1 //===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements semantic analysis for expressions.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "TreeTransform.h"
14 #include "UsedDeclVisitor.h"
15 #include "clang/AST/ASTConsumer.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/ASTMutationListener.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/EvaluatedExprVisitor.h"
23 #include "clang/AST/Expr.h"
24 #include "clang/AST/ExprCXX.h"
25 #include "clang/AST/ExprObjC.h"
26 #include "clang/AST/ExprOpenMP.h"
27 #include "clang/AST/OperationKinds.h"
28 #include "clang/AST/ParentMapContext.h"
29 #include "clang/AST/RecursiveASTVisitor.h"
30 #include "clang/AST/Type.h"
31 #include "clang/AST/TypeLoc.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/DiagnosticSema.h"
34 #include "clang/Basic/PartialDiagnostic.h"
35 #include "clang/Basic/SourceManager.h"
36 #include "clang/Basic/Specifiers.h"
37 #include "clang/Basic/TargetInfo.h"
38 #include "clang/Basic/TypeTraits.h"
39 #include "clang/Lex/LiteralSupport.h"
40 #include "clang/Lex/Preprocessor.h"
41 #include "clang/Sema/AnalysisBasedWarnings.h"
42 #include "clang/Sema/DeclSpec.h"
43 #include "clang/Sema/DelayedDiagnostic.h"
44 #include "clang/Sema/Designator.h"
45 #include "clang/Sema/EnterExpressionEvaluationContext.h"
46 #include "clang/Sema/Initialization.h"
47 #include "clang/Sema/Lookup.h"
48 #include "clang/Sema/Overload.h"
49 #include "clang/Sema/ParsedTemplate.h"
50 #include "clang/Sema/Scope.h"
51 #include "clang/Sema/ScopeInfo.h"
52 #include "clang/Sema/SemaFixItUtils.h"
53 #include "clang/Sema/SemaInternal.h"
54 #include "clang/Sema/Template.h"
55 #include "llvm/ADT/STLExtras.h"
56 #include "llvm/ADT/StringExtras.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/ConvertUTF.h"
59 #include "llvm/Support/SaveAndRestore.h"
60 #include "llvm/Support/TypeSize.h"
61 #include <optional>
62
63 using namespace clang;
64 using namespace sema;
65
66 /// Determine whether the use of this declaration is valid, without
67 /// emitting diagnostics.
CanUseDecl(NamedDecl * D,bool TreatUnavailableAsInvalid)68 bool Sema::CanUseDecl(NamedDecl *D, bool TreatUnavailableAsInvalid) {
69 // See if this is an auto-typed variable whose initializer we are parsing.
70 if (ParsingInitForAutoVars.count(D))
71 return false;
72
73 // See if this is a deleted function.
74 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
75 if (FD->isDeleted())
76 return false;
77
78 // If the function has a deduced return type, and we can't deduce it,
79 // then we can't use it either.
80 if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
81 DeduceReturnType(FD, SourceLocation(), /*Diagnose*/ false))
82 return false;
83
84 // See if this is an aligned allocation/deallocation function that is
85 // unavailable.
86 if (TreatUnavailableAsInvalid &&
87 isUnavailableAlignedAllocationFunction(*FD))
88 return false;
89 }
90
91 // See if this function is unavailable.
92 if (TreatUnavailableAsInvalid && D->getAvailability() == AR_Unavailable &&
93 cast<Decl>(CurContext)->getAvailability() != AR_Unavailable)
94 return false;
95
96 if (isa<UnresolvedUsingIfExistsDecl>(D))
97 return false;
98
99 return true;
100 }
101
DiagnoseUnusedOfDecl(Sema & S,NamedDecl * D,SourceLocation Loc)102 static void DiagnoseUnusedOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc) {
103 // Warn if this is used but marked unused.
104 if (const auto *A = D->getAttr<UnusedAttr>()) {
105 // [[maybe_unused]] should not diagnose uses, but __attribute__((unused))
106 // should diagnose them.
107 if (A->getSemanticSpelling() != UnusedAttr::CXX11_maybe_unused &&
108 A->getSemanticSpelling() != UnusedAttr::C23_maybe_unused) {
109 const Decl *DC = cast_or_null<Decl>(S.getCurObjCLexicalContext());
110 if (DC && !DC->hasAttr<UnusedAttr>())
111 S.Diag(Loc, diag::warn_used_but_marked_unused) << D;
112 }
113 }
114 }
115
116 /// Emit a note explaining that this function is deleted.
NoteDeletedFunction(FunctionDecl * Decl)117 void Sema::NoteDeletedFunction(FunctionDecl *Decl) {
118 assert(Decl && Decl->isDeleted());
119
120 if (Decl->isDefaulted()) {
121 // If the method was explicitly defaulted, point at that declaration.
122 if (!Decl->isImplicit())
123 Diag(Decl->getLocation(), diag::note_implicitly_deleted);
124
125 // Try to diagnose why this special member function was implicitly
126 // deleted. This might fail, if that reason no longer applies.
127 DiagnoseDeletedDefaultedFunction(Decl);
128 return;
129 }
130
131 auto *Ctor = dyn_cast<CXXConstructorDecl>(Decl);
132 if (Ctor && Ctor->isInheritingConstructor())
133 return NoteDeletedInheritingConstructor(Ctor);
134
135 Diag(Decl->getLocation(), diag::note_availability_specified_here)
136 << Decl << 1;
137 }
138
139 /// Determine whether a FunctionDecl was ever declared with an
140 /// explicit storage class.
hasAnyExplicitStorageClass(const FunctionDecl * D)141 static bool hasAnyExplicitStorageClass(const FunctionDecl *D) {
142 for (auto *I : D->redecls()) {
143 if (I->getStorageClass() != SC_None)
144 return true;
145 }
146 return false;
147 }
148
149 /// Check whether we're in an extern inline function and referring to a
150 /// variable or function with internal linkage (C11 6.7.4p3).
151 ///
152 /// This is only a warning because we used to silently accept this code, but
153 /// in many cases it will not behave correctly. This is not enabled in C++ mode
154 /// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6)
155 /// and so while there may still be user mistakes, most of the time we can't
156 /// prove that there are errors.
diagnoseUseOfInternalDeclInInlineFunction(Sema & S,const NamedDecl * D,SourceLocation Loc)157 static void diagnoseUseOfInternalDeclInInlineFunction(Sema &S,
158 const NamedDecl *D,
159 SourceLocation Loc) {
160 // This is disabled under C++; there are too many ways for this to fire in
161 // contexts where the warning is a false positive, or where it is technically
162 // correct but benign.
163 if (S.getLangOpts().CPlusPlus)
164 return;
165
166 // Check if this is an inlined function or method.
167 FunctionDecl *Current = S.getCurFunctionDecl();
168 if (!Current)
169 return;
170 if (!Current->isInlined())
171 return;
172 if (!Current->isExternallyVisible())
173 return;
174
175 // Check if the decl has internal linkage.
176 if (D->getFormalLinkage() != Linkage::Internal)
177 return;
178
179 // Downgrade from ExtWarn to Extension if
180 // (1) the supposedly external inline function is in the main file,
181 // and probably won't be included anywhere else.
182 // (2) the thing we're referencing is a pure function.
183 // (3) the thing we're referencing is another inline function.
184 // This last can give us false negatives, but it's better than warning on
185 // wrappers for simple C library functions.
186 const FunctionDecl *UsedFn = dyn_cast<FunctionDecl>(D);
187 bool DowngradeWarning = S.getSourceManager().isInMainFile(Loc);
188 if (!DowngradeWarning && UsedFn)
189 DowngradeWarning = UsedFn->isInlined() || UsedFn->hasAttr<ConstAttr>();
190
191 S.Diag(Loc, DowngradeWarning ? diag::ext_internal_in_extern_inline_quiet
192 : diag::ext_internal_in_extern_inline)
193 << /*IsVar=*/!UsedFn << D;
194
195 S.MaybeSuggestAddingStaticToDecl(Current);
196
197 S.Diag(D->getCanonicalDecl()->getLocation(), diag::note_entity_declared_at)
198 << D;
199 }
200
MaybeSuggestAddingStaticToDecl(const FunctionDecl * Cur)201 void Sema::MaybeSuggestAddingStaticToDecl(const FunctionDecl *Cur) {
202 const FunctionDecl *First = Cur->getFirstDecl();
203
204 // Suggest "static" on the function, if possible.
205 if (!hasAnyExplicitStorageClass(First)) {
206 SourceLocation DeclBegin = First->getSourceRange().getBegin();
207 Diag(DeclBegin, diag::note_convert_inline_to_static)
208 << Cur << FixItHint::CreateInsertion(DeclBegin, "static ");
209 }
210 }
211
212 /// Determine whether the use of this declaration is valid, and
213 /// emit any corresponding diagnostics.
214 ///
215 /// This routine diagnoses various problems with referencing
216 /// declarations that can occur when using a declaration. For example,
217 /// it might warn if a deprecated or unavailable declaration is being
218 /// used, or produce an error (and return true) if a C++0x deleted
219 /// function is being used.
220 ///
221 /// \returns true if there was an error (this declaration cannot be
222 /// referenced), false otherwise.
223 ///
DiagnoseUseOfDecl(NamedDecl * D,ArrayRef<SourceLocation> Locs,const ObjCInterfaceDecl * UnknownObjCClass,bool ObjCPropertyAccess,bool AvoidPartialAvailabilityChecks,ObjCInterfaceDecl * ClassReceiver,bool SkipTrailingRequiresClause)224 bool Sema::DiagnoseUseOfDecl(NamedDecl *D, ArrayRef<SourceLocation> Locs,
225 const ObjCInterfaceDecl *UnknownObjCClass,
226 bool ObjCPropertyAccess,
227 bool AvoidPartialAvailabilityChecks,
228 ObjCInterfaceDecl *ClassReceiver,
229 bool SkipTrailingRequiresClause) {
230 SourceLocation Loc = Locs.front();
231 if (getLangOpts().CPlusPlus && isa<FunctionDecl>(D)) {
232 // If there were any diagnostics suppressed by template argument deduction,
233 // emit them now.
234 auto Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
235 if (Pos != SuppressedDiagnostics.end()) {
236 for (const PartialDiagnosticAt &Suppressed : Pos->second)
237 Diag(Suppressed.first, Suppressed.second);
238
239 // Clear out the list of suppressed diagnostics, so that we don't emit
240 // them again for this specialization. However, we don't obsolete this
241 // entry from the table, because we want to avoid ever emitting these
242 // diagnostics again.
243 Pos->second.clear();
244 }
245
246 // C++ [basic.start.main]p3:
247 // The function 'main' shall not be used within a program.
248 if (cast<FunctionDecl>(D)->isMain())
249 Diag(Loc, diag::ext_main_used);
250
251 diagnoseUnavailableAlignedAllocation(*cast<FunctionDecl>(D), Loc);
252 }
253
254 // See if this is an auto-typed variable whose initializer we are parsing.
255 if (ParsingInitForAutoVars.count(D)) {
256 if (isa<BindingDecl>(D)) {
257 Diag(Loc, diag::err_binding_cannot_appear_in_own_initializer)
258 << D->getDeclName();
259 } else {
260 Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
261 << D->getDeclName() << cast<VarDecl>(D)->getType();
262 }
263 return true;
264 }
265
266 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
267 // See if this is a deleted function.
268 if (FD->isDeleted()) {
269 auto *Ctor = dyn_cast<CXXConstructorDecl>(FD);
270 if (Ctor && Ctor->isInheritingConstructor())
271 Diag(Loc, diag::err_deleted_inherited_ctor_use)
272 << Ctor->getParent()
273 << Ctor->getInheritedConstructor().getConstructor()->getParent();
274 else
275 Diag(Loc, diag::err_deleted_function_use);
276 NoteDeletedFunction(FD);
277 return true;
278 }
279
280 // [expr.prim.id]p4
281 // A program that refers explicitly or implicitly to a function with a
282 // trailing requires-clause whose constraint-expression is not satisfied,
283 // other than to declare it, is ill-formed. [...]
284 //
285 // See if this is a function with constraints that need to be satisfied.
286 // Check this before deducing the return type, as it might instantiate the
287 // definition.
288 if (!SkipTrailingRequiresClause && FD->getTrailingRequiresClause()) {
289 ConstraintSatisfaction Satisfaction;
290 if (CheckFunctionConstraints(FD, Satisfaction, Loc,
291 /*ForOverloadResolution*/ true))
292 // A diagnostic will have already been generated (non-constant
293 // constraint expression, for example)
294 return true;
295 if (!Satisfaction.IsSatisfied) {
296 Diag(Loc,
297 diag::err_reference_to_function_with_unsatisfied_constraints)
298 << D;
299 DiagnoseUnsatisfiedConstraint(Satisfaction);
300 return true;
301 }
302 }
303
304 // If the function has a deduced return type, and we can't deduce it,
305 // then we can't use it either.
306 if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
307 DeduceReturnType(FD, Loc))
308 return true;
309
310 if (getLangOpts().CUDA && !CheckCUDACall(Loc, FD))
311 return true;
312
313 }
314
315 if (auto *MD = dyn_cast<CXXMethodDecl>(D)) {
316 // Lambdas are only default-constructible or assignable in C++2a onwards.
317 if (MD->getParent()->isLambda() &&
318 ((isa<CXXConstructorDecl>(MD) &&
319 cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) ||
320 MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator())) {
321 Diag(Loc, diag::warn_cxx17_compat_lambda_def_ctor_assign)
322 << !isa<CXXConstructorDecl>(MD);
323 }
324 }
325
326 auto getReferencedObjCProp = [](const NamedDecl *D) ->
327 const ObjCPropertyDecl * {
328 if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
329 return MD->findPropertyDecl();
330 return nullptr;
331 };
332 if (const ObjCPropertyDecl *ObjCPDecl = getReferencedObjCProp(D)) {
333 if (diagnoseArgIndependentDiagnoseIfAttrs(ObjCPDecl, Loc))
334 return true;
335 } else if (diagnoseArgIndependentDiagnoseIfAttrs(D, Loc)) {
336 return true;
337 }
338
339 // [OpenMP 4.0], 2.15 declare reduction Directive, Restrictions
340 // Only the variables omp_in and omp_out are allowed in the combiner.
341 // Only the variables omp_priv and omp_orig are allowed in the
342 // initializer-clause.
343 auto *DRD = dyn_cast<OMPDeclareReductionDecl>(CurContext);
344 if (LangOpts.OpenMP && DRD && !CurContext->containsDecl(D) &&
345 isa<VarDecl>(D)) {
346 Diag(Loc, diag::err_omp_wrong_var_in_declare_reduction)
347 << getCurFunction()->HasOMPDeclareReductionCombiner;
348 Diag(D->getLocation(), diag::note_entity_declared_at) << D;
349 return true;
350 }
351
352 // [OpenMP 5.0], 2.19.7.3. declare mapper Directive, Restrictions
353 // List-items in map clauses on this construct may only refer to the declared
354 // variable var and entities that could be referenced by a procedure defined
355 // at the same location.
356 // [OpenMP 5.2] Also allow iterator declared variables.
357 if (LangOpts.OpenMP && isa<VarDecl>(D) &&
358 !isOpenMPDeclareMapperVarDeclAllowed(cast<VarDecl>(D))) {
359 Diag(Loc, diag::err_omp_declare_mapper_wrong_var)
360 << getOpenMPDeclareMapperVarName();
361 Diag(D->getLocation(), diag::note_entity_declared_at) << D;
362 return true;
363 }
364
365 if (const auto *EmptyD = dyn_cast<UnresolvedUsingIfExistsDecl>(D)) {
366 Diag(Loc, diag::err_use_of_empty_using_if_exists);
367 Diag(EmptyD->getLocation(), diag::note_empty_using_if_exists_here);
368 return true;
369 }
370
371 DiagnoseAvailabilityOfDecl(D, Locs, UnknownObjCClass, ObjCPropertyAccess,
372 AvoidPartialAvailabilityChecks, ClassReceiver);
373
374 DiagnoseUnusedOfDecl(*this, D, Loc);
375
376 diagnoseUseOfInternalDeclInInlineFunction(*this, D, Loc);
377
378 if (D->hasAttr<AvailableOnlyInDefaultEvalMethodAttr>()) {
379 if (getLangOpts().getFPEvalMethod() !=
380 LangOptions::FPEvalMethodKind::FEM_UnsetOnCommandLine &&
381 PP.getLastFPEvalPragmaLocation().isValid() &&
382 PP.getCurrentFPEvalMethod() != getLangOpts().getFPEvalMethod())
383 Diag(D->getLocation(),
384 diag::err_type_available_only_in_default_eval_method)
385 << D->getName();
386 }
387
388 if (auto *VD = dyn_cast<ValueDecl>(D))
389 checkTypeSupport(VD->getType(), Loc, VD);
390
391 if (LangOpts.SYCLIsDevice ||
392 (LangOpts.OpenMP && LangOpts.OpenMPIsTargetDevice)) {
393 if (!Context.getTargetInfo().isTLSSupported())
394 if (const auto *VD = dyn_cast<VarDecl>(D))
395 if (VD->getTLSKind() != VarDecl::TLS_None)
396 targetDiag(*Locs.begin(), diag::err_thread_unsupported);
397 }
398
399 if (isa<ParmVarDecl>(D) && isa<RequiresExprBodyDecl>(D->getDeclContext()) &&
400 !isUnevaluatedContext()) {
401 // C++ [expr.prim.req.nested] p3
402 // A local parameter shall only appear as an unevaluated operand
403 // (Clause 8) within the constraint-expression.
404 Diag(Loc, diag::err_requires_expr_parameter_referenced_in_evaluated_context)
405 << D;
406 Diag(D->getLocation(), diag::note_entity_declared_at) << D;
407 return true;
408 }
409
410 return false;
411 }
412
413 /// DiagnoseSentinelCalls - This routine checks whether a call or
414 /// message-send is to a declaration with the sentinel attribute, and
415 /// if so, it checks that the requirements of the sentinel are
416 /// satisfied.
DiagnoseSentinelCalls(const NamedDecl * D,SourceLocation Loc,ArrayRef<Expr * > Args)417 void Sema::DiagnoseSentinelCalls(const NamedDecl *D, SourceLocation Loc,
418 ArrayRef<Expr *> Args) {
419 const SentinelAttr *Attr = D->getAttr<SentinelAttr>();
420 if (!Attr)
421 return;
422
423 // The number of formal parameters of the declaration.
424 unsigned NumFormalParams;
425
426 // The kind of declaration. This is also an index into a %select in
427 // the diagnostic.
428 enum { CK_Function, CK_Method, CK_Block } CalleeKind;
429
430 if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) {
431 NumFormalParams = MD->param_size();
432 CalleeKind = CK_Method;
433 } else if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
434 NumFormalParams = FD->param_size();
435 CalleeKind = CK_Function;
436 } else if (const auto *VD = dyn_cast<VarDecl>(D)) {
437 QualType Ty = VD->getType();
438 const FunctionType *Fn = nullptr;
439 if (const auto *PtrTy = Ty->getAs<PointerType>()) {
440 Fn = PtrTy->getPointeeType()->getAs<FunctionType>();
441 if (!Fn)
442 return;
443 CalleeKind = CK_Function;
444 } else if (const auto *PtrTy = Ty->getAs<BlockPointerType>()) {
445 Fn = PtrTy->getPointeeType()->castAs<FunctionType>();
446 CalleeKind = CK_Block;
447 } else {
448 return;
449 }
450
451 if (const auto *proto = dyn_cast<FunctionProtoType>(Fn))
452 NumFormalParams = proto->getNumParams();
453 else
454 NumFormalParams = 0;
455 } else {
456 return;
457 }
458
459 // "NullPos" is the number of formal parameters at the end which
460 // effectively count as part of the variadic arguments. This is
461 // useful if you would prefer to not have *any* formal parameters,
462 // but the language forces you to have at least one.
463 unsigned NullPos = Attr->getNullPos();
464 assert((NullPos == 0 || NullPos == 1) && "invalid null position on sentinel");
465 NumFormalParams = (NullPos > NumFormalParams ? 0 : NumFormalParams - NullPos);
466
467 // The number of arguments which should follow the sentinel.
468 unsigned NumArgsAfterSentinel = Attr->getSentinel();
469
470 // If there aren't enough arguments for all the formal parameters,
471 // the sentinel, and the args after the sentinel, complain.
472 if (Args.size() < NumFormalParams + NumArgsAfterSentinel + 1) {
473 Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
474 Diag(D->getLocation(), diag::note_sentinel_here) << int(CalleeKind);
475 return;
476 }
477
478 // Otherwise, find the sentinel expression.
479 const Expr *SentinelExpr = Args[Args.size() - NumArgsAfterSentinel - 1];
480 if (!SentinelExpr)
481 return;
482 if (SentinelExpr->isValueDependent())
483 return;
484 if (Context.isSentinelNullExpr(SentinelExpr))
485 return;
486
487 // Pick a reasonable string to insert. Optimistically use 'nil', 'nullptr',
488 // or 'NULL' if those are actually defined in the context. Only use
489 // 'nil' for ObjC methods, where it's much more likely that the
490 // variadic arguments form a list of object pointers.
491 SourceLocation MissingNilLoc = getLocForEndOfToken(SentinelExpr->getEndLoc());
492 std::string NullValue;
493 if (CalleeKind == CK_Method && PP.isMacroDefined("nil"))
494 NullValue = "nil";
495 else if (getLangOpts().CPlusPlus11)
496 NullValue = "nullptr";
497 else if (PP.isMacroDefined("NULL"))
498 NullValue = "NULL";
499 else
500 NullValue = "(void*) 0";
501
502 if (MissingNilLoc.isInvalid())
503 Diag(Loc, diag::warn_missing_sentinel) << int(CalleeKind);
504 else
505 Diag(MissingNilLoc, diag::warn_missing_sentinel)
506 << int(CalleeKind)
507 << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue);
508 Diag(D->getLocation(), diag::note_sentinel_here)
509 << int(CalleeKind) << Attr->getRange();
510 }
511
getExprRange(Expr * E) const512 SourceRange Sema::getExprRange(Expr *E) const {
513 return E ? E->getSourceRange() : SourceRange();
514 }
515
516 //===----------------------------------------------------------------------===//
517 // Standard Promotions and Conversions
518 //===----------------------------------------------------------------------===//
519
520 /// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
DefaultFunctionArrayConversion(Expr * E,bool Diagnose)521 ExprResult Sema::DefaultFunctionArrayConversion(Expr *E, bool Diagnose) {
522 // Handle any placeholder expressions which made it here.
523 if (E->hasPlaceholderType()) {
524 ExprResult result = CheckPlaceholderExpr(E);
525 if (result.isInvalid()) return ExprError();
526 E = result.get();
527 }
528
529 QualType Ty = E->getType();
530 assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
531
532 if (Ty->isFunctionType()) {
533 if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts()))
534 if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()))
535 if (!checkAddressOfFunctionIsAvailable(FD, Diagnose, E->getExprLoc()))
536 return ExprError();
537
538 E = ImpCastExprToType(E, Context.getPointerType(Ty),
539 CK_FunctionToPointerDecay).get();
540 } else if (Ty->isArrayType()) {
541 // In C90 mode, arrays only promote to pointers if the array expression is
542 // an lvalue. The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
543 // type 'array of type' is converted to an expression that has type 'pointer
544 // to type'...". In C99 this was changed to: C99 6.3.2.1p3: "an expression
545 // that has type 'array of type' ...". The relevant change is "an lvalue"
546 // (C90) to "an expression" (C99).
547 //
548 // C++ 4.2p1:
549 // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
550 // T" can be converted to an rvalue of type "pointer to T".
551 //
552 if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue()) {
553 ExprResult Res = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
554 CK_ArrayToPointerDecay);
555 if (Res.isInvalid())
556 return ExprError();
557 E = Res.get();
558 }
559 }
560 return E;
561 }
562
CheckForNullPointerDereference(Sema & S,Expr * E)563 static void CheckForNullPointerDereference(Sema &S, Expr *E) {
564 // Check to see if we are dereferencing a null pointer. If so,
565 // and if not volatile-qualified, this is undefined behavior that the
566 // optimizer will delete, so warn about it. People sometimes try to use this
567 // to get a deterministic trap and are surprised by clang's behavior. This
568 // only handles the pattern "*null", which is a very syntactic check.
569 const auto *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts());
570 if (UO && UO->getOpcode() == UO_Deref &&
571 UO->getSubExpr()->getType()->isPointerType()) {
572 const LangAS AS =
573 UO->getSubExpr()->getType()->getPointeeType().getAddressSpace();
574 if ((!isTargetAddressSpace(AS) ||
575 (isTargetAddressSpace(AS) && toTargetAddressSpace(AS) == 0)) &&
576 UO->getSubExpr()->IgnoreParenCasts()->isNullPointerConstant(
577 S.Context, Expr::NPC_ValueDependentIsNotNull) &&
578 !UO->getType().isVolatileQualified()) {
579 S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
580 S.PDiag(diag::warn_indirection_through_null)
581 << UO->getSubExpr()->getSourceRange());
582 S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
583 S.PDiag(diag::note_indirection_through_null));
584 }
585 }
586 }
587
DiagnoseDirectIsaAccess(Sema & S,const ObjCIvarRefExpr * OIRE,SourceLocation AssignLoc,const Expr * RHS)588 static void DiagnoseDirectIsaAccess(Sema &S, const ObjCIvarRefExpr *OIRE,
589 SourceLocation AssignLoc,
590 const Expr* RHS) {
591 const ObjCIvarDecl *IV = OIRE->getDecl();
592 if (!IV)
593 return;
594
595 DeclarationName MemberName = IV->getDeclName();
596 IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
597 if (!Member || !Member->isStr("isa"))
598 return;
599
600 const Expr *Base = OIRE->getBase();
601 QualType BaseType = Base->getType();
602 if (OIRE->isArrow())
603 BaseType = BaseType->getPointeeType();
604 if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>())
605 if (ObjCInterfaceDecl *IDecl = OTy->getInterface()) {
606 ObjCInterfaceDecl *ClassDeclared = nullptr;
607 ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
608 if (!ClassDeclared->getSuperClass()
609 && (*ClassDeclared->ivar_begin()) == IV) {
610 if (RHS) {
611 NamedDecl *ObjectSetClass =
612 S.LookupSingleName(S.TUScope,
613 &S.Context.Idents.get("object_setClass"),
614 SourceLocation(), S.LookupOrdinaryName);
615 if (ObjectSetClass) {
616 SourceLocation RHSLocEnd = S.getLocForEndOfToken(RHS->getEndLoc());
617 S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_assign)
618 << FixItHint::CreateInsertion(OIRE->getBeginLoc(),
619 "object_setClass(")
620 << FixItHint::CreateReplacement(
621 SourceRange(OIRE->getOpLoc(), AssignLoc), ",")
622 << FixItHint::CreateInsertion(RHSLocEnd, ")");
623 }
624 else
625 S.Diag(OIRE->getLocation(), diag::warn_objc_isa_assign);
626 } else {
627 NamedDecl *ObjectGetClass =
628 S.LookupSingleName(S.TUScope,
629 &S.Context.Idents.get("object_getClass"),
630 SourceLocation(), S.LookupOrdinaryName);
631 if (ObjectGetClass)
632 S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_use)
633 << FixItHint::CreateInsertion(OIRE->getBeginLoc(),
634 "object_getClass(")
635 << FixItHint::CreateReplacement(
636 SourceRange(OIRE->getOpLoc(), OIRE->getEndLoc()), ")");
637 else
638 S.Diag(OIRE->getLocation(), diag::warn_objc_isa_use);
639 }
640 S.Diag(IV->getLocation(), diag::note_ivar_decl);
641 }
642 }
643 }
644
DefaultLvalueConversion(Expr * E)645 ExprResult Sema::DefaultLvalueConversion(Expr *E) {
646 // Handle any placeholder expressions which made it here.
647 if (E->hasPlaceholderType()) {
648 ExprResult result = CheckPlaceholderExpr(E);
649 if (result.isInvalid()) return ExprError();
650 E = result.get();
651 }
652
653 // C++ [conv.lval]p1:
654 // A glvalue of a non-function, non-array type T can be
655 // converted to a prvalue.
656 if (!E->isGLValue()) return E;
657
658 QualType T = E->getType();
659 assert(!T.isNull() && "r-value conversion on typeless expression?");
660
661 // lvalue-to-rvalue conversion cannot be applied to function or array types.
662 if (T->isFunctionType() || T->isArrayType())
663 return E;
664
665 // We don't want to throw lvalue-to-rvalue casts on top of
666 // expressions of certain types in C++.
667 if (getLangOpts().CPlusPlus &&
668 (E->getType() == Context.OverloadTy ||
669 T->isDependentType() ||
670 T->isRecordType()))
671 return E;
672
673 // The C standard is actually really unclear on this point, and
674 // DR106 tells us what the result should be but not why. It's
675 // generally best to say that void types just doesn't undergo
676 // lvalue-to-rvalue at all. Note that expressions of unqualified
677 // 'void' type are never l-values, but qualified void can be.
678 if (T->isVoidType())
679 return E;
680
681 // OpenCL usually rejects direct accesses to values of 'half' type.
682 if (getLangOpts().OpenCL &&
683 !getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()) &&
684 T->isHalfType()) {
685 Diag(E->getExprLoc(), diag::err_opencl_half_load_store)
686 << 0 << T;
687 return ExprError();
688 }
689
690 CheckForNullPointerDereference(*this, E);
691 if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(E->IgnoreParenCasts())) {
692 NamedDecl *ObjectGetClass = LookupSingleName(TUScope,
693 &Context.Idents.get("object_getClass"),
694 SourceLocation(), LookupOrdinaryName);
695 if (ObjectGetClass)
696 Diag(E->getExprLoc(), diag::warn_objc_isa_use)
697 << FixItHint::CreateInsertion(OISA->getBeginLoc(), "object_getClass(")
698 << FixItHint::CreateReplacement(
699 SourceRange(OISA->getOpLoc(), OISA->getIsaMemberLoc()), ")");
700 else
701 Diag(E->getExprLoc(), diag::warn_objc_isa_use);
702 }
703 else if (const ObjCIvarRefExpr *OIRE =
704 dyn_cast<ObjCIvarRefExpr>(E->IgnoreParenCasts()))
705 DiagnoseDirectIsaAccess(*this, OIRE, SourceLocation(), /* Expr*/nullptr);
706
707 // C++ [conv.lval]p1:
708 // [...] If T is a non-class type, the type of the prvalue is the
709 // cv-unqualified version of T. Otherwise, the type of the
710 // rvalue is T.
711 //
712 // C99 6.3.2.1p2:
713 // If the lvalue has qualified type, the value has the unqualified
714 // version of the type of the lvalue; otherwise, the value has the
715 // type of the lvalue.
716 if (T.hasQualifiers())
717 T = T.getUnqualifiedType();
718
719 // Under the MS ABI, lock down the inheritance model now.
720 if (T->isMemberPointerType() &&
721 Context.getTargetInfo().getCXXABI().isMicrosoft())
722 (void)isCompleteType(E->getExprLoc(), T);
723
724 ExprResult Res = CheckLValueToRValueConversionOperand(E);
725 if (Res.isInvalid())
726 return Res;
727 E = Res.get();
728
729 // Loading a __weak object implicitly retains the value, so we need a cleanup to
730 // balance that.
731 if (E->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
732 Cleanup.setExprNeedsCleanups(true);
733
734 if (E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
735 Cleanup.setExprNeedsCleanups(true);
736
737 // C++ [conv.lval]p3:
738 // If T is cv std::nullptr_t, the result is a null pointer constant.
739 CastKind CK = T->isNullPtrType() ? CK_NullToPointer : CK_LValueToRValue;
740 Res = ImplicitCastExpr::Create(Context, T, CK, E, nullptr, VK_PRValue,
741 CurFPFeatureOverrides());
742
743 // C11 6.3.2.1p2:
744 // ... if the lvalue has atomic type, the value has the non-atomic version
745 // of the type of the lvalue ...
746 if (const AtomicType *Atomic = T->getAs<AtomicType>()) {
747 T = Atomic->getValueType().getUnqualifiedType();
748 Res = ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic, Res.get(),
749 nullptr, VK_PRValue, FPOptionsOverride());
750 }
751
752 return Res;
753 }
754
DefaultFunctionArrayLvalueConversion(Expr * E,bool Diagnose)755 ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E, bool Diagnose) {
756 ExprResult Res = DefaultFunctionArrayConversion(E, Diagnose);
757 if (Res.isInvalid())
758 return ExprError();
759 Res = DefaultLvalueConversion(Res.get());
760 if (Res.isInvalid())
761 return ExprError();
762 return Res;
763 }
764
765 /// CallExprUnaryConversions - a special case of an unary conversion
766 /// performed on a function designator of a call expression.
CallExprUnaryConversions(Expr * E)767 ExprResult Sema::CallExprUnaryConversions(Expr *E) {
768 QualType Ty = E->getType();
769 ExprResult Res = E;
770 // Only do implicit cast for a function type, but not for a pointer
771 // to function type.
772 if (Ty->isFunctionType()) {
773 Res = ImpCastExprToType(E, Context.getPointerType(Ty),
774 CK_FunctionToPointerDecay);
775 if (Res.isInvalid())
776 return ExprError();
777 }
778 Res = DefaultLvalueConversion(Res.get());
779 if (Res.isInvalid())
780 return ExprError();
781 return Res.get();
782 }
783
784 /// UsualUnaryConversions - Performs various conversions that are common to most
785 /// operators (C99 6.3). The conversions of array and function types are
786 /// sometimes suppressed. For example, the array->pointer conversion doesn't
787 /// apply if the array is an argument to the sizeof or address (&) operators.
788 /// In these instances, this routine should *not* be called.
UsualUnaryConversions(Expr * E)789 ExprResult Sema::UsualUnaryConversions(Expr *E) {
790 // First, convert to an r-value.
791 ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
792 if (Res.isInvalid())
793 return ExprError();
794 E = Res.get();
795
796 QualType Ty = E->getType();
797 assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
798
799 LangOptions::FPEvalMethodKind EvalMethod = CurFPFeatures.getFPEvalMethod();
800 if (EvalMethod != LangOptions::FEM_Source && Ty->isFloatingType() &&
801 (getLangOpts().getFPEvalMethod() !=
802 LangOptions::FPEvalMethodKind::FEM_UnsetOnCommandLine ||
803 PP.getLastFPEvalPragmaLocation().isValid())) {
804 switch (EvalMethod) {
805 default:
806 llvm_unreachable("Unrecognized float evaluation method");
807 break;
808 case LangOptions::FEM_UnsetOnCommandLine:
809 llvm_unreachable("Float evaluation method should be set by now");
810 break;
811 case LangOptions::FEM_Double:
812 if (Context.getFloatingTypeOrder(Context.DoubleTy, Ty) > 0)
813 // Widen the expression to double.
814 return Ty->isComplexType()
815 ? ImpCastExprToType(E,
816 Context.getComplexType(Context.DoubleTy),
817 CK_FloatingComplexCast)
818 : ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast);
819 break;
820 case LangOptions::FEM_Extended:
821 if (Context.getFloatingTypeOrder(Context.LongDoubleTy, Ty) > 0)
822 // Widen the expression to long double.
823 return Ty->isComplexType()
824 ? ImpCastExprToType(
825 E, Context.getComplexType(Context.LongDoubleTy),
826 CK_FloatingComplexCast)
827 : ImpCastExprToType(E, Context.LongDoubleTy,
828 CK_FloatingCast);
829 break;
830 }
831 }
832
833 // Half FP have to be promoted to float unless it is natively supported
834 if (Ty->isHalfType() && !getLangOpts().NativeHalfType)
835 return ImpCastExprToType(Res.get(), Context.FloatTy, CK_FloatingCast);
836
837 // Try to perform integral promotions if the object has a theoretically
838 // promotable type.
839 if (Ty->isIntegralOrUnscopedEnumerationType()) {
840 // C99 6.3.1.1p2:
841 //
842 // The following may be used in an expression wherever an int or
843 // unsigned int may be used:
844 // - an object or expression with an integer type whose integer
845 // conversion rank is less than or equal to the rank of int
846 // and unsigned int.
847 // - A bit-field of type _Bool, int, signed int, or unsigned int.
848 //
849 // If an int can represent all values of the original type, the
850 // value is converted to an int; otherwise, it is converted to an
851 // unsigned int. These are called the integer promotions. All
852 // other types are unchanged by the integer promotions.
853
854 QualType PTy = Context.isPromotableBitField(E);
855 if (!PTy.isNull()) {
856 E = ImpCastExprToType(E, PTy, CK_IntegralCast).get();
857 return E;
858 }
859 if (Context.isPromotableIntegerType(Ty)) {
860 QualType PT = Context.getPromotedIntegerType(Ty);
861 E = ImpCastExprToType(E, PT, CK_IntegralCast).get();
862 return E;
863 }
864 }
865 return E;
866 }
867
868 /// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
869 /// do not have a prototype. Arguments that have type float or __fp16
870 /// are promoted to double. All other argument types are converted by
871 /// UsualUnaryConversions().
DefaultArgumentPromotion(Expr * E)872 ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
873 QualType Ty = E->getType();
874 assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
875
876 ExprResult Res = UsualUnaryConversions(E);
877 if (Res.isInvalid())
878 return ExprError();
879 E = Res.get();
880
881 // If this is a 'float' or '__fp16' (CVR qualified or typedef)
882 // promote to double.
883 // Note that default argument promotion applies only to float (and
884 // half/fp16); it does not apply to _Float16.
885 const BuiltinType *BTy = Ty->getAs<BuiltinType>();
886 if (BTy && (BTy->getKind() == BuiltinType::Half ||
887 BTy->getKind() == BuiltinType::Float)) {
888 if (getLangOpts().OpenCL &&
889 !getOpenCLOptions().isAvailableOption("cl_khr_fp64", getLangOpts())) {
890 if (BTy->getKind() == BuiltinType::Half) {
891 E = ImpCastExprToType(E, Context.FloatTy, CK_FloatingCast).get();
892 }
893 } else {
894 E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).get();
895 }
896 }
897 if (BTy &&
898 getLangOpts().getExtendIntArgs() ==
899 LangOptions::ExtendArgsKind::ExtendTo64 &&
900 Context.getTargetInfo().supportsExtendIntArgs() && Ty->isIntegerType() &&
901 Context.getTypeSizeInChars(BTy) <
902 Context.getTypeSizeInChars(Context.LongLongTy)) {
903 E = (Ty->isUnsignedIntegerType())
904 ? ImpCastExprToType(E, Context.UnsignedLongLongTy, CK_IntegralCast)
905 .get()
906 : ImpCastExprToType(E, Context.LongLongTy, CK_IntegralCast).get();
907 assert(8 == Context.getTypeSizeInChars(Context.LongLongTy).getQuantity() &&
908 "Unexpected typesize for LongLongTy");
909 }
910
911 // C++ performs lvalue-to-rvalue conversion as a default argument
912 // promotion, even on class types, but note:
913 // C++11 [conv.lval]p2:
914 // When an lvalue-to-rvalue conversion occurs in an unevaluated
915 // operand or a subexpression thereof the value contained in the
916 // referenced object is not accessed. Otherwise, if the glvalue
917 // has a class type, the conversion copy-initializes a temporary
918 // of type T from the glvalue and the result of the conversion
919 // is a prvalue for the temporary.
920 // FIXME: add some way to gate this entire thing for correctness in
921 // potentially potentially evaluated contexts.
922 if (getLangOpts().CPlusPlus && E->isGLValue() && !isUnevaluatedContext()) {
923 ExprResult Temp = PerformCopyInitialization(
924 InitializedEntity::InitializeTemporary(E->getType()),
925 E->getExprLoc(), E);
926 if (Temp.isInvalid())
927 return ExprError();
928 E = Temp.get();
929 }
930
931 return E;
932 }
933
934 /// Determine the degree of POD-ness for an expression.
935 /// Incomplete types are considered POD, since this check can be performed
936 /// when we're in an unevaluated context.
isValidVarArgType(const QualType & Ty)937 Sema::VarArgKind Sema::isValidVarArgType(const QualType &Ty) {
938 if (Ty->isIncompleteType()) {
939 // C++11 [expr.call]p7:
940 // After these conversions, if the argument does not have arithmetic,
941 // enumeration, pointer, pointer to member, or class type, the program
942 // is ill-formed.
943 //
944 // Since we've already performed array-to-pointer and function-to-pointer
945 // decay, the only such type in C++ is cv void. This also handles
946 // initializer lists as variadic arguments.
947 if (Ty->isVoidType())
948 return VAK_Invalid;
949
950 if (Ty->isObjCObjectType())
951 return VAK_Invalid;
952 return VAK_Valid;
953 }
954
955 if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct)
956 return VAK_Invalid;
957
958 if (Context.getTargetInfo().getTriple().isWasm() &&
959 Ty.isWebAssemblyReferenceType()) {
960 return VAK_Invalid;
961 }
962
963 if (Ty.isCXX98PODType(Context))
964 return VAK_Valid;
965
966 // C++11 [expr.call]p7:
967 // Passing a potentially-evaluated argument of class type (Clause 9)
968 // having a non-trivial copy constructor, a non-trivial move constructor,
969 // or a non-trivial destructor, with no corresponding parameter,
970 // is conditionally-supported with implementation-defined semantics.
971 if (getLangOpts().CPlusPlus11 && !Ty->isDependentType())
972 if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl())
973 if (!Record->hasNonTrivialCopyConstructor() &&
974 !Record->hasNonTrivialMoveConstructor() &&
975 !Record->hasNonTrivialDestructor())
976 return VAK_ValidInCXX11;
977
978 if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType())
979 return VAK_Valid;
980
981 if (Ty->isObjCObjectType())
982 return VAK_Invalid;
983
984 if (getLangOpts().MSVCCompat)
985 return VAK_MSVCUndefined;
986
987 // FIXME: In C++11, these cases are conditionally-supported, meaning we're
988 // permitted to reject them. We should consider doing so.
989 return VAK_Undefined;
990 }
991
checkVariadicArgument(const Expr * E,VariadicCallType CT)992 void Sema::checkVariadicArgument(const Expr *E, VariadicCallType CT) {
993 // Don't allow one to pass an Objective-C interface to a vararg.
994 const QualType &Ty = E->getType();
995 VarArgKind VAK = isValidVarArgType(Ty);
996
997 // Complain about passing non-POD types through varargs.
998 switch (VAK) {
999 case VAK_ValidInCXX11:
1000 DiagRuntimeBehavior(
1001 E->getBeginLoc(), nullptr,
1002 PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg) << Ty << CT);
1003 [[fallthrough]];
1004 case VAK_Valid:
1005 if (Ty->isRecordType()) {
1006 // This is unlikely to be what the user intended. If the class has a
1007 // 'c_str' member function, the user probably meant to call that.
1008 DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
1009 PDiag(diag::warn_pass_class_arg_to_vararg)
1010 << Ty << CT << hasCStrMethod(E) << ".c_str()");
1011 }
1012 break;
1013
1014 case VAK_Undefined:
1015 case VAK_MSVCUndefined:
1016 DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
1017 PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
1018 << getLangOpts().CPlusPlus11 << Ty << CT);
1019 break;
1020
1021 case VAK_Invalid:
1022 if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct)
1023 Diag(E->getBeginLoc(),
1024 diag::err_cannot_pass_non_trivial_c_struct_to_vararg)
1025 << Ty << CT;
1026 else if (Ty->isObjCObjectType())
1027 DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
1028 PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
1029 << Ty << CT);
1030 else
1031 Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg)
1032 << isa<InitListExpr>(E) << Ty << CT;
1033 break;
1034 }
1035 }
1036
1037 /// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
1038 /// will create a trap if the resulting type is not a POD type.
DefaultVariadicArgumentPromotion(Expr * E,VariadicCallType CT,FunctionDecl * FDecl)1039 ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
1040 FunctionDecl *FDecl) {
1041 if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) {
1042 // Strip the unbridged-cast placeholder expression off, if applicable.
1043 if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast &&
1044 (CT == VariadicMethod ||
1045 (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) {
1046 E = stripARCUnbridgedCast(E);
1047
1048 // Otherwise, do normal placeholder checking.
1049 } else {
1050 ExprResult ExprRes = CheckPlaceholderExpr(E);
1051 if (ExprRes.isInvalid())
1052 return ExprError();
1053 E = ExprRes.get();
1054 }
1055 }
1056
1057 ExprResult ExprRes = DefaultArgumentPromotion(E);
1058 if (ExprRes.isInvalid())
1059 return ExprError();
1060
1061 // Copy blocks to the heap.
1062 if (ExprRes.get()->getType()->isBlockPointerType())
1063 maybeExtendBlockObject(ExprRes);
1064
1065 E = ExprRes.get();
1066
1067 // Diagnostics regarding non-POD argument types are
1068 // emitted along with format string checking in Sema::CheckFunctionCall().
1069 if (isValidVarArgType(E->getType()) == VAK_Undefined) {
1070 // Turn this into a trap.
1071 CXXScopeSpec SS;
1072 SourceLocation TemplateKWLoc;
1073 UnqualifiedId Name;
1074 Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
1075 E->getBeginLoc());
1076 ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc, Name,
1077 /*HasTrailingLParen=*/true,
1078 /*IsAddressOfOperand=*/false);
1079 if (TrapFn.isInvalid())
1080 return ExprError();
1081
1082 ExprResult Call = BuildCallExpr(TUScope, TrapFn.get(), E->getBeginLoc(),
1083 std::nullopt, E->getEndLoc());
1084 if (Call.isInvalid())
1085 return ExprError();
1086
1087 ExprResult Comma =
1088 ActOnBinOp(TUScope, E->getBeginLoc(), tok::comma, Call.get(), E);
1089 if (Comma.isInvalid())
1090 return ExprError();
1091 return Comma.get();
1092 }
1093
1094 if (!getLangOpts().CPlusPlus &&
1095 RequireCompleteType(E->getExprLoc(), E->getType(),
1096 diag::err_call_incomplete_argument))
1097 return ExprError();
1098
1099 return E;
1100 }
1101
1102 /// Converts an integer to complex float type. Helper function of
1103 /// UsualArithmeticConversions()
1104 ///
1105 /// \return false if the integer expression is an integer type and is
1106 /// successfully converted to the complex type.
handleIntegerToComplexFloatConversion(Sema & S,ExprResult & IntExpr,ExprResult & ComplexExpr,QualType IntTy,QualType ComplexTy,bool SkipCast)1107 static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr,
1108 ExprResult &ComplexExpr,
1109 QualType IntTy,
1110 QualType ComplexTy,
1111 bool SkipCast) {
1112 if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true;
1113 if (SkipCast) return false;
1114 if (IntTy->isIntegerType()) {
1115 QualType fpTy = ComplexTy->castAs<ComplexType>()->getElementType();
1116 IntExpr = S.ImpCastExprToType(IntExpr.get(), fpTy, CK_IntegralToFloating);
1117 IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
1118 CK_FloatingRealToComplex);
1119 } else {
1120 assert(IntTy->isComplexIntegerType());
1121 IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
1122 CK_IntegralComplexToFloatingComplex);
1123 }
1124 return false;
1125 }
1126
1127 // This handles complex/complex, complex/float, or float/complex.
1128 // When both operands are complex, the shorter operand is converted to the
1129 // type of the longer, and that is the type of the result. This corresponds
1130 // to what is done when combining two real floating-point operands.
1131 // The fun begins when size promotion occur across type domains.
1132 // From H&S 6.3.4: When one operand is complex and the other is a real
1133 // floating-point type, the less precise type is converted, within it's
1134 // real or complex domain, to the precision of the other type. For example,
1135 // when combining a "long double" with a "double _Complex", the
1136 // "double _Complex" is promoted to "long double _Complex".
handleComplexFloatConversion(Sema & S,ExprResult & Shorter,QualType ShorterType,QualType LongerType,bool PromotePrecision)1137 static QualType handleComplexFloatConversion(Sema &S, ExprResult &Shorter,
1138 QualType ShorterType,
1139 QualType LongerType,
1140 bool PromotePrecision) {
1141 bool LongerIsComplex = isa<ComplexType>(LongerType.getCanonicalType());
1142 QualType Result =
1143 LongerIsComplex ? LongerType : S.Context.getComplexType(LongerType);
1144
1145 if (PromotePrecision) {
1146 if (isa<ComplexType>(ShorterType.getCanonicalType())) {
1147 Shorter =
1148 S.ImpCastExprToType(Shorter.get(), Result, CK_FloatingComplexCast);
1149 } else {
1150 if (LongerIsComplex)
1151 LongerType = LongerType->castAs<ComplexType>()->getElementType();
1152 Shorter = S.ImpCastExprToType(Shorter.get(), LongerType, CK_FloatingCast);
1153 }
1154 }
1155 return Result;
1156 }
1157
1158 /// Handle arithmetic conversion with complex types. Helper function of
1159 /// UsualArithmeticConversions()
handleComplexConversion(Sema & S,ExprResult & LHS,ExprResult & RHS,QualType LHSType,QualType RHSType,bool IsCompAssign)1160 static QualType handleComplexConversion(Sema &S, ExprResult &LHS,
1161 ExprResult &RHS, QualType LHSType,
1162 QualType RHSType, bool IsCompAssign) {
1163 // if we have an integer operand, the result is the complex type.
1164 if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType,
1165 /*SkipCast=*/false))
1166 return LHSType;
1167 if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType,
1168 /*SkipCast=*/IsCompAssign))
1169 return RHSType;
1170
1171 // Compute the rank of the two types, regardless of whether they are complex.
1172 int Order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
1173 if (Order < 0)
1174 // Promote the precision of the LHS if not an assignment.
1175 return handleComplexFloatConversion(S, LHS, LHSType, RHSType,
1176 /*PromotePrecision=*/!IsCompAssign);
1177 // Promote the precision of the RHS unless it is already the same as the LHS.
1178 return handleComplexFloatConversion(S, RHS, RHSType, LHSType,
1179 /*PromotePrecision=*/Order > 0);
1180 }
1181
1182 /// Handle arithmetic conversion from integer to float. Helper function
1183 /// of UsualArithmeticConversions()
handleIntToFloatConversion(Sema & S,ExprResult & FloatExpr,ExprResult & IntExpr,QualType FloatTy,QualType IntTy,bool ConvertFloat,bool ConvertInt)1184 static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr,
1185 ExprResult &IntExpr,
1186 QualType FloatTy, QualType IntTy,
1187 bool ConvertFloat, bool ConvertInt) {
1188 if (IntTy->isIntegerType()) {
1189 if (ConvertInt)
1190 // Convert intExpr to the lhs floating point type.
1191 IntExpr = S.ImpCastExprToType(IntExpr.get(), FloatTy,
1192 CK_IntegralToFloating);
1193 return FloatTy;
1194 }
1195
1196 // Convert both sides to the appropriate complex float.
1197 assert(IntTy->isComplexIntegerType());
1198 QualType result = S.Context.getComplexType(FloatTy);
1199
1200 // _Complex int -> _Complex float
1201 if (ConvertInt)
1202 IntExpr = S.ImpCastExprToType(IntExpr.get(), result,
1203 CK_IntegralComplexToFloatingComplex);
1204
1205 // float -> _Complex float
1206 if (ConvertFloat)
1207 FloatExpr = S.ImpCastExprToType(FloatExpr.get(), result,
1208 CK_FloatingRealToComplex);
1209
1210 return result;
1211 }
1212
1213 /// Handle arithmethic conversion with floating point types. Helper
1214 /// function of UsualArithmeticConversions()
handleFloatConversion(Sema & S,ExprResult & LHS,ExprResult & RHS,QualType LHSType,QualType RHSType,bool IsCompAssign)1215 static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
1216 ExprResult &RHS, QualType LHSType,
1217 QualType RHSType, bool IsCompAssign) {
1218 bool LHSFloat = LHSType->isRealFloatingType();
1219 bool RHSFloat = RHSType->isRealFloatingType();
1220
1221 // N1169 4.1.4: If one of the operands has a floating type and the other
1222 // operand has a fixed-point type, the fixed-point operand
1223 // is converted to the floating type [...]
1224 if (LHSType->isFixedPointType() || RHSType->isFixedPointType()) {
1225 if (LHSFloat)
1226 RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FixedPointToFloating);
1227 else if (!IsCompAssign)
1228 LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FixedPointToFloating);
1229 return LHSFloat ? LHSType : RHSType;
1230 }
1231
1232 // If we have two real floating types, convert the smaller operand
1233 // to the bigger result.
1234 if (LHSFloat && RHSFloat) {
1235 int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
1236 if (order > 0) {
1237 RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FloatingCast);
1238 return LHSType;
1239 }
1240
1241 assert(order < 0 && "illegal float comparison");
1242 if (!IsCompAssign)
1243 LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FloatingCast);
1244 return RHSType;
1245 }
1246
1247 if (LHSFloat) {
1248 // Half FP has to be promoted to float unless it is natively supported
1249 if (LHSType->isHalfType() && !S.getLangOpts().NativeHalfType)
1250 LHSType = S.Context.FloatTy;
1251
1252 return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType,
1253 /*ConvertFloat=*/!IsCompAssign,
1254 /*ConvertInt=*/ true);
1255 }
1256 assert(RHSFloat);
1257 return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType,
1258 /*ConvertFloat=*/ true,
1259 /*ConvertInt=*/!IsCompAssign);
1260 }
1261
1262 /// Diagnose attempts to convert between __float128, __ibm128 and
1263 /// long double if there is no support for such conversion.
1264 /// Helper function of UsualArithmeticConversions().
unsupportedTypeConversion(const Sema & S,QualType LHSType,QualType RHSType)1265 static bool unsupportedTypeConversion(const Sema &S, QualType LHSType,
1266 QualType RHSType) {
1267 // No issue if either is not a floating point type.
1268 if (!LHSType->isFloatingType() || !RHSType->isFloatingType())
1269 return false;
1270
1271 // No issue if both have the same 128-bit float semantics.
1272 auto *LHSComplex = LHSType->getAs<ComplexType>();
1273 auto *RHSComplex = RHSType->getAs<ComplexType>();
1274
1275 QualType LHSElem = LHSComplex ? LHSComplex->getElementType() : LHSType;
1276 QualType RHSElem = RHSComplex ? RHSComplex->getElementType() : RHSType;
1277
1278 const llvm::fltSemantics &LHSSem = S.Context.getFloatTypeSemantics(LHSElem);
1279 const llvm::fltSemantics &RHSSem = S.Context.getFloatTypeSemantics(RHSElem);
1280
1281 if ((&LHSSem != &llvm::APFloat::PPCDoubleDouble() ||
1282 &RHSSem != &llvm::APFloat::IEEEquad()) &&
1283 (&LHSSem != &llvm::APFloat::IEEEquad() ||
1284 &RHSSem != &llvm::APFloat::PPCDoubleDouble()))
1285 return false;
1286
1287 return true;
1288 }
1289
1290 typedef ExprResult PerformCastFn(Sema &S, Expr *operand, QualType toType);
1291
1292 namespace {
1293 /// These helper callbacks are placed in an anonymous namespace to
1294 /// permit their use as function template parameters.
doIntegralCast(Sema & S,Expr * op,QualType toType)1295 ExprResult doIntegralCast(Sema &S, Expr *op, QualType toType) {
1296 return S.ImpCastExprToType(op, toType, CK_IntegralCast);
1297 }
1298
doComplexIntegralCast(Sema & S,Expr * op,QualType toType)1299 ExprResult doComplexIntegralCast(Sema &S, Expr *op, QualType toType) {
1300 return S.ImpCastExprToType(op, S.Context.getComplexType(toType),
1301 CK_IntegralComplexCast);
1302 }
1303 }
1304
1305 /// Handle integer arithmetic conversions. Helper function of
1306 /// UsualArithmeticConversions()
1307 template <PerformCastFn doLHSCast, PerformCastFn doRHSCast>
handleIntegerConversion(Sema & S,ExprResult & LHS,ExprResult & RHS,QualType LHSType,QualType RHSType,bool IsCompAssign)1308 static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
1309 ExprResult &RHS, QualType LHSType,
1310 QualType RHSType, bool IsCompAssign) {
1311 // The rules for this case are in C99 6.3.1.8
1312 int order = S.Context.getIntegerTypeOrder(LHSType, RHSType);
1313 bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
1314 bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
1315 if (LHSSigned == RHSSigned) {
1316 // Same signedness; use the higher-ranked type
1317 if (order >= 0) {
1318 RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1319 return LHSType;
1320 } else if (!IsCompAssign)
1321 LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1322 return RHSType;
1323 } else if (order != (LHSSigned ? 1 : -1)) {
1324 // The unsigned type has greater than or equal rank to the
1325 // signed type, so use the unsigned type
1326 if (RHSSigned) {
1327 RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1328 return LHSType;
1329 } else if (!IsCompAssign)
1330 LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1331 return RHSType;
1332 } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) {
1333 // The two types are different widths; if we are here, that
1334 // means the signed type is larger than the unsigned type, so
1335 // use the signed type.
1336 if (LHSSigned) {
1337 RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1338 return LHSType;
1339 } else if (!IsCompAssign)
1340 LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1341 return RHSType;
1342 } else {
1343 // The signed type is higher-ranked than the unsigned type,
1344 // but isn't actually any bigger (like unsigned int and long
1345 // on most 32-bit systems). Use the unsigned type corresponding
1346 // to the signed type.
1347 QualType result =
1348 S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType);
1349 RHS = (*doRHSCast)(S, RHS.get(), result);
1350 if (!IsCompAssign)
1351 LHS = (*doLHSCast)(S, LHS.get(), result);
1352 return result;
1353 }
1354 }
1355
1356 /// Handle conversions with GCC complex int extension. Helper function
1357 /// of UsualArithmeticConversions()
handleComplexIntConversion(Sema & S,ExprResult & LHS,ExprResult & RHS,QualType LHSType,QualType RHSType,bool IsCompAssign)1358 static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
1359 ExprResult &RHS, QualType LHSType,
1360 QualType RHSType,
1361 bool IsCompAssign) {
1362 const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
1363 const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();
1364
1365 if (LHSComplexInt && RHSComplexInt) {
1366 QualType LHSEltType = LHSComplexInt->getElementType();
1367 QualType RHSEltType = RHSComplexInt->getElementType();
1368 QualType ScalarType =
1369 handleIntegerConversion<doComplexIntegralCast, doComplexIntegralCast>
1370 (S, LHS, RHS, LHSEltType, RHSEltType, IsCompAssign);
1371
1372 return S.Context.getComplexType(ScalarType);
1373 }
1374
1375 if (LHSComplexInt) {
1376 QualType LHSEltType = LHSComplexInt->getElementType();
1377 QualType ScalarType =
1378 handleIntegerConversion<doComplexIntegralCast, doIntegralCast>
1379 (S, LHS, RHS, LHSEltType, RHSType, IsCompAssign);
1380 QualType ComplexType = S.Context.getComplexType(ScalarType);
1381 RHS = S.ImpCastExprToType(RHS.get(), ComplexType,
1382 CK_IntegralRealToComplex);
1383
1384 return ComplexType;
1385 }
1386
1387 assert(RHSComplexInt);
1388
1389 QualType RHSEltType = RHSComplexInt->getElementType();
1390 QualType ScalarType =
1391 handleIntegerConversion<doIntegralCast, doComplexIntegralCast>
1392 (S, LHS, RHS, LHSType, RHSEltType, IsCompAssign);
1393 QualType ComplexType = S.Context.getComplexType(ScalarType);
1394
1395 if (!IsCompAssign)
1396 LHS = S.ImpCastExprToType(LHS.get(), ComplexType,
1397 CK_IntegralRealToComplex);
1398 return ComplexType;
1399 }
1400
1401 /// Return the rank of a given fixed point or integer type. The value itself
1402 /// doesn't matter, but the values must be increasing with proper increasing
1403 /// rank as described in N1169 4.1.1.
GetFixedPointRank(QualType Ty)1404 static unsigned GetFixedPointRank(QualType Ty) {
1405 const auto *BTy = Ty->getAs<BuiltinType>();
1406 assert(BTy && "Expected a builtin type.");
1407
1408 switch (BTy->getKind()) {
1409 case BuiltinType::ShortFract:
1410 case BuiltinType::UShortFract:
1411 case BuiltinType::SatShortFract:
1412 case BuiltinType::SatUShortFract:
1413 return 1;
1414 case BuiltinType::Fract:
1415 case BuiltinType::UFract:
1416 case BuiltinType::SatFract:
1417 case BuiltinType::SatUFract:
1418 return 2;
1419 case BuiltinType::LongFract:
1420 case BuiltinType::ULongFract:
1421 case BuiltinType::SatLongFract:
1422 case BuiltinType::SatULongFract:
1423 return 3;
1424 case BuiltinType::ShortAccum:
1425 case BuiltinType::UShortAccum:
1426 case BuiltinType::SatShortAccum:
1427 case BuiltinType::SatUShortAccum:
1428 return 4;
1429 case BuiltinType::Accum:
1430 case BuiltinType::UAccum:
1431 case BuiltinType::SatAccum:
1432 case BuiltinType::SatUAccum:
1433 return 5;
1434 case BuiltinType::LongAccum:
1435 case BuiltinType::ULongAccum:
1436 case BuiltinType::SatLongAccum:
1437 case BuiltinType::SatULongAccum:
1438 return 6;
1439 default:
1440 if (BTy->isInteger())
1441 return 0;
1442 llvm_unreachable("Unexpected fixed point or integer type");
1443 }
1444 }
1445
1446 /// handleFixedPointConversion - Fixed point operations between fixed
1447 /// point types and integers or other fixed point types do not fall under
1448 /// usual arithmetic conversion since these conversions could result in loss
1449 /// of precsision (N1169 4.1.4). These operations should be calculated with
1450 /// the full precision of their result type (N1169 4.1.6.2.1).
handleFixedPointConversion(Sema & S,QualType LHSTy,QualType RHSTy)1451 static QualType handleFixedPointConversion(Sema &S, QualType LHSTy,
1452 QualType RHSTy) {
1453 assert((LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) &&
1454 "Expected at least one of the operands to be a fixed point type");
1455 assert((LHSTy->isFixedPointOrIntegerType() ||
1456 RHSTy->isFixedPointOrIntegerType()) &&
1457 "Special fixed point arithmetic operation conversions are only "
1458 "applied to ints or other fixed point types");
1459
1460 // If one operand has signed fixed-point type and the other operand has
1461 // unsigned fixed-point type, then the unsigned fixed-point operand is
1462 // converted to its corresponding signed fixed-point type and the resulting
1463 // type is the type of the converted operand.
1464 if (RHSTy->isSignedFixedPointType() && LHSTy->isUnsignedFixedPointType())
1465 LHSTy = S.Context.getCorrespondingSignedFixedPointType(LHSTy);
1466 else if (RHSTy->isUnsignedFixedPointType() && LHSTy->isSignedFixedPointType())
1467 RHSTy = S.Context.getCorrespondingSignedFixedPointType(RHSTy);
1468
1469 // The result type is the type with the highest rank, whereby a fixed-point
1470 // conversion rank is always greater than an integer conversion rank; if the
1471 // type of either of the operands is a saturating fixedpoint type, the result
1472 // type shall be the saturating fixed-point type corresponding to the type
1473 // with the highest rank; the resulting value is converted (taking into
1474 // account rounding and overflow) to the precision of the resulting type.
1475 // Same ranks between signed and unsigned types are resolved earlier, so both
1476 // types are either signed or both unsigned at this point.
1477 unsigned LHSTyRank = GetFixedPointRank(LHSTy);
1478 unsigned RHSTyRank = GetFixedPointRank(RHSTy);
1479
1480 QualType ResultTy = LHSTyRank > RHSTyRank ? LHSTy : RHSTy;
1481
1482 if (LHSTy->isSaturatedFixedPointType() || RHSTy->isSaturatedFixedPointType())
1483 ResultTy = S.Context.getCorrespondingSaturatedType(ResultTy);
1484
1485 return ResultTy;
1486 }
1487
1488 /// Check that the usual arithmetic conversions can be performed on this pair of
1489 /// expressions that might be of enumeration type.
checkEnumArithmeticConversions(Sema & S,Expr * LHS,Expr * RHS,SourceLocation Loc,Sema::ArithConvKind ACK)1490 static void checkEnumArithmeticConversions(Sema &S, Expr *LHS, Expr *RHS,
1491 SourceLocation Loc,
1492 Sema::ArithConvKind ACK) {
1493 // C++2a [expr.arith.conv]p1:
1494 // If one operand is of enumeration type and the other operand is of a
1495 // different enumeration type or a floating-point type, this behavior is
1496 // deprecated ([depr.arith.conv.enum]).
1497 //
1498 // Warn on this in all language modes. Produce a deprecation warning in C++20.
1499 // Eventually we will presumably reject these cases (in C++23 onwards?).
1500 QualType L = LHS->getType(), R = RHS->getType();
1501 bool LEnum = L->isUnscopedEnumerationType(),
1502 REnum = R->isUnscopedEnumerationType();
1503 bool IsCompAssign = ACK == Sema::ACK_CompAssign;
1504 if ((!IsCompAssign && LEnum && R->isFloatingType()) ||
1505 (REnum && L->isFloatingType())) {
1506 S.Diag(Loc, S.getLangOpts().CPlusPlus26
1507 ? diag::err_arith_conv_enum_float_cxx26
1508 : S.getLangOpts().CPlusPlus20
1509 ? diag::warn_arith_conv_enum_float_cxx20
1510 : diag::warn_arith_conv_enum_float)
1511 << LHS->getSourceRange() << RHS->getSourceRange() << (int)ACK << LEnum
1512 << L << R;
1513 } else if (!IsCompAssign && LEnum && REnum &&
1514 !S.Context.hasSameUnqualifiedType(L, R)) {
1515 unsigned DiagID;
1516 // In C++ 26, usual arithmetic conversions between 2 different enum types
1517 // are ill-formed.
1518 if (S.getLangOpts().CPlusPlus26)
1519 DiagID = diag::err_conv_mixed_enum_types_cxx26;
1520 else if (!L->castAs<EnumType>()->getDecl()->hasNameForLinkage() ||
1521 !R->castAs<EnumType>()->getDecl()->hasNameForLinkage()) {
1522 // If either enumeration type is unnamed, it's less likely that the
1523 // user cares about this, but this situation is still deprecated in
1524 // C++2a. Use a different warning group.
1525 DiagID = S.getLangOpts().CPlusPlus20
1526 ? diag::warn_arith_conv_mixed_anon_enum_types_cxx20
1527 : diag::warn_arith_conv_mixed_anon_enum_types;
1528 } else if (ACK == Sema::ACK_Conditional) {
1529 // Conditional expressions are separated out because they have
1530 // historically had a different warning flag.
1531 DiagID = S.getLangOpts().CPlusPlus20
1532 ? diag::warn_conditional_mixed_enum_types_cxx20
1533 : diag::warn_conditional_mixed_enum_types;
1534 } else if (ACK == Sema::ACK_Comparison) {
1535 // Comparison expressions are separated out because they have
1536 // historically had a different warning flag.
1537 DiagID = S.getLangOpts().CPlusPlus20
1538 ? diag::warn_comparison_mixed_enum_types_cxx20
1539 : diag::warn_comparison_mixed_enum_types;
1540 } else {
1541 DiagID = S.getLangOpts().CPlusPlus20
1542 ? diag::warn_arith_conv_mixed_enum_types_cxx20
1543 : diag::warn_arith_conv_mixed_enum_types;
1544 }
1545 S.Diag(Loc, DiagID) << LHS->getSourceRange() << RHS->getSourceRange()
1546 << (int)ACK << L << R;
1547 }
1548 }
1549
1550 /// UsualArithmeticConversions - Performs various conversions that are common to
1551 /// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
1552 /// routine returns the first non-arithmetic type found. The client is
1553 /// responsible for emitting appropriate error diagnostics.
UsualArithmeticConversions(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,ArithConvKind ACK)1554 QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
1555 SourceLocation Loc,
1556 ArithConvKind ACK) {
1557 checkEnumArithmeticConversions(*this, LHS.get(), RHS.get(), Loc, ACK);
1558
1559 if (ACK != ACK_CompAssign) {
1560 LHS = UsualUnaryConversions(LHS.get());
1561 if (LHS.isInvalid())
1562 return QualType();
1563 }
1564
1565 RHS = UsualUnaryConversions(RHS.get());
1566 if (RHS.isInvalid())
1567 return QualType();
1568
1569 // For conversion purposes, we ignore any qualifiers.
1570 // For example, "const float" and "float" are equivalent.
1571 QualType LHSType = LHS.get()->getType().getUnqualifiedType();
1572 QualType RHSType = RHS.get()->getType().getUnqualifiedType();
1573
1574 // For conversion purposes, we ignore any atomic qualifier on the LHS.
1575 if (const AtomicType *AtomicLHS = LHSType->getAs<AtomicType>())
1576 LHSType = AtomicLHS->getValueType();
1577
1578 // If both types are identical, no conversion is needed.
1579 if (Context.hasSameType(LHSType, RHSType))
1580 return Context.getCommonSugaredType(LHSType, RHSType);
1581
1582 // If either side is a non-arithmetic type (e.g. a pointer), we are done.
1583 // The caller can deal with this (e.g. pointer + int).
1584 if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
1585 return QualType();
1586
1587 // Apply unary and bitfield promotions to the LHS's type.
1588 QualType LHSUnpromotedType = LHSType;
1589 if (Context.isPromotableIntegerType(LHSType))
1590 LHSType = Context.getPromotedIntegerType(LHSType);
1591 QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get());
1592 if (!LHSBitfieldPromoteTy.isNull())
1593 LHSType = LHSBitfieldPromoteTy;
1594 if (LHSType != LHSUnpromotedType && ACK != ACK_CompAssign)
1595 LHS = ImpCastExprToType(LHS.get(), LHSType, CK_IntegralCast);
1596
1597 // If both types are identical, no conversion is needed.
1598 if (Context.hasSameType(LHSType, RHSType))
1599 return Context.getCommonSugaredType(LHSType, RHSType);
1600
1601 // At this point, we have two different arithmetic types.
1602
1603 // Diagnose attempts to convert between __ibm128, __float128 and long double
1604 // where such conversions currently can't be handled.
1605 if (unsupportedTypeConversion(*this, LHSType, RHSType))
1606 return QualType();
1607
1608 // Handle complex types first (C99 6.3.1.8p1).
1609 if (LHSType->isComplexType() || RHSType->isComplexType())
1610 return handleComplexConversion(*this, LHS, RHS, LHSType, RHSType,
1611 ACK == ACK_CompAssign);
1612
1613 // Now handle "real" floating types (i.e. float, double, long double).
1614 if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
1615 return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1616 ACK == ACK_CompAssign);
1617
1618 // Handle GCC complex int extension.
1619 if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
1620 return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType,
1621 ACK == ACK_CompAssign);
1622
1623 if (LHSType->isFixedPointType() || RHSType->isFixedPointType())
1624 return handleFixedPointConversion(*this, LHSType, RHSType);
1625
1626 // Finally, we have two differing integer types.
1627 return handleIntegerConversion<doIntegralCast, doIntegralCast>
1628 (*this, LHS, RHS, LHSType, RHSType, ACK == ACK_CompAssign);
1629 }
1630
1631 //===----------------------------------------------------------------------===//
1632 // Semantic Analysis for various Expression Types
1633 //===----------------------------------------------------------------------===//
1634
1635
ActOnGenericSelectionExpr(SourceLocation KeyLoc,SourceLocation DefaultLoc,SourceLocation RParenLoc,bool PredicateIsExpr,void * ControllingExprOrType,ArrayRef<ParsedType> ArgTypes,ArrayRef<Expr * > ArgExprs)1636 ExprResult Sema::ActOnGenericSelectionExpr(
1637 SourceLocation KeyLoc, SourceLocation DefaultLoc, SourceLocation RParenLoc,
1638 bool PredicateIsExpr, void *ControllingExprOrType,
1639 ArrayRef<ParsedType> ArgTypes, ArrayRef<Expr *> ArgExprs) {
1640 unsigned NumAssocs = ArgTypes.size();
1641 assert(NumAssocs == ArgExprs.size());
1642
1643 TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
1644 for (unsigned i = 0; i < NumAssocs; ++i) {
1645 if (ArgTypes[i])
1646 (void) GetTypeFromParser(ArgTypes[i], &Types[i]);
1647 else
1648 Types[i] = nullptr;
1649 }
1650
1651 // If we have a controlling type, we need to convert it from a parsed type
1652 // into a semantic type and then pass that along.
1653 if (!PredicateIsExpr) {
1654 TypeSourceInfo *ControllingType;
1655 (void)GetTypeFromParser(ParsedType::getFromOpaquePtr(ControllingExprOrType),
1656 &ControllingType);
1657 assert(ControllingType && "couldn't get the type out of the parser");
1658 ControllingExprOrType = ControllingType;
1659 }
1660
1661 ExprResult ER = CreateGenericSelectionExpr(
1662 KeyLoc, DefaultLoc, RParenLoc, PredicateIsExpr, ControllingExprOrType,
1663 llvm::ArrayRef(Types, NumAssocs), ArgExprs);
1664 delete [] Types;
1665 return ER;
1666 }
1667
CreateGenericSelectionExpr(SourceLocation KeyLoc,SourceLocation DefaultLoc,SourceLocation RParenLoc,bool PredicateIsExpr,void * ControllingExprOrType,ArrayRef<TypeSourceInfo * > Types,ArrayRef<Expr * > Exprs)1668 ExprResult Sema::CreateGenericSelectionExpr(
1669 SourceLocation KeyLoc, SourceLocation DefaultLoc, SourceLocation RParenLoc,
1670 bool PredicateIsExpr, void *ControllingExprOrType,
1671 ArrayRef<TypeSourceInfo *> Types, ArrayRef<Expr *> Exprs) {
1672 unsigned NumAssocs = Types.size();
1673 assert(NumAssocs == Exprs.size());
1674 assert(ControllingExprOrType &&
1675 "Must have either a controlling expression or a controlling type");
1676
1677 Expr *ControllingExpr = nullptr;
1678 TypeSourceInfo *ControllingType = nullptr;
1679 if (PredicateIsExpr) {
1680 // Decay and strip qualifiers for the controlling expression type, and
1681 // handle placeholder type replacement. See committee discussion from WG14
1682 // DR423.
1683 EnterExpressionEvaluationContext Unevaluated(
1684 *this, Sema::ExpressionEvaluationContext::Unevaluated);
1685 ExprResult R = DefaultFunctionArrayLvalueConversion(
1686 reinterpret_cast<Expr *>(ControllingExprOrType));
1687 if (R.isInvalid())
1688 return ExprError();
1689 ControllingExpr = R.get();
1690 } else {
1691 // The extension form uses the type directly rather than converting it.
1692 ControllingType = reinterpret_cast<TypeSourceInfo *>(ControllingExprOrType);
1693 if (!ControllingType)
1694 return ExprError();
1695 }
1696
1697 bool TypeErrorFound = false,
1698 IsResultDependent = ControllingExpr
1699 ? ControllingExpr->isTypeDependent()
1700 : ControllingType->getType()->isDependentType(),
1701 ContainsUnexpandedParameterPack =
1702 ControllingExpr
1703 ? ControllingExpr->containsUnexpandedParameterPack()
1704 : ControllingType->getType()->containsUnexpandedParameterPack();
1705
1706 // The controlling expression is an unevaluated operand, so side effects are
1707 // likely unintended.
1708 if (!inTemplateInstantiation() && !IsResultDependent && ControllingExpr &&
1709 ControllingExpr->HasSideEffects(Context, false))
1710 Diag(ControllingExpr->getExprLoc(),
1711 diag::warn_side_effects_unevaluated_context);
1712
1713 for (unsigned i = 0; i < NumAssocs; ++i) {
1714 if (Exprs[i]->containsUnexpandedParameterPack())
1715 ContainsUnexpandedParameterPack = true;
1716
1717 if (Types[i]) {
1718 if (Types[i]->getType()->containsUnexpandedParameterPack())
1719 ContainsUnexpandedParameterPack = true;
1720
1721 if (Types[i]->getType()->isDependentType()) {
1722 IsResultDependent = true;
1723 } else {
1724 // We relax the restriction on use of incomplete types and non-object
1725 // types with the type-based extension of _Generic. Allowing incomplete
1726 // objects means those can be used as "tags" for a type-safe way to map
1727 // to a value. Similarly, matching on function types rather than
1728 // function pointer types can be useful. However, the restriction on VM
1729 // types makes sense to retain as there are open questions about how
1730 // the selection can be made at compile time.
1731 //
1732 // C11 6.5.1.1p2 "The type name in a generic association shall specify a
1733 // complete object type other than a variably modified type."
1734 unsigned D = 0;
1735 if (ControllingExpr && Types[i]->getType()->isIncompleteType())
1736 D = diag::err_assoc_type_incomplete;
1737 else if (ControllingExpr && !Types[i]->getType()->isObjectType())
1738 D = diag::err_assoc_type_nonobject;
1739 else if (Types[i]->getType()->isVariablyModifiedType())
1740 D = diag::err_assoc_type_variably_modified;
1741 else if (ControllingExpr) {
1742 // Because the controlling expression undergoes lvalue conversion,
1743 // array conversion, and function conversion, an association which is
1744 // of array type, function type, or is qualified can never be
1745 // reached. We will warn about this so users are less surprised by
1746 // the unreachable association. However, we don't have to handle
1747 // function types; that's not an object type, so it's handled above.
1748 //
1749 // The logic is somewhat different for C++ because C++ has different
1750 // lvalue to rvalue conversion rules than C. [conv.lvalue]p1 says,
1751 // If T is a non-class type, the type of the prvalue is the cv-
1752 // unqualified version of T. Otherwise, the type of the prvalue is T.
1753 // The result of these rules is that all qualified types in an
1754 // association in C are unreachable, and in C++, only qualified non-
1755 // class types are unreachable.
1756 //
1757 // NB: this does not apply when the first operand is a type rather
1758 // than an expression, because the type form does not undergo
1759 // conversion.
1760 unsigned Reason = 0;
1761 QualType QT = Types[i]->getType();
1762 if (QT->isArrayType())
1763 Reason = 1;
1764 else if (QT.hasQualifiers() &&
1765 (!LangOpts.CPlusPlus || !QT->isRecordType()))
1766 Reason = 2;
1767
1768 if (Reason)
1769 Diag(Types[i]->getTypeLoc().getBeginLoc(),
1770 diag::warn_unreachable_association)
1771 << QT << (Reason - 1);
1772 }
1773
1774 if (D != 0) {
1775 Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
1776 << Types[i]->getTypeLoc().getSourceRange()
1777 << Types[i]->getType();
1778 TypeErrorFound = true;
1779 }
1780
1781 // C11 6.5.1.1p2 "No two generic associations in the same generic
1782 // selection shall specify compatible types."
1783 for (unsigned j = i+1; j < NumAssocs; ++j)
1784 if (Types[j] && !Types[j]->getType()->isDependentType() &&
1785 Context.typesAreCompatible(Types[i]->getType(),
1786 Types[j]->getType())) {
1787 Diag(Types[j]->getTypeLoc().getBeginLoc(),
1788 diag::err_assoc_compatible_types)
1789 << Types[j]->getTypeLoc().getSourceRange()
1790 << Types[j]->getType()
1791 << Types[i]->getType();
1792 Diag(Types[i]->getTypeLoc().getBeginLoc(),
1793 diag::note_compat_assoc)
1794 << Types[i]->getTypeLoc().getSourceRange()
1795 << Types[i]->getType();
1796 TypeErrorFound = true;
1797 }
1798 }
1799 }
1800 }
1801 if (TypeErrorFound)
1802 return ExprError();
1803
1804 // If we determined that the generic selection is result-dependent, don't
1805 // try to compute the result expression.
1806 if (IsResultDependent) {
1807 if (ControllingExpr)
1808 return GenericSelectionExpr::Create(Context, KeyLoc, ControllingExpr,
1809 Types, Exprs, DefaultLoc, RParenLoc,
1810 ContainsUnexpandedParameterPack);
1811 return GenericSelectionExpr::Create(Context, KeyLoc, ControllingType, Types,
1812 Exprs, DefaultLoc, RParenLoc,
1813 ContainsUnexpandedParameterPack);
1814 }
1815
1816 SmallVector<unsigned, 1> CompatIndices;
1817 unsigned DefaultIndex = -1U;
1818 // Look at the canonical type of the controlling expression in case it was a
1819 // deduced type like __auto_type. However, when issuing diagnostics, use the
1820 // type the user wrote in source rather than the canonical one.
1821 for (unsigned i = 0; i < NumAssocs; ++i) {
1822 if (!Types[i])
1823 DefaultIndex = i;
1824 else if (ControllingExpr &&
1825 Context.typesAreCompatible(
1826 ControllingExpr->getType().getCanonicalType(),
1827 Types[i]->getType()))
1828 CompatIndices.push_back(i);
1829 else if (ControllingType &&
1830 Context.typesAreCompatible(
1831 ControllingType->getType().getCanonicalType(),
1832 Types[i]->getType()))
1833 CompatIndices.push_back(i);
1834 }
1835
1836 auto GetControllingRangeAndType = [](Expr *ControllingExpr,
1837 TypeSourceInfo *ControllingType) {
1838 // We strip parens here because the controlling expression is typically
1839 // parenthesized in macro definitions.
1840 if (ControllingExpr)
1841 ControllingExpr = ControllingExpr->IgnoreParens();
1842
1843 SourceRange SR = ControllingExpr
1844 ? ControllingExpr->getSourceRange()
1845 : ControllingType->getTypeLoc().getSourceRange();
1846 QualType QT = ControllingExpr ? ControllingExpr->getType()
1847 : ControllingType->getType();
1848
1849 return std::make_pair(SR, QT);
1850 };
1851
1852 // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have
1853 // type compatible with at most one of the types named in its generic
1854 // association list."
1855 if (CompatIndices.size() > 1) {
1856 auto P = GetControllingRangeAndType(ControllingExpr, ControllingType);
1857 SourceRange SR = P.first;
1858 Diag(SR.getBegin(), diag::err_generic_sel_multi_match)
1859 << SR << P.second << (unsigned)CompatIndices.size();
1860 for (unsigned I : CompatIndices) {
1861 Diag(Types[I]->getTypeLoc().getBeginLoc(),
1862 diag::note_compat_assoc)
1863 << Types[I]->getTypeLoc().getSourceRange()
1864 << Types[I]->getType();
1865 }
1866 return ExprError();
1867 }
1868
1869 // C11 6.5.1.1p2 "If a generic selection has no default generic association,
1870 // its controlling expression shall have type compatible with exactly one of
1871 // the types named in its generic association list."
1872 if (DefaultIndex == -1U && CompatIndices.size() == 0) {
1873 auto P = GetControllingRangeAndType(ControllingExpr, ControllingType);
1874 SourceRange SR = P.first;
1875 Diag(SR.getBegin(), diag::err_generic_sel_no_match) << SR << P.second;
1876 return ExprError();
1877 }
1878
1879 // C11 6.5.1.1p3 "If a generic selection has a generic association with a
1880 // type name that is compatible with the type of the controlling expression,
1881 // then the result expression of the generic selection is the expression
1882 // in that generic association. Otherwise, the result expression of the
1883 // generic selection is the expression in the default generic association."
1884 unsigned ResultIndex =
1885 CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
1886
1887 if (ControllingExpr) {
1888 return GenericSelectionExpr::Create(
1889 Context, KeyLoc, ControllingExpr, Types, Exprs, DefaultLoc, RParenLoc,
1890 ContainsUnexpandedParameterPack, ResultIndex);
1891 }
1892 return GenericSelectionExpr::Create(
1893 Context, KeyLoc, ControllingType, Types, Exprs, DefaultLoc, RParenLoc,
1894 ContainsUnexpandedParameterPack, ResultIndex);
1895 }
1896
getPredefinedExprKind(tok::TokenKind Kind)1897 static PredefinedIdentKind getPredefinedExprKind(tok::TokenKind Kind) {
1898 switch (Kind) {
1899 default:
1900 llvm_unreachable("unexpected TokenKind");
1901 case tok::kw___func__:
1902 return PredefinedIdentKind::Func; // [C99 6.4.2.2]
1903 case tok::kw___FUNCTION__:
1904 return PredefinedIdentKind::Function;
1905 case tok::kw___FUNCDNAME__:
1906 return PredefinedIdentKind::FuncDName; // [MS]
1907 case tok::kw___FUNCSIG__:
1908 return PredefinedIdentKind::FuncSig; // [MS]
1909 case tok::kw_L__FUNCTION__:
1910 return PredefinedIdentKind::LFunction; // [MS]
1911 case tok::kw_L__FUNCSIG__:
1912 return PredefinedIdentKind::LFuncSig; // [MS]
1913 case tok::kw___PRETTY_FUNCTION__:
1914 return PredefinedIdentKind::PrettyFunction; // [GNU]
1915 }
1916 }
1917
1918 /// getPredefinedExprDecl - Returns Decl of a given DeclContext that can be used
1919 /// to determine the value of a PredefinedExpr. This can be either a
1920 /// block, lambda, captured statement, function, otherwise a nullptr.
getPredefinedExprDecl(DeclContext * DC)1921 static Decl *getPredefinedExprDecl(DeclContext *DC) {
1922 while (DC && !isa<BlockDecl, CapturedDecl, FunctionDecl, ObjCMethodDecl>(DC))
1923 DC = DC->getParent();
1924 return cast_or_null<Decl>(DC);
1925 }
1926
1927 /// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the
1928 /// location of the token and the offset of the ud-suffix within it.
getUDSuffixLoc(Sema & S,SourceLocation TokLoc,unsigned Offset)1929 static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc,
1930 unsigned Offset) {
1931 return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(),
1932 S.getLangOpts());
1933 }
1934
1935 /// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up
1936 /// the corresponding cooked (non-raw) literal operator, and build a call to it.
BuildCookedLiteralOperatorCall(Sema & S,Scope * Scope,IdentifierInfo * UDSuffix,SourceLocation UDSuffixLoc,ArrayRef<Expr * > Args,SourceLocation LitEndLoc)1937 static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope,
1938 IdentifierInfo *UDSuffix,
1939 SourceLocation UDSuffixLoc,
1940 ArrayRef<Expr*> Args,
1941 SourceLocation LitEndLoc) {
1942 assert(Args.size() <= 2 && "too many arguments for literal operator");
1943
1944 QualType ArgTy[2];
1945 for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
1946 ArgTy[ArgIdx] = Args[ArgIdx]->getType();
1947 if (ArgTy[ArgIdx]->isArrayType())
1948 ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]);
1949 }
1950
1951 DeclarationName OpName =
1952 S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
1953 DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1954 OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1955
1956 LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName);
1957 if (S.LookupLiteralOperator(Scope, R, llvm::ArrayRef(ArgTy, Args.size()),
1958 /*AllowRaw*/ false, /*AllowTemplate*/ false,
1959 /*AllowStringTemplatePack*/ false,
1960 /*DiagnoseMissing*/ true) == Sema::LOLR_Error)
1961 return ExprError();
1962
1963 return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc);
1964 }
1965
ActOnUnevaluatedStringLiteral(ArrayRef<Token> StringToks)1966 ExprResult Sema::ActOnUnevaluatedStringLiteral(ArrayRef<Token> StringToks) {
1967 // StringToks needs backing storage as it doesn't hold array elements itself
1968 std::vector<Token> ExpandedToks;
1969 if (getLangOpts().MicrosoftExt)
1970 StringToks = ExpandedToks = ExpandFunctionLocalPredefinedMacros(StringToks);
1971
1972 StringLiteralParser Literal(StringToks, PP,
1973 StringLiteralEvalMethod::Unevaluated);
1974 if (Literal.hadError)
1975 return ExprError();
1976
1977 SmallVector<SourceLocation, 4> StringTokLocs;
1978 for (const Token &Tok : StringToks)
1979 StringTokLocs.push_back(Tok.getLocation());
1980
1981 StringLiteral *Lit = StringLiteral::Create(
1982 Context, Literal.GetString(), StringLiteralKind::Unevaluated, false, {},
1983 &StringTokLocs[0], StringTokLocs.size());
1984
1985 if (!Literal.getUDSuffix().empty()) {
1986 SourceLocation UDSuffixLoc =
1987 getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
1988 Literal.getUDSuffixOffset());
1989 return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
1990 }
1991
1992 return Lit;
1993 }
1994
1995 std::vector<Token>
ExpandFunctionLocalPredefinedMacros(ArrayRef<Token> Toks)1996 Sema::ExpandFunctionLocalPredefinedMacros(ArrayRef<Token> Toks) {
1997 // MSVC treats some predefined identifiers (e.g. __FUNCTION__) as function
1998 // local macros that expand to string literals that may be concatenated.
1999 // These macros are expanded here (in Sema), because StringLiteralParser
2000 // (in Lex) doesn't know the enclosing function (because it hasn't been
2001 // parsed yet).
2002 assert(getLangOpts().MicrosoftExt);
2003
2004 // Note: Although function local macros are defined only inside functions,
2005 // we ensure a valid `CurrentDecl` even outside of a function. This allows
2006 // expansion of macros into empty string literals without additional checks.
2007 Decl *CurrentDecl = getPredefinedExprDecl(CurContext);
2008 if (!CurrentDecl)
2009 CurrentDecl = Context.getTranslationUnitDecl();
2010
2011 std::vector<Token> ExpandedToks;
2012 ExpandedToks.reserve(Toks.size());
2013 for (const Token &Tok : Toks) {
2014 if (!isFunctionLocalStringLiteralMacro(Tok.getKind(), getLangOpts())) {
2015 assert(tok::isStringLiteral(Tok.getKind()));
2016 ExpandedToks.emplace_back(Tok);
2017 continue;
2018 }
2019 if (isa<TranslationUnitDecl>(CurrentDecl))
2020 Diag(Tok.getLocation(), diag::ext_predef_outside_function);
2021 // Stringify predefined expression
2022 Diag(Tok.getLocation(), diag::ext_string_literal_from_predefined)
2023 << Tok.getKind();
2024 SmallString<64> Str;
2025 llvm::raw_svector_ostream OS(Str);
2026 Token &Exp = ExpandedToks.emplace_back();
2027 Exp.startToken();
2028 if (Tok.getKind() == tok::kw_L__FUNCTION__ ||
2029 Tok.getKind() == tok::kw_L__FUNCSIG__) {
2030 OS << 'L';
2031 Exp.setKind(tok::wide_string_literal);
2032 } else {
2033 Exp.setKind(tok::string_literal);
2034 }
2035 OS << '"'
2036 << Lexer::Stringify(PredefinedExpr::ComputeName(
2037 getPredefinedExprKind(Tok.getKind()), CurrentDecl))
2038 << '"';
2039 PP.CreateString(OS.str(), Exp, Tok.getLocation(), Tok.getEndLoc());
2040 }
2041 return ExpandedToks;
2042 }
2043
2044 /// ActOnStringLiteral - The specified tokens were lexed as pasted string
2045 /// fragments (e.g. "foo" "bar" L"baz"). The result string has to handle string
2046 /// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
2047 /// multiple tokens. However, the common case is that StringToks points to one
2048 /// string.
2049 ///
2050 ExprResult
ActOnStringLiteral(ArrayRef<Token> StringToks,Scope * UDLScope)2051 Sema::ActOnStringLiteral(ArrayRef<Token> StringToks, Scope *UDLScope) {
2052 assert(!StringToks.empty() && "Must have at least one string!");
2053
2054 // StringToks needs backing storage as it doesn't hold array elements itself
2055 std::vector<Token> ExpandedToks;
2056 if (getLangOpts().MicrosoftExt)
2057 StringToks = ExpandedToks = ExpandFunctionLocalPredefinedMacros(StringToks);
2058
2059 StringLiteralParser Literal(StringToks, PP);
2060 if (Literal.hadError)
2061 return ExprError();
2062
2063 SmallVector<SourceLocation, 4> StringTokLocs;
2064 for (const Token &Tok : StringToks)
2065 StringTokLocs.push_back(Tok.getLocation());
2066
2067 QualType CharTy = Context.CharTy;
2068 StringLiteralKind Kind = StringLiteralKind::Ordinary;
2069 if (Literal.isWide()) {
2070 CharTy = Context.getWideCharType();
2071 Kind = StringLiteralKind::Wide;
2072 } else if (Literal.isUTF8()) {
2073 if (getLangOpts().Char8)
2074 CharTy = Context.Char8Ty;
2075 Kind = StringLiteralKind::UTF8;
2076 } else if (Literal.isUTF16()) {
2077 CharTy = Context.Char16Ty;
2078 Kind = StringLiteralKind::UTF16;
2079 } else if (Literal.isUTF32()) {
2080 CharTy = Context.Char32Ty;
2081 Kind = StringLiteralKind::UTF32;
2082 } else if (Literal.isPascal()) {
2083 CharTy = Context.UnsignedCharTy;
2084 }
2085
2086 // Warn on initializing an array of char from a u8 string literal; this
2087 // becomes ill-formed in C++2a.
2088 if (getLangOpts().CPlusPlus && !getLangOpts().CPlusPlus20 &&
2089 !getLangOpts().Char8 && Kind == StringLiteralKind::UTF8) {
2090 Diag(StringTokLocs.front(), diag::warn_cxx20_compat_utf8_string);
2091
2092 // Create removals for all 'u8' prefixes in the string literal(s). This
2093 // ensures C++2a compatibility (but may change the program behavior when
2094 // built by non-Clang compilers for which the execution character set is
2095 // not always UTF-8).
2096 auto RemovalDiag = PDiag(diag::note_cxx20_compat_utf8_string_remove_u8);
2097 SourceLocation RemovalDiagLoc;
2098 for (const Token &Tok : StringToks) {
2099 if (Tok.getKind() == tok::utf8_string_literal) {
2100 if (RemovalDiagLoc.isInvalid())
2101 RemovalDiagLoc = Tok.getLocation();
2102 RemovalDiag << FixItHint::CreateRemoval(CharSourceRange::getCharRange(
2103 Tok.getLocation(),
2104 Lexer::AdvanceToTokenCharacter(Tok.getLocation(), 2,
2105 getSourceManager(), getLangOpts())));
2106 }
2107 }
2108 Diag(RemovalDiagLoc, RemovalDiag);
2109 }
2110
2111 QualType StrTy =
2112 Context.getStringLiteralArrayType(CharTy, Literal.GetNumStringChars());
2113
2114 // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
2115 StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(),
2116 Kind, Literal.Pascal, StrTy,
2117 &StringTokLocs[0],
2118 StringTokLocs.size());
2119 if (Literal.getUDSuffix().empty())
2120 return Lit;
2121
2122 // We're building a user-defined literal.
2123 IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
2124 SourceLocation UDSuffixLoc =
2125 getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
2126 Literal.getUDSuffixOffset());
2127
2128 // Make sure we're allowed user-defined literals here.
2129 if (!UDLScope)
2130 return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
2131
2132 // C++11 [lex.ext]p5: The literal L is treated as a call of the form
2133 // operator "" X (str, len)
2134 QualType SizeType = Context.getSizeType();
2135
2136 DeclarationName OpName =
2137 Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
2138 DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
2139 OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
2140
2141 QualType ArgTy[] = {
2142 Context.getArrayDecayedType(StrTy), SizeType
2143 };
2144
2145 LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
2146 switch (LookupLiteralOperator(UDLScope, R, ArgTy,
2147 /*AllowRaw*/ false, /*AllowTemplate*/ true,
2148 /*AllowStringTemplatePack*/ true,
2149 /*DiagnoseMissing*/ true, Lit)) {
2150
2151 case LOLR_Cooked: {
2152 llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars());
2153 IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType,
2154 StringTokLocs[0]);
2155 Expr *Args[] = { Lit, LenArg };
2156
2157 return BuildLiteralOperatorCall(R, OpNameInfo, Args, StringTokLocs.back());
2158 }
2159
2160 case LOLR_Template: {
2161 TemplateArgumentListInfo ExplicitArgs;
2162 TemplateArgument Arg(Lit);
2163 TemplateArgumentLocInfo ArgInfo(Lit);
2164 ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
2165 return BuildLiteralOperatorCall(R, OpNameInfo, std::nullopt,
2166 StringTokLocs.back(), &ExplicitArgs);
2167 }
2168
2169 case LOLR_StringTemplatePack: {
2170 TemplateArgumentListInfo ExplicitArgs;
2171
2172 unsigned CharBits = Context.getIntWidth(CharTy);
2173 bool CharIsUnsigned = CharTy->isUnsignedIntegerType();
2174 llvm::APSInt Value(CharBits, CharIsUnsigned);
2175
2176 TemplateArgument TypeArg(CharTy);
2177 TemplateArgumentLocInfo TypeArgInfo(Context.getTrivialTypeSourceInfo(CharTy));
2178 ExplicitArgs.addArgument(TemplateArgumentLoc(TypeArg, TypeArgInfo));
2179
2180 for (unsigned I = 0, N = Lit->getLength(); I != N; ++I) {
2181 Value = Lit->getCodeUnit(I);
2182 TemplateArgument Arg(Context, Value, CharTy);
2183 TemplateArgumentLocInfo ArgInfo;
2184 ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
2185 }
2186 return BuildLiteralOperatorCall(R, OpNameInfo, std::nullopt,
2187 StringTokLocs.back(), &ExplicitArgs);
2188 }
2189 case LOLR_Raw:
2190 case LOLR_ErrorNoDiagnostic:
2191 llvm_unreachable("unexpected literal operator lookup result");
2192 case LOLR_Error:
2193 return ExprError();
2194 }
2195 llvm_unreachable("unexpected literal operator lookup result");
2196 }
2197
2198 DeclRefExpr *
BuildDeclRefExpr(ValueDecl * D,QualType Ty,ExprValueKind VK,SourceLocation Loc,const CXXScopeSpec * SS)2199 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
2200 SourceLocation Loc,
2201 const CXXScopeSpec *SS) {
2202 DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
2203 return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
2204 }
2205
2206 DeclRefExpr *
BuildDeclRefExpr(ValueDecl * D,QualType Ty,ExprValueKind VK,const DeclarationNameInfo & NameInfo,const CXXScopeSpec * SS,NamedDecl * FoundD,SourceLocation TemplateKWLoc,const TemplateArgumentListInfo * TemplateArgs)2207 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
2208 const DeclarationNameInfo &NameInfo,
2209 const CXXScopeSpec *SS, NamedDecl *FoundD,
2210 SourceLocation TemplateKWLoc,
2211 const TemplateArgumentListInfo *TemplateArgs) {
2212 NestedNameSpecifierLoc NNS =
2213 SS ? SS->getWithLocInContext(Context) : NestedNameSpecifierLoc();
2214 return BuildDeclRefExpr(D, Ty, VK, NameInfo, NNS, FoundD, TemplateKWLoc,
2215 TemplateArgs);
2216 }
2217
2218 // CUDA/HIP: Check whether a captured reference variable is referencing a
2219 // host variable in a device or host device lambda.
isCapturingReferenceToHostVarInCUDADeviceLambda(const Sema & S,VarDecl * VD)2220 static bool isCapturingReferenceToHostVarInCUDADeviceLambda(const Sema &S,
2221 VarDecl *VD) {
2222 if (!S.getLangOpts().CUDA || !VD->hasInit())
2223 return false;
2224 assert(VD->getType()->isReferenceType());
2225
2226 // Check whether the reference variable is referencing a host variable.
2227 auto *DRE = dyn_cast<DeclRefExpr>(VD->getInit());
2228 if (!DRE)
2229 return false;
2230 auto *Referee = dyn_cast<VarDecl>(DRE->getDecl());
2231 if (!Referee || !Referee->hasGlobalStorage() ||
2232 Referee->hasAttr<CUDADeviceAttr>())
2233 return false;
2234
2235 // Check whether the current function is a device or host device lambda.
2236 // Check whether the reference variable is a capture by getDeclContext()
2237 // since refersToEnclosingVariableOrCapture() is not ready at this point.
2238 auto *MD = dyn_cast_or_null<CXXMethodDecl>(S.CurContext);
2239 if (MD && MD->getParent()->isLambda() &&
2240 MD->getOverloadedOperator() == OO_Call && MD->hasAttr<CUDADeviceAttr>() &&
2241 VD->getDeclContext() != MD)
2242 return true;
2243
2244 return false;
2245 }
2246
getNonOdrUseReasonInCurrentContext(ValueDecl * D)2247 NonOdrUseReason Sema::getNonOdrUseReasonInCurrentContext(ValueDecl *D) {
2248 // A declaration named in an unevaluated operand never constitutes an odr-use.
2249 if (isUnevaluatedContext())
2250 return NOUR_Unevaluated;
2251
2252 // C++2a [basic.def.odr]p4:
2253 // A variable x whose name appears as a potentially-evaluated expression e
2254 // is odr-used by e unless [...] x is a reference that is usable in
2255 // constant expressions.
2256 // CUDA/HIP:
2257 // If a reference variable referencing a host variable is captured in a
2258 // device or host device lambda, the value of the referee must be copied
2259 // to the capture and the reference variable must be treated as odr-use
2260 // since the value of the referee is not known at compile time and must
2261 // be loaded from the captured.
2262 if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
2263 if (VD->getType()->isReferenceType() &&
2264 !(getLangOpts().OpenMP && isOpenMPCapturedDecl(D)) &&
2265 !isCapturingReferenceToHostVarInCUDADeviceLambda(*this, VD) &&
2266 VD->isUsableInConstantExpressions(Context))
2267 return NOUR_Constant;
2268 }
2269
2270 // All remaining non-variable cases constitute an odr-use. For variables, we
2271 // need to wait and see how the expression is used.
2272 return NOUR_None;
2273 }
2274
2275 /// BuildDeclRefExpr - Build an expression that references a
2276 /// declaration that does not require a closure capture.
2277 DeclRefExpr *
BuildDeclRefExpr(ValueDecl * D,QualType Ty,ExprValueKind VK,const DeclarationNameInfo & NameInfo,NestedNameSpecifierLoc NNS,NamedDecl * FoundD,SourceLocation TemplateKWLoc,const TemplateArgumentListInfo * TemplateArgs)2278 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
2279 const DeclarationNameInfo &NameInfo,
2280 NestedNameSpecifierLoc NNS, NamedDecl *FoundD,
2281 SourceLocation TemplateKWLoc,
2282 const TemplateArgumentListInfo *TemplateArgs) {
2283 bool RefersToCapturedVariable = isa<VarDecl, BindingDecl>(D) &&
2284 NeedToCaptureVariable(D, NameInfo.getLoc());
2285
2286 DeclRefExpr *E = DeclRefExpr::Create(
2287 Context, NNS, TemplateKWLoc, D, RefersToCapturedVariable, NameInfo, Ty,
2288 VK, FoundD, TemplateArgs, getNonOdrUseReasonInCurrentContext(D));
2289 MarkDeclRefReferenced(E);
2290
2291 // C++ [except.spec]p17:
2292 // An exception-specification is considered to be needed when:
2293 // - in an expression, the function is the unique lookup result or
2294 // the selected member of a set of overloaded functions.
2295 //
2296 // We delay doing this until after we've built the function reference and
2297 // marked it as used so that:
2298 // a) if the function is defaulted, we get errors from defining it before /
2299 // instead of errors from computing its exception specification, and
2300 // b) if the function is a defaulted comparison, we can use the body we
2301 // build when defining it as input to the exception specification
2302 // computation rather than computing a new body.
2303 if (const auto *FPT = Ty->getAs<FunctionProtoType>()) {
2304 if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) {
2305 if (const auto *NewFPT = ResolveExceptionSpec(NameInfo.getLoc(), FPT))
2306 E->setType(Context.getQualifiedType(NewFPT, Ty.getQualifiers()));
2307 }
2308 }
2309
2310 if (getLangOpts().ObjCWeak && isa<VarDecl>(D) &&
2311 Ty.getObjCLifetime() == Qualifiers::OCL_Weak && !isUnevaluatedContext() &&
2312 !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, E->getBeginLoc()))
2313 getCurFunction()->recordUseOfWeak(E);
2314
2315 const auto *FD = dyn_cast<FieldDecl>(D);
2316 if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D))
2317 FD = IFD->getAnonField();
2318 if (FD) {
2319 UnusedPrivateFields.remove(FD);
2320 // Just in case we're building an illegal pointer-to-member.
2321 if (FD->isBitField())
2322 E->setObjectKind(OK_BitField);
2323 }
2324
2325 // C++ [expr.prim]/8: The expression [...] is a bit-field if the identifier
2326 // designates a bit-field.
2327 if (const auto *BD = dyn_cast<BindingDecl>(D))
2328 if (const auto *BE = BD->getBinding())
2329 E->setObjectKind(BE->getObjectKind());
2330
2331 return E;
2332 }
2333
2334 /// Decomposes the given name into a DeclarationNameInfo, its location, and
2335 /// possibly a list of template arguments.
2336 ///
2337 /// If this produces template arguments, it is permitted to call
2338 /// DecomposeTemplateName.
2339 ///
2340 /// This actually loses a lot of source location information for
2341 /// non-standard name kinds; we should consider preserving that in
2342 /// some way.
2343 void
DecomposeUnqualifiedId(const UnqualifiedId & Id,TemplateArgumentListInfo & Buffer,DeclarationNameInfo & NameInfo,const TemplateArgumentListInfo * & TemplateArgs)2344 Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
2345 TemplateArgumentListInfo &Buffer,
2346 DeclarationNameInfo &NameInfo,
2347 const TemplateArgumentListInfo *&TemplateArgs) {
2348 if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId) {
2349 Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
2350 Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
2351
2352 ASTTemplateArgsPtr TemplateArgsPtr(Id.TemplateId->getTemplateArgs(),
2353 Id.TemplateId->NumArgs);
2354 translateTemplateArguments(TemplateArgsPtr, Buffer);
2355
2356 TemplateName TName = Id.TemplateId->Template.get();
2357 SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
2358 NameInfo = Context.getNameForTemplate(TName, TNameLoc);
2359 TemplateArgs = &Buffer;
2360 } else {
2361 NameInfo = GetNameFromUnqualifiedId(Id);
2362 TemplateArgs = nullptr;
2363 }
2364 }
2365
emitEmptyLookupTypoDiagnostic(const TypoCorrection & TC,Sema & SemaRef,const CXXScopeSpec & SS,DeclarationName Typo,SourceLocation TypoLoc,ArrayRef<Expr * > Args,unsigned DiagnosticID,unsigned DiagnosticSuggestID)2366 static void emitEmptyLookupTypoDiagnostic(
2367 const TypoCorrection &TC, Sema &SemaRef, const CXXScopeSpec &SS,
2368 DeclarationName Typo, SourceLocation TypoLoc, ArrayRef<Expr *> Args,
2369 unsigned DiagnosticID, unsigned DiagnosticSuggestID) {
2370 DeclContext *Ctx =
2371 SS.isEmpty() ? nullptr : SemaRef.computeDeclContext(SS, false);
2372 if (!TC) {
2373 // Emit a special diagnostic for failed member lookups.
2374 // FIXME: computing the declaration context might fail here (?)
2375 if (Ctx)
2376 SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << Ctx
2377 << SS.getRange();
2378 else
2379 SemaRef.Diag(TypoLoc, DiagnosticID) << Typo;
2380 return;
2381 }
2382
2383 std::string CorrectedStr = TC.getAsString(SemaRef.getLangOpts());
2384 bool DroppedSpecifier =
2385 TC.WillReplaceSpecifier() && Typo.getAsString() == CorrectedStr;
2386 unsigned NoteID = TC.getCorrectionDeclAs<ImplicitParamDecl>()
2387 ? diag::note_implicit_param_decl
2388 : diag::note_previous_decl;
2389 if (!Ctx)
2390 SemaRef.diagnoseTypo(TC, SemaRef.PDiag(DiagnosticSuggestID) << Typo,
2391 SemaRef.PDiag(NoteID));
2392 else
2393 SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest)
2394 << Typo << Ctx << DroppedSpecifier
2395 << SS.getRange(),
2396 SemaRef.PDiag(NoteID));
2397 }
2398
2399 /// Diagnose a lookup that found results in an enclosing class during error
2400 /// recovery. This usually indicates that the results were found in a dependent
2401 /// base class that could not be searched as part of a template definition.
2402 /// Always issues a diagnostic (though this may be only a warning in MS
2403 /// compatibility mode).
2404 ///
2405 /// Return \c true if the error is unrecoverable, or \c false if the caller
2406 /// should attempt to recover using these lookup results.
DiagnoseDependentMemberLookup(const LookupResult & R)2407 bool Sema::DiagnoseDependentMemberLookup(const LookupResult &R) {
2408 // During a default argument instantiation the CurContext points
2409 // to a CXXMethodDecl; but we can't apply a this-> fixit inside a
2410 // function parameter list, hence add an explicit check.
2411 bool isDefaultArgument =
2412 !CodeSynthesisContexts.empty() &&
2413 CodeSynthesisContexts.back().Kind ==
2414 CodeSynthesisContext::DefaultFunctionArgumentInstantiation;
2415 const auto *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
2416 bool isInstance = CurMethod && CurMethod->isInstance() &&
2417 R.getNamingClass() == CurMethod->getParent() &&
2418 !isDefaultArgument;
2419
2420 // There are two ways we can find a class-scope declaration during template
2421 // instantiation that we did not find in the template definition: if it is a
2422 // member of a dependent base class, or if it is declared after the point of
2423 // use in the same class. Distinguish these by comparing the class in which
2424 // the member was found to the naming class of the lookup.
2425 unsigned DiagID = diag::err_found_in_dependent_base;
2426 unsigned NoteID = diag::note_member_declared_at;
2427 if (R.getRepresentativeDecl()->getDeclContext()->Equals(R.getNamingClass())) {
2428 DiagID = getLangOpts().MSVCCompat ? diag::ext_found_later_in_class
2429 : diag::err_found_later_in_class;
2430 } else if (getLangOpts().MSVCCompat) {
2431 DiagID = diag::ext_found_in_dependent_base;
2432 NoteID = diag::note_dependent_member_use;
2433 }
2434
2435 if (isInstance) {
2436 // Give a code modification hint to insert 'this->'.
2437 Diag(R.getNameLoc(), DiagID)
2438 << R.getLookupName()
2439 << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
2440 CheckCXXThisCapture(R.getNameLoc());
2441 } else {
2442 // FIXME: Add a FixItHint to insert 'Base::' or 'Derived::' (assuming
2443 // they're not shadowed).
2444 Diag(R.getNameLoc(), DiagID) << R.getLookupName();
2445 }
2446
2447 for (const NamedDecl *D : R)
2448 Diag(D->getLocation(), NoteID);
2449
2450 // Return true if we are inside a default argument instantiation
2451 // and the found name refers to an instance member function, otherwise
2452 // the caller will try to create an implicit member call and this is wrong
2453 // for default arguments.
2454 //
2455 // FIXME: Is this special case necessary? We could allow the caller to
2456 // diagnose this.
2457 if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) {
2458 Diag(R.getNameLoc(), diag::err_member_call_without_object) << 0;
2459 return true;
2460 }
2461
2462 // Tell the callee to try to recover.
2463 return false;
2464 }
2465
2466 /// Diagnose an empty lookup.
2467 ///
2468 /// \return false if new lookup candidates were found
DiagnoseEmptyLookup(Scope * S,CXXScopeSpec & SS,LookupResult & R,CorrectionCandidateCallback & CCC,TemplateArgumentListInfo * ExplicitTemplateArgs,ArrayRef<Expr * > Args,DeclContext * LookupCtx,TypoExpr ** Out)2469 bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
2470 CorrectionCandidateCallback &CCC,
2471 TemplateArgumentListInfo *ExplicitTemplateArgs,
2472 ArrayRef<Expr *> Args, DeclContext *LookupCtx,
2473 TypoExpr **Out) {
2474 DeclarationName Name = R.getLookupName();
2475
2476 unsigned diagnostic = diag::err_undeclared_var_use;
2477 unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
2478 if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
2479 Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
2480 Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
2481 diagnostic = diag::err_undeclared_use;
2482 diagnostic_suggest = diag::err_undeclared_use_suggest;
2483 }
2484
2485 // If the original lookup was an unqualified lookup, fake an
2486 // unqualified lookup. This is useful when (for example) the
2487 // original lookup would not have found something because it was a
2488 // dependent name.
2489 DeclContext *DC =
2490 LookupCtx ? LookupCtx : (SS.isEmpty() ? CurContext : nullptr);
2491 while (DC) {
2492 if (isa<CXXRecordDecl>(DC)) {
2493 LookupQualifiedName(R, DC);
2494
2495 if (!R.empty()) {
2496 // Don't give errors about ambiguities in this lookup.
2497 R.suppressDiagnostics();
2498
2499 // If there's a best viable function among the results, only mention
2500 // that one in the notes.
2501 OverloadCandidateSet Candidates(R.getNameLoc(),
2502 OverloadCandidateSet::CSK_Normal);
2503 AddOverloadedCallCandidates(R, ExplicitTemplateArgs, Args, Candidates);
2504 OverloadCandidateSet::iterator Best;
2505 if (Candidates.BestViableFunction(*this, R.getNameLoc(), Best) ==
2506 OR_Success) {
2507 R.clear();
2508 R.addDecl(Best->FoundDecl.getDecl(), Best->FoundDecl.getAccess());
2509 R.resolveKind();
2510 }
2511
2512 return DiagnoseDependentMemberLookup(R);
2513 }
2514
2515 R.clear();
2516 }
2517
2518 DC = DC->getLookupParent();
2519 }
2520
2521 // We didn't find anything, so try to correct for a typo.
2522 TypoCorrection Corrected;
2523 if (S && Out) {
2524 SourceLocation TypoLoc = R.getNameLoc();
2525 assert(!ExplicitTemplateArgs &&
2526 "Diagnosing an empty lookup with explicit template args!");
2527 *Out = CorrectTypoDelayed(
2528 R.getLookupNameInfo(), R.getLookupKind(), S, &SS, CCC,
2529 [=](const TypoCorrection &TC) {
2530 emitEmptyLookupTypoDiagnostic(TC, *this, SS, Name, TypoLoc, Args,
2531 diagnostic, diagnostic_suggest);
2532 },
2533 nullptr, CTK_ErrorRecovery, LookupCtx);
2534 if (*Out)
2535 return true;
2536 } else if (S && (Corrected =
2537 CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S,
2538 &SS, CCC, CTK_ErrorRecovery, LookupCtx))) {
2539 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
2540 bool DroppedSpecifier =
2541 Corrected.WillReplaceSpecifier() && Name.getAsString() == CorrectedStr;
2542 R.setLookupName(Corrected.getCorrection());
2543
2544 bool AcceptableWithRecovery = false;
2545 bool AcceptableWithoutRecovery = false;
2546 NamedDecl *ND = Corrected.getFoundDecl();
2547 if (ND) {
2548 if (Corrected.isOverloaded()) {
2549 OverloadCandidateSet OCS(R.getNameLoc(),
2550 OverloadCandidateSet::CSK_Normal);
2551 OverloadCandidateSet::iterator Best;
2552 for (NamedDecl *CD : Corrected) {
2553 if (FunctionTemplateDecl *FTD =
2554 dyn_cast<FunctionTemplateDecl>(CD))
2555 AddTemplateOverloadCandidate(
2556 FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs,
2557 Args, OCS);
2558 else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
2559 if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
2560 AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none),
2561 Args, OCS);
2562 }
2563 switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) {
2564 case OR_Success:
2565 ND = Best->FoundDecl;
2566 Corrected.setCorrectionDecl(ND);
2567 break;
2568 default:
2569 // FIXME: Arbitrarily pick the first declaration for the note.
2570 Corrected.setCorrectionDecl(ND);
2571 break;
2572 }
2573 }
2574 R.addDecl(ND);
2575 if (getLangOpts().CPlusPlus && ND->isCXXClassMember()) {
2576 CXXRecordDecl *Record = nullptr;
2577 if (Corrected.getCorrectionSpecifier()) {
2578 const Type *Ty = Corrected.getCorrectionSpecifier()->getAsType();
2579 Record = Ty->getAsCXXRecordDecl();
2580 }
2581 if (!Record)
2582 Record = cast<CXXRecordDecl>(
2583 ND->getDeclContext()->getRedeclContext());
2584 R.setNamingClass(Record);
2585 }
2586
2587 auto *UnderlyingND = ND->getUnderlyingDecl();
2588 AcceptableWithRecovery = isa<ValueDecl>(UnderlyingND) ||
2589 isa<FunctionTemplateDecl>(UnderlyingND);
2590 // FIXME: If we ended up with a typo for a type name or
2591 // Objective-C class name, we're in trouble because the parser
2592 // is in the wrong place to recover. Suggest the typo
2593 // correction, but don't make it a fix-it since we're not going
2594 // to recover well anyway.
2595 AcceptableWithoutRecovery = isa<TypeDecl>(UnderlyingND) ||
2596 getAsTypeTemplateDecl(UnderlyingND) ||
2597 isa<ObjCInterfaceDecl>(UnderlyingND);
2598 } else {
2599 // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
2600 // because we aren't able to recover.
2601 AcceptableWithoutRecovery = true;
2602 }
2603
2604 if (AcceptableWithRecovery || AcceptableWithoutRecovery) {
2605 unsigned NoteID = Corrected.getCorrectionDeclAs<ImplicitParamDecl>()
2606 ? diag::note_implicit_param_decl
2607 : diag::note_previous_decl;
2608 if (SS.isEmpty())
2609 diagnoseTypo(Corrected, PDiag(diagnostic_suggest) << Name,
2610 PDiag(NoteID), AcceptableWithRecovery);
2611 else
2612 diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
2613 << Name << computeDeclContext(SS, false)
2614 << DroppedSpecifier << SS.getRange(),
2615 PDiag(NoteID), AcceptableWithRecovery);
2616
2617 // Tell the callee whether to try to recover.
2618 return !AcceptableWithRecovery;
2619 }
2620 }
2621 R.clear();
2622
2623 // Emit a special diagnostic for failed member lookups.
2624 // FIXME: computing the declaration context might fail here (?)
2625 if (!SS.isEmpty()) {
2626 Diag(R.getNameLoc(), diag::err_no_member)
2627 << Name << computeDeclContext(SS, false)
2628 << SS.getRange();
2629 return true;
2630 }
2631
2632 // Give up, we can't recover.
2633 Diag(R.getNameLoc(), diagnostic) << Name;
2634 return true;
2635 }
2636
2637 /// In Microsoft mode, if we are inside a template class whose parent class has
2638 /// dependent base classes, and we can't resolve an unqualified identifier, then
2639 /// assume the identifier is a member of a dependent base class. We can only
2640 /// recover successfully in static methods, instance methods, and other contexts
2641 /// where 'this' is available. This doesn't precisely match MSVC's
2642 /// instantiation model, but it's close enough.
2643 static Expr *
recoverFromMSUnqualifiedLookup(Sema & S,ASTContext & Context,DeclarationNameInfo & NameInfo,SourceLocation TemplateKWLoc,const TemplateArgumentListInfo * TemplateArgs)2644 recoverFromMSUnqualifiedLookup(Sema &S, ASTContext &Context,
2645 DeclarationNameInfo &NameInfo,
2646 SourceLocation TemplateKWLoc,
2647 const TemplateArgumentListInfo *TemplateArgs) {
2648 // Only try to recover from lookup into dependent bases in static methods or
2649 // contexts where 'this' is available.
2650 QualType ThisType = S.getCurrentThisType();
2651 const CXXRecordDecl *RD = nullptr;
2652 if (!ThisType.isNull())
2653 RD = ThisType->getPointeeType()->getAsCXXRecordDecl();
2654 else if (auto *MD = dyn_cast<CXXMethodDecl>(S.CurContext))
2655 RD = MD->getParent();
2656 if (!RD || !RD->hasAnyDependentBases())
2657 return nullptr;
2658
2659 // Diagnose this as unqualified lookup into a dependent base class. If 'this'
2660 // is available, suggest inserting 'this->' as a fixit.
2661 SourceLocation Loc = NameInfo.getLoc();
2662 auto DB = S.Diag(Loc, diag::ext_undeclared_unqual_id_with_dependent_base);
2663 DB << NameInfo.getName() << RD;
2664
2665 if (!ThisType.isNull()) {
2666 DB << FixItHint::CreateInsertion(Loc, "this->");
2667 return CXXDependentScopeMemberExpr::Create(
2668 Context, /*This=*/nullptr, ThisType, /*IsArrow=*/true,
2669 /*Op=*/SourceLocation(), NestedNameSpecifierLoc(), TemplateKWLoc,
2670 /*FirstQualifierFoundInScope=*/nullptr, NameInfo, TemplateArgs);
2671 }
2672
2673 // Synthesize a fake NNS that points to the derived class. This will
2674 // perform name lookup during template instantiation.
2675 CXXScopeSpec SS;
2676 auto *NNS =
2677 NestedNameSpecifier::Create(Context, nullptr, true, RD->getTypeForDecl());
2678 SS.MakeTrivial(Context, NNS, SourceRange(Loc, Loc));
2679 return DependentScopeDeclRefExpr::Create(
2680 Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
2681 TemplateArgs);
2682 }
2683
2684 ExprResult
ActOnIdExpression(Scope * S,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,UnqualifiedId & Id,bool HasTrailingLParen,bool IsAddressOfOperand,CorrectionCandidateCallback * CCC,bool IsInlineAsmIdentifier,Token * KeywordReplacement)2685 Sema::ActOnIdExpression(Scope *S, CXXScopeSpec &SS,
2686 SourceLocation TemplateKWLoc, UnqualifiedId &Id,
2687 bool HasTrailingLParen, bool IsAddressOfOperand,
2688 CorrectionCandidateCallback *CCC,
2689 bool IsInlineAsmIdentifier, Token *KeywordReplacement) {
2690 assert(!(IsAddressOfOperand && HasTrailingLParen) &&
2691 "cannot be direct & operand and have a trailing lparen");
2692 if (SS.isInvalid())
2693 return ExprError();
2694
2695 TemplateArgumentListInfo TemplateArgsBuffer;
2696
2697 // Decompose the UnqualifiedId into the following data.
2698 DeclarationNameInfo NameInfo;
2699 const TemplateArgumentListInfo *TemplateArgs;
2700 DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
2701
2702 DeclarationName Name = NameInfo.getName();
2703 IdentifierInfo *II = Name.getAsIdentifierInfo();
2704 SourceLocation NameLoc = NameInfo.getLoc();
2705
2706 if (II && II->isEditorPlaceholder()) {
2707 // FIXME: When typed placeholders are supported we can create a typed
2708 // placeholder expression node.
2709 return ExprError();
2710 }
2711
2712 // C++ [temp.dep.expr]p3:
2713 // An id-expression is type-dependent if it contains:
2714 // -- an identifier that was declared with a dependent type,
2715 // (note: handled after lookup)
2716 // -- a template-id that is dependent,
2717 // (note: handled in BuildTemplateIdExpr)
2718 // -- a conversion-function-id that specifies a dependent type,
2719 // -- a nested-name-specifier that contains a class-name that
2720 // names a dependent type.
2721 // Determine whether this is a member of an unknown specialization;
2722 // we need to handle these differently.
2723 bool DependentID = false;
2724 if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
2725 Name.getCXXNameType()->isDependentType()) {
2726 DependentID = true;
2727 } else if (SS.isSet()) {
2728 if (DeclContext *DC = computeDeclContext(SS, false)) {
2729 if (RequireCompleteDeclContext(SS, DC))
2730 return ExprError();
2731 } else {
2732 DependentID = true;
2733 }
2734 }
2735
2736 if (DependentID)
2737 return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2738 IsAddressOfOperand, TemplateArgs);
2739
2740 // Perform the required lookup.
2741 LookupResult R(*this, NameInfo,
2742 (Id.getKind() == UnqualifiedIdKind::IK_ImplicitSelfParam)
2743 ? LookupObjCImplicitSelfParam
2744 : LookupOrdinaryName);
2745 if (TemplateKWLoc.isValid() || TemplateArgs) {
2746 // Lookup the template name again to correctly establish the context in
2747 // which it was found. This is really unfortunate as we already did the
2748 // lookup to determine that it was a template name in the first place. If
2749 // this becomes a performance hit, we can work harder to preserve those
2750 // results until we get here but it's likely not worth it.
