1 //===- llvm/Analysis/LoopAccessAnalysis.h -----------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interface for the loop memory dependence framework that
10 // was originally developed for the Loop Vectorizer.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_ANALYSIS_LOOPACCESSANALYSIS_H
15 #define LLVM_ANALYSIS_LOOPACCESSANALYSIS_H
16
17 #include "llvm/ADT/EquivalenceClasses.h"
18 #include "llvm/Analysis/LoopAnalysisManager.h"
19 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
20 #include "llvm/IR/DiagnosticInfo.h"
21 #include "llvm/Pass.h"
22
23 namespace llvm {
24
25 class AAResults;
26 class DataLayout;
27 class Loop;
28 class LoopAccessInfo;
29 class raw_ostream;
30 class SCEV;
31 class SCEVUnionPredicate;
32 class Value;
33
34 /// Collection of parameters shared beetween the Loop Vectorizer and the
35 /// Loop Access Analysis.
36 struct VectorizerParams {
37 /// Maximum SIMD width.
38 static const unsigned MaxVectorWidth;
39
40 /// VF as overridden by the user.
41 static unsigned VectorizationFactor;
42 /// Interleave factor as overridden by the user.
43 static unsigned VectorizationInterleave;
44 /// True if force-vector-interleave was specified by the user.
45 static bool isInterleaveForced();
46
47 /// \When performing memory disambiguation checks at runtime do not
48 /// make more than this number of comparisons.
49 static unsigned RuntimeMemoryCheckThreshold;
50 };
51
52 /// Checks memory dependences among accesses to the same underlying
53 /// object to determine whether there vectorization is legal or not (and at
54 /// which vectorization factor).
55 ///
56 /// Note: This class will compute a conservative dependence for access to
57 /// different underlying pointers. Clients, such as the loop vectorizer, will
58 /// sometimes deal these potential dependencies by emitting runtime checks.
59 ///
60 /// We use the ScalarEvolution framework to symbolically evalutate access
61 /// functions pairs. Since we currently don't restructure the loop we can rely
62 /// on the program order of memory accesses to determine their safety.
63 /// At the moment we will only deem accesses as safe for:
64 /// * A negative constant distance assuming program order.
65 ///
66 /// Safe: tmp = a[i + 1]; OR a[i + 1] = x;
67 /// a[i] = tmp; y = a[i];
68 ///
69 /// The latter case is safe because later checks guarantuee that there can't
70 /// be a cycle through a phi node (that is, we check that "x" and "y" is not
71 /// the same variable: a header phi can only be an induction or a reduction, a
72 /// reduction can't have a memory sink, an induction can't have a memory
73 /// source). This is important and must not be violated (or we have to
74 /// resort to checking for cycles through memory).
75 ///
76 /// * A positive constant distance assuming program order that is bigger
77 /// than the biggest memory access.
78 ///
79 /// tmp = a[i] OR b[i] = x
80 /// a[i+2] = tmp y = b[i+2];
81 ///
82 /// Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively.
83 ///
84 /// * Zero distances and all accesses have the same size.
85 ///
86 class MemoryDepChecker {
87 public:
88 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
89 typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList;
90 /// Set of potential dependent memory accesses.
91 typedef EquivalenceClasses<MemAccessInfo> DepCandidates;
92
93 /// Type to keep track of the status of the dependence check. The order of
94 /// the elements is important and has to be from most permissive to least
95 /// permissive.
96 enum class VectorizationSafetyStatus {
97 // Can vectorize safely without RT checks. All dependences are known to be
98 // safe.
99 Safe,
100 // Can possibly vectorize with RT checks to overcome unknown dependencies.
101 PossiblySafeWithRtChecks,
102 // Cannot vectorize due to known unsafe dependencies.
103 Unsafe,
104 };
105
106 /// Dependece between memory access instructions.
107 struct Dependence {
108 /// The type of the dependence.
109 enum DepType {
110 // No dependence.
111 NoDep,
112 // We couldn't determine the direction or the distance.
113 Unknown,
114 // Lexically forward.
115 //
116 // FIXME: If we only have loop-independent forward dependences (e.g. a
117 // read and write of A[i]), LAA will locally deem the dependence "safe"
118 // without querying the MemoryDepChecker. Therefore we can miss
119 // enumerating loop-independent forward dependences in
120 // getDependences. Note that as soon as there are different
121 // indices used to access the same array, the MemoryDepChecker *is*
122 // queried and the dependence list is complete.
123 Forward,
124 // Forward, but if vectorized, is likely to prevent store-to-load
125 // forwarding.
