5093       ap->spOpt = ap2->sp;
5094       ap->type = ap2->type;
5095       ap->x = ap2->x;
5096     }
5097   }
5098 }
5099 
5100 
5101 /*
5102 ** Compare two states for sorting purposes.  The smaller state is the
5103 ** one with the most non-terminal actions.  If they have the same number
5104 ** of non-terminal actions, then the smaller is the one with the most
5105 ** token actions.
5106 */
stateResortCompare(const void * a,const void * b)5107 static int stateResortCompare(const void *a, const void *b){
5108   const struct state *pA = *(const struct state**)a;
5109   const struct state *pB = *(const struct state**)b;
5110   int n;
5111 
5112   n = pB->nNtAct - pA->nNtAct;
5113   if( n==0 ){
5114     n = pB->nTknAct - pA->nTknAct;
5115     if( n==0 ){
5116       n = pB->statenum - pA->statenum;
5117     }
5118   }
5119   assert( n!=0 );
5120   return n;
5121 }
5122 
5123 
5124 /*
5125 ** Renumber and resort states so that states with fewer choices
5126 ** occur at the end.  Except, keep state 0 as the first state.
5127 */
ResortStates(struct lemon * lemp)5128 void ResortStates(struct lemon *lemp)
5129 {
5130   int i;
5131   struct state *stp;
5132   struct action *ap;
5133 
5134   for(i=0; i<lemp->nstate; i++){
5135     stp = lemp->sorted[i];
5136     stp->nTknAct = stp->nNtAct = 0;
5137     stp->iDfltReduce = -1; /* Init dflt action to "syntax error" */
5138     stp->iTknOfst = NO_OFFSET;
5139     stp->iNtOfst = NO_OFFSET;
5140     for(ap=stp->ap; ap; ap=ap->next){
5141       int iAction = compute_action(lemp,ap);
5142       if( iAction>=0 ){
5143         if( ap->sp->index<lemp->nterminal ){
5144           stp->nTknAct++;
5145         }else if( ap->sp->index<lemp->nsymbol ){
5146           stp->nNtAct++;
5147         }else{
5148           assert( stp->autoReduce==0 || stp->pDfltReduce==ap->x.rp );
5149           stp->iDfltReduce = iAction;
5150         }
5151       }
5152     }
5153   }
5154   qsort(&lemp->sorted[1], lemp->nstate-1, sizeof(lemp->sorted[0]),
5155         stateResortCompare);
5156   for(i=0; i<lemp->nstate; i++){
5157     lemp->sorted[i]->statenum = i;
5158   }
5159   lemp->nxstate = lemp->nstate;
5160   while( lemp->nxstate>1 && lemp->sorted[lemp->nxstate-1]->autoReduce ){
5161     lemp->nxstate--;
5162   }
5163 }
5164 
5165 
5166 /***************** From the file "set.c" ************************************/
5167 /*
5168 ** Set manipulation routines for the LEMON parser generator.
5169 */
5170 
5171 static int size = 0;
5172 
5173 /* Set the set size */
SetSize(int n)5174 void SetSize(int n)
5175 {
5176   size = n+1;
5177 }
5178 
5179 /* Allocate a new set */
SetNew(void)5180 char *SetNew(void){
5181   char *s;
5182   s = (char*)calloc( size, 1);
5183   if( s==0 ){
5184     memory_error();
5185   }
5186   return s;
5187 }
5188 
5189 /* Deallocate a set */
SetFree(char * s)5190 void SetFree(char *s)
5191 {
5192   free(s);
5193 }
5194 
5195 /* Add a new element to the set.  Return TRUE if the element was added
5196 ** and FALSE if it was already there. */
SetAdd(char * s,int e)5197 int SetAdd(char *s, int e)
5198 {
5199   int rv;
5200   assert( e>=0 && e<size );
5201   rv = s[e];
5202   s[e] = 1;
5203   return !rv;
5204 }
5205 
5206 /* Add every element of s2 to s1.  Return TRUE if s1 changes. */
SetUnion(char * s1,char * s2)5207 int SetUnion(char *s1, char *s2)
5208 {
5209   int i, progress;
5210   progress = 0;
5211   for(i=0; i<size; i++){
5212     if( s2[i]==0 ) continue;
5213     if( s1[i]==0 ){
5214       progress = 1;
5215       s1[i] = 1;
5216     }
5217   }
5218   return progress;
5219 }
5220 /********************** From the file "table.c" ****************************/
5221 /*
5222 ** All code in this file has been automatically generated
5223 ** from a specification in the file
5224 **              "table.q"
5225 ** by the associative array code building program "aagen".
