1 //===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements semantic analysis for C++ declarations.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "clang/AST/ASTConsumer.h"
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/ASTLambda.h"
16 #include "clang/AST/ASTMutationListener.h"
17 #include "clang/AST/CXXInheritance.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/AST/ComparisonCategories.h"
20 #include "clang/AST/EvaluatedExprVisitor.h"
21 #include "clang/AST/ExprCXX.h"
22 #include "clang/AST/RecordLayout.h"
23 #include "clang/AST/RecursiveASTVisitor.h"
24 #include "clang/AST/StmtVisitor.h"
25 #include "clang/AST/TypeLoc.h"
26 #include "clang/AST/TypeOrdering.h"
27 #include "clang/Basic/AttributeCommonInfo.h"
28 #include "clang/Basic/PartialDiagnostic.h"
29 #include "clang/Basic/Specifiers.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "clang/Lex/LiteralSupport.h"
32 #include "clang/Lex/Preprocessor.h"
33 #include "clang/Sema/CXXFieldCollector.h"
34 #include "clang/Sema/DeclSpec.h"
35 #include "clang/Sema/Initialization.h"
36 #include "clang/Sema/Lookup.h"
37 #include "clang/Sema/ParsedTemplate.h"
38 #include "clang/Sema/Scope.h"
39 #include "clang/Sema/ScopeInfo.h"
40 #include "clang/Sema/SemaInternal.h"
41 #include "clang/Sema/Template.h"
42 #include "llvm/ADT/ScopeExit.h"
43 #include "llvm/ADT/SmallString.h"
44 #include "llvm/ADT/STLExtras.h"
45 #include "llvm/ADT/StringExtras.h"
46 #include <map>
47 #include <set>
48
49 using namespace clang;
50
51 //===----------------------------------------------------------------------===//
52 // CheckDefaultArgumentVisitor
53 //===----------------------------------------------------------------------===//
54
55 namespace {
56 /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
57 /// the default argument of a parameter to determine whether it
58 /// contains any ill-formed subexpressions. For example, this will
59 /// diagnose the use of local variables or parameters within the
60 /// default argument expression.
61 class CheckDefaultArgumentVisitor
62 : public ConstStmtVisitor<CheckDefaultArgumentVisitor, bool> {
63 Sema &S;
64 const Expr *DefaultArg;
65
66 public:
CheckDefaultArgumentVisitor(Sema & S,const Expr * DefaultArg)67 CheckDefaultArgumentVisitor(Sema &S, const Expr *DefaultArg)
68 : S(S), DefaultArg(DefaultArg) {}
69
70 bool VisitExpr(const Expr *Node);
71 bool VisitDeclRefExpr(const DeclRefExpr *DRE);
72 bool VisitCXXThisExpr(const CXXThisExpr *ThisE);
73 bool VisitLambdaExpr(const LambdaExpr *Lambda);
74 bool VisitPseudoObjectExpr(const PseudoObjectExpr *POE);
75 };
76
77 /// VisitExpr - Visit all of the children of this expression.
VisitExpr(const Expr * Node)78 bool CheckDefaultArgumentVisitor::VisitExpr(const Expr *Node) {
79 bool IsInvalid = false;
80 for (const Stmt *SubStmt : Node->children())
81 IsInvalid |= Visit(SubStmt);
82 return IsInvalid;
83 }
84
85 /// VisitDeclRefExpr - Visit a reference to a declaration, to
86 /// determine whether this declaration can be used in the default
87 /// argument expression.
VisitDeclRefExpr(const DeclRefExpr * DRE)88 bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(const DeclRefExpr *DRE) {
89 const NamedDecl *Decl = DRE->getDecl();
90 if (const auto *Param = dyn_cast<ParmVarDecl>(Decl)) {
91 // C++ [dcl.fct.default]p9:
92 // [...] parameters of a function shall not be used in default
93 // argument expressions, even if they are not evaluated. [...]
94 //
95 // C++17 [dcl.fct.default]p9 (by CWG 2082):
96 // [...] A parameter shall not appear as a potentially-evaluated
97 // expression in a default argument. [...]
98 //
99 if (DRE->isNonOdrUse() != NOUR_Unevaluated)
100 return S.Diag(DRE->getBeginLoc(),
101 diag::err_param_default_argument_references_param)
102 << Param->getDeclName() << DefaultArg->getSourceRange();
103 } else if (const auto *VDecl = dyn_cast<VarDecl>(Decl)) {
104 // C++ [dcl.fct.default]p7:
105 // Local variables shall not be used in default argument
106 // expressions.
107 //
108 // C++17 [dcl.fct.default]p7 (by CWG 2082):
109 // A local variable shall not appear as a potentially-evaluated
110 // expression in a default argument.
111 //
112 // C++20 [dcl.fct.default]p7 (DR as part of P0588R1, see also CWG 2346):
113 // Note: A local variable cannot be odr-used (6.3) in a default argument.
114 //
115 if (VDecl->isLocalVarDecl() && !DRE->isNonOdrUse())
116 return S.Diag(DRE->getBeginLoc(),
117 diag::err_param_default_argument_references_local)
118 << VDecl->getDeclName() << DefaultArg->getSourceRange();
119 }
120
121 return false;
122 }
123
124 /// VisitCXXThisExpr - Visit a C++ "this" expression.
VisitCXXThisExpr(const CXXThisExpr * ThisE)125 bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(const CXXThisExpr *ThisE) {
126 // C++ [dcl.fct.default]p8:
127 // The keyword this shall not be used in a default argument of a
128 // member function.
129 return S.Diag(ThisE->getBeginLoc(),
130 diag::err_param_default_argument_references_this)
131 << ThisE->getSourceRange();
132 }
133
VisitPseudoObjectExpr(const PseudoObjectExpr * POE)134 bool CheckDefaultArgumentVisitor::VisitPseudoObjectExpr(
135 const PseudoObjectExpr *POE) {
136 bool Invalid = false;
137 for (const Expr *E : POE->semantics()) {
138 // Look through bindings.
139 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) {
140 E = OVE->getSourceExpr();
141 assert(E && "pseudo-object binding without source expression?");
142 }
143
144 Invalid |= Visit(E);
145 }
146 return Invalid;
147 }
148
VisitLambdaExpr(const LambdaExpr * Lambda)149 bool CheckDefaultArgumentVisitor::VisitLambdaExpr(const LambdaExpr *Lambda) {
150 // C++11 [expr.lambda.prim]p13:
151 // A lambda-expression appearing in a default argument shall not
152 // implicitly or explicitly capture any entity.
153 if (Lambda->capture_begin() == Lambda->capture_end())
154 return false;
155
156 return S.Diag(Lambda->getBeginLoc(), diag::err_lambda_capture_default_arg);
157 }
158 } // namespace
159
160 void
CalledDecl(SourceLocation CallLoc,const CXXMethodDecl * Method)161 Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
162 const CXXMethodDecl *Method) {
163 // If we have an MSAny spec already, don't bother.
164 if (!Method || ComputedEST == EST_MSAny)
165 return;
166
167 const FunctionProtoType *Proto
168 = Method->getType()->getAs<FunctionProtoType>();
169 Proto = Self->ResolveExceptionSpec(CallLoc, Proto);
170 if (!Proto)
171 return;
172
173 ExceptionSpecificationType EST = Proto->getExceptionSpecType();
174
175 // If we have a throw-all spec at this point, ignore the function.
176 if (ComputedEST == EST_None)
177 return;
178
179 if (EST == EST_None && Method->hasAttr<NoThrowAttr>())
180 EST = EST_BasicNoexcept;
181
182 switch (EST) {
183 case EST_Unparsed:
184 case EST_Uninstantiated:
185 case EST_Unevaluated:
186 llvm_unreachable("should not see unresolved exception specs here");
187
188 // If this function can throw any exceptions, make a note of that.
189 case EST_MSAny:
190 case EST_None:
191 // FIXME: Whichever we see last of MSAny and None determines our result.
192 // We should make a consistent, order-independent choice here.
193 ClearExceptions();
194 ComputedEST = EST;
195 return;
196 case EST_NoexceptFalse:
197 ClearExceptions();
198 ComputedEST = EST_None;
199 return;
200 // FIXME: If the call to this decl is using any of its default arguments, we
201 // need to search them for potentially-throwing calls.
202 // If this function has a basic noexcept, it doesn't affect the outcome.
203 case EST_BasicNoexcept:
204 case EST_NoexceptTrue:
205 case EST_NoThrow:
206 return;
207 // If we're still at noexcept(true) and there's a throw() callee,
208 // change to that specification.
209 case EST_DynamicNone:
210 if (ComputedEST == EST_BasicNoexcept)
211 ComputedEST = EST_DynamicNone;
212 return;
213 case EST_DependentNoexcept:
214 llvm_unreachable(
215 "should not generate implicit declarations for dependent cases");
216 case EST_Dynamic:
217 break;
218 }
219 assert(EST == EST_Dynamic && "EST case not considered earlier.");
220 assert(ComputedEST != EST_None &&
221 "Shouldn't collect exceptions when throw-all is guaranteed.");
222 ComputedEST = EST_Dynamic;
223 // Record the exceptions in this function's exception specification.
224 for (const auto &E : Proto->exceptions())
225 if (ExceptionsSeen.insert(Self->Context.getCanonicalType(E)).second)
226 Exceptions.push_back(E);
227 }
228
CalledStmt(Stmt * S)229 void Sema::ImplicitExceptionSpecification::CalledStmt(Stmt *S) {
230 if (!S || ComputedEST == EST_MSAny)
231 return;
232
233 // FIXME:
234 //
235 // C++0x [except.spec]p14:
236 // [An] implicit exception-specification specifies the type-id T if and
237 // only if T is allowed by the exception-specification of a function directly
238 // invoked by f's implicit definition; f shall allow all exceptions if any
239 // function it directly invokes allows all exceptions, and f shall allow no
240 // exceptions if every function it directly invokes allows no exceptions.
241 //
242 // Note in particular that if an implicit exception-specification is generated
243 // for a function containing a throw-expression, that specification can still
244 // be noexcept(true).
245 //
246 // Note also that 'directly invoked' is not defined in the standard, and there
247 // is no indication that we should only consider potentially-evaluated calls.
248 //
249 // Ultimately we should implement the intent of the standard: the exception
250 // specification should be the set of exceptions which can be thrown by the
251 // implicit definition. For now, we assume that any non-nothrow expression can
252 // throw any exception.
253
254 if (Self->canThrow(S))
255 ComputedEST = EST_None;
256 }
257
ConvertParamDefaultArgument(ParmVarDecl * Param,Expr * Arg,SourceLocation EqualLoc)258 ExprResult Sema::ConvertParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
259 SourceLocation EqualLoc) {
260 if (RequireCompleteType(Param->getLocation(), Param->getType(),
261 diag::err_typecheck_decl_incomplete_type))
262 return true;
263
264 // C++ [dcl.fct.default]p5
265 // A default argument expression is implicitly converted (clause
266 // 4) to the parameter type. The default argument expression has
267 // the same semantic constraints as the initializer expression in
268 // a declaration of a variable of the parameter type, using the
269 // copy-initialization semantics (8.5).
270 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
271 Param);
272 InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
273 EqualLoc);
274 InitializationSequence InitSeq(*this, Entity, Kind, Arg);
275 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg);
276 if (Result.isInvalid())
277 return true;
278 Arg = Result.getAs<Expr>();
279
280 CheckCompletedExpr(Arg, EqualLoc);
281 Arg = MaybeCreateExprWithCleanups(Arg);
282
283 return Arg;
284 }
285
SetParamDefaultArgument(ParmVarDecl * Param,Expr * Arg,SourceLocation EqualLoc)286 void Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
287 SourceLocation EqualLoc) {
288 // Add the default argument to the parameter
289 Param->setDefaultArg(Arg);
290
291 // We have already instantiated this parameter; provide each of the
292 // instantiations with the uninstantiated default argument.
293 UnparsedDefaultArgInstantiationsMap::iterator InstPos
294 = UnparsedDefaultArgInstantiations.find(Param);
295 if (InstPos != UnparsedDefaultArgInstantiations.end()) {
296 for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
297 InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
298
299 // We're done tracking this parameter's instantiations.
300 UnparsedDefaultArgInstantiations.erase(InstPos);
301 }
302 }
303
304 /// ActOnParamDefaultArgument - Check whether the default argument
305 /// provided for a function parameter is well-formed. If so, attach it
306 /// to the parameter declaration.
307 void
ActOnParamDefaultArgument(Decl * param,SourceLocation EqualLoc,Expr * DefaultArg)308 Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
309 Expr *DefaultArg) {
310 if (!param || !DefaultArg)
311 return;
312
313 ParmVarDecl *Param = cast<ParmVarDecl>(param);
314 UnparsedDefaultArgLocs.erase(Param);
315
316 auto Fail = [&] {
317 Param->setInvalidDecl();
318 Param->setDefaultArg(new (Context) OpaqueValueExpr(
319 EqualLoc, Param->getType().getNonReferenceType(), VK_PRValue));
320 };
321
322 // Default arguments are only permitted in C++
323 if (!getLangOpts().CPlusPlus) {
324 Diag(EqualLoc, diag::err_param_default_argument)
325 << DefaultArg->getSourceRange();
326 return Fail();
327 }
328
329 // Check for unexpanded parameter packs.
330 if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
331 return Fail();
332 }
333
334 // C++11 [dcl.fct.default]p3
335 // A default argument expression [...] shall not be specified for a
336 // parameter pack.
337 if (Param->isParameterPack()) {
338 Diag(EqualLoc, diag::err_param_default_argument_on_parameter_pack)
339 << DefaultArg->getSourceRange();
340 // Recover by discarding the default argument.
341 Param->setDefaultArg(nullptr);
342 return;
343 }
344
345 ExprResult Result = ConvertParamDefaultArgument(Param, DefaultArg, EqualLoc);
346 if (Result.isInvalid())
347 return Fail();
348
349 DefaultArg = Result.getAs<Expr>();
350
351 // Check that the default argument is well-formed
352 CheckDefaultArgumentVisitor DefaultArgChecker(*this, DefaultArg);
353 if (DefaultArgChecker.Visit(DefaultArg))
354 return Fail();
355
356 SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
357 }
358
359 /// ActOnParamUnparsedDefaultArgument - We've seen a default
360 /// argument for a function parameter, but we can't parse it yet
361 /// because we're inside a class definition. Note that this default
362 /// argument will be parsed later.
ActOnParamUnparsedDefaultArgument(Decl * param,SourceLocation EqualLoc,SourceLocation ArgLoc)363 void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
364 SourceLocation EqualLoc,
365 SourceLocation ArgLoc) {
366 if (!param)
367 return;
368
369 ParmVarDecl *Param = cast<ParmVarDecl>(param);
370 Param->setUnparsedDefaultArg();
371 UnparsedDefaultArgLocs[Param] = ArgLoc;
372 }
373
374 /// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
375 /// the default argument for the parameter param failed.
ActOnParamDefaultArgumentError(Decl * param,SourceLocation EqualLoc)376 void Sema::ActOnParamDefaultArgumentError(Decl *param,
377 SourceLocation EqualLoc) {
378 if (!param)
379 return;
380
381 ParmVarDecl *Param = cast<ParmVarDecl>(param);
382 Param->setInvalidDecl();
383 UnparsedDefaultArgLocs.erase(Param);
384 Param->setDefaultArg(new (Context) OpaqueValueExpr(
385 EqualLoc, Param->getType().getNonReferenceType(), VK_PRValue));
386 }
387
388 /// CheckExtraCXXDefaultArguments - Check for any extra default
389 /// arguments in the declarator, which is not a function declaration
390 /// or definition and therefore is not permitted to have default
391 /// arguments. This routine should be invoked for every declarator
392 /// that is not a function declaration or definition.
CheckExtraCXXDefaultArguments(Declarator & D)393 void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
394 // C++ [dcl.fct.default]p3
395 // A default argument expression shall be specified only in the
396 // parameter-declaration-clause of a function declaration or in a
397 // template-parameter (14.1). It shall not be specified for a
398 // parameter pack. If it is specified in a
399 // parameter-declaration-clause, it shall not occur within a
400 // declarator or abstract-declarator of a parameter-declaration.
401 bool MightBeFunction = D.isFunctionDeclarationContext();
402 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
403 DeclaratorChunk &chunk = D.getTypeObject(i);
404 if (chunk.Kind == DeclaratorChunk::Function) {
405 if (MightBeFunction) {
406 // This is a function declaration. It can have default arguments, but
407 // keep looking in case its return type is a function type with default
408 // arguments.
409 MightBeFunction = false;
410 continue;
411 }
412 for (unsigned argIdx = 0, e = chunk.Fun.NumParams; argIdx != e;
413 ++argIdx) {
414 ParmVarDecl *Param = cast<ParmVarDecl>(chunk.Fun.Params[argIdx].Param);
415 if (Param->hasUnparsedDefaultArg()) {
416 std::unique_ptr<CachedTokens> Toks =
417 std::move(chunk.Fun.Params[argIdx].DefaultArgTokens);
418 SourceRange SR;
419 if (Toks->size() > 1)
420 SR = SourceRange((*Toks)[1].getLocation(),
421 Toks->back().getLocation());
422 else
423 SR = UnparsedDefaultArgLocs[Param];
424 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
425 << SR;
426 } else if (Param->getDefaultArg()) {
427 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
428 << Param->getDefaultArg()->getSourceRange();
429 Param->setDefaultArg(nullptr);
430 }
431 }
432 } else if (chunk.Kind != DeclaratorChunk::Paren) {
433 MightBeFunction = false;
434 }
435 }
436 }
437
functionDeclHasDefaultArgument(const FunctionDecl * FD)438 static bool functionDeclHasDefaultArgument(const FunctionDecl *FD) {
439 return llvm::any_of(FD->parameters(), [](ParmVarDecl *P) {
440 return P->hasDefaultArg() && !P->hasInheritedDefaultArg();
441 });
442 }
443
444 /// MergeCXXFunctionDecl - Merge two declarations of the same C++
445 /// function, once we already know that they have the same
446 /// type. Subroutine of MergeFunctionDecl. Returns true if there was an
447 /// error, false otherwise.
MergeCXXFunctionDecl(FunctionDecl * New,FunctionDecl * Old,Scope * S)448 bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
449 Scope *S) {
450 bool Invalid = false;
451
452 // The declaration context corresponding to the scope is the semantic
453 // parent, unless this is a local function declaration, in which case
454 // it is that surrounding function.
455 DeclContext *ScopeDC = New->isLocalExternDecl()
456 ? New->getLexicalDeclContext()
457 : New->getDeclContext();
458
459 // Find the previous declaration for the purpose of default arguments.
460 FunctionDecl *PrevForDefaultArgs = Old;
461 for (/**/; PrevForDefaultArgs;
462 // Don't bother looking back past the latest decl if this is a local
463 // extern declaration; nothing else could work.
464 PrevForDefaultArgs = New->isLocalExternDecl()
465 ? nullptr
466 : PrevForDefaultArgs->getPreviousDecl()) {
467 // Ignore hidden declarations.
468 if (!LookupResult::isVisible(*this, PrevForDefaultArgs))
469 continue;
470
471 if (S && !isDeclInScope(PrevForDefaultArgs, ScopeDC, S) &&
472 !New->isCXXClassMember()) {
473 // Ignore default arguments of old decl if they are not in
474 // the same scope and this is not an out-of-line definition of
475 // a member function.
476 continue;
477 }
478
479 if (PrevForDefaultArgs->isLocalExternDecl() != New->isLocalExternDecl()) {
480 // If only one of these is a local function declaration, then they are
481 // declared in different scopes, even though isDeclInScope may think
482 // they're in the same scope. (If both are local, the scope check is
483 // sufficient, and if neither is local, then they are in the same scope.)
484 continue;
485 }
486
487 // We found the right previous declaration.
488 break;
489 }
490
491 // C++ [dcl.fct.default]p4:
492 // For non-template functions, default arguments can be added in
493 // later declarations of a function in the same
494 // scope. Declarations in different scopes have completely
495 // distinct sets of default arguments. That is, declarations in
496 // inner scopes do not acquire default arguments from
497 // declarations in outer scopes, and vice versa. In a given
498 // function declaration, all parameters subsequent to a
499 // parameter with a default argument shall have default
500 // arguments supplied in this or previous declarations. A
501 // default argument shall not be redefined by a later
502 // declaration (not even to the same value).
503 //
504 // C++ [dcl.fct.default]p6:
505 // Except for member functions of class templates, the default arguments
506 // in a member function definition that appears outside of the class
507 // definition are added to the set of default arguments provided by the
508 // member function declaration in the class definition.
509 for (unsigned p = 0, NumParams = PrevForDefaultArgs
510 ? PrevForDefaultArgs->getNumParams()
511 : 0;
512 p < NumParams; ++p) {
513 ParmVarDecl *OldParam = PrevForDefaultArgs->getParamDecl(p);
514 ParmVarDecl *NewParam = New->getParamDecl(p);
515
516 bool OldParamHasDfl = OldParam ? OldParam->hasDefaultArg() : false;
517 bool NewParamHasDfl = NewParam->hasDefaultArg();
518
519 if (OldParamHasDfl && NewParamHasDfl) {
520 unsigned DiagDefaultParamID =
521 diag::err_param_default_argument_redefinition;
522
523 // MSVC accepts that default parameters be redefined for member functions
524 // of template class. The new default parameter's value is ignored.
525 Invalid = true;
526 if (getLangOpts().MicrosoftExt) {
527 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(New);
528 if (MD && MD->getParent()->getDescribedClassTemplate()) {
529 // Merge the old default argument into the new parameter.
530 NewParam->setHasInheritedDefaultArg();
531 if (OldParam->hasUninstantiatedDefaultArg())
532 NewParam->setUninstantiatedDefaultArg(
533 OldParam->getUninstantiatedDefaultArg());
534 else
535 NewParam->setDefaultArg(OldParam->getInit());
536 DiagDefaultParamID = diag::ext_param_default_argument_redefinition;
537 Invalid = false;
538 }
539 }
540
541 // FIXME: If we knew where the '=' was, we could easily provide a fix-it
542 // hint here. Alternatively, we could walk the type-source information
543 // for NewParam to find the last source location in the type... but it
544 // isn't worth the effort right now. This is the kind of test case that
545 // is hard to get right:
546 // int f(int);
547 // void g(int (*fp)(int) = f);
548 // void g(int (*fp)(int) = &f);
549 Diag(NewParam->getLocation(), DiagDefaultParamID)
550 << NewParam->getDefaultArgRange();
551
552 // Look for the function declaration where the default argument was
553 // actually written, which may be a declaration prior to Old.
554 for (auto Older = PrevForDefaultArgs;
555 OldParam->hasInheritedDefaultArg(); /**/) {
556 Older = Older->getPreviousDecl();
557 OldParam = Older->getParamDecl(p);
558 }
559
560 Diag(OldParam->getLocation(), diag::note_previous_definition)
561 << OldParam->getDefaultArgRange();
562 } else if (OldParamHasDfl) {
563 // Merge the old default argument into the new parameter unless the new
564 // function is a friend declaration in a template class. In the latter
565 // case the default arguments will be inherited when the friend
566 // declaration will be instantiated.
567 if (New->getFriendObjectKind() == Decl::FOK_None ||
568 !New->getLexicalDeclContext()->isDependentContext()) {
569 // It's important to use getInit() here; getDefaultArg()
570 // strips off any top-level ExprWithCleanups.
571 NewParam->setHasInheritedDefaultArg();
572 if (OldParam->hasUnparsedDefaultArg())
573 NewParam->setUnparsedDefaultArg();
574 else if (OldParam->hasUninstantiatedDefaultArg())
575 NewParam->setUninstantiatedDefaultArg(
576 OldParam->getUninstantiatedDefaultArg());
577 else
578 NewParam->setDefaultArg(OldParam->getInit());
579 }
580 } else if (NewParamHasDfl) {
581 if (New->getDescribedFunctionTemplate()) {
582 // Paragraph 4, quoted above, only applies to non-template functions.
583 Diag(NewParam->getLocation(),
584 diag::err_param_default_argument_template_redecl)
585 << NewParam->getDefaultArgRange();
586 Diag(PrevForDefaultArgs->getLocation(),
587 diag::note_template_prev_declaration)
588 << false;
589 } else if (New->getTemplateSpecializationKind()
590 != TSK_ImplicitInstantiation &&
591 New->getTemplateSpecializationKind() != TSK_Undeclared) {
592 // C++ [temp.expr.spec]p21:
593 // Default function arguments shall not be specified in a declaration
594 // or a definition for one of the following explicit specializations:
595 // - the explicit specialization of a function template;
596 // - the explicit specialization of a member function template;
597 // - the explicit specialization of a member function of a class
598 // template where the class template specialization to which the
599 // member function specialization belongs is implicitly
600 // instantiated.
601 Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
602 << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
603 << New->getDeclName()
604 << NewParam->getDefaultArgRange();
605 } else if (New->getDeclContext()->isDependentContext()) {
606 // C++ [dcl.fct.default]p6 (DR217):
607 // Default arguments for a member function of a class template shall
608 // be specified on the initial declaration of the member function
609 // within the class template.
610 //
611 // Reading the tea leaves a bit in DR217 and its reference to DR205
612 // leads me to the conclusion that one cannot add default function
613 // arguments for an out-of-line definition of a member function of a
614 // dependent type.
615 int WhichKind = 2;
616 if (CXXRecordDecl *Record
617 = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
618 if (Record->getDescribedClassTemplate())
619 WhichKind = 0;
620 else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
621 WhichKind = 1;
622 else
623 WhichKind = 2;
624 }
625
626 Diag(NewParam->getLocation(),
627 diag::err_param_default_argument_member_template_redecl)
628 << WhichKind
629 << NewParam->getDefaultArgRange();
630 }
631 }
632 }
633
634 // DR1344: If a default argument is added outside a class definition and that
635 // default argument makes the function a special member function, the program
636 // is ill-formed. This can only happen for constructors.
637 if (isa<CXXConstructorDecl>(New) &&
638 New->getMinRequiredArguments() < Old->getMinRequiredArguments()) {
639 CXXSpecialMember NewSM = getSpecialMember(cast<CXXMethodDecl>(New)),
640 OldSM = getSpecialMember(cast<CXXMethodDecl>(Old));
641 if (NewSM != OldSM) {
642 ParmVarDecl *NewParam = New->getParamDecl(New->getMinRequiredArguments());
643 assert(NewParam->hasDefaultArg());
644 Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special)
645 << NewParam->getDefaultArgRange() << NewSM;
646 Diag(Old->getLocation(), diag::note_previous_declaration);
647 }
648 }
649
650 const FunctionDecl *Def;
651 // C++11 [dcl.constexpr]p1: If any declaration of a function or function
652 // template has a constexpr specifier then all its declarations shall
653 // contain the constexpr specifier.
654 if (New->getConstexprKind() != Old->getConstexprKind()) {
655 Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
656 << New << static_cast<int>(New->getConstexprKind())
657 << static_cast<int>(Old->getConstexprKind());
658 Diag(Old->getLocation(), diag::note_previous_declaration);
659 Invalid = true;
660 } else if (!Old->getMostRecentDecl()->isInlined() && New->isInlined() &&
661 Old->isDefined(Def) &&
662 // If a friend function is inlined but does not have 'inline'
663 // specifier, it is a definition. Do not report attribute conflict
664 // in this case, redefinition will be diagnosed later.
665 (New->isInlineSpecified() ||
666 New->getFriendObjectKind() == Decl::FOK_None)) {
667 // C++11 [dcl.fcn.spec]p4:
668 // If the definition of a function appears in a translation unit before its
669 // first declaration as inline, the program is ill-formed.
670 Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New;
671 Diag(Def->getLocation(), diag::note_previous_definition);
672 Invalid = true;
673 }
674
675 // C++17 [temp.deduct.guide]p3:
676 // Two deduction guide declarations in the same translation unit
677 // for the same class template shall not have equivalent
678 // parameter-declaration-clauses.
679 if (isa<CXXDeductionGuideDecl>(New) &&
680 !New->isFunctionTemplateSpecialization() && isVisible(Old)) {
681 Diag(New->getLocation(), diag::err_deduction_guide_redeclared);
682 Diag(Old->getLocation(), diag::note_previous_declaration);
683 }
684
685 // C++11 [dcl.fct.default]p4: If a friend declaration specifies a default
686 // argument expression, that declaration shall be a definition and shall be
687 // the only declaration of the function or function template in the
688 // translation unit.
689 if (Old->getFriendObjectKind() == Decl::FOK_Undeclared &&
690 functionDeclHasDefaultArgument(Old)) {
691 Diag(New->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
692 Diag(Old->getLocation(), diag::note_previous_declaration);
693 Invalid = true;
694 }
695
696 // C++11 [temp.friend]p4 (DR329):
697 // When a function is defined in a friend function declaration in a class
698 // template, the function is instantiated when the function is odr-used.
699 // The same restrictions on multiple declarations and definitions that
700 // apply to non-template function declarations and definitions also apply
701 // to these implicit definitions.
702 const FunctionDecl *OldDefinition = nullptr;
703 if (New->isThisDeclarationInstantiatedFromAFriendDefinition() &&
704 Old->isDefined(OldDefinition, true))
705 CheckForFunctionRedefinition(New, OldDefinition);
706
707 return Invalid;
708 }
709
710 NamedDecl *
ActOnDecompositionDeclarator(Scope * S,Declarator & D,MultiTemplateParamsArg TemplateParamLists)711 Sema::ActOnDecompositionDeclarator(Scope *S, Declarator &D,
712 MultiTemplateParamsArg TemplateParamLists) {
713 assert(D.isDecompositionDeclarator());
714 const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator();
715
716 // The syntax only allows a decomposition declarator as a simple-declaration,
717 // a for-range-declaration, or a condition in Clang, but we parse it in more
718 // cases than that.
719 if (!D.mayHaveDecompositionDeclarator()) {
720 Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context)
721 << Decomp.getSourceRange();
722 return nullptr;
723 }
724
725 if (!TemplateParamLists.empty()) {
726 // FIXME: There's no rule against this, but there are also no rules that
727 // would actually make it usable, so we reject it for now.
728 Diag(TemplateParamLists.front()->getTemplateLoc(),
729 diag::err_decomp_decl_template);
730 return nullptr;
731 }
732
733 Diag(Decomp.getLSquareLoc(),
734 !getLangOpts().CPlusPlus17
735 ? diag::ext_decomp_decl
736 : D.getContext() == DeclaratorContext::Condition
737 ? diag::ext_decomp_decl_cond
738 : diag::warn_cxx14_compat_decomp_decl)
739 << Decomp.getSourceRange();
740
741 // The semantic context is always just the current context.
742 DeclContext *const DC = CurContext;
743
744 // C++17 [dcl.dcl]/8:
745 // The decl-specifier-seq shall contain only the type-specifier auto
746 // and cv-qualifiers.
747 // C++2a [dcl.dcl]/8:
748 // If decl-specifier-seq contains any decl-specifier other than static,
749 // thread_local, auto, or cv-qualifiers, the program is ill-formed.
750 auto &DS = D.getDeclSpec();
751 {
752 SmallVector<StringRef, 8> BadSpecifiers;
753 SmallVector<SourceLocation, 8> BadSpecifierLocs;
754 SmallVector<StringRef, 8> CPlusPlus20Specifiers;
755 SmallVector<SourceLocation, 8> CPlusPlus20SpecifierLocs;
756 if (auto SCS = DS.getStorageClassSpec()) {
757 if (SCS == DeclSpec::SCS_static) {
758 CPlusPlus20Specifiers.push_back(DeclSpec::getSpecifierName(SCS));
759 CPlusPlus20SpecifierLocs.push_back(DS.getStorageClassSpecLoc());
760 } else {
761 BadSpecifiers.push_back(DeclSpec::getSpecifierName(SCS));
762 BadSpecifierLocs.push_back(DS.getStorageClassSpecLoc());
763 }
764 }
765 if (auto TSCS = DS.getThreadStorageClassSpec()) {
766 CPlusPlus20Specifiers.push_back(DeclSpec::getSpecifierName(TSCS));
767 CPlusPlus20SpecifierLocs.push_back(DS.getThreadStorageClassSpecLoc());
768 }
769 if (DS.hasConstexprSpecifier()) {
770 BadSpecifiers.push_back(
771 DeclSpec::getSpecifierName(DS.getConstexprSpecifier()));
772 BadSpecifierLocs.push_back(DS.getConstexprSpecLoc());
773 }
774 if (DS.isInlineSpecified()) {
775 BadSpecifiers.push_back("inline");
776 BadSpecifierLocs.push_back(DS.getInlineSpecLoc());
777 }
778 if (!BadSpecifiers.empty()) {
779 auto &&Err = Diag(BadSpecifierLocs.front(), diag::err_decomp_decl_spec);
780 Err << (int)BadSpecifiers.size()
781 << llvm::join(BadSpecifiers.begin(), BadSpecifiers.end(), " ");
782 // Don't add FixItHints to remove the specifiers; we do still respect
783 // them when building the underlying variable.
784 for (auto Loc : BadSpecifierLocs)
785 Err << SourceRange(Loc, Loc);
786 } else if (!CPlusPlus20Specifiers.empty()) {
787 auto &&Warn = Diag(CPlusPlus20SpecifierLocs.front(),
788 getLangOpts().CPlusPlus20
789 ? diag::warn_cxx17_compat_decomp_decl_spec
790 : diag::ext_decomp_decl_spec);
791 Warn << (int)CPlusPlus20Specifiers.size()
792 << llvm::join(CPlusPlus20Specifiers.begin(),
793 CPlusPlus20Specifiers.end(), " ");
794 for (auto Loc : CPlusPlus20SpecifierLocs)
795 Warn << SourceRange(Loc, Loc);
796 }
797 // We can't recover from it being declared as a typedef.
798 if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
799 return nullptr;
800 }
801
802 // C++2a [dcl.struct.bind]p1:
803 // A cv that includes volatile is deprecated
804 if ((DS.getTypeQualifiers() & DeclSpec::TQ_volatile) &&
805 getLangOpts().CPlusPlus20)
806 Diag(DS.getVolatileSpecLoc(),
807 diag::warn_deprecated_volatile_structured_binding);
808
809 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
810 QualType R = TInfo->getType();
811
812 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
813 UPPC_DeclarationType))
814 D.setInvalidType();
815
816 // The syntax only allows a single ref-qualifier prior to the decomposition
817 // declarator. No other declarator chunks are permitted. Also check the type
818 // specifier here.
819 if (DS.getTypeSpecType() != DeclSpec::TST_auto ||
820 D.hasGroupingParens() || D.getNumTypeObjects() > 1 ||
821 (D.getNumTypeObjects() == 1 &&
822 D.getTypeObject(0).Kind != DeclaratorChunk::Reference)) {
823 Diag(Decomp.getLSquareLoc(),
824 (D.hasGroupingParens() ||
825 (D.getNumTypeObjects() &&
826 D.getTypeObject(0).Kind == DeclaratorChunk::Paren))
827 ? diag::err_decomp_decl_parens
828 : diag::err_decomp_decl_type)
829 << R;
830
831 // In most cases, there's no actual problem with an explicitly-specified
832 // type, but a function type won't work here, and ActOnVariableDeclarator
833 // shouldn't be called for such a type.
834 if (R->isFunctionType())
835 D.setInvalidType();
836 }
837
838 // Build the BindingDecls.
839 SmallVector<BindingDecl*, 8> Bindings;
840
841 // Build the BindingDecls.
842 for (auto &B : D.getDecompositionDeclarator().bindings()) {
843 // Check for name conflicts.
844 DeclarationNameInfo NameInfo(B.Name, B.NameLoc);
845 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
846 ForVisibleRedeclaration);
847 LookupName(Previous, S,
848 /*CreateBuiltins*/DC->getRedeclContext()->isTranslationUnit());
849
850 // It's not permitted to shadow a template parameter name.
851 if (Previous.isSingleResult() &&
852 Previous.getFoundDecl()->isTemplateParameter()) {
853 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
854 Previous.getFoundDecl());
855 Previous.clear();
856 }
857
858 auto *BD = BindingDecl::Create(Context, DC, B.NameLoc, B.Name);
859
860 // Find the shadowed declaration before filtering for scope.
861 NamedDecl *ShadowedDecl = D.getCXXScopeSpec().isEmpty()
862 ? getShadowedDeclaration(BD, Previous)
863 : nullptr;
864
865 bool ConsiderLinkage = DC->isFunctionOrMethod() &&
866 DS.getStorageClassSpec() == DeclSpec::SCS_extern;
867 FilterLookupForScope(Previous, DC, S, ConsiderLinkage,
868 /*AllowInlineNamespace*/false);
869
870 if (!Previous.empty()) {
871 auto *Old = Previous.getRepresentativeDecl();
872 Diag(B.NameLoc, diag::err_redefinition) << B.Name;
873 Diag(Old->getLocation(), diag::note_previous_definition);
874 } else if (ShadowedDecl && !D.isRedeclaration()) {
875 CheckShadow(BD, ShadowedDecl, Previous);
876 }
877 PushOnScopeChains(BD, S, true);
878 Bindings.push_back(BD);
879 ParsingInitForAutoVars.insert(BD);
880 }
881
882 // There are no prior lookup results for the variable itself, because it
883 // is unnamed.
884 DeclarationNameInfo NameInfo((IdentifierInfo *)nullptr,
885 Decomp.getLSquareLoc());
886 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
887 ForVisibleRedeclaration);
888
889 // Build the variable that holds the non-decomposed object.
890 bool AddToScope = true;
891 NamedDecl *New =
892 ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
893 MultiTemplateParamsArg(), AddToScope, Bindings);
894 if (AddToScope) {
895 S->AddDecl(New);
896 CurContext->addHiddenDecl(New);
897 }
898
899 if (isInOpenMPDeclareTargetContext())
900 checkDeclIsAllowedInOpenMPTarget(nullptr, New);
901
902 return New;
903 }
904
checkSimpleDecomposition(Sema & S,ArrayRef<BindingDecl * > Bindings,ValueDecl * Src,QualType DecompType,const llvm::APSInt & NumElems,QualType ElemType,llvm::function_ref<ExprResult (SourceLocation,Expr *,unsigned)> GetInit)905 static bool checkSimpleDecomposition(
906 Sema &S, ArrayRef<BindingDecl *> Bindings, ValueDecl *Src,
907 QualType DecompType, const llvm::APSInt &NumElems, QualType ElemType,
908 llvm::function_ref<ExprResult(SourceLocation, Expr *, unsigned)> GetInit) {
909 if ((int64_t)Bindings.size() != NumElems) {
910 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings)
911 << DecompType << (unsigned)Bindings.size()
912 << (unsigned)NumElems.getLimitedValue(UINT_MAX)
913 << toString(NumElems, 10) << (NumElems < Bindings.size());
914 return true;
915 }
916
917 unsigned I = 0;
918 for (auto *B : Bindings) {
919 SourceLocation Loc = B->getLocation();
920 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc);
921 if (E.isInvalid())
922 return true;
923 E = GetInit(Loc, E.get(), I++);
924 if (E.isInvalid())
925 return true;
926 B->setBinding(ElemType, E.get());
927 }
928
929 return false;
930 }
931
checkArrayLikeDecomposition(Sema & S,ArrayRef<BindingDecl * > Bindings,ValueDecl * Src,QualType DecompType,const llvm::APSInt & NumElems,QualType ElemType)932 static bool checkArrayLikeDecomposition(Sema &S,
933 ArrayRef<BindingDecl *> Bindings,
934 ValueDecl *Src, QualType DecompType,
935 const llvm::APSInt &NumElems,
936 QualType ElemType) {
937 return checkSimpleDecomposition(
938 S, Bindings, Src, DecompType, NumElems, ElemType,
939 [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult {
940 ExprResult E = S.ActOnIntegerConstant(Loc, I);
941 if (E.isInvalid())
942 return ExprError();
943 return S.CreateBuiltinArraySubscriptExpr(Base, Loc, E.get(), Loc);
944 });
945 }
946
checkArrayDecomposition(Sema & S,ArrayRef<BindingDecl * > Bindings,ValueDecl * Src,QualType DecompType,const ConstantArrayType * CAT)947 static bool checkArrayDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings,
948 ValueDecl *Src, QualType DecompType,
949 const ConstantArrayType *CAT) {
950 return checkArrayLikeDecomposition(S, Bindings, Src, DecompType,
951 llvm::APSInt(CAT->getSize()),
952 CAT->getElementType());
953 }
954
checkVectorDecomposition(Sema & S,ArrayRef<BindingDecl * > Bindings,ValueDecl * Src,QualType DecompType,const VectorType * VT)955 static bool checkVectorDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings,
956 ValueDecl *Src, QualType DecompType,
957 const VectorType *VT) {
958 return checkArrayLikeDecomposition(
959 S, Bindings, Src, DecompType, llvm::APSInt::get(VT->getNumElements()),
960 S.Context.getQualifiedType(VT->getElementType(),
961 DecompType.getQualifiers()));
962 }
963
checkComplexDecomposition(Sema & S,ArrayRef<BindingDecl * > Bindings,ValueDecl * Src,QualType DecompType,const ComplexType * CT)964 static bool checkComplexDecomposition(Sema &S,
965 ArrayRef<BindingDecl *> Bindings,
966 ValueDecl *Src, QualType DecompType,
967 const ComplexType *CT) {
968 return checkSimpleDecomposition(
969 S, Bindings, Src, DecompType, llvm::APSInt::get(2),
970 S.Context.getQualifiedType(CT->getElementType(),
971 DecompType.getQualifiers()),
972 [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult {
973 return S.CreateBuiltinUnaryOp(Loc, I ? UO_Imag : UO_Real, Base);
974 });
975 }
976
printTemplateArgs(const PrintingPolicy & PrintingPolicy,TemplateArgumentListInfo & Args,const TemplateParameterList * Params)977 static std::string printTemplateArgs(const PrintingPolicy &PrintingPolicy,
978 TemplateArgumentListInfo &Args,
979 const TemplateParameterList *Params) {
980 SmallString<128> SS;
981 llvm::raw_svector_ostream OS(SS);
982 bool First = true;
983 unsigned I = 0;
984 for (auto &Arg : Args.arguments()) {
985 if (!First)
986 OS << ", ";
987 Arg.getArgument().print(PrintingPolicy, OS,
988 TemplateParameterList::shouldIncludeTypeForArgument(
989 PrintingPolicy, Params, I));
990 First = false;
991 I++;
992 }
993 return std::string(OS.str());
994 }
995
lookupStdTypeTraitMember(Sema & S,LookupResult & TraitMemberLookup,SourceLocation Loc,StringRef Trait,TemplateArgumentListInfo & Args,unsigned DiagID)996 static bool lookupStdTypeTraitMember(Sema &S, LookupResult &TraitMemberLookup,
997 SourceLocation Loc, StringRef Trait,
998 TemplateArgumentListInfo &Args,
999 unsigned DiagID) {
1000 auto DiagnoseMissing = [&] {
1001 if (DiagID)
1002 S.Diag(Loc, DiagID) << printTemplateArgs(S.Context.getPrintingPolicy(),
1003 Args, /*Params*/ nullptr);
1004 return true;
1005 };
1006
1007 // FIXME: Factor out duplication with lookupPromiseType in SemaCoroutine.
1008 NamespaceDecl *Std = S.getStdNamespace();
1009 if (!Std)
1010 return DiagnoseMissing();
1011
1012 // Look up the trait itself, within namespace std. We can diagnose various
1013 // problems with this lookup even if we've been asked to not diagnose a
1014 // missing specialization, because this can only fail if the user has been
1015 // declaring their own names in namespace std or we don't support the
1016 // standard library implementation in use.
1017 LookupResult Result(S, &S.PP.getIdentifierTable().get(Trait),
1018 Loc, Sema::LookupOrdinaryName);
1019 if (!S.LookupQualifiedName(Result, Std))
1020 return DiagnoseMissing();
1021 if (Result.isAmbiguous())
1022 return true;
1023
1024 ClassTemplateDecl *TraitTD = Result.getAsSingle<ClassTemplateDecl>();
1025 if (!TraitTD) {
1026 Result.suppressDiagnostics();
1027 NamedDecl *Found = *Result.begin();
1028 S.Diag(Loc, diag::err_std_type_trait_not_class_template) << Trait;
1029 S.Diag(Found->getLocation(), diag::note_declared_at);
1030 return true;
1031 }
1032
1033 // Build the template-id.
1034 QualType TraitTy = S.CheckTemplateIdType(TemplateName(TraitTD), Loc, Args);
1035 if (TraitTy.isNull())
1036 return true;
1037 if (!S.isCompleteType(Loc, TraitTy)) {
1038 if (DiagID)
1039 S.RequireCompleteType(
1040 Loc, TraitTy, DiagID,
1041 printTemplateArgs(S.Context.getPrintingPolicy(), Args,
1042 TraitTD->getTemplateParameters()));
1043 return true;
1044 }
1045
1046 CXXRecordDecl *RD = TraitTy->getAsCXXRecordDecl();
1047 assert(RD && "specialization of class template is not a class?");
1048
1049 // Look up the member of the trait type.
1050 S.LookupQualifiedName(TraitMemberLookup, RD);
1051 return TraitMemberLookup.isAmbiguous();
1052 }
1053
1054 static TemplateArgumentLoc
getTrivialIntegralTemplateArgument(Sema & S,SourceLocation Loc,QualType T,uint64_t I)1055 getTrivialIntegralTemplateArgument(Sema &S, SourceLocation Loc, QualType T,
1056 uint64_t I) {
1057 TemplateArgument Arg(S.Context, S.Context.MakeIntValue(I, T), T);
1058 return S.getTrivialTemplateArgumentLoc(Arg, T, Loc);
1059 }
1060
1061 static TemplateArgumentLoc
getTrivialTypeTemplateArgument(Sema & S,SourceLocation Loc,QualType T)1062 getTrivialTypeTemplateArgument(Sema &S, SourceLocation Loc, QualType T) {
1063 return S.getTrivialTemplateArgumentLoc(TemplateArgument(T), QualType(), Loc);
1064 }
1065
1066 namespace { enum class IsTupleLike { TupleLike, NotTupleLike, Error }; }
1067
isTupleLike(Sema & S,SourceLocation Loc,QualType T,llvm::APSInt & Size)1068 static IsTupleLike isTupleLike(Sema &S, SourceLocation Loc, QualType T,
1069 llvm::APSInt &Size) {
1070 EnterExpressionEvaluationContext ContextRAII(
1071 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
1072
1073 DeclarationName Value = S.PP.getIdentifierInfo("value");
1074 LookupResult R(S, Value, Loc, Sema::LookupOrdinaryName);
1075
1076 // Form template argument list for tuple_size<T>.
1077 TemplateArgumentListInfo Args(Loc, Loc);
1078 Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T));
1079
1080 // If there's no tuple_size specialization or the lookup of 'value' is empty,
1081 // it's not tuple-like.
1082 if (lookupStdTypeTraitMember(S, R, Loc, "tuple_size", Args, /*DiagID*/ 0) ||
1083 R.empty())
1084 return IsTupleLike::NotTupleLike;
1085
1086 // If we get this far, we've committed to the tuple interpretation, but
1087 // we can still fail if there actually isn't a usable ::value.
1088
1089 struct ICEDiagnoser : Sema::VerifyICEDiagnoser {
1090 LookupResult &R;
1091 TemplateArgumentListInfo &Args;
1092 ICEDiagnoser(LookupResult &R, TemplateArgumentListInfo &Args)
1093 : R(R), Args(Args) {}
1094 Sema::SemaDiagnosticBuilder diagnoseNotICE(Sema &S,
1095 SourceLocation Loc) override {
1096 return S.Diag(Loc, diag::err_decomp_decl_std_tuple_size_not_constant)
1097 << printTemplateArgs(S.Context.getPrintingPolicy(), Args,
1098 /*Params*/ nullptr);
1099 }
1100 } Diagnoser(R, Args);
1101
1102 ExprResult E =
1103 S.BuildDeclarationNameExpr(CXXScopeSpec(), R, /*NeedsADL*/false);
1104 if (E.isInvalid())
1105 return IsTupleLike::Error;
1106
1107 E = S.VerifyIntegerConstantExpression(E.get(), &Size, Diagnoser);
1108 if (E.isInvalid())
1109 return IsTupleLike::Error;
1110
1111 return IsTupleLike::TupleLike;
1112 }
1113
1114 /// \return std::tuple_element<I, T>::type.
getTupleLikeElementType(Sema & S,SourceLocation Loc,unsigned I,QualType T)1115 static QualType getTupleLikeElementType(Sema &S, SourceLocation Loc,
1116 unsigned I, QualType T) {
1117 // Form template argument list for tuple_element<I, T>.
1118 TemplateArgumentListInfo Args(Loc, Loc);
1119 Args.addArgument(
1120 getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I));
1121 Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T));
1122
1123 DeclarationName TypeDN = S.PP.getIdentifierInfo("type");
1124 LookupResult R(S, TypeDN, Loc, Sema::LookupOrdinaryName);
1125 if (lookupStdTypeTraitMember(
1126 S, R, Loc, "tuple_element", Args,
1127 diag::err_decomp_decl_std_tuple_element_not_specialized))
1128 return QualType();
1129
1130 auto *TD = R.getAsSingle<TypeDecl>();
1131 if (!TD) {
1132 R.suppressDiagnostics();
1133 S.Diag(Loc, diag::err_decomp_decl_std_tuple_element_not_specialized)
1134 << printTemplateArgs(S.Context.getPrintingPolicy(), Args,
1135 /*Params*/ nullptr);
1136 if (!R.empty())
1137 S.Diag(R.getRepresentativeDecl()->getLocation(), diag::note_declared_at);
1138 return QualType();
1139 }
1140
1141 return S.Context.getTypeDeclType(TD);
1142 }
1143
1144 namespace {
1145 struct InitializingBinding {
1146 Sema &S;
InitializingBinding__anonc19065b00811::InitializingBinding1147 InitializingBinding(Sema &S, BindingDecl *BD) : S(S) {
1148 Sema::CodeSynthesisContext Ctx;
1149 Ctx.Kind = Sema::CodeSynthesisContext::InitializingStructuredBinding;
1150 Ctx.PointOfInstantiation = BD->getLocation();
1151 Ctx.Entity = BD;
1152 S.pushCodeSynthesisContext(Ctx);
1153 }
~InitializingBinding__anonc19065b00811::InitializingBinding1154 ~InitializingBinding() {
1155 S.popCodeSynthesisContext();
1156 }
1157 };
1158 }
1159
checkTupleLikeDecomposition(Sema & S,ArrayRef<BindingDecl * > Bindings,VarDecl * Src,QualType DecompType,const llvm::APSInt & TupleSize)1160 static bool checkTupleLikeDecomposition(Sema &S,
1161 ArrayRef<BindingDecl *> Bindings,
1162 VarDecl *Src, QualType DecompType,
1163 const llvm::APSInt &TupleSize) {
1164 if ((int64_t)Bindings.size() != TupleSize) {
1165 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings)
1166 << DecompType << (unsigned)Bindings.size()
1167 << (unsigned)TupleSize.getLimitedValue(UINT_MAX)
1168 << toString(TupleSize, 10) << (TupleSize < Bindings.size());
1169 return true;
1170 }
1171
1172 if (Bindings.empty())
1173 return false;
1174
1175 DeclarationName GetDN = S.PP.getIdentifierInfo("get");
1176
1177 // [dcl.decomp]p3:
1178 // The unqualified-id get is looked up in the scope of E by class member
1179 // access lookup ...
1180 LookupResult MemberGet(S, GetDN, Src->getLocation(), Sema::LookupMemberName);
1181 bool UseMemberGet = false;
1182 if (S.isCompleteType(Src->getLocation(), DecompType)) {
1183 if (auto *RD = DecompType->getAsCXXRecordDecl())
1184 S.LookupQualifiedName(MemberGet, RD);
1185 if (MemberGet.isAmbiguous())
1186 return true;
1187 // ... and if that finds at least one declaration that is a function
1188 // template whose first template parameter is a non-type parameter ...
1189 for (NamedDecl *D : MemberGet) {
1190 if (FunctionTemplateDecl *FTD =
1191 dyn_cast<FunctionTemplateDecl>(D->getUnderlyingDecl())) {
1192 TemplateParameterList *TPL = FTD->getTemplateParameters();
1193 if (TPL->size() != 0 &&
1194 isa<NonTypeTemplateParmDecl>(TPL->getParam(0))) {
1195 // ... the initializer is e.get<i>().
1196 UseMemberGet = true;
1197 break;
1198 }
1199 }
1200 }
1201 }
1202
1203 unsigned I = 0;
1204 for (auto *B : Bindings) {
1205 InitializingBinding InitContext(S, B);
1206 SourceLocation Loc = B->getLocation();
1207
1208 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc);
1209 if (E.isInvalid())
1210 return true;
1211
1212 // e is an lvalue if the type of the entity is an lvalue reference and
1213 // an xvalue otherwise
1214 if (!Src->getType()->isLValueReferenceType())
1215 E = ImplicitCastExpr::Create(S.Context, E.get()->getType(), CK_NoOp,
1216 E.get(), nullptr, VK_XValue,
1217 FPOptionsOverride());
1218
1219 TemplateArgumentListInfo Args(Loc, Loc);
1220 Args.addArgument(
1221 getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I));
1222
1223 if (UseMemberGet) {
1224 // if [lookup of member get] finds at least one declaration, the
1225 // initializer is e.get<i-1>().
1226 E = S.BuildMemberReferenceExpr(E.get(), DecompType, Loc, false,
1227 CXXScopeSpec(), SourceLocation(), nullptr,
1228 MemberGet, &Args, nullptr);
1229 if (E.isInvalid())
1230 return true;
1231
1232 E = S.BuildCallExpr(nullptr, E.get(), Loc, None, Loc);
1233 } else {
1234 // Otherwise, the initializer is get<i-1>(e), where get is looked up
1235 // in the associated namespaces.
1236 Expr *Get = UnresolvedLookupExpr::Create(
1237 S.Context, nullptr, NestedNameSpecifierLoc(), SourceLocation(),
1238 DeclarationNameInfo(GetDN, Loc), /*RequiresADL*/true, &Args,
1239 UnresolvedSetIterator(), UnresolvedSetIterator());
1240
1241 Expr *Arg = E.get();
1242 E = S.BuildCallExpr(nullptr, Get, Loc, Arg, Loc);
1243 }
1244 if (E.isInvalid())
1245 return true;
1246 Expr *Init = E.get();
1247
1248 // Given the type T designated by std::tuple_element<i - 1, E>::type,
1249 QualType T = getTupleLikeElementType(S, Loc, I, DecompType);
1250 if (T.isNull())
1251 return true;
1252
1253 // each vi is a variable of type "reference to T" initialized with the
1254 // initializer, where the reference is an lvalue reference if the
1255 // initializer is an lvalue and an rvalue reference otherwise
1256 QualType RefType =
1257 S.BuildReferenceType(T, E.get()->isLValue(), Loc, B->getDeclName());
1258 if (RefType.isNull())
1259 return true;
1260 auto *RefVD = VarDecl::Create(
1261 S.Context, Src->getDeclContext(), Loc, Loc,
1262 B->getDeclName().getAsIdentifierInfo(), RefType,
1263 S.Context.getTrivialTypeSourceInfo(T, Loc), Src->getStorageClass());
1264 RefVD->setLexicalDeclContext(Src->getLexicalDeclContext());
1265 RefVD->setTSCSpec(Src->getTSCSpec());
1266 RefVD->setImplicit();
1267 if (Src->isInlineSpecified())
1268 RefVD->setInlineSpecified();
1269 RefVD->getLexicalDeclContext()->addHiddenDecl(RefVD);
1270
1271 InitializedEntity Entity = InitializedEntity::InitializeBinding(RefVD);
1272 InitializationKind Kind = InitializationKind::CreateCopy(Loc, Loc);
1273 InitializationSequence Seq(S, Entity, Kind, Init);
1274 E = Seq.Perform(S, Entity, Kind, Init);
1275 if (E.isInvalid())
1276 return true;
1277 E = S.ActOnFinishFullExpr(E.get(), Loc, /*DiscardedValue*/ false);
1278 if (E.isInvalid())
1279 return true;
1280 RefVD->setInit(E.get());
1281 S.CheckCompleteVariableDeclaration(RefVD);
1282
1283 E = S.BuildDeclarationNameExpr(CXXScopeSpec(),
1284 DeclarationNameInfo(B->getDeclName(), Loc),
1285 RefVD);
1286 if (E.isInvalid())
1287 return true;
1288
1289 B->setBinding(T, E.get());
1290 I++;
1291 }
1292
1293 return false;
1294 }
1295
1296 /// Find the base class to decompose in a built-in decomposition of a class type.
1297 /// This base class search is, unfortunately, not quite like any other that we
1298 /// perform anywhere else in C++.
findDecomposableBaseClass(Sema & S,SourceLocation Loc,const CXXRecordDecl * RD,CXXCastPath & BasePath)1299 static DeclAccessPair findDecomposableBaseClass(Sema &S, SourceLocation Loc,
1300 const CXXRecordDecl *RD,
1301 CXXCastPath &BasePath) {
1302 auto BaseHasFields = [](const CXXBaseSpecifier *Specifier,
1303 CXXBasePath &Path) {
1304 return Specifier->getType()->getAsCXXRecordDecl()->hasDirectFields();
1305 };
1306
1307 const CXXRecordDecl *ClassWithFields = nullptr;
1308 AccessSpecifier AS = AS_public;
1309 if (RD->hasDirectFields())
1310 // [dcl.decomp]p4:
1311 // Otherwise, all of E's non-static data members shall be public direct
1312 // members of E ...
1313 ClassWithFields = RD;
1314 else {
1315 // ... or of ...
1316 CXXBasePaths Paths;
1317 Paths.setOrigin(const_cast<CXXRecordDecl*>(RD));
1318 if (!RD->lookupInBases(BaseHasFields, Paths)) {
1319 // If no classes have fields, just decompose RD itself. (This will work
1320 // if and only if zero bindings were provided.)
1321 return DeclAccessPair::make(const_cast<CXXRecordDecl*>(RD), AS_public);
1322 }
1323
1324 CXXBasePath *BestPath = nullptr;
1325 for (auto &P : Paths) {
1326 if (!BestPath)
1327 BestPath = &P;
1328 else if (!S.Context.hasSameType(P.back().Base->getType(),
1329 BestPath->back().Base->getType())) {
1330 // ... the same ...
1331 S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members)
1332 << false << RD << BestPath->back().Base->getType()
1333 << P.back().Base->getType();
1334 return DeclAccessPair();
1335 } else if (P.Access < BestPath->Access) {
1336 BestPath = &P;
1337 }
1338 }
1339
1340 // ... unambiguous ...
1341 QualType BaseType = BestPath->back().Base->getType();
1342 if (Paths.isAmbiguous(S.Context.getCanonicalType(BaseType))) {
1343 S.Diag(Loc, diag::err_decomp_decl_ambiguous_base)
1344 << RD << BaseType << S.getAmbiguousPathsDisplayString(Paths);
1345 return DeclAccessPair();
1346 }
1347
1348 // ... [accessible, implied by other rules] base class of E.
1349 S.CheckBaseClassAccess(Loc, BaseType, S.Context.getRecordType(RD),
1350 *BestPath, diag::err_decomp_decl_inaccessible_base);
1351 AS = BestPath->Access;
1352
1353 ClassWithFields = BaseType->getAsCXXRecordDecl();
1354 S.BuildBasePathArray(Paths, BasePath);
1355 }
1356
1357 // The above search did not check whether the selected class itself has base
1358 // classes with fields, so check that now.
1359 CXXBasePaths Paths;
1360 if (ClassWithFields->lookupInBases(BaseHasFields, Paths)) {
1361 S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members)
1362 << (ClassWithFields == RD) << RD << ClassWithFields
1363 << Paths.front().back().Base->getType();
1364 return DeclAccessPair();
1365 }
1366
1367 return DeclAccessPair::make(const_cast<CXXRecordDecl*>(ClassWithFields), AS);
1368 }
1369
checkMemberDecomposition(Sema & S,ArrayRef<BindingDecl * > Bindings,ValueDecl * Src,QualType DecompType,const CXXRecordDecl * OrigRD)1370 static bool checkMemberDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings,
1371 ValueDecl *Src, QualType DecompType,
1372 const CXXRecordDecl *OrigRD) {
1373 if (S.RequireCompleteType(Src->getLocation(), DecompType,
1374 diag::err_incomplete_type))
1375 return true;
1376
1377 CXXCastPath BasePath;
1378 DeclAccessPair BasePair =
1379 findDecomposableBaseClass(S, Src->getLocation(), OrigRD, BasePath);
1380 const CXXRecordDecl *RD = cast_or_null<CXXRecordDecl>(BasePair.getDecl());
1381 if (!RD)
1382 return true;
1383 QualType BaseType = S.Context.getQualifiedType(S.Context.getRecordType(RD),
1384 DecompType.getQualifiers());
1385
1386 auto DiagnoseBadNumberOfBindings = [&]() -> bool {
1387 unsigned NumFields = llvm::count_if(
1388 RD->fields(), [](FieldDecl *FD) { return !FD->isUnnamedBitfield(); });
1389 assert(Bindings.size() != NumFields);
1390 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings)
1391 << DecompType << (unsigned)Bindings.size() << NumFields << NumFields
1392 << (NumFields < Bindings.size());
1393 return true;
1394 };
1395
1396 // all of E's non-static data members shall be [...] well-formed
1397 // when named as e.name in the context of the structured binding,
1398 // E shall not have an anonymous union member, ...
1399 unsigned I = 0;
1400 for (auto *FD : RD->fields()) {
1401 if (FD->isUnnamedBitfield())
1402 continue;
1403
1404 // All the non-static data members are required to be nameable, so they
1405 // must all have names.
1406 if (!FD->getDeclName()) {
1407 if (RD->isLambda()) {
1408 S.Diag(Src->getLocation(), diag::err_decomp_decl_lambda);
1409 S.Diag(RD->getLocation(), diag::note_lambda_decl);
1410 return true;
1411 }
1412
1413 if (FD->isAnonymousStructOrUnion()) {
1414 S.Diag(Src->getLocation(), diag::err_decomp_decl_anon_union_member)
1415 << DecompType << FD->getType()->isUnionType();
1416 S.Diag(FD->getLocation(), diag::note_declared_at);
1417 return true;
1418 }
1419
1420 // FIXME: Are there any other ways we could have an anonymous member?
1421 }
1422
1423 // We have a real field to bind.
1424 if (I >= Bindings.size())
1425 return DiagnoseBadNumberOfBindings();
1426 auto *B = Bindings[I++];
1427 SourceLocation Loc = B->getLocation();
1428
1429 // The field must be accessible in the context of the structured binding.
1430 // We already checked that the base class is accessible.
1431 // FIXME: Add 'const' to AccessedEntity's classes so we can remove the
1432 // const_cast here.
1433 S.CheckStructuredBindingMemberAccess(
1434 Loc, const_cast<CXXRecordDecl *>(OrigRD),
1435 DeclAccessPair::make(FD, CXXRecordDecl::MergeAccess(
1436 BasePair.getAccess(), FD->getAccess())));
1437
1438 // Initialize the binding to Src.FD.
1439 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc);
1440 if (E.isInvalid())
1441 return true;
1442 E = S.ImpCastExprToType(E.get(), BaseType, CK_UncheckedDerivedToBase,
1443 VK_LValue, &BasePath);
1444 if (E.isInvalid())
1445 return true;
1446 E = S.BuildFieldReferenceExpr(E.get(), /*IsArrow*/ false, Loc,
1447 CXXScopeSpec(), FD,
1448 DeclAccessPair::make(FD, FD->getAccess()),
1449 DeclarationNameInfo(FD->getDeclName(), Loc));
1450 if (E.isInvalid())
1451 return true;
1452
1453 // If the type of the member is T, the referenced type is cv T, where cv is
1454 // the cv-qualification of the decomposition expression.
1455 //
1456 // FIXME: We resolve a defect here: if the field is mutable, we do not add
1457 // 'const' to the type of the field.
1458 Qualifiers Q = DecompType.getQualifiers();
1459 if (FD->isMutable())
1460 Q.removeConst();
1461 B->setBinding(S.BuildQualifiedType(FD->getType(), Loc, Q), E.get());
1462 }
1463
1464 if (I != Bindings.size())
1465 return DiagnoseBadNumberOfBindings();
1466
1467 return false;
1468 }
1469
CheckCompleteDecompositionDeclaration(DecompositionDecl * DD)1470 void Sema::CheckCompleteDecompositionDeclaration(DecompositionDecl *DD) {
1471 QualType DecompType = DD->getType();
1472
1473 // If the type of the decomposition is dependent, then so is the type of
1474 // each binding.
1475 if (DecompType->isDependentType()) {
1476 for (auto *B : DD->bindings())
1477 B->setType(Context.DependentTy);
1478 return;
1479 }
1480
1481 DecompType = DecompType.getNonReferenceType();
1482 ArrayRef<BindingDecl*> Bindings = DD->bindings();
1483
1484 // C++1z [dcl.decomp]/2:
1485 // If E is an array type [...]
1486 // As an extension, we also support decomposition of built-in complex and
1487 // vector types.
1488 if (auto *CAT = Context.getAsConstantArrayType(DecompType)) {
1489 if (checkArrayDecomposition(*this, Bindings, DD, DecompType, CAT))
1490 DD->setInvalidDecl();
1491 return;
1492 }
1493 if (auto *VT = DecompType->getAs<VectorType>()) {
1494 if (checkVectorDecomposition(*this, Bindings, DD, DecompType, VT))
1495 DD->setInvalidDecl();
1496 return;
1497 }
1498 if (auto *CT = DecompType->getAs<ComplexType>()) {
1499 if (checkComplexDecomposition(*this, Bindings, DD, DecompType, CT))
1500 DD->setInvalidDecl();
1501 return;
1502 }
1503
1504 // C++1z [dcl.decomp]/3:
1505 // if the expression std::tuple_size<E>::value is a well-formed integral
1506 // constant expression, [...]
1507 llvm::APSInt TupleSize(32);
1508 switch (isTupleLike(*this, DD->getLocation(), DecompType, TupleSize)) {
1509 case IsTupleLike::Error:
1510 DD->setInvalidDecl();
1511 return;
1512
1513 case IsTupleLike::TupleLike:
1514 if (checkTupleLikeDecomposition(*this, Bindings, DD, DecompType, TupleSize))
1515 DD->setInvalidDecl();
1516 return;
1517
1518 case IsTupleLike::NotTupleLike:
1519 break;
1520 }
1521
1522 // C++1z [dcl.dcl]/8:
1523 // [E shall be of array or non-union class type]
1524 CXXRecordDecl *RD = DecompType->getAsCXXRecordDecl();
1525 if (!RD || RD->isUnion()) {
1526 Diag(DD->getLocation(), diag::err_decomp_decl_unbindable_type)
1527 << DD << !RD << DecompType;
1528 DD->setInvalidDecl();
1529 return;
1530 }
1531
1532 // C++1z [dcl.decomp]/4:
1533 // all of E's non-static data members shall be [...] direct members of
1534 // E or of the same unambiguous public base class of E, ...
1535 if (checkMemberDecomposition(*this, Bindings, DD, DecompType, RD))
1536 DD->setInvalidDecl();
1537 }
1538
1539 /// Merge the exception specifications of two variable declarations.
1540 ///
1541 /// This is called when there's a redeclaration of a VarDecl. The function
1542 /// checks if the redeclaration might have an exception specification and
1543 /// validates compatibility and merges the specs if necessary.
MergeVarDeclExceptionSpecs(VarDecl * New,VarDecl * Old)1544 void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
1545 // Shortcut if exceptions are disabled.
1546 if (!getLangOpts().CXXExceptions)
1547 return;
1548
1549 assert(Context.hasSameType(New->getType(), Old->getType()) &&
1550 "Should only be called if types are otherwise the same.");
1551
1552 QualType NewType = New->getType();
1553 QualType OldType = Old->getType();
1554
1555 // We're only interested in pointers and references to functions, as well
1556 // as pointers to member functions.
1557 if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
1558 NewType = R->getPointeeType();
1559 OldType = OldType->castAs<ReferenceType>()->getPointeeType();
1560 } else if (const PointerType *P = NewType->getAs<PointerType>()) {
1561 NewType = P->getPointeeType();
1562 OldType = OldType->castAs<PointerType>()->getPointeeType();
1563 } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
1564 NewType = M->getPointeeType();
1565 OldType = OldType->castAs<MemberPointerType>()->getPointeeType();
1566 }
1567
1568 if (!NewType->isFunctionProtoType())
1569 return;
1570
1571 // There's lots of special cases for functions. For function pointers, system
1572 // libraries are hopefully not as broken so that we don't need these
1573 // workarounds.
1574 if (CheckEquivalentExceptionSpec(
1575 OldType->getAs<FunctionProtoType>(), Old->getLocation(),
1576 NewType->getAs<FunctionProtoType>(), New->getLocation())) {
1577 New->setInvalidDecl();
1578 }
1579 }
1580
1581 /// CheckCXXDefaultArguments - Verify that the default arguments for a
1582 /// function declaration are well-formed according to C++
1583 /// [dcl.fct.default].
CheckCXXDefaultArguments(FunctionDecl * FD)1584 void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
1585 unsigned NumParams = FD->getNumParams();
1586 unsigned ParamIdx = 0;
1587
1588 // This checking doesn't make sense for explicit specializations; their
1589 // default arguments are determined by the declaration we're specializing,
1590 // not by FD.
1591 if (FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
1592 return;
1593 if (auto *FTD = FD->getDescribedFunctionTemplate())
1594 if (FTD->isMemberSpecialization())
1595 return;
1596
1597 // Find first parameter with a default argument
1598 for (; ParamIdx < NumParams; ++ParamIdx) {
1599 ParmVarDecl *Param = FD->getParamDecl(ParamIdx);
1600 if (Param->hasDefaultArg())
1601 break;
1602 }
1603
1604 // C++20 [dcl.fct.default]p4:
1605 // In a given function declaration, each parameter subsequent to a parameter
1606 // with a default argument shall have a default argument supplied in this or
1607 // a previous declaration, unless the parameter was expanded from a
1608 // parameter pack, or shall be a function parameter pack.
1609 for (; ParamIdx < NumParams; ++ParamIdx) {
1610 ParmVarDecl *Param = FD->getParamDecl(ParamIdx);
1611 if (!Param->hasDefaultArg() && !Param->isParameterPack() &&
1612 !(CurrentInstantiationScope &&
1613 CurrentInstantiationScope->isLocalPackExpansion(Param))) {
1614 if (Param->isInvalidDecl())
1615 /* We already complained about this parameter. */;
1616 else if (Param->getIdentifier())
1617 Diag(Param->getLocation(),
1618 diag::err_param_default_argument_missing_name)
1619 << Param->getIdentifier();
1620 else
1621 Diag(Param->getLocation(),
1622 diag::err_param_default_argument_missing);
1623 }
1624 }
1625 }
1626
1627 /// Check that the given type is a literal type. Issue a diagnostic if not,
1628 /// if Kind is Diagnose.
1629 /// \return \c true if a problem has been found (and optionally diagnosed).
1630 template <typename... Ts>
CheckLiteralType(Sema & SemaRef,Sema::CheckConstexprKind Kind,SourceLocation Loc,QualType T,unsigned DiagID,Ts &&...DiagArgs)1631 static bool CheckLiteralType(Sema &SemaRef, Sema::CheckConstexprKind Kind,
1632 SourceLocation Loc, QualType T, unsigned DiagID,
1633 Ts &&...DiagArgs) {
1634 if (T->isDependentType())
1635 return false;
1636
1637 switch (Kind) {
1638 case Sema::CheckConstexprKind::Diagnose:
1639 return SemaRef.RequireLiteralType(Loc, T, DiagID,
1640 std::forward<Ts>(DiagArgs)...);
1641
1642 case Sema::CheckConstexprKind::CheckValid:
1643 return !T->isLiteralType(SemaRef.Context);
1644 }
1645
1646 llvm_unreachable("unknown CheckConstexprKind");
1647 }
1648
1649 /// Determine whether a destructor cannot be constexpr due to
CheckConstexprDestructorSubobjects(Sema & SemaRef,const CXXDestructorDecl * DD,Sema::CheckConstexprKind Kind)1650 static bool CheckConstexprDestructorSubobjects(Sema &SemaRef,
1651 const CXXDestructorDecl *DD,
1652 Sema::CheckConstexprKind Kind) {
1653 auto Check = [&](SourceLocation Loc, QualType T, const FieldDecl *FD) {
1654 const CXXRecordDecl *RD =
1655 T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1656 if (!RD || RD->hasConstexprDestructor())
1657 return true;
1658
1659 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1660 SemaRef.Diag(DD->getLocation(), diag::err_constexpr_dtor_subobject)
1661 << static_cast<int>(DD->getConstexprKind()) << !FD
1662 << (FD ? FD->getDeclName() : DeclarationName()) << T;
1663 SemaRef.Diag(Loc, diag::note_constexpr_dtor_subobject)
1664 << !FD << (FD ? FD->getDeclName() : DeclarationName()) << T;
1665 }
1666 return false;
1667 };
1668
1669 const CXXRecordDecl *RD = DD->getParent();
1670 for (const CXXBaseSpecifier &B : RD->bases())
1671 if (!Check(B.getBaseTypeLoc(), B.getType(), nullptr))
1672 return false;
1673 for (const FieldDecl *FD : RD->fields())
1674 if (!Check(FD->getLocation(), FD->getType(), FD))
1675 return false;
1676 return true;
1677 }
1678
1679 /// Check whether a function's parameter types are all literal types. If so,
1680 /// return true. If not, produce a suitable diagnostic and return false.
CheckConstexprParameterTypes(Sema & SemaRef,const FunctionDecl * FD,Sema::CheckConstexprKind Kind)1681 static bool CheckConstexprParameterTypes(Sema &SemaRef,
1682 const FunctionDecl *FD,
1683 Sema::CheckConstexprKind Kind) {
1684 unsigned ArgIndex = 0;
1685 const auto *FT = FD->getType()->castAs<FunctionProtoType>();
1686 for (FunctionProtoType::param_type_iterator i = FT->param_type_begin(),
1687 e = FT->param_type_end();
1688 i != e; ++i, ++ArgIndex) {
1689 const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
1690 SourceLocation ParamLoc = PD->getLocation();
1691 if (CheckLiteralType(SemaRef, Kind, ParamLoc, *i,
1692 diag::err_constexpr_non_literal_param, ArgIndex + 1,
1693 PD->getSourceRange(), isa<CXXConstructorDecl>(FD),
1694 FD->isConsteval()))
1695 return false;
1696 }
1697 return true;
1698 }
1699
1700 /// Check whether a function's return type is a literal type. If so, return
1701 /// true. If not, produce a suitable diagnostic and return false.
CheckConstexprReturnType(Sema & SemaRef,const FunctionDecl * FD,Sema::CheckConstexprKind Kind)1702 static bool CheckConstexprReturnType(Sema &SemaRef, const FunctionDecl *FD,
1703 Sema::CheckConstexprKind Kind) {
1704 if (CheckLiteralType(SemaRef, Kind, FD->getLocation(), FD->getReturnType(),
1705 diag::err_constexpr_non_literal_return,
1706 FD->isConsteval()))
1707 return false;
1708 return true;
1709 }
1710
1711 /// Get diagnostic %select index for tag kind for
1712 /// record diagnostic message.
1713 /// WARNING: Indexes apply to particular diagnostics only!
1714 ///
1715 /// \returns diagnostic %select index.
getRecordDiagFromTagKind(TagTypeKind Tag)1716 static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) {
1717 switch (Tag) {
1718 case TTK_Struct: return 0;
1719 case TTK_Interface: return 1;
1720 case TTK_Class: return 2;
1721 default: llvm_unreachable("Invalid tag kind for record diagnostic!");
1722 }
1723 }
1724
1725 static bool CheckConstexprFunctionBody(Sema &SemaRef, const FunctionDecl *Dcl,
1726 Stmt *Body,
1727 Sema::CheckConstexprKind Kind);
1728
1729 // Check whether a function declaration satisfies the requirements of a
1730 // constexpr function definition or a constexpr constructor definition. If so,
1731 // return true. If not, produce appropriate diagnostics (unless asked not to by
1732 // Kind) and return false.
1733 //
1734 // This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
CheckConstexprFunctionDefinition(const FunctionDecl * NewFD,CheckConstexprKind Kind)1735 bool Sema::CheckConstexprFunctionDefinition(const FunctionDecl *NewFD,
1736 CheckConstexprKind Kind) {
1737 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
1738 if (MD && MD->isInstance()) {
1739 // C++11 [dcl.constexpr]p4:
1740 // The definition of a constexpr constructor shall satisfy the following
1741 // constraints:
1742 // - the class shall not have any virtual base classes;
1743 //
1744 // FIXME: This only applies to constructors and destructors, not arbitrary
1745 // member functions.
1746 const CXXRecordDecl *RD = MD->getParent();
1747 if (RD->getNumVBases()) {
1748 if (Kind == CheckConstexprKind::CheckValid)
1749 return false;
1750
1751 Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
1752 << isa<CXXConstructorDecl>(NewFD)
1753 << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
1754 for (const auto &I : RD->vbases())
1755 Diag(I.getBeginLoc(), diag::note_constexpr_virtual_base_here)
1756 << I.getSourceRange();
1757 return false;
1758 }
1759 }
1760
1761 if (!isa<CXXConstructorDecl>(NewFD)) {
1762 // C++11 [dcl.constexpr]p3:
1763 // The definition of a constexpr function shall satisfy the following
1764 // constraints:
1765 // - it shall not be virtual; (removed in C++20)
1766 const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
1767 if (Method && Method->isVirtual()) {
1768 if (getLangOpts().CPlusPlus20) {
1769 if (Kind == CheckConstexprKind::Diagnose)
1770 Diag(Method->getLocation(), diag::warn_cxx17_compat_constexpr_virtual);
1771 } else {
1772 if (Kind == CheckConstexprKind::CheckValid)
1773 return false;
1774
1775 Method = Method->getCanonicalDecl();
1776 Diag(Method->getLocation(), diag::err_constexpr_virtual);
1777
1778 // If it's not obvious why this function is virtual, find an overridden
1779 // function which uses the 'virtual' keyword.
1780 const CXXMethodDecl *WrittenVirtual = Method;
1781 while (!WrittenVirtual->isVirtualAsWritten())
1782 WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
1783 if (WrittenVirtual != Method)
1784 Diag(WrittenVirtual->getLocation(),
1785 diag::note_overridden_virtual_function);
1786 return false;
1787 }
1788 }
1789
1790 // - its return type shall be a literal type;
1791 if (!CheckConstexprReturnType(*this, NewFD, Kind))
1792 return false;
1793 }
1794
1795 if (auto *Dtor = dyn_cast<CXXDestructorDecl>(NewFD)) {
1796 // A destructor can be constexpr only if the defaulted destructor could be;
1797 // we don't need to check the members and bases if we already know they all
1798 // have constexpr destructors.
1799 if (!Dtor->getParent()->defaultedDestructorIsConstexpr()) {
1800 if (Kind == CheckConstexprKind::CheckValid)
1801 return false;
1802 if (!CheckConstexprDestructorSubobjects(*this, Dtor, Kind))
1803 return false;
1804 }
1805 }
1806
1807 // - each of its parameter types shall be a literal type;
1808 if (!CheckConstexprParameterTypes(*this, NewFD, Kind))
1809 return false;
1810
1811 Stmt *Body = NewFD->getBody();
1812 assert(Body &&
1813 "CheckConstexprFunctionDefinition called on function with no body");
1814 return CheckConstexprFunctionBody(*this, NewFD, Body, Kind);
1815 }
1816
1817 /// Check the given declaration statement is legal within a constexpr function
1818 /// body. C++11 [dcl.constexpr]p3,p4, and C++1y [dcl.constexpr]p3.
1819 ///
1820 /// \return true if the body is OK (maybe only as an extension), false if we
1821 /// have diagnosed a problem.
CheckConstexprDeclStmt(Sema & SemaRef,const FunctionDecl * Dcl,DeclStmt * DS,SourceLocation & Cxx1yLoc,Sema::CheckConstexprKind Kind)1822 static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
1823 DeclStmt *DS, SourceLocation &Cxx1yLoc,
1824 Sema::CheckConstexprKind Kind) {
1825 // C++11 [dcl.constexpr]p3 and p4:
1826 // The definition of a constexpr function(p3) or constructor(p4) [...] shall
1827 // contain only
1828 for (const auto *DclIt : DS->decls()) {
1829 switch (DclIt->getKind()) {
1830 case Decl::StaticAssert:
1831 case Decl::Using:
1832 case Decl::UsingShadow:
1833 case Decl::UsingDirective:
1834 case Decl::UnresolvedUsingTypename:
1835 case Decl::UnresolvedUsingValue:
1836 case Decl::UsingEnum:
1837 // - static_assert-declarations
1838 // - using-declarations,
1839 // - using-directives,
1840 // - using-enum-declaration
1841 continue;
1842
1843 case Decl::Typedef:
1844 case Decl::TypeAlias: {
1845 // - typedef declarations and alias-declarations that do not define
1846 // classes or enumerations,
1847 const auto *TN = cast<TypedefNameDecl>(DclIt);
1848 if (TN->getUnderlyingType()->isVariablyModifiedType()) {
1849 // Don't allow variably-modified types in constexpr functions.
1850 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1851 TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
1852 SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
1853 << TL.getSourceRange() << TL.getType()
1854 << isa<CXXConstructorDecl>(Dcl);
1855 }
1856 return false;
1857 }
1858 continue;
1859 }
1860
1861 case Decl::Enum:
1862 case Decl::CXXRecord:
1863 // C++1y allows types to be defined, not just declared.
1864 if (cast<TagDecl>(DclIt)->isThisDeclarationADefinition()) {
1865 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1866 SemaRef.Diag(DS->getBeginLoc(),
1867 SemaRef.getLangOpts().CPlusPlus14
1868 ? diag::warn_cxx11_compat_constexpr_type_definition
1869 : diag::ext_constexpr_type_definition)
1870 << isa<CXXConstructorDecl>(Dcl);
1871 } else if (!SemaRef.getLangOpts().CPlusPlus14) {
1872 return false;
1873 }
1874 }
1875 continue;
1876
1877 case Decl::EnumConstant:
1878 case Decl::IndirectField:
1879 case Decl::ParmVar:
1880 // These can only appear with other declarations which are banned in
1881 // C++11 and permitted in C++1y, so ignore them.
1882 continue;
1883
1884 case Decl::Var:
1885 case Decl::Decomposition: {
1886 // C++1y [dcl.constexpr]p3 allows anything except:
1887 // a definition of a variable of non-literal type or of static or
1888 // thread storage duration or [before C++2a] for which no
1889 // initialization is performed.
1890 const auto *VD = cast<VarDecl>(DclIt);
1891 if (VD->isThisDeclarationADefinition()) {
1892 if (VD->isStaticLocal()) {
1893 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1894 SemaRef.Diag(VD->getLocation(),
1895 SemaRef.getLangOpts().CPlusPlus2b
1896 ? diag::warn_cxx20_compat_constexpr_var
1897 : diag::ext_constexpr_static_var)
1898 << isa<CXXConstructorDecl>(Dcl)
1899 << (VD->getTLSKind() == VarDecl::TLS_Dynamic);
1900 } else if (!SemaRef.getLangOpts().CPlusPlus2b) {
1901 return false;
1902 }
1903 }
1904 if (SemaRef.LangOpts.CPlusPlus2b) {
1905 CheckLiteralType(SemaRef, Kind, VD->getLocation(), VD->getType(),
1906 diag::warn_cxx20_compat_constexpr_var,
1907 isa<CXXConstructorDecl>(Dcl),
1908 /*variable of non-literal type*/ 2);
1909 } else if (CheckLiteralType(
1910 SemaRef, Kind, VD->getLocation(), VD->getType(),
1911 diag::err_constexpr_local_var_non_literal_type,
1912 isa<CXXConstructorDecl>(Dcl))) {
1913 return false;
1914 }
1915 if (!VD->getType()->isDependentType() &&
1916 !VD->hasInit() && !VD->isCXXForRangeDecl()) {
1917 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1918 SemaRef.Diag(
1919 VD->getLocation(),
1920 SemaRef.getLangOpts().CPlusPlus20
1921 ? diag::warn_cxx17_compat_constexpr_local_var_no_init
1922 : diag::ext_constexpr_local_var_no_init)
1923 << isa<CXXConstructorDecl>(Dcl);
1924 } else if (!SemaRef.getLangOpts().CPlusPlus20) {
1925 return false;
1926 }
1927 continue;
1928 }
1929 }
1930 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1931 SemaRef.Diag(VD->getLocation(),
1932 SemaRef.getLangOpts().CPlusPlus14
1933 ? diag::warn_cxx11_compat_constexpr_local_var
1934 : diag::ext_constexpr_local_var)
1935 << isa<CXXConstructorDecl>(Dcl);
1936 } else if (!SemaRef.getLangOpts().CPlusPlus14) {
1937 return false;
1938 }
1939 continue;
1940 }
1941
1942 case Decl::NamespaceAlias:
1943 case Decl::Function:
1944 // These are disallowed in C++11 and permitted in C++1y. Allow them
1945 // everywhere as an extension.
1946 if (!Cxx1yLoc.isValid())
1947 Cxx1yLoc = DS->getBeginLoc();
1948 continue;
1949
1950 default:
1951 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1952 SemaRef.Diag(DS->getBeginLoc(), diag::err_constexpr_body_invalid_stmt)
1953 << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval();
1954 }
1955 return false;
1956 }
1957 }
1958
1959 return true;
1960 }
1961
1962 /// Check that the given field is initialized within a constexpr constructor.
1963 ///
1964 /// \param Dcl The constexpr constructor being checked.
1965 /// \param Field The field being checked. This may be a member of an anonymous
1966 /// struct or union nested within the class being checked.
1967 /// \param Inits All declarations, including anonymous struct/union members and
1968 /// indirect members, for which any initialization was provided.
1969 /// \param Diagnosed Whether we've emitted the error message yet. Used to attach
1970 /// multiple notes for different members to the same error.
1971 /// \param Kind Whether we're diagnosing a constructor as written or determining
1972 /// whether the formal requirements are satisfied.
1973 /// \return \c false if we're checking for validity and the constructor does
1974 /// not satisfy the requirements on a constexpr constructor.
CheckConstexprCtorInitializer(Sema & SemaRef,const FunctionDecl * Dcl,FieldDecl * Field,llvm::SmallSet<Decl *,16> & Inits,bool & Diagnosed,Sema::CheckConstexprKind Kind)1975 static bool CheckConstexprCtorInitializer(Sema &SemaRef,
1976 const FunctionDecl *Dcl,
1977 FieldDecl *Field,
1978 llvm::SmallSet<Decl*, 16> &Inits,
1979 bool &Diagnosed,
1980 Sema::CheckConstexprKind Kind) {
1981 // In C++20 onwards, there's nothing to check for validity.
1982 if (Kind == Sema::CheckConstexprKind::CheckValid &&
1983 SemaRef.getLangOpts().CPlusPlus20)
1984 return true;
1985
1986 if (Field->isInvalidDecl())
1987 return true;
1988
1989 if (Field->isUnnamedBitfield())
1990 return true;
1991
1992 // Anonymous unions with no variant members and empty anonymous structs do not
1993 // need to be explicitly initialized. FIXME: Anonymous structs that contain no
1994 // indirect fields don't need initializing.
1995 if (Field->isAnonymousStructOrUnion() &&
1996 (Field->getType()->isUnionType()
1997 ? !Field->getType()->getAsCXXRecordDecl()->hasVariantMembers()
1998 : Field->getType()->getAsCXXRecordDecl()->isEmpty()))
1999 return true;
2000
2001 if (!Inits.count(Field)) {
2002 if (Kind == Sema::CheckConstexprKind::Diagnose) {
2003 if (!Diagnosed) {
2004 SemaRef.Diag(Dcl->getLocation(),
2005 SemaRef.getLangOpts().CPlusPlus20
2006 ? diag::warn_cxx17_compat_constexpr_ctor_missing_init
2007 : diag::ext_constexpr_ctor_missing_init);
2008 Diagnosed = true;
2009 }
2010 SemaRef.Diag(Field->getLocation(),
2011 diag::note_constexpr_ctor_missing_init);
2012 } else if (!SemaRef.getLangOpts().CPlusPlus20) {
2013 return false;
2014 }
2015 } else if (Field->isAnonymousStructOrUnion()) {
2016 const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
2017 for (auto *I : RD->fields())
2018 // If an anonymous union contains an anonymous struct of which any member
2019 // is initialized, all members must be initialized.
2020 if (!RD->isUnion() || Inits.count(I))
2021 if (!CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed,
2022 Kind))
2023 return false;
2024 }
2025 return true;
2026 }
2027
2028 /// Check the provided statement is allowed in a constexpr function
2029 /// definition.
2030 static bool
CheckConstexprFunctionStmt(Sema & SemaRef,const FunctionDecl * Dcl,Stmt * S,SmallVectorImpl<SourceLocation> & ReturnStmts,SourceLocation & Cxx1yLoc,SourceLocation & Cxx2aLoc,SourceLocation & Cxx2bLoc,Sema::CheckConstexprKind Kind)2031 CheckConstexprFunctionStmt(Sema &SemaRef, const FunctionDecl *Dcl, Stmt *S,
2032 SmallVectorImpl<SourceLocation> &ReturnStmts,
2033 SourceLocation &Cxx1yLoc, SourceLocation &Cxx2aLoc,
2034 SourceLocation &Cxx2bLoc,
2035 Sema::CheckConstexprKind Kind) {
2036 // - its function-body shall be [...] a compound-statement that contains only
2037 switch (S->getStmtClass()) {
2038 case Stmt::NullStmtClass:
2039 // - null statements,
2040 return true;
2041
2042 case Stmt::DeclStmtClass:
2043 // - static_assert-declarations
2044 // - using-declarations,
2045 // - using-directives,
2046 // - typedef declarations and alias-declarations that do not define
2047 // classes or enumerations,
2048 if (!CheckConstexprDeclStmt(SemaRef, Dcl, cast<DeclStmt>(S), Cxx1yLoc, Kind))
2049 return false;
2050 return true;
2051
2052 case Stmt::ReturnStmtClass:
2053 // - and exactly one return statement;
2054 if (isa<CXXConstructorDecl>(Dcl)) {
2055 // C++1y allows return statements in constexpr constructors.
2056 if (!Cxx1yLoc.isValid())
2057 Cxx1yLoc = S->getBeginLoc();
2058 return true;
2059 }
2060
2061 ReturnStmts.push_back(S->getBeginLoc());
2062 return true;
2063
2064 case Stmt::AttributedStmtClass:
2065 // Attributes on a statement don't affect its formal kind and hence don't
2066 // affect its validity in a constexpr function.
2067 return CheckConstexprFunctionStmt(
2068 SemaRef, Dcl, cast<AttributedStmt>(S)->getSubStmt(), ReturnStmts,
2069 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind);
2070
2071 case Stmt::CompoundStmtClass: {
2072 // C++1y allows compound-statements.
2073 if (!Cxx1yLoc.isValid())
2074 Cxx1yLoc = S->getBeginLoc();
2075
2076 CompoundStmt *CompStmt = cast<CompoundStmt>(S);
2077 for (auto *BodyIt : CompStmt->body()) {
2078 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, BodyIt, ReturnStmts,
2079 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind))
2080 return false;
2081 }
2082 return true;
2083 }
2084
2085 case Stmt::IfStmtClass: {
2086 // C++1y allows if-statements.
2087 if (!Cxx1yLoc.isValid())
2088 Cxx1yLoc = S->getBeginLoc();
2089
2090 IfStmt *If = cast<IfStmt>(S);
2091 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, If->getThen(), ReturnStmts,
2092 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind))
2093 return false;
2094 if (If->getElse() &&
2095 !CheckConstexprFunctionStmt(SemaRef, Dcl, If->getElse(), ReturnStmts,
2096 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind))
2097 return false;
2098 return true;
2099 }
2100
2101 case Stmt::WhileStmtClass:
2102 case Stmt::DoStmtClass:
2103 case Stmt::ForStmtClass:
2104 case Stmt::CXXForRangeStmtClass:
2105 case Stmt::ContinueStmtClass:
2106 // C++1y allows all of these. We don't allow them as extensions in C++11,
2107 // because they don't make sense without variable mutation.
2108 if (!SemaRef.getLangOpts().CPlusPlus14)
2109 break;
2110 if (!Cxx1yLoc.isValid())
2111 Cxx1yLoc = S->getBeginLoc();
2112 for (Stmt *SubStmt : S->children()) {
2113 if (SubStmt &&
2114 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
2115 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind))
2116 return false;
2117 }
2118 return true;
2119
2120 case Stmt::SwitchStmtClass:
2121 case Stmt::CaseStmtClass:
2122 case Stmt::DefaultStmtClass:
2123 case Stmt::BreakStmtClass:
2124 // C++1y allows switch-statements, and since they don't need variable
2125 // mutation, we can reasonably allow them in C++11 as an extension.
2126 if (!Cxx1yLoc.isValid())
2127 Cxx1yLoc = S->getBeginLoc();
2128 for (Stmt *SubStmt : S->children()) {
2129 if (SubStmt &&
2130 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
2131 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind))
2132 return false;
2133 }
2134 return true;
2135
2136 case Stmt::LabelStmtClass:
2137 case Stmt::GotoStmtClass:
2138 if (Cxx2bLoc.isInvalid())
2139 Cxx2bLoc = S->getBeginLoc();
2140 for (Stmt *SubStmt : S->children()) {
2141 if (SubStmt &&
2142 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
2143 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind))
2144 return false;
2145 }
2146 return true;
2147
2148 case Stmt::GCCAsmStmtClass:
2149 case Stmt::MSAsmStmtClass:
2150 // C++2a allows inline assembly statements.
2151 case Stmt::CXXTryStmtClass:
2152 if (Cxx2aLoc.isInvalid())
2153 Cxx2aLoc = S->getBeginLoc();
2154 for (Stmt *SubStmt : S->children()) {
2155 if (SubStmt &&
2156 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
2157 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind))
2158 return false;
2159 }
2160 return true;
2161
2162 case Stmt::CXXCatchStmtClass:
2163 // Do not bother checking the language mode (already covered by the
2164 // try block check).
2165 if (!CheckConstexprFunctionStmt(
2166 SemaRef, Dcl, cast<CXXCatchStmt>(S)->getHandlerBlock(), ReturnStmts,
2167 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind))
2168 return false;
2169 return true;
2170
2171 default:
2172 if (!isa<Expr>(S))
2173 break;
2174
2175 // C++1y allows expression-statements.
2176 if (!Cxx1yLoc.isValid())
2177 Cxx1yLoc = S->getBeginLoc();
2178 return true;
2179 }
2180
2181 if (Kind == Sema::CheckConstexprKind::Diagnose) {
2182 SemaRef.Diag(S->getBeginLoc(), diag::err_constexpr_body_invalid_stmt)
2183 << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval();
2184 }
2185 return false;
2186 }
2187
2188 /// Check the body for the given constexpr function declaration only contains
2189 /// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
2190 ///
2191 /// \return true if the body is OK, false if we have found or diagnosed a
2192 /// problem.
CheckConstexprFunctionBody(Sema & SemaRef,const FunctionDecl * Dcl,Stmt * Body,Sema::CheckConstexprKind Kind)2193 static bool CheckConstexprFunctionBody(Sema &SemaRef, const FunctionDecl *Dcl,
2194 Stmt *Body,
2195 Sema::CheckConstexprKind Kind) {
2196 SmallVector<SourceLocation, 4> ReturnStmts;
2197
2198 if (isa<CXXTryStmt>(Body)) {
2199 // C++11 [dcl.constexpr]p3:
2200 // The definition of a constexpr function shall satisfy the following
2201 // constraints: [...]
2202 // - its function-body shall be = delete, = default, or a
2203 // compound-statement
2204 //
2205 // C++11 [dcl.constexpr]p4:
2206 // In the definition of a constexpr constructor, [...]
2207 // - its function-body shall not be a function-try-block;
2208 //
2209 // This restriction is lifted in C++2a, as long as inner statements also
2210 // apply the general constexpr rules.
2211 switch (Kind) {
2212 case Sema::CheckConstexprKind::CheckValid:
2213 if (!SemaRef.getLangOpts().CPlusPlus20)
2214 return false;
2215 break;
2216
2217 case Sema::CheckConstexprKind::Diagnose:
2218 SemaRef.Diag(Body->getBeginLoc(),
2219 !SemaRef.getLangOpts().CPlusPlus20
2220 ? diag::ext_constexpr_function_try_block_cxx20
2221 : diag::warn_cxx17_compat_constexpr_function_try_block)
2222 << isa<CXXConstructorDecl>(Dcl);
2223 break;
2224 }
2225 }
2226
2227 // - its function-body shall be [...] a compound-statement that contains only
2228 // [... list of cases ...]
2229 //
2230 // Note that walking the children here is enough to properly check for
2231 // CompoundStmt and CXXTryStmt body.
2232 SourceLocation Cxx1yLoc, Cxx2aLoc, Cxx2bLoc;
2233 for (Stmt *SubStmt : Body->children()) {
2234 if (SubStmt &&
2235 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
2236 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind))
2237 return false;
2238 }
2239
2240 if (Kind == Sema::CheckConstexprKind::CheckValid) {
2241 // If this is only valid as an extension, report that we don't satisfy the
2242 // constraints of the current language.