2751 bool MemberOfUnknownSpecialization;
2752 AssumedTemplateKind AssumedTemplate;
2753 if (LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
2754 MemberOfUnknownSpecialization, TemplateKWLoc,
2755 &AssumedTemplate))
2756 return ExprError();
2757
2758 if (MemberOfUnknownSpecialization ||
2759 (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
2760 return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2761 IsAddressOfOperand, TemplateArgs);
2762 } else {
2763 bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl();
2764 LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
2765
2766 // If the result might be in a dependent base class, this is a dependent
2767 // id-expression.
2768 if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
2769 return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2770 IsAddressOfOperand, TemplateArgs);
2771
2772 // If this reference is in an Objective-C method, then we need to do
2773 // some special Objective-C lookup, too.
2774 if (IvarLookupFollowUp) {
2775 ExprResult E(LookupInObjCMethod(R, S, II, true));
2776 if (E.isInvalid())
2777 return ExprError();
2778
2779 if (Expr *Ex = E.getAs<Expr>())
2780 return Ex;
2781 }
2782 }
2783
2784 if (R.isAmbiguous())
2785 return ExprError();
2786
2787 // This could be an implicitly declared function reference if the language
2788 // mode allows it as a feature.
2789 if (R.empty() && HasTrailingLParen && II &&
2790 getLangOpts().implicitFunctionsAllowed()) {
2791 NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
2792 if (D) R.addDecl(D);
2793 }
2794
2795 // Determine whether this name might be a candidate for
2796 // argument-dependent lookup.
2797 bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
2798
2799 if (R.empty() && !ADL) {
2800 if (SS.isEmpty() && getLangOpts().MSVCCompat) {
2801 if (Expr *E = recoverFromMSUnqualifiedLookup(*this, Context, NameInfo,
2802 TemplateKWLoc, TemplateArgs))
2803 return E;
2804 }
2805
2806 // Don't diagnose an empty lookup for inline assembly.
2807 if (IsInlineAsmIdentifier)
2808 return ExprError();
2809
2810 // If this name wasn't predeclared and if this is not a function
2811 // call, diagnose the problem.
2812 TypoExpr *TE = nullptr;
2813 DefaultFilterCCC DefaultValidator(II, SS.isValid() ? SS.getScopeRep()
2814 : nullptr);
2815 DefaultValidator.IsAddressOfOperand = IsAddressOfOperand;
2816 assert((!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) &&
2817 "Typo correction callback misconfigured");
2818 if (CCC) {
2819 // Make sure the callback knows what the typo being diagnosed is.
2820 CCC->setTypoName(II);
2821 if (SS.isValid())
2822 CCC->setTypoNNS(SS.getScopeRep());
2823 }
2824 // FIXME: DiagnoseEmptyLookup produces bad diagnostics if we're looking for
2825 // a template name, but we happen to have always already looked up the name
2826 // before we get here if it must be a template name.
2827 if (DiagnoseEmptyLookup(S, SS, R, CCC ? *CCC : DefaultValidator, nullptr,
2828 std::nullopt, nullptr, &TE)) {
2829 if (TE && KeywordReplacement) {
2830 auto &State = getTypoExprState(TE);
2831 auto BestTC = State.Consumer->getNextCorrection();
2832 if (BestTC.isKeyword()) {
2833 auto *II = BestTC.getCorrectionAsIdentifierInfo();
2834 if (State.DiagHandler)
2835 State.DiagHandler(BestTC);
2836 KeywordReplacement->startToken();
2837 KeywordReplacement->setKind(II->getTokenID());
2838 KeywordReplacement->setIdentifierInfo(II);
2839 KeywordReplacement->setLocation(BestTC.getCorrectionRange().getBegin());
2840 // Clean up the state associated with the TypoExpr, since it has
2841 // now been diagnosed (without a call to CorrectDelayedTyposInExpr).
2842 clearDelayedTypo(TE);
2843 // Signal that a correction to a keyword was performed by returning a
2844 // valid-but-null ExprResult.
2845 return (Expr*)nullptr;
2846 }
2847 State.Consumer->resetCorrectionStream();
2848 }
2849 return TE ? TE : ExprError();
2850 }
2851
2852 assert(!R.empty() &&
2853 "DiagnoseEmptyLookup returned false but added no results");
2854
2855 // If we found an Objective-C instance variable, let
2856 // LookupInObjCMethod build the appropriate expression to
2857 // reference the ivar.
2858 if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
2859 R.clear();
2860 ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
2861 // In a hopelessly buggy code, Objective-C instance variable
2862 // lookup fails and no expression will be built to reference it.
2863 if (!E.isInvalid() && !E.get())
2864 return ExprError();
2865 return E;
2866 }
2867 }
2868
2869 // This is guaranteed from this point on.
2870 assert(!R.empty() || ADL);
2871
2872 // Check whether this might be a C++ implicit instance member access.
2873 // C++ [class.mfct.non-static]p3:
2874 // When an id-expression that is not part of a class member access
2875 // syntax and not used to form a pointer to member is used in the
2876 // body of a non-static member function of class X, if name lookup
2877 // resolves the name in the id-expression to a non-static non-type
2878 // member of some class C, the id-expression is transformed into a
2879 // class member access expression using (*this) as the
2880 // postfix-expression to the left of the . operator.
2881 //
2882 // But we don't actually need to do this for '&' operands if R
2883 // resolved to a function or overloaded function set, because the
2884 // expression is ill-formed if it actually works out to be a
2885 // non-static member function:
2886 //
2887 // C++ [expr.ref]p4:
2888 // Otherwise, if E1.E2 refers to a non-static member function. . .
2889 // [t]he expression can be used only as the left-hand operand of a
2890 // member function call.
2891 //
2892 // There are other safeguards against such uses, but it's important
2893 // to get this right here so that we don't end up making a
2894 // spuriously dependent expression if we're inside a dependent
2895 // instance method.
2896 if (!R.empty() && (*R.begin())->isCXXClassMember()) {
2897 bool MightBeImplicitMember;
2898 if (!IsAddressOfOperand)
2899 MightBeImplicitMember = true;
2900 else if (!SS.isEmpty())
2901 MightBeImplicitMember = false;
2902 else if (R.isOverloadedResult())
2903 MightBeImplicitMember = false;
2904 else if (R.isUnresolvableResult())
2905 MightBeImplicitMember = true;
2906 else
2907 MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
2908 isa<IndirectFieldDecl>(R.getFoundDecl()) ||
2909 isa<MSPropertyDecl>(R.getFoundDecl());
2910
2911 if (MightBeImplicitMember)
2912 return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
2913 R, TemplateArgs, S);
2914 }
2915
2916 if (TemplateArgs || TemplateKWLoc.isValid()) {
2917
2918 // In C++1y, if this is a variable template id, then check it
2919 // in BuildTemplateIdExpr().
2920 // The single lookup result must be a variable template declaration.
2921 if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId && Id.TemplateId &&
2922 Id.TemplateId->Kind == TNK_Var_template) {
2923 assert(R.getAsSingle<VarTemplateDecl>() &&
2924 "There should only be one declaration found.");
2925 }
2926
2927 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs);
2928 }
2929
2930 return BuildDeclarationNameExpr(SS, R, ADL);
2931 }
2932
2933 /// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
2934 /// declaration name, generally during template instantiation.
2935 /// There's a large number of things which don't need to be done along
2936 /// this path.
BuildQualifiedDeclarationNameExpr(CXXScopeSpec & SS,const DeclarationNameInfo & NameInfo,bool IsAddressOfOperand,const Scope * S,TypeSourceInfo ** RecoveryTSI)2937 ExprResult Sema::BuildQualifiedDeclarationNameExpr(
2938 CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo,
2939 bool IsAddressOfOperand, const Scope *S, TypeSourceInfo **RecoveryTSI) {
2940 if (NameInfo.getName().isDependentName())
2941 return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2942 NameInfo, /*TemplateArgs=*/nullptr);
2943
2944 DeclContext *DC = computeDeclContext(SS, false);
2945 if (!DC)
2946 return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2947 NameInfo, /*TemplateArgs=*/nullptr);
2948
2949 if (RequireCompleteDeclContext(SS, DC))
2950 return ExprError();
2951
2952 LookupResult R(*this, NameInfo, LookupOrdinaryName);
2953 LookupQualifiedName(R, DC);
2954
2955 if (R.isAmbiguous())
2956 return ExprError();
2957
2958 if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
2959 return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2960 NameInfo, /*TemplateArgs=*/nullptr);
2961
2962 if (R.empty()) {
2963 // Don't diagnose problems with invalid record decl, the secondary no_member
2964 // diagnostic during template instantiation is likely bogus, e.g. if a class
2965 // is invalid because it's derived from an invalid base class, then missing
2966 // members were likely supposed to be inherited.
2967 if (const auto *CD = dyn_cast<CXXRecordDecl>(DC))
2968 if (CD->isInvalidDecl())
2969 return ExprError();
2970 Diag(NameInfo.getLoc(), diag::err_no_member)
2971 << NameInfo.getName() << DC << SS.getRange();
2972 return ExprError();
2973 }
2974
2975 if (const TypeDecl *TD = R.getAsSingle<TypeDecl>()) {
2976 // Diagnose a missing typename if this resolved unambiguously to a type in
2977 // a dependent context. If we can recover with a type, downgrade this to
2978 // a warning in Microsoft compatibility mode.
2979 unsigned DiagID = diag::err_typename_missing;
2980 if (RecoveryTSI && getLangOpts().MSVCCompat)
2981 DiagID = diag::ext_typename_missing;
2982 SourceLocation Loc = SS.getBeginLoc();
2983 auto D = Diag(Loc, DiagID);
2984 D << SS.getScopeRep() << NameInfo.getName().getAsString()
2985 << SourceRange(Loc, NameInfo.getEndLoc());
2986
2987 // Don't recover if the caller isn't expecting us to or if we're in a SFINAE
2988 // context.
2989 if (!RecoveryTSI)
2990 return ExprError();
2991
2992 // Only issue the fixit if we're prepared to recover.
2993 D << FixItHint::CreateInsertion(Loc, "typename ");
2994
2995 // Recover by pretending this was an elaborated type.
2996 QualType Ty = Context.getTypeDeclType(TD);
2997 TypeLocBuilder TLB;
2998 TLB.pushTypeSpec(Ty).setNameLoc(NameInfo.getLoc());
2999
3000 QualType ET = getElaboratedType(ElaboratedTypeKeyword::None, SS, Ty);
3001 ElaboratedTypeLoc QTL = TLB.push<ElaboratedTypeLoc>(ET);
3002 QTL.setElaboratedKeywordLoc(SourceLocation());
3003 QTL.setQualifierLoc(SS.getWithLocInContext(Context));
3004
3005 *RecoveryTSI = TLB.getTypeSourceInfo(Context, ET);
3006
3007 return ExprEmpty();
3008 }
3009
3010 // Defend against this resolving to an implicit member access. We usually
3011 // won't get here if this might be a legitimate a class member (we end up in
3012 // BuildMemberReferenceExpr instead), but this can be valid if we're forming
3013 // a pointer-to-member or in an unevaluated context in C++11.
3014 if (!R.empty() && (*R.begin())->isCXXClassMember() && !IsAddressOfOperand)
3015 return BuildPossibleImplicitMemberExpr(SS,
3016 /*TemplateKWLoc=*/SourceLocation(),
3017 R, /*TemplateArgs=*/nullptr, S);
3018
3019 return BuildDeclarationNameExpr(SS, R, /* ADL */ false);
3020 }
3021
3022 /// The parser has read a name in, and Sema has detected that we're currently
3023 /// inside an ObjC method. Perform some additional checks and determine if we
3024 /// should form a reference to an ivar.
3025 ///
3026 /// Ideally, most of this would be done by lookup, but there's
3027 /// actually quite a lot of extra work involved.
LookupIvarInObjCMethod(LookupResult & Lookup,Scope * S,IdentifierInfo * II)3028 DeclResult Sema::LookupIvarInObjCMethod(LookupResult &Lookup, Scope *S,
3029 IdentifierInfo *II) {
3030 SourceLocation Loc = Lookup.getNameLoc();
3031 ObjCMethodDecl *CurMethod = getCurMethodDecl();
3032
3033 // Check for error condition which is already reported.
3034 if (!CurMethod)
3035 return DeclResult(true);
3036
3037 // There are two cases to handle here. 1) scoped lookup could have failed,
3038 // in which case we should look for an ivar. 2) scoped lookup could have
3039 // found a decl, but that decl is outside the current instance method (i.e.
3040 // a global variable). In these two cases, we do a lookup for an ivar with
3041 // this name, if the lookup sucedes, we replace it our current decl.
3042
3043 // If we're in a class method, we don't normally want to look for
3044 // ivars. But if we don't find anything else, and there's an
3045 // ivar, that's an error.
3046 bool IsClassMethod = CurMethod->isClassMethod();
3047
3048 bool LookForIvars;
3049 if (Lookup.empty())
3050 LookForIvars = true;
3051 else if (IsClassMethod)
3052 LookForIvars = false;
3053 else
3054 LookForIvars = (Lookup.isSingleResult() &&
3055 Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
3056 ObjCInterfaceDecl *IFace = nullptr;
3057 if (LookForIvars) {
3058 IFace = CurMethod->getClassInterface();
3059 ObjCInterfaceDecl *ClassDeclared;
3060 ObjCIvarDecl *IV = nullptr;
3061 if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) {
3062 // Diagnose using an ivar in a class method.
3063 if (IsClassMethod) {
3064 Diag(Loc, diag::err_ivar_use_in_class_method) << IV->getDeclName();
3065 return DeclResult(true);
3066 }
3067
3068 // Diagnose the use of an ivar outside of the declaring class.
3069 if (IV->getAccessControl() == ObjCIvarDecl::Private &&
3070 !declaresSameEntity(ClassDeclared, IFace) &&
3071 !getLangOpts().DebuggerSupport)
3072 Diag(Loc, diag::err_private_ivar_access) << IV->getDeclName();
3073
3074 // Success.
3075 return IV;
3076 }
3077 } else if (CurMethod->isInstanceMethod()) {
3078 // We should warn if a local variable hides an ivar.
3079 if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) {
3080 ObjCInterfaceDecl *ClassDeclared;
3081 if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
3082 if (IV->getAccessControl() != ObjCIvarDecl::Private ||
3083 declaresSameEntity(IFace, ClassDeclared))
3084 Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
3085 }
3086 }
3087 } else if (Lookup.isSingleResult() &&
3088 Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) {
3089 // If accessing a stand-alone ivar in a class method, this is an error.
3090 if (const ObjCIvarDecl *IV =
3091 dyn_cast<ObjCIvarDecl>(Lookup.getFoundDecl())) {
3092 Diag(Loc, diag::err_ivar_use_in_class_method) << IV->getDeclName();
3093 return DeclResult(true);
3094 }
3095 }
3096
3097 // Didn't encounter an error, didn't find an ivar.
3098 return DeclResult(false);
3099 }
3100
BuildIvarRefExpr(Scope * S,SourceLocation Loc,ObjCIvarDecl * IV)3101 ExprResult Sema::BuildIvarRefExpr(Scope *S, SourceLocation Loc,
3102 ObjCIvarDecl *IV) {
3103 ObjCMethodDecl *CurMethod = getCurMethodDecl();
3104 assert(CurMethod && CurMethod->isInstanceMethod() &&
3105 "should not reference ivar from this context");
3106
3107 ObjCInterfaceDecl *IFace = CurMethod->getClassInterface();
3108 assert(IFace && "should not reference ivar from this context");
3109
3110 // If we're referencing an invalid decl, just return this as a silent
3111 // error node. The error diagnostic was already emitted on the decl.
3112 if (IV->isInvalidDecl())
3113 return ExprError();
3114
3115 // Check if referencing a field with __attribute__((deprecated)).
3116 if (DiagnoseUseOfDecl(IV, Loc))
3117 return ExprError();
3118
3119 // FIXME: This should use a new expr for a direct reference, don't
3120 // turn this into Self->ivar, just return a BareIVarExpr or something.
3121 IdentifierInfo &II = Context.Idents.get("self");
3122 UnqualifiedId SelfName;
3123 SelfName.setImplicitSelfParam(&II);
3124 CXXScopeSpec SelfScopeSpec;
3125 SourceLocation TemplateKWLoc;
3126 ExprResult SelfExpr =
3127 ActOnIdExpression(S, SelfScopeSpec, TemplateKWLoc, SelfName,
3128 /*HasTrailingLParen=*/false,
3129 /*IsAddressOfOperand=*/false);
3130 if (SelfExpr.isInvalid())
3131 return ExprError();
3132
3133 SelfExpr = DefaultLvalueConversion(SelfExpr.get());
3134 if (SelfExpr.isInvalid())
3135 return ExprError();
3136
3137 MarkAnyDeclReferenced(Loc, IV, true);
3138
3139 ObjCMethodFamily MF = CurMethod->getMethodFamily();
3140 if (MF != OMF_init && MF != OMF_dealloc && MF != OMF_finalize &&
3141 !IvarBacksCurrentMethodAccessor(IFace, CurMethod, IV))
3142 Diag(Loc, diag::warn_direct_ivar_access) << IV->getDeclName();
3143
3144 ObjCIvarRefExpr *Result = new (Context)
3145 ObjCIvarRefExpr(IV, IV->getUsageType(SelfExpr.get()->getType()), Loc,
3146 IV->getLocation(), SelfExpr.get(), true, true);
3147
3148 if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
3149 if (!isUnevaluatedContext() &&
3150 !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
3151 getCurFunction()->recordUseOfWeak(Result);
3152 }
3153 if (getLangOpts().ObjCAutoRefCount && !isUnevaluatedContext())
3154 if (const BlockDecl *BD = CurContext->getInnermostBlockDecl())
3155 ImplicitlyRetainedSelfLocs.push_back({Loc, BD});
3156
3157 return Result;
3158 }
3159
3160 /// The parser has read a name in, and Sema has detected that we're currently
3161 /// inside an ObjC method. Perform some additional checks and determine if we
3162 /// should form a reference to an ivar. If so, build an expression referencing
3163 /// that ivar.
3164 ExprResult
LookupInObjCMethod(LookupResult & Lookup,Scope * S,IdentifierInfo * II,bool AllowBuiltinCreation)3165 Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
3166 IdentifierInfo *II, bool AllowBuiltinCreation) {
3167 // FIXME: Integrate this lookup step into LookupParsedName.
3168 DeclResult Ivar = LookupIvarInObjCMethod(Lookup, S, II);
3169 if (Ivar.isInvalid())
3170 return ExprError();
3171 if (Ivar.isUsable())
3172 return BuildIvarRefExpr(S, Lookup.getNameLoc(),
3173 cast<ObjCIvarDecl>(Ivar.get()));
3174
3175 if (Lookup.empty() && II && AllowBuiltinCreation)
3176 LookupBuiltin(Lookup);
3177
3178 // Sentinel value saying that we didn't do anything special.
3179 return ExprResult(false);
3180 }
3181
3182 /// Cast a base object to a member's actual type.
3183 ///
3184 /// There are two relevant checks:
3185 ///
3186 /// C++ [class.access.base]p7:
3187 ///
3188 /// If a class member access operator [...] is used to access a non-static
3189 /// data member or non-static member function, the reference is ill-formed if
3190 /// the left operand [...] cannot be implicitly converted to a pointer to the
3191 /// naming class of the right operand.
3192 ///
3193 /// C++ [expr.ref]p7:
3194 ///
3195 /// If E2 is a non-static data member or a non-static member function, the
3196 /// program is ill-formed if the class of which E2 is directly a member is an
3197 /// ambiguous base (11.8) of the naming class (11.9.3) of E2.
3198 ///
3199 /// Note that the latter check does not consider access; the access of the
3200 /// "real" base class is checked as appropriate when checking the access of the
3201 /// member name.
3202 ExprResult
PerformObjectMemberConversion(Expr * From,NestedNameSpecifier * Qualifier,NamedDecl * FoundDecl,NamedDecl * Member)3203 Sema::PerformObjectMemberConversion(Expr *From,
3204 NestedNameSpecifier *Qualifier,
3205 NamedDecl *FoundDecl,
3206 NamedDecl *Member) {
3207 const auto *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
3208 if (!RD)
3209 return From;
3210
3211 QualType DestRecordType;
3212 QualType DestType;
3213 QualType FromRecordType;
3214 QualType FromType = From->getType();
3215 bool PointerConversions = false;
3216 if (isa<FieldDecl>(Member)) {
3217 DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
3218 auto FromPtrType = FromType->getAs<PointerType>();
3219 DestRecordType = Context.getAddrSpaceQualType(
3220 DestRecordType, FromPtrType
3221 ? FromType->getPointeeType().getAddressSpace()
3222 : FromType.getAddressSpace());
3223
3224 if (FromPtrType) {
3225 DestType = Context.getPointerType(DestRecordType);
3226 FromRecordType = FromPtrType->getPointeeType();
3227 PointerConversions = true;
3228 } else {
3229 DestType = DestRecordType;
3230 FromRecordType = FromType;
3231 }
3232 } else if (const auto *Method = dyn_cast<CXXMethodDecl>(Member)) {
3233 if (!Method->isImplicitObjectMemberFunction())
3234 return From;
3235
3236 DestType = Method->getThisType().getNonReferenceType();
3237 DestRecordType = Method->getFunctionObjectParameterType();
3238
3239 if (FromType->getAs<PointerType>()) {
3240 FromRecordType = FromType->getPointeeType();
3241 PointerConversions = true;
3242 } else {
3243 FromRecordType = FromType;
3244 DestType = DestRecordType;
3245 }
3246
3247 LangAS FromAS = FromRecordType.getAddressSpace();
3248 LangAS DestAS = DestRecordType.getAddressSpace();
3249 if (FromAS != DestAS) {
3250 QualType FromRecordTypeWithoutAS =
3251 Context.removeAddrSpaceQualType(FromRecordType);
3252 QualType FromTypeWithDestAS =
3253 Context.getAddrSpaceQualType(FromRecordTypeWithoutAS, DestAS);
3254 if (PointerConversions)
3255 FromTypeWithDestAS = Context.getPointerType(FromTypeWithDestAS);
3256 From = ImpCastExprToType(From, FromTypeWithDestAS,
3257 CK_AddressSpaceConversion, From->getValueKind())
3258 .get();
3259 }
3260 } else {
3261 // No conversion necessary.
3262 return From;
3263 }
3264
3265 if (DestType->isDependentType() || FromType->isDependentType())
3266 return From;
3267
3268 // If the unqualified types are the same, no conversion is necessary.
3269 if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
3270 return From;
3271
3272 SourceRange FromRange = From->getSourceRange();
3273 SourceLocation FromLoc = FromRange.getBegin();
3274
3275 ExprValueKind VK = From->getValueKind();
3276
3277 // C++ [class.member.lookup]p8:
3278 // [...] Ambiguities can often be resolved by qualifying a name with its
3279 // class name.
3280 //
3281 // If the member was a qualified name and the qualified referred to a
3282 // specific base subobject type, we'll cast to that intermediate type
3283 // first and then to the object in which the member is declared. That allows
3284 // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
3285 //
3286 // class Base { public: int x; };
3287 // class Derived1 : public Base { };
3288 // class Derived2 : public Base { };
3289 // class VeryDerived : public Derived1, public Derived2 { void f(); };
3290 //
3291 // void VeryDerived::f() {
3292 // x = 17; // error: ambiguous base subobjects
3293 // Derived1::x = 17; // okay, pick the Base subobject of Derived1
3294 // }
3295 if (Qualifier && Qualifier->getAsType()) {
3296 QualType QType = QualType(Qualifier->getAsType(), 0);
3297 assert(QType->isRecordType() && "lookup done with non-record type");
3298
3299 QualType QRecordType = QualType(QType->castAs<RecordType>(), 0);
3300
3301 // In C++98, the qualifier type doesn't actually have to be a base
3302 // type of the object type, in which case we just ignore it.
3303 // Otherwise build the appropriate casts.
3304 if (IsDerivedFrom(FromLoc, FromRecordType, QRecordType)) {
3305 CXXCastPath BasePath;
3306 if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
3307 FromLoc, FromRange, &BasePath))
3308 return ExprError();
3309
3310 if (PointerConversions)
3311 QType = Context.getPointerType(QType);
3312 From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
3313 VK, &BasePath).get();
3314
3315 FromType = QType;
3316 FromRecordType = QRecordType;
3317
3318 // If the qualifier type was the same as the destination type,
3319 // we're done.
3320 if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
3321 return From;
3322 }
3323 }
3324
3325 CXXCastPath BasePath;
3326 if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
3327 FromLoc, FromRange, &BasePath,
3328 /*IgnoreAccess=*/true))
3329 return ExprError();
3330
3331 return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
3332 VK, &BasePath);
3333 }
3334
UseArgumentDependentLookup(const CXXScopeSpec & SS,const LookupResult & R,bool HasTrailingLParen)3335 bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
3336 const LookupResult &R,
3337 bool HasTrailingLParen) {
3338 // Only when used directly as the postfix-expression of a call.
3339 if (!HasTrailingLParen)
3340 return false;
3341
3342 // Never if a scope specifier was provided.
3343 if (SS.isSet())
3344 return false;
3345
3346 // Only in C++ or ObjC++.
3347 if (!getLangOpts().CPlusPlus)
3348 return false;
3349
3350 // Turn off ADL when we find certain kinds of declarations during
3351 // normal lookup:
3352 for (const NamedDecl *D : R) {
3353 // C++0x [basic.lookup.argdep]p3:
3354 // -- a declaration of a class member
3355 // Since using decls preserve this property, we check this on the
3356 // original decl.
3357 if (D->isCXXClassMember())
3358 return false;
3359
3360 // C++0x [basic.lookup.argdep]p3:
3361 // -- a block-scope function declaration that is not a
3362 // using-declaration
3363 // NOTE: we also trigger this for function templates (in fact, we
3364 // don't check the decl type at all, since all other decl types
3365 // turn off ADL anyway).
3366 if (isa<UsingShadowDecl>(D))
3367 D = cast<UsingShadowDecl>(D)->getTargetDecl();
3368 else if (D->getLexicalDeclContext()->isFunctionOrMethod())
3369 return false;
3370
3371 // C++0x [basic.lookup.argdep]p3:
3372 // -- a declaration that is neither a function or a function
3373 // template
3374 // And also for builtin functions.
3375 if (const auto *FDecl = dyn_cast<FunctionDecl>(D)) {
3376 // But also builtin functions.
3377 if (FDecl->getBuiltinID() && FDecl->isImplicit())
3378 return false;
3379 } else if (!isa<FunctionTemplateDecl>(D))
3380 return false;
3381 }
3382
3383 return true;
3384 }
3385
3386
3387 /// Diagnoses obvious problems with the use of the given declaration
3388 /// as an expression. This is only actually called for lookups that
3389 /// were not overloaded, and it doesn't promise that the declaration
3390 /// will in fact be used.
CheckDeclInExpr(Sema & S,SourceLocation Loc,NamedDecl * D,bool AcceptInvalid)3391 static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D,
3392 bool AcceptInvalid) {
3393 if (D->isInvalidDecl() && !AcceptInvalid)
3394 return true;
3395
3396 if (isa<TypedefNameDecl>(D)) {
3397 S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
3398 return true;
3399 }
3400
3401 if (isa<ObjCInterfaceDecl>(D)) {
3402 S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
3403 return true;
3404 }
3405
3406 if (isa<NamespaceDecl>(D)) {
3407 S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
3408 return true;
3409 }
3410
3411 return false;
3412 }
3413
3414 // Certain multiversion types should be treated as overloaded even when there is
3415 // only one result.
ShouldLookupResultBeMultiVersionOverload(const LookupResult & R)3416 static bool ShouldLookupResultBeMultiVersionOverload(const LookupResult &R) {
3417 assert(R.isSingleResult() && "Expected only a single result");
3418 const auto *FD = dyn_cast<FunctionDecl>(R.getFoundDecl());
3419 return FD &&
3420 (FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion());
3421 }
3422
BuildDeclarationNameExpr(const CXXScopeSpec & SS,LookupResult & R,bool NeedsADL,bool AcceptInvalidDecl)3423 ExprResult Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
3424 LookupResult &R, bool NeedsADL,
3425 bool AcceptInvalidDecl) {
3426 // If this is a single, fully-resolved result and we don't need ADL,
3427 // just build an ordinary singleton decl ref.
3428 if (!NeedsADL && R.isSingleResult() &&
3429 !R.getAsSingle<FunctionTemplateDecl>() &&
3430 !ShouldLookupResultBeMultiVersionOverload(R))
3431 return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), R.getFoundDecl(),
3432 R.getRepresentativeDecl(), nullptr,
3433 AcceptInvalidDecl);
3434
3435 // We only need to check the declaration if there's exactly one
3436 // result, because in the overloaded case the results can only be
3437 // functions and function templates.
3438 if (R.isSingleResult() && !ShouldLookupResultBeMultiVersionOverload(R) &&
3439 CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl(),
3440 AcceptInvalidDecl))
3441 return ExprError();
3442
3443 // Otherwise, just build an unresolved lookup expression. Suppress
3444 // any lookup-related diagnostics; we'll hash these out later, when
3445 // we've picked a target.
3446 R.suppressDiagnostics();
3447
3448 UnresolvedLookupExpr *ULE
3449 = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
3450 SS.getWithLocInContext(Context),
3451 R.getLookupNameInfo(),
3452 NeedsADL, R.isOverloadedResult(),
3453 R.begin(), R.end());
3454
3455 return ULE;
3456 }
3457
3458 static void diagnoseUncapturableValueReferenceOrBinding(Sema &S,
3459 SourceLocation loc,
3460 ValueDecl *var);
3461
3462 /// Complete semantic analysis for a reference to the given declaration.
BuildDeclarationNameExpr(const CXXScopeSpec & SS,const DeclarationNameInfo & NameInfo,NamedDecl * D,NamedDecl * FoundD,const TemplateArgumentListInfo * TemplateArgs,bool AcceptInvalidDecl)3463 ExprResult Sema::BuildDeclarationNameExpr(
3464 const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D,
3465 NamedDecl *FoundD, const TemplateArgumentListInfo *TemplateArgs,
3466 bool AcceptInvalidDecl) {
3467 assert(D && "Cannot refer to a NULL declaration");
3468 assert(!isa<FunctionTemplateDecl>(D) &&
3469 "Cannot refer unambiguously to a function template");
3470
3471 SourceLocation Loc = NameInfo.getLoc();
3472 if (CheckDeclInExpr(*this, Loc, D, AcceptInvalidDecl)) {
3473 // Recovery from invalid cases (e.g. D is an invalid Decl).
3474 // We use the dependent type for the RecoveryExpr to prevent bogus follow-up
3475 // diagnostics, as invalid decls use int as a fallback type.
3476 return CreateRecoveryExpr(NameInfo.getBeginLoc(), NameInfo.getEndLoc(), {});
3477 }
3478
3479 if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
3480 // Specifically diagnose references to class templates that are missing
3481 // a template argument list.
3482 diagnoseMissingTemplateArguments(TemplateName(Template), Loc);
3483 return ExprError();
3484 }
3485
3486 // Make sure that we're referring to a value.
3487 if (!isa<ValueDecl, UnresolvedUsingIfExistsDecl>(D)) {
3488 Diag(Loc, diag::err_ref_non_value) << D << SS.getRange();
3489 Diag(D->getLocation(), diag::note_declared_at);
3490 return ExprError();
3491 }
3492
3493 // Check whether this declaration can be used. Note that we suppress
3494 // this check when we're going to perform argument-dependent lookup
3495 // on this function name, because this might not be the function
3496 // that overload resolution actually selects.
3497 if (DiagnoseUseOfDecl(D, Loc))
3498 return ExprError();
3499
3500 auto *VD = cast<ValueDecl>(D);
3501
3502 // Only create DeclRefExpr's for valid Decl's.
3503 if (VD->isInvalidDecl() && !AcceptInvalidDecl)
3504 return ExprError();
3505
3506 // Handle members of anonymous structs and unions. If we got here,
3507 // and the reference is to a class member indirect field, then this
3508 // must be the subject of a pointer-to-member expression.
3509 if (auto *IndirectField = dyn_cast<IndirectFieldDecl>(VD);
3510 IndirectField && !IndirectField->isCXXClassMember())
3511 return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
3512 IndirectField);
3513
3514 QualType type = VD->getType();
3515 if (type.isNull())
3516 return ExprError();
3517 ExprValueKind valueKind = VK_PRValue;
3518
3519 // In 'T ...V;', the type of the declaration 'V' is 'T...', but the type of
3520 // a reference to 'V' is simply (unexpanded) 'T'. The type, like the value,
3521 // is expanded by some outer '...' in the context of the use.
3522 type = type.getNonPackExpansionType();
3523
3524 switch (D->getKind()) {
3525 // Ignore all the non-ValueDecl kinds.
3526 #define ABSTRACT_DECL(kind)
3527 #define VALUE(type, base)
3528 #define DECL(type, base) case Decl::type:
3529 #include "clang/AST/DeclNodes.inc"
3530 llvm_unreachable("invalid value decl kind");
3531
3532 // These shouldn't make it here.
3533 case Decl::ObjCAtDefsField:
3534 llvm_unreachable("forming non-member reference to ivar?");
3535
3536 // Enum constants are always r-values and never references.
3537 // Unresolved using declarations are dependent.
3538 case Decl::EnumConstant:
3539 case Decl::UnresolvedUsingValue:
3540 case Decl::OMPDeclareReduction:
3541 case Decl::OMPDeclareMapper:
3542 valueKind = VK_PRValue;
3543 break;
3544
3545 // Fields and indirect fields that got here must be for
3546 // pointer-to-member expressions; we just call them l-values for
3547 // internal consistency, because this subexpression doesn't really
3548 // exist in the high-level semantics.
3549 case Decl::Field:
3550 case Decl::IndirectField:
3551 case Decl::ObjCIvar:
3552 assert(getLangOpts().CPlusPlus && "building reference to field in C?");
3553
3554 // These can't have reference type in well-formed programs, but
3555 // for internal consistency we do this anyway.
3556 type = type.getNonReferenceType();
3557 valueKind = VK_LValue;
3558 break;
3559
3560 // Non-type template parameters are either l-values or r-values
3561 // depending on the type.
3562 case Decl::NonTypeTemplateParm: {
3563 if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
3564 type = reftype->getPointeeType();
3565 valueKind = VK_LValue; // even if the parameter is an r-value reference
3566 break;
3567 }
3568
3569 // [expr.prim.id.unqual]p2:
3570 // If the entity is a template parameter object for a template
3571 // parameter of type T, the type of the expression is const T.
3572 // [...] The expression is an lvalue if the entity is a [...] template
3573 // parameter object.
3574 if (type->isRecordType()) {
3575 type = type.getUnqualifiedType().withConst();
3576 valueKind = VK_LValue;
3577 break;
3578 }
3579
3580 // For non-references, we need to strip qualifiers just in case
3581 // the template parameter was declared as 'const int' or whatever.
3582 valueKind = VK_PRValue;
3583 type = type.getUnqualifiedType();
3584 break;
3585 }
3586
3587 case Decl::Var:
3588 case Decl::VarTemplateSpecialization:
3589 case Decl::VarTemplatePartialSpecialization:
3590 case Decl::Decomposition:
3591 case Decl::OMPCapturedExpr:
3592 // In C, "extern void blah;" is valid and is an r-value.
3593 if (!getLangOpts().CPlusPlus && !type.hasQualifiers() &&
3594 type->isVoidType()) {
3595 valueKind = VK_PRValue;
3596 break;
3597 }
3598 [[fallthrough]];
3599
3600 case Decl::ImplicitParam:
3601 case Decl::ParmVar: {
3602 // These are always l-values.
3603 valueKind = VK_LValue;
3604 type = type.getNonReferenceType();
3605
3606 // FIXME: Does the addition of const really only apply in
3607 // potentially-evaluated contexts? Since the variable isn't actually
3608 // captured in an unevaluated context, it seems that the answer is no.
3609 if (!isUnevaluatedContext()) {
3610 QualType CapturedType = getCapturedDeclRefType(cast<VarDecl>(VD), Loc);
3611 if (!CapturedType.isNull())
3612 type = CapturedType;
3613 }
3614
3615 break;
3616 }
3617
3618 case Decl::Binding:
3619 // These are always lvalues.
3620 valueKind = VK_LValue;
3621 type = type.getNonReferenceType();
3622 break;
3623
3624 case Decl::Function: {
3625 if (unsigned BID = cast<FunctionDecl>(VD)->getBuiltinID()) {
3626 if (!Context.BuiltinInfo.isDirectlyAddressable(BID)) {
3627 type = Context.BuiltinFnTy;
3628 valueKind = VK_PRValue;
3629 break;
3630 }
3631 }
3632
3633 const FunctionType *fty = type->castAs<FunctionType>();
3634
3635 // If we're referring to a function with an __unknown_anytype
3636 // result type, make the entire expression __unknown_anytype.
3637 if (fty->getReturnType() == Context.UnknownAnyTy) {
3638 type = Context.UnknownAnyTy;
3639 valueKind = VK_PRValue;
3640 break;
3641 }
3642
3643 // Functions are l-values in C++.
3644 if (getLangOpts().CPlusPlus) {
3645 valueKind = VK_LValue;
3646 break;
3647 }
3648
3649 // C99 DR 316 says that, if a function type comes from a
3650 // function definition (without a prototype), that type is only
3651 // used for checking compatibility. Therefore, when referencing
3652 // the function, we pretend that we don't have the full function
3653 // type.
3654 if (!cast<FunctionDecl>(VD)->hasPrototype() && isa<FunctionProtoType>(fty))
3655 type = Context.getFunctionNoProtoType(fty->getReturnType(),
3656 fty->getExtInfo());
3657
3658 // Functions are r-values in C.
3659 valueKind = VK_PRValue;
3660 break;
3661 }
3662
3663 case Decl::CXXDeductionGuide:
3664 llvm_unreachable("building reference to deduction guide");
3665
3666 case Decl::MSProperty:
3667 case Decl::MSGuid:
3668 case Decl::TemplateParamObject:
3669 // FIXME: Should MSGuidDecl and template parameter objects be subject to
3670 // capture in OpenMP, or duplicated between host and device?
3671 valueKind = VK_LValue;
3672 break;
3673
3674 case Decl::UnnamedGlobalConstant:
3675 valueKind = VK_LValue;
3676 break;
3677
3678 case Decl::CXXMethod:
3679 // If we're referring to a method with an __unknown_anytype
3680 // result type, make the entire expression __unknown_anytype.
3681 // This should only be possible with a type written directly.
3682 if (const FunctionProtoType *proto =
3683 dyn_cast<FunctionProtoType>(VD->getType()))
3684 if (proto->getReturnType() == Context.UnknownAnyTy) {
3685 type = Context.UnknownAnyTy;
3686 valueKind = VK_PRValue;
3687 break;
3688 }
3689
3690 // C++ methods are l-values if static, r-values if non-static.
3691 if (cast<CXXMethodDecl>(VD)->isStatic()) {
3692 valueKind = VK_LValue;
3693 break;
3694 }
3695 [[fallthrough]];
3696
3697 case Decl::CXXConversion:
3698 case Decl::CXXDestructor:
3699 case Decl::CXXConstructor:
3700 valueKind = VK_PRValue;
3701 break;
3702 }
3703
3704 auto *E =
3705 BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS, FoundD,
3706 /*FIXME: TemplateKWLoc*/ SourceLocation(), TemplateArgs);
3707 // Clang AST consumers assume a DeclRefExpr refers to a valid decl. We
3708 // wrap a DeclRefExpr referring to an invalid decl with a dependent-type
3709 // RecoveryExpr to avoid follow-up semantic analysis (thus prevent bogus
3710 // diagnostics).
3711 if (VD->isInvalidDecl() && E)
3712 return CreateRecoveryExpr(E->getBeginLoc(), E->getEndLoc(), {E});
3713 return E;
3714 }
3715
ConvertUTF8ToWideString(unsigned CharByteWidth,StringRef Source,SmallString<32> & Target)3716 static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
3717 SmallString<32> &Target) {
3718 Target.resize(CharByteWidth * (Source.size() + 1));
3719 char *ResultPtr = &Target[0];
3720 const llvm::UTF8 *ErrorPtr;
3721 bool success =
3722 llvm::ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
3723 (void)success;
3724 assert(success);
3725 Target.resize(ResultPtr - &Target[0]);
3726 }
3727
BuildPredefinedExpr(SourceLocation Loc,PredefinedIdentKind IK)3728 ExprResult Sema::BuildPredefinedExpr(SourceLocation Loc,
3729 PredefinedIdentKind IK) {
3730 Decl *currentDecl = getPredefinedExprDecl(CurContext);
3731 if (!currentDecl) {
3732 Diag(Loc, diag::ext_predef_outside_function);
3733 currentDecl = Context.getTranslationUnitDecl();
3734 }
3735
3736 QualType ResTy;
3737 StringLiteral *SL = nullptr;
3738 if (cast<DeclContext>(currentDecl)->isDependentContext())
3739 ResTy = Context.DependentTy;
3740 else {
3741 // Pre-defined identifiers are of type char[x], where x is the length of
3742 // the string.
3743 auto Str = PredefinedExpr::ComputeName(IK, currentDecl);
3744 unsigned Length = Str.length();
3745
3746 llvm::APInt LengthI(32, Length + 1);
3747 if (IK == PredefinedIdentKind::LFunction ||
3748 IK == PredefinedIdentKind::LFuncSig) {
3749 ResTy =
3750 Context.adjustStringLiteralBaseType(Context.WideCharTy.withConst());
3751 SmallString<32> RawChars;
3752 ConvertUTF8ToWideString(Context.getTypeSizeInChars(ResTy).getQuantity(),
3753 Str, RawChars);
3754 ResTy = Context.getConstantArrayType(ResTy, LengthI, nullptr,
3755 ArraySizeModifier::Normal,
3756 /*IndexTypeQuals*/ 0);
3757 SL = StringLiteral::Create(Context, RawChars, StringLiteralKind::Wide,
3758 /*Pascal*/ false, ResTy, Loc);
3759 } else {
3760 ResTy = Context.adjustStringLiteralBaseType(Context.CharTy.withConst());
3761 ResTy = Context.getConstantArrayType(ResTy, LengthI, nullptr,
3762 ArraySizeModifier::Normal,
3763 /*IndexTypeQuals*/ 0);
3764 SL = StringLiteral::Create(Context, Str, StringLiteralKind::Ordinary,
3765 /*Pascal*/ false, ResTy, Loc);
3766 }
3767 }
3768
3769 return PredefinedExpr::Create(Context, Loc, ResTy, IK, LangOpts.MicrosoftExt,
3770 SL);
3771 }
3772
BuildSYCLUniqueStableNameExpr(SourceLocation OpLoc,SourceLocation LParen,SourceLocation RParen,TypeSourceInfo * TSI)3773 ExprResult Sema::BuildSYCLUniqueStableNameExpr(SourceLocation OpLoc,
3774 SourceLocation LParen,
3775 SourceLocation RParen,
3776 TypeSourceInfo *TSI) {
3777 return SYCLUniqueStableNameExpr::Create(Context, OpLoc, LParen, RParen, TSI);
3778 }
3779
ActOnSYCLUniqueStableNameExpr(SourceLocation OpLoc,SourceLocation LParen,SourceLocation RParen,ParsedType ParsedTy)3780 ExprResult Sema::ActOnSYCLUniqueStableNameExpr(SourceLocation OpLoc,
3781 SourceLocation LParen,
3782 SourceLocation RParen,
3783 ParsedType ParsedTy) {
3784 TypeSourceInfo *TSI = nullptr;
3785 QualType Ty = GetTypeFromParser(ParsedTy, &TSI);
3786
3787 if (Ty.isNull())
3788 return ExprError();
3789 if (!TSI)
3790 TSI = Context.getTrivialTypeSourceInfo(Ty, LParen);
3791
3792 return BuildSYCLUniqueStableNameExpr(OpLoc, LParen, RParen, TSI);
3793 }
3794
ActOnPredefinedExpr(SourceLocation Loc,tok::TokenKind Kind)3795 ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
3796 return BuildPredefinedExpr(Loc, getPredefinedExprKind(Kind));
3797 }
3798
ActOnCharacterConstant(const Token & Tok,Scope * UDLScope)3799 ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) {
3800 SmallString<16> CharBuffer;
3801 bool Invalid = false;
3802 StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
3803 if (Invalid)
3804 return ExprError();
3805
3806 CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
3807 PP, Tok.getKind());
3808 if (Literal.hadError())
3809 return ExprError();
3810
3811 QualType Ty;
3812 if (Literal.isWide())
3813 Ty = Context.WideCharTy; // L'x' -> wchar_t in C and C++.
3814 else if (Literal.isUTF8() && getLangOpts().C23)
3815 Ty = Context.UnsignedCharTy; // u8'x' -> unsigned char in C23
3816 else if (Literal.isUTF8() && getLangOpts().Char8)
3817 Ty = Context.Char8Ty; // u8'x' -> char8_t when it exists.
3818 else if (Literal.isUTF16())
3819 Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11.
3820 else if (Literal.isUTF32())
3821 Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11.
3822 else if (!getLangOpts().CPlusPlus || Literal.isMultiChar())
3823 Ty = Context.IntTy; // 'x' -> int in C, 'wxyz' -> int in C++.
3824 else
3825 Ty = Context.CharTy; // 'x' -> char in C++;
3826 // u8'x' -> char in C11-C17 and in C++ without char8_t.
3827
3828 CharacterLiteralKind Kind = CharacterLiteralKind::Ascii;
3829 if (Literal.isWide())
3830 Kind = CharacterLiteralKind::Wide;
3831 else if (Literal.isUTF16())
3832 Kind = CharacterLiteralKind::UTF16;
3833 else if (Literal.isUTF32())
3834 Kind = CharacterLiteralKind::UTF32;
3835 else if (Literal.isUTF8())
3836 Kind = CharacterLiteralKind::UTF8;
3837
3838 Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
3839 Tok.getLocation());
3840
3841 if (Literal.getUDSuffix().empty())
3842 return Lit;
3843
3844 // We're building a user-defined literal.
3845 IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
3846 SourceLocation UDSuffixLoc =
3847 getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
3848
3849 // Make sure we're allowed user-defined literals here.
3850 if (!UDLScope)
3851 return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl));
3852
3853 // C++11 [lex.ext]p6: The literal L is treated as a call of the form
3854 // operator "" X (ch)
3855 return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
3856 Lit, Tok.getLocation());
3857 }
3858
ActOnIntegerConstant(SourceLocation Loc,uint64_t Val)3859 ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) {
3860 unsigned IntSize = Context.getTargetInfo().getIntWidth();
3861 return IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val),
3862 Context.IntTy, Loc);
3863 }
3864
BuildFloatingLiteral(Sema & S,NumericLiteralParser & Literal,QualType Ty,SourceLocation Loc)3865 static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal,
3866 QualType Ty, SourceLocation Loc) {
3867 const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty);
3868
3869 using llvm::APFloat;
3870 APFloat Val(Format);
3871
3872 APFloat::opStatus result = Literal.GetFloatValue(Val);
3873
3874 // Overflow is always an error, but underflow is only an error if
3875 // we underflowed to zero (APFloat reports denormals as underflow).
3876 if ((result & APFloat::opOverflow) ||
3877 ((result & APFloat::opUnderflow) && Val.isZero())) {
3878 unsigned diagnostic;
3879 SmallString<20> buffer;
3880 if (result & APFloat::opOverflow) {
3881 diagnostic = diag::warn_float_overflow;
3882 APFloat::getLargest(Format).toString(buffer);
3883 } else {
3884 diagnostic = diag::warn_float_underflow;
3885 APFloat::getSmallest(Format).toString(buffer);
3886 }
3887
3888 S.Diag(Loc, diagnostic)
3889 << Ty
3890 << StringRef(buffer.data(), buffer.size());
3891 }
3892
3893 bool isExact = (result == APFloat::opOK);
3894 return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc);
3895 }
3896
CheckLoopHintExpr(Expr * E,SourceLocation Loc)3897 bool Sema::CheckLoopHintExpr(Expr *E, SourceLocation Loc) {
3898 assert(E && "Invalid expression");
3899
3900 if (E->isValueDependent())
3901 return false;
3902
3903 QualType QT = E->getType();
3904 if (!QT->isIntegerType() || QT->isBooleanType() || QT->isCharType()) {
3905 Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_type) << QT;
3906 return true;
3907 }
3908
3909 llvm::APSInt ValueAPS;
3910 ExprResult R = VerifyIntegerConstantExpression(E, &ValueAPS);
3911
3912 if (R.isInvalid())
3913 return true;
3914
3915 bool ValueIsPositive = ValueAPS.isStrictlyPositive();
3916 if (!ValueIsPositive || ValueAPS.getActiveBits() > 31) {
3917 Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_value)
3918 << toString(ValueAPS, 10) << ValueIsPositive;
3919 return true;
3920 }
3921
3922 return false;
3923 }
3924
ActOnNumericConstant(const Token & Tok,Scope * UDLScope)3925 ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) {
3926 // Fast path for a single digit (which is quite common). A single digit
3927 // cannot have a trigraph, escaped newline, radix prefix, or suffix.
3928 if (Tok.getLength() == 1) {
3929 const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
3930 return ActOnIntegerConstant(Tok.getLocation(), Val-'0');
3931 }
3932
3933 SmallString<128> SpellingBuffer;
3934 // NumericLiteralParser wants to overread by one character. Add padding to
3935 // the buffer in case the token is copied to the buffer. If getSpelling()
3936 // returns a StringRef to the memory buffer, it should have a null char at
3937 // the EOF, so it is also safe.
3938 SpellingBuffer.resize(Tok.getLength() + 1);
3939
3940 // Get the spelling of the token, which eliminates trigraphs, etc.
3941 bool Invalid = false;
3942 StringRef TokSpelling = PP.getSpelling(Tok, SpellingBuffer, &Invalid);
3943 if (Invalid)
3944 return ExprError();
3945
3946 NumericLiteralParser Literal(TokSpelling, Tok.getLocation(),
3947 PP.getSourceManager(), PP.getLangOpts(),
3948 PP.getTargetInfo(), PP.getDiagnostics());
3949 if (Literal.hadError)
3950 return ExprError();
3951
3952 if (Literal.hasUDSuffix()) {
3953 // We're building a user-defined literal.
3954 const IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
3955 SourceLocation UDSuffixLoc =
3956 getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
3957
3958 // Make sure we're allowed user-defined literals here.
3959 if (!UDLScope)
3960 return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl));
3961
3962 QualType CookedTy;
3963 if (Literal.isFloatingLiteral()) {
3964 // C++11 [lex.ext]p4: If S contains a literal operator with parameter type
3965 // long double, the literal is treated as a call of the form
3966 // operator "" X (f L)
3967 CookedTy = Context.LongDoubleTy;
3968 } else {
3969 // C++11 [lex.ext]p3: If S contains a literal operator with parameter type
3970 // unsigned long long, the literal is treated as a call of the form
3971 // operator "" X (n ULL)
3972 CookedTy = Context.UnsignedLongLongTy;
3973 }
3974
3975 DeclarationName OpName =
3976 Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
3977 DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
3978 OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
3979
3980 SourceLocation TokLoc = Tok.getLocation();
3981
3982 // Perform literal operator lookup to determine if we're building a raw
3983 // literal or a cooked one.
3984 LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
3985 switch (LookupLiteralOperator(UDLScope, R, CookedTy,
3986 /*AllowRaw*/ true, /*AllowTemplate*/ true,
3987 /*AllowStringTemplatePack*/ false,
3988 /*DiagnoseMissing*/ !Literal.isImaginary)) {
3989 case LOLR_ErrorNoDiagnostic:
3990 // Lookup failure for imaginary constants isn't fatal, there's still the
3991 // GNU extension producing _Complex types.
3992 break;
3993 case LOLR_Error:
3994 return ExprError();
3995 case LOLR_Cooked: {
3996 Expr *Lit;
3997 if (Literal.isFloatingLiteral()) {
3998 Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation());
3999 } else {
4000 llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0);
4001 if (Literal.GetIntegerValue(ResultVal))
4002 Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
4003 << /* Unsigned */ 1;
4004 Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy,
4005 Tok.getLocation());
4006 }
4007 return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
4008 }
4009
4010 case LOLR_Raw: {
4011 // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the
4012 // literal is treated as a call of the form
4013 // operator "" X ("n")
4014 unsigned Length = Literal.getUDSuffixOffset();
4015 QualType StrTy = Context.getConstantArrayType(
4016 Context.adjustStringLiteralBaseType(Context.CharTy.withConst()),
4017 llvm::APInt(32, Length + 1), nullptr, ArraySizeModifier::Normal, 0);
4018 Expr *Lit =
4019 StringLiteral::Create(Context, StringRef(TokSpelling.data(), Length),
4020 StringLiteralKind::Ordinary,
4021 /*Pascal*/ false, StrTy, &TokLoc, 1);
4022 return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
4023 }
4024
4025 case LOLR_Template: {
4026 // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator
4027 // template), L is treated as a call fo the form
4028 // operator "" X <'c1', 'c2', ... 'ck'>()
4029 // where n is the source character sequence c1 c2 ... ck.
4030 TemplateArgumentListInfo ExplicitArgs;
4031 unsigned CharBits = Context.getIntWidth(Context.CharTy);
4032 bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType();
4033 llvm::APSInt Value(CharBits, CharIsUnsigned);
4034 for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) {
4035 Value = TokSpelling[I];
4036 TemplateArgument Arg(Context, Value, Context.CharTy);
4037 TemplateArgumentLocInfo ArgInfo;
4038 ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
4039 }
4040 return BuildLiteralOperatorCall(R, OpNameInfo, std::nullopt, TokLoc,
4041 &ExplicitArgs);
4042 }
4043 case LOLR_StringTemplatePack:
4044 llvm_unreachable("unexpected literal operator lookup result");
4045 }
4046 }
4047
4048 Expr *Res;
4049
4050 if (Literal.isFixedPointLiteral()) {
4051 QualType Ty;
4052
4053 if (Literal.isAccum) {
4054 if (Literal.isHalf) {
4055 Ty = Context.ShortAccumTy;
4056 } else if (Literal.isLong) {
4057 Ty = Context.LongAccumTy;
4058 } else {
4059 Ty = Context.AccumTy;
4060 }
4061 } else if (Literal.isFract) {
4062 if (Literal.isHalf) {
4063 Ty = Context.ShortFractTy;
4064 } else if (Literal.isLong) {
4065 Ty = Context.LongFractTy;
4066 } else {
4067 Ty = Context.FractTy;
4068 }
4069 }
4070
4071 if (Literal.isUnsigned) Ty = Context.getCorrespondingUnsignedType(Ty);
4072
4073 bool isSigned = !Literal.isUnsigned;
4074 unsigned scale = Context.getFixedPointScale(Ty);
4075 unsigned bit_width = Context.getTypeInfo(Ty).Width;
4076
4077 llvm::APInt Val(bit_width, 0, isSigned);
4078 bool Overflowed = Literal.GetFixedPointValue(Val, scale);
4079 bool ValIsZero = Val.isZero() && !Overflowed;
4080
4081 auto MaxVal = Context.getFixedPointMax(Ty).getValue();
4082 if (Literal.isFract && Val == MaxVal + 1 && !ValIsZero)
4083 // Clause 6.4.4 - The value of a constant shall be in the range of
4084 // representable values for its type, with exception for constants of a
4085 // fract type with a value of exactly 1; such a constant shall denote
4086 // the maximal value for the type.
4087 --Val;
4088 else if (Val.ugt(MaxVal) || Overflowed)
4089 Diag(Tok.getLocation(), diag::err_too_large_for_fixed_point);
4090
4091 Res = FixedPointLiteral::CreateFromRawInt(Context, Val, Ty,
4092 Tok.getLocation(), scale);
4093 } else if (Literal.isFloatingLiteral()) {
4094 QualType Ty;
4095 if (Literal.isHalf){
4096 if (getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()))
4097 Ty = Context.HalfTy;
4098 else {
4099 Diag(Tok.getLocation(), diag::err_half_const_requires_fp16);
4100 return ExprError();
4101 }
4102 } else if (Literal.isFloat)
4103 Ty = Context.FloatTy;
4104 else if (Literal.isLong)
4105 Ty = Context.LongDoubleTy;
4106 else if (Literal.isFloat16)
4107 Ty = Context.Float16Ty;
4108 else if (Literal.isFloat128)
4109 Ty = Context.Float128Ty;
4110 else
4111 Ty = Context.DoubleTy;
4112
4113 Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation());
4114
4115 if (Ty == Context.DoubleTy) {
4116 if (getLangOpts().SinglePrecisionConstants) {
4117 if (Ty->castAs<BuiltinType>()->getKind() != BuiltinType::Float) {
4118 Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
4119 }
4120 } else if (getLangOpts().OpenCL && !getOpenCLOptions().isAvailableOption(
4121 "cl_khr_fp64", getLangOpts())) {
4122 // Impose single-precision float type when cl_khr_fp64 is not enabled.
4123 Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64)
4124 << (getLangOpts().getOpenCLCompatibleVersion() >= 300);
4125 Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
4126 }
4127 }
4128 } else if (!Literal.isIntegerLiteral()) {
4129 return ExprError();
4130 } else {
4131 QualType Ty;
4132
4133 // 'z/uz' literals are a C++23 feature.
4134 if (Literal.isSizeT)
4135 Diag(Tok.getLocation(), getLangOpts().CPlusPlus
4136 ? getLangOpts().CPlusPlus23
4137 ? diag::warn_cxx20_compat_size_t_suffix
4138 : diag::ext_cxx23_size_t_suffix
4139 : diag::err_cxx23_size_t_suffix);
4140
4141 // 'wb/uwb' literals are a C23 feature. We support _BitInt as a type in C++,
4142 // but we do not currently support the suffix in C++ mode because it's not
4143 // entirely clear whether WG21 will prefer this suffix to return a library
4144 // type such as std::bit_int instead of returning a _BitInt.
4145 if (Literal.isBitInt && !getLangOpts().CPlusPlus)
4146 PP.Diag(Tok.getLocation(), getLangOpts().C23
4147 ? diag::warn_c23_compat_bitint_suffix
4148 : diag::ext_c23_bitint_suffix);
4149
4150 // Get the value in the widest-possible width. What is "widest" depends on
4151 // whether the literal is a bit-precise integer or not. For a bit-precise
4152 // integer type, try to scan the source to determine how many bits are
4153 // needed to represent the value. This may seem a bit expensive, but trying
4154 // to get the integer value from an overly-wide APInt is *extremely*
4155 // expensive, so the naive approach of assuming
4156 // llvm::IntegerType::MAX_INT_BITS is a big performance hit.
4157 unsigned BitsNeeded =
4158 Literal.isBitInt ? llvm::APInt::getSufficientBitsNeeded(
4159 Literal.getLiteralDigits(), Literal.getRadix())
4160 : Context.getTargetInfo().getIntMaxTWidth();
4161 llvm::APInt ResultVal(BitsNeeded, 0);
4162
4163 if (Literal.GetIntegerValue(ResultVal)) {
4164 // If this value didn't fit into uintmax_t, error and force to ull.
4165 Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
4166 << /* Unsigned */ 1;
4167 Ty = Context.UnsignedLongLongTy;
4168 assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
4169 "long long is not intmax_t?");
4170 } else {
4171 // If this value fits into a ULL, try to figure out what else it fits into
4172 // according to the rules of C99 6.4.4.1p5.
4173
4174 // Octal, Hexadecimal, and integers with a U suffix are allowed to
4175 // be an unsigned int.
4176 bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
4177
4178 // Check from smallest to largest, picking the smallest type we can.
4179 unsigned Width = 0;
4180
4181 // Microsoft specific integer suffixes are explicitly sized.
4182 if (Literal.MicrosoftInteger) {
4183 if (Literal.MicrosoftInteger == 8 && !Literal.isUnsigned) {
4184 Width = 8;
4185 Ty = Context.CharTy;
4186 } else {
4187 Width = Literal.MicrosoftInteger;
4188 Ty = Context.getIntTypeForBitwidth(Width,
4189 /*Signed=*/!Literal.isUnsigned);
4190 }
4191 }
4192
4193 // Bit-precise integer literals are automagically-sized based on the
4194 // width required by the literal.
4195 if (Literal.isBitInt) {
4196 // The signed version has one more bit for the sign value. There are no
4197 // zero-width bit-precise integers, even if the literal value is 0.
4198 Width = std::max(ResultVal.getActiveBits(), 1u) +
4199 (Literal.isUnsigned ? 0u : 1u);
4200
4201 // Diagnose if the width of the constant is larger than BITINT_MAXWIDTH,
4202 // and reset the type to the largest supported width.
4203 unsigned int MaxBitIntWidth =
4204 Context.getTargetInfo().getMaxBitIntWidth();
4205 if (Width > MaxBitIntWidth) {
4206 Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
4207 << Literal.isUnsigned;
4208 Width = MaxBitIntWidth;
4209 }
4210
4211 // Reset the result value to the smaller APInt and select the correct
4212 // type to be used. Note, we zext even for signed values because the
4213 // literal itself is always an unsigned value (a preceeding - is a
4214 // unary operator, not part of the literal).
4215 ResultVal = ResultVal.zextOrTrunc(Width);
4216 Ty = Context.getBitIntType(Literal.isUnsigned, Width);
4217 }
4218
4219 // Check C++23 size_t literals.
4220 if (Literal.isSizeT) {
4221 assert(!Literal.MicrosoftInteger &&
4222 "size_t literals can't be Microsoft literals");
4223 unsigned SizeTSize = Context.getTargetInfo().getTypeWidth(
4224 Context.getTargetInfo().getSizeType());
4225
4226 // Does it fit in size_t?
4227 if (ResultVal.isIntN(SizeTSize)) {
4228 // Does it fit in ssize_t?
4229 if (!Literal.isUnsigned && ResultVal[SizeTSize - 1] == 0)
4230 Ty = Context.getSignedSizeType();
4231 else if (AllowUnsigned)
4232 Ty = Context.getSizeType();
4233 Width = SizeTSize;
4234 }
4235 }
4236
4237 if (Ty.isNull() && !Literal.isLong && !Literal.isLongLong &&
4238 !Literal.isSizeT) {
4239 // Are int/unsigned possibilities?
4240 unsigned IntSize = Context.getTargetInfo().getIntWidth();
4241
4242 // Does it fit in a unsigned int?
4243 if (ResultVal.isIntN(IntSize)) {
4244 // Does it fit in a signed int?
4245 if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
4246 Ty = Context.IntTy;
4247 else if (AllowUnsigned)
4248 Ty = Context.UnsignedIntTy;
4249 Width = IntSize;
4250 }
4251 }
4252
4253 // Are long/unsigned long possibilities?
4254 if (Ty.isNull() && !Literal.isLongLong && !Literal.isSizeT) {
4255 unsigned LongSize = Context.getTargetInfo().getLongWidth();
4256
4257 // Does it fit in a unsigned long?
4258 if (ResultVal.isIntN(LongSize)) {
4259 // Does it fit in a signed long?
4260 if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
4261 Ty = Context.LongTy;
4262 else if (AllowUnsigned)
4263 Ty = Context.UnsignedLongTy;
4264 // Check according to the rules of C90 6.1.3.2p5. C++03 [lex.icon]p2
4265 // is compatible.
4266 else if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11) {
4267 const unsigned LongLongSize =
4268 Context.getTargetInfo().getLongLongWidth();
4269 Diag(Tok.getLocation(),
4270 getLangOpts().CPlusPlus
4271 ? Literal.isLong
4272 ? diag::warn_old_implicitly_unsigned_long_cxx
4273 : /*C++98 UB*/ diag::
4274 ext_old_implicitly_unsigned_long_cxx
4275 : diag::warn_old_implicitly_unsigned_long)
4276 << (LongLongSize > LongSize ? /*will have type 'long long'*/ 0
4277 : /*will be ill-formed*/ 1);
4278 Ty = Context.UnsignedLongTy;
4279 }
4280 Width = LongSize;
4281 }
4282 }
4283
4284 // Check long long if needed.
4285 if (Ty.isNull() && !Literal.isSizeT) {
4286 unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();
4287
4288 // Does it fit in a unsigned long long?
4289 if (ResultVal.isIntN(LongLongSize)) {
4290 // Does it fit in a signed long long?
4291 // To be compatible with MSVC, hex integer literals ending with the
4292 // LL or i64 suffix are always signed in Microsoft mode.
4293 if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
4294 (getLangOpts().MSVCCompat && Literal.isLongLong)))
4295 Ty = Context.LongLongTy;
4296 else if (AllowUnsigned)
4297 Ty = Context.UnsignedLongLongTy;
4298 Width = LongLongSize;
4299
4300 // 'long long' is a C99 or C++11 feature, whether the literal
4301 // explicitly specified 'long long' or we needed the extra width.
4302 if (getLangOpts().CPlusPlus)
4303 Diag(Tok.getLocation(), getLangOpts().CPlusPlus11
4304 ? diag::warn_cxx98_compat_longlong
4305 : diag::ext_cxx11_longlong);
4306 else if (!getLangOpts().C99)
4307 Diag(Tok.getLocation(), diag::ext_c99_longlong);
4308 }
4309 }
4310
4311 // If we still couldn't decide a type, we either have 'size_t' literal
4312 // that is out of range, or a decimal literal that does not fit in a
4313 // signed long long and has no U suffix.
4314 if (Ty.isNull()) {
4315 if (Literal.isSizeT)
4316 Diag(Tok.getLocation(), diag::err_size_t_literal_too_large)
4317 << Literal.isUnsigned;
4318 else
4319 Diag(Tok.getLocation(),
4320 diag::ext_integer_literal_too_large_for_signed);
4321 Ty = Context.UnsignedLongLongTy;
4322 Width = Context.getTargetInfo().getLongLongWidth();
4323 }
4324
4325 if (ResultVal.getBitWidth() != Width)
4326 ResultVal = ResultVal.trunc(Width);
4327 }
4328 Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
4329 }
4330
4331 // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
4332 if (Literal.isImaginary) {
4333 Res = new (Context) ImaginaryLiteral(Res,
4334 Context.getComplexType(Res->getType()));
4335
4336 Diag(Tok.getLocation(), diag::ext_imaginary_constant);
4337 }
4338 return Res;
4339 }
4340
ActOnParenExpr(SourceLocation L,SourceLocation R,Expr * E)4341 ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) {
4342 assert(E && "ActOnParenExpr() missing expr");
4343 QualType ExprTy = E->getType();
4344 if (getLangOpts().ProtectParens && CurFPFeatures.getAllowFPReassociate() &&
4345 !E->isLValue() && ExprTy->hasFloatingRepresentation())
4346 return BuildBuiltinCallExpr(R, Builtin::BI__arithmetic_fence, E);
4347 return new (Context) ParenExpr(L, R, E);
4348 }
4349
CheckVecStepTraitOperandType(Sema & S,QualType T,SourceLocation Loc,SourceRange ArgRange)4350 static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
4351 SourceLocation Loc,
4352 SourceRange ArgRange) {
4353 // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
4354 // scalar or vector data type argument..."
4355 // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
4356 // type (C99 6.2.5p18) or void.
4357 if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
4358 S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
4359 << T << ArgRange;
4360 return true;
4361 }
4362
4363 assert((T->isVoidType() || !T->isIncompleteType()) &&
4364 "Scalar types should always be complete");
4365 return false;
4366 }
4367
CheckVectorElementsTraitOperandType(Sema & S,QualType T,SourceLocation Loc,SourceRange ArgRange)4368 static bool CheckVectorElementsTraitOperandType(Sema &S, QualType T,
4369 SourceLocation Loc,
4370 SourceRange ArgRange) {
4371 // builtin_vectorelements supports both fixed-sized and scalable vectors.
4372 if (!T->isVectorType() && !T->isSizelessVectorType())
4373 return S.Diag(Loc, diag::err_builtin_non_vector_type)
4374 << ""
4375 << "__builtin_vectorelements" << T << ArgRange;
4376
4377 return false;
4378 }
4379
CheckExtensionTraitOperandType(Sema & S,QualType T,SourceLocation Loc,SourceRange ArgRange,UnaryExprOrTypeTrait TraitKind)4380 static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
4381 SourceLocation Loc,
4382 SourceRange ArgRange,
4383 UnaryExprOrTypeTrait TraitKind) {
4384 // Invalid types must be hard errors for SFINAE in C++.
4385 if (S.LangOpts.CPlusPlus)
4386 return true;
4387
4388 // C99 6.5.3.4p1:
4389 if (T->isFunctionType() &&
4390 (TraitKind == UETT_SizeOf || TraitKind == UETT_AlignOf ||
4391 TraitKind == UETT_PreferredAlignOf)) {
4392 // sizeof(function)/alignof(function) is allowed as an extension.
4393 S.Diag(Loc, diag::ext_sizeof_alignof_function_type)
4394 << getTraitSpelling(TraitKind) << ArgRange;
4395 return false;
4396 }
4397
4398 // Allow sizeof(void)/alignof(void) as an extension, unless in OpenCL where
4399 // this is an error (OpenCL v1.1 s6.3.k)
4400 if (T->isVoidType()) {
4401 unsigned DiagID = S.LangOpts.OpenCL ? diag::err_opencl_sizeof_alignof_type
4402 : diag::ext_sizeof_alignof_void_type;
4403 S.Diag(Loc, DiagID) << getTraitSpelling(TraitKind) << ArgRange;
4404 return false;
4405 }
4406
4407 return true;
4408 }
4409
CheckObjCTraitOperandConstraints(Sema & S,QualType T,SourceLocation Loc,SourceRange ArgRange,UnaryExprOrTypeTrait TraitKind)4410 static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
4411 SourceLocation Loc,
4412 SourceRange ArgRange,
4413 UnaryExprOrTypeTrait TraitKind) {
4414 // Reject sizeof(interface) and sizeof(interface<proto>) if the
4415 // runtime doesn't allow it.
4416 if (!S.LangOpts.ObjCRuntime.allowsSizeofAlignof() && T->isObjCObjectType()) {
4417 S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
4418 << T << (TraitKind == UETT_SizeOf)
4419 << ArgRange;
4420 return true;
4421 }
4422
4423 return false;
4424 }
4425
4426 /// Check whether E is a pointer from a decayed array type (the decayed
4427 /// pointer type is equal to T) and emit a warning if it is.
warnOnSizeofOnArrayDecay(Sema & S,SourceLocation Loc,QualType T,const Expr * E)4428 static void warnOnSizeofOnArrayDecay(Sema &S, SourceLocation Loc, QualType T,
4429 const Expr *E) {
4430 // Don't warn if the operation changed the type.
4431 if (T != E->getType())
4432 return;
4433
4434 // Now look for array decays.
4435 const auto *ICE = dyn_cast<ImplicitCastExpr>(E);
4436 if (!ICE || ICE->getCastKind() != CK_ArrayToPointerDecay)
4437 return;
4438
4439 S.Diag(Loc, diag::warn_sizeof_array_decay) << ICE->getSourceRange()
4440 << ICE->getType()
4441 << ICE->getSubExpr()->getType();
4442 }
4443
4444 /// Check the constraints on expression operands to unary type expression
4445 /// and type traits.
4446 ///
4447 /// Completes any types necessary and validates the constraints on the operand
4448 /// expression. The logic mostly mirrors the type-based overload, but may modify
4449 /// the expression as it completes the type for that expression through template
4450 /// instantiation, etc.
CheckUnaryExprOrTypeTraitOperand(Expr * E,UnaryExprOrTypeTrait ExprKind)4451 bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E,
4452 UnaryExprOrTypeTrait ExprKind) {
4453 QualType ExprTy = E->getType();
4454 assert(!ExprTy->isReferenceType());
4455
4456 bool IsUnevaluatedOperand =
4457 (ExprKind == UETT_SizeOf || ExprKind == UETT_DataSizeOf ||
4458 ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf ||
4459 ExprKind == UETT_VecStep);
4460 if (IsUnevaluatedOperand) {
4461 ExprResult Result = CheckUnevaluatedOperand(E);
4462 if (Result.isInvalid())
4463 return true;
4464 E = Result.get();
4465 }
4466
4467 // The operand for sizeof and alignof is in an unevaluated expression context,
4468 // so side effects could result in unintended consequences.
4469 // Exclude instantiation-dependent expressions, because 'sizeof' is sometimes
4470 // used to build SFINAE gadgets.
4471 // FIXME: Should we consider instantiation-dependent operands to 'alignof'?
4472 if (IsUnevaluatedOperand && !inTemplateInstantiation() &&
4473 !E->isInstantiationDependent() &&
4474 !E->getType()->isVariableArrayType() &&
4475 E->HasSideEffects(Context, false))
4476 Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
4477
4478 if (ExprKind == UETT_VecStep)
4479 return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(),
4480 E->getSourceRange());
4481
4482 if (ExprKind == UETT_VectorElements)
4483 return CheckVectorElementsTraitOperandType(*this, ExprTy, E->getExprLoc(),
4484 E->getSourceRange());
4485
4486 // Explicitly list some types as extensions.
4487 if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(),
4488 E->getSourceRange(), ExprKind))
4489 return false;
4490
4491 // WebAssembly tables are always illegal operands to unary expressions and
4492 // type traits.
4493 if (Context.getTargetInfo().getTriple().isWasm() &&
4494 E->getType()->isWebAssemblyTableType()) {
4495 Diag(E->getExprLoc(), diag::err_wasm_table_invalid_uett_operand)
4496 << getTraitSpelling(ExprKind);
4497 return true;
4498 }
4499
4500 // 'alignof' applied to an expression only requires the base element type of
4501 // the expression to be complete. 'sizeof' requires the expression's type to
4502 // be complete (and will attempt to complete it if it's an array of unknown
4503 // bound).
4504 if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
4505 if (RequireCompleteSizedType(
4506 E->getExprLoc(), Context.getBaseElementType(E->getType()),
4507 diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4508 getTraitSpelling(ExprKind), E->getSourceRange()))
4509 return true;
4510 } else {
4511 if (RequireCompleteSizedExprType(
4512 E, diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4513 getTraitSpelling(ExprKind), E->getSourceRange()))
4514 return true;
4515 }
4516
4517 // Completing the expression's type may have changed it.
4518 ExprTy = E->getType();
4519 assert(!ExprTy->isReferenceType());
4520
4521 if (ExprTy->isFunctionType()) {
4522 Diag(E->getExprLoc(), diag::err_sizeof_alignof_function_type)
4523 << getTraitSpelling(ExprKind) << E->getSourceRange();
4524 return true;
4525 }
4526
4527 if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(),
4528 E->getSourceRange(), ExprKind))
4529 return true;
4530
4531 if (ExprKind == UETT_SizeOf) {
4532 if (const auto *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
4533 if (const auto *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
4534 QualType OType = PVD->getOriginalType();
4535 QualType Type = PVD->getType();
4536 if (Type->isPointerType() && OType->isArrayType()) {
4537 Diag(E->getExprLoc(), diag::warn_sizeof_array_param)
4538 << Type << OType;
4539 Diag(PVD->getLocation(), diag::note_declared_at);
4540 }
4541 }
4542 }
4543
4544 // Warn on "sizeof(array op x)" and "sizeof(x op array)", where the array
4545 // decays into a pointer and returns an unintended result. This is most
4546 // likely a typo for "sizeof(array) op x".
4547 if (const auto *BO = dyn_cast<BinaryOperator>(E->IgnoreParens())) {
4548 warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
4549 BO->getLHS());
4550 warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
4551 BO->getRHS());
4552 }
4553 }
4554
4555 return false;
4556 }
4557
CheckAlignOfExpr(Sema & S,Expr * E,UnaryExprOrTypeTrait ExprKind)4558 static bool CheckAlignOfExpr(Sema &S, Expr *E, UnaryExprOrTypeTrait ExprKind) {
4559 // Cannot know anything else if the expression is dependent.
4560 if (E->isTypeDependent())
4561 return false;
4562
4563 if (E->getObjectKind() == OK_BitField) {
4564 S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield)
4565 << 1 << E->getSourceRange();
4566 return true;
4567 }
4568
4569 ValueDecl *D = nullptr;
4570 Expr *Inner = E->IgnoreParens();
4571 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Inner)) {
4572 D = DRE->getDecl();
4573 } else if (MemberExpr *ME = dyn_cast<MemberExpr>(Inner)) {
4574 D = ME->getMemberDecl();
4575 }
4576
4577 // If it's a field, require the containing struct to have a
4578 // complete definition so that we can compute the layout.
4579 //
4580 // This can happen in C++11 onwards, either by naming the member
4581 // in a way that is not transformed into a member access expression
4582 // (in an unevaluated operand, for instance), or by naming the member
4583 // in a trailing-return-type.
4584 //
4585 // For the record, since __alignof__ on expressions is a GCC
4586 // extension, GCC seems to permit this but always gives the
4587 // nonsensical answer 0.
4588 //
4589 // We don't really need the layout here --- we could instead just
4590 // directly check for all the appropriate alignment-lowing
4591 // attributes --- but that would require duplicating a lot of
4592 // logic that just isn't worth duplicating for such a marginal
4593 // use-case.
4594 if (FieldDecl *FD = dyn_cast_or_null<FieldDecl>(D)) {
4595 // Fast path this check, since we at least know the record has a
4596 // definition if we can find a member of it.
4597 if (!FD->getParent()->isCompleteDefinition()) {
4598 S.Diag(E->getExprLoc(), diag::err_alignof_member_of_incomplete_type)
4599 << E->getSourceRange();
4600 return true;
4601 }
4602
4603 // Otherwise, if it's a field, and the field doesn't have
4604 // reference type, then it must have a complete type (or be a
4605 // flexible array member, which we explicitly want to
4606 // white-list anyway), which makes the following checks trivial.
4607 if (!FD->getType()->isReferenceType())
4608 return false;
4609 }
4610
4611 return S.CheckUnaryExprOrTypeTraitOperand(E, ExprKind);
4612 }
4613
CheckVecStepExpr(Expr * E)4614 bool Sema::CheckVecStepExpr(Expr *E) {
4615 E = E->IgnoreParens();
4616
4617 // Cannot know anything else if the expression is dependent.
4618 if (E->isTypeDependent())
4619 return false;
4620
4621 return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
4622 }
4623
captureVariablyModifiedType(ASTContext & Context,QualType T,CapturingScopeInfo * CSI)4624 static void captureVariablyModifiedType(ASTContext &Context, QualType T,
4625 CapturingScopeInfo *CSI) {
4626 assert(T->isVariablyModifiedType());
4627 assert(CSI != nullptr);
4628
4629 // We're going to walk down into the type and look for VLA expressions.
4630 do {
4631 const Type *Ty = T.getTypePtr();
4632 switch (Ty->getTypeClass()) {
4633 #define TYPE(Class, Base)
4634 #define ABSTRACT_TYPE(Class, Base)
4635 #define NON_CANONICAL_TYPE(Class, Base)
4636 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
4637 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
4638 #include "clang/AST/TypeNodes.inc"
4639 T = QualType();
4640 break;
4641 // These types are never variably-modified.
4642 case Type::Builtin:
4643 case Type::Complex:
4644 case Type::Vector:
4645 case Type::ExtVector:
4646 case Type::ConstantMatrix:
4647 case Type::Record:
4648 case Type::Enum:
4649 case Type::TemplateSpecialization:
4650 case Type::ObjCObject:
4651 case Type::ObjCInterface:
4652 case Type::ObjCObjectPointer:
4653 case Type::ObjCTypeParam:
4654 case Type::Pipe:
4655 case Type::BitInt:
4656 llvm_unreachable("type class is never variably-modified!");
4657 case Type::Elaborated:
4658 T = cast<ElaboratedType>(Ty)->getNamedType();
4659 break;
4660 case Type::Adjusted:
4661 T = cast<AdjustedType>(Ty)->getOriginalType();
4662 break;
4663 case Type::Decayed:
4664 T = cast<DecayedType>(Ty)->getPointeeType();
4665 break;
4666 case Type::Pointer:
4667 T = cast<PointerType>(Ty)->getPointeeType();
4668 break;
4669 case Type::BlockPointer:
4670 T = cast<BlockPointerType>(Ty)->getPointeeType();
4671 break;
4672 case Type::LValueReference:
4673 case Type::RValueReference:
4674 T = cast<ReferenceType>(Ty)->getPointeeType();
4675 break;
4676 case Type::MemberPointer:
4677 T = cast<MemberPointerType>(Ty)->getPointeeType();
4678 break;
4679 case Type::ConstantArray:
4680 case Type::IncompleteArray:
4681 // Losing element qualification here is fine.
4682 T = cast<ArrayType>(Ty)->getElementType();
4683 break;
4684 case Type::VariableArray: {
4685 // Losing element qualification here is fine.
4686 const VariableArrayType *VAT = cast<VariableArrayType>(Ty);
4687
4688 // Unknown size indication requires no size computation.
4689 // Otherwise, evaluate and record it.
4690 auto Size = VAT->getSizeExpr();
4691 if (Size && !CSI->isVLATypeCaptured(VAT) &&
4692 (isa<CapturedRegionScopeInfo>(CSI) || isa<LambdaScopeInfo>(CSI)))
4693 CSI->addVLATypeCapture(Size->getExprLoc(), VAT, Context.getSizeType());
4694
4695 T = VAT->getElementType();
4696 break;
4697 }
4698 case Type::FunctionProto:
4699 case Type::FunctionNoProto:
4700 T = cast<FunctionType>(Ty)->getReturnType();
4701 break;
4702 case Type::Paren:
4703 case Type::TypeOf:
4704 case Type::UnaryTransform:
4705 case Type::Attributed:
4706 case Type::BTFTagAttributed:
4707 case Type::SubstTemplateTypeParm:
4708 case Type::MacroQualified:
4709 // Keep walking after single level desugaring.
4710 T = T.getSingleStepDesugaredType(Context);
4711 break;
4712 case Type::Typedef:
4713 T = cast<TypedefType>(Ty)->desugar();
4714 break;
4715 case Type::Decltype:
4716 T = cast<DecltypeType>(Ty)->desugar();
4717 break;
4718 case Type::Using:
4719 T = cast<UsingType>(Ty)->desugar();
4720 break;
4721 case Type::Auto:
4722 case Type::DeducedTemplateSpecialization:
4723 T = cast<DeducedType>(Ty)->getDeducedType();
4724 break;
4725 case Type::TypeOfExpr:
4726 T = cast<TypeOfExprType>(Ty)->getUnderlyingExpr()->getType();
4727 break;
4728 case Type::Atomic:
4729 T = cast<AtomicType>(Ty)->getValueType();
4730 break;
4731 }
4732 } while (!T.isNull() && T->isVariablyModifiedType());
4733 }
4734
4735 /// Check the constraints on operands to unary expression and type
4736 /// traits.
4737 ///
4738 /// This will complete any types necessary, and validate the various constraints
4739 /// on those operands.
4740 ///
4741 /// The UsualUnaryConversions() function is *not* called by this routine.
4742 /// C99 6.3.2.1p[2-4] all state:
4743 /// Except when it is the operand of the sizeof operator ...
4744 ///
4745 /// C++ [expr.sizeof]p4
4746 /// The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
4747 /// standard conversions are not applied to the operand of sizeof.
4748 ///
4749 /// This policy is followed for all of the unary trait expressions.
CheckUnaryExprOrTypeTraitOperand(QualType ExprType,SourceLocation OpLoc,SourceRange ExprRange,UnaryExprOrTypeTrait ExprKind,StringRef KWName)4750 bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType,
4751 SourceLocation OpLoc,
4752 SourceRange ExprRange,
4753 UnaryExprOrTypeTrait ExprKind,
4754 StringRef KWName) {
4755 if (ExprType->isDependentType())
4756 return false;
4757
4758 // C++ [expr.sizeof]p2:
4759 // When applied to a reference or a reference type, the result
4760 // is the size of the referenced type.
4761 // C++11 [expr.alignof]p3:
4762 // When alignof is applied to a reference type, the result
4763 // shall be the alignment of the referenced type.
4764 if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>())
4765 ExprType = Ref->getPointeeType();
4766
4767 // C11 6.5.3.4/3, C++11 [expr.alignof]p3:
4768 // When alignof or _Alignof is applied to an array type, the result
4769 // is the alignment of the element type.
4770 if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf ||
4771 ExprKind == UETT_OpenMPRequiredSimdAlign)
4772 ExprType = Context.getBaseElementType(ExprType);
4773
4774 if (ExprKind == UETT_VecStep)
4775 return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange);
4776
4777 if (ExprKind == UETT_VectorElements)
4778 return CheckVectorElementsTraitOperandType(*this, ExprType, OpLoc,
4779 ExprRange);
4780
4781 // Explicitly list some types as extensions.
4782 if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange,
4783 ExprKind))
4784 return false;
4785
4786 if (RequireCompleteSizedType(
4787 OpLoc, ExprType, diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4788 KWName, ExprRange))
4789 return true;
4790
4791 if (ExprType->isFunctionType()) {
4792 Diag(OpLoc, diag::err_sizeof_alignof_function_type) << KWName << ExprRange;
4793 return true;
4794 }
4795
4796 // WebAssembly tables are always illegal operands to unary expressions and
4797 // type traits.
4798 if (Context.getTargetInfo().getTriple().isWasm() &&
4799 ExprType->isWebAssemblyTableType()) {
4800 Diag(OpLoc, diag::err_wasm_table_invalid_uett_operand)
4801 << getTraitSpelling(ExprKind);
4802 return true;
4803 }
4804
4805 if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange,
4806 ExprKind))
4807 return true;
4808
4809 if (ExprType->isVariablyModifiedType() && FunctionScopes.size() > 1) {
4810 if (auto *TT = ExprType->getAs<TypedefType>()) {
4811 for (auto I = FunctionScopes.rbegin(),
4812 E = std::prev(FunctionScopes.rend());
4813 I != E; ++I) {
4814 auto *CSI = dyn_cast<CapturingScopeInfo>(*I);
4815 if (CSI == nullptr)
4816 break;
4817 DeclContext *DC = nullptr;
4818 if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI))
4819 DC = LSI->CallOperator;
4820 else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI))
4821 DC = CRSI->TheCapturedDecl;
4822 else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI))
4823 DC = BSI->TheDecl;
4824 if (DC) {
4825 if (DC->containsDecl(TT->getDecl()))
4826 break;
4827 captureVariablyModifiedType(Context, ExprType, CSI);
4828 }
4829 }
4830 }
4831 }
4832
4833 return false;
4834 }
4835
4836 /// Build a sizeof or alignof expression given a type operand.
CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo * TInfo,SourceLocation OpLoc,UnaryExprOrTypeTrait ExprKind,SourceRange R)4837 ExprResult Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
4838 SourceLocation OpLoc,
4839 UnaryExprOrTypeTrait ExprKind,
4840 SourceRange R) {
4841 if (!TInfo)
4842 return ExprError();
4843
4844 QualType T = TInfo->getType();
4845
4846 if (!T->isDependentType() &&
4847 CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind,
4848 getTraitSpelling(ExprKind)))
4849 return ExprError();
4850
4851 // Adds overload of TransformToPotentiallyEvaluated for TypeSourceInfo to
4852 // properly deal with VLAs in nested calls of sizeof and typeof.
4853 if (isUnevaluatedContext() && ExprKind == UETT_SizeOf &&
4854 TInfo->getType()->isVariablyModifiedType())
4855 TInfo = TransformToPotentiallyEvaluated(TInfo);
4856
4857 // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
4858 return new (Context) UnaryExprOrTypeTraitExpr(
4859 ExprKind, TInfo, Context.getSizeType(), OpLoc, R.getEnd());
4860 }
4861
4862 /// Build a sizeof or alignof expression given an expression
4863 /// operand.
4864 ExprResult
CreateUnaryExprOrTypeTraitExpr(Expr * E,SourceLocation OpLoc,UnaryExprOrTypeTrait ExprKind)4865 Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
4866 UnaryExprOrTypeTrait ExprKind) {
4867 ExprResult PE = CheckPlaceholderExpr(E);
4868 if (PE.isInvalid())
4869 return ExprError();
4870
4871 E = PE.get();
4872
4873 // Verify that the operand is valid.
4874 bool isInvalid = false;
4875 if (E->isTypeDependent()) {
4876 // Delay type-checking for type-dependent expressions.
4877 } else if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
4878 isInvalid = CheckAlignOfExpr(*this, E, ExprKind);
4879 } else if (ExprKind == UETT_VecStep) {
4880 isInvalid = CheckVecStepExpr(E);
4881 } else if (ExprKind == UETT_OpenMPRequiredSimdAlign) {
4882 Diag(E->getExprLoc(), diag::err_openmp_default_simd_align_expr);
4883 isInvalid = true;
4884 } else if (E->refersToBitField()) { // C99 6.5.3.4p1.
4885 Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) << 0;
4886 isInvalid = true;
4887 } else if (ExprKind == UETT_VectorElements) {
4888 isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_VectorElements);
4889 } else {
4890 isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
4891 }
4892
4893 if (isInvalid)
4894 return ExprError();
4895
4896 if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) {
4897 PE = TransformToPotentiallyEvaluated(E);
4898 if (PE.isInvalid()) return ExprError();
4899 E = PE.get();
4900 }
4901
4902 // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
4903 return new (Context) UnaryExprOrTypeTraitExpr(
4904 ExprKind, E, Context.getSizeType(), OpLoc, E->getSourceRange().getEnd());
4905 }
4906
4907 /// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
4908 /// expr and the same for @c alignof and @c __alignof
4909 /// Note that the ArgRange is invalid if isType is false.
4910 ExprResult
ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,UnaryExprOrTypeTrait ExprKind,bool IsType,void * TyOrEx,SourceRange ArgRange)4911 Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
4912 UnaryExprOrTypeTrait ExprKind, bool IsType,
4913 void *TyOrEx, SourceRange ArgRange) {
4914 // If error parsing type, ignore.
4915 if (!TyOrEx) return ExprError();
4916
4917 if (IsType) {
4918 TypeSourceInfo *TInfo;
4919 (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
4920 return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
4921 }
4922
4923 Expr *ArgEx = (Expr *)TyOrEx;
4924 ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
4925 return Result;
4926 }
4927
CheckAlignasTypeArgument(StringRef KWName,TypeSourceInfo * TInfo,SourceLocation OpLoc,SourceRange R)4928 bool Sema::CheckAlignasTypeArgument(StringRef KWName, TypeSourceInfo *TInfo,
4929 SourceLocation OpLoc, SourceRange R) {
4930 if (!TInfo)
4931 return true;
4932 return CheckUnaryExprOrTypeTraitOperand(TInfo->getType(), OpLoc, R,
4933 UETT_AlignOf, KWName);
4934 }
4935
4936 /// ActOnAlignasTypeArgument - Handle @c alignas(type-id) and @c
4937 /// _Alignas(type-name) .
4938 /// [dcl.align] An alignment-specifier of the form
4939 /// alignas(type-id) has the same effect as alignas(alignof(type-id)).
4940 ///
4941 /// [N1570 6.7.5] _Alignas(type-name) is equivalent to
4942 /// _Alignas(_Alignof(type-name)).
ActOnAlignasTypeArgument(StringRef KWName,ParsedType Ty,SourceLocation OpLoc,SourceRange R)4943 bool Sema::ActOnAlignasTypeArgument(StringRef KWName, ParsedType Ty,
4944 SourceLocation OpLoc, SourceRange R) {
4945 TypeSourceInfo *TInfo;
4946 (void)GetTypeFromParser(ParsedType::getFromOpaquePtr(Ty.getAsOpaquePtr()),
4947 &TInfo);
4948 return CheckAlignasTypeArgument(KWName, TInfo, OpLoc, R);
4949 }
4950
CheckRealImagOperand(Sema & S,ExprResult & V,SourceLocation Loc,bool IsReal)4951 static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
4952 bool IsReal) {
4953 if (V.get()->isTypeDependent())
4954 return S.Context.DependentTy;
4955
4956 // _Real and _Imag are only l-values for normal l-values.
4957 if (V.get()->getObjectKind() != OK_Ordinary) {
4958 V = S.DefaultLvalueConversion(V.get());
4959 if (V.isInvalid())
4960 return QualType();
4961 }
4962
4963 // These operators return the element type of a complex type.
4964 if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
4965 return CT->getElementType();
4966
4967 // Otherwise they pass through real integer and floating point types here.
4968 if (V.get()->getType()->isArithmeticType())
4969 return V.get()->getType();
4970
4971 // Test for placeholders.
4972 ExprResult PR = S.CheckPlaceholderExpr(V.get());
4973 if (PR.isInvalid()) return QualType();
4974 if (PR.get() != V.get()) {
4975 V = PR;
4976 return CheckRealImagOperand(S, V, Loc, IsReal);
4977 }
4978
4979 // Reject anything else.
4980 S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
4981 << (IsReal ? "__real" : "__imag");
4982 return QualType();
4983 }
4984
4985
4986
4987 ExprResult
ActOnPostfixUnaryOp(Scope * S,SourceLocation OpLoc,tok::TokenKind Kind,Expr * Input)4988 Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
4989 tok::TokenKind Kind, Expr *Input) {
4990 UnaryOperatorKind Opc;
4991 switch (Kind) {
4992 default: llvm_unreachable("Unknown unary op!");
4993 case tok::plusplus: Opc = UO_PostInc; break;
4994 case tok::minusminus: Opc = UO_PostDec; break;
4995 }
4996
4997 // Since this might is a postfix expression, get rid of ParenListExprs.
4998 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input);
4999 if (Result.isInvalid()) return ExprError();
5000 Input = Result.get();
5001
5002 return BuildUnaryOp(S, OpLoc, Opc, Input);
5003 }
5004
5005 /// Diagnose if arithmetic on the given ObjC pointer is illegal.
5006 ///
5007 /// \return true on error
checkArithmeticOnObjCPointer(Sema & S,SourceLocation opLoc,Expr * op)5008 static bool checkArithmeticOnObjCPointer(Sema &S,
5009 SourceLocation opLoc,
5010 Expr *op) {
5011 assert(op->getType()->isObjCObjectPointerType());
5012 if (S.LangOpts.ObjCRuntime.allowsPointerArithmetic() &&
5013 !S.LangOpts.ObjCSubscriptingLegacyRuntime)
5014 return false;
5015
5016 S.Diag(opLoc, diag::err_arithmetic_nonfragile_interface)
5017 << op->getType()->castAs<ObjCObjectPointerType>()->getPointeeType()
5018 << op->getSourceRange();
5019 return true;
5020 }
5021
isMSPropertySubscriptExpr(Sema & S,Expr * Base)5022 static bool isMSPropertySubscriptExpr(Sema &S, Expr *Base) {
5023 auto *BaseNoParens = Base->IgnoreParens();
5024 if (auto *MSProp = dyn_cast<MSPropertyRefExpr>(BaseNoParens))
5025 return MSProp->getPropertyDecl()->getType()->isArrayType();
5026 return isa<MSPropertySubscriptExpr>(BaseNoParens);
5027 }
5028
5029 // Returns the type used for LHS[RHS], given one of LHS, RHS is type-dependent.
5030 // Typically this is DependentTy, but can sometimes be more precise.
5031 //
5032 // There are cases when we could determine a non-dependent type:
5033 // - LHS and RHS may have non-dependent types despite being type-dependent
5034 // (e.g. unbounded array static members of the current instantiation)
5035 // - one may be a dependent-sized array with known element type
5036 // - one may be a dependent-typed valid index (enum in current instantiation)
5037 //
5038 // We *always* return a dependent type, in such cases it is DependentTy.
5039 // This avoids creating type-dependent expressions with non-dependent types.
5040 // FIXME: is this important to avoid? See https://reviews.llvm.org/D107275
getDependentArraySubscriptType(Expr * LHS,Expr * RHS,const ASTContext & Ctx)5041 static QualType getDependentArraySubscriptType(Expr *LHS, Expr *RHS,
5042 const ASTContext &Ctx) {
5043 assert(LHS->isTypeDependent() || RHS->isTypeDependent());
5044 QualType LTy = LHS->getType(), RTy = RHS->getType();
5045 QualType Result = Ctx.DependentTy;
5046 if (RTy->isIntegralOrUnscopedEnumerationType()) {
5047 if (const PointerType *PT = LTy->getAs<PointerType>())
5048 Result = PT->getPointeeType();
5049 else if (const ArrayType *AT = LTy->getAsArrayTypeUnsafe())
5050 Result = AT->getElementType();
5051 } else if (LTy->isIntegralOrUnscopedEnumerationType()) {
5052 if (const PointerType *PT = RTy->getAs<PointerType>())
5053 Result = PT->getPointeeType();
5054 else if (const ArrayType *AT = RTy->getAsArrayTypeUnsafe())
5055 Result = AT->getElementType();
5056 }
5057 // Ensure we return a dependent type.
5058 return Result->isDependentType() ? Result : Ctx.DependentTy;
5059 }
5060
ActOnArraySubscriptExpr(Scope * S,Expr * base,SourceLocation lbLoc,MultiExprArg ArgExprs,SourceLocation rbLoc)5061 ExprResult Sema::ActOnArraySubscriptExpr(Scope *S, Expr *base,
5062 SourceLocation lbLoc,
5063 MultiExprArg ArgExprs,
5064 SourceLocation rbLoc) {
5065
5066 if (base && !base->getType().isNull() &&
5067 base->hasPlaceholderType(BuiltinType::OMPArraySection))
5068 return ActOnOMPArraySectionExpr(base, lbLoc, ArgExprs.front(), SourceLocation(),
5069 SourceLocation(), /*Length*/ nullptr,
5070 /*Stride=*/nullptr, rbLoc);
5071
5072 // Since this might be a postfix expression, get rid of ParenListExprs.
5073 if (isa<ParenListExpr>(base)) {
5074 ExprResult result = MaybeConvertParenListExprToParenExpr(S, base);
5075 if (result.isInvalid())
5076 return ExprError();
5077 base = result.get();
5078 }
5079
5080 // Check if base and idx form a MatrixSubscriptExpr.
5081 //
5082 // Helper to check for comma expressions, which are not allowed as indices for
5083 // matrix subscript expressions.
5084 auto CheckAndReportCommaError = [this, base, rbLoc](Expr *E) {
5085 if (isa<BinaryOperator>(E) && cast<BinaryOperator>(E)->isCommaOp()) {
5086 Diag(E->getExprLoc(), diag::err_matrix_subscript_comma)
5087 << SourceRange(base->getBeginLoc(), rbLoc);
5088 return true;
5089 }
5090 return false;
5091 };
5092 // The matrix subscript operator ([][])is considered a single operator.
5093 // Separating the index expressions by parenthesis is not allowed.
5094 if (base && !base->getType().isNull() &&
5095 base->hasPlaceholderType(BuiltinType::IncompleteMatrixIdx) &&
5096 !isa<MatrixSubscriptExpr>(base)) {
5097 Diag(base->getExprLoc(), diag::err_matrix_separate_incomplete_index)
5098 << SourceRange(base->getBeginLoc(), rbLoc);
5099 return ExprError();
5100 }
5101 // If the base is a MatrixSubscriptExpr, try to create a new
5102 // MatrixSubscriptExpr.
5103 auto *matSubscriptE = dyn_cast<MatrixSubscriptExpr>(base);
5104 if (matSubscriptE) {
5105 assert(ArgExprs.size() == 1);
5106 if (CheckAndReportCommaError(ArgExprs.front()))
5107 return ExprError();
5108
5109 assert(matSubscriptE->isIncomplete() &&
5110 "base has to be an incomplete matrix subscript");
5111 return CreateBuiltinMatrixSubscriptExpr(matSubscriptE->getBase(),
5112 matSubscriptE->getRowIdx(),
5113 ArgExprs.front(), rbLoc);
5114 }
5115 if (base->getType()->isWebAssemblyTableType()) {
5116 Diag(base->getExprLoc(), diag::err_wasm_table_art)
5117 << SourceRange(base->getBeginLoc(), rbLoc) << 3;
5118 return ExprError();
5119 }
5120
5121 // Handle any non-overload placeholder types in the base and index
5122 // expressions. We can't handle overloads here because the other
5123 // operand might be an overloadable type, in which case the overload
5124 // resolution for the operator overload should get the first crack
5125 // at the overload.
5126 bool IsMSPropertySubscript = false;
5127 if (base->getType()->isNonOverloadPlaceholderType()) {
5128 IsMSPropertySubscript = isMSPropertySubscriptExpr(*this, base);
5129 if (!IsMSPropertySubscript) {
5130 ExprResult result = CheckPlaceholderExpr(base);
5131 if (result.isInvalid())
5132 return ExprError();
5133 base = result.get();
5134 }
5135 }
5136
5137 // If the base is a matrix type, try to create a new MatrixSubscriptExpr.
5138 if (base->getType()->isMatrixType()) {
5139 assert(ArgExprs.size() == 1);
5140 if (CheckAndReportCommaError(ArgExprs.front()))
5141 return ExprError();
5142
5143 return CreateBuiltinMatrixSubscriptExpr(base, ArgExprs.front(), nullptr,
5144 rbLoc);
5145 }
5146
5147 if (ArgExprs.size() == 1 && getLangOpts().CPlusPlus20) {
5148 Expr *idx = ArgExprs[0];
5149 if ((isa<BinaryOperator>(idx) && cast<BinaryOperator>(idx)->isCommaOp()) ||
5150 (isa<CXXOperatorCallExpr>(idx) &&
5151 cast<CXXOperatorCallExpr>(idx)->getOperator() == OO_Comma)) {
5152 Diag(idx->getExprLoc(), diag::warn_deprecated_comma_subscript)
5153 << SourceRange(base->getBeginLoc(), rbLoc);
5154 }
5155 }
5156
5157 if (ArgExprs.size() == 1 &&
5158 ArgExprs[0]->getType()->isNonOverloadPlaceholderType()) {
5159 ExprResult result = CheckPlaceholderExpr(ArgExprs[0]);
5160 if (result.isInvalid())
5161 return ExprError();
5162 ArgExprs[0] = result.get();
5163 } else {
5164 if (CheckArgsForPlaceholders(ArgExprs))
5165 return ExprError();
5166 }
5167
5168 // Build an unanalyzed expression if either operand is type-dependent.
5169 if (getLangOpts().CPlusPlus && ArgExprs.size() == 1 &&
5170 (base->isTypeDependent() ||
5171 Expr::hasAnyTypeDependentArguments(ArgExprs)) &&
5172 !isa<PackExpansionExpr>(ArgExprs[0])) {
5173 return new (Context) ArraySubscriptExpr(
5174 base, ArgExprs.front(),
5175 getDependentArraySubscriptType(base, ArgExprs.front(), getASTContext()),
5176 VK_LValue, OK_Ordinary, rbLoc);
5177 }
5178
5179 // MSDN, property (C++)
5180 // https://msdn.microsoft.com/en-us/library/yhfk0thd(v=vs.120).aspx
5181 // This attribute can also be used in the declaration of an empty array in a
5182 // class or structure definition. For example:
5183 // __declspec(property(get=GetX, put=PutX)) int x[];
5184 // The above statement indicates that x[] can be used with one or more array
5185 // indices. In this case, i=p->x[a][b] will be turned into i=p->GetX(a, b),
5186 // and p->x[a][b] = i will be turned into p->PutX(a, b, i);
5187 if (IsMSPropertySubscript) {
5188 assert(ArgExprs.size() == 1);
5189 // Build MS property subscript expression if base is MS property reference
5190 // or MS property subscript.
5191 return new (Context)
5192 MSPropertySubscriptExpr(base, ArgExprs.front(), Context.PseudoObjectTy,
5193 VK_LValue, OK_Ordinary, rbLoc);
5194 }
5195
5196 // Use C++ overloaded-operator rules if either operand has record
5197 // type. The spec says to do this if either type is *overloadable*,
5198 // but enum types can't declare subscript operators or conversion
5199 // operators, so there's nothing interesting for overload resolution
5200 // to do if there aren't any record types involved.
5201 //
5202 // ObjC pointers have their own subscripting logic that is not tied
5203 // to overload resolution and so should not take this path.
5204 if (getLangOpts().CPlusPlus && !base->getType()->isObjCObjectPointerType() &&
5205 ((base->getType()->isRecordType() ||
5206 (ArgExprs.size() != 1 || isa<PackExpansionExpr>(ArgExprs[0]) ||
5207 ArgExprs[0]->getType()->isRecordType())))) {
5208 return CreateOverloadedArraySubscriptExpr(lbLoc, rbLoc, base, ArgExprs);
5209 }
5210
5211 ExprResult Res =
5212 CreateBuiltinArraySubscriptExpr(base, lbLoc, ArgExprs.front(), rbLoc);
5213
5214 if (!Res.isInvalid() && isa<ArraySubscriptExpr>(Res.get()))
5215 CheckSubscriptAccessOfNoDeref(cast<ArraySubscriptExpr>(Res.get()));
5216
5217 return Res;
5218 }
5219
tryConvertExprToType(Expr * E,QualType Ty)5220 ExprResult Sema::tryConvertExprToType(Expr *E, QualType Ty) {
5221 InitializedEntity Entity = InitializedEntity::InitializeTemporary(Ty);
5222 InitializationKind Kind =
5223 InitializationKind::CreateCopy(E->getBeginLoc(), SourceLocation());
5224 InitializationSequence InitSeq(*this, Entity, Kind, E);
5225 return InitSeq.Perform(*this, Entity, Kind, E);
5226 }
5227
CreateBuiltinMatrixSubscriptExpr(Expr * Base,Expr * RowIdx,Expr * ColumnIdx,SourceLocation RBLoc)5228 ExprResult Sema::CreateBuiltinMatrixSubscriptExpr(Expr *Base, Expr *RowIdx,
5229 Expr *ColumnIdx,
5230 SourceLocation RBLoc) {
5231 ExprResult BaseR = CheckPlaceholderExpr(Base);
5232 if (BaseR.isInvalid())
5233 return BaseR;
5234 Base = BaseR.get();
5235
5236 ExprResult RowR = CheckPlaceholderExpr(RowIdx);
5237 if (RowR.isInvalid())
5238 return RowR;
5239 RowIdx = RowR.get();
5240
5241 if (!ColumnIdx)
5242 return new (Context) MatrixSubscriptExpr(
5243 Base, RowIdx, ColumnIdx, Context.IncompleteMatrixIdxTy, RBLoc);
5244
5245 // Build an unanalyzed expression if any of the operands is type-dependent.
5246 if (Base->isTypeDependent() || RowIdx->isTypeDependent() ||
5247 ColumnIdx->isTypeDependent())
5248 return new (Context) MatrixSubscriptExpr(Base, RowIdx, ColumnIdx,
5249 Context.DependentTy, RBLoc);
5250
5251 ExprResult ColumnR = CheckPlaceholderExpr(ColumnIdx);
5252 if (ColumnR.isInvalid())
5253 return ColumnR;
5254 ColumnIdx = ColumnR.get();
5255
5256 // Check that IndexExpr is an integer expression. If it is a constant
5257 // expression, check that it is less than Dim (= the number of elements in the
5258 // corresponding dimension).
5259 auto IsIndexValid = [&](Expr *IndexExpr, unsigned Dim,
5260 bool IsColumnIdx) -> Expr * {
5261 if (!IndexExpr->getType()->isIntegerType() &&
5262 !IndexExpr->isTypeDependent()) {
5263 Diag(IndexExpr->getBeginLoc(), diag::err_matrix_index_not_integer)
5264 << IsColumnIdx;
5265 return nullptr;
5266 }
5267
5268 if (std::optional<llvm::APSInt> Idx =
5269 IndexExpr->getIntegerConstantExpr(Context)) {
5270 if ((*Idx < 0 || *Idx >= Dim)) {
5271 Diag(IndexExpr->getBeginLoc(), diag::err_matrix_index_outside_range)
5272 << IsColumnIdx << Dim;
5273 return nullptr;
5274 }
5275 }
5276
5277 ExprResult ConvExpr =
5278 tryConvertExprToType(IndexExpr, Context.getSizeType());
5279 assert(!ConvExpr.isInvalid() &&
5280 "should be able to convert any integer type to size type");
5281 return ConvExpr.get();
5282 };
5283
5284 auto *MTy = Base->getType()->getAs<ConstantMatrixType>();
5285 RowIdx = IsIndexValid(RowIdx, MTy->getNumRows(), false);
5286 ColumnIdx = IsIndexValid(ColumnIdx, MTy->getNumColumns(), true);
5287 if (!RowIdx || !ColumnIdx)
5288 return ExprError();
5289
5290 return new (Context) MatrixSubscriptExpr(Base, RowIdx, ColumnIdx,
5291 MTy->getElementType(), RBLoc);
5292 }
5293
CheckAddressOfNoDeref(const Expr * E)5294 void Sema::CheckAddressOfNoDeref(const Expr *E) {
5295 ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back();
5296 const Expr *StrippedExpr = E->IgnoreParenImpCasts();
5297
5298 // For expressions like `&(*s).b`, the base is recorded and what should be
5299 // checked.
5300 const MemberExpr *Member = nullptr;
5301 while ((Member = dyn_cast<MemberExpr>(StrippedExpr)) && !Member->isArrow())
5302 StrippedExpr = Member->getBase()->IgnoreParenImpCasts();
5303
5304 LastRecord.PossibleDerefs.erase(StrippedExpr);
5305 }
5306
CheckSubscriptAccessOfNoDeref(const ArraySubscriptExpr * E)5307 void Sema::CheckSubscriptAccessOfNoDeref(const ArraySubscriptExpr *E) {
5308 if (isUnevaluatedContext())
5309 return;
5310
5311 QualType ResultTy = E->getType();
5312 ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back();
5313
5314 // Bail if the element is an array since it is not memory access.
5315 if (isa<ArrayType>(ResultTy))
5316 return;
5317
5318 if (ResultTy->hasAttr(attr::NoDeref)) {
5319 LastRecord.PossibleDerefs.insert(E);
5320 return;
5321 }
5322
5323 // Check if the base type is a pointer to a member access of a struct
5324 // marked with noderef.
5325 const Expr *Base = E->getBase();
5326 QualType BaseTy = Base->getType();
5327 if (!(isa<ArrayType>(BaseTy) || isa<PointerType>(BaseTy)))
5328 // Not a pointer access
5329 return;
5330
5331 const MemberExpr *Member = nullptr;
5332 while ((Member = dyn_cast<MemberExpr>(Base->IgnoreParenCasts())) &&
5333 Member->isArrow())
5334 Base = Member->getBase();
5335
5336 if (const auto *Ptr = dyn_cast<PointerType>(Base->getType())) {
5337 if (Ptr->getPointeeType()->hasAttr(attr::NoDeref))
5338 LastRecord.PossibleDerefs.insert(E);
5339 }
5340 }
5341
ActOnOMPArraySectionExpr(Expr * Base,SourceLocation LBLoc,Expr * LowerBound,SourceLocation ColonLocFirst,SourceLocation ColonLocSecond,Expr * Length,Expr * Stride,SourceLocation RBLoc)5342 ExprResult Sema::ActOnOMPArraySectionExpr(Expr *Base, SourceLocation LBLoc,
5343 Expr *LowerBound,
5344 SourceLocation ColonLocFirst,
5345 SourceLocation ColonLocSecond,
5346 Expr *Length, Expr *Stride,
5347 SourceLocation RBLoc) {
5348 if (Base->hasPlaceholderType() &&
5349 !Base->hasPlaceholderType(BuiltinType::OMPArraySection)) {
5350 ExprResult Result = CheckPlaceholderExpr(Base);
5351 if (Result.isInvalid())
5352 return ExprError();
5353 Base = Result.get();
5354 }
5355 if (LowerBound && LowerBound->getType()->isNonOverloadPlaceholderType()) {
5356 ExprResult Result = CheckPlaceholderExpr(LowerBound);
5357 if (Result.isInvalid())
5358 return ExprError();
5359 Result = DefaultLvalueConversion(Result.get());
5360 if (Result.isInvalid())
5361 return ExprError();
5362 LowerBound = Result.get();
5363 }
5364 if (Length && Length->getType()->isNonOverloadPlaceholderType()) {
5365 ExprResult Result = CheckPlaceholderExpr(Length);
5366 if (Result.isInvalid())
5367 return ExprError();
5368 Result = DefaultLvalueConversion(Result.get());
5369 if (Result.isInvalid())
5370 return ExprError();
5371 Length = Result.get();
5372 }
5373 if (Stride && Stride->getType()->isNonOverloadPlaceholderType()) {
5374 ExprResult Result = CheckPlaceholderExpr(Stride);
5375 if (Result.isInvalid())
5376 return ExprError();
5377 Result = DefaultLvalueConversion(Result.get());
5378 if (Result.isInvalid())
5379 return ExprError();
5380 Stride = Result.get();
5381 }
5382
5383 // Build an unanalyzed expression if either operand is type-dependent.
5384 if (Base->isTypeDependent() ||
5385 (LowerBound &&
5386 (LowerBound->isTypeDependent() || LowerBound->isValueDependent())) ||
5387 (Length && (Length->isTypeDependent() || Length->isValueDependent())) ||
5388 (Stride && (Stride->isTypeDependent() || Stride->isValueDependent()))) {
5389 return new (Context) OMPArraySectionExpr(
5390 Base, LowerBound, Length, Stride, Context.DependentTy, VK_LValue,
5391 OK_Ordinary, ColonLocFirst, ColonLocSecond, RBLoc);
5392 }
5393
5394 // Perform default conversions.
5395 QualType OriginalTy = OMPArraySectionExpr::getBaseOriginalType(Base);
5396 QualType ResultTy;
5397 if (OriginalTy->isAnyPointerType()) {
5398 ResultTy = OriginalTy->getPointeeType();
5399 } else if (OriginalTy->isArrayType()) {
5400 ResultTy = OriginalTy->getAsArrayTypeUnsafe()->getElementType();
5401 } else {
5402 return ExprError(
5403 Diag(Base->getExprLoc(), diag::err_omp_typecheck_section_value)
5404 << Base->getSourceRange());
5405 }
5406 // C99 6.5.2.1p1
5407 if (LowerBound) {
5408 auto Res = PerformOpenMPImplicitIntegerConversion(LowerBound->getExprLoc(),
5409 LowerBound);
5410 if (Res.isInvalid())
5411 return ExprError(Diag(LowerBound->getExprLoc(),
5412 diag::err_omp_typecheck_section_not_integer)
5413 << 0 << LowerBound->getSourceRange());
5414 LowerBound = Res.get();
5415
5416 if (LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
5417 LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
5418 Diag(LowerBound->getExprLoc(), diag::warn_omp_section_is_char)
5419 << 0 << LowerBound->getSourceRange();
5420 }
5421 if (Length) {
5422 auto Res =
5423 PerformOpenMPImplicitIntegerConversion(Length->getExprLoc(), Length);
5424 if (Res.isInvalid())
5425 return ExprError(Diag(Length->getExprLoc(),
5426 diag::err_omp_typecheck_section_not_integer)
5427 << 1 << Length->getSourceRange());
5428 Length = Res.get();
5429
5430 if (Length->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
5431 Length->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
5432 Diag(Length->getExprLoc(), diag::warn_omp_section_is_char)
5433 << 1 << Length->getSourceRange();
5434 }
5435 if (Stride) {
5436 ExprResult Res =
5437 PerformOpenMPImplicitIntegerConversion(Stride->getExprLoc(), Stride);
5438 if (Res.isInvalid())
5439 return ExprError(Diag(Stride->getExprLoc(),
5440 diag::err_omp_typecheck_section_not_integer)
5441 << 1 << Stride->getSourceRange());
5442 Stride = Res.get();
5443
5444 if (Stride->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
5445 Stride->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
5446 Diag(Stride->getExprLoc(), diag::warn_omp_section_is_char)
5447 << 1 << Stride->getSourceRange();
5448 }
5449
5450 // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
5451 // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
5452 // type. Note that functions are not objects, and that (in C99 parlance)
5453 // incomplete types are not object types.
5454 if (ResultTy->isFunctionType()) {
5455 Diag(Base->getExprLoc(), diag::err_omp_section_function_type)
5456 << ResultTy << Base->getSourceRange();
5457 return ExprError();
5458 }
5459
5460 if (RequireCompleteType(Base->getExprLoc(), ResultTy,
5461 diag::err_omp_section_incomplete_type, Base))
5462 return ExprError();
5463
5464 if (LowerBound && !OriginalTy->isAnyPointerType()) {
5465 Expr::EvalResult Result;
5466 if (LowerBound->EvaluateAsInt(Result, Context)) {
5467 // OpenMP 5.0, [2.1.5 Array Sections]
5468 // The array section must be a subset of the original array.
5469 llvm::APSInt LowerBoundValue = Result.Val.getInt();
5470 if (LowerBoundValue.isNegative()) {
5471 Diag(LowerBound->getExprLoc(), diag::err_omp_section_not_subset_of_array)
5472 << LowerBound->getSourceRange();
5473 return ExprError();
5474 }
5475 }
5476 }
5477
5478 if (Length) {
5479 Expr::EvalResult Result;
5480 if (Length->EvaluateAsInt(Result, Context)) {
5481 // OpenMP 5.0, [2.1.5 Array Sections]
5482 // The length must evaluate to non-negative integers.
5483 llvm::APSInt LengthValue = Result.Val.getInt();
5484 if (LengthValue.isNegative()) {
5485 Diag(Length->getExprLoc(), diag::err_omp_section_length_negative)
5486 << toString(LengthValue, /*Radix=*/10, /*Signed=*/true)
5487 << Length->getSourceRange();
5488 return ExprError();
5489 }
5490 }
5491 } else if (ColonLocFirst.isValid() &&
5492 (OriginalTy.isNull() || (!OriginalTy->isConstantArrayType() &&
5493 !OriginalTy->isVariableArrayType()))) {
5494 // OpenMP 5.0, [2.1.5 Array Sections]
5495 // When the size of the array dimension is not known, the length must be
5496 // specified explicitly.
5497 Diag(ColonLocFirst, diag::err_omp_section_length_undefined)
5498 << (!OriginalTy.isNull() && OriginalTy->isArrayType());
5499 return ExprError();
5500 }
5501
5502 if (Stride) {
5503 Expr::EvalResult Result;
5504 if (Stride->EvaluateAsInt(Result, Context)) {
5505 // OpenMP 5.0, [2.1.5 Array Sections]
5506 // The stride must evaluate to a positive integer.
5507 llvm::APSInt StrideValue = Result.Val.getInt();
5508 if (!StrideValue.isStrictlyPositive()) {
5509 Diag(Stride->getExprLoc(), diag::err_omp_section_stride_non_positive)
5510 << toString(StrideValue, /*Radix=*/10, /*Signed=*/true)
5511 << Stride->getSourceRange();
5512 return ExprError();
5513 }
5514 }
5515 }
5516
5517 if (!Base->hasPlaceholderType(BuiltinType::OMPArraySection)) {
5518 ExprResult Result = DefaultFunctionArrayLvalueConversion(Base);
5519 if (Result.isInvalid())
5520 return ExprError();
5521 Base = Result.get();
5522 }
5523 return new (Context) OMPArraySectionExpr(
5524 Base, LowerBound, Length, Stride, Context.OMPArraySectionTy, VK_LValue,
5525 OK_Ordinary, ColonLocFirst, ColonLocSecond, RBLoc);
5526 }
5527
ActOnOMPArrayShapingExpr(Expr * Base,SourceLocation LParenLoc,SourceLocation RParenLoc,ArrayRef<Expr * > Dims,ArrayRef<SourceRange> Brackets)5528 ExprResult Sema::ActOnOMPArrayShapingExpr(Expr *Base, SourceLocation LParenLoc,
5529 SourceLocation RParenLoc,
5530 ArrayRef<Expr *> Dims,
5531 ArrayRef<SourceRange> Brackets) {
5532 if (Base->hasPlaceholderType()) {
5533 ExprResult Result = CheckPlaceholderExpr(Base);
5534 if (Result.isInvalid())
5535 return ExprError();
5536 Result = DefaultLvalueConversion(Result.get());
5537 if (Result.isInvalid())
5538 return ExprError();
5539 Base = Result.get();
5540 }
5541 QualType BaseTy = Base->getType();
5542 // Delay analysis of the types/expressions if instantiation/specialization is
5543 // required.
5544 if (!BaseTy->isPointerType() && Base->isTypeDependent())
5545 return OMPArrayShapingExpr::Create(Context, Context.DependentTy, Base,
5546 LParenLoc, RParenLoc, Dims, Brackets);
5547 if (!BaseTy->isPointerType() ||
5548 (!Base->isTypeDependent() &&
5549 BaseTy->getPointeeType()->isIncompleteType()))
5550 return ExprError(Diag(Base->getExprLoc(),
5551 diag::err_omp_non_pointer_type_array_shaping_base)
5552 << Base->getSourceRange());
5553
5554 SmallVector<Expr *, 4> NewDims;
5555 bool ErrorFound = false;
5556 for (Expr *Dim : Dims) {
5557 if (Dim->hasPlaceholderType()) {
5558 ExprResult Result = CheckPlaceholderExpr(Dim);
5559 if (Result.isInvalid()) {
5560 ErrorFound = true;
5561 continue;
5562 }
5563 Result = DefaultLvalueConversion(Result.get());
5564 if (Result.isInvalid()) {
5565 ErrorFound = true;
5566 continue;
5567 }
5568 Dim = Result.get();
5569 }
5570 if (!Dim->isTypeDependent()) {
5571 ExprResult Result =
5572 PerformOpenMPImplicitIntegerConversion(Dim->getExprLoc(), Dim);
5573 if (Result.isInvalid()) {
5574 ErrorFound = true;
5575 Diag(Dim->getExprLoc(), diag::err_omp_typecheck_shaping_not_integer)
5576 << Dim->getSourceRange();
5577 continue;
5578 }
5579 Dim = Result.get();
5580 Expr::EvalResult EvResult;
5581 if (!Dim->isValueDependent() && Dim->EvaluateAsInt(EvResult, Context)) {
5582 // OpenMP 5.0, [2.1.4 Array Shaping]
5583 // Each si is an integral type expression that must evaluate to a
5584 // positive integer.
5585 llvm::APSInt Value = EvResult.Val.getInt();
5586 if (!Value.isStrictlyPositive()) {
5587 Diag(Dim->getExprLoc(), diag::err_omp_shaping_dimension_not_positive)
5588 << toString(Value, /*Radix=*/10, /*Signed=*/true)
5589 << Dim->getSourceRange();
5590 ErrorFound = true;
5591 continue;
5592 }
5593 }
5594 }
5595 NewDims.push_back(Dim);
5596 }
5597 if (ErrorFound)
5598 return ExprError();
5599 return OMPArrayShapingExpr::Create(Context, Context.OMPArrayShapingTy, Base,
5600 LParenLoc, RParenLoc, NewDims, Brackets);
5601 }
5602
ActOnOMPIteratorExpr(Scope * S,SourceLocation IteratorKwLoc,SourceLocation LLoc,SourceLocation RLoc,ArrayRef<OMPIteratorData> Data)5603 ExprResult Sema::ActOnOMPIteratorExpr(Scope *S, SourceLocation IteratorKwLoc,
5604 SourceLocation LLoc, SourceLocation RLoc,
5605 ArrayRef<OMPIteratorData> Data) {
5606 SmallVector<OMPIteratorExpr::IteratorDefinition, 4> ID;
5607 bool IsCorrect = true;
5608 for (const OMPIteratorData &D : Data) {
5609 TypeSourceInfo *TInfo = nullptr;
5610 SourceLocation StartLoc;
5611 QualType DeclTy;
5612 if (!D.Type.getAsOpaquePtr()) {
5613 // OpenMP 5.0, 2.1.6 Iterators
5614 // In an iterator-specifier, if the iterator-type is not specified then
5615 // the type of that iterator is of int type.
5616 DeclTy = Context.IntTy;
5617 StartLoc = D.DeclIdentLoc;
5618 } else {
5619 DeclTy = GetTypeFromParser(D.Type, &TInfo);
5620 StartLoc = TInfo->getTypeLoc().getBeginLoc();
5621 }
5622
5623 bool IsDeclTyDependent = DeclTy->isDependentType() ||
5624 DeclTy->containsUnexpandedParameterPack() ||
5625 DeclTy->isInstantiationDependentType();
5626 if (!IsDeclTyDependent) {
5627 if (!DeclTy->isIntegralType(Context) && !DeclTy->isAnyPointerType()) {
5628 // OpenMP 5.0, 2.1.6 Iterators, Restrictions, C/C++
5629 // The iterator-type must be an integral or pointer type.
