1 //===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// Implements semantic analysis for C++ expressions.
12 ///
13 //===----------------------------------------------------------------------===//
14 
15 #include "clang/Sema/SemaInternal.h"
16 #include "TreeTransform.h"
17 #include "TypeLocBuilder.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/ASTLambda.h"
20 #include "clang/AST/CXXInheritance.h"
21 #include "clang/AST/CharUnits.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/ExprObjC.h"
25 #include "clang/AST/RecursiveASTVisitor.h"
26 #include "clang/AST/TypeLoc.h"
27 #include "clang/Basic/AlignedAllocation.h"
28 #include "clang/Basic/PartialDiagnostic.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/Lex/Preprocessor.h"
31 #include "clang/Sema/DeclSpec.h"
32 #include "clang/Sema/Initialization.h"
33 #include "clang/Sema/Lookup.h"
34 #include "clang/Sema/ParsedTemplate.h"
35 #include "clang/Sema/Scope.h"
36 #include "clang/Sema/ScopeInfo.h"
37 #include "clang/Sema/SemaLambda.h"
38 #include "clang/Sema/TemplateDeduction.h"
39 #include "llvm/ADT/APInt.h"
40 #include "llvm/ADT/STLExtras.h"
41 #include "llvm/Support/ErrorHandling.h"
42 using namespace clang;
43 using namespace sema;
44 
45 /// Handle the result of the special case name lookup for inheriting
46 /// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as
47 /// constructor names in member using declarations, even if 'X' is not the
48 /// name of the corresponding type.
getInheritingConstructorName(CXXScopeSpec & SS,SourceLocation NameLoc,IdentifierInfo & Name)49 ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS,
50                                               SourceLocation NameLoc,
51                                               IdentifierInfo &Name) {
52   NestedNameSpecifier *NNS = SS.getScopeRep();
53 
54   // Convert the nested-name-specifier into a type.
55   QualType Type;
56   switch (NNS->getKind()) {
57   case NestedNameSpecifier::TypeSpec:
58   case NestedNameSpecifier::TypeSpecWithTemplate:
59     Type = QualType(NNS->getAsType(), 0);
60     break;
61 
62   case NestedNameSpecifier::Identifier:
63     // Strip off the last layer of the nested-name-specifier and build a
64     // typename type for it.
65     assert(NNS->getAsIdentifier() == &Name && "not a constructor name");
66     Type = Context.getDependentNameType(ETK_None, NNS->getPrefix(),
67                                         NNS->getAsIdentifier());
68     break;
69 
70   case NestedNameSpecifier::Global:
71   case NestedNameSpecifier::Super:
72   case NestedNameSpecifier::Namespace:
73   case NestedNameSpecifier::NamespaceAlias:
74     llvm_unreachable("Nested name specifier is not a type for inheriting ctor");
75   }
76 
77   // This reference to the type is located entirely at the location of the
78   // final identifier in the qualified-id.
79   return CreateParsedType(Type,
80                           Context.getTrivialTypeSourceInfo(Type, NameLoc));
81 }
82 
getConstructorName(IdentifierInfo & II,SourceLocation NameLoc,Scope * S,CXXScopeSpec & SS,bool EnteringContext)83 ParsedType Sema::getConstructorName(IdentifierInfo &II,
84                                     SourceLocation NameLoc,
85                                     Scope *S, CXXScopeSpec &SS,
86                                     bool EnteringContext) {
87   CXXRecordDecl *CurClass = getCurrentClass(S, &SS);
88   assert(CurClass && &II == CurClass->getIdentifier() &&
89          "not a constructor name");
90 
91   // When naming a constructor as a member of a dependent context (eg, in a
92   // friend declaration or an inherited constructor declaration), form an
93   // unresolved "typename" type.
94   if (CurClass->isDependentContext() && !EnteringContext) {
95     QualType T = Context.getDependentNameType(ETK_None, SS.getScopeRep(), &II);
96     return ParsedType::make(T);
97   }
98 
99   if (SS.isNotEmpty() && RequireCompleteDeclContext(SS, CurClass))
100     return ParsedType();
101 
102   // Find the injected-class-name declaration. Note that we make no attempt to
103   // diagnose cases where the injected-class-name is shadowed: the only
104   // declaration that can validly shadow the injected-class-name is a
105   // non-static data member, and if the class contains both a non-static data
106   // member and a constructor then it is ill-formed (we check that in
107   // CheckCompletedCXXClass).
108   CXXRecordDecl *InjectedClassName = nullptr;
109   for (NamedDecl *ND : CurClass->lookup(&II)) {
110     auto *RD = dyn_cast<CXXRecordDecl>(ND);
111     if (RD && RD->isInjectedClassName()) {
112       InjectedClassName = RD;
113       break;
114     }
115   }
116   if (!InjectedClassName) {
117     if (!CurClass->isInvalidDecl()) {
118       // FIXME: RequireCompleteDeclContext doesn't check dependent contexts
119       // properly. Work around it here for now.
120       Diag(SS.getLastQualifierNameLoc(),
121            diag::err_incomplete_nested_name_spec) << CurClass << SS.getRange();
122     }
123     return ParsedType();
124   }
125 
126   QualType T = Context.getTypeDeclType(InjectedClassName);
127   DiagnoseUseOfDecl(InjectedClassName, NameLoc);
128   MarkAnyDeclReferenced(NameLoc, InjectedClassName, /*OdrUse=*/false);
129 
130   return ParsedType::make(T);
131 }
132 
getDestructorName(SourceLocation TildeLoc,IdentifierInfo & II,SourceLocation NameLoc,Scope * S,CXXScopeSpec & SS,ParsedType ObjectTypePtr,bool EnteringContext)133 ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
134                                    IdentifierInfo &II,
135                                    SourceLocation NameLoc,
136                                    Scope *S, CXXScopeSpec &SS,
137                                    ParsedType ObjectTypePtr,
138                                    bool EnteringContext) {
139   // Determine where to perform name lookup.
140 
141   // FIXME: This area of the standard is very messy, and the current
142   // wording is rather unclear about which scopes we search for the
143   // destructor name; see core issues 399 and 555. Issue 399 in
144   // particular shows where the current description of destructor name
145   // lookup is completely out of line with existing practice, e.g.,
146   // this appears to be ill-formed:
147   //
148   //   namespace N {
149   //     template <typename T> struct S {
150   //       ~S();
151   //     };
152   //   }
153   //
154   //   void f(N::S<int>* s) {
155   //     s->N::S<int>::~S();
156   //   }
157   //
158   // See also PR6358 and PR6359.
159   // For this reason, we're currently only doing the C++03 version of this
160   // code; the C++0x version has to wait until we get a proper spec.
161   QualType SearchType;
162   DeclContext *LookupCtx = nullptr;
163   bool isDependent = false;
164   bool LookInScope = false;
165 
166   if (SS.isInvalid())
167     return nullptr;
168 
169   // If we have an object type, it's because we are in a
170   // pseudo-destructor-expression or a member access expression, and
171   // we know what type we're looking for.
172   if (ObjectTypePtr)
173     SearchType = GetTypeFromParser(ObjectTypePtr);
174 
175   if (SS.isSet()) {
176     NestedNameSpecifier *NNS = SS.getScopeRep();
177 
178     bool AlreadySearched = false;
179     bool LookAtPrefix = true;
180     // C++11 [basic.lookup.qual]p6:
181     //   If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
182     //   the type-names are looked up as types in the scope designated by the
183     //   nested-name-specifier. Similarly, in a qualified-id of the form:
184     //
185     //     nested-name-specifier[opt] class-name :: ~ class-name
186     //
187     //   the second class-name is looked up in the same scope as the first.
188     //
189     // Here, we determine whether the code below is permitted to look at the
190     // prefix of the nested-name-specifier.
191     DeclContext *DC = computeDeclContext(SS, EnteringContext);
192     if (DC && DC->isFileContext()) {
193       AlreadySearched = true;
194       LookupCtx = DC;
195       isDependent = false;
196     } else if (DC && isa<CXXRecordDecl>(DC)) {
197       LookAtPrefix = false;
198       LookInScope = true;
199     }
200 
201     // The second case from the C++03 rules quoted further above.
202     NestedNameSpecifier *Prefix = nullptr;
203     if (AlreadySearched) {
204       // Nothing left to do.
205     } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
206       CXXScopeSpec PrefixSS;
207       PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
208       LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
209       isDependent = isDependentScopeSpecifier(PrefixSS);
210     } else if (ObjectTypePtr) {
211       LookupCtx = computeDeclContext(SearchType);
212       isDependent = SearchType->isDependentType();
213     } else {
214       LookupCtx = computeDeclContext(SS, EnteringContext);
215       isDependent = LookupCtx && LookupCtx->isDependentContext();
216     }
217   } else if (ObjectTypePtr) {
218     // C++ [basic.lookup.classref]p3:
219     //   If the unqualified-id is ~type-name, the type-name is looked up
220     //   in the context of the entire postfix-expression. If the type T
221     //   of the object expression is of a class type C, the type-name is
222     //   also looked up in the scope of class C. At least one of the
223     //   lookups shall find a name that refers to (possibly
224     //   cv-qualified) T.
225     LookupCtx = computeDeclContext(SearchType);
226     isDependent = SearchType->isDependentType();
227     assert((isDependent || !SearchType->isIncompleteType()) &&
228            "Caller should have completed object type");
229 
230     LookInScope = true;
231   } else {
232     // Perform lookup into the current scope (only).
233     LookInScope = true;
234   }
235 
236   TypeDecl *NonMatchingTypeDecl = nullptr;
237   LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
238   for (unsigned Step = 0; Step != 2; ++Step) {
239     // Look for the name first in the computed lookup context (if we
240     // have one) and, if that fails to find a match, in the scope (if
241     // we're allowed to look there).
242     Found.clear();
243     if (Step == 0 && LookupCtx) {
244       if (RequireCompleteDeclContext(SS, LookupCtx))
245         return nullptr;
246       LookupQualifiedName(Found, LookupCtx);
247     } else if (Step == 1 && LookInScope && S) {
248       LookupName(Found, S);
249     } else {
250       continue;
251     }
252 
253     // FIXME: Should we be suppressing ambiguities here?
254     if (Found.isAmbiguous())
255       return nullptr;
256 
257     if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
258       QualType T = Context.getTypeDeclType(Type);
259       MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
260 
261       if (SearchType.isNull() || SearchType->isDependentType() ||
262           Context.hasSameUnqualifiedType(T, SearchType)) {
263         // We found our type!
264 
265         return CreateParsedType(T,
266                                 Context.getTrivialTypeSourceInfo(T, NameLoc));
267       }
268 
269       if (!SearchType.isNull())
270         NonMatchingTypeDecl = Type;
271     }
272 
273     // If the name that we found is a class template name, and it is
274     // the same name as the template name in the last part of the
275     // nested-name-specifier (if present) or the object type, then
276     // this is the destructor for that class.
277     // FIXME: This is a workaround until we get real drafting for core
278     // issue 399, for which there isn't even an obvious direction.
279     if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
280       QualType MemberOfType;
281       if (SS.isSet()) {
282         if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
283           // Figure out the type of the context, if it has one.
284           if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
285             MemberOfType = Context.getTypeDeclType(Record);
286         }
287       }
288       if (MemberOfType.isNull())
289         MemberOfType = SearchType;
290 
291       if (MemberOfType.isNull())
292         continue;
293 
294       // We're referring into a class template specialization. If the
295       // class template we found is the same as the template being
296       // specialized, we found what we are looking for.
297       if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
298         if (ClassTemplateSpecializationDecl *Spec
299               = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
300           if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
301                 Template->getCanonicalDecl())
302             return CreateParsedType(
303                 MemberOfType,
304                 Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
305         }
306 
307         continue;
308       }
309 
310       // We're referring to an unresolved class template
311       // specialization. Determine whether we class template we found
312       // is the same as the template being specialized or, if we don't
313       // know which template is being specialized, that it at least
314       // has the same name.
315       if (const TemplateSpecializationType *SpecType
316             = MemberOfType->getAs<TemplateSpecializationType>()) {
317         TemplateName SpecName = SpecType->getTemplateName();
318 
319         // The class template we found is the same template being
320         // specialized.
321         if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
322           if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
323             return CreateParsedType(
324                 MemberOfType,
325                 Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
326 
327           continue;
328         }
329 
330         // The class template we found has the same name as the
331         // (dependent) template name being specialized.
332         if (DependentTemplateName *DepTemplate
333                                     = SpecName.getAsDependentTemplateName()) {
334           if (DepTemplate->isIdentifier() &&
335               DepTemplate->getIdentifier() == Template->getIdentifier())
336             return CreateParsedType(
337                 MemberOfType,
338                 Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
339 
340           continue;
341         }
342       }
343     }
344   }
345 
346   if (isDependent) {
347     // We didn't find our type, but that's okay: it's dependent
348     // anyway.
349 
350     // FIXME: What if we have no nested-name-specifier?
351     QualType T = CheckTypenameType(ETK_None, SourceLocation(),
352                                    SS.getWithLocInContext(Context),
353                                    II, NameLoc);
354     return ParsedType::make(T);
355   }
356 
357   if (NonMatchingTypeDecl) {
358     QualType T = Context.getTypeDeclType(NonMatchingTypeDecl);
359     Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
360       << T << SearchType;
361     Diag(NonMatchingTypeDecl->getLocation(), diag::note_destructor_type_here)
362       << T;
363   } else if (ObjectTypePtr)
364     Diag(NameLoc, diag::err_ident_in_dtor_not_a_type)
365       << &II;
366   else {
367     SemaDiagnosticBuilder DtorDiag = Diag(NameLoc,
368                                           diag::err_destructor_class_name);
369     if (S) {
370       const DeclContext *Ctx = S->getEntity();
371       if (const CXXRecordDecl *Class = dyn_cast_or_null<CXXRecordDecl>(Ctx))
372         DtorDiag << FixItHint::CreateReplacement(SourceRange(NameLoc),
373                                                  Class->getNameAsString());
374     }
375   }
376 
377   return nullptr;
378 }
379 
getDestructorTypeForDecltype(const DeclSpec & DS,ParsedType ObjectType)380 ParsedType Sema::getDestructorTypeForDecltype(const DeclSpec &DS,
381                                               ParsedType ObjectType) {
382   if (DS.getTypeSpecType() == DeclSpec::TST_error)
383     return nullptr;
384 
385   if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) {
386     Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
387     return nullptr;
388   }
389 
390   assert(DS.getTypeSpecType() == DeclSpec::TST_decltype &&
391          "unexpected type in getDestructorType");
392   QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
393 
394   // If we know the type of the object, check that the correct destructor
395   // type was named now; we can give better diagnostics this way.
396   QualType SearchType = GetTypeFromParser(ObjectType);
397   if (!SearchType.isNull() && !SearchType->isDependentType() &&
398       !Context.hasSameUnqualifiedType(T, SearchType)) {
399     Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
400       << T << SearchType;
401     return nullptr;
402   }
403 
404   return ParsedType::make(T);
405 }
406 
checkLiteralOperatorId(const CXXScopeSpec & SS,const UnqualifiedId & Name)407 bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS,
408                                   const UnqualifiedId &Name) {
409   assert(Name.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId);
410 
411   if (!SS.isValid())
412     return false;
413 
414   switch (SS.getScopeRep()->getKind()) {
415   case NestedNameSpecifier::Identifier:
416   case NestedNameSpecifier::TypeSpec:
417   case NestedNameSpecifier::TypeSpecWithTemplate:
418     // Per C++11 [over.literal]p2, literal operators can only be declared at
419     // namespace scope. Therefore, this unqualified-id cannot name anything.
420     // Reject it early, because we have no AST representation for this in the
421     // case where the scope is dependent.
422     Diag(Name.getBeginLoc(), diag::err_literal_operator_id_outside_namespace)
423         << SS.getScopeRep();
424     return true;
425 
426   case NestedNameSpecifier::Global:
427   case NestedNameSpecifier::Super:
428   case NestedNameSpecifier::Namespace:
429   case NestedNameSpecifier::NamespaceAlias:
430     return false;
431   }
432 
433   llvm_unreachable("unknown nested name specifier kind");
434 }
435 
436 /// Build a C++ typeid expression with a type operand.
BuildCXXTypeId(QualType TypeInfoType,SourceLocation TypeidLoc,TypeSourceInfo * Operand,SourceLocation RParenLoc)437 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
438                                 SourceLocation TypeidLoc,
439                                 TypeSourceInfo *Operand,
440                                 SourceLocation RParenLoc) {
441   // C++ [expr.typeid]p4:
442   //   The top-level cv-qualifiers of the lvalue expression or the type-id
443   //   that is the operand of typeid are always ignored.
444   //   If the type of the type-id is a class type or a reference to a class
445   //   type, the class shall be completely-defined.
446   Qualifiers Quals;
447   QualType T
448     = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
449                                       Quals);
450   if (T->getAs<RecordType>() &&
451       RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
452     return ExprError();
453 
454   if (T->isVariablyModifiedType())
455     return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) << T);
456 
457   return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand,
458                                      SourceRange(TypeidLoc, RParenLoc));
459 }
460 
461 /// Build a C++ typeid expression with an expression operand.
BuildCXXTypeId(QualType TypeInfoType,SourceLocation TypeidLoc,Expr * E,SourceLocation RParenLoc)462 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
463                                 SourceLocation TypeidLoc,
464                                 Expr *E,
465                                 SourceLocation RParenLoc) {
466   bool WasEvaluated = false;
467   if (E && !E->isTypeDependent()) {
468     if (E->getType()->isPlaceholderType()) {
469       ExprResult result = CheckPlaceholderExpr(E);
470       if (result.isInvalid()) return ExprError();
471       E = result.get();
472     }
473 
474     QualType T = E->getType();
475     if (const RecordType *RecordT = T->getAs<RecordType>()) {
476       CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
477       // C++ [expr.typeid]p3:
478       //   [...] If the type of the expression is a class type, the class
479       //   shall be completely-defined.
480       if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
481         return ExprError();
482 
483       // C++ [expr.typeid]p3:
484       //   When typeid is applied to an expression other than an glvalue of a
485       //   polymorphic class type [...] [the] expression is an unevaluated
486       //   operand. [...]
487       if (RecordD->isPolymorphic() && E->isGLValue()) {
488         // The subexpression is potentially evaluated; switch the context
489         // and recheck the subexpression.
490         ExprResult Result = TransformToPotentiallyEvaluated(E);
491         if (Result.isInvalid()) return ExprError();
492         E = Result.get();
493 
494         // We require a vtable to query the type at run time.
495         MarkVTableUsed(TypeidLoc, RecordD);
496         WasEvaluated = true;
497       }
498     }
499 
500     // C++ [expr.typeid]p4:
501     //   [...] If the type of the type-id is a reference to a possibly
502     //   cv-qualified type, the result of the typeid expression refers to a
503     //   std::type_info object representing the cv-unqualified referenced
504     //   type.
505     Qualifiers Quals;
506     QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
507     if (!Context.hasSameType(T, UnqualT)) {
508       T = UnqualT;
509       E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get();
510     }
511   }
512 
513   if (E->getType()->isVariablyModifiedType())
514     return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid)
515                      << E->getType());
516   else if (!inTemplateInstantiation() &&
517            E->HasSideEffects(Context, WasEvaluated)) {
518     // The expression operand for typeid is in an unevaluated expression
519     // context, so side effects could result in unintended consequences.
520     Diag(E->getExprLoc(), WasEvaluated
521                               ? diag::warn_side_effects_typeid
522                               : diag::warn_side_effects_unevaluated_context);
523   }
524 
525   return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E,
526                                      SourceRange(TypeidLoc, RParenLoc));
527 }
528 
529 /// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
530 ExprResult
ActOnCXXTypeid(SourceLocation OpLoc,SourceLocation LParenLoc,bool isType,void * TyOrExpr,SourceLocation RParenLoc)531 Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
532                      bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
533   // OpenCL C++ 1.0 s2.9: typeid is not supported.
534   if (getLangOpts().OpenCLCPlusPlus) {
535     return ExprError(Diag(OpLoc, diag::err_openclcxx_not_supported)
536                      << "typeid");
537   }
538 
539   // Find the std::type_info type.
540   if (!getStdNamespace())
541     return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
542 
543   if (!CXXTypeInfoDecl) {
544     IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
545     LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
546     LookupQualifiedName(R, getStdNamespace());
547     CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
548     // Microsoft's typeinfo doesn't have type_info in std but in the global
549     // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
550     if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) {
551       LookupQualifiedName(R, Context.getTranslationUnitDecl());
552       CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
553     }
554     if (!CXXTypeInfoDecl)
555       return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
556   }
557 
558   if (!getLangOpts().RTTI) {
559     return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
560   }
561 
562   QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
563 
564   if (isType) {
565     // The operand is a type; handle it as such.
566     TypeSourceInfo *TInfo = nullptr;
567     QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
568                                    &TInfo);
569     if (T.isNull())
570       return ExprError();
571 
572     if (!TInfo)
573       TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
574 
575     return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
576   }
577 
578   // The operand is an expression.
579   return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
580 }
581 
582 /// Grabs __declspec(uuid()) off a type, or returns 0 if we cannot resolve to
583 /// a single GUID.
584 static void
getUuidAttrOfType(Sema & SemaRef,QualType QT,llvm::SmallSetVector<const UuidAttr *,1> & UuidAttrs)585 getUuidAttrOfType(Sema &SemaRef, QualType QT,
586                   llvm::SmallSetVector<const UuidAttr *, 1> &UuidAttrs) {
587   // Optionally remove one level of pointer, reference or array indirection.
588   const Type *Ty = QT.getTypePtr();
589   if (QT->isPointerType() || QT->isReferenceType())
590     Ty = QT->getPointeeType().getTypePtr();
591   else if (QT->isArrayType())
592     Ty = Ty->getBaseElementTypeUnsafe();
593 
594   const auto *TD = Ty->getAsTagDecl();
595   if (!TD)
596     return;
597 
598   if (const auto *Uuid = TD->getMostRecentDecl()->getAttr<UuidAttr>()) {
599     UuidAttrs.insert(Uuid);
600     return;
601   }
602 
603   // __uuidof can grab UUIDs from template arguments.
604   if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(TD)) {
605     const TemplateArgumentList &TAL = CTSD->getTemplateArgs();
606     for (const TemplateArgument &TA : TAL.asArray()) {
607       const UuidAttr *UuidForTA = nullptr;
608       if (TA.getKind() == TemplateArgument::Type)
609         getUuidAttrOfType(SemaRef, TA.getAsType(), UuidAttrs);
610       else if (TA.getKind() == TemplateArgument::Declaration)
611         getUuidAttrOfType(SemaRef, TA.getAsDecl()->getType(), UuidAttrs);
612 
613       if (UuidForTA)
614         UuidAttrs.insert(UuidForTA);
615     }
616   }
617 }
618 
619 /// Build a Microsoft __uuidof expression with a type operand.
BuildCXXUuidof(QualType TypeInfoType,SourceLocation TypeidLoc,TypeSourceInfo * Operand,SourceLocation RParenLoc)620 ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
621                                 SourceLocation TypeidLoc,
622                                 TypeSourceInfo *Operand,
623                                 SourceLocation RParenLoc) {
624   StringRef UuidStr;
625   if (!Operand->getType()->isDependentType()) {
626     llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
627     getUuidAttrOfType(*this, Operand->getType(), UuidAttrs);
628     if (UuidAttrs.empty())
629       return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
630     if (UuidAttrs.size() > 1)
631       return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
632     UuidStr = UuidAttrs.back()->getGuid();
633   }
634 
635   return new (Context) CXXUuidofExpr(TypeInfoType.withConst(), Operand, UuidStr,
636                                      SourceRange(TypeidLoc, RParenLoc));
637 }
638 
639 /// Build a Microsoft __uuidof expression with an expression operand.
BuildCXXUuidof(QualType TypeInfoType,SourceLocation TypeidLoc,Expr * E,SourceLocation RParenLoc)640 ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
641                                 SourceLocation TypeidLoc,
642                                 Expr *E,
643                                 SourceLocation RParenLoc) {
644   StringRef UuidStr;
645   if (!E->getType()->isDependentType()) {
646     if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
647       UuidStr = "00000000-0000-0000-0000-000000000000";
648     } else {
649       llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
650       getUuidAttrOfType(*this, E->getType(), UuidAttrs);
651       if (UuidAttrs.empty())
652         return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
653       if (UuidAttrs.size() > 1)
654         return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
655       UuidStr = UuidAttrs.back()->getGuid();
656     }
657   }
658 
659   return new (Context) CXXUuidofExpr(TypeInfoType.withConst(), E, UuidStr,
660                                      SourceRange(TypeidLoc, RParenLoc));
661 }
662 
663 /// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
664 ExprResult
ActOnCXXUuidof(SourceLocation OpLoc,SourceLocation LParenLoc,bool isType,void * TyOrExpr,SourceLocation RParenLoc)665 Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
666                      bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
667   // If MSVCGuidDecl has not been cached, do the lookup.
668   if (!MSVCGuidDecl) {
669     IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
670     LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
671     LookupQualifiedName(R, Context.getTranslationUnitDecl());
672     MSVCGuidDecl = R.getAsSingle<RecordDecl>();
673     if (!MSVCGuidDecl)
674       return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
675   }
676 
677   QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
678 
679   if (isType) {
680     // The operand is a type; handle it as such.
681     TypeSourceInfo *TInfo = nullptr;
682     QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
683                                    &TInfo);
684     if (T.isNull())
685       return ExprError();
686 
687     if (!TInfo)
688       TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
689 
690     return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
691   }
692 
693   // The operand is an expression.
694   return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
695 }
696 
697 /// ActOnCXXBoolLiteral - Parse {true,false} literals.
698 ExprResult
ActOnCXXBoolLiteral(SourceLocation OpLoc,tok::TokenKind Kind)699 Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
700   assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
701          "Unknown C++ Boolean value!");
702   return new (Context)
703       CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc);
704 }
705 
706 /// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
707 ExprResult
ActOnCXXNullPtrLiteral(SourceLocation Loc)708 Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
709   return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
710 }
711 
712 /// ActOnCXXThrow - Parse throw expressions.
713 ExprResult
ActOnCXXThrow(Scope * S,SourceLocation OpLoc,Expr * Ex)714 Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
715   bool IsThrownVarInScope = false;
716   if (Ex) {
717     // C++0x [class.copymove]p31:
718     //   When certain criteria are met, an implementation is allowed to omit the
719     //   copy/move construction of a class object [...]
720     //
721     //     - in a throw-expression, when the operand is the name of a
722     //       non-volatile automatic object (other than a function or catch-
723     //       clause parameter) whose scope does not extend beyond the end of the
724     //       innermost enclosing try-block (if there is one), the copy/move
725     //       operation from the operand to the exception object (15.1) can be
726     //       omitted by constructing the automatic object directly into the
727     //       exception object
728     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
729       if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
730         if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
731           for( ; S; S = S->getParent()) {
732             if (S->isDeclScope(Var)) {
733               IsThrownVarInScope = true;
734               break;
735             }
736 
737             if (S->getFlags() &
738                 (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
739                  Scope::FunctionPrototypeScope | Scope::ObjCMethodScope |
740                  Scope::TryScope))
741               break;
742           }
743         }
744       }
745   }
746 
747   return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
748 }
749 
BuildCXXThrow(SourceLocation OpLoc,Expr * Ex,bool IsThrownVarInScope)750 ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
751                                bool IsThrownVarInScope) {
752   // Don't report an error if 'throw' is used in system headers.
753   if (!getLangOpts().CXXExceptions &&
754       !getSourceManager().isInSystemHeader(OpLoc) &&
755       (!getLangOpts().OpenMPIsDevice ||
756        !getLangOpts().OpenMPHostCXXExceptions ||
757        isInOpenMPTargetExecutionDirective() ||
758        isInOpenMPDeclareTargetContext()))
759     Diag(OpLoc, diag::err_exceptions_disabled) << "throw";
760 
761   // Exceptions aren't allowed in CUDA device code.
762   if (getLangOpts().CUDA)
763     CUDADiagIfDeviceCode(OpLoc, diag::err_cuda_device_exceptions)
764         << "throw" << CurrentCUDATarget();
765 
766   if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
767     Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw";
768 
769   if (Ex && !Ex->isTypeDependent()) {
770     QualType ExceptionObjectTy = Context.getExceptionObjectType(Ex->getType());
771     if (CheckCXXThrowOperand(OpLoc, ExceptionObjectTy, Ex))
772       return ExprError();
773 
774     // Initialize the exception result.  This implicitly weeds out
775     // abstract types or types with inaccessible copy constructors.
776 
777     // C++0x [class.copymove]p31:
778     //   When certain criteria are met, an implementation is allowed to omit the
779     //   copy/move construction of a class object [...]
780     //
781     //     - in a throw-expression, when the operand is the name of a
782     //       non-volatile automatic object (other than a function or
783     //       catch-clause
784     //       parameter) whose scope does not extend beyond the end of the
785     //       innermost enclosing try-block (if there is one), the copy/move
786     //       operation from the operand to the exception object (15.1) can be
787     //       omitted by constructing the automatic object directly into the
788     //       exception object
789     const VarDecl *NRVOVariable = nullptr;
790     if (IsThrownVarInScope)
791       NRVOVariable = getCopyElisionCandidate(QualType(), Ex, CES_Strict);
792 
793     InitializedEntity Entity = InitializedEntity::InitializeException(
794         OpLoc, ExceptionObjectTy,
795         /*NRVO=*/NRVOVariable != nullptr);
796     ExprResult Res = PerformMoveOrCopyInitialization(
797         Entity, NRVOVariable, QualType(), Ex, IsThrownVarInScope);
798     if (Res.isInvalid())
799       return ExprError();
800     Ex = Res.get();
801   }
802 
803   return new (Context)
804       CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope);
805 }
806 
807 static void
collectPublicBases(CXXRecordDecl * RD,llvm::DenseMap<CXXRecordDecl *,unsigned> & SubobjectsSeen,llvm::SmallPtrSetImpl<CXXRecordDecl * > & VBases,llvm::SetVector<CXXRecordDecl * > & PublicSubobjectsSeen,bool ParentIsPublic)808 collectPublicBases(CXXRecordDecl *RD,
809                    llvm::DenseMap<CXXRecordDecl *, unsigned> &SubobjectsSeen,
810                    llvm::SmallPtrSetImpl<CXXRecordDecl *> &VBases,
811                    llvm::SetVector<CXXRecordDecl *> &PublicSubobjectsSeen,
812                    bool ParentIsPublic) {
813   for (const CXXBaseSpecifier &BS : RD->bases()) {
814     CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
815     bool NewSubobject;
816     // Virtual bases constitute the same subobject.  Non-virtual bases are
817     // always distinct subobjects.
818     if (BS.isVirtual())
819       NewSubobject = VBases.insert(BaseDecl).second;
820     else
821       NewSubobject = true;
822 
823     if (NewSubobject)
824       ++SubobjectsSeen[BaseDecl];
825 
826     // Only add subobjects which have public access throughout the entire chain.
827     bool PublicPath = ParentIsPublic && BS.getAccessSpecifier() == AS_public;
828     if (PublicPath)
829       PublicSubobjectsSeen.insert(BaseDecl);
830 
831     // Recurse on to each base subobject.
832     collectPublicBases(BaseDecl, SubobjectsSeen, VBases, PublicSubobjectsSeen,
833                        PublicPath);
834   }
835 }
836 
getUnambiguousPublicSubobjects(CXXRecordDecl * RD,llvm::SmallVectorImpl<CXXRecordDecl * > & Objects)837 static void getUnambiguousPublicSubobjects(
838     CXXRecordDecl *RD, llvm::SmallVectorImpl<CXXRecordDecl *> &Objects) {
839   llvm::DenseMap<CXXRecordDecl *, unsigned> SubobjectsSeen;
840   llvm::SmallSet<CXXRecordDecl *, 2> VBases;
841   llvm::SetVector<CXXRecordDecl *> PublicSubobjectsSeen;
842   SubobjectsSeen[RD] = 1;
843   PublicSubobjectsSeen.insert(RD);
844   collectPublicBases(RD, SubobjectsSeen, VBases, PublicSubobjectsSeen,
845                      /*ParentIsPublic=*/true);
846 
847   for (CXXRecordDecl *PublicSubobject : PublicSubobjectsSeen) {
848     // Skip ambiguous objects.
849     if (SubobjectsSeen[PublicSubobject] > 1)
850       continue;
851 
852     Objects.push_back(PublicSubobject);
853   }
854 }
855 
856 /// CheckCXXThrowOperand - Validate the operand of a throw.
CheckCXXThrowOperand(SourceLocation ThrowLoc,QualType ExceptionObjectTy,Expr * E)857 bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc,
858                                 QualType ExceptionObjectTy, Expr *E) {
859   //   If the type of the exception would be an incomplete type or a pointer
860   //   to an incomplete type other than (cv) void the program is ill-formed.
861   QualType Ty = ExceptionObjectTy;
862   bool isPointer = false;
863   if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
864     Ty = Ptr->getPointeeType();
865     isPointer = true;
866   }
867   if (!isPointer || !Ty->isVoidType()) {
868     if (RequireCompleteType(ThrowLoc, Ty,
869                             isPointer ? diag::err_throw_incomplete_ptr
870                                       : diag::err_throw_incomplete,
871                             E->getSourceRange()))
872       return true;
873 
874     if (RequireNonAbstractType(ThrowLoc, ExceptionObjectTy,
875                                diag::err_throw_abstract_type, E))
876       return true;
877   }
878 
879   // If the exception has class type, we need additional handling.
880   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
881   if (!RD)
882     return false;
883 
884   // If we are throwing a polymorphic class type or pointer thereof,
885   // exception handling will make use of the vtable.
886   MarkVTableUsed(ThrowLoc, RD);
887 
888   // If a pointer is thrown, the referenced object will not be destroyed.
889   if (isPointer)
890     return false;
891 
892   // If the class has a destructor, we must be able to call it.
893   if (!RD->hasIrrelevantDestructor()) {
894     if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
895       MarkFunctionReferenced(E->getExprLoc(), Destructor);
896       CheckDestructorAccess(E->getExprLoc(), Destructor,
897                             PDiag(diag::err_access_dtor_exception) << Ty);
898       if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
899         return true;
900     }
901   }
902 
903   // The MSVC ABI creates a list of all types which can catch the exception
904   // object.  This list also references the appropriate copy constructor to call
905   // if the object is caught by value and has a non-trivial copy constructor.
906   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
907     // We are only interested in the public, unambiguous bases contained within
908     // the exception object.  Bases which are ambiguous or otherwise
909     // inaccessible are not catchable types.
910     llvm::SmallVector<CXXRecordDecl *, 2> UnambiguousPublicSubobjects;
911     getUnambiguousPublicSubobjects(RD, UnambiguousPublicSubobjects);
912 
913     for (CXXRecordDecl *Subobject : UnambiguousPublicSubobjects) {
914       // Attempt to lookup the copy constructor.  Various pieces of machinery
915       // will spring into action, like template instantiation, which means this
916       // cannot be a simple walk of the class's decls.  Instead, we must perform
917       // lookup and overload resolution.
918       CXXConstructorDecl *CD = LookupCopyingConstructor(Subobject, 0);
919       if (!CD)
920         continue;
921 
922       // Mark the constructor referenced as it is used by this throw expression.
923       MarkFunctionReferenced(E->getExprLoc(), CD);
924 
925       // Skip this copy constructor if it is trivial, we don't need to record it
926       // in the catchable type data.
927       if (CD->isTrivial())
928         continue;
929 
930       // The copy constructor is non-trivial, create a mapping from this class
931       // type to this constructor.
932       // N.B.  The selection of copy constructor is not sensitive to this
933       // particular throw-site.  Lookup will be performed at the catch-site to
934       // ensure that the copy constructor is, in fact, accessible (via
935       // friendship or any other means).
936       Context.addCopyConstructorForExceptionObject(Subobject, CD);
937 
938       // We don't keep the instantiated default argument expressions around so
939       // we must rebuild them here.
940       for (unsigned I = 1, E = CD->getNumParams(); I != E; ++I) {
941         if (CheckCXXDefaultArgExpr(ThrowLoc, CD, CD->getParamDecl(I)))
942           return true;
943       }
944     }
945   }
946 
947   return false;
948 }
949 
adjustCVQualifiersForCXXThisWithinLambda(ArrayRef<FunctionScopeInfo * > FunctionScopes,QualType ThisTy,DeclContext * CurSemaContext,ASTContext & ASTCtx)950 static QualType adjustCVQualifiersForCXXThisWithinLambda(
951     ArrayRef<FunctionScopeInfo *> FunctionScopes, QualType ThisTy,
952     DeclContext *CurSemaContext, ASTContext &ASTCtx) {
953 
954   QualType ClassType = ThisTy->getPointeeType();
955   LambdaScopeInfo *CurLSI = nullptr;
956   DeclContext *CurDC = CurSemaContext;
957 
958   // Iterate through the stack of lambdas starting from the innermost lambda to
959   // the outermost lambda, checking if '*this' is ever captured by copy - since
960   // that could change the cv-qualifiers of the '*this' object.
961   // The object referred to by '*this' starts out with the cv-qualifiers of its
962   // member function.  We then start with the innermost lambda and iterate
963   // outward checking to see if any lambda performs a by-copy capture of '*this'
964   // - and if so, any nested lambda must respect the 'constness' of that
965   // capturing lamdbda's call operator.
966   //
967 
968   // Since the FunctionScopeInfo stack is representative of the lexical
969   // nesting of the lambda expressions during initial parsing (and is the best
970   // place for querying information about captures about lambdas that are
971   // partially processed) and perhaps during instantiation of function templates
972   // that contain lambda expressions that need to be transformed BUT not
973   // necessarily during instantiation of a nested generic lambda's function call
974   // operator (which might even be instantiated at the end of the TU) - at which
975   // time the DeclContext tree is mature enough to query capture information
976   // reliably - we use a two pronged approach to walk through all the lexically
977   // enclosing lambda expressions:
978   //
979   //  1) Climb down the FunctionScopeInfo stack as long as each item represents
980   //  a Lambda (i.e. LambdaScopeInfo) AND each LSI's 'closure-type' is lexically
981   //  enclosed by the call-operator of the LSI below it on the stack (while
982   //  tracking the enclosing DC for step 2 if needed).  Note the topmost LSI on
983   //  the stack represents the innermost lambda.
984   //
985   //  2) If we run out of enclosing LSI's, check if the enclosing DeclContext
986   //  represents a lambda's call operator.  If it does, we must be instantiating
987   //  a generic lambda's call operator (represented by the Current LSI, and
988   //  should be the only scenario where an inconsistency between the LSI and the
989   //  DeclContext should occur), so climb out the DeclContexts if they
990   //  represent lambdas, while querying the corresponding closure types
991   //  regarding capture information.
992 
993   // 1) Climb down the function scope info stack.
994   for (int I = FunctionScopes.size();
995        I-- && isa<LambdaScopeInfo>(FunctionScopes[I]) &&
996        (!CurLSI || !CurLSI->Lambda || CurLSI->Lambda->getDeclContext() ==
997                        cast<LambdaScopeInfo>(FunctionScopes[I])->CallOperator);
998        CurDC = getLambdaAwareParentOfDeclContext(CurDC)) {
999     CurLSI = cast<LambdaScopeInfo>(FunctionScopes[I]);
1000 
1001     if (!CurLSI->isCXXThisCaptured())
1002         continue;
1003 
1004     auto C = CurLSI->getCXXThisCapture();
1005 
1006     if (C.isCopyCapture()) {
1007       ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1008       if (CurLSI->CallOperator->isConst())
1009         ClassType.addConst();
1010       return ASTCtx.getPointerType(ClassType);
1011     }
1012   }
1013 
1014   // 2) We've run out of ScopeInfos but check if CurDC is a lambda (which can
1015   // happen during instantiation of its nested generic lambda call operator)
1016   if (isLambdaCallOperator(CurDC)) {
1017     assert(CurLSI && "While computing 'this' capture-type for a generic "
1018                      "lambda, we must have a corresponding LambdaScopeInfo");
1019     assert(isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) &&
1020            "While computing 'this' capture-type for a generic lambda, when we "
1021            "run out of enclosing LSI's, yet the enclosing DC is a "
1022            "lambda-call-operator we must be (i.e. Current LSI) in a generic "
1023            "lambda call oeprator");
1024     assert(CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator));
1025 
1026     auto IsThisCaptured =
1027         [](CXXRecordDecl *Closure, bool &IsByCopy, bool &IsConst) {
1028       IsConst = false;
1029       IsByCopy = false;
1030       for (auto &&C : Closure->captures()) {
1031         if (C.capturesThis()) {
1032           if (C.getCaptureKind() == LCK_StarThis)
1033             IsByCopy = true;
1034           if (Closure->getLambdaCallOperator()->isConst())
1035             IsConst = true;
1036           return true;
1037         }
1038       }
1039       return false;
1040     };
1041 
1042     bool IsByCopyCapture = false;
1043     bool IsConstCapture = false;
1044     CXXRecordDecl *Closure = cast<CXXRecordDecl>(CurDC->getParent());
1045     while (Closure &&
1046            IsThisCaptured(Closure, IsByCopyCapture, IsConstCapture)) {
1047       if (IsByCopyCapture) {
1048         ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1049         if (IsConstCapture)
1050           ClassType.addConst();
1051         return ASTCtx.getPointerType(ClassType);
1052       }
1053       Closure = isLambdaCallOperator(Closure->getParent())
1054                     ? cast<CXXRecordDecl>(Closure->getParent()->getParent())
1055                     : nullptr;
1056     }
1057   }
1058   return ASTCtx.getPointerType(ClassType);
1059 }
1060 
getCurrentThisType()1061 QualType Sema::getCurrentThisType() {
1062   DeclContext *DC = getFunctionLevelDeclContext();
1063   QualType ThisTy = CXXThisTypeOverride;
1064 
1065   if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
1066     if (method && method->isInstance())
1067       ThisTy = method->getThisType();
1068   }
1069 
1070   if (ThisTy.isNull() && isLambdaCallOperator(CurContext) &&
1071       inTemplateInstantiation()) {
1072 
1073     assert(isa<CXXRecordDecl>(DC) &&
1074            "Trying to get 'this' type from static method?");
1075 
1076     // This is a lambda call operator that is being instantiated as a default
1077     // initializer. DC must point to the enclosing class type, so we can recover
1078     // the 'this' type from it.
