1 //===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// Implements semantic analysis for C++ expressions.
12 ///
13 //===----------------------------------------------------------------------===//
14
15 #include "clang/Sema/SemaInternal.h"
16 #include "TreeTransform.h"
17 #include "TypeLocBuilder.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/ASTLambda.h"
20 #include "clang/AST/CXXInheritance.h"
21 #include "clang/AST/CharUnits.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/ExprObjC.h"
25 #include "clang/AST/RecursiveASTVisitor.h"
26 #include "clang/AST/TypeLoc.h"
27 #include "clang/Basic/AlignedAllocation.h"
28 #include "clang/Basic/PartialDiagnostic.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/Lex/Preprocessor.h"
31 #include "clang/Sema/DeclSpec.h"
32 #include "clang/Sema/Initialization.h"
33 #include "clang/Sema/Lookup.h"
34 #include "clang/Sema/ParsedTemplate.h"
35 #include "clang/Sema/Scope.h"
36 #include "clang/Sema/ScopeInfo.h"
37 #include "clang/Sema/SemaLambda.h"
38 #include "clang/Sema/TemplateDeduction.h"
39 #include "llvm/ADT/APInt.h"
40 #include "llvm/ADT/STLExtras.h"
41 #include "llvm/Support/ErrorHandling.h"
42 using namespace clang;
43 using namespace sema;
44
45 /// Handle the result of the special case name lookup for inheriting
46 /// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as
47 /// constructor names in member using declarations, even if 'X' is not the
48 /// name of the corresponding type.
getInheritingConstructorName(CXXScopeSpec & SS,SourceLocation NameLoc,IdentifierInfo & Name)49 ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS,
50 SourceLocation NameLoc,
51 IdentifierInfo &Name) {
52 NestedNameSpecifier *NNS = SS.getScopeRep();
53
54 // Convert the nested-name-specifier into a type.
55 QualType Type;
56 switch (NNS->getKind()) {
57 case NestedNameSpecifier::TypeSpec:
58 case NestedNameSpecifier::TypeSpecWithTemplate:
59 Type = QualType(NNS->getAsType(), 0);
60 break;
61
62 case NestedNameSpecifier::Identifier:
63 // Strip off the last layer of the nested-name-specifier and build a
64 // typename type for it.
65 assert(NNS->getAsIdentifier() == &Name && "not a constructor name");
66 Type = Context.getDependentNameType(ETK_None, NNS->getPrefix(),
67 NNS->getAsIdentifier());
68 break;
69
70 case NestedNameSpecifier::Global:
71 case NestedNameSpecifier::Super:
72 case NestedNameSpecifier::Namespace:
73 case NestedNameSpecifier::NamespaceAlias:
74 llvm_unreachable("Nested name specifier is not a type for inheriting ctor");
75 }
76
77 // This reference to the type is located entirely at the location of the
78 // final identifier in the qualified-id.
79 return CreateParsedType(Type,
80 Context.getTrivialTypeSourceInfo(Type, NameLoc));
81 }
82
getConstructorName(IdentifierInfo & II,SourceLocation NameLoc,Scope * S,CXXScopeSpec & SS,bool EnteringContext)83 ParsedType Sema::getConstructorName(IdentifierInfo &II,
84 SourceLocation NameLoc,
85 Scope *S, CXXScopeSpec &SS,
86 bool EnteringContext) {
87 CXXRecordDecl *CurClass = getCurrentClass(S, &SS);
88 assert(CurClass && &II == CurClass->getIdentifier() &&
89 "not a constructor name");
90
91 // When naming a constructor as a member of a dependent context (eg, in a
92 // friend declaration or an inherited constructor declaration), form an
93 // unresolved "typename" type.
94 if (CurClass->isDependentContext() && !EnteringContext) {
95 QualType T = Context.getDependentNameType(ETK_None, SS.getScopeRep(), &II);
96 return ParsedType::make(T);
97 }
98
99 if (SS.isNotEmpty() && RequireCompleteDeclContext(SS, CurClass))
100 return ParsedType();
101
102 // Find the injected-class-name declaration. Note that we make no attempt to
103 // diagnose cases where the injected-class-name is shadowed: the only
104 // declaration that can validly shadow the injected-class-name is a
105 // non-static data member, and if the class contains both a non-static data
106 // member and a constructor then it is ill-formed (we check that in
107 // CheckCompletedCXXClass).
108 CXXRecordDecl *InjectedClassName = nullptr;
109 for (NamedDecl *ND : CurClass->lookup(&II)) {
110 auto *RD = dyn_cast<CXXRecordDecl>(ND);
111 if (RD && RD->isInjectedClassName()) {
112 InjectedClassName = RD;
113 break;
114 }
115 }
116 if (!InjectedClassName) {
117 if (!CurClass->isInvalidDecl()) {
118 // FIXME: RequireCompleteDeclContext doesn't check dependent contexts
119 // properly. Work around it here for now.
120 Diag(SS.getLastQualifierNameLoc(),
121 diag::err_incomplete_nested_name_spec) << CurClass << SS.getRange();
122 }
123 return ParsedType();
124 }
125
126 QualType T = Context.getTypeDeclType(InjectedClassName);
127 DiagnoseUseOfDecl(InjectedClassName, NameLoc);
128 MarkAnyDeclReferenced(NameLoc, InjectedClassName, /*OdrUse=*/false);
129
130 return ParsedType::make(T);
131 }
132
getDestructorName(SourceLocation TildeLoc,IdentifierInfo & II,SourceLocation NameLoc,Scope * S,CXXScopeSpec & SS,ParsedType ObjectTypePtr,bool EnteringContext)133 ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
134 IdentifierInfo &II,
135 SourceLocation NameLoc,
136 Scope *S, CXXScopeSpec &SS,
137 ParsedType ObjectTypePtr,
138 bool EnteringContext) {
139 // Determine where to perform name lookup.
140
141 // FIXME: This area of the standard is very messy, and the current
142 // wording is rather unclear about which scopes we search for the
143 // destructor name; see core issues 399 and 555. Issue 399 in
144 // particular shows where the current description of destructor name
145 // lookup is completely out of line with existing practice, e.g.,
146 // this appears to be ill-formed:
147 //
148 // namespace N {
149 // template <typename T> struct S {
150 // ~S();
151 // };
152 // }
153 //
154 // void f(N::S<int>* s) {
155 // s->N::S<int>::~S();
156 // }
157 //
158 // See also PR6358 and PR6359.
159 // For this reason, we're currently only doing the C++03 version of this
160 // code; the C++0x version has to wait until we get a proper spec.
161 QualType SearchType;
162 DeclContext *LookupCtx = nullptr;
163 bool isDependent = false;
164 bool LookInScope = false;
165
166 if (SS.isInvalid())
167 return nullptr;
168
169 // If we have an object type, it's because we are in a
170 // pseudo-destructor-expression or a member access expression, and
171 // we know what type we're looking for.
172 if (ObjectTypePtr)
173 SearchType = GetTypeFromParser(ObjectTypePtr);
174
175 if (SS.isSet()) {
176 NestedNameSpecifier *NNS = SS.getScopeRep();
177
178 bool AlreadySearched = false;
179 bool LookAtPrefix = true;
180 // C++11 [basic.lookup.qual]p6:
181 // If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
182 // the type-names are looked up as types in the scope designated by the
183 // nested-name-specifier. Similarly, in a qualified-id of the form:
184 //
185 // nested-name-specifier[opt] class-name :: ~ class-name
186 //
187 // the second class-name is looked up in the same scope as the first.
188 //
189 // Here, we determine whether the code below is permitted to look at the
190 // prefix of the nested-name-specifier.
191 DeclContext *DC = computeDeclContext(SS, EnteringContext);
192 if (DC && DC->isFileContext()) {
193 AlreadySearched = true;
194 LookupCtx = DC;
195 isDependent = false;
196 } else if (DC && isa<CXXRecordDecl>(DC)) {
197 LookAtPrefix = false;
198 LookInScope = true;
199 }
200
201 // The second case from the C++03 rules quoted further above.
202 NestedNameSpecifier *Prefix = nullptr;
203 if (AlreadySearched) {
204 // Nothing left to do.
205 } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
206 CXXScopeSpec PrefixSS;
207 PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
208 LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
209 isDependent = isDependentScopeSpecifier(PrefixSS);
210 } else if (ObjectTypePtr) {
211 LookupCtx = computeDeclContext(SearchType);
212 isDependent = SearchType->isDependentType();
213 } else {
214 LookupCtx = computeDeclContext(SS, EnteringContext);
215 isDependent = LookupCtx && LookupCtx->isDependentContext();
216 }
217 } else if (ObjectTypePtr) {
218 // C++ [basic.lookup.classref]p3:
219 // If the unqualified-id is ~type-name, the type-name is looked up
220 // in the context of the entire postfix-expression. If the type T
221 // of the object expression is of a class type C, the type-name is
222 // also looked up in the scope of class C. At least one of the
223 // lookups shall find a name that refers to (possibly
224 // cv-qualified) T.
225 LookupCtx = computeDeclContext(SearchType);
226 isDependent = SearchType->isDependentType();
227 assert((isDependent || !SearchType->isIncompleteType()) &&
228 "Caller should have completed object type");
229
230 LookInScope = true;
231 } else {
232 // Perform lookup into the current scope (only).
233 LookInScope = true;
234 }
235
236 TypeDecl *NonMatchingTypeDecl = nullptr;
237 LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
238 for (unsigned Step = 0; Step != 2; ++Step) {
239 // Look for the name first in the computed lookup context (if we
240 // have one) and, if that fails to find a match, in the scope (if
241 // we're allowed to look there).
242 Found.clear();
243 if (Step == 0 && LookupCtx) {
244 if (RequireCompleteDeclContext(SS, LookupCtx))
245 return nullptr;
246 LookupQualifiedName(Found, LookupCtx);
247 } else if (Step == 1 && LookInScope && S) {
248 LookupName(Found, S);
249 } else {
250 continue;
251 }
252
253 // FIXME: Should we be suppressing ambiguities here?
254 if (Found.isAmbiguous())
255 return nullptr;
256
257 if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
258 QualType T = Context.getTypeDeclType(Type);
259 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
260
261 if (SearchType.isNull() || SearchType->isDependentType() ||
262 Context.hasSameUnqualifiedType(T, SearchType)) {
263 // We found our type!
264
265 return CreateParsedType(T,
266 Context.getTrivialTypeSourceInfo(T, NameLoc));
267 }
268
269 if (!SearchType.isNull())
270 NonMatchingTypeDecl = Type;
271 }
272
273 // If the name that we found is a class template name, and it is
274 // the same name as the template name in the last part of the
275 // nested-name-specifier (if present) or the object type, then
276 // this is the destructor for that class.
277 // FIXME: This is a workaround until we get real drafting for core
278 // issue 399, for which there isn't even an obvious direction.
279 if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
280 QualType MemberOfType;
281 if (SS.isSet()) {
282 if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
283 // Figure out the type of the context, if it has one.
284 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
285 MemberOfType = Context.getTypeDeclType(Record);
286 }
287 }
288 if (MemberOfType.isNull())
289 MemberOfType = SearchType;
290
291 if (MemberOfType.isNull())
292 continue;
293
294 // We're referring into a class template specialization. If the
295 // class template we found is the same as the template being
296 // specialized, we found what we are looking for.
297 if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
298 if (ClassTemplateSpecializationDecl *Spec
299 = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
300 if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
301 Template->getCanonicalDecl())
302 return CreateParsedType(
303 MemberOfType,
304 Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
305 }
306
307 continue;
308 }
309
310 // We're referring to an unresolved class template
311 // specialization. Determine whether we class template we found
312 // is the same as the template being specialized or, if we don't
313 // know which template is being specialized, that it at least
314 // has the same name.
315 if (const TemplateSpecializationType *SpecType
316 = MemberOfType->getAs<TemplateSpecializationType>()) {
317 TemplateName SpecName = SpecType->getTemplateName();
318
319 // The class template we found is the same template being
320 // specialized.
321 if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
322 if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
323 return CreateParsedType(
324 MemberOfType,
325 Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
326
327 continue;
328 }
329
330 // The class template we found has the same name as the
331 // (dependent) template name being specialized.
332 if (DependentTemplateName *DepTemplate
333 = SpecName.getAsDependentTemplateName()) {
334 if (DepTemplate->isIdentifier() &&
335 DepTemplate->getIdentifier() == Template->getIdentifier())
336 return CreateParsedType(
337 MemberOfType,
338 Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
339
340 continue;
341 }
342 }
343 }
344 }
345
346 if (isDependent) {
347 // We didn't find our type, but that's okay: it's dependent
348 // anyway.
349
350 // FIXME: What if we have no nested-name-specifier?
351 QualType T = CheckTypenameType(ETK_None, SourceLocation(),
352 SS.getWithLocInContext(Context),
353 II, NameLoc);
354 return ParsedType::make(T);
355 }
356
357 if (NonMatchingTypeDecl) {
358 QualType T = Context.getTypeDeclType(NonMatchingTypeDecl);
359 Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
360 << T << SearchType;
361 Diag(NonMatchingTypeDecl->getLocation(), diag::note_destructor_type_here)
362 << T;
363 } else if (ObjectTypePtr)
364 Diag(NameLoc, diag::err_ident_in_dtor_not_a_type)
365 << &II;
366 else {
367 SemaDiagnosticBuilder DtorDiag = Diag(NameLoc,
368 diag::err_destructor_class_name);
369 if (S) {
370 const DeclContext *Ctx = S->getEntity();
371 if (const CXXRecordDecl *Class = dyn_cast_or_null<CXXRecordDecl>(Ctx))
372 DtorDiag << FixItHint::CreateReplacement(SourceRange(NameLoc),
373 Class->getNameAsString());
374 }
375 }
376
377 return nullptr;
378 }
379
getDestructorTypeForDecltype(const DeclSpec & DS,ParsedType ObjectType)380 ParsedType Sema::getDestructorTypeForDecltype(const DeclSpec &DS,
381 ParsedType ObjectType) {
382 if (DS.getTypeSpecType() == DeclSpec::TST_error)
383 return nullptr;
384
385 if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) {
386 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
387 return nullptr;
388 }
389
390 assert(DS.getTypeSpecType() == DeclSpec::TST_decltype &&
391 "unexpected type in getDestructorType");
392 QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
393
394 // If we know the type of the object, check that the correct destructor
395 // type was named now; we can give better diagnostics this way.
396 QualType SearchType = GetTypeFromParser(ObjectType);
397 if (!SearchType.isNull() && !SearchType->isDependentType() &&
398 !Context.hasSameUnqualifiedType(T, SearchType)) {
399 Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
400 << T << SearchType;
401 return nullptr;
402 }
403
404 return ParsedType::make(T);
405 }
406
checkLiteralOperatorId(const CXXScopeSpec & SS,const UnqualifiedId & Name)407 bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS,
408 const UnqualifiedId &Name) {
409 assert(Name.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId);
410
411 if (!SS.isValid())
412 return false;
413
414 switch (SS.getScopeRep()->getKind()) {
415 case NestedNameSpecifier::Identifier:
416 case NestedNameSpecifier::TypeSpec:
417 case NestedNameSpecifier::TypeSpecWithTemplate:
418 // Per C++11 [over.literal]p2, literal operators can only be declared at
419 // namespace scope. Therefore, this unqualified-id cannot name anything.
420 // Reject it early, because we have no AST representation for this in the
421 // case where the scope is dependent.
422 Diag(Name.getBeginLoc(), diag::err_literal_operator_id_outside_namespace)
423 << SS.getScopeRep();
424 return true;
425
426 case NestedNameSpecifier::Global:
427 case NestedNameSpecifier::Super:
428 case NestedNameSpecifier::Namespace:
429 case NestedNameSpecifier::NamespaceAlias:
430 return false;
431 }
432
433 llvm_unreachable("unknown nested name specifier kind");
434 }
435
436 /// Build a C++ typeid expression with a type operand.
BuildCXXTypeId(QualType TypeInfoType,SourceLocation TypeidLoc,TypeSourceInfo * Operand,SourceLocation RParenLoc)437 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
438 SourceLocation TypeidLoc,
439 TypeSourceInfo *Operand,
440 SourceLocation RParenLoc) {
441 // C++ [expr.typeid]p4:
442 // The top-level cv-qualifiers of the lvalue expression or the type-id
443 // that is the operand of typeid are always ignored.
444 // If the type of the type-id is a class type or a reference to a class
445 // type, the class shall be completely-defined.
446 Qualifiers Quals;
447 QualType T
448 = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
449 Quals);
450 if (T->getAs<RecordType>() &&
451 RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
452 return ExprError();
453
454 if (T->isVariablyModifiedType())
455 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) << T);
456
457 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand,
458 SourceRange(TypeidLoc, RParenLoc));
459 }
460
461 /// Build a C++ typeid expression with an expression operand.
BuildCXXTypeId(QualType TypeInfoType,SourceLocation TypeidLoc,Expr * E,SourceLocation RParenLoc)462 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
463 SourceLocation TypeidLoc,
464 Expr *E,
465 SourceLocation RParenLoc) {
466 bool WasEvaluated = false;
467 if (E && !E->isTypeDependent()) {
468 if (E->getType()->isPlaceholderType()) {
469 ExprResult result = CheckPlaceholderExpr(E);
470 if (result.isInvalid()) return ExprError();
471 E = result.get();
472 }
473
474 QualType T = E->getType();
475 if (const RecordType *RecordT = T->getAs<RecordType>()) {
476 CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
477 // C++ [expr.typeid]p3:
478 // [...] If the type of the expression is a class type, the class
479 // shall be completely-defined.
480 if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
481 return ExprError();
482
483 // C++ [expr.typeid]p3:
484 // When typeid is applied to an expression other than an glvalue of a
485 // polymorphic class type [...] [the] expression is an unevaluated
486 // operand. [...]
487 if (RecordD->isPolymorphic() && E->isGLValue()) {
488 // The subexpression is potentially evaluated; switch the context
489 // and recheck the subexpression.
490 ExprResult Result = TransformToPotentiallyEvaluated(E);
491 if (Result.isInvalid()) return ExprError();
492 E = Result.get();
493
494 // We require a vtable to query the type at run time.
495 MarkVTableUsed(TypeidLoc, RecordD);
496 WasEvaluated = true;
497 }
498 }
499
500 // C++ [expr.typeid]p4:
501 // [...] If the type of the type-id is a reference to a possibly
502 // cv-qualified type, the result of the typeid expression refers to a
503 // std::type_info object representing the cv-unqualified referenced
504 // type.
505 Qualifiers Quals;
506 QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
507 if (!Context.hasSameType(T, UnqualT)) {
508 T = UnqualT;
509 E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get();
510 }
511 }
512
513 if (E->getType()->isVariablyModifiedType())
514 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid)
515 << E->getType());
516 else if (!inTemplateInstantiation() &&
517 E->HasSideEffects(Context, WasEvaluated)) {
518 // The expression operand for typeid is in an unevaluated expression
519 // context, so side effects could result in unintended consequences.
520 Diag(E->getExprLoc(), WasEvaluated
521 ? diag::warn_side_effects_typeid
522 : diag::warn_side_effects_unevaluated_context);
523 }
524
525 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E,
526 SourceRange(TypeidLoc, RParenLoc));
527 }
528
529 /// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
530 ExprResult
ActOnCXXTypeid(SourceLocation OpLoc,SourceLocation LParenLoc,bool isType,void * TyOrExpr,SourceLocation RParenLoc)531 Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
532 bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
533 // OpenCL C++ 1.0 s2.9: typeid is not supported.
534 if (getLangOpts().OpenCLCPlusPlus) {
535 return ExprError(Diag(OpLoc, diag::err_openclcxx_not_supported)
536 << "typeid");
537 }
538
539 // Find the std::type_info type.
540 if (!getStdNamespace())
541 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
542
543 if (!CXXTypeInfoDecl) {
544 IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
545 LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
546 LookupQualifiedName(R, getStdNamespace());
547 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
548 // Microsoft's typeinfo doesn't have type_info in std but in the global
549 // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
550 if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) {
551 LookupQualifiedName(R, Context.getTranslationUnitDecl());
552 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
553 }
554 if (!CXXTypeInfoDecl)
555 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
556 }
557
558 if (!getLangOpts().RTTI) {
559 return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
560 }
561
562 QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
563
564 if (isType) {
565 // The operand is a type; handle it as such.
566 TypeSourceInfo *TInfo = nullptr;
567 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
568 &TInfo);
569 if (T.isNull())
570 return ExprError();
571
572 if (!TInfo)
573 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
574
575 return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
576 }
577
578 // The operand is an expression.
579 return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
580 }
581
582 /// Grabs __declspec(uuid()) off a type, or returns 0 if we cannot resolve to
583 /// a single GUID.
584 static void
getUuidAttrOfType(Sema & SemaRef,QualType QT,llvm::SmallSetVector<const UuidAttr *,1> & UuidAttrs)585 getUuidAttrOfType(Sema &SemaRef, QualType QT,
586 llvm::SmallSetVector<const UuidAttr *, 1> &UuidAttrs) {
587 // Optionally remove one level of pointer, reference or array indirection.
588 const Type *Ty = QT.getTypePtr();
589 if (QT->isPointerType() || QT->isReferenceType())
590 Ty = QT->getPointeeType().getTypePtr();
591 else if (QT->isArrayType())
592 Ty = Ty->getBaseElementTypeUnsafe();
593
594 const auto *TD = Ty->getAsTagDecl();
595 if (!TD)
596 return;
597
598 if (const auto *Uuid = TD->getMostRecentDecl()->getAttr<UuidAttr>()) {
599 UuidAttrs.insert(Uuid);
600 return;
601 }
602
603 // __uuidof can grab UUIDs from template arguments.
604 if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(TD)) {
605 const TemplateArgumentList &TAL = CTSD->getTemplateArgs();
606 for (const TemplateArgument &TA : TAL.asArray()) {
607 const UuidAttr *UuidForTA = nullptr;
608 if (TA.getKind() == TemplateArgument::Type)
609 getUuidAttrOfType(SemaRef, TA.getAsType(), UuidAttrs);
610 else if (TA.getKind() == TemplateArgument::Declaration)
611 getUuidAttrOfType(SemaRef, TA.getAsDecl()->getType(), UuidAttrs);
612
613 if (UuidForTA)
614 UuidAttrs.insert(UuidForTA);
615 }
616 }
617 }
618
619 /// Build a Microsoft __uuidof expression with a type operand.
BuildCXXUuidof(QualType TypeInfoType,SourceLocation TypeidLoc,TypeSourceInfo * Operand,SourceLocation RParenLoc)620 ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
621 SourceLocation TypeidLoc,
622 TypeSourceInfo *Operand,
623 SourceLocation RParenLoc) {
624 StringRef UuidStr;
625 if (!Operand->getType()->isDependentType()) {
626 llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
627 getUuidAttrOfType(*this, Operand->getType(), UuidAttrs);
628 if (UuidAttrs.empty())
629 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
630 if (UuidAttrs.size() > 1)
631 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
632 UuidStr = UuidAttrs.back()->getGuid();
633 }
634
635 return new (Context) CXXUuidofExpr(TypeInfoType.withConst(), Operand, UuidStr,
636 SourceRange(TypeidLoc, RParenLoc));
637 }
638
639 /// Build a Microsoft __uuidof expression with an expression operand.
BuildCXXUuidof(QualType TypeInfoType,SourceLocation TypeidLoc,Expr * E,SourceLocation RParenLoc)640 ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
641 SourceLocation TypeidLoc,
642 Expr *E,
643 SourceLocation RParenLoc) {
644 StringRef UuidStr;
645 if (!E->getType()->isDependentType()) {
646 if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
647 UuidStr = "00000000-0000-0000-0000-000000000000";
648 } else {
649 llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
650 getUuidAttrOfType(*this, E->getType(), UuidAttrs);
651 if (UuidAttrs.empty())
652 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
653 if (UuidAttrs.size() > 1)
654 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
655 UuidStr = UuidAttrs.back()->getGuid();
656 }
657 }
658
659 return new (Context) CXXUuidofExpr(TypeInfoType.withConst(), E, UuidStr,
660 SourceRange(TypeidLoc, RParenLoc));
661 }
662
663 /// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
664 ExprResult
ActOnCXXUuidof(SourceLocation OpLoc,SourceLocation LParenLoc,bool isType,void * TyOrExpr,SourceLocation RParenLoc)665 Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
666 bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
667 // If MSVCGuidDecl has not been cached, do the lookup.
668 if (!MSVCGuidDecl) {
669 IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
670 LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
671 LookupQualifiedName(R, Context.getTranslationUnitDecl());
672 MSVCGuidDecl = R.getAsSingle<RecordDecl>();
673 if (!MSVCGuidDecl)
674 return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
675 }
676
677 QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
678
679 if (isType) {
680 // The operand is a type; handle it as such.
681 TypeSourceInfo *TInfo = nullptr;
682 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
683 &TInfo);
684 if (T.isNull())
685 return ExprError();
686
687 if (!TInfo)
688 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
689
690 return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
691 }
692
693 // The operand is an expression.
694 return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
695 }
696
697 /// ActOnCXXBoolLiteral - Parse {true,false} literals.
698 ExprResult
ActOnCXXBoolLiteral(SourceLocation OpLoc,tok::TokenKind Kind)699 Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
700 assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
701 "Unknown C++ Boolean value!");
702 return new (Context)
703 CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc);
704 }
705
706 /// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
707 ExprResult
ActOnCXXNullPtrLiteral(SourceLocation Loc)708 Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
709 return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
710 }
711
712 /// ActOnCXXThrow - Parse throw expressions.
713 ExprResult
ActOnCXXThrow(Scope * S,SourceLocation OpLoc,Expr * Ex)714 Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
715 bool IsThrownVarInScope = false;
716 if (Ex) {
717 // C++0x [class.copymove]p31:
718 // When certain criteria are met, an implementation is allowed to omit the
719 // copy/move construction of a class object [...]
720 //
721 // - in a throw-expression, when the operand is the name of a
722 // non-volatile automatic object (other than a function or catch-
723 // clause parameter) whose scope does not extend beyond the end of the
724 // innermost enclosing try-block (if there is one), the copy/move
725 // operation from the operand to the exception object (15.1) can be
726 // omitted by constructing the automatic object directly into the
727 // exception object
728 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
729 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
730 if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
731 for( ; S; S = S->getParent()) {
732 if (S->isDeclScope(Var)) {
733 IsThrownVarInScope = true;
734 break;
735 }
736
737 if (S->getFlags() &
738 (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
739 Scope::FunctionPrototypeScope | Scope::ObjCMethodScope |
740 Scope::TryScope))
741 break;
742 }
743 }
744 }
745 }
746
747 return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
748 }
749
BuildCXXThrow(SourceLocation OpLoc,Expr * Ex,bool IsThrownVarInScope)750 ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
751 bool IsThrownVarInScope) {
752 // Don't report an error if 'throw' is used in system headers.
753 if (!getLangOpts().CXXExceptions &&
754 !getSourceManager().isInSystemHeader(OpLoc) &&
755 (!getLangOpts().OpenMPIsDevice ||
756 !getLangOpts().OpenMPHostCXXExceptions ||
757 isInOpenMPTargetExecutionDirective() ||
758 isInOpenMPDeclareTargetContext()))
759 Diag(OpLoc, diag::err_exceptions_disabled) << "throw";
760
761 // Exceptions aren't allowed in CUDA device code.
762 if (getLangOpts().CUDA)
763 CUDADiagIfDeviceCode(OpLoc, diag::err_cuda_device_exceptions)
764 << "throw" << CurrentCUDATarget();
765
766 if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
767 Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw";
768
769 if (Ex && !Ex->isTypeDependent()) {
770 QualType ExceptionObjectTy = Context.getExceptionObjectType(Ex->getType());
771 if (CheckCXXThrowOperand(OpLoc, ExceptionObjectTy, Ex))
772 return ExprError();
773
774 // Initialize the exception result. This implicitly weeds out
775 // abstract types or types with inaccessible copy constructors.
776
777 // C++0x [class.copymove]p31:
778 // When certain criteria are met, an implementation is allowed to omit the
779 // copy/move construction of a class object [...]
780 //
781 // - in a throw-expression, when the operand is the name of a
782 // non-volatile automatic object (other than a function or
783 // catch-clause
784 // parameter) whose scope does not extend beyond the end of the
785 // innermost enclosing try-block (if there is one), the copy/move
786 // operation from the operand to the exception object (15.1) can be
787 // omitted by constructing the automatic object directly into the
788 // exception object
789 const VarDecl *NRVOVariable = nullptr;
790 if (IsThrownVarInScope)
791 NRVOVariable = getCopyElisionCandidate(QualType(), Ex, CES_Strict);
792
793 InitializedEntity Entity = InitializedEntity::InitializeException(
794 OpLoc, ExceptionObjectTy,
795 /*NRVO=*/NRVOVariable != nullptr);
796 ExprResult Res = PerformMoveOrCopyInitialization(
797 Entity, NRVOVariable, QualType(), Ex, IsThrownVarInScope);
798 if (Res.isInvalid())
799 return ExprError();
800 Ex = Res.get();
801 }
802
803 return new (Context)
804 CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope);
805 }
806
807 static void
collectPublicBases(CXXRecordDecl * RD,llvm::DenseMap<CXXRecordDecl *,unsigned> & SubobjectsSeen,llvm::SmallPtrSetImpl<CXXRecordDecl * > & VBases,llvm::SetVector<CXXRecordDecl * > & PublicSubobjectsSeen,bool ParentIsPublic)808 collectPublicBases(CXXRecordDecl *RD,
809 llvm::DenseMap<CXXRecordDecl *, unsigned> &SubobjectsSeen,
810 llvm::SmallPtrSetImpl<CXXRecordDecl *> &VBases,
811 llvm::SetVector<CXXRecordDecl *> &PublicSubobjectsSeen,
812 bool ParentIsPublic) {
813 for (const CXXBaseSpecifier &BS : RD->bases()) {
814 CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
815 bool NewSubobject;
816 // Virtual bases constitute the same subobject. Non-virtual bases are
817 // always distinct subobjects.
818 if (BS.isVirtual())
819 NewSubobject = VBases.insert(BaseDecl).second;
820 else
821 NewSubobject = true;
822
823 if (NewSubobject)
824 ++SubobjectsSeen[BaseDecl];
825
826 // Only add subobjects which have public access throughout the entire chain.
827 bool PublicPath = ParentIsPublic && BS.getAccessSpecifier() == AS_public;
828 if (PublicPath)
829 PublicSubobjectsSeen.insert(BaseDecl);
830
831 // Recurse on to each base subobject.
832 collectPublicBases(BaseDecl, SubobjectsSeen, VBases, PublicSubobjectsSeen,
833 PublicPath);
834 }
835 }
836
getUnambiguousPublicSubobjects(CXXRecordDecl * RD,llvm::SmallVectorImpl<CXXRecordDecl * > & Objects)837 static void getUnambiguousPublicSubobjects(
838 CXXRecordDecl *RD, llvm::SmallVectorImpl<CXXRecordDecl *> &Objects) {
839 llvm::DenseMap<CXXRecordDecl *, unsigned> SubobjectsSeen;
840 llvm::SmallSet<CXXRecordDecl *, 2> VBases;
841 llvm::SetVector<CXXRecordDecl *> PublicSubobjectsSeen;
842 SubobjectsSeen[RD] = 1;
843 PublicSubobjectsSeen.insert(RD);
844 collectPublicBases(RD, SubobjectsSeen, VBases, PublicSubobjectsSeen,
845 /*ParentIsPublic=*/true);
846
847 for (CXXRecordDecl *PublicSubobject : PublicSubobjectsSeen) {
848 // Skip ambiguous objects.
849 if (SubobjectsSeen[PublicSubobject] > 1)
850 continue;
851
852 Objects.push_back(PublicSubobject);
853 }
854 }
855
856 /// CheckCXXThrowOperand - Validate the operand of a throw.
CheckCXXThrowOperand(SourceLocation ThrowLoc,QualType ExceptionObjectTy,Expr * E)857 bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc,
858 QualType ExceptionObjectTy, Expr *E) {
859 // If the type of the exception would be an incomplete type or a pointer
860 // to an incomplete type other than (cv) void the program is ill-formed.
861 QualType Ty = ExceptionObjectTy;
862 bool isPointer = false;
863 if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
864 Ty = Ptr->getPointeeType();
865 isPointer = true;
866 }
867 if (!isPointer || !Ty->isVoidType()) {
868 if (RequireCompleteType(ThrowLoc, Ty,
869 isPointer ? diag::err_throw_incomplete_ptr
870 : diag::err_throw_incomplete,
871 E->getSourceRange()))
872 return true;
873
874 if (RequireNonAbstractType(ThrowLoc, ExceptionObjectTy,
875 diag::err_throw_abstract_type, E))
876 return true;
877 }
878
879 // If the exception has class type, we need additional handling.
880 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
881 if (!RD)
882 return false;
883
884 // If we are throwing a polymorphic class type or pointer thereof,
885 // exception handling will make use of the vtable.
886 MarkVTableUsed(ThrowLoc, RD);
887
888 // If a pointer is thrown, the referenced object will not be destroyed.
889 if (isPointer)
890 return false;
891
892 // If the class has a destructor, we must be able to call it.
893 if (!RD->hasIrrelevantDestructor()) {
894 if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
895 MarkFunctionReferenced(E->getExprLoc(), Destructor);
896 CheckDestructorAccess(E->getExprLoc(), Destructor,
897 PDiag(diag::err_access_dtor_exception) << Ty);
898 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
899 return true;
900 }
901 }
902
903 // The MSVC ABI creates a list of all types which can catch the exception
904 // object. This list also references the appropriate copy constructor to call
905 // if the object is caught by value and has a non-trivial copy constructor.
906 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
907 // We are only interested in the public, unambiguous bases contained within
908 // the exception object. Bases which are ambiguous or otherwise
909 // inaccessible are not catchable types.
910 llvm::SmallVector<CXXRecordDecl *, 2> UnambiguousPublicSubobjects;
911 getUnambiguousPublicSubobjects(RD, UnambiguousPublicSubobjects);
912
913 for (CXXRecordDecl *Subobject : UnambiguousPublicSubobjects) {
914 // Attempt to lookup the copy constructor. Various pieces of machinery
915 // will spring into action, like template instantiation, which means this
916 // cannot be a simple walk of the class's decls. Instead, we must perform
917 // lookup and overload resolution.
918 CXXConstructorDecl *CD = LookupCopyingConstructor(Subobject, 0);
919 if (!CD)
920 continue;
921
922 // Mark the constructor referenced as it is used by this throw expression.
923 MarkFunctionReferenced(E->getExprLoc(), CD);
924
925 // Skip this copy constructor if it is trivial, we don't need to record it
926 // in the catchable type data.
927 if (CD->isTrivial())
928 continue;
929
930 // The copy constructor is non-trivial, create a mapping from this class
931 // type to this constructor.
932 // N.B. The selection of copy constructor is not sensitive to this
933 // particular throw-site. Lookup will be performed at the catch-site to
934 // ensure that the copy constructor is, in fact, accessible (via
935 // friendship or any other means).
936 Context.addCopyConstructorForExceptionObject(Subobject, CD);
937
938 // We don't keep the instantiated default argument expressions around so
939 // we must rebuild them here.
940 for (unsigned I = 1, E = CD->getNumParams(); I != E; ++I) {
941 if (CheckCXXDefaultArgExpr(ThrowLoc, CD, CD->getParamDecl(I)))
942 return true;
943 }
944 }
945 }
946
947 return false;
948 }
949
adjustCVQualifiersForCXXThisWithinLambda(ArrayRef<FunctionScopeInfo * > FunctionScopes,QualType ThisTy,DeclContext * CurSemaContext,ASTContext & ASTCtx)950 static QualType adjustCVQualifiersForCXXThisWithinLambda(
951 ArrayRef<FunctionScopeInfo *> FunctionScopes, QualType ThisTy,
952 DeclContext *CurSemaContext, ASTContext &ASTCtx) {
953
954 QualType ClassType = ThisTy->getPointeeType();
955 LambdaScopeInfo *CurLSI = nullptr;
956 DeclContext *CurDC = CurSemaContext;
957
958 // Iterate through the stack of lambdas starting from the innermost lambda to
959 // the outermost lambda, checking if '*this' is ever captured by copy - since
960 // that could change the cv-qualifiers of the '*this' object.
961 // The object referred to by '*this' starts out with the cv-qualifiers of its
962 // member function. We then start with the innermost lambda and iterate
963 // outward checking to see if any lambda performs a by-copy capture of '*this'
964 // - and if so, any nested lambda must respect the 'constness' of that
965 // capturing lamdbda's call operator.
966 //
967
968 // Since the FunctionScopeInfo stack is representative of the lexical
969 // nesting of the lambda expressions during initial parsing (and is the best
970 // place for querying information about captures about lambdas that are
971 // partially processed) and perhaps during instantiation of function templates
972 // that contain lambda expressions that need to be transformed BUT not
973 // necessarily during instantiation of a nested generic lambda's function call
974 // operator (which might even be instantiated at the end of the TU) - at which
975 // time the DeclContext tree is mature enough to query capture information
976 // reliably - we use a two pronged approach to walk through all the lexically
977 // enclosing lambda expressions:
978 //
979 // 1) Climb down the FunctionScopeInfo stack as long as each item represents
980 // a Lambda (i.e. LambdaScopeInfo) AND each LSI's 'closure-type' is lexically
981 // enclosed by the call-operator of the LSI below it on the stack (while
982 // tracking the enclosing DC for step 2 if needed). Note the topmost LSI on
983 // the stack represents the innermost lambda.
984 //
985 // 2) If we run out of enclosing LSI's, check if the enclosing DeclContext
986 // represents a lambda's call operator. If it does, we must be instantiating
987 // a generic lambda's call operator (represented by the Current LSI, and
988 // should be the only scenario where an inconsistency between the LSI and the
989 // DeclContext should occur), so climb out the DeclContexts if they
990 // represent lambdas, while querying the corresponding closure types
991 // regarding capture information.
992
993 // 1) Climb down the function scope info stack.
994 for (int I = FunctionScopes.size();
995 I-- && isa<LambdaScopeInfo>(FunctionScopes[I]) &&
996 (!CurLSI || !CurLSI->Lambda || CurLSI->Lambda->getDeclContext() ==
997 cast<LambdaScopeInfo>(FunctionScopes[I])->CallOperator);
998 CurDC = getLambdaAwareParentOfDeclContext(CurDC)) {
999 CurLSI = cast<LambdaScopeInfo>(FunctionScopes[I]);
1000
1001 if (!CurLSI->isCXXThisCaptured())
1002 continue;
1003
1004 auto C = CurLSI->getCXXThisCapture();
1005
1006 if (C.isCopyCapture()) {
1007 ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1008 if (CurLSI->CallOperator->isConst())
1009 ClassType.addConst();
1010 return ASTCtx.getPointerType(ClassType);
1011 }
1012 }
1013
1014 // 2) We've run out of ScopeInfos but check if CurDC is a lambda (which can
1015 // happen during instantiation of its nested generic lambda call operator)
1016 if (isLambdaCallOperator(CurDC)) {
1017 assert(CurLSI && "While computing 'this' capture-type for a generic "
1018 "lambda, we must have a corresponding LambdaScopeInfo");
1019 assert(isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) &&
1020 "While computing 'this' capture-type for a generic lambda, when we "
1021 "run out of enclosing LSI's, yet the enclosing DC is a "
1022 "lambda-call-operator we must be (i.e. Current LSI) in a generic "
1023 "lambda call oeprator");
1024 assert(CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator));
1025
1026 auto IsThisCaptured =
1027 [](CXXRecordDecl *Closure, bool &IsByCopy, bool &IsConst) {
1028 IsConst = false;
1029 IsByCopy = false;
1030 for (auto &&C : Closure->captures()) {
1031 if (C.capturesThis()) {
1032 if (C.getCaptureKind() == LCK_StarThis)
1033 IsByCopy = true;
1034 if (Closure->getLambdaCallOperator()->isConst())
1035 IsConst = true;
1036 return true;
1037 }
1038 }
1039 return false;
1040 };
1041
1042 bool IsByCopyCapture = false;
1043 bool IsConstCapture = false;
1044 CXXRecordDecl *Closure = cast<CXXRecordDecl>(CurDC->getParent());
1045 while (Closure &&
1046 IsThisCaptured(Closure, IsByCopyCapture, IsConstCapture)) {
1047 if (IsByCopyCapture) {
1048 ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1049 if (IsConstCapture)
1050 ClassType.addConst();
1051 return ASTCtx.getPointerType(ClassType);
1052 }
1053 Closure = isLambdaCallOperator(Closure->getParent())
1054 ? cast<CXXRecordDecl>(Closure->getParent()->getParent())
1055 : nullptr;
1056 }
1057 }
1058 return ASTCtx.getPointerType(ClassType);
1059 }
1060
getCurrentThisType()1061 QualType Sema::getCurrentThisType() {
1062 DeclContext *DC = getFunctionLevelDeclContext();
1063 QualType ThisTy = CXXThisTypeOverride;
1064
1065 if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
1066 if (method && method->isInstance())
1067 ThisTy = method->getThisType();
1068 }
1069
1070 if (ThisTy.isNull() && isLambdaCallOperator(CurContext) &&
1071 inTemplateInstantiation()) {
1072
1073 assert(isa<CXXRecordDecl>(DC) &&
1074 "Trying to get 'this' type from static method?");
1075
1076 // This is a lambda call operator that is being instantiated as a default
1077 // initializer. DC must point to the enclosing class type, so we can recover
1078 // the 'this' type from it.