2243 if ((Cxx2bLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus2b) ||
2244 (Cxx2aLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus20) ||
2245 (Cxx1yLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus17))
2246 return false;
2247 } else if (Cxx2bLoc.isValid()) {
2248 SemaRef.Diag(Cxx2bLoc,
2249 SemaRef.getLangOpts().CPlusPlus2b
2250 ? diag::warn_cxx20_compat_constexpr_body_invalid_stmt
2251 : diag::ext_constexpr_body_invalid_stmt_cxx2b)
2252 << isa<CXXConstructorDecl>(Dcl);
2253 } else if (Cxx2aLoc.isValid()) {
2254 SemaRef.Diag(Cxx2aLoc,
2255 SemaRef.getLangOpts().CPlusPlus20
2256 ? diag::warn_cxx17_compat_constexpr_body_invalid_stmt
2257 : diag::ext_constexpr_body_invalid_stmt_cxx20)
2258 << isa<CXXConstructorDecl>(Dcl);
2259 } else if (Cxx1yLoc.isValid()) {
2260 SemaRef.Diag(Cxx1yLoc,
2261 SemaRef.getLangOpts().CPlusPlus14
2262 ? diag::warn_cxx11_compat_constexpr_body_invalid_stmt
2263 : diag::ext_constexpr_body_invalid_stmt)
2264 << isa<CXXConstructorDecl>(Dcl);
2265 }
2266
2267 if (const CXXConstructorDecl *Constructor
2268 = dyn_cast<CXXConstructorDecl>(Dcl)) {
2269 const CXXRecordDecl *RD = Constructor->getParent();
2270 // DR1359:
2271 // - every non-variant non-static data member and base class sub-object
2272 // shall be initialized;
2273 // DR1460:
2274 // - if the class is a union having variant members, exactly one of them
2275 // shall be initialized;
2276 if (RD->isUnion()) {
2277 if (Constructor->getNumCtorInitializers() == 0 &&
2278 RD->hasVariantMembers()) {
2279 if (Kind == Sema::CheckConstexprKind::Diagnose) {
2280 SemaRef.Diag(
2281 Dcl->getLocation(),
2282 SemaRef.getLangOpts().CPlusPlus20
2283 ? diag::warn_cxx17_compat_constexpr_union_ctor_no_init
2284 : diag::ext_constexpr_union_ctor_no_init);
2285 } else if (!SemaRef.getLangOpts().CPlusPlus20) {
2286 return false;
2287 }
2288 }
2289 } else if (!Constructor->isDependentContext() &&
2290 !Constructor->isDelegatingConstructor()) {
2291 assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
2292
2293 // Skip detailed checking if we have enough initializers, and we would
2294 // allow at most one initializer per member.
2295 bool AnyAnonStructUnionMembers = false;
2296 unsigned Fields = 0;
2297 for (CXXRecordDecl::field_iterator I = RD->field_begin(),
2298 E = RD->field_end(); I != E; ++I, ++Fields) {
2299 if (I->isAnonymousStructOrUnion()) {
2300 AnyAnonStructUnionMembers = true;
2301 break;
2302 }
2303 }
2304 // DR1460:
2305 // - if the class is a union-like class, but is not a union, for each of
2306 // its anonymous union members having variant members, exactly one of
2307 // them shall be initialized;
2308 if (AnyAnonStructUnionMembers ||
2309 Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
2310 // Check initialization of non-static data members. Base classes are
2311 // always initialized so do not need to be checked. Dependent bases
2312 // might not have initializers in the member initializer list.
2313 llvm::SmallSet<Decl*, 16> Inits;
2314 for (const auto *I: Constructor->inits()) {
2315 if (FieldDecl *FD = I->getMember())
2316 Inits.insert(FD);
2317 else if (IndirectFieldDecl *ID = I->getIndirectMember())
2318 Inits.insert(ID->chain_begin(), ID->chain_end());
2319 }
2320
2321 bool Diagnosed = false;
2322 for (auto *I : RD->fields())
2323 if (!CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed,
2324 Kind))
2325 return false;
2326 }
2327 }
2328 } else {
2329 if (ReturnStmts.empty()) {
2330 // C++1y doesn't require constexpr functions to contain a 'return'
2331 // statement. We still do, unless the return type might be void, because
2332 // otherwise if there's no return statement, the function cannot
2333 // be used in a core constant expression.
2334 bool OK = SemaRef.getLangOpts().CPlusPlus14 &&
2335 (Dcl->getReturnType()->isVoidType() ||
2336 Dcl->getReturnType()->isDependentType());
2337 switch (Kind) {
2338 case Sema::CheckConstexprKind::Diagnose:
2339 SemaRef.Diag(Dcl->getLocation(),
2340 OK ? diag::warn_cxx11_compat_constexpr_body_no_return
2341 : diag::err_constexpr_body_no_return)
2342 << Dcl->isConsteval();
2343 if (!OK)
2344 return false;
2345 break;
2346
2347 case Sema::CheckConstexprKind::CheckValid:
2348 // The formal requirements don't include this rule in C++14, even
2349 // though the "must be able to produce a constant expression" rules
2350 // still imply it in some cases.
2351 if (!SemaRef.getLangOpts().CPlusPlus14)
2352 return false;
2353 break;
2354 }
2355 } else if (ReturnStmts.size() > 1) {
2356 switch (Kind) {
2357 case Sema::CheckConstexprKind::Diagnose:
2358 SemaRef.Diag(
2359 ReturnStmts.back(),
2360 SemaRef.getLangOpts().CPlusPlus14
2361 ? diag::warn_cxx11_compat_constexpr_body_multiple_return
2362 : diag::ext_constexpr_body_multiple_return);
2363 for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
2364 SemaRef.Diag(ReturnStmts[I],
2365 diag::note_constexpr_body_previous_return);
2366 break;
2367
2368 case Sema::CheckConstexprKind::CheckValid:
2369 if (!SemaRef.getLangOpts().CPlusPlus14)
2370 return false;
2371 break;
2372 }
2373 }
2374 }
2375
2376 // C++11 [dcl.constexpr]p5:
2377 // if no function argument values exist such that the function invocation
2378 // substitution would produce a constant expression, the program is
2379 // ill-formed; no diagnostic required.
2380 // C++11 [dcl.constexpr]p3:
2381 // - every constructor call and implicit conversion used in initializing the
2382 // return value shall be one of those allowed in a constant expression.
2383 // C++11 [dcl.constexpr]p4:
2384 // - every constructor involved in initializing non-static data members and
2385 // base class sub-objects shall be a constexpr constructor.
2386 //
2387 // Note that this rule is distinct from the "requirements for a constexpr
2388 // function", so is not checked in CheckValid mode.
2389 SmallVector<PartialDiagnosticAt, 8> Diags;
2390 if (Kind == Sema::CheckConstexprKind::Diagnose &&
2391 !Expr::isPotentialConstantExpr(Dcl, Diags)) {
2392 SemaRef.Diag(Dcl->getLocation(),
2393 diag::ext_constexpr_function_never_constant_expr)
2394 << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval();
2395 for (size_t I = 0, N = Diags.size(); I != N; ++I)
2396 SemaRef.Diag(Diags[I].first, Diags[I].second);
2397 // Don't return false here: we allow this for compatibility in
2398 // system headers.
2399 }
2400
2401 return true;
2402 }
2403
2404 /// Get the class that is directly named by the current context. This is the
2405 /// class for which an unqualified-id in this scope could name a constructor
2406 /// or destructor.
2407 ///
2408 /// If the scope specifier denotes a class, this will be that class.
2409 /// If the scope specifier is empty, this will be the class whose
2410 /// member-specification we are currently within. Otherwise, there
2411 /// is no such class.
getCurrentClass(Scope *,const CXXScopeSpec * SS)2412 CXXRecordDecl *Sema::getCurrentClass(Scope *, const CXXScopeSpec *SS) {
2413 assert(getLangOpts().CPlusPlus && "No class names in C!");
2414
2415 if (SS && SS->isInvalid())
2416 return nullptr;
2417
2418 if (SS && SS->isNotEmpty()) {
2419 DeclContext *DC = computeDeclContext(*SS, true);
2420 return dyn_cast_or_null<CXXRecordDecl>(DC);
2421 }
2422
2423 return dyn_cast_or_null<CXXRecordDecl>(CurContext);
2424 }
2425
2426 /// isCurrentClassName - Determine whether the identifier II is the
2427 /// name of the class type currently being defined. In the case of
2428 /// nested classes, this will only return true if II is the name of
2429 /// the innermost class.
isCurrentClassName(const IdentifierInfo & II,Scope * S,const CXXScopeSpec * SS)2430 bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *S,
2431 const CXXScopeSpec *SS) {
2432 CXXRecordDecl *CurDecl = getCurrentClass(S, SS);
2433 return CurDecl && &II == CurDecl->getIdentifier();
2434 }
2435
2436 /// Determine whether the identifier II is a typo for the name of
2437 /// the class type currently being defined. If so, update it to the identifier
2438 /// that should have been used.
isCurrentClassNameTypo(IdentifierInfo * & II,const CXXScopeSpec * SS)2439 bool Sema::isCurrentClassNameTypo(IdentifierInfo *&II, const CXXScopeSpec *SS) {
2440 assert(getLangOpts().CPlusPlus && "No class names in C!");
2441
2442 if (!getLangOpts().SpellChecking)
2443 return false;
2444
2445 CXXRecordDecl *CurDecl;
2446 if (SS && SS->isSet() && !SS->isInvalid()) {
2447 DeclContext *DC = computeDeclContext(*SS, true);
2448 CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
2449 } else
2450 CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
2451
2452 if (CurDecl && CurDecl->getIdentifier() && II != CurDecl->getIdentifier() &&
2453 3 * II->getName().edit_distance(CurDecl->getIdentifier()->getName())
2454 < II->getLength()) {
2455 II = CurDecl->getIdentifier();
2456 return true;
2457 }
2458
2459 return false;
2460 }
2461
2462 /// Determine whether the given class is a base class of the given
2463 /// class, including looking at dependent bases.
findCircularInheritance(const CXXRecordDecl * Class,const CXXRecordDecl * Current)2464 static bool findCircularInheritance(const CXXRecordDecl *Class,
2465 const CXXRecordDecl *Current) {
2466 SmallVector<const CXXRecordDecl*, 8> Queue;
2467
2468 Class = Class->getCanonicalDecl();
2469 while (true) {
2470 for (const auto &I : Current->bases()) {
2471 CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
2472 if (!Base)
2473 continue;
2474
2475 Base = Base->getDefinition();
2476 if (!Base)
2477 continue;
2478
2479 if (Base->getCanonicalDecl() == Class)
2480 return true;
2481
2482 Queue.push_back(Base);
2483 }
2484
2485 if (Queue.empty())
2486 return false;
2487
2488 Current = Queue.pop_back_val();
2489 }
2490
2491 return false;
2492 }
2493
2494 /// Check the validity of a C++ base class specifier.
2495 ///
2496 /// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
2497 /// and returns NULL otherwise.
2498 CXXBaseSpecifier *
CheckBaseSpecifier(CXXRecordDecl * Class,SourceRange SpecifierRange,bool Virtual,AccessSpecifier Access,TypeSourceInfo * TInfo,SourceLocation EllipsisLoc)2499 Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
2500 SourceRange SpecifierRange,
2501 bool Virtual, AccessSpecifier Access,
2502 TypeSourceInfo *TInfo,
2503 SourceLocation EllipsisLoc) {
2504 // In HLSL, unspecified class access is public rather than private.
2505 if (getLangOpts().HLSL && Class->getTagKind() == TTK_Class &&
2506 Access == AS_none)
2507 Access = AS_public;
2508
2509 QualType BaseType = TInfo->getType();
2510 if (BaseType->containsErrors()) {
2511 // Already emitted a diagnostic when parsing the error type.
2512 return nullptr;
2513 }
2514 // C++ [class.union]p1:
2515 // A union shall not have base classes.
2516 if (Class->isUnion()) {
2517 Diag(Class->getLocation(), diag::err_base_clause_on_union)
2518 << SpecifierRange;
2519 return nullptr;
2520 }
2521
2522 if (EllipsisLoc.isValid() &&
2523 !TInfo->getType()->containsUnexpandedParameterPack()) {
2524 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2525 << TInfo->getTypeLoc().getSourceRange();
2526 EllipsisLoc = SourceLocation();
2527 }
2528
2529 SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
2530
2531 if (BaseType->isDependentType()) {
2532 // Make sure that we don't have circular inheritance among our dependent
2533 // bases. For non-dependent bases, the check for completeness below handles
2534 // this.
2535 if (CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl()) {
2536 if (BaseDecl->getCanonicalDecl() == Class->getCanonicalDecl() ||
2537 ((BaseDecl = BaseDecl->getDefinition()) &&
2538 findCircularInheritance(Class, BaseDecl))) {
2539 Diag(BaseLoc, diag::err_circular_inheritance)
2540 << BaseType << Context.getTypeDeclType(Class);
2541
2542 if (BaseDecl->getCanonicalDecl() != Class->getCanonicalDecl())
2543 Diag(BaseDecl->getLocation(), diag::note_previous_decl)
2544 << BaseType;
2545
2546 return nullptr;
2547 }
2548 }
2549
2550 // Make sure that we don't make an ill-formed AST where the type of the
2551 // Class is non-dependent and its attached base class specifier is an
2552 // dependent type, which violates invariants in many clang code paths (e.g.
2553 // constexpr evaluator). If this case happens (in errory-recovery mode), we
2554 // explicitly mark the Class decl invalid. The diagnostic was already
2555 // emitted.
2556 if (!Class->getTypeForDecl()->isDependentType())
2557 Class->setInvalidDecl();
2558 return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
2559 Class->getTagKind() == TTK_Class,
2560 Access, TInfo, EllipsisLoc);
2561 }
2562
2563 // Base specifiers must be record types.
2564 if (!BaseType->isRecordType()) {
2565 Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
2566 return nullptr;
2567 }
2568
2569 // C++ [class.union]p1:
2570 // A union shall not be used as a base class.
2571 if (BaseType->isUnionType()) {
2572 Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
2573 return nullptr;
2574 }
2575
2576 // For the MS ABI, propagate DLL attributes to base class templates.
2577 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
2578 if (Attr *ClassAttr = getDLLAttr(Class)) {
2579 if (auto *BaseTemplate = dyn_cast_or_null<ClassTemplateSpecializationDecl>(
2580 BaseType->getAsCXXRecordDecl())) {
2581 propagateDLLAttrToBaseClassTemplate(Class, ClassAttr, BaseTemplate,
2582 BaseLoc);
2583 }
2584 }
2585 }
2586
2587 // C++ [class.derived]p2:
2588 // The class-name in a base-specifier shall not be an incompletely
2589 // defined class.
2590 if (RequireCompleteType(BaseLoc, BaseType,
2591 diag::err_incomplete_base_class, SpecifierRange)) {
2592 Class->setInvalidDecl();
2593 return nullptr;
2594 }
2595
2596 // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
2597 RecordDecl *BaseDecl = BaseType->castAs<RecordType>()->getDecl();
2598 assert(BaseDecl && "Record type has no declaration");
2599 BaseDecl = BaseDecl->getDefinition();
2600 assert(BaseDecl && "Base type is not incomplete, but has no definition");
2601 CXXRecordDecl *CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
2602 assert(CXXBaseDecl && "Base type is not a C++ type");
2603
2604 // Microsoft docs say:
2605 // "If a base-class has a code_seg attribute, derived classes must have the
2606 // same attribute."
2607 const auto *BaseCSA = CXXBaseDecl->getAttr<CodeSegAttr>();
2608 const auto *DerivedCSA = Class->getAttr<CodeSegAttr>();
2609 if ((DerivedCSA || BaseCSA) &&
2610 (!BaseCSA || !DerivedCSA || BaseCSA->getName() != DerivedCSA->getName())) {
2611 Diag(Class->getLocation(), diag::err_mismatched_code_seg_base);
2612 Diag(CXXBaseDecl->getLocation(), diag::note_base_class_specified_here)
2613 << CXXBaseDecl;
2614 return nullptr;
2615 }
2616
2617 // A class which contains a flexible array member is not suitable for use as a
2618 // base class:
2619 // - If the layout determines that a base comes before another base,
2620 // the flexible array member would index into the subsequent base.
2621 // - If the layout determines that base comes before the derived class,
2622 // the flexible array member would index into the derived class.
2623 if (CXXBaseDecl->hasFlexibleArrayMember()) {
2624 Diag(BaseLoc, diag::err_base_class_has_flexible_array_member)
2625 << CXXBaseDecl->getDeclName();
2626 return nullptr;
2627 }
2628
2629 // C++ [class]p3:
2630 // If a class is marked final and it appears as a base-type-specifier in
2631 // base-clause, the program is ill-formed.
2632 if (FinalAttr *FA = CXXBaseDecl->getAttr<FinalAttr>()) {
2633 Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
2634 << CXXBaseDecl->getDeclName()
2635 << FA->isSpelledAsSealed();
2636 Diag(CXXBaseDecl->getLocation(), diag::note_entity_declared_at)
2637 << CXXBaseDecl->getDeclName() << FA->getRange();
2638 return nullptr;
2639 }
2640
2641 if (BaseDecl->isInvalidDecl())
2642 Class->setInvalidDecl();
2643
2644 // Create the base specifier.
2645 return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
2646 Class->getTagKind() == TTK_Class,
2647 Access, TInfo, EllipsisLoc);
2648 }
2649
2650 /// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
2651 /// one entry in the base class list of a class specifier, for
2652 /// example:
2653 /// class foo : public bar, virtual private baz {
2654 /// 'public bar' and 'virtual private baz' are each base-specifiers.
ActOnBaseSpecifier(Decl * classdecl,SourceRange SpecifierRange,const ParsedAttributesView & Attributes,bool Virtual,AccessSpecifier Access,ParsedType basetype,SourceLocation BaseLoc,SourceLocation EllipsisLoc)2655 BaseResult Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
2656 const ParsedAttributesView &Attributes,
2657 bool Virtual, AccessSpecifier Access,
2658 ParsedType basetype, SourceLocation BaseLoc,
2659 SourceLocation EllipsisLoc) {
2660 if (!classdecl)
2661 return true;
2662
2663 AdjustDeclIfTemplate(classdecl);
2664 CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
2665 if (!Class)
2666 return true;
2667
2668 // We haven't yet attached the base specifiers.
2669 Class->setIsParsingBaseSpecifiers();
2670
2671 // We do not support any C++11 attributes on base-specifiers yet.
2672 // Diagnose any attributes we see.
2673 for (const ParsedAttr &AL : Attributes) {
2674 if (AL.isInvalid() || AL.getKind() == ParsedAttr::IgnoredAttribute)
2675 continue;
2676 Diag(AL.getLoc(), AL.getKind() == ParsedAttr::UnknownAttribute
2677 ? (unsigned)diag::warn_unknown_attribute_ignored
2678 : (unsigned)diag::err_base_specifier_attribute)
2679 << AL << AL.getRange();
2680 }
2681
2682 TypeSourceInfo *TInfo = nullptr;
2683 GetTypeFromParser(basetype, &TInfo);
2684
2685 if (EllipsisLoc.isInvalid() &&
2686 DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
2687 UPPC_BaseType))
2688 return true;
2689
2690 if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
2691 Virtual, Access, TInfo,
2692 EllipsisLoc))
2693 return BaseSpec;
2694 else
2695 Class->setInvalidDecl();
2696
2697 return true;
2698 }
2699
2700 /// Use small set to collect indirect bases. As this is only used
2701 /// locally, there's no need to abstract the small size parameter.
2702 typedef llvm::SmallPtrSet<QualType, 4> IndirectBaseSet;
2703
2704 /// Recursively add the bases of Type. Don't add Type itself.
2705 static void
NoteIndirectBases(ASTContext & Context,IndirectBaseSet & Set,const QualType & Type)2706 NoteIndirectBases(ASTContext &Context, IndirectBaseSet &Set,
2707 const QualType &Type)
2708 {
2709 // Even though the incoming type is a base, it might not be
2710 // a class -- it could be a template parm, for instance.
2711 if (auto Rec = Type->getAs<RecordType>()) {
2712 auto Decl = Rec->getAsCXXRecordDecl();
2713
2714 // Iterate over its bases.
2715 for (const auto &BaseSpec : Decl->bases()) {
2716 QualType Base = Context.getCanonicalType(BaseSpec.getType())
2717 .getUnqualifiedType();
2718 if (Set.insert(Base).second)
2719 // If we've not already seen it, recurse.
2720 NoteIndirectBases(Context, Set, Base);
2721 }
2722 }
2723 }
2724
2725 /// Performs the actual work of attaching the given base class
2726 /// specifiers to a C++ class.
AttachBaseSpecifiers(CXXRecordDecl * Class,MutableArrayRef<CXXBaseSpecifier * > Bases)2727 bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class,
2728 MutableArrayRef<CXXBaseSpecifier *> Bases) {
2729 if (Bases.empty())
2730 return false;
2731
2732 // Used to keep track of which base types we have already seen, so
2733 // that we can properly diagnose redundant direct base types. Note
2734 // that the key is always the unqualified canonical type of the base
2735 // class.
2736 std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
2737
2738 // Used to track indirect bases so we can see if a direct base is
2739 // ambiguous.
2740 IndirectBaseSet IndirectBaseTypes;
2741
2742 // Copy non-redundant base specifiers into permanent storage.
2743 unsigned NumGoodBases = 0;
2744 bool Invalid = false;
2745 for (unsigned idx = 0; idx < Bases.size(); ++idx) {
2746 QualType NewBaseType
2747 = Context.getCanonicalType(Bases[idx]->getType());
2748 NewBaseType = NewBaseType.getLocalUnqualifiedType();
2749
2750 CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType];
2751 if (KnownBase) {
2752 // C++ [class.mi]p3:
2753 // A class shall not be specified as a direct base class of a
2754 // derived class more than once.
2755 Diag(Bases[idx]->getBeginLoc(), diag::err_duplicate_base_class)
2756 << KnownBase->getType() << Bases[idx]->getSourceRange();
2757
2758 // Delete the duplicate base class specifier; we're going to
2759 // overwrite its pointer later.
2760 Context.Deallocate(Bases[idx]);
2761
2762 Invalid = true;
2763 } else {
2764 // Okay, add this new base class.
2765 KnownBase = Bases[idx];
2766 Bases[NumGoodBases++] = Bases[idx];
2767
2768 if (NewBaseType->isDependentType())
2769 continue;
2770 // Note this base's direct & indirect bases, if there could be ambiguity.
2771 if (Bases.size() > 1)
2772 NoteIndirectBases(Context, IndirectBaseTypes, NewBaseType);
2773
2774 if (const RecordType *Record = NewBaseType->getAs<RecordType>()) {
2775 const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
2776 if (Class->isInterface() &&
2777 (!RD->isInterfaceLike() ||
2778 KnownBase->getAccessSpecifier() != AS_public)) {
2779 // The Microsoft extension __interface does not permit bases that
2780 // are not themselves public interfaces.
2781 Diag(KnownBase->getBeginLoc(), diag::err_invalid_base_in_interface)
2782 << getRecordDiagFromTagKind(RD->getTagKind()) << RD
2783 << RD->getSourceRange();
2784 Invalid = true;
2785 }
2786 if (RD->hasAttr<WeakAttr>())
2787 Class->addAttr(WeakAttr::CreateImplicit(Context));
2788 }
2789 }
2790 }
2791
2792 // Attach the remaining base class specifiers to the derived class.
2793 Class->setBases(Bases.data(), NumGoodBases);
2794
2795 // Check that the only base classes that are duplicate are virtual.
2796 for (unsigned idx = 0; idx < NumGoodBases; ++idx) {
2797 // Check whether this direct base is inaccessible due to ambiguity.
2798 QualType BaseType = Bases[idx]->getType();
2799
2800 // Skip all dependent types in templates being used as base specifiers.
2801 // Checks below assume that the base specifier is a CXXRecord.
2802 if (BaseType->isDependentType())
2803 continue;
2804
2805 CanQualType CanonicalBase = Context.getCanonicalType(BaseType)
2806 .getUnqualifiedType();
2807
2808 if (IndirectBaseTypes.count(CanonicalBase)) {
2809 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2810 /*DetectVirtual=*/true);
2811 bool found
2812 = Class->isDerivedFrom(CanonicalBase->getAsCXXRecordDecl(), Paths);
2813 assert(found);
2814 (void)found;
2815
2816 if (Paths.isAmbiguous(CanonicalBase))
2817 Diag(Bases[idx]->getBeginLoc(), diag::warn_inaccessible_base_class)
2818 << BaseType << getAmbiguousPathsDisplayString(Paths)
2819 << Bases[idx]->getSourceRange();
2820 else
2821 assert(Bases[idx]->isVirtual());
2822 }
2823
2824 // Delete the base class specifier, since its data has been copied
2825 // into the CXXRecordDecl.
2826 Context.Deallocate(Bases[idx]);
2827 }
2828
2829 return Invalid;
2830 }
2831
2832 /// ActOnBaseSpecifiers - Attach the given base specifiers to the
2833 /// class, after checking whether there are any duplicate base
2834 /// classes.
ActOnBaseSpecifiers(Decl * ClassDecl,MutableArrayRef<CXXBaseSpecifier * > Bases)2835 void Sema::ActOnBaseSpecifiers(Decl *ClassDecl,
2836 MutableArrayRef<CXXBaseSpecifier *> Bases) {
2837 if (!ClassDecl || Bases.empty())
2838 return;
2839
2840 AdjustDeclIfTemplate(ClassDecl);
2841 AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl), Bases);
2842 }
2843
2844 /// Determine whether the type \p Derived is a C++ class that is
2845 /// derived from the type \p Base.
IsDerivedFrom(SourceLocation Loc,QualType Derived,QualType Base)2846 bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base) {
2847 if (!getLangOpts().CPlusPlus)
2848 return false;
2849
2850 CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
2851 if (!DerivedRD)
2852 return false;
2853
2854 CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
2855 if (!BaseRD)
2856 return false;
2857
2858 // If either the base or the derived type is invalid, don't try to
2859 // check whether one is derived from the other.
2860 if (BaseRD->isInvalidDecl() || DerivedRD->isInvalidDecl())
2861 return false;
2862
2863 // FIXME: In a modules build, do we need the entire path to be visible for us
2864 // to be able to use the inheritance relationship?
2865 if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined())
2866 return false;
2867
2868 return DerivedRD->isDerivedFrom(BaseRD);
2869 }
2870
2871 /// Determine whether the type \p Derived is a C++ class that is
2872 /// derived from the type \p Base.
IsDerivedFrom(SourceLocation Loc,QualType Derived,QualType Base,CXXBasePaths & Paths)2873 bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base,
2874 CXXBasePaths &Paths) {
2875 if (!getLangOpts().CPlusPlus)
2876 return false;
2877
2878 CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
2879 if (!DerivedRD)
2880 return false;
2881
2882 CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
2883 if (!BaseRD)
2884 return false;
2885
2886 if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined())
2887 return false;
2888
2889 return DerivedRD->isDerivedFrom(BaseRD, Paths);
2890 }
2891
BuildBasePathArray(const CXXBasePath & Path,CXXCastPath & BasePathArray)2892 static void BuildBasePathArray(const CXXBasePath &Path,
2893 CXXCastPath &BasePathArray) {
2894 // We first go backward and check if we have a virtual base.
2895 // FIXME: It would be better if CXXBasePath had the base specifier for
2896 // the nearest virtual base.
2897 unsigned Start = 0;
2898 for (unsigned I = Path.size(); I != 0; --I) {
2899 if (Path[I - 1].Base->isVirtual()) {
2900 Start = I - 1;
2901 break;
2902 }
2903 }
2904
2905 // Now add all bases.
2906 for (unsigned I = Start, E = Path.size(); I != E; ++I)
2907 BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
2908 }
2909
2910
BuildBasePathArray(const CXXBasePaths & Paths,CXXCastPath & BasePathArray)2911 void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
2912 CXXCastPath &BasePathArray) {
2913 assert(BasePathArray.empty() && "Base path array must be empty!");
2914 assert(Paths.isRecordingPaths() && "Must record paths!");
2915 return ::BuildBasePathArray(Paths.front(), BasePathArray);
2916 }
2917 /// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
2918 /// conversion (where Derived and Base are class types) is
2919 /// well-formed, meaning that the conversion is unambiguous (and
2920 /// that all of the base classes are accessible). Returns true
2921 /// and emits a diagnostic if the code is ill-formed, returns false
2922 /// otherwise. Loc is the location where this routine should point to
2923 /// if there is an error, and Range is the source range to highlight
2924 /// if there is an error.
2925 ///
2926 /// If either InaccessibleBaseID or AmbiguousBaseConvID are 0, then the
2927 /// diagnostic for the respective type of error will be suppressed, but the
2928 /// check for ill-formed code will still be performed.
2929 bool
CheckDerivedToBaseConversion(QualType Derived,QualType Base,unsigned InaccessibleBaseID,unsigned AmbiguousBaseConvID,SourceLocation Loc,SourceRange Range,DeclarationName Name,CXXCastPath * BasePath,bool IgnoreAccess)2930 Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
2931 unsigned InaccessibleBaseID,
2932 unsigned AmbiguousBaseConvID,
2933 SourceLocation Loc, SourceRange Range,
2934 DeclarationName Name,
2935 CXXCastPath *BasePath,
2936 bool IgnoreAccess) {
2937 // First, determine whether the path from Derived to Base is
2938 // ambiguous. This is slightly more expensive than checking whether
2939 // the Derived to Base conversion exists, because here we need to
2940 // explore multiple paths to determine if there is an ambiguity.
2941 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2942 /*DetectVirtual=*/false);
2943 bool DerivationOkay = IsDerivedFrom(Loc, Derived, Base, Paths);
2944 if (!DerivationOkay)
2945 return true;
2946
2947 const CXXBasePath *Path = nullptr;
2948 if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType()))
2949 Path = &Paths.front();
2950
2951 // For MSVC compatibility, check if Derived directly inherits from Base. Clang
2952 // warns about this hierarchy under -Winaccessible-base, but MSVC allows the
2953 // user to access such bases.
2954 if (!Path && getLangOpts().MSVCCompat) {
2955 for (const CXXBasePath &PossiblePath : Paths) {
2956 if (PossiblePath.size() == 1) {
2957 Path = &PossiblePath;
2958 if (AmbiguousBaseConvID)
2959 Diag(Loc, diag::ext_ms_ambiguous_direct_base)
2960 << Base << Derived << Range;
2961 break;
2962 }
2963 }
2964 }
2965
2966 if (Path) {
2967 if (!IgnoreAccess) {
2968 // Check that the base class can be accessed.
2969 switch (
2970 CheckBaseClassAccess(Loc, Base, Derived, *Path, InaccessibleBaseID)) {
2971 case AR_inaccessible:
2972 return true;
2973 case AR_accessible:
2974 case AR_dependent:
2975 case AR_delayed:
2976 break;
2977 }
2978 }
2979
2980 // Build a base path if necessary.
2981 if (BasePath)
2982 ::BuildBasePathArray(*Path, *BasePath);
2983 return false;
2984 }
2985
2986 if (AmbiguousBaseConvID) {
2987 // We know that the derived-to-base conversion is ambiguous, and
2988 // we're going to produce a diagnostic. Perform the derived-to-base
2989 // search just one more time to compute all of the possible paths so
2990 // that we can print them out. This is more expensive than any of
2991 // the previous derived-to-base checks we've done, but at this point
2992 // performance isn't as much of an issue.
2993 Paths.clear();
2994 Paths.setRecordingPaths(true);
2995 bool StillOkay = IsDerivedFrom(Loc, Derived, Base, Paths);
2996 assert(StillOkay && "Can only be used with a derived-to-base conversion");
2997 (void)StillOkay;
2998
2999 // Build up a textual representation of the ambiguous paths, e.g.,
3000 // D -> B -> A, that will be used to illustrate the ambiguous
3001 // conversions in the diagnostic. We only print one of the paths
3002 // to each base class subobject.
3003 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
3004
3005 Diag(Loc, AmbiguousBaseConvID)
3006 << Derived << Base << PathDisplayStr << Range << Name;
3007 }
3008 return true;
3009 }
3010
3011 bool
CheckDerivedToBaseConversion(QualType Derived,QualType Base,SourceLocation Loc,SourceRange Range,CXXCastPath * BasePath,bool IgnoreAccess)3012 Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
3013 SourceLocation Loc, SourceRange Range,
3014 CXXCastPath *BasePath,
3015 bool IgnoreAccess) {
3016 return CheckDerivedToBaseConversion(
3017 Derived, Base, diag::err_upcast_to_inaccessible_base,
3018 diag::err_ambiguous_derived_to_base_conv, Loc, Range, DeclarationName(),
3019 BasePath, IgnoreAccess);
3020 }
3021
3022
3023 /// Builds a string representing ambiguous paths from a
3024 /// specific derived class to different subobjects of the same base
3025 /// class.
3026 ///
3027 /// This function builds a string that can be used in error messages
3028 /// to show the different paths that one can take through the
3029 /// inheritance hierarchy to go from the derived class to different
3030 /// subobjects of a base class. The result looks something like this:
3031 /// @code
3032 /// struct D -> struct B -> struct A
3033 /// struct D -> struct C -> struct A
3034 /// @endcode
getAmbiguousPathsDisplayString(CXXBasePaths & Paths)3035 std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
3036 std::string PathDisplayStr;
3037 std::set<unsigned> DisplayedPaths;
3038 for (CXXBasePaths::paths_iterator Path = Paths.begin();
3039 Path != Paths.end(); ++Path) {
3040 if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
3041 // We haven't displayed a path to this particular base
3042 // class subobject yet.
3043 PathDisplayStr += "\n ";
3044 PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
3045 for (CXXBasePath::const_iterator Element = Path->begin();
3046 Element != Path->end(); ++Element)
3047 PathDisplayStr += " -> " + Element->Base->getType().getAsString();
3048 }
3049 }
3050
3051 return PathDisplayStr;
3052 }
3053
3054 //===----------------------------------------------------------------------===//
3055 // C++ class member Handling
3056 //===----------------------------------------------------------------------===//
3057
3058 /// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
ActOnAccessSpecifier(AccessSpecifier Access,SourceLocation ASLoc,SourceLocation ColonLoc,const ParsedAttributesView & Attrs)3059 bool Sema::ActOnAccessSpecifier(AccessSpecifier Access, SourceLocation ASLoc,
3060 SourceLocation ColonLoc,
3061 const ParsedAttributesView &Attrs) {
3062 assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
3063 AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
3064 ASLoc, ColonLoc);
3065 CurContext->addHiddenDecl(ASDecl);
3066 return ProcessAccessDeclAttributeList(ASDecl, Attrs);
3067 }
3068
3069 /// CheckOverrideControl - Check C++11 override control semantics.
CheckOverrideControl(NamedDecl * D)3070 void Sema::CheckOverrideControl(NamedDecl *D) {
3071 if (D->isInvalidDecl())
3072 return;
3073
3074 // We only care about "override" and "final" declarations.
3075 if (!D->hasAttr<OverrideAttr>() && !D->hasAttr<FinalAttr>())
3076 return;
3077
3078 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
3079
3080 // We can't check dependent instance methods.
3081 if (MD && MD->isInstance() &&
3082 (MD->getParent()->hasAnyDependentBases() ||
3083 MD->getType()->isDependentType()))
3084 return;
3085
3086 if (MD && !MD->isVirtual()) {
3087 // If we have a non-virtual method, check if if hides a virtual method.
3088 // (In that case, it's most likely the method has the wrong type.)
3089 SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
3090 FindHiddenVirtualMethods(MD, OverloadedMethods);
3091
3092 if (!OverloadedMethods.empty()) {
3093 if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
3094 Diag(OA->getLocation(),
3095 diag::override_keyword_hides_virtual_member_function)
3096 << "override" << (OverloadedMethods.size() > 1);
3097 } else if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
3098 Diag(FA->getLocation(),
3099 diag::override_keyword_hides_virtual_member_function)
3100 << (FA->isSpelledAsSealed() ? "sealed" : "final")
3101 << (OverloadedMethods.size() > 1);
3102 }
3103 NoteHiddenVirtualMethods(MD, OverloadedMethods);
3104 MD->setInvalidDecl();
3105 return;
3106 }
3107 // Fall through into the general case diagnostic.
3108 // FIXME: We might want to attempt typo correction here.
3109 }
3110
3111 if (!MD || !MD->isVirtual()) {
3112 if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
3113 Diag(OA->getLocation(),
3114 diag::override_keyword_only_allowed_on_virtual_member_functions)
3115 << "override" << FixItHint::CreateRemoval(OA->getLocation());
3116 D->dropAttr<OverrideAttr>();
3117 }
3118 if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
3119 Diag(FA->getLocation(),
3120 diag::override_keyword_only_allowed_on_virtual_member_functions)
3121 << (FA->isSpelledAsSealed() ? "sealed" : "final")
3122 << FixItHint::CreateRemoval(FA->getLocation());
3123 D->dropAttr<FinalAttr>();
3124 }
3125 return;
3126 }
3127
3128 // C++11 [class.virtual]p5:
3129 // If a function is marked with the virt-specifier override and
3130 // does not override a member function of a base class, the program is
3131 // ill-formed.
3132 bool HasOverriddenMethods = MD->size_overridden_methods() != 0;
3133 if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods)
3134 Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding)
3135 << MD->getDeclName();
3136 }
3137
DiagnoseAbsenceOfOverrideControl(NamedDecl * D,bool Inconsistent)3138 void Sema::DiagnoseAbsenceOfOverrideControl(NamedDecl *D, bool Inconsistent) {
3139 if (D->isInvalidDecl() || D->hasAttr<OverrideAttr>())
3140 return;
3141 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
3142 if (!MD || MD->isImplicit() || MD->hasAttr<FinalAttr>())
3143 return;
3144
3145 SourceLocation Loc = MD->getLocation();
3146 SourceLocation SpellingLoc = Loc;
3147 if (getSourceManager().isMacroArgExpansion(Loc))
3148 SpellingLoc = getSourceManager().getImmediateExpansionRange(Loc).getBegin();
3149 SpellingLoc = getSourceManager().getSpellingLoc(SpellingLoc);
3150 if (SpellingLoc.isValid() && getSourceManager().isInSystemHeader(SpellingLoc))
3151 return;
3152
3153 if (MD->size_overridden_methods() > 0) {
3154 auto EmitDiag = [&](unsigned DiagInconsistent, unsigned DiagSuggest) {
3155 unsigned DiagID =
3156 Inconsistent && !Diags.isIgnored(DiagInconsistent, MD->getLocation())
3157 ? DiagInconsistent
3158 : DiagSuggest;
3159 Diag(MD->getLocation(), DiagID) << MD->getDeclName();
3160 const CXXMethodDecl *OMD = *MD->begin_overridden_methods();
3161 Diag(OMD->getLocation(), diag::note_overridden_virtual_function);
3162 };
3163 if (isa<CXXDestructorDecl>(MD))
3164 EmitDiag(
3165 diag::warn_inconsistent_destructor_marked_not_override_overriding,
3166 diag::warn_suggest_destructor_marked_not_override_overriding);
3167 else
3168 EmitDiag(diag::warn_inconsistent_function_marked_not_override_overriding,
3169 diag::warn_suggest_function_marked_not_override_overriding);
3170 }
3171 }
3172
3173 /// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
3174 /// function overrides a virtual member function marked 'final', according to
3175 /// C++11 [class.virtual]p4.
CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl * New,const CXXMethodDecl * Old)3176 bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
3177 const CXXMethodDecl *Old) {
3178 FinalAttr *FA = Old->getAttr<FinalAttr>();
3179 if (!FA)
3180 return false;
3181
3182 Diag(New->getLocation(), diag::err_final_function_overridden)
3183 << New->getDeclName()
3184 << FA->isSpelledAsSealed();
3185 Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3186 return true;
3187 }
3188
InitializationHasSideEffects(const FieldDecl & FD)3189 static bool InitializationHasSideEffects(const FieldDecl &FD) {
3190 const Type *T = FD.getType()->getBaseElementTypeUnsafe();
3191 // FIXME: Destruction of ObjC lifetime types has side-effects.
3192 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3193 return !RD->isCompleteDefinition() ||
3194 !RD->hasTrivialDefaultConstructor() ||
3195 !RD->hasTrivialDestructor();
3196 return false;
3197 }
3198
getMSPropertyAttr(const ParsedAttributesView & list)3199 static const ParsedAttr *getMSPropertyAttr(const ParsedAttributesView &list) {
3200 ParsedAttributesView::const_iterator Itr =
3201 llvm::find_if(list, [](const ParsedAttr &AL) {
3202 return AL.isDeclspecPropertyAttribute();
3203 });
3204 if (Itr != list.end())
3205 return &*Itr;
3206 return nullptr;
3207 }
3208
3209 // Check if there is a field shadowing.
CheckShadowInheritedFields(const SourceLocation & Loc,DeclarationName FieldName,const CXXRecordDecl * RD,bool DeclIsField)3210 void Sema::CheckShadowInheritedFields(const SourceLocation &Loc,
3211 DeclarationName FieldName,
3212 const CXXRecordDecl *RD,
3213 bool DeclIsField) {
3214 if (Diags.isIgnored(diag::warn_shadow_field, Loc))
3215 return;
3216
3217 // To record a shadowed field in a base
3218 std::map<CXXRecordDecl*, NamedDecl*> Bases;
3219 auto FieldShadowed = [&](const CXXBaseSpecifier *Specifier,
3220 CXXBasePath &Path) {
3221 const auto Base = Specifier->getType()->getAsCXXRecordDecl();
3222 // Record an ambiguous path directly
3223 if (Bases.find(Base) != Bases.end())
3224 return true;
3225 for (const auto Field : Base->lookup(FieldName)) {
3226 if ((isa<FieldDecl>(Field) || isa<IndirectFieldDecl>(Field)) &&
3227 Field->getAccess() != AS_private) {
3228 assert(Field->getAccess() != AS_none);
3229 assert(Bases.find(Base) == Bases.end());
3230 Bases[Base] = Field;
3231 return true;
3232 }
3233 }
3234 return false;
3235 };
3236
3237 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
3238 /*DetectVirtual=*/true);
3239 if (!RD->lookupInBases(FieldShadowed, Paths))
3240 return;
3241
3242 for (const auto &P : Paths) {
3243 auto Base = P.back().Base->getType()->getAsCXXRecordDecl();
3244 auto It = Bases.find(Base);
3245 // Skip duplicated bases
3246 if (It == Bases.end())
3247 continue;
3248 auto BaseField = It->second;
3249 assert(BaseField->getAccess() != AS_private);
3250 if (AS_none !=
3251 CXXRecordDecl::MergeAccess(P.Access, BaseField->getAccess())) {
3252 Diag(Loc, diag::warn_shadow_field)
3253 << FieldName << RD << Base << DeclIsField;
3254 Diag(BaseField->getLocation(), diag::note_shadow_field);
3255 Bases.erase(It);
3256 }
3257 }
3258 }
3259
3260 /// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
3261 /// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
3262 /// bitfield width if there is one, 'InitExpr' specifies the initializer if
3263 /// one has been parsed, and 'InitStyle' is set if an in-class initializer is
3264 /// present (but parsing it has been deferred).
3265 NamedDecl *
ActOnCXXMemberDeclarator(Scope * S,AccessSpecifier AS,Declarator & D,MultiTemplateParamsArg TemplateParameterLists,Expr * BW,const VirtSpecifiers & VS,InClassInitStyle InitStyle)3266 Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
3267 MultiTemplateParamsArg TemplateParameterLists,
3268 Expr *BW, const VirtSpecifiers &VS,
3269 InClassInitStyle InitStyle) {
3270 const DeclSpec &DS = D.getDeclSpec();
3271 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3272 DeclarationName Name = NameInfo.getName();
3273 SourceLocation Loc = NameInfo.getLoc();
3274
3275 // For anonymous bitfields, the location should point to the type.
3276 if (Loc.isInvalid())
3277 Loc = D.getBeginLoc();
3278
3279 Expr *BitWidth = static_cast<Expr*>(BW);
3280
3281 assert(isa<CXXRecordDecl>(CurContext));
3282 assert(!DS.isFriendSpecified());
3283
3284 bool isFunc = D.isDeclarationOfFunction();
3285 const ParsedAttr *MSPropertyAttr =
3286 getMSPropertyAttr(D.getDeclSpec().getAttributes());
3287
3288 if (cast<CXXRecordDecl>(CurContext)->isInterface()) {
3289 // The Microsoft extension __interface only permits public member functions
3290 // and prohibits constructors, destructors, operators, non-public member
3291 // functions, static methods and data members.
3292 unsigned InvalidDecl;
3293 bool ShowDeclName = true;
3294 if (!isFunc &&
3295 (DS.getStorageClassSpec() == DeclSpec::SCS_typedef || MSPropertyAttr))
3296 InvalidDecl = 0;
3297 else if (!isFunc)
3298 InvalidDecl = 1;
3299 else if (AS != AS_public)
3300 InvalidDecl = 2;
3301 else if (DS.getStorageClassSpec() == DeclSpec::SCS_static)
3302 InvalidDecl = 3;
3303 else switch (Name.getNameKind()) {
3304 case DeclarationName::CXXConstructorName:
3305 InvalidDecl = 4;
3306 ShowDeclName = false;
3307 break;
3308
3309 case DeclarationName::CXXDestructorName:
3310 InvalidDecl = 5;
3311 ShowDeclName = false;
3312 break;
3313
3314 case DeclarationName::CXXOperatorName:
3315 case DeclarationName::CXXConversionFunctionName:
3316 InvalidDecl = 6;
3317 break;
3318
3319 default:
3320 InvalidDecl = 0;
3321 break;
3322 }
3323
3324 if (InvalidDecl) {
3325 if (ShowDeclName)
3326 Diag(Loc, diag::err_invalid_member_in_interface)
3327 << (InvalidDecl-1) << Name;
3328 else
3329 Diag(Loc, diag::err_invalid_member_in_interface)
3330 << (InvalidDecl-1) << "";
3331 return nullptr;
3332 }
3333 }
3334
3335 // C++ 9.2p6: A member shall not be declared to have automatic storage
3336 // duration (auto, register) or with the extern storage-class-specifier.
3337 // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
3338 // data members and cannot be applied to names declared const or static,
3339 // and cannot be applied to reference members.
3340 switch (DS.getStorageClassSpec()) {
3341 case DeclSpec::SCS_unspecified:
3342 case DeclSpec::SCS_typedef:
3343 case DeclSpec::SCS_static:
3344 break;
3345 case DeclSpec::SCS_mutable:
3346 if (isFunc) {
3347 Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
3348
3349 // FIXME: It would be nicer if the keyword was ignored only for this
3350 // declarator. Otherwise we could get follow-up errors.
3351 D.getMutableDeclSpec().ClearStorageClassSpecs();
3352 }
3353 break;
3354 default:
3355 Diag(DS.getStorageClassSpecLoc(),
3356 diag::err_storageclass_invalid_for_member);
3357 D.getMutableDeclSpec().ClearStorageClassSpecs();
3358 break;
3359 }
3360
3361 bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
3362 DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
3363 !isFunc);
3364
3365 if (DS.hasConstexprSpecifier() && isInstField) {
3366 SemaDiagnosticBuilder B =
3367 Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member);
3368 SourceLocation ConstexprLoc = DS.getConstexprSpecLoc();
3369 if (InitStyle == ICIS_NoInit) {
3370 B << 0 << 0;
3371 if (D.getDeclSpec().getTypeQualifiers() & DeclSpec::TQ_const)
3372 B << FixItHint::CreateRemoval(ConstexprLoc);
3373 else {
3374 B << FixItHint::CreateReplacement(ConstexprLoc, "const");
3375 D.getMutableDeclSpec().ClearConstexprSpec();
3376 const char *PrevSpec;
3377 unsigned DiagID;
3378 bool Failed = D.getMutableDeclSpec().SetTypeQual(
3379 DeclSpec::TQ_const, ConstexprLoc, PrevSpec, DiagID, getLangOpts());
3380 (void)Failed;
3381 assert(!Failed && "Making a constexpr member const shouldn't fail");
3382 }
3383 } else {
3384 B << 1;
3385 const char *PrevSpec;
3386 unsigned DiagID;
3387 if (D.getMutableDeclSpec().SetStorageClassSpec(
3388 *this, DeclSpec::SCS_static, ConstexprLoc, PrevSpec, DiagID,
3389 Context.getPrintingPolicy())) {
3390 assert(DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&
3391 "This is the only DeclSpec that should fail to be applied");
3392 B << 1;
3393 } else {
3394 B << 0 << FixItHint::CreateInsertion(ConstexprLoc, "static ");
3395 isInstField = false;
3396 }
3397 }
3398 }
3399
3400 NamedDecl *Member;
3401 if (isInstField) {
3402 CXXScopeSpec &SS = D.getCXXScopeSpec();
3403
3404 // Data members must have identifiers for names.
3405 if (!Name.isIdentifier()) {
3406 Diag(Loc, diag::err_bad_variable_name)
3407 << Name;
3408 return nullptr;
3409 }
3410
3411 IdentifierInfo *II = Name.getAsIdentifierInfo();
3412
3413 // Member field could not be with "template" keyword.
3414 // So TemplateParameterLists should be empty in this case.
3415 if (TemplateParameterLists.size()) {
3416 TemplateParameterList* TemplateParams = TemplateParameterLists[0];
3417 if (TemplateParams->size()) {
3418 // There is no such thing as a member field template.
3419 Diag(D.getIdentifierLoc(), diag::err_template_member)
3420 << II
3421 << SourceRange(TemplateParams->getTemplateLoc(),
3422 TemplateParams->getRAngleLoc());
3423 } else {
3424 // There is an extraneous 'template<>' for this member.
3425 Diag(TemplateParams->getTemplateLoc(),
3426 diag::err_template_member_noparams)
3427 << II
3428 << SourceRange(TemplateParams->getTemplateLoc(),
3429 TemplateParams->getRAngleLoc());
3430 }
3431 return nullptr;
3432 }
3433
3434 if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
3435 Diag(D.getIdentifierLoc(), diag::err_member_with_template_arguments)
3436 << II
3437 << SourceRange(D.getName().TemplateId->LAngleLoc,
3438 D.getName().TemplateId->RAngleLoc)
3439 << D.getName().TemplateId->LAngleLoc;
3440 D.SetIdentifier(II, Loc);
3441 }
3442
3443 if (SS.isSet() && !SS.isInvalid()) {
3444 // The user provided a superfluous scope specifier inside a class
3445 // definition:
3446 //
3447 // class X {
3448 // int X::member;
3449 // };
3450 if (DeclContext *DC = computeDeclContext(SS, false))
3451 diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc(),
3452 D.getName().getKind() ==
3453 UnqualifiedIdKind::IK_TemplateId);
3454 else
3455 Diag(D.getIdentifierLoc(), diag::err_member_qualification)
3456 << Name << SS.getRange();
3457
3458 SS.clear();
3459 }
3460
3461 if (MSPropertyAttr) {
3462 Member = HandleMSProperty(S, cast<CXXRecordDecl>(CurContext), Loc, D,
3463 BitWidth, InitStyle, AS, *MSPropertyAttr);
3464 if (!Member)
3465 return nullptr;
3466 isInstField = false;
3467 } else {
3468 Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D,
3469 BitWidth, InitStyle, AS);
3470 if (!Member)
3471 return nullptr;
3472 }
3473
3474 CheckShadowInheritedFields(Loc, Name, cast<CXXRecordDecl>(CurContext));
3475 } else {
3476 Member = HandleDeclarator(S, D, TemplateParameterLists);
3477 if (!Member)
3478 return nullptr;
3479
3480 // Non-instance-fields can't have a bitfield.
3481 if (BitWidth) {
3482 if (Member->isInvalidDecl()) {
3483 // don't emit another diagnostic.
3484 } else if (isa<VarDecl>(Member) || isa<VarTemplateDecl>(Member)) {
3485 // C++ 9.6p3: A bit-field shall not be a static member.
3486 // "static member 'A' cannot be a bit-field"
3487 Diag(Loc, diag::err_static_not_bitfield)
3488 << Name << BitWidth->getSourceRange();
3489 } else if (isa<TypedefDecl>(Member)) {
3490 // "typedef member 'x' cannot be a bit-field"
3491 Diag(Loc, diag::err_typedef_not_bitfield)
3492 << Name << BitWidth->getSourceRange();
3493 } else {
3494 // A function typedef ("typedef int f(); f a;").
3495 // C++ 9.6p3: A bit-field shall have integral or enumeration type.
3496 Diag(Loc, diag::err_not_integral_type_bitfield)
3497 << Name << cast<ValueDecl>(Member)->getType()
3498 << BitWidth->getSourceRange();
3499 }
3500
3501 BitWidth = nullptr;
3502 Member->setInvalidDecl();
3503 }
3504
3505 NamedDecl *NonTemplateMember = Member;
3506 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
3507 NonTemplateMember = FunTmpl->getTemplatedDecl();
3508 else if (VarTemplateDecl *VarTmpl = dyn_cast<VarTemplateDecl>(Member))
3509 NonTemplateMember = VarTmpl->getTemplatedDecl();
3510
3511 Member->setAccess(AS);
3512
3513 // If we have declared a member function template or static data member
3514 // template, set the access of the templated declaration as well.
3515 if (NonTemplateMember != Member)
3516 NonTemplateMember->setAccess(AS);
3517
3518 // C++ [temp.deduct.guide]p3:
3519 // A deduction guide [...] for a member class template [shall be
3520 // declared] with the same access [as the template].
3521 if (auto *DG = dyn_cast<CXXDeductionGuideDecl>(NonTemplateMember)) {
3522 auto *TD = DG->getDeducedTemplate();
3523 // Access specifiers are only meaningful if both the template and the
3524 // deduction guide are from the same scope.
3525 if (AS != TD->getAccess() &&
3526 TD->getDeclContext()->getRedeclContext()->Equals(
3527 DG->getDeclContext()->getRedeclContext())) {
3528 Diag(DG->getBeginLoc(), diag::err_deduction_guide_wrong_access);
3529 Diag(TD->getBeginLoc(), diag::note_deduction_guide_template_access)
3530 << TD->getAccess();
3531 const AccessSpecDecl *LastAccessSpec = nullptr;
3532 for (const auto *D : cast<CXXRecordDecl>(CurContext)->decls()) {
3533 if (const auto *AccessSpec = dyn_cast<AccessSpecDecl>(D))
3534 LastAccessSpec = AccessSpec;
3535 }
3536 assert(LastAccessSpec && "differing access with no access specifier");
3537 Diag(LastAccessSpec->getBeginLoc(), diag::note_deduction_guide_access)
3538 << AS;
3539 }
3540 }
3541 }
3542
3543 if (VS.isOverrideSpecified())
3544 Member->addAttr(OverrideAttr::Create(Context, VS.getOverrideLoc(),
3545 AttributeCommonInfo::AS_Keyword));
3546 if (VS.isFinalSpecified())
3547 Member->addAttr(FinalAttr::Create(
3548 Context, VS.getFinalLoc(), AttributeCommonInfo::AS_Keyword,
3549 static_cast<FinalAttr::Spelling>(VS.isFinalSpelledSealed())));
3550
3551 if (VS.getLastLocation().isValid()) {
3552 // Update the end location of a method that has a virt-specifiers.
3553 if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
3554 MD->setRangeEnd(VS.getLastLocation());
3555 }
3556
3557 CheckOverrideControl(Member);
3558
3559 assert((Name || isInstField) && "No identifier for non-field ?");
3560
3561 if (isInstField) {
3562 FieldDecl *FD = cast<FieldDecl>(Member);
3563 FieldCollector->Add(FD);
3564
3565 if (!Diags.isIgnored(diag::warn_unused_private_field, FD->getLocation())) {
3566 // Remember all explicit private FieldDecls that have a name, no side
3567 // effects and are not part of a dependent type declaration.
3568 if (!FD->isImplicit() && FD->getDeclName() &&
3569 FD->getAccess() == AS_private &&
3570 !FD->hasAttr<UnusedAttr>() &&
3571 !FD->getParent()->isDependentContext() &&
3572 !InitializationHasSideEffects(*FD))
3573 UnusedPrivateFields.insert(FD);
3574 }
3575 }
3576
3577 return Member;
3578 }
3579
3580 namespace {
3581 class UninitializedFieldVisitor
3582 : public EvaluatedExprVisitor<UninitializedFieldVisitor> {
3583 Sema &S;
3584 // List of Decls to generate a warning on. Also remove Decls that become
3585 // initialized.
3586 llvm::SmallPtrSetImpl<ValueDecl*> &Decls;
3587 // List of base classes of the record. Classes are removed after their
3588 // initializers.
3589 llvm::SmallPtrSetImpl<QualType> &BaseClasses;
3590 // Vector of decls to be removed from the Decl set prior to visiting the
3591 // nodes. These Decls may have been initialized in the prior initializer.
3592 llvm::SmallVector<ValueDecl*, 4> DeclsToRemove;
3593 // If non-null, add a note to the warning pointing back to the constructor.
3594 const CXXConstructorDecl *Constructor;
3595 // Variables to hold state when processing an initializer list. When
3596 // InitList is true, special case initialization of FieldDecls matching
3597 // InitListFieldDecl.
3598 bool InitList;
3599 FieldDecl *InitListFieldDecl;
3600 llvm::SmallVector<unsigned, 4> InitFieldIndex;
3601
3602 public:
3603 typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited;
UninitializedFieldVisitor(Sema & S,llvm::SmallPtrSetImpl<ValueDecl * > & Decls,llvm::SmallPtrSetImpl<QualType> & BaseClasses)3604 UninitializedFieldVisitor(Sema &S,
3605 llvm::SmallPtrSetImpl<ValueDecl*> &Decls,
3606 llvm::SmallPtrSetImpl<QualType> &BaseClasses)
3607 : Inherited(S.Context), S(S), Decls(Decls), BaseClasses(BaseClasses),
3608 Constructor(nullptr), InitList(false), InitListFieldDecl(nullptr) {}
3609
3610 // Returns true if the use of ME is not an uninitialized use.
IsInitListMemberExprInitialized(MemberExpr * ME,bool CheckReferenceOnly)3611 bool IsInitListMemberExprInitialized(MemberExpr *ME,
3612 bool CheckReferenceOnly) {
3613 llvm::SmallVector<FieldDecl*, 4> Fields;
3614 bool ReferenceField = false;
3615 while (ME) {
3616 FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
3617 if (!FD)
3618 return false;
3619 Fields.push_back(FD);
3620 if (FD->getType()->isReferenceType())
3621 ReferenceField = true;
3622 ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParenImpCasts());
3623 }
3624
3625 // Binding a reference to an uninitialized field is not an
3626 // uninitialized use.
3627 if (CheckReferenceOnly && !ReferenceField)
3628 return true;
3629
3630 llvm::SmallVector<unsigned, 4> UsedFieldIndex;
3631 // Discard the first field since it is the field decl that is being
3632 // initialized.
3633 for (const FieldDecl *FD : llvm::drop_begin(llvm::reverse(Fields)))
3634 UsedFieldIndex.push_back(FD->getFieldIndex());
3635
3636 for (auto UsedIter = UsedFieldIndex.begin(),
3637 UsedEnd = UsedFieldIndex.end(),
3638 OrigIter = InitFieldIndex.begin(),
3639 OrigEnd = InitFieldIndex.end();
3640 UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) {
3641 if (*UsedIter < *OrigIter)
3642 return true;
3643 if (*UsedIter > *OrigIter)
3644 break;
3645 }
3646
3647 return false;
3648 }
3649
HandleMemberExpr(MemberExpr * ME,bool CheckReferenceOnly,bool AddressOf)3650 void HandleMemberExpr(MemberExpr *ME, bool CheckReferenceOnly,
3651 bool AddressOf) {
3652 if (isa<EnumConstantDecl>(ME->getMemberDecl()))
3653 return;
3654
3655 // FieldME is the inner-most MemberExpr that is not an anonymous struct
3656 // or union.
3657 MemberExpr *FieldME = ME;
3658
3659 bool AllPODFields = FieldME->getType().isPODType(S.Context);
3660
3661 Expr *Base = ME;
3662 while (MemberExpr *SubME =
3663 dyn_cast<MemberExpr>(Base->IgnoreParenImpCasts())) {
3664
3665 if (isa<VarDecl>(SubME->getMemberDecl()))
3666 return;
3667
3668 if (FieldDecl *FD = dyn_cast<FieldDecl>(SubME->getMemberDecl()))
3669 if (!FD->isAnonymousStructOrUnion())
3670 FieldME = SubME;
3671
3672 if (!FieldME->getType().isPODType(S.Context))
3673 AllPODFields = false;
3674
3675 Base = SubME->getBase();
3676 }
3677
3678 if (!isa<CXXThisExpr>(Base->IgnoreParenImpCasts())) {
3679 Visit(Base);
3680 return;
3681 }
3682
3683 if (AddressOf && AllPODFields)
3684 return;
3685
3686 ValueDecl* FoundVD = FieldME->getMemberDecl();
3687
3688 if (ImplicitCastExpr *BaseCast = dyn_cast<ImplicitCastExpr>(Base)) {
3689 while (isa<ImplicitCastExpr>(BaseCast->getSubExpr())) {
3690 BaseCast = cast<ImplicitCastExpr>(BaseCast->getSubExpr());
3691 }
3692
3693 if (BaseCast->getCastKind() == CK_UncheckedDerivedToBase) {
3694 QualType T = BaseCast->getType();
3695 if (T->isPointerType() &&
3696 BaseClasses.count(T->getPointeeType())) {
3697 S.Diag(FieldME->getExprLoc(), diag::warn_base_class_is_uninit)
3698 << T->getPointeeType() << FoundVD;
3699 }
3700 }
3701 }
3702
3703 if (!Decls.count(FoundVD))
3704 return;
3705
3706 const bool IsReference = FoundVD->getType()->isReferenceType();
3707
3708 if (InitList && !AddressOf && FoundVD == InitListFieldDecl) {
3709 // Special checking for initializer lists.
3710 if (IsInitListMemberExprInitialized(ME, CheckReferenceOnly)) {
3711 return;
3712 }
3713 } else {
3714 // Prevent double warnings on use of unbounded references.
3715 if (CheckReferenceOnly && !IsReference)
3716 return;
3717 }
3718
3719 unsigned diag = IsReference
3720 ? diag::warn_reference_field_is_uninit
3721 : diag::warn_field_is_uninit;
3722 S.Diag(FieldME->getExprLoc(), diag) << FoundVD;
3723 if (Constructor)
3724 S.Diag(Constructor->getLocation(),
3725 diag::note_uninit_in_this_constructor)
3726 << (Constructor->isDefaultConstructor() && Constructor->isImplicit());
3727
3728 }
3729
HandleValue(Expr * E,bool AddressOf)3730 void HandleValue(Expr *E, bool AddressOf) {
3731 E = E->IgnoreParens();
3732
3733 if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
3734 HandleMemberExpr(ME, false /*CheckReferenceOnly*/,
3735 AddressOf /*AddressOf*/);
3736 return;
3737 }
3738
3739 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
3740 Visit(CO->getCond());
3741 HandleValue(CO->getTrueExpr(), AddressOf);
3742 HandleValue(CO->getFalseExpr(), AddressOf);
3743 return;
3744 }
3745
3746 if (BinaryConditionalOperator *BCO =
3747 dyn_cast<BinaryConditionalOperator>(E)) {
3748 Visit(BCO->getCond());
3749 HandleValue(BCO->getFalseExpr(), AddressOf);
3750 return;
3751 }
3752
3753 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
3754 HandleValue(OVE->getSourceExpr(), AddressOf);
3755 return;
3756 }
3757
3758 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3759 switch (BO->getOpcode()) {
3760 default:
3761 break;
3762 case(BO_PtrMemD):
3763 case(BO_PtrMemI):
3764 HandleValue(BO->getLHS(), AddressOf);
3765 Visit(BO->getRHS());
3766 return;
3767 case(BO_Comma):
3768 Visit(BO->getLHS());
3769 HandleValue(BO->getRHS(), AddressOf);
3770 return;
3771 }
3772 }
3773
3774 Visit(E);
3775 }
3776
CheckInitListExpr(InitListExpr * ILE)3777 void CheckInitListExpr(InitListExpr *ILE) {
3778 InitFieldIndex.push_back(0);
3779 for (auto Child : ILE->children()) {
3780 if (InitListExpr *SubList = dyn_cast<InitListExpr>(Child)) {
3781 CheckInitListExpr(SubList);
3782 } else {
3783 Visit(Child);
3784 }
3785 ++InitFieldIndex.back();
3786 }
3787 InitFieldIndex.pop_back();
3788 }
3789
CheckInitializer(Expr * E,const CXXConstructorDecl * FieldConstructor,FieldDecl * Field,const Type * BaseClass)3790 void CheckInitializer(Expr *E, const CXXConstructorDecl *FieldConstructor,
3791 FieldDecl *Field, const Type *BaseClass) {
3792 // Remove Decls that may have been initialized in the previous
3793 // initializer.
3794 for (ValueDecl* VD : DeclsToRemove)
3795 Decls.erase(VD);
3796 DeclsToRemove.clear();
3797
3798 Constructor = FieldConstructor;
3799 InitListExpr *ILE = dyn_cast<InitListExpr>(E);
3800
3801 if (ILE && Field) {
3802 InitList = true;
3803 InitListFieldDecl = Field;
3804 InitFieldIndex.clear();
3805 CheckInitListExpr(ILE);
3806 } else {
3807 InitList = false;
3808 Visit(E);
3809 }
3810
3811 if (Field)
3812 Decls.erase(Field);
3813 if (BaseClass)
3814 BaseClasses.erase(BaseClass->getCanonicalTypeInternal());
3815 }
3816
VisitMemberExpr(MemberExpr * ME)3817 void VisitMemberExpr(MemberExpr *ME) {
3818 // All uses of unbounded reference fields will warn.
3819 HandleMemberExpr(ME, true /*CheckReferenceOnly*/, false /*AddressOf*/);
3820 }
3821
VisitImplicitCastExpr(ImplicitCastExpr * E)3822 void VisitImplicitCastExpr(ImplicitCastExpr *E) {
3823 if (E->getCastKind() == CK_LValueToRValue) {
3824 HandleValue(E->getSubExpr(), false /*AddressOf*/);
3825 return;
3826 }
3827
3828 Inherited::VisitImplicitCastExpr(E);
3829 }
3830
VisitCXXConstructExpr(CXXConstructExpr * E)3831 void VisitCXXConstructExpr(CXXConstructExpr *E) {
3832 if (E->getConstructor()->isCopyConstructor()) {
3833 Expr *ArgExpr = E->getArg(0);
3834 if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr))
3835 if (ILE->getNumInits() == 1)
3836 ArgExpr = ILE->getInit(0);
3837 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
3838 if (ICE->getCastKind() == CK_NoOp)
3839 ArgExpr = ICE->getSubExpr();
3840 HandleValue(ArgExpr, false /*AddressOf*/);
3841 return;
3842 }
3843 Inherited::VisitCXXConstructExpr(E);
3844 }
3845
VisitCXXMemberCallExpr(CXXMemberCallExpr * E)3846 void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3847 Expr *Callee = E->getCallee();
3848 if (isa<MemberExpr>(Callee)) {
3849 HandleValue(Callee, false /*AddressOf*/);
3850 for (auto Arg : E->arguments())
3851 Visit(Arg);
3852 return;
3853 }
3854
3855 Inherited::VisitCXXMemberCallExpr(E);
3856 }
3857
VisitCallExpr(CallExpr * E)3858 void VisitCallExpr(CallExpr *E) {
3859 // Treat std::move as a use.
3860 if (E->isCallToStdMove()) {
3861 HandleValue(E->getArg(0), /*AddressOf=*/false);
3862 return;
3863 }
3864
3865 Inherited::VisitCallExpr(E);
3866 }
3867
VisitCXXOperatorCallExpr(CXXOperatorCallExpr * E)3868 void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
3869 Expr *Callee = E->getCallee();
3870
3871 if (isa<UnresolvedLookupExpr>(Callee))
3872 return Inherited::VisitCXXOperatorCallExpr(E);
3873
3874 Visit(Callee);
3875 for (auto Arg : E->arguments())
3876 HandleValue(Arg->IgnoreParenImpCasts(), false /*AddressOf*/);
3877 }
3878
VisitBinaryOperator(BinaryOperator * E)3879 void VisitBinaryOperator(BinaryOperator *E) {
3880 // If a field assignment is detected, remove the field from the
3881 // uninitiailized field set.
3882 if (E->getOpcode() == BO_Assign)
3883 if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getLHS()))
3884 if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
3885 if (!FD->getType()->isReferenceType())
3886 DeclsToRemove.push_back(FD);
3887
3888 if (E->isCompoundAssignmentOp()) {
3889 HandleValue(E->getLHS(), false /*AddressOf*/);
3890 Visit(E->getRHS());
3891 return;
3892 }
3893
3894 Inherited::VisitBinaryOperator(E);
3895 }
3896
VisitUnaryOperator(UnaryOperator * E)3897 void VisitUnaryOperator(UnaryOperator *E) {
3898 if (E->isIncrementDecrementOp()) {
3899 HandleValue(E->getSubExpr(), false /*AddressOf*/);
3900 return;
3901 }
3902 if (E->getOpcode() == UO_AddrOf) {
3903 if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getSubExpr())) {
3904 HandleValue(ME->getBase(), true /*AddressOf*/);
3905 return;
3906 }
3907 }
3908
3909 Inherited::VisitUnaryOperator(E);
3910 }
3911 };
3912
3913 // Diagnose value-uses of fields to initialize themselves, e.g.
3914 // foo(foo)
3915 // where foo is not also a parameter to the constructor.
3916 // Also diagnose across field uninitialized use such as
3917 // x(y), y(x)
3918 // TODO: implement -Wuninitialized and fold this into that framework.
DiagnoseUninitializedFields(Sema & SemaRef,const CXXConstructorDecl * Constructor)3919 static void DiagnoseUninitializedFields(
3920 Sema &SemaRef, const CXXConstructorDecl *Constructor) {
3921
3922 if (SemaRef.getDiagnostics().isIgnored(diag::warn_field_is_uninit,
3923 Constructor->getLocation())) {
3924 return;
3925 }
3926
3927 if (Constructor->isInvalidDecl())
3928 return;
3929
3930 const CXXRecordDecl *RD = Constructor->getParent();
3931
3932 if (RD->isDependentContext())
3933 return;
3934
3935 // Holds fields that are uninitialized.
3936 llvm::SmallPtrSet<ValueDecl*, 4> UninitializedFields;
3937
3938 // At the beginning, all fields are uninitialized.
3939 for (auto *I : RD->decls()) {
3940 if (auto *FD = dyn_cast<FieldDecl>(I)) {
3941 UninitializedFields.insert(FD);
3942 } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(I)) {
3943 UninitializedFields.insert(IFD->getAnonField());
3944 }
3945 }
3946
3947 llvm::SmallPtrSet<QualType, 4> UninitializedBaseClasses;
3948 for (auto I : RD->bases())
3949 UninitializedBaseClasses.insert(I.getType().getCanonicalType());
3950
3951 if (UninitializedFields.empty() && UninitializedBaseClasses.empty())
3952 return;
3953
3954 UninitializedFieldVisitor UninitializedChecker(SemaRef,
3955 UninitializedFields,
3956 UninitializedBaseClasses);
3957
3958 for (const auto *FieldInit : Constructor->inits()) {
3959 if (UninitializedFields.empty() && UninitializedBaseClasses.empty())
3960 break;
3961
3962 Expr *InitExpr = FieldInit->getInit();
3963 if (!InitExpr)
3964 continue;
3965
3966 if (CXXDefaultInitExpr *Default =
3967 dyn_cast<CXXDefaultInitExpr>(InitExpr)) {
3968 InitExpr = Default->getExpr();
3969 if (!InitExpr)
3970 continue;
3971 // In class initializers will point to the constructor.
3972 UninitializedChecker.CheckInitializer(InitExpr, Constructor,
3973 FieldInit->getAnyMember(),
3974 FieldInit->getBaseClass());
3975 } else {
3976 UninitializedChecker.CheckInitializer(InitExpr, nullptr,
3977 FieldInit->getAnyMember(),
3978 FieldInit->getBaseClass());
3979 }
3980 }
3981 }
3982 } // namespace
3983
3984 /// Enter a new C++ default initializer scope. After calling this, the
3985 /// caller must call \ref ActOnFinishCXXInClassMemberInitializer, even if
3986 /// parsing or instantiating the initializer failed.
ActOnStartCXXInClassMemberInitializer()3987 void Sema::ActOnStartCXXInClassMemberInitializer() {
3988 // Create a synthetic function scope to represent the call to the constructor
3989 // that notionally surrounds a use of this initializer.
3990 PushFunctionScope();
3991 }
3992
ActOnStartTrailingRequiresClause(Scope * S,Declarator & D)3993 void Sema::ActOnStartTrailingRequiresClause(Scope *S, Declarator &D) {
3994 if (!D.isFunctionDeclarator())
3995 return;
3996 auto &FTI = D.getFunctionTypeInfo();
3997 if (!FTI.Params)
3998 return;
3999 for (auto &Param : ArrayRef<DeclaratorChunk::ParamInfo>(FTI.Params,
4000 FTI.NumParams)) {
4001 auto *ParamDecl = cast<NamedDecl>(Param.Param);
4002 if (ParamDecl->getDeclName())
4003 PushOnScopeChains(ParamDecl, S, /*AddToContext=*/false);
4004 }
4005 }
4006
ActOnFinishTrailingRequiresClause(ExprResult ConstraintExpr)4007 ExprResult Sema::ActOnFinishTrailingRequiresClause(ExprResult ConstraintExpr) {
4008 return ActOnRequiresClause(ConstraintExpr);
4009 }
4010
ActOnRequiresClause(ExprResult ConstraintExpr)4011 ExprResult Sema::ActOnRequiresClause(ExprResult ConstraintExpr) {
4012 if (ConstraintExpr.isInvalid())
4013 return ExprError();
4014
4015 ConstraintExpr = CorrectDelayedTyposInExpr(ConstraintExpr);
4016 if (ConstraintExpr.isInvalid())
4017 return ExprError();
4018
4019 if (DiagnoseUnexpandedParameterPack(ConstraintExpr.get(),
4020 UPPC_RequiresClause))
4021 return ExprError();
4022
4023 return ConstraintExpr;
4024 }
4025
4026 /// This is invoked after parsing an in-class initializer for a
4027 /// non-static C++ class member, and after instantiating an in-class initializer
4028 /// in a class template. Such actions are deferred until the class is complete.
ActOnFinishCXXInClassMemberInitializer(Decl * D,SourceLocation InitLoc,Expr * InitExpr)4029 void Sema::ActOnFinishCXXInClassMemberInitializer(Decl *D,
4030 SourceLocation InitLoc,
4031 Expr *InitExpr) {
4032 // Pop the notional constructor scope we created earlier.
4033 PopFunctionScopeInfo(nullptr, D);
4034
4035 FieldDecl *FD = dyn_cast<FieldDecl>(D);
4036 assert((isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) &&
4037 "must set init style when field is created");
4038
4039 if (!InitExpr) {
4040 D->setInvalidDecl();
4041 if (FD)
4042 FD->removeInClassInitializer();
4043 return;
4044 }
4045
4046 if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
4047 FD->setInvalidDecl();
4048 FD->removeInClassInitializer();
4049 return;
4050 }
4051
4052 ExprResult Init = InitExpr;
4053 if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
4054 InitializedEntity Entity =
4055 InitializedEntity::InitializeMemberFromDefaultMemberInitializer(FD);
4056 InitializationKind Kind =
4057 FD->getInClassInitStyle() == ICIS_ListInit
4058 ? InitializationKind::CreateDirectList(InitExpr->getBeginLoc(),
4059 InitExpr->getBeginLoc(),
4060 InitExpr->getEndLoc())
4061 : InitializationKind::CreateCopy(InitExpr->getBeginLoc(), InitLoc);
4062 InitializationSequence Seq(*this, Entity, Kind, InitExpr);
4063 Init = Seq.Perform(*this, Entity, Kind, InitExpr);
4064 if (Init.isInvalid()) {
4065 FD->setInvalidDecl();
4066 return;
4067 }
4068 }
4069
4070 // C++11 [class.base.init]p7:
4071 // The initialization of each base and member constitutes a
4072 // full-expression.
4073 Init = ActOnFinishFullExpr(Init.get(), InitLoc, /*DiscardedValue*/ false);
4074 if (Init.isInvalid()) {
4075 FD->setInvalidDecl();
4076 return;
4077 }
4078
4079 InitExpr = Init.get();
4080
4081 FD->setInClassInitializer(InitExpr);
4082 }
4083
4084 /// Find the direct and/or virtual base specifiers that
4085 /// correspond to the given base type, for use in base initialization
4086 /// within a constructor.
FindBaseInitializer(Sema & SemaRef,CXXRecordDecl * ClassDecl,QualType BaseType,const CXXBaseSpecifier * & DirectBaseSpec,const CXXBaseSpecifier * & VirtualBaseSpec)4087 static bool FindBaseInitializer(Sema &SemaRef,
4088 CXXRecordDecl *ClassDecl,
4089 QualType BaseType,
4090 const CXXBaseSpecifier *&DirectBaseSpec,
4091 const CXXBaseSpecifier *&VirtualBaseSpec) {
4092 // First, check for a direct base class.
4093 DirectBaseSpec = nullptr;
4094 for (const auto &Base : ClassDecl->bases()) {
4095 if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base.getType())) {
4096 // We found a direct base of this type. That's what we're
4097 // initializing.
4098 DirectBaseSpec = &Base;
4099 break;
4100 }
4101 }
4102
4103 // Check for a virtual base class.
4104 // FIXME: We might be able to short-circuit this if we know in advance that
4105 // there are no virtual bases.
4106 VirtualBaseSpec = nullptr;
4107 if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
4108 // We haven't found a base yet; search the class hierarchy for a
4109 // virtual base class.
4110 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
4111 /*DetectVirtual=*/false);
4112 if (SemaRef.IsDerivedFrom(ClassDecl->getLocation(),
4113 SemaRef.Context.getTypeDeclType(ClassDecl),
4114 BaseType, Paths)) {
4115 for (CXXBasePaths::paths_iterator Path = Paths.begin();
4116 Path != Paths.end(); ++Path) {
4117 if (Path->back().Base->isVirtual()) {
4118 VirtualBaseSpec = Path->back().Base;
4119 break;
4120 }
4121 }
4122 }
4123 }
4124
4125 return DirectBaseSpec || VirtualBaseSpec;
4126 }
4127
4128 /// Handle a C++ member initializer using braced-init-list syntax.
4129 MemInitResult
ActOnMemInitializer(Decl * ConstructorD,Scope * S,CXXScopeSpec & SS,IdentifierInfo * MemberOrBase,ParsedType TemplateTypeTy,const DeclSpec & DS,SourceLocation IdLoc,Expr * InitList,SourceLocation EllipsisLoc)4130 Sema::ActOnMemInitializer(Decl *ConstructorD,
4131 Scope *S,
4132 CXXScopeSpec &SS,
4133 IdentifierInfo *MemberOrBase,
4134 ParsedType TemplateTypeTy,
4135 const DeclSpec &DS,
4136 SourceLocation IdLoc,
4137 Expr *InitList,
4138 SourceLocation EllipsisLoc) {
4139 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
4140 DS, IdLoc, InitList,
4141 EllipsisLoc);
4142 }
4143
4144 /// Handle a C++ member initializer using parentheses syntax.
4145 MemInitResult
ActOnMemInitializer(Decl * ConstructorD,Scope * S,CXXScopeSpec & SS,IdentifierInfo * MemberOrBase,ParsedType TemplateTypeTy,const DeclSpec & DS,SourceLocation IdLoc,SourceLocation LParenLoc,ArrayRef<Expr * > Args,SourceLocation RParenLoc,SourceLocation EllipsisLoc)4146 Sema::ActOnMemInitializer(Decl *ConstructorD,
4147 Scope *S,
4148 CXXScopeSpec &SS,
4149 IdentifierInfo *MemberOrBase,
4150 ParsedType TemplateTypeTy,
4151 const DeclSpec &DS,
4152 SourceLocation IdLoc,
4153 SourceLocation LParenLoc,
4154 ArrayRef<Expr *> Args,
4155 SourceLocation RParenLoc,
4156 SourceLocation EllipsisLoc) {
4157 Expr *List = ParenListExpr::Create(Context, LParenLoc, Args, RParenLoc);
4158 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
4159 DS, IdLoc, List, EllipsisLoc);
4160 }
4161
4162 namespace {
4163
4164 // Callback to only accept typo corrections that can be a valid C++ member
4165 // initializer: either a non-static field member or a base class.
4166 class MemInitializerValidatorCCC final : public CorrectionCandidateCallback {
4167 public:
MemInitializerValidatorCCC(CXXRecordDecl * ClassDecl)4168 explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
4169 : ClassDecl(ClassDecl) {}
4170
ValidateCandidate(const TypoCorrection & candidate)4171 bool ValidateCandidate(const TypoCorrection &candidate) override {
4172 if (NamedDecl *ND = candidate.getCorrectionDecl()) {
4173 if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
4174 return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
4175 return isa<TypeDecl>(ND);
4176 }
4177 return false;
4178 }
4179
clone()4180 std::unique_ptr<CorrectionCandidateCallback> clone() override {
4181 return std::make_unique<MemInitializerValidatorCCC>(*this);
4182 }
4183
4184 private:
4185 CXXRecordDecl *ClassDecl;
4186 };
4187
4188 }
4189
tryLookupCtorInitMemberDecl(CXXRecordDecl * ClassDecl,CXXScopeSpec & SS,ParsedType TemplateTypeTy,IdentifierInfo * MemberOrBase)4190 ValueDecl *Sema::tryLookupCtorInitMemberDecl(CXXRecordDecl *ClassDecl,
4191 CXXScopeSpec &SS,
4192 ParsedType TemplateTypeTy,
4193 IdentifierInfo *MemberOrBase) {
4194 if (SS.getScopeRep() || TemplateTypeTy)
4195 return nullptr;
4196 for (auto *D : ClassDecl->lookup(MemberOrBase))
4197 if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D))
4198 return cast<ValueDecl>(D);
4199 return nullptr;
4200 }
4201
4202 /// Handle a C++ member initializer.
4203 MemInitResult
BuildMemInitializer(Decl * ConstructorD,Scope * S,CXXScopeSpec & SS,IdentifierInfo * MemberOrBase,ParsedType TemplateTypeTy,const DeclSpec & DS,SourceLocation IdLoc,Expr * Init,SourceLocation EllipsisLoc)4204 Sema::BuildMemInitializer(Decl *ConstructorD,
4205 Scope *S,
4206 CXXScopeSpec &SS,
4207 IdentifierInfo *MemberOrBase,
4208 ParsedType TemplateTypeTy,
4209 const DeclSpec &DS,
4210 SourceLocation IdLoc,
4211 Expr *Init,
4212 SourceLocation EllipsisLoc) {
4213 ExprResult Res = CorrectDelayedTyposInExpr(Init, /*InitDecl=*/nullptr,
4214 /*RecoverUncorrectedTypos=*/true);
4215 if (!Res.isUsable())
4216 return true;
4217 Init = Res.get();
4218
4219 if (!ConstructorD)
4220 return true;
4221
4222 AdjustDeclIfTemplate(ConstructorD);
4223
4224 CXXConstructorDecl *Constructor
4225 = dyn_cast<CXXConstructorDecl>(ConstructorD);
4226 if (!Constructor) {
4227 // The user wrote a constructor initializer on a function that is
4228 // not a C++ constructor. Ignore the error for now, because we may
4229 // have more member initializers coming; we'll diagnose it just
4230 // once in ActOnMemInitializers.
4231 return true;
4232 }
4233
4234 CXXRecordDecl *ClassDecl = Constructor->getParent();
4235
4236 // C++ [class.base.init]p2:
4237 // Names in a mem-initializer-id are looked up in the scope of the
4238 // constructor's class and, if not found in that scope, are looked
4239 // up in the scope containing the constructor's definition.
4240 // [Note: if the constructor's class contains a member with the
4241 // same name as a direct or virtual base class of the class, a
4242 // mem-initializer-id naming the member or base class and composed
4243 // of a single identifier refers to the class member. A
4244 // mem-initializer-id for the hidden base class may be specified
4245 // using a qualified name. ]
4246
4247 // Look for a member, first.
4248 if (ValueDecl *Member = tryLookupCtorInitMemberDecl(
4249 ClassDecl, SS, TemplateTypeTy, MemberOrBase)) {
4250 if (EllipsisLoc.isValid())
4251 Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
4252 << MemberOrBase
4253 << SourceRange(IdLoc, Init->getSourceRange().getEnd());
4254
4255 return BuildMemberInitializer(Member, Init, IdLoc);
4256 }
4257 // It didn't name a member, so see if it names a class.
4258 QualType BaseType;
4259 TypeSourceInfo *TInfo = nullptr;
4260
4261 if (TemplateTypeTy) {
4262 BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
4263 if (BaseType.isNull())
4264 return true;
4265 } else if (DS.getTypeSpecType() == TST_decltype) {
4266 BaseType = BuildDecltypeType(DS.getRepAsExpr());
4267 } else if (DS.getTypeSpecType() == TST_decltype_auto) {
4268 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
4269 return true;
4270 } else {
4271 LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
4272 LookupParsedName(R, S, &SS);
4273
4274 TypeDecl *TyD = R.getAsSingle<TypeDecl>();
4275 if (!TyD) {
4276 if (R.isAmbiguous()) return true;
4277
4278 // We don't want access-control diagnostics here.
4279 R.suppressDiagnostics();
4280
4281 if (SS.isSet() && isDependentScopeSpecifier(SS)) {
4282 bool NotUnknownSpecialization = false;
4283 DeclContext *DC = computeDeclContext(SS, false);
4284 if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
4285 NotUnknownSpecialization = !Record->hasAnyDependentBases();
4286
4287 if (!NotUnknownSpecialization) {
4288 // When the scope specifier can refer to a member of an unknown
4289 // specialization, we take it as a type name.
4290 BaseType = CheckTypenameType(ETK_None, SourceLocation(),
4291 SS.getWithLocInContext(Context),
4292 *MemberOrBase, IdLoc);
4293 if (BaseType.isNull())
4294 return true;
4295
4296 TInfo = Context.CreateTypeSourceInfo(BaseType);
4297 DependentNameTypeLoc TL =
4298 TInfo->getTypeLoc().castAs<DependentNameTypeLoc>();
4299 if (!TL.isNull()) {
4300 TL.setNameLoc(IdLoc);
4301 TL.setElaboratedKeywordLoc(SourceLocation());
4302 TL.setQualifierLoc(SS.getWithLocInContext(Context));
4303 }
4304
4305 R.clear();
4306 R.setLookupName(MemberOrBase);
4307 }
4308 }
4309
4310 if (getLangOpts().MSVCCompat && !getLangOpts().CPlusPlus20) {
4311 auto UnqualifiedBase = R.getAsSingle<ClassTemplateDecl>();
4312 if (UnqualifiedBase) {
4313 Diag(IdLoc, diag::ext_unqualified_base_class)
4314 << SourceRange(IdLoc, Init->getSourceRange().getEnd());
4315 BaseType = UnqualifiedBase->getInjectedClassNameSpecialization();
4316 }
4317 }
4318
4319 // If no results were found, try to correct typos.
4320 TypoCorrection Corr;
4321 MemInitializerValidatorCCC CCC(ClassDecl);
4322 if (R.empty() && BaseType.isNull() &&
4323 (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
4324 CCC, CTK_ErrorRecovery, ClassDecl))) {
4325 if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
4326 // We have found a non-static data member with a similar
4327 // name to what was typed; complain and initialize that
4328 // member.
4329 diagnoseTypo(Corr,
4330 PDiag(diag::err_mem_init_not_member_or_class_suggest)
4331 << MemberOrBase << true);
4332 return BuildMemberInitializer(Member, Init, IdLoc);
4333 } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
4334 const CXXBaseSpecifier *DirectBaseSpec;
4335 const CXXBaseSpecifier *VirtualBaseSpec;
4336 if (FindBaseInitializer(*this, ClassDecl,
4337 Context.getTypeDeclType(Type),
4338 DirectBaseSpec, VirtualBaseSpec)) {
4339 // We have found a direct or virtual base class with a
4340 // similar name to what was typed; complain and initialize
4341 // that base class.
4342 diagnoseTypo(Corr,
4343 PDiag(diag::err_mem_init_not_member_or_class_suggest)
4344 << MemberOrBase << false,
4345 PDiag() /*Suppress note, we provide our own.*/);
4346
4347 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec ? DirectBaseSpec
4348 : VirtualBaseSpec;
4349 Diag(BaseSpec->getBeginLoc(), diag::note_base_class_specified_here)
4350 << BaseSpec->getType() << BaseSpec->getSourceRange();
4351
4352 TyD = Type;
4353 }
4354 }
4355 }
4356
4357 if (!TyD && BaseType.isNull()) {
4358 Diag(IdLoc, diag::err_mem_init_not_member_or_class)
4359 << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
4360 return true;
4361 }
4362 }
4363
4364 if (BaseType.isNull()) {
4365 BaseType = Context.getTypeDeclType(TyD);
4366 MarkAnyDeclReferenced(TyD->getLocation(), TyD, /*OdrUse=*/false);
4367 if (SS.isSet()) {
4368 BaseType = Context.getElaboratedType(ETK_None, SS.getScopeRep(),
4369 BaseType);
4370 TInfo = Context.CreateTypeSourceInfo(BaseType);
4371 ElaboratedTypeLoc TL = TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>();
4372 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc);
4373 TL.setElaboratedKeywordLoc(SourceLocation());
4374 TL.setQualifierLoc(SS.getWithLocInContext(Context));
4375 }
4376 }
4377 }
4378
4379 if (!TInfo)
4380 TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
4381
4382 return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
4383 }
4384
4385 MemInitResult
BuildMemberInitializer(ValueDecl * Member,Expr * Init,SourceLocation IdLoc)4386 Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
4387 SourceLocation IdLoc) {
4388 FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
4389 IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
4390 assert((DirectMember || IndirectMember) &&
4391 "Member must be a FieldDecl or IndirectFieldDecl");
4392
4393 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
4394 return true;
4395
4396 if (Member->isInvalidDecl())
4397 return true;
4398
4399 MultiExprArg Args;
4400 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
4401 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
4402 } else if (InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
4403 Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
4404 } else {
4405 // Template instantiation doesn't reconstruct ParenListExprs for us.
4406 Args = Init;
4407 }
4408
4409 SourceRange InitRange = Init->getSourceRange();
4410
4411 if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
4412 // Can't check initialization for a member of dependent type or when
4413 // any of the arguments are type-dependent expressions.
4414 DiscardCleanupsInEvaluationContext();
4415 } else {
4416 bool InitList = false;
4417 if (isa<InitListExpr>(Init)) {
4418 InitList = true;
4419 Args = Init;
4420 }
4421
4422 // Initialize the member.
4423 InitializedEntity MemberEntity =
4424 DirectMember ? InitializedEntity::InitializeMember(DirectMember, nullptr)
4425 : InitializedEntity::InitializeMember(IndirectMember,
4426 nullptr);
4427 InitializationKind Kind =
4428 InitList ? InitializationKind::CreateDirectList(
4429 IdLoc, Init->getBeginLoc(), Init->getEndLoc())
4430 : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
4431 InitRange.getEnd());
4432
4433 InitializationSequence InitSeq(*this, MemberEntity, Kind, Args);
4434 ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind, Args,
4435 nullptr);
4436 if (!MemberInit.isInvalid()) {
4437 // C++11 [class.base.init]p7:
4438 // The initialization of each base and member constitutes a
4439 // full-expression.
4440 MemberInit = ActOnFinishFullExpr(MemberInit.get(), InitRange.getBegin(),
4441 /*DiscardedValue*/ false);
4442 }
4443
4444 if (MemberInit.isInvalid()) {
4445 // Args were sensible expressions but we couldn't initialize the member
4446 // from them. Preserve them in a RecoveryExpr instead.
4447 Init = CreateRecoveryExpr(InitRange.getBegin(), InitRange.getEnd(), Args,
4448 Member->getType())
4449 .get();
4450 if (!Init)
4451 return true;
4452 } else {
4453 Init = MemberInit.get();
4454 }
4455 }
4456
4457 if (DirectMember) {
4458 return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
4459 InitRange.getBegin(), Init,
4460 InitRange.getEnd());
4461 } else {
4462 return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
4463 InitRange.getBegin(), Init,
4464 InitRange.getEnd());
4465 }
4466 }
4467
4468 MemInitResult
BuildDelegatingInitializer(TypeSourceInfo * TInfo,Expr * Init,CXXRecordDecl * ClassDecl)4469 Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
4470 CXXRecordDecl *ClassDecl) {
4471 SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
4472 if (!LangOpts.CPlusPlus11)
4473 return Diag(NameLoc, diag::err_delegating_ctor)
4474 << TInfo->getTypeLoc().getLocalSourceRange();
4475 Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
4476
4477 bool InitList = true;
4478 MultiExprArg Args = Init;
4479 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
4480 InitList = false;
4481 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
4482 }
4483
4484 SourceRange InitRange = Init->getSourceRange();
4485 // Initialize the object.
4486 InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
4487 QualType(ClassDecl->getTypeForDecl(), 0));
4488 InitializationKind Kind =
4489 InitList ? InitializationKind::CreateDirectList(
4490 NameLoc, Init->getBeginLoc(), Init->getEndLoc())
4491 : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
4492 InitRange.getEnd());
4493 InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args);
4494 ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
4495 Args, nullptr);
4496 if (!DelegationInit.isInvalid()) {
4497 assert((DelegationInit.get()->containsErrors() ||
4498 cast<CXXConstructExpr>(DelegationInit.get())->getConstructor()) &&
4499 "Delegating constructor with no target?");
4500
4501 // C++11 [class.base.init]p7:
4502 // The initialization of each base and member constitutes a
4503 // full-expression.
4504 DelegationInit = ActOnFinishFullExpr(
4505 DelegationInit.get(), InitRange.getBegin(), /*DiscardedValue*/ false);
4506 }
4507
4508 if (DelegationInit.isInvalid()) {
4509 DelegationInit =
4510 CreateRecoveryExpr(InitRange.getBegin(), InitRange.getEnd(), Args,
4511 QualType(ClassDecl->getTypeForDecl(), 0));
4512 if (DelegationInit.isInvalid())
4513 return true;
4514 } else {
4515 // If we are in a dependent context, template instantiation will
4516 // perform this type-checking again. Just save the arguments that we
4517 // received in a ParenListExpr.
4518 // FIXME: This isn't quite ideal, since our ASTs don't capture all
4519 // of the information that we have about the base
4520 // initializer. However, deconstructing the ASTs is a dicey process,
4521 // and this approach is far more likely to get the corner cases right.
4522 if (CurContext->isDependentContext())
4523 DelegationInit = Init;
4524 }
4525
4526 return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
4527 DelegationInit.getAs<Expr>(),
4528 InitRange.getEnd());
4529 }
4530
4531 MemInitResult
BuildBaseInitializer(QualType BaseType,TypeSourceInfo * BaseTInfo,Expr * Init,CXXRecordDecl * ClassDecl,SourceLocation EllipsisLoc)4532 Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
4533 Expr *Init, CXXRecordDecl *ClassDecl,
4534 SourceLocation EllipsisLoc) {
4535 SourceLocation BaseLoc
4536 = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
4537
4538 if (!BaseType->isDependentType() && !BaseType->isRecordType())
4539 return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
4540 << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
4541
4542 // C++ [class.base.init]p2:
4543 // [...] Unless the mem-initializer-id names a nonstatic data
4544 // member of the constructor's class or a direct or virtual base
4545 // of that class, the mem-initializer is ill-formed. A
4546 // mem-initializer-list can initialize a base class using any
4547 // name that denotes that base class type.
4548
4549 // We can store the initializers in "as-written" form and delay analysis until
4550 // instantiation if the constructor is dependent. But not for dependent
4551 // (broken) code in a non-template! SetCtorInitializers does not expect this.
4552 bool Dependent = CurContext->isDependentContext() &&
4553 (BaseType->isDependentType() || Init->isTypeDependent());
4554
4555 SourceRange InitRange = Init->getSourceRange();
4556 if (EllipsisLoc.isValid()) {
4557 // This is a pack expansion.
4558 if (!BaseType->containsUnexpandedParameterPack()) {
4559 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
4560 << SourceRange(BaseLoc, InitRange.getEnd());
4561
4562 EllipsisLoc = SourceLocation();
4563 }
4564 } else {
4565 // Check for any unexpanded parameter packs.
4566 if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
4567 return true;
4568
4569 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
4570 return true;
4571 }
4572
4573 // Check for direct and virtual base classes.
4574 const CXXBaseSpecifier *DirectBaseSpec = nullptr;
4575 const CXXBaseSpecifier *VirtualBaseSpec = nullptr;
4576 if (!Dependent) {
4577 if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
4578 BaseType))
4579 return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
4580
4581 FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
4582 VirtualBaseSpec);
4583
4584 // C++ [base.class.init]p2:
4585 // Unless the mem-initializer-id names a nonstatic data member of the
4586 // constructor's class or a direct or virtual base of that class, the
4587 // mem-initializer is ill-formed.
4588 if (!DirectBaseSpec && !VirtualBaseSpec) {
4589 // If the class has any dependent bases, then it's possible that
4590 // one of those types will resolve to the same type as
4591 // BaseType. Therefore, just treat this as a dependent base
4592 // class initialization. FIXME: Should we try to check the
4593 // initialization anyway? It seems odd.
4594 if (ClassDecl->hasAnyDependentBases())
4595 Dependent = true;
4596 else
4597 return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
4598 << BaseType << Context.getTypeDeclType(ClassDecl)
4599 << BaseTInfo->getTypeLoc().getLocalSourceRange();
4600 }
4601 }
4602
4603 if (Dependent) {
4604 DiscardCleanupsInEvaluationContext();
4605
4606 return new (Context) CXXCtorInitializer(Context, BaseTInfo,
4607 /*IsVirtual=*/false,
4608 InitRange.getBegin(), Init,
4609 InitRange.getEnd(), EllipsisLoc);
4610 }
4611
4612 // C++ [base.class.init]p2:
4613 // If a mem-initializer-id is ambiguous because it designates both
4614 // a direct non-virtual base class and an inherited virtual base
4615 // class, the mem-initializer is ill-formed.
4616 if (DirectBaseSpec && VirtualBaseSpec)
4617 return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
4618 << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
4619
4620 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec;
4621 if (!BaseSpec)
4622 BaseSpec = VirtualBaseSpec;
4623
4624 // Initialize the base.
4625 bool InitList = true;
4626 MultiExprArg Args = Init;
4627 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
4628 InitList = false;
4629 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
4630 }
4631
4632 InitializedEntity BaseEntity =
4633 InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
4634 InitializationKind Kind =
4635 InitList ? InitializationKind::CreateDirectList(BaseLoc)
4636 : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
4637 InitRange.getEnd());
4638 InitializationSequence InitSeq(*this, BaseEntity, Kind, Args);
4639 ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind, Args, nullptr);
4640 if (!BaseInit.isInvalid()) {
4641 // C++11 [class.base.init]p7:
4642 // The initialization of each base and member constitutes a
4643 // full-expression.
4644 BaseInit = ActOnFinishFullExpr(BaseInit.get(), InitRange.getBegin(),
4645 /*DiscardedValue*/ false);
4646 }
4647
4648 if (BaseInit.isInvalid()) {
4649 BaseInit = CreateRecoveryExpr(InitRange.getBegin(), InitRange.getEnd(),
4650 Args, BaseType);
4651 if (BaseInit.isInvalid())
4652 return true;
4653 } else {
4654 // If we are in a dependent context, template instantiation will
4655 // perform this type-checking again. Just save the arguments that we
4656 // received in a ParenListExpr.
4657 // FIXME: This isn't quite ideal, since our ASTs don't capture all
4658 // of the information that we have about the base
4659 // initializer. However, deconstructing the ASTs is a dicey process,
4660 // and this approach is far more likely to get the corner cases right.