1079 
1080     QualType ClassTy = Context.getTypeDeclType(cast<CXXRecordDecl>(DC));
1081     // There are no cv-qualifiers for 'this' within default initializers,
1082     // per [expr.prim.general]p4.
1083     ThisTy = Context.getPointerType(ClassTy);
1084   }
1085 
1086   // If we are within a lambda's call operator, the cv-qualifiers of 'this'
1087   // might need to be adjusted if the lambda or any of its enclosing lambda's
1088   // captures '*this' by copy.
1089   if (!ThisTy.isNull() && isLambdaCallOperator(CurContext))
1090     return adjustCVQualifiersForCXXThisWithinLambda(FunctionScopes, ThisTy,
1091                                                     CurContext, Context);
1092   return ThisTy;
1093 }
1094 
CXXThisScopeRAII(Sema & S,Decl * ContextDecl,Qualifiers CXXThisTypeQuals,bool Enabled)1095 Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
1096                                          Decl *ContextDecl,
1097                                          Qualifiers CXXThisTypeQuals,
1098                                          bool Enabled)
1099   : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
1100 {
1101   if (!Enabled || !ContextDecl)
1102     return;
1103 
1104   CXXRecordDecl *Record = nullptr;
1105   if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
1106     Record = Template->getTemplatedDecl();
1107   else
1108     Record = cast<CXXRecordDecl>(ContextDecl);
1109 
1110   QualType T = S.Context.getRecordType(Record);
1111   T = S.getASTContext().getQualifiedType(T, CXXThisTypeQuals);
1112 
1113   S.CXXThisTypeOverride = S.Context.getPointerType(T);
1114 
1115   this->Enabled = true;
1116 }
1117 
1118 
~CXXThisScopeRAII()1119 Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
1120   if (Enabled) {
1121     S.CXXThisTypeOverride = OldCXXThisTypeOverride;
1122   }
1123 }
1124 
captureThis(Sema & S,ASTContext & Context,RecordDecl * RD,QualType ThisTy,SourceLocation Loc,const bool ByCopy)1125 static Expr *captureThis(Sema &S, ASTContext &Context, RecordDecl *RD,
1126                          QualType ThisTy, SourceLocation Loc,
1127                          const bool ByCopy) {
1128 
1129   QualType AdjustedThisTy = ThisTy;
1130   // The type of the corresponding data member (not a 'this' pointer if 'by
1131   // copy').
1132   QualType CaptureThisFieldTy = ThisTy;
1133   if (ByCopy) {
1134     // If we are capturing the object referred to by '*this' by copy, ignore any
1135     // cv qualifiers inherited from the type of the member function for the type
1136     // of the closure-type's corresponding data member and any use of 'this'.
1137     CaptureThisFieldTy = ThisTy->getPointeeType();
1138     CaptureThisFieldTy.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1139     AdjustedThisTy = Context.getPointerType(CaptureThisFieldTy);
1140   }
1141 
1142   FieldDecl *Field = FieldDecl::Create(
1143       Context, RD, Loc, Loc, nullptr, CaptureThisFieldTy,
1144       Context.getTrivialTypeSourceInfo(CaptureThisFieldTy, Loc), nullptr, false,
1145       ICIS_NoInit);
1146 
1147   Field->setImplicit(true);
1148   Field->setAccess(AS_private);
1149   RD->addDecl(Field);
1150   Expr *This =
1151       new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit*/ true);
1152   if (ByCopy) {
1153     Expr *StarThis =  S.CreateBuiltinUnaryOp(Loc,
1154                                       UO_Deref,
1155                                       This).get();
1156     InitializedEntity Entity = InitializedEntity::InitializeLambdaCapture(
1157       nullptr, CaptureThisFieldTy, Loc);
1158     InitializationKind InitKind = InitializationKind::CreateDirect(Loc, Loc, Loc);
1159     InitializationSequence Init(S, Entity, InitKind, StarThis);
1160     ExprResult ER = Init.Perform(S, Entity, InitKind, StarThis);
1161     if (ER.isInvalid()) return nullptr;
1162     return ER.get();
1163   }
1164   return This;
1165 }
1166 
CheckCXXThisCapture(SourceLocation Loc,const bool Explicit,bool BuildAndDiagnose,const unsigned * const FunctionScopeIndexToStopAt,const bool ByCopy)1167 bool Sema::CheckCXXThisCapture(SourceLocation Loc, const bool Explicit,
1168     bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt,
1169     const bool ByCopy) {
1170   // We don't need to capture this in an unevaluated context.
1171   if (isUnevaluatedContext() && !Explicit)
1172     return true;
1173 
1174   assert((!ByCopy || Explicit) && "cannot implicitly capture *this by value");
1175 
1176   const int MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
1177                                          ? *FunctionScopeIndexToStopAt
1178                                          : FunctionScopes.size() - 1;
1179 
1180   // Check that we can capture the *enclosing object* (referred to by '*this')
1181   // by the capturing-entity/closure (lambda/block/etc) at
1182   // MaxFunctionScopesIndex-deep on the FunctionScopes stack.
1183 
1184   // Note: The *enclosing object* can only be captured by-value by a
1185   // closure that is a lambda, using the explicit notation:
1186   //    [*this] { ... }.
1187   // Every other capture of the *enclosing object* results in its by-reference
1188   // capture.
1189 
1190   // For a closure 'L' (at MaxFunctionScopesIndex in the FunctionScopes
1191   // stack), we can capture the *enclosing object* only if:
1192   // - 'L' has an explicit byref or byval capture of the *enclosing object*
1193   // -  or, 'L' has an implicit capture.
1194   // AND
1195   //   -- there is no enclosing closure
1196   //   -- or, there is some enclosing closure 'E' that has already captured the
1197   //      *enclosing object*, and every intervening closure (if any) between 'E'
1198   //      and 'L' can implicitly capture the *enclosing object*.
1199   //   -- or, every enclosing closure can implicitly capture the
1200   //      *enclosing object*
1201 
1202 
1203   unsigned NumCapturingClosures = 0;
1204   for (int idx = MaxFunctionScopesIndex; idx >= 0; idx--) {
1205     if (CapturingScopeInfo *CSI =
1206             dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
1207       if (CSI->CXXThisCaptureIndex != 0) {
1208         // 'this' is already being captured; there isn't anything more to do.
1209         CSI->Captures[CSI->CXXThisCaptureIndex - 1].markUsed(BuildAndDiagnose);
1210         break;
1211       }
1212       LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI);
1213       if (LSI && isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) {
1214         // This context can't implicitly capture 'this'; fail out.
1215         if (BuildAndDiagnose)
1216           Diag(Loc, diag::err_this_capture)
1217               << (Explicit && idx == MaxFunctionScopesIndex);
1218         return true;
1219       }
1220       if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
1221           CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
1222           CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
1223           CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion ||
1224           (Explicit && idx == MaxFunctionScopesIndex)) {
1225         // Regarding (Explicit && idx == MaxFunctionScopesIndex): only the first
1226         // iteration through can be an explicit capture, all enclosing closures,
1227         // if any, must perform implicit captures.
1228 
1229         // This closure can capture 'this'; continue looking upwards.
1230         NumCapturingClosures++;
1231         continue;
1232       }
1233       // This context can't implicitly capture 'this'; fail out.
1234       if (BuildAndDiagnose)
1235         Diag(Loc, diag::err_this_capture)
1236             << (Explicit && idx == MaxFunctionScopesIndex);
1237       return true;
1238     }
1239     break;
1240   }
1241   if (!BuildAndDiagnose) return false;
1242 
1243   // If we got here, then the closure at MaxFunctionScopesIndex on the
1244   // FunctionScopes stack, can capture the *enclosing object*, so capture it
1245   // (including implicit by-reference captures in any enclosing closures).
1246 
1247   // In the loop below, respect the ByCopy flag only for the closure requesting
1248   // the capture (i.e. first iteration through the loop below).  Ignore it for
1249   // all enclosing closure's up to NumCapturingClosures (since they must be
1250   // implicitly capturing the *enclosing  object* by reference (see loop
1251   // above)).
1252   assert((!ByCopy ||
1253           dyn_cast<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) &&
1254          "Only a lambda can capture the enclosing object (referred to by "
1255          "*this) by copy");
1256   // FIXME: We need to delay this marking in PotentiallyPotentiallyEvaluated
1257   // contexts.
1258   QualType ThisTy = getCurrentThisType();
1259   for (int idx = MaxFunctionScopesIndex; NumCapturingClosures;
1260        --idx, --NumCapturingClosures) {
1261     CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
1262     Expr *ThisExpr = nullptr;
1263 
1264     if (LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI)) {
1265       // For lambda expressions, build a field and an initializing expression,
1266       // and capture the *enclosing object* by copy only if this is the first
1267       // iteration.
1268       ThisExpr = captureThis(*this, Context, LSI->Lambda, ThisTy, Loc,
1269                              ByCopy && idx == MaxFunctionScopesIndex);
1270 
1271     } else if (CapturedRegionScopeInfo *RSI
1272         = dyn_cast<CapturedRegionScopeInfo>(FunctionScopes[idx]))
1273       ThisExpr =
1274           captureThis(*this, Context, RSI->TheRecordDecl, ThisTy, Loc,
1275                       false/*ByCopy*/);
1276 
1277     bool isNested = NumCapturingClosures > 1;
1278     CSI->addThisCapture(isNested, Loc, ThisExpr, ByCopy);
1279   }
1280   return false;
1281 }
1282 
ActOnCXXThis(SourceLocation Loc)1283 ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
1284   /// C++ 9.3.2: In the body of a non-static member function, the keyword this
1285   /// is a non-lvalue expression whose value is the address of the object for
1286   /// which the function is called.
1287 
1288   QualType ThisTy = getCurrentThisType();
1289   if (ThisTy.isNull()) return Diag(Loc, diag::err_invalid_this_use);
1290 
1291   CheckCXXThisCapture(Loc);
1292   return new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/false);
1293 }
1294 
isThisOutsideMemberFunctionBody(QualType BaseType)1295 bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) {
1296   // If we're outside the body of a member function, then we'll have a specified
1297   // type for 'this'.
1298   if (CXXThisTypeOverride.isNull())
1299     return false;
1300 
1301   // Determine whether we're looking into a class that's currently being
1302   // defined.
1303   CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
1304   return Class && Class->isBeingDefined();
1305 }
1306 
1307 /// Parse construction of a specified type.
1308 /// Can be interpreted either as function-style casting ("int(x)")
1309 /// or class type construction ("ClassType(x,y,z)")
1310 /// or creation of a value-initialized type ("int()").
1311 ExprResult
ActOnCXXTypeConstructExpr(ParsedType TypeRep,SourceLocation LParenOrBraceLoc,MultiExprArg exprs,SourceLocation RParenOrBraceLoc,bool ListInitialization)1312 Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
1313                                 SourceLocation LParenOrBraceLoc,
1314                                 MultiExprArg exprs,
1315                                 SourceLocation RParenOrBraceLoc,
1316                                 bool ListInitialization) {
1317   if (!TypeRep)
1318     return ExprError();
1319 
1320   TypeSourceInfo *TInfo;
1321   QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
1322   if (!TInfo)
1323     TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
1324 
1325   auto Result = BuildCXXTypeConstructExpr(TInfo, LParenOrBraceLoc, exprs,
1326                                           RParenOrBraceLoc, ListInitialization);
1327   // Avoid creating a non-type-dependent expression that contains typos.
1328   // Non-type-dependent expressions are liable to be discarded without
1329   // checking for embedded typos.
1330   if (!Result.isInvalid() && Result.get()->isInstantiationDependent() &&
1331       !Result.get()->isTypeDependent())
1332     Result = CorrectDelayedTyposInExpr(Result.get());
1333   return Result;
1334 }
1335 
1336 ExprResult
BuildCXXTypeConstructExpr(TypeSourceInfo * TInfo,SourceLocation LParenOrBraceLoc,MultiExprArg Exprs,SourceLocation RParenOrBraceLoc,bool ListInitialization)1337 Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
1338                                 SourceLocation LParenOrBraceLoc,
1339                                 MultiExprArg Exprs,
1340                                 SourceLocation RParenOrBraceLoc,
1341                                 bool ListInitialization) {
1342   QualType Ty = TInfo->getType();
1343   SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
1344 
1345   if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs)) {
1346     // FIXME: CXXUnresolvedConstructExpr does not model list-initialization
1347     // directly. We work around this by dropping the locations of the braces.
1348     SourceRange Locs = ListInitialization
1349                            ? SourceRange()
1350                            : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc);
1351     return CXXUnresolvedConstructExpr::Create(Context, TInfo, Locs.getBegin(),
1352                                               Exprs, Locs.getEnd());
1353   }
1354 
1355   assert((!ListInitialization ||
1356           (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) &&
1357          "List initialization must have initializer list as expression.");
1358   SourceRange FullRange = SourceRange(TyBeginLoc, RParenOrBraceLoc);
1359 
1360   InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
1361   InitializationKind Kind =
1362       Exprs.size()
1363           ? ListInitialization
1364                 ? InitializationKind::CreateDirectList(
1365                       TyBeginLoc, LParenOrBraceLoc, RParenOrBraceLoc)
1366                 : InitializationKind::CreateDirect(TyBeginLoc, LParenOrBraceLoc,
1367                                                    RParenOrBraceLoc)
1368           : InitializationKind::CreateValue(TyBeginLoc, LParenOrBraceLoc,
1369                                             RParenOrBraceLoc);
1370 
1371   // C++1z [expr.type.conv]p1:
1372   //   If the type is a placeholder for a deduced class type, [...perform class
1373   //   template argument deduction...]
1374   DeducedType *Deduced = Ty->getContainedDeducedType();
1375   if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) {
1376     Ty = DeduceTemplateSpecializationFromInitializer(TInfo, Entity,
1377                                                      Kind, Exprs);
1378     if (Ty.isNull())
1379       return ExprError();
1380     Entity = InitializedEntity::InitializeTemporary(TInfo, Ty);
1381   }
1382 
1383   // C++ [expr.type.conv]p1:
1384   // If the expression list is a parenthesized single expression, the type
1385   // conversion expression is equivalent (in definedness, and if defined in
1386   // meaning) to the corresponding cast expression.
1387   if (Exprs.size() == 1 && !ListInitialization &&
1388       !isa<InitListExpr>(Exprs[0])) {
1389     Expr *Arg = Exprs[0];
1390     return BuildCXXFunctionalCastExpr(TInfo, Ty, LParenOrBraceLoc, Arg,
1391                                       RParenOrBraceLoc);
1392   }
1393 
1394   //   For an expression of the form T(), T shall not be an array type.
1395   QualType ElemTy = Ty;
1396   if (Ty->isArrayType()) {
1397     if (!ListInitialization)
1398       return ExprError(Diag(TyBeginLoc, diag::err_value_init_for_array_type)
1399                          << FullRange);
1400     ElemTy = Context.getBaseElementType(Ty);
1401   }
1402 
1403   // There doesn't seem to be an explicit rule against this but sanity demands
1404   // we only construct objects with object types.
1405   if (Ty->isFunctionType())
1406     return ExprError(Diag(TyBeginLoc, diag::err_init_for_function_type)
1407                        << Ty << FullRange);
1408 
1409   // C++17 [expr.type.conv]p2:
1410   //   If the type is cv void and the initializer is (), the expression is a
1411   //   prvalue of the specified type that performs no initialization.
1412   if (!Ty->isVoidType() &&
1413       RequireCompleteType(TyBeginLoc, ElemTy,
1414                           diag::err_invalid_incomplete_type_use, FullRange))
1415     return ExprError();
1416 
1417   //   Otherwise, the expression is a prvalue of the specified type whose
1418   //   result object is direct-initialized (11.6) with the initializer.
1419   InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
1420   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs);
1421 
1422   if (Result.isInvalid())
1423     return Result;
1424 
1425   Expr *Inner = Result.get();
1426   if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner))
1427     Inner = BTE->getSubExpr();
1428   if (!isa<CXXTemporaryObjectExpr>(Inner) &&
1429       !isa<CXXScalarValueInitExpr>(Inner)) {
1430     // If we created a CXXTemporaryObjectExpr, that node also represents the
1431     // functional cast. Otherwise, create an explicit cast to represent
1432     // the syntactic form of a functional-style cast that was used here.
1433     //
1434     // FIXME: Creating a CXXFunctionalCastExpr around a CXXConstructExpr
1435     // would give a more consistent AST representation than using a
1436     // CXXTemporaryObjectExpr. It's also weird that the functional cast
1437     // is sometimes handled by initialization and sometimes not.
1438     QualType ResultType = Result.get()->getType();
1439     SourceRange Locs = ListInitialization
1440                            ? SourceRange()
1441                            : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc);
1442     Result = CXXFunctionalCastExpr::Create(
1443         Context, ResultType, Expr::getValueKindForType(Ty), TInfo, CK_NoOp,
1444         Result.get(), /*Path=*/nullptr, Locs.getBegin(), Locs.getEnd());
1445   }
1446 
1447   return Result;
1448 }
1449 
isUsualDeallocationFunction(const CXXMethodDecl * Method)1450 bool Sema::isUsualDeallocationFunction(const CXXMethodDecl *Method) {
1451   // [CUDA] Ignore this function, if we can't call it.
1452   const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext);
1453   if (getLangOpts().CUDA &&
1454       IdentifyCUDAPreference(Caller, Method) <= CFP_WrongSide)
1455     return false;
1456 
1457   SmallVector<const FunctionDecl*, 4> PreventedBy;
1458   bool Result = Method->isUsualDeallocationFunction(PreventedBy);
1459 
1460   if (Result || !getLangOpts().CUDA || PreventedBy.empty())
1461     return Result;
1462 
1463   // In case of CUDA, return true if none of the 1-argument deallocator
1464   // functions are actually callable.
1465   return llvm::none_of(PreventedBy, [&](const FunctionDecl *FD) {
1466     assert(FD->getNumParams() == 1 &&
1467            "Only single-operand functions should be in PreventedBy");
1468     return IdentifyCUDAPreference(Caller, FD) >= CFP_HostDevice;
1469   });
1470 }
1471 
1472 /// Determine whether the given function is a non-placement
1473 /// deallocation function.
isNonPlacementDeallocationFunction(Sema & S,FunctionDecl * FD)1474 static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) {
1475   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
1476     return S.isUsualDeallocationFunction(Method);
1477 
1478   if (FD->getOverloadedOperator() != OO_Delete &&
1479       FD->getOverloadedOperator() != OO_Array_Delete)
1480     return false;
1481 
1482   unsigned UsualParams = 1;
1483 
1484   if (S.getLangOpts().SizedDeallocation && UsualParams < FD->getNumParams() &&
1485       S.Context.hasSameUnqualifiedType(
1486           FD->getParamDecl(UsualParams)->getType(),
1487           S.Context.getSizeType()))
1488     ++UsualParams;
1489 
1490   if (S.getLangOpts().AlignedAllocation && UsualParams < FD->getNumParams() &&
1491       S.Context.hasSameUnqualifiedType(
1492           FD->getParamDecl(UsualParams)->getType(),
1493           S.Context.getTypeDeclType(S.getStdAlignValT())))
1494     ++UsualParams;
1495 
1496   return UsualParams == FD->getNumParams();
1497 }
1498 
1499 namespace {
1500   struct UsualDeallocFnInfo {
UsualDeallocFnInfo__anonb2279db60311::UsualDeallocFnInfo1501     UsualDeallocFnInfo() : Found(), FD(nullptr) {}
UsualDeallocFnInfo__anonb2279db60311::UsualDeallocFnInfo1502     UsualDeallocFnInfo(Sema &S, DeclAccessPair Found)
1503         : Found(Found), FD(dyn_cast<FunctionDecl>(Found->getUnderlyingDecl())),
1504           Destroying(false), HasSizeT(false), HasAlignValT(false),
1505           CUDAPref(Sema::CFP_Native) {
1506       // A function template declaration is never a usual deallocation function.
1507       if (!FD)
1508         return;
1509       unsigned NumBaseParams = 1;
1510       if (FD->isDestroyingOperatorDelete()) {
1511         Destroying = true;
1512         ++NumBaseParams;
1513       }
1514 
1515       if (NumBaseParams < FD->getNumParams() &&
1516           S.Context.hasSameUnqualifiedType(
1517               FD->getParamDecl(NumBaseParams)->getType(),
1518               S.Context.getSizeType())) {
1519         ++NumBaseParams;
1520         HasSizeT = true;
1521       }
1522 
1523       if (NumBaseParams < FD->getNumParams() &&
1524           FD->getParamDecl(NumBaseParams)->getType()->isAlignValT()) {
1525         ++NumBaseParams;
1526         HasAlignValT = true;
1527       }
1528 
1529       // In CUDA, determine how much we'd like / dislike to call this.
1530       if (S.getLangOpts().CUDA)
1531         if (auto *Caller = dyn_cast<FunctionDecl>(S.CurContext))
1532           CUDAPref = S.IdentifyCUDAPreference(Caller, FD);
1533     }
1534 
operator bool__anonb2279db60311::UsualDeallocFnInfo1535     explicit operator bool() const { return FD; }
1536 
isBetterThan__anonb2279db60311::UsualDeallocFnInfo1537     bool isBetterThan(const UsualDeallocFnInfo &Other, bool WantSize,
1538                       bool WantAlign) const {
1539       // C++ P0722:
1540       //   A destroying operator delete is preferred over a non-destroying
1541       //   operator delete.
1542       if (Destroying != Other.Destroying)
1543         return Destroying;
1544 
1545       // C++17 [expr.delete]p10:
1546       //   If the type has new-extended alignment, a function with a parameter
1547       //   of type std::align_val_t is preferred; otherwise a function without
1548       //   such a parameter is preferred
1549       if (HasAlignValT != Other.HasAlignValT)
1550         return HasAlignValT == WantAlign;
1551 
1552       if (HasSizeT != Other.HasSizeT)
1553         return HasSizeT == WantSize;
1554 
1555       // Use CUDA call preference as a tiebreaker.
1556       return CUDAPref > Other.CUDAPref;
1557     }
1558 
1559     DeclAccessPair Found;
1560     FunctionDecl *FD;
1561     bool Destroying, HasSizeT, HasAlignValT;
1562     Sema::CUDAFunctionPreference CUDAPref;
1563   };
1564 }
1565 
1566 /// Determine whether a type has new-extended alignment. This may be called when
1567 /// the type is incomplete (for a delete-expression with an incomplete pointee
1568 /// type), in which case it will conservatively return false if the alignment is
1569 /// not known.
hasNewExtendedAlignment(Sema & S,QualType AllocType)1570 static bool hasNewExtendedAlignment(Sema &S, QualType AllocType) {
1571   return S.getLangOpts().AlignedAllocation &&
1572          S.getASTContext().getTypeAlignIfKnown(AllocType) >
1573              S.getASTContext().getTargetInfo().getNewAlign();
1574 }
1575 
1576 /// Select the correct "usual" deallocation function to use from a selection of
1577 /// deallocation functions (either global or class-scope).
resolveDeallocationOverload(Sema & S,LookupResult & R,bool WantSize,bool WantAlign,llvm::SmallVectorImpl<UsualDeallocFnInfo> * BestFns=nullptr)1578 static UsualDeallocFnInfo resolveDeallocationOverload(
1579     Sema &S, LookupResult &R, bool WantSize, bool WantAlign,
1580     llvm::SmallVectorImpl<UsualDeallocFnInfo> *BestFns = nullptr) {
1581   UsualDeallocFnInfo Best;
1582 
1583   for (auto I = R.begin(), E = R.end(); I != E; ++I) {
1584     UsualDeallocFnInfo Info(S, I.getPair());
1585     if (!Info || !isNonPlacementDeallocationFunction(S, Info.FD) ||
1586         Info.CUDAPref == Sema::CFP_Never)
1587       continue;
1588 
1589     if (!Best) {
1590       Best = Info;
1591       if (BestFns)
1592         BestFns->push_back(Info);
1593       continue;
1594     }
1595 
1596     if (Best.isBetterThan(Info, WantSize, WantAlign))
1597       continue;
1598 
1599     //   If more than one preferred function is found, all non-preferred
1600     //   functions are eliminated from further consideration.
1601     if (BestFns && Info.isBetterThan(Best, WantSize, WantAlign))
1602       BestFns->clear();
1603 
1604     Best = Info;
1605     if (BestFns)
1606       BestFns->push_back(Info);
1607   }
1608 
1609   return Best;
1610 }
1611 
1612 /// Determine whether a given type is a class for which 'delete[]' would call
1613 /// a member 'operator delete[]' with a 'size_t' parameter. This implies that
1614 /// we need to store the array size (even if the type is
1615 /// trivially-destructible).
doesUsualArrayDeleteWantSize(Sema & S,SourceLocation loc,QualType allocType)1616 static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
1617                                          QualType allocType) {
1618   const RecordType *record =
1619     allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
1620   if (!record) return false;
1621 
1622   // Try to find an operator delete[] in class scope.
1623 
1624   DeclarationName deleteName =
1625     S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
1626   LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
1627   S.LookupQualifiedName(ops, record->getDecl());
1628 
1629   // We're just doing this for information.
1630   ops.suppressDiagnostics();
1631 
1632   // Very likely: there's no operator delete[].
1633   if (ops.empty()) return false;
1634 
1635   // If it's ambiguous, it should be illegal to call operator delete[]
1636   // on this thing, so it doesn't matter if we allocate extra space or not.
1637   if (ops.isAmbiguous()) return false;
1638 
1639   // C++17 [expr.delete]p10:
1640   //   If the deallocation functions have class scope, the one without a
1641   //   parameter of type std::size_t is selected.
1642   auto Best = resolveDeallocationOverload(
1643       S, ops, /*WantSize*/false,
1644       /*WantAlign*/hasNewExtendedAlignment(S, allocType));
1645   return Best && Best.HasSizeT;
1646 }
1647 
1648 /// Parsed a C++ 'new' expression (C++ 5.3.4).
1649 ///
1650 /// E.g.:
1651 /// @code new (memory) int[size][4] @endcode
1652 /// or
1653 /// @code ::new Foo(23, "hello") @endcode
1654 ///
1655 /// \param StartLoc The first location of the expression.
1656 /// \param UseGlobal True if 'new' was prefixed with '::'.
1657 /// \param PlacementLParen Opening paren of the placement arguments.
1658 /// \param PlacementArgs Placement new arguments.
1659 /// \param PlacementRParen Closing paren of the placement arguments.
1660 /// \param TypeIdParens If the type is in parens, the source range.
1661 /// \param D The type to be allocated, as well as array dimensions.
1662 /// \param Initializer The initializing expression or initializer-list, or null
1663 ///   if there is none.
1664 ExprResult
ActOnCXXNew(SourceLocation StartLoc,bool UseGlobal,SourceLocation PlacementLParen,MultiExprArg PlacementArgs,SourceLocation PlacementRParen,SourceRange TypeIdParens,Declarator & D,Expr * Initializer)1665 Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
1666                   SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
1667                   SourceLocation PlacementRParen, SourceRange TypeIdParens,
1668                   Declarator &D, Expr *Initializer) {
1669   Expr *ArraySize = nullptr;
1670   // If the specified type is an array, unwrap it and save the expression.
1671   if (D.getNumTypeObjects() > 0 &&
1672       D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
1673     DeclaratorChunk &Chunk = D.getTypeObject(0);
1674     if (D.getDeclSpec().hasAutoTypeSpec())
1675       return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
1676         << D.getSourceRange());
1677     if (Chunk.Arr.hasStatic)
1678       return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
1679         << D.getSourceRange());
1680     if (!Chunk.Arr.NumElts)
1681       return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
1682         << D.getSourceRange());
1683 
1684     ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
1685     D.DropFirstTypeObject();
1686   }
1687 
1688   // Every dimension shall be of constant size.
1689   if (ArraySize) {
1690     for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
1691       if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
1692         break;
1693 
1694       DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
1695       if (Expr *NumElts = (Expr *)Array.NumElts) {
1696         if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
1697           if (getLangOpts().CPlusPlus14) {
1698             // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator
1699             //   shall be a converted constant expression (5.19) of type std::size_t
1700             //   and shall evaluate to a strictly positive value.
1701             unsigned IntWidth = Context.getTargetInfo().getIntWidth();
1702             assert(IntWidth && "Builtin type of size 0?");
1703             llvm::APSInt Value(IntWidth);
1704             Array.NumElts
1705              = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value,
1706                                                 CCEK_NewExpr)
1707                  .get();
1708           } else {
1709             Array.NumElts
1710               = VerifyIntegerConstantExpression(NumElts, nullptr,
1711                                                 diag::err_new_array_nonconst)
1712                   .get();
1713           }
1714           if (!Array.NumElts)
1715             return ExprError();
1716         }
1717       }
1718     }
1719   }
1720 
1721   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/nullptr);
1722   QualType AllocType = TInfo->getType();
1723   if (D.isInvalidType())
1724     return ExprError();
1725 
1726   SourceRange DirectInitRange;
1727   if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
1728     DirectInitRange = List->getSourceRange();
1729 
1730   return BuildCXXNew(SourceRange(StartLoc, D.getEndLoc()), UseGlobal,
1731                      PlacementLParen, PlacementArgs, PlacementRParen,
1732                      TypeIdParens, AllocType, TInfo, ArraySize, DirectInitRange,
1733                      Initializer);
1734 }
1735 
isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,Expr * Init)1736 static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,
1737                                        Expr *Init) {
1738   if (!Init)
1739     return true;
1740   if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
1741     return PLE->getNumExprs() == 0;
1742   if (isa<ImplicitValueInitExpr>(Init))
1743     return true;
1744   else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
1745     return !CCE->isListInitialization() &&
1746            CCE->getConstructor()->isDefaultConstructor();
1747   else if (Style == CXXNewExpr::ListInit) {
1748     assert(isa<InitListExpr>(Init) &&
1749            "Shouldn't create list CXXConstructExprs for arrays.");
1750     return true;
1751   }
1752   return false;
1753 }
1754 
1755 bool
isUnavailableAlignedAllocationFunction(const FunctionDecl & FD) const1756 Sema::isUnavailableAlignedAllocationFunction(const FunctionDecl &FD) const {
1757   if (!getLangOpts().AlignedAllocationUnavailable)
1758     return false;
1759   if (FD.isDefined())
1760     return false;
1761   bool IsAligned = false;
1762   if (FD.isReplaceableGlobalAllocationFunction(&IsAligned) && IsAligned)
1763     return true;
1764   return false;
1765 }
1766 
1767 // Emit a diagnostic if an aligned allocation/deallocation function that is not
1768 // implemented in the standard library is selected.
diagnoseUnavailableAlignedAllocation(const FunctionDecl & FD,SourceLocation Loc)1769 void Sema::diagnoseUnavailableAlignedAllocation(const FunctionDecl &FD,
1770                                                 SourceLocation Loc) {
1771   if (isUnavailableAlignedAllocationFunction(FD)) {
1772     const llvm::Triple &T = getASTContext().getTargetInfo().getTriple();
1773     StringRef OSName = AvailabilityAttr::getPlatformNameSourceSpelling(
1774         getASTContext().getTargetInfo().getPlatformName());
1775 
1776     OverloadedOperatorKind Kind = FD.getDeclName().getCXXOverloadedOperator();
1777     bool IsDelete = Kind == OO_Delete || Kind == OO_Array_Delete;
1778     Diag(Loc, diag::err_aligned_allocation_unavailable)
1779         << IsDelete << FD.getType().getAsString() << OSName
1780         << alignedAllocMinVersion(T.getOS()).getAsString();
1781     Diag(Loc, diag::note_silence_aligned_allocation_unavailable);
1782   }
1783 }
1784 
1785 ExprResult
BuildCXXNew(SourceRange Range,bool UseGlobal,SourceLocation PlacementLParen,MultiExprArg PlacementArgs,SourceLocation PlacementRParen,SourceRange TypeIdParens,QualType AllocType,TypeSourceInfo * AllocTypeInfo,Expr * ArraySize,SourceRange DirectInitRange,Expr * Initializer)1786 Sema::BuildCXXNew(SourceRange Range, bool UseGlobal,
1787                   SourceLocation PlacementLParen,
1788                   MultiExprArg PlacementArgs,
1789                   SourceLocation PlacementRParen,
1790                   SourceRange TypeIdParens,
1791                   QualType AllocType,
1792                   TypeSourceInfo *AllocTypeInfo,
1793                   Expr *ArraySize,
1794                   SourceRange DirectInitRange,
1795                   Expr *Initializer) {
1796   SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
1797   SourceLocation StartLoc = Range.getBegin();
1798 
1799   CXXNewExpr::InitializationStyle initStyle;
1800   if (DirectInitRange.isValid()) {
1801     assert(Initializer && "Have parens but no initializer.");
1802     initStyle = CXXNewExpr::CallInit;
1803   } else if (Initializer && isa<InitListExpr>(Initializer))
1804     initStyle = CXXNewExpr::ListInit;
1805   else {
1806     assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||
1807             isa<CXXConstructExpr>(Initializer)) &&
1808            "Initializer expression that cannot have been implicitly created.");
1809     initStyle = CXXNewExpr::NoInit;
1810   }
1811 
1812   Expr **Inits = &Initializer;
1813   unsigned NumInits = Initializer ? 1 : 0;
1814   if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) {
1815     assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init");
1816     Inits = List->getExprs();
1817     NumInits = List->getNumExprs();
1818   }
1819 
1820   // C++11 [expr.new]p15:
1821   //   A new-expression that creates an object of type T initializes that
1822   //   object as follows:
1823   InitializationKind Kind
1824       //     - If the new-initializer is omitted, the object is default-
1825       //       initialized (8.5); if no initialization is performed,
1826       //       the object has indeterminate value
1827       = initStyle == CXXNewExpr::NoInit
1828             ? InitializationKind::CreateDefault(TypeRange.getBegin())
1829             //     - Otherwise, the new-initializer is interpreted according to
1830             //     the
1831             //       initialization rules of 8.5 for direct-initialization.
1832             : initStyle == CXXNewExpr::ListInit
1833                   ? InitializationKind::CreateDirectList(
1834                         TypeRange.getBegin(), Initializer->getBeginLoc(),
1835                         Initializer->getEndLoc())
1836                   : InitializationKind::CreateDirect(TypeRange.getBegin(),
1837                                                      DirectInitRange.getBegin(),
1838                                                      DirectInitRange.getEnd());
1839 
1840   // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for.
1841   auto *Deduced = AllocType->getContainedDeducedType();
1842   if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) {
1843     if (ArraySize)
1844       return ExprError(Diag(ArraySize->getExprLoc(),
1845                             diag::err_deduced_class_template_compound_type)
1846                        << /*array*/ 2 << ArraySize->getSourceRange());
1847 
1848     InitializedEntity Entity
1849       = InitializedEntity::InitializeNew(StartLoc, AllocType);
1850     AllocType = DeduceTemplateSpecializationFromInitializer(
1851         AllocTypeInfo, Entity, Kind, MultiExprArg(Inits, NumInits));
1852     if (AllocType.isNull())
1853       return ExprError();
1854   } else if (Deduced) {
1855     bool Braced = (initStyle == CXXNewExpr::ListInit);
1856     if (NumInits == 1) {
1857       if (auto p = dyn_cast_or_null<InitListExpr>(Inits[0])) {
1858         Inits = p->getInits();
1859         NumInits = p->getNumInits();
1860         Braced = true;
1861       }
1862     }
1863 
1864     if (initStyle == CXXNewExpr::NoInit || NumInits == 0)
1865       return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
1866                        << AllocType << TypeRange);
1867     if (NumInits > 1) {
1868       Expr *FirstBad = Inits[1];
1869       return ExprError(Diag(FirstBad->getBeginLoc(),
1870                             diag::err_auto_new_ctor_multiple_expressions)
1871                        << AllocType << TypeRange);
1872     }
1873     if (Braced && !getLangOpts().CPlusPlus17)
1874       Diag(Initializer->getBeginLoc(), diag::ext_auto_new_list_init)
1875           << AllocType << TypeRange;
1876     QualType DeducedType;
1877     if (DeduceAutoType(AllocTypeInfo, Inits[0], DeducedType) == DAR_Failed)
1878       return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
1879                        << AllocType << Inits[0]->getType()
1880                        << TypeRange << Inits[0]->getSourceRange());
1881     if (DeducedType.isNull())
1882       return ExprError();
1883     AllocType = DeducedType;
1884   }
1885 
1886   // Per C++0x [expr.new]p5, the type being constructed may be a
1887   // typedef of an array type.
1888   if (!ArraySize) {
1889     if (const ConstantArrayType *Array
1890                               = Context.getAsConstantArrayType(AllocType)) {
1891       ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
1892                                          Context.getSizeType(),
1893                                          TypeRange.getEnd());
1894       AllocType = Array->getElementType();
1895     }
1896   }
1897 
1898   if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
1899     return ExprError();
1900 
1901   // In ARC, infer 'retaining' for the allocated
1902   if (getLangOpts().ObjCAutoRefCount &&
1903       AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
1904       AllocType->isObjCLifetimeType()) {
1905     AllocType = Context.getLifetimeQualifiedType(AllocType,
1906                                     AllocType->getObjCARCImplicitLifetime());
1907   }
1908 
1909   QualType ResultType = Context.getPointerType(AllocType);
1910 
1911   if (ArraySize && ArraySize->getType()->isNonOverloadPlaceholderType()) {
1912     ExprResult result = CheckPlaceholderExpr(ArraySize);
1913     if (result.isInvalid()) return ExprError();
1914     ArraySize = result.get();
1915   }
1916   // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
1917   //   integral or enumeration type with a non-negative value."
1918   // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
1919   //   enumeration type, or a class type for which a single non-explicit
1920   //   conversion function to integral or unscoped enumeration type exists.
1921   // C++1y [expr.new]p6: The expression [...] is implicitly converted to
1922   //   std::size_t.
1923   llvm::Optional<uint64_t> KnownArraySize;
1924   if (ArraySize && !ArraySize->isTypeDependent()) {
1925     ExprResult ConvertedSize;
1926     if (getLangOpts().CPlusPlus14) {
1927       assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?");
1928 
1929       ConvertedSize = PerformImplicitConversion(ArraySize, Context.getSizeType(),
1930                                                 AA_Converting);
1931 
1932       if (!ConvertedSize.isInvalid() &&
1933           ArraySize->getType()->getAs<RecordType>())
1934         // Diagnose the compatibility of this conversion.
1935         Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion)
1936           << ArraySize->getType() << 0 << "'size_t'";
1937     } else {
1938       class SizeConvertDiagnoser : public ICEConvertDiagnoser {
1939       protected:
1940         Expr *ArraySize;
1941 
1942       public:
1943         SizeConvertDiagnoser(Expr *ArraySize)
1944             : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false),
1945               ArraySize(ArraySize) {}
1946 
1947         SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
1948                                              QualType T) override {
1949           return S.Diag(Loc, diag::err_array_size_not_integral)
1950                    << S.getLangOpts().CPlusPlus11 << T;
1951         }
1952 
1953         SemaDiagnosticBuilder diagnoseIncomplete(
1954             Sema &S, SourceLocation Loc, QualType T) override {
1955           return S.Diag(Loc, diag::err_array_size_incomplete_type)
1956                    << T << ArraySize->getSourceRange();
1957         }
1958 
1959         SemaDiagnosticBuilder diagnoseExplicitConv(
1960             Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
1961           return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy;
1962         }
1963 
1964         SemaDiagnosticBuilder noteExplicitConv(
1965             Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
1966           return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
1967                    << ConvTy->isEnumeralType() << ConvTy;
1968         }
1969 
1970         SemaDiagnosticBuilder diagnoseAmbiguous(
1971             Sema &S, SourceLocation Loc, QualType T) override {
1972           return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T;
1973         }
1974 
1975         SemaDiagnosticBuilder noteAmbiguous(
1976             Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
1977           return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
1978                    << ConvTy->isEnumeralType() << ConvTy;
1979         }
1980 
1981         SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
1982                                                  QualType T,
1983                                                  QualType ConvTy) override {
1984           return S.Diag(Loc,
1985                         S.getLangOpts().CPlusPlus11
1986                           ? diag::warn_cxx98_compat_array_size_conversion
1987                           : diag::ext_array_size_conversion)
1988                    << T << ConvTy->isEnumeralType() << ConvTy;
1989         }
1990       } SizeDiagnoser(ArraySize);
1991 
1992       ConvertedSize = PerformContextualImplicitConversion(StartLoc, ArraySize,
1993                                                           SizeDiagnoser);
1994     }
1995     if (ConvertedSize.isInvalid())
1996       return ExprError();
1997 
1998     ArraySize = ConvertedSize.get();
1999     QualType SizeType = ArraySize->getType();
2000 
2001     if (!SizeType->isIntegralOrUnscopedEnumerationType())
2002       return ExprError();
2003 
2004     // C++98 [expr.new]p7:
2005     //   The expression in a direct-new-declarator shall have integral type
2006     //   with a non-negative value.
2007     //
2008     // Let's see if this is a constant < 0. If so, we reject it out of hand,
2009     // per CWG1464. Otherwise, if it's not a constant, we must have an
2010     // unparenthesized array type.
2011     if (!ArraySize->isValueDependent()) {
2012       llvm::APSInt Value;
2013       // We've already performed any required implicit conversion to integer or
2014       // unscoped enumeration type.
2015       // FIXME: Per CWG1464, we are required to check the value prior to
2016       // converting to size_t. This will never find a negative array size in
2017       // C++14 onwards, because Value is always unsigned here!
2018       if (ArraySize->isIntegerConstantExpr(Value, Context)) {
2019         if (Value.isSigned() && Value.isNegative()) {
2020           return ExprError(Diag(ArraySize->getBeginLoc(),
2021                                 diag::err_typecheck_negative_array_size)
2022                            << ArraySize->getSourceRange());
2023         }
2024 
2025         if (!AllocType->isDependentType()) {
2026           unsigned ActiveSizeBits =
2027             ConstantArrayType::getNumAddressingBits(Context, AllocType, Value);
2028           if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context))
2029             return ExprError(
2030                 Diag(ArraySize->getBeginLoc(), diag::err_array_too_large)
2031                 << Value.toString(10) << ArraySize->getSourceRange());
2032         }
2033 
2034         KnownArraySize = Value.getZExtValue();
2035       } else if (TypeIdParens.isValid()) {
2036         // Can't have dynamic array size when the type-id is in parentheses.
