/* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains SQLite's grammar for SQL. Process this file ** using the lemon parser generator to generate C code that runs ** the parser. Lemon will also generate a header file containing ** numeric codes for all of the tokens. ** ** @(#) $Id: parse.y,v 1.55 2002/03/03 23:06:01 drh Exp $ */ %token_prefix TK_ %token_type {Token} %default_type {Token} %extra_argument {Parse *pParse} %syntax_error { sqliteSetString(&pParse->zErrMsg,"syntax error",0); pParse->sErrToken = TOKEN; } %name sqliteParser %include { #include "sqliteInt.h" #include "parse.h" /* ** A structure for holding two integers */ struct twoint { int a,b; }; } // These are extra tokens used by the lexer but never seen by the // parser. We put them in a rule so that the parser generator will // add them to the parse.h output file. // %nonassoc END_OF_FILE ILLEGAL SPACE UNCLOSED_STRING COMMENT FUNCTION COLUMN AGG_FUNCTION. // Input is zero or more commands. input ::= cmdlist. // A list of commands is zero or more commands // cmdlist ::= ecmd. cmdlist ::= cmdlist SEMI ecmd. ecmd ::= explain cmd. {sqliteExec(pParse);} ecmd ::= cmd. {sqliteExec(pParse);} ecmd ::= . explain ::= EXPLAIN. {pParse->explain = 1;} ///////////////////// Begin and end transactions. //////////////////////////// // cmd ::= BEGIN trans_opt onconf(R). {sqliteBeginTransaction(pParse,R);} trans_opt ::= . trans_opt ::= TRANSACTION. trans_opt ::= TRANSACTION ids. cmd ::= COMMIT trans_opt. {sqliteCommitTransaction(pParse);} cmd ::= END trans_opt. {sqliteCommitTransaction(pParse);} cmd ::= ROLLBACK trans_opt. {sqliteRollbackTransaction(pParse);} ///////////////////// The CREATE TABLE statement //////////////////////////// // cmd ::= create_table create_table_args. create_table ::= CREATE(X) temp(T) TABLE ids(Y). { sqliteStartTable(pParse,&X,&Y,T); } %type temp {int} temp(A) ::= TEMP. {A = 1;} temp(A) ::= . {A = 0;} create_table_args ::= LP columnlist conslist_opt RP(X). { sqliteEndTable(pParse,&X,0); } create_table_args ::= AS select(S). { sqliteEndTable(pParse,0,S); sqliteSelectDelete(S); } columnlist ::= columnlist COMMA column. columnlist ::= column. // About the only information used for a column is the name of the // column. The type is always just "text". But the code will accept // an elaborate typename. Perhaps someday we'll do something with it. // column ::= columnid type carglist. columnid ::= ids(X). {sqliteAddColumn(pParse,&X);} // An IDENTIFIER can be a generic identifier, or one of several // keywords. Any non-standard keyword can also be an identifier. // We also make DESC and identifier since it comes up so often (as // an abbreviation of "description"). // %type id {Token} id(A) ::= DESC(X). {A = X;} id(A) ::= ASC(X). {A = X;} id(A) ::= DELIMITERS(X). {A = X;} id(A) ::= EXPLAIN(X). {A = X;} id(A) ::= VACUUM(X). {A = X;} id(A) ::= BEGIN(X). {A = X;} id(A) ::= END(X). {A = X;} id(A) ::= PRAGMA(X). {A = X;} id(A) ::= CLUSTER(X). {A = X;} id(A) ::= ID(X). {A = X;} id(A) ::= TEMP(X). {A = X;} id(A) ::= OFFSET(X). {A = X;} id(A) ::= KEY(X). {A = X;} id(A) ::= ABORT(X). {A = X;} id(A) ::= IGNORE(X). {A = X;} id(A) ::= REPLACE(X). {A = X;} id(A) ::= FAIL(X). {A = X;} id(A) ::= CONFLICT(X). {A = X;} // And "ids" is an identifer-or-string. // %type ids {Token} ids(A) ::= id(X). {A = X;} ids(A) ::= STRING(X). {A = X;} type ::= . type ::= typename(X). {sqliteAddColumnType(pParse,&X,&X);} type ::= typename(X) LP signed RP(Y). {sqliteAddColumnType(pParse,&X,&Y);} type ::= typename(X) LP signed COMMA signed RP(Y). {sqliteAddColumnType(pParse,&X,&Y);} %type typename {Token} typename(A) ::= ids(X). {A = X;} typename(A) ::= typename(X) ids. {A = X;} signed ::= INTEGER. signed ::= PLUS INTEGER. signed ::= MINUS INTEGER. carglist ::= carglist carg. carglist ::= . carg ::= CONSTRAINT ids ccons. carg ::= ccons. carg ::= DEFAULT STRING(X). {sqliteAddDefaultValue(pParse,&X,0);} carg ::= DEFAULT ID(X). {sqliteAddDefaultValue(pParse,&X,0);} carg ::= DEFAULT INTEGER(X). {sqliteAddDefaultValue(pParse,&X,0);} carg ::= DEFAULT PLUS INTEGER(X). {sqliteAddDefaultValue(pParse,&X,0);} carg ::= DEFAULT MINUS INTEGER(X). {sqliteAddDefaultValue(pParse,&X,1);} carg ::= DEFAULT FLOAT(X). {sqliteAddDefaultValue(pParse,&X,0);} carg ::= DEFAULT PLUS FLOAT(X). {sqliteAddDefaultValue(pParse,&X,0);} carg ::= DEFAULT MINUS FLOAT(X). {sqliteAddDefaultValue(pParse,&X,1);} carg ::= DEFAULT NULL. // In addition to the type name, we also care about the primary key and // UNIQUE constraints. // ccons ::= NOT NULL onconf(R). {sqliteAddNotNull(pParse, R);} ccons ::= PRIMARY KEY sortorder onconf(R). {sqliteAddPrimaryKey(pParse,0,R);} ccons ::= UNIQUE onconf(R). {sqliteCreateIndex(pParse,0,0,0,R,0,0);} ccons ::= CHECK LP expr RP onconf. // For the time being, the only constraint we care about is the primary // key and UNIQUE. Both create indices. // conslist_opt ::= . conslist_opt ::= COMMA conslist. conslist ::= conslist COMMA tcons. conslist ::= conslist tcons. conslist ::= tcons. tcons ::= CONSTRAINT ids. tcons ::= PRIMARY KEY LP idxlist(X) RP onconf(R). {sqliteAddPrimaryKey(pParse,X,R);} tcons ::= UNIQUE LP idxlist(X) RP onconf(R). {sqliteCreateIndex(pParse,0,0,X,R,0,0);} tcons ::= CHECK expr onconf. // The following is a non-standard extension that allows us to declare the // default behavior when there is a constraint conflict. // %type onconf {int} %type orconf {int} %type