4661 if (CurContext->isDependentContext())
4662 BaseInit = Init;
4663 }
4664
4665 return new (Context) CXXCtorInitializer(Context, BaseTInfo,
4666 BaseSpec->isVirtual(),
4667 InitRange.getBegin(),
4668 BaseInit.getAs<Expr>(),
4669 InitRange.getEnd(), EllipsisLoc);
4670 }
4671
4672 // Create a static_cast\<T&&>(expr).
CastForMoving(Sema & SemaRef,Expr * E,QualType T=QualType ())4673 static Expr *CastForMoving(Sema &SemaRef, Expr *E, QualType T = QualType()) {
4674 if (T.isNull()) T = E->getType();
4675 QualType TargetType = SemaRef.BuildReferenceType(
4676 T, /*SpelledAsLValue*/false, SourceLocation(), DeclarationName());
4677 SourceLocation ExprLoc = E->getBeginLoc();
4678 TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
4679 TargetType, ExprLoc);
4680
4681 return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
4682 SourceRange(ExprLoc, ExprLoc),
4683 E->getSourceRange()).get();
4684 }
4685
4686 /// ImplicitInitializerKind - How an implicit base or member initializer should
4687 /// initialize its base or member.
4688 enum ImplicitInitializerKind {
4689 IIK_Default,
4690 IIK_Copy,
4691 IIK_Move,
4692 IIK_Inherit
4693 };
4694
4695 static bool
BuildImplicitBaseInitializer(Sema & SemaRef,CXXConstructorDecl * Constructor,ImplicitInitializerKind ImplicitInitKind,CXXBaseSpecifier * BaseSpec,bool IsInheritedVirtualBase,CXXCtorInitializer * & CXXBaseInit)4696 BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
4697 ImplicitInitializerKind ImplicitInitKind,
4698 CXXBaseSpecifier *BaseSpec,
4699 bool IsInheritedVirtualBase,
4700 CXXCtorInitializer *&CXXBaseInit) {
4701 InitializedEntity InitEntity
4702 = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
4703 IsInheritedVirtualBase);
4704
4705 ExprResult BaseInit;
4706
4707 switch (ImplicitInitKind) {
4708 case IIK_Inherit:
4709 case IIK_Default: {
4710 InitializationKind InitKind
4711 = InitializationKind::CreateDefault(Constructor->getLocation());
4712 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
4713 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
4714 break;
4715 }
4716
4717 case IIK_Move:
4718 case IIK_Copy: {
4719 bool Moving = ImplicitInitKind == IIK_Move;
4720 ParmVarDecl *Param = Constructor->getParamDecl(0);
4721 QualType ParamType = Param->getType().getNonReferenceType();
4722
4723 Expr *CopyCtorArg =
4724 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
4725 SourceLocation(), Param, false,
4726 Constructor->getLocation(), ParamType,
4727 VK_LValue, nullptr);
4728
4729 SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
4730
4731 // Cast to the base class to avoid ambiguities.
4732 QualType ArgTy =
4733 SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
4734 ParamType.getQualifiers());
4735
4736 if (Moving) {
4737 CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
4738 }
4739
4740 CXXCastPath BasePath;
4741 BasePath.push_back(BaseSpec);
4742 CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
4743 CK_UncheckedDerivedToBase,
4744 Moving ? VK_XValue : VK_LValue,
4745 &BasePath).get();
4746
4747 InitializationKind InitKind
4748 = InitializationKind::CreateDirect(Constructor->getLocation(),
4749 SourceLocation(), SourceLocation());
4750 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, CopyCtorArg);
4751 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, CopyCtorArg);
4752 break;
4753 }
4754 }
4755
4756 BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
4757 if (BaseInit.isInvalid())
4758 return true;
4759
4760 CXXBaseInit =
4761 new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
4762 SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
4763 SourceLocation()),
4764 BaseSpec->isVirtual(),
4765 SourceLocation(),
4766 BaseInit.getAs<Expr>(),
4767 SourceLocation(),
4768 SourceLocation());
4769
4770 return false;
4771 }
4772
RefersToRValueRef(Expr * MemRef)4773 static bool RefersToRValueRef(Expr *MemRef) {
4774 ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
4775 return Referenced->getType()->isRValueReferenceType();
4776 }
4777
4778 static bool
BuildImplicitMemberInitializer(Sema & SemaRef,CXXConstructorDecl * Constructor,ImplicitInitializerKind ImplicitInitKind,FieldDecl * Field,IndirectFieldDecl * Indirect,CXXCtorInitializer * & CXXMemberInit)4779 BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
4780 ImplicitInitializerKind ImplicitInitKind,
4781 FieldDecl *Field, IndirectFieldDecl *Indirect,
4782 CXXCtorInitializer *&CXXMemberInit) {
4783 if (Field->isInvalidDecl())
4784 return true;
4785
4786 SourceLocation Loc = Constructor->getLocation();
4787
4788 if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
4789 bool Moving = ImplicitInitKind == IIK_Move;
4790 ParmVarDecl *Param = Constructor->getParamDecl(0);
4791 QualType ParamType = Param->getType().getNonReferenceType();
4792
4793 // Suppress copying zero-width bitfields.
4794 if (Field->isZeroLengthBitField(SemaRef.Context))
4795 return false;
4796
4797 Expr *MemberExprBase =
4798 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
4799 SourceLocation(), Param, false,
4800 Loc, ParamType, VK_LValue, nullptr);
4801
4802 SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
4803
4804 if (Moving) {
4805 MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
4806 }
4807
4808 // Build a reference to this field within the parameter.
4809 CXXScopeSpec SS;
4810 LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
4811 Sema::LookupMemberName);
4812 MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
4813 : cast<ValueDecl>(Field), AS_public);
4814 MemberLookup.resolveKind();
4815 ExprResult CtorArg
4816 = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
4817 ParamType, Loc,
4818 /*IsArrow=*/false,
4819 SS,
4820 /*TemplateKWLoc=*/SourceLocation(),
4821 /*FirstQualifierInScope=*/nullptr,
4822 MemberLookup,
4823 /*TemplateArgs=*/nullptr,
4824 /*S*/nullptr);
4825 if (CtorArg.isInvalid())
4826 return true;
4827
4828 // C++11 [class.copy]p15:
4829 // - if a member m has rvalue reference type T&&, it is direct-initialized
4830 // with static_cast<T&&>(x.m);
4831 if (RefersToRValueRef(CtorArg.get())) {
4832 CtorArg = CastForMoving(SemaRef, CtorArg.get());
4833 }
4834
4835 InitializedEntity Entity =
4836 Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr,
4837 /*Implicit*/ true)
4838 : InitializedEntity::InitializeMember(Field, nullptr,
4839 /*Implicit*/ true);
4840
4841 // Direct-initialize to use the copy constructor.
4842 InitializationKind InitKind =
4843 InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
4844
4845 Expr *CtorArgE = CtorArg.getAs<Expr>();
4846 InitializationSequence InitSeq(SemaRef, Entity, InitKind, CtorArgE);
4847 ExprResult MemberInit =
4848 InitSeq.Perform(SemaRef, Entity, InitKind, MultiExprArg(&CtorArgE, 1));
4849 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
4850 if (MemberInit.isInvalid())
4851 return true;
4852
4853 if (Indirect)
4854 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(
4855 SemaRef.Context, Indirect, Loc, Loc, MemberInit.getAs<Expr>(), Loc);
4856 else
4857 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(
4858 SemaRef.Context, Field, Loc, Loc, MemberInit.getAs<Expr>(), Loc);
4859 return false;
4860 }
4861
4862 assert((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) &&
4863 "Unhandled implicit init kind!");
4864
4865 QualType FieldBaseElementType =
4866 SemaRef.Context.getBaseElementType(Field->getType());
4867
4868 if (FieldBaseElementType->isRecordType()) {
4869 InitializedEntity InitEntity =
4870 Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr,
4871 /*Implicit*/ true)
4872 : InitializedEntity::InitializeMember(Field, nullptr,
4873 /*Implicit*/ true);
4874 InitializationKind InitKind =
4875 InitializationKind::CreateDefault(Loc);
4876
4877 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
4878 ExprResult MemberInit =
4879 InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
4880
4881 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
4882 if (MemberInit.isInvalid())
4883 return true;
4884
4885 if (Indirect)
4886 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
4887 Indirect, Loc,
4888 Loc,
4889 MemberInit.get(),
4890 Loc);
4891 else
4892 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
4893 Field, Loc, Loc,
4894 MemberInit.get(),
4895 Loc);
4896 return false;
4897 }
4898
4899 if (!Field->getParent()->isUnion()) {
4900 if (FieldBaseElementType->isReferenceType()) {
4901 SemaRef.Diag(Constructor->getLocation(),
4902 diag::err_uninitialized_member_in_ctor)
4903 << (int)Constructor->isImplicit()
4904 << SemaRef.Context.getTagDeclType(Constructor->getParent())
4905 << 0 << Field->getDeclName();
4906 SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
4907 return true;
4908 }
4909
4910 if (FieldBaseElementType.isConstQualified()) {
4911 SemaRef.Diag(Constructor->getLocation(),
4912 diag::err_uninitialized_member_in_ctor)
4913 << (int)Constructor->isImplicit()
4914 << SemaRef.Context.getTagDeclType(Constructor->getParent())
4915 << 1 << Field->getDeclName();
4916 SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
4917 return true;
4918 }
4919 }
4920
4921 if (FieldBaseElementType.hasNonTrivialObjCLifetime()) {
4922 // ARC and Weak:
4923 // Default-initialize Objective-C pointers to NULL.
4924 CXXMemberInit
4925 = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
4926 Loc, Loc,
4927 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
4928 Loc);
4929 return false;
4930 }
4931
4932 // Nothing to initialize.
4933 CXXMemberInit = nullptr;
4934 return false;
4935 }
4936
4937 namespace {
4938 struct BaseAndFieldInfo {
4939 Sema &S;
4940 CXXConstructorDecl *Ctor;
4941 bool AnyErrorsInInits;
4942 ImplicitInitializerKind IIK;
4943 llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
4944 SmallVector<CXXCtorInitializer*, 8> AllToInit;
4945 llvm::DenseMap<TagDecl*, FieldDecl*> ActiveUnionMember;
4946
BaseAndFieldInfo__anonc19065b01211::BaseAndFieldInfo4947 BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
4948 : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
4949 bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
4950 if (Ctor->getInheritedConstructor())
4951 IIK = IIK_Inherit;
4952 else if (Generated && Ctor->isCopyConstructor())
4953 IIK = IIK_Copy;
4954 else if (Generated && Ctor->isMoveConstructor())
4955 IIK = IIK_Move;
4956 else
4957 IIK = IIK_Default;
4958 }
4959
isImplicitCopyOrMove__anonc19065b01211::BaseAndFieldInfo4960 bool isImplicitCopyOrMove() const {
4961 switch (IIK) {
4962 case IIK_Copy:
4963 case IIK_Move:
4964 return true;
4965
4966 case IIK_Default:
4967 case IIK_Inherit:
4968 return false;
4969 }
4970
4971 llvm_unreachable("Invalid ImplicitInitializerKind!");
4972 }
4973
addFieldInitializer__anonc19065b01211::BaseAndFieldInfo4974 bool addFieldInitializer(CXXCtorInitializer *Init) {
4975 AllToInit.push_back(Init);
4976
4977 // Check whether this initializer makes the field "used".
4978 if (Init->getInit()->HasSideEffects(S.Context))
4979 S.UnusedPrivateFields.remove(Init->getAnyMember());
4980
4981 return false;
4982 }
4983
isInactiveUnionMember__anonc19065b01211::BaseAndFieldInfo4984 bool isInactiveUnionMember(FieldDecl *Field) {
4985 RecordDecl *Record = Field->getParent();
4986 if (!Record->isUnion())
4987 return false;
4988
4989 if (FieldDecl *Active =
4990 ActiveUnionMember.lookup(Record->getCanonicalDecl()))
4991 return Active != Field->getCanonicalDecl();
4992
4993 // In an implicit copy or move constructor, ignore any in-class initializer.
4994 if (isImplicitCopyOrMove())
4995 return true;
4996
4997 // If there's no explicit initialization, the field is active only if it
4998 // has an in-class initializer...
4999 if (Field->hasInClassInitializer())
5000 return false;
5001 // ... or it's an anonymous struct or union whose class has an in-class
5002 // initializer.
5003 if (!Field->isAnonymousStructOrUnion())
5004 return true;
5005 CXXRecordDecl *FieldRD = Field->getType()->getAsCXXRecordDecl();
5006 return !FieldRD->hasInClassInitializer();
5007 }
5008
5009 /// Determine whether the given field is, or is within, a union member
5010 /// that is inactive (because there was an initializer given for a different
5011 /// member of the union, or because the union was not initialized at all).
isWithinInactiveUnionMember__anonc19065b01211::BaseAndFieldInfo5012 bool isWithinInactiveUnionMember(FieldDecl *Field,
5013 IndirectFieldDecl *Indirect) {
5014 if (!Indirect)
5015 return isInactiveUnionMember(Field);
5016
5017 for (auto *C : Indirect->chain()) {
5018 FieldDecl *Field = dyn_cast<FieldDecl>(C);
5019 if (Field && isInactiveUnionMember(Field))
5020 return true;
5021 }
5022 return false;
5023 }
5024 };
5025 }
5026
5027 /// Determine whether the given type is an incomplete or zero-lenfgth
5028 /// array type.
isIncompleteOrZeroLengthArrayType(ASTContext & Context,QualType T)5029 static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
5030 if (T->isIncompleteArrayType())
5031 return true;
5032
5033 while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
5034 if (!ArrayT->getSize())
5035 return true;
5036
5037 T = ArrayT->getElementType();
5038 }
5039
5040 return false;
5041 }
5042
CollectFieldInitializer(Sema & SemaRef,BaseAndFieldInfo & Info,FieldDecl * Field,IndirectFieldDecl * Indirect=nullptr)5043 static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
5044 FieldDecl *Field,
5045 IndirectFieldDecl *Indirect = nullptr) {
5046 if (Field->isInvalidDecl())
5047 return false;
5048
5049 // Overwhelmingly common case: we have a direct initializer for this field.
5050 if (CXXCtorInitializer *Init =
5051 Info.AllBaseFields.lookup(Field->getCanonicalDecl()))
5052 return Info.addFieldInitializer(Init);
5053
5054 // C++11 [class.base.init]p8:
5055 // if the entity is a non-static data member that has a
5056 // brace-or-equal-initializer and either
5057 // -- the constructor's class is a union and no other variant member of that
5058 // union is designated by a mem-initializer-id or
5059 // -- the constructor's class is not a union, and, if the entity is a member
5060 // of an anonymous union, no other member of that union is designated by
5061 // a mem-initializer-id,
5062 // the entity is initialized as specified in [dcl.init].
5063 //
5064 // We also apply the same rules to handle anonymous structs within anonymous
5065 // unions.
5066 if (Info.isWithinInactiveUnionMember(Field, Indirect))
5067 return false;
5068
5069 if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
5070 ExprResult DIE =
5071 SemaRef.BuildCXXDefaultInitExpr(Info.Ctor->getLocation(), Field);
5072 if (DIE.isInvalid())
5073 return true;
5074
5075 auto Entity = InitializedEntity::InitializeMember(Field, nullptr, true);
5076 SemaRef.checkInitializerLifetime(Entity, DIE.get());
5077
5078 CXXCtorInitializer *Init;
5079 if (Indirect)
5080 Init = new (SemaRef.Context)
5081 CXXCtorInitializer(SemaRef.Context, Indirect, SourceLocation(),
5082 SourceLocation(), DIE.get(), SourceLocation());
5083 else
5084 Init = new (SemaRef.Context)
5085 CXXCtorInitializer(SemaRef.Context, Field, SourceLocation(),
5086 SourceLocation(), DIE.get(), SourceLocation());
5087 return Info.addFieldInitializer(Init);
5088 }
5089
5090 // Don't initialize incomplete or zero-length arrays.
5091 if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
5092 return false;
5093
5094 // Don't try to build an implicit initializer if there were semantic
5095 // errors in any of the initializers (and therefore we might be
5096 // missing some that the user actually wrote).
5097 if (Info.AnyErrorsInInits)
5098 return false;
5099
5100 CXXCtorInitializer *Init = nullptr;
5101 if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
5102 Indirect, Init))
5103 return true;
5104
5105 if (!Init)
5106 return false;
5107
5108 return Info.addFieldInitializer(Init);
5109 }
5110
5111 bool
SetDelegatingInitializer(CXXConstructorDecl * Constructor,CXXCtorInitializer * Initializer)5112 Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
5113 CXXCtorInitializer *Initializer) {
5114 assert(Initializer->isDelegatingInitializer());
5115 Constructor->setNumCtorInitializers(1);
5116 CXXCtorInitializer **initializer =
5117 new (Context) CXXCtorInitializer*[1];
5118 memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
5119 Constructor->setCtorInitializers(initializer);
5120
5121 if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
5122 MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
5123 DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
5124 }
5125
5126 DelegatingCtorDecls.push_back(Constructor);
5127
5128 DiagnoseUninitializedFields(*this, Constructor);
5129
5130 return false;
5131 }
5132
SetCtorInitializers(CXXConstructorDecl * Constructor,bool AnyErrors,ArrayRef<CXXCtorInitializer * > Initializers)5133 bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors,
5134 ArrayRef<CXXCtorInitializer *> Initializers) {
5135 if (Constructor->isDependentContext()) {
5136 // Just store the initializers as written, they will be checked during
5137 // instantiation.
5138 if (!Initializers.empty()) {
5139 Constructor->setNumCtorInitializers(Initializers.size());
5140 CXXCtorInitializer **baseOrMemberInitializers =
5141 new (Context) CXXCtorInitializer*[Initializers.size()];
5142 memcpy(baseOrMemberInitializers, Initializers.data(),
5143 Initializers.size() * sizeof(CXXCtorInitializer*));
5144 Constructor->setCtorInitializers(baseOrMemberInitializers);
5145 }
5146
5147 // Let template instantiation know whether we had errors.
5148 if (AnyErrors)
5149 Constructor->setInvalidDecl();
5150
5151 return false;
5152 }
5153
5154 BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
5155
5156 // We need to build the initializer AST according to order of construction
5157 // and not what user specified in the Initializers list.
5158 CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
5159 if (!ClassDecl)
5160 return true;
5161
5162 bool HadError = false;
5163
5164 for (unsigned i = 0; i < Initializers.size(); i++) {
5165 CXXCtorInitializer *Member = Initializers[i];
5166
5167 if (Member->isBaseInitializer())
5168 Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
5169 else {
5170 Info.AllBaseFields[Member->getAnyMember()->getCanonicalDecl()] = Member;
5171
5172 if (IndirectFieldDecl *F = Member->getIndirectMember()) {
5173 for (auto *C : F->chain()) {
5174 FieldDecl *FD = dyn_cast<FieldDecl>(C);
5175 if (FD && FD->getParent()->isUnion())
5176 Info.ActiveUnionMember.insert(std::make_pair(
5177 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl()));
5178 }
5179 } else if (FieldDecl *FD = Member->getMember()) {
5180 if (FD->getParent()->isUnion())
5181 Info.ActiveUnionMember.insert(std::make_pair(
5182 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl()));
5183 }
5184 }
5185 }
5186
5187 // Keep track of the direct virtual bases.
5188 llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
5189 for (auto &I : ClassDecl->bases()) {
5190 if (I.isVirtual())
5191 DirectVBases.insert(&I);
5192 }
5193
5194 // Push virtual bases before others.
5195 for (auto &VBase : ClassDecl->vbases()) {
5196 if (CXXCtorInitializer *Value
5197 = Info.AllBaseFields.lookup(VBase.getType()->getAs<RecordType>())) {
5198 // [class.base.init]p7, per DR257:
5199 // A mem-initializer where the mem-initializer-id names a virtual base
5200 // class is ignored during execution of a constructor of any class that
5201 // is not the most derived class.
5202 if (ClassDecl->isAbstract()) {
5203 // FIXME: Provide a fixit to remove the base specifier. This requires
5204 // tracking the location of the associated comma for a base specifier.
5205 Diag(Value->getSourceLocation(), diag::warn_abstract_vbase_init_ignored)
5206 << VBase.getType() << ClassDecl;
5207 DiagnoseAbstractType(ClassDecl);
5208 }
5209
5210 Info.AllToInit.push_back(Value);
5211 } else if (!AnyErrors && !ClassDecl->isAbstract()) {
5212 // [class.base.init]p8, per DR257:
5213 // If a given [...] base class is not named by a mem-initializer-id
5214 // [...] and the entity is not a virtual base class of an abstract
5215 // class, then [...] the entity is default-initialized.
5216 bool IsInheritedVirtualBase = !DirectVBases.count(&VBase);
5217 CXXCtorInitializer *CXXBaseInit;
5218 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
5219 &VBase, IsInheritedVirtualBase,
5220 CXXBaseInit)) {
5221 HadError = true;
5222 continue;
5223 }
5224
5225 Info.AllToInit.push_back(CXXBaseInit);
5226 }
5227 }
5228
5229 // Non-virtual bases.
5230 for (auto &Base : ClassDecl->bases()) {
5231 // Virtuals are in the virtual base list and already constructed.
5232 if (Base.isVirtual())
5233 continue;
5234
5235 if (CXXCtorInitializer *Value
5236 = Info.AllBaseFields.lookup(Base.getType()->getAs<RecordType>())) {
5237 Info.AllToInit.push_back(Value);
5238 } else if (!AnyErrors) {
5239 CXXCtorInitializer *CXXBaseInit;
5240 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
5241 &Base, /*IsInheritedVirtualBase=*/false,
5242 CXXBaseInit)) {
5243 HadError = true;
5244 continue;
5245 }
5246
5247 Info.AllToInit.push_back(CXXBaseInit);
5248 }
5249 }
5250
5251 // Fields.
5252 for (auto *Mem : ClassDecl->decls()) {
5253 if (auto *F = dyn_cast<FieldDecl>(Mem)) {
5254 // C++ [class.bit]p2:
5255 // A declaration for a bit-field that omits the identifier declares an
5256 // unnamed bit-field. Unnamed bit-fields are not members and cannot be
5257 // initialized.
5258 if (F->isUnnamedBitfield())
5259 continue;
5260
5261 // If we're not generating the implicit copy/move constructor, then we'll
5262 // handle anonymous struct/union fields based on their individual
5263 // indirect fields.
5264 if (F->isAnonymousStructOrUnion() && !Info.isImplicitCopyOrMove())
5265 continue;
5266
5267 if (CollectFieldInitializer(*this, Info, F))
5268 HadError = true;
5269 continue;
5270 }
5271
5272 // Beyond this point, we only consider default initialization.
5273 if (Info.isImplicitCopyOrMove())
5274 continue;
5275
5276 if (auto *F = dyn_cast<IndirectFieldDecl>(Mem)) {
5277 if (F->getType()->isIncompleteArrayType()) {
5278 assert(ClassDecl->hasFlexibleArrayMember() &&
5279 "Incomplete array type is not valid");
5280 continue;
5281 }
5282
5283 // Initialize each field of an anonymous struct individually.
5284 if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
5285 HadError = true;
5286
5287 continue;
5288 }
5289 }
5290
5291 unsigned NumInitializers = Info.AllToInit.size();
5292 if (NumInitializers > 0) {
5293 Constructor->setNumCtorInitializers(NumInitializers);
5294 CXXCtorInitializer **baseOrMemberInitializers =
5295 new (Context) CXXCtorInitializer*[NumInitializers];
5296 memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
5297 NumInitializers * sizeof(CXXCtorInitializer*));
5298 Constructor->setCtorInitializers(baseOrMemberInitializers);
5299
5300 // Constructors implicitly reference the base and member
5301 // destructors.
5302 MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
5303 Constructor->getParent());
5304 }
5305
5306 return HadError;
5307 }
5308
PopulateKeysForFields(FieldDecl * Field,SmallVectorImpl<const void * > & IdealInits)5309 static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl<const void*> &IdealInits) {
5310 if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
5311 const RecordDecl *RD = RT->getDecl();
5312 if (RD->isAnonymousStructOrUnion()) {
5313 for (auto *Field : RD->fields())
5314 PopulateKeysForFields(Field, IdealInits);
5315 return;
5316 }
5317 }
5318 IdealInits.push_back(Field->getCanonicalDecl());
5319 }
5320
GetKeyForBase(ASTContext & Context,QualType BaseType)5321 static const void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
5322 return Context.getCanonicalType(BaseType).getTypePtr();
5323 }
5324
GetKeyForMember(ASTContext & Context,CXXCtorInitializer * Member)5325 static const void *GetKeyForMember(ASTContext &Context,
5326 CXXCtorInitializer *Member) {
5327 if (!Member->isAnyMemberInitializer())
5328 return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
5329
5330 return Member->getAnyMember()->getCanonicalDecl();
5331 }
5332
AddInitializerToDiag(const Sema::SemaDiagnosticBuilder & Diag,const CXXCtorInitializer * Previous,const CXXCtorInitializer * Current)5333 static void AddInitializerToDiag(const Sema::SemaDiagnosticBuilder &Diag,
5334 const CXXCtorInitializer *Previous,
5335 const CXXCtorInitializer *Current) {
5336 if (Previous->isAnyMemberInitializer())
5337 Diag << 0 << Previous->getAnyMember();
5338 else
5339 Diag << 1 << Previous->getTypeSourceInfo()->getType();
5340
5341 if (Current->isAnyMemberInitializer())
5342 Diag << 0 << Current->getAnyMember();
5343 else
5344 Diag << 1 << Current->getTypeSourceInfo()->getType();
5345 }
5346
DiagnoseBaseOrMemInitializerOrder(Sema & SemaRef,const CXXConstructorDecl * Constructor,ArrayRef<CXXCtorInitializer * > Inits)5347 static void DiagnoseBaseOrMemInitializerOrder(
5348 Sema &SemaRef, const CXXConstructorDecl *Constructor,
5349 ArrayRef<CXXCtorInitializer *> Inits) {
5350 if (Constructor->getDeclContext()->isDependentContext())
5351 return;
5352
5353 // Don't check initializers order unless the warning is enabled at the
5354 // location of at least one initializer.
5355 bool ShouldCheckOrder = false;
5356 for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
5357 CXXCtorInitializer *Init = Inits[InitIndex];
5358 if (!SemaRef.Diags.isIgnored(diag::warn_initializer_out_of_order,
5359 Init->getSourceLocation())) {
5360 ShouldCheckOrder = true;
5361 break;
5362 }
5363 }
5364 if (!ShouldCheckOrder)
5365 return;
5366
5367 // Build the list of bases and members in the order that they'll
5368 // actually be initialized. The explicit initializers should be in
5369 // this same order but may be missing things.
5370 SmallVector<const void*, 32> IdealInitKeys;
5371
5372 const CXXRecordDecl *ClassDecl = Constructor->getParent();
5373
5374 // 1. Virtual bases.
5375 for (const auto &VBase : ClassDecl->vbases())
5376 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase.getType()));
5377
5378 // 2. Non-virtual bases.
5379 for (const auto &Base : ClassDecl->bases()) {
5380 if (Base.isVirtual())
5381 continue;
5382 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base.getType()));
5383 }
5384
5385 // 3. Direct fields.
5386 for (auto *Field : ClassDecl->fields()) {
5387 if (Field->isUnnamedBitfield())
5388 continue;
5389
5390 PopulateKeysForFields(Field, IdealInitKeys);
5391 }
5392
5393 unsigned NumIdealInits = IdealInitKeys.size();
5394 unsigned IdealIndex = 0;
5395
5396 // Track initializers that are in an incorrect order for either a warning or
5397 // note if multiple ones occur.
5398 SmallVector<unsigned> WarnIndexes;
5399 // Correlates the index of an initializer in the init-list to the index of
5400 // the field/base in the class.
5401 SmallVector<std::pair<unsigned, unsigned>, 32> CorrelatedInitOrder;
5402
5403 for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
5404 const void *InitKey = GetKeyForMember(SemaRef.Context, Inits[InitIndex]);
5405
5406 // Scan forward to try to find this initializer in the idealized
5407 // initializers list.
5408 for (; IdealIndex != NumIdealInits; ++IdealIndex)
5409 if (InitKey == IdealInitKeys[IdealIndex])
5410 break;
5411
5412 // If we didn't find this initializer, it must be because we
5413 // scanned past it on a previous iteration. That can only
5414 // happen if we're out of order; emit a warning.
5415 if (IdealIndex == NumIdealInits && InitIndex) {
5416 WarnIndexes.push_back(InitIndex);
5417
5418 // Move back to the initializer's location in the ideal list.
5419 for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
5420 if (InitKey == IdealInitKeys[IdealIndex])
5421 break;
5422
5423 assert(IdealIndex < NumIdealInits &&
5424 "initializer not found in initializer list");
5425 }
5426 CorrelatedInitOrder.emplace_back(IdealIndex, InitIndex);
5427 }
5428
5429 if (WarnIndexes.empty())
5430 return;
5431
5432 // Sort based on the ideal order, first in the pair.
5433 llvm::sort(CorrelatedInitOrder, llvm::less_first());
5434
5435 // Introduce a new scope as SemaDiagnosticBuilder needs to be destroyed to
5436 // emit the diagnostic before we can try adding notes.
5437 {
5438 Sema::SemaDiagnosticBuilder D = SemaRef.Diag(
5439 Inits[WarnIndexes.front() - 1]->getSourceLocation(),
5440 WarnIndexes.size() == 1 ? diag::warn_initializer_out_of_order
5441 : diag::warn_some_initializers_out_of_order);
5442
5443 for (unsigned I = 0; I < CorrelatedInitOrder.size(); ++I) {
5444 if (CorrelatedInitOrder[I].second == I)
5445 continue;
5446 // Ideally we would be using InsertFromRange here, but clang doesn't
5447 // appear to handle InsertFromRange correctly when the source range is
5448 // modified by another fix-it.
5449 D << FixItHint::CreateReplacement(
5450 Inits[I]->getSourceRange(),
5451 Lexer::getSourceText(
5452 CharSourceRange::getTokenRange(
5453 Inits[CorrelatedInitOrder[I].second]->getSourceRange()),
5454 SemaRef.getSourceManager(), SemaRef.getLangOpts()));
5455 }
5456
5457 // If there is only 1 item out of order, the warning expects the name and
5458 // type of each being added to it.
5459 if (WarnIndexes.size() == 1) {
5460 AddInitializerToDiag(D, Inits[WarnIndexes.front() - 1],
5461 Inits[WarnIndexes.front()]);
5462 return;
5463 }
5464 }
5465 // More than 1 item to warn, create notes letting the user know which ones
5466 // are bad.
5467 for (unsigned WarnIndex : WarnIndexes) {
5468 const clang::CXXCtorInitializer *PrevInit = Inits[WarnIndex - 1];
5469 auto D = SemaRef.Diag(PrevInit->getSourceLocation(),
5470 diag::note_initializer_out_of_order);
5471 AddInitializerToDiag(D, PrevInit, Inits[WarnIndex]);
5472 D << PrevInit->getSourceRange();
5473 }
5474 }
5475
5476 namespace {
CheckRedundantInit(Sema & S,CXXCtorInitializer * Init,CXXCtorInitializer * & PrevInit)5477 bool CheckRedundantInit(Sema &S,
5478 CXXCtorInitializer *Init,
5479 CXXCtorInitializer *&PrevInit) {
5480 if (!PrevInit) {
5481 PrevInit = Init;
5482 return false;
5483 }
5484
5485 if (FieldDecl *Field = Init->getAnyMember())
5486 S.Diag(Init->getSourceLocation(),
5487 diag::err_multiple_mem_initialization)
5488 << Field->getDeclName()
5489 << Init->getSourceRange();
5490 else {
5491 const Type *BaseClass = Init->getBaseClass();
5492 assert(BaseClass && "neither field nor base");
5493 S.Diag(Init->getSourceLocation(),
5494 diag::err_multiple_base_initialization)
5495 << QualType(BaseClass, 0)
5496 << Init->getSourceRange();
5497 }
5498 S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
5499 << 0 << PrevInit->getSourceRange();
5500
5501 return true;
5502 }
5503
5504 typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
5505 typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
5506
CheckRedundantUnionInit(Sema & S,CXXCtorInitializer * Init,RedundantUnionMap & Unions)5507 bool CheckRedundantUnionInit(Sema &S,
5508 CXXCtorInitializer *Init,
5509 RedundantUnionMap &Unions) {
5510 FieldDecl *Field = Init->getAnyMember();
5511 RecordDecl *Parent = Field->getParent();
5512 NamedDecl *Child = Field;
5513
5514 while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
5515 if (Parent->isUnion()) {
5516 UnionEntry &En = Unions[Parent];
5517 if (En.first && En.first != Child) {
5518 S.Diag(Init->getSourceLocation(),
5519 diag::err_multiple_mem_union_initialization)
5520 << Field->getDeclName()
5521 << Init->getSourceRange();
5522 S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
5523 << 0 << En.second->getSourceRange();
5524 return true;
5525 }
5526 if (!En.first) {
5527 En.first = Child;
5528 En.second = Init;
5529 }
5530 if (!Parent->isAnonymousStructOrUnion())
5531 return false;
5532 }
5533
5534 Child = Parent;
5535 Parent = cast<RecordDecl>(Parent->getDeclContext());
5536 }
5537
5538 return false;
5539 }
5540 } // namespace
5541
5542 /// ActOnMemInitializers - Handle the member initializers for a constructor.
ActOnMemInitializers(Decl * ConstructorDecl,SourceLocation ColonLoc,ArrayRef<CXXCtorInitializer * > MemInits,bool AnyErrors)5543 void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
5544 SourceLocation ColonLoc,
5545 ArrayRef<CXXCtorInitializer*> MemInits,
5546 bool AnyErrors) {
5547 if (!ConstructorDecl)
5548 return;
5549
5550 AdjustDeclIfTemplate(ConstructorDecl);
5551
5552 CXXConstructorDecl *Constructor
5553 = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
5554
5555 if (!Constructor) {
5556 Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
5557 return;
5558 }
5559
5560 // Mapping for the duplicate initializers check.
5561 // For member initializers, this is keyed with a FieldDecl*.
5562 // For base initializers, this is keyed with a Type*.
5563 llvm::DenseMap<const void *, CXXCtorInitializer *> Members;
5564
5565 // Mapping for the inconsistent anonymous-union initializers check.
5566 RedundantUnionMap MemberUnions;
5567
5568 bool HadError = false;
5569 for (unsigned i = 0; i < MemInits.size(); i++) {
5570 CXXCtorInitializer *Init = MemInits[i];
5571
5572 // Set the source order index.
5573 Init->setSourceOrder(i);
5574
5575 if (Init->isAnyMemberInitializer()) {
5576 const void *Key = GetKeyForMember(Context, Init);
5577 if (CheckRedundantInit(*this, Init, Members[Key]) ||
5578 CheckRedundantUnionInit(*this, Init, MemberUnions))
5579 HadError = true;
5580 } else if (Init->isBaseInitializer()) {
5581 const void *Key = GetKeyForMember(Context, Init);
5582 if (CheckRedundantInit(*this, Init, Members[Key]))
5583 HadError = true;
5584 } else {
5585 assert(Init->isDelegatingInitializer());
5586 // This must be the only initializer
5587 if (MemInits.size() != 1) {
5588 Diag(Init->getSourceLocation(),
5589 diag::err_delegating_initializer_alone)
5590 << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange();
5591 // We will treat this as being the only initializer.
5592 }
5593 SetDelegatingInitializer(Constructor, MemInits[i]);
5594 // Return immediately as the initializer is set.
5595 return;
5596 }
5597 }
5598
5599 if (HadError)
5600 return;
5601
5602 DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits);
5603
5604 SetCtorInitializers(Constructor, AnyErrors, MemInits);
5605
5606 DiagnoseUninitializedFields(*this, Constructor);
5607 }
5608
5609 void
MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,CXXRecordDecl * ClassDecl)5610 Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
5611 CXXRecordDecl *ClassDecl) {
5612 // Ignore dependent contexts. Also ignore unions, since their members never
5613 // have destructors implicitly called.
5614 if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
5615 return;
5616
5617 // FIXME: all the access-control diagnostics are positioned on the
5618 // field/base declaration. That's probably good; that said, the
5619 // user might reasonably want to know why the destructor is being
5620 // emitted, and we currently don't say.
5621
5622 // Non-static data members.
5623 for (auto *Field : ClassDecl->fields()) {
5624 if (Field->isInvalidDecl())
5625 continue;
5626
5627 // Don't destroy incomplete or zero-length arrays.
5628 if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
5629 continue;
5630
5631 QualType FieldType = Context.getBaseElementType(Field->getType());
5632
5633 const RecordType* RT = FieldType->getAs<RecordType>();
5634 if (!RT)
5635 continue;
5636
5637 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
5638 if (FieldClassDecl->isInvalidDecl())
5639 continue;
5640 if (FieldClassDecl->hasIrrelevantDestructor())
5641 continue;
5642 // The destructor for an implicit anonymous union member is never invoked.
5643 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
5644 continue;
5645
5646 CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
5647 assert(Dtor && "No dtor found for FieldClassDecl!");
5648 CheckDestructorAccess(Field->getLocation(), Dtor,
5649 PDiag(diag::err_access_dtor_field)
5650 << Field->getDeclName()
5651 << FieldType);
5652
5653 MarkFunctionReferenced(Location, Dtor);
5654 DiagnoseUseOfDecl(Dtor, Location);
5655 }
5656
5657 // We only potentially invoke the destructors of potentially constructed
5658 // subobjects.
5659 bool VisitVirtualBases = !ClassDecl->isAbstract();
5660
5661 // If the destructor exists and has already been marked used in the MS ABI,
5662 // then virtual base destructors have already been checked and marked used.
5663 // Skip checking them again to avoid duplicate diagnostics.
5664 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5665 CXXDestructorDecl *Dtor = ClassDecl->getDestructor();
5666 if (Dtor && Dtor->isUsed())
5667 VisitVirtualBases = false;
5668 }
5669
5670 llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
5671
5672 // Bases.
5673 for (const auto &Base : ClassDecl->bases()) {
5674 const RecordType *RT = Base.getType()->getAs<RecordType>();
5675 if (!RT)
5676 continue;
5677
5678 // Remember direct virtual bases.
5679 if (Base.isVirtual()) {
5680 if (!VisitVirtualBases)
5681 continue;
5682 DirectVirtualBases.insert(RT);
5683 }
5684
5685 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
5686 // If our base class is invalid, we probably can't get its dtor anyway.
5687 if (BaseClassDecl->isInvalidDecl())
5688 continue;
5689 if (BaseClassDecl->hasIrrelevantDestructor())
5690 continue;
5691
5692 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
5693 assert(Dtor && "No dtor found for BaseClassDecl!");
5694
5695 // FIXME: caret should be on the start of the class name
5696 CheckDestructorAccess(Base.getBeginLoc(), Dtor,
5697 PDiag(diag::err_access_dtor_base)
5698 << Base.getType() << Base.getSourceRange(),
5699 Context.getTypeDeclType(ClassDecl));
5700
5701 MarkFunctionReferenced(Location, Dtor);
5702 DiagnoseUseOfDecl(Dtor, Location);
5703 }
5704
5705 if (VisitVirtualBases)
5706 MarkVirtualBaseDestructorsReferenced(Location, ClassDecl,
5707 &DirectVirtualBases);
5708 }
5709
MarkVirtualBaseDestructorsReferenced(SourceLocation Location,CXXRecordDecl * ClassDecl,llvm::SmallPtrSetImpl<const RecordType * > * DirectVirtualBases)5710 void Sema::MarkVirtualBaseDestructorsReferenced(
5711 SourceLocation Location, CXXRecordDecl *ClassDecl,
5712 llvm::SmallPtrSetImpl<const RecordType *> *DirectVirtualBases) {
5713 // Virtual bases.
5714 for (const auto &VBase : ClassDecl->vbases()) {
5715 // Bases are always records in a well-formed non-dependent class.
5716 const RecordType *RT = VBase.getType()->castAs<RecordType>();
5717
5718 // Ignore already visited direct virtual bases.
5719 if (DirectVirtualBases && DirectVirtualBases->count(RT))
5720 continue;
5721
5722 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
5723 // If our base class is invalid, we probably can't get its dtor anyway.
5724 if (BaseClassDecl->isInvalidDecl())
5725 continue;
5726 if (BaseClassDecl->hasIrrelevantDestructor())
5727 continue;
5728
5729 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
5730 assert(Dtor && "No dtor found for BaseClassDecl!");
5731 if (CheckDestructorAccess(
5732 ClassDecl->getLocation(), Dtor,
5733 PDiag(diag::err_access_dtor_vbase)
5734 << Context.getTypeDeclType(ClassDecl) << VBase.getType(),
5735 Context.getTypeDeclType(ClassDecl)) ==
5736 AR_accessible) {
5737 CheckDerivedToBaseConversion(
5738 Context.getTypeDeclType(ClassDecl), VBase.getType(),
5739 diag::err_access_dtor_vbase, 0, ClassDecl->getLocation(),
5740 SourceRange(), DeclarationName(), nullptr);
5741 }
5742
5743 MarkFunctionReferenced(Location, Dtor);
5744 DiagnoseUseOfDecl(Dtor, Location);
5745 }
5746 }
5747
ActOnDefaultCtorInitializers(Decl * CDtorDecl)5748 void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
5749 if (!CDtorDecl)
5750 return;
5751
5752 if (CXXConstructorDecl *Constructor
5753 = dyn_cast<CXXConstructorDecl>(CDtorDecl)) {
5754 SetCtorInitializers(Constructor, /*AnyErrors=*/false);
5755 DiagnoseUninitializedFields(*this, Constructor);
5756 }
5757 }
5758
isAbstractType(SourceLocation Loc,QualType T)5759 bool Sema::isAbstractType(SourceLocation Loc, QualType T) {
5760 if (!getLangOpts().CPlusPlus)
5761 return false;
5762
5763 const auto *RD = Context.getBaseElementType(T)->getAsCXXRecordDecl();
5764 if (!RD)
5765 return false;
5766
5767 // FIXME: Per [temp.inst]p1, we are supposed to trigger instantiation of a
5768 // class template specialization here, but doing so breaks a lot of code.
5769
5770 // We can't answer whether something is abstract until it has a
5771 // definition. If it's currently being defined, we'll walk back
5772 // over all the declarations when we have a full definition.
5773 const CXXRecordDecl *Def = RD->getDefinition();
5774 if (!Def || Def->isBeingDefined())
5775 return false;
5776
5777 return RD->isAbstract();
5778 }
5779
RequireNonAbstractType(SourceLocation Loc,QualType T,TypeDiagnoser & Diagnoser)5780 bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
5781 TypeDiagnoser &Diagnoser) {
5782 if (!isAbstractType(Loc, T))
5783 return false;
5784
5785 T = Context.getBaseElementType(T);
5786 Diagnoser.diagnose(*this, Loc, T);
5787 DiagnoseAbstractType(T->getAsCXXRecordDecl());
5788 return true;
5789 }
5790
DiagnoseAbstractType(const CXXRecordDecl * RD)5791 void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
5792 // Check if we've already emitted the list of pure virtual functions
5793 // for this class.
5794 if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
5795 return;
5796
5797 // If the diagnostic is suppressed, don't emit the notes. We're only
5798 // going to emit them once, so try to attach them to a diagnostic we're
5799 // actually going to show.
5800 if (Diags.isLastDiagnosticIgnored())
5801 return;
5802
5803 CXXFinalOverriderMap FinalOverriders;
5804 RD->getFinalOverriders(FinalOverriders);
5805
5806 // Keep a set of seen pure methods so we won't diagnose the same method
5807 // more than once.
5808 llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
5809
5810 for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
5811 MEnd = FinalOverriders.end();
5812 M != MEnd;
5813 ++M) {
5814 for (OverridingMethods::iterator SO = M->second.begin(),
5815 SOEnd = M->second.end();
5816 SO != SOEnd; ++SO) {
5817 // C++ [class.abstract]p4:
5818 // A class is abstract if it contains or inherits at least one
5819 // pure virtual function for which the final overrider is pure
5820 // virtual.
5821
5822 //
5823 if (SO->second.size() != 1)
5824 continue;
5825
5826 if (!SO->second.front().Method->isPure())
5827 continue;
5828
5829 if (!SeenPureMethods.insert(SO->second.front().Method).second)
5830 continue;
5831
5832 Diag(SO->second.front().Method->getLocation(),
5833 diag::note_pure_virtual_function)
5834 << SO->second.front().Method->getDeclName() << RD->getDeclName();
5835 }
5836 }
5837
5838 if (!PureVirtualClassDiagSet)
5839 PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
5840 PureVirtualClassDiagSet->insert(RD);
5841 }
5842
5843 namespace {
5844 struct AbstractUsageInfo {
5845 Sema &S;
5846 CXXRecordDecl *Record;
5847 CanQualType AbstractType;
5848 bool Invalid;
5849
AbstractUsageInfo__anonc19065b01411::AbstractUsageInfo5850 AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
5851 : S(S), Record(Record),
5852 AbstractType(S.Context.getCanonicalType(
5853 S.Context.getTypeDeclType(Record))),
5854 Invalid(false) {}
5855
DiagnoseAbstractType__anonc19065b01411::AbstractUsageInfo5856 void DiagnoseAbstractType() {
5857 if (Invalid) return;
5858 S.DiagnoseAbstractType(Record);
5859 Invalid = true;
5860 }
5861
5862 void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
5863 };
5864
5865 struct CheckAbstractUsage {
5866 AbstractUsageInfo &Info;
5867 const NamedDecl *Ctx;
5868
CheckAbstractUsage__anonc19065b01411::CheckAbstractUsage5869 CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
5870 : Info(Info), Ctx(Ctx) {}
5871
Visit__anonc19065b01411::CheckAbstractUsage5872 void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
5873 switch (TL.getTypeLocClass()) {
5874 #define ABSTRACT_TYPELOC(CLASS, PARENT)
5875 #define TYPELOC(CLASS, PARENT) \
5876 case TypeLoc::CLASS: Check(TL.castAs<CLASS##TypeLoc>(), Sel); break;
5877 #include "clang/AST/TypeLocNodes.def"
5878 }
5879 }
5880
Check__anonc19065b01411::CheckAbstractUsage5881 void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
5882 Visit(TL.getReturnLoc(), Sema::AbstractReturnType);
5883 for (unsigned I = 0, E = TL.getNumParams(); I != E; ++I) {
5884 if (!TL.getParam(I))
5885 continue;
5886
5887 TypeSourceInfo *TSI = TL.getParam(I)->getTypeSourceInfo();
5888 if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
5889 }
5890 }
5891
Check__anonc19065b01411::CheckAbstractUsage5892 void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
5893 Visit(TL.getElementLoc(), Sema::AbstractArrayType);
5894 }
5895
Check__anonc19065b01411::CheckAbstractUsage5896 void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
5897 // Visit the type parameters from a permissive context.
5898 for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
5899 TemplateArgumentLoc TAL = TL.getArgLoc(I);
5900 if (TAL.getArgument().getKind() == TemplateArgument::Type)
5901 if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
5902 Visit(TSI->getTypeLoc(), Sema::AbstractNone);
5903 // TODO: other template argument types?
5904 }
5905 }
5906
5907 // Visit pointee types from a permissive context.
5908 #define CheckPolymorphic(Type) \
5909 void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
5910 Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
5911 }
5912 CheckPolymorphic(PointerTypeLoc)
CheckPolymorphic__anonc19065b01411::CheckAbstractUsage5913 CheckPolymorphic(ReferenceTypeLoc)
5914 CheckPolymorphic(MemberPointerTypeLoc)
5915 CheckPolymorphic(BlockPointerTypeLoc)
5916 CheckPolymorphic(AtomicTypeLoc)
5917
5918 /// Handle all the types we haven't given a more specific
5919 /// implementation for above.
5920 void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
5921 // Every other kind of type that we haven't called out already
5922 // that has an inner type is either (1) sugar or (2) contains that
5923 // inner type in some way as a subobject.
5924 if (TypeLoc Next = TL.getNextTypeLoc())
5925 return Visit(Next, Sel);
5926
5927 // If there's no inner type and we're in a permissive context,
5928 // don't diagnose.
5929 if (Sel == Sema::AbstractNone) return;
5930
5931 // Check whether the type matches the abstract type.
5932 QualType T = TL.getType();
5933 if (T->isArrayType()) {
5934 Sel = Sema::AbstractArrayType;
5935 T = Info.S.Context.getBaseElementType(T);
5936 }
5937 CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
5938 if (CT != Info.AbstractType) return;
5939
5940 // It matched; do some magic.
5941 // FIXME: These should be at most warnings. See P0929R2, CWG1640, CWG1646.
5942 if (Sel == Sema::AbstractArrayType) {
5943 Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
5944 << T << TL.getSourceRange();
5945 } else {
5946 Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
5947 << Sel << T << TL.getSourceRange();
5948 }
5949 Info.DiagnoseAbstractType();
5950 }
5951 };
5952
CheckType(const NamedDecl * D,TypeLoc TL,Sema::AbstractDiagSelID Sel)5953 void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
5954 Sema::AbstractDiagSelID Sel) {
5955 CheckAbstractUsage(*this, D).Visit(TL, Sel);
5956 }
5957
5958 }
5959
5960 /// Check for invalid uses of an abstract type in a function declaration.
CheckAbstractClassUsage(AbstractUsageInfo & Info,FunctionDecl * FD)5961 static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
5962 FunctionDecl *FD) {
5963 // No need to do the check on definitions, which require that
5964 // the return/param types be complete.
5965 if (FD->doesThisDeclarationHaveABody())
5966 return;
5967
5968 // For safety's sake, just ignore it if we don't have type source
5969 // information. This should never happen for non-implicit methods,
5970 // but...
5971 if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
5972 Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractNone);
5973 }
5974
5975 /// Check for invalid uses of an abstract type in a variable0 declaration.
CheckAbstractClassUsage(AbstractUsageInfo & Info,VarDecl * VD)5976 static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
5977 VarDecl *VD) {
5978 // No need to do the check on definitions, which require that
5979 // the type is complete.
5980 if (VD->isThisDeclarationADefinition())
5981 return;
5982
5983 Info.CheckType(VD, VD->getTypeSourceInfo()->getTypeLoc(),
5984 Sema::AbstractVariableType);
5985 }
5986
5987 /// Check for invalid uses of an abstract type within a class definition.
CheckAbstractClassUsage(AbstractUsageInfo & Info,CXXRecordDecl * RD)5988 static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
5989 CXXRecordDecl *RD) {
5990 for (auto *D : RD->decls()) {
5991 if (D->isImplicit()) continue;
5992
5993 // Step through friends to the befriended declaration.
5994 if (auto *FD = dyn_cast<FriendDecl>(D)) {
5995 D = FD->getFriendDecl();
5996 if (!D) continue;
5997 }
5998
5999 // Functions and function templates.
6000 if (auto *FD = dyn_cast<FunctionDecl>(D)) {
6001 CheckAbstractClassUsage(Info, FD);
6002 } else if (auto *FTD = dyn_cast<FunctionTemplateDecl>(D)) {
6003 CheckAbstractClassUsage(Info, FTD->getTemplatedDecl());
6004
6005 // Fields and static variables.
6006 } else if (auto *FD = dyn_cast<FieldDecl>(D)) {
6007 if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
6008 Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
6009 } else if (auto *VD = dyn_cast<VarDecl>(D)) {
6010 CheckAbstractClassUsage(Info, VD);
6011 } else if (auto *VTD = dyn_cast<VarTemplateDecl>(D)) {
6012 CheckAbstractClassUsage(Info, VTD->getTemplatedDecl());
6013
6014 // Nested classes and class templates.
6015 } else if (auto *RD = dyn_cast<CXXRecordDecl>(D)) {
6016 CheckAbstractClassUsage(Info, RD);
6017 } else if (auto *CTD = dyn_cast<ClassTemplateDecl>(D)) {
6018 CheckAbstractClassUsage(Info, CTD->getTemplatedDecl());
6019 }
6020 }
6021 }
6022
ReferenceDllExportedMembers(Sema & S,CXXRecordDecl * Class)6023 static void ReferenceDllExportedMembers(Sema &S, CXXRecordDecl *Class) {
6024 Attr *ClassAttr = getDLLAttr(Class);
6025 if (!ClassAttr)
6026 return;
6027
6028 assert(ClassAttr->getKind() == attr::DLLExport);
6029
6030 TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind();
6031
6032 if (TSK == TSK_ExplicitInstantiationDeclaration)
6033 // Don't go any further if this is just an explicit instantiation
6034 // declaration.
6035 return;
6036
6037 // Add a context note to explain how we got to any diagnostics produced below.
6038 struct MarkingClassDllexported {
6039 Sema &S;
6040 MarkingClassDllexported(Sema &S, CXXRecordDecl *Class,
6041 SourceLocation AttrLoc)
6042 : S(S) {
6043 Sema::CodeSynthesisContext Ctx;
6044 Ctx.Kind = Sema::CodeSynthesisContext::MarkingClassDllexported;
6045 Ctx.PointOfInstantiation = AttrLoc;
6046 Ctx.Entity = Class;
6047 S.pushCodeSynthesisContext(Ctx);
6048 }
6049 ~MarkingClassDllexported() {
6050 S.popCodeSynthesisContext();
6051 }
6052 } MarkingDllexportedContext(S, Class, ClassAttr->getLocation());
6053
6054 if (S.Context.getTargetInfo().getTriple().isWindowsGNUEnvironment())
6055 S.MarkVTableUsed(Class->getLocation(), Class, true);
6056
6057 for (Decl *Member : Class->decls()) {
6058 // Skip members that were not marked exported.
6059 if (!Member->hasAttr<DLLExportAttr>())
6060 continue;
6061
6062 // Defined static variables that are members of an exported base
6063 // class must be marked export too.
6064 auto *VD = dyn_cast<VarDecl>(Member);
6065 if (VD && VD->getStorageClass() == SC_Static &&
6066 TSK == TSK_ImplicitInstantiation)
6067 S.MarkVariableReferenced(VD->getLocation(), VD);
6068
6069 auto *MD = dyn_cast<CXXMethodDecl>(Member);
6070 if (!MD)
6071 continue;
6072
6073 if (MD->isUserProvided()) {
6074 // Instantiate non-default class member functions ...
6075
6076 // .. except for certain kinds of template specializations.
6077 if (TSK == TSK_ImplicitInstantiation && !ClassAttr->isInherited())
6078 continue;
6079
6080 // If this is an MS ABI dllexport default constructor, instantiate any
6081 // default arguments.
6082 if (S.Context.getTargetInfo().getCXXABI().isMicrosoft()) {
6083 auto *CD = dyn_cast<CXXConstructorDecl>(MD);
6084 if (CD && CD->isDefaultConstructor() && TSK == TSK_Undeclared) {
6085 S.InstantiateDefaultCtorDefaultArgs(CD);
6086 }
6087 }
6088
6089 S.MarkFunctionReferenced(Class->getLocation(), MD);
6090
6091 // The function will be passed to the consumer when its definition is
6092 // encountered.
6093 } else if (MD->isExplicitlyDefaulted()) {
6094 // Synthesize and instantiate explicitly defaulted methods.
6095 S.MarkFunctionReferenced(Class->getLocation(), MD);
6096
6097 if (TSK != TSK_ExplicitInstantiationDefinition) {
6098 // Except for explicit instantiation defs, we will not see the
6099 // definition again later, so pass it to the consumer now.
6100 S.Consumer.HandleTopLevelDecl(DeclGroupRef(MD));
6101 }
6102 } else if (!MD->isTrivial() ||
6103 MD->isCopyAssignmentOperator() ||
6104 MD->isMoveAssignmentOperator()) {
6105 // Synthesize and instantiate non-trivial implicit methods, and the copy
6106 // and move assignment operators. The latter are exported even if they
6107 // are trivial, because the address of an operator can be taken and
6108 // should compare equal across libraries.
6109 S.MarkFunctionReferenced(Class->getLocation(), MD);
6110
6111 // There is no later point when we will see the definition of this
6112 // function, so pass it to the consumer now.
6113 S.Consumer.HandleTopLevelDecl(DeclGroupRef(MD));
6114 }
6115 }
6116 }
6117
checkForMultipleExportedDefaultConstructors(Sema & S,CXXRecordDecl * Class)6118 static void checkForMultipleExportedDefaultConstructors(Sema &S,
6119 CXXRecordDecl *Class) {
6120 // Only the MS ABI has default constructor closures, so we don't need to do
6121 // this semantic checking anywhere else.
6122 if (!S.Context.getTargetInfo().getCXXABI().isMicrosoft())
6123 return;
6124
6125 CXXConstructorDecl *LastExportedDefaultCtor = nullptr;
6126 for (Decl *Member : Class->decls()) {
6127 // Look for exported default constructors.
6128 auto *CD = dyn_cast<CXXConstructorDecl>(Member);
6129 if (!CD || !CD->isDefaultConstructor())
6130 continue;
6131 auto *Attr = CD->getAttr<DLLExportAttr>();
6132 if (!Attr)
6133 continue;
6134
6135 // If the class is non-dependent, mark the default arguments as ODR-used so
6136 // that we can properly codegen the constructor closure.
6137 if (!Class->isDependentContext()) {
6138 for (ParmVarDecl *PD : CD->parameters()) {
6139 (void)S.CheckCXXDefaultArgExpr(Attr->getLocation(), CD, PD);
6140 S.DiscardCleanupsInEvaluationContext();
6141 }
6142 }
6143
6144 if (LastExportedDefaultCtor) {
6145 S.Diag(LastExportedDefaultCtor->getLocation(),
6146 diag::err_attribute_dll_ambiguous_default_ctor)
6147 << Class;
6148 S.Diag(CD->getLocation(), diag::note_entity_declared_at)
6149 << CD->getDeclName();
6150 return;
6151 }
6152 LastExportedDefaultCtor = CD;
6153 }
6154 }
6155
checkCUDADeviceBuiltinSurfaceClassTemplate(Sema & S,CXXRecordDecl * Class)6156 static void checkCUDADeviceBuiltinSurfaceClassTemplate(Sema &S,
6157 CXXRecordDecl *Class) {
6158 bool ErrorReported = false;
6159 auto reportIllegalClassTemplate = [&ErrorReported](Sema &S,
6160 ClassTemplateDecl *TD) {
6161 if (ErrorReported)
6162 return;
6163 S.Diag(TD->getLocation(),
6164 diag::err_cuda_device_builtin_surftex_cls_template)
6165 << /*surface*/ 0 << TD;
6166 ErrorReported = true;
6167 };
6168
6169 ClassTemplateDecl *TD = Class->getDescribedClassTemplate();
6170 if (!TD) {
6171 auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(Class);
6172 if (!SD) {
6173 S.Diag(Class->getLocation(),
6174 diag::err_cuda_device_builtin_surftex_ref_decl)
6175 << /*surface*/ 0 << Class;
6176 S.Diag(Class->getLocation(),
6177 diag::note_cuda_device_builtin_surftex_should_be_template_class)
6178 << Class;
6179 return;
6180 }
6181 TD = SD->getSpecializedTemplate();
6182 }
6183
6184 TemplateParameterList *Params = TD->getTemplateParameters();
6185 unsigned N = Params->size();
6186
6187 if (N != 2) {
6188 reportIllegalClassTemplate(S, TD);
6189 S.Diag(TD->getLocation(),
6190 diag::note_cuda_device_builtin_surftex_cls_should_have_n_args)
6191 << TD << 2;
6192 }
6193 if (N > 0 && !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
6194 reportIllegalClassTemplate(S, TD);
6195 S.Diag(TD->getLocation(),
6196 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg)
6197 << TD << /*1st*/ 0 << /*type*/ 0;
6198 }
6199 if (N > 1) {
6200 auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(1));
6201 if (!NTTP || !NTTP->getType()->isIntegralOrEnumerationType()) {
6202 reportIllegalClassTemplate(S, TD);
6203 S.Diag(TD->getLocation(),
6204 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg)
6205 << TD << /*2nd*/ 1 << /*integer*/ 1;
6206 }
6207 }
6208 }
6209
checkCUDADeviceBuiltinTextureClassTemplate(Sema & S,CXXRecordDecl * Class)6210 static void checkCUDADeviceBuiltinTextureClassTemplate(Sema &S,
6211 CXXRecordDecl *Class) {
6212 bool ErrorReported = false;
6213 auto reportIllegalClassTemplate = [&ErrorReported](Sema &S,
6214 ClassTemplateDecl *TD) {
6215 if (ErrorReported)
6216 return;
6217 S.Diag(TD->getLocation(),
6218 diag::err_cuda_device_builtin_surftex_cls_template)
6219 << /*texture*/ 1 << TD;
6220 ErrorReported = true;
6221 };
6222
6223 ClassTemplateDecl *TD = Class->getDescribedClassTemplate();
6224 if (!TD) {
6225 auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(Class);
6226 if (!SD) {
6227 S.Diag(Class->getLocation(),
6228 diag::err_cuda_device_builtin_surftex_ref_decl)
6229 << /*texture*/ 1 << Class;
6230 S.Diag(Class->getLocation(),
6231 diag::note_cuda_device_builtin_surftex_should_be_template_class)
6232 << Class;
6233 return;
6234 }
6235 TD = SD->getSpecializedTemplate();
6236 }
6237
6238 TemplateParameterList *Params = TD->getTemplateParameters();
6239 unsigned N = Params->size();
6240
6241 if (N != 3) {
6242 reportIllegalClassTemplate(S, TD);
6243 S.Diag(TD->getLocation(),
6244 diag::note_cuda_device_builtin_surftex_cls_should_have_n_args)
6245 << TD << 3;
6246 }
6247 if (N > 0 && !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
6248 reportIllegalClassTemplate(S, TD);
6249 S.Diag(TD->getLocation(),
6250 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg)
6251 << TD << /*1st*/ 0 << /*type*/ 0;
6252 }
6253 if (N > 1) {
6254 auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(1));
6255 if (!NTTP || !NTTP->getType()->isIntegralOrEnumerationType()) {
6256 reportIllegalClassTemplate(S, TD);
6257 S.Diag(TD->getLocation(),
6258 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg)
6259 << TD << /*2nd*/ 1 << /*integer*/ 1;
6260 }
6261 }
6262 if (N > 2) {
6263 auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(2));
6264 if (!NTTP || !NTTP->getType()->isIntegralOrEnumerationType()) {
6265 reportIllegalClassTemplate(S, TD);
6266 S.Diag(TD->getLocation(),
6267 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg)
6268 << TD << /*3rd*/ 2 << /*integer*/ 1;
6269 }
6270 }
6271 }
6272
checkClassLevelCodeSegAttribute(CXXRecordDecl * Class)6273 void Sema::checkClassLevelCodeSegAttribute(CXXRecordDecl *Class) {
6274 // Mark any compiler-generated routines with the implicit code_seg attribute.
6275 for (auto *Method : Class->methods()) {
6276 if (Method->isUserProvided())
6277 continue;
6278 if (Attr *A = getImplicitCodeSegOrSectionAttrForFunction(Method, /*IsDefinition=*/true))
6279 Method->addAttr(A);
6280 }
6281 }
6282
6283 /// Check class-level dllimport/dllexport attribute.
checkClassLevelDLLAttribute(CXXRecordDecl * Class)6284 void Sema::checkClassLevelDLLAttribute(CXXRecordDecl *Class) {
6285 Attr *ClassAttr = getDLLAttr(Class);
6286
6287 // MSVC inherits DLL attributes to partial class template specializations.
6288 if (Context.getTargetInfo().shouldDLLImportComdatSymbols() && !ClassAttr) {
6289 if (auto *Spec = dyn_cast<ClassTemplatePartialSpecializationDecl>(Class)) {
6290 if (Attr *TemplateAttr =
6291 getDLLAttr(Spec->getSpecializedTemplate()->getTemplatedDecl())) {
6292 auto *A = cast<InheritableAttr>(TemplateAttr->clone(getASTContext()));
6293 A->setInherited(true);
6294 ClassAttr = A;
6295 }
6296 }
6297 }
6298
6299 if (!ClassAttr)
6300 return;
6301
6302 if (!Class->isExternallyVisible()) {
6303 Diag(Class->getLocation(), diag::err_attribute_dll_not_extern)
6304 << Class << ClassAttr;
6305 return;
6306 }
6307
6308 if (Context.getTargetInfo().shouldDLLImportComdatSymbols() &&
6309 !ClassAttr->isInherited()) {
6310 // Diagnose dll attributes on members of class with dll attribute.
6311 for (Decl *Member : Class->decls()) {
6312 if (!isa<VarDecl>(Member) && !isa<CXXMethodDecl>(Member))
6313 continue;
6314 InheritableAttr *MemberAttr = getDLLAttr(Member);
6315 if (!MemberAttr || MemberAttr->isInherited() || Member->isInvalidDecl())
6316 continue;
6317
6318 Diag(MemberAttr->getLocation(),
6319 diag::err_attribute_dll_member_of_dll_class)
6320 << MemberAttr << ClassAttr;
6321 Diag(ClassAttr->getLocation(), diag::note_previous_attribute);
6322 Member->setInvalidDecl();
6323 }
6324 }
6325
6326 if (Class->getDescribedClassTemplate())
6327 // Don't inherit dll attribute until the template is instantiated.
6328 return;
6329
6330 // The class is either imported or exported.
6331 const bool ClassExported = ClassAttr->getKind() == attr::DLLExport;
6332
6333 // Check if this was a dllimport attribute propagated from a derived class to
6334 // a base class template specialization. We don't apply these attributes to
6335 // static data members.
6336 const bool PropagatedImport =
6337 !ClassExported &&
6338 cast<DLLImportAttr>(ClassAttr)->wasPropagatedToBaseTemplate();
6339
6340 TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind();
6341
6342 // Ignore explicit dllexport on explicit class template instantiation
6343 // declarations, except in MinGW mode.
6344 if (ClassExported && !ClassAttr->isInherited() &&
6345 TSK == TSK_ExplicitInstantiationDeclaration &&
6346 !Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) {
6347 Class->dropAttr<DLLExportAttr>();
6348 return;
6349 }
6350
6351 // Force declaration of implicit members so they can inherit the attribute.
6352 ForceDeclarationOfImplicitMembers(Class);
6353
6354 // FIXME: MSVC's docs say all bases must be exportable, but this doesn't
6355 // seem to be true in practice?
6356
6357 for (Decl *Member : Class->decls()) {
6358 VarDecl *VD = dyn_cast<VarDecl>(Member);
6359 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
6360
6361 // Only methods and static fields inherit the attributes.
6362 if (!VD && !MD)
6363 continue;
6364
6365 if (MD) {
6366 // Don't process deleted methods.
6367 if (MD->isDeleted())
6368 continue;
6369
6370 if (MD->isInlined()) {
6371 // MinGW does not import or export inline methods. But do it for
6372 // template instantiations.
6373 if (!Context.getTargetInfo().shouldDLLImportComdatSymbols() &&
6374 TSK != TSK_ExplicitInstantiationDeclaration &&
6375 TSK != TSK_ExplicitInstantiationDefinition)
6376 continue;
6377
6378 // MSVC versions before 2015 don't export the move assignment operators
6379 // and move constructor, so don't attempt to import/export them if
6380 // we have a definition.
6381 auto *Ctor = dyn_cast<CXXConstructorDecl>(MD);
6382 if ((MD->isMoveAssignmentOperator() ||
6383 (Ctor && Ctor->isMoveConstructor())) &&
6384 !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015))
6385 continue;
6386
6387 // MSVC2015 doesn't export trivial defaulted x-tor but copy assign
6388 // operator is exported anyway.
6389 if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) &&
6390 (Ctor || isa<CXXDestructorDecl>(MD)) && MD->isTrivial())
6391 continue;
6392 }
6393 }
6394
6395 // Don't apply dllimport attributes to static data members of class template
6396 // instantiations when the attribute is propagated from a derived class.
6397 if (VD && PropagatedImport)
6398 continue;
6399
6400 if (!cast<NamedDecl>(Member)->isExternallyVisible())
6401 continue;
6402
6403 if (!getDLLAttr(Member)) {
6404 InheritableAttr *NewAttr = nullptr;
6405
6406 // Do not export/import inline function when -fno-dllexport-inlines is
6407 // passed. But add attribute for later local static var check.
6408 if (!getLangOpts().DllExportInlines && MD && MD->isInlined() &&
6409 TSK != TSK_ExplicitInstantiationDeclaration &&
6410 TSK != TSK_ExplicitInstantiationDefinition) {
6411 if (ClassExported) {
6412 NewAttr = ::new (getASTContext())
6413 DLLExportStaticLocalAttr(getASTContext(), *ClassAttr);
6414 } else {
6415 NewAttr = ::new (getASTContext())
6416 DLLImportStaticLocalAttr(getASTContext(), *ClassAttr);
6417 }
6418 } else {
6419 NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext()));
6420 }
6421
6422 NewAttr->setInherited(true);
6423 Member->addAttr(NewAttr);
6424
6425 if (MD) {
6426 // Propagate DLLAttr to friend re-declarations of MD that have already
6427 // been constructed.
6428 for (FunctionDecl *FD = MD->getMostRecentDecl(); FD;
6429 FD = FD->getPreviousDecl()) {
6430 if (FD->getFriendObjectKind() == Decl::FOK_None)
6431 continue;
6432 assert(!getDLLAttr(FD) &&
6433 "friend re-decl should not already have a DLLAttr");
6434 NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext()));
6435 NewAttr->setInherited(true);
6436 FD->addAttr(NewAttr);
6437 }
6438 }
6439 }
6440 }
6441
6442 if (ClassExported)
6443 DelayedDllExportClasses.push_back(Class);
6444 }
6445
6446 /// Perform propagation of DLL attributes from a derived class to a
6447 /// templated base class for MS compatibility.
propagateDLLAttrToBaseClassTemplate(CXXRecordDecl * Class,Attr * ClassAttr,ClassTemplateSpecializationDecl * BaseTemplateSpec,SourceLocation BaseLoc)6448 void Sema::propagateDLLAttrToBaseClassTemplate(
6449 CXXRecordDecl *Class, Attr *ClassAttr,
6450 ClassTemplateSpecializationDecl *BaseTemplateSpec, SourceLocation BaseLoc) {
6451 if (getDLLAttr(
6452 BaseTemplateSpec->getSpecializedTemplate()->getTemplatedDecl())) {
6453 // If the base class template has a DLL attribute, don't try to change it.
6454 return;
6455 }
6456
6457 auto TSK = BaseTemplateSpec->getSpecializationKind();
6458 if (!getDLLAttr(BaseTemplateSpec) &&
6459 (TSK == TSK_Undeclared || TSK == TSK_ExplicitInstantiationDeclaration ||
6460 TSK == TSK_ImplicitInstantiation)) {
6461 // The template hasn't been instantiated yet (or it has, but only as an
6462 // explicit instantiation declaration or implicit instantiation, which means
6463 // we haven't codegenned any members yet), so propagate the attribute.
6464 auto *NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext()));
6465 NewAttr->setInherited(true);
6466 BaseTemplateSpec->addAttr(NewAttr);
6467
6468 // If this was an import, mark that we propagated it from a derived class to
6469 // a base class template specialization.
6470 if (auto *ImportAttr = dyn_cast<DLLImportAttr>(NewAttr))
6471 ImportAttr->setPropagatedToBaseTemplate();
6472
6473 // If the template is already instantiated, checkDLLAttributeRedeclaration()
6474 // needs to be run again to work see the new attribute. Otherwise this will
6475 // get run whenever the template is instantiated.
6476 if (TSK != TSK_Undeclared)
6477 checkClassLevelDLLAttribute(BaseTemplateSpec);
6478
6479 return;
6480 }
6481
6482 if (getDLLAttr(BaseTemplateSpec)) {
6483 // The template has already been specialized or instantiated with an
6484 // attribute, explicitly or through propagation. We should not try to change
6485 // it.
6486 return;
6487 }
6488
6489 // The template was previously instantiated or explicitly specialized without
6490 // a dll attribute, It's too late for us to add an attribute, so warn that
6491 // this is unsupported.
6492 Diag(BaseLoc, diag::warn_attribute_dll_instantiated_base_class)
6493 << BaseTemplateSpec->isExplicitSpecialization();
6494 Diag(ClassAttr->getLocation(), diag::note_attribute);
6495 if (BaseTemplateSpec->isExplicitSpecialization()) {
6496 Diag(BaseTemplateSpec->getLocation(),
6497 diag::note_template_class_explicit_specialization_was_here)
6498 << BaseTemplateSpec;
6499 } else {
6500 Diag(BaseTemplateSpec->getPointOfInstantiation(),
6501 diag::note_template_class_instantiation_was_here)
6502 << BaseTemplateSpec;
6503 }
6504 }
6505
6506 /// Determine the kind of defaulting that would be done for a given function.
6507 ///
6508 /// If the function is both a default constructor and a copy / move constructor
6509 /// (due to having a default argument for the first parameter), this picks
6510 /// CXXDefaultConstructor.
6511 ///
6512 /// FIXME: Check that case is properly handled by all callers.
6513 Sema::DefaultedFunctionKind
getDefaultedFunctionKind(const FunctionDecl * FD)6514 Sema::getDefaultedFunctionKind(const FunctionDecl *FD) {
6515 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
6516 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(FD)) {
6517 if (Ctor->isDefaultConstructor())
6518 return Sema::CXXDefaultConstructor;
6519
6520 if (Ctor->isCopyConstructor())
6521 return Sema::CXXCopyConstructor;
6522
6523 if (Ctor->isMoveConstructor())
6524 return Sema::CXXMoveConstructor;
6525 }
6526
6527 if (MD->isCopyAssignmentOperator())
6528 return Sema::CXXCopyAssignment;
6529
6530 if (MD->isMoveAssignmentOperator())
6531 return Sema::CXXMoveAssignment;
6532
6533 if (isa<CXXDestructorDecl>(FD))
6534 return Sema::CXXDestructor;
6535 }
6536
6537 switch (FD->getDeclName().getCXXOverloadedOperator()) {
6538 case OO_EqualEqual:
6539 return DefaultedComparisonKind::Equal;
6540
6541 case OO_ExclaimEqual:
6542 return DefaultedComparisonKind::NotEqual;
6543
6544 case OO_Spaceship:
6545 // No point allowing this if <=> doesn't exist in the current language mode.
6546 if (!getLangOpts().CPlusPlus20)
6547 break;
6548 return DefaultedComparisonKind::ThreeWay;
6549
6550 case OO_Less:
6551 case OO_LessEqual:
6552 case OO_Greater:
6553 case OO_GreaterEqual:
6554 // No point allowing this if <=> doesn't exist in the current language mode.
6555 if (!getLangOpts().CPlusPlus20)
6556 break;
6557 return DefaultedComparisonKind::Relational;
6558
6559 default:
6560 break;
6561 }
6562
6563 // Not defaultable.
6564 return DefaultedFunctionKind();
6565 }
6566
DefineDefaultedFunction(Sema & S,FunctionDecl * FD,SourceLocation DefaultLoc)6567 static void DefineDefaultedFunction(Sema &S, FunctionDecl *FD,
6568 SourceLocation DefaultLoc) {
6569 Sema::DefaultedFunctionKind DFK = S.getDefaultedFunctionKind(FD);
6570 if (DFK.isComparison())
6571 return S.DefineDefaultedComparison(DefaultLoc, FD, DFK.asComparison());
6572
6573 switch (DFK.asSpecialMember()) {
6574 case Sema::CXXDefaultConstructor:
6575 S.DefineImplicitDefaultConstructor(DefaultLoc,
6576 cast<CXXConstructorDecl>(FD));
6577 break;
6578 case Sema::CXXCopyConstructor:
6579 S.DefineImplicitCopyConstructor(DefaultLoc, cast<CXXConstructorDecl>(FD));
6580 break;
6581 case Sema::CXXCopyAssignment:
6582 S.DefineImplicitCopyAssignment(DefaultLoc, cast<CXXMethodDecl>(FD));
6583 break;
6584 case Sema::CXXDestructor:
6585 S.DefineImplicitDestructor(DefaultLoc, cast<CXXDestructorDecl>(FD));
6586 break;
6587 case Sema::CXXMoveConstructor:
6588 S.DefineImplicitMoveConstructor(DefaultLoc, cast<CXXConstructorDecl>(FD));
6589 break;
6590 case Sema::CXXMoveAssignment:
6591 S.DefineImplicitMoveAssignment(DefaultLoc, cast<CXXMethodDecl>(FD));
6592 break;
6593 case Sema::CXXInvalid:
6594 llvm_unreachable("Invalid special member.");
6595 }
6596 }
6597
6598 /// Determine whether a type is permitted to be passed or returned in
6599 /// registers, per C++ [class.temporary]p3.
canPassInRegisters(Sema & S,CXXRecordDecl * D,TargetInfo::CallingConvKind CCK)6600 static bool canPassInRegisters(Sema &S, CXXRecordDecl *D,
6601 TargetInfo::CallingConvKind CCK) {
6602 if (D->isDependentType() || D->isInvalidDecl())
6603 return false;
6604
6605 // Clang <= 4 used the pre-C++11 rule, which ignores move operations.
6606 // The PS4 platform ABI follows the behavior of Clang 3.2.
6607 if (CCK == TargetInfo::CCK_ClangABI4OrPS4)
6608 return !D->hasNonTrivialDestructorForCall() &&
6609 !D->hasNonTrivialCopyConstructorForCall();
6610
6611 if (CCK == TargetInfo::CCK_MicrosoftWin64) {
6612 bool CopyCtorIsTrivial = false, CopyCtorIsTrivialForCall = false;
6613 bool DtorIsTrivialForCall = false;
6614
6615 // If a class has at least one non-deleted, trivial copy constructor, it
6616 // is passed according to the C ABI. Otherwise, it is passed indirectly.
6617 //
6618 // Note: This permits classes with non-trivial copy or move ctors to be
6619 // passed in registers, so long as they *also* have a trivial copy ctor,
6620 // which is non-conforming.
6621 if (D->needsImplicitCopyConstructor()) {
6622 if (!D->defaultedCopyConstructorIsDeleted()) {
6623 if (D->hasTrivialCopyConstructor())
6624 CopyCtorIsTrivial = true;
6625 if (D->hasTrivialCopyConstructorForCall())
6626 CopyCtorIsTrivialForCall = true;
6627 }
6628 } else {
6629 for (const CXXConstructorDecl *CD : D->ctors()) {
6630 if (CD->isCopyConstructor() && !CD->isDeleted()) {
6631 if (CD->isTrivial())
6632 CopyCtorIsTrivial = true;
6633 if (CD->isTrivialForCall())
6634 CopyCtorIsTrivialForCall = true;
6635 }
6636 }
6637 }
6638
6639 if (D->needsImplicitDestructor()) {
6640 if (!D->defaultedDestructorIsDeleted() &&
6641 D->hasTrivialDestructorForCall())
6642 DtorIsTrivialForCall = true;
6643 } else if (const auto *DD = D->getDestructor()) {
6644 if (!DD->isDeleted() && DD->isTrivialForCall())
6645 DtorIsTrivialForCall = true;
6646 }
6647
6648 // If the copy ctor and dtor are both trivial-for-calls, pass direct.
6649 if (CopyCtorIsTrivialForCall && DtorIsTrivialForCall)
6650 return true;
6651
6652 // If a class has a destructor, we'd really like to pass it indirectly
6653 // because it allows us to elide copies. Unfortunately, MSVC makes that
6654 // impossible for small types, which it will pass in a single register or
6655 // stack slot. Most objects with dtors are large-ish, so handle that early.
6656 // We can't call out all large objects as being indirect because there are
6657 // multiple x64 calling conventions and the C++ ABI code shouldn't dictate
6658 // how we pass large POD types.
6659
6660 // Note: This permits small classes with nontrivial destructors to be
6661 // passed in registers, which is non-conforming.
6662 bool isAArch64 = S.Context.getTargetInfo().getTriple().isAArch64();
6663 uint64_t TypeSize = isAArch64 ? 128 : 64;
6664
6665 if (CopyCtorIsTrivial &&
6666 S.getASTContext().getTypeSize(D->getTypeForDecl()) <= TypeSize)
6667 return true;
6668 return false;
6669 }
6670
6671 // Per C++ [class.temporary]p3, the relevant condition is:
6672 // each copy constructor, move constructor, and destructor of X is
6673 // either trivial or deleted, and X has at least one non-deleted copy
6674 // or move constructor
6675 bool HasNonDeletedCopyOrMove = false;
6676
6677 if (D->needsImplicitCopyConstructor() &&
6678 !D->defaultedCopyConstructorIsDeleted()) {
6679 if (!D->hasTrivialCopyConstructorForCall())
6680 return false;
6681 HasNonDeletedCopyOrMove = true;
6682 }
6683
6684 if (S.getLangOpts().CPlusPlus11 && D->needsImplicitMoveConstructor() &&
6685 !D->defaultedMoveConstructorIsDeleted()) {
6686 if (!D->hasTrivialMoveConstructorForCall())
6687 return false;
6688 HasNonDeletedCopyOrMove = true;
6689 }
6690
6691 if (D->needsImplicitDestructor() && !D->defaultedDestructorIsDeleted() &&
6692 !D->hasTrivialDestructorForCall())
6693 return false;
6694
6695 for (const CXXMethodDecl *MD : D->methods()) {
6696 if (MD->isDeleted() || MD->isIneligibleOrNotSelected())
6697 continue;
6698
6699 auto *CD = dyn_cast<CXXConstructorDecl>(MD);
6700 if (CD && CD->isCopyOrMoveConstructor())
6701 HasNonDeletedCopyOrMove = true;
6702 else if (!isa<CXXDestructorDecl>(MD))
6703 continue;
6704
6705 if (!MD->isTrivialForCall())
6706 return false;
6707 }
6708
6709 return HasNonDeletedCopyOrMove;
6710 }
6711
6712 /// Report an error regarding overriding, along with any relevant
6713 /// overridden methods.
6714 ///
6715 /// \param DiagID the primary error to report.
6716 /// \param MD the overriding method.
6717 static bool
ReportOverrides(Sema & S,unsigned DiagID,const CXXMethodDecl * MD,llvm::function_ref<bool (const CXXMethodDecl *)> Report)6718 ReportOverrides(Sema &S, unsigned DiagID, const CXXMethodDecl *MD,
6719 llvm::function_ref<bool(const CXXMethodDecl *)> Report) {
6720 bool IssuedDiagnostic = false;
6721 for (const CXXMethodDecl *O : MD->overridden_methods()) {
6722 if (Report(O)) {
6723 if (!IssuedDiagnostic) {
6724 S.Diag(MD->getLocation(), DiagID) << MD->getDeclName();
6725 IssuedDiagnostic = true;
6726 }
6727 S.Diag(O->getLocation(), diag::note_overridden_virtual_function);
6728 }
6729 }
6730 return IssuedDiagnostic;
6731 }
6732
6733 /// Perform semantic checks on a class definition that has been
6734 /// completing, introducing implicitly-declared members, checking for
6735 /// abstract types, etc.
6736 ///
6737 /// \param S The scope in which the class was parsed. Null if we didn't just
6738 /// parse a class definition.
6739 /// \param Record The completed class.
CheckCompletedCXXClass(Scope * S,CXXRecordDecl * Record)6740 void Sema::CheckCompletedCXXClass(Scope *S, CXXRecordDecl *Record) {
6741 if (!Record)
6742 return;
6743
6744 if (Record->isAbstract() && !Record->isInvalidDecl()) {
6745 AbstractUsageInfo Info(*this, Record);
6746 CheckAbstractClassUsage(Info, Record);
6747 }
6748
6749 // If this is not an aggregate type and has no user-declared constructor,
6750 // complain about any non-static data members of reference or const scalar
6751 // type, since they will never get initializers.
6752 if (!Record->isInvalidDecl() && !Record->isDependentType() &&
6753 !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
6754 !Record->isLambda()) {
6755 bool Complained = false;
6756 for (const auto *F : Record->fields()) {
6757 if (F->hasInClassInitializer() || F->isUnnamedBitfield())
6758 continue;
6759
6760 if (F->getType()->isReferenceType() ||
6761 (F->getType().isConstQualified() && F->getType()->isScalarType())) {
6762 if (!Complained) {
6763 Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
6764 << Record->getTagKind() << Record;
6765 Complained = true;
6766 }
6767
6768 Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
6769 << F->getType()->isReferenceType()
6770 << F->getDeclName();
6771 }
6772 }
6773 }
6774
6775 if (Record->getIdentifier()) {
6776 // C++ [class.mem]p13:
6777 // If T is the name of a class, then each of the following shall have a
6778 // name different from T:
6779 // - every member of every anonymous union that is a member of class T.
6780 //
6781 // C++ [class.mem]p14:
6782 // In addition, if class T has a user-declared constructor (12.1), every
6783 // non-static data member of class T shall have a name different from T.
6784 DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
6785 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
6786 ++I) {
6787 NamedDecl *D = (*I)->getUnderlyingDecl();
6788 if (((isa<FieldDecl>(D) || isa<UnresolvedUsingValueDecl>(D)) &&
6789 Record->hasUserDeclaredConstructor()) ||
6790 isa<IndirectFieldDecl>(D)) {
6791 Diag((*I)->getLocation(), diag::err_member_name_of_class)
6792 << D->getDeclName();
6793 break;
6794 }
6795 }
6796 }
6797
6798 // Warn if the class has virtual methods but non-virtual public destructor.
6799 if (Record->isPolymorphic() && !Record->isDependentType()) {
6800 CXXDestructorDecl *dtor = Record->getDestructor();
6801 if ((!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public)) &&
6802 !Record->hasAttr<FinalAttr>())
6803 Diag(dtor ? dtor->getLocation() : Record->getLocation(),
6804 diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
6805 }
6806
6807 if (Record->isAbstract()) {
6808 if (FinalAttr *FA = Record->getAttr<FinalAttr>()) {
6809 Diag(Record->getLocation(), diag::warn_abstract_final_class)
6810 << FA->isSpelledAsSealed();
6811 DiagnoseAbstractType(Record);
6812 }
6813 }
6814
6815 // Warn if the class has a final destructor but is not itself marked final.
6816 if (!Record->hasAttr<FinalAttr>()) {
6817 if (const CXXDestructorDecl *dtor = Record->getDestructor()) {
6818 if (const FinalAttr *FA = dtor->getAttr<FinalAttr>()) {
6819 Diag(FA->getLocation(), diag::warn_final_dtor_non_final_class)
6820 << FA->isSpelledAsSealed()
6821 << FixItHint::CreateInsertion(
6822 getLocForEndOfToken(Record->getLocation()),
6823 (FA->isSpelledAsSealed() ? " sealed" : " final"));
6824 Diag(Record->getLocation(),
6825 diag::note_final_dtor_non_final_class_silence)
6826 << Context.getRecordType(Record) << FA->isSpelledAsSealed();
6827 }
6828 }
6829 }
6830
6831 // See if trivial_abi has to be dropped.
6832 if (Record->hasAttr<TrivialABIAttr>())
6833 checkIllFormedTrivialABIStruct(*Record);
6834
6835 // Set HasTrivialSpecialMemberForCall if the record has attribute
6836 // "trivial_abi".
6837 bool HasTrivialABI = Record->hasAttr<TrivialABIAttr>();
6838
6839 if (HasTrivialABI)
6840 Record->setHasTrivialSpecialMemberForCall();
6841
6842 // Explicitly-defaulted secondary comparison functions (!=, <, <=, >, >=).
6843 // We check these last because they can depend on the properties of the
6844 // primary comparison functions (==, <=>).
6845 llvm::SmallVector<FunctionDecl*, 5> DefaultedSecondaryComparisons;
6846
6847 // Perform checks that can't be done until we know all the properties of a
6848 // member function (whether it's defaulted, deleted, virtual, overriding,
6849 // ...).
6850 auto CheckCompletedMemberFunction = [&](CXXMethodDecl *MD) {
6851 // A static function cannot override anything.
6852 if (MD->getStorageClass() == SC_Static) {
6853 if (ReportOverrides(*this, diag::err_static_overrides_virtual, MD,
6854 [](const CXXMethodDecl *) { return true; }))
6855 return;
6856 }
6857
6858 // A deleted function cannot override a non-deleted function and vice
6859 // versa.
6860 if (ReportOverrides(*this,
6861 MD->isDeleted() ? diag::err_deleted_override
6862 : diag::err_non_deleted_override,
6863 MD, [&](const CXXMethodDecl *V) {
6864 return MD->isDeleted() != V->isDeleted();
6865 })) {
6866 if (MD->isDefaulted() && MD->isDeleted())
6867 // Explain why this defaulted function was deleted.
6868 DiagnoseDeletedDefaultedFunction(MD);
6869 return;
6870 }
6871
6872 // A consteval function cannot override a non-consteval function and vice
6873 // versa.
6874 if (ReportOverrides(*this,
6875 MD->isConsteval() ? diag::err_consteval_override
6876 : diag::err_non_consteval_override,
6877 MD, [&](const CXXMethodDecl *V) {
6878 return MD->isConsteval() != V->isConsteval();
6879 })) {
6880 if (MD->isDefaulted() && MD->isDeleted())
6881 // Explain why this defaulted function was deleted.
6882 DiagnoseDeletedDefaultedFunction(MD);
6883 return;
6884 }
6885 };
6886
6887 auto CheckForDefaultedFunction = [&](FunctionDecl *FD) -> bool {
6888 if (!FD || FD->isInvalidDecl() || !FD->isExplicitlyDefaulted())
6889 return false;
6890
6891 DefaultedFunctionKind DFK = getDefaultedFunctionKind(FD);
6892 if (DFK.asComparison() == DefaultedComparisonKind::NotEqual ||
6893 DFK.asComparison() == DefaultedComparisonKind::Relational) {
6894 DefaultedSecondaryComparisons.push_back(FD);
6895 return true;
6896 }
6897
6898 CheckExplicitlyDefaultedFunction(S, FD);
6899 return false;
6900 };
6901
6902 auto CompleteMemberFunction = [&](CXXMethodDecl *M) {
6903 // Check whether the explicitly-defaulted members are valid.
6904 bool Incomplete = CheckForDefaultedFunction(M);
6905
6906 // Skip the rest of the checks for a member of a dependent class.
6907 if (Record->isDependentType())
6908 return;
6909
6910 // For an explicitly defaulted or deleted special member, we defer
6911 // determining triviality until the class is complete. That time is now!
6912 CXXSpecialMember CSM = getSpecialMember(M);
6913 if (!M->isImplicit() && !M->isUserProvided()) {
6914 if (CSM != CXXInvalid) {
6915 M->setTrivial(SpecialMemberIsTrivial(M, CSM));
6916 // Inform the class that we've finished declaring this member.
6917 Record->finishedDefaultedOrDeletedMember(M);
6918 M->setTrivialForCall(
6919 HasTrivialABI ||
6920 SpecialMemberIsTrivial(M, CSM, TAH_ConsiderTrivialABI));
6921 Record->setTrivialForCallFlags(M);
6922 }
6923 }
6924
6925 // Set triviality for the purpose of calls if this is a user-provided
6926 // copy/move constructor or destructor.
6927 if ((CSM == CXXCopyConstructor || CSM == CXXMoveConstructor ||
6928 CSM == CXXDestructor) && M->isUserProvided()) {
6929 M->setTrivialForCall(HasTrivialABI);
6930 Record->setTrivialForCallFlags(M);
6931 }
6932
6933 if (!M->isInvalidDecl() && M->isExplicitlyDefaulted() &&
6934 M->hasAttr<DLLExportAttr>()) {
6935 if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) &&
6936 M->isTrivial() &&
6937 (CSM == CXXDefaultConstructor || CSM == CXXCopyConstructor ||
6938 CSM == CXXDestructor))
6939 M->dropAttr<DLLExportAttr>();
6940
6941 if (M->hasAttr<DLLExportAttr>()) {
6942 // Define after any fields with in-class initializers have been parsed.
6943 DelayedDllExportMemberFunctions.push_back(M);
6944 }
6945 }
6946
6947 // Define defaulted constexpr virtual functions that override a base class
6948 // function right away.
6949 // FIXME: We can defer doing this until the vtable is marked as used.
6950 if (M->isDefaulted() && M->isConstexpr() && M->size_overridden_methods())
6951 DefineDefaultedFunction(*this, M, M->getLocation());
6952
6953 if (!Incomplete)
6954 CheckCompletedMemberFunction(M);
6955 };
6956
6957 // Check the destructor before any other member function. We need to
6958 // determine whether it's trivial in order to determine whether the claas
6959 // type is a literal type, which is a prerequisite for determining whether
6960 // other special member functions are valid and whether they're implicitly
6961 // 'constexpr'.
6962 if (CXXDestructorDecl *Dtor = Record->getDestructor())
6963 CompleteMemberFunction(Dtor);
6964
6965 bool HasMethodWithOverrideControl = false,
6966 HasOverridingMethodWithoutOverrideControl = false;
6967 for (auto *D : Record->decls()) {
6968 if (auto *M = dyn_cast<CXXMethodDecl>(D)) {
6969 // FIXME: We could do this check for dependent types with non-dependent
6970 // bases.
6971 if (!Record->isDependentType()) {
6972 // See if a method overloads virtual methods in a base
6973 // class without overriding any.
6974 if (!M->isStatic())
6975 DiagnoseHiddenVirtualMethods(M);
6976 if (M->hasAttr<OverrideAttr>())
6977 HasMethodWithOverrideControl = true;
6978 else if (M->size_overridden_methods() > 0)
6979 HasOverridingMethodWithoutOverrideControl = true;
6980 }
6981
6982 if (!isa<CXXDestructorDecl>(M))
6983 CompleteMemberFunction(M);
6984 } else if (auto *F = dyn_cast<FriendDecl>(D)) {
6985 CheckForDefaultedFunction(
6986 dyn_cast_or_null<FunctionDecl>(F->getFriendDecl()));
6987 }
6988 }
6989
6990 if (HasOverridingMethodWithoutOverrideControl) {
6991 bool HasInconsistentOverrideControl = HasMethodWithOverrideControl;
6992 for (auto *M : Record->methods())
6993 DiagnoseAbsenceOfOverrideControl(M, HasInconsistentOverrideControl);
6994 }
6995
6996 // Check the defaulted secondary comparisons after any other member functions.
6997 for (FunctionDecl *FD : DefaultedSecondaryComparisons) {
6998 CheckExplicitlyDefaultedFunction(S, FD);
6999
7000 // If this is a member function, we deferred checking it until now.
7001 if (auto *MD = dyn_cast<CXXMethodDecl>(FD))
7002 CheckCompletedMemberFunction(MD);
7003 }
7004
7005 // ms_struct is a request to use the same ABI rules as MSVC. Check
7006 // whether this class uses any C++ features that are implemented
7007 // completely differently in MSVC, and if so, emit a diagnostic.
7008 // That diagnostic defaults to an error, but we allow projects to
7009 // map it down to a warning (or ignore it). It's a fairly common
7010 // practice among users of the ms_struct pragma to mass-annotate
7011 // headers, sweeping up a bunch of types that the project doesn't
7012 // really rely on MSVC-compatible layout for. We must therefore
7013 // support "ms_struct except for C++ stuff" as a secondary ABI.
7014 // Don't emit this diagnostic if the feature was enabled as a
7015 // language option (as opposed to via a pragma or attribute), as
7016 // the option -mms-bitfields otherwise essentially makes it impossible
7017 // to build C++ code, unless this diagnostic is turned off.
7018 if (Record->isMsStruct(Context) && !Context.getLangOpts().MSBitfields &&
7019 (Record->isPolymorphic() || Record->getNumBases())) {
7020 Diag(Record->getLocation(), diag::warn_cxx_ms_struct);
7021 }
7022
7023 checkClassLevelDLLAttribute(Record);
7024 checkClassLevelCodeSegAttribute(Record);
7025
7026 bool ClangABICompat4 =
7027 Context.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver4;
7028 TargetInfo::CallingConvKind CCK =
7029 Context.getTargetInfo().getCallingConvKind(ClangABICompat4);
7030 bool CanPass = canPassInRegisters(*this, Record, CCK);
7031
7032 // Do not change ArgPassingRestrictions if it has already been set to
7033 // APK_CanNeverPassInRegs.
7034 if (Record->getArgPassingRestrictions() != RecordDecl::APK_CanNeverPassInRegs)
7035 Record->setArgPassingRestrictions(CanPass
7036 ? RecordDecl::APK_CanPassInRegs
7037 : RecordDecl::APK_CannotPassInRegs);
7038
7039 // If canPassInRegisters returns true despite the record having a non-trivial
7040 // destructor, the record is destructed in the callee. This happens only when
7041 // the record or one of its subobjects has a field annotated with trivial_abi
7042 // or a field qualified with ObjC __strong/__weak.
7043 if (Context.getTargetInfo().getCXXABI().areArgsDestroyedLeftToRightInCallee())
7044 Record->setParamDestroyedInCallee(true);
7045 else if (Record->hasNonTrivialDestructor())
7046 Record->setParamDestroyedInCallee(CanPass);
7047
7048 if (getLangOpts().ForceEmitVTables) {
7049 // If we want to emit all the vtables, we need to mark it as used. This
7050 // is especially required for cases like vtable assumption loads.
7051 MarkVTableUsed(Record->getInnerLocStart(), Record);
7052 }
7053
7054 if (getLangOpts().CUDA) {
7055 if (Record->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>())
7056 checkCUDADeviceBuiltinSurfaceClassTemplate(*this, Record);
7057 else if (Record->hasAttr<CUDADeviceBuiltinTextureTypeAttr>())
7058 checkCUDADeviceBuiltinTextureClassTemplate(*this, Record);
7059 }
7060 }
7061
7062 /// Look up the special member function that would be called by a special
7063 /// member function for a subobject of class type.
7064 ///
7065 /// \param Class The class type of the subobject.
7066 /// \param CSM The kind of special member function.
7067 /// \param FieldQuals If the subobject is a field, its cv-qualifiers.