2037         Diag(ArraySize->getBeginLoc(), diag::ext_new_paren_array_nonconst)
2038             << ArraySize->getSourceRange()
2039             << FixItHint::CreateRemoval(TypeIdParens.getBegin())
2040             << FixItHint::CreateRemoval(TypeIdParens.getEnd());
2041 
2042         TypeIdParens = SourceRange();
2043       }
2044     }
2045 
2046     // Note that we do *not* convert the argument in any way.  It can
2047     // be signed, larger than size_t, whatever.
2048   }
2049 
2050   FunctionDecl *OperatorNew = nullptr;
2051   FunctionDecl *OperatorDelete = nullptr;
2052   unsigned Alignment =
2053       AllocType->isDependentType() ? 0 : Context.getTypeAlign(AllocType);
2054   unsigned NewAlignment = Context.getTargetInfo().getNewAlign();
2055   bool PassAlignment = getLangOpts().AlignedAllocation &&
2056                        Alignment > NewAlignment;
2057 
2058   AllocationFunctionScope Scope = UseGlobal ? AFS_Global : AFS_Both;
2059   if (!AllocType->isDependentType() &&
2060       !Expr::hasAnyTypeDependentArguments(PlacementArgs) &&
2061       FindAllocationFunctions(StartLoc,
2062                               SourceRange(PlacementLParen, PlacementRParen),
2063                               Scope, Scope, AllocType, ArraySize, PassAlignment,
2064                               PlacementArgs, OperatorNew, OperatorDelete))
2065     return ExprError();
2066 
2067   // If this is an array allocation, compute whether the usual array
2068   // deallocation function for the type has a size_t parameter.
2069   bool UsualArrayDeleteWantsSize = false;
2070   if (ArraySize && !AllocType->isDependentType())
2071     UsualArrayDeleteWantsSize =
2072         doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
2073 
2074   SmallVector<Expr *, 8> AllPlaceArgs;
2075   if (OperatorNew) {
2076     const FunctionProtoType *Proto =
2077         OperatorNew->getType()->getAs<FunctionProtoType>();
2078     VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction
2079                                                     : VariadicDoesNotApply;
2080 
2081     // We've already converted the placement args, just fill in any default
2082     // arguments. Skip the first parameter because we don't have a corresponding
2083     // argument. Skip the second parameter too if we're passing in the
2084     // alignment; we've already filled it in.
2085     if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto,
2086                                PassAlignment ? 2 : 1, PlacementArgs,
2087                                AllPlaceArgs, CallType))
2088       return ExprError();
2089 
2090     if (!AllPlaceArgs.empty())
2091       PlacementArgs = AllPlaceArgs;
2092 
2093     // FIXME: This is wrong: PlacementArgs misses out the first (size) argument.
2094     DiagnoseSentinelCalls(OperatorNew, PlacementLParen, PlacementArgs);
2095 
2096     // FIXME: Missing call to CheckFunctionCall or equivalent
2097 
2098     // Warn if the type is over-aligned and is being allocated by (unaligned)
2099     // global operator new.
2100     if (PlacementArgs.empty() && !PassAlignment &&
2101         (OperatorNew->isImplicit() ||
2102          (OperatorNew->getBeginLoc().isValid() &&
2103           getSourceManager().isInSystemHeader(OperatorNew->getBeginLoc())))) {
2104       if (Alignment > NewAlignment)
2105         Diag(StartLoc, diag::warn_overaligned_type)
2106             << AllocType
2107             << unsigned(Alignment / Context.getCharWidth())
2108             << unsigned(NewAlignment / Context.getCharWidth());
2109     }
2110   }
2111 
2112   // Array 'new' can't have any initializers except empty parentheses.
2113   // Initializer lists are also allowed, in C++11. Rely on the parser for the
2114   // dialect distinction.
2115   if (ArraySize && !isLegalArrayNewInitializer(initStyle, Initializer)) {
2116     SourceRange InitRange(Inits[0]->getBeginLoc(),
2117                           Inits[NumInits - 1]->getEndLoc());
2118     Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
2119     return ExprError();
2120   }
2121 
2122   // If we can perform the initialization, and we've not already done so,
2123   // do it now.
2124   if (!AllocType->isDependentType() &&
2125       !Expr::hasAnyTypeDependentArguments(
2126           llvm::makeArrayRef(Inits, NumInits))) {
2127     // The type we initialize is the complete type, including the array bound.
2128     QualType InitType;
2129     if (KnownArraySize)
2130       InitType = Context.getConstantArrayType(
2131           AllocType, llvm::APInt(Context.getTypeSize(Context.getSizeType()),
2132                                  *KnownArraySize),
2133           ArrayType::Normal, 0);
2134     else if (ArraySize)
2135       InitType =
2136           Context.getIncompleteArrayType(AllocType, ArrayType::Normal, 0);
2137     else
2138       InitType = AllocType;
2139 
2140     InitializedEntity Entity
2141       = InitializedEntity::InitializeNew(StartLoc, InitType);
2142     InitializationSequence InitSeq(*this, Entity, Kind,
2143                                    MultiExprArg(Inits, NumInits));
2144     ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
2145                                           MultiExprArg(Inits, NumInits));
2146     if (FullInit.isInvalid())
2147       return ExprError();
2148 
2149     // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
2150     // we don't want the initialized object to be destructed.
2151     // FIXME: We should not create these in the first place.
2152     if (CXXBindTemporaryExpr *Binder =
2153             dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
2154       FullInit = Binder->getSubExpr();
2155 
2156     Initializer = FullInit.get();
2157   }
2158 
2159   // Mark the new and delete operators as referenced.
2160   if (OperatorNew) {
2161     if (DiagnoseUseOfDecl(OperatorNew, StartLoc))
2162       return ExprError();
2163     MarkFunctionReferenced(StartLoc, OperatorNew);
2164   }
2165   if (OperatorDelete) {
2166     if (DiagnoseUseOfDecl(OperatorDelete, StartLoc))
2167       return ExprError();
2168     MarkFunctionReferenced(StartLoc, OperatorDelete);
2169   }
2170 
2171   // C++0x [expr.new]p17:
2172   //   If the new expression creates an array of objects of class type,
2173   //   access and ambiguity control are done for the destructor.
2174   QualType BaseAllocType = Context.getBaseElementType(AllocType);
2175   if (ArraySize && !BaseAllocType->isDependentType()) {
2176     if (const RecordType *BaseRecordType = BaseAllocType->getAs<RecordType>()) {
2177       if (CXXDestructorDecl *dtor = LookupDestructor(
2178               cast<CXXRecordDecl>(BaseRecordType->getDecl()))) {
2179         MarkFunctionReferenced(StartLoc, dtor);
2180         CheckDestructorAccess(StartLoc, dtor,
2181                               PDiag(diag::err_access_dtor)
2182                                 << BaseAllocType);
2183         if (DiagnoseUseOfDecl(dtor, StartLoc))
2184           return ExprError();
2185       }
2186     }
2187   }
2188 
2189   return CXXNewExpr::Create(Context, UseGlobal, OperatorNew, OperatorDelete,
2190                             PassAlignment, UsualArrayDeleteWantsSize,
2191                             PlacementArgs, TypeIdParens, ArraySize, initStyle,
2192                             Initializer, ResultType, AllocTypeInfo, Range,
2193                             DirectInitRange);
2194 }
2195 
2196 /// Checks that a type is suitable as the allocated type
2197 /// in a new-expression.
CheckAllocatedType(QualType AllocType,SourceLocation Loc,SourceRange R)2198 bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
2199                               SourceRange R) {
2200   // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
2201   //   abstract class type or array thereof.
2202   if (AllocType->isFunctionType())
2203     return Diag(Loc, diag::err_bad_new_type)
2204       << AllocType << 0 << R;
2205   else if (AllocType->isReferenceType())
2206     return Diag(Loc, diag::err_bad_new_type)
2207       << AllocType << 1 << R;
2208   else if (!AllocType->isDependentType() &&
2209            RequireCompleteType(Loc, AllocType, diag::err_new_incomplete_type,R))
2210     return true;
2211   else if (RequireNonAbstractType(Loc, AllocType,
2212                                   diag::err_allocation_of_abstract_type))
2213     return true;
2214   else if (AllocType->isVariablyModifiedType())
2215     return Diag(Loc, diag::err_variably_modified_new_type)
2216              << AllocType;
2217   else if (AllocType.getAddressSpace() != LangAS::Default &&
2218            !getLangOpts().OpenCLCPlusPlus)
2219     return Diag(Loc, diag::err_address_space_qualified_new)
2220       << AllocType.getUnqualifiedType()
2221       << AllocType.getQualifiers().getAddressSpaceAttributePrintValue();
2222   else if (getLangOpts().ObjCAutoRefCount) {
2223     if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
2224       QualType BaseAllocType = Context.getBaseElementType(AT);
2225       if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
2226           BaseAllocType->isObjCLifetimeType())
2227         return Diag(Loc, diag::err_arc_new_array_without_ownership)
2228           << BaseAllocType;
2229     }
2230   }
2231 
2232   return false;
2233 }
2234 
resolveAllocationOverload(Sema & S,LookupResult & R,SourceRange Range,SmallVectorImpl<Expr * > & Args,bool & PassAlignment,FunctionDecl * & Operator,OverloadCandidateSet * AlignedCandidates,Expr * AlignArg,bool Diagnose)2235 static bool resolveAllocationOverload(
2236     Sema &S, LookupResult &R, SourceRange Range, SmallVectorImpl<Expr *> &Args,
2237     bool &PassAlignment, FunctionDecl *&Operator,
2238     OverloadCandidateSet *AlignedCandidates, Expr *AlignArg, bool Diagnose) {
2239   OverloadCandidateSet Candidates(R.getNameLoc(),
2240                                   OverloadCandidateSet::CSK_Normal);
2241   for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
2242        Alloc != AllocEnd; ++Alloc) {
2243     // Even member operator new/delete are implicitly treated as
2244     // static, so don't use AddMemberCandidate.
2245     NamedDecl *D = (*Alloc)->getUnderlyingDecl();
2246 
2247     if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
2248       S.AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
2249                                      /*ExplicitTemplateArgs=*/nullptr, Args,
2250                                      Candidates,
2251                                      /*SuppressUserConversions=*/false);
2252       continue;
2253     }
2254 
2255     FunctionDecl *Fn = cast<FunctionDecl>(D);
2256     S.AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates,
2257                            /*SuppressUserConversions=*/false);
2258   }
2259 
2260   // Do the resolution.
2261   OverloadCandidateSet::iterator Best;
2262   switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) {
2263   case OR_Success: {
2264     // Got one!
2265     FunctionDecl *FnDecl = Best->Function;
2266     if (S.CheckAllocationAccess(R.getNameLoc(), Range, R.getNamingClass(),
2267                                 Best->FoundDecl) == Sema::AR_inaccessible)
2268       return true;
2269 
2270     Operator = FnDecl;
2271     return false;
2272   }
2273 
2274   case OR_No_Viable_Function:
2275     // C++17 [expr.new]p13:
2276     //   If no matching function is found and the allocated object type has
2277     //   new-extended alignment, the alignment argument is removed from the
2278     //   argument list, and overload resolution is performed again.
2279     if (PassAlignment) {
2280       PassAlignment = false;
2281       AlignArg = Args[1];
2282       Args.erase(Args.begin() + 1);
2283       return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
2284                                        Operator, &Candidates, AlignArg,
2285                                        Diagnose);
2286     }
2287 
2288     // MSVC will fall back on trying to find a matching global operator new
2289     // if operator new[] cannot be found.  Also, MSVC will leak by not
2290     // generating a call to operator delete or operator delete[], but we
2291     // will not replicate that bug.
2292     // FIXME: Find out how this interacts with the std::align_val_t fallback
2293     // once MSVC implements it.
2294     if (R.getLookupName().getCXXOverloadedOperator() == OO_Array_New &&
2295         S.Context.getLangOpts().MSVCCompat) {
2296       R.clear();
2297       R.setLookupName(S.Context.DeclarationNames.getCXXOperatorName(OO_New));
2298       S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl());
2299       // FIXME: This will give bad diagnostics pointing at the wrong functions.
2300       return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
2301                                        Operator, /*Candidates=*/nullptr,
2302                                        /*AlignArg=*/nullptr, Diagnose);
2303     }
2304 
2305     if (Diagnose) {
2306       S.Diag(R.getNameLoc(), diag::err_ovl_no_viable_function_in_call)
2307           << R.getLookupName() << Range;
2308 
2309       // If we have aligned candidates, only note the align_val_t candidates
2310       // from AlignedCandidates and the non-align_val_t candidates from
2311       // Candidates.
2312       if (AlignedCandidates) {
2313         auto IsAligned = [](OverloadCandidate &C) {
2314           return C.Function->getNumParams() > 1 &&
2315                  C.Function->getParamDecl(1)->getType()->isAlignValT();
2316         };
2317         auto IsUnaligned = [&](OverloadCandidate &C) { return !IsAligned(C); };
2318 
2319         // This was an overaligned allocation, so list the aligned candidates
2320         // first.
2321         Args.insert(Args.begin() + 1, AlignArg);
2322         AlignedCandidates->NoteCandidates(S, OCD_AllCandidates, Args, "",
2323                                           R.getNameLoc(), IsAligned);
2324         Args.erase(Args.begin() + 1);
2325         Candidates.NoteCandidates(S, OCD_AllCandidates, Args, "", R.getNameLoc(),
2326                                   IsUnaligned);
2327       } else {
2328         Candidates.NoteCandidates(S, OCD_AllCandidates, Args);
2329       }
2330     }
2331     return true;
2332 
2333   case OR_Ambiguous:
2334     if (Diagnose) {
2335       S.Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call)
2336           << R.getLookupName() << Range;
2337       Candidates.NoteCandidates(S, OCD_ViableCandidates, Args);
2338     }
2339     return true;
2340 
2341   case OR_Deleted: {
2342     if (Diagnose) {
2343       S.Diag(R.getNameLoc(), diag::err_ovl_deleted_call)
2344           << Best->Function->isDeleted() << R.getLookupName()
2345           << S.getDeletedOrUnavailableSuffix(Best->Function) << Range;
2346       Candidates.NoteCandidates(S, OCD_AllCandidates, Args);
2347     }
2348     return true;
2349   }
2350   }
2351   llvm_unreachable("Unreachable, bad result from BestViableFunction");
2352 }
2353 
FindAllocationFunctions(SourceLocation StartLoc,SourceRange Range,AllocationFunctionScope NewScope,AllocationFunctionScope DeleteScope,QualType AllocType,bool IsArray,bool & PassAlignment,MultiExprArg PlaceArgs,FunctionDecl * & OperatorNew,FunctionDecl * & OperatorDelete,bool Diagnose)2354 bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
2355                                    AllocationFunctionScope NewScope,
2356                                    AllocationFunctionScope DeleteScope,
2357                                    QualType AllocType, bool IsArray,
2358                                    bool &PassAlignment, MultiExprArg PlaceArgs,
2359                                    FunctionDecl *&OperatorNew,
2360                                    FunctionDecl *&OperatorDelete,
2361                                    bool Diagnose) {
2362   // --- Choosing an allocation function ---
2363   // C++ 5.3.4p8 - 14 & 18
2364   // 1) If looking in AFS_Global scope for allocation functions, only look in
2365   //    the global scope. Else, if AFS_Class, only look in the scope of the
2366   //    allocated class. If AFS_Both, look in both.
2367   // 2) If an array size is given, look for operator new[], else look for
2368   //   operator new.
2369   // 3) The first argument is always size_t. Append the arguments from the
2370   //   placement form.
2371 
2372   SmallVector<Expr*, 8> AllocArgs;
2373   AllocArgs.reserve((PassAlignment ? 2 : 1) + PlaceArgs.size());
2374 
2375   // We don't care about the actual value of these arguments.
2376   // FIXME: Should the Sema create the expression and embed it in the syntax
2377   // tree? Or should the consumer just recalculate the value?
2378   // FIXME: Using a dummy value will interact poorly with attribute enable_if.
2379   IntegerLiteral Size(Context, llvm::APInt::getNullValue(
2380                       Context.getTargetInfo().getPointerWidth(0)),
2381                       Context.getSizeType(),
2382                       SourceLocation());
2383   AllocArgs.push_back(&Size);
2384 
2385   QualType AlignValT = Context.VoidTy;
2386   if (PassAlignment) {
2387     DeclareGlobalNewDelete();
2388     AlignValT = Context.getTypeDeclType(getStdAlignValT());
2389   }
2390   CXXScalarValueInitExpr Align(AlignValT, nullptr, SourceLocation());
2391   if (PassAlignment)
2392     AllocArgs.push_back(&Align);
2393 
2394   AllocArgs.insert(AllocArgs.end(), PlaceArgs.begin(), PlaceArgs.end());
2395 
2396   // C++ [expr.new]p8:
2397   //   If the allocated type is a non-array type, the allocation
2398   //   function's name is operator new and the deallocation function's
2399   //   name is operator delete. If the allocated type is an array
2400   //   type, the allocation function's name is operator new[] and the
2401   //   deallocation function's name is operator delete[].
2402   DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
2403       IsArray ? OO_Array_New : OO_New);
2404 
2405   QualType AllocElemType = Context.getBaseElementType(AllocType);
2406 
2407   // Find the allocation function.
2408   {
2409     LookupResult R(*this, NewName, StartLoc, LookupOrdinaryName);
2410 
2411     // C++1z [expr.new]p9:
2412     //   If the new-expression begins with a unary :: operator, the allocation
2413     //   function's name is looked up in the global scope. Otherwise, if the
2414     //   allocated type is a class type T or array thereof, the allocation
2415     //   function's name is looked up in the scope of T.
2416     if (AllocElemType->isRecordType() && NewScope != AFS_Global)
2417       LookupQualifiedName(R, AllocElemType->getAsCXXRecordDecl());
2418 
2419     // We can see ambiguity here if the allocation function is found in
2420     // multiple base classes.
2421     if (R.isAmbiguous())
2422       return true;
2423 
2424     //   If this lookup fails to find the name, or if the allocated type is not
2425     //   a class type, the allocation function's name is looked up in the
2426     //   global scope.
2427     if (R.empty()) {
2428       if (NewScope == AFS_Class)
2429         return true;
2430 
2431       LookupQualifiedName(R, Context.getTranslationUnitDecl());
2432     }
2433 
2434     if (getLangOpts().OpenCLCPlusPlus && R.empty()) {
2435       Diag(StartLoc, diag::err_openclcxx_not_supported) << "default new";
2436       return true;
2437     }
2438 
2439     assert(!R.empty() && "implicitly declared allocation functions not found");
2440     assert(!R.isAmbiguous() && "global allocation functions are ambiguous");
2441 
2442     // We do our own custom access checks below.
2443     R.suppressDiagnostics();
2444 
2445     if (resolveAllocationOverload(*this, R, Range, AllocArgs, PassAlignment,
2446                                   OperatorNew, /*Candidates=*/nullptr,
2447                                   /*AlignArg=*/nullptr, Diagnose))
2448       return true;
2449   }
2450 
2451   // We don't need an operator delete if we're running under -fno-exceptions.
2452   if (!getLangOpts().Exceptions) {
2453     OperatorDelete = nullptr;
2454     return false;
2455   }
2456 
2457   // Note, the name of OperatorNew might have been changed from array to
2458   // non-array by resolveAllocationOverload.
2459   DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
2460       OperatorNew->getDeclName().getCXXOverloadedOperator() == OO_Array_New
2461           ? OO_Array_Delete
2462           : OO_Delete);
2463 
2464   // C++ [expr.new]p19:
2465   //
2466   //   If the new-expression begins with a unary :: operator, the
2467   //   deallocation function's name is looked up in the global
2468   //   scope. Otherwise, if the allocated type is a class type T or an
2469   //   array thereof, the deallocation function's name is looked up in
2470   //   the scope of T. If this lookup fails to find the name, or if
2471   //   the allocated type is not a class type or array thereof, the
2472   //   deallocation function's name is looked up in the global scope.
2473   LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
2474   if (AllocElemType->isRecordType() && DeleteScope != AFS_Global) {
2475     CXXRecordDecl *RD
2476       = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
2477     LookupQualifiedName(FoundDelete, RD);
2478   }
2479   if (FoundDelete.isAmbiguous())
2480     return true; // FIXME: clean up expressions?
2481 
2482   bool FoundGlobalDelete = FoundDelete.empty();
2483   if (FoundDelete.empty()) {
2484     if (DeleteScope == AFS_Class)
2485       return true;
2486 
2487     DeclareGlobalNewDelete();
2488     LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
2489   }
2490 
2491   FoundDelete.suppressDiagnostics();
2492 
2493   SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
2494 
2495   // Whether we're looking for a placement operator delete is dictated
2496   // by whether we selected a placement operator new, not by whether
2497   // we had explicit placement arguments.  This matters for things like
2498   //   struct A { void *operator new(size_t, int = 0); ... };
2499   //   A *a = new A()
2500   //
2501   // We don't have any definition for what a "placement allocation function"
2502   // is, but we assume it's any allocation function whose
2503   // parameter-declaration-clause is anything other than (size_t).
2504   //
2505   // FIXME: Should (size_t, std::align_val_t) also be considered non-placement?
2506   // This affects whether an exception from the constructor of an overaligned
2507   // type uses the sized or non-sized form of aligned operator delete.
2508   bool isPlacementNew = !PlaceArgs.empty() || OperatorNew->param_size() != 1 ||
2509                         OperatorNew->isVariadic();
2510 
2511   if (isPlacementNew) {
2512     // C++ [expr.new]p20:
2513     //   A declaration of a placement deallocation function matches the
2514     //   declaration of a placement allocation function if it has the
2515     //   same number of parameters and, after parameter transformations
2516     //   (8.3.5), all parameter types except the first are
2517     //   identical. [...]
2518     //
2519     // To perform this comparison, we compute the function type that
2520     // the deallocation function should have, and use that type both
2521     // for template argument deduction and for comparison purposes.
2522     QualType ExpectedFunctionType;
2523     {
2524       const FunctionProtoType *Proto
2525         = OperatorNew->getType()->getAs<FunctionProtoType>();
2526 
2527       SmallVector<QualType, 4> ArgTypes;
2528       ArgTypes.push_back(Context.VoidPtrTy);
2529       for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I)
2530         ArgTypes.push_back(Proto->getParamType(I));
2531 
2532       FunctionProtoType::ExtProtoInfo EPI;
2533       // FIXME: This is not part of the standard's rule.
2534       EPI.Variadic = Proto->isVariadic();
2535 
2536       ExpectedFunctionType
2537         = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI);
2538     }
2539 
2540     for (LookupResult::iterator D = FoundDelete.begin(),
2541                              DEnd = FoundDelete.end();
2542          D != DEnd; ++D) {
2543       FunctionDecl *Fn = nullptr;
2544       if (FunctionTemplateDecl *FnTmpl =
2545               dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
2546         // Perform template argument deduction to try to match the
2547         // expected function type.
2548         TemplateDeductionInfo Info(StartLoc);
2549         if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn,
2550                                     Info))
2551           continue;
2552       } else
2553         Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
2554 
2555       if (Context.hasSameType(adjustCCAndNoReturn(Fn->getType(),
2556                                                   ExpectedFunctionType,
2557                                                   /*AdjustExcpetionSpec*/true),
2558                               ExpectedFunctionType))
2559         Matches.push_back(std::make_pair(D.getPair(), Fn));
2560     }
2561 
2562     if (getLangOpts().CUDA)
2563       EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(CurContext), Matches);
2564   } else {
2565     // C++1y [expr.new]p22:
2566     //   For a non-placement allocation function, the normal deallocation
2567     //   function lookup is used
2568     //
2569     // Per [expr.delete]p10, this lookup prefers a member operator delete
2570     // without a size_t argument, but prefers a non-member operator delete
2571     // with a size_t where possible (which it always is in this case).
2572     llvm::SmallVector<UsualDeallocFnInfo, 4> BestDeallocFns;
2573     UsualDeallocFnInfo Selected = resolveDeallocationOverload(
2574         *this, FoundDelete, /*WantSize*/ FoundGlobalDelete,
2575         /*WantAlign*/ hasNewExtendedAlignment(*this, AllocElemType),
2576         &BestDeallocFns);
2577     if (Selected)
2578       Matches.push_back(std::make_pair(Selected.Found, Selected.FD));
2579     else {
2580       // If we failed to select an operator, all remaining functions are viable
2581       // but ambiguous.
2582       for (auto Fn : BestDeallocFns)
2583         Matches.push_back(std::make_pair(Fn.Found, Fn.FD));
2584     }
2585   }
2586 
2587   // C++ [expr.new]p20:
2588   //   [...] If the lookup finds a single matching deallocation
2589   //   function, that function will be called; otherwise, no
2590   //   deallocation function will be called.
2591   if (Matches.size() == 1) {
2592     OperatorDelete = Matches[0].second;
2593 
2594     // C++1z [expr.new]p23:
2595     //   If the lookup finds a usual deallocation function (3.7.4.2)
2596     //   with a parameter of type std::size_t and that function, considered
2597     //   as a placement deallocation function, would have been
2598     //   selected as a match for the allocation function, the program
2599     //   is ill-formed.
2600     if (getLangOpts().CPlusPlus11 && isPlacementNew &&
2601         isNonPlacementDeallocationFunction(*this, OperatorDelete)) {
2602       UsualDeallocFnInfo Info(*this,
2603                               DeclAccessPair::make(OperatorDelete, AS_public));
2604       // Core issue, per mail to core reflector, 2016-10-09:
2605       //   If this is a member operator delete, and there is a corresponding
2606       //   non-sized member operator delete, this isn't /really/ a sized
2607       //   deallocation function, it just happens to have a size_t parameter.
2608       bool IsSizedDelete = Info.HasSizeT;
2609       if (IsSizedDelete && !FoundGlobalDelete) {
2610         auto NonSizedDelete =
2611             resolveDeallocationOverload(*this, FoundDelete, /*WantSize*/false,
2612                                         /*WantAlign*/Info.HasAlignValT);
2613         if (NonSizedDelete && !NonSizedDelete.HasSizeT &&
2614             NonSizedDelete.HasAlignValT == Info.HasAlignValT)
2615           IsSizedDelete = false;
2616       }
2617 
2618       if (IsSizedDelete) {
2619         SourceRange R = PlaceArgs.empty()
2620                             ? SourceRange()
2621                             : SourceRange(PlaceArgs.front()->getBeginLoc(),
2622                                           PlaceArgs.back()->getEndLoc());
2623         Diag(StartLoc, diag::err_placement_new_non_placement_delete) << R;
2624         if (!OperatorDelete->isImplicit())
2625           Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
2626               << DeleteName;
2627       }
2628     }
2629 
2630     CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
2631                           Matches[0].first);
2632   } else if (!Matches.empty()) {
2633     // We found multiple suitable operators. Per [expr.new]p20, that means we
2634     // call no 'operator delete' function, but we should at least warn the user.
2635     // FIXME: Suppress this warning if the construction cannot throw.
2636     Diag(StartLoc, diag::warn_ambiguous_suitable_delete_function_found)
2637       << DeleteName << AllocElemType;
2638 
2639     for (auto &Match : Matches)
2640       Diag(Match.second->getLocation(),
2641            diag::note_member_declared_here) << DeleteName;
2642   }
2643 
2644   return false;
2645 }
2646 
2647 /// DeclareGlobalNewDelete - Declare the global forms of operator new and
2648 /// delete. These are:
2649 /// @code
2650 ///   // C++03:
2651 ///   void* operator new(std::size_t) throw(std::bad_alloc);
2652 ///   void* operator new[](std::size_t) throw(std::bad_alloc);
2653 ///   void operator delete(void *) throw();
2654 ///   void operator delete[](void *) throw();
2655 ///   // C++11:
2656 ///   void* operator new(std::size_t);
2657 ///   void* operator new[](std::size_t);
2658 ///   void operator delete(void *) noexcept;
2659 ///   void operator delete[](void *) noexcept;
2660 ///   // C++1y:
2661 ///   void* operator new(std::size_t);
2662 ///   void* operator new[](std::size_t);
2663 ///   void operator delete(void *) noexcept;
2664 ///   void operator delete[](void *) noexcept;
2665 ///   void operator delete(void *, std::size_t) noexcept;
2666 ///   void operator delete[](void *, std::size_t) noexcept;
2667 /// @endcode
2668 /// Note that the placement and nothrow forms of new are *not* implicitly
2669 /// declared. Their use requires including \<new\>.
DeclareGlobalNewDelete()2670 void Sema::DeclareGlobalNewDelete() {
2671   if (GlobalNewDeleteDeclared)
2672     return;
2673 
2674   // OpenCL C++ 1.0 s2.9: the implicitly declared new and delete operators
2675   // are not supported.
2676   if (getLangOpts().OpenCLCPlusPlus)
2677     return;
2678 
2679   // C++ [basic.std.dynamic]p2:
2680   //   [...] The following allocation and deallocation functions (18.4) are
2681   //   implicitly declared in global scope in each translation unit of a
2682   //   program
2683   //
2684   //     C++03:
2685   //     void* operator new(std::size_t) throw(std::bad_alloc);
2686   //     void* operator new[](std::size_t) throw(std::bad_alloc);
2687   //     void  operator delete(void*) throw();
2688   //     void  operator delete[](void*) throw();
2689   //     C++11:
2690   //     void* operator new(std::size_t);
2691   //     void* operator new[](std::size_t);
2692   //     void  operator delete(void*) noexcept;
2693   //     void  operator delete[](void*) noexcept;
2694   //     C++1y:
2695   //     void* operator new(std::size_t);
2696   //     void* operator new[](std::size_t);
2697   //     void  operator delete(void*) noexcept;
2698   //     void  operator delete[](void*) noexcept;
2699   //     void  operator delete(void*, std::size_t) noexcept;
2700   //     void  operator delete[](void*, std::size_t) noexcept;
2701   //
2702   //   These implicit declarations introduce only the function names operator
2703   //   new, operator new[], operator delete, operator delete[].
2704   //
2705   // Here, we need to refer to std::bad_alloc, so we will implicitly declare
2706   // "std" or "bad_alloc" as necessary to form the exception specification.
2707   // However, we do not make these implicit declarations visible to name
2708   // lookup.
2709   if (!StdBadAlloc && !getLangOpts().CPlusPlus11) {
2710     // The "std::bad_alloc" class has not yet been declared, so build it
2711     // implicitly.
2712     StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
2713                                         getOrCreateStdNamespace(),
2714                                         SourceLocation(), SourceLocation(),
2715                                       &PP.getIdentifierTable().get("bad_alloc"),
2716                                         nullptr);
2717     getStdBadAlloc()->setImplicit(true);
2718   }
2719   if (!StdAlignValT && getLangOpts().AlignedAllocation) {
2720     // The "std::align_val_t" enum class has not yet been declared, so build it
2721     // implicitly.
2722     auto *AlignValT = EnumDecl::Create(
2723         Context, getOrCreateStdNamespace(), SourceLocation(), SourceLocation(),
2724         &PP.getIdentifierTable().get("align_val_t"), nullptr, true, true, true);
2725     AlignValT->setIntegerType(Context.getSizeType());
2726     AlignValT->setPromotionType(Context.getSizeType());
2727     AlignValT->setImplicit(true);
2728     StdAlignValT = AlignValT;
2729   }
2730 
2731   GlobalNewDeleteDeclared = true;
2732 
2733   QualType VoidPtr = Context.getPointerType(Context.VoidTy);
2734   QualType SizeT = Context.getSizeType();
2735 
2736   auto DeclareGlobalAllocationFunctions = [&](OverloadedOperatorKind Kind,
2737                                               QualType Return, QualType Param) {
2738     llvm::SmallVector<QualType, 3> Params;
2739     Params.push_back(Param);
2740 
2741     // Create up to four variants of the function (sized/aligned).
2742     bool HasSizedVariant = getLangOpts().SizedDeallocation &&
2743                            (Kind == OO_Delete || Kind == OO_Array_Delete);
2744     bool HasAlignedVariant = getLangOpts().AlignedAllocation;
2745 
2746     int NumSizeVariants = (HasSizedVariant ? 2 : 1);
2747     int NumAlignVariants = (HasAlignedVariant ? 2 : 1);
2748     for (int Sized = 0; Sized < NumSizeVariants; ++Sized) {
2749       if (Sized)
2750         Params.push_back(SizeT);
2751 
2752       for (int Aligned = 0; Aligned < NumAlignVariants; ++Aligned) {
2753         if (Aligned)
2754           Params.push_back(Context.getTypeDeclType(getStdAlignValT()));
2755 
2756         DeclareGlobalAllocationFunction(
2757             Context.DeclarationNames.getCXXOperatorName(Kind), Return, Params);
2758 
2759         if (Aligned)
2760           Params.pop_back();
2761       }
2762     }
2763   };
2764 
2765   DeclareGlobalAllocationFunctions(OO_New, VoidPtr, SizeT);
2766   DeclareGlobalAllocationFunctions(OO_Array_New, VoidPtr, SizeT);
2767   DeclareGlobalAllocationFunctions(OO_Delete, Context.VoidTy, VoidPtr);
2768   DeclareGlobalAllocationFunctions(OO_Array_Delete, Context.VoidTy, VoidPtr);
2769 }
2770 
2771 /// DeclareGlobalAllocationFunction - Declares a single implicit global
2772 /// allocation function if it doesn't already exist.
DeclareGlobalAllocationFunction(DeclarationName Name,QualType Return,ArrayRef<QualType> Params)2773 void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
2774                                            QualType Return,
2775                                            ArrayRef<QualType> Params) {
2776   DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
2777 
2778   // Check if this function is already declared.
2779   DeclContext::lookup_result R = GlobalCtx->lookup(Name);
2780   for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end();
2781        Alloc != AllocEnd; ++Alloc) {
2782     // Only look at non-template functions, as it is the predefined,
2783     // non-templated allocation function we are trying to declare here.
2784     if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
2785       if (Func->getNumParams() == Params.size()) {
2786         llvm::SmallVector<QualType, 3> FuncParams;
2787         for (auto *P : Func->parameters())
2788           FuncParams.push_back(
2789               Context.getCanonicalType(P->getType().getUnqualifiedType()));
2790         if (llvm::makeArrayRef(FuncParams) == Params) {
2791           // Make the function visible to name lookup, even if we found it in
2792           // an unimported module. It either is an implicitly-declared global
2793           // allocation function, or is suppressing that function.
2794           Func->setVisibleDespiteOwningModule();
2795           return;
2796         }
2797       }
2798     }
2799   }
2800 
2801   FunctionProtoType::ExtProtoInfo EPI;
2802 
2803   QualType BadAllocType;
2804   bool HasBadAllocExceptionSpec
2805     = (Name.getCXXOverloadedOperator() == OO_New ||
2806        Name.getCXXOverloadedOperator() == OO_Array_New);
2807   if (HasBadAllocExceptionSpec) {
2808     if (!getLangOpts().CPlusPlus11) {
2809       BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
2810       assert(StdBadAlloc && "Must have std::bad_alloc declared");
2811       EPI.ExceptionSpec.Type = EST_Dynamic;
2812       EPI.ExceptionSpec.Exceptions = llvm::makeArrayRef(BadAllocType);
2813     }
2814   } else {
2815     EPI.ExceptionSpec =
2816         getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone;
2817   }
2818 
2819   auto CreateAllocationFunctionDecl = [&](Attr *ExtraAttr) {
2820     QualType FnType = Context.getFunctionType(Return, Params, EPI);
2821     FunctionDecl *Alloc = FunctionDecl::Create(
2822         Context, GlobalCtx, SourceLocation(), SourceLocation(), Name,
2823         FnType, /*TInfo=*/nullptr, SC_None, false, true);
2824     Alloc->setImplicit();
2825     // Global allocation functions should always be visible.
2826     Alloc->setVisibleDespiteOwningModule();
2827 
2828     Alloc->addAttr(VisibilityAttr::CreateImplicit(
2829         Context, LangOpts.GlobalAllocationFunctionVisibilityHidden
2830                      ? VisibilityAttr::Hidden
2831                      : VisibilityAttr::Default));
2832 
2833     llvm::SmallVector<ParmVarDecl *, 3> ParamDecls;
2834     for (QualType T : Params) {
2835       ParamDecls.push_back(ParmVarDecl::Create(
2836           Context, Alloc, SourceLocation(), SourceLocation(), nullptr, T,
2837           /*TInfo=*/nullptr, SC_None, nullptr));
2838       ParamDecls.back()->setImplicit();
2839     }
2840     Alloc->setParams(ParamDecls);
2841     if (ExtraAttr)
2842       Alloc->addAttr(ExtraAttr);
2843     Context.getTranslationUnitDecl()->addDecl(Alloc);
2844     IdResolver.tryAddTopLevelDecl(Alloc, Name);
2845   };
2846 
2847   if (!LangOpts.CUDA)
2848     CreateAllocationFunctionDecl(nullptr);
2849   else {
2850     // Host and device get their own declaration so each can be
2851     // defined or re-declared independently.
2852     CreateAllocationFunctionDecl(CUDAHostAttr::CreateImplicit(Context));
2853     CreateAllocationFunctionDecl(CUDADeviceAttr::CreateImplicit(Context));
2854   }
2855 }
2856 
FindUsualDeallocationFunction(SourceLocation StartLoc,bool CanProvideSize,bool Overaligned,DeclarationName Name)2857 FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc,
2858                                                   bool CanProvideSize,
2859                                                   bool Overaligned,
2860                                                   DeclarationName Name) {
2861   DeclareGlobalNewDelete();
2862 
2863   LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName);
2864   LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
2865 
2866   // FIXME: It's possible for this to result in ambiguity, through a
2867   // user-declared variadic operator delete or the enable_if attribute. We
2868   // should probably not consider those cases to be usual deallocation
2869   // functions. But for now we just make an arbitrary choice in that case.
2870   auto Result = resolveDeallocationOverload(*this, FoundDelete, CanProvideSize,
2871                                             Overaligned);
2872   assert(Result.FD && "operator delete missing from global scope?");
2873   return Result.FD;
2874 }
2875 
FindDeallocationFunctionForDestructor(SourceLocation Loc,CXXRecordDecl * RD)2876 FunctionDecl *Sema::FindDeallocationFunctionForDestructor(SourceLocation Loc,
2877                                                           CXXRecordDecl *RD) {
2878   DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Delete);
2879 
2880   FunctionDecl *OperatorDelete = nullptr;
2881   if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
2882     return nullptr;
2883   if (OperatorDelete)
2884     return OperatorDelete;
2885 
2886   // If there's no class-specific operator delete, look up the global
2887   // non-array delete.
2888   return FindUsualDeallocationFunction(
2889       Loc, true, hasNewExtendedAlignment(*this, Context.getRecordType(RD)),
2890       Name);
2891 }
2892 
FindDeallocationFunction(SourceLocation StartLoc,CXXRecordDecl * RD,DeclarationName Name,FunctionDecl * & Operator,bool Diagnose)2893 bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
2894                                     DeclarationName Name,
2895                                     FunctionDecl *&Operator, bool Diagnose) {
2896   LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
2897   // Try to find operator delete/operator delete[] in class scope.
2898   LookupQualifiedName(Found, RD);
2899 
2900   if (Found.isAmbiguous())
2901     return true;
2902 
2903   Found.suppressDiagnostics();
2904 
2905   bool Overaligned = hasNewExtendedAlignment(*this, Context.getRecordType(RD));
2906 
2907   // C++17 [expr.delete]p10:
2908   //   If the deallocation functions have class scope, the one without a
2909   //   parameter of type std::size_t is selected.
2910   llvm::SmallVector<UsualDeallocFnInfo, 4> Matches;
2911   resolveDeallocationOverload(*this, Found, /*WantSize*/ false,
2912                               /*WantAlign*/ Overaligned, &Matches);
2913 
2914   // If we could find an overload, use it.
2915   if (Matches.size() == 1) {
2916     Operator = cast<CXXMethodDecl>(Matches[0].FD);
2917 
2918     // FIXME: DiagnoseUseOfDecl?
2919     if (Operator->isDeleted()) {
2920       if (Diagnose) {
2921         Diag(StartLoc, diag::err_deleted_function_use);
2922         NoteDeletedFunction(Operator);
2923       }
2924       return true;
2925     }
2926 
2927     if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
2928                               Matches[0].Found, Diagnose) == AR_inaccessible)
2929       return true;
2930 
2931     return false;
2932   }
2933 
2934   // We found multiple suitable operators; complain about the ambiguity.
2935   // FIXME: The standard doesn't say to do this; it appears that the intent
2936   // is that this should never happen.
2937   if (!Matches.empty()) {
2938     if (Diagnose) {
2939       Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
2940         << Name << RD;
2941       for (auto &Match : Matches)
2942         Diag(Match.FD->getLocation(), diag::note_member_declared_here) << Name;
2943     }
2944     return true;
2945   }
2946 
2947   // We did find operator delete/operator delete[] declarations, but
2948   // none of them were suitable.
2949   if (!Found.empty()) {
2950     if (Diagnose) {
2951       Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
2952         << Name << RD;
2953 
2954       for (NamedDecl *D : Found)
2955         Diag(D->getUnderlyingDecl()->getLocation(),
2956              diag::note_member_declared_here) << Name;
2957     }
2958     return true;
2959   }
2960 
2961   Operator = nullptr;
2962   return false;
2963 }
2964 
2965 namespace {
2966 /// Checks whether delete-expression, and new-expression used for
2967 ///  initializing deletee have the same array form.
2968 class MismatchingNewDeleteDetector {
2969 public:
2970   enum MismatchResult {
2971     /// Indicates that there is no mismatch or a mismatch cannot be proven.
2972     NoMismatch,
2973     /// Indicates that variable is initialized with mismatching form of \a new.
2974     VarInitMismatches,
2975     /// Indicates that member is initialized with mismatching form of \a new.
2976     MemberInitMismatches,
2977     /// Indicates that 1 or more constructors' definitions could not been
2978     /// analyzed, and they will be checked again at the end of translation unit.
2979     AnalyzeLater
2980   };
2981 
2982   /// \param EndOfTU True, if this is the final analysis at the end of
2983   /// translation unit. False, if this is the initial analysis at the point
2984   /// delete-expression was encountered.
MismatchingNewDeleteDetector(bool EndOfTU)2985   explicit MismatchingNewDeleteDetector(bool EndOfTU)
2986       : Field(nullptr), IsArrayForm(false), EndOfTU(EndOfTU),
2987         HasUndefinedConstructors(false) {}
2988 
2989   /// Checks whether pointee of a delete-expression is initialized with
2990   /// matching form of new-expression.