5630 Diag(StartLoc, diag::err_omp_iterator_not_integral_or_pointer)
5631 << DeclTy;
5632 IsCorrect = false;
5633 continue;
5634 }
5635 if (DeclTy.isConstant(Context)) {
5636 // OpenMP 5.0, 2.1.6 Iterators, Restrictions, C/C++
5637 // The iterator-type must not be const qualified.
5638 Diag(StartLoc, diag::err_omp_iterator_not_integral_or_pointer)
5639 << DeclTy;
5640 IsCorrect = false;
5641 continue;
5642 }
5643 }
5644
5645 // Iterator declaration.
5646 assert(D.DeclIdent && "Identifier expected.");
5647 // Always try to create iterator declarator to avoid extra error messages
5648 // about unknown declarations use.
5649 auto *VD = VarDecl::Create(Context, CurContext, StartLoc, D.DeclIdentLoc,
5650 D.DeclIdent, DeclTy, TInfo, SC_None);
5651 VD->setImplicit();
5652 if (S) {
5653 // Check for conflicting previous declaration.
5654 DeclarationNameInfo NameInfo(VD->getDeclName(), D.DeclIdentLoc);
5655 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
5656 ForVisibleRedeclaration);
5657 Previous.suppressDiagnostics();
5658 LookupName(Previous, S);
5659
5660 FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage=*/false,
5661 /*AllowInlineNamespace=*/false);
5662 if (!Previous.empty()) {
5663 NamedDecl *Old = Previous.getRepresentativeDecl();
5664 Diag(D.DeclIdentLoc, diag::err_redefinition) << VD->getDeclName();
5665 Diag(Old->getLocation(), diag::note_previous_definition);
5666 } else {
5667 PushOnScopeChains(VD, S);
5668 }
5669 } else {
5670 CurContext->addDecl(VD);
5671 }
5672
5673 /// Act on the iterator variable declaration.
5674 ActOnOpenMPIteratorVarDecl(VD);
5675
5676 Expr *Begin = D.Range.Begin;
5677 if (!IsDeclTyDependent && Begin && !Begin->isTypeDependent()) {
5678 ExprResult BeginRes =
5679 PerformImplicitConversion(Begin, DeclTy, AA_Converting);
5680 Begin = BeginRes.get();
5681 }
5682 Expr *End = D.Range.End;
5683 if (!IsDeclTyDependent && End && !End->isTypeDependent()) {
5684 ExprResult EndRes = PerformImplicitConversion(End, DeclTy, AA_Converting);
5685 End = EndRes.get();
5686 }
5687 Expr *Step = D.Range.Step;
5688 if (!IsDeclTyDependent && Step && !Step->isTypeDependent()) {
5689 if (!Step->getType()->isIntegralType(Context)) {
5690 Diag(Step->getExprLoc(), diag::err_omp_iterator_step_not_integral)
5691 << Step << Step->getSourceRange();
5692 IsCorrect = false;
5693 continue;
5694 }
5695 std::optional<llvm::APSInt> Result =
5696 Step->getIntegerConstantExpr(Context);
5697 // OpenMP 5.0, 2.1.6 Iterators, Restrictions
5698 // If the step expression of a range-specification equals zero, the
5699 // behavior is unspecified.
5700 if (Result && Result->isZero()) {
5701 Diag(Step->getExprLoc(), diag::err_omp_iterator_step_constant_zero)
5702 << Step << Step->getSourceRange();
5703 IsCorrect = false;
5704 continue;
5705 }
5706 }
5707 if (!Begin || !End || !IsCorrect) {
5708 IsCorrect = false;
5709 continue;
5710 }
5711 OMPIteratorExpr::IteratorDefinition &IDElem = ID.emplace_back();
5712 IDElem.IteratorDecl = VD;
5713 IDElem.AssignmentLoc = D.AssignLoc;
5714 IDElem.Range.Begin = Begin;
5715 IDElem.Range.End = End;
5716 IDElem.Range.Step = Step;
5717 IDElem.ColonLoc = D.ColonLoc;
5718 IDElem.SecondColonLoc = D.SecColonLoc;
5719 }
5720 if (!IsCorrect) {
5721 // Invalidate all created iterator declarations if error is found.
5722 for (const OMPIteratorExpr::IteratorDefinition &D : ID) {
5723 if (Decl *ID = D.IteratorDecl)
5724 ID->setInvalidDecl();
5725 }
5726 return ExprError();
5727 }
5728 SmallVector<OMPIteratorHelperData, 4> Helpers;
5729 if (!CurContext->isDependentContext()) {
5730 // Build number of ityeration for each iteration range.
5731 // Ni = ((Stepi > 0) ? ((Endi + Stepi -1 - Begini)/Stepi) :
5732 // ((Begini-Stepi-1-Endi) / -Stepi);
5733 for (OMPIteratorExpr::IteratorDefinition &D : ID) {
5734 // (Endi - Begini)
5735 ExprResult Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, D.Range.End,
5736 D.Range.Begin);
5737 if(!Res.isUsable()) {
5738 IsCorrect = false;
5739 continue;
5740 }
5741 ExprResult St, St1;
5742 if (D.Range.Step) {
5743 St = D.Range.Step;
5744 // (Endi - Begini) + Stepi
5745 Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, Res.get(), St.get());
5746 if (!Res.isUsable()) {
5747 IsCorrect = false;
5748 continue;
5749 }
5750 // (Endi - Begini) + Stepi - 1
5751 Res =
5752 CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, Res.get(),
5753 ActOnIntegerConstant(D.AssignmentLoc, 1).get());
5754 if (!Res.isUsable()) {
5755 IsCorrect = false;
5756 continue;
5757 }
5758 // ((Endi - Begini) + Stepi - 1) / Stepi
5759 Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Div, Res.get(), St.get());
5760 if (!Res.isUsable()) {
5761 IsCorrect = false;
5762 continue;
5763 }
5764 St1 = CreateBuiltinUnaryOp(D.AssignmentLoc, UO_Minus, D.Range.Step);
5765 // (Begini - Endi)
5766 ExprResult Res1 = CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub,
5767 D.Range.Begin, D.Range.End);
5768 if (!Res1.isUsable()) {
5769 IsCorrect = false;
5770 continue;
5771 }
5772 // (Begini - Endi) - Stepi
5773 Res1 =
5774 CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, Res1.get(), St1.get());
5775 if (!Res1.isUsable()) {
5776 IsCorrect = false;
5777 continue;
5778 }
5779 // (Begini - Endi) - Stepi - 1
5780 Res1 =
5781 CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, Res1.get(),
5782 ActOnIntegerConstant(D.AssignmentLoc, 1).get());
5783 if (!Res1.isUsable()) {
5784 IsCorrect = false;
5785 continue;
5786 }
5787 // ((Begini - Endi) - Stepi - 1) / (-Stepi)
5788 Res1 =
5789 CreateBuiltinBinOp(D.AssignmentLoc, BO_Div, Res1.get(), St1.get());
5790 if (!Res1.isUsable()) {
5791 IsCorrect = false;
5792 continue;
5793 }
5794 // Stepi > 0.
5795 ExprResult CmpRes =
5796 CreateBuiltinBinOp(D.AssignmentLoc, BO_GT, D.Range.Step,
5797 ActOnIntegerConstant(D.AssignmentLoc, 0).get());
5798 if (!CmpRes.isUsable()) {
5799 IsCorrect = false;
5800 continue;
5801 }
5802 Res = ActOnConditionalOp(D.AssignmentLoc, D.AssignmentLoc, CmpRes.get(),
5803 Res.get(), Res1.get());
5804 if (!Res.isUsable()) {
5805 IsCorrect = false;
5806 continue;
5807 }
5808 }
5809 Res = ActOnFinishFullExpr(Res.get(), /*DiscardedValue=*/false);
5810 if (!Res.isUsable()) {
5811 IsCorrect = false;
5812 continue;
5813 }
5814
5815 // Build counter update.
5816 // Build counter.
5817 auto *CounterVD =
5818 VarDecl::Create(Context, CurContext, D.IteratorDecl->getBeginLoc(),
5819 D.IteratorDecl->getBeginLoc(), nullptr,
5820 Res.get()->getType(), nullptr, SC_None);
5821 CounterVD->setImplicit();
5822 ExprResult RefRes =
5823 BuildDeclRefExpr(CounterVD, CounterVD->getType(), VK_LValue,
5824 D.IteratorDecl->getBeginLoc());
5825 // Build counter update.
5826 // I = Begini + counter * Stepi;
5827 ExprResult UpdateRes;
5828 if (D.Range.Step) {
5829 UpdateRes = CreateBuiltinBinOp(
5830 D.AssignmentLoc, BO_Mul,
5831 DefaultLvalueConversion(RefRes.get()).get(), St.get());
5832 } else {
5833 UpdateRes = DefaultLvalueConversion(RefRes.get());
5834 }
5835 if (!UpdateRes.isUsable()) {
5836 IsCorrect = false;
5837 continue;
5838 }
5839 UpdateRes = CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, D.Range.Begin,
5840 UpdateRes.get());
5841 if (!UpdateRes.isUsable()) {
5842 IsCorrect = false;
5843 continue;
5844 }
5845 ExprResult VDRes =
5846 BuildDeclRefExpr(cast<VarDecl>(D.IteratorDecl),
5847 cast<VarDecl>(D.IteratorDecl)->getType(), VK_LValue,
5848 D.IteratorDecl->getBeginLoc());
5849 UpdateRes = CreateBuiltinBinOp(D.AssignmentLoc, BO_Assign, VDRes.get(),
5850 UpdateRes.get());
5851 if (!UpdateRes.isUsable()) {
5852 IsCorrect = false;
5853 continue;
5854 }
5855 UpdateRes =
5856 ActOnFinishFullExpr(UpdateRes.get(), /*DiscardedValue=*/true);
5857 if (!UpdateRes.isUsable()) {
5858 IsCorrect = false;
5859 continue;
5860 }
5861 ExprResult CounterUpdateRes =
5862 CreateBuiltinUnaryOp(D.AssignmentLoc, UO_PreInc, RefRes.get());
5863 if (!CounterUpdateRes.isUsable()) {
5864 IsCorrect = false;
5865 continue;
5866 }
5867 CounterUpdateRes =
5868 ActOnFinishFullExpr(CounterUpdateRes.get(), /*DiscardedValue=*/true);
5869 if (!CounterUpdateRes.isUsable()) {
5870 IsCorrect = false;
5871 continue;
5872 }
5873 OMPIteratorHelperData &HD = Helpers.emplace_back();
5874 HD.CounterVD = CounterVD;
5875 HD.Upper = Res.get();
5876 HD.Update = UpdateRes.get();
5877 HD.CounterUpdate = CounterUpdateRes.get();
5878 }
5879 } else {
5880 Helpers.assign(ID.size(), {});
5881 }
5882 if (!IsCorrect) {
5883 // Invalidate all created iterator declarations if error is found.
5884 for (const OMPIteratorExpr::IteratorDefinition &D : ID) {
5885 if (Decl *ID = D.IteratorDecl)
5886 ID->setInvalidDecl();
5887 }
5888 return ExprError();
5889 }
5890 return OMPIteratorExpr::Create(Context, Context.OMPIteratorTy, IteratorKwLoc,
5891 LLoc, RLoc, ID, Helpers);
5892 }
5893
5894 ExprResult
CreateBuiltinArraySubscriptExpr(Expr * Base,SourceLocation LLoc,Expr * Idx,SourceLocation RLoc)5895 Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
5896 Expr *Idx, SourceLocation RLoc) {
5897 Expr *LHSExp = Base;
5898 Expr *RHSExp = Idx;
5899
5900 ExprValueKind VK = VK_LValue;
5901 ExprObjectKind OK = OK_Ordinary;
5902
5903 // Per C++ core issue 1213, the result is an xvalue if either operand is
5904 // a non-lvalue array, and an lvalue otherwise.
5905 if (getLangOpts().CPlusPlus11) {
5906 for (auto *Op : {LHSExp, RHSExp}) {
5907 Op = Op->IgnoreImplicit();
5908 if (Op->getType()->isArrayType() && !Op->isLValue())
5909 VK = VK_XValue;
5910 }
5911 }
5912
5913 // Perform default conversions.
5914 if (!LHSExp->getType()->getAs<VectorType>()) {
5915 ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
5916 if (Result.isInvalid())
5917 return ExprError();
5918 LHSExp = Result.get();
5919 }
5920 ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
5921 if (Result.isInvalid())
5922 return ExprError();
5923 RHSExp = Result.get();
5924
5925 QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
5926
5927 // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
5928 // to the expression *((e1)+(e2)). This means the array "Base" may actually be
5929 // in the subscript position. As a result, we need to derive the array base
5930 // and index from the expression types.
5931 Expr *BaseExpr, *IndexExpr;
5932 QualType ResultType;
5933 if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
5934 BaseExpr = LHSExp;
5935 IndexExpr = RHSExp;
5936 ResultType =
5937 getDependentArraySubscriptType(LHSExp, RHSExp, getASTContext());
5938 } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
5939 BaseExpr = LHSExp;
5940 IndexExpr = RHSExp;
5941 ResultType = PTy->getPointeeType();
5942 } else if (const ObjCObjectPointerType *PTy =
5943 LHSTy->getAs<ObjCObjectPointerType>()) {
5944 BaseExpr = LHSExp;
5945 IndexExpr = RHSExp;
5946
5947 // Use custom logic if this should be the pseudo-object subscript
5948 // expression.
5949 if (!LangOpts.isSubscriptPointerArithmetic())
5950 return BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr, nullptr,
5951 nullptr);
5952
5953 ResultType = PTy->getPointeeType();
5954 } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
5955 // Handle the uncommon case of "123[Ptr]".
5956 BaseExpr = RHSExp;
5957 IndexExpr = LHSExp;
5958 ResultType = PTy->getPointeeType();
5959 } else if (const ObjCObjectPointerType *PTy =
5960 RHSTy->getAs<ObjCObjectPointerType>()) {
5961 // Handle the uncommon case of "123[Ptr]".
5962 BaseExpr = RHSExp;
5963 IndexExpr = LHSExp;
5964 ResultType = PTy->getPointeeType();
5965 if (!LangOpts.isSubscriptPointerArithmetic()) {
5966 Diag(LLoc, diag::err_subscript_nonfragile_interface)
5967 << ResultType << BaseExpr->getSourceRange();
5968 return ExprError();
5969 }
5970 } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
5971 BaseExpr = LHSExp; // vectors: V[123]
5972 IndexExpr = RHSExp;
5973 // We apply C++ DR1213 to vector subscripting too.
5974 if (getLangOpts().CPlusPlus11 && LHSExp->isPRValue()) {
5975 ExprResult Materialized = TemporaryMaterializationConversion(LHSExp);
5976 if (Materialized.isInvalid())
5977 return ExprError();
5978 LHSExp = Materialized.get();
5979 }
5980 VK = LHSExp->getValueKind();
5981 if (VK != VK_PRValue)
5982 OK = OK_VectorComponent;
5983
5984 ResultType = VTy->getElementType();
5985 QualType BaseType = BaseExpr->getType();
5986 Qualifiers BaseQuals = BaseType.getQualifiers();
5987 Qualifiers MemberQuals = ResultType.getQualifiers();
5988 Qualifiers Combined = BaseQuals + MemberQuals;
5989 if (Combined != MemberQuals)
5990 ResultType = Context.getQualifiedType(ResultType, Combined);
5991 } else if (LHSTy->isBuiltinType() &&
5992 LHSTy->getAs<BuiltinType>()->isSveVLSBuiltinType()) {
5993 const BuiltinType *BTy = LHSTy->getAs<BuiltinType>();
5994 if (BTy->isSVEBool())
5995 return ExprError(Diag(LLoc, diag::err_subscript_svbool_t)
5996 << LHSExp->getSourceRange() << RHSExp->getSourceRange());
5997
5998 BaseExpr = LHSExp;
5999 IndexExpr = RHSExp;
6000 if (getLangOpts().CPlusPlus11 && LHSExp->isPRValue()) {
6001 ExprResult Materialized = TemporaryMaterializationConversion(LHSExp);
6002 if (Materialized.isInvalid())
6003 return ExprError();
6004 LHSExp = Materialized.get();
6005 }
6006 VK = LHSExp->getValueKind();
6007 if (VK != VK_PRValue)
6008 OK = OK_VectorComponent;
6009
6010 ResultType = BTy->getSveEltType(Context);
6011
6012 QualType BaseType = BaseExpr->getType();
6013 Qualifiers BaseQuals = BaseType.getQualifiers();
6014 Qualifiers MemberQuals = ResultType.getQualifiers();
6015 Qualifiers Combined = BaseQuals + MemberQuals;
6016 if (Combined != MemberQuals)
6017 ResultType = Context.getQualifiedType(ResultType, Combined);
6018 } else if (LHSTy->isArrayType()) {
6019 // If we see an array that wasn't promoted by
6020 // DefaultFunctionArrayLvalueConversion, it must be an array that
6021 // wasn't promoted because of the C90 rule that doesn't
6022 // allow promoting non-lvalue arrays. Warn, then
6023 // force the promotion here.
6024 Diag(LHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue)
6025 << LHSExp->getSourceRange();
6026 LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
6027 CK_ArrayToPointerDecay).get();
6028 LHSTy = LHSExp->getType();
6029
6030 BaseExpr = LHSExp;
6031 IndexExpr = RHSExp;
6032 ResultType = LHSTy->castAs<PointerType>()->getPointeeType();
6033 } else if (RHSTy->isArrayType()) {
6034 // Same as previous, except for 123[f().a] case
6035 Diag(RHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue)
6036 << RHSExp->getSourceRange();
6037 RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
6038 CK_ArrayToPointerDecay).get();
6039 RHSTy = RHSExp->getType();
6040
6041 BaseExpr = RHSExp;
6042 IndexExpr = LHSExp;
6043 ResultType = RHSTy->castAs<PointerType>()->getPointeeType();
6044 } else {
6045 return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
6046 << LHSExp->getSourceRange() << RHSExp->getSourceRange());
6047 }
6048 // C99 6.5.2.1p1
6049 if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
6050 return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
6051 << IndexExpr->getSourceRange());
6052
6053 if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
6054 IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U)) &&
6055 !IndexExpr->isTypeDependent()) {
6056 std::optional<llvm::APSInt> IntegerContantExpr =
6057 IndexExpr->getIntegerConstantExpr(getASTContext());
6058 if (!IntegerContantExpr.has_value() ||
6059 IntegerContantExpr.value().isNegative())
6060 Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
6061 }
6062
6063 // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
6064 // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
6065 // type. Note that Functions are not objects, and that (in C99 parlance)
6066 // incomplete types are not object types.
6067 if (ResultType->isFunctionType()) {
6068 Diag(BaseExpr->getBeginLoc(), diag::err_subscript_function_type)
6069 << ResultType << BaseExpr->getSourceRange();
6070 return ExprError();
6071 }
6072
6073 if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) {
6074 // GNU extension: subscripting on pointer to void
6075 Diag(LLoc, diag::ext_gnu_subscript_void_type)
6076 << BaseExpr->getSourceRange();
6077
6078 // C forbids expressions of unqualified void type from being l-values.
6079 // See IsCForbiddenLValueType.
6080 if (!ResultType.hasQualifiers())
6081 VK = VK_PRValue;
6082 } else if (!ResultType->isDependentType() &&
6083 !ResultType.isWebAssemblyReferenceType() &&
6084 RequireCompleteSizedType(
6085 LLoc, ResultType,
6086 diag::err_subscript_incomplete_or_sizeless_type, BaseExpr))
6087 return ExprError();
6088
6089 assert(VK == VK_PRValue || LangOpts.CPlusPlus ||
6090 !ResultType.isCForbiddenLValueType());
6091
6092 if (LHSExp->IgnoreParenImpCasts()->getType()->isVariablyModifiedType() &&
6093 FunctionScopes.size() > 1) {
6094 if (auto *TT =
6095 LHSExp->IgnoreParenImpCasts()->getType()->getAs<TypedefType>()) {
6096 for (auto I = FunctionScopes.rbegin(),
6097 E = std::prev(FunctionScopes.rend());
6098 I != E; ++I) {
6099 auto *CSI = dyn_cast<CapturingScopeInfo>(*I);
6100 if (CSI == nullptr)
6101 break;
6102 DeclContext *DC = nullptr;
6103 if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI))
6104 DC = LSI->CallOperator;
6105 else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI))
6106 DC = CRSI->TheCapturedDecl;
6107 else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI))
6108 DC = BSI->TheDecl;
6109 if (DC) {
6110 if (DC->containsDecl(TT->getDecl()))
6111 break;
6112 captureVariablyModifiedType(
6113 Context, LHSExp->IgnoreParenImpCasts()->getType(), CSI);
6114 }
6115 }
6116 }
6117 }
6118
6119 return new (Context)
6120 ArraySubscriptExpr(LHSExp, RHSExp, ResultType, VK, OK, RLoc);
6121 }
6122
CheckCXXDefaultArgExpr(SourceLocation CallLoc,FunctionDecl * FD,ParmVarDecl * Param,Expr * RewrittenInit,bool SkipImmediateInvocations)6123 bool Sema::CheckCXXDefaultArgExpr(SourceLocation CallLoc, FunctionDecl *FD,
6124 ParmVarDecl *Param, Expr *RewrittenInit,
6125 bool SkipImmediateInvocations) {
6126 if (Param->hasUnparsedDefaultArg()) {
6127 assert(!RewrittenInit && "Should not have a rewritten init expression yet");
6128 // If we've already cleared out the location for the default argument,
6129 // that means we're parsing it right now.
6130 if (!UnparsedDefaultArgLocs.count(Param)) {
6131 Diag(Param->getBeginLoc(), diag::err_recursive_default_argument) << FD;
6132 Diag(CallLoc, diag::note_recursive_default_argument_used_here);
6133 Param->setInvalidDecl();
6134 return true;
6135 }
6136
6137 Diag(CallLoc, diag::err_use_of_default_argument_to_function_declared_later)
6138 << FD << cast<CXXRecordDecl>(FD->getDeclContext());
6139 Diag(UnparsedDefaultArgLocs[Param],
6140 diag::note_default_argument_declared_here);
6141 return true;
6142 }
6143
6144 if (Param->hasUninstantiatedDefaultArg()) {
6145 assert(!RewrittenInit && "Should not have a rewitten init expression yet");
6146 if (InstantiateDefaultArgument(CallLoc, FD, Param))
6147 return true;
6148 }
6149
6150 Expr *Init = RewrittenInit ? RewrittenInit : Param->getInit();
6151 assert(Init && "default argument but no initializer?");
6152
6153 // If the default expression creates temporaries, we need to
6154 // push them to the current stack of expression temporaries so they'll
6155 // be properly destroyed.
6156 // FIXME: We should really be rebuilding the default argument with new
6157 // bound temporaries; see the comment in PR5810.
6158 // We don't need to do that with block decls, though, because
6159 // blocks in default argument expression can never capture anything.
6160 if (auto *InitWithCleanup = dyn_cast<ExprWithCleanups>(Init)) {
6161 // Set the "needs cleanups" bit regardless of whether there are
6162 // any explicit objects.
6163 Cleanup.setExprNeedsCleanups(InitWithCleanup->cleanupsHaveSideEffects());
6164 // Append all the objects to the cleanup list. Right now, this
6165 // should always be a no-op, because blocks in default argument
6166 // expressions should never be able to capture anything.
6167 assert(!InitWithCleanup->getNumObjects() &&
6168 "default argument expression has capturing blocks?");
6169 }
6170 // C++ [expr.const]p15.1:
6171 // An expression or conversion is in an immediate function context if it is
6172 // potentially evaluated and [...] its innermost enclosing non-block scope
6173 // is a function parameter scope of an immediate function.
6174 EnterExpressionEvaluationContext EvalContext(
6175 *this,
6176 FD->isImmediateFunction()
6177 ? ExpressionEvaluationContext::ImmediateFunctionContext
6178 : ExpressionEvaluationContext::PotentiallyEvaluated,
6179 Param);
6180 ExprEvalContexts.back().IsCurrentlyCheckingDefaultArgumentOrInitializer =
6181 SkipImmediateInvocations;
6182 runWithSufficientStackSpace(CallLoc, [&] {
6183 MarkDeclarationsReferencedInExpr(Init, /*SkipLocalVariables=*/true);
6184 });
6185 return false;
6186 }
6187
6188 struct ImmediateCallVisitor : public RecursiveASTVisitor<ImmediateCallVisitor> {
6189 const ASTContext &Context;
ImmediateCallVisitorImmediateCallVisitor6190 ImmediateCallVisitor(const ASTContext &Ctx) : Context(Ctx) {}
6191
6192 bool HasImmediateCalls = false;
shouldVisitImplicitCodeImmediateCallVisitor6193 bool shouldVisitImplicitCode() const { return true; }
6194
VisitCallExprImmediateCallVisitor6195 bool VisitCallExpr(CallExpr *E) {
6196 if (const FunctionDecl *FD = E->getDirectCallee())
6197 HasImmediateCalls |= FD->isImmediateFunction();
6198 return RecursiveASTVisitor<ImmediateCallVisitor>::VisitStmt(E);
6199 }
6200
6201 // SourceLocExpr are not immediate invocations
6202 // but CXXDefaultInitExpr/CXXDefaultArgExpr containing a SourceLocExpr
6203 // need to be rebuilt so that they refer to the correct SourceLocation and
6204 // DeclContext.
VisitSourceLocExprImmediateCallVisitor6205 bool VisitSourceLocExpr(SourceLocExpr *E) {
6206 HasImmediateCalls = true;
6207 return RecursiveASTVisitor<ImmediateCallVisitor>::VisitStmt(E);
6208 }
6209
6210 // A nested lambda might have parameters with immediate invocations
6211 // in their default arguments.
6212 // The compound statement is not visited (as it does not constitute a
6213 // subexpression).
6214 // FIXME: We should consider visiting and transforming captures
6215 // with init expressions.
VisitLambdaExprImmediateCallVisitor6216 bool VisitLambdaExpr(LambdaExpr *E) {
6217 return VisitCXXMethodDecl(E->getCallOperator());
6218 }
6219
6220 // Blocks don't support default parameters, and, as for lambdas,
6221 // we don't consider their body a subexpression.
VisitBlockDeclImmediateCallVisitor6222 bool VisitBlockDecl(BlockDecl *B) { return false; }
6223
VisitCompoundStmtImmediateCallVisitor6224 bool VisitCompoundStmt(CompoundStmt *B) { return false; }
6225
VisitCXXDefaultArgExprImmediateCallVisitor6226 bool VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
6227 return TraverseStmt(E->getExpr());
6228 }
6229
VisitCXXDefaultInitExprImmediateCallVisitor6230 bool VisitCXXDefaultInitExpr(CXXDefaultInitExpr *E) {
6231 return TraverseStmt(E->getExpr());
6232 }
6233 };
6234
6235 struct EnsureImmediateInvocationInDefaultArgs
6236 : TreeTransform<EnsureImmediateInvocationInDefaultArgs> {
EnsureImmediateInvocationInDefaultArgsEnsureImmediateInvocationInDefaultArgs6237 EnsureImmediateInvocationInDefaultArgs(Sema &SemaRef)
6238 : TreeTransform(SemaRef) {}
6239
6240 // Lambda can only have immediate invocations in the default
6241 // args of their parameters, which is transformed upon calling the closure.
6242 // The body is not a subexpression, so we have nothing to do.
6243 // FIXME: Immediate calls in capture initializers should be transformed.
TransformLambdaExprEnsureImmediateInvocationInDefaultArgs6244 ExprResult TransformLambdaExpr(LambdaExpr *E) { return E; }
TransformBlockExprEnsureImmediateInvocationInDefaultArgs6245 ExprResult TransformBlockExpr(BlockExpr *E) { return E; }
6246
6247 // Make sure we don't rebuild the this pointer as it would
6248 // cause it to incorrectly point it to the outermost class
6249 // in the case of nested struct initialization.
TransformCXXThisExprEnsureImmediateInvocationInDefaultArgs6250 ExprResult TransformCXXThisExpr(CXXThisExpr *E) { return E; }
6251 };
6252
BuildCXXDefaultArgExpr(SourceLocation CallLoc,FunctionDecl * FD,ParmVarDecl * Param,Expr * Init)6253 ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
6254 FunctionDecl *FD, ParmVarDecl *Param,
6255 Expr *Init) {
6256 assert(Param->hasDefaultArg() && "can't build nonexistent default arg");
6257
6258 bool NestedDefaultChecking = isCheckingDefaultArgumentOrInitializer();
6259
6260 std::optional<ExpressionEvaluationContextRecord::InitializationContext>
6261 InitializationContext =
6262 OutermostDeclarationWithDelayedImmediateInvocations();
6263 if (!InitializationContext.has_value())
6264 InitializationContext.emplace(CallLoc, Param, CurContext);
6265
6266 if (!Init && !Param->hasUnparsedDefaultArg()) {
6267 // Mark that we are replacing a default argument first.
6268 // If we are instantiating a template we won't have to
6269 // retransform immediate calls.
6270 // C++ [expr.const]p15.1:
6271 // An expression or conversion is in an immediate function context if it
6272 // is potentially evaluated and [...] its innermost enclosing non-block
6273 // scope is a function parameter scope of an immediate function.
6274 EnterExpressionEvaluationContext EvalContext(
6275 *this,
6276 FD->isImmediateFunction()
6277 ? ExpressionEvaluationContext::ImmediateFunctionContext
6278 : ExpressionEvaluationContext::PotentiallyEvaluated,
6279 Param);
6280
6281 if (Param->hasUninstantiatedDefaultArg()) {
6282 if (InstantiateDefaultArgument(CallLoc, FD, Param))
6283 return ExprError();
6284 }
6285 // CWG2631
6286 // An immediate invocation that is not evaluated where it appears is
6287 // evaluated and checked for whether it is a constant expression at the
6288 // point where the enclosing initializer is used in a function call.
6289 ImmediateCallVisitor V(getASTContext());
6290 if (!NestedDefaultChecking)
6291 V.TraverseDecl(Param);
6292 if (V.HasImmediateCalls) {
6293 ExprEvalContexts.back().DelayedDefaultInitializationContext = {
6294 CallLoc, Param, CurContext};
6295 EnsureImmediateInvocationInDefaultArgs Immediate(*this);
6296 ExprResult Res;
6297 runWithSufficientStackSpace(CallLoc, [&] {
6298 Res = Immediate.TransformInitializer(Param->getInit(),
6299 /*NotCopy=*/false);
6300 });
6301 if (Res.isInvalid())
6302 return ExprError();
6303 Res = ConvertParamDefaultArgument(Param, Res.get(),
6304 Res.get()->getBeginLoc());
6305 if (Res.isInvalid())
6306 return ExprError();
6307 Init = Res.get();
6308 }
6309 }
6310
6311 if (CheckCXXDefaultArgExpr(
6312 CallLoc, FD, Param, Init,
6313 /*SkipImmediateInvocations=*/NestedDefaultChecking))
6314 return ExprError();
6315
6316 return CXXDefaultArgExpr::Create(Context, InitializationContext->Loc, Param,
6317 Init, InitializationContext->Context);
6318 }
6319
BuildCXXDefaultInitExpr(SourceLocation Loc,FieldDecl * Field)6320 ExprResult Sema::BuildCXXDefaultInitExpr(SourceLocation Loc, FieldDecl *Field) {
6321 assert(Field->hasInClassInitializer());
6322
6323 // If we might have already tried and failed to instantiate, don't try again.
6324 if (Field->isInvalidDecl())
6325 return ExprError();
6326
6327 CXXThisScopeRAII This(*this, Field->getParent(), Qualifiers());
6328
6329 auto *ParentRD = cast<CXXRecordDecl>(Field->getParent());
6330
6331 std::optional<ExpressionEvaluationContextRecord::InitializationContext>
6332 InitializationContext =
6333 OutermostDeclarationWithDelayedImmediateInvocations();
6334 if (!InitializationContext.has_value())
6335 InitializationContext.emplace(Loc, Field, CurContext);
6336
6337 Expr *Init = nullptr;
6338
6339 bool NestedDefaultChecking = isCheckingDefaultArgumentOrInitializer();
6340
6341 EnterExpressionEvaluationContext EvalContext(
6342 *this, ExpressionEvaluationContext::PotentiallyEvaluated, Field);
6343
6344 if (!Field->getInClassInitializer()) {
6345 // Maybe we haven't instantiated the in-class initializer. Go check the
6346 // pattern FieldDecl to see if it has one.
6347 if (isTemplateInstantiation(ParentRD->getTemplateSpecializationKind())) {
6348 CXXRecordDecl *ClassPattern = ParentRD->getTemplateInstantiationPattern();
6349 DeclContext::lookup_result Lookup =
6350 ClassPattern->lookup(Field->getDeclName());
6351
6352 FieldDecl *Pattern = nullptr;
6353 for (auto *L : Lookup) {
6354 if ((Pattern = dyn_cast<FieldDecl>(L)))
6355 break;
6356 }
6357 assert(Pattern && "We must have set the Pattern!");
6358 if (!Pattern->hasInClassInitializer() ||
6359 InstantiateInClassInitializer(Loc, Field, Pattern,
6360 getTemplateInstantiationArgs(Field))) {
6361 Field->setInvalidDecl();
6362 return ExprError();
6363 }
6364 }
6365 }
6366
6367 // CWG2631
6368 // An immediate invocation that is not evaluated where it appears is
6369 // evaluated and checked for whether it is a constant expression at the
6370 // point where the enclosing initializer is used in a [...] a constructor
6371 // definition, or an aggregate initialization.
6372 ImmediateCallVisitor V(getASTContext());
6373 if (!NestedDefaultChecking)
6374 V.TraverseDecl(Field);
6375 if (V.HasImmediateCalls) {
6376 ExprEvalContexts.back().DelayedDefaultInitializationContext = {Loc, Field,
6377 CurContext};
6378 ExprEvalContexts.back().IsCurrentlyCheckingDefaultArgumentOrInitializer =
6379 NestedDefaultChecking;
6380
6381 EnsureImmediateInvocationInDefaultArgs Immediate(*this);
6382 ExprResult Res;
6383 runWithSufficientStackSpace(Loc, [&] {
6384 Res = Immediate.TransformInitializer(Field->getInClassInitializer(),
6385 /*CXXDirectInit=*/false);
6386 });
6387 if (!Res.isInvalid())
6388 Res = ConvertMemberDefaultInitExpression(Field, Res.get(), Loc);
6389 if (Res.isInvalid()) {
6390 Field->setInvalidDecl();
6391 return ExprError();
6392 }
6393 Init = Res.get();
6394 }
6395
6396 if (Field->getInClassInitializer()) {
6397 Expr *E = Init ? Init : Field->getInClassInitializer();
6398 if (!NestedDefaultChecking)
6399 runWithSufficientStackSpace(Loc, [&] {
6400 MarkDeclarationsReferencedInExpr(E, /*SkipLocalVariables=*/false);
6401 });
6402 // C++11 [class.base.init]p7:
6403 // The initialization of each base and member constitutes a
6404 // full-expression.
6405 ExprResult Res = ActOnFinishFullExpr(E, /*DiscardedValue=*/false);
6406 if (Res.isInvalid()) {
6407 Field->setInvalidDecl();
6408 return ExprError();
6409 }
6410 Init = Res.get();
6411
6412 return CXXDefaultInitExpr::Create(Context, InitializationContext->Loc,
6413 Field, InitializationContext->Context,
6414 Init);
6415 }
6416
6417 // DR1351:
6418 // If the brace-or-equal-initializer of a non-static data member
6419 // invokes a defaulted default constructor of its class or of an
6420 // enclosing class in a potentially evaluated subexpression, the
6421 // program is ill-formed.
6422 //
6423 // This resolution is unworkable: the exception specification of the
6424 // default constructor can be needed in an unevaluated context, in
6425 // particular, in the operand of a noexcept-expression, and we can be
6426 // unable to compute an exception specification for an enclosed class.
6427 //
6428 // Any attempt to resolve the exception specification of a defaulted default
6429 // constructor before the initializer is lexically complete will ultimately
6430 // come here at which point we can diagnose it.
6431 RecordDecl *OutermostClass = ParentRD->getOuterLexicalRecordContext();
6432 Diag(Loc, diag::err_default_member_initializer_not_yet_parsed)
6433 << OutermostClass << Field;
6434 Diag(Field->getEndLoc(),
6435 diag::note_default_member_initializer_not_yet_parsed);
6436 // Recover by marking the field invalid, unless we're in a SFINAE context.
6437 if (!isSFINAEContext())
6438 Field->setInvalidDecl();
6439 return ExprError();
6440 }
6441
6442 Sema::VariadicCallType
getVariadicCallType(FunctionDecl * FDecl,const FunctionProtoType * Proto,Expr * Fn)6443 Sema::getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto,
6444 Expr *Fn) {
6445 if (Proto && Proto->isVariadic()) {
6446 if (isa_and_nonnull<CXXConstructorDecl>(FDecl))
6447 return VariadicConstructor;
6448 else if (Fn && Fn->getType()->isBlockPointerType())
6449 return VariadicBlock;
6450 else if (FDecl) {
6451 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
6452 if (Method->isInstance())
6453 return VariadicMethod;
6454 } else if (Fn && Fn->getType() == Context.BoundMemberTy)
6455 return VariadicMethod;
6456 return VariadicFunction;
6457 }
6458 return VariadicDoesNotApply;
6459 }
6460
6461 namespace {
6462 class FunctionCallCCC final : public FunctionCallFilterCCC {
6463 public:
FunctionCallCCC(Sema & SemaRef,const IdentifierInfo * FuncName,unsigned NumArgs,MemberExpr * ME)6464 FunctionCallCCC(Sema &SemaRef, const IdentifierInfo *FuncName,
6465 unsigned NumArgs, MemberExpr *ME)
6466 : FunctionCallFilterCCC(SemaRef, NumArgs, false, ME),
6467 FunctionName(FuncName) {}
6468
ValidateCandidate(const TypoCorrection & candidate)6469 bool ValidateCandidate(const TypoCorrection &candidate) override {
6470 if (!candidate.getCorrectionSpecifier() ||
6471 candidate.getCorrectionAsIdentifierInfo() != FunctionName) {
6472 return false;
6473 }
6474
6475 return FunctionCallFilterCCC::ValidateCandidate(candidate);
6476 }
6477
clone()6478 std::unique_ptr<CorrectionCandidateCallback> clone() override {
6479 return std::make_unique<FunctionCallCCC>(*this);
6480 }
6481
6482 private:
6483 const IdentifierInfo *const FunctionName;
6484 };
6485 }
6486
TryTypoCorrectionForCall(Sema & S,Expr * Fn,FunctionDecl * FDecl,ArrayRef<Expr * > Args)6487 static TypoCorrection TryTypoCorrectionForCall(Sema &S, Expr *Fn,
6488 FunctionDecl *FDecl,
6489 ArrayRef<Expr *> Args) {
6490 MemberExpr *ME = dyn_cast<MemberExpr>(Fn);
6491 DeclarationName FuncName = FDecl->getDeclName();
6492 SourceLocation NameLoc = ME ? ME->getMemberLoc() : Fn->getBeginLoc();
6493
6494 FunctionCallCCC CCC(S, FuncName.getAsIdentifierInfo(), Args.size(), ME);
6495 if (TypoCorrection Corrected = S.CorrectTypo(
6496 DeclarationNameInfo(FuncName, NameLoc), Sema::LookupOrdinaryName,
6497 S.getScopeForContext(S.CurContext), nullptr, CCC,
6498 Sema::CTK_ErrorRecovery)) {
6499 if (NamedDecl *ND = Corrected.getFoundDecl()) {
6500 if (Corrected.isOverloaded()) {
6501 OverloadCandidateSet OCS(NameLoc, OverloadCandidateSet::CSK_Normal);
6502 OverloadCandidateSet::iterator Best;
6503 for (NamedDecl *CD : Corrected) {
6504 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
6505 S.AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none), Args,
6506 OCS);
6507 }
6508 switch (OCS.BestViableFunction(S, NameLoc, Best)) {
6509 case OR_Success:
6510 ND = Best->FoundDecl;
6511 Corrected.setCorrectionDecl(ND);
6512 break;
6513 default:
6514 break;
6515 }
6516 }
6517 ND = ND->getUnderlyingDecl();
6518 if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND))
6519 return Corrected;
6520 }
6521 }
6522 return TypoCorrection();
6523 }
6524
6525 /// ConvertArgumentsForCall - Converts the arguments specified in
6526 /// Args/NumArgs to the parameter types of the function FDecl with
6527 /// function prototype Proto. Call is the call expression itself, and
6528 /// Fn is the function expression. For a C++ member function, this
6529 /// routine does not attempt to convert the object argument. Returns
6530 /// true if the call is ill-formed.
6531 bool
ConvertArgumentsForCall(CallExpr * Call,Expr * Fn,FunctionDecl * FDecl,const FunctionProtoType * Proto,ArrayRef<Expr * > Args,SourceLocation RParenLoc,bool IsExecConfig)6532 Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
6533 FunctionDecl *FDecl,
6534 const FunctionProtoType *Proto,
6535 ArrayRef<Expr *> Args,
6536 SourceLocation RParenLoc,
6537 bool IsExecConfig) {
6538 // Bail out early if calling a builtin with custom typechecking.
6539 if (FDecl)
6540 if (unsigned ID = FDecl->getBuiltinID())
6541 if (Context.BuiltinInfo.hasCustomTypechecking(ID))
6542 return false;
6543
6544 // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
6545 // assignment, to the types of the corresponding parameter, ...
6546 bool HasExplicitObjectParameter =
6547 FDecl && FDecl->hasCXXExplicitFunctionObjectParameter();
6548 unsigned ExplicitObjectParameterOffset = HasExplicitObjectParameter ? 1 : 0;
6549 unsigned NumParams = Proto->getNumParams();
6550 bool Invalid = false;
6551 unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumParams;
6552 unsigned FnKind = Fn->getType()->isBlockPointerType()
6553 ? 1 /* block */
6554 : (IsExecConfig ? 3 /* kernel function (exec config) */
6555 : 0 /* function */);
6556
6557 // If too few arguments are available (and we don't have default
6558 // arguments for the remaining parameters), don't make the call.
6559 if (Args.size() < NumParams) {
6560 if (Args.size() < MinArgs) {
6561 TypoCorrection TC;
6562 if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
6563 unsigned diag_id =
6564 MinArgs == NumParams && !Proto->isVariadic()
6565 ? diag::err_typecheck_call_too_few_args_suggest
6566 : diag::err_typecheck_call_too_few_args_at_least_suggest;
6567 diagnoseTypo(
6568 TC, PDiag(diag_id)
6569 << FnKind << MinArgs - ExplicitObjectParameterOffset
6570 << static_cast<unsigned>(Args.size()) -
6571 ExplicitObjectParameterOffset
6572 << HasExplicitObjectParameter << TC.getCorrectionRange());
6573 } else if (MinArgs - ExplicitObjectParameterOffset == 1 && FDecl &&
6574 FDecl->getParamDecl(ExplicitObjectParameterOffset)
6575 ->getDeclName())
6576 Diag(RParenLoc,
6577 MinArgs == NumParams && !Proto->isVariadic()
6578 ? diag::err_typecheck_call_too_few_args_one
6579 : diag::err_typecheck_call_too_few_args_at_least_one)
6580 << FnKind << FDecl->getParamDecl(ExplicitObjectParameterOffset)
6581 << HasExplicitObjectParameter << Fn->getSourceRange();
6582 else
6583 Diag(RParenLoc, MinArgs == NumParams && !Proto->isVariadic()
6584 ? diag::err_typecheck_call_too_few_args
6585 : diag::err_typecheck_call_too_few_args_at_least)
6586 << FnKind << MinArgs - ExplicitObjectParameterOffset
6587 << static_cast<unsigned>(Args.size()) -
6588 ExplicitObjectParameterOffset
6589 << HasExplicitObjectParameter << Fn->getSourceRange();
6590
6591 // Emit the location of the prototype.
6592 if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
6593 Diag(FDecl->getLocation(), diag::note_callee_decl)
6594 << FDecl << FDecl->getParametersSourceRange();
6595
6596 return true;
6597 }
6598 // We reserve space for the default arguments when we create
6599 // the call expression, before calling ConvertArgumentsForCall.
6600 assert((Call->getNumArgs() == NumParams) &&
6601 "We should have reserved space for the default arguments before!");
6602 }
6603
6604 // If too many are passed and not variadic, error on the extras and drop
6605 // them.
6606 if (Args.size() > NumParams) {
6607 if (!Proto->isVariadic()) {
6608 TypoCorrection TC;
6609 if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
6610 unsigned diag_id =
6611 MinArgs == NumParams && !Proto->isVariadic()
6612 ? diag::err_typecheck_call_too_many_args_suggest
6613 : diag::err_typecheck_call_too_many_args_at_most_suggest;
6614 diagnoseTypo(
6615 TC, PDiag(diag_id)
6616 << FnKind << NumParams - ExplicitObjectParameterOffset
6617 << static_cast<unsigned>(Args.size()) -
6618 ExplicitObjectParameterOffset
6619 << HasExplicitObjectParameter << TC.getCorrectionRange());
6620 } else if (NumParams - ExplicitObjectParameterOffset == 1 && FDecl &&
6621 FDecl->getParamDecl(ExplicitObjectParameterOffset)
6622 ->getDeclName())
6623 Diag(Args[NumParams]->getBeginLoc(),
6624 MinArgs == NumParams
6625 ? diag::err_typecheck_call_too_many_args_one
6626 : diag::err_typecheck_call_too_many_args_at_most_one)
6627 << FnKind << FDecl->getParamDecl(ExplicitObjectParameterOffset)
6628 << static_cast<unsigned>(Args.size()) -
6629 ExplicitObjectParameterOffset
6630 << HasExplicitObjectParameter << Fn->getSourceRange()
6631 << SourceRange(Args[NumParams]->getBeginLoc(),
6632 Args.back()->getEndLoc());
6633 else
6634 Diag(Args[NumParams]->getBeginLoc(),
6635 MinArgs == NumParams
6636 ? diag::err_typecheck_call_too_many_args
6637 : diag::err_typecheck_call_too_many_args_at_most)
6638 << FnKind << NumParams - ExplicitObjectParameterOffset
6639 << static_cast<unsigned>(Args.size()) -
6640 ExplicitObjectParameterOffset
6641 << HasExplicitObjectParameter << Fn->getSourceRange()
6642 << SourceRange(Args[NumParams]->getBeginLoc(),
6643 Args.back()->getEndLoc());
6644
6645 // Emit the location of the prototype.
6646 if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
6647 Diag(FDecl->getLocation(), diag::note_callee_decl)
6648 << FDecl << FDecl->getParametersSourceRange();
6649
6650 // This deletes the extra arguments.
6651 Call->shrinkNumArgs(NumParams);
6652 return true;
6653 }
6654 }
6655 SmallVector<Expr *, 8> AllArgs;
6656 VariadicCallType CallType = getVariadicCallType(FDecl, Proto, Fn);
6657
6658 Invalid = GatherArgumentsForCall(Call->getBeginLoc(), FDecl, Proto, 0, Args,
6659 AllArgs, CallType);
6660 if (Invalid)
6661 return true;
6662 unsigned TotalNumArgs = AllArgs.size();
6663 for (unsigned i = 0; i < TotalNumArgs; ++i)
6664 Call->setArg(i, AllArgs[i]);
6665
6666 Call->computeDependence();
6667 return false;
6668 }
6669
GatherArgumentsForCall(SourceLocation CallLoc,FunctionDecl * FDecl,const FunctionProtoType * Proto,unsigned FirstParam,ArrayRef<Expr * > Args,SmallVectorImpl<Expr * > & AllArgs,VariadicCallType CallType,bool AllowExplicit,bool IsListInitialization)6670 bool Sema::GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl,
6671 const FunctionProtoType *Proto,
6672 unsigned FirstParam, ArrayRef<Expr *> Args,
6673 SmallVectorImpl<Expr *> &AllArgs,
6674 VariadicCallType CallType, bool AllowExplicit,
6675 bool IsListInitialization) {
6676 unsigned NumParams = Proto->getNumParams();
6677 bool Invalid = false;
6678 size_t ArgIx = 0;
6679 // Continue to check argument types (even if we have too few/many args).
6680 for (unsigned i = FirstParam; i < NumParams; i++) {
6681 QualType ProtoArgType = Proto->getParamType(i);
6682
6683 Expr *Arg;
6684 ParmVarDecl *Param = FDecl ? FDecl->getParamDecl(i) : nullptr;
6685 if (ArgIx < Args.size()) {
6686 Arg = Args[ArgIx++];
6687
6688 if (RequireCompleteType(Arg->getBeginLoc(), ProtoArgType,
6689 diag::err_call_incomplete_argument, Arg))
6690 return true;
6691
6692 // Strip the unbridged-cast placeholder expression off, if applicable.
6693 bool CFAudited = false;
6694 if (Arg->getType() == Context.ARCUnbridgedCastTy &&
6695 FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
6696 (!Param || !Param->hasAttr<CFConsumedAttr>()))
6697 Arg = stripARCUnbridgedCast(Arg);
6698 else if (getLangOpts().ObjCAutoRefCount &&
6699 FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
6700 (!Param || !Param->hasAttr<CFConsumedAttr>()))
6701 CFAudited = true;
6702
6703 if (Proto->getExtParameterInfo(i).isNoEscape() &&
6704 ProtoArgType->isBlockPointerType())
6705 if (auto *BE = dyn_cast<BlockExpr>(Arg->IgnoreParenNoopCasts(Context)))
6706 BE->getBlockDecl()->setDoesNotEscape();
6707
6708 InitializedEntity Entity =
6709 Param ? InitializedEntity::InitializeParameter(Context, Param,
6710 ProtoArgType)
6711 : InitializedEntity::InitializeParameter(
6712 Context, ProtoArgType, Proto->isParamConsumed(i));
6713
6714 // Remember that parameter belongs to a CF audited API.
6715 if (CFAudited)
6716 Entity.setParameterCFAudited();
6717
6718 ExprResult ArgE = PerformCopyInitialization(
6719 Entity, SourceLocation(), Arg, IsListInitialization, AllowExplicit);
6720 if (ArgE.isInvalid())
6721 return true;
6722
6723 Arg = ArgE.getAs<Expr>();
6724 } else {
6725 assert(Param && "can't use default arguments without a known callee");
6726
6727 ExprResult ArgExpr = BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
6728 if (ArgExpr.isInvalid())
6729 return true;
6730
6731 Arg = ArgExpr.getAs<Expr>();
6732 }
6733
6734 // Check for array bounds violations for each argument to the call. This
6735 // check only triggers warnings when the argument isn't a more complex Expr
6736 // with its own checking, such as a BinaryOperator.
6737 CheckArrayAccess(Arg);
6738
6739 // Check for violations of C99 static array rules (C99 6.7.5.3p7).
6740 CheckStaticArrayArgument(CallLoc, Param, Arg);
6741
6742 AllArgs.push_back(Arg);
6743 }
6744
6745 // If this is a variadic call, handle args passed through "...".
6746 if (CallType != VariadicDoesNotApply) {
6747 // Assume that extern "C" functions with variadic arguments that
6748 // return __unknown_anytype aren't *really* variadic.
6749 if (Proto->getReturnType() == Context.UnknownAnyTy && FDecl &&
6750 FDecl->isExternC()) {
6751 for (Expr *A : Args.slice(ArgIx)) {
6752 QualType paramType; // ignored
6753 ExprResult arg = checkUnknownAnyArg(CallLoc, A, paramType);
6754 Invalid |= arg.isInvalid();
6755 AllArgs.push_back(arg.get());
6756 }
6757
6758 // Otherwise do argument promotion, (C99 6.5.2.2p7).
6759 } else {
6760 for (Expr *A : Args.slice(ArgIx)) {
6761 ExprResult Arg = DefaultVariadicArgumentPromotion(A, CallType, FDecl);
6762 Invalid |= Arg.isInvalid();
6763 AllArgs.push_back(Arg.get());
6764 }
6765 }
6766
6767 // Check for array bounds violations.
6768 for (Expr *A : Args.slice(ArgIx))
6769 CheckArrayAccess(A);
6770 }
6771 return Invalid;
6772 }
6773
DiagnoseCalleeStaticArrayParam(Sema & S,ParmVarDecl * PVD)6774 static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) {
6775 TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc();
6776 if (DecayedTypeLoc DTL = TL.getAs<DecayedTypeLoc>())
6777 TL = DTL.getOriginalLoc();
6778 if (ArrayTypeLoc ATL = TL.getAs<ArrayTypeLoc>())
6779 S.Diag(PVD->getLocation(), diag::note_callee_static_array)
6780 << ATL.getLocalSourceRange();
6781 }
6782
6783 /// CheckStaticArrayArgument - If the given argument corresponds to a static
6784 /// array parameter, check that it is non-null, and that if it is formed by
6785 /// array-to-pointer decay, the underlying array is sufficiently large.
6786 ///
6787 /// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the
6788 /// array type derivation, then for each call to the function, the value of the
6789 /// corresponding actual argument shall provide access to the first element of
6790 /// an array with at least as many elements as specified by the size expression.
6791 void
CheckStaticArrayArgument(SourceLocation CallLoc,ParmVarDecl * Param,const Expr * ArgExpr)6792 Sema::CheckStaticArrayArgument(SourceLocation CallLoc,
6793 ParmVarDecl *Param,
6794 const Expr *ArgExpr) {
6795 // Static array parameters are not supported in C++.
6796 if (!Param || getLangOpts().CPlusPlus)
6797 return;
6798
6799 QualType OrigTy = Param->getOriginalType();
6800
6801 const ArrayType *AT = Context.getAsArrayType(OrigTy);
6802 if (!AT || AT->getSizeModifier() != ArraySizeModifier::Static)
6803 return;
6804
6805 if (ArgExpr->isNullPointerConstant(Context,
6806 Expr::NPC_NeverValueDependent)) {
6807 Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
6808 DiagnoseCalleeStaticArrayParam(*this, Param);
6809 return;
6810 }
6811
6812 const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT);
6813 if (!CAT)
6814 return;
6815
6816 const ConstantArrayType *ArgCAT =
6817 Context.getAsConstantArrayType(ArgExpr->IgnoreParenCasts()->getType());
6818 if (!ArgCAT)
6819 return;
6820
6821 if (getASTContext().hasSameUnqualifiedType(CAT->getElementType(),
6822 ArgCAT->getElementType())) {
6823 if (ArgCAT->getSize().ult(CAT->getSize())) {
6824 Diag(CallLoc, diag::warn_static_array_too_small)
6825 << ArgExpr->getSourceRange()
6826 << (unsigned)ArgCAT->getSize().getZExtValue()
6827 << (unsigned)CAT->getSize().getZExtValue() << 0;
6828 DiagnoseCalleeStaticArrayParam(*this, Param);
6829 }
6830 return;
6831 }
6832
6833 std::optional<CharUnits> ArgSize =
6834 getASTContext().getTypeSizeInCharsIfKnown(ArgCAT);
6835 std::optional<CharUnits> ParmSize =
6836 getASTContext().getTypeSizeInCharsIfKnown(CAT);
6837 if (ArgSize && ParmSize && *ArgSize < *ParmSize) {
6838 Diag(CallLoc, diag::warn_static_array_too_small)
6839 << ArgExpr->getSourceRange() << (unsigned)ArgSize->getQuantity()
6840 << (unsigned)ParmSize->getQuantity() << 1;
6841 DiagnoseCalleeStaticArrayParam(*this, Param);
6842 }
6843 }
6844
6845 /// Given a function expression of unknown-any type, try to rebuild it
6846 /// to have a function type.
6847 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
6848
6849 /// Is the given type a placeholder that we need to lower out
6850 /// immediately during argument processing?
isPlaceholderToRemoveAsArg(QualType type)6851 static bool isPlaceholderToRemoveAsArg(QualType type) {
6852 // Placeholders are never sugared.
6853 const BuiltinType *placeholder = dyn_cast<BuiltinType>(type);
6854 if (!placeholder) return false;
6855
6856 switch (placeholder->getKind()) {
6857 // Ignore all the non-placeholder types.
6858 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
6859 case BuiltinType::Id:
6860 #include "clang/Basic/OpenCLImageTypes.def"
6861 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
6862 case BuiltinType::Id:
6863 #include "clang/Basic/OpenCLExtensionTypes.def"
6864 // In practice we'll never use this, since all SVE types are sugared
6865 // via TypedefTypes rather than exposed directly as BuiltinTypes.
6866 #define SVE_TYPE(Name, Id, SingletonId) \
6867 case BuiltinType::Id:
6868 #include "clang/Basic/AArch64SVEACLETypes.def"
6869 #define PPC_VECTOR_TYPE(Name, Id, Size) \
6870 case BuiltinType::Id:
6871 #include "clang/Basic/PPCTypes.def"
6872 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
6873 #include "clang/Basic/RISCVVTypes.def"
6874 #define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
6875 #include "clang/Basic/WebAssemblyReferenceTypes.def"
6876 #define PLACEHOLDER_TYPE(ID, SINGLETON_ID)
6877 #define BUILTIN_TYPE(ID, SINGLETON_ID) case BuiltinType::ID:
6878 #include "clang/AST/BuiltinTypes.def"
6879 return false;
6880
6881 // We cannot lower out overload sets; they might validly be resolved
6882 // by the call machinery.
6883 case BuiltinType::Overload:
6884 return false;
6885
6886 // Unbridged casts in ARC can be handled in some call positions and
6887 // should be left in place.
6888 case BuiltinType::ARCUnbridgedCast:
6889 return false;
6890
6891 // Pseudo-objects should be converted as soon as possible.
6892 case BuiltinType::PseudoObject:
6893 return true;
6894
6895 // The debugger mode could theoretically but currently does not try
6896 // to resolve unknown-typed arguments based on known parameter types.
6897 case BuiltinType::UnknownAny:
6898 return true;
6899
6900 // These are always invalid as call arguments and should be reported.
6901 case BuiltinType::BoundMember:
6902 case BuiltinType::BuiltinFn:
6903 case BuiltinType::IncompleteMatrixIdx:
6904 case BuiltinType::OMPArraySection:
6905 case BuiltinType::OMPArrayShaping:
6906 case BuiltinType::OMPIterator:
6907 return true;
6908
6909 }
6910 llvm_unreachable("bad builtin type kind");
6911 }
6912
CheckArgsForPlaceholders(MultiExprArg args)6913 bool Sema::CheckArgsForPlaceholders(MultiExprArg args) {
6914 // Apply this processing to all the arguments at once instead of
6915 // dying at the first failure.
6916 bool hasInvalid = false;
6917 for (size_t i = 0, e = args.size(); i != e; i++) {
6918 if (isPlaceholderToRemoveAsArg(args[i]->getType())) {
6919 ExprResult result = CheckPlaceholderExpr(args[i]);
6920 if (result.isInvalid()) hasInvalid = true;
6921 else args[i] = result.get();
6922 }
6923 }
6924 return hasInvalid;
6925 }
6926
6927 /// If a builtin function has a pointer argument with no explicit address
6928 /// space, then it should be able to accept a pointer to any address
6929 /// space as input. In order to do this, we need to replace the
6930 /// standard builtin declaration with one that uses the same address space
6931 /// as the call.
6932 ///
6933 /// \returns nullptr If this builtin is not a candidate for a rewrite i.e.
6934 /// it does not contain any pointer arguments without
6935 /// an address space qualifer. Otherwise the rewritten
6936 /// FunctionDecl is returned.
6937 /// TODO: Handle pointer return types.
rewriteBuiltinFunctionDecl(Sema * Sema,ASTContext & Context,FunctionDecl * FDecl,MultiExprArg ArgExprs)6938 static FunctionDecl *rewriteBuiltinFunctionDecl(Sema *Sema, ASTContext &Context,
6939 FunctionDecl *FDecl,
6940 MultiExprArg ArgExprs) {
6941
6942 QualType DeclType = FDecl->getType();
6943 const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(DeclType);
6944
6945 if (!Context.BuiltinInfo.hasPtrArgsOrResult(FDecl->getBuiltinID()) || !FT ||
6946 ArgExprs.size() < FT->getNumParams())
6947 return nullptr;
6948
6949 bool NeedsNewDecl = false;
6950 unsigned i = 0;
6951 SmallVector<QualType, 8> OverloadParams;
6952
6953 for (QualType ParamType : FT->param_types()) {
6954
6955 // Convert array arguments to pointer to simplify type lookup.
6956 ExprResult ArgRes =
6957 Sema->DefaultFunctionArrayLvalueConversion(ArgExprs[i++]);
6958 if (ArgRes.isInvalid())
6959 return nullptr;
6960 Expr *Arg = ArgRes.get();
6961 QualType ArgType = Arg->getType();
6962 if (!ParamType->isPointerType() || ParamType.hasAddressSpace() ||
6963 !ArgType->isPointerType() ||
6964 !ArgType->getPointeeType().hasAddressSpace() ||
6965 isPtrSizeAddressSpace(ArgType->getPointeeType().getAddressSpace())) {
6966 OverloadParams.push_back(ParamType);
6967 continue;
6968 }
6969
6970 QualType PointeeType = ParamType->getPointeeType();
6971 if (PointeeType.hasAddressSpace())
6972 continue;
6973
6974 NeedsNewDecl = true;
6975 LangAS AS = ArgType->getPointeeType().getAddressSpace();
6976
6977 PointeeType = Context.getAddrSpaceQualType(PointeeType, AS);
6978 OverloadParams.push_back(Context.getPointerType(PointeeType));
6979 }
6980
6981 if (!NeedsNewDecl)
6982 return nullptr;
6983
6984 FunctionProtoType::ExtProtoInfo EPI;
6985 EPI.Variadic = FT->isVariadic();
6986 QualType OverloadTy = Context.getFunctionType(FT->getReturnType(),
6987 OverloadParams, EPI);
6988 DeclContext *Parent = FDecl->getParent();
6989 FunctionDecl *OverloadDecl = FunctionDecl::Create(
6990 Context, Parent, FDecl->getLocation(), FDecl->getLocation(),
6991 FDecl->getIdentifier(), OverloadTy,
6992 /*TInfo=*/nullptr, SC_Extern, Sema->getCurFPFeatures().isFPConstrained(),
6993 false,
6994 /*hasPrototype=*/true);
6995 SmallVector<ParmVarDecl*, 16> Params;
6996 FT = cast<FunctionProtoType>(OverloadTy);
6997 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
6998 QualType ParamType = FT->getParamType(i);
6999 ParmVarDecl *Parm =
7000 ParmVarDecl::Create(Context, OverloadDecl, SourceLocation(),
7001 SourceLocation(), nullptr, ParamType,
7002 /*TInfo=*/nullptr, SC_None, nullptr);
7003 Parm->setScopeInfo(0, i);
7004 Params.push_back(Parm);
7005 }
7006 OverloadDecl->setParams(Params);
7007 Sema->mergeDeclAttributes(OverloadDecl, FDecl);
7008 return OverloadDecl;
7009 }
7010
checkDirectCallValidity(Sema & S,const Expr * Fn,FunctionDecl * Callee,MultiExprArg ArgExprs)7011 static void checkDirectCallValidity(Sema &S, const Expr *Fn,
7012 FunctionDecl *Callee,
7013 MultiExprArg ArgExprs) {
7014 // `Callee` (when called with ArgExprs) may be ill-formed. enable_if (and
7015 // similar attributes) really don't like it when functions are called with an
7016 // invalid number of args.
7017 if (S.TooManyArguments(Callee->getNumParams(), ArgExprs.size(),
7018 /*PartialOverloading=*/false) &&
7019 !Callee->isVariadic())
7020 return;
7021 if (Callee->getMinRequiredArguments() > ArgExprs.size())
7022 return;
7023
7024 if (const EnableIfAttr *Attr =
7025 S.CheckEnableIf(Callee, Fn->getBeginLoc(), ArgExprs, true)) {
7026 S.Diag(Fn->getBeginLoc(),
7027 isa<CXXMethodDecl>(Callee)
7028 ? diag::err_ovl_no_viable_member_function_in_call
7029 : diag::err_ovl_no_viable_function_in_call)
7030 << Callee << Callee->getSourceRange();
7031 S.Diag(Callee->getLocation(),
7032 diag::note_ovl_candidate_disabled_by_function_cond_attr)
7033 << Attr->getCond()->getSourceRange() << Attr->getMessage();
7034 return;
7035 }
7036 }
7037
enclosingClassIsRelatedToClassInWhichMembersWereFound(const UnresolvedMemberExpr * const UME,Sema & S)7038 static bool enclosingClassIsRelatedToClassInWhichMembersWereFound(
7039 const UnresolvedMemberExpr *const UME, Sema &S) {
7040
7041 const auto GetFunctionLevelDCIfCXXClass =
7042 [](Sema &S) -> const CXXRecordDecl * {
7043 const DeclContext *const DC = S.getFunctionLevelDeclContext();
7044 if (!DC || !DC->getParent())
7045 return nullptr;
7046
7047 // If the call to some member function was made from within a member
7048 // function body 'M' return return 'M's parent.
7049 if (const auto *MD = dyn_cast<CXXMethodDecl>(DC))
7050 return MD->getParent()->getCanonicalDecl();
7051 // else the call was made from within a default member initializer of a
7052 // class, so return the class.
7053 if (const auto *RD = dyn_cast<CXXRecordDecl>(DC))
7054 return RD->getCanonicalDecl();
7055 return nullptr;
7056 };
7057 // If our DeclContext is neither a member function nor a class (in the
7058 // case of a lambda in a default member initializer), we can't have an
7059 // enclosing 'this'.
7060
7061 const CXXRecordDecl *const CurParentClass = GetFunctionLevelDCIfCXXClass(S);
7062 if (!CurParentClass)
7063 return false;
7064
7065 // The naming class for implicit member functions call is the class in which
7066 // name lookup starts.
7067 const CXXRecordDecl *const NamingClass =
7068 UME->getNamingClass()->getCanonicalDecl();
7069 assert(NamingClass && "Must have naming class even for implicit access");
7070
7071 // If the unresolved member functions were found in a 'naming class' that is
7072 // related (either the same or derived from) to the class that contains the
7073 // member function that itself contained the implicit member access.
7074
7075 return CurParentClass == NamingClass ||
7076 CurParentClass->isDerivedFrom(NamingClass);
7077 }
7078
7079 static void
tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(Sema & S,const UnresolvedMemberExpr * const UME,SourceLocation CallLoc)7080 tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(
7081 Sema &S, const UnresolvedMemberExpr *const UME, SourceLocation CallLoc) {
7082
7083 if (!UME)
7084 return;
7085
7086 LambdaScopeInfo *const CurLSI = S.getCurLambda();
7087 // Only try and implicitly capture 'this' within a C++ Lambda if it hasn't
7088 // already been captured, or if this is an implicit member function call (if
7089 // it isn't, an attempt to capture 'this' should already have been made).
7090 if (!CurLSI || CurLSI->ImpCaptureStyle == CurLSI->ImpCap_None ||
7091 !UME->isImplicitAccess() || CurLSI->isCXXThisCaptured())
7092 return;
7093
7094 // Check if the naming class in which the unresolved members were found is
7095 // related (same as or is a base of) to the enclosing class.
7096
7097 if (!enclosingClassIsRelatedToClassInWhichMembersWereFound(UME, S))
7098 return;
7099
7100
7101 DeclContext *EnclosingFunctionCtx = S.CurContext->getParent()->getParent();
7102 // If the enclosing function is not dependent, then this lambda is
7103 // capture ready, so if we can capture this, do so.
7104 if (!EnclosingFunctionCtx->isDependentContext()) {
7105 // If the current lambda and all enclosing lambdas can capture 'this' -
7106 // then go ahead and capture 'this' (since our unresolved overload set
7107 // contains at least one non-static member function).
7108 if (!S.CheckCXXThisCapture(CallLoc, /*Explcit*/ false, /*Diagnose*/ false))
7109 S.CheckCXXThisCapture(CallLoc);
7110 } else if (S.CurContext->isDependentContext()) {
7111 // ... since this is an implicit member reference, that might potentially
7112 // involve a 'this' capture, mark 'this' for potential capture in
7113 // enclosing lambdas.
7114 if (CurLSI->ImpCaptureStyle != CurLSI->ImpCap_None)
7115 CurLSI->addPotentialThisCapture(CallLoc);
7116 }
7117 }
7118
7119 // Once a call is fully resolved, warn for unqualified calls to specific
7120 // C++ standard functions, like move and forward.
DiagnosedUnqualifiedCallsToStdFunctions(Sema & S,const CallExpr * Call)7121 static void DiagnosedUnqualifiedCallsToStdFunctions(Sema &S,
7122 const CallExpr *Call) {
7123 // We are only checking unary move and forward so exit early here.
7124 if (Call->getNumArgs() != 1)
7125 return;
7126
7127 const Expr *E = Call->getCallee()->IgnoreParenImpCasts();
7128 if (!E || isa<UnresolvedLookupExpr>(E))
7129 return;
7130 const DeclRefExpr *DRE = dyn_cast_if_present<DeclRefExpr>(E);
7131 if (!DRE || !DRE->getLocation().isValid())
7132 return;
7133
7134 if (DRE->getQualifier())
7135 return;
7136
7137 const FunctionDecl *FD = Call->getDirectCallee();
7138 if (!FD)
7139 return;
7140
7141 // Only warn for some functions deemed more frequent or problematic.
7142 unsigned BuiltinID = FD->getBuiltinID();
7143 if (BuiltinID != Builtin::BImove && BuiltinID != Builtin::BIforward)
7144 return;
7145
7146 S.Diag(DRE->getLocation(), diag::warn_unqualified_call_to_std_cast_function)
7147 << FD->getQualifiedNameAsString()
7148 << FixItHint::CreateInsertion(DRE->getLocation(), "std::");
7149 }
7150
ActOnCallExpr(Scope * Scope,Expr * Fn,SourceLocation LParenLoc,MultiExprArg ArgExprs,SourceLocation RParenLoc,Expr * ExecConfig)7151 ExprResult Sema::ActOnCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
7152 MultiExprArg ArgExprs, SourceLocation RParenLoc,
7153 Expr *ExecConfig) {
7154 ExprResult Call =
7155 BuildCallExpr(Scope, Fn, LParenLoc, ArgExprs, RParenLoc, ExecConfig,
7156 /*IsExecConfig=*/false, /*AllowRecovery=*/true);
7157 if (Call.isInvalid())
7158 return Call;
7159
7160 // Diagnose uses of the C++20 "ADL-only template-id call" feature in earlier
7161 // language modes.
7162 if (const auto *ULE = dyn_cast<UnresolvedLookupExpr>(Fn);
7163 ULE && ULE->hasExplicitTemplateArgs() &&
7164 ULE->decls_begin() == ULE->decls_end()) {
7165 Diag(Fn->getExprLoc(), getLangOpts().CPlusPlus20
7166 ? diag::warn_cxx17_compat_adl_only_template_id
7167 : diag::ext_adl_only_template_id)
7168 << ULE->getName();
7169 }
7170
7171 if (LangOpts.OpenMP)
7172 Call = ActOnOpenMPCall(Call, Scope, LParenLoc, ArgExprs, RParenLoc,
7173 ExecConfig);
7174 if (LangOpts.CPlusPlus) {
7175 if (const auto *CE = dyn_cast<CallExpr>(Call.get()))
7176 DiagnosedUnqualifiedCallsToStdFunctions(*this, CE);
7177 }
7178 return Call;
7179 }
7180
7181 /// BuildCallExpr - Handle a call to Fn with the specified array of arguments.
7182 /// This provides the location of the left/right parens and a list of comma
7183 /// locations.
BuildCallExpr(Scope * Scope,Expr * Fn,SourceLocation LParenLoc,MultiExprArg ArgExprs,SourceLocation RParenLoc,Expr * ExecConfig,bool IsExecConfig,bool AllowRecovery)7184 ExprResult Sema::BuildCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
7185 MultiExprArg ArgExprs, SourceLocation RParenLoc,
7186 Expr *ExecConfig, bool IsExecConfig,
7187 bool AllowRecovery) {
7188 // Since this might be a postfix expression, get rid of ParenListExprs.
7189 ExprResult Result = MaybeConvertParenListExprToParenExpr(Scope, Fn);
7190 if (Result.isInvalid()) return ExprError();
7191 Fn = Result.get();
7192
7193 if (CheckArgsForPlaceholders(ArgExprs))
7194 return ExprError();
7195
7196 if (getLangOpts().CPlusPlus) {
7197 // If this is a pseudo-destructor expression, build the call immediately.
7198 if (isa<CXXPseudoDestructorExpr>(Fn)) {
7199 if (!ArgExprs.empty()) {
7200 // Pseudo-destructor calls should not have any arguments.
7201 Diag(Fn->getBeginLoc(), diag::err_pseudo_dtor_call_with_args)
7202 << FixItHint::CreateRemoval(
7203 SourceRange(ArgExprs.front()->getBeginLoc(),
7204 ArgExprs.back()->getEndLoc()));
7205 }
7206
7207 return CallExpr::Create(Context, Fn, /*Args=*/{}, Context.VoidTy,
7208 VK_PRValue, RParenLoc, CurFPFeatureOverrides());
7209 }
7210 if (Fn->getType() == Context.PseudoObjectTy) {
7211 ExprResult result = CheckPlaceholderExpr(Fn);
7212 if (result.isInvalid()) return ExprError();
7213 Fn = result.get();
7214 }
7215
7216 // Determine whether this is a dependent call inside a C++ template,
7217 // in which case we won't do any semantic analysis now.
7218 if (Fn->isTypeDependent() || Expr::hasAnyTypeDependentArguments(ArgExprs)) {
7219 if (ExecConfig) {
7220 return CUDAKernelCallExpr::Create(Context, Fn,
7221 cast<CallExpr>(ExecConfig), ArgExprs,
7222 Context.DependentTy, VK_PRValue,
7223 RParenLoc, CurFPFeatureOverrides());
7224 } else {
7225
7226 tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(
7227 *this, dyn_cast<UnresolvedMemberExpr>(Fn->IgnoreParens()),
7228 Fn->getBeginLoc());
7229
7230 return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
7231 VK_PRValue, RParenLoc, CurFPFeatureOverrides());
7232 }
7233 }
7234
7235 // Determine whether this is a call to an object (C++ [over.call.object]).
7236 if (Fn->getType()->isRecordType())
7237 return BuildCallToObjectOfClassType(Scope, Fn, LParenLoc, ArgExprs,
7238 RParenLoc);
7239
7240 if (Fn->getType() == Context.UnknownAnyTy) {
7241 ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
7242 if (result.isInvalid()) return ExprError();
7243 Fn = result.get();
7244 }
7245
7246 if (Fn->getType() == Context.BoundMemberTy) {
7247 return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs,
7248 RParenLoc, ExecConfig, IsExecConfig,
7249 AllowRecovery);
7250 }
7251 }
7252
7253 // Check for overloaded calls. This can happen even in C due to extensions.
7254 if (Fn->getType() == Context.OverloadTy) {
7255 OverloadExpr::FindResult find = OverloadExpr::find(Fn);
7256
7257 // We aren't supposed to apply this logic if there's an '&' involved.
7258 if (!find.HasFormOfMemberPointer) {
7259 if (Expr::hasAnyTypeDependentArguments(ArgExprs))
7260 return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
7261 VK_PRValue, RParenLoc, CurFPFeatureOverrides());
7262 OverloadExpr *ovl = find.Expression;
7263 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(ovl))
7264 return BuildOverloadedCallExpr(
7265 Scope, Fn, ULE, LParenLoc, ArgExprs, RParenLoc, ExecConfig,
7266 /*AllowTypoCorrection=*/true, find.IsAddressOfOperand);
7267 return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs,
7268 RParenLoc, ExecConfig, IsExecConfig,
7269 AllowRecovery);
7270 }
7271 }
7272
7273 // If we're directly calling a function, get the appropriate declaration.
7274 if (Fn->getType() == Context.UnknownAnyTy) {
7275 ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
7276 if (result.isInvalid()) return ExprError();
7277 Fn = result.get();
7278 }
7279
7280 Expr *NakedFn = Fn->IgnoreParens();
7281
7282 bool CallingNDeclIndirectly = false;
7283 NamedDecl *NDecl = nullptr;
7284 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn)) {
7285 if (UnOp->getOpcode() == UO_AddrOf) {
7286 CallingNDeclIndirectly = true;
7287 NakedFn = UnOp->getSubExpr()->IgnoreParens();
7288 }
7289 }
7290
7291 if (auto *DRE = dyn_cast<DeclRefExpr>(NakedFn)) {
7292 NDecl = DRE->getDecl();
7293
7294 FunctionDecl *FDecl = dyn_cast<FunctionDecl>(NDecl);
7295 if (FDecl && FDecl->getBuiltinID()) {
7296 // Rewrite the function decl for this builtin by replacing parameters
7297 // with no explicit address space with the address space of the arguments
7298 // in ArgExprs.
7299 if ((FDecl =
7300 rewriteBuiltinFunctionDecl(this, Context, FDecl, ArgExprs))) {
7301 NDecl = FDecl;
7302 Fn = DeclRefExpr::Create(
7303 Context, FDecl->getQualifierLoc(), SourceLocation(), FDecl, false,
7304 SourceLocation(), FDecl->getType(), Fn->getValueKind(), FDecl,
7305 nullptr, DRE->isNonOdrUse());
7306 }
7307 }
7308 } else if (auto *ME = dyn_cast<MemberExpr>(NakedFn))
7309 NDecl = ME->getMemberDecl();
7310
7311 if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(NDecl)) {
7312 if (CallingNDeclIndirectly && !checkAddressOfFunctionIsAvailable(
7313 FD, /*Complain=*/true, Fn->getBeginLoc()))
7314 return ExprError();
7315
7316 checkDirectCallValidity(*this, Fn, FD, ArgExprs);
7317
7318 // If this expression is a call to a builtin function in HIP device
7319 // compilation, allow a pointer-type argument to default address space to be
7320 // passed as a pointer-type parameter to a non-default address space.
7321 // If Arg is declared in the default address space and Param is declared
7322 // in a non-default address space, perform an implicit address space cast to
7323 // the parameter type.
7324 if (getLangOpts().HIP && getLangOpts().CUDAIsDevice && FD &&
7325 FD->getBuiltinID()) {
7326 for (unsigned Idx = 0; Idx < FD->param_size(); ++Idx) {
7327 ParmVarDecl *Param = FD->getParamDecl(Idx);
7328 if (!ArgExprs[Idx] || !Param || !Param->getType()->isPointerType() ||
7329 !ArgExprs[Idx]->getType()->isPointerType())
7330 continue;
7331
7332 auto ParamAS = Param->getType()->getPointeeType().getAddressSpace();
7333 auto ArgTy = ArgExprs[Idx]->getType();
7334 auto ArgPtTy = ArgTy->getPointeeType();
7335 auto ArgAS = ArgPtTy.getAddressSpace();
7336
7337 // Add address space cast if target address spaces are different
7338 bool NeedImplicitASC =
7339 ParamAS != LangAS::Default && // Pointer params in generic AS don't need special handling.
7340 ( ArgAS == LangAS::Default || // We do allow implicit conversion from generic AS
7341 // or from specific AS which has target AS matching that of Param.
7342 getASTContext().getTargetAddressSpace(ArgAS) == getASTContext().getTargetAddressSpace(ParamAS));
7343 if (!NeedImplicitASC)
7344 continue;
7345
7346 // First, ensure that the Arg is an RValue.
7347 if (ArgExprs[Idx]->isGLValue()) {
7348 ArgExprs[Idx] = ImplicitCastExpr::Create(
7349 Context, ArgExprs[Idx]->getType(), CK_NoOp, ArgExprs[Idx],
7350 nullptr, VK_PRValue, FPOptionsOverride());
7351 }
7352
7353 // Construct a new arg type with address space of Param
7354 Qualifiers ArgPtQuals = ArgPtTy.getQualifiers();
7355 ArgPtQuals.setAddressSpace(ParamAS);
7356 auto NewArgPtTy =
7357 Context.getQualifiedType(ArgPtTy.getUnqualifiedType(), ArgPtQuals);
7358 auto NewArgTy =
7359 Context.getQualifiedType(Context.getPointerType(NewArgPtTy),
7360 ArgTy.getQualifiers());
7361
7362 // Finally perform an implicit address space cast
7363 ArgExprs[Idx] = ImpCastExprToType(ArgExprs[Idx], NewArgTy,
7364 CK_AddressSpaceConversion)
7365 .get();
7366 }
7367 }
7368 }
7369
7370 if (Context.isDependenceAllowed() &&
7371 (Fn->isTypeDependent() || Expr::hasAnyTypeDependentArguments(ArgExprs))) {
7372 assert(!getLangOpts().CPlusPlus);
7373 assert((Fn->containsErrors() ||
7374 llvm::any_of(ArgExprs,
7375 [](clang::Expr *E) { return E->containsErrors(); })) &&
7376 "should only occur in error-recovery path.");
7377 return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
7378 VK_PRValue, RParenLoc, CurFPFeatureOverrides());
7379 }
7380 return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, ArgExprs, RParenLoc,
7381 ExecConfig, IsExecConfig);
7382 }
7383
7384 /// BuildBuiltinCallExpr - Create a call to a builtin function specified by Id
7385 // with the specified CallArgs
BuildBuiltinCallExpr(SourceLocation Loc,Builtin::ID Id,MultiExprArg CallArgs)7386 Expr *Sema::BuildBuiltinCallExpr(SourceLocation Loc, Builtin::ID Id,
7387 MultiExprArg CallArgs) {
7388 StringRef Name = Context.BuiltinInfo.getName(Id);
7389 LookupResult R(*this, &Context.Idents.get(Name), Loc,
7390 Sema::LookupOrdinaryName);
7391 LookupName(R, TUScope, /*AllowBuiltinCreation=*/true);
7392
7393 auto *BuiltInDecl = R.getAsSingle<FunctionDecl>();
7394 assert(BuiltInDecl && "failed to find builtin declaration");
7395
7396 ExprResult DeclRef =
7397 BuildDeclRefExpr(BuiltInDecl, BuiltInDecl->getType(), VK_LValue, Loc);
7398 assert(DeclRef.isUsable() && "Builtin reference cannot fail");
7399
7400 ExprResult Call =
7401 BuildCallExpr(/*Scope=*/nullptr, DeclRef.get(), Loc, CallArgs, Loc);
7402
7403 assert(!Call.isInvalid() && "Call to builtin cannot fail!");
7404 return Call.get();
7405 }
7406
7407 /// Parse a __builtin_astype expression.
7408 ///
7409 /// __builtin_astype( value, dst type )
7410 ///
ActOnAsTypeExpr(Expr * E,ParsedType ParsedDestTy,SourceLocation BuiltinLoc,SourceLocation RParenLoc)7411 ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
7412 SourceLocation BuiltinLoc,
7413 SourceLocation RParenLoc) {
7414 QualType DstTy = GetTypeFromParser(ParsedDestTy);
7415 return BuildAsTypeExpr(E, DstTy, BuiltinLoc, RParenLoc);
7416 }
7417
7418 /// Create a new AsTypeExpr node (bitcast) from the arguments.
BuildAsTypeExpr(Expr * E,QualType DestTy,SourceLocation BuiltinLoc,SourceLocation RParenLoc)7419 ExprResult Sema::BuildAsTypeExpr(Expr *E, QualType DestTy,
7420 SourceLocation BuiltinLoc,
7421 SourceLocation RParenLoc) {
7422 ExprValueKind VK = VK_PRValue;
7423 ExprObjectKind OK = OK_Ordinary;
7424 QualType SrcTy = E->getType();
7425 if (!SrcTy->isDependentType() &&
7426 Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy))
7427 return ExprError(
7428 Diag(BuiltinLoc, diag::err_invalid_astype_of_different_size)
7429 << DestTy << SrcTy << E->getSourceRange());
7430 return new (Context) AsTypeExpr(E, DestTy, VK, OK, BuiltinLoc, RParenLoc);
7431 }
7432
7433 /// ActOnConvertVectorExpr - create a new convert-vector expression from the
7434 /// provided arguments.
7435 ///
7436 /// __builtin_convertvector( value, dst type )
7437 ///
ActOnConvertVectorExpr(Expr * E,ParsedType ParsedDestTy,SourceLocation BuiltinLoc,SourceLocation RParenLoc)7438 ExprResult Sema::ActOnConvertVectorExpr(Expr *E, ParsedType ParsedDestTy,
7439 SourceLocation BuiltinLoc,
7440 SourceLocation RParenLoc) {
7441 TypeSourceInfo *TInfo;
7442 GetTypeFromParser(ParsedDestTy, &TInfo);
7443 return SemaConvertVectorExpr(E, TInfo, BuiltinLoc, RParenLoc);
7444 }
7445
7446 /// BuildResolvedCallExpr - Build a call to a resolved expression,
7447 /// i.e. an expression not of \p OverloadTy. The expression should
7448 /// unary-convert to an expression of function-pointer or
7449 /// block-pointer type.
7450 ///
7451 /// \param NDecl the declaration being called, if available
BuildResolvedCallExpr(Expr * Fn,NamedDecl * NDecl,SourceLocation LParenLoc,ArrayRef<Expr * > Args,SourceLocation RParenLoc,Expr * Config,bool IsExecConfig,ADLCallKind UsesADL)7452 ExprResult Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
7453 SourceLocation LParenLoc,
7454 ArrayRef<Expr *> Args,
7455 SourceLocation RParenLoc, Expr *Config,
7456 bool IsExecConfig, ADLCallKind UsesADL) {
7457 FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
7458 unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
7459
7460 // Functions with 'interrupt' attribute cannot be called directly.
7461 if (FDecl && FDecl->hasAttr<AnyX86InterruptAttr>()) {
7462 Diag(Fn->getExprLoc(), diag::err_anyx86_interrupt_called);
7463 return ExprError();
7464 }
7465
7466 // Interrupt handlers don't save off the VFP regs automatically on ARM,
7467 // so there's some risk when calling out to non-interrupt handler functions
7468 // that the callee might not preserve them. This is easy to diagnose here,
7469 // but can be very challenging to debug.
7470 // Likewise, X86 interrupt handlers may only call routines with attribute
7471 // no_caller_saved_registers since there is no efficient way to
7472 // save and restore the non-GPR state.
7473 if (auto *Caller = getCurFunctionDecl()) {
7474 if (Caller->hasAttr<ARMInterruptAttr>()) {
7475 bool VFP = Context.getTargetInfo().hasFeature("vfp");
7476 if (VFP && (!FDecl || !FDecl->hasAttr<ARMInterruptAttr>())) {
7477 Diag(Fn->getExprLoc(), diag::warn_arm_interrupt_calling_convention);
7478 if (FDecl)
7479 Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl;
7480 }
7481 }
7482 if (Caller->hasAttr<AnyX86InterruptAttr>() ||
7483 Caller->hasAttr<AnyX86NoCallerSavedRegistersAttr>()) {
7484 const TargetInfo &TI = Context.getTargetInfo();
7485 bool HasNonGPRRegisters =
7486 TI.hasFeature("sse") || TI.hasFeature("x87") || TI.hasFeature("mmx");
7487 if (HasNonGPRRegisters &&
7488 (!FDecl || !FDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>())) {
7489 Diag(Fn->getExprLoc(), diag::warn_anyx86_excessive_regsave)
7490 << (Caller->hasAttr<AnyX86InterruptAttr>() ? 0 : 1);
7491 if (FDecl)
7492 Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl;
7493 }
7494 }
7495 }
7496
7497 // Promote the function operand.
7498 // We special-case function promotion here because we only allow promoting
7499 // builtin functions to function pointers in the callee of a call.
7500 ExprResult Result;
7501 QualType ResultTy;
7502 if (BuiltinID &&
7503 Fn->getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn)) {
7504 // Extract the return type from the (builtin) function pointer type.
7505 // FIXME Several builtins still have setType in
7506 // Sema::CheckBuiltinFunctionCall. One should review their definitions in
7507 // Builtins.def to ensure they are correct before removing setType calls.
7508 QualType FnPtrTy = Context.getPointerType(FDecl->getType());
7509 Result = ImpCastExprToType(Fn, FnPtrTy, CK_BuiltinFnToFnPtr).get();
7510 ResultTy = FDecl->getCallResultType();
7511 } else {
7512 Result = CallExprUnaryConversions(Fn);
7513 ResultTy = Context.BoolTy;
7514 }
7515 if (Result.isInvalid())
7516 return ExprError();
7517 Fn = Result.get();
7518
7519 // Check for a valid function type, but only if it is not a builtin which
7520 // requires custom type checking. These will be handled by
7521 // CheckBuiltinFunctionCall below just after creation of the call expression.
7522 const FunctionType *FuncT = nullptr;
7523 if (!BuiltinID || !Context.BuiltinInfo.hasCustomTypechecking(BuiltinID)) {
7524 retry:
7525 if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
7526 // C99 6.5.2.2p1 - "The expression that denotes the called function shall
7527 // have type pointer to function".
7528 FuncT = PT->getPointeeType()->getAs<FunctionType>();
7529 if (!FuncT)
7530 return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
7531 << Fn->getType() << Fn->getSourceRange());
7532 } else if (const BlockPointerType *BPT =
7533 Fn->getType()->getAs<BlockPointerType>()) {
7534 FuncT = BPT->getPointeeType()->castAs<FunctionType>();
7535 } else {
7536 // Handle calls to expressions of unknown-any type.
7537 if (Fn->getType() == Context.UnknownAnyTy) {
7538 ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn);
7539 if (rewrite.isInvalid())
7540 return ExprError();
7541 Fn = rewrite.get();
7542 goto retry;
7543 }
7544
7545 return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
7546 << Fn->getType() << Fn->getSourceRange());
7547 }
7548 }
7549
7550 // Get the number of parameters in the function prototype, if any.
7551 // We will allocate space for max(Args.size(), NumParams) arguments
7552 // in the call expression.
7553 const auto *Proto = dyn_cast_or_null<FunctionProtoType>(FuncT);
7554 unsigned NumParams = Proto ? Proto->getNumParams() : 0;
7555
7556 CallExpr *TheCall;
7557 if (Config) {
7558 assert(UsesADL == ADLCallKind::NotADL &&
7559 "CUDAKernelCallExpr should not use ADL");
7560 TheCall = CUDAKernelCallExpr::Create(Context, Fn, cast<CallExpr>(Config),
7561 Args, ResultTy, VK_PRValue, RParenLoc,
7562 CurFPFeatureOverrides(), NumParams);
7563 } else {
7564 TheCall =
7565 CallExpr::Create(Context, Fn, Args, ResultTy, VK_PRValue, RParenLoc,
7566 CurFPFeatureOverrides(), NumParams, UsesADL);
7567 }
7568
7569 if (!Context.isDependenceAllowed()) {
7570 // Forget about the nulled arguments since typo correction
7571 // do not handle them well.
7572 TheCall->shrinkNumArgs(Args.size());
7573 // C cannot always handle TypoExpr nodes in builtin calls and direct
7574 // function calls as their argument checking don't necessarily handle
7575 // dependent types properly, so make sure any TypoExprs have been
7576 // dealt with.
7577 ExprResult Result = CorrectDelayedTyposInExpr(TheCall);
7578 if (!Result.isUsable()) return ExprError();
7579 CallExpr *TheOldCall = TheCall;
7580 TheCall = dyn_cast<CallExpr>(Result.get());
7581 bool CorrectedTypos = TheCall != TheOldCall;
7582 if (!TheCall) return Result;
7583 Args = llvm::ArrayRef(TheCall->getArgs(), TheCall->getNumArgs());
7584
7585 // A new call expression node was created if some typos were corrected.
7586 // However it may not have been constructed with enough storage. In this
7587 // case, rebuild the node with enough storage. The waste of space is
7588 // immaterial since this only happens when some typos were corrected.
7589 if (CorrectedTypos && Args.size() < NumParams) {
7590 if (Config)
7591 TheCall = CUDAKernelCallExpr::Create(
7592 Context, Fn, cast<CallExpr>(Config), Args, ResultTy, VK_PRValue,
7593 RParenLoc, CurFPFeatureOverrides(), NumParams);
7594 else
7595 TheCall =
7596 CallExpr::Create(Context, Fn, Args, ResultTy, VK_PRValue, RParenLoc,
7597 CurFPFeatureOverrides(), NumParams, UsesADL);
7598 }
7599 // We can now handle the nulled arguments for the default arguments.
7600 TheCall->setNumArgsUnsafe(std::max<unsigned>(Args.size(), NumParams));
7601 }
7602
7603 // Bail out early if calling a builtin with custom type checking.
7604 if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID))
7605 return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
7606
7607 if (getLangOpts().CUDA) {
7608 if (Config) {
7609 // CUDA: Kernel calls must be to global functions
7610 if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
7611 return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
7612 << FDecl << Fn->getSourceRange());
7613
7614 // CUDA: Kernel function must have 'void' return type
7615 if (!FuncT->getReturnType()->isVoidType() &&
7616 !FuncT->getReturnType()->getAs<AutoType>() &&
7617 !FuncT->getReturnType()->isInstantiationDependentType())
7618 return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
7619 << Fn->getType() << Fn->getSourceRange());
7620 } else {
7621 // CUDA: Calls to global functions must be configured
7622 if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>())
7623 return ExprError(Diag(LParenLoc, diag::err_global_call_not_config)
7624 << FDecl << Fn->getSourceRange());
7625 }
7626 }
7627
7628 // Check for a valid return type
7629 if (CheckCallReturnType(FuncT->getReturnType(), Fn->getBeginLoc(), TheCall,
7630 FDecl))
7631 return ExprError();
7632
7633 // We know the result type of the call, set it.
7634 TheCall->setType(FuncT->getCallResultType(Context));
7635 TheCall->setValueKind(Expr::getValueKindForType(FuncT->getReturnType()));
7636
7637 // WebAssembly tables can't be used as arguments.
7638 if (Context.getTargetInfo().getTriple().isWasm()) {
7639 for (const Expr *Arg : Args) {
7640 if (Arg && Arg->getType()->isWebAssemblyTableType()) {
7641 return ExprError(Diag(Arg->getExprLoc(),
7642 diag::err_wasm_table_as_function_parameter));
7643 }
7644 }
7645 }
7646
7647 if (Proto) {
7648 if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, RParenLoc,
7649 IsExecConfig))
7650 return ExprError();
7651 } else {
7652 assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
7653
7654 if (FDecl) {
7655 // Check if we have too few/too many template arguments, based
7656 // on our knowledge of the function definition.
7657 const FunctionDecl *Def = nullptr;
7658 if (FDecl->hasBody(Def) && Args.size() != Def->param_size()) {
7659 Proto = Def->getType()->getAs<FunctionProtoType>();
7660 if (!Proto || !(Proto->isVariadic() && Args.size() >= Def->param_size()))
7661 Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
7662 << (Args.size() > Def->param_size()) << FDecl << Fn->getSourceRange();
7663 }
7664
7665 // If the function we're calling isn't a function prototype, but we have
7666 // a function prototype from a prior declaratiom, use that prototype.
7667 if (!FDecl->hasPrototype())
7668 Proto = FDecl->getType()->getAs<FunctionProtoType>();
7669 }
7670
7671 // If we still haven't found a prototype to use but there are arguments to
7672 // the call, diagnose this as calling a function without a prototype.
7673 // However, if we found a function declaration, check to see if
7674 // -Wdeprecated-non-prototype was disabled where the function was declared.
7675 // If so, we will silence the diagnostic here on the assumption that this
7676 // interface is intentional and the user knows what they're doing. We will
7677 // also silence the diagnostic if there is a function declaration but it
7678 // was implicitly defined (the user already gets diagnostics about the
7679 // creation of the implicit function declaration, so the additional warning
7680 // is not helpful).
7681 if (!Proto && !Args.empty() &&
7682 (!FDecl || (!FDecl->isImplicit() &&
7683 !Diags.isIgnored(diag::warn_strict_uses_without_prototype,
7684 FDecl->getLocation()))))
7685 Diag(LParenLoc, diag::warn_strict_uses_without_prototype)
7686 << (FDecl != nullptr) << FDecl;
7687
7688 // Promote the arguments (C99 6.5.2.2p6).
7689 for (unsigned i = 0, e = Args.size(); i != e; i++) {
7690 Expr *Arg = Args[i];
7691
7692 if (Proto && i < Proto->getNumParams()) {
7693 InitializedEntity Entity = InitializedEntity::InitializeParameter(
7694 Context, Proto->getParamType(i), Proto->isParamConsumed(i));
7695 ExprResult ArgE =
7696 PerformCopyInitialization(Entity, SourceLocation(), Arg);
7697 if (ArgE.isInvalid())
7698 return true;
7699
7700 Arg = ArgE.getAs<Expr>();
7701
7702 } else {
7703 ExprResult ArgE = DefaultArgumentPromotion(Arg);
7704
7705 if (ArgE.isInvalid())
7706 return true;
7707
7708 Arg = ArgE.getAs<Expr>();
7709 }
7710
7711 if (RequireCompleteType(Arg->getBeginLoc(), Arg->getType(),
7712 diag::err_call_incomplete_argument, Arg))
7713 return ExprError();
7714
7715 TheCall->setArg(i, Arg);
7716 }
7717 TheCall->computeDependence();
7718 }
7719
7720 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
7721 if (Method->isImplicitObjectMemberFunction())
7722 return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
7723 << Fn->getSourceRange() << 0);
7724
7725 // Check for sentinels
7726 if (NDecl)
7727 DiagnoseSentinelCalls(NDecl, LParenLoc, Args);
7728
7729 // Warn for unions passing across security boundary (CMSE).
7730 if (FuncT != nullptr && FuncT->getCmseNSCallAttr()) {
7731 for (unsigned i = 0, e = Args.size(); i != e; i++) {
7732 if (const auto *RT =
7733 dyn_cast<RecordType>(Args[i]->getType().getCanonicalType())) {
7734 if (RT->getDecl()->isOrContainsUnion())
7735 Diag(Args[i]->getBeginLoc(), diag::warn_cmse_nonsecure_union)
7736 << 0 << i;
7737 }
7738 }
7739 }
7740
7741 // Do special checking on direct calls to functions.
7742 if (FDecl) {
7743 if (CheckFunctionCall(FDecl, TheCall, Proto))
7744 return ExprError();
7745
7746 checkFortifiedBuiltinMemoryFunction(FDecl, TheCall);
7747
7748 if (BuiltinID)
7749 return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
7750 } else if (NDecl) {
7751 if (CheckPointerCall(NDecl, TheCall, Proto))
7752 return ExprError();
7753 } else {
7754 if (CheckOtherCall(TheCall, Proto))
7755 return ExprError();
7756 }
7757
7758 return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), FDecl);
7759 }
7760
7761 ExprResult
ActOnCompoundLiteral(SourceLocation LParenLoc,ParsedType Ty,SourceLocation RParenLoc,Expr * InitExpr)7762 Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
7763 SourceLocation RParenLoc, Expr *InitExpr) {
7764 assert(Ty && "ActOnCompoundLiteral(): missing type");
7765 assert(InitExpr && "ActOnCompoundLiteral(): missing expression");
7766
7767 TypeSourceInfo *TInfo;
7768 QualType literalType = GetTypeFromParser(Ty, &TInfo);
7769 if (!TInfo)
7770 TInfo = Context.getTrivialTypeSourceInfo(literalType);
7771
7772 return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
7773 }
7774
7775 ExprResult
BuildCompoundLiteralExpr(SourceLocation LParenLoc,TypeSourceInfo * TInfo,SourceLocation RParenLoc,Expr * LiteralExpr)7776 Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
7777 SourceLocation RParenLoc, Expr *LiteralExpr) {
7778 QualType literalType = TInfo->getType();
7779
7780 if (literalType->isArrayType()) {
7781 if (RequireCompleteSizedType(
7782 LParenLoc, Context.getBaseElementType(literalType),
7783 diag::err_array_incomplete_or_sizeless_type,
7784 SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
7785 return ExprError();
7786 if (literalType->isVariableArrayType()) {
7787 // C23 6.7.10p4: An entity of variable length array type shall not be
7788 // initialized except by an empty initializer.
7789 //
7790 // The C extension warnings are issued from ParseBraceInitializer() and
7791 // do not need to be issued here. However, we continue to issue an error
7792 // in the case there are initializers or we are compiling C++. We allow
7793 // use of VLAs in C++, but it's not clear we want to allow {} to zero
7794 // init a VLA in C++ in all cases (such as with non-trivial constructors).
7795 // FIXME: should we allow this construct in C++ when it makes sense to do
7796 // so?
7797 std::optional<unsigned> NumInits;
7798 if (const auto *ILE = dyn_cast<InitListExpr>(LiteralExpr))
7799 NumInits = ILE->getNumInits();
7800 if ((LangOpts.CPlusPlus || NumInits.value_or(0)) &&
7801 !tryToFixVariablyModifiedVarType(TInfo, literalType, LParenLoc,
7802 diag::err_variable_object_no_init))
7803 return ExprError();
7804 }
7805 } else if (!literalType->isDependentType() &&
7806 RequireCompleteType(LParenLoc, literalType,
7807 diag::err_typecheck_decl_incomplete_type,
7808 SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
7809 return ExprError();
7810
7811 InitializedEntity Entity
7812 = InitializedEntity::InitializeCompoundLiteralInit(TInfo);
7813 InitializationKind Kind
7814 = InitializationKind::CreateCStyleCast(LParenLoc,
7815 SourceRange(LParenLoc, RParenLoc),
7816 /*InitList=*/true);
7817 InitializationSequence InitSeq(*this, Entity, Kind, LiteralExpr);
7818 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, LiteralExpr,
7819 &literalType);
7820 if (Result.isInvalid())
7821 return ExprError();
7822 LiteralExpr = Result.get();
7823
7824 bool isFileScope = !CurContext->isFunctionOrMethod();
7825
7826 // In C, compound literals are l-values for some reason.
7827 // For GCC compatibility, in C++, file-scope array compound literals with
7828 // constant initializers are also l-values, and compound literals are
7829 // otherwise prvalues.
7830 //
7831 // (GCC also treats C++ list-initialized file-scope array prvalues with
7832 // constant initializers as l-values, but that's non-conforming, so we don't
7833 // follow it there.)
7834 //
7835 // FIXME: It would be better to handle the lvalue cases as materializing and
7836 // lifetime-extending a temporary object, but our materialized temporaries
7837 // representation only supports lifetime extension from a variable, not "out
7838 // of thin air".
7839 // FIXME: For C++, we might want to instead lifetime-extend only if a pointer
7840 // is bound to the result of applying array-to-pointer decay to the compound
7841 // literal.
7842 // FIXME: GCC supports compound literals of reference type, which should
7843 // obviously have a value kind derived from the kind of reference involved.
7844 ExprValueKind VK =
7845 (getLangOpts().CPlusPlus && !(isFileScope && literalType->isArrayType()))
7846 ? VK_PRValue
7847 : VK_LValue;
7848
7849 if (isFileScope)
7850 if (auto ILE = dyn_cast<InitListExpr>(LiteralExpr))
7851 for (unsigned i = 0, j = ILE->getNumInits(); i != j; i++) {
7852 Expr *Init = ILE->getInit(i);
7853 ILE->setInit(i, ConstantExpr::Create(Context, Init));
7854 }
7855
7856 auto *E = new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
7857 VK, LiteralExpr, isFileScope);
7858 if (isFileScope) {
7859 if (!LiteralExpr->isTypeDependent() &&
7860 !LiteralExpr->isValueDependent() &&
7861 !literalType->isDependentType()) // C99 6.5.2.5p3
7862 if (CheckForConstantInitializer(LiteralExpr, literalType))
7863 return ExprError();
7864 } else if (literalType.getAddressSpace() != LangAS::opencl_private &&
7865 literalType.getAddressSpace() != LangAS::Default) {
7866 // Embedded-C extensions to C99 6.5.2.5:
7867 // "If the compound literal occurs inside the body of a function, the
7868 // type name shall not be qualified by an address-space qualifier."
7869 Diag(LParenLoc, diag::err_compound_literal_with_address_space)
7870 << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd());
7871 return ExprError();
7872 }
7873
7874 if (!isFileScope && !getLangOpts().CPlusPlus) {
7875 // Compound literals that have automatic storage duration are destroyed at
7876 // the end of the scope in C; in C++, they're just temporaries.
7877
7878 // Emit diagnostics if it is or contains a C union type that is non-trivial
7879 // to destruct.
7880 if (E->getType().hasNonTrivialToPrimitiveDestructCUnion())
7881 checkNonTrivialCUnion(E->getType(), E->getExprLoc(),
7882 NTCUC_CompoundLiteral, NTCUK_Destruct);
7883
7884 // Diagnose jumps that enter or exit the lifetime of the compound literal.
7885 if (literalType.isDestructedType()) {
7886 Cleanup.setExprNeedsCleanups(true);
7887 ExprCleanupObjects.push_back(E);
7888 getCurFunction()->setHasBranchProtectedScope();
7889 }
7890 }
7891
7892 if (E->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
7893 E->getType().hasNonTrivialToPrimitiveCopyCUnion())
7894 checkNonTrivialCUnionInInitializer(E->getInitializer(),
7895 E->getInitializer()->getExprLoc());
7896
7897 return MaybeBindToTemporary(E);
7898 }
7899
7900 ExprResult
ActOnInitList(SourceLocation LBraceLoc,MultiExprArg InitArgList,SourceLocation RBraceLoc)7901 Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
7902 SourceLocation RBraceLoc) {
7903 // Only produce each kind of designated initialization diagnostic once.
7904 SourceLocation FirstDesignator;
7905 bool DiagnosedArrayDesignator = false;
7906 bool DiagnosedNestedDesignator = false;
7907 bool DiagnosedMixedDesignator = false;
7908
7909 // Check that any designated initializers are syntactically valid in the
7910 // current language mode.
7911 for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
7912 if (auto *DIE = dyn_cast<DesignatedInitExpr>(InitArgList[I])) {
7913 if (FirstDesignator.isInvalid())
7914 FirstDesignator = DIE->getBeginLoc();
7915
7916 if (!getLangOpts().CPlusPlus)
7917 break;
7918
7919 if (!DiagnosedNestedDesignator && DIE->size() > 1) {
7920 DiagnosedNestedDesignator = true;
7921 Diag(DIE->getBeginLoc(), diag::ext_designated_init_nested)
7922 << DIE->getDesignatorsSourceRange();
7923 }
7924
7925 for (auto &Desig : DIE->designators()) {
7926 if (!Desig.isFieldDesignator() && !DiagnosedArrayDesignator) {
7927 DiagnosedArrayDesignator = true;
7928 Diag(Desig.getBeginLoc(), diag::ext_designated_init_array)
7929 << Desig.getSourceRange();
7930 }
7931 }
7932
7933 if (!DiagnosedMixedDesignator &&
7934 !isa<DesignatedInitExpr>(InitArgList[0])) {
7935 DiagnosedMixedDesignator = true;
7936 Diag(DIE->getBeginLoc(), diag::ext_designated_init_mixed)
7937 << DIE->getSourceRange();
7938 Diag(InitArgList[0]->getBeginLoc(), diag::note_designated_init_mixed)
7939 << InitArgList[0]->getSourceRange();
7940 }
7941 } else if (getLangOpts().CPlusPlus && !DiagnosedMixedDesignator &&
7942 isa<DesignatedInitExpr>(InitArgList[0])) {
7943 DiagnosedMixedDesignator = true;
7944 auto *DIE = cast<DesignatedInitExpr>(InitArgList[0]);
7945 Diag(DIE->getBeginLoc(), diag::ext_designated_init_mixed)
7946 << DIE->getSourceRange();
7947 Diag(InitArgList[I]->getBeginLoc(), diag::note_designated_init_mixed)
7948 << InitArgList[I]->getSourceRange();
7949 }
7950 }
7951
7952 if (FirstDesignator.isValid()) {
7953 // Only diagnose designated initiaization as a C++20 extension if we didn't
7954 // already diagnose use of (non-C++20) C99 designator syntax.
7955 if (getLangOpts().CPlusPlus && !DiagnosedArrayDesignator &&
7956 !DiagnosedNestedDesignator && !DiagnosedMixedDesignator) {
7957 Diag(FirstDesignator, getLangOpts().CPlusPlus20
7958 ? diag::warn_cxx17_compat_designated_init
7959 : diag::ext_cxx_designated_init);
7960 } else if (!getLangOpts().CPlusPlus && !getLangOpts().C99) {
7961 Diag(FirstDesignator, diag::ext_designated_init);
7962 }
7963 }
7964
7965 return BuildInitList(LBraceLoc, InitArgList, RBraceLoc);
7966 }
7967
7968 ExprResult
BuildInitList(SourceLocation LBraceLoc,MultiExprArg InitArgList,SourceLocation RBraceLoc)7969 Sema::BuildInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
7970 SourceLocation RBraceLoc) {
7971 // Semantic analysis for initializers is done by ActOnDeclarator() and
7972 // CheckInitializer() - it requires knowledge of the object being initialized.
7973
7974 // Immediately handle non-overload placeholders. Overloads can be
7975 // resolved contextually, but everything else here can't.
7976 for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
7977 if (InitArgList[I]->getType()->isNonOverloadPlaceholderType()) {
7978 ExprResult result = CheckPlaceholderExpr(InitArgList[I]);
7979
7980 // Ignore failures; dropping the entire initializer list because
7981 // of one failure would be terrible for indexing/etc.
7982 if (result.isInvalid()) continue;
7983
7984 InitArgList[I] = result.get();
7985 }
7986 }
7987
7988 InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitArgList,
7989 RBraceLoc);
7990 E->setType(Context.VoidTy); // FIXME: just a place holder for now.
7991 return E;
7992 }
7993
7994 /// Do an explicit extend of the given block pointer if we're in ARC.
maybeExtendBlockObject(ExprResult & E)7995 void Sema::maybeExtendBlockObject(ExprResult &E) {
7996 assert(E.get()->getType()->isBlockPointerType());
7997 assert(E.get()->isPRValue());
7998
7999 // Only do this in an r-value context.
8000 if (!getLangOpts().ObjCAutoRefCount) return;
8001
8002 E = ImplicitCastExpr::Create(
8003 Context, E.get()->getType(), CK_ARCExtendBlockObject, E.get(),
8004 /*base path*/ nullptr, VK_PRValue, FPOptionsOverride());
8005 Cleanup.setExprNeedsCleanups(true);
8006 }
8007
8008 /// Prepare a conversion of the given expression to an ObjC object
8009 /// pointer type.
PrepareCastToObjCObjectPointer(ExprResult & E)8010 CastKind Sema::PrepareCastToObjCObjectPointer(ExprResult &E) {
8011 QualType type = E.get()->getType();
8012 if (type->isObjCObjectPointerType()) {
8013 return CK_BitCast;
8014 } else if (type->isBlockPointerType()) {
8015 maybeExtendBlockObject(E);
8016 return CK_BlockPointerToObjCPointerCast;
8017 } else {
8018 assert(type->isPointerType());
8019 return CK_CPointerToObjCPointerCast;
8020 }
8021 }
8022
8023 /// Prepares for a scalar cast, performing all the necessary stages
8024 /// except the final cast and returning the kind required.
PrepareScalarCast(ExprResult & Src,QualType DestTy)8025 CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) {
8026 // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
8027 // Also, callers should have filtered out the invalid cases with
8028 // pointers. Everything else should be possible.
8029
8030 QualType SrcTy = Src.get()->getType();
8031 if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
8032 return CK_NoOp;
8033
8034 switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) {
8035 case Type::STK_MemberPointer:
8036 llvm_unreachable("member pointer type in C");
8037
8038 case Type::STK_CPointer:
8039 case Type::STK_BlockPointer:
8040 case Type::STK_ObjCObjectPointer:
8041 switch (DestTy->getScalarTypeKind()) {
8042 case Type::STK_CPointer: {
8043 LangAS SrcAS = SrcTy->getPointeeType().getAddressSpace();
8044 LangAS DestAS = DestTy->getPointeeType().getAddressSpace();
8045 if (SrcAS != DestAS)
8046 return CK_AddressSpaceConversion;
8047 if (Context.hasCvrSimilarType(SrcTy, DestTy))
8048 return CK_NoOp;
8049 return CK_BitCast;
8050 }
8051 case Type::STK_BlockPointer:
8052 return (SrcKind == Type::STK_BlockPointer
8053 ? CK_BitCast : CK_AnyPointerToBlockPointerCast);
8054 case Type::STK_ObjCObjectPointer:
8055 if (SrcKind == Type::STK_ObjCObjectPointer)
8056 return CK_BitCast;
8057 if (SrcKind == Type::STK_CPointer)
8058 return CK_CPointerToObjCPointerCast;
8059 maybeExtendBlockObject(Src);
8060 return CK_BlockPointerToObjCPointerCast;
8061 case Type::STK_Bool:
8062 return CK_PointerToBoolean;
8063 case Type::STK_Integral:
8064 return CK_PointerToIntegral;
8065 case Type::STK_Floating:
8066 case Type::STK_FloatingComplex:
8067 case Type::STK_IntegralComplex:
8068 case Type::STK_MemberPointer:
8069 case Type::STK_FixedPoint:
8070 llvm_unreachable("illegal cast from pointer");
8071 }
8072 llvm_unreachable("Should have returned before this");
8073
8074 case Type::STK_FixedPoint:
8075 switch (DestTy->getScalarTypeKind()) {
8076 case Type::STK_FixedPoint:
8077 return CK_FixedPointCast;
8078 case Type::STK_Bool:
8079 return CK_FixedPointToBoolean;
8080 case Type::STK_Integral:
8081 return CK_FixedPointToIntegral;
8082 case Type::STK_Floating:
8083 return CK_FixedPointToFloating;
8084 case Type::STK_IntegralComplex:
8085 case Type::STK_FloatingComplex:
8086 Diag(Src.get()->getExprLoc(),
8087 diag::err_unimplemented_conversion_with_fixed_point_type)
8088 << DestTy;
8089 return CK_IntegralCast;
8090 case Type::STK_CPointer:
8091 case Type::STK_ObjCObjectPointer:
8092 case Type::STK_BlockPointer:
8093 case Type::STK_MemberPointer:
8094 llvm_unreachable("illegal cast to pointer type");
8095 }
8096 llvm_unreachable("Should have returned before this");
8097
8098 case Type::STK_Bool: // casting from bool is like casting from an integer
8099 case Type::STK_Integral:
8100 switch (DestTy->getScalarTypeKind()) {
8101 case Type::STK_CPointer:
8102 case Type::STK_ObjCObjectPointer:
8103 case Type::STK_BlockPointer:
8104 if (Src.get()->isNullPointerConstant(Context,
8105 Expr::NPC_ValueDependentIsNull))
8106 return CK_NullToPointer;
8107 return CK_IntegralToPointer;
8108 case Type::STK_Bool:
8109 return CK_IntegralToBoolean;
8110 case Type::STK_Integral:
8111 return CK_IntegralCast;
8112 case Type::STK_Floating:
8113 return CK_IntegralToFloating;
8114 case Type::STK_IntegralComplex:
8115 Src = ImpCastExprToType(Src.get(),
8116 DestTy->castAs<ComplexType>()->getElementType(),
8117 CK_IntegralCast);
8118 return CK_IntegralRealToComplex;
8119 case Type::STK_FloatingComplex:
8120 Src = ImpCastExprToType(Src.get(),
8121 DestTy->castAs<ComplexType>()->getElementType(),
8122 CK_IntegralToFloating);
8123 return CK_FloatingRealToComplex;
8124 case Type::STK_MemberPointer:
8125 llvm_unreachable("member pointer type in C");
8126 case Type::STK_FixedPoint:
8127 return CK_IntegralToFixedPoint;
8128 }
8129 llvm_unreachable("Should have returned before this");
8130
8131 case Type::STK_Floating:
8132 switch (DestTy->getScalarTypeKind()) {
8133 case Type::STK_Floating:
8134 return CK_FloatingCast;
8135 case Type::STK_Bool:
8136 return CK_FloatingToBoolean;
8137 case Type::STK_Integral:
8138 return CK_FloatingToIntegral;
8139 case Type::STK_FloatingComplex:
8140 Src = ImpCastExprToType(Src.get(),
8141 DestTy->castAs<ComplexType>()->getElementType(),
8142 CK_FloatingCast);
8143 return CK_FloatingRealToComplex;
8144 case Type::STK_IntegralComplex:
8145 Src = ImpCastExprToType(Src.get(),
8146 DestTy->castAs<ComplexType>()->getElementType(),
8147 CK_FloatingToIntegral);
8148 return CK_IntegralRealToComplex;
8149 case Type::STK_CPointer:
8150 case Type::STK_ObjCObjectPointer:
8151 case Type::STK_BlockPointer:
8152 llvm_unreachable("valid float->pointer cast?");
8153 case Type::STK_MemberPointer:
8154 llvm_unreachable("member pointer type in C");
8155 case Type::STK_FixedPoint:
8156 return CK_FloatingToFixedPoint;
8157 }
8158 llvm_unreachable("Should have returned before this");
8159
8160 case Type::STK_FloatingComplex:
8161 switch (DestTy->getScalarTypeKind()) {
8162 case Type::STK_FloatingComplex:
8163 return CK_FloatingComplexCast;
8164 case Type::STK_IntegralComplex:
8165 return CK_FloatingComplexToIntegralComplex;
8166 case Type::STK_Floating: {
8167 QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
8168 if (Context.hasSameType(ET, DestTy))
8169 return CK_FloatingComplexToReal;
8170 Src = ImpCastExprToType(Src.get(), ET, CK_FloatingComplexToReal);
8171 return CK_FloatingCast;
8172 }
8173 case Type::STK_Bool:
8174 return CK_FloatingComplexToBoolean;
8175 case Type::STK_Integral:
8176 Src = ImpCastExprToType(Src.get(),
8177 SrcTy->castAs<ComplexType>()->getElementType(),
8178 CK_FloatingComplexToReal);
8179 return CK_FloatingToIntegral;
8180 case Type::STK_CPointer:
8181 case Type::STK_ObjCObjectPointer:
8182 case Type::STK_BlockPointer:
8183 llvm_unreachable("valid complex float->pointer cast?");
8184 case Type::STK_MemberPointer:
8185 llvm_unreachable("member pointer type in C");
8186 case Type::STK_FixedPoint:
8187 Diag(Src.get()->getExprLoc(),
8188 diag::err_unimplemented_conversion_with_fixed_point_type)
8189 << SrcTy;
8190 return CK_IntegralCast;
8191 }
8192 llvm_unreachable("Should have returned before this");
8193
8194 case Type::STK_IntegralComplex:
8195 switch (DestTy->getScalarTypeKind()) {
8196 case Type::STK_FloatingComplex:
8197 return CK_IntegralComplexToFloatingComplex;
8198 case Type::STK_IntegralComplex:
8199 return CK_IntegralComplexCast;
8200 case Type::STK_Integral: {
8201 QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
8202 if (Context.hasSameType(ET, DestTy))
8203 return CK_IntegralComplexToReal;
8204 Src = ImpCastExprToType(Src.get(), ET, CK_IntegralComplexToReal);
8205 return CK_IntegralCast;
8206 }
8207 case Type::STK_Bool:
8208 return CK_IntegralComplexToBoolean;
8209 case Type::STK_Floating:
8210 Src = ImpCastExprToType(Src.get(),
8211 SrcTy->castAs<ComplexType>()->getElementType(),
8212 CK_IntegralComplexToReal);
8213 return CK_IntegralToFloating;
8214 case Type::STK_CPointer:
8215 case Type::STK_ObjCObjectPointer:
8216 case Type::STK_BlockPointer:
8217 llvm_unreachable("valid complex int->pointer cast?");
8218 case Type::STK_MemberPointer:
8219 llvm_unreachable("member pointer type in C");
8220 case Type::STK_FixedPoint:
8221 Diag(Src.get()->getExprLoc(),
8222 diag::err_unimplemented_conversion_with_fixed_point_type)
8223 << SrcTy;
8224 return CK_IntegralCast;
8225 }
8226 llvm_unreachable("Should have returned before this");
8227 }
8228
8229 llvm_unreachable("Unhandled scalar cast");
8230 }
8231
breakDownVectorType(QualType type,uint64_t & len,QualType & eltType)8232 static bool breakDownVectorType(QualType type, uint64_t &len,
8233 QualType &eltType) {
8234 // Vectors are simple.
8235 if (const VectorType *vecType = type->getAs<VectorType>()) {
8236 len = vecType->getNumElements();
8237 eltType = vecType->getElementType();
8238 assert(eltType->isScalarType());
8239 return true;
8240 }
8241
8242 // We allow lax conversion to and from non-vector types, but only if
8243 // they're real types (i.e. non-complex, non-pointer scalar types).
8244 if (!type->isRealType()) return false;
8245
8246 len = 1;
8247 eltType = type;
8248 return true;
8249 }
8250
8251 /// Are the two types SVE-bitcast-compatible types? I.e. is bitcasting from the
8252 /// first SVE type (e.g. an SVE VLAT) to the second type (e.g. an SVE VLST)
8253 /// allowed?
8254 ///
8255 /// This will also return false if the two given types do not make sense from
8256 /// the perspective of SVE bitcasts.
isValidSveBitcast(QualType srcTy,QualType destTy)8257 bool Sema::isValidSveBitcast(QualType srcTy, QualType destTy) {
8258 assert(srcTy->isVectorType() || destTy->isVectorType());
8259
8260 auto ValidScalableConversion = [](QualType FirstType, QualType SecondType) {
8261 if (!FirstType->isSVESizelessBuiltinType())
8262 return false;
8263
8264 const auto *VecTy = SecondType->getAs<VectorType>();
8265 return VecTy && VecTy->getVectorKind() == VectorKind::SveFixedLengthData;
8266 };
8267
8268 return ValidScalableConversion(srcTy, destTy) ||
8269 ValidScalableConversion(destTy, srcTy);
8270 }
8271
8272 /// Are the two types RVV-bitcast-compatible types? I.e. is bitcasting from the
8273 /// first RVV type (e.g. an RVV scalable type) to the second type (e.g. an RVV
8274 /// VLS type) allowed?
8275 ///
8276 /// This will also return false if the two given types do not make sense from
8277 /// the perspective of RVV bitcasts.
isValidRVVBitcast(QualType srcTy,QualType destTy)8278 bool Sema::isValidRVVBitcast(QualType srcTy, QualType destTy) {
8279 assert(srcTy->isVectorType() || destTy->isVectorType());
8280
8281 auto ValidScalableConversion = [](QualType FirstType, QualType SecondType) {
8282 if (!FirstType->isRVVSizelessBuiltinType())
8283 return false;
8284
8285 const auto *VecTy = SecondType->getAs<VectorType>();
8286 return VecTy && VecTy->getVectorKind() == VectorKind::RVVFixedLengthData;
8287 };
8288
8289 return ValidScalableConversion(srcTy, destTy) ||
8290 ValidScalableConversion(destTy, srcTy);
8291 }
8292
8293 /// Are the two types matrix types and do they have the same dimensions i.e.
8294 /// do they have the same number of rows and the same number of columns?
areMatrixTypesOfTheSameDimension(QualType srcTy,QualType destTy)8295 bool Sema::areMatrixTypesOfTheSameDimension(QualType srcTy, QualType destTy) {
8296 if (!destTy->isMatrixType() || !srcTy->isMatrixType())
8297 return false;
8298
8299 const ConstantMatrixType *matSrcType = srcTy->getAs<ConstantMatrixType>();
8300 const ConstantMatrixType *matDestType = destTy->getAs<ConstantMatrixType>();
8301
8302 return matSrcType->getNumRows() == matDestType->getNumRows() &&
8303 matSrcType->getNumColumns() == matDestType->getNumColumns();
8304 }
8305
areVectorTypesSameSize(QualType SrcTy,QualType DestTy)8306 bool Sema::areVectorTypesSameSize(QualType SrcTy, QualType DestTy) {
8307 assert(DestTy->isVectorType() || SrcTy->isVectorType());
8308
8309 uint64_t SrcLen, DestLen;
8310 QualType SrcEltTy, DestEltTy;
8311 if (!breakDownVectorType(SrcTy, SrcLen, SrcEltTy))
8312 return false;
8313 if (!breakDownVectorType(DestTy, DestLen, DestEltTy))
8314 return false;
8315
8316 // ASTContext::getTypeSize will return the size rounded up to a
8317 // power of 2, so instead of using that, we need to use the raw
8318 // element size multiplied by the element count.