7068 /// \param ConstRHS True if this is a copy operation with a const object
7069 /// on its RHS, that is, if the argument to the outer special member
7070 /// function is 'const' and this is not a field marked 'mutable'.
lookupCallFromSpecialMember(Sema & S,CXXRecordDecl * Class,Sema::CXXSpecialMember CSM,unsigned FieldQuals,bool ConstRHS)7071 static Sema::SpecialMemberOverloadResult lookupCallFromSpecialMember(
7072 Sema &S, CXXRecordDecl *Class, Sema::CXXSpecialMember CSM,
7073 unsigned FieldQuals, bool ConstRHS) {
7074 unsigned LHSQuals = 0;
7075 if (CSM == Sema::CXXCopyAssignment || CSM == Sema::CXXMoveAssignment)
7076 LHSQuals = FieldQuals;
7077
7078 unsigned RHSQuals = FieldQuals;
7079 if (CSM == Sema::CXXDefaultConstructor || CSM == Sema::CXXDestructor)
7080 RHSQuals = 0;
7081 else if (ConstRHS)
7082 RHSQuals |= Qualifiers::Const;
7083
7084 return S.LookupSpecialMember(Class, CSM,
7085 RHSQuals & Qualifiers::Const,
7086 RHSQuals & Qualifiers::Volatile,
7087 false,
7088 LHSQuals & Qualifiers::Const,
7089 LHSQuals & Qualifiers::Volatile);
7090 }
7091
7092 class Sema::InheritedConstructorInfo {
7093 Sema &S;
7094 SourceLocation UseLoc;
7095
7096 /// A mapping from the base classes through which the constructor was
7097 /// inherited to the using shadow declaration in that base class (or a null
7098 /// pointer if the constructor was declared in that base class).
7099 llvm::DenseMap<CXXRecordDecl *, ConstructorUsingShadowDecl *>
7100 InheritedFromBases;
7101
7102 public:
InheritedConstructorInfo(Sema & S,SourceLocation UseLoc,ConstructorUsingShadowDecl * Shadow)7103 InheritedConstructorInfo(Sema &S, SourceLocation UseLoc,
7104 ConstructorUsingShadowDecl *Shadow)
7105 : S(S), UseLoc(UseLoc) {
7106 bool DiagnosedMultipleConstructedBases = false;
7107 CXXRecordDecl *ConstructedBase = nullptr;
7108 BaseUsingDecl *ConstructedBaseIntroducer = nullptr;
7109
7110 // Find the set of such base class subobjects and check that there's a
7111 // unique constructed subobject.
7112 for (auto *D : Shadow->redecls()) {
7113 auto *DShadow = cast<ConstructorUsingShadowDecl>(D);
7114 auto *DNominatedBase = DShadow->getNominatedBaseClass();
7115 auto *DConstructedBase = DShadow->getConstructedBaseClass();
7116
7117 InheritedFromBases.insert(
7118 std::make_pair(DNominatedBase->getCanonicalDecl(),
7119 DShadow->getNominatedBaseClassShadowDecl()));
7120 if (DShadow->constructsVirtualBase())
7121 InheritedFromBases.insert(
7122 std::make_pair(DConstructedBase->getCanonicalDecl(),
7123 DShadow->getConstructedBaseClassShadowDecl()));
7124 else
7125 assert(DNominatedBase == DConstructedBase);
7126
7127 // [class.inhctor.init]p2:
7128 // If the constructor was inherited from multiple base class subobjects
7129 // of type B, the program is ill-formed.
7130 if (!ConstructedBase) {
7131 ConstructedBase = DConstructedBase;
7132 ConstructedBaseIntroducer = D->getIntroducer();
7133 } else if (ConstructedBase != DConstructedBase &&
7134 !Shadow->isInvalidDecl()) {
7135 if (!DiagnosedMultipleConstructedBases) {
7136 S.Diag(UseLoc, diag::err_ambiguous_inherited_constructor)
7137 << Shadow->getTargetDecl();
7138 S.Diag(ConstructedBaseIntroducer->getLocation(),
7139 diag::note_ambiguous_inherited_constructor_using)
7140 << ConstructedBase;
7141 DiagnosedMultipleConstructedBases = true;
7142 }
7143 S.Diag(D->getIntroducer()->getLocation(),
7144 diag::note_ambiguous_inherited_constructor_using)
7145 << DConstructedBase;
7146 }
7147 }
7148
7149 if (DiagnosedMultipleConstructedBases)
7150 Shadow->setInvalidDecl();
7151 }
7152
7153 /// Find the constructor to use for inherited construction of a base class,
7154 /// and whether that base class constructor inherits the constructor from a
7155 /// virtual base class (in which case it won't actually invoke it).
7156 std::pair<CXXConstructorDecl *, bool>
findConstructorForBase(CXXRecordDecl * Base,CXXConstructorDecl * Ctor) const7157 findConstructorForBase(CXXRecordDecl *Base, CXXConstructorDecl *Ctor) const {
7158 auto It = InheritedFromBases.find(Base->getCanonicalDecl());
7159 if (It == InheritedFromBases.end())
7160 return std::make_pair(nullptr, false);
7161
7162 // This is an intermediary class.
7163 if (It->second)
7164 return std::make_pair(
7165 S.findInheritingConstructor(UseLoc, Ctor, It->second),
7166 It->second->constructsVirtualBase());
7167
7168 // This is the base class from which the constructor was inherited.
7169 return std::make_pair(Ctor, false);
7170 }
7171 };
7172
7173 /// Is the special member function which would be selected to perform the
7174 /// specified operation on the specified class type a constexpr constructor?
7175 static bool
specialMemberIsConstexpr(Sema & S,CXXRecordDecl * ClassDecl,Sema::CXXSpecialMember CSM,unsigned Quals,bool ConstRHS,CXXConstructorDecl * InheritedCtor=nullptr,Sema::InheritedConstructorInfo * Inherited=nullptr)7176 specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
7177 Sema::CXXSpecialMember CSM, unsigned Quals,
7178 bool ConstRHS,
7179 CXXConstructorDecl *InheritedCtor = nullptr,
7180 Sema::InheritedConstructorInfo *Inherited = nullptr) {
7181 // If we're inheriting a constructor, see if we need to call it for this base
7182 // class.
7183 if (InheritedCtor) {
7184 assert(CSM == Sema::CXXDefaultConstructor);
7185 auto BaseCtor =
7186 Inherited->findConstructorForBase(ClassDecl, InheritedCtor).first;
7187 if (BaseCtor)
7188 return BaseCtor->isConstexpr();
7189 }
7190
7191 if (CSM == Sema::CXXDefaultConstructor)
7192 return ClassDecl->hasConstexprDefaultConstructor();
7193 if (CSM == Sema::CXXDestructor)
7194 return ClassDecl->hasConstexprDestructor();
7195
7196 Sema::SpecialMemberOverloadResult SMOR =
7197 lookupCallFromSpecialMember(S, ClassDecl, CSM, Quals, ConstRHS);
7198 if (!SMOR.getMethod())
7199 // A constructor we wouldn't select can't be "involved in initializing"
7200 // anything.
7201 return true;
7202 return SMOR.getMethod()->isConstexpr();
7203 }
7204
7205 /// Determine whether the specified special member function would be constexpr
7206 /// if it were implicitly defined.
defaultedSpecialMemberIsConstexpr(Sema & S,CXXRecordDecl * ClassDecl,Sema::CXXSpecialMember CSM,bool ConstArg,CXXConstructorDecl * InheritedCtor=nullptr,Sema::InheritedConstructorInfo * Inherited=nullptr)7207 static bool defaultedSpecialMemberIsConstexpr(
7208 Sema &S, CXXRecordDecl *ClassDecl, Sema::CXXSpecialMember CSM,
7209 bool ConstArg, CXXConstructorDecl *InheritedCtor = nullptr,
7210 Sema::InheritedConstructorInfo *Inherited = nullptr) {
7211 if (!S.getLangOpts().CPlusPlus11)
7212 return false;
7213
7214 // C++11 [dcl.constexpr]p4:
7215 // In the definition of a constexpr constructor [...]
7216 bool Ctor = true;
7217 switch (CSM) {
7218 case Sema::CXXDefaultConstructor:
7219 if (Inherited)
7220 break;
7221 // Since default constructor lookup is essentially trivial (and cannot
7222 // involve, for instance, template instantiation), we compute whether a
7223 // defaulted default constructor is constexpr directly within CXXRecordDecl.
7224 //
7225 // This is important for performance; we need to know whether the default
7226 // constructor is constexpr to determine whether the type is a literal type.
7227 return ClassDecl->defaultedDefaultConstructorIsConstexpr();
7228
7229 case Sema::CXXCopyConstructor:
7230 case Sema::CXXMoveConstructor:
7231 // For copy or move constructors, we need to perform overload resolution.
7232 break;
7233
7234 case Sema::CXXCopyAssignment:
7235 case Sema::CXXMoveAssignment:
7236 if (!S.getLangOpts().CPlusPlus14)
7237 return false;
7238 // In C++1y, we need to perform overload resolution.
7239 Ctor = false;
7240 break;
7241
7242 case Sema::CXXDestructor:
7243 return ClassDecl->defaultedDestructorIsConstexpr();
7244
7245 case Sema::CXXInvalid:
7246 return false;
7247 }
7248
7249 // -- if the class is a non-empty union, or for each non-empty anonymous
7250 // union member of a non-union class, exactly one non-static data member
7251 // shall be initialized; [DR1359]
7252 //
7253 // If we squint, this is guaranteed, since exactly one non-static data member
7254 // will be initialized (if the constructor isn't deleted), we just don't know
7255 // which one.
7256 if (Ctor && ClassDecl->isUnion())
7257 return CSM == Sema::CXXDefaultConstructor
7258 ? ClassDecl->hasInClassInitializer() ||
7259 !ClassDecl->hasVariantMembers()
7260 : true;
7261
7262 // -- the class shall not have any virtual base classes;
7263 if (Ctor && ClassDecl->getNumVBases())
7264 return false;
7265
7266 // C++1y [class.copy]p26:
7267 // -- [the class] is a literal type, and
7268 if (!Ctor && !ClassDecl->isLiteral())
7269 return false;
7270
7271 // -- every constructor involved in initializing [...] base class
7272 // sub-objects shall be a constexpr constructor;
7273 // -- the assignment operator selected to copy/move each direct base
7274 // class is a constexpr function, and
7275 for (const auto &B : ClassDecl->bases()) {
7276 const RecordType *BaseType = B.getType()->getAs<RecordType>();
7277 if (!BaseType) continue;
7278
7279 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7280 if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, 0, ConstArg,
7281 InheritedCtor, Inherited))
7282 return false;
7283 }
7284
7285 // -- every constructor involved in initializing non-static data members
7286 // [...] shall be a constexpr constructor;
7287 // -- every non-static data member and base class sub-object shall be
7288 // initialized
7289 // -- for each non-static data member of X that is of class type (or array
7290 // thereof), the assignment operator selected to copy/move that member is
7291 // a constexpr function
7292 for (const auto *F : ClassDecl->fields()) {
7293 if (F->isInvalidDecl())
7294 continue;
7295 if (CSM == Sema::CXXDefaultConstructor && F->hasInClassInitializer())
7296 continue;
7297 QualType BaseType = S.Context.getBaseElementType(F->getType());
7298 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
7299 CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7300 if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM,
7301 BaseType.getCVRQualifiers(),
7302 ConstArg && !F->isMutable()))
7303 return false;
7304 } else if (CSM == Sema::CXXDefaultConstructor) {
7305 return false;
7306 }
7307 }
7308
7309 // All OK, it's constexpr!
7310 return true;
7311 }
7312
7313 namespace {
7314 /// RAII object to register a defaulted function as having its exception
7315 /// specification computed.
7316 struct ComputingExceptionSpec {
7317 Sema &S;
7318
ComputingExceptionSpec__anonc19065b01d11::ComputingExceptionSpec7319 ComputingExceptionSpec(Sema &S, FunctionDecl *FD, SourceLocation Loc)
7320 : S(S) {
7321 Sema::CodeSynthesisContext Ctx;
7322 Ctx.Kind = Sema::CodeSynthesisContext::ExceptionSpecEvaluation;
7323 Ctx.PointOfInstantiation = Loc;
7324 Ctx.Entity = FD;
7325 S.pushCodeSynthesisContext(Ctx);
7326 }
~ComputingExceptionSpec__anonc19065b01d11::ComputingExceptionSpec7327 ~ComputingExceptionSpec() {
7328 S.popCodeSynthesisContext();
7329 }
7330 };
7331 }
7332
7333 static Sema::ImplicitExceptionSpecification
7334 ComputeDefaultedSpecialMemberExceptionSpec(
7335 Sema &S, SourceLocation Loc, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM,
7336 Sema::InheritedConstructorInfo *ICI);
7337
7338 static Sema::ImplicitExceptionSpecification
7339 ComputeDefaultedComparisonExceptionSpec(Sema &S, SourceLocation Loc,
7340 FunctionDecl *FD,
7341 Sema::DefaultedComparisonKind DCK);
7342
7343 static Sema::ImplicitExceptionSpecification
computeImplicitExceptionSpec(Sema & S,SourceLocation Loc,FunctionDecl * FD)7344 computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, FunctionDecl *FD) {
7345 auto DFK = S.getDefaultedFunctionKind(FD);
7346 if (DFK.isSpecialMember())
7347 return ComputeDefaultedSpecialMemberExceptionSpec(
7348 S, Loc, cast<CXXMethodDecl>(FD), DFK.asSpecialMember(), nullptr);
7349 if (DFK.isComparison())
7350 return ComputeDefaultedComparisonExceptionSpec(S, Loc, FD,
7351 DFK.asComparison());
7352
7353 auto *CD = cast<CXXConstructorDecl>(FD);
7354 assert(CD->getInheritedConstructor() &&
7355 "only defaulted functions and inherited constructors have implicit "
7356 "exception specs");
7357 Sema::InheritedConstructorInfo ICI(
7358 S, Loc, CD->getInheritedConstructor().getShadowDecl());
7359 return ComputeDefaultedSpecialMemberExceptionSpec(
7360 S, Loc, CD, Sema::CXXDefaultConstructor, &ICI);
7361 }
7362
getImplicitMethodEPI(Sema & S,CXXMethodDecl * MD)7363 static FunctionProtoType::ExtProtoInfo getImplicitMethodEPI(Sema &S,
7364 CXXMethodDecl *MD) {
7365 FunctionProtoType::ExtProtoInfo EPI;
7366
7367 // Build an exception specification pointing back at this member.
7368 EPI.ExceptionSpec.Type = EST_Unevaluated;
7369 EPI.ExceptionSpec.SourceDecl = MD;
7370
7371 // Set the calling convention to the default for C++ instance methods.
7372 EPI.ExtInfo = EPI.ExtInfo.withCallingConv(
7373 S.Context.getDefaultCallingConvention(/*IsVariadic=*/false,
7374 /*IsCXXMethod=*/true));
7375 return EPI;
7376 }
7377
EvaluateImplicitExceptionSpec(SourceLocation Loc,FunctionDecl * FD)7378 void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, FunctionDecl *FD) {
7379 const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
7380 if (FPT->getExceptionSpecType() != EST_Unevaluated)
7381 return;
7382
7383 // Evaluate the exception specification.
7384 auto IES = computeImplicitExceptionSpec(*this, Loc, FD);
7385 auto ESI = IES.getExceptionSpec();
7386
7387 // Update the type of the special member to use it.
7388 UpdateExceptionSpec(FD, ESI);
7389 }
7390
CheckExplicitlyDefaultedFunction(Scope * S,FunctionDecl * FD)7391 void Sema::CheckExplicitlyDefaultedFunction(Scope *S, FunctionDecl *FD) {
7392 assert(FD->isExplicitlyDefaulted() && "not explicitly-defaulted");
7393
7394 DefaultedFunctionKind DefKind = getDefaultedFunctionKind(FD);
7395 if (!DefKind) {
7396 assert(FD->getDeclContext()->isDependentContext());
7397 return;
7398 }
7399
7400 if (DefKind.isComparison())
7401 UnusedPrivateFields.clear();
7402
7403 if (DefKind.isSpecialMember()
7404 ? CheckExplicitlyDefaultedSpecialMember(cast<CXXMethodDecl>(FD),
7405 DefKind.asSpecialMember())
7406 : CheckExplicitlyDefaultedComparison(S, FD, DefKind.asComparison()))
7407 FD->setInvalidDecl();
7408 }
7409
CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl * MD,CXXSpecialMember CSM)7410 bool Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD,
7411 CXXSpecialMember CSM) {
7412 CXXRecordDecl *RD = MD->getParent();
7413
7414 assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid &&
7415 "not an explicitly-defaulted special member");
7416
7417 // Defer all checking for special members of a dependent type.
7418 if (RD->isDependentType())
7419 return false;
7420
7421 // Whether this was the first-declared instance of the constructor.
7422 // This affects whether we implicitly add an exception spec and constexpr.
7423 bool First = MD == MD->getCanonicalDecl();
7424
7425 bool HadError = false;
7426
7427 // C++11 [dcl.fct.def.default]p1:
7428 // A function that is explicitly defaulted shall
7429 // -- be a special member function [...] (checked elsewhere),
7430 // -- have the same type (except for ref-qualifiers, and except that a
7431 // copy operation can take a non-const reference) as an implicit
7432 // declaration, and
7433 // -- not have default arguments.
7434 // C++2a changes the second bullet to instead delete the function if it's
7435 // defaulted on its first declaration, unless it's "an assignment operator,
7436 // and its return type differs or its parameter type is not a reference".
7437 bool DeleteOnTypeMismatch = getLangOpts().CPlusPlus20 && First;
7438 bool ShouldDeleteForTypeMismatch = false;
7439 unsigned ExpectedParams = 1;
7440 if (CSM == CXXDefaultConstructor || CSM == CXXDestructor)
7441 ExpectedParams = 0;
7442 if (MD->getNumParams() != ExpectedParams) {
7443 // This checks for default arguments: a copy or move constructor with a
7444 // default argument is classified as a default constructor, and assignment
7445 // operations and destructors can't have default arguments.
7446 Diag(MD->getLocation(), diag::err_defaulted_special_member_params)
7447 << CSM << MD->getSourceRange();
7448 HadError = true;
7449 } else if (MD->isVariadic()) {
7450 if (DeleteOnTypeMismatch)
7451 ShouldDeleteForTypeMismatch = true;
7452 else {
7453 Diag(MD->getLocation(), diag::err_defaulted_special_member_variadic)
7454 << CSM << MD->getSourceRange();
7455 HadError = true;
7456 }
7457 }
7458
7459 const FunctionProtoType *Type = MD->getType()->getAs<FunctionProtoType>();
7460
7461 bool CanHaveConstParam = false;
7462 if (CSM == CXXCopyConstructor)
7463 CanHaveConstParam = RD->implicitCopyConstructorHasConstParam();
7464 else if (CSM == CXXCopyAssignment)
7465 CanHaveConstParam = RD->implicitCopyAssignmentHasConstParam();
7466
7467 QualType ReturnType = Context.VoidTy;
7468 if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) {
7469 // Check for return type matching.
7470 ReturnType = Type->getReturnType();
7471
7472 QualType DeclType = Context.getTypeDeclType(RD);
7473 DeclType = Context.getAddrSpaceQualType(DeclType, MD->getMethodQualifiers().getAddressSpace());
7474 QualType ExpectedReturnType = Context.getLValueReferenceType(DeclType);
7475
7476 if (!Context.hasSameType(ReturnType, ExpectedReturnType)) {
7477 Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type)
7478 << (CSM == CXXMoveAssignment) << ExpectedReturnType;
7479 HadError = true;
7480 }
7481
7482 // A defaulted special member cannot have cv-qualifiers.
7483 if (Type->getMethodQuals().hasConst() || Type->getMethodQuals().hasVolatile()) {
7484 if (DeleteOnTypeMismatch)
7485 ShouldDeleteForTypeMismatch = true;
7486 else {
7487 Diag(MD->getLocation(), diag::err_defaulted_special_member_quals)
7488 << (CSM == CXXMoveAssignment) << getLangOpts().CPlusPlus14;
7489 HadError = true;
7490 }
7491 }
7492 }
7493
7494 // Check for parameter type matching.
7495 QualType ArgType = ExpectedParams ? Type->getParamType(0) : QualType();
7496 bool HasConstParam = false;
7497 if (ExpectedParams && ArgType->isReferenceType()) {
7498 // Argument must be reference to possibly-const T.
7499 QualType ReferentType = ArgType->getPointeeType();
7500 HasConstParam = ReferentType.isConstQualified();
7501
7502 if (ReferentType.isVolatileQualified()) {
7503 if (DeleteOnTypeMismatch)
7504 ShouldDeleteForTypeMismatch = true;
7505 else {
7506 Diag(MD->getLocation(),
7507 diag::err_defaulted_special_member_volatile_param) << CSM;
7508 HadError = true;
7509 }
7510 }
7511
7512 if (HasConstParam && !CanHaveConstParam) {
7513 if (DeleteOnTypeMismatch)
7514 ShouldDeleteForTypeMismatch = true;
7515 else if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) {
7516 Diag(MD->getLocation(),
7517 diag::err_defaulted_special_member_copy_const_param)
7518 << (CSM == CXXCopyAssignment);
7519 // FIXME: Explain why this special member can't be const.
7520 HadError = true;
7521 } else {
7522 Diag(MD->getLocation(),
7523 diag::err_defaulted_special_member_move_const_param)
7524 << (CSM == CXXMoveAssignment);
7525 HadError = true;
7526 }
7527 }
7528 } else if (ExpectedParams) {
7529 // A copy assignment operator can take its argument by value, but a
7530 // defaulted one cannot.
7531 assert(CSM == CXXCopyAssignment && "unexpected non-ref argument");
7532 Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
7533 HadError = true;
7534 }
7535
7536 // C++11 [dcl.fct.def.default]p2:
7537 // An explicitly-defaulted function may be declared constexpr only if it
7538 // would have been implicitly declared as constexpr,
7539 // Do not apply this rule to members of class templates, since core issue 1358
7540 // makes such functions always instantiate to constexpr functions. For
7541 // functions which cannot be constexpr (for non-constructors in C++11 and for
7542 // destructors in C++14 and C++17), this is checked elsewhere.
7543 //
7544 // FIXME: This should not apply if the member is deleted.
7545 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM,
7546 HasConstParam);
7547 if ((getLangOpts().CPlusPlus20 ||
7548 (getLangOpts().CPlusPlus14 ? !isa<CXXDestructorDecl>(MD)
7549 : isa<CXXConstructorDecl>(MD))) &&
7550 MD->isConstexpr() && !Constexpr &&
7551 MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
7552 Diag(MD->getBeginLoc(), MD->isConsteval()
7553 ? diag::err_incorrect_defaulted_consteval
7554 : diag::err_incorrect_defaulted_constexpr)
7555 << CSM;
7556 // FIXME: Explain why the special member can't be constexpr.
7557 HadError = true;
7558 }
7559
7560 if (First) {
7561 // C++2a [dcl.fct.def.default]p3:
7562 // If a function is explicitly defaulted on its first declaration, it is
7563 // implicitly considered to be constexpr if the implicit declaration
7564 // would be.
7565 MD->setConstexprKind(Constexpr ? (MD->isConsteval()
7566 ? ConstexprSpecKind::Consteval
7567 : ConstexprSpecKind::Constexpr)
7568 : ConstexprSpecKind::Unspecified);
7569
7570 if (!Type->hasExceptionSpec()) {
7571 // C++2a [except.spec]p3:
7572 // If a declaration of a function does not have a noexcept-specifier
7573 // [and] is defaulted on its first declaration, [...] the exception
7574 // specification is as specified below
7575 FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo();
7576 EPI.ExceptionSpec.Type = EST_Unevaluated;
7577 EPI.ExceptionSpec.SourceDecl = MD;
7578 MD->setType(Context.getFunctionType(ReturnType,
7579 llvm::makeArrayRef(&ArgType,
7580 ExpectedParams),
7581 EPI));
7582 }
7583 }
7584
7585 if (ShouldDeleteForTypeMismatch || ShouldDeleteSpecialMember(MD, CSM)) {
7586 if (First) {
7587 SetDeclDeleted(MD, MD->getLocation());
7588 if (!inTemplateInstantiation() && !HadError) {
7589 Diag(MD->getLocation(), diag::warn_defaulted_method_deleted) << CSM;
7590 if (ShouldDeleteForTypeMismatch) {
7591 Diag(MD->getLocation(), diag::note_deleted_type_mismatch) << CSM;
7592 } else {
7593 ShouldDeleteSpecialMember(MD, CSM, nullptr, /*Diagnose*/true);
7594 }
7595 }
7596 if (ShouldDeleteForTypeMismatch && !HadError) {
7597 Diag(MD->getLocation(),
7598 diag::warn_cxx17_compat_defaulted_method_type_mismatch) << CSM;
7599 }
7600 } else {
7601 // C++11 [dcl.fct.def.default]p4:
7602 // [For a] user-provided explicitly-defaulted function [...] if such a
7603 // function is implicitly defined as deleted, the program is ill-formed.
7604 Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM;
7605 assert(!ShouldDeleteForTypeMismatch && "deleted non-first decl");
7606 ShouldDeleteSpecialMember(MD, CSM, nullptr, /*Diagnose*/true);
7607 HadError = true;
7608 }
7609 }
7610
7611 return HadError;
7612 }
7613
7614 namespace {
7615 /// Helper class for building and checking a defaulted comparison.
7616 ///
7617 /// Defaulted functions are built in two phases:
7618 ///
7619 /// * First, the set of operations that the function will perform are
7620 /// identified, and some of them are checked. If any of the checked
7621 /// operations is invalid in certain ways, the comparison function is
7622 /// defined as deleted and no body is built.
7623 /// * Then, if the function is not defined as deleted, the body is built.
7624 ///
7625 /// This is accomplished by performing two visitation steps over the eventual
7626 /// body of the function.
7627 template<typename Derived, typename ResultList, typename Result,
7628 typename Subobject>
7629 class DefaultedComparisonVisitor {
7630 public:
7631 using DefaultedComparisonKind = Sema::DefaultedComparisonKind;
7632
DefaultedComparisonVisitor(Sema & S,CXXRecordDecl * RD,FunctionDecl * FD,DefaultedComparisonKind DCK)7633 DefaultedComparisonVisitor(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD,
7634 DefaultedComparisonKind DCK)
7635 : S(S), RD(RD), FD(FD), DCK(DCK) {
7636 if (auto *Info = FD->getDefaultedFunctionInfo()) {
7637 // FIXME: Change CreateOverloadedBinOp to take an ArrayRef instead of an
7638 // UnresolvedSet to avoid this copy.
7639 Fns.assign(Info->getUnqualifiedLookups().begin(),
7640 Info->getUnqualifiedLookups().end());
7641 }
7642 }
7643
visit()7644 ResultList visit() {
7645 // The type of an lvalue naming a parameter of this function.
7646 QualType ParamLvalType =
7647 FD->getParamDecl(0)->getType().getNonReferenceType();
7648
7649 ResultList Results;
7650
7651 switch (DCK) {
7652 case DefaultedComparisonKind::None:
7653 llvm_unreachable("not a defaulted comparison");
7654
7655 case DefaultedComparisonKind::Equal:
7656 case DefaultedComparisonKind::ThreeWay:
7657 getDerived().visitSubobjects(Results, RD, ParamLvalType.getQualifiers());
7658 return Results;
7659
7660 case DefaultedComparisonKind::NotEqual:
7661 case DefaultedComparisonKind::Relational:
7662 Results.add(getDerived().visitExpandedSubobject(
7663 ParamLvalType, getDerived().getCompleteObject()));
7664 return Results;
7665 }
7666 llvm_unreachable("");
7667 }
7668
7669 protected:
getDerived()7670 Derived &getDerived() { return static_cast<Derived&>(*this); }
7671
7672 /// Visit the expanded list of subobjects of the given type, as specified in
7673 /// C++2a [class.compare.default].
7674 ///
7675 /// \return \c true if the ResultList object said we're done, \c false if not.
visitSubobjects(ResultList & Results,CXXRecordDecl * Record,Qualifiers Quals)7676 bool visitSubobjects(ResultList &Results, CXXRecordDecl *Record,
7677 Qualifiers Quals) {
7678 // C++2a [class.compare.default]p4:
7679 // The direct base class subobjects of C
7680 for (CXXBaseSpecifier &Base : Record->bases())
7681 if (Results.add(getDerived().visitSubobject(
7682 S.Context.getQualifiedType(Base.getType(), Quals),
7683 getDerived().getBase(&Base))))
7684 return true;
7685
7686 // followed by the non-static data members of C
7687 for (FieldDecl *Field : Record->fields()) {
7688 // Recursively expand anonymous structs.
7689 if (Field->isAnonymousStructOrUnion()) {
7690 if (visitSubobjects(Results, Field->getType()->getAsCXXRecordDecl(),
7691 Quals))
7692 return true;
7693 continue;
7694 }
7695
7696 // Figure out the type of an lvalue denoting this field.
7697 Qualifiers FieldQuals = Quals;
7698 if (Field->isMutable())
7699 FieldQuals.removeConst();
7700 QualType FieldType =
7701 S.Context.getQualifiedType(Field->getType(), FieldQuals);
7702
7703 if (Results.add(getDerived().visitSubobject(
7704 FieldType, getDerived().getField(Field))))
7705 return true;
7706 }
7707
7708 // form a list of subobjects.
7709 return false;
7710 }
7711
visitSubobject(QualType Type,Subobject Subobj)7712 Result visitSubobject(QualType Type, Subobject Subobj) {
7713 // In that list, any subobject of array type is recursively expanded
7714 const ArrayType *AT = S.Context.getAsArrayType(Type);
7715 if (auto *CAT = dyn_cast_or_null<ConstantArrayType>(AT))
7716 return getDerived().visitSubobjectArray(CAT->getElementType(),
7717 CAT->getSize(), Subobj);
7718 return getDerived().visitExpandedSubobject(Type, Subobj);
7719 }
7720
visitSubobjectArray(QualType Type,const llvm::APInt & Size,Subobject Subobj)7721 Result visitSubobjectArray(QualType Type, const llvm::APInt &Size,
7722 Subobject Subobj) {
7723 return getDerived().visitSubobject(Type, Subobj);
7724 }
7725
7726 protected:
7727 Sema &S;
7728 CXXRecordDecl *RD;
7729 FunctionDecl *FD;
7730 DefaultedComparisonKind DCK;
7731 UnresolvedSet<16> Fns;
7732 };
7733
7734 /// Information about a defaulted comparison, as determined by
7735 /// DefaultedComparisonAnalyzer.
7736 struct DefaultedComparisonInfo {
7737 bool Deleted = false;
7738 bool Constexpr = true;
7739 ComparisonCategoryType Category = ComparisonCategoryType::StrongOrdering;
7740
deleted__anonc19065b01e11::DefaultedComparisonInfo7741 static DefaultedComparisonInfo deleted() {
7742 DefaultedComparisonInfo Deleted;
7743 Deleted.Deleted = true;
7744 return Deleted;
7745 }
7746
add__anonc19065b01e11::DefaultedComparisonInfo7747 bool add(const DefaultedComparisonInfo &R) {
7748 Deleted |= R.Deleted;
7749 Constexpr &= R.Constexpr;
7750 Category = commonComparisonType(Category, R.Category);
7751 return Deleted;
7752 }
7753 };
7754
7755 /// An element in the expanded list of subobjects of a defaulted comparison, as
7756 /// specified in C++2a [class.compare.default]p4.
7757 struct DefaultedComparisonSubobject {
7758 enum { CompleteObject, Member, Base } Kind;
7759 NamedDecl *Decl;
7760 SourceLocation Loc;
7761 };
7762
7763 /// A visitor over the notional body of a defaulted comparison that determines
7764 /// whether that body would be deleted or constexpr.
7765 class DefaultedComparisonAnalyzer
7766 : public DefaultedComparisonVisitor<DefaultedComparisonAnalyzer,
7767 DefaultedComparisonInfo,
7768 DefaultedComparisonInfo,
7769 DefaultedComparisonSubobject> {
7770 public:
7771 enum DiagnosticKind { NoDiagnostics, ExplainDeleted, ExplainConstexpr };
7772
7773 private:
7774 DiagnosticKind Diagnose;
7775
7776 public:
7777 using Base = DefaultedComparisonVisitor;
7778 using Result = DefaultedComparisonInfo;
7779 using Subobject = DefaultedComparisonSubobject;
7780
7781 friend Base;
7782
DefaultedComparisonAnalyzer(Sema & S,CXXRecordDecl * RD,FunctionDecl * FD,DefaultedComparisonKind DCK,DiagnosticKind Diagnose=NoDiagnostics)7783 DefaultedComparisonAnalyzer(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD,
7784 DefaultedComparisonKind DCK,
7785 DiagnosticKind Diagnose = NoDiagnostics)
7786 : Base(S, RD, FD, DCK), Diagnose(Diagnose) {}
7787
visit()7788 Result visit() {
7789 if ((DCK == DefaultedComparisonKind::Equal ||
7790 DCK == DefaultedComparisonKind::ThreeWay) &&
7791 RD->hasVariantMembers()) {
7792 // C++2a [class.compare.default]p2 [P2002R0]:
7793 // A defaulted comparison operator function for class C is defined as
7794 // deleted if [...] C has variant members.
7795 if (Diagnose == ExplainDeleted) {
7796 S.Diag(FD->getLocation(), diag::note_defaulted_comparison_union)
7797 << FD << RD->isUnion() << RD;
7798 }
7799 return Result::deleted();
7800 }
7801
7802 return Base::visit();
7803 }
7804
7805 private:
getCompleteObject()7806 Subobject getCompleteObject() {
7807 return Subobject{Subobject::CompleteObject, RD, FD->getLocation()};
7808 }
7809
getBase(CXXBaseSpecifier * Base)7810 Subobject getBase(CXXBaseSpecifier *Base) {
7811 return Subobject{Subobject::Base, Base->getType()->getAsCXXRecordDecl(),
7812 Base->getBaseTypeLoc()};
7813 }
7814
getField(FieldDecl * Field)7815 Subobject getField(FieldDecl *Field) {
7816 return Subobject{Subobject::Member, Field, Field->getLocation()};
7817 }
7818
visitExpandedSubobject(QualType Type,Subobject Subobj)7819 Result visitExpandedSubobject(QualType Type, Subobject Subobj) {
7820 // C++2a [class.compare.default]p2 [P2002R0]:
7821 // A defaulted <=> or == operator function for class C is defined as
7822 // deleted if any non-static data member of C is of reference type
7823 if (Type->isReferenceType()) {
7824 if (Diagnose == ExplainDeleted) {
7825 S.Diag(Subobj.Loc, diag::note_defaulted_comparison_reference_member)
7826 << FD << RD;
7827 }
7828 return Result::deleted();
7829 }
7830
7831 // [...] Let xi be an lvalue denoting the ith element [...]
7832 OpaqueValueExpr Xi(FD->getLocation(), Type, VK_LValue);
7833 Expr *Args[] = {&Xi, &Xi};
7834
7835 // All operators start by trying to apply that same operator recursively.
7836 OverloadedOperatorKind OO = FD->getOverloadedOperator();
7837 assert(OO != OO_None && "not an overloaded operator!");
7838 return visitBinaryOperator(OO, Args, Subobj);
7839 }
7840
7841 Result
visitBinaryOperator(OverloadedOperatorKind OO,ArrayRef<Expr * > Args,Subobject Subobj,OverloadCandidateSet * SpaceshipCandidates=nullptr)7842 visitBinaryOperator(OverloadedOperatorKind OO, ArrayRef<Expr *> Args,
7843 Subobject Subobj,
7844 OverloadCandidateSet *SpaceshipCandidates = nullptr) {
7845 // Note that there is no need to consider rewritten candidates here if
7846 // we've already found there is no viable 'operator<=>' candidate (and are
7847 // considering synthesizing a '<=>' from '==' and '<').
7848 OverloadCandidateSet CandidateSet(
7849 FD->getLocation(), OverloadCandidateSet::CSK_Operator,
7850 OverloadCandidateSet::OperatorRewriteInfo(
7851 OO, /*AllowRewrittenCandidates=*/!SpaceshipCandidates));
7852
7853 /// C++2a [class.compare.default]p1 [P2002R0]:
7854 /// [...] the defaulted function itself is never a candidate for overload
7855 /// resolution [...]
7856 CandidateSet.exclude(FD);
7857
7858 if (Args[0]->getType()->isOverloadableType())
7859 S.LookupOverloadedBinOp(CandidateSet, OO, Fns, Args);
7860 else
7861 // FIXME: We determine whether this is a valid expression by checking to
7862 // see if there's a viable builtin operator candidate for it. That isn't
7863 // really what the rules ask us to do, but should give the right results.
7864 S.AddBuiltinOperatorCandidates(OO, FD->getLocation(), Args, CandidateSet);
7865
7866 Result R;
7867
7868 OverloadCandidateSet::iterator Best;
7869 switch (CandidateSet.BestViableFunction(S, FD->getLocation(), Best)) {
7870 case OR_Success: {
7871 // C++2a [class.compare.secondary]p2 [P2002R0]:
7872 // The operator function [...] is defined as deleted if [...] the
7873 // candidate selected by overload resolution is not a rewritten
7874 // candidate.
7875 if ((DCK == DefaultedComparisonKind::NotEqual ||
7876 DCK == DefaultedComparisonKind::Relational) &&
7877 !Best->RewriteKind) {
7878 if (Diagnose == ExplainDeleted) {
7879 if (Best->Function) {
7880 S.Diag(Best->Function->getLocation(),
7881 diag::note_defaulted_comparison_not_rewritten_callee)
7882 << FD;
7883 } else {
7884 assert(Best->Conversions.size() == 2 &&
7885 Best->Conversions[0].isUserDefined() &&
7886 "non-user-defined conversion from class to built-in "
7887 "comparison");
7888 S.Diag(Best->Conversions[0]
7889 .UserDefined.FoundConversionFunction.getDecl()
7890 ->getLocation(),
7891 diag::note_defaulted_comparison_not_rewritten_conversion)
7892 << FD;
7893 }
7894 }
7895 return Result::deleted();
7896 }
7897
7898 // Throughout C++2a [class.compare]: if overload resolution does not
7899 // result in a usable function, the candidate function is defined as
7900 // deleted. This requires that we selected an accessible function.
7901 //
7902 // Note that this only considers the access of the function when named
7903 // within the type of the subobject, and not the access path for any
7904 // derived-to-base conversion.
7905 CXXRecordDecl *ArgClass = Args[0]->getType()->getAsCXXRecordDecl();
7906 if (ArgClass && Best->FoundDecl.getDecl() &&
7907 Best->FoundDecl.getDecl()->isCXXClassMember()) {
7908 QualType ObjectType = Subobj.Kind == Subobject::Member
7909 ? Args[0]->getType()
7910 : S.Context.getRecordType(RD);
7911 if (!S.isMemberAccessibleForDeletion(
7912 ArgClass, Best->FoundDecl, ObjectType, Subobj.Loc,
7913 Diagnose == ExplainDeleted
7914 ? S.PDiag(diag::note_defaulted_comparison_inaccessible)
7915 << FD << Subobj.Kind << Subobj.Decl
7916 : S.PDiag()))
7917 return Result::deleted();
7918 }
7919
7920 bool NeedsDeducing =
7921 OO == OO_Spaceship && FD->getReturnType()->isUndeducedAutoType();
7922
7923 if (FunctionDecl *BestFD = Best->Function) {
7924 // C++2a [class.compare.default]p3 [P2002R0]:
7925 // A defaulted comparison function is constexpr-compatible if
7926 // [...] no overlod resolution performed [...] results in a
7927 // non-constexpr function.
7928 assert(!BestFD->isDeleted() && "wrong overload resolution result");
7929 // If it's not constexpr, explain why not.
7930 if (Diagnose == ExplainConstexpr && !BestFD->isConstexpr()) {
7931 if (Subobj.Kind != Subobject::CompleteObject)
7932 S.Diag(Subobj.Loc, diag::note_defaulted_comparison_not_constexpr)
7933 << Subobj.Kind << Subobj.Decl;
7934 S.Diag(BestFD->getLocation(),
7935 diag::note_defaulted_comparison_not_constexpr_here);
7936 // Bail out after explaining; we don't want any more notes.
7937 return Result::deleted();
7938 }
7939 R.Constexpr &= BestFD->isConstexpr();
7940
7941 if (NeedsDeducing) {
7942 // If any callee has an undeduced return type, deduce it now.
7943 // FIXME: It's not clear how a failure here should be handled. For
7944 // now, we produce an eager diagnostic, because that is forward
7945 // compatible with most (all?) other reasonable options.
7946 if (BestFD->getReturnType()->isUndeducedType() &&
7947 S.DeduceReturnType(BestFD, FD->getLocation(),
7948 /*Diagnose=*/false)) {
7949 // Don't produce a duplicate error when asked to explain why the
7950 // comparison is deleted: we diagnosed that when initially checking
7951 // the defaulted operator.
7952 if (Diagnose == NoDiagnostics) {
7953 S.Diag(
7954 FD->getLocation(),
7955 diag::err_defaulted_comparison_cannot_deduce_undeduced_auto)
7956 << Subobj.Kind << Subobj.Decl;
7957 S.Diag(
7958 Subobj.Loc,
7959 diag::note_defaulted_comparison_cannot_deduce_undeduced_auto)
7960 << Subobj.Kind << Subobj.Decl;
7961 S.Diag(BestFD->getLocation(),
7962 diag::note_defaulted_comparison_cannot_deduce_callee)
7963 << Subobj.Kind << Subobj.Decl;
7964 }
7965 return Result::deleted();
7966 }
7967 auto *Info = S.Context.CompCategories.lookupInfoForType(
7968 BestFD->getCallResultType());
7969 if (!Info) {
7970 if (Diagnose == ExplainDeleted) {
7971 S.Diag(Subobj.Loc, diag::note_defaulted_comparison_cannot_deduce)
7972 << Subobj.Kind << Subobj.Decl
7973 << BestFD->getCallResultType().withoutLocalFastQualifiers();
7974 S.Diag(BestFD->getLocation(),
7975 diag::note_defaulted_comparison_cannot_deduce_callee)
7976 << Subobj.Kind << Subobj.Decl;
7977 }
7978 return Result::deleted();
7979 }
7980 R.Category = Info->Kind;
7981 }
7982 } else {
7983 QualType T = Best->BuiltinParamTypes[0];
7984 assert(T == Best->BuiltinParamTypes[1] &&
7985 "builtin comparison for different types?");
7986 assert(Best->BuiltinParamTypes[2].isNull() &&
7987 "invalid builtin comparison");
7988
7989 if (NeedsDeducing) {
7990 Optional<ComparisonCategoryType> Cat =
7991 getComparisonCategoryForBuiltinCmp(T);
7992 assert(Cat && "no category for builtin comparison?");
7993 R.Category = *Cat;
7994 }
7995 }
7996
7997 // Note that we might be rewriting to a different operator. That call is
7998 // not considered until we come to actually build the comparison function.
7999 break;
8000 }
8001
8002 case OR_Ambiguous:
8003 if (Diagnose == ExplainDeleted) {
8004 unsigned Kind = 0;
8005 if (FD->getOverloadedOperator() == OO_Spaceship && OO != OO_Spaceship)
8006 Kind = OO == OO_EqualEqual ? 1 : 2;
8007 CandidateSet.NoteCandidates(
8008 PartialDiagnosticAt(
8009 Subobj.Loc, S.PDiag(diag::note_defaulted_comparison_ambiguous)
8010 << FD << Kind << Subobj.Kind << Subobj.Decl),
8011 S, OCD_AmbiguousCandidates, Args);
8012 }
8013 R = Result::deleted();
8014 break;
8015
8016 case OR_Deleted:
8017 if (Diagnose == ExplainDeleted) {
8018 if ((DCK == DefaultedComparisonKind::NotEqual ||
8019 DCK == DefaultedComparisonKind::Relational) &&
8020 !Best->RewriteKind) {
8021 S.Diag(Best->Function->getLocation(),
8022 diag::note_defaulted_comparison_not_rewritten_callee)
8023 << FD;
8024 } else {
8025 S.Diag(Subobj.Loc,
8026 diag::note_defaulted_comparison_calls_deleted)
8027 << FD << Subobj.Kind << Subobj.Decl;
8028 S.NoteDeletedFunction(Best->Function);
8029 }
8030 }
8031 R = Result::deleted();
8032 break;
8033
8034 case OR_No_Viable_Function:
8035 // If there's no usable candidate, we're done unless we can rewrite a
8036 // '<=>' in terms of '==' and '<'.
8037 if (OO == OO_Spaceship &&
8038 S.Context.CompCategories.lookupInfoForType(FD->getReturnType())) {
8039 // For any kind of comparison category return type, we need a usable
8040 // '==' and a usable '<'.
8041 if (!R.add(visitBinaryOperator(OO_EqualEqual, Args, Subobj,
8042 &CandidateSet)))
8043 R.add(visitBinaryOperator(OO_Less, Args, Subobj, &CandidateSet));
8044 break;
8045 }
8046
8047 if (Diagnose == ExplainDeleted) {
8048 S.Diag(Subobj.Loc, diag::note_defaulted_comparison_no_viable_function)
8049 << FD << (OO == OO_ExclaimEqual) << Subobj.Kind << Subobj.Decl;
8050
8051 // For a three-way comparison, list both the candidates for the
8052 // original operator and the candidates for the synthesized operator.
8053 if (SpaceshipCandidates) {
8054 SpaceshipCandidates->NoteCandidates(
8055 S, Args,
8056 SpaceshipCandidates->CompleteCandidates(S, OCD_AllCandidates,
8057 Args, FD->getLocation()));
8058 S.Diag(Subobj.Loc,
8059 diag::note_defaulted_comparison_no_viable_function_synthesized)
8060 << (OO == OO_EqualEqual ? 0 : 1);
8061 }
8062
8063 CandidateSet.NoteCandidates(
8064 S, Args,
8065 CandidateSet.CompleteCandidates(S, OCD_AllCandidates, Args,
8066 FD->getLocation()));
8067 }
8068 R = Result::deleted();
8069 break;
8070 }
8071
8072 return R;
8073 }
8074 };
8075
8076 /// A list of statements.
8077 struct StmtListResult {
8078 bool IsInvalid = false;
8079 llvm::SmallVector<Stmt*, 16> Stmts;
8080
add__anonc19065b01e11::StmtListResult8081 bool add(const StmtResult &S) {
8082 IsInvalid |= S.isInvalid();
8083 if (IsInvalid)
8084 return true;
8085 Stmts.push_back(S.get());
8086 return false;
8087 }
8088 };
8089
8090 /// A visitor over the notional body of a defaulted comparison that synthesizes
8091 /// the actual body.
8092 class DefaultedComparisonSynthesizer
8093 : public DefaultedComparisonVisitor<DefaultedComparisonSynthesizer,
8094 StmtListResult, StmtResult,
8095 std::pair<ExprResult, ExprResult>> {
8096 SourceLocation Loc;
8097 unsigned ArrayDepth = 0;
8098
8099 public:
8100 using Base = DefaultedComparisonVisitor;
8101 using ExprPair = std::pair<ExprResult, ExprResult>;
8102
8103 friend Base;
8104
DefaultedComparisonSynthesizer(Sema & S,CXXRecordDecl * RD,FunctionDecl * FD,DefaultedComparisonKind DCK,SourceLocation BodyLoc)8105 DefaultedComparisonSynthesizer(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD,
8106 DefaultedComparisonKind DCK,
8107 SourceLocation BodyLoc)
8108 : Base(S, RD, FD, DCK), Loc(BodyLoc) {}
8109
8110 /// Build a suitable function body for this defaulted comparison operator.
build()8111 StmtResult build() {
8112 Sema::CompoundScopeRAII CompoundScope(S);
8113
8114 StmtListResult Stmts = visit();
8115 if (Stmts.IsInvalid)
8116 return StmtError();
8117
8118 ExprResult RetVal;
8119 switch (DCK) {
8120 case DefaultedComparisonKind::None:
8121 llvm_unreachable("not a defaulted comparison");
8122
8123 case DefaultedComparisonKind::Equal: {
8124 // C++2a [class.eq]p3:
8125 // [...] compar[e] the corresponding elements [...] until the first
8126 // index i where xi == yi yields [...] false. If no such index exists,
8127 // V is true. Otherwise, V is false.
8128 //
8129 // Join the comparisons with '&&'s and return the result. Use a right
8130 // fold (traversing the conditions right-to-left), because that
8131 // short-circuits more naturally.
8132 auto OldStmts = std::move(Stmts.Stmts);
8133 Stmts.Stmts.clear();
8134 ExprResult CmpSoFar;
8135 // Finish a particular comparison chain.
8136 auto FinishCmp = [&] {
8137 if (Expr *Prior = CmpSoFar.get()) {
8138 // Convert the last expression to 'return ...;'
8139 if (RetVal.isUnset() && Stmts.Stmts.empty())
8140 RetVal = CmpSoFar;
8141 // Convert any prior comparison to 'if (!(...)) return false;'
8142 else if (Stmts.add(buildIfNotCondReturnFalse(Prior)))
8143 return true;
8144 CmpSoFar = ExprResult();
8145 }
8146 return false;
8147 };
8148 for (Stmt *EAsStmt : llvm::reverse(OldStmts)) {
8149 Expr *E = dyn_cast<Expr>(EAsStmt);
8150 if (!E) {
8151 // Found an array comparison.
8152 if (FinishCmp() || Stmts.add(EAsStmt))
8153 return StmtError();
8154 continue;
8155 }
8156
8157 if (CmpSoFar.isUnset()) {
8158 CmpSoFar = E;
8159 continue;
8160 }
8161 CmpSoFar = S.CreateBuiltinBinOp(Loc, BO_LAnd, E, CmpSoFar.get());
8162 if (CmpSoFar.isInvalid())
8163 return StmtError();
8164 }
8165 if (FinishCmp())
8166 return StmtError();
8167 std::reverse(Stmts.Stmts.begin(), Stmts.Stmts.end());
8168 // If no such index exists, V is true.
8169 if (RetVal.isUnset())
8170 RetVal = S.ActOnCXXBoolLiteral(Loc, tok::kw_true);
8171 break;
8172 }
8173
8174 case DefaultedComparisonKind::ThreeWay: {
8175 // Per C++2a [class.spaceship]p3, as a fallback add:
8176 // return static_cast<R>(std::strong_ordering::equal);
8177 QualType StrongOrdering = S.CheckComparisonCategoryType(
8178 ComparisonCategoryType::StrongOrdering, Loc,
8179 Sema::ComparisonCategoryUsage::DefaultedOperator);
8180 if (StrongOrdering.isNull())
8181 return StmtError();
8182 VarDecl *EqualVD = S.Context.CompCategories.getInfoForType(StrongOrdering)
8183 .getValueInfo(ComparisonCategoryResult::Equal)
8184 ->VD;
8185 RetVal = getDecl(EqualVD);
8186 if (RetVal.isInvalid())
8187 return StmtError();
8188 RetVal = buildStaticCastToR(RetVal.get());
8189 break;
8190 }
8191
8192 case DefaultedComparisonKind::NotEqual:
8193 case DefaultedComparisonKind::Relational:
8194 RetVal = cast<Expr>(Stmts.Stmts.pop_back_val());
8195 break;
8196 }
8197
8198 // Build the final return statement.
8199 if (RetVal.isInvalid())
8200 return StmtError();
8201 StmtResult ReturnStmt = S.BuildReturnStmt(Loc, RetVal.get());
8202 if (ReturnStmt.isInvalid())
8203 return StmtError();
8204 Stmts.Stmts.push_back(ReturnStmt.get());
8205
8206 return S.ActOnCompoundStmt(Loc, Loc, Stmts.Stmts, /*IsStmtExpr=*/false);
8207 }
8208
8209 private:
getDecl(ValueDecl * VD)8210 ExprResult getDecl(ValueDecl *VD) {
8211 return S.BuildDeclarationNameExpr(
8212 CXXScopeSpec(), DeclarationNameInfo(VD->getDeclName(), Loc), VD);
8213 }
8214
getParam(unsigned I)8215 ExprResult getParam(unsigned I) {
8216 ParmVarDecl *PD = FD->getParamDecl(I);
8217 return getDecl(PD);
8218 }
8219
getCompleteObject()8220 ExprPair getCompleteObject() {
8221 unsigned Param = 0;
8222 ExprResult LHS;
8223 if (isa<CXXMethodDecl>(FD)) {
8224 // LHS is '*this'.
8225 LHS = S.ActOnCXXThis(Loc);
8226 if (!LHS.isInvalid())
8227 LHS = S.CreateBuiltinUnaryOp(Loc, UO_Deref, LHS.get());
8228 } else {
8229 LHS = getParam(Param++);
8230 }
8231 ExprResult RHS = getParam(Param++);
8232 assert(Param == FD->getNumParams());
8233 return {LHS, RHS};
8234 }
8235
getBase(CXXBaseSpecifier * Base)8236 ExprPair getBase(CXXBaseSpecifier *Base) {
8237 ExprPair Obj = getCompleteObject();
8238 if (Obj.first.isInvalid() || Obj.second.isInvalid())
8239 return {ExprError(), ExprError()};
8240 CXXCastPath Path = {Base};
8241 return {S.ImpCastExprToType(Obj.first.get(), Base->getType(),
8242 CK_DerivedToBase, VK_LValue, &Path),
8243 S.ImpCastExprToType(Obj.second.get(), Base->getType(),
8244 CK_DerivedToBase, VK_LValue, &Path)};
8245 }
8246
getField(FieldDecl * Field)8247 ExprPair getField(FieldDecl *Field) {
8248 ExprPair Obj = getCompleteObject();
8249 if (Obj.first.isInvalid() || Obj.second.isInvalid())
8250 return {ExprError(), ExprError()};
8251
8252 DeclAccessPair Found = DeclAccessPair::make(Field, Field->getAccess());
8253 DeclarationNameInfo NameInfo(Field->getDeclName(), Loc);
8254 return {S.BuildFieldReferenceExpr(Obj.first.get(), /*IsArrow=*/false, Loc,
8255 CXXScopeSpec(), Field, Found, NameInfo),
8256 S.BuildFieldReferenceExpr(Obj.second.get(), /*IsArrow=*/false, Loc,
8257 CXXScopeSpec(), Field, Found, NameInfo)};
8258 }
8259
8260 // FIXME: When expanding a subobject, register a note in the code synthesis
8261 // stack to say which subobject we're comparing.
8262
buildIfNotCondReturnFalse(ExprResult Cond)8263 StmtResult buildIfNotCondReturnFalse(ExprResult Cond) {
8264 if (Cond.isInvalid())
8265 return StmtError();
8266
8267 ExprResult NotCond = S.CreateBuiltinUnaryOp(Loc, UO_LNot, Cond.get());
8268 if (NotCond.isInvalid())
8269 return StmtError();
8270
8271 ExprResult False = S.ActOnCXXBoolLiteral(Loc, tok::kw_false);
8272 assert(!False.isInvalid() && "should never fail");
8273 StmtResult ReturnFalse = S.BuildReturnStmt(Loc, False.get());
8274 if (ReturnFalse.isInvalid())
8275 return StmtError();
8276
8277 return S.ActOnIfStmt(Loc, IfStatementKind::Ordinary, Loc, nullptr,
8278 S.ActOnCondition(nullptr, Loc, NotCond.get(),
8279 Sema::ConditionKind::Boolean),
8280 Loc, ReturnFalse.get(), SourceLocation(), nullptr);
8281 }
8282
visitSubobjectArray(QualType Type,llvm::APInt Size,ExprPair Subobj)8283 StmtResult visitSubobjectArray(QualType Type, llvm::APInt Size,
8284 ExprPair Subobj) {
8285 QualType SizeType = S.Context.getSizeType();
8286 Size = Size.zextOrTrunc(S.Context.getTypeSize(SizeType));
8287
8288 // Build 'size_t i$n = 0'.
8289 IdentifierInfo *IterationVarName = nullptr;
8290 {
8291 SmallString<8> Str;
8292 llvm::raw_svector_ostream OS(Str);
8293 OS << "i" << ArrayDepth;
8294 IterationVarName = &S.Context.Idents.get(OS.str());
8295 }
8296 VarDecl *IterationVar = VarDecl::Create(
8297 S.Context, S.CurContext, Loc, Loc, IterationVarName, SizeType,
8298 S.Context.getTrivialTypeSourceInfo(SizeType, Loc), SC_None);
8299 llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
8300 IterationVar->setInit(
8301 IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
8302 Stmt *Init = new (S.Context) DeclStmt(DeclGroupRef(IterationVar), Loc, Loc);
8303
8304 auto IterRef = [&] {
8305 ExprResult Ref = S.BuildDeclarationNameExpr(
8306 CXXScopeSpec(), DeclarationNameInfo(IterationVarName, Loc),
8307 IterationVar);
8308 assert(!Ref.isInvalid() && "can't reference our own variable?");
8309 return Ref.get();
8310 };
8311
8312 // Build 'i$n != Size'.
8313 ExprResult Cond = S.CreateBuiltinBinOp(
8314 Loc, BO_NE, IterRef(),
8315 IntegerLiteral::Create(S.Context, Size, SizeType, Loc));
8316 assert(!Cond.isInvalid() && "should never fail");
8317
8318 // Build '++i$n'.
8319 ExprResult Inc = S.CreateBuiltinUnaryOp(Loc, UO_PreInc, IterRef());
8320 assert(!Inc.isInvalid() && "should never fail");
8321
8322 // Build 'a[i$n]' and 'b[i$n]'.
8323 auto Index = [&](ExprResult E) {
8324 if (E.isInvalid())
8325 return ExprError();
8326 return S.CreateBuiltinArraySubscriptExpr(E.get(), Loc, IterRef(), Loc);
8327 };
8328 Subobj.first = Index(Subobj.first);
8329 Subobj.second = Index(Subobj.second);
8330
8331 // Compare the array elements.
8332 ++ArrayDepth;
8333 StmtResult Substmt = visitSubobject(Type, Subobj);
8334 --ArrayDepth;
8335
8336 if (Substmt.isInvalid())
8337 return StmtError();
8338
8339 // For the inner level of an 'operator==', build 'if (!cmp) return false;'.
8340 // For outer levels or for an 'operator<=>' we already have a suitable
8341 // statement that returns as necessary.
8342 if (Expr *ElemCmp = dyn_cast<Expr>(Substmt.get())) {
8343 assert(DCK == DefaultedComparisonKind::Equal &&
8344 "should have non-expression statement");
8345 Substmt = buildIfNotCondReturnFalse(ElemCmp);
8346 if (Substmt.isInvalid())
8347 return StmtError();
8348 }
8349
8350 // Build 'for (...) ...'
8351 return S.ActOnForStmt(Loc, Loc, Init,
8352 S.ActOnCondition(nullptr, Loc, Cond.get(),
8353 Sema::ConditionKind::Boolean),
8354 S.MakeFullDiscardedValueExpr(Inc.get()), Loc,
8355 Substmt.get());
8356 }
8357
visitExpandedSubobject(QualType Type,ExprPair Obj)8358 StmtResult visitExpandedSubobject(QualType Type, ExprPair Obj) {
8359 if (Obj.first.isInvalid() || Obj.second.isInvalid())
8360 return StmtError();
8361
8362 OverloadedOperatorKind OO = FD->getOverloadedOperator();
8363 BinaryOperatorKind Opc = BinaryOperator::getOverloadedOpcode(OO);
8364 ExprResult Op;
8365 if (Type->isOverloadableType())
8366 Op = S.CreateOverloadedBinOp(Loc, Opc, Fns, Obj.first.get(),
8367 Obj.second.get(), /*PerformADL=*/true,
8368 /*AllowRewrittenCandidates=*/true, FD);
8369 else
8370 Op = S.CreateBuiltinBinOp(Loc, Opc, Obj.first.get(), Obj.second.get());
8371 if (Op.isInvalid())
8372 return StmtError();
8373
8374 switch (DCK) {
8375 case DefaultedComparisonKind::None:
8376 llvm_unreachable("not a defaulted comparison");
8377
8378 case DefaultedComparisonKind::Equal:
8379 // Per C++2a [class.eq]p2, each comparison is individually contextually
8380 // converted to bool.
8381 Op = S.PerformContextuallyConvertToBool(Op.get());
8382 if (Op.isInvalid())
8383 return StmtError();
8384 return Op.get();
8385
8386 case DefaultedComparisonKind::ThreeWay: {
8387 // Per C++2a [class.spaceship]p3, form:
8388 // if (R cmp = static_cast<R>(op); cmp != 0)
8389 // return cmp;
8390 QualType R = FD->getReturnType();
8391 Op = buildStaticCastToR(Op.get());
8392 if (Op.isInvalid())
8393 return StmtError();
8394
8395 // R cmp = ...;
8396 IdentifierInfo *Name = &S.Context.Idents.get("cmp");
8397 VarDecl *VD =
8398 VarDecl::Create(S.Context, S.CurContext, Loc, Loc, Name, R,
8399 S.Context.getTrivialTypeSourceInfo(R, Loc), SC_None);
8400 S.AddInitializerToDecl(VD, Op.get(), /*DirectInit=*/false);
8401 Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(VD), Loc, Loc);
8402
8403 // cmp != 0
8404 ExprResult VDRef = getDecl(VD);
8405 if (VDRef.isInvalid())
8406 return StmtError();
8407 llvm::APInt ZeroVal(S.Context.getIntWidth(S.Context.IntTy), 0);
8408 Expr *Zero =
8409 IntegerLiteral::Create(S.Context, ZeroVal, S.Context.IntTy, Loc);
8410 ExprResult Comp;
8411 if (VDRef.get()->getType()->isOverloadableType())
8412 Comp = S.CreateOverloadedBinOp(Loc, BO_NE, Fns, VDRef.get(), Zero, true,
8413 true, FD);
8414 else
8415 Comp = S.CreateBuiltinBinOp(Loc, BO_NE, VDRef.get(), Zero);
8416 if (Comp.isInvalid())
8417 return StmtError();
8418 Sema::ConditionResult Cond = S.ActOnCondition(
8419 nullptr, Loc, Comp.get(), Sema::ConditionKind::Boolean);
8420 if (Cond.isInvalid())
8421 return StmtError();
8422
8423 // return cmp;
8424 VDRef = getDecl(VD);
8425 if (VDRef.isInvalid())
8426 return StmtError();
8427 StmtResult ReturnStmt = S.BuildReturnStmt(Loc, VDRef.get());
8428 if (ReturnStmt.isInvalid())
8429 return StmtError();
8430
8431 // if (...)
8432 return S.ActOnIfStmt(Loc, IfStatementKind::Ordinary, Loc, InitStmt, Cond,
8433 Loc, ReturnStmt.get(),
8434 /*ElseLoc=*/SourceLocation(), /*Else=*/nullptr);
8435 }
8436
8437 case DefaultedComparisonKind::NotEqual:
8438 case DefaultedComparisonKind::Relational:
8439 // C++2a [class.compare.secondary]p2:
8440 // Otherwise, the operator function yields x @ y.
8441 return Op.get();
8442 }
8443 llvm_unreachable("");
8444 }
8445
8446 /// Build "static_cast<R>(E)".
buildStaticCastToR(Expr * E)8447 ExprResult buildStaticCastToR(Expr *E) {
8448 QualType R = FD->getReturnType();
8449 assert(!R->isUndeducedType() && "type should have been deduced already");
8450
8451 // Don't bother forming a no-op cast in the common case.
8452 if (E->isPRValue() && S.Context.hasSameType(E->getType(), R))
8453 return E;
8454 return S.BuildCXXNamedCast(Loc, tok::kw_static_cast,
8455 S.Context.getTrivialTypeSourceInfo(R, Loc), E,
8456 SourceRange(Loc, Loc), SourceRange(Loc, Loc));
8457 }
8458 };
8459 }
8460
8461 /// Perform the unqualified lookups that might be needed to form a defaulted
8462 /// comparison function for the given operator.
lookupOperatorsForDefaultedComparison(Sema & Self,Scope * S,UnresolvedSetImpl & Operators,OverloadedOperatorKind Op)8463 static void lookupOperatorsForDefaultedComparison(Sema &Self, Scope *S,
8464 UnresolvedSetImpl &Operators,
8465 OverloadedOperatorKind Op) {
8466 auto Lookup = [&](OverloadedOperatorKind OO) {
8467 Self.LookupOverloadedOperatorName(OO, S, Operators);
8468 };
8469
8470 // Every defaulted operator looks up itself.
8471 Lookup(Op);
8472 // ... and the rewritten form of itself, if any.
8473 if (OverloadedOperatorKind ExtraOp = getRewrittenOverloadedOperator(Op))
8474 Lookup(ExtraOp);
8475
8476 // For 'operator<=>', we also form a 'cmp != 0' expression, and might
8477 // synthesize a three-way comparison from '<' and '=='. In a dependent
8478 // context, we also need to look up '==' in case we implicitly declare a
8479 // defaulted 'operator=='.
8480 if (Op == OO_Spaceship) {
8481 Lookup(OO_ExclaimEqual);
8482 Lookup(OO_Less);
8483 Lookup(OO_EqualEqual);
8484 }
8485 }
8486
CheckExplicitlyDefaultedComparison(Scope * S,FunctionDecl * FD,DefaultedComparisonKind DCK)8487 bool Sema::CheckExplicitlyDefaultedComparison(Scope *S, FunctionDecl *FD,
8488 DefaultedComparisonKind DCK) {
8489 assert(DCK != DefaultedComparisonKind::None && "not a defaulted comparison");
8490
8491 // Perform any unqualified lookups we're going to need to default this
8492 // function.
8493 if (S) {
8494 UnresolvedSet<32> Operators;
8495 lookupOperatorsForDefaultedComparison(*this, S, Operators,
8496 FD->getOverloadedOperator());
8497 FD->setDefaultedFunctionInfo(FunctionDecl::DefaultedFunctionInfo::Create(
8498 Context, Operators.pairs()));
8499 }
8500
8501 // C++2a [class.compare.default]p1:
8502 // A defaulted comparison operator function for some class C shall be a
8503 // non-template function declared in the member-specification of C that is
8504 // -- a non-static const member of C having one parameter of type
8505 // const C&, or
8506 // -- a friend of C having two parameters of type const C& or two
8507 // parameters of type C.
8508
8509 CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(FD->getLexicalDeclContext());
8510 bool IsMethod = isa<CXXMethodDecl>(FD);
8511 if (IsMethod) {
8512 auto *MD = cast<CXXMethodDecl>(FD);
8513 assert(!MD->isStatic() && "comparison function cannot be a static member");
8514
8515 // If we're out-of-class, this is the class we're comparing.
8516 if (!RD)
8517 RD = MD->getParent();
8518
8519 if (!MD->isConst()) {
8520 SourceLocation InsertLoc;
8521 if (FunctionTypeLoc Loc = MD->getFunctionTypeLoc())
8522 InsertLoc = getLocForEndOfToken(Loc.getRParenLoc());
8523 // Don't diagnose an implicit 'operator=='; we will have diagnosed the
8524 // corresponding defaulted 'operator<=>' already.
8525 if (!MD->isImplicit()) {
8526 Diag(MD->getLocation(), diag::err_defaulted_comparison_non_const)
8527 << (int)DCK << FixItHint::CreateInsertion(InsertLoc, " const");
8528 }
8529
8530 // Add the 'const' to the type to recover.
8531 const auto *FPT = MD->getType()->castAs<FunctionProtoType>();
8532 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
8533 EPI.TypeQuals.addConst();
8534 MD->setType(Context.getFunctionType(FPT->getReturnType(),
8535 FPT->getParamTypes(), EPI));
8536 }
8537 }
8538
8539 if (FD->getNumParams() != (IsMethod ? 1 : 2)) {
8540 // Let's not worry about using a variadic template pack here -- who would do
8541 // such a thing?
8542 Diag(FD->getLocation(), diag::err_defaulted_comparison_num_args)
8543 << int(IsMethod) << int(DCK);
8544 return true;
8545 }
8546
8547 const ParmVarDecl *KnownParm = nullptr;
8548 for (const ParmVarDecl *Param : FD->parameters()) {
8549 QualType ParmTy = Param->getType();
8550 if (ParmTy->isDependentType())
8551 continue;
8552 if (!KnownParm) {
8553 auto CTy = ParmTy;
8554 // Is it `T const &`?
8555 bool Ok = !IsMethod;
8556 QualType ExpectedTy;
8557 if (RD)
8558 ExpectedTy = Context.getRecordType(RD);
8559 if (auto *Ref = CTy->getAs<ReferenceType>()) {
8560 CTy = Ref->getPointeeType();
8561 if (RD)
8562 ExpectedTy.addConst();
8563 Ok = true;
8564 }
8565
8566 // Is T a class?
8567 if (!Ok) {
8568 } else if (RD) {
8569 if (!RD->isDependentType() && !Context.hasSameType(CTy, ExpectedTy))
8570 Ok = false;
8571 } else if (auto *CRD = CTy->getAsRecordDecl()) {
8572 RD = cast<CXXRecordDecl>(CRD);
8573 } else {
8574 Ok = false;
8575 }
8576
8577 if (Ok) {
8578 KnownParm = Param;
8579 } else {
8580 // Don't diagnose an implicit 'operator=='; we will have diagnosed the
8581 // corresponding defaulted 'operator<=>' already.
8582 if (!FD->isImplicit()) {
8583 if (RD) {
8584 QualType PlainTy = Context.getRecordType(RD);
8585 QualType RefTy =
8586 Context.getLValueReferenceType(PlainTy.withConst());
8587 Diag(FD->getLocation(), diag::err_defaulted_comparison_param)
8588 << int(DCK) << ParmTy << RefTy << int(!IsMethod) << PlainTy
8589 << Param->getSourceRange();
8590 } else {
8591 assert(!IsMethod && "should know expected type for method");
8592 Diag(FD->getLocation(),
8593 diag::err_defaulted_comparison_param_unknown)
8594 << int(DCK) << ParmTy << Param->getSourceRange();
8595 }
8596 }
8597 return true;
8598 }
8599 } else if (!Context.hasSameType(KnownParm->getType(), ParmTy)) {
8600 Diag(FD->getLocation(), diag::err_defaulted_comparison_param_mismatch)
8601 << int(DCK) << KnownParm->getType() << KnownParm->getSourceRange()
8602 << ParmTy << Param->getSourceRange();
8603 return true;
8604 }
8605 }
8606
8607 assert(RD && "must have determined class");
8608 if (IsMethod) {
8609 } else if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
8610 // In-class, must be a friend decl.
8611 assert(FD->getFriendObjectKind() && "expected a friend declaration");
8612 } else {
8613 // Out of class, require the defaulted comparison to be a friend (of a
8614 // complete type).
8615 if (RequireCompleteType(FD->getLocation(), Context.getRecordType(RD),
8616 diag::err_defaulted_comparison_not_friend, int(DCK),
8617 int(1)))
8618 return true;
8619
8620 if (llvm::none_of(RD->friends(), [&](const FriendDecl *F) {
8621 return FD->getCanonicalDecl() ==
8622 F->getFriendDecl()->getCanonicalDecl();
8623 })) {
8624 Diag(FD->getLocation(), diag::err_defaulted_comparison_not_friend)
8625 << int(DCK) << int(0) << RD;
8626 Diag(RD->getCanonicalDecl()->getLocation(), diag::note_declared_at);
8627 return true;
8628 }
8629 }
8630
8631 // C++2a [class.eq]p1, [class.rel]p1:
8632 // A [defaulted comparison other than <=>] shall have a declared return
8633 // type bool.
8634 if (DCK != DefaultedComparisonKind::ThreeWay &&
8635 !FD->getDeclaredReturnType()->isDependentType() &&
8636 !Context.hasSameType(FD->getDeclaredReturnType(), Context.BoolTy)) {
8637 Diag(FD->getLocation(), diag::err_defaulted_comparison_return_type_not_bool)
8638 << (int)DCK << FD->getDeclaredReturnType() << Context.BoolTy
8639 << FD->getReturnTypeSourceRange();
8640 return true;
8641 }
8642 // C++2a [class.spaceship]p2 [P2002R0]:
8643 // Let R be the declared return type [...]. If R is auto, [...]. Otherwise,
8644 // R shall not contain a placeholder type.
8645 if (DCK == DefaultedComparisonKind::ThreeWay &&
8646 FD->getDeclaredReturnType()->getContainedDeducedType() &&
8647 !Context.hasSameType(FD->getDeclaredReturnType(),
8648 Context.getAutoDeductType())) {
8649 Diag(FD->getLocation(),
8650 diag::err_defaulted_comparison_deduced_return_type_not_auto)
8651 << (int)DCK << FD->getDeclaredReturnType() << Context.AutoDeductTy
8652 << FD->getReturnTypeSourceRange();
8653 return true;
8654 }
8655
8656 // For a defaulted function in a dependent class, defer all remaining checks
8657 // until instantiation.
8658 if (RD->isDependentType())
8659 return false;
8660
8661 // Determine whether the function should be defined as deleted.
8662 DefaultedComparisonInfo Info =
8663 DefaultedComparisonAnalyzer(*this, RD, FD, DCK).visit();
8664
8665 bool First = FD == FD->getCanonicalDecl();
8666
8667 // If we want to delete the function, then do so; there's nothing else to
8668 // check in that case.
8669 if (Info.Deleted) {
8670 if (!First) {
8671 // C++11 [dcl.fct.def.default]p4:
8672 // [For a] user-provided explicitly-defaulted function [...] if such a
8673 // function is implicitly defined as deleted, the program is ill-formed.
8674 //
8675 // This is really just a consequence of the general rule that you can
8676 // only delete a function on its first declaration.
8677 Diag(FD->getLocation(), diag::err_non_first_default_compare_deletes)
8678 << FD->isImplicit() << (int)DCK;
8679 DefaultedComparisonAnalyzer(*this, RD, FD, DCK,
8680 DefaultedComparisonAnalyzer::ExplainDeleted)
8681 .visit();
8682 return true;
8683 }
8684
8685 SetDeclDeleted(FD, FD->getLocation());
8686 if (!inTemplateInstantiation() && !FD->isImplicit()) {
8687 Diag(FD->getLocation(), diag::warn_defaulted_comparison_deleted)
8688 << (int)DCK;
8689 DefaultedComparisonAnalyzer(*this, RD, FD, DCK,
8690 DefaultedComparisonAnalyzer::ExplainDeleted)
8691 .visit();
8692 }
8693 return false;
8694 }
8695
8696 // C++2a [class.spaceship]p2:
8697 // The return type is deduced as the common comparison type of R0, R1, ...
8698 if (DCK == DefaultedComparisonKind::ThreeWay &&
8699 FD->getDeclaredReturnType()->isUndeducedAutoType()) {
8700 SourceLocation RetLoc = FD->getReturnTypeSourceRange().getBegin();
8701 if (RetLoc.isInvalid())
8702 RetLoc = FD->getBeginLoc();
8703 // FIXME: Should we really care whether we have the complete type and the
8704 // 'enumerator' constants here? A forward declaration seems sufficient.
8705 QualType Cat = CheckComparisonCategoryType(
8706 Info.Category, RetLoc, ComparisonCategoryUsage::DefaultedOperator);
8707 if (Cat.isNull())
8708 return true;
8709 Context.adjustDeducedFunctionResultType(
8710 FD, SubstAutoType(FD->getDeclaredReturnType(), Cat));
8711 }
8712
8713 // C++2a [dcl.fct.def.default]p3 [P2002R0]:
8714 // An explicitly-defaulted function that is not defined as deleted may be
8715 // declared constexpr or consteval only if it is constexpr-compatible.
8716 // C++2a [class.compare.default]p3 [P2002R0]:
8717 // A defaulted comparison function is constexpr-compatible if it satisfies
8718 // the requirements for a constexpr function [...]
8719 // The only relevant requirements are that the parameter and return types are
8720 // literal types. The remaining conditions are checked by the analyzer.
8721 if (FD->isConstexpr()) {
8722 if (CheckConstexprReturnType(*this, FD, CheckConstexprKind::Diagnose) &&
8723 CheckConstexprParameterTypes(*this, FD, CheckConstexprKind::Diagnose) &&
8724 !Info.Constexpr) {
8725 Diag(FD->getBeginLoc(),
8726 diag::err_incorrect_defaulted_comparison_constexpr)
8727 << FD->isImplicit() << (int)DCK << FD->isConsteval();
8728 DefaultedComparisonAnalyzer(*this, RD, FD, DCK,
8729 DefaultedComparisonAnalyzer::ExplainConstexpr)
8730 .visit();
8731 }
8732 }
8733
8734 // C++2a [dcl.fct.def.default]p3 [P2002R0]:
8735 // If a constexpr-compatible function is explicitly defaulted on its first
8736 // declaration, it is implicitly considered to be constexpr.
8737 // FIXME: Only applying this to the first declaration seems problematic, as
8738 // simple reorderings can affect the meaning of the program.
8739 if (First && !FD->isConstexpr() && Info.Constexpr)
8740 FD->setConstexprKind(ConstexprSpecKind::Constexpr);
8741
8742 // C++2a [except.spec]p3:
8743 // If a declaration of a function does not have a noexcept-specifier
8744 // [and] is defaulted on its first declaration, [...] the exception
8745 // specification is as specified below
8746 if (FD->getExceptionSpecType() == EST_None) {
8747 auto *FPT = FD->getType()->castAs<FunctionProtoType>();
8748 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
8749 EPI.ExceptionSpec.Type = EST_Unevaluated;
8750 EPI.ExceptionSpec.SourceDecl = FD;
8751 FD->setType(Context.getFunctionType(FPT->getReturnType(),
8752 FPT->getParamTypes(), EPI));
8753 }
8754
8755 return false;
8756 }
8757
DeclareImplicitEqualityComparison(CXXRecordDecl * RD,FunctionDecl * Spaceship)8758 void Sema::DeclareImplicitEqualityComparison(CXXRecordDecl *RD,
8759 FunctionDecl *Spaceship) {
8760 Sema::CodeSynthesisContext Ctx;
8761 Ctx.Kind = Sema::CodeSynthesisContext::DeclaringImplicitEqualityComparison;
8762 Ctx.PointOfInstantiation = Spaceship->getEndLoc();
8763 Ctx.Entity = Spaceship;
8764 pushCodeSynthesisContext(Ctx);
8765
8766 if (FunctionDecl *EqualEqual = SubstSpaceshipAsEqualEqual(RD, Spaceship))
8767 EqualEqual->setImplicit();
8768
8769 popCodeSynthesisContext();
8770 }
8771
DefineDefaultedComparison(SourceLocation UseLoc,FunctionDecl * FD,DefaultedComparisonKind DCK)8772 void Sema::DefineDefaultedComparison(SourceLocation UseLoc, FunctionDecl *FD,
8773 DefaultedComparisonKind DCK) {
8774 assert(FD->isDefaulted() && !FD->isDeleted() &&
8775 !FD->doesThisDeclarationHaveABody());
8776 if (FD->willHaveBody() || FD->isInvalidDecl())
8777 return;
8778
8779 SynthesizedFunctionScope Scope(*this, FD);
8780
8781 // Add a context note for diagnostics produced after this point.
8782 Scope.addContextNote(UseLoc);
8783
8784 {
8785 // Build and set up the function body.
8786 // The first parameter has type maybe-ref-to maybe-const T, use that to get
8787 // the type of the class being compared.
8788 auto PT = FD->getParamDecl(0)->getType();
8789 CXXRecordDecl *RD = PT.getNonReferenceType()->getAsCXXRecordDecl();
8790 SourceLocation BodyLoc =
8791 FD->getEndLoc().isValid() ? FD->getEndLoc() : FD->getLocation();
8792 StmtResult Body =
8793 DefaultedComparisonSynthesizer(*this, RD, FD, DCK, BodyLoc).build();
8794 if (Body.isInvalid()) {
8795 FD->setInvalidDecl();
8796 return;
8797 }
8798 FD->setBody(Body.get());
8799 FD->markUsed(Context);
8800 }
8801
8802 // The exception specification is needed because we are defining the
8803 // function. Note that this will reuse the body we just built.
8804 ResolveExceptionSpec(UseLoc, FD->getType()->castAs<FunctionProtoType>());
8805
8806 if (ASTMutationListener *L = getASTMutationListener())
8807 L->CompletedImplicitDefinition(FD);
8808 }
8809
8810 static Sema::ImplicitExceptionSpecification
ComputeDefaultedComparisonExceptionSpec(Sema & S,SourceLocation Loc,FunctionDecl * FD,Sema::DefaultedComparisonKind DCK)8811 ComputeDefaultedComparisonExceptionSpec(Sema &S, SourceLocation Loc,
8812 FunctionDecl *FD,
8813 Sema::DefaultedComparisonKind DCK) {
8814 ComputingExceptionSpec CES(S, FD, Loc);
8815 Sema::ImplicitExceptionSpecification ExceptSpec(S);
8816
8817 if (FD->isInvalidDecl())
8818 return ExceptSpec;
8819
8820 // The common case is that we just defined the comparison function. In that
8821 // case, just look at whether the body can throw.
8822 if (FD->hasBody()) {
8823 ExceptSpec.CalledStmt(FD->getBody());
8824 } else {
8825 // Otherwise, build a body so we can check it. This should ideally only
8826 // happen when we're not actually marking the function referenced. (This is
8827 // only really important for efficiency: we don't want to build and throw
8828 // away bodies for comparison functions more than we strictly need to.)
8829
8830 // Pretend to synthesize the function body in an unevaluated context.
8831 // Note that we can't actually just go ahead and define the function here:
8832 // we are not permitted to mark its callees as referenced.
8833 Sema::SynthesizedFunctionScope Scope(S, FD);
8834 EnterExpressionEvaluationContext Context(
8835 S, Sema::ExpressionEvaluationContext::Unevaluated);
8836
8837 CXXRecordDecl *RD = cast<CXXRecordDecl>(FD->getLexicalParent());
8838 SourceLocation BodyLoc =
8839 FD->getEndLoc().isValid() ? FD->getEndLoc() : FD->getLocation();
8840 StmtResult Body =
8841 DefaultedComparisonSynthesizer(S, RD, FD, DCK, BodyLoc).build();
8842 if (!Body.isInvalid())
8843 ExceptSpec.CalledStmt(Body.get());
8844
8845 // FIXME: Can we hold onto this body and just transform it to potentially
8846 // evaluated when we're asked to define the function rather than rebuilding
8847 // it? Either that, or we should only build the bits of the body that we
8848 // need (the expressions, not the statements).
8849 }
8850
8851 return ExceptSpec;
8852 }
8853
CheckDelayedMemberExceptionSpecs()8854 void Sema::CheckDelayedMemberExceptionSpecs() {
8855 decltype(DelayedOverridingExceptionSpecChecks) Overriding;
8856 decltype(DelayedEquivalentExceptionSpecChecks) Equivalent;
8857
8858 std::swap(Overriding, DelayedOverridingExceptionSpecChecks);
8859 std::swap(Equivalent, DelayedEquivalentExceptionSpecChecks);
8860
8861 // Perform any deferred checking of exception specifications for virtual
8862 // destructors.
8863 for (auto &Check : Overriding)
8864 CheckOverridingFunctionExceptionSpec(Check.first, Check.second);
8865
8866 // Perform any deferred checking of exception specifications for befriended
8867 // special members.
8868 for (auto &Check : Equivalent)
8869 CheckEquivalentExceptionSpec(Check.second, Check.first);
8870 }
8871
8872 namespace {
8873 /// CRTP base class for visiting operations performed by a special member
8874 /// function (or inherited constructor).
8875 template<typename Derived>
8876 struct SpecialMemberVisitor {
8877 Sema &S;
8878 CXXMethodDecl *MD;
8879 Sema::CXXSpecialMember CSM;
8880 Sema::InheritedConstructorInfo *ICI;
8881
8882 // Properties of the special member, computed for convenience.
8883 bool IsConstructor = false, IsAssignment = false, ConstArg = false;
8884
SpecialMemberVisitor__anonc19065b02511::SpecialMemberVisitor8885 SpecialMemberVisitor(Sema &S, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM,
8886 Sema::InheritedConstructorInfo *ICI)
8887 : S(S), MD(MD), CSM(CSM), ICI(ICI) {
8888 switch (CSM) {
8889 case Sema::CXXDefaultConstructor:
8890 case Sema::CXXCopyConstructor:
8891 case Sema::CXXMoveConstructor:
8892 IsConstructor = true;
8893 break;
8894 case Sema::CXXCopyAssignment:
8895 case Sema::CXXMoveAssignment:
8896 IsAssignment = true;
8897 break;
8898 case Sema::CXXDestructor:
8899 break;
8900 case Sema::CXXInvalid:
8901 llvm_unreachable("invalid special member kind");
8902 }
8903
8904 if (MD->getNumParams()) {
8905 if (const ReferenceType *RT =
8906 MD->getParamDecl(0)->getType()->getAs<ReferenceType>())
8907 ConstArg = RT->getPointeeType().isConstQualified();
8908 }
8909 }
8910
getDerived__anonc19065b02511::SpecialMemberVisitor8911 Derived &getDerived() { return static_cast<Derived&>(*this); }
8912
8913 /// Is this a "move" special member?
isMove__anonc19065b02511::SpecialMemberVisitor8914 bool isMove() const {
8915 return CSM == Sema::CXXMoveConstructor || CSM == Sema::CXXMoveAssignment;
8916 }
8917
8918 /// Look up the corresponding special member in the given class.
lookupIn__anonc19065b02511::SpecialMemberVisitor8919 Sema::SpecialMemberOverloadResult lookupIn(CXXRecordDecl *Class,
8920 unsigned Quals, bool IsMutable) {
8921 return lookupCallFromSpecialMember(S, Class, CSM, Quals,
8922 ConstArg && !IsMutable);
8923 }
8924
8925 /// Look up the constructor for the specified base class to see if it's
8926 /// overridden due to this being an inherited constructor.
lookupInheritedCtor__anonc19065b02511::SpecialMemberVisitor8927 Sema::SpecialMemberOverloadResult lookupInheritedCtor(CXXRecordDecl *Class) {
8928 if (!ICI)
8929 return {};
8930 assert(CSM == Sema::CXXDefaultConstructor);
8931 auto *BaseCtor =
8932 cast<CXXConstructorDecl>(MD)->getInheritedConstructor().getConstructor();
8933 if (auto *MD = ICI->findConstructorForBase(Class, BaseCtor).first)
8934 return MD;
8935 return {};
8936 }
8937
8938 /// A base or member subobject.
8939 typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject;
8940
8941 /// Get the location to use for a subobject in diagnostics.
getSubobjectLoc__anonc19065b02511::SpecialMemberVisitor8942 static SourceLocation getSubobjectLoc(Subobject Subobj) {
8943 // FIXME: For an indirect virtual base, the direct base leading to
8944 // the indirect virtual base would be a more useful choice.
8945 if (auto *B = Subobj.dyn_cast<CXXBaseSpecifier*>())
8946 return B->getBaseTypeLoc();
8947 else
8948 return Subobj.get<FieldDecl*>()->getLocation();
8949 }
8950
8951 enum BasesToVisit {
8952 /// Visit all non-virtual (direct) bases.
8953 VisitNonVirtualBases,
8954 /// Visit all direct bases, virtual or not.
8955 VisitDirectBases,
8956 /// Visit all non-virtual bases, and all virtual bases if the class
8957 /// is not abstract.
8958 VisitPotentiallyConstructedBases,
8959 /// Visit all direct or virtual bases.
8960 VisitAllBases
8961 };
8962
8963 // Visit the bases and members of the class.
visit__anonc19065b02511::SpecialMemberVisitor8964 bool visit(BasesToVisit Bases) {
8965 CXXRecordDecl *RD = MD->getParent();
8966
8967 if (Bases == VisitPotentiallyConstructedBases)
8968 Bases = RD->isAbstract() ? VisitNonVirtualBases : VisitAllBases;
8969
8970 for (auto &B : RD->bases())
8971 if ((Bases == VisitDirectBases || !B.isVirtual()) &&
8972 getDerived().visitBase(&B))
8973 return true;
8974
8975 if (Bases == VisitAllBases)
8976 for (auto &B : RD->vbases())
8977 if (getDerived().visitBase(&B))
8978 return true;
8979
8980 for (auto *F : RD->fields())
8981 if (!F->isInvalidDecl() && !F->isUnnamedBitfield() &&
8982 getDerived().visitField(F))
8983 return true;
8984
8985 return false;
8986 }
8987 };
8988 }
8989
8990 namespace {
8991 struct SpecialMemberDeletionInfo
8992 : SpecialMemberVisitor<SpecialMemberDeletionInfo> {
8993 bool Diagnose;
8994
8995 SourceLocation Loc;
8996
8997 bool AllFieldsAreConst;
8998
SpecialMemberDeletionInfo__anonc19065b02611::SpecialMemberDeletionInfo8999 SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
9000 Sema::CXXSpecialMember CSM,
9001 Sema::InheritedConstructorInfo *ICI, bool Diagnose)
9002 : SpecialMemberVisitor(S, MD, CSM, ICI), Diagnose(Diagnose),
9003 Loc(MD->getLocation()), AllFieldsAreConst(true) {}
9004
inUnion__anonc19065b02611::SpecialMemberDeletionInfo9005 bool inUnion() const { return MD->getParent()->isUnion(); }
9006
getEffectiveCSM__anonc19065b02611::SpecialMemberDeletionInfo9007 Sema::CXXSpecialMember getEffectiveCSM() {
9008 return ICI ? Sema::CXXInvalid : CSM;
9009 }
9010
9011 bool shouldDeleteForVariantObjCPtrMember(FieldDecl *FD, QualType FieldType);
9012
visitBase__anonc19065b02611::SpecialMemberDeletionInfo9013 bool visitBase(CXXBaseSpecifier *Base) { return shouldDeleteForBase(Base); }
visitField__anonc19065b02611::SpecialMemberDeletionInfo9014 bool visitField(FieldDecl *Field) { return shouldDeleteForField(Field); }
9015
9016 bool shouldDeleteForBase(CXXBaseSpecifier *Base);
9017 bool shouldDeleteForField(FieldDecl *FD);
9018 bool shouldDeleteForAllConstMembers();
9019
9020 bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj,
9021 unsigned Quals);
9022 bool shouldDeleteForSubobjectCall(Subobject Subobj,
9023 Sema::SpecialMemberOverloadResult SMOR,
9024 bool IsDtorCallInCtor);
9025
9026 bool isAccessible(Subobject Subobj, CXXMethodDecl *D);
9027 };
9028 }
9029
9030 /// Is the given special member inaccessible when used on the given
9031 /// sub-object.
isAccessible(Subobject Subobj,CXXMethodDecl * target)9032 bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj,
9033 CXXMethodDecl *target) {
9034 /// If we're operating on a base class, the object type is the
9035 /// type of this special member.
9036 QualType objectTy;
9037 AccessSpecifier access = target->getAccess();
9038 if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) {
9039 objectTy = S.Context.getTypeDeclType(MD->getParent());
9040 access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access);
9041
9042 // If we're operating on a field, the object type is the type of the field.
9043 } else {
9044 objectTy = S.Context.getTypeDeclType(target->getParent());
9045 }
9046
9047 return S.isMemberAccessibleForDeletion(
9048 target->getParent(), DeclAccessPair::make(target, access), objectTy);
9049 }
9050
9051 /// Check whether we should delete a special member due to the implicit
9052 /// definition containing a call to a special member of a subobject.
shouldDeleteForSubobjectCall(Subobject Subobj,Sema::SpecialMemberOverloadResult SMOR,bool IsDtorCallInCtor)9053 bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall(
9054 Subobject Subobj, Sema::SpecialMemberOverloadResult SMOR,
9055 bool IsDtorCallInCtor) {
9056 CXXMethodDecl *Decl = SMOR.getMethod();
9057 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
9058
9059 int DiagKind = -1;
9060
9061 if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)
9062 DiagKind = !Decl ? 0 : 1;
9063 else if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
9064 DiagKind = 2;
9065 else if (!isAccessible(Subobj, Decl))
9066 DiagKind = 3;
9067 else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() &&
9068 !Decl->isTrivial()) {
9069 // A member of a union must have a trivial corresponding special member.
9070 // As a weird special case, a destructor call from a union's constructor
9071 // must be accessible and non-deleted, but need not be trivial. Such a
9072 // destructor is never actually called, but is semantically checked as
9073 // if it were.
9074 DiagKind = 4;
9075 }
9076
9077 if (DiagKind == -1)
9078 return false;
9079
9080 if (Diagnose) {
9081 if (Field) {
9082 S.Diag(Field->getLocation(),
9083 diag::note_deleted_special_member_class_subobject)
9084 << getEffectiveCSM() << MD->getParent() << /*IsField*/true
9085 << Field << DiagKind << IsDtorCallInCtor << /*IsObjCPtr*/false;
9086 } else {
9087 CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>();
9088 S.Diag(Base->getBeginLoc(),
9089 diag::note_deleted_special_member_class_subobject)
9090 << getEffectiveCSM() << MD->getParent() << /*IsField*/ false
9091 << Base->getType() << DiagKind << IsDtorCallInCtor
9092 << /*IsObjCPtr*/false;
9093 }
9094
9095 if (DiagKind == 1)
9096 S.NoteDeletedFunction(Decl);
9097 // FIXME: Explain inaccessibility if DiagKind == 3.
9098 }
9099
9100 return true;
9101 }
9102
9103 /// Check whether we should delete a special member function due to having a
9104 /// direct or virtual base class or non-static data member of class type M.
shouldDeleteForClassSubobject(CXXRecordDecl * Class,Subobject Subobj,unsigned Quals)9105 bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject(
9106 CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) {
9107 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
9108 bool IsMutable = Field && Field->isMutable();
9109
9110 // C++11 [class.ctor]p5:
9111 // -- any direct or virtual base class, or non-static data member with no
9112 // brace-or-equal-initializer, has class type M (or array thereof) and
9113 // either M has no default constructor or overload resolution as applied
9114 // to M's default constructor results in an ambiguity or in a function
9115 // that is deleted or inaccessible
9116 // C++11 [class.copy]p11, C++11 [class.copy]p23:
9117 // -- a direct or virtual base class B that cannot be copied/moved because
9118 // overload resolution, as applied to B's corresponding special member,
9119 // results in an ambiguity or a function that is deleted or inaccessible
9120 // from the defaulted special member
9121 // C++11 [class.dtor]p5:
9122 // -- any direct or virtual base class [...] has a type with a destructor
9123 // that is deleted or inaccessible
9124 if (!(CSM == Sema::CXXDefaultConstructor &&
9125 Field && Field->hasInClassInitializer()) &&
9126 shouldDeleteForSubobjectCall(Subobj, lookupIn(Class, Quals, IsMutable),
9127 false))
9128 return true;
9129
9130 // C++11 [class.ctor]p5, C++11 [class.copy]p11:
9131 // -- any direct or virtual base class or non-static data member has a
9132 // type with a destructor that is deleted or inaccessible
9133 if (IsConstructor) {
9134 Sema::SpecialMemberOverloadResult SMOR =
9135 S.LookupSpecialMember(Class, Sema::CXXDestructor,
9136 false, false, false, false, false);
9137 if (shouldDeleteForSubobjectCall(Subobj, SMOR, true))
9138 return true;
9139 }
9140
9141 return false;
9142 }
9143
shouldDeleteForVariantObjCPtrMember(FieldDecl * FD,QualType FieldType)9144 bool SpecialMemberDeletionInfo::shouldDeleteForVariantObjCPtrMember(
9145 FieldDecl *FD, QualType FieldType) {
9146 // The defaulted special functions are defined as deleted if this is a variant
9147 // member with a non-trivial ownership type, e.g., ObjC __strong or __weak
9148 // type under ARC.
9149 if (!FieldType.hasNonTrivialObjCLifetime())
9150 return false;
9151
9152 // Don't make the defaulted default constructor defined as deleted if the
9153 // member has an in-class initializer.
9154 if (CSM == Sema::CXXDefaultConstructor && FD->hasInClassInitializer())
9155 return false;
9156
9157 if (Diagnose) {
9158 auto *ParentClass = cast<CXXRecordDecl>(FD->getParent());
9159 S.Diag(FD->getLocation(),
9160 diag::note_deleted_special_member_class_subobject)
9161 << getEffectiveCSM() << ParentClass << /*IsField*/true
9162 << FD << 4 << /*IsDtorCallInCtor*/false << /*IsObjCPtr*/true;
9163 }
9164
9165 return true;
9166 }
9167
9168 /// Check whether we should delete a special member function due to the class
9169 /// having a particular direct or virtual base class.
shouldDeleteForBase(CXXBaseSpecifier * Base)9170 bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) {
9171 CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl();
9172 // If program is correct, BaseClass cannot be null, but if it is, the error
9173 // must be reported elsewhere.
9174 if (!BaseClass)
9175 return false;
9176 // If we have an inheriting constructor, check whether we're calling an
9177 // inherited constructor instead of a default constructor.
9178 Sema::SpecialMemberOverloadResult SMOR = lookupInheritedCtor(BaseClass);
9179 if (auto *BaseCtor = SMOR.getMethod()) {
9180 // Note that we do not check access along this path; other than that,
9181 // this is the same as shouldDeleteForSubobjectCall(Base, BaseCtor, false);
9182 // FIXME: Check that the base has a usable destructor! Sink this into
9183 // shouldDeleteForClassSubobject.
9184 if (BaseCtor->isDeleted() && Diagnose) {
9185 S.Diag(Base->getBeginLoc(),
9186 diag::note_deleted_special_member_class_subobject)
9187 << getEffectiveCSM() << MD->getParent() << /*IsField*/ false
9188 << Base->getType() << /*Deleted*/ 1 << /*IsDtorCallInCtor*/ false
9189 << /*IsObjCPtr*/false;
9190 S.NoteDeletedFunction(BaseCtor);
9191 }
9192 return BaseCtor->isDeleted();
9193 }
9194 return shouldDeleteForClassSubobject(BaseClass, Base, 0);
9195 }
9196
9197 /// Check whether we should delete a special member function due to the class
9198 /// having a particular non-static data member.
shouldDeleteForField(FieldDecl * FD)9199 bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
9200 QualType FieldType = S.Context.getBaseElementType(FD->getType());
9201 CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
9202
9203 if (inUnion() && shouldDeleteForVariantObjCPtrMember(FD, FieldType))
9204 return true;
9205
9206 if (CSM == Sema::CXXDefaultConstructor) {
9207 // For a default constructor, all references must be initialized in-class
9208 // and, if a union, it must have a non-const member.
9209 if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) {
9210 if (Diagnose)
9211 S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
9212 << !!ICI << MD->getParent() << FD << FieldType << /*Reference*/0;
9213 return true;
9214 }
9215 // C++11 [class.ctor]p5 (modified by DR2394): any non-variant non-static
9216 // data member of const-qualified type (or array thereof) with no
9217 // brace-or-equal-initializer is not const-default-constructible.
9218 if (!inUnion() && FieldType.isConstQualified() &&
9219 !FD->hasInClassInitializer() &&
9220 (!FieldRecord || !FieldRecord->allowConstDefaultInit())) {
9221 if (Diagnose)
9222 S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
9223 << !!ICI << MD->getParent() << FD << FD->getType() << /*Const*/1;
9224 return true;
9225 }
9226
9227 if (inUnion() && !FieldType.isConstQualified())
9228 AllFieldsAreConst = false;
9229 } else if (CSM == Sema::CXXCopyConstructor) {
9230 // For a copy constructor, data members must not be of rvalue reference
9231 // type.