2991   ///
2992   /// If return value is \c VarInitMismatches or \c MemberInitMismatches at the
2993   /// point where delete-expression is encountered, then a warning will be
2994   /// issued immediately. If return value is \c AnalyzeLater at the point where
2995   /// delete-expression is seen, then member will be analyzed at the end of
2996   /// translation unit. \c AnalyzeLater is returned iff at least one constructor
2997   /// couldn't be analyzed. If at least one constructor initializes the member
2998   /// with matching type of new, the return value is \c NoMismatch.
2999   MismatchResult analyzeDeleteExpr(const CXXDeleteExpr *DE);
3000   /// Analyzes a class member.
3001   /// \param Field Class member to analyze.
3002   /// \param DeleteWasArrayForm Array form-ness of the delete-expression used
3003   /// for deleting the \p Field.
3004   MismatchResult analyzeField(FieldDecl *Field, bool DeleteWasArrayForm);
3005   FieldDecl *Field;
3006   /// List of mismatching new-expressions used for initialization of the pointee
3007   llvm::SmallVector<const CXXNewExpr *, 4> NewExprs;
3008   /// Indicates whether delete-expression was in array form.
3009   bool IsArrayForm;
3010 
3011 private:
3012   const bool EndOfTU;
3013   /// Indicates that there is at least one constructor without body.
3014   bool HasUndefinedConstructors;
3015   /// Returns \c CXXNewExpr from given initialization expression.
3016   /// \param E Expression used for initializing pointee in delete-expression.
3017   /// E can be a single-element \c InitListExpr consisting of new-expression.
3018   const CXXNewExpr *getNewExprFromInitListOrExpr(const Expr *E);
3019   /// Returns whether member is initialized with mismatching form of
3020   /// \c new either by the member initializer or in-class initialization.
3021   ///
3022   /// If bodies of all constructors are not visible at the end of translation
3023   /// unit or at least one constructor initializes member with the matching
3024   /// form of \c new, mismatch cannot be proven, and this function will return
3025   /// \c NoMismatch.
3026   MismatchResult analyzeMemberExpr(const MemberExpr *ME);
3027   /// Returns whether variable is initialized with mismatching form of
3028   /// \c new.
3029   ///
3030   /// If variable is initialized with matching form of \c new or variable is not
3031   /// initialized with a \c new expression, this function will return true.
3032   /// If variable is initialized with mismatching form of \c new, returns false.
3033   /// \param D Variable to analyze.
3034   bool hasMatchingVarInit(const DeclRefExpr *D);
3035   /// Checks whether the constructor initializes pointee with mismatching
3036   /// form of \c new.
3037   ///
3038   /// Returns true, if member is initialized with matching form of \c new in
3039   /// member initializer list. Returns false, if member is initialized with the
3040   /// matching form of \c new in this constructor's initializer or given
3041   /// constructor isn't defined at the point where delete-expression is seen, or
3042   /// member isn't initialized by the constructor.
3043   bool hasMatchingNewInCtor(const CXXConstructorDecl *CD);
3044   /// Checks whether member is initialized with matching form of
3045   /// \c new in member initializer list.
3046   bool hasMatchingNewInCtorInit(const CXXCtorInitializer *CI);
3047   /// Checks whether member is initialized with mismatching form of \c new by
3048   /// in-class initializer.
3049   MismatchResult analyzeInClassInitializer();
3050 };
3051 }
3052 
3053 MismatchingNewDeleteDetector::MismatchResult
analyzeDeleteExpr(const CXXDeleteExpr * DE)3054 MismatchingNewDeleteDetector::analyzeDeleteExpr(const CXXDeleteExpr *DE) {
3055   NewExprs.clear();
3056   assert(DE && "Expected delete-expression");
3057   IsArrayForm = DE->isArrayForm();
3058   const Expr *E = DE->getArgument()->IgnoreParenImpCasts();
3059   if (const MemberExpr *ME = dyn_cast<const MemberExpr>(E)) {
3060     return analyzeMemberExpr(ME);
3061   } else if (const DeclRefExpr *D = dyn_cast<const DeclRefExpr>(E)) {
3062     if (!hasMatchingVarInit(D))
3063       return VarInitMismatches;
3064   }
3065   return NoMismatch;
3066 }
3067 
3068 const CXXNewExpr *
getNewExprFromInitListOrExpr(const Expr * E)3069 MismatchingNewDeleteDetector::getNewExprFromInitListOrExpr(const Expr *E) {
3070   assert(E != nullptr && "Expected a valid initializer expression");
3071   E = E->IgnoreParenImpCasts();
3072   if (const InitListExpr *ILE = dyn_cast<const InitListExpr>(E)) {
3073     if (ILE->getNumInits() == 1)
3074       E = dyn_cast<const CXXNewExpr>(ILE->getInit(0)->IgnoreParenImpCasts());
3075   }
3076 
3077   return dyn_cast_or_null<const CXXNewExpr>(E);
3078 }
3079 
hasMatchingNewInCtorInit(const CXXCtorInitializer * CI)3080 bool MismatchingNewDeleteDetector::hasMatchingNewInCtorInit(
3081     const CXXCtorInitializer *CI) {
3082   const CXXNewExpr *NE = nullptr;
3083   if (Field == CI->getMember() &&
3084       (NE = getNewExprFromInitListOrExpr(CI->getInit()))) {
3085     if (NE->isArray() == IsArrayForm)
3086       return true;
3087     else
3088       NewExprs.push_back(NE);
3089   }
3090   return false;
3091 }
3092 
hasMatchingNewInCtor(const CXXConstructorDecl * CD)3093 bool MismatchingNewDeleteDetector::hasMatchingNewInCtor(
3094     const CXXConstructorDecl *CD) {
3095   if (CD->isImplicit())
3096     return false;
3097   const FunctionDecl *Definition = CD;
3098   if (!CD->isThisDeclarationADefinition() && !CD->isDefined(Definition)) {
3099     HasUndefinedConstructors = true;
3100     return EndOfTU;
3101   }
3102   for (const auto *CI : cast<const CXXConstructorDecl>(Definition)->inits()) {
3103     if (hasMatchingNewInCtorInit(CI))
3104       return true;
3105   }
3106   return false;
3107 }
3108 
3109 MismatchingNewDeleteDetector::MismatchResult
analyzeInClassInitializer()3110 MismatchingNewDeleteDetector::analyzeInClassInitializer() {
3111   assert(Field != nullptr && "This should be called only for members");
3112   const Expr *InitExpr = Field->getInClassInitializer();
3113   if (!InitExpr)
3114     return EndOfTU ? NoMismatch : AnalyzeLater;
3115   if (const CXXNewExpr *NE = getNewExprFromInitListOrExpr(InitExpr)) {
3116     if (NE->isArray() != IsArrayForm) {
3117       NewExprs.push_back(NE);
3118       return MemberInitMismatches;
3119     }
3120   }
3121   return NoMismatch;
3122 }
3123 
3124 MismatchingNewDeleteDetector::MismatchResult
analyzeField(FieldDecl * Field,bool DeleteWasArrayForm)3125 MismatchingNewDeleteDetector::analyzeField(FieldDecl *Field,
3126                                            bool DeleteWasArrayForm) {
3127   assert(Field != nullptr && "Analysis requires a valid class member.");
3128   this->Field = Field;
3129   IsArrayForm = DeleteWasArrayForm;
3130   const CXXRecordDecl *RD = cast<const CXXRecordDecl>(Field->getParent());
3131   for (const auto *CD : RD->ctors()) {
3132     if (hasMatchingNewInCtor(CD))
3133       return NoMismatch;
3134   }
3135   if (HasUndefinedConstructors)
3136     return EndOfTU ? NoMismatch : AnalyzeLater;
3137   if (!NewExprs.empty())
3138     return MemberInitMismatches;
3139   return Field->hasInClassInitializer() ? analyzeInClassInitializer()
3140                                         : NoMismatch;
3141 }
3142 
3143 MismatchingNewDeleteDetector::MismatchResult
analyzeMemberExpr(const MemberExpr * ME)3144 MismatchingNewDeleteDetector::analyzeMemberExpr(const MemberExpr *ME) {
3145   assert(ME != nullptr && "Expected a member expression");
3146   if (FieldDecl *F = dyn_cast<FieldDecl>(ME->getMemberDecl()))
3147     return analyzeField(F, IsArrayForm);
3148   return NoMismatch;
3149 }
3150 
hasMatchingVarInit(const DeclRefExpr * D)3151 bool MismatchingNewDeleteDetector::hasMatchingVarInit(const DeclRefExpr *D) {
3152   const CXXNewExpr *NE = nullptr;
3153   if (const VarDecl *VD = dyn_cast<const VarDecl>(D->getDecl())) {
3154     if (VD->hasInit() && (NE = getNewExprFromInitListOrExpr(VD->getInit())) &&
3155         NE->isArray() != IsArrayForm) {
3156       NewExprs.push_back(NE);
3157     }
3158   }
3159   return NewExprs.empty();
3160 }
3161 
3162 static void
DiagnoseMismatchedNewDelete(Sema & SemaRef,SourceLocation DeleteLoc,const MismatchingNewDeleteDetector & Detector)3163 DiagnoseMismatchedNewDelete(Sema &SemaRef, SourceLocation DeleteLoc,
3164                             const MismatchingNewDeleteDetector &Detector) {
3165   SourceLocation EndOfDelete = SemaRef.getLocForEndOfToken(DeleteLoc);
3166   FixItHint H;
3167   if (!Detector.IsArrayForm)
3168     H = FixItHint::CreateInsertion(EndOfDelete, "[]");
3169   else {
3170     SourceLocation RSquare = Lexer::findLocationAfterToken(
3171         DeleteLoc, tok::l_square, SemaRef.getSourceManager(),
3172         SemaRef.getLangOpts(), true);
3173     if (RSquare.isValid())
3174       H = FixItHint::CreateRemoval(SourceRange(EndOfDelete, RSquare));
3175   }
3176   SemaRef.Diag(DeleteLoc, diag::warn_mismatched_delete_new)
3177       << Detector.IsArrayForm << H;
3178 
3179   for (const auto *NE : Detector.NewExprs)
3180     SemaRef.Diag(NE->getExprLoc(), diag::note_allocated_here)
3181         << Detector.IsArrayForm;
3182 }
3183 
AnalyzeDeleteExprMismatch(const CXXDeleteExpr * DE)3184 void Sema::AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE) {
3185   if (Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation()))
3186     return;
3187   MismatchingNewDeleteDetector Detector(/*EndOfTU=*/false);
3188   switch (Detector.analyzeDeleteExpr(DE)) {
3189   case MismatchingNewDeleteDetector::VarInitMismatches:
3190   case MismatchingNewDeleteDetector::MemberInitMismatches: {
3191     DiagnoseMismatchedNewDelete(*this, DE->getBeginLoc(), Detector);
3192     break;
3193   }
3194   case MismatchingNewDeleteDetector::AnalyzeLater: {
3195     DeleteExprs[Detector.Field].push_back(
3196         std::make_pair(DE->getBeginLoc(), DE->isArrayForm()));
3197     break;
3198   }
3199   case MismatchingNewDeleteDetector::NoMismatch:
3200     break;
3201   }
3202 }
3203 
AnalyzeDeleteExprMismatch(FieldDecl * Field,SourceLocation DeleteLoc,bool DeleteWasArrayForm)3204 void Sema::AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc,
3205                                      bool DeleteWasArrayForm) {
3206   MismatchingNewDeleteDetector Detector(/*EndOfTU=*/true);
3207   switch (Detector.analyzeField(Field, DeleteWasArrayForm)) {
3208   case MismatchingNewDeleteDetector::VarInitMismatches:
3209     llvm_unreachable("This analysis should have been done for class members.");
3210   case MismatchingNewDeleteDetector::AnalyzeLater:
3211     llvm_unreachable("Analysis cannot be postponed any point beyond end of "
3212                      "translation unit.");
3213   case MismatchingNewDeleteDetector::MemberInitMismatches:
3214     DiagnoseMismatchedNewDelete(*this, DeleteLoc, Detector);
3215     break;
3216   case MismatchingNewDeleteDetector::NoMismatch:
3217     break;
3218   }
3219 }
3220 
3221 /// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
3222 /// @code ::delete ptr; @endcode
3223 /// or
3224 /// @code delete [] ptr; @endcode
3225 ExprResult
ActOnCXXDelete(SourceLocation StartLoc,bool UseGlobal,bool ArrayForm,Expr * ExE)3226 Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
3227                      bool ArrayForm, Expr *ExE) {
3228   // C++ [expr.delete]p1:
3229   //   The operand shall have a pointer type, or a class type having a single
3230   //   non-explicit conversion function to a pointer type. The result has type
3231   //   void.
3232   //
3233   // DR599 amends "pointer type" to "pointer to object type" in both cases.
3234 
3235   ExprResult Ex = ExE;
3236   FunctionDecl *OperatorDelete = nullptr;
3237   bool ArrayFormAsWritten = ArrayForm;
3238   bool UsualArrayDeleteWantsSize = false;
3239 
3240   if (!Ex.get()->isTypeDependent()) {
3241     // Perform lvalue-to-rvalue cast, if needed.
3242     Ex = DefaultLvalueConversion(Ex.get());
3243     if (Ex.isInvalid())
3244       return ExprError();
3245 
3246     QualType Type = Ex.get()->getType();
3247 
3248     class DeleteConverter : public ContextualImplicitConverter {
3249     public:
3250       DeleteConverter() : ContextualImplicitConverter(false, true) {}
3251 
3252       bool match(QualType ConvType) override {
3253         // FIXME: If we have an operator T* and an operator void*, we must pick
3254         // the operator T*.
3255         if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
3256           if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
3257             return true;
3258         return false;
3259       }
3260 
3261       SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc,
3262                                             QualType T) override {
3263         return S.Diag(Loc, diag::err_delete_operand) << T;
3264       }
3265 
3266       SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
3267                                                QualType T) override {
3268         return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T;
3269       }
3270 
3271       SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc,
3272                                                  QualType T,
3273                                                  QualType ConvTy) override {
3274         return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy;
3275       }
3276 
3277       SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv,
3278                                              QualType ConvTy) override {
3279         return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
3280           << ConvTy;
3281       }
3282 
3283       SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
3284                                               QualType T) override {
3285         return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T;
3286       }
3287 
3288       SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
3289                                           QualType ConvTy) override {
3290         return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
3291           << ConvTy;
3292       }
3293 
3294       SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
3295                                                QualType T,
3296                                                QualType ConvTy) override {
3297         llvm_unreachable("conversion functions are permitted");
3298       }
3299     } Converter;
3300 
3301     Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter);
3302     if (Ex.isInvalid())
3303       return ExprError();
3304     Type = Ex.get()->getType();
3305     if (!Converter.match(Type))
3306       // FIXME: PerformContextualImplicitConversion should return ExprError
3307       //        itself in this case.
3308       return ExprError();
3309 
3310     QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
3311     QualType PointeeElem = Context.getBaseElementType(Pointee);
3312 
3313     if (Pointee.getAddressSpace() != LangAS::Default &&
3314         !getLangOpts().OpenCLCPlusPlus)
3315       return Diag(Ex.get()->getBeginLoc(),
3316                   diag::err_address_space_qualified_delete)
3317              << Pointee.getUnqualifiedType()
3318              << Pointee.getQualifiers().getAddressSpaceAttributePrintValue();
3319 
3320     CXXRecordDecl *PointeeRD = nullptr;
3321     if (Pointee->isVoidType() && !isSFINAEContext()) {
3322       // The C++ standard bans deleting a pointer to a non-object type, which
3323       // effectively bans deletion of "void*". However, most compilers support
3324       // this, so we treat it as a warning unless we're in a SFINAE context.
3325       Diag(StartLoc, diag::ext_delete_void_ptr_operand)
3326         << Type << Ex.get()->getSourceRange();
3327     } else if (Pointee->isFunctionType() || Pointee->isVoidType()) {
3328       return ExprError(Diag(StartLoc, diag::err_delete_operand)
3329         << Type << Ex.get()->getSourceRange());
3330     } else if (!Pointee->isDependentType()) {
3331       // FIXME: This can result in errors if the definition was imported from a
3332       // module but is hidden.
3333       if (!RequireCompleteType(StartLoc, Pointee,
3334                                diag::warn_delete_incomplete, Ex.get())) {
3335         if (const RecordType *RT = PointeeElem->getAs<RecordType>())
3336           PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
3337       }
3338     }
3339 
3340     if (Pointee->isArrayType() && !ArrayForm) {
3341       Diag(StartLoc, diag::warn_delete_array_type)
3342           << Type << Ex.get()->getSourceRange()
3343           << FixItHint::CreateInsertion(getLocForEndOfToken(StartLoc), "[]");
3344       ArrayForm = true;
3345     }
3346 
3347     DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
3348                                       ArrayForm ? OO_Array_Delete : OO_Delete);
3349 
3350     if (PointeeRD) {
3351       if (!UseGlobal &&
3352           FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
3353                                    OperatorDelete))
3354         return ExprError();
3355 
3356       // If we're allocating an array of records, check whether the
3357       // usual operator delete[] has a size_t parameter.
3358       if (ArrayForm) {
3359         // If the user specifically asked to use the global allocator,
3360         // we'll need to do the lookup into the class.
3361         if (UseGlobal)
3362           UsualArrayDeleteWantsSize =
3363             doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
3364 
3365         // Otherwise, the usual operator delete[] should be the
3366         // function we just found.
3367         else if (OperatorDelete && isa<CXXMethodDecl>(OperatorDelete))
3368           UsualArrayDeleteWantsSize =
3369             UsualDeallocFnInfo(*this,
3370                                DeclAccessPair::make(OperatorDelete, AS_public))
3371               .HasSizeT;
3372       }
3373 
3374       if (!PointeeRD->hasIrrelevantDestructor())
3375         if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
3376           MarkFunctionReferenced(StartLoc,
3377                                     const_cast<CXXDestructorDecl*>(Dtor));
3378           if (DiagnoseUseOfDecl(Dtor, StartLoc))
3379             return ExprError();
3380         }
3381 
3382       CheckVirtualDtorCall(PointeeRD->getDestructor(), StartLoc,
3383                            /*IsDelete=*/true, /*CallCanBeVirtual=*/true,
3384                            /*WarnOnNonAbstractTypes=*/!ArrayForm,
3385                            SourceLocation());
3386     }
3387 
3388     if (!OperatorDelete) {
3389       if (getLangOpts().OpenCLCPlusPlus) {
3390         Diag(StartLoc, diag::err_openclcxx_not_supported) << "default delete";
3391         return ExprError();
3392       }
3393 
3394       bool IsComplete = isCompleteType(StartLoc, Pointee);
3395       bool CanProvideSize =
3396           IsComplete && (!ArrayForm || UsualArrayDeleteWantsSize ||
3397                          Pointee.isDestructedType());
3398       bool Overaligned = hasNewExtendedAlignment(*this, Pointee);
3399 
3400       // Look for a global declaration.
3401       OperatorDelete = FindUsualDeallocationFunction(StartLoc, CanProvideSize,
3402                                                      Overaligned, DeleteName);
3403     }
3404 
3405     MarkFunctionReferenced(StartLoc, OperatorDelete);
3406 
3407     // Check access and ambiguity of destructor if we're going to call it.
3408     // Note that this is required even for a virtual delete.
3409     bool IsVirtualDelete = false;
3410     if (PointeeRD) {
3411       if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
3412         CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
3413                               PDiag(diag::err_access_dtor) << PointeeElem);
3414         IsVirtualDelete = Dtor->isVirtual();
3415       }
3416     }
3417 
3418     DiagnoseUseOfDecl(OperatorDelete, StartLoc);
3419 
3420     // Convert the operand to the type of the first parameter of operator
3421     // delete. This is only necessary if we selected a destroying operator
3422     // delete that we are going to call (non-virtually); converting to void*
3423     // is trivial and left to AST consumers to handle.
3424     QualType ParamType = OperatorDelete->getParamDecl(0)->getType();
3425     if (!IsVirtualDelete && !ParamType->getPointeeType()->isVoidType()) {
3426       Qualifiers Qs = Pointee.getQualifiers();
3427       if (Qs.hasCVRQualifiers()) {
3428         // Qualifiers are irrelevant to this conversion; we're only looking
3429         // for access and ambiguity.
3430         Qs.removeCVRQualifiers();
3431         QualType Unqual = Context.getPointerType(
3432             Context.getQualifiedType(Pointee.getUnqualifiedType(), Qs));
3433         Ex = ImpCastExprToType(Ex.get(), Unqual, CK_NoOp);
3434       }
3435       Ex = PerformImplicitConversion(Ex.get(), ParamType, AA_Passing);
3436       if (Ex.isInvalid())
3437         return ExprError();
3438     }
3439   }
3440 
3441   CXXDeleteExpr *Result = new (Context) CXXDeleteExpr(
3442       Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten,
3443       UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc);
3444   AnalyzeDeleteExprMismatch(Result);
3445   return Result;
3446 }
3447 
resolveBuiltinNewDeleteOverload(Sema & S,CallExpr * TheCall,bool IsDelete,FunctionDecl * & Operator)3448 static bool resolveBuiltinNewDeleteOverload(Sema &S, CallExpr *TheCall,
3449                                             bool IsDelete,
3450                                             FunctionDecl *&Operator) {
3451 
3452   DeclarationName NewName = S.Context.DeclarationNames.getCXXOperatorName(
3453       IsDelete ? OO_Delete : OO_New);
3454 
3455   LookupResult R(S, NewName, TheCall->getBeginLoc(), Sema::LookupOrdinaryName);
3456   S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl());
3457   assert(!R.empty() && "implicitly declared allocation functions not found");
3458   assert(!R.isAmbiguous() && "global allocation functions are ambiguous");
3459 
3460   // We do our own custom access checks below.
3461   R.suppressDiagnostics();
3462 
3463   SmallVector<Expr *, 8> Args(TheCall->arg_begin(), TheCall->arg_end());
3464   OverloadCandidateSet Candidates(R.getNameLoc(),
3465                                   OverloadCandidateSet::CSK_Normal);
3466   for (LookupResult::iterator FnOvl = R.begin(), FnOvlEnd = R.end();
3467        FnOvl != FnOvlEnd; ++FnOvl) {
3468     // Even member operator new/delete are implicitly treated as
3469     // static, so don't use AddMemberCandidate.
3470     NamedDecl *D = (*FnOvl)->getUnderlyingDecl();
3471 
3472     if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
3473       S.AddTemplateOverloadCandidate(FnTemplate, FnOvl.getPair(),
3474                                      /*ExplicitTemplateArgs=*/nullptr, Args,
3475                                      Candidates,
3476                                      /*SuppressUserConversions=*/false);
3477       continue;
3478     }
3479 
3480     FunctionDecl *Fn = cast<FunctionDecl>(D);
3481     S.AddOverloadCandidate(Fn, FnOvl.getPair(), Args, Candidates,
3482                            /*SuppressUserConversions=*/false);
3483   }
3484 
3485   SourceRange Range = TheCall->getSourceRange();
3486 
3487   // Do the resolution.
3488   OverloadCandidateSet::iterator Best;
3489   switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) {
3490   case OR_Success: {
3491     // Got one!
3492     FunctionDecl *FnDecl = Best->Function;
3493     assert(R.getNamingClass() == nullptr &&
3494            "class members should not be considered");
3495 
3496     if (!FnDecl->isReplaceableGlobalAllocationFunction()) {
3497       S.Diag(R.getNameLoc(), diag::err_builtin_operator_new_delete_not_usual)
3498           << (IsDelete ? 1 : 0) << Range;
3499       S.Diag(FnDecl->getLocation(), diag::note_non_usual_function_declared_here)
3500           << R.getLookupName() << FnDecl->getSourceRange();
3501       return true;
3502     }
3503 
3504     Operator = FnDecl;
3505     return false;
3506   }
3507 
3508   case OR_No_Viable_Function:
3509     S.Diag(R.getNameLoc(), diag::err_ovl_no_viable_function_in_call)
3510         << R.getLookupName() << Range;
3511     Candidates.NoteCandidates(S, OCD_AllCandidates, Args);
3512     return true;
3513 
3514   case OR_Ambiguous:
3515     S.Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call)
3516         << R.getLookupName() << Range;
3517     Candidates.NoteCandidates(S, OCD_ViableCandidates, Args);
3518     return true;
3519 
3520   case OR_Deleted: {
3521     S.Diag(R.getNameLoc(), diag::err_ovl_deleted_call)
3522         << Best->Function->isDeleted() << R.getLookupName()
3523         << S.getDeletedOrUnavailableSuffix(Best->Function) << Range;
3524     Candidates.NoteCandidates(S, OCD_AllCandidates, Args);
3525     return true;
3526   }
3527   }
3528   llvm_unreachable("Unreachable, bad result from BestViableFunction");
3529 }
3530 
3531 ExprResult
SemaBuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult,bool IsDelete)3532 Sema::SemaBuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult,
3533                                              bool IsDelete) {
3534   CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
3535   if (!getLangOpts().CPlusPlus) {
3536     Diag(TheCall->getExprLoc(), diag::err_builtin_requires_language)
3537         << (IsDelete ? "__builtin_operator_delete" : "__builtin_operator_new")
3538         << "C++";
3539     return ExprError();
3540   }
3541   // CodeGen assumes it can find the global new and delete to call,
3542   // so ensure that they are declared.
3543   DeclareGlobalNewDelete();
3544 
3545   FunctionDecl *OperatorNewOrDelete = nullptr;
3546   if (resolveBuiltinNewDeleteOverload(*this, TheCall, IsDelete,
3547                                       OperatorNewOrDelete))
3548     return ExprError();
3549   assert(OperatorNewOrDelete && "should be found");
3550 
3551   DiagnoseUseOfDecl(OperatorNewOrDelete, TheCall->getExprLoc());
3552   MarkFunctionReferenced(TheCall->getExprLoc(), OperatorNewOrDelete);
3553 
3554   TheCall->setType(OperatorNewOrDelete->getReturnType());
3555   for (unsigned i = 0; i != TheCall->getNumArgs(); ++i) {
3556     QualType ParamTy = OperatorNewOrDelete->getParamDecl(i)->getType();
3557     InitializedEntity Entity =
3558         InitializedEntity::InitializeParameter(Context, ParamTy, false);
3559     ExprResult Arg = PerformCopyInitialization(
3560         Entity, TheCall->getArg(i)->getBeginLoc(), TheCall->getArg(i));
3561     if (Arg.isInvalid())
3562       return ExprError();
3563     TheCall->setArg(i, Arg.get());
3564   }
3565   auto Callee = dyn_cast<ImplicitCastExpr>(TheCall->getCallee());
3566   assert(Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr &&
3567          "Callee expected to be implicit cast to a builtin function pointer");
3568   Callee->setType(OperatorNewOrDelete->getType());
3569 
3570   return TheCallResult;
3571 }
3572 
CheckVirtualDtorCall(CXXDestructorDecl * dtor,SourceLocation Loc,bool IsDelete,bool CallCanBeVirtual,bool WarnOnNonAbstractTypes,SourceLocation DtorLoc)3573 void Sema::CheckVirtualDtorCall(CXXDestructorDecl *dtor, SourceLocation Loc,
3574                                 bool IsDelete, bool CallCanBeVirtual,
3575                                 bool WarnOnNonAbstractTypes,
3576                                 SourceLocation DtorLoc) {
3577   if (!dtor || dtor->isVirtual() || !CallCanBeVirtual || isUnevaluatedContext())
3578     return;
3579 
3580   // C++ [expr.delete]p3:
3581   //   In the first alternative (delete object), if the static type of the
3582   //   object to be deleted is different from its dynamic type, the static
3583   //   type shall be a base class of the dynamic type of the object to be
3584   //   deleted and the static type shall have a virtual destructor or the
3585   //   behavior is undefined.
3586   //
3587   const CXXRecordDecl *PointeeRD = dtor->getParent();
3588   // Note: a final class cannot be derived from, no issue there
3589   if (!PointeeRD->isPolymorphic() || PointeeRD->hasAttr<FinalAttr>())
3590     return;
3591 
3592   // If the superclass is in a system header, there's nothing that can be done.
3593   // The `delete` (where we emit the warning) can be in a system header,
3594   // what matters for this warning is where the deleted type is defined.
3595   if (getSourceManager().isInSystemHeader(PointeeRD->getLocation()))
3596     return;
3597 
3598   QualType ClassType = dtor->getThisType()->getPointeeType();
3599   if (PointeeRD->isAbstract()) {
3600     // If the class is abstract, we warn by default, because we're
3601     // sure the code has undefined behavior.
3602     Diag(Loc, diag::warn_delete_abstract_non_virtual_dtor) << (IsDelete ? 0 : 1)
3603                                                            << ClassType;
3604   } else if (WarnOnNonAbstractTypes) {
3605     // Otherwise, if this is not an array delete, it's a bit suspect,
3606     // but not necessarily wrong.
3607     Diag(Loc, diag::warn_delete_non_virtual_dtor) << (IsDelete ? 0 : 1)
3608                                                   << ClassType;
3609   }
3610   if (!IsDelete) {
3611     std::string TypeStr;
3612     ClassType.getAsStringInternal(TypeStr, getPrintingPolicy());
3613     Diag(DtorLoc, diag::note_delete_non_virtual)
3614         << FixItHint::CreateInsertion(DtorLoc, TypeStr + "::");
3615   }
3616 }
3617 
ActOnConditionVariable(Decl * ConditionVar,SourceLocation StmtLoc,ConditionKind CK)3618 Sema::ConditionResult Sema::ActOnConditionVariable(Decl *ConditionVar,
3619                                                    SourceLocation StmtLoc,
3620                                                    ConditionKind CK) {
3621   ExprResult E =
3622       CheckConditionVariable(cast<VarDecl>(ConditionVar), StmtLoc, CK);
3623   if (E.isInvalid())
3624     return ConditionError();
3625   return ConditionResult(*this, ConditionVar, MakeFullExpr(E.get(), StmtLoc),
3626                          CK == ConditionKind::ConstexprIf);
3627 }
3628 
3629 /// Check the use of the given variable as a C++ condition in an if,
3630 /// while, do-while, or switch statement.
CheckConditionVariable(VarDecl * ConditionVar,SourceLocation StmtLoc,ConditionKind CK)3631 ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
3632                                         SourceLocation StmtLoc,
3633                                         ConditionKind CK) {
3634   if (ConditionVar->isInvalidDecl())
3635     return ExprError();
3636 
3637   QualType T = ConditionVar->getType();
3638 
3639   // C++ [stmt.select]p2:
3640   //   The declarator shall not specify a function or an array.
3641   if (T->isFunctionType())
3642     return ExprError(Diag(ConditionVar->getLocation(),
3643                           diag::err_invalid_use_of_function_type)
3644                        << ConditionVar->getSourceRange());
3645   else if (T->isArrayType())
3646     return ExprError(Diag(ConditionVar->getLocation(),
3647                           diag::err_invalid_use_of_array_type)
3648                      << ConditionVar->getSourceRange());
3649 
3650   ExprResult Condition = DeclRefExpr::Create(
3651       Context, NestedNameSpecifierLoc(), SourceLocation(), ConditionVar,
3652       /*enclosing*/ false, ConditionVar->getLocation(),
3653       ConditionVar->getType().getNonReferenceType(), VK_LValue);
3654 
3655   MarkDeclRefReferenced(cast<DeclRefExpr>(Condition.get()));
3656 
3657   switch (CK) {
3658   case ConditionKind::Boolean:
3659     return CheckBooleanCondition(StmtLoc, Condition.get());
3660 
3661   case ConditionKind::ConstexprIf:
3662     return CheckBooleanCondition(StmtLoc, Condition.get(), true);
3663 
3664   case ConditionKind::Switch:
3665     return CheckSwitchCondition(StmtLoc, Condition.get());
3666   }
3667 
3668   llvm_unreachable("unexpected condition kind");
3669 }
3670 
3671 /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
CheckCXXBooleanCondition(Expr * CondExpr,bool IsConstexpr)3672 ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr) {
3673   // C++ 6.4p4:
3674   // The value of a condition that is an initialized declaration in a statement
3675   // other than a switch statement is the value of the declared variable
3676   // implicitly converted to type bool. If that conversion is ill-formed, the
3677   // program is ill-formed.
3678   // The value of a condition that is an expression is the value of the
3679   // expression, implicitly converted to bool.
3680   //
3681   // FIXME: Return this value to the caller so they don't need to recompute it.
3682   llvm::APSInt Value(/*BitWidth*/1);
3683   return (IsConstexpr && !CondExpr->isValueDependent())
3684              ? CheckConvertedConstantExpression(CondExpr, Context.BoolTy, Value,
3685                                                 CCEK_ConstexprIf)
3686              : PerformContextuallyConvertToBool(CondExpr);
3687 }
3688 
3689 /// Helper function to determine whether this is the (deprecated) C++
3690 /// conversion from a string literal to a pointer to non-const char or
3691 /// non-const wchar_t (for narrow and wide string literals,
3692 /// respectively).
3693 bool
IsStringLiteralToNonConstPointerConversion(Expr * From,QualType ToType)3694 Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
3695   // Look inside the implicit cast, if it exists.
3696   if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
3697     From = Cast->getSubExpr();
3698 
3699   // A string literal (2.13.4) that is not a wide string literal can
3700   // be converted to an rvalue of type "pointer to char"; a wide
3701   // string literal can be converted to an rvalue of type "pointer
3702   // to wchar_t" (C++ 4.2p2).
3703   if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
3704     if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
3705       if (const BuiltinType *ToPointeeType
3706           = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
3707         // This conversion is considered only when there is an
3708         // explicit appropriate pointer target type (C++ 4.2p2).
3709         if (!ToPtrType->getPointeeType().hasQualifiers()) {
3710           switch (StrLit->getKind()) {
3711             case StringLiteral::UTF8:
3712             case StringLiteral::UTF16:
3713             case StringLiteral::UTF32:
3714               // We don't allow UTF literals to be implicitly converted
3715               break;
3716             case StringLiteral::Ascii:
3717               return (ToPointeeType->getKind() == BuiltinType::Char_U ||
3718                       ToPointeeType->getKind() == BuiltinType::Char_S);
3719             case StringLiteral::Wide:
3720               return Context.typesAreCompatible(Context.getWideCharType(),
3721                                                 QualType(ToPointeeType, 0));
3722           }
3723         }
3724       }
3725 
3726   return false;
3727 }
3728 
BuildCXXCastArgument(Sema & S,SourceLocation CastLoc,QualType Ty,CastKind Kind,CXXMethodDecl * Method,DeclAccessPair FoundDecl,bool HadMultipleCandidates,Expr * From)3729 static ExprResult BuildCXXCastArgument(Sema &S,
3730                                        SourceLocation CastLoc,
3731                                        QualType Ty,
3732                                        CastKind Kind,
3733                                        CXXMethodDecl *Method,
3734                                        DeclAccessPair FoundDecl,
3735                                        bool HadMultipleCandidates,
3736                                        Expr *From) {
3737   switch (Kind) {
3738   default: llvm_unreachable("Unhandled cast kind!");
3739   case CK_ConstructorConversion: {
3740     CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
3741     SmallVector<Expr*, 8> ConstructorArgs;
3742 
3743     if (S.RequireNonAbstractType(CastLoc, Ty,
3744                                  diag::err_allocation_of_abstract_type))
3745       return ExprError();
3746 
3747     if (S.CompleteConstructorCall(Constructor, From, CastLoc, ConstructorArgs))
3748       return ExprError();
3749 
3750     S.CheckConstructorAccess(CastLoc, Constructor, FoundDecl,
3751                              InitializedEntity::InitializeTemporary(Ty));
3752     if (S.DiagnoseUseOfDecl(Method, CastLoc))
3753       return ExprError();
3754 
3755     ExprResult Result = S.BuildCXXConstructExpr(
3756         CastLoc, Ty, FoundDecl, cast<CXXConstructorDecl>(Method),
3757         ConstructorArgs, HadMultipleCandidates,
3758         /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
3759         CXXConstructExpr::CK_Complete, SourceRange());
3760     if (Result.isInvalid())
3761       return ExprError();
3762 
3763     return S.MaybeBindToTemporary(Result.getAs<Expr>());
3764   }
3765 
3766   case CK_UserDefinedConversion: {
3767     assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
3768 
3769     S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl);
3770     if (S.DiagnoseUseOfDecl(Method, CastLoc))
3771       return ExprError();
3772 
3773     // Create an implicit call expr that calls it.
3774     CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
3775     ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
3776                                                  HadMultipleCandidates);
3777     if (Result.isInvalid())
3778       return ExprError();
3779     // Record usage of conversion in an implicit cast.
3780     Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(),
3781                                       CK_UserDefinedConversion, Result.get(),
3782                                       nullptr, Result.get()->getValueKind());
3783 
3784     return S.MaybeBindToTemporary(Result.get());
3785   }
3786   }
3787 }
3788 
3789 /// PerformImplicitConversion - Perform an implicit conversion of the
3790 /// expression From to the type ToType using the pre-computed implicit
3791 /// conversion sequence ICS. Returns the converted
3792 /// expression. Action is the kind of conversion we're performing,
3793 /// used in the error message.
3794 ExprResult
PerformImplicitConversion(Expr * From,QualType ToType,const ImplicitConversionSequence & ICS,AssignmentAction Action,CheckedConversionKind CCK)3795 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
3796                                 const ImplicitConversionSequence &ICS,
3797                                 AssignmentAction Action,
3798                                 CheckedConversionKind CCK) {
3799   // C++ [over.match.oper]p7: [...] operands of class type are converted [...]
3800   if (CCK == CCK_ForBuiltinOverloadedOp && !From->getType()->isRecordType())
3801     return From;
3802 
3803   switch (ICS.getKind()) {
3804   case ImplicitConversionSequence::StandardConversion: {
3805     ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
3806                                                Action, CCK);
3807     if (Res.isInvalid())
3808       return ExprError();
3809     From = Res.get();
3810     break;
3811   }
3812 
3813   case ImplicitConversionSequence::UserDefinedConversion: {
3814 
3815       FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
3816       CastKind CastKind;
3817       QualType BeforeToType;
3818       assert(FD && "no conversion function for user-defined conversion seq");
3819       if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
3820         CastKind = CK_UserDefinedConversion;
3821 
3822         // If the user-defined conversion is specified by a conversion function,
3823         // the initial standard conversion sequence converts the source type to
3824         // the implicit object parameter of the conversion function.
3825         BeforeToType = Context.getTagDeclType(Conv->getParent());
3826       } else {
3827         const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
3828         CastKind = CK_ConstructorConversion;
3829         // Do no conversion if dealing with ... for the first conversion.
3830         if (!ICS.UserDefined.EllipsisConversion) {
3831           // If the user-defined conversion is specified by a constructor, the
3832           // initial standard conversion sequence converts the source type to
3833           // the type required by the argument of the constructor
3834           BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
3835         }
3836       }
3837       // Watch out for ellipsis conversion.
3838       if (!ICS.UserDefined.EllipsisConversion) {
3839         ExprResult Res =
3840           PerformImplicitConversion(From, BeforeToType,
3841                                     ICS.UserDefined.Before, AA_Converting,
3842                                     CCK);
3843         if (Res.isInvalid())
3844           return ExprError();
3845         From = Res.get();
3846       }
3847 
3848       ExprResult CastArg = BuildCXXCastArgument(
3849           *this, From->getBeginLoc(), ToType.getNonReferenceType(), CastKind,
3850           cast<CXXMethodDecl>(FD), ICS.UserDefined.FoundConversionFunction,
3851           ICS.UserDefined.HadMultipleCandidates, From);
3852 
3853       if (CastArg.isInvalid())
3854         return ExprError();
3855 
3856       From = CastArg.get();
3857 
3858       // C++ [over.match.oper]p7:
3859       //   [...] the second standard conversion sequence of a user-defined
3860       //   conversion sequence is not applied.
3861       if (CCK == CCK_ForBuiltinOverloadedOp)
3862         return From;
3863 
3864       return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
3865                                        AA_Converting, CCK);
3866   }
3867 
3868   case ImplicitConversionSequence::AmbiguousConversion:
3869     ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
3870                           PDiag(diag::err_typecheck_ambiguous_condition)
3871                             << From->getSourceRange());
3872      return ExprError();
3873 
3874   case ImplicitConversionSequence::EllipsisConversion:
3875     llvm_unreachable("Cannot perform an ellipsis conversion");
3876 
3877   case ImplicitConversionSequence::BadConversion:
3878     bool Diagnosed =
3879         DiagnoseAssignmentResult(Incompatible, From->getExprLoc(), ToType,
3880                                  From->getType(), From, Action);
3881     assert(Diagnosed && "failed to diagnose bad conversion"); (void)Diagnosed;
3882     return ExprError();
3883   }
3884 
3885   // Everything went well.
3886   return From;
3887 }
3888 
3889 /// PerformImplicitConversion - Perform an implicit conversion of the
3890 /// expression From to the type ToType by following the standard
3891 /// conversion sequence SCS. Returns the converted
3892 /// expression. Flavor is the context in which we're performing this
3893 /// conversion, for use in error messages.
3894 ExprResult
PerformImplicitConversion(Expr * From,QualType ToType,const StandardConversionSequence & SCS,AssignmentAction Action,CheckedConversionKind CCK)3895 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
3896                                 const StandardConversionSequence& SCS,
3897                                 AssignmentAction Action,
3898                                 CheckedConversionKind CCK) {
3899   bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
3900 
3901   // Overall FIXME: we are recomputing too many types here and doing far too
3902   // much extra work. What this means is that we need to keep track of more
3903   // information that is computed when we try the implicit conversion initially,
3904   // so that we don't need to recompute anything here.
3905   QualType FromType = From->getType();
3906 
3907   if (SCS.CopyConstructor) {
3908     // FIXME: When can ToType be a reference type?