126 ForwardButPreventsForwarding,
127 // Lexically backward.
128 Backward,
129 // Backward, but the distance allows a vectorization factor of
130 // MaxSafeDepDistBytes.
131 BackwardVectorizable,
132 // Same, but may prevent store-to-load forwarding.
133 BackwardVectorizableButPreventsForwarding
134 };
135
136 /// String version of the types.
137 static const char *DepName[];
138
139 /// Index of the source of the dependence in the InstMap vector.
140 unsigned Source;
141 /// Index of the destination of the dependence in the InstMap vector.
142 unsigned Destination;
143 /// The type of the dependence.
144 DepType Type;
145
DependenceDependence146 Dependence(unsigned Source, unsigned Destination, DepType Type)
147 : Source(Source), Destination(Destination), Type(Type) {}
148
149 /// Return the source instruction of the dependence.
150 Instruction *getSource(const LoopAccessInfo &LAI) const;
151 /// Return the destination instruction of the dependence.
152 Instruction *getDestination(const LoopAccessInfo &LAI) const;
153
154 /// Dependence types that don't prevent vectorization.
155 static VectorizationSafetyStatus isSafeForVectorization(DepType Type);
156
157 /// Lexically forward dependence.
158 bool isForward() const;
159 /// Lexically backward dependence.
160 bool isBackward() const;
161
162 /// May be a lexically backward dependence type (includes Unknown).
163 bool isPossiblyBackward() const;
164
165 /// Print the dependence. \p Instr is used to map the instruction
166 /// indices to instructions.
167 void print(raw_ostream &OS, unsigned Depth,
168 const SmallVectorImpl<Instruction *> &Instrs) const;
169 };
170
MemoryDepChecker(PredicatedScalarEvolution & PSE,const Loop * L)171 MemoryDepChecker(PredicatedScalarEvolution &PSE, const Loop *L)
172 : PSE(PSE), InnermostLoop(L) {}
173
174 /// Register the location (instructions are given increasing numbers)
175 /// of a write access.
176 void addAccess(StoreInst *SI);
177
178 /// Register the location (instructions are given increasing numbers)
179 /// of a write access.
180 void addAccess(LoadInst *LI);
181
182 /// Check whether the dependencies between the accesses are safe.
183 ///
184 /// Only checks sets with elements in \p CheckDeps.
185 bool areDepsSafe(DepCandidates &AccessSets, MemAccessInfoList &CheckDeps,
186 const ValueToValueMap &Strides);
187
188 /// No memory dependence was encountered that would inhibit
189 /// vectorization.
isSafeForVectorization()190 bool isSafeForVectorization() const {
191 return Status == VectorizationSafetyStatus::Safe;
192 }
193
194 /// Return true if the number of elements that are safe to operate on
195 /// simultaneously is not bounded.
isSafeForAnyVectorWidth()196 bool isSafeForAnyVectorWidth() const {
197 return MaxSafeVectorWidthInBits == UINT_MAX;
198 }
199
200 /// The maximum number of bytes of a vector register we can vectorize
201 /// the accesses safely with.
getMaxSafeDepDistBytes()202 uint64_t getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; }
203
204 /// Return the number of elements that are safe to operate on
205 /// simultaneously, multiplied by the size of the element in bits.
getMaxSafeVectorWidthInBits()206 uint64_t getMaxSafeVectorWidthInBits() const {
207 return MaxSafeVectorWidthInBits;
208 }
209
210 /// In same cases when the dependency check fails we can still
211 /// vectorize the loop with a dynamic array access check.
shouldRetryWithRuntimeCheck()212 bool shouldRetryWithRuntimeCheck() const {
213 return FoundNonConstantDistanceDependence &&
214 Status == VectorizationSafetyStatus::PossiblySafeWithRtChecks;
215 }
216
217 /// Returns the memory dependences. If null is returned we exceeded
218 /// the MaxDependences threshold and this information is not
219 /// available.
getDependences()220 const SmallVectorImpl<Dependence> *getDependences() const {
221 return RecordDependences ? &Dependences : nullptr;
222 }
223
clearDependences()224 void clearDependences() { Dependences.clear(); }
225
226 /// The vector of memory access instructions. The indices are used as
227 /// instruction identifiers in the Dependence class.
getMemoryInstructions()228 const SmallVectorImpl<Instruction *> &getMemoryInstructions() const {
229 return InstMap;
230 }
231
232 /// Generate a mapping between the memory instructions and their
233 /// indices according to program order.
generateInstructionOrderMap()234 DenseMap<Instruction *, unsigned> generateInstructionOrderMap() const {
235 DenseMap<Instruction *, unsigned> OrderMap;
236
237 for (unsigned I = 0; I < InstMap.size(); ++I)
238 OrderMap[InstMap[I]] = I;
239
240 return OrderMap;
241 }
242
243 /// Find the set of instructions that read or write via \p Ptr.