5226 ** Do not edit this file!  Instead, edit the specification
5227 ** file, then rerun aagen.
5228 */
5229 /*
5230 ** Code for processing tables in the LEMON parser generator.
5231 */
5232 
strhash(const char * x)5233 PRIVATE unsigned strhash(const char *x)
5234 {
5235   unsigned h = 0;
5236   while( *x ) h = h*13 + *(x++);
5237   return h;
5238 }
5239 
5240 /* Works like strdup, sort of.  Save a string in malloced memory, but
5241 ** keep strings in a table so that the same string is not in more
5242 ** than one place.
5243 */
Strsafe(const char * y)5244 const char *Strsafe(const char *y)
5245 {
5246   const char *z;
5247   char *cpy;
5248 
5249   if( y==0 ) return 0;
5250   z = Strsafe_find(y);
5251   if( z==0 && (cpy=(char *)malloc( lemonStrlen(y)+1 ))!=0 ){
5252     lemon_strcpy(cpy,y);
5253     z = cpy;
5254     Strsafe_insert(z);
5255   }
5256   MemoryCheck(z);
5257   return z;
5258 }
5259 
5260 /* There is one instance of the following structure for each
5261 ** associative array of type "x1".
5262 */
5263 struct s_x1 {
5264   int size;               /* The number of available slots. */
5265                           /*   Must be a power of 2 greater than or */
5266                           /*   equal to 1 */
5267   int count;              /* Number of currently slots filled */
5268   struct s_x1node *tbl;  /* The data stored here */
5269   struct s_x1node **ht;  /* Hash table for lookups */
5270 };
5271 
5272 /* There is one instance of this structure for every data element
5273 ** in an associative array of type "x1".
5274 */
5275 typedef struct s_x1node {
5276   const char *data;        /* The data */
5277   struct s_x1node *next;   /* Next entry with the same hash */
5278   struct s_x1node **from;  /* Previous link */
5279 } x1node;
5280 
5281 /* There is only one instance of the array, which is the following */
5282 static struct s_x1 *x1a;
5283 
5284 /* Allocate a new associative array */
Strsafe_init(void)5285 void Strsafe_init(void){
5286   if( x1a ) return;
5287   x1a = (struct s_x1*)malloc( sizeof(struct s_x1) );
5288   if( x1a ){
5289     x1a->size = 1024;
5290     x1a->count = 0;
5291     x1a->tbl = (x1node*)calloc(1024, sizeof(x1node) + sizeof(x1node*));
5292     if( x1a->tbl==0 ){
5293       free(x1a);
5294       x1a = 0;
5295     }else{
5296       int i;
5297       x1a->ht = (x1node**)&(x1a->tbl[1024]);
5298       for(i=0; i<1024; i++) x1a->ht[i] = 0;
5299     }
5300   }
5301 }
5302 /* Insert a new record into the array.  Return TRUE if successful.
