/* * Copyright (c) 1998-2000, 2009-2010 Apple Inc. All rights reserved. * * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ * * This file contains Original Code and/or Modifications of Original Code * as defined in and that are subject to the Apple Public Source License * Version 2.0 (the 'License'). You may not use this file except in * compliance with the License. The rights granted to you under the License * may not be used to create, or enable the creation or redistribution of, * unlawful or unlicensed copies of an Apple operating system, or to * circumvent, violate, or enable the circumvention or violation of, any * terms of an Apple operating system software license agreement. * * Please obtain a copy of the License at * http://www.opensource.apple.com/apsl/ and read it before using this file. * * The Original Code and all software distributed under the License are * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. * Please see the License for the specific language governing rights and * limitations under the License. * * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ */ #include #include __BEGIN_DECLS #include __END_DECLS #include #include #include #include #include #include #include #if CONFIG_DTRACE #include #endif #include #include #define super IOEventSource OSDefineMetaClassAndStructors(IOTimerEventSource, IOEventSource) OSMetaClassDefineReservedUsedX86(IOTimerEventSource, 0); OSMetaClassDefineReservedUsedX86(IOTimerEventSource, 1); OSMetaClassDefineReservedUsedX86(IOTimerEventSource, 2); OSMetaClassDefineReservedUnused(IOTimerEventSource, 3); OSMetaClassDefineReservedUnused(IOTimerEventSource, 4); OSMetaClassDefineReservedUnused(IOTimerEventSource, 5); OSMetaClassDefineReservedUnused(IOTimerEventSource, 6); OSMetaClassDefineReservedUnused(IOTimerEventSource, 7); #if IOKITSTATS #define IOStatisticsInitializeCounter() \ do { \ IOStatistics::setCounterType(IOEventSource::reserved->counter, kIOStatisticsTimerEventSourceCounter); \ } while (0) #define IOStatisticsOpenGate() \ do { \ IOStatistics::countOpenGate(me->IOEventSource::reserved->counter); \ } while (0) #define IOStatisticsCloseGate() \ do { \ IOStatistics::countCloseGate(me->IOEventSource::reserved->counter); \ } while (0) #define IOStatisticsTimeout() \ do { \ IOStatistics::countTimerTimeout(me->IOEventSource::reserved->counter); \ } while (0) #else #define IOStatisticsInitializeCounter() #define IOStatisticsOpenGate() #define IOStatisticsCloseGate() #define IOStatisticsTimeout() #endif /* IOKITSTATS */ // // reserved != 0 means IOTimerEventSource::timeoutAndRelease is being used, // not a subclassed implementation. // // Timeout handler function. This function is called by the kernel when // the timeout interval expires. // __inline__ void IOTimerEventSource::invokeAction(IOEventSource::Action _action, IOTimerEventSource * ts, OSObject * _owner, IOWorkLoop * _workLoop) { bool trace = (gIOKitTrace & kIOTraceTimers) ? true : false; void * address; if (kActionBlock & flags) { address = ptrauth_nop_cast(void *, _Block_get_invoke_fn((struct Block_layout *) actionBlock)); } else { address = ptrauth_nop_cast(void *, _action); } if (trace) { IOTimeStampStartConstant(IODBG_TIMES(IOTIMES_ACTION), VM_KERNEL_ADDRHIDE(address), VM_KERNEL_ADDRHIDE(_owner)); } if (kActionBlock & flags) { ((IOTimerEventSource::ActionBlock) actionBlock)(ts); } else { ((IOTimerEventSource::Action)_action)(_owner, ts); } #if CONFIG_DTRACE DTRACE_TMR3(iotescallout__expire, Action, address, OSObject, _owner, void, _workLoop); #endif if (trace) { IOTimeStampEndConstant(IODBG_TIMES(IOTIMES_ACTION), VM_KERNEL_UNSLIDE(address), VM_KERNEL_ADDRHIDE(_owner)); } } void IOTimerEventSource::timeout(void *self) { IOTimerEventSource *me = (IOTimerEventSource *) self; IOStatisticsTimeout(); if (me->enabled && me->action) { IOWorkLoop * wl = me->workLoop; if (wl) { IOEventSource::Action doit; wl->closeGate(); IOStatisticsCloseGate(); doit = me->action; if (doit && me->enabled && AbsoluteTime_to_scalar(&me->abstime)) { me->invokeAction(doit, me, me->owner, me->workLoop); } IOStatisticsOpenGate(); wl->openGate(); } } } void IOTimerEventSource::timeoutAndRelease(void * self, void * c) { IOTimerEventSource *me = (IOTimerEventSource *) self; /* The second parameter (a pointer) gets abused to carry an SInt32, so on LP64, "count" * must be cast to "long" before, in order to tell GCC we're not truncating a pointer. */ SInt32 count = (SInt32) (long) c; IOStatisticsTimeout(); if (me->enabled && me->action) { IOWorkLoop * wl = me->reserved->workLoop; if (wl) { IOEventSource::Action doit; wl->closeGate(); IOStatisticsCloseGate(); doit = me->action; if (doit && (me->reserved->calloutGeneration == count)) { thread_call_start_iotes_invocation((thread_call_t)me->calloutEntry); me->invokeAction(doit, me, me->owner, me->workLoop); } IOStatisticsOpenGate(); wl->openGate(); } } if (me->reserved->workLoop) { me->reserved->workLoop->release(); } me->release(); } // -- work loop delivery bool IOTimerEventSource::checkForWork() { IOEventSource::Action doit; if (reserved && (reserved->calloutGenerationSignaled == reserved->calloutGeneration) && enabled && (doit = action)) { reserved->calloutGenerationSignaled = ~reserved->calloutGeneration; invokeAction(doit, this, owner, workLoop); } return false; } void IOTimerEventSource::timeoutSignaled(void * self, void * c) { IOTimerEventSource *me = (IOTimerEventSource *) self; me->reserved->calloutGenerationSignaled = (SInt32)(long) c; if (me->enabled) { me->signalWorkAvailable(); } } // -- void IOTimerEventSource::setTimeoutFunc() { thread_call_priority_t pri; uint32_t options; if (reserved) { panic("setTimeoutFunc already %p, %p", this, reserved); } // reserved != 0 means IOTimerEventSource::timeoutAndRelease is being used, // not a subclassed implementation reserved = IOMallocType(ExpansionData); reserved->calloutGenerationSignaled = ~reserved->calloutGeneration; // make use of an existing ivar for parameter passing options = (uint32_t) abstime; abstime = 0; thread_call_options_t tcoptions = 0; thread_call_func_t func = NULL; switch (kIOTimerEventSourceOptionsPriorityMask & options) { case kIOTimerEventSourceOptionsPriorityHigh: pri = THREAD_CALL_PRIORITY_HIGH; func = &IOTimerEventSource::timeoutAndRelease; break; case kIOTimerEventSourceOptionsPriorityKernel: pri = THREAD_CALL_PRIORITY_KERNEL; func = &IOTimerEventSource::timeoutAndRelease; break; case kIOTimerEventSourceOptionsPriorityKernelHigh: pri = THREAD_CALL_PRIORITY_KERNEL_HIGH; func = &IOTimerEventSource::timeoutAndRelease; break; case