8319 uint64_t SrcEltSize = Context.getTypeSize(SrcEltTy);
8320 uint64_t DestEltSize = Context.getTypeSize(DestEltTy);
8321
8322 return (SrcLen * SrcEltSize == DestLen * DestEltSize);
8323 }
8324
8325 // This returns true if at least one of the types is an altivec vector.
anyAltivecTypes(QualType SrcTy,QualType DestTy)8326 bool Sema::anyAltivecTypes(QualType SrcTy, QualType DestTy) {
8327 assert((DestTy->isVectorType() || SrcTy->isVectorType()) &&
8328 "expected at least one type to be a vector here");
8329
8330 bool IsSrcTyAltivec =
8331 SrcTy->isVectorType() && ((SrcTy->castAs<VectorType>()->getVectorKind() ==
8332 VectorKind::AltiVecVector) ||
8333 (SrcTy->castAs<VectorType>()->getVectorKind() ==
8334 VectorKind::AltiVecBool) ||
8335 (SrcTy->castAs<VectorType>()->getVectorKind() ==
8336 VectorKind::AltiVecPixel));
8337
8338 bool IsDestTyAltivec = DestTy->isVectorType() &&
8339 ((DestTy->castAs<VectorType>()->getVectorKind() ==
8340 VectorKind::AltiVecVector) ||
8341 (DestTy->castAs<VectorType>()->getVectorKind() ==
8342 VectorKind::AltiVecBool) ||
8343 (DestTy->castAs<VectorType>()->getVectorKind() ==
8344 VectorKind::AltiVecPixel));
8345
8346 return (IsSrcTyAltivec || IsDestTyAltivec);
8347 }
8348
8349 /// Are the two types lax-compatible vector types? That is, given
8350 /// that one of them is a vector, do they have equal storage sizes,
8351 /// where the storage size is the number of elements times the element
8352 /// size?
8353 ///
8354 /// This will also return false if either of the types is neither a
8355 /// vector nor a real type.
areLaxCompatibleVectorTypes(QualType srcTy,QualType destTy)8356 bool Sema::areLaxCompatibleVectorTypes(QualType srcTy, QualType destTy) {
8357 assert(destTy->isVectorType() || srcTy->isVectorType());
8358
8359 // Disallow lax conversions between scalars and ExtVectors (these
8360 // conversions are allowed for other vector types because common headers
8361 // depend on them). Most scalar OP ExtVector cases are handled by the
8362 // splat path anyway, which does what we want (convert, not bitcast).
8363 // What this rules out for ExtVectors is crazy things like char4*float.
8364 if (srcTy->isScalarType() && destTy->isExtVectorType()) return false;
8365 if (destTy->isScalarType() && srcTy->isExtVectorType()) return false;
8366
8367 return areVectorTypesSameSize(srcTy, destTy);
8368 }
8369
8370 /// Is this a legal conversion between two types, one of which is
8371 /// known to be a vector type?
isLaxVectorConversion(QualType srcTy,QualType destTy)8372 bool Sema::isLaxVectorConversion(QualType srcTy, QualType destTy) {
8373 assert(destTy->isVectorType() || srcTy->isVectorType());
8374
8375 switch (Context.getLangOpts().getLaxVectorConversions()) {
8376 case LangOptions::LaxVectorConversionKind::None:
8377 return false;
8378
8379 case LangOptions::LaxVectorConversionKind::Integer:
8380 if (!srcTy->isIntegralOrEnumerationType()) {
8381 auto *Vec = srcTy->getAs<VectorType>();
8382 if (!Vec || !Vec->getElementType()->isIntegralOrEnumerationType())
8383 return false;
8384 }
8385 if (!destTy->isIntegralOrEnumerationType()) {
8386 auto *Vec = destTy->getAs<VectorType>();
8387 if (!Vec || !Vec->getElementType()->isIntegralOrEnumerationType())
8388 return false;
8389 }
8390 // OK, integer (vector) -> integer (vector) bitcast.
8391 break;
8392
8393 case LangOptions::LaxVectorConversionKind::All:
8394 break;
8395 }
8396
8397 return areLaxCompatibleVectorTypes(srcTy, destTy);
8398 }
8399
CheckMatrixCast(SourceRange R,QualType DestTy,QualType SrcTy,CastKind & Kind)8400 bool Sema::CheckMatrixCast(SourceRange R, QualType DestTy, QualType SrcTy,
8401 CastKind &Kind) {
8402 if (SrcTy->isMatrixType() && DestTy->isMatrixType()) {
8403 if (!areMatrixTypesOfTheSameDimension(SrcTy, DestTy)) {
8404 return Diag(R.getBegin(), diag::err_invalid_conversion_between_matrixes)
8405 << DestTy << SrcTy << R;
8406 }
8407 } else if (SrcTy->isMatrixType()) {
8408 return Diag(R.getBegin(),
8409 diag::err_invalid_conversion_between_matrix_and_type)
8410 << SrcTy << DestTy << R;
8411 } else if (DestTy->isMatrixType()) {
8412 return Diag(R.getBegin(),
8413 diag::err_invalid_conversion_between_matrix_and_type)
8414 << DestTy << SrcTy << R;
8415 }
8416
8417 Kind = CK_MatrixCast;
8418 return false;
8419 }
8420
CheckVectorCast(SourceRange R,QualType VectorTy,QualType Ty,CastKind & Kind)8421 bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
8422 CastKind &Kind) {
8423 assert(VectorTy->isVectorType() && "Not a vector type!");
8424
8425 if (Ty->isVectorType() || Ty->isIntegralType(Context)) {
8426 if (!areLaxCompatibleVectorTypes(Ty, VectorTy))
8427 return Diag(R.getBegin(),
8428 Ty->isVectorType() ?
8429 diag::err_invalid_conversion_between_vectors :
8430 diag::err_invalid_conversion_between_vector_and_integer)
8431 << VectorTy << Ty << R;
8432 } else
8433 return Diag(R.getBegin(),
8434 diag::err_invalid_conversion_between_vector_and_scalar)
8435 << VectorTy << Ty << R;
8436
8437 Kind = CK_BitCast;
8438 return false;
8439 }
8440
prepareVectorSplat(QualType VectorTy,Expr * SplattedExpr)8441 ExprResult Sema::prepareVectorSplat(QualType VectorTy, Expr *SplattedExpr) {
8442 QualType DestElemTy = VectorTy->castAs<VectorType>()->getElementType();
8443
8444 if (DestElemTy == SplattedExpr->getType())
8445 return SplattedExpr;
8446
8447 assert(DestElemTy->isFloatingType() ||
8448 DestElemTy->isIntegralOrEnumerationType());
8449
8450 CastKind CK;
8451 if (VectorTy->isExtVectorType() && SplattedExpr->getType()->isBooleanType()) {
8452 // OpenCL requires that we convert `true` boolean expressions to -1, but
8453 // only when splatting vectors.
8454 if (DestElemTy->isFloatingType()) {
8455 // To avoid having to have a CK_BooleanToSignedFloating cast kind, we cast
8456 // in two steps: boolean to signed integral, then to floating.
8457 ExprResult CastExprRes = ImpCastExprToType(SplattedExpr, Context.IntTy,
8458 CK_BooleanToSignedIntegral);
8459 SplattedExpr = CastExprRes.get();
8460 CK = CK_IntegralToFloating;
8461 } else {
8462 CK = CK_BooleanToSignedIntegral;
8463 }
8464 } else {
8465 ExprResult CastExprRes = SplattedExpr;
8466 CK = PrepareScalarCast(CastExprRes, DestElemTy);
8467 if (CastExprRes.isInvalid())
8468 return ExprError();
8469 SplattedExpr = CastExprRes.get();
8470 }
8471 return ImpCastExprToType(SplattedExpr, DestElemTy, CK);
8472 }
8473
CheckExtVectorCast(SourceRange R,QualType DestTy,Expr * CastExpr,CastKind & Kind)8474 ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
8475 Expr *CastExpr, CastKind &Kind) {
8476 assert(DestTy->isExtVectorType() && "Not an extended vector type!");
8477
8478 QualType SrcTy = CastExpr->getType();
8479
8480 // If SrcTy is a VectorType, the total size must match to explicitly cast to
8481 // an ExtVectorType.
8482 // In OpenCL, casts between vectors of different types are not allowed.
8483 // (See OpenCL 6.2).
8484 if (SrcTy->isVectorType()) {
8485 if (!areLaxCompatibleVectorTypes(SrcTy, DestTy) ||
8486 (getLangOpts().OpenCL &&
8487 !Context.hasSameUnqualifiedType(DestTy, SrcTy))) {
8488 Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
8489 << DestTy << SrcTy << R;
8490 return ExprError();
8491 }
8492 Kind = CK_BitCast;
8493 return CastExpr;
8494 }
8495
8496 // All non-pointer scalars can be cast to ExtVector type. The appropriate
8497 // conversion will take place first from scalar to elt type, and then
8498 // splat from elt type to vector.
8499 if (SrcTy->isPointerType())
8500 return Diag(R.getBegin(),
8501 diag::err_invalid_conversion_between_vector_and_scalar)
8502 << DestTy << SrcTy << R;
8503
8504 Kind = CK_VectorSplat;
8505 return prepareVectorSplat(DestTy, CastExpr);
8506 }
8507
8508 ExprResult
ActOnCastExpr(Scope * S,SourceLocation LParenLoc,Declarator & D,ParsedType & Ty,SourceLocation RParenLoc,Expr * CastExpr)8509 Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
8510 Declarator &D, ParsedType &Ty,
8511 SourceLocation RParenLoc, Expr *CastExpr) {
8512 assert(!D.isInvalidType() && (CastExpr != nullptr) &&
8513 "ActOnCastExpr(): missing type or expr");
8514
8515 TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, CastExpr->getType());
8516 if (D.isInvalidType())
8517 return ExprError();
8518
8519 if (getLangOpts().CPlusPlus) {
8520 // Check that there are no default arguments (C++ only).
8521 CheckExtraCXXDefaultArguments(D);
8522 } else {
8523 // Make sure any TypoExprs have been dealt with.
8524 ExprResult Res = CorrectDelayedTyposInExpr(CastExpr);
8525 if (!Res.isUsable())
8526 return ExprError();
8527 CastExpr = Res.get();
8528 }
8529
8530 checkUnusedDeclAttributes(D);
8531
8532 QualType castType = castTInfo->getType();
8533 Ty = CreateParsedType(castType, castTInfo);
8534
8535 bool isVectorLiteral = false;
8536
8537 // Check for an altivec or OpenCL literal,
8538 // i.e. all the elements are integer constants.
8539 ParenExpr *PE = dyn_cast<ParenExpr>(CastExpr);
8540 ParenListExpr *PLE = dyn_cast<ParenListExpr>(CastExpr);
8541 if ((getLangOpts().AltiVec || getLangOpts().ZVector || getLangOpts().OpenCL)
8542 && castType->isVectorType() && (PE || PLE)) {
8543 if (PLE && PLE->getNumExprs() == 0) {
8544 Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer);
8545 return ExprError();
8546 }
8547 if (PE || PLE->getNumExprs() == 1) {
8548 Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0));
8549 if (!E->isTypeDependent() && !E->getType()->isVectorType())
8550 isVectorLiteral = true;
8551 }
8552 else
8553 isVectorLiteral = true;
8554 }
8555
8556 // If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
8557 // then handle it as such.
8558 if (isVectorLiteral)
8559 return BuildVectorLiteral(LParenLoc, RParenLoc, CastExpr, castTInfo);
8560
8561 // If the Expr being casted is a ParenListExpr, handle it specially.
8562 // This is not an AltiVec-style cast, so turn the ParenListExpr into a
8563 // sequence of BinOp comma operators.
8564 if (isa<ParenListExpr>(CastExpr)) {
8565 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, CastExpr);
8566 if (Result.isInvalid()) return ExprError();
8567 CastExpr = Result.get();
8568 }
8569
8570 if (getLangOpts().CPlusPlus && !castType->isVoidType())
8571 Diag(LParenLoc, diag::warn_old_style_cast) << CastExpr->getSourceRange();
8572
8573 CheckTollFreeBridgeCast(castType, CastExpr);
8574
8575 CheckObjCBridgeRelatedCast(castType, CastExpr);
8576
8577 DiscardMisalignedMemberAddress(castType.getTypePtr(), CastExpr);
8578
8579 return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, CastExpr);
8580 }
8581
BuildVectorLiteral(SourceLocation LParenLoc,SourceLocation RParenLoc,Expr * E,TypeSourceInfo * TInfo)8582 ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
8583 SourceLocation RParenLoc, Expr *E,
8584 TypeSourceInfo *TInfo) {
8585 assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&
8586 "Expected paren or paren list expression");
8587
8588 Expr **exprs;
8589 unsigned numExprs;
8590 Expr *subExpr;
8591 SourceLocation LiteralLParenLoc, LiteralRParenLoc;
8592 if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) {
8593 LiteralLParenLoc = PE->getLParenLoc();
8594 LiteralRParenLoc = PE->getRParenLoc();
8595 exprs = PE->getExprs();
8596 numExprs = PE->getNumExprs();
8597 } else { // isa<ParenExpr> by assertion at function entrance
8598 LiteralLParenLoc = cast<ParenExpr>(E)->getLParen();
8599 LiteralRParenLoc = cast<ParenExpr>(E)->getRParen();
8600 subExpr = cast<ParenExpr>(E)->getSubExpr();
8601 exprs = &subExpr;
8602 numExprs = 1;
8603 }
8604
8605 QualType Ty = TInfo->getType();
8606 assert(Ty->isVectorType() && "Expected vector type");
8607
8608 SmallVector<Expr *, 8> initExprs;
8609 const VectorType *VTy = Ty->castAs<VectorType>();
8610 unsigned numElems = VTy->getNumElements();
8611
8612 // '(...)' form of vector initialization in AltiVec: the number of
8613 // initializers must be one or must match the size of the vector.
8614 // If a single value is specified in the initializer then it will be
8615 // replicated to all the components of the vector
8616 if (CheckAltivecInitFromScalar(E->getSourceRange(), Ty,
8617 VTy->getElementType()))
8618 return ExprError();
8619 if (ShouldSplatAltivecScalarInCast(VTy)) {
8620 // The number of initializers must be one or must match the size of the
8621 // vector. If a single value is specified in the initializer then it will
8622 // be replicated to all the components of the vector
8623 if (numExprs == 1) {
8624 QualType ElemTy = VTy->getElementType();
8625 ExprResult Literal = DefaultLvalueConversion(exprs[0]);
8626 if (Literal.isInvalid())
8627 return ExprError();
8628 Literal = ImpCastExprToType(Literal.get(), ElemTy,
8629 PrepareScalarCast(Literal, ElemTy));
8630 return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
8631 }
8632 else if (numExprs < numElems) {
8633 Diag(E->getExprLoc(),
8634 diag::err_incorrect_number_of_vector_initializers);
8635 return ExprError();
8636 }
8637 else
8638 initExprs.append(exprs, exprs + numExprs);
8639 }
8640 else {
8641 // For OpenCL, when the number of initializers is a single value,
8642 // it will be replicated to all components of the vector.
8643 if (getLangOpts().OpenCL && VTy->getVectorKind() == VectorKind::Generic &&
8644 numExprs == 1) {
8645 QualType ElemTy = VTy->getElementType();
8646 ExprResult Literal = DefaultLvalueConversion(exprs[0]);
8647 if (Literal.isInvalid())
8648 return ExprError();
8649 Literal = ImpCastExprToType(Literal.get(), ElemTy,
8650 PrepareScalarCast(Literal, ElemTy));
8651 return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
8652 }
8653
8654 initExprs.append(exprs, exprs + numExprs);
8655 }
8656 // FIXME: This means that pretty-printing the final AST will produce curly
8657 // braces instead of the original commas.
8658 InitListExpr *initE = new (Context) InitListExpr(Context, LiteralLParenLoc,
8659 initExprs, LiteralRParenLoc);
8660 initE->setType(Ty);
8661 return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE);
8662 }
8663
8664 /// This is not an AltiVec-style cast or or C++ direct-initialization, so turn
8665 /// the ParenListExpr into a sequence of comma binary operators.
8666 ExprResult
MaybeConvertParenListExprToParenExpr(Scope * S,Expr * OrigExpr)8667 Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) {
8668 ParenListExpr *E = dyn_cast<ParenListExpr>(OrigExpr);
8669 if (!E)
8670 return OrigExpr;
8671
8672 ExprResult Result(E->getExpr(0));
8673
8674 for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
8675 Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
8676 E->getExpr(i));
8677
8678 if (Result.isInvalid()) return ExprError();
8679
8680 return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
8681 }
8682
ActOnParenListExpr(SourceLocation L,SourceLocation R,MultiExprArg Val)8683 ExprResult Sema::ActOnParenListExpr(SourceLocation L,
8684 SourceLocation R,
8685 MultiExprArg Val) {
8686 return ParenListExpr::Create(Context, L, Val, R);
8687 }
8688
8689 /// Emit a specialized diagnostic when one expression is a null pointer
8690 /// constant and the other is not a pointer. Returns true if a diagnostic is
8691 /// emitted.
DiagnoseConditionalForNull(const Expr * LHSExpr,const Expr * RHSExpr,SourceLocation QuestionLoc)8692 bool Sema::DiagnoseConditionalForNull(const Expr *LHSExpr, const Expr *RHSExpr,
8693 SourceLocation QuestionLoc) {
8694 const Expr *NullExpr = LHSExpr;
8695 const Expr *NonPointerExpr = RHSExpr;
8696 Expr::NullPointerConstantKind NullKind =
8697 NullExpr->isNullPointerConstant(Context,
8698 Expr::NPC_ValueDependentIsNotNull);
8699
8700 if (NullKind == Expr::NPCK_NotNull) {
8701 NullExpr = RHSExpr;
8702 NonPointerExpr = LHSExpr;
8703 NullKind =
8704 NullExpr->isNullPointerConstant(Context,
8705 Expr::NPC_ValueDependentIsNotNull);
8706 }
8707
8708 if (NullKind == Expr::NPCK_NotNull)
8709 return false;
8710
8711 if (NullKind == Expr::NPCK_ZeroExpression)
8712 return false;
8713
8714 if (NullKind == Expr::NPCK_ZeroLiteral) {
8715 // In this case, check to make sure that we got here from a "NULL"
8716 // string in the source code.
8717 NullExpr = NullExpr->IgnoreParenImpCasts();
8718 SourceLocation loc = NullExpr->getExprLoc();
8719 if (!findMacroSpelling(loc, "NULL"))
8720 return false;
8721 }
8722
8723 int DiagType = (NullKind == Expr::NPCK_CXX11_nullptr);
8724 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
8725 << NonPointerExpr->getType() << DiagType
8726 << NonPointerExpr->getSourceRange();
8727 return true;
8728 }
8729
8730 /// Return false if the condition expression is valid, true otherwise.
checkCondition(Sema & S,const Expr * Cond,SourceLocation QuestionLoc)8731 static bool checkCondition(Sema &S, const Expr *Cond,
8732 SourceLocation QuestionLoc) {
8733 QualType CondTy = Cond->getType();
8734
8735 // OpenCL v1.1 s6.3.i says the condition cannot be a floating point type.
8736 if (S.getLangOpts().OpenCL && CondTy->isFloatingType()) {
8737 S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
8738 << CondTy << Cond->getSourceRange();
8739 return true;
8740 }
8741
8742 // C99 6.5.15p2
8743 if (CondTy->isScalarType()) return false;
8744
8745 S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_scalar)
8746 << CondTy << Cond->getSourceRange();
8747 return true;
8748 }
8749
8750 /// Return false if the NullExpr can be promoted to PointerTy,
8751 /// true otherwise.
checkConditionalNullPointer(Sema & S,ExprResult & NullExpr,QualType PointerTy)8752 static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr,
8753 QualType PointerTy) {
8754 if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) ||
8755 !NullExpr.get()->isNullPointerConstant(S.Context,
8756 Expr::NPC_ValueDependentIsNull))
8757 return true;
8758
8759 NullExpr = S.ImpCastExprToType(NullExpr.get(), PointerTy, CK_NullToPointer);
8760 return false;
8761 }
8762
8763 /// Checks compatibility between two pointers and return the resulting
8764 /// type.
checkConditionalPointerCompatibility(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc)8765 static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS,
8766 ExprResult &RHS,
8767 SourceLocation Loc) {
8768 QualType LHSTy = LHS.get()->getType();
8769 QualType RHSTy = RHS.get()->getType();
8770
8771 if (S.Context.hasSameType(LHSTy, RHSTy)) {
8772 // Two identical pointers types are always compatible.
8773 return S.Context.getCommonSugaredType(LHSTy, RHSTy);
8774 }
8775
8776 QualType lhptee, rhptee;
8777
8778 // Get the pointee types.
8779 bool IsBlockPointer = false;
8780 if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) {
8781 lhptee = LHSBTy->getPointeeType();
8782 rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType();
8783 IsBlockPointer = true;
8784 } else {
8785 lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
8786 rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
8787 }
8788
8789 // C99 6.5.15p6: If both operands are pointers to compatible types or to
8790 // differently qualified versions of compatible types, the result type is
8791 // a pointer to an appropriately qualified version of the composite
8792 // type.
8793
8794 // Only CVR-qualifiers exist in the standard, and the differently-qualified
8795 // clause doesn't make sense for our extensions. E.g. address space 2 should
8796 // be incompatible with address space 3: they may live on different devices or
8797 // anything.
8798 Qualifiers lhQual = lhptee.getQualifiers();
8799 Qualifiers rhQual = rhptee.getQualifiers();
8800
8801 LangAS ResultAddrSpace = LangAS::Default;
8802 LangAS LAddrSpace = lhQual.getAddressSpace();
8803 LangAS RAddrSpace = rhQual.getAddressSpace();
8804
8805 // OpenCL v1.1 s6.5 - Conversion between pointers to distinct address
8806 // spaces is disallowed.
8807 if (lhQual.isAddressSpaceSupersetOf(rhQual))
8808 ResultAddrSpace = LAddrSpace;
8809 else if (rhQual.isAddressSpaceSupersetOf(lhQual))
8810 ResultAddrSpace = RAddrSpace;
8811 else {
8812 S.Diag(Loc, diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
8813 << LHSTy << RHSTy << 2 << LHS.get()->getSourceRange()
8814 << RHS.get()->getSourceRange();
8815 return QualType();
8816 }
8817
8818 unsigned MergedCVRQual = lhQual.getCVRQualifiers() | rhQual.getCVRQualifiers();
8819 auto LHSCastKind = CK_BitCast, RHSCastKind = CK_BitCast;
8820 lhQual.removeCVRQualifiers();
8821 rhQual.removeCVRQualifiers();
8822
8823 // OpenCL v2.0 specification doesn't extend compatibility of type qualifiers
8824 // (C99 6.7.3) for address spaces. We assume that the check should behave in
8825 // the same manner as it's defined for CVR qualifiers, so for OpenCL two
8826 // qual types are compatible iff
8827 // * corresponded types are compatible
8828 // * CVR qualifiers are equal
8829 // * address spaces are equal
8830 // Thus for conditional operator we merge CVR and address space unqualified
8831 // pointees and if there is a composite type we return a pointer to it with
8832 // merged qualifiers.
8833 LHSCastKind =
8834 LAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion;
8835 RHSCastKind =
8836 RAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion;
8837 lhQual.removeAddressSpace();
8838 rhQual.removeAddressSpace();
8839
8840 lhptee = S.Context.getQualifiedType(lhptee.getUnqualifiedType(), lhQual);
8841 rhptee = S.Context.getQualifiedType(rhptee.getUnqualifiedType(), rhQual);
8842
8843 QualType CompositeTy = S.Context.mergeTypes(
8844 lhptee, rhptee, /*OfBlockPointer=*/false, /*Unqualified=*/false,
8845 /*BlockReturnType=*/false, /*IsConditionalOperator=*/true);
8846
8847 if (CompositeTy.isNull()) {
8848 // In this situation, we assume void* type. No especially good
8849 // reason, but this is what gcc does, and we do have to pick
8850 // to get a consistent AST.
8851 QualType incompatTy;
8852 incompatTy = S.Context.getPointerType(
8853 S.Context.getAddrSpaceQualType(S.Context.VoidTy, ResultAddrSpace));
8854 LHS = S.ImpCastExprToType(LHS.get(), incompatTy, LHSCastKind);
8855 RHS = S.ImpCastExprToType(RHS.get(), incompatTy, RHSCastKind);
8856
8857 // FIXME: For OpenCL the warning emission and cast to void* leaves a room
8858 // for casts between types with incompatible address space qualifiers.
8859 // For the following code the compiler produces casts between global and
8860 // local address spaces of the corresponded innermost pointees:
8861 // local int *global *a;
8862 // global int *global *b;
8863 // a = (0 ? a : b); // see C99 6.5.16.1.p1.
8864 S.Diag(Loc, diag::ext_typecheck_cond_incompatible_pointers)
8865 << LHSTy << RHSTy << LHS.get()->getSourceRange()
8866 << RHS.get()->getSourceRange();
8867
8868 return incompatTy;
8869 }
8870
8871 // The pointer types are compatible.
8872 // In case of OpenCL ResultTy should have the address space qualifier
8873 // which is a superset of address spaces of both the 2nd and the 3rd
8874 // operands of the conditional operator.
8875 QualType ResultTy = [&, ResultAddrSpace]() {
8876 if (S.getLangOpts().OpenCL) {
8877 Qualifiers CompositeQuals = CompositeTy.getQualifiers();
8878 CompositeQuals.setAddressSpace(ResultAddrSpace);
8879 return S.Context
8880 .getQualifiedType(CompositeTy.getUnqualifiedType(), CompositeQuals)
8881 .withCVRQualifiers(MergedCVRQual);
8882 }
8883 return CompositeTy.withCVRQualifiers(MergedCVRQual);
8884 }();
8885 if (IsBlockPointer)
8886 ResultTy = S.Context.getBlockPointerType(ResultTy);
8887 else
8888 ResultTy = S.Context.getPointerType(ResultTy);
8889
8890 LHS = S.ImpCastExprToType(LHS.get(), ResultTy, LHSCastKind);
8891 RHS = S.ImpCastExprToType(RHS.get(), ResultTy, RHSCastKind);
8892 return ResultTy;
8893 }
8894
8895 /// Return the resulting type when the operands are both block pointers.
checkConditionalBlockPointerCompatibility(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc)8896 static QualType checkConditionalBlockPointerCompatibility(Sema &S,
8897 ExprResult &LHS,
8898 ExprResult &RHS,
8899 SourceLocation Loc) {
8900 QualType LHSTy = LHS.get()->getType();
8901 QualType RHSTy = RHS.get()->getType();
8902
8903 if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
8904 if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
8905 QualType destType = S.Context.getPointerType(S.Context.VoidTy);
8906 LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
8907 RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
8908 return destType;
8909 }
8910 S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
8911 << LHSTy << RHSTy << LHS.get()->getSourceRange()
8912 << RHS.get()->getSourceRange();
8913 return QualType();
8914 }
8915
8916 // We have 2 block pointer types.
8917 return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
8918 }
8919
8920 /// Return the resulting type when the operands are both pointers.
8921 static QualType
checkConditionalObjectPointersCompatibility(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc)8922 checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS,
8923 ExprResult &RHS,
8924 SourceLocation Loc) {
8925 // get the pointer types
8926 QualType LHSTy = LHS.get()->getType();
8927 QualType RHSTy = RHS.get()->getType();
8928
8929 // get the "pointed to" types
8930 QualType lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
8931 QualType rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
8932
8933 // ignore qualifiers on void (C99 6.5.15p3, clause 6)
8934 if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
8935 // Figure out necessary qualifiers (C99 6.5.15p6)
8936 QualType destPointee
8937 = S.Context.getQualifiedType(lhptee, rhptee.getQualifiers());
8938 QualType destType = S.Context.getPointerType(destPointee);
8939 // Add qualifiers if necessary.
8940 LHS = S.ImpCastExprToType(LHS.get(), destType, CK_NoOp);
8941 // Promote to void*.
8942 RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
8943 return destType;
8944 }
8945 if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
8946 QualType destPointee
8947 = S.Context.getQualifiedType(rhptee, lhptee.getQualifiers());
8948 QualType destType = S.Context.getPointerType(destPointee);
8949 // Add qualifiers if necessary.
8950 RHS = S.ImpCastExprToType(RHS.get(), destType, CK_NoOp);
8951 // Promote to void*.
8952 LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
8953 return destType;
8954 }
8955
8956 return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
8957 }
8958
8959 /// Return false if the first expression is not an integer and the second
8960 /// expression is not a pointer, true otherwise.
checkPointerIntegerMismatch(Sema & S,ExprResult & Int,Expr * PointerExpr,SourceLocation Loc,bool IsIntFirstExpr)8961 static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int,
8962 Expr* PointerExpr, SourceLocation Loc,
8963 bool IsIntFirstExpr) {
8964 if (!PointerExpr->getType()->isPointerType() ||
8965 !Int.get()->getType()->isIntegerType())
8966 return false;
8967
8968 Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr;
8969 Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get();
8970
8971 S.Diag(Loc, diag::ext_typecheck_cond_pointer_integer_mismatch)
8972 << Expr1->getType() << Expr2->getType()
8973 << Expr1->getSourceRange() << Expr2->getSourceRange();
8974 Int = S.ImpCastExprToType(Int.get(), PointerExpr->getType(),
8975 CK_IntegralToPointer);
8976 return true;
8977 }
8978
8979 /// Simple conversion between integer and floating point types.
8980 ///
8981 /// Used when handling the OpenCL conditional operator where the
8982 /// condition is a vector while the other operands are scalar.
8983 ///
8984 /// OpenCL v1.1 s6.3.i and s6.11.6 together require that the scalar
8985 /// types are either integer or floating type. Between the two
8986 /// operands, the type with the higher rank is defined as the "result
8987 /// type". The other operand needs to be promoted to the same type. No
8988 /// other type promotion is allowed. We cannot use
8989 /// UsualArithmeticConversions() for this purpose, since it always
8990 /// promotes promotable types.
OpenCLArithmeticConversions(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation QuestionLoc)8991 static QualType OpenCLArithmeticConversions(Sema &S, ExprResult &LHS,
8992 ExprResult &RHS,
8993 SourceLocation QuestionLoc) {
8994 LHS = S.DefaultFunctionArrayLvalueConversion(LHS.get());
8995 if (LHS.isInvalid())
8996 return QualType();
8997 RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
8998 if (RHS.isInvalid())
8999 return QualType();
9000
9001 // For conversion purposes, we ignore any qualifiers.
9002 // For example, "const float" and "float" are equivalent.
9003 QualType LHSType =
9004 S.Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
9005 QualType RHSType =
9006 S.Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
9007
9008 if (!LHSType->isIntegerType() && !LHSType->isRealFloatingType()) {
9009 S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
9010 << LHSType << LHS.get()->getSourceRange();
9011 return QualType();
9012 }
9013
9014 if (!RHSType->isIntegerType() && !RHSType->isRealFloatingType()) {
9015 S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
9016 << RHSType << RHS.get()->getSourceRange();
9017 return QualType();
9018 }
9019
9020 // If both types are identical, no conversion is needed.
9021 if (LHSType == RHSType)
9022 return LHSType;
9023
9024 // Now handle "real" floating types (i.e. float, double, long double).
9025 if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
9026 return handleFloatConversion(S, LHS, RHS, LHSType, RHSType,
9027 /*IsCompAssign = */ false);
9028
9029 // Finally, we have two differing integer types.
9030 return handleIntegerConversion<doIntegralCast, doIntegralCast>
9031 (S, LHS, RHS, LHSType, RHSType, /*IsCompAssign = */ false);
9032 }
9033
9034 /// Convert scalar operands to a vector that matches the
9035 /// condition in length.
9036 ///
9037 /// Used when handling the OpenCL conditional operator where the
9038 /// condition is a vector while the other operands are scalar.
9039 ///
9040 /// We first compute the "result type" for the scalar operands
9041 /// according to OpenCL v1.1 s6.3.i. Both operands are then converted
9042 /// into a vector of that type where the length matches the condition
9043 /// vector type. s6.11.6 requires that the element types of the result
9044 /// and the condition must have the same number of bits.
9045 static QualType
OpenCLConvertScalarsToVectors(Sema & S,ExprResult & LHS,ExprResult & RHS,QualType CondTy,SourceLocation QuestionLoc)9046 OpenCLConvertScalarsToVectors(Sema &S, ExprResult &LHS, ExprResult &RHS,
9047 QualType CondTy, SourceLocation QuestionLoc) {
9048 QualType ResTy = OpenCLArithmeticConversions(S, LHS, RHS, QuestionLoc);
9049 if (ResTy.isNull()) return QualType();
9050
9051 const VectorType *CV = CondTy->getAs<VectorType>();
9052 assert(CV);
9053
9054 // Determine the vector result type
9055 unsigned NumElements = CV->getNumElements();
9056 QualType VectorTy = S.Context.getExtVectorType(ResTy, NumElements);
9057
9058 // Ensure that all types have the same number of bits
9059 if (S.Context.getTypeSize(CV->getElementType())
9060 != S.Context.getTypeSize(ResTy)) {
9061 // Since VectorTy is created internally, it does not pretty print
9062 // with an OpenCL name. Instead, we just print a description.
9063 std::string EleTyName = ResTy.getUnqualifiedType().getAsString();
9064 SmallString<64> Str;
9065 llvm::raw_svector_ostream OS(Str);
9066 OS << "(vector of " << NumElements << " '" << EleTyName << "' values)";
9067 S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
9068 << CondTy << OS.str();
9069 return QualType();
9070 }
9071
9072 // Convert operands to the vector result type
9073 LHS = S.ImpCastExprToType(LHS.get(), VectorTy, CK_VectorSplat);
9074 RHS = S.ImpCastExprToType(RHS.get(), VectorTy, CK_VectorSplat);
9075
9076 return VectorTy;
9077 }
9078
9079 /// Return false if this is a valid OpenCL condition vector
checkOpenCLConditionVector(Sema & S,Expr * Cond,SourceLocation QuestionLoc)9080 static bool checkOpenCLConditionVector(Sema &S, Expr *Cond,
9081 SourceLocation QuestionLoc) {
9082 // OpenCL v1.1 s6.11.6 says the elements of the vector must be of
9083 // integral type.
9084 const VectorType *CondTy = Cond->getType()->getAs<VectorType>();
9085 assert(CondTy);
9086 QualType EleTy = CondTy->getElementType();
9087 if (EleTy->isIntegerType()) return false;
9088
9089 S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
9090 << Cond->getType() << Cond->getSourceRange();
9091 return true;
9092 }
9093
9094 /// Return false if the vector condition type and the vector
9095 /// result type are compatible.
9096 ///
9097 /// OpenCL v1.1 s6.11.6 requires that both vector types have the same
9098 /// number of elements, and their element types have the same number
9099 /// of bits.
checkVectorResult(Sema & S,QualType CondTy,QualType VecResTy,SourceLocation QuestionLoc)9100 static bool checkVectorResult(Sema &S, QualType CondTy, QualType VecResTy,
9101 SourceLocation QuestionLoc) {
9102 const VectorType *CV = CondTy->getAs<VectorType>();
9103 const VectorType *RV = VecResTy->getAs<VectorType>();
9104 assert(CV && RV);
9105
9106 if (CV->getNumElements() != RV->getNumElements()) {
9107 S.Diag(QuestionLoc, diag::err_conditional_vector_size)
9108 << CondTy << VecResTy;
9109 return true;
9110 }
9111
9112 QualType CVE = CV->getElementType();
9113 QualType RVE = RV->getElementType();
9114
9115 if (S.Context.getTypeSize(CVE) != S.Context.getTypeSize(RVE)) {
9116 S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
9117 << CondTy << VecResTy;
9118 return true;
9119 }
9120
9121 return false;
9122 }
9123
9124 /// Return the resulting type for the conditional operator in
9125 /// OpenCL (aka "ternary selection operator", OpenCL v1.1
9126 /// s6.3.i) when the condition is a vector type.
9127 static QualType
OpenCLCheckVectorConditional(Sema & S,ExprResult & Cond,ExprResult & LHS,ExprResult & RHS,SourceLocation QuestionLoc)9128 OpenCLCheckVectorConditional(Sema &S, ExprResult &Cond,
9129 ExprResult &LHS, ExprResult &RHS,
9130 SourceLocation QuestionLoc) {
9131 Cond = S.DefaultFunctionArrayLvalueConversion(Cond.get());
9132 if (Cond.isInvalid())
9133 return QualType();
9134 QualType CondTy = Cond.get()->getType();
9135
9136 if (checkOpenCLConditionVector(S, Cond.get(), QuestionLoc))
9137 return QualType();
9138
9139 // If either operand is a vector then find the vector type of the
9140 // result as specified in OpenCL v1.1 s6.3.i.
9141 if (LHS.get()->getType()->isVectorType() ||
9142 RHS.get()->getType()->isVectorType()) {
9143 bool IsBoolVecLang =
9144 !S.getLangOpts().OpenCL && !S.getLangOpts().OpenCLCPlusPlus;
9145 QualType VecResTy =
9146 S.CheckVectorOperands(LHS, RHS, QuestionLoc,
9147 /*isCompAssign*/ false,
9148 /*AllowBothBool*/ true,
9149 /*AllowBoolConversions*/ false,
9150 /*AllowBooleanOperation*/ IsBoolVecLang,
9151 /*ReportInvalid*/ true);
9152 if (VecResTy.isNull())
9153 return QualType();
9154 // The result type must match the condition type as specified in
9155 // OpenCL v1.1 s6.11.6.
9156 if (checkVectorResult(S, CondTy, VecResTy, QuestionLoc))
9157 return QualType();
9158 return VecResTy;
9159 }
9160
9161 // Both operands are scalar.
9162 return OpenCLConvertScalarsToVectors(S, LHS, RHS, CondTy, QuestionLoc);
9163 }
9164
9165 /// Return true if the Expr is block type
checkBlockType(Sema & S,const Expr * E)9166 static bool checkBlockType(Sema &S, const Expr *E) {
9167 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
9168 QualType Ty = CE->getCallee()->getType();
9169 if (Ty->isBlockPointerType()) {
9170 S.Diag(E->getExprLoc(), diag::err_opencl_ternary_with_block);
9171 return true;
9172 }
9173 }
9174 return false;
9175 }
9176
9177 /// Note that LHS is not null here, even if this is the gnu "x ?: y" extension.
9178 /// In that case, LHS = cond.
9179 /// C99 6.5.15
CheckConditionalOperands(ExprResult & Cond,ExprResult & LHS,ExprResult & RHS,ExprValueKind & VK,ExprObjectKind & OK,SourceLocation QuestionLoc)9180 QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
9181 ExprResult &RHS, ExprValueKind &VK,
9182 ExprObjectKind &OK,
9183 SourceLocation QuestionLoc) {
9184
9185 ExprResult LHSResult = CheckPlaceholderExpr(LHS.get());
9186 if (!LHSResult.isUsable()) return QualType();
9187 LHS = LHSResult;
9188
9189 ExprResult RHSResult = CheckPlaceholderExpr(RHS.get());
9190 if (!RHSResult.isUsable()) return QualType();
9191 RHS = RHSResult;
9192
9193 // C++ is sufficiently different to merit its own checker.
9194 if (getLangOpts().CPlusPlus)
9195 return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);
9196
9197 VK = VK_PRValue;
9198 OK = OK_Ordinary;
9199
9200 if (Context.isDependenceAllowed() &&
9201 (Cond.get()->isTypeDependent() || LHS.get()->isTypeDependent() ||
9202 RHS.get()->isTypeDependent())) {
9203 assert(!getLangOpts().CPlusPlus);
9204 assert((Cond.get()->containsErrors() || LHS.get()->containsErrors() ||
9205 RHS.get()->containsErrors()) &&
9206 "should only occur in error-recovery path.");
9207 return Context.DependentTy;
9208 }
9209
9210 // The OpenCL operator with a vector condition is sufficiently
9211 // different to merit its own checker.
9212 if ((getLangOpts().OpenCL && Cond.get()->getType()->isVectorType()) ||
9213 Cond.get()->getType()->isExtVectorType())
9214 return OpenCLCheckVectorConditional(*this, Cond, LHS, RHS, QuestionLoc);
9215
9216 // First, check the condition.
9217 Cond = UsualUnaryConversions(Cond.get());
9218 if (Cond.isInvalid())
9219 return QualType();
9220 if (checkCondition(*this, Cond.get(), QuestionLoc))
9221 return QualType();
9222
9223 // Handle vectors.
9224 if (LHS.get()->getType()->isVectorType() ||
9225 RHS.get()->getType()->isVectorType())
9226 return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/ false,
9227 /*AllowBothBool*/ true,
9228 /*AllowBoolConversions*/ false,
9229 /*AllowBooleanOperation*/ false,
9230 /*ReportInvalid*/ true);
9231
9232 QualType ResTy =
9233 UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional);
9234 if (LHS.isInvalid() || RHS.isInvalid())
9235 return QualType();
9236
9237 // WebAssembly tables are not allowed as conditional LHS or RHS.
9238 QualType LHSTy = LHS.get()->getType();
9239 QualType RHSTy = RHS.get()->getType();
9240 if (LHSTy->isWebAssemblyTableType() || RHSTy->isWebAssemblyTableType()) {
9241 Diag(QuestionLoc, diag::err_wasm_table_conditional_expression)
9242 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
9243 return QualType();
9244 }
9245
9246 // Diagnose attempts to convert between __ibm128, __float128 and long double
9247 // where such conversions currently can't be handled.
9248 if (unsupportedTypeConversion(*this, LHSTy, RHSTy)) {
9249 Diag(QuestionLoc,
9250 diag::err_typecheck_cond_incompatible_operands) << LHSTy << RHSTy
9251 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
9252 return QualType();
9253 }
9254
9255 // OpenCL v2.0 s6.12.5 - Blocks cannot be used as expressions of the ternary
9256 // selection operator (?:).
9257 if (getLangOpts().OpenCL &&
9258 ((int)checkBlockType(*this, LHS.get()) | (int)checkBlockType(*this, RHS.get()))) {
9259 return QualType();
9260 }
9261
9262 // If both operands have arithmetic type, do the usual arithmetic conversions
9263 // to find a common type: C99 6.5.15p3,5.
9264 if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
9265 // Disallow invalid arithmetic conversions, such as those between bit-
9266 // precise integers types of different sizes, or between a bit-precise
9267 // integer and another type.
9268 if (ResTy.isNull() && (LHSTy->isBitIntType() || RHSTy->isBitIntType())) {
9269 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
9270 << LHSTy << RHSTy << LHS.get()->getSourceRange()
9271 << RHS.get()->getSourceRange();
9272 return QualType();
9273 }
9274
9275 LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
9276 RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
9277
9278 return ResTy;
9279 }
9280
9281 // If both operands are the same structure or union type, the result is that
9282 // type.
9283 if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) { // C99 6.5.15p3
9284 if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
9285 if (LHSRT->getDecl() == RHSRT->getDecl())
9286 // "If both the operands have structure or union type, the result has
9287 // that type." This implies that CV qualifiers are dropped.
9288 return Context.getCommonSugaredType(LHSTy.getUnqualifiedType(),
9289 RHSTy.getUnqualifiedType());
9290 // FIXME: Type of conditional expression must be complete in C mode.
9291 }
9292
9293 // C99 6.5.15p5: "If both operands have void type, the result has void type."
9294 // The following || allows only one side to be void (a GCC-ism).
9295 if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
9296 QualType ResTy;
9297 if (LHSTy->isVoidType() && RHSTy->isVoidType()) {
9298 ResTy = Context.getCommonSugaredType(LHSTy, RHSTy);
9299 } else if (RHSTy->isVoidType()) {
9300 ResTy = RHSTy;
9301 Diag(RHS.get()->getBeginLoc(), diag::ext_typecheck_cond_one_void)
9302 << RHS.get()->getSourceRange();
9303 } else {
9304 ResTy = LHSTy;
9305 Diag(LHS.get()->getBeginLoc(), diag::ext_typecheck_cond_one_void)
9306 << LHS.get()->getSourceRange();
9307 }
9308 LHS = ImpCastExprToType(LHS.get(), ResTy, CK_ToVoid);
9309 RHS = ImpCastExprToType(RHS.get(), ResTy, CK_ToVoid);
9310 return ResTy;
9311 }
9312
9313 // C23 6.5.15p7:
9314 // ... if both the second and third operands have nullptr_t type, the
9315 // result also has that type.
9316 if (LHSTy->isNullPtrType() && Context.hasSameType(LHSTy, RHSTy))
9317 return ResTy;
9318
9319 // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
9320 // the type of the other operand."
9321 if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy;
9322 if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy;
9323
9324 // All objective-c pointer type analysis is done here.
9325 QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
9326 QuestionLoc);
9327 if (LHS.isInvalid() || RHS.isInvalid())
9328 return QualType();
9329 if (!compositeType.isNull())
9330 return compositeType;
9331
9332
9333 // Handle block pointer types.
9334 if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType())
9335 return checkConditionalBlockPointerCompatibility(*this, LHS, RHS,
9336 QuestionLoc);
9337
9338 // Check constraints for C object pointers types (C99 6.5.15p3,6).
9339 if (LHSTy->isPointerType() && RHSTy->isPointerType())
9340 return checkConditionalObjectPointersCompatibility(*this, LHS, RHS,
9341 QuestionLoc);
9342
9343 // GCC compatibility: soften pointer/integer mismatch. Note that
9344 // null pointers have been filtered out by this point.
9345 if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc,
9346 /*IsIntFirstExpr=*/true))
9347 return RHSTy;
9348 if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc,
9349 /*IsIntFirstExpr=*/false))
9350 return LHSTy;
9351
9352 // Emit a better diagnostic if one of the expressions is a null pointer
9353 // constant and the other is not a pointer type. In this case, the user most
9354 // likely forgot to take the address of the other expression.
9355 if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
9356 return QualType();
9357
9358 // Finally, if the LHS and RHS types are canonically the same type, we can
9359 // use the common sugared type.
9360 if (Context.hasSameType(LHSTy, RHSTy))
9361 return Context.getCommonSugaredType(LHSTy, RHSTy);
9362
9363 // Otherwise, the operands are not compatible.
9364 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
9365 << LHSTy << RHSTy << LHS.get()->getSourceRange()
9366 << RHS.get()->getSourceRange();
9367 return QualType();
9368 }
9369
9370 /// FindCompositeObjCPointerType - Helper method to find composite type of
9371 /// two objective-c pointer types of the two input expressions.
FindCompositeObjCPointerType(ExprResult & LHS,ExprResult & RHS,SourceLocation QuestionLoc)9372 QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
9373 SourceLocation QuestionLoc) {
9374 QualType LHSTy = LHS.get()->getType();
9375 QualType RHSTy = RHS.get()->getType();
9376
9377 // Handle things like Class and struct objc_class*. Here we case the result
9378 // to the pseudo-builtin, because that will be implicitly cast back to the
9379 // redefinition type if an attempt is made to access its fields.
9380 if (LHSTy->isObjCClassType() &&
9381 (Context.hasSameType(RHSTy, Context.getObjCClassRedefinitionType()))) {
9382 RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
9383 return LHSTy;
9384 }
9385 if (RHSTy->isObjCClassType() &&
9386 (Context.hasSameType(LHSTy, Context.getObjCClassRedefinitionType()))) {
9387 LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
9388 return RHSTy;
9389 }
9390 // And the same for struct objc_object* / id
9391 if (LHSTy->isObjCIdType() &&
9392 (Context.hasSameType(RHSTy, Context.getObjCIdRedefinitionType()))) {
9393 RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
9394 return LHSTy;
9395 }
9396 if (RHSTy->isObjCIdType() &&
9397 (Context.hasSameType(LHSTy, Context.getObjCIdRedefinitionType()))) {
9398 LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
9399 return RHSTy;
9400 }
9401 // And the same for struct objc_selector* / SEL
9402 if (Context.isObjCSelType(LHSTy) &&
9403 (Context.hasSameType(RHSTy, Context.getObjCSelRedefinitionType()))) {
9404 RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_BitCast);
9405 return LHSTy;
9406 }
9407 if (Context.isObjCSelType(RHSTy) &&
9408 (Context.hasSameType(LHSTy, Context.getObjCSelRedefinitionType()))) {
9409 LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_BitCast);
9410 return RHSTy;
9411 }
9412 // Check constraints for Objective-C object pointers types.
9413 if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
9414
9415 if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
9416 // Two identical object pointer types are always compatible.
9417 return LHSTy;
9418 }
9419 const ObjCObjectPointerType *LHSOPT = LHSTy->castAs<ObjCObjectPointerType>();
9420 const ObjCObjectPointerType *RHSOPT = RHSTy->castAs<ObjCObjectPointerType>();
9421 QualType compositeType = LHSTy;
9422
9423 // If both operands are interfaces and either operand can be
9424 // assigned to the other, use that type as the composite
9425 // type. This allows
9426 // xxx ? (A*) a : (B*) b
9427 // where B is a subclass of A.
9428 //
9429 // Additionally, as for assignment, if either type is 'id'
9430 // allow silent coercion. Finally, if the types are
9431 // incompatible then make sure to use 'id' as the composite
9432 // type so the result is acceptable for sending messages to.
9433
9434 // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
9435 // It could return the composite type.
9436 if (!(compositeType =
9437 Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull()) {
9438 // Nothing more to do.
9439 } else if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
9440 compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
9441 } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
9442 compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
9443 } else if ((LHSOPT->isObjCQualifiedIdType() ||
9444 RHSOPT->isObjCQualifiedIdType()) &&
9445 Context.ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT,
9446 true)) {
9447 // Need to handle "id<xx>" explicitly.
9448 // GCC allows qualified id and any Objective-C type to devolve to
9449 // id. Currently localizing to here until clear this should be
9450 // part of ObjCQualifiedIdTypesAreCompatible.
9451 compositeType = Context.getObjCIdType();
9452 } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
9453 compositeType = Context.getObjCIdType();
9454 } else {
9455 Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
9456 << LHSTy << RHSTy
9457 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
9458 QualType incompatTy = Context.getObjCIdType();
9459 LHS = ImpCastExprToType(LHS.get(), incompatTy, CK_BitCast);
9460 RHS = ImpCastExprToType(RHS.get(), incompatTy, CK_BitCast);
9461 return incompatTy;
9462 }
9463 // The object pointer types are compatible.
9464 LHS = ImpCastExprToType(LHS.get(), compositeType, CK_BitCast);
9465 RHS = ImpCastExprToType(RHS.get(), compositeType, CK_BitCast);
9466 return compositeType;
9467 }
9468 // Check Objective-C object pointer types and 'void *'
9469 if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
9470 if (getLangOpts().ObjCAutoRefCount) {
9471 // ARC forbids the implicit conversion of object pointers to 'void *',
9472 // so these types are not compatible.
9473 Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
9474 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
9475 LHS = RHS = true;
9476 return QualType();
9477 }
9478 QualType lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
9479 QualType rhptee = RHSTy->castAs<ObjCObjectPointerType>()->getPointeeType();
9480 QualType destPointee
9481 = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
9482 QualType destType = Context.getPointerType(destPointee);
9483 // Add qualifiers if necessary.
9484 LHS = ImpCastExprToType(LHS.get(), destType, CK_NoOp);
9485 // Promote to void*.
9486 RHS = ImpCastExprToType(RHS.get(), destType, CK_BitCast);
9487 return destType;
9488 }
9489 if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
9490 if (getLangOpts().ObjCAutoRefCount) {
9491 // ARC forbids the implicit conversion of object pointers to 'void *',
9492 // so these types are not compatible.
9493 Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
9494 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
9495 LHS = RHS = true;
9496 return QualType();
9497 }
9498 QualType lhptee = LHSTy->castAs<ObjCObjectPointerType>()->getPointeeType();
9499 QualType rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
9500 QualType destPointee
9501 = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
9502 QualType destType = Context.getPointerType(destPointee);
9503 // Add qualifiers if necessary.
9504 RHS = ImpCastExprToType(RHS.get(), destType, CK_NoOp);
9505 // Promote to void*.
9506 LHS = ImpCastExprToType(LHS.get(), destType, CK_BitCast);
9507 return destType;
9508 }
9509 return QualType();
9510 }
9511
9512 /// SuggestParentheses - Emit a note with a fixit hint that wraps
9513 /// ParenRange in parentheses.
SuggestParentheses(Sema & Self,SourceLocation Loc,const PartialDiagnostic & Note,SourceRange ParenRange)9514 static void SuggestParentheses(Sema &Self, SourceLocation Loc,
9515 const PartialDiagnostic &Note,
9516 SourceRange ParenRange) {
9517 SourceLocation EndLoc = Self.getLocForEndOfToken(ParenRange.getEnd());
9518 if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() &&
9519 EndLoc.isValid()) {
9520 Self.Diag(Loc, Note)
9521 << FixItHint::CreateInsertion(ParenRange.getBegin(), "(")
9522 << FixItHint::CreateInsertion(EndLoc, ")");
9523 } else {
9524 // We can't display the parentheses, so just show the bare note.
9525 Self.Diag(Loc, Note) << ParenRange;
9526 }
9527 }
9528
IsArithmeticOp(BinaryOperatorKind Opc)9529 static bool IsArithmeticOp(BinaryOperatorKind Opc) {
9530 return BinaryOperator::isAdditiveOp(Opc) ||
9531 BinaryOperator::isMultiplicativeOp(Opc) ||
9532 BinaryOperator::isShiftOp(Opc) || Opc == BO_And || Opc == BO_Or;
9533 // This only checks for bitwise-or and bitwise-and, but not bitwise-xor and
9534 // not any of the logical operators. Bitwise-xor is commonly used as a
9535 // logical-xor because there is no logical-xor operator. The logical
9536 // operators, including uses of xor, have a high false positive rate for
9537 // precedence warnings.
9538 }
9539
9540 /// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
9541 /// expression, either using a built-in or overloaded operator,
9542 /// and sets *OpCode to the opcode and *RHSExprs to the right-hand side
9543 /// expression.
IsArithmeticBinaryExpr(const Expr * E,BinaryOperatorKind * Opcode,const Expr ** RHSExprs)9544 static bool IsArithmeticBinaryExpr(const Expr *E, BinaryOperatorKind *Opcode,
9545 const Expr **RHSExprs) {
9546 // Don't strip parenthesis: we should not warn if E is in parenthesis.
9547 E = E->IgnoreImpCasts();
9548 E = E->IgnoreConversionOperatorSingleStep();
9549 E = E->IgnoreImpCasts();
9550 if (const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) {
9551 E = MTE->getSubExpr();
9552 E = E->IgnoreImpCasts();
9553 }
9554
9555 // Built-in binary operator.
9556 if (const auto *OP = dyn_cast<BinaryOperator>(E);
9557 OP && IsArithmeticOp(OP->getOpcode())) {
9558 *Opcode = OP->getOpcode();
9559 *RHSExprs = OP->getRHS();
9560 return true;
9561 }
9562
9563 // Overloaded operator.
9564 if (const auto *Call = dyn_cast<CXXOperatorCallExpr>(E)) {
9565 if (Call->getNumArgs() != 2)
9566 return false;
9567
9568 // Make sure this is really a binary operator that is safe to pass into
9569 // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
9570 OverloadedOperatorKind OO = Call->getOperator();
9571 if (OO < OO_Plus || OO > OO_Arrow ||
9572 OO == OO_PlusPlus || OO == OO_MinusMinus)
9573 return false;
9574
9575 BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO);
9576 if (IsArithmeticOp(OpKind)) {
9577 *Opcode = OpKind;
9578 *RHSExprs = Call->getArg(1);
9579 return true;
9580 }
9581 }
9582
9583 return false;
9584 }
9585
9586 /// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
9587 /// or is a logical expression such as (x==y) which has int type, but is
9588 /// commonly interpreted as boolean.
ExprLooksBoolean(const Expr * E)9589 static bool ExprLooksBoolean(const Expr *E) {
9590 E = E->IgnoreParenImpCasts();
9591
9592 if (E->getType()->isBooleanType())
9593 return true;
9594 if (const auto *OP = dyn_cast<BinaryOperator>(E))
9595 return OP->isComparisonOp() || OP->isLogicalOp();
9596 if (const auto *OP = dyn_cast<UnaryOperator>(E))
9597 return OP->getOpcode() == UO_LNot;
9598 if (E->getType()->isPointerType())
9599 return true;
9600 // FIXME: What about overloaded operator calls returning "unspecified boolean
9601 // type"s (commonly pointer-to-members)?
9602
9603 return false;
9604 }
9605
9606 /// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
9607 /// and binary operator are mixed in a way that suggests the programmer assumed
9608 /// the conditional operator has higher precedence, for example:
9609 /// "int x = a + someBinaryCondition ? 1 : 2".
DiagnoseConditionalPrecedence(Sema & Self,SourceLocation OpLoc,Expr * Condition,const Expr * LHSExpr,const Expr * RHSExpr)9610 static void DiagnoseConditionalPrecedence(Sema &Self, SourceLocation OpLoc,
9611 Expr *Condition, const Expr *LHSExpr,
9612 const Expr *RHSExpr) {
9613 BinaryOperatorKind CondOpcode;
9614 const Expr *CondRHS;
9615
9616 if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS))
9617 return;
9618 if (!ExprLooksBoolean(CondRHS))
9619 return;
9620
9621 // The condition is an arithmetic binary expression, with a right-
9622 // hand side that looks boolean, so warn.
9623
9624 unsigned DiagID = BinaryOperator::isBitwiseOp(CondOpcode)
9625 ? diag::warn_precedence_bitwise_conditional
9626 : diag::warn_precedence_conditional;
9627
9628 Self.Diag(OpLoc, DiagID)
9629 << Condition->getSourceRange()
9630 << BinaryOperator::getOpcodeStr(CondOpcode);
9631
9632 SuggestParentheses(
9633 Self, OpLoc,
9634 Self.PDiag(diag::note_precedence_silence)
9635 << BinaryOperator::getOpcodeStr(CondOpcode),
9636 SourceRange(Condition->getBeginLoc(), Condition->getEndLoc()));
9637
9638 SuggestParentheses(Self, OpLoc,
9639 Self.PDiag(diag::note_precedence_conditional_first),
9640 SourceRange(CondRHS->getBeginLoc(), RHSExpr->getEndLoc()));
9641 }
9642
9643 /// Compute the nullability of a conditional expression.
computeConditionalNullability(QualType ResTy,bool IsBin,QualType LHSTy,QualType RHSTy,ASTContext & Ctx)9644 static QualType computeConditionalNullability(QualType ResTy, bool IsBin,
9645 QualType LHSTy, QualType RHSTy,
9646 ASTContext &Ctx) {
9647 if (!ResTy->isAnyPointerType())
9648 return ResTy;
9649
9650 auto GetNullability = [](QualType Ty) {
9651 std::optional<NullabilityKind> Kind = Ty->getNullability();
9652 if (Kind) {
9653 // For our purposes, treat _Nullable_result as _Nullable.
9654 if (*Kind == NullabilityKind::NullableResult)
9655 return NullabilityKind::Nullable;
9656 return *Kind;
9657 }
9658 return NullabilityKind::Unspecified;
9659 };
9660
9661 auto LHSKind = GetNullability(LHSTy), RHSKind = GetNullability(RHSTy);
9662 NullabilityKind MergedKind;
9663
9664 // Compute nullability of a binary conditional expression.
9665 if (IsBin) {
9666 if (LHSKind == NullabilityKind::NonNull)
9667 MergedKind = NullabilityKind::NonNull;
9668 else
9669 MergedKind = RHSKind;
9670 // Compute nullability of a normal conditional expression.
9671 } else {
9672 if (LHSKind == NullabilityKind::Nullable ||
9673 RHSKind == NullabilityKind::Nullable)
9674 MergedKind = NullabilityKind::Nullable;
9675 else if (LHSKind == NullabilityKind::NonNull)
9676 MergedKind = RHSKind;
9677 else if (RHSKind == NullabilityKind::NonNull)
9678 MergedKind = LHSKind;
9679 else
9680 MergedKind = NullabilityKind::Unspecified;
9681 }
9682
9683 // Return if ResTy already has the correct nullability.
9684 if (GetNullability(ResTy) == MergedKind)
9685 return ResTy;
9686
9687 // Strip all nullability from ResTy.
9688 while (ResTy->getNullability())
9689 ResTy = ResTy.getSingleStepDesugaredType(Ctx);
9690
9691 // Create a new AttributedType with the new nullability kind.
9692 auto NewAttr = AttributedType::getNullabilityAttrKind(MergedKind);
9693 return Ctx.getAttributedType(NewAttr, ResTy, ResTy);
9694 }
9695
9696 /// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null
9697 /// in the case of a the GNU conditional expr extension.
ActOnConditionalOp(SourceLocation QuestionLoc,SourceLocation ColonLoc,Expr * CondExpr,Expr * LHSExpr,Expr * RHSExpr)9698 ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
9699 SourceLocation ColonLoc,
9700 Expr *CondExpr, Expr *LHSExpr,
9701 Expr *RHSExpr) {
9702 if (!Context.isDependenceAllowed()) {
9703 // C cannot handle TypoExpr nodes in the condition because it
9704 // doesn't handle dependent types properly, so make sure any TypoExprs have
9705 // been dealt with before checking the operands.
9706 ExprResult CondResult = CorrectDelayedTyposInExpr(CondExpr);
9707 ExprResult LHSResult = CorrectDelayedTyposInExpr(LHSExpr);
9708 ExprResult RHSResult = CorrectDelayedTyposInExpr(RHSExpr);
9709
9710 if (!CondResult.isUsable())
9711 return ExprError();
9712
9713 if (LHSExpr) {
9714 if (!LHSResult.isUsable())
9715 return ExprError();
9716 }
9717
9718 if (!RHSResult.isUsable())
9719 return ExprError();
9720
9721 CondExpr = CondResult.get();
9722 LHSExpr = LHSResult.get();
9723 RHSExpr = RHSResult.get();
9724 }
9725
9726 // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
9727 // was the condition.
9728 OpaqueValueExpr *opaqueValue = nullptr;
9729 Expr *commonExpr = nullptr;
9730 if (!LHSExpr) {
9731 commonExpr = CondExpr;
9732 // Lower out placeholder types first. This is important so that we don't
9733 // try to capture a placeholder. This happens in few cases in C++; such
9734 // as Objective-C++'s dictionary subscripting syntax.
9735 if (commonExpr->hasPlaceholderType()) {
9736 ExprResult result = CheckPlaceholderExpr(commonExpr);
9737 if (!result.isUsable()) return ExprError();
9738 commonExpr = result.get();
9739 }
9740 // We usually want to apply unary conversions *before* saving, except
9741 // in the special case of a C++ l-value conditional.
9742 if (!(getLangOpts().CPlusPlus
9743 && !commonExpr->isTypeDependent()
9744 && commonExpr->getValueKind() == RHSExpr->getValueKind()
9745 && commonExpr->isGLValue()
9746 && commonExpr->isOrdinaryOrBitFieldObject()
9747 && RHSExpr->isOrdinaryOrBitFieldObject()
9748 && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) {
9749 ExprResult commonRes = UsualUnaryConversions(commonExpr);
9750 if (commonRes.isInvalid())
9751 return ExprError();
9752 commonExpr = commonRes.get();
9753 }
9754
9755 // If the common expression is a class or array prvalue, materialize it
9756 // so that we can safely refer to it multiple times.
9757 if (commonExpr->isPRValue() && (commonExpr->getType()->isRecordType() ||
9758 commonExpr->getType()->isArrayType())) {
9759 ExprResult MatExpr = TemporaryMaterializationConversion(commonExpr);
9760 if (MatExpr.isInvalid())
9761 return ExprError();
9762 commonExpr = MatExpr.get();
9763 }
9764
9765 opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
9766 commonExpr->getType(),
9767 commonExpr->getValueKind(),
9768 commonExpr->getObjectKind(),
9769 commonExpr);
9770 LHSExpr = CondExpr = opaqueValue;
9771 }
9772
9773 QualType LHSTy = LHSExpr->getType(), RHSTy = RHSExpr->getType();
9774 ExprValueKind VK = VK_PRValue;
9775 ExprObjectKind OK = OK_Ordinary;
9776 ExprResult Cond = CondExpr, LHS = LHSExpr, RHS = RHSExpr;
9777 QualType result = CheckConditionalOperands(Cond, LHS, RHS,
9778 VK, OK, QuestionLoc);
9779 if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
9780 RHS.isInvalid())
9781 return ExprError();
9782
9783 DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(),
9784 RHS.get());
9785
9786 CheckBoolLikeConversion(Cond.get(), QuestionLoc);
9787
9788 result = computeConditionalNullability(result, commonExpr, LHSTy, RHSTy,
9789 Context);
9790
9791 if (!commonExpr)
9792 return new (Context)
9793 ConditionalOperator(Cond.get(), QuestionLoc, LHS.get(), ColonLoc,
9794 RHS.get(), result, VK, OK);
9795
9796 return new (Context) BinaryConditionalOperator(
9797 commonExpr, opaqueValue, Cond.get(), LHS.get(), RHS.get(), QuestionLoc,
9798 ColonLoc, result, VK, OK);
9799 }
9800
9801 // Check that the SME attributes for PSTATE.ZA and PSTATE.SM are compatible.
IsInvalidSMECallConversion(QualType FromType,QualType ToType)9802 bool Sema::IsInvalidSMECallConversion(QualType FromType, QualType ToType) {
9803 unsigned FromAttributes = 0, ToAttributes = 0;
9804 if (const auto *FromFn =
9805 dyn_cast<FunctionProtoType>(Context.getCanonicalType(FromType)))
9806 FromAttributes =
9807 FromFn->getAArch64SMEAttributes() & FunctionType::SME_AttributeMask;
9808 if (const auto *ToFn =
9809 dyn_cast<FunctionProtoType>(Context.getCanonicalType(ToType)))
9810 ToAttributes =
9811 ToFn->getAArch64SMEAttributes() & FunctionType::SME_AttributeMask;
9812
9813 return FromAttributes != ToAttributes;
9814 }
9815
9816 // Check if we have a conversion between incompatible cmse function pointer
9817 // types, that is, a conversion between a function pointer with the
9818 // cmse_nonsecure_call attribute and one without.
IsInvalidCmseNSCallConversion(Sema & S,QualType FromType,QualType ToType)9819 static bool IsInvalidCmseNSCallConversion(Sema &S, QualType FromType,
9820 QualType ToType) {
9821 if (const auto *ToFn =
9822 dyn_cast<FunctionType>(S.Context.getCanonicalType(ToType))) {
9823 if (const auto *FromFn =
9824 dyn_cast<FunctionType>(S.Context.getCanonicalType(FromType))) {
9825 FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo();
9826 FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo();
9827
9828 return ToEInfo.getCmseNSCall() != FromEInfo.getCmseNSCall();
9829 }
9830 }
9831 return false;
9832 }
9833
9834 // checkPointerTypesForAssignment - This is a very tricky routine (despite
9835 // being closely modeled after the C99 spec:-). The odd characteristic of this
9836 // routine is it effectively iqnores the qualifiers on the top level pointee.
9837 // This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
9838 // FIXME: add a couple examples in this comment.
9839 static Sema::AssignConvertType
checkPointerTypesForAssignment(Sema & S,QualType LHSType,QualType RHSType,SourceLocation Loc)9840 checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType,
9841 SourceLocation Loc) {
9842 assert(LHSType.isCanonical() && "LHS not canonicalized!");
9843 assert(RHSType.isCanonical() && "RHS not canonicalized!");
9844
9845 // get the "pointed to" type (ignoring qualifiers at the top level)
9846 const Type *lhptee, *rhptee;
9847 Qualifiers lhq, rhq;
9848 std::tie(lhptee, lhq) =
9849 cast<PointerType>(LHSType)->getPointeeType().split().asPair();
9850 std::tie(rhptee, rhq) =
9851 cast<PointerType>(RHSType)->getPointeeType().split().asPair();
9852
9853 Sema::AssignConvertType ConvTy = Sema::Compatible;
9854
9855 // C99 6.5.16.1p1: This following citation is common to constraints
9856 // 3 & 4 (below). ...and the type *pointed to* by the left has all the
9857 // qualifiers of the type *pointed to* by the right;
9858
9859 // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay.
9860 if (lhq.getObjCLifetime() != rhq.getObjCLifetime() &&
9861 lhq.compatiblyIncludesObjCLifetime(rhq)) {
9862 // Ignore lifetime for further calculation.
9863 lhq.removeObjCLifetime();
9864 rhq.removeObjCLifetime();
9865 }
9866
9867 if (!lhq.compatiblyIncludes(rhq)) {
9868 // Treat address-space mismatches as fatal.
9869 if (!lhq.isAddressSpaceSupersetOf(rhq))
9870 return Sema::IncompatiblePointerDiscardsQualifiers;
9871
9872 // It's okay to add or remove GC or lifetime qualifiers when converting to
9873 // and from void*.
9874 else if (lhq.withoutObjCGCAttr().withoutObjCLifetime()
9875 .compatiblyIncludes(
9876 rhq.withoutObjCGCAttr().withoutObjCLifetime())
9877 && (lhptee->isVoidType() || rhptee->isVoidType()))
9878 ; // keep old
9879
9880 // Treat lifetime mismatches as fatal.
9881 else if (lhq.getObjCLifetime() != rhq.getObjCLifetime())
9882 ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
9883
9884 // For GCC/MS compatibility, other qualifier mismatches are treated
9885 // as still compatible in C.
9886 else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
9887 }
9888
9889 // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
9890 // incomplete type and the other is a pointer to a qualified or unqualified
9891 // version of void...
9892 if (lhptee->isVoidType()) {
9893 if (rhptee->isIncompleteOrObjectType())
9894 return ConvTy;
9895
9896 // As an extension, we allow cast to/from void* to function pointer.
9897 assert(rhptee->isFunctionType());
9898 return Sema::FunctionVoidPointer;
9899 }
9900
9901 if (rhptee->isVoidType()) {
9902 if (lhptee->isIncompleteOrObjectType())
9903 return ConvTy;
9904
9905 // As an extension, we allow cast to/from void* to function pointer.
9906 assert(lhptee->isFunctionType());
9907 return Sema::FunctionVoidPointer;
9908 }
9909
9910 if (!S.Diags.isIgnored(
9911 diag::warn_typecheck_convert_incompatible_function_pointer_strict,
9912 Loc) &&
9913 RHSType->isFunctionPointerType() && LHSType->isFunctionPointerType() &&
9914 !S.IsFunctionConversion(RHSType, LHSType, RHSType))
9915 return Sema::IncompatibleFunctionPointerStrict;
9916
9917 // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
9918 // unqualified versions of compatible types, ...
9919 QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
9920 if (!S.Context.typesAreCompatible(ltrans, rtrans)) {
9921 // Check if the pointee types are compatible ignoring the sign.
9922 // We explicitly check for char so that we catch "char" vs
9923 // "unsigned char" on systems where "char" is unsigned.
9924 if (lhptee->isCharType())
9925 ltrans = S.Context.UnsignedCharTy;
9926 else if (lhptee->hasSignedIntegerRepresentation())
9927 ltrans = S.Context.getCorrespondingUnsignedType(ltrans);
9928
9929 if (rhptee->isCharType())
9930 rtrans = S.Context.UnsignedCharTy;
9931 else if (rhptee->hasSignedIntegerRepresentation())
9932 rtrans = S.Context.getCorrespondingUnsignedType(rtrans);
9933
9934 if (ltrans == rtrans) {
9935 // Types are compatible ignoring the sign. Qualifier incompatibility
9936 // takes priority over sign incompatibility because the sign
9937 // warning can be disabled.
9938 if (ConvTy != Sema::Compatible)
9939 return ConvTy;
9940
9941 return Sema::IncompatiblePointerSign;
9942 }
9943
9944 // If we are a multi-level pointer, it's possible that our issue is simply
9945 // one of qualification - e.g. char ** -> const char ** is not allowed. If
9946 // the eventual target type is the same and the pointers have the same
9947 // level of indirection, this must be the issue.
9948 if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) {
9949 do {
9950 std::tie(lhptee, lhq) =
9951 cast<PointerType>(lhptee)->getPointeeType().split().asPair();
9952 std::tie(rhptee, rhq) =
9953 cast<PointerType>(rhptee)->getPointeeType().split().asPair();
9954
9955 // Inconsistent address spaces at this point is invalid, even if the
9956 // address spaces would be compatible.
9957 // FIXME: This doesn't catch address space mismatches for pointers of
9958 // different nesting levels, like:
9959 // __local int *** a;
9960 // int ** b = a;
9961 // It's not clear how to actually determine when such pointers are
9962 // invalidly incompatible.
9963 if (lhq.getAddressSpace() != rhq.getAddressSpace())
9964 return Sema::IncompatibleNestedPointerAddressSpaceMismatch;
9965
9966 } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee));
9967
9968 if (lhptee == rhptee)
9969 return Sema::IncompatibleNestedPointerQualifiers;
9970 }
9971
9972 // General pointer incompatibility takes priority over qualifiers.
9973 if (RHSType->isFunctionPointerType() && LHSType->isFunctionPointerType())
9974 return Sema::IncompatibleFunctionPointer;
9975 return Sema::IncompatiblePointer;
9976 }
9977 if (!S.getLangOpts().CPlusPlus &&
9978 S.IsFunctionConversion(ltrans, rtrans, ltrans))
9979 return Sema::IncompatibleFunctionPointer;
9980 if (IsInvalidCmseNSCallConversion(S, ltrans, rtrans))
9981 return Sema::IncompatibleFunctionPointer;
9982 if (S.IsInvalidSMECallConversion(rtrans, ltrans))
9983 return Sema::IncompatibleFunctionPointer;
9984 return ConvTy;
9985 }
9986
9987 /// checkBlockPointerTypesForAssignment - This routine determines whether two
9988 /// block pointer types are compatible or whether a block and normal pointer
9989 /// are compatible. It is more restrict than comparing two function pointer
9990 // types.
9991 static Sema::AssignConvertType
checkBlockPointerTypesForAssignment(Sema & S,QualType LHSType,QualType RHSType)9992 checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType,
9993 QualType RHSType) {
9994 assert(LHSType.isCanonical() && "LHS not canonicalized!");
9995 assert(RHSType.isCanonical() && "RHS not canonicalized!");
9996
9997 QualType lhptee, rhptee;
9998
9999 // get the "pointed to" type (ignoring qualifiers at the top level)
10000 lhptee = cast<BlockPointerType>(LHSType)->getPointeeType();
10001 rhptee = cast<BlockPointerType>(RHSType)->getPointeeType();
10002
10003 // In C++, the types have to match exactly.
10004 if (S.getLangOpts().CPlusPlus)
10005 return Sema::IncompatibleBlockPointer;
10006
10007 Sema::AssignConvertType ConvTy = Sema::Compatible;
10008
10009 // For blocks we enforce that qualifiers are identical.
10010 Qualifiers LQuals = lhptee.getLocalQualifiers();
10011 Qualifiers RQuals = rhptee.getLocalQualifiers();
10012 if (S.getLangOpts().OpenCL) {
10013 LQuals.removeAddressSpace();
10014 RQuals.removeAddressSpace();
10015 }
10016 if (LQuals != RQuals)
10017 ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
10018
10019 // FIXME: OpenCL doesn't define the exact compile time semantics for a block
10020 // assignment.
10021 // The current behavior is similar to C++ lambdas. A block might be
10022 // assigned to a variable iff its return type and parameters are compatible
10023 // (C99 6.2.7) with the corresponding return type and parameters of the LHS of
10024 // an assignment. Presumably it should behave in way that a function pointer
10025 // assignment does in C, so for each parameter and return type:
10026 // * CVR and address space of LHS should be a superset of CVR and address
10027 // space of RHS.
10028 // * unqualified types should be compatible.
10029 if (S.getLangOpts().OpenCL) {
10030 if (!S.Context.typesAreBlockPointerCompatible(
10031 S.Context.getQualifiedType(LHSType.getUnqualifiedType(), LQuals),
10032 S.Context.getQualifiedType(RHSType.getUnqualifiedType(), RQuals)))
10033 return Sema::IncompatibleBlockPointer;
10034 } else if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType))
10035 return Sema::IncompatibleBlockPointer;
10036
10037 return ConvTy;
10038 }
10039
10040 /// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
10041 /// for assignment compatibility.
10042 static Sema::AssignConvertType
checkObjCPointerTypesForAssignment(Sema & S,QualType LHSType,QualType RHSType)10043 checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType,
10044 QualType RHSType) {
10045 assert(LHSType.isCanonical() && "LHS was not canonicalized!");
10046 assert(RHSType.isCanonical() && "RHS was not canonicalized!");
10047
10048 if (LHSType->isObjCBuiltinType()) {
10049 // Class is not compatible with ObjC object pointers.
10050 if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() &&
10051 !RHSType->isObjCQualifiedClassType())
10052 return Sema::IncompatiblePointer;
10053 return Sema::Compatible;
10054 }
10055 if (RHSType->isObjCBuiltinType()) {
10056 if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() &&
10057 !LHSType->isObjCQualifiedClassType())
10058 return Sema::IncompatiblePointer;
10059 return Sema::Compatible;
10060 }
10061 QualType lhptee = LHSType->castAs<ObjCObjectPointerType>()->getPointeeType();
10062 QualType rhptee = RHSType->castAs<ObjCObjectPointerType>()->getPointeeType();
10063
10064 if (!lhptee.isAtLeastAsQualifiedAs(rhptee) &&
10065 // make an exception for id<P>
10066 !LHSType->isObjCQualifiedIdType())
10067 return Sema::CompatiblePointerDiscardsQualifiers;
10068
10069 if (S.Context.typesAreCompatible(LHSType, RHSType))
10070 return Sema::Compatible;
10071 if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType())
10072 return Sema::IncompatibleObjCQualifiedId;
10073 return Sema::IncompatiblePointer;
10074 }
10075
10076 Sema::AssignConvertType
CheckAssignmentConstraints(SourceLocation Loc,QualType LHSType,QualType RHSType)10077 Sema::CheckAssignmentConstraints(SourceLocation Loc,
10078 QualType LHSType, QualType RHSType) {
10079 // Fake up an opaque expression. We don't actually care about what
10080 // cast operations are required, so if CheckAssignmentConstraints
10081 // adds casts to this they'll be wasted, but fortunately that doesn't
10082 // usually happen on valid code.
10083 OpaqueValueExpr RHSExpr(Loc, RHSType, VK_PRValue);
10084 ExprResult RHSPtr = &RHSExpr;
10085 CastKind K;
10086
10087 return CheckAssignmentConstraints(LHSType, RHSPtr, K, /*ConvertRHS=*/false);
10088 }
10089
10090 /// This helper function returns true if QT is a vector type that has element
10091 /// type ElementType.
isVector(QualType QT,QualType ElementType)10092 static bool isVector(QualType QT, QualType ElementType) {
10093 if (const VectorType *VT = QT->getAs<VectorType>())
10094 return VT->getElementType().getCanonicalType() == ElementType;
10095 return false;
10096 }
10097
10098 /// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
10099 /// has code to accommodate several GCC extensions when type checking
10100 /// pointers. Here are some objectionable examples that GCC considers warnings:
10101 ///
10102 /// int a, *pint;
10103 /// short *pshort;
10104 /// struct foo *pfoo;
10105 ///
10106 /// pint = pshort; // warning: assignment from incompatible pointer type
10107 /// a = pint; // warning: assignment makes integer from pointer without a cast
10108 /// pint = a; // warning: assignment makes pointer from integer without a cast
10109 /// pint = pfoo; // warning: assignment from incompatible pointer type
10110 ///
10111 /// As a result, the code for dealing with pointers is more complex than the
10112 /// C99 spec dictates.
10113 ///
10114 /// Sets 'Kind' for any result kind except Incompatible.
10115 Sema::AssignConvertType
CheckAssignmentConstraints(QualType LHSType,ExprResult & RHS,CastKind & Kind,bool ConvertRHS)10116 Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS,
10117 CastKind &Kind, bool ConvertRHS) {
10118 QualType RHSType = RHS.get()->getType();
10119 QualType OrigLHSType = LHSType;
10120
10121 // Get canonical types. We're not formatting these types, just comparing
10122 // them.
10123 LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType();
10124 RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType();
10125
10126 // Common case: no conversion required.
10127 if (LHSType == RHSType) {
10128 Kind = CK_NoOp;
10129 return Compatible;
10130 }
10131
10132 // If the LHS has an __auto_type, there are no additional type constraints
10133 // to be worried about.
10134 if (const auto *AT = dyn_cast<AutoType>(LHSType)) {
10135 if (AT->isGNUAutoType()) {
10136 Kind = CK_NoOp;
10137 return Compatible;
10138 }
10139 }
10140
10141 // If we have an atomic type, try a non-atomic assignment, then just add an
10142 // atomic qualification step.
10143 if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(LHSType)) {
10144 Sema::AssignConvertType result =
10145 CheckAssignmentConstraints(AtomicTy->getValueType(), RHS, Kind);
10146 if (result != Compatible)
10147 return result;
10148 if (Kind != CK_NoOp && ConvertRHS)
10149 RHS = ImpCastExprToType(RHS.get(), AtomicTy->getValueType(), Kind);
10150 Kind = CK_NonAtomicToAtomic;
10151 return Compatible;
10152 }
10153
10154 // If the left-hand side is a reference type, then we are in a
10155 // (rare!) case where we've allowed the use of references in C,
10156 // e.g., as a parameter type in a built-in function. In this case,
10157 // just make sure that the type referenced is compatible with the
10158 // right-hand side type. The caller is responsible for adjusting
10159 // LHSType so that the resulting expression does not have reference
10160 // type.
10161 if (const ReferenceType *LHSTypeRef = LHSType->getAs<ReferenceType>()) {
10162 if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) {
10163 Kind = CK_LValueBitCast;
10164 return Compatible;
10165 }
10166 return Incompatible;
10167 }
10168
10169 // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
10170 // to the same ExtVector type.
10171 if (LHSType->isExtVectorType()) {
10172 if (RHSType->isExtVectorType())
10173 return Incompatible;
10174 if (RHSType->isArithmeticType()) {
10175 // CK_VectorSplat does T -> vector T, so first cast to the element type.
10176 if (ConvertRHS)
10177 RHS = prepareVectorSplat(LHSType, RHS.get());
10178 Kind = CK_VectorSplat;
10179 return Compatible;
10180 }
10181 }
10182
10183 // Conversions to or from vector type.
10184 if (LHSType->isVectorType() || RHSType->isVectorType()) {
10185 if (LHSType->isVectorType() && RHSType->isVectorType()) {
10186 // Allow assignments of an AltiVec vector type to an equivalent GCC
10187 // vector type and vice versa
10188 if (Context.areCompatibleVectorTypes(LHSType, RHSType)) {
10189 Kind = CK_BitCast;
10190 return Compatible;
10191 }
10192
10193 // If we are allowing lax vector conversions, and LHS and RHS are both
10194 // vectors, the total size only needs to be the same. This is a bitcast;
10195 // no bits are changed but the result type is different.
10196 if (isLaxVectorConversion(RHSType, LHSType)) {
10197 // The default for lax vector conversions with Altivec vectors will
10198 // change, so if we are converting between vector types where
10199 // at least one is an Altivec vector, emit a warning.
10200 if (Context.getTargetInfo().getTriple().isPPC() &&
10201 anyAltivecTypes(RHSType, LHSType) &&
10202 !Context.areCompatibleVectorTypes(RHSType, LHSType))
10203 Diag(RHS.get()->getExprLoc(), diag::warn_deprecated_lax_vec_conv_all)
10204 << RHSType << LHSType;
10205 Kind = CK_BitCast;
10206 return IncompatibleVectors;
10207 }
10208 }
10209
10210 // When the RHS comes from another lax conversion (e.g. binops between
10211 // scalars and vectors) the result is canonicalized as a vector. When the
10212 // LHS is also a vector, the lax is allowed by the condition above. Handle
10213 // the case where LHS is a scalar.
10214 if (LHSType->isScalarType()) {
10215 const VectorType *VecType = RHSType->getAs<VectorType>();
10216 if (VecType && VecType->getNumElements() == 1 &&
10217 isLaxVectorConversion(RHSType, LHSType)) {
10218 if (Context.getTargetInfo().getTriple().isPPC() &&
10219 (VecType->getVectorKind() == VectorKind::AltiVecVector ||
10220 VecType->getVectorKind() == VectorKind::AltiVecBool ||
10221 VecType->getVectorKind() == VectorKind::AltiVecPixel))
10222 Diag(RHS.get()->getExprLoc(), diag::warn_deprecated_lax_vec_conv_all)
10223 << RHSType << LHSType;
10224 ExprResult *VecExpr = &RHS;
10225 *VecExpr = ImpCastExprToType(VecExpr->get(), LHSType, CK_BitCast);
10226 Kind = CK_BitCast;
10227 return Compatible;
10228 }
10229 }
10230
10231 // Allow assignments between fixed-length and sizeless SVE vectors.
10232 if ((LHSType->isSVESizelessBuiltinType() && RHSType->isVectorType()) ||
10233 (LHSType->isVectorType() && RHSType->isSVESizelessBuiltinType()))
10234 if (Context.areCompatibleSveTypes(LHSType, RHSType) ||
10235 Context.areLaxCompatibleSveTypes(LHSType, RHSType)) {
10236 Kind = CK_BitCast;
10237 return Compatible;
10238 }
10239
10240 // Allow assignments between fixed-length and sizeless RVV vectors.
10241 if ((LHSType->isRVVSizelessBuiltinType() && RHSType->isVectorType()) ||
10242 (LHSType->isVectorType() && RHSType->isRVVSizelessBuiltinType())) {
10243 if (Context.areCompatibleRVVTypes(LHSType, RHSType) ||
10244 Context.areLaxCompatibleRVVTypes(LHSType, RHSType)) {
10245 Kind = CK_BitCast;
10246 return Compatible;
10247 }
10248 }
10249
10250 return Incompatible;
10251 }
10252
10253 // Diagnose attempts to convert between __ibm128, __float128 and long double
10254 // where such conversions currently can't be handled.
10255 if (unsupportedTypeConversion(*this, LHSType, RHSType))
10256 return Incompatible;
10257
10258 // Disallow assigning a _Complex to a real type in C++ mode since it simply
10259 // discards the imaginary part.
10260 if (getLangOpts().CPlusPlus && RHSType->getAs<ComplexType>() &&
10261 !LHSType->getAs<ComplexType>())
10262 return Incompatible;
10263
10264 // Arithmetic conversions.
10265 if (LHSType->isArithmeticType() && RHSType->isArithmeticType() &&
10266 !(getLangOpts().CPlusPlus && LHSType->isEnumeralType())) {
10267 if (ConvertRHS)
10268 Kind = PrepareScalarCast(RHS, LHSType);
10269 return Compatible;
10270 }
10271
10272 // Conversions to normal pointers.
10273 if (const PointerType *LHSPointer = dyn_cast<PointerType>(LHSType)) {
10274 // U* -> T*
10275 if (isa<PointerType>(RHSType)) {
10276 LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
10277 LangAS AddrSpaceR = RHSType->getPointeeType().getAddressSpace();
10278 if (AddrSpaceL != AddrSpaceR)
10279 Kind = CK_AddressSpaceConversion;
10280 else if (Context.hasCvrSimilarType(RHSType, LHSType))
10281 Kind = CK_NoOp;
10282 else
10283 Kind = CK_BitCast;
10284 return checkPointerTypesForAssignment(*this, LHSType, RHSType,
10285 RHS.get()->getBeginLoc());
10286 }
10287
10288 // int -> T*
10289 if (RHSType->isIntegerType()) {
10290 Kind = CK_IntegralToPointer; // FIXME: null?
10291 return IntToPointer;
10292 }
10293
10294 // C pointers are not compatible with ObjC object pointers,
10295 // with two exceptions:
10296 if (isa<ObjCObjectPointerType>(RHSType)) {
10297 // - conversions to void*
10298 if (LHSPointer->getPointeeType()->isVoidType()) {
10299 Kind = CK_BitCast;
10300 return Compatible;
10301 }
10302
10303 // - conversions from 'Class' to the redefinition type
10304 if (RHSType->isObjCClassType() &&
10305 Context.hasSameType(LHSType,
10306 Context.getObjCClassRedefinitionType())) {
10307 Kind = CK_BitCast;
10308 return Compatible;
10309 }
10310
10311 Kind = CK_BitCast;
10312 return IncompatiblePointer;
10313 }
10314
10315 // U^ -> void*
10316 if (RHSType->getAs<BlockPointerType>()) {
10317 if (LHSPointer->getPointeeType()->isVoidType()) {
10318 LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
10319 LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>()
10320 ->getPointeeType()
10321 .getAddressSpace();
10322 Kind =
10323 AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
10324 return Compatible;
10325 }
10326 }
10327
10328 return Incompatible;
10329 }
10330
10331 // Conversions to block pointers.
10332 if (isa<BlockPointerType>(LHSType)) {
10333 // U^ -> T^
10334 if (RHSType->isBlockPointerType()) {
10335 LangAS AddrSpaceL = LHSType->getAs<BlockPointerType>()
10336 ->getPointeeType()
10337 .getAddressSpace();
10338 LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>()
10339 ->getPointeeType()
10340 .getAddressSpace();
10341 Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
10342 return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType);
10343 }
10344
10345 // int or null -> T^
10346 if (RHSType->isIntegerType()) {
10347 Kind = CK_IntegralToPointer; // FIXME: null
10348 return IntToBlockPointer;
10349 }
10350
10351 // id -> T^
10352 if (getLangOpts().ObjC && RHSType->isObjCIdType()) {
10353 Kind = CK_AnyPointerToBlockPointerCast;
10354 return Compatible;
10355 }
10356
10357 // void* -> T^
10358 if (const PointerType *RHSPT = RHSType->getAs<PointerType>())
10359 if (RHSPT->getPointeeType()->isVoidType()) {
10360 Kind = CK_AnyPointerToBlockPointerCast;
10361 return Compatible;
10362 }
10363
10364 return Incompatible;
10365 }
10366
10367 // Conversions to Objective-C pointers.
10368 if (isa<ObjCObjectPointerType>(LHSType)) {
10369 // A* -> B*
10370 if (RHSType->isObjCObjectPointerType()) {
10371 Kind = CK_BitCast;
10372 Sema::AssignConvertType result =
10373 checkObjCPointerTypesForAssignment(*this, LHSType, RHSType);
10374 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
10375 result == Compatible &&
10376 !CheckObjCARCUnavailableWeakConversion(OrigLHSType, RHSType))
10377 result = IncompatibleObjCWeakRef;
10378 return result;
10379 }
10380
10381 // int or null -> A*
10382 if (RHSType->isIntegerType()) {
10383 Kind = CK_IntegralToPointer; // FIXME: null
10384 return IntToPointer;
10385 }
10386
10387 // In general, C pointers are not compatible with ObjC object pointers,
10388 // with two exceptions:
10389 if (isa<PointerType>(RHSType)) {
10390 Kind = CK_CPointerToObjCPointerCast;
10391
10392 // - conversions from 'void*'
10393 if (RHSType->isVoidPointerType()) {
10394 return Compatible;
10395 }
10396
10397 // - conversions to 'Class' from its redefinition type
10398 if (LHSType->isObjCClassType() &&
10399 Context.hasSameType(RHSType,
10400 Context.getObjCClassRedefinitionType())) {
10401 return Compatible;
10402 }
10403
10404 return IncompatiblePointer;
10405 }
10406
10407 // Only under strict condition T^ is compatible with an Objective-C pointer.
10408 if (RHSType->isBlockPointerType() &&
10409 LHSType->isBlockCompatibleObjCPointerType(Context)) {
10410 if (ConvertRHS)
10411 maybeExtendBlockObject(RHS);
10412 Kind = CK_BlockPointerToObjCPointerCast;
10413 return Compatible;
10414 }
10415
10416 return Incompatible;
10417 }
10418
10419 // Conversion to nullptr_t (C23 only)
10420 if (getLangOpts().C23 && LHSType->isNullPtrType() &&
10421 RHS.get()->isNullPointerConstant(Context,
10422 Expr::NPC_ValueDependentIsNull)) {
10423 // null -> nullptr_t
10424 Kind = CK_NullToPointer;
10425 return Compatible;
10426 }
10427
10428 // Conversions from pointers that are not covered by the above.
10429 if (isa<PointerType>(RHSType)) {
10430 // T* -> _Bool
10431 if (LHSType == Context.BoolTy) {
10432 Kind = CK_PointerToBoolean;
10433 return Compatible;
10434 }
10435
10436 // T* -> int
10437 if (LHSType->isIntegerType()) {
10438 Kind = CK_PointerToIntegral;
10439 return PointerToInt;
10440 }
10441
10442 return Incompatible;
10443 }
10444
10445 // Conversions from Objective-C pointers that are not covered by the above.
10446 if (isa<ObjCObjectPointerType>(RHSType)) {
10447 // T* -> _Bool
10448 if (LHSType == Context.BoolTy) {
10449 Kind = CK_PointerToBoolean;
10450 return Compatible;
10451 }
10452
10453 // T* -> int
10454 if (LHSType->isIntegerType()) {
10455 Kind = CK_PointerToIntegral;
10456 return PointerToInt;
10457 }
10458
10459 return Incompatible;
10460 }
10461
10462 // struct A -> struct B
10463 if (isa<TagType>(LHSType) && isa<TagType>(RHSType)) {
10464 if (Context.typesAreCompatible(LHSType, RHSType)) {
10465 Kind = CK_NoOp;
10466 return Compatible;
10467 }
10468 }
10469
10470 if (LHSType->isSamplerT() && RHSType->isIntegerType()) {
10471 Kind = CK_IntToOCLSampler;
10472 return Compatible;
10473 }
10474
10475 return Incompatible;
10476 }
10477
10478 /// Constructs a transparent union from an expression that is
10479 /// used to initialize the transparent union.
ConstructTransparentUnion(Sema & S,ASTContext & C,ExprResult & EResult,QualType UnionType,FieldDecl * Field)10480 static void ConstructTransparentUnion(Sema &S, ASTContext &C,
10481 ExprResult &EResult, QualType UnionType,
10482 FieldDecl *Field) {
10483 // Build an initializer list that designates the appropriate member
10484 // of the transparent union.
10485 Expr *E = EResult.get();
10486 InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
10487 E, SourceLocation());
10488 Initializer->setType(UnionType);
10489 Initializer->setInitializedFieldInUnion(Field);
10490
10491 // Build a compound literal constructing a value of the transparent
10492 // union type from this initializer list.
10493 TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
10494 EResult = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
10495 VK_PRValue, Initializer, false);
10496 }
10497
10498 Sema::AssignConvertType
CheckTransparentUnionArgumentConstraints(QualType ArgType,ExprResult & RHS)10499 Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType,
10500 ExprResult &RHS) {
10501 QualType RHSType = RHS.get()->getType();
10502
10503 // If the ArgType is a Union type, we want to handle a potential
10504 // transparent_union GCC extension.
10505 const RecordType *UT = ArgType->getAsUnionType();
10506 if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
10507 return Incompatible;
10508
10509 // The field to initialize within the transparent union.
10510 RecordDecl *UD = UT->getDecl();
10511 FieldDecl *InitField = nullptr;
10512 // It's compatible if the expression matches any of the fields.
10513 for (auto *it : UD->fields()) {
10514 if (it->getType()->isPointerType()) {
10515 // If the transparent union contains a pointer type, we allow:
10516 // 1) void pointer
10517 // 2) null pointer constant
10518 if (RHSType->isPointerType())
10519 if (RHSType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
10520 RHS = ImpCastExprToType(RHS.get(), it->getType(), CK_BitCast);
10521 InitField = it;
10522 break;
10523 }
10524
10525 if (RHS.get()->isNullPointerConstant(Context,
10526 Expr::NPC_ValueDependentIsNull)) {
10527 RHS = ImpCastExprToType(RHS.get(), it->getType(),
10528 CK_NullToPointer);
10529 InitField = it;
10530 break;
10531 }
10532 }
10533
10534 CastKind Kind;
10535 if (CheckAssignmentConstraints(it->getType(), RHS, Kind)
10536 == Compatible) {
10537 RHS = ImpCastExprToType(RHS.get(), it->getType(), Kind);
10538 InitField = it;
10539 break;
10540 }
10541 }
10542
10543 if (!InitField)
10544 return Incompatible;
10545
10546 ConstructTransparentUnion(*this, Context, RHS, ArgType, InitField);
10547 return Compatible;
10548 }
10549
10550 Sema::AssignConvertType
CheckSingleAssignmentConstraints(QualType LHSType,ExprResult & CallerRHS,bool Diagnose,bool DiagnoseCFAudited,bool ConvertRHS)10551 Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &CallerRHS,
10552 bool Diagnose,
10553 bool DiagnoseCFAudited,
10554 bool ConvertRHS) {
10555 // We need to be able to tell the caller whether we diagnosed a problem, if
10556 // they ask us to issue diagnostics.
10557 assert((ConvertRHS || !Diagnose) && "can't indicate whether we diagnosed");
10558
10559 // If ConvertRHS is false, we want to leave the caller's RHS untouched. Sadly,
10560 // we can't avoid *all* modifications at the moment, so we need some somewhere
10561 // to put the updated value.
10562 ExprResult LocalRHS = CallerRHS;
10563 ExprResult &RHS = ConvertRHS ? CallerRHS : LocalRHS;
10564
10565 if (const auto *LHSPtrType = LHSType->getAs<PointerType>()) {
10566 if (const auto *RHSPtrType = RHS.get()->getType()->getAs<PointerType>()) {
10567 if (RHSPtrType->getPointeeType()->hasAttr(attr::NoDeref) &&
10568 !LHSPtrType->getPointeeType()->hasAttr(attr::NoDeref)) {
10569 Diag(RHS.get()->getExprLoc(),
10570 diag::warn_noderef_to_dereferenceable_pointer)
10571 << RHS.get()->getSourceRange();
10572 }
10573 }
10574 }
10575
10576 if (getLangOpts().CPlusPlus) {
10577 if (!LHSType->isRecordType() && !LHSType->isAtomicType()) {
10578 // C++ 5.17p3: If the left operand is not of class type, the
10579 // expression is implicitly converted (C++ 4) to the
10580 // cv-unqualified type of the left operand.
10581 QualType RHSType = RHS.get()->getType();
10582 if (Diagnose) {
10583 RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
10584 AA_Assigning);
10585 } else {
10586 ImplicitConversionSequence ICS =
10587 TryImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
10588 /*SuppressUserConversions=*/false,
10589 AllowedExplicit::None,
10590 /*InOverloadResolution=*/false,
10591 /*CStyle=*/false,
10592 /*AllowObjCWritebackConversion=*/false);
10593 if (ICS.isFailure())
10594 return Incompatible;
10595 RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
10596 ICS, AA_Assigning);
10597 }
10598 if (RHS.isInvalid())
10599 return Incompatible;
10600 Sema::AssignConvertType result = Compatible;
10601 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
10602 !CheckObjCARCUnavailableWeakConversion(LHSType, RHSType))
10603 result = IncompatibleObjCWeakRef;
10604 return result;
10605 }
10606
10607 // FIXME: Currently, we fall through and treat C++ classes like C
10608 // structures.
10609 // FIXME: We also fall through for atomics; not sure what should
10610 // happen there, though.
10611 } else if (RHS.get()->getType() == Context.OverloadTy) {
10612 // As a set of extensions to C, we support overloading on functions. These
10613 // functions need to be resolved here.
10614 DeclAccessPair DAP;
10615 if (FunctionDecl *FD = ResolveAddressOfOverloadedFunction(
10616 RHS.get(), LHSType, /*Complain=*/false, DAP))
10617 RHS = FixOverloadedFunctionReference(RHS.get(), DAP, FD);
10618 else
10619 return Incompatible;
10620 }
10621
10622 // This check seems unnatural, however it is necessary to ensure the proper
10623 // conversion of functions/arrays. If the conversion were done for all
10624 // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
10625 // expressions that suppress this implicit conversion (&, sizeof). This needs
10626 // to happen before we check for null pointer conversions because C does not
10627 // undergo the same implicit conversions as C++ does above (by the calls to
10628 // TryImplicitConversion() and PerformImplicitConversion()) which insert the
10629 // lvalue to rvalue cast before checking for null pointer constraints. This
10630 // addresses code like: nullptr_t val; int *ptr; ptr = val;
10631 //
10632 // Suppress this for references: C++ 8.5.3p5.
10633 if (!LHSType->isReferenceType()) {
10634 // FIXME: We potentially allocate here even if ConvertRHS is false.
10635 RHS = DefaultFunctionArrayLvalueConversion(RHS.get(), Diagnose);
10636 if (RHS.isInvalid())
10637 return Incompatible;
10638 }
10639
10640 // The constraints are expressed in terms of the atomic, qualified, or
10641 // unqualified type of the LHS.
10642 QualType LHSTypeAfterConversion = LHSType.getAtomicUnqualifiedType();
10643
10644 // C99 6.5.16.1p1: the left operand is a pointer and the right is
10645 // a null pointer constant <C23>or its type is nullptr_t;</C23>.
10646 if ((LHSTypeAfterConversion->isPointerType() ||
10647 LHSTypeAfterConversion->isObjCObjectPointerType() ||
10648 LHSTypeAfterConversion->isBlockPointerType()) &&
10649 ((getLangOpts().C23 && RHS.get()->getType()->isNullPtrType()) ||
10650 RHS.get()->isNullPointerConstant(Context,
10651 Expr::NPC_ValueDependentIsNull))) {
10652 if (Diagnose || ConvertRHS) {
10653 CastKind Kind;
10654 CXXCastPath Path;
10655 CheckPointerConversion(RHS.get(), LHSType, Kind, Path,
10656 /*IgnoreBaseAccess=*/false, Diagnose);
10657 if (ConvertRHS)
10658 RHS = ImpCastExprToType(RHS.get(), LHSType, Kind, VK_PRValue, &Path);
10659 }
10660 return Compatible;
10661 }
10662 // C23 6.5.16.1p1: the left operand has type atomic, qualified, or
10663 // unqualified bool, and the right operand is a pointer or its type is
10664 // nullptr_t.
10665 if (getLangOpts().C23 && LHSType->isBooleanType() &&
10666 RHS.get()->getType()->isNullPtrType()) {
10667 // NB: T* -> _Bool is handled in CheckAssignmentConstraints, this only
10668 // only handles nullptr -> _Bool due to needing an extra conversion
10669 // step.
10670 // We model this by converting from nullptr -> void * and then let the
10671 // conversion from void * -> _Bool happen naturally.
10672 if (Diagnose || ConvertRHS) {
10673 CastKind Kind;
10674 CXXCastPath Path;
10675 CheckPointerConversion(RHS.get(), Context.VoidPtrTy, Kind, Path,
10676 /*IgnoreBaseAccess=*/false, Diagnose);
10677 if (ConvertRHS)
10678 RHS = ImpCastExprToType(RHS.get(), Context.VoidPtrTy, Kind, VK_PRValue,
10679 &Path);
10680 }
10681 }
10682
10683 // OpenCL queue_t type assignment.
10684 if (LHSType->isQueueT() && RHS.get()->isNullPointerConstant(
10685 Context, Expr::NPC_ValueDependentIsNull)) {
10686 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
10687 return Compatible;
10688 }
10689
10690 CastKind Kind;
10691 Sema::AssignConvertType result =
10692 CheckAssignmentConstraints(LHSType, RHS, Kind, ConvertRHS);
10693
10694 // C99 6.5.16.1p2: The value of the right operand is converted to the
10695 // type of the assignment expression.
10696 // CheckAssignmentConstraints allows the left-hand side to be a reference,
10697 // so that we can use references in built-in functions even in C.
10698 // The getNonReferenceType() call makes sure that the resulting expression
10699 // does not have reference type.
10700 if (result != Incompatible && RHS.get()->getType() != LHSType) {
10701 QualType Ty = LHSType.getNonLValueExprType(Context);
10702 Expr *E = RHS.get();
10703
10704 // Check for various Objective-C errors. If we are not reporting
10705 // diagnostics and just checking for errors, e.g., during overload
10706 // resolution, return Incompatible to indicate the failure.
10707 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
10708 CheckObjCConversion(SourceRange(), Ty, E, CCK_ImplicitConversion,
10709 Diagnose, DiagnoseCFAudited) != ACR_okay) {
10710 if (!Diagnose)
10711 return Incompatible;
10712 }
10713 if (getLangOpts().ObjC &&
10714 (CheckObjCBridgeRelatedConversions(E->getBeginLoc(), LHSType,
10715 E->getType(), E, Diagnose) ||
10716 CheckConversionToObjCLiteral(LHSType, E, Diagnose))) {
10717 if (!Diagnose)
10718 return Incompatible;
10719 // Replace the expression with a corrected version and continue so we
10720 // can find further errors.
10721 RHS = E;
10722 return Compatible;
10723 }
10724
10725 if (ConvertRHS)
10726 RHS = ImpCastExprToType(E, Ty, Kind);
10727 }
10728
10729 return result;
10730 }
10731
10732 namespace {
10733 /// The original operand to an operator, prior to the application of the usual
10734 /// arithmetic conversions and converting the arguments of a builtin operator
10735 /// candidate.
10736 struct OriginalOperand {
OriginalOperand__anon3f436b6a1311::OriginalOperand10737 explicit OriginalOperand(Expr *Op) : Orig(Op), Conversion(nullptr) {
10738 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Op))
10739 Op = MTE->getSubExpr();
10740 if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(Op))
10741 Op = BTE->getSubExpr();
10742 if (auto *ICE = dyn_cast<ImplicitCastExpr>(Op)) {
10743 Orig = ICE->getSubExprAsWritten();
10744 Conversion = ICE->getConversionFunction();
10745 }
10746 }
10747
getType__anon3f436b6a1311::OriginalOperand10748 QualType getType() const { return Orig->getType(); }
10749
10750 Expr *Orig;
10751 NamedDecl *Conversion;
10752 };
10753 }
10754
InvalidOperands(SourceLocation Loc,ExprResult & LHS,ExprResult & RHS)10755 QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS,
10756 ExprResult &RHS) {
10757 OriginalOperand OrigLHS(LHS.get()), OrigRHS(RHS.get());
10758
10759 Diag(Loc, diag::err_typecheck_invalid_operands)
10760 << OrigLHS.getType() << OrigRHS.getType()
10761 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10762
10763 // If a user-defined conversion was applied to either of the operands prior
10764 // to applying the built-in operator rules, tell the user about it.
10765 if (OrigLHS.Conversion) {
10766 Diag(OrigLHS.Conversion->getLocation(),
10767 diag::note_typecheck_invalid_operands_converted)
10768 << 0 << LHS.get()->getType();
10769 }
10770 if (OrigRHS.Conversion) {
10771 Diag(OrigRHS.Conversion->getLocation(),
10772 diag::note_typecheck_invalid_operands_converted)
10773 << 1 << RHS.get()->getType();
10774 }
10775
10776 return QualType();
10777 }
10778
10779 // Diagnose cases where a scalar was implicitly converted to a vector and
10780 // diagnose the underlying types. Otherwise, diagnose the error
10781 // as invalid vector logical operands for non-C++ cases.
InvalidLogicalVectorOperands(SourceLocation Loc,ExprResult & LHS,ExprResult & RHS)10782 QualType Sema::InvalidLogicalVectorOperands(SourceLocation Loc, ExprResult &LHS,
10783 ExprResult &RHS) {
10784 QualType LHSType = LHS.get()->IgnoreImpCasts()->getType();
10785 QualType RHSType = RHS.get()->IgnoreImpCasts()->getType();
10786
10787 bool LHSNatVec = LHSType->isVectorType();
10788 bool RHSNatVec = RHSType->isVectorType();
10789
10790 if (!(LHSNatVec && RHSNatVec)) {
10791 Expr *Vector = LHSNatVec ? LHS.get() : RHS.get();
10792 Expr *NonVector = !LHSNatVec ? LHS.get() : RHS.get();
10793 Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict)
10794 << 0 << Vector->getType() << NonVector->IgnoreImpCasts()->getType()
10795 << Vector->getSourceRange();
10796 return QualType();
10797 }
10798
10799 Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict)
10800 << 1 << LHSType << RHSType << LHS.get()->getSourceRange()
10801 << RHS.get()->getSourceRange();
10802
10803 return QualType();
10804 }
10805
10806 /// Try to convert a value of non-vector type to a vector type by converting
10807 /// the type to the element type of the vector and then performing a splat.
10808 /// If the language is OpenCL, we only use conversions that promote scalar
10809 /// rank; for C, Obj-C, and C++ we allow any real scalar conversion except
10810 /// for float->int.
10811 ///
10812 /// OpenCL V2.0 6.2.6.p2:
10813 /// An error shall occur if any scalar operand type has greater rank
10814 /// than the type of the vector element.
10815 ///
10816 /// \param scalar - if non-null, actually perform the conversions
10817 /// \return true if the operation fails (but without diagnosing the failure)
tryVectorConvertAndSplat(Sema & S,ExprResult * scalar,QualType scalarTy,QualType vectorEltTy,QualType vectorTy,unsigned & DiagID)10818 static bool tryVectorConvertAndSplat(Sema &S, ExprResult *scalar,
10819 QualType scalarTy,
10820 QualType vectorEltTy,
10821 QualType vectorTy,
10822 unsigned &DiagID) {
10823 // The conversion to apply to the scalar before splatting it,
10824 // if necessary.
10825 CastKind scalarCast = CK_NoOp;
10826
10827 if (vectorEltTy->isIntegralType(S.Context)) {
10828 if (S.getLangOpts().OpenCL && (scalarTy->isRealFloatingType() ||
10829 (scalarTy->isIntegerType() &&
10830 S.Context.getIntegerTypeOrder(vectorEltTy, scalarTy) < 0))) {
10831 DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type;
10832 return true;
10833 }
10834 if (!scalarTy->isIntegralType(S.Context))
10835 return true;
10836 scalarCast = CK_IntegralCast;
10837 } else if (vectorEltTy->isRealFloatingType()) {
10838 if (scalarTy->isRealFloatingType()) {
10839 if (S.getLangOpts().OpenCL &&
10840 S.Context.getFloatingTypeOrder(vectorEltTy, scalarTy) < 0) {
10841 DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type;
10842 return true;
10843 }
10844 scalarCast = CK_FloatingCast;
10845 }
10846 else if (scalarTy->isIntegralType(S.Context))
10847 scalarCast = CK_IntegralToFloating;
10848 else
10849 return true;
10850 } else {
10851 return true;
10852 }
10853
10854 // Adjust scalar if desired.
10855 if (scalar) {
10856 if (scalarCast != CK_NoOp)
10857 *scalar = S.ImpCastExprToType(scalar->get(), vectorEltTy, scalarCast);
10858 *scalar = S.ImpCastExprToType(scalar->get(), vectorTy, CK_VectorSplat);
10859 }
10860 return false;
10861 }
10862
10863 /// Convert vector E to a vector with the same number of elements but different
10864 /// element type.
convertVector(Expr * E,QualType ElementType,Sema & S)10865 static ExprResult convertVector(Expr *E, QualType ElementType, Sema &S) {
10866 const auto *VecTy = E->getType()->getAs<VectorType>();
10867 assert(VecTy && "Expression E must be a vector");
10868 QualType NewVecTy =
10869 VecTy->isExtVectorType()
10870 ? S.Context.getExtVectorType(ElementType, VecTy->getNumElements())
10871 : S.Context.getVectorType(ElementType, VecTy->getNumElements(),
10872 VecTy->getVectorKind());
10873
10874 // Look through the implicit cast. Return the subexpression if its type is
10875 // NewVecTy.
10876 if (auto *ICE = dyn_cast<ImplicitCastExpr>(E))
10877 if (ICE->getSubExpr()->getType() == NewVecTy)
10878 return ICE->getSubExpr();
10879
10880 auto Cast = ElementType->isIntegerType() ? CK_IntegralCast : CK_FloatingCast;
10881 return S.ImpCastExprToType(E, NewVecTy, Cast);
10882 }
10883
10884 /// Test if a (constant) integer Int can be casted to another integer type
10885 /// IntTy without losing precision.
canConvertIntToOtherIntTy(Sema & S,ExprResult * Int,QualType OtherIntTy)10886 static bool canConvertIntToOtherIntTy(Sema &S, ExprResult *Int,
10887 QualType OtherIntTy) {
10888 QualType IntTy = Int->get()->getType().getUnqualifiedType();
10889
10890 // Reject cases where the value of the Int is unknown as that would
10891 // possibly cause truncation, but accept cases where the scalar can be
10892 // demoted without loss of precision.
10893 Expr::EvalResult EVResult;
10894 bool CstInt = Int->get()->EvaluateAsInt(EVResult, S.Context);
10895 int Order = S.Context.getIntegerTypeOrder(OtherIntTy, IntTy);
10896 bool IntSigned = IntTy->hasSignedIntegerRepresentation();
10897 bool OtherIntSigned = OtherIntTy->hasSignedIntegerRepresentation();
10898
10899 if (CstInt) {
10900 // If the scalar is constant and is of a higher order and has more active
10901 // bits that the vector element type, reject it.
10902 llvm::APSInt Result = EVResult.Val.getInt();
10903 unsigned NumBits = IntSigned
10904 ? (Result.isNegative() ? Result.getSignificantBits()
10905 : Result.getActiveBits())
10906 : Result.getActiveBits();
10907 if (Order < 0 && S.Context.getIntWidth(OtherIntTy) < NumBits)
10908 return true;
10909
10910 // If the signedness of the scalar type and the vector element type
10911 // differs and the number of bits is greater than that of the vector
10912 // element reject it.
10913 return (IntSigned != OtherIntSigned &&
10914 NumBits > S.Context.getIntWidth(OtherIntTy));
10915 }
10916
10917 // Reject cases where the value of the scalar is not constant and it's
10918 // order is greater than that of the vector element type.
10919 return (Order < 0);
10920 }
10921
10922 /// Test if a (constant) integer Int can be casted to floating point type
10923 /// FloatTy without losing precision.
canConvertIntTyToFloatTy(Sema & S,ExprResult * Int,QualType FloatTy)10924 static bool canConvertIntTyToFloatTy(Sema &S, ExprResult *Int,
10925 QualType FloatTy) {
10926 QualType IntTy = Int->get()->getType().getUnqualifiedType();
10927
10928 // Determine if the integer constant can be expressed as a floating point
10929 // number of the appropriate type.
10930 Expr::EvalResult EVResult;
10931 bool CstInt = Int->get()->EvaluateAsInt(EVResult, S.Context);
10932
10933 uint64_t Bits = 0;
10934 if (CstInt) {
10935 // Reject constants that would be truncated if they were converted to
10936 // the floating point type. Test by simple to/from conversion.
10937 // FIXME: Ideally the conversion to an APFloat and from an APFloat
10938 // could be avoided if there was a convertFromAPInt method
10939 // which could signal back if implicit truncation occurred.
10940 llvm::APSInt Result = EVResult.Val.getInt();
10941 llvm::APFloat Float(S.Context.getFloatTypeSemantics(FloatTy));
10942 Float.convertFromAPInt(Result, IntTy->hasSignedIntegerRepresentation(),
10943 llvm::APFloat::rmTowardZero);
10944 llvm::APSInt ConvertBack(S.Context.getIntWidth(IntTy),
10945 !IntTy->hasSignedIntegerRepresentation());
10946 bool Ignored = false;
10947 Float.convertToInteger(ConvertBack, llvm::APFloat::rmNearestTiesToEven,
10948 &Ignored);
10949 if (Result != ConvertBack)
10950 return true;
10951 } else {
10952 // Reject types that cannot be fully encoded into the mantissa of
10953 // the float.
10954 Bits = S.Context.getTypeSize(IntTy);
10955 unsigned FloatPrec = llvm::APFloat::semanticsPrecision(
10956 S.Context.getFloatTypeSemantics(FloatTy));
10957 if (Bits > FloatPrec)
10958 return true;
10959 }
10960
10961 return false;
10962 }
10963
10964 /// Attempt to convert and splat Scalar into a vector whose types matches
10965 /// Vector following GCC conversion rules. The rule is that implicit
10966 /// conversion can occur when Scalar can be casted to match Vector's element
10967 /// type without causing truncation of Scalar.
tryGCCVectorConvertAndSplat(Sema & S,ExprResult * Scalar,ExprResult * Vector)10968 static bool tryGCCVectorConvertAndSplat(Sema &S, ExprResult *Scalar,
10969 ExprResult *Vector) {
10970 QualType ScalarTy = Scalar->get()->getType().getUnqualifiedType();
10971 QualType VectorTy = Vector->get()->getType().getUnqualifiedType();
10972 QualType VectorEltTy;
10973
10974 if (const auto *VT = VectorTy->getAs<VectorType>()) {
10975 assert(!isa<ExtVectorType>(VT) &&
10976 "ExtVectorTypes should not be handled here!");
10977 VectorEltTy = VT->getElementType();
10978 } else if (VectorTy->isSveVLSBuiltinType()) {
10979 VectorEltTy =
10980 VectorTy->castAs<BuiltinType>()->getSveEltType(S.getASTContext());
10981 } else {
10982 llvm_unreachable("Only Fixed-Length and SVE Vector types are handled here");
10983 }
10984
10985 // Reject cases where the vector element type or the scalar element type are
10986 // not integral or floating point types.
10987 if (!VectorEltTy->isArithmeticType() || !ScalarTy->isArithmeticType())
10988 return true;
10989
10990 // The conversion to apply to the scalar before splatting it,
10991 // if necessary.
10992 CastKind ScalarCast = CK_NoOp;
10993
10994 // Accept cases where the vector elements are integers and the scalar is
10995 // an integer.
10996 // FIXME: Notionally if the scalar was a floating point value with a precise
10997 // integral representation, we could cast it to an appropriate integer
10998 // type and then perform the rest of the checks here. GCC will perform
10999 // this conversion in some cases as determined by the input language.
11000 // We should accept it on a language independent basis.
11001 if (VectorEltTy->isIntegralType(S.Context) &&
11002 ScalarTy->isIntegralType(S.Context) &&
11003 S.Context.getIntegerTypeOrder(VectorEltTy, ScalarTy)) {
11004
11005 if (canConvertIntToOtherIntTy(S, Scalar, VectorEltTy))
11006 return true;
11007
11008 ScalarCast = CK_IntegralCast;
11009 } else if (VectorEltTy->isIntegralType(S.Context) &&
11010 ScalarTy->isRealFloatingType()) {
11011 if (S.Context.getTypeSize(VectorEltTy) == S.Context.getTypeSize(ScalarTy))
11012 ScalarCast = CK_FloatingToIntegral;
11013 else
11014 return true;
11015 } else if (VectorEltTy->isRealFloatingType()) {
11016 if (ScalarTy->isRealFloatingType()) {
11017
11018 // Reject cases where the scalar type is not a constant and has a higher
11019 // Order than the vector element type.
11020 llvm::APFloat Result(0.0);
11021
11022 // Determine whether this is a constant scalar. In the event that the
11023 // value is dependent (and thus cannot be evaluated by the constant
11024 // evaluator), skip the evaluation. This will then diagnose once the
11025 // expression is instantiated.
11026 bool CstScalar = Scalar->get()->isValueDependent() ||
11027 Scalar->get()->EvaluateAsFloat(Result, S.Context);
11028 int Order = S.Context.getFloatingTypeOrder(VectorEltTy, ScalarTy);
11029 if (!CstScalar && Order < 0)
11030 return true;
11031
11032 // If the scalar cannot be safely casted to the vector element type,
11033 // reject it.
11034 if (CstScalar) {
11035 bool Truncated = false;
11036 Result.convert(S.Context.getFloatTypeSemantics(VectorEltTy),
11037 llvm::APFloat::rmNearestTiesToEven, &Truncated);
11038 if (Truncated)
11039 return true;
11040 }
11041
11042 ScalarCast = CK_FloatingCast;
11043 } else if (ScalarTy->isIntegralType(S.Context)) {
11044 if (canConvertIntTyToFloatTy(S, Scalar, VectorEltTy))
11045 return true;
11046
11047 ScalarCast = CK_IntegralToFloating;
11048 } else
11049 return true;
11050 } else if (ScalarTy->isEnumeralType())
11051 return true;
11052
11053 // Adjust scalar if desired.
11054 if (ScalarCast != CK_NoOp)
11055 *Scalar = S.ImpCastExprToType(Scalar->get(), VectorEltTy, ScalarCast);
11056 *Scalar = S.ImpCastExprToType(Scalar->get(), VectorTy, CK_VectorSplat);
11057 return false;
11058 }
11059
CheckVectorOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompAssign,bool AllowBothBool,bool AllowBoolConversions,bool AllowBoolOperation,bool ReportInvalid)11060 QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
11061 SourceLocation Loc, bool IsCompAssign,
11062 bool AllowBothBool,
11063 bool AllowBoolConversions,
11064 bool AllowBoolOperation,
11065 bool ReportInvalid) {
11066 if (!IsCompAssign) {
11067 LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
11068 if (LHS.isInvalid())
11069 return QualType();
11070 }
11071 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
11072 if (RHS.isInvalid())
11073 return QualType();
11074
11075 // For conversion purposes, we ignore any qualifiers.
11076 // For example, "const float" and "float" are equivalent.
11077 QualType LHSType = LHS.get()->getType().getUnqualifiedType();
11078 QualType RHSType = RHS.get()->getType().getUnqualifiedType();
11079
11080 const VectorType *LHSVecType = LHSType->getAs<VectorType>();
11081 const VectorType *RHSVecType = RHSType->getAs<VectorType>();
11082 assert(LHSVecType || RHSVecType);
11083
11084 // AltiVec-style "vector bool op vector bool" combinations are allowed
11085 // for some operators but not others.
11086 if (!AllowBothBool && LHSVecType &&
11087 LHSVecType->getVectorKind() == VectorKind::AltiVecBool && RHSVecType &&
11088 RHSVecType->getVectorKind() == VectorKind::AltiVecBool)
11089 return ReportInvalid ? InvalidOperands(Loc, LHS, RHS) : QualType();
11090
11091 // This operation may not be performed on boolean vectors.
11092 if (!AllowBoolOperation &&
11093 (LHSType->isExtVectorBoolType() || RHSType->isExtVectorBoolType()))
11094 return ReportInvalid ? InvalidOperands(Loc, LHS, RHS) : QualType();
11095
11096 // If the vector types are identical, return.
11097 if (Context.hasSameType(LHSType, RHSType))
11098 return Context.getCommonSugaredType(LHSType, RHSType);
11099
11100 // If we have compatible AltiVec and GCC vector types, use the AltiVec type.
11101 if (LHSVecType && RHSVecType &&
11102 Context.areCompatibleVectorTypes(LHSType, RHSType)) {
11103 if (isa<ExtVectorType>(LHSVecType)) {
11104 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
11105 return LHSType;
11106 }
11107
11108 if (!IsCompAssign)
11109 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
11110 return RHSType;
11111 }
11112
11113 // AllowBoolConversions says that bool and non-bool AltiVec vectors
11114 // can be mixed, with the result being the non-bool type. The non-bool
11115 // operand must have integer element type.
11116 if (AllowBoolConversions && LHSVecType && RHSVecType &&
11117 LHSVecType->getNumElements() == RHSVecType->getNumElements() &&
11118 (Context.getTypeSize(LHSVecType->getElementType()) ==
11119 Context.getTypeSize(RHSVecType->getElementType()))) {
11120 if (LHSVecType->getVectorKind() == VectorKind::AltiVecVector &&
11121 LHSVecType->getElementType()->isIntegerType() &&
11122 RHSVecType->getVectorKind() == VectorKind::AltiVecBool) {
11123 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
11124 return LHSType;
11125 }
11126 if (!IsCompAssign &&
11127 LHSVecType->getVectorKind() == VectorKind::AltiVecBool &&
11128 RHSVecType->getVectorKind() == VectorKind::AltiVecVector &&
11129 RHSVecType->getElementType()->isIntegerType()) {
11130 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
11131 return RHSType;
11132 }
11133 }
11134
11135 // Expressions containing fixed-length and sizeless SVE/RVV vectors are
11136 // invalid since the ambiguity can affect the ABI.