3909     assert(!ToType->isReferenceType());
3910     if (SCS.Second == ICK_Derived_To_Base) {
3911       SmallVector<Expr*, 8> ConstructorArgs;
3912       if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
3913                                   From, /*FIXME:ConstructLoc*/SourceLocation(),
3914                                   ConstructorArgs))
3915         return ExprError();
3916       return BuildCXXConstructExpr(
3917           /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
3918           SCS.FoundCopyConstructor, SCS.CopyConstructor,
3919           ConstructorArgs, /*HadMultipleCandidates*/ false,
3920           /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
3921           CXXConstructExpr::CK_Complete, SourceRange());
3922     }
3923     return BuildCXXConstructExpr(
3924         /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
3925         SCS.FoundCopyConstructor, SCS.CopyConstructor,
3926         From, /*HadMultipleCandidates*/ false,
3927         /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
3928         CXXConstructExpr::CK_Complete, SourceRange());
3929   }
3930 
3931   // Resolve overloaded function references.
3932   if (Context.hasSameType(FromType, Context.OverloadTy)) {
3933     DeclAccessPair Found;
3934     FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
3935                                                           true, Found);
3936     if (!Fn)
3937       return ExprError();
3938 
3939     if (DiagnoseUseOfDecl(Fn, From->getBeginLoc()))
3940       return ExprError();
3941 
3942     From = FixOverloadedFunctionReference(From, Found, Fn);
3943     FromType = From->getType();
3944   }
3945 
3946   // If we're converting to an atomic type, first convert to the corresponding
3947   // non-atomic type.
3948   QualType ToAtomicType;
3949   if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) {
3950     ToAtomicType = ToType;
3951     ToType = ToAtomic->getValueType();
3952   }
3953 
3954   QualType InitialFromType = FromType;
3955   // Perform the first implicit conversion.
3956   switch (SCS.First) {
3957   case ICK_Identity:
3958     if (const AtomicType *FromAtomic = FromType->getAs<AtomicType>()) {
3959       FromType = FromAtomic->getValueType().getUnqualifiedType();
3960       From = ImplicitCastExpr::Create(Context, FromType, CK_AtomicToNonAtomic,
3961                                       From, /*BasePath=*/nullptr, VK_RValue);
3962     }
3963     break;
3964 
3965   case ICK_Lvalue_To_Rvalue: {
3966     assert(From->getObjectKind() != OK_ObjCProperty);
3967     ExprResult FromRes = DefaultLvalueConversion(From);
3968     assert(!FromRes.isInvalid() && "Can't perform deduced conversion?!");
3969     From = FromRes.get();
3970     FromType = From->getType();
3971     break;
3972   }
3973 
3974   case ICK_Array_To_Pointer:
3975     FromType = Context.getArrayDecayedType(FromType);
3976     From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay,
3977                              VK_RValue, /*BasePath=*/nullptr, CCK).get();
3978     break;
3979 
3980   case ICK_Function_To_Pointer:
3981     FromType = Context.getPointerType(FromType);
3982     From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
3983                              VK_RValue, /*BasePath=*/nullptr, CCK).get();
3984     break;
3985 
3986   default:
3987     llvm_unreachable("Improper first standard conversion");
3988   }
3989 
3990   // Perform the second implicit conversion
3991   switch (SCS.Second) {
3992   case ICK_Identity:
3993     // C++ [except.spec]p5:
3994     //   [For] assignment to and initialization of pointers to functions,
3995     //   pointers to member functions, and references to functions: the
3996     //   target entity shall allow at least the exceptions allowed by the
3997     //   source value in the assignment or initialization.
3998     switch (Action) {
3999     case AA_Assigning:
4000     case AA_Initializing:
4001       // Note, function argument passing and returning are initialization.
4002     case AA_Passing:
4003     case AA_Returning:
4004     case AA_Sending:
4005     case AA_Passing_CFAudited:
4006       if (CheckExceptionSpecCompatibility(From, ToType))
4007         return ExprError();
4008       break;
4009 
4010     case AA_Casting:
4011     case AA_Converting:
4012       // Casts and implicit conversions are not initialization, so are not
4013       // checked for exception specification mismatches.
4014       break;
4015     }
4016     // Nothing else to do.
4017     break;
4018 
4019   case ICK_Integral_Promotion:
4020   case ICK_Integral_Conversion:
4021     if (ToType->isBooleanType()) {
4022       assert(FromType->castAs<EnumType>()->getDecl()->isFixed() &&
4023              SCS.Second == ICK_Integral_Promotion &&
4024              "only enums with fixed underlying type can promote to bool");
4025       From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean,
4026                                VK_RValue, /*BasePath=*/nullptr, CCK).get();
4027     } else {
4028       From = ImpCastExprToType(From, ToType, CK_IntegralCast,
4029                                VK_RValue, /*BasePath=*/nullptr, CCK).get();
4030     }
4031     break;
4032 
4033   case ICK_Floating_Promotion:
4034   case ICK_Floating_Conversion:
4035     From = ImpCastExprToType(From, ToType, CK_FloatingCast,
4036                              VK_RValue, /*BasePath=*/nullptr, CCK).get();
4037     break;
4038 
4039   case ICK_Complex_Promotion:
4040   case ICK_Complex_Conversion: {
4041     QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType();
4042     QualType ToEl = ToType->getAs<ComplexType>()->getElementType();
4043     CastKind CK;
4044     if (FromEl->isRealFloatingType()) {
4045       if (ToEl->isRealFloatingType())
4046         CK = CK_FloatingComplexCast;
4047       else
4048         CK = CK_FloatingComplexToIntegralComplex;
4049     } else if (ToEl->isRealFloatingType()) {
4050       CK = CK_IntegralComplexToFloatingComplex;
4051     } else {
4052       CK = CK_IntegralComplexCast;
4053     }
4054     From = ImpCastExprToType(From, ToType, CK,
4055                              VK_RValue, /*BasePath=*/nullptr, CCK).get();
4056     break;
4057   }
4058 
4059   case ICK_Floating_Integral:
4060     if (ToType->isRealFloatingType())
4061       From = ImpCastExprToType(From, ToType, CK_IntegralToFloating,
4062                                VK_RValue, /*BasePath=*/nullptr, CCK).get();
4063     else
4064       From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral,
4065                                VK_RValue, /*BasePath=*/nullptr, CCK).get();
4066     break;
4067 
4068   case ICK_Compatible_Conversion:
4069       From = ImpCastExprToType(From, ToType, CK_NoOp,
4070                                VK_RValue, /*BasePath=*/nullptr, CCK).get();
4071     break;
4072 
4073   case ICK_Writeback_Conversion:
4074   case ICK_Pointer_Conversion: {
4075     if (SCS.IncompatibleObjC && Action != AA_Casting) {
4076       // Diagnose incompatible Objective-C conversions
4077       if (Action == AA_Initializing || Action == AA_Assigning)
4078         Diag(From->getBeginLoc(),
4079              diag::ext_typecheck_convert_incompatible_pointer)
4080             << ToType << From->getType() << Action << From->getSourceRange()
4081             << 0;
4082       else
4083         Diag(From->getBeginLoc(),
4084              diag::ext_typecheck_convert_incompatible_pointer)
4085             << From->getType() << ToType << Action << From->getSourceRange()
4086             << 0;
4087 
4088       if (From->getType()->isObjCObjectPointerType() &&
4089           ToType->isObjCObjectPointerType())
4090         EmitRelatedResultTypeNote(From);
4091     } else if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
4092                !CheckObjCARCUnavailableWeakConversion(ToType,
4093                                                       From->getType())) {
4094       if (Action == AA_Initializing)
4095         Diag(From->getBeginLoc(), diag::err_arc_weak_unavailable_assign);
4096       else
4097         Diag(From->getBeginLoc(), diag::err_arc_convesion_of_weak_unavailable)
4098             << (Action == AA_Casting) << From->getType() << ToType
4099             << From->getSourceRange();
4100     }
4101 
4102     CastKind Kind;
4103     CXXCastPath BasePath;
4104     if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle))
4105       return ExprError();
4106 
4107     // Make sure we extend blocks if necessary.
4108     // FIXME: doing this here is really ugly.
4109     if (Kind == CK_BlockPointerToObjCPointerCast) {
4110       ExprResult E = From;
4111       (void) PrepareCastToObjCObjectPointer(E);
4112       From = E.get();
4113     }
4114     if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers())
4115       CheckObjCConversion(SourceRange(), ToType, From, CCK);
4116     From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
4117              .get();
4118     break;
4119   }
4120 
4121   case ICK_Pointer_Member: {
4122     CastKind Kind;
4123     CXXCastPath BasePath;
4124     if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
4125       return ExprError();
4126     if (CheckExceptionSpecCompatibility(From, ToType))
4127       return ExprError();
4128 
4129     // We may not have been able to figure out what this member pointer resolved
4130     // to up until this exact point.  Attempt to lock-in it's inheritance model.
4131     if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4132       (void)isCompleteType(From->getExprLoc(), From->getType());
4133       (void)isCompleteType(From->getExprLoc(), ToType);
4134     }
4135 
4136     From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
4137              .get();
4138     break;
4139   }
4140 
4141   case ICK_Boolean_Conversion:
4142     // Perform half-to-boolean conversion via float.
4143     if (From->getType()->isHalfType()) {
4144       From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get();
4145       FromType = Context.FloatTy;
4146     }
4147 
4148     From = ImpCastExprToType(From, Context.BoolTy,
4149                              ScalarTypeToBooleanCastKind(FromType),
4150                              VK_RValue, /*BasePath=*/nullptr, CCK).get();
4151     break;
4152 
4153   case ICK_Derived_To_Base: {
4154     CXXCastPath BasePath;
4155     if (CheckDerivedToBaseConversion(
4156             From->getType(), ToType.getNonReferenceType(), From->getBeginLoc(),
4157             From->getSourceRange(), &BasePath, CStyle))
4158       return ExprError();
4159 
4160     From = ImpCastExprToType(From, ToType.getNonReferenceType(),
4161                       CK_DerivedToBase, From->getValueKind(),
4162                       &BasePath, CCK).get();
4163     break;
4164   }
4165 
4166   case ICK_Vector_Conversion:
4167     From = ImpCastExprToType(From, ToType, CK_BitCast,
4168                              VK_RValue, /*BasePath=*/nullptr, CCK).get();
4169     break;
4170 
4171   case ICK_Vector_Splat: {
4172     // Vector splat from any arithmetic type to a vector.
4173     Expr *Elem = prepareVectorSplat(ToType, From).get();
4174     From = ImpCastExprToType(Elem, ToType, CK_VectorSplat, VK_RValue,
4175                              /*BasePath=*/nullptr, CCK).get();
4176     break;
4177   }
4178 
4179   case ICK_Complex_Real:
4180     // Case 1.  x -> _Complex y
4181     if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
4182       QualType ElType = ToComplex->getElementType();
4183       bool isFloatingComplex = ElType->isRealFloatingType();
4184 
4185       // x -> y
4186       if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
4187         // do nothing
4188       } else if (From->getType()->isRealFloatingType()) {
4189         From = ImpCastExprToType(From, ElType,
4190                 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get();
4191       } else {
4192         assert(From->getType()->isIntegerType());
4193         From = ImpCastExprToType(From, ElType,
4194                 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get();
4195       }
4196       // y -> _Complex y
4197       From = ImpCastExprToType(From, ToType,
4198                    isFloatingComplex ? CK_FloatingRealToComplex
4199                                      : CK_IntegralRealToComplex).get();
4200 
4201     // Case 2.  _Complex x -> y
4202     } else {
4203       const ComplexType *FromComplex = From->getType()->getAs<ComplexType>();
4204       assert(FromComplex);
4205 
4206       QualType ElType = FromComplex->getElementType();
4207       bool isFloatingComplex = ElType->isRealFloatingType();
4208 
4209       // _Complex x -> x
4210       From = ImpCastExprToType(From, ElType,
4211                    isFloatingComplex ? CK_FloatingComplexToReal
4212                                      : CK_IntegralComplexToReal,
4213                                VK_RValue, /*BasePath=*/nullptr, CCK).get();
4214 
4215       // x -> y
4216       if (Context.hasSameUnqualifiedType(ElType, ToType)) {
4217         // do nothing
4218       } else if (ToType->isRealFloatingType()) {
4219         From = ImpCastExprToType(From, ToType,
4220                    isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating,
4221                                  VK_RValue, /*BasePath=*/nullptr, CCK).get();
4222       } else {
4223         assert(ToType->isIntegerType());
4224         From = ImpCastExprToType(From, ToType,
4225                    isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast,
4226                                  VK_RValue, /*BasePath=*/nullptr, CCK).get();
4227       }
4228     }
4229     break;
4230 
4231   case ICK_Block_Pointer_Conversion: {
4232     From = ImpCastExprToType(From, ToType.getUnqualifiedType(), CK_BitCast,
4233                              VK_RValue, /*BasePath=*/nullptr, CCK).get();
4234     break;
4235   }
4236 
4237   case ICK_TransparentUnionConversion: {
4238     ExprResult FromRes = From;
4239     Sema::AssignConvertType ConvTy =
4240       CheckTransparentUnionArgumentConstraints(ToType, FromRes);
4241     if (FromRes.isInvalid())
4242       return ExprError();
4243     From = FromRes.get();
4244     assert ((ConvTy == Sema::Compatible) &&
4245             "Improper transparent union conversion");
4246     (void)ConvTy;
4247     break;
4248   }
4249 
4250   case ICK_Zero_Event_Conversion:
4251   case ICK_Zero_Queue_Conversion:
4252     From = ImpCastExprToType(From, ToType,
4253                              CK_ZeroToOCLOpaqueType,
4254                              From->getValueKind()).get();
4255     break;
4256 
4257   case ICK_Lvalue_To_Rvalue:
4258   case ICK_Array_To_Pointer:
4259   case ICK_Function_To_Pointer:
4260   case ICK_Function_Conversion:
4261   case ICK_Qualification:
4262   case ICK_Num_Conversion_Kinds:
4263   case ICK_C_Only_Conversion:
4264   case ICK_Incompatible_Pointer_Conversion:
4265     llvm_unreachable("Improper second standard conversion");
4266   }
4267 
4268   switch (SCS.Third) {
4269   case ICK_Identity:
4270     // Nothing to do.
4271     break;
4272 
4273   case ICK_Function_Conversion:
4274     // If both sides are functions (or pointers/references to them), there could
4275     // be incompatible exception declarations.
4276     if (CheckExceptionSpecCompatibility(From, ToType))
4277       return ExprError();
4278 
4279     From = ImpCastExprToType(From, ToType, CK_NoOp,
4280                              VK_RValue, /*BasePath=*/nullptr, CCK).get();
4281     break;
4282 
4283   case ICK_Qualification: {
4284     // The qualification keeps the category of the inner expression, unless the
4285     // target type isn't a reference.
4286     ExprValueKind VK =
4287         ToType->isReferenceType() ? From->getValueKind() : VK_RValue;
4288 
4289     CastKind CK = CK_NoOp;
4290 
4291     if (ToType->isReferenceType() &&
4292         ToType->getPointeeType().getAddressSpace() !=
4293             From->getType().getAddressSpace())
4294       CK = CK_AddressSpaceConversion;
4295 
4296     if (ToType->isPointerType() &&
4297         ToType->getPointeeType().getAddressSpace() !=
4298             From->getType()->getPointeeType().getAddressSpace())
4299       CK = CK_AddressSpaceConversion;
4300 
4301     From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context), CK, VK,
4302                              /*BasePath=*/nullptr, CCK)
4303                .get();
4304 
4305     if (SCS.DeprecatedStringLiteralToCharPtr &&
4306         !getLangOpts().WritableStrings) {
4307       Diag(From->getBeginLoc(),
4308            getLangOpts().CPlusPlus11
4309                ? diag::ext_deprecated_string_literal_conversion
4310                : diag::warn_deprecated_string_literal_conversion)
4311           << ToType.getNonReferenceType();
4312     }
4313 
4314     break;
4315   }
4316 
4317   default:
4318     llvm_unreachable("Improper third standard conversion");
4319   }
4320 
4321   // If this conversion sequence involved a scalar -> atomic conversion, perform
4322   // that conversion now.
4323   if (!ToAtomicType.isNull()) {
4324     assert(Context.hasSameType(
4325         ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType()));
4326     From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic,
4327                              VK_RValue, nullptr, CCK).get();
4328   }
4329 
4330   // If this conversion sequence succeeded and involved implicitly converting a
4331   // _Nullable type to a _Nonnull one, complain.
4332   if (!isCast(CCK))
4333     diagnoseNullableToNonnullConversion(ToType, InitialFromType,
4334                                         From->getBeginLoc());
4335 
4336   return From;
4337 }
4338 
4339 /// Check the completeness of a type in a unary type trait.
4340 ///
4341 /// If the particular type trait requires a complete type, tries to complete
4342 /// it. If completing the type fails, a diagnostic is emitted and false
4343 /// returned. If completing the type succeeds or no completion was required,
4344 /// returns true.
CheckUnaryTypeTraitTypeCompleteness(Sema & S,TypeTrait UTT,SourceLocation Loc,QualType ArgTy)4345 static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT,
4346                                                 SourceLocation Loc,
4347                                                 QualType ArgTy) {
4348   // C++0x [meta.unary.prop]p3:
4349   //   For all of the class templates X declared in this Clause, instantiating
4350   //   that template with a template argument that is a class template
4351   //   specialization may result in the implicit instantiation of the template
4352   //   argument if and only if the semantics of X require that the argument
4353   //   must be a complete type.
4354   // We apply this rule to all the type trait expressions used to implement
4355   // these class templates. We also try to follow any GCC documented behavior
4356   // in these expressions to ensure portability of standard libraries.
4357   switch (UTT) {
4358   default: llvm_unreachable("not a UTT");
4359     // is_complete_type somewhat obviously cannot require a complete type.
4360   case UTT_IsCompleteType:
4361     // Fall-through
4362 
4363     // These traits are modeled on the type predicates in C++0x
4364     // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
4365     // requiring a complete type, as whether or not they return true cannot be
4366     // impacted by the completeness of the type.
4367   case UTT_IsVoid:
4368   case UTT_IsIntegral:
4369   case UTT_IsFloatingPoint:
4370   case UTT_IsArray:
4371   case UTT_IsPointer:
4372   case UTT_IsLvalueReference:
4373   case UTT_IsRvalueReference:
4374   case UTT_IsMemberFunctionPointer:
4375   case UTT_IsMemberObjectPointer:
4376   case UTT_IsEnum:
4377   case UTT_IsUnion:
4378   case UTT_IsClass:
4379   case UTT_IsFunction:
4380   case UTT_IsReference:
4381   case UTT_IsArithmetic:
4382   case UTT_IsFundamental:
4383   case UTT_IsObject:
4384   case UTT_IsScalar:
4385   case UTT_IsCompound:
4386   case UTT_IsMemberPointer:
4387     // Fall-through
4388 
4389     // These traits are modeled on type predicates in C++0x [meta.unary.prop]
4390     // which requires some of its traits to have the complete type. However,
4391     // the completeness of the type cannot impact these traits' semantics, and
4392     // so they don't require it. This matches the comments on these traits in
4393     // Table 49.
4394   case UTT_IsConst:
4395   case UTT_IsVolatile:
4396   case UTT_IsSigned:
4397   case UTT_IsUnsigned:
4398 
4399   // This type trait always returns false, checking the type is moot.
4400   case UTT_IsInterfaceClass:
4401     return true;
4402 
4403   // C++14 [meta.unary.prop]:
4404   //   If T is a non-union class type, T shall be a complete type.
4405   case UTT_IsEmpty:
4406   case UTT_IsPolymorphic:
4407   case UTT_IsAbstract:
4408     if (const auto *RD = ArgTy->getAsCXXRecordDecl())
4409       if (!RD->isUnion())
4410         return !S.RequireCompleteType(
4411             Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4412     return true;
4413 
4414   // C++14 [meta.unary.prop]:
4415   //   If T is a class type, T shall be a complete type.
4416   case UTT_IsFinal:
4417   case UTT_IsSealed:
4418     if (ArgTy->getAsCXXRecordDecl())
4419       return !S.RequireCompleteType(
4420           Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4421     return true;
4422 
4423   // C++1z [meta.unary.prop]:
4424   //   remove_all_extents_t<T> shall be a complete type or cv void.
4425   case UTT_IsAggregate:
4426   case UTT_IsTrivial:
4427   case UTT_IsTriviallyCopyable:
4428   case UTT_IsStandardLayout:
4429   case UTT_IsPOD:
4430   case UTT_IsLiteral:
4431   // Per the GCC type traits documentation, T shall be a complete type, cv void,
4432   // or an array of unknown bound. But GCC actually imposes the same constraints
4433   // as above.
4434   case UTT_HasNothrowAssign:
4435   case UTT_HasNothrowMoveAssign:
4436   case UTT_HasNothrowConstructor:
4437   case UTT_HasNothrowCopy:
4438   case UTT_HasTrivialAssign:
4439   case UTT_HasTrivialMoveAssign:
4440   case UTT_HasTrivialDefaultConstructor:
4441   case UTT_HasTrivialMoveConstructor:
4442   case UTT_HasTrivialCopy:
4443   case UTT_HasTrivialDestructor:
4444   case UTT_HasVirtualDestructor:
4445     ArgTy = QualType(ArgTy->getBaseElementTypeUnsafe(), 0);
4446     LLVM_FALLTHROUGH;
4447 
4448   // C++1z [meta.unary.prop]:
4449   //   T shall be a complete type, cv void, or an array of unknown bound.
4450   case UTT_IsDestructible:
4451   case UTT_IsNothrowDestructible:
4452   case UTT_IsTriviallyDestructible:
4453   case UTT_HasUniqueObjectRepresentations:
4454     if (ArgTy->isIncompleteArrayType() || ArgTy->isVoidType())
4455       return true;
4456 
4457     return !S.RequireCompleteType(
4458         Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4459   }
4460 }
4461 
HasNoThrowOperator(const RecordType * RT,OverloadedOperatorKind Op,Sema & Self,SourceLocation KeyLoc,ASTContext & C,bool (CXXRecordDecl::* HasTrivial)()const,bool (CXXRecordDecl::* HasNonTrivial)()const,bool (CXXMethodDecl::* IsDesiredOp)()const)4462 static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op,
4463                                Sema &Self, SourceLocation KeyLoc, ASTContext &C,
4464                                bool (CXXRecordDecl::*HasTrivial)() const,
4465                                bool (CXXRecordDecl::*HasNonTrivial)() const,
4466                                bool (CXXMethodDecl::*IsDesiredOp)() const)
4467 {
4468   CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4469   if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)())
4470     return true;
4471 
4472   DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op);
4473   DeclarationNameInfo NameInfo(Name, KeyLoc);
4474   LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName);
4475   if (Self.LookupQualifiedName(Res, RD)) {
4476     bool FoundOperator = false;
4477     Res.suppressDiagnostics();
4478     for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
4479          Op != OpEnd; ++Op) {
4480       if (isa<FunctionTemplateDecl>(*Op))
4481         continue;
4482 
4483       CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
4484       if((Operator->*IsDesiredOp)()) {
4485         FoundOperator = true;
4486         const FunctionProtoType *CPT =
4487           Operator->getType()->getAs<FunctionProtoType>();
4488         CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
4489         if (!CPT || !CPT->isNothrow())
4490           return false;
4491       }
4492     }
4493     return FoundOperator;
4494   }
4495   return false;
4496 }
4497 
EvaluateUnaryTypeTrait(Sema & Self,TypeTrait UTT,SourceLocation KeyLoc,QualType T)4498 static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT,
4499                                    SourceLocation KeyLoc, QualType T) {
4500   assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
4501 
4502   ASTContext &C = Self.Context;
4503   switch(UTT) {
4504   default: llvm_unreachable("not a UTT");
4505     // Type trait expressions corresponding to the primary type category
4506     // predicates in C++0x [meta.unary.cat].
4507   case UTT_IsVoid:
4508     return T->isVoidType();
4509   case UTT_IsIntegral:
4510     return T->isIntegralType(C);
4511   case UTT_IsFloatingPoint:
4512     return T->isFloatingType();
4513   case UTT_IsArray:
4514     return T->isArrayType();
4515   case UTT_IsPointer:
4516     return T->isPointerType();
4517   case UTT_IsLvalueReference:
4518     return T->isLValueReferenceType();
4519   case UTT_IsRvalueReference:
4520     return T->isRValueReferenceType();
4521   case UTT_IsMemberFunctionPointer:
4522     return T->isMemberFunctionPointerType();
4523   case UTT_IsMemberObjectPointer:
4524     return T->isMemberDataPointerType();
4525   case UTT_IsEnum:
4526     return T->isEnumeralType();
4527   case UTT_IsUnion:
4528     return T->isUnionType();
4529   case UTT_IsClass:
4530     return T->isClassType() || T->isStructureType() || T->isInterfaceType();
4531   case UTT_IsFunction:
4532     return T->isFunctionType();
4533 
4534     // Type trait expressions which correspond to the convenient composition
4535     // predicates in C++0x [meta.unary.comp].
4536   case UTT_IsReference:
4537     return T->isReferenceType();
4538   case UTT_IsArithmetic:
4539     return T->isArithmeticType() && !T->isEnumeralType();
4540   case UTT_IsFundamental:
4541     return T->isFundamentalType();
4542   case UTT_IsObject:
4543     return T->isObjectType();
4544   case UTT_IsScalar:
4545     // Note: semantic analysis depends on Objective-C lifetime types to be
4546     // considered scalar types. However, such types do not actually behave
4547     // like scalar types at run time (since they may require retain/release
4548     // operations), so we report them as non-scalar.
4549     if (T->isObjCLifetimeType()) {
4550       switch (T.getObjCLifetime()) {
4551       case Qualifiers::OCL_None:
4552       case Qualifiers::OCL_ExplicitNone:
4553         return true;
4554 
4555       case Qualifiers::OCL_Strong:
4556       case Qualifiers::OCL_Weak:
4557       case Qualifiers::OCL_Autoreleasing:
4558         return false;
4559       }
4560     }
4561 
4562     return T->isScalarType();
4563   case UTT_IsCompound:
4564     return T->isCompoundType();
4565   case UTT_IsMemberPointer:
4566     return T->isMemberPointerType();
4567 
4568     // Type trait expressions which correspond to the type property predicates
4569     // in C++0x [meta.unary.prop].
4570   case UTT_IsConst:
4571     return T.isConstQualified();
4572   case UTT_IsVolatile:
4573     return T.isVolatileQualified();
4574   case UTT_IsTrivial:
4575     return T.isTrivialType(C);
4576   case UTT_IsTriviallyCopyable:
4577     return T.isTriviallyCopyableType(C);
4578   case UTT_IsStandardLayout:
4579     return T->isStandardLayoutType();
4580   case UTT_IsPOD:
4581     return T.isPODType(C);
4582   case UTT_IsLiteral:
4583     return T->isLiteralType(C);
4584   case UTT_IsEmpty:
4585     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4586       return !RD->isUnion() && RD->isEmpty();
4587     return false;
4588   case UTT_IsPolymorphic:
4589     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4590       return !RD->isUnion() && RD->isPolymorphic();
4591     return false;
4592   case UTT_IsAbstract:
4593     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4594       return !RD->isUnion() && RD->isAbstract();
4595     return false;
4596   case UTT_IsAggregate:
4597     // Report vector extensions and complex types as aggregates because they
4598     // support aggregate initialization. GCC mirrors this behavior for vectors
4599     // but not _Complex.
4600     return T->isAggregateType() || T->isVectorType() || T->isExtVectorType() ||
4601            T->isAnyComplexType();
4602   // __is_interface_class only returns true when CL is invoked in /CLR mode and
4603   // even then only when it is used with the 'interface struct ...' syntax
4604   // Clang doesn't support /CLR which makes this type trait moot.
4605   case UTT_IsInterfaceClass:
4606     return false;
4607   case UTT_IsFinal:
4608   case UTT_IsSealed:
4609     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4610       return RD->hasAttr<FinalAttr>();
4611     return false;
4612   case UTT_IsSigned:
4613     return T->isSignedIntegerType();
4614   case UTT_IsUnsigned:
4615     return T->isUnsignedIntegerType();
4616 
4617     // Type trait expressions which query classes regarding their construction,
4618     // destruction, and copying. Rather than being based directly on the
4619     // related type predicates in the standard, they are specified by both
4620     // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
4621     // specifications.
4622     //
4623     //   1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
4624     //   2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
4625     //
4626     // Note that these builtins do not behave as documented in g++: if a class
4627     // has both a trivial and a non-trivial special member of a particular kind,
4628     // they return false! For now, we emulate this behavior.
4629     // FIXME: This appears to be a g++ bug: more complex cases reveal that it
4630     // does not correctly compute triviality in the presence of multiple special
4631     // members of the same kind. Revisit this once the g++ bug is fixed.
4632   case UTT_HasTrivialDefaultConstructor:
4633     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4634     //   If __is_pod (type) is true then the trait is true, else if type is
4635     //   a cv class or union type (or array thereof) with a trivial default
4636     //   constructor ([class.ctor]) then the trait is true, else it is false.
4637     if (T.isPODType(C))
4638       return true;
4639     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4640       return RD->hasTrivialDefaultConstructor() &&
4641              !RD->hasNonTrivialDefaultConstructor();
4642     return false;
4643   case UTT_HasTrivialMoveConstructor:
4644     //  This trait is implemented by MSVC 2012 and needed to parse the
4645     //  standard library headers. Specifically this is used as the logic
4646     //  behind std::is_trivially_move_constructible (20.9.4.3).
4647     if (T.isPODType(C))
4648       return true;
4649     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4650       return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor();
4651     return false;
4652   case UTT_HasTrivialCopy:
4653     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4654     //   If __is_pod (type) is true or type is a reference type then
4655     //   the trait is true, else if type is a cv class or union type
4656     //   with a trivial copy constructor ([class.copy]) then the trait
4657     //   is true, else it is false.
4658     if (T.isPODType(C) || T->isReferenceType())
4659       return true;
4660     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4661       return RD->hasTrivialCopyConstructor() &&
4662              !RD->hasNonTrivialCopyConstructor();
4663     return false;
4664   case UTT_HasTrivialMoveAssign:
4665     //  This trait is implemented by MSVC 2012 and needed to parse the
4666     //  standard library headers. Specifically it is used as the logic
4667     //  behind std::is_trivially_move_assignable (20.9.4.3)
4668     if (T.isPODType(C))
4669       return true;
4670     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4671       return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment();
4672     return false;
4673   case UTT_HasTrivialAssign:
4674     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4675     //   If type is const qualified or is a reference type then the
4676     //   trait is false. Otherwise if __is_pod (type) is true then the
4677     //   trait is true, else if type is a cv class or union type with
4678     //   a trivial copy assignment ([class.copy]) then the trait is
4679     //   true, else it is false.
4680     // Note: the const and reference restrictions are interesting,
4681     // given that const and reference members don't prevent a class
4682     // from having a trivial copy assignment operator (but do cause
4683     // errors if the copy assignment operator is actually used, q.v.
4684     // [class.copy]p12).
4685 
4686     if (T.isConstQualified())
4687       return false;
4688     if (T.isPODType(C))
4689       return true;
4690     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4691       return RD->hasTrivialCopyAssignment() &&
4692              !RD->hasNonTrivialCopyAssignment();
4693     return false;
4694   case UTT_IsDestructible:
4695   case UTT_IsTriviallyDestructible:
4696   case UTT_IsNothrowDestructible:
4697     // C++14 [meta.unary.prop]:
4698     //   For reference types, is_destructible<T>::value is true.
4699     if (T->isReferenceType())
4700       return true;
4701 
4702     // Objective-C++ ARC: autorelease types don't require destruction.
4703     if (T->isObjCLifetimeType() &&
4704         T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
4705       return true;
4706 
4707     // C++14 [meta.unary.prop]:
4708     //   For incomplete types and function types, is_destructible<T>::value is
4709     //   false.
4710     if (T->isIncompleteType() || T->isFunctionType())
4711       return false;
4712 
4713     // A type that requires destruction (via a non-trivial destructor or ARC
4714     // lifetime semantics) is not trivially-destructible.
4715     if (UTT == UTT_IsTriviallyDestructible && T.isDestructedType())
4716       return false;
4717 
4718     // C++14 [meta.unary.prop]:
4719     //   For object types and given U equal to remove_all_extents_t<T>, if the
4720     //   expression std::declval<U&>().~U() is well-formed when treated as an
4721     //   unevaluated operand (Clause 5), then is_destructible<T>::value is true
4722     if (auto *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
4723       CXXDestructorDecl *Destructor = Self.LookupDestructor(RD);
4724       if (!Destructor)
4725         return false;
4726       //  C++14 [dcl.fct.def.delete]p2:
4727       //    A program that refers to a deleted function implicitly or
4728       //    explicitly, other than to declare it, is ill-formed.
4729       if (Destructor->isDeleted())
4730         return false;
4731       if (C.getLangOpts().AccessControl && Destructor->getAccess() != AS_public)
4732         return false;
4733       if (UTT == UTT_IsNothrowDestructible) {
4734         const FunctionProtoType *CPT =
4735             Destructor->getType()->getAs<FunctionProtoType>();
4736         CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
4737         if (!CPT || !CPT->isNothrow())
4738           return false;
4739       }
4740     }
4741     return true;
4742 
4743   case UTT_HasTrivialDestructor:
4744     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
4745     //   If __is_pod (type) is true or type is a reference type
4746     //   then the trait is true, else if type is a cv class or union
4747     //   type (or array thereof) with a trivial destructor
4748     //   ([class.dtor]) then the trait is true, else it is
4749     //   false.
4750     if (T.isPODType(C) || T->isReferenceType())
4751       return true;
4752 
4753     // Objective-C++ ARC: autorelease types don't require destruction.
4754     if (T->isObjCLifetimeType() &&
4755         T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
4756       return true;
4757 
4758     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4759       return RD->hasTrivialDestructor();
4760     return false;
4761   // TODO: Propagate nothrowness for implicitly declared special members.
4762   case UTT_HasNothrowAssign:
4763     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4764     //   If type is const qualified or is a reference type then the
4765     //   trait is false. Otherwise if __has_trivial_assign (type)
4766     //   is true then the trait is true, else if type is a cv class
4767     //   or union type with copy assignment operators that are known
4768     //   not to throw an exception then the trait is true, else it is
4769     //   false.
4770     if (C.getBaseElementType(T).isConstQualified())
4771       return false;
4772     if (T->isReferenceType())
4773       return false;
4774     if (T.isPODType(C) || T->isObjCLifetimeType())
4775       return true;
4776 
4777     if (const RecordType *RT = T->getAs<RecordType>())
4778       return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
4779                                 &CXXRecordDecl::hasTrivialCopyAssignment,
4780                                 &CXXRecordDecl::hasNonTrivialCopyAssignment,
4781                                 &CXXMethodDecl::isCopyAssignmentOperator);
4782     return false;
4783   case UTT_HasNothrowMoveAssign:
4784     //  This trait is implemented by MSVC 2012 and needed to parse the
4785     //  standard library headers. Specifically this is used as the logic
4786     //  behind std::is_nothrow_move_assignable (20.9.4.3).
4787     if (T.isPODType(C))
4788       return true;
4789 
4790     if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>())
4791       return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
4792                                 &CXXRecordDecl::hasTrivialMoveAssignment,
4793                                 &CXXRecordDecl::hasNonTrivialMoveAssignment,
4794                                 &CXXMethodDecl::isMoveAssignmentOperator);
4795     return false;
4796   case UTT_HasNothrowCopy:
4797     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4798     //   If __has_trivial_copy (type) is true then the trait is true, else
4799     //   if type is a cv class or union type with copy constructors that are
4800     //   known not to throw an exception then the trait is true, else it is
4801     //   false.
4802     if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
4803       return true;
4804     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
4805       if (RD->hasTrivialCopyConstructor() &&
4806           !RD->hasNonTrivialCopyConstructor())
4807         return true;
4808 
4809       bool FoundConstructor = false;
4810       unsigned FoundTQs;
4811       for (const auto *ND : Self.LookupConstructors(RD)) {
4812         // A template constructor is never a copy constructor.
4813         // FIXME: However, it may actually be selected at the actual overload
4814         // resolution point.
4815         if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl()))
4816           continue;
4817         // UsingDecl itself is not a constructor
4818         if (isa<UsingDecl>(ND))
4819           continue;
4820         auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl());
4821         if (Constructor->isCopyConstructor(FoundTQs)) {
4822           FoundConstructor = true;
4823           const FunctionProtoType *CPT
4824               = Constructor->getType()->getAs<FunctionProtoType>();
4825           CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
4826           if (!CPT)
4827             return false;
4828           // TODO: check whether evaluating default arguments can throw.
4829           // For now, we'll be conservative and assume that they can throw.
4830           if (!CPT->isNothrow() || CPT->getNumParams() > 1)
4831             return false;
4832         }
4833       }
4834 
4835       return FoundConstructor;
4836     }
4837     return false;
4838   case UTT_HasNothrowConstructor:
4839     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
4840     //   If __has_trivial_constructor (type) is true then the trait is
4841     //   true, else if type is a cv class or union type (or array
4842     //   thereof) with a default constructor that is known not to
4843     //   throw an exception then the trait is true, else it is false.
4844     if (T.isPODType(C) || T->isObjCLifetimeType())
4845       return true;
4846     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
4847       if (RD->hasTrivialDefaultConstructor() &&
4848           !RD->hasNonTrivialDefaultConstructor())
4849         return true;
4850 
4851       bool FoundConstructor = false;
4852       for (const auto *ND : Self.LookupConstructors(RD)) {
4853         // FIXME: In C++0x, a constructor template can be a default constructor.
4854         if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl()))
4855           continue;
4856         // UsingDecl itself is not a constructor
4857         if (isa<UsingDecl>(ND))
4858           continue;
4859         auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl());
4860         if (Constructor->isDefaultConstructor()) {
4861           FoundConstructor = true;
4862           const FunctionProtoType *CPT
4863               = Constructor->getType()->getAs<FunctionProtoType>();
4864           CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
4865           if (!CPT)
4866             return false;
4867           // FIXME: check whether evaluating default arguments can throw.
4868           // For now, we'll be conservative and assume that they can throw.
4869           if (!CPT->isNothrow() || CPT->getNumParams() > 0)
4870             return false;
4871         }
4872       }
4873       return FoundConstructor;
4874     }
4875     return false;
4876   case UTT_HasVirtualDestructor:
4877     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4878     //   If type is a class type with a virtual destructor ([class.dtor])
4879     //   then the trait is true, else it is false.
4880     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4881       if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
4882         return Destructor->isVirtual();
4883     return false;
4884 
4885     // These type trait expressions are modeled on the specifications for the
4886     // Embarcadero C++0x type trait functions:
4887     //   http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
4888   case UTT_IsCompleteType:
4889     // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
4890     //   Returns True if and only if T is a complete type at the point of the
4891     //   function call.
4892     return !T->isIncompleteType();
4893   case UTT_HasUniqueObjectRepresentations:
4894     return C.hasUniqueObjectRepresentations(T);
4895   }
4896 }
4897 
4898 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
4899                                     QualType RhsT, SourceLocation KeyLoc);
4900 
evaluateTypeTrait(Sema & S,TypeTrait Kind,SourceLocation KWLoc,ArrayRef<TypeSourceInfo * > Args,SourceLocation RParenLoc)4901 static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc,
4902                               ArrayRef<TypeSourceInfo *> Args,
4903                               SourceLocation RParenLoc) {
4904   if (Kind <= UTT_Last)
4905     return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]->getType());
4906 
4907   // Evaluate BTT_ReferenceBindsToTemporary alongside the IsConstructible
4908   // traits to avoid duplication.
4909   if (Kind <= BTT_Last && Kind != BTT_ReferenceBindsToTemporary)
4910     return EvaluateBinaryTypeTrait(S, Kind, Args[0]->getType(),
4911                                    Args[1]->getType(), RParenLoc);
4912 
4913   switch (Kind) {
4914   case clang::BTT_ReferenceBindsToTemporary:
4915   case clang::TT_IsConstructible:
4916   case clang::TT_IsNothrowConstructible:
4917   case clang::TT_IsTriviallyConstructible: {
4918     // C++11 [meta.unary.prop]:
4919     //   is_trivially_constructible is defined as:
4920     //
4921     //     is_constructible<T, Args...>::value is true and the variable
4922     //     definition for is_constructible, as defined below, is known to call
4923     //     no operation that is not trivial.
4924     //
4925     //   The predicate condition for a template specialization
4926     //   is_constructible<T, Args...> shall be satisfied if and only if the
4927     //   following variable definition would be well-formed for some invented
4928     //   variable t:
4929     //
4930     //     T t(create<Args>()...);
4931     assert(!Args.empty());
4932 
4933     // Precondition: T and all types in the parameter pack Args shall be
4934     // complete types, (possibly cv-qualified) void, or arrays of
4935     // unknown bound.
4936     for (const auto *TSI : Args) {
4937       QualType ArgTy = TSI->getType();
4938       if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType())
4939         continue;
4940 
4941       if (S.RequireCompleteType(KWLoc, ArgTy,
4942           diag::err_incomplete_type_used_in_type_trait_expr))
4943         return false;
4944     }
4945 
4946     // Make sure the first argument is not incomplete nor a function type.
4947     QualType T = Args[0]->getType();
4948     if (T->isIncompleteType() || T->isFunctionType())
4949       return false;
4950 
4951     // Make sure the first argument is not an abstract type.
4952     CXXRecordDecl *RD = T->getAsCXXRecordDecl();
4953     if (RD && RD->isAbstract())
4954       return false;
4955 
4956     SmallVector<OpaqueValueExpr, 2> OpaqueArgExprs;
4957     SmallVector<Expr *, 2> ArgExprs;
4958     ArgExprs.reserve(Args.size() - 1);
4959     for (unsigned I = 1, N = Args.size(); I != N; ++I) {
4960       QualType ArgTy = Args[I]->getType();
4961       if (ArgTy->isObjectType() || ArgTy->isFunctionType())
4962         ArgTy = S.Context.getRValueReferenceType(ArgTy);
4963       OpaqueArgExprs.push_back(
4964           OpaqueValueExpr(Args[I]->getTypeLoc().getBeginLoc(),
4965                           ArgTy.getNonLValueExprType(S.Context),
4966                           Expr::getValueKindForType(ArgTy)));
4967     }
4968     for (Expr &E : OpaqueArgExprs)
4969       ArgExprs.push_back(&E);
4970 
4971     // Perform the initialization in an unevaluated context within a SFINAE
4972     // trap at translation unit scope.