9232 if (FieldType->isRValueReferenceType()) {
9233 if (Diagnose)
9234 S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference)
9235 << MD->getParent() << FD << FieldType;
9236 return true;
9237 }
9238 } else if (IsAssignment) {
9239 // For an assignment operator, data members must not be of reference type.
9240 if (FieldType->isReferenceType()) {
9241 if (Diagnose)
9242 S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
9243 << isMove() << MD->getParent() << FD << FieldType << /*Reference*/0;
9244 return true;
9245 }
9246 if (!FieldRecord && FieldType.isConstQualified()) {
9247 // C++11 [class.copy]p23:
9248 // -- a non-static data member of const non-class type (or array thereof)
9249 if (Diagnose)
9250 S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
9251 << isMove() << MD->getParent() << FD << FD->getType() << /*Const*/1;
9252 return true;
9253 }
9254 }
9255
9256 if (FieldRecord) {
9257 // Some additional restrictions exist on the variant members.
9258 if (!inUnion() && FieldRecord->isUnion() &&
9259 FieldRecord->isAnonymousStructOrUnion()) {
9260 bool AllVariantFieldsAreConst = true;
9261
9262 // FIXME: Handle anonymous unions declared within anonymous unions.
9263 for (auto *UI : FieldRecord->fields()) {
9264 QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());
9265
9266 if (shouldDeleteForVariantObjCPtrMember(&*UI, UnionFieldType))
9267 return true;
9268
9269 if (!UnionFieldType.isConstQualified())
9270 AllVariantFieldsAreConst = false;
9271
9272 CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl();
9273 if (UnionFieldRecord &&
9274 shouldDeleteForClassSubobject(UnionFieldRecord, UI,
9275 UnionFieldType.getCVRQualifiers()))
9276 return true;
9277 }
9278
9279 // At least one member in each anonymous union must be non-const
9280 if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst &&
9281 !FieldRecord->field_empty()) {
9282 if (Diagnose)
9283 S.Diag(FieldRecord->getLocation(),
9284 diag::note_deleted_default_ctor_all_const)
9285 << !!ICI << MD->getParent() << /*anonymous union*/1;
9286 return true;
9287 }
9288
9289 // Don't check the implicit member of the anonymous union type.
9290 // This is technically non-conformant but supported, and we have a
9291 // diagnostic for this elsewhere.
9292 return false;
9293 }
9294
9295 if (shouldDeleteForClassSubobject(FieldRecord, FD,
9296 FieldType.getCVRQualifiers()))
9297 return true;
9298 }
9299
9300 return false;
9301 }
9302
9303 /// C++11 [class.ctor] p5:
9304 /// A defaulted default constructor for a class X is defined as deleted if
9305 /// X is a union and all of its variant members are of const-qualified type.
shouldDeleteForAllConstMembers()9306 bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
9307 // This is a silly definition, because it gives an empty union a deleted
9308 // default constructor. Don't do that.
9309 if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst) {
9310 bool AnyFields = false;
9311 for (auto *F : MD->getParent()->fields())
9312 if ((AnyFields = !F->isUnnamedBitfield()))
9313 break;
9314 if (!AnyFields)
9315 return false;
9316 if (Diagnose)
9317 S.Diag(MD->getParent()->getLocation(),
9318 diag::note_deleted_default_ctor_all_const)
9319 << !!ICI << MD->getParent() << /*not anonymous union*/0;
9320 return true;
9321 }
9322 return false;
9323 }
9324
9325 /// Determine whether a defaulted special member function should be defined as
9326 /// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
9327 /// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
ShouldDeleteSpecialMember(CXXMethodDecl * MD,CXXSpecialMember CSM,InheritedConstructorInfo * ICI,bool Diagnose)9328 bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
9329 InheritedConstructorInfo *ICI,
9330 bool Diagnose) {
9331 if (MD->isInvalidDecl())
9332 return false;
9333 CXXRecordDecl *RD = MD->getParent();
9334 assert(!RD->isDependentType() && "do deletion after instantiation");
9335 if (!LangOpts.CPlusPlus11 || RD->isInvalidDecl())
9336 return false;
9337
9338 // C++11 [expr.lambda.prim]p19:
9339 // The closure type associated with a lambda-expression has a
9340 // deleted (8.4.3) default constructor and a deleted copy
9341 // assignment operator.
9342 // C++2a adds back these operators if the lambda has no lambda-capture.
9343 if (RD->isLambda() && !RD->lambdaIsDefaultConstructibleAndAssignable() &&
9344 (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) {
9345 if (Diagnose)
9346 Diag(RD->getLocation(), diag::note_lambda_decl);
9347 return true;
9348 }
9349
9350 // For an anonymous struct or union, the copy and assignment special members
9351 // will never be used, so skip the check. For an anonymous union declared at
9352 // namespace scope, the constructor and destructor are used.
9353 if (CSM != CXXDefaultConstructor && CSM != CXXDestructor &&
9354 RD->isAnonymousStructOrUnion())
9355 return false;
9356
9357 // C++11 [class.copy]p7, p18:
9358 // If the class definition declares a move constructor or move assignment
9359 // operator, an implicitly declared copy constructor or copy assignment
9360 // operator is defined as deleted.
9361 if (MD->isImplicit() &&
9362 (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) {
9363 CXXMethodDecl *UserDeclaredMove = nullptr;
9364
9365 // In Microsoft mode up to MSVC 2013, a user-declared move only causes the
9366 // deletion of the corresponding copy operation, not both copy operations.
9367 // MSVC 2015 has adopted the standards conforming behavior.
9368 bool DeletesOnlyMatchingCopy =
9369 getLangOpts().MSVCCompat &&
9370 !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015);
9371
9372 if (RD->hasUserDeclaredMoveConstructor() &&
9373 (!DeletesOnlyMatchingCopy || CSM == CXXCopyConstructor)) {
9374 if (!Diagnose) return true;
9375
9376 // Find any user-declared move constructor.
9377 for (auto *I : RD->ctors()) {
9378 if (I->isMoveConstructor()) {
9379 UserDeclaredMove = I;
9380 break;
9381 }
9382 }
9383 assert(UserDeclaredMove);
9384 } else if (RD->hasUserDeclaredMoveAssignment() &&
9385 (!DeletesOnlyMatchingCopy || CSM == CXXCopyAssignment)) {
9386 if (!Diagnose) return true;
9387
9388 // Find any user-declared move assignment operator.
9389 for (auto *I : RD->methods()) {
9390 if (I->isMoveAssignmentOperator()) {
9391 UserDeclaredMove = I;
9392 break;
9393 }
9394 }
9395 assert(UserDeclaredMove);
9396 }
9397
9398 if (UserDeclaredMove) {
9399 Diag(UserDeclaredMove->getLocation(),
9400 diag::note_deleted_copy_user_declared_move)
9401 << (CSM == CXXCopyAssignment) << RD
9402 << UserDeclaredMove->isMoveAssignmentOperator();
9403 return true;
9404 }
9405 }
9406
9407 // Do access control from the special member function
9408 ContextRAII MethodContext(*this, MD);
9409
9410 // C++11 [class.dtor]p5:
9411 // -- for a virtual destructor, lookup of the non-array deallocation function
9412 // results in an ambiguity or in a function that is deleted or inaccessible
9413 if (CSM == CXXDestructor && MD->isVirtual()) {
9414 FunctionDecl *OperatorDelete = nullptr;
9415 DeclarationName Name =
9416 Context.DeclarationNames.getCXXOperatorName(OO_Delete);
9417 if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name,
9418 OperatorDelete, /*Diagnose*/false)) {
9419 if (Diagnose)
9420 Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete);
9421 return true;
9422 }
9423 }
9424
9425 SpecialMemberDeletionInfo SMI(*this, MD, CSM, ICI, Diagnose);
9426
9427 // Per DR1611, do not consider virtual bases of constructors of abstract
9428 // classes, since we are not going to construct them.
9429 // Per DR1658, do not consider virtual bases of destructors of abstract
9430 // classes either.
9431 // Per DR2180, for assignment operators we only assign (and thus only
9432 // consider) direct bases.
9433 if (SMI.visit(SMI.IsAssignment ? SMI.VisitDirectBases
9434 : SMI.VisitPotentiallyConstructedBases))
9435 return true;
9436
9437 if (SMI.shouldDeleteForAllConstMembers())
9438 return true;
9439
9440 if (getLangOpts().CUDA) {
9441 // We should delete the special member in CUDA mode if target inference
9442 // failed.
9443 // For inherited constructors (non-null ICI), CSM may be passed so that MD
9444 // is treated as certain special member, which may not reflect what special
9445 // member MD really is. However inferCUDATargetForImplicitSpecialMember
9446 // expects CSM to match MD, therefore recalculate CSM.
9447 assert(ICI || CSM == getSpecialMember(MD));
9448 auto RealCSM = CSM;
9449 if (ICI)
9450 RealCSM = getSpecialMember(MD);
9451
9452 return inferCUDATargetForImplicitSpecialMember(RD, RealCSM, MD,
9453 SMI.ConstArg, Diagnose);
9454 }
9455
9456 return false;
9457 }
9458
DiagnoseDeletedDefaultedFunction(FunctionDecl * FD)9459 void Sema::DiagnoseDeletedDefaultedFunction(FunctionDecl *FD) {
9460 DefaultedFunctionKind DFK = getDefaultedFunctionKind(FD);
9461 assert(DFK && "not a defaultable function");
9462 assert(FD->isDefaulted() && FD->isDeleted() && "not defaulted and deleted");
9463
9464 if (DFK.isSpecialMember()) {
9465 ShouldDeleteSpecialMember(cast<CXXMethodDecl>(FD), DFK.asSpecialMember(),
9466 nullptr, /*Diagnose=*/true);
9467 } else {
9468 DefaultedComparisonAnalyzer(
9469 *this, cast<CXXRecordDecl>(FD->getLexicalDeclContext()), FD,
9470 DFK.asComparison(), DefaultedComparisonAnalyzer::ExplainDeleted)
9471 .visit();
9472 }
9473 }
9474
9475 /// Perform lookup for a special member of the specified kind, and determine
9476 /// whether it is trivial. If the triviality can be determined without the
9477 /// lookup, skip it. This is intended for use when determining whether a
9478 /// special member of a containing object is trivial, and thus does not ever
9479 /// perform overload resolution for default constructors.
9480 ///
9481 /// If \p Selected is not \c NULL, \c *Selected will be filled in with the
9482 /// member that was most likely to be intended to be trivial, if any.
9483 ///
9484 /// If \p ForCall is true, look at CXXRecord::HasTrivialSpecialMembersForCall to
9485 /// determine whether the special member is trivial.
findTrivialSpecialMember(Sema & S,CXXRecordDecl * RD,Sema::CXXSpecialMember CSM,unsigned Quals,bool ConstRHS,Sema::TrivialABIHandling TAH,CXXMethodDecl ** Selected)9486 static bool findTrivialSpecialMember(Sema &S, CXXRecordDecl *RD,
9487 Sema::CXXSpecialMember CSM, unsigned Quals,
9488 bool ConstRHS,
9489 Sema::TrivialABIHandling TAH,
9490 CXXMethodDecl **Selected) {
9491 if (Selected)
9492 *Selected = nullptr;
9493
9494 switch (CSM) {
9495 case Sema::CXXInvalid:
9496 llvm_unreachable("not a special member");
9497
9498 case Sema::CXXDefaultConstructor:
9499 // C++11 [class.ctor]p5:
9500 // A default constructor is trivial if:
9501 // - all the [direct subobjects] have trivial default constructors
9502 //
9503 // Note, no overload resolution is performed in this case.
9504 if (RD->hasTrivialDefaultConstructor())
9505 return true;
9506
9507 if (Selected) {
9508 // If there's a default constructor which could have been trivial, dig it
9509 // out. Otherwise, if there's any user-provided default constructor, point
9510 // to that as an example of why there's not a trivial one.
9511 CXXConstructorDecl *DefCtor = nullptr;
9512 if (RD->needsImplicitDefaultConstructor())
9513 S.DeclareImplicitDefaultConstructor(RD);
9514 for (auto *CI : RD->ctors()) {
9515 if (!CI->isDefaultConstructor())
9516 continue;
9517 DefCtor = CI;
9518 if (!DefCtor->isUserProvided())
9519 break;
9520 }
9521
9522 *Selected = DefCtor;
9523 }
9524
9525 return false;
9526
9527 case Sema::CXXDestructor:
9528 // C++11 [class.dtor]p5:
9529 // A destructor is trivial if:
9530 // - all the direct [subobjects] have trivial destructors
9531 if (RD->hasTrivialDestructor() ||
9532 (TAH == Sema::TAH_ConsiderTrivialABI &&
9533 RD->hasTrivialDestructorForCall()))
9534 return true;
9535
9536 if (Selected) {
9537 if (RD->needsImplicitDestructor())
9538 S.DeclareImplicitDestructor(RD);
9539 *Selected = RD->getDestructor();
9540 }
9541
9542 return false;
9543
9544 case Sema::CXXCopyConstructor:
9545 // C++11 [class.copy]p12:
9546 // A copy constructor is trivial if:
9547 // - the constructor selected to copy each direct [subobject] is trivial
9548 if (RD->hasTrivialCopyConstructor() ||
9549 (TAH == Sema::TAH_ConsiderTrivialABI &&
9550 RD->hasTrivialCopyConstructorForCall())) {
9551 if (Quals == Qualifiers::Const)
9552 // We must either select the trivial copy constructor or reach an
9553 // ambiguity; no need to actually perform overload resolution.
9554 return true;
9555 } else if (!Selected) {
9556 return false;
9557 }
9558 // In C++98, we are not supposed to perform overload resolution here, but we
9559 // treat that as a language defect, as suggested on cxx-abi-dev, to treat
9560 // cases like B as having a non-trivial copy constructor:
9561 // struct A { template<typename T> A(T&); };
9562 // struct B { mutable A a; };
9563 goto NeedOverloadResolution;
9564
9565 case Sema::CXXCopyAssignment:
9566 // C++11 [class.copy]p25:
9567 // A copy assignment operator is trivial if:
9568 // - the assignment operator selected to copy each direct [subobject] is
9569 // trivial
9570 if (RD->hasTrivialCopyAssignment()) {
9571 if (Quals == Qualifiers::Const)
9572 return true;
9573 } else if (!Selected) {
9574 return false;
9575 }
9576 // In C++98, we are not supposed to perform overload resolution here, but we
9577 // treat that as a language defect.
9578 goto NeedOverloadResolution;
9579
9580 case Sema::CXXMoveConstructor:
9581 case Sema::CXXMoveAssignment:
9582 NeedOverloadResolution:
9583 Sema::SpecialMemberOverloadResult SMOR =
9584 lookupCallFromSpecialMember(S, RD, CSM, Quals, ConstRHS);
9585
9586 // The standard doesn't describe how to behave if the lookup is ambiguous.
9587 // We treat it as not making the member non-trivial, just like the standard
9588 // mandates for the default constructor. This should rarely matter, because
9589 // the member will also be deleted.
9590 if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
9591 return true;
9592
9593 if (!SMOR.getMethod()) {
9594 assert(SMOR.getKind() ==
9595 Sema::SpecialMemberOverloadResult::NoMemberOrDeleted);
9596 return false;
9597 }
9598
9599 // We deliberately don't check if we found a deleted special member. We're
9600 // not supposed to!
9601 if (Selected)
9602 *Selected = SMOR.getMethod();
9603
9604 if (TAH == Sema::TAH_ConsiderTrivialABI &&
9605 (CSM == Sema::CXXCopyConstructor || CSM == Sema::CXXMoveConstructor))
9606 return SMOR.getMethod()->isTrivialForCall();
9607 return SMOR.getMethod()->isTrivial();
9608 }
9609
9610 llvm_unreachable("unknown special method kind");
9611 }
9612
findUserDeclaredCtor(CXXRecordDecl * RD)9613 static CXXConstructorDecl *findUserDeclaredCtor(CXXRecordDecl *RD) {
9614 for (auto *CI : RD->ctors())
9615 if (!CI->isImplicit())
9616 return CI;
9617
9618 // Look for constructor templates.
9619 typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl> tmpl_iter;
9620 for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end()); TI != TE; ++TI) {
9621 if (CXXConstructorDecl *CD =
9622 dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl()))
9623 return CD;
9624 }
9625
9626 return nullptr;
9627 }
9628
9629 /// The kind of subobject we are checking for triviality. The values of this
9630 /// enumeration are used in diagnostics.
9631 enum TrivialSubobjectKind {
9632 /// The subobject is a base class.
9633 TSK_BaseClass,
9634 /// The subobject is a non-static data member.
9635 TSK_Field,
9636 /// The object is actually the complete object.
9637 TSK_CompleteObject
9638 };
9639
9640 /// Check whether the special member selected for a given type would be trivial.
checkTrivialSubobjectCall(Sema & S,SourceLocation SubobjLoc,QualType SubType,bool ConstRHS,Sema::CXXSpecialMember CSM,TrivialSubobjectKind Kind,Sema::TrivialABIHandling TAH,bool Diagnose)9641 static bool checkTrivialSubobjectCall(Sema &S, SourceLocation SubobjLoc,
9642 QualType SubType, bool ConstRHS,
9643 Sema::CXXSpecialMember CSM,
9644 TrivialSubobjectKind Kind,
9645 Sema::TrivialABIHandling TAH, bool Diagnose) {
9646 CXXRecordDecl *SubRD = SubType->getAsCXXRecordDecl();
9647 if (!SubRD)
9648 return true;
9649
9650 CXXMethodDecl *Selected;
9651 if (findTrivialSpecialMember(S, SubRD, CSM, SubType.getCVRQualifiers(),
9652 ConstRHS, TAH, Diagnose ? &Selected : nullptr))
9653 return true;
9654
9655 if (Diagnose) {
9656 if (ConstRHS)
9657 SubType.addConst();
9658
9659 if (!Selected && CSM == Sema::CXXDefaultConstructor) {
9660 S.Diag(SubobjLoc, diag::note_nontrivial_no_def_ctor)
9661 << Kind << SubType.getUnqualifiedType();
9662 if (CXXConstructorDecl *CD = findUserDeclaredCtor(SubRD))
9663 S.Diag(CD->getLocation(), diag::note_user_declared_ctor);
9664 } else if (!Selected)
9665 S.Diag(SubobjLoc, diag::note_nontrivial_no_copy)
9666 << Kind << SubType.getUnqualifiedType() << CSM << SubType;
9667 else if (Selected->isUserProvided()) {
9668 if (Kind == TSK_CompleteObject)
9669 S.Diag(Selected->getLocation(), diag::note_nontrivial_user_provided)
9670 << Kind << SubType.getUnqualifiedType() << CSM;
9671 else {
9672 S.Diag(SubobjLoc, diag::note_nontrivial_user_provided)
9673 << Kind << SubType.getUnqualifiedType() << CSM;
9674 S.Diag(Selected->getLocation(), diag::note_declared_at);
9675 }
9676 } else {
9677 if (Kind != TSK_CompleteObject)
9678 S.Diag(SubobjLoc, diag::note_nontrivial_subobject)
9679 << Kind << SubType.getUnqualifiedType() << CSM;
9680
9681 // Explain why the defaulted or deleted special member isn't trivial.
9682 S.SpecialMemberIsTrivial(Selected, CSM, Sema::TAH_IgnoreTrivialABI,
9683 Diagnose);
9684 }
9685 }
9686
9687 return false;
9688 }
9689
9690 /// Check whether the members of a class type allow a special member to be
9691 /// trivial.
checkTrivialClassMembers(Sema & S,CXXRecordDecl * RD,Sema::CXXSpecialMember CSM,bool ConstArg,Sema::TrivialABIHandling TAH,bool Diagnose)9692 static bool checkTrivialClassMembers(Sema &S, CXXRecordDecl *RD,
9693 Sema::CXXSpecialMember CSM,
9694 bool ConstArg,
9695 Sema::TrivialABIHandling TAH,
9696 bool Diagnose) {
9697 for (const auto *FI : RD->fields()) {
9698 if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
9699 continue;
9700
9701 QualType FieldType = S.Context.getBaseElementType(FI->getType());
9702
9703 // Pretend anonymous struct or union members are members of this class.
9704 if (FI->isAnonymousStructOrUnion()) {
9705 if (!checkTrivialClassMembers(S, FieldType->getAsCXXRecordDecl(),
9706 CSM, ConstArg, TAH, Diagnose))
9707 return false;
9708 continue;
9709 }
9710
9711 // C++11 [class.ctor]p5:
9712 // A default constructor is trivial if [...]
9713 // -- no non-static data member of its class has a
9714 // brace-or-equal-initializer
9715 if (CSM == Sema::CXXDefaultConstructor && FI->hasInClassInitializer()) {
9716 if (Diagnose)
9717 S.Diag(FI->getLocation(), diag::note_nontrivial_default_member_init)
9718 << FI;
9719 return false;
9720 }
9721
9722 // Objective C ARC 4.3.5:
9723 // [...] nontrivally ownership-qualified types are [...] not trivially
9724 // default constructible, copy constructible, move constructible, copy
9725 // assignable, move assignable, or destructible [...]
9726 if (FieldType.hasNonTrivialObjCLifetime()) {
9727 if (Diagnose)
9728 S.Diag(FI->getLocation(), diag::note_nontrivial_objc_ownership)
9729 << RD << FieldType.getObjCLifetime();
9730 return false;
9731 }
9732
9733 bool ConstRHS = ConstArg && !FI->isMutable();
9734 if (!checkTrivialSubobjectCall(S, FI->getLocation(), FieldType, ConstRHS,
9735 CSM, TSK_Field, TAH, Diagnose))
9736 return false;
9737 }
9738
9739 return true;
9740 }
9741
9742 /// Diagnose why the specified class does not have a trivial special member of
9743 /// the given kind.
DiagnoseNontrivial(const CXXRecordDecl * RD,CXXSpecialMember CSM)9744 void Sema::DiagnoseNontrivial(const CXXRecordDecl *RD, CXXSpecialMember CSM) {
9745 QualType Ty = Context.getRecordType(RD);
9746
9747 bool ConstArg = (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment);
9748 checkTrivialSubobjectCall(*this, RD->getLocation(), Ty, ConstArg, CSM,
9749 TSK_CompleteObject, TAH_IgnoreTrivialABI,
9750 /*Diagnose*/true);
9751 }
9752
9753 /// Determine whether a defaulted or deleted special member function is trivial,
9754 /// as specified in C++11 [class.ctor]p5, C++11 [class.copy]p12,
9755 /// C++11 [class.copy]p25, and C++11 [class.dtor]p5.
SpecialMemberIsTrivial(CXXMethodDecl * MD,CXXSpecialMember CSM,TrivialABIHandling TAH,bool Diagnose)9756 bool Sema::SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM,
9757 TrivialABIHandling TAH, bool Diagnose) {
9758 assert(!MD->isUserProvided() && CSM != CXXInvalid && "not special enough");
9759
9760 CXXRecordDecl *RD = MD->getParent();
9761
9762 bool ConstArg = false;
9763
9764 // C++11 [class.copy]p12, p25: [DR1593]
9765 // A [special member] is trivial if [...] its parameter-type-list is
9766 // equivalent to the parameter-type-list of an implicit declaration [...]
9767 switch (CSM) {
9768 case CXXDefaultConstructor:
9769 case CXXDestructor:
9770 // Trivial default constructors and destructors cannot have parameters.
9771 break;
9772
9773 case CXXCopyConstructor:
9774 case CXXCopyAssignment: {
9775 const ParmVarDecl *Param0 = MD->getParamDecl(0);
9776 const ReferenceType *RT = Param0->getType()->getAs<ReferenceType>();
9777
9778 // When ClangABICompat14 is true, CXX copy constructors will only be trivial
9779 // if they are not user-provided and their parameter-type-list is equivalent
9780 // to the parameter-type-list of an implicit declaration. This maintains the
9781 // behavior before dr2171 was implemented.
9782 //
9783 // Otherwise, if ClangABICompat14 is false, All copy constructors can be
9784 // trivial, if they are not user-provided, regardless of the qualifiers on
9785 // the reference type.
9786 const bool ClangABICompat14 = Context.getLangOpts().getClangABICompat() <=
9787 LangOptions::ClangABI::Ver14;
9788 if (!RT ||
9789 ((RT->getPointeeType().getCVRQualifiers() != Qualifiers::Const) &&
9790 ClangABICompat14)) {
9791 if (Diagnose)
9792 Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
9793 << Param0->getSourceRange() << Param0->getType()
9794 << Context.getLValueReferenceType(
9795 Context.getRecordType(RD).withConst());
9796 return false;
9797 }
9798
9799 ConstArg = RT->getPointeeType().isConstQualified();
9800 break;
9801 }
9802
9803 case CXXMoveConstructor:
9804 case CXXMoveAssignment: {
9805 // Trivial move operations always have non-cv-qualified parameters.
9806 const ParmVarDecl *Param0 = MD->getParamDecl(0);
9807 const RValueReferenceType *RT =
9808 Param0->getType()->getAs<RValueReferenceType>();
9809 if (!RT || RT->getPointeeType().getCVRQualifiers()) {
9810 if (Diagnose)
9811 Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
9812 << Param0->getSourceRange() << Param0->getType()
9813 << Context.getRValueReferenceType(Context.getRecordType(RD));
9814 return false;
9815 }
9816 break;
9817 }
9818
9819 case CXXInvalid:
9820 llvm_unreachable("not a special member");
9821 }
9822
9823 if (MD->getMinRequiredArguments() < MD->getNumParams()) {
9824 if (Diagnose)
9825 Diag(MD->getParamDecl(MD->getMinRequiredArguments())->getLocation(),
9826 diag::note_nontrivial_default_arg)
9827 << MD->getParamDecl(MD->getMinRequiredArguments())->getSourceRange();
9828 return false;
9829 }
9830 if (MD->isVariadic()) {
9831 if (Diagnose)
9832 Diag(MD->getLocation(), diag::note_nontrivial_variadic);
9833 return false;
9834 }
9835
9836 // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
9837 // A copy/move [constructor or assignment operator] is trivial if
9838 // -- the [member] selected to copy/move each direct base class subobject
9839 // is trivial
9840 //
9841 // C++11 [class.copy]p12, C++11 [class.copy]p25:
9842 // A [default constructor or destructor] is trivial if
9843 // -- all the direct base classes have trivial [default constructors or
9844 // destructors]
9845 for (const auto &BI : RD->bases())
9846 if (!checkTrivialSubobjectCall(*this, BI.getBeginLoc(), BI.getType(),
9847 ConstArg, CSM, TSK_BaseClass, TAH, Diagnose))
9848 return false;
9849
9850 // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
9851 // A copy/move [constructor or assignment operator] for a class X is
9852 // trivial if
9853 // -- for each non-static data member of X that is of class type (or array
9854 // thereof), the constructor selected to copy/move that member is
9855 // trivial
9856 //
9857 // C++11 [class.copy]p12, C++11 [class.copy]p25:
9858 // A [default constructor or destructor] is trivial if
9859 // -- for all of the non-static data members of its class that are of class
9860 // type (or array thereof), each such class has a trivial [default
9861 // constructor or destructor]
9862 if (!checkTrivialClassMembers(*this, RD, CSM, ConstArg, TAH, Diagnose))
9863 return false;
9864
9865 // C++11 [class.dtor]p5:
9866 // A destructor is trivial if [...]
9867 // -- the destructor is not virtual
9868 if (CSM == CXXDestructor && MD->isVirtual()) {
9869 if (Diagnose)
9870 Diag(MD->getLocation(), diag::note_nontrivial_virtual_dtor) << RD;
9871 return false;
9872 }
9873
9874 // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
9875 // A [special member] for class X is trivial if [...]
9876 // -- class X has no virtual functions and no virtual base classes
9877 if (CSM != CXXDestructor && MD->getParent()->isDynamicClass()) {
9878 if (!Diagnose)
9879 return false;
9880
9881 if (RD->getNumVBases()) {
9882 // Check for virtual bases. We already know that the corresponding
9883 // member in all bases is trivial, so vbases must all be direct.
9884 CXXBaseSpecifier &BS = *RD->vbases_begin();
9885 assert(BS.isVirtual());
9886 Diag(BS.getBeginLoc(), diag::note_nontrivial_has_virtual) << RD << 1;
9887 return false;
9888 }
9889
9890 // Must have a virtual method.
9891 for (const auto *MI : RD->methods()) {
9892 if (MI->isVirtual()) {
9893 SourceLocation MLoc = MI->getBeginLoc();
9894 Diag(MLoc, diag::note_nontrivial_has_virtual) << RD << 0;
9895 return false;
9896 }
9897 }
9898
9899 llvm_unreachable("dynamic class with no vbases and no virtual functions");
9900 }
9901
9902 // Looks like it's trivial!
9903 return true;
9904 }
9905
9906 namespace {
9907 struct FindHiddenVirtualMethod {
9908 Sema *S;
9909 CXXMethodDecl *Method;
9910 llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
9911 SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
9912
9913 private:
9914 /// Check whether any most overridden method from MD in Methods
CheckMostOverridenMethods__anonc19065b02711::FindHiddenVirtualMethod9915 static bool CheckMostOverridenMethods(
9916 const CXXMethodDecl *MD,
9917 const llvm::SmallPtrSetImpl<const CXXMethodDecl *> &Methods) {
9918 if (MD->size_overridden_methods() == 0)
9919 return Methods.count(MD->getCanonicalDecl());
9920 for (const CXXMethodDecl *O : MD->overridden_methods())
9921 if (CheckMostOverridenMethods(O, Methods))
9922 return true;
9923 return false;
9924 }
9925
9926 public:
9927 /// Member lookup function that determines whether a given C++
9928 /// method overloads virtual methods in a base class without overriding any,
9929 /// to be used with CXXRecordDecl::lookupInBases().
operator ()__anonc19065b02711::FindHiddenVirtualMethod9930 bool operator()(const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
9931 RecordDecl *BaseRecord =
9932 Specifier->getType()->castAs<RecordType>()->getDecl();
9933
9934 DeclarationName Name = Method->getDeclName();
9935 assert(Name.getNameKind() == DeclarationName::Identifier);
9936
9937 bool foundSameNameMethod = false;
9938 SmallVector<CXXMethodDecl *, 8> overloadedMethods;
9939 for (Path.Decls = BaseRecord->lookup(Name).begin();
9940 Path.Decls != DeclContext::lookup_iterator(); ++Path.Decls) {
9941 NamedDecl *D = *Path.Decls;
9942 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
9943 MD = MD->getCanonicalDecl();
9944 foundSameNameMethod = true;
9945 // Interested only in hidden virtual methods.
9946 if (!MD->isVirtual())
9947 continue;
9948 // If the method we are checking overrides a method from its base
9949 // don't warn about the other overloaded methods. Clang deviates from
9950 // GCC by only diagnosing overloads of inherited virtual functions that
9951 // do not override any other virtual functions in the base. GCC's
9952 // -Woverloaded-virtual diagnoses any derived function hiding a virtual
9953 // function from a base class. These cases may be better served by a
9954 // warning (not specific to virtual functions) on call sites when the
9955 // call would select a different function from the base class, were it
9956 // visible.
9957 // See FIXME in test/SemaCXX/warn-overload-virtual.cpp for an example.
9958 if (!S->IsOverload(Method, MD, false))
9959 return true;
9960 // Collect the overload only if its hidden.
9961 if (!CheckMostOverridenMethods(MD, OverridenAndUsingBaseMethods))
9962 overloadedMethods.push_back(MD);
9963 }
9964 }
9965
9966 if (foundSameNameMethod)
9967 OverloadedMethods.append(overloadedMethods.begin(),
9968 overloadedMethods.end());
9969 return foundSameNameMethod;
9970 }
9971 };
9972 } // end anonymous namespace
9973
9974 /// Add the most overridden methods from MD to Methods
AddMostOverridenMethods(const CXXMethodDecl * MD,llvm::SmallPtrSetImpl<const CXXMethodDecl * > & Methods)9975 static void AddMostOverridenMethods(const CXXMethodDecl *MD,
9976 llvm::SmallPtrSetImpl<const CXXMethodDecl *>& Methods) {
9977 if (MD->size_overridden_methods() == 0)
9978 Methods.insert(MD->getCanonicalDecl());
9979 else
9980 for (const CXXMethodDecl *O : MD->overridden_methods())
9981 AddMostOverridenMethods(O, Methods);
9982 }
9983
9984 /// Check if a method overloads virtual methods in a base class without
9985 /// overriding any.
FindHiddenVirtualMethods(CXXMethodDecl * MD,SmallVectorImpl<CXXMethodDecl * > & OverloadedMethods)9986 void Sema::FindHiddenVirtualMethods(CXXMethodDecl *MD,
9987 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) {
9988 if (!MD->getDeclName().isIdentifier())
9989 return;
9990
9991 CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
9992 /*bool RecordPaths=*/false,
9993 /*bool DetectVirtual=*/false);
9994 FindHiddenVirtualMethod FHVM;
9995 FHVM.Method = MD;
9996 FHVM.S = this;
9997
9998 // Keep the base methods that were overridden or introduced in the subclass
9999 // by 'using' in a set. A base method not in this set is hidden.
10000 CXXRecordDecl *DC = MD->getParent();
10001 DeclContext::lookup_result R = DC->lookup(MD->getDeclName());
10002 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) {
10003 NamedDecl *ND = *I;
10004 if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*I))
10005 ND = shad->getTargetDecl();
10006 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
10007 AddMostOverridenMethods(MD, FHVM.OverridenAndUsingBaseMethods);
10008 }
10009
10010 if (DC->lookupInBases(FHVM, Paths))
10011 OverloadedMethods = FHVM.OverloadedMethods;
10012 }
10013
NoteHiddenVirtualMethods(CXXMethodDecl * MD,SmallVectorImpl<CXXMethodDecl * > & OverloadedMethods)10014 void Sema::NoteHiddenVirtualMethods(CXXMethodDecl *MD,
10015 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) {
10016 for (unsigned i = 0, e = OverloadedMethods.size(); i != e; ++i) {
10017 CXXMethodDecl *overloadedMD = OverloadedMethods[i];
10018 PartialDiagnostic PD = PDiag(
10019 diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
10020 HandleFunctionTypeMismatch(PD, MD->getType(), overloadedMD->getType());
10021 Diag(overloadedMD->getLocation(), PD);
10022 }
10023 }
10024
10025 /// Diagnose methods which overload virtual methods in a base class
10026 /// without overriding any.
DiagnoseHiddenVirtualMethods(CXXMethodDecl * MD)10027 void Sema::DiagnoseHiddenVirtualMethods(CXXMethodDecl *MD) {
10028 if (MD->isInvalidDecl())
10029 return;
10030
10031 if (Diags.isIgnored(diag::warn_overloaded_virtual, MD->getLocation()))
10032 return;
10033
10034 SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
10035 FindHiddenVirtualMethods(MD, OverloadedMethods);
10036 if (!OverloadedMethods.empty()) {
10037 Diag(MD->getLocation(), diag::warn_overloaded_virtual)
10038 << MD << (OverloadedMethods.size() > 1);
10039
10040 NoteHiddenVirtualMethods(MD, OverloadedMethods);
10041 }
10042 }
10043
checkIllFormedTrivialABIStruct(CXXRecordDecl & RD)10044 void Sema::checkIllFormedTrivialABIStruct(CXXRecordDecl &RD) {
10045 auto PrintDiagAndRemoveAttr = [&](unsigned N) {
10046 // No diagnostics if this is a template instantiation.
10047 if (!isTemplateInstantiation(RD.getTemplateSpecializationKind())) {
10048 Diag(RD.getAttr<TrivialABIAttr>()->getLocation(),
10049 diag::ext_cannot_use_trivial_abi) << &RD;
10050 Diag(RD.getAttr<TrivialABIAttr>()->getLocation(),
10051 diag::note_cannot_use_trivial_abi_reason) << &RD << N;
10052 }
10053 RD.dropAttr<TrivialABIAttr>();
10054 };
10055
10056 // Ill-formed if the copy and move constructors are deleted.
10057 auto HasNonDeletedCopyOrMoveConstructor = [&]() {
10058 // If the type is dependent, then assume it might have
10059 // implicit copy or move ctor because we won't know yet at this point.
10060 if (RD.isDependentType())
10061 return true;
10062 if (RD.needsImplicitCopyConstructor() &&
10063 !RD.defaultedCopyConstructorIsDeleted())
10064 return true;
10065 if (RD.needsImplicitMoveConstructor() &&
10066 !RD.defaultedMoveConstructorIsDeleted())
10067 return true;
10068 for (const CXXConstructorDecl *CD : RD.ctors())
10069 if (CD->isCopyOrMoveConstructor() && !CD->isDeleted())
10070 return true;
10071 return false;
10072 };
10073
10074 if (!HasNonDeletedCopyOrMoveConstructor()) {
10075 PrintDiagAndRemoveAttr(0);
10076 return;
10077 }
10078
10079 // Ill-formed if the struct has virtual functions.
10080 if (RD.isPolymorphic()) {
10081 PrintDiagAndRemoveAttr(1);
10082 return;
10083 }
10084
10085 for (const auto &B : RD.bases()) {
10086 // Ill-formed if the base class is non-trivial for the purpose of calls or a
10087 // virtual base.
10088 if (!B.getType()->isDependentType() &&
10089 !B.getType()->getAsCXXRecordDecl()->canPassInRegisters()) {
10090 PrintDiagAndRemoveAttr(2);
10091 return;
10092 }
10093
10094 if (B.isVirtual()) {
10095 PrintDiagAndRemoveAttr(3);
10096 return;
10097 }
10098 }
10099
10100 for (const auto *FD : RD.fields()) {
10101 // Ill-formed if the field is an ObjectiveC pointer or of a type that is
10102 // non-trivial for the purpose of calls.
10103 QualType FT = FD->getType();
10104 if (FT.getObjCLifetime() == Qualifiers::OCL_Weak) {
10105 PrintDiagAndRemoveAttr(4);
10106 return;
10107 }
10108
10109 if (const auto *RT = FT->getBaseElementTypeUnsafe()->getAs<RecordType>())
10110 if (!RT->isDependentType() &&
10111 !cast<CXXRecordDecl>(RT->getDecl())->canPassInRegisters()) {
10112 PrintDiagAndRemoveAttr(5);
10113 return;
10114 }
10115 }
10116 }
10117
ActOnFinishCXXMemberSpecification(Scope * S,SourceLocation RLoc,Decl * TagDecl,SourceLocation LBrac,SourceLocation RBrac,const ParsedAttributesView & AttrList)10118 void Sema::ActOnFinishCXXMemberSpecification(
10119 Scope *S, SourceLocation RLoc, Decl *TagDecl, SourceLocation LBrac,
10120 SourceLocation RBrac, const ParsedAttributesView &AttrList) {
10121 if (!TagDecl)
10122 return;
10123
10124 AdjustDeclIfTemplate(TagDecl);
10125
10126 for (const ParsedAttr &AL : AttrList) {
10127 if (AL.getKind() != ParsedAttr::AT_Visibility)
10128 continue;
10129 AL.setInvalid();
10130 Diag(AL.getLoc(), diag::warn_attribute_after_definition_ignored) << AL;
10131 }
10132
10133 ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
10134 // strict aliasing violation!
10135 reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
10136 FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
10137
10138 CheckCompletedCXXClass(S, cast<CXXRecordDecl>(TagDecl));
10139 }
10140
10141 /// Find the equality comparison functions that should be implicitly declared
10142 /// in a given class definition, per C++2a [class.compare.default]p3.
findImplicitlyDeclaredEqualityComparisons(ASTContext & Ctx,CXXRecordDecl * RD,llvm::SmallVectorImpl<FunctionDecl * > & Spaceships)10143 static void findImplicitlyDeclaredEqualityComparisons(
10144 ASTContext &Ctx, CXXRecordDecl *RD,
10145 llvm::SmallVectorImpl<FunctionDecl *> &Spaceships) {
10146 DeclarationName EqEq = Ctx.DeclarationNames.getCXXOperatorName(OO_EqualEqual);
10147 if (!RD->lookup(EqEq).empty())
10148 // Member operator== explicitly declared: no implicit operator==s.
10149 return;
10150
10151 // Traverse friends looking for an '==' or a '<=>'.
10152 for (FriendDecl *Friend : RD->friends()) {
10153 FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Friend->getFriendDecl());
10154 if (!FD) continue;
10155
10156 if (FD->getOverloadedOperator() == OO_EqualEqual) {
10157 // Friend operator== explicitly declared: no implicit operator==s.
10158 Spaceships.clear();
10159 return;
10160 }
10161
10162 if (FD->getOverloadedOperator() == OO_Spaceship &&
10163 FD->isExplicitlyDefaulted())
10164 Spaceships.push_back(FD);
10165 }
10166
10167 // Look for members named 'operator<=>'.
10168 DeclarationName Cmp = Ctx.DeclarationNames.getCXXOperatorName(OO_Spaceship);
10169 for (NamedDecl *ND : RD->lookup(Cmp)) {
10170 // Note that we could find a non-function here (either a function template
10171 // or a using-declaration). Neither case results in an implicit
10172 // 'operator=='.
10173 if (auto *FD = dyn_cast<FunctionDecl>(ND))
10174 if (FD->isExplicitlyDefaulted())
10175 Spaceships.push_back(FD);
10176 }
10177 }
10178
10179 /// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
10180 /// special functions, such as the default constructor, copy
10181 /// constructor, or destructor, to the given C++ class (C++
10182 /// [special]p1). This routine can only be executed just before the
10183 /// definition of the class is complete.
AddImplicitlyDeclaredMembersToClass(CXXRecordDecl * ClassDecl)10184 void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
10185 // Don't add implicit special members to templated classes.
10186 // FIXME: This means unqualified lookups for 'operator=' within a class
10187 // template don't work properly.
10188 if (!ClassDecl->isDependentType()) {
10189 if (ClassDecl->needsImplicitDefaultConstructor()) {
10190 ++getASTContext().NumImplicitDefaultConstructors;
10191
10192 if (ClassDecl->hasInheritedConstructor())
10193 DeclareImplicitDefaultConstructor(ClassDecl);
10194 }
10195
10196 if (ClassDecl->needsImplicitCopyConstructor()) {
10197 ++getASTContext().NumImplicitCopyConstructors;
10198
10199 // If the properties or semantics of the copy constructor couldn't be
10200 // determined while the class was being declared, force a declaration
10201 // of it now.
10202 if (ClassDecl->needsOverloadResolutionForCopyConstructor() ||
10203 ClassDecl->hasInheritedConstructor())
10204 DeclareImplicitCopyConstructor(ClassDecl);
10205 // For the MS ABI we need to know whether the copy ctor is deleted. A
10206 // prerequisite for deleting the implicit copy ctor is that the class has
10207 // a move ctor or move assignment that is either user-declared or whose
10208 // semantics are inherited from a subobject. FIXME: We should provide a
10209 // more direct way for CodeGen to ask whether the constructor was deleted.
10210 else if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
10211 (ClassDecl->hasUserDeclaredMoveConstructor() ||
10212 ClassDecl->needsOverloadResolutionForMoveConstructor() ||
10213 ClassDecl->hasUserDeclaredMoveAssignment() ||
10214 ClassDecl->needsOverloadResolutionForMoveAssignment()))
10215 DeclareImplicitCopyConstructor(ClassDecl);
10216 }
10217
10218 if (getLangOpts().CPlusPlus11 &&
10219 ClassDecl->needsImplicitMoveConstructor()) {
10220 ++getASTContext().NumImplicitMoveConstructors;
10221
10222 if (ClassDecl->needsOverloadResolutionForMoveConstructor() ||
10223 ClassDecl->hasInheritedConstructor())
10224 DeclareImplicitMoveConstructor(ClassDecl);
10225 }
10226
10227 if (ClassDecl->needsImplicitCopyAssignment()) {
10228 ++getASTContext().NumImplicitCopyAssignmentOperators;
10229
10230 // If we have a dynamic class, then the copy assignment operator may be
10231 // virtual, so we have to declare it immediately. This ensures that, e.g.,
10232 // it shows up in the right place in the vtable and that we diagnose
10233 // problems with the implicit exception specification.
10234 if (ClassDecl->isDynamicClass() ||
10235 ClassDecl->needsOverloadResolutionForCopyAssignment() ||
10236 ClassDecl->hasInheritedAssignment())
10237 DeclareImplicitCopyAssignment(ClassDecl);
10238 }
10239
10240 if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveAssignment()) {
10241 ++getASTContext().NumImplicitMoveAssignmentOperators;
10242
10243 // Likewise for the move assignment operator.
10244 if (ClassDecl->isDynamicClass() ||
10245 ClassDecl->needsOverloadResolutionForMoveAssignment() ||
10246 ClassDecl->hasInheritedAssignment())
10247 DeclareImplicitMoveAssignment(ClassDecl);
10248 }
10249
10250 if (ClassDecl->needsImplicitDestructor()) {
10251 ++getASTContext().NumImplicitDestructors;
10252
10253 // If we have a dynamic class, then the destructor may be virtual, so we
10254 // have to declare the destructor immediately. This ensures that, e.g., it
10255 // shows up in the right place in the vtable and that we diagnose problems
10256 // with the implicit exception specification.
10257 if (ClassDecl->isDynamicClass() ||
10258 ClassDecl->needsOverloadResolutionForDestructor())
10259 DeclareImplicitDestructor(ClassDecl);
10260 }
10261 }
10262
10263 // C++2a [class.compare.default]p3:
10264 // If the member-specification does not explicitly declare any member or
10265 // friend named operator==, an == operator function is declared implicitly
10266 // for each defaulted three-way comparison operator function defined in
10267 // the member-specification
10268 // FIXME: Consider doing this lazily.
10269 // We do this during the initial parse for a class template, not during
10270 // instantiation, so that we can handle unqualified lookups for 'operator=='
10271 // when parsing the template.
10272 if (getLangOpts().CPlusPlus20 && !inTemplateInstantiation()) {
10273 llvm::SmallVector<FunctionDecl *, 4> DefaultedSpaceships;
10274 findImplicitlyDeclaredEqualityComparisons(Context, ClassDecl,
10275 DefaultedSpaceships);
10276 for (auto *FD : DefaultedSpaceships)
10277 DeclareImplicitEqualityComparison(ClassDecl, FD);
10278 }
10279 }
10280
10281 unsigned
ActOnReenterTemplateScope(Decl * D,llvm::function_ref<Scope * ()> EnterScope)10282 Sema::ActOnReenterTemplateScope(Decl *D,
10283 llvm::function_ref<Scope *()> EnterScope) {
10284 if (!D)
10285 return 0;
10286 AdjustDeclIfTemplate(D);
10287
10288 // In order to get name lookup right, reenter template scopes in order from
10289 // outermost to innermost.
10290 SmallVector<TemplateParameterList *, 4> ParameterLists;
10291 DeclContext *LookupDC = dyn_cast<DeclContext>(D);
10292
10293 if (DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(D)) {
10294 for (unsigned i = 0; i < DD->getNumTemplateParameterLists(); ++i)
10295 ParameterLists.push_back(DD->getTemplateParameterList(i));
10296
10297 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
10298 if (FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
10299 ParameterLists.push_back(FTD->getTemplateParameters());
10300 } else if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
10301 LookupDC = VD->getDeclContext();
10302
10303 if (VarTemplateDecl *VTD = VD->getDescribedVarTemplate())
10304 ParameterLists.push_back(VTD->getTemplateParameters());
10305 else if (auto *PSD = dyn_cast<VarTemplatePartialSpecializationDecl>(D))
10306 ParameterLists.push_back(PSD->getTemplateParameters());
10307 }
10308 } else if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
10309 for (unsigned i = 0; i < TD->getNumTemplateParameterLists(); ++i)
10310 ParameterLists.push_back(TD->getTemplateParameterList(i));
10311
10312 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD)) {
10313 if (ClassTemplateDecl *CTD = RD->getDescribedClassTemplate())
10314 ParameterLists.push_back(CTD->getTemplateParameters());
10315 else if (auto *PSD = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
10316 ParameterLists.push_back(PSD->getTemplateParameters());
10317 }
10318 }
10319 // FIXME: Alias declarations and concepts.
10320
10321 unsigned Count = 0;
10322 Scope *InnermostTemplateScope = nullptr;
10323 for (TemplateParameterList *Params : ParameterLists) {
10324 // Ignore explicit specializations; they don't contribute to the template
10325 // depth.
10326 if (Params->size() == 0)
10327 continue;
10328
10329 InnermostTemplateScope = EnterScope();
10330 for (NamedDecl *Param : *Params) {
10331 if (Param->getDeclName()) {
10332 InnermostTemplateScope->AddDecl(Param);
10333 IdResolver.AddDecl(Param);
10334 }
10335 }
10336 ++Count;
10337 }
10338
10339 // Associate the new template scopes with the corresponding entities.
10340 if (InnermostTemplateScope) {
10341 assert(LookupDC && "no enclosing DeclContext for template lookup");
10342 EnterTemplatedContext(InnermostTemplateScope, LookupDC);
10343 }
10344
10345 return Count;
10346 }
10347
ActOnStartDelayedMemberDeclarations(Scope * S,Decl * RecordD)10348 void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
10349 if (!RecordD) return;
10350 AdjustDeclIfTemplate(RecordD);
10351 CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
10352 PushDeclContext(S, Record);
10353 }
10354
ActOnFinishDelayedMemberDeclarations(Scope * S,Decl * RecordD)10355 void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
10356 if (!RecordD) return;
10357 PopDeclContext();
10358 }
10359
10360 /// This is used to implement the constant expression evaluation part of the
10361 /// attribute enable_if extension. There is nothing in standard C++ which would
10362 /// require reentering parameters.
ActOnReenterCXXMethodParameter(Scope * S,ParmVarDecl * Param)10363 void Sema::ActOnReenterCXXMethodParameter(Scope *S, ParmVarDecl *Param) {
10364 if (!Param)
10365 return;
10366
10367 S->AddDecl(Param);
10368 if (Param->getDeclName())
10369 IdResolver.AddDecl(Param);
10370 }
10371
10372 /// ActOnStartDelayedCXXMethodDeclaration - We have completed
10373 /// parsing a top-level (non-nested) C++ class, and we are now
10374 /// parsing those parts of the given Method declaration that could
10375 /// not be parsed earlier (C++ [class.mem]p2), such as default
10376 /// arguments. This action should enter the scope of the given
10377 /// Method declaration as if we had just parsed the qualified method
10378 /// name. However, it should not bring the parameters into scope;
10379 /// that will be performed by ActOnDelayedCXXMethodParameter.
ActOnStartDelayedCXXMethodDeclaration(Scope * S,Decl * MethodD)10380 void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
10381 }
10382
10383 /// ActOnDelayedCXXMethodParameter - We've already started a delayed
10384 /// C++ method declaration. We're (re-)introducing the given
10385 /// function parameter into scope for use in parsing later parts of
10386 /// the method declaration. For example, we could see an
10387 /// ActOnParamDefaultArgument event for this parameter.
ActOnDelayedCXXMethodParameter(Scope * S,Decl * ParamD)10388 void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
10389 if (!ParamD)
10390 return;
10391
10392 ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
10393
10394 S->AddDecl(Param);
10395 if (Param->getDeclName())
10396 IdResolver.AddDecl(Param);
10397 }
10398
10399 /// ActOnFinishDelayedCXXMethodDeclaration - We have finished
10400 /// processing the delayed method declaration for Method. The method
10401 /// declaration is now considered finished. There may be a separate
10402 /// ActOnStartOfFunctionDef action later (not necessarily
10403 /// immediately!) for this method, if it was also defined inside the
10404 /// class body.
ActOnFinishDelayedCXXMethodDeclaration(Scope * S,Decl * MethodD)10405 void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
10406 if (!MethodD)
10407 return;
10408
10409 AdjustDeclIfTemplate(MethodD);
10410
10411 FunctionDecl *Method = cast<FunctionDecl>(MethodD);
10412
10413 // Now that we have our default arguments, check the constructor
10414 // again. It could produce additional diagnostics or affect whether
10415 // the class has implicitly-declared destructors, among other
10416 // things.
10417 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
10418 CheckConstructor(Constructor);
10419
10420 // Check the default arguments, which we may have added.
10421 if (!Method->isInvalidDecl())
10422 CheckCXXDefaultArguments(Method);
10423 }
10424
10425 // Emit the given diagnostic for each non-address-space qualifier.
10426 // Common part of CheckConstructorDeclarator and CheckDestructorDeclarator.
checkMethodTypeQualifiers(Sema & S,Declarator & D,unsigned DiagID)10427 static void checkMethodTypeQualifiers(Sema &S, Declarator &D, unsigned DiagID) {
10428 const DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
10429 if (FTI.hasMethodTypeQualifiers() && !D.isInvalidType()) {
10430 bool DiagOccured = false;
10431 FTI.MethodQualifiers->forEachQualifier(
10432 [DiagID, &S, &DiagOccured](DeclSpec::TQ, StringRef QualName,
10433 SourceLocation SL) {
10434 // This diagnostic should be emitted on any qualifier except an addr
10435 // space qualifier. However, forEachQualifier currently doesn't visit
10436 // addr space qualifiers, so there's no way to write this condition
10437 // right now; we just diagnose on everything.
10438 S.Diag(SL, DiagID) << QualName << SourceRange(SL);
10439 DiagOccured = true;
10440 });
10441 if (DiagOccured)
10442 D.setInvalidType();
10443 }
10444 }
10445
10446 /// CheckConstructorDeclarator - Called by ActOnDeclarator to check
10447 /// the well-formedness of the constructor declarator @p D with type @p
10448 /// R. If there are any errors in the declarator, this routine will
10449 /// emit diagnostics and set the invalid bit to true. In any case, the type
10450 /// will be updated to reflect a well-formed type for the constructor and
10451 /// returned.
CheckConstructorDeclarator(Declarator & D,QualType R,StorageClass & SC)10452 QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
10453 StorageClass &SC) {
10454 bool isVirtual = D.getDeclSpec().isVirtualSpecified();
10455
10456 // C++ [class.ctor]p3:
10457 // A constructor shall not be virtual (10.3) or static (9.4). A
10458 // constructor can be invoked for a const, volatile or const
10459 // volatile object. A constructor shall not be declared const,
10460 // volatile, or const volatile (9.3.2).
10461 if (isVirtual) {
10462 if (!D.isInvalidType())
10463 Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
10464 << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
10465 << SourceRange(D.getIdentifierLoc());
10466 D.setInvalidType();
10467 }
10468 if (SC == SC_Static) {
10469 if (!D.isInvalidType())
10470 Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
10471 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
10472 << SourceRange(D.getIdentifierLoc());
10473 D.setInvalidType();
10474 SC = SC_None;
10475 }
10476
10477 if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) {
10478 diagnoseIgnoredQualifiers(
10479 diag::err_constructor_return_type, TypeQuals, SourceLocation(),
10480 D.getDeclSpec().getConstSpecLoc(), D.getDeclSpec().getVolatileSpecLoc(),
10481 D.getDeclSpec().getRestrictSpecLoc(),
10482 D.getDeclSpec().getAtomicSpecLoc());
10483 D.setInvalidType();
10484 }
10485
10486 checkMethodTypeQualifiers(*this, D, diag::err_invalid_qualified_constructor);
10487
10488 // C++0x [class.ctor]p4:
10489 // A constructor shall not be declared with a ref-qualifier.
10490 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
10491 if (FTI.hasRefQualifier()) {
10492 Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
10493 << FTI.RefQualifierIsLValueRef
10494 << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
10495 D.setInvalidType();
10496 }
10497
10498 // Rebuild the function type "R" without any type qualifiers (in
10499 // case any of the errors above fired) and with "void" as the
10500 // return type, since constructors don't have return types.
10501 const FunctionProtoType *Proto = R->castAs<FunctionProtoType>();
10502 if (Proto->getReturnType() == Context.VoidTy && !D.isInvalidType())
10503 return R;
10504
10505 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
10506 EPI.TypeQuals = Qualifiers();
10507 EPI.RefQualifier = RQ_None;
10508
10509 return Context.getFunctionType(Context.VoidTy, Proto->getParamTypes(), EPI);
10510 }
10511
10512 /// CheckConstructor - Checks a fully-formed constructor for
10513 /// well-formedness, issuing any diagnostics required. Returns true if
10514 /// the constructor declarator is invalid.
CheckConstructor(CXXConstructorDecl * Constructor)10515 void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
10516 CXXRecordDecl *ClassDecl
10517 = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
10518 if (!ClassDecl)
10519 return Constructor->setInvalidDecl();
10520
10521 // C++ [class.copy]p3:
10522 // A declaration of a constructor for a class X is ill-formed if
10523 // its first parameter is of type (optionally cv-qualified) X and
10524 // either there are no other parameters or else all other
10525 // parameters have default arguments.
10526 if (!Constructor->isInvalidDecl() &&
10527 Constructor->hasOneParamOrDefaultArgs() &&
10528 Constructor->getTemplateSpecializationKind() !=
10529 TSK_ImplicitInstantiation) {
10530 QualType ParamType = Constructor->getParamDecl(0)->getType();
10531 QualType ClassTy = Context.getTagDeclType(ClassDecl);
10532 if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
10533 SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
10534 const char *ConstRef
10535 = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
10536 : " const &";
10537 Diag(ParamLoc, diag::err_constructor_byvalue_arg)
10538 << FixItHint::CreateInsertion(ParamLoc, ConstRef);
10539
10540 // FIXME: Rather that making the constructor invalid, we should endeavor
10541 // to fix the type.
10542 Constructor->setInvalidDecl();
10543 }
10544 }
10545 }
10546
10547 /// CheckDestructor - Checks a fully-formed destructor definition for
10548 /// well-formedness, issuing any diagnostics required. Returns true
10549 /// on error.
CheckDestructor(CXXDestructorDecl * Destructor)10550 bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
10551 CXXRecordDecl *RD = Destructor->getParent();
10552
10553 if (!Destructor->getOperatorDelete() && Destructor->isVirtual()) {
10554 SourceLocation Loc;
10555
10556 if (!Destructor->isImplicit())
10557 Loc = Destructor->getLocation();
10558 else
10559 Loc = RD->getLocation();
10560
10561 // If we have a virtual destructor, look up the deallocation function
10562 if (FunctionDecl *OperatorDelete =
10563 FindDeallocationFunctionForDestructor(Loc, RD)) {
10564 Expr *ThisArg = nullptr;
10565
10566 // If the notional 'delete this' expression requires a non-trivial
10567 // conversion from 'this' to the type of a destroying operator delete's
10568 // first parameter, perform that conversion now.
10569 if (OperatorDelete->isDestroyingOperatorDelete()) {
10570 QualType ParamType = OperatorDelete->getParamDecl(0)->getType();
10571 if (!declaresSameEntity(ParamType->getAsCXXRecordDecl(), RD)) {
10572 // C++ [class.dtor]p13:
10573 // ... as if for the expression 'delete this' appearing in a
10574 // non-virtual destructor of the destructor's class.
10575 ContextRAII SwitchContext(*this, Destructor);
10576 ExprResult This =
10577 ActOnCXXThis(OperatorDelete->getParamDecl(0)->getLocation());
10578 assert(!This.isInvalid() && "couldn't form 'this' expr in dtor?");
10579 This = PerformImplicitConversion(This.get(), ParamType, AA_Passing);
10580 if (This.isInvalid()) {
10581 // FIXME: Register this as a context note so that it comes out
10582 // in the right order.
10583 Diag(Loc, diag::note_implicit_delete_this_in_destructor_here);
10584 return true;
10585 }
10586 ThisArg = This.get();
10587 }
10588 }
10589
10590 DiagnoseUseOfDecl(OperatorDelete, Loc);
10591 MarkFunctionReferenced(Loc, OperatorDelete);
10592 Destructor->setOperatorDelete(OperatorDelete, ThisArg);
10593 }
10594 }
10595
10596 return false;
10597 }
10598
10599 /// CheckDestructorDeclarator - Called by ActOnDeclarator to check
10600 /// the well-formednes of the destructor declarator @p D with type @p
10601 /// R. If there are any errors in the declarator, this routine will
10602 /// emit diagnostics and set the declarator to invalid. Even if this happens,
10603 /// will be updated to reflect a well-formed type for the destructor and
10604 /// returned.
CheckDestructorDeclarator(Declarator & D,QualType R,StorageClass & SC)10605 QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
10606 StorageClass& SC) {
10607 // C++ [class.dtor]p1:
10608 // [...] A typedef-name that names a class is a class-name
10609 // (7.1.3); however, a typedef-name that names a class shall not
10610 // be used as the identifier in the declarator for a destructor
10611 // declaration.
10612 QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
10613 if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
10614 Diag(D.getIdentifierLoc(), diag::ext_destructor_typedef_name)
10615 << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
10616 else if (const TemplateSpecializationType *TST =
10617 DeclaratorType->getAs<TemplateSpecializationType>())
10618 if (TST->isTypeAlias())
10619 Diag(D.getIdentifierLoc(), diag::ext_destructor_typedef_name)
10620 << DeclaratorType << 1;
10621
10622 // C++ [class.dtor]p2:
10623 // A destructor is used to destroy objects of its class type. A
10624 // destructor takes no parameters, and no return type can be
10625 // specified for it (not even void). The address of a destructor
10626 // shall not be taken. A destructor shall not be static. A
10627 // destructor can be invoked for a const, volatile or const
10628 // volatile object. A destructor shall not be declared const,
10629 // volatile or const volatile (9.3.2).
10630 if (SC == SC_Static) {
10631 if (!D.isInvalidType())
10632 Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
10633 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
10634 << SourceRange(D.getIdentifierLoc())
10635 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
10636
10637 SC = SC_None;
10638 }
10639 if (!D.isInvalidType()) {
10640 // Destructors don't have return types, but the parser will
10641 // happily parse something like:
10642 //
10643 // class X {
10644 // float ~X();
10645 // };
10646 //
10647 // The return type will be eliminated later.
10648 if (D.getDeclSpec().hasTypeSpecifier())
10649 Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
10650 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
10651 << SourceRange(D.getIdentifierLoc());
10652 else if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) {
10653 diagnoseIgnoredQualifiers(diag::err_destructor_return_type, TypeQuals,
10654 SourceLocation(),
10655 D.getDeclSpec().getConstSpecLoc(),
10656 D.getDeclSpec().getVolatileSpecLoc(),
10657 D.getDeclSpec().getRestrictSpecLoc(),
10658 D.getDeclSpec().getAtomicSpecLoc());
10659 D.setInvalidType();
10660 }
10661 }
10662
10663 checkMethodTypeQualifiers(*this, D, diag::err_invalid_qualified_destructor);
10664
10665 // C++0x [class.dtor]p2:
10666 // A destructor shall not be declared with a ref-qualifier.
10667 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
10668 if (FTI.hasRefQualifier()) {
10669 Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
10670 << FTI.RefQualifierIsLValueRef
10671 << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
10672 D.setInvalidType();
10673 }
10674
10675 // Make sure we don't have any parameters.
10676 if (FTIHasNonVoidParameters(FTI)) {
10677 Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
10678
10679 // Delete the parameters.
10680 FTI.freeParams();
10681 D.setInvalidType();
10682 }
10683
10684 // Make sure the destructor isn't variadic.
10685 if (FTI.isVariadic) {
10686 Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
10687 D.setInvalidType();
10688 }
10689
10690 // Rebuild the function type "R" without any type qualifiers or
10691 // parameters (in case any of the errors above fired) and with
10692 // "void" as the return type, since destructors don't have return
10693 // types.
10694 if (!D.isInvalidType())
10695 return R;
10696
10697 const FunctionProtoType *Proto = R->castAs<FunctionProtoType>();
10698 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
10699 EPI.Variadic = false;
10700 EPI.TypeQuals = Qualifiers();
10701 EPI.RefQualifier = RQ_None;
10702 return Context.getFunctionType(Context.VoidTy, None, EPI);
10703 }
10704
extendLeft(SourceRange & R,SourceRange Before)10705 static void extendLeft(SourceRange &R, SourceRange Before) {
10706 if (Before.isInvalid())
10707 return;
10708 R.setBegin(Before.getBegin());
10709 if (R.getEnd().isInvalid())
10710 R.setEnd(Before.getEnd());
10711 }
10712
extendRight(SourceRange & R,SourceRange After)10713 static void extendRight(SourceRange &R, SourceRange After) {
10714 if (After.isInvalid())
10715 return;
10716 if (R.getBegin().isInvalid())
10717 R.setBegin(After.getBegin());
10718 R.setEnd(After.getEnd());
10719 }
10720
10721 /// CheckConversionDeclarator - Called by ActOnDeclarator to check the
10722 /// well-formednes of the conversion function declarator @p D with
10723 /// type @p R. If there are any errors in the declarator, this routine
10724 /// will emit diagnostics and return true. Otherwise, it will return
10725 /// false. Either way, the type @p R will be updated to reflect a
10726 /// well-formed type for the conversion operator.
CheckConversionDeclarator(Declarator & D,QualType & R,StorageClass & SC)10727 void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
10728 StorageClass& SC) {
10729 // C++ [class.conv.fct]p1:
10730 // Neither parameter types nor return type can be specified. The
10731 // type of a conversion function (8.3.5) is "function taking no
10732 // parameter returning conversion-type-id."
10733 if (SC == SC_Static) {
10734 if (!D.isInvalidType())
10735 Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
10736 << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
10737 << D.getName().getSourceRange();
10738 D.setInvalidType();
10739 SC = SC_None;
10740 }
10741
10742 TypeSourceInfo *ConvTSI = nullptr;
10743 QualType ConvType =
10744 GetTypeFromParser(D.getName().ConversionFunctionId, &ConvTSI);
10745
10746 const DeclSpec &DS = D.getDeclSpec();
10747 if (DS.hasTypeSpecifier() && !D.isInvalidType()) {
10748 // Conversion functions don't have return types, but the parser will
10749 // happily parse something like:
10750 //
10751 // class X {
10752 // float operator bool();
10753 // };
10754 //
10755 // The return type will be changed later anyway.
10756 Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
10757 << SourceRange(DS.getTypeSpecTypeLoc())
10758 << SourceRange(D.getIdentifierLoc());
10759 D.setInvalidType();
10760 } else if (DS.getTypeQualifiers() && !D.isInvalidType()) {
10761 // It's also plausible that the user writes type qualifiers in the wrong
10762 // place, such as:
10763 // struct S { const operator int(); };
10764 // FIXME: we could provide a fixit to move the qualifiers onto the
10765 // conversion type.
10766 Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
10767 << SourceRange(D.getIdentifierLoc()) << 0;
10768 D.setInvalidType();
10769 }
10770
10771 const auto *Proto = R->castAs<FunctionProtoType>();
10772
10773 // Make sure we don't have any parameters.
10774 if (Proto->getNumParams() > 0) {
10775 Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
10776
10777 // Delete the parameters.
10778 D.getFunctionTypeInfo().freeParams();
10779 D.setInvalidType();
10780 } else if (Proto->isVariadic()) {
10781 Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
10782 D.setInvalidType();
10783 }
10784
10785 // Diagnose "&operator bool()" and other such nonsense. This
10786 // is actually a gcc extension which we don't support.
10787 if (Proto->getReturnType() != ConvType) {
10788 bool NeedsTypedef = false;
10789 SourceRange Before, After;
10790
10791 // Walk the chunks and extract information on them for our diagnostic.
10792 bool PastFunctionChunk = false;
10793 for (auto &Chunk : D.type_objects()) {
10794 switch (Chunk.Kind) {
10795 case DeclaratorChunk::Function:
10796 if (!PastFunctionChunk) {
10797 if (Chunk.Fun.HasTrailingReturnType) {
10798 TypeSourceInfo *TRT = nullptr;
10799 GetTypeFromParser(Chunk.Fun.getTrailingReturnType(), &TRT);
10800 if (TRT) extendRight(After, TRT->getTypeLoc().getSourceRange());
10801 }
10802 PastFunctionChunk = true;
10803 break;
10804 }
10805 LLVM_FALLTHROUGH;
10806 case DeclaratorChunk::Array:
10807 NeedsTypedef = true;
10808 extendRight(After, Chunk.getSourceRange());
10809 break;
10810
10811 case DeclaratorChunk::Pointer:
10812 case DeclaratorChunk::BlockPointer:
10813 case DeclaratorChunk::Reference:
10814 case DeclaratorChunk::MemberPointer:
10815 case DeclaratorChunk::Pipe:
10816 extendLeft(Before, Chunk.getSourceRange());
10817 break;
10818
10819 case DeclaratorChunk::Paren:
10820 extendLeft(Before, Chunk.Loc);
10821 extendRight(After, Chunk.EndLoc);
10822 break;
10823 }
10824 }
10825
10826 SourceLocation Loc = Before.isValid() ? Before.getBegin() :
10827 After.isValid() ? After.getBegin() :
10828 D.getIdentifierLoc();
10829 auto &&DB = Diag(Loc, diag::err_conv_function_with_complex_decl);
10830 DB << Before << After;
10831
10832 if (!NeedsTypedef) {
10833 DB << /*don't need a typedef*/0;
10834
10835 // If we can provide a correct fix-it hint, do so.
10836 if (After.isInvalid() && ConvTSI) {
10837 SourceLocation InsertLoc =
10838 getLocForEndOfToken(ConvTSI->getTypeLoc().getEndLoc());
10839 DB << FixItHint::CreateInsertion(InsertLoc, " ")
10840 << FixItHint::CreateInsertionFromRange(
10841 InsertLoc, CharSourceRange::getTokenRange(Before))
10842 << FixItHint::CreateRemoval(Before);
10843 }
10844 } else if (!Proto->getReturnType()->isDependentType()) {
10845 DB << /*typedef*/1 << Proto->getReturnType();
10846 } else if (getLangOpts().CPlusPlus11) {
10847 DB << /*alias template*/2 << Proto->getReturnType();
10848 } else {
10849 DB << /*might not be fixable*/3;
10850 }
10851
10852 // Recover by incorporating the other type chunks into the result type.
10853 // Note, this does *not* change the name of the function. This is compatible
10854 // with the GCC extension:
10855 // struct S { &operator int(); } s;
10856 // int &r = s.operator int(); // ok in GCC
10857 // S::operator int&() {} // error in GCC, function name is 'operator int'.
10858 ConvType = Proto->getReturnType();
10859 }
10860
10861 // C++ [class.conv.fct]p4:
10862 // The conversion-type-id shall not represent a function type nor
10863 // an array type.
10864 if (ConvType->isArrayType()) {
10865 Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
10866 ConvType = Context.getPointerType(ConvType);
10867 D.setInvalidType();
10868 } else if (ConvType->isFunctionType()) {
10869 Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
10870 ConvType = Context.getPointerType(ConvType);
10871 D.setInvalidType();
10872 }
10873
10874 // Rebuild the function type "R" without any parameters (in case any
10875 // of the errors above fired) and with the conversion type as the
10876 // return type.
10877 if (D.isInvalidType())
10878 R = Context.getFunctionType(ConvType, None, Proto->getExtProtoInfo());
10879
10880 // C++0x explicit conversion operators.
10881 if (DS.hasExplicitSpecifier() && !getLangOpts().CPlusPlus20)
10882 Diag(DS.getExplicitSpecLoc(),
10883 getLangOpts().CPlusPlus11
10884 ? diag::warn_cxx98_compat_explicit_conversion_functions
10885 : diag::ext_explicit_conversion_functions)
10886 << SourceRange(DS.getExplicitSpecRange());
10887 }
10888
10889 /// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
10890 /// the declaration of the given C++ conversion function. This routine
10891 /// is responsible for recording the conversion function in the C++
10892 /// class, if possible.
ActOnConversionDeclarator(CXXConversionDecl * Conversion)10893 Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
10894 assert(Conversion && "Expected to receive a conversion function declaration");
10895
10896 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
10897
10898 // Make sure we aren't redeclaring the conversion function.
10899 QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
10900 // C++ [class.conv.fct]p1:
10901 // [...] A conversion function is never used to convert a
10902 // (possibly cv-qualified) object to the (possibly cv-qualified)
10903 // same object type (or a reference to it), to a (possibly
10904 // cv-qualified) base class of that type (or a reference to it),
10905 // or to (possibly cv-qualified) void.
10906 QualType ClassType
10907 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
10908 if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
10909 ConvType = ConvTypeRef->getPointeeType();
10910 if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
10911 Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
10912 /* Suppress diagnostics for instantiations. */;
10913 else if (Conversion->size_overridden_methods() != 0)
10914 /* Suppress diagnostics for overriding virtual function in a base class. */;
10915 else if (ConvType->isRecordType()) {
10916 ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
10917 if (ConvType == ClassType)
10918 Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
10919 << ClassType;
10920 else if (IsDerivedFrom(Conversion->getLocation(), ClassType, ConvType))
10921 Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
10922 << ClassType << ConvType;
10923 } else if (ConvType->isVoidType()) {
10924 Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
10925 << ClassType << ConvType;
10926 }
10927
10928 if (FunctionTemplateDecl *ConversionTemplate
10929 = Conversion->getDescribedFunctionTemplate())
10930 return ConversionTemplate;
10931
10932 return Conversion;
10933 }
10934
10935 namespace {
10936 /// Utility class to accumulate and print a diagnostic listing the invalid
10937 /// specifier(s) on a declaration.
10938 struct BadSpecifierDiagnoser {
BadSpecifierDiagnoser__anonc19065b02b11::BadSpecifierDiagnoser10939 BadSpecifierDiagnoser(Sema &S, SourceLocation Loc, unsigned DiagID)
10940 : S(S), Diagnostic(S.Diag(Loc, DiagID)) {}
~BadSpecifierDiagnoser__anonc19065b02b11::BadSpecifierDiagnoser10941 ~BadSpecifierDiagnoser() {
10942 Diagnostic << Specifiers;
10943 }
10944
check__anonc19065b02b11::BadSpecifierDiagnoser10945 template<typename T> void check(SourceLocation SpecLoc, T Spec) {
10946 return check(SpecLoc, DeclSpec::getSpecifierName(Spec));
10947 }
check__anonc19065b02b11::BadSpecifierDiagnoser10948 void check(SourceLocation SpecLoc, DeclSpec::TST Spec) {
10949 return check(SpecLoc,
10950 DeclSpec::getSpecifierName(Spec, S.getPrintingPolicy()));
10951 }
check__anonc19065b02b11::BadSpecifierDiagnoser10952 void check(SourceLocation SpecLoc, const char *Spec) {
10953 if (SpecLoc.isInvalid()) return;
10954 Diagnostic << SourceRange(SpecLoc, SpecLoc);
10955 if (!Specifiers.empty()) Specifiers += " ";
10956 Specifiers += Spec;
10957 }
10958
10959 Sema &S;
10960 Sema::SemaDiagnosticBuilder Diagnostic;
10961 std::string Specifiers;
10962 };
10963 }
10964
10965 /// Check the validity of a declarator that we parsed for a deduction-guide.
10966 /// These aren't actually declarators in the grammar, so we need to check that
10967 /// the user didn't specify any pieces that are not part of the deduction-guide
10968 /// grammar.
CheckDeductionGuideDeclarator(Declarator & D,QualType & R,StorageClass & SC)10969 void Sema::CheckDeductionGuideDeclarator(Declarator &D, QualType &R,
10970 StorageClass &SC) {
10971 TemplateName GuidedTemplate = D.getName().TemplateName.get().get();
10972 TemplateDecl *GuidedTemplateDecl = GuidedTemplate.getAsTemplateDecl();
10973 assert(GuidedTemplateDecl && "missing template decl for deduction guide");
10974
10975 // C++ [temp.deduct.guide]p3:
10976 // A deduction-gide shall be declared in the same scope as the
10977 // corresponding class template.
10978 if (!CurContext->getRedeclContext()->Equals(
10979 GuidedTemplateDecl->getDeclContext()->getRedeclContext())) {
10980 Diag(D.getIdentifierLoc(), diag::err_deduction_guide_wrong_scope)
10981 << GuidedTemplateDecl;
10982 Diag(GuidedTemplateDecl->getLocation(), diag::note_template_decl_here);
10983 }
10984
10985 auto &DS = D.getMutableDeclSpec();
10986 // We leave 'friend' and 'virtual' to be rejected in the normal way.
10987 if (DS.hasTypeSpecifier() || DS.getTypeQualifiers() ||
10988 DS.getStorageClassSpecLoc().isValid() || DS.isInlineSpecified() ||
10989 DS.isNoreturnSpecified() || DS.hasConstexprSpecifier()) {
10990 BadSpecifierDiagnoser Diagnoser(
10991 *this, D.getIdentifierLoc(),
10992 diag::err_deduction_guide_invalid_specifier);
10993
10994 Diagnoser.check(DS.getStorageClassSpecLoc(), DS.getStorageClassSpec());
10995 DS.ClearStorageClassSpecs();
10996 SC = SC_None;
10997
10998 // 'explicit' is permitted.
10999 Diagnoser.check(DS.getInlineSpecLoc(), "inline");
11000 Diagnoser.check(DS.getNoreturnSpecLoc(), "_Noreturn");
11001 Diagnoser.check(DS.getConstexprSpecLoc(), "constexpr");
11002 DS.ClearConstexprSpec();
11003
11004 Diagnoser.check(DS.getConstSpecLoc(), "const");
11005 Diagnoser.check(DS.getRestrictSpecLoc(), "__restrict");
11006 Diagnoser.check(DS.getVolatileSpecLoc(), "volatile");
11007 Diagnoser.check(DS.getAtomicSpecLoc(), "_Atomic");
11008 Diagnoser.check(DS.getUnalignedSpecLoc(), "__unaligned");
11009 DS.ClearTypeQualifiers();
11010
11011 Diagnoser.check(DS.getTypeSpecComplexLoc(), DS.getTypeSpecComplex());
11012 Diagnoser.check(DS.getTypeSpecSignLoc(), DS.getTypeSpecSign());
11013 Diagnoser.check(DS.getTypeSpecWidthLoc(), DS.getTypeSpecWidth());
11014 Diagnoser.check(DS.getTypeSpecTypeLoc(), DS.getTypeSpecType());
11015 DS.ClearTypeSpecType();
11016 }
11017
11018 if (D.isInvalidType())
11019 return;
11020
11021 // Check the declarator is simple enough.
11022 bool FoundFunction = false;
11023 for (const DeclaratorChunk &Chunk : llvm::reverse(D.type_objects())) {
11024 if (Chunk.Kind == DeclaratorChunk::Paren)
11025 continue;
11026 if (Chunk.Kind != DeclaratorChunk::Function || FoundFunction) {
11027 Diag(D.getDeclSpec().getBeginLoc(),
11028 diag::err_deduction_guide_with_complex_decl)
11029 << D.getSourceRange();
11030 break;
11031 }
11032 if (!Chunk.Fun.hasTrailingReturnType()) {
11033 Diag(D.getName().getBeginLoc(),
11034 diag::err_deduction_guide_no_trailing_return_type);
11035 break;
11036 }
11037
11038 // Check that the return type is written as a specialization of
11039 // the template specified as the deduction-guide's name.
11040 ParsedType TrailingReturnType = Chunk.Fun.getTrailingReturnType();
11041 TypeSourceInfo *TSI = nullptr;
11042 QualType RetTy = GetTypeFromParser(TrailingReturnType, &TSI);
11043 assert(TSI && "deduction guide has valid type but invalid return type?");
11044 bool AcceptableReturnType = false;
11045 bool MightInstantiateToSpecialization = false;
11046 if (auto RetTST =
11047 TSI->getTypeLoc().getAs<TemplateSpecializationTypeLoc>()) {
11048 TemplateName SpecifiedName = RetTST.getTypePtr()->getTemplateName();
11049 bool TemplateMatches =
11050 Context.hasSameTemplateName(SpecifiedName, GuidedTemplate);
11051 // FIXME: We should consider other template kinds (using, qualified),
11052 // otherwise we will emit bogus diagnostics.
11053 if (SpecifiedName.getKind() == TemplateName::Template && TemplateMatches)
11054 AcceptableReturnType = true;
11055 else {
11056 // This could still instantiate to the right type, unless we know it
11057 // names the wrong class template.
11058 auto *TD = SpecifiedName.getAsTemplateDecl();
11059 MightInstantiateToSpecialization = !(TD && isa<ClassTemplateDecl>(TD) &&
11060 !TemplateMatches);
11061 }
11062 } else if (!RetTy.hasQualifiers() && RetTy->isDependentType()) {
11063 MightInstantiateToSpecialization = true;
11064 }
11065
11066 if (!AcceptableReturnType) {
11067 Diag(TSI->getTypeLoc().getBeginLoc(),
11068 diag::err_deduction_guide_bad_trailing_return_type)
11069 << GuidedTemplate << TSI->getType()
11070 << MightInstantiateToSpecialization
11071 << TSI->getTypeLoc().getSourceRange();
11072 }
11073
11074 // Keep going to check that we don't have any inner declarator pieces (we
11075 // could still have a function returning a pointer to a function).
11076 FoundFunction = true;
11077 }
11078
11079 if (D.isFunctionDefinition())
11080 Diag(D.getIdentifierLoc(), diag::err_deduction_guide_defines_function);
11081 }
11082
11083 //===----------------------------------------------------------------------===//
11084 // Namespace Handling
11085 //===----------------------------------------------------------------------===//
11086
11087 /// Diagnose a mismatch in 'inline' qualifiers when a namespace is
11088 /// reopened.
DiagnoseNamespaceInlineMismatch(Sema & S,SourceLocation KeywordLoc,SourceLocation Loc,IdentifierInfo * II,bool * IsInline,NamespaceDecl * PrevNS)11089 static void DiagnoseNamespaceInlineMismatch(Sema &S, SourceLocation KeywordLoc,
11090 SourceLocation Loc,
11091 IdentifierInfo *II, bool *IsInline,
11092 NamespaceDecl *PrevNS) {
11093 assert(*IsInline != PrevNS->isInline());
11094
11095 // 'inline' must appear on the original definition, but not necessarily
11096 // on all extension definitions, so the note should point to the first
11097 // definition to avoid confusion.
11098 PrevNS = PrevNS->getFirstDecl();
11099
11100 if (PrevNS->isInline())
11101 // The user probably just forgot the 'inline', so suggest that it
11102 // be added back.
11103 S.Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
11104 << FixItHint::CreateInsertion(KeywordLoc, "inline ");
11105 else
11106 S.Diag(Loc, diag::err_inline_namespace_mismatch);
11107
11108 S.Diag(PrevNS->getLocation(), diag::note_previous_definition);
11109 *IsInline = PrevNS->isInline();
11110 }
11111
11112 /// ActOnStartNamespaceDef - This is called at the start of a namespace
11113 /// definition.
ActOnStartNamespaceDef(Scope * NamespcScope,SourceLocation InlineLoc,SourceLocation NamespaceLoc,SourceLocation IdentLoc,IdentifierInfo * II,SourceLocation LBrace,const ParsedAttributesView & AttrList,UsingDirectiveDecl * & UD)11114 Decl *Sema::ActOnStartNamespaceDef(
11115 Scope *NamespcScope, SourceLocation InlineLoc, SourceLocation NamespaceLoc,
11116 SourceLocation IdentLoc, IdentifierInfo *II, SourceLocation LBrace,
11117 const ParsedAttributesView &AttrList, UsingDirectiveDecl *&UD) {
11118 SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
11119 // For anonymous namespace, take the location of the left brace.
11120 SourceLocation Loc = II ? IdentLoc : LBrace;
11121 bool IsInline = InlineLoc.isValid();
11122 bool IsInvalid = false;
11123 bool IsStd = false;
11124 bool AddToKnown = false;
11125 Scope *DeclRegionScope = NamespcScope->getParent();
11126
11127 NamespaceDecl *PrevNS = nullptr;
11128 if (II) {
11129 // C++ [namespace.def]p2:
11130 // The identifier in an original-namespace-definition shall not
11131 // have been previously defined in the declarative region in
11132 // which the original-namespace-definition appears. The
11133 // identifier in an original-namespace-definition is the name of
11134 // the namespace. Subsequently in that declarative region, it is
11135 // treated as an original-namespace-name.
11136 //
11137 // Since namespace names are unique in their scope, and we don't
11138 // look through using directives, just look for any ordinary names
11139 // as if by qualified name lookup.
11140 LookupResult R(*this, II, IdentLoc, LookupOrdinaryName,
11141 ForExternalRedeclaration);
11142 LookupQualifiedName(R, CurContext->getRedeclContext());
11143 NamedDecl *PrevDecl =
11144 R.isSingleResult() ? R.getRepresentativeDecl() : nullptr;
11145 PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
11146
11147 if (PrevNS) {
11148 // This is an extended namespace definition.
11149 if (IsInline != PrevNS->isInline())
11150 DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, Loc, II,
11151 &IsInline, PrevNS);
11152 } else if (PrevDecl) {
11153 // This is an invalid name redefinition.
11154 Diag(Loc, diag::err_redefinition_different_kind)
11155 << II;
11156 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
11157 IsInvalid = true;
11158 // Continue on to push Namespc as current DeclContext and return it.
11159 } else if (II->isStr("std") &&
11160 CurContext->getRedeclContext()->isTranslationUnit()) {
11161 // This is the first "real" definition of the namespace "std", so update
11162 // our cache of the "std" namespace to point at this definition.
11163 PrevNS = getStdNamespace();
11164 IsStd = true;
11165 AddToKnown = !IsInline;
11166 } else {
11167 // We've seen this namespace for the first time.
11168 AddToKnown = !IsInline;
11169 }
11170 } else {
11171 // Anonymous namespaces.
11172
11173 // Determine whether the parent already has an anonymous namespace.
11174 DeclContext *Parent = CurContext->getRedeclContext();
11175 if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
11176 PrevNS = TU->getAnonymousNamespace();
11177 } else {
11178 NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
11179 PrevNS = ND->getAnonymousNamespace();
11180 }
11181
11182 if (PrevNS && IsInline != PrevNS->isInline())
11183 DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, NamespaceLoc, II,
11184 &IsInline, PrevNS);
11185 }
11186
11187 NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
11188 StartLoc, Loc, II, PrevNS);
11189 if (IsInvalid)
11190 Namespc->setInvalidDecl();
11191
11192 ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
11193 AddPragmaAttributes(DeclRegionScope, Namespc);
11194
11195 // FIXME: Should we be merging attributes?
11196 if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
11197 PushNamespaceVisibilityAttr(Attr, Loc);
11198
11199 if (IsStd)
11200 StdNamespace = Namespc;
11201 if (AddToKnown)
11202 KnownNamespaces[Namespc] = false;
11203
11204 if (II) {
11205 PushOnScopeChains(Namespc, DeclRegionScope);
11206 } else {
11207 // Link the anonymous namespace into its parent.
11208 DeclContext *Parent = CurContext->getRedeclContext();
11209 if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
11210 TU->setAnonymousNamespace(Namespc);
11211 } else {
11212 cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
11213 }
11214
11215 CurContext->addDecl(Namespc);
11216
11217 // C++ [namespace.unnamed]p1. An unnamed-namespace-definition
11218 // behaves as if it were replaced by
11219 // namespace unique { /* empty body */ }
11220 // using namespace unique;
11221 // namespace unique { namespace-body }
11222 // where all occurrences of 'unique' in a translation unit are
11223 // replaced by the same identifier and this identifier differs
11224 // from all other identifiers in the entire program.
11225
11226 // We just create the namespace with an empty name and then add an
11227 // implicit using declaration, just like the standard suggests.
11228 //
11229 // CodeGen enforces the "universally unique" aspect by giving all
11230 // declarations semantically contained within an anonymous
11231 // namespace internal linkage.
11232
11233 if (!PrevNS) {
11234 UD = UsingDirectiveDecl::Create(Context, Parent,
11235 /* 'using' */ LBrace,
11236 /* 'namespace' */ SourceLocation(),
11237 /* qualifier */ NestedNameSpecifierLoc(),
11238 /* identifier */ SourceLocation(),
11239 Namespc,
11240 /* Ancestor */ Parent);
11241 UD->setImplicit();
11242 Parent->addDecl(UD);
11243 }
11244 }
11245
11246 ActOnDocumentableDecl(Namespc);
11247
11248 // Although we could have an invalid decl (i.e. the namespace name is a
11249 // redefinition), push it as current DeclContext and try to continue parsing.
11250 // FIXME: We should be able to push Namespc here, so that the each DeclContext
11251 // for the namespace has the declarations that showed up in that particular
11252 // namespace definition.
11253 PushDeclContext(NamespcScope, Namespc);
11254 return Namespc;
11255 }
11256
11257 /// getNamespaceDecl - Returns the namespace a decl represents. If the decl
11258 /// is a namespace alias, returns the namespace it points to.
getNamespaceDecl(NamedDecl * D)11259 static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
11260 if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
11261 return AD->getNamespace();
11262 return dyn_cast_or_null<NamespaceDecl>(D);
11263 }
11264
11265 /// ActOnFinishNamespaceDef - This callback is called after a namespace is
11266 /// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
ActOnFinishNamespaceDef(Decl * Dcl,SourceLocation RBrace)11267 void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
11268 NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
11269 assert(Namespc && "Invalid parameter, expected NamespaceDecl");
11270 Namespc->setRBraceLoc(RBrace);
11271 PopDeclContext();
11272 if (Namespc->hasAttr<VisibilityAttr>())
11273 PopPragmaVisibility(true, RBrace);
11274 // If this namespace contains an export-declaration, export it now.
11275 if (DeferredExportedNamespaces.erase(Namespc))
11276 Dcl->setModuleOwnershipKind(Decl::ModuleOwnershipKind::VisibleWhenImported);
11277 }
11278
getStdBadAlloc() const11279 CXXRecordDecl *Sema::getStdBadAlloc() const {
11280 return cast_or_null<CXXRecordDecl>(
11281 StdBadAlloc.get(Context.getExternalSource()));
11282 }
11283
getStdAlignValT() const11284 EnumDecl *Sema::getStdAlignValT() const {
11285 return cast_or_null<EnumDecl>(StdAlignValT.get(Context.getExternalSource()));
11286 }
11287
getStdNamespace() const11288 NamespaceDecl *Sema::getStdNamespace() const {
11289 return cast_or_null<NamespaceDecl>(
11290 StdNamespace.get(Context.getExternalSource()));
11291 }
11292
lookupStdExperimentalNamespace()11293 NamespaceDecl *Sema::lookupStdExperimentalNamespace() {
11294 if (!StdExperimentalNamespaceCache) {
11295 if (auto Std = getStdNamespace()) {
11296 LookupResult Result(*this, &PP.getIdentifierTable().get("experimental"),
11297 SourceLocation(), LookupNamespaceName);
11298 if (!LookupQualifiedName(Result, Std) ||
11299 !(StdExperimentalNamespaceCache =
11300 Result.getAsSingle<NamespaceDecl>()))
11301 Result.suppressDiagnostics();
11302 }
11303 }
11304 return StdExperimentalNamespaceCache;
11305 }
11306
11307 namespace {
11308
11309 enum UnsupportedSTLSelect {
11310 USS_InvalidMember,
11311 USS_MissingMember,
11312 USS_NonTrivial,
11313 USS_Other
11314 };
11315
11316 struct InvalidSTLDiagnoser {
11317 Sema &S;
11318 SourceLocation Loc;
11319 QualType TyForDiags;
11320
operator ()__anonc19065b02c11::InvalidSTLDiagnoser11321 QualType operator()(UnsupportedSTLSelect Sel = USS_Other, StringRef Name = "",
11322 const VarDecl *VD = nullptr) {
11323 {
11324 auto D = S.Diag(Loc, diag::err_std_compare_type_not_supported)
11325 << TyForDiags << ((int)Sel);
11326 if (Sel == USS_InvalidMember || Sel == USS_MissingMember) {
11327 assert(!Name.empty());
11328 D << Name;
11329 }
11330 }
11331 if (Sel == USS_InvalidMember) {
11332 S.Diag(VD->getLocation(), diag::note_var_declared_here)
11333 << VD << VD->getSourceRange();
11334 }
11335 return QualType();
11336 }
11337 };
11338 } // namespace
11339
CheckComparisonCategoryType(ComparisonCategoryType Kind,SourceLocation Loc,ComparisonCategoryUsage Usage)11340 QualType Sema::CheckComparisonCategoryType(ComparisonCategoryType Kind,
11341 SourceLocation Loc,
11342 ComparisonCategoryUsage Usage) {
11343 assert(getLangOpts().CPlusPlus &&
11344 "Looking for comparison category type outside of C++.");
11345
11346 // Use an elaborated type for diagnostics which has a name containing the
11347 // prepended 'std' namespace but not any inline namespace names.
11348 auto TyForDiags = [&](ComparisonCategoryInfo *Info) {
11349 auto *NNS =
11350 NestedNameSpecifier::Create(Context, nullptr, getStdNamespace());
11351 return Context.getElaboratedType(ETK_None, NNS, Info->getType());
11352 };
11353
11354 // Check if we've already successfully checked the comparison category type
11355 // before. If so, skip checking it again.
11356 ComparisonCategoryInfo *Info = Context.CompCategories.lookupInfo(Kind);
11357 if (Info && FullyCheckedComparisonCategories[static_cast<unsigned>(Kind)]) {
11358 // The only thing we need to check is that the type has a reachable
11359 // definition in the current context.
11360 if (RequireCompleteType(Loc, TyForDiags(Info), diag::err_incomplete_type))
11361 return QualType();
11362
11363 return Info->getType();
11364 }
11365
11366 // If lookup failed
11367 if (!Info) {
11368 std::string NameForDiags = "std::";
11369 NameForDiags += ComparisonCategories::getCategoryString(Kind);
11370 Diag(Loc, diag::err_implied_comparison_category_type_not_found)
11371 << NameForDiags << (int)Usage;
11372 return QualType();
11373 }
11374
11375 assert(Info->Kind == Kind);
11376 assert(Info->Record);
11377
11378 // Update the Record decl in case we encountered a forward declaration on our
11379 // first pass. FIXME: This is a bit of a hack.
11380 if (Info->Record->hasDefinition())
11381 Info->Record = Info->Record->getDefinition();
11382
11383 if (RequireCompleteType(Loc, TyForDiags(Info), diag::err_incomplete_type))
11384 return QualType();
11385
11386 InvalidSTLDiagnoser UnsupportedSTLError{*this, Loc, TyForDiags(Info)};
11387
11388 if (!Info->Record->isTriviallyCopyable())
11389 return UnsupportedSTLError(USS_NonTrivial);
11390
11391 for (const CXXBaseSpecifier &BaseSpec : Info->Record->bases()) {
11392 CXXRecordDecl *Base = BaseSpec.getType()->getAsCXXRecordDecl();
11393 // Tolerate empty base classes.
11394 if (Base->isEmpty())
11395 continue;
11396 // Reject STL implementations which have at least one non-empty base.
11397 return UnsupportedSTLError();
11398 }
11399
11400 // Check that the STL has implemented the types using a single integer field.
11401 // This expectation allows better codegen for builtin operators. We require:
11402 // (1) The class has exactly one field.
11403 // (2) The field is an integral or enumeration type.
11404 auto FIt = Info->Record->field_begin(), FEnd = Info->Record->field_end();
11405 if (std::distance(FIt, FEnd) != 1 ||
11406 !FIt->getType()->isIntegralOrEnumerationType()) {
11407 return UnsupportedSTLError();
11408 }
11409
11410 // Build each of the require values and store them in Info.
11411 for (ComparisonCategoryResult CCR :
11412 ComparisonCategories::getPossibleResultsForType(Kind)) {
11413 StringRef MemName = ComparisonCategories::getResultString(CCR);
11414 ComparisonCategoryInfo::ValueInfo *ValInfo = Info->lookupValueInfo(CCR);
11415
11416 if (!ValInfo)
11417 return UnsupportedSTLError(USS_MissingMember, MemName);
11418
11419 VarDecl *VD = ValInfo->VD;
11420 assert(VD && "should not be null!");
11421
11422 // Attempt to diagnose reasons why the STL definition of this type
11423 // might be foobar, including it failing to be a constant expression.
11424 // TODO Handle more ways the lookup or result can be invalid.
11425 if (!VD->isStaticDataMember() ||
11426 !VD->isUsableInConstantExpressions(Context))
11427 return UnsupportedSTLError(USS_InvalidMember, MemName, VD);
11428
11429 // Attempt to evaluate the var decl as a constant expression and extract
11430 // the value of its first field as a ICE. If this fails, the STL
11431 // implementation is not supported.
11432 if (!ValInfo->hasValidIntValue())
11433 return UnsupportedSTLError();
11434
11435 MarkVariableReferenced(Loc, VD);
11436 }
11437
11438 // We've successfully built the required types and expressions. Update
11439 // the cache and return the newly cached value.
11440 FullyCheckedComparisonCategories[static_cast<unsigned>(Kind)] = true;
11441 return Info->getType();
11442 }
11443
11444 /// Retrieve the special "std" namespace, which may require us to
11445 /// implicitly define the namespace.
getOrCreateStdNamespace()11446 NamespaceDecl *Sema::getOrCreateStdNamespace() {
11447 if (!StdNamespace) {
11448 // The "std" namespace has not yet been defined, so build one implicitly.
11449 StdNamespace = NamespaceDecl::Create(Context,
11450 Context.getTranslationUnitDecl(),
11451 /*Inline=*/false,
11452 SourceLocation(), SourceLocation(),
11453 &PP.getIdentifierTable().get("std"),
11454 /*PrevDecl=*/nullptr);
11455 getStdNamespace()->setImplicit(true);
11456 }
11457
11458 return getStdNamespace();
11459 }
11460
isStdInitializerList(QualType Ty,QualType * Element)11461 bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
11462 assert(getLangOpts().CPlusPlus &&
11463 "Looking for std::initializer_list outside of C++.");
11464
11465 // We're looking for implicit instantiations of
11466 // template <typename E> class std::initializer_list.
11467
11468 if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
11469 return false;
11470
11471 ClassTemplateDecl *Template = nullptr;
11472 const TemplateArgument *Arguments = nullptr;
11473
11474 if (const RecordType *RT = Ty->getAs<RecordType>()) {
11475
11476 ClassTemplateSpecializationDecl *Specialization =
11477 dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
11478 if (!Specialization)
11479 return false;
11480
11481 Template = Specialization->getSpecializedTemplate();
11482 Arguments = Specialization->getTemplateArgs().data();
11483 } else if (const TemplateSpecializationType *TST =
11484 Ty->getAs<TemplateSpecializationType>()) {
11485 Template = dyn_cast_or_null<ClassTemplateDecl>(
11486 TST->getTemplateName().getAsTemplateDecl());
11487 Arguments = TST->getArgs();
11488 }
11489 if (!Template)
11490 return false;
11491
11492 if (!StdInitializerList) {
11493 // Haven't recognized std::initializer_list yet, maybe this is it.
11494 CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
11495 if (TemplateClass->getIdentifier() !=
11496 &PP.getIdentifierTable().get("initializer_list") ||
11497 !getStdNamespace()->InEnclosingNamespaceSetOf(
11498 TemplateClass->getDeclContext()))
11499 return false;
11500 // This is a template called std::initializer_list, but is it the right
11501 // template?