11137 auto IsSveRVVConversion = [](QualType FirstType, QualType SecondType,
11138 unsigned &SVEorRVV) {
11139 const VectorType *VecType = SecondType->getAs<VectorType>();
11140 SVEorRVV = 0;
11141 if (FirstType->isSizelessBuiltinType() && VecType) {
11142 if (VecType->getVectorKind() == VectorKind::SveFixedLengthData ||
11143 VecType->getVectorKind() == VectorKind::SveFixedLengthPredicate)
11144 return true;
11145 if (VecType->getVectorKind() == VectorKind::RVVFixedLengthData ||
11146 VecType->getVectorKind() == VectorKind::RVVFixedLengthMask) {
11147 SVEorRVV = 1;
11148 return true;
11149 }
11150 }
11151
11152 return false;
11153 };
11154
11155 unsigned SVEorRVV;
11156 if (IsSveRVVConversion(LHSType, RHSType, SVEorRVV) ||
11157 IsSveRVVConversion(RHSType, LHSType, SVEorRVV)) {
11158 Diag(Loc, diag::err_typecheck_sve_rvv_ambiguous)
11159 << SVEorRVV << LHSType << RHSType;
11160 return QualType();
11161 }
11162
11163 // Expressions containing GNU and SVE or RVV (fixed or sizeless) vectors are
11164 // invalid since the ambiguity can affect the ABI.
11165 auto IsSveRVVGnuConversion = [](QualType FirstType, QualType SecondType,
11166 unsigned &SVEorRVV) {
11167 const VectorType *FirstVecType = FirstType->getAs<VectorType>();
11168 const VectorType *SecondVecType = SecondType->getAs<VectorType>();
11169
11170 SVEorRVV = 0;
11171 if (FirstVecType && SecondVecType) {
11172 if (FirstVecType->getVectorKind() == VectorKind::Generic) {
11173 if (SecondVecType->getVectorKind() == VectorKind::SveFixedLengthData ||
11174 SecondVecType->getVectorKind() ==
11175 VectorKind::SveFixedLengthPredicate)
11176 return true;
11177 if (SecondVecType->getVectorKind() == VectorKind::RVVFixedLengthData ||
11178 SecondVecType->getVectorKind() == VectorKind::RVVFixedLengthMask) {
11179 SVEorRVV = 1;
11180 return true;
11181 }
11182 }
11183 return false;
11184 }
11185
11186 if (SecondVecType &&
11187 SecondVecType->getVectorKind() == VectorKind::Generic) {
11188 if (FirstType->isSVESizelessBuiltinType())
11189 return true;
11190 if (FirstType->isRVVSizelessBuiltinType()) {
11191 SVEorRVV = 1;
11192 return true;
11193 }
11194 }
11195
11196 return false;
11197 };
11198
11199 if (IsSveRVVGnuConversion(LHSType, RHSType, SVEorRVV) ||
11200 IsSveRVVGnuConversion(RHSType, LHSType, SVEorRVV)) {
11201 Diag(Loc, diag::err_typecheck_sve_rvv_gnu_ambiguous)
11202 << SVEorRVV << LHSType << RHSType;
11203 return QualType();
11204 }
11205
11206 // If there's a vector type and a scalar, try to convert the scalar to
11207 // the vector element type and splat.
11208 unsigned DiagID = diag::err_typecheck_vector_not_convertable;
11209 if (!RHSVecType) {
11210 if (isa<ExtVectorType>(LHSVecType)) {
11211 if (!tryVectorConvertAndSplat(*this, &RHS, RHSType,
11212 LHSVecType->getElementType(), LHSType,
11213 DiagID))
11214 return LHSType;
11215 } else {
11216 if (!tryGCCVectorConvertAndSplat(*this, &RHS, &LHS))
11217 return LHSType;
11218 }
11219 }
11220 if (!LHSVecType) {
11221 if (isa<ExtVectorType>(RHSVecType)) {
11222 if (!tryVectorConvertAndSplat(*this, (IsCompAssign ? nullptr : &LHS),
11223 LHSType, RHSVecType->getElementType(),
11224 RHSType, DiagID))
11225 return RHSType;
11226 } else {
11227 if (LHS.get()->isLValue() ||
11228 !tryGCCVectorConvertAndSplat(*this, &LHS, &RHS))
11229 return RHSType;
11230 }
11231 }
11232
11233 // FIXME: The code below also handles conversion between vectors and
11234 // non-scalars, we should break this down into fine grained specific checks
11235 // and emit proper diagnostics.
11236 QualType VecType = LHSVecType ? LHSType : RHSType;
11237 const VectorType *VT = LHSVecType ? LHSVecType : RHSVecType;
11238 QualType OtherType = LHSVecType ? RHSType : LHSType;
11239 ExprResult *OtherExpr = LHSVecType ? &RHS : &LHS;
11240 if (isLaxVectorConversion(OtherType, VecType)) {
11241 if (Context.getTargetInfo().getTriple().isPPC() &&
11242 anyAltivecTypes(RHSType, LHSType) &&
11243 !Context.areCompatibleVectorTypes(RHSType, LHSType))
11244 Diag(Loc, diag::warn_deprecated_lax_vec_conv_all) << RHSType << LHSType;
11245 // If we're allowing lax vector conversions, only the total (data) size
11246 // needs to be the same. For non compound assignment, if one of the types is
11247 // scalar, the result is always the vector type.
11248 if (!IsCompAssign) {
11249 *OtherExpr = ImpCastExprToType(OtherExpr->get(), VecType, CK_BitCast);
11250 return VecType;
11251 // In a compound assignment, lhs += rhs, 'lhs' is a lvalue src, forbidding
11252 // any implicit cast. Here, the 'rhs' should be implicit casted to 'lhs'
11253 // type. Note that this is already done by non-compound assignments in
11254 // CheckAssignmentConstraints. If it's a scalar type, only bitcast for
11255 // <1 x T> -> T. The result is also a vector type.
11256 } else if (OtherType->isExtVectorType() || OtherType->isVectorType() ||
11257 (OtherType->isScalarType() && VT->getNumElements() == 1)) {
11258 ExprResult *RHSExpr = &RHS;
11259 *RHSExpr = ImpCastExprToType(RHSExpr->get(), LHSType, CK_BitCast);
11260 return VecType;
11261 }
11262 }
11263
11264 // Okay, the expression is invalid.
11265
11266 // If there's a non-vector, non-real operand, diagnose that.
11267 if ((!RHSVecType && !RHSType->isRealType()) ||
11268 (!LHSVecType && !LHSType->isRealType())) {
11269 Diag(Loc, diag::err_typecheck_vector_not_convertable_non_scalar)
11270 << LHSType << RHSType
11271 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11272 return QualType();
11273 }
11274
11275 // OpenCL V1.1 6.2.6.p1:
11276 // If the operands are of more than one vector type, then an error shall
11277 // occur. Implicit conversions between vector types are not permitted, per
11278 // section 6.2.1.
11279 if (getLangOpts().OpenCL &&
11280 RHSVecType && isa<ExtVectorType>(RHSVecType) &&
11281 LHSVecType && isa<ExtVectorType>(LHSVecType)) {
11282 Diag(Loc, diag::err_opencl_implicit_vector_conversion) << LHSType
11283 << RHSType;
11284 return QualType();
11285 }
11286
11287
11288 // If there is a vector type that is not a ExtVector and a scalar, we reach
11289 // this point if scalar could not be converted to the vector's element type
11290 // without truncation.
11291 if ((RHSVecType && !isa<ExtVectorType>(RHSVecType)) ||
11292 (LHSVecType && !isa<ExtVectorType>(LHSVecType))) {
11293 QualType Scalar = LHSVecType ? RHSType : LHSType;
11294 QualType Vector = LHSVecType ? LHSType : RHSType;
11295 unsigned ScalarOrVector = LHSVecType && RHSVecType ? 1 : 0;
11296 Diag(Loc,
11297 diag::err_typecheck_vector_not_convertable_implict_truncation)
11298 << ScalarOrVector << Scalar << Vector;
11299
11300 return QualType();
11301 }
11302
11303 // Otherwise, use the generic diagnostic.
11304 Diag(Loc, DiagID)
11305 << LHSType << RHSType
11306 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11307 return QualType();
11308 }
11309
CheckSizelessVectorOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompAssign,ArithConvKind OperationKind)11310 QualType Sema::CheckSizelessVectorOperands(ExprResult &LHS, ExprResult &RHS,
11311 SourceLocation Loc,
11312 bool IsCompAssign,
11313 ArithConvKind OperationKind) {
11314 if (!IsCompAssign) {
11315 LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
11316 if (LHS.isInvalid())
11317 return QualType();
11318 }
11319 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
11320 if (RHS.isInvalid())
11321 return QualType();
11322
11323 QualType LHSType = LHS.get()->getType().getUnqualifiedType();
11324 QualType RHSType = RHS.get()->getType().getUnqualifiedType();
11325
11326 const BuiltinType *LHSBuiltinTy = LHSType->getAs<BuiltinType>();
11327 const BuiltinType *RHSBuiltinTy = RHSType->getAs<BuiltinType>();
11328
11329 unsigned DiagID = diag::err_typecheck_invalid_operands;
11330 if ((OperationKind == ACK_Arithmetic) &&
11331 ((LHSBuiltinTy && LHSBuiltinTy->isSVEBool()) ||
11332 (RHSBuiltinTy && RHSBuiltinTy->isSVEBool()))) {
11333 Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange()
11334 << RHS.get()->getSourceRange();
11335 return QualType();
11336 }
11337
11338 if (Context.hasSameType(LHSType, RHSType))
11339 return LHSType;
11340
11341 if (LHSType->isSveVLSBuiltinType() && !RHSType->isSveVLSBuiltinType()) {
11342 if (!tryGCCVectorConvertAndSplat(*this, &RHS, &LHS))
11343 return LHSType;
11344 }
11345 if (RHSType->isSveVLSBuiltinType() && !LHSType->isSveVLSBuiltinType()) {
11346 if (LHS.get()->isLValue() ||
11347 !tryGCCVectorConvertAndSplat(*this, &LHS, &RHS))
11348 return RHSType;
11349 }
11350
11351 if ((!LHSType->isSveVLSBuiltinType() && !LHSType->isRealType()) ||
11352 (!RHSType->isSveVLSBuiltinType() && !RHSType->isRealType())) {
11353 Diag(Loc, diag::err_typecheck_vector_not_convertable_non_scalar)
11354 << LHSType << RHSType << LHS.get()->getSourceRange()
11355 << RHS.get()->getSourceRange();
11356 return QualType();
11357 }
11358
11359 if (LHSType->isSveVLSBuiltinType() && RHSType->isSveVLSBuiltinType() &&
11360 Context.getBuiltinVectorTypeInfo(LHSBuiltinTy).EC !=
11361 Context.getBuiltinVectorTypeInfo(RHSBuiltinTy).EC) {
11362 Diag(Loc, diag::err_typecheck_vector_lengths_not_equal)
11363 << LHSType << RHSType << LHS.get()->getSourceRange()
11364 << RHS.get()->getSourceRange();
11365 return QualType();
11366 }
11367
11368 if (LHSType->isSveVLSBuiltinType() || RHSType->isSveVLSBuiltinType()) {
11369 QualType Scalar = LHSType->isSveVLSBuiltinType() ? RHSType : LHSType;
11370 QualType Vector = LHSType->isSveVLSBuiltinType() ? LHSType : RHSType;
11371 bool ScalarOrVector =
11372 LHSType->isSveVLSBuiltinType() && RHSType->isSveVLSBuiltinType();
11373
11374 Diag(Loc, diag::err_typecheck_vector_not_convertable_implict_truncation)
11375 << ScalarOrVector << Scalar << Vector;
11376
11377 return QualType();
11378 }
11379
11380 Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange()
11381 << RHS.get()->getSourceRange();
11382 return QualType();
11383 }
11384
11385 // checkArithmeticNull - Detect when a NULL constant is used improperly in an
11386 // expression. These are mainly cases where the null pointer is used as an
11387 // integer instead of a pointer.
checkArithmeticNull(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompare)11388 static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS,
11389 SourceLocation Loc, bool IsCompare) {
11390 // The canonical way to check for a GNU null is with isNullPointerConstant,
11391 // but we use a bit of a hack here for speed; this is a relatively
11392 // hot path, and isNullPointerConstant is slow.
11393 bool LHSNull = isa<GNUNullExpr>(LHS.get()->IgnoreParenImpCasts());
11394 bool RHSNull = isa<GNUNullExpr>(RHS.get()->IgnoreParenImpCasts());
11395
11396 QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType();
11397
11398 // Avoid analyzing cases where the result will either be invalid (and
11399 // diagnosed as such) or entirely valid and not something to warn about.
11400 if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() ||
11401 NonNullType->isMemberPointerType() || NonNullType->isFunctionType())
11402 return;
11403
11404 // Comparison operations would not make sense with a null pointer no matter
11405 // what the other expression is.
11406 if (!IsCompare) {
11407 S.Diag(Loc, diag::warn_null_in_arithmetic_operation)
11408 << (LHSNull ? LHS.get()->getSourceRange() : SourceRange())
11409 << (RHSNull ? RHS.get()->getSourceRange() : SourceRange());
11410 return;
11411 }
11412
11413 // The rest of the operations only make sense with a null pointer
11414 // if the other expression is a pointer.
11415 if (LHSNull == RHSNull || NonNullType->isAnyPointerType() ||
11416 NonNullType->canDecayToPointerType())
11417 return;
11418
11419 S.Diag(Loc, diag::warn_null_in_comparison_operation)
11420 << LHSNull /* LHS is NULL */ << NonNullType
11421 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11422 }
11423
DiagnoseDivisionSizeofPointerOrArray(Sema & S,Expr * LHS,Expr * RHS,SourceLocation Loc)11424 static void DiagnoseDivisionSizeofPointerOrArray(Sema &S, Expr *LHS, Expr *RHS,
11425 SourceLocation Loc) {
11426 const auto *LUE = dyn_cast<UnaryExprOrTypeTraitExpr>(LHS);
11427 const auto *RUE = dyn_cast<UnaryExprOrTypeTraitExpr>(RHS);
11428 if (!LUE || !RUE)
11429 return;
11430 if (LUE->getKind() != UETT_SizeOf || LUE->isArgumentType() ||
11431 RUE->getKind() != UETT_SizeOf)
11432 return;
11433
11434 const Expr *LHSArg = LUE->getArgumentExpr()->IgnoreParens();
11435 QualType LHSTy = LHSArg->getType();
11436 QualType RHSTy;
11437
11438 if (RUE->isArgumentType())
11439 RHSTy = RUE->getArgumentType().getNonReferenceType();
11440 else
11441 RHSTy = RUE->getArgumentExpr()->IgnoreParens()->getType();
11442
11443 if (LHSTy->isPointerType() && !RHSTy->isPointerType()) {
11444 if (!S.Context.hasSameUnqualifiedType(LHSTy->getPointeeType(), RHSTy))
11445 return;
11446
11447 S.Diag(Loc, diag::warn_division_sizeof_ptr) << LHS << LHS->getSourceRange();
11448 if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSArg)) {
11449 if (const ValueDecl *LHSArgDecl = DRE->getDecl())
11450 S.Diag(LHSArgDecl->getLocation(), diag::note_pointer_declared_here)
11451 << LHSArgDecl;
11452 }
11453 } else if (const auto *ArrayTy = S.Context.getAsArrayType(LHSTy)) {
11454 QualType ArrayElemTy = ArrayTy->getElementType();
11455 if (ArrayElemTy != S.Context.getBaseElementType(ArrayTy) ||
11456 ArrayElemTy->isDependentType() || RHSTy->isDependentType() ||
11457 RHSTy->isReferenceType() || ArrayElemTy->isCharType() ||
11458 S.Context.getTypeSize(ArrayElemTy) == S.Context.getTypeSize(RHSTy))
11459 return;
11460 S.Diag(Loc, diag::warn_division_sizeof_array)
11461 << LHSArg->getSourceRange() << ArrayElemTy << RHSTy;
11462 if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSArg)) {
11463 if (const ValueDecl *LHSArgDecl = DRE->getDecl())
11464 S.Diag(LHSArgDecl->getLocation(), diag::note_array_declared_here)
11465 << LHSArgDecl;
11466 }
11467
11468 S.Diag(Loc, diag::note_precedence_silence) << RHS;
11469 }
11470 }
11471
DiagnoseBadDivideOrRemainderValues(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsDiv)11472 static void DiagnoseBadDivideOrRemainderValues(Sema& S, ExprResult &LHS,
11473 ExprResult &RHS,
11474 SourceLocation Loc, bool IsDiv) {
11475 // Check for division/remainder by zero.
11476 Expr::EvalResult RHSValue;
11477 if (!RHS.get()->isValueDependent() &&
11478 RHS.get()->EvaluateAsInt(RHSValue, S.Context) &&
11479 RHSValue.Val.getInt() == 0)
11480 S.DiagRuntimeBehavior(Loc, RHS.get(),
11481 S.PDiag(diag::warn_remainder_division_by_zero)
11482 << IsDiv << RHS.get()->getSourceRange());
11483 }
11484
CheckMultiplyDivideOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompAssign,bool IsDiv)11485 QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS,
11486 SourceLocation Loc,
11487 bool IsCompAssign, bool IsDiv) {
11488 checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
11489
11490 QualType LHSTy = LHS.get()->getType();
11491 QualType RHSTy = RHS.get()->getType();
11492 if (LHSTy->isVectorType() || RHSTy->isVectorType())
11493 return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
11494 /*AllowBothBool*/ getLangOpts().AltiVec,
11495 /*AllowBoolConversions*/ false,
11496 /*AllowBooleanOperation*/ false,
11497 /*ReportInvalid*/ true);
11498 if (LHSTy->isSveVLSBuiltinType() || RHSTy->isSveVLSBuiltinType())
11499 return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign,
11500 ACK_Arithmetic);
11501 if (!IsDiv &&
11502 (LHSTy->isConstantMatrixType() || RHSTy->isConstantMatrixType()))
11503 return CheckMatrixMultiplyOperands(LHS, RHS, Loc, IsCompAssign);
11504 // For division, only matrix-by-scalar is supported. Other combinations with
11505 // matrix types are invalid.
11506 if (IsDiv && LHSTy->isConstantMatrixType() && RHSTy->isArithmeticType())
11507 return CheckMatrixElementwiseOperands(LHS, RHS, Loc, IsCompAssign);
11508
11509 QualType compType = UsualArithmeticConversions(
11510 LHS, RHS, Loc, IsCompAssign ? ACK_CompAssign : ACK_Arithmetic);
11511 if (LHS.isInvalid() || RHS.isInvalid())
11512 return QualType();
11513
11514
11515 if (compType.isNull() || !compType->isArithmeticType())
11516 return InvalidOperands(Loc, LHS, RHS);
11517 if (IsDiv) {
11518 DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, IsDiv);
11519 DiagnoseDivisionSizeofPointerOrArray(*this, LHS.get(), RHS.get(), Loc);
11520 }
11521 return compType;
11522 }
11523
CheckRemainderOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompAssign)11524 QualType Sema::CheckRemainderOperands(
11525 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
11526 checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
11527
11528 if (LHS.get()->getType()->isVectorType() ||
11529 RHS.get()->getType()->isVectorType()) {
11530 if (LHS.get()->getType()->hasIntegerRepresentation() &&
11531 RHS.get()->getType()->hasIntegerRepresentation())
11532 return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
11533 /*AllowBothBool*/ getLangOpts().AltiVec,
11534 /*AllowBoolConversions*/ false,
11535 /*AllowBooleanOperation*/ false,
11536 /*ReportInvalid*/ true);
11537 return InvalidOperands(Loc, LHS, RHS);
11538 }
11539
11540 if (LHS.get()->getType()->isSveVLSBuiltinType() ||
11541 RHS.get()->getType()->isSveVLSBuiltinType()) {
11542 if (LHS.get()->getType()->hasIntegerRepresentation() &&
11543 RHS.get()->getType()->hasIntegerRepresentation())
11544 return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign,
11545 ACK_Arithmetic);
11546
11547 return InvalidOperands(Loc, LHS, RHS);
11548 }
11549
11550 QualType compType = UsualArithmeticConversions(
11551 LHS, RHS, Loc, IsCompAssign ? ACK_CompAssign : ACK_Arithmetic);
11552 if (LHS.isInvalid() || RHS.isInvalid())
11553 return QualType();
11554
11555 if (compType.isNull() || !compType->isIntegerType())
11556 return InvalidOperands(Loc, LHS, RHS);
11557 DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, false /* IsDiv */);
11558 return compType;
11559 }
11560
11561 /// Diagnose invalid arithmetic on two void pointers.
diagnoseArithmeticOnTwoVoidPointers(Sema & S,SourceLocation Loc,Expr * LHSExpr,Expr * RHSExpr)11562 static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc,
11563 Expr *LHSExpr, Expr *RHSExpr) {
11564 S.Diag(Loc, S.getLangOpts().CPlusPlus
11565 ? diag::err_typecheck_pointer_arith_void_type
11566 : diag::ext_gnu_void_ptr)
11567 << 1 /* two pointers */ << LHSExpr->getSourceRange()
11568 << RHSExpr->getSourceRange();
11569 }
11570
11571 /// Diagnose invalid arithmetic on a void pointer.
diagnoseArithmeticOnVoidPointer(Sema & S,SourceLocation Loc,Expr * Pointer)11572 static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc,
11573 Expr *Pointer) {
11574 S.Diag(Loc, S.getLangOpts().CPlusPlus
11575 ? diag::err_typecheck_pointer_arith_void_type
11576 : diag::ext_gnu_void_ptr)
11577 << 0 /* one pointer */ << Pointer->getSourceRange();
11578 }
11579
11580 /// Diagnose invalid arithmetic on a null pointer.
11581 ///
11582 /// If \p IsGNUIdiom is true, the operation is using the 'p = (i8*)nullptr + n'
11583 /// idiom, which we recognize as a GNU extension.
11584 ///
diagnoseArithmeticOnNullPointer(Sema & S,SourceLocation Loc,Expr * Pointer,bool IsGNUIdiom)11585 static void diagnoseArithmeticOnNullPointer(Sema &S, SourceLocation Loc,
11586 Expr *Pointer, bool IsGNUIdiom) {
11587 if (IsGNUIdiom)
11588 S.Diag(Loc, diag::warn_gnu_null_ptr_arith)
11589 << Pointer->getSourceRange();
11590 else
11591 S.Diag(Loc, diag::warn_pointer_arith_null_ptr)
11592 << S.getLangOpts().CPlusPlus << Pointer->getSourceRange();
11593 }
11594
11595 /// Diagnose invalid subraction on a null pointer.
11596 ///
diagnoseSubtractionOnNullPointer(Sema & S,SourceLocation Loc,Expr * Pointer,bool BothNull)11597 static void diagnoseSubtractionOnNullPointer(Sema &S, SourceLocation Loc,
11598 Expr *Pointer, bool BothNull) {
11599 // Null - null is valid in C++ [expr.add]p7
11600 if (BothNull && S.getLangOpts().CPlusPlus)
11601 return;
11602
11603 // Is this s a macro from a system header?
11604 if (S.Diags.getSuppressSystemWarnings() && S.SourceMgr.isInSystemMacro(Loc))
11605 return;
11606
11607 S.DiagRuntimeBehavior(Loc, Pointer,
11608 S.PDiag(diag::warn_pointer_sub_null_ptr)
11609 << S.getLangOpts().CPlusPlus
11610 << Pointer->getSourceRange());
11611 }
11612
11613 /// Diagnose invalid arithmetic on two function pointers.
diagnoseArithmeticOnTwoFunctionPointers(Sema & S,SourceLocation Loc,Expr * LHS,Expr * RHS)11614 static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc,
11615 Expr *LHS, Expr *RHS) {
11616 assert(LHS->getType()->isAnyPointerType());
11617 assert(RHS->getType()->isAnyPointerType());
11618 S.Diag(Loc, S.getLangOpts().CPlusPlus
11619 ? diag::err_typecheck_pointer_arith_function_type
11620 : diag::ext_gnu_ptr_func_arith)
11621 << 1 /* two pointers */ << LHS->getType()->getPointeeType()
11622 // We only show the second type if it differs from the first.
11623 << (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(),
11624 RHS->getType())
11625 << RHS->getType()->getPointeeType()
11626 << LHS->getSourceRange() << RHS->getSourceRange();
11627 }
11628
11629 /// Diagnose invalid arithmetic on a function pointer.
diagnoseArithmeticOnFunctionPointer(Sema & S,SourceLocation Loc,Expr * Pointer)11630 static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc,
11631 Expr *Pointer) {
11632 assert(Pointer->getType()->isAnyPointerType());
11633 S.Diag(Loc, S.getLangOpts().CPlusPlus
11634 ? diag::err_typecheck_pointer_arith_function_type
11635 : diag::ext_gnu_ptr_func_arith)
11636 << 0 /* one pointer */ << Pointer->getType()->getPointeeType()
11637 << 0 /* one pointer, so only one type */
11638 << Pointer->getSourceRange();
11639 }
11640
11641 /// Emit error if Operand is incomplete pointer type
11642 ///
11643 /// \returns True if pointer has incomplete type
checkArithmeticIncompletePointerType(Sema & S,SourceLocation Loc,Expr * Operand)11644 static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc,
11645 Expr *Operand) {
11646 QualType ResType = Operand->getType();
11647 if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
11648 ResType = ResAtomicType->getValueType();
11649
11650 assert(ResType->isAnyPointerType() && !ResType->isDependentType());
11651 QualType PointeeTy = ResType->getPointeeType();
11652 return S.RequireCompleteSizedType(
11653 Loc, PointeeTy,
11654 diag::err_typecheck_arithmetic_incomplete_or_sizeless_type,
11655 Operand->getSourceRange());
11656 }
11657
11658 /// Check the validity of an arithmetic pointer operand.
11659 ///
11660 /// If the operand has pointer type, this code will check for pointer types
11661 /// which are invalid in arithmetic operations. These will be diagnosed
11662 /// appropriately, including whether or not the use is supported as an
11663 /// extension.
11664 ///
11665 /// \returns True when the operand is valid to use (even if as an extension).
checkArithmeticOpPointerOperand(Sema & S,SourceLocation Loc,Expr * Operand)11666 static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc,
11667 Expr *Operand) {
11668 QualType ResType = Operand->getType();
11669 if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
11670 ResType = ResAtomicType->getValueType();
11671
11672 if (!ResType->isAnyPointerType()) return true;
11673
11674 QualType PointeeTy = ResType->getPointeeType();
11675 if (PointeeTy->isVoidType()) {
11676 diagnoseArithmeticOnVoidPointer(S, Loc, Operand);
11677 return !S.getLangOpts().CPlusPlus;
11678 }
11679 if (PointeeTy->isFunctionType()) {
11680 diagnoseArithmeticOnFunctionPointer(S, Loc, Operand);
11681 return !S.getLangOpts().CPlusPlus;
11682 }
11683
11684 if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false;
11685
11686 return true;
11687 }
11688
11689 /// Check the validity of a binary arithmetic operation w.r.t. pointer
11690 /// operands.
11691 ///
11692 /// This routine will diagnose any invalid arithmetic on pointer operands much
11693 /// like \see checkArithmeticOpPointerOperand. However, it has special logic
11694 /// for emitting a single diagnostic even for operations where both LHS and RHS
11695 /// are (potentially problematic) pointers.
11696 ///
11697 /// \returns True when the operand is valid to use (even if as an extension).
checkArithmeticBinOpPointerOperands(Sema & S,SourceLocation Loc,Expr * LHSExpr,Expr * RHSExpr)11698 static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc,
11699 Expr *LHSExpr, Expr *RHSExpr) {
11700 bool isLHSPointer = LHSExpr->getType()->isAnyPointerType();
11701 bool isRHSPointer = RHSExpr->getType()->isAnyPointerType();
11702 if (!isLHSPointer && !isRHSPointer) return true;
11703
11704 QualType LHSPointeeTy, RHSPointeeTy;
11705 if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType();
11706 if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType();
11707
11708 // if both are pointers check if operation is valid wrt address spaces
11709 if (isLHSPointer && isRHSPointer) {
11710 if (!LHSPointeeTy.isAddressSpaceOverlapping(RHSPointeeTy)) {
11711 S.Diag(Loc,
11712 diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
11713 << LHSExpr->getType() << RHSExpr->getType() << 1 /*arithmetic op*/
11714 << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
11715 return false;
11716 }
11717 }
11718
11719 // Check for arithmetic on pointers to incomplete types.
11720 bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType();
11721 bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType();
11722 if (isLHSVoidPtr || isRHSVoidPtr) {
11723 if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHSExpr);
11724 else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHSExpr);
11725 else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr);
11726
11727 return !S.getLangOpts().CPlusPlus;
11728 }
11729
11730 bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType();
11731 bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType();
11732 if (isLHSFuncPtr || isRHSFuncPtr) {
11733 if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHSExpr);
11734 else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc,
11735 RHSExpr);
11736 else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHSExpr, RHSExpr);
11737
11738 return !S.getLangOpts().CPlusPlus;
11739 }
11740
11741 if (isLHSPointer && checkArithmeticIncompletePointerType(S, Loc, LHSExpr))
11742 return false;
11743 if (isRHSPointer && checkArithmeticIncompletePointerType(S, Loc, RHSExpr))
11744 return false;
11745
11746 return true;
11747 }
11748
11749 /// diagnoseStringPlusInt - Emit a warning when adding an integer to a string
11750 /// literal.
diagnoseStringPlusInt(Sema & Self,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)11751 static void diagnoseStringPlusInt(Sema &Self, SourceLocation OpLoc,
11752 Expr *LHSExpr, Expr *RHSExpr) {
11753 StringLiteral* StrExpr = dyn_cast<StringLiteral>(LHSExpr->IgnoreImpCasts());
11754 Expr* IndexExpr = RHSExpr;
11755 if (!StrExpr) {
11756 StrExpr = dyn_cast<StringLiteral>(RHSExpr->IgnoreImpCasts());
11757 IndexExpr = LHSExpr;
11758 }
11759
11760 bool IsStringPlusInt = StrExpr &&
11761 IndexExpr->getType()->isIntegralOrUnscopedEnumerationType();
11762 if (!IsStringPlusInt || IndexExpr->isValueDependent())
11763 return;
11764
11765 SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
11766 Self.Diag(OpLoc, diag::warn_string_plus_int)
11767 << DiagRange << IndexExpr->IgnoreImpCasts()->getType();
11768
11769 // Only print a fixit for "str" + int, not for int + "str".
11770 if (IndexExpr == RHSExpr) {
11771 SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getEndLoc());
11772 Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
11773 << FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&")
11774 << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
11775 << FixItHint::CreateInsertion(EndLoc, "]");
11776 } else
11777 Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
11778 }
11779
11780 /// Emit a warning when adding a char literal to a string.
diagnoseStringPlusChar(Sema & Self,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)11781 static void diagnoseStringPlusChar(Sema &Self, SourceLocation OpLoc,
11782 Expr *LHSExpr, Expr *RHSExpr) {
11783 const Expr *StringRefExpr = LHSExpr;
11784 const CharacterLiteral *CharExpr =
11785 dyn_cast<CharacterLiteral>(RHSExpr->IgnoreImpCasts());
11786
11787 if (!CharExpr) {
11788 CharExpr = dyn_cast<CharacterLiteral>(LHSExpr->IgnoreImpCasts());
11789 StringRefExpr = RHSExpr;
11790 }
11791
11792 if (!CharExpr || !StringRefExpr)
11793 return;
11794
11795 const QualType StringType = StringRefExpr->getType();
11796
11797 // Return if not a PointerType.
11798 if (!StringType->isAnyPointerType())
11799 return;
11800
11801 // Return if not a CharacterType.
11802 if (!StringType->getPointeeType()->isAnyCharacterType())
11803 return;
11804
11805 ASTContext &Ctx = Self.getASTContext();
11806 SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
11807
11808 const QualType CharType = CharExpr->getType();
11809 if (!CharType->isAnyCharacterType() &&
11810 CharType->isIntegerType() &&
11811 llvm::isUIntN(Ctx.getCharWidth(), CharExpr->getValue())) {
11812 Self.Diag(OpLoc, diag::warn_string_plus_char)
11813 << DiagRange << Ctx.CharTy;
11814 } else {
11815 Self.Diag(OpLoc, diag::warn_string_plus_char)
11816 << DiagRange << CharExpr->getType();
11817 }
11818
11819 // Only print a fixit for str + char, not for char + str.
11820 if (isa<CharacterLiteral>(RHSExpr->IgnoreImpCasts())) {
11821 SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getEndLoc());
11822 Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
11823 << FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&")
11824 << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
11825 << FixItHint::CreateInsertion(EndLoc, "]");
11826 } else {
11827 Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
11828 }
11829 }
11830
11831 /// Emit error when two pointers are incompatible.
diagnosePointerIncompatibility(Sema & S,SourceLocation Loc,Expr * LHSExpr,Expr * RHSExpr)11832 static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc,
11833 Expr *LHSExpr, Expr *RHSExpr) {
11834 assert(LHSExpr->getType()->isAnyPointerType());
11835 assert(RHSExpr->getType()->isAnyPointerType());
11836 S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
11837 << LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange()
11838 << RHSExpr->getSourceRange();
11839 }
11840
11841 // C99 6.5.6
CheckAdditionOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,BinaryOperatorKind Opc,QualType * CompLHSTy)11842 QualType Sema::CheckAdditionOperands(ExprResult &LHS, ExprResult &RHS,
11843 SourceLocation Loc, BinaryOperatorKind Opc,
11844 QualType* CompLHSTy) {
11845 checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
11846
11847 if (LHS.get()->getType()->isVectorType() ||
11848 RHS.get()->getType()->isVectorType()) {
11849 QualType compType =
11850 CheckVectorOperands(LHS, RHS, Loc, CompLHSTy,
11851 /*AllowBothBool*/ getLangOpts().AltiVec,
11852 /*AllowBoolConversions*/ getLangOpts().ZVector,
11853 /*AllowBooleanOperation*/ false,
11854 /*ReportInvalid*/ true);
11855 if (CompLHSTy) *CompLHSTy = compType;
11856 return compType;
11857 }
11858
11859 if (LHS.get()->getType()->isSveVLSBuiltinType() ||
11860 RHS.get()->getType()->isSveVLSBuiltinType()) {
11861 QualType compType =
11862 CheckSizelessVectorOperands(LHS, RHS, Loc, CompLHSTy, ACK_Arithmetic);
11863 if (CompLHSTy)
11864 *CompLHSTy = compType;
11865 return compType;
11866 }
11867
11868 if (LHS.get()->getType()->isConstantMatrixType() ||
11869 RHS.get()->getType()->isConstantMatrixType()) {
11870 QualType compType =
11871 CheckMatrixElementwiseOperands(LHS, RHS, Loc, CompLHSTy);
11872 if (CompLHSTy)
11873 *CompLHSTy = compType;
11874 return compType;
11875 }
11876
11877 QualType compType = UsualArithmeticConversions(
11878 LHS, RHS, Loc, CompLHSTy ? ACK_CompAssign : ACK_Arithmetic);
11879 if (LHS.isInvalid() || RHS.isInvalid())
11880 return QualType();
11881
11882 // Diagnose "string literal" '+' int and string '+' "char literal".
11883 if (Opc == BO_Add) {
11884 diagnoseStringPlusInt(*this, Loc, LHS.get(), RHS.get());
11885 diagnoseStringPlusChar(*this, Loc, LHS.get(), RHS.get());
11886 }
11887
11888 // handle the common case first (both operands are arithmetic).
11889 if (!compType.isNull() && compType->isArithmeticType()) {
11890 if (CompLHSTy) *CompLHSTy = compType;
11891 return compType;
11892 }
11893
11894 // Type-checking. Ultimately the pointer's going to be in PExp;
11895 // note that we bias towards the LHS being the pointer.
11896 Expr *PExp = LHS.get(), *IExp = RHS.get();
11897
11898 bool isObjCPointer;
11899 if (PExp->getType()->isPointerType()) {
11900 isObjCPointer = false;
11901 } else if (PExp->getType()->isObjCObjectPointerType()) {
11902 isObjCPointer = true;
11903 } else {
11904 std::swap(PExp, IExp);
11905 if (PExp->getType()->isPointerType()) {
11906 isObjCPointer = false;
11907 } else if (PExp->getType()->isObjCObjectPointerType()) {
11908 isObjCPointer = true;
11909 } else {
11910 return InvalidOperands(Loc, LHS, RHS);
11911 }
11912 }
11913 assert(PExp->getType()->isAnyPointerType());
11914
11915 if (!IExp->getType()->isIntegerType())
11916 return InvalidOperands(Loc, LHS, RHS);
11917
11918 // Adding to a null pointer results in undefined behavior.
11919 if (PExp->IgnoreParenCasts()->isNullPointerConstant(
11920 Context, Expr::NPC_ValueDependentIsNotNull)) {
11921 // In C++ adding zero to a null pointer is defined.
11922 Expr::EvalResult KnownVal;
11923 if (!getLangOpts().CPlusPlus ||
11924 (!IExp->isValueDependent() &&
11925 (!IExp->EvaluateAsInt(KnownVal, Context) ||
11926 KnownVal.Val.getInt() != 0))) {
11927 // Check the conditions to see if this is the 'p = nullptr + n' idiom.
11928 bool IsGNUIdiom = BinaryOperator::isNullPointerArithmeticExtension(
11929 Context, BO_Add, PExp, IExp);
11930 diagnoseArithmeticOnNullPointer(*this, Loc, PExp, IsGNUIdiom);
11931 }
11932 }
11933
11934 if (!checkArithmeticOpPointerOperand(*this, Loc, PExp))
11935 return QualType();
11936
11937 if (isObjCPointer && checkArithmeticOnObjCPointer(*this, Loc, PExp))
11938 return QualType();
11939
11940 // Check array bounds for pointer arithemtic
11941 CheckArrayAccess(PExp, IExp);
11942
11943 if (CompLHSTy) {
11944 QualType LHSTy = Context.isPromotableBitField(LHS.get());
11945 if (LHSTy.isNull()) {
11946 LHSTy = LHS.get()->getType();
11947 if (Context.isPromotableIntegerType(LHSTy))
11948 LHSTy = Context.getPromotedIntegerType(LHSTy);
11949 }
11950 *CompLHSTy = LHSTy;
11951 }
11952
11953 return PExp->getType();
11954 }
11955
11956 // C99 6.5.6
CheckSubtractionOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,QualType * CompLHSTy)11957 QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS,
11958 SourceLocation Loc,
11959 QualType* CompLHSTy) {
11960 checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
11961
11962 if (LHS.get()->getType()->isVectorType() ||
11963 RHS.get()->getType()->isVectorType()) {
11964 QualType compType =
11965 CheckVectorOperands(LHS, RHS, Loc, CompLHSTy,
11966 /*AllowBothBool*/ getLangOpts().AltiVec,
11967 /*AllowBoolConversions*/ getLangOpts().ZVector,
11968 /*AllowBooleanOperation*/ false,
11969 /*ReportInvalid*/ true);
11970 if (CompLHSTy) *CompLHSTy = compType;
11971 return compType;
11972 }
11973
11974 if (LHS.get()->getType()->isSveVLSBuiltinType() ||
11975 RHS.get()->getType()->isSveVLSBuiltinType()) {
11976 QualType compType =
11977 CheckSizelessVectorOperands(LHS, RHS, Loc, CompLHSTy, ACK_Arithmetic);
11978 if (CompLHSTy)
11979 *CompLHSTy = compType;
11980 return compType;
11981 }
11982
11983 if (LHS.get()->getType()->isConstantMatrixType() ||
11984 RHS.get()->getType()->isConstantMatrixType()) {
11985 QualType compType =
11986 CheckMatrixElementwiseOperands(LHS, RHS, Loc, CompLHSTy);
11987 if (CompLHSTy)
11988 *CompLHSTy = compType;
11989 return compType;
11990 }
11991
11992 QualType compType = UsualArithmeticConversions(
11993 LHS, RHS, Loc, CompLHSTy ? ACK_CompAssign : ACK_Arithmetic);
11994 if (LHS.isInvalid() || RHS.isInvalid())
11995 return QualType();
11996
11997 // Enforce type constraints: C99 6.5.6p3.
11998
11999 // Handle the common case first (both operands are arithmetic).
12000 if (!compType.isNull() && compType->isArithmeticType()) {
12001 if (CompLHSTy) *CompLHSTy = compType;
12002 return compType;
12003 }
12004
12005 // Either ptr - int or ptr - ptr.
12006 if (LHS.get()->getType()->isAnyPointerType()) {
12007 QualType lpointee = LHS.get()->getType()->getPointeeType();
12008
12009 // Diagnose bad cases where we step over interface counts.
12010 if (LHS.get()->getType()->isObjCObjectPointerType() &&
12011 checkArithmeticOnObjCPointer(*this, Loc, LHS.get()))
12012 return QualType();
12013
12014 // The result type of a pointer-int computation is the pointer type.
12015 if (RHS.get()->getType()->isIntegerType()) {
12016 // Subtracting from a null pointer should produce a warning.
12017 // The last argument to the diagnose call says this doesn't match the
12018 // GNU int-to-pointer idiom.
12019 if (LHS.get()->IgnoreParenCasts()->isNullPointerConstant(Context,
12020 Expr::NPC_ValueDependentIsNotNull)) {
12021 // In C++ adding zero to a null pointer is defined.
12022 Expr::EvalResult KnownVal;
12023 if (!getLangOpts().CPlusPlus ||
12024 (!RHS.get()->isValueDependent() &&
12025 (!RHS.get()->EvaluateAsInt(KnownVal, Context) ||
12026 KnownVal.Val.getInt() != 0))) {
12027 diagnoseArithmeticOnNullPointer(*this, Loc, LHS.get(), false);
12028 }
12029 }
12030
12031 if (!checkArithmeticOpPointerOperand(*this, Loc, LHS.get()))
12032 return QualType();
12033
12034 // Check array bounds for pointer arithemtic
12035 CheckArrayAccess(LHS.get(), RHS.get(), /*ArraySubscriptExpr*/nullptr,
12036 /*AllowOnePastEnd*/true, /*IndexNegated*/true);
12037
12038 if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
12039 return LHS.get()->getType();
12040 }
12041
12042 // Handle pointer-pointer subtractions.
12043 if (const PointerType *RHSPTy
12044 = RHS.get()->getType()->getAs<PointerType>()) {
12045 QualType rpointee = RHSPTy->getPointeeType();
12046
12047 if (getLangOpts().CPlusPlus) {
12048 // Pointee types must be the same: C++ [expr.add]
12049 if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
12050 diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
12051 }
12052 } else {
12053 // Pointee types must be compatible C99 6.5.6p3
12054 if (!Context.typesAreCompatible(
12055 Context.getCanonicalType(lpointee).getUnqualifiedType(),
12056 Context.getCanonicalType(rpointee).getUnqualifiedType())) {
12057 diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
12058 return QualType();
12059 }
12060 }
12061
12062 if (!checkArithmeticBinOpPointerOperands(*this, Loc,
12063 LHS.get(), RHS.get()))
12064 return QualType();
12065
12066 bool LHSIsNullPtr = LHS.get()->IgnoreParenCasts()->isNullPointerConstant(
12067 Context, Expr::NPC_ValueDependentIsNotNull);
12068 bool RHSIsNullPtr = RHS.get()->IgnoreParenCasts()->isNullPointerConstant(
12069 Context, Expr::NPC_ValueDependentIsNotNull);
12070
12071 // Subtracting nullptr or from nullptr is suspect
12072 if (LHSIsNullPtr)
12073 diagnoseSubtractionOnNullPointer(*this, Loc, LHS.get(), RHSIsNullPtr);
12074 if (RHSIsNullPtr)
12075 diagnoseSubtractionOnNullPointer(*this, Loc, RHS.get(), LHSIsNullPtr);
12076
12077 // The pointee type may have zero size. As an extension, a structure or
12078 // union may have zero size or an array may have zero length. In this
12079 // case subtraction does not make sense.
12080 if (!rpointee->isVoidType() && !rpointee->isFunctionType()) {
12081 CharUnits ElementSize = Context.getTypeSizeInChars(rpointee);
12082 if (ElementSize.isZero()) {
12083 Diag(Loc,diag::warn_sub_ptr_zero_size_types)
12084 << rpointee.getUnqualifiedType()
12085 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
12086 }
12087 }
12088
12089 if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
12090 return Context.getPointerDiffType();
12091 }
12092 }
12093
12094 return InvalidOperands(Loc, LHS, RHS);
12095 }
12096
isScopedEnumerationType(QualType T)12097 static bool isScopedEnumerationType(QualType T) {
12098 if (const EnumType *ET = T->getAs<EnumType>())
12099 return ET->getDecl()->isScoped();
12100 return false;
12101 }
12102
DiagnoseBadShiftValues(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,BinaryOperatorKind Opc,QualType LHSType)12103 static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS,
12104 SourceLocation Loc, BinaryOperatorKind Opc,
12105 QualType LHSType) {
12106 // OpenCL 6.3j: shift values are effectively % word size of LHS (more defined),
12107 // so skip remaining warnings as we don't want to modify values within Sema.
12108 if (S.getLangOpts().OpenCL)
12109 return;
12110
12111 // Check right/shifter operand
12112 Expr::EvalResult RHSResult;
12113 if (RHS.get()->isValueDependent() ||
12114 !RHS.get()->EvaluateAsInt(RHSResult, S.Context))
12115 return;
12116 llvm::APSInt Right = RHSResult.Val.getInt();
12117
12118 if (Right.isNegative()) {
12119 S.DiagRuntimeBehavior(Loc, RHS.get(),
12120 S.PDiag(diag::warn_shift_negative)
12121 << RHS.get()->getSourceRange());
12122 return;
12123 }
12124
12125 QualType LHSExprType = LHS.get()->getType();
12126 uint64_t LeftSize = S.Context.getTypeSize(LHSExprType);
12127 if (LHSExprType->isBitIntType())
12128 LeftSize = S.Context.getIntWidth(LHSExprType);
12129 else if (LHSExprType->isFixedPointType()) {
12130 auto FXSema = S.Context.getFixedPointSemantics(LHSExprType);
12131 LeftSize = FXSema.getWidth() - (unsigned)FXSema.hasUnsignedPadding();
12132 }
12133 if (Right.uge(LeftSize)) {
12134 S.DiagRuntimeBehavior(Loc, RHS.get(),
12135 S.PDiag(diag::warn_shift_gt_typewidth)
12136 << RHS.get()->getSourceRange());
12137 return;
12138 }
12139
12140 // FIXME: We probably need to handle fixed point types specially here.
12141 if (Opc != BO_Shl || LHSExprType->isFixedPointType())
12142 return;
12143
12144 // When left shifting an ICE which is signed, we can check for overflow which
12145 // according to C++ standards prior to C++2a has undefined behavior
12146 // ([expr.shift] 5.8/2). Unsigned integers have defined behavior modulo one
12147 // more than the maximum value representable in the result type, so never
12148 // warn for those. (FIXME: Unsigned left-shift overflow in a constant
12149 // expression is still probably a bug.)
12150 Expr::EvalResult LHSResult;
12151 if (LHS.get()->isValueDependent() ||
12152 LHSType->hasUnsignedIntegerRepresentation() ||
12153 !LHS.get()->EvaluateAsInt(LHSResult, S.Context))
12154 return;
12155 llvm::APSInt Left = LHSResult.Val.getInt();
12156
12157 // Don't warn if signed overflow is defined, then all the rest of the
12158 // diagnostics will not be triggered because the behavior is defined.
12159 // Also don't warn in C++20 mode (and newer), as signed left shifts
12160 // always wrap and never overflow.
12161 if (S.getLangOpts().isSignedOverflowDefined() || S.getLangOpts().CPlusPlus20)
12162 return;
12163
12164 // If LHS does not have a non-negative value then, the
12165 // behavior is undefined before C++2a. Warn about it.
12166 if (Left.isNegative()) {
12167 S.DiagRuntimeBehavior(Loc, LHS.get(),
12168 S.PDiag(diag::warn_shift_lhs_negative)
12169 << LHS.get()->getSourceRange());
12170 return;
12171 }
12172
12173 llvm::APInt ResultBits =
12174 static_cast<llvm::APInt &>(Right) + Left.getSignificantBits();
12175 if (ResultBits.ule(LeftSize))
12176 return;
12177 llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue());
12178 Result = Result.shl(Right);
12179
12180 // Print the bit representation of the signed integer as an unsigned
12181 // hexadecimal number.
12182 SmallString<40> HexResult;
12183 Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true);
12184
12185 // If we are only missing a sign bit, this is less likely to result in actual
12186 // bugs -- if the result is cast back to an unsigned type, it will have the
12187 // expected value. Thus we place this behind a different warning that can be
12188 // turned off separately if needed.
12189 if (ResultBits - 1 == LeftSize) {
12190 S.Diag(Loc, diag::warn_shift_result_sets_sign_bit)
12191 << HexResult << LHSType
12192 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
12193 return;
12194 }
12195
12196 S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
12197 << HexResult.str() << Result.getSignificantBits() << LHSType
12198 << Left.getBitWidth() << LHS.get()->getSourceRange()
12199 << RHS.get()->getSourceRange();
12200 }
12201
12202 /// Return the resulting type when a vector is shifted
12203 /// by a scalar or vector shift amount.
checkVectorShift(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompAssign)12204 static QualType checkVectorShift(Sema &S, ExprResult &LHS, ExprResult &RHS,
12205 SourceLocation Loc, bool IsCompAssign) {
12206 // OpenCL v1.1 s6.3.j says RHS can be a vector only if LHS is a vector.
12207 if ((S.LangOpts.OpenCL || S.LangOpts.ZVector) &&
12208 !LHS.get()->getType()->isVectorType()) {
12209 S.Diag(Loc, diag::err_shift_rhs_only_vector)
12210 << RHS.get()->getType() << LHS.get()->getType()
12211 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
12212 return QualType();
12213 }
12214
12215 if (!IsCompAssign) {
12216 LHS = S.UsualUnaryConversions(LHS.get());
12217 if (LHS.isInvalid()) return QualType();
12218 }
12219
12220 RHS = S.UsualUnaryConversions(RHS.get());
12221 if (RHS.isInvalid()) return QualType();
12222
12223 QualType LHSType = LHS.get()->getType();
12224 // Note that LHS might be a scalar because the routine calls not only in
12225 // OpenCL case.
12226 const VectorType *LHSVecTy = LHSType->getAs<VectorType>();
12227 QualType LHSEleType = LHSVecTy ? LHSVecTy->getElementType() : LHSType;
12228
12229 // Note that RHS might not be a vector.
12230 QualType RHSType = RHS.get()->getType();
12231 const VectorType *RHSVecTy = RHSType->getAs<VectorType>();
12232 QualType RHSEleType = RHSVecTy ? RHSVecTy->getElementType() : RHSType;
12233
12234 // Do not allow shifts for boolean vectors.
12235 if ((LHSVecTy && LHSVecTy->isExtVectorBoolType()) ||
12236 (RHSVecTy && RHSVecTy->isExtVectorBoolType())) {
12237 S.Diag(Loc, diag::err_typecheck_invalid_operands)
12238 << LHS.get()->getType() << RHS.get()->getType()
12239 << LHS.get()->getSourceRange();
12240 return QualType();
12241 }
12242
12243 // The operands need to be integers.
12244 if (!LHSEleType->isIntegerType()) {
12245 S.Diag(Loc, diag::err_typecheck_expect_int)
12246 << LHS.get()->getType() << LHS.get()->getSourceRange();
12247 return QualType();
12248 }
12249
12250 if (!RHSEleType->isIntegerType()) {
12251 S.Diag(Loc, diag::err_typecheck_expect_int)
12252 << RHS.get()->getType() << RHS.get()->getSourceRange();
12253 return QualType();
12254 }
12255
12256 if (!LHSVecTy) {
12257 assert(RHSVecTy);
12258 if (IsCompAssign)
12259 return RHSType;
12260 if (LHSEleType != RHSEleType) {
12261 LHS = S.ImpCastExprToType(LHS.get(),RHSEleType, CK_IntegralCast);
12262 LHSEleType = RHSEleType;
12263 }
12264 QualType VecTy =
12265 S.Context.getExtVectorType(LHSEleType, RHSVecTy->getNumElements());
12266 LHS = S.ImpCastExprToType(LHS.get(), VecTy, CK_VectorSplat);
12267 LHSType = VecTy;
12268 } else if (RHSVecTy) {
12269 // OpenCL v1.1 s6.3.j says that for vector types, the operators
12270 // are applied component-wise. So if RHS is a vector, then ensure
12271 // that the number of elements is the same as LHS...
12272 if (RHSVecTy->getNumElements() != LHSVecTy->getNumElements()) {
12273 S.Diag(Loc, diag::err_typecheck_vector_lengths_not_equal)
12274 << LHS.get()->getType() << RHS.get()->getType()
12275 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
12276 return QualType();
12277 }
12278 if (!S.LangOpts.OpenCL && !S.LangOpts.ZVector) {
12279 const BuiltinType *LHSBT = LHSEleType->getAs<clang::BuiltinType>();
12280 const BuiltinType *RHSBT = RHSEleType->getAs<clang::BuiltinType>();
12281 if (LHSBT != RHSBT &&
12282 S.Context.getTypeSize(LHSBT) != S.Context.getTypeSize(RHSBT)) {
12283 S.Diag(Loc, diag::warn_typecheck_vector_element_sizes_not_equal)
12284 << LHS.get()->getType() << RHS.get()->getType()
12285 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
12286 }
12287 }
12288 } else {
12289 // ...else expand RHS to match the number of elements in LHS.
12290 QualType VecTy =
12291 S.Context.getExtVectorType(RHSEleType, LHSVecTy->getNumElements());
12292 RHS = S.ImpCastExprToType(RHS.get(), VecTy, CK_VectorSplat);
12293 }
12294
12295 return LHSType;
12296 }
12297
checkSizelessVectorShift(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompAssign)12298 static QualType checkSizelessVectorShift(Sema &S, ExprResult &LHS,
12299 ExprResult &RHS, SourceLocation Loc,
12300 bool IsCompAssign) {
12301 if (!IsCompAssign) {
12302 LHS = S.UsualUnaryConversions(LHS.get());
12303 if (LHS.isInvalid())
12304 return QualType();
12305 }
12306
12307 RHS = S.UsualUnaryConversions(RHS.get());
12308 if (RHS.isInvalid())
12309 return QualType();
12310
12311 QualType LHSType = LHS.get()->getType();
12312 const BuiltinType *LHSBuiltinTy = LHSType->castAs<BuiltinType>();
12313 QualType LHSEleType = LHSType->isSveVLSBuiltinType()
12314 ? LHSBuiltinTy->getSveEltType(S.getASTContext())
12315 : LHSType;
12316
12317 // Note that RHS might not be a vector
12318 QualType RHSType = RHS.get()->getType();
12319 const BuiltinType *RHSBuiltinTy = RHSType->castAs<BuiltinType>();
12320 QualType RHSEleType = RHSType->isSveVLSBuiltinType()
12321 ? RHSBuiltinTy->getSveEltType(S.getASTContext())
12322 : RHSType;
12323
12324 if ((LHSBuiltinTy && LHSBuiltinTy->isSVEBool()) ||
12325 (RHSBuiltinTy && RHSBuiltinTy->isSVEBool())) {
12326 S.Diag(Loc, diag::err_typecheck_invalid_operands)
12327 << LHSType << RHSType << LHS.get()->getSourceRange();
12328 return QualType();
12329 }
12330
12331 if (!LHSEleType->isIntegerType()) {
12332 S.Diag(Loc, diag::err_typecheck_expect_int)
12333 << LHS.get()->getType() << LHS.get()->getSourceRange();
12334 return QualType();
12335 }
12336
12337 if (!RHSEleType->isIntegerType()) {
12338 S.Diag(Loc, diag::err_typecheck_expect_int)
12339 << RHS.get()->getType() << RHS.get()->getSourceRange();
12340 return QualType();
12341 }
12342
12343 if (LHSType->isSveVLSBuiltinType() && RHSType->isSveVLSBuiltinType() &&
12344 (S.Context.getBuiltinVectorTypeInfo(LHSBuiltinTy).EC !=
12345 S.Context.getBuiltinVectorTypeInfo(RHSBuiltinTy).EC)) {
12346 S.Diag(Loc, diag::err_typecheck_invalid_operands)
12347 << LHSType << RHSType << LHS.get()->getSourceRange()
12348 << RHS.get()->getSourceRange();
12349 return QualType();
12350 }
12351
12352 if (!LHSType->isSveVLSBuiltinType()) {
12353 assert(RHSType->isSveVLSBuiltinType());
12354 if (IsCompAssign)
12355 return RHSType;
12356 if (LHSEleType != RHSEleType) {
12357 LHS = S.ImpCastExprToType(LHS.get(), RHSEleType, clang::CK_IntegralCast);
12358 LHSEleType = RHSEleType;
12359 }
12360 const llvm::ElementCount VecSize =
12361 S.Context.getBuiltinVectorTypeInfo(RHSBuiltinTy).EC;
12362 QualType VecTy =
12363 S.Context.getScalableVectorType(LHSEleType, VecSize.getKnownMinValue());
12364 LHS = S.ImpCastExprToType(LHS.get(), VecTy, clang::CK_VectorSplat);
12365 LHSType = VecTy;
12366 } else if (RHSBuiltinTy && RHSBuiltinTy->isSveVLSBuiltinType()) {
12367 if (S.Context.getTypeSize(RHSBuiltinTy) !=
12368 S.Context.getTypeSize(LHSBuiltinTy)) {
12369 S.Diag(Loc, diag::err_typecheck_vector_lengths_not_equal)
12370 << LHSType << RHSType << LHS.get()->getSourceRange()
12371 << RHS.get()->getSourceRange();
12372 return QualType();
12373 }
12374 } else {
12375 const llvm::ElementCount VecSize =
12376 S.Context.getBuiltinVectorTypeInfo(LHSBuiltinTy).EC;
12377 if (LHSEleType != RHSEleType) {
12378 RHS = S.ImpCastExprToType(RHS.get(), LHSEleType, clang::CK_IntegralCast);
12379 RHSEleType = LHSEleType;
12380 }
12381 QualType VecTy =
12382 S.Context.getScalableVectorType(RHSEleType, VecSize.getKnownMinValue());
12383 RHS = S.ImpCastExprToType(RHS.get(), VecTy, CK_VectorSplat);
12384 }
12385
12386 return LHSType;
12387 }
12388
12389 // C99 6.5.7
CheckShiftOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,BinaryOperatorKind Opc,bool IsCompAssign)12390 QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS,
12391 SourceLocation Loc, BinaryOperatorKind Opc,
12392 bool IsCompAssign) {
12393 checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
12394
12395 // Vector shifts promote their scalar inputs to vector type.
12396 if (LHS.get()->getType()->isVectorType() ||
12397 RHS.get()->getType()->isVectorType()) {
12398 if (LangOpts.ZVector) {
12399 // The shift operators for the z vector extensions work basically
12400 // like general shifts, except that neither the LHS nor the RHS is
12401 // allowed to be a "vector bool".
12402 if (auto LHSVecType = LHS.get()->getType()->getAs<VectorType>())
12403 if (LHSVecType->getVectorKind() == VectorKind::AltiVecBool)
12404 return InvalidOperands(Loc, LHS, RHS);
12405 if (auto RHSVecType = RHS.get()->getType()->getAs<VectorType>())
12406 if (RHSVecType->getVectorKind() == VectorKind::AltiVecBool)
12407 return InvalidOperands(Loc, LHS, RHS);
12408 }
12409 return checkVectorShift(*this, LHS, RHS, Loc, IsCompAssign);
12410 }
12411
12412 if (LHS.get()->getType()->isSveVLSBuiltinType() ||
12413 RHS.get()->getType()->isSveVLSBuiltinType())
12414 return checkSizelessVectorShift(*this, LHS, RHS, Loc, IsCompAssign);
12415
12416 // Shifts don't perform usual arithmetic conversions, they just do integer
12417 // promotions on each operand. C99 6.5.7p3
12418
12419 // For the LHS, do usual unary conversions, but then reset them away
12420 // if this is a compound assignment.
12421 ExprResult OldLHS = LHS;
12422 LHS = UsualUnaryConversions(LHS.get());
12423 if (LHS.isInvalid())
12424 return QualType();
12425 QualType LHSType = LHS.get()->getType();
12426 if (IsCompAssign) LHS = OldLHS;
12427
12428 // The RHS is simpler.
12429 RHS = UsualUnaryConversions(RHS.get());
12430 if (RHS.isInvalid())
12431 return QualType();
12432 QualType RHSType = RHS.get()->getType();
12433
12434 // C99 6.5.7p2: Each of the operands shall have integer type.
12435 // Embedded-C 4.1.6.2.2: The LHS may also be fixed-point.
12436 if ((!LHSType->isFixedPointOrIntegerType() &&
12437 !LHSType->hasIntegerRepresentation()) ||
12438 !RHSType->hasIntegerRepresentation())
12439 return InvalidOperands(Loc, LHS, RHS);
12440
12441 // C++0x: Don't allow scoped enums. FIXME: Use something better than
12442 // hasIntegerRepresentation() above instead of this.
12443 if (isScopedEnumerationType(LHSType) ||
12444 isScopedEnumerationType(RHSType)) {
12445 return InvalidOperands(Loc, LHS, RHS);
12446 }
12447 DiagnoseBadShiftValues(*this, LHS, RHS, Loc, Opc, LHSType);
12448
12449 // "The type of the result is that of the promoted left operand."
12450 return LHSType;
12451 }
12452
12453 /// Diagnose bad pointer comparisons.
diagnoseDistinctPointerComparison(Sema & S,SourceLocation Loc,ExprResult & LHS,ExprResult & RHS,bool IsError)12454 static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc,
12455 ExprResult &LHS, ExprResult &RHS,
12456 bool IsError) {
12457 S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_distinct_pointers
12458 : diag::ext_typecheck_comparison_of_distinct_pointers)
12459 << LHS.get()->getType() << RHS.get()->getType()
12460 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
12461 }
12462
12463 /// Returns false if the pointers are converted to a composite type,
12464 /// true otherwise.
convertPointersToCompositeType(Sema & S,SourceLocation Loc,ExprResult & LHS,ExprResult & RHS)12465 static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc,
12466 ExprResult &LHS, ExprResult &RHS) {
12467 // C++ [expr.rel]p2:
12468 // [...] Pointer conversions (4.10) and qualification
12469 // conversions (4.4) are performed on pointer operands (or on
12470 // a pointer operand and a null pointer constant) to bring
12471 // them to their composite pointer type. [...]
12472 //
12473 // C++ [expr.eq]p1 uses the same notion for (in)equality
12474 // comparisons of pointers.
12475
12476 QualType LHSType = LHS.get()->getType();
12477 QualType RHSType = RHS.get()->getType();
12478 assert(LHSType->isPointerType() || RHSType->isPointerType() ||
12479 LHSType->isMemberPointerType() || RHSType->isMemberPointerType());
12480
12481 QualType T = S.FindCompositePointerType(Loc, LHS, RHS);
12482 if (T.isNull()) {
12483 if ((LHSType->isAnyPointerType() || LHSType->isMemberPointerType()) &&
12484 (RHSType->isAnyPointerType() || RHSType->isMemberPointerType()))
12485 diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/true);
12486 else
12487 S.InvalidOperands(Loc, LHS, RHS);
12488 return true;
12489 }
12490
12491 return false;
12492 }
12493
diagnoseFunctionPointerToVoidComparison(Sema & S,SourceLocation Loc,ExprResult & LHS,ExprResult & RHS,bool IsError)12494 static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc,
12495 ExprResult &LHS,
12496 ExprResult &RHS,
12497 bool IsError) {
12498 S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_fptr_to_void
12499 : diag::ext_typecheck_comparison_of_fptr_to_void)
12500 << LHS.get()->getType() << RHS.get()->getType()
12501 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
12502 }
12503
isObjCObjectLiteral(ExprResult & E)12504 static bool isObjCObjectLiteral(ExprResult &E) {
12505 switch (E.get()->IgnoreParenImpCasts()->getStmtClass()) {
12506 case Stmt::ObjCArrayLiteralClass:
12507 case Stmt::ObjCDictionaryLiteralClass:
12508 case Stmt::ObjCStringLiteralClass:
12509 case Stmt::ObjCBoxedExprClass:
12510 return true;
12511 default:
12512 // Note that ObjCBoolLiteral is NOT an object literal!
12513 return false;
12514 }
12515 }
12516
hasIsEqualMethod(Sema & S,const Expr * LHS,const Expr * RHS)12517 static bool hasIsEqualMethod(Sema &S, const Expr *LHS, const Expr *RHS) {
12518 const ObjCObjectPointerType *Type =
12519 LHS->getType()->getAs<ObjCObjectPointerType>();
12520
12521 // If this is not actually an Objective-C object, bail out.
12522 if (!Type)
12523 return false;
12524
12525 // Get the LHS object's interface type.
12526 QualType InterfaceType = Type->getPointeeType();
12527
12528 // If the RHS isn't an Objective-C object, bail out.
12529 if (!RHS->getType()->isObjCObjectPointerType())
12530 return false;
12531
12532 // Try to find the -isEqual: method.
12533 Selector IsEqualSel = S.NSAPIObj->getIsEqualSelector();
12534 ObjCMethodDecl *Method = S.LookupMethodInObjectType(IsEqualSel,
12535 InterfaceType,
12536 /*IsInstance=*/true);
12537 if (!Method) {
12538 if (Type->isObjCIdType()) {
12539 // For 'id', just check the global pool.
12540 Method = S.LookupInstanceMethodInGlobalPool(IsEqualSel, SourceRange(),
12541 /*receiverId=*/true);
12542 } else {
12543 // Check protocols.
12544 Method = S.LookupMethodInQualifiedType(IsEqualSel, Type,
12545 /*IsInstance=*/true);
12546 }
12547 }
12548
12549 if (!Method)
12550 return false;
12551
12552 QualType T = Method->parameters()[0]->getType();
12553 if (!T->isObjCObjectPointerType())
12554 return false;
12555
12556 QualType R = Method->getReturnType();
12557 if (!R->isScalarType())
12558 return false;
12559
12560 return true;
12561 }
12562
CheckLiteralKind(Expr * FromE)12563 Sema::ObjCLiteralKind Sema::CheckLiteralKind(Expr *FromE) {
12564 FromE = FromE->IgnoreParenImpCasts();
12565 switch (FromE->getStmtClass()) {
12566 default:
12567 break;
12568 case Stmt::ObjCStringLiteralClass:
12569 // "string literal"
12570 return LK_String;
12571 case Stmt::ObjCArrayLiteralClass:
12572 // "array literal"
12573 return LK_Array;
12574 case Stmt::ObjCDictionaryLiteralClass:
12575 // "dictionary literal"
12576 return LK_Dictionary;
12577 case Stmt::BlockExprClass:
12578 return LK_Block;
12579 case Stmt::ObjCBoxedExprClass: {
12580 Expr *Inner = cast<ObjCBoxedExpr>(FromE)->getSubExpr()->IgnoreParens();
12581 switch (Inner->getStmtClass()) {
12582 case Stmt::IntegerLiteralClass:
12583 case Stmt::FloatingLiteralClass:
12584 case Stmt::CharacterLiteralClass:
12585 case Stmt::ObjCBoolLiteralExprClass:
12586 case Stmt::CXXBoolLiteralExprClass:
12587 // "numeric literal"
12588 return LK_Numeric;
12589 case Stmt::ImplicitCastExprClass: {
12590 CastKind CK = cast<CastExpr>(Inner)->getCastKind();
12591 // Boolean literals can be represented by implicit casts.
12592 if (CK == CK_IntegralToBoolean || CK == CK_IntegralCast)
12593 return LK_Numeric;
12594 break;
12595 }
12596 default:
12597 break;
12598 }
12599 return LK_Boxed;
12600 }
12601 }
12602 return LK_None;
12603 }
12604
diagnoseObjCLiteralComparison(Sema & S,SourceLocation Loc,ExprResult & LHS,ExprResult & RHS,BinaryOperator::Opcode Opc)12605 static void diagnoseObjCLiteralComparison(Sema &S, SourceLocation Loc,
12606 ExprResult &LHS, ExprResult &RHS,
12607 BinaryOperator::Opcode Opc){
12608 Expr *Literal;
12609 Expr *Other;
12610 if (isObjCObjectLiteral(LHS)) {
12611 Literal = LHS.get();
12612 Other = RHS.get();
12613 } else {
12614 Literal = RHS.get();
12615 Other = LHS.get();
12616 }
12617
12618 // Don't warn on comparisons against nil.
12619 Other = Other->IgnoreParenCasts();
12620 if (Other->isNullPointerConstant(S.getASTContext(),
12621 Expr::NPC_ValueDependentIsNotNull))
12622 return;
12623
12624 // This should be kept in sync with warn_objc_literal_comparison.
12625 // LK_String should always be after the other literals, since it has its own
12626 // warning flag.
12627 Sema::ObjCLiteralKind LiteralKind = S.CheckLiteralKind(Literal);
12628 assert(LiteralKind != Sema::LK_Block);
12629 if (LiteralKind == Sema::LK_None) {
12630 llvm_unreachable("Unknown Objective-C object literal kind");
12631 }
12632
12633 if (LiteralKind == Sema::LK_String)
12634 S.Diag(Loc, diag::warn_objc_string_literal_comparison)
12635 << Literal->getSourceRange();
12636 else
12637 S.Diag(Loc, diag::warn_objc_literal_comparison)
12638 << LiteralKind << Literal->getSourceRange();
12639
12640 if (BinaryOperator::isEqualityOp(Opc) &&
12641 hasIsEqualMethod(S, LHS.get(), RHS.get())) {
12642 SourceLocation Start = LHS.get()->getBeginLoc();
12643 SourceLocation End = S.getLocForEndOfToken(RHS.get()->getEndLoc());
12644 CharSourceRange OpRange =
12645 CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc));
12646
12647 S.Diag(Loc, diag::note_objc_literal_comparison_isequal)
12648 << FixItHint::CreateInsertion(Start, Opc == BO_EQ ? "[" : "![")
12649 << FixItHint::CreateReplacement(OpRange, " isEqual:")
12650 << FixItHint::CreateInsertion(End, "]");
12651 }
12652 }
12653
12654 /// Warns on !x < y, !x & y where !(x < y), !(x & y) was probably intended.
diagnoseLogicalNotOnLHSofCheck(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,BinaryOperatorKind Opc)12655 static void diagnoseLogicalNotOnLHSofCheck(Sema &S, ExprResult &LHS,
12656 ExprResult &RHS, SourceLocation Loc,
12657 BinaryOperatorKind Opc) {
12658 // Check that left hand side is !something.
12659 UnaryOperator *UO = dyn_cast<UnaryOperator>(LHS.get()->IgnoreImpCasts());
12660 if (!UO || UO->getOpcode() != UO_LNot) return;
12661
12662 // Only check if the right hand side is non-bool arithmetic type.
12663 if (RHS.get()->isKnownToHaveBooleanValue()) return;
12664
12665 // Make sure that the something in !something is not bool.
12666 Expr *SubExpr = UO->getSubExpr()->IgnoreImpCasts();
12667 if (SubExpr->isKnownToHaveBooleanValue()) return;
12668
12669 // Emit warning.
12670 bool IsBitwiseOp = Opc == BO_And || Opc == BO_Or || Opc == BO_Xor;
12671 S.Diag(UO->getOperatorLoc(), diag::warn_logical_not_on_lhs_of_check)
12672 << Loc << IsBitwiseOp;
12673
12674 // First note suggest !(x < y)
12675 SourceLocation FirstOpen = SubExpr->getBeginLoc();
12676 SourceLocation FirstClose = RHS.get()->getEndLoc();
12677 FirstClose = S.getLocForEndOfToken(FirstClose);
12678 if (FirstClose.isInvalid())
12679 FirstOpen = SourceLocation();
12680 S.Diag(UO->getOperatorLoc(), diag::note_logical_not_fix)
12681 << IsBitwiseOp
12682 << FixItHint::CreateInsertion(FirstOpen, "(")
12683 << FixItHint::CreateInsertion(FirstClose, ")");
12684
12685 // Second note suggests (!x) < y
12686 SourceLocation SecondOpen = LHS.get()->getBeginLoc();
12687 SourceLocation SecondClose = LHS.get()->getEndLoc();
12688 SecondClose = S.getLocForEndOfToken(SecondClose);
12689 if (SecondClose.isInvalid())
12690 SecondOpen = SourceLocation();
12691 S.Diag(UO->getOperatorLoc(), diag::note_logical_not_silence_with_parens)
12692 << FixItHint::CreateInsertion(SecondOpen, "(")
12693 << FixItHint::CreateInsertion(SecondClose, ")");
12694 }
12695
12696 // Returns true if E refers to a non-weak array.
checkForArray(const Expr * E)12697 static bool checkForArray(const Expr *E) {
12698 const ValueDecl *D = nullptr;
12699 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
12700 D = DR->getDecl();
12701 } else if (const MemberExpr *Mem = dyn_cast<MemberExpr>(E)) {
12702 if (Mem->isImplicitAccess())
12703 D = Mem->getMemberDecl();
12704 }
12705 if (!D)
12706 return false;
12707 return D->getType()->isArrayType() && !D->isWeak();
12708 }
12709
12710 /// Diagnose some forms of syntactically-obvious tautological comparison.
diagnoseTautologicalComparison(Sema & S,SourceLocation Loc,Expr * LHS,Expr * RHS,BinaryOperatorKind Opc)12711 static void diagnoseTautologicalComparison(Sema &S, SourceLocation Loc,
12712 Expr *LHS, Expr *RHS,
12713 BinaryOperatorKind Opc) {
12714 Expr *LHSStripped = LHS->IgnoreParenImpCasts();
12715 Expr *RHSStripped = RHS->IgnoreParenImpCasts();
12716
12717 QualType LHSType = LHS->getType();
12718 QualType RHSType = RHS->getType();
12719 if (LHSType->hasFloatingRepresentation() ||
12720 (LHSType->isBlockPointerType() && !BinaryOperator::isEqualityOp(Opc)) ||
12721 S.inTemplateInstantiation())
12722 return;
12723
12724 // WebAssembly Tables cannot be compared, therefore shouldn't emit
12725 // Tautological diagnostics.
12726 if (LHSType->isWebAssemblyTableType() || RHSType->isWebAssemblyTableType())
12727 return;
12728
12729 // Comparisons between two array types are ill-formed for operator<=>, so
12730 // we shouldn't emit any additional warnings about it.
12731 if (Opc == BO_Cmp && LHSType->isArrayType() && RHSType->isArrayType())
12732 return;
12733
12734 // For non-floating point types, check for self-comparisons of the form
12735 // x == x, x != x, x < x, etc. These always evaluate to a constant, and
12736 // often indicate logic errors in the program.
12737 //
12738 // NOTE: Don't warn about comparison expressions resulting from macro
12739 // expansion. Also don't warn about comparisons which are only self
12740 // comparisons within a template instantiation. The warnings should catch
12741 // obvious cases in the definition of the template anyways. The idea is to
12742 // warn when the typed comparison operator will always evaluate to the same
12743 // result.
12744
12745 // Used for indexing into %select in warn_comparison_always
12746 enum {
12747 AlwaysConstant,
12748 AlwaysTrue,
12749 AlwaysFalse,
12750 AlwaysEqual, // std::strong_ordering::equal from operator<=>
12751 };
12752
12753 // C++2a [depr.array.comp]:
12754 // Equality and relational comparisons ([expr.eq], [expr.rel]) between two
12755 // operands of array type are deprecated.
12756 if (S.getLangOpts().CPlusPlus20 && LHSStripped->getType()->isArrayType() &&
12757 RHSStripped->getType()->isArrayType()) {
12758 S.Diag(Loc, diag::warn_depr_array_comparison)
12759 << LHS->getSourceRange() << RHS->getSourceRange()
12760 << LHSStripped->getType() << RHSStripped->getType();
12761 // Carry on to produce the tautological comparison warning, if this
12762 // expression is potentially-evaluated, we can resolve the array to a
12763 // non-weak declaration, and so on.
12764 }
12765
12766 if (!LHS->getBeginLoc().isMacroID() && !RHS->getBeginLoc().isMacroID()) {
12767 if (Expr::isSameComparisonOperand(LHS, RHS)) {
12768 unsigned Result;
12769 switch (Opc) {
12770 case BO_EQ:
12771 case BO_LE:
12772 case BO_GE:
12773 Result = AlwaysTrue;
12774 break;
12775 case BO_NE:
12776 case BO_LT:
12777 case BO_GT:
12778 Result = AlwaysFalse;
12779 break;
12780 case BO_Cmp:
12781 Result = AlwaysEqual;
12782 break;
12783 default:
12784 Result = AlwaysConstant;
12785 break;
12786 }
12787 S.DiagRuntimeBehavior(Loc, nullptr,
12788 S.PDiag(diag::warn_comparison_always)
12789 << 0 /*self-comparison*/
12790 << Result);
12791 } else if (checkForArray(LHSStripped) && checkForArray(RHSStripped)) {
12792 // What is it always going to evaluate to?
12793 unsigned Result;
12794 switch (Opc) {
12795 case BO_EQ: // e.g. array1 == array2
12796 Result = AlwaysFalse;
12797 break;
12798 case BO_NE: // e.g. array1 != array2
12799 Result = AlwaysTrue;
12800 break;
12801 default: // e.g. array1 <= array2
12802 // The best we can say is 'a constant'
12803 Result = AlwaysConstant;
12804 break;
12805 }
12806 S.DiagRuntimeBehavior(Loc, nullptr,
12807 S.PDiag(diag::warn_comparison_always)
12808 << 1 /*array comparison*/
12809 << Result);
12810 }
12811 }
12812
12813 if (isa<CastExpr>(LHSStripped))
12814 LHSStripped = LHSStripped->IgnoreParenCasts();
12815 if (isa<CastExpr>(RHSStripped))
12816 RHSStripped = RHSStripped->IgnoreParenCasts();
12817
12818 // Warn about comparisons against a string constant (unless the other
12819 // operand is null); the user probably wants string comparison function.
12820 Expr *LiteralString = nullptr;
12821 Expr *LiteralStringStripped = nullptr;
12822 if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
12823 !RHSStripped->isNullPointerConstant(S.Context,
12824 Expr::NPC_ValueDependentIsNull)) {
12825 LiteralString = LHS;
12826 LiteralStringStripped = LHSStripped;
12827 } else if ((isa<StringLiteral>(RHSStripped) ||
12828 isa<ObjCEncodeExpr>(RHSStripped)) &&
12829 !LHSStripped->isNullPointerConstant(S.Context,
12830 Expr::NPC_ValueDependentIsNull)) {
12831 LiteralString = RHS;
12832 LiteralStringStripped = RHSStripped;
12833 }
12834
12835 if (LiteralString) {
12836 S.DiagRuntimeBehavior(Loc, nullptr,
12837 S.PDiag(diag::warn_stringcompare)
12838 << isa<ObjCEncodeExpr>(LiteralStringStripped)
12839 << LiteralString->getSourceRange());
12840 }
12841 }
12842
castKindToImplicitConversionKind(CastKind CK)12843 static ImplicitConversionKind castKindToImplicitConversionKind(CastKind CK) {
12844 switch (CK) {
12845 default: {
12846 #ifndef NDEBUG
12847 llvm::errs() << "unhandled cast kind: " << CastExpr::getCastKindName(CK)
12848 << "\n";
12849 #endif
12850 llvm_unreachable("unhandled cast kind");
12851 }
12852 case CK_UserDefinedConversion:
12853 return ICK_Identity;
12854 case CK_LValueToRValue:
12855 return ICK_Lvalue_To_Rvalue;
12856 case CK_ArrayToPointerDecay:
12857 return ICK_Array_To_Pointer;
12858 case CK_FunctionToPointerDecay:
12859 return ICK_Function_To_Pointer;
12860 case CK_IntegralCast:
12861 return ICK_Integral_Conversion;
12862 case CK_FloatingCast:
12863 return ICK_Floating_Conversion;
12864 case CK_IntegralToFloating:
12865 case CK_FloatingToIntegral:
12866 return ICK_Floating_Integral;
12867 case CK_IntegralComplexCast:
12868 case CK_FloatingComplexCast:
12869 case CK_FloatingComplexToIntegralComplex:
12870 case CK_IntegralComplexToFloatingComplex:
12871 return ICK_Complex_Conversion;
12872 case CK_FloatingComplexToReal:
12873 case CK_FloatingRealToComplex:
12874 case CK_IntegralComplexToReal:
12875 case CK_IntegralRealToComplex:
12876 return ICK_Complex_Real;
12877 }
12878 }
12879
checkThreeWayNarrowingConversion(Sema & S,QualType ToType,Expr * E,QualType FromType,SourceLocation Loc)12880 static bool checkThreeWayNarrowingConversion(Sema &S, QualType ToType, Expr *E,
12881 QualType FromType,
12882 SourceLocation Loc) {
12883 // Check for a narrowing implicit conversion.
12884 StandardConversionSequence SCS;
12885 SCS.setAsIdentityConversion();
12886 SCS.setToType(0, FromType);
12887 SCS.setToType(1, ToType);
12888 if (const auto *ICE = dyn_cast<ImplicitCastExpr>(E))
12889 SCS.Second = castKindToImplicitConversionKind(ICE->getCastKind());
12890
12891 APValue PreNarrowingValue;
12892 QualType PreNarrowingType;
12893 switch (SCS.getNarrowingKind(S.Context, E, PreNarrowingValue,
12894 PreNarrowingType,
12895 /*IgnoreFloatToIntegralConversion*/ true)) {
12896 case NK_Dependent_Narrowing:
12897 // Implicit conversion to a narrower type, but the expression is
12898 // value-dependent so we can't tell whether it's actually narrowing.
12899 case NK_Not_Narrowing:
12900 return false;
12901
12902 case NK_Constant_Narrowing:
12903 // Implicit conversion to a narrower type, and the value is not a constant
12904 // expression.
12905 S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing)
12906 << /*Constant*/ 1
12907 << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << ToType;
12908 return true;
12909
12910 case NK_Variable_Narrowing:
12911 // Implicit conversion to a narrower type, and the value is not a constant
12912 // expression.
12913 case NK_Type_Narrowing:
12914 S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing)
12915 << /*Constant*/ 0 << FromType << ToType;
12916 // TODO: It's not a constant expression, but what if the user intended it
12917 // to be? Can we produce notes to help them figure out why it isn't?
12918 return true;
12919 }
12920 llvm_unreachable("unhandled case in switch");
12921 }
12922
checkArithmeticOrEnumeralThreeWayCompare(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc)12923 static QualType checkArithmeticOrEnumeralThreeWayCompare(Sema &S,
12924 ExprResult &LHS,
12925 ExprResult &RHS,
12926 SourceLocation Loc) {
12927 QualType LHSType = LHS.get()->getType();
12928 QualType RHSType = RHS.get()->getType();
12929 // Dig out the original argument type and expression before implicit casts
12930 // were applied. These are the types/expressions we need to check the
12931 // [expr.spaceship] requirements against.
12932 ExprResult LHSStripped = LHS.get()->IgnoreParenImpCasts();
12933 ExprResult RHSStripped = RHS.get()->IgnoreParenImpCasts();
12934 QualType LHSStrippedType = LHSStripped.get()->getType();
12935 QualType RHSStrippedType = RHSStripped.get()->getType();
12936
12937 // C++2a [expr.spaceship]p3: If one of the operands is of type bool and the
12938 // other is not, the program is ill-formed.
12939 if (LHSStrippedType->isBooleanType() != RHSStrippedType->isBooleanType()) {
12940 S.InvalidOperands(Loc, LHSStripped, RHSStripped);
12941 return QualType();
12942 }
12943
12944 // FIXME: Consider combining this with checkEnumArithmeticConversions.
12945 int NumEnumArgs = (int)LHSStrippedType->isEnumeralType() +
12946 RHSStrippedType->isEnumeralType();
12947 if (NumEnumArgs == 1) {
12948 bool LHSIsEnum = LHSStrippedType->isEnumeralType();
12949 QualType OtherTy = LHSIsEnum ? RHSStrippedType : LHSStrippedType;
12950 if (OtherTy->hasFloatingRepresentation()) {
12951 S.InvalidOperands(Loc, LHSStripped, RHSStripped);
12952 return QualType();
12953 }
12954 }
12955 if (NumEnumArgs == 2) {
12956 // C++2a [expr.spaceship]p5: If both operands have the same enumeration
12957 // type E, the operator yields the result of converting the operands
12958 // to the underlying type of E and applying <=> to the converted operands.
12959 if (!S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType)) {
12960 S.InvalidOperands(Loc, LHS, RHS);
12961 return QualType();
12962 }
12963 QualType IntType =
12964 LHSStrippedType->castAs<EnumType>()->getDecl()->getIntegerType();
12965 assert(IntType->isArithmeticType());
12966
12967 // We can't use `CK_IntegralCast` when the underlying type is 'bool', so we
12968 // promote the boolean type, and all other promotable integer types, to
12969 // avoid this.
12970 if (S.Context.isPromotableIntegerType(IntType))
12971 IntType = S.Context.getPromotedIntegerType(IntType);
12972
12973 LHS = S.ImpCastExprToType(LHS.get(), IntType, CK_IntegralCast);
12974 RHS = S.ImpCastExprToType(RHS.get(), IntType, CK_IntegralCast);
12975 LHSType = RHSType = IntType;
12976 }
12977
12978 // C++2a [expr.spaceship]p4: If both operands have arithmetic types, the
12979 // usual arithmetic conversions are applied to the operands.
12980 QualType Type =
12981 S.UsualArithmeticConversions(LHS, RHS, Loc, Sema::ACK_Comparison);
12982 if (LHS.isInvalid() || RHS.isInvalid())
12983 return QualType();
12984 if (Type.isNull())
12985 return S.InvalidOperands(Loc, LHS, RHS);
12986
12987 std::optional<ComparisonCategoryType> CCT =
12988 getComparisonCategoryForBuiltinCmp(Type);
12989 if (!CCT)
12990 return S.InvalidOperands(Loc, LHS, RHS);
12991
12992 bool HasNarrowing = checkThreeWayNarrowingConversion(
12993 S, Type, LHS.get(), LHSType, LHS.get()->getBeginLoc());
12994 HasNarrowing |= checkThreeWayNarrowingConversion(S, Type, RHS.get(), RHSType,
12995 RHS.get()->getBeginLoc());
12996 if (HasNarrowing)
12997 return QualType();
12998
12999 assert(!Type.isNull() && "composite type for <=> has not been set");
13000
13001 return S.CheckComparisonCategoryType(
13002 *CCT, Loc, Sema::ComparisonCategoryUsage::OperatorInExpression);
13003 }
13004
checkArithmeticOrEnumeralCompare(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,BinaryOperatorKind Opc)13005 static QualType checkArithmeticOrEnumeralCompare(Sema &S, ExprResult &LHS,
13006 ExprResult &RHS,
13007 SourceLocation Loc,
13008 BinaryOperatorKind Opc) {
13009 if (Opc == BO_Cmp)
13010 return checkArithmeticOrEnumeralThreeWayCompare(S, LHS, RHS, Loc);
13011
13012 // C99 6.5.8p3 / C99 6.5.9p4
13013 QualType Type =
13014 S.UsualArithmeticConversions(LHS, RHS, Loc, Sema::ACK_Comparison);
13015 if (LHS.isInvalid() || RHS.isInvalid())
13016 return QualType();
13017 if (Type.isNull())
13018 return S.InvalidOperands(Loc, LHS, RHS);
13019 assert(Type->isArithmeticType() || Type->isEnumeralType());
13020
13021 if (Type->isAnyComplexType() && BinaryOperator::isRelationalOp(Opc))
13022 return S.InvalidOperands(Loc, LHS, RHS);
13023
13024 // Check for comparisons of floating point operands using != and ==.
13025 if (Type->hasFloatingRepresentation())
13026 S.CheckFloatComparison(Loc, LHS.get(), RHS.get(), Opc);
13027
13028 // The result of comparisons is 'bool' in C++, 'int' in C.
13029 return S.Context.getLogicalOperationType();
13030 }
13031
CheckPtrComparisonWithNullChar(ExprResult & E,ExprResult & NullE)13032 void Sema::CheckPtrComparisonWithNullChar(ExprResult &E, ExprResult &NullE) {
13033 if (!NullE.get()->getType()->isAnyPointerType())
13034 return;
13035 int NullValue = PP.isMacroDefined("NULL") ? 0 : 1;
13036 if (!E.get()->getType()->isAnyPointerType() &&
13037 E.get()->isNullPointerConstant(Context,
13038 Expr::NPC_ValueDependentIsNotNull) ==
13039 Expr::NPCK_ZeroExpression) {
13040 if (const auto *CL = dyn_cast<CharacterLiteral>(E.get())) {
13041 if (CL->getValue() == 0)
13042 Diag(E.get()->getExprLoc(), diag::warn_pointer_compare)
13043 << NullValue
13044 << FixItHint::CreateReplacement(E.get()->getExprLoc(),
13045 NullValue ? "NULL" : "(void *)0");
13046 } else if (const auto *CE = dyn_cast<CStyleCastExpr>(E.get())) {
13047 TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
13048 QualType T = Context.getCanonicalType(TI->getType()).getUnqualifiedType();
13049 if (T == Context.CharTy)
13050 Diag(E.get()->getExprLoc(), diag::warn_pointer_compare)
13051 << NullValue
13052 << FixItHint::CreateReplacement(E.get()->getExprLoc(),
13053 NullValue ? "NULL" : "(void *)0");
13054 }
13055 }
13056 }
13057
13058 // C99 6.5.8, C++ [expr.rel]
CheckCompareOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,BinaryOperatorKind Opc)13059 QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS,
13060 SourceLocation Loc,
13061 BinaryOperatorKind Opc) {
13062 bool IsRelational = BinaryOperator::isRelationalOp(Opc);
13063 bool IsThreeWay = Opc == BO_Cmp;
13064 bool IsOrdered = IsRelational || IsThreeWay;
13065 auto IsAnyPointerType = [](ExprResult E) {
13066 QualType Ty = E.get()->getType();
13067 return Ty->isPointerType() || Ty->isMemberPointerType();
13068 };
13069
13070 // C++2a [expr.spaceship]p6: If at least one of the operands is of pointer
13071 // type, array-to-pointer, ..., conversions are performed on both operands to
13072 // bring them to their composite type.
13073 // Otherwise, all comparisons expect an rvalue, so convert to rvalue before
13074 // any type-related checks.
13075 if (!IsThreeWay || IsAnyPointerType(LHS) || IsAnyPointerType(RHS)) {
13076 LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
13077 if (LHS.isInvalid())
13078 return QualType();
13079 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
13080 if (RHS.isInvalid())
13081 return QualType();
13082 } else {
13083 LHS = DefaultLvalueConversion(LHS.get());
13084 if (LHS.isInvalid())
13085 return QualType();
13086 RHS = DefaultLvalueConversion(RHS.get());
13087 if (RHS.isInvalid())
13088 return QualType();
13089 }
13090
13091 checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/true);
13092 if (!getLangOpts().CPlusPlus && BinaryOperator::isEqualityOp(Opc)) {
13093 CheckPtrComparisonWithNullChar(LHS, RHS);
13094 CheckPtrComparisonWithNullChar(RHS, LHS);
13095 }
13096
13097 // Handle vector comparisons separately.
13098 if (LHS.get()->getType()->isVectorType() ||
13099 RHS.get()->getType()->isVectorType())
13100 return CheckVectorCompareOperands(LHS, RHS, Loc, Opc);
13101
13102 if (LHS.get()->getType()->isSveVLSBuiltinType() ||
13103 RHS.get()->getType()->isSveVLSBuiltinType())
13104 return CheckSizelessVectorCompareOperands(LHS, RHS, Loc, Opc);
13105
13106 diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc);
13107 diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
13108
13109 QualType LHSType = LHS.get()->getType();
13110 QualType RHSType = RHS.get()->getType();
13111 if ((LHSType->isArithmeticType() || LHSType->isEnumeralType()) &&
13112 (RHSType->isArithmeticType() || RHSType->isEnumeralType()))
13113 return checkArithmeticOrEnumeralCompare(*this, LHS, RHS, Loc, Opc);
13114
13115 if ((LHSType->isPointerType() &&
13116 LHSType->getPointeeType().isWebAssemblyReferenceType()) ||
13117 (RHSType->isPointerType() &&
13118 RHSType->getPointeeType().isWebAssemblyReferenceType()))
13119 return InvalidOperands(Loc, LHS, RHS);
13120
13121 const Expr::NullPointerConstantKind LHSNullKind =
13122 LHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
13123 const Expr::NullPointerConstantKind RHSNullKind =
13124 RHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
13125 bool LHSIsNull = LHSNullKind != Expr::NPCK_NotNull;
13126 bool RHSIsNull = RHSNullKind != Expr::NPCK_NotNull;
13127
13128 auto computeResultTy = [&]() {
13129 if (Opc != BO_Cmp)
13130 return Context.getLogicalOperationType();
13131 assert(getLangOpts().CPlusPlus);
13132 assert(Context.hasSameType(LHS.get()->getType(), RHS.get()->getType()));
13133
13134 QualType CompositeTy = LHS.get()->getType();
13135 assert(!CompositeTy->isReferenceType());
13136
13137 std::optional<ComparisonCategoryType> CCT =
13138 getComparisonCategoryForBuiltinCmp(CompositeTy);
13139 if (!CCT)
13140 return InvalidOperands(Loc, LHS, RHS);
13141
13142 if (CompositeTy->isPointerType() && LHSIsNull != RHSIsNull) {
13143 // P0946R0: Comparisons between a null pointer constant and an object
13144 // pointer result in std::strong_equality, which is ill-formed under
13145 // P1959R0.
13146 Diag(Loc, diag::err_typecheck_three_way_comparison_of_pointer_and_zero)
13147 << (LHSIsNull ? LHS.get()->getSourceRange()
13148 : RHS.get()->getSourceRange());
13149 return QualType();
13150 }
13151
13152 return CheckComparisonCategoryType(
13153 *CCT, Loc, ComparisonCategoryUsage::OperatorInExpression);
13154 };
13155
13156 if (!IsOrdered && LHSIsNull != RHSIsNull) {
13157 bool IsEquality = Opc == BO_EQ;
13158 if (RHSIsNull)
13159 DiagnoseAlwaysNonNullPointer(LHS.get(), RHSNullKind, IsEquality,
13160 RHS.get()->getSourceRange());
13161 else
13162 DiagnoseAlwaysNonNullPointer(RHS.get(), LHSNullKind, IsEquality,
13163 LHS.get()->getSourceRange());
13164 }
13165
13166 if (IsOrdered && LHSType->isFunctionPointerType() &&
13167 RHSType->isFunctionPointerType()) {
13168 // Valid unless a relational comparison of function pointers
13169 bool IsError = Opc == BO_Cmp;
13170 auto DiagID =
13171 IsError ? diag::err_typecheck_ordered_comparison_of_function_pointers
13172 : getLangOpts().CPlusPlus
13173 ? diag::warn_typecheck_ordered_comparison_of_function_pointers
13174 : diag::ext_typecheck_ordered_comparison_of_function_pointers;
13175 Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange()
13176 << RHS.get()->getSourceRange();
13177 if (IsError)
13178 return QualType();
13179 }
13180
13181 if ((LHSType->isIntegerType() && !LHSIsNull) ||
13182 (RHSType->isIntegerType() && !RHSIsNull)) {
13183 // Skip normal pointer conversion checks in this case; we have better
13184 // diagnostics for this below.
13185 } else if (getLangOpts().CPlusPlus) {
13186 // Equality comparison of a function pointer to a void pointer is invalid,
13187 // but we allow it as an extension.
13188 // FIXME: If we really want to allow this, should it be part of composite
13189 // pointer type computation so it works in conditionals too?
13190 if (!IsOrdered &&
13191 ((LHSType->isFunctionPointerType() && RHSType->isVoidPointerType()) ||
13192 (RHSType->isFunctionPointerType() && LHSType->isVoidPointerType()))) {
13193 // This is a gcc extension compatibility comparison.
13194 // In a SFINAE context, we treat this as a hard error to maintain
13195 // conformance with the C++ standard.
13196 diagnoseFunctionPointerToVoidComparison(
13197 *this, Loc, LHS, RHS, /*isError*/ (bool)isSFINAEContext());
13198
13199 if (isSFINAEContext())
13200 return QualType();
13201
13202 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
13203 return computeResultTy();
13204 }
13205
13206 // C++ [expr.eq]p2:
13207 // If at least one operand is a pointer [...] bring them to their
13208 // composite pointer type.
13209 // C++ [expr.spaceship]p6
13210 // If at least one of the operands is of pointer type, [...] bring them
13211 // to their composite pointer type.
13212 // C++ [expr.rel]p2:
13213 // If both operands are pointers, [...] bring them to their composite
13214 // pointer type.
13215 // For <=>, the only valid non-pointer types are arrays and functions, and
13216 // we already decayed those, so this is really the same as the relational
13217 // comparison rule.
13218 if ((int)LHSType->isPointerType() + (int)RHSType->isPointerType() >=
13219 (IsOrdered ? 2 : 1) &&
13220 (!LangOpts.ObjCAutoRefCount || !(LHSType->isObjCObjectPointerType() ||
13221 RHSType->isObjCObjectPointerType()))) {
13222 if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
13223 return QualType();
13224 return computeResultTy();
13225 }
13226 } else if (LHSType->isPointerType() &&
13227 RHSType->isPointerType()) { // C99 6.5.8p2
13228 // All of the following pointer-related warnings are GCC extensions, except
13229 // when handling null pointer constants.
13230 QualType LCanPointeeTy =
13231 LHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
13232 QualType RCanPointeeTy =
13233 RHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
13234
13235 // C99 6.5.9p2 and C99 6.5.8p2
13236 if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
13237 RCanPointeeTy.getUnqualifiedType())) {
13238 if (IsRelational) {
13239 // Pointers both need to point to complete or incomplete types
13240 if ((LCanPointeeTy->isIncompleteType() !=
13241 RCanPointeeTy->isIncompleteType()) &&
13242 !getLangOpts().C11) {
13243 Diag(Loc, diag::ext_typecheck_compare_complete_incomplete_pointers)
13244 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange()
13245 << LHSType << RHSType << LCanPointeeTy->isIncompleteType()
13246 << RCanPointeeTy->isIncompleteType();
13247 }
13248 }
13249 } else if (!IsRelational &&
13250 (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
13251 // Valid unless comparison between non-null pointer and function pointer
13252 if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
13253 && !LHSIsNull && !RHSIsNull)
13254 diagnoseFunctionPointerToVoidComparison(*this, Loc, LHS, RHS,
13255 /*isError*/false);
13256 } else {
13257 // Invalid
13258 diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false);
13259 }
13260 if (LCanPointeeTy != RCanPointeeTy) {
13261 // Treat NULL constant as a special case in OpenCL.
13262 if (getLangOpts().OpenCL && !LHSIsNull && !RHSIsNull) {
13263 if (!LCanPointeeTy.isAddressSpaceOverlapping(RCanPointeeTy)) {
13264 Diag(Loc,
13265 diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
13266 << LHSType << RHSType << 0 /* comparison */
13267 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
13268 }
13269 }
13270 LangAS AddrSpaceL = LCanPointeeTy.getAddressSpace();
13271 LangAS AddrSpaceR = RCanPointeeTy.getAddressSpace();
13272 CastKind Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion
13273 : CK_BitCast;
13274 if (LHSIsNull && !RHSIsNull)
13275 LHS = ImpCastExprToType(LHS.get(), RHSType, Kind);
13276 else
13277 RHS = ImpCastExprToType(RHS.get(), LHSType, Kind);
13278 }
13279 return computeResultTy();
13280 }
13281
13282
13283 // C++ [expr.eq]p4:
13284 // Two operands of type std::nullptr_t or one operand of type
13285 // std::nullptr_t and the other a null pointer constant compare
13286 // equal.
13287 // C23 6.5.9p5:
13288 // If both operands have type nullptr_t or one operand has type nullptr_t
13289 // and the other is a null pointer constant, they compare equal if the
13290 // former is a null pointer.
13291 if (!IsOrdered && LHSIsNull && RHSIsNull) {
13292 if (LHSType->isNullPtrType()) {
13293 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
13294 return computeResultTy();
13295 }
13296 if (RHSType->isNullPtrType()) {
13297 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
13298 return computeResultTy();
13299 }
13300 }
13301
13302 if (!getLangOpts().CPlusPlus && !IsOrdered && (LHSIsNull || RHSIsNull)) {
13303 // C23 6.5.9p6:
13304 // Otherwise, at least one operand is a pointer. If one is a pointer and
13305 // the other is a null pointer constant or has type nullptr_t, they
13306 // compare equal
13307 if (LHSIsNull && RHSType->isPointerType()) {
13308 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
13309 return computeResultTy();
13310 }
13311 if (RHSIsNull && LHSType->isPointerType()) {
13312 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
13313 return computeResultTy();
13314 }
13315 }
13316
13317 // Comparison of Objective-C pointers and block pointers against nullptr_t.
13318 // These aren't covered by the composite pointer type rules.
13319 if (!IsOrdered && RHSType->isNullPtrType() &&
13320 (LHSType->isObjCObjectPointerType() || LHSType->isBlockPointerType())) {
13321 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
13322 return computeResultTy();
13323 }
13324 if (!IsOrdered && LHSType->isNullPtrType() &&
13325 (RHSType->isObjCObjectPointerType() || RHSType->isBlockPointerType())) {
13326 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
13327 return computeResultTy();
13328 }
13329
13330 if (getLangOpts().CPlusPlus) {
13331 if (IsRelational &&
13332 ((LHSType->isNullPtrType() && RHSType->isPointerType()) ||
13333 (RHSType->isNullPtrType() && LHSType->isPointerType()))) {
13334 // HACK: Relational comparison of nullptr_t against a pointer type is
13335 // invalid per DR583, but we allow it within std::less<> and friends,
13336 // since otherwise common uses of it break.
13337 // FIXME: Consider removing this hack once LWG fixes std::less<> and
13338 // friends to have std::nullptr_t overload candidates.
13339 DeclContext *DC = CurContext;
13340 if (isa<FunctionDecl>(DC))
13341 DC = DC->getParent();
13342 if (auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
13343 if (CTSD->isInStdNamespace() &&
13344 llvm::StringSwitch<bool>(CTSD->getName())
13345 .Cases("less", "less_equal", "greater", "greater_equal", true)
13346 .Default(false)) {
13347 if (RHSType->isNullPtrType())
13348 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
13349 else
13350 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
13351 return computeResultTy();
13352 }
13353 }
13354 }
13355
13356 // C++ [expr.eq]p2:
13357 // If at least one operand is a pointer to member, [...] bring them to
13358 // their composite pointer type.
13359 if (!IsOrdered &&
13360 (LHSType->isMemberPointerType() || RHSType->isMemberPointerType())) {
13361 if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
13362 return QualType();
13363 else
13364 return computeResultTy();
13365 }
13366 }
13367
13368 // Handle block pointer types.
13369 if (!IsOrdered && LHSType->isBlockPointerType() &&
13370 RHSType->isBlockPointerType()) {
13371 QualType lpointee = LHSType->castAs<BlockPointerType>()->getPointeeType();
13372 QualType rpointee = RHSType->castAs<BlockPointerType>()->getPointeeType();
13373
13374 if (!LHSIsNull && !RHSIsNull &&
13375 !Context.typesAreCompatible(lpointee, rpointee)) {
13376 Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
13377 << LHSType << RHSType << LHS.get()->getSourceRange()
13378 << RHS.get()->getSourceRange();
13379 }
13380 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
13381 return computeResultTy();
13382 }
13383
13384 // Allow block pointers to be compared with null pointer constants.
13385 if (!IsOrdered
13386 && ((LHSType->isBlockPointerType() && RHSType->isPointerType())
13387 || (LHSType->isPointerType() && RHSType->isBlockPointerType()))) {
13388 if (!LHSIsNull && !RHSIsNull) {
13389 if (!((RHSType->isPointerType() && RHSType->castAs<PointerType>()
13390 ->getPointeeType()->isVoidType())
13391 || (LHSType->isPointerType() && LHSType->castAs<PointerType>()
13392 ->getPointeeType()->isVoidType())))
13393 Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
13394 << LHSType << RHSType << LHS.get()->getSourceRange()
13395 << RHS.get()->getSourceRange();
13396 }
13397 if (LHSIsNull && !RHSIsNull)
13398 LHS = ImpCastExprToType(LHS.get(), RHSType,
13399 RHSType->isPointerType() ? CK_BitCast
13400 : CK_AnyPointerToBlockPointerCast);
13401 else
13402 RHS = ImpCastExprToType(RHS.get(), LHSType,
13403 LHSType->isPointerType() ? CK_BitCast
13404 : CK_AnyPointerToBlockPointerCast);
13405 return computeResultTy();
13406 }
13407
13408 if (LHSType->isObjCObjectPointerType() ||
13409 RHSType->isObjCObjectPointerType()) {
13410 const PointerType *LPT = LHSType->getAs<PointerType>();
13411 const PointerType *RPT = RHSType->getAs<PointerType>();
13412 if (LPT || RPT) {
13413 bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
13414 bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
13415
13416 if (!LPtrToVoid && !RPtrToVoid &&
13417 !Context.typesAreCompatible(LHSType, RHSType)) {
13418 diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
13419 /*isError*/false);
13420 }
13421 // FIXME: If LPtrToVoid, we should presumably convert the LHS rather than
13422 // the RHS, but we have test coverage for this behavior.
13423 // FIXME: Consider using convertPointersToCompositeType in C++.
13424 if (LHSIsNull && !RHSIsNull) {
13425 Expr *E = LHS.get();
13426 if (getLangOpts().ObjCAutoRefCount)
13427 CheckObjCConversion(SourceRange(), RHSType, E,
13428 CCK_ImplicitConversion);
13429 LHS = ImpCastExprToType(E, RHSType,
13430 RPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
13431 }
13432 else {
13433 Expr *E = RHS.get();
13434 if (getLangOpts().ObjCAutoRefCount)
13435 CheckObjCConversion(SourceRange(), LHSType, E, CCK_ImplicitConversion,
13436 /*Diagnose=*/true,
13437 /*DiagnoseCFAudited=*/false, Opc);
13438 RHS = ImpCastExprToType(E, LHSType,
13439 LPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
13440 }
13441 return computeResultTy();
13442 }
13443 if (LHSType->isObjCObjectPointerType() &&
13444 RHSType->isObjCObjectPointerType()) {
13445 if (!Context.areComparableObjCPointerTypes(LHSType, RHSType))
13446 diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
13447 /*isError*/false);
13448 if (isObjCObjectLiteral(LHS) || isObjCObjectLiteral(RHS))
13449 diagnoseObjCLiteralComparison(*this, Loc, LHS, RHS, Opc);
13450
13451 if (LHSIsNull && !RHSIsNull)
13452 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
13453 else
13454 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
13455 return computeResultTy();
13456 }
13457
13458 if (!IsOrdered && LHSType->isBlockPointerType() &&
13459 RHSType->isBlockCompatibleObjCPointerType(Context)) {
13460 LHS = ImpCastExprToType(LHS.get(), RHSType,
13461 CK_BlockPointerToObjCPointerCast);
13462 return computeResultTy();
13463 } else if (!IsOrdered &&
13464 LHSType->isBlockCompatibleObjCPointerType(Context) &&
13465 RHSType->isBlockPointerType()) {
13466 RHS = ImpCastExprToType(RHS.get(), LHSType,
13467 CK_BlockPointerToObjCPointerCast);
13468 return computeResultTy();
13469 }
13470 }
13471 if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) ||
13472 (LHSType->isIntegerType() && RHSType->isAnyPointerType())) {
13473 unsigned DiagID = 0;
13474 bool isError = false;
13475 if (LangOpts.DebuggerSupport) {
13476 // Under a debugger, allow the comparison of pointers to integers,
13477 // since users tend to want to compare addresses.
13478 } else if ((LHSIsNull && LHSType->isIntegerType()) ||
13479 (RHSIsNull && RHSType->isIntegerType())) {
13480 if (IsOrdered) {
13481 isError = getLangOpts().CPlusPlus;
13482 DiagID =
13483 isError ? diag::err_typecheck_ordered_comparison_of_pointer_and_zero
13484 : diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
13485 }
13486 } else if (getLangOpts().CPlusPlus) {
13487 DiagID = diag::err_typecheck_comparison_of_pointer_integer;
13488 isError = true;
13489 } else if (IsOrdered)
13490 DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
13491 else
13492 DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
13493
13494 if (DiagID) {
13495 Diag(Loc, DiagID)
13496 << LHSType << RHSType << LHS.get()->getSourceRange()
13497 << RHS.get()->getSourceRange();
13498 if (isError)
13499 return QualType();
13500 }
13501
13502 if (LHSType->isIntegerType())
13503 LHS = ImpCastExprToType(LHS.get(), RHSType,
13504 LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
13505 else
13506 RHS = ImpCastExprToType(RHS.get(), LHSType,
13507 RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
13508 return computeResultTy();
13509 }
13510
13511 // Handle block pointers.
13512 if (!IsOrdered && RHSIsNull
13513 && LHSType->isBlockPointerType() && RHSType->isIntegerType()) {
13514 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
13515 return computeResultTy();
13516 }
13517 if (!IsOrdered && LHSIsNull
13518 && LHSType->isIntegerType() && RHSType->isBlockPointerType()) {
13519 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
13520 return computeResultTy();
13521 }
13522
13523 if (getLangOpts().getOpenCLCompatibleVersion() >= 200) {
13524 if (LHSType->isClkEventT() && RHSType->isClkEventT()) {
13525 return computeResultTy();
13526 }
13527
13528 if (LHSType->isQueueT() && RHSType->isQueueT()) {
13529 return computeResultTy();
13530 }
13531
13532 if (LHSIsNull && RHSType->isQueueT()) {
13533 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
13534 return computeResultTy();
13535 }
13536
13537 if (LHSType->isQueueT() && RHSIsNull) {
13538 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
13539 return computeResultTy();
13540 }
13541 }
13542
13543 return InvalidOperands(Loc, LHS, RHS);
13544 }
13545
13546 // Return a signed ext_vector_type that is of identical size and number of
13547 // elements. For floating point vectors, return an integer type of identical
13548 // size and number of elements. In the non ext_vector_type case, search from
13549 // the largest type to the smallest type to avoid cases where long long == long,
13550 // where long gets picked over long long.
GetSignedVectorType(QualType V)13551 QualType Sema::GetSignedVectorType(QualType V) {
13552 const VectorType *VTy = V->castAs<VectorType>();
13553 unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
13554
13555 if (isa<ExtVectorType>(VTy)) {
13556 if (VTy->isExtVectorBoolType())
13557 return Context.getExtVectorType(Context.BoolTy, VTy->getNumElements());
13558 if (TypeSize == Context.getTypeSize(Context.CharTy))
13559 return Context.getExtVectorType(Context.CharTy, VTy->getNumElements());
13560 if (TypeSize == Context.getTypeSize(Context.ShortTy))
13561 return Context.getExtVectorType(Context.ShortTy, VTy->getNumElements());
13562 if (TypeSize == Context.getTypeSize(Context.IntTy))
13563 return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
13564 if (TypeSize == Context.getTypeSize(Context.Int128Ty))
13565 return Context.getExtVectorType(Context.Int128Ty, VTy->getNumElements());
13566 if (TypeSize == Context.getTypeSize(Context.LongTy))
13567 return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
13568 assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
13569 "Unhandled vector element size in vector compare");
13570 return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
13571 }
13572
13573 if (TypeSize == Context.getTypeSize(Context.Int128Ty))
13574 return Context.getVectorType(Context.Int128Ty, VTy->getNumElements(),
13575 VectorKind::Generic);
13576 if (TypeSize == Context.getTypeSize(Context.LongLongTy))
13577 return Context.getVectorType(Context.LongLongTy, VTy->getNumElements(),
13578 VectorKind::Generic);
13579 if (TypeSize == Context.getTypeSize(Context.LongTy))
13580 return Context.getVectorType(Context.LongTy, VTy->getNumElements(),
13581 VectorKind::Generic);
13582 if (TypeSize == Context.getTypeSize(Context.IntTy))
13583 return Context.getVectorType(Context.IntTy, VTy->getNumElements(),
13584 VectorKind::Generic);
13585 if (TypeSize == Context.getTypeSize(Context.ShortTy))
13586 return Context.getVectorType(Context.ShortTy, VTy->getNumElements(),
13587 VectorKind::Generic);
13588 assert(TypeSize == Context.getTypeSize(Context.CharTy) &&
13589 "Unhandled vector element size in vector compare");
13590 return Context.getVectorType(Context.CharTy, VTy->getNumElements(),
13591 VectorKind::Generic);
13592 }
13593
GetSignedSizelessVectorType(QualType V)13594 QualType Sema::GetSignedSizelessVectorType(QualType V) {
13595 const BuiltinType *VTy = V->castAs<BuiltinType>();
13596 assert(VTy->isSizelessBuiltinType() && "expected sizeless type");
13597
13598 const QualType ETy = V->getSveEltType(Context);
13599 const auto TypeSize = Context.getTypeSize(ETy);
13600
13601 const QualType IntTy = Context.getIntTypeForBitwidth(TypeSize, true);
13602 const llvm::ElementCount VecSize = Context.getBuiltinVectorTypeInfo(VTy).EC;
13603 return Context.getScalableVectorType(IntTy, VecSize.getKnownMinValue());
13604 }
13605
13606 /// CheckVectorCompareOperands - vector comparisons are a clang extension that
13607 /// operates on extended vector types. Instead of producing an IntTy result,
13608 /// like a scalar comparison, a vector comparison produces a vector of integer
13609 /// types.
CheckVectorCompareOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,BinaryOperatorKind Opc)13610 QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
13611 SourceLocation Loc,
13612 BinaryOperatorKind Opc) {
13613 if (Opc == BO_Cmp) {
13614 Diag(Loc, diag::err_three_way_vector_comparison);
13615 return QualType();
13616 }
13617
13618 // Check to make sure we're operating on vectors of the same type and width,
13619 // Allowing one side to be a scalar of element type.
13620 QualType vType =
13621 CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/ false,
13622 /*AllowBothBool*/ true,
13623 /*AllowBoolConversions*/ getLangOpts().ZVector,
13624 /*AllowBooleanOperation*/ true,
13625 /*ReportInvalid*/ true);
13626 if (vType.isNull())
13627 return vType;
13628
13629 QualType LHSType = LHS.get()->getType();
13630
13631 // Determine the return type of a vector compare. By default clang will return
13632 // a scalar for all vector compares except vector bool and vector pixel.
13633 // With the gcc compiler we will always return a vector type and with the xl
13634 // compiler we will always return a scalar type. This switch allows choosing
13635 // which behavior is prefered.
13636 if (getLangOpts().AltiVec) {
13637 switch (getLangOpts().getAltivecSrcCompat()) {
13638 case LangOptions::AltivecSrcCompatKind::Mixed:
13639 // If AltiVec, the comparison results in a numeric type, i.e.
13640 // bool for C++, int for C
13641 if (vType->castAs<VectorType>()->getVectorKind() ==
13642 VectorKind::AltiVecVector)
13643 return Context.getLogicalOperationType();
13644 else
13645 Diag(Loc, diag::warn_deprecated_altivec_src_compat);
13646 break;
13647 case LangOptions::AltivecSrcCompatKind::GCC:
13648 // For GCC we always return the vector type.
13649 break;
13650 case LangOptions::AltivecSrcCompatKind::XL:
13651 return Context.getLogicalOperationType();
13652 break;
13653 }
13654 }
13655
13656 // For non-floating point types, check for self-comparisons of the form
13657 // x == x, x != x, x < x, etc. These always evaluate to a constant, and
13658 // often indicate logic errors in the program.
13659 diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
13660
13661 // Check for comparisons of floating point operands using != and ==.
13662 if (LHSType->hasFloatingRepresentation()) {
13663 assert(RHS.get()->getType()->hasFloatingRepresentation());
13664 CheckFloatComparison(Loc, LHS.get(), RHS.get(), Opc);
13665 }
13666
13667 // Return a signed type for the vector.
13668 return GetSignedVectorType(vType);
13669 }
13670
CheckSizelessVectorCompareOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,BinaryOperatorKind Opc)13671 QualType Sema::CheckSizelessVectorCompareOperands(ExprResult &LHS,
13672 ExprResult &RHS,
13673 SourceLocation Loc,
13674 BinaryOperatorKind Opc) {
13675 if (Opc == BO_Cmp) {
13676 Diag(Loc, diag::err_three_way_vector_comparison);
13677 return QualType();
13678 }
13679
13680 // Check to make sure we're operating on vectors of the same type and width,
13681 // Allowing one side to be a scalar of element type.
13682 QualType vType = CheckSizelessVectorOperands(
13683 LHS, RHS, Loc, /*isCompAssign*/ false, ACK_Comparison);
13684
13685 if (vType.isNull())
13686 return vType;
13687
13688 QualType LHSType = LHS.get()->getType();
13689
13690 // For non-floating point types, check for self-comparisons of the form
13691 // x == x, x != x, x < x, etc. These always evaluate to a constant, and
13692 // often indicate logic errors in the program.
13693 diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
13694
13695 // Check for comparisons of floating point operands using != and ==.
13696 if (LHSType->hasFloatingRepresentation()) {
13697 assert(RHS.get()->getType()->hasFloatingRepresentation());
13698 CheckFloatComparison(Loc, LHS.get(), RHS.get(), Opc);
13699 }
13700
13701 const BuiltinType *LHSBuiltinTy = LHSType->getAs<BuiltinType>();
13702 const BuiltinType *RHSBuiltinTy = RHS.get()->getType()->getAs<BuiltinType>();
13703
13704 if (LHSBuiltinTy && RHSBuiltinTy && LHSBuiltinTy->isSVEBool() &&
13705 RHSBuiltinTy->isSVEBool())
13706 return LHSType;
13707
13708 // Return a signed type for the vector.
13709 return GetSignedSizelessVectorType(vType);
13710 }
13711
diagnoseXorMisusedAsPow(Sema & S,const ExprResult & XorLHS,const ExprResult & XorRHS,const SourceLocation Loc)13712 static void diagnoseXorMisusedAsPow(Sema &S, const ExprResult &XorLHS,
13713 const ExprResult &XorRHS,
13714 const SourceLocation Loc) {
13715 // Do not diagnose macros.
13716 if (Loc.isMacroID())
13717 return;
13718
13719 // Do not diagnose if both LHS and RHS are macros.
13720 if (XorLHS.get()->getExprLoc().isMacroID() &&
13721 XorRHS.get()->getExprLoc().isMacroID())
13722 return;
13723
13724 bool Negative = false;
13725 bool ExplicitPlus = false;
13726 const auto *LHSInt = dyn_cast<IntegerLiteral>(XorLHS.get());
13727 const auto *RHSInt = dyn_cast<IntegerLiteral>(XorRHS.get());
13728
13729 if (!LHSInt)
13730 return;
13731 if (!RHSInt) {
13732 // Check negative literals.
13733 if (const auto *UO = dyn_cast<UnaryOperator>(XorRHS.get())) {
13734 UnaryOperatorKind Opc = UO->getOpcode();
13735 if (Opc != UO_Minus && Opc != UO_Plus)
13736 return;
13737 RHSInt = dyn_cast<IntegerLiteral>(UO->getSubExpr());
13738 if (!RHSInt)
13739 return;
13740 Negative = (Opc == UO_Minus);
13741 ExplicitPlus = !Negative;
13742 } else {
13743 return;
13744 }
13745 }
13746
13747 const llvm::APInt &LeftSideValue = LHSInt->getValue();
13748 llvm::APInt RightSideValue = RHSInt->getValue();
13749 if (LeftSideValue != 2 && LeftSideValue != 10)
13750 return;
13751
13752 if (LeftSideValue.getBitWidth() != RightSideValue.getBitWidth())
13753 return;
13754
13755 CharSourceRange ExprRange = CharSourceRange::getCharRange(
13756 LHSInt->getBeginLoc(), S.getLocForEndOfToken(RHSInt->getLocation()));
13757 llvm::StringRef ExprStr =
13758 Lexer::getSourceText(ExprRange, S.getSourceManager(), S.getLangOpts());
13759
13760 CharSourceRange XorRange =
13761 CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc));
13762 llvm::StringRef XorStr =
13763 Lexer::getSourceText(XorRange, S.getSourceManager(), S.getLangOpts());
13764 // Do not diagnose if xor keyword/macro is used.
13765 if (XorStr == "xor")
13766 return;
13767
13768 std::string LHSStr = std::string(Lexer::getSourceText(
13769 CharSourceRange::getTokenRange(LHSInt->getSourceRange()),
13770 S.getSourceManager(), S.getLangOpts()));
13771 std::string RHSStr = std::string(Lexer::getSourceText(
13772 CharSourceRange::getTokenRange(RHSInt->getSourceRange()),
13773 S.getSourceManager(), S.getLangOpts()));
13774
13775 if (Negative) {
13776 RightSideValue = -RightSideValue;
13777 RHSStr = "-" + RHSStr;
13778 } else if (ExplicitPlus) {
13779 RHSStr = "+" + RHSStr;
13780 }
13781
13782 StringRef LHSStrRef = LHSStr;
13783 StringRef RHSStrRef = RHSStr;
13784 // Do not diagnose literals with digit separators, binary, hexadecimal, octal
13785 // literals.
13786 if (LHSStrRef.starts_with("0b") || LHSStrRef.starts_with("0B") ||
13787 RHSStrRef.starts_with("0b") || RHSStrRef.starts_with("0B") ||
13788 LHSStrRef.starts_with("0x") || LHSStrRef.starts_with("0X") ||
13789 RHSStrRef.starts_with("0x") || RHSStrRef.starts_with("0X") ||
13790 (LHSStrRef.size() > 1 && LHSStrRef.starts_with("0")) ||
13791 (RHSStrRef.size() > 1 && RHSStrRef.starts_with("0")) ||
13792 LHSStrRef.contains('\'') || RHSStrRef.contains('\''))
13793 return;
13794
13795 bool SuggestXor =
13796 S.getLangOpts().CPlusPlus || S.getPreprocessor().isMacroDefined("xor");
13797 const llvm::APInt XorValue = LeftSideValue ^ RightSideValue;
13798 int64_t RightSideIntValue = RightSideValue.getSExtValue();
13799 if (LeftSideValue == 2 && RightSideIntValue >= 0) {
13800 std::string SuggestedExpr = "1 << " + RHSStr;
13801 bool Overflow = false;
13802 llvm::APInt One = (LeftSideValue - 1);
13803 llvm::APInt PowValue = One.sshl_ov(RightSideValue, Overflow);
13804 if (Overflow) {
13805 if (RightSideIntValue < 64)
13806 S.Diag(Loc, diag::warn_xor_used_as_pow_base)
13807 << ExprStr << toString(XorValue, 10, true) << ("1LL << " + RHSStr)
13808 << FixItHint::CreateReplacement(ExprRange, "1LL << " + RHSStr);
13809 else if (RightSideIntValue == 64)
13810 S.Diag(Loc, diag::warn_xor_used_as_pow)
13811 << ExprStr << toString(XorValue, 10, true);
13812 else
13813 return;
13814 } else {
13815 S.Diag(Loc, diag::warn_xor_used_as_pow_base_extra)
13816 << ExprStr << toString(XorValue, 10, true) << SuggestedExpr
13817 << toString(PowValue, 10, true)
13818 << FixItHint::CreateReplacement(
13819 ExprRange, (RightSideIntValue == 0) ? "1" : SuggestedExpr);
13820 }
13821
13822 S.Diag(Loc, diag::note_xor_used_as_pow_silence)
13823 << ("0x2 ^ " + RHSStr) << SuggestXor;
13824 } else if (LeftSideValue == 10) {
13825 std::string SuggestedValue = "1e" + std::to_string(RightSideIntValue);
13826 S.Diag(Loc, diag::warn_xor_used_as_pow_base)
13827 << ExprStr << toString(XorValue, 10, true) << SuggestedValue
13828 << FixItHint::CreateReplacement(ExprRange, SuggestedValue);
13829 S.Diag(Loc, diag::note_xor_used_as_pow_silence)
13830 << ("0xA ^ " + RHSStr) << SuggestXor;
13831 }
13832 }
13833
CheckVectorLogicalOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc)13834 QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
13835 SourceLocation Loc) {
13836 // Ensure that either both operands are of the same vector type, or
13837 // one operand is of a vector type and the other is of its element type.