5303 ** Prior data with the same key is NOT overwritten */
Strsafe_insert(const char * data)5304 int Strsafe_insert(const char *data)
5305 {
5306   x1node *np;
5307   unsigned h;
5308   unsigned ph;
5309 
5310   if( x1a==0 ) return 0;
5311   ph = strhash(data);
5312   h = ph & (x1a->size-1);
5313   np = x1a->ht[h];
5314   while( np ){
5315     if( strcmp(np->data,data)==0 ){
5316       /* An existing entry with the same key is found. */
5317       /* Fail because overwrite is not allows. */
5318       return 0;
5319     }
5320     np = np->next;
5321   }
5322   if( x1a->count>=x1a->size ){
5323     /* Need to make the hash table bigger */
5324     int i,arrSize;
5325     struct s_x1 array;
5326     array.size = arrSize = x1a->size*2;
5327     array.count = x1a->count;
5328     array.tbl = (x1node*)calloc(arrSize, sizeof(x1node) + sizeof(x1node*));
5329     if( array.tbl==0 ) return 0;  /* Fail due to malloc failure */
5330     array.ht = (x1node**)&(array.tbl[arrSize]);
5331     for(i=0; i<arrSize; i++) array.ht[i] = 0;
5332     for(i=0; i<x1a->count; i++){
5333       x1node *oldnp, *newnp;
5334       oldnp = &(x1a->tbl[i]);
5335       h = strhash(oldnp->data) & (arrSize-1);
5336       newnp = &(array.tbl[i]);
5337       if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
5338       newnp->next = array.ht[h];
5339       newnp->data = oldnp->data;
5340       newnp->from = &(array.ht[h]);
5341       array.ht[h] = newnp;
5342     }
5343     /* free(x1a->tbl); // This program was originally for 16-bit machines.
5344     ** Don't worry about freeing memory on modern platforms. */
5345     *x1a = array;
5346   }
5347   /* Insert the new data */
5348   h = ph & (x1a->size-1);
5349   np = &(x1a->tbl[x1a->count++]);
5350   np->data = data;
5351   if( x1a->ht[h] ) x1a->ht[h]->from = &(np->next);
5352   np->next = x1a->ht[h];
5353   x1a->ht[h] = np;
5354   np->from = &(x1a->ht[h]);
5355   return 1;
5356 }
5357 
5358 /* Return a pointer to data assigned to the given key.  Return NULL
5359 ** if no such key. */
Strsafe_find(const char * key)5360 const char *Strsafe_find(const char *key)
5361 {
5362   unsigned h;
5363   x1node *np;
5364 
5365   if( x1a==0 ) return 0;
5366   h = strhash(key) & (x1a->size-1);
5367   np = x1a->ht[h];
5368   while( np ){
5369     if( strcmp(np->data,key)==0 ) break;
5370     np = np->next;
5371   }
5372   return np ? np->data : 0;
5373 }
5374 
5375 /* Return a pointer to the (terminal or nonterminal) symbol "x".
5376 ** Create a new symbol if this is the first time "x" has been seen.
5377 */
Symbol_new(const char * x)5378 struct symbol *Symbol_new(const char *x)
5379 {
5380   struct symbol *sp;
5381 
5382   sp = Symbol_find(x);
5383   if( sp==0 ){
5384     sp = (struct symbol *)calloc(1, sizeof(struct symbol) );
5385     MemoryCheck(sp);
5386     sp->name = Strsafe(x);
5387     sp->type = ISUPPER(*x) ? TERMINAL : NONTERMINAL;
5388     sp->rule = 0;
5389     sp->fallback = 0;
5390     sp->prec = -1;
5391     sp->assoc = UNK;
5392     sp->firstset = 0;
5393     sp->lambda = LEMON_FALSE;
5394     sp->destructor = 0;
5395     sp->destLineno = 0;
5396     sp->datatype = 0;
5397     sp->useCnt = 0;
5398     Symbol_insert(sp,sp->name);
5399   }
5400   sp->useCnt++;
5401   return sp;
5402 }
5403 
5404 /* Compare two symbols for sorting purposes.  Return negative,
5405 ** zero, or positive if a is less then, equal to, or greater
5406 ** than b.