1079
1080 QualType ClassTy = Context.getTypeDeclType(cast<CXXRecordDecl>(DC));
1081 // There are no cv-qualifiers for 'this' within default initializers,
1082 // per [expr.prim.general]p4.
1083 ThisTy = Context.getPointerType(ClassTy);
1084 }
1085
1086 // If we are within a lambda's call operator, the cv-qualifiers of 'this'
1087 // might need to be adjusted if the lambda or any of its enclosing lambda's
1088 // captures '*this' by copy.
1089 if (!ThisTy.isNull() && isLambdaCallOperator(CurContext))
1090 return adjustCVQualifiersForCXXThisWithinLambda(FunctionScopes, ThisTy,
1091 CurContext, Context);
1092 return ThisTy;
1093 }
1094
CXXThisScopeRAII(Sema & S,Decl * ContextDecl,Qualifiers CXXThisTypeQuals,bool Enabled)1095 Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
1096 Decl *ContextDecl,
1097 Qualifiers CXXThisTypeQuals,
1098 bool Enabled)
1099 : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
1100 {
1101 if (!Enabled || !ContextDecl)
1102 return;
1103
1104 CXXRecordDecl *Record = nullptr;
1105 if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
1106 Record = Template->getTemplatedDecl();
1107 else
1108 Record = cast<CXXRecordDecl>(ContextDecl);
1109
1110 QualType T = S.Context.getRecordType(Record);
1111 T = S.getASTContext().getQualifiedType(T, CXXThisTypeQuals);
1112
1113 S.CXXThisTypeOverride = S.Context.getPointerType(T);
1114
1115 this->Enabled = true;
1116 }
1117
1118
~CXXThisScopeRAII()1119 Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
1120 if (Enabled) {
1121 S.CXXThisTypeOverride = OldCXXThisTypeOverride;
1122 }
1123 }
1124
captureThis(Sema & S,ASTContext & Context,RecordDecl * RD,QualType ThisTy,SourceLocation Loc,const bool ByCopy)1125 static Expr *captureThis(Sema &S, ASTContext &Context, RecordDecl *RD,
1126 QualType ThisTy, SourceLocation Loc,
1127 const bool ByCopy) {
1128
1129 QualType AdjustedThisTy = ThisTy;
1130 // The type of the corresponding data member (not a 'this' pointer if 'by
1131 // copy').
1132 QualType CaptureThisFieldTy = ThisTy;
1133 if (ByCopy) {
1134 // If we are capturing the object referred to by '*this' by copy, ignore any
1135 // cv qualifiers inherited from the type of the member function for the type
1136 // of the closure-type's corresponding data member and any use of 'this'.
1137 CaptureThisFieldTy = ThisTy->getPointeeType();
1138 CaptureThisFieldTy.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1139 AdjustedThisTy = Context.getPointerType(CaptureThisFieldTy);
1140 }
1141
1142 FieldDecl *Field = FieldDecl::Create(
1143 Context, RD, Loc, Loc, nullptr, CaptureThisFieldTy,
1144 Context.getTrivialTypeSourceInfo(CaptureThisFieldTy, Loc), nullptr, false,
1145 ICIS_NoInit);
1146
1147 Field->setImplicit(true);
1148 Field->setAccess(AS_private);
1149 RD->addDecl(Field);
1150 Expr *This =
1151 new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit*/ true);
1152 if (ByCopy) {
1153 Expr *StarThis = S.CreateBuiltinUnaryOp(Loc,
1154 UO_Deref,
1155 This).get();
1156 InitializedEntity Entity = InitializedEntity::InitializeLambdaCapture(
1157 nullptr, CaptureThisFieldTy, Loc);
1158 InitializationKind InitKind = InitializationKind::CreateDirect(Loc, Loc, Loc);
1159 InitializationSequence Init(S, Entity, InitKind, StarThis);
1160 ExprResult ER = Init.Perform(S, Entity, InitKind, StarThis);
1161 if (ER.isInvalid()) return nullptr;
1162 return ER.get();
1163 }
1164 return This;
1165 }
1166
CheckCXXThisCapture(SourceLocation Loc,const bool Explicit,bool BuildAndDiagnose,const unsigned * const FunctionScopeIndexToStopAt,const bool ByCopy)1167 bool Sema::CheckCXXThisCapture(SourceLocation Loc, const bool Explicit,
1168 bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt,
1169 const bool ByCopy) {
1170 // We don't need to capture this in an unevaluated context.
1171 if (isUnevaluatedContext() && !Explicit)
1172 return true;
1173
1174 assert((!ByCopy || Explicit) && "cannot implicitly capture *this by value");
1175
1176 const int MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
1177 ? *FunctionScopeIndexToStopAt
1178 : FunctionScopes.size() - 1;
1179
1180 // Check that we can capture the *enclosing object* (referred to by '*this')
1181 // by the capturing-entity/closure (lambda/block/etc) at
1182 // MaxFunctionScopesIndex-deep on the FunctionScopes stack.
1183
1184 // Note: The *enclosing object* can only be captured by-value by a
1185 // closure that is a lambda, using the explicit notation:
1186 // [*this] { ... }.
1187 // Every other capture of the *enclosing object* results in its by-reference
1188 // capture.
1189
1190 // For a closure 'L' (at MaxFunctionScopesIndex in the FunctionScopes
1191 // stack), we can capture the *enclosing object* only if:
1192 // - 'L' has an explicit byref or byval capture of the *enclosing object*
1193 // - or, 'L' has an implicit capture.
1194 // AND
1195 // -- there is no enclosing closure
1196 // -- or, there is some enclosing closure 'E' that has already captured the
1197 // *enclosing object*, and every intervening closure (if any) between 'E'
1198 // and 'L' can implicitly capture the *enclosing object*.
1199 // -- or, every enclosing closure can implicitly capture the
1200 // *enclosing object*
1201
1202
1203 unsigned NumCapturingClosures = 0;
1204 for (int idx = MaxFunctionScopesIndex; idx >= 0; idx--) {
1205 if (CapturingScopeInfo *CSI =
1206 dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
1207 if (CSI->CXXThisCaptureIndex != 0) {
1208 // 'this' is already being captured; there isn't anything more to do.
1209 CSI->Captures[CSI->CXXThisCaptureIndex - 1].markUsed(BuildAndDiagnose);
1210 break;
1211 }
1212 LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI);
1213 if (LSI && isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) {
1214 // This context can't implicitly capture 'this'; fail out.
1215 if (BuildAndDiagnose)
1216 Diag(Loc, diag::err_this_capture)
1217 << (Explicit && idx == MaxFunctionScopesIndex);
1218 return true;
1219 }
1220 if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
1221 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
1222 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
1223 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion ||
1224 (Explicit && idx == MaxFunctionScopesIndex)) {
1225 // Regarding (Explicit && idx == MaxFunctionScopesIndex): only the first
1226 // iteration through can be an explicit capture, all enclosing closures,
1227 // if any, must perform implicit captures.
1228
1229 // This closure can capture 'this'; continue looking upwards.
1230 NumCapturingClosures++;
1231 continue;
1232 }
1233 // This context can't implicitly capture 'this'; fail out.
1234 if (BuildAndDiagnose)
1235 Diag(Loc, diag::err_this_capture)
1236 << (Explicit && idx == MaxFunctionScopesIndex);
1237 return true;
1238 }
1239 break;
1240 }
1241 if (!BuildAndDiagnose) return false;
1242
1243 // If we got here, then the closure at MaxFunctionScopesIndex on the
1244 // FunctionScopes stack, can capture the *enclosing object*, so capture it
1245 // (including implicit by-reference captures in any enclosing closures).
1246
1247 // In the loop below, respect the ByCopy flag only for the closure requesting
1248 // the capture (i.e. first iteration through the loop below). Ignore it for
1249 // all enclosing closure's up to NumCapturingClosures (since they must be
1250 // implicitly capturing the *enclosing object* by reference (see loop
1251 // above)).
1252 assert((!ByCopy ||
1253 dyn_cast<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) &&
1254 "Only a lambda can capture the enclosing object (referred to by "
1255 "*this) by copy");
1256 // FIXME: We need to delay this marking in PotentiallyPotentiallyEvaluated
1257 // contexts.
1258 QualType ThisTy = getCurrentThisType();
1259 for (int idx = MaxFunctionScopesIndex; NumCapturingClosures;
1260 --idx, --NumCapturingClosures) {
1261 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
1262 Expr *ThisExpr = nullptr;
1263
1264 if (LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI)) {
1265 // For lambda expressions, build a field and an initializing expression,
1266 // and capture the *enclosing object* by copy only if this is the first
1267 // iteration.
1268 ThisExpr = captureThis(*this, Context, LSI->Lambda, ThisTy, Loc,
1269 ByCopy && idx == MaxFunctionScopesIndex);
1270
1271 } else if (CapturedRegionScopeInfo *RSI
1272 = dyn_cast<CapturedRegionScopeInfo>(FunctionScopes[idx]))
1273 ThisExpr =
1274 captureThis(*this, Context, RSI->TheRecordDecl, ThisTy, Loc,
1275 false/*ByCopy*/);
1276
1277 bool isNested = NumCapturingClosures > 1;
1278 CSI->addThisCapture(isNested, Loc, ThisExpr, ByCopy);
1279 }
1280 return false;
1281 }
1282
ActOnCXXThis(SourceLocation Loc)1283 ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
1284 /// C++ 9.3.2: In the body of a non-static member function, the keyword this
1285 /// is a non-lvalue expression whose value is the address of the object for
1286 /// which the function is called.
1287
1288 QualType ThisTy = getCurrentThisType();
1289 if (ThisTy.isNull()) return Diag(Loc, diag::err_invalid_this_use);
1290
1291 CheckCXXThisCapture(Loc);
1292 return new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/false);
1293 }
1294
isThisOutsideMemberFunctionBody(QualType BaseType)1295 bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) {
1296 // If we're outside the body of a member function, then we'll have a specified
1297 // type for 'this'.
1298 if (CXXThisTypeOverride.isNull())
1299 return false;
1300
1301 // Determine whether we're looking into a class that's currently being
1302 // defined.
1303 CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
1304 return Class && Class->isBeingDefined();
1305 }
1306
1307 /// Parse construction of a specified type.
1308 /// Can be interpreted either as function-style casting ("int(x)")
1309 /// or class type construction ("ClassType(x,y,z)")
1310 /// or creation of a value-initialized type ("int()").
1311 ExprResult
ActOnCXXTypeConstructExpr(ParsedType TypeRep,SourceLocation LParenOrBraceLoc,MultiExprArg exprs,SourceLocation RParenOrBraceLoc,bool ListInitialization)1312 Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
1313 SourceLocation LParenOrBraceLoc,
1314 MultiExprArg exprs,
1315 SourceLocation RParenOrBraceLoc,
1316 bool ListInitialization) {
1317 if (!TypeRep)
1318 return ExprError();
1319
1320 TypeSourceInfo *TInfo;
1321 QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
1322 if (!TInfo)
1323 TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
1324
1325 auto Result = BuildCXXTypeConstructExpr(TInfo, LParenOrBraceLoc, exprs,
1326 RParenOrBraceLoc, ListInitialization);
1327 // Avoid creating a non-type-dependent expression that contains typos.
1328 // Non-type-dependent expressions are liable to be discarded without
1329 // checking for embedded typos.
1330 if (!Result.isInvalid() && Result.get()->isInstantiationDependent() &&
1331 !Result.get()->isTypeDependent())
1332 Result = CorrectDelayedTyposInExpr(Result.get());
1333 return Result;
1334 }
1335
1336 ExprResult
BuildCXXTypeConstructExpr(TypeSourceInfo * TInfo,SourceLocation LParenOrBraceLoc,MultiExprArg Exprs,SourceLocation RParenOrBraceLoc,bool ListInitialization)1337 Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
1338 SourceLocation LParenOrBraceLoc,
1339 MultiExprArg Exprs,
1340 SourceLocation RParenOrBraceLoc,
1341 bool ListInitialization) {
1342 QualType Ty = TInfo->getType();
1343 SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
1344
1345 if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs)) {
1346 // FIXME: CXXUnresolvedConstructExpr does not model list-initialization
1347 // directly. We work around this by dropping the locations of the braces.
1348 SourceRange Locs = ListInitialization
1349 ? SourceRange()
1350 : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc);
1351 return CXXUnresolvedConstructExpr::Create(Context, TInfo, Locs.getBegin(),
1352 Exprs, Locs.getEnd());
1353 }
1354
1355 assert((!ListInitialization ||
1356 (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) &&
1357 "List initialization must have initializer list as expression.");
1358 SourceRange FullRange = SourceRange(TyBeginLoc, RParenOrBraceLoc);
1359
1360 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
1361 InitializationKind Kind =
1362 Exprs.size()
1363 ? ListInitialization
1364 ? InitializationKind::CreateDirectList(
1365 TyBeginLoc, LParenOrBraceLoc, RParenOrBraceLoc)
1366 : InitializationKind::CreateDirect(TyBeginLoc, LParenOrBraceLoc,
1367 RParenOrBraceLoc)
1368 : InitializationKind::CreateValue(TyBeginLoc, LParenOrBraceLoc,
1369 RParenOrBraceLoc);
1370
1371 // C++1z [expr.type.conv]p1:
1372 // If the type is a placeholder for a deduced class type, [...perform class
1373 // template argument deduction...]
1374 DeducedType *Deduced = Ty->getContainedDeducedType();
1375 if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) {
1376 Ty = DeduceTemplateSpecializationFromInitializer(TInfo, Entity,
1377 Kind, Exprs);
1378 if (Ty.isNull())
1379 return ExprError();
1380 Entity = InitializedEntity::InitializeTemporary(TInfo, Ty);
1381 }
1382
1383 // C++ [expr.type.conv]p1:
1384 // If the expression list is a parenthesized single expression, the type
1385 // conversion expression is equivalent (in definedness, and if defined in
1386 // meaning) to the corresponding cast expression.
1387 if (Exprs.size() == 1 && !ListInitialization &&
1388 !isa<InitListExpr>(Exprs[0])) {
1389 Expr *Arg = Exprs[0];
1390 return BuildCXXFunctionalCastExpr(TInfo, Ty, LParenOrBraceLoc, Arg,
1391 RParenOrBraceLoc);
1392 }
1393
1394 // For an expression of the form T(), T shall not be an array type.
1395 QualType ElemTy = Ty;
1396 if (Ty->isArrayType()) {
1397 if (!ListInitialization)
1398 return ExprError(Diag(TyBeginLoc, diag::err_value_init_for_array_type)
1399 << FullRange);
1400 ElemTy = Context.getBaseElementType(Ty);
1401 }
1402
1403 // There doesn't seem to be an explicit rule against this but sanity demands
1404 // we only construct objects with object types.
1405 if (Ty->isFunctionType())
1406 return ExprError(Diag(TyBeginLoc, diag::err_init_for_function_type)
1407 << Ty << FullRange);
1408
1409 // C++17 [expr.type.conv]p2:
1410 // If the type is cv void and the initializer is (), the expression is a
1411 // prvalue of the specified type that performs no initialization.
1412 if (!Ty->isVoidType() &&
1413 RequireCompleteType(TyBeginLoc, ElemTy,
1414 diag::err_invalid_incomplete_type_use, FullRange))
1415 return ExprError();
1416
1417 // Otherwise, the expression is a prvalue of the specified type whose
1418 // result object is direct-initialized (11.6) with the initializer.
1419 InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
1420 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs);
1421
1422 if (Result.isInvalid())
1423 return Result;
1424
1425 Expr *Inner = Result.get();
1426 if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner))
1427 Inner = BTE->getSubExpr();
1428 if (!isa<CXXTemporaryObjectExpr>(Inner) &&
1429 !isa<CXXScalarValueInitExpr>(Inner)) {
1430 // If we created a CXXTemporaryObjectExpr, that node also represents the
1431 // functional cast. Otherwise, create an explicit cast to represent
1432 // the syntactic form of a functional-style cast that was used here.
1433 //
1434 // FIXME: Creating a CXXFunctionalCastExpr around a CXXConstructExpr
1435 // would give a more consistent AST representation than using a
1436 // CXXTemporaryObjectExpr. It's also weird that the functional cast
1437 // is sometimes handled by initialization and sometimes not.
1438 QualType ResultType = Result.get()->getType();
1439 SourceRange Locs = ListInitialization
1440 ? SourceRange()
1441 : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc);
1442 Result = CXXFunctionalCastExpr::Create(
1443 Context, ResultType, Expr::getValueKindForType(Ty), TInfo, CK_NoOp,
1444 Result.get(), /*Path=*/nullptr, Locs.getBegin(), Locs.getEnd());
1445 }
1446
1447 return Result;
1448 }
1449
isUsualDeallocationFunction(const CXXMethodDecl * Method)1450 bool Sema::isUsualDeallocationFunction(const CXXMethodDecl *Method) {
1451 // [CUDA] Ignore this function, if we can't call it.
1452 const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext);
1453 if (getLangOpts().CUDA &&
1454 IdentifyCUDAPreference(Caller, Method) <= CFP_WrongSide)
1455 return false;
1456
1457 SmallVector<const FunctionDecl*, 4> PreventedBy;
1458 bool Result = Method->isUsualDeallocationFunction(PreventedBy);
1459
1460 if (Result || !getLangOpts().CUDA || PreventedBy.empty())
1461 return Result;
1462
1463 // In case of CUDA, return true if none of the 1-argument deallocator
1464 // functions are actually callable.
1465 return llvm::none_of(PreventedBy, [&](const FunctionDecl *FD) {
1466 assert(FD->getNumParams() == 1 &&
1467 "Only single-operand functions should be in PreventedBy");
1468 return IdentifyCUDAPreference(Caller, FD) >= CFP_HostDevice;
1469 });
1470 }
1471
1472 /// Determine whether the given function is a non-placement
1473 /// deallocation function.
isNonPlacementDeallocationFunction(Sema & S,FunctionDecl * FD)1474 static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) {
1475 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
1476 return S.isUsualDeallocationFunction(Method);
1477
1478 if (FD->getOverloadedOperator() != OO_Delete &&
1479 FD->getOverloadedOperator() != OO_Array_Delete)
1480 return false;
1481
1482 unsigned UsualParams = 1;
1483
1484 if (S.getLangOpts().SizedDeallocation && UsualParams < FD->getNumParams() &&
1485 S.Context.hasSameUnqualifiedType(
1486 FD->getParamDecl(UsualParams)->getType(),
1487 S.Context.getSizeType()))
1488 ++UsualParams;
1489
1490 if (S.getLangOpts().AlignedAllocation && UsualParams < FD->getNumParams() &&
1491 S.Context.hasSameUnqualifiedType(
1492 FD->getParamDecl(UsualParams)->getType(),
1493 S.Context.getTypeDeclType(S.getStdAlignValT())))
1494 ++UsualParams;
1495
1496 return UsualParams == FD->getNumParams();
1497 }
1498
1499 namespace {
1500 struct UsualDeallocFnInfo {
UsualDeallocFnInfo__anonb2279db60311::UsualDeallocFnInfo1501 UsualDeallocFnInfo() : Found(), FD(nullptr) {}
UsualDeallocFnInfo__anonb2279db60311::UsualDeallocFnInfo1502 UsualDeallocFnInfo(Sema &S, DeclAccessPair Found)
1503 : Found(Found), FD(dyn_cast<FunctionDecl>(Found->getUnderlyingDecl())),
1504 Destroying(false), HasSizeT(false), HasAlignValT(false),
1505 CUDAPref(Sema::CFP_Native) {
1506 // A function template declaration is never a usual deallocation function.
1507 if (!FD)
1508 return;
1509 unsigned NumBaseParams = 1;
1510 if (FD->isDestroyingOperatorDelete()) {
1511 Destroying = true;
1512 ++NumBaseParams;
1513 }
1514
1515 if (NumBaseParams < FD->getNumParams() &&
1516 S.Context.hasSameUnqualifiedType(
1517 FD->getParamDecl(NumBaseParams)->getType(),
1518 S.Context.getSizeType())) {
1519 ++NumBaseParams;
1520 HasSizeT = true;
1521 }
1522
1523 if (NumBaseParams < FD->getNumParams() &&
1524 FD->getParamDecl(NumBaseParams)->getType()->isAlignValT()) {
1525 ++NumBaseParams;
1526 HasAlignValT = true;
1527 }
1528
1529 // In CUDA, determine how much we'd like / dislike to call this.
1530 if (S.getLangOpts().CUDA)
1531 if (auto *Caller = dyn_cast<FunctionDecl>(S.CurContext))
1532 CUDAPref = S.IdentifyCUDAPreference(Caller, FD);
1533 }
1534
operator bool__anonb2279db60311::UsualDeallocFnInfo1535 explicit operator bool() const { return FD; }
1536
isBetterThan__anonb2279db60311::UsualDeallocFnInfo1537 bool isBetterThan(const UsualDeallocFnInfo &Other, bool WantSize,
1538 bool WantAlign) const {
1539 // C++ P0722:
1540 // A destroying operator delete is preferred over a non-destroying
1541 // operator delete.
1542 if (Destroying != Other.Destroying)
1543 return Destroying;
1544
1545 // C++17 [expr.delete]p10:
1546 // If the type has new-extended alignment, a function with a parameter
1547 // of type std::align_val_t is preferred; otherwise a function without
1548 // such a parameter is preferred
1549 if (HasAlignValT != Other.HasAlignValT)
1550 return HasAlignValT == WantAlign;
1551
1552 if (HasSizeT != Other.HasSizeT)
1553 return HasSizeT == WantSize;
1554
1555 // Use CUDA call preference as a tiebreaker.
1556 return CUDAPref > Other.CUDAPref;
1557 }
1558
1559 DeclAccessPair Found;
1560 FunctionDecl *FD;
1561 bool Destroying, HasSizeT, HasAlignValT;
1562 Sema::CUDAFunctionPreference CUDAPref;
1563 };
1564 }
1565
1566 /// Determine whether a type has new-extended alignment. This may be called when
1567 /// the type is incomplete (for a delete-expression with an incomplete pointee
1568 /// type), in which case it will conservatively return false if the alignment is
1569 /// not known.
hasNewExtendedAlignment(Sema & S,QualType AllocType)1570 static bool hasNewExtendedAlignment(Sema &S, QualType AllocType) {
1571 return S.getLangOpts().AlignedAllocation &&
1572 S.getASTContext().getTypeAlignIfKnown(AllocType) >
1573 S.getASTContext().getTargetInfo().getNewAlign();
1574 }
1575
1576 /// Select the correct "usual" deallocation function to use from a selection of
1577 /// deallocation functions (either global or class-scope).
resolveDeallocationOverload(Sema & S,LookupResult & R,bool WantSize,bool WantAlign,llvm::SmallVectorImpl<UsualDeallocFnInfo> * BestFns=nullptr)1578 static UsualDeallocFnInfo resolveDeallocationOverload(
1579 Sema &S, LookupResult &R, bool WantSize, bool WantAlign,
1580 llvm::SmallVectorImpl<UsualDeallocFnInfo> *BestFns = nullptr) {
1581 UsualDeallocFnInfo Best;
1582
1583 for (auto I = R.begin(), E = R.end(); I != E; ++I) {
1584 UsualDeallocFnInfo Info(S, I.getPair());
1585 if (!Info || !isNonPlacementDeallocationFunction(S, Info.FD) ||
1586 Info.CUDAPref == Sema::CFP_Never)
1587 continue;
1588
1589 if (!Best) {
1590 Best = Info;
1591 if (BestFns)
1592 BestFns->push_back(Info);
1593 continue;
1594 }
1595
1596 if (Best.isBetterThan(Info, WantSize, WantAlign))
1597 continue;
1598
1599 // If more than one preferred function is found, all non-preferred
1600 // functions are eliminated from further consideration.
1601 if (BestFns && Info.isBetterThan(Best, WantSize, WantAlign))
1602 BestFns->clear();
1603
1604 Best = Info;
1605 if (BestFns)
1606 BestFns->push_back(Info);
1607 }
1608
1609 return Best;
1610 }
1611
1612 /// Determine whether a given type is a class for which 'delete[]' would call
1613 /// a member 'operator delete[]' with a 'size_t' parameter. This implies that
1614 /// we need to store the array size (even if the type is
1615 /// trivially-destructible).
doesUsualArrayDeleteWantSize(Sema & S,SourceLocation loc,QualType allocType)1616 static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
1617 QualType allocType) {
1618 const RecordType *record =
1619 allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
1620 if (!record) return false;
1621
1622 // Try to find an operator delete[] in class scope.
1623
1624 DeclarationName deleteName =
1625 S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
1626 LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
1627 S.LookupQualifiedName(ops, record->getDecl());
1628
1629 // We're just doing this for information.
1630 ops.suppressDiagnostics();
1631
1632 // Very likely: there's no operator delete[].
1633 if (ops.empty()) return false;
1634
1635 // If it's ambiguous, it should be illegal to call operator delete[]
1636 // on this thing, so it doesn't matter if we allocate extra space or not.
1637 if (ops.isAmbiguous()) return false;
1638
1639 // C++17 [expr.delete]p10:
1640 // If the deallocation functions have class scope, the one without a
1641 // parameter of type std::size_t is selected.
1642 auto Best = resolveDeallocationOverload(
1643 S, ops, /*WantSize*/false,
1644 /*WantAlign*/hasNewExtendedAlignment(S, allocType));
1645 return Best && Best.HasSizeT;
1646 }
1647
1648 /// Parsed a C++ 'new' expression (C++ 5.3.4).
1649 ///
1650 /// E.g.:
1651 /// @code new (memory) int[size][4] @endcode
1652 /// or
1653 /// @code ::new Foo(23, "hello") @endcode
1654 ///
1655 /// \param StartLoc The first location of the expression.
1656 /// \param UseGlobal True if 'new' was prefixed with '::'.
1657 /// \param PlacementLParen Opening paren of the placement arguments.
1658 /// \param PlacementArgs Placement new arguments.
1659 /// \param PlacementRParen Closing paren of the placement arguments.
1660 /// \param TypeIdParens If the type is in parens, the source range.
1661 /// \param D The type to be allocated, as well as array dimensions.
1662 /// \param Initializer The initializing expression or initializer-list, or null
1663 /// if there is none.
1664 ExprResult
ActOnCXXNew(SourceLocation StartLoc,bool UseGlobal,SourceLocation PlacementLParen,MultiExprArg PlacementArgs,SourceLocation PlacementRParen,SourceRange TypeIdParens,Declarator & D,Expr * Initializer)1665 Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
1666 SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
1667 SourceLocation PlacementRParen, SourceRange TypeIdParens,
1668 Declarator &D, Expr *Initializer) {
1669 Expr *ArraySize = nullptr;
1670 // If the specified type is an array, unwrap it and save the expression.
1671 if (D.getNumTypeObjects() > 0 &&
1672 D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
1673 DeclaratorChunk &Chunk = D.getTypeObject(0);
1674 if (D.getDeclSpec().hasAutoTypeSpec())
1675 return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
1676 << D.getSourceRange());
1677 if (Chunk.Arr.hasStatic)
1678 return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
1679 << D.getSourceRange());
1680 if (!Chunk.Arr.NumElts)
1681 return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
1682 << D.getSourceRange());
1683
1684 ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
1685 D.DropFirstTypeObject();
1686 }
1687
1688 // Every dimension shall be of constant size.
1689 if (ArraySize) {
1690 for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
1691 if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
1692 break;
1693
1694 DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
1695 if (Expr *NumElts = (Expr *)Array.NumElts) {
1696 if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
1697 if (getLangOpts().CPlusPlus14) {
1698 // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator
1699 // shall be a converted constant expression (5.19) of type std::size_t
1700 // and shall evaluate to a strictly positive value.
1701 unsigned IntWidth = Context.getTargetInfo().getIntWidth();
1702 assert(IntWidth && "Builtin type of size 0?");
1703 llvm::APSInt Value(IntWidth);
1704 Array.NumElts
1705 = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value,
1706 CCEK_NewExpr)
1707 .get();
1708 } else {
1709 Array.NumElts
1710 = VerifyIntegerConstantExpression(NumElts, nullptr,
1711 diag::err_new_array_nonconst)
1712 .get();
1713 }
1714 if (!Array.NumElts)
1715 return ExprError();
1716 }
1717 }
1718 }
1719 }
1720
1721 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/nullptr);
1722 QualType AllocType = TInfo->getType();
1723 if (D.isInvalidType())
1724 return ExprError();
1725
1726 SourceRange DirectInitRange;
1727 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
1728 DirectInitRange = List->getSourceRange();
1729
1730 return BuildCXXNew(SourceRange(StartLoc, D.getEndLoc()), UseGlobal,
1731 PlacementLParen, PlacementArgs, PlacementRParen,
1732 TypeIdParens, AllocType, TInfo, ArraySize, DirectInitRange,
1733 Initializer);
1734 }
1735
isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,Expr * Init)1736 static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,
1737 Expr *Init) {
1738 if (!Init)
1739 return true;
1740 if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
1741 return PLE->getNumExprs() == 0;
1742 if (isa<ImplicitValueInitExpr>(Init))
1743 return true;
1744 else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
1745 return !CCE->isListInitialization() &&
1746 CCE->getConstructor()->isDefaultConstructor();
1747 else if (Style == CXXNewExpr::ListInit) {
1748 assert(isa<InitListExpr>(Init) &&
1749 "Shouldn't create list CXXConstructExprs for arrays.");
1750 return true;
1751 }
1752 return false;
1753 }
1754
1755 bool
isUnavailableAlignedAllocationFunction(const FunctionDecl & FD) const1756 Sema::isUnavailableAlignedAllocationFunction(const FunctionDecl &FD) const {
1757 if (!getLangOpts().AlignedAllocationUnavailable)
1758 return false;
1759 if (FD.isDefined())
1760 return false;
1761 bool IsAligned = false;
1762 if (FD.isReplaceableGlobalAllocationFunction(&IsAligned) && IsAligned)
1763 return true;
1764 return false;
1765 }
1766
1767 // Emit a diagnostic if an aligned allocation/deallocation function that is not
1768 // implemented in the standard library is selected.
diagnoseUnavailableAlignedAllocation(const FunctionDecl & FD,SourceLocation Loc)1769 void Sema::diagnoseUnavailableAlignedAllocation(const FunctionDecl &FD,
1770 SourceLocation Loc) {
1771 if (isUnavailableAlignedAllocationFunction(FD)) {
1772 const llvm::Triple &T = getASTContext().getTargetInfo().getTriple();
1773 StringRef OSName = AvailabilityAttr::getPlatformNameSourceSpelling(
1774 getASTContext().getTargetInfo().getPlatformName());
1775
1776 OverloadedOperatorKind Kind = FD.getDeclName().getCXXOverloadedOperator();
1777 bool IsDelete = Kind == OO_Delete || Kind == OO_Array_Delete;
1778 Diag(Loc, diag::err_aligned_allocation_unavailable)
1779 << IsDelete << FD.getType().getAsString() << OSName
1780 << alignedAllocMinVersion(T.getOS()).getAsString();
1781 Diag(Loc, diag::note_silence_aligned_allocation_unavailable);
1782 }
1783 }
1784
1785 ExprResult
BuildCXXNew(SourceRange Range,bool UseGlobal,SourceLocation PlacementLParen,MultiExprArg PlacementArgs,SourceLocation PlacementRParen,SourceRange TypeIdParens,QualType AllocType,TypeSourceInfo * AllocTypeInfo,Expr * ArraySize,SourceRange DirectInitRange,Expr * Initializer)1786 Sema::BuildCXXNew(SourceRange Range, bool UseGlobal,
1787 SourceLocation PlacementLParen,
1788 MultiExprArg PlacementArgs,
1789 SourceLocation PlacementRParen,
1790 SourceRange TypeIdParens,
1791 QualType AllocType,
1792 TypeSourceInfo *AllocTypeInfo,
1793 Expr *ArraySize,
1794 SourceRange DirectInitRange,
1795 Expr *Initializer) {
1796 SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
1797 SourceLocation StartLoc = Range.getBegin();
1798
1799 CXXNewExpr::InitializationStyle initStyle;
1800 if (DirectInitRange.isValid()) {
1801 assert(Initializer && "Have parens but no initializer.");
1802 initStyle = CXXNewExpr::CallInit;
1803 } else if (Initializer && isa<InitListExpr>(Initializer))
1804 initStyle = CXXNewExpr::ListInit;
1805 else {
1806 assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||
1807 isa<CXXConstructExpr>(Initializer)) &&
1808 "Initializer expression that cannot have been implicitly created.");
1809 initStyle = CXXNewExpr::NoInit;
1810 }
1811
1812 Expr **Inits = &Initializer;
1813 unsigned NumInits = Initializer ? 1 : 0;
1814 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) {
1815 assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init");
1816 Inits = List->getExprs();
1817 NumInits = List->getNumExprs();
1818 }
1819
1820 // C++11 [expr.new]p15:
1821 // A new-expression that creates an object of type T initializes that
1822 // object as follows:
1823 InitializationKind Kind
1824 // - If the new-initializer is omitted, the object is default-
1825 // initialized (8.5); if no initialization is performed,
1826 // the object has indeterminate value
1827 = initStyle == CXXNewExpr::NoInit
1828 ? InitializationKind::CreateDefault(TypeRange.getBegin())
1829 // - Otherwise, the new-initializer is interpreted according to
1830 // the
1831 // initialization rules of 8.5 for direct-initialization.
1832 : initStyle == CXXNewExpr::ListInit
1833 ? InitializationKind::CreateDirectList(
1834 TypeRange.getBegin(), Initializer->getBeginLoc(),
1835 Initializer->getEndLoc())
1836 : InitializationKind::CreateDirect(TypeRange.getBegin(),
1837 DirectInitRange.getBegin(),
1838 DirectInitRange.getEnd());
1839
1840 // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for.
1841 auto *Deduced = AllocType->getContainedDeducedType();
1842 if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) {
1843 if (ArraySize)
1844 return ExprError(Diag(ArraySize->getExprLoc(),
1845 diag::err_deduced_class_template_compound_type)
1846 << /*array*/ 2 << ArraySize->getSourceRange());
1847
1848 InitializedEntity Entity
1849 = InitializedEntity::InitializeNew(StartLoc, AllocType);
1850 AllocType = DeduceTemplateSpecializationFromInitializer(
1851 AllocTypeInfo, Entity, Kind, MultiExprArg(Inits, NumInits));
1852 if (AllocType.isNull())
1853 return ExprError();
1854 } else if (Deduced) {
1855 bool Braced = (initStyle == CXXNewExpr::ListInit);
1856 if (NumInits == 1) {
1857 if (auto p = dyn_cast_or_null<InitListExpr>(Inits[0])) {
1858 Inits = p->getInits();
1859 NumInits = p->getNumInits();
1860 Braced = true;
1861 }
1862 }
1863
1864 if (initStyle == CXXNewExpr::NoInit || NumInits == 0)
1865 return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
1866 << AllocType << TypeRange);
1867 if (NumInits > 1) {
1868 Expr *FirstBad = Inits[1];
1869 return ExprError(Diag(FirstBad->getBeginLoc(),
1870 diag::err_auto_new_ctor_multiple_expressions)
1871 << AllocType << TypeRange);
1872 }
1873 if (Braced && !getLangOpts().CPlusPlus17)
1874 Diag(Initializer->getBeginLoc(), diag::ext_auto_new_list_init)
1875 << AllocType << TypeRange;
1876 QualType DeducedType;
1877 if (DeduceAutoType(AllocTypeInfo, Inits[0], DeducedType) == DAR_Failed)
1878 return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
1879 << AllocType << Inits[0]->getType()
1880 << TypeRange << Inits[0]->getSourceRange());
1881 if (DeducedType.isNull())
1882 return ExprError();
1883 AllocType = DeducedType;
1884 }
1885
1886 // Per C++0x [expr.new]p5, the type being constructed may be a
1887 // typedef of an array type.
1888 if (!ArraySize) {
1889 if (const ConstantArrayType *Array
1890 = Context.getAsConstantArrayType(AllocType)) {
1891 ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
1892 Context.getSizeType(),
1893 TypeRange.getEnd());
1894 AllocType = Array->getElementType();
1895 }
1896 }
1897
1898 if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
1899 return ExprError();
1900
1901 // In ARC, infer 'retaining' for the allocated
1902 if (getLangOpts().ObjCAutoRefCount &&
1903 AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
1904 AllocType->isObjCLifetimeType()) {
1905 AllocType = Context.getLifetimeQualifiedType(AllocType,
1906 AllocType->getObjCARCImplicitLifetime());
1907 }
1908
1909 QualType ResultType = Context.getPointerType(AllocType);
1910
1911 if (ArraySize && ArraySize->getType()->isNonOverloadPlaceholderType()) {
1912 ExprResult result = CheckPlaceholderExpr(ArraySize);
1913 if (result.isInvalid()) return ExprError();
1914 ArraySize = result.get();
1915 }
1916 // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
1917 // integral or enumeration type with a non-negative value."
1918 // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
1919 // enumeration type, or a class type for which a single non-explicit
1920 // conversion function to integral or unscoped enumeration type exists.
1921 // C++1y [expr.new]p6: The expression [...] is implicitly converted to
1922 // std::size_t.
1923 llvm::Optional<uint64_t> KnownArraySize;
1924 if (ArraySize && !ArraySize->isTypeDependent()) {
1925 ExprResult ConvertedSize;
1926 if (getLangOpts().CPlusPlus14) {
1927 assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?");
1928
1929 ConvertedSize = PerformImplicitConversion(ArraySize, Context.getSizeType(),
1930 AA_Converting);
1931
1932 if (!ConvertedSize.isInvalid() &&
1933 ArraySize->getType()->getAs<RecordType>())
1934 // Diagnose the compatibility of this conversion.
1935 Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion)
1936 << ArraySize->getType() << 0 << "'size_t'";
1937 } else {
1938 class SizeConvertDiagnoser : public ICEConvertDiagnoser {
1939 protected:
1940 Expr *ArraySize;
1941
1942 public:
1943 SizeConvertDiagnoser(Expr *ArraySize)
1944 : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false),
1945 ArraySize(ArraySize) {}
1946
1947 SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
1948 QualType T) override {
1949 return S.Diag(Loc, diag::err_array_size_not_integral)
1950 << S.getLangOpts().CPlusPlus11 << T;
1951 }
1952
1953 SemaDiagnosticBuilder diagnoseIncomplete(
1954 Sema &S, SourceLocation Loc, QualType T) override {
1955 return S.Diag(Loc, diag::err_array_size_incomplete_type)
1956 << T << ArraySize->getSourceRange();
1957 }
1958
1959 SemaDiagnosticBuilder diagnoseExplicitConv(
1960 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
1961 return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy;
1962 }
1963
1964 SemaDiagnosticBuilder noteExplicitConv(
1965 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
1966 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
1967 << ConvTy->isEnumeralType() << ConvTy;
1968 }
1969
1970 SemaDiagnosticBuilder diagnoseAmbiguous(
1971 Sema &S, SourceLocation Loc, QualType T) override {
1972 return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T;
1973 }
1974
1975 SemaDiagnosticBuilder noteAmbiguous(
1976 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
1977 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
1978 << ConvTy->isEnumeralType() << ConvTy;
1979 }
1980
1981 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
1982 QualType T,
1983 QualType ConvTy) override {
1984 return S.Diag(Loc,
1985 S.getLangOpts().CPlusPlus11
1986 ? diag::warn_cxx98_compat_array_size_conversion
1987 : diag::ext_array_size_conversion)
1988 << T << ConvTy->isEnumeralType() << ConvTy;
1989 }
1990 } SizeDiagnoser(ArraySize);
1991
1992 ConvertedSize = PerformContextualImplicitConversion(StartLoc, ArraySize,
1993 SizeDiagnoser);
1994 }
1995 if (ConvertedSize.isInvalid())
1996 return ExprError();
1997
1998 ArraySize = ConvertedSize.get();
1999 QualType SizeType = ArraySize->getType();
2000
2001 if (!SizeType->isIntegralOrUnscopedEnumerationType())
2002 return ExprError();
2003
2004 // C++98 [expr.new]p7:
2005 // The expression in a direct-new-declarator shall have integral type
2006 // with a non-negative value.
2007 //
2008 // Let's see if this is a constant < 0. If so, we reject it out of hand,
2009 // per CWG1464. Otherwise, if it's not a constant, we must have an
2010 // unparenthesized array type.
2011 if (!ArraySize->isValueDependent()) {
2012 llvm::APSInt Value;
2013 // We've already performed any required implicit conversion to integer or
2014 // unscoped enumeration type.
2015 // FIXME: Per CWG1464, we are required to check the value prior to
2016 // converting to size_t. This will never find a negative array size in
2017 // C++14 onwards, because Value is always unsigned here!
2018 if (ArraySize->isIntegerConstantExpr(Value, Context)) {
2019 if (Value.isSigned() && Value.isNegative()) {
2020 return ExprError(Diag(ArraySize->getBeginLoc(),
2021 diag::err_typecheck_negative_array_size)
2022 << ArraySize->getSourceRange());
2023 }
2024
2025 if (!AllocType->isDependentType()) {
2026 unsigned ActiveSizeBits =
2027 ConstantArrayType::getNumAddressingBits(Context, AllocType, Value);
2028 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context))
2029 return ExprError(
2030 Diag(ArraySize->getBeginLoc(), diag::err_array_too_large)
2031 << Value.toString(10) << ArraySize->getSourceRange());
2032 }
2033
2034 KnownArraySize = Value.getZExtValue();
2035 } else if (TypeIdParens.isValid()) {
2036 // Can't have dynamic array size when the type-id is in parentheses.