244 SmallVector<Instruction *, 4> getInstructionsForAccess(Value *Ptr,
245 bool isWrite) const;
246
247 /// Return the program order indices for the access location (Ptr, IsWrite).
248 /// Returns an empty ArrayRef if there are no accesses for the location.
getOrderForAccess(Value * Ptr,bool IsWrite)249 ArrayRef<unsigned> getOrderForAccess(Value *Ptr, bool IsWrite) const {
250 auto I = Accesses.find({Ptr, IsWrite});
251 if (I != Accesses.end())
252 return I->second;
253 return {};
254 }
255
getInnermostLoop()256 const Loop *getInnermostLoop() const { return InnermostLoop; }
257
258 private:
259 /// A wrapper around ScalarEvolution, used to add runtime SCEV checks, and
260 /// applies dynamic knowledge to simplify SCEV expressions and convert them
261 /// to a more usable form. We need this in case assumptions about SCEV
262 /// expressions need to be made in order to avoid unknown dependences. For
263 /// example we might assume a unit stride for a pointer in order to prove
264 /// that a memory access is strided and doesn't wrap.
265 PredicatedScalarEvolution &PSE;
266 const Loop *InnermostLoop;
267
268 /// Maps access locations (ptr, read/write) to program order.
269 DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses;
270
271 /// Memory access instructions in program order.
272 SmallVector<Instruction *, 16> InstMap;
273
274 /// The program order index to be used for the next instruction.
275 unsigned AccessIdx = 0;
276
277 // We can access this many bytes in parallel safely.
278 uint64_t MaxSafeDepDistBytes = 0;
279
280 /// Number of elements (from consecutive iterations) that are safe to
281 /// operate on simultaneously, multiplied by the size of the element in bits.
282 /// The size of the element is taken from the memory access that is most
283 /// restrictive.
284 uint64_t MaxSafeVectorWidthInBits = -1U;
285
286 /// If we see a non-constant dependence distance we can still try to
287 /// vectorize this loop with runtime checks.
288 bool FoundNonConstantDistanceDependence = false;
289
290 /// Result of the dependence checks, indicating whether the checked
291 /// dependences are safe for vectorization, require RT checks or are known to
292 /// be unsafe.
293 VectorizationSafetyStatus Status = VectorizationSafetyStatus::Safe;
294
295 //// True if Dependences reflects the dependences in the
296 //// loop. If false we exceeded MaxDependences and
297 //// Dependences is invalid.
298 bool RecordDependences = true;
299
300 /// Memory dependences collected during the analysis. Only valid if
301 /// RecordDependences is true.
302 SmallVector<Dependence, 8> Dependences;
303
304 /// Check whether there is a plausible dependence between the two
305 /// accesses.
306 ///
307 /// Access \p A must happen before \p B in program order. The two indices
308 /// identify the index into the program order map.
309 ///
310 /// This function checks whether there is a plausible dependence (or the
311 /// absence of such can't be proved) between the two accesses. If there is a
312 /// plausible dependence but the dependence distance is bigger than one
313 /// element access it records this distance in \p MaxSafeDepDistBytes (if this
314 /// distance is smaller than any other distance encountered so far).
315 /// Otherwise, this function returns true signaling a possible dependence.
316 Dependence::DepType isDependent(const MemAccessInfo &A, unsigned AIdx,
317 const MemAccessInfo &B, unsigned BIdx,
318 const ValueToValueMap &Strides);
319
320 /// Check whether the data dependence could prevent store-load
321 /// forwarding.
322 ///
323 /// \return false if we shouldn't vectorize at all or avoid larger
324 /// vectorization factors by limiting MaxSafeDepDistBytes.
325 bool couldPreventStoreLoadForward(uint64_t Distance, uint64_t TypeByteSize);
326
327 /// Updates the current safety status with \p S. We can go from Safe to
328 /// either PossiblySafeWithRtChecks or Unsafe and from
329 /// PossiblySafeWithRtChecks to Unsafe.
330 void mergeInStatus(VectorizationSafetyStatus S);
331 };
332
333 class RuntimePointerChecking;
334 /// A grouping of pointers. A single memcheck is required between
335 /// two groups.
336 struct RuntimeCheckingPtrGroup {
337 /// Create a new pointer checking group containing a single
338 /// pointer, with index \p Index in RtCheck.