5407 **
5408 ** Symbols that begin with upper case letters (terminals or tokens)
5409 ** must sort before symbols that begin with lower case letters
5410 ** (non-terminals).  And MULTITERMINAL symbols (created using the
5411 ** %token_class directive) must sort at the very end. Other than
5412 ** that, the order does not matter.
5413 **
5414 ** We find experimentally that leaving the symbols in their original
5415 ** order (the order they appeared in the grammar file) gives the
5416 ** smallest parser tables in SQLite.
5417 */
Symbolcmpp(const void * _a,const void * _b)5418 int Symbolcmpp(const void *_a, const void *_b)
5419 {
5420   const struct symbol *a = *(const struct symbol **) _a;
5421   const struct symbol *b = *(const struct symbol **) _b;
5422   int i1 = a->type==MULTITERMINAL ? 3 : a->name[0]>'Z' ? 2 : 1;
5423   int i2 = b->type==MULTITERMINAL ? 3 : b->name[0]>'Z' ? 2 : 1;
5424   return i1==i2 ? a->index - b->index : i1 - i2;
5425 }
5426 
5427 /* There is one instance of the following structure for each
5428 ** associative array of type "x2".
5429 */
5430 struct s_x2 {
5431   int size;               /* The number of available slots. */
5432                           /*   Must be a power of 2 greater than or */
5433                           /*   equal to 1 */
5434   int count;              /* Number of currently slots filled */
5435   struct s_x2node *tbl;  /* The data stored here */
5436   struct s_x2node **ht;  /* Hash table for lookups */
5437 };
5438 
5439 /* There is one instance of this structure for every data element
5440 ** in an associative array of type "x2".
5441 */
5442 typedef struct s_x2node {
5443   struct symbol *data;     /* The data */
5444   const char *key;         /* The key */
5445   struct s_x2node *next;   /* Next entry with the same hash */
5446   struct s_x2node **from;  /* Previous link */
5447 } x2node;
5448 
5449 /* There is only one instance of the array, which is the following */
5450 static struct s_x2 *x2a;
5451 
5452 /* Allocate a new associative array */
Symbol_init(void)5453 void Symbol_init(void){
5454   if( x2a ) return;
5455   x2a = (struct s_x2*)malloc( sizeof(struct s_x2) );
5456   if( x2a ){
5457     x2a->size = 128;
5458     x2a->count = 0;
5459     x2a->tbl = (x2node*)calloc(128, sizeof(x2node) + sizeof(x2node*));
5460     if( x2a->tbl==0 ){
5461       free(x2a);
5462       x2a = 0;
5463     }else{
5464       int i;
5465       x2a->ht = (x2node**)&(x2a->tbl[128]);
5466       for(i=0; i<128; i++) x2a->ht[i] = 0;
5467     }
5468   }
5469 }
5470 /* Insert a new record into the array.  Return TRUE if successful.