2037 Diag(ArraySize->getBeginLoc(), diag::ext_new_paren_array_nonconst)
2038 << ArraySize->getSourceRange()
2039 << FixItHint::CreateRemoval(TypeIdParens.getBegin())
2040 << FixItHint::CreateRemoval(TypeIdParens.getEnd());
2041
2042 TypeIdParens = SourceRange();
2043 }
2044 }
2045
2046 // Note that we do *not* convert the argument in any way. It can
2047 // be signed, larger than size_t, whatever.
2048 }
2049
2050 FunctionDecl *OperatorNew = nullptr;
2051 FunctionDecl *OperatorDelete = nullptr;
2052 unsigned Alignment =
2053 AllocType->isDependentType() ? 0 : Context.getTypeAlign(AllocType);
2054 unsigned NewAlignment = Context.getTargetInfo().getNewAlign();
2055 bool PassAlignment = getLangOpts().AlignedAllocation &&
2056 Alignment > NewAlignment;
2057
2058 AllocationFunctionScope Scope = UseGlobal ? AFS_Global : AFS_Both;
2059 if (!AllocType->isDependentType() &&
2060 !Expr::hasAnyTypeDependentArguments(PlacementArgs) &&
2061 FindAllocationFunctions(StartLoc,
2062 SourceRange(PlacementLParen, PlacementRParen),
2063 Scope, Scope, AllocType, ArraySize, PassAlignment,
2064 PlacementArgs, OperatorNew, OperatorDelete))
2065 return ExprError();
2066
2067 // If this is an array allocation, compute whether the usual array
2068 // deallocation function for the type has a size_t parameter.
2069 bool UsualArrayDeleteWantsSize = false;
2070 if (ArraySize && !AllocType->isDependentType())
2071 UsualArrayDeleteWantsSize =
2072 doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
2073
2074 SmallVector<Expr *, 8> AllPlaceArgs;
2075 if (OperatorNew) {
2076 const FunctionProtoType *Proto =
2077 OperatorNew->getType()->getAs<FunctionProtoType>();
2078 VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction
2079 : VariadicDoesNotApply;
2080
2081 // We've already converted the placement args, just fill in any default
2082 // arguments. Skip the first parameter because we don't have a corresponding
2083 // argument. Skip the second parameter too if we're passing in the
2084 // alignment; we've already filled it in.
2085 if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto,
2086 PassAlignment ? 2 : 1, PlacementArgs,
2087 AllPlaceArgs, CallType))
2088 return ExprError();
2089
2090 if (!AllPlaceArgs.empty())
2091 PlacementArgs = AllPlaceArgs;
2092
2093 // FIXME: This is wrong: PlacementArgs misses out the first (size) argument.
2094 DiagnoseSentinelCalls(OperatorNew, PlacementLParen, PlacementArgs);
2095
2096 // FIXME: Missing call to CheckFunctionCall or equivalent
2097
2098 // Warn if the type is over-aligned and is being allocated by (unaligned)
2099 // global operator new.
2100 if (PlacementArgs.empty() && !PassAlignment &&
2101 (OperatorNew->isImplicit() ||
2102 (OperatorNew->getBeginLoc().isValid() &&
2103 getSourceManager().isInSystemHeader(OperatorNew->getBeginLoc())))) {
2104 if (Alignment > NewAlignment)
2105 Diag(StartLoc, diag::warn_overaligned_type)
2106 << AllocType
2107 << unsigned(Alignment / Context.getCharWidth())
2108 << unsigned(NewAlignment / Context.getCharWidth());
2109 }
2110 }
2111
2112 // Array 'new' can't have any initializers except empty parentheses.
2113 // Initializer lists are also allowed, in C++11. Rely on the parser for the
2114 // dialect distinction.
2115 if (ArraySize && !isLegalArrayNewInitializer(initStyle, Initializer)) {
2116 SourceRange InitRange(Inits[0]->getBeginLoc(),
2117 Inits[NumInits - 1]->getEndLoc());
2118 Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
2119 return ExprError();
2120 }
2121
2122 // If we can perform the initialization, and we've not already done so,
2123 // do it now.
2124 if (!AllocType->isDependentType() &&
2125 !Expr::hasAnyTypeDependentArguments(
2126 llvm::makeArrayRef(Inits, NumInits))) {
2127 // The type we initialize is the complete type, including the array bound.
2128 QualType InitType;
2129 if (KnownArraySize)
2130 InitType = Context.getConstantArrayType(
2131 AllocType, llvm::APInt(Context.getTypeSize(Context.getSizeType()),
2132 *KnownArraySize),
2133 ArrayType::Normal, 0);
2134 else if (ArraySize)
2135 InitType =
2136 Context.getIncompleteArrayType(AllocType, ArrayType::Normal, 0);
2137 else
2138 InitType = AllocType;
2139
2140 InitializedEntity Entity
2141 = InitializedEntity::InitializeNew(StartLoc, InitType);
2142 InitializationSequence InitSeq(*this, Entity, Kind,
2143 MultiExprArg(Inits, NumInits));
2144 ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
2145 MultiExprArg(Inits, NumInits));
2146 if (FullInit.isInvalid())
2147 return ExprError();
2148
2149 // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
2150 // we don't want the initialized object to be destructed.
2151 // FIXME: We should not create these in the first place.
2152 if (CXXBindTemporaryExpr *Binder =
2153 dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
2154 FullInit = Binder->getSubExpr();
2155
2156 Initializer = FullInit.get();
2157 }
2158
2159 // Mark the new and delete operators as referenced.
2160 if (OperatorNew) {
2161 if (DiagnoseUseOfDecl(OperatorNew, StartLoc))
2162 return ExprError();
2163 MarkFunctionReferenced(StartLoc, OperatorNew);
2164 }
2165 if (OperatorDelete) {
2166 if (DiagnoseUseOfDecl(OperatorDelete, StartLoc))
2167 return ExprError();
2168 MarkFunctionReferenced(StartLoc, OperatorDelete);
2169 }
2170
2171 // C++0x [expr.new]p17:
2172 // If the new expression creates an array of objects of class type,
2173 // access and ambiguity control are done for the destructor.
2174 QualType BaseAllocType = Context.getBaseElementType(AllocType);
2175 if (ArraySize && !BaseAllocType->isDependentType()) {
2176 if (const RecordType *BaseRecordType = BaseAllocType->getAs<RecordType>()) {
2177 if (CXXDestructorDecl *dtor = LookupDestructor(
2178 cast<CXXRecordDecl>(BaseRecordType->getDecl()))) {
2179 MarkFunctionReferenced(StartLoc, dtor);
2180 CheckDestructorAccess(StartLoc, dtor,
2181 PDiag(diag::err_access_dtor)
2182 << BaseAllocType);
2183 if (DiagnoseUseOfDecl(dtor, StartLoc))
2184 return ExprError();
2185 }
2186 }
2187 }
2188
2189 return CXXNewExpr::Create(Context, UseGlobal, OperatorNew, OperatorDelete,
2190 PassAlignment, UsualArrayDeleteWantsSize,
2191 PlacementArgs, TypeIdParens, ArraySize, initStyle,
2192 Initializer, ResultType, AllocTypeInfo, Range,
2193 DirectInitRange);
2194 }
2195
2196 /// Checks that a type is suitable as the allocated type
2197 /// in a new-expression.
CheckAllocatedType(QualType AllocType,SourceLocation Loc,SourceRange R)2198 bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
2199 SourceRange R) {
2200 // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
2201 // abstract class type or array thereof.
2202 if (AllocType->isFunctionType())
2203 return Diag(Loc, diag::err_bad_new_type)
2204 << AllocType << 0 << R;
2205 else if (AllocType->isReferenceType())
2206 return Diag(Loc, diag::err_bad_new_type)
2207 << AllocType << 1 << R;
2208 else if (!AllocType->isDependentType() &&
2209 RequireCompleteType(Loc, AllocType, diag::err_new_incomplete_type,R))
2210 return true;
2211 else if (RequireNonAbstractType(Loc, AllocType,
2212 diag::err_allocation_of_abstract_type))
2213 return true;
2214 else if (AllocType->isVariablyModifiedType())
2215 return Diag(Loc, diag::err_variably_modified_new_type)
2216 << AllocType;
2217 else if (AllocType.getAddressSpace() != LangAS::Default &&
2218 !getLangOpts().OpenCLCPlusPlus)
2219 return Diag(Loc, diag::err_address_space_qualified_new)
2220 << AllocType.getUnqualifiedType()
2221 << AllocType.getQualifiers().getAddressSpaceAttributePrintValue();
2222 else if (getLangOpts().ObjCAutoRefCount) {
2223 if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
2224 QualType BaseAllocType = Context.getBaseElementType(AT);
2225 if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
2226 BaseAllocType->isObjCLifetimeType())
2227 return Diag(Loc, diag::err_arc_new_array_without_ownership)
2228 << BaseAllocType;
2229 }
2230 }
2231
2232 return false;
2233 }
2234
resolveAllocationOverload(Sema & S,LookupResult & R,SourceRange Range,SmallVectorImpl<Expr * > & Args,bool & PassAlignment,FunctionDecl * & Operator,OverloadCandidateSet * AlignedCandidates,Expr * AlignArg,bool Diagnose)2235 static bool resolveAllocationOverload(
2236 Sema &S, LookupResult &R, SourceRange Range, SmallVectorImpl<Expr *> &Args,
2237 bool &PassAlignment, FunctionDecl *&Operator,
2238 OverloadCandidateSet *AlignedCandidates, Expr *AlignArg, bool Diagnose) {
2239 OverloadCandidateSet Candidates(R.getNameLoc(),
2240 OverloadCandidateSet::CSK_Normal);
2241 for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
2242 Alloc != AllocEnd; ++Alloc) {
2243 // Even member operator new/delete are implicitly treated as
2244 // static, so don't use AddMemberCandidate.
2245 NamedDecl *D = (*Alloc)->getUnderlyingDecl();
2246
2247 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
2248 S.AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
2249 /*ExplicitTemplateArgs=*/nullptr, Args,
2250 Candidates,
2251 /*SuppressUserConversions=*/false);
2252 continue;
2253 }
2254
2255 FunctionDecl *Fn = cast<FunctionDecl>(D);
2256 S.AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates,
2257 /*SuppressUserConversions=*/false);
2258 }
2259
2260 // Do the resolution.
2261 OverloadCandidateSet::iterator Best;
2262 switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) {
2263 case OR_Success: {
2264 // Got one!
2265 FunctionDecl *FnDecl = Best->Function;
2266 if (S.CheckAllocationAccess(R.getNameLoc(), Range, R.getNamingClass(),
2267 Best->FoundDecl) == Sema::AR_inaccessible)
2268 return true;
2269
2270 Operator = FnDecl;
2271 return false;
2272 }
2273
2274 case OR_No_Viable_Function:
2275 // C++17 [expr.new]p13:
2276 // If no matching function is found and the allocated object type has
2277 // new-extended alignment, the alignment argument is removed from the
2278 // argument list, and overload resolution is performed again.
2279 if (PassAlignment) {
2280 PassAlignment = false;
2281 AlignArg = Args[1];
2282 Args.erase(Args.begin() + 1);
2283 return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
2284 Operator, &Candidates, AlignArg,
2285 Diagnose);
2286 }
2287
2288 // MSVC will fall back on trying to find a matching global operator new
2289 // if operator new[] cannot be found. Also, MSVC will leak by not
2290 // generating a call to operator delete or operator delete[], but we
2291 // will not replicate that bug.
2292 // FIXME: Find out how this interacts with the std::align_val_t fallback
2293 // once MSVC implements it.
2294 if (R.getLookupName().getCXXOverloadedOperator() == OO_Array_New &&
2295 S.Context.getLangOpts().MSVCCompat) {
2296 R.clear();
2297 R.setLookupName(S.Context.DeclarationNames.getCXXOperatorName(OO_New));
2298 S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl());
2299 // FIXME: This will give bad diagnostics pointing at the wrong functions.
2300 return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
2301 Operator, /*Candidates=*/nullptr,
2302 /*AlignArg=*/nullptr, Diagnose);
2303 }
2304
2305 if (Diagnose) {
2306 S.Diag(R.getNameLoc(), diag::err_ovl_no_viable_function_in_call)
2307 << R.getLookupName() << Range;
2308
2309 // If we have aligned candidates, only note the align_val_t candidates
2310 // from AlignedCandidates and the non-align_val_t candidates from
2311 // Candidates.
2312 if (AlignedCandidates) {
2313 auto IsAligned = [](OverloadCandidate &C) {
2314 return C.Function->getNumParams() > 1 &&
2315 C.Function->getParamDecl(1)->getType()->isAlignValT();
2316 };
2317 auto IsUnaligned = [&](OverloadCandidate &C) { return !IsAligned(C); };
2318
2319 // This was an overaligned allocation, so list the aligned candidates
2320 // first.
2321 Args.insert(Args.begin() + 1, AlignArg);
2322 AlignedCandidates->NoteCandidates(S, OCD_AllCandidates, Args, "",
2323 R.getNameLoc(), IsAligned);
2324 Args.erase(Args.begin() + 1);
2325 Candidates.NoteCandidates(S, OCD_AllCandidates, Args, "", R.getNameLoc(),
2326 IsUnaligned);
2327 } else {
2328 Candidates.NoteCandidates(S, OCD_AllCandidates, Args);
2329 }
2330 }
2331 return true;
2332
2333 case OR_Ambiguous:
2334 if (Diagnose) {
2335 S.Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call)
2336 << R.getLookupName() << Range;
2337 Candidates.NoteCandidates(S, OCD_ViableCandidates, Args);
2338 }
2339 return true;
2340
2341 case OR_Deleted: {
2342 if (Diagnose) {
2343 S.Diag(R.getNameLoc(), diag::err_ovl_deleted_call)
2344 << Best->Function->isDeleted() << R.getLookupName()
2345 << S.getDeletedOrUnavailableSuffix(Best->Function) << Range;
2346 Candidates.NoteCandidates(S, OCD_AllCandidates, Args);
2347 }
2348 return true;
2349 }
2350 }
2351 llvm_unreachable("Unreachable, bad result from BestViableFunction");
2352 }
2353
FindAllocationFunctions(SourceLocation StartLoc,SourceRange Range,AllocationFunctionScope NewScope,AllocationFunctionScope DeleteScope,QualType AllocType,bool IsArray,bool & PassAlignment,MultiExprArg PlaceArgs,FunctionDecl * & OperatorNew,FunctionDecl * & OperatorDelete,bool Diagnose)2354 bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
2355 AllocationFunctionScope NewScope,
2356 AllocationFunctionScope DeleteScope,
2357 QualType AllocType, bool IsArray,
2358 bool &PassAlignment, MultiExprArg PlaceArgs,
2359 FunctionDecl *&OperatorNew,
2360 FunctionDecl *&OperatorDelete,
2361 bool Diagnose) {
2362 // --- Choosing an allocation function ---
2363 // C++ 5.3.4p8 - 14 & 18
2364 // 1) If looking in AFS_Global scope for allocation functions, only look in
2365 // the global scope. Else, if AFS_Class, only look in the scope of the
2366 // allocated class. If AFS_Both, look in both.
2367 // 2) If an array size is given, look for operator new[], else look for
2368 // operator new.
2369 // 3) The first argument is always size_t. Append the arguments from the
2370 // placement form.
2371
2372 SmallVector<Expr*, 8> AllocArgs;
2373 AllocArgs.reserve((PassAlignment ? 2 : 1) + PlaceArgs.size());
2374
2375 // We don't care about the actual value of these arguments.
2376 // FIXME: Should the Sema create the expression and embed it in the syntax
2377 // tree? Or should the consumer just recalculate the value?
2378 // FIXME: Using a dummy value will interact poorly with attribute enable_if.
2379 IntegerLiteral Size(Context, llvm::APInt::getNullValue(
2380 Context.getTargetInfo().getPointerWidth(0)),
2381 Context.getSizeType(),
2382 SourceLocation());
2383 AllocArgs.push_back(&Size);
2384
2385 QualType AlignValT = Context.VoidTy;
2386 if (PassAlignment) {
2387 DeclareGlobalNewDelete();
2388 AlignValT = Context.getTypeDeclType(getStdAlignValT());
2389 }
2390 CXXScalarValueInitExpr Align(AlignValT, nullptr, SourceLocation());
2391 if (PassAlignment)
2392 AllocArgs.push_back(&Align);
2393
2394 AllocArgs.insert(AllocArgs.end(), PlaceArgs.begin(), PlaceArgs.end());
2395
2396 // C++ [expr.new]p8:
2397 // If the allocated type is a non-array type, the allocation
2398 // function's name is operator new and the deallocation function's
2399 // name is operator delete. If the allocated type is an array
2400 // type, the allocation function's name is operator new[] and the
2401 // deallocation function's name is operator delete[].
2402 DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
2403 IsArray ? OO_Array_New : OO_New);
2404
2405 QualType AllocElemType = Context.getBaseElementType(AllocType);
2406
2407 // Find the allocation function.
2408 {
2409 LookupResult R(*this, NewName, StartLoc, LookupOrdinaryName);
2410
2411 // C++1z [expr.new]p9:
2412 // If the new-expression begins with a unary :: operator, the allocation
2413 // function's name is looked up in the global scope. Otherwise, if the
2414 // allocated type is a class type T or array thereof, the allocation
2415 // function's name is looked up in the scope of T.
2416 if (AllocElemType->isRecordType() && NewScope != AFS_Global)
2417 LookupQualifiedName(R, AllocElemType->getAsCXXRecordDecl());
2418
2419 // We can see ambiguity here if the allocation function is found in
2420 // multiple base classes.
2421 if (R.isAmbiguous())
2422 return true;
2423
2424 // If this lookup fails to find the name, or if the allocated type is not
2425 // a class type, the allocation function's name is looked up in the
2426 // global scope.
2427 if (R.empty()) {
2428 if (NewScope == AFS_Class)
2429 return true;
2430
2431 LookupQualifiedName(R, Context.getTranslationUnitDecl());
2432 }
2433
2434 if (getLangOpts().OpenCLCPlusPlus && R.empty()) {
2435 Diag(StartLoc, diag::err_openclcxx_not_supported) << "default new";
2436 return true;
2437 }
2438
2439 assert(!R.empty() && "implicitly declared allocation functions not found");
2440 assert(!R.isAmbiguous() && "global allocation functions are ambiguous");
2441
2442 // We do our own custom access checks below.
2443 R.suppressDiagnostics();
2444
2445 if (resolveAllocationOverload(*this, R, Range, AllocArgs, PassAlignment,
2446 OperatorNew, /*Candidates=*/nullptr,
2447 /*AlignArg=*/nullptr, Diagnose))
2448 return true;
2449 }
2450
2451 // We don't need an operator delete if we're running under -fno-exceptions.
2452 if (!getLangOpts().Exceptions) {
2453 OperatorDelete = nullptr;
2454 return false;
2455 }
2456
2457 // Note, the name of OperatorNew might have been changed from array to
2458 // non-array by resolveAllocationOverload.
2459 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
2460 OperatorNew->getDeclName().getCXXOverloadedOperator() == OO_Array_New
2461 ? OO_Array_Delete
2462 : OO_Delete);
2463
2464 // C++ [expr.new]p19:
2465 //
2466 // If the new-expression begins with a unary :: operator, the
2467 // deallocation function's name is looked up in the global
2468 // scope. Otherwise, if the allocated type is a class type T or an
2469 // array thereof, the deallocation function's name is looked up in
2470 // the scope of T. If this lookup fails to find the name, or if
2471 // the allocated type is not a class type or array thereof, the
2472 // deallocation function's name is looked up in the global scope.
2473 LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
2474 if (AllocElemType->isRecordType() && DeleteScope != AFS_Global) {
2475 CXXRecordDecl *RD
2476 = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
2477 LookupQualifiedName(FoundDelete, RD);
2478 }
2479 if (FoundDelete.isAmbiguous())
2480 return true; // FIXME: clean up expressions?
2481
2482 bool FoundGlobalDelete = FoundDelete.empty();
2483 if (FoundDelete.empty()) {
2484 if (DeleteScope == AFS_Class)
2485 return true;
2486
2487 DeclareGlobalNewDelete();
2488 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
2489 }
2490
2491 FoundDelete.suppressDiagnostics();
2492
2493 SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
2494
2495 // Whether we're looking for a placement operator delete is dictated
2496 // by whether we selected a placement operator new, not by whether
2497 // we had explicit placement arguments. This matters for things like
2498 // struct A { void *operator new(size_t, int = 0); ... };
2499 // A *a = new A()
2500 //
2501 // We don't have any definition for what a "placement allocation function"
2502 // is, but we assume it's any allocation function whose
2503 // parameter-declaration-clause is anything other than (size_t).
2504 //
2505 // FIXME: Should (size_t, std::align_val_t) also be considered non-placement?
2506 // This affects whether an exception from the constructor of an overaligned
2507 // type uses the sized or non-sized form of aligned operator delete.
2508 bool isPlacementNew = !PlaceArgs.empty() || OperatorNew->param_size() != 1 ||
2509 OperatorNew->isVariadic();
2510
2511 if (isPlacementNew) {
2512 // C++ [expr.new]p20:
2513 // A declaration of a placement deallocation function matches the
2514 // declaration of a placement allocation function if it has the
2515 // same number of parameters and, after parameter transformations
2516 // (8.3.5), all parameter types except the first are
2517 // identical. [...]
2518 //
2519 // To perform this comparison, we compute the function type that
2520 // the deallocation function should have, and use that type both
2521 // for template argument deduction and for comparison purposes.
2522 QualType ExpectedFunctionType;
2523 {
2524 const FunctionProtoType *Proto
2525 = OperatorNew->getType()->getAs<FunctionProtoType>();
2526
2527 SmallVector<QualType, 4> ArgTypes;
2528 ArgTypes.push_back(Context.VoidPtrTy);
2529 for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I)
2530 ArgTypes.push_back(Proto->getParamType(I));
2531
2532 FunctionProtoType::ExtProtoInfo EPI;
2533 // FIXME: This is not part of the standard's rule.
2534 EPI.Variadic = Proto->isVariadic();
2535
2536 ExpectedFunctionType
2537 = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI);
2538 }
2539
2540 for (LookupResult::iterator D = FoundDelete.begin(),
2541 DEnd = FoundDelete.end();
2542 D != DEnd; ++D) {
2543 FunctionDecl *Fn = nullptr;
2544 if (FunctionTemplateDecl *FnTmpl =
2545 dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
2546 // Perform template argument deduction to try to match the
2547 // expected function type.
2548 TemplateDeductionInfo Info(StartLoc);
2549 if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn,
2550 Info))
2551 continue;
2552 } else
2553 Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
2554
2555 if (Context.hasSameType(adjustCCAndNoReturn(Fn->getType(),
2556 ExpectedFunctionType,
2557 /*AdjustExcpetionSpec*/true),
2558 ExpectedFunctionType))
2559 Matches.push_back(std::make_pair(D.getPair(), Fn));
2560 }
2561
2562 if (getLangOpts().CUDA)
2563 EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(CurContext), Matches);
2564 } else {
2565 // C++1y [expr.new]p22:
2566 // For a non-placement allocation function, the normal deallocation
2567 // function lookup is used
2568 //
2569 // Per [expr.delete]p10, this lookup prefers a member operator delete
2570 // without a size_t argument, but prefers a non-member operator delete
2571 // with a size_t where possible (which it always is in this case).
2572 llvm::SmallVector<UsualDeallocFnInfo, 4> BestDeallocFns;
2573 UsualDeallocFnInfo Selected = resolveDeallocationOverload(
2574 *this, FoundDelete, /*WantSize*/ FoundGlobalDelete,
2575 /*WantAlign*/ hasNewExtendedAlignment(*this, AllocElemType),
2576 &BestDeallocFns);
2577 if (Selected)
2578 Matches.push_back(std::make_pair(Selected.Found, Selected.FD));
2579 else {
2580 // If we failed to select an operator, all remaining functions are viable
2581 // but ambiguous.
2582 for (auto Fn : BestDeallocFns)
2583 Matches.push_back(std::make_pair(Fn.Found, Fn.FD));
2584 }
2585 }
2586
2587 // C++ [expr.new]p20:
2588 // [...] If the lookup finds a single matching deallocation
2589 // function, that function will be called; otherwise, no
2590 // deallocation function will be called.
2591 if (Matches.size() == 1) {
2592 OperatorDelete = Matches[0].second;
2593
2594 // C++1z [expr.new]p23:
2595 // If the lookup finds a usual deallocation function (3.7.4.2)
2596 // with a parameter of type std::size_t and that function, considered
2597 // as a placement deallocation function, would have been
2598 // selected as a match for the allocation function, the program
2599 // is ill-formed.
2600 if (getLangOpts().CPlusPlus11 && isPlacementNew &&
2601 isNonPlacementDeallocationFunction(*this, OperatorDelete)) {
2602 UsualDeallocFnInfo Info(*this,
2603 DeclAccessPair::make(OperatorDelete, AS_public));
2604 // Core issue, per mail to core reflector, 2016-10-09:
2605 // If this is a member operator delete, and there is a corresponding
2606 // non-sized member operator delete, this isn't /really/ a sized
2607 // deallocation function, it just happens to have a size_t parameter.
2608 bool IsSizedDelete = Info.HasSizeT;
2609 if (IsSizedDelete && !FoundGlobalDelete) {
2610 auto NonSizedDelete =
2611 resolveDeallocationOverload(*this, FoundDelete, /*WantSize*/false,
2612 /*WantAlign*/Info.HasAlignValT);
2613 if (NonSizedDelete && !NonSizedDelete.HasSizeT &&
2614 NonSizedDelete.HasAlignValT == Info.HasAlignValT)
2615 IsSizedDelete = false;
2616 }
2617
2618 if (IsSizedDelete) {
2619 SourceRange R = PlaceArgs.empty()
2620 ? SourceRange()
2621 : SourceRange(PlaceArgs.front()->getBeginLoc(),
2622 PlaceArgs.back()->getEndLoc());
2623 Diag(StartLoc, diag::err_placement_new_non_placement_delete) << R;
2624 if (!OperatorDelete->isImplicit())
2625 Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
2626 << DeleteName;
2627 }
2628 }
2629
2630 CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
2631 Matches[0].first);
2632 } else if (!Matches.empty()) {
2633 // We found multiple suitable operators. Per [expr.new]p20, that means we
2634 // call no 'operator delete' function, but we should at least warn the user.
2635 // FIXME: Suppress this warning if the construction cannot throw.
2636 Diag(StartLoc, diag::warn_ambiguous_suitable_delete_function_found)
2637 << DeleteName << AllocElemType;
2638
2639 for (auto &Match : Matches)
2640 Diag(Match.second->getLocation(),
2641 diag::note_member_declared_here) << DeleteName;
2642 }
2643
2644 return false;
2645 }
2646
2647 /// DeclareGlobalNewDelete - Declare the global forms of operator new and
2648 /// delete. These are:
2649 /// @code
2650 /// // C++03:
2651 /// void* operator new(std::size_t) throw(std::bad_alloc);
2652 /// void* operator new[](std::size_t) throw(std::bad_alloc);
2653 /// void operator delete(void *) throw();
2654 /// void operator delete[](void *) throw();
2655 /// // C++11:
2656 /// void* operator new(std::size_t);
2657 /// void* operator new[](std::size_t);
2658 /// void operator delete(void *) noexcept;
2659 /// void operator delete[](void *) noexcept;
2660 /// // C++1y:
2661 /// void* operator new(std::size_t);
2662 /// void* operator new[](std::size_t);
2663 /// void operator delete(void *) noexcept;
2664 /// void operator delete[](void *) noexcept;
2665 /// void operator delete(void *, std::size_t) noexcept;
2666 /// void operator delete[](void *, std::size_t) noexcept;
2667 /// @endcode
2668 /// Note that the placement and nothrow forms of new are *not* implicitly
2669 /// declared. Their use requires including \<new\>.
DeclareGlobalNewDelete()2670 void Sema::DeclareGlobalNewDelete() {
2671 if (GlobalNewDeleteDeclared)
2672 return;
2673
2674 // OpenCL C++ 1.0 s2.9: the implicitly declared new and delete operators
2675 // are not supported.
2676 if (getLangOpts().OpenCLCPlusPlus)
2677 return;
2678
2679 // C++ [basic.std.dynamic]p2:
2680 // [...] The following allocation and deallocation functions (18.4) are
2681 // implicitly declared in global scope in each translation unit of a
2682 // program
2683 //
2684 // C++03:
2685 // void* operator new(std::size_t) throw(std::bad_alloc);
2686 // void* operator new[](std::size_t) throw(std::bad_alloc);
2687 // void operator delete(void*) throw();
2688 // void operator delete[](void*) throw();
2689 // C++11:
2690 // void* operator new(std::size_t);
2691 // void* operator new[](std::size_t);
2692 // void operator delete(void*) noexcept;
2693 // void operator delete[](void*) noexcept;
2694 // C++1y:
2695 // void* operator new(std::size_t);
2696 // void* operator new[](std::size_t);
2697 // void operator delete(void*) noexcept;
2698 // void operator delete[](void*) noexcept;
2699 // void operator delete(void*, std::size_t) noexcept;
2700 // void operator delete[](void*, std::size_t) noexcept;
2701 //
2702 // These implicit declarations introduce only the function names operator
2703 // new, operator new[], operator delete, operator delete[].
2704 //
2705 // Here, we need to refer to std::bad_alloc, so we will implicitly declare
2706 // "std" or "bad_alloc" as necessary to form the exception specification.
2707 // However, we do not make these implicit declarations visible to name
2708 // lookup.
2709 if (!StdBadAlloc && !getLangOpts().CPlusPlus11) {
2710 // The "std::bad_alloc" class has not yet been declared, so build it
2711 // implicitly.
2712 StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
2713 getOrCreateStdNamespace(),
2714 SourceLocation(), SourceLocation(),
2715 &PP.getIdentifierTable().get("bad_alloc"),
2716 nullptr);
2717 getStdBadAlloc()->setImplicit(true);
2718 }
2719 if (!StdAlignValT && getLangOpts().AlignedAllocation) {
2720 // The "std::align_val_t" enum class has not yet been declared, so build it
2721 // implicitly.
2722 auto *AlignValT = EnumDecl::Create(
2723 Context, getOrCreateStdNamespace(), SourceLocation(), SourceLocation(),
2724 &PP.getIdentifierTable().get("align_val_t"), nullptr, true, true, true);
2725 AlignValT->setIntegerType(Context.getSizeType());
2726 AlignValT->setPromotionType(Context.getSizeType());
2727 AlignValT->setImplicit(true);
2728 StdAlignValT = AlignValT;
2729 }
2730
2731 GlobalNewDeleteDeclared = true;
2732
2733 QualType VoidPtr = Context.getPointerType(Context.VoidTy);
2734 QualType SizeT = Context.getSizeType();
2735
2736 auto DeclareGlobalAllocationFunctions = [&](OverloadedOperatorKind Kind,
2737 QualType Return, QualType Param) {
2738 llvm::SmallVector<QualType, 3> Params;
2739 Params.push_back(Param);
2740
2741 // Create up to four variants of the function (sized/aligned).
2742 bool HasSizedVariant = getLangOpts().SizedDeallocation &&
2743 (Kind == OO_Delete || Kind == OO_Array_Delete);
2744 bool HasAlignedVariant = getLangOpts().AlignedAllocation;
2745
2746 int NumSizeVariants = (HasSizedVariant ? 2 : 1);
2747 int NumAlignVariants = (HasAlignedVariant ? 2 : 1);
2748 for (int Sized = 0; Sized < NumSizeVariants; ++Sized) {
2749 if (Sized)
2750 Params.push_back(SizeT);
2751
2752 for (int Aligned = 0; Aligned < NumAlignVariants; ++Aligned) {
2753 if (Aligned)
2754 Params.push_back(Context.getTypeDeclType(getStdAlignValT()));
2755
2756 DeclareGlobalAllocationFunction(
2757 Context.DeclarationNames.getCXXOperatorName(Kind), Return, Params);
2758
2759 if (Aligned)
2760 Params.pop_back();
2761 }
2762 }
2763 };
2764
2765 DeclareGlobalAllocationFunctions(OO_New, VoidPtr, SizeT);
2766 DeclareGlobalAllocationFunctions(OO_Array_New, VoidPtr, SizeT);
2767 DeclareGlobalAllocationFunctions(OO_Delete, Context.VoidTy, VoidPtr);
2768 DeclareGlobalAllocationFunctions(OO_Array_Delete, Context.VoidTy, VoidPtr);
2769 }
2770
2771 /// DeclareGlobalAllocationFunction - Declares a single implicit global
2772 /// allocation function if it doesn't already exist.
DeclareGlobalAllocationFunction(DeclarationName Name,QualType Return,ArrayRef<QualType> Params)2773 void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
2774 QualType Return,
2775 ArrayRef<QualType> Params) {
2776 DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
2777
2778 // Check if this function is already declared.
2779 DeclContext::lookup_result R = GlobalCtx->lookup(Name);
2780 for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end();
2781 Alloc != AllocEnd; ++Alloc) {
2782 // Only look at non-template functions, as it is the predefined,
2783 // non-templated allocation function we are trying to declare here.
2784 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
2785 if (Func->getNumParams() == Params.size()) {
2786 llvm::SmallVector<QualType, 3> FuncParams;
2787 for (auto *P : Func->parameters())
2788 FuncParams.push_back(
2789 Context.getCanonicalType(P->getType().getUnqualifiedType()));
2790 if (llvm::makeArrayRef(FuncParams) == Params) {
2791 // Make the function visible to name lookup, even if we found it in
2792 // an unimported module. It either is an implicitly-declared global
2793 // allocation function, or is suppressing that function.
2794 Func->setVisibleDespiteOwningModule();
2795 return;
2796 }
2797 }
2798 }
2799 }
2800
2801 FunctionProtoType::ExtProtoInfo EPI;
2802
2803 QualType BadAllocType;
2804 bool HasBadAllocExceptionSpec
2805 = (Name.getCXXOverloadedOperator() == OO_New ||
2806 Name.getCXXOverloadedOperator() == OO_Array_New);
2807 if (HasBadAllocExceptionSpec) {
2808 if (!getLangOpts().CPlusPlus11) {
2809 BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
2810 assert(StdBadAlloc && "Must have std::bad_alloc declared");
2811 EPI.ExceptionSpec.Type = EST_Dynamic;
2812 EPI.ExceptionSpec.Exceptions = llvm::makeArrayRef(BadAllocType);
2813 }
2814 } else {
2815 EPI.ExceptionSpec =
2816 getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone;
2817 }
2818
2819 auto CreateAllocationFunctionDecl = [&](Attr *ExtraAttr) {
2820 QualType FnType = Context.getFunctionType(Return, Params, EPI);
2821 FunctionDecl *Alloc = FunctionDecl::Create(
2822 Context, GlobalCtx, SourceLocation(), SourceLocation(), Name,
2823 FnType, /*TInfo=*/nullptr, SC_None, false, true);
2824 Alloc->setImplicit();
2825 // Global allocation functions should always be visible.
2826 Alloc->setVisibleDespiteOwningModule();
2827
2828 Alloc->addAttr(VisibilityAttr::CreateImplicit(
2829 Context, LangOpts.GlobalAllocationFunctionVisibilityHidden
2830 ? VisibilityAttr::Hidden
2831 : VisibilityAttr::Default));
2832
2833 llvm::SmallVector<ParmVarDecl *, 3> ParamDecls;
2834 for (QualType T : Params) {
2835 ParamDecls.push_back(ParmVarDecl::Create(
2836 Context, Alloc, SourceLocation(), SourceLocation(), nullptr, T,
2837 /*TInfo=*/nullptr, SC_None, nullptr));
2838 ParamDecls.back()->setImplicit();
2839 }
2840 Alloc->setParams(ParamDecls);
2841 if (ExtraAttr)
2842 Alloc->addAttr(ExtraAttr);
2843 Context.getTranslationUnitDecl()->addDecl(Alloc);
2844 IdResolver.tryAddTopLevelDecl(Alloc, Name);
2845 };
2846
2847 if (!LangOpts.CUDA)
2848 CreateAllocationFunctionDecl(nullptr);
2849 else {
2850 // Host and device get their own declaration so each can be
2851 // defined or re-declared independently.
2852 CreateAllocationFunctionDecl(CUDAHostAttr::CreateImplicit(Context));
2853 CreateAllocationFunctionDecl(CUDADeviceAttr::CreateImplicit(Context));
2854 }
2855 }
2856
FindUsualDeallocationFunction(SourceLocation StartLoc,bool CanProvideSize,bool Overaligned,DeclarationName Name)2857 FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc,
2858 bool CanProvideSize,
2859 bool Overaligned,
2860 DeclarationName Name) {
2861 DeclareGlobalNewDelete();
2862
2863 LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName);
2864 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
2865
2866 // FIXME: It's possible for this to result in ambiguity, through a
2867 // user-declared variadic operator delete or the enable_if attribute. We
2868 // should probably not consider those cases to be usual deallocation
2869 // functions. But for now we just make an arbitrary choice in that case.
2870 auto Result = resolveDeallocationOverload(*this, FoundDelete, CanProvideSize,
2871 Overaligned);
2872 assert(Result.FD && "operator delete missing from global scope?");
2873 return Result.FD;
2874 }
2875
FindDeallocationFunctionForDestructor(SourceLocation Loc,CXXRecordDecl * RD)2876 FunctionDecl *Sema::FindDeallocationFunctionForDestructor(SourceLocation Loc,
2877 CXXRecordDecl *RD) {
2878 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Delete);
2879
2880 FunctionDecl *OperatorDelete = nullptr;
2881 if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
2882 return nullptr;
2883 if (OperatorDelete)
2884 return OperatorDelete;
2885
2886 // If there's no class-specific operator delete, look up the global
2887 // non-array delete.
2888 return FindUsualDeallocationFunction(
2889 Loc, true, hasNewExtendedAlignment(*this, Context.getRecordType(RD)),
2890 Name);
2891 }
2892
FindDeallocationFunction(SourceLocation StartLoc,CXXRecordDecl * RD,DeclarationName Name,FunctionDecl * & Operator,bool Diagnose)2893 bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
2894 DeclarationName Name,
2895 FunctionDecl *&Operator, bool Diagnose) {
2896 LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
2897 // Try to find operator delete/operator delete[] in class scope.
2898 LookupQualifiedName(Found, RD);
2899
2900 if (Found.isAmbiguous())
2901 return true;
2902
2903 Found.suppressDiagnostics();
2904
2905 bool Overaligned = hasNewExtendedAlignment(*this, Context.getRecordType(RD));
2906
2907 // C++17 [expr.delete]p10:
2908 // If the deallocation functions have class scope, the one without a
2909 // parameter of type std::size_t is selected.
2910 llvm::SmallVector<UsualDeallocFnInfo, 4> Matches;
2911 resolveDeallocationOverload(*this, Found, /*WantSize*/ false,
2912 /*WantAlign*/ Overaligned, &Matches);
2913
2914 // If we could find an overload, use it.
2915 if (Matches.size() == 1) {
2916 Operator = cast<CXXMethodDecl>(Matches[0].FD);
2917
2918 // FIXME: DiagnoseUseOfDecl?
2919 if (Operator->isDeleted()) {
2920 if (Diagnose) {
2921 Diag(StartLoc, diag::err_deleted_function_use);
2922 NoteDeletedFunction(Operator);
2923 }
2924 return true;
2925 }
2926
2927 if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
2928 Matches[0].Found, Diagnose) == AR_inaccessible)
2929 return true;
2930
2931 return false;
2932 }
2933
2934 // We found multiple suitable operators; complain about the ambiguity.
2935 // FIXME: The standard doesn't say to do this; it appears that the intent
2936 // is that this should never happen.
2937 if (!Matches.empty()) {
2938 if (Diagnose) {
2939 Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
2940 << Name << RD;
2941 for (auto &Match : Matches)
2942 Diag(Match.FD->getLocation(), diag::note_member_declared_here) << Name;
2943 }
2944 return true;
2945 }
2946
2947 // We did find operator delete/operator delete[] declarations, but
2948 // none of them were suitable.
2949 if (!Found.empty()) {
2950 if (Diagnose) {
2951 Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
2952 << Name << RD;
2953
2954 for (NamedDecl *D : Found)
2955 Diag(D->getUnderlyingDecl()->getLocation(),
2956 diag::note_member_declared_here) << Name;
2957 }
2958 return true;
2959 }
2960
2961 Operator = nullptr;
2962 return false;
2963 }
2964
2965 namespace {
2966 /// Checks whether delete-expression, and new-expression used for
2967 /// initializing deletee have the same array form.
2968 class MismatchingNewDeleteDetector {
2969 public:
2970 enum MismatchResult {
2971 /// Indicates that there is no mismatch or a mismatch cannot be proven.
2972 NoMismatch,
2973 /// Indicates that variable is initialized with mismatching form of \a new.
2974 VarInitMismatches,
2975 /// Indicates that member is initialized with mismatching form of \a new.
2976 MemberInitMismatches,
2977 /// Indicates that 1 or more constructors' definitions could not been
2978 /// analyzed, and they will be checked again at the end of translation unit.
2979 AnalyzeLater
2980 };
2981
2982 /// \param EndOfTU True, if this is the final analysis at the end of
2983 /// translation unit. False, if this is the initial analysis at the point
2984 /// delete-expression was encountered.
MismatchingNewDeleteDetector(bool EndOfTU)2985 explicit MismatchingNewDeleteDetector(bool EndOfTU)
2986 : Field(nullptr), IsArrayForm(false), EndOfTU(EndOfTU),
2987 HasUndefinedConstructors(false) {}
2988
2989 /// Checks whether pointee of a delete-expression is initialized with
2990 /// matching form of new-expression.