339 RuntimeCheckingPtrGroup(unsigned Index, RuntimePointerChecking &RtCheck);
340
341 /// Tries to add the pointer recorded in RtCheck at index
342 /// \p Index to this pointer checking group. We can only add a pointer
343 /// to a checking group if we will still be able to get
344 /// the upper and lower bounds of the check. Returns true in case
345 /// of success, false otherwise.
346 bool addPointer(unsigned Index, RuntimePointerChecking &RtCheck);
347 bool addPointer(unsigned Index, const SCEV *Start, const SCEV *End,
348 unsigned AS, bool NeedsFreeze, ScalarEvolution &SE);
349
350 /// The SCEV expression which represents the upper bound of all the
351 /// pointers in this group.
352 const SCEV *High;
353 /// The SCEV expression which represents the lower bound of all the
354 /// pointers in this group.
355 const SCEV *Low;
356 /// Indices of all the pointers that constitute this grouping.
357 SmallVector<unsigned, 2> Members;
358 /// Address space of the involved pointers.
359 unsigned AddressSpace;
360 /// Whether the pointer needs to be frozen after expansion, e.g. because it
361 /// may be poison outside the loop.
362 bool NeedsFreeze = false;
363 };
364
365 /// A memcheck which made up of a pair of grouped pointers.
366 typedef std::pair<const RuntimeCheckingPtrGroup *,
367 const RuntimeCheckingPtrGroup *>
368 RuntimePointerCheck;
369
370 struct PointerDiffInfo {
371 const SCEV *SrcStart;
372 const SCEV *SinkStart;
373 unsigned AccessSize;
374 bool NeedsFreeze;
375
PointerDiffInfoPointerDiffInfo376 PointerDiffInfo(const SCEV *SrcStart, const SCEV *SinkStart,
377 unsigned AccessSize, bool NeedsFreeze)
378 : SrcStart(SrcStart), SinkStart(SinkStart), AccessSize(AccessSize),
379 NeedsFreeze(NeedsFreeze) {}
380 };
381
382 /// Holds information about the memory runtime legality checks to verify
383 /// that a group of pointers do not overlap.
384 class RuntimePointerChecking {
385 friend struct RuntimeCheckingPtrGroup;
386
387 public:
388 struct PointerInfo {
389 /// Holds the pointer value that we need to check.
390 TrackingVH<Value> PointerValue;
391 /// Holds the smallest byte address accessed by the pointer throughout all
392 /// iterations of the loop.
393 const SCEV *Start;
394 /// Holds the largest byte address accessed by the pointer throughout all
395 /// iterations of the loop, plus 1.
396 const SCEV *End;
397 /// Holds the information if this pointer is used for writing to memory.
398 bool IsWritePtr;
399 /// Holds the id of the set of pointers that could be dependent because of a
400 /// shared underlying object.
401 unsigned DependencySetId;
402 /// Holds the id of the disjoint alias set to which this pointer belongs.
403 unsigned AliasSetId;
404 /// SCEV for the access.
405 const SCEV *Expr;
406 /// True if the pointer expressions needs to be frozen after expansion.
407 bool NeedsFreeze;
408
PointerInfoPointerInfo409 PointerInfo(Value *PointerValue, const SCEV *Start, const SCEV *End,
410 bool IsWritePtr, unsigned DependencySetId, unsigned AliasSetId,
411 const SCEV *Expr, bool NeedsFreeze)
412 : PointerValue(PointerValue), Start(Start), End(End),
413 IsWritePtr(IsWritePtr), DependencySetId(DependencySetId),
414 AliasSetId(AliasSetId), Expr(Expr), NeedsFreeze(NeedsFreeze) {}
415 };
416
RuntimePointerChecking(MemoryDepChecker & DC,ScalarEvolution * SE)417 RuntimePointerChecking(MemoryDepChecker &DC, ScalarEvolution *SE)
418 : DC(DC), SE(SE) {}
419
420 /// Reset the state of the pointer runtime information.
reset()421 void reset() {
422 Need = false;
423 Pointers.clear();
424 Checks.clear();
425 }
426
427 /// Insert a pointer and calculate the start and end SCEVs.
428 /// We need \p PSE in order to compute the SCEV expression of the pointer
429 /// according to the assumptions that we've made during the analysis.
430 /// The method might also version the pointer stride according to \p Strides,
431 /// and add new predicates to \p PSE.