5471 ** Prior data with the same key is NOT overwritten */
Symbol_insert(struct symbol * data,const char * key)5472 int Symbol_insert(struct symbol *data, const char *key)
5473 {
5474   x2node *np;
5475   unsigned h;
5476   unsigned ph;
5477 
5478   if( x2a==0 ) return 0;
5479   ph = strhash(key);
5480   h = ph & (x2a->size-1);
5481   np = x2a->ht[h];
5482   while( np ){
5483     if( strcmp(np->key,key)==0 ){
5484       /* An existing entry with the same key is found. */
5485       /* Fail because overwrite is not allows. */
5486       return 0;
5487     }
5488     np = np->next;
5489   }
5490   if( x2a->count>=x2a->size ){
5491     /* Need to make the hash table bigger */
5492     int i,arrSize;
5493     struct s_x2 array;
5494     array.size = arrSize = x2a->size*2;
5495     array.count = x2a->count;
5496     array.tbl = (x2node*)calloc(arrSize, sizeof(x2node) + sizeof(x2node*));
5497     if( array.tbl==0 ) return 0;  /* Fail due to malloc failure */
5498     array.ht = (x2node**)&(array.tbl[arrSize]);
5499     for(i=0; i<arrSize; i++) array.ht[i] = 0;
5500     for(i=0; i<x2a->count; i++){
5501       x2node *oldnp, *newnp;
5502       oldnp = &(x2a->tbl[i]);
5503       h = strhash(oldnp->key) & (arrSize-1);
5504       newnp = &(array.tbl[i]);
5505       if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
5506       newnp->next = array.ht[h];
5507       newnp->key = oldnp->key;
5508       newnp->data = oldnp->data;
5509       newnp->from = &(array.ht[h]);
5510       array.ht[h] = newnp;
5511     }
5512     /* free(x2a->tbl); // This program was originally written for 16-bit
5513     ** machines.  Don't worry about freeing this trivial amount of memory
5514     ** on modern platforms.  Just leak it. */
5515     *x2a = array;
5516   }
5517   /* Insert the new data */
5518   h = ph & (x2a->size-1);
5519   np = &(x2a->tbl[x2a->count++]);
5520   np->key = key;
5521   np->data = data;
5522   if( x2a->ht[h] ) x2a->ht[h]->from = &(np->next);
5523   np->next = x2a->ht[h];
5524   x2a->ht[h] = np;
5525   np->from = &(x2a->ht[h]);
5526   return 1;
5527 }
5528 
5529 /* Return a pointer to data assigned to the given key.  Return NULL
5530 ** if no such key. */
Symbol_find(const char * key)5531 struct symbol *Symbol_find(const char *key)
5532 {
5533   unsigned h;
5534   x2node *np;
5535 
5536   if( x2a==0 ) return 0;
5537   h = strhash(key) & (x2a->size-1);
5538   np = x2a->ht[h];
5539   while( np ){
5540     if( strcmp(np->key,key)==0 ) break;
5541     np = np->next;
5542   }
5543   return np ? np->data : 0;
5544 }
5545 
5546 /* Return the n-th data.  Return NULL if n is out of range. */
Symbol_Nth(int n)5547 struct symbol *Symbol_Nth(int n)
5548 {
5549   struct symbol *data;
5550   if( x2a && n>0 && n<=x2a->count ){
5551     data = x2a->tbl[n-1].data;
5552   }else{
5553     data = 0;
5554   }
5555   return data;
5556 }
5557 
5558 /* Return the size of the array */
Symbol_count()5559 int Symbol_count()
5560 {
5561   return x2a ? x2a->count : 0;
5562 }
5563 
5564 /* Return an array of pointers to all data in the table.
5565 ** The array is obtained from malloc.  Return NULL if memory allocation
5566 ** problems, or if the array is empty. */
Symbol_arrayof()5567 struct symbol **Symbol_arrayof()
5568 {
5569   struct symbol **array;
5570   int i,arrSize;
5571   if( x2a==0 ) return 0;
5572   arrSize = x2a->count;
5573   array = (struct symbol **)calloc(arrSize, sizeof(struct symbol *));
5574   if( array ){
5575     for(i=0; i<arrSize; i++) array[i] = x2a->tbl[i].data;
5576   }
5577   return array;
5578 }
5579 
5580 /* Compare two configurations */
Configcmp(const char * _a,const char * _b)5581 int Configcmp(const char *_a,const char *_b)
5582 {
5583   const struct config *a = (struct config *) _a;
5584   const struct config *b = (struct config *) _b;
5585   int x;
5586   x = a->rp->index - b->rp->index;
5587   if( x==0 ) x = a->dot - b->dot;
5588   return x;
5589 }
5590 
5591 /* Compare two states */
statecmp(struct config * a,struct config * b)5592 PRIVATE int statecmp(struct config *a, struct config *b)
5593 {
5594   int rc;
5595   for(rc=0; rc==0 && a && b;  a=a->bp, b=b->bp){
5596     rc = a->rp->index - b->rp->index;
5597     if( rc==0 ) rc = a->dot - b->dot;
5598   }
5599   if( rc==0 ){
5600     if( a ) rc = 1;
5601     if( b ) rc = -1;
5602   }
5603   return rc;
5604 }
5605 
5606 /* Hash a state */
statehash(struct config * a)5607 PRIVATE unsigned statehash(struct config *a)
5608 {
5609   unsigned h=0;
5610   while( a ){
5611     h = h*571 + a->rp->index*37 + a->dot;
5612     a = a->bp;
5613   }
5614   return h;
5615 }
5616 
5617 /* Allocate a new state structure */
State_new()5618 struct state *State_new()
5619 {
5620   struct state *newstate;
5621   newstate = (struct state *)calloc(1, sizeof(struct state) );
5622   MemoryCheck(newstate);
5623   return newstate;
5624 }
5625 
5626 /* There is one instance of the following structure for each
5627 ** associative array of type "x3".