4973     EnterExpressionEvaluationContext Unevaluated(
4974         S, Sema::ExpressionEvaluationContext::Unevaluated);
4975     Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
4976     Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
4977     InitializedEntity To(InitializedEntity::InitializeTemporary(Args[0]));
4978     InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc,
4979                                                                  RParenLoc));
4980     InitializationSequence Init(S, To, InitKind, ArgExprs);
4981     if (Init.Failed())
4982       return false;
4983 
4984     ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs);
4985     if (Result.isInvalid() || SFINAE.hasErrorOccurred())
4986       return false;
4987 
4988     if (Kind == clang::TT_IsConstructible)
4989       return true;
4990 
4991     if (Kind == clang::BTT_ReferenceBindsToTemporary) {
4992       if (!T->isReferenceType())
4993         return false;
4994 
4995       return !Init.isDirectReferenceBinding();
4996     }
4997 
4998     if (Kind == clang::TT_IsNothrowConstructible)
4999       return S.canThrow(Result.get()) == CT_Cannot;
5000 
5001     if (Kind == clang::TT_IsTriviallyConstructible) {
5002       // Under Objective-C ARC and Weak, if the destination has non-trivial
5003       // Objective-C lifetime, this is a non-trivial construction.
5004       if (T.getNonReferenceType().hasNonTrivialObjCLifetime())
5005         return false;
5006 
5007       // The initialization succeeded; now make sure there are no non-trivial
5008       // calls.
5009       return !Result.get()->hasNonTrivialCall(S.Context);
5010     }
5011 
5012     llvm_unreachable("unhandled type trait");
5013     return false;
5014   }
5015     default: llvm_unreachable("not a TT");
5016   }
5017 
5018   return false;
5019 }
5020 
BuildTypeTrait(TypeTrait Kind,SourceLocation KWLoc,ArrayRef<TypeSourceInfo * > Args,SourceLocation RParenLoc)5021 ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
5022                                 ArrayRef<TypeSourceInfo *> Args,
5023                                 SourceLocation RParenLoc) {
5024   QualType ResultType = Context.getLogicalOperationType();
5025 
5026   if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness(
5027                                *this, Kind, KWLoc, Args[0]->getType()))
5028     return ExprError();
5029 
5030   bool Dependent = false;
5031   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
5032     if (Args[I]->getType()->isDependentType()) {
5033       Dependent = true;
5034       break;
5035     }
5036   }
5037 
5038   bool Result = false;
5039   if (!Dependent)
5040     Result = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc);
5041 
5042   return TypeTraitExpr::Create(Context, ResultType, KWLoc, Kind, Args,
5043                                RParenLoc, Result);
5044 }
5045 
ActOnTypeTrait(TypeTrait Kind,SourceLocation KWLoc,ArrayRef<ParsedType> Args,SourceLocation RParenLoc)5046 ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
5047                                 ArrayRef<ParsedType> Args,
5048                                 SourceLocation RParenLoc) {
5049   SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
5050   ConvertedArgs.reserve(Args.size());
5051 
5052   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
5053     TypeSourceInfo *TInfo;
5054     QualType T = GetTypeFromParser(Args[I], &TInfo);
5055     if (!TInfo)
5056       TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc);
5057 
5058     ConvertedArgs.push_back(TInfo);
5059   }
5060 
5061   return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc);
5062 }
5063 
EvaluateBinaryTypeTrait(Sema & Self,TypeTrait BTT,QualType LhsT,QualType RhsT,SourceLocation KeyLoc)5064 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
5065                                     QualType RhsT, SourceLocation KeyLoc) {
5066   assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&
5067          "Cannot evaluate traits of dependent types");
5068 
5069   switch(BTT) {
5070   case BTT_IsBaseOf: {
5071     // C++0x [meta.rel]p2
5072     // Base is a base class of Derived without regard to cv-qualifiers or
5073     // Base and Derived are not unions and name the same class type without
5074     // regard to cv-qualifiers.
5075 
5076     const RecordType *lhsRecord = LhsT->getAs<RecordType>();
5077     const RecordType *rhsRecord = RhsT->getAs<RecordType>();
5078     if (!rhsRecord || !lhsRecord) {
5079       const ObjCObjectType *LHSObjTy = LhsT->getAs<ObjCObjectType>();
5080       const ObjCObjectType *RHSObjTy = RhsT->getAs<ObjCObjectType>();
5081       if (!LHSObjTy || !RHSObjTy)
5082         return false;
5083 
5084       ObjCInterfaceDecl *BaseInterface = LHSObjTy->getInterface();
5085       ObjCInterfaceDecl *DerivedInterface = RHSObjTy->getInterface();
5086       if (!BaseInterface || !DerivedInterface)
5087         return false;
5088 
5089       if (Self.RequireCompleteType(
5090               KeyLoc, RhsT, diag::err_incomplete_type_used_in_type_trait_expr))
5091         return false;
5092 
5093       return BaseInterface->isSuperClassOf(DerivedInterface);
5094     }
5095 
5096     assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
5097              == (lhsRecord == rhsRecord));
5098 
5099     if (lhsRecord == rhsRecord)
5100       return !lhsRecord->getDecl()->isUnion();
5101 
5102     // C++0x [meta.rel]p2:
5103     //   If Base and Derived are class types and are different types
5104     //   (ignoring possible cv-qualifiers) then Derived shall be a
5105     //   complete type.
5106     if (Self.RequireCompleteType(KeyLoc, RhsT,
5107                           diag::err_incomplete_type_used_in_type_trait_expr))
5108       return false;
5109 
5110     return cast<CXXRecordDecl>(rhsRecord->getDecl())
5111       ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
5112   }
5113   case BTT_IsSame:
5114     return Self.Context.hasSameType(LhsT, RhsT);
5115   case BTT_TypeCompatible: {
5116     // GCC ignores cv-qualifiers on arrays for this builtin.
5117     Qualifiers LhsQuals, RhsQuals;
5118     QualType Lhs = Self.getASTContext().getUnqualifiedArrayType(LhsT, LhsQuals);
5119     QualType Rhs = Self.getASTContext().getUnqualifiedArrayType(RhsT, RhsQuals);
5120     return Self.Context.typesAreCompatible(Lhs, Rhs);
5121   }
5122   case BTT_IsConvertible:
5123   case BTT_IsConvertibleTo: {
5124     // C++0x [meta.rel]p4:
5125     //   Given the following function prototype:
5126     //
5127     //     template <class T>
5128     //       typename add_rvalue_reference<T>::type create();
5129     //
5130     //   the predicate condition for a template specialization
5131     //   is_convertible<From, To> shall be satisfied if and only if
5132     //   the return expression in the following code would be
5133     //   well-formed, including any implicit conversions to the return
5134     //   type of the function:
5135     //
5136     //     To test() {
5137     //       return create<From>();
5138     //     }
5139     //
5140     //   Access checking is performed as if in a context unrelated to To and
5141     //   From. Only the validity of the immediate context of the expression
5142     //   of the return-statement (including conversions to the return type)
5143     //   is considered.
5144     //
5145     // We model the initialization as a copy-initialization of a temporary
5146     // of the appropriate type, which for this expression is identical to the
5147     // return statement (since NRVO doesn't apply).
5148 
5149     // Functions aren't allowed to return function or array types.
5150     if (RhsT->isFunctionType() || RhsT->isArrayType())
5151       return false;
5152 
5153     // A return statement in a void function must have void type.
5154     if (RhsT->isVoidType())
5155       return LhsT->isVoidType();
5156 
5157     // A function definition requires a complete, non-abstract return type.
5158     if (!Self.isCompleteType(KeyLoc, RhsT) || Self.isAbstractType(KeyLoc, RhsT))
5159       return false;
5160 
5161     // Compute the result of add_rvalue_reference.
5162     if (LhsT->isObjectType() || LhsT->isFunctionType())
5163       LhsT = Self.Context.getRValueReferenceType(LhsT);
5164 
5165     // Build a fake source and destination for initialization.
5166     InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
5167     OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
5168                          Expr::getValueKindForType(LhsT));
5169     Expr *FromPtr = &From;
5170     InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
5171                                                            SourceLocation()));
5172 
5173     // Perform the initialization in an unevaluated context within a SFINAE
5174     // trap at translation unit scope.
5175     EnterExpressionEvaluationContext Unevaluated(
5176         Self, Sema::ExpressionEvaluationContext::Unevaluated);
5177     Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
5178     Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
5179     InitializationSequence Init(Self, To, Kind, FromPtr);
5180     if (Init.Failed())
5181       return false;
5182 
5183     ExprResult Result = Init.Perform(Self, To, Kind, FromPtr);
5184     return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
5185   }
5186 
5187   case BTT_IsAssignable:
5188   case BTT_IsNothrowAssignable:
5189   case BTT_IsTriviallyAssignable: {
5190     // C++11 [meta.unary.prop]p3:
5191     //   is_trivially_assignable is defined as:
5192     //     is_assignable<T, U>::value is true and the assignment, as defined by
5193     //     is_assignable, is known to call no operation that is not trivial
5194     //
5195     //   is_assignable is defined as:
5196     //     The expression declval<T>() = declval<U>() is well-formed when
5197     //     treated as an unevaluated operand (Clause 5).
5198     //
5199     //   For both, T and U shall be complete types, (possibly cv-qualified)
5200     //   void, or arrays of unknown bound.
5201     if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
5202         Self.RequireCompleteType(KeyLoc, LhsT,
5203           diag::err_incomplete_type_used_in_type_trait_expr))
5204       return false;
5205     if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
5206         Self.RequireCompleteType(KeyLoc, RhsT,
5207           diag::err_incomplete_type_used_in_type_trait_expr))
5208       return false;
5209 
5210     // cv void is never assignable.
5211     if (LhsT->isVoidType() || RhsT->isVoidType())
5212       return false;
5213 
5214     // Build expressions that emulate the effect of declval<T>() and
5215     // declval<U>().
5216     if (LhsT->isObjectType() || LhsT->isFunctionType())
5217       LhsT = Self.Context.getRValueReferenceType(LhsT);
5218     if (RhsT->isObjectType() || RhsT->isFunctionType())
5219       RhsT = Self.Context.getRValueReferenceType(RhsT);
5220     OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
5221                         Expr::getValueKindForType(LhsT));
5222     OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context),
5223                         Expr::getValueKindForType(RhsT));
5224 
5225     // Attempt the assignment in an unevaluated context within a SFINAE
5226     // trap at translation unit scope.
5227     EnterExpressionEvaluationContext Unevaluated(
5228         Self, Sema::ExpressionEvaluationContext::Unevaluated);
5229     Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
5230     Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
5231     ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs,
5232                                         &Rhs);
5233     if (Result.isInvalid() || SFINAE.hasErrorOccurred())
5234       return false;
5235 
5236     if (BTT == BTT_IsAssignable)
5237       return true;
5238 
5239     if (BTT == BTT_IsNothrowAssignable)
5240       return Self.canThrow(Result.get()) == CT_Cannot;
5241 
5242     if (BTT == BTT_IsTriviallyAssignable) {
5243       // Under Objective-C ARC and Weak, if the destination has non-trivial
5244       // Objective-C lifetime, this is a non-trivial assignment.
5245       if (LhsT.getNonReferenceType().hasNonTrivialObjCLifetime())
5246         return false;
5247 
5248       return !Result.get()->hasNonTrivialCall(Self.Context);
5249     }
5250 
5251     llvm_unreachable("unhandled type trait");
5252     return false;
5253   }
5254     default: llvm_unreachable("not a BTT");
5255   }
5256   llvm_unreachable("Unknown type trait or not implemented");
5257 }
5258 
ActOnArrayTypeTrait(ArrayTypeTrait ATT,SourceLocation KWLoc,ParsedType Ty,Expr * DimExpr,SourceLocation RParen)5259 ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
5260                                      SourceLocation KWLoc,
5261                                      ParsedType Ty,
5262                                      Expr* DimExpr,
5263                                      SourceLocation RParen) {
5264   TypeSourceInfo *TSInfo;
5265   QualType T = GetTypeFromParser(Ty, &TSInfo);
5266   if (!TSInfo)
5267     TSInfo = Context.getTrivialTypeSourceInfo(T);
5268 
5269   return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
5270 }
5271 
EvaluateArrayTypeTrait(Sema & Self,ArrayTypeTrait ATT,QualType T,Expr * DimExpr,SourceLocation KeyLoc)5272 static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
5273                                            QualType T, Expr *DimExpr,
5274                                            SourceLocation KeyLoc) {
5275   assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
5276 
5277   switch(ATT) {
5278   case ATT_ArrayRank:
5279     if (T->isArrayType()) {
5280       unsigned Dim = 0;
5281       while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
5282         ++Dim;
5283         T = AT->getElementType();
5284       }
5285       return Dim;
5286     }
5287     return 0;
5288 
5289   case ATT_ArrayExtent: {
5290     llvm::APSInt Value;
5291     uint64_t Dim;
5292     if (Self.VerifyIntegerConstantExpression(DimExpr, &Value,
5293           diag::err_dimension_expr_not_constant_integer,
5294           false).isInvalid())
5295       return 0;
5296     if (Value.isSigned() && Value.isNegative()) {
5297       Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
5298         << DimExpr->getSourceRange();
5299       return 0;
5300     }
5301     Dim = Value.getLimitedValue();
5302 
5303     if (T->isArrayType()) {
5304       unsigned D = 0;
5305       bool Matched = false;
5306       while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
5307         if (Dim == D) {
5308           Matched = true;
5309           break;
5310         }
5311         ++D;
5312         T = AT->getElementType();
5313       }
5314 
5315       if (Matched && T->isArrayType()) {
5316         if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
5317           return CAT->getSize().getLimitedValue();
5318       }
5319     }
5320     return 0;
5321   }
5322   }
5323   llvm_unreachable("Unknown type trait or not implemented");
5324 }
5325 
BuildArrayTypeTrait(ArrayTypeTrait ATT,SourceLocation KWLoc,TypeSourceInfo * TSInfo,Expr * DimExpr,SourceLocation RParen)5326 ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
5327                                      SourceLocation KWLoc,
5328                                      TypeSourceInfo *TSInfo,
5329                                      Expr* DimExpr,
5330                                      SourceLocation RParen) {
5331   QualType T = TSInfo->getType();
5332 
5333   // FIXME: This should likely be tracked as an APInt to remove any host
5334   // assumptions about the width of size_t on the target.
5335   uint64_t Value = 0;
5336   if (!T->isDependentType())
5337     Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
5338 
5339   // While the specification for these traits from the Embarcadero C++
5340   // compiler's documentation says the return type is 'unsigned int', Clang
5341   // returns 'size_t'. On Windows, the primary platform for the Embarcadero
5342   // compiler, there is no difference. On several other platforms this is an
5343   // important distinction.
5344   return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr,
5345                                           RParen, Context.getSizeType());
5346 }
5347 
ActOnExpressionTrait(ExpressionTrait ET,SourceLocation KWLoc,Expr * Queried,SourceLocation RParen)5348 ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
5349                                       SourceLocation KWLoc,
5350                                       Expr *Queried,
5351                                       SourceLocation RParen) {
5352   // If error parsing the expression, ignore.
5353   if (!Queried)
5354     return ExprError();
5355 
5356   ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
5357 
5358   return Result;
5359 }
5360 
EvaluateExpressionTrait(ExpressionTrait ET,Expr * E)5361 static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
5362   switch (ET) {
5363   case ET_IsLValueExpr: return E->isLValue();
5364   case ET_IsRValueExpr: return E->isRValue();
5365   }
5366   llvm_unreachable("Expression trait not covered by switch");
5367 }
5368 
BuildExpressionTrait(ExpressionTrait ET,SourceLocation KWLoc,Expr * Queried,SourceLocation RParen)5369 ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
5370                                       SourceLocation KWLoc,
5371                                       Expr *Queried,
5372                                       SourceLocation RParen) {
5373   if (Queried->isTypeDependent()) {
5374     // Delay type-checking for type-dependent expressions.
5375   } else if (Queried->getType()->isPlaceholderType()) {
5376     ExprResult PE = CheckPlaceholderExpr(Queried);
5377     if (PE.isInvalid()) return ExprError();
5378     return BuildExpressionTrait(ET, KWLoc, PE.get(), RParen);
5379   }
5380 
5381   bool Value = EvaluateExpressionTrait(ET, Queried);
5382 
5383   return new (Context)
5384       ExpressionTraitExpr(KWLoc, ET, Queried, Value, RParen, Context.BoolTy);
5385 }
5386 
CheckPointerToMemberOperands(ExprResult & LHS,ExprResult & RHS,ExprValueKind & VK,SourceLocation Loc,bool isIndirect)5387 QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS,
5388                                             ExprValueKind &VK,
5389                                             SourceLocation Loc,
5390                                             bool isIndirect) {
5391   assert(!LHS.get()->getType()->isPlaceholderType() &&
5392          !RHS.get()->getType()->isPlaceholderType() &&
5393          "placeholders should have been weeded out by now");
5394 
5395   // The LHS undergoes lvalue conversions if this is ->*, and undergoes the
5396   // temporary materialization conversion otherwise.
5397   if (isIndirect)
5398     LHS = DefaultLvalueConversion(LHS.get());
5399   else if (LHS.get()->isRValue())
5400     LHS = TemporaryMaterializationConversion(LHS.get());
5401   if (LHS.isInvalid())
5402     return QualType();
5403 
5404   // The RHS always undergoes lvalue conversions.
5405   RHS = DefaultLvalueConversion(RHS.get());
5406   if (RHS.isInvalid()) return QualType();
5407 
5408   const char *OpSpelling = isIndirect ? "->*" : ".*";
5409   // C++ 5.5p2
5410   //   The binary operator .* [p3: ->*] binds its second operand, which shall
5411   //   be of type "pointer to member of T" (where T is a completely-defined
5412   //   class type) [...]
5413   QualType RHSType = RHS.get()->getType();
5414   const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>();
5415   if (!MemPtr) {
5416     Diag(Loc, diag::err_bad_memptr_rhs)
5417       << OpSpelling << RHSType << RHS.get()->getSourceRange();
5418     return QualType();
5419   }
5420 
5421   QualType Class(MemPtr->getClass(), 0);
5422 
5423   // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
5424   // member pointer points must be completely-defined. However, there is no
5425   // reason for this semantic distinction, and the rule is not enforced by
5426   // other compilers. Therefore, we do not check this property, as it is
5427   // likely to be considered a defect.
5428 
5429   // C++ 5.5p2
5430   //   [...] to its first operand, which shall be of class T or of a class of
5431   //   which T is an unambiguous and accessible base class. [p3: a pointer to
5432   //   such a class]
5433   QualType LHSType = LHS.get()->getType();
5434   if (isIndirect) {
5435     if (const PointerType *Ptr = LHSType->getAs<PointerType>())
5436       LHSType = Ptr->getPointeeType();
5437     else {
5438       Diag(Loc, diag::err_bad_memptr_lhs)
5439         << OpSpelling << 1 << LHSType
5440         << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
5441       return QualType();
5442     }
5443   }
5444 
5445   if (!Context.hasSameUnqualifiedType(Class, LHSType)) {
5446     // If we want to check the hierarchy, we need a complete type.
5447     if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs,
5448                             OpSpelling, (int)isIndirect)) {
5449       return QualType();
5450     }
5451 
5452     if (!IsDerivedFrom(Loc, LHSType, Class)) {
5453       Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
5454         << (int)isIndirect << LHS.get()->getType();
5455       return QualType();
5456     }
5457 
5458     CXXCastPath BasePath;
5459     if (CheckDerivedToBaseConversion(
5460             LHSType, Class, Loc,
5461             SourceRange(LHS.get()->getBeginLoc(), RHS.get()->getEndLoc()),
5462             &BasePath))
5463       return QualType();
5464 
5465     // Cast LHS to type of use.
5466     QualType UseType = Context.getQualifiedType(Class, LHSType.getQualifiers());
5467     if (isIndirect)
5468       UseType = Context.getPointerType(UseType);
5469     ExprValueKind VK = isIndirect ? VK_RValue : LHS.get()->getValueKind();
5470     LHS = ImpCastExprToType(LHS.get(), UseType, CK_DerivedToBase, VK,
5471                             &BasePath);
5472   }
5473 
5474   if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) {
5475     // Diagnose use of pointer-to-member type which when used as
5476     // the functional cast in a pointer-to-member expression.
5477     Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
5478      return QualType();
5479   }
5480 
5481   // C++ 5.5p2
5482   //   The result is an object or a function of the type specified by the
5483   //   second operand.
5484   // The cv qualifiers are the union of those in the pointer and the left side,
5485   // in accordance with 5.5p5 and 5.2.5.
5486   QualType Result = MemPtr->getPointeeType();
5487   Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers());
5488 
5489   // C++0x [expr.mptr.oper]p6:
5490   //   In a .* expression whose object expression is an rvalue, the program is
5491   //   ill-formed if the second operand is a pointer to member function with
5492   //   ref-qualifier &. In a ->* expression or in a .* expression whose object
5493   //   expression is an lvalue, the program is ill-formed if the second operand
5494   //   is a pointer to member function with ref-qualifier &&.
5495   if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
5496     switch (Proto->getRefQualifier()) {
5497     case RQ_None:
5498       // Do nothing
5499       break;
5500 
5501     case RQ_LValue:
5502       if (!isIndirect && !LHS.get()->Classify(Context).isLValue()) {
5503         // C++2a allows functions with ref-qualifier & if their cv-qualifier-seq
5504         // is (exactly) 'const'.
5505         if (Proto->isConst() && !Proto->isVolatile())
5506           Diag(Loc, getLangOpts().CPlusPlus2a
5507                         ? diag::warn_cxx17_compat_pointer_to_const_ref_member_on_rvalue
5508                         : diag::ext_pointer_to_const_ref_member_on_rvalue);
5509         else
5510           Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
5511               << RHSType << 1 << LHS.get()->getSourceRange();
5512       }
5513       break;
5514 
5515     case RQ_RValue:
5516       if (isIndirect || !LHS.get()->Classify(Context).isRValue())
5517         Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
5518           << RHSType << 0 << LHS.get()->getSourceRange();
5519       break;
5520     }
5521   }
5522 
5523   // C++ [expr.mptr.oper]p6:
5524   //   The result of a .* expression whose second operand is a pointer
5525   //   to a data member is of the same value category as its
5526   //   first operand. The result of a .* expression whose second
5527   //   operand is a pointer to a member function is a prvalue. The
5528   //   result of an ->* expression is an lvalue if its second operand
5529   //   is a pointer to data member and a prvalue otherwise.
5530   if (Result->isFunctionType()) {
5531     VK = VK_RValue;
5532     return Context.BoundMemberTy;
5533   } else if (isIndirect) {
5534     VK = VK_LValue;
5535   } else {
5536     VK = LHS.get()->getValueKind();
5537   }
5538 
5539   return Result;
5540 }
5541 
5542 /// Try to convert a type to another according to C++11 5.16p3.
5543 ///
5544 /// This is part of the parameter validation for the ? operator. If either
5545 /// value operand is a class type, the two operands are attempted to be
5546 /// converted to each other. This function does the conversion in one direction.
5547 /// It returns true if the program is ill-formed and has already been diagnosed
5548 /// as such.
TryClassUnification(Sema & Self,Expr * From,Expr * To,SourceLocation QuestionLoc,bool & HaveConversion,QualType & ToType)5549 static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
5550                                 SourceLocation QuestionLoc,
5551                                 bool &HaveConversion,
5552                                 QualType &ToType) {
5553   HaveConversion = false;
5554   ToType = To->getType();
5555 
5556   InitializationKind Kind =
5557       InitializationKind::CreateCopy(To->getBeginLoc(), SourceLocation());
5558   // C++11 5.16p3
5559   //   The process for determining whether an operand expression E1 of type T1
5560   //   can be converted to match an operand expression E2 of type T2 is defined
5561   //   as follows:
5562   //   -- If E2 is an lvalue: E1 can be converted to match E2 if E1 can be
5563   //      implicitly converted to type "lvalue reference to T2", subject to the
5564   //      constraint that in the conversion the reference must bind directly to
5565   //      an lvalue.
5566   //   -- If E2 is an xvalue: E1 can be converted to match E2 if E1 can be
5567   //      implicitly converted to the type "rvalue reference to R2", subject to
5568   //      the constraint that the reference must bind directly.
5569   if (To->isLValue() || To->isXValue()) {
5570     QualType T = To->isLValue() ? Self.Context.getLValueReferenceType(ToType)
5571                                 : Self.Context.getRValueReferenceType(ToType);
5572 
5573     InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
5574 
5575     InitializationSequence InitSeq(Self, Entity, Kind, From);
5576     if (InitSeq.isDirectReferenceBinding()) {
5577       ToType = T;
5578       HaveConversion = true;
5579       return false;
5580     }
5581 
5582     if (InitSeq.isAmbiguous())
5583       return InitSeq.Diagnose(Self, Entity, Kind, From);
5584   }
5585 
5586   //   -- If E2 is an rvalue, or if the conversion above cannot be done:
5587   //      -- if E1 and E2 have class type, and the underlying class types are
5588   //         the same or one is a base class of the other:
5589   QualType FTy = From->getType();
5590   QualType TTy = To->getType();
5591   const RecordType *FRec = FTy->getAs<RecordType>();
5592   const RecordType *TRec = TTy->getAs<RecordType>();
5593   bool FDerivedFromT = FRec && TRec && FRec != TRec &&
5594                        Self.IsDerivedFrom(QuestionLoc, FTy, TTy);
5595   if (FRec && TRec && (FRec == TRec || FDerivedFromT ||
5596                        Self.IsDerivedFrom(QuestionLoc, TTy, FTy))) {
5597     //         E1 can be converted to match E2 if the class of T2 is the
5598     //         same type as, or a base class of, the class of T1, and
5599     //         [cv2 > cv1].
5600     if (FRec == TRec || FDerivedFromT) {
5601       if (TTy.isAtLeastAsQualifiedAs(FTy)) {
5602         InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
5603         InitializationSequence InitSeq(Self, Entity, Kind, From);
5604         if (InitSeq) {
5605           HaveConversion = true;
5606           return false;
5607         }
5608 
5609         if (InitSeq.isAmbiguous())
5610           return InitSeq.Diagnose(Self, Entity, Kind, From);
5611       }
5612     }
5613 
5614     return false;
5615   }
5616 
5617   //     -- Otherwise: E1 can be converted to match E2 if E1 can be
5618   //        implicitly converted to the type that expression E2 would have
5619   //        if E2 were converted to an rvalue (or the type it has, if E2 is
5620   //        an rvalue).
5621   //
5622   // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
5623   // to the array-to-pointer or function-to-pointer conversions.
5624   TTy = TTy.getNonLValueExprType(Self.Context);
5625 
5626   InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
5627   InitializationSequence InitSeq(Self, Entity, Kind, From);
5628   HaveConversion = !InitSeq.Failed();
5629   ToType = TTy;
5630   if (InitSeq.isAmbiguous())
5631     return InitSeq.Diagnose(Self, Entity, Kind, From);
5632 
5633   return false;
5634 }
5635 
5636 /// Try to find a common type for two according to C++0x 5.16p5.
5637 ///
5638 /// This is part of the parameter validation for the ? operator. If either
5639 /// value operand is a class type, overload resolution is used to find a
5640 /// conversion to a common type.
FindConditionalOverload(Sema & Self,ExprResult & LHS,ExprResult & RHS,SourceLocation QuestionLoc)5641 static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
5642                                     SourceLocation QuestionLoc) {
5643   Expr *Args[2] = { LHS.get(), RHS.get() };
5644   OverloadCandidateSet CandidateSet(QuestionLoc,
5645                                     OverloadCandidateSet::CSK_Operator);
5646   Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args,
5647                                     CandidateSet);
5648 
5649   OverloadCandidateSet::iterator Best;
5650   switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
5651     case OR_Success: {
5652       // We found a match. Perform the conversions on the arguments and move on.
5653       ExprResult LHSRes = Self.PerformImplicitConversion(
5654           LHS.get(), Best->BuiltinParamTypes[0], Best->Conversions[0],
5655           Sema::AA_Converting);
5656       if (LHSRes.isInvalid())
5657         break;
5658       LHS = LHSRes;
5659 
5660       ExprResult RHSRes = Self.PerformImplicitConversion(
5661           RHS.get(), Best->BuiltinParamTypes[1], Best->Conversions[1],
5662           Sema::AA_Converting);
5663       if (RHSRes.isInvalid())
5664         break;
5665       RHS = RHSRes;
5666       if (Best->Function)
5667         Self.MarkFunctionReferenced(QuestionLoc, Best->Function);
5668       return false;
5669     }
5670 
5671     case OR_No_Viable_Function:
5672 
5673       // Emit a better diagnostic if one of the expressions is a null pointer
5674       // constant and the other is a pointer type. In this case, the user most
5675       // likely forgot to take the address of the other expression.
5676       if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
5677         return true;
5678 
5679       Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
5680         << LHS.get()->getType() << RHS.get()->getType()
5681         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5682       return true;
5683 
5684     case OR_Ambiguous:
5685       Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
5686         << LHS.get()->getType() << RHS.get()->getType()
5687         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5688       // FIXME: Print the possible common types by printing the return types of
5689       // the viable candidates.
5690       break;
5691 
5692     case OR_Deleted:
5693       llvm_unreachable("Conditional operator has only built-in overloads");
5694   }
5695   return true;
5696 }
5697 
5698 /// Perform an "extended" implicit conversion as returned by
5699 /// TryClassUnification.
ConvertForConditional(Sema & Self,ExprResult & E,QualType T)5700 static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
5701   InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
5702   InitializationKind Kind =
5703       InitializationKind::CreateCopy(E.get()->getBeginLoc(), SourceLocation());
5704   Expr *Arg = E.get();
5705   InitializationSequence InitSeq(Self, Entity, Kind, Arg);
5706   ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg);
5707   if (Result.isInvalid())
5708     return true;
5709 
5710   E = Result;
5711   return false;
5712 }
5713 
5714 /// Check the operands of ?: under C++ semantics.
5715 ///
5716 /// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
5717 /// extension. In this case, LHS == Cond. (But they're not aliases.)
CXXCheckConditionalOperands(ExprResult & Cond,ExprResult & LHS,ExprResult & RHS,ExprValueKind & VK,ExprObjectKind & OK,SourceLocation QuestionLoc)5718 QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
5719                                            ExprResult &RHS, ExprValueKind &VK,
5720                                            ExprObjectKind &OK,
5721                                            SourceLocation QuestionLoc) {
5722   // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
5723   // interface pointers.
5724 
5725   // C++11 [expr.cond]p1
5726   //   The first expression is contextually converted to bool.
5727   //
5728   // FIXME; GCC's vector extension permits the use of a?b:c where the type of
5729   //        a is that of a integer vector with the same number of elements and
5730   //        size as the vectors of b and c. If one of either b or c is a scalar
5731   //        it is implicitly converted to match the type of the vector.
5732   //        Otherwise the expression is ill-formed. If both b and c are scalars,
5733   //        then b and c are checked and converted to the type of a if possible.
5734   //        Unlike the OpenCL ?: operator, the expression is evaluated as
5735   //        (a[0] != 0 ? b[0] : c[0], .. , a[n] != 0 ? b[n] : c[n]).
5736   if (!Cond.get()->isTypeDependent()) {
5737     ExprResult CondRes = CheckCXXBooleanCondition(Cond.get());
5738     if (CondRes.isInvalid())
5739       return QualType();
5740     Cond = CondRes;
5741   }
5742 
5743   // Assume r-value.
5744   VK = VK_RValue;
5745   OK = OK_Ordinary;
5746 
5747   // Either of the arguments dependent?
5748   if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
5749     return Context.DependentTy;
5750 
5751   // C++11 [expr.cond]p2
5752   //   If either the second or the third operand has type (cv) void, ...
5753   QualType LTy = LHS.get()->getType();
5754   QualType RTy = RHS.get()->getType();
5755   bool LVoid = LTy->isVoidType();
5756   bool RVoid = RTy->isVoidType();
5757   if (LVoid || RVoid) {
5758     //   ... one of the following shall hold:
5759     //   -- The second or the third operand (but not both) is a (possibly
5760     //      parenthesized) throw-expression; the result is of the type
5761     //      and value category of the other.
5762     bool LThrow = isa<CXXThrowExpr>(LHS.get()->IgnoreParenImpCasts());
5763     bool RThrow = isa<CXXThrowExpr>(RHS.get()->IgnoreParenImpCasts());
5764     if (LThrow != RThrow) {
5765       Expr *NonThrow = LThrow ? RHS.get() : LHS.get();
5766       VK = NonThrow->getValueKind();
5767       // DR (no number yet): the result is a bit-field if the
5768       // non-throw-expression operand is a bit-field.
5769       OK = NonThrow->getObjectKind();
5770       return NonThrow->getType();
5771     }
5772 
5773     //   -- Both the second and third operands have type void; the result is of
5774     //      type void and is a prvalue.
5775     if (LVoid && RVoid)
5776       return Context.VoidTy;
5777 
5778     // Neither holds, error.
5779     Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
5780       << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
5781       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5782     return QualType();
5783   }
5784 
5785   // Neither is void.
5786 
5787   // C++11 [expr.cond]p3
5788   //   Otherwise, if the second and third operand have different types, and
5789   //   either has (cv) class type [...] an attempt is made to convert each of
5790   //   those operands to the type of the other.
5791   if (!Context.hasSameType(LTy, RTy) &&
5792       (LTy->isRecordType() || RTy->isRecordType())) {
5793     // These return true if a single direction is already ambiguous.
5794     QualType L2RType, R2LType;
5795     bool HaveL2R, HaveR2L;
5796     if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
5797       return QualType();
5798     if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
5799       return QualType();
5800 
5801     //   If both can be converted, [...] the program is ill-formed.
5802     if (HaveL2R && HaveR2L) {
5803       Diag(QuestionLoc, diag::err_conditional_ambiguous)
5804         << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5805       return QualType();
5806     }
5807 
5808     //   If exactly one conversion is possible, that conversion is applied to
5809     //   the chosen operand and the converted operands are used in place of the
5810     //   original operands for the remainder of this section.
5811     if (HaveL2R) {
5812       if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
5813         return QualType();
5814       LTy = LHS.get()->getType();
5815     } else if (HaveR2L) {
5816       if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
5817         return QualType();
5818       RTy = RHS.get()->getType();
5819     }
5820   }
5821 
5822   // C++11 [expr.cond]p3
5823   //   if both are glvalues of the same value category and the same type except
5824   //   for cv-qualification, an attempt is made to convert each of those
5825   //   operands to the type of the other.
5826   // FIXME:
5827   //   Resolving a defect in P0012R1: we extend this to cover all cases where
5828   //   one of the operands is reference-compatible with the other, in order
5829   //   to support conditionals between functions differing in noexcept.
5830   ExprValueKind LVK = LHS.get()->getValueKind();
5831   ExprValueKind RVK = RHS.get()->getValueKind();
5832   if (!Context.hasSameType(LTy, RTy) &&
5833       LVK == RVK && LVK != VK_RValue) {
5834     // DerivedToBase was already handled by the class-specific case above.
5835     // FIXME: Should we allow ObjC conversions here?
5836     bool DerivedToBase, ObjCConversion, ObjCLifetimeConversion;
5837     if (CompareReferenceRelationship(
5838             QuestionLoc, LTy, RTy, DerivedToBase,
5839             ObjCConversion, ObjCLifetimeConversion) == Ref_Compatible &&
5840         !DerivedToBase && !ObjCConversion && !ObjCLifetimeConversion &&
5841         // [...] subject to the constraint that the reference must bind
5842         // directly [...]
5843         !RHS.get()->refersToBitField() &&
5844         !RHS.get()->refersToVectorElement()) {
5845       RHS = ImpCastExprToType(RHS.get(), LTy, CK_NoOp, RVK);
5846       RTy = RHS.get()->getType();
5847     } else if (CompareReferenceRelationship(
5848                    QuestionLoc, RTy, LTy, DerivedToBase,
5849                    ObjCConversion, ObjCLifetimeConversion) == Ref_Compatible &&
5850                !DerivedToBase && !ObjCConversion && !ObjCLifetimeConversion &&
5851                !LHS.get()->refersToBitField() &&
5852                !LHS.get()->refersToVectorElement()) {
5853       LHS = ImpCastExprToType(LHS.get(), RTy, CK_NoOp, LVK);
5854       LTy = LHS.get()->getType();
5855     }
5856   }
5857 
5858   // C++11 [expr.cond]p4
5859   //   If the second and third operands are glvalues of the same value
5860   //   category and have the same type, the result is of that type and
5861   //   value category and it is a bit-field if the second or the third
5862   //   operand is a bit-field, or if both are bit-fields.
5863   // We only extend this to bitfields, not to the crazy other kinds of
5864   // l-values.
5865   bool Same = Context.hasSameType(LTy, RTy);
5866   if (Same && LVK == RVK && LVK != VK_RValue &&
5867       LHS.get()->isOrdinaryOrBitFieldObject() &&
5868       RHS.get()->isOrdinaryOrBitFieldObject()) {
5869     VK = LHS.get()->getValueKind();
5870     if (LHS.get()->getObjectKind() == OK_BitField ||
5871         RHS.get()->getObjectKind() == OK_BitField)
5872       OK = OK_BitField;
5873 
5874     // If we have function pointer types, unify them anyway to unify their
5875     // exception specifications, if any.
5876     if (LTy->isFunctionPointerType() || LTy->isMemberFunctionPointerType()) {
5877       Qualifiers Qs = LTy.getQualifiers();
5878       LTy = FindCompositePointerType(QuestionLoc, LHS, RHS,
5879                                      /*ConvertArgs*/false);
5880       LTy = Context.getQualifiedType(LTy, Qs);
5881 
5882       assert(!LTy.isNull() && "failed to find composite pointer type for "
5883                               "canonically equivalent function ptr types");
5884       assert(Context.hasSameType(LTy, RTy) && "bad composite pointer type");
5885     }
5886 
5887     return LTy;
5888   }
5889 
5890   // C++11 [expr.cond]p5
5891   //   Otherwise, the result is a prvalue. If the second and third operands
5892   //   do not have the same type, and either has (cv) class type, ...
5893   if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
5894     //   ... overload resolution is used to determine the conversions (if any)
5895     //   to be applied to the operands. If the overload resolution fails, the
5896     //   program is ill-formed.
5897     if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
5898       return QualType();
5899   }
5900 
5901   // C++11 [expr.cond]p6
5902   //   Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard
5903   //   conversions are performed on the second and third operands.
5904   LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
5905   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
5906   if (LHS.isInvalid() || RHS.isInvalid())
5907     return QualType();
5908   LTy = LHS.get()->getType();
5909   RTy = RHS.get()->getType();
5910 
5911   //   After those conversions, one of the following shall hold:
5912   //   -- The second and third operands have the same type; the result
5913   //      is of that type. If the operands have class type, the result
5914   //      is a prvalue temporary of the result type, which is
5915   //      copy-initialized from either the second operand or the third
5916   //      operand depending on the value of the first operand.
5917   if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
5918     if (LTy->isRecordType()) {
5919       // The operands have class type. Make a temporary copy.
5920       InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
5921 
5922       ExprResult LHSCopy = PerformCopyInitialization(Entity,
5923                                                      SourceLocation(),
5924                                                      LHS);
5925       if (LHSCopy.isInvalid())
5926         return QualType();
5927 
5928       ExprResult RHSCopy = PerformCopyInitialization(Entity,
5929                                                      SourceLocation(),
5930                                                      RHS);
5931       if (RHSCopy.isInvalid())
5932         return QualType();
5933 
5934       LHS = LHSCopy;
5935       RHS = RHSCopy;
5936     }
5937 
5938     // If we have function pointer types, unify them anyway to unify their
5939     // exception specifications, if any.
5940     if (LTy->isFunctionPointerType() || LTy->isMemberFunctionPointerType()) {
5941       LTy = FindCompositePointerType(QuestionLoc, LHS, RHS);
5942       assert(!LTy.isNull() && "failed to find composite pointer type for "
5943                               "canonically equivalent function ptr types");
5944     }
5945 
5946     return LTy;
5947   }
5948 
5949   // Extension: conditional operator involving vector types.
5950   if (LTy->isVectorType() || RTy->isVectorType())
5951     return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false,
5952                                /*AllowBothBool*/true,
5953                                /*AllowBoolConversions*/false);
5954 
5955   //   -- The second and third operands have arithmetic or enumeration type;
5956   //      the usual arithmetic conversions are performed to bring them to a
5957   //      common type, and the result is of that type.
5958   if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
5959     QualType ResTy = UsualArithmeticConversions(LHS, RHS);
5960     if (LHS.isInvalid() || RHS.isInvalid())
5961       return QualType();
5962     if (ResTy.isNull()) {
5963       Diag(QuestionLoc,
5964            diag::err_typecheck_cond_incompatible_operands) << LTy << RTy
5965         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5966       return QualType();
5967     }
5968 
5969     LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
5970     RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
5971 
5972     return ResTy;
5973   }
5974 
5975   //   -- The second and third operands have pointer type, or one has pointer
5976   //      type and the other is a null pointer constant, or both are null
5977   //      pointer constants, at least one of which is non-integral; pointer
5978   //      conversions and qualification conversions are performed to bring them
5979   //      to their composite pointer type. The result is of the composite
5980   //      pointer type.
5981   //   -- The second and third operands have pointer to member type, or one has
5982   //      pointer to member type and the other is a null pointer constant;
5983   //      pointer to member conversions and qualification conversions are
5984   //      performed to bring them to a common type, whose cv-qualification
5985   //      shall match the cv-qualification of either the second or the third
5986   //      operand. The result is of the common type.
5987   QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS);
5988   if (!Composite.isNull())
5989     return Composite;
5990 
5991   // Similarly, attempt to find composite type of two objective-c pointers.
5992   Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
5993   if (!Composite.isNull())
5994     return Composite;
5995 
5996   // Check if we are using a null with a non-pointer type.
5997   if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
5998     return QualType();
5999 
6000   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
6001     << LHS.get()->getType() << RHS.get()->getType()
6002     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6003   return QualType();
6004 }
6005 
6006 static FunctionProtoType::ExceptionSpecInfo
mergeExceptionSpecs(Sema & S,FunctionProtoType::ExceptionSpecInfo ESI1,FunctionProtoType::ExceptionSpecInfo ESI2,SmallVectorImpl<QualType> & ExceptionTypeStorage)6007 mergeExceptionSpecs(Sema &S, FunctionProtoType::ExceptionSpecInfo ESI1,
6008                     FunctionProtoType::ExceptionSpecInfo ESI2,
6009                     SmallVectorImpl<QualType> &ExceptionTypeStorage) {
6010   ExceptionSpecificationType EST1 = ESI1.Type;
6011   ExceptionSpecificationType EST2 = ESI2.Type;
6012 
6013   // If either of them can throw anything, that is the result.