432 void insert(Loop *Lp, Value *Ptr, const SCEV *PtrExpr, Type *AccessTy,
433 bool WritePtr, unsigned DepSetId, unsigned ASId,
434 PredicatedScalarEvolution &PSE, bool NeedsFreeze);
435
436 /// No run-time memory checking is necessary.
empty()437 bool empty() const { return Pointers.empty(); }
438
439 /// Generate the checks and store it. This also performs the grouping
440 /// of pointers to reduce the number of memchecks necessary.
441 void generateChecks(MemoryDepChecker::DepCandidates &DepCands,
442 bool UseDependencies);
443
444 /// Returns the checks that generateChecks created. They can be used to ensure
445 /// no read/write accesses overlap across all loop iterations.
getChecks()446 const SmallVectorImpl<RuntimePointerCheck> &getChecks() const {
447 return Checks;
448 }
449
450 // Returns an optional list of (pointer-difference expressions, access size)
451 // pairs that can be used to prove that there are no vectorization-preventing
452 // dependencies at runtime. There are is a vectorization-preventing dependency
453 // if any pointer-difference is <u VF * InterleaveCount * access size. Returns
454 // None if pointer-difference checks cannot be used.
getDiffChecks()455 Optional<ArrayRef<PointerDiffInfo>> getDiffChecks() const {
456 if (!CanUseDiffCheck)
457 return None;
458 return {DiffChecks};
459 }
460
461 /// Decide if we need to add a check between two groups of pointers,
462 /// according to needsChecking.
463 bool needsChecking(const RuntimeCheckingPtrGroup &M,
464 const RuntimeCheckingPtrGroup &N) const;
465
466 /// Returns the number of run-time checks required according to
467 /// needsChecking.
getNumberOfChecks()468 unsigned getNumberOfChecks() const { return Checks.size(); }
469
470 /// Print the list run-time memory checks necessary.
471 void print(raw_ostream &OS, unsigned Depth = 0) const;
472
473 /// Print \p Checks.
474 void printChecks(raw_ostream &OS,
475 const SmallVectorImpl<RuntimePointerCheck> &Checks,
476 unsigned Depth = 0) const;
477
478 /// This flag indicates if we need to add the runtime check.
479 bool Need = false;
480
481 /// Information about the pointers that may require checking.
482 SmallVector<PointerInfo, 2> Pointers;
483
484 /// Holds a partitioning of pointers into "check groups".
485 SmallVector<RuntimeCheckingPtrGroup, 2> CheckingGroups;
486
487 /// Check if pointers are in the same partition
488 ///
489 /// \p PtrToPartition contains the partition number for pointers (-1 if the
490 /// pointer belongs to multiple partitions).
491 static bool
492 arePointersInSamePartition(const SmallVectorImpl<int> &PtrToPartition,
493 unsigned PtrIdx1, unsigned PtrIdx2);
494
495 /// Decide whether we need to issue a run-time check for pointer at
496 /// index \p I and \p J to prove their independence.
497 bool needsChecking(unsigned I, unsigned J) const;
498
499 /// Return PointerInfo for pointer at index \p PtrIdx.
getPointerInfo(unsigned PtrIdx)500 const PointerInfo &getPointerInfo(unsigned PtrIdx) const {
501 return Pointers[PtrIdx];
502 }
503
getSE()504 ScalarEvolution *getSE() const { return SE; }
505
506 private:
507 /// Groups pointers such that a single memcheck is required
508 /// between two different groups. This will clear the CheckingGroups vector
509 /// and re-compute it. We will only group dependecies if \p UseDependencies
510 /// is true, otherwise we will create a separate group for each pointer.
511 void groupChecks(MemoryDepChecker::DepCandidates &DepCands,
512 bool UseDependencies);
513
514 /// Generate the checks and return them.
515 SmallVector<RuntimePointerCheck, 4> generateChecks();
516
517 /// Try to create add a new (pointer-difference, access size) pair to
518 /// DiffCheck for checking groups \p CGI and \p CGJ. If pointer-difference
519 /// checks cannot be used for the groups, set CanUseDiffCheck to false.
520 void tryToCreateDiffCheck(const RuntimeCheckingPtrGroup &CGI,
521 const RuntimeCheckingPtrGroup &CGJ);
522
523 MemoryDepChecker &DC;
524
525 /// Holds a pointer to the ScalarEvolution analysis.
526 ScalarEvolution *SE;
527
528 /// Set of run-time checks required to establish independence of
529 /// otherwise may-aliasing pointers in the loop.
530 SmallVector<RuntimePointerCheck, 4> Checks;
531
532 /// Flag indicating if pointer-difference checks can be used
533 bool CanUseDiffCheck = true;
534
535 /// A list of (pointer-difference, access size) pairs that can be used to
536 /// prove that there are no vectorization-preventing dependencies.