5628 */
5629 struct s_x3 {
5630   int size;               /* The number of available slots. */
5631                           /*   Must be a power of 2 greater than or */
5632                           /*   equal to 1 */
5633   int count;              /* Number of currently slots filled */
5634   struct s_x3node *tbl;  /* The data stored here */
5635   struct s_x3node **ht;  /* Hash table for lookups */
5636 };
5637 
5638 /* There is one instance of this structure for every data element
5639 ** in an associative array of type "x3".
5640 */
5641 typedef struct s_x3node {
5642   struct state *data;                  /* The data */
5643   struct config *key;                   /* The key */
5644   struct s_x3node *next;   /* Next entry with the same hash */
5645   struct s_x3node **from;  /* Previous link */
5646 } x3node;
5647 
5648 /* There is only one instance of the array, which is the following */
5649 static struct s_x3 *x3a;
5650 
5651 /* Allocate a new associative array */
State_init(void)5652 void State_init(void){
5653   if( x3a ) return;
5654   x3a = (struct s_x3*)malloc( sizeof(struct s_x3) );
5655   if( x3a ){
5656     x3a->size = 128;
5657     x3a->count = 0;
5658     x3a->tbl = (x3node*)calloc(128, sizeof(x3node) + sizeof(x3node*));
5659     if( x3a->tbl==0 ){
5660       free(x3a);
5661       x3a = 0;
5662     }else{
5663       int i;
5664       x3a->ht = (x3node**)&(x3a->tbl[128]);
5665       for(i=0; i<128; i++) x3a->ht[i] = 0;
5666     }
5667   }
5668 }
5669 /* Insert a new record into the array.  Return TRUE if successful.
5670 ** Prior data with the same key is NOT overwritten */
State_insert(struct state * data,struct config * key)5671 int State_insert(struct state *data, struct config *key)
5672 {
5673   x3node *np;
5674   unsigned h;
5675   unsigned ph;
5676 
5677   if( x3a==0 ) return 0;
5678   ph = statehash(key);
5679   h = ph & (x3a->size-1);
5680   np = x3a->ht[h];
5681   while( np ){
5682     if( statecmp(np->key,key)==0 ){
5683       /* An existing entry with the same key is found. */
5684       /* Fail because overwrite is not allows. */
5685       return 0;
5686     }
5687     np = np->next;
5688   }
5689   if( x3a->count>=x3a->size ){
5690     /* Need to make the hash table bigger */
5691     int i,arrSize;
5692     struct s_x3 array;
5693     array.size = arrSize = x3a->size*2;
5694     array.count = x3a->count;
5695     array.tbl = (x3node*)calloc(arrSize, sizeof(x3node) + sizeof(x3node*));
5696     if( array.tbl==0 ) return 0;  /* Fail due to malloc failure */
5697     array.ht = (x3node**)&(array.tbl[arrSize]);
5698     for(i=0; i<arrSize; i++) array.ht[i] = 0;
5699     for(i=0; i<x3a->count; i++){
5700       x3node *oldnp, *newnp;
5701       oldnp = &(x3a->tbl[i]);
5702       h = statehash(oldnp->key) & (arrSize-1);
5703       newnp = &(array.tbl[i]);
5704       if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
5705       newnp->next = array.ht[h];
5706       newnp->key = oldnp->key;
5707       newnp->data = oldnp->data;
5708       newnp->from = &(array.ht[h]);
5709       array.ht[h] = newnp;
5710     }
5711     free(x3a->tbl);
5712     *x3a = array;
5713   }
5714   /* Insert the new data */