6014   if (EST1 == EST_None) return ESI1;
6015   if (EST2 == EST_None) return ESI2;
6016   if (EST1 == EST_MSAny) return ESI1;
6017   if (EST2 == EST_MSAny) return ESI2;
6018   if (EST1 == EST_NoexceptFalse) return ESI1;
6019   if (EST2 == EST_NoexceptFalse) return ESI2;
6020 
6021   // If either of them is non-throwing, the result is the other.
6022   if (EST1 == EST_DynamicNone) return ESI2;
6023   if (EST2 == EST_DynamicNone) return ESI1;
6024   if (EST1 == EST_BasicNoexcept) return ESI2;
6025   if (EST2 == EST_BasicNoexcept) return ESI1;
6026   if (EST1 == EST_NoexceptTrue) return ESI2;
6027   if (EST2 == EST_NoexceptTrue) return ESI1;
6028 
6029   // If we're left with value-dependent computed noexcept expressions, we're
6030   // stuck. Before C++17, we can just drop the exception specification entirely,
6031   // since it's not actually part of the canonical type. And this should never
6032   // happen in C++17, because it would mean we were computing the composite
6033   // pointer type of dependent types, which should never happen.
6034   if (EST1 == EST_DependentNoexcept || EST2 == EST_DependentNoexcept) {
6035     assert(!S.getLangOpts().CPlusPlus17 &&
6036            "computing composite pointer type of dependent types");
6037     return FunctionProtoType::ExceptionSpecInfo();
6038   }
6039 
6040   // Switch over the possibilities so that people adding new values know to
6041   // update this function.
6042   switch (EST1) {
6043   case EST_None:
6044   case EST_DynamicNone:
6045   case EST_MSAny:
6046   case EST_BasicNoexcept:
6047   case EST_DependentNoexcept:
6048   case EST_NoexceptFalse:
6049   case EST_NoexceptTrue:
6050     llvm_unreachable("handled above");
6051 
6052   case EST_Dynamic: {
6053     // This is the fun case: both exception specifications are dynamic. Form
6054     // the union of the two lists.
6055     assert(EST2 == EST_Dynamic && "other cases should already be handled");
6056     llvm::SmallPtrSet<QualType, 8> Found;
6057     for (auto &Exceptions : {ESI1.Exceptions, ESI2.Exceptions})
6058       for (QualType E : Exceptions)
6059         if (Found.insert(S.Context.getCanonicalType(E)).second)
6060           ExceptionTypeStorage.push_back(E);
6061 
6062     FunctionProtoType::ExceptionSpecInfo Result(EST_Dynamic);
6063     Result.Exceptions = ExceptionTypeStorage;
6064     return Result;
6065   }
6066 
6067   case EST_Unevaluated:
6068   case EST_Uninstantiated:
6069   case EST_Unparsed:
6070     llvm_unreachable("shouldn't see unresolved exception specifications here");
6071   }
6072 
6073   llvm_unreachable("invalid ExceptionSpecificationType");
6074 }
6075 
6076 /// Find a merged pointer type and convert the two expressions to it.
6077 ///
6078 /// This finds the composite pointer type (or member pointer type) for @p E1
6079 /// and @p E2 according to C++1z 5p14. It converts both expressions to this
6080 /// type and returns it.
6081 /// It does not emit diagnostics.
6082 ///
6083 /// \param Loc The location of the operator requiring these two expressions to
6084 /// be converted to the composite pointer type.
6085 ///
6086 /// \param ConvertArgs If \c false, do not convert E1 and E2 to the target type.
FindCompositePointerType(SourceLocation Loc,Expr * & E1,Expr * & E2,bool ConvertArgs)6087 QualType Sema::FindCompositePointerType(SourceLocation Loc,
6088                                         Expr *&E1, Expr *&E2,
6089                                         bool ConvertArgs) {
6090   assert(getLangOpts().CPlusPlus && "This function assumes C++");
6091 
6092   // C++1z [expr]p14:
6093   //   The composite pointer type of two operands p1 and p2 having types T1
6094   //   and T2
6095   QualType T1 = E1->getType(), T2 = E2->getType();
6096 
6097   //   where at least one is a pointer or pointer to member type or
6098   //   std::nullptr_t is:
6099   bool T1IsPointerLike = T1->isAnyPointerType() || T1->isMemberPointerType() ||
6100                          T1->isNullPtrType();
6101   bool T2IsPointerLike = T2->isAnyPointerType() || T2->isMemberPointerType() ||
6102                          T2->isNullPtrType();
6103   if (!T1IsPointerLike && !T2IsPointerLike)
6104     return QualType();
6105 
6106   //   - if both p1 and p2 are null pointer constants, std::nullptr_t;
6107   // This can't actually happen, following the standard, but we also use this
6108   // to implement the end of [expr.conv], which hits this case.
6109   //
6110   //   - if either p1 or p2 is a null pointer constant, T2 or T1, respectively;
6111   if (T1IsPointerLike &&
6112       E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
6113     if (ConvertArgs)
6114       E2 = ImpCastExprToType(E2, T1, T1->isMemberPointerType()
6115                                          ? CK_NullToMemberPointer
6116                                          : CK_NullToPointer).get();
6117     return T1;
6118   }
6119   if (T2IsPointerLike &&
6120       E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
6121     if (ConvertArgs)
6122       E1 = ImpCastExprToType(E1, T2, T2->isMemberPointerType()
6123                                          ? CK_NullToMemberPointer
6124                                          : CK_NullToPointer).get();
6125     return T2;
6126   }
6127 
6128   // Now both have to be pointers or member pointers.
6129   if (!T1IsPointerLike || !T2IsPointerLike)
6130     return QualType();
6131   assert(!T1->isNullPtrType() && !T2->isNullPtrType() &&
6132          "nullptr_t should be a null pointer constant");
6133 
6134   //  - if T1 or T2 is "pointer to cv1 void" and the other type is
6135   //    "pointer to cv2 T", "pointer to cv12 void", where cv12 is
6136   //    the union of cv1 and cv2;
6137   //  - if T1 or T2 is "pointer to noexcept function" and the other type is
6138   //    "pointer to function", where the function types are otherwise the same,
6139   //    "pointer to function";
6140   //     FIXME: This rule is defective: it should also permit removing noexcept
6141   //     from a pointer to member function.  As a Clang extension, we also
6142   //     permit removing 'noreturn', so we generalize this rule to;
6143   //     - [Clang] If T1 and T2 are both of type "pointer to function" or
6144   //       "pointer to member function" and the pointee types can be unified
6145   //       by a function pointer conversion, that conversion is applied
6146   //       before checking the following rules.
6147   //  - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1
6148   //    is reference-related to C2 or C2 is reference-related to C1 (8.6.3),
6149   //    the cv-combined type of T1 and T2 or the cv-combined type of T2 and T1,
6150   //    respectively;
6151   //  - if T1 is "pointer to member of C1 of type cv1 U1" and T2 is "pointer
6152   //    to member of C2 of type cv2 U2" where C1 is reference-related to C2 or
6153   //    C2 is reference-related to C1 (8.6.3), the cv-combined type of T2 and
6154   //    T1 or the cv-combined type of T1 and T2, respectively;
6155   //  - if T1 and T2 are similar types (4.5), the cv-combined type of T1 and
6156   //    T2;
6157   //
6158   // If looked at in the right way, these bullets all do the same thing.
6159   // What we do here is, we build the two possible cv-combined types, and try
6160   // the conversions in both directions. If only one works, or if the two
6161   // composite types are the same, we have succeeded.
6162   // FIXME: extended qualifiers?
6163   //
6164   // Note that this will fail to find a composite pointer type for "pointer
6165   // to void" and "pointer to function". We can't actually perform the final
6166   // conversion in this case, even though a composite pointer type formally
6167   // exists.
6168   SmallVector<unsigned, 4> QualifierUnion;
6169   SmallVector<std::pair<const Type *, const Type *>, 4> MemberOfClass;
6170   QualType Composite1 = T1;
6171   QualType Composite2 = T2;
6172   unsigned NeedConstBefore = 0;
6173   while (true) {
6174     const PointerType *Ptr1, *Ptr2;
6175     if ((Ptr1 = Composite1->getAs<PointerType>()) &&
6176         (Ptr2 = Composite2->getAs<PointerType>())) {
6177       Composite1 = Ptr1->getPointeeType();
6178       Composite2 = Ptr2->getPointeeType();
6179 
6180       // If we're allowed to create a non-standard composite type, keep track
6181       // of where we need to fill in additional 'const' qualifiers.
6182       if (Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
6183         NeedConstBefore = QualifierUnion.size();
6184 
6185       QualifierUnion.push_back(
6186                  Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
6187       MemberOfClass.push_back(std::make_pair(nullptr, nullptr));
6188       continue;
6189     }
6190 
6191     const MemberPointerType *MemPtr1, *MemPtr2;
6192     if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
6193         (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
6194       Composite1 = MemPtr1->getPointeeType();
6195       Composite2 = MemPtr2->getPointeeType();
6196 
6197       // If we're allowed to create a non-standard composite type, keep track
6198       // of where we need to fill in additional 'const' qualifiers.
6199       if (Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
6200         NeedConstBefore = QualifierUnion.size();
6201 
6202       QualifierUnion.push_back(
6203                  Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
6204       MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(),
6205                                              MemPtr2->getClass()));
6206       continue;
6207     }
6208 
6209     // FIXME: block pointer types?
6210 
6211     // Cannot unwrap any more types.
6212     break;
6213   }
6214 
6215   // Apply the function pointer conversion to unify the types. We've already
6216   // unwrapped down to the function types, and we want to merge rather than
6217   // just convert, so do this ourselves rather than calling
6218   // IsFunctionConversion.
6219   //
6220   // FIXME: In order to match the standard wording as closely as possible, we
6221   // currently only do this under a single level of pointers. Ideally, we would
6222   // allow this in general, and set NeedConstBefore to the relevant depth on
6223   // the side(s) where we changed anything.
6224   if (QualifierUnion.size() == 1) {
6225     if (auto *FPT1 = Composite1->getAs<FunctionProtoType>()) {
6226       if (auto *FPT2 = Composite2->getAs<FunctionProtoType>()) {
6227         FunctionProtoType::ExtProtoInfo EPI1 = FPT1->getExtProtoInfo();
6228         FunctionProtoType::ExtProtoInfo EPI2 = FPT2->getExtProtoInfo();
6229 
6230         // The result is noreturn if both operands are.
6231         bool Noreturn =
6232             EPI1.ExtInfo.getNoReturn() && EPI2.ExtInfo.getNoReturn();
6233         EPI1.ExtInfo = EPI1.ExtInfo.withNoReturn(Noreturn);
6234         EPI2.ExtInfo = EPI2.ExtInfo.withNoReturn(Noreturn);
6235 
6236         // The result is nothrow if both operands are.
6237         SmallVector<QualType, 8> ExceptionTypeStorage;
6238         EPI1.ExceptionSpec = EPI2.ExceptionSpec =
6239             mergeExceptionSpecs(*this, EPI1.ExceptionSpec, EPI2.ExceptionSpec,
6240                                 ExceptionTypeStorage);
6241 
6242         Composite1 = Context.getFunctionType(FPT1->getReturnType(),
6243                                              FPT1->getParamTypes(), EPI1);
6244         Composite2 = Context.getFunctionType(FPT2->getReturnType(),
6245                                              FPT2->getParamTypes(), EPI2);
6246       }
6247     }
6248   }
6249 
6250   if (NeedConstBefore) {
6251     // Extension: Add 'const' to qualifiers that come before the first qualifier
6252     // mismatch, so that our (non-standard!) composite type meets the
6253     // requirements of C++ [conv.qual]p4 bullet 3.
6254     for (unsigned I = 0; I != NeedConstBefore; ++I)
6255       if ((QualifierUnion[I] & Qualifiers::Const) == 0)
6256         QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const;
6257   }
6258 
6259   // Rewrap the composites as pointers or member pointers with the union CVRs.
6260   auto MOC = MemberOfClass.rbegin();
6261   for (unsigned CVR : llvm::reverse(QualifierUnion)) {
6262     Qualifiers Quals = Qualifiers::fromCVRMask(CVR);
6263     auto Classes = *MOC++;
6264     if (Classes.first && Classes.second) {
6265       // Rebuild member pointer type
6266       Composite1 = Context.getMemberPointerType(
6267           Context.getQualifiedType(Composite1, Quals), Classes.first);
6268       Composite2 = Context.getMemberPointerType(
6269           Context.getQualifiedType(Composite2, Quals), Classes.second);
6270     } else {
6271       // Rebuild pointer type
6272       Composite1 =
6273           Context.getPointerType(Context.getQualifiedType(Composite1, Quals));
6274       Composite2 =
6275           Context.getPointerType(Context.getQualifiedType(Composite2, Quals));
6276     }
6277   }
6278 
6279   struct Conversion {
6280     Sema &S;
6281     Expr *&E1, *&E2;
6282     QualType Composite;
6283     InitializedEntity Entity;
6284     InitializationKind Kind;
6285     InitializationSequence E1ToC, E2ToC;
6286     bool Viable;
6287 
6288     Conversion(Sema &S, SourceLocation Loc, Expr *&E1, Expr *&E2,
6289                QualType Composite)
6290         : S(S), E1(E1), E2(E2), Composite(Composite),
6291           Entity(InitializedEntity::InitializeTemporary(Composite)),
6292           Kind(InitializationKind::CreateCopy(Loc, SourceLocation())),
6293           E1ToC(S, Entity, Kind, E1), E2ToC(S, Entity, Kind, E2),
6294           Viable(E1ToC && E2ToC) {}
6295 
6296     bool perform() {
6297       ExprResult E1Result = E1ToC.Perform(S, Entity, Kind, E1);
6298       if (E1Result.isInvalid())
6299         return true;
6300       E1 = E1Result.getAs<Expr>();
6301 
6302       ExprResult E2Result = E2ToC.Perform(S, Entity, Kind, E2);
6303       if (E2Result.isInvalid())
6304         return true;
6305       E2 = E2Result.getAs<Expr>();
6306 
6307       return false;
6308     }
6309   };
6310 
6311   // Try to convert to each composite pointer type.
6312   Conversion C1(*this, Loc, E1, E2, Composite1);
6313   if (C1.Viable && Context.hasSameType(Composite1, Composite2)) {
6314     if (ConvertArgs && C1.perform())
6315       return QualType();
6316     return C1.Composite;
6317   }
6318   Conversion C2(*this, Loc, E1, E2, Composite2);
6319 
6320   if (C1.Viable == C2.Viable) {
6321     // Either Composite1 and Composite2 are viable and are different, or
6322     // neither is viable.
6323     // FIXME: How both be viable and different?
6324     return QualType();
6325   }
6326 
6327   // Convert to the chosen type.
6328   if (ConvertArgs && (C1.Viable ? C1 : C2).perform())
6329     return QualType();
6330 
6331   return C1.Viable ? C1.Composite : C2.Composite;
6332 }
6333 
MaybeBindToTemporary(Expr * E)6334 ExprResult Sema::MaybeBindToTemporary(Expr *E) {
6335   if (!E)
6336     return ExprError();
6337 
6338   assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
6339 
6340   // If the result is a glvalue, we shouldn't bind it.
6341   if (!E->isRValue())
6342     return E;
6343 
6344   // In ARC, calls that return a retainable type can return retained,
6345   // in which case we have to insert a consuming cast.
6346   if (getLangOpts().ObjCAutoRefCount &&
6347       E->getType()->isObjCRetainableType()) {
6348 
6349     bool ReturnsRetained;
6350 
6351     // For actual calls, we compute this by examining the type of the
6352     // called value.
6353     if (CallExpr *Call = dyn_cast<CallExpr>(E)) {
6354       Expr *Callee = Call->getCallee()->IgnoreParens();
6355       QualType T = Callee->getType();
6356 
6357       if (T == Context.BoundMemberTy) {
6358         // Handle pointer-to-members.
6359         if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee))
6360           T = BinOp->getRHS()->getType();
6361         else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee))
6362           T = Mem->getMemberDecl()->getType();
6363       }
6364 
6365       if (const PointerType *Ptr = T->getAs<PointerType>())
6366         T = Ptr->getPointeeType();
6367       else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>())
6368         T = Ptr->getPointeeType();
6369       else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>())
6370         T = MemPtr->getPointeeType();
6371 
6372       const FunctionType *FTy = T->getAs<FunctionType>();
6373       assert(FTy && "call to value not of function type?");
6374       ReturnsRetained = FTy->getExtInfo().getProducesResult();
6375 
6376     // ActOnStmtExpr arranges things so that StmtExprs of retainable
6377     // type always produce a +1 object.
6378     } else if (isa<StmtExpr>(E)) {
6379       ReturnsRetained = true;
6380 
6381     // We hit this case with the lambda conversion-to-block optimization;
6382     // we don't want any extra casts here.
6383     } else if (isa<CastExpr>(E) &&
6384                isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) {
6385       return E;
6386 
6387     // For message sends and property references, we try to find an
6388     // actual method.  FIXME: we should infer retention by selector in
6389     // cases where we don't have an actual method.
6390     } else {
6391       ObjCMethodDecl *D = nullptr;
6392       if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) {
6393         D = Send->getMethodDecl();
6394       } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) {
6395         D = BoxedExpr->getBoxingMethod();
6396       } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) {
6397         // Don't do reclaims if we're using the zero-element array
6398         // constant.
6399         if (ArrayLit->getNumElements() == 0 &&
6400             Context.getLangOpts().ObjCRuntime.hasEmptyCollections())
6401           return E;
6402 
6403         D = ArrayLit->getArrayWithObjectsMethod();
6404       } else if (ObjCDictionaryLiteral *DictLit
6405                                         = dyn_cast<ObjCDictionaryLiteral>(E)) {
6406         // Don't do reclaims if we're using the zero-element dictionary
6407         // constant.
6408         if (DictLit->getNumElements() == 0 &&
6409             Context.getLangOpts().ObjCRuntime.hasEmptyCollections())
6410           return E;
6411 
6412         D = DictLit->getDictWithObjectsMethod();
6413       }
6414 
6415       ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>());
6416 
6417       // Don't do reclaims on performSelector calls; despite their
6418       // return type, the invoked method doesn't necessarily actually
6419       // return an object.
6420       if (!ReturnsRetained &&
6421           D && D->getMethodFamily() == OMF_performSelector)
6422         return E;
6423     }
6424 
6425     // Don't reclaim an object of Class type.
6426     if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType())
6427       return E;
6428 
6429     Cleanup.setExprNeedsCleanups(true);
6430 
6431     CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject
6432                                    : CK_ARCReclaimReturnedObject);
6433     return ImplicitCastExpr::Create(Context, E->getType(), ck, E, nullptr,
6434                                     VK_RValue);
6435   }
6436 
6437   if (!getLangOpts().CPlusPlus)
6438     return E;
6439 
6440   // Search for the base element type (cf. ASTContext::getBaseElementType) with
6441   // a fast path for the common case that the type is directly a RecordType.
6442   const Type *T = Context.getCanonicalType(E->getType().getTypePtr());
6443   const RecordType *RT = nullptr;
6444   while (!RT) {
6445     switch (T->getTypeClass()) {
6446     case Type::Record:
6447       RT = cast<RecordType>(T);
6448       break;
6449     case Type::ConstantArray:
6450     case Type::IncompleteArray:
6451     case Type::VariableArray:
6452     case Type::DependentSizedArray:
6453       T = cast<ArrayType>(T)->getElementType().getTypePtr();
6454       break;
6455     default:
6456       return E;
6457     }
6458   }
6459 
6460   // That should be enough to guarantee that this type is complete, if we're
6461   // not processing a decltype expression.
6462   CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
6463   if (RD->isInvalidDecl() || RD->isDependentContext())
6464     return E;
6465 
6466   bool IsDecltype = ExprEvalContexts.back().ExprContext ==
6467                     ExpressionEvaluationContextRecord::EK_Decltype;
6468   CXXDestructorDecl *Destructor = IsDecltype ? nullptr : LookupDestructor(RD);
6469 
6470   if (Destructor) {
6471     MarkFunctionReferenced(E->getExprLoc(), Destructor);
6472     CheckDestructorAccess(E->getExprLoc(), Destructor,
6473                           PDiag(diag::err_access_dtor_temp)
6474                             << E->getType());
6475     if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
6476       return ExprError();
6477 
6478     // If destructor is trivial, we can avoid the extra copy.
6479     if (Destructor->isTrivial())
6480       return E;
6481 
6482     // We need a cleanup, but we don't need to remember the temporary.
6483     Cleanup.setExprNeedsCleanups(true);
6484   }
6485 
6486   CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor);
6487   CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E);
6488 
6489   if (IsDecltype)
6490     ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind);
6491 
6492   return Bind;
6493 }
6494 
6495 ExprResult
MaybeCreateExprWithCleanups(ExprResult SubExpr)6496 Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
6497   if (SubExpr.isInvalid())
6498     return ExprError();
6499 
6500   return MaybeCreateExprWithCleanups(SubExpr.get());
6501 }
6502 
MaybeCreateExprWithCleanups(Expr * SubExpr)6503 Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
6504   assert(SubExpr && "subexpression can't be null!");
6505 
6506   CleanupVarDeclMarking();
6507 
6508   unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects;
6509   assert(ExprCleanupObjects.size() >= FirstCleanup);
6510   assert(Cleanup.exprNeedsCleanups() ||
6511          ExprCleanupObjects.size() == FirstCleanup);
6512   if (!Cleanup.exprNeedsCleanups())
6513     return SubExpr;
6514 
6515   auto Cleanups = llvm::makeArrayRef(ExprCleanupObjects.begin() + FirstCleanup,
6516                                      ExprCleanupObjects.size() - FirstCleanup);
6517 
6518   auto *E = ExprWithCleanups::Create(
6519       Context, SubExpr, Cleanup.cleanupsHaveSideEffects(), Cleanups);
6520   DiscardCleanupsInEvaluationContext();
6521 
6522   return E;
6523 }
6524 
MaybeCreateStmtWithCleanups(Stmt * SubStmt)6525 Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
6526   assert(SubStmt && "sub-statement can't be null!");
6527 
6528   CleanupVarDeclMarking();
6529 
6530   if (!Cleanup.exprNeedsCleanups())
6531     return SubStmt;
6532 
6533   // FIXME: In order to attach the temporaries, wrap the statement into
6534   // a StmtExpr; currently this is only used for asm statements.
6535   // This is hacky, either create a new CXXStmtWithTemporaries statement or
6536   // a new AsmStmtWithTemporaries.
6537   CompoundStmt *CompStmt = CompoundStmt::Create(
6538       Context, SubStmt, SourceLocation(), SourceLocation());
6539   Expr *E = new (Context) StmtExpr(CompStmt, Context.VoidTy, SourceLocation(),
6540                                    SourceLocation());
6541   return MaybeCreateExprWithCleanups(E);
6542 }
6543 
6544 /// Process the expression contained within a decltype. For such expressions,
6545 /// certain semantic checks on temporaries are delayed until this point, and
6546 /// are omitted for the 'topmost' call in the decltype expression. If the
6547 /// topmost call bound a temporary, strip that temporary off the expression.
ActOnDecltypeExpression(Expr * E)6548 ExprResult Sema::ActOnDecltypeExpression(Expr *E) {
6549   assert(ExprEvalContexts.back().ExprContext ==
6550              ExpressionEvaluationContextRecord::EK_Decltype &&
6551          "not in a decltype expression");
6552 
6553   ExprResult Result = CheckPlaceholderExpr(E);
6554   if (Result.isInvalid())
6555     return ExprError();
6556   E = Result.get();
6557 
6558   // C++11 [expr.call]p11:
6559   //   If a function call is a prvalue of object type,
6560   // -- if the function call is either
6561   //   -- the operand of a decltype-specifier, or
6562   //   -- the right operand of a comma operator that is the operand of a
6563   //      decltype-specifier,
6564   //   a temporary object is not introduced for the prvalue.
6565 
6566   // Recursively rebuild ParenExprs and comma expressions to strip out the
6567   // outermost CXXBindTemporaryExpr, if any.
6568   if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
6569     ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr());
6570     if (SubExpr.isInvalid())
6571       return ExprError();
6572     if (SubExpr.get() == PE->getSubExpr())
6573       return E;
6574     return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.get());
6575   }
6576   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
6577     if (BO->getOpcode() == BO_Comma) {
6578       ExprResult RHS = ActOnDecltypeExpression(BO->getRHS());
6579       if (RHS.isInvalid())
6580         return ExprError();
6581       if (RHS.get() == BO->getRHS())
6582         return E;
6583       return new (Context) BinaryOperator(
6584           BO->getLHS(), RHS.get(), BO_Comma, BO->getType(), BO->getValueKind(),
6585           BO->getObjectKind(), BO->getOperatorLoc(), BO->getFPFeatures());
6586     }
6587   }
6588 
6589   CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E);
6590   CallExpr *TopCall = TopBind ? dyn_cast<CallExpr>(TopBind->getSubExpr())
6591                               : nullptr;
6592   if (TopCall)
6593     E = TopCall;
6594   else
6595     TopBind = nullptr;
6596 
6597   // Disable the special decltype handling now.
6598   ExprEvalContexts.back().ExprContext =
6599       ExpressionEvaluationContextRecord::EK_Other;
6600 
6601   // In MS mode, don't perform any extra checking of call return types within a
6602   // decltype expression.
6603   if (getLangOpts().MSVCCompat)
6604     return E;
6605 
6606   // Perform the semantic checks we delayed until this point.
6607   for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size();
6608        I != N; ++I) {
6609     CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I];
6610     if (Call == TopCall)
6611       continue;
6612 
6613     if (CheckCallReturnType(Call->getCallReturnType(Context),
6614                             Call->getBeginLoc(), Call, Call->getDirectCallee()))
6615       return ExprError();
6616   }
6617 
6618   // Now all relevant types are complete, check the destructors are accessible
6619   // and non-deleted, and annotate them on the temporaries.
6620   for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size();
6621        I != N; ++I) {
6622     CXXBindTemporaryExpr *Bind =
6623       ExprEvalContexts.back().DelayedDecltypeBinds[I];
6624     if (Bind == TopBind)
6625       continue;
6626 
6627     CXXTemporary *Temp = Bind->getTemporary();
6628 
6629     CXXRecordDecl *RD =
6630       Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
6631     CXXDestructorDecl *Destructor = LookupDestructor(RD);
6632     Temp->setDestructor(Destructor);
6633 
6634     MarkFunctionReferenced(Bind->getExprLoc(), Destructor);
6635     CheckDestructorAccess(Bind->getExprLoc(), Destructor,
6636                           PDiag(diag::err_access_dtor_temp)
6637                             << Bind->getType());
6638     if (DiagnoseUseOfDecl(Destructor, Bind->getExprLoc()))
6639       return ExprError();
6640 
6641     // We need a cleanup, but we don't need to remember the temporary.
6642     Cleanup.setExprNeedsCleanups(true);
6643   }
6644 
6645   // Possibly strip off the top CXXBindTemporaryExpr.
6646   return E;
6647 }
6648 
6649 /// Note a set of 'operator->' functions that were used for a member access.
noteOperatorArrows(Sema & S,ArrayRef<FunctionDecl * > OperatorArrows)6650 static void noteOperatorArrows(Sema &S,
6651                                ArrayRef<FunctionDecl *> OperatorArrows) {
6652   unsigned SkipStart = OperatorArrows.size(), SkipCount = 0;
6653   // FIXME: Make this configurable?
6654   unsigned Limit = 9;
6655   if (OperatorArrows.size() > Limit) {
6656     // Produce Limit-1 normal notes and one 'skipping' note.
6657     SkipStart = (Limit - 1) / 2 + (Limit - 1) % 2;
6658     SkipCount = OperatorArrows.size() - (Limit - 1);
6659   }
6660 
6661   for (unsigned I = 0; I < OperatorArrows.size(); /**/) {
6662     if (I == SkipStart) {
6663       S.Diag(OperatorArrows[I]->getLocation(),
6664              diag::note_operator_arrows_suppressed)
6665           << SkipCount;
6666       I += SkipCount;
6667     } else {
6668       S.Diag(OperatorArrows[I]->getLocation(), diag::note_operator_arrow_here)
6669           << OperatorArrows[I]->getCallResultType();
6670       ++I;
6671     }
6672   }
6673 }
6674 
ActOnStartCXXMemberReference(Scope * S,Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,ParsedType & ObjectType,bool & MayBePseudoDestructor)6675 ExprResult Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base,
6676                                               SourceLocation OpLoc,
6677                                               tok::TokenKind OpKind,
6678                                               ParsedType &ObjectType,
6679                                               bool &MayBePseudoDestructor) {
6680   // Since this might be a postfix expression, get rid of ParenListExprs.
6681   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
6682   if (Result.isInvalid()) return ExprError();
6683   Base = Result.get();
6684 
6685   Result = CheckPlaceholderExpr(Base);
6686   if (Result.isInvalid()) return ExprError();
6687   Base = Result.get();
6688 
6689   QualType BaseType = Base->getType();
6690   MayBePseudoDestructor = false;
6691   if (BaseType->isDependentType()) {
6692     // If we have a pointer to a dependent type and are using the -> operator,
6693     // the object type is the type that the pointer points to. We might still
6694     // have enough information about that type to do something useful.
6695     if (OpKind == tok::arrow)
6696       if (const PointerType *Ptr = BaseType->getAs<PointerType>())
6697         BaseType = Ptr->getPointeeType();
6698 
6699     ObjectType = ParsedType::make(BaseType);
6700     MayBePseudoDestructor = true;
6701     return Base;
6702   }
6703 
6704   // C++ [over.match.oper]p8:
6705   //   [...] When operator->returns, the operator-> is applied  to the value
6706   //   returned, with the original second operand.
6707   if (OpKind == tok::arrow) {
6708     QualType StartingType = BaseType;
6709     bool NoArrowOperatorFound = false;
6710     bool FirstIteration = true;
6711     FunctionDecl *CurFD = dyn_cast<FunctionDecl>(CurContext);
6712     // The set of types we've considered so far.
6713     llvm::SmallPtrSet<CanQualType,8> CTypes;
6714     SmallVector<FunctionDecl*, 8> OperatorArrows;
6715     CTypes.insert(Context.getCanonicalType(BaseType));
6716 
6717     while (BaseType->isRecordType()) {
6718       if (OperatorArrows.size() >= getLangOpts().ArrowDepth) {
6719         Diag(OpLoc, diag::err_operator_arrow_depth_exceeded)
6720           << StartingType << getLangOpts().ArrowDepth << Base->getSourceRange();
6721         noteOperatorArrows(*this, OperatorArrows);
6722         Diag(OpLoc, diag::note_operator_arrow_depth)
6723           << getLangOpts().ArrowDepth;
6724         return ExprError();
6725       }
6726 
6727       Result = BuildOverloadedArrowExpr(
6728           S, Base, OpLoc,
6729           // When in a template specialization and on the first loop iteration,
6730           // potentially give the default diagnostic (with the fixit in a
6731           // separate note) instead of having the error reported back to here
6732           // and giving a diagnostic with a fixit attached to the error itself.
6733           (FirstIteration && CurFD && CurFD->isFunctionTemplateSpecialization())
6734               ? nullptr
6735               : &NoArrowOperatorFound);
6736       if (Result.isInvalid()) {
6737         if (NoArrowOperatorFound) {
6738           if (FirstIteration) {
6739             Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
6740               << BaseType << 1 << Base->getSourceRange()
6741               << FixItHint::CreateReplacement(OpLoc, ".");
6742             OpKind = tok::period;
6743             break;
6744           }
6745           Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
6746             << BaseType << Base->getSourceRange();
6747           CallExpr *CE = dyn_cast<CallExpr>(Base);
6748           if (Decl *CD = (CE ? CE->getCalleeDecl() : nullptr)) {
6749             Diag(CD->getBeginLoc(),
6750                  diag::note_member_reference_arrow_from_operator_arrow);
6751           }
6752         }
6753         return ExprError();
6754       }
6755       Base = Result.get();
6756       if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
6757         OperatorArrows.push_back(OpCall->getDirectCallee());
6758       BaseType = Base->getType();
6759       CanQualType CBaseType = Context.getCanonicalType(BaseType);
6760       if (!CTypes.insert(CBaseType).second) {
6761         Diag(OpLoc, diag::err_operator_arrow_circular) << StartingType;
6762         noteOperatorArrows(*this, OperatorArrows);
6763         return ExprError();
6764       }
6765       FirstIteration = false;
6766     }
6767 
6768     if (OpKind == tok::arrow &&
6769         (BaseType->isPointerType() || BaseType->isObjCObjectPointerType()))
6770       BaseType = BaseType->getPointeeType();
6771   }
6772 
6773   // Objective-C properties allow "." access on Objective-C pointer types,
6774   // so adjust the base type to the object type itself.
6775   if (BaseType->isObjCObjectPointerType())
6776     BaseType = BaseType->getPointeeType();
6777 
6778   // C++ [basic.lookup.classref]p2:
6779   //   [...] If the type of the object expression is of pointer to scalar
6780   //   type, the unqualified-id is looked up in the context of the complete
6781   //   postfix-expression.
6782   //
6783   // This also indicates that we could be parsing a pseudo-destructor-name.
6784   // Note that Objective-C class and object types can be pseudo-destructor
6785   // expressions or normal member (ivar or property) access expressions, and
6786   // it's legal for the type to be incomplete if this is a pseudo-destructor
6787   // call.  We'll do more incomplete-type checks later in the lookup process,
6788   // so just skip this check for ObjC types.
6789   if (BaseType->isObjCObjectOrInterfaceType()) {
6790     ObjectType = ParsedType::make(BaseType);
6791     MayBePseudoDestructor = true;
6792     return Base;
6793   } else if (!BaseType->isRecordType()) {
6794     ObjectType = nullptr;
6795     MayBePseudoDestructor = true;
6796     return Base;
6797   }
6798 
6799   // The object type must be complete (or dependent), or
6800   // C++11 [expr.prim.general]p3:
6801   //   Unlike the object expression in other contexts, *this is not required to
6802   //   be of complete type for purposes of class member access (5.2.5) outside
6803   //   the member function body.
6804   if (!BaseType->isDependentType() &&
6805       !isThisOutsideMemberFunctionBody(BaseType) &&
6806       RequireCompleteType(OpLoc, BaseType, diag::err_incomplete_member_access))
6807     return ExprError();
6808 
6809   // C++ [basic.lookup.classref]p2:
6810   //   If the id-expression in a class member access (5.2.5) is an
6811   //   unqualified-id, and the type of the object expression is of a class
6812   //   type C (or of pointer to a class type C), the unqualified-id is looked
6813   //   up in the scope of class C. [...]
6814   ObjectType = ParsedType::make(BaseType);
6815   return Base;
6816 }
6817 
CheckArrow(Sema & S,QualType & ObjectType,Expr * & Base,tok::TokenKind & OpKind,SourceLocation OpLoc)6818 static bool CheckArrow(Sema& S, QualType& ObjectType, Expr *&Base,
6819                    tok::TokenKind& OpKind, SourceLocation OpLoc) {
6820   if (Base->hasPlaceholderType()) {
6821     ExprResult result = S.CheckPlaceholderExpr(Base);
6822     if (result.isInvalid()) return true;
6823     Base = result.get();
6824   }
6825   ObjectType = Base->getType();
6826 
6827   // C++ [expr.pseudo]p2:
6828   //   The left-hand side of the dot operator shall be of scalar type. The
6829   //   left-hand side of the arrow operator shall be of pointer to scalar type.
6830   //   This scalar type is the object type.
6831   // Note that this is rather different from the normal handling for the
6832   // arrow operator.
6833   if (OpKind == tok::arrow) {
6834     if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
6835       ObjectType = Ptr->getPointeeType();
6836     } else if (!Base->isTypeDependent()) {
6837       // The user wrote "p->" when they probably meant "p."; fix it.
6838       S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
6839         << ObjectType << true
6840         << FixItHint::CreateReplacement(OpLoc, ".");
6841       if (S.isSFINAEContext())
6842         return true;
6843 
6844       OpKind = tok::period;
6845     }
6846   }
6847 
6848   return false;
6849 }
6850 
6851 /// Check if it's ok to try and recover dot pseudo destructor calls on
6852 /// pointer objects.
6853 static bool
canRecoverDotPseudoDestructorCallsOnPointerObjects(Sema & SemaRef,QualType DestructedType)6854 canRecoverDotPseudoDestructorCallsOnPointerObjects(Sema &SemaRef,
6855                                                    QualType DestructedType) {
6856   // If this is a record type, check if its destructor is callable.
6857   if (auto *RD = DestructedType->getAsCXXRecordDecl()) {
6858     if (CXXDestructorDecl *D = SemaRef.LookupDestructor(RD))
6859       return SemaRef.CanUseDecl(D, /*TreatUnavailableAsInvalid=*/false);
6860     return false;
6861   }
6862 
6863   // Otherwise, check if it's a type for which it's valid to use a pseudo-dtor.
6864   return DestructedType->isDependentType() || DestructedType->isScalarType() ||
6865          DestructedType->isVectorType();
6866 }
6867 
BuildPseudoDestructorExpr(Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,const CXXScopeSpec & SS,TypeSourceInfo * ScopeTypeInfo,SourceLocation CCLoc,SourceLocation TildeLoc,PseudoDestructorTypeStorage Destructed)6868 ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
6869                                            SourceLocation OpLoc,
6870                                            tok::TokenKind OpKind,
6871                                            const CXXScopeSpec &SS,
6872                                            TypeSourceInfo *ScopeTypeInfo,
6873                                            SourceLocation CCLoc,
6874                                            SourceLocation TildeLoc,
6875                                          PseudoDestructorTypeStorage Destructed) {
6876   TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
6877 
6878   QualType ObjectType;
6879   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
6880     return ExprError();
6881 
6882   if (!ObjectType->isDependentType() && !ObjectType->isScalarType() &&
6883       !ObjectType->isVectorType()) {
6884     if (getLangOpts().MSVCCompat && ObjectType->isVoidType())
6885       Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange();
6886     else {
6887       Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
6888         << ObjectType << Base->getSourceRange();
6889       return ExprError();
6890     }
6891   }
6892 
6893   // C++ [expr.pseudo]p2:
6894   //   [...] The cv-unqualified versions of the object type and of the type
6895   //   designated by the pseudo-destructor-name shall be the same type.
6896   if (DestructedTypeInfo) {
6897     QualType DestructedType = DestructedTypeInfo->getType();
6898     SourceLocation DestructedTypeStart
6899       = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
6900     if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) {
6901       if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
6902         // Detect dot pseudo destructor calls on pointer objects, e.g.:
6903         //   Foo *foo;
6904         //   foo.~Foo();
6905         if (OpKind == tok::period && ObjectType->isPointerType() &&
6906             Context.hasSameUnqualifiedType(DestructedType,
6907                                            ObjectType->getPointeeType())) {
6908           auto Diagnostic =
6909               Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
6910               << ObjectType << /*IsArrow=*/0 << Base->getSourceRange();
6911 
6912           // Issue a fixit only when the destructor is valid.
6913           if (canRecoverDotPseudoDestructorCallsOnPointerObjects(
6914                   *this, DestructedType))
6915             Diagnostic << FixItHint::CreateReplacement(OpLoc, "->");
6916 
6917           // Recover by setting the object type to the destructed type and the
6918           // operator to '->'.
6919           ObjectType = DestructedType;
6920           OpKind = tok::arrow;
6921         } else {
6922           Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
6923               << ObjectType << DestructedType << Base->getSourceRange()
6924               << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
6925 
6926           // Recover by setting the destructed type to the object type.
6927           DestructedType = ObjectType;
6928           DestructedTypeInfo =
6929               Context.getTrivialTypeSourceInfo(ObjectType, DestructedTypeStart);
6930           Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
6931         }
6932       } else if (DestructedType.getObjCLifetime() !=
6933                                                 ObjectType.getObjCLifetime()) {
6934 
6935         if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) {
6936           // Okay: just pretend that the user provided the correctly-qualified
6937           // type.
6938         } else {
6939           Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals)
6940             << ObjectType << DestructedType << Base->getSourceRange()
6941             << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
6942         }
6943 
6944         // Recover by setting the destructed type to the object type.
6945         DestructedType = ObjectType;
6946         DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
6947                                                            DestructedTypeStart);
6948         Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
6949       }
6950     }
6951   }
6952 
6953   // C++ [expr.pseudo]p2:
6954   //   [...] Furthermore, the two type-names in a pseudo-destructor-name of the
6955   //   form
6956   //
6957   //     ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
6958   //
6959   //   shall designate the same scalar type.
6960   if (ScopeTypeInfo) {
6961     QualType ScopeType = ScopeTypeInfo->getType();
6962     if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
6963         !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
6964 
6965       Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
6966            diag::err_pseudo_dtor_type_mismatch)
6967         << ObjectType << ScopeType << Base->getSourceRange()
6968         << ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
6969 
6970       ScopeType = QualType();
6971       ScopeTypeInfo = nullptr;
6972     }
6973   }
6974 
6975   Expr *Result
6976     = new (Context) CXXPseudoDestructorExpr(Context, Base,
6977                                             OpKind == tok::arrow, OpLoc,
6978                                             SS.getWithLocInContext(Context),
6979                                             ScopeTypeInfo,
6980                                             CCLoc,
6981                                             TildeLoc,
6982                                             Destructed);
6983 
6984   return Result;
6985 }
6986 
ActOnPseudoDestructorExpr(Scope * S,Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,CXXScopeSpec & SS,UnqualifiedId & FirstTypeName,SourceLocation CCLoc,SourceLocation TildeLoc,UnqualifiedId & SecondTypeName)6987 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
6988                                            SourceLocation OpLoc,
6989                                            tok::TokenKind OpKind,
6990                                            CXXScopeSpec &SS,
6991                                            UnqualifiedId &FirstTypeName,
6992                                            SourceLocation CCLoc,
6993                                            SourceLocation TildeLoc,
6994                                            UnqualifiedId &SecondTypeName) {
6995   assert((FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||
6996           FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) &&
6997          "Invalid first type name in pseudo-destructor");
6998   assert((SecondTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||
6999           SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) &&
7000          "Invalid second type name in pseudo-destructor");
7001 
7002   QualType ObjectType;
7003   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
7004     return ExprError();
7005 
7006   // Compute the object type that we should use for name lookup purposes. Only
7007   // record types and dependent types matter.