resolvetype {int} onconf(A) ::= . { A = OE_Default; } onconf(A) ::= ON CONFLICT resolvetype(X). { A = X; } orconf(A) ::= . { A = OE_Default; } orconf(A) ::= OR resolvetype(X). { A = X; } resolvetype(A) ::= ROLLBACK. { A = OE_Rollback; } resolvetype(A) ::= ABORT. { A = OE_Abort; } resolvetype(A) ::= FAIL. { A = OE_Fail; } resolvetype(A) ::= IGNORE. { A = OE_Ignore; } resolvetype(A) ::= REPLACE. { A = OE_Replace; } ////////////////////////// The DROP TABLE ///////////////////////////////////// // cmd ::= DROP TABLE ids(X). {sqliteDropTable(pParse,&X,0);} ///////////////////// The CREATE VIEW statement ///////////////////////////// // cmd ::= CREATE(X) VIEW ids(Y) AS select(S). { sqliteCreateView(pParse, &X, &Y, S); } cmd ::= DROP VIEW ids(X). { sqliteDropTable(pParse, &X, 1); } //////////////////////// The SELECT statement ///////////////////////////////// // cmd ::= select(X). { sqliteSelect(pParse, X, SRT_Callback, 0, 0, 0, 0); sqliteSelectDelete(X); } %type select {Select*} %destructor select {sqliteSelectDelete($$);} %type oneselect {Select*} %destructor oneselect {sqliteSelectDelete($$);} select(A) ::= oneselect(X). {A = X;} select(A) ::= select(X) multiselect_op(Y) oneselect(Z). { if( Z ){ Z->op = Y; Z->pPrior = X; } A = Z; } %type multiselect_op {int} multiselect_op(A) ::= UNION. {A = TK_UNION;} multiselect_op(A) ::= UNION ALL. {A = TK_ALL;} multiselect_op(A) ::= INTERSECT. {A = TK_INTERSECT;} multiselect_op(A) ::= EXCEPT. {A = TK_EXCEPT;} oneselect(A) ::= SELECT distinct(D) selcollist(W) from(X) where_opt(Y) groupby_opt(P) having_opt(Q) orderby_opt(Z) limit_opt(L). { A = sqliteSelectNew(W,X,Y,P,Q,Z,D,L.a,L.b); } // The "distinct" nonterminal is true (1) if the DISTINCT keyword is // present and false (0) if it is not. // %type distinct {int} distinct(A) ::= DISTINCT. {A = 1;} distinct(A) ::= ALL. {A = 0;} distinct(A) ::= . {A = 0;} // selcollist is a list of expressions that are to become the return // values of the SELECT statement. The "*" in statements like // "SELECT * FROM ..." is encoded as a special expression with an // opcode of TK_ALL. // %type selcollist {ExprList*} %destructor selcollist {sqliteExprListDelete($$);} %type sclp {ExprList*} %destructor sclp {sqliteExprListDelete($$);} sclp(A) ::= selcollist(X) COMMA. {A = X;} sclp(A) ::= . {A = 0;} selcollist(A) ::= sclp(P) expr(X). {A = sqliteExprListAppend(P,X,0);} selcollist(A) ::= sclp(P) expr(X) as ids(Y). {A = sqliteExprListAppend(P,X,&Y);} selcollist(A) ::= sclp(P) STAR. { A = sqliteExprListAppend(P, sqliteExpr(TK_ALL, 0, 0, 0), 0); } as ::= . as ::= AS. %type seltablist {IdList*} %destructor seltablist {sqliteIdListDelete($$);} %type stl_prefix {IdList*} %destructor stl_prefix {sqliteIdListDelete($$);} %type from {IdList*} %destructor from {sqliteIdListDelete($$);} from(A) ::= FROM seltablist(X). {A = X;} stl_prefix(A) ::= seltablist(X) COMMA. {A = X;} stl_prefix(A) ::= . {A = 0;} seltablist(A) ::= stl_prefix(X) ids(Y). {A = sqliteIdListAppend(X,&Y);} seltablist(A) ::= stl_prefix(X) ids(Y) as ids(Z). { A = sqliteIdListAppend(X,&Y); sqliteIdListAddAlias(A,&Z); } seltablist(A) ::= stl_prefix(X) LP select(S) RP. { A = sqliteIdListAppend(X,0); A->a[A->nId-1].pSelect = S; } seltablist(A) ::= stl_prefix(X) LP select(S) RP as ids(Z). { A = sqliteIdListAppend(X,0); A->a[A->nId-1].pSelect = S; sqliteIdListAddAlias(A,&Z); } %type orderby_opt {ExprList*} %destructor orderby_opt {sqliteExprListDelete($$);} %type sortlist {ExprList*} %destructor sortlist {sqliteExprListDelete($$);} %type sortitem {Expr*} %destructor sortitem {sqliteExprDelete($$);} orderby_opt(A) ::= . {A = 0;} orderby_opt(A) ::= ORDER BY sortlist(X). {A = X;} sortlist(A) ::= sortlist(X) COMMA sortitem(Y) sortorder(Z). { A = sqliteExprListAppend(X,Y,0); if( A ) A->a[A->nExpr-1].sortOrder = Z; /* 0=ascending, 1=decending */ } sortlist(A) ::= sortitem(Y) sortorder(Z). { A = sqliteExprListAppend(0,Y,0); if( A ) A->a[0].sortOrder = Z; } sortitem(A) ::= expr(X). {A = X;} %type sortorder {int} sortorder(A) ::= ASC. {A = 0;} sortorder(A) ::= DESC. {A = 1;} sortorder(A) ::= . {A = 0;} %type groupby_opt {ExprList*} %destructor groupby_opt {sqliteExprListDelete($$);} groupby_opt(A) ::= . {A = 0;} groupby_opt(A) ::= GROUP BY exprlist(X). {A = X;} %type having_opt {Expr*} %destructor having_opt {sqliteExprDelete($$);} having_opt(A) ::= . {A = 0;} having_opt(A) ::= HAVING expr(X). {A = X;} %type limit_opt {struct twoint} limit_opt(A) ::= . {A.a = -1; A.b = 0;} limit_opt(A) ::= LIMIT INTEGER(X). {A.a = atoi(X.z); A.b = 0;} limit_opt(A) ::= LIMIT INTEGER(X) limit_sep INTEGER(Y). {A.a = atoi(X.z); A.b = atoi(Y.z);} limit_sep ::= OFFSET. limit_sep ::= COMMA. /////////////////////////// The DELETE statement ///////////////////////////// // cmd ::= DELETE FROM ids(X) where_opt(Y). {sqliteDeleteFrom(pParse, &X, Y);} %type where_opt {Expr*} %destructor where_opt {sqliteExprDelete($$);} where_opt(A) ::= . {A = 0;} where_opt(A) ::= WHERE expr(X). {A = X;} %type setlist {ExprList*} %destructor setlist {sqliteExprListDelete($$);} ////////////////////////// The UPDATE command //////////////////////////////// // cmd ::= UPDATE orconf(R) ids(X) SET setlist(Y) where_opt(Z). {sqliteUpdate(pParse,&X,Y,Z,R);} setlist(A) ::= setlist(Z) COMMA ids(X) EQ expr(Y). {A = sqliteExprListAppend(Z,Y,&X);} setlist(A) ::= ids(X) EQ expr(Y). {A = sqliteExprListAppend(0,Y,&X);} ////////////////////////// The INSERT command ///////////////////////////////// // cmd ::= insert_cmd(R) INTO ids(X) inscollist_opt(F) VALUES LP itemlist(Y) RP. {sqliteInsert(pParse, &X, Y, 0, F, R);} cmd ::= insert_cmd(R) INTO ids(X) inscollist_opt(F) select(S). {sqliteInsert(pParse, &X, 0, S, F, R);} %type insert_cmd {int} insert_cmd(A) ::= INSERT orconf(R). {A = R;} insert_cmd(A) ::= REPLACE. {A = OE_Replace;} %type itemlist {ExprList*} %destructor itemlist {sqliteExprListDelete($$);} itemlist(A) ::= itemlist(X) COMMA expr(Y). {A = sqliteExprListAppend(X,Y,0);} itemlist(A) ::= expr(X). {A = sqliteExprListAppend(0,X,0);} %type inscollist_opt {IdList*} %destructor inscollist_opt {sqliteIdListDelete($$);} %type inscollist {IdList*} %destructor inscollist {sqliteIdListDelete($$);} inscollist_opt(A) ::= . {A = 0;} inscollist_opt(A) ::= LP inscollist(X) RP. {A = X;} inscollist(A) ::= inscollist(X) COMMA ids(Y). {A = sqliteIdListAppend(X,&Y);} inscollist(A) ::= ids(Y). {A = sqliteIdListAppend(0,&Y);} /////////////////////////// Expression Processing ///////////////////////////// // %left OR. %left AND. %right NOT. %left EQ NE ISNULL NOTNULL IS LIKE GLOB BETWEEN IN. %left GT GE LT LE. %left BITAND BITOR LSHIFT RSHIFT. %left PLUS MINUS. %left STAR SLASH REM. %left CONCAT. %right UMINUS BITNOT. %type expr {Expr*} %destructor expr {sqliteExprDelete($$);} expr(A) ::= LP(B) expr(X) RP(E). {A = X; sqliteExprSpan(A,&B,&E);} expr(A) ::= NULL(X). {A = sqliteExpr(TK_NULL, 0, 0, &X);} expr(A) ::= id(X). {A = sqliteExpr(TK_ID, 0, 0, &X);} expr(A) ::= ids(X) DOT ids(Y). { Expr *temp1 = sqliteExpr(TK_ID, 0, 0, &X); Expr *temp2 = sqliteExpr(TK_ID, 0, 0, &Y); A = sqliteExpr(TK_DOT, temp1, temp2, 0); } expr(A) ::= INTEGER(X). {A = sqliteExpr(TK_INTEGER, 0, 0, &X);} expr(A) ::= FLOAT(X). {A = sqliteExpr(TK_FLOAT, 0, 0, &X);} expr(A) ::= STRING(X). {A = sqliteExpr(TK_STRING, 0, 0, &X);} expr(A) ::= ID(X) LP exprlist(Y) RP(E). { A = sqliteExprFunction(Y, &X); sqliteExprSpan(A,&X,&E); } expr(A) ::= ID(X) LP STAR RP(E). { A = sqliteExprFunction(0, &X); sqliteExprSpan(A,&X,&E); } expr(A) ::= expr(X) AND expr(Y). {A = sqliteExpr(TK_AND, X, Y, 0);} expr(A) ::= expr(X) OR expr(Y). {A = sqliteExpr(TK_OR, X, Y, 0);} expr(A) ::= expr(X) LT expr(Y). {A = sqliteExpr(TK_LT, X, Y, 0);} expr(A) ::= expr(X) GT expr(Y). {A = sqliteExpr(TK_GT, X, Y, 0);} expr(A) ::= expr(X) LE expr(Y). {A = sqliteExpr(TK_LE, X, Y, 0);} expr(A) ::= expr(X) GE expr(Y). {A = sqliteExpr(TK_GE, X, Y, 0);} expr(A) ::= expr(X) NE expr(Y). {A = sqliteExpr(TK_NE, X, Y, 0);} expr(A) ::= expr(X) EQ expr(Y). {A = sqliteExpr(TK_EQ, X, Y, 0);} expr(A) ::= expr(X) BITAND expr(Y). {A = sqliteExpr(TK_BITAND, X, Y, 0);} expr(A) ::= expr(X) BITOR expr(Y). {A = sqliteExpr(TK_BITOR, X, Y, 