11502 TemplateParameterList *Params = Template->getTemplateParameters();
11503 if (Params->getMinRequiredArguments() != 1)
11504 return false;
11505 if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
11506 return false;
11507
11508 // It's the right template.
11509 StdInitializerList = Template;
11510 }
11511
11512 if (Template->getCanonicalDecl() != StdInitializerList->getCanonicalDecl())
11513 return false;
11514
11515 // This is an instance of std::initializer_list. Find the argument type.
11516 if (Element)
11517 *Element = Arguments[0].getAsType();
11518 return true;
11519 }
11520
LookupStdInitializerList(Sema & S,SourceLocation Loc)11521 static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
11522 NamespaceDecl *Std = S.getStdNamespace();
11523 if (!Std) {
11524 S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
11525 return nullptr;
11526 }
11527
11528 LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
11529 Loc, Sema::LookupOrdinaryName);
11530 if (!S.LookupQualifiedName(Result, Std)) {
11531 S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
11532 return nullptr;
11533 }
11534 ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
11535 if (!Template) {
11536 Result.suppressDiagnostics();
11537 // We found something weird. Complain about the first thing we found.
11538 NamedDecl *Found = *Result.begin();
11539 S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
11540 return nullptr;
11541 }
11542
11543 // We found some template called std::initializer_list. Now verify that it's
11544 // correct.
11545 TemplateParameterList *Params = Template->getTemplateParameters();
11546 if (Params->getMinRequiredArguments() != 1 ||
11547 !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
11548 S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
11549 return nullptr;
11550 }
11551
11552 return Template;
11553 }
11554
BuildStdInitializerList(QualType Element,SourceLocation Loc)11555 QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
11556 if (!StdInitializerList) {
11557 StdInitializerList = LookupStdInitializerList(*this, Loc);
11558 if (!StdInitializerList)
11559 return QualType();
11560 }
11561
11562 TemplateArgumentListInfo Args(Loc, Loc);
11563 Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
11564 Context.getTrivialTypeSourceInfo(Element,
11565 Loc)));
11566 return Context.getCanonicalType(
11567 CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
11568 }
11569
isInitListConstructor(const FunctionDecl * Ctor)11570 bool Sema::isInitListConstructor(const FunctionDecl *Ctor) {
11571 // C++ [dcl.init.list]p2:
11572 // A constructor is an initializer-list constructor if its first parameter
11573 // is of type std::initializer_list<E> or reference to possibly cv-qualified
11574 // std::initializer_list<E> for some type E, and either there are no other
11575 // parameters or else all other parameters have default arguments.
11576 if (!Ctor->hasOneParamOrDefaultArgs())
11577 return false;
11578
11579 QualType ArgType = Ctor->getParamDecl(0)->getType();
11580 if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
11581 ArgType = RT->getPointeeType().getUnqualifiedType();
11582
11583 return isStdInitializerList(ArgType, nullptr);
11584 }
11585
11586 /// Determine whether a using statement is in a context where it will be
11587 /// apply in all contexts.
IsUsingDirectiveInToplevelContext(DeclContext * CurContext)11588 static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
11589 switch (CurContext->getDeclKind()) {
11590 case Decl::TranslationUnit:
11591 return true;
11592 case Decl::LinkageSpec:
11593 return IsUsingDirectiveInToplevelContext(CurContext->getParent());
11594 default:
11595 return false;
11596 }
11597 }
11598
11599 namespace {
11600
11601 // Callback to only accept typo corrections that are namespaces.
11602 class NamespaceValidatorCCC final : public CorrectionCandidateCallback {
11603 public:
ValidateCandidate(const TypoCorrection & candidate)11604 bool ValidateCandidate(const TypoCorrection &candidate) override {
11605 if (NamedDecl *ND = candidate.getCorrectionDecl())
11606 return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
11607 return false;
11608 }
11609
clone()11610 std::unique_ptr<CorrectionCandidateCallback> clone() override {
11611 return std::make_unique<NamespaceValidatorCCC>(*this);
11612 }
11613 };
11614
11615 }
11616
TryNamespaceTypoCorrection(Sema & S,LookupResult & R,Scope * Sc,CXXScopeSpec & SS,SourceLocation IdentLoc,IdentifierInfo * Ident)11617 static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
11618 CXXScopeSpec &SS,
11619 SourceLocation IdentLoc,
11620 IdentifierInfo *Ident) {
11621 R.clear();
11622 NamespaceValidatorCCC CCC{};
11623 if (TypoCorrection Corrected =
11624 S.CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), Sc, &SS, CCC,
11625 Sema::CTK_ErrorRecovery)) {
11626 if (DeclContext *DC = S.computeDeclContext(SS, false)) {
11627 std::string CorrectedStr(Corrected.getAsString(S.getLangOpts()));
11628 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
11629 Ident->getName().equals(CorrectedStr);
11630 S.diagnoseTypo(Corrected,
11631 S.PDiag(diag::err_using_directive_member_suggest)
11632 << Ident << DC << DroppedSpecifier << SS.getRange(),
11633 S.PDiag(diag::note_namespace_defined_here));
11634 } else {
11635 S.diagnoseTypo(Corrected,
11636 S.PDiag(diag::err_using_directive_suggest) << Ident,
11637 S.PDiag(diag::note_namespace_defined_here));
11638 }
11639 R.addDecl(Corrected.getFoundDecl());
11640 return true;
11641 }
11642 return false;
11643 }
11644
ActOnUsingDirective(Scope * S,SourceLocation UsingLoc,SourceLocation NamespcLoc,CXXScopeSpec & SS,SourceLocation IdentLoc,IdentifierInfo * NamespcName,const ParsedAttributesView & AttrList)11645 Decl *Sema::ActOnUsingDirective(Scope *S, SourceLocation UsingLoc,
11646 SourceLocation NamespcLoc, CXXScopeSpec &SS,
11647 SourceLocation IdentLoc,
11648 IdentifierInfo *NamespcName,
11649 const ParsedAttributesView &AttrList) {
11650 assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
11651 assert(NamespcName && "Invalid NamespcName.");
11652 assert(IdentLoc.isValid() && "Invalid NamespceName location.");
11653
11654 // This can only happen along a recovery path.
11655 while (S->isTemplateParamScope())
11656 S = S->getParent();
11657 assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
11658
11659 UsingDirectiveDecl *UDir = nullptr;
11660 NestedNameSpecifier *Qualifier = nullptr;
11661 if (SS.isSet())
11662 Qualifier = SS.getScopeRep();
11663
11664 // Lookup namespace name.
11665 LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
11666 LookupParsedName(R, S, &SS);
11667 if (R.isAmbiguous())
11668 return nullptr;
11669
11670 if (R.empty()) {
11671 R.clear();
11672 // Allow "using namespace std;" or "using namespace ::std;" even if
11673 // "std" hasn't been defined yet, for GCC compatibility.
11674 if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
11675 NamespcName->isStr("std")) {
11676 Diag(IdentLoc, diag::ext_using_undefined_std);
11677 R.addDecl(getOrCreateStdNamespace());
11678 R.resolveKind();
11679 }
11680 // Otherwise, attempt typo correction.
11681 else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
11682 }
11683
11684 if (!R.empty()) {
11685 NamedDecl *Named = R.getRepresentativeDecl();
11686 NamespaceDecl *NS = R.getAsSingle<NamespaceDecl>();
11687 assert(NS && "expected namespace decl");
11688
11689 // The use of a nested name specifier may trigger deprecation warnings.
11690 DiagnoseUseOfDecl(Named, IdentLoc);
11691
11692 // C++ [namespace.udir]p1:
11693 // A using-directive specifies that the names in the nominated
11694 // namespace can be used in the scope in which the
11695 // using-directive appears after the using-directive. During
11696 // unqualified name lookup (3.4.1), the names appear as if they
11697 // were declared in the nearest enclosing namespace which
11698 // contains both the using-directive and the nominated
11699 // namespace. [Note: in this context, "contains" means "contains
11700 // directly or indirectly". ]
11701
11702 // Find enclosing context containing both using-directive and
11703 // nominated namespace.
11704 DeclContext *CommonAncestor = NS;
11705 while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
11706 CommonAncestor = CommonAncestor->getParent();
11707
11708 UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
11709 SS.getWithLocInContext(Context),
11710 IdentLoc, Named, CommonAncestor);
11711
11712 if (IsUsingDirectiveInToplevelContext(CurContext) &&
11713 !SourceMgr.isInMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
11714 Diag(IdentLoc, diag::warn_using_directive_in_header);
11715 }
11716
11717 PushUsingDirective(S, UDir);
11718 } else {
11719 Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
11720 }
11721
11722 if (UDir)
11723 ProcessDeclAttributeList(S, UDir, AttrList);
11724
11725 return UDir;
11726 }
11727
PushUsingDirective(Scope * S,UsingDirectiveDecl * UDir)11728 void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
11729 // If the scope has an associated entity and the using directive is at
11730 // namespace or translation unit scope, add the UsingDirectiveDecl into
11731 // its lookup structure so qualified name lookup can find it.
11732 DeclContext *Ctx = S->getEntity();
11733 if (Ctx && !Ctx->isFunctionOrMethod())
11734 Ctx->addDecl(UDir);
11735 else
11736 // Otherwise, it is at block scope. The using-directives will affect lookup
11737 // only to the end of the scope.
11738 S->PushUsingDirective(UDir);
11739 }
11740
ActOnUsingDeclaration(Scope * S,AccessSpecifier AS,SourceLocation UsingLoc,SourceLocation TypenameLoc,CXXScopeSpec & SS,UnqualifiedId & Name,SourceLocation EllipsisLoc,const ParsedAttributesView & AttrList)11741 Decl *Sema::ActOnUsingDeclaration(Scope *S, AccessSpecifier AS,
11742 SourceLocation UsingLoc,
11743 SourceLocation TypenameLoc, CXXScopeSpec &SS,
11744 UnqualifiedId &Name,
11745 SourceLocation EllipsisLoc,
11746 const ParsedAttributesView &AttrList) {
11747 assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
11748
11749 if (SS.isEmpty()) {
11750 Diag(Name.getBeginLoc(), diag::err_using_requires_qualname);
11751 return nullptr;
11752 }
11753
11754 switch (Name.getKind()) {
11755 case UnqualifiedIdKind::IK_ImplicitSelfParam:
11756 case UnqualifiedIdKind::IK_Identifier:
11757 case UnqualifiedIdKind::IK_OperatorFunctionId:
11758 case UnqualifiedIdKind::IK_LiteralOperatorId:
11759 case UnqualifiedIdKind::IK_ConversionFunctionId:
11760 break;
11761
11762 case UnqualifiedIdKind::IK_ConstructorName:
11763 case UnqualifiedIdKind::IK_ConstructorTemplateId:
11764 // C++11 inheriting constructors.
11765 Diag(Name.getBeginLoc(),
11766 getLangOpts().CPlusPlus11
11767 ? diag::warn_cxx98_compat_using_decl_constructor
11768 : diag::err_using_decl_constructor)
11769 << SS.getRange();
11770
11771 if (getLangOpts().CPlusPlus11) break;
11772
11773 return nullptr;
11774
11775 case UnqualifiedIdKind::IK_DestructorName:
11776 Diag(Name.getBeginLoc(), diag::err_using_decl_destructor) << SS.getRange();
11777 return nullptr;
11778
11779 case UnqualifiedIdKind::IK_TemplateId:
11780 Diag(Name.getBeginLoc(), diag::err_using_decl_template_id)
11781 << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
11782 return nullptr;
11783
11784 case UnqualifiedIdKind::IK_DeductionGuideName:
11785 llvm_unreachable("cannot parse qualified deduction guide name");
11786 }
11787
11788 DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
11789 DeclarationName TargetName = TargetNameInfo.getName();
11790 if (!TargetName)
11791 return nullptr;
11792
11793 // Warn about access declarations.
11794 if (UsingLoc.isInvalid()) {
11795 Diag(Name.getBeginLoc(), getLangOpts().CPlusPlus11
11796 ? diag::err_access_decl
11797 : diag::warn_access_decl_deprecated)
11798 << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
11799 }
11800
11801 if (EllipsisLoc.isInvalid()) {
11802 if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
11803 DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
11804 return nullptr;
11805 } else {
11806 if (!SS.getScopeRep()->containsUnexpandedParameterPack() &&
11807 !TargetNameInfo.containsUnexpandedParameterPack()) {
11808 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
11809 << SourceRange(SS.getBeginLoc(), TargetNameInfo.getEndLoc());
11810 EllipsisLoc = SourceLocation();
11811 }
11812 }
11813
11814 NamedDecl *UD =
11815 BuildUsingDeclaration(S, AS, UsingLoc, TypenameLoc.isValid(), TypenameLoc,
11816 SS, TargetNameInfo, EllipsisLoc, AttrList,
11817 /*IsInstantiation*/ false,
11818 AttrList.hasAttribute(ParsedAttr::AT_UsingIfExists));
11819 if (UD)
11820 PushOnScopeChains(UD, S, /*AddToContext*/ false);
11821
11822 return UD;
11823 }
11824
ActOnUsingEnumDeclaration(Scope * S,AccessSpecifier AS,SourceLocation UsingLoc,SourceLocation EnumLoc,const DeclSpec & DS)11825 Decl *Sema::ActOnUsingEnumDeclaration(Scope *S, AccessSpecifier AS,
11826 SourceLocation UsingLoc,
11827 SourceLocation EnumLoc,
11828 const DeclSpec &DS) {
11829 switch (DS.getTypeSpecType()) {
11830 case DeclSpec::TST_error:
11831 // This will already have been diagnosed
11832 return nullptr;
11833
11834 case DeclSpec::TST_enum:
11835 break;
11836
11837 case DeclSpec::TST_typename:
11838 Diag(DS.getTypeSpecTypeLoc(), diag::err_using_enum_is_dependent);
11839 return nullptr;
11840
11841 default:
11842 llvm_unreachable("unexpected DeclSpec type");
11843 }
11844
11845 // As with enum-decls, we ignore attributes for now.
11846 auto *Enum = cast<EnumDecl>(DS.getRepAsDecl());
11847 if (auto *Def = Enum->getDefinition())
11848 Enum = Def;
11849
11850 auto *UD = BuildUsingEnumDeclaration(S, AS, UsingLoc, EnumLoc,
11851 DS.getTypeSpecTypeNameLoc(), Enum);
11852 if (UD)
11853 PushOnScopeChains(UD, S, /*AddToContext*/ false);
11854
11855 return UD;
11856 }
11857
11858 /// Determine whether a using declaration considers the given
11859 /// declarations as "equivalent", e.g., if they are redeclarations of
11860 /// the same entity or are both typedefs of the same type.
11861 static bool
IsEquivalentForUsingDecl(ASTContext & Context,NamedDecl * D1,NamedDecl * D2)11862 IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2) {
11863 if (D1->getCanonicalDecl() == D2->getCanonicalDecl())
11864 return true;
11865
11866 if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
11867 if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2))
11868 return Context.hasSameType(TD1->getUnderlyingType(),
11869 TD2->getUnderlyingType());
11870
11871 // Two using_if_exists using-declarations are equivalent if both are
11872 // unresolved.
11873 if (isa<UnresolvedUsingIfExistsDecl>(D1) &&
11874 isa<UnresolvedUsingIfExistsDecl>(D2))
11875 return true;
11876
11877 return false;
11878 }
11879
11880
11881 /// Determines whether to create a using shadow decl for a particular
11882 /// decl, given the set of decls existing prior to this using lookup.
CheckUsingShadowDecl(BaseUsingDecl * BUD,NamedDecl * Orig,const LookupResult & Previous,UsingShadowDecl * & PrevShadow)11883 bool Sema::CheckUsingShadowDecl(BaseUsingDecl *BUD, NamedDecl *Orig,
11884 const LookupResult &Previous,
11885 UsingShadowDecl *&PrevShadow) {
11886 // Diagnose finding a decl which is not from a base class of the
11887 // current class. We do this now because there are cases where this
11888 // function will silently decide not to build a shadow decl, which
11889 // will pre-empt further diagnostics.
11890 //
11891 // We don't need to do this in C++11 because we do the check once on
11892 // the qualifier.
11893 //
11894 // FIXME: diagnose the following if we care enough:
11895 // struct A { int foo; };
11896 // struct B : A { using A::foo; };
11897 // template <class T> struct C : A {};
11898 // template <class T> struct D : C<T> { using B::foo; } // <---
11899 // This is invalid (during instantiation) in C++03 because B::foo
11900 // resolves to the using decl in B, which is not a base class of D<T>.
11901 // We can't diagnose it immediately because C<T> is an unknown
11902 // specialization. The UsingShadowDecl in D<T> then points directly
11903 // to A::foo, which will look well-formed when we instantiate.
11904 // The right solution is to not collapse the shadow-decl chain.
11905 if (!getLangOpts().CPlusPlus11 && CurContext->isRecord())
11906 if (auto *Using = dyn_cast<UsingDecl>(BUD)) {
11907 DeclContext *OrigDC = Orig->getDeclContext();
11908
11909 // Handle enums and anonymous structs.
11910 if (isa<EnumDecl>(OrigDC))
11911 OrigDC = OrigDC->getParent();
11912 CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
11913 while (OrigRec->isAnonymousStructOrUnion())
11914 OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
11915
11916 if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
11917 if (OrigDC == CurContext) {
11918 Diag(Using->getLocation(),
11919 diag::err_using_decl_nested_name_specifier_is_current_class)
11920 << Using->getQualifierLoc().getSourceRange();
11921 Diag(Orig->getLocation(), diag::note_using_decl_target);
11922 Using->setInvalidDecl();
11923 return true;
11924 }
11925
11926 Diag(Using->getQualifierLoc().getBeginLoc(),
11927 diag::err_using_decl_nested_name_specifier_is_not_base_class)
11928 << Using->getQualifier() << cast<CXXRecordDecl>(CurContext)
11929 << Using->getQualifierLoc().getSourceRange();
11930 Diag(Orig->getLocation(), diag::note_using_decl_target);
11931 Using->setInvalidDecl();
11932 return true;
11933 }
11934 }
11935
11936 if (Previous.empty()) return false;
11937
11938 NamedDecl *Target = Orig;
11939 if (isa<UsingShadowDecl>(Target))
11940 Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
11941
11942 // If the target happens to be one of the previous declarations, we
11943 // don't have a conflict.
11944 //
11945 // FIXME: but we might be increasing its access, in which case we
11946 // should redeclare it.
11947 NamedDecl *NonTag = nullptr, *Tag = nullptr;
11948 bool FoundEquivalentDecl = false;
11949 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
11950 I != E; ++I) {
11951 NamedDecl *D = (*I)->getUnderlyingDecl();
11952 // We can have UsingDecls in our Previous results because we use the same
11953 // LookupResult for checking whether the UsingDecl itself is a valid
11954 // redeclaration.
11955 if (isa<UsingDecl>(D) || isa<UsingPackDecl>(D) || isa<UsingEnumDecl>(D))
11956 continue;
11957
11958 if (auto *RD = dyn_cast<CXXRecordDecl>(D)) {
11959 // C++ [class.mem]p19:
11960 // If T is the name of a class, then [every named member other than
11961 // a non-static data member] shall have a name different from T
11962 if (RD->isInjectedClassName() && !isa<FieldDecl>(Target) &&
11963 !isa<IndirectFieldDecl>(Target) &&
11964 !isa<UnresolvedUsingValueDecl>(Target) &&
11965 DiagnoseClassNameShadow(
11966 CurContext,
11967 DeclarationNameInfo(BUD->getDeclName(), BUD->getLocation())))
11968 return true;
11969 }
11970
11971 if (IsEquivalentForUsingDecl(Context, D, Target)) {
11972 if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(*I))
11973 PrevShadow = Shadow;
11974 FoundEquivalentDecl = true;
11975 } else if (isEquivalentInternalLinkageDeclaration(D, Target)) {
11976 // We don't conflict with an existing using shadow decl of an equivalent
11977 // declaration, but we're not a redeclaration of it.
11978 FoundEquivalentDecl = true;
11979 }
11980
11981 if (isVisible(D))
11982 (isa<TagDecl>(D) ? Tag : NonTag) = D;
11983 }
11984
11985 if (FoundEquivalentDecl)
11986 return false;
11987
11988 // Always emit a diagnostic for a mismatch between an unresolved
11989 // using_if_exists and a resolved using declaration in either direction.
11990 if (isa<UnresolvedUsingIfExistsDecl>(Target) !=
11991 (isa_and_nonnull<UnresolvedUsingIfExistsDecl>(NonTag))) {
11992 if (!NonTag && !Tag)
11993 return false;
11994 Diag(BUD->getLocation(), diag::err_using_decl_conflict);
11995 Diag(Target->getLocation(), diag::note_using_decl_target);
11996 Diag((NonTag ? NonTag : Tag)->getLocation(),
11997 diag::note_using_decl_conflict);
11998 BUD->setInvalidDecl();
11999 return true;
12000 }
12001
12002 if (FunctionDecl *FD = Target->getAsFunction()) {
12003 NamedDecl *OldDecl = nullptr;
12004 switch (CheckOverload(nullptr, FD, Previous, OldDecl,
12005 /*IsForUsingDecl*/ true)) {
12006 case Ovl_Overload:
12007 return false;
12008
12009 case Ovl_NonFunction:
12010 Diag(BUD->getLocation(), diag::err_using_decl_conflict);
12011 break;
12012
12013 // We found a decl with the exact signature.
12014 case Ovl_Match:
12015 // If we're in a record, we want to hide the target, so we
12016 // return true (without a diagnostic) to tell the caller not to
12017 // build a shadow decl.
12018 if (CurContext->isRecord())
12019 return true;
12020
12021 // If we're not in a record, this is an error.
12022 Diag(BUD->getLocation(), diag::err_using_decl_conflict);
12023 break;
12024 }
12025
12026 Diag(Target->getLocation(), diag::note_using_decl_target);
12027 Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
12028 BUD->setInvalidDecl();
12029 return true;
12030 }
12031
12032 // Target is not a function.
12033
12034 if (isa<TagDecl>(Target)) {
12035 // No conflict between a tag and a non-tag.
12036 if (!Tag) return false;
12037
12038 Diag(BUD->getLocation(), diag::err_using_decl_conflict);
12039 Diag(Target->getLocation(), diag::note_using_decl_target);
12040 Diag(Tag->getLocation(), diag::note_using_decl_conflict);
12041 BUD->setInvalidDecl();
12042 return true;
12043 }
12044
12045 // No conflict between a tag and a non-tag.
12046 if (!NonTag) return false;
12047
12048 Diag(BUD->getLocation(), diag::err_using_decl_conflict);
12049 Diag(Target->getLocation(), diag::note_using_decl_target);
12050 Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
12051 BUD->setInvalidDecl();
12052 return true;
12053 }
12054
12055 /// Determine whether a direct base class is a virtual base class.
isVirtualDirectBase(CXXRecordDecl * Derived,CXXRecordDecl * Base)12056 static bool isVirtualDirectBase(CXXRecordDecl *Derived, CXXRecordDecl *Base) {
12057 if (!Derived->getNumVBases())
12058 return false;
12059 for (auto &B : Derived->bases())
12060 if (B.getType()->getAsCXXRecordDecl() == Base)
12061 return B.isVirtual();
12062 llvm_unreachable("not a direct base class");
12063 }
12064
12065 /// Builds a shadow declaration corresponding to a 'using' declaration.
BuildUsingShadowDecl(Scope * S,BaseUsingDecl * BUD,NamedDecl * Orig,UsingShadowDecl * PrevDecl)12066 UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S, BaseUsingDecl *BUD,
12067 NamedDecl *Orig,
12068 UsingShadowDecl *PrevDecl) {
12069 // If we resolved to another shadow declaration, just coalesce them.
12070 NamedDecl *Target = Orig;
12071 if (isa<UsingShadowDecl>(Target)) {
12072 Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
12073 assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
12074 }
12075
12076 NamedDecl *NonTemplateTarget = Target;
12077 if (auto *TargetTD = dyn_cast<TemplateDecl>(Target))
12078 NonTemplateTarget = TargetTD->getTemplatedDecl();
12079
12080 UsingShadowDecl *Shadow;
12081 if (NonTemplateTarget && isa<CXXConstructorDecl>(NonTemplateTarget)) {
12082 UsingDecl *Using = cast<UsingDecl>(BUD);
12083 bool IsVirtualBase =
12084 isVirtualDirectBase(cast<CXXRecordDecl>(CurContext),
12085 Using->getQualifier()->getAsRecordDecl());
12086 Shadow = ConstructorUsingShadowDecl::Create(
12087 Context, CurContext, Using->getLocation(), Using, Orig, IsVirtualBase);
12088 } else {
12089 Shadow = UsingShadowDecl::Create(Context, CurContext, BUD->getLocation(),
12090 Target->getDeclName(), BUD, Target);
12091 }
12092 BUD->addShadowDecl(Shadow);
12093
12094 Shadow->setAccess(BUD->getAccess());
12095 if (Orig->isInvalidDecl() || BUD->isInvalidDecl())
12096 Shadow->setInvalidDecl();
12097
12098 Shadow->setPreviousDecl(PrevDecl);
12099
12100 if (S)
12101 PushOnScopeChains(Shadow, S);
12102 else
12103 CurContext->addDecl(Shadow);
12104
12105
12106 return Shadow;
12107 }
12108
12109 /// Hides a using shadow declaration. This is required by the current
12110 /// using-decl implementation when a resolvable using declaration in a
12111 /// class is followed by a declaration which would hide or override
12112 /// one or more of the using decl's targets; for example:
12113 ///
12114 /// struct Base { void foo(int); };
12115 /// struct Derived : Base {
12116 /// using Base::foo;
12117 /// void foo(int);
12118 /// };
12119 ///
12120 /// The governing language is C++03 [namespace.udecl]p12:
12121 ///
12122 /// When a using-declaration brings names from a base class into a
12123 /// derived class scope, member functions in the derived class
12124 /// override and/or hide member functions with the same name and
12125 /// parameter types in a base class (rather than conflicting).
12126 ///
12127 /// There are two ways to implement this:
12128 /// (1) optimistically create shadow decls when they're not hidden
12129 /// by existing declarations, or
12130 /// (2) don't create any shadow decls (or at least don't make them
12131 /// visible) until we've fully parsed/instantiated the class.
12132 /// The problem with (1) is that we might have to retroactively remove
12133 /// a shadow decl, which requires several O(n) operations because the
12134 /// decl structures are (very reasonably) not designed for removal.
12135 /// (2) avoids this but is very fiddly and phase-dependent.
HideUsingShadowDecl(Scope * S,UsingShadowDecl * Shadow)12136 void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
12137 if (Shadow->getDeclName().getNameKind() ==
12138 DeclarationName::CXXConversionFunctionName)
12139 cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
12140
12141 // Remove it from the DeclContext...
12142 Shadow->getDeclContext()->removeDecl(Shadow);
12143
12144 // ...and the scope, if applicable...
12145 if (S) {
12146 S->RemoveDecl(Shadow);
12147 IdResolver.RemoveDecl(Shadow);
12148 }
12149
12150 // ...and the using decl.
12151 Shadow->getIntroducer()->removeShadowDecl(Shadow);
12152
12153 // TODO: complain somehow if Shadow was used. It shouldn't
12154 // be possible for this to happen, because...?
12155 }
12156
12157 /// Find the base specifier for a base class with the given type.
findDirectBaseWithType(CXXRecordDecl * Derived,QualType DesiredBase,bool & AnyDependentBases)12158 static CXXBaseSpecifier *findDirectBaseWithType(CXXRecordDecl *Derived,
12159 QualType DesiredBase,
12160 bool &AnyDependentBases) {
12161 // Check whether the named type is a direct base class.
12162 CanQualType CanonicalDesiredBase = DesiredBase->getCanonicalTypeUnqualified()
12163 .getUnqualifiedType();
12164 for (auto &Base : Derived->bases()) {
12165 CanQualType BaseType = Base.getType()->getCanonicalTypeUnqualified();
12166 if (CanonicalDesiredBase == BaseType)
12167 return &Base;
12168 if (BaseType->isDependentType())
12169 AnyDependentBases = true;
12170 }
12171 return nullptr;
12172 }
12173
12174 namespace {
12175 class UsingValidatorCCC final : public CorrectionCandidateCallback {
12176 public:
UsingValidatorCCC(bool HasTypenameKeyword,bool IsInstantiation,NestedNameSpecifier * NNS,CXXRecordDecl * RequireMemberOf)12177 UsingValidatorCCC(bool HasTypenameKeyword, bool IsInstantiation,
12178 NestedNameSpecifier *NNS, CXXRecordDecl *RequireMemberOf)
12179 : HasTypenameKeyword(HasTypenameKeyword),
12180 IsInstantiation(IsInstantiation), OldNNS(NNS),
12181 RequireMemberOf(RequireMemberOf) {}
12182
ValidateCandidate(const TypoCorrection & Candidate)12183 bool ValidateCandidate(const TypoCorrection &Candidate) override {
12184 NamedDecl *ND = Candidate.getCorrectionDecl();
12185
12186 // Keywords are not valid here.
12187 if (!ND || isa<NamespaceDecl>(ND))
12188 return false;
12189
12190 // Completely unqualified names are invalid for a 'using' declaration.
12191 if (Candidate.WillReplaceSpecifier() && !Candidate.getCorrectionSpecifier())
12192 return false;
12193
12194 // FIXME: Don't correct to a name that CheckUsingDeclRedeclaration would
12195 // reject.
12196
12197 if (RequireMemberOf) {
12198 auto *FoundRecord = dyn_cast<CXXRecordDecl>(ND);
12199 if (FoundRecord && FoundRecord->isInjectedClassName()) {
12200 // No-one ever wants a using-declaration to name an injected-class-name
12201 // of a base class, unless they're declaring an inheriting constructor.
12202 ASTContext &Ctx = ND->getASTContext();
12203 if (!Ctx.getLangOpts().CPlusPlus11)
12204 return false;
12205 QualType FoundType = Ctx.getRecordType(FoundRecord);
12206
12207 // Check that the injected-class-name is named as a member of its own
12208 // type; we don't want to suggest 'using Derived::Base;', since that
12209 // means something else.
12210 NestedNameSpecifier *Specifier =
12211 Candidate.WillReplaceSpecifier()
12212 ? Candidate.getCorrectionSpecifier()
12213 : OldNNS;
12214 if (!Specifier->getAsType() ||
12215 !Ctx.hasSameType(QualType(Specifier->getAsType(), 0), FoundType))
12216 return false;
12217
12218 // Check that this inheriting constructor declaration actually names a
12219 // direct base class of the current class.
12220 bool AnyDependentBases = false;
12221 if (!findDirectBaseWithType(RequireMemberOf,
12222 Ctx.getRecordType(FoundRecord),
12223 AnyDependentBases) &&
12224 !AnyDependentBases)
12225 return false;
12226 } else {
12227 auto *RD = dyn_cast<CXXRecordDecl>(ND->getDeclContext());
12228 if (!RD || RequireMemberOf->isProvablyNotDerivedFrom(RD))
12229 return false;
12230
12231 // FIXME: Check that the base class member is accessible?
12232 }
12233 } else {
12234 auto *FoundRecord = dyn_cast<CXXRecordDecl>(ND);
12235 if (FoundRecord && FoundRecord->isInjectedClassName())
12236 return false;
12237 }
12238
12239 if (isa<TypeDecl>(ND))
12240 return HasTypenameKeyword || !IsInstantiation;
12241
12242 return !HasTypenameKeyword;
12243 }
12244
clone()12245 std::unique_ptr<CorrectionCandidateCallback> clone() override {
12246 return std::make_unique<UsingValidatorCCC>(*this);
12247 }
12248
12249 private:
12250 bool HasTypenameKeyword;
12251 bool IsInstantiation;
12252 NestedNameSpecifier *OldNNS;
12253 CXXRecordDecl *RequireMemberOf;
12254 };
12255 } // end anonymous namespace
12256
12257 /// Remove decls we can't actually see from a lookup being used to declare
12258 /// shadow using decls.
12259 ///
12260 /// \param S - The scope of the potential shadow decl
12261 /// \param Previous - The lookup of a potential shadow decl's name.
FilterUsingLookup(Scope * S,LookupResult & Previous)12262 void Sema::FilterUsingLookup(Scope *S, LookupResult &Previous) {
12263 // It is really dumb that we have to do this.
12264 LookupResult::Filter F = Previous.makeFilter();
12265 while (F.hasNext()) {
12266 NamedDecl *D = F.next();
12267 if (!isDeclInScope(D, CurContext, S))
12268 F.erase();
12269 // If we found a local extern declaration that's not ordinarily visible,
12270 // and this declaration is being added to a non-block scope, ignore it.
12271 // We're only checking for scope conflicts here, not also for violations
12272 // of the linkage rules.
12273 else if (!CurContext->isFunctionOrMethod() && D->isLocalExternDecl() &&
12274 !(D->getIdentifierNamespace() & Decl::IDNS_Ordinary))
12275 F.erase();
12276 }
12277 F.done();
12278 }
12279
12280 /// Builds a using declaration.
12281 ///
12282 /// \param IsInstantiation - Whether this call arises from an
12283 /// instantiation of an unresolved using declaration. We treat
12284 /// the lookup differently for these declarations.
BuildUsingDeclaration(Scope * S,AccessSpecifier AS,SourceLocation UsingLoc,bool HasTypenameKeyword,SourceLocation TypenameLoc,CXXScopeSpec & SS,DeclarationNameInfo NameInfo,SourceLocation EllipsisLoc,const ParsedAttributesView & AttrList,bool IsInstantiation,bool IsUsingIfExists)12285 NamedDecl *Sema::BuildUsingDeclaration(
12286 Scope *S, AccessSpecifier AS, SourceLocation UsingLoc,
12287 bool HasTypenameKeyword, SourceLocation TypenameLoc, CXXScopeSpec &SS,
12288 DeclarationNameInfo NameInfo, SourceLocation EllipsisLoc,
12289 const ParsedAttributesView &AttrList, bool IsInstantiation,
12290 bool IsUsingIfExists) {
12291 assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
12292 SourceLocation IdentLoc = NameInfo.getLoc();
12293 assert(IdentLoc.isValid() && "Invalid TargetName location.");
12294
12295 // FIXME: We ignore attributes for now.
12296
12297 // For an inheriting constructor declaration, the name of the using
12298 // declaration is the name of a constructor in this class, not in the
12299 // base class.
12300 DeclarationNameInfo UsingName = NameInfo;
12301 if (UsingName.getName().getNameKind() == DeclarationName::CXXConstructorName)
12302 if (auto *RD = dyn_cast<CXXRecordDecl>(CurContext))
12303 UsingName.setName(Context.DeclarationNames.getCXXConstructorName(
12304 Context.getCanonicalType(Context.getRecordType(RD))));
12305
12306 // Do the redeclaration lookup in the current scope.
12307 LookupResult Previous(*this, UsingName, LookupUsingDeclName,
12308 ForVisibleRedeclaration);
12309 Previous.setHideTags(false);
12310 if (S) {
12311 LookupName(Previous, S);
12312
12313 FilterUsingLookup(S, Previous);
12314 } else {
12315 assert(IsInstantiation && "no scope in non-instantiation");
12316 if (CurContext->isRecord())
12317 LookupQualifiedName(Previous, CurContext);
12318 else {
12319 // No redeclaration check is needed here; in non-member contexts we
12320 // diagnosed all possible conflicts with other using-declarations when
12321 // building the template:
12322 //
12323 // For a dependent non-type using declaration, the only valid case is
12324 // if we instantiate to a single enumerator. We check for conflicts
12325 // between shadow declarations we introduce, and we check in the template
12326 // definition for conflicts between a non-type using declaration and any
12327 // other declaration, which together covers all cases.
12328 //
12329 // A dependent typename using declaration will never successfully
12330 // instantiate, since it will always name a class member, so we reject
12331 // that in the template definition.
12332 }
12333 }
12334
12335 // Check for invalid redeclarations.
12336 if (CheckUsingDeclRedeclaration(UsingLoc, HasTypenameKeyword,
12337 SS, IdentLoc, Previous))
12338 return nullptr;
12339
12340 // 'using_if_exists' doesn't make sense on an inherited constructor.
12341 if (IsUsingIfExists && UsingName.getName().getNameKind() ==
12342 DeclarationName::CXXConstructorName) {
12343 Diag(UsingLoc, diag::err_using_if_exists_on_ctor);
12344 return nullptr;
12345 }
12346
12347 DeclContext *LookupContext = computeDeclContext(SS);
12348 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
12349 if (!LookupContext || EllipsisLoc.isValid()) {
12350 NamedDecl *D;
12351 // Dependent scope, or an unexpanded pack
12352 if (!LookupContext && CheckUsingDeclQualifier(UsingLoc, HasTypenameKeyword,
12353 SS, NameInfo, IdentLoc))
12354 return nullptr;
12355
12356 if (HasTypenameKeyword) {
12357 // FIXME: not all declaration name kinds are legal here
12358 D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
12359 UsingLoc, TypenameLoc,
12360 QualifierLoc,
12361 IdentLoc, NameInfo.getName(),
12362 EllipsisLoc);
12363 } else {
12364 D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
12365 QualifierLoc, NameInfo, EllipsisLoc);
12366 }
12367 D->setAccess(AS);
12368 CurContext->addDecl(D);
12369 ProcessDeclAttributeList(S, D, AttrList);
12370 return D;
12371 }
12372
12373 auto Build = [&](bool Invalid) {
12374 UsingDecl *UD =
12375 UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
12376 UsingName, HasTypenameKeyword);
12377 UD->setAccess(AS);
12378 CurContext->addDecl(UD);
12379 ProcessDeclAttributeList(S, UD, AttrList);
12380 UD->setInvalidDecl(Invalid);
12381 return UD;
12382 };
12383 auto BuildInvalid = [&]{ return Build(true); };
12384 auto BuildValid = [&]{ return Build(false); };
12385
12386 if (RequireCompleteDeclContext(SS, LookupContext))
12387 return BuildInvalid();
12388
12389 // Look up the target name.
12390 LookupResult R(*this, NameInfo, LookupOrdinaryName);
12391
12392 // Unlike most lookups, we don't always want to hide tag
12393 // declarations: tag names are visible through the using declaration
12394 // even if hidden by ordinary names, *except* in a dependent context
12395 // where they may be used by two-phase lookup.
12396 if (!IsInstantiation)
12397 R.setHideTags(false);
12398
12399 // For the purposes of this lookup, we have a base object type
12400 // equal to that of the current context.
12401 if (CurContext->isRecord()) {
12402 R.setBaseObjectType(
12403 Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext)));
12404 }
12405
12406 LookupQualifiedName(R, LookupContext);
12407
12408 // Validate the context, now we have a lookup
12409 if (CheckUsingDeclQualifier(UsingLoc, HasTypenameKeyword, SS, NameInfo,
12410 IdentLoc, &R))
12411 return nullptr;
12412
12413 if (R.empty() && IsUsingIfExists)
12414 R.addDecl(UnresolvedUsingIfExistsDecl::Create(Context, CurContext, UsingLoc,
12415 UsingName.getName()),
12416 AS_public);
12417
12418 // Try to correct typos if possible. If constructor name lookup finds no
12419 // results, that means the named class has no explicit constructors, and we
12420 // suppressed declaring implicit ones (probably because it's dependent or
12421 // invalid).
12422 if (R.empty() &&
12423 NameInfo.getName().getNameKind() != DeclarationName::CXXConstructorName) {
12424 // HACK 2017-01-08: Work around an issue with libstdc++'s detection of
12425 // ::gets. Sometimes it believes that glibc provides a ::gets in cases where
12426 // it does not. The issue was fixed in libstdc++ 6.3 (2016-12-21) and later.
12427 auto *II = NameInfo.getName().getAsIdentifierInfo();
12428 if (getLangOpts().CPlusPlus14 && II && II->isStr("gets") &&
12429 CurContext->isStdNamespace() &&
12430 isa<TranslationUnitDecl>(LookupContext) &&
12431 getSourceManager().isInSystemHeader(UsingLoc))
12432 return nullptr;
12433 UsingValidatorCCC CCC(HasTypenameKeyword, IsInstantiation, SS.getScopeRep(),
12434 dyn_cast<CXXRecordDecl>(CurContext));
12435 if (TypoCorrection Corrected =
12436 CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS, CCC,
12437 CTK_ErrorRecovery)) {
12438 // We reject candidates where DroppedSpecifier == true, hence the
12439 // literal '0' below.
12440 diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
12441 << NameInfo.getName() << LookupContext << 0
12442 << SS.getRange());
12443
12444 // If we picked a correction with no attached Decl we can't do anything
12445 // useful with it, bail out.
12446 NamedDecl *ND = Corrected.getCorrectionDecl();
12447 if (!ND)
12448 return BuildInvalid();
12449
12450 // If we corrected to an inheriting constructor, handle it as one.
12451 auto *RD = dyn_cast<CXXRecordDecl>(ND);
12452 if (RD && RD->isInjectedClassName()) {
12453 // The parent of the injected class name is the class itself.
12454 RD = cast<CXXRecordDecl>(RD->getParent());
12455
12456 // Fix up the information we'll use to build the using declaration.
12457 if (Corrected.WillReplaceSpecifier()) {
12458 NestedNameSpecifierLocBuilder Builder;
12459 Builder.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
12460 QualifierLoc.getSourceRange());
12461 QualifierLoc = Builder.getWithLocInContext(Context);
12462 }
12463
12464 // In this case, the name we introduce is the name of a derived class
12465 // constructor.
12466 auto *CurClass = cast<CXXRecordDecl>(CurContext);
12467 UsingName.setName(Context.DeclarationNames.getCXXConstructorName(
12468 Context.getCanonicalType(Context.getRecordType(CurClass))));
12469 UsingName.setNamedTypeInfo(nullptr);
12470 for (auto *Ctor : LookupConstructors(RD))
12471 R.addDecl(Ctor);
12472 R.resolveKind();
12473 } else {
12474 // FIXME: Pick up all the declarations if we found an overloaded
12475 // function.
12476 UsingName.setName(ND->getDeclName());
12477 R.addDecl(ND);
12478 }
12479 } else {
12480 Diag(IdentLoc, diag::err_no_member)
12481 << NameInfo.getName() << LookupContext << SS.getRange();
12482 return BuildInvalid();
12483 }
12484 }
12485
12486 if (R.isAmbiguous())
12487 return BuildInvalid();
12488
12489 if (HasTypenameKeyword) {
12490 // If we asked for a typename and got a non-type decl, error out.
12491 if (!R.getAsSingle<TypeDecl>() &&
12492 !R.getAsSingle<UnresolvedUsingIfExistsDecl>()) {
12493 Diag(IdentLoc, diag::err_using_typename_non_type);
12494 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
12495 Diag((*I)->getUnderlyingDecl()->getLocation(),
12496 diag::note_using_decl_target);
12497 return BuildInvalid();
12498 }
12499 } else {
12500 // If we asked for a non-typename and we got a type, error out,
12501 // but only if this is an instantiation of an unresolved using
12502 // decl. Otherwise just silently find the type name.
12503 if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
12504 Diag(IdentLoc, diag::err_using_dependent_value_is_type);
12505 Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
12506 return BuildInvalid();
12507 }
12508 }
12509
12510 // C++14 [namespace.udecl]p6:
12511 // A using-declaration shall not name a namespace.
12512 if (R.getAsSingle<NamespaceDecl>()) {
12513 Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
12514 << SS.getRange();
12515 return BuildInvalid();
12516 }
12517
12518 UsingDecl *UD = BuildValid();
12519
12520 // Some additional rules apply to inheriting constructors.
12521 if (UsingName.getName().getNameKind() ==
12522 DeclarationName::CXXConstructorName) {
12523 // Suppress access diagnostics; the access check is instead performed at the
12524 // point of use for an inheriting constructor.
12525 R.suppressDiagnostics();
12526 if (CheckInheritingConstructorUsingDecl(UD))
12527 return UD;
12528 }
12529
12530 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
12531 UsingShadowDecl *PrevDecl = nullptr;
12532 if (!CheckUsingShadowDecl(UD, *I, Previous, PrevDecl))
12533 BuildUsingShadowDecl(S, UD, *I, PrevDecl);
12534 }
12535
12536 return UD;
12537 }
12538
BuildUsingEnumDeclaration(Scope * S,AccessSpecifier AS,SourceLocation UsingLoc,SourceLocation EnumLoc,SourceLocation NameLoc,EnumDecl * ED)12539 NamedDecl *Sema::BuildUsingEnumDeclaration(Scope *S, AccessSpecifier AS,
12540 SourceLocation UsingLoc,
12541 SourceLocation EnumLoc,
12542 SourceLocation NameLoc,
12543 EnumDecl *ED) {
12544 bool Invalid = false;
12545
12546 if (CurContext->getRedeclContext()->isRecord()) {
12547 /// In class scope, check if this is a duplicate, for better a diagnostic.
12548 DeclarationNameInfo UsingEnumName(ED->getDeclName(), NameLoc);
12549 LookupResult Previous(*this, UsingEnumName, LookupUsingDeclName,
12550 ForVisibleRedeclaration);
12551
12552 LookupName(Previous, S);
12553
12554 for (NamedDecl *D : Previous)
12555 if (UsingEnumDecl *UED = dyn_cast<UsingEnumDecl>(D))
12556 if (UED->getEnumDecl() == ED) {
12557 Diag(UsingLoc, diag::err_using_enum_decl_redeclaration)
12558 << SourceRange(EnumLoc, NameLoc);
12559 Diag(D->getLocation(), diag::note_using_enum_decl) << 1;
12560 Invalid = true;
12561 break;
12562 }
12563 }
12564
12565 if (RequireCompleteEnumDecl(ED, NameLoc))
12566 Invalid = true;
12567
12568 UsingEnumDecl *UD = UsingEnumDecl::Create(Context, CurContext, UsingLoc,
12569 EnumLoc, NameLoc, ED);
12570 UD->setAccess(AS);
12571 CurContext->addDecl(UD);
12572
12573 if (Invalid) {
12574 UD->setInvalidDecl();
12575 return UD;
12576 }
12577
12578 // Create the shadow decls for each enumerator
12579 for (EnumConstantDecl *EC : ED->enumerators()) {
12580 UsingShadowDecl *PrevDecl = nullptr;
12581 DeclarationNameInfo DNI(EC->getDeclName(), EC->getLocation());
12582 LookupResult Previous(*this, DNI, LookupOrdinaryName,
12583 ForVisibleRedeclaration);
12584 LookupName(Previous, S);
12585 FilterUsingLookup(S, Previous);
12586
12587 if (!CheckUsingShadowDecl(UD, EC, Previous, PrevDecl))
12588 BuildUsingShadowDecl(S, UD, EC, PrevDecl);
12589 }
12590
12591 return UD;
12592 }
12593
BuildUsingPackDecl(NamedDecl * InstantiatedFrom,ArrayRef<NamedDecl * > Expansions)12594 NamedDecl *Sema::BuildUsingPackDecl(NamedDecl *InstantiatedFrom,
12595 ArrayRef<NamedDecl *> Expansions) {
12596 assert(isa<UnresolvedUsingValueDecl>(InstantiatedFrom) ||
12597 isa<UnresolvedUsingTypenameDecl>(InstantiatedFrom) ||
12598 isa<UsingPackDecl>(InstantiatedFrom));
12599
12600 auto *UPD =
12601 UsingPackDecl::Create(Context, CurContext, InstantiatedFrom, Expansions);
12602 UPD->setAccess(InstantiatedFrom->getAccess());
12603 CurContext->addDecl(UPD);
12604 return UPD;
12605 }
12606
12607 /// Additional checks for a using declaration referring to a constructor name.
CheckInheritingConstructorUsingDecl(UsingDecl * UD)12608 bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) {
12609 assert(!UD->hasTypename() && "expecting a constructor name");
12610
12611 const Type *SourceType = UD->getQualifier()->getAsType();
12612 assert(SourceType &&
12613 "Using decl naming constructor doesn't have type in scope spec.");
12614 CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
12615
12616 // Check whether the named type is a direct base class.
12617 bool AnyDependentBases = false;
12618 auto *Base = findDirectBaseWithType(TargetClass, QualType(SourceType, 0),
12619 AnyDependentBases);
12620 if (!Base && !AnyDependentBases) {
12621 Diag(UD->getUsingLoc(),
12622 diag::err_using_decl_constructor_not_in_direct_base)
12623 << UD->getNameInfo().getSourceRange()
12624 << QualType(SourceType, 0) << TargetClass;
12625 UD->setInvalidDecl();
12626 return true;
12627 }
12628
12629 if (Base)
12630 Base->setInheritConstructors();
12631
12632 return false;
12633 }
12634
12635 /// Checks that the given using declaration is not an invalid
12636 /// redeclaration. Note that this is checking only for the using decl
12637 /// itself, not for any ill-formedness among the UsingShadowDecls.
CheckUsingDeclRedeclaration(SourceLocation UsingLoc,bool HasTypenameKeyword,const CXXScopeSpec & SS,SourceLocation NameLoc,const LookupResult & Prev)12638 bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
12639 bool HasTypenameKeyword,
12640 const CXXScopeSpec &SS,
12641 SourceLocation NameLoc,
12642 const LookupResult &Prev) {
12643 NestedNameSpecifier *Qual = SS.getScopeRep();
12644
12645 // C++03 [namespace.udecl]p8:
12646 // C++0x [namespace.udecl]p10:
12647 // A using-declaration is a declaration and can therefore be used
12648 // repeatedly where (and only where) multiple declarations are
12649 // allowed.
12650 //
12651 // That's in non-member contexts.
12652 if (!CurContext->getRedeclContext()->isRecord()) {
12653 // A dependent qualifier outside a class can only ever resolve to an
12654 // enumeration type. Therefore it conflicts with any other non-type
12655 // declaration in the same scope.
12656 // FIXME: How should we check for dependent type-type conflicts at block
12657 // scope?
12658 if (Qual->isDependent() && !HasTypenameKeyword) {
12659 for (auto *D : Prev) {
12660 if (!isa<TypeDecl>(D) && !isa<UsingDecl>(D) && !isa<UsingPackDecl>(D)) {
12661 bool OldCouldBeEnumerator =
12662 isa<UnresolvedUsingValueDecl>(D) || isa<EnumConstantDecl>(D);
12663 Diag(NameLoc,
12664 OldCouldBeEnumerator ? diag::err_redefinition
12665 : diag::err_redefinition_different_kind)
12666 << Prev.getLookupName();
12667 Diag(D->getLocation(), diag::note_previous_definition);
12668 return true;
12669 }
12670 }
12671 }
12672 return false;
12673 }
12674
12675 const NestedNameSpecifier *CNNS =
12676 Context.getCanonicalNestedNameSpecifier(Qual);
12677 for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
12678 NamedDecl *D = *I;
12679
12680 bool DTypename;
12681 NestedNameSpecifier *DQual;
12682 if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
12683 DTypename = UD->hasTypename();
12684 DQual = UD->getQualifier();
12685 } else if (UnresolvedUsingValueDecl *UD
12686 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
12687 DTypename = false;
12688 DQual = UD->getQualifier();
12689 } else if (UnresolvedUsingTypenameDecl *UD
12690 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
12691 DTypename = true;
12692 DQual = UD->getQualifier();
12693 } else continue;
12694
12695 // using decls differ if one says 'typename' and the other doesn't.
12696 // FIXME: non-dependent using decls?
12697 if (HasTypenameKeyword != DTypename) continue;
12698
12699 // using decls differ if they name different scopes (but note that
12700 // template instantiation can cause this check to trigger when it
12701 // didn't before instantiation).
12702 if (CNNS != Context.getCanonicalNestedNameSpecifier(DQual))
12703 continue;
12704
12705 Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
12706 Diag(D->getLocation(), diag::note_using_decl) << 1;
12707 return true;
12708 }
12709
12710 return false;
12711 }
12712
12713 /// Checks that the given nested-name qualifier used in a using decl
12714 /// in the current context is appropriately related to the current
12715 /// scope. If an error is found, diagnoses it and returns true.
12716 /// R is nullptr, if the caller has not (yet) done a lookup, otherwise it's the
12717 /// result of that lookup. UD is likewise nullptr, except when we have an
12718 /// already-populated UsingDecl whose shadow decls contain the same information
12719 /// (i.e. we're instantiating a UsingDecl with non-dependent scope).
CheckUsingDeclQualifier(SourceLocation UsingLoc,bool HasTypename,const CXXScopeSpec & SS,const DeclarationNameInfo & NameInfo,SourceLocation NameLoc,const LookupResult * R,const UsingDecl * UD)12720 bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc, bool HasTypename,
12721 const CXXScopeSpec &SS,
12722 const DeclarationNameInfo &NameInfo,
12723 SourceLocation NameLoc,
12724 const LookupResult *R, const UsingDecl *UD) {
12725 DeclContext *NamedContext = computeDeclContext(SS);
12726 assert(bool(NamedContext) == (R || UD) && !(R && UD) &&
12727 "resolvable context must have exactly one set of decls");
12728
12729 // C++ 20 permits using an enumerator that does not have a class-hierarchy
12730 // relationship.
12731 bool Cxx20Enumerator = false;
12732 if (NamedContext) {
12733 EnumConstantDecl *EC = nullptr;
12734 if (R)
12735 EC = R->getAsSingle<EnumConstantDecl>();
12736 else if (UD && UD->shadow_size() == 1)
12737 EC = dyn_cast<EnumConstantDecl>(UD->shadow_begin()->getTargetDecl());
12738 if (EC)
12739 Cxx20Enumerator = getLangOpts().CPlusPlus20;
12740
12741 if (auto *ED = dyn_cast<EnumDecl>(NamedContext)) {
12742 // C++14 [namespace.udecl]p7:
12743 // A using-declaration shall not name a scoped enumerator.
12744 // C++20 p1099 permits enumerators.
12745 if (EC && R && ED->isScoped())
12746 Diag(SS.getBeginLoc(),
12747 getLangOpts().CPlusPlus20
12748 ? diag::warn_cxx17_compat_using_decl_scoped_enumerator
12749 : diag::ext_using_decl_scoped_enumerator)
12750 << SS.getRange();
12751
12752 // We want to consider the scope of the enumerator
12753 NamedContext = ED->getDeclContext();
12754 }
12755 }
12756
12757 if (!CurContext->isRecord()) {
12758 // C++03 [namespace.udecl]p3:
12759 // C++0x [namespace.udecl]p8:
12760 // A using-declaration for a class member shall be a member-declaration.
12761 // C++20 [namespace.udecl]p7
12762 // ... other than an enumerator ...
12763
12764 // If we weren't able to compute a valid scope, it might validly be a
12765 // dependent class or enumeration scope. If we have a 'typename' keyword,
12766 // the scope must resolve to a class type.
12767 if (NamedContext ? !NamedContext->getRedeclContext()->isRecord()
12768 : !HasTypename)
12769 return false; // OK
12770
12771 Diag(NameLoc,
12772 Cxx20Enumerator
12773 ? diag::warn_cxx17_compat_using_decl_class_member_enumerator
12774 : diag::err_using_decl_can_not_refer_to_class_member)
12775 << SS.getRange();
12776
12777 if (Cxx20Enumerator)
12778 return false; // OK
12779
12780 auto *RD = NamedContext
12781 ? cast<CXXRecordDecl>(NamedContext->getRedeclContext())
12782 : nullptr;
12783 if (RD && !RequireCompleteDeclContext(const_cast<CXXScopeSpec &>(SS), RD)) {
12784 // See if there's a helpful fixit
12785
12786 if (!R) {
12787 // We will have already diagnosed the problem on the template
12788 // definition, Maybe we should do so again?
12789 } else if (R->getAsSingle<TypeDecl>()) {
12790 if (getLangOpts().CPlusPlus11) {
12791 // Convert 'using X::Y;' to 'using Y = X::Y;'.
12792 Diag(SS.getBeginLoc(), diag::note_using_decl_class_member_workaround)
12793 << 0 // alias declaration
12794 << FixItHint::CreateInsertion(SS.getBeginLoc(),
12795 NameInfo.getName().getAsString() +
12796 " = ");
12797 } else {
12798 // Convert 'using X::Y;' to 'typedef X::Y Y;'.
12799 SourceLocation InsertLoc = getLocForEndOfToken(NameInfo.getEndLoc());
12800 Diag(InsertLoc, diag::note_using_decl_class_member_workaround)
12801 << 1 // typedef declaration
12802 << FixItHint::CreateReplacement(UsingLoc, "typedef")
12803 << FixItHint::CreateInsertion(
12804 InsertLoc, " " + NameInfo.getName().getAsString());
12805 }
12806 } else if (R->getAsSingle<VarDecl>()) {
12807 // Don't provide a fixit outside C++11 mode; we don't want to suggest
12808 // repeating the type of the static data member here.
12809 FixItHint FixIt;
12810 if (getLangOpts().CPlusPlus11) {
12811 // Convert 'using X::Y;' to 'auto &Y = X::Y;'.
12812 FixIt = FixItHint::CreateReplacement(
12813 UsingLoc, "auto &" + NameInfo.getName().getAsString() + " = ");
12814 }
12815
12816 Diag(UsingLoc, diag::note_using_decl_class_member_workaround)
12817 << 2 // reference declaration
12818 << FixIt;
12819 } else if (R->getAsSingle<EnumConstantDecl>()) {
12820 // Don't provide a fixit outside C++11 mode; we don't want to suggest
12821 // repeating the type of the enumeration here, and we can't do so if
12822 // the type is anonymous.
12823 FixItHint FixIt;
12824 if (getLangOpts().CPlusPlus11) {
12825 // Convert 'using X::Y;' to 'auto &Y = X::Y;'.
12826 FixIt = FixItHint::CreateReplacement(
12827 UsingLoc,
12828 "constexpr auto " + NameInfo.getName().getAsString() + " = ");
12829 }
12830
12831 Diag(UsingLoc, diag::note_using_decl_class_member_workaround)
12832 << (getLangOpts().CPlusPlus11 ? 4 : 3) // const[expr] variable
12833 << FixIt;
12834 }
12835 }
12836
12837 return true; // Fail
12838 }
12839
12840 // If the named context is dependent, we can't decide much.
12841 if (!NamedContext) {
12842 // FIXME: in C++0x, we can diagnose if we can prove that the
12843 // nested-name-specifier does not refer to a base class, which is
12844 // still possible in some cases.
12845
12846 // Otherwise we have to conservatively report that things might be
12847 // okay.
12848 return false;
12849 }
12850
12851 // The current scope is a record.
12852 if (!NamedContext->isRecord()) {
12853 // Ideally this would point at the last name in the specifier,
12854 // but we don't have that level of source info.
12855 Diag(SS.getBeginLoc(),
12856 Cxx20Enumerator
12857 ? diag::warn_cxx17_compat_using_decl_non_member_enumerator
12858 : diag::err_using_decl_nested_name_specifier_is_not_class)
12859 << SS.getScopeRep() << SS.getRange();
12860
12861 if (Cxx20Enumerator)
12862 return false; // OK
12863
12864 return true;
12865 }
12866
12867 if (!NamedContext->isDependentContext() &&
12868 RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
12869 return true;
12870
12871 if (getLangOpts().CPlusPlus11) {
12872 // C++11 [namespace.udecl]p3:
12873 // In a using-declaration used as a member-declaration, the
12874 // nested-name-specifier shall name a base class of the class
12875 // being defined.
12876
12877 if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
12878 cast<CXXRecordDecl>(NamedContext))) {
12879
12880 if (Cxx20Enumerator) {
12881 Diag(NameLoc, diag::warn_cxx17_compat_using_decl_non_member_enumerator)
12882 << SS.getRange();
12883 return false;
12884 }
12885
12886 if (CurContext == NamedContext) {
12887 Diag(SS.getBeginLoc(),
12888 diag::err_using_decl_nested_name_specifier_is_current_class)
12889 << SS.getRange();
12890 return !getLangOpts().CPlusPlus20;
12891 }
12892
12893 if (!cast<CXXRecordDecl>(NamedContext)->isInvalidDecl()) {
12894 Diag(SS.getBeginLoc(),
12895 diag::err_using_decl_nested_name_specifier_is_not_base_class)
12896 << SS.getScopeRep() << cast<CXXRecordDecl>(CurContext)
12897 << SS.getRange();
12898 }
12899 return true;
12900 }
12901
12902 return false;
12903 }
12904
12905 // C++03 [namespace.udecl]p4:
12906 // A using-declaration used as a member-declaration shall refer
12907 // to a member of a base class of the class being defined [etc.].
12908
12909 // Salient point: SS doesn't have to name a base class as long as
12910 // lookup only finds members from base classes. Therefore we can
12911 // diagnose here only if we can prove that that can't happen,
12912 // i.e. if the class hierarchies provably don't intersect.
12913
12914 // TODO: it would be nice if "definitely valid" results were cached
12915 // in the UsingDecl and UsingShadowDecl so that these checks didn't
12916 // need to be repeated.
12917
12918 llvm::SmallPtrSet<const CXXRecordDecl *, 4> Bases;
12919 auto Collect = [&Bases](const CXXRecordDecl *Base) {
12920 Bases.insert(Base);
12921 return true;
12922 };
12923
12924 // Collect all bases. Return false if we find a dependent base.
12925 if (!cast<CXXRecordDecl>(CurContext)->forallBases(Collect))
12926 return false;
12927
12928 // Returns true if the base is dependent or is one of the accumulated base
12929 // classes.
12930 auto IsNotBase = [&Bases](const CXXRecordDecl *Base) {
12931 return !Bases.count(Base);
12932 };
12933
12934 // Return false if the class has a dependent base or if it or one
12935 // of its bases is present in the base set of the current context.
12936 if (Bases.count(cast<CXXRecordDecl>(NamedContext)) ||
12937 !cast<CXXRecordDecl>(NamedContext)->forallBases(IsNotBase))
12938 return false;
12939
12940 Diag(SS.getRange().getBegin(),
12941 diag::err_using_decl_nested_name_specifier_is_not_base_class)
12942 << SS.getScopeRep()
12943 << cast<CXXRecordDecl>(CurContext)
12944 << SS.getRange();
12945
12946 return true;
12947 }
12948
ActOnAliasDeclaration(Scope * S,AccessSpecifier AS,MultiTemplateParamsArg TemplateParamLists,SourceLocation UsingLoc,UnqualifiedId & Name,const ParsedAttributesView & AttrList,TypeResult Type,Decl * DeclFromDeclSpec)12949 Decl *Sema::ActOnAliasDeclaration(Scope *S, AccessSpecifier AS,
12950 MultiTemplateParamsArg TemplateParamLists,
12951 SourceLocation UsingLoc, UnqualifiedId &Name,
12952 const ParsedAttributesView &AttrList,
12953 TypeResult Type, Decl *DeclFromDeclSpec) {
12954 // Skip up to the relevant declaration scope.
12955 while (S->isTemplateParamScope())
12956 S = S->getParent();
12957 assert((S->getFlags() & Scope::DeclScope) &&
12958 "got alias-declaration outside of declaration scope");
12959
12960 if (Type.isInvalid())
12961 return nullptr;
12962
12963 bool Invalid = false;
12964 DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
12965 TypeSourceInfo *TInfo = nullptr;
12966 GetTypeFromParser(Type.get(), &TInfo);
12967
12968 if (DiagnoseClassNameShadow(CurContext, NameInfo))
12969 return nullptr;
12970
12971 if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
12972 UPPC_DeclarationType)) {
12973 Invalid = true;
12974 TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
12975 TInfo->getTypeLoc().getBeginLoc());
12976 }
12977
12978 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
12979 TemplateParamLists.size()
12980 ? forRedeclarationInCurContext()
12981 : ForVisibleRedeclaration);
12982 LookupName(Previous, S);
12983
12984 // Warn about shadowing the name of a template parameter.
12985 if (Previous.isSingleResult() &&
12986 Previous.getFoundDecl()->isTemplateParameter()) {
12987 DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
12988 Previous.clear();
12989 }
12990
12991 assert(Name.Kind == UnqualifiedIdKind::IK_Identifier &&
12992 "name in alias declaration must be an identifier");
12993 TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
12994 Name.StartLocation,
12995 Name.Identifier, TInfo);
12996
12997 NewTD->setAccess(AS);
12998
12999 if (Invalid)
13000 NewTD->setInvalidDecl();
13001
13002 ProcessDeclAttributeList(S, NewTD, AttrList);
13003 AddPragmaAttributes(S, NewTD);
13004
13005 CheckTypedefForVariablyModifiedType(S, NewTD);
13006 Invalid |= NewTD->isInvalidDecl();
13007
13008 bool Redeclaration = false;
13009
13010 NamedDecl *NewND;
13011 if (TemplateParamLists.size()) {
13012 TypeAliasTemplateDecl *OldDecl = nullptr;
13013 TemplateParameterList *OldTemplateParams = nullptr;
13014
13015 if (TemplateParamLists.size() != 1) {
13016 Diag(UsingLoc, diag::err_alias_template_extra_headers)
13017 << SourceRange(TemplateParamLists[1]->getTemplateLoc(),
13018 TemplateParamLists[TemplateParamLists.size()-1]->getRAngleLoc());
13019 }
13020 TemplateParameterList *TemplateParams = TemplateParamLists[0];
13021
13022 // Check that we can declare a template here.
13023 if (CheckTemplateDeclScope(S, TemplateParams))
13024 return nullptr;
13025
13026 // Only consider previous declarations in the same scope.
13027 FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
13028 /*ExplicitInstantiationOrSpecialization*/false);
13029 if (!Previous.empty()) {
13030 Redeclaration = true;
13031
13032 OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
13033 if (!OldDecl && !Invalid) {
13034 Diag(UsingLoc, diag::err_redefinition_different_kind)
13035 << Name.Identifier;
13036
13037 NamedDecl *OldD = Previous.getRepresentativeDecl();
13038 if (OldD->getLocation().isValid())
13039 Diag(OldD->getLocation(), diag::note_previous_definition);
13040
13041 Invalid = true;
13042 }
13043
13044 if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
13045 if (TemplateParameterListsAreEqual(TemplateParams,
13046 OldDecl->getTemplateParameters(),
13047 /*Complain=*/true,
13048 TPL_TemplateMatch))
13049 OldTemplateParams =
13050 OldDecl->getMostRecentDecl()->getTemplateParameters();
13051 else
13052 Invalid = true;
13053
13054 TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
13055 if (!Invalid &&
13056 !Context.hasSameType(OldTD->getUnderlyingType(),
13057 NewTD->getUnderlyingType())) {
13058 // FIXME: The C++0x standard does not clearly say this is ill-formed,
13059 // but we can't reasonably accept it.
13060 Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
13061 << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
13062 if (OldTD->getLocation().isValid())
13063 Diag(OldTD->getLocation(), diag::note_previous_definition);
13064 Invalid = true;
13065 }
13066 }
13067 }
13068
13069 // Merge any previous default template arguments into our parameters,
13070 // and check the parameter list.
13071 if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
13072 TPC_TypeAliasTemplate))
13073 return nullptr;
13074
13075 TypeAliasTemplateDecl *NewDecl =
13076 TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
13077 Name.Identifier, TemplateParams,
13078 NewTD);
13079 NewTD->setDescribedAliasTemplate(NewDecl);
13080
13081 NewDecl->setAccess(AS);
13082
13083 if (Invalid)
13084 NewDecl->setInvalidDecl();
13085 else if (OldDecl) {
13086 NewDecl->setPreviousDecl(OldDecl);
13087 CheckRedeclarationInModule(NewDecl, OldDecl);
13088 }
13089
13090 NewND = NewDecl;
13091 } else {
13092 if (auto *TD = dyn_cast_or_null<TagDecl>(DeclFromDeclSpec)) {
13093 setTagNameForLinkagePurposes(TD, NewTD);
13094 handleTagNumbering(TD, S);
13095 }
13096 ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
13097 NewND = NewTD;
13098 }
13099
13100 PushOnScopeChains(NewND, S);
13101 ActOnDocumentableDecl(NewND);
13102 return NewND;
13103 }
13104
ActOnNamespaceAliasDef(Scope * S,SourceLocation NamespaceLoc,SourceLocation AliasLoc,IdentifierInfo * Alias,CXXScopeSpec & SS,SourceLocation IdentLoc,IdentifierInfo * Ident)13105 Decl *Sema::ActOnNamespaceAliasDef(Scope *S, SourceLocation NamespaceLoc,
13106 SourceLocation AliasLoc,
13107 IdentifierInfo *Alias, CXXScopeSpec &SS,
13108 SourceLocation IdentLoc,
13109 IdentifierInfo *Ident) {
13110
13111 // Lookup the namespace name.
13112 LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
13113 LookupParsedName(R, S, &SS);
13114
13115 if (R.isAmbiguous())
13116 return nullptr;
13117
13118 if (R.empty()) {
13119 if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
13120 Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
13121 return nullptr;
13122 }
13123 }
13124 assert(!R.isAmbiguous() && !R.empty());
13125 NamedDecl *ND = R.getRepresentativeDecl();
13126
13127 // Check if we have a previous declaration with the same name.
13128 LookupResult PrevR(*this, Alias, AliasLoc, LookupOrdinaryName,
13129 ForVisibleRedeclaration);
13130 LookupName(PrevR, S);
13131
13132 // Check we're not shadowing a template parameter.
13133 if (PrevR.isSingleResult() && PrevR.getFoundDecl()->isTemplateParameter()) {
13134 DiagnoseTemplateParameterShadow(AliasLoc, PrevR.getFoundDecl());
13135 PrevR.clear();
13136 }
13137
13138 // Filter out any other lookup result from an enclosing scope.
13139 FilterLookupForScope(PrevR, CurContext, S, /*ConsiderLinkage*/false,
13140 /*AllowInlineNamespace*/false);
13141
13142 // Find the previous declaration and check that we can redeclare it.
13143 NamespaceAliasDecl *Prev = nullptr;
13144 if (PrevR.isSingleResult()) {
13145 NamedDecl *PrevDecl = PrevR.getRepresentativeDecl();
13146 if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
13147 // We already have an alias with the same name that points to the same
13148 // namespace; check that it matches.
13149 if (AD->getNamespace()->Equals(getNamespaceDecl(ND))) {
13150 Prev = AD;
13151 } else if (isVisible(PrevDecl)) {
13152 Diag(AliasLoc, diag::err_redefinition_different_namespace_alias)
13153 << Alias;
13154 Diag(AD->getLocation(), diag::note_previous_namespace_alias)
13155 << AD->getNamespace();
13156 return nullptr;
13157 }
13158 } else if (isVisible(PrevDecl)) {
13159 unsigned DiagID = isa<NamespaceDecl>(PrevDecl->getUnderlyingDecl())
13160 ? diag::err_redefinition
13161 : diag::err_redefinition_different_kind;
13162 Diag(AliasLoc, DiagID) << Alias;
13163 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
13164 return nullptr;
13165 }
13166 }
13167
13168 // The use of a nested name specifier may trigger deprecation warnings.
13169 DiagnoseUseOfDecl(ND, IdentLoc);
13170
13171 NamespaceAliasDecl *AliasDecl =
13172 NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
13173 Alias, SS.getWithLocInContext(Context),
13174 IdentLoc, ND);
13175 if (Prev)
13176 AliasDecl->setPreviousDecl(Prev);
13177
13178 PushOnScopeChains(AliasDecl, S);
13179 return AliasDecl;
13180 }
13181
13182 namespace {
13183 struct SpecialMemberExceptionSpecInfo
13184 : SpecialMemberVisitor<SpecialMemberExceptionSpecInfo> {
13185 SourceLocation Loc;
13186 Sema::ImplicitExceptionSpecification ExceptSpec;
13187
SpecialMemberExceptionSpecInfo__anonc19065b03511::SpecialMemberExceptionSpecInfo13188 SpecialMemberExceptionSpecInfo(Sema &S, CXXMethodDecl *MD,
13189 Sema::CXXSpecialMember CSM,
13190 Sema::InheritedConstructorInfo *ICI,
13191 SourceLocation Loc)
13192 : SpecialMemberVisitor(S, MD, CSM, ICI), Loc(Loc), ExceptSpec(S) {}
13193
13194 bool visitBase(CXXBaseSpecifier *Base);
13195 bool visitField(FieldDecl *FD);
13196
13197 void visitClassSubobject(CXXRecordDecl *Class, Subobject Subobj,
13198 unsigned Quals);
13199
13200 void visitSubobjectCall(Subobject Subobj,
13201 Sema::SpecialMemberOverloadResult SMOR);
13202 };
13203 }
13204
visitBase(CXXBaseSpecifier * Base)13205 bool SpecialMemberExceptionSpecInfo::visitBase(CXXBaseSpecifier *Base) {
13206 auto *RT = Base->getType()->getAs<RecordType>();
13207 if (!RT)
13208 return false;
13209
13210 auto *BaseClass = cast<CXXRecordDecl>(RT->getDecl());
13211 Sema::SpecialMemberOverloadResult SMOR = lookupInheritedCtor(BaseClass);
13212 if (auto *BaseCtor = SMOR.getMethod()) {
13213 visitSubobjectCall(Base, BaseCtor);
13214 return false;
13215 }
13216
13217 visitClassSubobject(BaseClass, Base, 0);
13218 return false;
13219 }
13220
visitField(FieldDecl * FD)13221 bool SpecialMemberExceptionSpecInfo::visitField(FieldDecl *FD) {
13222 if (CSM == Sema::CXXDefaultConstructor && FD->hasInClassInitializer()) {
13223 Expr *E = FD->getInClassInitializer();
13224 if (!E)
13225 // FIXME: It's a little wasteful to build and throw away a
13226 // CXXDefaultInitExpr here.
13227 // FIXME: We should have a single context note pointing at Loc, and
13228 // this location should be MD->getLocation() instead, since that's
13229 // the location where we actually use the default init expression.
13230 E = S.BuildCXXDefaultInitExpr(Loc, FD).get();
13231 if (E)
13232 ExceptSpec.CalledExpr(E);
13233 } else if (auto *RT = S.Context.getBaseElementType(FD->getType())
13234 ->getAs<RecordType>()) {
13235 visitClassSubobject(cast<CXXRecordDecl>(RT->getDecl()), FD,
13236 FD->getType().getCVRQualifiers());
13237 }
13238 return false;
13239 }
13240
visitClassSubobject(CXXRecordDecl * Class,Subobject Subobj,unsigned Quals)13241 void SpecialMemberExceptionSpecInfo::visitClassSubobject(CXXRecordDecl *Class,
13242 Subobject Subobj,
13243 unsigned Quals) {
13244 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
13245 bool IsMutable = Field && Field->isMutable();
13246 visitSubobjectCall(Subobj, lookupIn(Class, Quals, IsMutable));
13247 }
13248
visitSubobjectCall(Subobject Subobj,Sema::SpecialMemberOverloadResult SMOR)13249 void SpecialMemberExceptionSpecInfo::visitSubobjectCall(
13250 Subobject Subobj, Sema::SpecialMemberOverloadResult SMOR) {
13251 // Note, if lookup fails, it doesn't matter what exception specification we
13252 // choose because the special member will be deleted.
13253 if (CXXMethodDecl *MD = SMOR.getMethod())
13254 ExceptSpec.CalledDecl(getSubobjectLoc(Subobj), MD);
13255 }
13256
tryResolveExplicitSpecifier(ExplicitSpecifier & ExplicitSpec)13257 bool Sema::tryResolveExplicitSpecifier(ExplicitSpecifier &ExplicitSpec) {
13258 llvm::APSInt Result;
13259 ExprResult Converted = CheckConvertedConstantExpression(
13260 ExplicitSpec.getExpr(), Context.BoolTy, Result, CCEK_ExplicitBool);
13261 ExplicitSpec.setExpr(Converted.get());
13262 if (Converted.isUsable() && !Converted.get()->isValueDependent()) {
13263 ExplicitSpec.setKind(Result.getBoolValue()
13264 ? ExplicitSpecKind::ResolvedTrue
13265 : ExplicitSpecKind::ResolvedFalse);
13266 return true;
13267 }
13268 ExplicitSpec.setKind(ExplicitSpecKind::Unresolved);
13269 return false;
13270 }
13271
ActOnExplicitBoolSpecifier(Expr * ExplicitExpr)13272 ExplicitSpecifier Sema::ActOnExplicitBoolSpecifier(Expr *ExplicitExpr) {
13273 ExplicitSpecifier ES(ExplicitExpr, ExplicitSpecKind::Unresolved);
13274 if (!ExplicitExpr->isTypeDependent())
13275 tryResolveExplicitSpecifier(ES);
13276 return ES;
13277 }
13278
13279 static Sema::ImplicitExceptionSpecification
ComputeDefaultedSpecialMemberExceptionSpec(Sema & S,SourceLocation Loc,CXXMethodDecl * MD,Sema::CXXSpecialMember CSM,Sema::InheritedConstructorInfo * ICI)13280 ComputeDefaultedSpecialMemberExceptionSpec(
13281 Sema &S, SourceLocation Loc, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM,
13282 Sema::InheritedConstructorInfo *ICI) {
13283 ComputingExceptionSpec CES(S, MD, Loc);
13284
13285 CXXRecordDecl *ClassDecl = MD->getParent();
13286
13287 // C++ [except.spec]p14:
13288 // An implicitly declared special member function (Clause 12) shall have an
13289 // exception-specification. [...]
13290 SpecialMemberExceptionSpecInfo Info(S, MD, CSM, ICI, MD->getLocation());
13291 if (ClassDecl->isInvalidDecl())
13292 return Info.ExceptSpec;
13293
13294 // FIXME: If this diagnostic fires, we're probably missing a check for
13295 // attempting to resolve an exception specification before it's known
13296 // at a higher level.
13297 if (S.RequireCompleteType(MD->getLocation(),
13298 S.Context.getRecordType(ClassDecl),
13299 diag::err_exception_spec_incomplete_type))
13300 return Info.ExceptSpec;
13301
13302 // C++1z [except.spec]p7:
13303 // [Look for exceptions thrown by] a constructor selected [...] to
13304 // initialize a potentially constructed subobject,
13305 // C++1z [except.spec]p8:
13306 // The exception specification for an implicitly-declared destructor, or a
13307 // destructor without a noexcept-specifier, is potentially-throwing if and
13308 // only if any of the destructors for any of its potentially constructed
13309 // subojects is potentially throwing.
13310 // FIXME: We respect the first rule but ignore the "potentially constructed"
13311 // in the second rule to resolve a core issue (no number yet) that would have
13312 // us reject:
13313 // struct A { virtual void f() = 0; virtual ~A() noexcept(false) = 0; };
13314 // struct B : A {};
13315 // struct C : B { void f(); };
13316 // ... due to giving B::~B() a non-throwing exception specification.
13317 Info.visit(Info.IsConstructor ? Info.VisitPotentiallyConstructedBases
13318 : Info.VisitAllBases);
13319
13320 return Info.ExceptSpec;
13321 }
13322
13323 namespace {
13324 /// RAII object to register a special member as being currently declared.
13325 struct DeclaringSpecialMember {
13326 Sema &S;
13327 Sema::SpecialMemberDecl D;
13328 Sema::ContextRAII SavedContext;
13329 bool WasAlreadyBeingDeclared;
13330
DeclaringSpecialMember__anonc19065b03611::DeclaringSpecialMember13331 DeclaringSpecialMember(Sema &S, CXXRecordDecl *RD, Sema::CXXSpecialMember CSM)
13332 : S(S), D(RD, CSM), SavedContext(S, RD) {
13333 WasAlreadyBeingDeclared = !S.SpecialMembersBeingDeclared.insert(D).second;
13334 if (WasAlreadyBeingDeclared)
13335 // This almost never happens, but if it does, ensure that our cache
13336 // doesn't contain a stale result.
13337 S.SpecialMemberCache.clear();
13338 else {
13339 // Register a note to be produced if we encounter an error while
13340 // declaring the special member.
13341 Sema::CodeSynthesisContext Ctx;
13342 Ctx.Kind = Sema::CodeSynthesisContext::DeclaringSpecialMember;
13343 // FIXME: We don't have a location to use here. Using the class's
13344 // location maintains the fiction that we declare all special members
13345 // with the class, but (1) it's not clear that lying about that helps our
13346 // users understand what's going on, and (2) there may be outer contexts
13347 // on the stack (some of which are relevant) and printing them exposes
13348 // our lies.
13349 Ctx.PointOfInstantiation = RD->getLocation();
13350 Ctx.Entity = RD;
13351 Ctx.SpecialMember = CSM;
13352 S.pushCodeSynthesisContext(Ctx);
13353 }
13354 }
~DeclaringSpecialMember__anonc19065b03611::DeclaringSpecialMember13355 ~DeclaringSpecialMember() {
13356 if (!WasAlreadyBeingDeclared) {
13357 S.SpecialMembersBeingDeclared.erase(D);
13358 S.popCodeSynthesisContext();
13359 }
13360 }
13361
13362 /// Are we already trying to declare this special member?
isAlreadyBeingDeclared__anonc19065b03611::DeclaringSpecialMember13363 bool isAlreadyBeingDeclared() const {
13364 return WasAlreadyBeingDeclared;
13365 }
13366 };
13367 }
13368
CheckImplicitSpecialMemberDeclaration(Scope * S,FunctionDecl * FD)13369 void Sema::CheckImplicitSpecialMemberDeclaration(Scope *S, FunctionDecl *FD) {
13370 // Look up any existing declarations, but don't trigger declaration of all
13371 // implicit special members with this name.
13372 DeclarationName Name = FD->getDeclName();
13373 LookupResult R(*this, Name, SourceLocation(), LookupOrdinaryName,
13374 ForExternalRedeclaration);
13375 for (auto *D : FD->getParent()->lookup(Name))
13376 if (auto *Acceptable = R.getAcceptableDecl(D))
13377 R.addDecl(Acceptable);
13378 R.resolveKind();
13379 R.suppressDiagnostics();
13380
13381 CheckFunctionDeclaration(S, FD, R, /*IsMemberSpecialization*/ false,
13382 FD->isThisDeclarationADefinition());
13383 }
13384
setupImplicitSpecialMemberType(CXXMethodDecl * SpecialMem,QualType ResultTy,ArrayRef<QualType> Args)13385 void Sema::setupImplicitSpecialMemberType(CXXMethodDecl *SpecialMem,
13386 QualType ResultTy,
13387 ArrayRef<QualType> Args) {
13388 // Build an exception specification pointing back at this constructor.
13389 FunctionProtoType::ExtProtoInfo EPI = getImplicitMethodEPI(*this, SpecialMem);
13390
13391 LangAS AS = getDefaultCXXMethodAddrSpace();
13392 if (AS != LangAS::Default) {
13393 EPI.TypeQuals.addAddressSpace(AS);
13394 }
13395
13396 auto QT = Context.getFunctionType(ResultTy, Args, EPI);
13397 SpecialMem->setType(QT);
13398
13399 // During template instantiation of implicit special member functions we need
13400 // a reliable TypeSourceInfo for the function prototype in order to allow
13401 // functions to be substituted.
13402 if (inTemplateInstantiation() &&
13403 cast<CXXRecordDecl>(SpecialMem->getParent())->isLambda()) {
13404 TypeSourceInfo *TSI =
13405 Context.getTrivialTypeSourceInfo(SpecialMem->getType());
13406 SpecialMem->setTypeSourceInfo(TSI);
13407 }
13408 }
13409
DeclareImplicitDefaultConstructor(CXXRecordDecl * ClassDecl)13410 CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
13411 CXXRecordDecl *ClassDecl) {
13412 // C++ [class.ctor]p5:
13413 // A default constructor for a class X is a constructor of class X
13414 // that can be called without an argument. If there is no
13415 // user-declared constructor for class X, a default constructor is
13416 // implicitly declared. An implicitly-declared default constructor
13417 // is an inline public member of its class.
13418 assert(ClassDecl->needsImplicitDefaultConstructor() &&
13419 "Should not build implicit default constructor!");
13420
13421 DeclaringSpecialMember DSM(*this, ClassDecl, CXXDefaultConstructor);
13422 if (DSM.isAlreadyBeingDeclared())
13423 return nullptr;
13424
13425 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
13426 CXXDefaultConstructor,
13427 false);
13428
13429 // Create the actual constructor declaration.
13430 CanQualType ClassType
13431 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
13432 SourceLocation ClassLoc = ClassDecl->getLocation();
13433 DeclarationName Name
13434 = Context.DeclarationNames.getCXXConstructorName(ClassType);
13435 DeclarationNameInfo NameInfo(Name, ClassLoc);
13436 CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
13437 Context, ClassDecl, ClassLoc, NameInfo, /*Type*/ QualType(),
13438 /*TInfo=*/nullptr, ExplicitSpecifier(),
13439 getCurFPFeatures().isFPConstrained(),
13440 /*isInline=*/true, /*isImplicitlyDeclared=*/true,
13441 Constexpr ? ConstexprSpecKind::Constexpr
13442 : ConstexprSpecKind::Unspecified);
13443 DefaultCon->setAccess(AS_public);
13444 DefaultCon->setDefaulted();
13445
13446 setupImplicitSpecialMemberType(DefaultCon, Context.VoidTy, None);
13447
13448 if (getLangOpts().CUDA)
13449 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXDefaultConstructor,
13450 DefaultCon,
13451 /* ConstRHS */ false,
13452 /* Diagnose */ false);
13453
13454 // We don't need to use SpecialMemberIsTrivial here; triviality for default
13455 // constructors is easy to compute.
13456 DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
13457
13458 // Note that we have declared this constructor.
13459 ++getASTContext().NumImplicitDefaultConstructorsDeclared;
13460
13461 Scope *S = getScopeForContext(ClassDecl);
13462 CheckImplicitSpecialMemberDeclaration(S, DefaultCon);
13463
13464 if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
13465 SetDeclDeleted(DefaultCon, ClassLoc);
13466
13467 if (S)
13468 PushOnScopeChains(DefaultCon, S, false);
13469 ClassDecl->addDecl(DefaultCon);
13470
13471 return DefaultCon;
13472 }
13473
DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,CXXConstructorDecl * Constructor)13474 void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
13475 CXXConstructorDecl *Constructor) {
13476 assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
13477 !Constructor->doesThisDeclarationHaveABody() &&
13478 !Constructor->isDeleted()) &&
13479 "DefineImplicitDefaultConstructor - call it for implicit default ctor");
13480 if (Constructor->willHaveBody() || Constructor->isInvalidDecl())
13481 return;
13482
13483 CXXRecordDecl *ClassDecl = Constructor->getParent();
13484 assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
13485
13486 SynthesizedFunctionScope Scope(*this, Constructor);
13487
13488 // The exception specification is needed because we are defining the
13489 // function.
13490 ResolveExceptionSpec(CurrentLocation,
13491 Constructor->getType()->castAs<FunctionProtoType>());
13492 MarkVTableUsed(CurrentLocation, ClassDecl);
13493
13494 // Add a context note for diagnostics produced after this point.
13495 Scope.addContextNote(CurrentLocation);
13496
13497 if (SetCtorInitializers(Constructor, /*AnyErrors=*/false)) {
13498 Constructor->setInvalidDecl();
13499 return;
13500 }
13501
13502 SourceLocation Loc = Constructor->getEndLoc().isValid()
13503 ? Constructor->getEndLoc()
13504 : Constructor->getLocation();
13505 Constructor->setBody(new (Context) CompoundStmt(Loc));
13506 Constructor->markUsed(Context);
13507
13508 if (ASTMutationListener *L = getASTMutationListener()) {
13509 L->CompletedImplicitDefinition(Constructor);
13510 }
13511
13512 DiagnoseUninitializedFields(*this, Constructor);
13513 }
13514
ActOnFinishDelayedMemberInitializers(Decl * D)13515 void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
13516 // Perform any delayed checks on exception specifications.
13517 CheckDelayedMemberExceptionSpecs();
13518 }
13519
13520 /// Find or create the fake constructor we synthesize to model constructing an
13521 /// object of a derived class via a constructor of a base class.
13522 CXXConstructorDecl *
findInheritingConstructor(SourceLocation Loc,CXXConstructorDecl * BaseCtor,ConstructorUsingShadowDecl * Shadow)13523 Sema::findInheritingConstructor(SourceLocation Loc,
13524 CXXConstructorDecl *BaseCtor,
13525 ConstructorUsingShadowDecl *Shadow) {
13526 CXXRecordDecl *Derived = Shadow->getParent();
13527 SourceLocation UsingLoc = Shadow->getLocation();
13528
13529 // FIXME: Add a new kind of DeclarationName for an inherited constructor.
13530 // For now we use the name of the base class constructor as a member of the
13531 // derived class to indicate a (fake) inherited constructor name.
13532 DeclarationName Name = BaseCtor->getDeclName();
13533
13534 // Check to see if we already have a fake constructor for this inherited
13535 // constructor call.
13536 for (NamedDecl *Ctor : Derived->lookup(Name))
13537 if (declaresSameEntity(cast<CXXConstructorDecl>(Ctor)
13538 ->getInheritedConstructor()
13539 .getConstructor(),
13540 BaseCtor))
13541 return cast<CXXConstructorDecl>(Ctor);
13542
13543 DeclarationNameInfo NameInfo(Name, UsingLoc);
13544 TypeSourceInfo *TInfo =
13545 Context.getTrivialTypeSourceInfo(BaseCtor->getType(), UsingLoc);
13546 FunctionProtoTypeLoc ProtoLoc =
13547 TInfo->getTypeLoc().IgnoreParens().castAs<FunctionProtoTypeLoc>();
13548
13549 // Check the inherited constructor is valid and find the list of base classes
13550 // from which it was inherited.
13551 InheritedConstructorInfo ICI(*this, Loc, Shadow);
13552
13553 bool Constexpr =
13554 BaseCtor->isConstexpr() &&
13555 defaultedSpecialMemberIsConstexpr(*this, Derived, CXXDefaultConstructor,
13556 false, BaseCtor, &ICI);
13557
13558 CXXConstructorDecl *DerivedCtor = CXXConstructorDecl::Create(
13559 Context, Derived, UsingLoc, NameInfo, TInfo->getType(), TInfo,
13560 BaseCtor->getExplicitSpecifier(), getCurFPFeatures().isFPConstrained(),
13561 /*isInline=*/true,
13562 /*isImplicitlyDeclared=*/true,
13563 Constexpr ? BaseCtor->getConstexprKind() : ConstexprSpecKind::Unspecified,
13564 InheritedConstructor(Shadow, BaseCtor),
13565 BaseCtor->getTrailingRequiresClause());
13566 if (Shadow->isInvalidDecl())
13567 DerivedCtor->setInvalidDecl();
13568
13569 // Build an unevaluated exception specification for this fake constructor.
13570 const FunctionProtoType *FPT = TInfo->getType()->castAs<FunctionProtoType>();
13571 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
13572 EPI.ExceptionSpec.Type = EST_Unevaluated;
13573 EPI.ExceptionSpec.SourceDecl = DerivedCtor;
13574 DerivedCtor->setType(Context.getFunctionType(FPT->getReturnType(),
13575 FPT->getParamTypes(), EPI));
13576
13577 // Build the parameter declarations.
13578 SmallVector<ParmVarDecl *, 16> ParamDecls;
13579 for (unsigned I = 0, N = FPT->getNumParams(); I != N; ++I) {
13580 TypeSourceInfo *TInfo =
13581 Context.getTrivialTypeSourceInfo(FPT->getParamType(I), UsingLoc);
13582 ParmVarDecl *PD = ParmVarDecl::Create(
13583 Context, DerivedCtor, UsingLoc, UsingLoc, /*IdentifierInfo=*/nullptr,
13584 FPT->getParamType(I), TInfo, SC_None, /*DefArg=*/nullptr);
13585 PD->setScopeInfo(0, I);
13586 PD->setImplicit();
13587 // Ensure attributes are propagated onto parameters (this matters for
13588 // format, pass_object_size, ...).
13589 mergeDeclAttributes(PD, BaseCtor->getParamDecl(I));
13590 ParamDecls.push_back(PD);
13591 ProtoLoc.setParam(I, PD);
13592 }
13593
13594 // Set up the new constructor.
13595 assert(!BaseCtor->isDeleted() && "should not use deleted constructor");
13596 DerivedCtor->setAccess(BaseCtor->getAccess());
13597 DerivedCtor->setParams(ParamDecls);
13598 Derived->addDecl(DerivedCtor);
13599
13600 if (ShouldDeleteSpecialMember(DerivedCtor, CXXDefaultConstructor, &ICI))
13601 SetDeclDeleted(DerivedCtor, UsingLoc);
13602
13603 return DerivedCtor;
13604 }
13605
NoteDeletedInheritingConstructor(CXXConstructorDecl * Ctor)13606 void Sema::NoteDeletedInheritingConstructor(CXXConstructorDecl *Ctor) {
13607 InheritedConstructorInfo ICI(*this, Ctor->getLocation(),
13608 Ctor->getInheritedConstructor().getShadowDecl());
13609 ShouldDeleteSpecialMember(Ctor, CXXDefaultConstructor, &ICI,
13610 /*Diagnose*/true);
13611 }
13612
DefineInheritingConstructor(SourceLocation CurrentLocation,CXXConstructorDecl * Constructor)13613 void Sema::DefineInheritingConstructor(SourceLocation CurrentLocation,
13614 CXXConstructorDecl *Constructor) {
13615 CXXRecordDecl *ClassDecl = Constructor->getParent();
13616 assert(Constructor->getInheritedConstructor() &&
13617 !Constructor->doesThisDeclarationHaveABody() &&
13618 !Constructor->isDeleted());
13619 if (Constructor->willHaveBody() || Constructor->isInvalidDecl())
13620 return;
13621
13622 // Initializations are performed "as if by a defaulted default constructor",
13623 // so enter the appropriate scope.
13624 SynthesizedFunctionScope Scope(*this, Constructor);
13625
13626 // The exception specification is needed because we are defining the
13627 // function.
13628 ResolveExceptionSpec(CurrentLocation,
13629 Constructor->getType()->castAs<FunctionProtoType>());
13630 MarkVTableUsed(CurrentLocation, ClassDecl);
13631
13632 // Add a context note for diagnostics produced after this point.
13633 Scope.addContextNote(CurrentLocation);
13634
13635 ConstructorUsingShadowDecl *Shadow =
13636 Constructor->getInheritedConstructor().getShadowDecl();
13637 CXXConstructorDecl *InheritedCtor =
13638 Constructor->getInheritedConstructor().getConstructor();
13639
13640 // [class.inhctor.init]p1:
13641 // initialization proceeds as if a defaulted default constructor is used to
13642 // initialize the D object and each base class subobject from which the
13643 // constructor was inherited
13644
13645 InheritedConstructorInfo ICI(*this, CurrentLocation, Shadow);
13646 CXXRecordDecl *RD = Shadow->getParent();
13647 SourceLocation InitLoc = Shadow->getLocation();
13648
13649 // Build explicit initializers for all base classes from which the
13650 // constructor was inherited.
13651 SmallVector<CXXCtorInitializer*, 8> Inits;
13652 for (bool VBase : {false, true}) {
13653 for (CXXBaseSpecifier &B : VBase ? RD->vbases() : RD->bases()) {
13654 if (B.isVirtual() != VBase)
13655 continue;
13656
13657 auto *BaseRD = B.getType()->getAsCXXRecordDecl();
13658 if (!BaseRD)
13659 continue;
13660
13661 auto BaseCtor = ICI.findConstructorForBase(BaseRD, InheritedCtor);
13662 if (!BaseCtor.first)
13663 continue;
13664
13665 MarkFunctionReferenced(CurrentLocation, BaseCtor.first);
13666 ExprResult Init = new (Context) CXXInheritedCtorInitExpr(
13667 InitLoc, B.getType(), BaseCtor.first, VBase, BaseCtor.second);
13668
13669 auto *TInfo = Context.getTrivialTypeSourceInfo(B.getType(), InitLoc);
13670 Inits.push_back(new (Context) CXXCtorInitializer(
13671 Context, TInfo, VBase, InitLoc, Init.get(), InitLoc,
13672 SourceLocation()));
13673 }
13674 }
13675
13676 // We now proceed as if for a defaulted default constructor, with the relevant
13677 // initializers replaced.
13678
13679 if (SetCtorInitializers(Constructor, /*AnyErrors*/false, Inits)) {
13680 Constructor->setInvalidDecl();
13681 return;
13682 }
13683
13684 Constructor->setBody(new (Context) CompoundStmt(InitLoc));
13685 Constructor->markUsed(Context);
13686
13687 if (ASTMutationListener *L = getASTMutationListener()) {
13688 L->CompletedImplicitDefinition(Constructor);
13689 }
13690
13691 DiagnoseUninitializedFields(*this, Constructor);
13692 }
13693
DeclareImplicitDestructor(CXXRecordDecl * ClassDecl)13694 CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
13695 // C++ [class.dtor]p2:
13696 // If a class has no user-declared destructor, a destructor is
13697 // declared implicitly. An implicitly-declared destructor is an
13698 // inline public member of its class.
13699 assert(ClassDecl->needsImplicitDestructor());
13700
13701 DeclaringSpecialMember DSM(*this, ClassDecl, CXXDestructor);
13702 if (DSM.isAlreadyBeingDeclared())
13703 return nullptr;
13704
13705 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
13706 CXXDestructor,
13707 false);
13708
13709 // Create the actual destructor declaration.
13710 CanQualType ClassType
13711 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
13712 SourceLocation ClassLoc = ClassDecl->getLocation();
13713 DeclarationName Name
13714 = Context.DeclarationNames.getCXXDestructorName(ClassType);
13715 DeclarationNameInfo NameInfo(Name, ClassLoc);
13716 CXXDestructorDecl *Destructor = CXXDestructorDecl::Create(
13717 Context, ClassDecl, ClassLoc, NameInfo, QualType(), nullptr,
13718 getCurFPFeatures().isFPConstrained(),
13719 /*isInline=*/true,
13720 /*isImplicitlyDeclared=*/true,
13721 Constexpr ? ConstexprSpecKind::Constexpr
13722 : ConstexprSpecKind::Unspecified);
13723 Destructor->setAccess(AS_public);
13724 Destructor->setDefaulted();
13725
13726 setupImplicitSpecialMemberType(Destructor, Context.VoidTy, None);
13727
13728 if (getLangOpts().CUDA)
13729 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXDestructor,
13730 Destructor,
13731 /* ConstRHS */ false,
13732 /* Diagnose */ false);
13733
13734 // We don't need to use SpecialMemberIsTrivial here; triviality for
13735 // destructors is easy to compute.
13736 Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
13737 Destructor->setTrivialForCall(ClassDecl->hasAttr<TrivialABIAttr>() ||
13738 ClassDecl->hasTrivialDestructorForCall());
13739
13740 // Note that we have declared this destructor.
13741 ++getASTContext().NumImplicitDestructorsDeclared;
13742
13743 Scope *S = getScopeForContext(ClassDecl);
13744 CheckImplicitSpecialMemberDeclaration(S, Destructor);
13745
13746 // We can't check whether an implicit destructor is deleted before we complete
13747 // the definition of the class, because its validity depends on the alignment
13748 // of the class. We'll check this from ActOnFields once the class is complete.
