/* * Copyright (c) 1998-2000 Apple Computer, Inc. All rights reserved. * * @APPLE_LICENSE_HEADER_START@ * * The contents of this file constitute Original Code as defined in and * are subject to the Apple Public Source License Version 1.1 (the * "License"). You may not use this file except in compliance with the * License. Please obtain a copy of the License at * http://www.apple.com/publicsource and read it before using this file. * * This Original Code and all software distributed under the License are * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the * License for the specific language governing rights and limitations * under the License. * * @APPLE_LICENSE_HEADER_END@ */ #include #include #include #include #include "IOKitKernelInternal.h" __BEGIN_DECLS void ipc_port_release_send(ipc_port_t port); #include vm_map_t IOPageableMapForAddress( vm_address_t address ); __END_DECLS #define super IOGeneralMemoryDescriptor OSDefineMetaClassAndStructors(IOBufferMemoryDescriptor, IOGeneralMemoryDescriptor); bool IOBufferMemoryDescriptor::initWithAddress( void * /* address */ , IOByteCount /* withLength */ , IODirection /* withDirection */ ) { return false; } bool IOBufferMemoryDescriptor::initWithAddress( vm_address_t /* address */ , IOByteCount /* withLength */ , IODirection /* withDirection */ , task_t /* withTask */ ) { return false; } bool IOBufferMemoryDescriptor::initWithPhysicalAddress( IOPhysicalAddress /* address */ , IOByteCount /* withLength */ , IODirection /* withDirection */ ) { return false; } bool IOBufferMemoryDescriptor::initWithPhysicalRanges( IOPhysicalRange * /* ranges */ , UInt32 /* withCount */ , IODirection /* withDirection */ , bool /* asReference */ ) { return false; } bool IOBufferMemoryDescriptor::initWithRanges( IOVirtualRange * /* ranges */ , UInt32 /* withCount */ , IODirection /* withDirection */ , task_t /* withTask */ , bool /* asReference */ ) { return false; } bool IOBufferMemoryDescriptor::initWithOptions( IOOptionBits options, vm_size_t capacity, vm_offset_t alignment, task_t inTask) { kern_return_t kr; vm_map_t vmmap = 0; IOOptionBits iomdOptions = kIOMemoryAsReference | kIOMemoryTypeVirtual; if (!capacity) return false; _options = options; _capacity = capacity; _physAddrs = 0; _physSegCount = 0; _buffer = 0; // Grab the direction and the Auto Prepare bits from the Buffer MD options iomdOptions |= options & (kIOMemoryDirectionMask | kIOMemoryAutoPrepare); if ((options & kIOMemorySharingTypeMask) && (alignment < page_size)) alignment = page_size; if ((inTask != kernel_task) && !(options & kIOMemoryPageable)) return false; _alignment = alignment; if (options & kIOMemoryPageable) { iomdOptions |= kIOMemoryBufferPageable; ipc_port_t sharedMem; vm_size_t size = round_page_32(capacity); // must create the entry before any pages are allocated // set flags for entry + object create vm_prot_t memEntryCacheMode = VM_PROT_READ | VM_PROT_WRITE | MAP_MEM_NAMED_CREATE; if (options & kIOMemoryPurgeable) memEntryCacheMode |= MAP_MEM_PURGABLE; // set memory entry cache mode switch (options & kIOMapCacheMask) { case kIOMapInhibitCache: SET_MAP_MEM(MAP_MEM_IO, memEntryCacheMode); break; case kIOMapWriteThruCache: SET_MAP_MEM(MAP_MEM_WTHRU, memEntryCacheMode); break; case kIOMapWriteCombineCache: SET_MAP_MEM(MAP_MEM_WCOMB, memEntryCacheMode); break; case kIOMapCopybackCache: SET_MAP_MEM(MAP_MEM_COPYBACK, memEntryCacheMode); break; case kIOMapDefaultCache: default: SET_MAP_MEM(MAP_MEM_NOOP, memEntryCacheMode); break; } kr = mach_make_memory_entry( vmmap, &size, 0, memEntryCacheMode, &sharedMem, NULL ); if( (KERN_SUCCESS == kr) && (size != round_page_32(capacity))) { ipc_port_release_send( sharedMem ); kr = kIOReturnVMError; } if( KERN_SUCCESS != kr) return( false ); _memEntry = (void *) sharedMem; #if IOALLOCDEBUG debug_iomallocpageable_size += size; #endif if ((NULL == inTask) && (options & kIOMemoryPageable)) inTask = kernel_task; else if (inTask == kernel_task) { vmmap = kernel_map; } else { if( !reserved) { reserved = IONew( ExpansionData, 1 ); if( !reserved) return( false ); } vmmap = get_task_map(inTask); vm_map_reference(vmmap); reserved->map = vmmap; } } else { // @@@ gvdl: Need to remove this // Buffer should never auto prepare they should be prepared explicitly // But it never was enforced so what are you going to do? iomdOptions |= kIOMemoryAutoPrepare; /* Allocate a wired-down buffer inside kernel space. */ if (options & kIOMemoryPhysicallyContiguous) _buffer = IOMallocContiguous(capacity, alignment, 0); else if (alignment > 1) _buffer = IOMallocAligned(capacity, alignment); else _buffer = IOMalloc(capacity); if (!_buffer) return false; } _singleRange.v.address = (vm_address_t) _buffer; _singleRange.v.length = capacity; if (!super::initWithOptions(&_singleRange.v, 1, 0, inTask, iomdOptions, /* System mapper */ 0)) return false; if (options & kIOMemoryPageable) { kern_return_t kr; if (vmmap) { kr = doMap(vmmap, (IOVirtualAddress *) &_buffer, kIOMapAnywhere, 0, round_page_32(capacity)); if (KERN_SUCCESS != kr) { _buffer = 0; return( false ); } _singleRange.v.address = (vm_address_t) _buffer; } } setLength(capacity); return true; } IOBufferMemoryDescriptor * IOBufferMemoryDescriptor::inTaskWithOptions( task_t inTask, IOOptionBits options, vm_size_t capacity, vm_offset_t alignment) { IOBufferMemoryDescriptor *me = new IOBufferMemoryDescriptor; if (me && !me->initWithOptions(options, capacity, alignment, inTask)) { me->release(); me = 0; } return me; } bool IOBufferMemoryDescriptor::initWithOptions( IOOptionBits options, vm_size_t capacity, vm_offset_t alignment) { return( initWithOptions(options, capacity, alignment, kernel_task) ); } IOBufferMemoryDescriptor * IOBufferMemoryDescriptor::withOptions( IOOptionBits options, vm_size_t capacity, vm_offset_t alignment) { IOBufferMemoryDescriptor *me = new IOBufferMemoryDescriptor; if (me && !me->initWithOptions(options, capacity, alignment, kernel_task)) { me->release(); me = 0; } return me; } /* * withCapacity: * * Returns a new IOBufferMemoryDescriptor with a buffer large enough to * hold capacity bytes. The descriptor's length is initially set to the capacity. */ IOBufferMemoryDescriptor * IOBufferMemoryDescriptor::withCapacity(vm_size_t inCapacity, IODirection inDirection, bool inContiguous) { return( IOBufferMemoryDescriptor::withOptions( inDirection | kIOMemoryUnshared | (inContiguous ? kIOMemoryPhysicallyContiguous : 0), inCapacity, inContiguous ? inCapacity : 1 )); } /* * initWithBytes: * * Initialize a new IOBufferMemoryDescriptor preloaded with bytes (copied). * The descriptor's length and capacity are set to the input buffer's size. */ bool IOBufferMemoryDescriptor::initWithBytes(const void * inBytes, vm_size_t inLength, IODirection inDirection, bool inContiguous) { if (!initWithOptions( inDirection | kIOMemoryUnshared | (inContiguous ? kIOMemoryPhysicallyContiguous : 0), inLength, inLength )) return false; // start out with no data setLength(0); if (!appendBytes(inBytes, inLength)) return false; return true; } /* * withBytes: * * Returns a new IOBufferMemoryDescriptor preloaded with bytes (copied). * The descriptor's length and capacity are set to the input buffer's size. */ IOBufferMemoryDescriptor * IOBufferMemoryDescriptor::withBytes(const void * inBytes, vm_size_t inLength, IODirection inDirection, bool inContiguous) { IOBufferMemoryDescriptor *me = new IOBufferMemoryDescriptor; if (me && !me->initWithBytes(inBytes, inLength, inDirection, inContiguous)){ me->release(); me = 0; } return me; } /* * free: * * Free resources */ void IOBufferMemoryDescriptor::free() { // Cache all of the relevant information on the stack for use // after we call super::free()! IOOptionBits options = _options; vm_size_t size = _capacity; void * buffer = _buffer; vm_map_t vmmap = 0; vm_offset_t alignment = _alignment; if (reserved) { vmmap = reserved->map; IODelete( reserved, ExpansionData, 1 ); } /* super::free may unwire - deallocate buffer afterwards */ super::free(); if (options & kIOMemoryPageable) { #if IOALLOCDEBUG if (!buffer || vmmap) debug_iomallocpageable_size -= round_page_32(size); #endif if (buffer) { if (vmmap) vm_deallocate(vmmap, (vm_address_t) buffer, round_page_32(size)); else IOFreePageable(buffer, size); } } else if (buffer) { if (options & kIOMemoryPhysicallyContiguous) IOFreeContiguous(buffer, size); else if (alignment > 1) IOFreeAligned(buffer, size); else IOFree(buffer, size); } if (vmmap) vm_map_deallocate(vmmap); } /* * getCapacity: * * Get the buffer capacity */ vm_size_t IOBufferMemoryDescriptor::getCapacity() const { return _capacity; } /* * setLength: * * Change the buffer length of the memory descriptor. When a new buffer * is created, the initial length of the buffer is set to be the same as * the capacity. The length can be adjusted via setLength for a shorter * transfer (there is no need to create more buffer descriptors when you * can reuse an existing one, even for different transfer sizes). Note * that the specified length must not exceed the capacity of the buffer. */ void IOBufferMemoryDescriptor::setLength(vm_size_t length) { assert(length <= _capacity); _length = length; _singleRange.v.length = length; } /* * setDirection: * * Change the direction of the transfer. This method allows one to redirect * the descriptor's transfer direction. This eliminates the need to destroy * and create new buffers when different transfer directions are needed. */ void IOBufferMemoryDescriptor::setDirection(IODirection direction) { _direction = direction; } /* * appendBytes: * * Add some data to the end of the buffer. This method automatically * maintains the memory descriptor buffer length. Note that appendBytes * will not copy past the end of the memory descriptor's current capacity. */ bool IOBufferMemoryDescriptor::appendBytes(const void * bytes, vm_size_t withLength) { vm_size_t actualBytesToCopy = min(withLength, _capacity - _length); assert(_length <= _capacity); bcopy(/* from */ bytes, (void *)(_singleRange.v.address + _length), actualBytesToCopy); _length += actualBytesToCopy; _singleRange.v.length += actualBytesToCopy; return true; } /* * getBytesNoCopy: * * Return the virtual address of the beginning of the buffer */ void * IOBufferMemoryDescriptor::getBytesNoCopy() { return (void *)_singleRange.v.address; } /* * getBytesNoCopy: * * Return the virtual address of an offset from the beginning of the buffer */ void * IOBufferMemoryDescriptor::getBytesNoCopy(vm_size_t start, vm_size_t withLength) { if (start < _length && (start + withLength) <= _length) return (void *)(_singleRange.v.address + start); return 0; } OSMetaClassDefineReservedUsed(IOBufferMemoryDescriptor, 0); OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 1); OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 2); OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 3); OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 4); OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 5); OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 6); OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 7); OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 8); OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 9); OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 10); OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 11); OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 12); OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 13); OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 14); OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 15);