/* * Copyright (c) 1998-2000 Apple Computer, Inc. All rights reserved. * * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ * * This file contains Original Code and/or Modifications of Original Code * as defined in and that are subject to the Apple Public Source License * Version 2.0 (the 'License'). You may not use this file except in * compliance with the License. The rights granted to you under the License * may not be used to create, or enable the creation or redistribution of, * unlawful or unlicensed copies of an Apple operating system, or to * circumvent, violate, or enable the circumvention or violation of, any * terms of an Apple operating system software license agreement. * * Please obtain a copy of the License at * http://www.opensource.apple.com/apsl/ and read it before using this file. * * The Original Code and all software distributed under the License are * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. * Please see the License for the specific language governing rights and * limitations under the License. * * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ */ #define IOKIT_ENABLE_SHARED_PTR #include #include #include #include #include #include #ifdef enqueue #undef enqueue #endif #ifdef dequeue #undef dequeue #endif #define super IODataQueue OSDefineMetaClassAndStructors(IOSharedDataQueue, IODataQueue) OSSharedPtr IOSharedDataQueue::withCapacity(UInt32 size) { OSSharedPtr dataQueue = OSMakeShared(); if (dataQueue) { if (!dataQueue->initWithCapacity(size)) { return nullptr; } } return dataQueue; } OSSharedPtr IOSharedDataQueue::withEntries(UInt32 numEntries, UInt32 entrySize) { OSSharedPtr dataQueue = OSMakeShared(); if (dataQueue) { if (!dataQueue->initWithEntries(numEntries, entrySize)) { return nullptr; } } return dataQueue; } Boolean IOSharedDataQueue::initWithCapacity(UInt32 size) { IODataQueueAppendix * appendix; vm_size_t allocSize; kern_return_t kr; if (!super::init()) { return false; } _reserved = IOMallocType(ExpansionData); if (!_reserved) { return false; } if (size > UINT32_MAX - DATA_QUEUE_MEMORY_HEADER_SIZE - DATA_QUEUE_MEMORY_APPENDIX_SIZE) { return false; } allocSize = round_page(size + DATA_QUEUE_MEMORY_HEADER_SIZE + DATA_QUEUE_MEMORY_APPENDIX_SIZE); if (allocSize < size) { return false; } kr = kmem_alloc(kernel_map, (vm_offset_t *)&dataQueue, allocSize, (kma_flags_t)(KMA_DATA | KMA_ZERO), IOMemoryTag(kernel_map)); if (kr != KERN_SUCCESS) { return false; } dataQueue->queueSize = size; // dataQueue->head = 0; // dataQueue->tail = 0; if (!setQueueSize(size)) { return false; } appendix = (IODataQueueAppendix *)((UInt8 *)dataQueue + size + DATA_QUEUE_MEMORY_HEADER_SIZE); appendix->version = 0; if (!notifyMsg) { notifyMsg = IOMallocType(mach_msg_header_t); if (!notifyMsg) { return false; } } bzero(notifyMsg, sizeof(mach_msg_header_t)); setNotificationPort(MACH_PORT_NULL); return true; } void IOSharedDataQueue::free() { if (dataQueue) { kmem_free(kernel_map, (vm_offset_t)dataQueue, round_page(getQueueSize() + DATA_QUEUE_MEMORY_HEADER_SIZE + DATA_QUEUE_MEMORY_APPENDIX_SIZE)); dataQueue = NULL; if (notifyMsg) { IOFreeType(notifyMsg, mach_msg_header_t); notifyMsg = NULL; } } if (_reserved) { IOFreeType(_reserved, ExpansionData); _reserved = NULL; } super::free(); } OSSharedPtr IOSharedDataQueue::getMemoryDescriptor() { OSSharedPtr descriptor; if (dataQueue != NULL) { descriptor = IOMemoryDescriptor::withAddress(dataQueue, getQueueSize() + DATA_QUEUE_MEMORY_HEADER_SIZE + DATA_QUEUE_MEMORY_APPENDIX_SIZE, kIODirectionOutIn); } return descriptor; } IODataQueueEntry * IOSharedDataQueue::peek() { IODataQueueEntry *entry = NULL; UInt32 headOffset; UInt32 tailOffset; if (!dataQueue) { return NULL; } // Read head and tail with acquire