2991 ///
2992 /// If return value is \c VarInitMismatches or \c MemberInitMismatches at the
2993 /// point where delete-expression is encountered, then a warning will be
2994 /// issued immediately. If return value is \c AnalyzeLater at the point where
2995 /// delete-expression is seen, then member will be analyzed at the end of
2996 /// translation unit. \c AnalyzeLater is returned iff at least one constructor
2997 /// couldn't be analyzed. If at least one constructor initializes the member
2998 /// with matching type of new, the return value is \c NoMismatch.
2999 MismatchResult analyzeDeleteExpr(const CXXDeleteExpr *DE);
3000 /// Analyzes a class member.
3001 /// \param Field Class member to analyze.
3002 /// \param DeleteWasArrayForm Array form-ness of the delete-expression used
3003 /// for deleting the \p Field.
3004 MismatchResult analyzeField(FieldDecl *Field, bool DeleteWasArrayForm);
3005 FieldDecl *Field;
3006 /// List of mismatching new-expressions used for initialization of the pointee
3007 llvm::SmallVector<const CXXNewExpr *, 4> NewExprs;
3008 /// Indicates whether delete-expression was in array form.
3009 bool IsArrayForm;
3010
3011 private:
3012 const bool EndOfTU;
3013 /// Indicates that there is at least one constructor without body.
3014 bool HasUndefinedConstructors;
3015 /// Returns \c CXXNewExpr from given initialization expression.
3016 /// \param E Expression used for initializing pointee in delete-expression.
3017 /// E can be a single-element \c InitListExpr consisting of new-expression.
3018 const CXXNewExpr *getNewExprFromInitListOrExpr(const Expr *E);
3019 /// Returns whether member is initialized with mismatching form of
3020 /// \c new either by the member initializer or in-class initialization.
3021 ///
3022 /// If bodies of all constructors are not visible at the end of translation
3023 /// unit or at least one constructor initializes member with the matching
3024 /// form of \c new, mismatch cannot be proven, and this function will return
3025 /// \c NoMismatch.
3026 MismatchResult analyzeMemberExpr(const MemberExpr *ME);
3027 /// Returns whether variable is initialized with mismatching form of
3028 /// \c new.
3029 ///
3030 /// If variable is initialized with matching form of \c new or variable is not
3031 /// initialized with a \c new expression, this function will return true.
3032 /// If variable is initialized with mismatching form of \c new, returns false.
3033 /// \param D Variable to analyze.
3034 bool hasMatchingVarInit(const DeclRefExpr *D);
3035 /// Checks whether the constructor initializes pointee with mismatching
3036 /// form of \c new.
3037 ///
3038 /// Returns true, if member is initialized with matching form of \c new in
3039 /// member initializer list. Returns false, if member is initialized with the
3040 /// matching form of \c new in this constructor's initializer or given
3041 /// constructor isn't defined at the point where delete-expression is seen, or
3042 /// member isn't initialized by the constructor.
3043 bool hasMatchingNewInCtor(const CXXConstructorDecl *CD);
3044 /// Checks whether member is initialized with matching form of
3045 /// \c new in member initializer list.
3046 bool hasMatchingNewInCtorInit(const CXXCtorInitializer *CI);
3047 /// Checks whether member is initialized with mismatching form of \c new by
3048 /// in-class initializer.
3049 MismatchResult analyzeInClassInitializer();
3050 };
3051 }
3052
3053 MismatchingNewDeleteDetector::MismatchResult
analyzeDeleteExpr(const CXXDeleteExpr * DE)3054 MismatchingNewDeleteDetector::analyzeDeleteExpr(const CXXDeleteExpr *DE) {
3055 NewExprs.clear();
3056 assert(DE && "Expected delete-expression");
3057 IsArrayForm = DE->isArrayForm();
3058 const Expr *E = DE->getArgument()->IgnoreParenImpCasts();
3059 if (const MemberExpr *ME = dyn_cast<const MemberExpr>(E)) {
3060 return analyzeMemberExpr(ME);
3061 } else if (const DeclRefExpr *D = dyn_cast<const DeclRefExpr>(E)) {
3062 if (!hasMatchingVarInit(D))
3063 return VarInitMismatches;
3064 }
3065 return NoMismatch;
3066 }
3067
3068 const CXXNewExpr *
getNewExprFromInitListOrExpr(const Expr * E)3069 MismatchingNewDeleteDetector::getNewExprFromInitListOrExpr(const Expr *E) {
3070 assert(E != nullptr && "Expected a valid initializer expression");
3071 E = E->IgnoreParenImpCasts();
3072 if (const InitListExpr *ILE = dyn_cast<const InitListExpr>(E)) {
3073 if (ILE->getNumInits() == 1)
3074 E = dyn_cast<const CXXNewExpr>(ILE->getInit(0)->IgnoreParenImpCasts());
3075 }
3076
3077 return dyn_cast_or_null<const CXXNewExpr>(E);
3078 }
3079
hasMatchingNewInCtorInit(const CXXCtorInitializer * CI)3080 bool MismatchingNewDeleteDetector::hasMatchingNewInCtorInit(
3081 const CXXCtorInitializer *CI) {
3082 const CXXNewExpr *NE = nullptr;
3083 if (Field == CI->getMember() &&
3084 (NE = getNewExprFromInitListOrExpr(CI->getInit()))) {
3085 if (NE->isArray() == IsArrayForm)
3086 return true;
3087 else
3088 NewExprs.push_back(NE);
3089 }
3090 return false;
3091 }
3092
hasMatchingNewInCtor(const CXXConstructorDecl * CD)3093 bool MismatchingNewDeleteDetector::hasMatchingNewInCtor(
3094 const CXXConstructorDecl *CD) {
3095 if (CD->isImplicit())
3096 return false;
3097 const FunctionDecl *Definition = CD;
3098 if (!CD->isThisDeclarationADefinition() && !CD->isDefined(Definition)) {
3099 HasUndefinedConstructors = true;
3100 return EndOfTU;
3101 }
3102 for (const auto *CI : cast<const CXXConstructorDecl>(Definition)->inits()) {
3103 if (hasMatchingNewInCtorInit(CI))
3104 return true;
3105 }
3106 return false;
3107 }
3108
3109 MismatchingNewDeleteDetector::MismatchResult
analyzeInClassInitializer()3110 MismatchingNewDeleteDetector::analyzeInClassInitializer() {
3111 assert(Field != nullptr && "This should be called only for members");
3112 const Expr *InitExpr = Field->getInClassInitializer();
3113 if (!InitExpr)
3114 return EndOfTU ? NoMismatch : AnalyzeLater;
3115 if (const CXXNewExpr *NE = getNewExprFromInitListOrExpr(InitExpr)) {
3116 if (NE->isArray() != IsArrayForm) {
3117 NewExprs.push_back(NE);
3118 return MemberInitMismatches;
3119 }
3120 }
3121 return NoMismatch;
3122 }
3123
3124 MismatchingNewDeleteDetector::MismatchResult
analyzeField(FieldDecl * Field,bool DeleteWasArrayForm)3125 MismatchingNewDeleteDetector::analyzeField(FieldDecl *Field,
3126 bool DeleteWasArrayForm) {
3127 assert(Field != nullptr && "Analysis requires a valid class member.");
3128 this->Field = Field;
3129 IsArrayForm = DeleteWasArrayForm;
3130 const CXXRecordDecl *RD = cast<const CXXRecordDecl>(Field->getParent());
3131 for (const auto *CD : RD->ctors()) {
3132 if (hasMatchingNewInCtor(CD))
3133 return NoMismatch;
3134 }
3135 if (HasUndefinedConstructors)
3136 return EndOfTU ? NoMismatch : AnalyzeLater;
3137 if (!NewExprs.empty())
3138 return MemberInitMismatches;
3139 return Field->hasInClassInitializer() ? analyzeInClassInitializer()
3140 : NoMismatch;
3141 }
3142
3143 MismatchingNewDeleteDetector::MismatchResult
analyzeMemberExpr(const MemberExpr * ME)3144 MismatchingNewDeleteDetector::analyzeMemberExpr(const MemberExpr *ME) {
3145 assert(ME != nullptr && "Expected a member expression");
3146 if (FieldDecl *F = dyn_cast<FieldDecl>(ME->getMemberDecl()))
3147 return analyzeField(F, IsArrayForm);
3148 return NoMismatch;
3149 }
3150
hasMatchingVarInit(const DeclRefExpr * D)3151 bool MismatchingNewDeleteDetector::hasMatchingVarInit(const DeclRefExpr *D) {
3152 const CXXNewExpr *NE = nullptr;
3153 if (const VarDecl *VD = dyn_cast<const VarDecl>(D->getDecl())) {
3154 if (VD->hasInit() && (NE = getNewExprFromInitListOrExpr(VD->getInit())) &&
3155 NE->isArray() != IsArrayForm) {
3156 NewExprs.push_back(NE);
3157 }
3158 }
3159 return NewExprs.empty();
3160 }
3161
3162 static void
DiagnoseMismatchedNewDelete(Sema & SemaRef,SourceLocation DeleteLoc,const MismatchingNewDeleteDetector & Detector)3163 DiagnoseMismatchedNewDelete(Sema &SemaRef, SourceLocation DeleteLoc,
3164 const MismatchingNewDeleteDetector &Detector) {
3165 SourceLocation EndOfDelete = SemaRef.getLocForEndOfToken(DeleteLoc);
3166 FixItHint H;
3167 if (!Detector.IsArrayForm)
3168 H = FixItHint::CreateInsertion(EndOfDelete, "[]");
3169 else {
3170 SourceLocation RSquare = Lexer::findLocationAfterToken(
3171 DeleteLoc, tok::l_square, SemaRef.getSourceManager(),
3172 SemaRef.getLangOpts(), true);
3173 if (RSquare.isValid())
3174 H = FixItHint::CreateRemoval(SourceRange(EndOfDelete, RSquare));
3175 }
3176 SemaRef.Diag(DeleteLoc, diag::warn_mismatched_delete_new)
3177 << Detector.IsArrayForm << H;
3178
3179 for (const auto *NE : Detector.NewExprs)
3180 SemaRef.Diag(NE->getExprLoc(), diag::note_allocated_here)
3181 << Detector.IsArrayForm;
3182 }
3183
AnalyzeDeleteExprMismatch(const CXXDeleteExpr * DE)3184 void Sema::AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE) {
3185 if (Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation()))
3186 return;
3187 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/false);
3188 switch (Detector.analyzeDeleteExpr(DE)) {
3189 case MismatchingNewDeleteDetector::VarInitMismatches:
3190 case MismatchingNewDeleteDetector::MemberInitMismatches: {
3191 DiagnoseMismatchedNewDelete(*this, DE->getBeginLoc(), Detector);
3192 break;
3193 }
3194 case MismatchingNewDeleteDetector::AnalyzeLater: {
3195 DeleteExprs[Detector.Field].push_back(
3196 std::make_pair(DE->getBeginLoc(), DE->isArrayForm()));
3197 break;
3198 }
3199 case MismatchingNewDeleteDetector::NoMismatch:
3200 break;
3201 }
3202 }
3203
AnalyzeDeleteExprMismatch(FieldDecl * Field,SourceLocation DeleteLoc,bool DeleteWasArrayForm)3204 void Sema::AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc,
3205 bool DeleteWasArrayForm) {
3206 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/true);
3207 switch (Detector.analyzeField(Field, DeleteWasArrayForm)) {
3208 case MismatchingNewDeleteDetector::VarInitMismatches:
3209 llvm_unreachable("This analysis should have been done for class members.");
3210 case MismatchingNewDeleteDetector::AnalyzeLater:
3211 llvm_unreachable("Analysis cannot be postponed any point beyond end of "
3212 "translation unit.");
3213 case MismatchingNewDeleteDetector::MemberInitMismatches:
3214 DiagnoseMismatchedNewDelete(*this, DeleteLoc, Detector);
3215 break;
3216 case MismatchingNewDeleteDetector::NoMismatch:
3217 break;
3218 }
3219 }
3220
3221 /// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
3222 /// @code ::delete ptr; @endcode
3223 /// or
3224 /// @code delete [] ptr; @endcode
3225 ExprResult
ActOnCXXDelete(SourceLocation StartLoc,bool UseGlobal,bool ArrayForm,Expr * ExE)3226 Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
3227 bool ArrayForm, Expr *ExE) {
3228 // C++ [expr.delete]p1:
3229 // The operand shall have a pointer type, or a class type having a single
3230 // non-explicit conversion function to a pointer type. The result has type
3231 // void.
3232 //
3233 // DR599 amends "pointer type" to "pointer to object type" in both cases.
3234
3235 ExprResult Ex = ExE;
3236 FunctionDecl *OperatorDelete = nullptr;
3237 bool ArrayFormAsWritten = ArrayForm;
3238 bool UsualArrayDeleteWantsSize = false;
3239
3240 if (!Ex.get()->isTypeDependent()) {
3241 // Perform lvalue-to-rvalue cast, if needed.
3242 Ex = DefaultLvalueConversion(Ex.get());
3243 if (Ex.isInvalid())
3244 return ExprError();
3245
3246 QualType Type = Ex.get()->getType();
3247
3248 class DeleteConverter : public ContextualImplicitConverter {
3249 public:
3250 DeleteConverter() : ContextualImplicitConverter(false, true) {}
3251
3252 bool match(QualType ConvType) override {
3253 // FIXME: If we have an operator T* and an operator void*, we must pick
3254 // the operator T*.
3255 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
3256 if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
3257 return true;
3258 return false;
3259 }
3260
3261 SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc,
3262 QualType T) override {
3263 return S.Diag(Loc, diag::err_delete_operand) << T;
3264 }
3265
3266 SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
3267 QualType T) override {
3268 return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T;
3269 }
3270
3271 SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc,
3272 QualType T,
3273 QualType ConvTy) override {
3274 return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy;
3275 }
3276
3277 SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv,
3278 QualType ConvTy) override {
3279 return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
3280 << ConvTy;
3281 }
3282
3283 SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
3284 QualType T) override {
3285 return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T;
3286 }
3287
3288 SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
3289 QualType ConvTy) override {
3290 return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
3291 << ConvTy;
3292 }
3293
3294 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
3295 QualType T,
3296 QualType ConvTy) override {
3297 llvm_unreachable("conversion functions are permitted");
3298 }
3299 } Converter;
3300
3301 Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter);
3302 if (Ex.isInvalid())
3303 return ExprError();
3304 Type = Ex.get()->getType();
3305 if (!Converter.match(Type))
3306 // FIXME: PerformContextualImplicitConversion should return ExprError
3307 // itself in this case.
3308 return ExprError();
3309
3310 QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
3311 QualType PointeeElem = Context.getBaseElementType(Pointee);
3312
3313 if (Pointee.getAddressSpace() != LangAS::Default &&
3314 !getLangOpts().OpenCLCPlusPlus)
3315 return Diag(Ex.get()->getBeginLoc(),
3316 diag::err_address_space_qualified_delete)
3317 << Pointee.getUnqualifiedType()
3318 << Pointee.getQualifiers().getAddressSpaceAttributePrintValue();
3319
3320 CXXRecordDecl *PointeeRD = nullptr;
3321 if (Pointee->isVoidType() && !isSFINAEContext()) {
3322 // The C++ standard bans deleting a pointer to a non-object type, which
3323 // effectively bans deletion of "void*". However, most compilers support
3324 // this, so we treat it as a warning unless we're in a SFINAE context.
3325 Diag(StartLoc, diag::ext_delete_void_ptr_operand)
3326 << Type << Ex.get()->getSourceRange();
3327 } else if (Pointee->isFunctionType() || Pointee->isVoidType()) {
3328 return ExprError(Diag(StartLoc, diag::err_delete_operand)
3329 << Type << Ex.get()->getSourceRange());
3330 } else if (!Pointee->isDependentType()) {
3331 // FIXME: This can result in errors if the definition was imported from a
3332 // module but is hidden.
3333 if (!RequireCompleteType(StartLoc, Pointee,
3334 diag::warn_delete_incomplete, Ex.get())) {
3335 if (const RecordType *RT = PointeeElem->getAs<RecordType>())
3336 PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
3337 }
3338 }
3339
3340 if (Pointee->isArrayType() && !ArrayForm) {
3341 Diag(StartLoc, diag::warn_delete_array_type)
3342 << Type << Ex.get()->getSourceRange()
3343 << FixItHint::CreateInsertion(getLocForEndOfToken(StartLoc), "[]");
3344 ArrayForm = true;
3345 }
3346
3347 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
3348 ArrayForm ? OO_Array_Delete : OO_Delete);
3349
3350 if (PointeeRD) {
3351 if (!UseGlobal &&
3352 FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
3353 OperatorDelete))
3354 return ExprError();
3355
3356 // If we're allocating an array of records, check whether the
3357 // usual operator delete[] has a size_t parameter.
3358 if (ArrayForm) {
3359 // If the user specifically asked to use the global allocator,
3360 // we'll need to do the lookup into the class.
3361 if (UseGlobal)
3362 UsualArrayDeleteWantsSize =
3363 doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
3364
3365 // Otherwise, the usual operator delete[] should be the
3366 // function we just found.
3367 else if (OperatorDelete && isa<CXXMethodDecl>(OperatorDelete))
3368 UsualArrayDeleteWantsSize =
3369 UsualDeallocFnInfo(*this,
3370 DeclAccessPair::make(OperatorDelete, AS_public))
3371 .HasSizeT;
3372 }
3373
3374 if (!PointeeRD->hasIrrelevantDestructor())
3375 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
3376 MarkFunctionReferenced(StartLoc,
3377 const_cast<CXXDestructorDecl*>(Dtor));
3378 if (DiagnoseUseOfDecl(Dtor, StartLoc))
3379 return ExprError();
3380 }
3381
3382 CheckVirtualDtorCall(PointeeRD->getDestructor(), StartLoc,
3383 /*IsDelete=*/true, /*CallCanBeVirtual=*/true,
3384 /*WarnOnNonAbstractTypes=*/!ArrayForm,
3385 SourceLocation());
3386 }
3387
3388 if (!OperatorDelete) {
3389 if (getLangOpts().OpenCLCPlusPlus) {
3390 Diag(StartLoc, diag::err_openclcxx_not_supported) << "default delete";
3391 return ExprError();
3392 }
3393
3394 bool IsComplete = isCompleteType(StartLoc, Pointee);
3395 bool CanProvideSize =
3396 IsComplete && (!ArrayForm || UsualArrayDeleteWantsSize ||
3397 Pointee.isDestructedType());
3398 bool Overaligned = hasNewExtendedAlignment(*this, Pointee);
3399
3400 // Look for a global declaration.
3401 OperatorDelete = FindUsualDeallocationFunction(StartLoc, CanProvideSize,
3402 Overaligned, DeleteName);
3403 }
3404
3405 MarkFunctionReferenced(StartLoc, OperatorDelete);
3406
3407 // Check access and ambiguity of destructor if we're going to call it.
3408 // Note that this is required even for a virtual delete.
3409 bool IsVirtualDelete = false;
3410 if (PointeeRD) {
3411 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
3412 CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
3413 PDiag(diag::err_access_dtor) << PointeeElem);
3414 IsVirtualDelete = Dtor->isVirtual();
3415 }
3416 }
3417
3418 DiagnoseUseOfDecl(OperatorDelete, StartLoc);
3419
3420 // Convert the operand to the type of the first parameter of operator
3421 // delete. This is only necessary if we selected a destroying operator
3422 // delete that we are going to call (non-virtually); converting to void*
3423 // is trivial and left to AST consumers to handle.
3424 QualType ParamType = OperatorDelete->getParamDecl(0)->getType();
3425 if (!IsVirtualDelete && !ParamType->getPointeeType()->isVoidType()) {
3426 Qualifiers Qs = Pointee.getQualifiers();
3427 if (Qs.hasCVRQualifiers()) {
3428 // Qualifiers are irrelevant to this conversion; we're only looking
3429 // for access and ambiguity.
3430 Qs.removeCVRQualifiers();
3431 QualType Unqual = Context.getPointerType(
3432 Context.getQualifiedType(Pointee.getUnqualifiedType(), Qs));
3433 Ex = ImpCastExprToType(Ex.get(), Unqual, CK_NoOp);
3434 }
3435 Ex = PerformImplicitConversion(Ex.get(), ParamType, AA_Passing);
3436 if (Ex.isInvalid())
3437 return ExprError();
3438 }
3439 }
3440
3441 CXXDeleteExpr *Result = new (Context) CXXDeleteExpr(
3442 Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten,
3443 UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc);
3444 AnalyzeDeleteExprMismatch(Result);
3445 return Result;
3446 }
3447
resolveBuiltinNewDeleteOverload(Sema & S,CallExpr * TheCall,bool IsDelete,FunctionDecl * & Operator)3448 static bool resolveBuiltinNewDeleteOverload(Sema &S, CallExpr *TheCall,
3449 bool IsDelete,
3450 FunctionDecl *&Operator) {
3451
3452 DeclarationName NewName = S.Context.DeclarationNames.getCXXOperatorName(
3453 IsDelete ? OO_Delete : OO_New);
3454
3455 LookupResult R(S, NewName, TheCall->getBeginLoc(), Sema::LookupOrdinaryName);
3456 S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl());
3457 assert(!R.empty() && "implicitly declared allocation functions not found");
3458 assert(!R.isAmbiguous() && "global allocation functions are ambiguous");
3459
3460 // We do our own custom access checks below.
3461 R.suppressDiagnostics();
3462
3463 SmallVector<Expr *, 8> Args(TheCall->arg_begin(), TheCall->arg_end());
3464 OverloadCandidateSet Candidates(R.getNameLoc(),
3465 OverloadCandidateSet::CSK_Normal);
3466 for (LookupResult::iterator FnOvl = R.begin(), FnOvlEnd = R.end();
3467 FnOvl != FnOvlEnd; ++FnOvl) {
3468 // Even member operator new/delete are implicitly treated as
3469 // static, so don't use AddMemberCandidate.
3470 NamedDecl *D = (*FnOvl)->getUnderlyingDecl();
3471
3472 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
3473 S.AddTemplateOverloadCandidate(FnTemplate, FnOvl.getPair(),
3474 /*ExplicitTemplateArgs=*/nullptr, Args,
3475 Candidates,
3476 /*SuppressUserConversions=*/false);
3477 continue;
3478 }
3479
3480 FunctionDecl *Fn = cast<FunctionDecl>(D);
3481 S.AddOverloadCandidate(Fn, FnOvl.getPair(), Args, Candidates,
3482 /*SuppressUserConversions=*/false);
3483 }
3484
3485 SourceRange Range = TheCall->getSourceRange();
3486
3487 // Do the resolution.
3488 OverloadCandidateSet::iterator Best;
3489 switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) {
3490 case OR_Success: {
3491 // Got one!
3492 FunctionDecl *FnDecl = Best->Function;
3493 assert(R.getNamingClass() == nullptr &&
3494 "class members should not be considered");
3495
3496 if (!FnDecl->isReplaceableGlobalAllocationFunction()) {
3497 S.Diag(R.getNameLoc(), diag::err_builtin_operator_new_delete_not_usual)
3498 << (IsDelete ? 1 : 0) << Range;
3499 S.Diag(FnDecl->getLocation(), diag::note_non_usual_function_declared_here)
3500 << R.getLookupName() << FnDecl->getSourceRange();
3501 return true;
3502 }
3503
3504 Operator = FnDecl;
3505 return false;
3506 }
3507
3508 case OR_No_Viable_Function:
3509 S.Diag(R.getNameLoc(), diag::err_ovl_no_viable_function_in_call)
3510 << R.getLookupName() << Range;
3511 Candidates.NoteCandidates(S, OCD_AllCandidates, Args);
3512 return true;
3513
3514 case OR_Ambiguous:
3515 S.Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call)
3516 << R.getLookupName() << Range;
3517 Candidates.NoteCandidates(S, OCD_ViableCandidates, Args);
3518 return true;
3519
3520 case OR_Deleted: {
3521 S.Diag(R.getNameLoc(), diag::err_ovl_deleted_call)
3522 << Best->Function->isDeleted() << R.getLookupName()
3523 << S.getDeletedOrUnavailableSuffix(Best->Function) << Range;
3524 Candidates.NoteCandidates(S, OCD_AllCandidates, Args);
3525 return true;
3526 }
3527 }
3528 llvm_unreachable("Unreachable, bad result from BestViableFunction");
3529 }
3530
3531 ExprResult
SemaBuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult,bool IsDelete)3532 Sema::SemaBuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult,
3533 bool IsDelete) {
3534 CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
3535 if (!getLangOpts().CPlusPlus) {
3536 Diag(TheCall->getExprLoc(), diag::err_builtin_requires_language)
3537 << (IsDelete ? "__builtin_operator_delete" : "__builtin_operator_new")
3538 << "C++";
3539 return ExprError();
3540 }
3541 // CodeGen assumes it can find the global new and delete to call,
3542 // so ensure that they are declared.
3543 DeclareGlobalNewDelete();
3544
3545 FunctionDecl *OperatorNewOrDelete = nullptr;
3546 if (resolveBuiltinNewDeleteOverload(*this, TheCall, IsDelete,
3547 OperatorNewOrDelete))
3548 return ExprError();
3549 assert(OperatorNewOrDelete && "should be found");
3550
3551 DiagnoseUseOfDecl(OperatorNewOrDelete, TheCall->getExprLoc());
3552 MarkFunctionReferenced(TheCall->getExprLoc(), OperatorNewOrDelete);
3553
3554 TheCall->setType(OperatorNewOrDelete->getReturnType());
3555 for (unsigned i = 0; i != TheCall->getNumArgs(); ++i) {
3556 QualType ParamTy = OperatorNewOrDelete->getParamDecl(i)->getType();
3557 InitializedEntity Entity =
3558 InitializedEntity::InitializeParameter(Context, ParamTy, false);
3559 ExprResult Arg = PerformCopyInitialization(
3560 Entity, TheCall->getArg(i)->getBeginLoc(), TheCall->getArg(i));
3561 if (Arg.isInvalid())
3562 return ExprError();
3563 TheCall->setArg(i, Arg.get());
3564 }
3565 auto Callee = dyn_cast<ImplicitCastExpr>(TheCall->getCallee());
3566 assert(Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr &&
3567 "Callee expected to be implicit cast to a builtin function pointer");
3568 Callee->setType(OperatorNewOrDelete->getType());
3569
3570 return TheCallResult;
3571 }
3572
CheckVirtualDtorCall(CXXDestructorDecl * dtor,SourceLocation Loc,bool IsDelete,bool CallCanBeVirtual,bool WarnOnNonAbstractTypes,SourceLocation DtorLoc)3573 void Sema::CheckVirtualDtorCall(CXXDestructorDecl *dtor, SourceLocation Loc,
3574 bool IsDelete, bool CallCanBeVirtual,
3575 bool WarnOnNonAbstractTypes,
3576 SourceLocation DtorLoc) {
3577 if (!dtor || dtor->isVirtual() || !CallCanBeVirtual || isUnevaluatedContext())
3578 return;
3579
3580 // C++ [expr.delete]p3:
3581 // In the first alternative (delete object), if the static type of the
3582 // object to be deleted is different from its dynamic type, the static
3583 // type shall be a base class of the dynamic type of the object to be
3584 // deleted and the static type shall have a virtual destructor or the
3585 // behavior is undefined.
3586 //
3587 const CXXRecordDecl *PointeeRD = dtor->getParent();
3588 // Note: a final class cannot be derived from, no issue there
3589 if (!PointeeRD->isPolymorphic() || PointeeRD->hasAttr<FinalAttr>())
3590 return;
3591
3592 // If the superclass is in a system header, there's nothing that can be done.
3593 // The `delete` (where we emit the warning) can be in a system header,
3594 // what matters for this warning is where the deleted type is defined.
3595 if (getSourceManager().isInSystemHeader(PointeeRD->getLocation()))
3596 return;
3597
3598 QualType ClassType = dtor->getThisType()->getPointeeType();
3599 if (PointeeRD->isAbstract()) {
3600 // If the class is abstract, we warn by default, because we're
3601 // sure the code has undefined behavior.
3602 Diag(Loc, diag::warn_delete_abstract_non_virtual_dtor) << (IsDelete ? 0 : 1)
3603 << ClassType;
3604 } else if (WarnOnNonAbstractTypes) {
3605 // Otherwise, if this is not an array delete, it's a bit suspect,
3606 // but not necessarily wrong.
3607 Diag(Loc, diag::warn_delete_non_virtual_dtor) << (IsDelete ? 0 : 1)
3608 << ClassType;
3609 }
3610 if (!IsDelete) {
3611 std::string TypeStr;
3612 ClassType.getAsStringInternal(TypeStr, getPrintingPolicy());
3613 Diag(DtorLoc, diag::note_delete_non_virtual)
3614 << FixItHint::CreateInsertion(DtorLoc, TypeStr + "::");
3615 }
3616 }
3617
ActOnConditionVariable(Decl * ConditionVar,SourceLocation StmtLoc,ConditionKind CK)3618 Sema::ConditionResult Sema::ActOnConditionVariable(Decl *ConditionVar,
3619 SourceLocation StmtLoc,
3620 ConditionKind CK) {
3621 ExprResult E =
3622 CheckConditionVariable(cast<VarDecl>(ConditionVar), StmtLoc, CK);
3623 if (E.isInvalid())
3624 return ConditionError();
3625 return ConditionResult(*this, ConditionVar, MakeFullExpr(E.get(), StmtLoc),
3626 CK == ConditionKind::ConstexprIf);
3627 }
3628
3629 /// Check the use of the given variable as a C++ condition in an if,
3630 /// while, do-while, or switch statement.
CheckConditionVariable(VarDecl * ConditionVar,SourceLocation StmtLoc,ConditionKind CK)3631 ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
3632 SourceLocation StmtLoc,
3633 ConditionKind CK) {
3634 if (ConditionVar->isInvalidDecl())
3635 return ExprError();
3636
3637 QualType T = ConditionVar->getType();
3638
3639 // C++ [stmt.select]p2:
3640 // The declarator shall not specify a function or an array.
3641 if (T->isFunctionType())
3642 return ExprError(Diag(ConditionVar->getLocation(),
3643 diag::err_invalid_use_of_function_type)
3644 << ConditionVar->getSourceRange());
3645 else if (T->isArrayType())
3646 return ExprError(Diag(ConditionVar->getLocation(),
3647 diag::err_invalid_use_of_array_type)
3648 << ConditionVar->getSourceRange());
3649
3650 ExprResult Condition = DeclRefExpr::Create(
3651 Context, NestedNameSpecifierLoc(), SourceLocation(), ConditionVar,
3652 /*enclosing*/ false, ConditionVar->getLocation(),
3653 ConditionVar->getType().getNonReferenceType(), VK_LValue);
3654
3655 MarkDeclRefReferenced(cast<DeclRefExpr>(Condition.get()));
3656
3657 switch (CK) {
3658 case ConditionKind::Boolean:
3659 return CheckBooleanCondition(StmtLoc, Condition.get());
3660
3661 case ConditionKind::ConstexprIf:
3662 return CheckBooleanCondition(StmtLoc, Condition.get(), true);
3663
3664 case ConditionKind::Switch:
3665 return CheckSwitchCondition(StmtLoc, Condition.get());
3666 }
3667
3668 llvm_unreachable("unexpected condition kind");
3669 }
3670
3671 /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
CheckCXXBooleanCondition(Expr * CondExpr,bool IsConstexpr)3672 ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr) {
3673 // C++ 6.4p4:
3674 // The value of a condition that is an initialized declaration in a statement
3675 // other than a switch statement is the value of the declared variable
3676 // implicitly converted to type bool. If that conversion is ill-formed, the
3677 // program is ill-formed.
3678 // The value of a condition that is an expression is the value of the
3679 // expression, implicitly converted to bool.
3680 //
3681 // FIXME: Return this value to the caller so they don't need to recompute it.
3682 llvm::APSInt Value(/*BitWidth*/1);
3683 return (IsConstexpr && !CondExpr->isValueDependent())
3684 ? CheckConvertedConstantExpression(CondExpr, Context.BoolTy, Value,
3685 CCEK_ConstexprIf)
3686 : PerformContextuallyConvertToBool(CondExpr);
3687 }
3688
3689 /// Helper function to determine whether this is the (deprecated) C++
3690 /// conversion from a string literal to a pointer to non-const char or
3691 /// non-const wchar_t (for narrow and wide string literals,
3692 /// respectively).
3693 bool
IsStringLiteralToNonConstPointerConversion(Expr * From,QualType ToType)3694 Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
3695 // Look inside the implicit cast, if it exists.
3696 if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
3697 From = Cast->getSubExpr();
3698
3699 // A string literal (2.13.4) that is not a wide string literal can
3700 // be converted to an rvalue of type "pointer to char"; a wide
3701 // string literal can be converted to an rvalue of type "pointer
3702 // to wchar_t" (C++ 4.2p2).
3703 if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
3704 if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
3705 if (const BuiltinType *ToPointeeType
3706 = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
3707 // This conversion is considered only when there is an
3708 // explicit appropriate pointer target type (C++ 4.2p2).
3709 if (!ToPtrType->getPointeeType().hasQualifiers()) {
3710 switch (StrLit->getKind()) {
3711 case StringLiteral::UTF8:
3712 case StringLiteral::UTF16:
3713 case StringLiteral::UTF32:
3714 // We don't allow UTF literals to be implicitly converted
3715 break;
3716 case StringLiteral::Ascii:
3717 return (ToPointeeType->getKind() == BuiltinType::Char_U ||
3718 ToPointeeType->getKind() == BuiltinType::Char_S);
3719 case StringLiteral::Wide:
3720 return Context.typesAreCompatible(Context.getWideCharType(),
3721 QualType(ToPointeeType, 0));
3722 }
3723 }
3724 }
3725
3726 return false;
3727 }
3728
BuildCXXCastArgument(Sema & S,SourceLocation CastLoc,QualType Ty,CastKind Kind,CXXMethodDecl * Method,DeclAccessPair FoundDecl,bool HadMultipleCandidates,Expr * From)3729 static ExprResult BuildCXXCastArgument(Sema &S,
3730 SourceLocation CastLoc,
3731 QualType Ty,
3732 CastKind Kind,
3733 CXXMethodDecl *Method,
3734 DeclAccessPair FoundDecl,
3735 bool HadMultipleCandidates,
3736 Expr *From) {
3737 switch (Kind) {
3738 default: llvm_unreachable("Unhandled cast kind!");
3739 case CK_ConstructorConversion: {
3740 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
3741 SmallVector<Expr*, 8> ConstructorArgs;
3742
3743 if (S.RequireNonAbstractType(CastLoc, Ty,
3744 diag::err_allocation_of_abstract_type))
3745 return ExprError();
3746
3747 if (S.CompleteConstructorCall(Constructor, From, CastLoc, ConstructorArgs))
3748 return ExprError();
3749
3750 S.CheckConstructorAccess(CastLoc, Constructor, FoundDecl,
3751 InitializedEntity::InitializeTemporary(Ty));
3752 if (S.DiagnoseUseOfDecl(Method, CastLoc))
3753 return ExprError();
3754
3755 ExprResult Result = S.BuildCXXConstructExpr(
3756 CastLoc, Ty, FoundDecl, cast<CXXConstructorDecl>(Method),
3757 ConstructorArgs, HadMultipleCandidates,
3758 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
3759 CXXConstructExpr::CK_Complete, SourceRange());
3760 if (Result.isInvalid())
3761 return ExprError();
3762
3763 return S.MaybeBindToTemporary(Result.getAs<Expr>());
3764 }
3765
3766 case CK_UserDefinedConversion: {
3767 assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
3768
3769 S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl);
3770 if (S.DiagnoseUseOfDecl(Method, CastLoc))
3771 return ExprError();
3772
3773 // Create an implicit call expr that calls it.
3774 CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
3775 ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
3776 HadMultipleCandidates);
3777 if (Result.isInvalid())
3778 return ExprError();
3779 // Record usage of conversion in an implicit cast.
3780 Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(),
3781 CK_UserDefinedConversion, Result.get(),
3782 nullptr, Result.get()->getValueKind());
3783
3784 return S.MaybeBindToTemporary(Result.get());
3785 }
3786 }
3787 }
3788
3789 /// PerformImplicitConversion - Perform an implicit conversion of the
3790 /// expression From to the type ToType using the pre-computed implicit
3791 /// conversion sequence ICS. Returns the converted
3792 /// expression. Action is the kind of conversion we're performing,
3793 /// used in the error message.
3794 ExprResult
PerformImplicitConversion(Expr * From,QualType ToType,const ImplicitConversionSequence & ICS,AssignmentAction Action,CheckedConversionKind CCK)3795 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
3796 const ImplicitConversionSequence &ICS,
3797 AssignmentAction Action,
3798 CheckedConversionKind CCK) {
3799 // C++ [over.match.oper]p7: [...] operands of class type are converted [...]
3800 if (CCK == CCK_ForBuiltinOverloadedOp && !From->getType()->isRecordType())
3801 return From;
3802
3803 switch (ICS.getKind()) {
3804 case ImplicitConversionSequence::StandardConversion: {
3805 ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
3806 Action, CCK);
3807 if (Res.isInvalid())
3808 return ExprError();
3809 From = Res.get();
3810 break;
3811 }
3812
3813 case ImplicitConversionSequence::UserDefinedConversion: {
3814
3815 FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
3816 CastKind CastKind;
3817 QualType BeforeToType;
3818 assert(FD && "no conversion function for user-defined conversion seq");
3819 if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
3820 CastKind = CK_UserDefinedConversion;
3821
3822 // If the user-defined conversion is specified by a conversion function,
3823 // the initial standard conversion sequence converts the source type to
3824 // the implicit object parameter of the conversion function.
3825 BeforeToType = Context.getTagDeclType(Conv->getParent());
3826 } else {
3827 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
3828 CastKind = CK_ConstructorConversion;
3829 // Do no conversion if dealing with ... for the first conversion.
3830 if (!ICS.UserDefined.EllipsisConversion) {
3831 // If the user-defined conversion is specified by a constructor, the
3832 // initial standard conversion sequence converts the source type to
3833 // the type required by the argument of the constructor
3834 BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
3835 }
3836 }
3837 // Watch out for ellipsis conversion.
3838 if (!ICS.UserDefined.EllipsisConversion) {
3839 ExprResult Res =
3840 PerformImplicitConversion(From, BeforeToType,
3841 ICS.UserDefined.Before, AA_Converting,
3842 CCK);
3843 if (Res.isInvalid())
3844 return ExprError();
3845 From = Res.get();
3846 }
3847
3848 ExprResult CastArg = BuildCXXCastArgument(
3849 *this, From->getBeginLoc(), ToType.getNonReferenceType(), CastKind,
3850 cast<CXXMethodDecl>(FD), ICS.UserDefined.FoundConversionFunction,
3851 ICS.UserDefined.HadMultipleCandidates, From);
3852
3853 if (CastArg.isInvalid())
3854 return ExprError();
3855
3856 From = CastArg.get();
3857
3858 // C++ [over.match.oper]p7:
3859 // [...] the second standard conversion sequence of a user-defined
3860 // conversion sequence is not applied.
3861 if (CCK == CCK_ForBuiltinOverloadedOp)
3862 return From;
3863
3864 return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
3865 AA_Converting, CCK);
3866 }
3867
3868 case ImplicitConversionSequence::AmbiguousConversion:
3869 ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
3870 PDiag(diag::err_typecheck_ambiguous_condition)
3871 << From->getSourceRange());
3872 return ExprError();
3873
3874 case ImplicitConversionSequence::EllipsisConversion:
3875 llvm_unreachable("Cannot perform an ellipsis conversion");
3876
3877 case ImplicitConversionSequence::BadConversion:
3878 bool Diagnosed =
3879 DiagnoseAssignmentResult(Incompatible, From->getExprLoc(), ToType,
3880 From->getType(), From, Action);
3881 assert(Diagnosed && "failed to diagnose bad conversion"); (void)Diagnosed;
3882 return ExprError();
3883 }
3884
3885 // Everything went well.
3886 return From;
3887 }
3888
3889 /// PerformImplicitConversion - Perform an implicit conversion of the
3890 /// expression From to the type ToType by following the standard
3891 /// conversion sequence SCS. Returns the converted
3892 /// expression. Flavor is the context in which we're performing this
3893 /// conversion, for use in error messages.
3894 ExprResult
PerformImplicitConversion(Expr * From,QualType ToType,const StandardConversionSequence & SCS,AssignmentAction Action,CheckedConversionKind CCK)3895 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
3896 const StandardConversionSequence& SCS,
3897 AssignmentAction Action,
3898 CheckedConversionKind CCK) {
3899 bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
3900
3901 // Overall FIXME: we are recomputing too many types here and doing far too
3902 // much extra work. What this means is that we need to keep track of more
3903 // information that is computed when we try the implicit conversion initially,
3904 // so that we don't need to recompute anything here.
3905 QualType FromType = From->getType();
3906
3907 if (SCS.CopyConstructor) {
3908 // FIXME: When can ToType be a reference type?