5715   h = ph & (x3a->size-1);
5716   np = &(x3a->tbl[x3a->count++]);
5717   np->key = key;
5718   np->data = data;
5719   if( x3a->ht[h] ) x3a->ht[h]->from = &(np->next);
5720   np->next = x3a->ht[h];
5721   x3a->ht[h] = np;
5722   np->from = &(x3a->ht[h]);
5723   return 1;
5724 }
5725 
5726 /* Return a pointer to data assigned to the given key.  Return NULL
5727 ** if no such key. */
State_find(struct config * key)5728 struct state *State_find(struct config *key)
5729 {
5730   unsigned h;
5731   x3node *np;
5732 
5733   if( x3a==0 ) return 0;
5734   h = statehash(key) & (x3a->size-1);
5735   np = x3a->ht[h];
5736   while( np ){
5737     if( statecmp(np->key,key)==0 ) break;
5738     np = np->next;
5739   }
5740   return np ? np->data : 0;
5741 }
5742 
5743 /* Return an array of pointers to all data in the table.
5744 ** The array is obtained from malloc.  Return NULL if memory allocation
5745 ** problems, or if the array is empty. */
State_arrayof(void)5746 struct state **State_arrayof(void)
5747 {
5748   struct state **array;
5749   int i,arrSize;
5750   if( x3a==0 ) return 0;
5751   arrSize = x3a->count;
5752   array = (struct state **)calloc(arrSize, sizeof(struct state *));
5753   if( array ){
5754     for(i=0; i<arrSize; i++) array[i] = x3a->tbl[i].data;
5755   }
5756   return array;
5757 }
5758 
5759 /* Hash a configuration */
confighash(struct config * a)5760 PRIVATE unsigned confighash(struct config *a)
5761 {
5762   unsigned h=0;
5763   h = h*571 + a->rp->index*37 + a->dot;
5764   return h;
5765 }
5766 
5767 /* There is one instance of the following structure for each
5768 ** associative array of type "x4".
5769 */
5770 struct s_x4 {
5771   int size;               /* The number of available slots. */
5772                           /*   Must be a power of 2 greater than or */
5773                           /*   equal to 1 */
5774   int count;              /* Number of currently slots filled */
5775   struct s_x4node *tbl;  /* The data stored here */
5776   struct s_x4node **ht;  /* Hash table for lookups */
5777 };
5778 
5779 /* There is one instance of this structure for every data element
5780 ** in an associative array of type "x4".
5781 */
5782 typedef struct s_x4node {
5783   struct config *data;                  /* The data */
5784   struct s_x4node *next;   /* Next entry with the same hash */
5785   struct s_x4node **from;  /* Previous link */
5786 } x4node;
5787 
5788 /* There is only one instance of the array, which is the following */
5789 static struct s_x4 *x4a;
5790 
5791 /* Allocate a new associative array */
Configtable_init(void)5792 void Configtable_init(void){
5793   if( x4a ) return;
5794   x4a = (struct s_x4*)malloc( sizeof(struct s_x4) );
5795   if( x4a ){
5796     x4a->size = 64;
5797     x4a->count = 0;
5798     x4a->tbl = (x4node*)calloc(64, sizeof(x4node) + sizeof(x4node*));
5799     if( x4a->tbl==0 ){
5800       free(x4a);
5801       x4a = 0;
5802     }else{
5803       int i;
5804       x4a->ht = (x4node**)&(x4a->tbl[64]);
5805       for(i=0; i<64; i++) x4a->ht[i] = 0;
5806     }
5807   }
5808 }
5809 /* Insert a new record into the array.  Return TRUE if successful.