barrier // See rdar://problem/40780584 for an explanation of relaxed/acquire barriers headOffset = __c11_atomic_load((_Atomic UInt32 *)&dataQueue->head, __ATOMIC_RELAXED); tailOffset = __c11_atomic_load((_Atomic UInt32 *)&dataQueue->tail, __ATOMIC_ACQUIRE); if (headOffset != tailOffset) { volatile IODataQueueEntry * head = NULL; UInt32 headSize = 0; UInt32 headOffset = dataQueue->head; UInt32 queueSize = getQueueSize(); if (headOffset > queueSize) { return NULL; } head = (IODataQueueEntry *)((char *)dataQueue->queue + headOffset); headSize = head->size; // Check if there's enough room before the end of the queue for a header. // If there is room, check if there's enough room to hold the header and // the data. if ((headOffset > UINT32_MAX - DATA_QUEUE_ENTRY_HEADER_SIZE) || (headOffset + DATA_QUEUE_ENTRY_HEADER_SIZE > queueSize) || (headOffset + DATA_QUEUE_ENTRY_HEADER_SIZE > UINT32_MAX - headSize) || (headOffset + headSize + DATA_QUEUE_ENTRY_HEADER_SIZE > queueSize)) { // No room for the header or the data, wrap to the beginning of the queue. // Note: wrapping even with the UINT32_MAX checks, as we have to support // queueSize of UINT32_MAX entry = dataQueue->queue; } else { entry = (IODataQueueEntry *)head; } } return entry; } Boolean IOSharedDataQueue::enqueue(void * data, UInt32 dataSize) { UInt32 head; UInt32 tail; UInt32 newTail; const UInt32 entrySize = dataSize + DATA_QUEUE_ENTRY_HEADER_SIZE; IODataQueueEntry * entry; // Force a single read of head and tail // See rdar://problem/40780584 for an explanation of relaxed/acquire barriers tail = __c11_atomic_load((_Atomic UInt32 *)&dataQueue->tail, __ATOMIC_RELAXED); head = __c11_atomic_load((_Atomic UInt32 *)&dataQueue->head, __ATOMIC_ACQUIRE); // Check for overflow of entrySize if (dataSize > UINT32_MAX - DATA_QUEUE_ENTRY_HEADER_SIZE) { return false; } // Check for underflow of (getQueueSize() - tail) if (getQueueSize() < tail || getQueueSize() < head) { return false; } if (tail >= head) { // Is there enough room at the end for the entry? if ((entrySize <= UINT32_MAX - tail) && ((tail + entrySize) <= getQueueSize())) { entry = (IODataQueueEntry *)((UInt8 *)dataQueue->queue + tail); entry->size = dataSize; __nochk_memcpy(&entry->data, data, dataSize); // The tail can be out of bound when the size of the new entry // exactly matches the available space at the end of the queue. // The tail can range from 0 to dataQueue->queueSize inclusive. newTail = tail + entrySize; } else if (head > entrySize) { // Is there enough room at the beginning? // Wrap around to the beginning, but do not allow the tail to catch // up to the head. dataQueue->queue->size = dataSize; // We need to make sure that there is enough room to set the size before // doing this. The user client checks for this and will look for the size // at the beginning if there isn't room for it at the end. if ((getQueueSize() - tail) >= DATA_QUEUE_ENTRY_HEADER_SIZE) { ((IODataQueueEntry *)((UInt8 *)dataQueue->queue + tail))->size = dataSize; } __nochk_memcpy(&dataQueue->queue->data, data, dataSize); newTail = entrySize; } else { return false; // queue is full } } else { // Do not allow the tail to catch up to the head when the queue is full. // That's why the comparison uses a '>' rather than '>='. if ((head - tail) > entrySize) { entry = (IODataQueueEntry *)((UInt8 *)dataQueue->queue + tail); entry->size = dataSize; __nochk_memcpy(&entry->data, data, dataSize); newTail = tail + entrySize; } else { return false; // queue is full } } // Publish the data we just enqueued __c11_atomic_store((_Atomic UInt32 *)&dataQueue->tail, newTail, __ATOMIC_RELEASE); if (tail != head) { // // The memory barrier below paris with the one in ::dequeue // so that either our store to the