3909 assert(!ToType->isReferenceType());
3910 if (SCS.Second == ICK_Derived_To_Base) {
3911 SmallVector<Expr*, 8> ConstructorArgs;
3912 if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
3913 From, /*FIXME:ConstructLoc*/SourceLocation(),
3914 ConstructorArgs))
3915 return ExprError();
3916 return BuildCXXConstructExpr(
3917 /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
3918 SCS.FoundCopyConstructor, SCS.CopyConstructor,
3919 ConstructorArgs, /*HadMultipleCandidates*/ false,
3920 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
3921 CXXConstructExpr::CK_Complete, SourceRange());
3922 }
3923 return BuildCXXConstructExpr(
3924 /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
3925 SCS.FoundCopyConstructor, SCS.CopyConstructor,
3926 From, /*HadMultipleCandidates*/ false,
3927 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
3928 CXXConstructExpr::CK_Complete, SourceRange());
3929 }
3930
3931 // Resolve overloaded function references.
3932 if (Context.hasSameType(FromType, Context.OverloadTy)) {
3933 DeclAccessPair Found;
3934 FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
3935 true, Found);
3936 if (!Fn)
3937 return ExprError();
3938
3939 if (DiagnoseUseOfDecl(Fn, From->getBeginLoc()))
3940 return ExprError();
3941
3942 From = FixOverloadedFunctionReference(From, Found, Fn);
3943 FromType = From->getType();
3944 }
3945
3946 // If we're converting to an atomic type, first convert to the corresponding
3947 // non-atomic type.
3948 QualType ToAtomicType;
3949 if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) {
3950 ToAtomicType = ToType;
3951 ToType = ToAtomic->getValueType();
3952 }
3953
3954 QualType InitialFromType = FromType;
3955 // Perform the first implicit conversion.
3956 switch (SCS.First) {
3957 case ICK_Identity:
3958 if (const AtomicType *FromAtomic = FromType->getAs<AtomicType>()) {
3959 FromType = FromAtomic->getValueType().getUnqualifiedType();
3960 From = ImplicitCastExpr::Create(Context, FromType, CK_AtomicToNonAtomic,
3961 From, /*BasePath=*/nullptr, VK_RValue);
3962 }
3963 break;
3964
3965 case ICK_Lvalue_To_Rvalue: {
3966 assert(From->getObjectKind() != OK_ObjCProperty);
3967 ExprResult FromRes = DefaultLvalueConversion(From);
3968 assert(!FromRes.isInvalid() && "Can't perform deduced conversion?!");
3969 From = FromRes.get();
3970 FromType = From->getType();
3971 break;
3972 }
3973
3974 case ICK_Array_To_Pointer:
3975 FromType = Context.getArrayDecayedType(FromType);
3976 From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay,
3977 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3978 break;
3979
3980 case ICK_Function_To_Pointer:
3981 FromType = Context.getPointerType(FromType);
3982 From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
3983 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3984 break;
3985
3986 default:
3987 llvm_unreachable("Improper first standard conversion");
3988 }
3989
3990 // Perform the second implicit conversion
3991 switch (SCS.Second) {
3992 case ICK_Identity:
3993 // C++ [except.spec]p5:
3994 // [For] assignment to and initialization of pointers to functions,
3995 // pointers to member functions, and references to functions: the
3996 // target entity shall allow at least the exceptions allowed by the
3997 // source value in the assignment or initialization.
3998 switch (Action) {
3999 case AA_Assigning:
4000 case AA_Initializing:
4001 // Note, function argument passing and returning are initialization.
4002 case AA_Passing:
4003 case AA_Returning:
4004 case AA_Sending:
4005 case AA_Passing_CFAudited:
4006 if (CheckExceptionSpecCompatibility(From, ToType))
4007 return ExprError();
4008 break;
4009
4010 case AA_Casting:
4011 case AA_Converting:
4012 // Casts and implicit conversions are not initialization, so are not
4013 // checked for exception specification mismatches.
4014 break;
4015 }
4016 // Nothing else to do.
4017 break;
4018
4019 case ICK_Integral_Promotion:
4020 case ICK_Integral_Conversion:
4021 if (ToType->isBooleanType()) {
4022 assert(FromType->castAs<EnumType>()->getDecl()->isFixed() &&
4023 SCS.Second == ICK_Integral_Promotion &&
4024 "only enums with fixed underlying type can promote to bool");
4025 From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean,
4026 VK_RValue, /*BasePath=*/nullptr, CCK).get();
4027 } else {
4028 From = ImpCastExprToType(From, ToType, CK_IntegralCast,
4029 VK_RValue, /*BasePath=*/nullptr, CCK).get();
4030 }
4031 break;
4032
4033 case ICK_Floating_Promotion:
4034 case ICK_Floating_Conversion:
4035 From = ImpCastExprToType(From, ToType, CK_FloatingCast,
4036 VK_RValue, /*BasePath=*/nullptr, CCK).get();
4037 break;
4038
4039 case ICK_Complex_Promotion:
4040 case ICK_Complex_Conversion: {
4041 QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType();
4042 QualType ToEl = ToType->getAs<ComplexType>()->getElementType();
4043 CastKind CK;
4044 if (FromEl->isRealFloatingType()) {
4045 if (ToEl->isRealFloatingType())
4046 CK = CK_FloatingComplexCast;
4047 else
4048 CK = CK_FloatingComplexToIntegralComplex;
4049 } else if (ToEl->isRealFloatingType()) {
4050 CK = CK_IntegralComplexToFloatingComplex;
4051 } else {
4052 CK = CK_IntegralComplexCast;
4053 }
4054 From = ImpCastExprToType(From, ToType, CK,
4055 VK_RValue, /*BasePath=*/nullptr, CCK).get();
4056 break;
4057 }
4058
4059 case ICK_Floating_Integral:
4060 if (ToType->isRealFloatingType())
4061 From = ImpCastExprToType(From, ToType, CK_IntegralToFloating,
4062 VK_RValue, /*BasePath=*/nullptr, CCK).get();
4063 else
4064 From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral,
4065 VK_RValue, /*BasePath=*/nullptr, CCK).get();
4066 break;
4067
4068 case ICK_Compatible_Conversion:
4069 From = ImpCastExprToType(From, ToType, CK_NoOp,
4070 VK_RValue, /*BasePath=*/nullptr, CCK).get();
4071 break;
4072
4073 case ICK_Writeback_Conversion:
4074 case ICK_Pointer_Conversion: {
4075 if (SCS.IncompatibleObjC && Action != AA_Casting) {
4076 // Diagnose incompatible Objective-C conversions
4077 if (Action == AA_Initializing || Action == AA_Assigning)
4078 Diag(From->getBeginLoc(),
4079 diag::ext_typecheck_convert_incompatible_pointer)
4080 << ToType << From->getType() << Action << From->getSourceRange()
4081 << 0;
4082 else
4083 Diag(From->getBeginLoc(),
4084 diag::ext_typecheck_convert_incompatible_pointer)
4085 << From->getType() << ToType << Action << From->getSourceRange()
4086 << 0;
4087
4088 if (From->getType()->isObjCObjectPointerType() &&
4089 ToType->isObjCObjectPointerType())
4090 EmitRelatedResultTypeNote(From);
4091 } else if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
4092 !CheckObjCARCUnavailableWeakConversion(ToType,
4093 From->getType())) {
4094 if (Action == AA_Initializing)
4095 Diag(From->getBeginLoc(), diag::err_arc_weak_unavailable_assign);
4096 else
4097 Diag(From->getBeginLoc(), diag::err_arc_convesion_of_weak_unavailable)
4098 << (Action == AA_Casting) << From->getType() << ToType
4099 << From->getSourceRange();
4100 }
4101
4102 CastKind Kind;
4103 CXXCastPath BasePath;
4104 if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle))
4105 return ExprError();
4106
4107 // Make sure we extend blocks if necessary.
4108 // FIXME: doing this here is really ugly.
4109 if (Kind == CK_BlockPointerToObjCPointerCast) {
4110 ExprResult E = From;
4111 (void) PrepareCastToObjCObjectPointer(E);
4112 From = E.get();
4113 }
4114 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers())
4115 CheckObjCConversion(SourceRange(), ToType, From, CCK);
4116 From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
4117 .get();
4118 break;
4119 }
4120
4121 case ICK_Pointer_Member: {
4122 CastKind Kind;
4123 CXXCastPath BasePath;
4124 if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
4125 return ExprError();
4126 if (CheckExceptionSpecCompatibility(From, ToType))
4127 return ExprError();
4128
4129 // We may not have been able to figure out what this member pointer resolved
4130 // to up until this exact point. Attempt to lock-in it's inheritance model.
4131 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4132 (void)isCompleteType(From->getExprLoc(), From->getType());
4133 (void)isCompleteType(From->getExprLoc(), ToType);
4134 }
4135
4136 From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
4137 .get();
4138 break;
4139 }
4140
4141 case ICK_Boolean_Conversion:
4142 // Perform half-to-boolean conversion via float.
4143 if (From->getType()->isHalfType()) {
4144 From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get();
4145 FromType = Context.FloatTy;
4146 }
4147
4148 From = ImpCastExprToType(From, Context.BoolTy,
4149 ScalarTypeToBooleanCastKind(FromType),
4150 VK_RValue, /*BasePath=*/nullptr, CCK).get();
4151 break;
4152
4153 case ICK_Derived_To_Base: {
4154 CXXCastPath BasePath;
4155 if (CheckDerivedToBaseConversion(
4156 From->getType(), ToType.getNonReferenceType(), From->getBeginLoc(),
4157 From->getSourceRange(), &BasePath, CStyle))
4158 return ExprError();
4159
4160 From = ImpCastExprToType(From, ToType.getNonReferenceType(),
4161 CK_DerivedToBase, From->getValueKind(),
4162 &BasePath, CCK).get();
4163 break;
4164 }
4165
4166 case ICK_Vector_Conversion:
4167 From = ImpCastExprToType(From, ToType, CK_BitCast,
4168 VK_RValue, /*BasePath=*/nullptr, CCK).get();
4169 break;
4170
4171 case ICK_Vector_Splat: {
4172 // Vector splat from any arithmetic type to a vector.
4173 Expr *Elem = prepareVectorSplat(ToType, From).get();
4174 From = ImpCastExprToType(Elem, ToType, CK_VectorSplat, VK_RValue,
4175 /*BasePath=*/nullptr, CCK).get();
4176 break;
4177 }
4178
4179 case ICK_Complex_Real:
4180 // Case 1. x -> _Complex y
4181 if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
4182 QualType ElType = ToComplex->getElementType();
4183 bool isFloatingComplex = ElType->isRealFloatingType();
4184
4185 // x -> y
4186 if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
4187 // do nothing
4188 } else if (From->getType()->isRealFloatingType()) {
4189 From = ImpCastExprToType(From, ElType,
4190 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get();
4191 } else {
4192 assert(From->getType()->isIntegerType());
4193 From = ImpCastExprToType(From, ElType,
4194 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get();
4195 }
4196 // y -> _Complex y
4197 From = ImpCastExprToType(From, ToType,
4198 isFloatingComplex ? CK_FloatingRealToComplex
4199 : CK_IntegralRealToComplex).get();
4200
4201 // Case 2. _Complex x -> y
4202 } else {
4203 const ComplexType *FromComplex = From->getType()->getAs<ComplexType>();
4204 assert(FromComplex);
4205
4206 QualType ElType = FromComplex->getElementType();
4207 bool isFloatingComplex = ElType->isRealFloatingType();
4208
4209 // _Complex x -> x
4210 From = ImpCastExprToType(From, ElType,
4211 isFloatingComplex ? CK_FloatingComplexToReal
4212 : CK_IntegralComplexToReal,
4213 VK_RValue, /*BasePath=*/nullptr, CCK).get();
4214
4215 // x -> y
4216 if (Context.hasSameUnqualifiedType(ElType, ToType)) {
4217 // do nothing
4218 } else if (ToType->isRealFloatingType()) {
4219 From = ImpCastExprToType(From, ToType,
4220 isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating,
4221 VK_RValue, /*BasePath=*/nullptr, CCK).get();
4222 } else {
4223 assert(ToType->isIntegerType());
4224 From = ImpCastExprToType(From, ToType,
4225 isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast,
4226 VK_RValue, /*BasePath=*/nullptr, CCK).get();
4227 }
4228 }
4229 break;
4230
4231 case ICK_Block_Pointer_Conversion: {
4232 From = ImpCastExprToType(From, ToType.getUnqualifiedType(), CK_BitCast,
4233 VK_RValue, /*BasePath=*/nullptr, CCK).get();
4234 break;
4235 }
4236
4237 case ICK_TransparentUnionConversion: {
4238 ExprResult FromRes = From;
4239 Sema::AssignConvertType ConvTy =
4240 CheckTransparentUnionArgumentConstraints(ToType, FromRes);
4241 if (FromRes.isInvalid())
4242 return ExprError();
4243 From = FromRes.get();
4244 assert ((ConvTy == Sema::Compatible) &&
4245 "Improper transparent union conversion");
4246 (void)ConvTy;
4247 break;
4248 }
4249
4250 case ICK_Zero_Event_Conversion:
4251 case ICK_Zero_Queue_Conversion:
4252 From = ImpCastExprToType(From, ToType,
4253 CK_ZeroToOCLOpaqueType,
4254 From->getValueKind()).get();
4255 break;
4256
4257 case ICK_Lvalue_To_Rvalue:
4258 case ICK_Array_To_Pointer:
4259 case ICK_Function_To_Pointer:
4260 case ICK_Function_Conversion:
4261 case ICK_Qualification:
4262 case ICK_Num_Conversion_Kinds:
4263 case ICK_C_Only_Conversion:
4264 case ICK_Incompatible_Pointer_Conversion:
4265 llvm_unreachable("Improper second standard conversion");
4266 }
4267
4268 switch (SCS.Third) {
4269 case ICK_Identity:
4270 // Nothing to do.
4271 break;
4272
4273 case ICK_Function_Conversion:
4274 // If both sides are functions (or pointers/references to them), there could
4275 // be incompatible exception declarations.
4276 if (CheckExceptionSpecCompatibility(From, ToType))
4277 return ExprError();
4278
4279 From = ImpCastExprToType(From, ToType, CK_NoOp,
4280 VK_RValue, /*BasePath=*/nullptr, CCK).get();
4281 break;
4282
4283 case ICK_Qualification: {
4284 // The qualification keeps the category of the inner expression, unless the
4285 // target type isn't a reference.
4286 ExprValueKind VK =
4287 ToType->isReferenceType() ? From->getValueKind() : VK_RValue;
4288
4289 CastKind CK = CK_NoOp;
4290
4291 if (ToType->isReferenceType() &&
4292 ToType->getPointeeType().getAddressSpace() !=
4293 From->getType().getAddressSpace())
4294 CK = CK_AddressSpaceConversion;
4295
4296 if (ToType->isPointerType() &&
4297 ToType->getPointeeType().getAddressSpace() !=
4298 From->getType()->getPointeeType().getAddressSpace())
4299 CK = CK_AddressSpaceConversion;
4300
4301 From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context), CK, VK,
4302 /*BasePath=*/nullptr, CCK)
4303 .get();
4304
4305 if (SCS.DeprecatedStringLiteralToCharPtr &&
4306 !getLangOpts().WritableStrings) {
4307 Diag(From->getBeginLoc(),
4308 getLangOpts().CPlusPlus11
4309 ? diag::ext_deprecated_string_literal_conversion
4310 : diag::warn_deprecated_string_literal_conversion)
4311 << ToType.getNonReferenceType();
4312 }
4313
4314 break;
4315 }
4316
4317 default:
4318 llvm_unreachable("Improper third standard conversion");
4319 }
4320
4321 // If this conversion sequence involved a scalar -> atomic conversion, perform
4322 // that conversion now.
4323 if (!ToAtomicType.isNull()) {
4324 assert(Context.hasSameType(
4325 ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType()));
4326 From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic,
4327 VK_RValue, nullptr, CCK).get();
4328 }
4329
4330 // If this conversion sequence succeeded and involved implicitly converting a
4331 // _Nullable type to a _Nonnull one, complain.
4332 if (!isCast(CCK))
4333 diagnoseNullableToNonnullConversion(ToType, InitialFromType,
4334 From->getBeginLoc());
4335
4336 return From;
4337 }
4338
4339 /// Check the completeness of a type in a unary type trait.
4340 ///
4341 /// If the particular type trait requires a complete type, tries to complete
4342 /// it. If completing the type fails, a diagnostic is emitted and false
4343 /// returned. If completing the type succeeds or no completion was required,
4344 /// returns true.
CheckUnaryTypeTraitTypeCompleteness(Sema & S,TypeTrait UTT,SourceLocation Loc,QualType ArgTy)4345 static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT,
4346 SourceLocation Loc,
4347 QualType ArgTy) {
4348 // C++0x [meta.unary.prop]p3:
4349 // For all of the class templates X declared in this Clause, instantiating
4350 // that template with a template argument that is a class template
4351 // specialization may result in the implicit instantiation of the template
4352 // argument if and only if the semantics of X require that the argument
4353 // must be a complete type.
4354 // We apply this rule to all the type trait expressions used to implement
4355 // these class templates. We also try to follow any GCC documented behavior
4356 // in these expressions to ensure portability of standard libraries.
4357 switch (UTT) {
4358 default: llvm_unreachable("not a UTT");
4359 // is_complete_type somewhat obviously cannot require a complete type.
4360 case UTT_IsCompleteType:
4361 // Fall-through
4362
4363 // These traits are modeled on the type predicates in C++0x
4364 // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
4365 // requiring a complete type, as whether or not they return true cannot be
4366 // impacted by the completeness of the type.
4367 case UTT_IsVoid:
4368 case UTT_IsIntegral:
4369 case UTT_IsFloatingPoint:
4370 case UTT_IsArray:
4371 case UTT_IsPointer:
4372 case UTT_IsLvalueReference:
4373 case UTT_IsRvalueReference:
4374 case UTT_IsMemberFunctionPointer:
4375 case UTT_IsMemberObjectPointer:
4376 case UTT_IsEnum:
4377 case UTT_IsUnion:
4378 case UTT_IsClass:
4379 case UTT_IsFunction:
4380 case UTT_IsReference:
4381 case UTT_IsArithmetic:
4382 case UTT_IsFundamental:
4383 case UTT_IsObject:
4384 case UTT_IsScalar:
4385 case UTT_IsCompound:
4386 case UTT_IsMemberPointer:
4387 // Fall-through
4388
4389 // These traits are modeled on type predicates in C++0x [meta.unary.prop]
4390 // which requires some of its traits to have the complete type. However,
4391 // the completeness of the type cannot impact these traits' semantics, and
4392 // so they don't require it. This matches the comments on these traits in
4393 // Table 49.
4394 case UTT_IsConst:
4395 case UTT_IsVolatile:
4396 case UTT_IsSigned:
4397 case UTT_IsUnsigned:
4398
4399 // This type trait always returns false, checking the type is moot.
4400 case UTT_IsInterfaceClass:
4401 return true;
4402
4403 // C++14 [meta.unary.prop]:
4404 // If T is a non-union class type, T shall be a complete type.
4405 case UTT_IsEmpty:
4406 case UTT_IsPolymorphic:
4407 case UTT_IsAbstract:
4408 if (const auto *RD = ArgTy->getAsCXXRecordDecl())
4409 if (!RD->isUnion())
4410 return !S.RequireCompleteType(
4411 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4412 return true;
4413
4414 // C++14 [meta.unary.prop]:
4415 // If T is a class type, T shall be a complete type.
4416 case UTT_IsFinal:
4417 case UTT_IsSealed:
4418 if (ArgTy->getAsCXXRecordDecl())
4419 return !S.RequireCompleteType(
4420 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4421 return true;
4422
4423 // C++1z [meta.unary.prop]:
4424 // remove_all_extents_t<T> shall be a complete type or cv void.
4425 case UTT_IsAggregate:
4426 case UTT_IsTrivial:
4427 case UTT_IsTriviallyCopyable:
4428 case UTT_IsStandardLayout:
4429 case UTT_IsPOD:
4430 case UTT_IsLiteral:
4431 // Per the GCC type traits documentation, T shall be a complete type, cv void,
4432 // or an array of unknown bound. But GCC actually imposes the same constraints
4433 // as above.
4434 case UTT_HasNothrowAssign:
4435 case UTT_HasNothrowMoveAssign:
4436 case UTT_HasNothrowConstructor:
4437 case UTT_HasNothrowCopy:
4438 case UTT_HasTrivialAssign:
4439 case UTT_HasTrivialMoveAssign:
4440 case UTT_HasTrivialDefaultConstructor:
4441 case UTT_HasTrivialMoveConstructor:
4442 case UTT_HasTrivialCopy:
4443 case UTT_HasTrivialDestructor:
4444 case UTT_HasVirtualDestructor:
4445 ArgTy = QualType(ArgTy->getBaseElementTypeUnsafe(), 0);
4446 LLVM_FALLTHROUGH;
4447
4448 // C++1z [meta.unary.prop]:
4449 // T shall be a complete type, cv void, or an array of unknown bound.
4450 case UTT_IsDestructible:
4451 case UTT_IsNothrowDestructible:
4452 case UTT_IsTriviallyDestructible:
4453 case UTT_HasUniqueObjectRepresentations:
4454 if (ArgTy->isIncompleteArrayType() || ArgTy->isVoidType())
4455 return true;
4456
4457 return !S.RequireCompleteType(
4458 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4459 }
4460 }
4461
HasNoThrowOperator(const RecordType * RT,OverloadedOperatorKind Op,Sema & Self,SourceLocation KeyLoc,ASTContext & C,bool (CXXRecordDecl::* HasTrivial)()const,bool (CXXRecordDecl::* HasNonTrivial)()const,bool (CXXMethodDecl::* IsDesiredOp)()const)4462 static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op,
4463 Sema &Self, SourceLocation KeyLoc, ASTContext &C,
4464 bool (CXXRecordDecl::*HasTrivial)() const,
4465 bool (CXXRecordDecl::*HasNonTrivial)() const,
4466 bool (CXXMethodDecl::*IsDesiredOp)() const)
4467 {
4468 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4469 if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)())
4470 return true;
4471
4472 DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op);
4473 DeclarationNameInfo NameInfo(Name, KeyLoc);
4474 LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName);
4475 if (Self.LookupQualifiedName(Res, RD)) {
4476 bool FoundOperator = false;
4477 Res.suppressDiagnostics();
4478 for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
4479 Op != OpEnd; ++Op) {
4480 if (isa<FunctionTemplateDecl>(*Op))
4481 continue;
4482
4483 CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
4484 if((Operator->*IsDesiredOp)()) {
4485 FoundOperator = true;
4486 const FunctionProtoType *CPT =
4487 Operator->getType()->getAs<FunctionProtoType>();
4488 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
4489 if (!CPT || !CPT->isNothrow())
4490 return false;
4491 }
4492 }
4493 return FoundOperator;
4494 }
4495 return false;
4496 }
4497
EvaluateUnaryTypeTrait(Sema & Self,TypeTrait UTT,SourceLocation KeyLoc,QualType T)4498 static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT,
4499 SourceLocation KeyLoc, QualType T) {
4500 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
4501
4502 ASTContext &C = Self.Context;
4503 switch(UTT) {
4504 default: llvm_unreachable("not a UTT");
4505 // Type trait expressions corresponding to the primary type category
4506 // predicates in C++0x [meta.unary.cat].
4507 case UTT_IsVoid:
4508 return T->isVoidType();
4509 case UTT_IsIntegral:
4510 return T->isIntegralType(C);
4511 case UTT_IsFloatingPoint:
4512 return T->isFloatingType();
4513 case UTT_IsArray:
4514 return T->isArrayType();
4515 case UTT_IsPointer:
4516 return T->isPointerType();
4517 case UTT_IsLvalueReference:
4518 return T->isLValueReferenceType();
4519 case UTT_IsRvalueReference:
4520 return T->isRValueReferenceType();
4521 case UTT_IsMemberFunctionPointer:
4522 return T->isMemberFunctionPointerType();
4523 case UTT_IsMemberObjectPointer:
4524 return T->isMemberDataPointerType();
4525 case UTT_IsEnum:
4526 return T->isEnumeralType();
4527 case UTT_IsUnion:
4528 return T->isUnionType();
4529 case UTT_IsClass:
4530 return T->isClassType() || T->isStructureType() || T->isInterfaceType();
4531 case UTT_IsFunction:
4532 return T->isFunctionType();
4533
4534 // Type trait expressions which correspond to the convenient composition
4535 // predicates in C++0x [meta.unary.comp].
4536 case UTT_IsReference:
4537 return T->isReferenceType();
4538 case UTT_IsArithmetic:
4539 return T->isArithmeticType() && !T->isEnumeralType();
4540 case UTT_IsFundamental:
4541 return T->isFundamentalType();
4542 case UTT_IsObject:
4543 return T->isObjectType();
4544 case UTT_IsScalar:
4545 // Note: semantic analysis depends on Objective-C lifetime types to be
4546 // considered scalar types. However, such types do not actually behave
4547 // like scalar types at run time (since they may require retain/release
4548 // operations), so we report them as non-scalar.
4549 if (T->isObjCLifetimeType()) {
4550 switch (T.getObjCLifetime()) {
4551 case Qualifiers::OCL_None:
4552 case Qualifiers::OCL_ExplicitNone:
4553 return true;
4554
4555 case Qualifiers::OCL_Strong:
4556 case Qualifiers::OCL_Weak:
4557 case Qualifiers::OCL_Autoreleasing:
4558 return false;
4559 }
4560 }
4561
4562 return T->isScalarType();
4563 case UTT_IsCompound:
4564 return T->isCompoundType();
4565 case UTT_IsMemberPointer:
4566 return T->isMemberPointerType();
4567
4568 // Type trait expressions which correspond to the type property predicates
4569 // in C++0x [meta.unary.prop].
4570 case UTT_IsConst:
4571 return T.isConstQualified();
4572 case UTT_IsVolatile:
4573 return T.isVolatileQualified();
4574 case UTT_IsTrivial:
4575 return T.isTrivialType(C);
4576 case UTT_IsTriviallyCopyable:
4577 return T.isTriviallyCopyableType(C);
4578 case UTT_IsStandardLayout:
4579 return T->isStandardLayoutType();
4580 case UTT_IsPOD:
4581 return T.isPODType(C);
4582 case UTT_IsLiteral:
4583 return T->isLiteralType(C);
4584 case UTT_IsEmpty:
4585 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4586 return !RD->isUnion() && RD->isEmpty();
4587 return false;
4588 case UTT_IsPolymorphic:
4589 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4590 return !RD->isUnion() && RD->isPolymorphic();
4591 return false;
4592 case UTT_IsAbstract:
4593 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4594 return !RD->isUnion() && RD->isAbstract();
4595 return false;
4596 case UTT_IsAggregate:
4597 // Report vector extensions and complex types as aggregates because they
4598 // support aggregate initialization. GCC mirrors this behavior for vectors
4599 // but not _Complex.
4600 return T->isAggregateType() || T->isVectorType() || T->isExtVectorType() ||
4601 T->isAnyComplexType();
4602 // __is_interface_class only returns true when CL is invoked in /CLR mode and
4603 // even then only when it is used with the 'interface struct ...' syntax
4604 // Clang doesn't support /CLR which makes this type trait moot.
4605 case UTT_IsInterfaceClass:
4606 return false;
4607 case UTT_IsFinal:
4608 case UTT_IsSealed:
4609 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4610 return RD->hasAttr<FinalAttr>();
4611 return false;
4612 case UTT_IsSigned:
4613 return T->isSignedIntegerType();
4614 case UTT_IsUnsigned:
4615 return T->isUnsignedIntegerType();
4616
4617 // Type trait expressions which query classes regarding their construction,
4618 // destruction, and copying. Rather than being based directly on the
4619 // related type predicates in the standard, they are specified by both
4620 // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
4621 // specifications.
4622 //
4623 // 1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
4624 // 2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
4625 //
4626 // Note that these builtins do not behave as documented in g++: if a class
4627 // has both a trivial and a non-trivial special member of a particular kind,
4628 // they return false! For now, we emulate this behavior.
4629 // FIXME: This appears to be a g++ bug: more complex cases reveal that it
4630 // does not correctly compute triviality in the presence of multiple special
4631 // members of the same kind. Revisit this once the g++ bug is fixed.
4632 case UTT_HasTrivialDefaultConstructor:
4633 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4634 // If __is_pod (type) is true then the trait is true, else if type is
4635 // a cv class or union type (or array thereof) with a trivial default
4636 // constructor ([class.ctor]) then the trait is true, else it is false.
4637 if (T.isPODType(C))
4638 return true;
4639 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4640 return RD->hasTrivialDefaultConstructor() &&
4641 !RD->hasNonTrivialDefaultConstructor();
4642 return false;
4643 case UTT_HasTrivialMoveConstructor:
4644 // This trait is implemented by MSVC 2012 and needed to parse the
4645 // standard library headers. Specifically this is used as the logic
4646 // behind std::is_trivially_move_constructible (20.9.4.3).
4647 if (T.isPODType(C))
4648 return true;
4649 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4650 return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor();
4651 return false;
4652 case UTT_HasTrivialCopy:
4653 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4654 // If __is_pod (type) is true or type is a reference type then
4655 // the trait is true, else if type is a cv class or union type
4656 // with a trivial copy constructor ([class.copy]) then the trait
4657 // is true, else it is false.
4658 if (T.isPODType(C) || T->isReferenceType())
4659 return true;
4660 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4661 return RD->hasTrivialCopyConstructor() &&
4662 !RD->hasNonTrivialCopyConstructor();
4663 return false;
4664 case UTT_HasTrivialMoveAssign:
4665 // This trait is implemented by MSVC 2012 and needed to parse the
4666 // standard library headers. Specifically it is used as the logic
4667 // behind std::is_trivially_move_assignable (20.9.4.3)
4668 if (T.isPODType(C))
4669 return true;
4670 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4671 return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment();
4672 return false;
4673 case UTT_HasTrivialAssign:
4674 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4675 // If type is const qualified or is a reference type then the
4676 // trait is false. Otherwise if __is_pod (type) is true then the
4677 // trait is true, else if type is a cv class or union type with
4678 // a trivial copy assignment ([class.copy]) then the trait is
4679 // true, else it is false.
4680 // Note: the const and reference restrictions are interesting,
4681 // given that const and reference members don't prevent a class
4682 // from having a trivial copy assignment operator (but do cause
4683 // errors if the copy assignment operator is actually used, q.v.
4684 // [class.copy]p12).
4685
4686 if (T.isConstQualified())
4687 return false;
4688 if (T.isPODType(C))
4689 return true;
4690 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4691 return RD->hasTrivialCopyAssignment() &&
4692 !RD->hasNonTrivialCopyAssignment();
4693 return false;
4694 case UTT_IsDestructible:
4695 case UTT_IsTriviallyDestructible:
4696 case UTT_IsNothrowDestructible:
4697 // C++14 [meta.unary.prop]:
4698 // For reference types, is_destructible<T>::value is true.
4699 if (T->isReferenceType())
4700 return true;
4701
4702 // Objective-C++ ARC: autorelease types don't require destruction.
4703 if (T->isObjCLifetimeType() &&
4704 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
4705 return true;
4706
4707 // C++14 [meta.unary.prop]:
4708 // For incomplete types and function types, is_destructible<T>::value is
4709 // false.
4710 if (T->isIncompleteType() || T->isFunctionType())
4711 return false;
4712
4713 // A type that requires destruction (via a non-trivial destructor or ARC
4714 // lifetime semantics) is not trivially-destructible.
4715 if (UTT == UTT_IsTriviallyDestructible && T.isDestructedType())
4716 return false;
4717
4718 // C++14 [meta.unary.prop]:
4719 // For object types and given U equal to remove_all_extents_t<T>, if the
4720 // expression std::declval<U&>().~U() is well-formed when treated as an
4721 // unevaluated operand (Clause 5), then is_destructible<T>::value is true
4722 if (auto *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
4723 CXXDestructorDecl *Destructor = Self.LookupDestructor(RD);
4724 if (!Destructor)
4725 return false;
4726 // C++14 [dcl.fct.def.delete]p2:
4727 // A program that refers to a deleted function implicitly or
4728 // explicitly, other than to declare it, is ill-formed.
4729 if (Destructor->isDeleted())
4730 return false;
4731 if (C.getLangOpts().AccessControl && Destructor->getAccess() != AS_public)
4732 return false;
4733 if (UTT == UTT_IsNothrowDestructible) {
4734 const FunctionProtoType *CPT =
4735 Destructor->getType()->getAs<FunctionProtoType>();
4736 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
4737 if (!CPT || !CPT->isNothrow())
4738 return false;
4739 }
4740 }
4741 return true;
4742
4743 case UTT_HasTrivialDestructor:
4744 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
4745 // If __is_pod (type) is true or type is a reference type
4746 // then the trait is true, else if type is a cv class or union
4747 // type (or array thereof) with a trivial destructor
4748 // ([class.dtor]) then the trait is true, else it is
4749 // false.
4750 if (T.isPODType(C) || T->isReferenceType())
4751 return true;
4752
4753 // Objective-C++ ARC: autorelease types don't require destruction.
4754 if (T->isObjCLifetimeType() &&
4755 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
4756 return true;
4757
4758 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4759 return RD->hasTrivialDestructor();
4760 return false;
4761 // TODO: Propagate nothrowness for implicitly declared special members.
4762 case UTT_HasNothrowAssign:
4763 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4764 // If type is const qualified or is a reference type then the
4765 // trait is false. Otherwise if __has_trivial_assign (type)
4766 // is true then the trait is true, else if type is a cv class
4767 // or union type with copy assignment operators that are known
4768 // not to throw an exception then the trait is true, else it is
4769 // false.
4770 if (C.getBaseElementType(T).isConstQualified())
4771 return false;
4772 if (T->isReferenceType())
4773 return false;
4774 if (T.isPODType(C) || T->isObjCLifetimeType())
4775 return true;
4776
4777 if (const RecordType *RT = T->getAs<RecordType>())
4778 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
4779 &CXXRecordDecl::hasTrivialCopyAssignment,
4780 &CXXRecordDecl::hasNonTrivialCopyAssignment,
4781 &CXXMethodDecl::isCopyAssignmentOperator);
4782 return false;
4783 case UTT_HasNothrowMoveAssign:
4784 // This trait is implemented by MSVC 2012 and needed to parse the
4785 // standard library headers. Specifically this is used as the logic
4786 // behind std::is_nothrow_move_assignable (20.9.4.3).
4787 if (T.isPODType(C))
4788 return true;
4789
4790 if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>())
4791 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
4792 &CXXRecordDecl::hasTrivialMoveAssignment,
4793 &CXXRecordDecl::hasNonTrivialMoveAssignment,
4794 &CXXMethodDecl::isMoveAssignmentOperator);
4795 return false;
4796 case UTT_HasNothrowCopy:
4797 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4798 // If __has_trivial_copy (type) is true then the trait is true, else
4799 // if type is a cv class or union type with copy constructors that are
4800 // known not to throw an exception then the trait is true, else it is
4801 // false.
4802 if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
4803 return true;
4804 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
4805 if (RD->hasTrivialCopyConstructor() &&
4806 !RD->hasNonTrivialCopyConstructor())
4807 return true;
4808
4809 bool FoundConstructor = false;
4810 unsigned FoundTQs;
4811 for (const auto *ND : Self.LookupConstructors(RD)) {
4812 // A template constructor is never a copy constructor.
4813 // FIXME: However, it may actually be selected at the actual overload
4814 // resolution point.
4815 if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl()))
4816 continue;
4817 // UsingDecl itself is not a constructor
4818 if (isa<UsingDecl>(ND))
4819 continue;
4820 auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl());
4821 if (Constructor->isCopyConstructor(FoundTQs)) {
4822 FoundConstructor = true;
4823 const FunctionProtoType *CPT
4824 = Constructor->getType()->getAs<FunctionProtoType>();
4825 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
4826 if (!CPT)
4827 return false;
4828 // TODO: check whether evaluating default arguments can throw.
4829 // For now, we'll be conservative and assume that they can throw.
4830 if (!CPT->isNothrow() || CPT->getNumParams() > 1)
4831 return false;
4832 }
4833 }
4834
4835 return FoundConstructor;
4836 }
4837 return false;
4838 case UTT_HasNothrowConstructor:
4839 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
4840 // If __has_trivial_constructor (type) is true then the trait is
4841 // true, else if type is a cv class or union type (or array
4842 // thereof) with a default constructor that is known not to
4843 // throw an exception then the trait is true, else it is false.
4844 if (T.isPODType(C) || T->isObjCLifetimeType())
4845 return true;
4846 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
4847 if (RD->hasTrivialDefaultConstructor() &&
4848 !RD->hasNonTrivialDefaultConstructor())
4849 return true;
4850
4851 bool FoundConstructor = false;
4852 for (const auto *ND : Self.LookupConstructors(RD)) {
4853 // FIXME: In C++0x, a constructor template can be a default constructor.
4854 if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl()))
4855 continue;
4856 // UsingDecl itself is not a constructor
4857 if (isa<UsingDecl>(ND))
4858 continue;
4859 auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl());
4860 if (Constructor->isDefaultConstructor()) {
4861 FoundConstructor = true;
4862 const FunctionProtoType *CPT
4863 = Constructor->getType()->getAs<FunctionProtoType>();
4864 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
4865 if (!CPT)
4866 return false;
4867 // FIXME: check whether evaluating default arguments can throw.
4868 // For now, we'll be conservative and assume that they can throw.
4869 if (!CPT->isNothrow() || CPT->getNumParams() > 0)
4870 return false;
4871 }
4872 }
4873 return FoundConstructor;
4874 }
4875 return false;
4876 case UTT_HasVirtualDestructor:
4877 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4878 // If type is a class type with a virtual destructor ([class.dtor])
4879 // then the trait is true, else it is false.
4880 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4881 if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
4882 return Destructor->isVirtual();
4883 return false;
4884
4885 // These type trait expressions are modeled on the specifications for the
4886 // Embarcadero C++0x type trait functions:
4887 // http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
4888 case UTT_IsCompleteType:
4889 // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
4890 // Returns True if and only if T is a complete type at the point of the
4891 // function call.
4892 return !T->isIncompleteType();
4893 case UTT_HasUniqueObjectRepresentations:
4894 return C.hasUniqueObjectRepresentations(T);
4895 }
4896 }
4897
4898 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
4899 QualType RhsT, SourceLocation KeyLoc);
4900
evaluateTypeTrait(Sema & S,TypeTrait Kind,SourceLocation KWLoc,ArrayRef<TypeSourceInfo * > Args,SourceLocation RParenLoc)4901 static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc,
4902 ArrayRef<TypeSourceInfo *> Args,
4903 SourceLocation RParenLoc) {
4904 if (Kind <= UTT_Last)
4905 return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]->getType());
4906
4907 // Evaluate BTT_ReferenceBindsToTemporary alongside the IsConstructible
4908 // traits to avoid duplication.
4909 if (Kind <= BTT_Last && Kind != BTT_ReferenceBindsToTemporary)
4910 return EvaluateBinaryTypeTrait(S, Kind, Args[0]->getType(),
4911 Args[1]->getType(), RParenLoc);
4912
4913 switch (Kind) {
4914 case clang::BTT_ReferenceBindsToTemporary:
4915 case clang::TT_IsConstructible:
4916 case clang::TT_IsNothrowConstructible:
4917 case clang::TT_IsTriviallyConstructible: {
4918 // C++11 [meta.unary.prop]:
4919 // is_trivially_constructible is defined as:
4920 //
4921 // is_constructible<T, Args...>::value is true and the variable
4922 // definition for is_constructible, as defined below, is known to call
4923 // no operation that is not trivial.
4924 //
4925 // The predicate condition for a template specialization
4926 // is_constructible<T, Args...> shall be satisfied if and only if the
4927 // following variable definition would be well-formed for some invented
4928 // variable t:
4929 //
4930 // T t(create<Args>()...);
4931 assert(!Args.empty());
4932
4933 // Precondition: T and all types in the parameter pack Args shall be
4934 // complete types, (possibly cv-qualified) void, or arrays of
4935 // unknown bound.
4936 for (const auto *TSI : Args) {
4937 QualType ArgTy = TSI->getType();
4938 if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType())
4939 continue;
4940
4941 if (S.RequireCompleteType(KWLoc, ArgTy,
4942 diag::err_incomplete_type_used_in_type_trait_expr))
4943 return false;
4944 }
4945
4946 // Make sure the first argument is not incomplete nor a function type.
4947 QualType T = Args[0]->getType();
4948 if (T->isIncompleteType() || T->isFunctionType())
4949 return false;
4950
4951 // Make sure the first argument is not an abstract type.
4952 CXXRecordDecl *RD = T->getAsCXXRecordDecl();
4953 if (RD && RD->isAbstract())
4954 return false;
4955
4956 SmallVector<OpaqueValueExpr, 2> OpaqueArgExprs;
4957 SmallVector<Expr *, 2> ArgExprs;
4958 ArgExprs.reserve(Args.size() - 1);
4959 for (unsigned I = 1, N = Args.size(); I != N; ++I) {
4960 QualType ArgTy = Args[I]->getType();
4961 if (ArgTy->isObjectType() || ArgTy->isFunctionType())
4962 ArgTy = S.Context.getRValueReferenceType(ArgTy);
4963 OpaqueArgExprs.push_back(
4964 OpaqueValueExpr(Args[I]->getTypeLoc().getBeginLoc(),
4965 ArgTy.getNonLValueExprType(S.Context),
4966 Expr::getValueKindForType(ArgTy)));
4967 }
4968 for (Expr &E : OpaqueArgExprs)
4969 ArgExprs.push_back(&E);
4970
4971 // Perform the initialization in an unevaluated context within a SFINAE
4972 // trap at translation unit scope.