537 SmallVector<PointerDiffInfo> DiffChecks;
538 };
539
540 /// Drive the analysis of memory accesses in the loop
541 ///
542 /// This class is responsible for analyzing the memory accesses of a loop. It
543 /// collects the accesses and then its main helper the AccessAnalysis class
544 /// finds and categorizes the dependences in buildDependenceSets.
545 ///
546 /// For memory dependences that can be analyzed at compile time, it determines
547 /// whether the dependence is part of cycle inhibiting vectorization. This work
548 /// is delegated to the MemoryDepChecker class.
549 ///
550 /// For memory dependences that cannot be determined at compile time, it
551 /// generates run-time checks to prove independence. This is done by
552 /// AccessAnalysis::canCheckPtrAtRT and the checks are maintained by the
553 /// RuntimePointerCheck class.
554 ///
555 /// If pointers can wrap or can't be expressed as affine AddRec expressions by
556 /// ScalarEvolution, we will generate run-time checks by emitting a
557 /// SCEVUnionPredicate.
558 ///
559 /// Checks for both memory dependences and the SCEV predicates contained in the
560 /// PSE must be emitted in order for the results of this analysis to be valid.
561 class LoopAccessInfo {
562 public:
563 LoopAccessInfo(Loop *L, ScalarEvolution *SE, const TargetLibraryInfo *TLI,
564 AAResults *AA, DominatorTree *DT, LoopInfo *LI);
565
566 /// Return true we can analyze the memory accesses in the loop and there are
567 /// no memory dependence cycles.
canVectorizeMemory()568 bool canVectorizeMemory() const { return CanVecMem; }
569
570 /// Return true if there is a convergent operation in the loop. There may
571 /// still be reported runtime pointer checks that would be required, but it is
572 /// not legal to insert them.
hasConvergentOp()573 bool hasConvergentOp() const { return HasConvergentOp; }
574
getRuntimePointerChecking()575 const RuntimePointerChecking *getRuntimePointerChecking() const {
576 return PtrRtChecking.get();
577 }
578
579 /// Number of memchecks required to prove independence of otherwise
580 /// may-alias pointers.
getNumRuntimePointerChecks()581 unsigned getNumRuntimePointerChecks() const {
582 return PtrRtChecking->getNumberOfChecks();
583 }
584
585 /// Return true if the block BB needs to be predicated in order for the loop
586 /// to be vectorized.
587 static bool blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
588 DominatorTree *DT);
589
590 /// Returns true if the value V is uniform within the loop.
591 bool isUniform(Value *V) const;
592
getMaxSafeDepDistBytes()593 uint64_t getMaxSafeDepDistBytes() const { return MaxSafeDepDistBytes; }
getNumStores()594 unsigned getNumStores() const { return NumStores; }
getNumLoads()595 unsigned getNumLoads() const { return NumLoads;}
596
597 /// The diagnostics report generated for the analysis. E.g. why we
598 /// couldn't analyze the loop.
getReport()599 const OptimizationRemarkAnalysis *getReport() const { return Report.get(); }
600
601 /// the Memory Dependence Checker which can determine the
602 /// loop-independent and loop-carried dependences between memory accesses.
getDepChecker()603 const MemoryDepChecker &getDepChecker() const { return *DepChecker; }
604
605 /// Return the list of instructions that use \p Ptr to read or write
606 /// memory.
getInstructionsForAccess(Value * Ptr,bool isWrite)607 SmallVector<Instruction *, 4> getInstructionsForAccess(Value *Ptr,
608 bool isWrite) const {
609 return DepChecker->getInstructionsForAccess(Ptr, isWrite);
610 }
611
612 /// If an access has a symbolic strides, this maps the pointer value to
613 /// the stride symbol.
getSymbolicStrides()614 const ValueToValueMap &getSymbolicStrides() const { return SymbolicStrides; }
615
616 /// Pointer has a symbolic stride.
hasStride(Value * V)617 bool hasStride(Value *V) const { return StrideSet.count(V); }
618
619 /// Print the information about the memory accesses in the loop.