7008   ParsedType ObjectTypePtrForLookup;
7009   if (!SS.isSet()) {
7010     if (ObjectType->isRecordType())
7011       ObjectTypePtrForLookup = ParsedType::make(ObjectType);
7012     else if (ObjectType->isDependentType())
7013       ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
7014   }
7015 
7016   // Convert the name of the type being destructed (following the ~) into a
7017   // type (with source-location information).
7018   QualType DestructedType;
7019   TypeSourceInfo *DestructedTypeInfo = nullptr;
7020   PseudoDestructorTypeStorage Destructed;
7021   if (SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) {
7022     ParsedType T = getTypeName(*SecondTypeName.Identifier,
7023                                SecondTypeName.StartLocation,
7024                                S, &SS, true, false, ObjectTypePtrForLookup,
7025                                /*IsCtorOrDtorName*/true);
7026     if (!T &&
7027         ((SS.isSet() && !computeDeclContext(SS, false)) ||
7028          (!SS.isSet() && ObjectType->isDependentType()))) {
7029       // The name of the type being destroyed is a dependent name, and we
7030       // couldn't find anything useful in scope. Just store the identifier and
7031       // it's location, and we'll perform (qualified) name lookup again at
7032       // template instantiation time.
7033       Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
7034                                                SecondTypeName.StartLocation);
7035     } else if (!T) {
7036       Diag(SecondTypeName.StartLocation,
7037            diag::err_pseudo_dtor_destructor_non_type)
7038         << SecondTypeName.Identifier << ObjectType;
7039       if (isSFINAEContext())
7040         return ExprError();
7041 
7042       // Recover by assuming we had the right type all along.
7043       DestructedType = ObjectType;
7044     } else
7045       DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
7046   } else {
7047     // Resolve the template-id to a type.
7048     TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
7049     ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
7050                                        TemplateId->NumArgs);
7051     TypeResult T = ActOnTemplateIdType(TemplateId->SS,
7052                                        TemplateId->TemplateKWLoc,
7053                                        TemplateId->Template,
7054                                        TemplateId->Name,
7055                                        TemplateId->TemplateNameLoc,
7056                                        TemplateId->LAngleLoc,
7057                                        TemplateArgsPtr,
7058                                        TemplateId->RAngleLoc,
7059                                        /*IsCtorOrDtorName*/true);
7060     if (T.isInvalid() || !T.get()) {
7061       // Recover by assuming we had the right type all along.
7062       DestructedType = ObjectType;
7063     } else
7064       DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
7065   }
7066 
7067   // If we've performed some kind of recovery, (re-)build the type source
7068   // information.
7069   if (!DestructedType.isNull()) {
7070     if (!DestructedTypeInfo)
7071       DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
7072                                                   SecondTypeName.StartLocation);
7073     Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
7074   }
7075 
7076   // Convert the name of the scope type (the type prior to '::') into a type.
7077   TypeSourceInfo *ScopeTypeInfo = nullptr;
7078   QualType ScopeType;
7079   if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||
7080       FirstTypeName.Identifier) {
7081     if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) {
7082       ParsedType T = getTypeName(*FirstTypeName.Identifier,
7083                                  FirstTypeName.StartLocation,
7084                                  S, &SS, true, false, ObjectTypePtrForLookup,
7085                                  /*IsCtorOrDtorName*/true);
7086       if (!T) {
7087         Diag(FirstTypeName.StartLocation,
7088              diag::err_pseudo_dtor_destructor_non_type)
7089           << FirstTypeName.Identifier << ObjectType;
7090 
7091         if (isSFINAEContext())
7092           return ExprError();
7093 
7094         // Just drop this type. It's unnecessary anyway.
7095         ScopeType = QualType();
7096       } else
7097         ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
7098     } else {
7099       // Resolve the template-id to a type.
7100       TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
7101       ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
7102                                          TemplateId->NumArgs);
7103       TypeResult T = ActOnTemplateIdType(TemplateId->SS,
7104                                          TemplateId->TemplateKWLoc,
7105                                          TemplateId->Template,
7106                                          TemplateId->Name,
7107                                          TemplateId->TemplateNameLoc,
7108                                          TemplateId->LAngleLoc,
7109                                          TemplateArgsPtr,
7110                                          TemplateId->RAngleLoc,
7111                                          /*IsCtorOrDtorName*/true);
7112       if (T.isInvalid() || !T.get()) {
7113         // Recover by dropping this type.
7114         ScopeType = QualType();
7115       } else
7116         ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
7117     }
7118   }
7119 
7120   if (!ScopeType.isNull() && !ScopeTypeInfo)
7121     ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
7122                                                   FirstTypeName.StartLocation);
7123 
7124 
7125   return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
7126                                    ScopeTypeInfo, CCLoc, TildeLoc,
7127                                    Destructed);
7128 }
7129 
ActOnPseudoDestructorExpr(Scope * S,Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,SourceLocation TildeLoc,const DeclSpec & DS)7130 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
7131                                            SourceLocation OpLoc,
7132                                            tok::TokenKind OpKind,
7133                                            SourceLocation TildeLoc,
7134                                            const DeclSpec& DS) {
7135   QualType ObjectType;
7136   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
7137     return ExprError();
7138 
7139   QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc(),
7140                                  false);
7141 
7142   TypeLocBuilder TLB;
7143   DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
7144   DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
7145   TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T);
7146   PseudoDestructorTypeStorage Destructed(DestructedTypeInfo);
7147 
7148   return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(),
7149                                    nullptr, SourceLocation(), TildeLoc,
7150                                    Destructed);
7151 }
7152 
BuildCXXMemberCallExpr(Expr * E,NamedDecl * FoundDecl,CXXConversionDecl * Method,bool HadMultipleCandidates)7153 ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl,
7154                                         CXXConversionDecl *Method,
7155                                         bool HadMultipleCandidates) {
7156   // Convert the expression to match the conversion function's implicit object
7157   // parameter.
7158   ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/nullptr,
7159                                           FoundDecl, Method);
7160   if (Exp.isInvalid())
7161     return true;
7162 
7163   if (Method->getParent()->isLambda() &&
7164       Method->getConversionType()->isBlockPointerType()) {
7165     // This is a lambda coversion to block pointer; check if the argument
7166     // was a LambdaExpr.
7167     Expr *SubE = E;
7168     CastExpr *CE = dyn_cast<CastExpr>(SubE);
7169     if (CE && CE->getCastKind() == CK_NoOp)
7170       SubE = CE->getSubExpr();
7171     SubE = SubE->IgnoreParens();
7172     if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE))
7173       SubE = BE->getSubExpr();
7174     if (isa<LambdaExpr>(SubE)) {
7175       // For the conversion to block pointer on a lambda expression, we
7176       // construct a special BlockLiteral instead; this doesn't really make
7177       // a difference in ARC, but outside of ARC the resulting block literal
7178       // follows the normal lifetime rules for block literals instead of being
7179       // autoreleased.
7180       DiagnosticErrorTrap Trap(Diags);
7181       PushExpressionEvaluationContext(
7182           ExpressionEvaluationContext::PotentiallyEvaluated);
7183       ExprResult BlockExp = BuildBlockForLambdaConversion(
7184           Exp.get()->getExprLoc(), Exp.get()->getExprLoc(), Method, Exp.get());
7185       PopExpressionEvaluationContext();
7186 
7187       if (BlockExp.isInvalid())
7188         Diag(Exp.get()->getExprLoc(), diag::note_lambda_to_block_conv);
7189       return BlockExp;
7190     }
7191   }
7192 
7193   MemberExpr *ME = new (Context) MemberExpr(
7194       Exp.get(), /*IsArrow=*/false, SourceLocation(), Method, SourceLocation(),
7195       Context.BoundMemberTy, VK_RValue, OK_Ordinary);
7196   if (HadMultipleCandidates)
7197     ME->setHadMultipleCandidates(true);
7198   MarkMemberReferenced(ME);
7199 
7200   QualType ResultType = Method->getReturnType();
7201   ExprValueKind VK = Expr::getValueKindForType(ResultType);
7202   ResultType = ResultType.getNonLValueExprType(Context);
7203 
7204   CXXMemberCallExpr *CE = CXXMemberCallExpr::Create(
7205       Context, ME, /*Args=*/{}, ResultType, VK, Exp.get()->getEndLoc());
7206 
7207   if (CheckFunctionCall(Method, CE,
7208                         Method->getType()->castAs<FunctionProtoType>()))
7209     return ExprError();
7210 
7211   return CE;
7212 }
7213 
BuildCXXNoexceptExpr(SourceLocation KeyLoc,Expr * Operand,SourceLocation RParen)7214 ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
7215                                       SourceLocation RParen) {
7216   // If the operand is an unresolved lookup expression, the expression is ill-
7217   // formed per [over.over]p1, because overloaded function names cannot be used
7218   // without arguments except in explicit contexts.
7219   ExprResult R = CheckPlaceholderExpr(Operand);
7220   if (R.isInvalid())
7221     return R;
7222 
7223   // The operand may have been modified when checking the placeholder type.
7224   Operand = R.get();
7225 
7226   if (!inTemplateInstantiation() && Operand->HasSideEffects(Context, false)) {
7227     // The expression operand for noexcept is in an unevaluated expression
7228     // context, so side effects could result in unintended consequences.
7229     Diag(Operand->getExprLoc(), diag::warn_side_effects_unevaluated_context);
7230   }
7231 
7232   CanThrowResult CanThrow = canThrow(Operand);
7233   return new (Context)
7234       CXXNoexceptExpr(Context.BoolTy, Operand, CanThrow, KeyLoc, RParen);
7235 }
7236 
ActOnNoexceptExpr(SourceLocation KeyLoc,SourceLocation,Expr * Operand,SourceLocation RParen)7237 ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
7238                                    Expr *Operand, SourceLocation RParen) {
7239   return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
7240 }
7241 
IsSpecialDiscardedValue(Expr * E)7242 static bool IsSpecialDiscardedValue(Expr *E) {
7243   // In C++11, discarded-value expressions of a certain form are special,
7244   // according to [expr]p10:
7245   //   The lvalue-to-rvalue conversion (4.1) is applied only if the
7246   //   expression is an lvalue of volatile-qualified type and it has
7247   //   one of the following forms:
7248   E = E->IgnoreParens();
7249 
7250   //   - id-expression (5.1.1),
7251   if (isa<DeclRefExpr>(E))
7252     return true;
7253 
7254   //   - subscripting (5.2.1),
7255   if (isa<ArraySubscriptExpr>(E))
7256     return true;
7257 
7258   //   - class member access (5.2.5),
7259   if (isa<MemberExpr>(E))
7260     return true;
7261 
7262   //   - indirection (5.3.1),
7263   if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
7264     if (UO->getOpcode() == UO_Deref)
7265       return true;
7266 
7267   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
7268     //   - pointer-to-member operation (5.5),
7269     if (BO->isPtrMemOp())
7270       return true;
7271 
7272     //   - comma expression (5.18) where the right operand is one of the above.
7273     if (BO->getOpcode() == BO_Comma)
7274       return IsSpecialDiscardedValue(BO->getRHS());
7275   }
7276 
7277   //   - conditional expression (5.16) where both the second and the third
7278   //     operands are one of the above, or
7279   if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
7280     return IsSpecialDiscardedValue(CO->getTrueExpr()) &&
7281            IsSpecialDiscardedValue(CO->getFalseExpr());
7282   // The related edge case of "*x ?: *x".
7283   if (BinaryConditionalOperator *BCO =
7284           dyn_cast<BinaryConditionalOperator>(E)) {
7285     if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr()))
7286       return IsSpecialDiscardedValue(OVE->getSourceExpr()) &&
7287              IsSpecialDiscardedValue(BCO->getFalseExpr());
7288   }
7289 
7290   // Objective-C++ extensions to the rule.
7291   if (isa<PseudoObjectExpr>(E) || isa<ObjCIvarRefExpr>(E))
7292     return true;
7293 
7294   return false;
7295 }
7296 
7297 /// Perform the conversions required for an expression used in a
7298 /// context that ignores the result.
IgnoredValueConversions(Expr * E)7299 ExprResult Sema::IgnoredValueConversions(Expr *E) {
7300   if (E->hasPlaceholderType()) {
7301     ExprResult result = CheckPlaceholderExpr(E);
7302     if (result.isInvalid()) return E;
7303     E = result.get();
7304   }
7305 
7306   // C99 6.3.2.1:
7307   //   [Except in specific positions,] an lvalue that does not have
7308   //   array type is converted to the value stored in the
7309   //   designated object (and is no longer an lvalue).
7310   if (E->isRValue()) {
7311     // In C, function designators (i.e. expressions of function type)
7312     // are r-values, but we still want to do function-to-pointer decay
7313     // on them.  This is both technically correct and convenient for
7314     // some clients.
7315     if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType())
7316       return DefaultFunctionArrayConversion(E);
7317 
7318     return E;
7319   }
7320 
7321   if (getLangOpts().CPlusPlus)  {
7322     // The C++11 standard defines the notion of a discarded-value expression;
7323     // normally, we don't need to do anything to handle it, but if it is a
7324     // volatile lvalue with a special form, we perform an lvalue-to-rvalue
7325     // conversion.
7326     if (getLangOpts().CPlusPlus11 && E->isGLValue() &&
7327         E->getType().isVolatileQualified() &&
7328         IsSpecialDiscardedValue(E)) {
7329       ExprResult Res = DefaultLvalueConversion(E);
7330       if (Res.isInvalid())
7331         return E;
7332       E = Res.get();
7333     }
7334 
7335     // C++1z:
7336     //   If the expression is a prvalue after this optional conversion, the
7337     //   temporary materialization conversion is applied.
7338     //
7339     // We skip this step: IR generation is able to synthesize the storage for
7340     // itself in the aggregate case, and adding the extra node to the AST is
7341     // just clutter.
7342     // FIXME: We don't emit lifetime markers for the temporaries due to this.
7343     // FIXME: Do any other AST consumers care about this?
7344     return E;
7345   }
7346 
7347   // GCC seems to also exclude expressions of incomplete enum type.
7348   if (const EnumType *T = E->getType()->getAs<EnumType>()) {
7349     if (!T->getDecl()->isComplete()) {
7350       // FIXME: stupid workaround for a codegen bug!
7351       E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).get();
7352       return E;
7353     }
7354   }
7355 
7356   ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
7357   if (Res.isInvalid())
7358     return E;
7359   E = Res.get();
7360 
7361   if (!E->getType()->isVoidType())
7362     RequireCompleteType(E->getExprLoc(), E->getType(),
7363                         diag::err_incomplete_type);
7364   return E;
7365 }
7366 
7367 // If we can unambiguously determine whether Var can never be used
7368 // in a constant expression, return true.
7369 //  - if the variable and its initializer are non-dependent, then
7370 //    we can unambiguously check if the variable is a constant expression.
7371 //  - if the initializer is not value dependent - we can determine whether
7372 //    it can be used to initialize a constant expression.  If Init can not
7373 //    be used to initialize a constant expression we conclude that Var can
7374 //    never be a constant expression.
7375 //  - FXIME: if the initializer is dependent, we can still do some analysis and
7376 //    identify certain cases unambiguously as non-const by using a Visitor:
7377 //      - such as those that involve odr-use of a ParmVarDecl, involve a new
7378 //        delete, lambda-expr, dynamic-cast, reinterpret-cast etc...
VariableCanNeverBeAConstantExpression(VarDecl * Var,ASTContext & Context)7379 static inline bool VariableCanNeverBeAConstantExpression(VarDecl *Var,
7380     ASTContext &Context) {
7381   if (isa<ParmVarDecl>(Var)) return true;
7382   const VarDecl *DefVD = nullptr;
7383 
7384   // If there is no initializer - this can not be a constant expression.
7385   if (!Var->getAnyInitializer(DefVD)) return true;
7386   assert(DefVD);
7387   if (DefVD->isWeak()) return false;
7388   EvaluatedStmt *Eval = DefVD->ensureEvaluatedStmt();
7389 
7390   Expr *Init = cast<Expr>(Eval->Value);
7391 
7392   if (Var->getType()->isDependentType() || Init->isValueDependent()) {
7393     // FIXME: Teach the constant evaluator to deal with the non-dependent parts
7394     // of value-dependent expressions, and use it here to determine whether the
7395     // initializer is a potential constant expression.
7396     return false;
7397   }
7398 
7399   return !IsVariableAConstantExpression(Var, Context);
7400 }
7401 
7402 /// Check if the current lambda has any potential captures
7403 /// that must be captured by any of its enclosing lambdas that are ready to
7404 /// capture. If there is a lambda that can capture a nested
7405 /// potential-capture, go ahead and do so.  Also, check to see if any
7406 /// variables are uncaptureable or do not involve an odr-use so do not
7407 /// need to be captured.
7408 
CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(Expr * const FE,LambdaScopeInfo * const CurrentLSI,Sema & S)7409 static void CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(
7410     Expr *const FE, LambdaScopeInfo *const CurrentLSI, Sema &S) {
7411 
7412   assert(!S.isUnevaluatedContext());
7413   assert(S.CurContext->isDependentContext());
7414 #ifndef NDEBUG
7415   DeclContext *DC = S.CurContext;
7416   while (DC && isa<CapturedDecl>(DC))
7417     DC = DC->getParent();
7418   assert(
7419       CurrentLSI->CallOperator == DC &&
7420       "The current call operator must be synchronized with Sema's CurContext");
7421 #endif // NDEBUG
7422 
7423   const bool IsFullExprInstantiationDependent = FE->isInstantiationDependent();
7424 
7425   // All the potentially captureable variables in the current nested
7426   // lambda (within a generic outer lambda), must be captured by an
7427   // outer lambda that is enclosed within a non-dependent context.
7428   const unsigned NumPotentialCaptures =
7429       CurrentLSI->getNumPotentialVariableCaptures();
7430   for (unsigned I = 0; I != NumPotentialCaptures; ++I) {
7431     Expr *VarExpr = nullptr;
7432     VarDecl *Var = nullptr;
7433     CurrentLSI->getPotentialVariableCapture(I, Var, VarExpr);
7434     // If the variable is clearly identified as non-odr-used and the full
7435     // expression is not instantiation dependent, only then do we not
7436     // need to check enclosing lambda's for speculative captures.
7437     // For e.g.:
7438     // Even though 'x' is not odr-used, it should be captured.
7439     // int test() {
7440     //   const int x = 10;
7441     //   auto L = [=](auto a) {
7442     //     (void) +x + a;
7443     //   };
7444     // }
7445     if (CurrentLSI->isVariableExprMarkedAsNonODRUsed(VarExpr) &&
7446         !IsFullExprInstantiationDependent)
7447       continue;
7448 
7449     // If we have a capture-capable lambda for the variable, go ahead and
7450     // capture the variable in that lambda (and all its enclosing lambdas).
7451     if (const Optional<unsigned> Index =
7452             getStackIndexOfNearestEnclosingCaptureCapableLambda(
7453                 S.FunctionScopes, Var, S)) {
7454       const unsigned FunctionScopeIndexOfCapturableLambda = Index.getValue();
7455       MarkVarDeclODRUsed(Var, VarExpr->getExprLoc(), S,
7456                          &FunctionScopeIndexOfCapturableLambda);
7457     }
7458     const bool IsVarNeverAConstantExpression =
7459         VariableCanNeverBeAConstantExpression(Var, S.Context);
7460     if (!IsFullExprInstantiationDependent || IsVarNeverAConstantExpression) {
7461       // This full expression is not instantiation dependent or the variable
7462       // can not be used in a constant expression - which means
7463       // this variable must be odr-used here, so diagnose a
7464       // capture violation early, if the variable is un-captureable.
7465       // This is purely for diagnosing errors early.  Otherwise, this
7466       // error would get diagnosed when the lambda becomes capture ready.
7467       QualType CaptureType, DeclRefType;
7468       SourceLocation ExprLoc = VarExpr->getExprLoc();
7469       if (S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
7470                           /*EllipsisLoc*/ SourceLocation(),
7471                           /*BuildAndDiagnose*/false, CaptureType,
7472                           DeclRefType, nullptr)) {
7473         // We will never be able to capture this variable, and we need
7474         // to be able to in any and all instantiations, so diagnose it.
7475         S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
7476                           /*EllipsisLoc*/ SourceLocation(),
7477                           /*BuildAndDiagnose*/true, CaptureType,
7478                           DeclRefType, nullptr);
7479       }
7480     }
7481   }
7482 
7483   // Check if 'this' needs to be captured.
7484   if (CurrentLSI->hasPotentialThisCapture()) {
7485     // If we have a capture-capable lambda for 'this', go ahead and capture
7486     // 'this' in that lambda (and all its enclosing lambdas).
7487     if (const Optional<unsigned> Index =
7488             getStackIndexOfNearestEnclosingCaptureCapableLambda(
7489                 S.FunctionScopes, /*0 is 'this'*/ nullptr, S)) {
7490       const unsigned FunctionScopeIndexOfCapturableLambda = Index.getValue();
7491       S.CheckCXXThisCapture(CurrentLSI->PotentialThisCaptureLocation,
7492                             /*Explicit*/ false, /*BuildAndDiagnose*/ true,
7493                             &FunctionScopeIndexOfCapturableLambda);
7494     }
7495   }
7496 
7497   // Reset all the potential captures at the end of each full-expression.
7498   CurrentLSI->clearPotentialCaptures();
7499 }
7500 
attemptRecovery(Sema & SemaRef,const TypoCorrectionConsumer & Consumer,const TypoCorrection & TC)7501 static ExprResult attemptRecovery(Sema &SemaRef,
7502                                   const TypoCorrectionConsumer &Consumer,
7503                                   const TypoCorrection &TC) {
7504   LookupResult R(SemaRef, Consumer.getLookupResult().getLookupNameInfo(),
7505                  Consumer.getLookupResult().getLookupKind());
7506   const CXXScopeSpec *SS = Consumer.getSS();
7507   CXXScopeSpec NewSS;
7508 
7509   // Use an approprate CXXScopeSpec for building the expr.
7510   if (auto *NNS = TC.getCorrectionSpecifier())
7511     NewSS.MakeTrivial(SemaRef.Context, NNS, TC.getCorrectionRange());
7512   else if (SS && !TC.WillReplaceSpecifier())
7513     NewSS = *SS;
7514 
7515   if (auto *ND = TC.getFoundDecl()) {
7516     R.setLookupName(ND->getDeclName());
7517     R.addDecl(ND);
7518     if (ND->isCXXClassMember()) {
7519       // Figure out the correct naming class to add to the LookupResult.
7520       CXXRecordDecl *Record = nullptr;
7521       if (auto *NNS = TC.getCorrectionSpecifier())
7522         Record = NNS->getAsType()->getAsCXXRecordDecl();
7523       if (!Record)
7524         Record =
7525             dyn_cast<CXXRecordDecl>(ND->getDeclContext()->getRedeclContext());
7526       if (Record)
7527         R.setNamingClass(Record);
7528 
7529       // Detect and handle the case where the decl might be an implicit
7530       // member.
7531       bool MightBeImplicitMember;
7532       if (!Consumer.isAddressOfOperand())
7533         MightBeImplicitMember = true;
7534       else if (!NewSS.isEmpty())
7535         MightBeImplicitMember = false;
7536       else if (R.isOverloadedResult())
7537         MightBeImplicitMember = false;
7538       else if (R.isUnresolvableResult())
7539         MightBeImplicitMember = true;
7540       else
7541         MightBeImplicitMember = isa<FieldDecl>(ND) ||
7542                                 isa<IndirectFieldDecl>(ND) ||
7543                                 isa<MSPropertyDecl>(ND);
7544 
7545       if (MightBeImplicitMember)
7546         return SemaRef.BuildPossibleImplicitMemberExpr(
7547             NewSS, /*TemplateKWLoc*/ SourceLocation(), R,
7548             /*TemplateArgs*/ nullptr, /*S*/ nullptr);
7549     } else if (auto *Ivar = dyn_cast<ObjCIvarDecl>(ND)) {
7550       return SemaRef.LookupInObjCMethod(R, Consumer.getScope(),
7551                                         Ivar->getIdentifier());
7552     }
7553   }
7554 
7555   return SemaRef.BuildDeclarationNameExpr(NewSS, R, /*NeedsADL*/ false,
7556                                           /*AcceptInvalidDecl*/ true);
7557 }
7558 
7559 namespace {
7560 class FindTypoExprs : public RecursiveASTVisitor<FindTypoExprs> {
7561   llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs;
7562 
7563 public:
FindTypoExprs(llvm::SmallSetVector<TypoExpr *,2> & TypoExprs)7564   explicit FindTypoExprs(llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs)
7565       : TypoExprs(TypoExprs) {}
VisitTypoExpr(TypoExpr * TE)7566   bool VisitTypoExpr(TypoExpr *TE) {
7567     TypoExprs.insert(TE);
7568     return true;
7569   }
7570 };
7571 
7572 class TransformTypos : public TreeTransform<TransformTypos> {
7573   typedef TreeTransform<TransformTypos> BaseTransform;
7574 
7575   VarDecl *InitDecl; // A decl to avoid as a correction because it is in the
7576                      // process of being initialized.
7577   llvm::function_ref<ExprResult(Expr *)> ExprFilter;
7578   llvm::SmallSetVector<TypoExpr *, 2> TypoExprs, AmbiguousTypoExprs;
7579   llvm::SmallDenseMap<TypoExpr *, ExprResult, 2> TransformCache;
7580   llvm::SmallDenseMap<OverloadExpr *, Expr *, 4> OverloadResolution;
7581 
7582   /// Emit diagnostics for all of the TypoExprs encountered.
7583   /// If the TypoExprs were successfully corrected, then the diagnostics should
7584   /// suggest the corrections. Otherwise the diagnostics will not suggest
7585   /// anything (having been passed an empty TypoCorrection).
EmitAllDiagnostics()7586   void EmitAllDiagnostics() {
7587     for (TypoExpr *TE : TypoExprs) {
7588       auto &State = SemaRef.getTypoExprState(TE);
7589       if (State.DiagHandler) {
7590         TypoCorrection TC = State.Consumer->getCurrentCorrection();
7591         ExprResult Replacement = TransformCache[TE];
7592 
7593         // Extract the NamedDecl from the transformed TypoExpr and add it to the
7594         // TypoCorrection, replacing the existing decls. This ensures the right
7595         // NamedDecl is used in diagnostics e.g. in the case where overload
7596         // resolution was used to select one from several possible decls that
7597         // had been stored in the TypoCorrection.
7598         if (auto *ND = getDeclFromExpr(
7599                 Replacement.isInvalid() ? nullptr : Replacement.get()))
7600           TC.setCorrectionDecl(ND);
7601 
7602         State.DiagHandler(TC);
7603       }
7604       SemaRef.clearDelayedTypo(TE);
7605     }
7606   }
7607 
7608   /// If corrections for the first TypoExpr have been exhausted for a
7609   /// given combination of the other TypoExprs, retry those corrections against
7610   /// the next combination of substitutions for the other TypoExprs by advancing
7611   /// to the next potential correction of the second TypoExpr. For the second
7612   /// and subsequent TypoExprs, if its stream of corrections has been exhausted,
7613   /// the stream is reset and the next TypoExpr's stream is advanced by one (a
7614   /// TypoExpr's correction stream is advanced by removing the TypoExpr from the
7615   /// TransformCache). Returns true if there is still any untried combinations
7616   /// of corrections.
CheckAndAdvanceTypoExprCorrectionStreams()7617   bool CheckAndAdvanceTypoExprCorrectionStreams() {
7618     for (auto TE : TypoExprs) {
7619       auto &State = SemaRef.getTypoExprState(TE);
7620       TransformCache.erase(TE);
7621       if (!State.Consumer->finished())
7622         return true;
7623       State.Consumer->resetCorrectionStream();
7624     }
7625     return false;
7626   }
7627 
getDeclFromExpr(Expr * E)7628   NamedDecl *getDeclFromExpr(Expr *E) {
7629     if (auto *OE = dyn_cast_or_null<OverloadExpr>(E))
7630       E = OverloadResolution[OE];
7631 
7632     if (!E)
7633       return nullptr;
7634     if (auto *DRE = dyn_cast<DeclRefExpr>(E))
7635       return DRE->getFoundDecl();
7636     if (auto *ME = dyn_cast<MemberExpr>(E))
7637       return ME->getFoundDecl();
7638     // FIXME: Add any other expr types that could be be seen by the delayed typo
7639     // correction TreeTransform for which the corresponding TypoCorrection could
7640     // contain multiple decls.
7641     return nullptr;
7642   }
7643 
TryTransform(Expr * E)7644   ExprResult TryTransform(Expr *E) {
7645     Sema::SFINAETrap Trap(SemaRef);
7646     ExprResult Res = TransformExpr(E);
7647     if (Trap.hasErrorOccurred() || Res.isInvalid())
7648       return ExprError();
7649 
7650     return ExprFilter(Res.get());
7651   }
7652 
7653 public:
TransformTypos(Sema & SemaRef,VarDecl * InitDecl,llvm::function_ref<ExprResult (Expr *)> Filter)7654   TransformTypos(Sema &SemaRef, VarDecl *InitDecl, llvm::function_ref<ExprResult(Expr *)> Filter)
7655       : BaseTransform(SemaRef), InitDecl(InitDecl), ExprFilter(Filter) {}
7656 
RebuildCallExpr(Expr * Callee,SourceLocation LParenLoc,MultiExprArg Args,SourceLocation RParenLoc,Expr * ExecConfig=nullptr)7657   ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc,
7658                                    MultiExprArg Args,
7659                                    SourceLocation RParenLoc,
7660                                    Expr *ExecConfig = nullptr) {
7661     auto Result = BaseTransform::RebuildCallExpr(Callee, LParenLoc, Args,
7662                                                  RParenLoc, ExecConfig);
7663     if (auto *OE = dyn_cast<OverloadExpr>(Callee)) {
7664       if (Result.isUsable()) {
7665         Expr *ResultCall = Result.get();
7666         if (auto *BE = dyn_cast<CXXBindTemporaryExpr>(ResultCall))
7667           ResultCall = BE->getSubExpr();
7668         if (auto *CE = dyn_cast<CallExpr>(ResultCall))
7669           OverloadResolution[OE] = CE->getCallee();
7670       }
7671     }
7672     return Result;
7673   }
7674 
TransformLambdaExpr(LambdaExpr * E)7675   ExprResult TransformLambdaExpr(LambdaExpr *E) { return Owned(E); }
7676 
TransformBlockExpr(BlockExpr * E)7677   ExprResult TransformBlockExpr(BlockExpr *E) { return Owned(E); }
7678 
Transform(Expr * E)7679   ExprResult Transform(Expr *E) {
7680     ExprResult Res;
7681     while (true) {
7682       Res = TryTransform(E);
7683 
7684       // Exit if either the transform was valid or if there were no TypoExprs
7685       // to transform that still have any untried correction candidates..
7686       if (!Res.isInvalid() ||
7687           !CheckAndAdvanceTypoExprCorrectionStreams())
7688         break;
7689     }
7690 
7691     // Ensure none of the TypoExprs have multiple typo correction candidates
7692     // with the same edit length that pass all the checks and filters.
7693     // TODO: Properly handle various permutations of possible corrections when
7694     // there is more than one potentially ambiguous typo correction.
7695     // Also, disable typo correction while attempting the transform when
7696     // handling potentially ambiguous typo corrections as any new TypoExprs will
7697     // have been introduced by the application of one of the correction
7698     // candidates and add little to no value if corrected.
7699     SemaRef.DisableTypoCorrection = true;
7700     while (!AmbiguousTypoExprs.empty()) {
7701       auto TE  = AmbiguousTypoExprs.back();
7702       auto Cached = TransformCache[TE];
7703       auto &State = SemaRef.getTypoExprState(TE);
7704       State.Consumer->saveCurrentPosition();
7705       TransformCache.erase(TE);
7706       if (!TryTransform(E).isInvalid()) {
7707         State.Consumer->resetCorrectionStream();
7708         TransformCache.erase(TE);
7709         Res = ExprError();
7710         break;
7711       }
7712       AmbiguousTypoExprs.remove(TE);
7713       State.Consumer->restoreSavedPosition();
7714       TransformCache[TE] = Cached;
7715     }
7716     SemaRef.DisableTypoCorrection = false;
7717 
7718     // Ensure that all of the TypoExprs within the current Expr have been found.
7719     if (!Res.isUsable())
7720       FindTypoExprs(TypoExprs).TraverseStmt(E);
7721 
7722     EmitAllDiagnostics();
7723 
7724     return Res;
7725   }
7726 
TransformTypoExpr(TypoExpr * E)7727   ExprResult TransformTypoExpr(TypoExpr *E) {
7728     // If the TypoExpr hasn't been seen before, record it. Otherwise, return the
7729     // cached transformation result if there is one and the TypoExpr isn't the
7730     // first one that was encountered.
7731     auto &CacheEntry = TransformCache[E];
7732     if (!TypoExprs.insert(E) && !CacheEntry.isUnset()) {
7733       return CacheEntry;
7734     }
7735 
7736     auto &State = SemaRef.getTypoExprState(E);
7737     assert(State.Consumer && "Cannot transform a cleared TypoExpr");
7738 
7739     // For the first TypoExpr and an uncached TypoExpr, find the next likely
7740     // typo correction and return it.
7741     while (TypoCorrection TC = State.Consumer->getNextCorrection()) {
7742       if (InitDecl && TC.getFoundDecl() == InitDecl)
7743         continue;
7744       // FIXME: If we would typo-correct to an invalid declaration, it's
7745       // probably best to just suppress all errors from this typo correction.
7746       ExprResult NE = State.RecoveryHandler ?
7747           State.RecoveryHandler(SemaRef, E, TC) :
7748           attemptRecovery(SemaRef, *State.Consumer, TC);
7749       if (!NE.isInvalid()) {
7750         // Check whether there may be a second viable correction with the same
7751         // edit distance; if so, remember this TypoExpr may have an ambiguous
7752         // correction so it can be more thoroughly vetted later.
7753         TypoCorrection Next;
7754         if ((Next = State.Consumer->peekNextCorrection()) &&
7755             Next.getEditDistance(false) == TC.getEditDistance(false)) {
7756           AmbiguousTypoExprs.insert(E);
7757         } else {
7758           AmbiguousTypoExprs.remove(E);
7759         }
7760         assert(!NE.isUnset() &&
7761                "Typo was transformed into a valid-but-null ExprResult");
7762         return CacheEntry = NE;
7763       }
7764     }
7765     return CacheEntry = ExprError();
7766   }
7767 };
7768 }
7769 
7770 ExprResult
CorrectDelayedTyposInExpr(Expr * E,VarDecl * InitDecl,llvm::function_ref<ExprResult (Expr *)> Filter)7771 Sema::CorrectDelayedTyposInExpr(Expr *E, VarDecl *InitDecl,
7772                                 llvm::function_ref<ExprResult(Expr *)> Filter) {
7773   // If the current evaluation context indicates there are uncorrected typos
7774   // and the current expression isn't guaranteed to not have typos, try to
7775   // resolve any TypoExpr nodes that might be in the expression.
7776   if (E && !ExprEvalContexts.empty() && ExprEvalContexts.back().NumTypos &&
7777       (E->isTypeDependent() || E->isValueDependent() ||
7778        E->isInstantiationDependent())) {
7779     auto TyposResolved = DelayedTypos.size();
7780     auto Result = TransformTypos(*this, InitDecl, Filter).Transform(E);
7781     TyposResolved -= DelayedTypos.size();
7782     if (Result.isInvalid() || Result.get() != E) {
7783       ExprEvalContexts.back().NumTypos -= TyposResolved;
7784       return Result;
7785     }
7786     assert(TyposResolved == 0 && "Corrected typo but got same Expr back?");
7787   }
7788   return E;
7789 }
7790 
ActOnFinishFullExpr(Expr * FE,SourceLocation CC,bool DiscardedValue,bool IsConstexpr)7791 ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC,
7792                                      bool DiscardedValue,
7793                                      bool IsConstexpr) {
7794   ExprResult FullExpr = FE;
7795 
7796   if (!FullExpr.get())
7797     return ExprError();
7798 
7799   if (DiagnoseUnexpandedParameterPack(FullExpr.get()))
7800     return ExprError();
7801 
7802   if (DiscardedValue) {
7803     // Top-level expressions default to 'id' when we're in a debugger.
7804     if (getLangOpts().DebuggerCastResultToId &&
7805         FullExpr.get()->getType() == Context.UnknownAnyTy) {
7806       FullExpr = forceUnknownAnyToType(FullExpr.get(), Context.getObjCIdType());
7807       if (FullExpr.isInvalid())
7808         return ExprError();
7809     }
7810 
7811     FullExpr = CheckPlaceholderExpr(FullExpr.get());
7812     if (FullExpr.isInvalid())
7813       return ExprError();
7814 
7815     FullExpr = IgnoredValueConversions(FullExpr.get());
7816     if (FullExpr.isInvalid())
7817       return ExprError();
7818   }
7819 
7820   FullExpr = CorrectDelayedTyposInExpr(FullExpr.get());
7821   if (FullExpr.isInvalid())
7822     return ExprError();
7823 
7824   CheckCompletedExpr(FullExpr.get(), CC, IsConstexpr);
7825 
7826   // At the end of this full expression (which could be a deeply nested
7827   // lambda), if there is a potential capture within the nested lambda,
7828   // have the outer capture-able lambda try and capture it.
7829   // Consider the following code:
7830   // void f(int, int);
7831   // void f(const int&, double);
7832   // void foo() {
7833   //  const int x = 10, y = 20;
7834   //  auto L = [=](auto a) {
7835   //      auto M = [=](auto b) {
7836   //         f(x, b); <-- requires x to be captured by L and M
7837   //         f(y, a); <-- requires y to be captured by L, but not all Ms
7838   //      };
7839   //   };
7840   // }
7841 
7842   // FIXME: Also consider what happens for something like this that involves
7843   // the gnu-extension statement-expressions or even lambda-init-captures:
7844   //   void f() {
7845   //     const int n = 0;
7846   //     auto L =  [&](auto a) {
7847   //       +n + ({ 0; a; });
7848   //     };
7849   //   }
7850   //
7851   // Here, we see +n, and then the full-expression 0; ends, so we don't
7852   // capture n (and instead remove it from our list of potential captures),
7853   // and then the full-expression +n + ({ 0; }); ends, but it's too late
7854   // for us to see that we need to capture n after all.
7855 
7856   LambdaScopeInfo *const CurrentLSI =
7857       getCurLambda(/*IgnoreCapturedRegions=*/true);
7858   // FIXME: PR 17877 showed that getCurLambda() can return a valid pointer
7859   // even if CurContext is not a lambda call operator. Refer to that Bug Report
7860   // for an example of the code that might cause this asynchrony.
7861   // By ensuring we are in the context of a lambda's call operator
7862   // we can fix the bug (we only need to check whether we need to capture
7863   // if we are within a lambda's body); but per the comments in that
7864   // PR, a proper fix would entail :
7865   //   "Alternative suggestion:
7866   //   - Add to Sema an integer holding the smallest (outermost) scope
7867   //     index that we are *lexically* within, and save/restore/set to
7868   //     FunctionScopes.size() in InstantiatingTemplate's
7869   //     constructor/destructor.
7870   //  - Teach the handful of places that iterate over FunctionScopes to
7871   //    stop at the outermost enclosing lexical scope."
7872   DeclContext *DC = CurContext;
7873   while (DC && isa<CapturedDecl>(DC))
7874     DC = DC->getParent();
7875   const bool IsInLambdaDeclContext = isLambdaCallOperator(DC);
7876   if (IsInLambdaDeclContext && CurrentLSI &&
7877       CurrentLSI->hasPotentialCaptures() && !FullExpr.isInvalid())
7878     CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(FE, CurrentLSI,
7879                                                               *this);
7880   return MaybeCreateExprWithCleanups(FullExpr);
7881 }
7882 
ActOnFinishFullStmt(Stmt * FullStmt)7883 StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
7884   if (!FullStmt) return StmtError();
7885 
7886   return MaybeCreateStmtWithCleanups(FullStmt);
7887 }
7888 
7889 Sema::IfExistsResult
CheckMicrosoftIfExistsSymbol(Scope * S,CXXScopeSpec & SS,const DeclarationNameInfo & TargetNameInfo)7890 Sema::CheckMicrosoftIfExistsSymbol(Scope *S,
7891                                    CXXScopeSpec &SS,
7892                                    const DeclarationNameInfo &TargetNameInfo) {
7893   DeclarationName TargetName = TargetNameInfo.getName();
7894   if (!TargetName)
7895     return IER_DoesNotExist;
7896 
7897   // If the name itself is dependent, then the result is dependent.
7898   if (TargetName.isDependentName())
7899     return IER_Dependent;
7900 
7901   // Do the redeclaration lookup in the current scope.
7902   LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName,
7903                  Sema::NotForRedeclaration);
7904   LookupParsedName(R, S, &SS);
7905   R.suppressDiagnostics();
7906 
7907   switch (R.getResultKind()) {
7908   case LookupResult::Found:
7909   case LookupResult::FoundOverloaded:
7910   case LookupResult::FoundUnresolvedValue:
7911   case LookupResult::Ambiguous:
7912     return IER_Exists;
7913 
7914   case LookupResult::NotFound:
7915     return IER_DoesNotExist;
7916 
7917   case LookupResult::NotFoundInCurrentInstantiation:
7918     return IER_Dependent;
7919   }
7920 
7921   llvm_unreachable("Invalid LookupResult Kind!");
7922 }
7923 
7924 Sema::IfExistsResult
CheckMicrosoftIfExistsSymbol(Scope * S,SourceLocation KeywordLoc,bool IsIfExists,CXXScopeSpec & SS,UnqualifiedId & Name)7925 Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
7926                                    bool IsIfExists, CXXScopeSpec &SS,
7927                                    UnqualifiedId &Name) {
7928   DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
7929 
7930   // Check for an unexpanded parameter pack.
7931   auto UPPC = IsIfExists ? UPPC_IfExists : UPPC_IfNotExists;
7932   if (DiagnoseUnexpandedParameterPack(SS, UPPC) ||
7933       DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC))
7934     return IER_Error;
7935 
7936   return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo);
7937 }
7938