4973 EnterExpressionEvaluationContext Unevaluated(
4974 S, Sema::ExpressionEvaluationContext::Unevaluated);
4975 Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
4976 Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
4977 InitializedEntity To(InitializedEntity::InitializeTemporary(Args[0]));
4978 InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc,
4979 RParenLoc));
4980 InitializationSequence Init(S, To, InitKind, ArgExprs);
4981 if (Init.Failed())
4982 return false;
4983
4984 ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs);
4985 if (Result.isInvalid() || SFINAE.hasErrorOccurred())
4986 return false;
4987
4988 if (Kind == clang::TT_IsConstructible)
4989 return true;
4990
4991 if (Kind == clang::BTT_ReferenceBindsToTemporary) {
4992 if (!T->isReferenceType())
4993 return false;
4994
4995 return !Init.isDirectReferenceBinding();
4996 }
4997
4998 if (Kind == clang::TT_IsNothrowConstructible)
4999 return S.canThrow(Result.get()) == CT_Cannot;
5000
5001 if (Kind == clang::TT_IsTriviallyConstructible) {
5002 // Under Objective-C ARC and Weak, if the destination has non-trivial
5003 // Objective-C lifetime, this is a non-trivial construction.
5004 if (T.getNonReferenceType().hasNonTrivialObjCLifetime())
5005 return false;
5006
5007 // The initialization succeeded; now make sure there are no non-trivial
5008 // calls.
5009 return !Result.get()->hasNonTrivialCall(S.Context);
5010 }
5011
5012 llvm_unreachable("unhandled type trait");
5013 return false;
5014 }
5015 default: llvm_unreachable("not a TT");
5016 }
5017
5018 return false;
5019 }
5020
BuildTypeTrait(TypeTrait Kind,SourceLocation KWLoc,ArrayRef<TypeSourceInfo * > Args,SourceLocation RParenLoc)5021 ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
5022 ArrayRef<TypeSourceInfo *> Args,
5023 SourceLocation RParenLoc) {
5024 QualType ResultType = Context.getLogicalOperationType();
5025
5026 if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness(
5027 *this, Kind, KWLoc, Args[0]->getType()))
5028 return ExprError();
5029
5030 bool Dependent = false;
5031 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
5032 if (Args[I]->getType()->isDependentType()) {
5033 Dependent = true;
5034 break;
5035 }
5036 }
5037
5038 bool Result = false;
5039 if (!Dependent)
5040 Result = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc);
5041
5042 return TypeTraitExpr::Create(Context, ResultType, KWLoc, Kind, Args,
5043 RParenLoc, Result);
5044 }
5045
ActOnTypeTrait(TypeTrait Kind,SourceLocation KWLoc,ArrayRef<ParsedType> Args,SourceLocation RParenLoc)5046 ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
5047 ArrayRef<ParsedType> Args,
5048 SourceLocation RParenLoc) {
5049 SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
5050 ConvertedArgs.reserve(Args.size());
5051
5052 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
5053 TypeSourceInfo *TInfo;
5054 QualType T = GetTypeFromParser(Args[I], &TInfo);
5055 if (!TInfo)
5056 TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc);
5057
5058 ConvertedArgs.push_back(TInfo);
5059 }
5060
5061 return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc);
5062 }
5063
EvaluateBinaryTypeTrait(Sema & Self,TypeTrait BTT,QualType LhsT,QualType RhsT,SourceLocation KeyLoc)5064 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
5065 QualType RhsT, SourceLocation KeyLoc) {
5066 assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&
5067 "Cannot evaluate traits of dependent types");
5068
5069 switch(BTT) {
5070 case BTT_IsBaseOf: {
5071 // C++0x [meta.rel]p2
5072 // Base is a base class of Derived without regard to cv-qualifiers or
5073 // Base and Derived are not unions and name the same class type without
5074 // regard to cv-qualifiers.
5075
5076 const RecordType *lhsRecord = LhsT->getAs<RecordType>();
5077 const RecordType *rhsRecord = RhsT->getAs<RecordType>();
5078 if (!rhsRecord || !lhsRecord) {
5079 const ObjCObjectType *LHSObjTy = LhsT->getAs<ObjCObjectType>();
5080 const ObjCObjectType *RHSObjTy = RhsT->getAs<ObjCObjectType>();
5081 if (!LHSObjTy || !RHSObjTy)
5082 return false;
5083
5084 ObjCInterfaceDecl *BaseInterface = LHSObjTy->getInterface();
5085 ObjCInterfaceDecl *DerivedInterface = RHSObjTy->getInterface();
5086 if (!BaseInterface || !DerivedInterface)
5087 return false;
5088
5089 if (Self.RequireCompleteType(
5090 KeyLoc, RhsT, diag::err_incomplete_type_used_in_type_trait_expr))
5091 return false;
5092
5093 return BaseInterface->isSuperClassOf(DerivedInterface);
5094 }
5095
5096 assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
5097 == (lhsRecord == rhsRecord));
5098
5099 if (lhsRecord == rhsRecord)
5100 return !lhsRecord->getDecl()->isUnion();
5101
5102 // C++0x [meta.rel]p2:
5103 // If Base and Derived are class types and are different types
5104 // (ignoring possible cv-qualifiers) then Derived shall be a
5105 // complete type.
5106 if (Self.RequireCompleteType(KeyLoc, RhsT,
5107 diag::err_incomplete_type_used_in_type_trait_expr))
5108 return false;
5109
5110 return cast<CXXRecordDecl>(rhsRecord->getDecl())
5111 ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
5112 }
5113 case BTT_IsSame:
5114 return Self.Context.hasSameType(LhsT, RhsT);
5115 case BTT_TypeCompatible: {
5116 // GCC ignores cv-qualifiers on arrays for this builtin.
5117 Qualifiers LhsQuals, RhsQuals;
5118 QualType Lhs = Self.getASTContext().getUnqualifiedArrayType(LhsT, LhsQuals);
5119 QualType Rhs = Self.getASTContext().getUnqualifiedArrayType(RhsT, RhsQuals);
5120 return Self.Context.typesAreCompatible(Lhs, Rhs);
5121 }
5122 case BTT_IsConvertible:
5123 case BTT_IsConvertibleTo: {
5124 // C++0x [meta.rel]p4:
5125 // Given the following function prototype:
5126 //
5127 // template <class T>
5128 // typename add_rvalue_reference<T>::type create();
5129 //
5130 // the predicate condition for a template specialization
5131 // is_convertible<From, To> shall be satisfied if and only if
5132 // the return expression in the following code would be
5133 // well-formed, including any implicit conversions to the return
5134 // type of the function:
5135 //
5136 // To test() {
5137 // return create<From>();
5138 // }
5139 //
5140 // Access checking is performed as if in a context unrelated to To and
5141 // From. Only the validity of the immediate context of the expression
5142 // of the return-statement (including conversions to the return type)
5143 // is considered.
5144 //
5145 // We model the initialization as a copy-initialization of a temporary
5146 // of the appropriate type, which for this expression is identical to the
5147 // return statement (since NRVO doesn't apply).
5148
5149 // Functions aren't allowed to return function or array types.
5150 if (RhsT->isFunctionType() || RhsT->isArrayType())
5151 return false;
5152
5153 // A return statement in a void function must have void type.
5154 if (RhsT->isVoidType())
5155 return LhsT->isVoidType();
5156
5157 // A function definition requires a complete, non-abstract return type.
5158 if (!Self.isCompleteType(KeyLoc, RhsT) || Self.isAbstractType(KeyLoc, RhsT))
5159 return false;
5160
5161 // Compute the result of add_rvalue_reference.
5162 if (LhsT->isObjectType() || LhsT->isFunctionType())
5163 LhsT = Self.Context.getRValueReferenceType(LhsT);
5164
5165 // Build a fake source and destination for initialization.
5166 InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
5167 OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
5168 Expr::getValueKindForType(LhsT));
5169 Expr *FromPtr = &From;
5170 InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
5171 SourceLocation()));
5172
5173 // Perform the initialization in an unevaluated context within a SFINAE
5174 // trap at translation unit scope.
5175 EnterExpressionEvaluationContext Unevaluated(
5176 Self, Sema::ExpressionEvaluationContext::Unevaluated);
5177 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
5178 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
5179 InitializationSequence Init(Self, To, Kind, FromPtr);
5180 if (Init.Failed())
5181 return false;
5182
5183 ExprResult Result = Init.Perform(Self, To, Kind, FromPtr);
5184 return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
5185 }
5186
5187 case BTT_IsAssignable:
5188 case BTT_IsNothrowAssignable:
5189 case BTT_IsTriviallyAssignable: {
5190 // C++11 [meta.unary.prop]p3:
5191 // is_trivially_assignable is defined as:
5192 // is_assignable<T, U>::value is true and the assignment, as defined by
5193 // is_assignable, is known to call no operation that is not trivial
5194 //
5195 // is_assignable is defined as:
5196 // The expression declval<T>() = declval<U>() is well-formed when
5197 // treated as an unevaluated operand (Clause 5).
5198 //
5199 // For both, T and U shall be complete types, (possibly cv-qualified)
5200 // void, or arrays of unknown bound.
5201 if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
5202 Self.RequireCompleteType(KeyLoc, LhsT,
5203 diag::err_incomplete_type_used_in_type_trait_expr))
5204 return false;
5205 if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
5206 Self.RequireCompleteType(KeyLoc, RhsT,
5207 diag::err_incomplete_type_used_in_type_trait_expr))
5208 return false;
5209
5210 // cv void is never assignable.
5211 if (LhsT->isVoidType() || RhsT->isVoidType())
5212 return false;
5213
5214 // Build expressions that emulate the effect of declval<T>() and
5215 // declval<U>().
5216 if (LhsT->isObjectType() || LhsT->isFunctionType())
5217 LhsT = Self.Context.getRValueReferenceType(LhsT);
5218 if (RhsT->isObjectType() || RhsT->isFunctionType())
5219 RhsT = Self.Context.getRValueReferenceType(RhsT);
5220 OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
5221 Expr::getValueKindForType(LhsT));
5222 OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context),
5223 Expr::getValueKindForType(RhsT));
5224
5225 // Attempt the assignment in an unevaluated context within a SFINAE
5226 // trap at translation unit scope.
5227 EnterExpressionEvaluationContext Unevaluated(
5228 Self, Sema::ExpressionEvaluationContext::Unevaluated);
5229 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
5230 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
5231 ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs,
5232 &Rhs);
5233 if (Result.isInvalid() || SFINAE.hasErrorOccurred())
5234 return false;
5235
5236 if (BTT == BTT_IsAssignable)
5237 return true;
5238
5239 if (BTT == BTT_IsNothrowAssignable)
5240 return Self.canThrow(Result.get()) == CT_Cannot;
5241
5242 if (BTT == BTT_IsTriviallyAssignable) {
5243 // Under Objective-C ARC and Weak, if the destination has non-trivial
5244 // Objective-C lifetime, this is a non-trivial assignment.
5245 if (LhsT.getNonReferenceType().hasNonTrivialObjCLifetime())
5246 return false;
5247
5248 return !Result.get()->hasNonTrivialCall(Self.Context);
5249 }
5250
5251 llvm_unreachable("unhandled type trait");
5252 return false;
5253 }
5254 default: llvm_unreachable("not a BTT");
5255 }
5256 llvm_unreachable("Unknown type trait or not implemented");
5257 }
5258
ActOnArrayTypeTrait(ArrayTypeTrait ATT,SourceLocation KWLoc,ParsedType Ty,Expr * DimExpr,SourceLocation RParen)5259 ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
5260 SourceLocation KWLoc,
5261 ParsedType Ty,
5262 Expr* DimExpr,
5263 SourceLocation RParen) {
5264 TypeSourceInfo *TSInfo;
5265 QualType T = GetTypeFromParser(Ty, &TSInfo);
5266 if (!TSInfo)
5267 TSInfo = Context.getTrivialTypeSourceInfo(T);
5268
5269 return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
5270 }
5271
EvaluateArrayTypeTrait(Sema & Self,ArrayTypeTrait ATT,QualType T,Expr * DimExpr,SourceLocation KeyLoc)5272 static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
5273 QualType T, Expr *DimExpr,
5274 SourceLocation KeyLoc) {
5275 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
5276
5277 switch(ATT) {
5278 case ATT_ArrayRank:
5279 if (T->isArrayType()) {
5280 unsigned Dim = 0;
5281 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
5282 ++Dim;
5283 T = AT->getElementType();
5284 }
5285 return Dim;
5286 }
5287 return 0;
5288
5289 case ATT_ArrayExtent: {
5290 llvm::APSInt Value;
5291 uint64_t Dim;
5292 if (Self.VerifyIntegerConstantExpression(DimExpr, &Value,
5293 diag::err_dimension_expr_not_constant_integer,
5294 false).isInvalid())
5295 return 0;
5296 if (Value.isSigned() && Value.isNegative()) {
5297 Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
5298 << DimExpr->getSourceRange();
5299 return 0;
5300 }
5301 Dim = Value.getLimitedValue();
5302
5303 if (T->isArrayType()) {
5304 unsigned D = 0;
5305 bool Matched = false;
5306 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
5307 if (Dim == D) {
5308 Matched = true;
5309 break;
5310 }
5311 ++D;
5312 T = AT->getElementType();
5313 }
5314
5315 if (Matched && T->isArrayType()) {
5316 if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
5317 return CAT->getSize().getLimitedValue();
5318 }
5319 }
5320 return 0;
5321 }
5322 }
5323 llvm_unreachable("Unknown type trait or not implemented");
5324 }
5325
BuildArrayTypeTrait(ArrayTypeTrait ATT,SourceLocation KWLoc,TypeSourceInfo * TSInfo,Expr * DimExpr,SourceLocation RParen)5326 ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
5327 SourceLocation KWLoc,
5328 TypeSourceInfo *TSInfo,
5329 Expr* DimExpr,
5330 SourceLocation RParen) {
5331 QualType T = TSInfo->getType();
5332
5333 // FIXME: This should likely be tracked as an APInt to remove any host
5334 // assumptions about the width of size_t on the target.
5335 uint64_t Value = 0;
5336 if (!T->isDependentType())
5337 Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
5338
5339 // While the specification for these traits from the Embarcadero C++
5340 // compiler's documentation says the return type is 'unsigned int', Clang
5341 // returns 'size_t'. On Windows, the primary platform for the Embarcadero
5342 // compiler, there is no difference. On several other platforms this is an
5343 // important distinction.
5344 return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr,
5345 RParen, Context.getSizeType());
5346 }
5347
ActOnExpressionTrait(ExpressionTrait ET,SourceLocation KWLoc,Expr * Queried,SourceLocation RParen)5348 ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
5349 SourceLocation KWLoc,
5350 Expr *Queried,
5351 SourceLocation RParen) {
5352 // If error parsing the expression, ignore.
5353 if (!Queried)
5354 return ExprError();
5355
5356 ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
5357
5358 return Result;
5359 }
5360
EvaluateExpressionTrait(ExpressionTrait ET,Expr * E)5361 static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
5362 switch (ET) {
5363 case ET_IsLValueExpr: return E->isLValue();
5364 case ET_IsRValueExpr: return E->isRValue();
5365 }
5366 llvm_unreachable("Expression trait not covered by switch");
5367 }
5368
BuildExpressionTrait(ExpressionTrait ET,SourceLocation KWLoc,Expr * Queried,SourceLocation RParen)5369 ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
5370 SourceLocation KWLoc,
5371 Expr *Queried,
5372 SourceLocation RParen) {
5373 if (Queried->isTypeDependent()) {
5374 // Delay type-checking for type-dependent expressions.
5375 } else if (Queried->getType()->isPlaceholderType()) {
5376 ExprResult PE = CheckPlaceholderExpr(Queried);
5377 if (PE.isInvalid()) return ExprError();
5378 return BuildExpressionTrait(ET, KWLoc, PE.get(), RParen);
5379 }
5380
5381 bool Value = EvaluateExpressionTrait(ET, Queried);
5382
5383 return new (Context)
5384 ExpressionTraitExpr(KWLoc, ET, Queried, Value, RParen, Context.BoolTy);
5385 }
5386
CheckPointerToMemberOperands(ExprResult & LHS,ExprResult & RHS,ExprValueKind & VK,SourceLocation Loc,bool isIndirect)5387 QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS,
5388 ExprValueKind &VK,
5389 SourceLocation Loc,
5390 bool isIndirect) {
5391 assert(!LHS.get()->getType()->isPlaceholderType() &&
5392 !RHS.get()->getType()->isPlaceholderType() &&
5393 "placeholders should have been weeded out by now");
5394
5395 // The LHS undergoes lvalue conversions if this is ->*, and undergoes the
5396 // temporary materialization conversion otherwise.
5397 if (isIndirect)
5398 LHS = DefaultLvalueConversion(LHS.get());
5399 else if (LHS.get()->isRValue())
5400 LHS = TemporaryMaterializationConversion(LHS.get());
5401 if (LHS.isInvalid())
5402 return QualType();
5403
5404 // The RHS always undergoes lvalue conversions.
5405 RHS = DefaultLvalueConversion(RHS.get());
5406 if (RHS.isInvalid()) return QualType();
5407
5408 const char *OpSpelling = isIndirect ? "->*" : ".*";
5409 // C++ 5.5p2
5410 // The binary operator .* [p3: ->*] binds its second operand, which shall
5411 // be of type "pointer to member of T" (where T is a completely-defined
5412 // class type) [...]
5413 QualType RHSType = RHS.get()->getType();
5414 const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>();
5415 if (!MemPtr) {
5416 Diag(Loc, diag::err_bad_memptr_rhs)
5417 << OpSpelling << RHSType << RHS.get()->getSourceRange();
5418 return QualType();
5419 }
5420
5421 QualType Class(MemPtr->getClass(), 0);
5422
5423 // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
5424 // member pointer points must be completely-defined. However, there is no
5425 // reason for this semantic distinction, and the rule is not enforced by
5426 // other compilers. Therefore, we do not check this property, as it is
5427 // likely to be considered a defect.
5428
5429 // C++ 5.5p2
5430 // [...] to its first operand, which shall be of class T or of a class of
5431 // which T is an unambiguous and accessible base class. [p3: a pointer to
5432 // such a class]
5433 QualType LHSType = LHS.get()->getType();
5434 if (isIndirect) {
5435 if (const PointerType *Ptr = LHSType->getAs<PointerType>())
5436 LHSType = Ptr->getPointeeType();
5437 else {
5438 Diag(Loc, diag::err_bad_memptr_lhs)
5439 << OpSpelling << 1 << LHSType
5440 << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
5441 return QualType();
5442 }
5443 }
5444
5445 if (!Context.hasSameUnqualifiedType(Class, LHSType)) {
5446 // If we want to check the hierarchy, we need a complete type.
5447 if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs,
5448 OpSpelling, (int)isIndirect)) {
5449 return QualType();
5450 }
5451
5452 if (!IsDerivedFrom(Loc, LHSType, Class)) {
5453 Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
5454 << (int)isIndirect << LHS.get()->getType();
5455 return QualType();
5456 }
5457
5458 CXXCastPath BasePath;
5459 if (CheckDerivedToBaseConversion(
5460 LHSType, Class, Loc,
5461 SourceRange(LHS.get()->getBeginLoc(), RHS.get()->getEndLoc()),
5462 &BasePath))
5463 return QualType();
5464
5465 // Cast LHS to type of use.
5466 QualType UseType = Context.getQualifiedType(Class, LHSType.getQualifiers());
5467 if (isIndirect)
5468 UseType = Context.getPointerType(UseType);
5469 ExprValueKind VK = isIndirect ? VK_RValue : LHS.get()->getValueKind();
5470 LHS = ImpCastExprToType(LHS.get(), UseType, CK_DerivedToBase, VK,
5471 &BasePath);
5472 }
5473
5474 if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) {
5475 // Diagnose use of pointer-to-member type which when used as
5476 // the functional cast in a pointer-to-member expression.
5477 Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
5478 return QualType();
5479 }
5480
5481 // C++ 5.5p2
5482 // The result is an object or a function of the type specified by the
5483 // second operand.
5484 // The cv qualifiers are the union of those in the pointer and the left side,
5485 // in accordance with 5.5p5 and 5.2.5.
5486 QualType Result = MemPtr->getPointeeType();
5487 Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers());
5488
5489 // C++0x [expr.mptr.oper]p6:
5490 // In a .* expression whose object expression is an rvalue, the program is
5491 // ill-formed if the second operand is a pointer to member function with
5492 // ref-qualifier &. In a ->* expression or in a .* expression whose object
5493 // expression is an lvalue, the program is ill-formed if the second operand
5494 // is a pointer to member function with ref-qualifier &&.
5495 if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
5496 switch (Proto->getRefQualifier()) {
5497 case RQ_None:
5498 // Do nothing
5499 break;
5500
5501 case RQ_LValue:
5502 if (!isIndirect && !LHS.get()->Classify(Context).isLValue()) {
5503 // C++2a allows functions with ref-qualifier & if their cv-qualifier-seq
5504 // is (exactly) 'const'.
5505 if (Proto->isConst() && !Proto->isVolatile())
5506 Diag(Loc, getLangOpts().CPlusPlus2a
5507 ? diag::warn_cxx17_compat_pointer_to_const_ref_member_on_rvalue
5508 : diag::ext_pointer_to_const_ref_member_on_rvalue);
5509 else
5510 Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
5511 << RHSType << 1 << LHS.get()->getSourceRange();
5512 }
5513 break;
5514
5515 case RQ_RValue:
5516 if (isIndirect || !LHS.get()->Classify(Context).isRValue())
5517 Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
5518 << RHSType << 0 << LHS.get()->getSourceRange();
5519 break;
5520 }
5521 }
5522
5523 // C++ [expr.mptr.oper]p6:
5524 // The result of a .* expression whose second operand is a pointer
5525 // to a data member is of the same value category as its
5526 // first operand. The result of a .* expression whose second
5527 // operand is a pointer to a member function is a prvalue. The
5528 // result of an ->* expression is an lvalue if its second operand
5529 // is a pointer to data member and a prvalue otherwise.
5530 if (Result->isFunctionType()) {
5531 VK = VK_RValue;
5532 return Context.BoundMemberTy;
5533 } else if (isIndirect) {
5534 VK = VK_LValue;
5535 } else {
5536 VK = LHS.get()->getValueKind();
5537 }
5538
5539 return Result;
5540 }
5541
5542 /// Try to convert a type to another according to C++11 5.16p3.
5543 ///
5544 /// This is part of the parameter validation for the ? operator. If either
5545 /// value operand is a class type, the two operands are attempted to be
5546 /// converted to each other. This function does the conversion in one direction.
5547 /// It returns true if the program is ill-formed and has already been diagnosed
5548 /// as such.
TryClassUnification(Sema & Self,Expr * From,Expr * To,SourceLocation QuestionLoc,bool & HaveConversion,QualType & ToType)5549 static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
5550 SourceLocation QuestionLoc,
5551 bool &HaveConversion,
5552 QualType &ToType) {
5553 HaveConversion = false;
5554 ToType = To->getType();
5555
5556 InitializationKind Kind =
5557 InitializationKind::CreateCopy(To->getBeginLoc(), SourceLocation());
5558 // C++11 5.16p3
5559 // The process for determining whether an operand expression E1 of type T1
5560 // can be converted to match an operand expression E2 of type T2 is defined
5561 // as follows:
5562 // -- If E2 is an lvalue: E1 can be converted to match E2 if E1 can be
5563 // implicitly converted to type "lvalue reference to T2", subject to the
5564 // constraint that in the conversion the reference must bind directly to
5565 // an lvalue.
5566 // -- If E2 is an xvalue: E1 can be converted to match E2 if E1 can be
5567 // implicitly converted to the type "rvalue reference to R2", subject to
5568 // the constraint that the reference must bind directly.
5569 if (To->isLValue() || To->isXValue()) {
5570 QualType T = To->isLValue() ? Self.Context.getLValueReferenceType(ToType)
5571 : Self.Context.getRValueReferenceType(ToType);
5572
5573 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
5574
5575 InitializationSequence InitSeq(Self, Entity, Kind, From);
5576 if (InitSeq.isDirectReferenceBinding()) {
5577 ToType = T;
5578 HaveConversion = true;
5579 return false;
5580 }
5581
5582 if (InitSeq.isAmbiguous())
5583 return InitSeq.Diagnose(Self, Entity, Kind, From);
5584 }
5585
5586 // -- If E2 is an rvalue, or if the conversion above cannot be done:
5587 // -- if E1 and E2 have class type, and the underlying class types are
5588 // the same or one is a base class of the other:
5589 QualType FTy = From->getType();
5590 QualType TTy = To->getType();
5591 const RecordType *FRec = FTy->getAs<RecordType>();
5592 const RecordType *TRec = TTy->getAs<RecordType>();
5593 bool FDerivedFromT = FRec && TRec && FRec != TRec &&
5594 Self.IsDerivedFrom(QuestionLoc, FTy, TTy);
5595 if (FRec && TRec && (FRec == TRec || FDerivedFromT ||
5596 Self.IsDerivedFrom(QuestionLoc, TTy, FTy))) {
5597 // E1 can be converted to match E2 if the class of T2 is the
5598 // same type as, or a base class of, the class of T1, and
5599 // [cv2 > cv1].
5600 if (FRec == TRec || FDerivedFromT) {
5601 if (TTy.isAtLeastAsQualifiedAs(FTy)) {
5602 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
5603 InitializationSequence InitSeq(Self, Entity, Kind, From);
5604 if (InitSeq) {
5605 HaveConversion = true;
5606 return false;
5607 }
5608
5609 if (InitSeq.isAmbiguous())
5610 return InitSeq.Diagnose(Self, Entity, Kind, From);
5611 }
5612 }
5613
5614 return false;
5615 }
5616
5617 // -- Otherwise: E1 can be converted to match E2 if E1 can be
5618 // implicitly converted to the type that expression E2 would have
5619 // if E2 were converted to an rvalue (or the type it has, if E2 is
5620 // an rvalue).
5621 //
5622 // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
5623 // to the array-to-pointer or function-to-pointer conversions.
5624 TTy = TTy.getNonLValueExprType(Self.Context);
5625
5626 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
5627 InitializationSequence InitSeq(Self, Entity, Kind, From);
5628 HaveConversion = !InitSeq.Failed();
5629 ToType = TTy;
5630 if (InitSeq.isAmbiguous())
5631 return InitSeq.Diagnose(Self, Entity, Kind, From);
5632
5633 return false;
5634 }
5635
5636 /// Try to find a common type for two according to C++0x 5.16p5.
5637 ///
5638 /// This is part of the parameter validation for the ? operator. If either
5639 /// value operand is a class type, overload resolution is used to find a
5640 /// conversion to a common type.
FindConditionalOverload(Sema & Self,ExprResult & LHS,ExprResult & RHS,SourceLocation QuestionLoc)5641 static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
5642 SourceLocation QuestionLoc) {
5643 Expr *Args[2] = { LHS.get(), RHS.get() };
5644 OverloadCandidateSet CandidateSet(QuestionLoc,
5645 OverloadCandidateSet::CSK_Operator);
5646 Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args,
5647 CandidateSet);
5648
5649 OverloadCandidateSet::iterator Best;
5650 switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
5651 case OR_Success: {
5652 // We found a match. Perform the conversions on the arguments and move on.
5653 ExprResult LHSRes = Self.PerformImplicitConversion(
5654 LHS.get(), Best->BuiltinParamTypes[0], Best->Conversions[0],
5655 Sema::AA_Converting);
5656 if (LHSRes.isInvalid())
5657 break;
5658 LHS = LHSRes;
5659
5660 ExprResult RHSRes = Self.PerformImplicitConversion(
5661 RHS.get(), Best->BuiltinParamTypes[1], Best->Conversions[1],
5662 Sema::AA_Converting);
5663 if (RHSRes.isInvalid())
5664 break;
5665 RHS = RHSRes;
5666 if (Best->Function)
5667 Self.MarkFunctionReferenced(QuestionLoc, Best->Function);
5668 return false;
5669 }
5670
5671 case OR_No_Viable_Function:
5672
5673 // Emit a better diagnostic if one of the expressions is a null pointer
5674 // constant and the other is a pointer type. In this case, the user most
5675 // likely forgot to take the address of the other expression.
5676 if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
5677 return true;
5678
5679 Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
5680 << LHS.get()->getType() << RHS.get()->getType()
5681 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5682 return true;
5683
5684 case OR_Ambiguous:
5685 Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
5686 << LHS.get()->getType() << RHS.get()->getType()
5687 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5688 // FIXME: Print the possible common types by printing the return types of
5689 // the viable candidates.
5690 break;
5691
5692 case OR_Deleted:
5693 llvm_unreachable("Conditional operator has only built-in overloads");
5694 }
5695 return true;
5696 }
5697
5698 /// Perform an "extended" implicit conversion as returned by
5699 /// TryClassUnification.
ConvertForConditional(Sema & Self,ExprResult & E,QualType T)5700 static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
5701 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
5702 InitializationKind Kind =
5703 InitializationKind::CreateCopy(E.get()->getBeginLoc(), SourceLocation());
5704 Expr *Arg = E.get();
5705 InitializationSequence InitSeq(Self, Entity, Kind, Arg);
5706 ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg);
5707 if (Result.isInvalid())
5708 return true;
5709
5710 E = Result;
5711 return false;
5712 }
5713
5714 /// Check the operands of ?: under C++ semantics.
5715 ///
5716 /// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
5717 /// extension. In this case, LHS == Cond. (But they're not aliases.)
CXXCheckConditionalOperands(ExprResult & Cond,ExprResult & LHS,ExprResult & RHS,ExprValueKind & VK,ExprObjectKind & OK,SourceLocation QuestionLoc)5718 QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
5719 ExprResult &RHS, ExprValueKind &VK,
5720 ExprObjectKind &OK,
5721 SourceLocation QuestionLoc) {
5722 // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
5723 // interface pointers.
5724
5725 // C++11 [expr.cond]p1
5726 // The first expression is contextually converted to bool.
5727 //
5728 // FIXME; GCC's vector extension permits the use of a?b:c where the type of
5729 // a is that of a integer vector with the same number of elements and
5730 // size as the vectors of b and c. If one of either b or c is a scalar
5731 // it is implicitly converted to match the type of the vector.
5732 // Otherwise the expression is ill-formed. If both b and c are scalars,
5733 // then b and c are checked and converted to the type of a if possible.
5734 // Unlike the OpenCL ?: operator, the expression is evaluated as
5735 // (a[0] != 0 ? b[0] : c[0], .. , a[n] != 0 ? b[n] : c[n]).
5736 if (!Cond.get()->isTypeDependent()) {
5737 ExprResult CondRes = CheckCXXBooleanCondition(Cond.get());
5738 if (CondRes.isInvalid())
5739 return QualType();
5740 Cond = CondRes;
5741 }
5742
5743 // Assume r-value.
5744 VK = VK_RValue;
5745 OK = OK_Ordinary;
5746
5747 // Either of the arguments dependent?
5748 if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
5749 return Context.DependentTy;
5750
5751 // C++11 [expr.cond]p2
5752 // If either the second or the third operand has type (cv) void, ...
5753 QualType LTy = LHS.get()->getType();
5754 QualType RTy = RHS.get()->getType();
5755 bool LVoid = LTy->isVoidType();
5756 bool RVoid = RTy->isVoidType();
5757 if (LVoid || RVoid) {
5758 // ... one of the following shall hold:
5759 // -- The second or the third operand (but not both) is a (possibly
5760 // parenthesized) throw-expression; the result is of the type
5761 // and value category of the other.
5762 bool LThrow = isa<CXXThrowExpr>(LHS.get()->IgnoreParenImpCasts());
5763 bool RThrow = isa<CXXThrowExpr>(RHS.get()->IgnoreParenImpCasts());
5764 if (LThrow != RThrow) {
5765 Expr *NonThrow = LThrow ? RHS.get() : LHS.get();
5766 VK = NonThrow->getValueKind();
5767 // DR (no number yet): the result is a bit-field if the
5768 // non-throw-expression operand is a bit-field.
5769 OK = NonThrow->getObjectKind();
5770 return NonThrow->getType();
5771 }
5772
5773 // -- Both the second and third operands have type void; the result is of
5774 // type void and is a prvalue.
5775 if (LVoid && RVoid)
5776 return Context.VoidTy;
5777
5778 // Neither holds, error.
5779 Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
5780 << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
5781 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5782 return QualType();
5783 }
5784
5785 // Neither is void.
5786
5787 // C++11 [expr.cond]p3
5788 // Otherwise, if the second and third operand have different types, and
5789 // either has (cv) class type [...] an attempt is made to convert each of
5790 // those operands to the type of the other.
5791 if (!Context.hasSameType(LTy, RTy) &&
5792 (LTy->isRecordType() || RTy->isRecordType())) {
5793 // These return true if a single direction is already ambiguous.
5794 QualType L2RType, R2LType;
5795 bool HaveL2R, HaveR2L;
5796 if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
5797 return QualType();
5798 if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
5799 return QualType();
5800
5801 // If both can be converted, [...] the program is ill-formed.
5802 if (HaveL2R && HaveR2L) {
5803 Diag(QuestionLoc, diag::err_conditional_ambiguous)
5804 << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5805 return QualType();
5806 }
5807
5808 // If exactly one conversion is possible, that conversion is applied to
5809 // the chosen operand and the converted operands are used in place of the
5810 // original operands for the remainder of this section.
5811 if (HaveL2R) {
5812 if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
5813 return QualType();
5814 LTy = LHS.get()->getType();
5815 } else if (HaveR2L) {
5816 if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
5817 return QualType();
5818 RTy = RHS.get()->getType();
5819 }
5820 }
5821
5822 // C++11 [expr.cond]p3
5823 // if both are glvalues of the same value category and the same type except
5824 // for cv-qualification, an attempt is made to convert each of those
5825 // operands to the type of the other.
5826 // FIXME:
5827 // Resolving a defect in P0012R1: we extend this to cover all cases where
5828 // one of the operands is reference-compatible with the other, in order
5829 // to support conditionals between functions differing in noexcept.
5830 ExprValueKind LVK = LHS.get()->getValueKind();
5831 ExprValueKind RVK = RHS.get()->getValueKind();
5832 if (!Context.hasSameType(LTy, RTy) &&
5833 LVK == RVK && LVK != VK_RValue) {
5834 // DerivedToBase was already handled by the class-specific case above.
5835 // FIXME: Should we allow ObjC conversions here?
5836 bool DerivedToBase, ObjCConversion, ObjCLifetimeConversion;
5837 if (CompareReferenceRelationship(
5838 QuestionLoc, LTy, RTy, DerivedToBase,
5839 ObjCConversion, ObjCLifetimeConversion) == Ref_Compatible &&
5840 !DerivedToBase && !ObjCConversion && !ObjCLifetimeConversion &&
5841 // [...] subject to the constraint that the reference must bind
5842 // directly [...]
5843 !RHS.get()->refersToBitField() &&
5844 !RHS.get()->refersToVectorElement()) {
5845 RHS = ImpCastExprToType(RHS.get(), LTy, CK_NoOp, RVK);
5846 RTy = RHS.get()->getType();
5847 } else if (CompareReferenceRelationship(
5848 QuestionLoc, RTy, LTy, DerivedToBase,
5849 ObjCConversion, ObjCLifetimeConversion) == Ref_Compatible &&
5850 !DerivedToBase && !ObjCConversion && !ObjCLifetimeConversion &&
5851 !LHS.get()->refersToBitField() &&
5852 !LHS.get()->refersToVectorElement()) {
5853 LHS = ImpCastExprToType(LHS.get(), RTy, CK_NoOp, LVK);
5854 LTy = LHS.get()->getType();
5855 }
5856 }
5857
5858 // C++11 [expr.cond]p4
5859 // If the second and third operands are glvalues of the same value
5860 // category and have the same type, the result is of that type and
5861 // value category and it is a bit-field if the second or the third
5862 // operand is a bit-field, or if both are bit-fields.
5863 // We only extend this to bitfields, not to the crazy other kinds of
5864 // l-values.
5865 bool Same = Context.hasSameType(LTy, RTy);
5866 if (Same && LVK == RVK && LVK != VK_RValue &&
5867 LHS.get()->isOrdinaryOrBitFieldObject() &&
5868 RHS.get()->isOrdinaryOrBitFieldObject()) {
5869 VK = LHS.get()->getValueKind();
5870 if (LHS.get()->getObjectKind() == OK_BitField ||
5871 RHS.get()->getObjectKind() == OK_BitField)
5872 OK = OK_BitField;
5873
5874 // If we have function pointer types, unify them anyway to unify their
5875 // exception specifications, if any.
5876 if (LTy->isFunctionPointerType() || LTy->isMemberFunctionPointerType()) {
5877 Qualifiers Qs = LTy.getQualifiers();
5878 LTy = FindCompositePointerType(QuestionLoc, LHS, RHS,
5879 /*ConvertArgs*/false);
5880 LTy = Context.getQualifiedType(LTy, Qs);
5881
5882 assert(!LTy.isNull() && "failed to find composite pointer type for "
5883 "canonically equivalent function ptr types");
5884 assert(Context.hasSameType(LTy, RTy) && "bad composite pointer type");
5885 }
5886
5887 return LTy;
5888 }
5889
5890 // C++11 [expr.cond]p5
5891 // Otherwise, the result is a prvalue. If the second and third operands
5892 // do not have the same type, and either has (cv) class type, ...
5893 if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
5894 // ... overload resolution is used to determine the conversions (if any)
5895 // to be applied to the operands. If the overload resolution fails, the
5896 // program is ill-formed.
5897 if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
5898 return QualType();
5899 }
5900
5901 // C++11 [expr.cond]p6
5902 // Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard
5903 // conversions are performed on the second and third operands.
5904 LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
5905 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
5906 if (LHS.isInvalid() || RHS.isInvalid())
5907 return QualType();
5908 LTy = LHS.get()->getType();
5909 RTy = RHS.get()->getType();
5910
5911 // After those conversions, one of the following shall hold:
5912 // -- The second and third operands have the same type; the result
5913 // is of that type. If the operands have class type, the result
5914 // is a prvalue temporary of the result type, which is
5915 // copy-initialized from either the second operand or the third
5916 // operand depending on the value of the first operand.
5917 if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
5918 if (LTy->isRecordType()) {
5919 // The operands have class type. Make a temporary copy.
5920 InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
5921
5922 ExprResult LHSCopy = PerformCopyInitialization(Entity,
5923 SourceLocation(),
5924 LHS);
5925 if (LHSCopy.isInvalid())
5926 return QualType();
5927
5928 ExprResult RHSCopy = PerformCopyInitialization(Entity,
5929 SourceLocation(),
5930 RHS);
5931 if (RHSCopy.isInvalid())
5932 return QualType();
5933
5934 LHS = LHSCopy;
5935 RHS = RHSCopy;
5936 }
5937
5938 // If we have function pointer types, unify them anyway to unify their
5939 // exception specifications, if any.
5940 if (LTy->isFunctionPointerType() || LTy->isMemberFunctionPointerType()) {
5941 LTy = FindCompositePointerType(QuestionLoc, LHS, RHS);
5942 assert(!LTy.isNull() && "failed to find composite pointer type for "
5943 "canonically equivalent function ptr types");
5944 }
5945
5946 return LTy;
5947 }
5948
5949 // Extension: conditional operator involving vector types.
5950 if (LTy->isVectorType() || RTy->isVectorType())
5951 return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false,
5952 /*AllowBothBool*/true,
5953 /*AllowBoolConversions*/false);
5954
5955 // -- The second and third operands have arithmetic or enumeration type;
5956 // the usual arithmetic conversions are performed to bring them to a
5957 // common type, and the result is of that type.
5958 if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
5959 QualType ResTy = UsualArithmeticConversions(LHS, RHS);
5960 if (LHS.isInvalid() || RHS.isInvalid())
5961 return QualType();
5962 if (ResTy.isNull()) {
5963 Diag(QuestionLoc,
5964 diag::err_typecheck_cond_incompatible_operands) << LTy << RTy
5965 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5966 return QualType();
5967 }
5968
5969 LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
5970 RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
5971
5972 return ResTy;
5973 }
5974
5975 // -- The second and third operands have pointer type, or one has pointer
5976 // type and the other is a null pointer constant, or both are null
5977 // pointer constants, at least one of which is non-integral; pointer
5978 // conversions and qualification conversions are performed to bring them
5979 // to their composite pointer type. The result is of the composite
5980 // pointer type.
5981 // -- The second and third operands have pointer to member type, or one has
5982 // pointer to member type and the other is a null pointer constant;
5983 // pointer to member conversions and qualification conversions are
5984 // performed to bring them to a common type, whose cv-qualification
5985 // shall match the cv-qualification of either the second or the third
5986 // operand. The result is of the common type.
5987 QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS);
5988 if (!Composite.isNull())
5989 return Composite;
5990
5991 // Similarly, attempt to find composite type of two objective-c pointers.
5992 Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
5993 if (!Composite.isNull())
5994 return Composite;
5995
5996 // Check if we are using a null with a non-pointer type.
5997 if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
5998 return QualType();
5999
6000 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
6001 << LHS.get()->getType() << RHS.get()->getType()
6002 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6003 return QualType();
6004 }
6005
6006 static FunctionProtoType::ExceptionSpecInfo
mergeExceptionSpecs(Sema & S,FunctionProtoType::ExceptionSpecInfo ESI1,FunctionProtoType::ExceptionSpecInfo ESI2,SmallVectorImpl<QualType> & ExceptionTypeStorage)6007 mergeExceptionSpecs(Sema &S, FunctionProtoType::ExceptionSpecInfo ESI1,
6008 FunctionProtoType::ExceptionSpecInfo ESI2,
6009 SmallVectorImpl<QualType> &ExceptionTypeStorage) {
6010 ExceptionSpecificationType EST1 = ESI1.Type;
6011 ExceptionSpecificationType EST2 = ESI2.Type;
6012
6013 // If either of them can throw anything, that is the result.