0);} expr(A) ::= expr(X) LSHIFT expr(Y). {A = sqliteExpr(TK_LSHIFT, X, Y, 0);} expr(A) ::= expr(X) RSHIFT expr(Y). {A = sqliteExpr(TK_RSHIFT, X, Y, 0);} expr(A) ::= expr(X) LIKE expr(Y). {A = sqliteExpr(TK_LIKE, X, Y, 0);} expr(A) ::= expr(X) NOT LIKE expr(Y). { A = sqliteExpr(TK_LIKE, X, Y, 0); A = sqliteExpr(TK_NOT, A, 0, 0); sqliteExprSpan(A,&X->span,&Y->span); } expr(A) ::= expr(X) GLOB expr(Y). {A = sqliteExpr(TK_GLOB,X,Y,0);} expr(A) ::= expr(X) NOT GLOB expr(Y). { A = sqliteExpr(TK_GLOB, X, Y, 0); A = sqliteExpr(TK_NOT, A, 0, 0); sqliteExprSpan(A,&X->span,&Y->span); } expr(A) ::= expr(X) PLUS expr(Y). {A = sqliteExpr(TK_PLUS, X, Y, 0);} expr(A) ::= expr(X) MINUS expr(Y). {A = sqliteExpr(TK_MINUS, X, Y, 0);} expr(A) ::= expr(X) STAR expr(Y). {A = sqliteExpr(TK_STAR, X, Y, 0);} expr(A) ::= expr(X) SLASH expr(Y). {A = sqliteExpr(TK_SLASH, X, Y, 0);} expr(A) ::= expr(X) REM expr(Y). {A = sqliteExpr(TK_REM, X, Y, 0);} expr(A) ::= expr(X) CONCAT expr(Y). {A = sqliteExpr(TK_CONCAT, X, Y, 0);} expr(A) ::= expr(X) ISNULL(E). { A = sqliteExpr(TK_ISNULL, X, 0, 0); sqliteExprSpan(A,&X->span,&E); } expr(A) ::= expr(X) IS NULL(E). { A = sqliteExpr(TK_ISNULL, X, 0, 0); sqliteExprSpan(A,&X->span,&E); } expr(A) ::= expr(X) NOTNULL(E). { A = sqliteExpr(TK_NOTNULL, X, 0, 0); sqliteExprSpan(A,&X->span,&E); } expr(A) ::= expr(X) NOT NULL(E). { A = sqliteExpr(TK_NOTNULL, X, 0, 0); sqliteExprSpan(A,&X->span,&E); } expr(A) ::= expr(X) IS NOT NULL(E). { A = sqliteExpr(TK_NOTNULL, X, 0, 0); sqliteExprSpan(A,&X->span,&E); } expr(A) ::= NOT(B) expr(X). { A = sqliteExpr(TK_NOT, X, 0, 0); sqliteExprSpan(A,&B,&X->span); } expr(A) ::= BITNOT(B) expr(X). { A = sqliteExpr(TK_BITNOT, X, 0, 0); sqliteExprSpan(A,&B,&X->span); } expr(A) ::= MINUS(B) expr(X). [UMINUS] { A = sqliteExpr(TK_UMINUS, X, 0, 0); sqliteExprSpan(A,&B,&X->span); } expr(A) ::= PLUS(B) expr(X). [UMINUS] { A = X; sqliteExprSpan(A,&B,&X->span); } expr(A) ::= LP(B) select(X) RP(E). { A = sqliteExpr(TK_SELECT, 0, 0, 0); if( A ) A->pSelect = X; sqliteExprSpan(A,&B,&E); } expr(A) ::= expr(W) BETWEEN expr(X) AND expr(Y). { ExprList *pList = sqliteExprListAppend(0, X, 0); pList = sqliteExprListAppend(pList, Y, 0); A = sqliteExpr(TK_BETWEEN, W, 0, 0); if( A ) A->pList = pList; sqliteExprSpan(A,&W->span,&Y->span); } expr(A) ::= expr(W) NOT BETWEEN expr(X) AND expr(Y). { ExprList *pList = sqliteExprListAppend(0, X, 0); pList = sqliteExprListAppend(pList, Y, 0); A = sqliteExpr(TK_BETWEEN, W, 0, 0); if( A ) A->pList = pList; A = sqliteExpr(TK_NOT, A, 0, 0); sqliteExprSpan(A,&W->span,&Y->span); } expr(A) ::= expr(X) IN LP exprlist(Y) RP(E). { A = sqliteExpr(TK_IN, X, 0, 0); if( A ) A->pList = Y; sqliteExprSpan(A,&X->span,&E); } expr(A) ::= expr(X) IN