13838 QualType vType = CheckVectorOperands(LHS, RHS, Loc, false,
13839 /*AllowBothBool*/ true,
13840 /*AllowBoolConversions*/ false,
13841 /*AllowBooleanOperation*/ false,
13842 /*ReportInvalid*/ false);
13843 if (vType.isNull())
13844 return InvalidOperands(Loc, LHS, RHS);
13845 if (getLangOpts().OpenCL &&
13846 getLangOpts().getOpenCLCompatibleVersion() < 120 &&
13847 vType->hasFloatingRepresentation())
13848 return InvalidOperands(Loc, LHS, RHS);
13849 // FIXME: The check for C++ here is for GCC compatibility. GCC rejects the
13850 // usage of the logical operators && and || with vectors in C. This
13851 // check could be notionally dropped.
13852 if (!getLangOpts().CPlusPlus &&
13853 !(isa<ExtVectorType>(vType->getAs<VectorType>())))
13854 return InvalidLogicalVectorOperands(Loc, LHS, RHS);
13855
13856 return GetSignedVectorType(LHS.get()->getType());
13857 }
13858
CheckMatrixElementwiseOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompAssign)13859 QualType Sema::CheckMatrixElementwiseOperands(ExprResult &LHS, ExprResult &RHS,
13860 SourceLocation Loc,
13861 bool IsCompAssign) {
13862 if (!IsCompAssign) {
13863 LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
13864 if (LHS.isInvalid())
13865 return QualType();
13866 }
13867 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
13868 if (RHS.isInvalid())
13869 return QualType();
13870
13871 // For conversion purposes, we ignore any qualifiers.
13872 // For example, "const float" and "float" are equivalent.
13873 QualType LHSType = LHS.get()->getType().getUnqualifiedType();
13874 QualType RHSType = RHS.get()->getType().getUnqualifiedType();
13875
13876 const MatrixType *LHSMatType = LHSType->getAs<MatrixType>();
13877 const MatrixType *RHSMatType = RHSType->getAs<MatrixType>();
13878 assert((LHSMatType || RHSMatType) && "At least one operand must be a matrix");
13879
13880 if (Context.hasSameType(LHSType, RHSType))
13881 return Context.getCommonSugaredType(LHSType, RHSType);
13882
13883 // Type conversion may change LHS/RHS. Keep copies to the original results, in
13884 // case we have to return InvalidOperands.
13885 ExprResult OriginalLHS = LHS;
13886 ExprResult OriginalRHS = RHS;
13887 if (LHSMatType && !RHSMatType) {
13888 RHS = tryConvertExprToType(RHS.get(), LHSMatType->getElementType());
13889 if (!RHS.isInvalid())
13890 return LHSType;
13891
13892 return InvalidOperands(Loc, OriginalLHS, OriginalRHS);
13893 }
13894
13895 if (!LHSMatType && RHSMatType) {
13896 LHS = tryConvertExprToType(LHS.get(), RHSMatType->getElementType());
13897 if (!LHS.isInvalid())
13898 return RHSType;
13899 return InvalidOperands(Loc, OriginalLHS, OriginalRHS);
13900 }
13901
13902 return InvalidOperands(Loc, LHS, RHS);
13903 }
13904
CheckMatrixMultiplyOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompAssign)13905 QualType Sema::CheckMatrixMultiplyOperands(ExprResult &LHS, ExprResult &RHS,
13906 SourceLocation Loc,
13907 bool IsCompAssign) {
13908 if (!IsCompAssign) {
13909 LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
13910 if (LHS.isInvalid())
13911 return QualType();
13912 }
13913 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
13914 if (RHS.isInvalid())
13915 return QualType();
13916
13917 auto *LHSMatType = LHS.get()->getType()->getAs<ConstantMatrixType>();
13918 auto *RHSMatType = RHS.get()->getType()->getAs<ConstantMatrixType>();
13919 assert((LHSMatType || RHSMatType) && "At least one operand must be a matrix");
13920
13921 if (LHSMatType && RHSMatType) {
13922 if (LHSMatType->getNumColumns() != RHSMatType->getNumRows())
13923 return InvalidOperands(Loc, LHS, RHS);
13924
13925 if (Context.hasSameType(LHSMatType, RHSMatType))
13926 return Context.getCommonSugaredType(
13927 LHS.get()->getType().getUnqualifiedType(),
13928 RHS.get()->getType().getUnqualifiedType());
13929
13930 QualType LHSELTy = LHSMatType->getElementType(),
13931 RHSELTy = RHSMatType->getElementType();
13932 if (!Context.hasSameType(LHSELTy, RHSELTy))
13933 return InvalidOperands(Loc, LHS, RHS);
13934
13935 return Context.getConstantMatrixType(
13936 Context.getCommonSugaredType(LHSELTy, RHSELTy),
13937 LHSMatType->getNumRows(), RHSMatType->getNumColumns());
13938 }
13939 return CheckMatrixElementwiseOperands(LHS, RHS, Loc, IsCompAssign);
13940 }
13941
isLegalBoolVectorBinaryOp(BinaryOperatorKind Opc)13942 static bool isLegalBoolVectorBinaryOp(BinaryOperatorKind Opc) {
13943 switch (Opc) {
13944 default:
13945 return false;
13946 case BO_And:
13947 case BO_AndAssign:
13948 case BO_Or:
13949 case BO_OrAssign:
13950 case BO_Xor:
13951 case BO_XorAssign:
13952 return true;
13953 }
13954 }
13955
CheckBitwiseOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,BinaryOperatorKind Opc)13956 inline QualType Sema::CheckBitwiseOperands(ExprResult &LHS, ExprResult &RHS,
13957 SourceLocation Loc,
13958 BinaryOperatorKind Opc) {
13959 checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
13960
13961 bool IsCompAssign =
13962 Opc == BO_AndAssign || Opc == BO_OrAssign || Opc == BO_XorAssign;
13963
13964 bool LegalBoolVecOperator = isLegalBoolVectorBinaryOp(Opc);
13965
13966 if (LHS.get()->getType()->isVectorType() ||
13967 RHS.get()->getType()->isVectorType()) {
13968 if (LHS.get()->getType()->hasIntegerRepresentation() &&
13969 RHS.get()->getType()->hasIntegerRepresentation())
13970 return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
13971 /*AllowBothBool*/ true,
13972 /*AllowBoolConversions*/ getLangOpts().ZVector,
13973 /*AllowBooleanOperation*/ LegalBoolVecOperator,
13974 /*ReportInvalid*/ true);
13975 return InvalidOperands(Loc, LHS, RHS);
13976 }
13977
13978 if (LHS.get()->getType()->isSveVLSBuiltinType() ||
13979 RHS.get()->getType()->isSveVLSBuiltinType()) {
13980 if (LHS.get()->getType()->hasIntegerRepresentation() &&
13981 RHS.get()->getType()->hasIntegerRepresentation())
13982 return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign,
13983 ACK_BitwiseOp);
13984 return InvalidOperands(Loc, LHS, RHS);
13985 }
13986
13987 if (LHS.get()->getType()->isSveVLSBuiltinType() ||
13988 RHS.get()->getType()->isSveVLSBuiltinType()) {
13989 if (LHS.get()->getType()->hasIntegerRepresentation() &&
13990 RHS.get()->getType()->hasIntegerRepresentation())
13991 return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign,
13992 ACK_BitwiseOp);
13993 return InvalidOperands(Loc, LHS, RHS);
13994 }
13995
13996 if (Opc == BO_And)
13997 diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc);
13998
13999 if (LHS.get()->getType()->hasFloatingRepresentation() ||
14000 RHS.get()->getType()->hasFloatingRepresentation())
14001 return InvalidOperands(Loc, LHS, RHS);
14002
14003 ExprResult LHSResult = LHS, RHSResult = RHS;
14004 QualType compType = UsualArithmeticConversions(
14005 LHSResult, RHSResult, Loc, IsCompAssign ? ACK_CompAssign : ACK_BitwiseOp);
14006 if (LHSResult.isInvalid() || RHSResult.isInvalid())
14007 return QualType();
14008 LHS = LHSResult.get();
14009 RHS = RHSResult.get();
14010
14011 if (Opc == BO_Xor)
14012 diagnoseXorMisusedAsPow(*this, LHS, RHS, Loc);
14013
14014 if (!compType.isNull() && compType->isIntegralOrUnscopedEnumerationType())
14015 return compType;
14016 return InvalidOperands(Loc, LHS, RHS);
14017 }
14018
14019 // C99 6.5.[13,14]
CheckLogicalOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,BinaryOperatorKind Opc)14020 inline QualType Sema::CheckLogicalOperands(ExprResult &LHS, ExprResult &RHS,
14021 SourceLocation Loc,
14022 BinaryOperatorKind Opc) {
14023 // Check vector operands differently.
14024 if (LHS.get()->getType()->isVectorType() ||
14025 RHS.get()->getType()->isVectorType())
14026 return CheckVectorLogicalOperands(LHS, RHS, Loc);
14027
14028 bool EnumConstantInBoolContext = false;
14029 for (const ExprResult &HS : {LHS, RHS}) {
14030 if (const auto *DREHS = dyn_cast<DeclRefExpr>(HS.get())) {
14031 const auto *ECDHS = dyn_cast<EnumConstantDecl>(DREHS->getDecl());
14032 if (ECDHS && ECDHS->getInitVal() != 0 && ECDHS->getInitVal() != 1)
14033 EnumConstantInBoolContext = true;
14034 }
14035 }
14036
14037 if (EnumConstantInBoolContext)
14038 Diag(Loc, diag::warn_enum_constant_in_bool_context);
14039
14040 // WebAssembly tables can't be used with logical operators.
14041 QualType LHSTy = LHS.get()->getType();
14042 QualType RHSTy = RHS.get()->getType();
14043 const auto *LHSATy = dyn_cast<ArrayType>(LHSTy);
14044 const auto *RHSATy = dyn_cast<ArrayType>(RHSTy);
14045 if ((LHSATy && LHSATy->getElementType().isWebAssemblyReferenceType()) ||
14046 (RHSATy && RHSATy->getElementType().isWebAssemblyReferenceType())) {
14047 return InvalidOperands(Loc, LHS, RHS);
14048 }
14049
14050 // Diagnose cases where the user write a logical and/or but probably meant a
14051 // bitwise one. We do this when the LHS is a non-bool integer and the RHS
14052 // is a constant.
14053 if (!EnumConstantInBoolContext && LHS.get()->getType()->isIntegerType() &&
14054 !LHS.get()->getType()->isBooleanType() &&
14055 RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() &&
14056 // Don't warn in macros or template instantiations.
14057 !Loc.isMacroID() && !inTemplateInstantiation()) {
14058 // If the RHS can be constant folded, and if it constant folds to something
14059 // that isn't 0 or 1 (which indicate a potential logical operation that
14060 // happened to fold to true/false) then warn.
14061 // Parens on the RHS are ignored.
14062 Expr::EvalResult EVResult;
14063 if (RHS.get()->EvaluateAsInt(EVResult, Context)) {
14064 llvm::APSInt Result = EVResult.Val.getInt();
14065 if ((getLangOpts().CPlusPlus && !RHS.get()->getType()->isBooleanType() &&
14066 !RHS.get()->getExprLoc().isMacroID()) ||
14067 (Result != 0 && Result != 1)) {
14068 Diag(Loc, diag::warn_logical_instead_of_bitwise)
14069 << RHS.get()->getSourceRange() << (Opc == BO_LAnd ? "&&" : "||");
14070 // Suggest replacing the logical operator with the bitwise version
14071 Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator)
14072 << (Opc == BO_LAnd ? "&" : "|")
14073 << FixItHint::CreateReplacement(
14074 SourceRange(Loc, getLocForEndOfToken(Loc)),
14075 Opc == BO_LAnd ? "&" : "|");
14076 if (Opc == BO_LAnd)
14077 // Suggest replacing "Foo() && kNonZero" with "Foo()"
14078 Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant)
14079 << FixItHint::CreateRemoval(
14080 SourceRange(getLocForEndOfToken(LHS.get()->getEndLoc()),
14081 RHS.get()->getEndLoc()));
14082 }
14083 }
14084 }
14085
14086 if (!Context.getLangOpts().CPlusPlus) {
14087 // OpenCL v1.1 s6.3.g: The logical operators and (&&), or (||) do
14088 // not operate on the built-in scalar and vector float types.
14089 if (Context.getLangOpts().OpenCL &&
14090 Context.getLangOpts().OpenCLVersion < 120) {
14091 if (LHS.get()->getType()->isFloatingType() ||
14092 RHS.get()->getType()->isFloatingType())
14093 return InvalidOperands(Loc, LHS, RHS);
14094 }
14095
14096 LHS = UsualUnaryConversions(LHS.get());
14097 if (LHS.isInvalid())
14098 return QualType();
14099
14100 RHS = UsualUnaryConversions(RHS.get());
14101 if (RHS.isInvalid())
14102 return QualType();
14103
14104 if (!LHS.get()->getType()->isScalarType() ||
14105 !RHS.get()->getType()->isScalarType())
14106 return InvalidOperands(Loc, LHS, RHS);
14107
14108 return Context.IntTy;
14109 }
14110
14111 // The following is safe because we only use this method for
14112 // non-overloadable operands.
14113
14114 // C++ [expr.log.and]p1
14115 // C++ [expr.log.or]p1
14116 // The operands are both contextually converted to type bool.
14117 ExprResult LHSRes = PerformContextuallyConvertToBool(LHS.get());
14118 if (LHSRes.isInvalid())
14119 return InvalidOperands(Loc, LHS, RHS);
14120 LHS = LHSRes;
14121
14122 ExprResult RHSRes = PerformContextuallyConvertToBool(RHS.get());
14123 if (RHSRes.isInvalid())
14124 return InvalidOperands(Loc, LHS, RHS);
14125 RHS = RHSRes;
14126
14127 // C++ [expr.log.and]p2
14128 // C++ [expr.log.or]p2
14129 // The result is a bool.
14130 return Context.BoolTy;
14131 }
14132
IsReadonlyMessage(Expr * E,Sema & S)14133 static bool IsReadonlyMessage(Expr *E, Sema &S) {
14134 const MemberExpr *ME = dyn_cast<MemberExpr>(E);
14135 if (!ME) return false;
14136 if (!isa<FieldDecl>(ME->getMemberDecl())) return false;
14137 ObjCMessageExpr *Base = dyn_cast<ObjCMessageExpr>(
14138 ME->getBase()->IgnoreImplicit()->IgnoreParenImpCasts());
14139 if (!Base) return false;
14140 return Base->getMethodDecl() != nullptr;
14141 }
14142
14143 /// Is the given expression (which must be 'const') a reference to a
14144 /// variable which was originally non-const, but which has become
14145 /// 'const' due to being captured within a block?
14146 enum NonConstCaptureKind { NCCK_None, NCCK_Block, NCCK_Lambda };
isReferenceToNonConstCapture(Sema & S,Expr * E)14147 static NonConstCaptureKind isReferenceToNonConstCapture(Sema &S, Expr *E) {
14148 assert(E->isLValue() && E->getType().isConstQualified());
14149 E = E->IgnoreParens();
14150
14151 // Must be a reference to a declaration from an enclosing scope.
14152 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
14153 if (!DRE) return NCCK_None;
14154 if (!DRE->refersToEnclosingVariableOrCapture()) return NCCK_None;
14155
14156 // The declaration must be a variable which is not declared 'const'.
14157 VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
14158 if (!var) return NCCK_None;
14159 if (var->getType().isConstQualified()) return NCCK_None;
14160 assert(var->hasLocalStorage() && "capture added 'const' to non-local?");
14161
14162 // Decide whether the first capture was for a block or a lambda.
14163 DeclContext *DC = S.CurContext, *Prev = nullptr;
14164 // Decide whether the first capture was for a block or a lambda.
14165 while (DC) {
14166 // For init-capture, it is possible that the variable belongs to the
14167 // template pattern of the current context.
14168 if (auto *FD = dyn_cast<FunctionDecl>(DC))
14169 if (var->isInitCapture() &&
14170 FD->getTemplateInstantiationPattern() == var->getDeclContext())
14171 break;
14172 if (DC == var->getDeclContext())
14173 break;
14174 Prev = DC;
14175 DC = DC->getParent();
14176 }
14177 // Unless we have an init-capture, we've gone one step too far.
14178 if (!var->isInitCapture())
14179 DC = Prev;
14180 return (isa<BlockDecl>(DC) ? NCCK_Block : NCCK_Lambda);
14181 }
14182
IsTypeModifiable(QualType Ty,bool IsDereference)14183 static bool IsTypeModifiable(QualType Ty, bool IsDereference) {
14184 Ty = Ty.getNonReferenceType();
14185 if (IsDereference && Ty->isPointerType())
14186 Ty = Ty->getPointeeType();
14187 return !Ty.isConstQualified();
14188 }
14189
14190 // Update err_typecheck_assign_const and note_typecheck_assign_const
14191 // when this enum is changed.
14192 enum {
14193 ConstFunction,
14194 ConstVariable,
14195 ConstMember,
14196 ConstMethod,
14197 NestedConstMember,
14198 ConstUnknown, // Keep as last element
14199 };
14200
14201 /// Emit the "read-only variable not assignable" error and print notes to give
14202 /// more information about why the variable is not assignable, such as pointing
14203 /// to the declaration of a const variable, showing that a method is const, or
14204 /// that the function is returning a const reference.
DiagnoseConstAssignment(Sema & S,const Expr * E,SourceLocation Loc)14205 static void DiagnoseConstAssignment(Sema &S, const Expr *E,
14206 SourceLocation Loc) {
14207 SourceRange ExprRange = E->getSourceRange();
14208
14209 // Only emit one error on the first const found. All other consts will emit
14210 // a note to the error.
14211 bool DiagnosticEmitted = false;
14212
14213 // Track if the current expression is the result of a dereference, and if the
14214 // next checked expression is the result of a dereference.
14215 bool IsDereference = false;
14216 bool NextIsDereference = false;
14217
14218 // Loop to process MemberExpr chains.
14219 while (true) {
14220 IsDereference = NextIsDereference;
14221
14222 E = E->IgnoreImplicit()->IgnoreParenImpCasts();
14223 if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
14224 NextIsDereference = ME->isArrow();
14225 const ValueDecl *VD = ME->getMemberDecl();
14226 if (const FieldDecl *Field = dyn_cast<FieldDecl>(VD)) {
14227 // Mutable fields can be modified even if the class is const.
14228 if (Field->isMutable()) {
14229 assert(DiagnosticEmitted && "Expected diagnostic not emitted.");
14230 break;
14231 }
14232
14233 if (!IsTypeModifiable(Field->getType(), IsDereference)) {
14234 if (!DiagnosticEmitted) {
14235 S.Diag(Loc, diag::err_typecheck_assign_const)
14236 << ExprRange << ConstMember << false /*static*/ << Field
14237 << Field->getType();
14238 DiagnosticEmitted = true;
14239 }
14240 S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
14241 << ConstMember << false /*static*/ << Field << Field->getType()
14242 << Field->getSourceRange();
14243 }
14244 E = ME->getBase();
14245 continue;
14246 } else if (const VarDecl *VDecl = dyn_cast<VarDecl>(VD)) {
14247 if (VDecl->getType().isConstQualified()) {
14248 if (!DiagnosticEmitted) {
14249 S.Diag(Loc, diag::err_typecheck_assign_const)
14250 << ExprRange << ConstMember << true /*static*/ << VDecl
14251 << VDecl->getType();
14252 DiagnosticEmitted = true;
14253 }
14254 S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
14255 << ConstMember << true /*static*/ << VDecl << VDecl->getType()
14256 << VDecl->getSourceRange();
14257 }
14258 // Static fields do not inherit constness from parents.
14259 break;
14260 }
14261 break; // End MemberExpr
14262 } else if (const ArraySubscriptExpr *ASE =
14263 dyn_cast<ArraySubscriptExpr>(E)) {
14264 E = ASE->getBase()->IgnoreParenImpCasts();
14265 continue;
14266 } else if (const ExtVectorElementExpr *EVE =
14267 dyn_cast<ExtVectorElementExpr>(E)) {
14268 E = EVE->getBase()->IgnoreParenImpCasts();
14269 continue;
14270 }
14271 break;
14272 }
14273
14274 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
14275 // Function calls
14276 const FunctionDecl *FD = CE->getDirectCallee();
14277 if (FD && !IsTypeModifiable(FD->getReturnType(), IsDereference)) {
14278 if (!DiagnosticEmitted) {
14279 S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
14280 << ConstFunction << FD;
14281 DiagnosticEmitted = true;
14282 }
14283 S.Diag(FD->getReturnTypeSourceRange().getBegin(),
14284 diag::note_typecheck_assign_const)
14285 << ConstFunction << FD << FD->getReturnType()
14286 << FD->getReturnTypeSourceRange();
14287 }
14288 } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
14289 // Point to variable declaration.
14290 if (const ValueDecl *VD = DRE->getDecl()) {
14291 if (!IsTypeModifiable(VD->getType(), IsDereference)) {
14292 if (!DiagnosticEmitted) {
14293 S.Diag(Loc, diag::err_typecheck_assign_const)
14294 << ExprRange << ConstVariable << VD << VD->getType();
14295 DiagnosticEmitted = true;
14296 }
14297 S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
14298 << ConstVariable << VD << VD->getType() << VD->getSourceRange();
14299 }
14300 }
14301 } else if (isa<CXXThisExpr>(E)) {
14302 if (const DeclContext *DC = S.getFunctionLevelDeclContext()) {
14303 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
14304 if (MD->isConst()) {
14305 if (!DiagnosticEmitted) {
14306 S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
14307 << ConstMethod << MD;
14308 DiagnosticEmitted = true;
14309 }
14310 S.Diag(MD->getLocation(), diag::note_typecheck_assign_const)
14311 << ConstMethod << MD << MD->getSourceRange();
14312 }
14313 }
14314 }
14315 }
14316
14317 if (DiagnosticEmitted)
14318 return;
14319
14320 // Can't determine a more specific message, so display the generic error.
14321 S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange << ConstUnknown;
14322 }
14323
14324 enum OriginalExprKind {
14325 OEK_Variable,
14326 OEK_Member,
14327 OEK_LValue
14328 };
14329
DiagnoseRecursiveConstFields(Sema & S,const ValueDecl * VD,const RecordType * Ty,SourceLocation Loc,SourceRange Range,OriginalExprKind OEK,bool & DiagnosticEmitted)14330 static void DiagnoseRecursiveConstFields(Sema &S, const ValueDecl *VD,
14331 const RecordType *Ty,
14332 SourceLocation Loc, SourceRange Range,
14333 OriginalExprKind OEK,
14334 bool &DiagnosticEmitted) {
14335 std::vector<const RecordType *> RecordTypeList;
14336 RecordTypeList.push_back(Ty);
14337 unsigned NextToCheckIndex = 0;
14338 // We walk the record hierarchy breadth-first to ensure that we print
14339 // diagnostics in field nesting order.
14340 while (RecordTypeList.size() > NextToCheckIndex) {
14341 bool IsNested = NextToCheckIndex > 0;
14342 for (const FieldDecl *Field :
14343 RecordTypeList[NextToCheckIndex]->getDecl()->fields()) {
14344 // First, check every field for constness.
14345 QualType FieldTy = Field->getType();
14346 if (FieldTy.isConstQualified()) {
14347 if (!DiagnosticEmitted) {
14348 S.Diag(Loc, diag::err_typecheck_assign_const)
14349 << Range << NestedConstMember << OEK << VD
14350 << IsNested << Field;
14351 DiagnosticEmitted = true;
14352 }
14353 S.Diag(Field->getLocation(), diag::note_typecheck_assign_const)
14354 << NestedConstMember << IsNested << Field
14355 << FieldTy << Field->getSourceRange();
14356 }
14357
14358 // Then we append it to the list to check next in order.
14359 FieldTy = FieldTy.getCanonicalType();
14360 if (const auto *FieldRecTy = FieldTy->getAs<RecordType>()) {
14361 if (!llvm::is_contained(RecordTypeList, FieldRecTy))
14362 RecordTypeList.push_back(FieldRecTy);
14363 }
14364 }
14365 ++NextToCheckIndex;
14366 }
14367 }
14368
14369 /// Emit an error for the case where a record we are trying to assign to has a
14370 /// const-qualified field somewhere in its hierarchy.
DiagnoseRecursiveConstFields(Sema & S,const Expr * E,SourceLocation Loc)14371 static void DiagnoseRecursiveConstFields(Sema &S, const Expr *E,
14372 SourceLocation Loc) {
14373 QualType Ty = E->getType();
14374 assert(Ty->isRecordType() && "lvalue was not record?");
14375 SourceRange Range = E->getSourceRange();
14376 const RecordType *RTy = Ty.getCanonicalType()->getAs<RecordType>();
14377 bool DiagEmitted = false;
14378
14379 if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
14380 DiagnoseRecursiveConstFields(S, ME->getMemberDecl(), RTy, Loc,
14381 Range, OEK_Member, DiagEmitted);
14382 else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
14383 DiagnoseRecursiveConstFields(S, DRE->getDecl(), RTy, Loc,
14384 Range, OEK_Variable, DiagEmitted);
14385 else
14386 DiagnoseRecursiveConstFields(S, nullptr, RTy, Loc,
14387 Range, OEK_LValue, DiagEmitted);
14388 if (!DiagEmitted)
14389 DiagnoseConstAssignment(S, E, Loc);
14390 }
14391
14392 /// CheckForModifiableLvalue - Verify that E is a modifiable lvalue. If not,
14393 /// emit an error and return true. If so, return false.
CheckForModifiableLvalue(Expr * E,SourceLocation Loc,Sema & S)14394 static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
14395 assert(!E->hasPlaceholderType(BuiltinType::PseudoObject));
14396
14397 S.CheckShadowingDeclModification(E, Loc);
14398
14399 SourceLocation OrigLoc = Loc;
14400 Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
14401 &Loc);
14402 if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
14403 IsLV = Expr::MLV_InvalidMessageExpression;
14404 if (IsLV == Expr::MLV_Valid)
14405 return false;
14406
14407 unsigned DiagID = 0;
14408 bool NeedType = false;
14409 switch (IsLV) { // C99 6.5.16p2
14410 case Expr::MLV_ConstQualified:
14411 // Use a specialized diagnostic when we're assigning to an object
14412 // from an enclosing function or block.
14413 if (NonConstCaptureKind NCCK = isReferenceToNonConstCapture(S, E)) {
14414 if (NCCK == NCCK_Block)
14415 DiagID = diag::err_block_decl_ref_not_modifiable_lvalue;
14416 else
14417 DiagID = diag::err_lambda_decl_ref_not_modifiable_lvalue;
14418 break;
14419 }
14420
14421 // In ARC, use some specialized diagnostics for occasions where we
14422 // infer 'const'. These are always pseudo-strong variables.
14423 if (S.getLangOpts().ObjCAutoRefCount) {
14424 DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts());
14425 if (declRef && isa<VarDecl>(declRef->getDecl())) {
14426 VarDecl *var = cast<VarDecl>(declRef->getDecl());
14427
14428 // Use the normal diagnostic if it's pseudo-__strong but the
14429 // user actually wrote 'const'.
14430 if (var->isARCPseudoStrong() &&
14431 (!var->getTypeSourceInfo() ||
14432 !var->getTypeSourceInfo()->getType().isConstQualified())) {
14433 // There are three pseudo-strong cases:
14434 // - self
14435 ObjCMethodDecl *method = S.getCurMethodDecl();
14436 if (method && var == method->getSelfDecl()) {
14437 DiagID = method->isClassMethod()
14438 ? diag::err_typecheck_arc_assign_self_class_method
14439 : diag::err_typecheck_arc_assign_self;
14440
14441 // - Objective-C externally_retained attribute.
14442 } else if (var->hasAttr<ObjCExternallyRetainedAttr>() ||
14443 isa<ParmVarDecl>(var)) {
14444 DiagID = diag::err_typecheck_arc_assign_externally_retained;
14445
14446 // - fast enumeration variables
14447 } else {
14448 DiagID = diag::err_typecheck_arr_assign_enumeration;
14449 }
14450
14451 SourceRange Assign;
14452 if (Loc != OrigLoc)
14453 Assign = SourceRange(OrigLoc, OrigLoc);
14454 S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
14455 // We need to preserve the AST regardless, so migration tool
14456 // can do its job.
14457 return false;
14458 }
14459 }
14460 }
14461
14462 // If none of the special cases above are triggered, then this is a
14463 // simple const assignment.
14464 if (DiagID == 0) {
14465 DiagnoseConstAssignment(S, E, Loc);
14466 return true;
14467 }
14468
14469 break;
14470 case Expr::MLV_ConstAddrSpace:
14471 DiagnoseConstAssignment(S, E, Loc);
14472 return true;
14473 case Expr::MLV_ConstQualifiedField:
14474 DiagnoseRecursiveConstFields(S, E, Loc);
14475 return true;
14476 case Expr::MLV_ArrayType:
14477 case Expr::MLV_ArrayTemporary:
14478 DiagID = diag::err_typecheck_array_not_modifiable_lvalue;
14479 NeedType = true;
14480 break;
14481 case Expr::MLV_NotObjectType:
14482 DiagID = diag::err_typecheck_non_object_not_modifiable_lvalue;
14483 NeedType = true;
14484 break;
14485 case Expr::MLV_LValueCast:
14486 DiagID = diag::err_typecheck_lvalue_casts_not_supported;
14487 break;
14488 case Expr::MLV_Valid:
14489 llvm_unreachable("did not take early return for MLV_Valid");
14490 case Expr::MLV_InvalidExpression:
14491 case Expr::MLV_MemberFunction:
14492 case Expr::MLV_ClassTemporary:
14493 DiagID = diag::err_typecheck_expression_not_modifiable_lvalue;
14494 break;
14495 case Expr::MLV_IncompleteType:
14496 case Expr::MLV_IncompleteVoidType:
14497 return S.RequireCompleteType(Loc, E->getType(),
14498 diag::err_typecheck_incomplete_type_not_modifiable_lvalue, E);
14499 case Expr::MLV_DuplicateVectorComponents:
14500 DiagID = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
14501 break;
14502 case Expr::MLV_NoSetterProperty:
14503 llvm_unreachable("readonly properties should be processed differently");
14504 case Expr::MLV_InvalidMessageExpression:
14505 DiagID = diag::err_readonly_message_assignment;
14506 break;
14507 case Expr::MLV_SubObjCPropertySetting:
14508 DiagID = diag::err_no_subobject_property_setting;
14509 break;
14510 }
14511
14512 SourceRange Assign;
14513 if (Loc != OrigLoc)
14514 Assign = SourceRange(OrigLoc, OrigLoc);
14515 if (NeedType)
14516 S.Diag(Loc, DiagID) << E->getType() << E->getSourceRange() << Assign;
14517 else
14518 S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
14519 return true;
14520 }
14521
CheckIdentityFieldAssignment(Expr * LHSExpr,Expr * RHSExpr,SourceLocation Loc,Sema & Sema)14522 static void CheckIdentityFieldAssignment(Expr *LHSExpr, Expr *RHSExpr,
14523 SourceLocation Loc,
14524 Sema &Sema) {
14525 if (Sema.inTemplateInstantiation())
14526 return;
14527 if (Sema.isUnevaluatedContext())
14528 return;
14529 if (Loc.isInvalid() || Loc.isMacroID())
14530 return;
14531 if (LHSExpr->getExprLoc().isMacroID() || RHSExpr->getExprLoc().isMacroID())
14532 return;
14533
14534 // C / C++ fields
14535 MemberExpr *ML = dyn_cast<MemberExpr>(LHSExpr);
14536 MemberExpr *MR = dyn_cast<MemberExpr>(RHSExpr);
14537 if (ML && MR) {
14538 if (!(isa<CXXThisExpr>(ML->getBase()) && isa<CXXThisExpr>(MR->getBase())))
14539 return;
14540 const ValueDecl *LHSDecl =
14541 cast<ValueDecl>(ML->getMemberDecl()->getCanonicalDecl());
14542 const ValueDecl *RHSDecl =
14543 cast<ValueDecl>(MR->getMemberDecl()->getCanonicalDecl());
14544 if (LHSDecl != RHSDecl)
14545 return;
14546 if (LHSDecl->getType().isVolatileQualified())
14547 return;
14548 if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
14549 if (RefTy->getPointeeType().isVolatileQualified())
14550 return;
14551
14552 Sema.Diag(Loc, diag::warn_identity_field_assign) << 0;
14553 }
14554
14555 // Objective-C instance variables
14556 ObjCIvarRefExpr *OL = dyn_cast<ObjCIvarRefExpr>(LHSExpr);
14557 ObjCIvarRefExpr *OR = dyn_cast<ObjCIvarRefExpr>(RHSExpr);
14558 if (OL && OR && OL->getDecl() == OR->getDecl()) {
14559 DeclRefExpr *RL = dyn_cast<DeclRefExpr>(OL->getBase()->IgnoreImpCasts());
14560 DeclRefExpr *RR = dyn_cast<DeclRefExpr>(OR->getBase()->IgnoreImpCasts());
14561 if (RL && RR && RL->getDecl() == RR->getDecl())
14562 Sema.Diag(Loc, diag::warn_identity_field_assign) << 1;
14563 }
14564 }
14565
14566 // C99 6.5.16.1
CheckAssignmentOperands(Expr * LHSExpr,ExprResult & RHS,SourceLocation Loc,QualType CompoundType,BinaryOperatorKind Opc)14567 QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS,
14568 SourceLocation Loc,
14569 QualType CompoundType,
14570 BinaryOperatorKind Opc) {
14571 assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject));
14572
14573 // Verify that LHS is a modifiable lvalue, and emit error if not.
14574 if (CheckForModifiableLvalue(LHSExpr, Loc, *this))
14575 return QualType();
14576
14577 QualType LHSType = LHSExpr->getType();
14578 QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() :
14579 CompoundType;
14580 // OpenCL v1.2 s6.1.1.1 p2:
14581 // The half data type can only be used to declare a pointer to a buffer that
14582 // contains half values
14583 if (getLangOpts().OpenCL &&
14584 !getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()) &&
14585 LHSType->isHalfType()) {
14586 Diag(Loc, diag::err_opencl_half_load_store) << 1
14587 << LHSType.getUnqualifiedType();
14588 return QualType();
14589 }
14590
14591 // WebAssembly tables can't be used on RHS of an assignment expression.
14592 if (RHSType->isWebAssemblyTableType()) {
14593 Diag(Loc, diag::err_wasm_table_art) << 0;
14594 return QualType();
14595 }
14596
14597 AssignConvertType ConvTy;
14598 if (CompoundType.isNull()) {
14599 Expr *RHSCheck = RHS.get();
14600
14601 CheckIdentityFieldAssignment(LHSExpr, RHSCheck, Loc, *this);
14602
14603 QualType LHSTy(LHSType);
14604 ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
14605 if (RHS.isInvalid())
14606 return QualType();
14607 // Special case of NSObject attributes on c-style pointer types.
14608 if (ConvTy == IncompatiblePointer &&
14609 ((Context.isObjCNSObjectType(LHSType) &&
14610 RHSType->isObjCObjectPointerType()) ||
14611 (Context.isObjCNSObjectType(RHSType) &&
14612 LHSType->isObjCObjectPointerType())))
14613 ConvTy = Compatible;
14614
14615 if (ConvTy == Compatible &&
14616 LHSType->isObjCObjectType())
14617 Diag(Loc, diag::err_objc_object_assignment)
14618 << LHSType;
14619
14620 // If the RHS is a unary plus or minus, check to see if they = and + are
14621 // right next to each other. If so, the user may have typo'd "x =+ 4"
14622 // instead of "x += 4".
14623 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
14624 RHSCheck = ICE->getSubExpr();
14625 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
14626 if ((UO->getOpcode() == UO_Plus || UO->getOpcode() == UO_Minus) &&
14627 Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
14628 // Only if the two operators are exactly adjacent.
14629 Loc.getLocWithOffset(1) == UO->getOperatorLoc() &&
14630 // And there is a space or other character before the subexpr of the
14631 // unary +/-. We don't want to warn on "x=-1".
14632 Loc.getLocWithOffset(2) != UO->getSubExpr()->getBeginLoc() &&
14633 UO->getSubExpr()->getBeginLoc().isFileID()) {
14634 Diag(Loc, diag::warn_not_compound_assign)
14635 << (UO->getOpcode() == UO_Plus ? "+" : "-")
14636 << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
14637 }
14638 }
14639
14640 if (ConvTy == Compatible) {
14641 if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong) {
14642 // Warn about retain cycles where a block captures the LHS, but
14643 // not if the LHS is a simple variable into which the block is
14644 // being stored...unless that variable can be captured by reference!
14645 const Expr *InnerLHS = LHSExpr->IgnoreParenCasts();
14646 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InnerLHS);
14647 if (!DRE || DRE->getDecl()->hasAttr<BlocksAttr>())
14648 checkRetainCycles(LHSExpr, RHS.get());
14649 }
14650
14651 if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong ||
14652 LHSType.isNonWeakInMRRWithObjCWeak(Context)) {
14653 // It is safe to assign a weak reference into a strong variable.
14654 // Although this code can still have problems:
14655 // id x = self.weakProp;
14656 // id y = self.weakProp;
14657 // we do not warn to warn spuriously when 'x' and 'y' are on separate
14658 // paths through the function. This should be revisited if
14659 // -Wrepeated-use-of-weak is made flow-sensitive.
14660 // For ObjCWeak only, we do not warn if the assign is to a non-weak
14661 // variable, which will be valid for the current autorelease scope.
14662 if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
14663 RHS.get()->getBeginLoc()))
14664 getCurFunction()->markSafeWeakUse(RHS.get());
14665
14666 } else if (getLangOpts().ObjCAutoRefCount || getLangOpts().ObjCWeak) {
14667 checkUnsafeExprAssigns(Loc, LHSExpr, RHS.get());
14668 }
14669 }
14670 } else {
14671 // Compound assignment "x += y"
14672 ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
14673 }
14674
14675 if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
14676 RHS.get(), AA_Assigning))
14677 return QualType();
14678
14679 CheckForNullPointerDereference(*this, LHSExpr);
14680
14681 if (getLangOpts().CPlusPlus20 && LHSType.isVolatileQualified()) {
14682 if (CompoundType.isNull()) {
14683 // C++2a [expr.ass]p5:
14684 // A simple-assignment whose left operand is of a volatile-qualified
14685 // type is deprecated unless the assignment is either a discarded-value
14686 // expression or an unevaluated operand
14687 ExprEvalContexts.back().VolatileAssignmentLHSs.push_back(LHSExpr);
14688 }
14689 }
14690
14691 // C11 6.5.16p3: The type of an assignment expression is the type of the
14692 // left operand would have after lvalue conversion.
14693 // C11 6.3.2.1p2: ...this is called lvalue conversion. If the lvalue has
14694 // qualified type, the value has the unqualified version of the type of the
14695 // lvalue; additionally, if the lvalue has atomic type, the value has the
14696 // non-atomic version of the type of the lvalue.
14697 // C++ 5.17p1: the type of the assignment expression is that of its left
14698 // operand.
14699 return getLangOpts().CPlusPlus ? LHSType : LHSType.getAtomicUnqualifiedType();
14700 }
14701
14702 // Scenarios to ignore if expression E is:
14703 // 1. an explicit cast expression into void
14704 // 2. a function call expression that returns void
IgnoreCommaOperand(const Expr * E,const ASTContext & Context)14705 static bool IgnoreCommaOperand(const Expr *E, const ASTContext &Context) {
14706 E = E->IgnoreParens();
14707
14708 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
14709 if (CE->getCastKind() == CK_ToVoid) {
14710 return true;
14711 }
14712
14713 // static_cast<void> on a dependent type will not show up as CK_ToVoid.
14714 if (CE->getCastKind() == CK_Dependent && E->getType()->isVoidType() &&
14715 CE->getSubExpr()->getType()->isDependentType()) {
14716 return true;
14717 }
14718 }
14719
14720 if (const auto *CE = dyn_cast<CallExpr>(E))
14721 return CE->getCallReturnType(Context)->isVoidType();
14722 return false;
14723 }
14724
14725 // Look for instances where it is likely the comma operator is confused with
14726 // another operator. There is an explicit list of acceptable expressions for
14727 // the left hand side of the comma operator, otherwise emit a warning.
DiagnoseCommaOperator(const Expr * LHS,SourceLocation Loc)14728 void Sema::DiagnoseCommaOperator(const Expr *LHS, SourceLocation Loc) {
14729 // No warnings in macros
14730 if (Loc.isMacroID())
14731 return;
14732
14733 // Don't warn in template instantiations.
14734 if (inTemplateInstantiation())
14735 return;
14736
14737 // Scope isn't fine-grained enough to explicitly list the specific cases, so
14738 // instead, skip more than needed, then call back into here with the
14739 // CommaVisitor in SemaStmt.cpp.
14740 // The listed locations are the initialization and increment portions
14741 // of a for loop. The additional checks are on the condition of
14742 // if statements, do/while loops, and for loops.
14743 // Differences in scope flags for C89 mode requires the extra logic.
14744 const unsigned ForIncrementFlags =
14745 getLangOpts().C99 || getLangOpts().CPlusPlus
14746 ? Scope::ControlScope | Scope::ContinueScope | Scope::BreakScope
14747 : Scope::ContinueScope | Scope::BreakScope;
14748 const unsigned ForInitFlags = Scope::ControlScope | Scope::DeclScope;
14749 const unsigned ScopeFlags = getCurScope()->getFlags();
14750 if ((ScopeFlags & ForIncrementFlags) == ForIncrementFlags ||
14751 (ScopeFlags & ForInitFlags) == ForInitFlags)
14752 return;
14753
14754 // If there are multiple comma operators used together, get the RHS of the
14755 // of the comma operator as the LHS.
14756 while (const BinaryOperator *BO = dyn_cast<BinaryOperator>(LHS)) {
14757 if (BO->getOpcode() != BO_Comma)
14758 break;
14759 LHS = BO->getRHS();
14760 }
14761
14762 // Only allow some expressions on LHS to not warn.
14763 if (IgnoreCommaOperand(LHS, Context))
14764 return;
14765
14766 Diag(Loc, diag::warn_comma_operator);
14767 Diag(LHS->getBeginLoc(), diag::note_cast_to_void)
14768 << LHS->getSourceRange()
14769 << FixItHint::CreateInsertion(LHS->getBeginLoc(),
14770 LangOpts.CPlusPlus ? "static_cast<void>("
14771 : "(void)(")
14772 << FixItHint::CreateInsertion(PP.getLocForEndOfToken(LHS->getEndLoc()),
14773 ")");
14774 }
14775
14776 // C99 6.5.17
CheckCommaOperands(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc)14777 static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
14778 SourceLocation Loc) {
14779 LHS = S.CheckPlaceholderExpr(LHS.get());
14780 RHS = S.CheckPlaceholderExpr(RHS.get());
14781 if (LHS.isInvalid() || RHS.isInvalid())
14782 return QualType();
14783
14784 // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
14785 // operands, but not unary promotions.
14786 // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
14787
14788 // So we treat the LHS as a ignored value, and in C++ we allow the
14789 // containing site to determine what should be done with the RHS.
14790 LHS = S.IgnoredValueConversions(LHS.get());
14791 if (LHS.isInvalid())
14792 return QualType();
14793
14794 S.DiagnoseUnusedExprResult(LHS.get(), diag::warn_unused_comma_left_operand);
14795
14796 if (!S.getLangOpts().CPlusPlus) {
14797 RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
14798 if (RHS.isInvalid())
14799 return QualType();
14800 if (!RHS.get()->getType()->isVoidType())
14801 S.RequireCompleteType(Loc, RHS.get()->getType(),
14802 diag::err_incomplete_type);
14803 }
14804
14805 if (!S.getDiagnostics().isIgnored(diag::warn_comma_operator, Loc))
14806 S.DiagnoseCommaOperator(LHS.get(), Loc);
14807
14808 return RHS.get()->getType();
14809 }
14810
14811 /// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
14812 /// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
CheckIncrementDecrementOperand(Sema & S,Expr * Op,ExprValueKind & VK,ExprObjectKind & OK,SourceLocation OpLoc,bool IsInc,bool IsPrefix)14813 static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
14814 ExprValueKind &VK,
14815 ExprObjectKind &OK,
14816 SourceLocation OpLoc,
14817 bool IsInc, bool IsPrefix) {
14818 if (Op->isTypeDependent())
14819 return S.Context.DependentTy;
14820
14821 QualType ResType = Op->getType();
14822 // Atomic types can be used for increment / decrement where the non-atomic
14823 // versions can, so ignore the _Atomic() specifier for the purpose of
14824 // checking.
14825 if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
14826 ResType = ResAtomicType->getValueType();
14827
14828 assert(!ResType.isNull() && "no type for increment/decrement expression");
14829
14830 if (S.getLangOpts().CPlusPlus && ResType->isBooleanType()) {
14831 // Decrement of bool is not allowed.
14832 if (!IsInc) {
14833 S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
14834 return QualType();
14835 }
14836 // Increment of bool sets it to true, but is deprecated.
14837 S.Diag(OpLoc, S.getLangOpts().CPlusPlus17 ? diag::ext_increment_bool
14838 : diag::warn_increment_bool)
14839 << Op->getSourceRange();
14840 } else if (S.getLangOpts().CPlusPlus && ResType->isEnumeralType()) {
14841 // Error on enum increments and decrements in C++ mode
14842 S.Diag(OpLoc, diag::err_increment_decrement_enum) << IsInc << ResType;
14843 return QualType();
14844 } else if (ResType->isRealType()) {
14845 // OK!
14846 } else if (ResType->isPointerType()) {
14847 // C99 6.5.2.4p2, 6.5.6p2
14848 if (!checkArithmeticOpPointerOperand(S, OpLoc, Op))
14849 return QualType();
14850 } else if (ResType->isObjCObjectPointerType()) {
14851 // On modern runtimes, ObjC pointer arithmetic is forbidden.
14852 // Otherwise, we just need a complete type.
14853 if (checkArithmeticIncompletePointerType(S, OpLoc, Op) ||
14854 checkArithmeticOnObjCPointer(S, OpLoc, Op))
14855 return QualType();
14856 } else if (ResType->isAnyComplexType()) {
14857 // C99 does not support ++/-- on complex types, we allow as an extension.
14858 S.Diag(OpLoc, diag::ext_integer_increment_complex)
14859 << ResType << Op->getSourceRange();
14860 } else if (ResType->isPlaceholderType()) {
14861 ExprResult PR = S.CheckPlaceholderExpr(Op);
14862 if (PR.isInvalid()) return QualType();
14863 return CheckIncrementDecrementOperand(S, PR.get(), VK, OK, OpLoc,
14864 IsInc, IsPrefix);
14865 } else if (S.getLangOpts().AltiVec && ResType->isVectorType()) {
14866 // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
14867 } else if (S.getLangOpts().ZVector && ResType->isVectorType() &&
14868 (ResType->castAs<VectorType>()->getVectorKind() !=
14869 VectorKind::AltiVecBool)) {
14870 // The z vector extensions allow ++ and -- for non-bool vectors.
14871 } else if (S.getLangOpts().OpenCL && ResType->isVectorType() &&
14872 ResType->castAs<VectorType>()->getElementType()->isIntegerType()) {
14873 // OpenCL V1.2 6.3 says dec/inc ops operate on integer vector types.
14874 } else {
14875 S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
14876 << ResType << int(IsInc) << Op->getSourceRange();
14877 return QualType();
14878 }
14879 // At this point, we know we have a real, complex or pointer type.
14880 // Now make sure the operand is a modifiable lvalue.
14881 if (CheckForModifiableLvalue(Op, OpLoc, S))
14882 return QualType();
14883 if (S.getLangOpts().CPlusPlus20 && ResType.isVolatileQualified()) {
14884 // C++2a [expr.pre.inc]p1, [expr.post.inc]p1:
14885 // An operand with volatile-qualified type is deprecated
14886 S.Diag(OpLoc, diag::warn_deprecated_increment_decrement_volatile)
14887 << IsInc << ResType;
14888 }
14889 // In C++, a prefix increment is the same type as the operand. Otherwise
14890 // (in C or with postfix), the increment is the unqualified type of the
14891 // operand.
14892 if (IsPrefix && S.getLangOpts().CPlusPlus) {
14893 VK = VK_LValue;
14894 OK = Op->getObjectKind();
14895 return ResType;
14896 } else {
14897 VK = VK_PRValue;
14898 return ResType.getUnqualifiedType();
14899 }
14900 }
14901
14902
14903 /// getPrimaryDecl - Helper function for CheckAddressOfOperand().
14904 /// This routine allows us to typecheck complex/recursive expressions
14905 /// where the declaration is needed for type checking. We only need to
14906 /// handle cases when the expression references a function designator
14907 /// or is an lvalue. Here are some examples:
14908 /// - &(x) => x
14909 /// - &*****f => f for f a function designator.
14910 /// - &s.xx => s
14911 /// - &s.zz[1].yy -> s, if zz is an array
14912 /// - *(x + 1) -> x, if x is an array
14913 /// - &"123"[2] -> 0
14914 /// - & __real__ x -> x
14915 ///
14916 /// FIXME: We don't recurse to the RHS of a comma, nor handle pointers to
14917 /// members.
getPrimaryDecl(Expr * E)14918 static ValueDecl *getPrimaryDecl(Expr *E) {
14919 switch (E->getStmtClass()) {
14920 case Stmt::DeclRefExprClass:
14921 return cast<DeclRefExpr>(E)->getDecl();
14922 case Stmt::MemberExprClass:
14923 // If this is an arrow operator, the address is an offset from
14924 // the base's value, so the object the base refers to is
14925 // irrelevant.
14926 if (cast<MemberExpr>(E)->isArrow())
14927 return nullptr;
14928 // Otherwise, the expression refers to a part of the base
14929 return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
14930 case Stmt::ArraySubscriptExprClass: {
14931 // FIXME: This code shouldn't be necessary! We should catch the implicit
14932 // promotion of register arrays earlier.
14933 Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
14934 if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
14935 if (ICE->getSubExpr()->getType()->isArrayType())
14936 return getPrimaryDecl(ICE->getSubExpr());
14937 }
14938 return nullptr;
14939 }
14940 case Stmt::UnaryOperatorClass: {
14941 UnaryOperator *UO = cast<UnaryOperator>(E);
14942
14943 switch(UO->getOpcode()) {
14944 case UO_Real:
14945 case UO_Imag:
14946 case UO_Extension:
14947 return getPrimaryDecl(UO->getSubExpr());
14948 default:
14949 return nullptr;
14950 }
14951 }
14952 case Stmt::ParenExprClass:
14953 return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
14954 case Stmt::ImplicitCastExprClass:
14955 // If the result of an implicit cast is an l-value, we care about
14956 // the sub-expression; otherwise, the result here doesn't matter.
14957 return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
14958 case Stmt::CXXUuidofExprClass:
14959 return cast<CXXUuidofExpr>(E)->getGuidDecl();
14960 default:
14961 return nullptr;
14962 }
14963 }
14964
14965 namespace {
14966 enum {
14967 AO_Bit_Field = 0,
14968 AO_Vector_Element = 1,
14969 AO_Property_Expansion = 2,
14970 AO_Register_Variable = 3,
14971 AO_Matrix_Element = 4,
14972 AO_No_Error = 5
14973 };
14974 }
14975 /// Diagnose invalid operand for address of operations.
14976 ///
14977 /// \param Type The type of operand which cannot have its address taken.
diagnoseAddressOfInvalidType(Sema & S,SourceLocation Loc,Expr * E,unsigned Type)14978 static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc,
14979 Expr *E, unsigned Type) {
14980 S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange();
14981 }
14982
CheckUseOfCXXMethodAsAddressOfOperand(SourceLocation OpLoc,const Expr * Op,const CXXMethodDecl * MD)14983 bool Sema::CheckUseOfCXXMethodAsAddressOfOperand(SourceLocation OpLoc,
14984 const Expr *Op,
14985 const CXXMethodDecl *MD) {
14986 const auto *DRE = cast<DeclRefExpr>(Op->IgnoreParens());
14987
14988 if (Op != DRE)
14989 return Diag(OpLoc, diag::err_parens_pointer_member_function)
14990 << Op->getSourceRange();
14991
14992 // Taking the address of a dtor is illegal per C++ [class.dtor]p2.
14993 if (isa<CXXDestructorDecl>(MD))
14994 return Diag(OpLoc, diag::err_typecheck_addrof_dtor)
14995 << DRE->getSourceRange();
14996
14997 if (DRE->getQualifier())
14998 return false;
14999
15000 if (MD->getParent()->getName().empty())
15001 return Diag(OpLoc, diag::err_unqualified_pointer_member_function)
15002 << DRE->getSourceRange();
15003
15004 SmallString<32> Str;
15005 StringRef Qual = (MD->getParent()->getName() + "::").toStringRef(Str);
15006 return Diag(OpLoc, diag::err_unqualified_pointer_member_function)
15007 << DRE->getSourceRange()
15008 << FixItHint::CreateInsertion(DRE->getSourceRange().getBegin(), Qual);
15009 }
15010
15011 /// CheckAddressOfOperand - The operand of & must be either a function
15012 /// designator or an lvalue designating an object. If it is an lvalue, the
15013 /// object cannot be declared with storage class register or be a bit field.
15014 /// Note: The usual conversions are *not* applied to the operand of the &
15015 /// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
15016 /// In C++, the operand might be an overloaded function name, in which case
15017 /// we allow the '&' but retain the overloaded-function type.
CheckAddressOfOperand(ExprResult & OrigOp,SourceLocation OpLoc)15018 QualType Sema::CheckAddressOfOperand(ExprResult &OrigOp, SourceLocation OpLoc) {
15019 if (const BuiltinType *PTy = OrigOp.get()->getType()->getAsPlaceholderType()){
15020 if (PTy->getKind() == BuiltinType::Overload) {
15021 Expr *E = OrigOp.get()->IgnoreParens();
15022 if (!isa<OverloadExpr>(E)) {
15023 assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
15024 Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof_addrof_function)
15025 << OrigOp.get()->getSourceRange();
15026 return QualType();
15027 }
15028
15029 OverloadExpr *Ovl = cast<OverloadExpr>(E);
15030 if (isa<UnresolvedMemberExpr>(Ovl))
15031 if (!ResolveSingleFunctionTemplateSpecialization(Ovl)) {
15032 Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
15033 << OrigOp.get()->getSourceRange();
15034 return QualType();
15035 }
15036
15037 return Context.OverloadTy;
15038 }
15039
15040 if (PTy->getKind() == BuiltinType::UnknownAny)
15041 return Context.UnknownAnyTy;
15042
15043 if (PTy->getKind() == BuiltinType::BoundMember) {
15044 Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
15045 << OrigOp.get()->getSourceRange();
15046 return QualType();
15047 }
15048
15049 OrigOp = CheckPlaceholderExpr(OrigOp.get());
15050 if (OrigOp.isInvalid()) return QualType();
15051 }
15052
15053 if (OrigOp.get()->isTypeDependent())
15054 return Context.DependentTy;
15055
15056 assert(!OrigOp.get()->hasPlaceholderType());
15057
15058 // Make sure to ignore parentheses in subsequent checks
15059 Expr *op = OrigOp.get()->IgnoreParens();
15060
15061 // In OpenCL captures for blocks called as lambda functions
15062 // are located in the private address space. Blocks used in
15063 // enqueue_kernel can be located in a different address space
15064 // depending on a vendor implementation. Thus preventing
15065 // taking an address of the capture to avoid invalid AS casts.
15066 if (LangOpts.OpenCL) {
15067 auto* VarRef = dyn_cast<DeclRefExpr>(op);
15068 if (VarRef && VarRef->refersToEnclosingVariableOrCapture()) {
15069 Diag(op->getExprLoc(), diag::err_opencl_taking_address_capture);
15070 return QualType();
15071 }
15072 }
15073
15074 if (getLangOpts().C99) {
15075 // Implement C99-only parts of addressof rules.
15076 if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
15077 if (uOp->getOpcode() == UO_Deref)
15078 // Per C99 6.5.3.2, the address of a deref always returns a valid result
15079 // (assuming the deref expression is valid).
15080 return uOp->getSubExpr()->getType();
15081 }
15082 // Technically, there should be a check for array subscript
15083 // expressions here, but the result of one is always an lvalue anyway.
15084 }
15085 ValueDecl *dcl = getPrimaryDecl(op);
15086
15087 if (auto *FD = dyn_cast_or_null<FunctionDecl>(dcl))
15088 if (!checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
15089 op->getBeginLoc()))
15090 return QualType();
15091
15092 Expr::LValueClassification lval = op->ClassifyLValue(Context);
15093 unsigned AddressOfError = AO_No_Error;
15094
15095 if (lval == Expr::LV_ClassTemporary || lval == Expr::LV_ArrayTemporary) {
15096 bool sfinae = (bool)isSFINAEContext();
15097 Diag(OpLoc, isSFINAEContext() ? diag::err_typecheck_addrof_temporary
15098 : diag::ext_typecheck_addrof_temporary)
15099 << op->getType() << op->getSourceRange();
15100 if (sfinae)
15101 return QualType();
15102 // Materialize the temporary as an lvalue so that we can take its address.
15103 OrigOp = op =
15104 CreateMaterializeTemporaryExpr(op->getType(), OrigOp.get(), true);
15105 } else if (isa<ObjCSelectorExpr>(op)) {
15106 return Context.getPointerType(op->getType());
15107 } else if (lval == Expr::LV_MemberFunction) {
15108 // If it's an instance method, make a member pointer.
15109 // The expression must have exactly the form &A::foo.
15110
15111 // If the underlying expression isn't a decl ref, give up.
15112 if (!isa<DeclRefExpr>(op)) {
15113 Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
15114 << OrigOp.get()->getSourceRange();
15115 return QualType();
15116 }
15117 DeclRefExpr *DRE = cast<DeclRefExpr>(op);
15118 CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
15119
15120 CheckUseOfCXXMethodAsAddressOfOperand(OpLoc, OrigOp.get(), MD);
15121
15122 QualType MPTy = Context.getMemberPointerType(
15123 op->getType(), Context.getTypeDeclType(MD->getParent()).getTypePtr());
15124 // Under the MS ABI, lock down the inheritance model now.
15125 if (Context.getTargetInfo().getCXXABI().isMicrosoft())
15126 (void)isCompleteType(OpLoc, MPTy);
15127 return MPTy;
15128 } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
15129 // C99 6.5.3.2p1
15130 // The operand must be either an l-value or a function designator
15131 if (!op->getType()->isFunctionType()) {
15132 // Use a special diagnostic for loads from property references.
15133 if (isa<PseudoObjectExpr>(op)) {
15134 AddressOfError = AO_Property_Expansion;
15135 } else {
15136 Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
15137 << op->getType() << op->getSourceRange();
15138 return QualType();
15139 }
15140 } else if (const auto *DRE = dyn_cast<DeclRefExpr>(op)) {
15141 if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(DRE->getDecl()))
15142 CheckUseOfCXXMethodAsAddressOfOperand(OpLoc, OrigOp.get(), MD);
15143 }
15144
15145 } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
15146 // The operand cannot be a bit-field
15147 AddressOfError = AO_Bit_Field;
15148 } else if (op->getObjectKind() == OK_VectorComponent) {
15149 // The operand cannot be an element of a vector
15150 AddressOfError = AO_Vector_Element;
15151 } else if (op->getObjectKind() == OK_MatrixComponent) {
15152 // The operand cannot be an element of a matrix.
15153 AddressOfError = AO_Matrix_Element;
15154 } else if (dcl) { // C99 6.5.3.2p1
15155 // We have an lvalue with a decl. Make sure the decl is not declared
15156 // with the register storage-class specifier.
15157 if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
15158 // in C++ it is not error to take address of a register
15159 // variable (c++03 7.1.1P3)
15160 if (vd->getStorageClass() == SC_Register &&
15161 !getLangOpts().CPlusPlus) {
15162 AddressOfError = AO_Register_Variable;
15163 }
15164 } else if (isa<MSPropertyDecl>(dcl)) {
15165 AddressOfError = AO_Property_Expansion;
15166 } else if (isa<FunctionTemplateDecl>(dcl)) {
15167 return Context.OverloadTy;
15168 } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) {
15169 // Okay: we can take the address of a field.
15170 // Could be a pointer to member, though, if there is an explicit
15171 // scope qualifier for the class.
15172 if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
15173 DeclContext *Ctx = dcl->getDeclContext();
15174 if (Ctx && Ctx->isRecord()) {
15175 if (dcl->getType()->isReferenceType()) {
15176 Diag(OpLoc,
15177 diag::err_cannot_form_pointer_to_member_of_reference_type)
15178 << dcl->getDeclName() << dcl->getType();
15179 return QualType();
15180 }
15181
15182 while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
15183 Ctx = Ctx->getParent();
15184
15185 QualType MPTy = Context.getMemberPointerType(
15186 op->getType(),
15187 Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
15188 // Under the MS ABI, lock down the inheritance model now.
15189 if (Context.getTargetInfo().getCXXABI().isMicrosoft())
15190 (void)isCompleteType(OpLoc, MPTy);
15191 return MPTy;
15192 }
15193 }
15194 } else if (!isa<FunctionDecl, NonTypeTemplateParmDecl, BindingDecl,
15195 MSGuidDecl, UnnamedGlobalConstantDecl>(dcl))
15196 llvm_unreachable("Unknown/unexpected decl type");
15197 }
15198
15199 if (AddressOfError != AO_No_Error) {
15200 diagnoseAddressOfInvalidType(*this, OpLoc, op, AddressOfError);
15201 return QualType();
15202 }
15203
15204 if (lval == Expr::LV_IncompleteVoidType) {
15205 // Taking the address of a void variable is technically illegal, but we
15206 // allow it in cases which are otherwise valid.
15207 // Example: "extern void x; void* y = &x;".
15208 Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
15209 }
15210
15211 // If the operand has type "type", the result has type "pointer to type".
15212 if (op->getType()->isObjCObjectType())
15213 return Context.getObjCObjectPointerType(op->getType());
15214
15215 // Cannot take the address of WebAssembly references or tables.
15216 if (Context.getTargetInfo().getTriple().isWasm()) {
15217 QualType OpTy = op->getType();
15218 if (OpTy.isWebAssemblyReferenceType()) {
15219 Diag(OpLoc, diag::err_wasm_ca_reference)
15220 << 1 << OrigOp.get()->getSourceRange();
15221 return QualType();
15222 }
15223 if (OpTy->isWebAssemblyTableType()) {
15224 Diag(OpLoc, diag::err_wasm_table_pr)
15225 << 1 << OrigOp.get()->getSourceRange();
15226 return QualType();
15227 }
15228 }
15229
15230 CheckAddressOfPackedMember(op);
15231
15232 return Context.getPointerType(op->getType());
15233 }
15234
RecordModifiableNonNullParam(Sema & S,const Expr * Exp)15235 static void RecordModifiableNonNullParam(Sema &S, const Expr *Exp) {
15236 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp);
15237 if (!DRE)
15238 return;
15239 const Decl *D = DRE->getDecl();
15240 if (!D)
15241 return;
15242 const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D);
15243 if (!Param)
15244 return;
15245 if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(Param->getDeclContext()))
15246 if (!FD->hasAttr<NonNullAttr>() && !Param->hasAttr<NonNullAttr>())
15247 return;
15248 if (FunctionScopeInfo *FD = S.getCurFunction())
15249 FD->ModifiedNonNullParams.insert(Param);
15250 }
15251
15252 /// CheckIndirectionOperand - Type check unary indirection (prefix '*').
CheckIndirectionOperand(Sema & S,Expr * Op,ExprValueKind & VK,SourceLocation OpLoc,bool IsAfterAmp=false)15253 static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
15254 SourceLocation OpLoc,
15255 bool IsAfterAmp = false) {
15256 if (Op->isTypeDependent())
15257 return S.Context.DependentTy;
15258
15259 ExprResult ConvResult = S.UsualUnaryConversions(Op);
15260 if (ConvResult.isInvalid())
15261 return QualType();
15262 Op = ConvResult.get();
15263 QualType OpTy = Op->getType();
15264 QualType Result;
15265
15266 if (isa<CXXReinterpretCastExpr>(Op)) {
15267 QualType OpOrigType = Op->IgnoreParenCasts()->getType();
15268 S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true,
15269 Op->getSourceRange());
15270 }
15271
15272 if (const PointerType *PT = OpTy->getAs<PointerType>())
15273 {
15274 Result = PT->getPointeeType();
15275 }
15276 else if (const ObjCObjectPointerType *OPT =
15277 OpTy->getAs<ObjCObjectPointerType>())
15278 Result = OPT->getPointeeType();
15279 else {
15280 ExprResult PR = S.CheckPlaceholderExpr(Op);
15281 if (PR.isInvalid()) return QualType();
15282 if (PR.get() != Op)
15283 return CheckIndirectionOperand(S, PR.get(), VK, OpLoc);
15284 }
15285
15286 if (Result.isNull()) {
15287 S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
15288 << OpTy << Op->getSourceRange();
15289 return QualType();
15290 }
15291
15292 if (Result->isVoidType()) {
15293 // C++ [expr.unary.op]p1:
15294 // [...] the expression to which [the unary * operator] is applied shall
15295 // be a pointer to an object type, or a pointer to a function type
15296 LangOptions LO = S.getLangOpts();
15297 if (LO.CPlusPlus)
15298 S.Diag(OpLoc, diag::err_typecheck_indirection_through_void_pointer_cpp)
15299 << OpTy << Op->getSourceRange();
15300 else if (!(LO.C99 && IsAfterAmp) && !S.isUnevaluatedContext())
15301 S.Diag(OpLoc, diag::ext_typecheck_indirection_through_void_pointer)
15302 << OpTy << Op->getSourceRange();
15303 }
15304
15305 // Dereferences are usually l-values...
15306 VK = VK_LValue;
15307
15308 // ...except that certain expressions are never l-values in C.
15309 if (!S.getLangOpts().CPlusPlus && Result.isCForbiddenLValueType())
15310 VK = VK_PRValue;
15311
15312 return Result;
15313 }
15314
ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind)15315 BinaryOperatorKind Sema::ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind) {
15316 BinaryOperatorKind Opc;
15317 switch (Kind) {
15318 default: llvm_unreachable("Unknown binop!");
15319 case tok::periodstar: Opc = BO_PtrMemD; break;
15320 case tok::arrowstar: Opc = BO_PtrMemI; break;
15321 case tok::star: Opc = BO_Mul; break;
15322 case tok::slash: Opc = BO_Div; break;
15323 case tok::percent: Opc = BO_Rem; break;
15324 case tok::plus: Opc = BO_Add; break;
15325 case tok::minus: Opc = BO_Sub; break;
15326 case tok::lessless: Opc = BO_Shl; break;
15327 case tok::greatergreater: Opc = BO_Shr; break;
15328 case tok::lessequal: Opc = BO_LE; break;
15329 case tok::less: Opc = BO_LT; break;
15330 case tok::greaterequal: Opc = BO_GE; break;
15331 case tok::greater: Opc = BO_GT; break;
15332 case tok::exclaimequal: Opc = BO_NE; break;
15333 case tok::equalequal: Opc = BO_EQ; break;
15334 case tok::spaceship: Opc = BO_Cmp; break;
15335 case tok::amp: Opc = BO_And; break;
15336 case tok::caret: Opc = BO_Xor; break;
15337 case tok::pipe: Opc = BO_Or; break;
15338 case tok::ampamp: Opc = BO_LAnd; break;
15339 case tok::pipepipe: Opc = BO_LOr; break;
15340 case tok::equal: Opc = BO_Assign; break;
15341 case tok::starequal: Opc = BO_MulAssign; break;
15342 case tok::slashequal: Opc = BO_DivAssign; break;
15343 case tok::percentequal: Opc = BO_RemAssign; break;
15344 case tok::plusequal: Opc = BO_AddAssign; break;
15345 case tok::minusequal: Opc = BO_SubAssign; break;
15346 case tok::lesslessequal: Opc = BO_ShlAssign; break;
15347 case tok::greatergreaterequal: Opc = BO_ShrAssign; break;
15348 case tok::ampequal: Opc = BO_AndAssign; break;
15349 case tok::caretequal: Opc = BO_XorAssign; break;
15350 case tok::pipeequal: Opc = BO_OrAssign; break;
15351 case tok::comma: Opc = BO_Comma; break;
15352 }
15353 return Opc;
15354 }
15355
ConvertTokenKindToUnaryOpcode(tok::TokenKind Kind)15356 static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
15357 tok::TokenKind Kind) {
15358 UnaryOperatorKind Opc;
15359 switch (Kind) {
15360 default: llvm_unreachable("Unknown unary op!");
15361 case tok::plusplus: Opc = UO_PreInc; break;
15362 case tok::minusminus: Opc = UO_PreDec; break;
15363 case tok::amp: Opc = UO_AddrOf; break;
15364 case tok::star: Opc = UO_Deref; break;
15365 case tok::plus: Opc = UO_Plus; break;
15366 case tok::minus: Opc = UO_Minus; break;
15367 case tok::tilde: Opc = UO_Not; break;
15368 case tok::exclaim: Opc = UO_LNot; break;
15369 case tok::kw___real: Opc = UO_Real; break;
15370 case tok::kw___imag: Opc = UO_Imag; break;
15371 case tok::kw___extension__: Opc = UO_Extension; break;
15372 }
15373 return Opc;
15374 }
15375
15376 const FieldDecl *
getSelfAssignmentClassMemberCandidate(const ValueDecl * SelfAssigned)15377 Sema::getSelfAssignmentClassMemberCandidate(const ValueDecl *SelfAssigned) {
15378 // Explore the case for adding 'this->' to the LHS of a self assignment, very
15379 // common for setters.
15380 // struct A {
15381 // int X;
15382 // -void setX(int X) { X = X; }
15383 // +void setX(int X) { this->X = X; }
15384 // };
15385
15386 // Only consider parameters for self assignment fixes.
15387 if (!isa<ParmVarDecl>(SelfAssigned))
15388 return nullptr;
15389 const auto *Method =
15390 dyn_cast_or_null<CXXMethodDecl>(getCurFunctionDecl(true));
15391 if (!Method)
15392 return nullptr;
15393
15394 const CXXRecordDecl *Parent = Method->getParent();
15395 // In theory this is fixable if the lambda explicitly captures this, but
15396 // that's added complexity that's rarely going to be used.
15397 if (Parent->isLambda())
15398 return nullptr;
15399
15400 // FIXME: Use an actual Lookup operation instead of just traversing fields
15401 // in order to get base class fields.
15402 auto Field =
15403 llvm::find_if(Parent->fields(),
15404 [Name(SelfAssigned->getDeclName())](const FieldDecl *F) {
15405 return F->getDeclName() == Name;
15406 });
15407 return (Field != Parent->field_end()) ? *Field : nullptr;
15408 }
15409
15410 /// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
15411 /// This warning suppressed in the event of macro expansions.
DiagnoseSelfAssignment(Sema & S,Expr * LHSExpr,Expr * RHSExpr,SourceLocation OpLoc,bool IsBuiltin)15412 static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr,
15413 SourceLocation OpLoc, bool IsBuiltin) {
15414 if (S.inTemplateInstantiation())
15415 return;
15416 if (S.isUnevaluatedContext())
15417 return;
15418 if (OpLoc.isInvalid() || OpLoc.isMacroID())
15419 return;
15420 LHSExpr = LHSExpr->IgnoreParenImpCasts();
15421 RHSExpr = RHSExpr->IgnoreParenImpCasts();
15422 const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
15423 const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
15424 if (!LHSDeclRef || !RHSDeclRef ||
15425 LHSDeclRef->getLocation().isMacroID() ||
15426 RHSDeclRef->getLocation().isMacroID())
15427 return;
15428 const ValueDecl *LHSDecl =
15429 cast<ValueDecl>(LHSDeclRef->getDecl()->getCanonicalDecl());
15430 const ValueDecl *RHSDecl =
15431 cast<ValueDecl>(RHSDeclRef->getDecl()->getCanonicalDecl());
15432 if (LHSDecl != RHSDecl)
15433 return;
15434 if (LHSDecl->getType().isVolatileQualified())
15435 return;
15436 if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
15437 if (RefTy->getPointeeType().isVolatileQualified())
15438 return;
15439
15440 auto Diag = S.Diag(OpLoc, IsBuiltin ? diag::warn_self_assignment_builtin
15441 : diag::warn_self_assignment_overloaded)
15442 << LHSDeclRef->getType() << LHSExpr->getSourceRange()
15443 << RHSExpr->getSourceRange();
15444 if (const FieldDecl *SelfAssignField =
15445 S.getSelfAssignmentClassMemberCandidate(RHSDecl))
15446 Diag << 1 << SelfAssignField
15447 << FixItHint::CreateInsertion(LHSDeclRef->getBeginLoc(), "this->");
15448 else
15449 Diag << 0;
15450 }
15451
15452 /// Check if a bitwise-& is performed on an Objective-C pointer. This
15453 /// is usually indicative of introspection within the Objective-C pointer.
checkObjCPointerIntrospection(Sema & S,ExprResult & L,ExprResult & R,SourceLocation OpLoc)15454 static void checkObjCPointerIntrospection(Sema &S, ExprResult &L, ExprResult &R,
15455 SourceLocation OpLoc) {
15456 if (!S.getLangOpts().ObjC)
15457 return;
15458
15459 const Expr *ObjCPointerExpr = nullptr, *OtherExpr = nullptr;
15460 const Expr *LHS = L.get();
15461 const Expr *RHS = R.get();
15462
15463 if (LHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
15464 ObjCPointerExpr = LHS;
15465 OtherExpr = RHS;
15466 }
15467 else if (RHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
15468 ObjCPointerExpr = RHS;
15469 OtherExpr = LHS;
15470 }
15471
15472 // This warning is deliberately made very specific to reduce false
15473 // positives with logic that uses '&' for hashing. This logic mainly
15474 // looks for code trying to introspect into tagged pointers, which
15475 // code should generally never do.
15476 if (ObjCPointerExpr && isa<IntegerLiteral>(OtherExpr->IgnoreParenCasts())) {
15477 unsigned Diag = diag::warn_objc_pointer_masking;
15478 // Determine if we are introspecting the result of performSelectorXXX.
15479 const Expr *Ex = ObjCPointerExpr->IgnoreParenCasts();
15480 // Special case messages to -performSelector and friends, which
15481 // can return non-pointer values boxed in a pointer value.
15482 // Some clients may wish to silence warnings in this subcase.
15483 if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(Ex)) {
15484 Selector S = ME->getSelector();
15485 StringRef SelArg0 = S.getNameForSlot(0);
15486 if (SelArg0.starts_with("performSelector"))
15487 Diag = diag::warn_objc_pointer_masking_performSelector;
15488 }
15489
15490 S.Diag(OpLoc, Diag)
15491 << ObjCPointerExpr->getSourceRange();
15492 }
15493 }
15494
getDeclFromExpr(Expr * E)15495 static NamedDecl *getDeclFromExpr(Expr *E) {
15496 if (!E)
15497 return nullptr;
15498 if (auto *DRE = dyn_cast<DeclRefExpr>(E))
15499 return DRE->getDecl();
15500 if (auto *ME = dyn_cast<MemberExpr>(E))
15501 return ME->getMemberDecl();
15502 if (auto *IRE = dyn_cast<ObjCIvarRefExpr>(E))
15503 return IRE->getDecl();
15504 return nullptr;
15505 }
15506
15507 // This helper function promotes a binary operator's operands (which are of a
15508 // half vector type) to a vector of floats and then truncates the result to
15509 // a vector of either half or short.
convertHalfVecBinOp(Sema & S,ExprResult LHS,ExprResult RHS,BinaryOperatorKind Opc,QualType ResultTy,ExprValueKind VK,ExprObjectKind OK,bool IsCompAssign,SourceLocation OpLoc,FPOptionsOverride FPFeatures)15510 static ExprResult convertHalfVecBinOp(Sema &S, ExprResult LHS, ExprResult RHS,
15511 BinaryOperatorKind Opc, QualType ResultTy,
15512 ExprValueKind VK, ExprObjectKind OK,
15513 bool IsCompAssign, SourceLocation OpLoc,
15514 FPOptionsOverride FPFeatures) {
15515 auto &Context = S.getASTContext();
15516 assert((isVector(ResultTy, Context.HalfTy) ||
15517 isVector(ResultTy, Context.ShortTy)) &&
15518 "Result must be a vector of half or short");
15519 assert(isVector(LHS.get()->getType(), Context.HalfTy) &&
15520 isVector(RHS.get()->getType(), Context.HalfTy) &&
15521 "both operands expected to be a half vector");
15522
15523 RHS = convertVector(RHS.get(), Context.FloatTy, S);
15524 QualType BinOpResTy = RHS.get()->getType();
15525
15526 // If Opc is a comparison, ResultType is a vector of shorts. In that case,
15527 // change BinOpResTy to a vector of ints.
15528 if (isVector(ResultTy, Context.ShortTy))
15529 BinOpResTy = S.GetSignedVectorType(BinOpResTy);
15530
15531 if (IsCompAssign)
15532 return CompoundAssignOperator::Create(Context, LHS.get(), RHS.get(), Opc,
15533 ResultTy, VK, OK, OpLoc, FPFeatures,
15534 BinOpResTy, BinOpResTy);
15535
15536 LHS = convertVector(LHS.get(), Context.FloatTy, S);
15537 auto *BO = BinaryOperator::Create(Context, LHS.get(), RHS.get(), Opc,
15538 BinOpResTy, VK, OK, OpLoc, FPFeatures);
15539 return convertVector(BO, ResultTy->castAs<VectorType>()->getElementType(), S);
15540 }
15541
15542 static std::pair<ExprResult, ExprResult>
CorrectDelayedTyposInBinOp(Sema & S,BinaryOperatorKind Opc,Expr * LHSExpr,Expr * RHSExpr)15543 CorrectDelayedTyposInBinOp(Sema &S, BinaryOperatorKind Opc, Expr *LHSExpr,
15544 Expr *RHSExpr) {
15545 ExprResult LHS = LHSExpr, RHS = RHSExpr;
15546 if (!S.Context.isDependenceAllowed()) {
15547 // C cannot handle TypoExpr nodes on either side of a binop because it
15548 // doesn't handle dependent types properly, so make sure any TypoExprs have
15549 // been dealt with before checking the operands.
15550 LHS = S.CorrectDelayedTyposInExpr(LHS);
15551 RHS = S.CorrectDelayedTyposInExpr(
15552 RHS, /*InitDecl=*/nullptr, /*RecoverUncorrectedTypos=*/false,
15553 [Opc, LHS](Expr *E) {
15554 if (Opc != BO_Assign)
15555 return ExprResult(E);
15556 // Avoid correcting the RHS to the same Expr as the LHS.
15557 Decl *D = getDeclFromExpr(E);
15558 return (D && D == getDeclFromExpr(LHS.get())) ? ExprError() : E;
15559 });
15560 }
15561 return std::make_pair(LHS, RHS);
15562 }
15563
15564 /// Returns true if conversion between vectors of halfs and vectors of floats
15565 /// is needed.
needsConversionOfHalfVec(bool OpRequiresConversion,ASTContext & Ctx,Expr * E0,Expr * E1=nullptr)15566 static bool needsConversionOfHalfVec(bool OpRequiresConversion, ASTContext &Ctx,
15567 Expr *E0, Expr *E1 = nullptr) {
15568 if (!OpRequiresConversion || Ctx.getLangOpts().NativeHalfType ||
15569 Ctx.getTargetInfo().useFP16ConversionIntrinsics())
15570 return false;
15571
15572 auto HasVectorOfHalfType = [&Ctx](Expr *E) {
15573 QualType Ty = E->IgnoreImplicit()->getType();
15574
15575 // Don't promote half precision neon vectors like float16x4_t in arm_neon.h
15576 // to vectors of floats. Although the element type of the vectors is __fp16,
15577 // the vectors shouldn't be treated as storage-only types. See the
15578 // discussion here: https://reviews.llvm.org/rG825235c140e7
15579 if (const VectorType *VT = Ty->getAs<VectorType>()) {
15580 if (VT->getVectorKind() == VectorKind::Neon)
15581 return false;
15582 return VT->getElementType().getCanonicalType() == Ctx.HalfTy;
15583 }
15584 return false;
15585 };
15586
15587 return HasVectorOfHalfType(E0) && (!E1 || HasVectorOfHalfType(E1));
15588 }
15589
15590 /// CreateBuiltinBinOp - Creates a new built-in binary operation with
15591 /// operator @p Opc at location @c TokLoc. This routine only supports
15592 /// built-in operations; ActOnBinOp handles overloaded operators.
CreateBuiltinBinOp(SourceLocation OpLoc,BinaryOperatorKind Opc,Expr * LHSExpr,Expr * RHSExpr)15593 ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
15594 BinaryOperatorKind Opc,
15595 Expr *LHSExpr, Expr *RHSExpr) {
15596 if (getLangOpts().CPlusPlus11 && isa<InitListExpr>(RHSExpr)) {
15597 // The syntax only allows initializer lists on the RHS of assignment,
15598 // so we don't need to worry about accepting invalid code for
15599 // non-assignment operators.
15600 // C++11 5.17p9:
15601 // The meaning of x = {v} [...] is that of x = T(v) [...]. The meaning
15602 // of x = {} is x = T().
15603 InitializationKind Kind = InitializationKind::CreateDirectList(
15604 RHSExpr->getBeginLoc(), RHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
15605 InitializedEntity Entity =
15606 InitializedEntity::InitializeTemporary(LHSExpr->getType());
15607 InitializationSequence InitSeq(*this, Entity, Kind, RHSExpr);
15608 ExprResult Init = InitSeq.Perform(*this, Entity, Kind, RHSExpr);
15609 if (Init.isInvalid())
15610 return Init;
15611 RHSExpr = Init.get();
15612 }
15613
15614 ExprResult LHS = LHSExpr, RHS = RHSExpr;
15615 QualType ResultTy; // Result type of the binary operator.
15616 // The following two variables are used for compound assignment operators
15617 QualType CompLHSTy; // Type of LHS after promotions for computation
15618 QualType CompResultTy; // Type of computation result
15619 ExprValueKind VK = VK_PRValue;
15620 ExprObjectKind OK = OK_Ordinary;
15621 bool ConvertHalfVec = false;
15622
15623 std::tie(LHS, RHS) = CorrectDelayedTyposInBinOp(*this, Opc, LHSExpr, RHSExpr);
15624 if (!LHS.isUsable() || !RHS.isUsable())
15625 return ExprError();
15626
15627 if (getLangOpts().OpenCL) {
15628 QualType LHSTy = LHSExpr->getType();
15629 QualType RHSTy = RHSExpr->getType();
15630 // OpenCLC v2.0 s6.13.11.1 allows atomic variables to be initialized by
15631 // the ATOMIC_VAR_INIT macro.
15632 if (LHSTy->isAtomicType() || RHSTy->isAtomicType()) {
15633 SourceRange SR(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
15634 if (BO_Assign == Opc)
15635 Diag(OpLoc, diag::err_opencl_atomic_init) << 0 << SR;
15636 else
15637 ResultTy = InvalidOperands(OpLoc, LHS, RHS);
15638 return ExprError();
15639 }
15640
15641 // OpenCL special types - image, sampler, pipe, and blocks are to be used
15642 // only with a builtin functions and therefore should be disallowed here.
15643 if (LHSTy->isImageType() || RHSTy->isImageType() ||
15644 LHSTy->isSamplerT() || RHSTy->isSamplerT() ||
15645 LHSTy->isPipeType() || RHSTy->isPipeType() ||
15646 LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
15647 ResultTy = InvalidOperands(OpLoc, LHS, RHS);
15648 return ExprError();
15649 }
15650 }
15651
15652 checkTypeSupport(LHSExpr->getType(), OpLoc, /*ValueDecl*/ nullptr);
15653 checkTypeSupport(RHSExpr->getType(), OpLoc, /*ValueDecl*/ nullptr);
15654
15655 switch (Opc) {
15656 case BO_Assign:
15657 ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, QualType(), Opc);
15658 if (getLangOpts().CPlusPlus &&
15659 LHS.get()->getObjectKind() != OK_ObjCProperty) {
15660 VK = LHS.get()->getValueKind();
15661 OK = LHS.get()->getObjectKind();
15662 }
15663 if (!ResultTy.isNull()) {
15664 DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc, true);
15665 DiagnoseSelfMove(LHS.get(), RHS.get(), OpLoc);
15666
15667 // Avoid copying a block to the heap if the block is assigned to a local
15668 // auto variable that is declared in the same scope as the block. This
15669 // optimization is unsafe if the local variable is declared in an outer
15670 // scope. For example:
15671 //
15672 // BlockTy b;
15673 // {
15674 // b = ^{...};
15675 // }
15676 // // It is unsafe to invoke the block here if it wasn't copied to the
15677 // // heap.
15678 // b();
15679
15680 if (auto *BE = dyn_cast<BlockExpr>(RHS.get()->IgnoreParens()))
15681 if (auto *DRE = dyn_cast<DeclRefExpr>(LHS.get()->IgnoreParens()))
15682 if (auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
15683 if (VD->hasLocalStorage() && getCurScope()->isDeclScope(VD))
15684 BE->getBlockDecl()->setCanAvoidCopyToHeap();
15685
15686 if (LHS.get()->getType().hasNonTrivialToPrimitiveCopyCUnion())
15687 checkNonTrivialCUnion(LHS.get()->getType(), LHS.get()->getExprLoc(),
15688 NTCUC_Assignment, NTCUK_Copy);
15689 }
15690 RecordModifiableNonNullParam(*this, LHS.get());
15691 break;
15692 case BO_PtrMemD:
15693 case BO_PtrMemI:
15694 ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc,
15695 Opc == BO_PtrMemI);
15696 break;
15697 case BO_Mul:
15698 case BO_Div:
15699 ConvertHalfVec = true;
15700 ResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, false,
15701 Opc == BO_Div);
15702 break;
15703 case BO_Rem:
15704 ResultTy = CheckRemainderOperands(LHS, RHS, OpLoc);
15705 break;
15706 case BO_Add:
15707 ConvertHalfVec = true;
15708 ResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc);
15709 break;
15710 case BO_Sub:
15711 ConvertHalfVec = true;
15712 ResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc);
15713 break;
15714 case BO_Shl:
15715 case BO_Shr:
15716 ResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc);
15717 break;
15718 case BO_LE:
15719 case BO_LT:
15720 case BO_GE:
15721 case BO_GT:
15722 ConvertHalfVec = true;
15723 ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
15724 break;
15725 case BO_EQ:
15726 case BO_NE:
15727 ConvertHalfVec = true;
15728 ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
15729 break;
15730 case BO_Cmp:
15731 ConvertHalfVec = true;
15732 ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
15733 assert(ResultTy.isNull() || ResultTy->getAsCXXRecordDecl());
15734 break;
15735 case BO_And:
15736 checkObjCPointerIntrospection(*this, LHS, RHS, OpLoc);
15737 [[fallthrough]];
15738 case BO_Xor:
15739 case BO_Or:
15740 ResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, Opc);
15741 break;
15742 case BO_LAnd:
15743 case BO_LOr:
15744 ConvertHalfVec = true;
15745 ResultTy = CheckLogicalOperands(LHS, RHS, OpLoc, Opc);
15746 break;
15747 case BO_MulAssign:
15748 case BO_DivAssign:
15749 ConvertHalfVec = true;
15750 CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, true,
15751 Opc == BO_DivAssign);
15752 CompLHSTy = CompResultTy;
15753 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15754 ResultTy =
15755 CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
15756 break;
15757 case BO_RemAssign:
15758 CompResultTy = CheckRemainderOperands(LHS, RHS, OpLoc, true);
15759 CompLHSTy = CompResultTy;
15760 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15761 ResultTy =
15762 CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
15763 break;
15764 case BO_AddAssign:
15765 ConvertHalfVec = true;
15766 CompResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc, &CompLHSTy);
15767 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15768 ResultTy =
15769 CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
15770 break;
15771 case BO_SubAssign:
15772 ConvertHalfVec = true;
15773 CompResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc, &CompLHSTy);
15774 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15775 ResultTy =
15776 CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
15777 break;
15778 case BO_ShlAssign:
15779 case BO_ShrAssign:
15780 CompResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc, true);
15781 CompLHSTy = CompResultTy;
15782 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15783 ResultTy =
15784 CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
15785 break;
15786 case BO_AndAssign:
15787 case BO_OrAssign: // fallthrough
15788 DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc, true);
15789 [[fallthrough]];
15790 case BO_XorAssign:
15791 CompResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, Opc);
15792 CompLHSTy = CompResultTy;
15793 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15794 ResultTy =
15795 CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
15796 break;
15797 case BO_Comma:
15798 ResultTy = CheckCommaOperands(*this, LHS, RHS, OpLoc);
15799 if (getLangOpts().CPlusPlus && !RHS.isInvalid()) {
15800 VK = RHS.get()->getValueKind();
15801 OK = RHS.get()->getObjectKind();
15802 }
15803 break;
15804 }
15805 if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid())
15806 return ExprError();
15807
15808 // Some of the binary operations require promoting operands of half vector to
15809 // float vectors and truncating the result back to half vector. For now, we do
15810 // this only when HalfArgsAndReturn is set (that is, when the target is arm or
15811 // arm64).
15812 assert(
15813 (Opc == BO_Comma || isVector(RHS.get()->getType(), Context.HalfTy) ==
15814 isVector(LHS.get()->getType(), Context.HalfTy)) &&
15815 "both sides are half vectors or neither sides are");
15816 ConvertHalfVec =
15817 needsConversionOfHalfVec(ConvertHalfVec, Context, LHS.get(), RHS.get());
15818
15819 // Check for array bounds violations for both sides of the BinaryOperator
15820 CheckArrayAccess(LHS.get());
15821 CheckArrayAccess(RHS.get());
15822
15823 if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(LHS.get()->IgnoreParenCasts())) {
15824 NamedDecl *ObjectSetClass = LookupSingleName(TUScope,
15825 &Context.Idents.get("object_setClass"),
15826 SourceLocation(), LookupOrdinaryName);
15827 if (ObjectSetClass && isa<ObjCIsaExpr>(LHS.get())) {
15828 SourceLocation RHSLocEnd = getLocForEndOfToken(RHS.get()->getEndLoc());
15829 Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign)
15830 << FixItHint::CreateInsertion(LHS.get()->getBeginLoc(),
15831 "object_setClass(")
15832 << FixItHint::CreateReplacement(SourceRange(OISA->getOpLoc(), OpLoc),
15833 ",")
15834 << FixItHint::CreateInsertion(RHSLocEnd, ")");
15835 }
15836 else
15837 Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign);
15838 }
15839 else if (const ObjCIvarRefExpr *OIRE =
15840 dyn_cast<ObjCIvarRefExpr>(LHS.get()->IgnoreParenCasts()))
15841 DiagnoseDirectIsaAccess(*this, OIRE, OpLoc, RHS.get());
15842
15843 // Opc is not a compound assignment if CompResultTy is null.
15844 if (CompResultTy.isNull()) {
15845 if (ConvertHalfVec)
15846 return convertHalfVecBinOp(*this, LHS, RHS, Opc, ResultTy, VK, OK, false,
15847 OpLoc, CurFPFeatureOverrides());
15848 return BinaryOperator::Create(Context, LHS.get(), RHS.get(), Opc, ResultTy,
15849 VK, OK, OpLoc, CurFPFeatureOverrides());
15850 }
15851
15852 // Handle compound assignments.
15853 if (getLangOpts().CPlusPlus && LHS.get()->getObjectKind() !=
15854 OK_ObjCProperty) {
15855 VK = VK_LValue;
15856 OK = LHS.get()->getObjectKind();
15857 }
15858
15859 // The LHS is not converted to the result type for fixed-point compound
15860 // assignment as the common type is computed on demand. Reset the CompLHSTy
15861 // to the LHS type we would have gotten after unary conversions.
15862 if (CompResultTy->isFixedPointType())
15863 CompLHSTy = UsualUnaryConversions(LHS.get()).get()->getType();
15864
15865 if (ConvertHalfVec)
15866 return convertHalfVecBinOp(*this, LHS, RHS, Opc, ResultTy, VK, OK, true,
15867 OpLoc, CurFPFeatureOverrides());
15868
15869 return CompoundAssignOperator::Create(
15870 Context, LHS.get(), RHS.get(), Opc, ResultTy, VK, OK, OpLoc,
15871 CurFPFeatureOverrides(), CompLHSTy, CompResultTy);
15872 }
15873
15874 /// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
15875 /// operators are mixed in a way that suggests that the programmer forgot that
15876 /// comparison operators have higher precedence. The most typical example of
15877 /// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
DiagnoseBitwisePrecedence(Sema & Self,BinaryOperatorKind Opc,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)15878 static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
15879 SourceLocation OpLoc, Expr *LHSExpr,
15880 Expr *RHSExpr) {
15881 BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHSExpr);
15882 BinaryOperator *RHSBO = dyn_cast<BinaryOperator>(RHSExpr);
15883
15884 // Check that one of the sides is a comparison operator and the other isn't.
15885 bool isLeftComp = LHSBO && LHSBO->isComparisonOp();
15886 bool isRightComp = RHSBO && RHSBO->isComparisonOp();
15887 if (isLeftComp == isRightComp)
15888 return;
15889
15890 // Bitwise operations are sometimes used as eager logical ops.
15891 // Don't diagnose this.
15892 bool isLeftBitwise = LHSBO && LHSBO->isBitwiseOp();
15893 bool isRightBitwise = RHSBO && RHSBO->isBitwiseOp();
15894 if (isLeftBitwise || isRightBitwise)
15895 return;
15896
15897 SourceRange DiagRange = isLeftComp
15898 ? SourceRange(LHSExpr->getBeginLoc(), OpLoc)
15899 : SourceRange(OpLoc, RHSExpr->getEndLoc());
15900 StringRef OpStr = isLeftComp ? LHSBO->getOpcodeStr() : RHSBO->getOpcodeStr();
15901 SourceRange ParensRange =
15902 isLeftComp
15903 ? SourceRange(LHSBO->getRHS()->getBeginLoc(), RHSExpr->getEndLoc())
15904 : SourceRange(LHSExpr->getBeginLoc(), RHSBO->getLHS()->getEndLoc());
15905
15906 Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
15907 << DiagRange << BinaryOperator::getOpcodeStr(Opc) << OpStr;
15908 SuggestParentheses(Self, OpLoc,
15909 Self.PDiag(diag::note_precedence_silence) << OpStr,
15910 (isLeftComp ? LHSExpr : RHSExpr)->getSourceRange());
15911 SuggestParentheses(Self, OpLoc,
15912 Self.PDiag(diag::note_precedence_bitwise_first)
15913 << BinaryOperator::getOpcodeStr(Opc),
15914 ParensRange);
15915 }
15916
15917 /// It accepts a '&&' expr that is inside a '||' one.
15918 /// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
15919 /// in parentheses.
15920 static void
EmitDiagnosticForLogicalAndInLogicalOr(Sema & Self,SourceLocation OpLoc,BinaryOperator * Bop)15921 EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
15922 BinaryOperator *Bop) {
15923 assert(Bop->getOpcode() == BO_LAnd);
15924 Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or)
15925 << Bop->getSourceRange() << OpLoc;
15926 SuggestParentheses(Self, Bop->getOperatorLoc(),
15927 Self.PDiag(diag::note_precedence_silence)
15928 << Bop->getOpcodeStr(),
15929 Bop->getSourceRange());
15930 }
15931
15932 /// Look for '&&' in the left hand of a '||' expr.
DiagnoseLogicalAndInLogicalOrLHS(Sema & S,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)15933 static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
15934 Expr *LHSExpr, Expr *RHSExpr) {
15935 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(LHSExpr)) {
15936 if (Bop->getOpcode() == BO_LAnd) {
15937 // If it's "string_literal && a || b" don't warn since the precedence
15938 // doesn't matter.
15939 if (!isa<StringLiteral>(Bop->getLHS()->IgnoreParenImpCasts()))
15940 return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
15941 } else if (Bop->getOpcode() == BO_LOr) {
15942 if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
15943 // If it's "a || b && string_literal || c" we didn't warn earlier for
15944 // "a || b && string_literal", but warn now.
15945 if (RBop->getOpcode() == BO_LAnd &&
15946 isa<StringLiteral>(RBop->getRHS()->IgnoreParenImpCasts()))
15947 return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
15948 }
15949 }
15950 }
15951 }
15952
15953 /// Look for '&&' in the right hand of a '||' expr.
DiagnoseLogicalAndInLogicalOrRHS(Sema & S,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)15954 static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
15955 Expr *LHSExpr, Expr *RHSExpr) {
15956 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(RHSExpr)) {
15957 if (Bop->getOpcode() == BO_LAnd) {
15958 // If it's "a || b && string_literal" don't warn since the precedence
15959 // doesn't matter.
15960 if (!isa<StringLiteral>(Bop->getRHS()->IgnoreParenImpCasts()))
15961 return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
15962 }
15963 }
15964 }
15965
15966 /// Look for bitwise op in the left or right hand of a bitwise op with
15967 /// lower precedence and emit a diagnostic together with a fixit hint that wraps
15968 /// the '&' expression in parentheses.
DiagnoseBitwiseOpInBitwiseOp(Sema & S,BinaryOperatorKind Opc,SourceLocation OpLoc,Expr * SubExpr)15969 static void DiagnoseBitwiseOpInBitwiseOp(Sema &S, BinaryOperatorKind Opc,
15970 SourceLocation OpLoc, Expr *SubExpr) {
15971 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
15972 if (Bop->isBitwiseOp() && Bop->getOpcode() < Opc) {
15973 S.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_op_in_bitwise_op)
15974 << Bop->getOpcodeStr() << BinaryOperator::getOpcodeStr(Opc)
15975 << Bop->getSourceRange() << OpLoc;
15976 SuggestParentheses(S, Bop->getOperatorLoc(),
15977 S.PDiag(diag::note_precedence_silence)
15978 << Bop->getOpcodeStr(),
15979 Bop->getSourceRange());
15980 }
15981 }
15982 }
15983
DiagnoseAdditionInShift(Sema & S,SourceLocation OpLoc,Expr * SubExpr,StringRef Shift)15984 static void DiagnoseAdditionInShift(Sema &S, SourceLocation OpLoc,
15985 Expr *SubExpr, StringRef Shift) {
15986 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
15987 if (Bop->getOpcode() == BO_Add || Bop->getOpcode() == BO_Sub) {
15988 StringRef Op = Bop->getOpcodeStr();
15989 S.Diag(Bop->getOperatorLoc(), diag::warn_addition_in_bitshift)
15990 << Bop->getSourceRange() << OpLoc << Shift << Op;
15991 SuggestParentheses(S, Bop->getOperatorLoc(),
15992 S.PDiag(diag::note_precedence_silence) << Op,
15993 Bop->getSourceRange());
15994 }
15995 }
15996 }
15997
DiagnoseShiftCompare(Sema & S,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)15998 static void DiagnoseShiftCompare(Sema &S, SourceLocation OpLoc,
15999 Expr *LHSExpr, Expr *RHSExpr) {
16000 CXXOperatorCallExpr *OCE = dyn_cast<CXXOperatorCallExpr>(LHSExpr);
16001 if (!OCE)
16002 return;
16003
16004 FunctionDecl *FD = OCE->getDirectCallee();
16005 if (!FD || !FD->isOverloadedOperator())
16006 return;
16007
16008 OverloadedOperatorKind Kind = FD->getOverloadedOperator();
16009 if (Kind != OO_LessLess && Kind != OO_GreaterGreater)
16010 return;
16011
16012 S.Diag(OpLoc, diag::warn_overloaded_shift_in_comparison)
16013 << LHSExpr->getSourceRange() << RHSExpr->getSourceRange()
16014 << (Kind == OO_LessLess);
16015 SuggestParentheses(S, OCE->getOperatorLoc(),
16016 S.PDiag(diag::note_precedence_silence)
16017 << (Kind == OO_LessLess ? "<<" : ">>"),
16018 OCE->getSourceRange());
16019 SuggestParentheses(
16020 S, OpLoc, S.PDiag(diag::note_evaluate_comparison_first),
16021 SourceRange(OCE->getArg(1)->getBeginLoc(), RHSExpr->getEndLoc()));
16022 }
16023
16024 /// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
16025 /// precedence.
DiagnoseBinOpPrecedence(Sema & Self,BinaryOperatorKind Opc,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)16026 static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
16027 SourceLocation OpLoc, Expr *LHSExpr,
16028 Expr *RHSExpr){
16029 // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
16030 if (BinaryOperator::isBitwiseOp(Opc))
16031 DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr);
16032
16033 // Diagnose "arg1 & arg2 | arg3"
16034 if ((Opc == BO_Or || Opc == BO_Xor) &&
16035 !OpLoc.isMacroID()/* Don't warn in macros. */) {
16036 DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, LHSExpr);
16037 DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, RHSExpr);
16038 }
16039
16040 // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
16041 // We don't warn for 'assert(a || b && "bad")' since this is safe.
16042 if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
16043 DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, LHSExpr, RHSExpr);
16044 DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, LHSExpr, RHSExpr);
16045 }
16046
16047 if ((Opc == BO_Shl && LHSExpr->getType()->isIntegralType(Self.getASTContext()))
16048 || Opc == BO_Shr) {
16049 StringRef Shift = BinaryOperator::getOpcodeStr(Opc);
16050 DiagnoseAdditionInShift(Self, OpLoc, LHSExpr, Shift);
16051 DiagnoseAdditionInShift(Self, OpLoc, RHSExpr, Shift);
16052 }
16053
16054 // Warn on overloaded shift operators and comparisons, such as:
16055 // cout << 5 == 4;
16056 if (BinaryOperator::isComparisonOp(Opc))
16057 DiagnoseShiftCompare(Self, OpLoc, LHSExpr, RHSExpr);
16058 }
16059
16060 // Binary Operators. 'Tok' is the token for the operator.
ActOnBinOp(Scope * S,SourceLocation TokLoc,tok::TokenKind Kind,Expr * LHSExpr,Expr * RHSExpr)16061 ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
16062 tok::TokenKind Kind,
16063 Expr *LHSExpr, Expr *RHSExpr) {
16064 BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
16065 assert(LHSExpr && "ActOnBinOp(): missing left expression");
16066 assert(RHSExpr && "ActOnBinOp(): missing right expression");
16067
16068 // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
16069 DiagnoseBinOpPrecedence(*this, Opc, TokLoc, LHSExpr, RHSExpr);
16070
16071 return BuildBinOp(S, TokLoc, Opc, LHSExpr, RHSExpr);
16072 }
16073
LookupBinOp(Scope * S,SourceLocation OpLoc,BinaryOperatorKind Opc,UnresolvedSetImpl & Functions)16074 void Sema::LookupBinOp(Scope *S, SourceLocation OpLoc, BinaryOperatorKind Opc,
16075 UnresolvedSetImpl &Functions) {
16076 OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc);
16077 if (OverOp != OO_None && OverOp != OO_Equal)
16078 LookupOverloadedOperatorName(OverOp, S, Functions);
16079
16080 // In C++20 onwards, we may have a second operator to look up.
16081 if (getLangOpts().CPlusPlus20) {
16082 if (OverloadedOperatorKind ExtraOp = getRewrittenOverloadedOperator(OverOp))
16083 LookupOverloadedOperatorName(ExtraOp, S, Functions);
16084 }
16085 }
16086
16087 /// Build an overloaded binary operator expression in the given scope.
BuildOverloadedBinOp(Sema & S,Scope * Sc,SourceLocation OpLoc,BinaryOperatorKind Opc,Expr * LHS,Expr * RHS)16088 static ExprResult BuildOverloadedBinOp(Sema &S, Scope *Sc, SourceLocation OpLoc,
16089 BinaryOperatorKind Opc,
16090 Expr *LHS, Expr *RHS) {
16091 switch (Opc) {
16092 case BO_Assign:
16093 // In the non-overloaded case, we warn about self-assignment (x = x) for
16094 // both simple assignment and certain compound assignments where algebra
16095 // tells us the operation yields a constant result. When the operator is
16096 // overloaded, we can't do the latter because we don't want to assume that
16097 // those algebraic identities still apply; for example, a path-building
16098 // library might use operator/= to append paths. But it's still reasonable
16099 // to assume that simple assignment is just moving/copying values around
16100 // and so self-assignment is likely a bug.
16101 DiagnoseSelfAssignment(S, LHS, RHS, OpLoc, false);
16102 [[fallthrough]];
16103 case BO_DivAssign:
16104 case BO_RemAssign:
16105 case BO_SubAssign:
16106 case BO_AndAssign:
16107 case BO_OrAssign:
16108 case BO_XorAssign:
16109 CheckIdentityFieldAssignment(LHS, RHS, OpLoc, S);
16110 break;
16111 default:
16112 break;
16113 }
16114
16115 // Find all of the overloaded operators visible from this point.
16116 UnresolvedSet<16> Functions;
16117 S.LookupBinOp(Sc, OpLoc, Opc, Functions);
16118
16119 // Build the (potentially-overloaded, potentially-dependent)
16120 // binary operation.
16121 return S.CreateOverloadedBinOp(OpLoc, Opc, Functions, LHS, RHS);
16122 }
16123
BuildBinOp(Scope * S,SourceLocation OpLoc,BinaryOperatorKind Opc,Expr * LHSExpr,Expr * RHSExpr)16124 ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
16125 BinaryOperatorKind Opc,
16126 Expr *LHSExpr, Expr *RHSExpr) {
16127 ExprResult LHS, RHS;
16128 std::tie(LHS, RHS) = CorrectDelayedTyposInBinOp(*this, Opc, LHSExpr, RHSExpr);
16129 if (!LHS.isUsable() || !RHS.isUsable())
16130 return ExprError();
16131 LHSExpr = LHS.get();
16132 RHSExpr = RHS.get();
16133
16134 // We want to end up calling one of checkPseudoObjectAssignment
16135 // (if the LHS is a pseudo-object), BuildOverloadedBinOp (if
16136 // both expressions are overloadable or either is type-dependent),
16137 // or CreateBuiltinBinOp (in any other case). We also want to get
16138 // any placeholder types out of the way.
16139
16140 // Handle pseudo-objects in the LHS.
16141 if (const BuiltinType *pty = LHSExpr->getType()->getAsPlaceholderType()) {
16142 // Assignments with a pseudo-object l-value need special analysis.
16143 if (pty->getKind() == BuiltinType::PseudoObject &&
16144 BinaryOperator::isAssignmentOp(Opc))
16145 return checkPseudoObjectAssignment(S, OpLoc, Opc, LHSExpr, RHSExpr);
16146
16147 // Don't resolve overloads if the other type is overloadable.
16148 if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload) {
16149 // We can't actually test that if we still have a placeholder,
16150 // though. Fortunately, none of the exceptions we see in that
16151 // code below are valid when the LHS is an overload set. Note
16152 // that an overload set can be dependently-typed, but it never
16153 // instantiates to having an overloadable type.
16154 ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
16155 if (resolvedRHS.isInvalid()) return ExprError();
16156 RHSExpr = resolvedRHS.get();
16157
16158 if (RHSExpr->isTypeDependent() ||
16159 RHSExpr->getType()->isOverloadableType())
16160 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
16161 }
16162
16163 // If we're instantiating "a.x < b" or "A::x < b" and 'x' names a function
16164 // template, diagnose the missing 'template' keyword instead of diagnosing
16165 // an invalid use of a bound member function.
16166 //
16167 // Note that "A::x < b" might be valid if 'b' has an overloadable type due
16168 // to C++1z [over.over]/1.4, but we already checked for that case above.
16169 if (Opc == BO_LT && inTemplateInstantiation() &&
16170 (pty->getKind() == BuiltinType::BoundMember ||
16171 pty->getKind() == BuiltinType::Overload)) {
16172 auto *OE = dyn_cast<OverloadExpr>(LHSExpr);
16173 if (OE && !OE->hasTemplateKeyword() && !OE->hasExplicitTemplateArgs() &&
16174 llvm::any_of(OE->decls(), [](NamedDecl *ND) {
16175 return isa<FunctionTemplateDecl>(ND);
16176 })) {
16177 Diag(OE->getQualifier() ? OE->getQualifierLoc().getBeginLoc()
16178 : OE->getNameLoc(),
16179 diag::err_template_kw_missing)
16180 << OE->getName().getAsString() << "";
16181 return ExprError();
16182 }
16183 }
16184
16185 ExprResult LHS = CheckPlaceholderExpr(LHSExpr);
16186 if (LHS.isInvalid()) return ExprError();
16187 LHSExpr = LHS.get();
16188 }
16189
16190 // Handle pseudo-objects in the RHS.
16191 if (const BuiltinType *pty = RHSExpr->getType()->getAsPlaceholderType()) {
16192 // An overload in the RHS can potentially be resolved by the type
16193 // being assigned to.
16194 if (Opc == BO_Assign && pty->getKind() == BuiltinType::Overload) {
16195 if (getLangOpts().CPlusPlus &&
16196 (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent() ||
16197 LHSExpr->getType()->isOverloadableType()))
16198 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
16199
16200 return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
16201 }
16202
16203 // Don't resolve overloads if the other type is overloadable.
16204 if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload &&
16205 LHSExpr->getType()->isOverloadableType())
16206 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
16207
16208 ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
16209 if (!resolvedRHS.isUsable()) return ExprError();
16210 RHSExpr = resolvedRHS.get();
16211 }
16212
16213 if (getLangOpts().CPlusPlus) {
16214 // If either expression is type-dependent, always build an
16215 // overloaded op.
16216 if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
16217 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
16218
16219 // Otherwise, build an overloaded op if either expression has an
16220 // overloadable type.
16221 if (LHSExpr->getType()->isOverloadableType() ||
16222 RHSExpr->getType()->isOverloadableType())
16223 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
16224 }
16225
16226 if (getLangOpts().RecoveryAST &&
16227 (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())) {
16228 assert(!getLangOpts().CPlusPlus);
16229 assert((LHSExpr->containsErrors() || RHSExpr->containsErrors()) &&
16230 "Should only occur in error-recovery path.");
16231 if (BinaryOperator::isCompoundAssignmentOp(Opc))
16232 // C [6.15.16] p3:
16233 // An assignment expression has the value of the left operand after the
16234 // assignment, but is not an lvalue.
16235 return CompoundAssignOperator::Create(
16236 Context, LHSExpr, RHSExpr, Opc,
16237 LHSExpr->getType().getUnqualifiedType(), VK_PRValue, OK_Ordinary,
16238 OpLoc, CurFPFeatureOverrides());
16239 QualType ResultType;
16240 switch (Opc) {
16241 case BO_Assign:
16242 ResultType = LHSExpr->getType().getUnqualifiedType();
16243 break;
16244 case BO_LT:
16245 case BO_GT:
16246 case BO_LE:
16247 case BO_GE:
16248 case BO_EQ:
16249 case BO_NE:
16250 case BO_LAnd:
16251 case BO_LOr:
16252 // These operators have a fixed result type regardless of operands.
16253 ResultType = Context.IntTy;
16254 break;
16255 case BO_Comma:
16256 ResultType = RHSExpr->getType();
16257 break;
16258 default:
16259 ResultType = Context.DependentTy;
16260 break;
16261 }
16262 return BinaryOperator::Create(Context, LHSExpr, RHSExpr, Opc, ResultType,
16263 VK_PRValue, OK_Ordinary, OpLoc,
16264 CurFPFeatureOverrides());
16265 }
16266
16267 // Build a built-in binary operation.
16268 return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
16269 }
16270
isOverflowingIntegerType(ASTContext & Ctx,QualType T)16271 static bool isOverflowingIntegerType(ASTContext &Ctx, QualType T) {
16272 if (T.isNull() || T->isDependentType())
16273 return false;
16274
16275 if (!Ctx.isPromotableIntegerType(T))
16276 return true;
16277
16278 return Ctx.getIntWidth(T) >= Ctx.getIntWidth(Ctx.IntTy);
16279 }
16280
CreateBuiltinUnaryOp(SourceLocation OpLoc,UnaryOperatorKind Opc,Expr * InputExpr,bool IsAfterAmp)16281 ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
16282 UnaryOperatorKind Opc, Expr *InputExpr,
16283 bool IsAfterAmp) {
16284 ExprResult Input = InputExpr;
16285 ExprValueKind VK = VK_PRValue;
16286 ExprObjectKind OK = OK_Ordinary;
16287 QualType resultType;
16288 bool CanOverflow = false;
16289
16290 bool ConvertHalfVec = false;
16291 if (getLangOpts().OpenCL) {
16292 QualType Ty = InputExpr->getType();
16293 // The only legal unary operation for atomics is '&'.
16294 if ((Opc != UO_AddrOf && Ty->isAtomicType()) ||
16295 // OpenCL special types - image, sampler, pipe, and blocks are to be used
16296 // only with a builtin functions and therefore should be disallowed here.
16297 (Ty->isImageType() || Ty->isSamplerT() || Ty->isPipeType()
16298 || Ty->isBlockPointerType())) {
16299 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
16300 << InputExpr->getType()
16301 << Input.get()->getSourceRange());
16302 }
16303 }
16304
16305 if (getLangOpts().HLSL && OpLoc.isValid()) {
16306 if (Opc == UO_AddrOf)
16307 return ExprError(Diag(OpLoc, diag::err_hlsl_operator_unsupported) << 0);
16308 if (Opc == UO_Deref)
16309 return ExprError(Diag(OpLoc, diag::err_hlsl_operator_unsupported) << 1);
16310 }
16311
16312 switch (Opc) {
16313 case UO_PreInc:
16314 case UO_PreDec:
16315 case UO_PostInc:
16316 case UO_PostDec:
16317 resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OK,
16318 OpLoc,
16319 Opc == UO_PreInc ||
16320 Opc == UO_PostInc,
16321 Opc == UO_PreInc ||
16322 Opc == UO_PreDec);
16323 CanOverflow = isOverflowingIntegerType(Context, resultType);
16324 break;
16325 case UO_AddrOf:
16326 resultType = CheckAddressOfOperand(Input, OpLoc);
16327 CheckAddressOfNoDeref(InputExpr);
16328 RecordModifiableNonNullParam(*this, InputExpr);
16329 break;
16330 case UO_Deref: {
16331 Input = DefaultFunctionArrayLvalueConversion(Input.get());
16332 if (Input.isInvalid()) return ExprError();
16333 resultType =
16334 CheckIndirectionOperand(*this, Input.get(), VK, OpLoc, IsAfterAmp);
16335 break;
16336 }
16337 case UO_Plus:
16338 case UO_Minus:
16339 CanOverflow = Opc == UO_Minus &&
16340 isOverflowingIntegerType(Context, Input.get()->getType());
16341 Input = UsualUnaryConversions(Input.get());
16342 if (Input.isInvalid()) return ExprError();
16343 // Unary plus and minus require promoting an operand of half vector to a
16344 // float vector and truncating the result back to a half vector. For now, we
16345 // do this only when HalfArgsAndReturns is set (that is, when the target is
16346 // arm or arm64).
16347 ConvertHalfVec = needsConversionOfHalfVec(true, Context, Input.get());
16348
16349 // If the operand is a half vector, promote it to a float vector.
16350 if (ConvertHalfVec)
16351 Input = convertVector(Input.get(), Context.FloatTy, *this);
16352 resultType = Input.get()->getType();
16353 if (resultType->isDependentType())
16354 break;
16355 if (resultType->isArithmeticType()) // C99 6.5.3.3p1
16356 break;
16357 else if (resultType->isVectorType() &&
16358 // The z vector extensions don't allow + or - with bool vectors.
16359 (!Context.getLangOpts().ZVector ||
16360 resultType->castAs<VectorType>()->getVectorKind() !=
16361 VectorKind::AltiVecBool))
16362 break;
16363 else if (resultType->isSveVLSBuiltinType()) // SVE vectors allow + and -
16364 break;
16365 else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6
16366 Opc == UO_Plus &&
16367 resultType->isPointerType())
16368 break;
16369
16370 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
16371 << resultType << Input.get()->getSourceRange());
16372
16373 case UO_Not: // bitwise complement
16374 Input = UsualUnaryConversions(Input.get());
16375 if (Input.isInvalid())
16376 return ExprError();
16377 resultType = Input.get()->getType();
16378 if (resultType->isDependentType())
16379 break;
16380 // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
16381 if (resultType->isComplexType() || resultType->isComplexIntegerType())
16382 // C99 does not support '~' for complex conjugation.
16383 Diag(OpLoc, diag::ext_integer_complement_complex)
16384 << resultType << Input.get()->getSourceRange();
16385 else if (resultType->hasIntegerRepresentation())
16386 break;
16387 else if (resultType->isExtVectorType() && Context.getLangOpts().OpenCL) {
16388 // OpenCL v1.1 s6.3.f: The bitwise operator not (~) does not operate
16389 // on vector float types.
16390 QualType T = resultType->castAs<ExtVectorType>()->getElementType();
16391 if (!T->isIntegerType())
16392 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
16393 << resultType << Input.get()->getSourceRange());
16394 } else {
16395 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
16396 << resultType << Input.get()->getSourceRange());
16397 }
16398 break;
16399
16400 case UO_LNot: // logical negation
16401 // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
16402 Input = DefaultFunctionArrayLvalueConversion(Input.get());
16403 if (Input.isInvalid()) return ExprError();
16404 resultType = Input.get()->getType();
16405
16406 // Though we still have to promote half FP to float...
16407 if (resultType->isHalfType() && !Context.getLangOpts().NativeHalfType) {
16408 Input = ImpCastExprToType(Input.get(), Context.FloatTy, CK_FloatingCast).get();
16409 resultType = Context.FloatTy;
16410 }
16411
16412 // WebAsembly tables can't be used in unary expressions.
16413 if (resultType->isPointerType() &&
16414 resultType->getPointeeType().isWebAssemblyReferenceType()) {
16415 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
16416 << resultType << Input.get()->getSourceRange());
16417 }
16418
16419 if (resultType->isDependentType())
16420 break;
16421 if (resultType->isScalarType() && !isScopedEnumerationType(resultType)) {
16422 // C99 6.5.3.3p1: ok, fallthrough;
16423 if (Context.getLangOpts().CPlusPlus) {
16424 // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
16425 // operand contextually converted to bool.
16426 Input = ImpCastExprToType(Input.get(), Context.BoolTy,
16427 ScalarTypeToBooleanCastKind(resultType));
16428 } else if (Context.getLangOpts().OpenCL &&
16429 Context.getLangOpts().OpenCLVersion < 120) {
16430 // OpenCL v1.1 6.3.h: The logical operator not (!) does not
16431 // operate on scalar float types.
16432 if (!resultType->isIntegerType() && !resultType->isPointerType())
16433 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
16434 << resultType << Input.get()->getSourceRange());
16435 }
16436 } else if (resultType->isExtVectorType()) {
16437 if (Context.getLangOpts().OpenCL &&
16438 Context.getLangOpts().getOpenCLCompatibleVersion() < 120) {
16439 // OpenCL v1.1 6.3.h: The logical operator not (!) does not
16440 // operate on vector float types.
16441 QualType T = resultType->castAs<ExtVectorType>()->getElementType();
16442 if (!T->isIntegerType())
16443 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
16444 << resultType << Input.get()->getSourceRange());
16445 }
16446 // Vector logical not returns the signed variant of the operand type.
16447 resultType = GetSignedVectorType(resultType);
16448 break;
16449 } else if (Context.getLangOpts().CPlusPlus && resultType->isVectorType()) {
16450 const VectorType *VTy = resultType->castAs<VectorType>();
16451 if (VTy->getVectorKind() != VectorKind::Generic)
16452 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
16453 << resultType << Input.get()->getSourceRange());
16454
16455 // Vector logical not returns the signed variant of the operand type.
16456 resultType = GetSignedVectorType(resultType);
16457 break;
16458 } else {
16459 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
16460 << resultType << Input.get()->getSourceRange());
16461 }
16462
16463 // LNot always has type int. C99 6.5.3.3p5.
16464 // In C++, it's bool. C++ 5.3.1p8
16465 resultType = Context.getLogicalOperationType();
16466 break;
16467 case UO_Real:
16468 case UO_Imag:
16469 resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
16470 // _Real maps ordinary l-values into ordinary l-values. _Imag maps ordinary
16471 // complex l-values to ordinary l-values and all other values to r-values.
16472 if (Input.isInvalid()) return ExprError();
16473 if (Opc == UO_Real || Input.get()->getType()->isAnyComplexType()) {
16474 if (Input.get()->isGLValue() &&
16475 Input.get()->getObjectKind() == OK_Ordinary)
16476 VK = Input.get()->getValueKind();
16477 } else if (!getLangOpts().CPlusPlus) {
16478 // In C, a volatile scalar is read by __imag. In C++, it is not.
16479 Input = DefaultLvalueConversion(Input.get());
16480 }
16481 break;
16482 case UO_Extension:
16483 resultType = Input.get()->getType();
16484 VK = Input.get()->getValueKind();
16485 OK = Input.get()->getObjectKind();
16486 break;
16487 case UO_Coawait:
16488 // It's unnecessary to represent the pass-through operator co_await in the
16489 // AST; just return the input expression instead.
16490 assert(!Input.get()->getType()->isDependentType() &&
16491 "the co_await expression must be non-dependant before "
16492 "building operator co_await");
16493 return Input;
16494 }
16495 if (resultType.isNull() || Input.isInvalid())
16496 return ExprError();
16497
16498 // Check for array bounds violations in the operand of the UnaryOperator,
16499 // except for the '*' and '&' operators that have to be handled specially
16500 // by CheckArrayAccess (as there are special cases like &array[arraysize]
16501 // that are explicitly defined as valid by the standard).
16502 if (Opc != UO_AddrOf && Opc != UO_Deref)
16503 CheckArrayAccess(Input.get());
16504
16505 auto *UO =
16506 UnaryOperator::Create(Context, Input.get(), Opc, resultType, VK, OK,
16507 OpLoc, CanOverflow, CurFPFeatureOverrides());
16508
16509 if (Opc == UO_Deref && UO->getType()->hasAttr(attr::NoDeref) &&
16510 !isa<ArrayType>(UO->getType().getDesugaredType(Context)) &&
16511 !isUnevaluatedContext())
16512 ExprEvalContexts.back().PossibleDerefs.insert(UO);
16513
16514 // Convert the result back to a half vector.
16515 if (ConvertHalfVec)
16516 return convertVector(UO, Context.HalfTy, *this);
16517 return UO;
16518 }
16519
16520 /// Determine whether the given expression is a qualified member
16521 /// access expression, of a form that could be turned into a pointer to member
16522 /// with the address-of operator.
isQualifiedMemberAccess(Expr * E)16523 bool Sema::isQualifiedMemberAccess(Expr *E) {
16524 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
16525 if (!DRE->getQualifier())
16526 return false;
16527
16528 ValueDecl *VD = DRE->getDecl();
16529 if (!VD->isCXXClassMember())
16530 return false;
16531
16532 if (isa<FieldDecl>(VD) || isa<IndirectFieldDecl>(VD))
16533 return true;
16534 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(VD))
16535 return Method->isImplicitObjectMemberFunction();
16536
16537 return false;
16538 }
16539
16540 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
16541 if (!ULE->getQualifier())
16542 return false;
16543
16544 for (NamedDecl *D : ULE->decls()) {
16545 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
16546 if (Method->isImplicitObjectMemberFunction())
16547 return true;
16548 } else {
16549 // Overload set does not contain methods.
16550 break;
16551 }
16552 }
16553
16554 return false;
16555 }
16556
16557 return false;
16558 }
16559
BuildUnaryOp(Scope * S,SourceLocation OpLoc,UnaryOperatorKind Opc,Expr * Input,bool IsAfterAmp)16560 ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
16561 UnaryOperatorKind Opc, Expr *Input,
16562 bool IsAfterAmp) {
16563 // First things first: handle placeholders so that the
16564 // overloaded-operator check considers the right type.