kIOTimerEventSourceOptionsPriorityUser: pri = THREAD_CALL_PRIORITY_USER; func = &IOTimerEventSource::timeoutAndRelease; break; case kIOTimerEventSourceOptionsPriorityLow: pri = THREAD_CALL_PRIORITY_LOW; func = &IOTimerEventSource::timeoutAndRelease; break; case kIOTimerEventSourceOptionsPriorityWorkLoop: pri = THREAD_CALL_PRIORITY_KERNEL; tcoptions |= THREAD_CALL_OPTIONS_SIGNAL; if (kIOTimerEventSourceOptionsAllowReenter & options) { break; } func = &IOTimerEventSource::timeoutSignaled; break; default: break; } assertf(func, "IOTimerEventSource options 0x%x", options); if (!func) { return; // init will fail } if (THREAD_CALL_OPTIONS_SIGNAL & tcoptions) { flags |= kActive; } else { flags |= kPassive; } if (!(kIOTimerEventSourceOptionsAllowReenter & options)) { tcoptions |= THREAD_CALL_OPTIONS_ONCE; } calloutEntry = (void *) thread_call_allocate_with_options(func, (thread_call_param_t) this, pri, tcoptions); assert(calloutEntry); } bool IOTimerEventSource::init(OSObject *inOwner, Action inAction) { if (!super::init(inOwner, (IOEventSource::Action) inAction)) { return false; } setTimeoutFunc(); if (!calloutEntry) { return false; } IOStatisticsInitializeCounter(); return true; } bool IOTimerEventSource::init(uint32_t options, OSObject *inOwner, Action inAction) { // make use of an existing ivar for parameter passing abstime = options; return init(inOwner, inAction); } IOTimerEventSource * IOTimerEventSource::timerEventSource(uint32_t inOptions, OSObject *inOwner, Action inAction) { IOTimerEventSource *me = new IOTimerEventSource; if (me && !me->init(inOptions, inOwner, inAction)) { me->release(); return NULL; } return me; } IOTimerEventSource * IOTimerEventSource::timerEventSource(uint32_t options, OSObject *inOwner, ActionBlock _action) { IOTimerEventSource * tes; tes = IOTimerEventSource::timerEventSource(options, inOwner, (Action) NULL); if (tes) { tes->setActionBlock((IOEventSource::ActionBlock) _action); } return tes; } #define _thread_call_cancel(tc) ((kActive & flags) ? thread_call_cancel_wait((tc)) : thread_call_cancel((tc))) IOTimerEventSource * IOTimerEventSource::timerEventSource(OSObject *inOwner, Action inAction) { return IOTimerEventSource::timerEventSource( kIOTimerEventSourceOptionsPriorityKernelHigh, inOwner, inAction); } void IOTimerEventSource::free() { if (calloutEntry) { __assert_only bool freed; cancelTimeout(); freed = thread_call_free((thread_call_t) calloutEntry); assert(freed); } if (reserved) { IOFreeType(reserved, ExpansionData); } super::free(); } void IOTimerEventSource::cancelTimeout() { if (reserved) { reserved->calloutGeneration++; } bool active = _thread_call_cancel((thread_call_t) calloutEntry); AbsoluteTime_to_scalar(&abstime) = 0; if (active && reserved && (kPassive & flags)) { release(); workLoop->release(); } } void IOTimerEventSource::enable() { super::enable(); if (kIOReturnSuccess != wakeAtTime(abstime)) { super::disable(); // Problem re-scheduling timeout ignore enable } } void IOTimerEventSource::disable() { if (reserved) { reserved->calloutGeneration++; } bool active = _thread_call_cancel((thread_call_t) calloutEntry); super::disable(); if (active && reserved && (kPassive & flags)) { release(); workLoop->release(); } } IOReturn IOTimerEventSource::setTimeoutTicks(UInt32 ticks) { return setTimeout(ticks, kTickScale); } IOReturn