6014 if (EST1 == EST_None) return ESI1;
6015 if (EST2 == EST_None) return ESI2;
6016 if (EST1 == EST_MSAny) return ESI1;
6017 if (EST2 == EST_MSAny) return ESI2;
6018 if (EST1 == EST_NoexceptFalse) return ESI1;
6019 if (EST2 == EST_NoexceptFalse) return ESI2;
6020
6021 // If either of them is non-throwing, the result is the other.
6022 if (EST1 == EST_DynamicNone) return ESI2;
6023 if (EST2 == EST_DynamicNone) return ESI1;
6024 if (EST1 == EST_BasicNoexcept) return ESI2;
6025 if (EST2 == EST_BasicNoexcept) return ESI1;
6026 if (EST1 == EST_NoexceptTrue) return ESI2;
6027 if (EST2 == EST_NoexceptTrue) return ESI1;
6028
6029 // If we're left with value-dependent computed noexcept expressions, we're
6030 // stuck. Before C++17, we can just drop the exception specification entirely,
6031 // since it's not actually part of the canonical type. And this should never
6032 // happen in C++17, because it would mean we were computing the composite
6033 // pointer type of dependent types, which should never happen.
6034 if (EST1 == EST_DependentNoexcept || EST2 == EST_DependentNoexcept) {
6035 assert(!S.getLangOpts().CPlusPlus17 &&
6036 "computing composite pointer type of dependent types");
6037 return FunctionProtoType::ExceptionSpecInfo();
6038 }
6039
6040 // Switch over the possibilities so that people adding new values know to
6041 // update this function.
6042 switch (EST1) {
6043 case EST_None:
6044 case EST_DynamicNone:
6045 case EST_MSAny:
6046 case EST_BasicNoexcept:
6047 case EST_DependentNoexcept:
6048 case EST_NoexceptFalse:
6049 case EST_NoexceptTrue:
6050 llvm_unreachable("handled above");
6051
6052 case EST_Dynamic: {
6053 // This is the fun case: both exception specifications are dynamic. Form
6054 // the union of the two lists.
6055 assert(EST2 == EST_Dynamic && "other cases should already be handled");
6056 llvm::SmallPtrSet<QualType, 8> Found;
6057 for (auto &Exceptions : {ESI1.Exceptions, ESI2.Exceptions})
6058 for (QualType E : Exceptions)
6059 if (Found.insert(S.Context.getCanonicalType(E)).second)
6060 ExceptionTypeStorage.push_back(E);
6061
6062 FunctionProtoType::ExceptionSpecInfo Result(EST_Dynamic);
6063 Result.Exceptions = ExceptionTypeStorage;
6064 return Result;
6065 }
6066
6067 case EST_Unevaluated:
6068 case EST_Uninstantiated:
6069 case EST_Unparsed:
6070 llvm_unreachable("shouldn't see unresolved exception specifications here");
6071 }
6072
6073 llvm_unreachable("invalid ExceptionSpecificationType");
6074 }
6075
6076 /// Find a merged pointer type and convert the two expressions to it.
6077 ///
6078 /// This finds the composite pointer type (or member pointer type) for @p E1
6079 /// and @p E2 according to C++1z 5p14. It converts both expressions to this
6080 /// type and returns it.
6081 /// It does not emit diagnostics.
6082 ///
6083 /// \param Loc The location of the operator requiring these two expressions to
6084 /// be converted to the composite pointer type.
6085 ///
6086 /// \param ConvertArgs If \c false, do not convert E1 and E2 to the target type.
FindCompositePointerType(SourceLocation Loc,Expr * & E1,Expr * & E2,bool ConvertArgs)6087 QualType Sema::FindCompositePointerType(SourceLocation Loc,
6088 Expr *&E1, Expr *&E2,
6089 bool ConvertArgs) {
6090 assert(getLangOpts().CPlusPlus && "This function assumes C++");
6091
6092 // C++1z [expr]p14:
6093 // The composite pointer type of two operands p1 and p2 having types T1
6094 // and T2
6095 QualType T1 = E1->getType(), T2 = E2->getType();
6096
6097 // where at least one is a pointer or pointer to member type or
6098 // std::nullptr_t is:
6099 bool T1IsPointerLike = T1->isAnyPointerType() || T1->isMemberPointerType() ||
6100 T1->isNullPtrType();
6101 bool T2IsPointerLike = T2->isAnyPointerType() || T2->isMemberPointerType() ||
6102 T2->isNullPtrType();
6103 if (!T1IsPointerLike && !T2IsPointerLike)
6104 return QualType();
6105
6106 // - if both p1 and p2 are null pointer constants, std::nullptr_t;
6107 // This can't actually happen, following the standard, but we also use this
6108 // to implement the end of [expr.conv], which hits this case.
6109 //
6110 // - if either p1 or p2 is a null pointer constant, T2 or T1, respectively;
6111 if (T1IsPointerLike &&
6112 E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
6113 if (ConvertArgs)
6114 E2 = ImpCastExprToType(E2, T1, T1->isMemberPointerType()
6115 ? CK_NullToMemberPointer
6116 : CK_NullToPointer).get();
6117 return T1;
6118 }
6119 if (T2IsPointerLike &&
6120 E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
6121 if (ConvertArgs)
6122 E1 = ImpCastExprToType(E1, T2, T2->isMemberPointerType()
6123 ? CK_NullToMemberPointer
6124 : CK_NullToPointer).get();
6125 return T2;
6126 }
6127
6128 // Now both have to be pointers or member pointers.
6129 if (!T1IsPointerLike || !T2IsPointerLike)
6130 return QualType();
6131 assert(!T1->isNullPtrType() && !T2->isNullPtrType() &&
6132 "nullptr_t should be a null pointer constant");
6133
6134 // - if T1 or T2 is "pointer to cv1 void" and the other type is
6135 // "pointer to cv2 T", "pointer to cv12 void", where cv12 is
6136 // the union of cv1 and cv2;
6137 // - if T1 or T2 is "pointer to noexcept function" and the other type is
6138 // "pointer to function", where the function types are otherwise the same,
6139 // "pointer to function";
6140 // FIXME: This rule is defective: it should also permit removing noexcept
6141 // from a pointer to member function. As a Clang extension, we also
6142 // permit removing 'noreturn', so we generalize this rule to;
6143 // - [Clang] If T1 and T2 are both of type "pointer to function" or
6144 // "pointer to member function" and the pointee types can be unified
6145 // by a function pointer conversion, that conversion is applied
6146 // before checking the following rules.
6147 // - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1
6148 // is reference-related to C2 or C2 is reference-related to C1 (8.6.3),
6149 // the cv-combined type of T1 and T2 or the cv-combined type of T2 and T1,
6150 // respectively;
6151 // - if T1 is "pointer to member of C1 of type cv1 U1" and T2 is "pointer
6152 // to member of C2 of type cv2 U2" where C1 is reference-related to C2 or
6153 // C2 is reference-related to C1 (8.6.3), the cv-combined type of T2 and
6154 // T1 or the cv-combined type of T1 and T2, respectively;
6155 // - if T1 and T2 are similar types (4.5), the cv-combined type of T1 and
6156 // T2;
6157 //
6158 // If looked at in the right way, these bullets all do the same thing.
6159 // What we do here is, we build the two possible cv-combined types, and try
6160 // the conversions in both directions. If only one works, or if the two
6161 // composite types are the same, we have succeeded.
6162 // FIXME: extended qualifiers?
6163 //
6164 // Note that this will fail to find a composite pointer type for "pointer
6165 // to void" and "pointer to function". We can't actually perform the final
6166 // conversion in this case, even though a composite pointer type formally
6167 // exists.
6168 SmallVector<unsigned, 4> QualifierUnion;
6169 SmallVector<std::pair<const Type *, const Type *>, 4> MemberOfClass;
6170 QualType Composite1 = T1;
6171 QualType Composite2 = T2;
6172 unsigned NeedConstBefore = 0;
6173 while (true) {
6174 const PointerType *Ptr1, *Ptr2;
6175 if ((Ptr1 = Composite1->getAs<PointerType>()) &&
6176 (Ptr2 = Composite2->getAs<PointerType>())) {
6177 Composite1 = Ptr1->getPointeeType();
6178 Composite2 = Ptr2->getPointeeType();
6179
6180 // If we're allowed to create a non-standard composite type, keep track
6181 // of where we need to fill in additional 'const' qualifiers.
6182 if (Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
6183 NeedConstBefore = QualifierUnion.size();
6184
6185 QualifierUnion.push_back(
6186 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
6187 MemberOfClass.push_back(std::make_pair(nullptr, nullptr));
6188 continue;
6189 }
6190
6191 const MemberPointerType *MemPtr1, *MemPtr2;
6192 if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
6193 (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
6194 Composite1 = MemPtr1->getPointeeType();
6195 Composite2 = MemPtr2->getPointeeType();
6196
6197 // If we're allowed to create a non-standard composite type, keep track
6198 // of where we need to fill in additional 'const' qualifiers.
6199 if (Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
6200 NeedConstBefore = QualifierUnion.size();
6201
6202 QualifierUnion.push_back(
6203 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
6204 MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(),
6205 MemPtr2->getClass()));
6206 continue;
6207 }
6208
6209 // FIXME: block pointer types?
6210
6211 // Cannot unwrap any more types.
6212 break;
6213 }
6214
6215 // Apply the function pointer conversion to unify the types. We've already
6216 // unwrapped down to the function types, and we want to merge rather than
6217 // just convert, so do this ourselves rather than calling
6218 // IsFunctionConversion.
6219 //
6220 // FIXME: In order to match the standard wording as closely as possible, we
6221 // currently only do this under a single level of pointers. Ideally, we would
6222 // allow this in general, and set NeedConstBefore to the relevant depth on
6223 // the side(s) where we changed anything.
6224 if (QualifierUnion.size() == 1) {
6225 if (auto *FPT1 = Composite1->getAs<FunctionProtoType>()) {
6226 if (auto *FPT2 = Composite2->getAs<FunctionProtoType>()) {
6227 FunctionProtoType::ExtProtoInfo EPI1 = FPT1->getExtProtoInfo();
6228 FunctionProtoType::ExtProtoInfo EPI2 = FPT2->getExtProtoInfo();
6229
6230 // The result is noreturn if both operands are.
6231 bool Noreturn =
6232 EPI1.ExtInfo.getNoReturn() && EPI2.ExtInfo.getNoReturn();
6233 EPI1.ExtInfo = EPI1.ExtInfo.withNoReturn(Noreturn);
6234 EPI2.ExtInfo = EPI2.ExtInfo.withNoReturn(Noreturn);
6235
6236 // The result is nothrow if both operands are.
6237 SmallVector<QualType, 8> ExceptionTypeStorage;
6238 EPI1.ExceptionSpec = EPI2.ExceptionSpec =
6239 mergeExceptionSpecs(*this, EPI1.ExceptionSpec, EPI2.ExceptionSpec,
6240 ExceptionTypeStorage);
6241
6242 Composite1 = Context.getFunctionType(FPT1->getReturnType(),
6243 FPT1->getParamTypes(), EPI1);
6244 Composite2 = Context.getFunctionType(FPT2->getReturnType(),
6245 FPT2->getParamTypes(), EPI2);
6246 }
6247 }
6248 }
6249
6250 if (NeedConstBefore) {
6251 // Extension: Add 'const' to qualifiers that come before the first qualifier
6252 // mismatch, so that our (non-standard!) composite type meets the
6253 // requirements of C++ [conv.qual]p4 bullet 3.
6254 for (unsigned I = 0; I != NeedConstBefore; ++I)
6255 if ((QualifierUnion[I] & Qualifiers::Const) == 0)
6256 QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const;
6257 }
6258
6259 // Rewrap the composites as pointers or member pointers with the union CVRs.
6260 auto MOC = MemberOfClass.rbegin();
6261 for (unsigned CVR : llvm::reverse(QualifierUnion)) {
6262 Qualifiers Quals = Qualifiers::fromCVRMask(CVR);
6263 auto Classes = *MOC++;
6264 if (Classes.first && Classes.second) {
6265 // Rebuild member pointer type
6266 Composite1 = Context.getMemberPointerType(
6267 Context.getQualifiedType(Composite1, Quals), Classes.first);
6268 Composite2 = Context.getMemberPointerType(
6269 Context.getQualifiedType(Composite2, Quals), Classes.second);
6270 } else {
6271 // Rebuild pointer type
6272 Composite1 =
6273 Context.getPointerType(Context.getQualifiedType(Composite1, Quals));
6274 Composite2 =
6275 Context.getPointerType(Context.getQualifiedType(Composite2, Quals));
6276 }
6277 }
6278
6279 struct Conversion {
6280 Sema &S;
6281 Expr *&E1, *&E2;
6282 QualType Composite;
6283 InitializedEntity Entity;
6284 InitializationKind Kind;
6285 InitializationSequence E1ToC, E2ToC;
6286 bool Viable;
6287
6288 Conversion(Sema &S, SourceLocation Loc, Expr *&E1, Expr *&E2,
6289 QualType Composite)
6290 : S(S), E1(E1), E2(E2), Composite(Composite),
6291 Entity(InitializedEntity::InitializeTemporary(Composite)),
6292 Kind(InitializationKind::CreateCopy(Loc, SourceLocation())),
6293 E1ToC(S, Entity, Kind, E1), E2ToC(S, Entity, Kind, E2),
6294 Viable(E1ToC && E2ToC) {}
6295
6296 bool perform() {
6297 ExprResult E1Result = E1ToC.Perform(S, Entity, Kind, E1);
6298 if (E1Result.isInvalid())
6299 return true;
6300 E1 = E1Result.getAs<Expr>();
6301
6302 ExprResult E2Result = E2ToC.Perform(S, Entity, Kind, E2);
6303 if (E2Result.isInvalid())
6304 return true;
6305 E2 = E2Result.getAs<Expr>();
6306
6307 return false;
6308 }
6309 };
6310
6311 // Try to convert to each composite pointer type.
6312 Conversion C1(*this, Loc, E1, E2, Composite1);
6313 if (C1.Viable && Context.hasSameType(Composite1, Composite2)) {
6314 if (ConvertArgs && C1.perform())
6315 return QualType();
6316 return C1.Composite;
6317 }
6318 Conversion C2(*this, Loc, E1, E2, Composite2);
6319
6320 if (C1.Viable == C2.Viable) {
6321 // Either Composite1 and Composite2 are viable and are different, or
6322 // neither is viable.
6323 // FIXME: How both be viable and different?
6324 return QualType();
6325 }
6326
6327 // Convert to the chosen type.
6328 if (ConvertArgs && (C1.Viable ? C1 : C2).perform())
6329 return QualType();
6330
6331 return C1.Viable ? C1.Composite : C2.Composite;
6332 }
6333
MaybeBindToTemporary(Expr * E)6334 ExprResult Sema::MaybeBindToTemporary(Expr *E) {
6335 if (!E)
6336 return ExprError();
6337
6338 assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
6339
6340 // If the result is a glvalue, we shouldn't bind it.
6341 if (!E->isRValue())
6342 return E;
6343
6344 // In ARC, calls that return a retainable type can return retained,
6345 // in which case we have to insert a consuming cast.
6346 if (getLangOpts().ObjCAutoRefCount &&
6347 E->getType()->isObjCRetainableType()) {
6348
6349 bool ReturnsRetained;
6350
6351 // For actual calls, we compute this by examining the type of the
6352 // called value.
6353 if (CallExpr *Call = dyn_cast<CallExpr>(E)) {
6354 Expr *Callee = Call->getCallee()->IgnoreParens();
6355 QualType T = Callee->getType();
6356
6357 if (T == Context.BoundMemberTy) {
6358 // Handle pointer-to-members.
6359 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee))
6360 T = BinOp->getRHS()->getType();
6361 else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee))
6362 T = Mem->getMemberDecl()->getType();
6363 }
6364
6365 if (const PointerType *Ptr = T->getAs<PointerType>())
6366 T = Ptr->getPointeeType();
6367 else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>())
6368 T = Ptr->getPointeeType();
6369 else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>())
6370 T = MemPtr->getPointeeType();
6371
6372 const FunctionType *FTy = T->getAs<FunctionType>();
6373 assert(FTy && "call to value not of function type?");
6374 ReturnsRetained = FTy->getExtInfo().getProducesResult();
6375
6376 // ActOnStmtExpr arranges things so that StmtExprs of retainable
6377 // type always produce a +1 object.
6378 } else if (isa<StmtExpr>(E)) {
6379 ReturnsRetained = true;
6380
6381 // We hit this case with the lambda conversion-to-block optimization;
6382 // we don't want any extra casts here.
6383 } else if (isa<CastExpr>(E) &&
6384 isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) {
6385 return E;
6386
6387 // For message sends and property references, we try to find an
6388 // actual method. FIXME: we should infer retention by selector in
6389 // cases where we don't have an actual method.
6390 } else {
6391 ObjCMethodDecl *D = nullptr;
6392 if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) {
6393 D = Send->getMethodDecl();
6394 } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) {
6395 D = BoxedExpr->getBoxingMethod();
6396 } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) {
6397 // Don't do reclaims if we're using the zero-element array
6398 // constant.
6399 if (ArrayLit->getNumElements() == 0 &&
6400 Context.getLangOpts().ObjCRuntime.hasEmptyCollections())
6401 return E;
6402
6403 D = ArrayLit->getArrayWithObjectsMethod();
6404 } else if (ObjCDictionaryLiteral *DictLit
6405 = dyn_cast<ObjCDictionaryLiteral>(E)) {
6406 // Don't do reclaims if we're using the zero-element dictionary
6407 // constant.
6408 if (DictLit->getNumElements() == 0 &&
6409 Context.getLangOpts().ObjCRuntime.hasEmptyCollections())
6410 return E;
6411
6412 D = DictLit->getDictWithObjectsMethod();
6413 }
6414
6415 ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>());
6416
6417 // Don't do reclaims on performSelector calls; despite their
6418 // return type, the invoked method doesn't necessarily actually
6419 // return an object.
6420 if (!ReturnsRetained &&
6421 D && D->getMethodFamily() == OMF_performSelector)
6422 return E;
6423 }
6424
6425 // Don't reclaim an object of Class type.
6426 if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType())
6427 return E;
6428
6429 Cleanup.setExprNeedsCleanups(true);
6430
6431 CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject
6432 : CK_ARCReclaimReturnedObject);
6433 return ImplicitCastExpr::Create(Context, E->getType(), ck, E, nullptr,
6434 VK_RValue);
6435 }
6436
6437 if (!getLangOpts().CPlusPlus)
6438 return E;
6439
6440 // Search for the base element type (cf. ASTContext::getBaseElementType) with
6441 // a fast path for the common case that the type is directly a RecordType.
6442 const Type *T = Context.getCanonicalType(E->getType().getTypePtr());
6443 const RecordType *RT = nullptr;
6444 while (!RT) {
6445 switch (T->getTypeClass()) {
6446 case Type::Record:
6447 RT = cast<RecordType>(T);
6448 break;
6449 case Type::ConstantArray:
6450 case Type::IncompleteArray:
6451 case Type::VariableArray:
6452 case Type::DependentSizedArray:
6453 T = cast<ArrayType>(T)->getElementType().getTypePtr();
6454 break;
6455 default:
6456 return E;
6457 }
6458 }
6459
6460 // That should be enough to guarantee that this type is complete, if we're
6461 // not processing a decltype expression.
6462 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
6463 if (RD->isInvalidDecl() || RD->isDependentContext())
6464 return E;
6465
6466 bool IsDecltype = ExprEvalContexts.back().ExprContext ==
6467 ExpressionEvaluationContextRecord::EK_Decltype;
6468 CXXDestructorDecl *Destructor = IsDecltype ? nullptr : LookupDestructor(RD);
6469
6470 if (Destructor) {
6471 MarkFunctionReferenced(E->getExprLoc(), Destructor);
6472 CheckDestructorAccess(E->getExprLoc(), Destructor,
6473 PDiag(diag::err_access_dtor_temp)
6474 << E->getType());
6475 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
6476 return ExprError();
6477
6478 // If destructor is trivial, we can avoid the extra copy.
6479 if (Destructor->isTrivial())
6480 return E;
6481
6482 // We need a cleanup, but we don't need to remember the temporary.
6483 Cleanup.setExprNeedsCleanups(true);
6484 }
6485
6486 CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor);
6487 CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E);
6488
6489 if (IsDecltype)
6490 ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind);
6491
6492 return Bind;
6493 }
6494
6495 ExprResult
MaybeCreateExprWithCleanups(ExprResult SubExpr)6496 Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
6497 if (SubExpr.isInvalid())
6498 return ExprError();
6499
6500 return MaybeCreateExprWithCleanups(SubExpr.get());
6501 }
6502
MaybeCreateExprWithCleanups(Expr * SubExpr)6503 Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
6504 assert(SubExpr && "subexpression can't be null!");
6505
6506 CleanupVarDeclMarking();
6507
6508 unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects;
6509 assert(ExprCleanupObjects.size() >= FirstCleanup);
6510 assert(Cleanup.exprNeedsCleanups() ||
6511 ExprCleanupObjects.size() == FirstCleanup);
6512 if (!Cleanup.exprNeedsCleanups())
6513 return SubExpr;
6514
6515 auto Cleanups = llvm::makeArrayRef(ExprCleanupObjects.begin() + FirstCleanup,
6516 ExprCleanupObjects.size() - FirstCleanup);
6517
6518 auto *E = ExprWithCleanups::Create(
6519 Context, SubExpr, Cleanup.cleanupsHaveSideEffects(), Cleanups);
6520 DiscardCleanupsInEvaluationContext();
6521
6522 return E;
6523 }
6524
MaybeCreateStmtWithCleanups(Stmt * SubStmt)6525 Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
6526 assert(SubStmt && "sub-statement can't be null!");
6527
6528 CleanupVarDeclMarking();
6529
6530 if (!Cleanup.exprNeedsCleanups())
6531 return SubStmt;
6532
6533 // FIXME: In order to attach the temporaries, wrap the statement into
6534 // a StmtExpr; currently this is only used for asm statements.
6535 // This is hacky, either create a new CXXStmtWithTemporaries statement or
6536 // a new AsmStmtWithTemporaries.
6537 CompoundStmt *CompStmt = CompoundStmt::Create(
6538 Context, SubStmt, SourceLocation(), SourceLocation());
6539 Expr *E = new (Context) StmtExpr(CompStmt, Context.VoidTy, SourceLocation(),
6540 SourceLocation());
6541 return MaybeCreateExprWithCleanups(E);
6542 }
6543
6544 /// Process the expression contained within a decltype. For such expressions,
6545 /// certain semantic checks on temporaries are delayed until this point, and
6546 /// are omitted for the 'topmost' call in the decltype expression. If the
6547 /// topmost call bound a temporary, strip that temporary off the expression.
ActOnDecltypeExpression(Expr * E)6548 ExprResult Sema::ActOnDecltypeExpression(Expr *E) {
6549 assert(ExprEvalContexts.back().ExprContext ==
6550 ExpressionEvaluationContextRecord::EK_Decltype &&
6551 "not in a decltype expression");
6552
6553 ExprResult Result = CheckPlaceholderExpr(E);
6554 if (Result.isInvalid())
6555 return ExprError();
6556 E = Result.get();
6557
6558 // C++11 [expr.call]p11:
6559 // If a function call is a prvalue of object type,
6560 // -- if the function call is either
6561 // -- the operand of a decltype-specifier, or
6562 // -- the right operand of a comma operator that is the operand of a
6563 // decltype-specifier,
6564 // a temporary object is not introduced for the prvalue.
6565
6566 // Recursively rebuild ParenExprs and comma expressions to strip out the
6567 // outermost CXXBindTemporaryExpr, if any.
6568 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
6569 ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr());
6570 if (SubExpr.isInvalid())
6571 return ExprError();
6572 if (SubExpr.get() == PE->getSubExpr())
6573 return E;
6574 return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.get());
6575 }
6576 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
6577 if (BO->getOpcode() == BO_Comma) {
6578 ExprResult RHS = ActOnDecltypeExpression(BO->getRHS());
6579 if (RHS.isInvalid())
6580 return ExprError();
6581 if (RHS.get() == BO->getRHS())
6582 return E;
6583 return new (Context) BinaryOperator(
6584 BO->getLHS(), RHS.get(), BO_Comma, BO->getType(), BO->getValueKind(),
6585 BO->getObjectKind(), BO->getOperatorLoc(), BO->getFPFeatures());
6586 }
6587 }
6588
6589 CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E);
6590 CallExpr *TopCall = TopBind ? dyn_cast<CallExpr>(TopBind->getSubExpr())
6591 : nullptr;
6592 if (TopCall)
6593 E = TopCall;
6594 else
6595 TopBind = nullptr;
6596
6597 // Disable the special decltype handling now.
6598 ExprEvalContexts.back().ExprContext =
6599 ExpressionEvaluationContextRecord::EK_Other;
6600
6601 // In MS mode, don't perform any extra checking of call return types within a
6602 // decltype expression.
6603 if (getLangOpts().MSVCCompat)
6604 return E;
6605
6606 // Perform the semantic checks we delayed until this point.
6607 for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size();
6608 I != N; ++I) {
6609 CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I];
6610 if (Call == TopCall)
6611 continue;
6612
6613 if (CheckCallReturnType(Call->getCallReturnType(Context),
6614 Call->getBeginLoc(), Call, Call->getDirectCallee()))
6615 return ExprError();
6616 }
6617
6618 // Now all relevant types are complete, check the destructors are accessible
6619 // and non-deleted, and annotate them on the temporaries.
6620 for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size();
6621 I != N; ++I) {
6622 CXXBindTemporaryExpr *Bind =
6623 ExprEvalContexts.back().DelayedDecltypeBinds[I];
6624 if (Bind == TopBind)
6625 continue;
6626
6627 CXXTemporary *Temp = Bind->getTemporary();
6628
6629 CXXRecordDecl *RD =
6630 Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
6631 CXXDestructorDecl *Destructor = LookupDestructor(RD);
6632 Temp->setDestructor(Destructor);
6633
6634 MarkFunctionReferenced(Bind->getExprLoc(), Destructor);
6635 CheckDestructorAccess(Bind->getExprLoc(), Destructor,
6636 PDiag(diag::err_access_dtor_temp)
6637 << Bind->getType());
6638 if (DiagnoseUseOfDecl(Destructor, Bind->getExprLoc()))
6639 return ExprError();
6640
6641 // We need a cleanup, but we don't need to remember the temporary.
6642 Cleanup.setExprNeedsCleanups(true);
6643 }
6644
6645 // Possibly strip off the top CXXBindTemporaryExpr.
6646 return E;
6647 }
6648
6649 /// Note a set of 'operator->' functions that were used for a member access.
noteOperatorArrows(Sema & S,ArrayRef<FunctionDecl * > OperatorArrows)6650 static void noteOperatorArrows(Sema &S,
6651 ArrayRef<FunctionDecl *> OperatorArrows) {
6652 unsigned SkipStart = OperatorArrows.size(), SkipCount = 0;
6653 // FIXME: Make this configurable?
6654 unsigned Limit = 9;
6655 if (OperatorArrows.size() > Limit) {
6656 // Produce Limit-1 normal notes and one 'skipping' note.
6657 SkipStart = (Limit - 1) / 2 + (Limit - 1) % 2;
6658 SkipCount = OperatorArrows.size() - (Limit - 1);
6659 }
6660
6661 for (unsigned I = 0; I < OperatorArrows.size(); /**/) {
6662 if (I == SkipStart) {
6663 S.Diag(OperatorArrows[I]->getLocation(),
6664 diag::note_operator_arrows_suppressed)
6665 << SkipCount;
6666 I += SkipCount;
6667 } else {
6668 S.Diag(OperatorArrows[I]->getLocation(), diag::note_operator_arrow_here)
6669 << OperatorArrows[I]->getCallResultType();
6670 ++I;
6671 }
6672 }
6673 }
6674
ActOnStartCXXMemberReference(Scope * S,Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,ParsedType & ObjectType,bool & MayBePseudoDestructor)6675 ExprResult Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base,
6676 SourceLocation OpLoc,
6677 tok::TokenKind OpKind,
6678 ParsedType &ObjectType,
6679 bool &MayBePseudoDestructor) {
6680 // Since this might be a postfix expression, get rid of ParenListExprs.
6681 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
6682 if (Result.isInvalid()) return ExprError();
6683 Base = Result.get();
6684
6685 Result = CheckPlaceholderExpr(Base);
6686 if (Result.isInvalid()) return ExprError();
6687 Base = Result.get();
6688
6689 QualType BaseType = Base->getType();
6690 MayBePseudoDestructor = false;
6691 if (BaseType->isDependentType()) {
6692 // If we have a pointer to a dependent type and are using the -> operator,
6693 // the object type is the type that the pointer points to. We might still
6694 // have enough information about that type to do something useful.
6695 if (OpKind == tok::arrow)
6696 if (const PointerType *Ptr = BaseType->getAs<PointerType>())
6697 BaseType = Ptr->getPointeeType();
6698
6699 ObjectType = ParsedType::make(BaseType);
6700 MayBePseudoDestructor = true;
6701 return Base;
6702 }
6703
6704 // C++ [over.match.oper]p8:
6705 // [...] When operator->returns, the operator-> is applied to the value
6706 // returned, with the original second operand.
6707 if (OpKind == tok::arrow) {
6708 QualType StartingType = BaseType;
6709 bool NoArrowOperatorFound = false;
6710 bool FirstIteration = true;
6711 FunctionDecl *CurFD = dyn_cast<FunctionDecl>(CurContext);
6712 // The set of types we've considered so far.
6713 llvm::SmallPtrSet<CanQualType,8> CTypes;
6714 SmallVector<FunctionDecl*, 8> OperatorArrows;
6715 CTypes.insert(Context.getCanonicalType(BaseType));
6716
6717 while (BaseType->isRecordType()) {
6718 if (OperatorArrows.size() >= getLangOpts().ArrowDepth) {
6719 Diag(OpLoc, diag::err_operator_arrow_depth_exceeded)
6720 << StartingType << getLangOpts().ArrowDepth << Base->getSourceRange();
6721 noteOperatorArrows(*this, OperatorArrows);
6722 Diag(OpLoc, diag::note_operator_arrow_depth)
6723 << getLangOpts().ArrowDepth;
6724 return ExprError();
6725 }
6726
6727 Result = BuildOverloadedArrowExpr(
6728 S, Base, OpLoc,
6729 // When in a template specialization and on the first loop iteration,
6730 // potentially give the default diagnostic (with the fixit in a
6731 // separate note) instead of having the error reported back to here
6732 // and giving a diagnostic with a fixit attached to the error itself.
6733 (FirstIteration && CurFD && CurFD->isFunctionTemplateSpecialization())
6734 ? nullptr
6735 : &NoArrowOperatorFound);
6736 if (Result.isInvalid()) {
6737 if (NoArrowOperatorFound) {
6738 if (FirstIteration) {
6739 Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
6740 << BaseType << 1 << Base->getSourceRange()
6741 << FixItHint::CreateReplacement(OpLoc, ".");
6742 OpKind = tok::period;
6743 break;
6744 }
6745 Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
6746 << BaseType << Base->getSourceRange();
6747 CallExpr *CE = dyn_cast<CallExpr>(Base);
6748 if (Decl *CD = (CE ? CE->getCalleeDecl() : nullptr)) {
6749 Diag(CD->getBeginLoc(),
6750 diag::note_member_reference_arrow_from_operator_arrow);
6751 }
6752 }
6753 return ExprError();
6754 }
6755 Base = Result.get();
6756 if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
6757 OperatorArrows.push_back(OpCall->getDirectCallee());
6758 BaseType = Base->getType();
6759 CanQualType CBaseType = Context.getCanonicalType(BaseType);
6760 if (!CTypes.insert(CBaseType).second) {
6761 Diag(OpLoc, diag::err_operator_arrow_circular) << StartingType;
6762 noteOperatorArrows(*this, OperatorArrows);
6763 return ExprError();
6764 }
6765 FirstIteration = false;
6766 }
6767
6768 if (OpKind == tok::arrow &&
6769 (BaseType->isPointerType() || BaseType->isObjCObjectPointerType()))
6770 BaseType = BaseType->getPointeeType();
6771 }
6772
6773 // Objective-C properties allow "." access on Objective-C pointer types,
6774 // so adjust the base type to the object type itself.
6775 if (BaseType->isObjCObjectPointerType())
6776 BaseType = BaseType->getPointeeType();
6777
6778 // C++ [basic.lookup.classref]p2:
6779 // [...] If the type of the object expression is of pointer to scalar
6780 // type, the unqualified-id is looked up in the context of the complete
6781 // postfix-expression.
6782 //
6783 // This also indicates that we could be parsing a pseudo-destructor-name.
6784 // Note that Objective-C class and object types can be pseudo-destructor
6785 // expressions or normal member (ivar or property) access expressions, and
6786 // it's legal for the type to be incomplete if this is a pseudo-destructor
6787 // call. We'll do more incomplete-type checks later in the lookup process,
6788 // so just skip this check for ObjC types.
6789 if (BaseType->isObjCObjectOrInterfaceType()) {
6790 ObjectType = ParsedType::make(BaseType);
6791 MayBePseudoDestructor = true;
6792 return Base;
6793 } else if (!BaseType->isRecordType()) {
6794 ObjectType = nullptr;
6795 MayBePseudoDestructor = true;
6796 return Base;
6797 }
6798
6799 // The object type must be complete (or dependent), or
6800 // C++11 [expr.prim.general]p3:
6801 // Unlike the object expression in other contexts, *this is not required to
6802 // be of complete type for purposes of class member access (5.2.5) outside
6803 // the member function body.
6804 if (!BaseType->isDependentType() &&
6805 !isThisOutsideMemberFunctionBody(BaseType) &&
6806 RequireCompleteType(OpLoc, BaseType, diag::err_incomplete_member_access))
6807 return ExprError();
6808
6809 // C++ [basic.lookup.classref]p2:
6810 // If the id-expression in a class member access (5.2.5) is an
6811 // unqualified-id, and the type of the object expression is of a class
6812 // type C (or of pointer to a class type C), the unqualified-id is looked
6813 // up in the scope of class C. [...]
6814 ObjectType = ParsedType::make(BaseType);
6815 return Base;
6816 }
6817
CheckArrow(Sema & S,QualType & ObjectType,Expr * & Base,tok::TokenKind & OpKind,SourceLocation OpLoc)6818 static bool CheckArrow(Sema& S, QualType& ObjectType, Expr *&Base,
6819 tok::TokenKind& OpKind, SourceLocation OpLoc) {
6820 if (Base->hasPlaceholderType()) {
6821 ExprResult result = S.CheckPlaceholderExpr(Base);
6822 if (result.isInvalid()) return true;
6823 Base = result.get();
6824 }
6825 ObjectType = Base->getType();
6826
6827 // C++ [expr.pseudo]p2:
6828 // The left-hand side of the dot operator shall be of scalar type. The
6829 // left-hand side of the arrow operator shall be of pointer to scalar type.
6830 // This scalar type is the object type.
6831 // Note that this is rather different from the normal handling for the
6832 // arrow operator.
6833 if (OpKind == tok::arrow) {
6834 if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
6835 ObjectType = Ptr->getPointeeType();
6836 } else if (!Base->isTypeDependent()) {
6837 // The user wrote "p->" when they probably meant "p."; fix it.
6838 S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
6839 << ObjectType << true
6840 << FixItHint::CreateReplacement(OpLoc, ".");
6841 if (S.isSFINAEContext())
6842 return true;
6843
6844 OpKind = tok::period;
6845 }
6846 }
6847
6848 return false;
6849 }
6850
6851 /// Check if it's ok to try and recover dot pseudo destructor calls on
6852 /// pointer objects.
6853 static bool
canRecoverDotPseudoDestructorCallsOnPointerObjects(Sema & SemaRef,QualType DestructedType)6854 canRecoverDotPseudoDestructorCallsOnPointerObjects(Sema &SemaRef,
6855 QualType DestructedType) {
6856 // If this is a record type, check if its destructor is callable.
6857 if (auto *RD = DestructedType->getAsCXXRecordDecl()) {
6858 if (CXXDestructorDecl *D = SemaRef.LookupDestructor(RD))
6859 return SemaRef.CanUseDecl(D, /*TreatUnavailableAsInvalid=*/false);
6860 return false;
6861 }
6862
6863 // Otherwise, check if it's a type for which it's valid to use a pseudo-dtor.
6864 return DestructedType->isDependentType() || DestructedType->isScalarType() ||
6865 DestructedType->isVectorType();
6866 }
6867
BuildPseudoDestructorExpr(Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,const CXXScopeSpec & SS,TypeSourceInfo * ScopeTypeInfo,SourceLocation CCLoc,SourceLocation TildeLoc,PseudoDestructorTypeStorage Destructed)6868 ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
6869 SourceLocation OpLoc,
6870 tok::TokenKind OpKind,
6871 const CXXScopeSpec &SS,
6872 TypeSourceInfo *ScopeTypeInfo,
6873 SourceLocation CCLoc,
6874 SourceLocation TildeLoc,
6875 PseudoDestructorTypeStorage Destructed) {
6876 TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
6877
6878 QualType ObjectType;
6879 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
6880 return ExprError();
6881
6882 if (!ObjectType->isDependentType() && !ObjectType->isScalarType() &&
6883 !ObjectType->isVectorType()) {
6884 if (getLangOpts().MSVCCompat && ObjectType->isVoidType())
6885 Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange();
6886 else {
6887 Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
6888 << ObjectType << Base->getSourceRange();
6889 return ExprError();
6890 }
6891 }
6892
6893 // C++ [expr.pseudo]p2:
6894 // [...] The cv-unqualified versions of the object type and of the type
6895 // designated by the pseudo-destructor-name shall be the same type.
6896 if (DestructedTypeInfo) {
6897 QualType DestructedType = DestructedTypeInfo->getType();
6898 SourceLocation DestructedTypeStart
6899 = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
6900 if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) {
6901 if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
6902 // Detect dot pseudo destructor calls on pointer objects, e.g.:
6903 // Foo *foo;
6904 // foo.~Foo();
6905 if (OpKind == tok::period && ObjectType->isPointerType() &&
6906 Context.hasSameUnqualifiedType(DestructedType,
6907 ObjectType->getPointeeType())) {
6908 auto Diagnostic =
6909 Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
6910 << ObjectType << /*IsArrow=*/0 << Base->getSourceRange();
6911
6912 // Issue a fixit only when the destructor is valid.
6913 if (canRecoverDotPseudoDestructorCallsOnPointerObjects(
6914 *this, DestructedType))
6915 Diagnostic << FixItHint::CreateReplacement(OpLoc, "->");
6916
6917 // Recover by setting the object type to the destructed type and the
6918 // operator to '->'.
6919 ObjectType = DestructedType;
6920 OpKind = tok::arrow;
6921 } else {
6922 Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
6923 << ObjectType << DestructedType << Base->getSourceRange()
6924 << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
6925
6926 // Recover by setting the destructed type to the object type.
6927 DestructedType = ObjectType;
6928 DestructedTypeInfo =
6929 Context.getTrivialTypeSourceInfo(ObjectType, DestructedTypeStart);
6930 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
6931 }
6932 } else if (DestructedType.getObjCLifetime() !=
6933 ObjectType.getObjCLifetime()) {
6934
6935 if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) {
6936 // Okay: just pretend that the user provided the correctly-qualified
6937 // type.
6938 } else {
6939 Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals)
6940 << ObjectType << DestructedType << Base->getSourceRange()
6941 << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
6942 }
6943
6944 // Recover by setting the destructed type to the object type.
6945 DestructedType = ObjectType;
6946 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
6947 DestructedTypeStart);
6948 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
6949 }
6950 }
6951 }
6952
6953 // C++ [expr.pseudo]p2:
6954 // [...] Furthermore, the two type-names in a pseudo-destructor-name of the
6955 // form
6956 //
6957 // ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
6958 //
6959 // shall designate the same scalar type.
6960 if (ScopeTypeInfo) {
6961 QualType ScopeType = ScopeTypeInfo->getType();
6962 if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
6963 !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
6964
6965 Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
6966 diag::err_pseudo_dtor_type_mismatch)
6967 << ObjectType << ScopeType << Base->getSourceRange()
6968 << ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
6969
6970 ScopeType = QualType();
6971 ScopeTypeInfo = nullptr;
6972 }
6973 }
6974
6975 Expr *Result
6976 = new (Context) CXXPseudoDestructorExpr(Context, Base,
6977 OpKind == tok::arrow, OpLoc,
6978 SS.getWithLocInContext(Context),
6979 ScopeTypeInfo,
6980 CCLoc,
6981 TildeLoc,
6982 Destructed);
6983
6984 return Result;
6985 }
6986
ActOnPseudoDestructorExpr(Scope * S,Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,CXXScopeSpec & SS,UnqualifiedId & FirstTypeName,SourceLocation CCLoc,SourceLocation TildeLoc,UnqualifiedId & SecondTypeName)6987 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
6988 SourceLocation OpLoc,
6989 tok::TokenKind OpKind,
6990 CXXScopeSpec &SS,
6991 UnqualifiedId &FirstTypeName,
6992 SourceLocation CCLoc,
6993 SourceLocation TildeLoc,
6994 UnqualifiedId &SecondTypeName) {
6995 assert((FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||
6996 FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) &&
6997 "Invalid first type name in pseudo-destructor");
6998 assert((SecondTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||
6999 SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) &&
7000 "Invalid second type name in pseudo-destructor");
7001
7002 QualType ObjectType;
7003 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
7004 return ExprError();
7005
7006 // Compute the object type that we should use for name lookup purposes. Only
7007 // record types and dependent types matter.