16565 if (const BuiltinType *pty = Input->getType()->getAsPlaceholderType()) {
16566 // Increment and decrement of pseudo-object references.
16567 if (pty->getKind() == BuiltinType::PseudoObject &&
16568 UnaryOperator::isIncrementDecrementOp(Opc))
16569 return checkPseudoObjectIncDec(S, OpLoc, Opc, Input);
16570
16571 // extension is always a builtin operator.
16572 if (Opc == UO_Extension)
16573 return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
16574
16575 // & gets special logic for several kinds of placeholder.
16576 // The builtin code knows what to do.
16577 if (Opc == UO_AddrOf &&
16578 (pty->getKind() == BuiltinType::Overload ||
16579 pty->getKind() == BuiltinType::UnknownAny ||
16580 pty->getKind() == BuiltinType::BoundMember))
16581 return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
16582
16583 // Anything else needs to be handled now.
16584 ExprResult Result = CheckPlaceholderExpr(Input);
16585 if (Result.isInvalid()) return ExprError();
16586 Input = Result.get();
16587 }
16588
16589 if (getLangOpts().CPlusPlus && Input->getType()->isOverloadableType() &&
16590 UnaryOperator::getOverloadedOperator(Opc) != OO_None &&
16591 !(Opc == UO_AddrOf && isQualifiedMemberAccess(Input))) {
16592 // Find all of the overloaded operators visible from this point.
16593 UnresolvedSet<16> Functions;
16594 OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
16595 if (S && OverOp != OO_None)
16596 LookupOverloadedOperatorName(OverOp, S, Functions);
16597
16598 return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
16599 }
16600
16601 return CreateBuiltinUnaryOp(OpLoc, Opc, Input, IsAfterAmp);
16602 }
16603
16604 // Unary Operators. 'Tok' is the token for the operator.
ActOnUnaryOp(Scope * S,SourceLocation OpLoc,tok::TokenKind Op,Expr * Input,bool IsAfterAmp)16605 ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc, tok::TokenKind Op,
16606 Expr *Input, bool IsAfterAmp) {
16607 return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input,
16608 IsAfterAmp);
16609 }
16610
16611 /// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
ActOnAddrLabel(SourceLocation OpLoc,SourceLocation LabLoc,LabelDecl * TheDecl)16612 ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
16613 LabelDecl *TheDecl) {
16614 TheDecl->markUsed(Context);
16615 // Create the AST node. The address of a label always has type 'void*'.
16616 auto *Res = new (Context) AddrLabelExpr(
16617 OpLoc, LabLoc, TheDecl, Context.getPointerType(Context.VoidTy));
16618
16619 if (getCurFunction())
16620 getCurFunction()->AddrLabels.push_back(Res);
16621
16622 return Res;
16623 }
16624
ActOnStartStmtExpr()16625 void Sema::ActOnStartStmtExpr() {
16626 PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
16627 // Make sure we diagnose jumping into a statement expression.
16628 setFunctionHasBranchProtectedScope();
16629 }
16630
ActOnStmtExprError()16631 void Sema::ActOnStmtExprError() {
16632 // Note that function is also called by TreeTransform when leaving a
16633 // StmtExpr scope without rebuilding anything.
16634
16635 DiscardCleanupsInEvaluationContext();
16636 PopExpressionEvaluationContext();
16637 }
16638
ActOnStmtExpr(Scope * S,SourceLocation LPLoc,Stmt * SubStmt,SourceLocation RPLoc)16639 ExprResult Sema::ActOnStmtExpr(Scope *S, SourceLocation LPLoc, Stmt *SubStmt,
16640 SourceLocation RPLoc) {
16641 return BuildStmtExpr(LPLoc, SubStmt, RPLoc, getTemplateDepth(S));
16642 }
16643
BuildStmtExpr(SourceLocation LPLoc,Stmt * SubStmt,SourceLocation RPLoc,unsigned TemplateDepth)16644 ExprResult Sema::BuildStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
16645 SourceLocation RPLoc, unsigned TemplateDepth) {
16646 assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
16647 CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
16648
16649 if (hasAnyUnrecoverableErrorsInThisFunction())
16650 DiscardCleanupsInEvaluationContext();
16651 assert(!Cleanup.exprNeedsCleanups() &&
16652 "cleanups within StmtExpr not correctly bound!");
16653 PopExpressionEvaluationContext();
16654
16655 // FIXME: there are a variety of strange constraints to enforce here, for
16656 // example, it is not possible to goto into a stmt expression apparently.
16657 // More semantic analysis is needed.
16658
16659 // If there are sub-stmts in the compound stmt, take the type of the last one
16660 // as the type of the stmtexpr.
16661 QualType Ty = Context.VoidTy;
16662 bool StmtExprMayBindToTemp = false;
16663 if (!Compound->body_empty()) {
16664 // For GCC compatibility we get the last Stmt excluding trailing NullStmts.
16665 if (const auto *LastStmt =
16666 dyn_cast<ValueStmt>(Compound->getStmtExprResult())) {
16667 if (const Expr *Value = LastStmt->getExprStmt()) {
16668 StmtExprMayBindToTemp = true;
16669 Ty = Value->getType();
16670 }
16671 }
16672 }
16673
16674 // FIXME: Check that expression type is complete/non-abstract; statement
16675 // expressions are not lvalues.
16676 Expr *ResStmtExpr =
16677 new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc, TemplateDepth);
16678 if (StmtExprMayBindToTemp)
16679 return MaybeBindToTemporary(ResStmtExpr);
16680 return ResStmtExpr;
16681 }
16682
ActOnStmtExprResult(ExprResult ER)16683 ExprResult Sema::ActOnStmtExprResult(ExprResult ER) {
16684 if (ER.isInvalid())
16685 return ExprError();
16686
16687 // Do function/array conversion on the last expression, but not
16688 // lvalue-to-rvalue. However, initialize an unqualified type.
16689 ER = DefaultFunctionArrayConversion(ER.get());
16690 if (ER.isInvalid())
16691 return ExprError();
16692 Expr *E = ER.get();
16693
16694 if (E->isTypeDependent())
16695 return E;
16696
16697 // In ARC, if the final expression ends in a consume, splice
16698 // the consume out and bind it later. In the alternate case
16699 // (when dealing with a retainable type), the result
16700 // initialization will create a produce. In both cases the
16701 // result will be +1, and we'll need to balance that out with
16702 // a bind.
16703 auto *Cast = dyn_cast<ImplicitCastExpr>(E);
16704 if (Cast && Cast->getCastKind() == CK_ARCConsumeObject)
16705 return Cast->getSubExpr();
16706
16707 // FIXME: Provide a better location for the initialization.
16708 return PerformCopyInitialization(
16709 InitializedEntity::InitializeStmtExprResult(
16710 E->getBeginLoc(), E->getType().getUnqualifiedType()),
16711 SourceLocation(), E);
16712 }
16713
BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,TypeSourceInfo * TInfo,ArrayRef<OffsetOfComponent> Components,SourceLocation RParenLoc)16714 ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
16715 TypeSourceInfo *TInfo,
16716 ArrayRef<OffsetOfComponent> Components,
16717 SourceLocation RParenLoc) {
16718 QualType ArgTy = TInfo->getType();
16719 bool Dependent = ArgTy->isDependentType();
16720 SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
16721
16722 // We must have at least one component that refers to the type, and the first
16723 // one is known to be a field designator. Verify that the ArgTy represents
16724 // a struct/union/class.
16725 if (!Dependent && !ArgTy->isRecordType())
16726 return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
16727 << ArgTy << TypeRange);
16728
16729 // Type must be complete per C99 7.17p3 because a declaring a variable
16730 // with an incomplete type would be ill-formed.
16731 if (!Dependent
16732 && RequireCompleteType(BuiltinLoc, ArgTy,
16733 diag::err_offsetof_incomplete_type, TypeRange))
16734 return ExprError();
16735
16736 bool DidWarnAboutNonPOD = false;
16737 QualType CurrentType = ArgTy;
16738 SmallVector<OffsetOfNode, 4> Comps;
16739 SmallVector<Expr*, 4> Exprs;
16740 for (const OffsetOfComponent &OC : Components) {
16741 if (OC.isBrackets) {
16742 // Offset of an array sub-field. TODO: Should we allow vector elements?
16743 if (!CurrentType->isDependentType()) {
16744 const ArrayType *AT = Context.getAsArrayType(CurrentType);
16745 if(!AT)
16746 return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
16747 << CurrentType);
16748 CurrentType = AT->getElementType();
16749 } else
16750 CurrentType = Context.DependentTy;
16751
16752 ExprResult IdxRval = DefaultLvalueConversion(static_cast<Expr*>(OC.U.E));
16753 if (IdxRval.isInvalid())
16754 return ExprError();
16755 Expr *Idx = IdxRval.get();
16756
16757 // The expression must be an integral expression.
16758 // FIXME: An integral constant expression?
16759 if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
16760 !Idx->getType()->isIntegerType())
16761 return ExprError(
16762 Diag(Idx->getBeginLoc(), diag::err_typecheck_subscript_not_integer)
16763 << Idx->getSourceRange());
16764
16765 // Record this array index.
16766 Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
16767 Exprs.push_back(Idx);
16768 continue;
16769 }
16770
16771 // Offset of a field.
16772 if (CurrentType->isDependentType()) {
16773 // We have the offset of a field, but we can't look into the dependent
16774 // type. Just record the identifier of the field.
16775 Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
16776 CurrentType = Context.DependentTy;
16777 continue;
16778 }
16779
16780 // We need to have a complete type to look into.
16781 if (RequireCompleteType(OC.LocStart, CurrentType,
16782 diag::err_offsetof_incomplete_type))
16783 return ExprError();
16784
16785 // Look for the designated field.
16786 const RecordType *RC = CurrentType->getAs<RecordType>();
16787 if (!RC)
16788 return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
16789 << CurrentType);
16790 RecordDecl *RD = RC->getDecl();
16791
16792 // C++ [lib.support.types]p5:
16793 // The macro offsetof accepts a restricted set of type arguments in this
16794 // International Standard. type shall be a POD structure or a POD union
16795 // (clause 9).
16796 // C++11 [support.types]p4:
16797 // If type is not a standard-layout class (Clause 9), the results are
16798 // undefined.
16799 if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
16800 bool IsSafe = LangOpts.CPlusPlus11? CRD->isStandardLayout() : CRD->isPOD();
16801 unsigned DiagID =
16802 LangOpts.CPlusPlus11? diag::ext_offsetof_non_standardlayout_type
16803 : diag::ext_offsetof_non_pod_type;
16804
16805 if (!IsSafe && !DidWarnAboutNonPOD && !isUnevaluatedContext()) {
16806 Diag(BuiltinLoc, DiagID)
16807 << SourceRange(Components[0].LocStart, OC.LocEnd) << CurrentType;
16808 DidWarnAboutNonPOD = true;
16809 }
16810 }
16811
16812 // Look for the field.
16813 LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
16814 LookupQualifiedName(R, RD);
16815 FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
16816 IndirectFieldDecl *IndirectMemberDecl = nullptr;
16817 if (!MemberDecl) {
16818 if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
16819 MemberDecl = IndirectMemberDecl->getAnonField();
16820 }
16821
16822 if (!MemberDecl) {
16823 // Lookup could be ambiguous when looking up a placeholder variable
16824 // __builtin_offsetof(S, _).
16825 // In that case we would already have emitted a diagnostic
16826 if (!R.isAmbiguous())
16827 Diag(BuiltinLoc, diag::err_no_member)
16828 << OC.U.IdentInfo << RD << SourceRange(OC.LocStart, OC.LocEnd);
16829 return ExprError();
16830 }
16831
16832 // C99 7.17p3:
16833 // (If the specified member is a bit-field, the behavior is undefined.)
16834 //
16835 // We diagnose this as an error.
16836 if (MemberDecl->isBitField()) {
16837 Diag(OC.LocEnd, diag::err_offsetof_bitfield)
16838 << MemberDecl->getDeclName()
16839 << SourceRange(BuiltinLoc, RParenLoc);
16840 Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
16841 return ExprError();
16842 }
16843
16844 RecordDecl *Parent = MemberDecl->getParent();
16845 if (IndirectMemberDecl)
16846 Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
16847
16848 // If the member was found in a base class, introduce OffsetOfNodes for
16849 // the base class indirections.
16850 CXXBasePaths Paths;
16851 if (IsDerivedFrom(OC.LocStart, CurrentType, Context.getTypeDeclType(Parent),
16852 Paths)) {
16853 if (Paths.getDetectedVirtual()) {
16854 Diag(OC.LocEnd, diag::err_offsetof_field_of_virtual_base)
16855 << MemberDecl->getDeclName()
16856 << SourceRange(BuiltinLoc, RParenLoc);
16857 return ExprError();
16858 }
16859
16860 CXXBasePath &Path = Paths.front();
16861 for (const CXXBasePathElement &B : Path)
16862 Comps.push_back(OffsetOfNode(B.Base));
16863 }
16864
16865 if (IndirectMemberDecl) {
16866 for (auto *FI : IndirectMemberDecl->chain()) {
16867 assert(isa<FieldDecl>(FI));
16868 Comps.push_back(OffsetOfNode(OC.LocStart,
16869 cast<FieldDecl>(FI), OC.LocEnd));
16870 }
16871 } else
16872 Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
16873
16874 CurrentType = MemberDecl->getType().getNonReferenceType();
16875 }
16876
16877 return OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc, TInfo,
16878 Comps, Exprs, RParenLoc);
16879 }
16880
ActOnBuiltinOffsetOf(Scope * S,SourceLocation BuiltinLoc,SourceLocation TypeLoc,ParsedType ParsedArgTy,ArrayRef<OffsetOfComponent> Components,SourceLocation RParenLoc)16881 ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
16882 SourceLocation BuiltinLoc,
16883 SourceLocation TypeLoc,
16884 ParsedType ParsedArgTy,
16885 ArrayRef<OffsetOfComponent> Components,
16886 SourceLocation RParenLoc) {
16887
16888 TypeSourceInfo *ArgTInfo;
16889 QualType ArgTy = GetTypeFromParser(ParsedArgTy, &ArgTInfo);
16890 if (ArgTy.isNull())
16891 return ExprError();
16892
16893 if (!ArgTInfo)
16894 ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
16895
16896 return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, Components, RParenLoc);
16897 }
16898
16899
ActOnChooseExpr(SourceLocation BuiltinLoc,Expr * CondExpr,Expr * LHSExpr,Expr * RHSExpr,SourceLocation RPLoc)16900 ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
16901 Expr *CondExpr,
16902 Expr *LHSExpr, Expr *RHSExpr,
16903 SourceLocation RPLoc) {
16904 assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
16905
16906 ExprValueKind VK = VK_PRValue;
16907 ExprObjectKind OK = OK_Ordinary;
16908 QualType resType;
16909 bool CondIsTrue = false;
16910 if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
16911 resType = Context.DependentTy;
16912 } else {
16913 // The conditional expression is required to be a constant expression.
16914 llvm::APSInt condEval(32);
16915 ExprResult CondICE = VerifyIntegerConstantExpression(
16916 CondExpr, &condEval, diag::err_typecheck_choose_expr_requires_constant);
16917 if (CondICE.isInvalid())
16918 return ExprError();
16919 CondExpr = CondICE.get();
16920 CondIsTrue = condEval.getZExtValue();
16921
16922 // If the condition is > zero, then the AST type is the same as the LHSExpr.
16923 Expr *ActiveExpr = CondIsTrue ? LHSExpr : RHSExpr;
16924
16925 resType = ActiveExpr->getType();
16926 VK = ActiveExpr->getValueKind();
16927 OK = ActiveExpr->getObjectKind();
16928 }
16929
16930 return new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
16931 resType, VK, OK, RPLoc, CondIsTrue);
16932 }
16933
16934 //===----------------------------------------------------------------------===//
16935 // Clang Extensions.
16936 //===----------------------------------------------------------------------===//
16937
16938 /// ActOnBlockStart - This callback is invoked when a block literal is started.
ActOnBlockStart(SourceLocation CaretLoc,Scope * CurScope)16939 void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) {
16940 BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
16941
16942 if (LangOpts.CPlusPlus) {
16943 MangleNumberingContext *MCtx;
16944 Decl *ManglingContextDecl;
16945 std::tie(MCtx, ManglingContextDecl) =
16946 getCurrentMangleNumberContext(Block->getDeclContext());
16947 if (MCtx) {
16948 unsigned ManglingNumber = MCtx->getManglingNumber(Block);
16949 Block->setBlockMangling(ManglingNumber, ManglingContextDecl);
16950 }
16951 }
16952
16953 PushBlockScope(CurScope, Block);
16954 CurContext->addDecl(Block);
16955 if (CurScope)
16956 PushDeclContext(CurScope, Block);
16957 else
16958 CurContext = Block;
16959
16960 getCurBlock()->HasImplicitReturnType = true;
16961
16962 // Enter a new evaluation context to insulate the block from any
16963 // cleanups from the enclosing full-expression.
16964 PushExpressionEvaluationContext(
16965 ExpressionEvaluationContext::PotentiallyEvaluated);
16966 }
16967
ActOnBlockArguments(SourceLocation CaretLoc,Declarator & ParamInfo,Scope * CurScope)16968 void Sema::ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo,
16969 Scope *CurScope) {
16970 assert(ParamInfo.getIdentifier() == nullptr &&
16971 "block-id should have no identifier!");
16972 assert(ParamInfo.getContext() == DeclaratorContext::BlockLiteral);
16973 BlockScopeInfo *CurBlock = getCurBlock();
16974
16975 TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo);
16976 QualType T = Sig->getType();
16977
16978 // FIXME: We should allow unexpanded parameter packs here, but that would,
16979 // in turn, make the block expression contain unexpanded parameter packs.
16980 if (DiagnoseUnexpandedParameterPack(CaretLoc, Sig, UPPC_Block)) {
16981 // Drop the parameters.
16982 FunctionProtoType::ExtProtoInfo EPI;
16983 EPI.HasTrailingReturn = false;
16984 EPI.TypeQuals.addConst();
16985 T = Context.getFunctionType(Context.DependentTy, std::nullopt, EPI);
16986 Sig = Context.getTrivialTypeSourceInfo(T);
16987 }
16988
16989 // GetTypeForDeclarator always produces a function type for a block
16990 // literal signature. Furthermore, it is always a FunctionProtoType
16991 // unless the function was written with a typedef.
16992 assert(T->isFunctionType() &&
16993 "GetTypeForDeclarator made a non-function block signature");
16994
16995 // Look for an explicit signature in that function type.
16996 FunctionProtoTypeLoc ExplicitSignature;
16997
16998 if ((ExplicitSignature = Sig->getTypeLoc()
16999 .getAsAdjusted<FunctionProtoTypeLoc>())) {
17000
17001 // Check whether that explicit signature was synthesized by
17002 // GetTypeForDeclarator. If so, don't save that as part of the
17003 // written signature.
17004 if (ExplicitSignature.getLocalRangeBegin() ==
17005 ExplicitSignature.getLocalRangeEnd()) {
17006 // This would be much cheaper if we stored TypeLocs instead of
17007 // TypeSourceInfos.
17008 TypeLoc Result = ExplicitSignature.getReturnLoc();
17009 unsigned Size = Result.getFullDataSize();
17010 Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
17011 Sig->getTypeLoc().initializeFullCopy(Result, Size);
17012
17013 ExplicitSignature = FunctionProtoTypeLoc();
17014 }
17015 }
17016
17017 CurBlock->TheDecl->setSignatureAsWritten(Sig);
17018 CurBlock->FunctionType = T;
17019
17020 const auto *Fn = T->castAs<FunctionType>();
17021 QualType RetTy = Fn->getReturnType();
17022 bool isVariadic =
17023 (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
17024
17025 CurBlock->TheDecl->setIsVariadic(isVariadic);
17026
17027 // Context.DependentTy is used as a placeholder for a missing block
17028 // return type. TODO: what should we do with declarators like:
17029 // ^ * { ... }
17030 // If the answer is "apply template argument deduction"....
17031 if (RetTy != Context.DependentTy) {
17032 CurBlock->ReturnType = RetTy;
17033 CurBlock->TheDecl->setBlockMissingReturnType(false);
17034 CurBlock->HasImplicitReturnType = false;
17035 }
17036
17037 // Push block parameters from the declarator if we had them.
17038 SmallVector<ParmVarDecl*, 8> Params;
17039 if (ExplicitSignature) {
17040 for (unsigned I = 0, E = ExplicitSignature.getNumParams(); I != E; ++I) {
17041 ParmVarDecl *Param = ExplicitSignature.getParam(I);
17042 if (Param->getIdentifier() == nullptr && !Param->isImplicit() &&
17043 !Param->isInvalidDecl() && !getLangOpts().CPlusPlus) {
17044 // Diagnose this as an extension in C17 and earlier.
17045 if (!getLangOpts().C23)
17046 Diag(Param->getLocation(), diag::ext_parameter_name_omitted_c23);
17047 }
17048 Params.push_back(Param);
17049 }
17050
17051 // Fake up parameter variables if we have a typedef, like
17052 // ^ fntype { ... }
17053 } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
17054 for (const auto &I : Fn->param_types()) {
17055 ParmVarDecl *Param = BuildParmVarDeclForTypedef(
17056 CurBlock->TheDecl, ParamInfo.getBeginLoc(), I);
17057 Params.push_back(Param);
17058 }
17059 }
17060
17061 // Set the parameters on the block decl.
17062 if (!Params.empty()) {
17063 CurBlock->TheDecl->setParams(Params);
17064 CheckParmsForFunctionDef(CurBlock->TheDecl->parameters(),
17065 /*CheckParameterNames=*/false);
17066 }
17067
17068 // Finally we can process decl attributes.
17069 ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
17070
17071 // Put the parameter variables in scope.
17072 for (auto *AI : CurBlock->TheDecl->parameters()) {
17073 AI->setOwningFunction(CurBlock->TheDecl);
17074
17075 // If this has an identifier, add it to the scope stack.
17076 if (AI->getIdentifier()) {
17077 CheckShadow(CurBlock->TheScope, AI);
17078
17079 PushOnScopeChains(AI, CurBlock->TheScope);
17080 }
17081
17082 if (AI->isInvalidDecl())
17083 CurBlock->TheDecl->setInvalidDecl();
17084 }
17085 }
17086
17087 /// ActOnBlockError - If there is an error parsing a block, this callback
17088 /// is invoked to pop the information about the block from the action impl.
ActOnBlockError(SourceLocation CaretLoc,Scope * CurScope)17089 void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
17090 // Leave the expression-evaluation context.
17091 DiscardCleanupsInEvaluationContext();
17092 PopExpressionEvaluationContext();
17093
17094 // Pop off CurBlock, handle nested blocks.
17095 PopDeclContext();
17096 PopFunctionScopeInfo();
17097 }
17098
17099 /// ActOnBlockStmtExpr - This is called when the body of a block statement
17100 /// literal was successfully completed. ^(int x){...}
ActOnBlockStmtExpr(SourceLocation CaretLoc,Stmt * Body,Scope * CurScope)17101 ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
17102 Stmt *Body, Scope *CurScope) {
17103 // If blocks are disabled, emit an error.
17104 if (!LangOpts.Blocks)
17105 Diag(CaretLoc, diag::err_blocks_disable) << LangOpts.OpenCL;
17106
17107 // Leave the expression-evaluation context.
17108 if (hasAnyUnrecoverableErrorsInThisFunction())
17109 DiscardCleanupsInEvaluationContext();
17110 assert(!Cleanup.exprNeedsCleanups() &&
17111 "cleanups within block not correctly bound!");
17112 PopExpressionEvaluationContext();
17113
17114 BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
17115 BlockDecl *BD = BSI->TheDecl;
17116
17117 if (BSI->HasImplicitReturnType)
17118 deduceClosureReturnType(*BSI);
17119
17120 QualType RetTy = Context.VoidTy;
17121 if (!BSI->ReturnType.isNull())
17122 RetTy = BSI->ReturnType;
17123
17124 bool NoReturn = BD->hasAttr<NoReturnAttr>();
17125 QualType BlockTy;
17126
17127 // If the user wrote a function type in some form, try to use that.
17128 if (!BSI->FunctionType.isNull()) {
17129 const FunctionType *FTy = BSI->FunctionType->castAs<FunctionType>();
17130
17131 FunctionType::ExtInfo Ext = FTy->getExtInfo();
17132 if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
17133
17134 // Turn protoless block types into nullary block types.
17135 if (isa<FunctionNoProtoType>(FTy)) {
17136 FunctionProtoType::ExtProtoInfo EPI;
17137 EPI.ExtInfo = Ext;
17138 BlockTy = Context.getFunctionType(RetTy, std::nullopt, EPI);
17139
17140 // Otherwise, if we don't need to change anything about the function type,
17141 // preserve its sugar structure.
17142 } else if (FTy->getReturnType() == RetTy &&
17143 (!NoReturn || FTy->getNoReturnAttr())) {
17144 BlockTy = BSI->FunctionType;
17145
17146 // Otherwise, make the minimal modifications to the function type.
17147 } else {
17148 const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
17149 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
17150 EPI.TypeQuals = Qualifiers();
17151 EPI.ExtInfo = Ext;
17152 BlockTy = Context.getFunctionType(RetTy, FPT->getParamTypes(), EPI);
17153 }
17154
17155 // If we don't have a function type, just build one from nothing.
17156 } else {
17157 FunctionProtoType::ExtProtoInfo EPI;
17158 EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn);
17159 BlockTy = Context.getFunctionType(RetTy, std::nullopt, EPI);
17160 }
17161
17162 DiagnoseUnusedParameters(BD->parameters());
17163 BlockTy = Context.getBlockPointerType(BlockTy);
17164
17165 // If needed, diagnose invalid gotos and switches in the block.
17166 if (getCurFunction()->NeedsScopeChecking() &&
17167 !PP.isCodeCompletionEnabled())
17168 DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
17169
17170 BD->setBody(cast<CompoundStmt>(Body));
17171
17172 if (Body && getCurFunction()->HasPotentialAvailabilityViolations)
17173 DiagnoseUnguardedAvailabilityViolations(BD);
17174
17175 // Try to apply the named return value optimization. We have to check again
17176 // if we can do this, though, because blocks keep return statements around
17177 // to deduce an implicit return type.
17178 if (getLangOpts().CPlusPlus && RetTy->isRecordType() &&
17179 !BD->isDependentContext())
17180 computeNRVO(Body, BSI);
17181
17182 if (RetTy.hasNonTrivialToPrimitiveDestructCUnion() ||
17183 RetTy.hasNonTrivialToPrimitiveCopyCUnion())
17184 checkNonTrivialCUnion(RetTy, BD->getCaretLocation(), NTCUC_FunctionReturn,
17185 NTCUK_Destruct|NTCUK_Copy);
17186
17187 PopDeclContext();
17188
17189 // Set the captured variables on the block.
17190 SmallVector<BlockDecl::Capture, 4> Captures;
17191 for (Capture &Cap : BSI->Captures) {
17192 if (Cap.isInvalid() || Cap.isThisCapture())
17193 continue;
17194 // Cap.getVariable() is always a VarDecl because
17195 // blocks cannot capture structured bindings or other ValueDecl kinds.
17196 auto *Var = cast<VarDecl>(Cap.getVariable());
17197 Expr *CopyExpr = nullptr;
17198 if (getLangOpts().CPlusPlus && Cap.isCopyCapture()) {
17199 if (const RecordType *Record =
17200 Cap.getCaptureType()->getAs<RecordType>()) {
17201 // The capture logic needs the destructor, so make sure we mark it.
17202 // Usually this is unnecessary because most local variables have
17203 // their destructors marked at declaration time, but parameters are
17204 // an exception because it's technically only the call site that
17205 // actually requires the destructor.
17206 if (isa<ParmVarDecl>(Var))
17207 FinalizeVarWithDestructor(Var, Record);
17208
17209 // Enter a separate potentially-evaluated context while building block
17210 // initializers to isolate their cleanups from those of the block
17211 // itself.
17212 // FIXME: Is this appropriate even when the block itself occurs in an
17213 // unevaluated operand?
17214 EnterExpressionEvaluationContext EvalContext(
17215 *this, ExpressionEvaluationContext::PotentiallyEvaluated);
17216
17217 SourceLocation Loc = Cap.getLocation();
17218
17219 ExprResult Result = BuildDeclarationNameExpr(
17220 CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var);
17221
17222 // According to the blocks spec, the capture of a variable from
17223 // the stack requires a const copy constructor. This is not true
17224 // of the copy/move done to move a __block variable to the heap.
17225 if (!Result.isInvalid() &&
17226 !Result.get()->getType().isConstQualified()) {
17227 Result = ImpCastExprToType(Result.get(),
17228 Result.get()->getType().withConst(),
17229 CK_NoOp, VK_LValue);
17230 }
17231
17232 if (!Result.isInvalid()) {
17233 Result = PerformCopyInitialization(
17234 InitializedEntity::InitializeBlock(Var->getLocation(),
17235 Cap.getCaptureType()),
17236 Loc, Result.get());
17237 }
17238
17239 // Build a full-expression copy expression if initialization
17240 // succeeded and used a non-trivial constructor. Recover from
17241 // errors by pretending that the copy isn't necessary.
17242 if (!Result.isInvalid() &&
17243 !cast<CXXConstructExpr>(Result.get())->getConstructor()
17244 ->isTrivial()) {
17245 Result = MaybeCreateExprWithCleanups(Result);
17246 CopyExpr = Result.get();
17247 }
17248 }
17249 }
17250
17251 BlockDecl::Capture NewCap(Var, Cap.isBlockCapture(), Cap.isNested(),
17252 CopyExpr);
17253 Captures.push_back(NewCap);
17254 }
17255 BD->setCaptures(Context, Captures, BSI->CXXThisCaptureIndex != 0);
17256
17257 // Pop the block scope now but keep it alive to the end of this function.
17258 AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
17259 PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo(&WP, BD, BlockTy);
17260
17261 BlockExpr *Result = new (Context) BlockExpr(BD, BlockTy);
17262
17263 // If the block isn't obviously global, i.e. it captures anything at
17264 // all, then we need to do a few things in the surrounding context:
17265 if (Result->getBlockDecl()->hasCaptures()) {
17266 // First, this expression has a new cleanup object.
17267 ExprCleanupObjects.push_back(Result->getBlockDecl());
17268 Cleanup.setExprNeedsCleanups(true);
17269
17270 // It also gets a branch-protected scope if any of the captured
17271 // variables needs destruction.
17272 for (const auto &CI : Result->getBlockDecl()->captures()) {
17273 const VarDecl *var = CI.getVariable();
17274 if (var->getType().isDestructedType() != QualType::DK_none) {
17275 setFunctionHasBranchProtectedScope();
17276 break;
17277 }
17278 }
17279 }
17280
17281 if (getCurFunction())
17282 getCurFunction()->addBlock(BD);
17283
17284 if (BD->isInvalidDecl())
17285 return CreateRecoveryExpr(Result->getBeginLoc(), Result->getEndLoc(),
17286 {Result}, Result->getType());
17287 return Result;
17288 }
17289
ActOnVAArg(SourceLocation BuiltinLoc,Expr * E,ParsedType Ty,SourceLocation RPLoc)17290 ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc, Expr *E, ParsedType Ty,
17291 SourceLocation RPLoc) {
17292 TypeSourceInfo *TInfo;
17293 GetTypeFromParser(Ty, &TInfo);
17294 return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc);
17295 }
17296
BuildVAArgExpr(SourceLocation BuiltinLoc,Expr * E,TypeSourceInfo * TInfo,SourceLocation RPLoc)17297 ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
17298 Expr *E, TypeSourceInfo *TInfo,
17299 SourceLocation RPLoc) {
17300 Expr *OrigExpr = E;
17301 bool IsMS = false;
17302
17303 // CUDA device code does not support varargs.
17304 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
17305 if (const FunctionDecl *F = dyn_cast<FunctionDecl>(CurContext)) {
17306 CUDAFunctionTarget T = IdentifyCUDATarget(F);
17307 if (T == CFT_Global || T == CFT_Device || T == CFT_HostDevice)
17308 return ExprError(Diag(E->getBeginLoc(), diag::err_va_arg_in_device));
17309 }
17310 }
17311
17312 // NVPTX does not support va_arg expression.
17313 if (getLangOpts().OpenMP && getLangOpts().OpenMPIsTargetDevice &&
17314 Context.getTargetInfo().getTriple().isNVPTX())
17315 targetDiag(E->getBeginLoc(), diag::err_va_arg_in_device);
17316
17317 // It might be a __builtin_ms_va_list. (But don't ever mark a va_arg()
17318 // as Microsoft ABI on an actual Microsoft platform, where
17319 // __builtin_ms_va_list and __builtin_va_list are the same.)
17320 if (!E->isTypeDependent() && Context.getTargetInfo().hasBuiltinMSVaList() &&
17321 Context.getTargetInfo().getBuiltinVaListKind() != TargetInfo::CharPtrBuiltinVaList) {
17322 QualType MSVaListType = Context.getBuiltinMSVaListType();
17323 if (Context.hasSameType(MSVaListType, E->getType())) {
17324 if (CheckForModifiableLvalue(E, BuiltinLoc, *this))
17325 return ExprError();
17326 IsMS = true;
17327 }
17328 }
17329
17330 // Get the va_list type
17331 QualType VaListType = Context.getBuiltinVaListType();
17332 if (!IsMS) {
17333 if (VaListType->isArrayType()) {
17334 // Deal with implicit array decay; for example, on x86-64,
17335 // va_list is an array, but it's supposed to decay to
17336 // a pointer for va_arg.
17337 VaListType = Context.getArrayDecayedType(VaListType);
17338 // Make sure the input expression also decays appropriately.
17339 ExprResult Result = UsualUnaryConversions(E);
17340 if (Result.isInvalid())
17341 return ExprError();
17342 E = Result.get();
17343 } else if (VaListType->isRecordType() && getLangOpts().CPlusPlus) {
17344 // If va_list is a record type and we are compiling in C++ mode,
17345 // check the argument using reference binding.
17346 InitializedEntity Entity = InitializedEntity::InitializeParameter(
17347 Context, Context.getLValueReferenceType(VaListType), false);
17348 ExprResult Init = PerformCopyInitialization(Entity, SourceLocation(), E);
17349 if (Init.isInvalid())
17350 return ExprError();
17351 E = Init.getAs<Expr>();
17352 } else {
17353 // Otherwise, the va_list argument must be an l-value because
17354 // it is modified by va_arg.
17355 if (!E->isTypeDependent() &&
17356 CheckForModifiableLvalue(E, BuiltinLoc, *this))
17357 return ExprError();
17358 }
17359 }
17360
17361 if (!IsMS && !E->isTypeDependent() &&
17362 !Context.hasSameType(VaListType, E->getType()))
17363 return ExprError(
17364 Diag(E->getBeginLoc(),
17365 diag::err_first_argument_to_va_arg_not_of_type_va_list)
17366 << OrigExpr->getType() << E->getSourceRange());
17367
17368 if (!TInfo->getType()->isDependentType()) {
17369 if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(),
17370 diag::err_second_parameter_to_va_arg_incomplete,
17371 TInfo->getTypeLoc()))
17372 return ExprError();
17373
17374 if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(),
17375 TInfo->getType(),
17376 diag::err_second_parameter_to_va_arg_abstract,
17377 TInfo->getTypeLoc()))
17378 return ExprError();
17379
17380 if (!TInfo->getType().isPODType(Context)) {
17381 Diag(TInfo->getTypeLoc().getBeginLoc(),
17382 TInfo->getType()->isObjCLifetimeType()
17383 ? diag::warn_second_parameter_to_va_arg_ownership_qualified
17384 : diag::warn_second_parameter_to_va_arg_not_pod)
17385 << TInfo->getType()
17386 << TInfo->getTypeLoc().getSourceRange();
17387 }
17388
17389 // Check for va_arg where arguments of the given type will be promoted
17390 // (i.e. this va_arg is guaranteed to have undefined behavior).
17391 QualType PromoteType;
17392 if (Context.isPromotableIntegerType(TInfo->getType())) {
17393 PromoteType = Context.getPromotedIntegerType(TInfo->getType());
17394 // [cstdarg.syn]p1 defers the C++ behavior to what the C standard says,
17395 // and C23 7.16.1.1p2 says, in part:
17396 // If type is not compatible with the type of the actual next argument
17397 // (as promoted according to the default argument promotions), the
17398 // behavior is undefined, except for the following cases:
17399 // - both types are pointers to qualified or unqualified versions of
17400 // compatible types;
17401 // - one type is compatible with a signed integer type, the other
17402 // type is compatible with the corresponding unsigned integer type,
17403 // and the value is representable in both types;
17404 // - one type is pointer to qualified or unqualified void and the
17405 // other is a pointer to a qualified or unqualified character type;
17406 // - or, the type of the next argument is nullptr_t and type is a
17407 // pointer type that has the same representation and alignment
17408 // requirements as a pointer to a character type.
17409 // Given that type compatibility is the primary requirement (ignoring
17410 // qualifications), you would think we could call typesAreCompatible()
17411 // directly to test this. However, in C++, that checks for *same type*,
17412 // which causes false positives when passing an enumeration type to
17413 // va_arg. Instead, get the underlying type of the enumeration and pass
17414 // that.
17415 QualType UnderlyingType = TInfo->getType();
17416 if (const auto *ET = UnderlyingType->getAs<EnumType>())
17417 UnderlyingType = ET->getDecl()->getIntegerType();
17418 if (Context.typesAreCompatible(PromoteType, UnderlyingType,
17419 /*CompareUnqualified*/ true))
17420 PromoteType = QualType();
17421
17422 // If the types are still not compatible, we need to test whether the
17423 // promoted type and the underlying type are the same except for
17424 // signedness. Ask the AST for the correctly corresponding type and see
17425 // if that's compatible.
17426 if (!PromoteType.isNull() && !UnderlyingType->isBooleanType() &&
17427 PromoteType->isUnsignedIntegerType() !=
17428 UnderlyingType->isUnsignedIntegerType()) {
17429 UnderlyingType =
17430 UnderlyingType->isUnsignedIntegerType()
17431 ? Context.getCorrespondingSignedType(UnderlyingType)
17432 : Context.getCorrespondingUnsignedType(UnderlyingType);
17433 if (Context.typesAreCompatible(PromoteType, UnderlyingType,
17434 /*CompareUnqualified*/ true))
17435 PromoteType = QualType();
17436 }
17437 }
17438 if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float))
17439 PromoteType = Context.DoubleTy;
17440 if (!PromoteType.isNull())
17441 DiagRuntimeBehavior(TInfo->getTypeLoc().getBeginLoc(), E,
17442 PDiag(diag::warn_second_parameter_to_va_arg_never_compatible)
17443 << TInfo->getType()
17444 << PromoteType
17445 << TInfo->getTypeLoc().getSourceRange());
17446 }
17447
17448 QualType T = TInfo->getType().getNonLValueExprType(Context);
17449 return new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T, IsMS);
17450 }
17451
ActOnGNUNullExpr(SourceLocation TokenLoc)17452 ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
17453 // The type of __null will be int or long, depending on the size of
17454 // pointers on the target.
17455 QualType Ty;
17456 unsigned pw = Context.getTargetInfo().getPointerWidth(LangAS::Default);
17457 if (pw == Context.getTargetInfo().getIntWidth())
17458 Ty = Context.IntTy;
17459 else if (pw == Context.getTargetInfo().getLongWidth())
17460 Ty = Context.LongTy;
17461 else if (pw == Context.getTargetInfo().getLongLongWidth())
17462 Ty = Context.LongLongTy;
17463 else {
17464 llvm_unreachable("I don't know size of pointer!");
17465 }
17466
17467 return new (Context) GNUNullExpr(Ty, TokenLoc);
17468 }
17469
LookupStdSourceLocationImpl(Sema & S,SourceLocation Loc)17470 static CXXRecordDecl *LookupStdSourceLocationImpl(Sema &S, SourceLocation Loc) {
17471 CXXRecordDecl *ImplDecl = nullptr;
17472
17473 // Fetch the std::source_location::__impl decl.
17474 if (NamespaceDecl *Std = S.getStdNamespace()) {
17475 LookupResult ResultSL(S, &S.PP.getIdentifierTable().get("source_location"),
17476 Loc, Sema::LookupOrdinaryName);
17477 if (S.LookupQualifiedName(ResultSL, Std)) {
17478 if (auto *SLDecl = ResultSL.getAsSingle<RecordDecl>()) {
17479 LookupResult ResultImpl(S, &S.PP.getIdentifierTable().get("__impl"),
17480 Loc, Sema::LookupOrdinaryName);
17481 if ((SLDecl->isCompleteDefinition() || SLDecl->isBeingDefined()) &&
17482 S.LookupQualifiedName(ResultImpl, SLDecl)) {
17483 ImplDecl = ResultImpl.getAsSingle<CXXRecordDecl>();
17484 }
17485 }
17486 }
17487 }
17488
17489 if (!ImplDecl || !ImplDecl->isCompleteDefinition()) {
17490 S.Diag(Loc, diag::err_std_source_location_impl_not_found);
17491 return nullptr;
17492 }
17493
17494 // Verify that __impl is a trivial struct type, with no base classes, and with
17495 // only the four expected fields.
17496 if (ImplDecl->isUnion() || !ImplDecl->isStandardLayout() ||
17497 ImplDecl->getNumBases() != 0) {
17498 S.Diag(Loc, diag::err_std_source_location_impl_malformed);
17499 return nullptr;
17500 }
17501
17502 unsigned Count = 0;
17503 for (FieldDecl *F : ImplDecl->fields()) {
17504 StringRef Name = F->getName();
17505
17506 if (Name == "_M_file_name") {
17507 if (F->getType() !=
17508 S.Context.getPointerType(S.Context.CharTy.withConst()))
17509 break;
17510 Count++;
17511 } else if (Name == "_M_function_name") {
17512 if (F->getType() !=
17513 S.Context.getPointerType(S.Context.CharTy.withConst()))
17514 break;
17515 Count++;
17516 } else if (Name == "_M_line") {
17517 if (!F->getType()->isIntegerType())
17518 break;
17519 Count++;
17520 } else if (Name == "_M_column") {
17521 if (!F->getType()->isIntegerType())
17522 break;
17523 Count++;
17524 } else {
17525 Count = 100; // invalid
17526 break;
17527 }
17528 }
17529 if (Count != 4) {
17530 S.Diag(Loc, diag::err_std_source_location_impl_malformed);
17531 return nullptr;
17532 }
17533
17534 return ImplDecl;
17535 }
17536
ActOnSourceLocExpr(SourceLocIdentKind Kind,SourceLocation BuiltinLoc,SourceLocation RPLoc)17537 ExprResult Sema::ActOnSourceLocExpr(SourceLocIdentKind Kind,
17538 SourceLocation BuiltinLoc,
17539 SourceLocation RPLoc) {
17540 QualType ResultTy;
17541 switch (Kind) {
17542 case SourceLocIdentKind::File:
17543 case SourceLocIdentKind::FileName:
17544 case SourceLocIdentKind::Function:
17545 case SourceLocIdentKind::FuncSig: {
17546 QualType ArrTy = Context.getStringLiteralArrayType(Context.CharTy, 0);
17547 ResultTy =
17548 Context.getPointerType(ArrTy->getAsArrayTypeUnsafe()->getElementType());
17549 break;
17550 }
17551 case SourceLocIdentKind::Line:
17552 case SourceLocIdentKind::Column:
17553 ResultTy = Context.UnsignedIntTy;
17554 break;
17555 case SourceLocIdentKind::SourceLocStruct:
17556 if (!StdSourceLocationImplDecl) {
17557 StdSourceLocationImplDecl =
17558 LookupStdSourceLocationImpl(*this, BuiltinLoc);
17559 if (!StdSourceLocationImplDecl)
17560 return ExprError();
17561 }
17562 ResultTy = Context.getPointerType(
17563 Context.getRecordType(StdSourceLocationImplDecl).withConst());
17564 break;
17565 }
17566
17567 return BuildSourceLocExpr(Kind, ResultTy, BuiltinLoc, RPLoc, CurContext);
17568 }
17569
BuildSourceLocExpr(SourceLocIdentKind Kind,QualType ResultTy,SourceLocation BuiltinLoc,SourceLocation RPLoc,DeclContext * ParentContext)17570 ExprResult Sema::BuildSourceLocExpr(SourceLocIdentKind Kind, QualType ResultTy,
17571 SourceLocation BuiltinLoc,
17572 SourceLocation RPLoc,
17573 DeclContext *ParentContext) {
17574 return new (Context)
17575 SourceLocExpr(Context, Kind, ResultTy, BuiltinLoc, RPLoc, ParentContext);
17576 }
17577
CheckConversionToObjCLiteral(QualType DstType,Expr * & Exp,bool Diagnose)17578 bool Sema::CheckConversionToObjCLiteral(QualType DstType, Expr *&Exp,
17579 bool Diagnose) {
17580 if (!getLangOpts().ObjC)
17581 return false;
17582
17583 const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
17584 if (!PT)
17585 return false;
17586 const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
17587
17588 // Ignore any parens, implicit casts (should only be
17589 // array-to-pointer decays), and not-so-opaque values. The last is
17590 // important for making this trigger for property assignments.
17591 Expr *SrcExpr = Exp->IgnoreParenImpCasts();
17592 if (OpaqueValueExpr *OV = dyn_cast<OpaqueValueExpr>(SrcExpr))
17593 if (OV->getSourceExpr())
17594 SrcExpr = OV->getSourceExpr()->IgnoreParenImpCasts();
17595
17596 if (auto *SL = dyn_cast<StringLiteral>(SrcExpr)) {
17597 if (!PT->isObjCIdType() &&
17598 !(ID && ID->getIdentifier()->isStr("NSString")))
17599 return false;
17600 if (!SL->isOrdinary())
17601 return false;
17602
17603 if (Diagnose) {
17604 Diag(SL->getBeginLoc(), diag::err_missing_atsign_prefix)
17605 << /*string*/0 << FixItHint::CreateInsertion(SL->getBeginLoc(), "@");
17606 Exp = BuildObjCStringLiteral(SL->getBeginLoc(), SL).get();
17607 }
17608 return true;
17609 }
17610
17611 if ((isa<IntegerLiteral>(SrcExpr) || isa<CharacterLiteral>(SrcExpr) ||
17612 isa<FloatingLiteral>(SrcExpr) || isa<ObjCBoolLiteralExpr>(SrcExpr) ||
17613 isa<CXXBoolLiteralExpr>(SrcExpr)) &&
17614 !SrcExpr->isNullPointerConstant(
17615 getASTContext(), Expr::NPC_NeverValueDependent)) {
17616 if (!ID || !ID->getIdentifier()->isStr("NSNumber"))
17617 return false;
17618 if (Diagnose) {
17619 Diag(SrcExpr->getBeginLoc(), diag::err_missing_atsign_prefix)
17620 << /*number*/1
17621 << FixItHint::CreateInsertion(SrcExpr->getBeginLoc(), "@");
17622 Expr *NumLit =
17623 BuildObjCNumericLiteral(SrcExpr->getBeginLoc(), SrcExpr).get();
17624 if (NumLit)
17625 Exp = NumLit;
17626 }
17627 return true;
17628 }
17629
17630 return false;
17631 }
17632
maybeDiagnoseAssignmentToFunction(Sema & S,QualType DstType,const Expr * SrcExpr)17633 static bool maybeDiagnoseAssignmentToFunction(Sema &S, QualType DstType,
17634 const Expr *SrcExpr) {
17635 if (!DstType->isFunctionPointerType() ||
17636 !SrcExpr->getType()->isFunctionType())
17637 return false;
17638
17639 auto *DRE = dyn_cast<DeclRefExpr>(SrcExpr->IgnoreParenImpCasts());
17640 if (!DRE)
17641 return false;
17642
17643 auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl());
17644 if (!FD)
17645 return false;
17646
17647 return !S.checkAddressOfFunctionIsAvailable(FD,
17648 /*Complain=*/true,
17649 SrcExpr->getBeginLoc());
17650 }
17651
DiagnoseAssignmentResult(AssignConvertType ConvTy,SourceLocation Loc,QualType DstType,QualType SrcType,Expr * SrcExpr,AssignmentAction Action,bool * Complained)17652 bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
17653 SourceLocation Loc,
17654 QualType DstType, QualType SrcType,
17655 Expr *SrcExpr, AssignmentAction Action,
17656 bool *Complained) {
17657 if (Complained)
17658 *Complained = false;
17659
17660 // Decode the result (notice that AST's are still created for extensions).
17661 bool CheckInferredResultType = false;
17662 bool isInvalid = false;
17663 unsigned DiagKind = 0;
17664 ConversionFixItGenerator ConvHints;
17665 bool MayHaveConvFixit = false;
17666 bool MayHaveFunctionDiff = false;
17667 const ObjCInterfaceDecl *IFace = nullptr;
17668 const ObjCProtocolDecl *PDecl = nullptr;
17669
17670 switch (ConvTy) {
17671 case Compatible:
17672 DiagnoseAssignmentEnum(DstType, SrcType, SrcExpr);
17673 return false;
17674
17675 case PointerToInt:
17676 if (getLangOpts().CPlusPlus) {
17677 DiagKind = diag::err_typecheck_convert_pointer_int;
17678 isInvalid = true;
17679 } else {
17680 DiagKind = diag::ext_typecheck_convert_pointer_int;
17681 }
17682 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
17683 MayHaveConvFixit = true;
17684 break;
17685 case IntToPointer:
17686 if (getLangOpts().CPlusPlus) {
17687 DiagKind = diag::err_typecheck_convert_int_pointer;
17688 isInvalid = true;
17689 } else {
17690 DiagKind = diag::ext_typecheck_convert_int_pointer;
17691 }
17692 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
17693 MayHaveConvFixit = true;
17694 break;
17695 case IncompatibleFunctionPointerStrict:
17696 DiagKind =
17697 diag::warn_typecheck_convert_incompatible_function_pointer_strict;
17698 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
17699 MayHaveConvFixit = true;
17700 break;
17701 case IncompatibleFunctionPointer:
17702 if (getLangOpts().CPlusPlus) {
17703 DiagKind = diag::err_typecheck_convert_incompatible_function_pointer;
17704 isInvalid = true;
17705 } else {
17706 DiagKind = diag::ext_typecheck_convert_incompatible_function_pointer;
17707 }
17708 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
17709 MayHaveConvFixit = true;
17710 break;
17711 case IncompatiblePointer:
17712 if (Action == AA_Passing_CFAudited) {
17713 DiagKind = diag::err_arc_typecheck_convert_incompatible_pointer;
17714 } else if (getLangOpts().CPlusPlus) {
17715 DiagKind = diag::err_typecheck_convert_incompatible_pointer;
17716 isInvalid = true;
17717 } else {
17718 DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
17719 }
17720 CheckInferredResultType = DstType->isObjCObjectPointerType() &&
17721 SrcType->isObjCObjectPointerType();
17722 if (!CheckInferredResultType) {
17723 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
17724 } else if (CheckInferredResultType) {
17725 SrcType = SrcType.getUnqualifiedType();
17726 DstType = DstType.getUnqualifiedType();
17727 }
17728 MayHaveConvFixit = true;
17729 break;
17730 case IncompatiblePointerSign:
17731 if (getLangOpts().CPlusPlus) {
17732 DiagKind = diag::err_typecheck_convert_incompatible_pointer_sign;
17733 isInvalid = true;
17734 } else {
17735 DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
17736 }
17737 break;
17738 case FunctionVoidPointer:
17739 if (getLangOpts().CPlusPlus) {
17740 DiagKind = diag::err_typecheck_convert_pointer_void_func;
17741 isInvalid = true;
17742 } else {
17743 DiagKind = diag::ext_typecheck_convert_pointer_void_func;
17744 }
17745 break;
17746 case IncompatiblePointerDiscardsQualifiers: {
17747 // Perform array-to-pointer decay if necessary.
17748 if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType);
17749
17750 isInvalid = true;
17751
17752 Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
17753 Qualifiers rhq = DstType->getPointeeType().getQualifiers();
17754 if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
17755 DiagKind = diag::err_typecheck_incompatible_address_space;
17756 break;
17757
17758 } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) {
17759 DiagKind = diag::err_typecheck_incompatible_ownership;
17760 break;
17761 }
17762
17763 llvm_unreachable("unknown error case for discarding qualifiers!");
17764 // fallthrough
17765 }
17766 case CompatiblePointerDiscardsQualifiers:
17767 // If the qualifiers lost were because we were applying the
17768 // (deprecated) C++ conversion from a string literal to a char*
17769 // (or wchar_t*), then there was no error (C++ 4.2p2). FIXME:
17770 // Ideally, this check would be performed in
17771 // checkPointerTypesForAssignment. However, that would require a
17772 // bit of refactoring (so that the second argument is an
17773 // expression, rather than a type), which should be done as part
17774 // of a larger effort to fix checkPointerTypesForAssignment for
17775 // C++ semantics.
17776 if (getLangOpts().CPlusPlus &&
17777 IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
17778 return false;
17779 if (getLangOpts().CPlusPlus) {
17780 DiagKind = diag::err_typecheck_convert_discards_qualifiers;
17781 isInvalid = true;
17782 } else {
17783 DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
17784 }
17785
17786 break;
17787 case IncompatibleNestedPointerQualifiers:
17788 if (getLangOpts().CPlusPlus) {
17789 isInvalid = true;
17790 DiagKind = diag::err_nested_pointer_qualifier_mismatch;
17791 } else {
17792 DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
17793 }
17794 break;
17795 case IncompatibleNestedPointerAddressSpaceMismatch:
17796 DiagKind = diag::err_typecheck_incompatible_nested_address_space;
17797 isInvalid = true;
17798 break;
17799 case IntToBlockPointer:
17800 DiagKind = diag::err_int_to_block_pointer;
17801 isInvalid = true;
17802 break;
17803 case IncompatibleBlockPointer:
17804 DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
17805 isInvalid = true;
17806 break;
17807 case IncompatibleObjCQualifiedId: {
17808 if (SrcType->isObjCQualifiedIdType()) {
17809 const ObjCObjectPointerType *srcOPT =
17810 SrcType->castAs<ObjCObjectPointerType>();
17811 for (auto *srcProto : srcOPT->quals()) {
17812 PDecl = srcProto;
17813 break;
17814 }
17815 if (const ObjCInterfaceType *IFaceT =
17816 DstType->castAs<ObjCObjectPointerType>()->getInterfaceType())
17817 IFace = IFaceT->getDecl();
17818 }
17819 else if (DstType->isObjCQualifiedIdType()) {
17820 const ObjCObjectPointerType *dstOPT =
17821 DstType->castAs<ObjCObjectPointerType>();
17822 for (auto *dstProto : dstOPT->quals()) {
17823 PDecl = dstProto;
17824 break;
17825 }
17826 if (const ObjCInterfaceType *IFaceT =
17827 SrcType->castAs<ObjCObjectPointerType>()->getInterfaceType())
17828 IFace = IFaceT->getDecl();
17829 }
17830 if (getLangOpts().CPlusPlus) {
17831 DiagKind = diag::err_incompatible_qualified_id;
17832 isInvalid = true;
17833 } else {
17834 DiagKind = diag::warn_incompatible_qualified_id;
17835 }
17836 break;
17837 }
17838 case IncompatibleVectors:
17839 if (getLangOpts().CPlusPlus) {
17840 DiagKind = diag::err_incompatible_vectors;
17841 isInvalid = true;
17842 } else {
17843 DiagKind = diag::warn_incompatible_vectors;
17844 }
17845 break;
17846 case IncompatibleObjCWeakRef:
17847 DiagKind = diag::err_arc_weak_unavailable_assign;
17848 isInvalid = true;
17849 break;
17850 case Incompatible:
17851 if (maybeDiagnoseAssignmentToFunction(*this, DstType, SrcExpr)) {
17852 if (Complained)
17853 *Complained = true;
17854 return true;
17855 }
17856
17857 DiagKind = diag::err_typecheck_convert_incompatible;
17858 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
17859 MayHaveConvFixit = true;
17860 isInvalid = true;
17861 MayHaveFunctionDiff = true;
17862 break;
17863 }
17864
17865 QualType FirstType, SecondType;
17866 switch (Action) {
17867 case AA_Assigning:
17868 case AA_Initializing:
17869 // The destination type comes first.
17870 FirstType = DstType;
17871 SecondType = SrcType;
17872 break;
17873
17874 case AA_Returning:
17875 case AA_Passing:
17876 case AA_Passing_CFAudited:
17877 case AA_Converting:
17878 case AA_Sending:
17879 case AA_Casting:
17880 // The source type comes first.
17881 FirstType = SrcType;
17882 SecondType = DstType;
17883 break;
17884 }
17885
17886 PartialDiagnostic FDiag = PDiag(DiagKind);
17887 AssignmentAction ActionForDiag = Action;
17888 if (Action == AA_Passing_CFAudited)
17889 ActionForDiag = AA_Passing;
17890
17891 FDiag << FirstType << SecondType << ActionForDiag
17892 << SrcExpr->getSourceRange();
17893
17894 if (DiagKind == diag::ext_typecheck_convert_incompatible_pointer_sign ||
17895 DiagKind == diag::err_typecheck_convert_incompatible_pointer_sign) {
17896 auto isPlainChar = [](const clang::Type *Type) {
17897 return Type->isSpecificBuiltinType(BuiltinType::Char_S) ||
17898 Type->isSpecificBuiltinType(BuiltinType::Char_U);
17899 };
17900 FDiag << (isPlainChar(FirstType->getPointeeOrArrayElementType()) ||
17901 isPlainChar(SecondType->getPointeeOrArrayElementType()));
17902 }
17903
17904 // If we can fix the conversion, suggest the FixIts.
17905 if (!ConvHints.isNull()) {
17906 for (FixItHint &H : ConvHints.Hints)
17907 FDiag << H;
17908 }
17909
17910 if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); }
17911
17912 if (MayHaveFunctionDiff)
17913 HandleFunctionTypeMismatch(FDiag, SecondType, FirstType);
17914
17915 Diag(Loc, FDiag);
17916 if ((DiagKind == diag::warn_incompatible_qualified_id ||
17917 DiagKind == diag::err_incompatible_qualified_id) &&
17918 PDecl && IFace && !IFace->hasDefinition())
17919 Diag(IFace->getLocation(), diag::note_incomplete_class_and_qualified_id)
17920 << IFace << PDecl;
17921
17922 if (SecondType == Context.OverloadTy)
17923 NoteAllOverloadCandidates(OverloadExpr::find(SrcExpr).Expression,
17924 FirstType, /*TakingAddress=*/true);
17925
17926 if (CheckInferredResultType)
17927 EmitRelatedResultTypeNote(SrcExpr);
17928
17929 if (Action == AA_Returning && ConvTy == IncompatiblePointer)
17930 EmitRelatedResultTypeNoteForReturn(DstType);
17931
17932 if (Complained)
17933 *Complained = true;
17934 return isInvalid;
17935 }
17936
VerifyIntegerConstantExpression(Expr * E,llvm::APSInt * Result,AllowFoldKind CanFold)17937 ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
17938 llvm::APSInt *Result,
17939 AllowFoldKind CanFold) {
17940 class SimpleICEDiagnoser : public VerifyICEDiagnoser {
17941 public:
17942 SemaDiagnosticBuilder diagnoseNotICEType(Sema &S, SourceLocation Loc,
17943 QualType T) override {
17944 return S.Diag(Loc, diag::err_ice_not_integral)
17945 << T << S.LangOpts.CPlusPlus;
17946 }
17947 SemaDiagnosticBuilder diagnoseNotICE(Sema &S, SourceLocation Loc) override {
17948 return S.Diag(Loc, diag::err_expr_not_ice) << S.LangOpts.CPlusPlus;
17949 }
17950 } Diagnoser;
17951
17952 return VerifyIntegerConstantExpression(E, Result, Diagnoser, CanFold);
17953 }
17954
VerifyIntegerConstantExpression(Expr * E,llvm::APSInt * Result,unsigned DiagID,AllowFoldKind CanFold)17955 ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
17956 llvm::APSInt *Result,
17957 unsigned DiagID,
17958 AllowFoldKind CanFold) {
17959 class IDDiagnoser : public VerifyICEDiagnoser {
17960 unsigned DiagID;
17961
17962 public:
17963 IDDiagnoser(unsigned DiagID)
17964 : VerifyICEDiagnoser(DiagID == 0), DiagID(DiagID) { }
17965
17966 SemaDiagnosticBuilder diagnoseNotICE(Sema &S, SourceLocation Loc) override {
17967 return S.Diag(Loc, DiagID);
17968 }
17969 } Diagnoser(DiagID);
17970
17971 return VerifyIntegerConstantExpression(E, Result, Diagnoser, CanFold);
17972 }
17973
17974 Sema::SemaDiagnosticBuilder
diagnoseNotICEType(Sema & S,SourceLocation Loc,QualType T)17975 Sema::VerifyICEDiagnoser::diagnoseNotICEType(Sema &S, SourceLocation Loc,
17976 QualType T) {
17977 return diagnoseNotICE(S, Loc);
17978 }
17979
17980 Sema::SemaDiagnosticBuilder
diagnoseFold(Sema & S,SourceLocation Loc)17981 Sema::VerifyICEDiagnoser::diagnoseFold(Sema &S, SourceLocation Loc) {
17982 return S.Diag(Loc, diag::ext_expr_not_ice) << S.LangOpts.CPlusPlus;
17983 }
17984
17985 ExprResult
VerifyIntegerConstantExpression(Expr * E,llvm::APSInt * Result,VerifyICEDiagnoser & Diagnoser,AllowFoldKind CanFold)17986 Sema::VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
17987 VerifyICEDiagnoser &Diagnoser,
17988 AllowFoldKind CanFold) {
17989 SourceLocation DiagLoc = E->getBeginLoc();
17990
17991 if (getLangOpts().CPlusPlus11) {
17992 // C++11 [expr.const]p5:
17993 // If an expression of literal class type is used in a context where an
17994 // integral constant expression is required, then that class type shall
17995 // have a single non-explicit conversion function to an integral or
17996 // unscoped enumeration type
17997 ExprResult Converted;
17998 class CXX11ConvertDiagnoser : public ICEConvertDiagnoser {
17999 VerifyICEDiagnoser &BaseDiagnoser;
18000 public:
18001 CXX11ConvertDiagnoser(VerifyICEDiagnoser &BaseDiagnoser)
18002 : ICEConvertDiagnoser(/*AllowScopedEnumerations*/ false,
18003 BaseDiagnoser.Suppress, true),
18004 BaseDiagnoser(BaseDiagnoser) {}
18005
18006 SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
18007 QualType T) override {
18008 return BaseDiagnoser.diagnoseNotICEType(S, Loc, T);
18009 }
18010
18011 SemaDiagnosticBuilder diagnoseIncomplete(
18012 Sema &S, SourceLocation Loc, QualType T) override {
18013 return S.Diag(Loc, diag::err_ice_incomplete_type) << T;
18014 }
18015
18016 SemaDiagnosticBuilder diagnoseExplicitConv(
18017 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
18018 return S.Diag(Loc, diag::err_ice_explicit_conversion) << T << ConvTy;
18019 }
18020
18021 SemaDiagnosticBuilder noteExplicitConv(
18022 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
18023 return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
18024 << ConvTy->isEnumeralType() << ConvTy;
18025 }
18026
18027 SemaDiagnosticBuilder diagnoseAmbiguous(
18028 Sema &S, SourceLocation Loc, QualType T) override {
18029 return S.Diag(Loc, diag::err_ice_ambiguous_conversion) << T;
18030 }
18031
18032 SemaDiagnosticBuilder noteAmbiguous(
18033 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
18034 return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
18035 << ConvTy->isEnumeralType() << ConvTy;
18036 }
18037
18038 SemaDiagnosticBuilder diagnoseConversion(
18039 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
18040 llvm_unreachable("conversion functions are permitted");
18041 }
18042 } ConvertDiagnoser(Diagnoser);
18043
18044 Converted = PerformContextualImplicitConversion(DiagLoc, E,
18045 ConvertDiagnoser);
18046 if (Converted.isInvalid())
18047 return Converted;
18048 E = Converted.get();
18049 if (!E->getType()->isIntegralOrUnscopedEnumerationType())
18050 return ExprError();
18051 } else if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
18052 // An ICE must be of integral or unscoped enumeration type.
18053 if (!Diagnoser.Suppress)
18054 Diagnoser.diagnoseNotICEType(*this, DiagLoc, E->getType())
18055 << E->getSourceRange();
18056 return ExprError();
18057 }
18058
18059 ExprResult RValueExpr = DefaultLvalueConversion(E);
18060 if (RValueExpr.isInvalid())
18061 return ExprError();
18062
18063 E = RValueExpr.get();
18064
18065 // Circumvent ICE checking in C++11 to avoid evaluating the expression twice
18066 // in the non-ICE case.
18067 if (!getLangOpts().CPlusPlus11 && E->isIntegerConstantExpr(Context)) {
18068 if (Result)
18069 *Result = E->EvaluateKnownConstIntCheckOverflow(Context);
18070 if (!isa<ConstantExpr>(E))
18071 E = Result ? ConstantExpr::Create(Context, E, APValue(*Result))
18072 : ConstantExpr::Create(Context, E);
18073 return E;
18074 }
18075
18076 Expr::EvalResult EvalResult;
18077 SmallVector<PartialDiagnosticAt, 8> Notes;
18078 EvalResult.Diag = &Notes;
18079
18080 // Try to evaluate the expression, and produce diagnostics explaining why it's
18081 // not a constant expression as a side-effect.
18082 bool Folded =
18083 E->EvaluateAsRValue(EvalResult, Context, /*isConstantContext*/ true) &&
18084 EvalResult.Val.isInt() && !EvalResult.HasSideEffects;
18085
18086 if (!isa<ConstantExpr>(E))
18087 E = ConstantExpr::Create(Context, E, EvalResult.Val);
18088
18089 // In C++11, we can rely on diagnostics being produced for any expression
18090 // which is not a constant expression. If no diagnostics were produced, then
18091 // this is a constant expression.
18092 if (Folded && getLangOpts().CPlusPlus11 && Notes.empty()) {
18093 if (Result)
18094 *Result = EvalResult.Val.getInt();
18095 return E;
18096 }
18097
18098 // If our only note is the usual "invalid subexpression" note, just point
18099 // the caret at its location rather than producing an essentially
18100 // redundant note.
18101 if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
18102 diag::note_invalid_subexpr_in_const_expr) {
18103 DiagLoc = Notes[0].first;
18104 Notes.clear();
18105 }
18106
18107 if (!Folded || !CanFold) {
18108 if (!Diagnoser.Suppress) {
18109 Diagnoser.diagnoseNotICE(*this, DiagLoc) << E->getSourceRange();
18110 for (const PartialDiagnosticAt &Note : Notes)
18111 Diag(Note.first, Note.second);
18112 }
18113
18114 return ExprError();
18115 }
18116
18117 Diagnoser.diagnoseFold(*this, DiagLoc) << E->getSourceRange();
18118 for (const PartialDiagnosticAt &Note : Notes)
18119 Diag(Note.first, Note.second);
18120
18121 if (Result)
18122 *Result = EvalResult.Val.getInt();
18123 return E;
18124 }
18125
18126 namespace {
18127 // Handle the case where we conclude a expression which we speculatively
18128 // considered to be unevaluated is actually evaluated.
18129 class TransformToPE : public TreeTransform<TransformToPE> {
18130 typedef TreeTransform<TransformToPE> BaseTransform;
18131
18132 public:
TransformToPE(Sema & SemaRef)18133 TransformToPE(Sema &SemaRef) : BaseTransform(SemaRef) { }
18134
18135 // Make sure we redo semantic analysis
AlwaysRebuild()18136 bool AlwaysRebuild() { return true; }
ReplacingOriginal()18137 bool ReplacingOriginal() { return true; }
18138
18139 // We need to special-case DeclRefExprs referring to FieldDecls which
18140 // are not part of a member pointer formation; normal TreeTransforming
18141 // doesn't catch this case because of the way we represent them in the AST.
18142 // FIXME: This is a bit ugly; is it really the best way to handle this
18143 // case?
18144 //
18145 // Error on DeclRefExprs referring to FieldDecls.
TransformDeclRefExpr(DeclRefExpr * E)18146 ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
18147 if (isa<FieldDecl>(E->getDecl()) &&
18148 !SemaRef.isUnevaluatedContext())
18149 return SemaRef.Diag(E->getLocation(),
18150 diag::err_invalid_non_static_member_use)
18151 << E->getDecl() << E->getSourceRange();
18152
18153 return BaseTransform::TransformDeclRefExpr(E);
18154 }
18155
18156 // Exception: filter out member pointer formation
TransformUnaryOperator(UnaryOperator * E)18157 ExprResult TransformUnaryOperator(UnaryOperator *E) {
18158 if (E->getOpcode() == UO_AddrOf && E->getType()->isMemberPointerType())
18159 return E;
18160
18161 return BaseTransform::TransformUnaryOperator(E);
18162 }
18163
18164 // The body of a lambda-expression is in a separate expression evaluation
18165 // context so never needs to be transformed.
18166 // FIXME: Ideally we wouldn't transform the closure type either, and would
18167 // just recreate the capture expressions and lambda expression.
TransformLambdaBody(LambdaExpr * E,Stmt * Body)18168 StmtResult TransformLambdaBody(LambdaExpr *E, Stmt *Body) {
18169 return SkipLambdaBody(E, Body);
18170 }
18171 };
18172 }
18173
TransformToPotentiallyEvaluated(Expr * E)18174 ExprResult Sema::TransformToPotentiallyEvaluated(Expr *E) {
18175 assert(isUnevaluatedContext() &&
18176 "Should only transform unevaluated expressions");
18177 ExprEvalContexts.back().Context =
18178 ExprEvalContexts[ExprEvalContexts.size()-2].Context;
18179 if (isUnevaluatedContext())
18180 return E;
18181 return TransformToPE(*this).TransformExpr(E);
18182 }
18183
TransformToPotentiallyEvaluated(TypeSourceInfo * TInfo)18184 TypeSourceInfo *Sema::TransformToPotentiallyEvaluated(TypeSourceInfo *TInfo) {
18185 assert(isUnevaluatedContext() &&
18186 "Should only transform unevaluated expressions");
18187 ExprEvalContexts.back().Context =
18188 ExprEvalContexts[ExprEvalContexts.size() - 2].Context;
18189 if (isUnevaluatedContext())
18190 return TInfo;
18191 return TransformToPE(*this).TransformType(TInfo);
18192 }
18193
18194 void
PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,Decl * LambdaContextDecl,ExpressionEvaluationContextRecord::ExpressionKind ExprContext)18195 Sema::PushExpressionEvaluationContext(
18196 ExpressionEvaluationContext NewContext, Decl *LambdaContextDecl,
18197 ExpressionEvaluationContextRecord::ExpressionKind ExprContext) {
18198 ExprEvalContexts.emplace_back(NewContext, ExprCleanupObjects.size(), Cleanup,
18199 LambdaContextDecl, ExprContext);
18200
18201 // Discarded statements and immediate contexts nested in other
18202 // discarded statements or immediate context are themselves
18203 // a discarded statement or an immediate context, respectively.
18204 ExprEvalContexts.back().InDiscardedStatement =
18205 ExprEvalContexts[ExprEvalContexts.size() - 2]
18206 .isDiscardedStatementContext();
18207
18208 // C++23 [expr.const]/p15
18209 // An expression or conversion is in an immediate function context if [...]
18210 // it is a subexpression of a manifestly constant-evaluated expression or
18211 // conversion.
18212 const auto &Prev = ExprEvalContexts[ExprEvalContexts.size() - 2];
18213 ExprEvalContexts.back().InImmediateFunctionContext =
18214 Prev.isImmediateFunctionContext() || Prev.isConstantEvaluated();
18215
18216 ExprEvalContexts.back().InImmediateEscalatingFunctionContext =
18217 Prev.InImmediateEscalatingFunctionContext;
18218
18219 Cleanup.reset();
18220 if (!MaybeODRUseExprs.empty())
18221 std::swap(MaybeODRUseExprs, ExprEvalContexts.back().SavedMaybeODRUseExprs);
18222 }
18223
18224 void
PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,ReuseLambdaContextDecl_t,ExpressionEvaluationContextRecord::ExpressionKind ExprContext)18225 Sema::PushExpressionEvaluationContext(
18226 ExpressionEvaluationContext NewContext, ReuseLambdaContextDecl_t,
18227 ExpressionEvaluationContextRecord::ExpressionKind ExprContext) {
18228 Decl *ClosureContextDecl = ExprEvalContexts.back().ManglingContextDecl;
18229 PushExpressionEvaluationContext(NewContext, ClosureContextDecl, ExprContext);
18230 }
18231
18232 namespace {
18233
CheckPossibleDeref(Sema & S,const Expr * PossibleDeref)18234 const DeclRefExpr *CheckPossibleDeref(Sema &S, const Expr *PossibleDeref) {
18235 PossibleDeref = PossibleDeref->IgnoreParenImpCasts();
18236 if (const auto *E = dyn_cast<UnaryOperator>(PossibleDeref)) {
18237 if (E->getOpcode() == UO_Deref)
18238 return CheckPossibleDeref(S, E->getSubExpr());
18239 } else if (const auto *E = dyn_cast<ArraySubscriptExpr>(PossibleDeref)) {
18240 return CheckPossibleDeref(S, E->getBase());
18241 } else if (const auto *E = dyn_cast<MemberExpr>(PossibleDeref)) {
18242 return CheckPossibleDeref(S, E->getBase());
18243 } else if (const auto E = dyn_cast<DeclRefExpr>(PossibleDeref)) {
18244 QualType Inner;
18245 QualType Ty = E->getType();
18246 if (const auto *Ptr = Ty->getAs<PointerType>())
18247 Inner = Ptr->getPointeeType();
18248 else if (const auto *Arr = S.Context.getAsArrayType(Ty))
18249 Inner = Arr->getElementType();
18250 else
18251 return nullptr;
18252
18253 if (Inner->hasAttr(attr::NoDeref))
18254 return E;
18255 }
18256 return nullptr;
18257 }
18258
18259 } // namespace
18260
WarnOnPendingNoDerefs(ExpressionEvaluationContextRecord & Rec)18261 void Sema::WarnOnPendingNoDerefs(ExpressionEvaluationContextRecord &Rec) {
18262 for (const Expr *E : Rec.PossibleDerefs) {
18263 const DeclRefExpr *DeclRef = CheckPossibleDeref(*this, E);
18264 if (DeclRef) {
18265 const ValueDecl *Decl = DeclRef->getDecl();
18266 Diag(E->getExprLoc(), diag::warn_dereference_of_noderef_type)
18267 << Decl->getName() << E->getSourceRange();
18268 Diag(Decl->getLocation(), diag::note_previous_decl) << Decl->getName();
18269 } else {
18270 Diag(E->getExprLoc(), diag::warn_dereference_of_noderef_type_no_decl)
18271 << E->getSourceRange();
18272 }
18273 }
18274 Rec.PossibleDerefs.clear();
18275 }
18276
18277 /// Check whether E, which is either a discarded-value expression or an
18278 /// unevaluated operand, is a simple-assignment to a volatlie-qualified lvalue,
18279 /// and if so, remove it from the list of volatile-qualified assignments that
18280 /// we are going to warn are deprecated.
CheckUnusedVolatileAssignment(Expr * E)18281 void Sema::CheckUnusedVolatileAssignment(Expr *E) {
18282 if (!E->getType().isVolatileQualified() || !getLangOpts().CPlusPlus20)
18283 return;
18284
18285 // Note: ignoring parens here is not justified by the standard rules, but
18286 // ignoring parentheses seems like a more reasonable approach, and this only
18287 // drives a deprecation warning so doesn't affect conformance.
18288 if (auto *BO = dyn_cast<BinaryOperator>(E->IgnoreParenImpCasts())) {
18289 if (BO->getOpcode() == BO_Assign) {
18290 auto &LHSs = ExprEvalContexts.back().VolatileAssignmentLHSs;
18291 llvm::erase(LHSs, BO->getLHS());
18292 }
18293 }
18294 }
18295
MarkExpressionAsImmediateEscalating(Expr * E)18296 void Sema::MarkExpressionAsImmediateEscalating(Expr *E) {
18297 assert(getLangOpts().CPlusPlus20 &&
18298 ExprEvalContexts.back().InImmediateEscalatingFunctionContext &&
18299 "Cannot mark an immediate escalating expression outside of an "
18300 "immediate escalating context");
18301 if (auto *Call = dyn_cast<CallExpr>(E->IgnoreImplicit());
18302 Call && Call->getCallee()) {
18303 if (auto *DeclRef =
18304 dyn_cast<DeclRefExpr>(Call->getCallee()->IgnoreImplicit()))
18305 DeclRef->setIsImmediateEscalating(true);
18306 } else if (auto *Ctr = dyn_cast<CXXConstructExpr>(E->IgnoreImplicit())) {
18307 Ctr->setIsImmediateEscalating(true);
18308 } else if (auto *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreImplicit())) {
18309 DeclRef->setIsImmediateEscalating(true);
18310 } else {
18311 assert(false && "expected an immediately escalating expression");
18312 }
18313 if (FunctionScopeInfo *FI = getCurFunction())
18314 FI->FoundImmediateEscalatingExpression = true;
18315 }
18316
CheckForImmediateInvocation(ExprResult E,FunctionDecl * Decl)18317 ExprResult Sema::CheckForImmediateInvocation(ExprResult E, FunctionDecl *Decl) {
18318 if (isUnevaluatedContext() || !E.isUsable() || !Decl ||
18319 !Decl->isImmediateFunction() || isAlwaysConstantEvaluatedContext() ||
18320 isCheckingDefaultArgumentOrInitializer() ||
18321 RebuildingImmediateInvocation || isImmediateFunctionContext())
18322 return E;
18323
18324 /// Opportunistically remove the callee from ReferencesToConsteval if we can.
18325 /// It's OK if this fails; we'll also remove this in
18326 /// HandleImmediateInvocations, but catching it here allows us to avoid
18327 /// walking the AST looking for it in simple cases.
18328 if (auto *Call = dyn_cast<CallExpr>(E.get()->IgnoreImplicit()))
18329 if (auto *DeclRef =
18330 dyn_cast<DeclRefExpr>(Call->getCallee()->IgnoreImplicit()))
18331 ExprEvalContexts.back().ReferenceToConsteval.erase(DeclRef);
18332
18333 // C++23 [expr.const]/p16
18334 // An expression or conversion is immediate-escalating if it is not initially
18335 // in an immediate function context and it is [...] an immediate invocation
18336 // that is not a constant expression and is not a subexpression of an
18337 // immediate invocation.
18338 APValue Cached;
18339 auto CheckConstantExpressionAndKeepResult = [&]() {
18340 llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
18341 Expr::EvalResult Eval;
18342 Eval.Diag = &Notes;
18343 bool Res = E.get()->EvaluateAsConstantExpr(
18344 Eval, getASTContext(), ConstantExprKind::ImmediateInvocation);
18345 if (Res && Notes.empty()) {
18346 Cached = std::move(Eval.Val);
18347 return true;
18348 }
18349 return false;
18350 };
18351
18352 if (!E.get()->isValueDependent() &&
18353 ExprEvalContexts.back().InImmediateEscalatingFunctionContext &&
18354 !CheckConstantExpressionAndKeepResult()) {
18355 MarkExpressionAsImmediateEscalating(E.get());
18356 return E;
18357 }
18358
18359 if (Cleanup.exprNeedsCleanups()) {
18360 // Since an immediate invocation is a full expression itself - it requires
18361 // an additional ExprWithCleanups node, but it can participate to a bigger
18362 // full expression which actually requires cleanups to be run after so
18363 // create ExprWithCleanups without using MaybeCreateExprWithCleanups as it
18364 // may discard cleanups for outer expression too early.
18365
18366 // Note that ExprWithCleanups created here must always have empty cleanup
18367 // objects:
18368 // - compound literals do not create cleanup objects in C++ and immediate
18369 // invocations are C++-only.
18370 // - blocks are not allowed inside constant expressions and compiler will
18371 // issue an error if they appear there.
18372 //
18373 // Hence, in correct code any cleanup objects created inside current
18374 // evaluation context must be outside the immediate invocation.
18375 E = ExprWithCleanups::Create(getASTContext(), E.get(),
18376 Cleanup.cleanupsHaveSideEffects(), {});
18377 }
18378
18379 ConstantExpr *Res = ConstantExpr::Create(
18380 getASTContext(), E.get(),
18381 ConstantExpr::getStorageKind(Decl->getReturnType().getTypePtr(),
18382 getASTContext()),
18383 /*IsImmediateInvocation*/ true);
18384 if (Cached.hasValue())
18385 Res->MoveIntoResult(Cached, getASTContext());
18386 /// Value-dependent constant expressions should not be immediately
18387 /// evaluated until they are instantiated.
18388 if (!Res->isValueDependent())
18389 ExprEvalContexts.back().ImmediateInvocationCandidates.emplace_back(Res, 0);
18390 return Res;
18391 }
18392
EvaluateAndDiagnoseImmediateInvocation(Sema & SemaRef,Sema::ImmediateInvocationCandidate Candidate)18393 static void EvaluateAndDiagnoseImmediateInvocation(
18394 Sema &SemaRef, Sema::ImmediateInvocationCandidate Candidate) {
18395 llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
18396 Expr::EvalResult Eval;
18397 Eval.Diag = &Notes;
18398 ConstantExpr *CE = Candidate.getPointer();
18399 bool Result = CE->EvaluateAsConstantExpr(
18400 Eval, SemaRef.getASTContext(), ConstantExprKind::ImmediateInvocation);
18401 if (!Result || !Notes.empty()) {
18402 SemaRef.FailedImmediateInvocations.insert(CE);
18403 Expr *InnerExpr = CE->getSubExpr()->IgnoreImplicit();
18404 if (auto *FunctionalCast = dyn_cast<CXXFunctionalCastExpr>(InnerExpr))
18405 InnerExpr = FunctionalCast->getSubExpr()->IgnoreImplicit();
18406 FunctionDecl *FD = nullptr;
18407 if (auto *Call = dyn_cast<CallExpr>(InnerExpr))
18408 FD = cast<FunctionDecl>(Call->getCalleeDecl());
18409 else if (auto *Call = dyn_cast<CXXConstructExpr>(InnerExpr))
18410 FD = Call->getConstructor();
18411 else if (auto *Cast = dyn_cast<CastExpr>(InnerExpr))
18412 FD = dyn_cast_or_null<FunctionDecl>(Cast->getConversionFunction());
18413
18414 assert(FD && FD->isImmediateFunction() &&
18415 "could not find an immediate function in this expression");
18416 if (FD->isInvalidDecl())
18417 return;
18418 SemaRef.Diag(CE->getBeginLoc(), diag::err_invalid_consteval_call)
18419 << FD << FD->isConsteval();
18420 if (auto Context =
18421 SemaRef.InnermostDeclarationWithDelayedImmediateInvocations()) {
18422 SemaRef.Diag(Context->Loc, diag::note_invalid_consteval_initializer)
18423 << Context->Decl;
18424 SemaRef.Diag(Context->Decl->getBeginLoc(), diag::note_declared_at);
18425 }
18426 if (!FD->isConsteval())
18427 SemaRef.DiagnoseImmediateEscalatingReason(FD);
18428 for (auto &Note : Notes)
18429 SemaRef.Diag(Note.first, Note.second);
18430 return;
18431 }
18432 CE->MoveIntoResult(Eval.Val, SemaRef.getASTContext());
18433 }
18434
RemoveNestedImmediateInvocation(Sema & SemaRef,Sema::ExpressionEvaluationContextRecord & Rec,SmallVector<Sema::ImmediateInvocationCandidate,4>::reverse_iterator It)18435 static void RemoveNestedImmediateInvocation(
18436 Sema &SemaRef, Sema::ExpressionEvaluationContextRecord &Rec,
18437 SmallVector<Sema::ImmediateInvocationCandidate, 4>::reverse_iterator It) {
18438 struct ComplexRemove : TreeTransform<ComplexRemove> {
18439 using Base = TreeTransform<ComplexRemove>;
18440 llvm::SmallPtrSetImpl<DeclRefExpr *> &DRSet;
18441 SmallVector<Sema::ImmediateInvocationCandidate, 4> &IISet;
18442 SmallVector<Sema::ImmediateInvocationCandidate, 4>::reverse_iterator
18443 CurrentII;
18444 ComplexRemove(Sema &SemaRef, llvm::SmallPtrSetImpl<DeclRefExpr *> &DR,
18445 SmallVector<Sema::ImmediateInvocationCandidate, 4> &II,
18446 SmallVector<Sema::ImmediateInvocationCandidate,
18447 4>::reverse_iterator Current)
18448 : Base(SemaRef), DRSet(DR), IISet(II), CurrentII(Current) {}
18449 void RemoveImmediateInvocation(ConstantExpr* E) {
18450 auto It = std::find_if(CurrentII, IISet.rend(),
18451 [E](Sema::ImmediateInvocationCandidate Elem) {
18452 return Elem.getPointer() == E;
18453 });
18454 // It is possible that some subexpression of the current immediate
18455 // invocation was handled from another expression evaluation context. Do
18456 // not handle the current immediate invocation if some of its
18457 // subexpressions failed before.
18458 if (It == IISet.rend()) {
18459 if (SemaRef.FailedImmediateInvocations.contains(E))
18460 CurrentII->setInt(1);
18461 } else {
18462 It->setInt(1); // Mark as deleted
18463 }
18464 }
18465 ExprResult TransformConstantExpr(ConstantExpr *E) {
18466 if (!E->isImmediateInvocation())
18467 return Base::TransformConstantExpr(E);
18468 RemoveImmediateInvocation(E);
18469 return Base::TransformExpr(E->getSubExpr());
18470 }
18471 /// Base::TransfromCXXOperatorCallExpr doesn't traverse the callee so
18472 /// we need to remove its DeclRefExpr from the DRSet.
18473 ExprResult TransformCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
18474 DRSet.erase(cast<DeclRefExpr>(E->getCallee()->IgnoreImplicit()));
18475 return Base::TransformCXXOperatorCallExpr(E);
18476 }
18477 /// Base::TransformUserDefinedLiteral doesn't preserve the
18478 /// UserDefinedLiteral node.
18479 ExprResult TransformUserDefinedLiteral(UserDefinedLiteral *E) { return E; }
18480 /// Base::TransformInitializer skips ConstantExpr so we need to visit them
18481 /// here.
18482 ExprResult TransformInitializer(Expr *Init, bool NotCopyInit) {
18483 if (!Init)
18484 return Init;
18485 /// ConstantExpr are the first layer of implicit node to be removed so if
18486 /// Init isn't a ConstantExpr, no ConstantExpr will be skipped.
18487 if (auto *CE = dyn_cast<ConstantExpr>(Init))
18488 if (CE->isImmediateInvocation())
18489 RemoveImmediateInvocation(CE);
18490 return Base::TransformInitializer(Init, NotCopyInit);
18491 }
18492 ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
18493 DRSet.erase(E);
18494 return E;
18495 }
18496 ExprResult TransformLambdaExpr(LambdaExpr *E) {
18497 // Do not rebuild lambdas to avoid creating a new type.
18498 // Lambdas have already been processed inside their eval context.
18499 return E;
18500 }
18501 bool AlwaysRebuild() { return false; }
18502 bool ReplacingOriginal() { return true; }
18503 bool AllowSkippingCXXConstructExpr() {
18504 bool Res = AllowSkippingFirstCXXConstructExpr;
18505 AllowSkippingFirstCXXConstructExpr = true;
18506 return Res;
18507 }
18508 bool AllowSkippingFirstCXXConstructExpr = true;
18509 } Transformer(SemaRef, Rec.ReferenceToConsteval,
18510 Rec.ImmediateInvocationCandidates, It);
18511
18512 /// CXXConstructExpr with a single argument are getting skipped by
18513 /// TreeTransform in some situtation because they could be implicit. This
18514 /// can only occur for the top-level CXXConstructExpr because it is used
18515 /// nowhere in the expression being transformed therefore will not be rebuilt.
18516 /// Setting AllowSkippingFirstCXXConstructExpr to false will prevent from
18517 /// skipping the first CXXConstructExpr.
18518 if (isa<CXXConstructExpr>(It->getPointer()->IgnoreImplicit()))
18519 Transformer.AllowSkippingFirstCXXConstructExpr = false;
18520
18521 ExprResult Res = Transformer.TransformExpr(It->getPointer()->getSubExpr());
18522 // The result may not be usable in case of previous compilation errors.
18523 // In this case evaluation of the expression may result in crash so just
18524 // don't do anything further with the result.
18525 if (Res.isUsable()) {
18526 Res = SemaRef.MaybeCreateExprWithCleanups(Res);
18527 It->getPointer()->setSubExpr(Res.get());
18528 }
18529 }
18530
18531 static void
HandleImmediateInvocations(Sema & SemaRef,Sema::ExpressionEvaluationContextRecord & Rec)18532 HandleImmediateInvocations(Sema &SemaRef,
18533 Sema::ExpressionEvaluationContextRecord &Rec) {
18534 if ((Rec.ImmediateInvocationCandidates.size() == 0 &&
18535 Rec.ReferenceToConsteval.size() == 0) ||
18536 SemaRef.RebuildingImmediateInvocation)
18537 return;
18538
18539 /// When we have more than 1 ImmediateInvocationCandidates or previously
18540 /// failed immediate invocations, we need to check for nested
18541 /// ImmediateInvocationCandidates in order to avoid duplicate diagnostics.
18542 /// Otherwise we only need to remove ReferenceToConsteval in the immediate
18543 /// invocation.
18544 if (Rec.ImmediateInvocationCandidates.size() > 1 ||
18545 !SemaRef.FailedImmediateInvocations.empty()) {
18546
18547 /// Prevent sema calls during the tree transform from adding pointers that
18548 /// are already in the sets.
18549 llvm::SaveAndRestore DisableIITracking(
18550 SemaRef.RebuildingImmediateInvocation, true);
18551
18552 /// Prevent diagnostic during tree transfrom as they are duplicates
18553 Sema::TentativeAnalysisScope DisableDiag(SemaRef);
18554
18555 for (auto It = Rec.ImmediateInvocationCandidates.rbegin();
18556 It != Rec.ImmediateInvocationCandidates.rend(); It++)
18557 if (!It->getInt())
18558 RemoveNestedImmediateInvocation(SemaRef, Rec, It);
18559 } else if (Rec.ImmediateInvocationCandidates.size() == 1 &&
18560 Rec.ReferenceToConsteval.size()) {
18561 struct SimpleRemove : RecursiveASTVisitor<SimpleRemove> {
18562 llvm::SmallPtrSetImpl<DeclRefExpr *> &DRSet;
18563 SimpleRemove(llvm::SmallPtrSetImpl<DeclRefExpr *> &S) : DRSet(S) {}
18564 bool VisitDeclRefExpr(DeclRefExpr *E) {
18565 DRSet.erase(E);
18566 return DRSet.size();
18567 }
18568 } Visitor(Rec.ReferenceToConsteval);
18569 Visitor.TraverseStmt(
18570 Rec.ImmediateInvocationCandidates.front().getPointer()->getSubExpr());
18571 }
18572 for (auto CE : Rec.ImmediateInvocationCandidates)
18573 if (!CE.getInt())
18574 EvaluateAndDiagnoseImmediateInvocation(SemaRef, CE);
18575 for (auto *DR : Rec.ReferenceToConsteval) {
18576 // If the expression is immediate escalating, it is not an error;
18577 // The outer context itself becomes immediate and further errors,
18578 // if any, will be handled by DiagnoseImmediateEscalatingReason.
18579 if (DR->isImmediateEscalating())
18580 continue;
18581 auto *FD = cast<FunctionDecl>(DR->getDecl());
18582 const NamedDecl *ND = FD;
18583 if (const auto *MD = dyn_cast<CXXMethodDecl>(ND);
18584 MD && (MD->isLambdaStaticInvoker() || isLambdaCallOperator(MD)))
18585 ND = MD->getParent();
18586
18587 // C++23 [expr.const]/p16
18588 // An expression or conversion is immediate-escalating if it is not
18589 // initially in an immediate function context and it is [...] a
18590 // potentially-evaluated id-expression that denotes an immediate function
18591 // that is not a subexpression of an immediate invocation.
18592 bool ImmediateEscalating = false;
18593 bool IsPotentiallyEvaluated =
18594 Rec.Context ==
18595 Sema::ExpressionEvaluationContext::PotentiallyEvaluated ||
18596 Rec.Context ==
18597 Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed;
18598 if (SemaRef.inTemplateInstantiation() && IsPotentiallyEvaluated)
18599 ImmediateEscalating = Rec.InImmediateEscalatingFunctionContext;
18600
18601 if (!Rec.InImmediateEscalatingFunctionContext ||
18602 (SemaRef.inTemplateInstantiation() && !ImmediateEscalating)) {
18603 SemaRef.Diag(DR->getBeginLoc(), diag::err_invalid_consteval_take_address)
18604 << ND << isa<CXXRecordDecl>(ND) << FD->isConsteval();
18605 SemaRef.Diag(ND->getLocation(), diag::note_declared_at);
18606 if (auto Context =
18607 SemaRef.InnermostDeclarationWithDelayedImmediateInvocations()) {
18608 SemaRef.Diag(Context->Loc, diag::note_invalid_consteval_initializer)
18609 << Context->Decl;
18610 SemaRef.Diag(Context->Decl->getBeginLoc(), diag::note_declared_at);
18611 }
18612 if (FD->isImmediateEscalating() && !FD->isConsteval())
18613 SemaRef.DiagnoseImmediateEscalatingReason(FD);
18614
18615 } else {
18616 SemaRef.MarkExpressionAsImmediateEscalating(DR);
18617 }
18618 }
18619 }
18620
PopExpressionEvaluationContext()18621 void Sema::PopExpressionEvaluationContext() {
18622 ExpressionEvaluationContextRecord& Rec = ExprEvalContexts.back();
18623 unsigned NumTypos = Rec.NumTypos;
18624
18625 if (!Rec.Lambdas.empty()) {
18626 using ExpressionKind = ExpressionEvaluationContextRecord::ExpressionKind;
18627 if (!getLangOpts().CPlusPlus20 &&
18628 (Rec.ExprContext == ExpressionKind::EK_TemplateArgument ||
18629 Rec.isUnevaluated() ||
18630 (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17))) {
18631 unsigned D;
18632 if (Rec.isUnevaluated()) {
18633 // C++11 [expr.prim.lambda]p2:
18634 // A lambda-expression shall not appear in an unevaluated operand
18635 // (Clause 5).
18636 D = diag::err_lambda_unevaluated_operand;
18637 } else if (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17) {
18638 // C++1y [expr.const]p2:
18639 // A conditional-expression e is a core constant expression unless the
18640 // evaluation of e, following the rules of the abstract machine, would
18641 // evaluate [...] a lambda-expression.
18642 D = diag::err_lambda_in_constant_expression;
18643 } else if (Rec.ExprContext == ExpressionKind::EK_TemplateArgument) {
18644 // C++17 [expr.prim.lamda]p2:
18645 // A lambda-expression shall not appear [...] in a template-argument.
18646 D = diag::err_lambda_in_invalid_context;
18647 } else
18648 llvm_unreachable("Couldn't infer lambda error message.");
18649
18650 for (const auto *L : Rec.Lambdas)
18651 Diag(L->getBeginLoc(), D);
18652 }
18653 }
18654
18655 WarnOnPendingNoDerefs(Rec);
18656 HandleImmediateInvocations(*this, Rec);
18657
18658 // Warn on any volatile-qualified simple-assignments that are not discarded-
18659 // value expressions nor unevaluated operands (those cases get removed from
18660 // this list by CheckUnusedVolatileAssignment).
18661 for (auto *BO : Rec.VolatileAssignmentLHSs)
18662 Diag(BO->getBeginLoc(), diag::warn_deprecated_simple_assign_volatile)
18663 << BO->getType();
18664
18665 // When are coming out of an unevaluated context, clear out any
18666 // temporaries that we may have created as part of the evaluation of
18667 // the expression in that context: they aren't relevant because they
18668 // will never be constructed.
18669 if (Rec.isUnevaluated() || Rec.isConstantEvaluated()) {
18670 ExprCleanupObjects.erase(ExprCleanupObjects.begin() + Rec.NumCleanupObjects,
18671 ExprCleanupObjects.end());
18672 Cleanup = Rec.ParentCleanup;
18673 CleanupVarDeclMarking();
18674 std::swap(MaybeODRUseExprs, Rec.SavedMaybeODRUseExprs);
18675 // Otherwise, merge the contexts together.
18676 } else {
18677 Cleanup.mergeFrom(Rec.ParentCleanup);
18678 MaybeODRUseExprs.insert(Rec.SavedMaybeODRUseExprs.begin(),
18679 Rec.SavedMaybeODRUseExprs.end());
18680 }
18681
18682 // Pop the current expression evaluation context off the stack.
18683 ExprEvalContexts.pop_back();
18684
18685 // The global expression evaluation context record is never popped.
18686 ExprEvalContexts.back().NumTypos += NumTypos;
18687 }
18688
DiscardCleanupsInEvaluationContext()18689 void Sema::DiscardCleanupsInEvaluationContext() {
18690 ExprCleanupObjects.erase(
18691 ExprCleanupObjects.begin() + ExprEvalContexts.back().NumCleanupObjects,
18692 ExprCleanupObjects.end());
18693 Cleanup.reset();
18694 MaybeODRUseExprs.clear();
18695 }
18696
HandleExprEvaluationContextForTypeof(Expr * E)18697 ExprResult Sema::HandleExprEvaluationContextForTypeof(Expr *E) {
18698 ExprResult Result = CheckPlaceholderExpr(E);
18699 if (Result.isInvalid())
18700 return ExprError();
18701 E = Result.get();
18702 if (!E->getType()->isVariablyModifiedType())
18703 return E;
18704 return TransformToPotentiallyEvaluated(E);
18705 }
18706
18707 /// Are we in a context that is potentially constant evaluated per C++20
18708 /// [expr.const]p12?
isPotentiallyConstantEvaluatedContext(Sema & SemaRef)18709 static bool isPotentiallyConstantEvaluatedContext(Sema &SemaRef) {
18710 /// C++2a [expr.const]p12:
18711 // An expression or conversion is potentially constant evaluated if it is
18712 switch (SemaRef.ExprEvalContexts.back().Context) {
18713 case Sema::ExpressionEvaluationContext::ConstantEvaluated:
18714 case Sema::ExpressionEvaluationContext::ImmediateFunctionContext:
18715
18716 // -- a manifestly constant-evaluated expression,
18717 case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
18718 case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
18719 case Sema::ExpressionEvaluationContext::DiscardedStatement:
18720 // -- a potentially-evaluated expression,
18721 case Sema::ExpressionEvaluationContext::UnevaluatedList:
18722 // -- an immediate subexpression of a braced-init-list,
18723
18724 // -- [FIXME] an expression of the form & cast-expression that occurs
18725 // within a templated entity
18726 // -- a subexpression of one of the above that is not a subexpression of
18727 // a nested unevaluated operand.
18728 return true;
18729
18730 case Sema::ExpressionEvaluationContext::Unevaluated:
18731 case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
18732 // Expressions in this context are never evaluated.
18733 return false;
18734 }
18735 llvm_unreachable("Invalid context");
18736 }
18737
18738 /// Return true if this function has a calling convention that requires mangling
18739 /// in the size of the parameter pack.
funcHasParameterSizeMangling(Sema & S,FunctionDecl * FD)18740 static bool funcHasParameterSizeMangling(Sema &S, FunctionDecl *FD) {
18741 // These manglings don't do anything on non-Windows or non-x86 platforms, so
18742 // we don't need parameter type sizes.
18743 const llvm::Triple &TT = S.Context.getTargetInfo().getTriple();
18744 if (!TT.isOSWindows() || !TT.isX86())
18745 return false;
18746
18747 // If this is C++ and this isn't an extern "C" function, parameters do not
18748 // need to be complete. In this case, C++ mangling will apply, which doesn't
18749 // use the size of the parameters.
18750 if (S.getLangOpts().CPlusPlus && !FD->isExternC())
18751 return false;
18752
18753 // Stdcall, fastcall, and vectorcall need this special treatment.
18754 CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv();
18755 switch (CC) {
18756 case CC_X86StdCall:
18757 case CC_X86FastCall:
18758 case CC_X86VectorCall:
18759 return true;
18760 default:
18761 break;
18762 }
18763 return false;
18764 }
18765
18766 /// Require that all of the parameter types of function be complete. Normally,
18767 /// parameter types are only required to be complete when a function is called
18768 /// or defined, but to mangle functions with certain calling conventions, the
18769 /// mangler needs to know the size of the parameter list. In this situation,
18770 /// MSVC doesn't emit an error or instantiate templates. Instead, MSVC mangles
18771 /// the function as _foo@0, i.e. zero bytes of parameters, which will usually
18772 /// result in a linker error. Clang doesn't implement this behavior, and instead
18773 /// attempts to error at compile time.
CheckCompleteParameterTypesForMangler(Sema & S,FunctionDecl * FD,SourceLocation Loc)18774 static void CheckCompleteParameterTypesForMangler(Sema &S, FunctionDecl *FD,
18775 SourceLocation Loc) {
18776 class ParamIncompleteTypeDiagnoser : public Sema::TypeDiagnoser {
18777 FunctionDecl *FD;
18778 ParmVarDecl *Param;
18779
18780 public:
18781 ParamIncompleteTypeDiagnoser(FunctionDecl *FD, ParmVarDecl *Param)
18782 : FD(FD), Param(Param) {}
18783
18784 void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
18785 CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv();
18786 StringRef CCName;
18787 switch (CC) {
18788 case CC_X86StdCall:
18789 CCName = "stdcall";
18790 break;
18791 case CC_X86FastCall:
18792 CCName = "fastcall";
18793 break;
18794 case CC_X86VectorCall:
18795 CCName = "vectorcall";
18796 break;
18797 default:
18798 llvm_unreachable("CC does not need mangling");
18799 }
18800
18801 S.Diag(Loc, diag::err_cconv_incomplete_param_type)
18802 << Param->getDeclName() << FD->getDeclName() << CCName;
18803 }
18804 };
18805
18806 for (ParmVarDecl *Param : FD->parameters()) {
18807 ParamIncompleteTypeDiagnoser Diagnoser(FD, Param);
18808 S.RequireCompleteType(Loc, Param->getType(), Diagnoser);
18809 }
18810 }
18811
18812 namespace {
18813 enum class OdrUseContext {
18814 /// Declarations in this context are not odr-used.
18815 None,
18816 /// Declarations in this context are formally odr-used, but this is a
18817 /// dependent context.
18818 Dependent,
18819 /// Declarations in this context are odr-used but not actually used (yet).
18820 FormallyOdrUsed,
18821 /// Declarations in this context are used.
18822 Used
18823 };
18824 }
18825
18826 /// Are we within a context in which references to resolved functions or to
18827 /// variables result in odr-use?
isOdrUseContext(Sema & SemaRef)18828 static OdrUseContext isOdrUseContext(Sema &SemaRef) {
18829 OdrUseContext Result;
18830
18831 switch (SemaRef.ExprEvalContexts.back().Context) {
18832 case Sema::ExpressionEvaluationContext::Unevaluated:
18833 case Sema::ExpressionEvaluationContext::UnevaluatedList:
18834 case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
18835 return OdrUseContext::None;
18836
18837 case Sema::ExpressionEvaluationContext::ConstantEvaluated:
18838 case Sema::ExpressionEvaluationContext::ImmediateFunctionContext:
18839 case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
18840 Result = OdrUseContext::Used;
18841 break;
18842
18843 case Sema::ExpressionEvaluationContext::DiscardedStatement:
18844 Result = OdrUseContext::FormallyOdrUsed;
18845 break;
18846
18847 case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
18848 // A default argument formally results in odr-use, but doesn't actually
18849 // result in a use in any real sense until it itself is used.
18850 Result = OdrUseContext::FormallyOdrUsed;
18851 break;
18852 }
18853
18854 if (SemaRef.CurContext->isDependentContext())
18855 return OdrUseContext::Dependent;
18856
18857 return Result;
18858 }
18859
isImplicitlyDefinableConstexprFunction(FunctionDecl * Func)18860 static bool isImplicitlyDefinableConstexprFunction(FunctionDecl *Func) {
18861 if (!Func->isConstexpr())
18862 return false;
18863
18864 if (Func->isImplicitlyInstantiable() || !Func->isUserProvided())
18865 return true;
18866 auto *CCD = dyn_cast<CXXConstructorDecl>(Func);
18867 return CCD && CCD->getInheritedConstructor();
18868 }
18869
18870 /// Mark a function referenced, and check whether it is odr-used
18871 /// (C++ [basic.def.odr]p2, C99 6.9p3)
MarkFunctionReferenced(SourceLocation Loc,FunctionDecl * Func,bool MightBeOdrUse)18872 void Sema::MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func,
18873 bool MightBeOdrUse) {
18874 assert(Func && "No function?");
18875
18876 Func->setReferenced();
18877
18878 // Recursive functions aren't really used until they're used from some other
18879 // context.
18880 bool IsRecursiveCall = CurContext == Func;
18881
18882 // C++11 [basic.def.odr]p3:
18883 // A function whose name appears as a potentially-evaluated expression is
18884 // odr-used if it is the unique lookup result or the selected member of a
18885 // set of overloaded functions [...].
18886 //
18887 // We (incorrectly) mark overload resolution as an unevaluated context, so we
18888 // can just check that here.
18889 OdrUseContext OdrUse =
18890 MightBeOdrUse ? isOdrUseContext(*this) : OdrUseContext::None;
18891 if (IsRecursiveCall && OdrUse == OdrUseContext::Used)
18892 OdrUse = OdrUseContext::FormallyOdrUsed;
18893
18894 // Trivial default constructors and destructors are never actually used.
18895 // FIXME: What about other special members?
18896 if (Func->isTrivial() && !Func->hasAttr<DLLExportAttr>() &&
18897 OdrUse == OdrUseContext::Used) {
18898 if (auto *Constructor = dyn_cast<CXXConstructorDecl>(Func))
18899 if (Constructor->isDefaultConstructor())
18900 OdrUse = OdrUseContext::FormallyOdrUsed;
18901 if (isa<CXXDestructorDecl>(Func))
18902 OdrUse = OdrUseContext::FormallyOdrUsed;
18903 }
18904
18905 // C++20 [expr.const]p12:
18906 // A function [...] is needed for constant evaluation if it is [...] a
18907 // constexpr function that is named by an expression that is potentially
18908 // constant evaluated
18909 bool NeededForConstantEvaluation =
18910 isPotentiallyConstantEvaluatedContext(*this) &&
18911 isImplicitlyDefinableConstexprFunction(Func);
18912
18913 // Determine whether we require a function definition to exist, per
18914 // C++11 [temp.inst]p3:
18915 // Unless a function template specialization has been explicitly
18916 // instantiated or explicitly specialized, the function template
18917 // specialization is implicitly instantiated when the specialization is
18918 // referenced in a context that requires a function definition to exist.
18919 // C++20 [temp.inst]p7:
18920 // The existence of a definition of a [...] function is considered to
18921 // affect the semantics of the program if the [...] function is needed for
18922 // constant evaluation by an expression
18923 // C++20 [basic.def.odr]p10:
18924 // Every program shall contain exactly one definition of every non-inline
18925 // function or variable that is odr-used in that program outside of a
18926 // discarded statement
18927 // C++20 [special]p1:
18928 // The implementation will implicitly define [defaulted special members]
18929 // if they are odr-used or needed for constant evaluation.
18930 //
18931 // Note that we skip the implicit instantiation of templates that are only
18932 // used in unused default arguments or by recursive calls to themselves.
18933 // This is formally non-conforming, but seems reasonable in practice.
18934 bool NeedDefinition = !IsRecursiveCall && (OdrUse == OdrUseContext::Used ||
18935 NeededForConstantEvaluation);
18936
18937 // C++14 [temp.expl.spec]p6:
18938 // If a template [...] is explicitly specialized then that specialization
18939 // shall be declared before the first use of that specialization that would
18940 // cause an implicit instantiation to take place, in every translation unit
18941 // in which such a use occurs
18942 if (NeedDefinition &&
18943 (Func->getTemplateSpecializationKind() != TSK_Undeclared ||
18944 Func->getMemberSpecializationInfo()))
18945 checkSpecializationReachability(Loc, Func);
18946
18947 if (getLangOpts().CUDA)
18948 CheckCUDACall(Loc, Func);
18949
18950 // If we need a definition, try to create one.
18951 if (NeedDefinition && !Func->getBody()) {
18952 runWithSufficientStackSpace(Loc, [&] {
18953 if (CXXConstructorDecl *Constructor =
18954 dyn_cast<CXXConstructorDecl>(Func)) {
18955 Constructor = cast<CXXConstructorDecl>(Constructor->getFirstDecl());
18956 if (Constructor->isDefaulted() && !Constructor->isDeleted()) {
18957 if (Constructor->isDefaultConstructor()) {
18958 if (Constructor->isTrivial() &&
18959 !Constructor->hasAttr<DLLExportAttr>())
18960 return;
18961 DefineImplicitDefaultConstructor(Loc, Constructor);
18962 } else if (Constructor->isCopyConstructor()) {
18963 DefineImplicitCopyConstructor(Loc, Constructor);
18964 } else if (Constructor->isMoveConstructor()) {
18965 DefineImplicitMoveConstructor(Loc, Constructor);
18966 }
18967 } else if (Constructor->getInheritedConstructor()) {
18968 DefineInheritingConstructor(Loc, Constructor);
18969 }
18970 } else if (CXXDestructorDecl *Destructor =
18971 dyn_cast<CXXDestructorDecl>(Func)) {
18972 Destructor = cast<CXXDestructorDecl>(Destructor->getFirstDecl());
18973 if (Destructor->isDefaulted() && !Destructor->isDeleted()) {
18974 if (Destructor->isTrivial() && !Destructor->hasAttr<DLLExportAttr>())
18975 return;
18976 DefineImplicitDestructor(Loc, Destructor);
18977 }
18978 if (Destructor->isVirtual() && getLangOpts().AppleKext)
18979 MarkVTableUsed(Loc, Destructor->getParent());
18980 } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(Func)) {
18981 if (MethodDecl->isOverloadedOperator() &&
18982 MethodDecl->getOverloadedOperator() == OO_Equal) {
18983 MethodDecl = cast<CXXMethodDecl>(MethodDecl->getFirstDecl());
18984 if (MethodDecl->isDefaulted() && !MethodDecl->isDeleted()) {
18985 if (MethodDecl->isCopyAssignmentOperator())
18986 DefineImplicitCopyAssignment(Loc, MethodDecl);
18987 else if (MethodDecl->isMoveAssignmentOperator())
18988 DefineImplicitMoveAssignment(Loc, MethodDecl);
18989 }
18990 } else if (isa<CXXConversionDecl>(MethodDecl) &&
18991 MethodDecl->getParent()->isLambda()) {
18992 CXXConversionDecl *Conversion =
18993 cast<CXXConversionDecl>(MethodDecl->getFirstDecl());
18994 if (Conversion->isLambdaToBlockPointerConversion())
18995 DefineImplicitLambdaToBlockPointerConversion(Loc, Conversion);
18996 else
18997 DefineImplicitLambdaToFunctionPointerConversion(Loc, Conversion);
18998 } else if (MethodDecl->isVirtual() && getLangOpts().AppleKext)
18999 MarkVTableUsed(Loc, MethodDecl->getParent());
19000 }
19001
19002 if (Func->isDefaulted() && !Func->isDeleted()) {
19003 DefaultedComparisonKind DCK = getDefaultedComparisonKind(Func);
19004 if (DCK != DefaultedComparisonKind::None)
19005 DefineDefaultedComparison(Loc, Func, DCK);
19006 }
19007
19008 // Implicit instantiation of function templates and member functions of
19009 // class templates.
19010 if (Func->isImplicitlyInstantiable()) {
19011 TemplateSpecializationKind TSK =
19012 Func->getTemplateSpecializationKindForInstantiation();
19013 SourceLocation PointOfInstantiation = Func->getPointOfInstantiation();
19014 bool FirstInstantiation = PointOfInstantiation.isInvalid();
19015 if (FirstInstantiation) {
19016 PointOfInstantiation = Loc;
19017 if (auto *MSI = Func->getMemberSpecializationInfo())
19018 MSI->setPointOfInstantiation(Loc);
19019 // FIXME: Notify listener.
19020 else
19021 Func->setTemplateSpecializationKind(TSK, PointOfInstantiation);
19022 } else if (TSK != TSK_ImplicitInstantiation) {
19023 // Use the point of use as the point of instantiation, instead of the
19024 // point of explicit instantiation (which we track as the actual point
19025 // of instantiation). This gives better backtraces in diagnostics.
19026 PointOfInstantiation = Loc;
19027 }
19028
19029 if (FirstInstantiation || TSK != TSK_ImplicitInstantiation ||
19030 Func->isConstexpr()) {
19031 if (isa<CXXRecordDecl>(Func->getDeclContext()) &&
19032 cast<CXXRecordDecl>(Func->getDeclContext())->isLocalClass() &&
19033 CodeSynthesisContexts.size())
19034 PendingLocalImplicitInstantiations.push_back(
19035 std::make_pair(Func, PointOfInstantiation));
19036 else if (Func->isConstexpr())
19037 // Do not defer instantiations of constexpr functions, to avoid the
19038 // expression evaluator needing to call back into Sema if it sees a
19039 // call to such a function.
19040 InstantiateFunctionDefinition(PointOfInstantiation, Func);
19041 else {
19042 Func->setInstantiationIsPending(true);
19043 PendingInstantiations.push_back(
19044 std::make_pair(Func, PointOfInstantiation));
19045 // Notify the consumer that a function was implicitly instantiated.
19046 Consumer.HandleCXXImplicitFunctionInstantiation(Func);
19047 }
19048 }
19049 } else {
19050 // Walk redefinitions, as some of them may be instantiable.
19051 for (auto *i : Func->redecls()) {
19052 if (!i->isUsed(false) && i->isImplicitlyInstantiable())
19053 MarkFunctionReferenced(Loc, i, MightBeOdrUse);
19054 }
19055 }
19056 });
19057 }
19058
19059 // If a constructor was defined in the context of a default parameter
19060 // or of another default member initializer (ie a PotentiallyEvaluatedIfUsed
19061 // context), its initializers may not be referenced yet.
19062 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Func)) {
19063 EnterExpressionEvaluationContext EvalContext(
19064 *this,
19065 Constructor->isImmediateFunction()
19066 ? ExpressionEvaluationContext::ImmediateFunctionContext
19067 : ExpressionEvaluationContext::PotentiallyEvaluated,
19068 Constructor);
19069 for (CXXCtorInitializer *Init : Constructor->inits()) {
19070 if (Init->isInClassMemberInitializer())
19071 runWithSufficientStackSpace(Init->getSourceLocation(), [&]() {
19072 MarkDeclarationsReferencedInExpr(Init->getInit());
19073 });
19074 }
19075 }
19076
19077 // C++14 [except.spec]p17:
19078 // An exception-specification is considered to be needed when:
19079 // - the function is odr-used or, if it appears in an unevaluated operand,
19080 // would be odr-used if the expression were potentially-evaluated;
19081 //
19082 // Note, we do this even if MightBeOdrUse is false. That indicates that the
19083 // function is a pure virtual function we're calling, and in that case the
19084 // function was selected by overload resolution and we need to resolve its
19085 // exception specification for a different reason.
19086 const FunctionProtoType *FPT = Func->getType()->getAs<FunctionProtoType>();
19087 if (FPT && isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
19088 ResolveExceptionSpec(Loc, FPT);
19089
19090 // A callee could be called by a host function then by a device function.
19091 // If we only try recording once, we will miss recording the use on device
19092 // side. Therefore keep trying until it is recorded.
19093 if (LangOpts.OffloadImplicitHostDeviceTemplates && LangOpts.CUDAIsDevice &&
19094 !getASTContext().CUDAImplicitHostDeviceFunUsedByDevice.count(Func))
19095 CUDARecordImplicitHostDeviceFuncUsedByDevice(Func);
19096
19097 // If this is the first "real" use, act on that.
19098 if (OdrUse == OdrUseContext::Used && !Func->isUsed(/*CheckUsedAttr=*/false)) {
19099 // Keep track of used but undefined functions.
19100 if (!Func->isDefined()) {
19101 if (mightHaveNonExternalLinkage(Func))
19102 UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
19103 else if (Func->getMostRecentDecl()->isInlined() &&
19104 !LangOpts.GNUInline &&
19105 !Func->getMostRecentDecl()->hasAttr<GNUInlineAttr>())
19106 UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
19107 else if (isExternalWithNoLinkageType(Func))
19108 UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
19109 }
19110
19111 // Some x86 Windows calling conventions mangle the size of the parameter
19112 // pack into the name. Computing the size of the parameters requires the
19113 // parameter types to be complete. Check that now.
19114 if (funcHasParameterSizeMangling(*this, Func))
19115 CheckCompleteParameterTypesForMangler(*this, Func, Loc);
19116
19117 // In the MS C++ ABI, the compiler emits destructor variants where they are
19118 // used. If the destructor is used here but defined elsewhere, mark the
19119 // virtual base destructors referenced. If those virtual base destructors
19120 // are inline, this will ensure they are defined when emitting the complete
19121 // destructor variant. This checking may be redundant if the destructor is
19122 // provided later in this TU.
19123 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
19124 if (auto *Dtor = dyn_cast<CXXDestructorDecl>(Func)) {
19125 CXXRecordDecl *Parent = Dtor->getParent();
19126 if (Parent->getNumVBases() > 0 && !Dtor->getBody())
19127 CheckCompleteDestructorVariant(Loc, Dtor);
19128 }
19129 }
19130
19131 Func->markUsed(Context);
19132 }
19133 }
19134
19135 /// Directly mark a variable odr-used. Given a choice, prefer to use
19136 /// MarkVariableReferenced since it does additional checks and then
19137 /// calls MarkVarDeclODRUsed.
19138 /// If the variable must be captured:
19139 /// - if FunctionScopeIndexToStopAt is null, capture it in the CurContext
19140 /// - else capture it in the DeclContext that maps to the
19141 /// *FunctionScopeIndexToStopAt on the FunctionScopeInfo stack.
19142 static void
MarkVarDeclODRUsed(ValueDecl * V,SourceLocation Loc,Sema & SemaRef,const unsigned * const FunctionScopeIndexToStopAt=nullptr)19143 MarkVarDeclODRUsed(ValueDecl *V, SourceLocation Loc, Sema &SemaRef,
19144 const unsigned *const FunctionScopeIndexToStopAt = nullptr) {
19145 // Keep track of used but undefined variables.
19146 // FIXME: We shouldn't suppress this warning for static data members.
19147 VarDecl *Var = V->getPotentiallyDecomposedVarDecl();
19148 assert(Var && "expected a capturable variable");
19149
19150 if (Var->hasDefinition(SemaRef.Context) == VarDecl::DeclarationOnly &&
19151 (!Var->isExternallyVisible() || Var->isInline() ||
19152 SemaRef.isExternalWithNoLinkageType(Var)) &&
19153 !(Var->isStaticDataMember() && Var->hasInit())) {
19154 SourceLocation &old = SemaRef.UndefinedButUsed[Var->getCanonicalDecl()];
19155 if (old.isInvalid())
19156 old = Loc;
19157 }
19158 QualType CaptureType, DeclRefType;
19159 if (SemaRef.LangOpts.OpenMP)
19160 SemaRef.tryCaptureOpenMPLambdas(V);
19161 SemaRef.tryCaptureVariable(V, Loc, Sema::TryCapture_Implicit,
19162 /*EllipsisLoc*/ SourceLocation(),
19163 /*BuildAndDiagnose*/ true, CaptureType,
19164 DeclRefType, FunctionScopeIndexToStopAt);
19165
19166 if (SemaRef.LangOpts.CUDA && Var->hasGlobalStorage()) {
19167 auto *FD = dyn_cast_or_null<FunctionDecl>(SemaRef.CurContext);
19168 auto VarTarget = SemaRef.IdentifyCUDATarget(Var);
19169 auto UserTarget = SemaRef.IdentifyCUDATarget(FD);
19170 if (VarTarget == Sema::CVT_Host &&
19171 (UserTarget == Sema::CFT_Device || UserTarget == Sema::CFT_HostDevice ||
19172 UserTarget == Sema::CFT_Global)) {
19173 // Diagnose ODR-use of host global variables in device functions.
19174 // Reference of device global variables in host functions is allowed
19175 // through shadow variables therefore it is not diagnosed.
19176 if (SemaRef.LangOpts.CUDAIsDevice && !SemaRef.LangOpts.HIPStdPar) {
19177 SemaRef.targetDiag(Loc, diag::err_ref_bad_target)
19178 << /*host*/ 2 << /*variable*/ 1 << Var << UserTarget;
19179 SemaRef.targetDiag(Var->getLocation(),
19180 Var->getType().isConstQualified()
19181 ? diag::note_cuda_const_var_unpromoted
19182 : diag::note_cuda_host_var);
19183 }
19184 } else if (VarTarget == Sema::CVT_Device &&
19185 !Var->hasAttr<CUDASharedAttr>() &&
19186 (UserTarget == Sema::CFT_Host ||
19187 UserTarget == Sema::CFT_HostDevice)) {
19188 // Record a CUDA/HIP device side variable if it is ODR-used
19189 // by host code. This is done conservatively, when the variable is
19190 // referenced in any of the following contexts:
19191 // - a non-function context
19192 // - a host function
19193 // - a host device function
19194 // This makes the ODR-use of the device side variable by host code to
19195 // be visible in the device compilation for the compiler to be able to
19196 // emit template variables instantiated by host code only and to
19197 // externalize the static device side variable ODR-used by host code.
19198 if (!Var->hasExternalStorage())
19199 SemaRef.getASTContext().CUDADeviceVarODRUsedByHost.insert(Var);
19200 else if (SemaRef.LangOpts.GPURelocatableDeviceCode)
19201 SemaRef.getASTContext().CUDAExternalDeviceDeclODRUsedByHost.insert(Var);
19202 }
19203 }
19204
19205 V->markUsed(SemaRef.Context);
19206 }
19207
MarkCaptureUsedInEnclosingContext(ValueDecl * Capture,SourceLocation Loc,unsigned CapturingScopeIndex)19208 void Sema::MarkCaptureUsedInEnclosingContext(ValueDecl *Capture,
19209 SourceLocation Loc,
19210 unsigned CapturingScopeIndex) {
19211 MarkVarDeclODRUsed(Capture, Loc, *this, &CapturingScopeIndex);
19212 }
19213
diagnoseUncapturableValueReferenceOrBinding(Sema & S,SourceLocation loc,ValueDecl * var)19214 void diagnoseUncapturableValueReferenceOrBinding(Sema &S, SourceLocation loc,
19215 ValueDecl *var) {
19216 DeclContext *VarDC = var->getDeclContext();
19217
19218 // If the parameter still belongs to the translation unit, then
19219 // we're actually just using one parameter in the declaration of
19220 // the next.
19221 if (isa<ParmVarDecl>(var) &&
19222 isa<TranslationUnitDecl>(VarDC))
19223 return;
19224
19225 // For C code, don't diagnose about capture if we're not actually in code
19226 // right now; it's impossible to write a non-constant expression outside of
19227 // function context, so we'll get other (more useful) diagnostics later.
19228 //
19229 // For C++, things get a bit more nasty... it would be nice to suppress this
19230 // diagnostic for certain cases like using a local variable in an array bound
19231 // for a member of a local class, but the correct predicate is not obvious.