620 void print(raw_ostream &OS, unsigned Depth = 0) const;
621
622 /// If the loop has memory dependence involving an invariant address, i.e. two
623 /// stores or a store and a load, then return true, else return false.
hasDependenceInvolvingLoopInvariantAddress()624 bool hasDependenceInvolvingLoopInvariantAddress() const {
625 return HasDependenceInvolvingLoopInvariantAddress;
626 }
627
628 /// Return the list of stores to invariant addresses.
getStoresToInvariantAddresses()629 const ArrayRef<StoreInst *> getStoresToInvariantAddresses() const {
630 return StoresToInvariantAddresses;
631 }
632
633 /// Used to add runtime SCEV checks. Simplifies SCEV expressions and converts
634 /// them to a more usable form. All SCEV expressions during the analysis
635 /// should be re-written (and therefore simplified) according to PSE.
636 /// A user of LoopAccessAnalysis will need to emit the runtime checks
637 /// associated with this predicate.
getPSE()638 const PredicatedScalarEvolution &getPSE() const { return *PSE; }
639
640 private:
641 /// Analyze the loop.
642 void analyzeLoop(AAResults *AA, LoopInfo *LI,
643 const TargetLibraryInfo *TLI, DominatorTree *DT);
644
645 /// Check if the structure of the loop allows it to be analyzed by this
646 /// pass.
647 bool canAnalyzeLoop();
648
649 /// Save the analysis remark.
650 ///
651 /// LAA does not directly emits the remarks. Instead it stores it which the
652 /// client can retrieve and presents as its own analysis
653 /// (e.g. -Rpass-analysis=loop-vectorize).
654 OptimizationRemarkAnalysis &recordAnalysis(StringRef RemarkName,
655 Instruction *Instr = nullptr);
656
657 /// Collect memory access with loop invariant strides.
658 ///
659 /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop
660 /// invariant.
661 void collectStridedAccess(Value *LoadOrStoreInst);
662
663 // Emits the first unsafe memory dependence in a loop.
664 // Emits nothing if there are no unsafe dependences
665 // or if the dependences were not recorded.
666 void emitUnsafeDependenceRemark();
667
668 std::unique_ptr<PredicatedScalarEvolution> PSE;
669
670 /// We need to check that all of the pointers in this list are disjoint
671 /// at runtime. Using std::unique_ptr to make using move ctor simpler.
672 std::unique_ptr<RuntimePointerChecking> PtrRtChecking;
673
674 /// the Memory Dependence Checker which can determine the
675 /// loop-independent and loop-carried dependences between memory accesses.
676 std::unique_ptr<MemoryDepChecker> DepChecker;
677
678 Loop *TheLoop;
679
680 unsigned NumLoads = 0;
681 unsigned NumStores = 0;
682
683 uint64_t MaxSafeDepDistBytes = -1;
684
685 /// Cache the result of analyzeLoop.
686 bool CanVecMem = false;
687 bool HasConvergentOp = false;
688
689 /// Indicator that there are non vectorizable stores to a uniform address.
690 bool HasDependenceInvolvingLoopInvariantAddress = false;
691
692 /// List of stores to invariant addresses.
693 SmallVector<StoreInst *> StoresToInvariantAddresses;
694
695 /// The diagnostics report generated for the analysis. E.g. why we
696 /// couldn't analyze the loop.
697 std::unique_ptr<OptimizationRemarkAnalysis> Report;
698
699 /// If an access has a symbolic strides, this maps the pointer value to
700 /// the stride symbol.
701 ValueToValueMap SymbolicStrides;
702
703 /// Set of symbolic strides values.
704 SmallPtrSet<Value *, 8> StrideSet;
705 };
706
707 Value *stripIntegerCast(Value *V);
708
709 /// Return the SCEV corresponding to a pointer with the symbolic stride
710 /// replaced with constant one, assuming the SCEV predicate associated with
711 /// \p PSE is true.
712 ///
713 /// If necessary this method will version the stride of the pointer according
714 /// to \p PtrToStride and therefore add further predicates to \p PSE.
715 ///
716 /// \p PtrToStride provides the mapping between the pointer value and its
717 /// stride as collected by LoopVectorizationLegality::collectStridedAccess.
718 const SCEV *replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
719 const ValueToValueMap &PtrToStride,
720 Value *Ptr);
721
722 /// If the pointer has a constant stride return it in units of the access type
723 /// size. Otherwise return zero.
724 ///
725 /// Ensure that it does not wrap in the address space, assuming the predicate
726 /// associated with \p PSE is true.
727 ///
728 /// If necessary this method will version the stride of the pointer according
729 /// to \p PtrToStride and therefore add further predicates to \p PSE.
730 /// The \p Assume parameter indicates if we are allowed to make additional
731 /// run-time assumptions.