7008 ParsedType ObjectTypePtrForLookup;
7009 if (!SS.isSet()) {
7010 if (ObjectType->isRecordType())
7011 ObjectTypePtrForLookup = ParsedType::make(ObjectType);
7012 else if (ObjectType->isDependentType())
7013 ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
7014 }
7015
7016 // Convert the name of the type being destructed (following the ~) into a
7017 // type (with source-location information).
7018 QualType DestructedType;
7019 TypeSourceInfo *DestructedTypeInfo = nullptr;
7020 PseudoDestructorTypeStorage Destructed;
7021 if (SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) {
7022 ParsedType T = getTypeName(*SecondTypeName.Identifier,
7023 SecondTypeName.StartLocation,
7024 S, &SS, true, false, ObjectTypePtrForLookup,
7025 /*IsCtorOrDtorName*/true);
7026 if (!T &&
7027 ((SS.isSet() && !computeDeclContext(SS, false)) ||
7028 (!SS.isSet() && ObjectType->isDependentType()))) {
7029 // The name of the type being destroyed is a dependent name, and we
7030 // couldn't find anything useful in scope. Just store the identifier and
7031 // it's location, and we'll perform (qualified) name lookup again at
7032 // template instantiation time.
7033 Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
7034 SecondTypeName.StartLocation);
7035 } else if (!T) {
7036 Diag(SecondTypeName.StartLocation,
7037 diag::err_pseudo_dtor_destructor_non_type)
7038 << SecondTypeName.Identifier << ObjectType;
7039 if (isSFINAEContext())
7040 return ExprError();
7041
7042 // Recover by assuming we had the right type all along.
7043 DestructedType = ObjectType;
7044 } else
7045 DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
7046 } else {
7047 // Resolve the template-id to a type.
7048 TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
7049 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
7050 TemplateId->NumArgs);
7051 TypeResult T = ActOnTemplateIdType(TemplateId->SS,
7052 TemplateId->TemplateKWLoc,
7053 TemplateId->Template,
7054 TemplateId->Name,
7055 TemplateId->TemplateNameLoc,
7056 TemplateId->LAngleLoc,
7057 TemplateArgsPtr,
7058 TemplateId->RAngleLoc,
7059 /*IsCtorOrDtorName*/true);
7060 if (T.isInvalid() || !T.get()) {
7061 // Recover by assuming we had the right type all along.
7062 DestructedType = ObjectType;
7063 } else
7064 DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
7065 }
7066
7067 // If we've performed some kind of recovery, (re-)build the type source
7068 // information.
7069 if (!DestructedType.isNull()) {
7070 if (!DestructedTypeInfo)
7071 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
7072 SecondTypeName.StartLocation);
7073 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
7074 }
7075
7076 // Convert the name of the scope type (the type prior to '::') into a type.
7077 TypeSourceInfo *ScopeTypeInfo = nullptr;
7078 QualType ScopeType;
7079 if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||
7080 FirstTypeName.Identifier) {
7081 if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) {
7082 ParsedType T = getTypeName(*FirstTypeName.Identifier,
7083 FirstTypeName.StartLocation,
7084 S, &SS, true, false, ObjectTypePtrForLookup,
7085 /*IsCtorOrDtorName*/true);
7086 if (!T) {
7087 Diag(FirstTypeName.StartLocation,
7088 diag::err_pseudo_dtor_destructor_non_type)
7089 << FirstTypeName.Identifier << ObjectType;
7090
7091 if (isSFINAEContext())
7092 return ExprError();
7093
7094 // Just drop this type. It's unnecessary anyway.
7095 ScopeType = QualType();
7096 } else
7097 ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
7098 } else {
7099 // Resolve the template-id to a type.
7100 TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
7101 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
7102 TemplateId->NumArgs);
7103 TypeResult T = ActOnTemplateIdType(TemplateId->SS,
7104 TemplateId->TemplateKWLoc,
7105 TemplateId->Template,
7106 TemplateId->Name,
7107 TemplateId->TemplateNameLoc,
7108 TemplateId->LAngleLoc,
7109 TemplateArgsPtr,
7110 TemplateId->RAngleLoc,
7111 /*IsCtorOrDtorName*/true);
7112 if (T.isInvalid() || !T.get()) {
7113 // Recover by dropping this type.
7114 ScopeType = QualType();
7115 } else
7116 ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
7117 }
7118 }
7119
7120 if (!ScopeType.isNull() && !ScopeTypeInfo)
7121 ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
7122 FirstTypeName.StartLocation);
7123
7124
7125 return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
7126 ScopeTypeInfo, CCLoc, TildeLoc,
7127 Destructed);
7128 }
7129
ActOnPseudoDestructorExpr(Scope * S,Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,SourceLocation TildeLoc,const DeclSpec & DS)7130 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
7131 SourceLocation OpLoc,
7132 tok::TokenKind OpKind,
7133 SourceLocation TildeLoc,
7134 const DeclSpec& DS) {
7135 QualType ObjectType;
7136 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
7137 return ExprError();
7138
7139 QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc(),
7140 false);
7141
7142 TypeLocBuilder TLB;
7143 DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
7144 DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
7145 TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T);
7146 PseudoDestructorTypeStorage Destructed(DestructedTypeInfo);
7147
7148 return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(),
7149 nullptr, SourceLocation(), TildeLoc,
7150 Destructed);
7151 }
7152
BuildCXXMemberCallExpr(Expr * E,NamedDecl * FoundDecl,CXXConversionDecl * Method,bool HadMultipleCandidates)7153 ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl,
7154 CXXConversionDecl *Method,
7155 bool HadMultipleCandidates) {
7156 // Convert the expression to match the conversion function's implicit object
7157 // parameter.
7158 ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/nullptr,
7159 FoundDecl, Method);
7160 if (Exp.isInvalid())
7161 return true;
7162
7163 if (Method->getParent()->isLambda() &&
7164 Method->getConversionType()->isBlockPointerType()) {
7165 // This is a lambda coversion to block pointer; check if the argument
7166 // was a LambdaExpr.
7167 Expr *SubE = E;
7168 CastExpr *CE = dyn_cast<CastExpr>(SubE);
7169 if (CE && CE->getCastKind() == CK_NoOp)
7170 SubE = CE->getSubExpr();
7171 SubE = SubE->IgnoreParens();
7172 if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE))
7173 SubE = BE->getSubExpr();
7174 if (isa<LambdaExpr>(SubE)) {
7175 // For the conversion to block pointer on a lambda expression, we
7176 // construct a special BlockLiteral instead; this doesn't really make
7177 // a difference in ARC, but outside of ARC the resulting block literal
7178 // follows the normal lifetime rules for block literals instead of being
7179 // autoreleased.
7180 DiagnosticErrorTrap Trap(Diags);
7181 PushExpressionEvaluationContext(
7182 ExpressionEvaluationContext::PotentiallyEvaluated);
7183 ExprResult BlockExp = BuildBlockForLambdaConversion(
7184 Exp.get()->getExprLoc(), Exp.get()->getExprLoc(), Method, Exp.get());
7185 PopExpressionEvaluationContext();
7186
7187 if (BlockExp.isInvalid())
7188 Diag(Exp.get()->getExprLoc(), diag::note_lambda_to_block_conv);
7189 return BlockExp;
7190 }
7191 }
7192
7193 MemberExpr *ME = new (Context) MemberExpr(
7194 Exp.get(), /*IsArrow=*/false, SourceLocation(), Method, SourceLocation(),
7195 Context.BoundMemberTy, VK_RValue, OK_Ordinary);
7196 if (HadMultipleCandidates)
7197 ME->setHadMultipleCandidates(true);
7198 MarkMemberReferenced(ME);
7199
7200 QualType ResultType = Method->getReturnType();
7201 ExprValueKind VK = Expr::getValueKindForType(ResultType);
7202 ResultType = ResultType.getNonLValueExprType(Context);
7203
7204 CXXMemberCallExpr *CE = CXXMemberCallExpr::Create(
7205 Context, ME, /*Args=*/{}, ResultType, VK, Exp.get()->getEndLoc());
7206
7207 if (CheckFunctionCall(Method, CE,
7208 Method->getType()->castAs<FunctionProtoType>()))
7209 return ExprError();
7210
7211 return CE;
7212 }
7213
BuildCXXNoexceptExpr(SourceLocation KeyLoc,Expr * Operand,SourceLocation RParen)7214 ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
7215 SourceLocation RParen) {
7216 // If the operand is an unresolved lookup expression, the expression is ill-
7217 // formed per [over.over]p1, because overloaded function names cannot be used
7218 // without arguments except in explicit contexts.
7219 ExprResult R = CheckPlaceholderExpr(Operand);
7220 if (R.isInvalid())
7221 return R;
7222
7223 // The operand may have been modified when checking the placeholder type.
7224 Operand = R.get();
7225
7226 if (!inTemplateInstantiation() && Operand->HasSideEffects(Context, false)) {
7227 // The expression operand for noexcept is in an unevaluated expression
7228 // context, so side effects could result in unintended consequences.
7229 Diag(Operand->getExprLoc(), diag::warn_side_effects_unevaluated_context);
7230 }
7231
7232 CanThrowResult CanThrow = canThrow(Operand);
7233 return new (Context)
7234 CXXNoexceptExpr(Context.BoolTy, Operand, CanThrow, KeyLoc, RParen);
7235 }
7236
ActOnNoexceptExpr(SourceLocation KeyLoc,SourceLocation,Expr * Operand,SourceLocation RParen)7237 ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
7238 Expr *Operand, SourceLocation RParen) {
7239 return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
7240 }
7241
IsSpecialDiscardedValue(Expr * E)7242 static bool IsSpecialDiscardedValue(Expr *E) {
7243 // In C++11, discarded-value expressions of a certain form are special,
7244 // according to [expr]p10:
7245 // The lvalue-to-rvalue conversion (4.1) is applied only if the
7246 // expression is an lvalue of volatile-qualified type and it has
7247 // one of the following forms:
7248 E = E->IgnoreParens();
7249
7250 // - id-expression (5.1.1),
7251 if (isa<DeclRefExpr>(E))
7252 return true;
7253
7254 // - subscripting (5.2.1),
7255 if (isa<ArraySubscriptExpr>(E))
7256 return true;
7257
7258 // - class member access (5.2.5),
7259 if (isa<MemberExpr>(E))
7260 return true;
7261
7262 // - indirection (5.3.1),
7263 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
7264 if (UO->getOpcode() == UO_Deref)
7265 return true;
7266
7267 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
7268 // - pointer-to-member operation (5.5),
7269 if (BO->isPtrMemOp())
7270 return true;
7271
7272 // - comma expression (5.18) where the right operand is one of the above.
7273 if (BO->getOpcode() == BO_Comma)
7274 return IsSpecialDiscardedValue(BO->getRHS());
7275 }
7276
7277 // - conditional expression (5.16) where both the second and the third
7278 // operands are one of the above, or
7279 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
7280 return IsSpecialDiscardedValue(CO->getTrueExpr()) &&
7281 IsSpecialDiscardedValue(CO->getFalseExpr());
7282 // The related edge case of "*x ?: *x".
7283 if (BinaryConditionalOperator *BCO =
7284 dyn_cast<BinaryConditionalOperator>(E)) {
7285 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr()))
7286 return IsSpecialDiscardedValue(OVE->getSourceExpr()) &&
7287 IsSpecialDiscardedValue(BCO->getFalseExpr());
7288 }
7289
7290 // Objective-C++ extensions to the rule.
7291 if (isa<PseudoObjectExpr>(E) || isa<ObjCIvarRefExpr>(E))
7292 return true;
7293
7294 return false;
7295 }
7296
7297 /// Perform the conversions required for an expression used in a
7298 /// context that ignores the result.
IgnoredValueConversions(Expr * E)7299 ExprResult Sema::IgnoredValueConversions(Expr *E) {
7300 if (E->hasPlaceholderType()) {
7301 ExprResult result = CheckPlaceholderExpr(E);
7302 if (result.isInvalid()) return E;
7303 E = result.get();
7304 }
7305
7306 // C99 6.3.2.1:
7307 // [Except in specific positions,] an lvalue that does not have
7308 // array type is converted to the value stored in the
7309 // designated object (and is no longer an lvalue).
7310 if (E->isRValue()) {
7311 // In C, function designators (i.e. expressions of function type)
7312 // are r-values, but we still want to do function-to-pointer decay
7313 // on them. This is both technically correct and convenient for
7314 // some clients.
7315 if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType())
7316 return DefaultFunctionArrayConversion(E);
7317
7318 return E;
7319 }
7320
7321 if (getLangOpts().CPlusPlus) {
7322 // The C++11 standard defines the notion of a discarded-value expression;
7323 // normally, we don't need to do anything to handle it, but if it is a
7324 // volatile lvalue with a special form, we perform an lvalue-to-rvalue
7325 // conversion.
7326 if (getLangOpts().CPlusPlus11 && E->isGLValue() &&
7327 E->getType().isVolatileQualified() &&
7328 IsSpecialDiscardedValue(E)) {
7329 ExprResult Res = DefaultLvalueConversion(E);
7330 if (Res.isInvalid())
7331 return E;
7332 E = Res.get();
7333 }
7334
7335 // C++1z:
7336 // If the expression is a prvalue after this optional conversion, the
7337 // temporary materialization conversion is applied.
7338 //
7339 // We skip this step: IR generation is able to synthesize the storage for
7340 // itself in the aggregate case, and adding the extra node to the AST is
7341 // just clutter.
7342 // FIXME: We don't emit lifetime markers for the temporaries due to this.
7343 // FIXME: Do any other AST consumers care about this?
7344 return E;
7345 }
7346
7347 // GCC seems to also exclude expressions of incomplete enum type.
7348 if (const EnumType *T = E->getType()->getAs<EnumType>()) {
7349 if (!T->getDecl()->isComplete()) {
7350 // FIXME: stupid workaround for a codegen bug!
7351 E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).get();
7352 return E;
7353 }
7354 }
7355
7356 ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
7357 if (Res.isInvalid())
7358 return E;
7359 E = Res.get();
7360
7361 if (!E->getType()->isVoidType())
7362 RequireCompleteType(E->getExprLoc(), E->getType(),
7363 diag::err_incomplete_type);
7364 return E;
7365 }
7366
7367 // If we can unambiguously determine whether Var can never be used
7368 // in a constant expression, return true.
7369 // - if the variable and its initializer are non-dependent, then
7370 // we can unambiguously check if the variable is a constant expression.
7371 // - if the initializer is not value dependent - we can determine whether
7372 // it can be used to initialize a constant expression. If Init can not
7373 // be used to initialize a constant expression we conclude that Var can
7374 // never be a constant expression.
7375 // - FXIME: if the initializer is dependent, we can still do some analysis and
7376 // identify certain cases unambiguously as non-const by using a Visitor:
7377 // - such as those that involve odr-use of a ParmVarDecl, involve a new
7378 // delete, lambda-expr, dynamic-cast, reinterpret-cast etc...
VariableCanNeverBeAConstantExpression(VarDecl * Var,ASTContext & Context)7379 static inline bool VariableCanNeverBeAConstantExpression(VarDecl *Var,
7380 ASTContext &Context) {
7381 if (isa<ParmVarDecl>(Var)) return true;
7382 const VarDecl *DefVD = nullptr;
7383
7384 // If there is no initializer - this can not be a constant expression.
7385 if (!Var->getAnyInitializer(DefVD)) return true;
7386 assert(DefVD);
7387 if (DefVD->isWeak()) return false;
7388 EvaluatedStmt *Eval = DefVD->ensureEvaluatedStmt();
7389
7390 Expr *Init = cast<Expr>(Eval->Value);
7391
7392 if (Var->getType()->isDependentType() || Init->isValueDependent()) {
7393 // FIXME: Teach the constant evaluator to deal with the non-dependent parts
7394 // of value-dependent expressions, and use it here to determine whether the
7395 // initializer is a potential constant expression.
7396 return false;
7397 }
7398
7399 return !IsVariableAConstantExpression(Var, Context);
7400 }
7401
7402 /// Check if the current lambda has any potential captures
7403 /// that must be captured by any of its enclosing lambdas that are ready to
7404 /// capture. If there is a lambda that can capture a nested
7405 /// potential-capture, go ahead and do so. Also, check to see if any
7406 /// variables are uncaptureable or do not involve an odr-use so do not
7407 /// need to be captured.
7408
CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(Expr * const FE,LambdaScopeInfo * const CurrentLSI,Sema & S)7409 static void CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(
7410 Expr *const FE, LambdaScopeInfo *const CurrentLSI, Sema &S) {
7411
7412 assert(!S.isUnevaluatedContext());
7413 assert(S.CurContext->isDependentContext());
7414 #ifndef NDEBUG
7415 DeclContext *DC = S.CurContext;
7416 while (DC && isa<CapturedDecl>(DC))
7417 DC = DC->getParent();
7418 assert(
7419 CurrentLSI->CallOperator == DC &&
7420 "The current call operator must be synchronized with Sema's CurContext");
7421 #endif // NDEBUG
7422
7423 const bool IsFullExprInstantiationDependent = FE->isInstantiationDependent();
7424
7425 // All the potentially captureable variables in the current nested
7426 // lambda (within a generic outer lambda), must be captured by an
7427 // outer lambda that is enclosed within a non-dependent context.
7428 const unsigned NumPotentialCaptures =
7429 CurrentLSI->getNumPotentialVariableCaptures();
7430 for (unsigned I = 0; I != NumPotentialCaptures; ++I) {
7431 Expr *VarExpr = nullptr;
7432 VarDecl *Var = nullptr;
7433 CurrentLSI->getPotentialVariableCapture(I, Var, VarExpr);
7434 // If the variable is clearly identified as non-odr-used and the full
7435 // expression is not instantiation dependent, only then do we not
7436 // need to check enclosing lambda's for speculative captures.
7437 // For e.g.:
7438 // Even though 'x' is not odr-used, it should be captured.
7439 // int test() {
7440 // const int x = 10;
7441 // auto L = [=](auto a) {
7442 // (void) +x + a;
7443 // };
7444 // }
7445 if (CurrentLSI->isVariableExprMarkedAsNonODRUsed(VarExpr) &&
7446 !IsFullExprInstantiationDependent)
7447 continue;
7448
7449 // If we have a capture-capable lambda for the variable, go ahead and
7450 // capture the variable in that lambda (and all its enclosing lambdas).
7451 if (const Optional<unsigned> Index =
7452 getStackIndexOfNearestEnclosingCaptureCapableLambda(
7453 S.FunctionScopes, Var, S)) {
7454 const unsigned FunctionScopeIndexOfCapturableLambda = Index.getValue();
7455 MarkVarDeclODRUsed(Var, VarExpr->getExprLoc(), S,
7456 &FunctionScopeIndexOfCapturableLambda);
7457 }
7458 const bool IsVarNeverAConstantExpression =
7459 VariableCanNeverBeAConstantExpression(Var, S.Context);
7460 if (!IsFullExprInstantiationDependent || IsVarNeverAConstantExpression) {
7461 // This full expression is not instantiation dependent or the variable
7462 // can not be used in a constant expression - which means
7463 // this variable must be odr-used here, so diagnose a
7464 // capture violation early, if the variable is un-captureable.
7465 // This is purely for diagnosing errors early. Otherwise, this
7466 // error would get diagnosed when the lambda becomes capture ready.
7467 QualType CaptureType, DeclRefType;
7468 SourceLocation ExprLoc = VarExpr->getExprLoc();
7469 if (S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
7470 /*EllipsisLoc*/ SourceLocation(),
7471 /*BuildAndDiagnose*/false, CaptureType,
7472 DeclRefType, nullptr)) {
7473 // We will never be able to capture this variable, and we need
7474 // to be able to in any and all instantiations, so diagnose it.
7475 S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
7476 /*EllipsisLoc*/ SourceLocation(),
7477 /*BuildAndDiagnose*/true, CaptureType,
7478 DeclRefType, nullptr);
7479 }
7480 }
7481 }
7482
7483 // Check if 'this' needs to be captured.
7484 if (CurrentLSI->hasPotentialThisCapture()) {
7485 // If we have a capture-capable lambda for 'this', go ahead and capture
7486 // 'this' in that lambda (and all its enclosing lambdas).
7487 if (const Optional<unsigned> Index =
7488 getStackIndexOfNearestEnclosingCaptureCapableLambda(
7489 S.FunctionScopes, /*0 is 'this'*/ nullptr, S)) {
7490 const unsigned FunctionScopeIndexOfCapturableLambda = Index.getValue();
7491 S.CheckCXXThisCapture(CurrentLSI->PotentialThisCaptureLocation,
7492 /*Explicit*/ false, /*BuildAndDiagnose*/ true,
7493 &FunctionScopeIndexOfCapturableLambda);
7494 }
7495 }
7496
7497 // Reset all the potential captures at the end of each full-expression.
7498 CurrentLSI->clearPotentialCaptures();
7499 }
7500
attemptRecovery(Sema & SemaRef,const TypoCorrectionConsumer & Consumer,const TypoCorrection & TC)7501 static ExprResult attemptRecovery(Sema &SemaRef,
7502 const TypoCorrectionConsumer &Consumer,
7503 const TypoCorrection &TC) {
7504 LookupResult R(SemaRef, Consumer.getLookupResult().getLookupNameInfo(),
7505 Consumer.getLookupResult().getLookupKind());
7506 const CXXScopeSpec *SS = Consumer.getSS();
7507 CXXScopeSpec NewSS;
7508
7509 // Use an approprate CXXScopeSpec for building the expr.
7510 if (auto *NNS = TC.getCorrectionSpecifier())
7511 NewSS.MakeTrivial(SemaRef.Context, NNS, TC.getCorrectionRange());
7512 else if (SS && !TC.WillReplaceSpecifier())
7513 NewSS = *SS;
7514
7515 if (auto *ND = TC.getFoundDecl()) {
7516 R.setLookupName(ND->getDeclName());
7517 R.addDecl(ND);
7518 if (ND->isCXXClassMember()) {
7519 // Figure out the correct naming class to add to the LookupResult.
7520 CXXRecordDecl *Record = nullptr;
7521 if (auto *NNS = TC.getCorrectionSpecifier())
7522 Record = NNS->getAsType()->getAsCXXRecordDecl();
7523 if (!Record)
7524 Record =
7525 dyn_cast<CXXRecordDecl>(ND->getDeclContext()->getRedeclContext());
7526 if (Record)
7527 R.setNamingClass(Record);
7528
7529 // Detect and handle the case where the decl might be an implicit
7530 // member.
7531 bool MightBeImplicitMember;
7532 if (!Consumer.isAddressOfOperand())
7533 MightBeImplicitMember = true;
7534 else if (!NewSS.isEmpty())
7535 MightBeImplicitMember = false;
7536 else if (R.isOverloadedResult())
7537 MightBeImplicitMember = false;
7538 else if (R.isUnresolvableResult())
7539 MightBeImplicitMember = true;
7540 else
7541 MightBeImplicitMember = isa<FieldDecl>(ND) ||
7542 isa<IndirectFieldDecl>(ND) ||
7543 isa<MSPropertyDecl>(ND);
7544
7545 if (MightBeImplicitMember)
7546 return SemaRef.BuildPossibleImplicitMemberExpr(
7547 NewSS, /*TemplateKWLoc*/ SourceLocation(), R,
7548 /*TemplateArgs*/ nullptr, /*S*/ nullptr);
7549 } else if (auto *Ivar = dyn_cast<ObjCIvarDecl>(ND)) {
7550 return SemaRef.LookupInObjCMethod(R, Consumer.getScope(),
7551 Ivar->getIdentifier());
7552 }
7553 }
7554
7555 return SemaRef.BuildDeclarationNameExpr(NewSS, R, /*NeedsADL*/ false,
7556 /*AcceptInvalidDecl*/ true);
7557 }
7558
7559 namespace {
7560 class FindTypoExprs : public RecursiveASTVisitor<FindTypoExprs> {
7561 llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs;
7562
7563 public:
FindTypoExprs(llvm::SmallSetVector<TypoExpr *,2> & TypoExprs)7564 explicit FindTypoExprs(llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs)
7565 : TypoExprs(TypoExprs) {}
VisitTypoExpr(TypoExpr * TE)7566 bool VisitTypoExpr(TypoExpr *TE) {
7567 TypoExprs.insert(TE);
7568 return true;
7569 }
7570 };
7571
7572 class TransformTypos : public TreeTransform<TransformTypos> {
7573 typedef TreeTransform<TransformTypos> BaseTransform;
7574
7575 VarDecl *InitDecl; // A decl to avoid as a correction because it is in the
7576 // process of being initialized.
7577 llvm::function_ref<ExprResult(Expr *)> ExprFilter;
7578 llvm::SmallSetVector<TypoExpr *, 2> TypoExprs, AmbiguousTypoExprs;
7579 llvm::SmallDenseMap<TypoExpr *, ExprResult, 2> TransformCache;
7580 llvm::SmallDenseMap<OverloadExpr *, Expr *, 4> OverloadResolution;
7581
7582 /// Emit diagnostics for all of the TypoExprs encountered.
7583 /// If the TypoExprs were successfully corrected, then the diagnostics should
7584 /// suggest the corrections. Otherwise the diagnostics will not suggest
7585 /// anything (having been passed an empty TypoCorrection).
EmitAllDiagnostics()7586 void EmitAllDiagnostics() {
7587 for (TypoExpr *TE : TypoExprs) {
7588 auto &State = SemaRef.getTypoExprState(TE);
7589 if (State.DiagHandler) {
7590 TypoCorrection TC = State.Consumer->getCurrentCorrection();
7591 ExprResult Replacement = TransformCache[TE];
7592
7593 // Extract the NamedDecl from the transformed TypoExpr and add it to the
7594 // TypoCorrection, replacing the existing decls. This ensures the right
7595 // NamedDecl is used in diagnostics e.g. in the case where overload
7596 // resolution was used to select one from several possible decls that
7597 // had been stored in the TypoCorrection.
7598 if (auto *ND = getDeclFromExpr(
7599 Replacement.isInvalid() ? nullptr : Replacement.get()))
7600 TC.setCorrectionDecl(ND);
7601
7602 State.DiagHandler(TC);
7603 }
7604 SemaRef.clearDelayedTypo(TE);
7605 }
7606 }
7607
7608 /// If corrections for the first TypoExpr have been exhausted for a
7609 /// given combination of the other TypoExprs, retry those corrections against
7610 /// the next combination of substitutions for the other TypoExprs by advancing
7611 /// to the next potential correction of the second TypoExpr. For the second
7612 /// and subsequent TypoExprs, if its stream of corrections has been exhausted,
7613 /// the stream is reset and the next TypoExpr's stream is advanced by one (a
7614 /// TypoExpr's correction stream is advanced by removing the TypoExpr from the
7615 /// TransformCache). Returns true if there is still any untried combinations
7616 /// of corrections.
CheckAndAdvanceTypoExprCorrectionStreams()7617 bool CheckAndAdvanceTypoExprCorrectionStreams() {
7618 for (auto TE : TypoExprs) {
7619 auto &State = SemaRef.getTypoExprState(TE);
7620 TransformCache.erase(TE);
7621 if (!State.Consumer->finished())
7622 return true;
7623 State.Consumer->resetCorrectionStream();
7624 }
7625 return false;
7626 }
7627
getDeclFromExpr(Expr * E)7628 NamedDecl *getDeclFromExpr(Expr *E) {
7629 if (auto *OE = dyn_cast_or_null<OverloadExpr>(E))
7630 E = OverloadResolution[OE];
7631
7632 if (!E)
7633 return nullptr;
7634 if (auto *DRE = dyn_cast<DeclRefExpr>(E))
7635 return DRE->getFoundDecl();
7636 if (auto *ME = dyn_cast<MemberExpr>(E))
7637 return ME->getFoundDecl();
7638 // FIXME: Add any other expr types that could be be seen by the delayed typo
7639 // correction TreeTransform for which the corresponding TypoCorrection could
7640 // contain multiple decls.
7641 return nullptr;
7642 }
7643
TryTransform(Expr * E)7644 ExprResult TryTransform(Expr *E) {
7645 Sema::SFINAETrap Trap(SemaRef);
7646 ExprResult Res = TransformExpr(E);
7647 if (Trap.hasErrorOccurred() || Res.isInvalid())
7648 return ExprError();
7649
7650 return ExprFilter(Res.get());
7651 }
7652
7653 public:
TransformTypos(Sema & SemaRef,VarDecl * InitDecl,llvm::function_ref<ExprResult (Expr *)> Filter)7654 TransformTypos(Sema &SemaRef, VarDecl *InitDecl, llvm::function_ref<ExprResult(Expr *)> Filter)
7655 : BaseTransform(SemaRef), InitDecl(InitDecl), ExprFilter(Filter) {}
7656
RebuildCallExpr(Expr * Callee,SourceLocation LParenLoc,MultiExprArg Args,SourceLocation RParenLoc,Expr * ExecConfig=nullptr)7657 ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc,
7658 MultiExprArg Args,
7659 SourceLocation RParenLoc,
7660 Expr *ExecConfig = nullptr) {
7661 auto Result = BaseTransform::RebuildCallExpr(Callee, LParenLoc, Args,
7662 RParenLoc, ExecConfig);
7663 if (auto *OE = dyn_cast<OverloadExpr>(Callee)) {
7664 if (Result.isUsable()) {
7665 Expr *ResultCall = Result.get();
7666 if (auto *BE = dyn_cast<CXXBindTemporaryExpr>(ResultCall))
7667 ResultCall = BE->getSubExpr();
7668 if (auto *CE = dyn_cast<CallExpr>(ResultCall))
7669 OverloadResolution[OE] = CE->getCallee();
7670 }
7671 }
7672 return Result;
7673 }
7674
TransformLambdaExpr(LambdaExpr * E)7675 ExprResult TransformLambdaExpr(LambdaExpr *E) { return Owned(E); }
7676
TransformBlockExpr(BlockExpr * E)7677 ExprResult TransformBlockExpr(BlockExpr *E) { return Owned(E); }
7678
Transform(Expr * E)7679 ExprResult Transform(Expr *E) {
7680 ExprResult Res;
7681 while (true) {
7682 Res = TryTransform(E);
7683
7684 // Exit if either the transform was valid or if there were no TypoExprs
7685 // to transform that still have any untried correction candidates..
7686 if (!Res.isInvalid() ||
7687 !CheckAndAdvanceTypoExprCorrectionStreams())
7688 break;
7689 }
7690
7691 // Ensure none of the TypoExprs have multiple typo correction candidates
7692 // with the same edit length that pass all the checks and filters.
7693 // TODO: Properly handle various permutations of possible corrections when
7694 // there is more than one potentially ambiguous typo correction.
7695 // Also, disable typo correction while attempting the transform when
7696 // handling potentially ambiguous typo corrections as any new TypoExprs will
7697 // have been introduced by the application of one of the correction
7698 // candidates and add little to no value if corrected.
7699 SemaRef.DisableTypoCorrection = true;
7700 while (!AmbiguousTypoExprs.empty()) {
7701 auto TE = AmbiguousTypoExprs.back();
7702 auto Cached = TransformCache[TE];
7703 auto &State = SemaRef.getTypoExprState(TE);
7704 State.Consumer->saveCurrentPosition();
7705 TransformCache.erase(TE);
7706 if (!TryTransform(E).isInvalid()) {
7707 State.Consumer->resetCorrectionStream();
7708 TransformCache.erase(TE);
7709 Res = ExprError();
7710 break;
7711 }
7712 AmbiguousTypoExprs.remove(TE);
7713 State.Consumer->restoreSavedPosition();
7714 TransformCache[TE] = Cached;
7715 }
7716 SemaRef.DisableTypoCorrection = false;
7717
7718 // Ensure that all of the TypoExprs within the current Expr have been found.
7719 if (!Res.isUsable())
7720 FindTypoExprs(TypoExprs).TraverseStmt(E);
7721
7722 EmitAllDiagnostics();
7723
7724 return Res;
7725 }
7726
TransformTypoExpr(TypoExpr * E)7727 ExprResult TransformTypoExpr(TypoExpr *E) {
7728 // If the TypoExpr hasn't been seen before, record it. Otherwise, return the
7729 // cached transformation result if there is one and the TypoExpr isn't the
7730 // first one that was encountered.
7731 auto &CacheEntry = TransformCache[E];
7732 if (!TypoExprs.insert(E) && !CacheEntry.isUnset()) {
7733 return CacheEntry;
7734 }
7735
7736 auto &State = SemaRef.getTypoExprState(E);
7737 assert(State.Consumer && "Cannot transform a cleared TypoExpr");
7738
7739 // For the first TypoExpr and an uncached TypoExpr, find the next likely
7740 // typo correction and return it.
7741 while (TypoCorrection TC = State.Consumer->getNextCorrection()) {
7742 if (InitDecl && TC.getFoundDecl() == InitDecl)
7743 continue;
7744 // FIXME: If we would typo-correct to an invalid declaration, it's
7745 // probably best to just suppress all errors from this typo correction.
7746 ExprResult NE = State.RecoveryHandler ?
7747 State.RecoveryHandler(SemaRef, E, TC) :
7748 attemptRecovery(SemaRef, *State.Consumer, TC);
7749 if (!NE.isInvalid()) {
7750 // Check whether there may be a second viable correction with the same
7751 // edit distance; if so, remember this TypoExpr may have an ambiguous
7752 // correction so it can be more thoroughly vetted later.
7753 TypoCorrection Next;
7754 if ((Next = State.Consumer->peekNextCorrection()) &&
7755 Next.getEditDistance(false) == TC.getEditDistance(false)) {
7756 AmbiguousTypoExprs.insert(E);
7757 } else {
7758 AmbiguousTypoExprs.remove(E);
7759 }
7760 assert(!NE.isUnset() &&
7761 "Typo was transformed into a valid-but-null ExprResult");
7762 return CacheEntry = NE;
7763 }
7764 }
7765 return CacheEntry = ExprError();
7766 }
7767 };
7768 }
7769
7770 ExprResult
CorrectDelayedTyposInExpr(Expr * E,VarDecl * InitDecl,llvm::function_ref<ExprResult (Expr *)> Filter)7771 Sema::CorrectDelayedTyposInExpr(Expr *E, VarDecl *InitDecl,
7772 llvm::function_ref<ExprResult(Expr *)> Filter) {
7773 // If the current evaluation context indicates there are uncorrected typos
7774 // and the current expression isn't guaranteed to not have typos, try to
7775 // resolve any TypoExpr nodes that might be in the expression.
7776 if (E && !ExprEvalContexts.empty() && ExprEvalContexts.back().NumTypos &&
7777 (E->isTypeDependent() || E->isValueDependent() ||
7778 E->isInstantiationDependent())) {
7779 auto TyposResolved = DelayedTypos.size();
7780 auto Result = TransformTypos(*this, InitDecl, Filter).Transform(E);
7781 TyposResolved -= DelayedTypos.size();
7782 if (Result.isInvalid() || Result.get() != E) {
7783 ExprEvalContexts.back().NumTypos -= TyposResolved;
7784 return Result;
7785 }
7786 assert(TyposResolved == 0 && "Corrected typo but got same Expr back?");
7787 }
7788 return E;
7789 }
7790
ActOnFinishFullExpr(Expr * FE,SourceLocation CC,bool DiscardedValue,bool IsConstexpr)7791 ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC,
7792 bool DiscardedValue,
7793 bool IsConstexpr) {
7794 ExprResult FullExpr = FE;
7795
7796 if (!FullExpr.get())
7797 return ExprError();
7798
7799 if (DiagnoseUnexpandedParameterPack(FullExpr.get()))
7800 return ExprError();
7801
7802 if (DiscardedValue) {
7803 // Top-level expressions default to 'id' when we're in a debugger.
7804 if (getLangOpts().DebuggerCastResultToId &&
7805 FullExpr.get()->getType() == Context.UnknownAnyTy) {
7806 FullExpr = forceUnknownAnyToType(FullExpr.get(), Context.getObjCIdType());
7807 if (FullExpr.isInvalid())
7808 return ExprError();
7809 }
7810
7811 FullExpr = CheckPlaceholderExpr(FullExpr.get());
7812 if (FullExpr.isInvalid())
7813 return ExprError();
7814
7815 FullExpr = IgnoredValueConversions(FullExpr.get());
7816 if (FullExpr.isInvalid())
7817 return ExprError();
7818 }
7819
7820 FullExpr = CorrectDelayedTyposInExpr(FullExpr.get());
7821 if (FullExpr.isInvalid())
7822 return ExprError();
7823
7824 CheckCompletedExpr(FullExpr.get(), CC, IsConstexpr);
7825
7826 // At the end of this full expression (which could be a deeply nested
7827 // lambda), if there is a potential capture within the nested lambda,
7828 // have the outer capture-able lambda try and capture it.
7829 // Consider the following code:
7830 // void f(int, int);
7831 // void f(const int&, double);
7832 // void foo() {
7833 // const int x = 10, y = 20;
7834 // auto L = [=](auto a) {
7835 // auto M = [=](auto b) {
7836 // f(x, b); <-- requires x to be captured by L and M
7837 // f(y, a); <-- requires y to be captured by L, but not all Ms
7838 // };
7839 // };
7840 // }
7841
7842 // FIXME: Also consider what happens for something like this that involves
7843 // the gnu-extension statement-expressions or even lambda-init-captures:
7844 // void f() {
7845 // const int n = 0;
7846 // auto L = [&](auto a) {
7847 // +n + ({ 0; a; });
7848 // };
7849 // }
7850 //
7851 // Here, we see +n, and then the full-expression 0; ends, so we don't
7852 // capture n (and instead remove it from our list of potential captures),
7853 // and then the full-expression +n + ({ 0; }); ends, but it's too late
7854 // for us to see that we need to capture n after all.
7855
7856 LambdaScopeInfo *const CurrentLSI =
7857 getCurLambda(/*IgnoreCapturedRegions=*/true);
7858 // FIXME: PR 17877 showed that getCurLambda() can return a valid pointer
7859 // even if CurContext is not a lambda call operator. Refer to that Bug Report
7860 // for an example of the code that might cause this asynchrony.
7861 // By ensuring we are in the context of a lambda's call operator
7862 // we can fix the bug (we only need to check whether we need to capture
7863 // if we are within a lambda's body); but per the comments in that
7864 // PR, a proper fix would entail :
7865 // "Alternative suggestion:
7866 // - Add to Sema an integer holding the smallest (outermost) scope
7867 // index that we are *lexically* within, and save/restore/set to
7868 // FunctionScopes.size() in InstantiatingTemplate's
7869 // constructor/destructor.
7870 // - Teach the handful of places that iterate over FunctionScopes to
7871 // stop at the outermost enclosing lexical scope."
7872 DeclContext *DC = CurContext;
7873 while (DC && isa<CapturedDecl>(DC))
7874 DC = DC->getParent();
7875 const bool IsInLambdaDeclContext = isLambdaCallOperator(DC);
7876 if (IsInLambdaDeclContext && CurrentLSI &&
7877 CurrentLSI->hasPotentialCaptures() && !FullExpr.isInvalid())
7878 CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(FE, CurrentLSI,
7879 *this);
7880 return MaybeCreateExprWithCleanups(FullExpr);
7881 }
7882
ActOnFinishFullStmt(Stmt * FullStmt)7883 StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
7884 if (!FullStmt) return StmtError();
7885
7886 return MaybeCreateStmtWithCleanups(FullStmt);
7887 }
7888
7889 Sema::IfExistsResult
CheckMicrosoftIfExistsSymbol(Scope * S,CXXScopeSpec & SS,const DeclarationNameInfo & TargetNameInfo)7890 Sema::CheckMicrosoftIfExistsSymbol(Scope *S,
7891 CXXScopeSpec &SS,
7892 const DeclarationNameInfo &TargetNameInfo) {
7893 DeclarationName TargetName = TargetNameInfo.getName();
7894 if (!TargetName)
7895 return IER_DoesNotExist;
7896
7897 // If the name itself is dependent, then the result is dependent.
7898 if (TargetName.isDependentName())
7899 return IER_Dependent;
7900
7901 // Do the redeclaration lookup in the current scope.
7902 LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName,
7903 Sema::NotForRedeclaration);
7904 LookupParsedName(R, S, &SS);
7905 R.suppressDiagnostics();
7906
7907 switch (R.getResultKind()) {
7908 case LookupResult::Found:
7909 case LookupResult::FoundOverloaded:
7910 case LookupResult::FoundUnresolvedValue:
7911 case LookupResult::Ambiguous:
7912 return IER_Exists;
7913
7914 case LookupResult::NotFound:
7915 return IER_DoesNotExist;
7916
7917 case LookupResult::NotFoundInCurrentInstantiation:
7918 return IER_Dependent;
7919 }
7920
7921 llvm_unreachable("Invalid LookupResult Kind!");
7922 }
7923
7924 Sema::IfExistsResult
CheckMicrosoftIfExistsSymbol(Scope * S,SourceLocation KeywordLoc,bool IsIfExists,CXXScopeSpec & SS,UnqualifiedId & Name)7925 Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
7926 bool IsIfExists, CXXScopeSpec &SS,
7927 UnqualifiedId &Name) {
7928 DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
7929
7930 // Check for an unexpanded parameter pack.
7931 auto UPPC = IsIfExists ? UPPC_IfExists : UPPC_IfNotExists;
7932 if (DiagnoseUnexpandedParameterPack(SS, UPPC) ||
7933 DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC))
7934 return IER_Error;
7935
7936 return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo);
7937 }
7938