19232 if (!S.getLangOpts().CPlusPlus && !S.CurContext->isFunctionOrMethod())
19233 return;
19234
19235 unsigned ValueKind = isa<BindingDecl>(var) ? 1 : 0;
19236 unsigned ContextKind = 3; // unknown
19237 if (isa<CXXMethodDecl>(VarDC) &&
19238 cast<CXXRecordDecl>(VarDC->getParent())->isLambda()) {
19239 ContextKind = 2;
19240 } else if (isa<FunctionDecl>(VarDC)) {
19241 ContextKind = 0;
19242 } else if (isa<BlockDecl>(VarDC)) {
19243 ContextKind = 1;
19244 }
19245
19246 S.Diag(loc, diag::err_reference_to_local_in_enclosing_context)
19247 << var << ValueKind << ContextKind << VarDC;
19248 S.Diag(var->getLocation(), diag::note_entity_declared_at)
19249 << var;
19250
19251 // FIXME: Add additional diagnostic info about class etc. which prevents
19252 // capture.
19253 }
19254
isVariableAlreadyCapturedInScopeInfo(CapturingScopeInfo * CSI,ValueDecl * Var,bool & SubCapturesAreNested,QualType & CaptureType,QualType & DeclRefType)19255 static bool isVariableAlreadyCapturedInScopeInfo(CapturingScopeInfo *CSI,
19256 ValueDecl *Var,
19257 bool &SubCapturesAreNested,
19258 QualType &CaptureType,
19259 QualType &DeclRefType) {
19260 // Check whether we've already captured it.
19261 if (CSI->CaptureMap.count(Var)) {
19262 // If we found a capture, any subcaptures are nested.
19263 SubCapturesAreNested = true;
19264
19265 // Retrieve the capture type for this variable.
19266 CaptureType = CSI->getCapture(Var).getCaptureType();
19267
19268 // Compute the type of an expression that refers to this variable.
19269 DeclRefType = CaptureType.getNonReferenceType();
19270
19271 // Similarly to mutable captures in lambda, all the OpenMP captures by copy
19272 // are mutable in the sense that user can change their value - they are
19273 // private instances of the captured declarations.
19274 const Capture &Cap = CSI->getCapture(Var);
19275 if (Cap.isCopyCapture() &&
19276 !(isa<LambdaScopeInfo>(CSI) &&
19277 !cast<LambdaScopeInfo>(CSI)->lambdaCaptureShouldBeConst()) &&
19278 !(isa<CapturedRegionScopeInfo>(CSI) &&
19279 cast<CapturedRegionScopeInfo>(CSI)->CapRegionKind == CR_OpenMP))
19280 DeclRefType.addConst();
19281 return true;
19282 }
19283 return false;
19284 }
19285
19286 // Only block literals, captured statements, and lambda expressions can
19287 // capture; other scopes don't work.
getParentOfCapturingContextOrNull(DeclContext * DC,ValueDecl * Var,SourceLocation Loc,const bool Diagnose,Sema & S)19288 static DeclContext *getParentOfCapturingContextOrNull(DeclContext *DC,
19289 ValueDecl *Var,
19290 SourceLocation Loc,
19291 const bool Diagnose,
19292 Sema &S) {
19293 if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC) || isLambdaCallOperator(DC))
19294 return getLambdaAwareParentOfDeclContext(DC);
19295
19296 VarDecl *Underlying = Var->getPotentiallyDecomposedVarDecl();
19297 if (Underlying) {
19298 if (Underlying->hasLocalStorage() && Diagnose)
19299 diagnoseUncapturableValueReferenceOrBinding(S, Loc, Var);
19300 }
19301 return nullptr;
19302 }
19303
19304 // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
19305 // certain types of variables (unnamed, variably modified types etc.)
19306 // so check for eligibility.
isVariableCapturable(CapturingScopeInfo * CSI,ValueDecl * Var,SourceLocation Loc,const bool Diagnose,Sema & S)19307 static bool isVariableCapturable(CapturingScopeInfo *CSI, ValueDecl *Var,
19308 SourceLocation Loc, const bool Diagnose,
19309 Sema &S) {
19310
19311 assert((isa<VarDecl, BindingDecl>(Var)) &&
19312 "Only variables and structured bindings can be captured");
19313
19314 bool IsBlock = isa<BlockScopeInfo>(CSI);
19315 bool IsLambda = isa<LambdaScopeInfo>(CSI);
19316
19317 // Lambdas are not allowed to capture unnamed variables
19318 // (e.g. anonymous unions).
19319 // FIXME: The C++11 rule don't actually state this explicitly, but I'm
19320 // assuming that's the intent.
19321 if (IsLambda && !Var->getDeclName()) {
19322 if (Diagnose) {
19323 S.Diag(Loc, diag::err_lambda_capture_anonymous_var);
19324 S.Diag(Var->getLocation(), diag::note_declared_at);
19325 }
19326 return false;
19327 }
19328
19329 // Prohibit variably-modified types in blocks; they're difficult to deal with.
19330 if (Var->getType()->isVariablyModifiedType() && IsBlock) {
19331 if (Diagnose) {
19332 S.Diag(Loc, diag::err_ref_vm_type);
19333 S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
19334 }
19335 return false;
19336 }
19337 // Prohibit structs with flexible array members too.
19338 // We cannot capture what is in the tail end of the struct.
19339 if (const RecordType *VTTy = Var->getType()->getAs<RecordType>()) {
19340 if (VTTy->getDecl()->hasFlexibleArrayMember()) {
19341 if (Diagnose) {
19342 if (IsBlock)
19343 S.Diag(Loc, diag::err_ref_flexarray_type);
19344 else
19345 S.Diag(Loc, diag::err_lambda_capture_flexarray_type) << Var;
19346 S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
19347 }
19348 return false;
19349 }
19350 }
19351 const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
19352 // Lambdas and captured statements are not allowed to capture __block
19353 // variables; they don't support the expected semantics.
19354 if (HasBlocksAttr && (IsLambda || isa<CapturedRegionScopeInfo>(CSI))) {
19355 if (Diagnose) {
19356 S.Diag(Loc, diag::err_capture_block_variable) << Var << !IsLambda;
19357 S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
19358 }
19359 return false;
19360 }
19361 // OpenCL v2.0 s6.12.5: Blocks cannot reference/capture other blocks
19362 if (S.getLangOpts().OpenCL && IsBlock &&
19363 Var->getType()->isBlockPointerType()) {
19364 if (Diagnose)
19365 S.Diag(Loc, diag::err_opencl_block_ref_block);
19366 return false;
19367 }
19368
19369 if (isa<BindingDecl>(Var)) {
19370 if (!IsLambda || !S.getLangOpts().CPlusPlus) {
19371 if (Diagnose)
19372 diagnoseUncapturableValueReferenceOrBinding(S, Loc, Var);
19373 return false;
19374 } else if (Diagnose && S.getLangOpts().CPlusPlus) {
19375 S.Diag(Loc, S.LangOpts.CPlusPlus20
19376 ? diag::warn_cxx17_compat_capture_binding
19377 : diag::ext_capture_binding)
19378 << Var;
19379 S.Diag(Var->getLocation(), diag::note_entity_declared_at) << Var;
19380 }
19381 }
19382
19383 return true;
19384 }
19385
19386 // Returns true if the capture by block was successful.
captureInBlock(BlockScopeInfo * BSI,ValueDecl * Var,SourceLocation Loc,const bool BuildAndDiagnose,QualType & CaptureType,QualType & DeclRefType,const bool Nested,Sema & S,bool Invalid)19387 static bool captureInBlock(BlockScopeInfo *BSI, ValueDecl *Var,
19388 SourceLocation Loc, const bool BuildAndDiagnose,
19389 QualType &CaptureType, QualType &DeclRefType,
19390 const bool Nested, Sema &S, bool Invalid) {
19391 bool ByRef = false;
19392
19393 // Blocks are not allowed to capture arrays, excepting OpenCL.
19394 // OpenCL v2.0 s1.12.5 (revision 40): arrays are captured by reference
19395 // (decayed to pointers).
19396 if (!Invalid && !S.getLangOpts().OpenCL && CaptureType->isArrayType()) {
19397 if (BuildAndDiagnose) {
19398 S.Diag(Loc, diag::err_ref_array_type);
19399 S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
19400 Invalid = true;
19401 } else {
19402 return false;
19403 }
19404 }
19405
19406 // Forbid the block-capture of autoreleasing variables.
19407 if (!Invalid &&
19408 CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
19409 if (BuildAndDiagnose) {
19410 S.Diag(Loc, diag::err_arc_autoreleasing_capture)
19411 << /*block*/ 0;
19412 S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
19413 Invalid = true;
19414 } else {
19415 return false;
19416 }
19417 }
19418
19419 // Warn about implicitly autoreleasing indirect parameters captured by blocks.
19420 if (const auto *PT = CaptureType->getAs<PointerType>()) {
19421 QualType PointeeTy = PT->getPointeeType();
19422
19423 if (!Invalid && PointeeTy->getAs<ObjCObjectPointerType>() &&
19424 PointeeTy.getObjCLifetime() == Qualifiers::OCL_Autoreleasing &&
19425 !S.Context.hasDirectOwnershipQualifier(PointeeTy)) {
19426 if (BuildAndDiagnose) {
19427 SourceLocation VarLoc = Var->getLocation();
19428 S.Diag(Loc, diag::warn_block_capture_autoreleasing);
19429 S.Diag(VarLoc, diag::note_declare_parameter_strong);
19430 }
19431 }
19432 }
19433
19434 const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
19435 if (HasBlocksAttr || CaptureType->isReferenceType() ||
19436 (S.getLangOpts().OpenMP && S.isOpenMPCapturedDecl(Var))) {
19437 // Block capture by reference does not change the capture or
19438 // declaration reference types.
19439 ByRef = true;
19440 } else {
19441 // Block capture by copy introduces 'const'.
19442 CaptureType = CaptureType.getNonReferenceType().withConst();
19443 DeclRefType = CaptureType;
19444 }
19445
19446 // Actually capture the variable.
19447 if (BuildAndDiagnose)
19448 BSI->addCapture(Var, HasBlocksAttr, ByRef, Nested, Loc, SourceLocation(),
19449 CaptureType, Invalid);
19450
19451 return !Invalid;
19452 }
19453
19454 /// Capture the given variable in the captured region.
captureInCapturedRegion(CapturedRegionScopeInfo * RSI,ValueDecl * Var,SourceLocation Loc,const bool BuildAndDiagnose,QualType & CaptureType,QualType & DeclRefType,const bool RefersToCapturedVariable,Sema::TryCaptureKind Kind,bool IsTopScope,Sema & S,bool Invalid)19455 static bool captureInCapturedRegion(
19456 CapturedRegionScopeInfo *RSI, ValueDecl *Var, SourceLocation Loc,
19457 const bool BuildAndDiagnose, QualType &CaptureType, QualType &DeclRefType,
19458 const bool RefersToCapturedVariable, Sema::TryCaptureKind Kind,
19459 bool IsTopScope, Sema &S, bool Invalid) {
19460 // By default, capture variables by reference.
19461 bool ByRef = true;
19462 if (IsTopScope && Kind != Sema::TryCapture_Implicit) {
19463 ByRef = (Kind == Sema::TryCapture_ExplicitByRef);
19464 } else if (S.getLangOpts().OpenMP && RSI->CapRegionKind == CR_OpenMP) {
19465 // Using an LValue reference type is consistent with Lambdas (see below).
19466 if (S.isOpenMPCapturedDecl(Var)) {
19467 bool HasConst = DeclRefType.isConstQualified();
19468 DeclRefType = DeclRefType.getUnqualifiedType();
19469 // Don't lose diagnostics about assignments to const.
19470 if (HasConst)
19471 DeclRefType.addConst();
19472 }
19473 // Do not capture firstprivates in tasks.
19474 if (S.isOpenMPPrivateDecl(Var, RSI->OpenMPLevel, RSI->OpenMPCaptureLevel) !=
19475 OMPC_unknown)
19476 return true;
19477 ByRef = S.isOpenMPCapturedByRef(Var, RSI->OpenMPLevel,
19478 RSI->OpenMPCaptureLevel);
19479 }
19480
19481 if (ByRef)
19482 CaptureType = S.Context.getLValueReferenceType(DeclRefType);
19483 else
19484 CaptureType = DeclRefType;
19485
19486 // Actually capture the variable.
19487 if (BuildAndDiagnose)
19488 RSI->addCapture(Var, /*isBlock*/ false, ByRef, RefersToCapturedVariable,
19489 Loc, SourceLocation(), CaptureType, Invalid);
19490
19491 return !Invalid;
19492 }
19493
19494 /// Capture the given variable in the lambda.
captureInLambda(LambdaScopeInfo * LSI,ValueDecl * Var,SourceLocation Loc,const bool BuildAndDiagnose,QualType & CaptureType,QualType & DeclRefType,const bool RefersToCapturedVariable,const Sema::TryCaptureKind Kind,SourceLocation EllipsisLoc,const bool IsTopScope,Sema & S,bool Invalid)19495 static bool captureInLambda(LambdaScopeInfo *LSI, ValueDecl *Var,
19496 SourceLocation Loc, const bool BuildAndDiagnose,
19497 QualType &CaptureType, QualType &DeclRefType,
19498 const bool RefersToCapturedVariable,
19499 const Sema::TryCaptureKind Kind,
19500 SourceLocation EllipsisLoc, const bool IsTopScope,
19501 Sema &S, bool Invalid) {
19502 // Determine whether we are capturing by reference or by value.
19503 bool ByRef = false;
19504 if (IsTopScope && Kind != Sema::TryCapture_Implicit) {
19505 ByRef = (Kind == Sema::TryCapture_ExplicitByRef);
19506 } else {
19507 ByRef = (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByref);
19508 }
19509
19510 BindingDecl *BD = dyn_cast<BindingDecl>(Var);
19511 // FIXME: We should support capturing structured bindings in OpenMP.
19512 if (!Invalid && BD && S.LangOpts.OpenMP) {
19513 if (BuildAndDiagnose) {
19514 S.Diag(Loc, diag::err_capture_binding_openmp) << Var;
19515 S.Diag(Var->getLocation(), diag::note_entity_declared_at) << Var;
19516 }
19517 Invalid = true;
19518 }
19519
19520 if (BuildAndDiagnose && S.Context.getTargetInfo().getTriple().isWasm() &&
19521 CaptureType.getNonReferenceType().isWebAssemblyReferenceType()) {
19522 S.Diag(Loc, diag::err_wasm_ca_reference) << 0;
19523 Invalid = true;
19524 }
19525
19526 // Compute the type of the field that will capture this variable.
19527 if (ByRef) {
19528 // C++11 [expr.prim.lambda]p15:
19529 // An entity is captured by reference if it is implicitly or
19530 // explicitly captured but not captured by copy. It is
19531 // unspecified whether additional unnamed non-static data
19532 // members are declared in the closure type for entities
19533 // captured by reference.
19534 //
19535 // FIXME: It is not clear whether we want to build an lvalue reference
19536 // to the DeclRefType or to CaptureType.getNonReferenceType(). GCC appears
19537 // to do the former, while EDG does the latter. Core issue 1249 will
19538 // clarify, but for now we follow GCC because it's a more permissive and
19539 // easily defensible position.
19540 CaptureType = S.Context.getLValueReferenceType(DeclRefType);
19541 } else {
19542 // C++11 [expr.prim.lambda]p14:
19543 // For each entity captured by copy, an unnamed non-static
19544 // data member is declared in the closure type. The
19545 // declaration order of these members is unspecified. The type
19546 // of such a data member is the type of the corresponding
19547 // captured entity if the entity is not a reference to an
19548 // object, or the referenced type otherwise. [Note: If the
19549 // captured entity is a reference to a function, the
19550 // corresponding data member is also a reference to a
19551 // function. - end note ]
19552 if (const ReferenceType *RefType = CaptureType->getAs<ReferenceType>()){
19553 if (!RefType->getPointeeType()->isFunctionType())
19554 CaptureType = RefType->getPointeeType();
19555 }
19556
19557 // Forbid the lambda copy-capture of autoreleasing variables.
19558 if (!Invalid &&
19559 CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
19560 if (BuildAndDiagnose) {
19561 S.Diag(Loc, diag::err_arc_autoreleasing_capture) << /*lambda*/ 1;
19562 S.Diag(Var->getLocation(), diag::note_previous_decl)
19563 << Var->getDeclName();
19564 Invalid = true;
19565 } else {
19566 return false;
19567 }
19568 }
19569
19570 // Make sure that by-copy captures are of a complete and non-abstract type.
19571 if (!Invalid && BuildAndDiagnose) {
19572 if (!CaptureType->isDependentType() &&
19573 S.RequireCompleteSizedType(
19574 Loc, CaptureType,
19575 diag::err_capture_of_incomplete_or_sizeless_type,
19576 Var->getDeclName()))
19577 Invalid = true;
19578 else if (S.RequireNonAbstractType(Loc, CaptureType,
19579 diag::err_capture_of_abstract_type))
19580 Invalid = true;
19581 }
19582 }
19583
19584 // Compute the type of a reference to this captured variable.
19585 if (ByRef)
19586 DeclRefType = CaptureType.getNonReferenceType();
19587 else {
19588 // C++ [expr.prim.lambda]p5:
19589 // The closure type for a lambda-expression has a public inline
19590 // function call operator [...]. This function call operator is
19591 // declared const (9.3.1) if and only if the lambda-expression's
19592 // parameter-declaration-clause is not followed by mutable.
19593 DeclRefType = CaptureType.getNonReferenceType();
19594 bool Const = LSI->lambdaCaptureShouldBeConst();
19595 if (Const && !CaptureType->isReferenceType())
19596 DeclRefType.addConst();
19597 }
19598
19599 // Add the capture.
19600 if (BuildAndDiagnose)
19601 LSI->addCapture(Var, /*isBlock=*/false, ByRef, RefersToCapturedVariable,
19602 Loc, EllipsisLoc, CaptureType, Invalid);
19603
19604 return !Invalid;
19605 }
19606
canCaptureVariableByCopy(ValueDecl * Var,const ASTContext & Context)19607 static bool canCaptureVariableByCopy(ValueDecl *Var,
19608 const ASTContext &Context) {
19609 // Offer a Copy fix even if the type is dependent.
19610 if (Var->getType()->isDependentType())
19611 return true;
19612 QualType T = Var->getType().getNonReferenceType();
19613 if (T.isTriviallyCopyableType(Context))
19614 return true;
19615 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
19616
19617 if (!(RD = RD->getDefinition()))
19618 return false;
19619 if (RD->hasSimpleCopyConstructor())
19620 return true;
19621 if (RD->hasUserDeclaredCopyConstructor())
19622 for (CXXConstructorDecl *Ctor : RD->ctors())
19623 if (Ctor->isCopyConstructor())
19624 return !Ctor->isDeleted();
19625 }
19626 return false;
19627 }
19628
19629 /// Create up to 4 fix-its for explicit reference and value capture of \p Var or
19630 /// default capture. Fixes may be omitted if they aren't allowed by the
19631 /// standard, for example we can't emit a default copy capture fix-it if we
19632 /// already explicitly copy capture capture another variable.
buildLambdaCaptureFixit(Sema & Sema,LambdaScopeInfo * LSI,ValueDecl * Var)19633 static void buildLambdaCaptureFixit(Sema &Sema, LambdaScopeInfo *LSI,
19634 ValueDecl *Var) {
19635 assert(LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None);
19636 // Don't offer Capture by copy of default capture by copy fixes if Var is
19637 // known not to be copy constructible.
19638 bool ShouldOfferCopyFix = canCaptureVariableByCopy(Var, Sema.getASTContext());
19639
19640 SmallString<32> FixBuffer;
19641 StringRef Separator = LSI->NumExplicitCaptures > 0 ? ", " : "";
19642 if (Var->getDeclName().isIdentifier() && !Var->getName().empty()) {
19643 SourceLocation VarInsertLoc = LSI->IntroducerRange.getEnd();
19644 if (ShouldOfferCopyFix) {
19645 // Offer fixes to insert an explicit capture for the variable.
19646 // [] -> [VarName]
19647 // [OtherCapture] -> [OtherCapture, VarName]
19648 FixBuffer.assign({Separator, Var->getName()});
19649 Sema.Diag(VarInsertLoc, diag::note_lambda_variable_capture_fixit)
19650 << Var << /*value*/ 0
19651 << FixItHint::CreateInsertion(VarInsertLoc, FixBuffer);
19652 }
19653 // As above but capture by reference.
19654 FixBuffer.assign({Separator, "&", Var->getName()});
19655 Sema.Diag(VarInsertLoc, diag::note_lambda_variable_capture_fixit)
19656 << Var << /*reference*/ 1
19657 << FixItHint::CreateInsertion(VarInsertLoc, FixBuffer);
19658 }
19659
19660 // Only try to offer default capture if there are no captures excluding this
19661 // and init captures.
19662 // [this]: OK.
19663 // [X = Y]: OK.
19664 // [&A, &B]: Don't offer.
19665 // [A, B]: Don't offer.
19666 if (llvm::any_of(LSI->Captures, [](Capture &C) {
19667 return !C.isThisCapture() && !C.isInitCapture();
19668 }))
19669 return;
19670
19671 // The default capture specifiers, '=' or '&', must appear first in the
19672 // capture body.
19673 SourceLocation DefaultInsertLoc =
19674 LSI->IntroducerRange.getBegin().getLocWithOffset(1);
19675
19676 if (ShouldOfferCopyFix) {
19677 bool CanDefaultCopyCapture = true;
19678 // [=, *this] OK since c++17
19679 // [=, this] OK since c++20
19680 if (LSI->isCXXThisCaptured() && !Sema.getLangOpts().CPlusPlus20)
19681 CanDefaultCopyCapture = Sema.getLangOpts().CPlusPlus17
19682 ? LSI->getCXXThisCapture().isCopyCapture()
19683 : false;
19684 // We can't use default capture by copy if any captures already specified
19685 // capture by copy.
19686 if (CanDefaultCopyCapture && llvm::none_of(LSI->Captures, [](Capture &C) {
19687 return !C.isThisCapture() && !C.isInitCapture() && C.isCopyCapture();
19688 })) {
19689 FixBuffer.assign({"=", Separator});
19690 Sema.Diag(DefaultInsertLoc, diag::note_lambda_default_capture_fixit)
19691 << /*value*/ 0
19692 << FixItHint::CreateInsertion(DefaultInsertLoc, FixBuffer);
19693 }
19694 }
19695
19696 // We can't use default capture by reference if any captures already specified
19697 // capture by reference.
19698 if (llvm::none_of(LSI->Captures, [](Capture &C) {
19699 return !C.isInitCapture() && C.isReferenceCapture() &&
19700 !C.isThisCapture();
19701 })) {
19702 FixBuffer.assign({"&", Separator});
19703 Sema.Diag(DefaultInsertLoc, diag::note_lambda_default_capture_fixit)
19704 << /*reference*/ 1
19705 << FixItHint::CreateInsertion(DefaultInsertLoc, FixBuffer);
19706 }
19707 }
19708
tryCaptureVariable(ValueDecl * Var,SourceLocation ExprLoc,TryCaptureKind Kind,SourceLocation EllipsisLoc,bool BuildAndDiagnose,QualType & CaptureType,QualType & DeclRefType,const unsigned * const FunctionScopeIndexToStopAt)19709 bool Sema::tryCaptureVariable(
19710 ValueDecl *Var, SourceLocation ExprLoc, TryCaptureKind Kind,
19711 SourceLocation EllipsisLoc, bool BuildAndDiagnose, QualType &CaptureType,
19712 QualType &DeclRefType, const unsigned *const FunctionScopeIndexToStopAt) {
19713 // An init-capture is notionally from the context surrounding its
19714 // declaration, but its parent DC is the lambda class.
19715 DeclContext *VarDC = Var->getDeclContext();
19716 DeclContext *DC = CurContext;
19717
19718 // tryCaptureVariable is called every time a DeclRef is formed,
19719 // it can therefore have non-negigible impact on performances.
19720 // For local variables and when there is no capturing scope,
19721 // we can bailout early.
19722 if (CapturingFunctionScopes == 0 && (!BuildAndDiagnose || VarDC == DC))
19723 return true;
19724
19725 const auto *VD = dyn_cast<VarDecl>(Var);
19726 if (VD) {
19727 if (VD->isInitCapture())
19728 VarDC = VarDC->getParent();
19729 } else {
19730 VD = Var->getPotentiallyDecomposedVarDecl();
19731 }
19732 assert(VD && "Cannot capture a null variable");
19733
19734 const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
19735 ? *FunctionScopeIndexToStopAt : FunctionScopes.size() - 1;
19736 // We need to sync up the Declaration Context with the
19737 // FunctionScopeIndexToStopAt
19738 if (FunctionScopeIndexToStopAt) {
19739 unsigned FSIndex = FunctionScopes.size() - 1;
19740 while (FSIndex != MaxFunctionScopesIndex) {
19741 DC = getLambdaAwareParentOfDeclContext(DC);
19742 --FSIndex;
19743 }
19744 }
19745
19746 // Capture global variables if it is required to use private copy of this
19747 // variable.
19748 bool IsGlobal = !VD->hasLocalStorage();
19749 if (IsGlobal &&
19750 !(LangOpts.OpenMP && isOpenMPCapturedDecl(Var, /*CheckScopeInfo=*/true,
19751 MaxFunctionScopesIndex)))
19752 return true;
19753
19754 if (isa<VarDecl>(Var))
19755 Var = cast<VarDecl>(Var->getCanonicalDecl());
19756
19757 // Walk up the stack to determine whether we can capture the variable,
19758 // performing the "simple" checks that don't depend on type. We stop when
19759 // we've either hit the declared scope of the variable or find an existing
19760 // capture of that variable. We start from the innermost capturing-entity
19761 // (the DC) and ensure that all intervening capturing-entities
19762 // (blocks/lambdas etc.) between the innermost capturer and the variable`s
19763 // declcontext can either capture the variable or have already captured
19764 // the variable.
19765 CaptureType = Var->getType();
19766 DeclRefType = CaptureType.getNonReferenceType();
19767 bool Nested = false;
19768 bool Explicit = (Kind != TryCapture_Implicit);
19769 unsigned FunctionScopesIndex = MaxFunctionScopesIndex;
19770 do {
19771
19772 LambdaScopeInfo *LSI = nullptr;
19773 if (!FunctionScopes.empty())
19774 LSI = dyn_cast_or_null<LambdaScopeInfo>(
19775 FunctionScopes[FunctionScopesIndex]);
19776
19777 bool IsInScopeDeclarationContext =
19778 !LSI || LSI->AfterParameterList || CurContext == LSI->CallOperator;
19779
19780 if (LSI && !LSI->AfterParameterList) {
19781 // This allows capturing parameters from a default value which does not
19782 // seems correct
19783 if (isa<ParmVarDecl>(Var) && !Var->getDeclContext()->isFunctionOrMethod())
19784 return true;
19785 }
19786 // If the variable is declared in the current context, there is no need to
19787 // capture it.
19788 if (IsInScopeDeclarationContext &&
19789 FunctionScopesIndex == MaxFunctionScopesIndex && VarDC == DC)
19790 return true;
19791
19792 // Only block literals, captured statements, and lambda expressions can
19793 // capture; other scopes don't work.
19794 DeclContext *ParentDC =
19795 !IsInScopeDeclarationContext
19796 ? DC->getParent()
19797 : getParentOfCapturingContextOrNull(DC, Var, ExprLoc,
19798 BuildAndDiagnose, *this);
19799 // We need to check for the parent *first* because, if we *have*
19800 // private-captured a global variable, we need to recursively capture it in
19801 // intermediate blocks, lambdas, etc.
19802 if (!ParentDC) {
19803 if (IsGlobal) {
19804 FunctionScopesIndex = MaxFunctionScopesIndex - 1;
19805 break;
19806 }
19807 return true;
19808 }
19809
19810 FunctionScopeInfo *FSI = FunctionScopes[FunctionScopesIndex];
19811 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FSI);
19812
19813 // Check whether we've already captured it.
19814 if (isVariableAlreadyCapturedInScopeInfo(CSI, Var, Nested, CaptureType,
19815 DeclRefType)) {
19816 CSI->getCapture(Var).markUsed(BuildAndDiagnose);
19817 break;
19818 }
19819
19820 // When evaluating some attributes (like enable_if) we might refer to a
19821 // function parameter appertaining to the same declaration as that
19822 // attribute.
19823 if (const auto *Parm = dyn_cast<ParmVarDecl>(Var);
19824 Parm && Parm->getDeclContext() == DC)
19825 return true;
19826
19827 // If we are instantiating a generic lambda call operator body,
19828 // we do not want to capture new variables. What was captured
19829 // during either a lambdas transformation or initial parsing
19830 // should be used.
19831 if (isGenericLambdaCallOperatorSpecialization(DC)) {
19832 if (BuildAndDiagnose) {
19833 LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
19834 if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None) {
19835 Diag(ExprLoc, diag::err_lambda_impcap) << Var;
19836 Diag(Var->getLocation(), diag::note_previous_decl) << Var;
19837 Diag(LSI->Lambda->getBeginLoc(), diag::note_lambda_decl);
19838 buildLambdaCaptureFixit(*this, LSI, Var);
19839 } else
19840 diagnoseUncapturableValueReferenceOrBinding(*this, ExprLoc, Var);
19841 }
19842 return true;
19843 }
19844
19845 // Try to capture variable-length arrays types.
19846 if (Var->getType()->isVariablyModifiedType()) {
19847 // We're going to walk down into the type and look for VLA
19848 // expressions.
19849 QualType QTy = Var->getType();
19850 if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var))
19851 QTy = PVD->getOriginalType();
19852 captureVariablyModifiedType(Context, QTy, CSI);
19853 }
19854
19855 if (getLangOpts().OpenMP) {
19856 if (auto *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
19857 // OpenMP private variables should not be captured in outer scope, so
19858 // just break here. Similarly, global variables that are captured in a
19859 // target region should not be captured outside the scope of the region.
19860 if (RSI->CapRegionKind == CR_OpenMP) {
19861 OpenMPClauseKind IsOpenMPPrivateDecl = isOpenMPPrivateDecl(
19862 Var, RSI->OpenMPLevel, RSI->OpenMPCaptureLevel);
19863 // If the variable is private (i.e. not captured) and has variably
19864 // modified type, we still need to capture the type for correct
19865 // codegen in all regions, associated with the construct. Currently,
19866 // it is captured in the innermost captured region only.
19867 if (IsOpenMPPrivateDecl != OMPC_unknown &&
19868 Var->getType()->isVariablyModifiedType()) {
19869 QualType QTy = Var->getType();
19870 if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var))
19871 QTy = PVD->getOriginalType();
19872 for (int I = 1, E = getNumberOfConstructScopes(RSI->OpenMPLevel);
19873 I < E; ++I) {
19874 auto *OuterRSI = cast<CapturedRegionScopeInfo>(
19875 FunctionScopes[FunctionScopesIndex - I]);
19876 assert(RSI->OpenMPLevel == OuterRSI->OpenMPLevel &&
19877 "Wrong number of captured regions associated with the "
19878 "OpenMP construct.");
19879 captureVariablyModifiedType(Context, QTy, OuterRSI);
19880 }
19881 }
19882 bool IsTargetCap =
19883 IsOpenMPPrivateDecl != OMPC_private &&
19884 isOpenMPTargetCapturedDecl(Var, RSI->OpenMPLevel,
19885 RSI->OpenMPCaptureLevel);
19886 // Do not capture global if it is not privatized in outer regions.
19887 bool IsGlobalCap =
19888 IsGlobal && isOpenMPGlobalCapturedDecl(Var, RSI->OpenMPLevel,
19889 RSI->OpenMPCaptureLevel);
19890
19891 // When we detect target captures we are looking from inside the
19892 // target region, therefore we need to propagate the capture from the
19893 // enclosing region. Therefore, the capture is not initially nested.
19894 if (IsTargetCap)
19895 adjustOpenMPTargetScopeIndex(FunctionScopesIndex, RSI->OpenMPLevel);
19896
19897 if (IsTargetCap || IsOpenMPPrivateDecl == OMPC_private ||
19898 (IsGlobal && !IsGlobalCap)) {
19899 Nested = !IsTargetCap;
19900 bool HasConst = DeclRefType.isConstQualified();
19901 DeclRefType = DeclRefType.getUnqualifiedType();
19902 // Don't lose diagnostics about assignments to const.
19903 if (HasConst)
19904 DeclRefType.addConst();
19905 CaptureType = Context.getLValueReferenceType(DeclRefType);
19906 break;
19907 }
19908 }
19909 }
19910 }
19911 if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None && !Explicit) {
19912 // No capture-default, and this is not an explicit capture
19913 // so cannot capture this variable.
19914 if (BuildAndDiagnose) {
19915 Diag(ExprLoc, diag::err_lambda_impcap) << Var;
19916 Diag(Var->getLocation(), diag::note_previous_decl) << Var;
19917 auto *LSI = cast<LambdaScopeInfo>(CSI);
19918 if (LSI->Lambda) {
19919 Diag(LSI->Lambda->getBeginLoc(), diag::note_lambda_decl);
19920 buildLambdaCaptureFixit(*this, LSI, Var);
19921 }
19922 // FIXME: If we error out because an outer lambda can not implicitly
19923 // capture a variable that an inner lambda explicitly captures, we
19924 // should have the inner lambda do the explicit capture - because
19925 // it makes for cleaner diagnostics later. This would purely be done
19926 // so that the diagnostic does not misleadingly claim that a variable
19927 // can not be captured by a lambda implicitly even though it is captured
19928 // explicitly. Suggestion:
19929 // - create const bool VariableCaptureWasInitiallyExplicit = Explicit
19930 // at the function head
19931 // - cache the StartingDeclContext - this must be a lambda
19932 // - captureInLambda in the innermost lambda the variable.
19933 }
19934 return true;
19935 }
19936 Explicit = false;
19937 FunctionScopesIndex--;
19938 if (IsInScopeDeclarationContext)
19939 DC = ParentDC;
19940 } while (!VarDC->Equals(DC));
19941
19942 // Walk back down the scope stack, (e.g. from outer lambda to inner lambda)
19943 // computing the type of the capture at each step, checking type-specific
19944 // requirements, and adding captures if requested.
19945 // If the variable had already been captured previously, we start capturing
19946 // at the lambda nested within that one.
19947 bool Invalid = false;
19948 for (unsigned I = ++FunctionScopesIndex, N = MaxFunctionScopesIndex + 1; I != N;
19949 ++I) {
19950 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[I]);
19951
19952 // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
19953 // certain types of variables (unnamed, variably modified types etc.)
19954 // so check for eligibility.
19955 if (!Invalid)
19956 Invalid =
19957 !isVariableCapturable(CSI, Var, ExprLoc, BuildAndDiagnose, *this);
19958
19959 // After encountering an error, if we're actually supposed to capture, keep
19960 // capturing in nested contexts to suppress any follow-on diagnostics.
19961 if (Invalid && !BuildAndDiagnose)
19962 return true;
19963
19964 if (BlockScopeInfo *BSI = dyn_cast<BlockScopeInfo>(CSI)) {
19965 Invalid = !captureInBlock(BSI, Var, ExprLoc, BuildAndDiagnose, CaptureType,
19966 DeclRefType, Nested, *this, Invalid);
19967 Nested = true;
19968 } else if (CapturedRegionScopeInfo *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
19969 Invalid = !captureInCapturedRegion(
19970 RSI, Var, ExprLoc, BuildAndDiagnose, CaptureType, DeclRefType, Nested,
19971 Kind, /*IsTopScope*/ I == N - 1, *this, Invalid);
19972 Nested = true;
19973 } else {
19974 LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
19975 Invalid =
19976 !captureInLambda(LSI, Var, ExprLoc, BuildAndDiagnose, CaptureType,
19977 DeclRefType, Nested, Kind, EllipsisLoc,
19978 /*IsTopScope*/ I == N - 1, *this, Invalid);
19979 Nested = true;
19980 }
19981
19982 if (Invalid && !BuildAndDiagnose)
19983 return true;
19984 }
19985 return Invalid;
19986 }
19987
tryCaptureVariable(ValueDecl * Var,SourceLocation Loc,TryCaptureKind Kind,SourceLocation EllipsisLoc)19988 bool Sema::tryCaptureVariable(ValueDecl *Var, SourceLocation Loc,
19989 TryCaptureKind Kind, SourceLocation EllipsisLoc) {
19990 QualType CaptureType;
19991 QualType DeclRefType;
19992 return tryCaptureVariable(Var, Loc, Kind, EllipsisLoc,
19993 /*BuildAndDiagnose=*/true, CaptureType,
19994 DeclRefType, nullptr);
19995 }
19996
NeedToCaptureVariable(ValueDecl * Var,SourceLocation Loc)19997 bool Sema::NeedToCaptureVariable(ValueDecl *Var, SourceLocation Loc) {
19998 QualType CaptureType;
19999 QualType DeclRefType;
20000 return !tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
20001 /*BuildAndDiagnose=*/false, CaptureType,
20002 DeclRefType, nullptr);
20003 }
20004
getCapturedDeclRefType(ValueDecl * Var,SourceLocation Loc)20005 QualType Sema::getCapturedDeclRefType(ValueDecl *Var, SourceLocation Loc) {
20006 QualType CaptureType;
20007 QualType DeclRefType;
20008
20009 // Determine whether we can capture this variable.
20010 if (tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
20011 /*BuildAndDiagnose=*/false, CaptureType,
20012 DeclRefType, nullptr))
20013 return QualType();
20014
20015 return DeclRefType;
20016 }
20017
20018 namespace {
20019 // Helper to copy the template arguments from a DeclRefExpr or MemberExpr.
20020 // The produced TemplateArgumentListInfo* points to data stored within this
20021 // object, so should only be used in contexts where the pointer will not be
20022 // used after the CopiedTemplateArgs object is destroyed.
20023 class CopiedTemplateArgs {
20024 bool HasArgs;
20025 TemplateArgumentListInfo TemplateArgStorage;
20026 public:
20027 template<typename RefExpr>
CopiedTemplateArgs(RefExpr * E)20028 CopiedTemplateArgs(RefExpr *E) : HasArgs(E->hasExplicitTemplateArgs()) {
20029 if (HasArgs)
20030 E->copyTemplateArgumentsInto(TemplateArgStorage);
20031 }
operator TemplateArgumentListInfo*()20032 operator TemplateArgumentListInfo*()
20033 #ifdef __has_cpp_attribute
20034 #if __has_cpp_attribute(clang::lifetimebound)
20035 [[clang::lifetimebound]]
20036 #endif
20037 #endif
20038 {
20039 return HasArgs ? &TemplateArgStorage : nullptr;
20040 }
20041 };
20042 }
20043
20044 /// Walk the set of potential results of an expression and mark them all as
20045 /// non-odr-uses if they satisfy the side-conditions of the NonOdrUseReason.
20046 ///
20047 /// \return A new expression if we found any potential results, ExprEmpty() if
20048 /// not, and ExprError() if we diagnosed an error.
rebuildPotentialResultsAsNonOdrUsed(Sema & S,Expr * E,NonOdrUseReason NOUR)20049 static ExprResult rebuildPotentialResultsAsNonOdrUsed(Sema &S, Expr *E,
20050 NonOdrUseReason NOUR) {
20051 // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
20052 // an object that satisfies the requirements for appearing in a
20053 // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
20054 // is immediately applied." This function handles the lvalue-to-rvalue
20055 // conversion part.
20056 //
20057 // If we encounter a node that claims to be an odr-use but shouldn't be, we
20058 // transform it into the relevant kind of non-odr-use node and rebuild the
20059 // tree of nodes leading to it.
20060 //
20061 // This is a mini-TreeTransform that only transforms a restricted subset of
20062 // nodes (and only certain operands of them).
20063
20064 // Rebuild a subexpression.
20065 auto Rebuild = [&](Expr *Sub) {
20066 return rebuildPotentialResultsAsNonOdrUsed(S, Sub, NOUR);
20067 };
20068
20069 // Check whether a potential result satisfies the requirements of NOUR.
20070 auto IsPotentialResultOdrUsed = [&](NamedDecl *D) {
20071 // Any entity other than a VarDecl is always odr-used whenever it's named
20072 // in a potentially-evaluated expression.
20073 auto *VD = dyn_cast<VarDecl>(D);
20074 if (!VD)
20075 return true;
20076
20077 // C++2a [basic.def.odr]p4:
20078 // A variable x whose name appears as a potentially-evalauted expression
20079 // e is odr-used by e unless
20080 // -- x is a reference that is usable in constant expressions, or
20081 // -- x is a variable of non-reference type that is usable in constant
20082 // expressions and has no mutable subobjects, and e is an element of
20083 // the set of potential results of an expression of
20084 // non-volatile-qualified non-class type to which the lvalue-to-rvalue
20085 // conversion is applied, or
20086 // -- x is a variable of non-reference type, and e is an element of the
20087 // set of potential results of a discarded-value expression to which
20088 // the lvalue-to-rvalue conversion is not applied
20089 //
20090 // We check the first bullet and the "potentially-evaluated" condition in
20091 // BuildDeclRefExpr. We check the type requirements in the second bullet
20092 // in CheckLValueToRValueConversionOperand below.
20093 switch (NOUR) {
20094 case NOUR_None:
20095 case NOUR_Unevaluated:
20096 llvm_unreachable("unexpected non-odr-use-reason");
20097
20098 case NOUR_Constant:
20099 // Constant references were handled when they were built.
20100 if (VD->getType()->isReferenceType())
20101 return true;
20102 if (auto *RD = VD->getType()->getAsCXXRecordDecl())
20103 if (RD->hasMutableFields())
20104 return true;
20105 if (!VD->isUsableInConstantExpressions(S.Context))
20106 return true;
20107 break;
20108
20109 case NOUR_Discarded:
20110 if (VD->getType()->isReferenceType())
20111 return true;
20112 break;
20113 }
20114 return false;
20115 };
20116
20117 // Mark that this expression does not constitute an odr-use.
20118 auto MarkNotOdrUsed = [&] {
20119 S.MaybeODRUseExprs.remove(E);
20120 if (LambdaScopeInfo *LSI = S.getCurLambda())
20121 LSI->markVariableExprAsNonODRUsed(E);
20122 };
20123
20124 // C++2a [basic.def.odr]p2:
20125 // The set of potential results of an expression e is defined as follows:
20126 switch (E->getStmtClass()) {
20127 // -- If e is an id-expression, ...
20128 case Expr::DeclRefExprClass: {
20129 auto *DRE = cast<DeclRefExpr>(E);
20130 if (DRE->isNonOdrUse() || IsPotentialResultOdrUsed(DRE->getDecl()))
20131 break;
20132
20133 // Rebuild as a non-odr-use DeclRefExpr.
20134 MarkNotOdrUsed();
20135 return DeclRefExpr::Create(
20136 S.Context, DRE->getQualifierLoc(), DRE->getTemplateKeywordLoc(),
20137 DRE->getDecl(), DRE->refersToEnclosingVariableOrCapture(),
20138 DRE->getNameInfo(), DRE->getType(), DRE->getValueKind(),
20139 DRE->getFoundDecl(), CopiedTemplateArgs(DRE), NOUR);
20140 }
20141
20142 case Expr::FunctionParmPackExprClass: {
20143 auto *FPPE = cast<FunctionParmPackExpr>(E);
20144 // If any of the declarations in the pack is odr-used, then the expression
20145 // as a whole constitutes an odr-use.
20146 for (VarDecl *D : *FPPE)
20147 if (IsPotentialResultOdrUsed(D))
20148 return ExprEmpty();
20149
20150 // FIXME: Rebuild as a non-odr-use FunctionParmPackExpr? In practice,
20151 // nothing cares about whether we marked this as an odr-use, but it might
20152 // be useful for non-compiler tools.
20153 MarkNotOdrUsed();
20154 break;
20155 }
20156
20157 // -- If e is a subscripting operation with an array operand...
20158 case Expr::ArraySubscriptExprClass: {
20159 auto *ASE = cast<ArraySubscriptExpr>(E);
20160 Expr *OldBase = ASE->getBase()->IgnoreImplicit();
20161 if (!OldBase->getType()->isArrayType())
20162 break;
20163 ExprResult Base = Rebuild(OldBase);
20164 if (!Base.isUsable())
20165 return Base;
20166 Expr *LHS = ASE->getBase() == ASE->getLHS() ? Base.get() : ASE->getLHS();
20167 Expr *RHS = ASE->getBase() == ASE->getRHS() ? Base.get() : ASE->getRHS();
20168 SourceLocation LBracketLoc = ASE->getBeginLoc(); // FIXME: Not stored.
20169 return S.ActOnArraySubscriptExpr(nullptr, LHS, LBracketLoc, RHS,
20170 ASE->getRBracketLoc());
20171 }
20172
20173 case Expr::MemberExprClass: {
20174 auto *ME = cast<MemberExpr>(E);
20175 // -- If e is a class member access expression [...] naming a non-static
20176 // data member...
20177 if (isa<FieldDecl>(ME->getMemberDecl())) {
20178 ExprResult Base = Rebuild(ME->getBase());
20179 if (!Base.isUsable())
20180 return Base;
20181 return MemberExpr::Create(
20182 S.Context, Base.get(), ME->isArrow(), ME->getOperatorLoc(),
20183 ME->getQualifierLoc(), ME->getTemplateKeywordLoc(),
20184 ME->getMemberDecl(), ME->getFoundDecl(), ME->getMemberNameInfo(),
20185 CopiedTemplateArgs(ME), ME->getType(), ME->getValueKind(),
20186 ME->getObjectKind(), ME->isNonOdrUse());
20187 }
20188
20189 if (ME->getMemberDecl()->isCXXInstanceMember())
20190 break;
20191
20192 // -- If e is a class member access expression naming a static data member,
20193 // ...
20194 if (ME->isNonOdrUse() || IsPotentialResultOdrUsed(ME->getMemberDecl()))
20195 break;
20196
20197 // Rebuild as a non-odr-use MemberExpr.
20198 MarkNotOdrUsed();
20199 return MemberExpr::Create(
20200 S.Context, ME->getBase(), ME->isArrow(), ME->getOperatorLoc(),
20201 ME->getQualifierLoc(), ME->getTemplateKeywordLoc(), ME->getMemberDecl(),
20202 ME->getFoundDecl(), ME->getMemberNameInfo(), CopiedTemplateArgs(ME),
20203 ME->getType(), ME->getValueKind(), ME->getObjectKind(), NOUR);
20204 }
20205
20206 case Expr::BinaryOperatorClass: {
20207 auto *BO = cast<BinaryOperator>(E);
20208 Expr *LHS = BO->getLHS();
20209 Expr *RHS = BO->getRHS();
20210 // -- If e is a pointer-to-member expression of the form e1 .* e2 ...
20211 if (BO->getOpcode() == BO_PtrMemD) {
20212 ExprResult Sub = Rebuild(LHS);
20213 if (!Sub.isUsable())
20214 return Sub;
20215 LHS = Sub.get();
20216 // -- If e is a comma expression, ...
20217 } else if (BO->getOpcode() == BO_Comma) {
20218 ExprResult Sub = Rebuild(RHS);
20219 if (!Sub.isUsable())
20220 return Sub;
20221 RHS = Sub.get();
20222 } else {
20223 break;
20224 }
20225 return S.BuildBinOp(nullptr, BO->getOperatorLoc(), BO->getOpcode(),
20226 LHS, RHS);
20227 }
20228
20229 // -- If e has the form (e1)...
20230 case Expr::ParenExprClass: {
20231 auto *PE = cast<ParenExpr>(E);
20232 ExprResult Sub = Rebuild(PE->getSubExpr());
20233 if (!Sub.isUsable())
20234 return Sub;
20235 return S.ActOnParenExpr(PE->getLParen(), PE->getRParen(), Sub.get());
20236 }
20237
20238 // -- If e is a glvalue conditional expression, ...
20239 // We don't apply this to a binary conditional operator. FIXME: Should we?
20240 case Expr::ConditionalOperatorClass: {
20241 auto *CO = cast<ConditionalOperator>(E);
20242 ExprResult LHS = Rebuild(CO->getLHS());
20243 if (LHS.isInvalid())
20244 return ExprError();
20245 ExprResult RHS = Rebuild(CO->getRHS());
20246 if (RHS.isInvalid())
20247 return ExprError();
20248 if (!LHS.isUsable() && !RHS.isUsable())
20249 return ExprEmpty();
20250 if (!LHS.isUsable())
20251 LHS = CO->getLHS();
20252 if (!RHS.isUsable())
20253 RHS = CO->getRHS();
20254 return S.ActOnConditionalOp(CO->getQuestionLoc(), CO->getColonLoc(),
20255 CO->getCond(), LHS.get(), RHS.get());
20256 }
20257
20258 // [Clang extension]
20259 // -- If e has the form __extension__ e1...
20260 case Expr::UnaryOperatorClass: {
20261 auto *UO = cast<UnaryOperator>(E);
20262 if (UO->getOpcode() != UO_Extension)
20263 break;
20264 ExprResult Sub = Rebuild(UO->getSubExpr());
20265 if (!Sub.isUsable())
20266 return Sub;
20267 return S.BuildUnaryOp(nullptr, UO->getOperatorLoc(), UO_Extension,
20268 Sub.get());
20269 }
20270
20271 // [Clang extension]
20272 // -- If e has the form _Generic(...), the set of potential results is the
20273 // union of the sets of potential results of the associated expressions.
20274 case Expr::GenericSelectionExprClass: {
20275 auto *GSE = cast<GenericSelectionExpr>(E);
20276
20277 SmallVector<Expr *, 4> AssocExprs;
20278 bool AnyChanged = false;
20279 for (Expr *OrigAssocExpr : GSE->getAssocExprs()) {
20280 ExprResult AssocExpr = Rebuild(OrigAssocExpr);
20281 if (AssocExpr.isInvalid())
20282 return ExprError();
20283 if (AssocExpr.isUsable()) {
20284 AssocExprs.push_back(AssocExpr.get());
20285 AnyChanged = true;
20286 } else {
20287 AssocExprs.push_back(OrigAssocExpr);
20288 }
20289 }
20290
20291 void *ExOrTy = nullptr;
20292 bool IsExpr = GSE->isExprPredicate();
20293 if (IsExpr)
20294 ExOrTy = GSE->getControllingExpr();
20295 else
20296 ExOrTy = GSE->getControllingType();
20297 return AnyChanged ? S.CreateGenericSelectionExpr(
20298 GSE->getGenericLoc(), GSE->getDefaultLoc(),
20299 GSE->getRParenLoc(), IsExpr, ExOrTy,
20300 GSE->getAssocTypeSourceInfos(), AssocExprs)
20301 : ExprEmpty();
20302 }
20303
20304 // [Clang extension]
20305 // -- If e has the form __builtin_choose_expr(...), the set of potential
20306 // results is the union of the sets of potential results of the
20307 // second and third subexpressions.
20308 case Expr::ChooseExprClass: {
20309 auto *CE = cast<ChooseExpr>(E);
20310
20311 ExprResult LHS = Rebuild(CE->getLHS());
20312 if (LHS.isInvalid())
20313 return ExprError();
20314
20315 ExprResult RHS = Rebuild(CE->getLHS());
20316 if (RHS.isInvalid())
20317 return ExprError();
20318
20319 if (!LHS.get() && !RHS.get())
20320 return ExprEmpty();
20321 if (!LHS.isUsable())
20322 LHS = CE->getLHS();
20323 if (!RHS.isUsable())
20324 RHS = CE->getRHS();
20325
20326 return S.ActOnChooseExpr(CE->getBuiltinLoc(), CE->getCond(), LHS.get(),
20327 RHS.get(), CE->getRParenLoc());
20328 }
20329
20330 // Step through non-syntactic nodes.
20331 case Expr::ConstantExprClass: {
20332 auto *CE = cast<ConstantExpr>(E);
20333 ExprResult Sub = Rebuild(CE->getSubExpr());
20334 if (!Sub.isUsable())
20335 return Sub;
20336 return ConstantExpr::Create(S.Context, Sub.get());
20337 }
20338
20339 // We could mostly rely on the recursive rebuilding to rebuild implicit
20340 // casts, but not at the top level, so rebuild them here.
20341 case Expr::ImplicitCastExprClass: {
20342 auto *ICE = cast<ImplicitCastExpr>(E);
20343 // Only step through the narrow set of cast kinds we expect to encounter.
20344 // Anything else suggests we've left the region in which potential results
20345 // can be found.
20346 switch (ICE->getCastKind()) {
20347 case CK_NoOp:
20348 case CK_DerivedToBase:
20349 case CK_UncheckedDerivedToBase: {
20350 ExprResult Sub = Rebuild(ICE->getSubExpr());
20351 if (!Sub.isUsable())
20352 return Sub;
20353 CXXCastPath Path(ICE->path());
20354 return S.ImpCastExprToType(Sub.get(), ICE->getType(), ICE->getCastKind(),
20355 ICE->getValueKind(), &Path);
20356 }
20357
20358 default:
20359 break;
20360 }
20361 break;
20362 }
20363
20364 default:
20365 break;
20366 }
20367
20368 // Can't traverse through this node. Nothing to do.
20369 return ExprEmpty();
20370 }
20371
CheckLValueToRValueConversionOperand(Expr * E)20372 ExprResult Sema::CheckLValueToRValueConversionOperand(Expr *E) {
20373 // Check whether the operand is or contains an object of non-trivial C union
20374 // type.
20375 if (E->getType().isVolatileQualified() &&
20376 (E->getType().hasNonTrivialToPrimitiveDestructCUnion() ||
20377 E->getType().hasNonTrivialToPrimitiveCopyCUnion()))
20378 checkNonTrivialCUnion(E->getType(), E->getExprLoc(),
20379 Sema::NTCUC_LValueToRValueVolatile,
20380 NTCUK_Destruct|NTCUK_Copy);
20381
20382 // C++2a [basic.def.odr]p4:
20383 // [...] an expression of non-volatile-qualified non-class type to which
20384 // the lvalue-to-rvalue conversion is applied [...]
20385 if (E->getType().isVolatileQualified() || E->getType()->getAs<RecordType>())
20386 return E;
20387
20388 ExprResult Result =
20389 rebuildPotentialResultsAsNonOdrUsed(*this, E, NOUR_Constant);
20390 if (Result.isInvalid())
20391 return ExprError();
20392 return Result.get() ? Result : E;
20393 }
20394
ActOnConstantExpression(ExprResult Res)20395 ExprResult Sema::ActOnConstantExpression(ExprResult Res) {
20396 Res = CorrectDelayedTyposInExpr(Res);
20397
20398 if (!Res.isUsable())
20399 return Res;
20400
20401 // If a constant-expression is a reference to a variable where we delay
20402 // deciding whether it is an odr-use, just assume we will apply the
20403 // lvalue-to-rvalue conversion. In the one case where this doesn't happen
20404 // (a non-type template argument), we have special handling anyway.
20405 return CheckLValueToRValueConversionOperand(Res.get());
20406 }
20407
CleanupVarDeclMarking()20408 void Sema::CleanupVarDeclMarking() {
20409 // Iterate through a local copy in case MarkVarDeclODRUsed makes a recursive
20410 // call.
20411 MaybeODRUseExprSet LocalMaybeODRUseExprs;
20412 std::swap(LocalMaybeODRUseExprs, MaybeODRUseExprs);
20413
20414 for (Expr *E : LocalMaybeODRUseExprs) {
20415 if (auto *DRE = dyn_cast<DeclRefExpr>(E)) {
20416 MarkVarDeclODRUsed(cast<VarDecl>(DRE->getDecl()),
20417 DRE->getLocation(), *this);
20418 } else if (auto *ME = dyn_cast<MemberExpr>(E)) {
20419 MarkVarDeclODRUsed(cast<VarDecl>(ME->getMemberDecl()), ME->getMemberLoc(),
20420 *this);
20421 } else if (auto *FP = dyn_cast<FunctionParmPackExpr>(E)) {
20422 for (VarDecl *VD : *FP)
20423 MarkVarDeclODRUsed(VD, FP->getParameterPackLocation(), *this);
20424 } else {
20425 llvm_unreachable("Unexpected expression");
20426 }
20427 }
20428
20429 assert(MaybeODRUseExprs.empty() &&
20430 "MarkVarDeclODRUsed failed to cleanup MaybeODRUseExprs?");
20431 }
20432
DoMarkPotentialCapture(Sema & SemaRef,SourceLocation Loc,ValueDecl * Var,Expr * E)20433 static void DoMarkPotentialCapture(Sema &SemaRef, SourceLocation Loc,
20434 ValueDecl *Var, Expr *E) {
20435 VarDecl *VD = Var->getPotentiallyDecomposedVarDecl();
20436 if (!VD)
20437 return;
20438
20439 const bool RefersToEnclosingScope =
20440 (SemaRef.CurContext != VD->getDeclContext() &&
20441 VD->getDeclContext()->isFunctionOrMethod() && VD->hasLocalStorage());
20442 if (RefersToEnclosingScope) {
20443 LambdaScopeInfo *const LSI =
20444 SemaRef.getCurLambda(/*IgnoreNonLambdaCapturingScope=*/true);
20445 if (LSI && (!LSI->CallOperator ||
20446 !LSI->CallOperator->Encloses(Var->getDeclContext()))) {
20447 // If a variable could potentially be odr-used, defer marking it so
20448 // until we finish analyzing the full expression for any
20449 // lvalue-to-rvalue
20450 // or discarded value conversions that would obviate odr-use.
20451 // Add it to the list of potential captures that will be analyzed
20452 // later (ActOnFinishFullExpr) for eventual capture and odr-use marking
20453 // unless the variable is a reference that was initialized by a constant
20454 // expression (this will never need to be captured or odr-used).
20455 //
20456 // FIXME: We can simplify this a lot after implementing P0588R1.
20457 assert(E && "Capture variable should be used in an expression.");
20458 if (!Var->getType()->isReferenceType() ||
20459 !VD->isUsableInConstantExpressions(SemaRef.Context))
20460 LSI->addPotentialCapture(E->IgnoreParens());
20461 }
20462 }
20463 }
20464
DoMarkVarDeclReferenced(Sema & SemaRef,SourceLocation Loc,VarDecl * Var,Expr * E,llvm::DenseMap<const VarDecl *,int> & RefsMinusAssignments)20465 static void DoMarkVarDeclReferenced(
20466 Sema &SemaRef, SourceLocation Loc, VarDecl *Var, Expr *E,
20467 llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) {
20468 assert((!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E) ||
20469 isa<FunctionParmPackExpr>(E)) &&
20470 "Invalid Expr argument to DoMarkVarDeclReferenced");
20471 Var->setReferenced();
20472
20473 if (Var->isInvalidDecl())
20474 return;
20475
20476 auto *MSI = Var->getMemberSpecializationInfo();
20477 TemplateSpecializationKind TSK = MSI ? MSI->getTemplateSpecializationKind()
20478 : Var->getTemplateSpecializationKind();
20479
20480 OdrUseContext OdrUse = isOdrUseContext(SemaRef);
20481 bool UsableInConstantExpr =
20482 Var->mightBeUsableInConstantExpressions(SemaRef.Context);
20483
20484 if (Var->isLocalVarDeclOrParm() && !Var->hasExternalStorage()) {
20485 RefsMinusAssignments.insert({Var, 0}).first->getSecond()++;
20486 }
20487
20488 // C++20 [expr.const]p12:
20489 // A variable [...] is needed for constant evaluation if it is [...] a
20490 // variable whose name appears as a potentially constant evaluated
20491 // expression that is either a contexpr variable or is of non-volatile
20492 // const-qualified integral type or of reference type
20493 bool NeededForConstantEvaluation =
20494 isPotentiallyConstantEvaluatedContext(SemaRef) && UsableInConstantExpr;
20495
20496 bool NeedDefinition =
20497 OdrUse == OdrUseContext::Used || NeededForConstantEvaluation;
20498
20499 assert(!isa<VarTemplatePartialSpecializationDecl>(Var) &&
20500 "Can't instantiate a partial template specialization.");
20501
20502 // If this might be a member specialization of a static data member, check
20503 // the specialization is visible. We already did the checks for variable
20504 // template specializations when we created them.
20505 if (NeedDefinition && TSK != TSK_Undeclared &&
20506 !isa<VarTemplateSpecializationDecl>(Var))
20507 SemaRef.checkSpecializationVisibility(Loc, Var);
20508
20509 // Perform implicit instantiation of static data members, static data member
20510 // templates of class templates, and variable template specializations. Delay
20511 // instantiations of variable templates, except for those that could be used
20512 // in a constant expression.
20513 if (NeedDefinition && isTemplateInstantiation(TSK)) {
20514 // Per C++17 [temp.explicit]p10, we may instantiate despite an explicit
20515 // instantiation declaration if a variable is usable in a constant
20516 // expression (among other cases).
20517 bool TryInstantiating =
20518 TSK == TSK_ImplicitInstantiation ||
20519 (TSK == TSK_ExplicitInstantiationDeclaration && UsableInConstantExpr);
20520
20521 if (TryInstantiating) {
20522 SourceLocation PointOfInstantiation =
20523 MSI ? MSI->getPointOfInstantiation() : Var->getPointOfInstantiation();
20524 bool FirstInstantiation = PointOfInstantiation.isInvalid();
20525 if (FirstInstantiation) {
20526 PointOfInstantiation = Loc;
20527 if (MSI)
20528 MSI->setPointOfInstantiation(PointOfInstantiation);
20529 // FIXME: Notify listener.
20530 else
20531 Var->setTemplateSpecializationKind(TSK, PointOfInstantiation);
20532 }
20533
20534 if (UsableInConstantExpr) {
20535 // Do not defer instantiations of variables that could be used in a
20536 // constant expression.
20537 SemaRef.runWithSufficientStackSpace(PointOfInstantiation, [&] {
20538 SemaRef.InstantiateVariableDefinition(PointOfInstantiation, Var);
20539 });
20540
20541 // Re-set the member to trigger a recomputation of the dependence bits
20542 // for the expression.
20543 if (auto *DRE = dyn_cast_or_null<DeclRefExpr>(E))
20544 DRE->setDecl(DRE->getDecl());
20545 else if (auto *ME = dyn_cast_or_null<MemberExpr>(E))
20546 ME->setMemberDecl(ME->getMemberDecl());
20547 } else if (FirstInstantiation) {
20548 SemaRef.PendingInstantiations
20549 .push_back(std::make_pair(Var, PointOfInstantiation));
20550 } else {
20551 bool Inserted = false;
20552 for (auto &I : SemaRef.SavedPendingInstantiations) {
20553 auto Iter = llvm::find_if(
20554 I, [Var](const Sema::PendingImplicitInstantiation &P) {
20555 return P.first == Var;
20556 });
20557 if (Iter != I.end()) {
20558 SemaRef.PendingInstantiations.push_back(*Iter);
20559 I.erase(Iter);
20560 Inserted = true;
20561 break;
20562 }
20563 }
20564
20565 // FIXME: For a specialization of a variable template, we don't
20566 // distinguish between "declaration and type implicitly instantiated"
20567 // and "implicit instantiation of definition requested", so we have
20568 // no direct way to avoid enqueueing the pending instantiation
20569 // multiple times.
20570 if (isa<VarTemplateSpecializationDecl>(Var) && !Inserted)
20571 SemaRef.PendingInstantiations
20572 .push_back(std::make_pair(Var, PointOfInstantiation));
20573 }
20574 }
20575 }
20576
20577 // C++2a [basic.def.odr]p4:
20578 // A variable x whose name appears as a potentially-evaluated expression e
20579 // is odr-used by e unless
20580 // -- x is a reference that is usable in constant expressions
20581 // -- x is a variable of non-reference type that is usable in constant
20582 // expressions and has no mutable subobjects [FIXME], and e is an
20583 // element of the set of potential results of an expression of
20584 // non-volatile-qualified non-class type to which the lvalue-to-rvalue
20585 // conversion is applied
20586 // -- x is a variable of non-reference type, and e is an element of the set
20587 // of potential results of a discarded-value expression to which the
20588 // lvalue-to-rvalue conversion is not applied [FIXME]
20589 //
20590 // We check the first part of the second bullet here, and
20591 // Sema::CheckLValueToRValueConversionOperand deals with the second part.
20592 // FIXME: To get the third bullet right, we need to delay this even for
20593 // variables that are not usable in constant expressions.
20594
20595 // If we already know this isn't an odr-use, there's nothing more to do.
20596 if (DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(E))
20597 if (DRE->isNonOdrUse())
20598 return;
20599 if (MemberExpr *ME = dyn_cast_or_null<MemberExpr>(E))
20600 if (ME->isNonOdrUse())
20601 return;
20602
20603 switch (OdrUse) {
20604 case OdrUseContext::None:
20605 // In some cases, a variable may not have been marked unevaluated, if it
20606 // appears in a defaukt initializer.
20607 assert((!E || isa<FunctionParmPackExpr>(E) ||
20608 SemaRef.isUnevaluatedContext()) &&
20609 "missing non-odr-use marking for unevaluated decl ref");
20610 break;
20611
20612 case OdrUseContext::FormallyOdrUsed:
20613 // FIXME: Ignoring formal odr-uses results in incorrect lambda capture
20614 // behavior.
20615 break;
20616
20617 case OdrUseContext::Used:
20618 // If we might later find that this expression isn't actually an odr-use,
20619 // delay the marking.
20620 if (E && Var->isUsableInConstantExpressions(SemaRef.Context))
20621 SemaRef.MaybeODRUseExprs.insert(E);
20622 else
20623 MarkVarDeclODRUsed(Var, Loc, SemaRef);
20624 break;
20625
20626 case OdrUseContext::Dependent:
20627 // If this is a dependent context, we don't need to mark variables as
20628 // odr-used, but we may still need to track them for lambda capture.
20629 // FIXME: Do we also need to do this inside dependent typeid expressions
20630 // (which are modeled as unevaluated at this point)?
20631 DoMarkPotentialCapture(SemaRef, Loc, Var, E);
20632 break;
20633 }
20634 }
20635
DoMarkBindingDeclReferenced(Sema & SemaRef,SourceLocation Loc,BindingDecl * BD,Expr * E)20636 static void DoMarkBindingDeclReferenced(Sema &SemaRef, SourceLocation Loc,
20637 BindingDecl *BD, Expr *E) {
20638 BD->setReferenced();
20639
20640 if (BD->isInvalidDecl())
20641 return;
20642
20643 OdrUseContext OdrUse = isOdrUseContext(SemaRef);
20644 if (OdrUse == OdrUseContext::Used) {
20645 QualType CaptureType, DeclRefType;
20646 SemaRef.tryCaptureVariable(BD, Loc, Sema::TryCapture_Implicit,
20647 /*EllipsisLoc*/ SourceLocation(),
20648 /*BuildAndDiagnose*/ true, CaptureType,
20649 DeclRefType,
20650 /*FunctionScopeIndexToStopAt*/ nullptr);
20651 } else if (OdrUse == OdrUseContext::Dependent) {
20652 DoMarkPotentialCapture(SemaRef, Loc, BD, E);
20653 }
20654 }
20655
20656 /// Mark a variable referenced, and check whether it is odr-used
20657 /// (C++ [basic.def.odr]p2, C99 6.9p3). Note that this should not be
20658 /// used directly for normal expressions referring to VarDecl.
MarkVariableReferenced(SourceLocation Loc,VarDecl * Var)20659 void Sema::MarkVariableReferenced(SourceLocation Loc, VarDecl *Var) {
20660 DoMarkVarDeclReferenced(*this, Loc, Var, nullptr, RefsMinusAssignments);
20661 }
20662
20663 // C++ [temp.dep.expr]p3:
20664 // An id-expression is type-dependent if it contains:
20665 // - an identifier associated by name lookup with an entity captured by copy
20666 // in a lambda-expression that has an explicit object parameter whose type
20667 // is dependent ([dcl.fct]),
FixDependencyOfIdExpressionsInLambdaWithDependentObjectParameter(Sema & SemaRef,ValueDecl * D,Expr * E)20668 static void FixDependencyOfIdExpressionsInLambdaWithDependentObjectParameter(
20669 Sema &SemaRef, ValueDecl *D, Expr *E) {
20670 auto *ID = dyn_cast<DeclRefExpr>(E);
20671 if (!ID || ID->isTypeDependent())
20672 return;
20673
20674 auto IsDependent = [&]() {
20675 const LambdaScopeInfo *LSI = SemaRef.getCurLambda();
20676 if (!LSI)
20677 return false;
20678 if (!LSI->ExplicitObjectParameter ||
20679 !LSI->ExplicitObjectParameter->getType()->isDependentType())
20680 return false;
20681 if (!LSI->CaptureMap.count(D))
20682 return false;
20683 const Capture &Cap = LSI->getCapture(D);
20684 return !Cap.isCopyCapture();
20685 }();
20686
20687 ID->setCapturedByCopyInLambdaWithExplicitObjectParameter(
20688 IsDependent, SemaRef.getASTContext());
20689 }
20690
20691 static void
MarkExprReferenced(Sema & SemaRef,SourceLocation Loc,Decl * D,Expr * E,bool MightBeOdrUse,llvm::DenseMap<const VarDecl *,int> & RefsMinusAssignments)20692 MarkExprReferenced(Sema &SemaRef, SourceLocation Loc, Decl *D, Expr *E,
20693 bool MightBeOdrUse,
20694 llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) {
20695 if (SemaRef.isInOpenMPDeclareTargetContext())
20696 SemaRef.checkDeclIsAllowedInOpenMPTarget(E, D);
20697
20698 if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
20699 DoMarkVarDeclReferenced(SemaRef, Loc, Var, E, RefsMinusAssignments);
20700 if (SemaRef.getLangOpts().CPlusPlus)
20701 FixDependencyOfIdExpressionsInLambdaWithDependentObjectParameter(SemaRef,
20702 Var, E);
20703 return;
20704 }
20705
20706 if (BindingDecl *Decl = dyn_cast<BindingDecl>(D)) {
20707 DoMarkBindingDeclReferenced(SemaRef, Loc, Decl, E);
20708 if (SemaRef.getLangOpts().CPlusPlus)
20709 FixDependencyOfIdExpressionsInLambdaWithDependentObjectParameter(SemaRef,
20710 Decl, E);
20711 return;
20712 }
20713 SemaRef.MarkAnyDeclReferenced(Loc, D, MightBeOdrUse);
20714
20715 // If this is a call to a method via a cast, also mark the method in the
20716 // derived class used in case codegen can devirtualize the call.
20717 const MemberExpr *ME = dyn_cast<MemberExpr>(E);
20718 if (!ME)
20719 return;
20720 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
20721 if (!MD)
20722 return;
20723 // Only attempt to devirtualize if this is truly a virtual call.
20724 bool IsVirtualCall = MD->isVirtual() &&
20725 ME->performsVirtualDispatch(SemaRef.getLangOpts());
20726 if (!IsVirtualCall)
20727 return;
20728
20729 // If it's possible to devirtualize the call, mark the called function
20730 // referenced.
20731 CXXMethodDecl *DM = MD->getDevirtualizedMethod(
20732 ME->getBase(), SemaRef.getLangOpts().AppleKext);
20733 if (DM)
20734 SemaRef.MarkAnyDeclReferenced(Loc, DM, MightBeOdrUse);
20735 }
20736
20737 /// Perform reference-marking and odr-use handling for a DeclRefExpr.
20738 ///
20739 /// Note, this may change the dependence of the DeclRefExpr, and so needs to be
20740 /// handled with care if the DeclRefExpr is not newly-created.
MarkDeclRefReferenced(DeclRefExpr * E,const Expr * Base)20741 void Sema::MarkDeclRefReferenced(DeclRefExpr *E, const Expr *Base) {
20742 // TODO: update this with DR# once a defect report is filed.
20743 // C++11 defect. The address of a pure member should not be an ODR use, even
20744 // if it's a qualified reference.
20745 bool OdrUse = true;
20746 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getDecl()))
20747 if (Method->isVirtual() &&
20748 !Method->getDevirtualizedMethod(Base, getLangOpts().AppleKext))
20749 OdrUse = false;
20750
20751 if (auto *FD = dyn_cast<FunctionDecl>(E->getDecl())) {
20752 if (!isUnevaluatedContext() && !isConstantEvaluatedContext() &&
20753 !isImmediateFunctionContext() &&
20754 !isCheckingDefaultArgumentOrInitializer() &&
20755 FD->isImmediateFunction() && !RebuildingImmediateInvocation &&
20756 !FD->isDependentContext())
20757 ExprEvalContexts.back().ReferenceToConsteval.insert(E);
20758 }
20759 MarkExprReferenced(*this, E->getLocation(), E->getDecl(), E, OdrUse,
20760 RefsMinusAssignments);
20761 }
20762
20763 /// Perform reference-marking and odr-use handling for a MemberExpr.
MarkMemberReferenced(MemberExpr * E)20764 void Sema::MarkMemberReferenced(MemberExpr *E) {
20765 // C++11 [basic.def.odr]p2:
20766 // A non-overloaded function whose name appears as a potentially-evaluated
20767 // expression or a member of a set of candidate functions, if selected by
20768 // overload resolution when referred to from a potentially-evaluated
20769 // expression, is odr-used, unless it is a pure virtual function and its
20770 // name is not explicitly qualified.
20771 bool MightBeOdrUse = true;
20772 if (E->performsVirtualDispatch(getLangOpts())) {
20773 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getMemberDecl()))
20774 if (Method->isPureVirtual())
20775 MightBeOdrUse = false;
20776 }
20777 SourceLocation Loc =
20778 E->getMemberLoc().isValid() ? E->getMemberLoc() : E->getBeginLoc();
20779 MarkExprReferenced(*this, Loc, E->getMemberDecl(), E, MightBeOdrUse,
20780 RefsMinusAssignments);
20781 }
20782
20783 /// Perform reference-marking and odr-use handling for a FunctionParmPackExpr.
MarkFunctionParmPackReferenced(FunctionParmPackExpr * E)20784 void Sema::MarkFunctionParmPackReferenced(FunctionParmPackExpr *E) {
20785 for (VarDecl *VD : *E)
20786 MarkExprReferenced(*this, E->getParameterPackLocation(), VD, E, true,
20787 RefsMinusAssignments);
20788 }
20789
20790 /// Perform marking for a reference to an arbitrary declaration. It
20791 /// marks the declaration referenced, and performs odr-use checking for
20792 /// functions and variables. This method should not be used when building a
20793 /// normal expression which refers to a variable.
MarkAnyDeclReferenced(SourceLocation Loc,Decl * D,bool MightBeOdrUse)20794 void Sema::MarkAnyDeclReferenced(SourceLocation Loc, Decl *D,
20795 bool MightBeOdrUse) {
20796 if (MightBeOdrUse) {
20797 if (auto *VD = dyn_cast<VarDecl>(D)) {
20798 MarkVariableReferenced(Loc, VD);
20799 return;
20800 }
20801 }
20802 if (auto *FD = dyn_cast<FunctionDecl>(D)) {
20803 MarkFunctionReferenced(Loc, FD, MightBeOdrUse);
20804 return;
20805 }
20806 D->setReferenced();
20807 }
20808
20809 namespace {
20810 // Mark all of the declarations used by a type as referenced.
20811 // FIXME: Not fully implemented yet! We need to have a better understanding
20812 // of when we're entering a context we should not recurse into.
20813 // FIXME: This is and EvaluatedExprMarker are more-or-less equivalent to
20814 // TreeTransforms rebuilding the type in a new context. Rather than
20815 // duplicating the TreeTransform logic, we should consider reusing it here.
20816 // Currently that causes problems when rebuilding LambdaExprs.
20817 class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
20818 Sema &S;
20819 SourceLocation Loc;
20820
20821 public:
20822 typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
20823
MarkReferencedDecls(Sema & S,SourceLocation Loc)20824 MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
20825
20826 bool TraverseTemplateArgument(const TemplateArgument &Arg);
20827 };
20828 }
20829
TraverseTemplateArgument(const TemplateArgument & Arg)20830 bool MarkReferencedDecls::TraverseTemplateArgument(
20831 const TemplateArgument &Arg) {
20832 {
20833 // A non-type template argument is a constant-evaluated context.
20834 EnterExpressionEvaluationContext Evaluated(
20835 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
20836 if (Arg.getKind() == TemplateArgument::Declaration) {
20837 if (Decl *D = Arg.getAsDecl())
20838 S.MarkAnyDeclReferenced(Loc, D, true);
20839 } else if (Arg.getKind() == TemplateArgument::Expression) {
20840 S.MarkDeclarationsReferencedInExpr(Arg.getAsExpr(), false);
20841 }
20842 }
20843
20844 return Inherited::TraverseTemplateArgument(Arg);
20845 }
20846
MarkDeclarationsReferencedInType(SourceLocation Loc,QualType T)20847 void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
20848 MarkReferencedDecls Marker(*this, Loc);
20849 Marker.TraverseType(T);
20850 }
20851
20852 namespace {
20853 /// Helper class that marks all of the declarations referenced by
20854 /// potentially-evaluated subexpressions as "referenced".
20855 class EvaluatedExprMarker : public UsedDeclVisitor<EvaluatedExprMarker> {
20856 public:
20857 typedef UsedDeclVisitor<EvaluatedExprMarker> Inherited;
20858 bool SkipLocalVariables;
20859 ArrayRef<const Expr *> StopAt;
20860
EvaluatedExprMarker(Sema & S,bool SkipLocalVariables,ArrayRef<const Expr * > StopAt)20861 EvaluatedExprMarker(Sema &S, bool SkipLocalVariables,
20862 ArrayRef<const Expr *> StopAt)
20863 : Inherited(S), SkipLocalVariables(SkipLocalVariables), StopAt(StopAt) {}
20864
visitUsedDecl(SourceLocation Loc,Decl * D)20865 void visitUsedDecl(SourceLocation Loc, Decl *D) {
20866 S.MarkFunctionReferenced(Loc, cast<FunctionDecl>(D));
20867 }
20868
Visit(Expr * E)20869 void Visit(Expr *E) {
20870 if (llvm::is_contained(StopAt, E))
20871 return;
20872 Inherited::Visit(E);
20873 }
20874
VisitConstantExpr(ConstantExpr * E)20875 void VisitConstantExpr(ConstantExpr *E) {
20876 // Don't mark declarations within a ConstantExpression, as this expression
20877 // will be evaluated and folded to a value.
20878 }
20879
VisitDeclRefExpr(DeclRefExpr * E)20880 void VisitDeclRefExpr(DeclRefExpr *E) {
20881 // If we were asked not to visit local variables, don't.
20882 if (SkipLocalVariables) {
20883 if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
20884 if (VD->hasLocalStorage())
20885 return;
20886 }
20887
20888 // FIXME: This can trigger the instantiation of the initializer of a
20889 // variable, which can cause the expression to become value-dependent
20890 // or error-dependent. Do we need to propagate the new dependence bits?
20891 S.MarkDeclRefReferenced(E);
20892 }
20893
VisitMemberExpr(MemberExpr * E)20894 void VisitMemberExpr(MemberExpr *E) {
20895 S.MarkMemberReferenced(E);
20896 Visit(E->getBase());
20897 }
20898 };
20899 } // namespace
20900
20901 /// Mark any declarations that appear within this expression or any
20902 /// potentially-evaluated subexpressions as "referenced".
20903 ///
20904 /// \param SkipLocalVariables If true, don't mark local variables as
20905 /// 'referenced'.
20906 /// \param StopAt Subexpressions that we shouldn't recurse into.
MarkDeclarationsReferencedInExpr(Expr * E,bool SkipLocalVariables,ArrayRef<const Expr * > StopAt)20907 void Sema::MarkDeclarationsReferencedInExpr(Expr *E,
20908 bool SkipLocalVariables,
20909 ArrayRef<const Expr*> StopAt) {
20910 EvaluatedExprMarker(*this, SkipLocalVariables, StopAt).Visit(E);
20911 }
20912
20913 /// Emit a diagnostic when statements are reachable.
20914 /// FIXME: check for reachability even in expressions for which we don't build a
20915 /// CFG (eg, in the initializer of a global or in a constant expression).
20916 /// For example,
20917 /// namespace { auto *p = new double[3][false ? (1, 2) : 3]; }
DiagIfReachable(SourceLocation Loc,ArrayRef<const Stmt * > Stmts,const PartialDiagnostic & PD)20918 bool Sema::DiagIfReachable(SourceLocation Loc, ArrayRef<const Stmt *> Stmts,
20919 const PartialDiagnostic &PD) {
20920 if (!Stmts.empty() && getCurFunctionOrMethodDecl()) {
20921 if (!FunctionScopes.empty())
20922 FunctionScopes.back()->PossiblyUnreachableDiags.push_back(
20923 sema::PossiblyUnreachableDiag(PD, Loc, Stmts));
20924 return true;
20925 }
20926
20927 // The initializer of a constexpr variable or of the first declaration of a
20928 // static data member is not syntactically a constant evaluated constant,
20929 // but nonetheless is always required to be a constant expression, so we
20930 // can skip diagnosing.
20931 // FIXME: Using the mangling context here is a hack.
20932 if (auto *VD = dyn_cast_or_null<VarDecl>(
20933 ExprEvalContexts.back().ManglingContextDecl)) {
20934 if (VD->isConstexpr() ||
20935 (VD->isStaticDataMember() && VD->isFirstDecl() && !VD->isInline()))
20936 return false;
20937 // FIXME: For any other kind of variable, we should build a CFG for its
20938 // initializer and check whether the context in question is reachable.
20939 }
20940
20941 Diag(Loc, PD);
20942 return true;
20943 }
20944
20945 /// Emit a diagnostic that describes an effect on the run-time behavior
20946 /// of the program being compiled.
20947 ///
20948 /// This routine emits the given diagnostic when the code currently being
20949 /// type-checked is "potentially evaluated", meaning that there is a
20950 /// possibility that the code will actually be executable. Code in sizeof()
20951 /// expressions, code used only during overload resolution, etc., are not
20952 /// potentially evaluated. This routine will suppress such diagnostics or,
20953 /// in the absolutely nutty case of potentially potentially evaluated
20954 /// expressions (C++ typeid), queue the diagnostic to potentially emit it
20955 /// later.
20956 ///
20957 /// This routine should be used for all diagnostics that describe the run-time
20958 /// behavior of a program, such as passing a non-POD value through an ellipsis.
20959 /// Failure to do so will likely result in spurious diagnostics or failures
20960 /// during overload resolution or within sizeof/alignof/typeof/typeid.
DiagRuntimeBehavior(SourceLocation Loc,ArrayRef<const Stmt * > Stmts,const PartialDiagnostic & PD)20961 bool Sema::DiagRuntimeBehavior(SourceLocation Loc, ArrayRef<const Stmt*> Stmts,
20962 const PartialDiagnostic &PD) {
20963
20964 if (ExprEvalContexts.back().isDiscardedStatementContext())
20965 return false;
20966
20967 switch (ExprEvalContexts.back().Context) {
20968 case ExpressionEvaluationContext::Unevaluated:
20969 case ExpressionEvaluationContext::UnevaluatedList:
20970 case ExpressionEvaluationContext::UnevaluatedAbstract:
20971 case ExpressionEvaluationContext::DiscardedStatement:
20972 // The argument will never be evaluated, so don't complain.
20973 break;
20974
20975 case ExpressionEvaluationContext::ConstantEvaluated:
20976 case ExpressionEvaluationContext::ImmediateFunctionContext:
20977 // Relevant diagnostics should be produced by constant evaluation.
20978 break;
20979
20980 case ExpressionEvaluationContext::PotentiallyEvaluated:
20981 case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
20982 return DiagIfReachable(Loc, Stmts, PD);
20983 }
20984
20985 return false;
20986 }
20987
DiagRuntimeBehavior(SourceLocation Loc,const Stmt * Statement,const PartialDiagnostic & PD)20988 bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
20989 const PartialDiagnostic &PD) {
20990 return DiagRuntimeBehavior(
20991 Loc, Statement ? llvm::ArrayRef(Statement) : std::nullopt, PD);
20992 }
20993
CheckCallReturnType(QualType ReturnType,SourceLocation Loc,CallExpr * CE,FunctionDecl * FD)20994 bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
20995 CallExpr *CE, FunctionDecl *FD) {
20996 if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
20997 return false;
20998
20999 // If we're inside a decltype's expression, don't check for a valid return
21000 // type or construct temporaries until we know whether this is the last call.
21001 if (ExprEvalContexts.back().ExprContext ==
21002 ExpressionEvaluationContextRecord::EK_Decltype) {
21003 ExprEvalContexts.back().DelayedDecltypeCalls.push_back(CE);
21004 return false;
21005 }
21006
21007 class CallReturnIncompleteDiagnoser : public TypeDiagnoser {
21008 FunctionDecl *FD;
21009 CallExpr *CE;
21010
21011 public:
21012 CallReturnIncompleteDiagnoser(FunctionDecl *FD, CallExpr *CE)
21013 : FD(FD), CE(CE) { }
21014
21015 void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
21016 if (!FD) {
21017 S.Diag(Loc, diag::err_call_incomplete_return)
21018 << T << CE->getSourceRange();
21019 return;
21020 }
21021
21022 S.Diag(Loc, diag::err_call_function_incomplete_return)
21023 << CE->getSourceRange() << FD << T;
21024 S.Diag(FD->getLocation(), diag::note_entity_declared_at)
21025 << FD->getDeclName();
21026 }
21027 } Diagnoser(FD, CE);
21028
21029 if (RequireCompleteType(Loc, ReturnType, Diagnoser))
21030 return true;
21031
21032 return false;
21033 }
21034
21035 // Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
21036 // will prevent this condition from triggering, which is what we want.
DiagnoseAssignmentAsCondition(Expr * E)21037 void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
21038 SourceLocation Loc;
21039
21040 unsigned diagnostic = diag::warn_condition_is_assignment;
21041 bool IsOrAssign = false;
21042
21043 if (BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
21044 if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
21045 return;
21046
21047 IsOrAssign = Op->getOpcode() == BO_OrAssign;
21048
21049 // Greylist some idioms by putting them into a warning subcategory.
21050 if (ObjCMessageExpr *ME
21051 = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
21052 Selector Sel = ME->getSelector();
21053
21054 // self = [<foo> init...]
21055 if (isSelfExpr(Op->getLHS()) && ME->getMethodFamily() == OMF_init)
21056 diagnostic = diag::warn_condition_is_idiomatic_assignment;
21057
21058 // <foo> = [<bar> nextObject]
21059 else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
21060 diagnostic = diag::warn_condition_is_idiomatic_assignment;
21061 }
21062
21063 Loc = Op->getOperatorLoc();
21064 } else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
21065 if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
21066 return;
21067
21068 IsOrAssign = Op->getOperator() == OO_PipeEqual;
21069 Loc = Op->getOperatorLoc();
21070 } else if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E))
21071 return DiagnoseAssignmentAsCondition(POE->getSyntacticForm());
21072 else {
21073 // Not an assignment.
21074 return;
21075 }
21076
21077 Diag(Loc, diagnostic) << E->getSourceRange();
21078
21079 SourceLocation Open = E->getBeginLoc();
21080 SourceLocation Close = getLocForEndOfToken(E->getSourceRange().getEnd());
21081 Diag(Loc, diag::note_condition_assign_silence)
21082 << FixItHint::CreateInsertion(Open, "(")
21083 << FixItHint::CreateInsertion(Close, ")");
21084
21085 if (IsOrAssign)
21086 Diag(Loc, diag::note_condition_or_assign_to_comparison)
21087 << FixItHint::CreateReplacement(Loc, "!=");
21088 else
21089 Diag(Loc, diag::note_condition_assign_to_comparison)
21090 << FixItHint::CreateReplacement(Loc, "==");
21091 }
21092
21093 /// Redundant parentheses over an equality comparison can indicate
21094 /// that the user intended an assignment used as condition.
DiagnoseEqualityWithExtraParens(ParenExpr * ParenE)21095 void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) {
21096 // Don't warn if the parens came from a macro.
21097 SourceLocation parenLoc = ParenE->getBeginLoc();
21098 if (parenLoc.isInvalid() || parenLoc.isMacroID())
21099 return;
21100 // Don't warn for dependent expressions.
21101 if (ParenE->isTypeDependent())
21102 return;
21103
21104 Expr *E = ParenE->IgnoreParens();
21105
21106 if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
21107 if (opE->getOpcode() == BO_EQ &&
21108 opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context)
21109 == Expr::MLV_Valid) {
21110 SourceLocation Loc = opE->getOperatorLoc();
21111
21112 Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
21113 SourceRange ParenERange = ParenE->getSourceRange();
21114 Diag(Loc, diag::note_equality_comparison_silence)
21115 << FixItHint::CreateRemoval(ParenERange.getBegin())
21116 << FixItHint::CreateRemoval(ParenERange.getEnd());
21117 Diag(Loc, diag::note_equality_comparison_to_assign)
21118 << FixItHint::CreateReplacement(Loc, "=");
21119 }
21120 }
21121
CheckBooleanCondition(SourceLocation Loc,Expr * E,bool IsConstexpr)21122 ExprResult Sema::CheckBooleanCondition(SourceLocation Loc, Expr *E,
21123 bool IsConstexpr) {
21124 DiagnoseAssignmentAsCondition(E);
21125 if (ParenExpr *parenE = dyn_cast<ParenExpr>(E))
21126 DiagnoseEqualityWithExtraParens(parenE);
21127
21128 ExprResult result = CheckPlaceholderExpr(E);
21129 if (result.isInvalid()) return ExprError();
21130 E = result.get();
21131
21132 if (!E->isTypeDependent()) {
21133 if (getLangOpts().CPlusPlus)
21134 return CheckCXXBooleanCondition(E, IsConstexpr); // C++ 6.4p4
21135
21136 ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
21137 if (ERes.isInvalid())
21138 return ExprError();
21139 E = ERes.get();
21140
21141 QualType T = E->getType();
21142 if (!T->isScalarType()) { // C99 6.8.4.1p1
21143 Diag(Loc, diag::err_typecheck_statement_requires_scalar)
21144 << T << E->getSourceRange();
21145 return ExprError();
21146 }
21147 CheckBoolLikeConversion(E, Loc);
21148 }
21149
21150 return E;
21151 }
21152
ActOnCondition(Scope * S,SourceLocation Loc,Expr * SubExpr,ConditionKind CK,bool MissingOK)21153 Sema::ConditionResult Sema::ActOnCondition(Scope *S, SourceLocation Loc,
21154 Expr *SubExpr, ConditionKind CK,
21155 bool MissingOK) {
21156 // MissingOK indicates whether having no condition expression is valid
21157 // (for loop) or invalid (e.g. while loop).
21158 if (!SubExpr)
21159 return MissingOK ? ConditionResult() : ConditionError();
21160
21161 ExprResult Cond;
21162 switch (CK) {
21163 case ConditionKind::Boolean:
21164 Cond = CheckBooleanCondition(Loc, SubExpr);
21165 break;
21166
21167 case ConditionKind::ConstexprIf:
21168 Cond = CheckBooleanCondition(Loc, SubExpr, true);
21169 break;
21170
21171 case ConditionKind::Switch:
21172 Cond = CheckSwitchCondition(Loc, SubExpr);
21173 break;
21174 }
21175 if (Cond.isInvalid()) {
21176 Cond = CreateRecoveryExpr(SubExpr->getBeginLoc(), SubExpr->getEndLoc(),
21177 {SubExpr}, PreferredConditionType(CK));
21178 if (!Cond.get())
21179 return ConditionError();
21180 }
21181 // FIXME: FullExprArg doesn't have an invalid bit, so check nullness instead.
21182 FullExprArg FullExpr = MakeFullExpr(Cond.get(), Loc);
21183 if (!FullExpr.get())
21184 return ConditionError();
21185
21186 return ConditionResult(*this, nullptr, FullExpr,
21187 CK == ConditionKind::ConstexprIf);
21188 }
21189
21190 namespace {
21191 /// A visitor for rebuilding a call to an __unknown_any expression
21192 /// to have an appropriate type.
21193 struct RebuildUnknownAnyFunction
21194 : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {
21195
21196 Sema &S;
21197
RebuildUnknownAnyFunction__anon3f436b6a3411::RebuildUnknownAnyFunction21198 RebuildUnknownAnyFunction(Sema &S) : S(S) {}
21199
VisitStmt__anon3f436b6a3411::RebuildUnknownAnyFunction21200 ExprResult VisitStmt(Stmt *S) {
21201 llvm_unreachable("unexpected statement!");
21202 }
21203
VisitExpr__anon3f436b6a3411::RebuildUnknownAnyFunction21204 ExprResult VisitExpr(Expr *E) {
21205 S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_call)
21206 << E->getSourceRange();
21207 return ExprError();
21208 }
21209
21210 /// Rebuild an expression which simply semantically wraps another
21211 /// expression which it shares the type and value kind of.
rebuildSugarExpr__anon3f436b6a3411::RebuildUnknownAnyFunction21212 template <class T> ExprResult rebuildSugarExpr(T *E) {
21213 ExprResult SubResult = Visit(E->getSubExpr());
21214 if (SubResult.isInvalid()) return ExprError();
21215
21216 Expr *SubExpr = SubResult.get();
21217 E->setSubExpr(SubExpr);
21218 E->setType(SubExpr->getType());
21219 E->setValueKind(SubExpr->getValueKind());
21220 assert(E->getObjectKind() == OK_Ordinary);
21221 return E;
21222 }
21223
VisitParenExpr__anon3f436b6a3411::RebuildUnknownAnyFunction21224 ExprResult VisitParenExpr(ParenExpr *E) {
21225 return rebuildSugarExpr(E);
21226 }
21227
VisitUnaryExtension__anon3f436b6a3411::RebuildUnknownAnyFunction21228 ExprResult VisitUnaryExtension(UnaryOperator *E) {
21229 return rebuildSugarExpr(E);
21230 }
21231
VisitUnaryAddrOf__anon3f436b6a3411::RebuildUnknownAnyFunction21232 ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
21233 ExprResult SubResult = Visit(E->getSubExpr());
21234 if (SubResult.isInvalid()) return ExprError();
21235
21236 Expr *SubExpr = SubResult.get();
21237 E->setSubExpr(SubExpr);
21238 E->setType(S.Context.getPointerType(SubExpr->getType()));
21239 assert(E->isPRValue());
21240 assert(E->getObjectKind() == OK_Ordinary);
21241 return E;
21242 }
21243
resolveDecl__anon3f436b6a3411::RebuildUnknownAnyFunction21244 ExprResult resolveDecl(Expr *E, ValueDecl *VD) {
21245 if (!isa<FunctionDecl>(VD)) return VisitExpr(E);
21246
21247 E->setType(VD->getType());
21248
21249 assert(E->isPRValue());
21250 if (S.getLangOpts().CPlusPlus &&
21251 !(isa<CXXMethodDecl>(VD) &&
21252 cast<CXXMethodDecl>(VD)->isInstance()))
21253 E->setValueKind(VK_LValue);
21254
21255 return E;
21256 }
21257
VisitMemberExpr__anon3f436b6a3411::RebuildUnknownAnyFunction21258 ExprResult VisitMemberExpr(MemberExpr *E) {
21259 return resolveDecl(E, E->getMemberDecl());
21260 }
21261
VisitDeclRefExpr__anon3f436b6a3411::RebuildUnknownAnyFunction21262 ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
21263 return resolveDecl(E, E->getDecl());
21264 }
21265 };
21266 }
21267
21268 /// Given a function expression of unknown-any type, try to rebuild it
21269 /// to have a function type.
rebuildUnknownAnyFunction(Sema & S,Expr * FunctionExpr)21270 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) {
21271 ExprResult Result = RebuildUnknownAnyFunction(S).Visit(FunctionExpr);
21272 if (Result.isInvalid()) return ExprError();
21273 return S.DefaultFunctionArrayConversion(Result.get());
21274 }
21275
21276 namespace {
21277 /// A visitor for rebuilding an expression of type __unknown_anytype
21278 /// into one which resolves the type directly on the referring
21279 /// expression. Strict preservation of the original source
21280 /// structure is not a goal.
21281 struct RebuildUnknownAnyExpr
21282 : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {
21283
21284 Sema &S;
21285
21286 /// The current destination type.
21287 QualType DestType;
21288
RebuildUnknownAnyExpr__anon3f436b6a3511::RebuildUnknownAnyExpr21289 RebuildUnknownAnyExpr(Sema &S, QualType CastType)
21290 : S(S), DestType(CastType) {}
21291
VisitStmt__anon3f436b6a3511::RebuildUnknownAnyExpr21292 ExprResult VisitStmt(Stmt *S) {
21293 llvm_unreachable("unexpected statement!");
21294 }
21295
VisitExpr__anon3f436b6a3511::RebuildUnknownAnyExpr21296 ExprResult VisitExpr(Expr *E) {
21297 S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
21298 << E->getSourceRange();
21299 return ExprError();
21300 }
21301
21302 ExprResult VisitCallExpr(CallExpr *E);
21303 ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E);
21304
21305 /// Rebuild an expression which simply semantically wraps another
21306 /// expression which it shares the type and value kind of.
rebuildSugarExpr__anon3f436b6a3511::RebuildUnknownAnyExpr21307 template <class T> ExprResult rebuildSugarExpr(T *E) {
21308 ExprResult SubResult = Visit(E->getSubExpr());
21309 if (SubResult.isInvalid()) return ExprError();
21310 Expr *SubExpr = SubResult.get();
21311 E->setSubExpr(SubExpr);
21312 E->setType(SubExpr->getType());
21313 E->setValueKind(SubExpr->getValueKind());
21314 assert(E->getObjectKind() == OK_Ordinary);
21315 return E;
21316 }
21317
VisitParenExpr__anon3f436b6a3511::RebuildUnknownAnyExpr21318 ExprResult VisitParenExpr(ParenExpr *E) {
21319 return rebuildSugarExpr(E);
21320 }
21321
VisitUnaryExtension__anon3f436b6a3511::RebuildUnknownAnyExpr21322 ExprResult VisitUnaryExtension(UnaryOperator *E) {
21323 return rebuildSugarExpr(E);
21324 }
21325
VisitUnaryAddrOf__anon3f436b6a3511::RebuildUnknownAnyExpr21326 ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
21327 const PointerType *Ptr = DestType->getAs<PointerType>();
21328 if (!Ptr) {
21329 S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof)
21330 << E->getSourceRange();
21331 return ExprError();
21332 }
21333
21334 if (isa<CallExpr>(E->getSubExpr())) {
21335 S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof_call)
21336 << E->getSourceRange();
21337 return ExprError();
21338 }
21339
21340 assert(E->isPRValue());
21341 assert(E->getObjectKind() == OK_Ordinary);
21342 E->setType(DestType);
21343
21344 // Build the sub-expression as if it were an object of the pointee type.
21345 DestType = Ptr->getPointeeType();
21346 ExprResult SubResult = Visit(E->getSubExpr());
21347 if (SubResult.isInvalid()) return ExprError();
21348 E->setSubExpr(SubResult.get());
21349 return E;
21350 }
21351
21352 ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E);
21353
21354 ExprResult resolveDecl(Expr *E, ValueDecl *VD);
21355
VisitMemberExpr__anon3f436b6a3511::RebuildUnknownAnyExpr21356 ExprResult VisitMemberExpr(MemberExpr *E) {
21357 return resolveDecl(E, E->getMemberDecl());
21358 }
21359
VisitDeclRefExpr__anon3f436b6a3511::RebuildUnknownAnyExpr21360 ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
21361 return resolveDecl(E, E->getDecl());
21362 }
21363 };
21364 }
21365
21366 /// Rebuilds a call expression which yielded __unknown_anytype.
VisitCallExpr(CallExpr * E)21367 ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) {
21368 Expr *CalleeExpr = E->getCallee();
21369
21370 enum FnKind {
21371 FK_MemberFunction,
21372 FK_FunctionPointer,
21373 FK_BlockPointer
21374 };
21375
21376 FnKind Kind;
21377 QualType CalleeType = CalleeExpr->getType();
21378 if (CalleeType == S.Context.BoundMemberTy) {
21379 assert(isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E));
21380 Kind = FK_MemberFunction;
21381 CalleeType = Expr::findBoundMemberType(CalleeExpr);
21382 } else if (const PointerType *Ptr = CalleeType->getAs<PointerType>()) {
21383 CalleeType = Ptr->getPointeeType();
21384 Kind = FK_FunctionPointer;
21385 } else {
21386 CalleeType = CalleeType->castAs<BlockPointerType>()->getPointeeType();
21387 Kind = FK_BlockPointer;
21388 }
21389 const FunctionType *FnType = CalleeType->castAs<FunctionType>();
21390
21391 // Verify that this is a legal result type of a function.
21392 if (DestType->isArrayType() || DestType->isFunctionType()) {
21393 unsigned diagID = diag::err_func_returning_array_function;
21394 if (Kind == FK_BlockPointer)
21395 diagID = diag::err_block_returning_array_function;
21396
21397 S.Diag(E->getExprLoc(), diagID)
21398 << DestType->isFunctionType() << DestType;
21399 return ExprError();
21400 }
21401
21402 // Otherwise, go ahead and set DestType as the call's result.
21403 E->setType(DestType.getNonLValueExprType(S.Context));
21404 E->setValueKind(Expr::getValueKindForType(DestType));
21405 assert(E->getObjectKind() == OK_Ordinary);
21406
21407 // Rebuild the function type, replacing the result type with DestType.
21408 const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType);
21409 if (Proto) {
21410 // __unknown_anytype(...) is a special case used by the debugger when
21411 // it has no idea what a function's signature is.
21412 //
21413 // We want to build this call essentially under the K&R
21414 // unprototyped rules, but making a FunctionNoProtoType in C++
21415 // would foul up all sorts of assumptions. However, we cannot
21416 // simply pass all arguments as variadic arguments, nor can we
21417 // portably just call the function under a non-variadic type; see
21418 // the comment on IR-gen's TargetInfo::isNoProtoCallVariadic.
21419 // However, it turns out that in practice it is generally safe to
21420 // call a function declared as "A foo(B,C,D);" under the prototype
21421 // "A foo(B,C,D,...);". The only known exception is with the
21422 // Windows ABI, where any variadic function is implicitly cdecl
21423 // regardless of its normal CC. Therefore we change the parameter
21424 // types to match the types of the arguments.
21425 //
21426 // This is a hack, but it is far superior to moving the
21427 // corresponding target-specific code from IR-gen to Sema/AST.
21428
21429 ArrayRef<QualType> ParamTypes = Proto->getParamTypes();
21430 SmallVector<QualType, 8> ArgTypes;
21431 if (ParamTypes.empty() && Proto->isVariadic()) { // the special case
21432 ArgTypes.reserve(E->getNumArgs());
21433 for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
21434 ArgTypes.push_back(S.Context.getReferenceQualifiedType(E->getArg(i)));
21435 }
21436 ParamTypes = ArgTypes;
21437 }
21438 DestType = S.Context.getFunctionType(DestType, ParamTypes,
21439 Proto->getExtProtoInfo());
21440 } else {
21441 DestType = S.Context.getFunctionNoProtoType(DestType,
21442 FnType->getExtInfo());
21443 }
21444
21445 // Rebuild the appropriate pointer-to-function type.
21446 switch (Kind) {
21447 case FK_MemberFunction:
21448 // Nothing to do.
21449 break;
21450
21451 case FK_FunctionPointer:
21452 DestType = S.Context.getPointerType(DestType);
21453 break;
21454
21455 case FK_BlockPointer:
21456 DestType = S.Context.getBlockPointerType(DestType);
21457 break;
21458 }
21459
21460 // Finally, we can recurse.
21461 ExprResult CalleeResult = Visit(CalleeExpr);
21462 if (!CalleeResult.isUsable()) return ExprError();
21463 E->setCallee(CalleeResult.get());
21464
21465 // Bind a temporary if necessary.
21466 return S.MaybeBindToTemporary(E);
21467 }
21468
VisitObjCMessageExpr(ObjCMessageExpr * E)21469 ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) {
21470 // Verify that this is a legal result type of a call.
21471 if (DestType->isArrayType() || DestType->isFunctionType()) {
21472 S.Diag(E->getExprLoc(), diag::err_func_returning_array_function)
21473 << DestType->isFunctionType() << DestType;
21474 return ExprError();
21475 }
21476
21477 // Rewrite the method result type if available.
21478 if (ObjCMethodDecl *Method = E->getMethodDecl()) {
21479 assert(Method->getReturnType() == S.Context.UnknownAnyTy);
21480 Method->setReturnType(DestType);
21481 }
21482
21483 // Change the type of the message.
21484 E->setType(DestType.getNonReferenceType());
21485 E->setValueKind(Expr::getValueKindForType(DestType));
21486
21487 return S.MaybeBindToTemporary(E);
21488 }
21489
VisitImplicitCastExpr(ImplicitCastExpr * E)21490 ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) {
21491 // The only case we should ever see here is a function-to-pointer decay.
21492 if (E->getCastKind() == CK_FunctionToPointerDecay) {
21493 assert(E->isPRValue());
21494 assert(E->getObjectKind() == OK_Ordinary);
21495
21496 E->setType(DestType);
21497
21498 // Rebuild the sub-expression as the pointee (function) type.
21499 DestType = DestType->castAs<PointerType>()->getPointeeType();
21500
21501 ExprResult Result = Visit(E->getSubExpr());
21502 if (!Result.isUsable()) return ExprError();
21503
21504 E->setSubExpr(Result.get());
21505 return E;
21506 } else if (E->getCastKind() == CK_LValueToRValue) {
21507 assert(E->isPRValue());
21508 assert(E->getObjectKind() == OK_Ordinary);
21509
21510 assert(isa<BlockPointerType>(E->getType()));
21511
21512 E->setType(DestType);
21513
21514 // The sub-expression has to be a lvalue reference, so rebuild it as such.
21515 DestType = S.Context.getLValueReferenceType(DestType);
21516
21517 ExprResult Result = Visit(E->getSubExpr());
21518 if (!Result.isUsable()) return ExprError();
21519
21520 E->setSubExpr(Result.get());
21521 return E;
21522 } else {
21523 llvm_unreachable("Unhandled cast type!");
21524 }
21525 }
21526
resolveDecl(Expr * E,ValueDecl * VD)21527 ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) {
21528 ExprValueKind ValueKind = VK_LValue;
21529 QualType Type = DestType;
21530
21531 // We know how to make this work for certain kinds of decls:
21532
21533 // - functions
21534 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(VD)) {
21535 if (const PointerType *Ptr = Type->getAs<PointerType>()) {
21536 DestType = Ptr->getPointeeType();
21537 ExprResult Result = resolveDecl(E, VD);
21538 if (Result.isInvalid()) return ExprError();
21539 return S.ImpCastExprToType(Result.get(), Type, CK_FunctionToPointerDecay,
21540 VK_PRValue);
21541 }
21542
21543 if (!Type->isFunctionType()) {
21544 S.Diag(E->getExprLoc(), diag::err_unknown_any_function)
21545 << VD << E->getSourceRange();
21546 return ExprError();
21547 }
21548 if (const FunctionProtoType *FT = Type->getAs<FunctionProtoType>()) {
21549 // We must match the FunctionDecl's type to the hack introduced in
21550 // RebuildUnknownAnyExpr::VisitCallExpr to vararg functions of unknown
21551 // type. See the lengthy commentary in that routine.
21552 QualType FDT = FD->getType();
21553 const FunctionType *FnType = FDT->castAs<FunctionType>();
21554 const FunctionProtoType *Proto = dyn_cast_or_null<FunctionProtoType>(FnType);
21555 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
21556 if (DRE && Proto && Proto->getParamTypes().empty() && Proto->isVariadic()) {
21557 SourceLocation Loc = FD->getLocation();
21558 FunctionDecl *NewFD = FunctionDecl::Create(
21559 S.Context, FD->getDeclContext(), Loc, Loc,
21560 FD->getNameInfo().getName(), DestType, FD->getTypeSourceInfo(),
21561 SC_None, S.getCurFPFeatures().isFPConstrained(),
21562 false /*isInlineSpecified*/, FD->hasPrototype(),
21563 /*ConstexprKind*/ ConstexprSpecKind::Unspecified);
21564
21565 if (FD->getQualifier())
21566 NewFD->setQualifierInfo(FD->getQualifierLoc());
21567
21568 SmallVector<ParmVarDecl*, 16> Params;
21569 for (const auto &AI : FT->param_types()) {
21570 ParmVarDecl *Param =
21571 S.BuildParmVarDeclForTypedef(FD, Loc, AI);
21572 Param->setScopeInfo(0, Params.size());
21573 Params.push_back(Param);
21574 }
21575 NewFD->setParams(Params);
21576 DRE->setDecl(NewFD);
21577 VD = DRE->getDecl();
21578 }
21579 }
21580
21581 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
21582 if (MD->isInstance()) {
21583 ValueKind = VK_PRValue;
21584 Type = S.Context.BoundMemberTy;
21585 }
21586
21587 // Function references aren't l-values in C.
21588 if (!S.getLangOpts().CPlusPlus)
21589 ValueKind = VK_PRValue;
21590
21591 // - variables
21592 } else if (isa<VarDecl>(VD)) {
21593 if (const ReferenceType *RefTy = Type->getAs<ReferenceType>()) {
21594 Type = RefTy->getPointeeType();
21595 } else if (Type->isFunctionType()) {
21596 S.Diag(E->getExprLoc(), diag::err_unknown_any_var_function_type)
21597 << VD << E->getSourceRange();
21598 return ExprError();
21599 }
21600
21601 // - nothing else
21602 } else {
21603 S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_decl)
21604 << VD << E->getSourceRange();
21605 return ExprError();
21606 }
21607
21608 // Modifying the declaration like this is friendly to IR-gen but
21609 // also really dangerous.
21610 VD->setType(DestType);
21611 E->setType(Type);
21612 E->setValueKind(ValueKind);
21613 return E;
21614 }
21615
21616 /// Check a cast of an unknown-any type. We intentionally only
21617 /// trigger this for C-style casts.
checkUnknownAnyCast(SourceRange TypeRange,QualType CastType,Expr * CastExpr,CastKind & CastKind,ExprValueKind & VK,CXXCastPath & Path)21618 ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
21619 Expr *CastExpr, CastKind &CastKind,
21620 ExprValueKind &VK, CXXCastPath &Path) {
21621 // The type we're casting to must be either void or complete.
21622 if (!CastType->isVoidType() &&
21623 RequireCompleteType(TypeRange.getBegin(), CastType,
21624 diag::err_typecheck_cast_to_incomplete))
21625 return ExprError();
21626
21627 // Rewrite the casted expression from scratch.
21628 ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(CastExpr);
21629 if (!result.isUsable()) return ExprError();
21630
21631 CastExpr = result.get();
21632 VK = CastExpr->getValueKind();
21633 CastKind = CK_NoOp;
21634
21635 return CastExpr;
21636 }
21637
forceUnknownAnyToType(Expr * E,QualType ToType)21638 ExprResult Sema::forceUnknownAnyToType(Expr *E, QualType ToType) {
21639 return RebuildUnknownAnyExpr(*this, ToType).Visit(E);
21640 }
21641
checkUnknownAnyArg(SourceLocation callLoc,Expr * arg,QualType & paramType)21642 ExprResult Sema::checkUnknownAnyArg(SourceLocation callLoc,
21643 Expr *arg, QualType ¶mType) {
21644 // If the syntactic form of the argument is not an explicit cast of
21645 // any sort, just do default argument promotion.
21646 ExplicitCastExpr *castArg = dyn_cast<ExplicitCastExpr>(arg->IgnoreParens());
21647 if (!castArg) {
21648 ExprResult result = DefaultArgumentPromotion(arg);
21649 if (result.isInvalid()) return ExprError();
21650 paramType = result.get()->getType();
21651 return result;
21652 }
21653
21654 // Otherwise, use the type that was written in the explicit cast.
21655 assert(!arg->hasPlaceholderType());
21656 paramType = castArg->getTypeAsWritten();
21657
21658 // Copy-initialize a parameter of that type.
21659 InitializedEntity entity =
21660 InitializedEntity::InitializeParameter(Context, paramType,
21661 /*consumed*/ false);
21662 return PerformCopyInitialization(entity, callLoc, arg);
21663 }
21664
diagnoseUnknownAnyExpr(Sema & S,Expr * E)21665 static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) {
21666 Expr *orig = E;
21667 unsigned diagID = diag::err_uncasted_use_of_unknown_any;
21668 while (true) {
21669 E = E->IgnoreParenImpCasts();
21670 if (CallExpr *call = dyn_cast<CallExpr>(E)) {
21671 E = call->getCallee();
21672 diagID = diag::err_uncasted_call_of_unknown_any;
21673 } else {
21674 break;
21675 }
21676 }
21677
21678 SourceLocation loc;
21679 NamedDecl *d;
21680 if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(E)) {
21681 loc = ref->getLocation();
21682 d = ref->getDecl();
21683 } else if (MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
21684 loc = mem->getMemberLoc();
21685 d = mem->getMemberDecl();
21686 } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(E)) {
21687 diagID = diag::err_uncasted_call_of_unknown_any;
21688 loc = msg->getSelectorStartLoc();
21689 d = msg->getMethodDecl();
21690 if (!d) {
21691 S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method)
21692 << static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector()
21693 << orig->getSourceRange();
21694 return ExprError();
21695 }
21696 } else {
21697 S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
21698 << E->getSourceRange();
21699 return ExprError();
21700 }
21701
21702 S.Diag(loc, diagID) << d << orig->getSourceRange();
21703
21704 // Never recoverable.
21705 return ExprError();
21706 }
21707
21708 /// Check for operands with placeholder types and complain if found.
21709 /// Returns ExprError() if there was an error and no recovery was possible.
CheckPlaceholderExpr(Expr * E)21710 ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
21711 if (!Context.isDependenceAllowed()) {
21712 // C cannot handle TypoExpr nodes on either side of a binop because it
21713 // doesn't handle dependent types properly, so make sure any TypoExprs have
21714 // been dealt with before checking the operands.
21715 ExprResult Result = CorrectDelayedTyposInExpr(E);
21716 if (!Result.isUsable()) return ExprError();
21717 E = Result.get();
21718 }
21719
21720 const BuiltinType *placeholderType = E->getType()->getAsPlaceholderType();
21721 if (!placeholderType) return E;
21722
21723 switch (placeholderType->getKind()) {
21724
21725 // Overloaded expressions.
21726 case BuiltinType::Overload: {
21727 // Try to resolve a single function template specialization.
21728 // This is obligatory.
21729 ExprResult Result = E;
21730 if (ResolveAndFixSingleFunctionTemplateSpecialization(Result, false))
21731 return Result;
21732
21733 // No guarantees that ResolveAndFixSingleFunctionTemplateSpecialization
21734 // leaves Result unchanged on failure.
21735 Result = E;
21736 if (resolveAndFixAddressOfSingleOverloadCandidate(Result))
21737 return Result;
21738
21739 // If that failed, try to recover with a call.
21740 tryToRecoverWithCall(Result, PDiag(diag::err_ovl_unresolvable),
21741 /*complain*/ true);
21742 return Result;
21743 }
21744
21745 // Bound member functions.
21746 case BuiltinType::BoundMember: {
21747 ExprResult result = E;
21748 const Expr *BME = E->IgnoreParens();
21749 PartialDiagnostic PD = PDiag(diag::err_bound_member_function);
21750 // Try to give a nicer diagnostic if it is a bound member that we recognize.
21751 if (isa<CXXPseudoDestructorExpr>(BME)) {
21752 PD = PDiag(diag::err_dtor_expr_without_call) << /*pseudo-destructor*/ 1;
21753 } else if (const auto *ME = dyn_cast<MemberExpr>(BME)) {
21754 if (ME->getMemberNameInfo().getName().getNameKind() ==
21755 DeclarationName::CXXDestructorName)
21756 PD = PDiag(diag::err_dtor_expr_without_call) << /*destructor*/ 0;
21757 }
21758 tryToRecoverWithCall(result, PD,
21759 /*complain*/ true);
21760 return result;
21761 }
21762
21763 // ARC unbridged casts.
21764 case BuiltinType::ARCUnbridgedCast: {
21765 Expr *realCast = stripARCUnbridgedCast(E);
21766 diagnoseARCUnbridgedCast(realCast);
21767 return realCast;
21768 }
21769
21770 // Expressions of unknown type.
21771 case BuiltinType::UnknownAny:
21772 return diagnoseUnknownAnyExpr(*this, E);
21773
21774 // Pseudo-objects.
21775 case BuiltinType::PseudoObject:
21776 return checkPseudoObjectRValue(E);
21777
21778 case BuiltinType::BuiltinFn: {
21779 // Accept __noop without parens by implicitly converting it to a call expr.
21780 auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
21781 if (DRE) {
21782 auto *FD = cast<FunctionDecl>(DRE->getDecl());
21783 unsigned BuiltinID = FD->getBuiltinID();
21784 if (BuiltinID == Builtin::BI__noop) {
21785 E = ImpCastExprToType(E, Context.getPointerType(FD->getType()),
21786 CK_BuiltinFnToFnPtr)
21787 .get();
21788 return CallExpr::Create(Context, E, /*Args=*/{}, Context.IntTy,
21789 VK_PRValue, SourceLocation(),
21790 FPOptionsOverride());
21791 }
21792
21793 if (Context.BuiltinInfo.isInStdNamespace(BuiltinID)) {
21794 // Any use of these other than a direct call is ill-formed as of C++20,
21795 // because they are not addressable functions. In earlier language
21796 // modes, warn and force an instantiation of the real body.
21797 Diag(E->getBeginLoc(),
21798 getLangOpts().CPlusPlus20
21799 ? diag::err_use_of_unaddressable_function
21800 : diag::warn_cxx20_compat_use_of_unaddressable_function);
21801 if (FD->isImplicitlyInstantiable()) {
21802 // Require a definition here because a normal attempt at
21803 // instantiation for a builtin will be ignored, and we won't try
21804 // again later. We assume that the definition of the template
21805 // precedes this use.
21806 InstantiateFunctionDefinition(E->getBeginLoc(), FD,
21807 /*Recursive=*/false,
21808 /*DefinitionRequired=*/true,
21809 /*AtEndOfTU=*/false);
21810 }
21811 // Produce a properly-typed reference to the function.
21812 CXXScopeSpec SS;
21813 SS.Adopt(DRE->getQualifierLoc());
21814 TemplateArgumentListInfo TemplateArgs;
21815 DRE->copyTemplateArgumentsInto(TemplateArgs);
21816 return BuildDeclRefExpr(
21817 FD, FD->getType(), VK_LValue, DRE->getNameInfo(),
21818 DRE->hasQualifier() ? &SS : nullptr, DRE->getFoundDecl(),
21819 DRE->getTemplateKeywordLoc(),
21820 DRE->hasExplicitTemplateArgs() ? &TemplateArgs : nullptr);
21821 }
21822 }
21823
21824 Diag(E->getBeginLoc(), diag::err_builtin_fn_use);
21825 return ExprError();
21826 }
21827
21828 case BuiltinType::IncompleteMatrixIdx:
21829 Diag(cast<MatrixSubscriptExpr>(E->IgnoreParens())
21830 ->getRowIdx()
21831 ->getBeginLoc(),
21832 diag::err_matrix_incomplete_index);
21833 return ExprError();
21834
21835 // Expressions of unknown type.
21836 case BuiltinType::OMPArraySection:
21837 Diag(E->getBeginLoc(), diag::err_omp_array_section_use);
21838 return ExprError();
21839
21840 // Expressions of unknown type.
21841 case BuiltinType::OMPArrayShaping:
21842 return ExprError(Diag(E->getBeginLoc(), diag::err_omp_array_shaping_use));
21843
21844 case BuiltinType::OMPIterator:
21845 return ExprError(Diag(E->getBeginLoc(), diag::err_omp_iterator_use));
21846
21847 // Everything else should be impossible.
21848 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
21849 case BuiltinType::Id:
21850 #include "clang/Basic/OpenCLImageTypes.def"
21851 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
21852 case BuiltinType::Id:
21853 #include "clang/Basic/OpenCLExtensionTypes.def"
21854 #define SVE_TYPE(Name, Id, SingletonId) \
21855 case BuiltinType::Id:
21856 #include "clang/Basic/AArch64SVEACLETypes.def"
21857 #define PPC_VECTOR_TYPE(Name, Id, Size) \
21858 case BuiltinType::Id:
21859 #include "clang/Basic/PPCTypes.def"
21860 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
21861 #include "clang/Basic/RISCVVTypes.def"
21862 #define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
21863 #include "clang/Basic/WebAssemblyReferenceTypes.def"
21864 #define BUILTIN_TYPE(Id, SingletonId) case BuiltinType::Id:
21865 #define PLACEHOLDER_TYPE(Id, SingletonId)
21866 #include "clang/AST/BuiltinTypes.def"
21867 break;
21868 }
21869
21870 llvm_unreachable("invalid placeholder type!");
21871 }
21872
CheckCaseExpression(Expr * E)21873 bool Sema::CheckCaseExpression(Expr *E) {
21874 if (E->isTypeDependent())
21875 return true;
21876 if (E->isValueDependent() || E->isIntegerConstantExpr(Context))
21877 return E->getType()->isIntegralOrEnumerationType();
21878 return false;
21879 }
21880
21881 /// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals.
21882 ExprResult
ActOnObjCBoolLiteral(SourceLocation OpLoc,tok::TokenKind Kind)21883 Sema::ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
21884 assert((Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) &&
21885 "Unknown Objective-C Boolean value!");
21886 QualType BoolT = Context.ObjCBuiltinBoolTy;
21887 if (!Context.getBOOLDecl()) {
21888 LookupResult Result(*this, &Context.Idents.get("BOOL"), OpLoc,
21889 Sema::LookupOrdinaryName);
21890 if (LookupName(Result, getCurScope()) && Result.isSingleResult()) {
21891 NamedDecl *ND = Result.getFoundDecl();
21892 if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
21893 Context.setBOOLDecl(TD);
21894 }
21895 }
21896 if (Context.getBOOLDecl())
21897 BoolT = Context.getBOOLType();
21898 return new (Context)
21899 ObjCBoolLiteralExpr(Kind == tok::kw___objc_yes, BoolT, OpLoc);
21900 }
21901
ActOnObjCAvailabilityCheckExpr(llvm::ArrayRef<AvailabilitySpec> AvailSpecs,SourceLocation AtLoc,SourceLocation RParen)21902 ExprResult Sema::ActOnObjCAvailabilityCheckExpr(
21903 llvm::ArrayRef<AvailabilitySpec> AvailSpecs, SourceLocation AtLoc,
21904 SourceLocation RParen) {
21905 auto FindSpecVersion =
21906 [&](StringRef Platform) -> std::optional<VersionTuple> {
21907 auto Spec = llvm::find_if(AvailSpecs, [&](const AvailabilitySpec &Spec) {
21908 return Spec.getPlatform() == Platform;
21909 });
21910 // Transcribe the "ios" availability check to "maccatalyst" when compiling
21911 // for "maccatalyst" if "maccatalyst" is not specified.
21912 if (Spec == AvailSpecs.end() && Platform == "maccatalyst") {
21913 Spec = llvm::find_if(AvailSpecs, [&](const AvailabilitySpec &Spec) {
21914 return Spec.getPlatform() == "ios";
21915 });
21916 }
21917 if (Spec == AvailSpecs.end())
21918 return std::nullopt;
21919 return Spec->getVersion();
21920 };
21921
21922 VersionTuple Version;
21923 if (auto MaybeVersion =
21924 FindSpecVersion(Context.getTargetInfo().getPlatformName()))
21925 Version = *MaybeVersion;
21926
21927 // The use of `@available` in the enclosing context should be analyzed to
21928 // warn when it's used inappropriately (i.e. not if(@available)).
21929 if (FunctionScopeInfo *Context = getCurFunctionAvailabilityContext())
21930 Context->HasPotentialAvailabilityViolations = true;
21931
21932 return new (Context)
21933 ObjCAvailabilityCheckExpr(Version, AtLoc, RParen, Context.BoolTy);
21934 }
21935
CreateRecoveryExpr(SourceLocation Begin,SourceLocation End,ArrayRef<Expr * > SubExprs,QualType T)21936 ExprResult Sema::CreateRecoveryExpr(SourceLocation Begin, SourceLocation End,
21937 ArrayRef<Expr *> SubExprs, QualType T) {
21938 if (!Context.getLangOpts().RecoveryAST)
21939 return ExprError();
21940
21941 if (isSFINAEContext())
21942 return ExprError();
21943
21944 if (T.isNull() || T->isUndeducedType() ||
21945 !Context.getLangOpts().RecoveryASTType)
21946 // We don't know the concrete type, fallback to dependent type.
21947 T = Context.DependentTy;
21948
21949 return RecoveryExpr::Create(Context, T, Begin, End, SubExprs);
21950 }
21951