732 int64_t getPtrStride(PredicatedScalarEvolution &PSE, Type *AccessTy, Value *Ptr,
733 const Loop *Lp,
734 const ValueToValueMap &StridesMap = ValueToValueMap(),
735 bool Assume = false, bool ShouldCheckWrap = true);
736
737 /// Returns the distance between the pointers \p PtrA and \p PtrB iff they are
738 /// compatible and it is possible to calculate the distance between them. This
739 /// is a simple API that does not depend on the analysis pass.
740 /// \param StrictCheck Ensure that the calculated distance matches the
741 /// type-based one after all the bitcasts removal in the provided pointers.
742 Optional<int> getPointersDiff(Type *ElemTyA, Value *PtrA, Type *ElemTyB,
743 Value *PtrB, const DataLayout &DL,
744 ScalarEvolution &SE, bool StrictCheck = false,
745 bool CheckType = true);
746
747 /// Attempt to sort the pointers in \p VL and return the sorted indices
748 /// in \p SortedIndices, if reordering is required.
749 ///
750 /// Returns 'true' if sorting is legal, otherwise returns 'false'.
751 ///
752 /// For example, for a given \p VL of memory accesses in program order, a[i+4],
753 /// a[i+0], a[i+1] and a[i+7], this function will sort the \p VL and save the
754 /// sorted indices in \p SortedIndices as a[i+0], a[i+1], a[i+4], a[i+7] and
755 /// saves the mask for actual memory accesses in program order in
756 /// \p SortedIndices as <1,2,0,3>
757 bool sortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy, const DataLayout &DL,
758 ScalarEvolution &SE,
759 SmallVectorImpl<unsigned> &SortedIndices);
760
761 /// Returns true if the memory operations \p A and \p B are consecutive.
762 /// This is a simple API that does not depend on the analysis pass.
763 bool isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
764 ScalarEvolution &SE, bool CheckType = true);
765
766 /// This analysis provides dependence information for the memory accesses
767 /// of a loop.
768 ///
769 /// It runs the analysis for a loop on demand. This can be initiated by
770 /// querying the loop access info via LAA::getInfo. getInfo return a
771 /// LoopAccessInfo object. See this class for the specifics of what information
772 /// is provided.
773 class LoopAccessLegacyAnalysis : public FunctionPass {
774 public:
775 static char ID;
776
777 LoopAccessLegacyAnalysis();
778
779 bool runOnFunction(Function &F) override;
780
781 void getAnalysisUsage(AnalysisUsage &AU) const override;
782
783 /// Query the result of the loop access information for the loop \p L.
784 ///
785 /// If there is no cached result available run the analysis.
786 const LoopAccessInfo &getInfo(Loop *L);
787
releaseMemory()788 void releaseMemory() override {
789 // Invalidate the cache when the pass is freed.
790 LoopAccessInfoMap.clear();
791 }
792
793 /// Print the result of the analysis when invoked with -analyze.
794 void print(raw_ostream &OS, const Module *M = nullptr) const override;
795
796 private:
797 /// The cache.
798 DenseMap<Loop *, std::unique_ptr<LoopAccessInfo>> LoopAccessInfoMap;
799
800 // The used analysis passes.
801 ScalarEvolution *SE = nullptr;
802 const TargetLibraryInfo *TLI = nullptr;
803 AAResults *AA = nullptr;
804 DominatorTree *DT = nullptr;
805 LoopInfo *LI = nullptr;
806 };
807
808 /// This analysis provides dependence information for the memory
809 /// accesses of a loop.
810 ///
811 /// It runs the analysis for a loop on demand. This can be initiated by
812 /// querying the loop access info via AM.getResult<LoopAccessAnalysis>.
813 /// getResult return a LoopAccessInfo object. See this class for the
814 /// specifics of what information is provided.
815 class LoopAccessAnalysis
816 : public AnalysisInfoMixin<LoopAccessAnalysis> {
817 friend AnalysisInfoMixin<LoopAccessAnalysis>;
818 static AnalysisKey Key;
819
820 public:
821 typedef LoopAccessInfo Result;
822
823 Result run(Loop &L, LoopAnalysisManager &AM, LoopStandardAnalysisResults &AR);
824 };
825
getSource(const LoopAccessInfo & LAI)826 inline Instruction *MemoryDepChecker::Dependence::getSource(
827 const LoopAccessInfo &LAI) const {
828 return LAI.getDepChecker().getMemoryInstructions()[Source];
829 }
830
getDestination(const LoopAccessInfo & LAI)831 inline Instruction *MemoryDepChecker::Dependence::getDestination(
832 const LoopAccessInfo &LAI) const {
833 return LAI.getDepChecker().getMemoryInstructions()[Destination];
834 }
835
836 } // End llvm namespace
837
838 #endif
839