5810 ** Prior data with the same key is NOT overwritten */
Configtable_insert(struct config * data)5811 int Configtable_insert(struct config *data)
5812 {
5813   x4node *np;
5814   unsigned h;
5815   unsigned ph;
5816 
5817   if( x4a==0 ) return 0;
5818   ph = confighash(data);
5819   h = ph & (x4a->size-1);
5820   np = x4a->ht[h];
5821   while( np ){
5822     if( Configcmp((const char *) np->data,(const char *) data)==0 ){
5823       /* An existing entry with the same key is found. */
5824       /* Fail because overwrite is not allows. */
5825       return 0;
5826     }
5827     np = np->next;
5828   }
5829   if( x4a->count>=x4a->size ){
5830     /* Need to make the hash table bigger */
5831     int i,arrSize;
5832     struct s_x4 array;
5833     array.size = arrSize = x4a->size*2;
5834     array.count = x4a->count;
5835     array.tbl = (x4node*)calloc(arrSize, sizeof(x4node) + sizeof(x4node*));
5836     if( array.tbl==0 ) return 0;  /* Fail due to malloc failure */
5837     array.ht = (x4node**)&(array.tbl[arrSize]);
5838     for(i=0; i<arrSize; i++) array.ht[i] = 0;
5839     for(i=0; i<x4a->count; i++){
5840       x4node *oldnp, *newnp;
5841       oldnp = &(x4a->tbl[i]);
5842       h = confighash(oldnp->data) & (arrSize-1);
5843       newnp = &(array.tbl[i]);
5844       if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
5845       newnp->next = array.ht[h];
5846       newnp->data = oldnp->data;
5847       newnp->from = &(array.ht[h]);
5848       array.ht[h] = newnp;
5849     }
5850     /* free(x4a->tbl); // This code was originall written for 16-bit machines.
5851     ** on modern machines, don't worry about freeing this trival amount of
5852     ** memory. */
5853     *x4a = array;
5854   }
5855   /* Insert the new data */
5856   h = ph & (x4a->size-1);
5857   np = &(x4a->tbl[x4a->count++]);
5858   np->data = data;
5859   if( x4a->ht[h] ) x4a->ht[h]->from = &(np->next);
5860   np->next = x4a->ht[h];
5861   x4a->ht[h] = np;
5862   np->from = &(x4a->ht[h]);
5863   return 1;
5864 }
5865 
5866 /* Return a pointer to data assigned to the given key.  Return NULL
5867 ** if no such key. */
Configtable_find(struct config * key)5868 struct config *Configtable_find(struct config *key)
5869 {
5870   int h;
5871   x4node *np;
5872 
5873   if( x4a==0 ) return 0;
5874   h = confighash(key) & (x4a->size-1);
5875   np = x4a->ht[h];
5876   while( np ){
5877     if( Configcmp((const char *) np->data,(const char *) key)==0 ) break;
5878     np = np->next;
5879   }
5880   return np ? np->data : 0;
5881 }
5882 
5883 /* Remove all data from the table.  Pass each data to the function "f"
5884 ** as it is removed.  ("f" may be null to avoid this step.) */
Configtable_clear(int (* f)(struct config *))5885 void Configtable_clear(int(*f)(struct config *))
5886 {
5887   int i;
5888   if( x4a==0 || x4a->count==0 ) return;
5889   if( f ) for(i=0; i<x4a->count; i++) (*f)(x4a->tbl[i].data);
5890   for(i=0; i<x4a->size; i++) x4a->ht[i] = 0;
5891   x4a->count = 0;
5892   return;
5893 }
5894