IOTimerEventSource::setTimeoutMS(UInt32 ms) { return setTimeout(ms, kMillisecondScale); } IOReturn IOTimerEventSource::setTimeoutUS(UInt32 us) { return setTimeout(us, kMicrosecondScale); } IOReturn IOTimerEventSource::setTimeout(UInt32 interval, UInt32 scale_factor) { AbsoluteTime end; clock_interval_to_deadline(interval, scale_factor, &end); return wakeAtTime(end); } #if !defined(__LP64__) IOReturn IOTimerEventSource::setTimeout(mach_timespec_t interval) { AbsoluteTime end, nsecs; clock_interval_to_absolutetime_interval (interval.tv_nsec, kNanosecondScale, &nsecs); clock_interval_to_deadline (interval.tv_sec, NSEC_PER_SEC, &end); ADD_ABSOLUTETIME(&end, &nsecs); return wakeAtTime(end); } #endif IOReturn IOTimerEventSource::setTimeout(AbsoluteTime interval) { AbsoluteTime end; clock_absolutetime_interval_to_deadline(interval, &end); return wakeAtTime(end); } IOReturn IOTimerEventSource::setTimeout(uint32_t options, AbsoluteTime abstime, AbsoluteTime leeway) { AbsoluteTime end; if (options & kIOTimeOptionsContinuous) { clock_continuoustime_interval_to_deadline(abstime, &end); } else { clock_absolutetime_interval_to_deadline(abstime, &end); } return wakeAtTime(options, end, leeway); } IOReturn IOTimerEventSource::wakeAtTimeTicks(UInt32 ticks) { return wakeAtTime(ticks, kTickScale); } IOReturn IOTimerEventSource::wakeAtTimeMS(UInt32 ms) { return wakeAtTime(ms, kMillisecondScale); } IOReturn IOTimerEventSource::wakeAtTimeUS(UInt32 us) { return wakeAtTime(us, kMicrosecondScale); } IOReturn IOTimerEventSource::wakeAtTime(UInt32 inAbstime, UInt32 scale_factor) { AbsoluteTime end; clock_interval_to_absolutetime_interval(inAbstime, scale_factor, &end); return wakeAtTime(end); } #if !defined(__LP64__) IOReturn IOTimerEventSource::wakeAtTime(mach_timespec_t inAbstime) { AbsoluteTime end, nsecs; clock_interval_to_absolutetime_interval (inAbstime.tv_nsec, kNanosecondScale, &nsecs); clock_interval_to_absolutetime_interval (inAbstime.tv_sec, kSecondScale, &end); ADD_ABSOLUTETIME(&end, &nsecs); return wakeAtTime(end); } #endif void IOTimerEventSource::setWorkLoop(IOWorkLoop *inWorkLoop) { super::setWorkLoop(inWorkLoop); if (enabled && AbsoluteTime_to_scalar(&abstime) && workLoop) { wakeAtTime(abstime); } } IOReturn IOTimerEventSource::wakeAtTime(AbsoluteTime inAbstime) { return wakeAtTime(0, inAbstime, 0); } IOReturn IOTimerEventSource::wakeAtTime(uint32_t options, AbsoluteTime inAbstime, AbsoluteTime leeway) { if (!action) { return kIOReturnNoResources; } abstime = inAbstime; if (enabled && AbsoluteTime_to_scalar(&inAbstime) && AbsoluteTime_to_scalar(&abstime) && workLoop) { uint32_t tcoptions = 0; if (kIOTimeOptionsWithLeeway & options) { tcoptions |= THREAD_CALL_DELAY_LEEWAY; } if (kIOTimeOptionsContinuous & options) { tcoptions |= THREAD_CALL_CONTINUOUS; } if (reserved) { if (kPassive & flags) { retain(); workLoop->retain(); } reserved->workLoop = workLoop; reserved->calloutGeneration++; if (thread_call_enter_delayed_with_leeway((thread_call_t) calloutEntry, (void *)(uintptr_t) reserved->calloutGeneration, inAbstime, leeway, tcoptions) && (kPassive & flags)) { release(); workLoop->release(); } } else { thread_call_enter_delayed_with_leeway((thread_call_t) calloutEntry, NULL, inAbstime, leeway, tcoptions); } } return kIOReturnSuccess; }