13749 if (ClassDecl->isCompleteDefinition() &&
13750 ShouldDeleteSpecialMember(Destructor, CXXDestructor))
13751 SetDeclDeleted(Destructor, ClassLoc);
13752
13753 // Introduce this destructor into its scope.
13754 if (S)
13755 PushOnScopeChains(Destructor, S, false);
13756 ClassDecl->addDecl(Destructor);
13757
13758 return Destructor;
13759 }
13760
DefineImplicitDestructor(SourceLocation CurrentLocation,CXXDestructorDecl * Destructor)13761 void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
13762 CXXDestructorDecl *Destructor) {
13763 assert((Destructor->isDefaulted() &&
13764 !Destructor->doesThisDeclarationHaveABody() &&
13765 !Destructor->isDeleted()) &&
13766 "DefineImplicitDestructor - call it for implicit default dtor");
13767 if (Destructor->willHaveBody() || Destructor->isInvalidDecl())
13768 return;
13769
13770 CXXRecordDecl *ClassDecl = Destructor->getParent();
13771 assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
13772
13773 SynthesizedFunctionScope Scope(*this, Destructor);
13774
13775 // The exception specification is needed because we are defining the
13776 // function.
13777 ResolveExceptionSpec(CurrentLocation,
13778 Destructor->getType()->castAs<FunctionProtoType>());
13779 MarkVTableUsed(CurrentLocation, ClassDecl);
13780
13781 // Add a context note for diagnostics produced after this point.
13782 Scope.addContextNote(CurrentLocation);
13783
13784 MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
13785 Destructor->getParent());
13786
13787 if (CheckDestructor(Destructor)) {
13788 Destructor->setInvalidDecl();
13789 return;
13790 }
13791
13792 SourceLocation Loc = Destructor->getEndLoc().isValid()
13793 ? Destructor->getEndLoc()
13794 : Destructor->getLocation();
13795 Destructor->setBody(new (Context) CompoundStmt(Loc));
13796 Destructor->markUsed(Context);
13797
13798 if (ASTMutationListener *L = getASTMutationListener()) {
13799 L->CompletedImplicitDefinition(Destructor);
13800 }
13801 }
13802
CheckCompleteDestructorVariant(SourceLocation CurrentLocation,CXXDestructorDecl * Destructor)13803 void Sema::CheckCompleteDestructorVariant(SourceLocation CurrentLocation,
13804 CXXDestructorDecl *Destructor) {
13805 if (Destructor->isInvalidDecl())
13806 return;
13807
13808 CXXRecordDecl *ClassDecl = Destructor->getParent();
13809 assert(Context.getTargetInfo().getCXXABI().isMicrosoft() &&
13810 "implicit complete dtors unneeded outside MS ABI");
13811 assert(ClassDecl->getNumVBases() > 0 &&
13812 "complete dtor only exists for classes with vbases");
13813
13814 SynthesizedFunctionScope Scope(*this, Destructor);
13815
13816 // Add a context note for diagnostics produced after this point.
13817 Scope.addContextNote(CurrentLocation);
13818
13819 MarkVirtualBaseDestructorsReferenced(Destructor->getLocation(), ClassDecl);
13820 }
13821
13822 /// Perform any semantic analysis which needs to be delayed until all
13823 /// pending class member declarations have been parsed.
ActOnFinishCXXMemberDecls()13824 void Sema::ActOnFinishCXXMemberDecls() {
13825 // If the context is an invalid C++ class, just suppress these checks.
13826 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(CurContext)) {
13827 if (Record->isInvalidDecl()) {
13828 DelayedOverridingExceptionSpecChecks.clear();
13829 DelayedEquivalentExceptionSpecChecks.clear();
13830 return;
13831 }
13832 checkForMultipleExportedDefaultConstructors(*this, Record);
13833 }
13834 }
13835
ActOnFinishCXXNonNestedClass()13836 void Sema::ActOnFinishCXXNonNestedClass() {
13837 referenceDLLExportedClassMethods();
13838
13839 if (!DelayedDllExportMemberFunctions.empty()) {
13840 SmallVector<CXXMethodDecl*, 4> WorkList;
13841 std::swap(DelayedDllExportMemberFunctions, WorkList);
13842 for (CXXMethodDecl *M : WorkList) {
13843 DefineDefaultedFunction(*this, M, M->getLocation());
13844
13845 // Pass the method to the consumer to get emitted. This is not necessary
13846 // for explicit instantiation definitions, as they will get emitted
13847 // anyway.
13848 if (M->getParent()->getTemplateSpecializationKind() !=
13849 TSK_ExplicitInstantiationDefinition)
13850 ActOnFinishInlineFunctionDef(M);
13851 }
13852 }
13853 }
13854
referenceDLLExportedClassMethods()13855 void Sema::referenceDLLExportedClassMethods() {
13856 if (!DelayedDllExportClasses.empty()) {
13857 // Calling ReferenceDllExportedMembers might cause the current function to
13858 // be called again, so use a local copy of DelayedDllExportClasses.
13859 SmallVector<CXXRecordDecl *, 4> WorkList;
13860 std::swap(DelayedDllExportClasses, WorkList);
13861 for (CXXRecordDecl *Class : WorkList)
13862 ReferenceDllExportedMembers(*this, Class);
13863 }
13864 }
13865
AdjustDestructorExceptionSpec(CXXDestructorDecl * Destructor)13866 void Sema::AdjustDestructorExceptionSpec(CXXDestructorDecl *Destructor) {
13867 assert(getLangOpts().CPlusPlus11 &&
13868 "adjusting dtor exception specs was introduced in c++11");
13869
13870 if (Destructor->isDependentContext())
13871 return;
13872
13873 // C++11 [class.dtor]p3:
13874 // A declaration of a destructor that does not have an exception-
13875 // specification is implicitly considered to have the same exception-
13876 // specification as an implicit declaration.
13877 const auto *DtorType = Destructor->getType()->castAs<FunctionProtoType>();
13878 if (DtorType->hasExceptionSpec())
13879 return;
13880
13881 // Replace the destructor's type, building off the existing one. Fortunately,
13882 // the only thing of interest in the destructor type is its extended info.
13883 // The return and arguments are fixed.
13884 FunctionProtoType::ExtProtoInfo EPI = DtorType->getExtProtoInfo();
13885 EPI.ExceptionSpec.Type = EST_Unevaluated;
13886 EPI.ExceptionSpec.SourceDecl = Destructor;
13887 Destructor->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
13888
13889 // FIXME: If the destructor has a body that could throw, and the newly created
13890 // spec doesn't allow exceptions, we should emit a warning, because this
13891 // change in behavior can break conforming C++03 programs at runtime.
13892 // However, we don't have a body or an exception specification yet, so it
13893 // needs to be done somewhere else.
13894 }
13895
13896 namespace {
13897 /// An abstract base class for all helper classes used in building the
13898 // copy/move operators. These classes serve as factory functions and help us
13899 // avoid using the same Expr* in the AST twice.
13900 class ExprBuilder {
13901 ExprBuilder(const ExprBuilder&) = delete;
13902 ExprBuilder &operator=(const ExprBuilder&) = delete;
13903
13904 protected:
assertNotNull(Expr * E)13905 static Expr *assertNotNull(Expr *E) {
13906 assert(E && "Expression construction must not fail.");
13907 return E;
13908 }
13909
13910 public:
ExprBuilder()13911 ExprBuilder() {}
~ExprBuilder()13912 virtual ~ExprBuilder() {}
13913
13914 virtual Expr *build(Sema &S, SourceLocation Loc) const = 0;
13915 };
13916
13917 class RefBuilder: public ExprBuilder {
13918 VarDecl *Var;
13919 QualType VarType;
13920
13921 public:
build(Sema & S,SourceLocation Loc) const13922 Expr *build(Sema &S, SourceLocation Loc) const override {
13923 return assertNotNull(S.BuildDeclRefExpr(Var, VarType, VK_LValue, Loc));
13924 }
13925
RefBuilder(VarDecl * Var,QualType VarType)13926 RefBuilder(VarDecl *Var, QualType VarType)
13927 : Var(Var), VarType(VarType) {}
13928 };
13929
13930 class ThisBuilder: public ExprBuilder {
13931 public:
build(Sema & S,SourceLocation Loc) const13932 Expr *build(Sema &S, SourceLocation Loc) const override {
13933 return assertNotNull(S.ActOnCXXThis(Loc).getAs<Expr>());
13934 }
13935 };
13936
13937 class CastBuilder: public ExprBuilder {
13938 const ExprBuilder &Builder;
13939 QualType Type;
13940 ExprValueKind Kind;
13941 const CXXCastPath &Path;
13942
13943 public:
build(Sema & S,SourceLocation Loc) const13944 Expr *build(Sema &S, SourceLocation Loc) const override {
13945 return assertNotNull(S.ImpCastExprToType(Builder.build(S, Loc), Type,
13946 CK_UncheckedDerivedToBase, Kind,
13947 &Path).get());
13948 }
13949
CastBuilder(const ExprBuilder & Builder,QualType Type,ExprValueKind Kind,const CXXCastPath & Path)13950 CastBuilder(const ExprBuilder &Builder, QualType Type, ExprValueKind Kind,
13951 const CXXCastPath &Path)
13952 : Builder(Builder), Type(Type), Kind(Kind), Path(Path) {}
13953 };
13954
13955 class DerefBuilder: public ExprBuilder {
13956 const ExprBuilder &Builder;
13957
13958 public:
build(Sema & S,SourceLocation Loc) const13959 Expr *build(Sema &S, SourceLocation Loc) const override {
13960 return assertNotNull(
13961 S.CreateBuiltinUnaryOp(Loc, UO_Deref, Builder.build(S, Loc)).get());
13962 }
13963
DerefBuilder(const ExprBuilder & Builder)13964 DerefBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
13965 };
13966
13967 class MemberBuilder: public ExprBuilder {
13968 const ExprBuilder &Builder;
13969 QualType Type;
13970 CXXScopeSpec SS;
13971 bool IsArrow;
13972 LookupResult &MemberLookup;
13973
13974 public:
build(Sema & S,SourceLocation Loc) const13975 Expr *build(Sema &S, SourceLocation Loc) const override {
13976 return assertNotNull(S.BuildMemberReferenceExpr(
13977 Builder.build(S, Loc), Type, Loc, IsArrow, SS, SourceLocation(),
13978 nullptr, MemberLookup, nullptr, nullptr).get());
13979 }
13980
MemberBuilder(const ExprBuilder & Builder,QualType Type,bool IsArrow,LookupResult & MemberLookup)13981 MemberBuilder(const ExprBuilder &Builder, QualType Type, bool IsArrow,
13982 LookupResult &MemberLookup)
13983 : Builder(Builder), Type(Type), IsArrow(IsArrow),
13984 MemberLookup(MemberLookup) {}
13985 };
13986
13987 class MoveCastBuilder: public ExprBuilder {
13988 const ExprBuilder &Builder;
13989
13990 public:
build(Sema & S,SourceLocation Loc) const13991 Expr *build(Sema &S, SourceLocation Loc) const override {
13992 return assertNotNull(CastForMoving(S, Builder.build(S, Loc)));
13993 }
13994
MoveCastBuilder(const ExprBuilder & Builder)13995 MoveCastBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
13996 };
13997
13998 class LvalueConvBuilder: public ExprBuilder {
13999 const ExprBuilder &Builder;
14000
14001 public:
build(Sema & S,SourceLocation Loc) const14002 Expr *build(Sema &S, SourceLocation Loc) const override {
14003 return assertNotNull(
14004 S.DefaultLvalueConversion(Builder.build(S, Loc)).get());
14005 }
14006
LvalueConvBuilder(const ExprBuilder & Builder)14007 LvalueConvBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
14008 };
14009
14010 class SubscriptBuilder: public ExprBuilder {
14011 const ExprBuilder &Base;
14012 const ExprBuilder &Index;
14013
14014 public:
build(Sema & S,SourceLocation Loc) const14015 Expr *build(Sema &S, SourceLocation Loc) const override {
14016 return assertNotNull(S.CreateBuiltinArraySubscriptExpr(
14017 Base.build(S, Loc), Loc, Index.build(S, Loc), Loc).get());
14018 }
14019
SubscriptBuilder(const ExprBuilder & Base,const ExprBuilder & Index)14020 SubscriptBuilder(const ExprBuilder &Base, const ExprBuilder &Index)
14021 : Base(Base), Index(Index) {}
14022 };
14023
14024 } // end anonymous namespace
14025
14026 /// When generating a defaulted copy or move assignment operator, if a field
14027 /// should be copied with __builtin_memcpy rather than via explicit assignments,
14028 /// do so. This optimization only applies for arrays of scalars, and for arrays
14029 /// of class type where the selected copy/move-assignment operator is trivial.
14030 static StmtResult
buildMemcpyForAssignmentOp(Sema & S,SourceLocation Loc,QualType T,const ExprBuilder & ToB,const ExprBuilder & FromB)14031 buildMemcpyForAssignmentOp(Sema &S, SourceLocation Loc, QualType T,
14032 const ExprBuilder &ToB, const ExprBuilder &FromB) {
14033 // Compute the size of the memory buffer to be copied.
14034 QualType SizeType = S.Context.getSizeType();
14035 llvm::APInt Size(S.Context.getTypeSize(SizeType),
14036 S.Context.getTypeSizeInChars(T).getQuantity());
14037
14038 // Take the address of the field references for "from" and "to". We
14039 // directly construct UnaryOperators here because semantic analysis
14040 // does not permit us to take the address of an xvalue.
14041 Expr *From = FromB.build(S, Loc);
14042 From = UnaryOperator::Create(
14043 S.Context, From, UO_AddrOf, S.Context.getPointerType(From->getType()),
14044 VK_PRValue, OK_Ordinary, Loc, false, S.CurFPFeatureOverrides());
14045 Expr *To = ToB.build(S, Loc);
14046 To = UnaryOperator::Create(
14047 S.Context, To, UO_AddrOf, S.Context.getPointerType(To->getType()),
14048 VK_PRValue, OK_Ordinary, Loc, false, S.CurFPFeatureOverrides());
14049
14050 const Type *E = T->getBaseElementTypeUnsafe();
14051 bool NeedsCollectableMemCpy =
14052 E->isRecordType() &&
14053 E->castAs<RecordType>()->getDecl()->hasObjectMember();
14054
14055 // Create a reference to the __builtin_objc_memmove_collectable function
14056 StringRef MemCpyName = NeedsCollectableMemCpy ?
14057 "__builtin_objc_memmove_collectable" :
14058 "__builtin_memcpy";
14059 LookupResult R(S, &S.Context.Idents.get(MemCpyName), Loc,
14060 Sema::LookupOrdinaryName);
14061 S.LookupName(R, S.TUScope, true);
14062
14063 FunctionDecl *MemCpy = R.getAsSingle<FunctionDecl>();
14064 if (!MemCpy)
14065 // Something went horribly wrong earlier, and we will have complained
14066 // about it.
14067 return StmtError();
14068
14069 ExprResult MemCpyRef = S.BuildDeclRefExpr(MemCpy, S.Context.BuiltinFnTy,
14070 VK_PRValue, Loc, nullptr);
14071 assert(MemCpyRef.isUsable() && "Builtin reference cannot fail");
14072
14073 Expr *CallArgs[] = {
14074 To, From, IntegerLiteral::Create(S.Context, Size, SizeType, Loc)
14075 };
14076 ExprResult Call = S.BuildCallExpr(/*Scope=*/nullptr, MemCpyRef.get(),
14077 Loc, CallArgs, Loc);
14078
14079 assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
14080 return Call.getAs<Stmt>();
14081 }
14082
14083 /// Builds a statement that copies/moves the given entity from \p From to
14084 /// \c To.
14085 ///
14086 /// This routine is used to copy/move the members of a class with an
14087 /// implicitly-declared copy/move assignment operator. When the entities being
14088 /// copied are arrays, this routine builds for loops to copy them.
14089 ///
14090 /// \param S The Sema object used for type-checking.
14091 ///
14092 /// \param Loc The location where the implicit copy/move is being generated.
14093 ///
14094 /// \param T The type of the expressions being copied/moved. Both expressions
14095 /// must have this type.
14096 ///
14097 /// \param To The expression we are copying/moving to.
14098 ///
14099 /// \param From The expression we are copying/moving from.
14100 ///
14101 /// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
14102 /// Otherwise, it's a non-static member subobject.
14103 ///
14104 /// \param Copying Whether we're copying or moving.
14105 ///
14106 /// \param Depth Internal parameter recording the depth of the recursion.
14107 ///
14108 /// \returns A statement or a loop that copies the expressions, or StmtResult(0)
14109 /// if a memcpy should be used instead.
14110 static StmtResult
buildSingleCopyAssignRecursively(Sema & S,SourceLocation Loc,QualType T,const ExprBuilder & To,const ExprBuilder & From,bool CopyingBaseSubobject,bool Copying,unsigned Depth=0)14111 buildSingleCopyAssignRecursively(Sema &S, SourceLocation Loc, QualType T,
14112 const ExprBuilder &To, const ExprBuilder &From,
14113 bool CopyingBaseSubobject, bool Copying,
14114 unsigned Depth = 0) {
14115 // C++11 [class.copy]p28:
14116 // Each subobject is assigned in the manner appropriate to its type:
14117 //
14118 // - if the subobject is of class type, as if by a call to operator= with
14119 // the subobject as the object expression and the corresponding
14120 // subobject of x as a single function argument (as if by explicit
14121 // qualification; that is, ignoring any possible virtual overriding
14122 // functions in more derived classes);
14123 //
14124 // C++03 [class.copy]p13:
14125 // - if the subobject is of class type, the copy assignment operator for
14126 // the class is used (as if by explicit qualification; that is,
14127 // ignoring any possible virtual overriding functions in more derived
14128 // classes);
14129 if (const RecordType *RecordTy = T->getAs<RecordType>()) {
14130 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
14131
14132 // Look for operator=.
14133 DeclarationName Name
14134 = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
14135 LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
14136 S.LookupQualifiedName(OpLookup, ClassDecl, false);
14137
14138 // Prior to C++11, filter out any result that isn't a copy/move-assignment
14139 // operator.
14140 if (!S.getLangOpts().CPlusPlus11) {
14141 LookupResult::Filter F = OpLookup.makeFilter();
14142 while (F.hasNext()) {
14143 NamedDecl *D = F.next();
14144 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
14145 if (Method->isCopyAssignmentOperator() ||
14146 (!Copying && Method->isMoveAssignmentOperator()))
14147 continue;
14148
14149 F.erase();
14150 }
14151 F.done();
14152 }
14153
14154 // Suppress the protected check (C++ [class.protected]) for each of the
14155 // assignment operators we found. This strange dance is required when
14156 // we're assigning via a base classes's copy-assignment operator. To
14157 // ensure that we're getting the right base class subobject (without
14158 // ambiguities), we need to cast "this" to that subobject type; to
14159 // ensure that we don't go through the virtual call mechanism, we need
14160 // to qualify the operator= name with the base class (see below). However,
14161 // this means that if the base class has a protected copy assignment
14162 // operator, the protected member access check will fail. So, we
14163 // rewrite "protected" access to "public" access in this case, since we
14164 // know by construction that we're calling from a derived class.
14165 if (CopyingBaseSubobject) {
14166 for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
14167 L != LEnd; ++L) {
14168 if (L.getAccess() == AS_protected)
14169 L.setAccess(AS_public);
14170 }
14171 }
14172
14173 // Create the nested-name-specifier that will be used to qualify the
14174 // reference to operator=; this is required to suppress the virtual
14175 // call mechanism.
14176 CXXScopeSpec SS;
14177 const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
14178 SS.MakeTrivial(S.Context,
14179 NestedNameSpecifier::Create(S.Context, nullptr, false,
14180 CanonicalT),
14181 Loc);
14182
14183 // Create the reference to operator=.
14184 ExprResult OpEqualRef
14185 = S.BuildMemberReferenceExpr(To.build(S, Loc), T, Loc, /*IsArrow=*/false,
14186 SS, /*TemplateKWLoc=*/SourceLocation(),
14187 /*FirstQualifierInScope=*/nullptr,
14188 OpLookup,
14189 /*TemplateArgs=*/nullptr, /*S*/nullptr,
14190 /*SuppressQualifierCheck=*/true);
14191 if (OpEqualRef.isInvalid())
14192 return StmtError();
14193
14194 // Build the call to the assignment operator.
14195
14196 Expr *FromInst = From.build(S, Loc);
14197 ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/nullptr,
14198 OpEqualRef.getAs<Expr>(),
14199 Loc, FromInst, Loc);
14200 if (Call.isInvalid())
14201 return StmtError();
14202
14203 // If we built a call to a trivial 'operator=' while copying an array,
14204 // bail out. We'll replace the whole shebang with a memcpy.
14205 CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Call.get());
14206 if (CE && CE->getMethodDecl()->isTrivial() && Depth)
14207 return StmtResult((Stmt*)nullptr);
14208
14209 // Convert to an expression-statement, and clean up any produced
14210 // temporaries.
14211 return S.ActOnExprStmt(Call);
14212 }
14213
14214 // - if the subobject is of scalar type, the built-in assignment
14215 // operator is used.
14216 const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
14217 if (!ArrayTy) {
14218 ExprResult Assignment = S.CreateBuiltinBinOp(
14219 Loc, BO_Assign, To.build(S, Loc), From.build(S, Loc));
14220 if (Assignment.isInvalid())
14221 return StmtError();
14222 return S.ActOnExprStmt(Assignment);
14223 }
14224
14225 // - if the subobject is an array, each element is assigned, in the
14226 // manner appropriate to the element type;
14227
14228 // Construct a loop over the array bounds, e.g.,
14229 //
14230 // for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
14231 //
14232 // that will copy each of the array elements.
14233 QualType SizeType = S.Context.getSizeType();
14234
14235 // Create the iteration variable.
14236 IdentifierInfo *IterationVarName = nullptr;
14237 {
14238 SmallString<8> Str;
14239 llvm::raw_svector_ostream OS(Str);
14240 OS << "__i" << Depth;
14241 IterationVarName = &S.Context.Idents.get(OS.str());
14242 }
14243 VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
14244 IterationVarName, SizeType,
14245 S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
14246 SC_None);
14247
14248 // Initialize the iteration variable to zero.
14249 llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
14250 IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
14251
14252 // Creates a reference to the iteration variable.
14253 RefBuilder IterationVarRef(IterationVar, SizeType);
14254 LvalueConvBuilder IterationVarRefRVal(IterationVarRef);
14255
14256 // Create the DeclStmt that holds the iteration variable.
14257 Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
14258
14259 // Subscript the "from" and "to" expressions with the iteration variable.
14260 SubscriptBuilder FromIndexCopy(From, IterationVarRefRVal);
14261 MoveCastBuilder FromIndexMove(FromIndexCopy);
14262 const ExprBuilder *FromIndex;
14263 if (Copying)
14264 FromIndex = &FromIndexCopy;
14265 else
14266 FromIndex = &FromIndexMove;
14267
14268 SubscriptBuilder ToIndex(To, IterationVarRefRVal);
14269
14270 // Build the copy/move for an individual element of the array.
14271 StmtResult Copy =
14272 buildSingleCopyAssignRecursively(S, Loc, ArrayTy->getElementType(),
14273 ToIndex, *FromIndex, CopyingBaseSubobject,
14274 Copying, Depth + 1);
14275 // Bail out if copying fails or if we determined that we should use memcpy.
14276 if (Copy.isInvalid() || !Copy.get())
14277 return Copy;
14278
14279 // Create the comparison against the array bound.
14280 llvm::APInt Upper
14281 = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
14282 Expr *Comparison = BinaryOperator::Create(
14283 S.Context, IterationVarRefRVal.build(S, Loc),
14284 IntegerLiteral::Create(S.Context, Upper, SizeType, Loc), BO_NE,
14285 S.Context.BoolTy, VK_PRValue, OK_Ordinary, Loc,
14286 S.CurFPFeatureOverrides());
14287
14288 // Create the pre-increment of the iteration variable. We can determine
14289 // whether the increment will overflow based on the value of the array
14290 // bound.
14291 Expr *Increment = UnaryOperator::Create(
14292 S.Context, IterationVarRef.build(S, Loc), UO_PreInc, SizeType, VK_LValue,
14293 OK_Ordinary, Loc, Upper.isMaxValue(), S.CurFPFeatureOverrides());
14294
14295 // Construct the loop that copies all elements of this array.
14296 return S.ActOnForStmt(
14297 Loc, Loc, InitStmt,
14298 S.ActOnCondition(nullptr, Loc, Comparison, Sema::ConditionKind::Boolean),
14299 S.MakeFullDiscardedValueExpr(Increment), Loc, Copy.get());
14300 }
14301
14302 static StmtResult
buildSingleCopyAssign(Sema & S,SourceLocation Loc,QualType T,const ExprBuilder & To,const ExprBuilder & From,bool CopyingBaseSubobject,bool Copying)14303 buildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
14304 const ExprBuilder &To, const ExprBuilder &From,
14305 bool CopyingBaseSubobject, bool Copying) {
14306 // Maybe we should use a memcpy?
14307 if (T->isArrayType() && !T.isConstQualified() && !T.isVolatileQualified() &&
14308 T.isTriviallyCopyableType(S.Context))
14309 return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
14310
14311 StmtResult Result(buildSingleCopyAssignRecursively(S, Loc, T, To, From,
14312 CopyingBaseSubobject,
14313 Copying, 0));
14314
14315 // If we ended up picking a trivial assignment operator for an array of a
14316 // non-trivially-copyable class type, just emit a memcpy.
14317 if (!Result.isInvalid() && !Result.get())
14318 return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
14319
14320 return Result;
14321 }
14322
DeclareImplicitCopyAssignment(CXXRecordDecl * ClassDecl)14323 CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
14324 // Note: The following rules are largely analoguous to the copy
14325 // constructor rules. Note that virtual bases are not taken into account
14326 // for determining the argument type of the operator. Note also that
14327 // operators taking an object instead of a reference are allowed.
14328 assert(ClassDecl->needsImplicitCopyAssignment());
14329
14330 DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyAssignment);
14331 if (DSM.isAlreadyBeingDeclared())
14332 return nullptr;
14333
14334 QualType ArgType = Context.getTypeDeclType(ClassDecl);
14335 LangAS AS = getDefaultCXXMethodAddrSpace();
14336 if (AS != LangAS::Default)
14337 ArgType = Context.getAddrSpaceQualType(ArgType, AS);
14338 QualType RetType = Context.getLValueReferenceType(ArgType);
14339 bool Const = ClassDecl->implicitCopyAssignmentHasConstParam();
14340 if (Const)
14341 ArgType = ArgType.withConst();
14342
14343 ArgType = Context.getLValueReferenceType(ArgType);
14344
14345 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
14346 CXXCopyAssignment,
14347 Const);
14348
14349 // An implicitly-declared copy assignment operator is an inline public
14350 // member of its class.
14351 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
14352 SourceLocation ClassLoc = ClassDecl->getLocation();
14353 DeclarationNameInfo NameInfo(Name, ClassLoc);
14354 CXXMethodDecl *CopyAssignment = CXXMethodDecl::Create(
14355 Context, ClassDecl, ClassLoc, NameInfo, QualType(),
14356 /*TInfo=*/nullptr, /*StorageClass=*/SC_None,
14357 getCurFPFeatures().isFPConstrained(),
14358 /*isInline=*/true,
14359 Constexpr ? ConstexprSpecKind::Constexpr : ConstexprSpecKind::Unspecified,
14360 SourceLocation());
14361 CopyAssignment->setAccess(AS_public);
14362 CopyAssignment->setDefaulted();
14363 CopyAssignment->setImplicit();
14364
14365 setupImplicitSpecialMemberType(CopyAssignment, RetType, ArgType);
14366
14367 if (getLangOpts().CUDA)
14368 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXCopyAssignment,
14369 CopyAssignment,
14370 /* ConstRHS */ Const,
14371 /* Diagnose */ false);
14372
14373 // Add the parameter to the operator.
14374 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
14375 ClassLoc, ClassLoc,
14376 /*Id=*/nullptr, ArgType,
14377 /*TInfo=*/nullptr, SC_None,
14378 nullptr);
14379 CopyAssignment->setParams(FromParam);
14380
14381 CopyAssignment->setTrivial(
14382 ClassDecl->needsOverloadResolutionForCopyAssignment()
14383 ? SpecialMemberIsTrivial(CopyAssignment, CXXCopyAssignment)
14384 : ClassDecl->hasTrivialCopyAssignment());
14385
14386 // Note that we have added this copy-assignment operator.
14387 ++getASTContext().NumImplicitCopyAssignmentOperatorsDeclared;
14388
14389 Scope *S = getScopeForContext(ClassDecl);
14390 CheckImplicitSpecialMemberDeclaration(S, CopyAssignment);
14391
14392 if (ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment)) {
14393 ClassDecl->setImplicitCopyAssignmentIsDeleted();
14394 SetDeclDeleted(CopyAssignment, ClassLoc);
14395 }
14396
14397 if (S)
14398 PushOnScopeChains(CopyAssignment, S, false);
14399 ClassDecl->addDecl(CopyAssignment);
14400
14401 return CopyAssignment;
14402 }
14403
14404 /// Diagnose an implicit copy operation for a class which is odr-used, but
14405 /// which is deprecated because the class has a user-declared copy constructor,
14406 /// copy assignment operator, or destructor.
diagnoseDeprecatedCopyOperation(Sema & S,CXXMethodDecl * CopyOp)14407 static void diagnoseDeprecatedCopyOperation(Sema &S, CXXMethodDecl *CopyOp) {
14408 assert(CopyOp->isImplicit());
14409
14410 CXXRecordDecl *RD = CopyOp->getParent();
14411 CXXMethodDecl *UserDeclaredOperation = nullptr;
14412
14413 // In Microsoft mode, assignment operations don't affect constructors and
14414 // vice versa.
14415 if (RD->hasUserDeclaredDestructor()) {
14416 UserDeclaredOperation = RD->getDestructor();
14417 } else if (!isa<CXXConstructorDecl>(CopyOp) &&
14418 RD->hasUserDeclaredCopyConstructor() &&
14419 !S.getLangOpts().MSVCCompat) {
14420 // Find any user-declared copy constructor.
14421 for (auto *I : RD->ctors()) {
14422 if (I->isCopyConstructor()) {
14423 UserDeclaredOperation = I;
14424 break;
14425 }
14426 }
14427 assert(UserDeclaredOperation);
14428 } else if (isa<CXXConstructorDecl>(CopyOp) &&
14429 RD->hasUserDeclaredCopyAssignment() &&
14430 !S.getLangOpts().MSVCCompat) {
14431 // Find any user-declared move assignment operator.
14432 for (auto *I : RD->methods()) {
14433 if (I->isCopyAssignmentOperator()) {
14434 UserDeclaredOperation = I;
14435 break;
14436 }
14437 }
14438 assert(UserDeclaredOperation);
14439 }
14440
14441 if (UserDeclaredOperation) {
14442 bool UDOIsUserProvided = UserDeclaredOperation->isUserProvided();
14443 bool UDOIsDestructor = isa<CXXDestructorDecl>(UserDeclaredOperation);
14444 bool IsCopyAssignment = !isa<CXXConstructorDecl>(CopyOp);
14445 unsigned DiagID =
14446 (UDOIsUserProvided && UDOIsDestructor)
14447 ? diag::warn_deprecated_copy_with_user_provided_dtor
14448 : (UDOIsUserProvided && !UDOIsDestructor)
14449 ? diag::warn_deprecated_copy_with_user_provided_copy
14450 : (!UDOIsUserProvided && UDOIsDestructor)
14451 ? diag::warn_deprecated_copy_with_dtor
14452 : diag::warn_deprecated_copy;
14453 S.Diag(UserDeclaredOperation->getLocation(), DiagID)
14454 << RD << IsCopyAssignment;
14455 }
14456 }
14457
DefineImplicitCopyAssignment(SourceLocation CurrentLocation,CXXMethodDecl * CopyAssignOperator)14458 void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
14459 CXXMethodDecl *CopyAssignOperator) {
14460 assert((CopyAssignOperator->isDefaulted() &&
14461 CopyAssignOperator->isOverloadedOperator() &&
14462 CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
14463 !CopyAssignOperator->doesThisDeclarationHaveABody() &&
14464 !CopyAssignOperator->isDeleted()) &&
14465 "DefineImplicitCopyAssignment called for wrong function");
14466 if (CopyAssignOperator->willHaveBody() || CopyAssignOperator->isInvalidDecl())
14467 return;
14468
14469 CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
14470 if (ClassDecl->isInvalidDecl()) {
14471 CopyAssignOperator->setInvalidDecl();
14472 return;
14473 }
14474
14475 SynthesizedFunctionScope Scope(*this, CopyAssignOperator);
14476
14477 // The exception specification is needed because we are defining the
14478 // function.
14479 ResolveExceptionSpec(CurrentLocation,
14480 CopyAssignOperator->getType()->castAs<FunctionProtoType>());
14481
14482 // Add a context note for diagnostics produced after this point.
14483 Scope.addContextNote(CurrentLocation);
14484
14485 // C++11 [class.copy]p18:
14486 // The [definition of an implicitly declared copy assignment operator] is
14487 // deprecated if the class has a user-declared copy constructor or a
14488 // user-declared destructor.
14489 if (getLangOpts().CPlusPlus11 && CopyAssignOperator->isImplicit())
14490 diagnoseDeprecatedCopyOperation(*this, CopyAssignOperator);
14491
14492 // C++0x [class.copy]p30:
14493 // The implicitly-defined or explicitly-defaulted copy assignment operator
14494 // for a non-union class X performs memberwise copy assignment of its
14495 // subobjects. The direct base classes of X are assigned first, in the
14496 // order of their declaration in the base-specifier-list, and then the
14497 // immediate non-static data members of X are assigned, in the order in
14498 // which they were declared in the class definition.
14499
14500 // The statements that form the synthesized function body.
14501 SmallVector<Stmt*, 8> Statements;
14502
14503 // The parameter for the "other" object, which we are copying from.
14504 ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
14505 Qualifiers OtherQuals = Other->getType().getQualifiers();
14506 QualType OtherRefType = Other->getType();
14507 if (const LValueReferenceType *OtherRef
14508 = OtherRefType->getAs<LValueReferenceType>()) {
14509 OtherRefType = OtherRef->getPointeeType();
14510 OtherQuals = OtherRefType.getQualifiers();
14511 }
14512
14513 // Our location for everything implicitly-generated.
14514 SourceLocation Loc = CopyAssignOperator->getEndLoc().isValid()
14515 ? CopyAssignOperator->getEndLoc()
14516 : CopyAssignOperator->getLocation();
14517
14518 // Builds a DeclRefExpr for the "other" object.
14519 RefBuilder OtherRef(Other, OtherRefType);
14520
14521 // Builds the "this" pointer.
14522 ThisBuilder This;
14523
14524 // Assign base classes.
14525 bool Invalid = false;
14526 for (auto &Base : ClassDecl->bases()) {
14527 // Form the assignment:
14528 // static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
14529 QualType BaseType = Base.getType().getUnqualifiedType();
14530 if (!BaseType->isRecordType()) {
14531 Invalid = true;
14532 continue;
14533 }
14534
14535 CXXCastPath BasePath;
14536 BasePath.push_back(&Base);
14537
14538 // Construct the "from" expression, which is an implicit cast to the
14539 // appropriately-qualified base type.
14540 CastBuilder From(OtherRef, Context.getQualifiedType(BaseType, OtherQuals),
14541 VK_LValue, BasePath);
14542
14543 // Dereference "this".
14544 DerefBuilder DerefThis(This);
14545 CastBuilder To(DerefThis,
14546 Context.getQualifiedType(
14547 BaseType, CopyAssignOperator->getMethodQualifiers()),
14548 VK_LValue, BasePath);
14549
14550 // Build the copy.
14551 StmtResult Copy = buildSingleCopyAssign(*this, Loc, BaseType,
14552 To, From,
14553 /*CopyingBaseSubobject=*/true,
14554 /*Copying=*/true);
14555 if (Copy.isInvalid()) {
14556 CopyAssignOperator->setInvalidDecl();
14557 return;
14558 }
14559
14560 // Success! Record the copy.
14561 Statements.push_back(Copy.getAs<Expr>());
14562 }
14563
14564 // Assign non-static members.
14565 for (auto *Field : ClassDecl->fields()) {
14566 // FIXME: We should form some kind of AST representation for the implied
14567 // memcpy in a union copy operation.
14568 if (Field->isUnnamedBitfield() || Field->getParent()->isUnion())
14569 continue;
14570
14571 if (Field->isInvalidDecl()) {
14572 Invalid = true;
14573 continue;
14574 }
14575
14576 // Check for members of reference type; we can't copy those.
14577 if (Field->getType()->isReferenceType()) {
14578 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
14579 << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
14580 Diag(Field->getLocation(), diag::note_declared_at);
14581 Invalid = true;
14582 continue;
14583 }
14584
14585 // Check for members of const-qualified, non-class type.
14586 QualType BaseType = Context.getBaseElementType(Field->getType());
14587 if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
14588 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
14589 << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
14590 Diag(Field->getLocation(), diag::note_declared_at);
14591 Invalid = true;
14592 continue;
14593 }
14594
14595 // Suppress assigning zero-width bitfields.
14596 if (Field->isZeroLengthBitField(Context))
14597 continue;
14598
14599 QualType FieldType = Field->getType().getNonReferenceType();
14600 if (FieldType->isIncompleteArrayType()) {
14601 assert(ClassDecl->hasFlexibleArrayMember() &&
14602 "Incomplete array type is not valid");
14603 continue;
14604 }
14605
14606 // Build references to the field in the object we're copying from and to.
14607 CXXScopeSpec SS; // Intentionally empty
14608 LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
14609 LookupMemberName);
14610 MemberLookup.addDecl(Field);
14611 MemberLookup.resolveKind();
14612
14613 MemberBuilder From(OtherRef, OtherRefType, /*IsArrow=*/false, MemberLookup);
14614
14615 MemberBuilder To(This, getCurrentThisType(), /*IsArrow=*/true, MemberLookup);
14616
14617 // Build the copy of this field.
14618 StmtResult Copy = buildSingleCopyAssign(*this, Loc, FieldType,
14619 To, From,
14620 /*CopyingBaseSubobject=*/false,
14621 /*Copying=*/true);
14622 if (Copy.isInvalid()) {
14623 CopyAssignOperator->setInvalidDecl();
14624 return;
14625 }
14626
14627 // Success! Record the copy.
14628 Statements.push_back(Copy.getAs<Stmt>());
14629 }
14630
14631 if (!Invalid) {
14632 // Add a "return *this;"
14633 ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This.build(*this, Loc));
14634
14635 StmtResult Return = BuildReturnStmt(Loc, ThisObj.get());
14636 if (Return.isInvalid())
14637 Invalid = true;
14638 else
14639 Statements.push_back(Return.getAs<Stmt>());
14640 }
14641
14642 if (Invalid) {
14643 CopyAssignOperator->setInvalidDecl();
14644 return;
14645 }
14646
14647 StmtResult Body;
14648 {
14649 CompoundScopeRAII CompoundScope(*this);
14650 Body = ActOnCompoundStmt(Loc, Loc, Statements,
14651 /*isStmtExpr=*/false);
14652 assert(!Body.isInvalid() && "Compound statement creation cannot fail");
14653 }
14654 CopyAssignOperator->setBody(Body.getAs<Stmt>());
14655 CopyAssignOperator->markUsed(Context);
14656
14657 if (ASTMutationListener *L = getASTMutationListener()) {
14658 L->CompletedImplicitDefinition(CopyAssignOperator);
14659 }
14660 }
14661
DeclareImplicitMoveAssignment(CXXRecordDecl * ClassDecl)14662 CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
14663 assert(ClassDecl->needsImplicitMoveAssignment());
14664
14665 DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveAssignment);
14666 if (DSM.isAlreadyBeingDeclared())
14667 return nullptr;
14668
14669 // Note: The following rules are largely analoguous to the move
14670 // constructor rules.
14671
14672 QualType ArgType = Context.getTypeDeclType(ClassDecl);
14673 LangAS AS = getDefaultCXXMethodAddrSpace();
14674 if (AS != LangAS::Default)
14675 ArgType = Context.getAddrSpaceQualType(ArgType, AS);
14676 QualType RetType = Context.getLValueReferenceType(ArgType);
14677 ArgType = Context.getRValueReferenceType(ArgType);
14678
14679 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
14680 CXXMoveAssignment,
14681 false);
14682
14683 // An implicitly-declared move assignment operator is an inline public
14684 // member of its class.
14685 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
14686 SourceLocation ClassLoc = ClassDecl->getLocation();
14687 DeclarationNameInfo NameInfo(Name, ClassLoc);
14688 CXXMethodDecl *MoveAssignment = CXXMethodDecl::Create(
14689 Context, ClassDecl, ClassLoc, NameInfo, QualType(),
14690 /*TInfo=*/nullptr, /*StorageClass=*/SC_None,
14691 getCurFPFeatures().isFPConstrained(),
14692 /*isInline=*/true,
14693 Constexpr ? ConstexprSpecKind::Constexpr : ConstexprSpecKind::Unspecified,
14694 SourceLocation());
14695 MoveAssignment->setAccess(AS_public);
14696 MoveAssignment->setDefaulted();
14697 MoveAssignment->setImplicit();
14698
14699 setupImplicitSpecialMemberType(MoveAssignment, RetType, ArgType);
14700
14701 if (getLangOpts().CUDA)
14702 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXMoveAssignment,
14703 MoveAssignment,
14704 /* ConstRHS */ false,
14705 /* Diagnose */ false);
14706
14707 // Add the parameter to the operator.
14708 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
14709 ClassLoc, ClassLoc,
14710 /*Id=*/nullptr, ArgType,
14711 /*TInfo=*/nullptr, SC_None,
14712 nullptr);
14713 MoveAssignment->setParams(FromParam);
14714
14715 MoveAssignment->setTrivial(
14716 ClassDecl->needsOverloadResolutionForMoveAssignment()
14717 ? SpecialMemberIsTrivial(MoveAssignment, CXXMoveAssignment)
14718 : ClassDecl->hasTrivialMoveAssignment());
14719
14720 // Note that we have added this copy-assignment operator.
14721 ++getASTContext().NumImplicitMoveAssignmentOperatorsDeclared;
14722
14723 Scope *S = getScopeForContext(ClassDecl);
14724 CheckImplicitSpecialMemberDeclaration(S, MoveAssignment);
14725
14726 if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) {
14727 ClassDecl->setImplicitMoveAssignmentIsDeleted();
14728 SetDeclDeleted(MoveAssignment, ClassLoc);
14729 }
14730
14731 if (S)
14732 PushOnScopeChains(MoveAssignment, S, false);
14733 ClassDecl->addDecl(MoveAssignment);
14734
14735 return MoveAssignment;
14736 }
14737
14738 /// Check if we're implicitly defining a move assignment operator for a class
14739 /// with virtual bases. Such a move assignment might move-assign the virtual
14740 /// base multiple times.
checkMoveAssignmentForRepeatedMove(Sema & S,CXXRecordDecl * Class,SourceLocation CurrentLocation)14741 static void checkMoveAssignmentForRepeatedMove(Sema &S, CXXRecordDecl *Class,
14742 SourceLocation CurrentLocation) {
14743 assert(!Class->isDependentContext() && "should not define dependent move");
14744
14745 // Only a virtual base could get implicitly move-assigned multiple times.
14746 // Only a non-trivial move assignment can observe this. We only want to
14747 // diagnose if we implicitly define an assignment operator that assigns
14748 // two base classes, both of which move-assign the same virtual base.
14749 if (Class->getNumVBases() == 0 || Class->hasTrivialMoveAssignment() ||
14750 Class->getNumBases() < 2)
14751 return;
14752
14753 llvm::SmallVector<CXXBaseSpecifier *, 16> Worklist;
14754 typedef llvm::DenseMap<CXXRecordDecl*, CXXBaseSpecifier*> VBaseMap;
14755 VBaseMap VBases;
14756
14757 for (auto &BI : Class->bases()) {
14758 Worklist.push_back(&BI);
14759 while (!Worklist.empty()) {
14760 CXXBaseSpecifier *BaseSpec = Worklist.pop_back_val();
14761 CXXRecordDecl *Base = BaseSpec->getType()->getAsCXXRecordDecl();
14762
14763 // If the base has no non-trivial move assignment operators,
14764 // we don't care about moves from it.
14765 if (!Base->hasNonTrivialMoveAssignment())
14766 continue;
14767
14768 // If there's nothing virtual here, skip it.
14769 if (!BaseSpec->isVirtual() && !Base->getNumVBases())
14770 continue;
14771
14772 // If we're not actually going to call a move assignment for this base,
14773 // or the selected move assignment is trivial, skip it.
14774 Sema::SpecialMemberOverloadResult SMOR =
14775 S.LookupSpecialMember(Base, Sema::CXXMoveAssignment,
14776 /*ConstArg*/false, /*VolatileArg*/false,
14777 /*RValueThis*/true, /*ConstThis*/false,
14778 /*VolatileThis*/false);
14779 if (!SMOR.getMethod() || SMOR.getMethod()->isTrivial() ||
14780 !SMOR.getMethod()->isMoveAssignmentOperator())
14781 continue;
14782
14783 if (BaseSpec->isVirtual()) {
14784 // We're going to move-assign this virtual base, and its move
14785 // assignment operator is not trivial. If this can happen for
14786 // multiple distinct direct bases of Class, diagnose it. (If it
14787 // only happens in one base, we'll diagnose it when synthesizing
14788 // that base class's move assignment operator.)
14789 CXXBaseSpecifier *&Existing =
14790 VBases.insert(std::make_pair(Base->getCanonicalDecl(), &BI))
14791 .first->second;
14792 if (Existing && Existing != &BI) {
14793 S.Diag(CurrentLocation, diag::warn_vbase_moved_multiple_times)
14794 << Class << Base;
14795 S.Diag(Existing->getBeginLoc(), diag::note_vbase_moved_here)
14796 << (Base->getCanonicalDecl() ==
14797 Existing->getType()->getAsCXXRecordDecl()->getCanonicalDecl())
14798 << Base << Existing->getType() << Existing->getSourceRange();
14799 S.Diag(BI.getBeginLoc(), diag::note_vbase_moved_here)
14800 << (Base->getCanonicalDecl() ==
14801 BI.getType()->getAsCXXRecordDecl()->getCanonicalDecl())
14802 << Base << BI.getType() << BaseSpec->getSourceRange();
14803
14804 // Only diagnose each vbase once.
14805 Existing = nullptr;
14806 }
14807 } else {
14808 // Only walk over bases that have defaulted move assignment operators.
14809 // We assume that any user-provided move assignment operator handles
14810 // the multiple-moves-of-vbase case itself somehow.
14811 if (!SMOR.getMethod()->isDefaulted())
14812 continue;
14813
14814 // We're going to move the base classes of Base. Add them to the list.
14815 llvm::append_range(Worklist, llvm::make_pointer_range(Base->bases()));
14816 }
14817 }
14818 }
14819 }
14820
DefineImplicitMoveAssignment(SourceLocation CurrentLocation,CXXMethodDecl * MoveAssignOperator)14821 void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
14822 CXXMethodDecl *MoveAssignOperator) {
14823 assert((MoveAssignOperator->isDefaulted() &&
14824 MoveAssignOperator->isOverloadedOperator() &&
14825 MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
14826 !MoveAssignOperator->doesThisDeclarationHaveABody() &&
14827 !MoveAssignOperator->isDeleted()) &&
14828 "DefineImplicitMoveAssignment called for wrong function");
14829 if (MoveAssignOperator->willHaveBody() || MoveAssignOperator->isInvalidDecl())
14830 return;
14831
14832 CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
14833 if (ClassDecl->isInvalidDecl()) {
14834 MoveAssignOperator->setInvalidDecl();
14835 return;
14836 }
14837
14838 // C++0x [class.copy]p28:
14839 // The implicitly-defined or move assignment operator for a non-union class
14840 // X performs memberwise move assignment of its subobjects. The direct base
14841 // classes of X are assigned first, in the order of their declaration in the
14842 // base-specifier-list, and then the immediate non-static data members of X
14843 // are assigned, in the order in which they were declared in the class
14844 // definition.
14845
14846 // Issue a warning if our implicit move assignment operator will move
14847 // from a virtual base more than once.
14848 checkMoveAssignmentForRepeatedMove(*this, ClassDecl, CurrentLocation);
14849
14850 SynthesizedFunctionScope Scope(*this, MoveAssignOperator);
14851
14852 // The exception specification is needed because we are defining the
14853 // function.
14854 ResolveExceptionSpec(CurrentLocation,
14855 MoveAssignOperator->getType()->castAs<FunctionProtoType>());
14856
14857 // Add a context note for diagnostics produced after this point.
14858 Scope.addContextNote(CurrentLocation);
14859
14860 // The statements that form the synthesized function body.
14861 SmallVector<Stmt*, 8> Statements;
14862
14863 // The parameter for the "other" object, which we are move from.
14864 ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
14865 QualType OtherRefType =
14866 Other->getType()->castAs<RValueReferenceType>()->getPointeeType();
14867
14868 // Our location for everything implicitly-generated.
14869 SourceLocation Loc = MoveAssignOperator->getEndLoc().isValid()
14870 ? MoveAssignOperator->getEndLoc()
14871 : MoveAssignOperator->getLocation();
14872
14873 // Builds a reference to the "other" object.
14874 RefBuilder OtherRef(Other, OtherRefType);
14875 // Cast to rvalue.
14876 MoveCastBuilder MoveOther(OtherRef);
14877
14878 // Builds the "this" pointer.
14879 ThisBuilder This;
14880
14881 // Assign base classes.
14882 bool Invalid = false;
14883 for (auto &Base : ClassDecl->bases()) {
14884 // C++11 [class.copy]p28:
14885 // It is unspecified whether subobjects representing virtual base classes
14886 // are assigned more than once by the implicitly-defined copy assignment
14887 // operator.
14888 // FIXME: Do not assign to a vbase that will be assigned by some other base
14889 // class. For a move-assignment, this can result in the vbase being moved
14890 // multiple times.
14891
14892 // Form the assignment:
14893 // static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
14894 QualType BaseType = Base.getType().getUnqualifiedType();
14895 if (!BaseType->isRecordType()) {
14896 Invalid = true;
14897 continue;
14898 }
14899
14900 CXXCastPath BasePath;
14901 BasePath.push_back(&Base);
14902
14903 // Construct the "from" expression, which is an implicit cast to the
14904 // appropriately-qualified base type.
14905 CastBuilder From(OtherRef, BaseType, VK_XValue, BasePath);
14906
14907 // Dereference "this".
14908 DerefBuilder DerefThis(This);
14909
14910 // Implicitly cast "this" to the appropriately-qualified base type.
14911 CastBuilder To(DerefThis,
14912 Context.getQualifiedType(
14913 BaseType, MoveAssignOperator->getMethodQualifiers()),
14914 VK_LValue, BasePath);
14915
14916 // Build the move.
14917 StmtResult Move = buildSingleCopyAssign(*this, Loc, BaseType,
14918 To, From,
14919 /*CopyingBaseSubobject=*/true,
14920 /*Copying=*/false);
14921 if (Move.isInvalid()) {
14922 MoveAssignOperator->setInvalidDecl();
14923 return;
14924 }
14925
14926 // Success! Record the move.
14927 Statements.push_back(Move.getAs<Expr>());
14928 }
14929
14930 // Assign non-static members.
14931 for (auto *Field : ClassDecl->fields()) {
14932 // FIXME: We should form some kind of AST representation for the implied
14933 // memcpy in a union copy operation.
14934 if (Field->isUnnamedBitfield() || Field->getParent()->isUnion())
14935 continue;
14936
14937 if (Field->isInvalidDecl()) {
14938 Invalid = true;
14939 continue;
14940 }
14941
14942 // Check for members of reference type; we can't move those.
14943 if (Field->getType()->isReferenceType()) {
14944 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
14945 << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
14946 Diag(Field->getLocation(), diag::note_declared_at);
14947 Invalid = true;
14948 continue;
14949 }
14950
14951 // Check for members of const-qualified, non-class type.
14952 QualType BaseType = Context.getBaseElementType(Field->getType());
14953 if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
14954 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
14955 << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
14956 Diag(Field->getLocation(), diag::note_declared_at);
14957 Invalid = true;
14958 continue;
14959 }
14960
14961 // Suppress assigning zero-width bitfields.
14962 if (Field->isZeroLengthBitField(Context))
14963 continue;
14964
14965 QualType FieldType = Field->getType().getNonReferenceType();
14966 if (FieldType->isIncompleteArrayType()) {
14967 assert(ClassDecl->hasFlexibleArrayMember() &&
14968 "Incomplete array type is not valid");
14969 continue;
14970 }
14971
14972 // Build references to the field in the object we're copying from and to.
14973 LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
14974 LookupMemberName);
14975 MemberLookup.addDecl(Field);
14976 MemberLookup.resolveKind();
14977 MemberBuilder From(MoveOther, OtherRefType,
14978 /*IsArrow=*/false, MemberLookup);
14979 MemberBuilder To(This, getCurrentThisType(),
14980 /*IsArrow=*/true, MemberLookup);
14981
14982 assert(!From.build(*this, Loc)->isLValue() && // could be xvalue or prvalue
14983 "Member reference with rvalue base must be rvalue except for reference "
14984 "members, which aren't allowed for move assignment.");
14985
14986 // Build the move of this field.
14987 StmtResult Move = buildSingleCopyAssign(*this, Loc, FieldType,
14988 To, From,
14989 /*CopyingBaseSubobject=*/false,
14990 /*Copying=*/false);
14991 if (Move.isInvalid()) {
14992 MoveAssignOperator->setInvalidDecl();
14993 return;
14994 }
14995
14996 // Success! Record the copy.
14997 Statements.push_back(Move.getAs<Stmt>());
14998 }
14999
15000 if (!Invalid) {
15001 // Add a "return *this;"
15002 ExprResult ThisObj =
15003 CreateBuiltinUnaryOp(Loc, UO_Deref, This.build(*this, Loc));
15004
15005 StmtResult Return = BuildReturnStmt(Loc, ThisObj.get());
15006 if (Return.isInvalid())
15007 Invalid = true;
15008 else
15009 Statements.push_back(Return.getAs<Stmt>());
15010 }
15011
15012 if (Invalid) {
15013 MoveAssignOperator->setInvalidDecl();
15014 return;
15015 }
15016
15017 StmtResult Body;
15018 {
15019 CompoundScopeRAII CompoundScope(*this);
15020 Body = ActOnCompoundStmt(Loc, Loc, Statements,
15021 /*isStmtExpr=*/false);
15022 assert(!Body.isInvalid() && "Compound statement creation cannot fail");
15023 }
15024 MoveAssignOperator->setBody(Body.getAs<Stmt>());
15025 MoveAssignOperator->markUsed(Context);
15026
15027 if (ASTMutationListener *L = getASTMutationListener()) {
15028 L->CompletedImplicitDefinition(MoveAssignOperator);
15029 }
15030 }
15031
DeclareImplicitCopyConstructor(CXXRecordDecl * ClassDecl)15032 CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
15033 CXXRecordDecl *ClassDecl) {
15034 // C++ [class.copy]p4:
15035 // If the class definition does not explicitly declare a copy
15036 // constructor, one is declared implicitly.
15037 assert(ClassDecl->needsImplicitCopyConstructor());
15038
15039 DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyConstructor);
15040 if (DSM.isAlreadyBeingDeclared())
15041 return nullptr;
15042
15043 QualType ClassType = Context.getTypeDeclType(ClassDecl);
15044 QualType ArgType = ClassType;
15045 bool Const = ClassDecl->implicitCopyConstructorHasConstParam();
15046 if (Const)
15047 ArgType = ArgType.withConst();
15048
15049 LangAS AS = getDefaultCXXMethodAddrSpace();
15050 if (AS != LangAS::Default)
15051 ArgType = Context.getAddrSpaceQualType(ArgType, AS);
15052
15053 ArgType = Context.getLValueReferenceType(ArgType);
15054
15055 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
15056 CXXCopyConstructor,
15057 Const);
15058
15059 DeclarationName Name
15060 = Context.DeclarationNames.getCXXConstructorName(
15061 Context.getCanonicalType(ClassType));
15062 SourceLocation ClassLoc = ClassDecl->getLocation();
15063 DeclarationNameInfo NameInfo(Name, ClassLoc);
15064
15065 // An implicitly-declared copy constructor is an inline public
15066 // member of its class.
15067 CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
15068 Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr,
15069 ExplicitSpecifier(), getCurFPFeatures().isFPConstrained(),
15070 /*isInline=*/true,
15071 /*isImplicitlyDeclared=*/true,
15072 Constexpr ? ConstexprSpecKind::Constexpr
15073 : ConstexprSpecKind::Unspecified);
15074 CopyConstructor->setAccess(AS_public);
15075 CopyConstructor->setDefaulted();
15076
15077 setupImplicitSpecialMemberType(CopyConstructor, Context.VoidTy, ArgType);
15078
15079 if (getLangOpts().CUDA)
15080 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXCopyConstructor,
15081 CopyConstructor,
15082 /* ConstRHS */ Const,
15083 /* Diagnose */ false);
15084
15085 // During template instantiation of special member functions we need a
15086 // reliable TypeSourceInfo for the parameter types in order to allow functions
15087 // to be substituted.
15088 TypeSourceInfo *TSI = nullptr;
15089 if (inTemplateInstantiation() && ClassDecl->isLambda())
15090 TSI = Context.getTrivialTypeSourceInfo(ArgType);
15091
15092 // Add the parameter to the constructor.
15093 ParmVarDecl *FromParam =
15094 ParmVarDecl::Create(Context, CopyConstructor, ClassLoc, ClassLoc,
15095 /*IdentifierInfo=*/nullptr, ArgType,
15096 /*TInfo=*/TSI, SC_None, nullptr);
15097 CopyConstructor->setParams(FromParam);
15098
15099 CopyConstructor->setTrivial(
15100 ClassDecl->needsOverloadResolutionForCopyConstructor()
15101 ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor)
15102 : ClassDecl->hasTrivialCopyConstructor());
15103
15104 CopyConstructor->setTrivialForCall(
15105 ClassDecl->hasAttr<TrivialABIAttr>() ||
15106 (ClassDecl->needsOverloadResolutionForCopyConstructor()
15107 ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor,
15108 TAH_ConsiderTrivialABI)
15109 : ClassDecl->hasTrivialCopyConstructorForCall()));
15110
15111 // Note that we have declared this constructor.
15112 ++getASTContext().NumImplicitCopyConstructorsDeclared;
15113
15114 Scope *S = getScopeForContext(ClassDecl);
15115 CheckImplicitSpecialMemberDeclaration(S, CopyConstructor);
15116
15117 if (ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor)) {
15118 ClassDecl->setImplicitCopyConstructorIsDeleted();
15119 SetDeclDeleted(CopyConstructor, ClassLoc);
15120 }
15121
15122 if (S)
15123 PushOnScopeChains(CopyConstructor, S, false);
15124 ClassDecl->addDecl(CopyConstructor);
15125
15126 return CopyConstructor;
15127 }
15128
DefineImplicitCopyConstructor(SourceLocation CurrentLocation,CXXConstructorDecl * CopyConstructor)15129 void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
15130 CXXConstructorDecl *CopyConstructor) {
15131 assert((CopyConstructor->isDefaulted() &&
15132 CopyConstructor->isCopyConstructor() &&
15133 !CopyConstructor->doesThisDeclarationHaveABody() &&
15134 !CopyConstructor->isDeleted()) &&
15135 "DefineImplicitCopyConstructor - call it for implicit copy ctor");
15136 if (CopyConstructor->willHaveBody() || CopyConstructor->isInvalidDecl())
15137 return;
15138
15139 CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
15140 assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
15141
15142 SynthesizedFunctionScope Scope(*this, CopyConstructor);
15143
15144 // The exception specification is needed because we are defining the
15145 // function.
15146 ResolveExceptionSpec(CurrentLocation,
15147 CopyConstructor->getType()->castAs<FunctionProtoType>());
15148 MarkVTableUsed(CurrentLocation, ClassDecl);
15149
15150 // Add a context note for diagnostics produced after this point.
15151 Scope.addContextNote(CurrentLocation);
15152
15153 // C++11 [class.copy]p7:
15154 // The [definition of an implicitly declared copy constructor] is
15155 // deprecated if the class has a user-declared copy assignment operator
15156 // or a user-declared destructor.
15157 if (getLangOpts().CPlusPlus11 && CopyConstructor->isImplicit())
15158 diagnoseDeprecatedCopyOperation(*this, CopyConstructor);
15159
15160 if (SetCtorInitializers(CopyConstructor, /*AnyErrors=*/false)) {
15161 CopyConstructor->setInvalidDecl();
15162 } else {
15163 SourceLocation Loc = CopyConstructor->getEndLoc().isValid()
15164 ? CopyConstructor->getEndLoc()
15165 : CopyConstructor->getLocation();
15166 Sema::CompoundScopeRAII CompoundScope(*this);
15167 CopyConstructor->setBody(
15168 ActOnCompoundStmt(Loc, Loc, None, /*isStmtExpr=*/false).getAs<Stmt>());
15169 CopyConstructor->markUsed(Context);
15170 }
15171
15172 if (ASTMutationListener *L = getASTMutationListener()) {
15173 L->CompletedImplicitDefinition(CopyConstructor);
15174 }
15175 }
15176
DeclareImplicitMoveConstructor(CXXRecordDecl * ClassDecl)15177 CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
15178 CXXRecordDecl *ClassDecl) {
15179 assert(ClassDecl->needsImplicitMoveConstructor());
15180
15181 DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveConstructor);
15182 if (DSM.isAlreadyBeingDeclared())
15183 return nullptr;
15184
15185 QualType ClassType = Context.getTypeDeclType(ClassDecl);
15186
15187 QualType ArgType = ClassType;
15188 LangAS AS = getDefaultCXXMethodAddrSpace();
15189 if (AS != LangAS::Default)
15190 ArgType = Context.getAddrSpaceQualType(ClassType, AS);
15191 ArgType = Context.getRValueReferenceType(ArgType);
15192
15193 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
15194 CXXMoveConstructor,
15195 false);
15196
15197 DeclarationName Name
15198 = Context.DeclarationNames.getCXXConstructorName(
15199 Context.getCanonicalType(ClassType));
15200 SourceLocation ClassLoc = ClassDecl->getLocation();
15201 DeclarationNameInfo NameInfo(Name, ClassLoc);
15202
15203 // C++11 [class.copy]p11:
15204 // An implicitly-declared copy/move constructor is an inline public
15205 // member of its class.
15206 CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
15207 Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr,
15208 ExplicitSpecifier(), getCurFPFeatures().isFPConstrained(),
15209 /*isInline=*/true,
15210 /*isImplicitlyDeclared=*/true,
15211 Constexpr ? ConstexprSpecKind::Constexpr
15212 : ConstexprSpecKind::Unspecified);
15213 MoveConstructor->setAccess(AS_public);
15214 MoveConstructor->setDefaulted();
15215
15216 setupImplicitSpecialMemberType(MoveConstructor, Context.VoidTy, ArgType);
15217
15218 if (getLangOpts().CUDA)
15219 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXMoveConstructor,
15220 MoveConstructor,
15221 /* ConstRHS */ false,
15222 /* Diagnose */ false);
15223
15224 // Add the parameter to the constructor.
15225 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
15226 ClassLoc, ClassLoc,
15227 /*IdentifierInfo=*/nullptr,
15228 ArgType, /*TInfo=*/nullptr,
15229 SC_None, nullptr);
15230 MoveConstructor->setParams(FromParam);
15231
15232 MoveConstructor->setTrivial(
15233 ClassDecl->needsOverloadResolutionForMoveConstructor()
15234 ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor)
15235 : ClassDecl->hasTrivialMoveConstructor());
15236
15237 MoveConstructor->setTrivialForCall(
15238 ClassDecl->hasAttr<TrivialABIAttr>() ||
15239 (ClassDecl->needsOverloadResolutionForMoveConstructor()
15240 ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor,
15241 TAH_ConsiderTrivialABI)
15242 : ClassDecl->hasTrivialMoveConstructorForCall()));
15243
15244 // Note that we have declared this constructor.
15245 ++getASTContext().NumImplicitMoveConstructorsDeclared;
15246
15247 Scope *S = getScopeForContext(ClassDecl);
15248 CheckImplicitSpecialMemberDeclaration(S, MoveConstructor);
15249
15250 if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
15251 ClassDecl->setImplicitMoveConstructorIsDeleted();
15252 SetDeclDeleted(MoveConstructor, ClassLoc);
15253 }
15254
15255 if (S)
15256 PushOnScopeChains(MoveConstructor, S, false);
15257 ClassDecl->addDecl(MoveConstructor);
15258
15259 return MoveConstructor;
15260 }
15261
DefineImplicitMoveConstructor(SourceLocation CurrentLocation,CXXConstructorDecl * MoveConstructor)15262 void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
15263 CXXConstructorDecl *MoveConstructor) {
15264 assert((MoveConstructor->isDefaulted() &&
15265 MoveConstructor->isMoveConstructor() &&
15266 !MoveConstructor->doesThisDeclarationHaveABody() &&
15267 !MoveConstructor->isDeleted()) &&
15268 "DefineImplicitMoveConstructor - call it for implicit move ctor");
15269 if (MoveConstructor->willHaveBody() || MoveConstructor->isInvalidDecl())
15270 return;
15271
15272 CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
15273 assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
15274
15275 SynthesizedFunctionScope Scope(*this, MoveConstructor);
15276
15277 // The exception specification is needed because we are defining the
15278 // function.
15279 ResolveExceptionSpec(CurrentLocation,
15280 MoveConstructor->getType()->castAs<FunctionProtoType>());
15281 MarkVTableUsed(CurrentLocation, ClassDecl);
15282
15283 // Add a context note for diagnostics produced after this point.
15284 Scope.addContextNote(CurrentLocation);
15285
15286 if (SetCtorInitializers(MoveConstructor, /*AnyErrors=*/false)) {
15287 MoveConstructor->setInvalidDecl();
15288 } else {
15289 SourceLocation Loc = MoveConstructor->getEndLoc().isValid()
15290 ? MoveConstructor->getEndLoc()
15291 : MoveConstructor->getLocation();
15292 Sema::CompoundScopeRAII CompoundScope(*this);
15293 MoveConstructor->setBody(ActOnCompoundStmt(
15294 Loc, Loc, None, /*isStmtExpr=*/ false).getAs<Stmt>());
15295 MoveConstructor->markUsed(Context);
15296 }
15297
15298 if (ASTMutationListener *L = getASTMutationListener()) {
15299 L->CompletedImplicitDefinition(MoveConstructor);
15300 }
15301 }
15302
isImplicitlyDeleted(FunctionDecl * FD)15303 bool Sema::isImplicitlyDeleted(FunctionDecl *FD) {
15304 return FD->isDeleted() && FD->isDefaulted() && isa<CXXMethodDecl>(FD);
15305 }
15306
DefineImplicitLambdaToFunctionPointerConversion(SourceLocation CurrentLocation,CXXConversionDecl * Conv)15307 void Sema::DefineImplicitLambdaToFunctionPointerConversion(
15308 SourceLocation CurrentLocation,
15309 CXXConversionDecl *Conv) {
15310 SynthesizedFunctionScope Scope(*this, Conv);
15311 assert(!Conv->getReturnType()->isUndeducedType());
15312
15313 QualType ConvRT = Conv->getType()->castAs<FunctionType>()->getReturnType();
15314 CallingConv CC =
15315 ConvRT->getPointeeType()->castAs<FunctionType>()->getCallConv();
15316
15317 CXXRecordDecl *Lambda = Conv->getParent();
15318 FunctionDecl *CallOp = Lambda->getLambdaCallOperator();
15319 FunctionDecl *Invoker = Lambda->getLambdaStaticInvoker(CC);
15320
15321 if (auto *TemplateArgs = Conv->getTemplateSpecializationArgs()) {
15322 CallOp = InstantiateFunctionDeclaration(
15323 CallOp->getDescribedFunctionTemplate(), TemplateArgs, CurrentLocation);
15324 if (!CallOp)
15325 return;
15326
15327 Invoker = InstantiateFunctionDeclaration(
15328 Invoker->getDescribedFunctionTemplate(), TemplateArgs, CurrentLocation);
15329 if (!Invoker)
15330 return;
15331 }
15332
15333 if (CallOp->isInvalidDecl())
15334 return;
15335
15336 // Mark the call operator referenced (and add to pending instantiations
15337 // if necessary).
15338 // For both the conversion and static-invoker template specializations
15339 // we construct their body's in this function, so no need to add them
15340 // to the PendingInstantiations.
15341 MarkFunctionReferenced(CurrentLocation, CallOp);
15342
15343 // Fill in the __invoke function with a dummy implementation. IR generation
15344 // will fill in the actual details. Update its type in case it contained
15345 // an 'auto'.
15346 Invoker->markUsed(Context);
15347 Invoker->setReferenced();
15348 Invoker->setType(Conv->getReturnType()->getPointeeType());
15349 Invoker->setBody(new (Context) CompoundStmt(Conv->getLocation()));
15350
15351 // Construct the body of the conversion function { return __invoke; }.
15352 Expr *FunctionRef = BuildDeclRefExpr(Invoker, Invoker->getType(),
15353 VK_LValue, Conv->getLocation());
15354 assert(FunctionRef && "Can't refer to __invoke function?");
15355 Stmt *Return = BuildReturnStmt(Conv->getLocation(), FunctionRef).get();
15356 Conv->setBody(CompoundStmt::Create(Context, Return, FPOptionsOverride(),
15357 Conv->getLocation(), Conv->getLocation()));
15358 Conv->markUsed(Context);
15359 Conv->setReferenced();
15360
15361 if (ASTMutationListener *L = getASTMutationListener()) {
15362 L->CompletedImplicitDefinition(Conv);
15363 L->CompletedImplicitDefinition(Invoker);
15364 }
15365 }
15366
15367
15368
DefineImplicitLambdaToBlockPointerConversion(SourceLocation CurrentLocation,CXXConversionDecl * Conv)15369 void Sema::DefineImplicitLambdaToBlockPointerConversion(
15370 SourceLocation CurrentLocation,
15371 CXXConversionDecl *Conv)
15372 {
15373 assert(!Conv->getParent()->isGenericLambda());
15374
15375 SynthesizedFunctionScope Scope(*this, Conv);
15376
15377 // Copy-initialize the lambda object as needed to capture it.
15378 Expr *This = ActOnCXXThis(CurrentLocation).get();
15379 Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).get();
15380
15381 ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation,
15382 Conv->getLocation(),
15383 Conv, DerefThis);
15384
15385 // If we're not under ARC, make sure we still get the _Block_copy/autorelease
15386 // behavior. Note that only the general conversion function does this
15387 // (since it's unusable otherwise); in the case where we inline the
15388 // block literal, it has block literal lifetime semantics.
15389 if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount)
15390 BuildBlock = ImplicitCastExpr::Create(
15391 Context, BuildBlock.get()->getType(), CK_CopyAndAutoreleaseBlockObject,
15392 BuildBlock.get(), nullptr, VK_PRValue, FPOptionsOverride());
15393
15394 if (BuildBlock.isInvalid()) {
15395 Diag(CurrentLocation, diag::note_lambda_to_block_conv);
15396 Conv->setInvalidDecl();
15397 return;
15398 }
15399
15400 // Create the return statement that returns the block from the conversion
15401 // function.
15402 StmtResult Return = BuildReturnStmt(Conv->getLocation(), BuildBlock.get());
15403 if (Return.isInvalid()) {
15404 Diag(CurrentLocation, diag::note_lambda_to_block_conv);
15405 Conv->setInvalidDecl();
15406 return;
15407 }
15408
15409 // Set the body of the conversion function.
15410 Stmt *ReturnS = Return.get();
15411 Conv->setBody(CompoundStmt::Create(Context, ReturnS, FPOptionsOverride(),
15412 Conv->getLocation(), Conv->getLocation()));
15413 Conv->markUsed(Context);
15414
15415 // We're done; notify the mutation listener, if any.
15416 if (ASTMutationListener *L = getASTMutationListener()) {
15417 L->CompletedImplicitDefinition(Conv);
15418 }
15419 }
15420
15421 /// Determine whether the given list arguments contains exactly one
15422 /// "real" (non-default) argument.
hasOneRealArgument(MultiExprArg Args)15423 static bool hasOneRealArgument(MultiExprArg Args) {
15424 switch (Args.size()) {
15425 case 0:
15426 return false;
15427
15428 default:
15429 if (!Args[1]->isDefaultArgument())
15430 return false;
15431
15432 LLVM_FALLTHROUGH;
15433 case 1:
15434 return !Args[0]->isDefaultArgument();
15435 }
15436
15437 return false;
15438 }
15439
15440 ExprResult
BuildCXXConstructExpr(SourceLocation ConstructLoc,QualType DeclInitType,NamedDecl * FoundDecl,CXXConstructorDecl * Constructor,MultiExprArg ExprArgs,bool HadMultipleCandidates,bool IsListInitialization,bool IsStdInitListInitialization,bool RequiresZeroInit,unsigned ConstructKind,SourceRange ParenRange)15441 Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
15442 NamedDecl *FoundDecl,
15443 CXXConstructorDecl *Constructor,
15444 MultiExprArg ExprArgs,
15445 bool HadMultipleCandidates,
15446 bool IsListInitialization,
15447 bool IsStdInitListInitialization,
15448 bool RequiresZeroInit,
15449 unsigned ConstructKind,
15450 SourceRange ParenRange) {
15451 bool Elidable = false;
15452
15453 // C++0x [class.copy]p34:
15454 // When certain criteria are met, an implementation is allowed to
15455 // omit the copy/move construction of a class object, even if the
15456 // copy/move constructor and/or destructor for the object have
15457 // side effects. [...]
15458 // - when a temporary class object that has not been bound to a
15459 // reference (12.2) would be copied/moved to a class object
15460 // with the same cv-unqualified type, the copy/move operation
15461 // can be omitted by constructing the temporary object
15462 // directly into the target of the omitted copy/move
15463 if (ConstructKind == CXXConstructExpr::CK_Complete && Constructor &&
15464 // FIXME: Converting constructors should also be accepted.
15465 // But to fix this, the logic that digs down into a CXXConstructExpr
15466 // to find the source object needs to handle it.
15467 // Right now it assumes the source object is passed directly as the
15468 // first argument.
15469 Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) {
15470 Expr *SubExpr = ExprArgs[0];
15471 // FIXME: Per above, this is also incorrect if we want to accept
15472 // converting constructors, as isTemporaryObject will
15473 // reject temporaries with different type from the
15474 // CXXRecord itself.
15475 Elidable = SubExpr->isTemporaryObject(
15476 Context, cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
15477 }
15478
15479 return BuildCXXConstructExpr(ConstructLoc, DeclInitType,
15480 FoundDecl, Constructor,
15481 Elidable, ExprArgs, HadMultipleCandidates,
15482 IsListInitialization,
15483 IsStdInitListInitialization, RequiresZeroInit,
15484 ConstructKind, ParenRange);
15485 }
15486
15487 ExprResult
BuildCXXConstructExpr(SourceLocation ConstructLoc,QualType DeclInitType,NamedDecl * FoundDecl,CXXConstructorDecl * Constructor,bool Elidable,MultiExprArg ExprArgs,bool HadMultipleCandidates,bool IsListInitialization,bool IsStdInitListInitialization,bool RequiresZeroInit,unsigned ConstructKind,SourceRange ParenRange)15488 Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
15489 NamedDecl *FoundDecl,
15490 CXXConstructorDecl *Constructor,
15491 bool Elidable,
15492 MultiExprArg ExprArgs,
15493 bool HadMultipleCandidates,
15494 bool IsListInitialization,
15495 bool IsStdInitListInitialization,
15496 bool RequiresZeroInit,
15497 unsigned ConstructKind,
15498 SourceRange ParenRange) {
15499 if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl)) {
15500 Constructor = findInheritingConstructor(ConstructLoc, Constructor, Shadow);
15501 if (DiagnoseUseOfDecl(Constructor, ConstructLoc))
15502 return ExprError();
15503 }
15504
15505 return BuildCXXConstructExpr(
15506 ConstructLoc, DeclInitType, Constructor, Elidable, ExprArgs,
15507 HadMultipleCandidates, IsListInitialization, IsStdInitListInitialization,
15508 RequiresZeroInit, ConstructKind, ParenRange);
15509 }
15510
15511 /// BuildCXXConstructExpr - Creates a complete call to a constructor,
15512 /// including handling of its default argument expressions.
15513 ExprResult
BuildCXXConstructExpr(SourceLocation ConstructLoc,QualType DeclInitType,CXXConstructorDecl * Constructor,bool Elidable,MultiExprArg ExprArgs,bool HadMultipleCandidates,bool IsListInitialization,bool IsStdInitListInitialization,bool RequiresZeroInit,unsigned ConstructKind,SourceRange ParenRange)15514 Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
15515 CXXConstructorDecl *Constructor,
15516 bool Elidable,
15517 MultiExprArg ExprArgs,
15518 bool HadMultipleCandidates,
15519 bool IsListInitialization,
15520 bool IsStdInitListInitialization,
15521 bool RequiresZeroInit,
15522 unsigned ConstructKind,
15523 SourceRange ParenRange) {
15524 assert(declaresSameEntity(
15525 Constructor->getParent(),
15526 DeclInitType->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) &&
15527 "given constructor for wrong type");
15528 MarkFunctionReferenced(ConstructLoc, Constructor);
15529 if (getLangOpts().CUDA && !CheckCUDACall(ConstructLoc, Constructor))
15530 return ExprError();
15531 if (getLangOpts().SYCLIsDevice &&
15532 !checkSYCLDeviceFunction(ConstructLoc, Constructor))
15533 return ExprError();
15534
15535 return CheckForImmediateInvocation(
15536 CXXConstructExpr::Create(
15537 Context, DeclInitType, ConstructLoc, Constructor, Elidable, ExprArgs,
15538 HadMultipleCandidates, IsListInitialization,
15539 IsStdInitListInitialization, RequiresZeroInit,
15540 static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
15541 ParenRange),
15542 Constructor);
15543 }
15544
BuildCXXDefaultInitExpr(SourceLocation Loc,FieldDecl * Field)15545 ExprResult Sema::BuildCXXDefaultInitExpr(SourceLocation Loc, FieldDecl *Field) {
15546 assert(Field->hasInClassInitializer());
15547
15548 // If we already have the in-class initializer nothing needs to be done.
15549 if (Field->getInClassInitializer())
15550 return CXXDefaultInitExpr::Create(Context, Loc, Field, CurContext);
15551
15552 // If we might have already tried and failed to instantiate, don't try again.
15553 if (Field->isInvalidDecl())
15554 return ExprError();
15555
15556 // Maybe we haven't instantiated the in-class initializer. Go check the
15557 // pattern FieldDecl to see if it has one.
15558 CXXRecordDecl *ParentRD = cast<CXXRecordDecl>(Field->getParent());
15559
15560 if (isTemplateInstantiation(ParentRD->getTemplateSpecializationKind())) {
15561 CXXRecordDecl *ClassPattern = ParentRD->getTemplateInstantiationPattern();
15562 DeclContext::lookup_result Lookup =
15563 ClassPattern->lookup(Field->getDeclName());
15564
15565 FieldDecl *Pattern = nullptr;
15566 for (auto L : Lookup) {
15567 if (isa<FieldDecl>(L)) {
15568 Pattern = cast<FieldDecl>(L);
15569 break;
15570 }
15571 }
15572 assert(Pattern && "We must have set the Pattern!");
15573
15574 if (!Pattern->hasInClassInitializer() ||
15575 InstantiateInClassInitializer(Loc, Field, Pattern,
15576 getTemplateInstantiationArgs(Field))) {
15577 // Don't diagnose this again.
15578 Field->setInvalidDecl();
15579 return ExprError();
15580 }
15581 return CXXDefaultInitExpr::Create(Context, Loc, Field, CurContext);
15582 }
15583
15584 // DR1351:
15585 // If the brace-or-equal-initializer of a non-static data member
15586 // invokes a defaulted default constructor of its class or of an
15587 // enclosing class in a potentially evaluated subexpression, the
15588 // program is ill-formed.
15589 //
15590 // This resolution is unworkable: the exception specification of the
15591 // default constructor can be needed in an unevaluated context, in
15592 // particular, in the operand of a noexcept-expression, and we can be
15593 // unable to compute an exception specification for an enclosed class.
15594 //
15595 // Any attempt to resolve the exception specification of a defaulted default
15596 // constructor before the initializer is lexically complete will ultimately
15597 // come here at which point we can diagnose it.
15598 RecordDecl *OutermostClass = ParentRD->getOuterLexicalRecordContext();
15599 Diag(Loc, diag::err_default_member_initializer_not_yet_parsed)
15600 << OutermostClass << Field;
15601 Diag(Field->getEndLoc(),
15602 diag::note_default_member_initializer_not_yet_parsed);
15603 // Recover by marking the field invalid, unless we're in a SFINAE context.
15604 if (!isSFINAEContext())
15605 Field->setInvalidDecl();
15606 return ExprError();
15607 }
15608
FinalizeVarWithDestructor(VarDecl * VD,const RecordType * Record)15609 void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
15610 if (VD->isInvalidDecl()) return;
15611 // If initializing the variable failed, don't also diagnose problems with
15612 // the destructor, they're likely related.
15613 if (VD->getInit() && VD->getInit()->containsErrors())
15614 return;
15615
15616 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
15617 if (ClassDecl->isInvalidDecl()) return;
15618 if (ClassDecl->hasIrrelevantDestructor()) return;
15619 if (ClassDecl->isDependentContext()) return;
15620
15621 if (VD->isNoDestroy(getASTContext()))
15622 return;
15623
15624 CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
15625
15626 // If this is an array, we'll require the destructor during initialization, so
15627 // we can skip over this. We still want to emit exit-time destructor warnings
15628 // though.
15629 if (!VD->getType()->isArrayType()) {
15630 MarkFunctionReferenced(VD->getLocation(), Destructor);
15631 CheckDestructorAccess(VD->getLocation(), Destructor,
15632 PDiag(diag::err_access_dtor_var)
15633 << VD->getDeclName() << VD->getType());
15634 DiagnoseUseOfDecl(Destructor, VD->getLocation());
15635 }
15636
15637 if (Destructor->isTrivial()) return;
15638
15639 // If the destructor is constexpr, check whether the variable has constant
15640 // destruction now.
15641 if (Destructor->isConstexpr()) {
15642 bool HasConstantInit = false;
15643 if (VD->getInit() && !VD->getInit()->isValueDependent())
15644 HasConstantInit = VD->evaluateValue();
15645 SmallVector<PartialDiagnosticAt, 8> Notes;
15646 if (!VD->evaluateDestruction(Notes) && VD->isConstexpr() &&
15647 HasConstantInit) {
15648 Diag(VD->getLocation(),
15649 diag::err_constexpr_var_requires_const_destruction) << VD;
15650 for (unsigned I = 0, N = Notes.size(); I != N; ++I)
15651 Diag(Notes[I].first, Notes[I].second);
15652 }
15653 }
15654
15655 if (!VD->hasGlobalStorage()) return;
15656
15657 // Emit warning for non-trivial dtor in global scope (a real global,
15658 // class-static, function-static).
15659 Diag(VD->getLocation(), diag::warn_exit_time_destructor);
15660
15661 // TODO: this should be re-enabled for static locals by !CXAAtExit
15662 if (!VD->isStaticLocal())
15663 Diag(VD->getLocation(), diag::warn_global_destructor);
15664 }
15665
15666 /// Given a constructor and the set of arguments provided for the
15667 /// constructor, convert the arguments and add any required default arguments
15668 /// to form a proper call to this constructor.
15669 ///
15670 /// \returns true if an error occurred, false otherwise.
CompleteConstructorCall(CXXConstructorDecl * Constructor,QualType DeclInitType,MultiExprArg ArgsPtr,SourceLocation Loc,SmallVectorImpl<Expr * > & ConvertedArgs,bool AllowExplicit,bool IsListInitialization)15671 bool Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
15672 QualType DeclInitType, MultiExprArg ArgsPtr,
15673 SourceLocation Loc,
15674 SmallVectorImpl<Expr *> &ConvertedArgs,
15675 bool AllowExplicit,
15676 bool IsListInitialization) {
15677 // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
15678 unsigned NumArgs = ArgsPtr.size();
15679 Expr **Args = ArgsPtr.data();
15680
15681 const auto *Proto = Constructor->getType()->castAs<FunctionProtoType>();
15682 unsigned NumParams = Proto->getNumParams();
15683
15684 // If too few arguments are available, we'll fill in the rest with defaults.
15685 if (NumArgs < NumParams)
15686 ConvertedArgs.reserve(NumParams);
15687 else
15688 ConvertedArgs.reserve(NumArgs);
15689
15690 VariadicCallType CallType =
15691 Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
15692 SmallVector<Expr *, 8> AllArgs;
15693 bool Invalid = GatherArgumentsForCall(Loc, Constructor,
15694 Proto, 0,
15695 llvm::makeArrayRef(Args, NumArgs),
15696 AllArgs,
15697 CallType, AllowExplicit,
15698 IsListInitialization);
15699 ConvertedArgs.append(AllArgs.begin(), AllArgs.end());
15700
15701 DiagnoseSentinelCalls(Constructor, Loc, AllArgs);
15702
15703 CheckConstructorCall(Constructor, DeclInitType,
15704 llvm::makeArrayRef(AllArgs.data(), AllArgs.size()),
15705 Proto, Loc);
15706
15707 return Invalid;
15708 }
15709
15710 static inline bool
CheckOperatorNewDeleteDeclarationScope(Sema & SemaRef,const FunctionDecl * FnDecl)15711 CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
15712 const FunctionDecl *FnDecl) {
15713 const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
15714 if (isa<NamespaceDecl>(DC)) {
15715 return SemaRef.Diag(FnDecl->getLocation(),
15716 diag::err_operator_new_delete_declared_in_namespace)
15717 << FnDecl->getDeclName();
15718 }
15719
15720 if (isa<TranslationUnitDecl>(DC) &&
15721 FnDecl->getStorageClass() == SC_Static) {
15722 return SemaRef.Diag(FnDecl->getLocation(),
15723 diag::err_operator_new_delete_declared_static)
15724 << FnDecl->getDeclName();
15725 }
15726
15727 return false;
15728 }
15729
RemoveAddressSpaceFromPtr(Sema & SemaRef,const PointerType * PtrTy)15730 static CanQualType RemoveAddressSpaceFromPtr(Sema &SemaRef,
15731 const PointerType *PtrTy) {
15732 auto &Ctx = SemaRef.Context;
15733 Qualifiers PtrQuals = PtrTy->getPointeeType().getQualifiers();
15734 PtrQuals.removeAddressSpace();
15735 return Ctx.getPointerType(Ctx.getCanonicalType(Ctx.getQualifiedType(
15736 PtrTy->getPointeeType().getUnqualifiedType(), PtrQuals)));
15737 }
15738
15739 static inline bool
CheckOperatorNewDeleteTypes(Sema & SemaRef,const FunctionDecl * FnDecl,CanQualType ExpectedResultType,CanQualType ExpectedFirstParamType,unsigned DependentParamTypeDiag,unsigned InvalidParamTypeDiag)15740 CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
15741 CanQualType ExpectedResultType,
15742 CanQualType ExpectedFirstParamType,
15743 unsigned DependentParamTypeDiag,
15744 unsigned InvalidParamTypeDiag) {
15745 QualType ResultType =
15746 FnDecl->getType()->castAs<FunctionType>()->getReturnType();
15747
15748 if (SemaRef.getLangOpts().OpenCLCPlusPlus) {
15749 // The operator is valid on any address space for OpenCL.
15750 // Drop address space from actual and expected result types.
15751 if (const auto *PtrTy = ResultType->getAs<PointerType>())
15752 ResultType = RemoveAddressSpaceFromPtr(SemaRef, PtrTy);
15753
15754 if (auto ExpectedPtrTy = ExpectedResultType->getAs<PointerType>())
15755 ExpectedResultType = RemoveAddressSpaceFromPtr(SemaRef, ExpectedPtrTy);
15756 }
15757
15758 // Check that the result type is what we expect.
15759 if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType) {
15760 // Reject even if the type is dependent; an operator delete function is
15761 // required to have a non-dependent result type.
15762 return SemaRef.Diag(
15763 FnDecl->getLocation(),
15764 ResultType->isDependentType()
15765 ? diag::err_operator_new_delete_dependent_result_type
15766 : diag::err_operator_new_delete_invalid_result_type)
15767 << FnDecl->getDeclName() << ExpectedResultType;
15768 }
15769
15770 // A function template must have at least 2 parameters.
15771 if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
15772 return SemaRef.Diag(FnDecl->getLocation(),
15773 diag::err_operator_new_delete_template_too_few_parameters)
15774 << FnDecl->getDeclName();
15775
15776 // The function decl must have at least 1 parameter.
15777 if (FnDecl->getNumParams() == 0)
15778 return SemaRef.Diag(FnDecl->getLocation(),
15779 diag::err_operator_new_delete_too_few_parameters)
15780 << FnDecl->getDeclName();
15781
15782 QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
15783 if (SemaRef.getLangOpts().OpenCLCPlusPlus) {
15784 // The operator is valid on any address space for OpenCL.
15785 // Drop address space from actual and expected first parameter types.
15786 if (const auto *PtrTy =
15787 FnDecl->getParamDecl(0)->getType()->getAs<PointerType>())
15788 FirstParamType = RemoveAddressSpaceFromPtr(SemaRef, PtrTy);
15789
15790 if (auto ExpectedPtrTy = ExpectedFirstParamType->getAs<PointerType>())
15791 ExpectedFirstParamType =
15792 RemoveAddressSpaceFromPtr(SemaRef, ExpectedPtrTy);
15793 }
15794
15795 // Check that the first parameter type is what we expect.
15796 if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
15797 ExpectedFirstParamType) {
15798 // The first parameter type is not allowed to be dependent. As a tentative
15799 // DR resolution, we allow a dependent parameter type if it is the right
15800 // type anyway, to allow destroying operator delete in class templates.
15801 return SemaRef.Diag(FnDecl->getLocation(), FirstParamType->isDependentType()
15802 ? DependentParamTypeDiag
15803 : InvalidParamTypeDiag)
15804 << FnDecl->getDeclName() << ExpectedFirstParamType;
15805 }
15806
15807 return false;
15808 }
15809
15810 static bool
CheckOperatorNewDeclaration(Sema & SemaRef,const FunctionDecl * FnDecl)15811 CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
15812 // C++ [basic.stc.dynamic.allocation]p1:
15813 // A program is ill-formed if an allocation function is declared in a
15814 // namespace scope other than global scope or declared static in global
15815 // scope.
15816 if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
15817 return true;
15818
15819 CanQualType SizeTy =
15820 SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
15821
15822 // C++ [basic.stc.dynamic.allocation]p1:
15823 // The return type shall be void*. The first parameter shall have type
15824 // std::size_t.
15825 if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
15826 SizeTy,
15827 diag::err_operator_new_dependent_param_type,
15828 diag::err_operator_new_param_type))
15829 return true;
15830
15831 // C++ [basic.stc.dynamic.allocation]p1:
15832 // The first parameter shall not have an associated default argument.
15833 if (FnDecl->getParamDecl(0)->hasDefaultArg())
15834 return SemaRef.Diag(FnDecl->getLocation(),
15835 diag::err_operator_new_default_arg)
15836 << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
15837
15838 return false;
15839 }
15840
15841 static bool
CheckOperatorDeleteDeclaration(Sema & SemaRef,FunctionDecl * FnDecl)15842 CheckOperatorDeleteDeclaration(Sema &SemaRef, FunctionDecl *FnDecl) {
15843 // C++ [basic.stc.dynamic.deallocation]p1:
15844 // A program is ill-formed if deallocation functions are declared in a
15845 // namespace scope other than global scope or declared static in global
15846 // scope.
15847 if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
15848 return true;
15849
15850 auto *MD = dyn_cast<CXXMethodDecl>(FnDecl);
15851
15852 // C++ P0722:
15853 // Within a class C, the first parameter of a destroying operator delete
15854 // shall be of type C *. The first parameter of any other deallocation
15855 // function shall be of type void *.
15856 CanQualType ExpectedFirstParamType =
15857 MD && MD->isDestroyingOperatorDelete()
15858 ? SemaRef.Context.getCanonicalType(SemaRef.Context.getPointerType(
15859 SemaRef.Context.getRecordType(MD->getParent())))
15860 : SemaRef.Context.VoidPtrTy;
15861
15862 // C++ [basic.stc.dynamic.deallocation]p2:
15863 // Each deallocation function shall return void
15864 if (CheckOperatorNewDeleteTypes(
15865 SemaRef, FnDecl, SemaRef.Context.VoidTy, ExpectedFirstParamType,
15866 diag::err_operator_delete_dependent_param_type,
15867 diag::err_operator_delete_param_type))
15868 return true;
15869
15870 // C++ P0722:
15871 // A destroying operator delete shall be a usual deallocation function.
15872 if (MD && !MD->getParent()->isDependentContext() &&
15873 MD->isDestroyingOperatorDelete() &&
15874 !SemaRef.isUsualDeallocationFunction(MD)) {
15875 SemaRef.Diag(MD->getLocation(),
15876 diag::err_destroying_operator_delete_not_usual);
15877 return true;
15878 }
15879
15880 return false;
15881 }
15882
15883 /// CheckOverloadedOperatorDeclaration - Check whether the declaration
15884 /// of this overloaded operator is well-formed. If so, returns false;
15885 /// otherwise, emits appropriate diagnostics and returns true.
CheckOverloadedOperatorDeclaration(FunctionDecl * FnDecl)15886 bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
15887 assert(FnDecl && FnDecl->isOverloadedOperator() &&
15888 "Expected an overloaded operator declaration");
15889
15890 OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
15891
15892 // C++ [over.oper]p5:
15893 // The allocation and deallocation functions, operator new,
15894 // operator new[], operator delete and operator delete[], are
15895 // described completely in 3.7.3. The attributes and restrictions
15896 // found in the rest of this subclause do not apply to them unless
15897 // explicitly stated in 3.7.3.
15898 if (Op == OO_Delete || Op == OO_Array_Delete)
15899 return CheckOperatorDeleteDeclaration(*this, FnDecl);
15900
15901 if (Op == OO_New || Op == OO_Array_New)
15902 return CheckOperatorNewDeclaration(*this, FnDecl);
15903
15904 // C++ [over.oper]p6:
15905 // An operator function shall either be a non-static member
15906 // function or be a non-member function and have at least one
15907 // parameter whose type is a class, a reference to a class, an
15908 // enumeration, or a reference to an enumeration.
15909 if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
15910 if (MethodDecl->isStatic())
15911 return Diag(FnDecl->getLocation(),
15912 diag::err_operator_overload_static) << FnDecl->getDeclName();
15913 } else {
15914 bool ClassOrEnumParam = false;
15915 for (auto Param : FnDecl->parameters()) {
15916 QualType ParamType = Param->getType().getNonReferenceType();
15917 if (ParamType->isDependentType() || ParamType->isRecordType() ||
15918 ParamType->isEnumeralType()) {
15919 ClassOrEnumParam = true;
15920 break;
15921 }
15922 }
15923
15924 if (!ClassOrEnumParam)
15925 return Diag(FnDecl->getLocation(),
15926 diag::err_operator_overload_needs_class_or_enum)
15927 << FnDecl->getDeclName();
15928 }
15929
15930 // C++ [over.oper]p8:
15931 // An operator function cannot have default arguments (8.3.6),
15932 // except where explicitly stated below.
15933 //
15934 // Only the function-call operator (C++ [over.call]p1) and the subscript
15935 // operator (CWG2507) allow default arguments.
15936 if (Op != OO_Call) {
15937 ParmVarDecl *FirstDefaultedParam = nullptr;
15938 for (auto Param : FnDecl->parameters()) {
15939 if (Param->hasDefaultArg()) {
15940 FirstDefaultedParam = Param;
15941 break;
15942 }
15943 }
15944 if (FirstDefaultedParam) {
15945 if (Op == OO_Subscript) {
15946 Diag(FnDecl->getLocation(), LangOpts.CPlusPlus2b
15947 ? diag::ext_subscript_overload
15948 : diag::error_subscript_overload)
15949 << FnDecl->getDeclName() << 1
15950 << FirstDefaultedParam->getDefaultArgRange();
15951 } else {
15952 return Diag(FirstDefaultedParam->getLocation(),
15953 diag::err_operator_overload_default_arg)
15954 << FnDecl->getDeclName()
15955 << FirstDefaultedParam->getDefaultArgRange();
15956 }
15957 }
15958 }
15959
15960 static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
15961 { false, false, false }
15962 #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
15963 , { Unary, Binary, MemberOnly }
15964 #include "clang/Basic/OperatorKinds.def"
15965 };
15966
15967 bool CanBeUnaryOperator = OperatorUses[Op][0];
15968 bool CanBeBinaryOperator = OperatorUses[Op][1];
15969 bool MustBeMemberOperator = OperatorUses[Op][2];
15970
15971 // C++ [over.oper]p8:
15972 // [...] Operator functions cannot have more or fewer parameters
15973 // than the number required for the corresponding operator, as
15974 // described in the rest of this subclause.
15975 unsigned NumParams = FnDecl->getNumParams()
15976 + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
15977 if (Op != OO_Call && Op != OO_Subscript &&
15978 ((NumParams == 1 && !CanBeUnaryOperator) ||
15979 (NumParams == 2 && !CanBeBinaryOperator) || (NumParams < 1) ||
15980 (NumParams > 2))) {
15981 // We have the wrong number of parameters.
15982 unsigned ErrorKind;
15983 if (CanBeUnaryOperator && CanBeBinaryOperator) {
15984 ErrorKind = 2; // 2 -> unary or binary.
15985 } else if (CanBeUnaryOperator) {
15986 ErrorKind = 0; // 0 -> unary
15987 } else {
15988 assert(CanBeBinaryOperator &&
15989 "All non-call overloaded operators are unary or binary!");
15990 ErrorKind = 1; // 1 -> binary
15991 }
15992 return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
15993 << FnDecl->getDeclName() << NumParams << ErrorKind;
15994 }
15995
15996 if (Op == OO_Subscript && NumParams != 2) {
15997 Diag(FnDecl->getLocation(), LangOpts.CPlusPlus2b
15998 ? diag::ext_subscript_overload
15999 : diag::error_subscript_overload)
16000 << FnDecl->getDeclName() << (NumParams == 1 ? 0 : 2);
16001 }
16002
16003 // Overloaded operators other than operator() and operator[] cannot be
16004 // variadic.