LP select(Y) RP(E). { A = sqliteExpr(TK_IN, X, 0, 0); if( A ) A->pSelect = Y; sqliteExprSpan(A,&X->span,&E); } expr(A) ::= expr(X) NOT IN LP exprlist(Y) RP(E). { A = sqliteExpr(TK_IN, X, 0, 0); if( A ) A->pList = Y; A = sqliteExpr(TK_NOT, A, 0, 0); sqliteExprSpan(A,&X->span,&E); } expr(A) ::= expr(X) NOT IN LP select(Y) RP(E). { A = sqliteExpr(TK_IN, X, 0, 0); if( A ) A->pSelect = Y; A = sqliteExpr(TK_NOT, A, 0, 0); sqliteExprSpan(A,&X->span,&E); } %type exprlist {ExprList*} %destructor exprlist {sqliteExprListDelete($$);} %type expritem {Expr*} %destructor expritem {sqliteExprDelete($$);} exprlist(A) ::= exprlist(X) COMMA expritem(Y). {A = sqliteExprListAppend(X,Y,0);} exprlist(A) ::= expritem(X). {A = sqliteExprListAppend(0,X,0);} expritem(A) ::= expr(X). {A = X;} expritem(A) ::= . {A = 0;} ///////////////////////////// The CREATE INDEX command /////////////////////// // cmd ::= CREATE(S) uniqueflag(U) INDEX ids(X) ON ids(Y) LP idxlist(Z) RP(E) onconf(R). { if( U!=OE_None ) U = R; if( U==OE_Default) U = OE_Abort; sqliteCreateIndex(pParse, &X, &Y, Z, U, &S, &E); } %type uniqueflag {int} uniqueflag(A) ::= UNIQUE. { A = OE_Abort; } uniqueflag(A) ::= . { A = OE_None; } %type idxlist {IdList*} %destructor idxlist {sqliteIdListDelete($$);} %type idxitem {Token} idxlist(A) ::= idxlist(X) COMMA idxitem(Y). {A = sqliteIdListAppend(X,&Y);} idxlist(A) ::= idxitem(Y). {A = sqliteIdListAppend(0,&Y);} idxitem(A) ::= ids(X). {A = X;} ///////////////////////////// The DROP INDEX command ///////////////////////// // cmd ::= DROP INDEX ids(X). {sqliteDropIndex(pParse, &X);} ///////////////////////////// The COPY command /////////////////////////////// // cmd ::= COPY orconf(R) ids(X) FROM ids(Y) USING DELIMITERS STRING(Z). {sqliteCopy(pParse,&X,&Y,&Z,R);} cmd ::= COPY orconf(R) ids(X) FROM ids(Y). {sqliteCopy(pParse,&X,&Y,0,R);} ///////////////////////////// The VACUUM command ///////////////////////////// // cmd ::= VACUUM. {sqliteVacuum(pParse,0);} cmd ::= VACUUM ids(X). {sqliteVacuum(pParse,&X);} ///////////////////////////// The PRAGMA command ///////////////////////////// // cmd ::= PRAGMA ids(X) EQ ids(Y). {sqlitePragma(pParse,&X,&Y,0);} cmd ::= PRAGMA ids(X) EQ ON(Y). {sqlitePragma(pParse,&X,&Y,0);} cmd ::= PRAGMA ids(X) EQ plus_num(Y). {sqlitePragma(pParse,&X,&Y,0);} cmd ::= PRAGMA ids(X) EQ minus_num(Y). {sqlitePragma(pParse,&X,&Y,1);} cmd ::= PRAGMA ids(X) LP ids(Y) RP. {sqlitePragma(pParse,&X,&Y,0);} cmd ::= PRAGMA(Y) ids(X). {sqlitePragma(pParse,&X,&Y,0);} plus_num(A) ::= plus_opt number(X). {A = X;} minus_num(A) ::= MINUS number(X). {A = X;} number(A) ::= INTEGER(X). {A = X;} number(A) ::= FLOAT(X). {A = X;} plus_opt ::= PLUS. plus_opt ::= .