tail cannot be missed by // the next dequeue attempt, or we will observe the dequeuer // making the queue empty. // // Of course, if we already think the queue is empty, // there's no point paying this extra cost. // __c11_atomic_thread_fence(__ATOMIC_SEQ_CST); head = __c11_atomic_load((_Atomic UInt32 *)&dataQueue->head, __ATOMIC_RELAXED); } if (tail == head) { // Send notification (via mach message) that data is now available. sendDataAvailableNotification(); } return true; } Boolean IOSharedDataQueue::dequeue(void *data, UInt32 *dataSize) { Boolean retVal = TRUE; volatile IODataQueueEntry * entry = NULL; UInt32 entrySize = 0; UInt32 headOffset = 0; UInt32 tailOffset = 0; UInt32 newHeadOffset = 0; if (!dataQueue || (data && !dataSize)) { return false; } // Read head and tail with acquire barrier // See rdar://problem/40780584 for an explanation of relaxed/acquire barriers headOffset = __c11_atomic_load((_Atomic UInt32 *)&dataQueue->head, __ATOMIC_RELAXED); tailOffset = __c11_atomic_load((_Atomic UInt32 *)&dataQueue->tail, __ATOMIC_ACQUIRE); if (headOffset != tailOffset) { volatile IODataQueueEntry * head = NULL; UInt32 headSize = 0; UInt32 queueSize = getQueueSize(); if (headOffset > queueSize) { return false; } head = (IODataQueueEntry *)((char *)dataQueue->queue + headOffset); headSize = head->size; // we wrapped around to beginning, so read from there // either there was not even room for the header if ((headOffset > UINT32_MAX - DATA_QUEUE_ENTRY_HEADER_SIZE) || (headOffset + DATA_QUEUE_ENTRY_HEADER_SIZE > queueSize) || // or there was room for the header, but not for the data (headOffset + DATA_QUEUE_ENTRY_HEADER_SIZE > UINT32_MAX - headSize) || (headOffset + headSize + DATA_QUEUE_ENTRY_HEADER_SIZE > queueSize)) { // Note: we have to wrap to the beginning even with the UINT32_MAX checks // because we have to support a queueSize of UINT32_MAX. entry = dataQueue->queue; entrySize = entry->size; if ((entrySize > UINT32_MAX - DATA_QUEUE_ENTRY_HEADER_SIZE) || (entrySize + DATA_QUEUE_ENTRY_HEADER_SIZE > queueSize)) { return false; } newHeadOffset = entrySize + DATA_QUEUE_ENTRY_HEADER_SIZE; // else it is at the end } else { entry = head; entrySize = entry->size; if ((entrySize > UINT32_MAX - DATA_QUEUE_ENTRY_HEADER_SIZE) || (entrySize + DATA_QUEUE_ENTRY_HEADER_SIZE > UINT32_MAX - headOffset) || (entrySize + DATA_QUEUE_ENTRY_HEADER_SIZE + headOffset > queueSize)) { return false; } newHeadOffset = headOffset + entrySize + DATA_QUEUE_ENTRY_HEADER_SIZE; } } else { // empty queue return false; } if (data) { if (entrySize > *dataSize) { // not enough space return false; } __nochk_memcpy(data, (void *)entry->data, entrySize); *dataSize = entrySize; } __c11_atomic_store((_Atomic UInt32 *)&dataQueue->head, newHeadOffset, __ATOMIC_RELEASE); if (newHeadOffset == tailOffset) { // // If we are making the queue empty, then we need to make sure // that either the enqueuer notices, or we notice the enqueue // that raced with our making of the queue empty. // __c11_atomic_thread_fence(__ATOMIC_SEQ_CST); } return retVal; } UInt32 IOSharedDataQueue::getQueueSize() { if (!_reserved) { return 0; } return _reserved->queueSize; } Boolean IOSharedDataQueue::setQueueSize(UInt32 size) { if (!_reserved) { return false; } _reserved->queueSize = size; return true; } OSMetaClassDefineReservedUnused(IOSharedDataQueue, 0); OSMetaClassDefineReservedUnused(IOSharedDataQueue, 1); OSMetaClassDefineReservedUnused(IOSharedDataQueue, 2); OSMetaClassDefineReservedUnused(IOSharedDataQueue, 3); OSMetaClassDefineReservedUnused(IOSharedDataQueue, 4); OSMetaClassDefineReservedUnused(IOSharedDataQueue, 5); OSMetaClassDefineReservedUnused(IOSharedDataQueue, 6); OSMetaClassDefineReservedUnused(IOSharedDataQueue, 7);