16005 if (Op != OO_Call &&
16006 FnDecl->getType()->castAs<FunctionProtoType>()->isVariadic()) {
16007 return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
16008 << FnDecl->getDeclName();
16009 }
16010
16011 // Some operators must be non-static member functions.
16012 if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
16013 return Diag(FnDecl->getLocation(),
16014 diag::err_operator_overload_must_be_member)
16015 << FnDecl->getDeclName();
16016 }
16017
16018 // C++ [over.inc]p1:
16019 // The user-defined function called operator++ implements the
16020 // prefix and postfix ++ operator. If this function is a member
16021 // function with no parameters, or a non-member function with one
16022 // parameter of class or enumeration type, it defines the prefix
16023 // increment operator ++ for objects of that type. If the function
16024 // is a member function with one parameter (which shall be of type
16025 // int) or a non-member function with two parameters (the second
16026 // of which shall be of type int), it defines the postfix
16027 // increment operator ++ for objects of that type.
16028 if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
16029 ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
16030 QualType ParamType = LastParam->getType();
16031
16032 if (!ParamType->isSpecificBuiltinType(BuiltinType::Int) &&
16033 !ParamType->isDependentType())
16034 return Diag(LastParam->getLocation(),
16035 diag::err_operator_overload_post_incdec_must_be_int)
16036 << LastParam->getType() << (Op == OO_MinusMinus);
16037 }
16038
16039 return false;
16040 }
16041
16042 static bool
checkLiteralOperatorTemplateParameterList(Sema & SemaRef,FunctionTemplateDecl * TpDecl)16043 checkLiteralOperatorTemplateParameterList(Sema &SemaRef,
16044 FunctionTemplateDecl *TpDecl) {
16045 TemplateParameterList *TemplateParams = TpDecl->getTemplateParameters();
16046
16047 // Must have one or two template parameters.
16048 if (TemplateParams->size() == 1) {
16049 NonTypeTemplateParmDecl *PmDecl =
16050 dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(0));
16051
16052 // The template parameter must be a char parameter pack.
16053 if (PmDecl && PmDecl->isTemplateParameterPack() &&
16054 SemaRef.Context.hasSameType(PmDecl->getType(), SemaRef.Context.CharTy))
16055 return false;
16056
16057 // C++20 [over.literal]p5:
16058 // A string literal operator template is a literal operator template
16059 // whose template-parameter-list comprises a single non-type
16060 // template-parameter of class type.
16061 //
16062 // As a DR resolution, we also allow placeholders for deduced class
16063 // template specializations.
16064 if (SemaRef.getLangOpts().CPlusPlus20 && PmDecl &&
16065 !PmDecl->isTemplateParameterPack() &&
16066 (PmDecl->getType()->isRecordType() ||
16067 PmDecl->getType()->getAs<DeducedTemplateSpecializationType>()))
16068 return false;
16069 } else if (TemplateParams->size() == 2) {
16070 TemplateTypeParmDecl *PmType =
16071 dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(0));
16072 NonTypeTemplateParmDecl *PmArgs =
16073 dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(1));
16074
16075 // The second template parameter must be a parameter pack with the
16076 // first template parameter as its type.
16077 if (PmType && PmArgs && !PmType->isTemplateParameterPack() &&
16078 PmArgs->isTemplateParameterPack()) {
16079 const TemplateTypeParmType *TArgs =
16080 PmArgs->getType()->getAs<TemplateTypeParmType>();
16081 if (TArgs && TArgs->getDepth() == PmType->getDepth() &&
16082 TArgs->getIndex() == PmType->getIndex()) {
16083 if (!SemaRef.inTemplateInstantiation())
16084 SemaRef.Diag(TpDecl->getLocation(),
16085 diag::ext_string_literal_operator_template);
16086 return false;
16087 }
16088 }
16089 }
16090
16091 SemaRef.Diag(TpDecl->getTemplateParameters()->getSourceRange().getBegin(),
16092 diag::err_literal_operator_template)
16093 << TpDecl->getTemplateParameters()->getSourceRange();
16094 return true;
16095 }
16096
16097 /// CheckLiteralOperatorDeclaration - Check whether the declaration
16098 /// of this literal operator function is well-formed. If so, returns
16099 /// false; otherwise, emits appropriate diagnostics and returns true.
CheckLiteralOperatorDeclaration(FunctionDecl * FnDecl)16100 bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
16101 if (isa<CXXMethodDecl>(FnDecl)) {
16102 Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
16103 << FnDecl->getDeclName();
16104 return true;
16105 }
16106
16107 if (FnDecl->isExternC()) {
16108 Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c);
16109 if (const LinkageSpecDecl *LSD =
16110 FnDecl->getDeclContext()->getExternCContext())
16111 Diag(LSD->getExternLoc(), diag::note_extern_c_begins_here);
16112 return true;
16113 }
16114
16115 // This might be the definition of a literal operator template.
16116 FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate();
16117
16118 // This might be a specialization of a literal operator template.
16119 if (!TpDecl)
16120 TpDecl = FnDecl->getPrimaryTemplate();
16121
16122 // template <char...> type operator "" name() and
16123 // template <class T, T...> type operator "" name() are the only valid
16124 // template signatures, and the only valid signatures with no parameters.
16125 //
16126 // C++20 also allows template <SomeClass T> type operator "" name().
16127 if (TpDecl) {
16128 if (FnDecl->param_size() != 0) {
16129 Diag(FnDecl->getLocation(),
16130 diag::err_literal_operator_template_with_params);
16131 return true;
16132 }
16133
16134 if (checkLiteralOperatorTemplateParameterList(*this, TpDecl))
16135 return true;
16136
16137 } else if (FnDecl->param_size() == 1) {
16138 const ParmVarDecl *Param = FnDecl->getParamDecl(0);
16139
16140 QualType ParamType = Param->getType().getUnqualifiedType();
16141
16142 // Only unsigned long long int, long double, any character type, and const
16143 // char * are allowed as the only parameters.
16144 if (ParamType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
16145 ParamType->isSpecificBuiltinType(BuiltinType::LongDouble) ||
16146 Context.hasSameType(ParamType, Context.CharTy) ||
16147 Context.hasSameType(ParamType, Context.WideCharTy) ||
16148 Context.hasSameType(ParamType, Context.Char8Ty) ||
16149 Context.hasSameType(ParamType, Context.Char16Ty) ||
16150 Context.hasSameType(ParamType, Context.Char32Ty)) {
16151 } else if (const PointerType *Ptr = ParamType->getAs<PointerType>()) {
16152 QualType InnerType = Ptr->getPointeeType();
16153
16154 // Pointer parameter must be a const char *.
16155 if (!(Context.hasSameType(InnerType.getUnqualifiedType(),
16156 Context.CharTy) &&
16157 InnerType.isConstQualified() && !InnerType.isVolatileQualified())) {
16158 Diag(Param->getSourceRange().getBegin(),
16159 diag::err_literal_operator_param)
16160 << ParamType << "'const char *'" << Param->getSourceRange();
16161 return true;
16162 }
16163
16164 } else if (ParamType->isRealFloatingType()) {
16165 Diag(Param->getSourceRange().getBegin(), diag::err_literal_operator_param)
16166 << ParamType << Context.LongDoubleTy << Param->getSourceRange();
16167 return true;
16168
16169 } else if (ParamType->isIntegerType()) {
16170 Diag(Param->getSourceRange().getBegin(), diag::err_literal_operator_param)
16171 << ParamType << Context.UnsignedLongLongTy << Param->getSourceRange();
16172 return true;
16173
16174 } else {
16175 Diag(Param->getSourceRange().getBegin(),
16176 diag::err_literal_operator_invalid_param)
16177 << ParamType << Param->getSourceRange();
16178 return true;
16179 }
16180
16181 } else if (FnDecl->param_size() == 2) {
16182 FunctionDecl::param_iterator Param = FnDecl->param_begin();
16183
16184 // First, verify that the first parameter is correct.
16185
16186 QualType FirstParamType = (*Param)->getType().getUnqualifiedType();
16187
16188 // Two parameter function must have a pointer to const as a
16189 // first parameter; let's strip those qualifiers.
16190 const PointerType *PT = FirstParamType->getAs<PointerType>();
16191
16192 if (!PT) {
16193 Diag((*Param)->getSourceRange().getBegin(),
16194 diag::err_literal_operator_param)
16195 << FirstParamType << "'const char *'" << (*Param)->getSourceRange();
16196 return true;
16197 }
16198
16199 QualType PointeeType = PT->getPointeeType();
16200 // First parameter must be const
16201 if (!PointeeType.isConstQualified() || PointeeType.isVolatileQualified()) {
16202 Diag((*Param)->getSourceRange().getBegin(),
16203 diag::err_literal_operator_param)
16204 << FirstParamType << "'const char *'" << (*Param)->getSourceRange();
16205 return true;
16206 }
16207
16208 QualType InnerType = PointeeType.getUnqualifiedType();
16209 // Only const char *, const wchar_t*, const char8_t*, const char16_t*, and
16210 // const char32_t* are allowed as the first parameter to a two-parameter
16211 // function
16212 if (!(Context.hasSameType(InnerType, Context.CharTy) ||
16213 Context.hasSameType(InnerType, Context.WideCharTy) ||
16214 Context.hasSameType(InnerType, Context.Char8Ty) ||
16215 Context.hasSameType(InnerType, Context.Char16Ty) ||
16216 Context.hasSameType(InnerType, Context.Char32Ty))) {
16217 Diag((*Param)->getSourceRange().getBegin(),
16218 diag::err_literal_operator_param)
16219 << FirstParamType << "'const char *'" << (*Param)->getSourceRange();
16220 return true;
16221 }
16222
16223 // Move on to the second and final parameter.
16224 ++Param;
16225
16226 // The second parameter must be a std::size_t.
16227 QualType SecondParamType = (*Param)->getType().getUnqualifiedType();
16228 if (!Context.hasSameType(SecondParamType, Context.getSizeType())) {
16229 Diag((*Param)->getSourceRange().getBegin(),
16230 diag::err_literal_operator_param)
16231 << SecondParamType << Context.getSizeType()
16232 << (*Param)->getSourceRange();
16233 return true;
16234 }
16235 } else {
16236 Diag(FnDecl->getLocation(), diag::err_literal_operator_bad_param_count);
16237 return true;
16238 }
16239
16240 // Parameters are good.
16241
16242 // A parameter-declaration-clause containing a default argument is not
16243 // equivalent to any of the permitted forms.
16244 for (auto Param : FnDecl->parameters()) {
16245 if (Param->hasDefaultArg()) {
16246 Diag(Param->getDefaultArgRange().getBegin(),
16247 diag::err_literal_operator_default_argument)
16248 << Param->getDefaultArgRange();
16249 break;
16250 }
16251 }
16252
16253 StringRef LiteralName
16254 = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
16255 if (LiteralName[0] != '_' &&
16256 !getSourceManager().isInSystemHeader(FnDecl->getLocation())) {
16257 // C++11 [usrlit.suffix]p1:
16258 // Literal suffix identifiers that do not start with an underscore
16259 // are reserved for future standardization.
16260 Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved)
16261 << StringLiteralParser::isValidUDSuffix(getLangOpts(), LiteralName);
16262 }
16263
16264 return false;
16265 }
16266
16267 /// ActOnStartLinkageSpecification - Parsed the beginning of a C++
16268 /// linkage specification, including the language and (if present)
16269 /// the '{'. ExternLoc is the location of the 'extern', Lang is the
16270 /// language string literal. LBraceLoc, if valid, provides the location of
16271 /// the '{' brace. Otherwise, this linkage specification does not
16272 /// have any braces.
ActOnStartLinkageSpecification(Scope * S,SourceLocation ExternLoc,Expr * LangStr,SourceLocation LBraceLoc)16273 Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
16274 Expr *LangStr,
16275 SourceLocation LBraceLoc) {
16276 StringLiteral *Lit = cast<StringLiteral>(LangStr);
16277 if (!Lit->isOrdinary()) {
16278 Diag(LangStr->getExprLoc(), diag::err_language_linkage_spec_not_ascii)
16279 << LangStr->getSourceRange();
16280 return nullptr;
16281 }
16282
16283 StringRef Lang = Lit->getString();
16284 LinkageSpecDecl::LanguageIDs Language;
16285 if (Lang == "C")
16286 Language = LinkageSpecDecl::lang_c;
16287 else if (Lang == "C++")
16288 Language = LinkageSpecDecl::lang_cxx;
16289 else {
16290 Diag(LangStr->getExprLoc(), diag::err_language_linkage_spec_unknown)
16291 << LangStr->getSourceRange();
16292 return nullptr;
16293 }
16294
16295 // FIXME: Add all the various semantics of linkage specifications
16296
16297 LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext, ExternLoc,
16298 LangStr->getExprLoc(), Language,
16299 LBraceLoc.isValid());
16300
16301 /// C++ [module.unit]p7.2.3
16302 /// - Otherwise, if the declaration
16303 /// - ...
16304 /// - ...
16305 /// - appears within a linkage-specification,
16306 /// it is attached to the global module.
16307 ///
16308 /// If the declaration is already in global module fragment, we don't
16309 /// need to attach it again.
16310 if (getLangOpts().CPlusPlusModules && isCurrentModulePurview()) {
16311 Module *GlobalModule =
16312 PushGlobalModuleFragment(ExternLoc, /*IsImplicit=*/true);
16313 /// According to [module.reach]p3.2,
16314 /// The declaration in global module fragment is reachable if it is not
16315 /// discarded. And the discarded declaration should be deleted. So it
16316 /// doesn't matter mark the declaration in global module fragment as
16317 /// reachable here.
16318 D->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ReachableWhenImported);
16319 D->setLocalOwningModule(GlobalModule);
16320 }
16321
16322 CurContext->addDecl(D);
16323 PushDeclContext(S, D);
16324 return D;
16325 }
16326
16327 /// ActOnFinishLinkageSpecification - Complete the definition of
16328 /// the C++ linkage specification LinkageSpec. If RBraceLoc is
16329 /// valid, it's the position of the closing '}' brace in a linkage
16330 /// specification that uses braces.
ActOnFinishLinkageSpecification(Scope * S,Decl * LinkageSpec,SourceLocation RBraceLoc)16331 Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
16332 Decl *LinkageSpec,
16333 SourceLocation RBraceLoc) {
16334 if (RBraceLoc.isValid()) {
16335 LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
16336 LSDecl->setRBraceLoc(RBraceLoc);
16337 }
16338
16339 // If the current module doesn't has Parent, it implies that the
16340 // LinkageSpec isn't in the module created by itself. So we don't
16341 // need to pop it.
16342 if (getLangOpts().CPlusPlusModules && getCurrentModule() &&
16343 getCurrentModule()->isGlobalModule() && getCurrentModule()->Parent)
16344 PopGlobalModuleFragment();
16345
16346 PopDeclContext();
16347 return LinkageSpec;
16348 }
16349
ActOnEmptyDeclaration(Scope * S,const ParsedAttributesView & AttrList,SourceLocation SemiLoc)16350 Decl *Sema::ActOnEmptyDeclaration(Scope *S,
16351 const ParsedAttributesView &AttrList,
16352 SourceLocation SemiLoc) {
16353 Decl *ED = EmptyDecl::Create(Context, CurContext, SemiLoc);
16354 // Attribute declarations appertain to empty declaration so we handle
16355 // them here.
16356 ProcessDeclAttributeList(S, ED, AttrList);
16357
16358 CurContext->addDecl(ED);
16359 return ED;
16360 }
16361
16362 /// Perform semantic analysis for the variable declaration that
16363 /// occurs within a C++ catch clause, returning the newly-created
16364 /// variable.
BuildExceptionDeclaration(Scope * S,TypeSourceInfo * TInfo,SourceLocation StartLoc,SourceLocation Loc,IdentifierInfo * Name)16365 VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
16366 TypeSourceInfo *TInfo,
16367 SourceLocation StartLoc,
16368 SourceLocation Loc,
16369 IdentifierInfo *Name) {
16370 bool Invalid = false;
16371 QualType ExDeclType = TInfo->getType();
16372
16373 // Arrays and functions decay.
16374 if (ExDeclType->isArrayType())
16375 ExDeclType = Context.getArrayDecayedType(ExDeclType);
16376 else if (ExDeclType->isFunctionType())
16377 ExDeclType = Context.getPointerType(ExDeclType);
16378
16379 // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
16380 // The exception-declaration shall not denote a pointer or reference to an
16381 // incomplete type, other than [cv] void*.
16382 // N2844 forbids rvalue references.
16383 if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
16384 Diag(Loc, diag::err_catch_rvalue_ref);
16385 Invalid = true;
16386 }
16387
16388 if (ExDeclType->isVariablyModifiedType()) {
16389 Diag(Loc, diag::err_catch_variably_modified) << ExDeclType;
16390 Invalid = true;
16391 }
16392
16393 QualType BaseType = ExDeclType;
16394 int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
16395 unsigned DK = diag::err_catch_incomplete;
16396 if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
16397 BaseType = Ptr->getPointeeType();
16398 Mode = 1;
16399 DK = diag::err_catch_incomplete_ptr;
16400 } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
16401 // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
16402 BaseType = Ref->getPointeeType();
16403 Mode = 2;
16404 DK = diag::err_catch_incomplete_ref;
16405 }
16406 if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
16407 !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
16408 Invalid = true;
16409
16410 if (!Invalid && Mode != 1 && BaseType->isSizelessType()) {
16411 Diag(Loc, diag::err_catch_sizeless) << (Mode == 2 ? 1 : 0) << BaseType;
16412 Invalid = true;
16413 }
16414
16415 if (!Invalid && !ExDeclType->isDependentType() &&
16416 RequireNonAbstractType(Loc, ExDeclType,
16417 diag::err_abstract_type_in_decl,
16418 AbstractVariableType))
16419 Invalid = true;
16420
16421 // Only the non-fragile NeXT runtime currently supports C++ catches
16422 // of ObjC types, and no runtime supports catching ObjC types by value.
16423 if (!Invalid && getLangOpts().ObjC) {
16424 QualType T = ExDeclType;
16425 if (const ReferenceType *RT = T->getAs<ReferenceType>())
16426 T = RT->getPointeeType();
16427
16428 if (T->isObjCObjectType()) {
16429 Diag(Loc, diag::err_objc_object_catch);
16430 Invalid = true;
16431 } else if (T->isObjCObjectPointerType()) {
16432 // FIXME: should this be a test for macosx-fragile specifically?
16433 if (getLangOpts().ObjCRuntime.isFragile())
16434 Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
16435 }
16436 }
16437
16438 VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
16439 ExDeclType, TInfo, SC_None);
16440 ExDecl->setExceptionVariable(true);
16441
16442 // In ARC, infer 'retaining' for variables of retainable type.
16443 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
16444 Invalid = true;
16445
16446 if (!Invalid && !ExDeclType->isDependentType()) {
16447 if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
16448 // Insulate this from anything else we might currently be parsing.
16449 EnterExpressionEvaluationContext scope(
16450 *this, ExpressionEvaluationContext::PotentiallyEvaluated);
16451
16452 // C++ [except.handle]p16:
16453 // The object declared in an exception-declaration or, if the
16454 // exception-declaration does not specify a name, a temporary (12.2) is
16455 // copy-initialized (8.5) from the exception object. [...]
16456 // The object is destroyed when the handler exits, after the destruction
16457 // of any automatic objects initialized within the handler.
16458 //
16459 // We just pretend to initialize the object with itself, then make sure
16460 // it can be destroyed later.
16461 QualType initType = Context.getExceptionObjectType(ExDeclType);
16462
16463 InitializedEntity entity =
16464 InitializedEntity::InitializeVariable(ExDecl);
16465 InitializationKind initKind =
16466 InitializationKind::CreateCopy(Loc, SourceLocation());
16467
16468 Expr *opaqueValue =
16469 new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
16470 InitializationSequence sequence(*this, entity, initKind, opaqueValue);
16471 ExprResult result = sequence.Perform(*this, entity, initKind, opaqueValue);
16472 if (result.isInvalid())
16473 Invalid = true;
16474 else {
16475 // If the constructor used was non-trivial, set this as the
16476 // "initializer".
16477 CXXConstructExpr *construct = result.getAs<CXXConstructExpr>();
16478 if (!construct->getConstructor()->isTrivial()) {
16479 Expr *init = MaybeCreateExprWithCleanups(construct);
16480 ExDecl->setInit(init);
16481 }
16482
16483 // And make sure it's destructable.
16484 FinalizeVarWithDestructor(ExDecl, recordType);
16485 }
16486 }
16487 }
16488
16489 if (Invalid)
16490 ExDecl->setInvalidDecl();
16491
16492 return ExDecl;
16493 }
16494
16495 /// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
16496 /// handler.
ActOnExceptionDeclarator(Scope * S,Declarator & D)16497 Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
16498 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
16499 bool Invalid = D.isInvalidType();
16500
16501 // Check for unexpanded parameter packs.
16502 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
16503 UPPC_ExceptionType)) {
16504 TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
16505 D.getIdentifierLoc());
16506 Invalid = true;
16507 }
16508
16509 IdentifierInfo *II = D.getIdentifier();
16510 if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
16511 LookupOrdinaryName,
16512 ForVisibleRedeclaration)) {
16513 // The scope should be freshly made just for us. There is just no way
16514 // it contains any previous declaration, except for function parameters in
16515 // a function-try-block's catch statement.
16516 assert(!S->isDeclScope(PrevDecl));
16517 if (isDeclInScope(PrevDecl, CurContext, S)) {
16518 Diag(D.getIdentifierLoc(), diag::err_redefinition)
16519 << D.getIdentifier();
16520 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
16521 Invalid = true;
16522 } else if (PrevDecl->isTemplateParameter())
16523 // Maybe we will complain about the shadowed template parameter.
16524 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
16525 }
16526
16527 if (D.getCXXScopeSpec().isSet() && !Invalid) {
16528 Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
16529 << D.getCXXScopeSpec().getRange();
16530 Invalid = true;
16531 }
16532
16533 VarDecl *ExDecl = BuildExceptionDeclaration(
16534 S, TInfo, D.getBeginLoc(), D.getIdentifierLoc(), D.getIdentifier());
16535 if (Invalid)
16536 ExDecl->setInvalidDecl();
16537
16538 // Add the exception declaration into this scope.
16539 if (II)
16540 PushOnScopeChains(ExDecl, S);
16541 else
16542 CurContext->addDecl(ExDecl);
16543
16544 ProcessDeclAttributes(S, ExDecl, D);
16545 return ExDecl;
16546 }
16547
ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,Expr * AssertExpr,Expr * AssertMessageExpr,SourceLocation RParenLoc)16548 Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
16549 Expr *AssertExpr,
16550 Expr *AssertMessageExpr,
16551 SourceLocation RParenLoc) {
16552 StringLiteral *AssertMessage =
16553 AssertMessageExpr ? cast<StringLiteral>(AssertMessageExpr) : nullptr;
16554
16555 if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
16556 return nullptr;
16557
16558 return BuildStaticAssertDeclaration(StaticAssertLoc, AssertExpr,
16559 AssertMessage, RParenLoc, false);
16560 }
16561
BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,Expr * AssertExpr,StringLiteral * AssertMessage,SourceLocation RParenLoc,bool Failed)16562 Decl *Sema::BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,
16563 Expr *AssertExpr,
16564 StringLiteral *AssertMessage,
16565 SourceLocation RParenLoc,
16566 bool Failed) {
16567 assert(AssertExpr != nullptr && "Expected non-null condition");
16568 if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent() &&
16569 !Failed) {
16570 // In a static_assert-declaration, the constant-expression shall be a
16571 // constant expression that can be contextually converted to bool.
16572 ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
16573 if (Converted.isInvalid())
16574 Failed = true;
16575
16576 ExprResult FullAssertExpr =
16577 ActOnFinishFullExpr(Converted.get(), StaticAssertLoc,
16578 /*DiscardedValue*/ false,
16579 /*IsConstexpr*/ true);
16580 if (FullAssertExpr.isInvalid())
16581 Failed = true;
16582 else
16583 AssertExpr = FullAssertExpr.get();
16584
16585 llvm::APSInt Cond;
16586 if (!Failed && VerifyIntegerConstantExpression(
16587 AssertExpr, &Cond,
16588 diag::err_static_assert_expression_is_not_constant)
16589 .isInvalid())
16590 Failed = true;
16591
16592 if (!Failed && !Cond) {
16593 SmallString<256> MsgBuffer;
16594 llvm::raw_svector_ostream Msg(MsgBuffer);
16595 if (AssertMessage) {
16596 const auto *MsgStr = cast<StringLiteral>(AssertMessage);
16597 if (MsgStr->isOrdinary())
16598 Msg << MsgStr->getString();
16599 else
16600 MsgStr->printPretty(Msg, nullptr, getPrintingPolicy());
16601 }
16602
16603 Expr *InnerCond = nullptr;
16604 std::string InnerCondDescription;
16605 std::tie(InnerCond, InnerCondDescription) =
16606 findFailedBooleanCondition(Converted.get());
16607 if (InnerCond && isa<ConceptSpecializationExpr>(InnerCond)) {
16608 // Drill down into concept specialization expressions to see why they
16609 // weren't satisfied.
16610 Diag(StaticAssertLoc, diag::err_static_assert_failed)
16611 << !AssertMessage << Msg.str() << AssertExpr->getSourceRange();
16612 ConstraintSatisfaction Satisfaction;
16613 if (!CheckConstraintSatisfaction(InnerCond, Satisfaction))
16614 DiagnoseUnsatisfiedConstraint(Satisfaction);
16615 } else if (InnerCond && !isa<CXXBoolLiteralExpr>(InnerCond)
16616 && !isa<IntegerLiteral>(InnerCond)) {
16617 Diag(StaticAssertLoc, diag::err_static_assert_requirement_failed)
16618 << InnerCondDescription << !AssertMessage
16619 << Msg.str() << InnerCond->getSourceRange();
16620 } else {
16621 Diag(StaticAssertLoc, diag::err_static_assert_failed)
16622 << !AssertMessage << Msg.str() << AssertExpr->getSourceRange();
16623 }
16624 Failed = true;
16625 }
16626 } else {
16627 ExprResult FullAssertExpr = ActOnFinishFullExpr(AssertExpr, StaticAssertLoc,
16628 /*DiscardedValue*/false,
16629 /*IsConstexpr*/true);
16630 if (FullAssertExpr.isInvalid())
16631 Failed = true;
16632 else
16633 AssertExpr = FullAssertExpr.get();
16634 }
16635
16636 Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
16637 AssertExpr, AssertMessage, RParenLoc,
16638 Failed);
16639
16640 CurContext->addDecl(Decl);
16641 return Decl;
16642 }
16643
16644 /// Perform semantic analysis of the given friend type declaration.
16645 ///
16646 /// \returns A friend declaration that.
CheckFriendTypeDecl(SourceLocation LocStart,SourceLocation FriendLoc,TypeSourceInfo * TSInfo)16647 FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation LocStart,
16648 SourceLocation FriendLoc,
16649 TypeSourceInfo *TSInfo) {
16650 assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
16651
16652 QualType T = TSInfo->getType();
16653 SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
16654
16655 // C++03 [class.friend]p2:
16656 // An elaborated-type-specifier shall be used in a friend declaration
16657 // for a class.*
16658 //
16659 // * The class-key of the elaborated-type-specifier is required.
16660 if (!CodeSynthesisContexts.empty()) {
16661 // Do not complain about the form of friend template types during any kind
16662 // of code synthesis. For template instantiation, we will have complained
16663 // when the template was defined.
16664 } else {
16665 if (!T->isElaboratedTypeSpecifier()) {
16666 // If we evaluated the type to a record type, suggest putting
16667 // a tag in front.
16668 if (const RecordType *RT = T->getAs<RecordType>()) {
16669 RecordDecl *RD = RT->getDecl();
16670
16671 SmallString<16> InsertionText(" ");
16672 InsertionText += RD->getKindName();
16673
16674 Diag(TypeRange.getBegin(),
16675 getLangOpts().CPlusPlus11 ?
16676 diag::warn_cxx98_compat_unelaborated_friend_type :
16677 diag::ext_unelaborated_friend_type)
16678 << (unsigned) RD->getTagKind()
16679 << T
16680 << FixItHint::CreateInsertion(getLocForEndOfToken(FriendLoc),
16681 InsertionText);
16682 } else {
16683 Diag(FriendLoc,
16684 getLangOpts().CPlusPlus11 ?
16685 diag::warn_cxx98_compat_nonclass_type_friend :
16686 diag::ext_nonclass_type_friend)
16687 << T
16688 << TypeRange;
16689 }
16690 } else if (T->getAs<EnumType>()) {
16691 Diag(FriendLoc,
16692 getLangOpts().CPlusPlus11 ?
16693 diag::warn_cxx98_compat_enum_friend :
16694 diag::ext_enum_friend)
16695 << T
16696 << TypeRange;
16697 }
16698
16699 // C++11 [class.friend]p3:
16700 // A friend declaration that does not declare a function shall have one
16701 // of the following forms:
16702 // friend elaborated-type-specifier ;
16703 // friend simple-type-specifier ;
16704 // friend typename-specifier ;
16705 if (getLangOpts().CPlusPlus11 && LocStart != FriendLoc)
16706 Diag(FriendLoc, diag::err_friend_not_first_in_declaration) << T;
16707 }
16708
16709 // If the type specifier in a friend declaration designates a (possibly
16710 // cv-qualified) class type, that class is declared as a friend; otherwise,
16711 // the friend declaration is ignored.
16712 return FriendDecl::Create(Context, CurContext,
16713 TSInfo->getTypeLoc().getBeginLoc(), TSInfo,
16714 FriendLoc);
16715 }
16716
16717 /// Handle a friend tag declaration where the scope specifier was
16718 /// templated.
ActOnTemplatedFriendTag(Scope * S,SourceLocation FriendLoc,unsigned TagSpec,SourceLocation TagLoc,CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation NameLoc,const ParsedAttributesView & Attr,MultiTemplateParamsArg TempParamLists)16719 Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
16720 unsigned TagSpec, SourceLocation TagLoc,
16721 CXXScopeSpec &SS, IdentifierInfo *Name,
16722 SourceLocation NameLoc,
16723 const ParsedAttributesView &Attr,
16724 MultiTemplateParamsArg TempParamLists) {
16725 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
16726
16727 bool IsMemberSpecialization = false;
16728 bool Invalid = false;
16729
16730 if (TemplateParameterList *TemplateParams =
16731 MatchTemplateParametersToScopeSpecifier(
16732 TagLoc, NameLoc, SS, nullptr, TempParamLists, /*friend*/ true,
16733 IsMemberSpecialization, Invalid)) {
16734 if (TemplateParams->size() > 0) {
16735 // This is a declaration of a class template.
16736 if (Invalid)
16737 return nullptr;
16738
16739 return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc, SS, Name,
16740 NameLoc, Attr, TemplateParams, AS_public,
16741 /*ModulePrivateLoc=*/SourceLocation(),
16742 FriendLoc, TempParamLists.size() - 1,
16743 TempParamLists.data()).get();
16744 } else {
16745 // The "template<>" header is extraneous.
16746 Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
16747 << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
16748 IsMemberSpecialization = true;
16749 }
16750 }
16751
16752 if (Invalid) return nullptr;
16753
16754 bool isAllExplicitSpecializations = true;
16755 for (unsigned I = TempParamLists.size(); I-- > 0; ) {
16756 if (TempParamLists[I]->size()) {
16757 isAllExplicitSpecializations = false;
16758 break;
16759 }
16760 }
16761
16762 // FIXME: don't ignore attributes.
16763
16764 // If it's explicit specializations all the way down, just forget
16765 // about the template header and build an appropriate non-templated
16766 // friend. TODO: for source fidelity, remember the headers.
16767 if (isAllExplicitSpecializations) {
16768 if (SS.isEmpty()) {
16769 bool Owned = false;
16770 bool IsDependent = false;
16771 return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
16772 Attr, AS_public,
16773 /*ModulePrivateLoc=*/SourceLocation(),
16774 MultiTemplateParamsArg(), Owned, IsDependent,
16775 /*ScopedEnumKWLoc=*/SourceLocation(),
16776 /*ScopedEnumUsesClassTag=*/false,
16777 /*UnderlyingType=*/TypeResult(),
16778 /*IsTypeSpecifier=*/false,
16779 /*IsTemplateParamOrArg=*/false);
16780 }
16781
16782 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
16783 ElaboratedTypeKeyword Keyword
16784 = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
16785 QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
16786 *Name, NameLoc);
16787 if (T.isNull())
16788 return nullptr;
16789
16790 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
16791 if (isa<DependentNameType>(T)) {
16792 DependentNameTypeLoc TL =
16793 TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
16794 TL.setElaboratedKeywordLoc(TagLoc);
16795 TL.setQualifierLoc(QualifierLoc);
16796 TL.setNameLoc(NameLoc);
16797 } else {
16798 ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>();
16799 TL.setElaboratedKeywordLoc(TagLoc);
16800 TL.setQualifierLoc(QualifierLoc);
16801 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(NameLoc);
16802 }
16803
16804 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
16805 TSI, FriendLoc, TempParamLists);
16806 Friend->setAccess(AS_public);
16807 CurContext->addDecl(Friend);
16808 return Friend;
16809 }
16810
16811 assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
16812
16813
16814
16815 // Handle the case of a templated-scope friend class. e.g.
16816 // template <class T> class A<T>::B;
16817 // FIXME: we don't support these right now.
16818 Diag(NameLoc, diag::warn_template_qualified_friend_unsupported)
16819 << SS.getScopeRep() << SS.getRange() << cast<CXXRecordDecl>(CurContext);
16820 ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
16821 QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
16822 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
16823 DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
16824 TL.setElaboratedKeywordLoc(TagLoc);
16825 TL.setQualifierLoc(SS.getWithLocInContext(Context));
16826 TL.setNameLoc(NameLoc);
16827
16828 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
16829 TSI, FriendLoc, TempParamLists);
16830 Friend->setAccess(AS_public);
16831 Friend->setUnsupportedFriend(true);
16832 CurContext->addDecl(Friend);
16833 return Friend;
16834 }
16835
16836 /// Handle a friend type declaration. This works in tandem with
16837 /// ActOnTag.
16838 ///
16839 /// Notes on friend class templates:
16840 ///
16841 /// We generally treat friend class declarations as if they were
16842 /// declaring a class. So, for example, the elaborated type specifier
16843 /// in a friend declaration is required to obey the restrictions of a
16844 /// class-head (i.e. no typedefs in the scope chain), template
16845 /// parameters are required to match up with simple template-ids, &c.
16846 /// However, unlike when declaring a template specialization, it's
16847 /// okay to refer to a template specialization without an empty
16848 /// template parameter declaration, e.g.
16849 /// friend class A<T>::B<unsigned>;
16850 /// We permit this as a special case; if there are any template
16851 /// parameters present at all, require proper matching, i.e.
16852 /// template <> template \<class T> friend class A<int>::B;
ActOnFriendTypeDecl(Scope * S,const DeclSpec & DS,MultiTemplateParamsArg TempParams)16853 Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
16854 MultiTemplateParamsArg TempParams) {
16855 SourceLocation Loc = DS.getBeginLoc();
16856
16857 assert(DS.isFriendSpecified());
16858 assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
16859
16860 // C++ [class.friend]p3:
16861 // A friend declaration that does not declare a function shall have one of
16862 // the following forms:
16863 // friend elaborated-type-specifier ;
16864 // friend simple-type-specifier ;
16865 // friend typename-specifier ;
16866 //
16867 // Any declaration with a type qualifier does not have that form. (It's
16868 // legal to specify a qualified type as a friend, you just can't write the
16869 // keywords.)
16870 if (DS.getTypeQualifiers()) {
16871 if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
16872 Diag(DS.getConstSpecLoc(), diag::err_friend_decl_spec) << "const";
16873 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
16874 Diag(DS.getVolatileSpecLoc(), diag::err_friend_decl_spec) << "volatile";
16875 if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
16876 Diag(DS.getRestrictSpecLoc(), diag::err_friend_decl_spec) << "restrict";
16877 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
16878 Diag(DS.getAtomicSpecLoc(), diag::err_friend_decl_spec) << "_Atomic";
16879 if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
16880 Diag(DS.getUnalignedSpecLoc(), diag::err_friend_decl_spec) << "__unaligned";
16881 }
16882
16883 // Try to convert the decl specifier to a type. This works for
16884 // friend templates because ActOnTag never produces a ClassTemplateDecl
16885 // for a TUK_Friend.
16886 Declarator TheDeclarator(DS, ParsedAttributesView::none(),
16887 DeclaratorContext::Member);
16888 TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
16889 QualType T = TSI->getType();
16890 if (TheDeclarator.isInvalidType())
16891 return nullptr;
16892
16893 if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
16894 return nullptr;
16895
16896 // This is definitely an error in C++98. It's probably meant to
16897 // be forbidden in C++0x, too, but the specification is just
16898 // poorly written.
16899 //
16900 // The problem is with declarations like the following:
16901 // template <T> friend A<T>::foo;
16902 // where deciding whether a class C is a friend or not now hinges
16903 // on whether there exists an instantiation of A that causes
16904 // 'foo' to equal C. There are restrictions on class-heads
16905 // (which we declare (by fiat) elaborated friend declarations to
16906 // be) that makes this tractable.
16907 //
16908 // FIXME: handle "template <> friend class A<T>;", which
16909 // is possibly well-formed? Who even knows?
16910 if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
16911 Diag(Loc, diag::err_tagless_friend_type_template)
16912 << DS.getSourceRange();
16913 return nullptr;
16914 }
16915
16916 // C++98 [class.friend]p1: A friend of a class is a function
16917 // or class that is not a member of the class . . .
16918 // This is fixed in DR77, which just barely didn't make the C++03
16919 // deadline. It's also a very silly restriction that seriously
16920 // affects inner classes and which nobody else seems to implement;
16921 // thus we never diagnose it, not even in -pedantic.
16922 //
16923 // But note that we could warn about it: it's always useless to
16924 // friend one of your own members (it's not, however, worthless to
16925 // friend a member of an arbitrary specialization of your template).
16926
16927 Decl *D;
16928 if (!TempParams.empty())
16929 D = FriendTemplateDecl::Create(Context, CurContext, Loc,
16930 TempParams,
16931 TSI,
16932 DS.getFriendSpecLoc());
16933 else
16934 D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
16935
16936 if (!D)
16937 return nullptr;
16938
16939 D->setAccess(AS_public);
16940 CurContext->addDecl(D);
16941
16942 return D;
16943 }
16944
ActOnFriendFunctionDecl(Scope * S,Declarator & D,MultiTemplateParamsArg TemplateParams)16945 NamedDecl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
16946 MultiTemplateParamsArg TemplateParams) {
16947 const DeclSpec &DS = D.getDeclSpec();
16948
16949 assert(DS.isFriendSpecified());
16950 assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
16951
16952 SourceLocation Loc = D.getIdentifierLoc();
16953 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
16954
16955 // C++ [class.friend]p1
16956 // A friend of a class is a function or class....
16957 // Note that this sees through typedefs, which is intended.
16958 // It *doesn't* see through dependent types, which is correct
16959 // according to [temp.arg.type]p3:
16960 // If a declaration acquires a function type through a
16961 // type dependent on a template-parameter and this causes
16962 // a declaration that does not use the syntactic form of a
16963 // function declarator to have a function type, the program
16964 // is ill-formed.
16965 if (!TInfo->getType()->isFunctionType()) {
16966 Diag(Loc, diag::err_unexpected_friend);
16967
16968 // It might be worthwhile to try to recover by creating an
16969 // appropriate declaration.
16970 return nullptr;
16971 }
16972
16973 // C++ [namespace.memdef]p3
16974 // - If a friend declaration in a non-local class first declares a
16975 // class or function, the friend class or function is a member
16976 // of the innermost enclosing namespace.
16977 // - The name of the friend is not found by simple name lookup
16978 // until a matching declaration is provided in that namespace
16979 // scope (either before or after the class declaration granting
16980 // friendship).
16981 // - If a friend function is called, its name may be found by the
16982 // name lookup that considers functions from namespaces and
16983 // classes associated with the types of the function arguments.
16984 // - When looking for a prior declaration of a class or a function
16985 // declared as a friend, scopes outside the innermost enclosing
16986 // namespace scope are not considered.
16987
16988 CXXScopeSpec &SS = D.getCXXScopeSpec();
16989 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
16990 assert(NameInfo.getName());
16991
16992 // Check for unexpanded parameter packs.
16993 if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
16994 DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
16995 DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
16996 return nullptr;
16997
16998 // The context we found the declaration in, or in which we should
16999 // create the declaration.
17000 DeclContext *DC;
17001 Scope *DCScope = S;
17002 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
17003 ForExternalRedeclaration);
17004
17005 // There are five cases here.
17006 // - There's no scope specifier and we're in a local class. Only look
17007 // for functions declared in the immediately-enclosing block scope.
17008 // We recover from invalid scope qualifiers as if they just weren't there.
17009 FunctionDecl *FunctionContainingLocalClass = nullptr;
17010 if ((SS.isInvalid() || !SS.isSet()) &&
17011 (FunctionContainingLocalClass =
17012 cast<CXXRecordDecl>(CurContext)->isLocalClass())) {
17013 // C++11 [class.friend]p11:
17014 // If a friend declaration appears in a local class and the name
17015 // specified is an unqualified name, a prior declaration is
17016 // looked up without considering scopes that are outside the
17017 // innermost enclosing non-class scope. For a friend function
17018 // declaration, if there is no prior declaration, the program is
17019 // ill-formed.
17020
17021 // Find the innermost enclosing non-class scope. This is the block
17022 // scope containing the local class definition (or for a nested class,
17023 // the outer local class).
17024 DCScope = S->getFnParent();
17025
17026 // Look up the function name in the scope.
17027 Previous.clear(LookupLocalFriendName);
17028 LookupName(Previous, S, /*AllowBuiltinCreation*/false);
17029
17030 if (!Previous.empty()) {
17031 // All possible previous declarations must have the same context:
17032 // either they were declared at block scope or they are members of
17033 // one of the enclosing local classes.
17034 DC = Previous.getRepresentativeDecl()->getDeclContext();
17035 } else {
17036 // This is ill-formed, but provide the context that we would have
17037 // declared the function in, if we were permitted to, for error recovery.
17038 DC = FunctionContainingLocalClass;
17039 }
17040 adjustContextForLocalExternDecl(DC);
17041
17042 // C++ [class.friend]p6:
17043 // A function can be defined in a friend declaration of a class if and
17044 // only if the class is a non-local class (9.8), the function name is
17045 // unqualified, and the function has namespace scope.
17046 if (D.isFunctionDefinition()) {
17047 Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
17048 }
17049
17050 // - There's no scope specifier, in which case we just go to the
17051 // appropriate scope and look for a function or function template
17052 // there as appropriate.
17053 } else if (SS.isInvalid() || !SS.isSet()) {
17054 // C++11 [namespace.memdef]p3:
17055 // If the name in a friend declaration is neither qualified nor
17056 // a template-id and the declaration is a function or an
17057 // elaborated-type-specifier, the lookup to determine whether
17058 // the entity has been previously declared shall not consider
17059 // any scopes outside the innermost enclosing namespace.
17060 bool isTemplateId =
17061 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId;
17062
17063 // Find the appropriate context according to the above.
17064 DC = CurContext;
17065
17066 // Skip class contexts. If someone can cite chapter and verse
17067 // for this behavior, that would be nice --- it's what GCC and
17068 // EDG do, and it seems like a reasonable intent, but the spec
17069 // really only says that checks for unqualified existing
17070 // declarations should stop at the nearest enclosing namespace,
17071 // not that they should only consider the nearest enclosing
17072 // namespace.
17073 while (DC->isRecord())
17074 DC = DC->getParent();
17075
17076 DeclContext *LookupDC = DC->getNonTransparentContext();
17077 while (true) {
17078 LookupQualifiedName(Previous, LookupDC);
17079
17080 if (!Previous.empty()) {
17081 DC = LookupDC;
17082 break;
17083 }
17084
17085 if (isTemplateId) {
17086 if (isa<TranslationUnitDecl>(LookupDC)) break;
17087 } else {
17088 if (LookupDC->isFileContext()) break;
17089 }
17090 LookupDC = LookupDC->getParent();
17091 }
17092
17093 DCScope = getScopeForDeclContext(S, DC);
17094
17095 // - There's a non-dependent scope specifier, in which case we
17096 // compute it and do a previous lookup there for a function
17097 // or function template.
17098 } else if (!SS.getScopeRep()->isDependent()) {
17099 DC = computeDeclContext(SS);
17100 if (!DC) return nullptr;
17101
17102 if (RequireCompleteDeclContext(SS, DC)) return nullptr;
17103
17104 LookupQualifiedName(Previous, DC);
17105
17106 // C++ [class.friend]p1: A friend of a class is a function or
17107 // class that is not a member of the class . . .
17108 if (DC->Equals(CurContext))
17109 Diag(DS.getFriendSpecLoc(),
17110 getLangOpts().CPlusPlus11 ?
17111 diag::warn_cxx98_compat_friend_is_member :
17112 diag::err_friend_is_member);
17113
17114 if (D.isFunctionDefinition()) {
17115 // C++ [class.friend]p6:
17116 // A function can be defined in a friend declaration of a class if and
17117 // only if the class is a non-local class (9.8), the function name is
17118 // unqualified, and the function has namespace scope.
17119 //
17120 // FIXME: We should only do this if the scope specifier names the
17121 // innermost enclosing namespace; otherwise the fixit changes the
17122 // meaning of the code.
17123 SemaDiagnosticBuilder DB
17124 = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
17125
17126 DB << SS.getScopeRep();
17127 if (DC->isFileContext())
17128 DB << FixItHint::CreateRemoval(SS.getRange());
17129 SS.clear();
17130 }
17131
17132 // - There's a scope specifier that does not match any template
17133 // parameter lists, in which case we use some arbitrary context,
17134 // create a method or method template, and wait for instantiation.
17135 // - There's a scope specifier that does match some template
17136 // parameter lists, which we don't handle right now.
17137 } else {
17138 if (D.isFunctionDefinition()) {
17139 // C++ [class.friend]p6:
17140 // A function can be defined in a friend declaration of a class if and
17141 // only if the class is a non-local class (9.8), the function name is
17142 // unqualified, and the function has namespace scope.
17143 Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
17144 << SS.getScopeRep();
17145 }
17146
17147 DC = CurContext;
17148 assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
17149 }
17150
17151 if (!DC->isRecord()) {
17152 int DiagArg = -1;
17153 switch (D.getName().getKind()) {
17154 case UnqualifiedIdKind::IK_ConstructorTemplateId:
17155 case UnqualifiedIdKind::IK_ConstructorName:
17156 DiagArg = 0;
17157 break;
17158 case UnqualifiedIdKind::IK_DestructorName:
17159 DiagArg = 1;
17160 break;
17161 case UnqualifiedIdKind::IK_ConversionFunctionId:
17162 DiagArg = 2;
17163 break;
17164 case UnqualifiedIdKind::IK_DeductionGuideName:
17165 DiagArg = 3;
17166 break;
17167 case UnqualifiedIdKind::IK_Identifier:
17168 case UnqualifiedIdKind::IK_ImplicitSelfParam:
17169 case UnqualifiedIdKind::IK_LiteralOperatorId:
17170 case UnqualifiedIdKind::IK_OperatorFunctionId:
17171 case UnqualifiedIdKind::IK_TemplateId:
17172 break;
17173 }
17174 // This implies that it has to be an operator or function.
17175 if (DiagArg >= 0) {
17176 Diag(Loc, diag::err_introducing_special_friend) << DiagArg;
17177 return nullptr;
17178 }
17179 }
17180
17181 // FIXME: This is an egregious hack to cope with cases where the scope stack
17182 // does not contain the declaration context, i.e., in an out-of-line
17183 // definition of a class.
17184 Scope FakeDCScope(S, Scope::DeclScope, Diags);
17185 if (!DCScope) {
17186 FakeDCScope.setEntity(DC);
17187 DCScope = &FakeDCScope;
17188 }
17189
17190 bool AddToScope = true;
17191 NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
17192 TemplateParams, AddToScope);
17193 if (!ND) return nullptr;
17194
17195 assert(ND->getLexicalDeclContext() == CurContext);
17196
17197 // If we performed typo correction, we might have added a scope specifier
17198 // and changed the decl context.
17199 DC = ND->getDeclContext();
17200
17201 // Add the function declaration to the appropriate lookup tables,
17202 // adjusting the redeclarations list as necessary. We don't
17203 // want to do this yet if the friending class is dependent.
17204 //
17205 // Also update the scope-based lookup if the target context's
17206 // lookup context is in lexical scope.
17207 if (!CurContext->isDependentContext()) {
17208 DC = DC->getRedeclContext();
17209 DC->makeDeclVisibleInContext(ND);
17210 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
17211 PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
17212 }
17213
17214 FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
17215 D.getIdentifierLoc(), ND,
17216 DS.getFriendSpecLoc());
17217 FrD->setAccess(AS_public);
17218 CurContext->addDecl(FrD);
17219
17220 if (ND->isInvalidDecl()) {
17221 FrD->setInvalidDecl();
17222 } else {
17223 if (DC->isRecord()) CheckFriendAccess(ND);
17224
17225 FunctionDecl *FD;
17226 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
17227 FD = FTD->getTemplatedDecl();
17228 else
17229 FD = cast<FunctionDecl>(ND);
17230
17231 // C++11 [dcl.fct.default]p4: If a friend declaration specifies a
17232 // default argument expression, that declaration shall be a definition
17233 // and shall be the only declaration of the function or function
17234 // template in the translation unit.
17235 if (functionDeclHasDefaultArgument(FD)) {
17236 // We can't look at FD->getPreviousDecl() because it may not have been set
17237 // if we're in a dependent context. If the function is known to be a
17238 // redeclaration, we will have narrowed Previous down to the right decl.
17239 if (D.isRedeclaration()) {
17240 Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
17241 Diag(Previous.getRepresentativeDecl()->getLocation(),
17242 diag::note_previous_declaration);
17243 } else if (!D.isFunctionDefinition())
17244 Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_must_be_def);
17245 }
17246
17247 // Mark templated-scope function declarations as unsupported.
17248 if (FD->getNumTemplateParameterLists() && SS.isValid()) {
17249 Diag(FD->getLocation(), diag::warn_template_qualified_friend_unsupported)
17250 << SS.getScopeRep() << SS.getRange()
17251 << cast<CXXRecordDecl>(CurContext);
17252 FrD->setUnsupportedFriend(true);
17253 }
17254 }
17255
17256 warnOnReservedIdentifier(ND);
17257
17258 return ND;
17259 }
17260
SetDeclDeleted(Decl * Dcl,SourceLocation DelLoc)17261 void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
17262 AdjustDeclIfTemplate(Dcl);
17263
17264 FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(Dcl);
17265 if (!Fn) {
17266 Diag(DelLoc, diag::err_deleted_non_function);
17267 return;
17268 }
17269
17270 // Deleted function does not have a body.
17271 Fn->setWillHaveBody(false);
17272
17273 if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
17274 // Don't consider the implicit declaration we generate for explicit
17275 // specializations. FIXME: Do not generate these implicit declarations.
17276 if ((Prev->getTemplateSpecializationKind() != TSK_ExplicitSpecialization ||
17277 Prev->getPreviousDecl()) &&
17278 !Prev->isDefined()) {
17279 Diag(DelLoc, diag::err_deleted_decl_not_first);
17280 Diag(Prev->getLocation().isInvalid() ? DelLoc : Prev->getLocation(),
17281 Prev->isImplicit() ? diag::note_previous_implicit_declaration
17282 : diag::note_previous_declaration);
17283 // We can't recover from this; the declaration might have already
17284 // been used.
17285 Fn->setInvalidDecl();
17286 return;
17287 }
17288
17289 // To maintain the invariant that functions are only deleted on their first
17290 // declaration, mark the implicitly-instantiated declaration of the
17291 // explicitly-specialized function as deleted instead of marking the
17292 // instantiated redeclaration.
17293 Fn = Fn->getCanonicalDecl();
17294 }
17295
17296 // dllimport/dllexport cannot be deleted.
17297 if (const InheritableAttr *DLLAttr = getDLLAttr(Fn)) {
17298 Diag(Fn->getLocation(), diag::err_attribute_dll_deleted) << DLLAttr;
17299 Fn->setInvalidDecl();
17300 }
17301
17302 // C++11 [basic.start.main]p3:
17303 // A program that defines main as deleted [...] is ill-formed.
17304 if (Fn->isMain())
17305 Diag(DelLoc, diag::err_deleted_main);
17306
17307 // C++11 [dcl.fct.def.delete]p4:
17308 // A deleted function is implicitly inline.
17309 Fn->setImplicitlyInline();
17310 Fn->setDeletedAsWritten();
17311 }
17312
SetDeclDefaulted(Decl * Dcl,SourceLocation DefaultLoc)17313 void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
17314 if (!Dcl || Dcl->isInvalidDecl())
17315 return;
17316
17317 auto *FD = dyn_cast<FunctionDecl>(Dcl);
17318 if (!FD) {
17319 if (auto *FTD = dyn_cast<FunctionTemplateDecl>(Dcl)) {
17320 if (getDefaultedFunctionKind(FTD->getTemplatedDecl()).isComparison()) {
17321 Diag(DefaultLoc, diag::err_defaulted_comparison_template);
17322 return;
17323 }
17324 }
17325
17326 Diag(DefaultLoc, diag::err_default_special_members)
17327 << getLangOpts().CPlusPlus20;
17328 return;
17329 }
17330
17331 // Reject if this can't possibly be a defaultable function.
17332 DefaultedFunctionKind DefKind = getDefaultedFunctionKind(FD);
17333 if (!DefKind &&
17334 // A dependent function that doesn't locally look defaultable can
17335 // still instantiate to a defaultable function if it's a constructor
17336 // or assignment operator.
17337 (!FD->isDependentContext() ||
17338 (!isa<CXXConstructorDecl>(FD) &&
17339 FD->getDeclName().getCXXOverloadedOperator() != OO_Equal))) {
17340 Diag(DefaultLoc, diag::err_default_special_members)
17341 << getLangOpts().CPlusPlus20;
17342 return;
17343 }
17344
17345 // Issue compatibility warning. We already warned if the operator is
17346 // 'operator<=>' when parsing the '<=>' token.
17347 if (DefKind.isComparison() &&
17348 DefKind.asComparison() != DefaultedComparisonKind::ThreeWay) {
17349 Diag(DefaultLoc, getLangOpts().CPlusPlus20
17350 ? diag::warn_cxx17_compat_defaulted_comparison
17351 : diag::ext_defaulted_comparison);
17352 }
17353
17354 FD->setDefaulted();
17355 FD->setExplicitlyDefaulted();
17356
17357 // Defer checking functions that are defaulted in a dependent context.
17358 if (FD->isDependentContext())
17359 return;
17360
17361 // Unset that we will have a body for this function. We might not,
17362 // if it turns out to be trivial, and we don't need this marking now
17363 // that we've marked it as defaulted.
17364 FD->setWillHaveBody(false);
17365
17366 if (DefKind.isComparison()) {
17367 // If this comparison's defaulting occurs within the definition of its
17368 // lexical class context, we have to do the checking when complete.
17369 if (auto const *RD = dyn_cast<CXXRecordDecl>(FD->getLexicalDeclContext()))
17370 if (!RD->isCompleteDefinition())
17371 return;
17372 }
17373
17374 // If this member fn was defaulted on its first declaration, we will have
17375 // already performed the checking in CheckCompletedCXXClass. Such a
17376 // declaration doesn't trigger an implicit definition.
17377 if (isa<CXXMethodDecl>(FD)) {
17378 const FunctionDecl *Primary = FD;
17379 if (const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern())
17380 // Ask the template instantiation pattern that actually had the
17381 // '= default' on it.
17382 Primary = Pattern;
17383 if (Primary->getCanonicalDecl()->isDefaulted())
17384 return;
17385 }
17386
17387 if (DefKind.isComparison()) {
17388 if (CheckExplicitlyDefaultedComparison(nullptr, FD, DefKind.asComparison()))
17389 FD->setInvalidDecl();
17390 else
17391 DefineDefaultedComparison(DefaultLoc, FD, DefKind.asComparison());
17392 } else {
17393 auto *MD = cast<CXXMethodDecl>(FD);
17394
17395 if (CheckExplicitlyDefaultedSpecialMember(MD, DefKind.asSpecialMember()))
17396 MD->setInvalidDecl();
17397 else
17398 DefineDefaultedFunction(*this, MD, DefaultLoc);
17399 }
17400 }
17401
SearchForReturnInStmt(Sema & Self,Stmt * S)17402 static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
17403 for (Stmt *SubStmt : S->children()) {
17404 if (!SubStmt)
17405 continue;
17406 if (isa<ReturnStmt>(SubStmt))
17407 Self.Diag(SubStmt->getBeginLoc(),
17408 diag::err_return_in_constructor_handler);
17409 if (!isa<Expr>(SubStmt))
17410 SearchForReturnInStmt(Self, SubStmt);
17411 }
17412 }
17413
DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt * TryBlock)17414 void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
17415 for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
17416 CXXCatchStmt *Handler = TryBlock->getHandler(I);
17417 SearchForReturnInStmt(*this, Handler);
17418 }
17419 }
17420
SetFunctionBodyKind(Decl * D,SourceLocation Loc,FnBodyKind BodyKind)17421 void Sema::SetFunctionBodyKind(Decl *D, SourceLocation Loc,
17422 FnBodyKind BodyKind) {
17423 switch (BodyKind) {
17424 case FnBodyKind::Delete:
17425 SetDeclDeleted(D, Loc);
17426 break;
17427 case FnBodyKind::Default:
17428 SetDeclDefaulted(D, Loc);
17429 break;
17430 case FnBodyKind::Other:
17431 llvm_unreachable(
17432 "Parsed function body should be '= delete;' or '= default;'");
17433 }
17434 }
17435
CheckOverridingFunctionAttributes(const CXXMethodDecl * New,const CXXMethodDecl * Old)17436 bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
17437 const CXXMethodDecl *Old) {
17438 const auto *NewFT = New->getType()->castAs<FunctionProtoType>();
17439 const auto *OldFT = Old->getType()->castAs<FunctionProtoType>();
17440
17441 if (OldFT->hasExtParameterInfos()) {
17442 for (unsigned I = 0, E = OldFT->getNumParams(); I != E; ++I)
17443 // A parameter of the overriding method should be annotated with noescape
17444 // if the corresponding parameter of the overridden method is annotated.
17445 if (OldFT->getExtParameterInfo(I).isNoEscape() &&
17446 !NewFT->getExtParameterInfo(I).isNoEscape()) {
17447 Diag(New->getParamDecl(I)->getLocation(),
17448 diag::warn_overriding_method_missing_noescape);
17449 Diag(Old->getParamDecl(I)->getLocation(),
17450 diag::note_overridden_marked_noescape);
17451 }
17452 }
17453
17454 // Virtual overrides must have the same code_seg.
17455 const auto *OldCSA = Old->getAttr<CodeSegAttr>();
17456 const auto *NewCSA = New->getAttr<CodeSegAttr>();
17457 if ((NewCSA || OldCSA) &&
17458 (!OldCSA || !NewCSA || NewCSA->getName() != OldCSA->getName())) {
17459 Diag(New->getLocation(), diag::err_mismatched_code_seg_override);
17460 Diag(Old->getLocation(), diag::note_previous_declaration);
17461 return true;
17462 }
17463
17464 CallingConv NewCC = NewFT->getCallConv(), OldCC = OldFT->getCallConv();
17465
17466 // If the calling conventions match, everything is fine
17467 if (NewCC == OldCC)
17468 return false;
17469
17470 // If the calling conventions mismatch because the new function is static,
17471 // suppress the calling convention mismatch error; the error about static
17472 // function override (err_static_overrides_virtual from
17473 // Sema::CheckFunctionDeclaration) is more clear.
17474 if (New->getStorageClass() == SC_Static)
17475 return false;
17476
17477 Diag(New->getLocation(),
17478 diag::err_conflicting_overriding_cc_attributes)
17479 << New->getDeclName() << New->getType() << Old->getType();
17480 Diag(Old->getLocation(), diag::note_overridden_virtual_function);
17481 return true;
17482 }
17483
CheckOverridingFunctionReturnType(const CXXMethodDecl * New,const CXXMethodDecl * Old)17484 bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
17485 const CXXMethodDecl *Old) {
17486 QualType NewTy = New->getType()->castAs<FunctionType>()->getReturnType();
17487 QualType OldTy = Old->getType()->castAs<FunctionType>()->getReturnType();
17488
17489 if (Context.hasSameType(NewTy, OldTy) ||
17490 NewTy->isDependentType() || OldTy->isDependentType())
17491 return false;
17492
17493 // Check if the return types are covariant
17494 QualType NewClassTy, OldClassTy;
17495
17496 /// Both types must be pointers or references to classes.
17497 if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
17498 if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
17499 NewClassTy = NewPT->getPointeeType();
17500 OldClassTy = OldPT->getPointeeType();
17501 }
17502 } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
17503 if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
17504 if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
17505 NewClassTy = NewRT->getPointeeType();
17506 OldClassTy = OldRT->getPointeeType();
17507 }
17508 }
17509 }
17510
17511 // The return types aren't either both pointers or references to a class type.
17512 if (NewClassTy.isNull()) {
17513 Diag(New->getLocation(),
17514 diag::err_different_return_type_for_overriding_virtual_function)
17515 << New->getDeclName() << NewTy << OldTy
17516 << New->getReturnTypeSourceRange();
17517 Diag(Old->getLocation(), diag::note_overridden_virtual_function)
17518 << Old->getReturnTypeSourceRange();
17519
17520 return true;
17521 }
17522
17523 if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
17524 // C++14 [class.virtual]p8:
17525 // If the class type in the covariant return type of D::f differs from
17526 // that of B::f, the class type in the return type of D::f shall be
17527 // complete at the point of declaration of D::f or shall be the class
17528 // type D.
17529 if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
17530 if (!RT->isBeingDefined() &&
17531 RequireCompleteType(New->getLocation(), NewClassTy,
17532 diag::err_covariant_return_incomplete,
17533 New->getDeclName()))
17534 return true;
17535 }
17536
17537 // Check if the new class derives from the old class.
17538 if (!IsDerivedFrom(New->getLocation(), NewClassTy, OldClassTy)) {
17539 Diag(New->getLocation(), diag::err_covariant_return_not_derived)
17540 << New->getDeclName() << NewTy << OldTy
17541 << New->getReturnTypeSourceRange();
17542 Diag(Old->getLocation(), diag::note_overridden_virtual_function)
17543 << Old->getReturnTypeSourceRange();
17544 return true;
17545 }
17546
17547 // Check if we the conversion from derived to base is valid.
17548 if (CheckDerivedToBaseConversion(
17549 NewClassTy, OldClassTy,
17550 diag::err_covariant_return_inaccessible_base,
17551 diag::err_covariant_return_ambiguous_derived_to_base_conv,
17552 New->getLocation(), New->getReturnTypeSourceRange(),
17553 New->getDeclName(), nullptr)) {
17554 // FIXME: this note won't trigger for delayed access control
17555 // diagnostics, and it's impossible to get an undelayed error
17556 // here from access control during the original parse because
17557 // the ParsingDeclSpec/ParsingDeclarator are still in scope.
17558 Diag(Old->getLocation(), diag::note_overridden_virtual_function)
17559 << Old->getReturnTypeSourceRange();
17560 return true;
17561 }
17562 }
17563
17564 // The qualifiers of the return types must be the same.
17565 if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
17566 Diag(New->getLocation(),
17567 diag::err_covariant_return_type_different_qualifications)
17568 << New->getDeclName() << NewTy << OldTy
17569 << New->getReturnTypeSourceRange();
17570 Diag(Old->getLocation(), diag::note_overridden_virtual_function)
17571 << Old->getReturnTypeSourceRange();
17572 return true;
17573 }
17574
17575
17576 // The new class type must have the same or less qualifiers as the old type.
17577 if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
17578 Diag(New->getLocation(),
17579 diag::err_covariant_return_type_class_type_more_qualified)
17580 << New->getDeclName() << NewTy << OldTy
17581 << New->getReturnTypeSourceRange();
17582 Diag(Old->getLocation(), diag::note_overridden_virtual_function)
17583 << Old->getReturnTypeSourceRange();
17584 return true;
17585 }
17586
17587 return false;
17588 }
17589
17590 /// Mark the given method pure.
17591 ///
17592 /// \param Method the method to be marked pure.
17593 ///
17594 /// \param InitRange the source range that covers the "0" initializer.
CheckPureMethod(CXXMethodDecl * Method,SourceRange InitRange)17595 bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
17596 SourceLocation EndLoc = InitRange.getEnd();
17597 if (EndLoc.isValid())
17598 Method->setRangeEnd(EndLoc);
17599
17600 if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
17601 Method->setPure();
17602 return false;
17603 }
17604
17605 if (!Method->isInvalidDecl())
17606 Diag(Method->getLocation(), diag::err_non_virtual_pure)
17607 << Method->getDeclName() << InitRange;
17608 return true;
17609 }
17610
ActOnPureSpecifier(Decl * D,SourceLocation ZeroLoc)17611 void Sema::ActOnPureSpecifier(Decl *D, SourceLocation ZeroLoc) {
17612 if (D->getFriendObjectKind())
17613 Diag(D->getLocation(), diag::err_pure_friend);
17614 else if (auto *M = dyn_cast<CXXMethodDecl>(D))
17615 CheckPureMethod(M, ZeroLoc);
17616 else
17617 Diag(D->getLocation(), diag::err_illegal_initializer);
17618 }
17619
17620 /// Determine whether the given declaration is a global variable or
17621 /// static data member.
isNonlocalVariable(const Decl * D)17622 static bool isNonlocalVariable(const Decl *D) {
17623 if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(D))
17624 return Var->hasGlobalStorage();
17625
17626 return false;
17627 }
17628
17629 /// Invoked when we are about to parse an initializer for the declaration
17630 /// 'Dcl'.
17631 ///
17632 /// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
17633 /// static data member of class X, names should be looked up in the scope of
17634 /// class X. If the declaration had a scope specifier, a scope will have
17635 /// been created and passed in for this purpose. Otherwise, S will be null.
ActOnCXXEnterDeclInitializer(Scope * S,Decl * D)17636 void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
17637 // If there is no declaration, there was an error parsing it.
17638 if (!D || D->isInvalidDecl())
17639 return;
17640
17641 // We will always have a nested name specifier here, but this declaration
17642 // might not be out of line if the specifier names the current namespace:
17643 // extern int n;
17644 // int ::n = 0;
17645 if (S && D->isOutOfLine())
17646 EnterDeclaratorContext(S, D->getDeclContext());
17647
17648 // If we are parsing the initializer for a static data member, push a
17649 // new expression evaluation context that is associated with this static
17650 // data member.
17651 if (isNonlocalVariable(D))
17652 PushExpressionEvaluationContext(
17653 ExpressionEvaluationContext::PotentiallyEvaluated, D);
17654 }
17655
17656 /// Invoked after we are finished parsing an initializer for the declaration D.
ActOnCXXExitDeclInitializer(Scope * S,Decl * D)17657 void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
17658 // If there is no declaration, there was an error parsing it.
17659 if (!D || D->isInvalidDecl())
17660 return;
17661
17662 if (isNonlocalVariable(D))
17663 PopExpressionEvaluationContext();
17664
17665 if (S && D->isOutOfLine())
17666 ExitDeclaratorContext(S);
17667 }
17668
17669 /// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
17670 /// C++ if/switch/while/for statement.
17671 /// e.g: "if (int x = f()) {...}"
ActOnCXXConditionDeclaration(Scope * S,Declarator & D)17672 DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
17673 // C++ 6.4p2:
17674 // The declarator shall not specify a function or an array.
17675 // The type-specifier-seq shall not contain typedef and shall not declare a
17676 // new class or enumeration.
17677 assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
17678 "Parser allowed 'typedef' as storage class of condition decl.");
17679
17680 Decl *Dcl = ActOnDeclarator(S, D);
17681 if (!Dcl)
17682 return true;
17683
17684 if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
17685 Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
17686 << D.getSourceRange();
17687 return true;
17688 }
17689
17690 return Dcl;
17691 }
17692
LoadExternalVTableUses()17693 void Sema::LoadExternalVTableUses() {
17694 if (!ExternalSource)
17695 return;
17696
17697 SmallVector<ExternalVTableUse, 4> VTables;
17698 ExternalSource->ReadUsedVTables(VTables);
17699 SmallVector<VTableUse, 4> NewUses;
17700 for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
17701 llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
17702 = VTablesUsed.find(VTables[I].Record);
17703 // Even if a definition wasn't required before, it may be required now.
17704 if (Pos != VTablesUsed.end()) {
17705 if (!Pos->second && VTables[I].DefinitionRequired)
17706 Pos->second = true;
17707 continue;
17708 }
17709
17710 VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
17711 NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
17712 }
17713
17714 VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
17715 }
17716
MarkVTableUsed(SourceLocation Loc,CXXRecordDecl * Class,bool DefinitionRequired)17717 void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
17718 bool DefinitionRequired) {
17719 // Ignore any vtable uses in unevaluated operands or for classes that do
17720 // not have a vtable.
17721 if (!Class->isDynamicClass() || Class->isDependentContext() ||
17722 CurContext->isDependentContext() || isUnevaluatedContext())
17723 return;
17724 // Do not mark as used if compiling for the device outside of the target
17725 // region.
17726 if (TUKind != TU_Prefix && LangOpts.OpenMP && LangOpts.OpenMPIsDevice &&
17727 !isInOpenMPDeclareTargetContext() &&
17728 !isInOpenMPTargetExecutionDirective()) {
17729 if (!DefinitionRequired)
17730 MarkVirtualMembersReferenced(Loc, Class);
17731 return;
17732 }
17733
17734 // Try to insert this class into the map.
17735 LoadExternalVTableUses();
17736 Class = Class->getCanonicalDecl();
17737 std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
17738 Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
17739 if (!Pos.second) {
17740 // If we already had an entry, check to see if we are promoting this vtable
17741 // to require a definition. If so, we need to reappend to the VTableUses
17742 // list, since we may have already processed the first entry.
17743 if (DefinitionRequired && !Pos.first->second) {
17744 Pos.first->second = true;
17745 } else {
17746 // Otherwise, we can early exit.
17747 return;
17748 }
17749 } else {
17750 // The Microsoft ABI requires that we perform the destructor body
17751 // checks (i.e. operator delete() lookup) when the vtable is marked used, as
17752 // the deleting destructor is emitted with the vtable, not with the
17753 // destructor definition as in the Itanium ABI.
17754 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
17755 CXXDestructorDecl *DD = Class->getDestructor();
17756 if (DD && DD->isVirtual() && !DD->isDeleted()) {
17757 if (Class->hasUserDeclaredDestructor() && !DD->isDefined()) {
17758 // If this is an out-of-line declaration, marking it referenced will
17759 // not do anything. Manually call CheckDestructor to look up operator
17760 // delete().
17761 ContextRAII SavedContext(*this, DD);
17762 CheckDestructor(DD);
17763 } else {
17764 MarkFunctionReferenced(Loc, Class->getDestructor());
17765 }
17766 }
17767 }
17768 }
17769
17770 // Local classes need to have their virtual members marked
17771 // immediately. For all other classes, we mark their virtual members
17772 // at the end of the translation unit.
17773 if (Class->isLocalClass())
17774 MarkVirtualMembersReferenced(Loc, Class);
17775 else
17776 VTableUses.push_back(std::make_pair(Class, Loc));
17777 }
17778
DefineUsedVTables()17779 bool Sema::DefineUsedVTables() {
17780 LoadExternalVTableUses();
17781 if (VTableUses.empty())
17782 return false;
17783
17784 // Note: The VTableUses vector could grow as a result of marking
17785 // the members of a class as "used", so we check the size each
17786 // time through the loop and prefer indices (which are stable) to
17787 // iterators (which are not).
17788 bool DefinedAnything = false;
17789 for (unsigned I = 0; I != VTableUses.size(); ++I) {
17790 CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
17791 if (!Class)
17792 continue;
17793 TemplateSpecializationKind ClassTSK =
17794 Class->getTemplateSpecializationKind();
17795
17796 SourceLocation Loc = VTableUses[I].second;
17797
17798 bool DefineVTable = true;
17799
17800 // If this class has a key function, but that key function is
17801 // defined in another translation unit, we don't need to emit the
17802 // vtable even though we're using it.
17803 const CXXMethodDecl *KeyFunction = Context.getCurrentKeyFunction(Class);
17804 if (KeyFunction && !KeyFunction->hasBody()) {
17805 // The key function is in another translation unit.
17806 DefineVTable = false;
17807 TemplateSpecializationKind TSK =
17808 KeyFunction->getTemplateSpecializationKind();
17809 assert(TSK != TSK_ExplicitInstantiationDefinition &&
17810 TSK != TSK_ImplicitInstantiation &&
17811 "Instantiations don't have key functions");
17812 (void)TSK;
17813 } else if (!KeyFunction) {
17814 // If we have a class with no key function that is the subject
17815 // of an explicit instantiation declaration, suppress the
17816 // vtable; it will live with the explicit instantiation
17817 // definition.
17818 bool IsExplicitInstantiationDeclaration =
17819 ClassTSK == TSK_ExplicitInstantiationDeclaration;
17820 for (auto R : Class->redecls()) {
17821 TemplateSpecializationKind TSK
17822 = cast<CXXRecordDecl>(R)->getTemplateSpecializationKind();
17823 if (TSK == TSK_ExplicitInstantiationDeclaration)
17824 IsExplicitInstantiationDeclaration = true;
17825 else if (TSK == TSK_ExplicitInstantiationDefinition) {
17826 IsExplicitInstantiationDeclaration = false;
17827 break;
17828 }
17829 }
17830
17831 if (IsExplicitInstantiationDeclaration)
17832 DefineVTable = false;
17833 }
17834
17835 // The exception specifications for all virtual members may be needed even
17836 // if we are not providing an authoritative form of the vtable in this TU.
17837 // We may choose to emit it available_externally anyway.
17838 if (!DefineVTable) {
17839 MarkVirtualMemberExceptionSpecsNeeded(Loc, Class);
17840 continue;
17841 }
17842
17843 // Mark all of the virtual members of this class as referenced, so
17844 // that we can build a vtable. Then, tell the AST consumer that a
17845 // vtable for this class is required.
17846 DefinedAnything = true;
17847 MarkVirtualMembersReferenced(Loc, Class);
17848 CXXRecordDecl *Canonical = Class->getCanonicalDecl();
17849 if (VTablesUsed[Canonical])
17850 Consumer.HandleVTable(Class);
17851
17852 // Warn if we're emitting a weak vtable. The vtable will be weak if there is
17853 // no key function or the key function is inlined. Don't warn in C++ ABIs
17854 // that lack key functions, since the user won't be able to make one.
17855 if (Context.getTargetInfo().getCXXABI().hasKeyFunctions() &&
17856 Class->isExternallyVisible() && ClassTSK != TSK_ImplicitInstantiation &&
17857 ClassTSK != TSK_ExplicitInstantiationDefinition) {
17858 const FunctionDecl *KeyFunctionDef = nullptr;
17859 if (!KeyFunction || (KeyFunction->hasBody(KeyFunctionDef) &&
17860 KeyFunctionDef->isInlined()))
17861 Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
17862 }
17863 }
17864 VTableUses.clear();
17865
17866 return DefinedAnything;
17867 }
17868
MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,const CXXRecordDecl * RD)17869 void Sema::MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,
17870 const CXXRecordDecl *RD) {
17871 for (const auto *I : RD->methods())
17872 if (I->isVirtual() && !I->isPure())
17873 ResolveExceptionSpec(Loc, I->getType()->castAs<FunctionProtoType>());
17874 }
17875
MarkVirtualMembersReferenced(SourceLocation Loc,const CXXRecordDecl * RD,bool ConstexprOnly)17876 void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
17877 const CXXRecordDecl *RD,
17878 bool ConstexprOnly) {
17879 // Mark all functions which will appear in RD's vtable as used.
17880 CXXFinalOverriderMap FinalOverriders;
17881 RD->getFinalOverriders(FinalOverriders);
17882 for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(),
17883 E = FinalOverriders.end();
17884 I != E; ++I) {
17885 for (OverridingMethods::const_iterator OI = I->second.begin(),
17886 OE = I->second.end();
17887 OI != OE; ++OI) {
17888 assert(OI->second.size() > 0 && "no final overrider");
17889 CXXMethodDecl *Overrider = OI->second.front().Method;
17890
17891 // C++ [basic.def.odr]p2:
17892 // [...] A virtual member function is used if it is not pure. [...]
17893 if (!Overrider->isPure() && (!ConstexprOnly || Overrider->isConstexpr()))
17894 MarkFunctionReferenced(Loc, Overrider);
17895 }
17896 }
17897
17898 // Only classes that have virtual bases need a VTT.
17899 if (RD->getNumVBases() == 0)
17900 return;
17901
17902 for (const auto &I : RD->bases()) {
17903 const auto *Base =
17904 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
17905 if (Base->getNumVBases() == 0)
17906 continue;
17907 MarkVirtualMembersReferenced(Loc, Base);
17908 }
17909 }
17910
17911 /// SetIvarInitializers - This routine builds initialization ASTs for the
17912 /// Objective-C implementation whose ivars need be initialized.
SetIvarInitializers(ObjCImplementationDecl * ObjCImplementation)17913 void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
17914 if (!getLangOpts().CPlusPlus)
17915 return;
17916 if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
17917 SmallVector<ObjCIvarDecl*, 8> ivars;
17918 CollectIvarsToConstructOrDestruct(OID, ivars);
17919 if (ivars.empty())
17920 return;
17921 SmallVector<CXXCtorInitializer*, 32> AllToInit;
17922 for (unsigned i = 0; i < ivars.size(); i++) {
17923 FieldDecl *Field = ivars[i];
17924 if (Field->isInvalidDecl())
17925 continue;
17926
17927 CXXCtorInitializer *Member;
17928 InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
17929 InitializationKind InitKind =
17930 InitializationKind::CreateDefault(ObjCImplementation->getLocation());
17931
17932 InitializationSequence InitSeq(*this, InitEntity, InitKind, None);
17933 ExprResult MemberInit =
17934 InitSeq.Perform(*this, InitEntity, InitKind, None);
17935 MemberInit = MaybeCreateExprWithCleanups(MemberInit);
17936 // Note, MemberInit could actually come back empty if no initialization
17937 // is required (e.g., because it would call a trivial default constructor)
17938 if (!MemberInit.get() || MemberInit.isInvalid())
17939 continue;
17940
17941 Member =
17942 new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
17943 SourceLocation(),
17944 MemberInit.getAs<Expr>(),
17945 SourceLocation());
17946 AllToInit.push_back(Member);
17947
17948 // Be sure that the destructor is accessible and is marked as referenced.
17949 if (const RecordType *RecordTy =
17950 Context.getBaseElementType(Field->getType())
17951 ->getAs<RecordType>()) {
17952 CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
17953 if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
17954 MarkFunctionReferenced(Field->getLocation(), Destructor);
17955 CheckDestructorAccess(Field->getLocation(), Destructor,
17956 PDiag(diag::err_access_dtor_ivar)
17957 << Context.getBaseElementType(Field->getType()));
17958 }
17959 }
17960 }
17961 ObjCImplementation->setIvarInitializers(Context,
17962 AllToInit.data(), AllToInit.size());
17963 }
17964 }
17965
17966 static
DelegatingCycleHelper(CXXConstructorDecl * Ctor,llvm::SmallPtrSet<CXXConstructorDecl *,4> & Valid,llvm::SmallPtrSet<CXXConstructorDecl *,4> & Invalid,llvm::SmallPtrSet<CXXConstructorDecl *,4> & Current,Sema & S)17967 void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
17968 llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Valid,
17969 llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Invalid,
17970 llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Current,
17971 Sema &S) {
17972 if (Ctor->isInvalidDecl())
17973 return;
17974
17975 CXXConstructorDecl *Target = Ctor->getTargetConstructor();
17976
17977 // Target may not be determinable yet, for instance if this is a dependent
17978 // call in an uninstantiated template.
17979 if (Target) {
17980 const FunctionDecl *FNTarget = nullptr;
17981 (void)Target->hasBody(FNTarget);
17982 Target = const_cast<CXXConstructorDecl*>(
17983 cast_or_null<CXXConstructorDecl>(FNTarget));
17984 }
17985
17986 CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
17987 // Avoid dereferencing a null pointer here.
17988 *TCanonical = Target? Target->getCanonicalDecl() : nullptr;
17989
17990 if (!Current.insert(Canonical).second)
17991 return;
17992
17993 // We know that beyond here, we aren't chaining into a cycle.
17994 if (!Target || !Target->isDelegatingConstructor() ||
17995 Target->isInvalidDecl() || Valid.count(TCanonical)) {
17996 Valid.insert(Current.begin(), Current.end());
17997 Current.clear();
17998 // We've hit a cycle.
17999 } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
18000 Current.count(TCanonical)) {
18001 // If we haven't diagnosed this cycle yet, do so now.
18002 if (!Invalid.count(TCanonical)) {
18003 S.Diag((*Ctor->init_begin())->getSourceLocation(),
18004 diag::warn_delegating_ctor_cycle)
18005 << Ctor;
18006
18007 // Don't add a note for a function delegating directly to itself.
18008 if (TCanonical != Canonical)
18009 S.Diag(Target->getLocation(), diag::note_it_delegates_to);
18010
18011 CXXConstructorDecl *C = Target;
18012 while (C->getCanonicalDecl() != Canonical) {
18013 const FunctionDecl *FNTarget = nullptr;
18014 (void)C->getTargetConstructor()->hasBody(FNTarget);
18015 assert(FNTarget && "Ctor cycle through bodiless function");
18016
18017 C = const_cast<CXXConstructorDecl*>(
18018 cast<CXXConstructorDecl>(FNTarget));
18019 S.Diag(C->getLocation(), diag::note_which_delegates_to);
18020 }
18021 }
18022
18023 Invalid.insert(Current.begin(), Current.end());
18024 Current.clear();
18025 } else {
18026 DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
18027 }
18028 }
18029
18030
CheckDelegatingCtorCycles()18031 void Sema::CheckDelegatingCtorCycles() {
18032 llvm::SmallPtrSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
18033
18034 for (DelegatingCtorDeclsType::iterator
18035 I = DelegatingCtorDecls.begin(ExternalSource),
18036 E = DelegatingCtorDecls.end();
18037 I != E; ++I)
18038 DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
18039
18040 for (auto CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
18041 (*CI)->setInvalidDecl();
18042 }
18043
18044 namespace {
18045 /// AST visitor that finds references to the 'this' expression.
18046 class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> {
18047 Sema &S;
18048
18049 public:
FindCXXThisExpr(Sema & S)18050 explicit FindCXXThisExpr(Sema &S) : S(S) { }
18051
VisitCXXThisExpr(CXXThisExpr * E)18052 bool VisitCXXThisExpr(CXXThisExpr *E) {
18053 S.Diag(E->getLocation(), diag::err_this_static_member_func)
18054 << E->isImplicit();
18055 return false;
18056 }
18057 };
18058 }
18059
checkThisInStaticMemberFunctionType(CXXMethodDecl * Method)18060 bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) {
18061 TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
18062 if (!TSInfo)
18063 return false;
18064
18065 TypeLoc TL = TSInfo->getTypeLoc();
18066 FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
18067 if (!ProtoTL)
18068 return false;
18069
18070 // C++11 [expr.prim.general]p3:
18071 // [The expression this] shall not appear before the optional
18072 // cv-qualifier-seq and it shall not appear within the declaration of a
18073 // static member function (although its type and value category are defined
18074 // within a static member function as they are within a non-static member
18075 // function). [ Note: this is because declaration matching does not occur
18076 // until the complete declarator is known. - end note ]
18077 const FunctionProtoType *Proto = ProtoTL.getTypePtr();
18078 FindCXXThisExpr Finder(*this);
18079
18080 // If the return type came after the cv-qualifier-seq, check it now.
18081 if (Proto->hasTrailingReturn() &&
18082 !Finder.TraverseTypeLoc(ProtoTL.getReturnLoc()))
18083 return true;
18084
18085 // Check the exception specification.
18086 if (checkThisInStaticMemberFunctionExceptionSpec(Method))
18087 return true;
18088
18089 // Check the trailing requires clause
18090 if (Expr *E = Method->getTrailingRequiresClause())
18091 if (!Finder.TraverseStmt(E))
18092 return true;
18093
18094 return checkThisInStaticMemberFunctionAttributes(Method);
18095 }
18096
checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl * Method)18097 bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) {
18098 TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
18099 if (!TSInfo)
18100 return false;
18101
18102 TypeLoc TL = TSInfo->getTypeLoc();
18103 FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
18104 if (!ProtoTL)
18105 return false;
18106
18107 const FunctionProtoType *Proto = ProtoTL.getTypePtr();
18108 FindCXXThisExpr Finder(*this);
18109
18110 switch (Proto->getExceptionSpecType()) {
18111 case EST_Unparsed:
18112 case EST_Uninstantiated:
18113 case EST_Unevaluated:
18114 case EST_BasicNoexcept:
18115 case EST_NoThrow:
18116 case EST_DynamicNone:
18117 case EST_MSAny:
18118 case EST_None:
18119 break;
18120
18121 case EST_DependentNoexcept:
18122 case EST_NoexceptFalse:
18123 case EST_NoexceptTrue:
18124 if (!Finder.TraverseStmt(Proto->getNoexceptExpr()))
18125 return true;
18126 LLVM_FALLTHROUGH;
18127
18128 case EST_Dynamic:
18129 for (const auto &E : Proto->exceptions()) {
18130 if (!Finder.TraverseType(E))
18131 return true;
18132 }
18133 break;
18134 }
18135
18136 return false;
18137 }
18138
checkThisInStaticMemberFunctionAttributes(CXXMethodDecl * Method)18139 bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) {
18140 FindCXXThisExpr Finder(*this);
18141
18142 // Check attributes.
18143 for (const auto *A : Method->attrs()) {
18144 // FIXME: This should be emitted by tblgen.
18145 Expr *Arg = nullptr;
18146 ArrayRef<Expr *> Args;
18147 if (const auto *G = dyn_cast<GuardedByAttr>(A))
18148 Arg = G->getArg();
18149 else if (const auto *G = dyn_cast<PtGuardedByAttr>(A))
18150 Arg = G->getArg();
18151 else if (const auto *AA = dyn_cast<AcquiredAfterAttr>(A))
18152 Args = llvm::makeArrayRef(AA->args_begin(), AA->args_size());
18153 else if (const auto *AB = dyn_cast<AcquiredBeforeAttr>(A))
18154 Args = llvm::makeArrayRef(AB->args_begin(), AB->args_size());
18155 else if (const auto *ETLF = dyn_cast<ExclusiveTrylockFunctionAttr>(A)) {
18156 Arg = ETLF->getSuccessValue();
18157 Args = llvm::makeArrayRef(ETLF->args_begin(), ETLF->args_size());
18158 } else if (const auto *STLF = dyn_cast<SharedTrylockFunctionAttr>(A)) {
18159 Arg = STLF->getSuccessValue();
18160 Args = llvm::makeArrayRef(STLF->args_begin(), STLF->args_size());
18161 } else if (const auto *LR = dyn_cast<LockReturnedAttr>(A))
18162 Arg = LR->getArg();
18163 else if (const auto *LE = dyn_cast<LocksExcludedAttr>(A))
18164 Args = llvm::makeArrayRef(LE->args_begin(), LE->args_size());
18165 else if (const auto *RC = dyn_cast<RequiresCapabilityAttr>(A))
18166 Args = llvm::makeArrayRef(RC->args_begin(), RC->args_size());
18167 else if (const auto *AC = dyn_cast<AcquireCapabilityAttr>(A))
18168 Args = llvm::makeArrayRef(AC->args_begin(), AC->args_size());
18169 else if (const auto *AC = dyn_cast<TryAcquireCapabilityAttr>(A))
18170 Args = llvm::makeArrayRef(AC->args_begin(), AC->args_size());
18171 else if (const auto *RC = dyn_cast<ReleaseCapabilityAttr>(A))
18172 Args = llvm::makeArrayRef(RC->args_begin(), RC->args_size());
18173
18174 if (Arg && !Finder.TraverseStmt(Arg))
18175 return true;
18176
18177 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
18178 if (!Finder.TraverseStmt(Args[I]))
18179 return true;
18180 }
18181 }
18182
18183 return false;
18184 }
18185
checkExceptionSpecification(bool IsTopLevel,ExceptionSpecificationType EST,ArrayRef<ParsedType> DynamicExceptions,ArrayRef<SourceRange> DynamicExceptionRanges,Expr * NoexceptExpr,SmallVectorImpl<QualType> & Exceptions,FunctionProtoType::ExceptionSpecInfo & ESI)18186 void Sema::checkExceptionSpecification(
18187 bool IsTopLevel, ExceptionSpecificationType EST,
18188 ArrayRef<ParsedType> DynamicExceptions,
18189 ArrayRef<SourceRange> DynamicExceptionRanges, Expr *NoexceptExpr,
18190 SmallVectorImpl<QualType> &Exceptions,
18191 FunctionProtoType::ExceptionSpecInfo &ESI) {
18192 Exceptions.clear();
18193 ESI.Type = EST;
18194 if (EST == EST_Dynamic) {
18195 Exceptions.reserve(DynamicExceptions.size());
18196 for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) {
18197 // FIXME: Preserve type source info.
18198 QualType ET = GetTypeFromParser(DynamicExceptions[ei]);
18199
18200 if (IsTopLevel) {
18201 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
18202 collectUnexpandedParameterPacks(ET, Unexpanded);
18203 if (!Unexpanded.empty()) {
18204 DiagnoseUnexpandedParameterPacks(
18205 DynamicExceptionRanges[ei].getBegin(), UPPC_ExceptionType,
18206 Unexpanded);
18207 continue;
18208 }
18209 }
18210
18211 // Check that the type is valid for an exception spec, and
18212 // drop it if not.
18213 if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei]))
18214 Exceptions.push_back(ET);
18215 }
18216 ESI.Exceptions = Exceptions;
18217 return;
18218 }
18219
18220 if (isComputedNoexcept(EST)) {
18221 assert((NoexceptExpr->isTypeDependent() ||
18222 NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==
18223 Context.BoolTy) &&
18224 "Parser should have made sure that the expression is boolean");
18225 if (IsTopLevel && DiagnoseUnexpandedParameterPack(NoexceptExpr)) {
18226 ESI.Type = EST_BasicNoexcept;
18227 return;
18228 }
18229
18230 ESI.NoexceptExpr = NoexceptExpr;
18231 return;
18232 }
18233 }
18234
actOnDelayedExceptionSpecification(Decl * MethodD,ExceptionSpecificationType EST,SourceRange SpecificationRange,ArrayRef<ParsedType> DynamicExceptions,ArrayRef<SourceRange> DynamicExceptionRanges,Expr * NoexceptExpr)18235 void Sema::actOnDelayedExceptionSpecification(Decl *MethodD,
18236 ExceptionSpecificationType EST,
18237 SourceRange SpecificationRange,
18238 ArrayRef<ParsedType> DynamicExceptions,
18239 ArrayRef<SourceRange> DynamicExceptionRanges,
18240 Expr *NoexceptExpr) {
18241 if (!MethodD)
18242 return;
18243
18244 // Dig out the method we're referring to.
18245 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(MethodD))
18246 MethodD = FunTmpl->getTemplatedDecl();
18247
18248 CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(MethodD);
18249 if (!Method)
18250 return;
18251
18252 // Check the exception specification.
18253 llvm::SmallVector<QualType, 4> Exceptions;
18254 FunctionProtoType::ExceptionSpecInfo ESI;
18255 checkExceptionSpecification(/*IsTopLevel*/true, EST, DynamicExceptions,
18256 DynamicExceptionRanges, NoexceptExpr, Exceptions,
18257 ESI);
18258
18259 // Update the exception specification on the function type.
18260 Context.adjustExceptionSpec(Method, ESI, /*AsWritten*/true);
18261
18262 if (Method->isStatic())
18263 checkThisInStaticMemberFunctionExceptionSpec(Method);
18264
18265 if (Method->isVirtual()) {
18266 // Check overrides, which we previously had to delay.
18267 for (const CXXMethodDecl *O : Method->overridden_methods())
18268 CheckOverridingFunctionExceptionSpec(Method, O);
18269 }
18270 }
18271
18272 /// HandleMSProperty - Analyze a __delcspec(property) field of a C++ class.
18273 ///
HandleMSProperty(Scope * S,RecordDecl * Record,SourceLocation DeclStart,Declarator & D,Expr * BitWidth,InClassInitStyle InitStyle,AccessSpecifier AS,const ParsedAttr & MSPropertyAttr)18274 MSPropertyDecl *Sema::HandleMSProperty(Scope *S, RecordDecl *Record,
18275 SourceLocation DeclStart, Declarator &D,
18276 Expr *BitWidth,
18277 InClassInitStyle InitStyle,
18278 AccessSpecifier AS,
18279 const ParsedAttr &MSPropertyAttr) {
18280 IdentifierInfo *II = D.getIdentifier();
18281 if (!II) {
18282 Diag(DeclStart, diag::err_anonymous_property);
18283 return nullptr;
18284 }
18285 SourceLocation Loc = D.getIdentifierLoc();
18286
18287 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
18288 QualType T = TInfo->getType();
18289 if (getLangOpts().CPlusPlus) {
18290 CheckExtraCXXDefaultArguments(D);
18291
18292 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
18293 UPPC_DataMemberType)) {
18294 D.setInvalidType();
18295 T = Context.IntTy;
18296 TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
18297 }
18298 }
18299
18300 DiagnoseFunctionSpecifiers(D.getDeclSpec());
18301
18302 if (D.getDeclSpec().isInlineSpecified())
18303 Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
18304 << getLangOpts().CPlusPlus17;
18305 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
18306 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
18307 diag::err_invalid_thread)
18308 << DeclSpec::getSpecifierName(TSCS);
18309
18310 // Check to see if this name was declared as a member previously
18311 NamedDecl *PrevDecl = nullptr;
18312 LookupResult Previous(*this, II, Loc, LookupMemberName,
18313 ForVisibleRedeclaration);
18314 LookupName(Previous, S);
18315 switch (Previous.getResultKind()) {
18316 case LookupResult::Found:
18317 case LookupResult::FoundUnresolvedValue:
18318 PrevDecl = Previous.getAsSingle<NamedDecl>();
18319 break;
18320
18321 case LookupResult::FoundOverloaded:
18322 PrevDecl = Previous.getRepresentativeDecl();
18323 break;
18324
18325 case LookupResult::NotFound:
18326 case LookupResult::NotFoundInCurrentInstantiation:
18327 case LookupResult::Ambiguous:
18328 break;
18329 }
18330
18331 if (PrevDecl && PrevDecl->isTemplateParameter()) {
18332 // Maybe we will complain about the shadowed template parameter.
18333 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
18334 // Just pretend that we didn't see the previous declaration.
18335 PrevDecl = nullptr;
18336 }
18337
18338 if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
18339 PrevDecl = nullptr;
18340
18341 SourceLocation TSSL = D.getBeginLoc();
18342 MSPropertyDecl *NewPD =
18343 MSPropertyDecl::Create(Context, Record, Loc, II, T, TInfo, TSSL,
18344 MSPropertyAttr.getPropertyDataGetter(),
18345 MSPropertyAttr.getPropertyDataSetter());
18346 ProcessDeclAttributes(TUScope, NewPD, D);
18347 NewPD->setAccess(AS);
18348
18349 if (NewPD->isInvalidDecl())
18350 Record->setInvalidDecl();
18351
18352 if (D.getDeclSpec().isModulePrivateSpecified())
18353 NewPD->setModulePrivate();
18354
18355 if (NewPD->isInvalidDecl() && PrevDecl) {
18356 // Don't introduce NewFD into scope; there's already something
18357 // with the same name in the same scope.
18358 } else if (II) {
18359 PushOnScopeChains(NewPD, S);
18360 } else
18361 Record->addDecl(NewPD);
18362
18363 return NewPD;
18364 }
18365
ActOnStartFunctionDeclarationDeclarator(Declarator & Declarator,unsigned TemplateParameterDepth)18366 void Sema::ActOnStartFunctionDeclarationDeclarator(
18367 Declarator &Declarator, unsigned TemplateParameterDepth) {
18368 auto &Info = InventedParameterInfos.emplace_back();
18369 TemplateParameterList *ExplicitParams = nullptr;
18370 ArrayRef<TemplateParameterList *> ExplicitLists =
18371 Declarator.getTemplateParameterLists();
18372 if (!ExplicitLists.empty()) {
18373 bool IsMemberSpecialization, IsInvalid;
18374 ExplicitParams = MatchTemplateParametersToScopeSpecifier(
18375 Declarator.getBeginLoc(), Declarator.getIdentifierLoc(),
18376 Declarator.getCXXScopeSpec(), /*TemplateId=*/nullptr,
18377 ExplicitLists, /*IsFriend=*/false, IsMemberSpecialization, IsInvalid,
18378 /*SuppressDiagnostic=*/true);
18379 }
18380 if (ExplicitParams) {
18381 Info.AutoTemplateParameterDepth = ExplicitParams->getDepth();
18382 llvm::append_range(Info.TemplateParams, *ExplicitParams);
18383 Info.NumExplicitTemplateParams = ExplicitParams->size();
18384 } else {
18385 Info.AutoTemplateParameterDepth = TemplateParameterDepth;
18386 Info.NumExplicitTemplateParams = 0;
18387 }
18388 }
18389
ActOnFinishFunctionDeclarationDeclarator(Declarator & Declarator)18390 void Sema::ActOnFinishFunctionDeclarationDeclarator(Declarator &Declarator) {
18391 auto &FSI = InventedParameterInfos.back();
18392 if (FSI.TemplateParams.size() > FSI.NumExplicitTemplateParams) {
18393 if (FSI.NumExplicitTemplateParams != 0) {
18394 TemplateParameterList *ExplicitParams =
18395 Declarator.getTemplateParameterLists().back();
18396 Declarator.setInventedTemplateParameterList(
18397 TemplateParameterList::Create(
18398 Context, ExplicitParams->getTemplateLoc(),
18399 ExplicitParams->getLAngleLoc(), FSI.TemplateParams,
18400 ExplicitParams->getRAngleLoc(),
18401 ExplicitParams->getRequiresClause()));
18402 } else {
18403 Declarator.setInventedTemplateParameterList(
18404 TemplateParameterList::Create(
18405 Context, SourceLocation(), SourceLocation(), FSI.TemplateParams,
18406 SourceLocation(), /*RequiresClause=*/nullptr));
18407 }
18408 }
18409 InventedParameterInfos.pop_back();
18410 }
18411